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Preface

The summation of series of special functions (or, accepting Turán’s intervention,
“useful functions”) is a subdiscipline of Classical Analysis. Functional series built
from members of the, so-called, Bessel function family play a particularly important
role in this field. The Bessel function family includes a vast range of functions:
Bessel functions of the first and second kind, modified Bessel functions of the
first and second kind, Hankel functions, Struve and modified Struve functions, von
Lommel functions, for instance. There is also an extensive literature, including the
monumental monograph [333], concerned with important properties and the vast
range of applications of such functions and various functional series built from them.
An important topic within the theory of Bessel functions is the study of functional
series of Bessel and related functions, whose role in mathematical physics, science,
astronomy, and engineering is immense.

The classes of infinite series explored in this monograph are Neumann, Kapteyn,
Schlömilch, and Dini series, whose terms contain certain members of the Bessel
function family or special functions that arise from the class of hypergeometric
functions (Kummer function). The building blocks of these series depend on certain
parameters. So, in short, the main difference between these series is that in terms
of the Neumann series the summation index is the order (parameter) of the Bessel
function; in terms of the Kapteyn series the summation indices are the order and the
argument, while in terms of the Schlömilch series the argument is the summation
index. Also, using similar criteria, one can define general Neumann, Schlömilch,
and Kapteyn series of hypergeometric or other special functions, guided by the
above classification principle. On the other hand, the coefficient of the argument
in a Dini series involves the zeros of the initial function from the Bessel family, or
those of the related Dini function.

Functions in the Bessel family and the Kummer function have either power
series or definite integral representations or they are particular solutions of ordinary
differential equations. Thus we shall adopt a three-pronged approach in our study
and will explore summations of sums, summations of integrals, and summations of
functions that are solutions of Bessel, Struve, Kummer, or certain other classical
ordinary differential equations. While we are addressing mainly the same problems
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viii Preface

as some of the great forefathers of the field of Fourier–Bessel series, including Carl
Gottfried Neumann (1832, Königsberg–1925, Leipzig); Willem Kapteyn (Kapteijn)
(1849, Barneveld–1927, Utrecht); Oscar Xavier Schlömilch (1823, Weimar–1901,
Dresden); and in parallel Ulisse Dini (1845, Pisa–1918, Pisa), our approach to these
considerations is significantly different.

Baricz and Pogány in [20, p. 815, Theorem 3.2] introduced a method, which
completely reorganizes the classification “Fourier–Bessel series of the first type”
(where one input Bessel family member function occurs in terms of the series)
versus “Fourier–Bessel series of the second type” (where products of two or
more Bessel-like functions appear in terms of the series). More precisely, Bar-
icz and Pogány have incorporated all input functions in the products except
a chosen one, which is included into the coefficient, and they consider the
initial Fourier–Bessel series as the “series of the first type” with the newly
constituted coefficients. The importance of these results is further seen by bear-
ing in mind various new findings concerning derivatives of the Bessel func-
tion family with respect to the order posted on the Wolfram Functions web-
site (http://blog.wolfram.com/2016/05/16/new-derivatives-of-the-bessel-functions-
have-been-discovered-with-the-help-of-the-wolfram-language/).

We appreciate that the title of a monograph should be concise and informative,
and not “too long.” To cover the phrase “Neumann, Kapteyn, Schlömilch and Dini
Series of Bessel Functions or Hypergeometric Type Functions,” which is a precise
but excessively long title for a book, we adopted “Fourier–Bessel Series” as a
working title, influenced by the title of the article [145], and, e.g., by the title of
section XVIII, “Series of Fourier–Bessel and Dini” in the monograph [333] by
Watson. His presentation significantly differs from ours; we will briefly present
this treatment of functions by Fourier–Bessel series, which actually belongs to the
class of Schlömilch series, in the related subsection of the introductory chapter,
emphasizing that we treat Fourier–Bessel series in a weaker sense than Kapteyn and
Watson. We also note the fact that Bessel functions are linked to hypergeometric
functions; see, also, [314, Chapter 8]. So, the title “Series of Bessel and Kummer-
Type Functions” interpolates the previously mentioned two descriptions of the
contents of this monograph.

The starting point for our research was the study [249] by Pogány and Süli
in 2009 on Neumann series of Bessel functions of the first kind J� and von
Lommel functions in which an integral expression was derived for Neumann series.
There, the cornerstones of the study were Dirichlet series associated with the
input Fourier–Bessel series and the Laplace integral of this Dirichlet series. While
proceeding with our research on mathematical tools associated with appropriate
Bessel-type homogeneous and nonhomogeneous ordinary differential equations, we
extended our study, which then resulted, among others, in the Ph.D. thesis of Jankov
Maširević [130] in 2011 and the habilitation thesis [244] of Pogány in 2015. Those
two theses arose from several joint or separate publications and constitute a major
part of this monograph.

Our main objective in this monograph is to give a systematic overview of our
results concerning such series; textual material is gathered from diverse sources

http://blog.wolfram.com/2016/05/16/new-derivatives-of-the-bessel-functions-have-been-discovered-with-the-help-of-the-wolfram-language/
http://blog.wolfram.com/2016/05/16/new-derivatives-of-the-bessel-functions-have-been-discovered-with-the-help-of-the-wolfram-language/
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including journal articles, theses, and conference papers, which had not appeared
before in the form of a book.

The book is aimed at a mathematical audience, graduate students, and those in
the scientific community with interest in a new perspective on Fourier–Bessel series,
and their manifold and polyvalent applications, mainly in general classical analysis,
applied mathematics, or mathematical physics.

A general introduction to the subject will be found in Chap. 1, together with a
necessarily short overview of special functions, Dirichlet series, Cahen’s formula,
and the Euler–Maclaurin summation formula, among others, as it is assumed that
readers have a general background in real and complex analysis, and possess some
familiarity with functional analysis. Then, results on Neumann–Bessel series are
collected in the identically entitled Chap. 2, followed by Chap. 3, Kapteyn series,
where, in addition to Kapteyn–Bessel series, also Kapteyn–Kummer series are
presented. Chapter 4 focuses on Schlömilch–Bessel series and Schlömilch series
of the p-extended Mathieu series, which represents a transition to Chap. 5, entitled
Miscellanea, where Dini–Bessel series, Neumann and Kapteyn series of Struve
and modified Struve functions, and Neumann series of Jacobi polynomials are
considered. The main body of the book ends with a short overview of Neumann
series of Meijer G functions, which is followed by an exhaustive list of references
and an Index. We note that a detailed overview of diverse applications, with links to
further relevant sources, is given in the introductory part of each chapter.

Besides the pure mathematical aspects of the obtained results, many potential
application items exist, e.g., the Kapteyn series’ applications in various problems of
mathematical physics, e.g., Kepler’s equation, pulsar physics, and electromagnetic
radiation; Neumann series’ use in infinite dielectric wedge problem, description of
internal gravity waves in a Boussinesq fluid, propagation properties of diffracted
light beams, the orbital angular momentum quantum number, the wave functions
that describe the states of motion of charged particles in a Coulomb field, inversion
probability of a large spin, evaluation of the capacitance matrix of a system of finite-
length conductors, modeling of the free vibrations of a wooden pole, and analysis of
an isotropic medium containing a cylindrical borehole are routine procedures. These
numerical calculations mainly take into account truncation of infinite series. Instead,
the derived integral expressions may lead to numerical quadrature implementation
for which numerous in-built software routines are widely developed.

The authors take great pleasure in thanking Endre Süli (Oxford) for taking
part in the research endeavor, which initiated and now finally encompasses this
manuscript. We are also very grateful to Paul Leo Butzer (Aachen), Diego Dominici
(New Paltz), Saminathan Ponnusamy (Chennai), and Sanjeev Singh (Chennai) for
numerous valuable suggestions, remarks, and discussions, which resulted in crucial
improvements of the exposition.

Székelyudvarhely Árpád Baricz
Trpinja Dragana Jankov Maširević
Sušak Tibor K. Pogány
October 2017



Survey

The aim of this brief survey is to present a short overview of the topics discussed in
this book.

Bessel Functions Bessel functions are solutions to the second-order linear homo-
geneous Bessel differential equation. Discovered by the mathematician Daniel
Bernoulli and studied systematically by the astronomer Friedrich Bessel, Bessel
functions appear frequently in problems of applied mathematics. They are particu-
larly important in problems associated with wave propagation and static potentials.
Bessel functions of integer order are also known as cylinder functions or cylindrical
harmonics, because they arise in the solution of Laplace’s equation in cylindrical
coordinates. Although the study of Bessel functions is part of classical analysis, their
beautiful properties are continually explored by numerous researchers, and several
new properties are reported each year. G.N. Watson’s book A treatise on the theory
of Bessel functions [333], written almost one hundred years ago, is an important
book in the theory of special functions, especially on topics associated with
asymptotic expansions, series, zeros, and integrals of Bessel functions. Nowadays,
Watson’s book is a classic, and because of their remarkable properties, special
functions, such as Bessel functions, are frequently used also in probability theory,
statistics, mathematical physics, and in the engineering sciences. See, for example,
the interesting book by B.G. Korenev Bessel functions and their applications, [156].

Series of Bessel Functions Infinite series involving different kinds of Bessel func-
tions occur quite frequently in both mathematical and physical analysis. Watson’s
treatise contains four chapters on different kinds of series of Bessel functions, such
as Neumann, Kapteyn, Fourier–Bessel, Dini, and Schlömilch series. Because of the
range of applications in concrete problems of applied mathematics, series of Bessel
functions have been considered frequently by researchers.

The Topics Discussed in This Book In this book our aim is to establish certain
integral representations for Neumann, Kapteyn, Schlömilch, Dini, and Fourier series
of Bessel and other special functions, such as Struve and von Lommel functions.
Our objective is also to find the coefficients of the Neumann and Kapteyn series,
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xii Survey

as well as closed-form expressions, and summation formulae for the series of
Bessel functions considered. In the study the so-called Euler–Maclaurin summation
formula (which is a beautiful bridge between continuous and discrete), the Laplace–
Stieltjes integral representation of Dirichlet series, and various bounds for Bessel
and Bessel-type functions (Struve, modified Struve, modified Bessel functions of
the first and second kind, von Lommel functions, and Bessel function of the second
kind) play an important role. Some integral representations are also deduced by
using techniques from the theory of differential equations.
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Notations

N;Z;R;RC;C Set of natural, integer, real, non-negative real
and complex numbers, respectively

Np f p; p C 1; � � � g; p 2 N

Z
�
0 Set of non-positive integers f: : : ;�2;�1; 0g

A˛.t/ Counting function of .˛n/ in Cahen’s formula

Dˇ.x/ Dirichlet series associated with sequence
.ˇn/n�1

dx f .x/ f .x/C fxg f 0.x/
� .z/ Gamma function, Euler function of the second

kind

B.p; q/ Beta function, Euler function of the first kind

 .z/ Psi (or Digamma) function, logarithmic
derivative of the Gamma function

.a/n Pochhammer symbol

.˛/� Generalized Pochhammer symbol

Bm.x/ mth Bernoulli polynomial

Bm D Bm.0/ mth Bernoulli number

�.s/; �.s/ Riemann Zeta and Dirichlet Eta functions

S.x/;eS.x/ Mathieu, alternating Mathieu series

S.˛;ˇ/� .rI a/ Generalized Mathieu series

Ms.a;�I r/ Mathieu .a;�/-series

Sp;�.x/ p-extended Mathieu series

2F1
ha; b

c

ˇ

ˇ

ˇ z
i

Gaussian hypergeometric function

1F1.aI cI z/ Kummer (confluent hypergeometric) function
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pFq

h a1; � � � ; ap

b1; � � � ; bq

ˇ

ˇ

ˇ z
i

Generalized hypergeometric function

p�
�
q

h .a1; 	1/; � � � ; .ap; 	p/

.b1; 
1/; � � � ; .bq; 
q/

ˇ

ˇ

ˇ z
i

Fox–Wright generalized hypergeometric
function

FpWqIk
lWmIn

h

.ap/ W .bq/I .ck/

.˛l/ W .ˇm/I .�n/

ˇ

ˇ

ˇ x; y
i

Kampé de Fériet generalized
hypergeometric function of two variables

˚3.ˇ; � I x; y/ Horn confluent hypergeometric function of
two variables

FAWBIB0

CWDID0

h

Œ.a/W�;'�W
Œ.c/W;��W

Œ.b/W �I
Œ.d/W��I

Œ.b0/W 0�
Œ.d0/W�0 �

ˇ

ˇ

ˇ x; y
i

Srivastava–Daoust extended generalized
hypergeometric function of two variables

Gm;n
p;q

�

z
ˇ

ˇ

ˇ

a1; � � � ; ap

b1; � � � ; bq

�

Meijer G function

J�.z/; I�.z/ Bessel and modified Bessel function of the
first kind of order �

Y�.z/;K�.z/ Bessel and modified Bessel function of the
second kind of order �

H.1/
� .z/;H

.1/
� .z/ Hankel functions

P�.z/ I�.z/ � K�.z/

j�;n nth positive zero of the Bessel function J�
j�.z/; i�.z/ Spherical Bessel, modified spherical Bessel

function of the first kind of order �

!�.z/ Generalized Bessel function of the first
kind of order �

J .m/
�1;��� ;�m.z/; I

.m/
�1;��� ;�m.z/ Delerue hyper-Bessel and modified

Delerue hyper-Bessel function

hJ�.z/; hI�.z/ Wright generalized and modified Wright
generalized Bessel function

bL; cL; dO First, second Landau’s and Olenko’s
constants

Ai.x/ Airy function

H�.z/;L�.z/ Struve, modified Struve function of order �

N�.z/ Neumann series

K�.z/ Kapteyn series

K�.z/ Kapteyn–Kummer series

�n nth Kapteyn polynomial

S�.z/;T�.z/ Schlömilch series

D�.z/ Dini series

d�;˛.z/ Dini function

��;n nth positive zero of the Dini function
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U�.x; y/;V�.x; y/ von Lommel functions of two variables

˝.z/ Butzer–Flocke–Hauss complete Omega function

Q�.a; b/ Generalized Marcum Q-function

� .˛; xIˇ/ Generalized incomplete Gamma function

W .x; y/ Leaky aquifer function

#3.z; q/ Jacobi third Theta function

�k.s/ Epstein Zeta function

rk.n/ Number of integer lattice points inside k-dimensional
sphere of radius

p
n

˚.z; s; a/ Hurwitz–Lerch Zeta function

Lis.z/ Polylogarithm, de Jonquère’s function

D
�˛
x Œ f � Grünwald–Letnikov fractional derivative

MŒ y�;M˛
�Œ y� Bessel-type differential operator

P.˛;ˇ/n .z/ Jacobi polynomial

s�;�.x/; s�;�.x/ von Lommel functions

C Euler–Mascheroni constant

Hn nth harmonic number

/ Proportional to; x / y means that there is a constant C
independent of x; y that x D Cy

� Asymptotic to; f .x/ � g.x/; x ! a means that
limx!a f .x/=g.x/ D 1

O.�/ Landau (or Big O) notation

Fc. f I x/ Fourier cosine transform of function f

LpŒ f � Laplace transform of function f

Mp. f / Mellin transform of function f

<.z/;=.z/ Real, imaginary part of a complex number z

fxg; Œx� Fractional, largest integer part of some real x

i imaginary unit, i2 D �1
� Ending Proof

� Ending Remark



Chapter 1
Introduction and Preliminaries

Abstract We begin with a brief outline of special functions and methods, which
will be needed in the next chapters. We recall here briefly the Gamma, Beta,
Digamma functions, Pochhammer symbol, Bernoulli polynomials and numbers,
Bessel, modified Bessel, generalized hypergeometric, Fox–Wright generalized
hypergeometric, Hurwitz–Lerch Zeta functions, the Euler–Maclaurin summation
formula together with Dirichlet series and Cahen’s formula, Mathieu series, Bessel
and Struve differential equations, Fourier-Bessel and Dini series of Bessel functions
and fractional differintegral.

Special functions have their roots back to the eighteenth century when it became
clear that the existing elementary functions are not sufficient to describe a number
of unsolved problems in various branches of mathematics and physics. Functions,
appropriate to describe the new results were generally presented in the form of
infinite series, integrals, or as solutions of differential equations and some of them,
which appeared more frequently, were named, for example, Gamma, Beta function,
etc. One of the first issues about special functions is the set of four books, published
between 1893 and 1902 by Tannery and Molk [302–305]. Among others, his
contribution to the theory of special functions gave F.W. Bessel who systematically
investigated the Bessel functions in 1824 [72] already considered in eighteenth
century by Bernoulli, Euler, Lagrange, Fourier and others in theirs researches in
mechanics, astronomy and the conduction of heat. The monumental monograph A
treatise on the theory of Bessel functions, written by Watson in 1922 [333] contains
a wide range of results about Bessel functions. Nowadays, Bessel functions family
counts a huge spectrum of functions: Bessel functions of the first and second kind,
modified Bessel functions of the first and second kind, Struve functions, modified
Struve functions, von Lommel functions et coetera and there are numerous literature
dealing with some properties and unfailing applications of such functions. Also, an
interesting and important topic in the theory of Bessel functions are functional series
of mathematical physics, having great importance in engineering and technique
(compare [18]), the Fourier–Bessel family of infinite series consisting of Neumann-,
Kapteyn-, Schlömilch and Dini series with members containing Bessel functions of

© Springer International Publishing AG, part of Springer Nature 2017
Á. Baricz et al., Series of Bessel and Kummer-Type Functions, Lecture Notes
in Mathematics 2207, https://doi.org/10.1007/978-3-319-74350-9_1
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the first kind or some other functions which are a member of the Bessel functions
family and/or belong to the hypergeometric representation. The main difference
between those series is that the Neumann series constituting terms contain the
summation index in the order of the Bessel function; the Kapteyn series terms
have index in both order and argument, while the Schlömilch series have argument
summation indices. Precisely:

• Neumann series, i.e. the series in which the order of the Bessel function of the
first kind contains the current index of summation

N�.z/ WD
X

n�1
˛nJ�Cn.z/; z 2 C

are named after the German mathematician Carl Gottfried Neumann [209], who
in his book Theorie der Besselschen Funktionen, in 1867, studied only their
special cases, namely those of integer order. A few years later, in 1887, Leopold
Bernhard Gegenbauer [88, 89] expanded these series, having order the whole real
line.

• Kapteyn series are the series where the order of the Bessel function, and also the
argument contains index of summation:

K�.z/ WD
X

n�1
˛nJn ..�C n/z/ ; z 2 C :

Such series were introduced in 1893, by Willem Kapteyn [145], in his arti-
cle Recherches sur les functions de Fourier-Bessel. These series have great
applications in problems of mathematical physics. For example, a solution
of famous Kepler’s equation can be explicitly expressed by Kapteyn series.
Their application can be found in problems of pulsar physics, electromagnetic
radiation, etc. In 1906 Kapteyn [146] proved that every analytic function can be
developed in such series.

• Schlömilch series appear when the argument contains the current index of
summation, i.e. the series of the form:

S�.z/ WD
X

n�1
˛n J� ..�C n/z/ ; z 2 C :

Oscar Xavier Schlömilch [279] was the first who defined that series, in 1857,
in the article Über die Bessel’schen Function, but he looked only at cases when
the series contains of Bessel functions of the first kind of order � D 0; 1. Their
use is so widespread in the field of physics, such as the use of Kapteyn series.
Rayleigh [266] in 1911 pointed out that in the case � D 0 these series are useful
in the study of periodic transverse vibrations of two-dimensional membranes.
Generalized Schlömilch series appeared in the Nielsen’s memoirs [212–218]
from 1899, 1900 and 1901. Filon [83] in 1906 first studied the possibility of
development of arbitrary function in generalized Schlömilch series.
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There are also Kapteyn series of the second type, which have been studied, in
details, by Nielsen [216, 217], in 1901, and that series consist of the product of two
Bessel functions of the first kind, of different orders.

Neumann series are widely used. Especially interesting are the Neumann series
of the zero-order Bessel function, i.e. series N0, which appears as a relevant techni-
cal tool to solve the problem of infinite dielectric wedge through the Kontorovich–
Lebedev transformation. They also occur in the description of internal gravity waves
in Bussinesq fluid, and in defining the properties of diffracted light beams. Wilkins
[334] discussed the question of existence of an integral representation for a special
Neumann series; Maximon [188] in 1956 represented a simple Neumann series N�

appearing in the literature in connection with physical problems and Luke [178]
studied, in 1962, integral representation of Neumann series for � D 0.

Finally, it is worth to mention that regarding the orthogonality property of Bessel
and alike functions the advanced subject of interest can be a study of orthogonality
of Neumann, Kapteyn, Schlömilch and Dini series. In the orthogonal series’
respect we draw the attention to the classical 1935 monograph by Kaczmarz and
Steinhaus [144] and suggest to consult Alexits’s book [3] concerning convergence
and summability questions. Also the main source for everywhere existing and
used analytic inequalities can serve among others Mitrinović’s celebrated inequality
collection [202].

1.1 The Gamma Function

The Gamma function has caught the interest of some of the most prominent
mathematicians of all times. Its history, notably documented by Philip J. Davis in
an article that won him the Chauvenet Prize, in 1963, reflects many of the major
developments within mathematics since the eighteenth century. In his article [59]
Davis wrote:

“Each generation has found something of interest to say about the Gamma
function. Perhaps the next generation will also”.

In this section, we recall some properties of the Gamma function and introduce
some other functions which can be expressed in terms of the Gamma function,
namely Psi and Beta function and also the Pochhammer symbol.

The Gamma function is defined by a definite integral due to Leonhard Euler

� .z/ D
Z 1

0

e�t tz�1dt ; <.z/ > 0 : (1.1)

The notation � .z/ is due to French mathematician Adrien–Marie Legendre. Using
integration by parts, from (1.1) we easily get [1, p. 256, Eq. 6.1.15]

z� .z/ D � .z C 1/ ; <.z/ > 0 : (1.2)
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That relation is called the recurrence formula or recurrence relation of the Gamma
function. For z D n 2 N, from (1.2) it follows that [1, p. 255, Eq. 6.1.6]

� .n/ D .n � 1/Š :

The recurrence relation is not the only functional equation satisfied by the � .
Another important property is the Euler’s reflection formula [1, p. 256, Eq. 6.1.17]

� .z/� .1 � z/ D �

sin .�z/
;

which gives relation between the Gamma function of positive and negative numbers.
For z D 1

2
, from the previous equation, it follows that �

�

1
2

� D p
� .

In what follows, we would also need Legendre’s duplication formula [1, p. 256,
Eq. 6.1.18]

� .2z/ D 22z�1
p
�
� .z/ �

�

z C 1
2

�

: (1.3)

In examining the convergence conditions of corresponding series of Bessel func-
tions of the first kind, we would need the formula for asymptotic behavior of the
Gamma function (in other words a Stirling’s formula) [1, p. 257, Eq. 6.1.37]

� .z/ D p
2� zz� 1

2 e�z
�

1C O.z�1/
�

; j arg zj < �; jzj ! 1; (1.4)

which usually one writes

� .z/ � p
2� e�zzz� 1

2 ; jzj ! 1 :

Gamma function also has the following properties (see [263, p. 9]):

• � .z/ is analytic except at nonpositive integers, and when z D 1;
• � .z/ has a simple pole at each nonpositive integer, z 2 Z

�
0 ;

• � .z/ has an essential singularity at z D 1, a point of condensation of poles;
• � .z/ is never zero, because 1=� .z/ has no poles.

1.1.1 Psi (or Digamma) Function

The Psi (or Digamma) function  .z/ is defined as the logarithmic derivative of the
Gamma function:

 .z/ WD d

dz
flog � .z/g D � 0.z/

� .z/
or log � .z/ D

Z z

1

 .t/ dt :
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We express  .z/ [1, Eq. (6.3.16)] as follows (see also [287, p. 14, Eq. 1.2(3)]:

 .z/ D
X

k�1

�

1

k
� 1

z C k � 1
�

� C ; z 2 C n Z
�
0 ;

where C denotes the celebrated Euler-Mascheroni constant given by

C WD lim
n!1 .Hn � log n/ � 0:5772 ;

where Hn are called the harmonic numbers defined by

Hn D
n
X

kD1

1

k
; n 2 N:

Finally, let us remark that the Digamma function  .z/ increases on its entire range
and possesses the unique positive nil ˛0 D  �1.0/ � 1:4616. One of the useful
properties of the Digamma function is that [1, p. 258, Eq. 6.3.5]

 .z C 1/ D 1

z
C  .z/; z > 0 :

1.1.2 The Beta Function

The Beta function, also called the Euler integral of the first kind, is a special function
defined by Abramowitz and Stegun [1, p. 258, Eq. 6.2.1]

B.x; y/ D
Z 1

0

tx�1.1 � t/y�1 dt; minf<.x/; <. y/g > 0 :

The Beta function is intimately related to the Gamma function, which is described
in [263, p. 18]:

B.x; y/ D � .x/� . y/

� .x C y/
; <.x/; <. y/ > 0 : (1.5)

Accordingly, by (1.5) it follows that Beta function is invariant with respect to
parameter permutation, meaning that B.x; y/ D B.y; x/.
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1.1.3 The Pochhammer Symbol

The Pochhammer symbol (or the shifted factorial), introduced by Leo August
Pochhammer, is defined, in terms of Euler’s Gamma function, by

.�/� WD � .�C �/

� .�/
D
(

1; if � D 0I � 2 C n f0g
�.�C 1/ � � � .�C n � 1/; if � D n 2 NI � 2 C

;

it being understood conventionally that .0/0 WD 1.
The Pochhammer symbol also satisfies

.��/� D .�1/� .� � �C 1/� ; � 2 N0 :

Excellent source for these Gamma-type functions is the monograph by Andrews
et al. [7].

1.2 Bernoulli Polynomials and Numbers

The Bernoulli polynomials Bm.x/ [1, p. 804] satisfy [58, p. 899, Eq. (3.4b)]

Bm.x/ D
m
X

kD0
Bk �

 

m

k

!

xm�k ; (1.6)

being Bm D Bm.0/, m 2 N0 the Bernoulli numbers for which hold [93, p. 1041]

B0 D 1; B1 D � 1
2
; B2mC1 D 0; B2m D .�1/m�1� .2m C 1/�.2m/

22m�1�2m
; m 2 N;

(1.7)

where � stands for the Riemann’s Zeta function (see e.g. [207]).
In turn, the Bernoulli polynomials of odd degree possess definition [1, p. 805]

B2m�1.x/ D .�1/m 2.2m � 1/Š

.2�/2m�1
X

n�1

sin.2n�x/

n2m�1 ; m 2 N (1.8)

where x 2 .0; 1/ for m D 1 and x 2 Œ0; 1� if m 2 N2 D f2; 3; 4; : : : g and for the
Bernoulli polynomials of even degree there hold

B2m.x/ D .�1/m�1 2.2m/Š

.2�/2m

X

n�1

cos.2n�x/

n2m
; m 2 N; x 2 Œ0; 1� :
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1.3 Euler-Maclaurin Summation Formula

Euler–Maclaurin formula provides a powerful connection between integrals and
sums. It can be used to approximate integrals by finite sums, or conversely to
evaluate finite sums using integrals and the machinery of calculus. The formula was
discovered independently by Leonhard Euler and Colin Maclaurin around 1735.
Euler needed it to compute slowly converging infinite series, while Maclaurin used
it to calculate integrals. Their famous summation formula of the first degree is

X̀

nDk

an D
Z `

k
a.x/dx C 1

2
.a` C ak/C

Z `

k
a0.x/B1.x/ dx;

where B1.x/ D fxg � 1
2

is the first degree Bernoulli polynomial.
It generally holds [7, p. 619, Theorem D.2.1]

X̀

nDk

f .n/ D
Z `

k
f .x/dx C 1

2

�

f .k/C f .`/
�C

m
X

jD1

B2j

.2j/Š

�

f .2j�1/.`/� f .2j�1/.k/
�

�
Z `

k

B2m.x/

.2m/Š
f .2m/.x/ dx ; m 2 N;

where Bp.x/ D .xCB/p; 0 � x < 1 represents Bernoulli polynomial of order p 2 N,
while Bk are appropriate Bernoulli numbers. On Œ`; `C1/; ` 2 N, Bp.x/ are periodic
with period 1.

Summation formulae, of the first kind (p D 1) we will use in condensed form,
under the condition a 2 C1Œk; l�; k; l 2 Z; k < l:

X̀

nDkC1
an D

Z `

k
.a.x/C fxga0.x// dx �

Z `

k
dxa.x/ dx ; (1.9)

where

dx WD 1C fxg @
@x
;

see [249, 252].
The articles [239–241] contain certain special cases of (1.9) specifying among

others an D 1.
The multiple Euler–Maclaurin summation formulae are used e.g. in [70, 250] and

discussed in detail in [129, 205, 241].
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1.4 Dirichlet Series and Cahen’s Formula

One of our main mathematical tools is the series

Da.s/ WD
X

n�1
an e��ns ; s > 0 ; (1.10)

where

0 < �1 < �2 < � � � < �n ! 1 as n ! 1 :

This is called Dirichlet series on the �n-type. For �n D n, (1.10) becomes power
series

Da.s/ WD
X

n�1
an e�ns ; s > 0

and for �n D ln n, we have series of the form

Da.s/ WD
X

n�1
an n�s ; s > 0 ;

which is called ordinary Dirichlet series.
In this monograph we mostly deal with series of the form (1.10), where s is real

variable. We also need a variant of closed integral form representation of Dirichlet
series, which is derived below, following mainly [104], [147, C. §V]. The heart of
the matter is the Stieltjes integral formula

Z b

a
f .x/ dAs.x/ D

X

n�1
f .�n/.As.�nC/ � As.�n�//; (1.11)

such that is valid for As-integrable f , where the step function

As.x/ WD
X

nW �n�x

.As.�nC/ � As.�n�// (1.12)

possesses the discontinuity set .�n/ which forms a monotone increasing sequence
of positive reals diverging to the infinity. Assuming that �.x/ is monotone increasing
positive function such that runs to the infinity with growing x and it is .�n/n�1 D
�.x/

ˇ

ˇ

N
, we deduce that � is invertible with the unique inverse ��1. Now, putting

an DW As.�nC/ � As.�n�/ into (1.12) we get

As.x/ D
X

nW �n�x

an D
Œ��1.x/�
X

nD1
an:
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Here As.x/ is the function such that has jump of magnitude an at �n; n 2 N. So,
taking f .x/ D e�sx and having in mind that Œa; b� D Œ0; x�, by (1.11) we deduce

X

nW �n�x

an e��ns D
Z x

0

e�s t dAs.t/: (1.13)

Letting x ! 1 in (1.13) we infer an integral which is equiconvergent with Da.s/, so

X

n�1
an e��ns D

Z 1

0

e�s t dAs.t/ ; s > 0 : (1.14)

Now, the integration by parts results in a Laplace integral instead of the Laplace–
Stieltjes integral (1.14). Indeed, as e�sx decreases in x being s positive, taking a.0/ D
0, the convergence of the Laplace–Stieltjes integral (1.14) ensures the validity of the
famous Cahen’s formula [47, p. 97], [104]

Da.s/ D s
Z 1

0

e�s tAs.t/ dt ; s > 0 : (1.15)

However, the so-called counting sum

Aa.t/ D
X

nW�n�t

an

we find by the Euler–Maclaurin summation formula (see [239, 240, 249]), assuming
that a WD a.x/

ˇ

ˇ

N
; a 2 C1Œ0;1/we sum upAs.t/ completing the desired closed form

integral representation of Dirichlet series Da.s/ without any sums. Namely

Aa.t/ D
Œ��1.t/�
X

nD1
an D

Z Œ��1.t/�

0

dua.u/ du ; (1.16)

since by assumption � is monotone with an unique inverse ��1 being �jN D .�n/.

1.5 Mathieu .a; �/-Series

The series of the form

S.r/ D
X

n�1

2n

.n2 C r2/2
; r > 0
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is known in literature as Mathieu series. Émile Leonard Mathieu was the first who
investigated such series in 1890 in his book [187]. There is a wide range of various
generalizations of the Mathieu series for which integral representations [53, 98, 248,
251, 252, 260], related summations results and bilateral bounding inequalities are
obtained (see also [245]); certain new estimates upon S.r/ are given also in [204],
see also the related references therein.

The so-called Mathieu .a;�/-series

Ms.a;�I r/ D
X

n�0

an

.�n C r/s
; r; s > 0 ; (1.17)

has been introduced by Pogány [239], giving an exhaustive answer to an Open
Problem posed by Qi [259], deriving closed form integral representation and
bilateral bounding inequalities for Ms.a;�I r/, generalizing at the same time some
earlier results by Cerone and Lenard [53], Qi [259], Srivastava and Tomovski [293]
and others.

The mentioned Pogány’s integral representation formula for Mathieu .a;�/-
series reads [240, Theorem 1]:

Ms.a;�I r/ D a0
rs

C s
Z 1

�1

Z Œ��1.x/�

0

a.u/C a0.u/fug
.r C x/sC1

dx du ;

where a 2 C1Œ0;1/ and a
ˇ

ˇ

N0
� a, ��1 stands for the inverse of � and the series

(1.17) converges. The series (1.17) is assumed to be convergent and the sequences
a WD .an/n�0, � WD .�n/n�0 are positive. Following the convention that .�n/

is monotone increasing divergent, we have

�W 0 � �0 < �1 < � � � < �n ���!
n!1 1 :

1.6 Bessel Differential Equation

The Bessel differential equation is the linear second-order ordinary differential
equation given by Olver et al. [227, §10.2.(i)]

x2 y00 C x y0 C .x2 � �2/y D 0 ; � 2 C : (1.18)

The solutions to this equation define the Bessel function of the first kind J� and the
Bessel function of the second kind Y� . The equation has a regular singularity at zero,
and an irregular singularity at infinity.

The function J�.x/ is defined by the equation

J�.x/ D
X

m�0

.�1/m
mŠ� .m C � C 1/

� x

2

�2mC�
: (1.19)
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For � … Z, functions J�.x/ and J��.x/ are linearly independent, thus the solutions
of the differential equation (1.18) are independent, while for � 2 Z it holds

J��.x/ D .�1/�J�.x/:

Bessel functions of first kind, which were introduced by Daniel Bernoulli in his
article [36] represent the general solution of the homogeneous Bessel differential
equation of the second degree. Alexandre S. Chessin [51, 52] was a first who gave
an explicit solution of Bessel differential equation with general nonhomogeneous
part, in 1902.

1.7 Bounds Upon J�.x/

We are also interested in estimates for Bessel function of the first kind. Landau [167]
gave the following bounds for Bessel function J�.x/:

j J�.x/j � bL�
� 1
3 ; bL WD 3

p
2 sup

x2RC

�

Ai.x/
�

(1.20)

and

j J�.x/j � cLjxj� 1
3 ; cL WD sup

x2RC

3
p

x
�

J0.x/
�

; (1.21)

where Ai.x/ stands for the familiar Airy function, which is solution of differential
equation

y00 � xy D 0; y D Ai.x/

and can be expressed as

Ai.x/ WD �

3

r

x

3

�

J� 1
3

�

2
�x

3

� 3
2

�

C J 1
3

�

2
�x

3

� 3
2

�	

:

Olenko [226] also gave sharp upper bound for Bessel function:

sup
x�0

p
x j J�.x/j � bL

s

�
1
3 C ˛1

�
1
3

C 3˛21
10�

DW dO ; � > 0; (1.22)

where ˛1 is the smallest positive zero of Airy’s function Ai.x/, and bL is the first
Landau’s constant.
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There is also Krasikov’s bound [159]

J2�.x/ � 4.4x2 � .2� C 1/.2� C 5//

�..4x2 � �/
3
2 � �/

; x >
q

�C �
2
3 ; � > � 1

2
; (1.23)

where � D .2� C 1/.2� C 3/. This bound is sharp in the sense that

J2�.x/ � 4.4x2 � .2� C 1/.2� C 5//

�..4x2 � �/
3
2 � �/

in all points between two consecutive zeros of Bessel function J�.x/ [159, Theorem
2]. Krasikov also pointed out that the estimates (1.20) and (1.21) are sharp only for
values that are in the neighborhood of the smallest positive zero j�;1 of the Bessel
function J�.x/, while his estimate (1.23) gives sharp upper bound in whole area.

In turn, Krasikov’s recently published a set of more precise and simpler bounds
[160, 161]. Precisely, for � � 1

2
and all t � 0 there holds [160, p. 210, Theorem 3]

ˇ

ˇ

ˇt2 �
ˇ

ˇ

ˇ�2 � 1
4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
4 j J�.t/j �

r

2

�
; (1.24)

where the right-hand-side constant is sharp. Next, his result [160, p. 210, Theorem
4] imply

j J�.t/j �
r

2

�t
C 	 c

ˇ

ˇ

ˇ�
2 � 1

4

ˇ

ˇ

ˇ t�
3
2 ; t > 0; j	j < 1 ; (1.25)

where

c D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

2

�

� 3
2

; x � 0; j�j � 1
2

4

5
; 0 < x <

q

j�2 � 1
4
j; � > 1

2

2

�
; x �

q

j�2 � 1
4
j; � > 1

2

:

Here c cannot be less then
p

�
2

. For another kind bounds upon J�.t/ consult [160,
Theorems 2, 5, 6] and [161, Theorems 2, 4].

Srivastava and Pogány [292, p. 199, Eq. (19)] proposed the following hybrid
estimator1

j J�.x/j � W�.x/ WD dOp
x
�.0;A��.x/C

p

K�.x/
�

1 � �.0;A��.x/
�

; (1.26)

1Here, and in what follows �A.x/ denotes the indicator function of the set A which equals 1, when
x 2 A, and zero else.
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where

K�.x/ WD 4.4x2 � .2� C 1/.2� C 5//

�..4x2 � �/
3
2 � �/

;

while

A� D 1
2

�

�C .�C 1/
2
3
�

:

Here we shall mainly use Landau’s bounds, because of their simplicity. Derived
results one can expand using hybrid estimator W� as well.

However, combining (1.24), (1.25) in W�.t/ replacing Olenko’s result and/or
K�.t/ in (1.26), we could define a set of further bounding functions for j J� j.

Further, exponential bounding inequalities for J�.x/ are published by Pogány
[243] and Sitnik [283].

1.8 Bessel Functions Family

The Bessel and the modified Bessel function of the first kind J�; I� , Bessel and
modified Bessel function of the second kind Y�;K� and the Struve and modified
Struve function H�;L� all of the order � possess power series representations of the
form [333], respectively:

J�.z/ D
X

n�0

.�1/n � z
2

�2nC�

� .n C � C 1/ nŠ
; I�.z/ D

X

n�0

�

z
2

�2nC�

� .n C � C 1/ nŠ
;

Y�.z/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

cot.��/ J�.z/ � csc.��/ J��.z/; � 62 Z

lim�!� Y�.z/; � 2 Z

;

K�.z/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

�
2

csc.��/ .I��.z/ � I�.z// ; � 62 Z

lim�!� K�.z/; � 2 Z

;

H�.z/ D
X

n�0

.�1/n � z
2

�2nC�C1

�
�

n C 3
2

�

�
�

n C � C 3
2

� ;

L�.z/ D
X

n�0

�

z
2

�2nC�C1

�
�

n C 3
2

�

�
�

n C � C 3
2

� ;
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where � 2 R and z 2 C. Bessel functions are well-known however, the function H�

was introduced in [299] as the series solution of the non-homogeneous second order
Bessel type differential equation (which carries his name). Applications of Struve
functions are manyfold and an exhaustive overview is given in [18] accompanied
with the long list of devoted references therein.

The family of Bessel functions also contains the spherical Bessel function of the
first kind of order � defined by the formula [1, p. 437] (also see [15, p. 9, Eq. (1.9)])

j�.z/ D
r

�

2z
J�C 1

2
.z/ ; z 2 C ;

and its modified variant [1, p. 443], [15, p. 9, Eq. (1.11)]

i�.z/ D
r

�

2z
I�C 1

2
.z/ ; z 2 C :

The ultraspherical Bessel function (initiated by Ashbaugh and Benguria [10, p.
562] and studied by Lorch and Szego [176, p. 549]) and the companion modified
ultraspherical Bessel function of the first kind read as follows

r

�

2
z��C1 J�C`�1.z/;

r

�

2
z��C1 I�C`�1.z/ ; � C ` > 0; z 2 C :

For � D 3
2
; ` 2 N0 the ultraspherical functions reduce to the classical spherical

Bessel functions.
The generalized Bessel function !�.x/ of the order �, introduced by Baricz

[15, p. 10, Eq. (1.15)], which generalizes and unifies all the classical Bessel,
modified Bessel, spherical Bessel, modified spherical Bessel, ultraspherical Bessel
and modified ultraspherical Bessel functions, reads as follows

!�.z/ D
X

n�0

.�c/n

nŠ � .� C n C bC1
2
/

� z

2

�2nC�
; �; b; c; z 2 C :

It is worth to mention the Delerue hyper-Bessel function [61, 65, 153]

J .m/
�1;��� ;�m

.z/ D
�

z

m C 1

�

m
P

jD1
�j
X

n�0

.�1/n � z
mC1

�n.mC1/

� .n C �1 C 1/ � � �� .n C �m C 1/ nŠ
;

and its modified variant

I .m/
�1;��� ;�m

.z/ D
�

z

m C 1

�

m
P

jD1
�j
X

n�0

�

z
mC1

�n.mC1/

� .n C �1 C 1/ � � �� .n C �m C 1/ nŠ
;
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which are multi-index analogues of the Bessel J and the modified Bessel I. Here
z; �k 2 C and <.�k/ > �1; k D 1;m. For m D 1 we arrive at the classical Bessel
and modified Bessel functions, while for m D 2 we deduce the so-called Bessel–
Clifford functions [150, 151]

C�;�.z/ D z� �C�
3 J.2/�;�.3

3
p

z/ :

The Wright generalized Bessel function [338] (discovered also by Galué [86], and
misnamed as Maitland or Bessel–Maitland function) [12, p. 184, Eq. (5)] is given by

hJ�.z/ D
X

n�0

.�1/n � z
2

�2nC�

nŠ � .� C hn C 1/
; z 2 C I

its modified variant was introduced by Baricz [12, p. 184, Eq. (6)]

hI�.z/ D
X

n�0

�

z
2

�2nC�

nŠ � .� C hn C 1/
; z 2 C;

being h 2 N in both cases. We point out that 1J� � J� and so does 1I� � I� .
Here we mention a h-fold definite integral expression form of hJ� on the rectangle
Œ0; 1�h, appearing in [86, p. 398], which is not of some substantial help in our
considerations. The case when h is not a non-negative integer both hJ�; hI� are Fox–
Wright generalized hypergeometric (or Wright) functions, see e.g. [297].

Now, we expose the freshly obtained result that Wright generalized Bessel
function is in fact a weighted variant of Delerue hyper-Bessel function. Indeed,
Jankov Maširević, Parmar and Pogány have shown that [141, Theorem 6.1]

hJ�.z/ D 2
hC1
2 ��� h�1

2

h
1C�2�.hC�/2

2.hC1/

z
h�1
hC1 ��1 � J .h/

�C1
h ;��� ; �h C1.�/

hI�.z/ D 2
hC1
2 ��� h�1

2

h
1C�2�.hC�/2

2.hC1/

z
h�1
hC1 ��1 � I .h/

�C1
h ;��� ; �h C1.�/ ;

where

� D .1C h/

�

z2

4hh

�
1

hC1

for all <.�/C 1 > 0; h 2 N and for all z 2 C.
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1.9 Struve Differential Equation

The Struve function is related to the non-homogeneous Bessel type ordinary
differential equation of special type called Struve differential equation [1, p. 496,
Eq. 12.1.1]

z2 y00 C z y0 C .z2 � �2/ y D 4p
� � .� C 1

2
/

� z

2

��C1
;

whose general solution turns out to be

y D C1 J�.z/C C2 Y�.z/C H�.z/ ;

where C1;C2 are the integration constants and z�� H�.z/ is an entire function of z.
Similarly, the modified Struve differential equation reads

z2 y00 C z y0 � .z2 C �2/ y D 4p
� � .� C 1

2
/

� z

2

��C1
;

whose general solution is of the form

y D C3 I�.z/C C4 K�.z/C L�.z/ :

There are further notations for another kind Struve type functions, namely [227,
§11-2 (i)]

K�.z/ D H�.z/ � Y�.z/; M�.z/ D L�.z/ � K�.z/ ;

which correspond to the principal values of the functions occurring on the right-
hand-sides of these defining equalities. Obviously, K�.z/ and M�.z/ are particular
solutions of the Struve, that is, of modified Struve differential equations, respec-
tively. In determining the integral representation of the second type Neumann series
X�.z/, which will be introduced in Chap. 2, (2.33), we need the Struve function
H�.z/ of order � whose series definition reads [333, p. 328]

H�.z/ D 2
�

z
2

��

p
�� .� C 1

2
/

Z 1

0

.1 � t2/�� 1
2 sin .zt/ dt

D 2
�

z
2

��

p
�� .� C 1

2
/

Z 1
2 �

0

sin .z cos �/ sin2� � d� ;

provided that <.�/ > � 1
2
.
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1.10 Series Built by Bessel Functions Family Members

Series of Bessel and/or Struve functions in which summation indices appear in
the order of the considered function and/or twist arguments of the constituting
functions, can be unified in a double lacunary form:

B`1;`2 .z/ D
X

n�1
˛nB`1.n/.`2.n/z/; (1.27)

where `j.x/ D �jx C �j; j 2 f1; 2g; x 2 N0, z 2 C and B� is one of the functions
J�; I�;Y�;K� ;H� and L� .

The classical theory of the Fourier–Bessel series of the first type is based on the
case when B� D J� , see the celebrated monograph [333]. However, varying the
coefficients of `1 and `2; we get three different cases which have not only deep roles
in describing physical models and have physical interpretations in numerous topics
of natural sciences and technology, but are also of vital mathematical interest, like
e.g. zero function series [333].

We differ Neumann series (when �1 ¤ 0; �2 D 0), Kapteyn series (when
�1 � �2 ¤ 0) and Schlömilch series (when �1 D 0; �2 ¤ 0). Here, all three
series are of the first type (the series’ terms contain only one constituting function
B�); the second type series contain product terms of two (or more) members—not
necessarily different ones—chosen from J�; I�;Y�;K� ;H� and L� .

We also point out that the Neumann series (of the first type) of Bessel function
of the second kind Y� , modified Bessel function of the second kind K� and Hankel
functions [100, 101] (Bessel functions of the third kind) H.1/

� ;H
.2/
� have been studied

in [24], while Neumann series of the second type were considered by Baricz and
Pogány in somewhat different purposes in [20, 21]; see also [134].

Thus, under extended Neumann series (of Bessel J� see [333]) we mean the
following

N
B
�;�.x/ D

X

n�1
ˇnB�nC�.ax/;

where B� is one of the functions I�;Y�;K� and L� . Integral representation dis-
cussions began very recently with the introductory article by Pogány and Süli
[249], which gives an detailed references list concerning physical applications too,
see [24].

Also, we will concentrate to the Neumann series [18]

B
I
�;�.x/ D

X

n�1
ˇnI�nC�.ax/ :

Kapteyn series of the first type [145, 146, 217] are of the form

K
B
�;�.z/ D

X

n�1
˛nB	C�n ..
 C �n/z/ I
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more details about Kapteyn and Kapteyn-type series for Bessel function can be
found also in [21, 23, 69, 308] and the references therein.

Under Schlömilch series [279, p. 155 et seq.] (Schlömilch considered only cases
� 2 f0; 1g), we count the functions series

S
�;B
� .z/ D

X

n�1
˛n B� ..�n C �/z/ :

Integral representation are recently obtained for this series in [131], summations are
given in [316].

Finally we point out that we do not consider Neumann, Kapteyn and Schlömilch
series built by another members belonging to the Bessel function family such
as spherical, modified spherical, ultraspherical, modified ultraspherical, Wright
generalized Bessel and Delerue generalized Bessel functions listed in the previous
section.

1.11 Fourier–Bessel and Dini Series

Denote j�;n the positive zeros of Bessel function of the first kind J�.x/; � > �1
written in ascending order of magnitude. Then the functions J�. j�;nx/; n 2 N form
an orthogonal system [314, p. 220] with the linear weight x. The result of expanding
an arbitrary suitable function f .x/ into a series form [333, p. 576, Eqs. (3), (4)], [39]

f .x/ D
X

n�1
anJ�. j�;n x/; (1.28)

where

an D 2

J2�C1. j�;n/

Z 1

0

x f .x/ J�. j�;nx/ dx ; n 2 N ;

was published firstly by von Lommel in [322, pp. 69–73] (the case � D 0 has
been explored in the famous Fourier’s monograph [84, §§316–319]). Naturally, the
expansion today holds the name Fourier–Bessel series, while an are the Fourier–
Bessel coefficients associated with the input function f . Watson’s book draw the
attention [333, p. 577] to the further efforts by Hankel [100, pp. 471–491], Schläfli
[277] and Harnack [106] in giving a rigorous proof of the expansion (1.28).

Few years after than Hermann Hankel and Ludwig Schläfli published their
findings, Ulisse Dini [66] has considered a more general expansion in the form [66]

f .z/ D
X

n�1
bn J� .��;nz/ ; � � � 1

2
; z 2 C (1.29)
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where ��;n stands for the nth positive zero of the so-called Dini function

d�;˛.z/ WD z��.zJ0
�.z/C ˛J�.z// ; (1.30)

arranged in increasing order of magnitude and the coefficients are given by Pathak
and Singh [231, p. 440], Watson [333, p. 577, Eq. (6)]

bn D .�2 � �2�;n/ J2�.��;n/

�2�;n



J0
�.��;n/

�2
C 2



J0
�.��;n/

�2

Z 1

0

x f .x/ J�.��;nx/ dx : (1.31)

The expansion (1.29), where the coefficients set is given by (1.31) we call Dini
series. However, the Sect. 5.7 is completely devoted to the integral form representa-
tions of such series with general coefficients bn.

Finally, our approach in studying our ’Fourier–Bessel’ and ’Dini series’ is
significantly flexible, since we take series alike to the right-hand-side expressions
in (1.28) and (1.29) respectively, with general unknown coefficients constraining
exclusively the fact that the considered series should converge in a widest possible
sub-region of reals or C. Assuming this property related integral representations,
functional and uniform bounding inequalities are established.

Remark 1.1 We mention here Einer Hille’s work on Fourier–Laguerre series [109–
111], which are in fact Neumann series of the first type. �

1.12 Hypergeometric and Generalized Hypergeometric
Functions

Hypergeometric functions form an important class of special functions (see e.g.
[87, 310]). They were introduced in 1866, by Carl Friedrich Gauss and after that
have proved to be of enormous significance in mathematics and the mathematical
sciences elsewhere. Here, we recall some properties of hypergeometric functions
which are useful for us to derive some of our main results. We suggest to the reader
to examine for the hypergeometric type functions either [7] or Rainville’s classical
book [263].

1.12.1 Gaussian Hypergeometric Function

Gaussian hypergeometric function is the power series

2F1
ha; b

c

ˇ

ˇ

ˇ z
i

D
X

k�0

.a/k .b/k
.c/k

zk

kŠ
D 1C ab

c
z C a.a C 1/ b.b C 1/

c.c C 1/

z2

2
C : : : ;

(1.32)
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where z is a complex variable, a, b and c are real or complex parameters and .a/k is
the Pochhammer symbol.

The series is not defined for c D �m, m 2 N0, provided that a or b is not the
negative integer n such that n < m. Furthermore, if the series (1.32) is defined but
at least one of a; b is equal to .�n/, n 2 N0, then it terminates in a finite number of
terms and it reduces to a polynomial of degree n in variable z. Except for this case,
in which the series is absolutely convergent for jzj < 1, the domain of absolute
convergence of the series (1.32) is the unit disc, i.e. jzj < 1. In this case it is said
that the series (1.32) defines the Gaussian or hypergeometric function

y WD y.z/ D 2F1
ha; b

c

ˇ

ˇ

ˇ z
i

: (1.33)

Also, on the unit circle jzj D 1, the series in (1.32) converges absolutely when
<.c � a � b/ > 0, converges conditionally when �1 < <.c � a � b/ � 0 apart from
at z D 1, and does not converge if <.c � a � b/ � �1.

It can be verified [284, p. 6] that the function y.z/ is the solution of the second
order differential equation [1, p. 562 et seq.]

z.1 � z/y00 C .c � .a C b C 1/z/ y0 � aby D 0; (1.34)

in the region jzj < 1. However, the function (1.33) can be analytically continued
to the other parts of the complex plane, i.e. solutions of Eq. (1.34) are also defined
outside the unit circle. These solutions are provided by following substitutions in
Eq. (1.34):

• substitution 1 � z 7! z yields solutions valid in the region j1 � zj < 1,
• substitution z�1 7! z yields solutions valid in the region jzj > 1.

1.12.2 Generalized Hypergeometric Function

For bi .i D 1; 2; : : : ; q/ different from non-positive integers the series

X

n�0

.a1/n.a2/n � � � .ap/n

.b1/n.b2/n � � � .bq/n

zn

nŠ
D
X

n�0

p
Q

jD1
.aj/n

q
Q

jD1
.bj/n

zn

nŠ

is called a generalized hypergeometric series (see [199]) and is denoted by

pFqŒz� D pFqŒ.ap/I .bq/jz� D pFq

h a1; � � � ; ap

b1; � � � ; bq

ˇ

ˇ

ˇ z
i

:
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When p � q, the generalized hypergeometric function converges for all complex
values of z; that is, pFqŒz� is an entire function. When p > qC1, the series converges
only for z D 0, unless it terminates (as when one of the parameters aj; j D 1; p is
a negative integer) in which case it is just a polynomial in z. When p D q C 1, the
series converges in the unit disk jzj < 1, and also for jzj D 1 provided that

<
0

@

q
X

jD1
bj �

p
X

jD1
aj

1

A > 0 :

The complex members of the sequences .ap/, .bq/ are called parameters and z is the
argument of the function.

1.12.3 Fox–Wright Generalized Hypergeometric Function

In this monograph we also need the Fox-Wright generalized hypergeometric func-
tion p�

�
q Œ�� with p numerator parameters a1; � � � ; ap and q denominator parameters

b1; � � � ; bq, which is defined by Kilbas et al. [149, p. 56]

p�
�
q

h

.a1; 	1/; � � � ; .ap; 	p/

.b1; 
1/; � � � ; .bq; 
q/

ˇ

ˇ

ˇ z
i

D
X

n�0

p
Q

jD1
.aj/	jn

q
Q

jD1
.bj/
jn

zn

nŠ
; (1.35)

where aj 2 CI bk 2 C n Z
�
0 and 	j; 
k 2 RC, j D 1; � � � ; p; k D 1; � � � ; q. The

defining series in (1.35) converges in the whole complex z-plane when

� WD
q
X

jD1

j �

p
X

jD1
	j > �1 I

when� D 0, then the series in (1.35) converges for jzj < r, where

r WD

q
Q

jD1



j

j

p
Q

jD1
	
	j

j

:

Setting in the definition (1.35) 	1 D � � � D 	p D 1 and 
1 D � � � D 
q D 1, we get
the generalized hypergeometric function pFqŒ��.
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1.13 Further Hypergeometric Type Functions

The regularized generalized hypergeometric function peFqŒz� defined as the series
[120]

peFq

ha1; � � � ; ap

b1; � � � ; bq

ˇ

ˇ

ˇ z
i

D
X

n�0

p
Q

jD1
.aj/n

q
Q

jD1
� .bj C n/

zn

nŠ
;

where q � p (in which cases it is entire function in all variables [121]); q D p � 1

and jzj < 1; q D p � 1 and jzj D 1, <
 

p�1
P

nD1
bn �

p
P

nD1
an

!

> 0.

The Kampé de Fériet generalized hypergeometric function of two variables
defined by the double-series [8] in a notation given by Srivastava and Panda [291,
p. 423, Eq. (26)]

FpWqIk
lWmIn

h

.ap/ W .bq/I .ck/

.˛l/ W .ˇm/I .�n/

ˇ

ˇ

ˇ x; y
i

D
X

r;s�0

p
Q

jD1
.aj/rCs

q
Q

jD1
.bj/r

k
Q

jD1
.cj/s

l
Q

jD1
.˛j/rCs

m
Q

jD1
.ˇj/r

n
Q

jD1
.�j/s

xr

rŠ

ys

sŠ
;

which converges [289] when

1. p C q < l C m C 1, p C k < l C n C 1, maxfjxj; j yjg < 1, or
2. p C q D l C m C 1, p C k D l C n C 1 and

(

jxj 1
p�l C j yj 1

p�l < 1; l < p

maxfjxj; j yjg < 1; l > p
:

The member ˚3 of the Horn’s list, a confluent hypergeometric function of two
variables, is defined by Srivastava and Karlsson [290, p. 26, Eq. (20)]

˚3.ˇ; � I x; y/ D
X

n;m�0

.ˇ/n

.�/nCm

xn

nŠ

ym

mŠ
; x; y 2 C :

Srivastava and Daoust [288] considered a two-variable series extension of a multiple
generalized hypergeometric type function which reads as follows

FAWBIB0

CWDID0

�

Œ.a/ W �; '� W
Œ.c/ W ; �� W

Œ.b/ W  �I
Œ.d/ W ��I

Œ.b0/ W  0�
Œ.d0/ W � 0�

ˇ

ˇ

ˇ x; y



D
X

m;n�0

A
Q

jD1
.aj/m�jCn'j

B
Q

jD1
.bj/m j

B0

Q

jD1
.b0

j/n 0

j

C
Q

jD1
.cj/mjCn�j

D
Q

jD1
.dj/m�j

D0

Q

jD1
.d0

j/n�0

j

xm

mŠ

yn

nŠ
;
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where, for convergence of the double series,

1C
C
X

jD1
jC

D
X

jD1
�j�

A
X

jD1
�j�

B
X

jD1
 j � 0I 1C

C
X

jD1
�jC

D0

X

jD1
� 0

j �
A
X

jD1
'j�

B0

X

jD1
 0

j � 0;

with equality only when jxj and j yj are constrained appropriately (see e.g., for
details, [288]). Here, for the sake of convenience, .a/ abbreviates the array of A
parameters a1; : : : ; aA with similar interpretations for .b/; .b0/; .c/; .d/ and .d0/.

1.14 Hurwitz–Lerch Zeta Function

The general Hurwitz–Lerch Zeta function˚.z; s; a/ is defined by (see e.g. [77, p. 27,
Eq. 1.11(1)]; see also [287, p. 121, et seq.]):

˚.z; s; a/ D
X

n�1

zn

.n C a/s
;

where a 2 C n Z
�
0 I s 2 C when jzj < 1; while <.s/ > 1 when jzj D 1. The

Hurwitz–Lerch Zeta function ˚.z; s; a/ can indeed be continued meromorphically
to the whole complex s-plane, except for a simple pole at s D 1 with its residue 1.
The general Hurwitz–Lerch Zeta function ˚.z; s; a/ contains, as its special cases,
not only the Riemann Zeta function �.s/, the Hurwitz Zeta function �.s; a/ and the
Lerch Zeta function `�.z/ defined by (see [77, Chapter I] and [287, Chapter 2]). For
novel results regarding generalizations and unifications of ˚.z; s; a/ the interested
reader is referred also to the articles [172, 275, 295, 296].

1.15 Fractional Differintegral

In order to solve the nonhomogeneous Bessel differential equation, we will also use
fractional derivation and fractional integration, i.e. fractional differintegration.

So, let us first introduce, according to [174, p. 1488, Definition], the fractional
derivative and the fractional integral of order � of some suitable function f , see also
[149, 173, 328–330, 340].

If the function f .z/ is analytic (regular) inside and on C WD fC�;CCg, where
C� is a contour along the cut joining the points z and �1 C i=fzg, which starts
from the point at �1, encircles the point z once counter-clockwise, and returns to
the point at �1, C C is a contour along the cut joining the points z and 1 C i=fzg,
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which starts from the point at 1, encircles the point z once counter-clockwise, and
returns to the point at 1,

f�.z/ D . f .z//� WD � .�C 1/

2�i

Z

C

f .�/

.� � z/�C1 d�

for all � 2 R n Z
�I Z� WD f�1;�2;�3; � � � g and

f�n.z/ WD lim
�!�n

f�.z/ ; n 2 N;

where � ¤ z,

�� � arg.� � z/ � � ; for C�;

and

0 � arg.� � z/ � 2� ; for CC;

then f�.z/; � > 0 is said to be the fractional derivative of f .z/ of order � and
f�.z/; � < 0 is said to be the fractional integral of f .z/ of order ��, provided that

j f�.z/j < 1; � 2 R:

At this point let us recall that the fractional differintegral operator (see e.g. [174,
220, 221])

• is linear, i.e. if the functions f .z/ and g.z/ are single-valued and analytic in some
domain˝ 	 C, then for any constants k1 and k2

.k1f .z/C k2g.z//� D k1f�.z/C k2g�.z/ ; � 2 R; z 2 ˝I

• preserves the index law: if the function f .z/ is single-valued and analytic in some
domain˝ 	 C, then

�

f�.z/
�

�
D f�C�.z/ D . f�.z//� ;

where f�.z/ ¤ 0, f�.z/ ¤ 0, �; � 2 R, z 2 ˝;
• permits the generalized Leibniz rule [174, p. 1489, Lemma 3]: if the functions

f .z/ and g.z/ are single-valued and analytic in some domain˝ 	 C, then

. f .z/ � g.z//� D
X

n�0

��

n

�

f��n.z/ � gn.z/ ; � 2 R; z 2 ˝; (1.36)

where gn.z/ is the ordinary derivative of g.z/ of order n 2 N0, it being tacitly
assumed that g.z/ is the polynomial part (if any) of the product f .z/ � g.z/.
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The fractional differintegral operator also possesses the following properties:

• for a constant �,

�

e�z
�

�
D ��e�z ; � ¤ 0; � 2 R; z 2 C I

• for a constant �,

�

e��z
�

�
D e�i����e�z ; � ¤ 0; � 2 R; z 2 C I

• for a constant �,

�

z�
�

�
D e�i�� � .� � �/

� .��/ z��� ; � 2 R; z 2 C;

ˇ

ˇ

ˇ

ˇ

� .� � �/

� .��/
ˇ

ˇ

ˇ

ˇ

< 1 :



Chapter 2
Neumann Series

Abstract The goal of present chapter is to study in details the integral representa-
tions of the Neumann series (of the first and second type) of Bessel and modified
Bessel functions of the first and second kind. In order to achieve our goal we use
several methods: the Euler–Maclaurin summation technique, differential equation
technique, fractional integration technique. Moreover, we present some interesting
results on the coefficients of Neumann series, product of modified Bessel functions
of the first and second kind and the cumulative distribution function of the non-
central �2-distribution.

The series

N�.z/ WD
X

n�1
˛nJ�Cn.z/; z 2 C; (2.1)

where �; ˛n are constants and J� stands for the Bessel function of the first kind
of order �, is called a Neumann series [333, Chapter XVI]. Such series owe their
name to the fact that they were first systematically considered (for integer �) by
Carl Gottfried Neumann in his important book [209] in 1867; subsequently, in 1877,
Leopold Bernhard Gegenbauer extended such series to � 2 R (see [333, p. 522]).

Neumann series of Bessel functions arise in a number of application areas. For
example, in connection with random noise, Rice [268, Eqs. (3.10–17)] applied
Bennett’s result

X

n�1

�v

a

�n
Jn.ai v/ D e

v2

2

Z v

0

xe� x2
2 J0.ai x/ dx : (2.2)

Luke [178, pp. 271–288] proved that

1 �
Z v

0

e�.uCx/J0
�

2i
p

ux
�

dx D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

e�.uCv/X

n�0

�u

v

� n
2
Jn
�

2i
p

uv
�

; u < v

1 � e�.uCv/X

n�1

�v

u

� n
2
Jn
�

2i
p

uv
�

; u > v
I
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cf. also [223, Eq. (2a)]. In both of these applications N0 plays a key role. The
function N0 also appears as a relevant technical tool in the solution of the infinite
dielectric wedge problem by Kontorovich–Lebedev transforms [272, §4, 5]. It also
arises in the description of internal gravity waves in a Boussinesq fluid [208], as
well as in the study of the propagation properties of diffracted light beams; see,
for example, [189, Eqs. (6a,b), (7b), (10a,b)]. Recent investigations by Kravchenko,
Torba and co-workers show the role of Neumann series in Schrödinger equations’
solution representation [164], perturbed Bessel equation [163] and connect them to
the Strum-Liouville equation [162].

Expanding a given function f , say, into a Neumann series of the form

N
w
� .x/ D

X

n�0
an�J�C2nC1.x/; � � � 1

2
;

where

an� D 2.� C 2n C 1/

Z 1

0

t�1f .t/J�C2nC1.t/dt;

Wilkins discussed the question of existence of an integral representation for Nw
� .x/,

as well as the conditions under which the Neumann series Nw
� .x/ converges

uniformly in x to the ‘input’ function f [334, §11–13], [336].
By modifying a result of Watson [333, p. 23, footnote], Maximon represented a

simple Neumann series N� appearing in the literature in connection with physical
problems [188, Eq. (4)] as an indefinite integral expression containing Bessel
functions. Meligy expanded into a Neumann series NLC 1

2
of arbitrary argument,

containing Bessel functions of order L C 1=2 C n=2 where L is the orbital
angular momentum quantum number, the wave functions that describe the states
of motion of charged particles in a Coulomb field [191, Eqs. (8), (9)]. The inversion
probability of a large spin is found via modified Neumann series of Bessel functions
J.2NC1/.2n�1/˙1 for integer N � 2; see [148, Theorem].

The evaluation of the capacitance matrix of a system of finite-length conductors
[62] uses Np, with p integer; in [183, 184], free vibrations of a wooden pole
were modeled by a coupled system of ordinary differential equations and solved
by Neumann series; we note in passing that the analysis of an isotropic medium
containing a cylindrical borehole by Love’s auxiliary function [270] and the
analytical and numerical study of Neumann series of Bessel functions [268] are two
further areas in which the unknown coefficients of N� are derived and computed
from boundary and initial conditions of the problem under consideration.

Our main aims in this chapter are to establish several closed integral represen-
tation formulae for those series and also for the modified Neumann series of the
first and second type, and to derive the coefficients of Neumann series when certain
integral representation formulae there hold. In the considered Neumann series the
building blocks turn out to be either Bessel and/or alike functions (Struve, modified
Bessel of the first and second kind, Kummer functions etc).
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2.1 Integral Representation for Neumann Series of Bessel
Functions

In this section our main goal is to establish a closed integral representation
formula for the series N�.z/. This will be achieved by using the Laplace integral
representation of the associated Dirichlet series. Thus, we replace z 2 C with
x 2 RC and assume in the sequel that the behaviour of .˛n/n�1 ensures the
convergence of the series (2.1) over RC.

Theorem 2.1 (Pogány and Süli [249]) Let ˛ 2 C1.RC/ and let ˛
ˇ

ˇ

N
D .˛n/n�1.

Then, for all x; � such that

x 2 I˛ D
 

0; 2min

(

1;

 

e lim
n!1

n
pj˛nj

n

!�1 )!
; � > � 1

2
;

we have that

N�.x/ D �
Z 1

1

@

@!

�

� .� C ! C 1
2
/ J�C!.x/

�

Z Œ!�

0

d�

� ˛.�/

� .� C �C 1
2
/

�

d� d!:

(2.3)

Proof Consider the integral representation formula [93, 8.411 Eq. (10)]

J�.z/ D
�

z=2
��

p
� � .� C 1

2
/

Z 1

�1
cos.zt/.1 � t2/�� 1

2 dt; z 2 C; <f�g > � 1
2
:

(2.4)
Applying (2.4) to (2.1) and taking x > 0, we get

N�.x/ D
r

2x

�

Z 1

0

cos.xt/
�x.1 � t2/

2

��� 1
2
D˛.t/ dt (2.5)

with the Dirichlet series

D˛.t/ WD
X

n�1

˛n
�

x.1 � t2/=2
�n

� .n C � C 1
2
/

D
X

n�1

˛n exp
˚� n log 2

x.1�t2/

�

� .n C � C 1
2
/

:

Recalling that � .s/ D p
2� ss� 1

2 e�s
�

1 C O.s�1/
�

; jsj ! 1, we see that the
Dirichlet series D˛.t/ is absolutely convergent for all x 2 RC and t 2 .�1; 1/
such that

jxj.1 � t2/ � jxj < 2
e

 

lim
n!1

n
pj˛nj

n

!�1
:
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Furthermore,D˛.t/ has a Laplace integral representation when log 2=.x.1�t2// > 0.
In this case we can take x 2 .0; 2/ and t 2 .�1; 1/, since the required positivity
condition is satisfied when

2

x.1 � t2/
� 2

x
> 1:

Hence, the x-domain becomes

0 < x < 2min

(

1;

 

e lim
n!1

n
pj˛nj

n

!�1)
:

Thus, for all such x we deduce that

D˛.t/ D log
2

x.1 � t2/

Z 1

0

�x.1 � t2/

2

�!

 

Œ!�
X

jD1

˛j

� . j C � C 1
2
/

!

d!I (2.6)

see, for example, [147, V] or [252, §4, §6]. The counting function

A˛.!/ WD
Œw�
X

jD1

˛j

� . j C � C 1
2
/
:

The Euler–Maclaurin summation formula gives us [252, cf. Lemma 1]

A˛.!/ D
Z Œ!�

0

d�

� ˛.�/

� .� C �C 1
2
/

�

d�: (2.7)

Substituting A˛.!/ and D˛.t/ from (2.7) and (2.6) into (2.5), we get

N�.x/ D �
r

x

2�

Z 1

0

Z Œ!�

0

d�

� ˛.�/

� .� C �C 1
2
/

�



 

2

Z 1

0

cos.xt/
�x.1 � t2/

2

��C!� 1
2

log
�x.1 � t2/

2

�

dt

!

d! d�: (2.8)

However, the inner-most (t-integral) in (2.8),

Ix.�/ WD 2

Z 1

0

cos.xt/
�x.1 � t2/

2

��

log
�x.1 � t2/

2

�

dt; � WD � C ! � 1
2
;

can be expressed in terms of the Gamma function and the Bessel function of the first
kind by legitimate indefinite integration with respect to �, as follows.
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To begin, we define the Fourier cosine transform of a certain function f by

Fc. f I x/ WD 2

Z 1

0

cos.xt/ f .t/ dt:

Now, we have that

Z

Ix.�/ d� D 2
� x

2

��
Z 1

0

cos.xt/.1 � t2/�dt

D
� x

2

��

Fc
�

.1 � t2/��Œ0;1/.t/I x
� D

r

2�

x
� � .� C 1/ J�C 1

2
.x/;

where we applied the Fourier cosine transform table [93, 17.34 Eq. (10)]. On
observing that d� D d!, we deduce that

Ix
�

� C ! � 1
2

� D
r

2�

x
� @

@!

�

�
�

� C ! C 1
2

�

J�C!.x/
�

: (2.9)

Substituting (2.9) into (2.8) we arrive at the asserted integral expression (2.3),
remarking that the integration domain RC changes into Œ1;1/ because Œ!� equals
zero for all ! 2 Œ0; 1/. ut

2.1.1 Bivariate von Lommel Functions as Neumann Series

To conclude the results in Sect. 2.1, we mention some related integral representation
formulae for Neumann-type series, corresponding to special ˛’s. Bivariate von
Lommel functions of order � are defined by Neumann-type series [333, 16.5 Eqs.
(5), (6)] as follows:

U�. y; x/ WD
X

m�0
.�1/m

�y

x

��C2m
J�C2m.x/;

V�. y; x/ WD cos
� y

2
C x2

2y
C ��

2

�

C U��C2. y; x/; x; y 2 R:

These series converge for unrestricted values of �.
Now, assuming that <.�/ > 0, by the formulae [333, 16.53 Eqs. (1), (2)] we

easily deduce that

U�;c.x/ WD U�.cx; x/ D c�x
Z 1

0

t� J��1.xt/ cos
�

c
2

x.1 � t2/
�

dt;

U�C1;c.x/ D c�x
Z 1

0

t� J��1.xt/ sin
�

c
2

x.1 � t2/
�

dt:
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Similarly, by Watson [333, 16.53 Eqs. (11), (12)]1 we also have that

V�;c.x/ WD V�.cx; x/ D �c2��x
Z 1

1

t2�� J1��.xt/ cos
�

c
2

x.1 � t2/
�

dt;

V��1;c.x/ D �c2��x
Z 1

1

t2�� J1��.xt/ sin
�

c
2

x.1 � t2/
�

dt;

provided x; c > 0; <.�/ > 1
2
.

The integral expressions developed above can be easily adapted to Neumann-type
series of the form

X

m�0
�m J�C2m.x/; x > 0; � < 0:

Here we mention the recent articles by Fejzullahu [80] about integral form of Neu-
mann series connected with von Lommel functions in which complex integration
technique has used and the fresh manuscript by De Micheli [60] which concerns
a Fourier-type integral representation for Bessel’s function of the first kind and
complex order via Gegenbauer polynomials.

An interesting open problem is the construction of examples with specific
coefficients ˛n, with known explicit forms of Neumann-type series, that can be
derived directly from the representation formula (2.3) and such results will be
presented in the next section.

2.2 On Coefficients of Neumann–Bessel Series

The problem of computing the coefficients of the Neumann series of Bessel
functions has been considered in a number of publications in the mathematical
literature.

For example, Watson [333] showed that, given a function f that is analytic inside
and on a circle of radius R, with center at the origin, and if C denotes the integration
contour formed by that circle, then f can be expanded into a Neumann series [333,
Eq. (16.1), p. 523]

N0.z/ D
X

n�0
˛n Jn.z/:

The corresponding coefficients are given by Watson [333, Eq. (16.2), p. 523]

˛n D "n

2�i

Z

C
f .t/On.t/dt;

1Watson remarked that all four formulae that were cited by him [333, 16.53 Eqs. (1), (2), (11),
(12)] had been derived by von Lommel (cf. von Lommel’s memoirs [324, 325] for further details).
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where the functions On.t/, n D 0; 1; : : : , are the Neumann polynomials, and can be
obtained from

1

t � z
D
X

n�0
"n On.t/ Jn.z/ ;

where

"n D
(

1; n D 0

2; n 2 N

is the so-called Neumann factor.
Wilkins [334] showed that a function f .x/ can be represented on RC by a

Neumann series of the form

N
W
� .x/ D

X

n�0
an� J�C2nC1.x/; � � � 1

2
; (2.10)

where the coefficients an� are

an� D 2.� C 2n C 1/

Z 1

0

t�1f .t/ J�C2nC1.t/dt:

The problem of integral representation of Neumann series of Bessel functions
occurs not so frequently. Besides the already mentioned Rice’s result (2.2), there
is also Wilkins who considered the possibility of integral representation for even-
indexed Neumann series (2.10). Finally, let us mention Luke’s integral expression
for N0.x/ [178, pp. 271–288] and [223, Eq. (2a)].

Also, in the previous section, we presented completely different kind of integral
representation for (2.1) given by Pogány and Süli in [249] in Theorem 2.1. As we
already mentioned, in that article the authors posed the problem of constructing a
function ˛, with ˛

ˇ

ˇ

N
� �

˛n
�

, such that the integral representation (2.3) holds. The
purpose of this section is to answer this open question and the results exposed below
concern to the paper by Jankov et al. [134].

We will describe the class � D f˛g of functions that generate the integral
representation (2.3) of the corresponding Neumann series, in the sense that the
restriction ˛

ˇ

ˇ

N
D �

˛n
�

forms the coefficient array of the series (2.1). Knowing only
the set of nodes N WD ˚

.n; ˛n/
�

n�1 this question cannot be answered merely by
examining the convergence of the series N�.x/ and then interpolating the set N.
We formulate an answer to this question so that the resulting class of functions ˛
depends on a suitable, integrable (on RC), scaling-function h.
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Theorem 2.2 (Jankov et al. [134]) Let Theorem 2.1 hold for a given convergent
Neumann series of Bessel functions, and suppose that the integrand in (2.3) is
such that

@

@!

�

�
�

� C ! C 1
2

�

J�C!.x/
�

Z Œ!�

0

d�

� ˛.�/

� .� C �C 1
2
/

�

d� 2 L1.RC/ ;

and let

h.!/ WD @

@!

�

�
�

� C ! C 1
2

�

J�C!.x/
�

Z !

0

d�

� ˛.�/

� .� C �C 1
2
/

�

d� :

Then we have that

˛.!/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

� .� C k C 1
2
/

d

d!

h.!/

B.!/

ˇ

ˇ

ˇ

ˇ

!DkC
; ! D k 2 N

� .� C ! C 1
2
/

f!g
� h.!/

B.!/
� h.kC/

B.k/

�

; 1 < ! ¤ k 2 N

; (2.11)

where

B.!/ WD @

@!

�

� .� C ! C 1
2
/ J�C!.x/

�

:

Proof Assume that the integral representation (2.3) holds for some class � of
functions ˛ whose restriction ˛

ˇ

ˇ

N
forms the coefficient array employed in N�.x/.

Suppose thateh 2 L1.RC/ is defined by

eh.!/ WD @

@!

�

�
�

� C ! C 1
2

�

J�C!.x/
�

�
Z Œ!�

0

d�

� ˛.�/

� .� C �C 1
2
/

�

d�I (2.12)

in other words,eh converges to zero sufficiently fast as ! ! C1 so as to ensure
that the integral (2.3) converges. Because ! � Œ!� for large !, by (2.12) we deduce
that

Z !

0

d�

� ˛.�/

� .� C �C 1
2
/

�

d� D h.!/

B.!/
; (2.13)

where

h.!/ D
eh.!/

Z !

0

d�

� ˛.�/

� .� C �C 1
2
/

�

d�

Z Œ!�

0

d�

� ˛.�/

� .� C �C 1
2
/

�

d�

�eh.!/; ! ! 1:
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Differentiating (2.13) with respect to ! we get

f!g˛0.!/C �

1� f!g .�C!C 1
2
/
�

˛.!/ D � .�C!C 1
2
/ � @
@!

h.!/

B.!/
: (2.14)

For integer ! � k 2 N we know the coefficient set � D f˛kg. Therefore, let
! 2 .k; k C 1/, where k is a fixed positive integer. By this specification (2.14)
becomes a linear ordinary differential equation in the unknown ˛:

˛0.!/C
� 1

! � k
�  .� C ! C 1

2
/
�

˛.!/ D � .� C ! C 1
2
/

! � k
� @
@!

h.!/

B.!/
:

After some routine calculations we get

˛.!/ D � .� C ! C 1
2
/

f!g
�

Ck C h.!/

B.!/

�

;

where Ck denotes the integration constant. Thus we deduce that, for ! � 1, we have

˛.!/ D

8

ˆ

<

ˆ

:

˛k; ! D k 2 N

� .� C ! C 1
2
/

f!g
�

Ck C h.!/

B.!/

�

; 1 < ! ¤ k 2 N

:

It remains to find the numerical value of Ck. By the assumed convergence of
N�.x/; ˛.!/ has to decay to zero as k ! 1. Indeed, Landau’s bound (1.21) clarifies
this claim. Since k is not a pole of � .�C!C 1

2
/, by L’Hospital’s rule we deduce that

˛k D lim
!!kC˛.!/ D lim

!!kC�
�

� C ! C 1
2

�

lim
!!kC

Ck C h.!/

B.!/

! � k

D �
�

� C k C 1
2

�

lim
!!kC

d

d!

h.!/

B.!/
D �

�

� C k C 1
2

� d

d!

h.!/

B.!/

ˇ

ˇ

ˇ

ˇ

!DkC
;

such that makes sense only for

Ck D �h.kC/
B.k/

:

Hence

˛.!/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

�
�

� C k C 1
2

� d

d!

h.!/

B.!/

ˇ

ˇ

ˇ

ˇ

!DkC
; ! D k 2 N

�
�

� C ! C 1
2

�

f!g
� h.!/

B.!/
� h.kC/

B.k/

�

; 1 < ! ¤ k 2 N

:

This proves the assertion of Theorem 2.2. ut
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2.2.1 Examples

Now, we will consider some examples of the functioneh 2 L1.RC/, which describes
the convergence rate to zero of the integrand in (2.12) at infinity, and h.!/ �eh.!/,
! ! 1, where h is function from the Theorem 2.2.

Example 2.1 Let eh.!/ D e�Œ!�. Since
R1
0

e�Œ!� d! D e=.e � 1/, we have that
eh 2 L1.RC/. As e�Œ!� � e�! D h.!/ when ! ! 1, by (2.11) we conclude

˛.!/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

�
�

� C k C 1
2

� d

d!

e�!

B.!/

ˇ

ˇ

ˇ

ˇ

!DkC
; ! D k 2 N

�
�

� C ! C 1
2

�

f!g
� e�!

B.!/
� e�k

B.k/

�

; 1 < ! ¤ k 2 N

:

Example 2.2 Leteh.!/ D Œ!�ˇ�1

eŒ!� � 1
, ˇ > 1; then

Z 1

0

eh.!/ d! D
X

n�1

.n � 1/ˇ�1

en�1 � 1 ;

which is a convergent series, soeh 2 L1.RC/. As ! ! 1 we have that

Œ!�ˇ�1�eŒ!� � 1��1 � !ˇ�1�e! � 1
��1 D h.!/ :

Hence
R1
0

h.!/ d! D � .ˇ/�.ˇ/, where � is Riemann’s � function. Then, for such
ˇ, (2.11) gives

˛.!/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�
�

� C k C 1
2

� d

d!

!ˇ�1

.e! � 1/B.!/

ˇ

ˇ

ˇ

ˇ

!DkC
; ! D k 2 N

�
�

� C ! C 1
2

�

f!g
� !ˇ�1

B.!/ .e! � 1/

� kˇ�1

B.k/ .ek � 1/
�

; 1 < ! ¤ k 2 N

:

Example 2.3 Leteh.!/ D e�sŒ!�J0.Œ!�/, where s > 1 and J0 is the Bessel function
of the first kind of order zero. Since

Z 1

0

e�sŒ!�J0.Œ!�/ d! D
X

n�1
e�s.n�1/J0.n � 1/;
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we see thateh 2 L1.RC/. Because e�sŒ!�J0.Œ!�/ � e�s!J0.!/ D h.!/ as ! ! 1,
and

R1
0 h.!/ d! D .s2 C 1/� 1

2 , from (2.11) we deduce

˛.!/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�
�

� C k C 1
2

� d

d!

e�s!J0.!/

B.!/

ˇ

ˇ

ˇ

ˇ

ˇ

!DkC
; ! D k 2 N

� .� C ! C 1
2
/

f!g
�e�s!J0.!/

B.!/
� e�skJ0.k/

B.k/

�

; 1 < ! ¤ k 2 N

:

2.3 Integral Representations for N�.x/ via Bessel
Differential Equation

Previously, we introduced an integral representation (2.3) of Neumann series (2.1),
compare Theorem 2.1. The purpose of this section is to establish another (indefinite)
integral representations for Neumann series of Bessel functions by means of
Chessin’s results [51, 52] and by applying the variation of parameters method.
Finally, by using fractional differintegral approach in solving the nonhomogeneous
Bessel ordinary differential equation [173, 174, 328–330] we derive integral expres-
sion formulae for N�.x/.

The listed results are taken from the paper of Baricz et al. [25].

2.3.1 The Approach by Chessin

One of the crucial arguments used in the proof of our main results is the simple
fact that the Bessel functions of the first kind are actually particular solutions of the
second-order homogeneous Bessel differential equation. We note that this approach
in the study of the Neumann series of Bessel functions is much simpler than the
previous methods which we have found in the literature. In the geometric theory
of univalent functions the idea to use Bessel’s differential equation is also useful
in the study of geometric properties (like univalence, convexity, starlikeness, close-
to-convexity) of Bessel functions of the first kind. For more details we refer to the
monograph [15].

In the sequel we shall need the Bessel functions of the second kind of order � (or
MacDonald functions) Y�.z/ which satisfy [224, p. 217, Eq. 10.2.3]

Y�.z/ D cosec.��/
�

J�.z/ cos.��/� J��.z/
�

; � 62 Z; j arg.z/j < � ; (2.15)

and which have the following differentiability properties [224, p. 222, Eqs. 10.5.1-2]

WŒ J�;Y� �.z/ D 2

�z
; WŒ J��; J��.z/ D 2 sin.��/

�z
; � 2 R; z ¤ 0 ; (2.16)

valid for the related Wronskians WŒ�; ��.z/.
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Explicit solution of Bessel differential equation with general nonhomogeneous
part

y00 C 1

x
y0 C

�

1 � �2

x2

�

y D f .x/ ; (2.17)

has been derived for the first time in a set of articles by Chessin more than a century
ago, see for example [51, 52]. In [51, p. 678] Chessin differs the cases:

• For � D n 2 Z the solution is given by

y.x/ D A.x/Jn.x/C B.x/Yn.x/; (2.18)

and

A0.x/ D Yn.x/f .x/

WŒYn; Jn�.x/
D ��xYn.x/f .x/

2
;

B0.x/ D � Jn.x/f .x/

WŒYn; Jn�.x/
D �xJn.x/f .x/

2
:

• If � … Z, we have

y.x/ D A1.x/J�.x/C B1.x/J��.x/; (2.19)

where

A0
1.x/ D J��.x/f .x/

WŒ J�� ; J��.x/
D �xJ��.x/f .x/

2 sin.��/
;

B0
1.x/ D � J�.x/f .x/

WŒ J�� ; J��.x/
D ��xJ�.x/f .x/

2 sin.��/
:

Consider the homogeneous Bessel differential equation of .n C �/-th index

x2y00 C xy0 C .x2 � .n C �/2/y D 0 ; n 2 N ; 2� C 3 > 0 ;

of which particular solution is JnC�.x/, that is

x2J00
nC�.x/C xJ0

nC�.x/C .x2 � .n C �/2/JnC�.x/ D 0 : (2.20)

Multiplying (2.20) by ˛n, then summing up this expression with respect to n 2 N

we arrive at

x2N00
� .x/C xN0

�.x/C .x2 � �2/N�.x/

D
X

n�1
n.n C 2�/˛nJnC�.x/ DW P�.x/I (2.21)
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the right side expression P�.x/ defines the so-called Neumann series of Bessel
functions associated to N�.x/. Obviously (2.21) turns out to be a nonhomogeneous
Bessel differential equation in unknown function N�.x/, while by virtue of substi-
tution ˛n 7! n.n C 2�/˛n, Theorem 2.1 gives

P�.x/ D �
Z 1

1

Z Œu�

0

@

@u

�

�
�

� C u C 1
2

�

J�Cu.x/
�

� ds

� s .s C 2�/ ˛.s/

� .� C s C 1
2
/

�

du ds:

(2.22)

Let us find the domain of associated Neumann series P�.x/. Theorem 2.1 gives the
same range of validity x 2 I˛ by means of the estimate

ˇ

ˇP�.x/
ˇ

ˇ �
X

n�1
n.n C 2�/j˛nj

ˇ

ˇ JnC�.x/
ˇ

ˇ ;

since

lim sup
n!1

fn.n C 2�/g 1n D 1 :

Using the Landau’s bound (1.20) we see that P�.x/ is defined for all x 2 I˛ when
series

P

n�1 n
5
3 ˛n absolutely converges such that clearly follows from

ˇ

ˇP�.x/
ˇ

ˇ � bL

X

n�1

n .n C 2�/

.n C �/
1
3

j˛nj :

Now, we are ready to formulate our first main result in this section.

Theorem 2.3 (Baricz et al. [25]) Let ˛ 2 C1.RC/, ˛jN D .˛n/n�1 and assume that
P

n�1 n
5
3 ˛n absolutely converges. Then for all x 2 I˛; � > � 1

2
we have

N�.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

2

 

Jn.x/
Z

Yn.x/P�.x/

x
dx � Yn.x/

Z

Jn.x/P�.x/

x
dx

!

; � D n 2 Z

�

2 sin.��/

 

J�.x/
Z

J��.x/P�.x/

x2
dx

�J��.x/
Z

J�.x/P�.x/

x2
dx

!

; � 62 Z

:

(2.23)

Proof It is enough to substitute f .x/ � x�2P�.x/ in nonhomogeneous Bessel
differential equation (2.17) and calculate integrals in (2.18) and (2.19), using into
account the differentiability properties (2.16). Then, by Chessin’s procedure we
arrive at the asserted expressions (2.23). ut
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Remark 2.1 Chessin’s derivation procedure is in fact the variation of parameters
method; here we mention that some credits in this respect should be given also to
Siemon [282]. Repeating the calculations by variation of parameters method we will
arrive at

N�.x/ D �

2

�

J�.x/
Z

Y�.x/P�.x/

x
dx � Y�.x/

Z

J�.x/P�.x/

x
dx

�

;

where � > � 1
2
; x 2 I˛ . �

Theorem 2.4 (Baricz et al. [25]) Let the situation be the same as in Theorem 2.3.
Then for

P

n�1 n
5
3 j˛nj < 1, we have

N�.x/ D J�.x/

2

Z

1

xJ2�.x/

�Z

P�.x/ � J�.x/

x
dx

�

dx

C Y�.x/

2

Z

1

xY2� .x/

�Z

P�.x/ � Y�.x/

x
dx

�

dx ;

where P� stands for the Neumann series (2.22) associated with the initial Neumann
series of Bessel functions N�.x/; x 2 I˛ .

Proof We apply now the reduction of order method in solving the Bessel equation.
Solution of

x2y00.x/C xy0.x/C .x2 � �2/y.x/ D 0 (2.24)

in I˛ is given by

yh.x/ D C1Y�.x/C C2J�.x/ :

It is well known that J� and Y� are independent solutions of the homogeneous
Bessel differential equation (2.24), since the Wronskian W.x/ D WŒ J�.x/;Y�.x/� D
2 .�x/�1 ¤ 0; x 2 I˛.

Since J�.x/ is a solution of the homogeneous ordinary differential equation, a
guess of the particular solution is N�.x/ D J�.x/w.x/. Substituting this form into
(2.20) we get

x2. J00
�w C 2J0

�w
0 C J�w

00/C x. J0
�w C J�w

0/C .x2 � �2/J�w D P�.x/:

Rewriting the equation as

w
�

x2J00
� C xJ0

� C .x2 � �2/J�
�C w0.2x2J0

� C xJ�/C w00 x2J� D P�.x/;
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the first term vanishes being J� solution of (2.24). So the following linear ordinary
differential equation in w0:

.w0/0 C 2xJ0
� C J�
xJ�

w0 D P�.x/

x2J�
:

Hence

w0 D 1

xJ2�

Z

P� � J�
x

dx C C3
xJ2�

;

i.e.

w D
Z

1

xJ2�

�

Z

P� � J�
x

dx
�

dx C C3
�

2

Y�
J�

C C4 ;

because
Z

1

xJ2�
dx D �

2

Y�
J�
:

Being J�;Y� independent, that make up the homogeneous solution, they do not
contribute to the particular solution and the constants C3;C4 can be set to be zero.

Now, we can take particular solution in the form N�.x/ D Y�.x/w.x/, and
analogously as above, we get

N�.x/ D Y�.x/
Z

1

xY2�

�Z

P� � Y�
x

dx

�

dx � C5
�

2
J�.x/C C6Y�.x/ ;

having in mind that

Z

1

xY2�
dx D ��

2

J�
Y�
:

Choosing C5 D C6 D 0, we complete the proof of the asserted result. ut

2.3.2 Solving Bessel Differential Equation by Fractional
Integration

In this section we will give the solution of nonhomogeneous Bessel differential
equation, using properties associated with the fractional differintegration which was
introduced in Chap. 1.

Below, we shall need the result given as the part of e.g. [174, p. 1492, Theorem
3], [329, p. 109, Theorem 3]). We recall the mentioned result in our setting. Thus,
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if [25, Eq. 12]
ˇ

ˇP�.x/
ˇ

ˇ < 1; x 2 I˛; � 2 R and
�

P�.x/
�

�� ¤ 0, then
the nonhomogeneous linear ordinary differential equation (2.21) has a particular
solution yp D yp.x/ in the form

yp.x/ D x�e�x

 

�

x�� 1
2 e2�x

�

x���1e��x
P�.x/

�

��� 1
2

�

�1
e�2�x

x�C 1
2

!

�� 1
2

(2.25)

where � 2 RI � D ˙iI x 2 .CnR/[I˛ , provided that P�.x/ exists. Let us simplify
(2.25), using the generalized Leibniz rule (1.36):

�

x���1e��x
P�.x/

�

��� 1
2

D
X

n�0

 

�� � 1
2

n

!

.x���1e��x/��� 1
2�n

�

P�.x/
�

n

D
X

n;k�0

 

�� � 1
2

n

! 

�� � 1
2

� n

k

!

.x���1/��� 1
2�n�k.e

��x/k
�

P�.x/
�

n

D ��.x/

�

X

n;k�0

 

�� � 1
2

n

! 

�� � 1
2

� n

k

!

.�x/n.�x/k� .�n � k C 1
2
/
�

P�.x/
�

n
;

where

��.x/ D �ei�.�C 1
2 /��x

� .� C 1/
p

x
:

By Euler’s reflection formula we get

�

x���1e��x
P�.x/

�

��� 1
2

D ��.x/
X

n;k�0

 

�� � 1
2

n

! 

�� � 1
2

� n

k

!

xn.��x/k
�

P�.x/
�

n

� .n C k C 1
2
/

:

Now we have
�

x�� 1
2 e2�x

�

x���1e��x
P�.x/

�

��� 1
2

�

�1

D �eiı.�C 1
2 /

� .� C 1/

X

n;k�0

 

�� � 1
2

n

! 

�� � 1
2

� n

k

!



.��/k

�

x�CnCk�1e�x
�

P�.x/
�

n

�

�1
� .n C k C 1

2
/
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D �x� ei�.�C 1
2 /C�x

� .� C 1/

X

n;k�0

 

�� � 1
2

n

! 

�� � 1
2

� n

k

!


 .��/kxnCk
�

P�.x/
�

n

.� C n C k/� .n C k C 1
2
/
:

Finally, after some simplification (again by Euler’s reflection formula) we get

yp.x/ D �1
� .� C 1/

X

n;k;`;m�0

 

�� � 1
2

n

! 

�� � 1
2

� n

k

! 

�� � 1
2

`

!

.�x/`Cn

(2.26)



 

�� � 1
2

� `
m

!

� .� � ` � m � n � k/

� C n C k
.�x/kCm

�

P�.x/
�

nC` :

These in turn imply the following result.

Theorem 2.5 (Baricz et al. [25]) Let ˛ 2 C1.RC/, ˛jN D .˛n/n�1 and assume
that

P

n�1 n
5
3 ˛n absolutely converges. Then for all x 2 .C nR/[I˛; � > � 1

2
there

holds

N�.x/ D yp.x/ ;

where yp is given by (2.26).

Remark 2.2 In [174, p. 1492, Theorem 3] it is given solution of the homogeneous
differential equation

x2y00 C xy0 C .x2 � �2/y D 0

in the form

yh.x/ D Kx�e�x
�

x��� 1
2 e�2�x

�

�� 1
2

(2.27)

for all � 2 RI � D ˙iI x 2 .C n R/[ I˛ and where K is an arbitrary real constant.
Then, summing (2.26) and (2.27) we can get another solution of non-homogeneous
linear ordinary differential equation (2.21). �

2.3.3 Fractional Integral Representation

Recently Lin, Srivastava and coworkers devoted articles to explicit fractional
solutions of nonhomogeneous Bessel differential equation, such that turn out to
be a special case of the Tricomi equation [173, 174, 329, 330]. In this section we
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will exploit their results to obtain further integral representation formulae for the
Neumann series N�.x/.

Using the fractional-calculus approach we obtain the following solutions of the
homogeneous Bessel differential equation, depending on the parameter �, which can
be found in [328]:

• For � D n C 1
2
; n 2 N0, the solution is given by

yh.x/ D K1J�n� 1
2
.x/C K2JnC 1

2
.x/;

where K1 and K2 are arbitrary constants, and

J�n� 1
2
.x/ D

r

2

�x

 

cos
�

x C �
2

n
�

Œn=2�
X

kD0
.�1/k .n C 2k/Š

.2k/Š.n � 2k/Š
.2x/�2k

� sin
�

x C �
2

n
�

Œ.n�1/=2�
X

kD0
.�1/k .n C 2k C 1/Š

.2k C 1/Š.n � 2k � 1/Š .2x/�2k�1
!

;

(2.28)

JnC 1
2
.x/ D

r

2

�x

 

sin
�

x � �
2

n
�

Œn=2�
X

kD0
.�1/k .n C 2k/Š

.2k/Š.n � 2k/Š
.2x/�2k

C cos
�

x � �
2

n
�

Œ.n�1/=2�
X

kD0
.�1/k .n C 2k C 1/Š

.2k C 1/Š.n � 2k � 1/Š
.2x/�2k�1

!

:

(2.29)

• For � … Z the solution is

yh.x/ D K1J��.x/C K2J�.x/;

where K1 and K2 are arbitrary constants, and asymptotic estimates for J�� and J�
follows from Eqs. (2.28) and (2.29), respectively, i.e.

J��.x/ �
r

2

�x

 

cos
�

x C 1
2
�� � �

4

�
X

k�0
.�1/k � .� C 2k C 1

2
/

.2k/Š� .� � 2k C 1
2
/
.2x/�2k

� sin
�

x C 1
2
�� � �

4

�
X

k�0
.�1/k � .� C 2k C 3

2
/

.2k C 1/Š� .� � 2k � 1
2
/
.2x/�2k�1

!

;

J�.x/ �
r

2

�x

 

cos
�

x � 1
2
�� � �

4

�
X

k�0
.�1/k � .� C 2k C 1

2
/

.2k/Š� .� � 2k C 1
2
/
.2x/�2k

� sin
�

x � 1
2
�� � �

4

�
X

k�0
.�1/k � .� C 2k C 3

2
/

.2k C 1/Š� .� � 2k � 1
2
/
.2x/�2k�1

!
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each of which is valid for large values of jxj provided that jarg.x/j � � � �,
0 < � < � .

• In the case when � D n 2 Z, two linearly independent solutions which make a
general solution of Bessel differential equation, are Jn and

Yn.x/ �
n!1

r

2

�x

 

sin
�

x � �
2

n � �
4

�
X

k�0
.�1/k � .n C 2k C 1

2
/

.2k/Š� .n � 2k C 1
2
/
.2x/�2k

C cos
�

x � �
2

n � �
4

�
X

k�0
.�1/k � .n C 2k C 3

2
/

.2k C 1/Š� .n � 2k � 1
2
/
.2x/�2k�1

!

:

Using the previous findings we deduce the following

Theorem 2.6 (Baricz et al. [25]) Let the conditions from Theorem 2.3 hold. Then,
the integral representation formulae for the function N�.x/ reads as follows:

• for � D n C 1
2
; n 2 N0, we have

NnC 1
2
.x/ D .�1/n�

2

 

JnC 1
2
.x/
Z J�n� 1

2
.x/P�.x/

x2
dx (2.30)

� J�n� 1
2
.x/
Z JnC 1

2
.x/P�.x/

x2
dx

!

I

• for � … Z, it is

N�.x/ D �

2 sin.��/

 

J�.x/
Z

J��.x/P�.x/

x2
dx � J��.x/

Z

J�.x/P�.x/

x2
dx

!

:

(2.31)

Here J�n� 1
2

.x/ are given in (2.28) and (2.29) respectively and P� stands for the

Neumann series (2.22) associated with the initial Neumann series N�.x/; x 2 I˛ .

Proof By the variation of parameters method and by virtue of (2.16) we get the
representations (2.30) and (2.31). ut

2.4 Integral Representations for Neumann–Bessel Type
Series

In this section we cite the results from the paper by Baricz et al. [24].
Here we pose the problem of integral representation for another Neumann-type

series of Bessel functions when J� is replaced in (2.1) by modified Bessel function of



46 2 Neumann Series

the first kind I� , Bessel functions and modified Bessel functions of the second kind
Y�;K� (called Basset–Neumann and MacDonald functions respectively), Hankel
functions H.1/

� ;H
.2/
� (or Bessel functions of the third kind) of which precise

descriptions can be found in [333].
According to the established nomenclatures in the sequel we will distinguish

Neumann series of first and second type number of building Bessel functions, where
in the second type series more then one building function occurs. So, the first type
Neumann series are

N�.z/ WD
X

n�1
˛n J�Cn.z/; M�.z/ WD

X

n�1
ˇn I�Cn.z/ : (2.32)

The first type Neumann series built by Bessel functions of the second kind we
introduce as

J�.z/ WD
X

n�1
ın K�Cn.z/; X�.z/ WD

X

n�1
�n Y�Cn.z/ : (2.33)

In the next two sections our aim is to present closed form expressions for these
Neumann series occurring in (2.32) and (2.33). Our main tools include Cahen’s
formula (1.15), the condensed form of Euler–Maclaurin summation formula (1.9)
and certain bounding inequalities for I� and K�; see [14].

2.4.1 Integral Form of the First Type Neumann Series M�.x/

First, we present an integral representation for the first type Neumann series M�.x/.

Theorem 2.7 (Baricz et al. [24]) Let ˇ 2 C1.RC/; ˇjN D �

ˇn
�

n�1 and assume
that

P

n�1
ˇn is absolutely convergent. Then, for all

x 2
 

0; 2min

(

1;

�

e lim sup
n!1

n�1jˇnj 1n
��1)!

DW Iˇ; � > � 3
2
;

we have the integral representation

M�.x/ D �
Z 1

1

Z Œu�

0

@

@u

�

� .� C u C 1
2
/ I�Cu.x/

� � ds

 

ˇ.s/

� .� C s C 1
2
/

!

du ds :

Proof First, we establish the convergence conditions of the first type Neumann
series M�.x/. By virtue of the bounding inequality [14, p. 583]:

I�.x/ <

�

x
2

��

� .�C 1/
e

x2

4.�C1/ ; x > 0;�C 1 > 0 ;
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and having in mind that Iˇ 	 .0; 2/, we conclude that

jM�.x/j < max
n2N

�

x
2

��Cn

� .� C n C 1/
e

x2

4.�CnC1/ X

n�1
jˇnj D

�

x
2

��C1

� .� C 2/
e

x2

4.�C2/ X

n�1
jˇnj ;

so, the absolute convergence of
P

n�1
ˇn suffices for the finiteness of M�.x/ on Iˇ .

Here we used tacitly that for x 2 Iˇ and � > �1 fixed, the function

˛ 7! f .˛/ D
�

x
2

��C˛

� .� C ˛ C 1/
e

x2

4.�C˛C1/

is decreasing on Œ˛0;1/; where ˛0 � 1:4616 denotes the abscissa of the minimum
of � , because � is increasing on Œ˛0;1/ and then

f 0.˛/
f .˛/

D log
� x

2

�

� x2

4.� C ˛ C 1/2
� � 0.� C ˛ C 1/

� .� C ˛ C 1/
� 0:

Consequently, for all n 2 f2; 3; : : : g we have f .n/ � f .2/: Moreover, by using the
inequality ex � 1 C x; it can be shown easily that f .1/ � f .2/ for all x > 0 and
� > �1: These in turn imply that indeed max

n2N f .n/ D f .1/; i.e.

max
n2N

�

x
2

��Cn

� .� C n C 1/
e

x2

4.�CnC1/ D
�

x
2

��C1

� .� C 2/
e

x2

4.�C2/ ;

as we required.
Now, recall the following integral representation [333, p. 79]

I�.z/ D 21��z�p
� � .� C 1

2
/

Z 1

0

.1 � t2/�� 1
2 cosh.zt/dt; z 2 C; <.�/ > � 1

2
;

(2.34)

which will be used in the sequel. Since (2.34) is valid only for � > � 1
2
; in what

follows for the Neumann series M�.x/ we suppose that � > � 3
2
. Setting (2.34) into

right-hand series in (2.32) we have

M�.x/ D
r

2x

�

Z 1

0

cosh.xt/

�

x.1 � t2/

2

��� 1
2

Dˇ.t/dt ; x > 0; (2.35)

with the Dirichlet series

Dˇ.t/ WD
X

n�1

ˇn

� .n C � C 1
2
/

exp

�

�n log
2

x.1 � t2/

�

: (2.36)
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Following the lines of the proof of [249, Theorem] we deduce that the x-domain is

0 < x < 2min

(

1;

�

e lim sup
n!1

n�1 n
p

jˇnj
��1)

:

For such x, the convergent Dirichlet series (2.36) possesses a Laplace integral form

Dˇ.t/ D log
2

x.1 � t2/

Z 1

0

�

x.1 � t2/

2

�u
0

@

Œu�
X

jD1

ˇj

� . j C � C 1
2
/

1

A du: (2.37)

Expressing (2.37) via the condensed Euler–Maclaurin summation formula (1.9),
we get

Dˇ.t/ D log
2

x.1 � t2/

Z 1

0

Z Œu�

0

�

x.1 � t2/

2

�u

� ds

 

ˇ.s/

� .� C s C 1
2
/

!

du ds:

(2.38)

Substituting (2.38) into (2.35) we get

M�.x/ D �
r

2x

�

Z 1

0

Z Œu�

0

ds

 

ˇ.s/

� .� C s C 1
2
/

!



0

@

Z 1

0

cosh.xt/

�

x.1 � t2/

2

��Cu� 1
2

log
x.1 � t2/

2
dt

1

A du ds: (2.39)

Now, let us simplify the t-integral in (2.39)

Jx.w/ WD
Z 1

0

cosh.xt/ �
�

x.1 � t2/

2

�w

log
x.1 � t2/

2
dt; w WD � C u � 1

2
:

(2.40)
Indefinite integration under the sign of integral in (2.40) results in

Z

Jx.w/ dw D
� x

2

�w
Z 1

0

cosh.xt/.1 � t2/w dt D
r

�

2x
� .w C 1/IwC 1

2
.x/ :

Now, observing that dw D du, we get

Jx.� C u � 1
2
/ D

r

�

2x

@

@u

�

� .� C u C 1
2
/ I�Cu.x/

�

:

From (2.39) and (2.40), we immediately get the proof of the theorem, with the
assertion that the integration domain RC changes to Œ1;1/ because Œu� is equal
to zero for all u 2 Œ0; 1/. ut
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2.4.2 Integral Form of Second Type Neumann Series
J�.x/;X�.x/

Below, we present an integral representation for the Neumann-type series J�.x/.

Theorem 2.8 (Baricz et al. [24]) Let ı 2 C1.RC/ and let ıjN D �

ın
�

n�1. Then for
all � > 0 and

x 2 Iı WD
�

2
e lim sup

n!1
njınj 1n ;C1

�

;

we have the integral representation

J�.x/ D �
Z 1

1

Z Œu�

0

@

@u
K�Cu.x/ � ds ı.s/ du ds :

Proof We begin by establishing first the convergence conditions for J�.x/. To this
aim let us consider the integral representation referred to Basset [333, p. 172]:

K�.x/ D 2� � .� C 1
2
/

x�
p
�

Z 1

0

cos.xt/

.1C t2/�C 1
2

dt; <.�/ > � 1
2
; <.x/ > 0 :

(2.41)

Consequently, for all <.�/ > 0; x > 0 there holds

K�.x/ � 2� � .� C 1
2
/

x�
p
�

Z 1

0

dt

.1C t2/�C 1
2

D 1

2

�

2

x

��

� .�/ : (2.42)

Now, recalling that � .s/ D p
2� ss� 1

2 e�s
�

1C O.s�1/
�

, jsj ! 1, we have

jJ�.x/j � 1

2

�

2

x

��
X

n�1
jınj� .� C n/

�

2

x

�n

�
r

�

2

�

2

ex

��
X

n�1
.� C n/�Cn� 1

2 jınj
�

2

ex

�n

;

where the last series converges uniformly for all � > 0 and x 2 Iı . Note that more
convenient integral representation for the modified Bessel function of the second
kind is [333, p. 183]

K�.x/ D 1

2

� x

2

��
Z 1

0

t���1e�t� x2
4t dt; j arg.x/j < �

2
; <.�/ > 0: (2.43)
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Thus, combining the right-hand equality in (2.33) and (2.43) we get

J�.x/ D 1

2

� x

2

��
Z 1

0

t���1e�t� x2
4t � Dı.t/ dt; x 2 Iı; (2.44)

where Dı.t/ is the Dirichlet series

Dı.t/ D
X

n�1
ın

� x

2t

�n D
X

n�1
ın exp

�

�n log
2t

x

�

: (2.45)

The Dirichlet series’ parameter is necessarily positive, therefore (2.45) converges for
all x 2 Iı . Now, the related Laplace integral and the Euler–Maclaurin summation
formula give us:

Dı.t/ D log
2t

x

Z 1

0

Z Œu�

0

� x

2t

�u � ds ı.s/ du ds: (2.46)

Substituting (2.46) into (2.44) we get

J�.x/ D � x�

2�C1

Z 1

0

Z Œu�

0

dsı.s/

�Z 1

0

� x

2t

�u
log

� x

2t

�

t���1e�t� x2
4t dt

�

du ds:

(2.47)

Denoting

Ix.u/ WD
Z 1

0

� x

2t

�u
log

� x

2t

�

t���1e�t� x2
4t dt;

we obtain

Z

Ix.u/du D
� x

2

�u
Z 1

0

t�.�Cu/�1e�t� x2
4t dt D 2

�

2

x

��

K�Cu.x/ :

Therefore

Ix.u/ D 2

�

2

x

��
@

@u
K�Cu.x/ : (2.48)

Finally, by using (2.47) and (2.48) the proof of this theorem is done. ut
Remark 2.3 It is worthwhile to note that, since Œx�K�.x/�0 D �x�K��1.x/; the
function x 7! x�K�.x/ is decreasing on RC for all � 2 R; and because of the
asymptotic relation x�K�.x/ � 2��1� .�/; where � > 0 and x ! 0; we obtain again
the inequality (2.42). This inequality is actually the counterpart of the inequality
.see [125, 165]/

x�exK�.x/ > 2
��1� .�/;
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valid for all � > 1
2

and x > 0: Moreover, by using the classical Čebyšev integral
inequality, it can be shown that .see [26]/ the above lower bound can be improved
as follows

x��1K�.x/ � 2��1� .�/K1.x/; (2.49)

where � � 1 and x > 0: Summarizing, for all x > 0 and � � 1; we have the
following chain of inequalities

1

x

�

2

x

���1
� .�/e�x <

�

2

x

���1
� .�/K1.x/ � K�.x/ � 1

2

�

2

x

��

� .�/ :

Finally, observe that .see [26]/ the inequality (2.49) is reversed when 0 < � � 1;

and this reversed inequality is actually better than (2.42) for 0 < � � 1; that is,
we have

x�K�.x/ � 2��1� .�/xK1.x/ � 2��1� .�/;

where in the last inequality we used (2.42) for � D 1: �

Now, we deduce a closed integral expression for the Neumann series X�.x/, by
using the Struve function H�:

Theorem 2.9 (Baricz et al. [24]) Let � 2 C1.RC/ and let � jN D �

�n
�

n�1. Then
for all

x 2 I� D

8

ˆ

ˆ

<

ˆ

ˆ

:

�

0; 2.e `/�1
�

; � 1
2
< � � 1

2
�

2Le�1; 2.e `/�1
�

; 1
2
< � � 3

2
�

4Le�1; .e `/�1
�

; � > 3
2

; (2.50)

where

` WD lim sup
n!1

n�1j�nj 1n ; L WD lim sup
n!1

nj�nj 1n ;

there holds

X�.x/ D
Z 1

1

Z Œu�

0

@

@u

��

� .� C u C 1
2
/ � � .� C u � 1

2
/
�

H�Cu.x/

C� .� C u � 1
2
/Y�Cu.x/

� � ds

 

�.s/

� .� C s C 1
2
/

!

du ds (2.51)
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for Neumann series of the second kind X�.x/ with coefficients
�

�n
�

n�1 satisfying

` >

(

e�1; � 2 .� 1
2
; 3
2
�

.2e/�1; � > 3
2

; L 2
(

�

e�1; 1
�

; � 2 .� 1
2
; 3
2
�

�

.2e/�1; 1
2

�

; � > 3
2

: (2.52)

Proof First we establish the convergence region and related parameter constraints
upon � for X�.x/. The Gubler–Weber formula [333, p. 165]

Y�.z/ D 2
�

z
2

��

� .� C 1
2
/
p
�

�Z 1

0

sin.zt/.1 � t2/�� 1
2 dt C

Z 1

0

e�zt.1C t2/�� 1
2 dt

�

;

(2.53)

where <.z/ > 0 and � > � 1
2
; enables the derivation of integral expression for the

Neumann series of the second type X�.x/, by following the lines of derivation for
J�.x/. From (2.53), by means of the well-known moment inequality

.1C t2/�� 1
2 � C�.1C t2��1/; where C� D

(

1; 1
2
< � � 3

2

2�� 3
2 ; � > 3

2

;

we distinguish the following two cases.
Assuming � 2 � 1

2
; 3
2

�

we have

Y�.x/ � 2
�

x
2

��

� .� C 1
2
/
p
�

�Z 1

0

.1 � t2/�� 1
2 dt C

Z 1

0

e�xt
�

1C t2��1� dt

�

D 2
�

x
2

��

� .� C 1
2
/
p
�

 p
� � .� C 1

2
/

2� .� C 1/
C x�1 C � .2�/

x2�

!

D 1

� .� C 1/

� x

2

�� C 1p
� � .� C 1

2
/

� x

2

���1 C � .�/

�

�

2

x

��

:

Hence

jX�.x/j �
� x

2

��X

n�1

j�nj
� .� C n C 1/

� x

2

�n C 1p
�

� x

2

���1X

n�1

j�nj
� .� C n C 1

2
/

� x

2

�n

C 1

�

�

2

x

��
X

n�1
j�nj� .� C n/

�

2

x

�n

:

The first two series converge uniformly in
�

0; 2.e `/�1
�

, and the third one is
uniformly convergent in

�

2Le�1;1�

: Consequently the interval of convergence
becomes I� D �

2Le�1; 2.e `/�1
�

; and then the coefficients �n satisfy the condition
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` � L < 1: This implies that the necessary condition for convergence of X�.x/ is
lim sup

n!1
j�nj 1n < 1:

In the case � > 3
2

we have

Y�.x/ � 2
�

x
2

��

� .� C 1
2
/
p
�

�Z 1

0

.1 � t2/�� 1
2 dt C 2�� 3

2

Z 1

0

e�xt
�

1C t2��1� dt

�

D 2
�

x
2

��

� .� C 1
2
/
p
�

 p
� � .� C 1

2
/

2� .� C 1/
C 2�� 3

2

�

x�1 C � .2�/

x2�

�

!

D 1

� .� C 1/

� x

2

�� C x��1
p
2� � .� C 1

2
/

C 22�� 3
2 � .�/

�x�
:

Therefore

jX�.x/j �
� x

2

��X

n�1

j�nj
� .� C n C 1/

� x

2

�n C x��1
p
2�

X

n�1

j�njxn

� .� C n C 1
2
/

C 1

2�
p
2

�

4

x

��
X

n�1
j�nj� .� C n/

�

4

x

�n

:

The first two series converge in
�

0; 2.e `/�1
�

,
�

0; .e `/�1
�

respectively, while the
third series converges uniformly for all x > 4L e�1. This yields the interval of
convergence I� D �

4Le�1; .e `/�1
�

: In this case the coefficients �n satisfy the
constraint 4`L < 1; and then the necessary condition for convergence of X�.x/
is lim sup

n!1
j�nj 1n < 1

2
.

It remains the case � 1
2
< � � 1

2
. Then, because of .1C t2/�� 1

2 � 1, we conclude

Y�.x/ � 1

� .� C 1/

� x

2

�� C 1

� .� C 1
2
/
p
�

� x

2

���1
;

and consequently I� D �

0; 2.e `/�1
�

. Collecting these cases we get (2.50) and
(2.52).

Now, let us focus on the integral representation for X�.x/; where x 2 I� . By the
Gubler–Weber formula (2.53) we have

X�.x/ D 2p
�

� x

2

��X

n�1

�n

� .� C n C 1
2
/

� x

2

�n



�Z 1

0

sin.xt/.1 � t2/�Cn� 1
2 dt C

Z 1

0

e�xt.1C t2/�Cn� 1
2 dt

�

: (2.54)
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The first expression in (2.54) we rewrite as

˙1.x/ D 2p
�

� x

2

��X

n�1

�n
�

x
2

�n

� .� C n C 1
2
/

Z 1

0

sin.xt/.1 � t2/�Cn� 1
2 dt

D
r

2x

�

Z 1

0

sin.xt/

�

x.1 � t2/

2

��� 1
2

D� .t/ dt;

where

D� .t/ WD
X

n�1

�n

� .n C � C 1
2
/

exp

�

�n log
2

x.1 � t2/

�

is the Dirichlet series analogous to one in (2.36). It is easy to see that in view of
(2.52) for all x 2 I� and t 2 .0; 1/ we have

log
2

x.1 � t2/
> 0:

More precisely, if � 1
2
< � � 3

2
, then x < 2.e `/�1, and

2

x.1 � t2/
>

e `

1 � t2
> e ` > 1 :

Similarly, if � > 3
2
, then x < .e `/�1, and

2

x.1 � t2/
>

2e `

1 � t2
> 2e ` > 1 :

Thus, the Dirichlet series’ parameter is necessarily positive, and therefore D� .t/
converges for all x 2 I� .

Following the same lines as in the proof of Theorem 2.7 we deduce that

˙1.x/ D �
Z 1

0

Z Œu�

0

ds

 

�.s/

� .� C s C 1
2
/

!

@

@u

�

�
�

� C u C 1
2

�

H�Cu.x/
�

du ds;

(2.55)

where H� stands for the familiar Struve function.
Below, we will simplify the second expression in (2.54):

˙2.x/ D 2p
�

� x

2

��X

n�1

�n
�

x
2

�n

� .� C n C 1
2
/

Z 1

0

e�xt.1C t2/�Cn� 1
2 dt

D
r

2x

�

Z 1

0

e�xt

�

x.1C t2/

2

��� 1
2

eD� .t/ dt;



2.4 Integral Representations for Neumann–Bessel Type Series 55

where eD� .t/ D D� .it/. Thus,

˙2.x/ D �
r

2x

�

Z 1

0

Z Œu�

0
ds

 

�.s/

� .� C s C 1
2 /

!



0

@

Z 1

0
e�xt

 

x.1C t2/

2

!�Cu� 1
2

log
x.1C t2/

2
dt

1

A du ds

D ��
Z 1

0

Z Œu�

0

ds

 

�.s/

� .� C s C 1
2 /

!

� @
@u

1

� . 12 � � � u/



�

2J���u.x/

sin 2�.� C u/
� J�Cu.x/

sin�.� C u/
C H�Cu.x/

cos�.� C u/

�

du ds

D
Z 1

1

Z Œu�

0

@

@u
�
�

� C u � 1
2

�

. Y�Cu.x/ � H�Cu.x// ds

 

�.s/

� .� C s C 1
2 /

!

du ds :

(2.56)

Here we applied the Euler’s reflection formula and the well-known property of the
Bessel functions which was noted in Eq. (2.15). Summing (2.55) and (2.56) we have
the desired integral representation (2.51). ut
Remark 2.4 Another two linearly independent solutions of the Bessel homogeneous
differential equation are the Hankel functions H.1/

� and H.2/
� which can be expressed

as [333, p. 73]

H.1/
� .x/ D J��.x/ � e��� iJ�.x/

i sin.��/
; (2.57)

H.2/
� .x/ D J��.x/ � e�� iJ�.x/

�i sin.��/
; (2.58)

which build the third type Neumann series:

N
H.�/

1;� .z/ D
X

n�1
˛n H.�/

�Cn.z/; � D 1; 2 :

Using formulae (2.57), (2.58) we see that integral expressions for third type
Neumann series are linear combinations of similar fashion integrals achieved for
N�.x/ in Theorem 2.1. �
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2.5 Integral Form of Neumann Series Na;b
�;�.x/

In our investigations regarding Turán type determinants of Bessel functions we also
aimed to establish integral formula for the second type Neumann type series of
Bessel J as

N
a;b
�;�.x/ WD

X

n�1
˛nJ�Can.x/J�Cbn.x/; �; �; a; b 2 R : (2.59)

This was motivated by the fact that N2;2
�;�.x/ constitutes the right-hand side series in

von Lommel’s expression for all x 2 R; � > �1 [333, p. 152]

x2



J2�.x/ � J��1.x/J�C1.x/
� D 4

X

n�0
.� C 1C 2n/J2�C1C2n.x/; (2.60)

and for the Al-Salam series [5]

4m.2m/Š

x2mmŠ.m � 1/Š
X

k�0
.� C m C 2k/.k C 1/m�1.� C k C 1/m�1J2�CmC2k.x/

D
m
X

nD�m

.�1/n
 

2m

m � n

!

J��n.x/J�Cn.x/; (2.61)

while N1;1
�;�.x/ covers the series considered in [311]. Also, N1;�1

�;� .x/ appears in

(2.61), and N
1;�1

n;nC2k.x/ occurs in our study [21]. In order to obtain the integral
representation formula for (2.59) we shall use the main idea from [249], that is,
Cahen’s Laplace integral representation of the associated Dirichlet series. Thus, we
take x 2 RC and assume in the sequel that the behavior of .˛n/n�1 ensures the
convergence of the series (2.59) over RC.

Theorem 2.10 (Baricz and Pogány [21]) Let ˛ 2 C1.RC/; ˛
ˇ

ˇ

N
D .˛n/n�1 and

assume that series
P

n�1 ˛n n� 2
3 is absolutely convergent. Then, for all a; b > 0

such that

0 < x < 2min

�

1;
1

e

�

aabb=	
a;b
N

� 1
aCb

	

D IN; minf�Ca; �Cbg > 0; (2.62)

where

	
a;b
N D lim sup

n!1
n�.aCb/j˛nj 1n ;
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we have that

Na;b
�;�.x/ D

Z 1

1

Z Œu�

0

@

@u

�

� .�C au C 1/� .� C bu C 1/ J�Cau.x/J�Cbu.x/
�


 dv

� �˛.v/
� .�C av/� .� C bv/

�

du dv : (2.63)

Proof Landau’s bound (1.20) gives the estimate upon Na;b
�;�.x/

ˇ

ˇNa;b
�;�.x/

ˇ

ˇ � b2L
X

n�1

j˛nj
3
p

.�C an/.� C bn/
� b2L

3
p

ab

X

n�1

j˛nj
n
2
3

;

therefore Na;b
�;�.x/ absolutely and uniformly converges for x > 0. Taking the integral

expression (2.4) (listed also in [333, p. 48]),

J�.x/ D 2
�

x
2

��

p
� � .� C 1

2
/

Z 1

0

cos.xt/.1 � t2/�� 1
2 dt; x 2 R; � > � 1

2
;

in (2.59) we get

Ga;b
�;�.x/ D 4

�

� x

2

��C� Z 1

0

Z 1

0

cos.xt/ cos.xs/

.1 � t2/
1
2��.1 � s2/

1
2�� D˛.t; s/ dtds ; (2.64)

where we should obtain the Dirichlet series’

D˛.t; s/ D
X

n�1

˛n
�

.x=2/aCb .1 � t2/a.1 � s2/b
�n

� .�C an/� .� C bn/

x-domain of convergence. Expressing D˛.t; s/ by the Cahen’s formula (1.15) it is
necessary to have positive Dirichlet parameter, that is,

� log
�

x=2
�aCb

.1 � t2/a.1 � s2/b > 0;

which holds for all jxj < 2 when a C b > 0: Also D˛.t; s/ is equi-convergent to the
auxiliary power series

X

n�1

˛n

n.aCb/n

�

.ex/aCb.1 � t2/a.1 � s2/b

2aCbaabb

�n
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with radius of convergence

	a;b
N D

 

lim sup
n!1

j˛nj 1n
naCb

!�1
:

This yields the convergence region IN described in (2.62).
Next, by the Cahen’s formula (1.15), D˛.t; s/ becomes

D˛.t; s/ D
X

n�1

˛n

� .�C an/� .� C bn/
exp

�

�n log
2aCb

xaCb.1 � t2/a.1 � s2/b

	

D log
2aCb

xaCb.1 � t2/a.1 � s2/b

Z 1

0

�

xaCb.1 � t2/a.1 � s2/b

2aCb

�u



0

@

Œu�
X

nD1

˛n

� .� C an/� .�C bn/

1

A du

D log
2aCb

xaCb.1 � t2/a.1 � s2/b

Z 1

0

�

xaCb.1 � t2/a.1 � s2/b

2aCb

�u



Z Œu�

0

dv

�

˛.v/ dv

� .� C an/� .�C bn/

�

du ;

where the last equality we deduced by virtue of condensed Euler–Maclaurin
summation formula (1.16). The last formula in conjunction with (2.64) gives

N
a;b
�;�.x/ D 4

�

� x

2

��C� Z 1

0

Z Œu�

0

Jt;s.u/ dv

�

˛.v/

� .� C an/� .�C bn/

�

dudv ;

where

Jt;s.u/ D �
� x

2

�.aCb/u
Z 1

0

Z 1

0

cos.xt/ cos.xs/ .1 � t2/�Cau� 1
2 .1 � s2/�Cbv� 1

2


 log

�

xaCb.1 � t2/a.1 � s2/b

2aCb

�

dtds :

Because
Z

Jt;s.u/ du D �
� x

2

�.aCb/u
I�;a.u/I�;b.u/ ;

where

I�;a.u/ D
Z 1

0

cos.xt/.1 � t/�Cau� 1
2 dt D

p
�

2

� x

2

����au
� .�C au C 1/J�Cau.x/;
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there holds

Jt;s.u/ D ��
4

� x

2

����� @

@u

�

� .�C au C 1/� .� C bu C 1/J�Cau.x/J�Cbu.x/
�

;

which immediately implies the asserted formula (2.63). ut
In the preliminary part of this section we mentioned the equalities by von

Lommel, Thiruvenkatachar and Nanjundiah and Al-Salam. By particular choice of
a and b we conclude

Corollary 2.1 (Baricz and Pogány [21]) If � > 2 and

x 2
�

0; 2min

�

1; 2
�

e4	2;2N

�� 1
4

	�

;

then we have that

N
2;2

��2;��2.x/ D
Z 1

1

Z Œu�

0

@

@u

�

� 2.� � 1C 2u/J2��2C2u.x/
�


 dv

�

� .� � 2C 2v/� .�1C v/� .� � 1C v/

� 2.� � 2 � 2v/� .v/� .� C v/

�

dudv : (2.65)

Moreover, for � > 0 and

x 2
�

0; 2min

�

1;
�

e2	1;1N

�� 1
2

	�

there holds true

N
1;1

�C1;�C1.x/ D
Z 1

1

Z Œu�

0

@

@u

�

� 2.� C u C 2/J2�CuC2.x/
�


 dv

�

� .� C v/�1.� C v C 2/�1

� 2.� C v C 1/

�

dudv: (2.66)

Remark 2.5 We note that the second type Neumann series in von Lommel’s formula
(2.60) possesses divergent auxiliary series

P

n�1 ˛nn� 2
3 , therefore it is not covered

by Theorem 2.10. Also, Al-Salam’s series (2.61), converges only when m < 1
3
,

so the formula (2.65). The auxiliary series associated with the Neumann series by
Thiruvenkatachar and Nanjundiah is equiconvergent to the Riemannian �. 8

3
/, thus

this case meet Theorem 2.10, see (2.66). Finally, the second type finite sum (2.61)
has to be studied separately, being the parameter space of Na;b

�;�.x/ restricted by the
required positivity of upper parameters a; b in Theorem 2.10. �
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2.5.1 Second Type Neumann Series N
˛I�

�;�.x/ and N˛K�
�;� .x/

Both modified Bessel functions of the first and second kind I�;K� are frequently
considered in physics, applied mathematics and engineering applications. The
product I�K� is also used in some application items, see e.g. [261, 262] which
concern the hydrodynamic and hydromagnetic instability of certain cylindrical
models, in which the monotonicity of x 7! I�.x/K�.x/ for � > 1 is used. Also,
different kind proofs on the monotonicity of I�.x/K�.x/ can be found in the recent
article [13]. We focus here on integral representations for second type Neumann
series of modified Bessel functions I� and K� in the manner of previous results
exposed in a set of articles [21, 24, 25, 249] for the first type Neumann series.

We introduce a second type Neumann-series

N
˛
�;�.z/ WD

X

n�1
˛n I�Cn.z/K�Cn.z/ :

Our main derivation tools include Cahen’s Laplace integral form of the Dirichlet
series (1.15), the condensed form of Euler–Maclaurin summation formula (1.9) and
certain bounding inequalities for I� and K�; see [14]. Our goal is to give integral
representations for the second type Neumann series N ˛

�;�.x/, N
˛I�
�;�.x/ and N

˛K�
�;� .x/.

Obviously in the last two series ˛I� 7! ˛, that is ˛K� 7! ˛ was used, which means
that both underlying second type Neumann series consist from products of three
modified Bessel functions of the first and second kind:

N
˛I�
�;�.x/ D

X

n�1
˛nI�Cn.x/I�Cn.x/K�Cn.x/

N
˛K�
�;� .x/ D

X

n�1
˛nI�Cn.x/K�Cn.x/K�Cn.x/ :

Finally, our aim is to establish indefinite integral representation formulae for the
one-parameter second type Neumann series of the product of two modified Bessel
functions of the first kind P� D I� K� , observing that it is a particular solution of the
homogeneous third order ordinary differential equation [20, p. 816, Eq. (17)]

x2y000.x/C 3xy00.x/ � .4�2 C 4x2 � 1/y0.x/ � 4xy.x/ D 0:

Also, let us define

H
˛
�;�.x/ DW 4

X

n�1
n.n C 2�/˛nInC�.x/KnC�.x/ ;

the second type Neumann series of modified Bessel functions associated with the
Neumann series N �

�;�.x/.
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By these considerations we finish the first essay, the one in which another view
to Fourier–Bessel Neumann series was exposed.

2.6 Properties of Product of Modified Bessel Functions

In Sect. 2.5.1 we already mentioned some applications of the product x 7!
P�.x/ WD I�.x/K�.x/ [261, 262]; see also the paper of Hasan [107], where the
electrogravitational instability of non-oscillating streaming fluid cylinder under the
action of the selfgravitating, capillary and electrodynamic forces has been discussed.
In these papers the authors use (without proof) the inequality

P�.x/ < 1
2

for all � > 1 and x > 0: We note that the above inequality readily follows from
the fact that x 7! P�.x/ is decreasing on RC for all � > �1: More precisely, for all
x > 0 and � > 1 we have

P�.x/ < lim
x!0

P�.x/ D 1
2�
< 1

2
:

For different proofs on the monotonicity of the function x 7! P�.x/ we refer to the
papers [13, 234, 237]. It is worth to mention that the above monotonicity property
has been used also in a problem in biophysics (see [95]). Moreover, recently Klimek
and McBride [152] used this monotonicity to prove that a Dirac operator (subject to
Atiyah–Patodi–Singer-like boundary conditions on the solid torus) has a bounded
inverse, which is actually a compact operator. In [319, 320] van Heijster et al.
investigated the existence, stability and interaction of localized structures in a one-
dimensional generalized FitzHugh–Nagumo type model. Recently, van Heijster and
Sandstede [318] started to analyze the existence and stability of radially symmetric
solutions in the planar variant of this model. The product of modified Bessel
functions P� arises naturally in their stability analysis, and the monotonicity (see
[22, 318]) of � 7! P�.x/ is important to conclude (in)stability of these radially
symmetric solutions.

In this section, motivated by the above applications, we focus on Chebyshev-
type discrete inequalities for Neumann series of modified Bessel functions I� and
K� of the first and the second kind, respectively. Moreover, we deduce integral
representations formulae for these Neumann series appearing in newly derived
discrete Chebyshev inequalities in the manner of such results given recently by
Baricz, Jankov, Pogány and Süli in a set of articles [21, 24, 25, 249] for the first
type Neumann series.

In the sequel we will consider first type Neumann series introduced in (2.32) and
(2.33) as

M
�
� .z/ WD

X

n�1
�n I�Cn.z/ and J

�
� .z/ WD

X

n�1
�n K�Cn.z/ : (2.67)
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In this section our aim is to present the Chebyshev-type discrete inequality in the
terminology of Neumann-series (2.67) and its closed form integral representation.
In this goal we consider the (in Sect. 2.5.1) introduced second type Neumann-series

N
�
�;�.z/ WD

X

n�1
�n I�Cn.z/K�Cn.z/ :

Our main derivation tools include Cahen’s Laplace integral form of a Dirichlet series
(1.15) (see the exact proof in Perron’s article [235]), the condensed form of Euler–
Maclaurin summation formula (1.9) and certain bounding inequalities for I� and K�;
see [14].

2.6.1 Discrete Chebyshev Inequalities

We begin with the discrete form of the celebrated Chebyshev inequality reported
(in part) by Graham [94, p. 116]. Here, and in what follows let � be a nonnegative
discrete measure, �.n/ � �n; n 2 N. Assuming f ; g are both nonnegative and same
(opposite) kind monotone, then

X

n�1
�nf .n/

X

n�1
�ng.n/ � .�/ k�k1

X

n�1
�nf .n/g.n/ ; (2.68)

where k � k1 stands for the appropriate `1-norm. Let us signify throughout

kN˛ �k1 WD
X

n�1
n˛�n ; ˛ 2 R :

Now, let us recall some monotonicity properties of modified Bessel functions. Jones
[143] proved that I�1.x/ < I�2.x/ holds for all x > 0 and �1 > �2 � 0;while Cochran
[56] and Reudink [267] established the inequality @I�.x/=@� < 0 for all x; � > 0:

In other words, the function � 7! I�.x/ is strictly decreasing on RC for all x > 0

fixed. Moreover, as it was pointed out by Laforgia [165], the function � 7! K�.x/ is
strictly increasing on RC for all x > 0 fixed. Finally, recall that recently in [22, 318]
it was proved the function � 7! P�.x/ is strictly decreasing on RC for all x > 0

fixed.
Having in mind these properties we can see that modified Bessel functions of the

first and second kind I�;K� and also their equal order product P� are ideal candidates
to establish discrete Chebyshev inequalities of the type (2.68).

Our first main result is the following theorem.

Theorem 2.11 (Baricz and Pogány [20]) Let �; � > 0 and let � be a positive
discrete measure on N such that k�k1 < 1, not necessarily the same in different
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occasions. Then the following assertions are true:

(a) For all fixed x 2 I0 WD �

2e�1 lim supn!1 n�
1
n
n ;1

�

we have

M�
� .x/ J

�
� .x/ � k�k1N �

�;�.x/: (2.69)

(b) For all fixed x 2 I1 WD �

0; 2e�1= lim supn!1 n�1�
1
n
n
�

, it holds

k�k1N�I�
�;� .x/ � M

�
� .x/N

�
�;�.x/; (2.70)

whenever kN.����1/C�k1 < 1, where .a/C D maxf0; ag.
(c) Moreover, for all fixed x 2 I0 and kN.����1/C �k1 < 1 we have

J
�
� .x/N

�
�;�.x/ � k�k1N�K�

�;� .x/: (2.71)

Proof We apply the Chebyshev inequality (2.68) by choosing (a) f � I�; g � K�;
(b) f � I�; g � I�K� and (c) f � K� ; g � I�K�: In the cases (a) and (c) the functions
f and g are opposite kind monotone, and thus we immediately conclude (2.69) and
(2.71), respectively. Moreover, in the case (b) both f and g decrease, which imply
the derived inequality (2.70).

It remains only to find the x-domains of the inequalities.
Observe that k�k1 < 1 suffices for the absolute and uniform convergence of

the Neumann series M�
� .x/: This has been established by Baricz et al. in the proof

of [24, Theorem 2.1] for all x > 0 and � > �1. Moreover, in the same paper [24]
the authors proved that J�� .x/ converges absolutely and uniformly when � > 0 and
x 2 I0: Now, by the inequalities [14, p. 583]

I�.x/ <

�

x
2

��

� .� C 1/
e

x2

4.�C1/ ; � > �1; x > 0;

and [24]

K�.x/ � 2��1

x�
� .�/; � > 0; x > 0 ;

applied to the summands of N �
�;�.x/, we obtain

ˇ

ˇN �
�;�.x/

ˇ

ˇ � 1

2

� x

2

����
e

x2

4.�C2/ X

n�1
n����1 �n :

Observe that the convergence of the right-hand-side series, that is kN����1 �k1 <
1, ensures the convergence of the second type Neumann series G

�
�;�.x/ for all

�; �; x > 0. This yields together with the additional requirement k�k1 < 1
max

˚k�k1; kN����1 �k1
� D kN.����1/C �k1 < 1:
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Finally, consider the series N
�I�
�;� .x/ which ensures the convergence of both left-

hand-side Neumann series in (2.70). By virtue of the above listed upper bounds for
I�; I� and K�, we have

N
�I�
�;� .x/ D

X

n�1
�nI�Cn.x/I�Cn.x/K�Cn.x/

� 1

2
p
2�

� x

2

��

e
x2
4

�

1
�C2C 1

�C2

�

X

n�1

�n

nnC�C 3
2

�xe

2

�n
;

where the bounding power series converges for all x 2 I1.
Combining all these estimates we arrive at the asserted inequality domains. ut

2.6.2 Integral Form of Related Second Type Neumann Series

Our next goal is to give integral representations for the second type Neumann series

N
�
�;�.x/; N

�I�
�;� .x/ and N

�K�
�;� .x/;

which appeared in Theorem 2.12. This will be realized on the account of procedure
introduced by Pogány and Süli in [249] and further developed and promoted by
Baricz et al. [21, 24, 25].

Theorem 2.12 (Baricz and Pogány [20]) Let � 2 C1.RC/, �jN D .�n/n�1 such

that lim supn!1 j�nj 1n � 1. Then, for all x > 0 and �; � > � 3
2

we have the integral
representation

N
�
�;�.x/ D �x���

4

Z 1

1

Z Œt�

0

@

@t

 

� .t C � C 1
2
/

� .t C �C 1
2
/

ItC�.x/KtC�.x/
!


 ds

 

�.s/� .s C �C 1
2
/

� .s C � C 1
2
/

!

dt ds ; (2.72)

where

dx WD 1C fxg d

dx
:

Proof By the Basset formula (2.41), applying (2.34) (see e.g. [333, p. 79]) to
N

�
�;�.x/, we conclude

N �
�;�.x/ D x���

2�

Z 1

0

Z 1

0

.1� t2/�� 1
2 cosh.xt/ cos.xs/

.1C s2/�C 1
2



X

n�1

�n� .n C �C 1
2
/

� .n C � C 1
2
/

� 1 � t2

1C s2

�n
dtds : (2.73)
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The inner sum we recognize as the Dirichlet series

D0.t; s/ D
X

n�1

�n� .n C �C 1
2
/

� .n C � C 1
2
/

exp
�

� n log
1C s2

1� t2

�

; (2.74)

which parameter log.1C s2/.1� t2/�1 is obviously positive on .t; s/ 2 .0; 1/
 RC
independently of x. Also, the power series (2.74) has the radius of convergence

	D0 D 1

lim sup
n!1

j�nj 1n
;

and then D0.t; s/ is convergent for all .t; s/ 2 .0; 1/
 RC, being 	D0 � 1 according
to the assumption of the theorem.

Thus, by Cahen’s Laplace integral formula for the Dirichlet series (1.15) and by
the condensed Euler–Maclaurin summation formula (1.9), we get

D0.t; s/ D log
1C s2

1 � t2

Z 1

0

Z Œw�

0

� 1 � t2

1C s2

�w
dz

��.z/� .z C �C 1
2
/

� .z C � C 1
2
/

�

dwdz :

(2.75)
Substituting (2.75) into (2.73) we get

N
�
�;�.x/ D �x���

2�

Z 1

0

Z Œw�

0

dz

��.z/� .z C �C 1
2
/

� .z C � C 1
2
/

�



 

Z 1

0

Z 1

0

� 1 � t2

1C s2

�wC�� 1
2

log
1 � t2

1C s2
� cosh.xt/ cos.xs/

.1C s2/���C1 dtds

!

dwdz :

Denote

I .˛/ WD
Z 1

0

Z 1

0

� 1 � t2

1C s2

�˛

log
1 � t2

1C s2
� cosh.xt/ cos.xs/

.1C s2/���C1 dtds :

Now, having in mind (2.34) and (2.41), we deduce

Z

I .˛/ d˛ D
Z 1

0

Z 1

0

� 1 � t2

1C s2

�˛ cosh.xt/ cos.xs/

.1C s2/���C1 dtds

D
Z 1

0

Z 1

0

.1 � t2/˛ cosh.xt/ cos.xs/

.1C s2/˛C���C1 dtds

D �

2

� .˛ C 1/

� .˛ C �� � C 1/
I˛C 1

2
.x/K˛C���C 1

2
.x/ ;
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that is, choosing ˛ 7! w C � � 1
2

we have

I .w C � � 1
2
/ D �

2

@

@w

� .w C � C 1
2
/

� .w C �C 1
2
/

IwC�.x/KwC�.x/ :

Hence

N �
�;�.x/ D �x���

4

Z 1

0

Z Œt�

0

@

@t

 

� .t C � C 1
2
/

� .t C �C 1
2
/

ItC�.x/KtC�.x/
!


 ds

 

�.s/� .s C �C 1
2
/

� .s C � C 1
2
/

!

dt ds ;

which is equivalent to the asserted double integral expression (2.72). ut

Theorem 2.13 (Baricz and Pogány [20]) Let � 2 C1.RC/, �jN D .�n/n�1. Then,
for all x 2 I1; �; � > � 3

2
there holds

N
�I�
�;� .x/ D �x���

4

Z 1

1

Z Œt�

0

@

@t

 

� .t C � C 1
2
/

� .t C �C 1
2
/

ItC�.x/KtC�.x/
!


 ds

 

�.s/IsC�.x/� .s C �C 1
2
/

� .s C � C 1
2
/

!

dt ds :

Moreover, for x 2 I0; � > �1; � > � 3
2

we have

N�K�
�;� .x/ D �x���

4

Z 1

1

Z Œt�

0

@

@t

 

� .t C � C 1
2
/

� .t C �C 1
2
/

ItC�.x/KtC�.x/
!


 ds

 

�.s/KsC�.x/� .s C �C 1
2
/

� .s C � C 1
2
/

!

dt ds :

Proof We follow the proof of (2.72) to get the integral representations. It remains
only to remark that the Dirichlet series D1.t; s/ associated with N

�I�
�;� .x/ satisfies

jD1.t; s/j �
X

n�1

j�njjInC�.x/j� .n C �C 1
2
/

� .n C � C 1
2
/

� 1� t2

1C s2

�n

� 1p
2�

� jxj
2

��

e
x2

2.�C2/

X

n�1

�n

nnC�C 1
2

� jxje
2

1 � t2

1C s2

�n
;
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so x has to be from I1. Similarly can be concluded that for the Dirichlet series
D2.t; s/ associated with N

�I�
�;� .x/ holds the estimate

jD2.t; s/j �
X

n�1

j�njjKnC�.x/j� .n C �/� .n C �C 1
2
/

� .n C � C 1
2
/

� 1 � t2

1C s2

�n

�
r

�

2

� 2

jxj
�� X

n�1
nnC�� 1

2 �n

� 2

jxje
1 � t2

1C s2

�n
;

of which convergence requirement causes x 2 I0. ut

2.6.3 Indefinite Integral Expressions for Second Type
Neumann Series N �

�;�.x/

In this section our aim is to establish indefinite integral representation formulae
for the one-parameter second type Neumann series of the product of two modified
Bessel functions of the first kind P� . First of all, observe that P� is a particular
solution of the homogeneous third order linear differential equation

x2y000.x/C 3xy00.x/� .4�2 C 4x2 � 1/y0.x/� 4xy.x/ D 0: (2.76)

To see this, let us recall that I� and K� both satisfy the differential equation

x2y00.x/C xy0.x/� .x2 C �2/y.x/ D 0

and consequently

x2I00
� .x/ D .x2 C �2/I�.x/ � xI0

�.x/ (2.77)

and

x2K00
� .x/ D .x2 C �2/K�.x/� xK0

�.x/: (2.78)

Applying these relations we obtain

x2P00
� .x/ D 2.x2 C �2/P�.x/ � xP0

�.x/C 2x2I0
�.x/K

0
�.x/:

Now, differentiating both sides of this equation and applying again the previous
relations we arrive at

x2P000
� .x/C 3xP00

� .x/ � .4�2 C 4x2 � 1/P0
�.x/� 4xP�.x/ D 0:
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Repeating this procedure twice in view of (2.77) and (2.78), we can show2 that
actually I2� and K2

� are also particular solutions of the third order linear differential
equation (2.76).

Now, let us show that I2� ; I�K� and K2
� are independent being the Wronskian

WŒI2� ; I�K� ;K
2
� � ¤ 0 on R. After some computation we get

WŒI2� ; I�K�;K
2
� �.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I2�.x/ I�.x/K�.x/ K2
� .x/

�

I2�.x/
�0
.I�.x/K�.x//

0 �K2
� .x/

�0
�

I2�.x/
�00
.I�.x/K�.x//

00 �K2
� .x/

�00

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �1
4

�

I�.x/K��1.x/C I��1.x/K�.x/

C I�C1.x/K�.x/C I�.x/K�C1.x/
�3

D 2
�

I�.x/K
0
�.x/� I0

�.x/K�.x/
�3 D 2W3ŒI�;K��.x/ D � 2

x3
¤ 0;

where we used the fact that WŒI�;K��.x/ D �x�1.
Thus, by the variation of constants method we get the desired particular solution

of the non-homogeneous variant of (2.76), that is,

x2y000.x/C 3xy00.x/� .4�2 C 4x2 � 1/y0.x/ � 4xy.x/ D f .x/ ; (2.79)

where f is a suitable real function. Hence, bearing in mind (2.77), the general
solution reads as follows

y.x/ D c1I
2
�.x/C c2I�.x/K�.x/C c3K

2
� .x/�4

Z x

1

tf .t/
�

I�.x/K�.t/� I�.t/K�.x/
�2

dt :

Choosing the constants c1; c2 and c3 to be zero, the particular solution yp of the
non-homogeneous ordinary differential equation (2.79) becomes

yp.x/ D �4
Z x

1

tf .t/
�

I�.x/K�.t/� I�.t/K�.x/
�2

dt : (2.80)

2It is worth to mention here that the above procedure for modified Bessel functions is similar to the
method for Bessel functions applied by Wilkins [335]. See also Andrews et al. [7] for more details.

More precisely, Wilkins proved that the Hankel functions
�

H.1/
�

�2
and

�

H.2/
�

�2
; as well as J2� C Y2� ;

where J� and Y� stand for the Bessel functions of the first and second kind, are particular solutions
of the third order homogeneous differential equation [7, p. 225]

x2y000.x/C 3xy00.x/C .1C 4x2 � 4�2/y0.x/C 4xy.x/ D 0:

The above result was used to prove the celebrated Nicholson formula [7, p. 224]

J2� .x/C Y2� .x/ D 8

�2

Z

1

0

K0.2x sinh t/ cosh.2�t/dt;

which generalizes the trigonometric identity sin2 x C cos2 x D 1:
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Now, by using (2.76) we have

x2 P000
nC�.x/C 3x P00

nC�.x/ � .4.n C �/2 C 4x2 � 1/P0
nC�.x/� 4x PnC�.x/ D 0

and multiplying with the weight �n and summing up on the set of positive integers
N, transformations lead to the non-homogeneous third order linear differential
equation

x2
�

N
�
�;�.x/

�000 C 3x
�

N
�
�;�.x/

�00 � .4�2 C 4x2 � 1/
�

N
�
�;�.x/

�0 � 4xN �
�;�.x/

D 4
X

n�1
n.n C 2�/�nInC�.x/KnC�.x/ WD H

�
�;�.x/ ;

where H
�
�;�.x/ stands for the second kind equal parameter Neumann series of

modified Bessel functions associated with the Neumann series N �
�;�.x/.

Theorem 2.14 (Baricz and Pogány [20]) Let � 2 C1.RC/, �jN D .�n/n�1 such
that lim supn!1 j�nj 1n � 1 and kN�1 �k1 < 1. Then for all � > � 3

2
and x > 0 we

have

N
�
�;�.x/ D �4

Z x

1

uH �
�;�.u/

�

I�.x/K�.u/� I�.u/K�.x/
�2

du ; (2.81)

where H�� .x/ possesses the integral representation

H
�
�;�.x/ D �

Z 1

1

Z Œt�

0

@

@t

�

ItC�.x/KtC�.x/
�

ds
�

s.s C 2�/�.s/
�

dt ds : (2.82)

Proof The integral representation (2.82) of the associated second type Neumann
series of Bessel function H

�
�;�.x/ can be obtained by using the integral expression

(2.72) in Theorem 2.12, just putting � � � for the weight function �n 7! 4n.n C
2�/�n, when

lim sup
n!1

j4n.n C 2�/�nj 1n D lim sup
n!1

j�nj 1n � 1 :

After that by straightforward application of (2.80) with f .x/ � H
�
�;�.x/, we deduce

the desired integral expression (2.81). ut

2.7 Summation Formulae for the First and Second Type
Neumann Series

The problem of summing the Neumann series of Bessel and modified Bessel
functions of the first kind i.e. N� and M� � N I

1;� , has been widely considered in
the mathematical literature [1, 24, 257]. Also, the NIST project, the Wolfram virtual



70 2 Neumann Series

formula collection and Hansen’s classical monograph [102] contain an exhaustive
list of summations for alike series.

Quite recently, a summation formula for Neumann series of modified Bessel
functions of the first kind was given by Al-Jarrah et al. [4, p. 3, Theorem 1]:

X

n�0
Ikn.x/ D 1

2
I0.x/C 1

2k

k�1
X

nD0
ex cos.2�n=k/; k 2 N : (2.83)

This summation possesses numerous already known special cases. For instance, see
[1, p. 376, Eqs. 9.6.37, 9.6.39], [102, p. 411–412, Eqs. (58.1.2), (58.1.12)]

X

n�0
In.x/ D 1

2
.I0.x/C ex/ ;

X

n�0
I2n.x/ D 1

2
.I0.x/C cosh x/ ;

respectively and [102, p. 412, Eq. (58.1.17)]

X

n�0
.�/n I�C2n.x/ D 1

2

Z

I��1.x/ dx I

also inspect [102, §§58, 74.6, 79.2] together with suggested links to further results.
Our first main purpose is to extend (2.83) to a new summation formulae for

N
I;˙
�;� .x/ D

X

n�0
.˙/n I�C�n.x/; x 2 R ; (2.84)

for the widest possible parameter space upon�; � and such results will be presented
in the next section.

Also, motivated by the fact that the modified Bessel function of the first
kind frequently occurs in probability and statistics [269], mostly as a part of the
distributions of spherical and directional random variables such as, for instance, the
probability density function of the non-central �2 distribution with non-centrality
parameter a > 0 and n 2 N degrees of freedom [142, p. 436, Eq. (29.4)]

fn;a.x/ D 1
2
e� aCx

2

�r

x

a

�
n
2�1

I n
2�1.

p
ax/ ; x > 0 (2.85)

in Sect. 2.8 we will also present a new summation formula for the special kind of
Neumann series N I

1;� which is connected to the cumulative distribution function
(CDF) of the non-central �2 distribution (usually denoted by �02

n .a/ [142, p. 433]).
Section 2.9 is devoted to new summation formulae for the second type Neumann

series which members contain product of two modified Bessel functions of the first
kind and also to new results which connect Neumann series of the first and second
type.
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Further, as a by-product of the mentioned results new summation formulae will
be established for the Neumann series which members contain Bessel functions of
the first kind J� and also their products.

2.7.1 Closed Form of the First Type Neumann Series N I;˙
�;�

Here, we present new summation formulae for the Neumann series given by (2.84),
together with some consequences and generalizations.

Theorem 2.15 (Jankov Maširević and Pogány [139]) For all minfx; �g > 0 there
hold

N
I;˙
1;� .x/ D 1

2.1� �/
� 2 e˙x

� .� C 1/

� x

2

��

2F2
h

�; � � 1
2

� C 1; 2� � 1

ˇ

ˇ

ˇ� 2x
i

(2.86)

� xI��1.x/� xI�.x/
�

:

Proof First, let us establish the absolute convergence of the series N
I;˙
1;� .x/. By

virtue of asymptotic behavior [227, p. 256, Eq. 10.41.1]

I�.x/ � 1p
2��

�e x

2�

��

;

valid for all x > 0 fixed and � ! 1, we have

ˇ

ˇN1̇;�.x/
ˇ

ˇ �
X

n�0

ˇ

ˇI�Cn.x/
ˇ

ˇ � 1p
2�

�e x

2

��X

n�0

�e x

2

�n

.� C n/�CnC 1
2

which obviously converges for all x > 0.
The appropriate integral representation [257, p. 694] yields

N
I;˙
1;� .x/ D 1

2.1� �/

�

e˙x
Z x

0

e�tI��1.t/ dt � xI��1.x/� xI�.x/

�

; � > 0 :

On the other hand, expanding the exponential term in the integrand into Maclaurin
series, by the legitimate change of order of summation and integration, we get

Z x

0

e�tI��1.t/ dt D 21��x�

� .� C 1/
2F2

h

�; � � 1
2

� C 1; 2� � 1
ˇ

ˇ

ˇ� 2x
i

:

This evidently leads to the asserted formula (2.86). ut



72 2 Neumann Series

Theorem 2.16 (Jankov Maširević and Pogány [139]) For all minfx; �g > 0 there
holds

N
I;C
2;� .x/ D 1

2.1� �/

(

1

� .� C 1/

� x

2

�� �

ex
2F2

h

�; � � 1
2

� C 1; 2� � 1

ˇ

ˇ

ˇ� 2x
i

C e�x
2F2

h

�; � � 1
2

� C 1; 2� � 1

ˇ

ˇ

ˇ2x
i�

� xI��1.x/
)

(2.87)

and

N
I;�
2;� .x/ D 1

� .� C 1/

� x

2

��

1�
�
2

h

.�; 2/

.�; 1/; .� C 1; 2/

ˇ

ˇ

ˇ

x2

4

i

: (2.88)

Proof We establish the convergence conditions of N I;˙
2;� .x/ analogously as previ-

ously in Theorem 2.15, being

ˇ

ˇN
I;˙
2;� .x/

ˇ

ˇ �
X

n�0

ˇ

ˇI�C2n.x/
ˇ

ˇ � 1p
2�

�e x

2

��X

n�0

1

.� C 2n/�C2nC 1
2

�e x

2

�2n
;

which converges for all x > 0.
As to (2.87), we use the elementary transformation

X

n�0
an D

X

n�0
a2n C

X

n�0
a2nC1 : (2.89)

Now, it is easy to see that N
I;˙
1;� .x/ D N

I;C
2;� .x/ ˙ N

I;C
2;�C1.x/. Summing these

expressions we get

N
I;C
2;� .x/ D 1

2

n

N
I;C
1;� .x/C N

I;�
1;� .x/

o

; (2.90)

so (2.87) follows from Theorem 2.15.
Next, by the identity [1, p. 377, Eq. (9.6.47)]

I�.x/ D 1

� .� C 1/

� x

2

��

0F1
h �
� C 1

ˇ

ˇ

ˇ

x2

4

i

; �� … N; (2.91)

the Bailey-transform technique in summing up double infinite series [11]

X

n;m�0
am;n D

X

n�0

n
X

mD0
am;n�m (2.92)
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and the transformation formula .m � n/Š.�m/n D .�1/nmŠ, we get

N
I;�
2;� .x/ D

� x

2

�� X

n;m�0

.�1/n
� .� C 2n C m C 1/mŠ

�

x2

4

�nCm

D 1

� .� C 1/

� x

2

�� X

m�0

1

.� C 1/m mŠ

�

x2

4

�m m
X

nD0

.�m/n.1/n
.� C m C 1/n nŠ

D 1

� .� C 1/

� x

2

�� X

m�0

1

.� C 1/m mŠ

�

x2

4

�m

2F1
h �m; 1
� C m C 1

ˇ

ˇ

ˇ 1
i

D 1

� .� C 1/

� x

2

�� X

m�0

.� C m/m
.� C 1/m .� C m C 1/m mŠ

�

x2

4

�m

;

where in the last equality the Chu–Vandermonde identity [227, p. 387, Eq. 15.4.24]
has been used. Now, with the help of the well-known identity .a/mCn D .a/m.aCm/n
we conclude (2.88). ut

Formula (2.88) can be also written in a slightly different form:

Corollary 2.2 (Jankov Maširević and Pogány [139]) For all minfx; �g > 0 there
holds

N
I;�
2;� .x/ D 1

� .� C 1/

� x

2

��
�

1F2
h �

2
�
2

C 1; � C 1

ˇ

ˇ

ˇ

x2

4

i

(2.93)

C x2

4.� C 1/.� C 2/
1F2

h �
2

C 1
�
2

C 2; � C 2

ˇ

ˇ

ˇ

x2

4

i

�

: (2.94)

Proof Transforming

h�
� .x/ WD � .� C 1/2�x��

N
I;�
2;� .x/

into

h�
� .x/ D

X

m�0

�

.� C 1/m .� C 2m/mŠ

 

x2

4

!m

C
X

m�0

m

.� C 1/m .� C 2m/mŠ

 

x2

4

!m

D
X

m�0

�

�
2

�

m

 

x2

4

!m

.� C 1/m

��

2
C 1

�

m
mŠ

C x2

8

X

n�0

� .� C 1/

 

x2

4

!n

�

1C �
2 C n

�

� .� C 2C n/ nŠ

D 1F2
h �

2
�
2 C 1; � C 1

ˇ

ˇ

ˇ

x2

4

i

C x2

4.� C 1/.� C 2/

X

n�0

�

�
2 C 1

�

n
�

�
2 C 2

�

n .� C 2/n nŠ

 

x2

4

!n

I

the stated formula follows. ut
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The next result is an interesting by-product of Theorem 2.16 and Corollary 2.2.
Namely equating the right-hand-side expressions in (2.88) and (2.93) we get

Corollary 2.3 (Jankov Maširević and Pogány [139]) For all minfx; �g > 0 there
holds

1�
�
2

h

.�; 2/

.�; 1/; .� C 1; 2/

ˇ

ˇ

ˇ

x2

4

i

D 1F2
h �

2
�
2

C 1; � C 1

ˇ

ˇ

ˇ

x2

4

i

C x2

4.� C 1/.� C 2/
1F2

h �
2

C 1
�
2

C 2; � C 2

ˇ

ˇ

ˇ

x2

4

i

:

Using (2.83) a double Neumann series result was given in [4]; in our setting:

X

n�0
N

I;�
2;knC1.x/ D 1

2
N

I;�
2;1 .x/C 1

4k

8

ˆ

ˆ

<

ˆ

ˆ

:

k�1
X

nD0
4n¤k; 3k

ex cos.2�n=k/ � 1
cos.2�n=k/

C Nx

9

>

>

=

>

>

;

; (2.95)

where N D 2 if k � 0 (mod 4), otherwise N D 0.

Corollary 2.4 (Jankov Maširević and Pogány [139]) For all x > 0 and k 2 N

there holds

X

n�0
N

I;�
2;knC1.x/ D x

8

˚

2I0.x/C �
�

I0.x/L1.x/� I1.x/L0.x/
��

C 1

4k

8

ˆ

ˆ

<

ˆ

ˆ

:

k�1
X

nD0
4n¤k; 3k

ex cos.2�n=k/ � 1
cos.2�n=k/

C Nx

9

>

>

=

>

>

;

;

where N D 2 k � 0 (mod 4), otherwise N D 0.

Proof From (2.88) and (2.95) we have

X

n�0
N

�
2;knC1.x/ D x

4
1�

�
2

h

.1; 2/

.1; 1/; .2; 2/

ˇ

ˇ

ˇ

x2

4

i

C 1

4k

8

ˆ

ˆ

<

ˆ

ˆ

:

k�1
X

nD0
4n¤k; 3k

ex cos.2�n=k/ � 1
cos.2�n=k/

C Nx

9

>

>

=

>

>

;

:

However, Corollary 2.3 enables to rewrite the Fox–Wright function as a weighted
sum of two hypergeometric 1F2 functions. Here � D 1, and having in mind the
formulae [113, 114] respectively

1F2
h 1

2
3
2
; 2

ˇ

ˇ

ˇ

x2

4

i

D 2I0.x/ � 2

x
I1.x/C � f I0.x/L1.x/ � I1.x/L0.x/g
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1F2
h 3

2
5
2
; 3

ˇ

ˇ

ˇ

x2

4

i

D �12
x3

f2xI0.x/� 4I1.x/C �x .I0.x/L1.x/ � I1.x/L0.x//g ;

after some routine calculation we arrive at the statement. ut
Ending this section, motivated by the summation [257, p. 694, Eq. (4)]

X

n�0

tn

nŠ
I�Cn.x/ D

�

2t

x
C 1

�� �
2

I�.
p

x2 C 2tx/; (2.96)

valid for all t; x which satisfy 2jtj < jxj, we present some associated closed form
result for the Neumann series

eN�.x/ D
X

n�0

t2nI�C2n.x/

.2n/Š
; t; x 2 R :

Theorem 2.17 (Jankov Maširević and Pogány [139]) For all �; t; x > 0 such that
2t < x we have

eN�.x/ D 1
2
x
�
2

n

.x C 2t/�
�
2 I�.

p

x2 C 2tx/C .x2 � 2tx/�
�
2 I�.

p
x2 � 2tx/

o

:

Proof Following the lines of previous theorems by the asymptotic behavior of the
modified Bessel function we can show that eN�.x/ converges for all minf�; xg > 0.

Using the identity (2.89) and repeating the proving procedure of (2.90) we infer

eN�.x/ D 1

2

X

n�0

tnI�Cn.x/

nŠ
C 1

2

X

n�0

.�t/nI�Cn.x/

nŠ

D 1

2

�

2t

x
C 1

�� �
2

I�.
p

x2 C 2tx/C 1

2

X

n�0

.�t/nI�Cn.x/

nŠ
;

where in the last equality (2.96) was used. By (2.91), (2.92) and .m � n/Š.�m/n
D .�1/nmŠ we get

X

n�0

.�t/nI�Cn.x/

nŠ
D
� x

2

�� X

n�0

1

� .� C n C 1/ nŠ

��tx

2

�n

0F1
h �
� C n C 1

ˇ

ˇ

ˇ

x2

4

i

D 1

� .� C 1/

� x

2

��X

n�0

1

.� C 1/n nŠ

�

� tx

2

�n n
X

mD0

.�n/m
mŠ

� x

2t

�m

D 1

� .� C 1/

� x

2

�� X

n�0

1

.� C 1/n nŠ

�

� tx

2

�n �

1 � x

2t

�n
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D 1

� .� C 1/

� x

2

��

0F1
h �
� C 1

ˇ

ˇ

ˇ

tx

2

� x

2t
� 1

� i

D x� .x2 � 2tx/�
�
2 I�.

p
x2 � 2tx/ ; (2.97)

which implies the asserted expression. ut
Remark 2.6 It is worth to mention that instead of the independently derived (2.97)
we can apply the formula [102, p. 414, Eq. (58.8.1)] .also see [1, p. 377, Eq. 9.6.51]/

X

n�0

cn

nŠ
I�Cn.x/ D w�� I�.wx/; 2c D x.w2 � 1/ ;

where I�.x/ D C1I�.x/ C C2ei��K�.x/ .C1;C2 arbitrary constants/ denotes the
general modified Bessel function, being K�.x/ the modified Bessel function of the
second kind of the order �. Moreover, setting t D x in (2.97) we get summation
formula

X

n�0

.�x/nI�Cn.x/

nŠ
D J�.x/;

compare [1, p. 377, Eq. 9.6.51] and [257, p. 694, Eq. (5)] for instance. �

2.7.2 Confluent Hypergeometric Functions
and Srivastava–Daoust Function

In this section we establish reduction formulae for the Horn’s ˚3 function and gen-
eralized Srivastava–Daoust FAWBIB0

CWDID0 function of two variables in some special cases
of their parameters by virtue of newly established summations from Theorems 2.15
and 2.16.

Theorem 2.18 (Jankov Maširević and Pogány [139]) For all x; � > 0 it is

˚3

�

1; � C 1I ˙ x

2
;

x2

4

�

D e˙x

1� �
2F2

h

�; � � 1
2

� C 1; 2� � 1

ˇ

ˇ

ˇ� 2x
i

� � .� C 1/

2.1� �/
�

2

x

��

.xI��1.x/˙ xI�.x// :

Proof Using the formula (2.91), by means of Theorem 2.15, we conclude

N
I;˙
1;� .x/ D 1

� .� C 1/

� x

2

�� X

n;m�0

.1/n

.� C 1/nCm nŠmŠ

�

˙ x

2

�n
�

x2

4

�m

D 1

� .� C 1/

� x

2

��

˚3

�

1; � C 1I ˙ x

2
;

x2

4

�

;

which completes the proof. ut
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Theorem 2.19 (Jankov Maširević and Pogány [139]) For all x; � > 0 we have

F0W1I01W0I0
�

— W
Œ� C 1 W 2; 1� W

Œ1 W 1�I
—I

—

—

ˇ

ˇ

ˇ

x2

4
;

x2

4



D 1

2.1� �/

��

ex
2F2

h

�; � � 1
2

� C 1; 2� � 1

ˇ

ˇ

ˇ� 2x
i

C e�x
2F2

h

�; � � 1
2

� C 1; 2� � 1

ˇ

ˇ

ˇ2x
i

�

� 2�� .� C 1/x1��I��1.x/


(2.98)

and

F0W1I01W0I0
h � W Œ1 W 1� I �
Œ� C 1 W 2; 1� W �I �

ˇ

ˇ

ˇ � x2

4
;

x2

4

i

D 1�
�
2

h

.�; 2/

.�; 1/; .� C 1; 2/

ˇ

ˇ

ˇ

x2

4

i

: (2.99)

Proof Bearing in mind again the hypergeometric representation of the modified
Bessel function identity (2.91) and the definition of Srivastava–Daoust function,
we can write

N
I;C
1;� .x/ D

� x

2

�� X

n;m�0

�

x2

4

�nCm

� .2n C m C � C 1/mŠ

D 1

� .� C 1/

� x

2

�� X

n;m�0

.1/n

�

x2

4

�nCm

.� C 1/2nCm nŠmŠ

D 1

� .� C 1/

� x

2

��

F0W1I01W0I0
�

— W
Œ� C 1 W 2; 1� W

Œ1 W 1�I
—I

—

—

ˇ

ˇ

ˇ

x2

4
;

x2

4



;

which, in combination with (2.87) gives the desired formula (2.98). Analogously,
using (2.88), we obtain (2.99). ut

Theorem 2.20 (Jankov Maširević and Pogány [139]) For all minfx; �g > 0 and
k 2 N there holds

F0W1I01W0I0
h� W Œ1 W 1� I �
Œ1 W k; 1� W �I �

ˇ

ˇ

ˇ

� x

2

�k
;

x2

4

i

D 1

2
I0.x/C 1

2k

k�1
X

nD0
ex cos.2�n=k/ : (2.100)

When k is odd, we have

F0W1I01W0I0
h� W Œ1 W 1� I �
Œ1 W k; 1� W �I �

ˇ

ˇ

ˇ �
� x

2

�k
;

x2

4

i

D 1

2
I0.x/C 1

2k

k�1
X

nD0
e�x cos.2�n=k/ : (2.101)
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Proof Following the same lines as in the proof of Theorem 2.19 we deduce that

N
I;C

k;0 .x/ D
X

n;m�0

.1/n

.1/knCm nŠmŠ

� x

2

�knC2m

D F0W1I01W0I0
h� W Œ1 W 1� I �
Œ1 W k; 1� W �I �

ˇ

ˇ

ˇ

� x

2

�k
;

x2

4

i

;

which, in combination with (2.83) gives the desired formula (2.100). Analogously,
using the following result by Al-Jarrah et al. [4, p. 3, Corollary 2, Eq. (17)]

X

n�0
.�/nInk.x/ D 1

2
I0.x/C 1

2k

k�1
X

nD0
e�x cos.2�n=k/ ; (2.102)

valid for odd positive integer numbers k, we deduce (2.101). ut

2.8 Neumann Series Regarding the �02
n .a/ Distribution

As we already stated, the probability density function of the non-central �2 random
variable is given in terms of modified Bessel function of the first kind (2.85).

Considering the definition of the generalized Marcum Q-function of order � > 0
defined by Marcum [181], András et al. [6]

Q�.a; b/ D 1

a��1

Z 1

b
t�e� t2Ca2

2 I��1.at/ dt;

where a; � > 0 and b � 0 it is obvious that the explicit formula for the cumulative
distribution function of the non-central �2 random variable can be represented in
terms of generalized Marcum Q-function as

Fn;a.x/ D 1� Q n
2
.
p

a;
p

x/; x > 0: (2.103)

Such cumulative distribution function has been widely considered in mathematical
literature (see e.g. Johnson et al. [142], Patnaik [232], Pearson [233], Sankaran
[274], Wilson and Hilfetry [337]) and one of the recently derived formulae for such
cumulative distribution function, which are claimed to have some computational
advantages, was given in 1993 by Temme [309].

The non-central �2 distribution is frequently used in communication theory and
in that context it is called the generalized Marcum Q-function and the non-centrality
parameter is interpreted as a signal-to-noise ratio [142].
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Motivated by closed-form formula for the generalized Marcum Q-function,
derived by Brychkov [43, p. 178, Eq. (7)]

QnC 1
2
.a; b/ D 1

2

�

Erfc

�

b � ap
2

�

C Erfc

�

b C ap
2

��

C e� a2Cb2

2

n
X

mD1

�

b

a

�m� 1
2

Im� 1
2
.ab/;

where Erfc is the complementary error function, which also implies new formula
for cumulative distribution function (2.103) in the case of odd n 2 N, our main aim
is to derive new closed form formula for such cumulative distribution function in
the case of even number of the degrees of freedom. In that case, having in mind that
there holds [203]

Qn.a; b/ D 1 � Q1�n.b; a/; n 2 Z

and [43, p. 178, Eq. (3)]

Q��n.a; b/ D Q�.a; b/�
�

b

a

��

e� a2Cb2

2

n
X

mD1

�a

b

�m
I��m.ab/; � > 0

it follows from (2.103)

F2n;a.x/ D Q1.
p

x;
p

a/�
r

a

x
e� aCx

2

n
X

mD1

�r

x

a

�m

I1�m.
p

ax/

D e� aCx
2

0

@

X

n�0

�r

x

a

�n

In.
p

ax/ �
r

a

x

n
X

mD1

�r

x

a

�m

Im�1.
p

ax/

1

A ;

where the last equality is a direct consequence of a parity of modified Bessel
function of the first kind i.e. I�n.x/ D In.x/, when n 2 Z and the relation between
generalized Marcum Q-function (which is known in literature, for � D 1 as the
(first order) Marcum Q-function) and a Neumann series with members containing
modified Bessel functions of the first kind (see e.g. [123]):

Qm.a; b/ D e� a2Cb2

2

X

n�1�m

�a

b

�n
In.ab/; m 2 Z:

So, the problem of deriving new closed form expression for cumulative distribution
function F2n;a is equivalent to a problem of deriving a closed-form expression for a
Neumann series given above.
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Below, we will need the definition of the so-called incomplete MacDonald
function [2, p. 26, Eq. (1.30)]

K�.w; z/ D
p
�

�
�

� C 1
2

�

� z

2

��
Z w

0

e�z cosh t sinh2� t dt; <.�/ > � 1
2
;

which reduces to the MacDonald function K� when w 7! 1 and <.z/ > 0.
Now, we are ready to state and prove our first main result in this section.

Theorem 2.21 (Jankov Maširević [138]) For all minfa; xg > 0 there holds

X

n�0

�r

x

a

�n

In.
p

ax/ D e
aCx
2

�

1 �
p

ax

2
I1.

p
ax/

�

K0.
p

ax/� K0

�

log

r
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a
;
p

ax

��

Ca I0.
p

ax/
@

@a

�

K0.
p

ax/ � K0

�

log

r

x

a
;
p

ax

��

:

Proof Considering the identity [6, p. 63]

Q�.
p
2a;

p
2b/ D 1 � b�e�a

X

n�0

.�b/nL.��1/
n .a/

� .� C n C 1/
;

where [6, p. 62]

L.˛/n .x/ D
n
X

kD0

.�x/k� .n C ˛ C 1/

� .k C ˛ C 1/ � .n � k C 1/ kŠ

is the generalized Laguerre polynomial of degree n 2 N and order ˛ > �1 we get

X

n�0

�r

x

a

�n

In.
p

ax/ D e
aCx
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2
e

a
2

X

n�0

��a
2

�n

n C 1

n
X

kD0

��x
2

�k

� .n � k C 1/ kŠ kŠ
:

Now, using the Bailey transform technique (2.92) and the definition of the Kampé
de Fériet function we arrive at

X
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�r

x

a

�n

In.
p

ax/ D e
aCx
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2
e

a
2

X
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h
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2 W 1I �

ˇ

ˇ

ˇ
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D e
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2
e

a
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�a2x
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.1/2n.2/2n
0F1
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2C 2n

ˇ

ˇ

ˇ
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4

i

1F1
h

1C n
2C 2n

ˇ

ˇ

ˇ� a

2

i

;

(2.104)
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where in the last equality we used the transformation [290, p. 337, Eq. (242)]

F1WrIu
1WsIv

h

˛ W .ar/I .cu/

� W .bs/I .dv/
ˇ

ˇ

ˇ x; y
i

D
X

n�0
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r
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jD1
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u
Q

jD1
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.� C n � 1/n.�/2n

s
Q

jD1
.bj/n

v
Q

jD1
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.xy/n

nŠ


 rC1FsC1
h

.ar/C n; ˛ C n
.bs/C n; � C 2n

ˇ

ˇ

ˇ x
i


 uC1FvC1
h

.cu/C n; ˛ C n
.dv/C n; � C 2n

ˇ

ˇ

ˇ y
i

:

Further, by the identity In.i z/ D inJn.z/, formula [1, p. 377, Eq. (9.6.47)]

I�.x/ D 1

� .� C 1/

� x

2

��

0F1
h �
� C 1

ˇ

ˇ

ˇ

x2

4

i

; �� … N (2.105)

and the integral representation [116]

1F1.aI bI z/ D 1

� .a/

Z 1

0

e�tta�1
0F1

h�
b

ˇ

ˇ

ˇzt
i

dt; <.a/ > 0

we get
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p

ax/ D e
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x
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a
2
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n�0
.�1/n.2n C 1/
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0

e�t

p
t
I2nC1.

p
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p
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D e
aCx
2 � e

a
2

 

p
ax I1.

p
ax/

Z 1

0

e�tJ0.
p
2at/

x C 2t
dt

C p
2a I0.

p
ax/

Z 1

0

e�t
p

t J1.
p
2at/

x C 2t
dt

!

; (2.106)

where we also used the summation formula [102, p. 396, Eq. (57.18.19)]

X

n�0
.2n C 1/J2nC1.z/J2nC1.t/ D zt

2.z2 � t2/
.zJ1.z/J0.t/ � tJ0.z/J1.t//
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with an appropriate substitution z 7! i
p

ax; t 7! p
2at in order to get the last

expression. Finally, having in mind that [118] J0
0.z/ D �J1.z/ and also using the

identity [2, p. 154, Eq. (4.17)]

Z 1

0

e�pt2J0.bt/

t2 C a
t dt D eap

2

�

K0.
p

a b/� K0

�

log
2p

p
a

b
;
p

a b

��

;

where minfa; b; pg > 0, the desired formula immediately follows. ut
In order to state and prove the second set of results in this section we introduce

the generalized incomplete Gamma function [321, p. 4107, Eq. (1)]

� .˛; xI b/ D
Z 1

x
t˛�1e�t� b

t dt;

where ˛ 2 R, x; b � 0, but not both x D b D 0 if ˛ � 0, defined by Chaudhry
and Zubair [49] in order to present closed-form solutions to several problems in heat
conduction and the leaky aquifer function

W .x; y/ D
Z 1

1

e�xt� y
t

t
dt;

valid for x; y � 0 and introduced by Hantush and Jacob [103] who showed that
water levels in pumped aquifer systems with finite transmissivity and leakage could
be analyzed in terms of such integral, consult also [253].

Corollary 2.5 (Jankov Maširević [138]) For all minfa; xg > 0 there holds
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(2.107)
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(2.108)
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:

Proof Using the definition of the Bessel function of the first kind (1.19) and the
integral representation of the incomplete Gamma function [78, p. 137]

Z 1

0

e�tt�a

x C t
dt D � .1 � a/ � .a; x/

xa
ex
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we get

Z 1

0

e�tJ0.
p
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x C 2t
dt D 1

2

X

n�0

.�1/n
nŠ nŠ
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:

Now, from the identity [49, p. 9, Eq. (66)]

� .˛; xI b/ D
X

n�0

.�b/n

nŠ
� .˛ � n; x/;

and (2.106) the formula (2.107) immediately follows. Further, using the obvious
connection between leaky aquifer function and generalized incomplete Gamma
function W .x; y/ D � .0; xI xy/ we deduce (2.108). ut

The results stated in the next corollary are direct consequence of the closed-form
summation formulae stated in Corollary 2.5 and the substitution a 7! �a:

Corollary 2.6 For all minf�a; xg > 0 there holds

X

n�0

�

�
r

x

a

�n

Jn.
p

ax/ D e
x�a
2

�

1C
p

ax

2
J1.

p
ax/�

�

0;
x

2
I �ax

4

�

�aJ0.
p

ax/
@

@a

�

�
�

0;
x

2
I �ax

4

��



D e
x�a
2

�

1C
p

ax

2
J1.

p
ax/W

� x

2
;

�a

2

�

�aJ0.
p

ax/
@

@a

�

W
� x

2
;

�a

2

��



:

2.9 Connecting First and Second Type Neumann Series

In this section we establish connection formulae between first and second type Neu-
mann series. After that, closed-form expressions for some second type Neumann
series will be presented.

Theorem 2.22 For all minfa; xg > 0 the following connection formulae hold

X

n�0
.�1/n.2n C 1/I2nC1.

p
ax/InC 1
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(2.109)
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and
X
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0

@e
aCx
2 �

X

n�0

�r

x

a

�n

In.
p

ax/

1

A :

Proof Applying the formulae (2.105) and [227, p. 255, Eq. 10.39.5]

I�.x/ D ex

� .� C 1/

� x

2

��

1F1.� C 1

2
; 2� C 1I �2x/; �� … N;

to equality (2.104) derived in the proof of Theorem 2.21 and also the identity

.a/2n D 22n
�a

2

�

n

�

a C 1

2

�

n

;

we immediately get

X

n�0

�r

x

a

�n

In.
p

ax/ D e
aCx
2 �

r

2�

x
e

a
4

X

n�0
.�1/n.2n C 1/I2nC1.

p
ax/InC 1

2

�a

4

�

;

which is exactly equal to (2.109). Further, using the identity

2�I�.x/ D x .I��1.x/� I�C1.x//

Eq. (2.110) immediately follows. ut
Remark 2.7 Combination of results achieved in Theorem 2.21 and Corollary 2.5
with those derived in Theorem 2.22 yields the closed-form expressions for the
second type Neumann series (2.109) and (2.110). �

Ending this section, let us derive a generalization of the following formulae [257,
p. 665, Eq. 5.7.11.8]

X

n�1
.˙1/nJnC�.x/Jn��.x/ D 1

2�

�

��1 sin.��/

�4� sin.��/s�1;2�.2x/

	

� 1

2
J�.x/J��.x/

and [257, p. 666, Eqs. 20–21]

X

n�0
.˙1/nJ2nC�.x/J2n��.x/ D 1

4��
sin.��/

�

1

0

	

� �

�
sin.��/

�

s�1;2�.2x/

2s�1;2�.
p
2x/

	

C 1

2
J�.x/J��.x/:

First, we derive new summation formulae for the second type Neumann series of I� .
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Theorem 2.23 For all b 2 R, 2a 2 N and x > 0 the following summation formulae
hold

X

n�0
IanCb.x/Ian�b.x/ D 1

2
Ib.x/I�b.x/C 1

4a

2a�1
X

nD0

�

1
eF2
h

1

1C b; 1 � b

ˇ

ˇ

ˇx2 cos2
��n

a

� i

˙ x cos
��n

a

�

1
eF2
h

1
3
2

C b; 3
2

� b

ˇ

ˇ

ˇx2 cos2
��n

a

� i�

:

(2.111)

Proof It is not hard to show that our series absolutely converges for all x > 0, using
the same proving procedure as in Theorem 2.15.

Now, from the integral representation [227, p. 253, Eq. 10.32.15]

I�.x/I�.x/ D 2

�

Z �
2

0

I�C�.2x cos t/ cos ..� � �/t/ dt;

valid for <.�C �/ > �1 and with the help of the formula (2.83) we infer that

X

n�0
IanCb.x/Ian�b.x/ D 2

�

Z �
2

0

cos.2bt/
X

n�0
I2an.2x cos t/ dt

D 1

�

Z �
2

0

cos.2bt/

 

I0.2x cos t/C 1

2a

2a�1
X

nD0
e2x cos.�n=a/ cos t

!

dt

D 1

2
Ib.x/I�b.x/C 1

2a�

2a�1
X

nD0

Z �
2

0

cos.2bt/ e2x cos.�n=a/ cos t dt:

(2.112)

To solve this integral we apply [96, p. 108, Eq. 9c)]

Z �
2

0

cos��1 t cos.ˇt/ dt D �� .�/

2��
�

�CˇC1
2

�

�
�

��ˇC1
2

� ; � > 0:

Expanding the exponential term in our main integral into Maclaurin series, by the
legitimate change of order of summation and integration, we get

Z �
2

0

e˛ cos t cos.ˇt/ dt D
X

n�0

˛n

nŠ

Z �
2

0

cosn t cos.ˇt/ dt

D �

2

X

n�0

˛n

2n�
�

1C ˇCn
2

�

�
�

1C �ˇCn
2

�
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D �

2

 

X

n�0

�

˛
2

�2n
.1/n

�
�

1C ˇ

2
C n

�

�
�

1 � ˇ

2
C n

�

nŠ

C
X

n�0

�

˛
2

�2nC1
.1/n

�
�

3Cˇ
2

C n
�

�
�

3�ˇ
2

C n
�

nŠ

!

D �

2

�

1
eF2
h

1

1C ˇ

2
; 1 � ˇ

2

ˇ

ˇ

ˇ

˛2

4

i

C ˛

2
1
eF2
h

1
3Cˇ
2
;
3�ˇ
2

ˇ

ˇ

ˇ

˛2

4

i

�

;

where (2.89) implicates the third equality. Substituting ˛ D 2x cos
�

�n
a

�

and ˇ D 2b
in the previous expression from (2.112) we obtain the desired formula. Another
formula follows analogously, using (2.102) instead of (2.83). ut

Substituting i x instead of x in (2.111), we immediately arrive at the following
particular result.

Corollary 2.7 For all a; b 2 N and x > 0 the following summation formulae hold

X

n�0
.�1/anJanCb.x/Jan�b.x/

D 1

2
Jb.x/J�b.x/C 1

4a

2a�1
X

nD0

�

1
eF2
h

1

1C b; 1� b

ˇ

ˇ

ˇ� x2 cos2
��n

a

� i

˙i x cos
��n

a

�

1
eF2
h

1
3
2

C b; 3
2

� b

ˇ

ˇ

ˇ� x2 cos2
��n

a

� i

�

:

Remark 2.8 It should be mention that Newberger derived a set of summation results
close to second type Neumann–Bessel series when the summation set is Z, see
[210]. �



Chapter 3
Kapteyn Series

Abstract In this chapter we deduce several results for Kapteyn series of Bessel and
Kummer hypergeometric functions. We present some integral representations and
results on coefficients by using the Euler-Maclaurin summation technique and the
differential equation technique.

Series of the type

K�.z/ WD
X

n�1
˛n J�Cn ..� C n/z/ ; z 2 C; (3.1)

where �; ˛n are constants and J� stands for the Bessel function of the first kind of
order �; are called Kapteyn–Bessel series of the first type. Willem Kapteyn was the
first who investigated such series in 1893, in his important memoir [145]. Kapteyn
series have been considered in a number of mathematical physics problems. For
example, the solution of the famous Kepler equation [73, 183, 238]

E � � sin E D M;

where M 2 .0; �/; � 2 .0; 1�, can be expressed via a Kapteyn series of the first type:

E D M C 2
X

n�1

sin.nM/

n
Jn.n�/ :

There is also an integral expression for E obtained in [81, p. 133]. Kepler’s problem
was for the first time analytically solved by Lagrange [166], and the solution was
rediscovered half a century later by Bessel in [37], in which he introduced the
famous functions named after him. See also [57] for more details.
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There are also Kapteyn series of the second type, studied in detail e.g. by Nielsen
[217]. Such series are defined by terms consisting of a product of two Bessel
functions of the first kind:

X

n�1
ˇnJ�Cn

��

�C �

2
C n

�

z

�

J�Cn

��

�C �

2
C n

�

z

�

; z; �; � 2 C:

Summations for second type Kapteyn series were obtained in [168, 169, 171]. More
about Kapteyn series of the first and second type can be found in [306]. Also, in
[182, 228, 229] we can find some asymptotic formulae and estimates for sums of
special kind of Kapteyn series.

The importance of Kapteyn series extends from pulsar physics [168] through
radiation from rings of discrete charges [169, 312], electromagnetic radiation [280],
quantum modulated systems [54, 171], traffic queueing problems [67, 68] and
plasma physics problems in ambient magnetic fields [170, 281]. For more details
see also the paper [307].

One of the most representative result concerning this type of series is Kapteyn’s
own expansion [145, p. 103, Eq. (17)] of integral powers zn:

� z

2

�n D n2
X

m�1

.n C m � 1/Š
.n C 2m/nC1 mŠ

JnC2m
˚

.n C 2m/z
�

; z 2 K (3.2)

where

K WD
n

z 2 CW
ˇ

ˇ

ˇ

z exp
p
1 � z2

1C p
1 � z2

ˇ

ˇ

ˇ < 1
o

:

A few years later, in 1906 (see [146]) Kapteyn obtained a generalization of the
previous result, i.e. he concluded that it is possible to expand an arbitrary analytic
function into a series of Bessel functions of the first kind (3.1), see for example
[69, 146, 333]. Namely, let f be a function which is analytic throughout the region

Da D
(

z 2 CW˝.z/ D
ˇ

ˇ

ˇ

ˇ

ˇ

z expfp1 � z2g
1C p

1 � z2

ˇ

ˇ

ˇ

ˇ

ˇ

� a

)

;

with a < 1. Then,

f .z/ D ˛0 C 2
X

n�1
˛nJn.nz/; z 2 Da;

where

˛n D 1

2�i

I

�n.z/f .z/dz
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and the path of integration is the curve on which ˝.z/ D a. Here the function�n is
the so-called Kapteyn polynomial defined by

�0.z/ D 1

z
; �n.z/ D 1

4

Œ n
2 �
X

kD0

.n � 2k/2.n � k � 1/Š
kŠ

�nz

2

�2k�n
; n 2 N :

Before we state our results on Kapteyn series let us first consider the results given
by Exton [79] which are the starting point for our first set of main results.

By certain formal manipulations Exton [79, Eqs. (1.1), (4.1)] generalize (3.2),
getting

� .a1 C �
2
/ � � �� .an C �

2
/

� .b1 C �
2
/ � � �� .br C �

2
/

� z

2

�� D
X

k�0

�2 � .� C k/

.� C 2k/�C1 kŠ
nX�C2k

h

.a/

.b/

ˇ

ˇ

ˇ .� C 2k/z
i

(3.3)

where

nX�C2k

h

.a/

.b/

ˇ

ˇ

ˇ z
i

WD nX�C2k

ha1; � � � ; an

b1; � � � ; bn

ˇ

ˇ

ˇ z
i

�
X

k�0

.�1/k
� z

2

��C2k

kŠ� .� C 1C k/

n
Y

rD1

� .ar C �
2

C k/

� .br C �=2C k/
: (3.4)

Here the case n D 0 corresponds to (3.2) in which J� � 0X�. Then Exton examined
the convergence of the series on the right of (3.4) but only for integer values of the
order parameter � in nX�, for real z using Hansen’s bounding inequalities [333,
p. 31]1

j J0.z/j � 1; j Jr.z/j � 1p
2
; r 2 N; z 2 R : (3.5)

Hence, his conclusion was that the series in (3.3) converges absolutely and
uniformly for all real z and for <.d/ < 1, where

d WD
n
X

jD1
.aj � bj/ :

Using more sophisticated bounding inequalities than (3.5), precisely the ones by
Landau [167] and then Olenko’s [226], we will show that the range of d can be
extended to <.d/ < 4

3
in the case of absolute and uniform convergence and this

1In fact Exton applied the inequality JNC2k

˚

.N C 2k/z
� � 1; N C 2k 2 N0 such that didn’t appear

in [333], but which one readily follows by Hansen’s bounds (3.5).
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value is optimal when z 2 R. Those results, which concern the paper by Pogány
[242], will be presented in the next section.

In order to state and prove the second set of results in this chapter, let us mention
the well-known fact that the series K�.z/ is convergent and represents an analytic
function (see [333, p. 559]) throughout the domain

˝.z/ < lim inf
n!1 j˛nj� 1

�Cn :

But, when z D x 2 R, the convergence region depends on the nature of the sequence
.˛n/n�1. This question will be tested by using Landau’s bounds (1.20), (1.21) for J�
in the proof of Theorem 3.2, in Sect. 3.2 which also contains a new double definite
integral representation of K� .

Motivated by the above applications in mathematical physics, the main objective
of Sect. 3.3 is to establish two different types integral representations for the
Kapteyn series of the first type. The first one is a definite integral representation,
while the second is an indefinite integral representation formula. Also, in Sect. 3.4
we establish an integral representation for the special kind of Kapteyn series which
generalize an integral representation given in Sect. 3.2. Finally, the last section is
devoted to new results concerning coefficients of Kapteyn series.

Let us mention, that our main findings are associated with the published papers
[23, 131] and [133].

3.1 On Convergence of Generalized Kapteyn Expansion

In the sequel, we begin with Exton’s research procedure steps, specifying here and
in what follows the parameter sequences .a/ WD .a1; � � � ; an/; .b/ WD .b1; � � � ; bn/

by assuming

� .<.aj/C h/; �.<.bj/C k/ 62 N0 j D 1; n; h; k 2 N0 : (3.6)

Recalling the property (1.4) of the Gamma function:

� .z/ D p
2� zz� 1

2 e�z
�

1C O.z�1/
� j arg zj < �; jzj ! 1;

we obviously have for k enough large

nX�C2k

h

.a/

.b/

ˇ

ˇ

ˇ .� C 2k/z
i

� kd J�C2k
˚

.� C 2k/z
�

:

Therefore, we examine the convergence of auxiliary Kapteyn-series

X

k�0

� .� C k/ kd

.� C 2k/�C1 kŠ
J�C2k

˚

.� C 2k/z
�

: (3.7)
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We already introduced the Landau’s bounds (1.20) and (1.21) for the Bessel function
of the first kind J�.x/ with respect to � and x. The bounds are uniform, (1.20) for
x 2 R, and (1.21) for � 2 RC, and the exponents 1

3
are the best possible [167]. Thus,

for

ˇ

ˇ

ˇ

X

k�0

� .� C k/ kd

.� C 2k/�C1 kŠ
J�C2k

˚

.� C 2k/z
�

ˇ

ˇ

ˇ �
X

k�0

� .� C k/ k<.d/

.� C 2k/�C1 kŠ

ˇ

ˇ J�C2k
˚

.� C 2k/z
�ˇ

ˇ :

Hence, by means of (1.20) we conclude that the absolute convergence (and
consequently the uniform as well!) of (3.7) follows from the convergence of the
depending M-series (Weierstraß):

X

k�0

� .� C k/ k<.d/

.� C 2k/�C 4
3 kŠ

�

D
X

k�0
uk

�

: (3.8)

But, since

ukC1
uk

D 1 �
7
3

� <.d/
k

C ��;d.k/

k2
;

where

��;d.k/ WD � � 1

3
C
�

<.d/� 7
3

�2 C O.k�1/ ;

is bounded in k 2 N, by the Gaußian convergence-test [154, §172, p. 297], the
series (3.8) converges for 7

3
� <.d/ > 1 and diverges elsewhere. That means, the

convergence of (3.3) is a fortiori established with <.d/ < 4
3
. Finally, being Landau’s

bound (1.20) uniform, the constant 4
3

is optimal for all real z-values so, cannot be
improved. The estimate (1.21) gives the same result.

Olenko [226, Theorem 1] has established the following sharp upper bound:

sup
x�0

p
x j J�.x/j � bL

s

�
1
3 C ˛1

�
1
3

C 3˛21
10�

D ��.˛1/; � > 0 ; (3.9)

where ˛1 is the smallest positive zero of the Airy-function Ai.x/ and bL is the
Landau’s constant in (1.20), see also [226, §3]. With the aid of (3.9) it is obvious
that

��.˛1/ � �
1
6 � ! 1 ;
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so, for some absolute constant C� we easily deduce that, for fixed x

X

k�0

� .� C k/ k<.d/

.� C 2k/�C1 kŠ

ˇ

ˇ J�C2k
˚

.� C 2k/z
�ˇ

ˇ

� 1p
x

X

k�0

� .� C k/ k<.d/

.� C 2k/�C 3
2 kŠ

sup
x>0

p

.� C 2k/x
ˇ

ˇ J�C2k
˚

.� C 2k/z
�ˇ

ˇ

� 1p
x

X

k�0

� .� C k/ k<.d/��C2k.˛1/

.� C 2k/�C 3
2 kŠ

� C�p
x

X

k�0

� .� C k/ k<.d/

.� C 2k/�C 4
3 kŠ

:

The series in the last expression we recognize as
P

k�0 uk, considered earlier in
display (3.8). Collecting all these considerations, we prove the following

Theorem 3.1 (Pogány [242]) Consider Extons’s Kapteyn-type expansion

� .a1 C �
2
/ � � �� .an C �

2
/

� .b1 C �
2
/ � � �� .br C �

2
/

� z

2

�� D
X

k�0

�2 � .� C k/

.� C 2k/�C1 kŠ
nX�C2k

h

.a/

.b/

ˇ

ˇ

ˇ .� C 2k/z
i

;

where

nX�C2k

h

.a/

.b/

ˇ

ˇ

ˇ z
i

D
X

k�0

.�1/k
� z

2

��C2k

kŠ� .� C 1C k/

n
Y

rD1

� .ar C �
2

C k/

� .br C �
2

C k/
; � > 0

and the sequences .a/; .b/ satisfy (3.6). Then the series (3.3) converges absolutely
and uniformly for all z 2 R, when <.d/ < 4

3
and the bound 4

3
is sharp.

Remark 3.1 Exton pointed out (hypergeometric display) [79, Eq. (1.2)] that

nX�

h

.a/

.b/

ˇ

ˇ

ˇ z
i

D
 

n
Y

rD1

� .ar C �
2

C k/

� .br C �
2

C k/

!

� z

2

��

� .� C 1/
nFnC1

h

.a/n C �
2

.b/n C �
2
; � C 1

ˇ

ˇ

ˇ � z2

4

i

D
� z

2

��

n�nC1
h

..a/n C �
2
; 1/

..b/n C �
2
; 1/; .� C 1; 1/

ˇ

ˇ

ˇ � z2

4

i

;

where .u/n C v is a shorthand for the sequence of parameters u1 C v; � � � ; un C v,
while nFnC1Œ�� is the generalized hypergeometric and n�nC1 the Fox–Wright Psi
function, both with n numerator and n C 1 denominator parameters. Therefore the
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Kapteyn-type expansions and Theorem 3.1 can be translated into hypergeometric
framework too. The case n D 0 corresponds to well-known result

0X�


 � ˇ

ˇz
� D J�.z/ D .z=2/�

� .� C 1/
0F1

h �
� C 1

ˇ

ˇ

ˇ � z2

4

i

:

For a comprehensive treatment of generalized hypergeometric functions the reader
can consult the classical monographs [185, 294]. �

3.2 Integral Representation of Kapteyn Series

In this section our aim is to deduce the double definite integral representation of
the Kapteyn series K�.z/. We shall replace z 2 C with x > 0 and assume that the
behavior of .˛n/n�1 ensures the convergence of the series (3.1) over a proper subset
of RC.

Theorem 3.2 (Baricz et al. [23]) Let ˛ 2 C1.RC/, ˛jN D .˛n/n�1 and assume that
P

n�1
n� 1

3 ˛n < 1. Then, for all 2� > �3 and

x 2
�

0; 2min

�

1; e�1� lim sup
n!1

j˛nj 1n ��1
	�

DW I˛

we have the integral representation

K�.x/ D �
Z 1

1C�

Z Œu���C�

�

@

@u

�

u�u �
�

u C 1
2

�

Ju
�

u x
�

�

ds

 

ss ˛.s � �/
� .s C 1

2
/

!

du ds :

(3.10)

Proof Let us first establish the convergence conditions for the Kapteyn series of
the first type K�.x/. For this purpose we use Landau’s bounds (1.20), (1.21) for the
first kind Bessel function introduced in Chap. 1. It is easy to see that there holds the
estimate

jK�.x/j � max

�

bL;
cL

x
1
3

	

X

n�1

j˛nj
.n C �/

1
3

;

and thus the series (3.1) converges for all x > 0 when
P

n�1 n� 1
3 ˛n absolutely

converges.
Now, recall the following integral representation for the Bessel function [93,

p. 902, 8.411, Eq. (10)]

J�.z/ D .z=2/�p
� � .� C 1

2
/

Z 1

�1
eizt.1 � t2/�� 1

2 dt ; z 2 C; <.�/ > � 1
2
; (3.11)
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and thus, having in mind the definition of K�.x/ in what follows we suppose that
� > � 3

2
. Replacing (3.11) into (3.1) we have

K�.x/ D
r

x

2�

Z 1

�1
ei�xt

�

x.1 � t2/

2

��� 1
2

D˛.t/ dt; x > 0; (3.12)

where D˛.t/ is the Dirichlet series

D˛.t/ WD
X

n�1

˛n.� C n/�Cn

� .n C � C 1
2
/

exp

�

�n log
2

eixtx.1 � t2/

�

: (3.13)

For the convergence of (3.13) we find that the related radius of convergence equals

	�1
K D e lim sup

n!1
j˛nj 1n :

So, the convergence domain of D˛.t/ is x 2 .0; 2	K/. Moreover, the Dirichlet series’
parameter needs to have positive real part [147, 249], i.e.

<
�

log
2

eitxx.1 � t2/

�

D ln
2

x.1 � t2/
> log

2

x
> 0; jtj < 1 ;

and hence the additional convergence range is x 2 .0; 2/. Collecting all these
estimates, we deduce that the asserted integral expression exists for x 2 I˛:

Expressing (3.13) first by virtue of (1.15) as the Laplace integral, then using the
Euler–Maclaurin formula (1.9), we get

D˛.t/ D log
2

eixtx.1 � t2/

Z 1

0

�

eixtx.1 � t2/

2

�u Œu�
X

nD1

˛n.� C n/�Cn

� .� C n C 1
2
/

du

D �
Z 1

0

Z Œu�

0

�

eixtx.1 � t2/

2

�u

log
eixtx.1 � t2/

2
ds

 

˛.s/.� C s/�Cs

� .� C s C 1
2
/

!

du ds :

(3.14)

Combination of (3.12) and (3.14) yields

K�.x/ D �
r

x

2�

Z 1

0

Z Œu�

0

ds

 

˛.s/.� C s/�Cs

� .� C s C 1
2
/

!



�Z 1

�1
eix.�Cu/t

�x.1 � t2/

2

��Cu� 1
2

log
eixtx.1 � t2/

2
dt

�

du ds :

(3.15)
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Denoting

Jx.u/ WD
Z 1

�1
ei.�Cu/xt

�

x.1 � t2/

2

��Cu� 1
2

log
eixtx.1 � t2/

2
dt ;

we have

Z

Jx.u/ du D
r

2�

x

� .� C u C 1
2
/

.� C u/�Cu
J�Cu ..� C u/x/ ;

that is

Jx.u/ D
r

2�

x

@

@u

 

� .� C u C 1
2
/

.� C u/�Cu
J�Cu ..� C u/x/

!

: (3.16)

Now, by virtue of (3.15) and (3.16) we conclude that

K�.x/D�
Z 1

1

Z Œu�

0

@

@u

 

� .� C u C 1
2
/

.� C u/�Cu
J�Cu

�

.� C u/x
�

!

ds

 

˛.s/.� C s/.�Cs/

� .� C s C 1
2
/

!

duds;

and the change of variables � C t 7! t; t 2 fu; sg completes the proof of (3.10). ut

3.3 Another Integral Form of Kapteyn Series Through
Bessel Differential Equation

In the following, we deduce another integral representation for the Kapteyn
series (3.1), by using the already mentioned fact (2.20) that J�Cn satisfies

x2J00
nC�.x/C xJ0

nC�.x/C .x2 � .n C �/2/JnC�.x/ D 0:

Now, taking x 7! .� C n/x we obtain

x2.� C n/2J00
�Cn ..� C n/x/C x.� C n/J0

�Cn ..� C n/x/ (3.17)

C .� C n/2.x2 � 1/J�Cn ..� C n/x/ D 0 :

Multiplying (3.17) by ˛n, then summing up that expression for n 2 N we arrive at

x2K00
� .x/C xK0

�.x/C .x2 � �2/K�.x/

D
X

n�1

�

x2 � �2 C .1 � x2/.� C n/2
�

˛nJnC�
�

.� C n/x
� DW L�.x/I (3.18)
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the right-hand side expression L�.x/ defines the Kapteyn series of Bessel functions
associated with K�.x/.

Our main results in this section follows.

Theorem 3.3 (Baricz et al. [23]) For all � > � 3
2

the particular solution of the
nonhomogeneous Bessel-type differential equation

x2y00 C xy0 C .x2 � �2/y D L�.x/ ; (3.19)

with nonhomogeneous part (3.18), represents a Kapteyn series y D K�.x/ of order
�. Moreover, let ˛ 2 C1.RC/, ˛jN D .˛n/n�1 and assume that series

P

n�1 n
5
3 ˛n

absolutely converges. Then, for all x 2 I˛ we have the integral representation

L�.x/ D �
Z 1

1C�

Z Œu���C�

�

@

@u

�

u�u � .u C 1
2
/ Ju.u x/

�


 ds

 

ss
�

.1 � x2/s2 C x2 � �2
�

˛.s � �/

� .s C 1
2
/

!

du ds : (3.20)

Proof Equation (3.19) was established already in the beginning of this section.
Further, since the associated Kapteyn series L�.x/ is a linear combination of two
Kapteyn-series, reads as follows

L�.x/ D .x2 � �2/K�.x/C .1 � x2/
X

n�1
.� C n/2˛nJ�Cn

�

.� C n/x
�

;

the uniform convergence of the second series can be easily recognized (by Landau’s
bounds) to be such that

P

n�1
n
5
3 j˛nj < 1. Making use of Theorem 3.2 with

˛n 7! �

.1 � x2/.� C n/2 C x2 � �2/˛n;

we get the statement, the x-range for the integral expression (3.20) remains
unchanged. ut

Below, we shall need the Bessel functions of the second kind of order � (or
MacDonald functions) Y� which are defined by Eq. (2.15), in Chap. 2:

Y�.x/ D cosec.��/ . J�.x/ cos.��/ � J��.x// ; � 62 Z; j arg.z/j < �:

Remember that linear combination of J� and Y� gives the particular solutions of
homogeneous Bessel differential equation (1.18), when � 2 Z: On the other hand,
when � … Z, the particular solution is given as the linear combination of the Bessel
functions of the first kind, J� and J�� .
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Theorem 3.4 (Baricz et al. [23]) Let the situation be the same as in Theorem 3.3.
Then we have

K�.x/ D J�.x/

2

Z

1

xJ2�.x/

�Z

J�.x/L�.x/

x
dx

�

dx

C Y�.x/

2

Z

1

xY2� .x/

�Z

Y�.x/L�.x/

x
dx

�

dx ; (3.21)

where L� is the Kapteyn series associated with the initial Kapteyn series of Bessel
functions.

Proof It is a well-known fact that J� and Y� are independent solutions of the
homogeneous Bessel differential equation. Thus, the solution of the homogeneous
ordinary differential equation is

yh.x/ D C1Y�.x/C C2J�.x/ :

Since J� is a solution of Bessel’s differential equation, a guess of the particular
solution is K�.x/ D J�.x/w.x/. Substituting this form into non-homogeneous Bessel
differential equation (3.18) we get

x2. J00
�w C 2J0

�w
0 C J�w

00/C x. J0
�w C J�w

0/C .x2 � �2/J�w D L�.x/:

Rewriting the equation as

w
�

x2J00
� C xJ0

� C .x2 � �2/J�
�C w0.2x2J0

� C xJ�/C w00.x2J�/ D L�.x/;

and using again the fact that J� is a solution of the homogeneous Bessel differential
equation, leads to the solution

w D
Z

1

xJ2�

�Z

L� J�
x

dx

�

dx C C3
�

2

Y�
J�

C C4 ;

because
Z

1

xJ2�
dx D �

2

Y�
J�
:

Therefore, the desired particular solution is

K�.x/ D J�.x/w.x/ D J�.x/
Z

1

xJ2�

�Z

L� J�
x

dx

�

dx C C3
�

2
Y�.x/C C4J�.x/ :

Finally, as J� and Y� are independent functions that build up the solution yh, they do
not contribute to the particular solution yp and the constants C3;C4 can be taken to
be zero.
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On the other hand, taking a particular solution in the form K�.x/ D Y�.x/w.x/
and repeating the procedure, we arrive at

K�.x/ D Y�.x/w.x/ D Y�.x/
Z

1

xY2�

�Z

L� Y�
x

dx

�

dx � C5
�

2
J�.x/C C6Y�.x/ ;

bearing in mind that
Z

1

xY2�
dx D ��

2

J�
Y�
:

Choosing C5 D C6 D 0, we obtain the integral representation (3.21). ut

3.4 Integral Expression of Special Kind Kapteyn Series

Here we derive an integral expression for the special Kapteyn–Bessel series

eK�

�;ˇ.z/ WD
X

n�1
˛nJ�Cˇn

�

.�C n/z/; z 2 C (3.22)

where �; ˛n are constants, � 2 C and ˇ > 0. This integral will be useful to us in the
next chapter, devoted to similar questions concerning Schlömilch series.

Theorem 3.5 (Jankov and Pogány [131]) Let ˛ 2 C1.RC/, ˛jN D .˛n/n�1 and
assume C D lim supn!1 j˛nj 1n < 1. Then, for all ˇ > 0, 2.� C ˇ/C 1 > 0 and

x 2 I˛;ˇ WD
�

0; 2min
n

1; ˇ .eC
1
ˇ /�1

o �

we have

eK�

�;ˇ.x/ D �
Z 1

1

Z Œu�

0

@

@u

�� .ˇu C � C 1
2
/

.�C u/ˇuC� JˇuC�
�

.�C u/ x
�

�


 ds

 

˛.s/.�C s/�Cˇs

� .� C ˇs C 1
2
/

!

du ds: (3.23)

Proof By virtue of the Landau’s bounds (1.20), (1.21) there holds

ˇ

ˇ

ˇ

eK�

�;ˇ.x/
ˇ

ˇ

ˇ �
X

n�1
j˛nj max

(

bL

.� C ˇn/
1
3

;
cL

..�C n/jxj/ 13

)

� max

(

bL

.� C ˇ/
1
3

;
cL

..�C 1/jxj/ 13

)

X

n�1
j˛nj ;

therefore the series (3.22) absolutely converges being C < 1.
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In the following, again we need the integral representation of the Bessel
function (3.11), it has to be 2.� C ˇ/ C 1 > 0. Substituting (3.11) into (3.22)
we get

eK�

�;ˇ.x/ D
r

x

2�

Z 1

�1
ei�xt

�

x.1 � t2/

2

��� 1
2

D˛.t/ dt; x > 0; (3.24)

where D˛.t/ is the Dirichlet series

D˛.t/ WD
X

n�1

˛n.�C n/�Cˇn

� .� C ˇn C 1
2
/

exp

(

�n log

�

2

eixt=ˇx.1 � t2/

�ˇ
)

: (3.25)

For the convergence of (3.25) we find that the related radius of convergence equals

	 D
�

ˇ

e

�ˇ �

lim sup
n!1

j˛nj 1n
��1

D ˇˇ

eˇ C
:

Now, because of jtj < 1, there holds

ˇ

ˇ

ˇ

ˇ

eixt
�x.1 � t2/

2

�ˇ
ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

x

2

ˇ

ˇ

ˇ

ˇ

< 	 ;

hence the convergence domain of D˛.t/ is

jxj < 2	 1
ˇ D 2ˇ

e
C� 1

ˇ :

Moreover, the Dirichlet series’ parameter needs to have positive real part [147, 249]:

<
�

log
2ˇ

eitxxˇ.1 � t2/ˇ

�

D ˇ ln
2

x.1 � t2/
> ˇ log

2

x
> 0; jtj < 1 ;

so, this additional convergence range is x 2 .0; 2/. Collecting all these estimates, we
deduce that the desired integral expression exists for x 2 I˛;ˇ : Expressing (3.25) as
the Laplace integral we get

D˛.t/ D log
2ˇ

eixt .x.1 � t2//ˇ

Z 1

0

 

eixt

�

x.1 � t2/

2

�ˇ
!u Œu�

X

nD1

˛n.�C n/�Cˇn

�
�

� C ˇn C 1
2

� du

D �
Z 1

0

Z Œu�

0

 

eixt

�

x.1 � t2/

2

�ˇ
!u

log
eixt
�

x.1 � t2/
�ˇ

2ˇ


 ds

 

˛.s/.�C s/�Cˇs

�
�

� C ˇs C 1
2

�

!

duds : (3.26)
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Combination of (3.24) and (3.26) yields

eK�

�;ˇ.x/ D �
r

x

2�

Z 1

0

Z Œu�

0

ds

 

˛.s/.�C s/�Cˇs

�
�

� C ˇs C 1
2

�

!



 

Z 1

�1
eix.�Cu/t

�x.1 � t2/

2

��Cˇu� 1
2

log
eixt
�

x.1 � t2/
�ˇ

2ˇ
dt

!

duds:

(3.27)

In the following, we will simplify the t-integral

Jx.u/ WD
Z 1

�1
ei.�Cu/xt

�

x.1 � t2/

2

��Cˇu� 1
2

log
eixt
�

x.1 � t2/
�ˇ

2ˇ
dt :

We have

Z

Jx.u/du D
Z 1

�1
ei.�Cu/xt

�

x.1 � t2/

2

��Cˇu� 1
2

dt

D
r

2�

x

�
�

� C ˇu C 1
2

�

.�C u/�Cˇu
JˇuC� ..�C u/x/ ;

that is

Jx.u/ D
r

2�

x

@

@u

 

�
�

� C ˇu C 1
2

�

.�C u/�Cˇu
JˇuC� ..�C u/x/

!

: (3.28)

Now, by virtue of (3.27) and (3.28) we immediately get the integral representa-
tion (3.23). ut

3.5 On Coefficients of Kapteyn Series

Here we describe the class of functions � D f˛g which generate an integral
representation like (3.23) for the corresponding Kapteyn-type series, in the sense
that ˛

ˇ

ˇ

N
D �

˛n
�

n�1 generates the coefficients of the series (3.22). For the fixed

set of nodes
˚

.n; ˛n/
�

n�1, we derive the class of functions ˛ which depends on
a certain integrable (on RC), scaling-function h, say. It is important to note that
Jankov et al. [134] applied a similar way of concluding the coefficient-function class
for Neumann series NJ

�;�.x/ (compare Sect. 2.2).
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Theorem 3.6 (Jankov and Pogány [133]) Let ˇ > 0; 1 C minf�; �=ˇg > 0 and
assume that Theorem 3.5 holds for a given Kapteyn-type series of Bessel functions.
Suppose that the integrand in (3.23), is such that

@

@u

�� .ˇu C � C 1
2
/

.�C u/ˇuC� JˇuC�
�

.�C u/ x
�

�

Z Œu�

0

ds

 

˛.s/.�C s/�Cˇs

� .� C ˇs C 1
2
/

!

ds;

is L1.RC/-integrable and let

h.u/ WD @

@u

�� .ˇu C � C 1
2
/

.�C u/ˇuC� JˇuC�
�

.�C u/ x
�

�

Z u

0

ds

 

˛.s/.�C s/�Cˇs

� .� C ˇs C 1
2
/

!

ds :

Then the following formula holds

˛.u/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

� .� C ˇk C 1
2
/

.�C k/�Cˇk

d

du

h.u/

H .u/

ˇ

ˇ

ˇ

ˇ

uDkC
; u D k; k 2 N

� .� C ˇu C 1
2
/

fug .�C u/�Cˇu

� h.u/

H .u/
� h.kC/

H .k/

�

; 1 < u ¤ k; k 2 N

; (3.29)

where

H .u/ WD @

@u

�� .ˇu C � C 1
2
/

.�C u/ˇuC� JˇuC�
�

.�C u/ x
�

�

:

Proof Assume that the integral representation (3.23) holds for some class of
functions � D f˛g such that ˛jN represents the coefficient array appearing in
eK�

�;ˇ.x/. Suppose that the functioneh 2 L1.RC/ is defined by

eh.u/ WD H .u/
Z Œu�

0

ds

 

˛.s/.�C s/�Cˇs

� .� C ˇs C 1
2
/

!

ds : (3.30)

Because u � Œu� for large u, using (3.30) we conclude that

Z u

0

ds

 

˛.s/.�C s/�Cˇs

� .� C ˇs C 1
2
/

!

ds D h.u/

H .u/
; (3.31)

where

h.u/ WD
eh.u/

Z u

0

ds

 

˛.s/.�C s/�Cˇs

� .� C ˇs C 1
2
/

!

ds

Z Œu�

0

ds

 

˛.s/.�C s/�Cˇs

� .� C ˇs C 1
2
/

!

ds

�eh.u/; u ! 1:
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If we differentiate (3.31) with respect to u, we get

fug˛0.u/C
�

1C fug
�

log.�C u/ˇ C � C ˇu

�C u
� ˇ  �� C ˇu C 1

2

�

��

˛.u/

D � .� C ˇu C 1
2
/

.�C u/�Cˇu
� @
@u

h.u/

H .u/
: (3.32)

For u � k 2 N, we have the coefficient-set .˛k/. When u 2 .k; k C 1/, where k is a
fixed positive integer, from (3.32) we deduce

˛0.u/C
� 1

u � k
C log.�C u/ˇ C � C ˇu

�C u
� ˇ  

�

� C ˇu C 1
2

�

�

˛.u/

D � .� C ˇu C 1
2
/

.u � k/ .�C u/�Cˇu
� @
@u

h.u/

H .u/
:

Now it is easy to find the solution of the previous linear ordinary differential
equation in the form

˛.u/ D � .� C ˇu C 1
2
/

fug .�C u/�Cˇu

�

Ck C h.u/

H .u/

�

;

where Ck denotes the integration constant. Thus we conclude that for u � 1 it holds
˛.u/ D ˛k for u D k, k 2 N and

˛.u/ D � .� C ˇu C 1
2
/

fug .�C u/�Cˇu

�

Ck C h.u/

H .u/

�

; 1 < u ¤ k; k 2 N:

Using Landau’s bounds (1.20) and (1.21) we have the estimate

ˇ

ˇeK�

�;ˇ.x/
ˇ

ˇ � max

(

bL

3
p

ˇ
;

cL

3
pjxj

)

X

n�1

j˛nj
�

n C minf�; �=ˇg� 13
�

X

n�1

j˛nj
n
1
3

;

which converges by assumption. So, it is sufficient to take ˛.u/ ! 0, as k ! 1.
Let us find the constant Ck. Because

˛k D lim
u!kC˛.u/ D lim

u!kC�
�

� C ˇu C 1
2

�

lim
u!kC

Ck C h.u/

H .u/
.u � k/ .�C u/�Cˇu

becomes an indeterminate form for

Ck D �h.kC/
H .k/

;
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by L’Hospital’s rule we conclude

˛k D � .� C ˇk C 1
2
/

.�C k/�Cˇk
� d

du

h.u/

H .u/

ˇ

ˇ

ˇ

ˇ

uDkC
:

Finally, we get the desired formula

˛.u/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

� .� C ˇk C 1
2
/

.�C k/�Cˇk

d

du

h.u/

H .u/

ˇ

ˇ

ˇ

ˇ

uDkC
; u D k; k 2 N

� .� C ˇu C 1
2
/

fug .�C u/�Cˇu

� h.u/

H .u/
� h.kC/

H .k/

�

; 1 < u ¤ k; k 2 N

;

such that finishes the proof of the Theorem 3.6. ut

Remark 3.2 Specifying ˇ D 1; � D � in Theorem 3.6, we deduce the coefficient
function class � for the Kapteyn-series K�.x/ associated with the integral represen-
tation result by Baricz et al. [23, Theorem 1]. �

3.5.1 Examples

In the introduction we pointed out a wide range of applications of Kapteyn-series,
while in this section, we present two illustrative examples for functionseh 2 L1.RC/,
which describes the convergence rate to zero of the integrand in (3.30) at infinity.
Simultaneously, the associated function h.u/ � eh.u/, u ! 1 and finally related
coefficient-functions ˛ are obtained by (3.29). We remark that in both examples
H .u/ remains the same as in Theorem 3.6.

Example 3.1 Leteh.u/ D Œu�s.eŒu� C 1/�1, s > 0; then

Z 1

0

eh.u/ du D
X

n�1

ns

en C 1
;

which is a convergent series, soeh 2 L1.RC/. Next, we have

Œu�s
�

eŒu� C 1
��1 � us

�

eu C 1
��1 D h.u/ u ! 1 :

On the other side
Z 1

0

h.u/ du D .1 � 2�s/� .1C s/�.1C s/;
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where � stands for the Riemann Zeta function. For s > 0, from (3.29) it follows that
the coefficient-function is of the form

˛.u/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

� .� C ˇk C 1
2
/

.�C k/�Cˇk

d

du

us

.eu C 1/H .u/

ˇ

ˇ

ˇ

ˇ

uDkC
; u D k 2 N

� .� C ˇu C 1
2
/

fug.�C u/�Cˇu

� us

H .u/ .eu C 1/

� ks

H .k/ .ek C 1/

�

; 1 < u ¤ k 2 N

:

Example 3.2 Takeeh.u/ D e�sŒu�J0.a Œu�/, where s � 0, a 2 R. Since

Z 1

0

e�sŒu�J0.a Œu�/ du D
X

n�0
e�snJ0.an/;

the auxiliary functioneh belongs to L1.RC/. Further

e�sŒu�J0.a Œu�/ � e�suJ0.au/ D h.u/ u ! 1 ;

and
Z 1

0

h.u/ du D 1p
s2 C a2

;

being the integral the Laplace transform of J0.au/. Thus, by (3.29) we conclude

˛.u/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

� .� C ˇk C 1
2
/

.�C k/�Cˇk

d

du

e�suJ0.au/

H .u/

ˇ

ˇ

ˇ

ˇ

uDkC
; u D k 2 N

� .� C ˇu C 1
2
/

fug.�C u/�Cˇu

�e�suJ0.au/

H .u/

�e�skJ0.ak/

H .k/

�

; 1 < u ¤ k 2 N

:

3.6 On Kapteyn–Kummer Series’ Integral Form

As in this section our main goal concerns the Kapteyn series we will focus our
exposition to this kind of series, pointing out that a set of problems associated with
Kapteyn type series are solved in [23, 133].

The Kummer’s differential equation [227, §13.2]

z y00 C .b � z/ y0 � ay D 0; y � ˚.a; b; z/
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is the limiting form of the hypergeometric differential equation with the first
standard series solution

1F1.aI bI z/ D
X

n�0

.a/n

.b/n

zn

nŠ
; a 2 C; b 2 C n Z

�
0 :

The series converges for all z 2 C. Another notations which occur for Kummer’s
function are: M.aI bI z/; ˚.a; b; z/.

Having in mind the structure of Fourier–Bessel series (1.27), let us introduce the
Kapteyn–Kummer series as

K�.z/ DW K�

� a; b
˛; ˇ; �

I z
�

D
X

n�0
�n 1F1.a C ˛nI b C ˇnI z.1C �n// ; (3.33)

where �n 2 C; the parameter range and the z-domain will be described in the sequel.
We point out that for at least one non-zero ˛; ˇ, and � D 0, this series becomes a
Neumann—while in the case ˛ D ˇ D 0; � ¤ 0 we are faced with the Schlömilch–
Kummer series.

We are motivated by the fact that Kummer’s function 1F1.aI bI z/ generate diverse
special functions such as [1, pp. 509–10, §13.6. Special Cases]

1F1.� C 1
2
I 2� C 1I 2iz/ D � .1C �/ eiz

�

1
2
z
���

J�.z/

1F1.�� C 1
2
I �2� C 1I 2iz/ D � .1 � �/ eiz

�

1
2
z
�� 


cos.��/J�.z/ � sin.��/Y�.z/
�

1F1.� C 1
2
I 2� C 1I 2z/ D � .1C �/ ez

�

1
2
z
���

I�.z/

where J�.I�/;Y�.K�/ stand for the Bessel (modified Bessel) functions of the first
and second kind of the order � respectively, for which their Fourier–Bessel series
have been studied in [24, 130, 131, 134, 244, 249] and [133], among others. Further
special cases of ˚ listed in [1, pp. 509–510, §13.6.] are: Hankel, spherical Bessel,
Coulomb wave [17], Laguerre, incomplete Gamma, Poisson–Charlier, Weber,
Hermite, Airy, Kelvin, error function and elementary functions like trigonometric,
exponential and hyperbolic ones. These links from Kummer’s ˚ to the above
mentioned special functions and then a fortiori to their Schlömilch-, Neumann-
and Kapteyn-series obviously justify the definition of the Kapteyn–Kummer K�-
series (3.33).

Our main aim here is to establish integral representation for the Kapteyn–
Kummer series K� . The main derivation tools will be the associated Dirichlet series,
the famous Cahen’s formula (1.15) and the Euler–Maclaurin summation formula
firstly used for similar purposes in [239] and in [249].
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3.6.1 The Master Integral Representation Formula

The derivation of the integral representation formula we split into few crucial steps
assuming that all auxiliary parameters a; b; ˛; ˇ mutatis mutandis are non-negative,
and � real. Having in mind the integral expression of Kummer’s function [1, p. 505,
Eq. 13.2.1]

1F1.aI bI z/ D � .b/

� .b � a/� .a/

Z 1

0

ez t ta�1.1� t/b�a�1 dt; (3.34)

valid for all <.b/ > <.a/ > 0, we transform the Kapteyn–Kummer series into

K�.z/ D
X

n�0

�n� .b C ˇn/

� .b � a C .ˇ � ˛/n/� .a C ˛n/



Z 1

0

ez.1C�n/t taC˛n�1.1 � t/b�aC.ˇ�˛/n�1 dt: (3.35)

Hence, for all ˇ � ˛ � 0 using (3.35) we get

ˇ

ˇK�.z/
ˇ

ˇ �
X

n�0

j�nj� .b C ˇn/

� .b � a C .ˇ � ˛/n/� .a C ˛n/



Z 1

0

ˇ

ˇe<.z/.1C�n/tˇ
ˇ taC˛n�1.1 � t/b�aC.ˇ�˛/n�1 dt

�
X

n�0

j�nj� .b C ˇn/

� .b � a C .ˇ � ˛/n/� .a C ˛n/



Z 1

0

ej<.z/j.1Cj�jn/t taC˛n�1.1 � t/b�aC.ˇ�˛/n�1 dt

� ej<.z/jX

n�0

j�nj� .b C ˇn/ ej�<.z/jn

� .b � a C .ˇ � ˛/n/� .a C ˛n/



Z 1

0

taC˛n�1.1 � t/b�aC.ˇ�˛/n�1 dt

D ej<.z/jX

n�0
j�nj ej�<.z/jn : (3.36)

Here we employ the Euler Beta function’s integral form and its connection to the
Gamma function:

B. p; q/ D
Z 1

0

tp�1.1 � t/q�1 dt D � . p/ � .q/

� . p C q/
;
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where min f<.p/;<.q/g > 0. Indeed, specifying p D a C ˛n, q D b � a C .ˇ �
˛/n (3.36) immediately follows. Finally, by virtue of e.g. Cauchy’s convergence test
we get the convergence region of K�.z/:

R0
�.�/ D

n

z 2 CW j�<.z/j < � log lim
n!1

n
p

j�nj
o

;

for any fixed real �.
The integral representation formula (3.34) of Kummer’s function enable us to

re-formulate the series (3.35) into the following form

K�.z/ D
X

n�0

�n� .b C ˇn/

� .b � a C .ˇ � ˛/n/� .a C ˛n/



Z 1

0

ez.1C�n/t taC˛n�1.1 � t/b�aC.ˇ�˛/n�1 dt

D
Z 1

0

ezt ta�1.1� t/b�a�1D�.t/ dt ; (3.37)

where the Dirichlet series

D�.t/ D
X

n�0

�n � .b C ˇn/ e�ptn

� .b � a C .ˇ � ˛/n/� .a C ˛n/
:

Here the parameter

pt D log
�

t�˛.1 � t/˛�ˇ� � z�t

should have positive real part. In turn, bearing in mind that for �<.z/ < 0 for all
t 2 .0; 1/ it is

<.pt/ D �˛ log t � .ˇ � ˛/ log.1 � t/ � �<.z/t > 0 ;
we have to take into account the following subset of R0

�.�/:

R�.�/ D
n

z 2 C W log lim
n!1

n
p

j�nj < �<.z/ < 0
o

:

Using z 2 R�.�/ where � is a fixed real number, applying Cahen’s formula (1.15)
and the consequent Euler–Maclaurin summation’s condensed writing developed in
[239], we arrive at

Theorem 3.7 (Pogány et al. [254]) Let � 2 C1.RC/ be the function which
restriction into N0 is the sequence .�n/. For all b > a > 0; ˇ � ˛ � 0; � 2 R

and for all z 2 R�.�/, we have

D�.t/ D �0� .b/

� .b � a/� .a/
C pt

Z 1

0

e�ptsA�.s/ ds ; (3.38)
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where pt D log
�

t�˛.1 � t/˛�ˇe�z�t
�

and

A�.s/ D
Z Œs�

0

du

� �.u/ � .b C ˇu/

� .b � a C .ˇ � ˛/u/� .a C ˛u/

�

du :

Proof It only remains to explain the sum-structure of (3.38). As to the use of
Cahen’s formula for the Dirichlet series, which involves summation over n 2 N,
we rewrite

D�.t/ D �0� .b/

� .b�a/� .a/
C
X

n�1

�n � .b C ˇn/ e�ptn

� .b�a C .ˇ�˛/n/� .a C ˛n/
:

The rest is straightforward. ut
Remark 3.3 Obviously the constituting addend constant term

�0� .b/

� .b � a/� .a/

can be avoided in the Dirichlet series’ integral expression (3.38) by using without
any loss of generality �0 D 0. �

To derive the master integral representation formula for the Kapteyn–Kummer
series we need further special functions and auxiliary results. Putting now the
integral expression (3.38) of the Dirichlet series D�.t/ into the integral form (3.37)
of the Kapteyn–Kummer series K�.z/, by (3.34), we deduce

K�.z/ D �0 1F1.aI bI z/C
Z 1

0

Z 1

0

eztta�1.1 � t/b�a�1
ptA�.s/ dtds : (3.39)

Let us concentrate on the double integral I�.z/ appearing above. By the legitimate
change of integration order we have

I�.z/ D �
Z 1

0

A�.s/

 

Z 1

0

ez.1C�s/t taC˛s�1.1 � t/b�aC.ˇ�˛/s�1


 ��zt C ˛ log t C .ˇ � ˛/ log.1� t/
�

dt

!

ds

DW �
Z 1

0

A�.s/
�

�zJ�.z; 1/C ˛
@

@a
J�.z; 0/C ˇ

@

@b
J�.z; 0/

�

ds ;

(3.40)

where for 	 2 f0; 1g the following auxiliary integral occurs:

J�.z; 	/ D
Z 1

0

ez.1C�s/ttaC˛s�1C	.1�t/b�aC.ˇ�˛/s�1ds:
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In turn, by (3.34) it is explicitly

J�.z; 	/ D � 	.s/ ˚
�

a C ˛s C 	; b C ˇs C 	; z.1C �s/
�

;

where we use the notation

� 	.s/ D � .b � a C .ˇ � ˛/s/� .a C ˛s C 	/

� .b C ˇs C 	/
:

Theorem 3.8 (Pogány et al. [254]) Let � 2 C1.RC/ be the function for which
�
ˇ

ˇ

N0
D .�n/. For all b > a > 0; ˇ � ˛ > 0; � 2 R and for all z 2 R�.�/, we have

K�.z/ D �0 1F1.aI bI z/�
Z 1

0

Z Œs�

0

du

� �.u/ � .b C ˇu/

� .b � a C .ˇ � ˛/u/� .a C ˛u/

�



n

�z� 1.s/ ˚
�

a C ˛s C 1; b C ˇs C 1; z.1C �s/
�

C ˚��ˇ
@

@b
� 0.s/C ˛

@

@a
� 0.s/

�

C � 0.s/
�

ˇ
@˚�

@b
C ˛

@˚�

@a

�

o

ds du:

Here A�.s/ and �	.s/; 	 D 0; 1 are described previously, while

˚� WD 1F1
�

a C ˛sI b C ˇsI z.1C �s/
�

:

Accordingly, writing u D z.1C �s/:

@˚�

@a
D z.1C �s/

b C ˇs
F1W1I22W0I1

h a C ˛s C 1 W 1I 1; a C ˛s
2; b C ˇs C 1 W �I a C ˛s C 1

ˇ

ˇ

ˇ u; u
i

@˚�

@b
D � .a C ˛s/z.1C �s/

.b C ˇs/2
F1W1I22W0I1

h a C ˛s C 1 W 1I 1; b C ˇs
2; b C ˇs C 1 W �I b C ˇs C 1

ˇ

ˇ

ˇ u; u
i

:

Proof Collecting all these expressions, that is (3.39) and (3.40), we finish the proof.
So, from

K�.z/ D �0 1F1.aI bI z/�
Z 1

0

Z Œs�

0

du

� �.u/ � .b C ˇu/

� .b � a C .ˇ � ˛/u/� .a C ˛u/

�



n

�z� 1.s/ ˚
�

a C ˛s C 1; b C ˇs C 1; z.1C �s/
�

C ˇ
@

@b
� 0.s/ ˚

�

a C ˛s; b C ˇs; z.1C �s/
�

C ˛
@

@a
� 0.s/˚

�

a C ˛s; b C ˇs; z.1C �s/
�

o

ds du;
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with some algebra the double integral will take the form

Z 1

0

Z Œs�

0

du

� �.u/ � .b C ˇu/

� .b � a C .ˇ � ˛/u/� .a C ˛u/

�



n

�z� 1.s/ ˚
�

a C ˛s C 1; b C ˇs C 1; z.1C �s/
�

C ˚�
�

ˇ
@

@b
� 0.s/C ˛

@

@a
� 0.s/

�

C � 0.s/
�

ˇ
@˚�

@b
C ˛

@˚�

@a

�o

ds du:

Applying the formulae [115]

@

@a
1F1.aI bI z/ D z

b
F1W1I22W0I1

h a C 1 W 1I 1; a
2; b C 1 W �I a C 1

ˇ

ˇ

ˇ z; z
i

@

@b
1F1.aI bI z/ D �az

b2
F1W1I22W0I1

h a C 1 W 1I 1; b
2; b C 1 W �I b C 1

ˇ

ˇ

ˇ z; z
i

for getting the partial derivatives of ˚�, in which should be specified a ! a C ˛s,
b ! b C ˇs and z ! z.1C �s/, we arrive at the assertion of the Theorem 3.8. ut

3.6.2 The Neumann–Kummer and Schlömilch–Kummer Series

Consider finally the limiting cases: .i/ ˛ ! 0, which implies a two-parameter
Kapteyn–Kummer series; when either .ii/ � ! 0 or .iii/ ˛; � ! 0 that infer
Neumann–Kummer series. In the last possible common-sense case .iv/ ˇ ! 0

we earn a Schlömilch–Kummer series—all from K�.z/, provided the conditions of
Theorem 3.8 hold.

We point out that for the sake of simplicity in this section we take vanishing �0.

(i) ˛ ! 0. Since ˛ ! 0 independently of ˇ, in this case we have a Kapteyn–
Kummer series:

K�

� a; b
0; ˇ; �

I z
�

D
Z 1

0

Z Œs�

0

du

���.u/ � .b C ˇu/

� .b � a C ˇu/

�



 

�za� 1.s/ 1F1
�

a C 1I b C ˇs C 1I z.1C �s/
�

C ˇ
�

˚�ˇ
ˇ

˛D0
@

@b
� 0.s/C � 0.s/

@˚�j˛D0
@b

�

!

ds du:
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(ii) � ! 0. This case results in a two-parameter Neumann–Kummer series

K�

� a; b
˛; ˇ; 0

I z
�

D
Z 1

0

Z Œs�

0

du

���.u/� .b C ˇu/=� .a C ˛u/

� .b � a C .ˇ � ˛/u/
�



 

˚�j�D0
�

ˇ
@

@b
� 0.s/C ˛

@

@a
� 0.s/

�

C � 0.s/
�

ˇ
@˚�j�D0
@b

C ˛
@˚�j�D0
@a

�

!

ds du:

(iii) ˛; � ! 0. Further simplification of the previous integral gives one-parameter
Neumann–Kummer series, reads as follows:

K�

� a; b
0; ˇ; 0

I z
�

D � ˇ

� .a/

Z 1

0

Z Œs�

0

du

��.u/� .b C ˇu/

� .b � a C ˇu/

�



 

˚�j˛;�D0 @
@b

� 0.s/C � 0.s/
@˚�j˛;�D0

@b

!

ds du:

(iv) ˇ ! 0. We end this overview of special cases of Master Theorem 3.8 with the
Schlömilch–Kummer series integral representation formula

K�

� a; b
0; 0; �

I z
�

D �a�z

b

Z 1

0

Z Œs�

0

du�.u/ 1F1
�

a C 1I b C 1I z.1C �s/
�

ds du:



Chapter 4
Schlömilch Series

Abstract This chapter is devoted to the study of integral representations of
Schlömilch series built by Bessel functions of the first kind and modified Bessel
functions of the second kind. Closed expressions for some special Schlömilch series
together with their connection to Mathieu series are also investigated. The chapter
ends with an integral representation formula for number theoretical summation
by Popov, which also covers the theta-transform identity coming from functional
equation for the Epstein Zeta function.

Oscar Xavier Schlömilch introduced in 1857 in his article [279, pp. 155–158] the
series of the form

S�.z/ WD
X

n�1
˛n J� ..� C n/z/ ; z 2 C; (4.1)

where �; ˛n are constants and J� stands for the Bessel function of the first kind
of order �. So, this kind series are known as Schlömilch series (of the order �).
Schlömilch considered only the cases � D 0; 1. Rayleigh [266] has showed that
such series play important roles in physics, because for � D 0 they are useful in
investigation of a periodic transverse vibrations uniformly distributed in direction
through the two dimensions of the membrane. Also, Schlömilch series present
various features [278] of purely mathematical interest and it is remarkable that a
null-function can be represented by such series in which the coefficients are not all
zero [333, p. 634].

It is worth to mention, that Schlömilch [279] proved that there exists a series
S

f
0.x/ associated with any analytic function f . Namely, according to Watson (in

renewed formulation) [333, p. 619]: let f .x/ be an arbitrary function, with a
derivative f 0.x/ which is continuous in the interval .0; �/ and which has limited
total fluctuation in this interval. Then f .x/ admits of the expansion

f .x/ D a0
2

C
X

m�1
amJ0.mx/ DW Sf

0.x/; (4.2)
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where

a0 D 2f .0/C 2
�

Z �

0

Z 1
2 �

0

uf 0.u sin�/ d� du ;

am D 2
�

Z �

0

Z 1
2 �

0

uf 0.u sin�/ cos.mu/ d� du; m 2 N

and this expansion is valid, and the series converges in .0; �/.
We point out that this Schlömilch’s result may be generalized by replacing the

expansion (4.2) of order zero by S
f
�.x/ of arbitrary order �, see [38, 216, 317] and

[333, Ch. XIX.].
The next generalization is suggested by the theory of Fourier series. The

functions which naturally extend S
f
0.x/ are Bessel functions of the second kind and

Struve functions. The types of series to be considered may be written in the forms:

a0
2 � .� C 1/

C
X

m�1

amJ�.mx/C bmY�.mx/
�

1
2
mx
�� ;

a0
2 � .� C 1/

C
X

m�1

amJ�.mx/C bmH�.mx/
�

1
2
mx
�� :

Such series, with � D 0 have been considered in 1886 by Coates [55], but his proof
of expanding an arbitrary functions f .x/ into this kind of series seems to be invalid
except in some trivial case in which f .x/ is defined to be periodic (with period
2�) and to tend to zero as x ! 1. Also for further subsequent generalizations
consult e.g. Bondarenko’s recent article [38] and the references therein and Miller’s
multidimensional expansion [197].

The series of much greater interest are direct generalization of trigonometrical
series and they are called generalized Schlömilch series. Nielsen studied such kind
of series in his memoirs consecutively in 1899 [212–214], in 1900 [215] and finally
in 1901 [216, 218]. He has given the forms for the coefficients in the generalized
Schlömilch expansion of arbitrary function and he has investigated the construction
of Schlömlich series which represents null-functions [219, p. 348]. Filon also
investigated the possibility of expanding an arbitrary function into a generalized
Schlömilch series for � D 0 [83]. Using Filon’s method for finding coefficients in
the generalized Schlömlich expansion, Watson proved a similar fashion expansion
result.

Theorem A (Watson [333]) Let � be a number such that 2j�j < 1 and let f .x/ be
defined arbitrarily in the interval .��; �/ subject to the following conditions: (i) the
function h.x/ D 2�f .x/C xf 0.x/ 2 C1.��; �/ and it has limited total fluctuation in
the interval .��; �/, and (ii) the integral

Z �

0

d

dx

�jxj2�f f .x/ � f .0/g� dx ; � 2 �� 1
2
; 0
�
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is absolutely convergent when � is a (small) number either positive or negative.
Then f .x/ admits of the expansion

f .x/ D a0
2 � .� C 1/

C
X

m�1

amJ�.mx/C bmH�.mx/
�

1
2
mx
�� ;

where

am D
Z �

��

Z 1
2 �

0

d

d�

�f f .u sin�/� f .0/g sin2��
� cos.mu/

cos2�C1�
d� dup

� �
�

1
2

� �
� ;

(4.3)

bm D
Z �

��

Z 1
2 �

0

d

d�

�f f .u sin�/� f .0/g sin2��
� sin.mu/

cos2�C1�
d� dup

� �
�

1
2

� �
� ;

when m > 0; a0 is obtained by inserting an additional term 2� .� C 1/f .0/ on the
right in (4.3).

Now we refer about few Schlömilch–Bessel type series, which are closely
connected to certain number theoretical functions. First, we define rk.n/ as the
number of representations of n by k squares, allowing zeros and distinguishing
signs and order. We mention that by convention r2.n/ � r.n/ [105], this number
is connected to the famous Gauss’ circle problem [108, pp. 33 et seq.]. In fact, rk.n/
denotes the number of integer-coordinate lattice points in the k-dimensional sphere
of radius

p
n

x21 C � � � C x2k D n :

The generating function of rk.n/ turns out to be [255, p. 801]

X

n�0
rk.n/x

n D #k
3.0I x/ ;

where #3.zI q/ stands for the Jacobi third Theta function.
Next, it can be given another type generating function via the Epstein Zeta

function [76]

�k.s/ D
X

n�0

rk.n/

ns
; k � 2I 2<.s/ > k ;

where �k.s/ has analytical continuation to the punctured complex s-plane C n f k
2
g,

with residue Res



�kI k
2

� D �
k
2 �

�

k
2

�

, [48, p. 18, Example 3]. This function satisfies
the functional equation [48, p. 18, Example 3]

��s � .s/ �k.s/ D �s� k
2 �

�

k
2

� s
�

�k
�

k
2

� s
�

: (4.4)
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Popov obtained the formula [255, p. 801, Eq. (1)] (also see [157])

.�
p

z /
k
2�1

� . k
2
/

C
X

n�1

rk.n/
p

n
k
2�1 J k

2�1
�

2�
p

nz
�

e��nt

D t�1 e� �z
t

8

<

:

.�
p

z /
k
2�1

t
k
2�1 � . k

2
/

C
X

n�0

rk.n/
p

n
k
2�1 I k

2�1
�2�

p
nz

t

�

e� �n
t

9

=

;

(4.5)

which holds for all <.t/ > 0. In turn, Chandrasekharan and Narasimhan (compare
both references [35, 48]) have proved that the functional equation (4.4), the theta-
transform identity [48, p. 19]

X

n�0
rk.n/ e��ny D y� k

2

X

n�0
rk.n/ e� �n

y <. y/ > 0; (4.6)

and the Bessel sum formula [255], [48, p. 19]

1

� .q C 1/

X0

0�n�Œx�
rk.n/.x � n/q

D �
k
2 x

k
2Cq

� . k
2

C q C 1/
C ��q

X

n�1
rk.n/

� x

n

� k
4C q

2
J k
2Cq

�

2�
p

nx
�

(4.7)

are equivalent if x > 0; 2q > k � 1, see [48, p. 10, Theorem I]. The dashed sum
indicates that if q D 0 and x equals to an integer N, the left-hand-side reduces only
to 1

2
rk.N/, see [255, p. 801] and also [35].1

However, Popov’s formula (4.5) covers inter alia both results (4.6) and (4.7),
consult [35].

The double Schlömilch–Bessel series analogue of (4.7), when k D 2; q D 0 was
established by Ramanujan. Namely, denoting

F.x/ D
(

Œx�; x not an integer

x � 1
2
; x integer

;

for all � 2 .0; 1/; x > 0, we have [264, p. 335, Entry 1.1]

X

n�0
F
� x

n

�

sin.2�n�/ D �x
�1

2
� �

�

� 1

4
cot.��/

C
p

x

2

X

m�1
n�0

(

J1.4�
p

m.n C �/x/
p

m.n C �/
� J1.4�

p

m.n C 1 � �/x/
p

m.n C 1 � �/

)

:

1Moreover, Berndt et al. extended (4.7) to all 2q > k � 3, compare [35, Theorem 2.1].
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Further reading about Bessel functions summations formulating Schlömilch series
with respect to another kind number theoretical functions the interested reader can
find in papers by Berndt with different coauthors, see [28, 30–35].

In the first two sections of this chapter we derive several new integral represen-
tations for Schlömilch-type series, while the last section is devoted to new closed
form formulae for the Schlömilch series built by members which contain modified
Bessel function of the second kind. Let us also mention that results presented in this
chapter concern to the papers by Jankov Maširević [135] and Jankov et al. [131].

Finally, we will close this section with establishing integral expressions for the
right-hand-side Schlömilch–Bessel series in (4.7) which also concerns a finite sum
evaluation formula for an associated triple integral.

4.1 Integral Representation of Schlömilch Series

In this section we will derive the double definite integral representation of the special
kind of Schlömilch series

S
�
� .z/ WD

X

n�1
˛n J� ..�C n/z/ ; z 2 C; (4.8)

using an integral representation of Kapteyn-type series

eK�

�;ˇ.z/ WD
X

n�1
˛nJ�Cˇn

�

.�C n/z/ ; z 2 C; ˇ > 0 ; (4.9)

which has been proven in the previous chapter by Theorem 3.5. Now, we can estab-
lish a connection between Schlömilch series (4.8) and Kapteyn-type series (4.9) by

S�
� .x/ D lim

ˇ!0

eK�

�;ˇ.x/ : (4.10)

Using this equality, we have the following result.

Corollary 4.1 (Jankov and Pogány [131]) Let ˛ 2 C1.RC/ for which the function

�.u; s/ WD @

@u

��
�

ˇu C � C 1
2

�

.�C u/ˇuC� JˇuC�
�

.�C u/ x
�

�

ds

 

˛.s/.�C s/�Cˇs

�
�

� C ˇs C 1
2

�

!

is integrable for all ˇ > 0. Let ˛jN D .˛n/n�1 and let

C D lim sup
n!1

j˛nj 1n < 1 :
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Then, for all � > � 1
2

and x 2 .0; 2/ DW I˛;0 we have the integral representation

S
�
� .x/ D �

Z 1

1

Z Œu�

0

@

@u

�J�
�

.�C u/ x
�

.�C u/�

�

ds . ˛.s/.�C s/�/ du ds: (4.11)

Proof It is enough to establish the behavior of the convergence domain I˛;ˇ when
ˇ vanishes. Having in mind that by assumption C < 1 and this implies

lim
ˇ!0C

ˇC � 1
ˇ D � logC lim

ˇ!0C

C � 1
ˇ D C1 ;

and I˛;0 D .0; 2/. Thus the statement (4.11) immediately follows from Theo-
rem 3.5, relation (4.10) and Lebesgue dominated convergence theorem. ut

4.2 Another Integral Representation of Schlömilch Series

In this section our aim is to derive integral representations for Schlömlich
series (4.1), using Bessel differential equation. First, applying the same procedure
exploiting the non-homogeneous Bessel ordinary differential equation as in
Sect. 3.3, we have the auxiliary result:

Theorem 4.1 (Jankov and Pogány [131]) Schlömilch series (4.1) is the solution
of the nonhomogeneous Bessel-type differential equation

x2y00 C xy0 C .x2 � �2/y D T�.x/ ; (4.12)

where

T�.x/ D
X

n�1

�

1 � .� C n/2/x2˛nJ�
�

.� C n/x
�

: (4.13)

Moreover, if we assume that ˛ 2 C1.RC/, ˛jN D .˛n/n�1 and the series
P

n�1 n
5
3 ˛n

absolutely converges, then for all x 2 I˛;0 we have the integral representation

T�.x/ D x2
Z 1

1

Z Œu�

0

@

@u

 

J�
�

.� C u/x
�

.� C u/�

!

ds

�

�˛.s/ �1 � .� C s/2
�

.�Cs/�
�

duds :

Below, we will derive a new integral representation of the Schlömilch series (4.1),
using the Bessel differential equation (1.18).
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Theorem 4.2 (Jankov and Pogány [131]) Let ˛ 2 C1.RC/, ˛jN D �

˛n
�

n�1 and

assume that series
P

n�1
n
5
3 ˛n absolutely converges. Then, for all � > � 1

2
and x 2

I˛;0 we have

S�.x/ D J�.x/

2

Z

1

xJ2�.x/

�Z

J�.x/T�.x/

x
dx

�

dx

C Y�.x/

2

Z

1

xY2� .x/

�Z

Y�.x/T�.x/

x
dx

�

dx ; (4.14)

where T� is the Schlömilch series, given with (4.13).

Proof The homogeneous solution of the Bessel differential equation is given with

yh.x/ D C1Y�.x/C C2J�.x/ ;

where J� and Y� are independent solutions of the Bessel differential equation.
As J� is a solution, we search for the particular solution yp in the form yp.x/ D

J�.x/w.x/. Substituting this form into (4.12), we have

x2. J00
�w C 2J0

�w
0 C J�w

00/C x. J0
�w C J�w

0/C .x2 � �2/J�w D T�.x/:

If we write the previous equation in the following form

w
�

x2J00
� C xJ0

� C .x2 � �2/J�
�C w0.2x2J0

� C xJ�/C w00.x2J�/ D T�.x/;

using the fact that J� is a solution of the homogeneous Bessel differential equation,
we get the solution

w D
Z

1

xJ2�

�Z

T� J�
x

dx

�

dx C C3
�

2

Y�
J�

C C4 ;

because
Z

1

xJ2�
dx D �

2

Y�
J�
:

So, we have the particular solution

S�.x/ D J�.x/w.x/ D J�.x/
Z

1

xJ2�

�Z

T� J�
x

dx

�

dx C C3
�

2
Y�.x/C C4J�.x/ :

Using the fact that yh is formed by independent functions J� and Y� , that functions
do not contribute to the particular solution yp and the constants C3;C4 can be taken
to be zero.
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Analogously, taking particular solution in the form yp.x/ D Y�.x/w.x/ and using
the equality

Z

1

xY2�
dx D ��

2

J�
Y�

we get

S�.x/ D Y�.x/w.x/ D Y�.x/
Z

1

xY2�

�Z

T� Y�
x

dx

�

dx � C5
�

2
J�.x/C C6Y�.x/ :

Again, choosing C5 D C6 D 0, we get the integral representation (4.14). ut

4.3 Schlömilch Series Built by Modified Bessel K�

The problem of summing up special kind Schlömilch series built by members which
contain modified Bessel function of the second kind K� in the form

X

n�1
˛nK�.nz/; z 2 C; (4.15)

where �; ˛n are constants, has not been considered in mathematical literature so
often. More general results about this kind series, with members containing Bessel
function of the first kind J� are recently studied in [131] and can be also found in
e.g. [198, 265, 315].

According to our knowledge, summations of the series (4.15) has been studied
only in the article [316] where the authors proved that [316, p. 217, Example 4]

X

n�1

K��	C1.nz/

n2mC��	C1 D .�1/m�jzj2mC2�C1�
�

	 � m � � � 1
2

�

22mC��	C2z�C	C1�
�

m C 1
2

�

C
m
X

jD0

.�1/j�.2m � 2j/ � .	 � � � j � 1/

2�C2j�	C2z�C	C1 jŠ jzj�2��2j�2 ;

which holds for m 2 N, z > 0, �1 < 2<.�/ < 4<.	/ � 1 and [316, p. 218,
Example 7]

X

n�1

K 1
2
.nx/

n˛� 1
2

D .�1/˛=2 � x˛� 3
2 �

�

1 � ˛
2

�

2˛C 1
2 �

�

˛C1
2

�

C
M
X

jD0

.�1/j�.˛ � 2j/ x2j� 1
2 �

�

1
2

� j
�

22jC 1
2 jŠ

;

where ˛ 2 N, M D ˛�1
2

for ˛ odd and M D ˛
2

for ˛ even.



4.3 Schlömilch Series Built by Modified Bessel K� 121

Also, knowing that [93, p. 925, Eq. (8.469.3)]

K 1
2
.z/ D

r

�

2z
e�z;

some summation formulae for Schlömilch series with members containing K 1
2

can
be derived by using collection of 17 infinite summation formulae for exponential
function given on the widely known website [122].

In this section, we are interested in summing the series of the form

S�.a; x; �/ D
X

n�1

"n n�K�.nx/

.n2 � a2/ n�
; x 2 R; (4.16)

where a; �; � are constants and "n D 1 or "n D .�1/n.
First, we can observe that

S��2.a; x; �/� a2S�.a; x; �/ D S��2.0; x; �/;

from which, setting � D 2k, k 2 N, it follows by mathematical induction

a2r
S2r.a; x; �/ D S0.a; x; �/�

r
X

kD1
a2k�2

S2k�2.0; x; �/; r 2 N : (4.17)

So, the previous problem, in the case when � D 2k, k 2 N one reduces to summing
the series S2k�2.0; x; �/, for all k 2 N and also to derivation of a summation formula
for S0.a; x; �/.

In what follows we will use notation s�.a; x; �/ for the series (4.16), when "n D 1

and S�.a; x; �/ in the case when "n D .�1/n�1.
First, in Sect. 4.3.1 we prove our main results on summation formulae for the

above mentioned series, when � D 2k, k 2 N, together with a set of corresponding
results which concern special kind Schlömilch series with members containing
products of K� and modified Bessel function of the first kind I� .

In Sect. 4.4, the connection between special case of the series (4.16) and a
generalized Mathieu series (see e.g. [293]) will be established.

4.3.1 Closed Expressions for S2k�2.0; x; �/ and S0.a; x; �/

Let us establish our first main result in this section.
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Theorem 4.3 (Jankov Maširević [135]) For all � > k, k 2 N there holds

s2k�2.0; x; �/ D .�1/k�1

2

� x

2

�2k��
 

�� �
�

� � k C 1
2

�

x�
�

k C 1
2

�

C
k
X

nD0

.�1/n�1� .n C � � k/ �.2n/

.k � n/Š

�

2

x

�2n
!

; (4.18)

where x 2 .0; 2��. Moreover, for all x 2 .0; �� it is

S2k�2.0; x; �/ D .�1/k
2

� x

2

�2k�� k
X

nD0

.�1/n� .n � k C �/˚.�1; 2n; 1/

.k � n/Š

�

2

x

�2n

:

(4.19)

Proof In order to establish the convergence conditions of the series

S2k�2.0; x; �/ D
X

n�1

"n n�K�.nx/

n2k
; k 2 N

let us consider already derived bound (2.42)

jK�.x/j � 1

2

�

2

x

��

� .�/ ; minf<.�/; xg > 0;

which follows from the integral representation given by Basset (2.41) and gives

jS2k�2.0; x; �/j �
X

n�1

jK�.nx/j
n2k�� � � .�/

2

�

2

x

��
X

n�1

1

n2k
D � .�/

2

�

2

x

��

�.2k/;

so the convergence holds for any positive integer k.
Now, by the integral representation (2.41), the formulae (1.6)–(1.8) and Legen-

dre’s duplication formula (1.3) we get

s2k�2.0; x; �/ D .�1/k�1 �
�

� C 1
2

�

.2�/2k

2
p
� � .2k C 1/

�

2

x

�� Z 1

0

.t2 C 1/��� 1
2 B2k

� xt

2�

�

dt

D .�1/k�1

4

� x

2

�2k�� 2k
X

nD0

�
�

� � k C n
2

�

Bn

� .n C 1/ �
�

k � n
2

C 1
�

�

4�

x

�n

D .�1/k�1

4

� x

2

�2k�� �� .� � k/

� .k C 1/
� 2�

x

�
�

� � k C 1
2

�

�
�

k C 1
2

�

C 2

k
X

nD1

.�1/n�1� .n C � � k/ �.2n/

� .k � n C 1/

�

2

x

�2n
!

;
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which is equal to (4.18), knowing that �.0/ D � 1
2
. Because the conditions

given in (1.8) and (2.42), we see that the range of x is .0; 2��. Similarly, by the
integral (2.41) we infer

S2k�2.0; x; �/ D .�1/k.2�/2k �
�

� C 1
2

�

2
p
� � .2k C 1/

�

2

x

��Z 1

0

.t2 C 1/��� 1
2 B2k

�

xt

2�
C 1

2

�

dt;

where x 2 .0; �� for all k 2 N. Now, since [1, p. 804, Eq. (23.1.10)]

Bn.mt/ D mn�1
m�1
X

kD0
Bn

�

t C k

m

�

; n 2 N0; m 2 N ; (4.20)

for m D 2, we deduce

S2k�2.0; x; �/ D .�1/k.2�/2k �
�

� C 1
2

�

2
p
� � .2k C 1/

�

2

x

��



Z 1

0

.t2 C 1/��� 1
2

�

21�2kB2k

�xt

�

�

� B2k

� xt

2�

��

dt;

and using (1.6), (1.7) and the Legendre’s duplication formula (1.3) we obtain

S2k�2.0; x; �/ D .�1/k
2

� x

2

�2k�� 2k
X

nD0

.1 � 2n�1/ �
��k C n

2
C �

�

Bn

nŠ �
�

k � n
2

C 1
�

�

2�

x

�n

D .�1/k
4

� x

2

�2k�� �� .� � k/

kŠ

C2
k
X

nD1

.�1/n�1.2� 22n/ � .�k C n C �/ �.2n/

x2n � .k � n C 1/

!

which becomes (4.19), knowing that the Hurwitz–Lerch Zeta function˚.z; s; a/ (see
p. 22, 1.14 and [77, p. 27, Eq. (1)]) has the properties [77, p. 32], [175, p. 54]

˚.�1; 0; 1/ D 1
2

(4.21)

˚.�1; s; 1/ D .1 � 21�s/ �.s/; <.s/ > 0;

by which we end the proof. ut
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Theorem 4.4 (Jankov Maširević [135]) For all minfx; a; �g > 0 there holds

s0.a; x; �/ D � .�/

.2a/2

�

2

x

��

� �a��1

2 sin.a�/

 

cos.a�/K�.ax/

C � sin.a�/

2 cos.��/
.I�.ax/� L��.ax//

!

: (4.22)

Moreover

S0.a; x; �/ D �� .�/
.2a/2

�

2

x

��

C �a��1

2 sin.a�/
K�.ax/ : (4.23)

Proof In order to establish the convergence conditions of S0.a; x; �/, analogously
as we did in the previous theorem, we can deduce that for all minfx; a; �g > 0 there
holds

jS0.a; x; �/j � � .�/

2

�

2

x

��
X

n�1

1

n2 � a2
D � .�/

2

�

2

x

�� �
1

2a2
� �

2a
cot.a�/

�

;

where in the last equality we used the formula [256, p. 685, Eq. (5.1.25.4)].
Now, using the integral (2.41) and the summation formula [256, p. 730, Eq.

(5.4.5.1)]

X

n�1

cos.nx/

n2 � a2
D 1

2a2
� � cos .a.� � x//

2a sin.a�/
; 0 � x � 2�;

we conclude that

s0.a; x; �/ D �
�

� C 1
2

�

p
�

�

2

x

�� Z 1

0

.t2 C 1/��� 1
2



�

1

2a2
� � .cos.a�/ cos.axt/C sin.a�/ sin.axt//

2a sin.a�/

�

:

Combination of the previous expression, formula (2.41), the integral [1, p. 498, Eq.
(12.2.3)]

I�.x/� L��.x/ D 2
�

2
x

��

p
� �

��� C 1
2

�

Z 1

0

.t2 C 1/��� 1
2 sin.xt/ dt;

where <.�/ > � 1
2
, x > 0 and Euler’s reflection formula yields (4.22).
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Analogously, combining the summation formula [256, p. 730, Eq. (5.4.5.2)]

X

n�1

.�1/n�1 cos.nx/

n2 � a2
D � 1

2a2
C � cos.ax/

2a sin.a�/
; jxj � �

with (2.41) we arrive at (4.23). ut

Corollary 4.2 (Jankov Maširević [135]) For all maxfa; xg > 0, � > k, k 2 N and
r 2 N there holds

a2rs2r.a; x; �/ D � .�/

.2a/2

�

2

x

��

� �a��1

2 sin.a�/
.cos.a�/K�.ax/

C� sin.a�/

2 cos.��/
.I�.ax/� L��.ax//

�

C
r
X

kD1

.�1/k
2 a2�2k

� x

2

�2k��
 

�� � �� � k C 1
2

�

x�
�

k C 1
2

�

C
k
X

nD0

.�1/n�1� .n C � � k/ �.2n/

.k � n/Š

�

2

x

�2n
!

and

a2rS2r.a; x; �/ D �� .�/
.2a/2

�

2

x

��

C �a��1

2 sin.a�/
K�.ax/

�
r
X

kD1

.�1/ka2k�2

2

� x

2

�2k��



k
X

nD0

.�1/n� .n � k C �/˚.�1; 2n; 1/

.k � n/Š

�

2

x

�2n

:

Proof The desired formulae follow immediately from the equality (4.17), Theo-
rems 4.3 and 4.4. ut

Also, using the results obtained in Theorem 4.3, we derive summation formulae
for the following special kind Schlömilch series

S
I;K
�;2k.x/ D

X

n�1

I�.nx/K�.nx/

n2k
I eS

I;K
�;2k.x/ D

X

n�1

.�1/n�1I�.nx/K�.nx/

n2k
;

where x 2 R, � is constant and k 2 N.
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Corollary 4.3 (Jankov Maširević [135]) Let the conditions from Theorem 4.3
hold. Then, for all x 2 .0; ��

S
I;K
�;2k.x/ D .�1/k�1 x2k

2
p
�

�

� �

2x

�
�

� � k C 1
2

�

� .k/

�
�

k C 1
2

�

�
�

k C � C 1
2

�

C
k
X

nD0

.�1/n�1� .n C � � k/ �
�

k � n C 1
2

�

�.2n/

� .k � n C 1/ � .1C k � n C �/ x2n

!

and

eS
I;K
�;2k.x/ D .�1/k x2k

2
p
�

k
X

nD0

.�1/n � .n � k C �/ �
�

k � n C 1
2

�

˚.�1; 2n; 1/

� .k � n C 1/ � .k � n C � C 1/ x2n
;

where x 2 �0; �
2

�

.

Proof It is well known [1, p. 378, Eq. (9.7.5)] that

I�.z/K�.z/ D 1

2z

�

1C O.z�2/
�

; jzj ! 1 ;

i.e., for n enough large it holds that

S
I;K
�;2k.x/ � 1

2x
�.2k C 1/; eS

I;K
�;�.x/ � 1

2x
�.2k C 1/;

so the convergence of S
I;K
�;2k.x/ is ensured being k � 1 and the same holds for

eS
I;K
�;2k.x/, because the fulfilled convergence condition for Dirichlet Eta function � [1,

p. 807, Eq. (23.2.19)].
Using the integral representation [93, p. 680, Eq. (6.567.11)]

2��1x��p� �
�

� C 1

2

�

I�
� x

2

�

K�
� x

2

�

D
Z 1

0

t�.1 � t2/�� 1
2 K�.xt/ dt;

valid for � > � 1
2

and Theorem 4.3 we deduce the desired results. ut

4.4 Connection Between s�2.0; x; �/ and Generalized
Mathieu Series

In this section, the main tools we refer to are generalized Mathieu series and a
Poisson formula due to Titchmarsh. Namely, a family of generalized Mathieu series
was introduced in [293] by Srivastava and Tomovski:

S.˛;ˇ/� .rI a/ D S.˛;ˇ/� .rI .ak/k�1/ WD
X

n�1

2aˇn
.a˛n C r2/�

; (4.24)
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where r; ˛; ˇ; � 2 R
C and it is assumed that the positive sequence

a WD .ak/k�1 D .a1; a2; a3; : : : ; ak; : : : /; lim
k!1 ak D 1

is so chosen (and then the positive parameters ˛; ˇ and � are so constrained) that
the infinite series in the definition (4.24) converges, that is, that the auxiliary series
P

n�1 aˇ��˛
n is convergent. Srivastava and Tomovski also showed that when ˇ ! 0

it holds that

S.˛;0/� .rI .k 2
˛ /k�1/ WD

X

n�1

2

.n2 C r2/�
;

where r 2 R
C, � > 1

2
and the right-hand side series can be found in literature, more

often, in the following form (see e.g. [53, 93, p. 5, Eq. (2.12)])

.2r/�� 1
2 � .�/p
�

X

n�1

1

.n2 C r2/�
D
Z 1

0

x�� 1
2

ex � 1
J�� 1

2
.rx/ dx;

which is also attributed by Watson [333] to a 1906 result by Kapteyn.
In order to state a Poisson formula due to Titchmarsh, i.e. the Titchmarsh theorem

[4, p. 2], let us mention that here and in what follows the function f and its Fourier
cosine transform Fc are related by

Fc. f I x/ D
r

2

�

Z 1

0

f .t/ cos.xt/ dt; f .x/ D
r

2

�

Z 1

0

Fc. f I t/ cos.xt/ dt:

Theorem B (Titchmarsh theorem [313, p. 61, Theorem 45]) Let ˛ˇ D 2� , ˛ >
0, and let f be of bounded variation on .0;1/, and tend to 0 as x ! 1. Then

p

ˇ
X

n�1
Fc. f I nˇ/ D p

˛ lim
N!1

 

1

2
f .0C/C

N
X

nD1

f .n˛�/C f .n˛C/
2

� 1
˛

Z .NC 1
2 /˛

0

f .t/ dt

!

:

Also, if
R1
0 f .t/ dt exists as an improper Riemann integral, then

r

ˇ

˛

0

@

1

2
Fc. f I 0/C

X

n�1
Fc. f I nˇ/

1

A D 1

2
f .0C/C

X

n�1

f .n˛�/C f .n˛C/
2

:

(4.25)
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Also, if f is continuous, then (4.25) reduces to Poisson’s formula

r

ˇ

˛

0

@

1

2
Fc. f I 0/C

X

n�1
Fc. f I nˇ/

1

A D 1

2
f .0/C

X

n�1
f .n˛/ : (4.26)

Now, we are ready to state and prove the main result of this section.

Theorem 4.5 (Jankov Maširević [135]) For all minfx; �g > 0 there holds

s�2.0; x; �/ D
p
�

4

�

2

x

��C1
�

�

� C 1

2

�

� � .�/

4

�

2

x

��

C �
�

� C 1
2

�

4 �2�C 1
2

� x

2

��

S.2�=x;0/

�C 1
2

� x

2�
I .kx=� /k�1

�

: (4.27)

Proof First, we establish the convergence conditions of the series s�2.0; x; �/. By
virtue of the well-known formula [333, p. 202]

K�.z/ D e�z

r

�

2z

�

1C O.z�1/
�

; jzj ! 1 ;

and the definition of the polylogarithm (or de Jonquère’s) function

Lis.z/ WD
X

n�1

zn

ns
D z ˚.z; s; 1/;

defined for s 2 C, when jzj < 1; <.s/ > 1 when jzj D 1, we conclude that

js�2.0; x; �/j �
X

n�1
n� jK�.nx/j �

r

�

2x

X

n�1

e�nx

n
1
2�� D

r

�

2x
e�x ˚

�

e�x; 1
2

� �; 1� ;

where the convergence is ensured for x > 0, � 2 R.
Now, from the integral representation (2.41) we infer that Fc.x/ D 2

1
2�� x�

K�.x/=�
�

� C 1
2

�

and the continuous function f .t/ D .t2 C 1/��� 1
2 tends to zero

as t ! 1; also

lim
x!0

x�K�.x/ D 2�p
�
�

�

� C 1

2

�Z 1

0

1

.t2 C 1/�C 1
2

dt D 2��1� .�/; � > 0:
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Making use of (4.26) and choosing ˇ D x, ˛ D 2�=x we get

p
x

�
�

� C 1
2

�

0

@

� .�/

2
3
2

C x�

2�� 1
2

X

n�1
n�K�.nx/

1

A

D
r

�

2x
C 1

2

� x

2�

�2�C 1
2
S.2�=x;0/

�C 1
2

� x

2�
I .kx=�/k�1

�

;

which is equal to (4.27). ut
Finally, setting � D m � 1

2
, m 2 N, in the previous theorem, in turn implies the

following result.

Corollary 4.4 (Jankov Maširević [135]) For all � D m � 1
2
, m 2 N and x > 0

there holds

s�2.0; x; �/ D
p
� � .m/

4

�

2

x

�mC 1
2

� �
�

m � 1
2

�

4

�

2

x

�m� 1
2

C � .m/

4 �2m� 1
2

� x

2

�m� 1
2
X

n�1

1
�

n2 C �

x
2�

�2
�m:

Remark 4.1 Using Mathematica 8.0 we have calculated the following special
cases for m D 1; 2; 3

Mm D
X

n�1

1
�

n2 C �

x
2�

�2
�m D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�2

x2

�

x coth
� x

2

�

� 2
�

; m D 1

�4

x4 sinh2
�

x
2

�

�

x sinh x � 4cosh x C x2 C 4
�

; m D 2

�6

2x6

 

x3sinh x

sinh4
�

x
2

� C 6x2

sinh2
�

x
2

�

C12x coth
� x

2

�

� 64
!

; m D 3

:

Further illustrative examples show the structure of connection between s�2.0; x; �/
and the Mathieu type sum Mm. �
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4.5 p-Extended Mathieu Series as Schlömilch Series

One of the actual generalizations of Mathieu series, defined in Sect. 1.5, is the so-
called generalized Mathieu series with a fractional power reads [53, p. 2, Eq. (1.6)]
(and also consult [201, p. 181])

S�.r/ D
X

n�1

2n

.n2 C r2/�C1 ; r > 0; � > 0I

which can also be presented in terms of the Riemann Zeta function [53, p. 3, Eq.
(2.1)]

S�.r/ D 2
X

n�0
r2n.�1/n

�

�C n

n

�

�.2�C 2n C 1/; jrj < 1: (4.28)

Having in mind (4.28) Pogány and Parmar [245] recently introduced the p-extended
Mathieu series

S�;p.r/ D 2
X

n�0
r2n.�1/n

 

�C n

n

!

�p.2�C 2n C 1/; (4.29)

where <.p/ > 0 or p D 0, � > 0. Here and in what follows �p stands for the
p-extension of the Riemann � function [50]:

�p.˛/ D 1

� .˛/

Z 1

0

t˛�1e� p
t

et � 1 dt (4.30)

defined for <.p/ > 0 or p D 0 and <.˛/ > 0 and it reduces to the Riemann Zeta
function when p D 0. Also, (4.29) one reduces to (4.28) when p D 0.

Pogány and Parmar [245] obtained an integral form of such series, which reads

S�;p.r/ D
p
�

.2r/�� 1
2 � .�C 1/

Z 1

0

t�C 1
2 e� p

t

et � 1 J�� 1
2
.rt/ dtI (4.31)

here <.p/ > 0 or p D 0, � > 0.
The whole set of recent extensions of Gamma and Beta function [50] were

motivated by the wide applications of the generalization of these special function’s
family. In [50] the same extension method has been used also in the kernel of the
integral expression of the Zeta function, compare (4.30). On the other hand, one of
the important properties of the Mathieu series S�.r/ turns out to be (4.29). What
we require is that the results be naturally and simply extended. This approach is
met by (4.31). It is expected that such natural extensions would be found useful in
answering some of the classical problems.



4.5 p-Extended Mathieu Series as Schlömilch Series 131

Motivated by that newly introduced p-extended Mathieu series which members
contain the extension of the Riemann Zeta �p and also the fact that �p can be
presented as Schlömilch series of modified Bessel functions of the second kind i.e.
as [50, p. 1240]

�p.˛/ D 2 p
˛
2

� .˛/

X

n�1

K˛.2
p

np/

n
˛
2

; ˛; p > 0

our main aim in this section is to derive new representations of our series in terms of
the various Schlömilch series. This new, deeper insight into the Schlömilch series’
structure of p-extended Mathieu series will give an important bridge to the fractional
calculus considerations, approach and background of further understanding the
Mathieu series studies. After necessary preliminaries in the next section we derive
new expressions of (4.29) in terms of Schlömilch series which members contain
derivation (ordinary or fractional) of a combination of Bessel function of the first
kind J� and modified Bessel function of the second kind K� . In Sect. 4.5.2 we would
also derive some connection formulae between our Mathieu series and Schlömilch
series but this time with members containing only modified Bessel functions of the
second kind.

4.5.1 Connection Between S�;p.r/ and Schlömilch Series
of J� � K�

In this section, our main aim is to derive connection formulae between p-extended
Mathieu series S�;p.r/ and Schlömilch series which members contain combination
of Bessel functions of the first kind J� and modified Bessel functions of the second
kind K� of the order �.

Our derivation procedure requires the Grünwald–Letnikov fractional derivative
of order �˛, ˛ > 0 with respect to an argument x of a suitable function f defined by
Samko et al. [273]

D
�˛
x Œ f � D lim

n!1
� n

x � a

�˛
n
X

mD0

� .˛ C m/

mŠ � .˛/
f
�

x � m
x � a

h

�

; a < x : (4.32)

Several numerical algorithms are available for the direct computation of (4.32); see
e.g. [63, 206, 285].

Theorem 4.6 (Jankov Maširević and Pogány [140]) For all minf<.p/ > 0,
<.q/; �g > 0 and ˛ > 1

2
there holds

S˛� 3
2 ;p
.�/ D 2.�1/˛p�

.2�/˛�2� .˛ � 1
2
/

X

k�1
D
˛
q

�

J˛�2
�

p

2p Œ
p

q2 C �2 � q�
1
2

�

(4.33)


 K˛�2
�

p

2p Œ
p

q2 C �2 C q�
1
2

� �ˇ

ˇ

ˇ

qDk
:
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Further, for ˛ D n 2 N we have

Sn� 3
2 ;p
.�/ D 2.�1/np�

.2�/n�2� .n � 1
2
/

X

k�1

@n

@qn

h

Jn�2
�

p

2p Œ
p

q2 C �2 � q�
1
2

�


 Kn�2
�

p

2p Œ
p

q2 C �2 C q�
1
2

� iˇ

ˇ

ˇ

qDk
:

Proof In order to prove the desired results, let us first consider the integral [93,
p. 708, Eq. 6.635.3]

Ap;q.�/ D
Z 1

0

x�1e�qx�p=xJ�.�x/dx (4.34)

D 2 J�
�

p

2p Œ
p

q2 C �2 � q�
1
2

�

K�
�

p

2p Œ
p

q2 C �2 C q�
1
2

�

;

where minf<.p/;<.q/; �g > 0.2

Now, using the Grünwald-Letnikov fractional derivative

D
˛
q e�qx D .�x/˛ e�qx

valid for every real ˛ > �� we get

D
˛
q Ap;q.�/ D .�1/˛

Z 1

0

x˛�1e�qx�p=xJ�.�x/dx:

Further, specifying q D k C 1 and summing up the previous equality for k 2 N0

we have

X

k�0
D
˛
q Ap;q.�/

ˇ

ˇ

qDkC1 D .�1/˛
Z 1

0

x˛�1e�p=x

ex � 1 J�.�x/dx :

Setting � D ˛ � 2 with the help of the integral representation (4.31) we get
Z 1

0

x˛�1e�p=x

ex � 1 J˛�2.�x/dx D .2�/˛�2� .˛ � 1
2
/p

�
S˛� 3

2 ;p
.�/:

Now, from the previous calculations, using also (4.34), we have

S˛� 3
2 ;p
.�/ D .�1/˛p

�

.2�/˛�2� .˛ � 1
2
/

X

k�1
D
˛
q Ap;q.�/

ˇ

ˇ

ˇ

qDk

D 2.�1/˛p�
.2�/˛�2� .˛ � 1

2
/

X

k�1
D
˛
q

�

J˛�2
�

p

2pŒ
p

q2 C �2 � q�
1
2

�


 K˛�2
�

p

2pŒ
p

q2 C �2 C q�
1
2

� �ˇ

ˇ

ˇ

qDk

which is equal to (4.33).

2Actually, Ap;q.�/ is the Laplace transform of x 7! x�1e�
p
x J� .�x/ at the argument q.
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Next, for a positive integer ˛ D n (in fact Ap;q.�/ converges for all n C � > 0)
consider

@n

@qn
Ap;q.�/ D .�1/n

Z 1

0

xn�1e�qx�p=xJ�.�x/dx:

The same procedure as above yields

Z 1

0

xn�1e�p=x

ex � 1 J�.�x/dx D .�1/n
X

k�0

@n

@qn
Ap;q.�/

ˇ

ˇ

ˇ

qDkC1 :

Again with the help of (4.31) and (4.34) and substituting � D n � 2 we have

Sn� 3
2 ;p
.�/ D .�1/np

�

.2�/n�2� .n � 1
2
/

X

k�1

@n

@qn
Ap;q.�/

ˇ

ˇ

ˇ

qDk
D 2.�1/np�
.2�/n�2� .n � 1

2
/



X

k�1

@n

@qn

h

Jn�2
�

p

2pŒ
p

q2 C �2 � q�
1
2

�


 Kn�2
�

p

2pŒ
p

q2 C �2 C q�
1
2

�i ˇ

ˇ

ˇ

qDk
;

which completes the proof. ut

Theorem 4.7 (Jankov Maširević and Pogány [140]) For all <.p/ > 0 we have

S 1
2 ;p
.�/ D �4�

X

k�1

@3

@q3

 

J1.
p
2pŒ
p

q2 C �2 � q�
1
2 /K0.

p
2pŒ
p

q2 C �2 C q�
1
2 /p

2pŒ
p

q2 C �2 C q�
1
2

(4.35)

C J0.
p
2pŒ
p

q2 C �2 � q�
1
2 /K1.

p
2pŒ
p

q2 C �2 C q�
1
2 /p

2pŒ
p

q2 C �2 � q�
1
2

!

ˇ

ˇ

ˇ

qDk
:

Moreover, it is

S
�

1
2 ;p
.�/ D 4�

X

k�1

@

@q

�

J1.
p

2pŒ
p

q2 C �2 � q�
1
2 /K1.

p

2pŒ
p

q2 C �2 C q�
1
2 /
� ˇ

ˇ

ˇ

qDk
:

(4.36)

Proof With the help of the integral [257, p. 188, Eq. 2.12.10.2]

Bp;q.�/ D
Z 1

0

x�2e�qx�p=xJ0.�x/ dx D 2�
�

z�1C J1.z�/K0.zC/C z�1� J0.z�/K1.zC/
�

;
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where z˙ D p
2pŒ
p

q2 C �2 ˙ q�
1
2 , minf<.q/;<.p/g > 0, we conclude

@3

@q3
Bp;q.�/ D �

Z 1

0

xe�qx�p=xJ0.�x/dx

which, with the help of (4.31), gives us

X

k�0

@3

@q3
Bp;q.�/

ˇ

ˇ

ˇ

qDkC1 D �
Z 1

0

xe�p=x

ex � 1
J0.�x/dx D �1

2
S 1
2 ;p
.�/

which coincides with (4.35).
In the same way, but this time using [257, p. 188, Eq. 2.12.10.1]

Cp;q.�/ D
Z 1

0

x�1e�qx�p=xJ�.�x/ dx D 2J�.z�/K�.zC/;

where minf<.p/;<.q/g > 0, and z˙ has the same meaning as above, with the aid
of parity of Bessel and modified Bessel function J�1.x/ D �J1.x/I K�1.x/ D K1.x/
we deduce (4.36). ut
Remark 4.2 From (4.36), bearing in mind [117, 119]:

2 . J1.x/K1.x//
0 D . J0.x/ � J2.x//K1.x/� J1.x/ .K0.x/C K2.x// ;

we can infer a new representation for S� 1
2 ;p
.�/. �

4.5.2 S�;p.r/ and the Schlömilch Series of K� Terms

Considering now specialized p-extended Mathieu series, that is in which � D
0; 1; 2, we report on their Schlömilch-series expansion via modified Bessel functions
of the second kind K�C1.

Theorem 4.8 (Jankov Maširević and Pogány [140]) For all <.p/ > 0, � > 0

there hold

S0;p.�/ D 2
p

p
X

k�1

0

@

K1
�

2
p

p.k C i �/
�

p
k C i �

C
K1
�

2
p

p.k � i �/
�

p
k � i �

1

A ; (4.37)

S1;p.�/ D i p

�

X

k�1

0

@

K2
�

2
p

p.k C i �/
�

p
k C i �

�
K2
�

2
p

p.k � i �/
�

p
k � i �

1

A : (4.38)
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Proof In order to prove the desired results we will need the following formula [258]

E�
p;q.�/ D

Z 1

0

x�e�qx�p=x

�

sin.�x/

cos.�x/

	

dx (4.39)

D i
1˙1
2 p

�C1
2

0

@

K�C1
�

2
p

p.q C i �/
�

.q C i �/
�C1
2

�
K�C1

�

2
p

p.q � i �/
�

.q � i �/
�C1
2

1

A ;

which holds for minf<.p/;<.q/g > 0.
Now, since

J� 1
2
.x/ D

r

2

�x
cos x;

by virtue of (4.31) and (4.39) setting q D k C 1, k 2 N0 and � D 0 it follows

X

k�0
EC

p;kC1.�/ D
r

��

2

Z 1

0

p
x e�p=x

ex � 1
J� 1

2
.�x/ dx D 1

2
S0;p.�/;

which results in (4.37).
Analogously, from (4.31) for � D 1, applying (4.39) for E�

p;kC1.�/ and J 1
2
.x/ D

q

2
�x sin x, one implies the second statement (4.38). ut

Theorem 4.9 (Jankov Maširević and Pogány [140]) For all <.p/ > 0, r > 0

there holds

S2;p.r/ D S1;p.r/

.2r/2
� p

3
2

.2r/2
X

n�1

0

@

K3
�

2
p

p.n C i r/
�

.n C i r/
3
2

C
K3
�

2
p

p.n � i r/
�

.n � i r/
3
2

1

A :

(4.40)

Proof From the integral representation (4.31) of S�;p.r/, for � D 2 it is

S2;p.r/ D
p
�

2.2r/
3
2

Z 1

0

x
5
2 e�p=xJ 3

2
.rx/

ex � 1 dx

D
p
�

2.2r/
3
2

X

k�1

Z 1

0

x
5
2 e�kx�p=xJ 3

2
.rx/ dx

D 1

.2r/2
X

k�1

Z 1

0

x2e�kx�p=x

�

sin.rx/

rx
� cos.rx/

�

dx;
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where in the last equality we used the well-known formula

J 3
2
.x/ D

r

2

�x

�

sin x

x
� cos x

�

:

Further, with the help of (4.31) and J 1
2
.x/ D

q

2
�x sin x the previous expression can

be rewritten into

S2;p.r/ D 1

.2r/2
S1;p.r/� 1

.2r/2
X

k�1

Z 1

0

x2e�kx�p=x cos.rx/ dx:

Finally, using the Laplace transform of the function x 7! x2e�p=x cos.rx/, in the
argument k given by (4.39) we get the display (4.40). ut
Remark 4.3 Using the formula (4.38) derived in Theorem 4.8 and the
formula (4.40) which connects S2;p.r/ and S1;p.r/ new representation for S2;p.r/
can be derived. �

4.6 Integral Form of Popov’s Formula (4.7)

Recall the relation (4.7)

1

� .q C 1/

X0

0�n�Œx�
rk.n/.x � n/q D �

k
2 x

k
2Cq

� . k
2

C q C 1/
C ��q

Sk;q.x/ ;

where the following notation is introduced

Sk;q.x/ D
X

n�1
rk.n/

� x

n

� k
4C q

2
J k
2Cq

�

2�
p

nx
�

; <.x/ > 0: (4.41)

Our task is to derive the integral expression for the Schlömilch–Bessel type series
Sk;q.x/ when 2q > k � 3 and x belongs to the widest possible sub-domain of the
positive reals.

The x-convergence domain we determine with the help of Olenko’s bound (1.22),
which is more efficient then the Landau’s bounds (1.20) and (1.21). Indeed, applying
Olenko’s estimate we get the upper bound

ˇ

ˇSk;q.x/
ˇ

ˇ � dOp
2�

x
k
4C q

2� 1
4

X

n�1

rk.n/

n
k
2C 2q�kC1

4

;
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which shows that the bound is enough sensitive to give upper bound which finiteness
do not depend on x, but upon the convergence of associated Epstein Zeta function.

On the other hand Walfisz precised that [326, p. 417]

X

n�1
rk.n/ n� k

2�" < 1; " > 0 ;

which yields convergence of the Schlömilch–Bessel type seriesSk;q.x/ on the whole
x 2 RC, only for 2q > k � 1. We point out the Landau’s bounds are inferior
with respect Olenko’s in this question, giving constraints 2q > k and 2q > k � 2

3
,

respectively.
The next step is to apply the integral representation by Schläfli [276, p. 204]3

J�.z/ D 1

�

Z �

0

cos.���z sin �/ d�� sin ��

�

Z 1

0

e��t�z sinh t dt; j arg.z/j < �

2
:

The concluded form of the Schlömilch series becomes

Sk;q.x/ D 1

�
x

k
4C q

2

(

Z �

0

X

n�1

rk.n/

n
k
4C q

2

cos
�

�

k
2

C q
�

� � 2� p
nx sin �

�

d�

� sin�
�

k
2

C q
�

Z 1

0

e�. k
2Cq/t

X

n�1

rk.n/

n
k
4C q

2

e�2�p
nx sinh t dt

)

: (4.42)

Consider a function rk.t/ which restriction rk.t/
ˇ

ˇ

N
D .rk.n//n�1, using by conven-

tion the value rk.0/ � 1 which holds for any positive integer k 2 N. Obviously such
function there exists—take for instance an interpolation polynomial of suitably high
degree—and it is differentiable.

Both inner sums in (4.42) are in fact Dirichlet series of the form

Dh.x/ D
X

n�1
rk.n/hn.x/e�. k

4C q
2 / log n ;

3The usually used integral expression (2.4) for the Bessel function in the summands of (4.41)
results in

Sk;q.x/ D 2.�x/
k
2 Cq

p
� �

�

kC1
2

C q
�

Z 1

0

.1� t2/
k�1
2 Cq

X

n�1

rk.n/ cos
�

2� t
p

nx
�

dt:

On the other hand, also by Walfisz was found that [326, p. 40]

n
X

jD1

rk.n/ D cn
k
2 C O

�

n
k�1
2

�

;

being c an absolute constant. All together imply that the inner sum diverges in a neighborhood of
t D 0, therefore the integral diverges too.
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where hn.x/ takes either the cosine or the exponential form, respectively. Being the
Dirichlet series’ parameter positive by the Cahen’s formula (1.15) we deduce

Dh.x/ D k C 2q

4

Z 1

0

e�. k
4C q

2 /y

8

<

:

Œey�
X

nD1
rk.n/hn.x/

9

=

;

dy

D k C 2q

4

Z 1

0

e�. k
4C q

2 /yAh. y/ dy ;

where the finite counting sum

Ah. y/ D
Œey�
X

nD1
rk.n/hn.x/ D

Œey�
X

nD1
rk.n/

(

cos
�

�

k
2

C q
�

� � 2�
p

nx sin �
�

e�2�p
nx sinh t

)

;

we sum up using the Euler–Maclaurin summation formula (1.9). The result reads

Ah. y/ D
Z Œey�

0

du rk.u/

(

cos
�

�

k
2

C q
�

� � 2� p
ux sin �

�

e�2�p
ux sinh t

)

du :

Collecting all these expressions in multiple replacing procedure, we arrive at

Theorem 4.10 For all k 2 N; x > 0 and q > 1
2
.k � 1/ we have the integral

representation

Sk;q.x/ D k C 2q

4�
x

k
4C q

2

(

Z �

0

Z 1
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Z Œey�

0

e�. k
4C q

2 /y du rk.u/ cos
�
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k
2

C q
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�

� 2� p
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�

d� dy du � sin�
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k
2

C q
�



Z 1

0

Z 1

0

Z Œey�

0

e�. k
4C q

2 /y du rk.u/ e�2�p
ux sinh tdt dy du

)

;

where rk.t/ is a differentiable function which restriction to the set of positive integers
coincides with the sequence rk

ˇ

ˇ

N
D .rk.n//n�1 and by convention rk.0/ D 1.

The conjunction of (4.7) and Theorem 4.10 leads to the following form of a
complicated triple integral.

Corollary 4.5 For all k 2 N; x > 0 and q > 1
2
.k � 1/ there holds

Sk;q.x/ D �q

� .q C 1/

X0

0�n�Œx�
rk.n/.x � n/q � .�x/

k
2Cq

� . k
2

C q C 1/
:



Chapter 5
Miscellanea

Abstract In this chapter we will present various results concerning Neumann,
Kapteyn and Schlömilch series with members containing functions from the Bessel
functions family (Bessel functions of the first and second kind, modified Bessel
functions of the first and second kind, Struve functions, modified Struve functions
etc.). In Sects. 5.7–5.9 we consider Dini series and Jacobi polynomials, respectively.
Next section is devoted to summations of Schlömilch series which members contain
some von Lommel functions of the first kind. Section 5.11 finishes this chapter with
Neumann–Meijer G series results.

5.1 The Fourier–Bessel Series Associated with Struve
Functions

The function H� [299] was introduced by Struve and today this function is carrying
his name. However, the modified Struve function L� appeared into mathematical
literature by Nicholson [211, p. 218], viz.

H�.z/ D
X

n�0

.�1/n � z
2

�2nC�C1

�
�

n C 3
2

�

�
�

n C � C 3
2

� ; L�.z/ D
X

n�0

�

z
2

�2nC�C1

�
�

n C 3
2

�

�
�

n C � C 3
2

� :

These functions are related to the non-homogeneous Bessel type ordinary differen-
tial equation of special type called Struve differential equation, see Sect. 1.6.

Here we consider the series

B`1;`2 .z/ D
X

n�1
˛nB`1.n/.`2.n/z/;

where B� is one of the functions H� and/or L� . The Sonin–Gubler formula which
connects modified Bessel function of the first kind I�; modified Struve function L�

© Springer International Publishing AG, part of Springer Nature 2017
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and a definite integral of the Bessel function of the first kind J� [97, p. 424] (actually
a special case of a Sonin-formula [333, p. 434]) reads:

Z 1

0

J�.ax/

x2 C n2
dx

x�
D �

2n�C1 .I�.an/� L�.an// ; (5.1)

where <.�/ > � 1
2
; a > 0 and <.n/ > 0I also see [333, p. 426].

The main results exposed in this section have been recently obtained by Baricz
and Pogány in [18]. So, the section is devoted inter alia to the study of specific
Kapteyn-type series of the following form:

K
˛
�;�.x/ WD

X

n�1

˛n

n�
.I�n.xn/� L�n.xn// I

to the Schlömilch series’

S
I;L
�;�.z/ WD

X

n�1

˛n

n�
.I�.xn/� L�.xn// ;

its special case ˛n � 1, see [18, p. 257, Eqs. (1.5), (1.6)]

TI;L
�;�.x/ WD

X

n�1

I�.nx/� L�.nx/

n�
;

and its alternating varianteTI;L
�;�.x/.

The links to the Butzer–Flocke–Hauss complete ˝ function [45, 46] and the
generalized alternating Mathieu series [252] are also given there, see [18, p. 266,
Theorem 7 et seq.].

Finally ordinary differential equation approach was involved in the considera-
tions and novel contour integral expressions were derived for TI;L

�;�.x/ via Mellin
transform technique, applying the associated first kind Fredholm type convolutional
integral equation with degenerate kernel, compare [18, p. 276 et seq., Theorems 13,
14, 15].

5.2 Summations of Series Built by Modified Struve Function

We will consider in this section the power series representations of Struve and
modified Struve functions H�.z/ and L�.z/ listed above respectively, according to
Watson [333] for � 2 R and z 2 C. Struve [299] introduced H� as the series solution
of the nonhomogeneous second order Bessel type differential equation, which
carries also his name. However, the modified Struve function L� appeared into
mathematical literature by Nicholson [211, p. 218]. Applications of Struve functions
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are manyfold and include among others optical investigations [327, pp. 392–395];
general expression of the power carried by a transverse magnetic or electric beam,
is given in terms of LnC 1

2
[9]; triplet phase shifts of the scattering by the singular

nucleon-nucleon potentials / exp.�x/=xn [85]; leakage inductance in transformer
windings [124]; boundary element solutions of the two-dimensional multi-energy-
group neutron diffusion equation which governs the neutronic phenomena in
nuclear reactors [127]; effective isotropic potential for a pair of dipoles [192];
perturbation approximations of lee-waves in a stratified flow [200]; quantum-
statistical distribution functions of a hard-sphere system [222]; scattering of plane
waves by circular cylinders for the general case of oblique incidence and for both
real and complex values of particle refractive index [298]; aerodynamic sensitivities
for subsonic, sonic, and supersonic unsteady, non-planar lifting-surface theory
[339]; stress concentration around broken filaments [82] and lift and downwash
distributions of oscillating wings in subsonic and supersonic flow [331, 332].

Series of Bessel and/or Struve functions in which summation indices appear
in the order of the considered function and/or twist arguments of the constituting
functions, can be unified in a double lacunary form:

B`1;`2 .z/ WD
X

n�1
˛nB`1.n/.`2.n/z/;

where x 7! `j.x/ D �j C ajx; j 2 f1; 2g; x 2 f0; 1; : : : g, z 2 C and B� is one of
the functions J�; I�;H� and L� . The classical theory of the Fourier–Bessel series of
the first type is based on the case when B� D J� , see the celebrated monograph by
Watson [333]. However, varying the coefficients of `1 and `2; we get three different
cases which have not only deep roles in describing physical ordinary differential
equation and have physical interpretations in numerous topics of natural sciences
and technology, but are also of deep mathematical interest, like e.g. zero function
series [333]. Hence we differ: Neumann series (when a1 ¤ 0; a2 D 0), Kapteyn
series (when a1 � a2 ¤ 0) and Schlömilch series (when a1 D 0; a2 ¤ 0). Here, all
three series are of the first type (the series’ terms contain only one constituting
function B� ); the second type series contain product terms of two (or more)
members—not necessarily different ones—from J�; I�;H� and L� . We also point
out that the Neumann series (of the first type) of Bessel function of the second
kind Y� , modified Bessel function of the second kind K� and Hankel functions
(Bessel functions of the third kind) H.1/

� ;H
.2/
� have been studied by Baricz et al. [24],

while Neumann series of the second type were considered by Baricz and Pogány
in somewhat different purposes in [20, 21]; see also [134]. An important role has
throughout of this paper the Sonin–Gubler formula (5.1). Thus, under extended
Neumann series (of Bessel J� see [333]) we mean the following

N
B
�;�.x/ WD

X

n�1
ˇnB�nC�.ax/;
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where B� is one of the functions I� and L� . Integral representation discussions
began very recently with the introductory article by Pogány and Süli [249], which
gives an exhaustive references list concerning physical applications too; see also
[24]. In Sect. 5.2.1 we will concentrate to the Neumann series

N�;�.x/ WD
X

n�1
ˇnI�nC�.ax/ : (5.2)

Secondly, Kapteyn series of the first type [145, 146, 217] are of the form

K B
�;�.z/ WD

X

n�1
˛nB	C�n ..
 C �n/z/ I

more details about Kapteyn and Kapteyn-type series for Bessel functions can be
found also in [21, 23, 69, 308] and the references therein. Here we will consider
specific Kapteyn-type series of the following form:

K
˛
�;�.x/ WD

X

n�1

˛n

n�
.I�n.xn/� L�n.xn// I (5.3)

this series appear as auxiliary expression in the fourth section of this chapter.
Thanks to Sonin–Gubler formula (5.1) we give an alternative proof for integral
representation of K ˛

�;�.x/, see Sect. 5.4. Thirdly, under Schlömilch series [279,
pp. 155–158] (Schlömilch considered only cases � 2 f0; 1g), we understand the
functions series

SB
�;�.z/ WD

X

n�1
˛n B� ..� C n/z/ :

Integral representation are recently obtained for this series in [133], summations are
given in [316]. Our attention is focused currently to

S
I;L
�;�.z/ WD

X

n�1

˛n

n�
.I�.xn/� L�.xn// : (5.4)

The next generalization is suggested by the theory of Fourier series, and the
functions which naturally come under consideration instead of the classical sine
and cosine, are the Bessel functions of the first kind and Struve’s functions. The
next type series considered here we call generalized Schlömilch series [333, p. 622],
[128, p. 1803]

a0
2� .� C 1/

C
� x

2

���X

n�1

anJ�.nx/C bnH�.nx/

n�
:

For further subsequent generalizations consult e.g. Bondarenko’s recent article [38]
and the references therein and Miller’s multidimensional expansion [197]. A set of
summation formulae of Schlömilch series for Bessel function of the first kind can
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be found in the literature, such as the Nielsen formula [333, p. 636]; further, we
have [313, p. 65], also consult [90, 236, 265, 316, 341, 342]. Similar summations,
for Schlömilch series of Struve function, have been given by Miller [198], consult
[316] too.

Further, we are interested in a specific variant of generalized Schlömilch series in
which J�;H� are exchanged by I� and L� respectively, when an; bn are of the form
a0 D 0; an D 2��n��� x� D �bn; � � � > 0; which results in

TI;L
�;�.x/ WD

X

n�1

I�.nx/� L�.nx/

n�
:

Its alternating variant eTI;L
�;�.x/ we perform setting .�1/n�1an 7! an; where n 2

f0; 1; : : : g:

eT
I;L
�;�.x/ WD

X

n�1

.�1/n�1

n�
.I�.nx/� L�.nx// :

Summations of these series are one of tools in obtaining explicit expressions for
integrals containing Butzer–Flocke–Hauss complete Omega-function˝.x/ [44–46]
and Mathieu series S.x/;eS.x/ [187, 252].

Let us also mention that summation results in form of a double definite integral
representation for SJ

�;�.z/, achieved via Kapteyn-series, have been recently derived
in [131] (see Sect. 4.1).

Finally, we mention that except the Sonin–Gubler formula (5.1) another main
tool we refer to is the Cahen’s formula on the Laplace integral representation of
Dirichlet series.

5.2.1 L� as a Neumann Series of Modified Bessel I Functions

Let us observe the well-known formulae [230, Eqs. 11.4.18–19–20]

H�.z/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

4p
� �

�

� C 1
2

�

X

n�0

.2n C � C 1/� .n C � C 1/

nŠ.2n C 1/.2n C 2� C 1/
J2nC�C1.z/

r

z

2�

X

n�0

�

z
2

�n

nŠ.n C 1
2
/

JnC�C 1
2
.z/

�

z
2

��C 1
2

�
�

� C 1
2

�

X

n�0

�

z
2

�n

nŠ
�

n C � C 1
2

� JnC 1
2
.z/

;
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where the first formula is valid for �� 62 N. So, having in mind that L�.z/ D
�i1��H�.iz/ and J�.iz/ D i�I�.z/, we immediately conclude that

L�.z/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ
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.�1/n.2n C � C 1/� .n C � C 1/
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� C 1
2

�

.2n C 1/.2n C 2� C 1/ nŠ
I2nC�C1.z/

r

z
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X
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�� z
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nŠ
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2

� InC�C 1
2
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�
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2

��C 1
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� C 1
2

�

X

n�0

�� z
2

�n

nŠ
�

n C � C 1
2

� InC 1
2
.z/

: (5.5)

However, all three series expansions we recognize as Neumann-series built by
modified Bessel functions of the first kind. This kind of series have been intensively
studied very recently by the authors in [24].

Exploiting the appropriate findings, we give new integral expressions for the
modified Struve function L� .

First, let us modestly generalize [24, Theorem 2.1] which concerns N1;�.x/, to
integral expression for N�;� defined by (5.2), following the same procedure as in
[24].

Theorem 5.1 (Baricz and Pogány [18]) Let ˇ 2 C1.RC/; ˇjN D �

ˇn
�

n�1, � > 0

and assume that

lim
n!1

jˇnj 1
�n

n
<
�

e
: (5.6)

Then, for �; � such that

minf�C 3
2
; �C �C 1g > 0

and

x 2
 

0; 2 min

(

1;

�

.e=�/� lim sup
n!1

n��jˇnj 1n
��1)!

WD Iˇ ;

we have the integral representation

N�;�.x/ D �
Z 1

1

Z Œu�

0

@

@u

�

�
�

�u C �C 1
2

�

I�uC�.x/
�

ds

 

ˇ.s/

�
�

�s C �C 1
2

�

!

duds :

(5.7)
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Proof The proof is a copy of the proving procedure delivered for Theorem 2.7 (i.e.
[24, Theorem 2.1]). The only exception is to refine the convergence condition upon
N�;�.x/. By the bound [14, p. 583]:

I�.x/ <

�

x
2

��

� .� C 1/
e

x2

4.�C1/ ;

where x > 0 and � C 1 > 0; we have

ˇ

ˇN�;�.x/
ˇ

ˇ <
� x

2

��C�
e

x2

4.�C�C1/ X

n�1

jˇnj
� .�n C �C 1/

;

so, the absolute convergence of the right hand side series suffices for the finiteness
of N�;�.x/ on Iˇ . However, condition (5.6) ensures the absolute convergence by
the Cauchy convergence criterion.

The remaining part of the proof mimics the one performed for Theorem 2.7,
having in mind that � D 1 reduces Theorem 5.1 to the ancestor result Theorem 2.7.

ut

Theorem 5.2 (Baricz and Pogány [18]) If � > 0 and x 2 .0; 2/; then we have the
integral representation

L�.x/� 2� .� C 2/p
� �

�

� C 3
2

� I�C1.x/

D
Z 1

1

Z Œu�

0
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�
�

2u C � C 3
2

�

I2uC�C1.x/
�

ds

 

ˇ.s/

�
�

2s C � C 3
2

�

!

du ds ;

(5.8)

where

ˇ.s/ D � ei�s.2s C � C 1/� .s C � C 1/p
� �

�

� C 1
2

�

� .s C 1/
�

s C 1
2

� �

s C � C 1
2

� :

Proof Consider the first Neumann sum expansion of L�.x/ in (5.5), that is

L�.x/ D 4p
� �

�

� C 1
2

�

X

n�0

.�1/n.2n C � C 1/� .n C � C 1/

nŠ.2n C 1/.2n C 2� C 1/
I2nC�C1.x/

D 2� .� C 2/p
� �

�

� C 3
2

� I�C1.x/ �
X

n�1
ˇn I2nC�C1.x/ ;
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in which we specify

ˇn D .�1/n�1.2n C � C 1/� .n C � C 1/p
� �

�

� C 1
2

�

� .n C 1/
�

n C 1
2

� �

n C � C 1
2

� :

Observe that

L�.x/ D 2� .� C 2/p
� �

�

� C 3
2

� I�C1.x/ � N2;�C1.x/:

Since

jˇ.s/j � 2s��2
p
� �

�

� C 1
2

� ; s ! 1 ;

we deduce (by means of Theorem 5.1) that (5.8) is valid for x 2 Iˇ D .0; 2/. ut

Theorem 5.3 (Baricz and Pogány [18]) For �C 2 > 0 and x 2 .0; 2/ we have the
integral representation

L�.x/ �
r

2x

�
I�C 1

2
.x/

D
Z 1

1

Z Œu�

0

@

@u

�

� .u C � C 1/ IuC�C 1
2
.x/
�

ds

�

ˇ.s/

� .s C � C 1/

�

du ds ;

(5.9)

where

ˇ.s/ D �
r

x

2�

ei�s
�

x
2

�s

� .s C 1/ .s C 1
2
/
:

Proof Let us observe now the second Neumann sum expansion of L�.x/ in (5.5):

L�.x/ D
r

x

2�

X

n�0

�� x
2

�n

nŠ
�

n C 1
2

� InC�C 1
2
.x/

D
r

2x

�
I�C 1

2
.x/ �

r

x

2�

X

n�1

.�1/n�1 � x
2

�n

nŠ
�

n C 1
2

� InC�C 1
2
.x/ :

In other words,

L�.x/ D
r

2x

�
I�C 1

2
.x/ � N1;�C 1

2
.x/
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in which we specify

ˇ.s/ D �
r

x

2�

ei�s
�

x
2

�s

� .s C 1/
�

s C 1
2

� :

The convergence condition (5.6) reduces to the behavior of the auxiliary series

X

n�0

jˇnj
�
�

n C � C 1
2

� �
r

2x

�
1F2

h 1
2

3
2
; � C 1

2

ˇ

ˇ

ˇ

jxj
2

i

;

which converges for all bounded x 2 C, unconditionally upon �.
However, for � > �2 we have the integral expression (2.34) [333, p. 79]. This

was used in the proof of the ancestor result (5.7), see [24, Theorem 2.1].
Now, we apply Theorem 5.1 and immediately conclude that (5.9) is valid for

x 2 Iˇ D .0; 2/. ut
The third formula in (5.5) one reduces to the case N1; 12

.x/. Concerning this case
we remark the proof is omitted because the slightly modified derivation procedure
used for getting (5.9) directly implies the above asserted integral expression.

Theorem 5.4 (Baricz and Pogány [18]) Assume that

� C 2 > 0 and x 2 .0; 2/ :
Then we have the integral representation

L�.x/ � x� sinh x

2�
p
� �

�

� C 3
2

� D
Z 1

1

Z Œu�

0

@

@u

�

� .u C 1/ IuC 1
2
.x/
�

ds

�

ˇ.s/

� .s C 1/

�

du ds;

where

ˇ.s/ D � . x
2
/�C 1

2

�
�

� C 1
2

�

ei�s
�

x
2

�s

� .s C 1/
�

s C � C 1
2

� :

Now, applying the integral representation (2.34) we derive another integral
expression for L�.x/ in terms of hypergeometric functions in the integrand.

Theorem 5.5 (Baricz and Pogány [18]) Let � > � 1
2
. Then for x > 0 we have

L�.x/ D x�C1� .� C 2/p
� 22�� 1

2 �
�

� C 3
2

�

�
�

�
2

C 3
4

�

�
�

�
2

C 5
4

�

Z 1

0

.1 � t2/�C 1
2 cosh.xt/


 4F5

2

4

1
2
; �C3

2
; � C 1

2
; � C 1

3
2
; �C1

2
; �
2

C 3
4
; �
2

C 5
4
; � C 3

4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� x2

16
.1 � t2/2

3

5 dt :
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Proof Consider the first Bessel function series expansion for L�.x/ given in (5.5).
Applying mutatis mutandis the integral representation formula (2.34), the Pochham-
mer symbol technique, the familiar formula .A/n.n C A/ D A.A C 1/n; n 2
f0; 1; : : : g; and the Legendre’s duplication formula (1.3) to the summands, we get
the chain of equivalent legitimate transformations:

L�.x/ D 8p
� �

�

� C 1
2

�

X

n�0

.�1/n.2n C � C 1/� .n C � C 1/

nŠ.2n C 1/.2n C 2� C 1/

2
�

x
2

�2nC�C1

p
� �

�

2n C � C 3
2

�



Z 1

0

.1 � t2/2nC�C
1
2 cosh.xt/ dt

D 4
�

x
2

��C1

��
�

� C 1
2

�

Z 1

0

.1 � t2/�C
1
2 cosh.xt/



X

n�0

�

n C �C1
2

�

� .n C � C 1/
h

� x2

4
.1 � t2/2

in

�

n C 1
2

� �

n C � C 1
2

�

�
�

2n C � C 3
2

�

nŠ
dt

D 4
�

x
2

��C1
.� C 1/� .� C 1/p

�
�

� C 1
2

�

�
�

� C 1
2

�

�
�

�
2

C 3
4

�

�
�

�
2

C 5
4

�

Z 1

0

.1 � t2/�C
1
2 cosh.xt/



X

n�0

. 1
2
/n.

�C3
2
/n.� C 1

2
/n.� C 1/n

h

� x2

16
.1 � t2/2

in

�

3
2

�

n

�

�C1
2

�

n

�

�
2

C 3
4

�

n

�

�
2

C 5
4

�

n

�

� C 3
4

�

n
nŠ

dt;

which proves the assertion. ut
By virtue of similar manipulations presented above, we conclude the following

results.

Theorem 5.6 (Baricz and Pogány [18]) Let � > � 1
2

and x > 0. Then there holds

L�.x/D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

x�C1

2��1� � .� C 1/

Z 1

0

.1� t2/� cosh.xt/ 1F2

"

1
2

3
2
; � C 1

ˇ

ˇ

ˇ

ˇ

ˇ

� x2

4
.1 � t2/

#

dt;

x�C1
p
� 2�C 1

2 �
�

� C 1
2

�

Z 1

0

cosh.xt/ 1F2

"

� C 1
2

1; � C 3
2

ˇ

ˇ

ˇ

ˇ

ˇ

� x2

4
.1 � t2/

#

dt:

The proof of Theorem 5.6 follows from the same proving procedure as the
previous theorem but now considering the second and third series expansion results
in (5.5), so we shall omit the proofs of these integral representations.
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5.3 Integrals of ˝.x/-Function and Mathieu Series via
TI;L

� .x/

By virtue of the Sonin–Gubler formula (5.1) we establish the convergence condi-
tions for the generalized Schlömilch series TI;L

�;�.x/ and eTI;L
�;�.x/. As for n enough

large we have

I�.an/ � L�.an/ D 2n��1

�

Z 1

0

J�.ax/ dx

.1C n�2x2/x�
D O

�

n��1� ; (5.10)

we immediately conclude that the following equi-convergences hold true

T
I;L
�;�.x/ � �.� � � C 1/; eT

I;L
�;�.x/ � �.�� � C 1/ ;

that is, TI;L
�;�.x/ converges for � > � > 0, while eTI;L

�;�.x/ converges for � C 1 >

� > 0. On the other hand, we connecteTI;L
�;�.x/ and the Butzer–Flocke–Hauss (BFH)

complete Omega function [44, Definition 7.1]

˝.w/ D 2

Z 1
2

0C
sinh.wu/ cot.�u/ du; w 2 C :

By the Hilbert transform terminology,˝.w/ is the Hilbert transform H .e�wx/1.0/

at 0 of the 1-periodic function .e�wx/1 defined by the periodic continuation of the
following exponential function [44, p. 67]: e�xw; x 2 
� 1

2
; 1
2

�

; w 2 C; that is,

H .e�xw/1.0/ WD P.V.
Z 1

2

� 1
2

ewu cot.�u/ du � ˝.w/

where the integral is to be understood in the sense of Cauchy’s Principal Value at
zero, see e.g. [46, 247].

On the other side by differentiating once (5.1) with respect to n we get a tool to
obtain Mathieu series S.x/ (introduced by Mathieu [187]) and its alternating variant
eS.x/ (introduced by Pogány et al. [252]), which are defined as follows

S.x/ D
X

n�1

2n

.x2 C n2/2
; eS.x/ D

X

n�1

2.�1/n�1n
.x2 C n2/2

:

Closed integral expression for S.r/ was considered by Emersleben [75] and
subsequently by Elbert [74], while foreS�.x/ integral representation has been given
by Pogány et al. [252]:

S.x/ D 1

x

Z 1

0

t sin.xt/

et � 1
dt; (5.11)

eS.x/ D 1

x

Z 1

0

t sin.xt/

et C 1
dt :
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Another kind integral expressions for underlying Mathieu series can be found in
[252].

Theorem 5.7 (Baricz and Pogány [18]) Assume that <.�/ > 0 and a > 0. Then
we have

Z 1

0

J�.ax/˝.2�x/

x� sinh.�x/
dx D �

Z 1

0

e��t
Z Œet �

0

du
�

ei�u .L�.au/� I�.au//
�

dt du :

Proof When we multiply (5.1) by .�1/n�1n and sum up all three series with respect
to n 2 N, the following partial-fraction representation of the Omega function [44,
Theorem 1.3]

�˝.2�w/

sinh.�w/
D
X

n�1

2.�1/n�1 n

n2 C w2

immediately gives

Z 1

0

J�.ax/˝.2�x/

x� sinh.�x/
dx D

X

n�1
.�1/n�1n�� .I�.an/� L�.an// D eT

I;L
�;�.a/ :

We recognize the right-hand-side sums as Dirichlet series of I� and L�; respectively.
Being

X

n�1
.�1/n�1n��I�.an/ D

X

n�1
ei�.n�1/I�.an/e�� log n; <.�/ > 0 ;

we get

X

n�1
.�1/n�1n��I�.an/ D �

Z 1

0

e��t
X

nWlog n�t

ei�.n�1/I�.an/ dt:

So, making use of the Euler–Maclaurin summation to the Cahen’s formula (1.15)
we deduce

X

n�1
.�1/n�1n��I�.an/ D ��

Z 1

0

Z Œet �

0

e��t
du
�

ei�uI�.au/
�

dt duI

and repeating the procedure to the second Dirichlet series containing L�.an/; the
proof is complete. ut

The next result concerns a hypergeometric integral, which we integrate by means
of Schlömilch series of modified Bessel and modified Struve functions.
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Theorem 5.8 (Baricz and Pogány [18]) Let <.�/ > 0 and a > 0. Then we have

Z 1

0

J�.ax/ S.x/
dx

x�
D

p
�a�C2

2�C1� .� C 1
2
/

Z 1

0

t2

eat � 1
2F1

�

1
2
; 1
2

� �
3
2

ˇ

ˇ

ˇ

ˇ

t2


dt

C �a� ŒLi2.e�a/C a Li1.e�a/�

2�C1� .� C 1/
;

where Li˛.z/ stands for the dilogarithm function.

Proof Differentiating (5.1) with respect to n, we get

Z 1

0

2n J�.ax/

.x2 C n2/2
dx

x�
D �.� C 1/

2n�C2 .I�.an/� L�.an//� a�

2n�C1
�

I0
�.an/� L0

�.an/
�

:

Summing up this relation with respect to positive integers n 2 N, we have

��.a/ WD
Z 1

0

J�.ax/ S.x/
dx

x�
D �.� C 1/

2

X

n�1

I�.an/� L�.an/

n�C2

� a�

2

X

n�1

I0
�.an/� L0

�.an/

n�C1 D �.� C 1/

2
T

I;L
�;�C2.a/� a�

2

d

da
T

I;L
�;�C2.a/ :

By the Emersleben–Elbert formula (5.11) we conclude that

��.a/ D
Z 1

0

J�.ax/ S.x/
dx

x�
D
Z 1

0

t

et � 1
�Z 1

0

J�.ax/ sin.xt/

x�C1 dx

�

dt :

Expressing the sine via J 1
2
, we get that the inner-most integral equals

Z 1

0

J�.ax/ sin.xt/

x�C1 dx D
r

�t

2

Z 1

0

J�.ax/J 1
2
.tx/

x�C 1
2

dx : (5.12)

Now, we apply the Weber–Sonin–Schafheitlin formula [333, §13.41] for � D �C 1
2
,

which reduces to

Z 1

0

J�.ax/J 1
2
.tx/x��� 1

2 dxD

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

a�
p
�

2�C 1
2

p
t� .� C 1/

; 0 < a � t;

a��1 p
t

2�C 1
2 �

�

� C 1
2

� 2F1

"

1
2
; 1
2

� �
3
2

ˇ

ˇ

ˇ

ˇ

ˇ

t2

a2

#

; 0 < t < a:
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Accordingly, (5.12) becomes

��.a/ D
p
�a��1

2�C1� .� C 1
2
/

Z a

0

t2

et � 1
2F1

h 1
2
; 1
2

� �
3
2

ˇ

ˇ

ˇ

t2

a2

i

dt

C �a�

2�C1� .� C 1/

Z 1

a

t

et � 1 dt

D
p
�a�C2

2�C1�
�

� C 1
2

�

Z 1

0

t2

eat � 1
2F1

h 1
2
; 1
2

� �
3
2

ˇ

ˇ

ˇt2
i

dt

C �a�

2�C1� .� C 1/

Z 1

0

t C a

etCa � 1
dt

D
p
�a�C2

2�C1�
�

� C 1
2

�

Z 1

0

t2

eat � 1
2F1

h 1
2
; 1
2

� �
3
2

ˇ

ˇ

ˇt2
i

dt

C �a�

2�C1� .� C 1/
ŒLi2.e

�a/C a Li1.e
�a/� ;

where the dilogarithm Li˛.z/ D P

n�1 znn�˛; jzj � 1, has the integral representation

Li˛.z/ D z

� .˛/

Z 1

0

t˛�1

et � z
dt ; <.˛/ > 0:

This completes the proof. ut

5.4 Differential Equations for Kapteyn and Schlömilch
Series of I�; L�

Kapteyn series of Bessel functions were introduced by Kapteyn [145, 146], and were
considered and discussed in details by Nielsen [217] and Watson [333], who devoted
a whole section of his celebrated monograph to this theme. Recently, Baricz, Jankov
and Pogány obtained integral representation and ordinary differential equations
descriptions and related results for real variable Kapteyn series [23, 133].

Now, we will consider the Kapteyn series built by modified Bessel functions of
the first kind, and modified Struve functions

K ˛
�;�.x/ D

X

n�1

˛n

n�
.I�n.xn/� L�n.xn// ;

where the parameter space includes positive a > 0, while sequence .˛n/n�1 ensures
the convergence of K ˛

�;�.x/. Our first goal is to establish double definite integral
representation formula for K ˛

�;�.x/. In this goal we recall the definition of the
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confluent Fox-Wright generalized hypergeometric function 1�
�
1 (for the general

case p�
�
q consult Sect. 1.12.3):

1�
�
1

�

.a; 	/

.b; 
/

ˇ

ˇ

ˇ

ˇ

z



D
X

n�0

.a/	n

.b/
n

zn

nŠ
; (5.13)

where a; b 2 C; 	; 
 > 0 and where, as usual, .�/� denotes the Pochhammer
symbol. The defining series in (5.13) converges in the whole complex z-plane when
� D 
 � 	 C 1 > 0; if � D 0, then the series converges for jzj < r, where
r WD 	�	 

 .

Theorem 5.9 (Baricz and Pogány [18]) Let � > � > 0 and let ˛ 2 C2.RC/, such
that ˛ jN D .˛n/n�1 . Then for

x 2

0

B

@
0; 2min

8

ˆ

<

ˆ

:

1;
�

e lim sup
n!1

j˛nj 1
�n

9

>

=

>

;

1

C

A
WD I˛ ;

we have

K ˛
�;�.x/ D �

Z 1

1

Z Œt�

0

@

@t

� .�t C 1
2
/

� .�t/

� x

2

��t

1�
?
1

� �

1
2
; 1
2

�

.�t; 1/

ˇ

ˇ

ˇ

ˇ

� xt




 ds
˛.s/s�s��

�
�

�s C 1
2

� dtds : (5.14)

Proof The Sonin–Gubler formula enables us to transform the summands of the
Kapteyn series K ˛

�;�.x/ into

K ˛
�;�C1.x/ D 2

�

Z 1

0

X

n�1

˛n

n���n

J�n.xy/

. y2 C n2/ y�n
dy :

Making use of the Gegenbauer’s integral expression for J˛ [7, p. 204, Eq. (4.7.5)],
after some algebra we get

K ˛
�;�C1.x/ D 1p

�

Z 1

0

1p
1 � t2

8

<

:

X

n�1

˛n
�

x
2
.1 � t2/

��n

n���n �
�

�n C 1
2

�

Z 1

0

cos.xty/

y2 C n2
dy

9

=

;

dt

D 2p
�

Z 1

0

1p
1 � t2

8

<

:

X

n�1

˛n
�

x
2
.1 � t2/

��n
e�xtn

n���nC1 �
�

�n C 1
2

�

9

=

;

dt

D 2p
�

Z 1

0

1p
1 � t2

D˛.t/ dt ;
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where the inner sum is evidently the following Dirichlet series

D˛.t/ D
X

n�1

˛n exp
n

�n
�

xt C � log 2
x.1�t2/

�o

n���nC1 �
�

�n C 1
2

� ;

and p.t/ D xt C � log 2
x.1�t2/

> 0 for x 2 .0; 2/; since p is increasing on .0; 1/. By
the Cauchy convergence test applied to D˛.t/ we deduce that

� ex

2�
.1 � t2/

��

e�xt lim sup
n!1

j˛nj 1n �
� ex

2�

��

lim sup
n!1

j˛nj 1n < 1 ;

that is, for all x 2 I˛ the series converges absolutely and uniformly. By the Cahen’s
formula (1.15) we have

D˛.t/ D log ext

�

2

x.1 � t2/

�� Z 1

0

Z Œz�

0

�� x

2
.1 � t2/

��

e�xt
�z

�ds
˛.s/s�s���1

�
�

�s C 1
2

� dz ds :

Thus

K ˛
�;�C1.x/ D � 1p

�

Z 1

0

Z Œz�

0

ds
˛.s/s�s���1

�
�

�s C 1
2

� ˚�.z/ dz ds ;

where the t-integral

˚�.z/ D
Z 1

0

log e�xt
�

x
2
.1 � t2/

��

p
1� t2

�� x

2
.1 � t2/

��

e�xt
�z

dt

has to be evaluated. After indefinite integration, under definite integral, expanding
the exponential term into Maclaurin series, legitimate term-wise integration leads to

Z

˚�.z/ dz D
� x

2

��z
Z 1

0

.1 � t2/�z� 1
2 e�xzt dt

D
p
� �

�

�z C 1
2

�

2 � .�z/

� x

2

��z X

j�0

�

1
2

�

1
2 j

.�z/j

.�xz/j

jŠ

D
p
� �

�

�z C 1
2

�

2 � .�z/

� x

2

��z

1�
?
1

� �

1
2
; 1
2

�

.�z; 1/

ˇ

ˇ

ˇ

ˇ

� xz



:

Consequently

˚�.z/ D
p
�

2

@

@z

�
�

�z C 1
2

�

� .�z/

� x

2

��z

1�
?
1

� �

1
2
; 1
2

�

.�z; 1/

ˇ

ˇ

ˇ

ˇ

� xz



;
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and thus

K ˛
�;�C1.x/ D �

Z 1

1

Z Œt�

0

@

@t

� .�t C 1
2
/

� .�t/

� x

2

��t


 1�
?
1

� �

1
2
; 1
2

�

.�t; 1/

ˇ

ˇ

ˇ

ˇ

� xt



� ds
˛.s/s�s���1

�
�

�s C 1
2

� dtds :

The proof is complete. ut
Now, our goal is to establish a second order nonhomogeneous ordinary differen-

tial equation which particular solution is the above introduced special kind Kapteyn
series (5.3). Firstly, we introduce the modified Bessel type differential operator

MŒ y� � y00 C 1

x
y0 �

�

1C �2

x2

�

y I

this operator is associated with the modified Struve differential equation, reads as
follows

MŒ y� � y00 C 1

x
y0 �

�

1C �2

x2

�

y D
�

x
2

���1
p
� � .� C 1

2
/
: (5.15)

Theorem 5.10 (Baricz and Pogány [18]) Let minf�; �g > 0. Then for x 2 I˛ the
Kapteyn series K D K ˛

�;�.x/ is a particular solution of the nonhomogeneous linear
second order ordinary differential equation

M˛
�ŒK� � K

00C 1

x
K0�

�

1C �2

x2

�

K D 1

x
�˛
�;�.x/C

2

x
p
�

X

n�1

˛n.
x
2
/�n

�
�

�n C 1
2

�

n���nC1 ;

(5.16)
where

�˛
�;�.x/ D d

dx

Z 1

1

Z Œt�

1

@

@t

�
�

�t C 1
2

�

� .�t/

� x

2

��t


 1�
?
1

� �

1
2
; 1
2

�

.�t; 1/

ˇ

ˇ

ˇ

ˇ

� xt



� ds
˛.s/s�s���1.s � 1/

�
�

�s C 1
2

� dtds :

Proof Consider the modified Struve differential equation (5.15)

MŒ y� � y00.x/C 1

x
y0.x/ �

�

1C �2

x2

�

y.x/ D
�

x
2

���1
p
� � .� C 1

2
/
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which possesses the solution y.x/ D c1I�.x/ C c2L�.x/ C c3K�.x/. Being I� and
K� independent particular solutions (the Wronskian WŒI� ;K�� D �x�1) of the
homogeneous modified Bessel ordinary differential equation, which appears on the
left side in (5.15), the choice c3 D 0 is legitimate. Thus y.x/ D I�n.x/ � L�n.x/ is
also a particular solution of (5.15). Setting � 7! �n, we get

.I�n.x/ � L�n.x//
00 C 1

x
.I�n.x/ � L�n.x//

0

�
�

1C �2n2

x2

�

.I�n.x/ � L�n.x// D
�

x
2

��n�1
p
� �

�

�n C 1
2

� :

Finally, putting x 7! xn, multiplying the above display with n��˛n and summing up
in n 2 N, we obtain

M
h

K
˛
�;�

i

D M˛
�ŒK� D 1

x

�

K
˛
�;�.x/� K

˛
�;�C1.x/

�0 C 2

x
p
�

X

n�1

˛n.
xn
2
/�n

�
�

�n C 1
2

�

n�C1 ;

where all three right-hand side series converge uniformly inside I˛ . Applying the
result (5.14) of the previous theorem to the series

K
˛
�;�.x/� K

˛
�;�C1.x/ D

X

n�2

˛n.n � 1/
n�C1 .I�n.xn/� L�n.xn// ;

the summation begins with 2. So, the current lower integration limit in the Euler-
Maclaurin summation formula related to (5.14) becomes 1. By this we clarify the
stated relation (5.16). ut

In the following we concentrate on the summation of Schlömilch series

TI;L
�;�.x/ WD

X

n�1

1

n�
.I�.nx/� L�.nx//

eT
I;L
�;�.x/ WD

X

n�1

.�1/n�1

n�
.I�.nx/� L�.nx// :

To unify these procedures, we consider the generalized Schlömilch series like (5.4)

S
I;L
�;�.x/ D

X

n�1

˛n

n�
.I�.xn/� L�.xn// I

obviously TI;L
�;�.x/;eT

I;L
�;�.x/ are special cases of SI;L

�;�.x/. However, bearing in mind
the asymptotics in Sonin–Gubler formula (5.10), we see that the necessary condition
for the convergence of SI;L

�;�.x/ for a fixed x > 0 becomes ˛n D o
�

n���C1� as
n ! 1:
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Theorem 5.11 (Baricz and Pogány [18]) Let minf�; �; xg > 0 and ˛ 2 C1.RC/
be monotone increasing, such that ˛ jN D .˛n/n�1, and

P

n�1 n��C��1˛n con-
verges. Then S D SI;L

�;�.x/ is a particular solution of the nonhomogeneous linear
second order ordinary differential equation

M˛
�ŒS� D M

h

S
I;L
�;�

i

D 1

x

�

�
˛;1
�C1.x/

�0��
2

x2
�

˛;2
�C2.x/C

. x
2
/��1

p
� �

�

� C 1
2

�

X

n�1

˛n

n���C1 ;

where

� ˛;ˇ
� .x/ D �

Z 1

0

e��t
Z Œet �

1

du
�

˛.u/.uˇ � 1/ .I�.xu/� L�.xu//
�

dt du :

Proof Consider again the modified Struve differential equation (5.15), which
possesses the solution y.x/ D c1I�.x/Cc2L�.x/Cc3K�.x/, and choose the particular
solution associated with c1 D �c2 D 1 and c3 D 0. Transforming (5.15) by putting
x 7! xn, multiplying it by ˛nn�� and summing the equation with respect to n 2 N,
we arrive at

0

@

X

n�1

˛n

n�
y.xn/

1

A

00

C 1

x

0

@

X

n�1

˛n

n�C1 y.xn/

1

A

0

�
X

n�1

˛n

n�
y.xn/

� �2

x2
X

n�1

˛n

n�C2 y.xn/ D
� x

2

���1

p
� �

�

� C 1
2

�

X

n�1

˛n

n���C1 :

Thus

M
h

SI;L
�;�

i

D 1

x

0

@

X

n�2

˛n.n � 1/
n�C1 y.xn/

1

A

0

� �2

x2
X

n�2

˛n.n2 � 1/

n�C2 y.xn/C
� x

2

���1

p
� �

�

� C 1
2

�

X

n�1

˛n

n���C1 :

Denote

� ˛;ˇ
� .x/ D

X

n�2

˛n.nˇ � 1/

n�
y.xn/; 0 < � � �; x > 0 :
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Following the same lines of the proof of Theorem 5.7, by Cahen’s formula and
the Euler–Maclaurin summation we immediately yield the double definite integral
representation

� ˛;ˇ
� .x/ D �

Z 1

0

e��t
Z Œet �

1

du
�

˛.u/.uˇ � 1/ y.xu/
�

dt du ;

which leads to the stated result. ut

Corollary 5.1 (Baricz and Pogány [18]) Let � � 1 > � > 0 and x > 0. Then
T D TI;L

�;�.x/ is a particular solution of the nonhomogeneous linear second order
ordinary differential equation

MŒT� D 1

x

�

� 1;1
�C1.x/

�0 � �2

x2
� 1;2
�C2.x/C �.�� � C 1/p

� �
�

� C 1
2

�

� x

2

���1
; (5.17)

where

� 1;ˇ
� .x/ D �

Z 1

0

e��t
Z Œet �

1

du
�

.uˇ � 1/ .I�.xu/� L�.xu//
�

dt du :

Corollary 5.2 (Baricz and Pogány [18]) Let � > � > 0 and x > 0. Then eT D
eTI;L
�;�.x/ is a particular solution of the nonhomogeneous linear second order ordinary

differential equation

M˛
�




eT
� D M

h

eT
I;L
�;�

i

D 1

x

�

e� 1
�C1.x/

�0 � �2

x2
e� 2
�C2.x/C �.� � � C 1/p

� �
�

� C 1
2

�

� x

2

���1
;

where

e� ˇ
�.x/ D �

Z 1

0

e��t
Z Œet �

1

du
�

ei�u .uˇ � 1/.L�.xu/� I�.xu//
�

dt du :

Now, a completely different type of integral representation formula will be
derived for TI;L

�;�C1.x/ which simplifies the nonhomogeneous part of related differ-
ential equation (5.17).

Theorem 5.12 (Baricz and Pogány [18]) If � > 0 and x > 0; then we have

T
I;L
�;�C1.x/ D

Z 1

0

J�.xt/

�

coth.�t/ � 1

�t

�

dt

t�C1 :
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Proof Consider the well-known summation formula [99]

X

n�1

1

a2 C n2
D �

2a
coth.�a/� 1

2a2
; a ¤ in :

In conjunction with the Sonin–Gubler formula (5.1) we conclude that

T
I;L
�;�C1.x/ D 2

�

Z 1

0

J�.xt/

0

@

X

n�1

1

t2 C n2

1

A

dt

t�

D
Z 1

0

J�.xt/

�

coth.�t/ � 1

�t

�

dt

t�C1 ;

which confirms the assertion. ut
Remark 5.1 Actually, the formula

X

n�1

1

a2 C n2
D �

2a
coth.�a/ � 1

2a2
; a ¤ 0

has been considered by Hamburger [99, p. 130, Eq. (C)] in the slightly different
form

1C 2
X

n�1
e�2�na D i cot�ia D 1

�a
C 2a

�

X

n�1

1

a2 C n2
; a ¤ in : (C)

Hamburger proved that the functional equation for the Riemann Zeta function is
equivalent to (C), see also [45] for connections of the above formulae to Eisenstein
series.

Also, it is worth to mention that further, complex analytical generalizations of
above formula can be found in [29]. �

5.5 Bromwich–Wagner Integral Form of J�.x/

As a by-product of Theorem 5.12, it turns out the integral relation

T
I;L
�;�C1.x/ D

X

n�1

1

n�C1 .I�.xn/� L�.xn// ; � > 0; x > 0

which, in the expanded form reads

Z

1

0

J�.xt/

�

coth.� t/ � 1

� t

�

dt

t�C1
D .�C1/

Z

1

0

Z Œes�

0

du .I�.xu/ � L�.xu//
ds du

e.�C1/s
:
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This arises in a Fredholm type convolutional integral equation of the first kind with
degenerate kernel

Z 1

0

f .xt/

�

coth.�t/ � 1

�t

�

dt

t�C1 D F�.x/ ; (5.18)

having nonhomogeneous part

F�.x/ D .� C 1/

Z 1

0

Z Œes�

0

e�.�C1/s
du .I�.xu/� L�.xu// ds du : (5.19)

Obviously, J� is a particular solution of this equation.
Before we state our result, we say that the functions f and g are orthogonal

a.e. with respect to the ordinary Lebesgue measure on the positive half-line when
R1
0

f .x/g.x/dx vanishes, writing this as f ? g.

Theorem 5.13 (Baricz and Pogány [18]) Let � > 0 and x > 0. The first
kind Fredholm type convolutional integral equation with degenerate kernel (5.18)
possesses particular solution f D J� C h, where h 2 L1.RC/ and

h.x/ ? x���1
�

coth.�x/ � 1

�x

�

; x > 0

if and only if the nonhomogeneous part of the integral equation equals F�.x/ given
by (5.19).

We mention that h as in the above theorem has been constructed in [71, Example].
To solve the integral equation (5.19) we use the Mellin integral transform technique,
following some lines of a similar procedure used by Draščić–Pogány in [71]. The
Mellin transform pairs of certain suitable f we define as [301]

Mp. f / D
Z 1

0

xp�1f .x/ dx WD g. p/

M�1
x .g/ D 1

2�i

Z cCi1

c�i1
x�pMp. f / dp ;

where the inverse Mellin transform is given in the form of a line integral with
Bromwich–Wagner type integration path which begins at c � i1 and terminates
at c C i1. Here the real c belongs to the fundamental strip of the inverse Mellin
transform M�1.

Theorem 5.14 (Baricz and Pogány [18]) Let � > 0; x > 0. Then the following
Bromwich–Wagner type line integral representation holds true

J�.x/ D � C 1

2i

Z cCi1

c�i1

Mp

 

Z

1

0

Z Œes�

0

e�.�C1/s du .I�.xu/ � L�.xu// ds du

!

�
� p��

2

�

�
�

��p
2

C 1
�

�.� � p C 2/
xp�1 dp ;

(5.20)

where c 2 .�; � C 1/.
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Proof Applying Mp to the equation (5.18), we get

Mp

�Z 1

0

J�.xt/
�

coth.�t/ � 1

�t

� dt

t�C1

�

D Mp.F�/ :

By the Mellin-convolution property

Mp . f ? g/ D Mp

�Z 1

0

f .rt/ � g.t/ dt

�

D Mp. f / � M1�p.g/ ;

it follows that

Mp
�

x���1� coth�x � .�x/�1/
� � M1�p. J�/ D Mp.F�/ : (5.21)

The fundamental analytic strip contains .�; 1C �/, because the coth behaves like

coth z D
8

<

:

1

z
C z

3
C O.z3/; z ! 0

1C 2e�2z



1C O
�

e�2z
��

; z ! 1
I

in both cases <.z/ > 0. Now, rewriting x���1 �coth�x � .�x/�1
�

by (C) and using
termwise the Beta function description, we conclude that

Mp
�

x���1 �coth�x � .�x/�1
�� D 1

�
B
�p � �

2
;
� � p

2
C 1

�

�.� � p C 2/ ;

for all p 2 .�; � C 1/. Therefore

M1�p. J�/ D �Mp.F�/

B
� p��

2
;
��p
2

C 1
�

�.� � p C 2/
;

which finally results in

J�.x/ D � C 1

2i

Z cCi1

c�i1

Mp

 

Z

1

0

Z Œes�

0

e�.�C1/s
du .I�.xu/ � L�.xu// ds du

!

B
� p��

2
;
��p
2

C 1
�

�.� � p C 2/
xp�1 dp ;

where the fundamental strip contains c D � C 1
2
. So, the desired integral

representation formula is established. ut
We note that the formula-collection [112] does not contain (5.20).
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Theorem 5.15 (Baricz and Pogány [18]) Let 0 < � < 3
2
; x > 0. Then

T
I;L
�;�C1

.x/ D 1

2pC1 � i

Z cCi1

c�i1

�
�

��p
2

C 1
2

�

�.� � p C 2/

sin



�
2
. p � �/� � �

�

�Cp
2

C 1
2

� x�p dp; c 2 .�; �C1/ :

Proof Consider relation (5.21). Expressing M1�p. J�/ via formula [225, p. 93,
Eq. 10.1]

Mp . J�.ax// D 2p�1

ap

�
�

�Cp
2

�

�
�

��p
2

C 1
� ; a > 0; �� < p < 3

2
;

equality (5.21), by virtue of the Euler’s reflection formula becomes

Mp.F�/ D �
�

��p
2

C 1
�

�
�

��p
2

C 1
2

�

�
� p��

2

�

�.� � p C 2/

2p � �
�

�Cp
2

C 1
2

�

D �
�

��p
2

C 1
2

�

�.� � p C 2/

2p sin



�
2
. p � �/� � �

�

�Cp
2

C 1
2

� :

Having in mind that F�.x/ is the integral representation of the Schlömilch series
T

I;L
�;�C1.x/, inverting the last display by M�1

p we arrive at the asserted result. ut

5.6 Summing up Schlömilch Series of Struve Functions

In 1987 Lorch and Szego [175] considered the series

s�q.a; x; �/ D
X

n�1

"n H�.nx/

nq.n2 � a2/.nx/�
; (5.22)

for positive odd integers q, where "n D 1 or "n D .�1/n�1. Using mathematical
induction, they proved that [175, p. 56, Eq. (22)]


�.2kC1/.0; x; �/ D
k
X

nD0
.�1/n �.2k C 2 � 2n/ x2nC1

.2n C 1/ŠŠ
p
� 2�Cn �

�

� C n C 3
2

�

� .�1/k� x2kC2

.k C 1/Š 2�C2kC3� .� C k C 2/

C .�1/kx2kC3

.2k C 3/ŠŠ
p
� �

�

� C k C 5
2

�

2�CkC2 ; (5.23)
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where k 2 N�1 D f�1; 0; 1; : : : g, � > � 3
2
, x 2 .0; 2�/, 
�.2kC1/.0; x; �/ stands for

the series s�.2kC1/.0; x; �/ containing "n D 1, and � signifies the Riemann’s Zeta
function. We point out that for k D �1, the sum in 
�.2kC1/.0; x; �/ has to be taken
to be zero.

Also, when "n D .�1/n�1, writing S�q.a; x; �/ for (5.22), the same authors
obtained [175, p. 54, Eq. (18)]

S�.2kC1/.0; x; �/ D
kC1
X

nD0
.�1/n ˚.�1; 2k C 2 � 2n; 1/ x2nC1

.2n C 1/ŠŠ
p
� 2�Cn �

�

� C n C 3
2

� ; (5.24)

for all k 2 N�1, � > � 3
2
, x 2 Œ0; �/; here ˚ denotes the Hurwitz–Lerch Zeta.

Motivated by already stated results by Lorch and Szego, Jankov Maširević [137]
presented a new proof of the summations (5.23), (5.24) for 
�.2kC1/.0; x; �/ and
S�.2kC1/.0; x; �/, respectively and show its validity for a significantly wider range of
variable x, in the case when � > � 1

2
. We recall those results in the Theorem 5.16,

below.

Theorem 5.16 (Jankov Maširević [137]) For all � > � 1
2

there holds


�.2kC1/.0; x; �/ D
k
X

nD0
.�1/n �.2k C 2 � 2n/ x2nC1

.2n C 1/ŠŠ
p
� 2�Cn �

�

� C n C 3
2

�

� .�1/k� x2kC2

.k C 1/Š 2�C2kC3� .� C k C 2/

C .�1/kx2kC3

.2k C 3/ŠŠ
p
� �

�

�Ck C 5
2

�

2�CkC2 ; (5.25)

where x 2 .0; 2�/ for k D �1 and x 2 Œ0; 2�� for all k 2 N0. Moreover

S�.2kC1/.0; x; �/ D
kC1
X

nD0
.�1/n ˚.�1; 2k C 2 � 2n; 1/ x2nC1

.2n C 1/ŠŠ
p
� 2�Cn �

�

� C n C 3
2

� ; (5.26)

where x 2 .��; �/ for k D �1 and x 2 Œ��; �� for all k 2 N0.

Proof Firstly, let us establish the convergence conditions of the series

s�.2kC1/.0; x; �/ D 1

x�
X

n�1

"n

n2kC�C3 H�.nx/ ; k 2 N�1 :

Using the identity [1, p. 497, Eq. (12.1.21)]

H�.z/ D z�C1

2�
p
� �

�

� C 3
2

� 1F2
h

1
3
2
; � C 3

2

ˇ

ˇ

ˇ � z2

4

i
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and the asymptotic expansion for the generalized hypergeometric function [199,
p. 274, Eq. (2.2b)]

pFpC1
h a1; � � � ; ap

b1; � � � ; bpC1

ˇ

ˇ

ˇ � z2
i

�
p
X

kD1
Akz�2ak C ApC1z

1
2CC cos.2z C B/ ; (5.27)

where jzj ! 1, jargzj < �
2

, the Ak, k D 1; 2; : : : ; p C 1 and B are dependent on the

parameters of the function pFpC1 and C WD Pp
kD1 ak �PpC1

kD1 bk, we conclude

js�.2kC1/.0; x; �/j � 1

jxj�
X

n�1

jH�.nx/j
n2kC�C3

� jxj
2��2p� � �� C 3

2

�

 

jA1j
x2
�.2k C 4/C 2�� 1

2 jA2j
jxj�C 3

2

�

�

2k C � C 7

2

�

!

;

where the convergence is ensured for � > � 1
2
.

Next, letting x ! 0 in the integral representation [1, p. 496, Eq. (12.1.6)]

H�.x/ D 2
�

x
2

��

p
� �

�

� C 1
2

�

Z 1

0

.1 � t2/�� 1
2 sin.xt/ dt; (5.28)

valid for jargxj < �
2
; <.�/ > � 1

2
, we see that H�.x/ D x�C1.1 C o.1//. So, the

series (5.22) is also defined at x D 0.
Thus, by the previous integral representation, formulae (1.6), (1.8) and Legen-

dre’s duplication formula (1.3), we get


�.2kC1/.0; x; �/ D .�1/k2��.2�/2kC3
p
� �

�

� C 1
2

�

� .2k C 4/

Z 1

0

.1 � t2/�� 1
2B2kC3

� xt

2�

�

dt

D .�1/k
21C�

� x

2

�2kC3



2kC3
X

nD0

Bn

� .n C 1/ �
�

k � n
2

C 5
2

�

�
�

k C � � n
2

C 5
2

�

�

4�

x

�n

D .�1/kx2kC3

24C�C2k �
�

k C 5
2

�

�
�

k C � C 5
2

�

� .�1/k�x2kC2

� .k C 2/2�C2kC3 � .� C k C 2/

C .�1/k
2�

� x

2

�2kC1



k
X

mD0

.�1/m �.2m C 2/

�
�

k � m C 3
2

�

�
�

k C � � m C 3
2

�

�

2

x

�2m
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D .�1/kx2kC3 � .k C 2/

21C�
p
� �

�

k C � C 5
2

�

� .2k C 4/

� .�1/k�x2kC2

� .k C 2/2�C2kC3 � .� C k C 2/

C
k
X

nD0

.�1/nx2nC1 �.2k � 2n C 2/ � .n C 1/

2�
p
� �

�

n C � C 3
2

�

� .2n C 2/
:

Finally, using the identity .2n C 1/Š D .2n C 1/ŠŠ � 2n nŠ; n 2 N0 we conclude the
formula (5.25), where x 2 .0; 2�/, for k D �1 and x 2 Œ0; 2��, for k 2 N0, based
on the conditions under which (1.8) holds.

Analogously, by virtue of the integral representation (5.28) we infer

S�.2kC1/.0; x; �/D .�1/kC12��.2�/2kC3
p
� �

�

�C 1
2

�

� .2k C 4/

Z 1

0

.1 � t2/�� 1
2 B2kC3

�

xt

2�
C 1

2

�

dt;

where x 2 .��; �/ for k D �1 and x 2 Œ��; �� for k 2 N0. Now, using the same
proving procedure as in Theorem 4.3, with a help of (4.20), (1.6) and the Legendre’s
duplication formula (1.3) we obtain

S�.2kC1/.0; x; �/ D .�1/kC1x2kC3

22C�Ck
p
�.2k C 3/ŠŠ �

�

5
2

C k C �
�

C
k
X

nD0

.�1/n.1 � 22n�2k�1/ �.2k � 2n C 2/ x1C2n

2�Cn
p
� .2n C 1/ŠŠ �

�

3
2

C � C n
� ;

which becomes (5.26), using the properties of Hurwitz–Lerch Zeta function (4.21).
ut

5.7 Dini Series

The series of the form

D�.z/ WD
X

n�1
bn J� .��;nz/ ; (5.29)

where � � � 1
2
; z 2 C; the coefficients bn are constants, J� stands for the Bessel

function of the first kind of order � and ��;n denotes the nth positive zero of
z� d�;˛.z/, where d�;˛ denotes the Dini-function (1.30), arranged in ascending order
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of magnitude, is called Dini series of Bessel functions, which is a generalization of
the Schlömilch series, compare Chap. 4. The coefficients bn, n 2 N read (1.31)

.�2�;n � �2/J2�C1. j�;n/C bn D .�2 � �2�;n/

�2�;n



J0
�. j�;n/

� C 2



J0
�. j�;n/

�

Z 1

0

x f .x/ J�. j�;n/x/ dx :

Observe that changing the argument .ˇCn/x inside summands of Sˇ
� .x/ � S

ˇ;J
� .x/

in (4.8) to ��;nx we arrive at the Dini series D�.x/.
It is also worth to mention that Fourier [84] considered Dini series in the case

when � D 0 in solving the problem of the propagation of heat in a circular cylinder.
In this problem the heat is radiated from the cylinder, where the physical significance
of the constant ˛ in the Dini’s function is the ratio of the external conductivity of
the cylinder to the internal conductivity. For the more detailed historical overview
the interested reader is referred to [333, Section XVIII].

Our first main aim in this section is to derive the double definite integral
representation of the Dini series (5.29); this result is given in [27].

Theorem 5.17 (Baricz et al. [27]) Let " > 0 and b; � 2 C1.RC/ be such that the
function

�.u;w/ D @

@u

 

� ."u C � C 1
2
/

�"uC�.u/
J"uC�

�

�.u/x
�

!

� dw

 

b.w/�"wC�.w/
� ."w C � C 1

2
/

!

is integrable. Let b
ˇ

ˇ

N
D .bn/n�1; �

ˇ

ˇ

N
D .��;n/n�1 and assume that

`b D lim sup
n!1

jbnj 1n < 1 :

Then for all � > � 1
2

and x 2 .0; 2/ we have

D�.x/ D �
Z 1

1

Z Œu�

0

@

@u

�J�
�

�.u/x
�

��.u/

�

dw

�

b.w/��.w/
�

du dw :

Proof First, let us consider the integral form for the Kapteyn series K
�
�;".x/ D

P

n�1 bnJ�C"n..� C n/x/ which is given in Theorem 3.5. Then, consider certain
suitable � 2 C1.RC/, which interpolates the set .��;n/n�1 which constitutes of all
positive zeros of d�;˛.x/ taken in ascending order. Substituting instead of � C n
the expression �.n/ in the integral representation (3.23), given in Theorem 3.5 and
applying similar procedure as in that theorem, we conclude that jxj < 2	 1

" , where

	 D
�"

e

�"
�

lim sup
n!1

jbnj 1n
�

��;n

n

�"��1
:
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So, the argument’s range changes to

x 2
 

0; 2min

(

1;
"

e

�

lim sup
n!1

jbnj 1n
�

��;n

n

�"�� 1
"

)!

DW Ib;" :

In the next step we are interested in the limit of 	
1
" as " approaches zero from the

right. Since

	� 1
" � e

"
`
1
"

b �
�

lim sup
n!1

�

��;n

n

�"� 1
"

;

it is necessary to determine the behavior of ��;n=n for large n. For this, first we show
that for all n 2 f1; 2; : : : g we have ��;n 2 . j�;n�1; j�;n/; where j�;n is the nth positive
zero of J�.x/. Note that for n D 1 the fact that ��;1 2 .0; j�;1/ was pointed out in
[126, p. 11]. Now, suppose that n 2 f2; 3; : : : g: In view of the recurrence relation

J0
�.x/ D J��1.x/� .�=x/J�.x/

we have

d�;˛. j�;s/ D j�;sJ
0
�. j�;s/ D j�;sJ��1. j�;s/;

where s 2 fn � 1; ng: On the other hand it is known that zeros of J��1 and J�
interlace, so d�;˛. j�;n�1/ � d�;˛. j�;n/ < 0, because J��1.x/ has opposite sign at the
subsequent zeros j�;n�1 and j�;n. Thus, the root of d�;˛.x/ D 0; that is, ��;n belongs
to . j�;n�1; j�;n/. Consequently, for all n 2 f1; 2; : : : g we obtain

j�;n�1
n

<
��;n

n
<

j�;n
n
;

which in view of the MacMahon expansion [333, p. 506] (see also Schläfli’s footnote
[277, p. 137])

j�;n D �

n C �
2

� 1
4

�

� C O
�

1
n

�

; n ! 1;

shows that limn!1 ��;n=n D � . Hence

�

lim sup
n!1

�

��;n

n

�"� 1
"

D lim
n!1

��;n

n
D � ;

since x 7! x" 2 C.RC/; where " > 0. Consequently, these show that

lim
"&0

	� 1
" � e� lim

"&0

`
1
"

b

"
D 0 :
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Now, it immediately follows that Ib;0 D .0; 2/, and (3.23) becomes

eK
�
�;".x/ D �

Z 1

1

Z Œu�

0

@

@u

��
�

"u C � C 1
2

�

�"uC�.u/
J"uC�

�

�.u/ x
�

�


 dw

 

b.w/��C"w.w/
�
�

� C "w C 1
2

�

!

du dw : (5.30)

Since the integrand in (5.30) is integrable, by the Lebesgue dominated convergence
theorem we get

lim
"&0

eK
�
�;".x/ D D�.x/ ;

which finishes the proof of Theorem 5.17. ut
We draw the reader’s attention to the fact that

lim
"&0

K
�
�;".x/ D S

�
� .x/;

so actually Kapteyn series K �
�;";eK

�
�;" connect Schlömilch’s S�

� and Dini’s D� series.

5.8 Dini Series and the Bessel Differential Equation

Analogously as we derived integral representations for Kapteyn and Schlömlich
series, using Bessel differential equation, in Sects. 3.3 and 4.2, respectively, exploit-
ing the non-homogeneous Bessel ordinary differential equation we can conclude the
following result:

Theorem 5.18 (Baricz et al. [27]) Let b; � 2 C1.RC/, and b
ˇ

ˇ

N
D .bn/n�1; �

ˇ

ˇ

N
D

.��;n/n�1. Assume that series
P

n�1 bn�
5
3
�;n absolutely converges. Then the Dini

series (5.29) is a particular solution of the nonhomogeneous Bessel-type differential
equation

x2y00 C xy0 C .x2 � �2/y D E�.x/ ;

where E�.x/ is given with

E�.x/ WD x2
X

n�1
.1 � �2�;n/bnJ�.��;nx/
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and for all x 2 .0; 2/ it is

E�.x/ D �x2
Z 1

1

Z Œu�

0

@

@u

�J�.�.u/ x/

��.u/

�

dw
�

b.w/ .1 � �2.w//��.w/� du dw:

(5.31)

At the end of this section, analogous procedure as we used to derive familiar
integral representations of Neumann, Kapteyn and Schlömilch series lead us to the
following integral representation of (5.29):

Theorem 5.19 (Baricz et al. [27]) Let the situation for b; � be the same as in
Theorem 5.18. Then, for all � > � 1

2
and x 2 .0; 2/ there holds

D�.x/ D J�.x/

2

Z

1

xJ2�.x/

�Z

J�.x/E�.x/

x
dx

�

dx

C Y�.x/

2

Z

1

xY2� .x/

�Z

Y�.x/E�.x/

x
dx

�

dx ;

where E� is the Dini series associated with D�.x/, which possesses the integral
form (5.31).

5.9 Jacobi Polynomials in Sum

The Jacobi polynomials, which are also called hypergeometric polynomials [155],
can be represented with the following formula [286]

P.˛;ˇ/n .z/ D .1C ˛/n

nŠ
2F1

��n; 1C ˛ C ˇ C n
1C ˛

ˇ

ˇ

ˇ

1 � z

2



:

It is worth mentioning that Luke and Wimp [180] proved that if we have continuous
function f .x/, which has a piecewise continuous derivative for 0 � x � �, then f .x/
may be expanded into a uniformly convergent series of shifted Jacobi polynomials
in the form

f .x/ D
X

n�0
an.�/P

.˛;ˇ/
n

�

2x

�
� 1

�

;

where � � ��1x � 1� �, � > 0, ˛ > �1, ˇ > �1. Various techniques are available
for the determination of the coefficients an.�/.

Let us define a functional series in the following form

P˛;ˇ.z/ D
X

n�1
˛nP.˛;ˇ/n .z/; z 2 C: (5.32)
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We point out that the Bulgarian mathematician P. Rusev studied in [271] the
convergence of the series P˛;ˇ.z/ (precisely, he considered a0 C P˛;ˇ.z/).

In this section, our main aim is to derive several integral representations for the
Rusev series (5.32), derived in the article [132, p. 109 et seq.]. The double integral
representation is given in the following theorem:

Theorem 5.20 (Jankov and Pogány [132]) Let a 2 C1.RC/ and ajN D .an/n�1.
Then for all ˛ > � 1

2
, ˛ C ˇ > �1 and for all x belonging to

Ia D �

maxf0; 2�� 1g; 1� (5.33)

we have the integral representation

P˛;ˇ.x/ D �
Z 1

1

Z Œs�

0

@

@s

 

� .2s C 1/P.˛;ˇ/s .x/

� .˛ C s C 1
2
/� .ˇ C s C 1

2
/

!


 dw

 

a.w/ � .˛ C w C 1
2
/� .ˇ C w C 1

2
/

� .2w C 1/

!

ds dw :

Proof First, we begin by establishing the convergence conditions for the series
P˛;ˇ.x/.

For that purpose, let us consider the integral representation given by Feldheim
[81]:

P.˛;ˇ/n .x/ D 1

� .˛ C ˇ C n C 1/

Z 1

0

t˛CˇCne�t L.˛/n

�

1

2
.1 � x/t

�

dt ; (5.34)

valid for all n 2 N0; ˛ C ˇ > �1, where L.˛/n is the Laguerre polynomial. We
estimate (5.34) via the bounding inequality for Laguerre functions L.�/� .x/, given by
Love [177, p. 295, Theorem 2]:

jL.�/� .x/j � � .<.� C �C 1//

j� .� C 1/j� .<.�/C 1/

� .<.�/C 1
2
/

j� .�C 1
2
/j ex ; (5.35)

where � 2 C, x > 0, <.�/ > � 1
2

and <.�C �/ > �1, which has been generalized
by Pogány and Srivastava [246]. Specifying � D ˛ 2 R; � D n 2 N0 the
bound (5.35) reduces to

jL.˛/n .x/j � � .n C ˛ C 1/

nŠ � .˛ C 1/
ex; x > 0 : (5.36)

Now, applying bound (5.36) to the integrand of (5.34), we have that

ˇ

ˇP˛;ˇ.x/
ˇ

ˇ � 1

� .˛ C 1/

�

2

1C x

�˛CˇC1
X

n�1

janj� .˛ C n C 1/

nŠ

� 2

1C x

�n
:
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The resulting power series converges uniformly for all x satisfying constraint (5.33).
A more convenient integral representation for the Jacobi polynomials has been

given by Braaksma and Meulenbeld [41], [64, p. 191]

P.˛;ˇ/n .1 � 2z2/ D .�1/n4n.˛ C 1
2
/n.ˇ C 1

2
/n

�.2n/Š

Z 1

�1

Z 1

�1

�

zu ˙ i
p

1 � z2 v
�2n


 .1 � u2/˛� 1
2 .1 � v2/ˇ� 1

2 dudv; 0 � z � 1;

where 2minf˛; ˇg > �1. This expression in an obvious way one reduces to

P.˛;ˇ/n .x/ D 2n.˛ C 1
2
/n.ˇ C 1

2
/n

�.2n/Š

Z 1

�1

Z 1

�1

�

i
p
1 � x u � p

1C x v
�2n


 .1 � u2/˛� 1
2 .1 � v2/ˇ� 1

2 dudv; jxj � 1: (5.37)

Thus, combining (5.32) and (5.37) we get

P˛;ˇ.x/ D 1

�

Z 1

�1

Z 1

�1
.1 � u2/˛� 1

2 .1 � v2/ˇ� 1
2 Da.u; v/ dudv; (5.38)

where Da.u; v/ is the Dirichlet series

Da.u; v/ D
X

n�1

an .˛ C 1
2
/n.ˇ C 1

2
/n

.2n/Š

�

2
�

i
p
1� x u � p

1C x v
�2
�n

D
X

n�1

an .˛ C 1
2
/n.ˇ C 1

2
/n

.2n/Š
e�n log

�p
2.i

p
1�x u�p

1Cx v/
�

�2

:

The Dirichlet series possesses Laplace integral representation when its parameter
has positive real part, therefore we are looking for the two-dimensional region
Suv.x/ in the uv-plane where

<
n

log 2
�

i
p
1 � x u � p

1C x v
�2
o

D log 2
�

.1C x/v2 C .1 � x/u2
�

< 0 :

So, we get the ellipse

Suv.x/ D
n

.u; v/ 2 R
2W .1C x/v2 C .1 � x/u2 < 1

2

o

;

such that is nonempty for all x 2 Ia, so Da.u; v/ converges in Ia.
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Now, the related Laplace-integral and the Euler–Maclaurin summation formula
(see for instance [23, 24]) give us:

Da.u; v/ D � log
�p
2.i

p
1 � x u � p

1C x v/
�2

� .˛ C 1
2
/� .ˇ C 1

2
/



Z 1

0

Z Œs�

0

�
p
2.i

p
1 � x u � p

1C x v/
�2s


 dw

 

a.w/ � .˛ C w C 1
2
/� .ˇ C w C 1

2
/

� .2w C 1/

!

ds dw: (5.39)

Substituting (5.39) into (5.38) we get

P˛;ˇ.x/ D � 1

�� .˛ C 1
2
/� .ˇ C 1

2
/

Z 1

�1

Z 1

�1

Z 1

0

Z Œs�

0

.1 � u2/˛� 1
2 .1 � v2/ˇ� 1

2


 log
�
p
2.i

p
1 � x u � p

1C x v/
�2 � �p2.ip1 � x u � p

1C x v/
�2s


 dw

 

a.w/ � .˛ C w C 1
2
/� .ˇ C w C 1

2
/

� .2w C 1/

!

du dv ds dw : (5.40)

Denoting

Ix.s/ WD
Z 1

�1

Z 1

�1
log

�
p
2.i

p
1 � x u � p

1C x v/
�2


 �
p
2.i

p
1 � x u � p

1C x v/
�2s
.1 � u2/˛� 1

2 .1 � v2/
ˇ� 1

2 du dv;

we get

Z

Ix.s/ds D
Z 1

�1

Z 1

�1
�
p
2.i

p
1 � x u � p

1C x v/
�2s
.1 � u2/˛� 1

2 .1 � v2/
ˇ� 1

2 dudv

D �
� .˛ C 1

2
/� .ˇ C 1

2
/� .2s C 1/P.˛;ˇ/s .x/

� .˛ C s C 1
2
/� .ˇ C s C 1

2
/

:

Therefore, we can easily conclude that

Ix.s/ D �� .˛ C 1
2
/� .ˇ C 1

2
/
@

@s

 

� .2s C 1/P.˛;ˇ/s .x/

� .˛ C s C 1
2
/� .ˇ C s C 1

2
/

!

: (5.41)
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Finally, by using (5.40) and (5.41), we immediately get the proof of the theorem,
with the assertion that the integration domain RC becomes Œ1;1/ because Œs� is
equal to zero for all s 2 Œ0; 1/. ut

There exists another, indefinite type integral representation for the functional
series (5.32) which can be obtained by having in mind that the Jacobi polynomials
P.˛;ˇ/n .x/ satisfy a linear homogeneous ordinary differential equation of the second
order [263, 300]:

.1 � x2/y00 C .ˇ � ˛ � .2C ˛ C ˇ/x/ y0 C n.1C ˛ C ˇ C n/y D 0 : (5.42)

Now, using the analogous procedure as in the previous sections concerning Neu-
mann, Kapteyn, Schlömlich and Dini series, but this time using the differential
equation (5.42) instead of Bessel differential equation, we can conclude the
following results:

Theorem 5.21 (Jankov and Pogány [132]) For all ˛ > � 1
2
, ˛ C ˇ > �1 the

particular solution of the linear ordinary differential equation:

.1 � x2/y0 C .ˇ � ˛ � .2C ˛ C ˇ/x/ y D R˛;ˇ.x/ ;

represents the first derivative @
@xP˛;ˇ.x/ of the functional series (5.32), where

R˛;ˇ.x/ is given with

R˛;ˇ.x/ W D �
X

n�1
an n.1C ˛ C ˇ C n/P.˛;ˇ/n .x/

D .1 � x2/P00̨
;ˇ.x/C .ˇ � ˛ � .2C ˛ C ˇ/x/P0̨

;ˇ.x/ :

Here for a 2 C1.RC/, ajN D .an/n�1 and letting
P

n�1 n2 an absolutely converges,
for all x 2 Ia we have the integral representation

R˛;ˇ.x/ D
Z 1

1

Z Œs�

0

@

@s

 

� .2s C 1/P.˛;ˇ/s .x/

� .˛ C s C 1
2
/� .ˇ C s C 1

2
/

!


 dw

 

a.w/w .1C ˛ C ˇ C w/ � .˛ C w C 1
2
/� .ˇ C w C 1

2
/

� .2w C 1/

!

ds dw :

Theorem 5.22 (Jankov and Pogány [132]) Let the situation be the same as in
Theorem 5.21. Then we have

P˛;ˇ.x/ D
Z

1

.1 � x/˛C1.1C x/ˇC1

 

Z

R˛;ˇ.x/.1 � x/˛.1C x/ˇ dx

!

dx ;

where R˛;ˇ.x/ is the series associated with the series P˛;ˇ.x/.
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5.10 Schlömilch Series of von Lommel Functions

The von Lommel function of the first kind [93, 323]

s�;�.z/ D z�C1

4

X

n�0

.�1/n� .1
2
.� � � C 1// � . 1

2
.�C � C 1//

� . 1
2
.� � � C 3/C n2/ � . 1

2
.�C � C 3/C n/

� z

2

�2n

is defined for all �; � 2 C such that neither � � � nor � C � is an odd negative
integer, and for all z 2 C which satisfy �� < arg z � � and it is a particular
solution of the inhomogeneous Bessel differential equation

z2y00 C zy0 C .z2 � �2/y D z�C1; y D s�;�.z/:

Motivated by an importance of von Lommel functions which arise in the theory
of positive trigonometric sums [158] and occurs in several places in physics and
engineering (see e.g. [91]) we are interested in this section in summing up the special
kind Schlömilch series built by members which contain von Lommel function of the
first kind in the form

S�;�.z/ D
X

n�1
˛ns�;�.nz/; z 2 C;

for some special cases of the constants �; �; ˛n. According to our knowledge, such
problem has not been considered in mathematical literature.

More general results about this kind series, with members containing Bessel
function of the first kind J� are recently studied in [131]; also, in 1995 Rawn [265,
p. 285, Eq. (5)] showed that

X

n�1

.�1/n�1J�.nx/

n�
D x�

2�C1 � .� C 1/
; (5.43)

where <.�/ > � 1
2
, x 2 .��; �/ and 2 years later Miller [198, p. 91] proved

X

n�1

J�.nx/

n�
D � x�

2�C1 � .� C 1/
C

p
� x��1

2� �
�

� C 1
2

� ; (5.44)

where <.�/ > � 1
2
, x 2 .0; 2�/.

Quite recently, Tričković et al. [316] proved that for all m 2 N, � > � 1
2

there
holds:

X

n�1

.�1/n�1J�.nx/

n2mC� D
m
X

nD0

.�1/n�.2m � 2n/

nŠ � .� C n C 1/

� x

2

��C2n
; (5.45)
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valid for x 2 .��; �/, where

�.s/ D
X

n�1

.�1/n�1

ns
; <.s/ > 0 ;

signifies the Dirichlet Eta function and

X

n�1

J�.nx/

n2mC� D .�1/m�
2�

�

m C 1
2

�

�
�

m C � C 1
2

�

� x

2

�2mC��1

C
m
X

nD0

.�1/n�.2m � 2n/

� .n C 1/ � .� C n C 1/

� x

2

��C2n
; (5.46)

where x 2 .0; 2�/ and � stands for the Riemann’s Zeta function.
It is important to mention that the authors stated the previous formulae in form of

infinite sums, but knowing the property of Riemann’s Zeta function that �.�2n/ D
0, for n 2 N and also that [195, p. 4]

�.�2n/ D .1 � 21C2n/ �.�2n/ ;

the sums in the previous expressions vanish when n � m C 1. Also, substituting
m D 0 in (5.45) and (5.46) and knowing that

��.0/ D �.0/ D � 1
2

we immediately get (5.43) and (5.44), so the formulae derived by Tričković et al.
are also valid for m D 0, which is not mentioned in theirs article.

Let us also mention that in the book of Brychkov [42, sections 6.8.6, 6.10.3,
6.17.2] one can find exhaustive list of summations for Schlömilch series containing
Bessel function of the first kind and Struve function H� and hypergeometric function
pFqC2 as well which are connected with von Lommel function of the first kind (see
Eqs. (5.50), (5.51)).

Our main objective is to establish closed form expressions for the Schlömilch
series

S˛
�;�.x/ D

X

n�1

"n s�;�.nx/

n˛
; x 2 R; (5.47)

where ˛; �; � are constants and "n D 1 or "n D .�1/n�1. Also, we will derive
several closed expressions for the series which members contain some trigonometric
functions, as a by-product of the mentioned main results and all of those results
concern to the paper by Jankov Maširević [136].
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In what follows we will use notation T˛�;�.x/ for the series (5.47), when "n D 1

andeT˛�;�.x/ in the case when "n D .�1/n�1.

5.10.1 Closed Form Expressions for S˛
�;�.x/

Our first set of main results is based essentially upon already stated formulae due to
Tričković et al. (5.45). The second set of results would make use of the Bernoulli
polynomials defined in Chap. 1.

Theorem 5.23 (Jankov Maširević [136]) For all m 2 N0, � 2 R and � >

maxf�� � 1; � � 2;� 1
2
g there holds

T
2mC�C1
�;� .x/ D x�C1

4
�

�

1C �� �

2

�

�

�

1C �C �

2

�



0

@

.�1/m�
2�

�

m C 1C ���
2

�

�
�

m C 1C �C�
2

�

� x

2

�2m�1

C
m
X

nD0

.�1/n�.2m � 2n/

�
�

n C 1C 1C���
2

�

�
�

n C 1C 1C�C�
2

�

� x

2

�2n

1

A ;

(5.48)

where x 2 .0; 2�/. Moreover for all x 2 .��; �/

eT
2mC�C1
�;� .x/ D x�C1

4
�

�

1C � � �
2

�

�

�

1C �C �

2

�



m
X

nD0

.�1/n �.2m � 2n/

�
�

n C 1C 1C���
2

�

�
�

n C 1C 1C�C�
2

�

� x

2

�2n
:

(5.49)

Proof First, let us establish the convergence conditions of the series

S
2mC�C1
�;� .x/ D

X

n�1

"n s�;�.nx/

n2mC�C1 ; m 2 N0 :

Using the fact that the von Lommel function of the first kind can be expressed in
terms of a hypergeometric function [224, p. 281] as

s�;�.z/ D z�C1

.� � � C 1/.�C � C 1/
1F2

h

1
���C3

2
;
�C�C3

2

ˇ

ˇ

ˇ � z2

4

i

(5.50)
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and the asymptotic expansion for the generalized hypergeometric function (5.27)
we conclude

jS2mC�C1
�;� .x/j �

X

n�1

js�;�.nx/j
n2mC�C1 � jxj�C1

.�� � C 1/ .�C � C 1/



 

4 jA1j
x2

�.2m C 2/C jA2j�
�

2m C �C 3
2

�

�

2

jxj
��C 3

2

!

;

where the convergence is ensured for � > � 1
2
.

Now, by virtue of an integral representation [78, p. 42, Eq. (86)]

s�;�.x/ D 2� �

�

1C � � �

2

�

� x

2

�
1C�C�

2



Z �

2

0

J.1C���/=2.x sin t/ .sin t/.1C���/=2.cos t/�C� dt;

valid for <.� C �C 1/ > 0 and summation formula (5.46) we get

T
2mC�C1
�;� .x/ D 2� �

�

1C � � �

2

�

� x

2

�
1C�C�

2

Z �
2

0

.sin t/.1C���/=2.cos t/�C�



X

n�1

1

n2mC.1C���/=2 J.1C���/=2.n x sin t/ dt

D x�C1

2
�

�

1C �� �

2

�

 

.�1/m�
2�

�

m C 1
2

�

�
�

m C 1C ���
2

�



� x

2

�2m�1 Z �
2

0

.sin t/2m.cos t/�C� dt

C
m
X

nD0

.�1/n�.2m � 2n/

� .n C 1/ �
�

n C 1C 1C���
2

�



� x

2

�2n
Z �

2

0

.sin t/1C2n.cos t/�C� dt

!

;

which immediately gives the desired formula.
Analogously, using the previous integral representation and (5.45) we conclude

eT
2mC�C1
�;� .x/ D x�C1

2
�

�

1C � � �
2

� m
X

nD0

.�1/n �.2m � 2n/

� .n C 1/ �
�

n C 1C 1C���
2

�



� x

2

�2n
Z �

2

0

.sin t/1C2n.cos t/�C� dt;

which is equal to (5.49). ut
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Remark 5.2 Using the well-known symmetry property [333, p. 348] s�;��.x/ D
s�;�.x/ we deduce that the summation formulae for the series T

2mC�C1
�;�� .x/ and

eT
2mC�C1
�;�� .x/ has the same form as (5.48) and (5.49), respectively.

Furthermore, knowing that the von Lommel function is related to the Struve
function H� by [78, p. 42, Eq. (84)]

s�;�.x/ D
p
� �

�

� C 1
2

�

H�.x/

21��
; (5.51)

and setting m 7! m C 1 and � D � in the formulae (5.48) and (5.49), we can
conclude the summation formulae (5.25) and (5.26) for the Schlömlich series which
members containing Struve functions, derived in Theorem 5.16. �

In what follows, we will prove that, in the case when m 2 N, � 7! � � 3
2

and
� D 1

2
, the summation formulae (5.48) and (5.49) are also valid for x equal to the

endpoints of a given intervals.

Theorem 5.24 (Jankov Maširević [136]) For all m 2 N, � > 0

T
2mC�� 1

2

�� 3
2 ;
1
2

.x/ D .�1/m�1x2mC�� 1
2 � .� � 1/

2



 

��
x� .2m C �/

C 2

m
X

nD0

.�1/n�1�.2n/

� .2m C �C 1 � 2n/ x2n

!

;

where x 2 Œ0; 2��. Moreover

eT
2mC�� 1

2

�� 3
2 ;
1
2

.x/ D .�1/m x2mC�� 1
2 � .� � 1/

m
X

nD0

.�1/n.1� 21�2n/ �.2n/

x2n � .2m C �C 1 � 2n/
;

holds for x 2 Œ��; ��.
Proof First, let us establish the convergence conditions of the series S

2mC�� 1
2

�� 3
2 ;
1
2

.x/.

To this aim let us consider the integral representation referred to Baricz et al. [16],
valid for � > 0:

s�� 3
2 ;
1
2
.x/ D x�� 1

2

�� 1

Z 1

0

.1 � t/��1 cos.xt/ dt: (5.52)

Consequently, we get

js�� 3
2 ;
1
2
.x/j � jxj�� 1

2

j�� 1j
Z 1

0

.1 � t/��1 dt D jxj�� 1
2

� j� � 1j ;
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that is

jS2mC�� 1
2

�� 3
2 ;
1
2

.x/j �
X

n�1

js�� 3
2 ;
1
2
.nx/j

n2mC�� 1
2

� jxj�� 1
2

� j� � 1j
X

n�1

1

n2m
D jxj�� 1

2

� j� � 1j �.2m/;

where the convergence is ensured being m � 1.
Using the previous integral representation and the same proving procedure as in

Theorems 4.3 and 5.16 we can conclude the desired formulae. ut
Theorem 5.25 (Jankov Maširević [136]) For all � > 0 there holds

T
2mC�� 3

2

�� 1
2 ;
1
2

.x/ D .�1/m� .�/ x2mC�� 3
2

2

 

��
x� .2m C � � 1/

C 2

m�1
X

nD0

.�1/n�1�.2n/

� .2m C � � 2n/ x2n

!

;

where x 2 .0; 2�/, for m D 1 and x 2 Œ0; 2��, for m 2 N2. Moreover

eT
2mC�� 3

2

�� 1
2 ;
1
2

.x/ D .�1/mC1x2mC�� 3
2 � .�/

m�1
X

nD0

.�1/n.1 � 21�2n/ �.2n/

� .2m C �� 2n/ x2n

holds true for x 2 .��; �/ when m D 1 and x 2 Œ��; �� for m 2 N2.

Proof Analogously as we did in the Theorem 5.23, we can conclude that the series

S
2mC�� 3

2

�� 1
2 ;
1
2

.x/ D
X

n�1

"n s�� 1
2 ;
1
2
.nx/

n2mC�� 3
2

; m 2 N

converges for all � > 0 being

jS2mC�� 3
2

�� 1
2 ;
1
2

.x/j �
X

n�1

js�� 1
2 ;
1
2
.nx/j

n2mC�� 3
2

� jxj�C 1
2

� .�C 1/

 

4 jA1j
x2

�.2m/C jA2j�.2m C � � 1/

�

2

jxj
��C1!

:

The rest is obvious and follows by considering the same concluding process as in
the previous theorem, except here we use an integral representation [16]

s�� 1
2 ;
1
2
.x/ D x�� 1

2

Z 1

0

.1 � t/��1 sin.xt/ dt;

valid for � > 0, instead of (5.52). ut
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5.11 Neumann Series of Meijer G Function

One of the most powerful tools in Mellin–Barnes type complex integrals turns out
to be Meijer G function, which contains as special cases higher transcendental
hypergeometric functions, Bessel functions family members including the Struve
functions. The symbol Gm;n

p;q .�j �/ denotes Meijer’s G-function [190] and [186]
defined in terms of the Mellin–Barnes integral reads

Gm;n
p;q

�

z
ˇ

ˇ

ˇ

a1; � � � ; ap

b1; � � � ; bq

�

D 1

2�i

Z

C

m
Q

jD1
� .bj � s/

n
Q

jD1
� .1 � aj C s/ � zs

q
Q

jDmC1
� .1 � bj C s/

p
Q

jDnC1
� .aj � s/

ds; (5.53)

where 0 � m � q; 0 � n � p and the poles aj; bj are such that no pole of � .bj � s/;
j D 1;m coincides with any pole of � .1 � aj C s/; j D 1; n; i.e. aj � bj 62 N,
while z ¤ 0. C is a suitable integration contour which starts at �i1 and goes to i1
separating the poles of � .bj � s/; j D 1;m which lie to the right of the contour, from
all poles of � .1� aj C s/; j D 1; n, which lie to the left of C. The integral converges
if ı D m C n � 1

2
.p C q/ > 0 and jarg.z/j < ı� , see [178, p. 143], [179, 186] and

[190].
The asymptotic expansion results of Meijer’s G-function derived by Braaksma

[40, Section 11,Theorems 10–17] for various values and constraints upon m; n; p; q.
By Braaksma these asymptotic expansions are actually rederived results given
earlier by Meijer in [190]. However, the advantages of novel different kind proving
procedures and formulations in [40] are that they hold uniformly in closed sectors
and in the transition regions. Moreover, a recurrence method was proposed for
expansion coefficients finding.

The Meijer G function allows expressing of all four Bessel functions for all
values of the parameter by the following special cases [77, p. 219]

J�.z/ D
� z

2

��

G1;0
0;2

� z2

4

ˇ

ˇ

ˇ 0; � �
�

I�.z/ D �
� z

2

��

G1;0
1;3

� z2

4

ˇ

ˇ

ˇ

1
2

0; � �; 1
2

�

Y�.z/ D �
� z

2

��

G2;0
1;3

� z2

4

ˇ

ˇ

ˇ

� 1
2
.� C 1/

�
2
; � �

2
; � 1

2
.� C 1/

�

; <.z/ > 0

K�.z/ D 1

2

� z

2

��

G2;0
0;2

� z2

4

ˇ

ˇ

ˇ � �

2
; � �

2

�

; <.z/ > 0:
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Furthermore, also hold the representations for the Struve functions [77, p. 220]

H�.z/ D G1;1
1;3

� z2

4

ˇ

ˇ

ˇ

1
2
.� C 1/

1
2
.� C 1/; � �

2
; �
2

�

L�.z/ D � �

sin
�

��
2

� G1;1
2;4

� z2

4

ˇ

ˇ

ˇ

1
2
.� C 1/; 1

2
1
2
.� C 1/; 1

2
; � �

2
; �
2

�

;

where in both cases <.z/ > 0. Finally the von Lommel function

s�;�.z/ D 2��1

�
�

1
2
.1 � � � �/� � � 1

2
.1 � �C �/

� G3;1
1;3

� z2

4

ˇ

ˇ

ˇ

1
2
.�C 1/

1
2
.�C 1/; � �

2
; �
2

�

:

These and another special functions’ connections can be found for instance in [93,
§9.34]. Having in mind these formulae we see that the earlier exposed Neumann,
Kapteyn and Schlömilch series result can be written in Meijer G function form too.
So, we collect and discuss here the related results when the general G-function series
are in the focus of our considerations, getting associated Neumann–Meijer series.

In two consecutive papers Milgram [194, 196] exposed the analysis of two
integrals associated with the integral transport equation in infinitely long, annular
geometry. These integrals have been expressed as sums built by Meijer G function
terms. Certain further special results include the probability integrals and the
generalized Bickley–Nailer function (compare [19] as well) [194, p. 2457, Eq. (2.5)]

Ki��.x/ D
Z �

2

0

cos��1 t sin��1 t e� x
cos t dt; <.�/;<.�/ > 0 ;

which Meijer G series are presented too. The basic model includes the probability
[196, p. 417]

Poo D 4

�

Z �
2

arcsin �
Ki3.2x cos �/ cos � d� ;

where � 2 Œ0; 1�; x 2 RC and we omit the upper parameter being � D 1. The
probability Poo is the radial component of the outer-outer transmission probability,
while

Pio D 4

�

Z �
2

arcsin �
Ki3.R x/ cos � d�

R D
p

1 � �2 arcsin2 � � � cos� ;

turns out to be the radial component of the inner-outer transmission probability
[194, §2, p. 2457]. To expand both integrals into Meijer G sums and then evaluate
them in [196], Milgram developed the necessary mathematical tool in the technical
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report [193]. In turn, these series are Neumann series of Meijer function since the
parameters of the G functions depend linearly by the summation index, viz.

X

k�0

� .c C k/

� .d C k/
Gm;n

p;q

�

z
ˇ

ˇ

ˇ

a1; � � � ; ap

b1; � � � ; bq

� wk

kŠ
;

where some of the G functions parameters are of the form aj D rj ˙ k; b` D
s` ˙ k and ensure the convergence either of the Mellin–Barnes type integral G and
the constituting Gamma function coefficients. The basic model includes only the
jwj < 1, while the extension in jwj � 1 we realize by analytic continuation.

Finally, it is worth to mention Milgram’s Neumann–Bessel series corollaries
mostly associated with the main topic of our monograph [193, p. 7, Eqs. (4.5–6)]:

X

n�0

.c/n

.b/n
J˛�n.2x/

.�x/n

nŠ
D � .b/ � .b C ˛ � c/ x˛

� .b � c/ � .˛ C 1/ � .b C ˛/
1F2

h b C ˛ � c
˛ C 1; b C ˛

ˇ

ˇ

ˇ � x2
i

X

n�0

.c/n

.b/n
K˛Cn.2x/

xn

nŠ
D � .b/

2

(

� .�˛/ x˛

� .d/
1F2

h b � c
˛ C 1; d

ˇ

ˇ

ˇx2
i

C � .˛/� .b � ˛ � c/ x�˛

� .b � c/ � .d � ˛/
1F2

h b � ˛ � c

1 � ˛; d � ˛

ˇ

ˇ

ˇx2
i

)

;

see also [178, p. 20, Eq. (7)].
Motivated by the expansion sum results we introduce the Neumann–Meijer series

in the following form:

N
G
a;b.w; z/ D

X

k�0

gk wk

kŠ
Gm;n

p;q

�

z
ˇ

ˇ

ˇ

c C k; a1; � � � ; ap�1
d C k; b1; � � � ; bq�1

�

: (5.54)

However, we point out that either the integral transforms or inverse integral
transforms of Meijer G terms are expressible also via another numeration and/or
parameters Meijer G functions; therefore our already presented mathematical tools
are not suitable to establish an integral representation for NG

a;b.w; z/. Indeed,
replacing the path integral form of the G function in (5.54) and interchanging the
summation and integration order we get

N
G
a;b.w; z/ D 1

2�i

Z

C

zs

m�1
Q

jD1
� .bj � s/

n�1
Q

jD1
� .1 � aj C s/

q�1
Q

jDm
� .1 � bj C s/

p�1
Q

jDn
� .aj � s/

Eg.sI w/ ds ; (5.55)

where

Eg.sI w/ D
X

k�0

gk wk

kŠ
� .d C k � s/ � .1 � c � k C s/ :
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Employing the formula .a/k.1 � a/�k D .�1/k, we have

Eg.sI w/ D � .d � s/ � .1 � c C s/
X

k�0

gk .�w/k

kŠ

.d � s/k

.c � s/k
I

the radius of convergence 	E of this power series satisfies

	�1
E D e�1 lim sup

k!1
jgkj 1k

k
:

When the coefficients’ behavior is polynomial in k, of degree p 2 N0, say, that is

gk D
p
X

jD0
qj kj ;

Eg.sI w/ becomes entire in w-plane and having in mind that

X

k�0

kj .d � s/k
.c � s/k

.�w/k

kŠ
D .d � s/w

c � s
jFj

h

2; � � � ; 2; d � s C 1

1; � � � ; 1; c � s C 1

ˇ

ˇ

ˇ� w
i

; j 2 N;

we conclude

Eg.sI w/ D �� .d � s C 1/ � .s � c/w
n

q0 � 1F1
hd � s C 1

c � s C 1

ˇ

ˇ

ˇ� w
i

C
p
X

jD1
qj � jFj

h

2; � � � ; 2; d � s C 1

1; � � � ; 1; c � s C 1

ˇ

ˇ

ˇ� w
io

: (5.56)

Returning the expression (5.56) to (5.55) we infer the following p C 1 term linear
combination of integral transforms of generalized hypergeometric functions:

N
G
a;b.w; z/ D �q0 w

2�i

Z

C

zs

m�1
Q

jD1
� .bj � s/

n�1
Q

jD1
� .1 � aj C s/

q�1
Q

jDm
� .1 � bj C s/

p�1
Q

jDn
� .aj � s/


 � .d � s C 1/ � .s � c/ 1F1
h d � s C 1

c � s C 1

ˇ

ˇ

ˇ� w
i

ds



184 5 Miscellanea

� w

2�i

p
X

jD1
qj

Z

C

zs

m�1
Q

jD1
� .bj � s/

n�1
Q

jD1
� .1 � aj C s/

q�1
Q

jDm
� .1 � bj C s/

p�1
Q

jDn
� .aj � s/


 � .d � s C 1/ � .s � c/ jFj

h

2; � � � ; 2; d � s C 1

1; � � � ; 1; c � s C 1

ˇ

ˇ

ˇ� w
i

ds :

This formula holds true for all w 2 C and the related parameter space which is now
not hard to precise by the convergence conditions given around (5.53).

Changing the coefficient sequence .gk/k�0 we can arrive at similar subsequent
set of results. However, general method for deriving integral representation formula
for the Neumann–Meijer series (5.54) will be the task of a forthcoming study.
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Milovanović, G.V., Rassias, M.Th. (eds.) Analytic Number Theory, Approximation Theory,
and Special Functions, pp. 809–820. Springer, Berlin (2014). In Honor of Hari M. Srivastava

21. Baricz, Á., Pogány, T.K.: Turán determinants of Bessel functions. Forum Math. 26(1), 295–
322 (2014)

22. Baricz, Á., Ponnusamy, S.: On Turán type inequalities for modified Bessel functions. Proc.
Am. Math. Soc. 141(2), 523–532 (2013)

23. Baricz, Á., Jankov, D., Pogány, T.K.: Integral representation of first kind Kapteyn series. J.
Math. Phys. 52(4), Art. 043518, pp. 7 (2011)

24. Baricz, Á., Jankov, D., Pogány, T.K.: Integral representations for Neumann-type series of
Bessel functions I� ; Y� and K� . Proc. Am. Math. Soc. 140(3), 951–960 (2012)

25. Baricz, Á., Jankov, D., Pogány, T.K.: Neumann series of Bessel functions. Integral Transforms
Spec. Funct. 23(7), 529–538 (2012)

26. Baricz, Á., Jankov, D., Pogány, T.K.: Turán type inequalities for Krätzel functions. J. Math.
Anal. Appl. 388(2), 716–724 (2012)

27. Baricz, Á., Jankov, D., Pogány, T.K.: Integral representations of Dini series of Bessel
functions. Integral Transforms Spec. Funct. 24(8), 628–635 (2013)

28. Berndt, B.C., Kim, S.: Identities for logarithmic means: a survey. In: Alaca, A., Alaca, Ş.,
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