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Preface

This book contains an exposition of several results related with direct and con-
verse theorems in the theory of approximation by algebraic polynomials in a finite
interval. In addition, we include some facts concerning trigonometric approxima-
tion that are necessary for motivation and comparisons. The selection of papers
that we reference and discuss document some trends in polynomial approximation
from the 1950s to the present day.

The book does not pretend to be a text for graduate students. We only want
to ease the task of understanding the evolution of ideas and to help people in
finding the correct references for a specific result. An important feature of the
book is to put together some different known solutions to problems in algebraic
approximation that are not collected in text books. This explains the large number
of references.

Almost all of the material appears in historical order, but the concepts are
separated into groups in order to present a fuller picture of the state of the art in
a specific problem.

Several topics related with algebraic approximation are not included here. For
instance, we do not discuss approximation with constraints, because that would
double the length of the book. On the other hand, we do present a few facts
concerning approximation by positive linear operators.

I hope that this survey will be helpful to students and researchers interested
in approximation by algebraic polynomials. Any suggestions that would help to
improve these notes would be welcomed by the author.

Jorge Bustamante González
Benemérita Universidad Autónoma de Puebla
Mexico
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Chapter 1

Some Notes on Trigonometric
Approximation

1.1 Early years

Let us denote by (C[a, b] C[0, 2π]) the space of all real continuous (2π-periodic)
functions f provided with the uniform norm

‖f‖ = sup
x∈[a,b]

| f(x) |
(

= sup
x∈[0,2π]

| f(x) |
)

.

By Pn (Tn) we denote the family of all algebraic (trigonometric) polynomials
of degree not greater than n. In 1885 Weierstrass published his famous theorem
asserting that, every continuous (periodic) function on a compact interval is the
limit in the uniform norm of a sequence of algebraic (trigonometric) polynomials.
We shall mention that, almost at the same time, Runge showed that an arbitrary
continuous function can be approximated by means of a rational function and that
rational functions can be approximated by means of polynomials [318] and [319].
But he did not formulate the result explicitly. In a modern notation, Weierstrass’s
theorem can be written as follows: for any f ∈ C[a, b],

lim
n→∞ En(f, [a, b]) = 0, (1.1)

where
En(f, [a, b]) = inf{ ‖f − P‖ : P ∈ Pn} (1.2)

is called the best approximation of f (by algebraic polynomials) of order n. For
trigonometric approximation the best approximation is defined analogously. That
is, if f ∈ C[0, 2π], then

E∗
n(f) = inf

T∈Tn

‖f − T ‖.

,   1 
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After Weierstrass, several different proofs of the same result appeared. Among
others, there are some due to Lebesgue (1898, who used approximations of a func-
tion by broken lines [228]), Lerch (1892 and 1903, who approximated by a polyg-
onal line and then by a Fourier series, [232] and [233]), Volterra (1987, who used
ideas very similar to Lerch’s, [401]), Borel (1905, [36]), Landau (1908, who used
a singular integral [224]), Simon (1918, who modified Landau’s ideas in order to
approximate by finite sums [341]), de la Vallée-Poussin (1908, who provided an
elegant proof in the trigonometrical case using a special integral, see [82] and
[85]) and Kryloff (1908, who used a discrete version of de la Vallée-Poussin’s inte-
gral, [222]). For interesting comments related with these results see the paper of
Pinkus [281].

As Jackson remarked [177], a time came when there was no longer any dis-
tinction in inventing a proof of Weierstrass’s theorem, unless the new method could
be shown to possess some specific excellence. At that time it was known that there
exist some connections between the smoothness of a function and its approxi-
mation by partial sums of Fourier series. These ideas can be found in Picard’s
book [280].

It was Lebesgue in 1908 who formally stated the problem of studying the
relation between smoothness and best approximation [229]. He considered the
problem for Lipschitz functions. We say that L ∈ Lipα[a, b] (0 < α ≤ 1), if there
exists a constant K = K(f) such that

| f(x)− f(y) | ≤ K | x− y |α . (1.3)

We also set

Lipα(M, [a, b]) = {f : [a, b]→ R :| f(x)− f(y) | ≤ M | x− y |α}. (1.4)

Lebesgue proved that if f ∈ Lip1[a, b], then

En(f) ≤ C
√

(logn)/n.

In [82] de la Vallée-Poussin improved the estimate by showing that

En(f) ≤ C/
√

n.

The study of the special function g(x) =| x |, x ∈ [−1, 1], played an important
role. It belongs to g ∈ Lip1[−1, 1]. In 1908 de la Vallée-Poussin [81] constructed a
polynomial Pn such that

| Pn(x)− | x | |< C

n
.

Two years later he proved that we can not find polynomials Pn satisfying

| Pn(x)− | x | |< C

n log3 n

for all x ∈ [−1, 1]. Bernstein improved this result.
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Theorem 1.1.1 (Bernstein, [25]). Let C and ε be positive numbers and r ∈ N. If
f ∈ C[a, b] and for each n ∈ N there exists Pn ∈ Pn such that

| Pn(x)− f(x) |< C

nr(log n)1+ε
;

then f ∈ Cr[a, b].

Thus for the case of g(x) =| x | (x ∈ [−1, 1]) and r = 1 such an inequality is
not possible. The correct estimate for this function was found by Bernstein in his
prize essay for the Belgian Academy [26]:

En(g) ≥ C/
√

n.

One important point in the Bernstein paper quoted above is that, for the
first time, there appears what now is called Bernstein’s inequality: if Tn ∈ Tn,
then

‖T ′
n‖ ≤ n ‖Tn‖. (1.5)

In fact, in the original paper Bernstein proved that ‖T ′
n‖ ≤ 2n ‖Tn‖. The inequal-

ity in the form (1.5) was presented by de la Vallée-Poussin in [84]. For an algebraic
polynomial the inequality can be stated as: if Pn ∈ Pn, then

|
√

1− x2P ′
n(x) | ≤ n ‖Pn‖∞, x ∈ [−1, 1]. (1.6)

Bernstein considered first the algebraic case, but Jackson [178] noticed that it is
simpler to study first the trigonometrical case.

The relevance of Bernstein’s inequality comes from its applications to con-
verse results. As an example we recall here one of the assertions obtained in this
way. If f ∈ C[0, 2π] and E∗

n(f) ≤ C/nk+α (0 < α < 1), then f has a continuous
kth derivative and f (k) ∈ Lipα[0, 2π].

Concerning the direct result, Jackson in his dissertation and in [176] proved
that, if a function f of period 2π satisfies condition (1.3) (with α = 1), then

E∗
n(f) ≤ CK

n
,

where C is an absolute constant, π/2 ≤ C ≤ 3. If f : [a, b]→ R satisfies condition
(1.3), then

En(f) ≤ CK(b − a)
n

,

where C is an absolute constant, 1/2 ≤ C ≤ 3/2.
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1.2 Direct and converse results: a motivation

Since this work is devoted to approximation by algebraic polynomials, we omit
many details related with the history of trigonometric approximation.

In Theorem 1.2.1 we present a summary of the best results concerning direct
and converse results and then we give some historical remarks.

For each r ∈ N and f ∈ Lp[0, 2π] (1 ≤ p ≤ ∞) the usual modulus of
continuity of order r is defined by

ωr(f, t)p = sup
h∈(0, t]

‖Δr
hf‖p ,

where Δr
hf(x) =

∑r
k=0(−1)k

(
r
k

)
f(x + kh) is the central difference of order r with

step h. For the case of continuous functions we omit the index p in the above
notation and when r = 1 we also omit the index r.

We say that ω : [0, a] → R is a modulus of continuity, if ω is an increasing
continuous function ω(0) = 0, ω(t) > 0 for t > 0, and

ω(t + s) ≤ ω(s) + ω(t). (1.7)

Theorem 1.2.1. Fix f ∈ C[0, 2π], r, s ∈ N0 and σ such that r < σ < s and let
{Tn} be the sequence of polynomials of the best approximation for f . The following
assertions are equivalent:

(i) E∗
n(f) = ‖f − Tn‖ = O(n−σ), (n →∞),

(ii) ωs(f, t) = O(tσ), (t→ 0),

(iii) ‖T (s)
n ‖ = O(n−(σ−s)), (n →∞),

(iv) f ∈ Cr[0, 2π] and ‖f (r) − T
(r)
n ‖ = O(n−(σ−r)), (n →∞),

(v) f ∈ Cr[0, 2π] and ω1(f (r), t) = O(tσ−r), (0 < σ − r < 1),

(vi) f ∈ Cr[0, 2π] and ω2(f (r), t) = O(tσ−r), (0 < σ − r < 2).

The fact that the assertions in Theorem 1.2.1 are equivalent not only in
C[0, 2π] but in the setting of normed spaces was proved by Butzer and Scherer
([51] and [52]). They showed that essentially what we need is to have on hand
appropriate Jackson and Bernstein-type inequalities. The abstract approach will
be presented in the last section of this chapter.

The assertion (v)⇒ (i) was proved by Jackson [175] and [176] (the statement
presented here is not the original). Different versions were later developed by
Favard [115], Akhieser and Krein [1] and Korneichuk [207].

Theorem 1.2.2 (Direct result). For each r ∈ N, f ∈ Cr[0, 2π] and n ∈ N0,

E∗
n(f) ≤ C(r)

nr
ω

(
f (r),

1
n

)
and E∗

n(f) ≤ Kr

nr+1
‖f (r)‖,
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where Kr is Favard’s constant defined by

Kr =
4
π

∞∑
k=0

(−1)k(r+1)

(2k + 1)r+1
. (1.8)

It is known that K0 = 1, K1 = π/2, K2 = π2/8, K3 = π3/24 and

π2

8
= K2 < K4 < · · · < 4

π
< · · · < K3 < K1 =

π

2
.

In 1912 Bernstein studied the converse result. The proof of Bernstein is a
model for almost all converse theorems and was based on Bernstein’s inequality

‖T (r)
n ‖ ≤ nr ‖Tn‖ (Tn ∈ Tn),

and n ∈ N) which follows from (1.5) by induction.
Let W [0, 2π] be the class of all functions f ∈ C[0, 2π] for which there exists

a constant C = C(f) such that

ω(f, t) ≤ C t(1+ | ln t |).
Theorem 1.2.3 (Bernstein). Fix α ∈ (0, 1] and f ∈ C[0, 2π] and suppose there
exists a constant C such that E∗

n(f) ≤ cn−α. Then, if α < 1, f ∈ Lipα[0, 2π] and
if α = 1, f ∈ W[0, 2π].

In 1919 de la Vallée-Poussin [85] (following Bernstein’s ideas) proved the
following theorem.

Theorem 1.2.4. Let Ω : [a,∞) (a > 1) be a decreasing function such that

lim
t→∞ Ω(t) = 0 and

∫ ∞

a

Ω(u)
u

du < ∞.

If p ∈ N, f ∈ C[0, 2π] and E∗
n(f) ≤ Ω(n)n−p, then f (p) exists and

ω(f (p), t) ≤ C

(
t

∫ a/t

a

Ω(u)du +
∫ ∞

1/t

Ω(u)
u

du

)
. (1.9)

Following Freud, here O may not be substituted by o. Thus if, for some r ≥ 0
and 0 < α < 1, there is a polynomial Tn ∈ Tn such that for n ∈ N we have

‖f − Tn‖ ≤ C

nr+α
,

then f ∈ Cr [0, 2π] and f (r) ∈ Lipα[0, 2π]. That is (i) ⇒ (v) (for α 
= 1). Thus the
problem of the characterization of the class of functions with an rth derivative in
Lipα[0, 2π] was completely solved for the case 0 < α < 1. The case α = 1 is not
included in the last results. Bernstein proved that condition E∗

n(f) = O(n−1) does
not imply f ∈ Lip1[0, 2π]. In particular the function f(x) =

∑∞
k=1 k−2 sin(kx)

provides a counterexample.
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Zygmund showed that we must consider a wider class:

Z[0, 2π] = {f : C[0, 2π]→ R : | Δ2
hf(x) | ≤ Ah, h ∈ (0, 1] }.

Theorem 1.2.5 (Zygmund, [420]). If f ∈ C[0, 2π], r ∈ N and 0 < α < 2, then
E∗

n(f) = O(n−r−α) if and only if | Δ2
hf (r)(x) |≤ Chα.

Thus the assertion (i) ⇔ (vi) for σ − r = 1 is proved. In [420] Zygmund also
included some results related with non-periodic functions. Montel [253] studied
several facts concerning the class Z.

For 1 < p < ∞ Timan [382] proved a sharper version of the Jackson-type
inequality for the best trigonometric approximation:

n−r

(
r∑

k=1

ksr−1E∗
k(f)s

p

)1/s

≤ C(r, p)ωr(f, 1/n)p, (1.10)

where s = max{p, 2}.
The converse inequality is given in the following form:

Theorem 1.2.6 (Timan, [381]). For 1 < p < ∞, q = min{p, 2} and f ∈ Lp[0, 2π],
one has

ωr(f, 1/n)p ≤ C(r, p)n−r

(
r∑

k=1

krq−1E∗
k(f)q

p

)1/q

.

There is also an equivalent relation.

Theorem 1.2.7 (Zygmund, [421]). For 1 < p < ∞, q = min{p, 2} and f ∈ Lp[0, 2π],
one has

ωr(f, t)p ≤ C(r, p) tr

(∫ 1/2

t

ωr+1(f, u)
uqr+1

du

)1/q

.

This last relation is sometimes called a sharp Marchaud inequality. Some
extensions were given by Ditzian [96]

In 1949 Zamansky showed that (i) ⇒ (iii).

Theorem 1.2.8 (Zamansky, [415]). Let ϕ be a positive strictly increasing or de-
creasing continuous function and fix f ∈ C[0, 2π] and m ∈ N. Suppose that for
each n ∈ N there is a polynomial Tn ∈ Tn such that

‖f − Tn‖ ≤ n1−m ϕ(n),

then there are constants C1, C2 and C3 such that

‖T (m)
n ‖ ≤ C1 + C2nϕ(n) + C3

∫ n

1

ϕ(u)du.

In particular if ‖f − Tn‖ = O(n−β) for β > 0, then ‖T (m)
n ‖ = O(nm−β) with

β < m.
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The assertion (i) ⇒ (iv) is due to Stechkin.

Theorem 1.2.9 (Stechkin, [347]). Fix k ∈ N and let {Fn} be a non-increasing
sequence of non-negative numbers such that

∑∞
n=1 nk−1Fn < ∞. Let f ∈ C[0, 2π]

and {Tn} (Tn ∈ T) a sequence such that

‖f − Tn‖ ≤ Fn+1, , n ∈ N.

Then f ∈ Ck[0, 2π] and there exists a constant C such that

‖f (k) − T (k)
n ‖ ≤ C

⎛⎝nkFn+1 +
∞∑

j=n+1

jk−1Fj

⎞⎠ ,

for each n ∈ N.

In 1967–1968 Butzer-Pawelke [46] and Sunouchi [360] proved the assertion
(iii) ⇒ (i). In fact Butzer and Pawelke considered the problem for L2[0, 2π] and
Sunouchi for all Lp[0, 2π] spaces and C[0, 2π].

Theorem 1.2.10. Fix m ∈ N, β ∈ (0, m) and f ∈ C[0, 2π] and let {Tn} be the
sequence of polynomials of the best approximation for f . If ‖T (m)

n ‖ = O(nm−β),
then ‖f − Tn‖ = O(n−β).

The results recalled above also hold in Lp[0, 2π] spaces (1 ≤ p < ∞). For
instance, for 0 < α < r,

En(f)p = O(n−α) ⇐⇒ ωk(f, t)p = O(tα). (1.11)

We can interpret the equivalence (1.11) in two different forms.

a) The classical Lipschitz spaces are characterized in terms of the best trigono-
metric approximation.

b) A class of functions with a given rate for the best trigonometric approxima-
tion is characterized in terms of Lipschitz classes.

For trigonometric approximation both assertions are the same. In algebraic
approximation the situation is different.

Some results in algebraic approximation were obtained by reduction to the
trigonometric case. If f ∈ C[−1, 1], with the change of variable x 
→ cos θ we obtain
an even 2π-periodic function g(θ) = f(cos θ). If Pn ∈ Pn is the polynomial of best
approximation for f , then Tn(θ) = Pn(cos θ) is the trigonometric polynomial of
best approximation for g. Therefore, if f ∈ C1[−1, 1], then

En(f) = En(g) ≤ π

2(n + 1)
‖g′‖ ≤ π

2(n + 1)
‖f ′‖,

where we have used the relations g′(cos θ) = f ′(cos θ) sin θ and | sin θ |≤ 1. Thus
the precision has been changed. In this way, some theorems related the approx-
imation of non-periodic functions by algebraic polynomials were obtained. For
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instance, for every f ∈ C[a, b] and n ∈ N there exists a polynomial Pn ∈ Pn such
that, for all x ∈ [a, b],

| f(x)− Pn(x) | ≤ C ω(f, (b− a)/n) (1.12)

([179], p. 15) and, if f ∈ Cr[a, b], then for each n ∈ N (n > r) there exists a
polynomial Pn ∈ Pn such that, for all x ∈ [a, b],

| f(x)− Pn(x) | ≤ C(b− a)p

np
ω

(
f (p),

b− a

n− r

)
,

([179], p. 18). In both cases the constant C does not depend upon f or n.
The theory of best approximation of functions by algebraic polynomials was

not as complete as in the trigonometric case. A characterization of the class
Lipα[−1, 1] (0 < α ≤ 1) in terms of the best approximation was not known.
We notice that (1.12) can be written in the more precise form

En(f) ≤ 12ω

(
f,

b− a

2n

)
.

For the converse results Bernstein can not obtain an analogous form of The-
orem 1.2.3. He only found properties on proper subintervals.

Theorem 1.2.11 (Bernstein). Fix α ∈ (0, 1] and f ∈ C[a, b] and suppose there
exists a constant C such that En(x) ≤ cn−α. Then for each couple of numbers c
and d satisfying a < c < d < b one has f ∈ Lipα[c, d] (if α < 1) and f ∈ W[c, d]
(if α = 1).

The restriction to proper subintervals of [a, b] is essential. It was known that
for the function f(x) =

√
1− x2 one has En(f, [−1, 1]) < 2/(πn), while f /∈

Lipα[−1, 1] for any α > 1/2. Thus a result like Theorem 1.2.4 holds only on
proper subintervals of [a, b].

Some years later, in 1956, Csibi proved that we can obtain a conclusion for
the full interval if the rate of approximation is faster.

Theorem 1.2.12 (Csibi, [77]). Let Ω be as in Theorem 1.2.4. If p ∈ N, f ∈ C[a, b]
and En(f, [a, b]) ≤ Ω(n2)n−2p, then f (p) exists and ω(f (p), t) satisfies (1.9).

Bernstein [30] also considered the case of a higher rate of convergence of the
best approximation. In particular, he proved that, if for each r ∈ N,

lim
n→∞nrEn(f, [a, b]) = 0,

then f has derivatives of all order in (a, b).
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1.3 Some asymptotic results

There are two typical problems: to estimate the error for a fixed class of function
(see (1.15)) and to consider the asymptotic of error in the class (see (1.16)). For
the first problem, fix a bounded set M ⊂ C[0, 2π], n ∈ N and define

E∗
n(M) = sup

f∈M
E∗

n(f). (1.13)

Of course, we can obtain the exact value of E∗
n(M) only for some special sets

M . Even more, it is not easy to know if the sup is attained in some element of
M . The analysis of this problem was motivated by some results of Favard and
Akhieser-Krein. Set

W r+1(M, [0, 2π]) = {f : f (r) ∈ A.C.[0, 2π], ‖f (r+1)‖∞ ≤M}. (1.14)

Favard [115] and Akhieser-Krein [1] proved that

E∗
n(W r(1, [0, 2π]) =

Kr

nr
, (1.15)

where Kr is Favard’s constant (1.8), and Nikolskii noticed in [270] that there exist
functions f ∈W r(1, [0, 2π]) for which

lim
n→∞ sup nr E∗

n(f) = Kr. (1.16)

1.4 An abstract approach

Let us present an abstract approach introduced by Butzer and Scherer in [51], [52]
and [53] (see also [185]).

Let X be a normed space with norm ‖ · ‖X and {Mn} be a sequence of linear
subspaces of X such that Mn ⊂Mn+1 and ∪∞

n=1Mn is dense in X . For f ∈ X , the
best approximation of f by elements of Mn is defined as

En(f) = inf
g∈Mn

‖f − g‖X .

We assume that, for each f ∈ X and n ∈ N, there exists gn = gn(f) ∈ Mn such
that En(f) = ‖f − gn‖X .

Let Y be a linear subspace of X with a seminorm | · |Y such that, for each
n ∈ N, Mn ⊂ Y . Set

K(f, t; X, Y ) = inf
g∈Y

{‖f − g‖X + t | g |Y }, (t > 0, f ∈ X).

Theorem 1.4.1. Let X be a normed linear space and {Mn} be a sequence of linear
subspaces of X such that Mn ⊂Mn+1 and ∪∞

n=1Mn is dense in X. Fix two linear
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subspaces of X, Y and Z, with a seminorms | · |Y and | · |Z respectively such that,
for each n ∈ N, Mn ⊂ Y and Mn ⊂ Z.

Fix two real numbers ρ and σ (0 ≤ σ < ρ) and assume there exist constants
A, B, C and D such that

En(g) ≤ A

nρ
| g |Y , | gn |Y ≤ B nρ ‖gn‖, (g ∈ Y, gn ∈ Mn, n ∈ N), (1.17)

En(h) ≤ C

nσ
| h |Z , | gn |Z ≤ D nσ ‖gn‖ (h ∈ Z, gn ∈ Mn, n ∈ N). (1.18)

If Z is a Banach space with the norm ‖·‖Z = ‖·‖X+ | · |Z , then the following
assertions are equivalent for f ∈ X and σ < s < ρ

(i) En(f) = O(n−s), as n →∞.
(ii) If En(f) = ‖f − gn‖X , then | gn |Y = O(nρ−s), as n →∞.
(iii) If f ∈ Z and En(f) = ‖f − gn‖X , then | f − gn |Z= O(nσ−s), as n →∞.
(iv) K(f, tρ, X, Y ) = O(ts), as t → 0.



Chapter 2

The End Points Effect

2.1 Two different problems

As we have noticed, the theorems related with direct and converse results for
trigonometric approximation can not be translated word by word to the case of
algebraic approximation. Thus we have two different questions:

1. Given a modulus of smoothness, how can the associated (generalized) Lip-
schitz classes be characterized with the help of approximation by means of
algebraic polynomials?

2. How can the class of functions with a given rate of algebraic polynomial
approximation (say En(f) ≤ M/nα) be characterized in terms of properties
related with smoothness and/or differentiability?

Some solutions to the first problem were given by Nikolskii, Timan and
Dzyadyk. They considered the space of continuous functions and uniform approx-
imation. In this approach the use of the quantity

Δn(x) =
√

1− x2

n
+

1
n2

(2.1)

was essential. Fuksman presented the first results related with solutions of the
second problem. Fuksman obtained a characterization of functions f ∈ C[−1, 1]
for which En(f) ≤ M/nα (0 < α < 1) with the help of a local modulus of
continuity.

After the works of Timan some different problems were considered:

(i) When can Δn(x) be changed by

δn(x) =
√

1− x2

n
? (2.2)

,   
DOI 10.1007/978-3-0348-0194-2_2   

J. Bustamante Algebraic Approximation: A Guide to Past and Current Solutio ,
, © Springer Basel AG 2012Frontiers in Mathematics, 
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(ii) When can the polynomials used in approximating functions also approximate
the derivatives?

(iii) When can the estimates given in terms of the first modulus of continuity be
improved by using higher-order moduli?

(iv) Is it possible to obtain estimates which combine (i) and (ii) (or other rela-
tions)?

2.2 Nikolskii’s discovery

Since the known estimates for trigonometric approximation did not always lead
to optimal results in algebraic approximation, some new methods were needed.

In 1946 Nikolskii made an important advance by considering point-wise es-
timation by means of a sequence of linear operators. Let {Tn} be the sequence of
Chebyshev polynomials

Tn(x) = cos(n arccos x).

It is known that these polynomials are orthogonal with respect to the measure
2dt/π

√
1− t2 on the interval [−1, 1].

As usual, for f ∈ C[−1, 1] the Fourier-Chebyshev coefficients are defined by

an(f) =
2
π

∫ 1

−1

f(t)Tn(t)dt√
1− t2

.

For f ∈ C[−1, 1] and x ∈ [−1, 1] define

Un(f, x) =
a0(f)

2
+

n∑
k=1

kλn,k ak(f)Tk(x)

where
λn,k =

π

2n
cot

kπ

2n
.

Theorem 2.2.1 (Nikolskii, [271]). For each n ∈ N, one has Un : C[−1, 1] → Pn.
Moreover, if f ∈ Lip1(M, [−1, 1]) (see (1.4)) and n ∈ N, then

| f(x)− Un(f, x) |≤ Mπ

2

√
1− x2

n + 1
+ | x | O

(
log n

n2

)
(2.3)

and O can not be replaced by o.

Proof. It is sufficient to consider the case M = 1. Notice that every function in
Lip1[−1, 1] is absolutely continuous. Let us write

K(t) =
∞∑

k=1

sin kt

t
, In =

2
π

∫ π

0

∣∣∣∣∣K(t)−
n−1∑
k=1

λn,k sin(kt)

∣∣∣∣∣ dt
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and

Jn =
2
π

∫ π

0

∣∣∣∣∣K(t)−
n−1∑
k=1

λn,k sin(kt)

∣∣∣∣∣ sin t dt.

By setting x = cos θ and integrating by parts, one has

f(cos θ) =
a0

2
+

1
π

∫ 2π

0

K(t) sin(t + θ)f ′(cos(t + θ))dt

and

Un(f, cos θ) =
a0

2
+

1
π

∫ 2π

0

(
n−1∑
k=1

λn,k sin(k + t)

)
sin(t + θ)f ′(cos(t + θ))dt.

Since | f ′(cos(t + θ)) |≤ 1,

| f(cos θ)− Un(f, cos θ) | ≤ 1
π

∫ 2π

0

∣∣∣∣∣K(t)−
n−1∑
k=1

sin(k + t)

∣∣∣∣∣ | sin(t + θ) | dt.

≤ In | sin θ | +Jn | cos θ |≤ In

√
1− x2 + Jn | x | .

Then Nikolskii proved that In = π/(2n) and Jn = O(ln n/n2). �
There is a great difference with Jackson’s theorem: the position of x on the

interval [−1, 1] is taken into account in the factor
√

1− x2.
Timan and Dzyadik [380] proved that, if f ∈ Cr[a, b] and f (r) is quasi-smooth

(Zygmund), then En(f) = O(n−(r+1)). The sentence improves a result of Montel
for En(f) which gave an estimate only inside of the interval.

2.3 Problems connected with Nikolskii’s result

Nikolskii’s result motivated several investigations on the possibility of approxi-
mation (including the asymptotically best approximation) of functions of various
classes by algebraic polynomials and many results concerning the improvement of
approximation at the endpoints of the segment [−1, 1].

In 1958 Lebed [226] gave an extension of Nikolskii’s theorem by considering
functions in the Zygmund class:

Z[−1, 1] = {f : C[−1, 1]→ R : | Δ2
hf(x) | ≤ Mh, h ∈ (0, 1] }.

Theorem 2.3.1 (Lebed, [226]). If f ∈ Cm[−1, 1] and f (m) ∈ Z[−1, 1] (with constant
M), then there exists a sequence {Pn} (Pn ∈ Pn) such that

| f(x)− Pn(x) | ≤ C(m)M (Δn(x))m

(
Δn(x) +

log n

n2

)
,

where
Δn(x) =

(√
1− x2+ | x | /n

)
. (2.4)
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The factor π/2 in (2.3) cannot be replaced by a smaller one (see (4.2)).
Temlyakov proved the existence of a sequence {Pn} for which an estimate with
specific constants in both terms holds. His construction was not obtained by means
of a sequence of linear operators, but he strengthened inequality (2.3) by omitting
log n in the remainder.

Theorem 2.3.2 (Temlyakov, [372]). Assume f ∈ Lip1(1, [−1, 1]). For any natural
number n there exists an algebraic polynomial Pn of degree n such that

| f(x)− Pn(x) |≤ π
√

1− x2

2n
+

π2 | x |
8n2

. (2.5)

Proof. The proof is based on an inequality for the best trigonometric approximation
of a differentiable function:

En(h) ≤ Kr

(n + 1)r
En(h(r)), r ∈ N, (2.6)

where Kr is the Favard constant. Since K1 = π/2, what we need is a good repre-
sentation of the function g(t) = f(cos t). If

−f ′(cos t) =
a0

2
+

∞∑
k=1

ak cos(kt) and ϕ(t) =
∞∑

k=1

ak

k
sin(kt),

then g can be written as

g(t) = −a0

2
cos t + ϕ(t) sin t + σ(t) cos t + G(t),

where

σ(t) =
∫ t

0

ϕ(s)ds and G′(t) = −σ(t) sin t.

Now, let un−1 and vn−1 be the trigonometric polynomial of best approximation of
order n−1 of the functions ϕ and σ respectively and define Pn(cos t) = un−1(t) sin t
and Qn(cos t) = −vn−1(t) cos t. Since E0(ϕ′) ≤ 1, it follows from (2.6) that

| ϕ(t)− Pn(cos t) | ≤| ϕ(t) − un−1(t) || sin t |≤ En−1(ϕ) | sin t |
≤ π

2n
En−1(ϕ′) | sin t |≤ π

2n
| sin t |

and
| σ(t) cos t−Qn(cos t) | ≤| σ(t) − vn−1(t) || cos t |≤ En−1(σ) | cos t |

≤ K2

n2
En−1(ϕ′) | cos t |≤ K2

n2
| cos t | .

Finally, since

d

dx
G(arccosx) =

−G′(arccosx)√
1− x2

=
−G′(t)
sin t

= σ(t) = σ(arccosx),
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there exists Sn ∈ Pn such that

| (G(arccosx))′ − Sn(x) |≤ En(σ) ≤ K2

(n + 1)2
En(ϕ′) ≤ K2

(n + 1)2
.

Thus, if we define

Rn(x) = G(π/2) +
∫ x

0

Sn(y)dy

then

| G(arccosx)−Rn(x) |=
∣∣∣∣∫ x

0

((G(arccos y))′ − Sn(y))dy

∣∣∣∣ ≤ K2 | x |
(n + 1)2

.

The proof finishes by considering the polynomial

P (x) = −a0x/2 + Pn(x) + Qn(x) + Rn(x). �

The second term in (2.5) was written asO(| x | /n2) in the original statement,
but we prefer to present here what was really proved. If we want to compare (2.5)
with (2.3), for f ∈ Lip1(M, [−1, 1]) the last term in (2.5) should be multiplied by
M . It could be avoided, if such a term can be replaced by zero. But Temlyakov
did not know whether such a term can be removed. However, in the same paper he
proved the following assertion. For each natural number n one can find a function
fn ∈ Lip1(1, [−1, 1] for which there exists no polynomial Pn ∈ Pn such that

| fn(x) − Pn(x) |≤ π
√

1− x2

2(n + 1)
.

From Theorem 2.3.2, making use of some arguments of Teliakovskii [371],
Temliakov obtained the following theorem (the constant in O(1/n) was not given).

Theorem 2.3.3 (Temlyakov, [372]). Let f ∈ Lip1(1, [−1, 1]). For any natural num-
ber n there exists an algebraic polynomial Pn of degree n such that

| f(x)− Pn(x) |≤ π
√

1− x2

2(n + 1)
(1 +O(1/n)) .

In the chapter devoted to asymptotics we will include some other results. For
differentiable functions Ligun presented in 1980 a version which provides some
information concerning the constants.

Theorem 2.3.4 (Ligun, [236]). Let r be an odd number. Then for any function
f ∈ Cr[−1, 1] there exists a sequence of algebraic polynomials {Qn,r(x)} of degree
not greater than n ≥ r such that, uniformly with respect to x ∈ [−1, 1],

| f(x)−Qn−1,r(x) |≤ Kr(δn(x))r

2
ω
(
f (r), πδn(x)

)
+O

(
1
nr

ω

(
f (r),

1
n

))
.
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The proof of the last theorem is very long and technical, so it will not be
included here. But we notice that the construction was obtained by means of linear
operators.

For a given modulus of continuity ω and r ∈ N, the associated Lipschitz class
is defined by

Hk
ω = {f ∈ C[a, b] : ωk(f, t) ≤ C(f)ω(t)} .

Theorem 2.3.5 (Polovina, [286]). Let w be a modulus of continuity. For each func-
tion f ∈ C1[−1, 1] such that f ′ ∈ Hw, there exists a sequence of polynomials
{Pn(f, x)} (Pn ∈ Pn) such that

| f(x)− Pn−1(x) | ≤ 1
2

∫ π
√

1−x2/n

0

w(t)dt + o

(
1
n

ω

(
1
n

))
.

Moreover, if w is a concave modulus of continuity, 1/2 can be changed to 1/4. The
constant 1/4 cannot be made smaller.

In [18] Bashmakova presented a similar result for functions f such that f ′ ∈
Hw, for a continuous and concave modulus of continuity.

2.4 Timan-type estimates

In [373] Timan proved that, if f ∈ Lipα(M, [−1, 1]) and Sn(f, x) is the nth partial
sum of the Fourier-Chebyshev series of f , then

| f(x)− Sn(f, x) |≤ 2α+1M(1− x2)α/2

π2

log n

n2

∫ π/2

0

tα sin tdt +O
(

1
nα

)
.

Later, in 1951, he [374] improved the Nikolskii estimate as follows: for

f ∈ Lipα([−1, 1]) (0 < α ≤ 1)

one can find a sequence {Pn} (Pn ∈ Pn) such that

| f(x)− Pn(x) |≤ C

nα

(
(
√

1− x2)α +
( | x |

n

)α)
. (2.7)

In the same year he generalized this result. For the proof we need the Jackson
(also called Jackson-Matsuoka) kernels. [250]

Kn,s(t) = cn,s

(
sin(nt/2)
sin(t/2)

)2s

, (2.8)

where cn,s is chosen from the condition π−1
∫ π

−π Kn,s(t)dt = 1.
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Theorem 2.4.1 (Timan, [375]). For r ∈ N0 there exists a constant Cr such that, for
each f ∈ Cr[−1, 1] and n ∈ N, one can find a polynomial Pn(f) ∈ Pn satisfying

| f(x)− Pn(f, x) |≤ Cr

(√
1− x2

n
+

1
n2

)r

ω

(
f (r),

√
1− x2

n
+

1
n2

)
. (2.9)

Proof. The proof presented in [379] (p. 262–266) follows by an inductive argument
with respect to r. Here we show the case r = 0. Define

Q2n−2(f, x) =
1
π

∫ π

0

f(cos t) [Kn,2(t + y) + Kn,2(t− y)]dt,

where x = cos y. It can be proved that Q2n−2(f) ∈ P2n−2. On the other hand,

| f(x)−Q2n−2(f, x) |=
∣∣∣∣ 1π

∫ π

0

[f(cos y)− f(cos t)] [Kn,2(t + y) + Kn,2(t− y)]dt

∣∣∣∣
≤ 1

π

∫ π

0

ω(f, | cos y − cos t |) [Kn,2(t + y) + Kn,2(t− y)]dt

=
1
2π

∫ π

−π

ω

(
f, 2

∣∣∣∣sin t + y

2
sin

t− y

2

∣∣∣∣) [Kn,2(t + y) + Kn,2(t− y)]dt.

Let us estimate the integral corresponding to Kn,2(t + y) (the other one can be
estimated with similar arguments).

1
2π

∫ π

−π

ω

(
f, 2

∣∣∣∣sin t + y

2
sin

t− y

2

∣∣∣∣) Kn,2(t + y)dt

=
1
π

∫ π/2

−π/2

ω (f, 2 |sin(t) sin(t + y)|) Kn,2(2t)dt

≤ 1
π

∫ π/2

0

[ω(f, t2) + ω(f, t | sin y |)] Kn,2(2t)dt.

If we consider that

ω(f, t2) ≤ (1 + n2t2)ω(f, 1/n2)
and

ω(f, t | sin y |)) ≤ (1 + nt)ω(f,
√

1− x2/n),

it is sufficient to verify that there exists a constant C (independent of n) such that∫ π/2

0

[1 + nt + (nt)2] Kn,2(2t)dt ≤ C. �

In particular, if ‖f (r)‖ ≤ M ,

| f(x)− Pn(x) |≤ MCr

nr

(√
1− x2 +

| x |
n

)r

. (2.10)
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Theorem 2.4.2 (Timan [376]). If w is a modulus of continuity for which

∞∑
n=1

1
n

w

(
1
n

)
< ∞

and if, for f ∈ C[−1, 1] and algebraic polynomials Pn of degree at most n, n =
1, 2, 3, . . . ,

| f(x) − Pn(x) |≤ Δn(x)w(Δn(x)),

then f ∈ C1[−1, 1].

Some years later Hasson showed that this last theorem cannot be improved.

Theorem 2.4.3 (Hasson, [157]). Let {an} be an increasing sequence of positive num-
bers such that

∑∞
n=1 1/nan = ∞, then there exists a function f defined on [0, 1]

and not continuously differentiable on that interval such that En(f) = O(1/nan).

Theorem 2.4.4 ([157]). Let f ∈ C[0, 1]. If
∑∞

n=1 n2r−1En(f) < ∞, then f ∈
Cr[0, 1], r ∈ N .

Theorem 2.4.5 ([157]). For every positive integer k and for every 0 < α < 1, there
exists a function f ∈ C[0, 1] such that, for n ∈ N, En(f) ≤ C1n

−2(k+α) and such
that C2n

−α ≤ ω(f (k), 1/n) ≤ C2n
−α.

Corollary 2.4.6 ([157]). For every positive integer r and for every 0 < β < 1, there
exists a function f ∈ C[0, 1], f /∈ Cr[0, 1] and En(f) = O(n2r−β).

In 1958 Timan noticed that some asymptotics can be improved, if we take
into account the position of the point x on the interval [−1, 1]. From (2.10) we
know that, if f ∈W r(M, [−1, 1]) (see (1.14)) and x ∈ [−1, 1], then

lim
n→∞ sup nr | f(x)− Pn(f, x) |≤M Cr(

√
1− x2)r.

As Timan proved in [378], instead of Cr we can take Favard’s constant

lim
n→∞ sup nr | f(x)− Pn(f, x) |≤M Kr(

√
1− x2)r (2.11)

and Kr is the best constant for this kind of inequality. The construction of Timan
was connected with the asymptotic best linear method of approximation in the
class W r(M, [−1, 1]). He suggested that the same idea can be used to construct
other asymptotic best linear methods and he considered some method of summa-
tion of Fourier series.

Theorem 2.4.1 involves the first modulus of continuity. In the note [377] of
1957, Timan also extended the Nikoslkii estimate (2.3) to the case of functions in
the Zygmund class. For f ∈ Z[−1, 1] he constructed a sequence {Pn} such that

| f(x)− Pn(x) | ≤ C Δn(x).
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The results of Timan motivated investigations in several directions that we
will present below. Some authors tried to change the first modulus of continuity
in (2.9) by moduli of higher order. Brudnyi showed that such a change is possible.
Others looked for results in which the function Δn(x) is replaced by δn(x). This
approach began with the works of Teliakovskii and Gopengauz. On the other hand,
Trigub noticed that the results of Timan can be generalized to include simulta-
neous approximation. That is, the same polynomials are used to approximate the
functions and several derivatives. Finally, we can consider combinations of these
ideas.

2.5 Estimates with higher-order moduli

In 1958 Dzyadyk [109] constructed some kernels which allowed him to give a new
(and simpler) proof of Theorem 2.4.1 For a fixed k ∈ N, x ∈ [−√2,

√
2] and n ∈ N,

he defined

Dn,k(x) =
1

γn,k

(
sin 1

2n arccos
(
1− x2/2

)
sin 1

2 arccos (1− x2/2)

)2k

, (2.12)

where γn,k is taken from the condition
∫ 1

−1
Dn,k(x)dx = 1. It is an even positive

(in [−√2,
√

2]) algebraic polynomial of degree 2k(n− 1) which can be written in
terms of the Chebyshev polynomials Tn in the form

(Dn,k(x))1/k = γn,1Dn,1(x) = 2
1− Tn(1− x2/2)

x2
.

Using these kernels, one can transform different approximation results related
with the Féjer kernels to results concerning approximation by algebraic polynomi-
als. In fact, with the substitution x = 2 sin(t/2) we obtain from an even trigono-
metric kernel an algebraic kernel with similar properties in the neighborhood of
the origin, and vice versa.

Dzyadyk not only presented a new proof of the direct result, he also improved
(2.9) by using the second-order modulus instead of the first one. In fact, the
kernel constructed in [109] is only used to provided a new proof of Theorem 2.4.1.
The assertion relative to the second-order modulus appears (without proof) as a
footnote on p. 343.

Theorem 2.5.1 (Dzyakyk, [109]). For each r ∈ N0, there exists a constant Cr such
that, for each f ∈ Cr[a, b] and n ∈ N we can construct a polynomial Pn(f) ∈ Pn

such that
| f(x)− Pn(f, x) |≤ Cr (ρn(x))r

ω2

(
f (r), ρn(x)

)
, (2.13)

where

ρn(x) =

√
(b− x)(x − a)

n
+

1
n2

.
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Proof. The proof is presented for the interval [0, 1] and r = 1.
1) We can assume that ω2(f, t) > 0 for t > 0 and f(0) = f(1). It can be

proved that there is a constant A such that

1
n2

≤ Aω2

(
f,

1
n

)
.

2) Set g(x) = f(1− x), x ∈ [0, 1]. It can be proved that there are extensions
F and G of the functions f and g to the interval [0, 4] such that

ω2(F, t) ≤ 25ω2(f, t) and ω2(G, t) ≤ 25ω2(g, t).

3) Define

ϕ(x) = 2
∫ 1/3

0

F (x2 + 9u2)Dn,3(u)du

and

ψ(x) = 2
∫ 1/3

0

F (x2 +
9
2
u2)Dn,3(u)du.

Since

| f(x2)− 2ψ(x) + ϕ(x) |

=

∣∣∣∣∣f(x2)
∫ 1

1/3

Dn,3(u)du

+
∫ 1/3

0

(
F (x2)− 2F

(
x2 +

9
2
u2

)
+ F

(
x2 + 9u2

))
Dn,3(u)du

∣∣∣∣∣
≤ C1

n5
‖f‖+ 2

∫ 1/3

0

ω2

(
f,

9
2
u2

)
Kn,3(u)du

≤ C1

n5
‖F‖+ 2ω2

(
f,

1
n2

)∫ 1/3

0

(
1 +

9
2
(nu)2

)2

Kn,3(u)du ≤ C2 ω2

(
f,

1
n2

)
,

it is sufficient to approximate ϕ and ψ with polynomials in x2.
4) Set

P1(x2) =
1
6

∫ 2

−2

F (u2)
[
Kn,3

(
u + x

3

)
+ Kn,3

(
u− x

3

)]
du

=
1
2

∫ (2+x)/3

(−2+x)/3

F ((3u− x)2)Kn,3(u)du +
1
2

∫ (2−x)/3

(−2−x)/3

F ((3u + x)2)Kn,3(u)du
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=
1
2

∫ 1/3

−1/3

[F (x2 − 6xu + 9u2) + F (x2 + 6xu + 9u2)Kn,3(u)du

+
1
2

(∫ −1/3

(−2+x)/3

+
∫ (2+x)/3

1/3

)
F ((3u− x)2)Kn,3(u)du

+
1
2

(∫ −1/3

(−2−x)/3

+
∫ (2−x)/3

1/3

)
F ((3u− x)2)Kn,3(u)du

=
1
2

∫ 1/3

−1/3

[F (x2 − 6xu + 9u2) + F (x2 + 6xu + 9u2)Kn,3(u)du + ‖F‖O(n−5).

Therefore

| ϕ(x) − P1(x2) | ≤
∫ 1/3

0

ω2(F, 6xu)Kn,3(u)du + C3‖F‖ 1
n4

≤ ω2

(
F,

x

n

) ∫ 1/3

0

(1 + 6un)2Kn,3(u)du + C3‖F‖ 1
n4

≤ C4

(
ω2

(
F,

x

n

)
+ ω2

(
F,

1
n2

))
.

The analogous construction for ψ is obtained by setting

P2(x2) =
√

2
6

∫ 2

−2

F (u2)
[
Kn,3

(√
2
u + x

3

)
+ Kn,3

(√
2
u− x

3

)]
du.

Thus, if we define
Pn(f, x2) = 2P2(x2)− P1(x2),

then

| f(x)− Pn(f, x) |≤ C5

(
ω2

(
F,

√
x

n

)
+ ω2

(
F,

1
n2

))
for x ∈ [0, 1].

If we realize the analogous construction for the function G, then

| f(x)− Pn(G, 1− x) | =| G(1− x)− Pn(G, 1− x) |

≤ C5

(
ω2

(
F,

√
1− x

n

)
+ ω2

(
F,

1
n2

))
.

For the final construction take m = [n/3] and define

Pm(x2) = (1− x)Pm(F, x) + xPm(G, x).
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We know that Pm ∈ Pn and

| f(x)− Pn(x) | ≤ (1 − x) | f(x)− Pn(f, 1− x) | +x | f(x) − Pn(G, 1− x) |

≤ C6

(
(1− x)ω2

(
F,

√
x

n

)
+ xω2

(
F,

√
1− x

n

)
+ ω2

(
F,

1
n2

))
≤ C7

(
ω2

(
F,

√
x(1− x)

n

)
+ ω2

(
F,

1
n2

))
. �

Dzyadyk also presented the following result.

Theorem 2.5.2 (Dzyakyk, [109]). Assume that f : [−1, 1] → R and r ∈ N0. One
has f ∈ Cr[−1, 1] and f (r) ∈ Lip1[−1, 1] if and only if there exists a sequence of
polynomials {Pn} (Pn ∈ Pn), such that

| f(x) − Pn(x) |= o

{(
Δn(x)

n

)r+1
}

.

In 1959 Freud [123] (independently of Dzyadyk) constructed another se-
quence of polynomials for which a Timan result holds in terms of the second-
order modulus. Freud used the method of intermediate spaces. That is, he first
approximates the function f by an adequate piecewise linear function g and then
approximates g by polynomials. Freud said that the construction of polynomial
kernels (such as the one used by Timan) is not a simple task and he stated the
problem of obtaining similar results using differences of higher order and good
estimations for the constants. The extension to moduli of smoothness of arbitrary
order was given by Brudnyi in 1963.

Theorem 2.5.3 (Brudnyi, [38]). Given r ∈ N, there exists a constant Cr such that,
for each f ∈ C[−1, 1] and n ∈ N (n ≥ r−1), there exists a polynomial Pn(f) ∈ Pn

such that
| f(x)− Pn(f, x) |≤ Crωr (f, Δn(x)) . (2.14)

Let Φk denote the class of all non-decreasing continuous functions ϕ such
that, ϕ(0) = 0 and ϕ(t)/tk is non-increasing. Sometimes this last condition is
changed by the weaker one: ϕ(t)/tk ≤ Cϕ(s)/sk, for 0 < s < t. Functions of these
classes are said to be of the type of the kth order modulus of continuity. It is
known that if ωk(f, t) 
= 0, then ωk(f, t) ∈ Φk (see [247] and [347]).

For ϕ ∈ Φk and fixed constant M , set

Hϕ
k (M, [−1, 1]) = {f : [−1, 1]→ R : ωk(f, h) ≤ Mϕ(h), h ∈ (0, 1/k]}

and
W rHϕ

k (M, [−1, 1]) = {f ; f (k) ∈ Hϕ
k (M, [−1, 1])}

(W 0(M, [−1, 1]) = Hϕ
k (M, [−1, 1])). Moreover set

W rHk[ϕ] =
⋃

M>0

W rHϕ
k (M, [−1, 1]).
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Theorem 2.5.4. Let k and r be natural numbers and assume∫ b−a

0

ωk+r(f, u)
ur+1

du < ∞.

Then, for 0 < t ≤ b− a,

ωk(f (r), t) ≤ C(r, k)
∫ t

0

ωk+r(f, u)
ur+1

du.

This theorem was proved by Marchaud in [247] for k = 1. For k ≥ 2 the
result was also proved by Brudnyi and Gopengauz in [41].

Guseinov [155] considered the problem of obtaining necessary and sufficient
conditions on ϕ ∈ Φk and w ∈ Φk+r under which the equality Hk+r

w = W rHk
ϕ

holds.

Theorem 2.5.5 (Guseinov, [155]). Let k, r be natural numbers and w ∈ Φr and set
ϕ(t) = w(t)/tr. Then Hk+r

w = W rHk
ϕ if and only if∫ t

0

ω(u)
ur+1

du ≤ C(r, k)
w(t)
tr

.

Theorem 2.5.6 (Guseinov, [155]). Let k, r be natural numbers, w ∈ Φr+k and set
ϕ(t) ∈ Φk. Then Hk+r

w = W rHk
ϕ if and only if ϕ(t) ≤ Cw(t)/tr and∫ t

0

ω(u)
ur+1

du ≤ Cϕ(t).

For the classes Φk the Brudnyi theorem yields

Theorem 2.5.7. If ϕ ∈ Φk, r ∈ N0 and k ∈ N, there exists a constant C = (r, k)
such that, if f ∈ W rHϕ

k (1, [−1, 1]), then for any natural number n ≥ r + k − 1
there is an algebraic polynomial Pn of degree not greater than n, such that

| f(x)− Pn(x) |≤ C(r, k) (Δn(x))r
ϕ(Δn(x)). (2.15)

2.6 Gopengauz-Teliakovskii-type estimates

In a Timan-type estimate the term Δn(x) =
√

1− x2/n + 1/n2 appears. It is
natural to ask whether such a term can be replaced by the simpler one δn(x) =√

1− x2/n. A positive answer follows from the works of Teliakovskii (1966) using
the first modulus of continuity

Theorem 2.6.1 (Teliakovskii, [371]). Let r be a non-negative integer. There exists a
constant Cr such that, for each f ∈ Cr[−1, 1] and n > r one can find a polynomial
Qn(f) ∈ Pn such that

| f(x)−Qn(f, x) |≤ Cr (δn(x))r
ω
(
f (r), δn(x)

)
. (2.16)
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Proof. We will consider only the case r > 0. Fix polynomials Pn(f) such that the
estimates (2.9) in Timan’s Theorem 2.4.1 holds and define

Qn(x) = Pn(f, x) + Rn(f, x)

where Rn(f) ∈ Pq is the polynomial which interpolates the function f(x)−Pn(f, x)
and its derivatives up to the order q = [r/2] at the points ±1. Teliakovskii proved
that Qn satisfies (2.16). The proof also uses some ideas of simultaneous approx-
imation which will be presented in another section. In particular it follows from
Theorem 2.8.10 that

| f (k)(±1)− Pn(f)(k)(±1) |≤ R

n2(r−k)
ω

(
f (r),

1
n2

)
,

where the constant R is independent of f and n. Now using the formula of inter-
polation of Hermite one has

| Rn(f, x) |≤ R

q∑
j=0

(1− x2)j

n2(r−j)
ω

(
f (r),

1
n2

)
(2.17)

and for 0 ≤ k ≤ r and x ∈ [−1, 1],

| R(k)
n (f, x) |≤ C

n2(r−q)
ω

(
f (r),

1
n2

)
. (2.18)

If 1/n ≤ √1− x2, then from (2.9) and (2.17) one has

| f(x)−Qn(x) | ≤ Cr

(√
1− x2

n
+

1
n2

)r

ω

(
f (r),

√
1− x2

n
+

1
n2

)

+ R

(√
1− x2

n

)r

ω

(
f (r),

1
n2

) q∑
j=0

1
(n
√

1− x2)r−2k

≤ C (δn(x))r
ω
(
f (r), δn(x)

)
.

Now assume 1/n ≥ √1− x2 and suppose x > 0. If r > 0 (q + 1 ≤ r), then it
follows from Theorem 2.8.10 and (2.18) that

| f(x)−Qn(x) |

=

∣∣∣∣∣(−1)q+1

∫ 1

x

∫ 1

u1

· · ·
∫ 1

uq

[f (q+1)(u)− P (q+1)
n (f, u)− R(q+1)

n (f, u)]duduq · · · du1

∣∣∣∣∣
≤ R

n2(r−q−1)
ω

(
f (r),

1
n2

)∫ 1

x

∫ 1

u1

· · ·
∫ 1

uq

duduq · · · du1

≤ R

n2(r−q−1)
ω

(
f (r),

1
n2

)
(1 − x2)q+1.
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Since 1/n ≥ √1− x2,

ω

(
f (r),

1
n2

)
≤ 2

n
√

1− x2
ω

(
f (r),

√
1− x2

n

)
,

we obtain

| f(x)−Qn(x) | ≤ R

n2r−2q−1
(1− x2)q+1/2ω

(
f (r),

√
1− x2

n

)

= R

(√
1− x2

n

)r

ω

(
f (r),

√
1− x2

n

)
(n
√

1− x2)2q+1−r

≤ R

(√
1− x2

n

)r

ω

(
f (r),

√
1− x2

n

)
.

For x < 0 the result follows analogously. �
In 1967 Gopengauz obtained a similar result in terms of the modulus of

continuity of second order.

Theorem 2.6.2 (Gopengauz, [151]). For each f ∈ C[−1, 1] and n ≥ 2, there exists
Pn ∈ Pn such that

| f(x)− Pn(x) | ≤ Cω2 (f, δn(x)) ,

where the constant C does not depend on f or n.

Bashmakova and Malozemov gave an estimate including interpolation.

Theorem 2.6.3 (Bashmakova and Malozemov, [17]). For f ∈ C[−1, 1] and −1 =
x0 < x1 < · · · < xn = 1 (n > 1) there exists Pn(f) ∈ Pn such that

| f(x)− Pn(f, x) |≤ Aω (f, δn(x))

and, for x ∈ [−1, 1] and k = 1, . . . , m− 1,

| f(x)− Pn(f, x) |≤ Aω
(
f, | x− xk |,

√
| x− xk |/n

)
.

There is also a more complicated version of Theorem 2.6.2 for fractional
derivatives.

Theorem 2.6.4 (Shalashova, [336]). If f ∈ C[0, 1] has continuous derivatives of
fractional order r (r = r′ +α, with r′ integer and α ∈ (0, 1)), there there exists for
any n ≥ r − 1 a polynomial Pn ∈ Pn such that

| f(x)− Pn(x)−Axr |≤ Cr

(√
x(1 − x)

n

)r

ω

(
f (r),

√
x(1 − x)

n

)
,

where Cr does not depend on f or n and A depends on f and r. For fractional r,
the term Axr can not be omitted.
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A more general version of Theorem 2.6.1 was given by Stens in 1980. He
proved the following theorem. The case α = 0 and α = σ are very illustrative.

Theorem 2.6.5 (Stens, [348], [349]). Let s ∈ N and 0 ≤ α ≤ σ < s. For f ∈ C[−1, 1]
the following assertions are equivalent:

(i) There exists a sequence {Pn}, Pn ∈ Pn such that, for x ∈ [−1, 1],

| f(x)− Pn(x) | ≤ C

(
(
√

1− x2)σ−α

nσ

)
.

(ii) For ϕ(x) =
√

1− x2,

sup
|h|≤t

||ϕαΔs
hf ||C[−1,1] ≤ Ctσ.

In [150] Gopengauz analyzed the following questions. Is it possible to obtain
a Timan-type estimate but improving the rate of approximation in a certain in-
terior point? Is it possible to obtain a speed of approximating at the ends of the
segment greater than the one in Timan’s theorem? He considered that the rate of
approximation on the whole segment is retained. Both questions were answered in
the negative. For instance, he proved that an estimation of the form

| f(x) − pn(x) | ≤ Cω

(
f,

ψ1(| x− a |) + ψ2(1/n)
n

)
,

is not possible for all f ∈ C[−1, 1], where | a |< 1 and ψi is an increasing func-
tion satisfying ψi(t) → 0 as t → 0 (i = 1, 2). Moreover, we can not replace the
expression Δn(x) by o(Δn(x)).

In 1985 Yu showed some inequalities which are not possible. In particular,
the following is proved.

Theorem 2.6.6 (Yu, [410]). Let r ∈ N∪{0} and C > 0. Then there exists a function
f ∈ Cr[−1, 1] such that there exists no polynomial Pn ∈ Πn satisfying

|f(x)− Pn(x)| ≤ C(
√

1− x2/n)rωr+3(f (r),
√

1− x2/n).

An analogous result is stated for the case in which the quantity
√

1− x2/n
is replaced by

√
1− x2/n + εn/n2, εn a positive number null sequence.

In 2000 Gonska, Leviatan, Shevchuk and Wenz presented a result in the
following form.

Theorem 2.6.7 (Gonska, Leviatan, Shevchuk and Wenz, [148]). Let k ≤ r + 2 and
assume that f ∈ Cr[−1, 1]. Then there is a polynomial p ∈ Π2[(r+k+1)/2]−1 for
which

| f(x)− p(x) | ≤ Cr(
√

1− x2)rωk(f (r),
√

1− x2), −1 ≤ x ≤ 1, (2.19)
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where Cr depends only on r. Moreover, for each f ∈ Cr[−1, 1] and n ≥ 2[(r + k +
1)/2]− 1, there is a polynomial Pn(f) ∈ Pn, such that

| f(x)− Pn(f, x) |≤ C(r) (δn(x))r ωk

(
f (r), δn(x)

)
(2.20)

holds with a constant Cr depending only on r.

It should be noted that it is impossible to replace 2[(r + k + 1)/2] − 1 by
any lower figure. It has been shown by Yu [410] (see also Li [235]), that (2.20)
is not valid if k > r + 2: assume that k > r + 2 ≥ 2, then for each n and every
constant A > 0, there exists a function f = fr,k,n,A ∈ Cr[−1, 1] such that, for any
polynomial pn ∈ Pn, there is a point x ∈ [−1, 1] for which

| f(x)− pn(x) |> A(δn(x))rωk(f (r), δn(x))

holds. One also has

Theorem 2.6.8 ([148]). Given r ≥ 0, there exists a function f ∈ Cr[−1, 1] such
that, for any algebraic polynomial p,

lim
x→−1

sup
| f(x)− p(x) |

(
√

1− x2)rωr+3(f (r),
√

1− x2)
= ∞.

It is possible to construct a function which exhibits this phenomenon at both
endpoints.

2.7 Characterization of some classes of functions

As we recall, if f ∈ C[0, 2π], r ∈ N and α ∈ (0, 1), then f ∈ Cr[0, 2π] and
f (r) ∈ Lipα if and only if En(f)∗ = O(n−(r+α)). The same result is not true in
the non-periodical case. Some characterizations appeared in works of Timan and
Dzyadyk.

Theorem 2.7.1. Let f ∈ C[−1, 1], r a positive integer and α ∈ (0, 1). The following
assertions are equivalent:

i) f ∈ Cr[−1, 1] and for each x ∈ [−1, 1],

sup
{h: |h|≤δ, |x+h|≤1}

| f (r)(x)− f (r)(x + h) |≤ C δ,

where C is a positive constant which does not depend on x or δ;
ii) For each n ∈ N there exists Pn ∈ Pn such that, for each x ∈ [−1, 1],

| f(x)− Pn(x) | ≤ D

nr+α

(√
1− x2 +

1
n

)r+α

,

where D is a positive constant which does not depend on x or δ.
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In 1957 Timan presented a converse result assuming that an estimate in
terms of the function Δn(x) is known. For the definition of modulus of continuity
see (1.7).

Theorem 2.7.2 (Timan, [376]). Let ω be a modulus of continuity and f : [−1, 1]→
R be a function and suppose there exists a sequence {Pn} (Pn ∈ Pn) such that

| f(x)− Pn(x) | ≤ ω

(
1
n

(√
1− x2 +

| x |
n

))
, x ∈ [−1, 1].

Then

ω(f, t) ≤ C t

∫ 1

t

ω(s)
s2

ds, 0 < t ≤ 1
2
,

where C is a fixed constant. Moreover, assume that
∫ 1

0 (ω(s)/s)ds < ∞ and there
exists a sequence {Pn} (Pn ∈ Pn) such that, for x ∈ [−1, 1],

| f(x)− Pn(x) | ≤ 1
nr

(√
1− x2 +

| x |
n

)r

ω

(
1
n

(√
1− x2 +

| x |
n

))
. (2.21)

Then f ∈ Cr[−1, 1] and

ω(f (r), t) ≤ C

(∫ t

0

ω(s)
s

ds + t

∫ 1

t

ω(s)
s2

ds

)
, 0 < t ≤ 1

2
.

Also a more general assertion can be proved:

ωr(f, t) ≤ C tr
∫ 1

t

ω(s)
sr+1

ds, 0 < t ≤ 1
2
.

Theorem 2.7.3 (Timan, [376]). Let ω be a modulus of continuity such that∫ t

0

ω(s)
s

ds ≤ Cω(t), and t

∫ 1

t

ω(s)
s2

ds ≤ Cω(t) (2.22)

and let f : [−1, 1]→ R be a function. One has f ∈ Cr[−1, 1] and ω(f (r), t) ≤ Cω(t)
if and only if there exists a sequence {Pn} (Pn ∈ Pn) satisfying (2.21).

In order to obtain the converse result, different variants of the Bernstein
inequality are needed. That is we should estimate the derivatives of an algebraic
polynomial in terms of the polynomial.

Theorem 2.7.4. Assume that r, n ∈ N and let ‖ · ‖ denote the uniform norm on
[−1, 1].

(i) (Markov, [248]) If Pn ∈ Pn, then

‖P (r)
n ‖ ≤ n2r ‖Pn ‖.
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(ii) (Bernstein, [27]) If Pn ∈ Pn and x ∈ [−1, 1], then∣∣∣√1− x2P ′
n(x)

∣∣∣ ≤ n ‖Pn ‖.

(iii) There exists a constant Cr such that (see [379], p. 227), if Pn ∈ Pn and
x ∈ [−1, 1]; then ∣∣∣ (Δn(x))rP (r)

n (x)
∣∣∣ ≤ Cr ‖Pn ‖.

(iv) (Potapov, [288]) If Pn ∈ Pn and x ∈ [−1, 1], then∣∣∣∣∣∣ (√1− x2)rP (r)
n (x)

∣∣∣∣∣∣
p
≤ Cnr ‖Pn ‖.

(v) If p ≥ 0, q ≥ 0 and p + q = l, then there exists a constant Cl such that, if
Pn ∈ Pn and x ∈ [−1, 1], then∣∣∣ (Δn(x))q/2P (l)

n (x)
∣∣∣ ≤ Cl nl+p ‖Pn ‖. (2.23)

Theorem 2.7.5. Fix positive constants L and ρ.

(i) (Dzyadyk 1956, [107]) If for x ∈ [−1, 1] a polynomial Pn ∈ Pn satisfies the
inequality

| Pn(x) |≤ L

[
(
√

1− x2)ρ +
1
nρ

]
,

then there exists a constant C (which depends only on ρ) such that, for x ∈
(−1, 1) one has

| P ′
n(x) |≤ C n L min

{
(
√

1− x2)ρ−1,
1

nρ−1

}
, if ρ ≤ 1

and

| P ′
n(x) |≤ C n L

[
(
√

1− x2)ρ−1 +
1

nρ−1

]
, if ρ ≥ 1.

(ii) (Potapov 1960, [288]) If ρ, γ ∈ R, there exists a constant C such that, if for
x ∈ [−1, 1] a polynomial Pn ∈ Pn satisfies the inequality

| Pn(x) |≤ L (n + 1)γ+ρ (Δn+1(x))ρ
,

then for x ∈ (−1, 1) one has

| P ′
n(x) |≤ C L (n + 1)γ+ρ (Δn+1(x))ρ−1 .

In (2.21) only integer values of r are involved. The characterization of Lip-
schitz functions was done by Dzyadyk.
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Theorem 2.7.6 (Dzyadyk, [107]). Assume that r ∈ N0, 0 < α < 1 and C is a
positive constant. For a function f : [−1, 1] → R the following assertions are
equivalent:

(i) For each n ∈ N, there exists Pn ∈ Pn such that

| f(x)− Pn(x) |≤ C

nr+α

(
(
√

1− x2)r+α +
1

nr+α

)
. (2.24)

(ii) f ∈ Cr[−1, 1] and f (r) ∈ Lipα[−1, 1].

Proof. (ii) =⇒ (i) follows from Timan’s Theorem 2.4.1.
(i) =⇒ (ii). Let us first consider the case r = 0. Fix h < 0 and x ∈ [0, 1) such

that x + h ∈ (0, 1]. Let us write

U2i+1(x) = P2i+1(x)− P2i(x), i = 0, 1, . . . .

Notice that f(x) = P1(x) +
∑∞

i=1 U2i(x).
For any k ∈ N one has

| f(x + h)− f(x) |≤ | P1(x + h)− P1(x) | +
k−1∑
i=0

| U2i+1(x + h)− U2i+1(x) |

+
∞∑

i=k

| U2i+1(x + h) | +
∞∑

i=k

| U2i+1(x) | .

From (i) we obtain

| U2i+1(x) | ≤| P2i+1(x)− f(x) | + | f(x)− P2i(x) |

≤ 21+αC1

2iα

[
(
√

1− x2)α +
1

2(i+1)α

]
.

Therefore

∞∑
i=k

| U2i+1(x) | ≤ 2C1(
√

1− x2)α 22α

2α − 1
1

2kα
+ 2C1

4α

4α − 1
1

2kα

=
21+3αC1

2α − 1
(
√

1− x2)α

2(k+1)α
+

42α+1/2

4α − 1
C1

22(k+1)α
.

Now we consider two cases.

Case 1. Assume first that x ≥ 0 and x ∈ [1− 2h, 1]. Fix k such that

2k ≤ 1√
h

< 2k+1.
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From the arguments given above we know that, if ξ ∈ [1− 2h, 1], then

∞∑
i=k

| U2i+1(ξ) | ≤ 21+3αC1

2α − 1
(
√

1− (1− 2h)2)α

2(k+1)α
+

42α+1/2

4α − 1
C1

22(k+1)α

≤ 21+4αC1

2α − 1
hα/2+α/2 +

42α+1/2

4α − 1
hα <

64C1

2α − 1
hα.

On the other hand, taking into account Theorem 2.7.5 we obtain

k−1∑
i=0

| U2i+1(x + h)− U2i+1(x) | ≤ h

k−1∑
i=0

| U ′
2i+1(x + hθi) |

≤ C221+α h

k−1∑
i=0

1
2iα

2(i+1)(2−α) = C3 h

k−1∑
i=0

2i(1−α) ≤ C4 h 2k(1−α).

Thus, for x ∈ [1 − 2h, 1 − h] we have proved that there exists a constant K
such that

| f(x + h)− f(x) |≤ Khα.

Case 2. Assume that x ≥ 0 and x ∈ [0, 1− 2h]. Fix k such that

2k ≤
√

1− x2

h
< 2k+1.

Notice that

1
2k+1

<
h√

1− x2
≤ h√

1− (1− 2h)2
=

h√
4h(1− h)

≤
√

h

2
.

In this case, if ξ ∈ [x, 1− h], then

∞∑
i=k

| U2i+1(ξ) |≤ 21+3αC1

2α − 1
(
√

1− ξ2)α h

(
√

1− ξ2)α
+

42α+1/2C1

4α − 1

(√
h

2

)2α

≤ C5h
α.

For the estimate of the sum for 0 ≤ i ≤ k, notice that for x ∈ [0, 1− 2h] and
0 < θ < 1

1− x2

2
≤ (1 − (x + h)2 ≤ (1− (x + hθ)2

and

2h ≤ 4h(1− h) = 1− (1− 2h)2 ≤ 1− x2.



32 Chapter 2. The End Points Effect

Hence

k−1∑
i=0

| U2i+1(x + h)− U2i+1(x) |≤ h

k−1∑
i=0

| U ′
2i+1(x + hθi) |

≤ C6 h

k−1∑
i=0

1
(
√

1− (x + hθi)2)1−α

2i+1

2iα
≤ C7 h

k−1∑
i=0

2i(1−α)

(√
1− x2

2

)α−1

≤ C8 h
2k(1−α)

(
√

1− x2)1−α
≤ C9 h

1
(
√

1− x2)1−α

(
√

1− x2)1−α

h1−α
= C9 hα.

The theorem is proved for the case r = 0.
For r > 0 we differentiate the representation of f to obtain f (r)(x) =

P
(r)
1 (x) +

∑∞
i=1 U

(r)
2i (x). Then use Theorem 2.7.5 to obtain the inequality

| U (r)
2i+1(x) |≤ C

2iα

[
(
√

1− x2)α +
1

2(i+1)α

]
.

Then we can use arguments similar to ones for the case r = 0. �

With respect to the Zygmund class, Dzyadyk proved the following:

Theorem 2.7.7 (Dzyadyik, [107]). Assume that r ∈ N0, 0 < α < 1. If for a function
f : [−1, 1]→ R there exists a sequence {Pn} (Pn ∈ Pn) such that

| f(x)− Pn(x) |≤ C

nr+1

(
(
√

1− x2)r+1 +
1

nr+1

)
where C does not depend on n, then f ∈ Cr[−1, 1] and f (r) ∈ Z[−1, 1].

In 1960 Potapov obtained a characterization related with the first modulus.

Theorem 2.7.8 (Potapov, [289]). For f ∈ C[−1, 1] one has En(f) = O(n−α) if
and only if

| f(cos(θ + t))− f(cos θ) |≤ C | t |α,

where C is a positive constant which does not depend on θ or t.

This result clearly shows that if for f ∈ C[−1, 1] one has En(f) = O(n−α),
then inside the segment f satisfies a Lipschitz condition of order α and in the end
of the segment a Lipschitz condition of order α/2.

The results of Timan and Dzyadyk seems to be of a point-wise nature. Some
authors tried to put them as estimates in norm, but they used varying weights.
For instance, Scherer-Wagner [330] defined the weighted best approximation by

E(r,α)
n (f) = inf

p∈Pn

∣∣∣∣∣∣∣∣ f(x)− p(x)
(nΔn(x))r+α

∣∣∣∣∣∣∣∣
C

(2.25)
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and proved that (see Golitschek [143] for similar results concerning Lp(−1, 1))

E(r,α)
n (f) = O(n−(r+α)) ⇔ f (r) ∈ C[−1, 1] and ω1(f (r), 1/n) ≤ Cn−α.

Teliakovskii used Theorem 2.6.1 to obtain a characterization theorem using
the function δn(x).

Theorem 2.7.9 (Teliakovskii, [371]). Let r be a non-negative integer and f : [−1,1]→
R a function.

(i) Let w be a modulus of continuity satisfying (2.22). One has f ∈ Cr[−1, 1]
and ω(f (r), t) ≤ C(f)w(t) if and only if, for each n > r there exists Pn ∈ Pn

such that
| f(x)− Pn(f, x) |≤ C(f) (δn(x))r

ω (δn(x)) .

(ii) If α ∈ (0, 1), one has f ∈ Cr[−1, 1] and f (r) ∈ Lipα[1, 1] if and only if, for
each n > r there exists Pn ∈ Pn such that

| f(x)− Pn(f, x) |≤ C(f) (δn(x))r+α .

Other classes can be characterized. Let us consider functions ψ satisfying the
following condition: ∫ t

0

ψ(u)
u

du + tk
∫ 1

t

ψ(u)
uk+1

du ≤ Cψ(u). (2.26)

This kind of function has been used in the works of Stechkin [347], Lozinskii [241]
and Bari and Stechkin [15] to present results for the approximation of periodic
functions.

Let us write

W rHk[ψ] = { f : ω(f (r), t) ≤ C(f)ψ(t) }.
Theorem 2.7.10. Fix ψ such that (2.26) holds. If for a function f and every n ∈ N
there exists a polynomial Pn such that (2.15) is satisfied, then f ∈ W rHk[ψ].

Thus, if En(f) = O(n−2rϕ(n−2)), then f ∈W rHk[ψ].

Notice that for ϕ(t) = tα one has Dzyadyk’s theorem. As Shevchuk showed,
the converse of the last result is not true.

Theorem 2.7.11 (Shevchuk, [338]). Suppose that ψ does not satisfy (2.26).

– There exists a function f for which En(f)=O(n−2rψ(n2)) and f /∈W rHk[ψ].
– There exists a function f /∈ W rHk[ϕ] and a sequence {Pn} of polynomials

such that the Timan estimate holds.

For r = 1, a significantly stronger result (which, in particular, implies The-
orem 2.7.11 for k = 1, r = 0) was obtained earlier by Dolzhenko and Sevastya-
nov [103].
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Theorem 2.7.12 (Shevchuk, [338]). For any function ϕ ∈ Φk, there is a function
f ∈ W rHϕ

k such that

(i) For all n ∈ N , En(f) ≤ n−2rϕ(n−2),
(ii) ωk(f (r), t) ≥ cϕ(t), t ∈ [0, 1/k], c = c(r, k) > 0.

Theorem 2.7.13 ([338]). Let an be an increasing sequence of natural numbers, such
that

∑∞
n=1(nan)−1 = ∞. There exists a function f ∈ C[0, 1] for which f /∈ Cr[0, 1]

and En(f) = O(n−2r/an) (r ≥ 2).

Theorem 2.7.13 was proved by another method in a paper of Xie [412]. The
theorem was stated as a conjecture in the work [157] of Hasson. For the case
ϕ(t) = tα, 0 < α < k, α /∈ N , Theorem 2.7.12 follows from results of Bernstein
on the approximation of the function (1 − x)α on [−1, 1]. A proof of Theorem
2.7.12 for the indicated case can also be found in [157]. For ϕ(t) = tα, 0 < α <
k, α ∈ N this theorem follows from results of Ibragimov. In connection with
Theorem 2.7.12 we note the following example of Brudnyi [38]. The continuous
function fa,b : [0, 1] → R, defined on (0, 1] by the formula fa,b(x) = xa sin x−b,
a, b > 0, has for k > a/(1 + b) the modulus of continuity ω(fa,b)(t) = ta/(1+b),
whereas En(f) ∼ n−2a/(2b+1). Theorems 2.7.11 and 2.7.12 show, in particular, that
the assertion of the inverse theorem cannot be sharpened for any of the classes
W rHk[ϕ] if the rate of approximation is characterized not by the quantities ρn(x)
but rather by n−2.

2.8 Simultaneous approximation

First, let us recall some facts related with trigonometric approximation. The ap-
proximation of the derivatives of a function by the derivatives of the polynomial
which approximate the function was considered by Freud [122]. He proved that,
for any polynomial Tn,

‖f (r) − T (r)
n ‖ ≤ Cr {nr ‖f − Tn‖+ E∗

n(f (r))}, (2.27)

where Cr is a constant which depends only on r. A related inequality was given
by Czipszer and Freud in [78].

Theorem 2.8.1. Fix k ∈ N.

(i) There exists a constant K such that, if f ∈ Ck[0, 2π] and Tn ∈ Tn, then

‖f (k) − T (k)
n ‖ ≤ K log (1 + min{k, n}) {nr ‖f − Tn‖+ E∗

n(f (r))}.

Moreover, if ‖f − Tn‖ ≤ CE∗
n(f), then

‖f (k) − T (k)
n ‖ ≤ KCE∗

n(f (r)). (2.28)
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(ii) There exists a constant K such that, if f, f (k) ∈ L1[0, 2π] and Tn ∈ Tn

satisfies ‖f − Tn‖1 ≤ CE∗
n(f)1, then

‖f (k) − T (k)
n ‖1 ≤ CK log (1 + min{k, n})E∗

n(f (r))1.

(iii) For each p ∈ (1,∞), there exists a constant Bp such that, if f, f (k) ∈ Lp[0, 2π]
and Tn ∈ Tn satisfies ‖f − Tn‖p ≤ CE∗

n(f)p, then

‖f (k) − T (k)
n ‖p ≤ CBpE

∗
n(f (r))p.

The inequality (2.27) was improved by Garkavi [133]. Set

Cn,r(f) = inf
Tn∈Tn

max
1≤k≤r

‖f (k) − T
(k)
n ‖

E∗
n(f (k))

and Cn,r = sup
f∈W r(1,[0,2π])

Cn,r(f).

Garkavi proved that

Cn,r =
4
π2

(ln(p + 1)) +O(ln ln ln p)),

where p = min{n, r} and

‖f (r) − T (r)
n ‖ ≤ nr ‖f − Tn‖+

(
1 +

π

2

)
Cn,rEn(f (r)).

One of the first results on simultaneous approximation is due to Gelfond
in 1955.

Theorem 2.8.2 (Gelfond, [141]). If f ∈ Cm[a, b], for n ≥ n0, there exists Pn ∈ Pn

such that

‖f (k) − P (k)
n ‖ ≤ C

1
nm−k

ω

(
f (m),

1
n

)
, (0 ≤ k ≤ m).

Theorem 2.8.3 (Feinerman and Newman, [117]). There exists a constant K such
that, if f ∈ C1[a, b], then

En(f) ≤ K

n
En−1(f ′) n ≥ 1. (2.29)

Hasson found estimates in norms in the spirit of Garkavi’s results.

Proposition 2.8.4 (Hasson, [156]). There exists a constant M with the following
property: Let f ∈ C[a, b] be such that, for some λ, En(f) ≤ λ/n, n ≥ 1, En(f) ≤ λ.
Then, if Pn is the polynomial of best approximation to f , one has

‖P ′
n‖ ≤ Mλn, n ≥ 1.



36 Chapter 2. The End Points Effect

Proof. Fix k such that 2k ≤ n < 2k. By differentiating the identity

P = Pn − P2k +
k∑

i=1

(P2i − P2i−1) + (P1 − P0) + P0

and applying the Markov inequality we obtain

‖P ′‖ ≤ K

(
n2‖Pn − P2k‖+

k∑
i=1

22i‖P2i − P2i−1‖+ (P1 − P0)

)

≤ K

(
2n2E2k(f) +

k∑
i=1

22i+1E2i−1(f) + 2E0(f))

)

≤ K

(
2
22(k+1)

2k
λ +

k∑
i=1

22i+1 λ

2i−1
+ 2λ)

)

≤ K λ

(
82k + 4

k∑
i=1

2i + 2)

)
≤ M λn. �

Theorem 2.8.5 (Hasson, [156]). Let k and r be integers. For f ∈ Cr[a, b], let
Pn(f) ∈ Pn be the polynomial of best approximation for f . There exist constants
M , S and T depending on r such that

‖f (k) − P (k)
n (f)‖ ≤ M nk En−k(f (k)), 0 ≤ k ≤ r, n ≥ k,

‖P (k)
n (f)‖ ≤ ‖f (k)‖ + M nk En−k(f (k)), 0 ≤ k ≤ r, n ≥ k,

(2.30)

and

‖f (k) − P (k)
n (f)‖ ≤ SEn−2k(f (2k)) ≤ TEn−r(f)

1
nr−2k

En−r(f (r)),

for 0 ≤ k ≤ m/2 and n ≥ m.
Moreover (Roulier, [314])

‖f (k) − P (k)
n (f)‖ ≤ M

1
nr−2k

ω

(
f (r) 1

n

)
, n > r.

Proof. It is clear that (2.30) holds for k = 0. Assume that (2.30) holds for r. By
induction, for f ∈ Cr+1[0, 1] one has

‖f (k+1) −Q
(k)
n−1‖ ≤M nk En−1−k(f (k+1)), 0 ≤ k ≤ r, n ≥ k,

where Qn−1 is the polynomial of best approximation to f ′. If we set

g(x) = f(x)− f(a)−
∫ x

a

Qn−1(t)dt, x ∈ [a, b],
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then, for a ≤ x < y ≤ b,

| g(x)− g(y) |≤
∫ y

x

| f ′(t)−Qn−1(t) | dt ≤ En−1(f ′) | x− y | .

Let Rn be the polynomials of best approximation to g. From the direct
estimate and Proposition 2.8.4 we know that

‖R′
n‖ ≤ K1n En−1(f ′), n ≥ 1,

and, using Markov inequality and (2.29), we obtain

‖R(k)
n ‖ ≤ Kk n n2(k−1) En−1(f ′)

≤ K∗
k

n2k−1

(n− 1)(n− 2) · · · (n− (k − 1))
En−k(f (k)

≤ K ′
k nk En−k(f (k), 0 ≤ k ≤ r + 1, n ≥ k.

Therefore

‖f (k) −Q
(k−1)
n−1 −R(k)

n ‖ ≤ K ′
k nkEn−k(f (k)) + Mrn

k−1 En−k(f (k))

≤ Mr+1 nkEn−k(f (k)), 0 ≤ k ≤ r + 1, n ≥ k.

The result follows because −f(a) +
∫ x

a Qn−1(t)dt + Rn(x) is the polynomial
of best approximation to f .

The last assertion follows from Jackson’s theorem. In fact

En−r(f (r)) ≤ C ω

(
f (r) 1

n− r

)
≤ C

(
1 +

1
n− r

)
ω

(
f (r) 1

n

)
. �

Theorem 2.8.6 ([156]). Let a < c < d < b and let m and k be integers with
0 ≤ k ≤ m. There exists a constant C, which depends on m, c and d such that, if
Pn is the polynomial of best approximation to f ∈ Cm[a, b], then

‖f (k) − P (k)
n ‖[c,d] ≤ CEn−k(f (k)), n ≥ k.

Theorem 2.8.7 ([156]). Let k and r be integers, k > r ≥ 0. Fix f ∈ Cr[a, b] and,
for each n ∈ N, let Pn(f) ∈ Pn be the polynomial of best approximation for f . If
f is not a polynomial, there exist constants M(f, k), such that

‖P (k)
n (f)‖ ≤ M(f, r)n2k−r ω

(
f (r),

1
n

)
n ≥ 1.

Proof. The proof of this theorem is based on an extension of f . Fix two reals c
and d (c < a and b > d) and assume that f has been extended to a function
F ∈ Cr[c, d] in such a way that ω(F (r), h) ≤ Cω(f (r), h).
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Fix a sequence {Qn} of polynomials such that

‖Q(k)
n − F (k)‖[c,d] ≤ K

nr−k
ω

(
F (r),

1
n

)
≤ CK

nr−k
ω

(
f (r),

1
n

)
,

for k ≤ r and n ≥ k + 1. One has ‖Q(k)
n ‖[c,d] ≤ Ck, for 0 ≤ k ≤ r and (by

Bernstein’s inequality) ‖Q(k)
n ‖[c,d] ≤ Kknk−r, for k > r. Since, for k ≥ 0,

‖P (k)
n ‖[a,b] ≤ ‖P (k)

n −Q(k)
n ‖[a,b] + ‖Q(k)

n ‖[a,b]

and

‖P (k)
n −Q(k)

n ‖[a,b] ≤ Sk n2k[‖Pn −Qn‖[a,b] ≤ Nkn2k

(
En(f) +

Kl

nr
ω(f (r),

1
n

)
,

Jackson’s inequality yields

‖P (k)
n ‖[a,b] ≤ C5 n2k−rω

(
f (r),

1
n

)
+ max

(
Kk, Kknk−r

)
.

Thus the proof finishes by proving that the second term can be estimated with
the first one. �

Trigub was one of the first in considering a point-wise estimate for simulta-
neous approximation by algebraic polynomials. He also noticed that we can use
the second-order modulus, instead of the first one, and provided some inequalities
for the derivatives of the polynomials. In 1968 Malozemov [246] proved that the
constant in the corresponding estimates of Gelfond and Trigub do not depend on
the functions. We present the assertion as it appeared in a paper of Malosemov
[245].

Theorem 2.8.8 (Trigub, [388]). If f ∈ Cr[−1, 1], then for each n ∈ N there exists
a polynomial Pn ∈ Pn such that, for all x ∈ [−1, 1] and k = 0, 1, . . . , r,

| f (k)(x)− P (k)
n (x) |≤ Cr (Δn(x))r−k

w
(
f (r), Δn(x)

)
(2.31)

where Cr does not depend upon n or f .

Is the last result a consequence of the particular polynomials used in the
approximation? In 1966 Teliakovskii showed that, for a differentiable function f ,
the derivatives of any sequence of the polynomials which approximate f with the
rate given in Timan’s theorem, approximate f ′ with a similar rate.

We need an estimate for the derivatives of polynomials.

Proposition 2.8.9. There exists a constant R with the following property: let a ≥ 0
be a real number, r ≥ 1 an integer and ω a modulus of continuity. If a polynomial
Pn satisfies the inequality

| Pn(x) |≤ (Δn(x))r ω(Δn(x)) + a, x ∈ [−1, 1],

then

| P ′
n(x) |≤ R

(
(Δn(x))r−1 ω(Δn(x)) + a(Δn(x))−1

)
, x ∈ [−1, 1].
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The last result was proved by Lebed [225] in the case a = 0. Other proofs
were given in [107] and [379] (p. 219–226). According to Teliakovskii [371], for
a > 0 the proof can be obtained with arguments similar to the one used in [379].

Theorem 2.8.10 (Teliakovskii, [371]). Assume r ∈ N0 and f ∈ Cr[−1, 1]. If
{Pn(f, x)} is a sequence of polynomials satisfying (2.9), then for k = 1, . . . , r,

| f (k)(x) − P (k)
n (f, x) |≤ Cr,k (Δn(x))r−k

ω
(
f (r), Δn(x)

)
,

where the constant Cr,k does not depend upon f or n.

Proof. We only present the main ideas of the proof.
Let {Pn} be a sequence of polynomials for which the Timan estimate (2.9)

holds. For s ∈ N0, write ns = 2sn, p0 = Pn and ps = Pns . From the identity

f(x)− p0(x) =
∞∑

s=1

[ps(x) − ps−1(x)]

we obtain

| f (k)(x)− p
(k)
0 (x) |=

∣∣∣∣∣
∞∑

s=1

[p(k)
s (x)− p

(k)
s−1(x)]

∣∣∣∣∣
≤ (RA + R)

∞∑
s=1

(√
1− x2

ns
+

1
ns

)r−k

ω

(
f (r),

√
1− x2

ns
+

1
ns

)

≤ (RA + R)
∞∑

s=1

(√
1− x2

2sn
+

1
4sn2

)r−k

ω

(
f (r),

√
1− x2

2sn
+

1
4sn2

)
.

If k < r, then

| f (k)(x) − P (k)
n (x) |≤ C (Δn(x))r−k

ω
(
f (r), Δn(x)

) ∞∑
s=1

1
2s(r−k)

.

The theorem is proved for k < r.
For the case k = r, it is sufficient to consider the case r = 1.
Assume r = 1 and fix a point x0 and set h = Δn(x0). There exists a function

Fh(f) ∈ C1[−1, 1] such that

| f(x)− Fh(f, x) | ≤ 1
2

h ω(f ′, h), (2.32)

| f ′(x)− F ′
h(f, x) | ≤ ω(f ′, h) (2.33)

and

ω(F ′
h, t) ≤

{
δ ω(f ′, h)/h, if δ ≤ h,

3ω(f ′, h), if h < δ.
(2.34)
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Then
| f ′(x)− p′n(x) | ≤| f ′(x) − F ′

h(x) | + | F ′
h(x)− p′n(x) |

≤ ω(f ′, h)+ | F ′
h(x) − p′n(x) | . (2.35)

There exist polynomials Qm such that

| F ′
h(x)−Qm(x) |≤ C Δm(x)ω(F ′

h, Δm(x)). (2.36)

Now, we use the representation

Fh(x)− pn(x) =
∞∑

s=1

[Qns(x)−Qns−1(x)] + Qn(x) − pn(x). (2.37)

In this case we have

| Qns(x) −Qns−1(x) |≤ C Δns(x)ω (F ′
h, Δns(x)) .

From Proposition 2.8.9 (with a = 0) we obtain

| Q′
ns

(x)−Q′
ns−1

(x) |≤ C1 ω (F ′
h, Δns(x)) .

On the other hand, we can use (2.36), (2.32), the hypothesis (2.9) and (2.34) to
estimate the difference Qn − pn. In fact

| Qn(x) − pn(x) | ≤| Qn(x) − Fh(x) | + | Fh(x)− f(x) | + | f(x)− pn(x) |
≤ C Δn(x)ω(F ′

h, Δn(x)) +
1
2
hω(f ′, h) + AΔn(x)ω(f ′, Δn(x))

≤ C2 Δn(x)ω(f ′, Δn(x)) +
1
2
hω(f ′, h).

From the last estimate and Proposition 2.8.9 (with a = hω(f ′, h)/2) we obtain

| Q′
n(x)− p′n(x) |≤ C3 ω(f ′, Δn(x)) + C4(Δn(x))−1hω(f ′, h).

Therefore the series in (2.37) converges uniformly and we can differentiate term
by term. That is

| F ′
h(x)−p′n(x) |≤ C1

( ∞∑
s=1

ω(F ′
h, Δns(x)) + ω(f ′, Δn(x)) + (Δn(x))−1hω(f ′, h)

)
.

Finally, for x = x0 and h = Δn(x0), from the last inequality and (2.35) one
has

| f ′(x0)− p′n(x0) | ≤ C

( ∞∑
s=1

Δns(x0)ω(f ′, h)
h

+ ω(f ′, Δn(x0)) +
hω(f ′, h)
Δn(x0)

)

≤ C

(
ω(f ′, Δn(x0)) +

ω(f ′, h)
h

∞∑
s=1

(√
1− x2

0

2sn
+

1
4sn2

))
≤ Cω(f ′, Δn(x0)). �
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In particular, from Timan’s theorem Teliakovskii derived a new proof of the
Trigub result presented above. On the other hand, Theorem 2.8.10 can be obtained
from Theorem 2.8.8 and Proposition 2.8.9.

An analogue of Theorem 2.8.10, with δn(x) instead of Δn(x) is due to Gopen-
gauz. He constructed linear polynomial operators Ln,r : Cr[−1, 1] → Pn for each
fixed r ≥ 0, such that the following theorem holds:

Theorem 2.8.11 (Gopengauz, [150]). For each r ≥ 0 there exists a sequence of
linear operators Ln,r : Cr[−1, 1] → Pn (n ≥ 4r + 5) such that, for f ∈ Cr[−1, 1]
for 0 ≤ k ≤ r,

| f (k)(x)− L(k)
n,r(x) |≤ Cr (δn(x))r−k

ω
(
f (r), δn(x)

)
, (2.38)

where the constant Cr does not depend on f , n and x.

In 1978 Vértesi noticed that, under additional assumptions, one can replace
Δn(x) by δn(x).

Theorem 2.8.12 (Vértesi, [399]). Assume r ∈ N0 and f ∈ Cr[−1, 1]. If {Pn(f, x)}
is a sequence of polynomials satisfying (2.9) and

P (k)
n (f,±1) = f (k)(±1), (k = 0, 1, . . . , r),

then for k = 0, 1, . . . , r,

| f (k)(x)− P (k)
n (f, x) |≤ Cr,k (δn(x))r−k

ω
(
f (r), δn(x)

)
,

where the constant Cr,k does not depend on f or n.

There are other similar inequalities due to Gonska and Hinnemann.

Theorem 2.8.13 (Gonska and Hinnemann, [147]). Fix an integer r≥0, a constant
Cr and let Ln :C[−1,1]→Pn (n ≥ r) be a sequence of linear operators such that,
for every x ∈ [−1, 1] and f ∈ Cr[−1, 1],

(i) ‖Ln(f)‖ ≤ Cr‖f‖, f ∈ C[−1, 1],
(ii) | f(x)− Ln(f, x) | ≤ Cr (Δn(x))r ‖f (r)‖.

Then, there exists a constant Dr such that, for each 0 ≤ k ≤ r and f ∈ Cr[−1, 1],

‖L(k)
n (f)‖ ≤ Cr ‖f (k)‖.

Theorem 2.8.14 ([147]). Fix r ≥ 0, s ≥ 1 and let Cr and Cr,s be constants.

(i) There exists a constant Dr such that, if f ∈ Cr[−1, 1] and Pn ∈ Pn (n ≥ r)
satisfies

| f(x)− Pn(x) | ≤ Cr (Δn(x))r ‖f (r)‖,
then for 0 ≤ k ≤ r

| f (k)(x)− P (k)
n (x) | ≤ Dr (Δn(x))r−k ‖f (r)‖.
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(ii) There exists a constant Mr,s such that, if f ∈ Cr[−1, 1] and for Pn ∈ Pn

(n ≥ r + s) one has

| f(x)− Pn(x) | ≤ Cr,s (Δn(x))r ωs(f (r), Δn(x)),

then, for 0 ≤ k ≤ r,

| f (k)(x) − P (k)
n (x) | ≤ Mr,s (Δn(x))r−k ωs(f (r), Δn(x)).

The Hasson results (Theorem 2.8.5 and 2.8.6) involve estimates in norm. In
[234] Leviatan found point-wise estimates in the spirit of the results of Timan
and Trigub, but considering the best approximation instead of the modulus of
smoothness of the derivatives.

Theorem 2.8.15 (Leviatan, [234]). For r ≥ 0 let f ∈ Cr[−1, 1] and let Pn ∈ Pn

denote its polynomial of best approximation on [−1, 1]. Then for each 0 ≤ k ≤ r
and every −1 ≤ x ≤ 1,

| f (k)(x) − P (k)
n (x) | ≤ Cr

nr
[Δn(x)]−k En−k(f (k)), n ≥ k,

and

| f (k)(x) − P (k)
n (x) | ≤ Cr

nr
[Δn(x)]−k En−r(f (r)), n ≥ k,

where Cr is an absolute constant which depends only on r.

Proof. For k = 0 the result is evident. Assume that it is true for r. By induction,
for f ∈ Cr+1[0, 1] one has

| f (k+1)(x)−Q
(k)
n−1(x) | ≤ M

nk
(Δn(x))−k En−1−k(f (k+1)), 0 ≤ k ≤ r, n ≥ k,

where Qn−1 is the polynomial of best approximation to f ′. If we set

g(x) = f(x)−
∫ x

−1

Qn−1(t)dt = f(x)−Qn(x), x ∈ [−1, 1],

then, | g′(x)) |≤ CEn−1(f ′).
There exists a polynomial Sn such that

‖g − Sn‖ ≤ C

n
En−1(f ′), and ‖S′

n‖ ≤ C En−1(f ′).

Thus, from (iii) of Theorem 2.7.4 one has

| S(k)
n (x) | ≤ C(Δn(x))1−k‖S′

n‖ ≤ C1(Δn(x))1−kEn−1(f ′).
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Let Rn be the polynomial of best approximation to g. Using again (iii) of
Theorem 2.7.4 and taking into account that En(g) = En(f), one has

| R(k)
n (x) − S(k)

n (x) | ≤ C(Δn(x))−k‖Rn − Sn‖ ≤ C(Δn(x))−k (En(g) + ‖g − Sn‖)

≤ C1
(Δn(x))−k

n
En−1(f ′).

Therefore

| R(k)
n (x) | ≤ C2

(Δn(x))−k

n
En−1(f ′) ≤ C3

(Δn(x))−k

nk
En−k(f (k)).

Since Pn = Qn + Rn is the polynomial of the best approximation of f we
have the result. �

For the last theorem some of the results of Hasson are easily derived.

Theorem 2.8.16 ([234]). For r ≥ 0 let f ∈ Cr[−1, 1] and let n ≥ r. Then there
exists a polynomial Pn ∈ Pn such that

| f (k)(x)− P (k)
n (x) | ≤ Cr [Δn(x)]r−k En−r(f (r)), n ≥ k, (2.39)

for k = 0, 1, . . . , r and −1 ≤ x ≤ 1.

Kilgore combined the estimates of Gopengauz and Leviatan.

Theorem 2.8.17 (Kilgore, [191]). If f ∈ Cm[−1, 1], for each n > 2m, there exists
a polynomial Pn ∈ Pn such that, for k = 0, 1, . . . , m,

| f (k)(x)− P (k)
n (x) |≤ C(m, k)

(√
1− x2

n

)m−k

En−m(f (m)), (2.40)

where the constants C(m, k) depend only on m and k.

An algebraic analog of the result of Czipszer and Freud in [78] is the following.

Theorem 2.8.18 (Kilgore and Szabados, [196]). Let g ∈ Cq[−1, 1] be such that
g(k)(±1) = 0 for k ≤ q − 1. Let ε > 0 and assume there is a sequence {Pn+q}
(Pn+q ∈ Pn+q) such that ∣∣∣∣g(x)− Pn+q(x)

(
√

1− x2)q

∣∣∣∣ ≤ ε

nq
.

Then, for |x| ≤ 1 and k ≤ q,∣∣∣∣(g(x)− pn(x)
)(k)

∣∣∣∣ ≤
(√

1− x2

n
+

1
n2

)q−k (
δk,q inf

pn

∥∥(g − pn)(q)
∥∥+ γk,qε

)
,

where δk,q and γk,qε depend on k and q.
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2.9 Zamansky-type estimates

As we see in Theorem 1.2.1 concerning trigonometric approximation, for σ < s, the
conditions E∗

n(f) = ‖f − Tn‖ = O(n−σ) and ‖T (s)
n ‖ = O(n−(σ−s)) are equivalent.

As Hasson showed there is not a direct analogue in the algebraic case.

Theorem 2.9.1 (Hasson, [156]). There exists a function f ∈ C[−1, 1] such that
En(f) ≤ K/n and, if Pn is the polynomial of best approximation to f on [−1, 1],
‖P ′

n‖[a,b] > K log n, n ∈ N, whenever −1 < a < b < 1.

Leviatan also studied the growth of the sequence {P (k)
n }. His proof is based

in a theorem of Runck.

Theorem 2.9.2 (Runck, [315]). For r ≥ 0 let f ∈ Cr[−1, 1] and let n ≥ r. Then
there exists a polynomial Pn ∈ Pn such that

| f (k)(x)− P (k)
n (x) | ≤ Ck [Δn(x)]r−k ω(f (r), Δn(x)), 0 ≤ k ≤ r

and
| P (k)

n (x) | ≤ Cr [Δn(x)]r−kω
(
f (r), Δn(x)

)
, k ≥ r + 1,

with constant independent of f .

Theorem 2.9.3 (Leviatan, [234]). For r ≥ 0 let f ∈ Cr[−1, 1] and let Pn ∈ Pn,
denote its polynomial of best approximation on [−1, 1]. Then for each k > r there
exists a constant K, depending only on k, such that, for every −1 ≤ x ≤ 1,

| P (k)
n (x) | ≤ K

nr
[Δn(x)]−k ω

(
f (r),

1
n

)
, n ∈ N.

This improves some results of Hasson. In particular, for k > r.

‖P (k)
n ‖ ≤ K n2k−rω

(
f (r),

1
n

)
,

where the constant K depends only on k. An extension to an estimate with higher-
order moduli is given as follows.

Theorem 2.9.4 ([234]). For r ≥ 1, let f ∈ C[−1, 1] and let Pn ∈ Pn, denote its
polynomial of best approximation on [−1, 1]. Then for each k ≥ r there exists a
constant K depending on k and r, such that for every −1 ≤ x ≤ 1,

| P (k)
n (x) | ≤ K [Δn(x)]−k ωr

(
f,

1
n

)
n ∈ N. (2.41)

There is also a nice remark of Leviatan in the paper quoted above: the upper
bound of the K-functional in the characterization of the usual modulus of con-
tinuity can be given by polynomials. That is, for every f ∈ C[−1, 1] and n ∈ N
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there is a polynomial Pn ∈ Pn such that

‖f − Pn‖ ≤ C ωr

(
f,

1
n

)
and ‖P (r)

n ‖ ≤ C nr ωr

(
f,

1
n

)
.

In 1985 Ditzian [95] improved (2.41) by proving a similar inequality but in
terms of so-called Ditzian-Totik moduli (the definition will be given below). That is

| P (k)
n (x) | ≤ K [Δn(x)]−k ωϕ

r

(
f,

1
n

)
.

The results are the best possible. If | P
(k)
n (x) | ≤ K [Δn(x)]−k ψ(n) where

ψ(n) is decreasing, ψ(n) = o(1), and satisfies some additional conditions, then
ωϕ

r (f, 1/n) ≤ Mψ(n). This provides the analogue to the Sunouchi-Zamanski the-
orem.

Theorem 2.9.5 (Ditzian, [95]). If for some integer r and decreasing sequence ψ(n),

l∑
k=1

2krψ(2k) ≤ M 2lrψ(2l) and En(f) ≤ ψ(n),

then for Pn, the polynomial satisfying ‖f − Pn‖ = En(f), one has

| P (k)
n (x) | ≤ K [Δn(x)]−k ψ(n).

In particular, if for some r,

l∑
k=1

2krE2k(f) ≤ M 2lrE2l(f)

then
| P (k)

n (x) | ≤ K [Δn(x)]−k En(f).

Another extension is due to Shevchuk.

Theorem 2.9.6 (Shevchuk, [338]). If f ∈ Cr[−1, 1] and ωk(f (r), t) ≤ ω(t) (0 < t ≤
1/k), then for any n ≥ r+k−1 there exists Pn ∈ Pn such that, for all x ∈ [−1, 1],

| f (j)(x) − P (j)
n (x) | ≤ C(Δn(x))r−j ω(Δn(x)), 0 ≤ j ≤ r,

and

| P (j)
n (x) | ≤ C(Δn(x))r−j ω(Δn(x)) + C(r + k − j)(Δn(x))−j ‖f‖x,n,

for 0 ≤ j ≤ r + k, where

‖f‖x,n = max {| f(u) | : u ∈ [x−Δn(x), x + Δn(x)] ∩ [−1, 1]}.
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2.10 Fuksman-Potapov solution to the second problem

In the last sections we have seen theorems which provide characterization for
certain classes of functions. For instance, Theorem 2.7.3 characterizes functions
satisfying ω(f (r), t) ≤ Cω(t) by means of its approximations for algebraic poly-
nomials. In Theorems 2.7.5 and 2.7.7 similar results were presented for functions
satisfying f (r) ∈ Lipα[−1, 1] or in the Zygmund class respectively. These theorems
provide the analogue of the first interpretation after (1.11). That is, we have a
characterization of functions satisfying a classical Lipschitz condition in terms of
the rate of pointwise approximation by algebraic polynomials. Let us consider the
problem of characterization of other classes of functions.

For r ∈ N and α ∈ (0, 1), let

K(r, α) = {f ∈ C[−1, 1] : En(f) ≤ M(f)n−r−α}.

Classes K(r, α) are defined in terms of the rate of convergence of the best ap-
proximation. The classes Cr,α[−1, 1] and K(r, α) are different. For instance, for
f(x) =

√
1− x2 one has, f ∈ K(0, 1) but, for any δ > 1/2, f /∈ C0,δ[−1, 1].

It was an interesting question to describe classes K(r, α) without any refe-
rence to approximation by polynomials. One of the first results in this direction
is due to Fuksman [129]. For f ∈ Cr(−1, 1) and 0 ≤ k ≤ r/2, let ψk(x) =
f (r−k)(x)(1 − x2)r/2−k and consider the condition

sup
h ∈ Λ(x, δ)

| ψk(x) − ψk(x + h) | ≤ C

(
δ√

1− x2 +
√

δ

)α

, (2.42)

where Λ(x, δ) = {h :| h |≤ δ, | x + h |≤ 1}. We assume ψ1(1) = ψ1(−1) = 0 for
odd k. Let

S(r, α) = {f ∈ Cr(−1, 1) : ψk ∈ C[−1, 1] (0 ≤ k ≤ r/2) and (2.42) holds }.

Theorem 2.10.1 (Fuksman, [129]). For each r ∈ N0 and 0 < α < 1, one has
K(r, α) = S(r, α).

Proof. In order to verify the inclusion S(r, α) ⊂ K(r, α), for f ∈ S(r, α), define
F (t) = f(cos(t)).

If r = 0, then ψ0(x) = f(x) and (2.42) yields

| f(x + h)− f(x) | ≤ C

(
δ√

1− x2 +
√

δ

)α

≤ C min
{(

δ√
1− x2

)α

,
(√

δ
)α
}

for h ∈ λ(x, δ). Set h = cos(t + h)− cos t and δ =| h sin t | +h2. Since

| cos(t + h)− cos t |=| cos t(1− cosh) + sin t sinh |≤ δ,
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one has

| F (t + h)− F (t) | ≤ C min
{(

δ√
1− cos2 t

)α

,
(√

δ
)α
}

. (2.43)

We should consider two cases.

Case 1. If | h |≤| sin t |, then

δ

| sin t | =
| h sin t | +h2

| sin t | ≤ 2 | h | .

Case 2. If | h |>| sin t |, then
√

δ =
√
| h sin t | +h2 ≤ | h |

√
2 ≤ 2 | h | .

Therefore
| F (t + h)− F (t) | ≤ C1 | h |α .

Now we consider that r > 0. By induction with respect to r it can be proved
that there exists trigonometric polynomials ϕi,r ∈ Tr−i such that

F (r)(t) =
[r/2]∑
i=0

f (r−i)(cos t) sinr−2i(t)ϕi,k(t) +
r∑

i=[r/2]+1

f (r−i)(cos t) ϕi,k(t).

But
f (r−i)(cos t) | sinr−2i(t) |= ψi(cos t),

then we can write

F (r)(t) =
[r/2]∑
i=0

Ψi(t) ϕi,k(t) +
r∑

i=[r/2]+1

f (r−i)(cos t) ϕi,k(t),

where Ψi(t) = f (r−i)(cos t)sign(sin t)k. It can be proved that these functions are
continuous. Moreover, as in the proof of the case r = 0, each function Ψi satisfies a
Lipschitz condition of order α. Therefore, there exist a constant C and a sequence
{Tn} of even trigonometric polynomials such that | F (t)−Tn(t) |≤ Cn−(k+α). By
taking Pn(x) = Tn(arccosx) we conclude that f ∈ K(r, α).

Let us consider the relation K(r, α) ⊂ S(r, α). Fix f ∈ K(r, α) and a sequence
{Pn} of polynomials such that ‖f − Pn‖ ≤ Cn−(k+α). If we set

Qn = P2n − P2n−1 (n ≥ 1), (2.44)

then
‖Qn‖ ≤ C2−n(r+α) (2.45)
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and take into account that

f(x) =
∞∑

n=1

Qn(x),

then

f (i)(x) =
∞∑

n=1

Q(i)
n (x), (i = 0, 1, . . . , r).

Set ψj(x) = f (r−j)(x)(1 − x2)r/2−j , then

ψj(x) =
∞∑

n=0

Q(r−j)
n (x)(1 − x2)r/2−j =

m∑
n=0

+
∞∑

n=m+1

= Lm(x) + L∗
m(x), (2.46)

where m will chosen later.
We will estimate the modulus of continuity of Lm and L∗

m. First

| Lm(x + h)− Lm(x) |≤| h |
m∑

n=0

∣∣∣∣ d

du

[
(1− u2)r/2−jQr−j

n (u)
]∣∣∣∣

u=x+hθ

≤| h |
m∑

n=0

{∣∣∣2u(1− u2)r/2−j−1Qr−j
n (u)

∣∣∣+ ∣∣∣(1 − u2)r/2−jQr−j−1
n (u)

∣∣∣}
u=x+hθ

.

Now we have two different estimates: taking into account (2.45) and (2.23) (with
l = r − j, q = r − 2j − 1 p = j + 1 (p + q = l)) one has

m∑
n=0

2u(1− u2)r/2−j−1Qr−j
n (u)

∣∣∣
u=x+hθ

≤ C1

m∑
n=0

2(r+1)n‖Qn‖(1− u2)r/2−j−1(1 − u2)−r/2+j+1/2

∣∣∣∣∣
u=x+hθ

≤ C2 (1− (x + hθ)2))−1/2
m∑

n=0

2(r+1)n2−n(r+α) ≤ C3
2(1−α)m

(1 − (x + hθ)2))1/2
.

On the other hand, (2.23) (with l = r − j, q = r − 2j − 2 p = j + 2 (p + q = l))
one has

m∑
n=0

2u(1− u2)r/2−j−1Qr−j
n (u)

∣∣∣
u=x+hθ

≤ C1

m∑
n=0

2(r+2)n‖Qn‖(1− u2)r/2−j−1(1 − u2)−r/2+j+1

∣∣∣∣∣
u=x+hθ

≤ C2

m∑
n=0

2(r+2)n2−n(r+α) ≤ C3 2(2−α)m.
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Since for the other term in the estimate of | Lm(x + h) − Lm(x) | we can
obtain similar inequalities, we have proved that

| Lm(x + h)− Lm(x) | ≤ C4
2(1−α)m

(1− (x + hθ)2))1/2
(2.47)

and
| Lm(x + h)− Lm(x) | ≤ C5 2(2−α)m. (2.48)

With similar arguments we also prove that

| L∗
m(x + h)− L∗

m(x) |≤ C6 2−αm. (2.49)

If ε > 0, | h |≤ ε and | x |≤ 1−ε, we take m such that 2m <
√

(1 − ε)2 − x2 =
r ≤ 2m+1. Then from (2.46), (2.47) and (2.49) we obtain

| ψj(x + h)− ψj(x) |≤ C

(
| h |

( | h |
r

)1−α 1
r

+
(

r

| h |
)α
)

= 2C

(
r

| h |
)α

.

If we take m such that 2m < (| h |)−1/2 ≤ 2m+1, then from (2.46), (2.48) and
(2.49) we obtain

| ψj(x + h)− ψj(x) |≤ C

⎛⎝| h | ( 1√| h |
)2−α

+

(
1√| h |

)α
⎞⎠ = 2C (| h |)α/2 .

Thus, if h ∈ Λ(x, ε), then

| ψj(x + h)− ψj(x) | ≤ C min
(
(| h | /r)α, | h |α/2

)
= C | h |α min

(
(1/r), | h |−1/2

)α

≤ C1 | h |α
(r +

√| h |)α
= C1

(
| h |

r +
√| h |

)α

≤ C1

(
ε

r +
√

ε

)α

≤ C2

(
ε√

1− x2 +
√

ε

)α

,

since
1

r +
√

ε
=

1√
(1− ε)2 − x2 +

√
ε
≤ 6√

1− x2 +
√

ε
.

Finally, if r is odd, from (2.49) we know that the series (2.46) converges
uniformly on [−1, 1]. Moreover, for j < [r/2], one has k > 2j, thus ψj(±1) = 0.
We have proved that f ∈ S(r, α). �

The result also can be extended to the case when

En(f) ≤ M(f)
nk

ω

(
1
n

)
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where ω is a modulus of continuity satisfying conditions (2.22). In this case, the
definition of the class S(r, ω) is similar to the one of S(r, k), but condition (2.42)
is replaced by

sup
(h, x) ∈ Λ(δ)

| ψk(x)− ψk(x + h) |≤ C ω

(
δ√

1− x2 +
√

δ

)
.

Theorem 2.10.2 (Fuksman, [129]). Let f ∈ C[−1, 1], r a positive integer and α ∈
(0, 1). The following assertions are equivalent:

(i) f ∈ C2r(−1, 1) and, for 0 ≤ k ≤ r and ψk(x) = f (r−k)(x)(1 − x2)r−k, one
has ψk ∈ C[−1, 1] and (2.42) holds.

(ii) For each n ∈ N there exists an algebraic polynomial Pn ∈ Πn−1 such that,
for each x ∈ [−1, 1],

| f(x)− Pn(x) | ≤ D

n2r+α

where D is a positive constant which does not depend on x or n.

In 1980 Potapov [295] unified the results of Dzyadyk and Fuksman. He proved
an analogue to Theorem 2.10.3, but with the condition α + β < 1 instead of
α+β/2 < 1. Notice that, by taking β = 0 we obtain the Dzyadyk characterization
and for β = −α the Fuksman result. The results we present here were proved by
Potapov in 2005 [303].

Theorem 2.10.3 (Potapov, [303]). Fix reals α and β such that α ∈ (0, 1), α+β ≥ 0
and α + β/2 < 1. For f ∈ C[−1, 1] the following assertions are equivalent:

(i) For each x ∈ [−1, 1], one has

sup
{h : |h|≤δ, |x+h|≤1}

| f(x + h)− f(x) |≤ C1 δα
(√

1− x2 +
√

δ
)β

,

where C1 is a positive constant which does not depend on δ or x;
(ii) For each n ∈ N there exists Pn−1 ∈ Πn−1 such that, for each x ∈ [−1, 1],

| f(x)− Pn−1(x) | ≤ C2 nβ (Δn(x))α+β

where C2 is a positive constant which does not depend on x or n.

Proof. (i) =⇒ (ii). Fix m, s ∈ N such that (n − 1)/s < m ≤ 1 + (n − 1)/s and
define

Q(x) =
∫ π

−π

f(cos(t + y))Km,s(t)dt,

where x = cos y and where K2q is given by (2.8) with s = q. There exist positive
constant C1 and C2 such that

C1m
2s−1 ≤ cm,s ≤ C2m

2s−1 and C1m
β ≤

∫ π

−π

| t |β Km,s(t)dt ≤ C2m
−β.

Moreover, Qm ∈ Pn−1.
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Since for | t |≤ π, one has

γ =| t |
√

1− x2 + t2)α ≤ 3(| t |
√

1− x2 + t2),

as in the proof of (2.43) from (i) we have

| f(cos(y + t))− f(cos y) | ≤ C (| t |
√

1− x2 + t2)α (γ)β

≤ 3C | t |α (
√

1− x2 + t2)α+β

≤ C1 (| t |α (
√

1− x2)α+β+ | t |2α+β).

Now one has

| f(x)−Q(x) |≤
∫ π

−π

| f(cos(t + y))− f(cos y) | Km,s(t)dt

≤ C

(
(
√

1− x2)α+β

∫ π

−π

| t |α Km,s(t)dt +
∫ π

−π

| t |2α+β Km,s(t)dt

)
≤ C1

(
(
√

1− x2)α+β

mα
+

1
m2α+β

)
≤ C2 nβ(Δn(x))α+β .

We have proved (ii).
(ii) =⇒ (i). We should modify the arguments of the proof of Theorem 2.10.1.

If Qn be defined by (2.44), then

| Qk(x) |≤ C2k β(Δ2k(x))α+β

and from Theorem 2.7.5 we obtain

| Qk(x + h)−Qk(x) |≤ C1 | h | 2kβ(Δ2k(x + hθ) )α+β−1.

Fix x ∈ [−1, 1] and | x+h |≤ 1. Fix N ∈ N which will be chosen later. Notice
that

| Δhf(x) |

≤| f(x)− P2N (x) | + | f(x + h)− P2N (x + h) | +
N∑

k=0

| Qk(x + h)−Qk(x) |

≤ C3

(
2Nβ((Δ2N (x))α+β + (Δ2N (x + h))α+β)+ | h |

N∑
k=0

(Δ2k(x + hθ) )α+β−1

2−kβ

)
≤ C32Nβ

(
(Δ2N (x))α+β + (Δ2N (x + h))α+β)+ | h | (Δ2N (x + hθ))α+β−1

)
,

where the sum is estimated as follows. If α + β ≤ 1 and α < 1, then

2k(α+β−1)(Δ2k(x + hθ))α+β−1 ≤ 2N(α+β−1)(Δ2N (x + hθ))α+β−1.
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Hence
N∑

k=0

(Δ2k(x + hθ) )α+β−1

2−kβ
≤ 2N(α+β−1)(Δ2N (x + hθ))α+β−1

N∑
k=0

2k(1−α)

≤ C 2Nβ(Δ2N (x + hθ))α+β−1.

On the other hand, if α + β > 1 and α + β/2 < 1, then

2k(α+β−1)(Δ2k(x + hθ))α+β−1 ≤
(

2N

2k

)α+β−1

2N(α+β−1)(Δ2N (x + hθ))α+β−1.

Hence
N∑

k=0

(Δ2k(x + hθ) )α+β−1

2−kβ
≤ 22N(α+β−1)(Δ2N (x + hθ))α+β−1

N∑
k=0

2k(2−2α−β)

≤ C 22N(α+β−1)(Δ2N (x + hθ))α+β−12N(2−2α−β)

= C 2Nβ(Δ2N (x + hθ))α+β−1.

To finish the proof we should choose N .

Case 1. Suppose that 0 < h < 1/4 and x ∈ [−1,−1 + 2h] ∪ [1− 2h, 1− h]. Chose
N such that 2−2N−1 ≤ h < 2−2N . Then

1− x2 ≤ 1− (1− 2h)2 ≤ 4h ≤ 4 2−2N

and
1− (x + hθ)2 ≤ 1− x2 + 2h ≤ 6h ≤ 6 2−2N .

Hence

2−N ≤
√

1− x2 + 2−N ≤ 32−N ,

2−N ≤
√

1− (x + h)2 + 2−N ≤ 42−N ,

2−N ≤
√

1− (x + hθ)2 + 2−N ≤ 4 2−N ,

and
1
3

(√
h +

√
1− x2

)
≤
√

h ≤
√

h +
√

1− x2,

and we obtain

| f(x + h)− f(x) | ≤ C

2Nα
(2−N(α+β) + h2N2−N(α+β−1))

≤ C1 2−N(2α+β) ≤ C2 hα+β/2 ≤ C3 hα(
√

1− x2 +
√

h)β .

Case 2. Suppose that 0 < h < 1/4 and x ∈ [−1 + 2h, 1− 2h]. Choose N such that
√

1− x2

2N+1
< h ≤

√
1− x2

2N
.
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Now we consider the inequalities

2
√

h ≤
√

1− (1 − 2h)2 ≤
√

1− x2,

2
√

1− x2 ≤
√

1− x2 +
2h√

1− x2
≤
√

1− x2 +
1

2N
<
√

1− x2,

1− (x + hθ)2 ≤ 1− x2 + 4h ≤ 2(1− x2),

and

1−x2 = 1−(x+hθ)2+hθ(2x+hθ) ≤ 1−(x+hθ)2+2h ≤ 1−(x+hθ)2+2
√

1− x2

2N
.

Then(√
1− x2 − 1

2N

)2

= 1− x2 − 2
√

1− x2

2N

≤ 1− (x + hθ)2 +
1

2N
≤
(√

1− (x + hθ)2 +
1

2N

)2

.

Therefore, if 2−N ≤ √1− x2, then√
1− x2 − 1

2N
≤
√

1− (x + hθ)2 +
1

2N
,

and √
1− x2 ≤ 2(

√
1− (x + hθ)2 +

1
2N

.

On the other hand, if 2−N >
√

1− x2, then√
1− x2 ≤

√
1− (x + hθ)2 +

1
2N

.

Hence, in this case

1
2

√
1− x2 ≤

√
1− (x + hθ)2 +

1
2N

≤ 2
(√

1− x2 +
1

2N

)
≤ 4

√
1− x2.

With these inequalities we obtain

| f(x + h)− f(x) | ≤ C

2Nα

(√
1− x2)α+β + h2N (

√
1− x2)α+β−1)

)
≤ C2

2Nα
(
√

1− x2)α+β ≤ C3h
α(
√

1− x2 +
√

h)β .

Case 3. The case h ∈ (−1/4, 0) can be treated as the case h ∈ (0, 1/4).

Case 4. For δ < 1/4 the proof follows from the arguments given above. For δ ≥ 1/4
the proof is simple. �
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The Chebyshev differential operator is defined by

D(f, x) = (1 − x2)f ′′(x)− xf ′(x).

Moreover, set D(1) = D and D(r) = D(D(r−1)), for r ≥ 2.

Theorem 2.10.4 (Potapov, [303]). Fix real numbers σ ≥ 0 and γ > 0. For f ∈
C[−1, 1], the following assertions are equivalent:

(i) For each n ∈ N (n ≥ 2) there exists Pn−1 ∈ Πn−1 such that, for each
x ∈ [−1, 1],

| f(x)− Pn−1(x) | ≤ C1

n2+γ−σ
(Δn(x))σ

where C1 is a positive constant which does not depend on x or n.
(ii) For any interval [a, b] ⊂ (−1, 1), f ∈ C2[a, b], Df ∈ C[−1, 1] and for each

n ∈ N (n ≥ 2) there exists Rn−1 ∈ Πn−1 such that, for each x ∈ [−1, 1],

| Df(x)−Rn−1(x) | ≤ C2

nγ−σ
(Δn(x))σ

where C3 is a positive constant which does not depend on x or n.
(iii) For any interval [a, b] ⊂ (−1, 1), f ∈ C2[a, b], f ′(x), (1−x2)f ′′(x) ∈ C[−1, 1]

and for each n ∈ N (n ≥ 2) there exists Qn−1,1, Qn−1,2 ∈ Πn−1 such that,
for each x ∈ [−1, 1],

| f ′(x)−Qn−1,1(x) | ≤ C3 nσ−γ (Δn(x))σ

and
| (1− x2)f ′′(x)−Qn−1,2(x) | ≤ C1 nσ−γ (Δn(x))σ

where C3 is a positive constant which does not depend on x or n.

Theorem 2.10.5 ([303]). Fix real numbers σ ≥ 0 and γ > 0. For f ∈ C[−1, 1], the
following assertions are equivalent:

(i) For each n ∈ N (n ≥ 2) there exists Pn−1 ∈ Πn−1 such that, for each
x ∈ [−1, 1],

| f(x)− Pn−1(x) | ≤ C1

nγ−σ
(Δn(x))σ+1

where C3 is a positive constant which does not depend on x or n.
(ii) f ∈ C1[−1, 1] and for each n ∈ N (n ≥ 2) there exists Rn−1 ∈ Πn−1 such

that, for each x ∈ [−1, 1],

| f ′(x)−Rn−1(x) | ≤ C1

nγ−σ
(Δn(x))σ

where C3 is a positive constant which does not depend on x or n.
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Theorem 2.10.6 ([303]). Let f ∈ C[−1, 1], r and ρ be non-negative integers and fix
α and β such that α ∈ (0, 1), α+β ≥ 0 and α+β/2 < 1. The following assertions
are equivalent:

(i) f ∈ C2ρ+r(−1, 1), ψ(x) = D(ρ)f (r)(x) ∈ C[−1, 1] and

sup
{ h : |h|≤δ, |x+h|≤1}

| ψ(x)− ψ(x + h) |≤ C1 δα
(√

1− x2 +
√

δ
)β

,

where C1 is a positive constant which does not depend on δ or x;
(ii) f ∈ C2ρ+r(−1, 1) and, for 0 ≤ k ≤ ρ and ψk(x) = f (2ρ+r−k)(x)(1 − x2)ρ−k,

one has ψk ∈ C[−1, 1] and

sup
{ h : |h|≤δ, |x+h|≤1}

| ψk(x)− ψk(x + h) |≤ C2 δα
(√

1− x2 +
√

δ
)β

,

where C2 is a positive constant which does not depend on δ or x;
(iii) For each n ∈ N there exists an algebraic polynomial Pn−1 ∈ Πn−1 such that,

for each x ∈ [−1, 1],

| f(x)− Pn−1(x) | ≤ C3

n2ρ−β
(Δn(x))r+α+β

where C3 is a positive constant which does not depend on x or n.

Proof. Assume condition (iii) holds. Then there exists a sequence {Pn} of algebraic
polynomials for which

| f(x)− Pn−1(x) |≤ C

n2ρ−β
(Δn(x))r+α+β .

By applying ρ-times Theorem 2.10.5 we obtain that condition (iii) is equiva-
lent to the following condition A: there exists a sequence {Rn} (n ≥ 2) of algebraic
polynomials Rn ∈ Πn such that, for each x ∈ [−1, 1],

| f (r)(x) −Rn(x) | ≤ C

n2ρ−β
(Δn(x))α+β .

By applying ρ-times Theorem 2.10.4 (which is equivalent to condition (i) and
(ii)) we obtain that condition A is equivalent to the following condition B: there
exists a sequence {Qn} (n ≥ 2) of algebraic polynomials Qn ∈ Πn such that, for
each x ∈ [−1, 1],

| D(ρ)(f (r)(x)) −Qn(x) | ≤ Cnβ(Δn(x))α+β .

Applying Theorem 2.10.3 we obtain that condition B is equivalent to condi-
tion (i). Thus we have proved that (i) and (ii) are equivalent.
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Let us prove that (ii) and (iii) are equivalent. By applying r-times we obtain
that condition (iii) is equivalent to condition A. From Theorem 2.10.4 (condition
(i) and (ii) are equivalent) we obtain that condition A is equivalent to condition
B: for each n ∈ N (n ≥ 2) there exist algebraic polynomials Tn,1, Tn,2 ∈ Πn such
that, for each x ∈ [−1, 1],

| f (r+1)(x)(1 − x2)i−1 − Tn,i(x) | ≤ C (Δn(x))α+β

n2(ρ−1)−β
, i = 1, 2.

If ρ > 1, then from Theorem 2.10.4 we obtain that condition B is equivalent to
the following condition C: for each n ∈ N (n ≥ 2) there exist algebraic polynomials
Hn,i ∈ Πn (i ∈ {1, 2, 3, 4}), such that, for each x ∈ [−1, 1],

| f (r+1+i)(x)(1 − x2)i−1 − Tn,i(x) | ≤ C (Δn(x))α+β

n2(ρ−2)−β
, i = 1, 2

and

| f (r+1+i)(x)(1 − x2)i−3(1− x2)(i−2) − Tn,i(x) | ≤ C (Δn(x))α+β

n2(ρ−2)−β
, i = 3, 4.

It can be proved that condition C is equivalent to the condition D: for each
n ∈ N (n ≥ 2) there exist algebraic polynomials Ln,i ∈ Πn (i ∈ {1, 2, 3}), such
that, for each x ∈ [−1, 1],

| f (r+1+i)(x)(1 − x2)i−1 − Ln,i(x) | ≤ C (Δn(x))α+β

n2(ρ−2)−β
, i = 1, 2, 3.

If ρ > 2, we repeat ρ − 2-times the arguments given above to obtain that
condition D is equivalent to the following condition E: for each n ∈ N (n ≥ 2)
there exist algebraic polynomials Sn,i ∈ Πn (i ∈ {0, 1, 2, . . . , ρ}), such that, for
each x ∈ [−1, 1],

| f (r+2ρ−i)(x)(1 − x2)ρ−i − Sn,i(x) | ≤ C nβ (Δn(x))α+β , i = 0, 2, . . . , ρ.

From Theorem 2.10.3 we obtain that condition E is equivalent to condition
(ii). Thus we have proved that conditions (ii) and (iii) are equivalent. �

2.11 Integral metrics

In the works of Timan and Dzyadyk the best approximation by algebraic polyno-
mials was well studied in the case of the uniform norm. Several authors considered
that extension of the Timan-type estimates the spaces of integrable functions.
The problem of characterization for some classes of functions was considered by
Potapov and Lebed.
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In 1956 Potapov [287] extended the Timan theorem by considering functions
with derivative of order r (r > 0, integer) is in Lip(p, α), p > 1, 0 < α ≤ 1. He
also studied functions satisfying the condition(∫ d

c

| f (r)(x + h)− f (r)(x) |p dx√
(x− a)(b− x)

)1/p

≤ M(f) | h |α,

where a ≤ c < d ≤ b.
In 1958 Lebed obtained a direct result. He considered the term Δn(x) as a

varying weight.

Theorem 2.11.1 (Lebed, [226]). Assume that p ≥ 1 and 1 − s − 1/p ≥ 0. If
f ∈ Cm[−1, 1] and ‖(√1− x2)sf (m)(x)‖p ≤ M , then there exists a sequence {Pn}
(Pn ∈ Pn) such that ∣∣∣∣∣∣∣∣f(x)− Pn(x)

(Δn(x))m−s

∣∣∣∣∣∣∣∣
p

≤ C(m)
M

ns
.

Denote by W (r)Hw
p the class of functions given on the interval [−1, 1] and

having an rth derivative f (r) whose pth power is integrable, and for which the
inequality

‖f (r)(x + h)− f (r)(x)‖Lp[−1,1−h] ≤ w(h), 0 < h < 1,

hods, where w is a fixed modulus of continuity. The class W (r)Aw
p is defined

analogously, but with the condition∣∣∣∣∣
∣∣∣∣∣f (r)(x +

√
1− h2 − h

√
1− x2)− f (r)(x)

w(h
√

1− x2 + h2)

∣∣∣∣∣
∣∣∣∣∣
p

≤ C.

For w(t) = tα we shall denote these classes by H
(r+α)
p (A(r+α)

p respectively).
The classes W (r)Hw

p were introduced by Lebed and Potapov (see [290]).
They proved that W (r)Hw

∞ = W (r)Aw
∞ (uniform norm). It is also obvious that the

intersection of these classes is not empty, for 1 ≤ p <∞.
Potapov also used classes defined by two parameters. For 1 ≤ p < ∞, r ∈ N0,

0 ≤ β ≤ 1 and 0 < α ≤ 1, f ∈ H
(r)
p Aα

β if f (r) ∈ Lp[−1, 1] if(∫ 1

−1

∣∣∣∣∣f (r)(x
√

1− h2 − h
√

1− x2)− f (r)(x)√
1− x2+ | h |β

∣∣∣∣∣
p

dx

)1/p

≤| h |α

in the case 0 < α < 1 and∫ 1

−1

∣∣∣∣f (r)(λ(x, h)x − λ(h, x)) − 2f (r)(x) + f (r)(λ(x, h) + λ(h, x))√
1− x2+ | h |β

∣∣∣∣p dx ≤| h |p

in the case α = 1, where λ(x, h) = x
√

1− h2. Here is a typical result.
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Theorem 2.11.2 (Potapov, [289]). For a function f one has f ∈ H
(r)
p Aα

β if and
only if, for each n ≥ r + 2, there exists a polynomial Pn ∈ Pn, such that(∫ 1

−1

∣∣∣∣ f(x)− Pn(x)
(
√

1− x2 + 1/n)r+β

∣∣∣∣p dx

)1/p

≤ C

nr+α
,

where the constant C does not depend on n or f .

The paper of Potapov also contains analogous results when the Lebesgue
measure is changed by the Chebyshev one. Some other results were presented in
[290]. The following result follows from the works of Lebed and Potapov.

Theorem 2.11.3 (Lebed-Potapov). For α ∈ (0, 1) and a function f , one has f ∈
A(r+α) if and only if for each n ≥ r there exists a polynomial Pn ∈ Pn, such that(∫ 1

−1

∣∣∣∣ f(x)− Pn(x)
(
√

1− x2 + 1/n)r+α

∣∣∣∣p dx

)1/p

≤ C

nr+α
,

where the constant C does not depend on n or f .

Taking into account (2.25), it was natural to look for weighted spaces. In this
way some class of functions can be studied, but the original problems (character-
ization of classical Lipschitz spaces in terms of the best algebraic approximation
or a characterization of a class of functions with a given rate for the best algebraic
approximation in terms of the classical Lipschitz classes) was not solved. Since
weighted approximation will not be discussed here in detail, we have included
only a few remarks.

The characterization of the class H
(r+α)
p was also considered by Motornyi in

1971. He verified that the quantity

λn(f) = inf
P∈P

∣∣∣∣∣∣∣∣f(x)− P (x)
(Δn(x))α

∣∣∣∣∣∣∣∣
Lp

are unbounded in the class H
(α)
p and established that classes H

(r+α)
p and A

(r+α)
p

are different for 0 < α < 1 and coincide for α = 1. He also characterized some
functions, but not in terms of approximation by polynomials (see Theorem 11 of
[255]) on the whole interval. Oswald [277] extended some of the results of Motornyi
to the case of moduli of smoothness of higher order.

In 1978 DeVore [89] showed that we can not obtain a result similar to The-
orem 2.7.7, if in (2.25) we replace the uniform norm by the Lp[−1, 1] norm,
1 ≤ p <∞. That is, by considering

Fn(f, r, α)p = inf
p ∈ Pn

∣∣∣∣∣∣∣∣f(x)− p(x)
Δr+α

n (x)

∣∣∣∣∣∣∣∣
p

. (2.50)
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In fact DeVore showed (with an incomplete proof) that for 0 < α < 1 and 1 ≤
p < ∞,

ω1(f, t)p = O(tα) =⇒ Fn(f, 0, α)p = O(log n).

Moreover, for each 0 < α < 1 there exists f ∈ Lp[−1, 1] such that ω1(f, t)p = O(tα)
and Fn(f, 0, α)p ≥ C log n for infinitely many n. As we remarked above, Motornyi
proved that these quantities are not bounded when f varies on the class H

(α)
p .

In 1972 Golischek presented a detailed study of this kind of weighted approx-
imation [143]. For 1 ≤ p ≤ ∞ set

E(λ)
n (f)p = inf

p∈Pn

‖(max{1/n,
√

1− x2})−λ(f(x)− p(x)‖p

and consider the following question: under what conditions are the statements

E(λ)
n (f)p = O(n−β) (2.51)

and
‖(max{1/n,

√
1− x2})r−λP (r)

n (x)‖p = O(nr−β) (2.52)

equivalent, where r ∈ N and β is a real number 0 < β < r? The answer is different
for λ ≤ 0 and λ > 0.

If λ ≤ 0, Golitschek proved that (2.51) and (2.52) are equivalent.
For λ > 0 the situation is more complicated: if r > max{β, (λ + β)/2}, then

(2.51) implies (2.52). Moreover, if we assume E
(λ)
n (f)p = 0, then (2.52) implies

(2.51). Golitschek also constructed a class of functions for which both assertions
are equivalent.

The following theorem generalizes some results of Motornii in [254].

Theorem 2.11.4 (Shalashova, [337]). Fix k ∈ N and p ∈ [1,∞). Suppose f ∈
Lp[−1, 1] and ωk(f, t)p ≤ Ψ(t), where Ψ(t) is some positive function satisfying the
conditions:

1) Ψ(t) does not decrease,
2) Ψ(λt) ≤ (λ + 1)kΨ(t) for λ > 1.

Then for any integer n > k, one can find an algebraic polynomial Pn of degree not
greater than (4k + 2)n + k − 1 such that∣∣∣∣∣∣∣∣f(x)− pn(x)

Ψ(Δn(x))

∣∣∣∣∣∣∣∣
p

≤ Ak[log(n + 1)]1/p,

where Ak is a constant depending only on k.

Since Ak does not depend on p, we arrive at the uniform estimate of Brudnyi
by letting p tend to ∞ in the last inequality (for a bounded f). If r = k + 1,
and ω1(f (k), t) ≤ Ctα (0 < α ≤ 1), we obtain from the last result a theorem of
Motornyi [254].
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Some authors have studied the best approximation of particular classes of
functions. For instance, Nasibov considered the approximation by algebraic poly-
nomials of functions of the form

f(x) =
∫ 1

−1

ψ

(
x− t

2

)
ϕ(t)dt (2.53)

in the metric of Lp[−1, 1].

Theorem 2.11.5 (Nasibov, [266]). Let 1 ≤ p, r <∞ and assume that ψ ∈ Lr[−1, 1]
and ϕ ∈ Lp[−1, 1]. If f is defined by (2.53), then

En(f)p ≤ 22−1/r ‖ϕ‖p En(ψ)r .

Dynkin used a complex variable method (pseudo-analytical extension of func-
tions) to obtain some results. For s > 0 and 1 ≤ p ≤ ∞ he gave a characterization
of functions satisfying ( ∞∑

k=1

1
n

En(f)p
p, s

)1/p

< ∞,

where

En(f)p, s = inf
p ∈ Pn

(∫ 1

−1

∣∣∣∣f(x)− p(x)
Δs

n(x)

∣∣∣∣ dx

)1/p

.

Recall that for r ∈ N and 1 < p < ∞, W r
p [−1, 1] is the class of functions such that

f (r−1) is absolutely continuous and f (r) ∈ Lp[−1, 1].
Oswald [277] considered the classes Wm of increasing functions ω such that

ω(h) ≤ 2mω(h/2) and Hω
p,m of functions in Lp such that ωm(f, t)p ≤ C(f)ω(t).

Theorem 2.11.6 (Oswald, [277]). Fix m ∈ N and p ∈ [1,∞). For each f ∈ Lp[a, b]
and n ≥ m− 1,

En(f)p ≤ C(m)ωm

(
f,

b− a

n + 1

)
p

.

From the inequality

ωm+r(f, t)p ≤ trωm(f (r), t)p,

it follows that, for f ∈W r
p [a, b],

En(f)p ≤ C(m + r)
(

b− a

n + 1

)r

ωm

(
f (r),

b− a

n + 1

)
p

.

It can be used to characterize class Hw
p,m. Given f ∈ Lp[a, b], 1 ≤ p < ∞,

and m ∈ N, it is known that for any interval [c, d], [a, b] ⊂ (c, d), there exists an
extension f∗ of f to [c, d] such that,

ωm(f∗, h)p ≤ Cωm(f, h)p.
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If ω satisfies the condition

hm

∫ H

h

ω(t)
tm+1

dt ≤ cω(t),

then the following conditions f ∈ Hω
p,m and En(f∗)p ≤ Cω(1/n) are equivalent.

Theorem 2.11.7 (Dynkin, [104]). Fix 1 < p < ∞ and r ∈ N. For a function
f : [−1, 1]→ R one has f ∈W r

p [−1, 1] if and only if, for each k ∈ N0, there exists
P2k ∈ Π2k such that∫ 1

−1

( ∞∑
k=0

| f(x)− P2k(x) |2
(Δ2k(x))2r

)p/2

dx < ∞.

It was Operstein, in 1995 [275], who stated the theory as completed as in the
uniform norm. Let ω : R

+ → R
+ satisfy the condition ω(s + t) ≤ M(ω(s) + ω(t))

and set ρk(x) = 2−k
√

1− x2 +2−2k. We use the customary notation for the mixed
norm

‖Ak(·)‖lp(Lp) = ‖{‖Ak(·)‖Lp}k‖lp .

That is

‖Ak(·)‖lp(Lp) =

( ∞∑
k=1

∫ 1

−1

| Ak(x) |p dx

)1/p

= ‖{‖Ak(·)‖Lp}k‖lp .

Theorem 2.11.8 (Operstein, [275]). Fix p ∈ [1,∞] and r ∈ N. There exists a
constant C = C(p, r) such that, for each f ∈ Lp[−1, 1] and k ∈ N0, there exists
an algebraic polynomial {Pk} of degree at most 2k + r − 2 such that∣∣∣∣∣∣∣∣f − Pk

ω(ρk)

∣∣∣∣∣∣∣∣
lp(Lp)

≤ C

∣∣∣∣∣∣∣∣ωr(f, 2−k)
ω(2−k)

∣∣∣∣∣∣∣∣
lp

.

Brudnyi’s Theorem 2.5.3 follows from this one by setting ω(t) = ωr(f, t)p

and p =∞.

Theorem 2.11.9 ([275]). Let f be a function defined on [−1, 1]. If there exists a
sequence {Pk} of algebraic polynomials of degree at most 2k − 1 such that∣∣∣∣∣∣∣∣f − Pk

ω(ρk)

∣∣∣∣∣∣∣∣
lp(Lp)

≤ 1,

then for every r ∈ N,

ωr (f, t)p ≤ C tr
[∫ 1

t

(
ω(u)
ur

)q
du

u

]1/q

,
1
p

+
1
q

= 1,

where the constant C depends only on r and p.
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When p = ∞ we obtain the Timan inverse result. With these theorems one
has the characterization of Lip(α, p) spaces.

Theorem 2.11.10 (Operstein, [275]). A function f : [−1, 1] → R belongs to
Lip(α, p) if and only if there exists a sequence {Pk} of algebraic polynomials of
degree at most 2k (k = 0, 1, . . . ) such that

‖(f − Pk)min{1, t/ρk}s‖lp(Lp) = O(tα), 0 < α < s.

The idea of using min{1, t/ρk} for a characterization of Lip(α, p) appears
in [89], where it is proved that for each function f ∈ Lip(α, p), 0 < α < 1,
there exists a polynomial Pk such that ‖(f − Pk)min{1, t/ρk}‖lp(Lp) = O(tα).
As we remarked above, Motornyi and DeVore showed that the direct analogue
(‖(f − Pn)ρ−α

n }‖Lp ≤ C does not characterize Lip(α, p) when p < ∞.

2.12 Lp, 0 < p < 1

The behavior os the best approximation in Lp space, for 0 < p < 1 is not the
same as in the case p ≥ 1. For instance, the difference f(x)−Pn(x) (where Pn is a
polynomial of the best approximation) must not oscillate at least at n + 1 point.
For studies concerning this problem see [160], [402], [403], [404] and [405].

For 0 < p < 1 the functional

‖f‖p =

(∫ b

a

| f(x) |p dx

)1/p

is not a norm, but the notation ‖f‖p is used in this case for the sake of convenience.
Some smoothing processes which are usually applied in approximation theory

do not work well in Lp spaces (0 < p < 1). Even more, the common definition of
Sobolev spaces gives place to spaces with a trivial dual (see [279]). Thus, the ideas
associated to K-functionals can not be used. There are also differences with the
classical spaces related with the connection between smoothness and the existence
of derivatives. In [214] Kortov studied this last topic.

In 1975 Storozhenko, Krotov and Oswald (Osval’d) presented direct and con-
verse results for trigonometric approximation in the space of periodic functions
Lp[0, 2π], for 0 < p < 1 [356]. The extension of the classical theory to this setting
was motivated by some problems related with embedding theorems (see [352]). In
[357] Storonzenko and Oswald presented estimates with the second-order modulus.

Theorem 2.12.1. If 0 < p < 1 and f ∈ Lp[0, 2π], then

E∗
n(f)p ≤ Cp ω

(
f,

π

n + 1

)
p

,
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where
E∗

n(f)p = inf
Tn∈Tn

‖f − Tn‖p.

Moreover, for n = 0, 1, . . . ,

ω

(
f,

1
n + 1

)
p

≤ Cp

n + 1

⎛⎝ n∑
j=0

(j + 1)p−1(Ej(f)p)p

⎞⎠1/p

. (2.54)

Similar results were obtained in the same year by V.I. Ivanov [161], but he
used moduli of smoothness of higher order:

ωk

(
f,

1
n

)
p

≤ Cp,k

nk

⎛⎝ n∑
j=0

(j + 1)kp−1(Ej(f)p)p

⎞⎠1/p

.

In [356] and [161] a Bernstein inequality was proved for spaces Lp[0, 2π],
0 < p < 1, in the form

‖T (r)‖p ≤ C(p)nr ‖T ‖p.

Other proofs were given by Ivanov [162], Oswald [276], Nevai [269] and Runovskii
[320]. The best result was presented by Arestov.

Theorem 2.12.2 (Arestov, [2]). For 0 < p < 1, n, r ∈ N and Tn ∈ Tn one has

‖T (r)
n ‖p ≤ nr ‖Tn‖p.

In [320] and [321] Runovskii constructed some linear polynomial operators
and obtained direct results in Lp[0, 2π] (0 < p < 1) in the periodical case.

For 0 < p < ∞ and μ ≥ −1/p, Khodak considered the spaces Lp,μ[−1, 1] of
functions f for which

‖f‖p,μ =
(∫ 1

−1

| f(x)(
√

1− x2)μ |p
)1/p

<∞.

A function f ∈ Aα,β
p,μ if(∫ π

0

∣∣∣∣f(cos(γ + t))− f(cos γ)
(sin γ+ | sin t |)β

∣∣∣∣p (sin γ)1+μpdγ

)1/p

≤ C | sin t |α .

A function f ∈ A
α,β

p,μ if(∫ π

0

∣∣∣∣f(cos(γ + t1))+f(cos(γ + t2))−2f(cos(γ +(t1 + t2)/2))
(sinγ+ |sint |)β

∣∣∣∣p(sinγ)1+μpdγ

)1/p

≤C |sint |α,

where t =| t1 | + | t2 |. Here β is a real number, for p ≥ 1 we consider that
0 < α ≤ 1 and, for 0 < p < 1, 0 < α ≤ 1/p.
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For p ≥ 1, and t1 = −t2 these spaces coincide with the one studied by Lebed
and Potapov.

Theorem 2.12.3 (Khodak, [189]). Let f ∈ Lp,μ[−1, 1], 0 < p < 1, μ ≥ −1/p,
0 < α < 2,

−2/p− 2− μ + α < −β < α− 1/p− μ.

In order that f ∈ Aα,β
p,μ for 0 < α < 1 or f ∈ A

α,β

p,μ for 0 < α < 2, it is necessary
and sufficient that there exists a sequence {Pn}, Pn ∈ Pn such that∣∣∣∣∣

∣∣∣∣∣[f(x)− Pn(x)]
(√

1− x2 +
1
n

)−β
∣∣∣∣∣
∣∣∣∣∣
p,μ

≤ C

nα
,

where the constant C does not depend on f and n.

As Ditzian showed we can not extend the results related with simultaneous
approximation to the case 0 < p < 1.

Theorem 2.12.4 (Ditzian, [97]). For each 0 < p < 1 there exists a function f ∈
A.C.[−1, 1] for which we can not find a sequence {pn}, pn ∈ Pn such that

‖f − pn‖p ≤ Cω2(f, 1/n)p and ‖f ′ − p′n‖p ≤ Cω(f ′, 1/n)p .

The same assertion holds if we replace the usual moduli by the Ditzian-Totik
one.

2.13 The Whitney theorem

Another form for the direct results in approximation by algebraic polynomials is
due to Whitney.

Theorem 2.13.1 (Whitney, [407] and [408]). For any n ∈ N there exists a con-
stant W∞(n) such that, for every bounded function f : [a, b] → R there exists a
polynomial Pn−1(f) ∈ Pn−1 satisfying

‖f − Pn−1(f)‖ ≤W∞(n)ωn

(
f,

b− a

n

)
.

In fact, this was proved by Burkill in 1952 [43] for n = 1, 2, who also conjec-
tured that the inequality holds for n ≥ 3. In 1957 Whitney verified the conjecture
for continuous functions and in 1959 for bounded functions. The proof of Whit-
ney, as the one due to Burkill, used the polynomial P which interpolates f over a
uniform net

P

(
k

n− 1

)
= f

(
k

n− 1

)
, (k = 0, 1, . . . , n− 1).
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If we consider the polynomial Qn−1(f) which interpolates f at a uniform net of
node, then we can also consider the inequalities

‖f −Qn−1(f)‖ ≤ W ′
∞(n)ωn

(
f,

b− a

n

)
.

In 1964 Brudnyi found a new proof of the Whitney theorem. He used some
smoothing of the function by means of linear combinations of Steklov-type func-
tions. With the new method of proof he was able to extend the result to Lp spaces,
with 1 ≤ p <∞. In 1977 Storozhenko extended the Whitney theorem for algebraic
approximation to Lp[a, b] spaces, for 0 < p < 1 (see also [358]).

Theorem 2.13.2 (Brudnyi, [39] and Storozhenko, [353]). Suppose 0 < p < ∞,
f ∈ Lp(a, b) and n is an arbitrary natural number, then

En−1(f)p ≤ Wp(n)ωn

(
f,

b− a

n

)
p

,

where Wp(n) depends not on f .

Another proof was presented in [355] by Storozhenko and Kryakin.
In [354] Storozhenko presented the inequality: for 0 < p < 1, f ∈ Lp[−1, 1],

k ∈ N and n ≥ k − 1,

En(f)p ≤ Cp,kωk

(
f,

1
n + 1

)
p

.

A similar inequality appeared in [342] but only for the first modulus. Another
proof was given by Khodak in [190].

The proof of Whitney can not be used as the estimate of the constants.
Whitney proved that

1
2
≤ W∞(n)

and found some bounds for some values of n. For instance

1 ≤ W∞(1) ≤ 2, 1 ≤ W∞(2) ≤ 2.

The Whitney theorem has been studied by several Bulgarian mathematicians.
In 1982 Sendov conjectured that W∞(n) ≤ 1 [331].

This motivated several papers, shown in the table on top of the next page.
The inequality W∞(n) ≤ 1 has been verified only for a few values of n:

Whitney n = 3 [407], Kryakin n = 4 [219] and Zhelnov k = 5, 6, 7, 8, [416].
In [221] Kryakin and Takev proved that W ′

∞(n) ≤ 5ωn(f, 1/n).
Tunc [391] considered Whitney-type theorems in the form

Ek+r+1(f, [a, b])∞ ≤ W∞(k, r)
(

b− a

k

)r

ωk

(
f,

b− a

k
, [a, b]

)
∞

.

He found upper bounds for W (k, 2), W (1, r) and W (2, r).
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Year Author Reference Estimate

1952 Burkill [43] W∞(2) = 1/2,

1964 Brudnyi [39] W∞(n) ≤ Cn2n,

1985 Ivanov-Takev [174] W∞(n) ≤ C(n lnn),

1985 Binev [31] W∞(n) ≤ C n,

1985 Sendov [332] W∞(n) ≤ C,

1986 Sendov [333] W∞(n) ≤ 6,

1985 Sendov-Takev [335] W1 ≤ 30,

1989–90 Kryakin [215], [216] W∞(n) ≤ 3,

1989 Sendov-Popov [334] W∞(n) ≤ 3,

1990 Kryakin [216] Wp(n) ≤ 11,

1992 Kryakin-Kovalenko [220] W1 ≤ 6.4,

1992 Kryakin-Kovalenko [220] Wp ≤ 9,

1995 Kryakin [217], [218] W∞(n) ≤ 2.

2002 Gilewicz-Kryakin- [142] W∞(n) ≤ 2 + e−2.
Shevchuk

2.14 Other classes of functions

Bernstein [30] characterized C∞[a, b] as follows: f ∈ C∞[a, b] if and only if each
k ∈ N,

lim
n→∞ nkEn(f) = 0.

Some subclasses of functions of C∞[a, b] has been studied by Brudnyi-Gopen-
gauz [41] Babenko [4] and Motornyi [256].



Chapter 3

Looking for New Moduli

Different authors have tried to used other forms of measuring the smoothness
of functions. In the first section of this chapter we present some of the ideas
associated to the works of Potapov. In the second section we analyze the circle of
ideas developed by Butzer and his collaborators.

3.1 The works of Potapov

Potapov began to consider the approximation by algebraic polynomials in Lp

spaces in 1956 [287], where he follows Timan’s ideas. In 1960 and 1961 he obtained
results in which the usual translation was modified ([289] and [290]).

Let Lp,α,β[−1, 1] be the space of all functions f for which

‖f‖p,α,β = ‖f(x)(1 − x)α(1 + x)β‖p < ∞

and En(f)p,α,β be the best approximation by algebraic polynomials in this space.
That is

En,α,β(f) = inf
Pn∈Pn

‖f − Pn‖p,α,β .

When α = β we simply write Lp,α[−1, 1] and En(f)p,α.
Let us denote by ω(f, t)p,α,β the usual modulus of continuity of f in the

metric of Lp,α,β[−1, 1]. That is

ω(f, t)p,α,β = sup
|h| ≤ t

‖f(x + h)− f(x)‖p,α,β,

with the usual restriction relative to the interval (f(x+h)−f(x) = 0, if x+h > 1).
In 2000 Potapov proved that in Lp,α,β[−1, 1] the usual Lipschitz classes can not
be characterized by the best approximation in the same form as in the case of
trigonometric approximation [300].

,   
DOI 10.1007/978-3-0348-0194-2_3   
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Let us set

G(f, x, t) =
1
2
[f(x cos t +

√
1− x2 sin t) + f(x cos t−

√
1− x2 sin t)] (3.1)

and define
ω̃(f, t)p,α,β = sup

|h| ≤t

‖f(x)−G(f, x, h)‖p,α,β .

Theorem 3.1.1 (Potapov, [289]). Fix p ∈ [1,∞], α = β = −1/(2p) and γ ∈ (0, 1).
For f ∈ Lp,α,β[−1, 1] the following assertions are equivalent:

(i) There exists a constant M such that ω̃(f, t)p,α,β ≤ Mtγ.
(ii) There exists a constant K such that, for all n ∈ N, En(f)p,α,β ≤ K/nγ.

For the un-weighted case (α = β = 0) and p = 2, Zhidkov obtained another
characterization. Define

ω̂(f, t)p,α,β = sup
|h| ≤t

‖f(x)−H(f, x, h)‖p,α,β,

where

H(f, x, h) =
1
π

∫ 1

−1

f(x cos t + y sin t
√

1− x2)
dy√
1− y2

. (3.2)

Theorem 3.1.2 (Zhidkov, [417]). If γ ∈ (0, 1), for a function f ∈ L2[−1, 1] there
exists a constant M such that ω̂(f, t)2,0,0 ≤ Mtγ if and only if there exists a
constant K such that, for all n ∈ N, En(f)2,0,0 ≤ K/nγ.

Let us recall another result of Zhidkov.

Theorem 3.1.3 ([417]). For f ∈ L2[−1, 1] one has En(f)2 ≤ C/ns+γ if and only if(∫ 1

−1

(
dsfh(x)

dxs
− dsf(x)

dxs

)2

(1 − x2)sdx

)1/2

≤ C hγ ,

where h > 0, n > s, 0 < γ < 1 and

fh(x) =
1
π

∫ π

0

f(x cosh +
√

1− x2 sin h cos t)dt.

In [292] Potapov considered the problem of characterizing all functions f ∈
Lp,α,β [−1, 1] for which there exists a sequence of algebraic polynomials satisfying∣∣∣∣∣∣∣∣(f(x)− Pn(x))

(
1− x +

1
n2

)ρ1 (
1 + x +

1
n2

)ρ2
∣∣∣∣∣∣∣∣

p,α,β

≤ C
1

nr+γ
.

The case α = β ≥ −1/(2p) and ρ1 = ρ2 has been studied previously by him in
[291]. The results are given in terms of a generalized translation.
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For f : [−1, 1]→ R, consider it a Fourier-Jacobi series

f(x) ∼
∞∑

k=0

akP
(α,β)
k (x)

where {P (α,β)
k }) is the sequence of Jacobi polynomials. That is, they are the or-

thogonal polynomials in [−1, 1] with respect to weight (1− x)α(1 + x)β , with the
normalization P

(α,β)
k (1) = 1.

Let us consider the associated series

Th(f, x, α, β) =
∞∑

k=0

akP
(α,β)
k (x)P (α,β)

k (h). (3.3)

Assume that, for each h ∈ [−1, 1], there exists a function gh such that (3.3) holds
if the Fourier-Jacobi series of gh holds, then we consider that (3.3) is the Fourier-
Jacobi series of f with generalized translation x+h. The functions were called the
generalized translation by Löfström and Peetre in [238].

Now the generalized modulus is defined by

ω(f, t, α, β)p,α,β = sup
|s| ≤ t

‖f(x)− Tcos s(f, x, α, β)‖p,α,β . (3.4)

It is not a simple task to find a simple expression for the generalized translation
Th(f, x, α, β).

In the case α = β = −1/2, the Fourier-Jacobi polynomials are just the
Chebyshev polynomials: P

(−1/2,−1/2)
n (x) = Tn(x) = cos(n arccosx)). It can be

proved that

Tcos t(f, x,−1/2,−1/2) = G(f, x, t),

where G(f, x, t) is the function defined (3.1). In this case the direct and converse
results were recalled in Theorem 3.1.1.

In the case α = β = 0, the Fourier-Jacobi polynomials are the Legendre
polynomials and the translation has the form

Tcos t(f, x, 0, 0) = H(f, x, t),

where H(f, x, t) is defined by (3.2). In this case the direct and converse results
were recalled in Theorem 3.1.2 (in L2 spaces).

Recall that the Legendre polynomial Pn(x) of degree n is defined by

Pn(x) =
(−1)n

2nn!
dn

dxn
(1− x2)n, (x ∈ [−1, 1], n ∈ N0). (3.5)
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For α = β > −1/2, the Fourier-Jacobi polynomials are the Gegenbauer
polynomials and the translation has the form

Tcos t(f, x, α, α) =
1

γ(α)

∫ 1

−1

f(x cos t + y
√

1− x2 sin t)(1 − y2)α−1/2dy, (3.6)

where γ(α) =
∫ 1

−1
(1−y2)α−1/2dy. In this case the direct and converse results were

given by Rafalson [311] and Pawelke [278]. Rafalson extended the theorem of Zhid-
kov [417] for the case α > 0. Zhidkov and Rafalson only considered approximation
in L2 spaces.

For α > β = −1/2, the translation is given by

Tcos t(f, x, α, β) =
1

γ1(α, β)

∫ 1

−1

f(Φ1(x, t, y))Θ1(y)dy, (3.7)

where

Φ1(x, t, y) = x cos t + y
√

1− x2 sin t− (1− y2)(1 − x) sin2(t/2),

Θ1(y) = (1− y2)α−1/2.

and γ1(α, β) is chosen from the condition Tcos t(1, x, α, β) = 1.
For α > β > −1/2, the Fourier-Jacobi polynomials are the Jacobi polynomi-

als and the translation has the form

Tcos t(f, x, α, β) =
1

γ2(α, β)

∫ 1

0

∫ 1

−1

f(Φ2(x, t, r, y))Θ2(r, y)dydr, (3.8)

where

Φ2(x, t, r, y) = x cos t + ry
√

1− x2 sin t− (1− r2)(1 − x) sin2(t/2),

Θ2(r, y) = (1− r2)α−β−1r2β+1(1− y2)α−1/2

and γ2(α, β) is chosen from the condition Tcos t(1, x, α, β) = 1. In this case the
direct and converse results were given by Potapov in [292].

The case α = 0 and β > −1, was studied by Potapov, Fedorov and Fraguela
in [309] and [308]. They wrote the generalized translation as

T β
t (f, x) =

1
π cos2β(t/2)

∫ π

0

f(cos s)
(

1 + cos s

1 + x

)β

cos(2βr)du

where
| t |< π, cos s = x cos t + cosu sin t

√
1− x2, 0 ≤ r ≤ π

and

cos r =
√

1 + x cos(t/2) + cosu
√

1− x sin(t/2)√
1 + x cos t + cosu

√
1− x2 sin t

.
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With this translation the modulus is defined by

Ω(f, δ)p,β = sup
|t|≤δ

‖[T β
t (f, x)− f(x)](1 + x)β‖p.

Theorem 3.1.4 (Potapov-Fedorov, [308]). Suppose that β > −1/2 and 1 ≤ p ≤ ∞.
There exists a positive constant C1 and C2 such that, for every f ∈ Lp,0,β[−1, 1]
and n ∈ N,

C1En(f)p,0,β ≤ Ω
(

f,
1
n

)
p,β

≤ C2

n2

n∑
k=1

kEk(f)p,0,β .

For given ν and μ, assume that the translation H(f, t, ν, μ) is defined by (3.1)
when ν = μ = −1/2, by (3.6) when ν = μ > −1/2, by (3.7) when ν > μ = −1/2
and by (3.8) when ν > μ > −1/2. With this selection define the modulus

ω(f, δ, μ, ν)p,α,β = sup
|t|≤δ

‖f(x)−H(f, t, ν, μ)‖p,α,β.

Theorem 3.1.5 (Potapov, [297]). Fix p ∈ [1,∞] and α ≥ β ≥ −1/(2p). Assume
that ν and μ are chosen following the rules:

μ = ν = −1/2, if α = β = −1/(2p),
μ = −1/2, ν > α− 1/2 + 1/(2p), if α > β = −1/(2p),
ν = μ > α− 1/2 + 1/(2p), if α = β > −1/(2p),
μ > β − 1/2 + 1/(2p),
ν > μ + α− β, if α > β > −1/(2p).

There exist positive constants C1 and C2 such that, for all f ∈ Lp,α,β,

C1En(f)p, α, β ≤ ω

(
f,

1
n

, ν, μ

)
p, α, β

≤ C2

n

n∑
k=1

kEk(f)p, α, β.

Some other results concerning Jacobi weights were given by Potapov in [296].
Some extensions to moduli of higher order were presented by Tankaeva in [370]
and by Potatov and Kazimirov in [310]. Other results for Jacobi weights were
obtained by Potapov, Berisha and Berisha in [307].

In 1999 Potapov provided another modulus using a non-symmetric gene-
ralized operator of translation. He considered the expression given in (3.3) as the
symmetrical case and replace the term P

(α,β)
k (h) by ϕk(h). The new formula

Th(f, x, α, β) =
∞∑

k=0

akP
(α,β)
k (x)ϕk(h), (3.9)

is called non symmetric.
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For the case α = β, he considered the translation

Tt(f, x) =
1

π(1 − x2)

∫ π

0

f(Φ3(x, t, s))Θ3(x, t, s)ds,

where
Φ3(x, t, s) = x cos t + cos s sin t

√
1− x2

Θ3(x, t, s) = 1− (Φ3(x, t, s))2 − 2 sin2 t sin2 s + 4(1− x2) sin2 t sin4 s

and the modulus

ω̃(f, δ)p,α = sup
|t| ≤ δ

‖Tt(f, x) − f(x)‖p,α.

Theorem 3.1.6 (Potapov, [298]). Fix p, α and r such that r ∈ (0, 2) and

α ∈ (1/2, 1], if p = 1,
α ∈ (1− 1/(2p), 3/2− 1/(2p)), if 1 < p < ∞,
α ∈ [1, 3/2), if p = ∞.

For a function f ∈ Lp,α[−1, 1] the following assertions are equivalent:

(i) En(f)p,α ≤ C(f) n−r,

(ii) ω̃(f, δ)p,α ≤ C(f)δr .

Extension to moduli of smoothness of order r were given by Potapov and
Berisha in [304] (see also [305]).

In the case α = β + 1, the translation is defined by

Ty(f, x) =
4
π

∫ 1

−1

f(R)ψ(x, y, z)
dz√

1− z2
,

where

ψ(x, y, z) =
cos(u + μ− u1)(1 −R)

√
1−R2

(1 + y)2(1− x)
√

1− x2
,

R = xy + z
√

1− x2
√

1− y2,

cosu1 = z, sin u1 =
√

1− z2,

cosu =
−
√

1− y2x + yz
√

1− x2

√
1−R2

, sin u =
√

1− x2
√

1− z2

√
1−R2

,

cosμ =
z(1− xy)−√1− x2

√
1− y2

1−R
, sin μ =

√
1− z2(y − x)

1−R
.

Now define

ω̂(f, δ)p,α,β = sup
|t| ≤ δ

‖Tcos t(f, x) − f(x)‖p,α,β .
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Theorem 3.1.7 (Potapov, [299]). Fix p ∈ [1,∞] and assume

α ∈ (0, 1/2], p = 1,
α ∈ (1/2− 1/(2p), 1− 1/(2p)), 1 < p < ∞,
α ∈ [1/2, 1), p = ∞.

There exist positive constants C1 and C2 such that, for all f ∈ Lp,α+1,α,

C1En(f)p, α+1, α ≤ ω̂(f, 1/n)p, α+1, α ≤ C2

n2

n∑
k=1

kEk(f)p, α+1, α.

3.2 Butzer and the method of Fourier transforms

The methods of Fourier transforms can be used to prove of the classical assertions
for trigonometric approximation into the Jacobi-weighted frame. Several authors
are related to this topic. Ganser [130] introduced the modulus of continuity in the
Jacobi frame.

The works began with Bavinck ([19] and [20]) and Scherer and Wagner [330]
in 1972. Butzer and Stens ([55], [56] and [57]) introduced the Chebyshev transform
method and Butzer, Stens and Wehrens ([58], [59], [60] and [350]) the Legendre
transform method. Finally, the Jacobi transform method was presented in [60].
Some results concerning Gegenbauer-weights were given by Löfström [237].

One of the disadvantages of the Jacobi transform method is that derivatives
and Lipschitz classes are defined in terms of a generalized translation. Let us
present some ideas taken from [55].

As usual, C[−1, 1] denotes the set of all continuous real-valued functions f
defined on [−1, 1] with the sup norm. Let Lp

w, 1 ≤ p < ∞, be the set of all
measurable real-valued f on [−1, 1] for which the norm

‖f‖p =
(

1
π

∫ 1

−1

| f(u) |p w(u)du

)1/p

w(x) = 1/
√

1− x2, is finite.
Below, X stands for one of the Banach spaces C[−1, 1] or Lp

w.
For f ∈ X , the kth Chebyshev-Fourier coefficient is defined by

T[f ](k) = [f ]∧(k) =
1
π

∫ 1

−1

f(u)Tk(u)
du√

1− u2
(3.10)

where Tk(x) = cos(k arccosx) (x ∈ [−1, 1]), is a Chebyshev polynomial of degree k.
The classical translation of a function f(x) by h, namely f(x + h), is re-

placed by

(τhf)(x) =
f
(
xh +

√
(1− x2)(1− h2)

)
+ f

(
xh−√(1− x2)(1− h2)

)
2

(3.11)
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(x, h ∈ [−1, 1]). This translation has the advantage that it is an operator from X
into itself and satisfies limh→1− ‖τhf−f‖X = 0. Thus one can define the Chebyshev
derivative as the function g ∈ X for which

lim
h→1−

∣∣∣∣∣∣∣∣f − τhf

1− h
− g

∣∣∣∣∣∣∣∣
X

= 0,

whenever such a function exists, and then we write D1f = g. Derivatives Dr of
higher order r = 2, 3, . . . are defined iteratively.

The set of all f ∈ X for which Drf exists is denoted by W r
X . It was proved

in [56] that, for f ∈ X , one has f ∈W r
X if and only if there exists g ∈ X such that

(−k2)r
T[f ](k) = T[g](k). (3.12)

In this case Drf = g − g∧(0). If we define the convolution product of f ∈ L1
w and

g ∈ X by

(f ∗ g)(x) =
1
2

∫ 1

−1

(τxf)(u)g(u)w(u)du, (3.13)

then f ∗ g ∈ X , and its Chebyshev transform, satisfies

T[f ∗ g](k) = T[f ](k)T[g](k). (3.14)

The (right) difference of f ∈ X of order r ∈ N with respect to the increment
h ∈ [−1, 1] is defined by

(Δ
1

hf)(x) = (τhf)(x)− f(x),

(Δ
r

h f)(x) = (Δ
1

h(Δ
r−1

h f))(x).

With the notions presented above, the modulus of continuity and Lipschitz
class are introduced as follows:

ωT
r (f, t) = sup

t≤h≤1
‖(Δ r

h f)‖X , (t ∈ [−1, 1]) (3.15)

and
LipT

r (α, X) = {f ∈ X : ωT
r (f, t) = O((1 − t)α)}.

There are relations between these notions and the usual moduli of continuity.
If X = Lp

w,we denote by X2π the Lp space of 2π-periodic functions.

Proposition 3.2.1. For f ∈ X, F ∈ X2π, η ∈ [−1, 1], δ > 0, α > 0 and r ∈ N, one
has

(i) ωT
r (f, η) = ω2r(f ◦ cos, arccos η),

(ii) f belongs to LipT
r (X ; α) if and only if f ◦ cos belongs to Lip2r(X2π; 2α),

(iii) if F is even, then F ∈ Lip2r(X2π; 2α) if and only if F ◦ arccos ∈ LipT
r (X ; α).
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In this setting Butzer and Stens presented an analogue of Theorem 1.2.1 for
the best algebraic approximation.

Theorem 3.2.2. Fix r, r1, r2 ∈ N and 0 < α < 1. For a function f ∈ X the
following assertions are equivalent:

(i) En(f ; X) = O(n−2(r+α)), (n →∞),
(ii) ωL

1 (Drf ; δ) = O((1 − δ)α), (δ → 1−),

(iii) ‖Dr1p∗n(f)‖X = O(n−2(r+α−r1)), (r1 > r + α, n →∞),
(iv) f ∈ W r2

W , ‖Dr2f −Dr2p∗n(f)‖X = O(n−2(r+α−r2)), (r2 < r + α, n →∞).

Proof. The method of proof follows the general approach of Theorem 1.4.1. Take
Mn = Pn, ρ = r1, σ = r1 and s = r + α. Moreover, set Y = W r1 , with seminorm
| g |Y = ‖Dr1g‖X , and Z = W r2 , with seminorm | h |Z= ‖Dr2h‖X . It can be
proved that Dr2 is a closed operator (see [56], Corollary 4). Hence, in view of
the closed graph theorem, Z becomes a Banach space under the norm ‖h‖Z =
‖h‖X + ‖Dr2h‖X .

It is known that, for each m ∈ N, there exist positive constants D1 = D1(m)
and D2 = D2(m) such that, for f ∈ X and t ∈ (0, π]

D1 ωT
m(f, cos t) ≤ K(f, t2m, X, Wm

X ) ≤ D2 ωT
m(f, cos t).

Taking into account that, for all n ∈ N, Mn ⊂ Y ⊂ X , Mn ⊂ Z ⊂ X and
that, for f ∈ X an element of the best approximation always exists in Mn, we
only need to verify the Jackson- and Bernstein-type inequalities given in (1.17)
and (1.18) hold.

The Bernstein-type inequality follows from the classical Bernstein inequality
for trigonometric polynomials. In fact, if n, m ∈ N and Pn ∈ Pn, then

‖DmPn‖X = ‖(Pn ◦ cos)(2m) ◦ arccos‖X ≤ (2n)2m‖Pn ◦ cos ‖X,2π,

where the last norm in computed on the interval [0, 2π].
Now, let us consider the Jackson-type inequality. Let Kn be the Fejér-Korov-

kin operator (the formal definition is given in the section devoted to integral
operators). Set K0

n = I, K1
n = Kn and, Kj

n = K1
n(Kj−1

n ) (j ∈ N). It can be proved
that, for each j ∈ N and f ∈ X , Kj

n(f) ∈ Pn.
Set

Ur,n =
r∑

j=1

(−1)j+1

(
r

j

)
Kj

n.

Since
Ur,n(f)− f = (−1)r−1(Kn − I)r(f),
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then (see Corollary 5.5.7 below)

‖Ur,n(f)− f‖X = ‖Kn((Kn − I)r−1(f))− (Kn − I)r−1(f)‖X

≤
(

1 +
π√
2

)2

ωT
1

(
(Kn − I)r−1(f), cos

(√
1− cos

π

n + 2

))
.

In particular, there exits a constant C1 such that, if f ∈W r
X , then

‖Ur,n(f)− f‖X ≤ C1

n2
‖D1((Kn − I)r−1(f))‖X .

This yields the Jackson-type inequality in the case r = 1.
If r > 1, taking into account that

D1((Kn − I)r−1(f)) = (Kn − I)r−1(D1(f))

and using the arguments given above we obtain a constant C2 such that

‖Ur,n(f)− f‖X ≤ C1

n2
‖(Kn − I)r−1(D1(f))‖X ≤ C2

n4
‖D2((Kn − I)r−2(f))‖X .

This yields the Jackson-type inequality in the case r = 2.
By repeating this process we obtain the general assertion. �

If we compare these results with the ones we presented above, we notice
several facts. Fuksman worked with the classical derivative concept and did not
include assertions concerning higher-order moduli. Asadov [3] and Khalilova [187]
followed a similar approach, however only for functions which are quadratically
integrable with respect to a weight. Dzafarov [105] considered continuous functions
and used a different notion of derivative. Finally, Bavinck [19] examined spaces
with weight (1 − x2)β(1 − x2)γ for certain values of β and γ, but he did not
characterize the assertion En(f) = O(n−2r), r ∈ N.

Other results related with the work of Butzer will be presented in the section
devoted to Ditzian and Totik.

3.3 The τ modulus of Ivanov

In order to obtain characterizations for the second interpretation after (1.11),
Ivanov used the τ modulus ([163] and [166]).

Given an arbitrary positive function δ and a non-negative continuous function
w, define

τk(f, w, δ)r, p, [a, b] = ‖w(·)ωk(f, ·, δ(·))r‖p,[a,b]

where

ωk(f, x, δ(x))r =

(
1

2δ(x)

∫ δ(x)

−δ(x)

∣∣Δk
vf(x)

∣∣r dv

)1/r

.

In order to simplify we omit the index [a, b]. Moreover, when w ≡ 1 we omit w in
the notation.
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Another τ modulus is defined by

τk(f, t)∗p = ‖ωk(f, ·, t)r‖p,[a,b]

where

ωk(f, x, t) = sup
{
| Δk

hf(x) | : t, t + kh ∈
[
x− kt

2
, x +

kt

2

]
∩ [a, b]

}
.

Several properties of these moduli, as well as its connection with ωk(f, t)p

and τ∗
k (f, t)p, were given in [163] and proved in [166].

Theorem 3.3.1. If 1 ≤ r, p, f, g ∈ Lmax{r,p}[a, b] and α ∈ R, then

(i) τk(f + g, w, δ)r, p ≤ τk(f, w, δ)r, p + τk(g, w, δ)r, p,
(ii) τk(αf, w, δ)r, p = | α | τk(f, w, δ)r, p,
(iii) τk(f, w1, δ)r, p ≤ τk(f, w2, δ)r, p , 0 ≤ w1 ≤ w2,
(iv) τk(f, w, δ)r, p1 ≤ (b− a)1/p1−1/p2τk(f, w, δ)r, p2 , 1 ≤ p1 ≤ p2,
(v) τk(f, w, δ)r1, p ≤ τk(f, w, δ)r2, p , 1 ≤ r1 ≤ r2.

Theorem 3.3.2. For p, r, s ≥ 1, d > 0, n ∈ N and α ≥ 1,

(i) τ1(f, n d)1, p ≤ n τ1(f, d)1, p,
(ii) τ1(f, α d)1, p ≤ (3 + [α]) τ1(f, d)1, p,
(iii) τk(f, d)r, p ≤ C(k) τk−1(f ′, d, d)s, p, , k ≥ 2, f ′ ∈ Lmax{p,s},
(iv) τk(f, d)r, p ≤ ωk(f, d)p ≤ C(k)τk(f, d)r, p, r ∈ [1, p],
(v) τ1(f, d)∞, p ≤ τ∗

1 (f, d)p ≤ 2 τ1(f, d)∞, p, f ∈ L∞,
(vi) τk(f, d)∞, p ≤ C(k) τ∗

1 (f, d)p, f ∈ L∞, k ≥ 2.

Theorem 3.3.3. Suppose that the weight w satisfies the following condition: for
every x, t ∈ [−1, 1] for which | x− t |≤ λ(d

√
1− x2 + d2),

w(x) ≤ C(λ)w(t). (3.16)

For 1 ≤ p, r, s ≤ ∞, d ≤ 1 and f ∈ Lmax{p,r} (or f ′ ∈ Lmax{p,r}, or f (k) ∈ Lp),
then

(i) τk(f, w,Δ(d))r, p ≤ C(k) ‖wf‖p, r ≤ p,
(ii) τk(f, w,Δ(d))s, p ≤ C(k) τk−1(f ′, wΔ(d), Δ((4k + 2)d)r, p, k ≥ 2,
(iii) τk(f, w,Δ(d))r, p ≤ C(k) ‖Δk(d)f (k)‖p, k ≥ 1,
(iv) τ1(f, w, AΔ(d))r, p ≤ C(A)τ1(f, w,Δ(d))r, p, d ≤ (2A)−1, A ≥ 1,
(v) τk(f, w,Δ(d))r, p ≤ τk(f, w,Δ(d))s, p ≤ C(k) τk(f, w,Δ(d))r, p, 1 ≤ r ≤

s ≤ p.

The weight w(x) = (d
√

1− x2 + d2)μ (μ real) satisfies (3.16) with a constant
C(λ) = (4λ + 2)|μ| and w(x) ≡ 1 also satisfies (3.16). Let us present direct and
converse results. Set Δn(x) =

√
1− x2/n + 1/n2.
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Theorem 3.3.4 (Ivanov, [163] and [166]). Assume that w satisfies (3.16) with
C(λ) = O(λc) (λ →∞) for some c > 0.

(i) For every k ≥ 0 and for every f with f (k) ∈ Lp[−1, 1] we have

En+k(f, w)p ≤ C(k)En(f (k), w(Δn)k)p

and
En+k(f, w)p ≤ C(k) τ1(f (k), w(Δn)k, Δn)p

where
En(f, w)p = inf

p ∈ Pn

‖(f − p)w‖1,p.

In particular,
En+k(f)p ≤ C(k)En(f (k), (Δn)k)p

and
En+k(f)p ≤ C(k) τ1(f (k), (Δn)k, Δn)p.

(ii) If for each Q ∈ Πm, m ≤ n,

‖wQ(k)(nΔn)k‖p ≤ C(k)mk‖wQ‖p, (3.17)

then for every r ∈ [1, p] and f ∈ Lp[−1, 1],

τk(f, w,Δn)r,p ≤ C(k)
nk

n∑
j=0

(j + 1)k−1Es(f, w)p.

Using Koniagin [204] results we obtain

Corollary 3.3.5. If f ∈ Lp[−1, 1] and r ∈ [1, p] and m ∈ N0, then

τk(f, (nΔn)m, Δn)r,p ≤ C(k, m)
nk

n∑
j=0

(j + 1)k−1Es(f, (nΔn)m)p.

In particular

τk(f, Δn)r,p ≤ C(k)
nk

n∑
j=0

(j + 1)k−1Es(f)p.

Corollary 3.3.6. If f ∈ Lp[−1, 1], r ∈ [1, p] and 0 < α < 1, one has

En(f)p = O(n−α) ⇐⇒ τk(f, Δ(d))r,p = O(dα).

The direct estimate in Theorem 3.3.4 is given in terms of the first τ modulus
of the derivative f (k). In [169] Ivanov presented the estimate in terms of the τ
modulus of order k.
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Fix s > 0 and let us denote for W (s) the class of all weights w ∈ C[−1, 1]
that have the following properties: for each x, t ∈ [−1, 1] with | x− t |≤ λΔn(x),

0 < w(x) ≤ C(λ)w(t)

and, in the case λ ≥ 1,
0 < w(x) ≤ Cλs , w(t).

Theorem 3.3.7. Suppose that s > 0 and w ∈ W (s). If k ∈ N and f ∈ Lp[−1, 1]
(1 ≤ p ≤ ∞), then

En+k(f, w)p ≤ C(s, k) τk(f, w,Δn)p.

Theorem 3.3.8. Suppose that s > 0, w ∈W (s) and (3.17) holds. For f ∈ Lp[−1, 1]
(1 ≤ p ≤ ∞), 0 < α < k, the following assertions are equivalent:

(i) En(f, w)p = O(n−α),
(ii) τk(f, w,Δn)1,p = O(n−α).

In [173] Ivanov defined the τ modulus in a slightly different form:

τk(f, w, ψ(t))r, p, [a, b] = ‖w(·)ωk(f, ·, ψ(t, ·))r‖p,[a,b] (3.18)

where

ωk(f, x, ψ(t, x))r =

(
1

2ψ(t, x)

∫ ψ(t,x)

−ψ(t,x)

∣∣Δk
vf(x)

∣∣r dv

)1/r

and
ωk(f, x, ψ(t, x))∞ = sup

{∣∣Δk
hf(x)

∣∣ : | h |≤ ψ(t, x)
}

.

Let us consider some types of weights. Two functions, v (continuous, strictly
monotone, and v(0) = 0) and u, are associated with the weight w in neighborhoods
of the end-points a and b. Let a and b be finite. Consider a neighborhood [a, d] of a
or [d, b] of b; we write v(x) = x/w(a+x) for x ∈ (0, d−a] or v(x) = x/w(b−x) for
∈ (0, b−d], respectively. u is the inverse function to v, i.e., u(v(x)) = v(u(x)) = x.
For a = 0 the functions u and w are connected by

u(x) = v(u(x)w(v(x)) = xw(u(x)).

Now consider the following classes:
Type 1. w is non-decreasing, v is strictly increasing in [0, d], and v(0) =

limx→0 v(x) = 0. For 0 < t ≤ v(d) we set

ψ(t, x) = tw(x + u(t)). (3.19)

Type 2. w is non-increasing and unbounded in (0, d] and, for every x ∈
(0, d/2], satisfies the inequality

w(x) ≤ A2w(2x).

In this case ψ is also defined by (3.19).
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Type 3. v is non-increasing in (0, d] and, for every x ∈ (0, d], w satisfies the
inequality (t0 = v(d)/2)

w(x) ≤ Aw(x− t0w(x)).

In this case we define
ψ(t, x) = tw(x).

The weight w will satisfy the following global condition:

There exist A5 ≥ 1, a < d3 < d1 < d2 < d4 < b, and weights
w1 in [a, d1] and w2 in [d2, b] of some of the types described
above such that 1/A5 ≤ w(x)/w1(x) ≤ A5 for x ∈ [a, d1],
1/A5 ≤ w(x)/w2(x) ≤ A5 for x ∈ [d2, b], and 1/A5 ≤ w(x) ≤
A5 for x ∈ [d3, d4].

(3.20)

Sometimes we shall require v to satisfy the additional conditions∫ x

0

vk(y)
dy

y
≤ A1v

k(x), x ∈ (0, d] (3.21)

and sometimes we shall require w to satisfy the additional conditions

u(λx) ≤ C(λ)u(x), for any x > 0, λ ≥ 1, λx ≤ d. (3.22)

With vj , uj and ψj we denote the functions associated with the weight wj ,
j = 1, 2. Then we set

ψ(x, t) =

⎧⎪⎨⎪⎩
(2k)−1ψ1(t, x), x ∈ [a, d1],

(2k)−1ψ2(t, x), x ∈ [d2, b],
linear and continuous, x ∈ [d1, d2].

(3.23)

We also need the following condition:

There is A > 1 such that 1/A ≤ ψ(t, x)/ψ(t, x) ≤ A for every
x ∈ [a, b] and the weights w1 or w2 from (3.20) satisfy (3.21)
and (3.22) provided they are of Type 1.

(3.24)

Theorem 3.3.9 (Ivanov, [173]). Let w satisfy (3.20) in [a, b] and let ψ satisfy (3.24)
for 0 < t ≤ C(w). Then for every f ∈ Lp[a, b] + W k

p (w) we have

C1(k, w)τk(f, ψ(t))p,p ≤ K(f, tk, Lp, W
k
p (w)) ≤ C1(k, w)τk(f, ψ(t))1,p.

Let w(x) =
√

x(1 − x), x ∈ [0, 1]. We can choose d1 = 1/3, d2 = 2/3,
d3 = 1/4 and d4 = 3/4, w1(x) =

√
x, and w2(x) =

√
1− x. Then u1(t) = t2

and ψ1(t, x) = t
√

x + t2. Therefore we can choose ψ(t, x) = tw(x) + t2. Thus for
ϕ(x) =

√
x(1− x) the last theorem yields

C1(k, w)τk(f, ψ(t))p,p ≤ K(f, tk, Lp, W
k
p (ϕ)) ≤ C1(k, w)τk(f, ψ(t))1,p.

Let w be symmetry in [0, 1] (i.e., w(1 − x) = w(x)) and let w1 from (3.20)
be of Type 1 in [0, 1/3] satisfying (3.21). Let us denote by u the function u1,
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corresponding to w1. We set

K∗(f, tk, Lp, W
k
p (w)) = inf

{
‖f − g‖p + tk‖wkg(k)‖p + u(t)k‖g(k)‖p

}
.

Theorem 3.3.10 (Ivanov, [173]). Under the above assumption we have

K(f, tk, Lp, W
k
p (w)) ∼ K∗(f, tk, Lp[0, 1], W k

p (w)).

Results related with characterizations of the best approximation of the best
approximation by algebraic polynomials in terms of the τ -modulus were given
in [163], [164], [165], [167], [168], [169], [171], [170], and [172]. The extension to
Lp[−1, 1] with 0 < p < 1 was given by Tachev in [367] and [368].

3.4 Ditzian-Totik moduli

In 1987 Ditzian and Totik published the book [102] where the following modulus
was studied in detail.

Let Δr
hf(x) be the symmetric difference of order r (the difference is zero if

some of the points are outside of the interval). For 1 ≤ p ≤ ∞ and f ∈ Lp[−1, 1]
define

ωr
ϕ(f, t)p = sup

0<h≤t
‖Δhϕf‖p,

where ϕ(x) =
√

1− x2. Other functions ϕ can also be considered and it varies with
the interval. For instance, we take ϕ(x) =

√
(x− a)(b − x) for the interval [a, b].

We remark that the ideas related with these moduli were developed by both
authors in some previous papers (see [93], [95], [384], [385], [386] and other papers
related with positive linear operators).

For continuous functions (p = ∞) it can be proved that the conditions

sup
0<h≤t

ϕα(x) | Δr
hf(x) |= O(tα)

and ωr
ϕ(f, t)∞ = O(tα) (t > 0) are equivalent ([92], [94], [384], [386]), but for

1 ≤ p <∞ these conditions are not equivalent [383].
In [173] Ivanov proved that the modulus (3.18) and the Ditzian-Totik ones

are equivalent, for 1 ≤ p ≤ ∞. Tachev verified the equivalence for 0 < p < 1 [369].
Another proof was given by Ditzian, Hristov and Ivanov in [98].

From the point of view of applications in approximation theory it is a very
important result connecting the weighted moduli with some K-functionals.

For 1 ≤ p ≤ ∞ and r ∈ N define

Kr,ϕ(f, tr)p = infg { ‖f − g‖p + tr‖ϕrg(r)‖p : g(r−1) ∈ A.C.loc }
and

K∗
r,ϕ(f, tr)p = infg { ‖f − g‖p + tr‖ϕrg(r)‖p + t2r‖g(r)‖p : g(r−1) ∈ A.C.loc }.
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Here we present some results for ϕ(x) =
√

1− x2, but see [102] for some
other weight functions.

Theorem 3.4.1 (Ditzian and Totik, [102]). For 1 ≤ p ≤ ∞ and r ∈ N, there exists
a positive constant C1, C2 and t0 such that, for all f ∈ Lp[−1, 1],

C1ω
r
ϕ(f, t) ≤ Kr,ϕ(f, tr)p ≤ K∗

r,ϕ(f, tr)p ≤ C2ω
r
ϕ(f, t), 0 < t ≤ t0.

3.4.1 Direct and converse results

Ditzian and Totik presented direct and converse results in terms of the modulus
ωr

ϕ(f, t).

Proposition 3.4.2. Fix 1 ≤ p ≤ ∞ and let λ be a positive integer. There exists
a positive constant C with the following property. For g ∈ A.C.[−1, 1] such that
g′ ∈ Lp[−1, 1], n ∈ N, s = 2λ + 3 and m = 1 + [n/s], define

Ln,λ(g, x) =
∫ π

−π

g( cos (arccos(x− t)))Km,s(t)dt

where Km,s is given by (2.8). Then Ln,λ(g) ∈ Pn and

‖(Δn)λ(g − Ln,λ(g))‖p ≤ C ‖(Δn)λ+1g′‖p.

A proof of the last proposition can be found in [102] p. 80–82.

Theorem 3.4.3. Let ϕ(x) =
√

1− x2. For 1 ≤ p ≤ ∞ and each r ∈ N there exist
positive constants C1 and C2 such that, for all f ∈ Lp[−1, 1] and n > r,

En(f)p ≤ C1 ωr
ϕ(f, 1/n)p

and for 0 < t < 1,

ωr
ϕ(f, t)p ≤ C2 tr

∑
0≤n≤1/t

(n + 1)r−1En(f)p.

Proof. Fix f . Taking into account Theorem 3.4.1, for each n we can find a function
gn such that

‖f − gn‖p + n−r‖ϕrg(r)
n ‖p + n−2r‖g(r)

n ‖p ≤ 2K∗
r,ϕ(f, tr)p ≤ Cωr

ϕ(f, 1/n)p.

Thus, it is sufficient to find a good approximant for gn.
First, from Proposition 3.4.2 with λ = r − 1 and g = g(r−1), we obtain a

polynomial Pn,1 such that

‖(Δn)r−1(g(r−1) − Pn,1)‖p ≤ C ‖(Δn)rg(r)‖p ≤ C1

(
1
nr
‖ϕrg(r)‖p +

1
n2r

‖g(r)‖p

)
≤ C2K

∗
r,ϕ

(
f,

1
nr

)
p

.
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Now we apply the same proposition (with λ = r − 2) to the function g(u) =∫ u

0
((Pn,1(t)− g(r−1)(t)dt to obtain a polynomial Pn,2 ∈ Pn+1 for which

‖(Δn)r−2(g(r−2) − Pn,2)‖p ≤ C ‖(Δn)r−1[g(r−1) − Pn,1]‖p

≤ C3K
∗
r,ϕ

(
f,

1
nr

)
p

.

Therefore, we can find a polynomial Pn,r ∈ Pn+r−1 such that

‖gn − Pn,r‖p ≤ CrK
∗
r,ϕ

(
f,

1
nr

)
p

.

Since
‖f − Pn,r‖p ≤ ‖f − gn‖p + ‖gn − Pn,r‖p,

we have the direct result.
For the converse results we use the Bernstein arguments, but now we use

the Potapov inequality in Theorem 2.7.4. For t ∈ (0, |), let l = max{k 2k ≤ t }
and {Pn} be the sequence of polynomials of the best approximation to f . From
Theorems 3.4.1 and 2.7.4 one has

ωr
ϕ(f, t) ≤ CKr,ϕ(f, tr)p ≤ C

(
‖f − P2l‖p + tr‖ϕrP

(r)

2l ‖p

)
= C

(
‖f − P2l‖p + tr‖

l−1∑
k=0

‖ϕr(P2k+1 − P2k)(r)‖p

)

≤ C1

(
E2l(f)p + tr

l−1∑
k=0

2(k+1)rE2k(f)p

)
≤ C2 tr

∑
0≤n≤1/t

(n + 1)r−1En(f)p. �

In particular, from the last result we obtain the following characterization.

Corollary 3.4.4. For 0 < α < r and f ∈ Lp[−1, 1] the following assertions are
equivalent:

(i) En(f)p ≤ Cn−α.
(ii) ωr

ϕ(f, t)p ≤ Ctα.

The book contains different assertions concerning algebraic polynomials. The
next result can be seen as an extension of an inequality due to Nikolskii and
Stechkin.

Theorem 3.4.5. Fix f ∈ Lp[−1, 1] and r ∈ N. Let Pn the best nth degree polynomial
approximation to f in Lp[−1, 1], then

‖ϕrP (r)
n ‖p ≤ M ωr

ϕ(f, 1/n)p,

where ϕ(x) =
√

1− x2 and M is independent of f and n.
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For the converse they proved the following theorem.

Theorem 3.4.6. Suppose that ‖ϕrP
(r)
n ‖p ≤ M nrψ(1/n), where Pn is as in the

last theorem and ψ(t)→ 0 and t→ 0. Then

En(f) ≤ M

∫ 1/n

0

φ(t)
t

dt and ωr
ϕ(f, t)p ≤ M

∫ t

0

φ(t)
t

dt.

Corollary 3.4.7. For 0 < α ≤ r and f ∈ Lp[−1, 1] the following assertions are
equivalent:

(i) ‖ϕrP
(r)
n ‖p ≤ Cnr−α.

(ii) ωr
ϕ(f, 1/n)p ≤ Cn−α.

DeVore, Leviatan and Yu [90] extended the direct results in terms of the
Ditzian-Totik modulus to Lp spaces, with 0 < p < 1. Ditzian, Jiang and Leviatan
proved the converse results [101]. For these last spaces the methods based on a
K-functional do not work, as was shown by Ditzian, Hristov and Ivanov [98].

In 2008, Dai, Ditzian and Tikhonov extended (1.10) to the case of algebraic
approximation.

Theorem 3.4.8 (Dai, Ditzian and Tikhonov, [80]). For 1 < p < ∞, s = max{p, 2}
and f ∈ Lp[−1, 1], one has

tr

⎛⎝ ∑
r≤k≤1/t

ksr−1Ek(f)s
p

⎞⎠1/s

≤ C(r)ωr
ϕ(f, t)p

and

tr

(∫ 1/2

t

ωr+1
ϕ (f, u)s

p

urs+1
du

)1/s

+ tr Er(f)p ≤ C(r)ωr
ϕ(f, t)p.

For the best approximation in C[−1, 1], the Timan-type results are pointwise
and Ditzian-Totik are in norm. Ditzian and Jiang presented a possible way to unify
both theories.

Theorem 3.4.9 (Ditzian and Jiang, [99]). For λ ∈ [0, 1], ϕ(x) =
√

1− x2, there
exists a constant C(r, λ) such that, for all f ∈ C[−1, 1] there exists a sequence
{Pn} of polynomials such that,

| f(x)− Pn(f, x) | ≤ C(r, λ)ωr
ϕλ

(
f,

1
n

(
ϕ(x) +

1
n

)1−λ
)

. (3.25)

If λ = 0, then we obtain the estimate in terms of the usual modulus of
continuity and when λ = 1, we get the Ditzian-Totik estimate in norm. For the
converse result Ditzian and Jiang proved the following. A similar result is not true
for Lp spaces (1 ≤ p < ∞) and 0 ≤ λ < 1 (see [89] and [255]).
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Theorem 3.4.10 (Ditzian-Jiang, [99]). Fix s > 0 and let w be an increasing function
satisfying

w(μt) ≤ C(μs + 1)w(t). (3.26)

If f ∈ C[−1, 1] and there exists a sequence {Pn} of polynomials such that

| f(x)− Pn(x) |≤ Cw
(
n−1w(δ1−λ

n (x))
)
, (3.27)

then
ωr

ϕλ(f, t) ≤ M tr
∑

0<n≤1/t

nr−1w(n−1).

In order to obtain the converse results they need inequalities for the derivative
of the polynomials in terms of the parameter λ.

Theorem 3.4.11 ([99]). Suppose that for Pn ∈ Pn one has

| Pn(x) |≤ M(n−1δn(x))βw(n−1δn(x)1−λ), | x |< 1,

where β is a real number and w satisfies (3.26). Then for l ≥ β + s(1− λ),

| P (l)
n (x) |≤M1(n−1δn(x))β−lw(n−1δn(x)1−λ), | x |< 1,

where M1 depends on M ,l, s, β and λ, but not on x, Pn or n.

3.4.2 Approximation in weighted spaces

Ditzian and Totik also considered approximations in weighted spaces. For a weight
w the best approximation is defined by

En(f)p,w = inf
P∈Pn

‖w[f − P ]‖p.

The results are valid for some general weights, but the more important ones are
the Jacobi weights w(x) = (1 + x)α(1 − x)β .

The general class of weights J∗
p is defined as follows. w ∈ J∗

p if

(a) W (x) = w−(
√

1 + x)w+(
√

1− x),
(b) w+(y) = yγ1v+(y), w−(y) = yγ1v−(y), where γi > −2/p and v±(y) ∼ 1 on

every interval [δ,
√

2], δ > 0,
(c) for every ε > 0, yεv±(y) are increasing and y−εv±(y) are decreasing on

(0, δ(ε)) for some δ(ε) > 0, and
(d) for p = ∞ we may have γ1 = 0 or γ2 = 0 in which case v−(y) or v+(y) have

to be non-decreasing for small y.

For f ∈ Lp[−1, 1] the main-part modulus is defined by

Ωr
ϕ(f, t)w,p = sup

0<h≤t
‖wΔr

hϕf‖p,[−1+2r2h2,1−2r2h2].
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Theorem 3.4.12. For w ∈ J∗
p and ϕ(x) =

√
1− x2, we have

En(f)w,p ≤M

∞∑
k=0

Ωr
ϕ(f, n−12−k)w,p

and
Ωr

ϕ(f, h)w,p ≤Mhr
∑

0≤n<1/h

(n + 1)r−1En(f)w,p.

For Jacobi weights we have a more general result.

Theorem 3.4.13. If w is a Jacobi weight, then

ωr
ϕ(f, h)w,p ≤ Mhr

∑
0≤n<1/h

(n + 1)r−1En(f)w,p.

The asymptotics of derivatives was also considered in the weighted case.

Theorem 3.4.14. For w ∈ J∗
p and Pn satisfying ‖w[f − Pn]‖p = En(f)w,p we have

‖wϕrP (r)
n ‖p ≤ Mnr

∫ 1/n

0

Ωr
ϕ(f, t)w,p

t
dt,

Ωr
ϕ(f, t)w,p ≤ M

∞∑
k=1

2−krn−r‖wϕrP
(r)

2kn
‖p,

for n = [1/t],

‖wϕrP (r)
n ‖p ≤ M

n∑
k=0

(k + 1)r−1Ek(f)w,p

and

En(f)w,p ≤ M
∞∑

k=1

2−krn−r‖wϕrP
(r)

2kn
‖p.

In [80] one can find also results related with sharp inequalities in weighted
space with Jacobi weights.

3.4.3 Marchaud inequalities

As we remarked above, Ditzian extended Marchaud inequality in [96], but the
ideas he used were appropriated for studying weighted moduli of smoothness. The
extension to algebraic approximation with the weight ϕ(x) =

√
1− x2 was given

by Totik.

Theorem 3.4.15 (Totik, [387]). For 1 < p < ∞, q = min{p, 2} and f ∈ Lp[−1, 1],
one has

ωr
ϕ(f, 1/n)p ≤ C(r, p)n−r

(
r∑

k=1

krq−1Ek(f)q
p

)1/q

.
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Moreover, if 1 < p ≤ 2, then

ωr
ϕ(f, t)p ≤ C(r, p) tr

(
‖f‖p

p +
∫ 1/2

t

ωr+1
ϕ (f, u)p

p

urp+1
du

)1/p

.

This result also holds for other weight functions ϕ.

3.4.4 Simultaneous approximation

Ditzian and Jiang presented some results related with simultaneous approxima-
tion. In this section we use the notation ϕ(x) =

√
1− x2 and δn(x) = n−1 + ϕ(x).

Theorem 3.4.16 (Ditzian-Jiang, [99]). Fix λ ∈ [0, 1] and f ∈ C[−1, 1] and sup-
pose there exists a sequence {Pn} (Pn ∈ Pn) satisfying (3.27), where (3.26) holds
for w with s = r and

∑∞
k=1 kr−1w(k−1) < ∞. Then f has locally r continuous

derivatives and

| ϕrλ(x)[f (r)(x) − P (r)
n (x)] |≤M1

∑
k>nδλ−1

n

kr−1w(k−1).

Proof. It is known that, if ω is an increasing function, there and {uk} is an increas-
ing sequence of positive numbers such that 2 ≤ uk/uk−1 ≤ 4, then there exists a
constant M such that

l∑
k=1

ur
kω(u−1

k ) ≤ M
∑

[ul/2]≤n≤ul

(n + 1)r−1ω(n−1).

Thus, if we set

u−1
i =

1
2in

(
1

2in
+ ϕ(x)

)1−λ

and consider the condition
∑

kr−1ω(k−1) < ∞, we prove that the series

f(x) = Pn(x) +
∞∑

i=1

(P2in(x)− P2i−1n(x))

converges. The equality holds because Pn → f .
Taking into account Theorem 3.4.11, we know that there exists a constant

C1 such that∣∣∣P (r)
2in(x) − P

(r)
2i−1n(x)

∣∣∣ ≤ C1

(
1

2in
δ2in(x)

)−r

ω

(
1

2i−1n
(δ2i−1n(x))1−λ

)
.

Therefore, the series
∞∑

i=1

(
P

(r)
2in(x)− P

(r)
2i−1n(x)

)
converges uniformly locally in (−1, 1) and (f − Pn)(r) exists locally.
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Finally, the estimate follows from the inequalities∣∣∣ϕλr(x)(f − Pn)(r)(x)
∣∣∣ ≤ ϕλr(x)

∞∑
i=1

∣∣∣P (r)

2in(x)− P
(r)

2i−1n(x)
∣∣∣

≤ ϕλr(x)
∞∑

i=1

(
1

2in
δ2in(x)

)−r

ω

(
1

2in
(δ2in(x))1−λ

)

≤
∞∑

i=1

(
1

2in
(δ2in(x))1−λ

)−r

ω

(
1

2in
(δ2in(x))1−λ

)
≤ M

∑
k>n(δn(x))λ−1

kr−1ω

(
1
k

)
. �

Ditzian and Jiang presented a theorem for simultaneous approximation in
Lp spaces that was not included in [102].

Theorem 3.4.17 ([99]). Suppose 1 ≤ p ≤ ∞, f ∈ Lp[−1, 1] and let {Pn} (Pn ∈ Pn)
be a sequence of polynomials satisfying ‖f − Pn‖p = En(f)p. If

∞∑
n=1

(n + 1)r−1En(f)p < ∞,

then f (r) exists locally in the Lp sense and

‖ϕr[f (r) − P (r)
n ]‖p ≤M

∑
k≥n

(k + 1)r−1Ek(f)p.

Proof. Let Pk be a polynomial of the best approximation of f in Lp and consider
the series

∑∞
i=1(P2in−P2i−1n). As in the proof of the last theorem, we obtain that

the derivatives of the series exist locally. We use the inequality in (iv) of Theorem
2.7.4 to obtain∣∣∣∣∣

∣∣∣∣∣ϕr
∞∑

i=1

(P (k)
2in − P

(k)
2i−1n)

∣∣∣∣∣
∣∣∣∣∣
p

≤
∞∑

i=1

∣∣∣∣∣∣ϕr(P (k)
2in − P

(k)
2i−1n)

∣∣∣∣∣∣
p

≤ C1

∞∑
i=1

(2in)r E2in(f)p ≤ C2

∞∑
k≥n

(k + 1)r−1 Ek(f)p. �

Theorem 3.4.18 ([99]). Fix λ ∈ [0, 1] and f ∈ C[−1, 1] and suppose there exists a
sequence {Pn} (Pn ∈ Pn) satisfying

| f(x)− Pn(x) |≤ Cωr
ϕλ

(
f, n−1δ1−λ

n (x)
)
.

Then
| ϕrλ(x)P (r)

n (x) |≤ M1n
rδ(λ−1)r

n (x)ωr
ϕλ

(
f, n−1δ1−λ

n (x)
)
.



3.4. Ditzian-Totik moduli 89

The analog of Theorem 2.8.11 and Corollary 5.6.15 in terms of ωr
ϕλ moduli

was obtained by Z. Ditzian, D. Jiang and D. Leviatan [100].

Theorem 3.4.19 (Ditzian, Jiang and Leviatan [100]). Fix integers k, m and r and a
real number λ ∈ [0, 1]. There exists a constant C such that, for each f ∈ Cm[−1, 1]
there exists a sequence of polynomials Pn ∈ Pn (n ≥ m + 1) for which

| f (j)(x)−Q(j)
n (x) |≤ C

(
n−1ϕ(x)

)m−j
ωr

ϕλ

(
f (m), n−1(δn(x)1−λ

)
, 0 ≤ j ≤ m)

and

| P (m+k)
n (x) | ≤ C nk(δn(x))−kωr

ϕλ

(
f (m), n−1(δn(x))1−λ

)
, k ≥ r,

where x ∈ [−1, 1].

For r = 1, 2 there are better estimates than those in the last theorem. In
particular, Ditzian, Jiang and Leviatan showed that, for r = 2, the quantity n−1 +
ϕ(x) in (3.25) can be replaced by ϕ(x).

Theorem 3.4.20 ([100]). Fix r ∈ N and λ ∈ [0, 1]. There exists a constant C such
that, for each f ∈ Cm[−1, 1] there exists a sequence of polynomials Pn ∈ Pn for
which

| f (k)(x)− P (k)
n (x) |≤ C

(
n−1ϕ(x)

)m−k
ωl

ϕλ

(
f (m), n−1 (ϕ(x))1−λ

)
,

for l = 1, 2 and 0 ≤ k ≤ m and

| P (m+k)
n (x) | ≤ C nk (δn(x))−kωl

ϕλ

(
f (m), n−1(ϕ(x))1−λ

)
, k ≥ l.

Kopotun provided a new proof of Theorem 3.4.9 and showed that the constant
can be taken independent of λ.

Theorem 3.4.21 (Kopotun, [205]). For any integer r ≥ 3, there exists a constant
C(r) such that, for all f ∈ C[−1, 1], each λ ∈ [0, 1] and every n ≥ r − 1, one can
find a polynomial Pn ∈ Pn such that

| f(x)− pn(f, x) | ≤ C(r)ωr
ϕλ

(
f,

1
n

(
ϕ(x) +

1
n

)1−λ
)

, x ∈ [−1, 1].

Moreover, if f ∈ C1[−1, 1] then

| f ′(x) − p′n(f, x) | ≤ C(r)ωr−1
ϕλ

(
f ′,

1
n

(
ϕ(x) +

1
n

)1−λ
)

, x ∈ [−1, 1]

and, if f ∈ C2[−1, 1], then

| f ′′(x) − p′′n(f, x) | ≤ C(r)ωr−2
ϕλ

(
f ′′,

1
n

(
ϕ(x) +

1
n

)1−λ
)

, x ∈ [−1, 1].
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This result only asserts simultaneous approximation up to the second deriva-
tive. Moreover, the theorem of Ditzian, Jiang and Leviatan is better near the end-
points of [−1, 1], while the Kopotun is better on the interval [−1 + n−2, 1− n−2]
(for the first and second derivatives).

In [206] Kopotun provided a different proof for the results of Li (Theorem
5.6.7)) and Ditzian, Jiang and Leviatan. He improved the estimates using a polyno-
mial of a linear operator Pn(f, x) : Cr[−1, 1]→ Pn, with the remarkable property
that Pn(f, x) is constructed independently of λ. The first theorem presented below
improves the estimates inside the interval [−1, 1], i.e., for x ∈ [−1+ n−2, 1−n−2].

Theorem 3.4.22 (Kopotun, [206]). Let m ∈ N0 and r ∈ N. Then for any n ≥
m + r − 1 there exists a linear operator Pn : Cm[−1, 1] → Pn such that for every
λ ∈ [0, 1], x ∈ [−1, 1] and f ∈ Cm[−1, 1],

| f (k)(x) − P (k)
n (f, x) |≤ C(r, m) (Δn(x)))j−kωm+r−j

ϕλ

(
f (j), n−λ (Δn(x))1−λ

)
,

for 0 ≤ k ≤ m and any j ∈ N satisfying k ≤ j ≤ m. Also, the following estimates
hold for every λ ∈ [0, 1] and x ∈ [−1, 1]:

| P (k)
n (f, x) |≤ C(k) (Δn(x))j−k

ωm+r−j
ϕλ

(
f (j), n−λ (Δn(x))1−λ

)
,

for k ≥ m + r and any j ∈ N0, 0 ≤ j ≤ r.

In particular, by taking λ = 0 and j = k for the first inequality and j = 0
for the second inequality one has

Corollary 3.4.23 ([206]). For f ∈ Cm[−1, 1], r ∈ N and any n ≥ m+ r−1 a linear
operator Pn : Cm[−1, 1]→ Pn exists such that for x ∈ [−1, 1],

| f (k)(x)− P (k)
n (f, x) |≤ C(k)ωm+r−k

(
f (k), (Δn(x))

)
,

for 0 ≤ k ≤ m and

| P (k)
n (f, x) |≤ C(k) (Δn(x))−k ωm+r (f, Δn(x)) ,

for k ≥ m + r.

Kopotun also presented a complicated result which improves near the end-
points.

Theorem 3.4.24 ([206]). Let m ∈ N0, r ∈ N and k0 ≥ m + r. Then for any n ≥
max{m+r−1, 2m+1} there exists a linear operator Pn : Cm[−1, 1]→ Pn such that
for every sequence {αk}m

k=0 ⊂ [1/r, 1], λ ∈ [0, 1], 0 ≤ k ≤ r and f ∈ Cm[−1, 1],

| f (k)(x) − P (k)
n (f, x) |≤ C(k0) (Δn(x)))m−kωm

ϕλ

(
f (m), n−λ (Δn(x))1−λ

)
,
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for x ∈ [−1,−1 + n−2] ∪ [1− n−2, 1], and

| f (k)(x) − P (k)
n (f, x) |≤ C(k0)n2−2αkr(1 − x2)m−k+1−αkr

× ωr
ϕλ

(
f (j), n−λ((1− x2)αkn2−2αkr)1−λ

)
,

for x ∈ [−1 + n−2, 1− n−2].
Also, there exists a constant n0 = n0(k0) such that if n ≥ n0, then for every

{αk}k0
k=m+r ⊂ [1/r, 1], {rk}k0

k=m+r ⊂ [0, k0], and for λ ∈ [0, 1] and m+ r ≤ k ≤ k0,
operator Pn satisfies

| P (k)
n (f, x) |≤ C(k0) (Δn(x)))m−kωr

ϕλ

(
f (r), n−λ (Δn(x))1−λ

)
,

for x ∈ [−1 + n−2, 1− n−2], and

| P (k)
n (f, x) |≤ C(k0)n2(rk−m+k+1−αkr)(1− x2)rk+1−αkr

× ωr
ϕλ

(
f (j), n−λ((1 − x2)αkn2−2αkr)1−λ

)
,

for x ∈ [−1,−1 + n−2] ∪ [1− n−2, 1].

Some important corollaries follow from the last theorem.

Corollary 3.4.25. Fix r ∈ N. Then for any n ≥ max{m + r − 1, 2m + 1} there
exists a linear operator Pn : Cm[−1, 1] → Pn such that for every 0 ≤ k ≤ m, the
following inequalities hold:

| f (m)(x)− P (m)
n (f, x) |≤ C(r, m)Δm−k

n ωr(f (r), Δn(x))

for x ∈ [−1 + n−2, 1− n−2], and

| f (k)(x)− P (k)
n (f, x) |≤ C(r, m)Γm−k

nrmk(x)ωr(f (m), Γnrmk(x)),

for x ∈ [−1,−1 + n−2] ∪ [1− n−2, 1],where

Γnrmk(x) := (1− x2)(m−k+1)/(m−k+r)(1/n2)(r−1)/(m−k+r).

Moreover, these estimates are exact in the sense that for no 0 ≤ k ≤ m can
Γnrmk(x) be replaced by (1− x2)αkn2αk−2 with αk > (m− k + 1)/(m− k + r).

Notice that Γnrmk(x) ≤ √1− x2/n for any 0 ≤ k ≤ m + 2 − r and for all
x ∈ [−1,−1 + n−2] ∪ [1− n−2, 1]. The inequalities in the last theorem hold for all
0 ≤ k ≤ m, while Theorem 5.6.5 may not be true if k > m + 2 − r. It is also of
interest to consider the special case r = 1 in the corollary.

Corollary 3.4.26. For any n≥2m+1 there exists a linear operator Pn :Cm[−1,1]→
Pn such that for every 0 ≤ k ≤ m, x ∈ [−1, 1] a function f ∈ Cm[−1, 1], the
following inequality holds:

| f (k)(x)− P (k)
n (f, x) |≤ C(m)Γn(x)m−kω(f (m), Γn(x)),

where Γn(x) = min{1 − x2,
√

1− x2/n}. Moreover, Γn(x) cannot be replaced by
min{(1− x2)α,

√
1− x2/n} with α > 1.
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By using the arguments of Leviatan, Kopotun also obtained an estimate in
terms of the best approximation which improved those given by Kilgore in (2.40).

Corollary 3.4.27. Then for any n ≥ 2m+1 and f ∈ Cm[−1, 1] there is a polynomial
Pn ∈ Pn such that for every 0 ≤ k ≤ m and x ∈ [−1, 1],

| f (k)(x) − P (k)
n (x) |≤ C(r)

(
min

{
1− x2,

√
1− x2

n

})m−k

En−m(f (m)).

3.4.5 A Banach space approach

In [48] Butzer, Jansche and Stens considered the problem of generalizing the ideas
of Butzer and Scherer ([51] and [52]) in such a way that we can also obtain the
results of Ditzian and Totik. Solving the problem is justified by reasons of economy:
to avoid many tricky and technical arguments.

The main idea was to use Jackson-type inequalities and K-functionals with
respect to a family of seminorms instead of a single seminorm. In particular they
proved the Lipschitz spaces associated with Ditzian-Totik moduli coincide with
the ones obtained by means of the Jacobi transform.

For γ > 0, let Φ(γ) be the class of all functions φ : (0, 1] → R such that
0 < φ(s) ≤ φ(t) ≤ φ(1) <∞, for 0 < s < t ≤ 1, limt→0+ φ(t) = 0 and∫ 1

t

φ(u)
u1+γ

du = O
(

φ(t)
tγ

)
.

Let us present the general theorem. We use the following notation:

K(f, t, X, Y ) = inf
g ∈ Y

{‖f − g‖X + t | g |Y }

and
K∗(f, t, X, Y ) = sup

0 < h ≤ t
inf

g ∈ Y

{| f − g |X(h) +t | g |Y
}

.

Theorem 3.4.28 (Butzer, Jansche and Stens, [48]). Fix γ > 0, M > 0 and n0 ∈ N.
Let X be a normed space with norm ‖ · ‖X and Y ⊂ X a linear subspace with a
seminorm | · |Y . Let {| · |X(t)}t∈(0,1] be a family of seminorms on X satisfying

| f |X(t)≤ | f |X(s)≤M ‖f‖X, (0 < s ≤ t ≤ 1), (3.28)

for a constant M , independent of f , s and t, and if {fn} is a Cauchy sequence in
X with limn→∞ | fn |X(t)= 0 for all t ∈ (0, 1], then

lim
n→∞ ‖fn‖X = 0. (3.29)
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Let {Mn}∞n=0 be a sequence of linear manifolds in X such that

Mn ⊂Mn+1 ⊂ Y, (n ∈ N0),
| gn |Y ≤Mnγ ‖gn‖X , (gn ∈ Mn, n ∈ N0),
‖gn‖X ≤M | gn |X(2/n), (gn ∈ Mn, n ≥ n0), (3.30)

and
En(f, X(1/n)) ≤M n−γ | f |Y , (f ∈ Y, n ≥ n0), (3.31)

where
En(f, X(1/n)) = inf

g ∈Mn

| f − g |X(1/n) .

(a) For φ ∈ Φ(γ) and f ∈ X the following assertions are equivalent:

(i) En(f) = inf
g ∈ Mn

‖f − g‖X = O(φ(1/n)), (n →∞).

(ii) K(f, tγ , X, Y ) = O(φ(t)), (t→ 0).

(b) If ∫ t

0

φ(u)
u

du = O (φ(t)) , (3.32)

then (i) and (ii) are further equivalent to

(ii)∗ K∗(f, tγ , X, Y ) = O (φ(t)), (n →∞).

(c) Assume that (3.32) holds. If for each f ∈ X and n ∈ N0, there exists
gn(f) ∈ Mn such that En(f) = ‖f−gn(f)‖ and limn→∞ En(f) = 0, then the
assertions given above are equivalent to

(iii) | gn(f) |Y = O(nγφ(1/n)), (n →∞).

(d) Fix δ > 0 and assume that the conditions in (a) hold. Let Z ⊂ X (Mn ⊂ Z)
be a subspace with a seminorm | · |Z such that Z is a Banach space under
the norm ‖ · ‖Z = ‖ · ‖X+ | · |Z ,

En(f, X(1/n)) ≤ M n−δ | f |Z , (f ∈ Z, n ≥ n0),

and
| gn |Z ≤ M nδ ‖gn‖X , (gn ∈Mn, n ∈ N0).

If ∫ t

0

φ(u)
u1+δ

du = O
(

φ(t)
tδ

)
, (3.33)

then the assertion (i) is equivalent to

(iv) f ∈ Z, | f − gn(f) |Z= O(nδφ(1/n)), (n →∞),
f ∈ Z, En(f, Z) = inf

g ∈ Mn

| f − g |Z= O(nδφ(1/n)), (t→ 0).

Finally if φ ∈ Φ(γ) all the assertions given above are equivalent.
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We only present a proof for (a), (b) and (c).

Proof. (a) ((i) =⇒ (ii)). Fix t ∈ (0, 1] and k ∈ N0 such that 2−k−1 < t ≤ 2−k. In
order to simplify, we assume that each Mn is an existence set. That is, for each
n ∈ N, there exists Pn ∈Mn such that En(f) = ‖f − Pn‖X .

From the Bernstein-type inequality (| gn |Y ≤ Mnγ ‖gn‖X), we know that

| P2k |Y =

∣∣∣∣∣∣P1 +
k∑

j=1

(P2j − P2j−1 )

∣∣∣∣∣∣
Y

≤ C1‖P1‖X + M

k∑
j=1

2jγ‖(P2j − P2j−1)‖X

≤ C2

⎛⎝‖f‖X +
k∑

j=0

2jγE2j (f)

⎞⎠ ≤ C3

⎛⎝‖f‖X +
k∑

j=0

2jγφ(2−j)

⎞⎠ .

Taking into account that Mn ⊂ Y and tγ
k∑

j=0

2jγφ(2−j) ≤ C4φ(t) (for φ ∈
Φ(γ)), one has

K(f, tγ , X, Y ) ≤ ‖f − P2k‖X + tγ | P2k |Y

≤ C5

⎛⎝φ(2−k) + tγ‖f‖X + tγ
k∑

j=0

2jγφ(2−j)

⎞⎠ ≤ C6φ(t).

((ii) =⇒ (i)) Let us first verify a Jackson-type inequality. Fix g ∈ Y and
ε > 0. For n ≥ n0, take elements Qn2k ∈ M2kn such that | Q2kn − g |X(2−kn−1)≤
E2kn(g, X(2−kn−1)) + ε/2k. From (3.28) and (3.30), we know that

‖Q2k+1n−Q2kn‖X≤M
(|Q2k+1n−g |X(2−k−1n−1) + |g−Q2kn |X(2−kn−1)

)
≤M

(
E2k+1n(g,X(2−k−1n−1))+E2kn(g,X(2−kn−1))+ε2−k

)
.

Therefore
∞∑

k=0

‖Q2k+1n −Q2kn‖X ≤M

( ∞∑
k=0

E2kn(g, X(2−kn−1)) + ε

)
.

Thus {Q2kn} is a Cauchy sequence in X and, for t ∈ (0, 1],

lim
k→∞

| g −Q2kn |X(t) ≤ lim
k→∞

| g −Q2kn |X(2−kn−1)

≤ lim
k→∞

M (E2kn(g, X(2−kn−1)) + ε2−k) = 0.

From (3.29) one has lim
k→∞

‖g −Q2kn‖X = 0 and there holds the representation

g − gn =
∞∑

k=0

(g2k+1n − g2kn),

where the convergence is considered with respect to the norm of X .
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Now

En(g) ≤ ‖g− gn‖X ≤
∞∑

k=0

‖g2k+1n− g2kn‖X ≤M

(
ε +

∞∑
k=0

E2kn(g, X(2−kn−1))

)
.

Since ε > 0 is arbitrary we obtain (see (3.31))

En(g) ≤ M

∞∑
k=0

E2kn(g, X(2−kn−1)) ≤ C1

∞∑
k=0

2−kγn−γ | g |Y≤ C2n
−γ | g |Y .

With this Jackson-type inequality (i) follows easily, since

En(f) ≤ En(f − g) + En(g) ≤ ‖f − g‖X + C2n
−γ | g |Y

and g ∈ Y is arbitrary.
(b) (ii) =⇒ (ii)∗. It follows from the inequality

K∗(f, tγ , X, Y ) ≤ K(f, tγ , X, Y ).

(ii)∗ =⇒ (i). Fix any g ∈ Y . For n ≥ n0,

En(f, X(1/n)) ≤ En(f − g, X(1/n)) + En(g, X(1/n))

≤ M
(| f − g |X(n−1) +n−γ | g |Y

)
.

Since g ∈ Y is arbitrary, one has

En(f) ≤ MK∗(f, n−γ , X, Y ) ≤ Cφ(n−1).

(c) (i) =⇒ (iii). Fix n ∈ N and k ∈ N0 such that 2k ≤ n < 2k+1. Set gn =
gn(f). Taking into account the Bernstein-type inequality, (i) and the properties of
φ, we obtain

| gn |Y =
∣∣∣∣g1 +

k∑
j=1

(g2j − g2j−1) + (gn − g2k)
∣∣∣∣

≤ C1

(
‖g1‖X +

k∑
j=1

2jγ‖g2j − g2j−1‖X + nγ‖gn − g2k‖X

)

≤ C2

(
‖f‖X + ‖f − g1‖X

+
k∑

j=0

2jγ‖f − g2j‖X + nγ‖gn − f‖X + 2(k+1)γ‖f − g2k‖X

)

≤ C3

(
‖f‖X + nγEn(f) +

k∑
j=0

2jγE2j (f)
)

.

≤ C4

(
‖f‖X + nγφ(n−1) +

k∑
j=0

2jγφ(2−j)
)
≤ C3 nγφ(n−1).
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(iii) =⇒ (i). From the Jackson-type inequality we know that, for n ≥ n0 and
k ∈ N0

E2kn(f) ≤ E2kn(f − g2k+1n) + E2kn(g2k+1n)

≤ ‖f − g2k+1n‖X + M(2kn)−γ | g2k+1n |Y = E2k+1n(f) + M(2kn)−γ | g2k+1n |Y .

Since ‖f − gn‖X → 0, condition (iii) yields

En(f) =
∞∑

k=0

(E2kn(f)− E2k+1n(f))

≤M
∞∑

k=0

(2kn)−γ(2k+1n)γφ(2−k−1n−1) ≤ Cφ(n−1). �

Let us show how this result can be applied in weighted approximation. For
α, β > −1 and 1 ≤ p < ∞ let L

(α,β)
p [−1, 1] be the space of all f such that

‖f‖p,(α,β) =
(∫ 1

−1

| f(u) |p wα,β(u)du

)1/p

< ∞,

where
wα,β(x) = (1 − x)α(1 + x)β .

For α, β ≥ 0, Cα,β [−1, 1] is the space of all continuous functions, for which the
limits limx→−1 wα,β(x)f(x) and limx→1 wα,β(x)f(x) exist, with the norm

‖f‖∞,(α,β) = sup
x∈[−1,1]

| wα,β(x)f(x) | .

We need the family of seminorms used in Theorem 3.4.28. In order to apply
this theorem we fix c > 0 and, for t ∈ (0, 1/

√
c), set

| f |X(t,c) =

(∫
I(t,c)

| f(u) |p wα,β(u)du

)1/p

, f ∈ L(α,β)
p [−1, 1]

and
| f |X(t,c) = sup

x∈I(t,c)

| wα,β(x)f(x) |, f ∈ Cα,β [−1, 1],

where I(t, c) = [−1+ct2, 1−ct2]. Moreover, for 1/
√

c ≤ t ≤ 1, we set | f |X(t,c)= 0.
In the following we omit the interval [−1, 1] in the notation and X will be

any one of the spaces defined above.
Let us denote ϕ(x) =

√
1− x2 and consider the differential operator

(Dsf)(x) = ϕs(x)f (s)(x), (x ∈ (−1, 1), s ∈ N0). (3.34)
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The associated Sobolev spaces are given by

W s
p,(α,β) =

{
f ∈ L(α,β)

p [−1, 1] : f = F a.e., F ∈ ACs
loc, D

sF ∈ L(α,β)
p

}
,

and
W s

∞,(α,β) =
{
f ∈ Cs−1[−1, 1] : f = F a.e., f ∈ Cs−1(−1, 1), Dsf ∈ Cα,β

}
.

It can be proved that the linear operator Ds : W s
X → X is closed. Thus W s

X

is a Banach space with respect to the norm

‖f‖W s
X

, = ‖f‖X + ‖Dsf‖X , (f ∈W s
X).

Also in W s
X we consider the seminorm | f |W s

X
= ‖Dsf‖X . In this case the Jackson-

type inequality (3.31) can be proved in the form

En(g, X(1/n), c) ≤ M n−s‖Dsg‖, (g ∈W s
X),

(see Proposition 5.1 in [48], the proof follows some ideas of Ditzian and Totik [102]).
The needed Bernstein-type inequality had been proved in 1974 by Khalilova

[188]. For s ∈ N,

‖Dspn‖X ≤ M ns ‖pn‖X , (pn ∈ Pn, n ∈ N0),

where the constant M is independent of n.
Finally we need the inequality (3.30). But it can be proved that, for all c > 0

there exists a constant M > 0 such that, for all n ∈ N, n >
√

2c,

‖pn‖X ≤ M | pn |X(1/n,c), (pn ∈ Pn).

A proof can be found in the Nevai book [268]. Another proof was given in the
Ditzian and Totik book (Chapter 8.4 of [102]).

Now we have all the necessary ingredients in order to use Theorem 3.4.28.
But we first present a notion introduced by Ditzian and Totik. For s ∈ N and
f ∈ X the weighted main-part modulus is defined by

Ωs(f, t, X) = sup
0<h≤t

| Δhϕ(x)f(x) |X(h,2s2), (0 < t < 1/(
√

2s)),

where Δ
s

h denotes the central difference of order s,

Δ
s

jf(x)
s∑

k=0

(−1)k

(
s

k

)
f
(
x +

(s

2
− k

)
h
)

.

Theorem 3.4.29. Fix s, r ∈ N0 and a real σ with r < σ < s. Moreover set ϕ(x) =√
1− x2 and let the operator Ds be defined by (3.34). Fix f ∈ X and let {pn(f)}

be the sequence of polynomials of the best approximation to f in the norm of X.
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The following assertions are equivalent:

(i) En(f, X) = O(n−σ), (n →∞),

(ii) K(f, ts, X, W s
X) = O(tσ), (t→ 0),

(iii) K∗(f, ts, X, W s
X) = O(tσ), (t→ 0),

(iv) Ωs(f, t, X) = O(tσ), (t→ 0),

(v) ‖Dspn(f)‖X = O(ns−σ), (n →∞),

(vi) f ∈W r
X and ‖Drf −Drpn(f)‖X = O(nr−σ), (n →∞),

(vii) f ∈W r
X and inf

p∈Pn

‖ϕr[f (r) − p]‖X = O(nr−σ), (n →∞).

The equivalence of the first five assertions was first given by Ditzian and
Totik [102] (Chapter 8). For X = C[−1, 1] and the relations (i) ⇔ (v) see also the
papers of Golischek [143], Scherer and Wagner [330] and Stens ([348] and [349]).
The equivalence (i) ⇔ (v) α = β = 0 is due to Heilmann [158]. The work [48] also
includes some results related with characterizations when the function φ(t) = tσ

is replaced by ψ(t) = tσ(1− log t) or ψ(t) = e−1/t. The passage from K-functional
to moduli of smoothness is a complicated task.

For f ∈ X the Jacobi transform is defined by

f̂(k) =
∫ 1

−1

f(u)R(α,β)
k (u)w(α,β)(u)du, (k ∈ N0),

where

R
(α,β)
k (x) =

P
(α,β)
k (x)

P
(α,β)
k (1)

is the normalized Jacobi polynomial of degree k. The generalized translation op-
erator is defined in terms of its Jacobi transform

[τtf ]∧(k) = Rk(t)f̃ (k), (k ∈ N0, t ∈ (−1, 1), f ∈ X).

From Gasper [134], we know that the translation is a bounded linear operator
mapping X into itself and satisfying

‖τtf‖X ≤ M ‖f‖, (t ∈ (−1, 1), f ∈ X),

and
lim

t→0+
‖τtf − f‖X = 0, (f ∈ X),

if and only if α ≥ β > −1 and α + β ≥ −1. Now define

ΔJ
t (f) = f − τtf.

For s ∈ N the modulus of smoothness of f ∈ X is defined by

ωJ
s (f, t, X) = sup

{∣∣∣∣ΔJ
h1

ΔJ
h2
· · ·ΔJ

hs
f
∣∣∣∣

X
: 1− t ≤ hi ≤ 1, i = 1, 2, . . . , s

}
.
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Notice that in contrast to the classical moduli the increments hi are allowed
to be different in each iteration. It was proved in [48] that for 0 < σ < s and
f ∈ X ,

ωJ
s (f, t, X) = O(tσ) ⇐⇒ Ω2s(f, t, X) = O(t2σ),

if X = L
(α,β)
p [−1, 1] with α ≥ β > −1 and α + β ≥ −1 or X = C[−1, 1].

Other relations with the K-functions can be found in papers by Berens and
Xu ([23] and [24]).

The results can be used to write the characterization in terms of the modulus
wJ

s , but only for the case s = 1. For the un-weighted case (α = β = 0) the main
part modulus Ωs can be replaced by the Ditzian-Totik modulus ωϕ

s . Moreover,
we can also use the τ modulus of Ivanov. Recall that Ivanov proved that the τ
modulus is equivalent to the Ditzian-Totik one [173].

3.5 Felten modulus

The ideas presented in this section are due to Felten and are taken from [119] and
[120]. For x, h ∈ [−1, 1] define

x⊕ h = x
√

1− h2 +
√

1− x2h.

It can be proved that this is an inner operation on the unit interval. That is
⊕ : [−1, 1]2 → [−1, 1]. Now define the differences as

(Δhf)(x) = f(x⊕ h)− f(x)
and

Δr
hf(x) = Δh(Δr−1

h )f(x), r > 1.

Let us write X∞ for C[−1, 1] and Xp = Lp(dx/ϕ(x)) for 1 ≤ p < ∞, where f ∈ Xp

means

‖f‖p,ϕ =
(∫ 1

−1

| f(x) |p dx√
1− x2

)1/p

< ∞.

For f ∈ Xp (1 ≤ p ≤ ∞) the modulus of order r is defined by

wr
ϕ(f, t)X = sup

|h|≤ t

‖Δr
hf‖p.

Theorem 3.5.1. For p ∈ [1,∞], r ∈ N, α ∈ (0, r) and f ∈ Xp the following
assertions are equivalent: (i) There exists a constant C such that, for all n ∈ N,
En(f)X ≤ Cn−α. (ii) There exists a constant K such that wr

ϕ(f, t) ≤ Ktα.

The moduli wr
ϕ(f, t) are not well defined for un-weighted Lp[−1, 1] (1 ≤ p <

∞). In particular, there are functions f ∈ Lp[−1, 1] for which the translations are
not in Lp[−1, 1]. On the other hand, the Felten modulus w2r

ϕ (f, t)X of even order
and the Butzer-Stens modulus [55] ωT

r (f ; cos t) (3.15) are equivalent.



Chapter 4

Exact Estimates and
Asymptotics

For H ⊂ C[−1, 1] we set
En(H) = sup

f ∈H
En(f). (4.1)

In this chapter we consider the global best approximation for some classes of
functions.

We remark that, for trigonometric approximation, several exact results are
known. Many of them were presented in a book by Korneichuk [210].

4.1 Asymptotics for Lip1(M, [−1, 1]

The first estimate for some class of functions, as well as asymptotic, were given
by Favard and Nikolskii.

Theorem 4.1.1 (Favard, [116]). For each n ∈ N,

M

n
< En−1(Lip1(M, [−1, 1])) <

Mπ

2n
.

Given A ⊂ [−1, 1] and f ∈ C[−1, 1], set

En(f, A) = inf
p∈Pn

sup
x∈A

| f(x)− P (x) | .

Assume A = {x0, . . . , xn}, where −1 ≤ x0 < x1 < . . . < xn ≤ 1 and let
fn : [−1, 1] → R be a piece-wise linear continuous function such that | f ′

n(θ) |= 1
(xk < θ < xk+1) and sign f(xk) = − sign fn(xk+1). Favard notice that this
function is extremal in the following sense. If f ∈ C[−1, 1] satisfies a Lipschitz

,   
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condition with constant 1, then

En−1(f, A) ≤ En−1(fn, A).

Nikolskii used this idea to obtain a strong version of the last theorem.

Theorem 4.1.2 (Nikolskii, [271]). There exists a sequence {εn} of positive numbers,
εn = O(1/(n log n)) such that

En−1(Lip1(M, [−1, 1])) =
Mπ

2n
− εn. (4.2)

If f ∈ Lip1[M, [−1, 1], then

lim
n→∞ sup n En(f) ≤ Mπ

2
,

and there is a function in Lip1(M, [−1, 1]) for which equality holds.

Proof. We present the ideas if the proof for n even, n = 2m (for n odd the proof
is similar). Of course, we can consider only the case M1.

Let tn,k = (2k − 1)π/(2n) be the zeros of the Chebyshev polynomial Tn,
1 ≤ k ≤ n, and set xn,k = cos(tn,k). Take A = {0} ∪ {xn,k, 1 ≤ k ≤ n} and let
fn be the extremal function constructed above with respect to this set A. From
Favard’s theorem we know that

En−1(fn) ≤ En−1(Lip1(1, [−1, 1])) <
π

2n
.

Let Pn−1(fn) the polynomial of degree not greater than n−1 that interpolates
fn at the points xn,k. That is

Pn−1(f, x) =
1
n

cos(n arccosx)
n∑

k=1

(−1)k−1 sin tn,k

x− cos tn,k
fn(cos(tn,k)).

Notice that

Pn−1(fn, 0) =
1
n

n∑
k=1

(−1)k+m tan(tn,k)fn(cos(tn,k))

and the sign of the product (−1)k+m tan(tn,k) does not change for 1 ≤ k ≤ m and
for m + 1 ≤ k ≤ n. On the other hand, for k = m and k = m + 1 the sign of
(−1)k+m tan(tn,k) is positive.

Take Qn−1 ∈ Pn−1 such that En−1(f, A) = max{| f(x) −Qn−1(x) |, x ∈ A}.
From the Chebyshev theorem we know that f−Qn−1 alternates sign at the points
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xn,1, . . . , xn,m, 0, xn,m+1, . . . , xn,n and | (f − Qn−1(y) |= En−1(f, A), for y ∈ A.
On the other hand

| f(0)− Pn(f, 0) | =| f(0)−Qn−1(0)− Pn(f −Qn−1, 0) |

=

(
1 +

1
n

n∑
k=1

| tan tn,k |
)

En−1(f, A).

If we take into account that fn(0) = 0 and En−1(f, A) ≤ En−1(f), the proof
finishes by proving that

| Pn−1(fn, 0) |
(

1 +
1
n

n∑
k=1

| tan tn,k |
)−1

=
π

2n
+O

(
1

n lnn

)
. �

4.2 Estimates for W r

W r is the family of all f such that | f (r)(x) |≤ 1 almost everywhere. Moreover
W r

p = {f : f (r−1) is absolutely continuous on [−1, 1] and ‖f (r)‖p ≤ 1}.
Theorem 4.2.1. For all r ∈ N, n ≥ r − 1 and f ∈ Cr[−1, 1] we have

En(f) ≤
(π

2

)r 1
(n + 1)n · · · (n− r + 2)

‖f (r)‖.

It follows from the last theorem that

Theorem 4.2.2. For all r ∈ N and n ≥ r − 1 we have

En(W r) ≤
(π

2

)r 1
(n + 1)n · · · (n− r + 2)

.

Theorem 4.2.3 (Bernstein, [29]). One has

lim
n→∞ nrEn(W r) = Kr,

where Kr is the Favard constant.

Another proof of this equality was given by Fisher in [121]. Fisher recognized
some properties of the solution of the extremal problem (4.1), with H = W r.

Theorem 4.2.4 (Fisher, [121]). Fix n > r and a function f ∈W r such that En(f) =
En(Wr). Then | f (n)(x) |= 1 for all x ∈ [−1, 1] and f has exactly n−r+1 changes
of sign in (−1, 1). If n = r − 1, then f is a constant multiple of the Chebyshev
polynomial.

In particular

En−1(Wn) =
21−n

n!
.

In particular it follows from the last theorem that f is a perfect spline with
exactly n − r + 1 knots on (−1, 1), but we will not discuss here any property of
splines.
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Sinwel obtained some upper estimates for En(W r). The main idea was to
reduce the problem to the trigonometric case (see also [316]).

Theorem 4.2.5 (Sinwel, [343]). If r ∈ N and n ≥ r − 1, then

En(W r) ≤ Kr

(n + 1)n · · · (n− r + 2)
.

From Fisher’s result we know that these estimates are not very good for
small n.

4.3 Asymptotics for Cr,w[−1, 1]

Other inequalities can be obtained if we assume some information related with the
smoothness of the derivatives.

For r ≥ 0 and a concave modulus of continuity w, let Cr,w[−1, 1] be the
family of functions f ∈ Cr[−1, 1] such that ω(f (r), t) ≤ w(t).

Theorem 4.3.1 ([29]). Fix r ∈ N, α ∈ (0, 1) and set w(t) = tα. For each n ∈ N,
there exists a constant C(r, α, n) such that,

En(Cr,w[−1, 1]) ≤ C(r, α, n)
nr+α

,

and there exists a constant C(r, α) such that

lim
n→∞C(r, α, n) = C(r, α).

For r = 0 a more exact result was obtained by Polovina in 1964.

Theorem 4.3.2 (Polovina, [283]). Let w be a concave modulus of continuity and
H(w) = {f ∈ C[−1, 1] : ω(f, t) ≤ w(t)}. Then

En−1(H(w)) =
1
2
ω
(π

n

)
− εnω

(π

n

)
with εn = O((log n)−1).

In 1969 Polovina found an interesting lower bound.
Let fn,0 be the odd 2π/n-periodic function defined on [0, π/n] by

fn,0(x) =

{
w(2t)/2, t ∈ [0, π/2n],
w(2π/n− 2t)/2, t ∈ (π/2n, π/n]

and fn,r be the rth 2π/n-periodic integral of fn,0 with mean value on a period
equal to zero.
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Theorem 4.3.3 (Polovina, [285]). Fix r ∈ N0 and a concave modulus of continuity
w. For each n ∈ N, one has

En(Cr,w[−1, 1]) ≥ ‖fn+1,r‖C (1− εn),

where εn = O(1/ logn).

In 1980 Kofanov obtained the asymptotic.

Theorem 4.3.4 (Kofanov, [200]). If r ∈ N0 and w is a concave modulus of conti-
nuity, then

lim
n→∞

En(Cr,w[−1, 1])
‖fn,r‖ = 1.

4.4 Estimates for integrable functions

For spaces of integrable functions the main results have been obtained for L1[−1,1].
The function (1/Γ(r))(x − t)r−1

+ is known as the truncated power, here Γ(r)
stands for Euler’s gamma-function. For algebraic approximation it has the same
role as that of the Bernoulli kernels Dr(t) in the theory of approximating 2π-
periodic functions. One can reduce the problem of best approximation of some
classes of functions to the problem of best approximation of truncated powers.
For example, by the duality relation for the best approximation (see [261] and
Theorem 1.2 in [203]),

En(V r
1 )1 = sup

a∈[−1,1]

En((x − a)r−1
+ )1,

where V r
1 is the class all functions f which can be represented in the form

f(x) =
1

Γ(r)

∫ 1

−1

(x− t)r−1
+ φ(t)dt,

where φ ∈ L1[−1, 1], ‖φ‖1 ≤ 1.
Set sn(t) = sign sin(n + 2) arccos t and define

sn,r(x) =
1

(r − 1)!

∫ 1

−1

(x − t)r−1
+ sn(t)dt.

Theorem 4.4.1 (Kofanov, [201] and [202]). If r ∈ N and n ≥ r − 1, then

En(W r
1 )1 = ‖sn,r‖∞. (4.3)

Moreover, If r ≥ 2 and f (r−1) is absolutely continuous and f (r) ∈ L1, then for
n > r − 1,

En(f)1 ≤ ‖sn,r‖∞ En−r(f (r))1.
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A similar result was presented in [203], but for the class V r
1 , with a real r ≥ 1.

In this case we also have the equality (4.3), but for n ≥ [r] − 1.

Theorem 4.4.2 (Motornaya, [263]). For r ∈ N, one has

En((x − a)r−1
+ )1 =

Kk

(n + 1)r

(√
1− a2

)r

(r − 1)! +O
(

(
√

1− a2)r−1

(n + 1)r+1

)
,

where a ∈ (−1, 1) and n ≥ r − 1.

This result was used to obtain the following estimate.

Theorem 4.4.3 (Motornaya, [264]). For r ∈ N, one has

En(W r
∞)1 =

2
π

B

(
1
2
,
r

2
+ 1

)
Kr+1

(n + 1)r
+ o

(
1
nr

)
,

where B(x, y) is the Euler integral of the first kind and Kr are the Favard constants.

The best approximation of the classes W r
p by algebraic polynomials Pn in

the Lq norm is defined by:

En(W r
p )q = sup

f∈W r
p

inf
u∈Pn

‖f − u‖q, 1 ≤ p, q ≤ ∞.

Motornyi and Motornaya had obtained some asymptotic in L1 norm. In [259]
some estimates were announced without proof. For instance,

En(W r
p )1 =

(
1
2π

∫ 1

−1

(1− t2)rq/2dt

)1/q

‖ϕn,r‖q + o(1/nr),

where 1/p+1/q = 1 and ϕn,r is the r-periodic integral of the function sign sin(n+
1)t, whose mean value on the period is equal to zero. In [260] they considered the
class W rHα, r = 0, 1, . . . , and α ∈ (0, 1], (f (r) ∈ Lipα[−1, 1]). For this class they
obtained the asymptotic

En(W rHα)1 =
1
2π

∫ 1

−1

(1− t2)(r+α)/2dt ‖fn,r,α‖1 + o

(
1

nr+α

)
,

where fn,r,α is the rth periodic integral of the 2π/n-periodic odd function

fn,0,α(t) =
2α−1tα, 0 ≤ t ≤ π/(2n),

2α−1(π/n− t)α, π/(2n) ≤ t ≤ π/n.

In [262] a review of the approximation of certain functions and classes of
functions by algebraic polynomials in the spaces C and L1 is presented.

For Jacobi weights, Rafalson provided some estimates for weighted approxi-
mation in the spaces Lp, α, β .
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Set

ψ[k]
r (f, x) =

⎧⎨⎩
(
(1 − x)r+α(1 + x)r+βf (r)(x)

)(r)

, | x | < 1,

0, | x | = 1

and

Ωr = {f : f ∈ C(2r−1)(−1, 1), ψ[k]
r (f, x) ∈ AC[−1, 1], 0 ≤ k ≤ r − 1}.

For f ∈ Ωr, define

Dr(f, x) =
1

(1− x)α(1 + x)β

(
(1− x)r+α(1 + x)r+βf (r)(x)

)(r)

.

Finally, for t ∈ (−1, 1), define

Φr(t) =
(−1)r

2α+β+r

Γ(r + α + β + 1)
Γ2(r)Γ(α + 1)Γ(β + r)

×
∫ t

−1

(t− z)r

(1− z)1+α(1 + z)r+β

∫ z

−1

(1− u)α(1 + u)β+r−1dudz.

Theorem 4.4.4 (Rafalson, [312]). If r, n+1 ∈ N, n ≥ r−1 such that r > α+1 and
q ∈ [1,∞], or r = α + 1, q ∈ [1,∞), or r < α + 1, and q ∈ [1, (1 + α)/(1 + α− r),
then

sup
{

En(f)p, α, β

En(Dr(f))1, α, β
, f ∈ Ωr, En(Dr(f))1, α, β 
= 0

}
= En(Φr)q, α, β.

There are other papers of Rafalson related with this kind of problem.

4.5 Pointwise asymptotics

Usually, the construction of a linear method to approximate continuous functions
by means of algebraic polynomials is done with the help of Chebyshev polynomials.
Consider the orthonormal polynomials

T̃n(x) =

√
2
π

cos(n arccosx)), n ∈ N

and T̃0(x) =
√

1/π. For f ∈ C[−1, 1] the Fourier-Chebyshev coefficients are
given by

ck(f) =
∫ 1

−1

f(t)T̃k(t)√
1− t2

dt.
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For a matrix Λ = {λk,n}, k, n ∈ N0, the linear operator Un is defined by

Un(f, x) =
n∑

k=

λk,nck(f)T̃k(x).

In the case when Un corresponds to the arithmetical means σn,n of the Fourier-
Chebyshev series (λk,n = (n−k+1)/(n+1) and 0 < α ≤ 1, Ganzburg and Timan
obtained an asymptotic related with these operators.

Theorem 4.5.1 (Ganzburg and Timan, [132]). For n ∈ N, 0 < α < 1 and x ∈
[−1, 1], set

E(α)
n (x) = sup

f ∈Lipα( 1, [−1,1])

| f(x)− σn,n(f, x) | .

Then

E(α)
n (x) =

2Γ(α)
π(1 − α)

sin
απ

2

(√
1− x2

n

)α

+ o

[(√
1− x2

n

)α]
+ δα

n(x),

where

δα
n(x) =

⎧⎪⎨⎪⎩
O(| x |α /n2α), if 0 < α < 1/2,

O(| x |α /nα), if α > 1/2,

O(
√| x | log n/n, if α = 1/2.

For Jackson-Timan-type results some good constants were obtained by Runck
and Sinwel in 1980.

Theorem 4.5.2 (Runck and Sinwel, [316]). For r ∈ N, f ∈ W r and n > 2r there
exists a polynomial Pn ∈ Pn such that

| f(x)− Pn(x) |≤ Kr

(n− 2)(n− 4) · · · (n− 2r)

(√
1− x2 +

2r

n
| x |

)r

.

For all f ∈W1 and n > 1, there exists a polynomial Pn ∈ Pn such that

| f(x)− Pn(x) |≤ tan
π

2n

(√
1− x2 +

3
n
| x |

)
.

Moreover, for all n > 1 there exists f ∈W1, such that for all Pn ∈ Pn there exists
an x ∈ [−1, 1], so that

| f(x)− Pn(x) |≥ tan
π

2n

√
1− x2.

In a series of papers ([211], [212] and [213]) Korneichuk and Polovina im-
proved the asymptotic given in (2.3) and (2.7). Typical results are the following.
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Theorem 4.5.3 (Korneichuk and Polovina, [212]). Fix r ≥ 0 and 0 < α < 1. If
f ∈ Cr[−1, 1] and ω(f (r), t) ≤ Ktα, there exists a sequence {Pn} (Pn ∈ Pn) such
that, for x ∈ [−1, 1],

| f(x)− Pn−1(f, x) |≤ K

2

(π

2

√
1− x2

)α

+O(n−3α/2).

The case α = 1 was studied by Nikolskii (see Theorem 4.1.2).

Theorem 4.5.4 (Korneichuk and Polovina, [213]). Let w be a modulus of continuity.
For any function f ∈ Hw(1, [−1, 1]) there is a sequence of algebraic polynomials
{Pn(f)} (Pn ∈ Pn) such that

| f(x)− Pn(f, x) |≤ Cω

(
π
√

1− x2

n + 1

)
+ o

(
w

(
1

n + 1

))
where C can be taken as 1. Moreover, if w is a concave modulus of continuity, C
can be taken as 1/2.

In the papers of Korniechuk-Polovina and Ligun (see Theorem 2.3.4) the gen-
eralization of the Nikolskii theorem was accompanied by improving the remainder.
In the proof they used the intermediate-approximation method to obtain exact es-
timates for the deviation of best approximations to the class of periodic functions.
The construction is carried out with a nonlinear operator. In particular, from the
results of Korneichuk and Polovina [211] it follows that for all f ∈W2[−1, 1] there
exists a sequence of polynomials {Pn(f)} satisfying the inequality

| f(x)− Pn(f, x) | ≤ K2
1− x2

(n + 1)2
+ o

(
1

(n + 1)2

)
.

Trigub considered the problem of the leading term in the corresponding pointwise
inequality concerning approximation of functions in W r[−1, 1].

Theorem 4.5.5 (Trigub, [390]). For each r ∈ N there exists a constant γ = γ(r)
such that, for all f ∈ W r[−1, 1] there exists a sequence {Pn(f)} (Pn(f) ∈ Pn,
n ≥ r − 1) such that

| f(x)− Pn(f, x) | ≤ Kr

(√
1− x2

n + 1

)r

+ γ
(
√

1− x2)r−1

(n + 1)r+1
.

Here it is necessary that γ(r) ≤ cer, where c is a positive constant.

Tribug also studied the problem in weighted spaces. Let V1[−1, 1] be a class
of functions with total variation of the derivative f (r−1) not greater than one.

Theorem 4.5.6 ([390]). For each r ∈ N and for all f ∈ Vr [−1, 1] there exists a
sequence {Pn(f)} (Pn(f) ∈ Pn, n ≥ r − 1) that satisfies the inequality∫ 1

−1

| f(x)− Pn(f, x) |
(1− x2)r/2

dx ≤ Kr

nr
+ o(n−r).

For r = 1, there is no remainder term.
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In the first theorem of Trigub for point-wise approximations the polynomial
operator Pn(f) is nonlinear and for weighted approximations in L1[−1, 1] it is
linear. He noticed that, if we multiply by two the right-hand side in the first
theorem, then the result can be given with a linear operator. Trigub noticed that
his ideas can be used to extend the results by means of K-functionals: for all
f ∈ Cr[−1, 1], there exists a sequence of polynomials {Pn} such that

| f(x)− Pn(x) |≤ γγk

(√
1− x2

n

)r

ωk

(
f (r),

π

2

√
1− x2

n

)
.

In this way he recovered some known results (see Theorem 5.6.5), but the difference
of his proof (which can be also applied to approximation of derivatives) is that the
results are deduced directly from the periodic case (without constructing especial
integral operators). Trigub asserted that by using the approximate characterization
of W r in the periodic case, one can get an approximate characterization of W r on
a segment (see [389]).

Let us present a group of ideas of Motornyi taken from [257]. Some of the
proof of the asymptotic (as the one given by Korneichuk and Polovina, [213])
is based on the method of intermediate approximation. For any function f with
convex modulus of continuity w(f, t), one can construct a sequence of broken lines
ψn(x) possessing the following properties:

(i) If ψ′
n(x) exists, then

| ψ′
n(x) |≤ w′

(π

n

√
1− x2

)
= Kn(x), n = 2, 3, . . . , | x |≤ 1.

(ii) The inequality

| f(x)− ψn(x) |≤ 1
2

max
0≤t≤2

{w(t)−Kn(x)t} + o

(
w

(
1
n

))
holds uniformly with respect to x ∈ [−1, 1] as n →∞. Let x0 = 0 and

xk = xk−1 +
a

n

√
1− x2

k−1, n ≥ 5

be points of the segment [0, 1]. Here, a ∈ [1, π] is a constant. Let xN−1 denote
the greatest point for which xN−1 ≤ x, where the number x < 1 is such that
x + a

√
1− x2/n = 1. If xN−1 = x, then we have xN = 1, and if xN−1 < x,

then, by definition, we assume that xN = 1. We set

Ek = [−xk+1,−xk] ∪ [xk, xk+1], k = 0, 1, . . . , N − 1.

Theorem 4.5.7 (Motornyi, [257]). Suppose that w(t) is a convex modulus of con-
tinuity. Then, for any function f ∈ Hw and any number a ∈ [1, π], there exists
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a sequence of absolutely continuous functions {ψn,a(f ; x)} such that the following
assertions are true:

(i) The inequality

| ψ′
n,a(x) |≤Mk+1, x ∈ Ek, k = 0, 1, . . . , N1,

holds almost everywhere;
(ii) | f(x)− ψn,a(x) |≤ Δk, x ∈ Ek, k = 0, 1, . . . , N1, where

Mk = w′
a
√

1− x2
k−1

n

and

Δk =
1
2

⎛⎝w

⎛⎝a
√

1− x2
k−1

n
−Mk

a
√

1− x2
k−1

n

⎞⎠⎞⎠ .

This theorem is a generalization of the result of Korneichuk and Polovina
on the approximation of functions from the class Hw by absolutely continuous
functions with variable smoothness.

Theorem 4.5.8 (Motornyi, [257]). Suppose that w(t) is a convex modulus of con-
tinuity such that the function tw′(t) does not decrease. Then, for any function
f ∈ W rHw, there exists a sequence of algebraic polynomials Qn,r(f, x) of degree
n = r, r + 1, (n ≥ 2 for r = 0) such that

| f(x)−Qn,r(f, x) |≤ Kr

2

(√
1− x2

n

)r

w

(
2Kr+1

√
1− x2

Kr n

)

+
Cr

nr+1

(√
1− x2 +

1
n

)r−1

w

(√
1− x2

n
+

1
n2

)
log n,

where Kr is the Favard constant and the quantity Cr depends only on r.

Classes of functions which are singular integrals of bounded functions were
considered by Motornyi in [258].



Chapter 5

Construction of
Special Operators

In the previous chapters we paid attention to theorems related with the existence
of sequences of polynomials satisfying certain conditions. In applications this kind
of results are not important. What we need is a way to obtain the polynomials
with the desired properties. Many authors have constructed different sequences.

From the point of view of application the sequences should satisfy some of
the following conditions:

1) We need the precise form of the polynomials.
2) The construction should be useful for numerical computation.
3) A clear form of measuring the error is needed. Many proofs have been pre-

sented in such a way that it is very difficult to give a good estimate of the
constants. In such cases we do not know the minimal degree of the polynomial
which will be used to obtain a fixed error. On the other hand, several theo-
rems are presented in terms of the best approximation but, as it is known,
there is no easy way to find the best approximation for a given function.

4) In some cases we can not use all the values of the function. In several practical
problems, we only have a discrete set of data and we wish to reconstruct the
function. But many useful approximation processes are constructed by means
of integrals, for instance, convolution with some kernels. One can consider
the problem of the best selection of a collection of nodes, but usually the
data are given only on equidistant nodes.

5) Sometimes we need a certain subspace Q to be invariant. Thus, the operator
is a linear projection. Usually Q is a family of polynomials, Q = Pn. We want
an operator Ln : C[−1, 1] → C[−1, 1] such that Ln(p) = p, for each p ∈ Pn.
It is a strong restriction. In fact, for f ∈ C[−1, 1] one has

‖f − Lnf‖ = ‖(I − Ln)(f − p)‖ ≤ ‖I − Ln‖ ‖f − p‖
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114 Chapter 5. Construction of Special Operators

for each p ∈ Pn. Thus

‖f − Lnf‖ ≤ ‖I − Ln‖En(f) ≤ (1 + ‖Ln‖)En(f)

and it can be proved that for any projection Ln : C[−1, 1] → Pn, one has
‖Ln‖ → ∞.

6) We also considered the problem of constructions of linear operators of min-
imal degree compared to the number of points of interpolation. It will be
better if, at the same time, they realize the Teliakovskii-Gopengauz estimate.

In order to improve the results, different methods have been employed:
1) Some authors have used known facts related with trigonometric approxima-

tion (for instance, convolution with positive even kernel).
2) We can construct a sequence of algebraic polynomials by means of a suitable

interpolation process. It is very useful when we have only a finite set of data
but, as we remarked above, the sequence of the norm of the associated opera-
tors may be unbounded. In particular, Lagrange interpolation at equidistant
nodes has a very bad behavior. On the other hand, some modification (such
as the Hermite-Fejér interpolation) give a good rate of convergence for certain
classes but these processes are saturated. That is, the order of convergence
cannot be improved upon beyond a certain limit.
Other general criteria have also been considered. For instance, some people

prefer processes constructed by means of linear operators and the best ones are
those which are uniformly bounded. This kind of process are more convenient for
applications, because they are easier to handle.

In this chapter we present different methods which have been proposed. In
the first section, we consider estimation in norm. In the second and third section
we analyze estimates in the form of Timan-type and Teliakovskii-Gonpengauz-
type inequalities. Since there are many papers devoted to interpolation processes
of Bernstein type, they will be analyzed in a separate section.

Following Freud and Sharma we say that an approximation process is of
Timan type if the rate of convergence of the function Δn(x) can be given. A
process is said to be weakly interpolatory, if it is uniquely determined by the
values of the given function on a finite set.

In this chapter we will use several times the following operator: if f : [a, b]→
R, we set

L(f, x) =
x− a

b− a
f(b) +

b− x

b− a
f(a). (5.1)

From Cao and Gonska [69] we use the following terminology.

Definition 5.0.1. Given r ∈ N and s ∈ Z, a sequence of linear operators Ln :
C[−1, 1]→ Prn+s is said to be of DeVore-Gopengauz type, if there exists a constant
C such that, for all f ∈ C[−1, 1], n ∈ N and x ∈ [−1, 1],

| f(x)− Ln(f, x) | ≤ C ω2

(
f,

√
1− x2

n

)
.
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5.1 Estimates in norm

At the beginning of the theory, theorems for algebraic approximation were ob-
tained from the trigonometric approach, which uses the Jackson kernels. Thus, a
natural problem was to obtain similar results by means of polynomial operators.

Recall that, given points −1 ≤ x1 < · · · < xn ≤ 1 and f : [−1, 1] → R the
Lagrange interpolation operator is defined by

Ln(f, x) =
n∑

k=1

lk,n(x)f(xk), (5.2)

where w(x) = (x− x1) · · · (x− xn) and

lk,n(x) =
w(x)

w′(x)(x − xk)
, k = 1, . . . , n,

are the fundamental polynomials of the Lagrange interpolation.
Let us recall some facts. The Chebyshev polynomials (of the first kind) are

defined by
Tn(x) = cos(n arccosx).

The zeros of Tn are

xk,n = cos
(2k − 1)π

2n
(k = 1, 2, . . . , n). (5.3)

The fundamental Lagrange interpolation polynomials relative to these nodes
are

lk,n(x) =
(−1)k+1

√
1− x2

k,n

n

Tn(x)
x− xk,n

, k = 1, 2, . . . , n. (5.4)

It is known that there exist functions f ∈ [−1, 1] for which the sequence
of polynomials obtained from the Lagrange interpolation formula diverges for all
points of the interval [−1, 1] (see [153]). Grünwald showed that modification of
the Lagrange operators with Chebyshev nodes can be used as an approximation
process. The result is analogous with the theorem of Rogosinski in the theory of
Fourier series.

Theorem 5.1.1 (Grünwald, [154]). Let {Ln} be the sequence (5.2) constructed with
the Chebyshev nodes. For each f ∈ [−1, 1] one has

lim
n→∞

1
2

[Ln(f, θ − π/2n) + Ln(f, θ + π/2n)] = f(x), x = cos θ,

and the convergence is uniform on the whole interval.

Another simple construction was given by Freud in 1963. He also used the
Chebyshev nodes (5.3).
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Theorem 5.1.2 (Freud, [124]). If for n ∈ N and f ∈ C[−1, 1] we set

Fn(f, x) = f(0) +
n∑

k=1

lk,n(x)[f(xk,n)− f(0)],

then, there exists a constant C such that, for n ∈ N, f ∈ C[−1, 1] and x ∈
[−1/2, 1/2], one has

| f(x)− Fn(f, x) | ≤ Cω

(
f,

1
4n

)
.

Notice that Fn(f) ∈ Π4n−3 and Freud only proved uniform convergence on
the interval [−1/2, 1/2].

Freud’s work motivated a series of papers exhibiting constructions of a similar
character. For instance, Sallay [322] obtained an analogous result, but with inter-
polation at the zeros of orthogonal polynomials with respect to a weight function
w ∈ Lip1[−1, 1] which is positive on [−1, 1].

In 1967 Saxena modified Freud’s ideas and used interpolation at the zeros of
Chebyshev polynomials of the second kind [323]. These polynomials are defined by

Un(x) =
sin((n + 1)θ)

sin θ
, cos θ = x. (5.5)

With the new construction Saxena was able to obtain convergence on the
whole interval [−1, 1].

In the same year Vértesi noticed that the Saxena ideas could be modified
to use Chebyshev polynomials Tn instead of Un. Of course, more complicated
operators appeared. Set

vk,n(x) = 1− xk,n

1− x2
k,n

(x− xk,n), ψn(u, v) =
2
n

n−1∑
r=1

T ′
r(u)Tr(v),

and
ϕk,n(x) = vk,n(x)l4k,n(x) + 2(x− xk,n)l3k,n(x)ψn(xk,n, x),

where lk,n is given by (5.4).

Theorem 5.1.3 (Vértesi, [397]). If for n ∈ N and f ∈ C[−1, 1] we set

Jn(f, x) = L(f, x) +
n∑

k=1

(f(xkn)− L(f, x)) ϕkn(x), (5.6)

where L(f, x) is defined by (5.1), then

| f(x)− Jn(f, x) | ≤ 512 ω

(
f,

1
4n

)
, x ∈ [−1, 1].

In this case we have uniform convergence on the whole interval and we have
also a precise constant.
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In 1971 Mathur [249] presented estimates by interpolating in the zeros of the
Jacobi polynomials P

(−1/2,1/2)
n . Srivastava gave some modifications in [345].

For approximation in norm, Varma showed how to construct sequences of
polynomials {Pn}, Pn ≤ Π2n−1, which interpolates f at the zeros of the nth
Chebyshev polynomials and for which ‖f−Pn‖ ≤ Ckωk(f, 1/n). The construction
is based in a modification of the classical Hermite-Fejér interpolation polynomial
on the Chebyshev nodes.

Define

C0(f) =
1
n

n∑
k=1

f(xk,n), Cj(f) =
2
n

n∑
k=1

f(xk,n)Tj(xk,n),

for j = 1, . . . , 2n− 1. For a fixed sequence {αj,n} set

Rn(f, x) =
2n−1∑
j=0

Cj(f)αj,nTj(x). (5.7)

The motivation for this definition comes from the following: if

αj,n =
2n− j

2n
,

the Rn(f) agrees with the Hermite-Fejér interpolation polynomial.

Theorem 5.1.4 (Varma, [392]). Given fixed m ∈ N, for each n ∈ N consider a
numerical sequence {αj,n} such that

α0,m = 1, αj,m + α2n−j,m = 1, j = 1, . . . , n, αj,m = 0 (j > 2n),(i)
1− α1,m = O(1/nm)(ii)

| αj+1,m − 2αj,m + αj−1,m |= O(1/n2), j = 1, . . . , 2n− 1(iii)

| μj+1,m − μj,m |= O(1/nm+1), j = 1, . . . , 2n− 1(iv)

| μj+1,m − 2μj,m + μj−1,m |= O(1/nm+2), j = 1, . . . , 2n− 1,(v)

where
μj,m = (1− αj,m)/jm, j = 1, . . . , 2n,

and μj,m = 0, for j = 0.
If Rn is defined by (5.7), then Rn(1, x) = 1 and for each f ∈ C[−1, 1],

Rn(f, xk,n) = f(xk,n), k = 1, . . . , n.

Moreover, there exists a constant Cm such that, for each f ∈ C[−1, 1] and n ∈ N,

‖f −Rn(f)‖ ≤ Cmωm−1(f, 1/n).
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Proof. We will present the main ideas of the proof. Taking into account that, for
1 ≤ j ≤ n, T2n−j(xi,n) = −Tj(xi,n), one has C2n−j(f) = −Cj(f). Thus, from (i)
and the definition of Cj(f) we obtain

Rn(f, xi,n) = C0(f) +
n−1∑
j=1

Cj(f)Tj(xi,n) = f(xi,j), 1 ≤ i ≤ n.

The identity Rn(1, x) = 1 follows directly from the definition of Cj(f). Notice
that Cj(1) = 0, for 1 ≤ j ≤ 2n− 1.

It can be proved that there exists a constant L such that ‖Rn(f)‖ ≤ L‖f‖.
In fact, we can write

Rn(f, x) =
n∑

k=1

f(xk,n)Pk,n(x)

where

Pk,n(x) =
1
n

(
1 + 2

2n−1∑
j=1

αj,mTj(xk,n)Tj(x)
)

.

Hence, we only need to estimate
n∑

k=1

| Pk,n(x) |.
Set t1(s) ≡ 1,

tj(s) = 1 +
2
j

j−1∑
i=1

(j − i) cos(is), j ≥ 2.

and
τj,k(s) =

1
2

(tj(s + θk,n) + tj(s− θk,n))

where θk,n = (2k − 1)π/(2n). It can be proved that, for j ≥ 1,
n∑

k=1

| τj,k(s) |= n (5.8)

and

(j + 1)τj+1,k(s)− 2jτj,k(s) + (j − 1)τj−1,k(s) = 2 cos(js) cos(jθk,n).

From the last identity we obtain the representation

Pk,n(x) =
1
n

2n−1∑
i=1

(αi+1,m − 2αi,m + αi−1,m)τi,k(s) + τ2n,k(s)α2n−1,n.

Finally, from conditions (ii) and (iii) and (5.8), we obtain a constant L such that
n∑

k=1

| Pk,n(x) |≤ L.

The estimate ‖Rn(f)‖ ≤ L‖f‖ is sufficient to prove uniform convergence. We
omit the proof of the estimate in terms of the modulus of continuity. �
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An example of sequences satisfying all the conditions stated above is given by

αj,m =
(2n− j)m

(2n− j)m + jm
, j = 0, . . . , 2n− 1,

and α2n,m = 0.

5.2 Timan-type estimates

The kernels constructed by Dzyadyk ([109] and [110]) allowed him to give a new
proof of Timan’s theorem (see Theorem 2.5.1). But the polynomials obtained
by this way cannot always be constructed effectively, since their coefficients are
computed in terms of integrals of the function to be approximated.

Freud and Vértesi noticed that the construction given by Vértesi in [397]
could be used to provide a new proof of the Timan result.

Theorem 5.2.1 (Freud and Vértesi, [128]). For each n, let Jn be defined by (5.6).
Then Jn(C[−1, 1]) ⊂ Π4n−2 and there exists a constant C such that, for f ∈
C[−1, 1] and x ∈ [−1, 1], one has

| f(x)− Jn(f, x) | ≤ C

(
ω

(
f,

√
1− x2

4n

)
+ ω

(
f,

1
(4n)2

))
.

Another construction was given by Kis and Vértesi [199] (see 85.37).
In 1968, Stepanets and Poliakov [351] gave a new proof of Theorem 2.4.1.

They used polynomials whose coefficients are expressed in terms of the values of
the functions and its derivatives (if they exist) at a finite system of points. In
the construction they used the Dzyadyk kernel Dnk given in (2.12). Since the
construction is a little complicated it will not be included here.

In 1974, Mills and Varma used a sequence obtained by means of Lagrange
interpolation, but it was combined with the construction of Grünwald.

Set

lk,n(x) =
(−1)k+1 cosnθ cos θn,k

n(cos θ − cos θk,n)
,

where, as usual, x = cos θ and xk,n are the zeros of the Chebyshev polynomials.
Now define

Gn(f, θ) =
1
2

n∑
k=1

[
lk,n

(
θ +

π

2n

)
+ lk,n

(
θ − π

2n

)]
f(xk,n).

Theorem 5.2.2 (Mills and Varma, [251]). If f ∈ C[−1, 1], then

| f(cos θ)−Gn(θ) |≤ C

(
ω

(
f,

√
1− x2

n

)
+ ω

(
f,

1
n2

))
.
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In this result, Gn(C[−1, 1]) ⊂ Pn−1 and only n values of f are needed.
Almost all the interpolatory result presented above used the zeros of the

Chebyshev polynomials.
In 1974 and 1977, Freud and Sharma constructed operators based on general

Jacobi nodes, and also succeeded in decreasing the degree of the polynomial to
n(1 + ε), for an arbitrary ε > 0.

Let {xk,n} be the zeros of P
(α,β)
n and let

ln,k(x) =
P

(α,β)
n (x)

(x− xkx)(P (α,β)
n )′(xn,k)

be the fundamental polynomials of Lagrange interpolation at these nodes.
Let r ≥ 2 be an integer and fix ρ ∈ (0, 1/2r). For a given n ∈ N we set

m = m(n) = [nρ] and define

Φn(x, y) =
1
m

⎛⎝1 + 2
m∑

j=1

Tj(x)Tj(y)

⎞⎠ ,

where Tj is the Chebyshev polynomial. In terms of the Lagrange basis one has

Φ2r
n (x, y) =

n∑
k=1

Φ2r
n (xkn, y)lkn(x).

Let us write
φkn(x) = Φ2r

n (xkn, y)lkn(x).

With these notations we define the operator

J (α,β)
n (f, x) = L(f, x) +

n∑
k=1

(f(xkn)− L(f, x))φkn(x), (5.9)

for f ∈ C[−1, 1].

Theorem 5.2.3 (Freud and Sharma, [126] and [127]). Fix α, β > −1 and r such
that

2r > max{4, α + 5/2, β + 5/2}.
For each n, let J

(α,β)
n be defined by (5.9). There exists a constant C such that, for

each f ∈ C[−1, 1] and x ∈ [−1, 1],

| f(x)− J (α,β)
n (f, x) | ≤ C

(
ω

(
f,

√
1− x2

n

)
+ ω

(
f,

1
n2

))
.
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Proof. It is know that Jacobi polynomials satisfy the equation

P (α,β)
n (−x) = (−1)nP (β,α)

n (x).

Thus
J (β,α)

n (f(−t), x) = J (α,β)
n (f,−x).

Set g(x) = f(−x). Then for x ∈ [−1, 0), one has

| f(x)− J (α,β)
n (f, x) |=| f(x)− J (β,α)

n (f(−t),−x) |=| g(−x)− J (β,α)
n (g,−x) | .

Since ω(f, t) = ω(g, t), we reduce the proof to the case x ∈ [0, 1] (of course, with
different parameters, but it does not change the estimate).

In what follows we assume x ∈ [0, 1]. Set

S1(x) =
m∑

k=1

φkn(x) | f(x)− f(xk,n) |

S2(x) =
1 + x

2
× | f(x)− f(1) | ×

∣∣∣∣∣1−
n∑

k=1

φkn(x)

∣∣∣∣∣
and

S3(x) =
1− x

2
× | f(x)− f(−1) | ×

∣∣∣∣∣1−
n∑

k=1

φkn(x)

∣∣∣∣∣ .
Since

| f(x)− J (α,β)
n (f, x) |≤ S1(x) + S2(x) + S3(x),

we will estimate the last three terms.
Since Φ2r

m (x, x) =
∑n

k=1 φnk(x), it can be proved that

1
2

< Φm(x, x) ≤ 3 and
√

1− x2
∣∣Φ2

m(x, x) − 1
∣∣ ≤ 4

m
.

From these inequalities we obtain

S2(x) ≤ 1 + x

2
ω (f, | x− 1 |) ∣∣1− Φ2r

m (x, x)
∣∣

≤ 1 + x

2

(
1 + n

| x− 1 |√
1− x2

)
ω

(
f,

√
1− x2

n

)∣∣1− Φ2r
m (x, x)

∣∣
≤ Cω

(
f,

√
1− x2

n

)
.

For S3(x) we can use similar arguments.
The estimate for S1(x) is more complicated. Set A = {k : 0 ≤ θkn ≤ 3π/4}

and B = {k : 3π/4 < θkn ≤ π} and split S1 in two sums, S1 =
∑

k∈A +
∑

k∈B .
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We present the estimate for the second sum. For the first one some changes are
needed.

If θ ∈ [0, π/2] and θkn ∈ (3π/4, π) (x ∈ cos θ), then | x− xn,k |> c. We need
some properties of the zeros of Jacobi polynomials. If c is a positive constant, there
exists a constant C1 such that, for cn−1 ≤ θ ≤ π/2

| P (α,β)
n (cos θ) |≤ C1

1√
n (sin θ)α+1/2

.

Moreover,

(P (α,β)
n )′(cos θkn) ∼

√
n

(sin(θkn))β+3/2
, (π/2 ≤ θkn ≤ π).

Since

| Φm(xkn,x) |≤ 2
m

sin(θ/2) + sin(θkn/2)
| cos θ − cos θkn | ,

there exists a constant C2 such that

| φkn(x) |=| lkn(x) | × | Φ2r
m (xkn, x) | = | P (α,β)

n (x) || Φ2r
m (xkn, x) |

| x− xkn) || (P (α,β)
n )′(xkn) |

≤ C2
1

n2r

nmax{α,−1/2}
√

n
.

Finally, since | f(x)− f(xkn) |≤ ω(f, 2) ≤ (1 + 2n2)ω(f, 1/n2), we obtain∑
k∈B

≤ C3 n2ω(f, n−2)
∑
k∈B

n−2r−1/2+max{α,−1/2}

≤ C3 n2ω(f, n−2) n−2r+3/2+max{α,−1/2} ≤ C4 ω(f, n−2),

if −2r + 3/2 + max{α,−1/2} < 0. �

If, for c > 0 fixed, we chose ρ such that

n + 2rm− 1 < n(1 + 2rρ) ≤ n(1 + c),

then
J (α,β)

n (C[−1, 1]) ⊂ Πn+2rm−1.

The polynomials J
(α,β)
n (f) do not interpolate. But we can define

A(α,β)
n (f, x) = L(f, x) +

n∑
k=1

(f(ykn)− L(f, x))
φkn(x)

Φ2r
m (ykn, ykn)

.

The new operators interpolate and an estimate like the one in the last theorem
holds.
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In 1983, Misra generalized Freud-Sharma operators J
(α,β)
n and A

(α,β)
n respec-

tively without affecting their degree. The generalized operator is non-interpolatory
while it produces Timan’s estimate for f (p) ∈ C[−1, 1].

Let {xk,n} be the zeros of the Jacobi polynomial P
(α,β)
n , α, β > −1, and

denote by lk,n the fundamental polynomial of Lagrange interpolation based on
these nodes. We shall denote xk,n by xk, lk,n by lk for the sake of convenience.
Let m = [nρ], for some ρ, 0 < ρ < (r + p)−12−(p+1), p ≥ 0 where 2r > max(4, α +
5/2, β + 5/2). We set

ϕm(x, y) =
1
m

Tm+1(x)Tm(y)− Tm+1(y)Tm(x)
x− y

where Tm(x) = cosmθ, x = cos θ so that ([5], p. 238)

ϕm(x, x) =
1
m

(
m +

1
2

+
1
2

sin(2m + 1)θ
sin θ

)
.

Now, we introduce the polynomials ψp(x, y) of degree ≤ 2pm defined as
follows:

Ψp(x, y) =

{
ϕm(x, y), if p = 0,

Ψp−1(x, y)Ψp−1(x, y), if p ≥ 1,

where Ψp−1(x, y) = 2−Ψp−1(x, y).
Let

λ(f, x) =
1

22p+1

p∑
i=1

(
2p + 1

i

)⎛⎝(1 + x)2p+1−i(1− x)i

p∑
j=0

(x− 1)j

j!
f (j)(1)

+ (1− x)2p+1−i(1 + x)i

p∑
j=0

(1 + x)j

j!
f (j)(−1)

⎞⎠ .

Now define

J (α,β)
n,p (f,x)=λp(f,x)+

n∑
k=1

(
p∑

i=0

(x−xk)i

i!
f (i)(xk)−λp(f,x)

)
Ψ2r+2p

p (xk,x)lk(x).

The operator J
(α,β)
n,p (f, x) is non-interpolatory and of degree n + 3p + m(r +

p)2p+1 ≤ n(1 + c), c > 0 being fixed.

Theorem 5.2.4 (Misra, [252]). For f ∈ Cp[−1, 1],

| f(x)− J (α,β)
n,p (f, x) |≤ Cp

(√
1− x2

n
+
| x |
n2

)p

ω(f (p), Δn(x)).

Misra included a modification to obtain interpolatory polynomials. In the
case α = β = −1/2 he also proved a result on simultaneous approximation.
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5.3 Gopengauz estimates

Lorentz and Steckin asked if it is possible to replace the inequality

| f(x)− pn(x) | ≤ Cr ωr

(
f,

√
1− x2

n
+

1
n2

)
by

| f(x)− pn(x) | ≤ Cr ωr

(
f,

√
1− x2

n

)
.

This was shown to be possible in the case r = 1 by Teliakovskii [371]. In this
section we present several different constructions which provide an inequality like
the second one.

Two different constructions appeared in 1973, due to Saxena and Rodina.
Saxena used a simple modification of the operators defined in (5.6).

Theorem 5.3.1 (Saxena, [326]). For each n, let Jn be defined by (5.6) and set

Sn(f, x) = Jn(f, x) + L(f − Jn(f), x),

where L is defined by (5.1). There exists a constant C such that, for f ∈ C[−1, 1]
and x ∈ [−1, 1], one has

| f(x)− Sn(f, x) | ≤ C ω

(
f,

√
1− x2

n

)
.

Rodina used the Chebyshev polynomials Un of second kind (5.5). Let yk,n

be the roots of Un. In this case the fundamental polynomials of Lagrange and the
Hermite-Fejér formula can be written as

lk,n(x) =
(−1)k+1(1− y2

k,n)Un(x)
(n + 1)(x− yk,n)

, vk,n(x) = 1− 3yk,n(x− yk,n)
1− y2

k,n

.

Now we set

ϕk,n(x) =
1− x2

1− y2
k,n

[
l4k,n(x)vk,n(x) + 2(x− yk,n)l3k,n(x)(1 − y2

k,n)ψn(x, yk,n)
]

where

ψn(x, u) =
2

n + 1

n−1∑
r=1

U ′
r(x)Ur(u).

Theorem 5.3.2 (Rodina, [313]). For n ∈ N and f ∈ C[−1, 1] define

Λn(f, x) = L(f, x) +
n∑

k=1

[f(xk)− L(f, x)]] ϕk,n(x).
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There exists a constant C such that, for n ∈ N, f ∈ C[−1, 1] and x ∈ [−1, 1] one
has

| f(x)− Λn(f, x) |≤ C w

(
f,

√
1− x2

n + 1

)
.

In the theorems given above the estimates are in terms of the first modulus
of continuity. In 1975, DeVore was able to construct a sequence for which the
estimate is given in terms of the second-order modulus.

Fix a sequence {Kn} of non-negative trigonometric polynomials (deg Kn ≤
n), such that ∫ π

−π

| t |j Kn(t)dt ≤ Cn−j , 1 ≤ j ≤ 4.

For h ∈ C2π define

Ln(h, s) =
∫ π

−π

[−Δ4
t (h, s) + h(s)

]
Kn(t) dt. (5.10)

For f ∈ C[−1, 1], let P (f) be the polynomial of degree 1 which interpolates
f at the points 1 and −1.

Define a sequence of linear operators by

Λn(f, x) = Ln

(
f(cos(s)) − P (f, cos s), cos−1(x)

)
+ P (f, x).

Finally, define
Mn(f, x) = Λn(f, x) + Un(f, x), (5.11)

where Un is the first degree polynomial which interpolates f−Λn(f) at the points
−1 and 1.

Theorem 5.3.3 (DeVore, [87] (see also DeVore [88]). For each n ≥ 2, let Mn be
defined by (5.11). Then Mn : C[−1, 1]→ Pn and, for every f ∈ C[−1, 1], one has

| f(x)−Mn(f, x) | ≤ Cω2

(
f,

√
1− x2

n

)
, −1 ≤ x ≤ 1,

where the constant C does not depend on f or n.

Proof. Since Ln was constructed by convolution with a trigonometric kernel, ones
has Mn(f) ∈ Pn, for any f ∈ C[−1, 1]. Taking into account the definition of Un,
we know that Mn(f,±1) = f(±1).

First, we will verify that, for any g ∈ W2,∞[−1, 1],

| g(x)−Mn(g, x) | ≤ C ‖g′′‖∞ 1− x2

n2
, −1 ≤ x ≤ 1, (5.12)
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Fix x ∈ [−1, 1]. For an arbitrary function g ∈W2,∞[−1, 1], set g1 = g−P (g).
Notice that g

(2)
1 = g(2) and g′1 has a zero in (−1, 1) (because g1(−1) = g1(1) = 0).

Thus, by the mean value theorem we obtain

‖g1‖ = sup
x∈[−1,1]

| g1(x)− g1(−1) |≤ sup
x∈[−1,1]

(x + 1)‖g′1‖ = 2‖g′1‖ ≤ 4‖g(2)
1 ‖.

Set x = cos s and h(s) = g1(cos(s)). Taking into account that h(0) = 0 and
h′(0) = 0, we obtain the representation

h(s) =
∫ s

0

h′(t)dt =
∫ s

0

[h′(t)− h′(0)]dt

=
∫ s

0

∫ t

0

h′′(u)dudt =
∫ s

0

∫ t

0

[sin2 ug
(2)
1 (cosu)− cosug′1(cosu)]dudt

=
∫ s

0

∫ t

0

[sin2 ug
(2)
1 (cos u)]dudt

−
∫ s

0

∫ t

0

[cosug′1(cos u)− cos(π/2)g′1(cos(π/2))]dudt

=
∫ s

0

∫ t

0

[sin2 ug
(2)
1 (cos u)]dudt

+
∫ s

0

∫ t

0

∫ u

π/2

sin v[cos vg
(2)
1 (cos v) + g′1(cos v)]dvdudt.

Set

H1(s) =
∫ s

0

∫ t

0

[sin2 ug
(2)
1 (cos u)]dudt

and

H2(s) =
∫ s

0

∫ t

0

∫ u

π/2

sin v[cos vg
(2)
1 (cos v) + g′1(cos v)]dvdudt.

We need some properties of the differences of H1 and H2. Notice that, since |
H

(2)
1 (s) |≤ ‖g(2)

1 ‖ sin2 s = ‖g(2)‖ sin2 s, one has

| Δ4
t H1(s) | ≤ 4 | Δ2

t H1(s) |= 4
∣∣∣∣∫ t

0

∫ t

0

H
(2)
1 (s + t1 + t2)dt1dt2

∣∣∣∣
≤ 4‖g(2)‖t2 sup

|u|≤2|t|
sin2(s + u) ≤ 48‖g(2)‖t2(t2 + sin2 s),

because, taking into account that

| sin(s + u) |≤| sin s | + | sin u |≤| sin s | + | u |,
if | u |≤ 2 | t |, then

sin2(s + u) ≤ sin2 s + 2 | u sin s | +u2 ≤ 3(sin2 s + u2) ≤ 12(sin2 s + t2).
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On the other hand, since

| H(3)
2 (s) |≤ (‖g(2)

1 ‖+ ‖g′1‖) | sin s |≤ 3‖g(2)‖ | sin s |,
one has

| Δ4
t H2(s) | ≤ 2 | Δ3

t H2(s) |= 2
∣∣∣∣∫ t

0

∫ t

0

∫ t

0

H
(3)
2 (s + t1 + t2 + t3)dt1dt2dt3

∣∣∣∣
≤ C1‖g(2)‖ | t |3 sup

|u|≤3|t|
| sin(s + u) |≤ C2‖g(2)‖ | t |3 (| t | + | sin s |).

With the estimates given above we obtain (x = cos s)

| g(x)− Λn(g, x) | =| g1(x)− Ln(g1, cos−1 x) |=| h(s)− Ln(h, s) |
≤| H1(s)− Ln(H1, s) | + | H2(s)− Ln(H2, s) |
≤
∫ π

−π

| Δ4
t H1(s) | Kn(t) dt +

∫ π

−π

| Δ4
t H2(s) | Kn(t) dt

≤ C3‖g(2)‖
∫ π

−π

(
t2(t2 + sin2 s)+ | t |3 (| t | + | sin s |)Kn(t) dt

≤ C4 ‖g(2)‖
(

1
n4

+
sin2 s

n2
+
| sin s |

n3

)
≤ C5 ‖g(2)‖

(
1
n2

+
| sin s |

n

)2

.

In particular |g(±1)− Λn(g,±1)| ≤ C‖g(2)‖n−4. Therefore

‖Un(g)‖ ≤ C6‖g(2)‖n−4.

Moreover, since Un(g) is a first degree polynomial

‖U ′
n(g)‖ ≤ C7‖g(2)‖n−4.

The last inequalities provide the estimate

| g(x)−Mn(g, x) | ≤ C8 ‖g(2)‖
(

1
n2

+
| sin s |

n

)2

.

If n−1 ≤| sin s |, then from the last inequality we obtain

| g(x)−Mn(g, x) | ≤ C9 ‖g(2)‖
( | sin s |

n

)2

= C9 ‖g(2)‖
(√

1− x2

n

)2

.

Now we will verify the inequality when | sin s |< n−1. We consider the case
0 ≤ x < 1 (the result for the other case follows analogously).
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Taking into account that g(1) −Mn(g, 1) = 0, there exists y ∈ (x, 1) such
that

| g(x)−Mn(g, x) | =| g(x)−Mn(g, x)− g(1) + Mn(1) |
= (1− x) | g′(y)−M ′

n(g, y) |
≤ (1− x) | g′(y)− Λ′

n(g, y) | +(1− x)‖U ′
n(g)‖

≤ (1− x2) | g′1(y)− L′
n(g1, y) | +C10‖g(2)‖1− x2

n2
.

Thus, in order to finish this part of the proof, we need to estimate g′1(y)−Λ′
n(g1, y)

when | sin s |< 1/n (x = cos s) and x < y < 1.
Set y = cosu (notice that 0 < u ≤ π/2). Since h−Ln(h) is an even function,

h′(0)−L′
n(h, 0) = 0. Therefore, by the mean value theorem, there exists v ∈ (0, u)

such that

| g′1(y)− L′
n(g1, y) |= 1

sin u
| h′(u)− Ln(h′, u) |

=
1

sin u
| h(2)(v) − Ln(h(2), v) | v ≤ C11 | h(2)(v)− Ln(h(2), v) |

≤ C11

(
| H(2)

1 (v)− Ln(H(2)
1 , v) | + | H(2)

2 (v)− Ln(H(2)
2 , v) |

)
≤ C11

(∫ π

−π

| Δ4
t H

(2)
1 (v) | Kn(t) dt +

∫ π

−π

| Δ4
t H

(2)
2 (v) | Kn(t) dt

)
≤ C12 ‖g(2)‖ 1

n2

because

| Δ4
t H

(2)
1 (v) | ≤ C13‖g(2)‖ sup

|w|≤4|t|
sin2(v + w)

≤ C14‖g(2)‖(t2 + sin2 v) ≤ C14‖g(2)‖(t2 + sin2 u)

≤ C14‖g(2)‖(t2 + n−2)
and

| Δ4
t H

(2)
2 (v) | ≤ C15 | ΔtH

(2)
2 (v) |= C15

∣∣∣∣∫ t

0

H
(3)
2 (v + t1)dt1

∣∣∣∣
≤ C15‖g(2)‖ | t | sup

|w|≤|t|
| sin(v + w) |≤ C16‖g(2)‖ | t | (| t | +n−1).

We have proved (5.12).
Now, in order to obtain the general result we use standard arguments. In

particular, we only need an estimate in terms of the K-functional. Taking into
account that the sequence of operators {Mn} is uniformly bounded, if f ∈ C[−1, 1],



5.3. Gopengauz estimates 129

x ∈ [−1, 1] and g ∈W2,∞[−1, 1] one has

| f(x) −Mn(f, x) | ≤ C17 (‖f − g‖+ | g(x)−Mn(g, x) |)

≤ C18

(
‖f − g‖+

1− x2

n2
‖g(2)‖

)
.

Therefore

| f(x)−Mn(f, x) |≤ C17K

(
f,

1− x2

n2
, C[−1, 1], W2,∞[−1, 1]

)
. �

In 1979 Varma and Mills [395] also gave an interpolatory proof for a Telia-
kovskii-type estimate, but for the first modulus. The use of the interpolation pro-
cess of Bernstein will be analyzed in the next section.

Later, in 1986, Kis and Szabados [198] constructed a family of operators
which depends on several parameters (j, k, l and m). The estimates should be
viewed as m → ∞ (or n → ∞), while the other parameters (j, k, l) remain fixed.
For a certain choice of the parameters the operator converges in the order of best
approximation. They obtained the Jackson, Timan, and Teliakowskii-Gopengauz
theorems with explicit constants.

Fix j, k, l, m ∈ N such that

n =
1
2
(jm + km− k + l − 1) ∈ N0

and define

tv =
2πv

jm
, (v ∈ Z),

sj,k,l,m(t) =
sin(jmt/2) sink(mt/2) cosl(t/2)

jmk+1 sink+1(t/2)
, sin(t/2) 
= 0,

sj,k,l,m(t) = lim
τ→t

sj,k,l,m(τ) = 1, sin(t/2) = 0

and

Sj,k,l,m(g, t) =
jm−1∑

v=

g(tv)sj,k,l,m(t− tv).

Notice that S1,0,0,m(t) (m odd) is the Dirichlet kernel, S1,1,0,m(t) is the Fejér
kernel, S3,1,0,m(t) is the de la Vallée-Poussin kernel, and S1,3,0,m(t) is the Jackson
kernel. Operators S3,1,0,m were previously studied by Szabados in [361].

Let us also define

Lj,k,l,m(t) =
jm−1∑
v=0

| sj,k,l,m(t− tv) |,

Mj,k,l,m(t) =
jm−1∑
v=0

∣∣∣∣ sin(m(t− tv)/2)
m sin((t− tv)/2)

∣∣∣∣k |cos((t− tv)/2)|
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and

q =
1
2
(jm− km + k − l − 1).

Now, for F : [−1, 1]→ R and x = cos t define

Pj,k,lm(f, x) = Sj,k,lm(f ◦ cos, t)
and set

xv = cos
2πv

jm
, (v ∈ Z).

Theorem 5.3.4 (Kis and Szabados, [198]). Assume that q ≥ 0 and fix f ∈ C[−1, 1].

Pj,k,lm(f) ∈ Pn and Pj,k,lm(f, xv) = f(xv), v ∈ Z.(i)

‖f − Pj, k, l, m(f)‖ ≤ (1 + Lj, k, l, m(t))Eq(f).(ii)

(iii) If k ≥ 1, then

‖f − Pj, k, l, m(f)‖ ≤
(
Lj,k,l,m(t) +

π

2
Mj,k,l,m(t)

)
ω

(
f,

π

jm

)
.

(iv) If k ≥ 2, q ≥ 0 and x ∈ [−1, 1], then

| f(x)− Pj, k, l, m(f, x) |≤
(

Lj, k, l, m(t) +
πMj ,k, l+1, m(t)

2

)
ω

(
f,

π
√

1− x2

jm

)

+
(

Lj, k, l, m(t) +
2j

π2
Mj, k−1, l,m(t)

)
ω

(
f,

π | x |
j2m2

)
.

(v) If j is odd, k ≥ 2 is even, q ≥ 0 and x ∈ [−1, 1], then

| f(x) − Pj, k, l, m(f, x) |≤ Lj, k, l, m(t)ω

(
f,

π
√

1− x2

m

)

+
(

2Lj, k, l, m(t) +
2
πj

Mj, k, l+1, m(t)
)

ω

(
f,

2π2 | x |
m2

)
.

(vi) If j or m is even, k ≥ 2, q ≥ 0 and x ∈ [−1, 1], then

| f(x)− Pj, k, l, m(f, x) | ≤
(

Lj, k, l, m(t) +
2
πj

Mj, k, l+1, m(t)

+
j | x |

π
Mj, k−1, l, m(t)

)
ω

(
f,

π
√

1− x2

jm

)
.
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(vii) If j odd, m and k ≥ 2 are even, q ≥ 0 and x ∈ [−1, 1], then

| f(x)− Pj, k, l, m(f, x) | ≤
(

2Lj, k, l, m(t) +
(

1 +
| x |
2

)
Mj, k, l, m(t)

)
×ω

(
f,

2π
√

1− x2

m

)
.

As corollaries one has

‖f − P2,2,1,m(f)‖ ≤
(

2√
3

+
4
π

)
ω

(
f,

π

n + 1

)
,

and

‖f − P3,3,2,m(f)‖ ≤
(

11
9

+
2
√

6 + 9
π

)
ω

(
f,

π
√

1− x2

n + 1

)
.

Theorem 5.3.5 (Kis and Szabados, [198]). Given 0 < ε ≤ 1, for each n ≥ 20/ε2 and
f ∈ C[−1, 1], there exists a polynomial Pn ∈ Pn(1+ε) such that Pn(f) interpolates
f in at least n points and

|f(x)− Pn(f, x)| ≤ 13
ε2

ω1

(
f,

π
√

1− x2

2n

)
.

This answers a question about the construction of linear operators of minimal
degree compared to the number of points of interpolation, that at the same time
realize the Teliakovskii-Gopengauz estimate.

For classical Hermite interpolation, Gopengauz found a point-wise estimate
of the remainder of an interpolation formula using two multiple nodes at ±1.

Theorem 5.3.6 (Gopengauz, [152]). Fix r ∈ N, f ∈ Cr−1[−1, 1] and let P ∈ Π2r−1

be a Hermite interpolation polynomial given by f (v)(−1) = p(v)(−1) and f (v)(1) =
p(v)(1) for v = 0, 1, 2, . . . , r − 1. Then for all x ∈ [−1, 1],

| f(x) − p(x) |≤ Cr (1− x2)r−1 ωr+1

(
f (r−1),

2
r + 1

(1− x2)1/(r+1)

)
where the constant Cr depends only on r.

5.4 Bernstein interpolation process

We know that for the Lagrange interpolation Ln the Lebesgue constant is not
bounded with respect to n. To avoid this drawback some modifications are con-
sidered. One of them was suggested by Bernstein in 1930, who asked whether it
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is possible, for a given λ ∈ (1, 2), to construct a Lagrange-like interpolation poly-
nomial Qn of degree ≤ λN , such that for every f ∈ C[−1, 1] the polynomial Qn

interpolates at least at N points of f and ‖Qn − f‖ → 0 as N →∞.
In fact we have several problems: 1) Is such a construction possible? 2) If a

construction is possible, give a clear description. 3) Find a good estimate for the
rate of convergence. In 1) we do not ask for a clear construction.

An answer to the first problem was given by Erdös in 1943 (see [114]). He
provided a characterization.

Suppose all nodes xk,n lie in (−1, 1) and xk,n = cos θk,n. Denote by N(an, bn)
the numbers of points θk,n in the interval (an, bn), where 0 ≤ an < bn ≤ π. If
n(bn − an)→ 0, then the Erdös conditions are

lim
n→∞ sup

N(an, bn)
n(bn − an)

≤ 1
π

and, for each i,
lim

n→∞ inf n(θi,n − θi+1,n) > 0.

Some further investigations can be found in a paper of Vértesi [400] who,
among others, proved that if a system of nodes {xk,n} satisfies the so-called Erdös
condition, then there exists a linear operator Ln such that Ln(f, x) is an algebraic
polynomial of degree (1 + c)n for every f ∈ Cr[−1, 1] and some c > 0.

Definition 5.4.1. Fix c > 0. A system of points {xk,n} (n ∈ N, 1 ≤ k ≤ n) is
called of Bernstein-Erdös type, if there exists a sequence of linear operators {Ln}
(Ln : C[−1, 1]→ C[−1, 1]) for which the following three conditions hold:

Ln(C[−1, 1]) ⊂ Πn(1+c), (5.13)
Ln(f, xk, n) = f(xk, n), for all f ∈ C[−1, 1] and 1 ≤ k ≤ n, (5.14)

lim
n→∞Ln(f, x) = f(x). (5.15)

The system is called well approximating if there is a sequence {Ln} which satisfies
(i) and (ii) and

‖f − Ln‖ ≤ C En(f),

where C depends on c and {xk,n}, but not on f .

In 1932, Bernstein provided a constructive solution to the problem. He proved
that the zeros of Chebyshev polynomials {xk,n} is a system of Bernstein-Erdös
type. Fix λ > 1 and set l = λ/(2(λ− 1)). Notice that

2l

2l− 1
= λ.

Distribute the nodes x1,n > x2,n > · · · > xn,n in groups of 2l neighbor nodes.
If n is not divisible by 2l, the extreme groups may have less than 2l elements. To
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each one of the obtained 2l − 1 groups we associate a value f(xk,n) = Ak. These
correspond to the first 2l − 1 groups. If k = 2ls, the value A2ls is defined by

A2(s−1)+l+1 +A2(s−1)+l+3 + · · ·+A2ls−1 = A2(s−1)+l+2 +A2(s−1)+l+4 + · · ·+A2ls.

With this construction the interpolation formula is defined by

Qn(f, x) = Tn(x)
n∑

k=1

Ak

(x − xk,n)T ′
n(xk,n)

. (5.16)

We have that Qn(f) is a polynomial of degree not greater than n− 1 and if
N is the number of points x where Qn(f, x) = f(x), then N ≥ n(2l − 1)/2l.

Theorem 5.4.2 (Bernstein, [28]). Assume that, for each n, Qn is defined by (5.16).
For each f ∈ C[−1, 1], one has ‖f −Qn(f)‖ → 0.

Bernstein also noticed that, if we know the values of the function f at the
nodes xk,n, we can obtain an interpolation formula with a better rate of conver-
gence. We do not need to use all the given values of the function; we put the values
in groups of 2l nodes and take one of the values of the function in each one of
the obtained groups. The restriction we need is that the sum of the values with
even index be equal to the sum of the values with odd index. In this construction
nothing is said concerning which value of the function we will choose. For instance,
one can take the mean value.

For l = 1, this idea leads to formulation of the operator

Sn(f, x) =
Tn(x)

2n

n∑
k=1

(−1)k+1
(f(xk,n) + f(xk+1,n))

√
1− x2

k,n

x− xk,n

where we consider f(xn+1,n) = f(xn,n).
Let us present another example. Set

ϕ1,n(x) =
3l1,n(x) + l2,n(x)

4
, ϕn−1,n(x) =

3ln,n(x) + ln−1,n(x)
4

(5.17)

and

ϕk,n(x) =
lk−1,n(x) + 2lk,n(x) + lk+1,n(x)

4
, k = 2, . . . , n− 1. (5.18)

Then we define

Rn(f, x) =
n∑

k=1

f(xk)ϕk,n(x). (5.19)

Theorem 5.4.3 (Freud, [125]). Given c > 0, for each triangular matrix satisfying
Erdös’s conditions one can find a sequence {An} satisfying Bernstein’s conditions
(5.13) and (5.14) such that

| f(x)−An(f, x) |≤ K(c)En−1(f).
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Theorem 5.4.4 ([125]). A sequence {xkn} is well approximating if and only if it is
of Bernstein-Erdös type.

5.4.1 Bernstein first interpolation operators

We will refer to (5.19) as the Bernstein first interpolation operators.
In 1973, Kis gave an estimate of the constant for one of the Bernstein oper-

ators.

Theorem 5.4.5 (Kis, [197]). Assume that, for each n, Rn is defined by (5.19). For
each f ∈ [−1, 1], one has

| f(x)−Rn(f, x) |≤ 13
3π

ω

(
f,

2π

2n + 1

)
.

In 1976, Varma improved Theorem 5.4.2 by considering the rate of conver-
gence.

Theorem 5.4.6 (Varma, [393]). Assume that, for each n, Rn is defined by (5.19).
There exists a positive constant C, such that for each f ∈ C[−1, 1],

| f(x)−Rn(f, x) |≤ C

(
ω

(
f,

√
1− x2

n

)
+ ω

(
f,

1
n2

))
. (5.20)

In 1989, Jiaxing proved a theorem that gives an estimate of Bernstein oper-
ators (5.19) for differentiable functions.

Theorem 5.4.7 (Jiaxing, [180]). Assume that for each n, Rn is defined by (5.19).
There exists a constant C such that, if f ∈ C1[−1, 1] and x ∈ [−1, 1], then

| f(x)− Fn(f, x) |≤ C

(
1
n

ω

(
f ′,
√

1− x2

n
+

1
n2

)
+
‖f ′‖
n2

)
.

5.4.2 Chebyshev polynomials of second type

In 1978, Varma proved a result similar to Theorem 5.4.6 when the zeros of Cheby-
shev polynomials are changed to zeros of Chebyshev polynomials of the second
kind. Set

θk =
kπ

n + 1
, tk = cos θk, k = 1, . . . , n,

μk(x) =
(−1)k+1(1− t2k)

n + 1
Un(x)
x− tk

, k = 1, . . . , n,

m1(x) =
3μ1(x) + μ2(x)

4
, mn(x) =

μn−1(x) + 3μn(x)
4

,
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mk(x) =
μk−1(x) + 2μk(x) + μk+1(x)

4
, k = 2, . . . , n− 2,

P1(x) = m1(x) +
1
2
m2(x), Pn−1(x) =

1
2
mn−1(x), Pn(x) = mn(x),

Pk(x) =
1
2
(mk(x) + mk+1(x)), k = 2, . . . , n− 2.

Let us set

An(f, x) =
n∑

k=1

f(tk)mk(x) (5.21)

and

Bn(f, x) =
n∑

k=1

f(tk)Pk(x).

Theorem 5.4.8 (Varma, [394]). Let the operators {An} and {Bn} be defined as
above. There exist constants C1 and C2 such that, for f ∈ C[−1, 1], n ∈ N and
x ∈ [−1, 1],

| f(x)−An(f, x) | ≤ C1 ω

(
f,

1
n

)
and

| f(x)−Bn(f, x) | ≤ C1

(
ω

(
f,

√
1− x2

n

)
+ ω

(
f,

1
n2

))
.

For the operators An, Jiazing obtained an analogue to Theorem 5.4.7.

Theorem 5.4.9 (Jiaxing, [181]). Assume that for each n, An is defined by (5.21).
There exists a constant C such that, if f ∈ C1[−1, 1] and x ∈ [−1, 1], then

| f(x) −An(f, x) |≤ C

(
1
n

ω

(
f ′,
√

1− x2

n
+

1
n2

)
+
‖f ′‖
n2

)
.

In 1982, Chauhan presented Teliakovskii-Gopengauz’s theorems (in terms of
the first modulus of continuity) taking nodes of interpolation at the roots of Un

including points ±1. Set

tk =
kπ

n + 1
, xk = cos tk, 0 ≤ k ≤ n + 1,

lk(x) =
(−1)k+1(1− x)2Un(x)

(n + 1)(x− xk)
, 1 ≤ k ≤ n,

l0(x) =
1 + x

2
Un(x)
n + 1

,

ln+1(x) = (−1)n 1 + x

2
Un(x)
n + 1

.
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Now, define the polynomials

Vn(f, x) =
n+1∑
k=0

f(xk)vk(x) and Qn(f, x) =
n∑

k=0

f(xk)qk(x)

where

v0(x) = l0(x), vn+1(x) = ln+1(x),

v1(x) =
3l1(x) + l2(x)

4
, vn(x) =

ln−1(x) + ln(x)
4

,

vk(x) =
lk−1(x) + 2lk(x) + lk+1(x)

4
, 2 ≤ k ≤ n− 1,

q0(x) = l0(x), qn+1(x) = ln+1(x),

q1(x) =
7l1(x) + 4l2(x) + l3(x)

8
= v1(x) +

1
2
v2(x),

qk(x) =
lk−1(x) + 3lk(x) + lk+1(x) + lk+2(x)

8

=
1
2
[vk(x) + vk+1(x)] 2 ≤ k ≤ n− 2,

qn−1(x) =
ln−2(x) + 2ln−1(x) + ln(x)

8
=

1
2
vn−1(x),

qn(x) =
ln−1(x) + 3ln(x)

4
= vn(x).

Theorem 5.4.10 (Chauhan, [74]). There exist constants C1 and C2 such that, for
each n, f ∈ C[−1, 1] and x ∈ [−1, 1],

| f(x)− Vn(f, x) | ≤ C1 ω
(
f,

1
n

)
and

| f(x)−Qn(f, x) | ≤ C2 ω

(
f,

√
1− x2

n

)
.

In [413] Xie and Zhou presented a modification of Lagrange interpolation
based on the zeros of the Chebyshev polynomial of the second kind.

5.4.3 General Bernstein operators

In 1996, Jiaxing modified the Bernstein process in order to consider derivatives
up to order 3. Let the functions {ϕk,n} be given by (5.17) and (5.18). Set

ψ1,n(x) =
5ϕ1,n(x) − ϕ2,n(x)

4
, ψn−1,n(x) =

5ϕn,n(x)− ϕn−1,n(x)
4

(5.22)
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and

ψk,n(x) =
−ϕk−1,n(x) + 6lk,n(x) − ϕk+1,n(x)

4
, k = 2, . . . , n− 1. (5.23)

Now consider the operators

Hn(f, x) =
n∑

k=1

f(xk,n)ψk,n(x). (5.24)

Theorem 5.4.11 (Jiaxing, [183]). Let Hn be defined by (5.24). If f ∈ Cj [−1, 1]
(0 ≤ j ≤ 3), then there exists a constant C(f) such that

‖f −Hn(f)‖ ≤ C(f)
(

1
nj

ω

(
f (j),

1
n

)
+

1
nj+1

)
.

The highest convergence order for Hn is n−4. Jiaxing obtained a better esti-
mate using the Ditzian-Totik modulus and the results of Ditzian and Jiang in [99].

Theorem 5.4.12 ([183]). Let the sequence {Hn} be defined by (5.24) and fix ∈ [0, 1].
There exists a constant C such that f ∈ C[−1, 1] and x ∈ [−1, 1], thus one has

| f(x)−Hn(f, x) | ≤ Cωλ
ϕ

(
f,

1
n

(δn(x))1−λ

)
.

According to Jiaxing and Jichang [182] in 1993, Zhu obtained an estimate
for the general Bernstein construction with Chebyshev nodes.

Theorem 5.4.13 (Zhu, [419]). Let Rn be given by (5.16). For f ∈ C[−1, 1] and
x ∈ [−1, 1], one has

| f(x)−Rn(x) |≤ C

{
ω

(
f,
| x |
2
| θ − θk0 |2 +

√
1− x2 | θ − θk0 |

)
+ | Tn(x) | ω

(
f,

√
1− x2

n
+

1
n2

)

+
| Tn(x) |

n

∫ 1

1/n

ω(f, | x | t2 +
√

1− x2t)
t2

dt

)
,

where xk0 = cos θk0 is the nearest node to x = cos θ, and k0/2l is not an integer;
C is a constant which depends only on l.

In this case the higher order of convergence can not exceed 1/n. Jiaxing
and Jichang presented another construction with a better rate of convergence for
continuous and derivable functions.
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Consider again the Chebyshev nodes xk,n. Divide xn,n < xn−1,n < · · · <
x3,n < x2,n according to 2l. We have n = 2ls + 2 + r, s ∈ N and 0 ≤ r < 2l. At
the 2lt + 1th nodes, t = 1, 2, . . . , s the value of Hn(f, x) is

B2lt+1 = f(x2lt+1 +
l∑

p=1

(f(x2l(t−1)+2p − f(x2l(t−1)+2p+1)

+
1
4

2∑
p=1

(f2lt+p)− f(x2l(t−1)+p).

At other nodes, the value of Hn(f, x) is equal to f(x).
Now define

Hn(f, x) =
∑

Bkμk(x)

where Bk is given as above when k = 2lt + 1, t = 1, 2, . . . , s and Bk = f(xk)
otherwise.

It is known that Hn(f, x) is a polynomial of degree M = n − 1, and Hn(f)
and f coincide at G > (2l − 1)n/2l nodes; M/G < 2l/(2l− 1) = λ.

Theorem 5.4.14 (Jiaxing and Jichang, [182]). There exists a constant C such that,
for f ∈ C[−1, 1] and x ∈ [−1, 1],

| f(x) −Hn(f, x) |≤ Cω

(
f,

1
n

)
.

Moreover, if f ∈ C1[−1, 1], then

| f(x)−Hn(f, x) |≤ C

(
1
n

ω

(
f,

1
n

)
+
‖f ′‖
n2

)
.

The paper also contains a result for functions f ∈ C2[−1, 1]. The authors
remarked that the order of convergence can not exceed 1/n2.

In the last section we recall that Varman and Mills proved that, with a Bern-
stein-type interpolation operator, we can obtain a Teliakovskii-type estimate [395].

5.4.4 Other modifications

In 1983, Chauhan observed that interpolating at one end of the interval did not
considerably improve the estimate. Thus he proposed another construction. Set
tkn = (2k − 1)π/(2n), 1 ≤ k ≤ n and xkn = cos tkn. For 1 ≤ k ≤ 2n, let

lk(t) =
sin n(t− tk) cos((t− tkn)/2)

2nn sin(t− tkn)/2

=
1
2n

(
1 +

n−1∑
j=1

cos j(t− tkn) + cosn(t− tkn)
)
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and
sk(t) = 4t3k(t)− 3trk(t).

Now, for f : [−1, 1]→ R, define

Rn(f, x) = L(f, x) +
n∑

k=1

(f(xkn) + L(f, x)) rk(x),

where
rk(x) = sk(x) + s2n+1−k(x), 1 ≤ k ≤ n.

Theorem 5.4.15 (Chauhan, [75]). For each n, Rn(C[−1, 1)] ⊂ Π4n+1. There exists
a constant C such that, for each f ∈ C[−1, 1] and x ∈ [−1, 1],

Rn(f, xkn) = f(xkn), 1 ≤ k ≤ n,

and
| f(x)−Rn(f, x) | ≤ C ω (f, Δn(x)) .

In 1998, He, Jiaxing and Li, Xiaoniu constructed another sequence with zeros
of the Chebyshev polynomial of the second kind [184]. They were able to obtain
an estimate in terms of the modulus of smoothness of order r, where r is an odd
natural number. In [414] Xue-gang and De-hui constructed sequences based on the
zeros of Jacobi polynomials and analyzed the rate of convergence.

5.5 Integral operators

We have presented in Section 2.5 some integral constructions due to Dzyadyk [109].
Taking into account the well-developed theory in trigonometric approxima-

tion, it is natural to ask whether one can obtain Jackson’s theorem by considering
convolution with algebraic polynomials. In the simplest case one can consider con-
volution with non-negative algebraic polynomials in order to obtain positive linear
operators.

In 1963, Butzer raised the question of whether it is possible to construct
polynomial operators, by means of singular convolution integrals, which approx-
imate a function f ∈ Lipα[−1, 1] with order O(n−α), 0 < α ≤ 1. It was known
that such an order of convergence can not be obtained with the usual changes
in trigonometric operators. A natural extension of this problem is the following:
construct a sequence of operators Ln : C[−1, 1] → Pn such that, if C1[−1, 1] and
f ′ ∈ Lipα[−1, 1] (0 < α ≤ 1), then ‖f − Ln(f)‖ = O(n−1−α).

In previous sections we presented some solutions of these problems. Here we
only consider operators constructed by means of convolution.

For example, the Landau polynomials [224] are defined by

Ln(f, x) = Cn

∫ 1

−1

f(t)(1− (t− x)2)ndt, 1/Cn =
∫ 1

−1

(1− (t− x)2)ndt.
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For f ∈ C[−1, 1], Ln(f) converges uniformly to f , but only on each interval [−δ, δ],
with 0 < δ < 1.

In 1968, DeVore proposed some operators obtained by convolution with the
Legendre polynomials (3.5). Set

Λn(t) = Cn
(P2n(t))2

t2 − x2
n+1

,

where P2n is the Legendre polynomial of degree 2n, xn+1 is the smallest positive
zero of P2n and Cn is chosen from the condition∫ 1

−1

Λn(t)dt = 1.

Now, for each function f ∈ C[−1/2, 1/2], define

Ln(f, x) =
∫ 1/2

−1/2

f(t)Λn(t− x)dt. (5.25)

Theorem 5.5.1 (DeVore, [86]). For each n ∈ N, let Ln be defined by (5.25).

(i) For each n, Ln(C[−1/2, 1/2]) ⊂ Π4n−4.
(ii) If f ∈ C[−1/2, 1/2] and f(−1/2) = f(1/2) = 0, then

‖f − Ln(f)‖ ≤ 40 ω(f, 1/n).

(iii) If Mn(x, f) = L(f, x) + Ln(f − Lf, x), where L(f) is defined by (5.1)
with [a, b] = [−1/2, 1/2], then there exists a constant C such that, for f ∈
C[−1/2, 1/2],

‖f −Mn(f)‖ ≤ C ω(f, 1/n).

We remark that, using the properties of the first modulus of continuity and
(ii), the constant C in (iii) can be taken as 120.

In 1969, Bojanic [32] showed that the last result holds for a large class of
orthogonal polynomials.

Fix δ, c (0 < δ, c ≤ 1). Let w be an even weight on [−1, 1] satisfying the
following conditions: there exist constant m and M such that

0 < m ≤ w(x), x ∈ [−c, c],
w(x) ≤M, x ∈ [−δ, δ].

Let {Pn} be a family of orthogonal polynomials with respect to w and −1 < x1,n <
· · · < xn,n be the zeros of Pn. That is∫ 1

−1

Pn(x)xkdx = 0, 0 ≤ k ≤ n− 1 and
∫ 1

−1

(Pn(x))2dx 
= 0.
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Let {Rn} be a sequence of polynomials defined by

Rn(x) = cn

(
P2n(x)

x2 − α2
2n

)2

or Rn(x) = cn

(
P2n+1(x)

x(x2 − α2
2n+1)

)2

,

where αj is the smallest positive zero of Pj and cn is taken from the condition∫ c

−c
Rn(t)dt = 1. For f ∈ C[−c/2, c/2] and n ∈ N define

Kn(f, x) =
∫ c/2

−c/2

f(t)Rn(x− t)dt. (5.26)

Theorem 5.5.2 (Bojanic, [32]). For each n ∈ N, let Kn be defined by (5.26). There
exist constants C and N such that, for f ∈ C[−c/2, c/2] and n ≥ N ,

‖f −Kn(f)‖ ≤ C ω(f, 1/n).

The proof is based on properties of the zeros of orthogonal polynomials, the
Cotes numbers for gaussian quadratures and usual techniques for positive linear
operators.

When w(x) = 1/
√

1− x2, the simplest case of the last theorem is obtained
(this gives place to the Chebyshev polynomials) or w(x) =

√
1− x2 (this gives

place to the Chebyshev polynomials of second kind). In the case w(x) = 1, we
obtain the Legendre polynomials and we recover the DeVore theorem.

For the case of Chebyshev polynomials, a simplified proof was given by Bo-
janic and DeVore in 1969.

Theorem 5.5.3 (Bojanic-DeVore, [34]). Let Kn be defined by (5.26) with c = 1 and
w(x) = 1/

√
1− x2; for f ∈ C[−1/2, 1/2] and x ∈ [−1/2, 1/2], define

K∗
n(f, x) = f(0) + Kn(f − f(0), x).

Then, for n ≥ 3,
‖f −K∗

n(f)‖[−1/4,1/4] ≤ 4 ω(f, 1/n).

In 1970, Chawla presented another construction based in convolution with
an even positive polynomial.

Let Qn ∈ Pn be an even polynomial, non-negative for x ∈ [−1, 1]. If cn =∫ 1

−1
Qn(s)ds > 0, define Pn(x) = Qn(x)/cn.
For f ∈ C[−1/2, 1/2], Chawla considered the operator

Ln(f, Qn, x) =
∫ 1/2

−1/2

f(t)Pn(t− x)dt. (5.27)

Theorem 5.5.4 (Chawla, [76]). Let Ln be defined by (5.27). Assume

f ∈ C[−1/2, 1/2] and f(−1/2) = f(1/2) = 0.
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For δ > 0 and x ∈ [−1/2, 1/2], one has

| f(x)− Ln(f, Qn, x) |≤
(

3
2

+
βn

δ

)
ω(f, δ),

where β2
n = (1 + ρn,1)/(1− ρn,1) and ρn,1 is the coefficient of T2 in the expansion

of Qn in terms of Chebyshev polynomials.

The best choice of Qn leads to βn = tan(π/(n + 4). With this selection he
proved

| f(x)− Ln(f, Qn, x) |≤ 5ω(f, 1/(n + 4)).

Set w(x) = 1/
√

1− x2 and consider X = C[−1, 1] or X = Lp(w), 1 ≤ p <
∞. In 1976, Butzer and Stens studied the convergence properties of the singular
integrals

Iρ(f, x) =
1
π

∫ 1

−1

(τxf)(u)χρ(u)w(u)du, f ∈ X, ρ ∈ A (5.28)

where
χρ ∈ L1(w), [χρ]∧(0) = 1, (ρ ∈ A),

[χρ]∧(k) is defined by (3.10) and τxf is the generalized translation given in (3.11)
(see [56]). In [55] they estimated the rate of convergence.

Theorem 5.5.5 (Butzer and Stens, [55]). Let X = C[−1, 1] or X = Lp(w), 1 ≤
p < ∞. If the kernel {χρ}ρ∈A of the integral singular (5.28) is positive, then for
all f ∈ X,

‖f − Iρ(f)‖X ≤
(

1 +
π√
2

)2

ωT
1

(
f, cos

√
1− [χρ]∧(1)

)
X

,

where ωT
1 (f, t)X is defined by (3.15).

Proof. We need the following inequality

ωT
1 (f, η)X ≤

(
1 +

arccos η

arccosγ

)2

ωT
1 (f, γ)X , for γ ∈ [−1, 1).

It can be obtained from the properties of the classical modulus of continuity. In
fact,

ωT
1 (f, η)X = ω2(f ◦ cos, arccos(η))X

≤
(

1 +
arccos η

arccosγ

)2

ω2(f ◦ cos, arccos(γ))X

=
(

1 +
arccos η

arccosγ

)2

ωT
1 (f, η)X .



5.5. Integral operators 143

We also need some estimates for the moments. Taking into account that
arccos2 u ≤ (π2/2)(1− u) for u ∈ [−1, 1], one has

1
π

∫ 1

−1

(arccosu)2χρ(u)w(u)du ≤ π2

2
1
π

∫ 1

−1

(1−u)χρ(u)w(u)du =
π2

2
(1− [χρ]∧(1)).

On the other hand, using Hölder’s inequality we obtain

1
π

∫ 1

−1

(arccosu)χρ(u)w(u)du ≤
√

1
π

∫ 1

−1

(arccosu)2χρ(u)w(u)du
1
π

∫ 1

−1

χρ(u)w(u)du

≤ π√
2

√
1− [χρ]∧(1).

Notice that 1− [χρ]∧(1) > 0. Because if we assume

0 = 1− [χρ]∧(1) =
1
π

∫ 1

−1

(1− u)χρ(u)w(u)du,

then χρ(u) = 0 (a.e.) and this is a contradiction ([χρ]∧(0) = 1).
Finally, for each λ ∈ [−1, 1),

‖f − Iρ(f)‖X ≤ 1
π

∫ 1

−1

‖(τuf)(·)− f(·)‖Xχρ(u)w(u)du

≤ 1
π

∫ 1

−1

ωT
1 (f, u)Xχρ(u)w(u)du

≤ ωT
1 (f, λ)X

1
π

∫ 1

−1

(
1 +

arccosu

arccosλ

)2

χρ(u)w(u)du

≤ ωT
1 (f, λ)X

(
1 +

π√
2 arccosλ

√
1− [χρ]∧(1)

)2

.

Hence, the assertion follows by taking λ = cos(
√

1− [χρ]∧(1)). �

In particular, this theorem can be used to estimate the rate of convergence
of Fejér’s means with respect to the Chebyshev systems. That is

σn(f, x) = (f ∗ Fn)(x) (5.29)

where

Fn(x) = 1 + 2
n∑

k=1

(
1− k

n + 1

)
Tk(x).

Corollary 5.5.6. Let X = C[−1, 1] or X = Lp(w), 1 ≤ p < ∞. For the Fejér
singular integral (5.29) one has

‖f − σn(f)‖X ≤
(

1 +
π√
2

)2

ωT
1

(
f, cos

1√
1 + n

)
X

.
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The Fejér-Korovkin sums are defined by

Kn(f, x) = (f ∗ κn)(x)

where

κn(x) = 1 + 2
n∑

k=1

μn(k)Tk(x)

and

μn(k) =
(n− k + 3) sin (k+1)π

n+2 − (n− k + 1) sin (k−1)π
n+2

2(n + 2) sin(π/(n + 2))
.

Corollary 5.5.7. For the Fejér-Korovkin sums one has, for f ∈ X,

‖f −Kn(f)‖X ≤
(

1 +
π√
2

)2

ωT
1

(
f, cos

√
1− cos

π

n + 2

)
X

.

These operators provide polynomials of degree n.
Interpolatory operators usually use zeros of orthogonal polynomials. These

ideas can not be used for equidistant nodes, because they have a very bad behavior
in interpolatory processes.

Szabados [362] constructed some operators of the form

Ln(f, x) =
n∑

k=0

Pk,n(x)f
(

k

n

)
,

where Pk,n ∈ N and

‖f − Ln(f)‖ ≤ Cω

(
f,

1
n

)
,

for f ∈ C[−1, 1]. He also constructed operators of the form

Sn,r(f, x) =
n,◦∑
k=0

r∑
j=0

Pj,k,r,n(x)f (j)

(
k

n

)
, (5.30)

for a family of polynomials Pj,k,r,n ∈ Pn and f ∈ Cr[−1, 1].
Szabados asked if it is possible to improve the Jackson order n−rω(f (r); n−1),

by means operators like in (5.30), to the Timan-Teliakovskii point-wise estimate
(
√

1− x2/n)rω(f (r);
√

1− x2/n). In [398] Vértesi answered the question in the
negative.

The operators defined by DeVore [86], Bojanic-DeVore [34], Bojanic [32],
Szabados [362] (1976) and Butzer-Stens [55] are of degree 4n − 2 or 4n − 4 and
some approximate f uniformly only on [−1 + ε, 1− ε] for each ε > 0.

Bavinck [19], Lupaş [242] and Stens-Wehrens [350] considered the integral

J2n(f, x) =
1
2

∫ 1

−1

f(u)χ2n(x, u)du (5.31)
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where the kernel is given by

χ2n(x, u) =
3

n2 + 3n + 3

2n∑
k=0

2k + 1
2

Pk(x)Pk(u)
∫ 1

−1

Pk(t)[P (2,0)
n (t)]2dt,

P
(α,β)
n being the Jacobi polynomial. Note that χ2n(x, u) ≥ 0 and∫ 1

−1

χ2n(x, u)du = 2.

Theorem 5.5.8 (Lupaş, [242]). If J2n is defined by (5.31), then for each f ∈
C[−1, 1], J2n(f) ∈ P2n and

‖J2nf − f‖ ≤ (1 + 2
√

3)ω1(f, 1/2n).

In [58] Butzer, Stens and Wehrens presented a systematic approach to study
direct approximation theorems by algebraic convolution operators. They used the
so-called Legendre transform method. The ideas are similar to one presented in
Section 3.2, but using expansions in terms of the Legendre polynomials.

Let X stand either for the space C[−1, 1] or Lp(−1, 1) = Lp, 1 ≤ p < ∞, of
all real-valued measurable functions f defined on [−1, 1] for which the norm

‖f‖p =
(

1
2

∫ 1

−1

| f(u) |p du

)1/p

is finite.
Let Pn be the Legendre polynomials (3.5). The Legendre transform of f ∈ X

is defined by

f∧(k) =
∫ 1

−1

f(u)Pk(u)du. (5.32)

It can be proved that (5.32) defines a bounded linear operator mapping X
into (c0), the space of all real sequences {ak}∞k=0 such that limk→∞ ak = 0.

The translation operator is defined in this setting by

(τhf)(x) =
1
π

∫ 1

−1

f
(
xh + u

√
1− x2

√
1− h2

) du√
1− u2

, (x, h ∈ [−1, 1]).

For each h ∈ [−1, 1], τh defines a positive linear operator from X into itself with
‖τh‖[X,X] = 1 and, for all f ∈ X ,

lim
h→1−

‖τh(f)− f‖X = 0.

The modulus of continuity and Lipschitz class are defined as follows:

ωL
1 (f, t) = sup

t≤h≤1
‖τhf − f‖X , (t ∈ (−1, 1)) (5.33)

LipL
1 (α, X) = {f ∈ X : ωL

1 (f, t) = O((1 − t)α)}. (5.34)
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Butzer, Stens and Wehrens studied conditions upon the sequence of functions
{χn}n∈N0 ⊂ L1(−1, 1) such that

lim
n→∞ ‖f ∗ χn − f‖X = 0, (5.35)

in order to investigate the rate of convergence in (5.35), expressing it in terms
of the modulus of continuity (5.33). Results related with the Fejér means, the
Fejér-Korovkin means, the Rogosinski means, and the de La Vallée-Poussin means
(among others) were given, where all means are considered with respect to the
Legendre expansion.

Theorem 5.5.9. Let {χρ}ρ∈A be a positive kernel, and let ϕ be a strictly posi-
tive function defined on A such that lim

ρ→ρ0
ϕ(ρ) = 0. The following assertions are

equivalent.

| 1− χ∧
ρ |= O(ϕ(ρ)), ρ→ ρ0.(i)

‖f − Iρ(f)‖X ≤ MωL
1 (f, 1− ϕ(ρ))X .(ii)

Here we present only one application.

Corollary 5.5.10. Let the Fejér-Legendre means be defined by

σn(f, x) =
n∑

k=0

(
1− k

n + 1

)
(2k + 1) f∧(k)Pk(x).

If f ∈ Lip1(α, C[−1, 1]), (0 < α < 1) (see (5.34)), then ‖σnf − f‖C = O(n−α).

Let Cw[−1, 1] be the class of all f ∈ C[−1, 1] for which there exists a sequence
{Pn}, Pn ∈ Pn such that

| f(x)− Pn(x) |≤ w

(√
1− x2

n
+

1
n

)
,

where w is an increasing continuous function such that w(0) = 0 and ω(t1 + t2) ≤
M(w(t1) + w(t2)), for a fixed constant M .

Let n(f) be the partial sums of the Chebyshev-Fourier series of f and

σn,m(f, x) =
1

m + 1

n∑
k=n−m

Sk(f, x)

be de la Vallée-Poussin sums.

Theorem 5.5.11 (Omataev, [274]). Fix θ ∈ (0, 1) and, for each n ∈ N fix m ∈ N

such that m ≤ θn. For each f ∈ Cw[1, 1] one has

| f(x)− Sn,m(f.x) |≤ C

(
ln

n

m + 1
+O(1)

)
×

n∑
k=n−m

w

( √
1− x2

k − n + m + 1
+

1
(k − n + 1− 1)2

)
.
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Omataev obtained a similar theorem for the Chebyshev polynomials of second
type. Other similar results were given by Labunetz [223].

We finish this section by presenting a sequence due to Lupaş. He considered
the Chebyshev coefficients defined by

ak(f) =
2
π

∫ 1

−1

f(t)Tk(t)
dt√

1− t2
, k ≥ 0.

Define

ϕn(x) = an
1 + Tn+2(x)

(x− cos(π/(n + 2)))2
, an =

1
π(n + 2)

sin2 π

n + 2
.

Notice that ϕn ∈ Pn. Let tk,n be the Fourier-Chebyshev coefficients of ϕn. That is

ϕn(x) = t0,n +
n∑

k=1

tk,nTk(x).

Now define a kernel Ln : [−1, 1]× [−1, 1]→ R by

Ln(x, t) =
n∑

k=0

tk,nTk(x)Tk(t).

It can be proved that Ln(x, t) ≥ 0, for (x, t) ∈ [−1, 1] × [−1, 1]. Thus the linear
operator Jn : C[−1, 1]→ Pn defined by

Jn(f, x) =
∫ 1

−1

Ln(x, t)f(t)dt

is positive.

Theorem 5.5.12 (Lupaş, [243]). For f ∈ C[−1, 1],

| f(x)− Jn(f, x) | ≤
(
1 + π

√
2 + π2/2

)
ω(f, Δn(x)),

and
‖f − Jn(f)‖ ≤ 8ω(f, 1/(n + 2)).

Proof. First, notice that

ϕn(xkn) =

{
(n + 2)/2π, k = 1,

0, 2 ≤ k ≤ n,

and

ϕn(−1) =
1 + (−1)n

π(n + 2)
sin2 π

2(n + 2)
.
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We will use a quadrature formula (see Lemma 1 in [243]: if g ∈ Cn+2[−1, 1],
there exists θ = θ(g, n), θ ∈ (−1, 1), such that

1∫
−1

g(t)√
1− t2

dt =
2π

n + 2

(
1− (−1)n

4
g(−1) +

s∑
k=1

g(xkn)

)
+ Rn(g),

where s = 1[n/2],

Rn(g) =
π

2n+1

g(n+2)(θ)
(n + 2)!

and xkn =
(2k − 1)π

n + 2
.

Notice that, ∫ 1

−1

ϕn(t)w(t)dt = 1,∫ 1

−1

ϕn(t)(1 − t)w(t)dt = 2 sin2 π

2(n + 2)
,

and ∫ 1

−1

ϕn(t)(1 − t)2w(t)dt =
n + 1
n + 2

sin2 π

n + 2
.

Moreover ∫ 1

−1

ϕn(t)√
1 + t

dt =
∫ 1

−1

ϕn(t)
√

1− tw(t)dt

≤
√∫ 1

−1

ϕn(t)w(t)dt

∫ 1

−1

ϕn(t)(1 − t)w(t)dt

=
√

2 sin2 π

2(n + 2)
<

π
√

2
2n

and, we similar arguments we obtain∫ 1

−1

ϕn(t)dt =
∫ 1

−1

ϕn(t)
√

1− t2w(t)dt <
π

n
.

Set z1(t, x) =| x − tx − ϕ(x)ϕ(t) |, z2(t, x) =| x − tx + ϕ(x)ϕ(t) | and
Qn(t) = 2n

√
1− t + n2(1− t). It can be proved that, for t, x ∈ [−1, 1]

zj(t, x) ≤ Δn(x)Qn(t), j = 1, 2.

The estimates given above yield

kn = 1 +
∫ 1

−1

ϕn(t)Qn(t)w(t)dt < 1 +
√

2π + π2/2.
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On the other, hand, if x, t ∈ [−1, 1], then

| f(x)− (τxf)(t) |≤ 1
2
| f(x)− f(xt +

√
1− x2

√
1− t2 |

+
1
2
| f(x)− f(xt−

√
1− x2

√
1− t2 |

≤ 1
2
ω(f, z1(t, x)) +

1
2
ω(f, z2(t, x))

≤ ω(f, Qn(t)Δn(x))
≤ (1 + Qn(t))ω(f, Δn(x)).

Finally, one has

| f(x)− Jn(f, x) | ≤
∫ 1

−1

| f(x)− (τxf)(t) | ϕn(t)w(t)dt

≤ ω(f, Δn(x))
∫ 1

−1

(1 + Qn(t))ϕn(t)w(t)dt

≤ (1 +
√

2π + π2/2)ω(f, Δn(x)). �

Define

J∗
n(f, x) = Jn(f, x) + (1− x)/2[f(−1)− Jn(f,−1)] + (1 + x)/2[f(1)− Jn(f, 1)].

Theorem 5.5.13 ([243]). There exists a constant C such that, for f ∈ C[−1, 1],

| f(x)− J∗
n(f, x) | ≤ C ω(f,

√
1− x2/n).

In 1989, Shevchuk [339] found a simple representation of Dzyadyk’s polyno-
mial kernel in connection with the segment: [−1, 1]. For r, n ∈ N let Jn,r be the
Jackson kernel

Jn,r(t) =
1

γn,r

(
sin nt/2
sin t/2

)2(r+1)

where γn,r is chosen from the conditions
∫ π

−π
Jn,r(t)dt = 1.

Now for m, n, r ∈ N, x, y ∈ [−1, 1]; β = arccosx and α = arccos y set

Dm,n,r(y, x) =
1

(m− 1)!
∂m

∂xm
(x− y)m−1

∫ β+α

β−α

Jn,r(t)dt.

The kernel Dm,n,r(y, x) is an algebraic polynomial of degree (r + 1)(n − 1) − 1
with respect to the variable x and Dm,1,r(y, x) = 0.

The idea for such a representation is based on the function

ϕn,r(x, y) =
∫ β+α

β−α

Jn,r(t)dt
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used by DeVore in [91]. With this kernel we define the operator

Ln(f, x) =
∫ 1

−1

f(y)Dm,n,r(y, x)dy.

It can be verified that Ln(f, x) is an algebraic polynomial and the sequence
{Ln(f, x)} approximates the function f and its derivatives.

In [113] the result of Shevchuk was presented in a more general form, which
included the estimate of Ditzian-Totik and Trigub simultaneous approximation
type theorems. They used a variant of Dzyadyk’s kernel that was developed by
Shevchuk in [339] for complex approximation. In [173] he showed that the Ditzian-
Totik and the τ modulus are equivalent.

5.6 Simultaneous approximation

From the Trigub and Gopengauz result we know that certain interpolation pro-
cesses can be used for simultaneous approximation.

The ideas of Gopengauz were used by Baiguzov [7] to obtain results in ap-
proximate differentiation with the aid of Lagrange interpolatory polynomials.

In 1981, Srivastava studied the first derivatives of the operators constructed
by Kis and Vértesi [199]. In fact, he modified the operators in order to estimate
the first derivative. Let −1 ≤ x ≤ 1, x = cos t,

xk,n = cos tk,n, tk,n =
2kπ

2n + 1
, k = 0, . . . , n.

For k = −n, . . . , n, define

lk,n(t) =
sin(2n + 1)(t− tk,n/2)
(2n + 1) sin(t− tk,n)/2

. (5.36)

Then for f ∈ Cs[−1, 1] we define the polynomial

Ln,s(f, x) =
n∑

k=0

s∑
r=0

(x− xk,n)rf (r)(xk,n)vk(x), (s = 0, 1) (5.37)

where

v0(x) = u0(t), vk(x) = uk(t) + u−k(t), (1 ≤ k ≤ n),

uk(t) = 4l3k(t) + 3l4k(t),

k = −n, . . . , n. For s = 0, this polynomial is the same as the one of Kis and
Vértesi.
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Theorem 5.6.1 (Srivastava, [344]). Let Ln,1 be given by (5.37) (with s = 1). For
f ∈ C[−1, 1], n ∈ N and x ∈ [−1, 1] one has

| f(x)− Ln,1(f, x) | ≤ C1

n
ω

(
f,

1
n

)
,

and

| f ′(x) − L′
n,1(f, x) | ≤ C2ω

(
f,

1
n

)
.

In 1978, Vértesi constructed linear polynomial operators of degree≤ 2n(1+c)
which interpolate f and f ′ at the Chebyshev nodes (assuming f ′ is continuous).
Moreover, he provided Teliakovskii-Gopengauz-type estimates.

With tk,n = cos(2k − 1)π/(2n) and xk,n = cos tk,n, k = 1, 2, . . . , n, set

lk,n(x) =
(−1)k+1 sin tk,nTn(x)

n(x− tk,n)
, vk,n(x) =

1− xxk,n

1− x2
k,n

,

hk,n(x) + vk,n(x)l2k,n(x), Gk,n(x) = (x− xk,n)l2k,n(x).

Now, for f ∈ C1[−1, 1], define

Hn(f, x) =
n∑

k=1

f(xk,n)hk,n(x) +
n∑

k=1

f ′(xk,n)Gk,n(x).

Fejér [118] proved that

Hn(f, xk,n) = f(xk,n) and H ′
n(f, xk,n) = f ′(xk,n).

Furthermore, Hn(f) converges uniformly to f . But the rate of convergence could
be very slow.

For the new construction, fix s = s(n) ≤ n and n ≤ Cs. Set

min
1≤i≤s

| tk,n − ti,s |=| tk,n − tjk,s |, (k = 1, . . . , n),

(if there is more than one point satisfying this, choose any of them).
Define

Fk,n(x) =
lr+2
jk,s(x) sin2r+2(t)

lr+3
jk,s(xk,n) sin2r+2 tk,n

×
{

hk,n(x) +
[
(2r + 2)

cos tk,n

sin2 tk,n

− (r + 3)
l′jk,s(xk,n)
ljk,s(xk,n

]
Gk,n(x)

}
and

Dk,n(x) =
lr+3
jk,s(x) sin2r+2 t

lr+3
jk,s(xk,n) sin2r+2 tk,n

,

where x = cos t.
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Now, for f ∈ Cr[−1, 1] (r ≥ 1), define the operator

An(f, x) = Ln,r(f, x) +
n∑

k=1

[f(xk,n)− Ln,r(f, xk,n)]Fk,n(x)

+
n∑

k=1

[f ′(xk,n)− L′
n,r(f, xk,n)]Dk,n(x),

where Ln,r is the operator of Gopengauz given in Theorem 2.8.11. It can be proved
that, if

s =
[
2nc− r + 2

r + 3

]
,

then for each f ∈ Cr[−1, 1],

degAn(f) ≤ (r + 3)(s− 1) + 2r + 2 + 2n− 1 ≤ 2n(1 + c).

Theorem 5.6.2 (Vértesi, [399]). For every c > 0 fixed and r ≥ 1, let An be the
linear polynomial operators defined above. One has

(i) An(Cr[−1, 1]) ⊂ Π2n(1+c),
(ii) An(f, xk,n) = f(xk,n) and A′

n(f, xk,n) = f ′(xk,n), for k = 1, 2, . . . , n and
n ≥ n0,

(iii) | f (i)(x)−A(i)
n (x) | ≤ C

(√
1− x2

n

)r−1

ω

(
f (r),

√
1− x2

n

)
, (0 ≤ i ≤ r)

for n ≥ n0 and f ∈ Cr[−1, 1].

Vértesi considered also other operators. For f ∈ Cr[−1, 1] and n ≥ n0 define

Bn(f, x) = Ln,r(f, x) +
n∑

k=1

[f(xk,n)− Ln,r(f, xk,n)]Fk,n(x).

That is, the term containing the derivatives in An is omitted.

Theorem 5.6.3 ([399]). For every c > 0 fixed and r ≥ 0, consider the linear poly-
nomial operators Bn defined above. One has:

(i) Bn(Cr[−1, 1]) ⊂ Π2n(1+c), n ≥ n0,
(ii) Bn(f, xk,n) = f(xk,n) and B′

n(f, xk,n) = L′
n,r(f, xk,n), for k = 1, 2, . . . , n

and n ≥ n0,

(iii) | f (i)(x)−B(i)
n (x) | ≤ C

(√
1− x2

n

)r−i

ω

(
f (r),

√
1− x2

n

)
, (0 ≤ i ≤ r)

for n ≥ n0 and f ∈ Cr[−1, 1].
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In [399] Vértesi also presented some estimates in terms of the best approxima-
tion and showed that the results of Saxena [325] (see Theorem 5.7.2) and Rodina
[313] (see Theorem 5.3.2) can be obtained from his approach.

In 1978 Saxena and Srivastava [327] proved some results considering interpo-
lation of the function and its first derivative (see also [329]). One year later they
obtained another that we present here.

Let lk,n be given as in (5.36) and set

pkn(x) =
1
43

[1008l5k,n(t)− 1820l6k,n(x) + 960l7n,k(t)− 105l9k,n(t).

Define q0,0(x) = p0,0(t) and qk,n,0(x) = pk,n(t)− p−k,n(t), 1 ≤ k ≤ n.
Now, for f ∈ C1[−1, 1] consider the operators

Qn,0(f, x) = L(f, x) +
n∑

k=0

(f(xk,n)− L(f, x)qk,n(x))

and

Qn,1(f, x) = Qn,0(f, x) +
n∑

k=0

(x− xk,n)f ′(xk,n)qk,n(x).

Theorem 5.6.4 (Saxena and Srivastava, [328]). If Qn,0 and Qn,1 are defined as
above, then Qn,i(C[−1, 1]) ⊂ Π8n+1 (i = 0, 1). There exists constants C0 and C1

such that, for f ∈ C1[−1, 1], Qn,0(f) and Qn,1(f) interpolate f and f ′ at the
points {xk,n} respectively,

| f(x)−Qn,0(f, x) | ≤ C0ω̃ (f, Δn(x))
and

| f ′(x) −Qn,1(f, x) | ≤ C1Δn(x)ω̃ (f ′, Δn(x)) ,

where ω̃ denotes the least concave majorant of the modulus of continuity.

Later, in 1985, Gonska and Hinnemann showed that generalization to a
higher-order modulus is possible, if we consider linear operators defined for differ-
entiable functions. It will be presented in the section devoted to boolean sums. By
extending the ideas of Gonska, Hinnemann and Yu, Dahlhaus proved that (2.38)
holds with a modulus of order r if and only if 0 ≤ k ≤ min{s− r + 2, s}.
Theorem 5.6.5 (Dahlhaus, [79]). Let r, s ∈ N0. There exists a constant C = C(r, s)
such that, for all f ∈ Cs[−1, 1] and all n ≥ {max(4(s + 1), r + s}, there exists
Pn ∈ Pn such that

| f (k)(x) − P (k)
n (x) |≤ Cs (δn(x))s−k

ωr

(
f (s), δn(x)

)
,

for all k ∈ N0 with 0 ≤ k ≤ min{s− r + 2, s} and all x ∈ [−1, 1].
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Theorem 5.6.6 ([79]). Let r, s ∈ N0. For all C ∈ R and all n ∈ N, there exists a
function f ∈ Ck[−1, 1] such that, for all Pn ∈ Pn, there exists an x = xk ∈ [−1, 1]
such that

| f (k)(x)− P (k)
n (x) |> C (δn(x))s−k

ωr

(
f (s), δn(x)

)
,

for all k ∈ N, with s− r + 3 ≤ k ≤ s.

Li (independent of Dahlhaus) proved the following result and showed that
the estimate is the best possible in some sense.

Theorem 5.6.7 (Li, [235]). Fix r ≥ m + 2. For any n ≥ r + m − 1 there exists a
linear operator Qn : Cm[−1, 1] → Pn such that, for f ∈ Cm[−1, 1], 0 ≤ k ≤ m
and x ∈ [−1, 1],

| f (k)(x)−Q(k)
n (f, x) |≤ Cδm−k

n (x)ωr

(
f (m), δn(x) +

(n
√

1− x2)(m+2−k)/r

n2

)
.

There exists a sequence of polynomials which converges to a differentiable
function at the rate given in Timan’s theorem and also interpolates the function
on an array of points converging to ±1 at a prescribed rate of O(n−2). From
the point of view of interpolation theory, Gopengauz-Teliakovskii-type theorems
give polynomials which interpolate the derivatives f (k) 0 ≤ k ≤ m − 1 at the
points ±1, a fact which has made this theorem useful in recent investigations of
simultaneous approximation by interpolation. Balázs, Kilgore and Vértesi showed
that the estimates for simultaneous approximation can be combined with certain
interpolatory properties (see [11]. In particular, they considered interpolation at
(not necessarily) distinct points clustered near ±1.

Theorem 5.6.8 (Balázs-Kilgore-Vértesi, [12]). Let f ∈ Cq[−1, 1]. Let r =
[(q + 1)/2], and let a constant C > 0 be given. Let points t0,n, . . . , tr−1,n and
s0,n, . . . , sr−1,n be given such that for each n ≥ max{2r, C1/2},

−1 ≤ t0,n ≤ · · · ≤ tr−1,n ≤ −1 + C/n2

and
1 ≥ s0,n ≥ · · · ≥ sr−1,n ≥ 1− C/n2.

Then, for each such n there exists a polynomial Pn of degree n or less, such that
for | x |≤ 1 and for k = 0, . . . , q,

|f (k)(x) − P (k)
n (x)| ≤ C

(√
1− x2

n
+

1
n2

)q−k

ω

(
f (q);

√
1− x2

n
+

1
n2

)
,

or

|f (k)(x) − P (k)
n (x)| ≤ C

(√
1− x2

n
+

1
rn2

)q−k

En−q(f (q)),
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and furthermore

Pn(x) = f(x), x ∈ {t0,n, . . . , tr−1,n, s0,n, . . . , sr−1,n}.
If for any specific n there exist one (or more) j and l such that

tj,n = tj+l,n · · · tj+l,n or sj,n = sj+1,n = · · · = sj+l,n,

then in addition
f (k)(tj,n) = P (k)

n (tj,n), k = 0, . . . , l

or respectively
f (k)(sj,n) = P (k)

n (sj,n), k = 0, . . . , l.

In Theorem 5.4.6 we present a work of Varma where he gave a new proof of the
inequality of Brudnyi for the case r = 1. The process is of a weakly interpolatory
type. It turns out the process developed in [395] cannot provide the proof of this
inequality for r = 2. In [396] Varma and Yu presented another process.

For k = 1, 2, . . . , n, we denote by

lk,n(x) =
(−1)k+1

√
1− x2

k,n

n

Tn(x)
x− xk,n

the fundamental polynomials of Lagrange interpolation based on the nodes xk,n

where

xk,n = cos
(2k − 1)π

2n
, k = 1, . . . , n,

are the zeros of Tn(x) in (−1, 1).
Write

ψ1,n(x) =
1
4
(3l1,n(x) + l2,n(x)), ψn,n(x) =

1
4
(3ln−1,n(x) + ln,n(x)),

ψk,n(x) =
1
4
(lk−1,n(x) + 2lk,n(x) + lk+1,n(x)), k = 2, . . . , n− 1,

χ1,n(x) =
1
4
(3ψ1,n(x) + ψ2,n(x)), χn,n(x) =

1
4
(3ψn−1,n(x) + ψn,n(x)),

and

χk,n(x) =
1
4
(ψk−1,n(x) + 2ψk,n(x) + ψk+1,n(x)), k = 2, . . . , n− 1.

With this notation, for f ∈ C[−1, 1] define

Gn(f, x) =
n∑

k=1

f(xk,n)χk,n(x)

and

Hn(f, x) = Gn(f, x)− 1 + x

2
(Gn(f, 1)− f(1))− 1− x

2
(Gn(f,−1)− f(−1)).
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Theorem 5.6.9 (Varma and Yu, [396]).

(i) If f ∈ C[−1, 1], then

| f(x)−Hn(f, x) | ≤ C ω2

(
f,

√
1− x2

n

)
.

(ii) If f ∈ C1[−1, 1], then

| f ′(x) −H ′
n(f, x) | ≤ C ω

(
f,

√
1− x2

n
+

1
n2

)
.

Furthermore if

Rn(f, x) = H ′
n(f, x)− 1 + x

2
(H ′

n(f, 1)− f(1))− 1− x

2
(H ′

n(f,−1)− f(−1)),

then

| f ′(x)−Rn(f, x) | ≤ C ω

(
f ′,

√
1− x2

n

)
.

The next theorem provides the solution of the problem of simultaneous ap-
proximation of a function and its derivatives through interpolation polynomials
(weak interpolation).

Theorem 5.6.10 ([396]). If f ∈ C1[−1, 1] and

Jn(f, x) = Hn(f, x) − (1 + x)2

4n2
(Tn(x)− Tn(1))(H ′

n(f, 1)− f(1))

− (1− x)2(−1)n+1

4n2
(Tn(x)− Tn(−1))(H ′

n(f,−1)− f(−1)),

then

| f (r)(x)− J (r)
n (f, x) | ≤ C

√
1− x2

n
ω

(
f ′,

√
1− x2

n

)
,

for r = 0, 1.

Let f ∈ Cq[−1, 1] be given, where q ≥ 0. Then for a fixed r such that
q/2 < r ≤ q + 1 we define a polynomial Hn,r(f, x) of degree at most n + 2r − 1
which interpolates f on nodes x1, . . . , xn such that −1 < xn < · · · < x1 < 1
and interpolates f (0), . . . , f (r−1) at ±1. The polynomial Hn,r(f, x) may be repre-
sented as

Hn,r(f, x) =
n∑

j=1

f(xj)

(
1− x2

1− x2
j

)r

lj(x) +
r−1∑
k=0

[f (k)(1)h1,k(x) + f (k)(−1)h2,k(x),
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where

lj(x) =
n∏

s=1,s�=j

x− xs

xj − xs

and h1,k(x) and h2,k(x) are certain polynomials of degree n + 2r − 1.
The approximation properties of Hn,r are described in terms of the weighted

Lebesgue sums

Ln,s(x) =
n∑

j=1

(
1− x2

1− x2
j

)s/2

| lj(x) | .

We remark that Ln,0 is the ordinary Lebesgue sum of the Lagrange interpolation
on the nodes x1, . . . , xn.

Theorem 5.6.11 (Kilgore and Prestin, [194]). Let f ∈ Cq[−1, 1]. Then for q/2 <
r ≤ q + 1,

| f(x)−Hn,r(f, x) |≤ Mq

(√
1− x2

n

)q

w

(
f (q),

√
1− x2

n

)
× (1 + max{ 2Ln,2r−q−1(x), Ln,2r−q(x) }) .

A similar statement holds with w replaced by w2:

| f(x)−Hn,r(f, x) |≤ C

(√
1− x2

n

)q

w

(
f (q),

√
1− x2

n

)
× (1 + max{ 4Ln,2r−q−2(x), Ln,2r−q(x) }) .

Furthermore, for the derivatives one has

Theorem 5.6.12 ([194]). Let f ∈ Cq[−1, 1]. Then for q/2 < r ≤ q + 1 and for
k = 0, . . . , q there is a constant Cq depending only upon q such that

| f (k)(x) −H(k)
n,r(f, x) |≤ Cq

(√
1− x2

n
+

1
n2

)q−k

w

(
f (q),

√
1− x2

n
+

1
n2

)
×max{ ‖Ln,2r−q−1‖, ‖Ln,2r−q‖ }.

Furthermore, for 0 ≤ k < r we have

| f (k)(x)−H(k)
n,r(f, x) |≤ eCq

(√
1− x2

n

)r−k (√
1− x2

n
+

1
n2

)q−r

×w

(
f (q),

√
1− x2

n
+

1
n2

)
max{ ‖Ln,2r−q−1‖, ‖Ln,2r−q‖ }.
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In the special case r = q + 1, there is a constant Kq ≤ max{4eCq, 7Cq + 7} such
that for k = 0, . . . , q,

| f (k)(x) −H(k)
n,r(f, x) |≤ Kq

(√
1− x2

n

)q−k

w

(
f (q),

√
1− x2

n

)
×max{ ‖Ln,2r−q−1‖, ‖Ln,2r−q‖ }.

As a consequence of these theorems we can obtain point-wise estimates for
the quality of approximation on Jacobi nodes with added interpolation at ±1
which improve on what has been previously known by including the point-wise
modulus of continuity or the point-wise modulus of smoothness.

Theorem 5.6.13 ([194]). Let f ∈ Cq[−1, 1] and r be given such that q/2 < r ≤ q+1.
Then for 2r − q − 5/2 ≤ α, β ≤ 2r − q − 3/2 we can choose the nodes xj at the
zeros of the ordinary Jacobi polynomials P

(α,β)
n , and we obtain

max{ 2Ln,2r−q−1(x), Ln,2r−q(x) } ≤ C log n,

whence for these nodes

| f(x)−Hn,r(f, x) |≤ Mq

(√
1− x2

n

)q

w

(
f (q),

√
1− x2

n

)
log n,

in which the constant C depends upon q, α, β. Again using the nodes generated by
P

(α,β)
n we obtain that

max{ 2Ln,2r−q−2(x), Ln,2r−q(x) } ≤ C log n

if and only if α = β = 2r−q−5/2 so that for the nodes thus determined we obtain

| f(x)−Hn,r(f, x) |≤ Mq

(√
1− x2

n

)q

w2

(
f (q),

√
1− x2

n

)
log n.

Theorem 5.6.14 ([194]). Let f ∈ Cq[−1, 1] and r = q + 1. Then for q − 1/2 ≤
α, β ≤ q + 1/2 we can choose the nodes xj at the zeros of the ordinary Jacobi
polynomials P

(α,β)
n , and we obtain, for k = 0, . . . , q,

| f (k)(x) −H(k)
n,r(f, x) |≤ C

(√
1− x2

n

)q−k

w

(
f (q),

√
1− x2

n

)
log n,

in which the constant C depends upon q, α, β. Also, using again the nodes generated
by the Jacobi polynomials, the statement

| f(x)−Hn,r(f, x) |≤ C

(√
1− x2

n

)q

w2

(
f (q),

√
1− x2

n

)
log n

holds for α = β = q − 1/2.
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Corollary 5.6.15. There exists a sequence of linear operators Qn : Cm[−1, 1]→ Pn

such that, for 0 ≤ k ≤ m and x ∈ [−1, 1],

| f (k)(x)−Q(k)
n (x) |≤ C (δn(x))m−k

ωr

(
f (m), Δn(x)

)
.

In [8] and [9], Balász and Kilgore generalized ideas of Szabados [364] and
Runck-Vértesi [317]. They considered interpolation by adding a certain set of
points to the optimal ones.

Let Xn = {x1,n, . . . , xn,n} be a systems of nodes in (−1, 1). Set r = [(q+1)/2]
and choose another set of nodes Tn = {t0,n, . . . , tr−1}∪{s0,n, . . . , sr−1,n} satisfying
the following conditions: for some C > 0 and an integer N ≥ √C, for 0 ≤ k ≤ r,

−1 ≤ tk,n ≤ −1 +
C

(n + N)2
< 1− C

(n + N)2
≤ sn,k ≤ 1.

Nodes which lie upon the same point require Hermite interpolation.

Theorem 5.6.16 (Balász and Kilgore, [9]). Fix q ∈ N and set r = [(q + 1)/2]. Let
Pn be the interpolation operators upon the nodes Xn ∪ Tn. For f ∈ Cq[−1, 1] and
x ∈ [−1, 1] one has:

(i) if q is even and 0 ≤ i ≤ q,

| f (i)(x) − P (i)
n (f, x) |≤ C

1
nq−i

En−1(f (q)) ‖Ln‖,

(ii) if q is odd and 0 ≤ i ≤ q,

| f (i)(x) − P (i)
n (f, x) |≤ C

1
nq−i

En−1(f (q)) ‖L∗
n‖,

where Ln is the Lagrange interpolation operators upon the nodes Xn and
L∗

n(f, x) =
√

1− x2Ln(
√

1− t2f(t), x).

In [193] and [195] Kilgore and Prestin gave point-wise estimates and results
of Gopengauz type. They used interpolation on Jacobi polynomials.

5.7 Estimation with constants

In 1970, Saxena modified his ideas in [323] to obtain the following result which
provided an estimation for the constant in a Teliakovskii-type theorem.

Theorem 5.7.1 (Saxena, [324]). For each f ∈ C[−1, 1] and n ∈ N there exists a
linear operator L4n+2 : C[−1, 1]→ Π4n+2 such that

| f(x)− P4n+2(x) | ≤ 384

(
ω

(
f,

√
1− x2

n

)
+ ω

(
f,
| x |
n

))
.
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In 1972, Saxena used a similar construction to obtain Teliakovskii-type esti-
mates. Set

lkn(x) =
(−1)k+n(1− x2

kn)
n + 1

Tn(x)
x− xkn

, vkn(x) = 1− 3xkn

x− xkn
1− x2

kn,

where Tn is the Chebyshev polynomials and xkn are the zeros of Tn. Set

ψn(t, u) =
2

n + 1

n−1∑
r=1

T ′
r(t)Tn(u)

and

λkn(x) =
(

1− x2

1− xkn

)2 [
vkn(x)l4kn(x) + 2(x− xknl3kn(x)(1 − x2

kn)ψn(xkn, x)
]
.

Finally, define

Ln(f, x) =
1 + x

2
f(1) +

1− x

2
f(−1)

+
n∑

k=1

[
f(xkn)− 1 + x

2
f(1)− 1− x

2
f(−1)

]
λkn(x).

Theorem 5.7.2 (Saxena, [325]). If Ln is defined by the last equation, then for each
f ∈ C[−1, 1], Ln(f) ∈ Π4n+2 and

| f(x) − Ln(f, x) | ≤ 1285 ω

(
f,

√
1− x2

n

)
.

In 1978 Pichugov proved that some trigonometric kernels can be used to
obtain polynomial operators.

Theorem 5.7.3 (Pichugov, [282]). For arbitrary numbers ρ1,n and ρ2,n, which are
the coefficients of a positive trigonometric polynomial

Kn(t) =
1
2

+
n∑

k=1

ρk,n cos(kt),

there exists a linear operator Ln : C[−1, 1]→ Pn−1 such that, for all f ∈ C[−1, 1]
and x ∈ [−1, 1],

| f(x)− Ln(f, x) |≤ ω̃

(
f, | x | (1− ρ1,n) +

√
1− x2

√
1− ρ2,n

2

)
,

where ω̃(f, t) is the lest concave majorant of the first modulus of continuity.
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Lehnhoff obtained better estimates. He constructed operators by means of
convolution with Matsuoka kernels.

Define

Hn(f, x) =
1
π

∫ π

−π

f(cos(arccos(x + v))K3n−3(v)dv (5.38)

where

K3n−3(t) =
10

n(11n4 + 5n2 + 4)

(
sin(nt/2)
sin(t/2)

)6

.

It is a special case of the Jackson-Matsuoka kernels (2.8).

Theorem 5.7.4 (Lehnhoff, [230]). For every function f continuous on [−1, 1] and
any natural n, there is an algebraic polynomial Hn(f) of degree 3n− 3 such that,
for all x ∈ [−1, 1],

| f(x)−Hn(x) | ≤ 2ω

(
f,

√
30
11
| x |
n2

+

√
20
11

√
1− x2

n

)

≤ 4

(
ω

(
f,
| x |
n2

)
+ ω

(
f,

√
1− x2

n

))
.

Now set

Mn(f, x) = Hn(f, x) +
1 + x

2
[f(1)−Hn(f, 1)] +

1− x

2
[f(−1)−Hn(f,−1)].

Theorem 5.7.5 (Lehnhoff, [231]). For n ≥ 10, Mn : C[−1, 1] → Π3n−3 and for
each f ∈ C[−1, 1],

| f(x)−Mn(f, x) | ≤ 10 ω

(
f,

√
1− x2

n

)
.

Theorem 5.7.6 (Gonska, [144]). If Hn is defined by (5.38), then each f ∈ C[−1, 1],

| f(x)−Hn(x) |≤ 1.66 ω̃

(
f,

√
1− x2

n
+
| x |
n2

)
,

where ω̃(f, t) is the least concave majorant of the modulus of continuity.

Balázs and Kilgore justified that it is important to investigate the constants
in the results related with simultaneous approximation and they began to study
the problem. They proved a new identity for the derivative of a trigonometric poly-
nomial, based on a well-known identity of M. Riesz, and provided a new proof of
Gopengauz’s theorem which reduces the problem of estimating the constant there
to the question of estimating the constant in Trigub’s theorem. The original proofs
of these results (and of related works) are uneconomical concerning constants.
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Theorem 5.7.7 (Balázs-Kilgore, [10]). For a function f ∈ Cr[−1, 1] let Pn be a
polynomial satisfying (2.31) for some C (which may or may not depend upon n or
f , as we choose) and also satisfying

f (k)(±1) = P (k)
n (±1), 0 ≤ k ≤ r. (5.39)

Then
| f (k)(x) − P (k)

n (x) |≤ K (δn(x))r−k ω
(
f (r), δn(x)

)
,

with K ≤ max(4eeC, 7C + 7). In particular, the relation between K and C is
absolute and independent of all other quantities involved.

Notice that we can use this result to obtain a new proof of Gopengauz’s theo-
rem. Balázs and Kilgore constructed new polynomials satisfying (2.31) and (5.39).

Theorem 5.7.8 (Bashmakova, [16]). For f ∈ C[−1, 1], there exists a sequence
{Ln(f)} of linear polynomial operators, Ln : C[−1, 1] → Pn, such that for f ∈
C[−1, 1] and x ∈ [−1, 1],

| f(x)− Pn(f, x) |≤
(

19
16

+
A

(n + 1)1−3α

)
× ω

(
f,

π
√

1− x2

n + 1
+

π

(n + 1)1+α
+

3π2

2(n + 1)2

)
,

where 0 < α < 1/3 and A is an absolute constant.

5.8 The boolean sums approach

The boolean sum of two operators A and B is defined by

A⊕ L = A + L−A ◦ L, (5.40)

whenever it makes sense.
For a sequence of operators {Ln}, Ln : C[−1, 1] → C[−1, 1], and L defined

by (5.1), three types of boolean sums can be considered,

L⊕ Ln, Ln ⊕ L and L⊕ Ln ⊕ L.

These are motivated by the following result.

Theorem 5.8.1 (Cao and Gonska, [63]). Let P and Q be linear operators mapping
a function space G (consisting of functions on the domain D) into a subspace H
of G. Let G0 be a subset of G, and let L = {l} be a set of linear functionals defined
on H.

(i) Let l(Pf) = l(f) for all l ∈ L and all f ∈ H. Then l((P ⊕ Q)f) = l(f) for
all l ∈ L and all f ∈ H.
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(ii) Let Qf = f for all f ∈ G0. Then (P ⊕Q)f = f for all f ∈ G0.
(iii) Let f and Qf be in the set of all functions g such that Pg = g. Then (P ⊕

Q)f = f .

In other words, P ⊕ Q inherits certain interpolation properties of P , the
function precision of Q, and also some function precision properties of P .

In 1983 Gonska and Hinnemann used the DeVore operators to obtain poly-
nomials to approximate differentiable functions with a better rate.

Theorem 5.8.2 (Gonska and Hinnemann, [159]). Let r ≥ 0. For each n ≥ 4(r + 2)
there exists a linear operator Qn : Cr[−1, 1]→ Pn such that

| f(x)−Qn(f, x) | ≤ Cr (δn(x))r
ω2

(
f (r), δn(x)

)
, (5.41)

for all f ∈ Cr[−1, 1] and each x ∈ [−1, 1], where the constant Cr depends only
on r.

Later, in 1985, Gonska and Hinnemann showed that generalization to a
higher-order modulus is possible, if we consider linear operators defined for differ-
entiable functions. They used a smoothing method. They first approximated the
functions by some special differentiable functions. In particular, they considered
a theorem of Müller and an easy corollary that follows from the properties of the
moduli of smoothness (with the convention ω0(f, t) = ‖f‖).
Theorem 5.8.3 (Müller, [265]). Given r ∈ N0 and s ∈ N, there exists a constant
C = (r, s) such that, for each h ∈ (0, 2], one has a map Fh = Fh,r+s : Cr[−1, 1]→
C2r+s[−1, 1] with the following properties: for all f ∈ Cr[−1, 1],

‖f (i) − F
(i)
r,r+s‖ ≤ Cwr+s−i(f (i), h), 0 ≤ i ≤ r,

and
‖F (r+s)

r,r+s ‖ ≤ Ch−(r+s)wr+s(f, h).

Corollary 5.8.4. Under the conditions of (5.8.3),

‖f (i) − F
(i)
r,r+s‖ ≤ Cr,sh

r−iws(f (r), h), 0 ≤ i ≤ r,

and
hs‖F (r+s)

r,r+s ‖ ≤ Cr,s ws(f (r), h),

with a different constant.

Let us recall a result of Trigub.

Proposition 5.8.5 (Tribug, [388]). For each m, n, p ∈ N, there exists Tn,p ∈ Pn

such that, for x ∈ [−λ, λ] (λ > 0),

| xp − xp+2mTn,p(x2) |< Cm,pλ
p

np
,

where Cm,p depends only on m and p.
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The construction of Gonska and Hinnemann goes as follows:
a) Set p = r+s and let {Mn}, (Mn : C[−1, 1]→ Pn, n ≥ p−1), be any sequence

of linear operators satisfying

| f(x)−Mn(f, x) | ≤ Cpωp(f, Δn(x)),

for all f ∈ C[−1, 1] and x ∈ [−1, 1].
b) Let H : Cr[−1, 1]→ Π2r+1 be the Hermite interpolation operator which, for

0 ≤ k ≤ r, gives
H(k)(f,±1) = f (k)(±1).

It is known that there exist constants Ar and Br and polynomials Ai, Bi ∈
Π2(r−i)+1 (0 ≤ i ≤ r) such that (see [371]),

H(f, x) =
r∑

i=0

(1− x2)i
{

f (i)(1)Ai(x) + f (i)(−1)Bi(x)
}

,

where ‖Ai‖ ≤ Ar and ‖Bi‖ ≤ Br.
c) For n ≥ 4(r + 1) and 0 ≤ i ≤ r, let Tn,i be the polynomial of Proposition

5.8.5 with λ = 1, p = 1, mi = r + 1 − [i/2] and ni = [n/(4(r + 1))]. Define
Rn,2 : Cr[−1, 1]→ Pn by

Rn,2(f, x) =
r∑

i=0

(1− x2)r+1+i−[i/2]Tn,i(x){f (i)(1)Ai(x) + f (i)(−1)Bi(x)},

where Ai and Bi are given in b).
It can be proved that Rn,2 ∈ Pn, for n ≥ 4(r + 1) and R

(k)
n,2(f,±1) = 0,

0 ≤ k ≤ r.
d) Define Rn : Cr[−1, 1] → Pn as Rn = H − Rn,2 and let Qn be the boolean

sum of Rn and Mn (see (5.40)).
For each f ∈ Cr[−1, 1] and 0 ≤ k ≤ r, one has Q

(k)
n (f,±1) = f (k)(f,±1).

Theorem 5.8.6 (Gonska and Hinnemann, [147]). Assume that r ≥ 0 and s ≥ 1 and
let the sequence of linear operators {Qn} be defined by (5.40).

(i) There exists a constant Mr,s such that, for n ≥ max{(4(r + 1), r + s}, 0 ≤
k ≤ r, f ∈ Cr[−1, 1] and x ∈ [−1, 1] one has

| f (k)(x)−Q(k)
n (f, x) | ≤ Mr,s (Δn(x))r−k ωs(f (r), Δn(x)).

(ii) If r ≥ s ≥ 1 and n ≥ 4(r + 1), there exists a constant Mr,s such that for
f ∈ Cr[−1, 1], 0 ≤ k ≤ r − s and x ∈ [−1, 1] one has

| f (k)(x)−Q(k)
n (f, x) | ≤ Mr,s (δn(x))r−k ωs(f (r), δn(x)).

Define

Gm(n)(f, x) =
1
π

∫ π

−π

f(cos(arccos(x + v))Km(n)(v)dv, (5.42)

where Km(n) is the Matsuoka kernel (2.8).
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In 1986, Cao and Gonska began to publish a series of paper devoted to study
of the boolean sums of positive linear operators. In the first paper they gave an
upper bound for the local degree of approximation by the boolean sum of positive
linear operators in terms of the second-order modulus of continuity of the function
[62]. In particular, they applied the main result to study the Pichugov-Lehnhoff
operators presented above. Other results were given by Gonska in [145].

Define

Gm(n)(f, x) =
1
π

∫ π

−π

f(cos(arccos(x + v))Km(n)(v)dv, (5.43)

where Km(n) is the Matsuoka kernel (2.8).
By applying Theorem 5.8.1 to Gm(n) one obtains the following corollary. We

use the notation

G+
m(n) = L⊕Gm(n) and G1

m(n) = L⊕Gm(n) ⊕ L.

Corollary 5.8.7. The operator G+
m(n) has the following properties:

(i) G+
m(n)(f,±1) = f(±1), for all f ∈ C[−1, 1].

(ii) G+
m(n)f = f for all f ∈ P1.

(iii) G+
m(n) = G1

m(n).

Theorem 5.8.8 (Cao and Gonska, [63]). Let n ≥ 2, m(n) ∈ N, and C1n ≤ m(n) ≤
C2n. Furthermore, let An : C[−1, 1] → Pn be a sequence of positive linear opera-
tors, satisfying the conditions

(i) An(1, x) = 1,
(ii) An(t, x) = λnx, where 1− λn = O(1/n2,
(iii) An((t− x)2, x) = O((1 − x2)/n2 + 1/n4).

Then we have for all f ∈ C[−1, 1] and all x ∈ [−1, 1] that

| f(x)−A+
n (f, x) |≤ Cω2

(
f,

√
1− x2

n

)
.

From this one obtains

Theorem 5.8.9 ([63]). Assume n ≥ 2 and s ≥ 3. If Gns−s is defined by (5.42), then

| f(x)−Gns−s(f, x) |≤ Cω2

(
f,

√
1− x2

n

)

for all f ∈ C[−1, 1] and x ∈ [−1, 1].

Similar estimates hold for the corresponding operators G1
m(n).

Some extensions of Theorem 5.8.8 appeared in [65].
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In [66] Cao and Gonska realized another construction by considering again
the Jackson-Matsuoka kernels, but of a higher order. In both cases the use of
methods from Fourier Analysis and standard ideas of Numerical Analysis was
very important. One of the results of [64] was generalized in [67] as follows.

Theorem 5.8.10. Let An : C[a, b] → C1[a, b] be a sequence of positive linear oper-
ators satisfying the following conditions:

(i) An(1, x) = 1, x ∈ [a, b].
(ii) For x ∈ [a, b] and 0 ≤ εn ≤ 2,

An(| t− x |, x) ≤ C(εn

√
(x − a)(b− x) + ε2

n).

(iii) For all h ∈ C1[a, b],
‖dAn(h, x)/dx‖ ≤ C‖h′‖.

Then, for all f ∈ C[a, b],

| f(x)−A∗
n(f, x) | ≤ Cω

(
f, εn

√
(x− a)(b− x)

)
.

In 1990, Cao and Gonska looked for general conditions in order to find
boolean sums of linear operators that satisfy Teliakovskii-type estimates. The
main result asserts that, if An is a sequence of polynomial linear operators for
which a Timan-type estimate holds, then one can always derive a Teliakovskii-
type estimate for their boolean sum modification A+

n . This result can be applied
to some of the operators presented in a previous section to obtain operators with
a Teliakovskii-type estimate.

Theorem 5.8.11 (Cao and Gonska, [67]). For each n ∈ N fix m(n) ∈ N0 such that
Cn ≤ m(n) ≤ C2n for some positive constants C1 and C2. Let An : C[−1, 1] →
Pm(n) satisfying the Timan estimate

| f(x)−An(f, x) | ≤ C3ω

(
f,

√
1− x2

n
+

1
n2

)
,

for f ∈ C[−1, 1] and x ∈ [−1, 1]. Then there exists a constant C4 such that, for
all f ∈ C[−1, 1] and x ∈ [−1, 1],

| f(x)−A+
n (f, x) | ≤ C4ω

(
f,

√
1− x2

n

)
.

In Theorem 5.8.9 Jackson-Matsuoka kernels were studied. Boos, Cao and
Gonska extended the result to the case when in the boolean sums we consider
convolution with arbitrary positive kernels.
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Theorem 5.8.12 (Boos, Cao and Gonska, [35]). Let m(n) ≥ 2, let the even kernels
Km(n) in (5.49) satisfy Km(n)(v) ≥ 0 and√

1− ρ1, m(n) ≤ C1αn,(i) √
1− ρ2, m(n) ≤ C2αn,(ii)

3
2
− 2ρ1 ,m(n) +

1
2
ρ2, m(n) ≤ (C3βn)4,(iii)

where 0 < τn = max{αn, βn} ≤ 1. Let Gm(n)(f, t) be defined by

Gm(n)(f, t) =
1
π

∫ π

−π

f(cos(arccos(x + t)))K(n−2)p(t)dt. (5.44)

Then for f ∈ C[−1, 1], n ∈ N and x ∈ [−1, 1], one has

| G+
m(n)(f, x)− f(x) | ≤ M ω2(f, τn

√
1− x2),

where the constant M is determined by

M = 3 +
3
2

max
{

C2
1 +

1
4
C2

2 +
3
2
C4

3 , 2C2
1 +

√
2C2 +

1
2
C2

2 +
1
2
C4

3

}
.

If we do not assume (ii), then a similar inequality holds with a bigger con-
stant.

The authors used the last theorem to give explicit values of the constant C
in Theorem 5.8.9. For instance, for the Jackson-Matsuoka kernel K3n−3, one has
C < 15. They also studied the asymptotic of the constants.

There are several interesting consequences.

Corollary 5.8.13. Assume m(n) ≥ 2 and Km(n) ≥ 0. Let {εn} (0 < ε ≤ 1) be a
sequence such that

(i) 1− ρ1,m(n) = O(ε2
n),

(ii) 3
2 − 2ρ1,m(n) + 1

2ρ2,m(n) = O(ε4
n).

Then for f ∈ C[−1, 1], n ∈ N and x ∈ [−1, 1], one has

| G+
m(n)(f, x) − f(x) | ≤ M ω2(f, εn

√
1− x2).

Cao and Gonska also investigated Fejér-Korovkin kernels (of higher order) in
detail where, for p ∈ N fixed and ≥ 2, these kernels are given by

D(n−a)p(v) =
(

cos(nv/2)
n2(cos v − cos(π/n))

)2p
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and these are the pth powers of the ordinary Fejér-Korovkin kernels (apart from
constants). Let K(n−2)p be a normalization of D(n−a)p such that

1
π

∫ π

−π

K(n−a)p(t)dt = 1.

With this notation define the operator

F(n−2)p(f, x) =
1
π

∫ π

−π

f(cos(arccos(x + t)))K(n−2)p(t)dt.

The next result gives an estimate for the boolean sums of these operators. The
original paper includes an analysis of the asymptotic of the constant.

Theorem 5.8.14 (Cao, Gonska and Wenz, [73]). Let n ≥ 3 and p ≥ 2. Then for
f ∈ C[−1, 1] there holds

| F+
(n−2)p(f, x)− f(x) | ≤ Cp ω2(f,

√
1− x2/n).

In 1996, Cao and Gonska gave several results where the constants in a Telia-
kovskii-type estimate is taking into account. They also studied the asymptotic of
the constants. Such results will not be included here.

Theorem 5.8.15 (Cao and Gonska, [71]). For each n ∈ N, let Km(n) ≥ 0 and Gm(n)

be given as in (5.45) and (5.45) respectively. Then for f ∈ C[−1, 1], x ∈ [−1, 1]
and h > 0, one has

| f(x)−G+
m(n)(f, x) | ≤

[
2 +

(
2 + 2

√
2
) √1− ρ1,m(n)

h

]
ω(f, h

√
1− x2).

If ρ1,m(n) ≥ 0, then the constant can be taken as

2 +
(
3 +

√
2
) √1− ρ1,m(n)

h
.

If we consider Fejér-Korovkin kernels of the form

Kn(v) =
1

n + 1

(
sin(π/(n + 2)) cos((n + 2)v/2)

cos v − cos(π/(n + 2))

)2

and W ∗
n is the corresponding boolean sum, then

| f(x)−W+
n (f, x) | ≤ 12 ω

(
f,

√
1− x2

n + 2

)
and

| f(x)−W+
n (f, x) | ≤ 6 ω

(
f,

π
√

1− x2

n + 1

)
.
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5.9 Discrete operators

As Vértesi [398] showed, we cannot have linear operators with n + 1 equidistant
nodes satisfying DeVore-Gopengauz inequalities (see also [139]).

Discrete versions of operators Gm(n) and Gr
m(n) were investigated in [64],

[66] and [68]. They considered special positive algebraic convolution integrals and
constructed a discrete version by using appropriated numerical quadrature.

Let us state the following problem. Can we find a triangular matrix of distinct
nodes {xk,n} (k = 0, . . . , n, −1 ≤ xk,n ≤ 1), and a triangular matrix of positive
functions {ϕk,n} (k = 0, . . . , n, n ∈ N) defined on [−1, 1] such that, for all f ∈
C[−1, 1] satisfying ω2(f, t) ≤ Ctα (0 < α ≤ 2) one has

‖f − Ln(f)‖ = O(n−α),

where

Ln(f, x) =
n∑

k=0

f(xk,n)ϕ(x)?

This problem was stated at the end of a paper by Butzer, Stens and Wehrens
in 1979 [58]. They asked for a constructive proof and remarked that Bernstein
operators

Bn(f, x) =
n∑

k=0

(
n

k

)(
k

n

)
xk(1 − x)n−k

do not provide a solution, since these only give the rate O(n−α/2).
Versions of this question were raised before by other authors.
Notice that we can not use boolean sums of positive operators that are not

positive linear operators. Gonska and Zhou [149] formulated another question:
Do there exist positive linear operators Ln : C[−1, 1]→ Pn such that, for all

f ∈ C[−1, 1] and x ∈ [−1, 1], one has

| f(x)− Ln(f, x) |≤ C ω2

(
f,

√
1− x2

n

)
,

where the constant is independent of f , n and x?
We can also ask for a solution of the last problem with discretely defined

operators. It is called the strong form of Butzer’s problem.
In 1981, Butzer and Wehrens provided a theoretical solution [61]. They con-

structed a sequence {Ln} by applying the Christoffel quadrature formula to po-
sitive polynomial convolution integrals in the Legendre transform setting. They
also stated another problem: is it possible to construct a sequence of positive lin-
ear operators Un : C[−1, 1] → Pn such that there exist non-constant functions
f ∈ C[−1, 1] for which ‖f −Un(f)‖ = O(n−2)? Since the nodes can not be calcu-
lated exactly and the coefficient of the fundamental polynomials are not known,
their solution is not a constructive one.
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In [64] Cao and Gonska introduced certain sequences of discrete positive
linear operators. Taking into account the drawbacks in the Butzer and Wehrens
solution, they looked for special discrete versions of convolution-type operators.
In particular they used the Jackson-Matsuoka kernels (2.8).

For s = 3, Matsuoka [250] found an exact expression for the coefficients
ρk,3n−3 of the kernel K3n−3 in the expansion

K3n−3(t) =
1
2

+
3n−3∑
k=1

ρk,3n−3 cos(kt), n ≥ 1.

Thus we can use the fundamental polynomials

Ar, 3n−3, N0(x) =
1

N0

(
1 +

3n−3∑
k=1

ρk,3n−3 Tk(xr,N0)Tk(x)

)
for 1 ≤ r ≤ N0, where

xr,N0 = cos
2r − 1
2N0

π, 1 ≤ r ≤ N0,

and Tk is the Chebyshev polynomial.
The parameter N0 appeared because of the Gaussian quadrature to be used

in the discrete version of the corresponding convolution operator.
Now, if we define

Λ3n−3, N0(f, x) =
N0∑
r=1

f(xr,N0)Ar, 3n−3, N0(x),

we obtain a positive linear operator. For these operators and some boolean sums,
modification of them by Cao and Gonska proved pointwise Jackson-type theorems
of Gonpengauz type involving the first- and second-order moduli of smoothness.
In particular, the following result was given:

Theorem 5.9.1 (Cao and Gonska, [64]). If N0 ≥ 3n/2, 0 < α ≤ 2, f ∈ C[−1, 1]
and ω2(f, t) ≤ Ctα, then

‖f − Λ3n−3, N0(f)‖ ≤ Cn−α.

In [68] Cao and Gonska considered more general kernels.
For m ∈ N, let

Km(t) =
1
2

+
m∑

k=1

ρk,m cos(kt) (5.45)

be an even positive trigonometric polynomial of degree m. Define a polynomial
operator Gm : [−1, 1]→ Pm by

Gm(f, x) = c0(f) +
m∑

k=0

ρk,m ck(f)Tk(x), f ∈ C[−1, 1], (5.46)
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where ck(f) is the kth coefficient of f in its Chebyshev-Fourier expansion (see
(3.10)) and Tk is the Chebyshev polynomial. Gm is a positive linear operator
which reproduces constant functions. If the coefficients ck(f) are known, then
Gm(f) can be efficiently computed using Clensaw’s algorithm (see [409]).

The operator Gm is not a discrete one. But some numerical formulas can be
used to discretize (3.10). Let QN a numerical quadrature of the form

QN(g) =
N+1∑
j=0

βj,Ng(xj,N ) (5.47)

with nodes −1 ≤ x0,N < x1,N < · · · < xN+1,N = 1 and apply it to∫ 1

−1

g(u)du√
1− u2

.

Thus, we write ∫ 1

−1

g(u)du√
1− u2

= QN(g) + RN (g),

where RN (g) is the error. We assume that QN is of exact degree d(QN ). That
is RN (p) = 0 for each polynomial P ∈ Pd(QN ) and there exists a polynomial
q ∈ Pd(QN )+1 such that RN (q) 
= 0.

With the notation given above we define an operator Λ[Km, QN ] as follows:
for each f ∈ C[−1, 1] and x ∈ [−1, 1],

Λ[Km, QN ](f, x) =
1
π

QN (f) +
2
π

m∑
k=1

ρk,m QN (f Tk)Tk(x). (5.48)

Theorem 5.9.2 (Cao and Gonska, [68]). Let KM be a positive kernel with ρ1,M ≥ 0
and let QN (degree(QN) ≥M + 2) and Λ[KM , QN ] be given by (5.47) and (5.48)
respectively. Then for all f ∈ C[−1, 1] one has

‖f − Λ[KM , QN ](f)‖ ≤ 5ω2(f,
√

1− ρ1,M ) + 2
√

1− ρ1,Mω1(f,
√

1− ρ1,M ).

Theorem 5.9.3 ([68]). Let Km(n) be a sequence of positive kernels satisfying 1 −
ρ1,m(n) = O(n−2). Suppose, furthermore, that {QN} is an associated sequence
of positive quadrature sums satisfying (degree(QN ) ≥ m(n) + 2). Then for all
f ∈ C[−1, 1] for which ω2(f, t) ≤ Ctα, 0 < α ≤ 2, one has

‖f − Λ[Km(n), QN ](f)‖ ≤ C n−α.

With some additional assumptions on Km(n) we can obtain pointwise im-
provements at the endpoints.
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Theorem 5.9.4 ([68]). Let Km(n) be a sequence of positive kernels with m(n) ≥ 2,
for n ∈ N and let {QN} be an associated sequence of positive quadrature sums
satisfying (degree(QN) ≥ m(n) + 2). Furthermore, suppose that

1− ρ1,m(n) = O(n−2)
and

3
2
− 2ρ1,m(n) +

1
2
ρ2,m(n) = O(n−4).

Then for all f ∈ C[−1, 1], n ≥ 2 and x ∈ [−1, 1], one has

| f − Λ[Km(n), QN ](f, x) |

≤ C

(
ω2

(
f,

√
1− x2

n
+
| x |
n

)
+

| x |
n
√

1− x2+| x |ω1

(
f,

√
1− x2

n
+
| x |
n

))
.

There are several examples of kernels for which the conditions assumed above
hold. We present some of them.

(1) B-Z kernels: The Bohman and Zheng Wei-xing kernel is defined by [346]

Zn(x) =
(

cos((n + 1)x/2)
cosx− cos(π/(n + 1))

)2

×
(

n + 1
π

sin
π

n + 1

(
1− π

n + 1
cot

π

n + 1

)
+
(

1− n + 1
2π

sin
2π

n + 1

))
.

In this case

ρk,n =
(

1− k

n + 1

)
cos

kπ

n + 1
+

1
π

sin
kπ

n + 1
, 1 ≤ k ≤ n.

(2) General Korovkin kernels: Fix Φ ∈ C[0, 1] such that, for each n ∈ N,

cn =
n∑

k=0

Φ2(k/n) > 0.

Define

Kn(t) =
1

2cn

∣∣∣∣∣
n∑

k=0

Φ(k/n)eikt

∣∣∣∣∣
2

.

Since Kn is a non-negative trigonometric polynomial of degree not greater than
n, it can be written in the form

Kn(t) =
1
2

+
n∑

k=1

ρk,n cos(kt). (5.49)
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If φ ∈ Lip1[0, 1] and
∫ 1

0
Φ2(t)dt > 0, then

n1(1− ρ1,n) ≤ C

(∫ 1

0

Φ2(t)dt

)−1

.

For Φ(t) = sin(πt), we obtain the Fejér-Korovkin kernel Fn−2. The following
result is announced in [73].

Theorem 5.9.5. If the operators G+
n based upon the Fejér-Korovkin kernels Kn(v)

are denoted by F+
n , then one has

| f(x)− F+
n (f, x) | ≤ 12 ω1

(
f,
√

1− x2/n
)

, (5.50)

for all f ∈ C[−1, 1], all | x |≤ 1, and all n ∈ N.

(3) Jackson-Matsuoka kernels: These were presented before. In this case 1−ρ1,n =
O(n−2).

(4) Jackson-de la Vallée-Poussin kernels: These are defined by

P2n−1(x) =
2 + cosx

4n3

(
sin((nx)/2)

sin(x/2)

)4

.

It can be proved that 1− ρ1,2n−1 ≤ 3/(2n2).
Notice that in the results presented above the estimates are given in terms

of 1 − ρ1,m(n). The operators do not interpolate at the endpoints 1 and −1, thus
Teliakovskii-type estimates can not be obtained with such a construction. This
explains one of the reasons for Cao and Gonska to use the boolean sums approach.

In 1995, Cao and Gonska noticed that the discrete version given by

Λm(n), N0(f, x) =
1

N0

N0∑
r=1

f(xr,N0)

⎧⎨⎩1 + 2
m(n)∑
k=1

ρk, m(n)Tk(xr,N0)Tk(x)

⎫⎬⎭ (5.51)

is equivalent to the operator Gm(n). They also studied the saturation order.

Theorem 5.9.6 (Cao and Gonska, [70]). If N0 ≥ m(n) + 1,
∫ π

0 | Km(n)(t) | dt =
O(1) and Λm(n), N0 is defined by (5.51), then there exist positive constants C1 and
C2 such that, for all f ∈ C[−1, 1],

C1‖f −Gm(n)(f)‖ ≤ ‖f − Λm(n), N0(f)‖ ≤ C2‖f −Gm(n)(f)‖.
Cao and Gonska [70] also noticed that many solutions to Butzer’s problem

can be obtained from the periodical case.
Gavrea [135] was the first to construct positive linear operators which yield

the interpolatory estimates

| f(x)− Pn(x) |≤ Cω

(
f,

√
1− x2

n

)
. (5.52)
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In [136], he also constructed operators which yield

| f(x)− Pn(x) |≤ Cω2

(
f,

√
1− x2

n

)
. (5.53)

Let Lm : C[0, 1]→ Pm be defined by

Lm(f, x) = f(0)(1− x)m + f(1)xm

+ (m− 1)
m−1∑
k=1

pm,k(x)
∫ 1

0

pm−2,k−1(t)f(t)dt,
(5.54)

where

pm,k =
(

m

k

)
xk(1− x)m−k. (5.55)

Fix a polynomial Pm ∈ Pm, Pm(x) =
∑m

k=0 am,kxk, such that

Pm(x) ≥ 0, for all x ∈ [0, 1]
∫ 1

0

Pm(x)dx = 1

and
P ′

m(x) ≥ 0, for all x ∈ [0, 1].

Now, define an operator Hm+2 : C[0, 1]→ Pm+2 by

Hm+2(f, x) =
m∑

k=0

am,k

k + 1
Lk+2(f, x). (5.56)

Theorem 5.9.7 (Gavrea, [136]). Let the operators Hm+2 be defined as in (5.56),
then for each f ∈ C[0, 1] and x ∈ [0, 1] one has

| f(x)−Hm+2(f, x) |≤ 9
4
ω2

⎛⎝f,
√

x(1− x)

√
1−

∫ 1

0

t2pm(t)dt

⎞⎠ .

In [137] Gavrea, Gonska and Kacsó constructed some operators T2n+1 :
C[0, 1]→ P2n+1 of the form

T2n+1(f, x) =
n∑

k=0

q2n+1,k(x)f
(

k

n

)
,

for which the inequality

| f(x)− T2n+1(f, x) |≤ Cω2

(
f,

√
αn(x)
n

+
√

1− x2

n

)
holds, where αn(x) is a bounded function such that αn(0) = αn(1) = 0.



5.9. Discrete operators 175

Recall that Gavrea constructed in 1996 non-discrete positive linear operators
satisfying DeVore-Gopengauz inequalities in terms of the second-order modulus
of continuity. In 1998 Gavrea, Gonska and Kacsó presented, for the first time,
positive linear operators with equidistant nodes solving Butzer’s problem in its
original form.

For each n, define an operator Sn : C[0, 1]→ C[0, 1] by

Sn(f, x) =
1
n

n∑
k=0

[
k − 1

n
,
k

n
,
k + 1

n
; | t− x |t

]
t

f

(
k

n

)
, (5.57)

where, for mutually distinct a, b, c, [a, b, c[f(t, x)]t means that the divided difference
is applied on the variable t.

The next theorem gives sufficient conditions for obtaining operators which
solve Butzer’s problem.

Theorem 5.9.8 (Gavrea, Gonska and Kacsó, [140]). Let Lm(n) : C[0, 1] → Pm(n)

be a sequence of positive linear operators satisfying

Lm(n)(1, x) = 1,(i)

| Lm(n)(t− x, x) | ≤ C/n2,(ii)

| Lm(n)((t− x)2, x) | ≤ C/n2,(iii)

where the constant C is independent of n and x.
Then the operator Lm(n) = Lm(n)◦Sn, where Sn is defined by (5.57), satisfies

‖f − Lm(n)(f)‖ = O(n−α),

for every f for which ω2(f, t) ≤ Ctα with 0 < α ≤ 2.

The last theorem was improved in [138] where characterizations of the solu-
tions of Butzer’s problem were given.

As an example, the authors constructed a sequence as follows. First, fix λ ∈
[−1/2, 1/2] and, for each n, fix a polynomial Qn(x) =

∑n
k=0 ak,nxk, an,n 
= 0,

satisfying the conditions

Qn(x) > 0, for all x ∈ [0, 1] and
∫ 1

0

Qn(x)xλ(1− x)λdx = 1.

For f ∈ C[0, 1] define

L<λ>
n (f, x) =

n∑
k=0

(λ + 1)k

(2λ + 2)k
ak,nD<λ>

k (f, x),

where (λ)k = λ(λ + 1) · · · (λ + k − 1), (λ)0 = 1 and

D<λ>
k (f, x) =

n∑
k=0

pk,n(x)

∫ 1

0
tλ(1− t)λpk,n(t)f(t)dt∫ 1

0 tλ(1− t)λpk,n(t)dt
.



176 Chapter 5. Construction of Special Operators

Here pk,n is defined by (5.55). These operators were constructed by Lupaş and
Mache (see [244], p. 216).

Theorem 5.9.9. The operators L<λ>
n defined above have the following properties:

(i) For each n, L<λ>
n is positive and L<λ>

n : C[0, 1]→ Pn.
(ii) For 0 < α ≤ 2 and every f ∈ C[0, 1] for which ω2(f, t) ≤ Ctα, one has

‖f − (L<λ>
n ◦ Sn)(f)‖ = O(n−α).

Gavrea, Gonska and Kacsó also showed that Theorem 5.9.8 can be applied to
the operators constructed by Cao and Gonska. They also construct discretely de-
fined positive linear operators satisfying DeVore-Gopengauz inequalities, general-
izing the solution of a strong form of Butzer’s problem given earlier by the same au-
thors. They modified some of the ideas used by Gavrea in obtaining Theorem 5.9.7.

Set

Q∗
n(x) = λ∗

n xd

(
J

(s,d)
r (x)
x− xr

)2

,

where J
(s,d)
r is the Jacobi polynomial relative to interval [0, 1], xr is the largest

root of J
(s,d)
r and λ∗

n is chosen from the condition

1
s!

∫ 1

0

(1− x)sQ∗
n(x)dx = 1.

Define a new polynomial by

P ∗
n+s(x) =

∫ x

0

∫ t1

0

· · ·
∫ ts−1

0

Q∗
n(ts)dts . . . dt1 =

n+s∑
k=0

akxk.

The coefficients ak are used to define the operators

H∗
n+s+2(f, x) =

n+s∑
k=0

ak

k + 1
Lk+2(f, x)

= (1 − x)2f(0)
∫ 1

0

P ∗
n+s(t(1− x))dt + x2f(1)

∫ 1

0

P ∗
n+s(tx)dt

+
∫ 1

0

Kn+s(x, t)f(t)dt (5.58)

where Lk is given by (5.54) and

Kn+s(x, t) =
n+s∑
k=0

k+1∑
i=1

akpk+2,i(x)pk,i−1(t).
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Consider a quadrature formula∫ 1

0

f(x)dx =
n+s∑
k=1

Akf(xk) + R(f) (5.59)

with a degree of exactness less than n + s + 2. This formula is used to obtain a
discrete version of the operators (5.58) by defining

H∗
n+s+2(f, x) = (1− x)2f(0)

∫ 1

0

P ∗
n+s(t(1− x))dt (5.60)

+ x2f(1)
∫ 1

0

P ∗
n+s(xt)dt +

n+s∑
k=1

AkKn+s(x, xk)f(xk),

where Ak and xk are the coefficients and the nodes of the quadrature formula
(5.59) respectively.

Theorem 5.9.10 (Gavrea, Gonska and Kacsó, [140]). Let the operators H∗
n+s+2 and

H∗
n+s+2 be given by (5.58) and (5.60) respectively. There exists a constant C such

that, for every f ∈ C[0, 1] and x ∈ [0, 1],

| f(x)−H∗
n+s+2(f, x) | ≤ C ω2

(
f,

√
x(1− x)

n

)
and

| f(x)−H∗
n+s+2(f, x) | ≤ C ω2

(
f,

√
x(1− x)

n

)
.

They also investigate the potential of these new operators for simultaneous
approximation of the first two derivatives. In [72] some other results concerning
simultaneous approximation are discussed.

Kacsó obtained discrete operators with the same degree of approximation as
Cao and Gonska (in particular, DeVore-Gopengauz inequalities) by using other
methods. Moreover, the change of method allows her to present operators which
inherit some properties from the initial operators. We will not present here results
related with shape preserving approximation.

Let Δn = {x0, x1, . . . , xn} (x0 = −1, xn = 1) be a partition of [−1, 1]. For
each function f : [−1, 1] → R, there exists a unique continuous function SΔnf
whose restriction to each one of the intervals [xi, xi+1] (0 ≤ i ≤ n − 1) is a
polynomial of degree not greater than 1 and which interpolates f at the nodes xi,
that is

SΔn(f, xi) = f(xi), 0 ≤ i ≤ n.

We use the operator SΔn to discretize the operator Gm(n). In particular,
define

Gm(n) = Gm(n) ◦ SΔn
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and
G∗

m(n) = (L⊕Gm(n)) ◦ SΔn = L⊕ Gm(n),

where L is given by (5.1).

Theorem 5.9.11 (Kacsó, [186]). Let the partition Δn be given by the points xk =
cos θk, where the point θk ∈ [0, π] satisfies the conditions

(i) θk − θk+1 ≤ K/n, 0 ≤ k ≤ n− 1,
(ii) θk/θk+1 ≤ β, 0 ≤ k ≤ n− 2, where K and β are constants independent of n

and k.
If

Gm(n)((t− x)2, x) = O((1 − x2)/n2 + 1/n4),

then there exists a constant C such that, for all f ∈ C[−1, 1] and x ∈ [−1, 1],

| f(x) − G+
m(n)(f, x) | ≤ C ω2

(
f,
√

1− x2/n
)

.

The last theorem can be applied when we used Jackson-Matsuoka or Fejér-
-Korovkin kernels. In particular, the nodes can be chosen as xn−k = cos(kπ/n),
0 ≤ k ≤ n.

Kacsó also constructed operators with equidistant nodes. Of course, more
than n + 1 are needed.

Theorem 5.9.12 ([186]). Let Δn2 be the partition given by the points xk = −1 +
2k/n2, 0 ≤ k ≤ n2. Let Sn2 be the operator constructed with these nodes. If

Gm(n)((t− x)2, x) = O((1 − x2)/n2 + 1/n4),

then there exists a constant C such that, for all f ∈ C[−1, 1] and x ∈ [−1, 1]

| f(x)− (Gm(n) ⊕ Sn2)(f, x) | ≤ C ω2

(
f,
√

1− x2/n
)

.
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Anal. Numér. Théor. Approx. 3(1974), 2 (1975), 121–140.
[243] A. Lupaş, On the approximation of continuous functions, Publ. de L’Inst.

Math., Nouvelle Série, 40 (54) (1986), 73–83.
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Vértesi II, 152

Polynomials

Chebyshev first kind, 141

Chebyshev first type, 115

Chebyshev second type, 116

fundamental Lagrange interpolation
polynomials, 115

Jacobi, 145

Legendre, 69, 140, 141, 145

zeros of Chebyshev, 115

Systems

Bernstein-Erdös type, 132

well approximating, 132

205


	Algebraic Approximation: A Guide to Past and Current Solutions
	Contents
	Preface
	Chapter 1 Some Notes on Trigonometric Approximation
	Chapter 2 The End Points Effect
	Chapter 3 Looking for New Moduli
	Chapter 4 Exact Estimates and Asymptotics
	Chapter 5 Construction of Special Operators
	Bibliography
	Index



