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Preface

This volume contains a collection of invited survey articles by some of the leading
experts in commutative algebra carefully selected for their impact on the field.
Commutative algebra is growing very rapidly in many directions. The intent of
this volume is to feature a wide range of these directions rather than focus on a
narrow research trend. The articles represent various significant developments in
both Noetherian and non-Noetherian commutative algebra, including such topics
as generalizations of cyclic modules, zero divisor graphs, class semigroups, forc-
ing algebras, syzygy bundles, tight closure, Gorenstein dimensions, tensor products
of algebras over fields, v-domains, multiplicative ideal theory, direct-sum decom-
positions, defect, almost perfect domains, defects of field extensions, ultrafilters,
ultraproducts, Rees valuations, overrings of Noetherian domains, weak normality,
and seminormality.

The papers give a cross-section of what is happening and of what is influential
in commutative algebra now. The target audience is the researchers in the area,
with the aim that the papers serve both as a reference and as a source for further
investigations.

We thank the contributors for their wonderful papers. We have learned much from
their expertise, and we hope that these papers are as inspirational for the readers as
they have been for us. We also thank the referees for their constructive criticism,
and the Springer editorial staff, especially Elizabeth Loew and Nathan Brothers, for
their patience and assistance in getting this volume into print.

Roma, Italy Marco Fontana
Dhahran, Saudi Arabia Salah-Eddine Kabbaj
Las Cruces, New Mexico Bruce Olberding
Portland, Oregon Irena Swanson

April 2010
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Principal-like ideals and related polynomial
content conditions™

D.D. Anderson

Abstract We discuss several classes of ideals (resp., modules) having properties
shared by principal ideals (resp., cyclic modules). These include multiplication ide-
als and modules and cancellation ideals and modules. We also discuss polynomial
content conditions including Gaussian ideals and rings and Armendariz rings.

1 Introduction

Of all ideals in a commutative ring certainly principal ideals are the simplest. Now,
principal ideals have many useful properties. We concentrate on three of these prop-
erties. First, if Ra is a principal ideal of a commutative ring R and A C Ra is an ideal,
then A = BRa for some ideal B of R, namely B = A : Ra. An ideal I of R sharing
this property that for any ideal A C I, we have A = BI for some ideal B is called a
multiplication ideal. Second, if further a € R is not a zero divisor, then for ideals A
and B of R, RaA = RaB implies A = B. An ideal I of R with the property that /A =IB
for ideals A and B of R implies A = B is called a cancellation ideal. More generally,
I is a weak cancellation ideal if IA = IB implies A+0: 1= B+0: 1. Any principal
ideal is a weak cancellation ideal. Third, if f =ap+ a1 X + -+ a,X" € R[X] is a
polynomial with content ¢(f) = Rag + - - - + Ra,, principal, then ¢(fg) = c(f)c(g)
for all g € R[X]. A polynomial f € R[X] is called Gaussian if ¢(fg) = ¢(f)c(g) for
all g € R[X]. And R is said to be Gaussian (resp., Armendariz) if c(fg) = c¢(f)c(g)
forall f,g € R[X] (resp., with ¢(fg) = 0).

We view a finitely generated locally principal ideal as the appropriate general-
ization of a principal ideal. It turns out that a finitely generated locally principal

University of lowa, lowa City, IA 52242, USA e-mail: dan-anderson@uiowa.edu
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2 D.D. Anderson

ideal I is a multiplication ideal and a weak cancellation ideal and if c¢(f) = I, then
f is Gaussian. We will be particularly interested in how close the converses of these
results are true.

The purpose of this paper is to survey principal-like ideals, especially multipli-
cation ideals and cancellation ideals, and polynomial content conditions, especially
Gaussian polynomials and rings, and Armendariz rings. We also discuss the natural
extension of these concepts to modules. This paper consists of five sections besides
the introduction. In the second section, we look at principal-like elements in a mul-
tiplicative lattice and lattice module and what these elements are in the case of the
lattice of ideals of a commutative ring or lattice of submodules. The third section
surveys multiplication ideals and modules and multiplication rings (rings in which
every ideal is a multiplication ideal). The fourth section discusses cancellation ide-
als and modules and their various generalizations. In Section 5, we survey the recent
characterizations of Gaussian polynomials and Gaussian rings. In the last (Section 6)
we cover Armendariz rings. Two topics that we do not discuss are invertible ideals
and x-invertible ideals. Excellent surveys already exist. See for instance [1.2]. We
also give an extensive (but not exhaustive) bibliography arranged by sections.

Except for several fleeting instances, all rings will be commutative with identity
and all modules unitary. For any undefined terms or notation, the reader is referred
to [1.1].

References

[1.1] Gilmer, R.: Multiplicative ideal theory, Queen’s Papers Pure Applied Mathematics 90,
Queen’s University, Kingston, Ontario, 1992

[1.2] Zafrullah, M.: Putting z-invertibility to use. In: Chapman, S.T., Glaz, S. (eds.) Non-
noetherian commutative ring theory, pp. 429-457. Kluwer, Dordrecht/Boston/London
(2000)

2 Principal elements in multiplicative lattices

In this section, we discuss principal elements in multiplicative lattices. I begin with
this section as it was through multiplicative lattices that I became interested in
principal-like ideals in commutative rings. By a multiplicative lattice L we mean
a complete lattice £ with greatest element / and least element O having a commuta-
tive, associative product that distributes over arbitrary joins and has / as a multiplica-
tive identity. We do not assume that £ is modular. Of course, here the most important
example is L = L(R), the lattice of ideals of a commutative ring R with identity. We
mention only two other examples. If R is a graded ring, then the set £;,(R) of homo-
geneous ideals of R is a multiplicative sublattice of L(R), and if S is a commutative
monoid with zero, the set £(S) of ideals of S is a quasilocal distributive multiplica-
tive lattice with AVB=AUB,AAB=ANB, and AB = {abla € A,b € B}. All three
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of these multiplicative lattices are modular. A multiplicative lattice £ has a natural
residuation A : B=V{X € L|IXB<A}.So (A: B B<AANB<AandA:Bisthe
greatest element C of L with CB < A.

Early work in multiplicative lattices is due to M. Ward and R. P. Dilworth, espe-
cially see [2.13]. For a brief history of this early work see Dilworth’s comments [2.5,
pp- 305-307] and [2.3]. A number of these papers are reprinted in [2.5]. In [2.13]
Ward and Dilworth defined an element M of a multiplicative lattice L to be “prin-
cipal” if for A < M, there exists B € L with A = BM. They showed that a modular
multiplicative lattice satisfying ACC in which every element is a join of “principal”
elements satisfied the usual Noether normal decomposition theory. However, this
notion of “principal” element was too weak to prove deeper results such as the
Krull Intersection Theorem or the Principal Ideal Theorem. Twenty years later Dil-
worth [2.6] returned to multiplicative lattice theory with a strengthened definition
of a “principal” element (see [2.8] and the next paragraph). He defined a Noether
lattice to be a modular multiplicative lattice satisfying ACC in which every ele-
ment is a (finite) join of principal elements. He proved lattice versions of the Krull
Intersection Theorem and the Principal Ideal Theorem.

Let £ be a multiplicative lattice and let M € L. Then M is meet (resp., join)
principal if AMAB = (AN (B:M))M (resp., (A: M)V B = (AVBM) : M) for all
A,B € L. And M is weak meet (resp., weak join) principal if these respective
identities hold for A = I (resp., A = 0) and arbitrary B. So M is weak meet (resp.,
weak join) principal if M AB = (B : M)M (resp., (0: M)V B = MB : M) for all
B € L. Finally, M is (weak) principal if M is (weak) meet principal and (weak)
join principal. Note that (weak) meet principal and (weak) join principal elements
are dual if we interchange multiplication and residuation and interchange meet and
join. We will discuss this duality later in this section. Dilworth also observed that
the product of two meet (join) principal elements is again meet (join) principal.

It is easily checked that a principal ideal of a commutative ring R is a principal
element of L(R). McCarthy [2.11] has shown that an ideal M of R is a principal
element of L(R) if and only if M is finitely generated and locally principal. In par-
ticular, an invertible ideal is a principal element. Thus, a principal element of L(R)
need not be a principal ideal. In fact, as pointed out by Subramanian [2.12], since
7 and Z[v/—5] have isomorphic ideal lattices, there is no way to define a “principal
element” in the ideal lattice £(R) so that an element of L(R) is a principal element
of L(R) if and only if it is a principal ideal of R. Thus, we view a finitely generated
locally principal ideal as the appropriate generalization of a principal ideal.

The following proposition gives another point of view of principal elements and
weak principal elements.

Proposition 2.1. [2.4, Lemma 1] Let L be a multiplicative lattice.

(1) An element e € L is weak meet principal if and only if a < e implies a = ge
for some q € L.

(2) An element e € L is meet principal if and only if a < re implies a = ge for
some q <1.
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(3) If L is a domain, then a nonzero element e € L is weak join principal if and
only if e is a cancellation element (i.e., ae = be implies a = b).

(4) An element e € L is weak join principal if and only if ae = be implies
aV(0:e)=bV(0:e) (or equivalently, ae < be impliesa <bV (0: ¢)).

(5) An element e € L is join principal if and only if e is weak join principal in
L/aforallae L.

Let M be an ideal of a commutative ring R. It follows from the previous
proposition that M is a weak meet principal element of L(R) if and only if M is
a multiplication ideal and M is a weak join principal element of L(R) (resp., with
0: M =0) if and only if M is a weak cancellation ideal (resp., cancellation ideal).

In a modular multiplicative lattice, it is not hard to show that an element is
principal if and only if it is weak principal. However, in a nonmodular multiplica-
tive lattice, a weak meet principal element need not be meet principal, and a meet
principal element that is weak join principal need not be join principal. And even in
a Noether lattice a weak join principal element need not be join principal. See [2.4]
for details.

The non-Noetherian analog of a Noether lattice is the r-lattice [2.1]. A modular
multiplicative lattice £ is an r-lattice if (1) every element of L is a join of princi-
pal elements (i.e., L is principally generated), (2) every element of L is a join of
compact elements (i.e., L is compactly generated) (recall that A € L is compact if
A < VBy impliesA < Bg, V---V By, for some finite subset {By,,...,Bo,} € {Ba};
an ideal of a ring is compact if and only if it is finitely generated), and (3) I is
compact. If R is a (graded) commutative ring, (L;(R)) L(R) is an r-lattice. Also,
if S is a cancellation monoid with zero, £(S) is an r-lattice. If £ is an r-lattice and
a€ L, then L/a={be€ L|b> a} is an r-lattice with product boc = bcVa.If S is
a multiplicatively closed subset of L, then there is a localization theory for £ and
the localization Ly is again an r-lattice; see [2.1] for details. If A € L is principal,
then A/a is principal in £ /a and Ay is principal in L. We have the following results
concerning principal elements in r-lattices.

Theorem 2.2. Let L be an r-lattice and A € L.

(1) A is a principal element if and only if A is compact and Ay is a principal
element of Ly for each maximal element M of L (Lyr = Ls where S = {B €
L|B £ M}).

(2)  For a quasilocal r-lattice L, the following are equivalent: (a)A is principal,
(b) A is weak meet principal, and (c) A is completely join irreducible.

(3) A s principal if and only if A is compact and weak meet principal.

(4) A is weak meet principal if and only if A is meet principal.

(5) If L is a domain, a compact join principal element is principal.

Proof. (1), (2), and (3) may be found in [2.1] while (4) and (5) are given in [2.4].
O
Weak join principal and join principal elements are much less understood. See

[2.4,2.7], and [2.9] for some results on (weak) join principal elements. We mention
only the following results.
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Theorem 2.3. (1) Let L be a quasilocal r-lattice and let e be a compact, join princi-
pal element of L. There exist principal elements ey, ...,e, € Lwithe=eV---Ve,
and e;(V jzie;) =0, foralli=1,...,n. (2) Let L be a local Noether lattice satisfying
the weak union condition (if a,b,c € L, a £ b and a £ c, then there is a principal
element e < awithe L bande £ c¢; L(R), R a commutative ring, satisfies this condi-
tion). If a € L is join principal, then a = e V ((0: a) Aa) for some principal element
e € L. Thus, a* = e is principal and if 0 : a = 0, a is principal.

Proof. (1)is givenin [2.4] and (2) in [2.7]. O

We end this section with the promised duality of principal elements with respect
to a lattice module. Let £ be a multiplicative lattice. An L-module M is a com-
plete lattice M with a scalar product AN € M for A € £ and N € M satisfying
(1) (VgAg)N = VAN, (2) A(VoNg) = VANg, 3) (JK)N =J(KN), (4) IN =N,
and (5) ON = 0y for all elements A,A,,J, K € L and N, N, € M. For the rather well
developed theory of lattice modules, see [2.10] and other papers by E. W. Johnson
and/or J. A. Johnson.

Let M be an £-module. Now M*, the lattice dual of M, is a complete lattice with
V*Ng = ANg, N*Ng = VNgy, On« = Iy, and I+ = 0p. Moreover, M* is an L-
module with the new scalar productJ«xN =N : J = V{X € M|JX < N}. An element
M € L is M-meet (<join) principal if M(AN(B:M)) = MAANB (AVMB):M = (A:
M)V B) for all A,B € M. As expected, we define M € L to be M-principal if M is
both M-meet principal and M-join principal. Analogous definitions are given for the
“weak” case. Generalizing the notion of a cyclic submodule of an R-module, there
are also the notions of (weak) meet principal, (weak) join principal, and (weak)
principal elements of a lattice module; see [2.10]. The next theorem exhibits the
promised duality between meet principal and join principal elements.

Theorem 2.4. [2.2] Let L be a multiplicative lattice, M an L-module, and M* the
L-module dual of M. An element M € L is M-meet (-join) principal if and only if
M is M*-join (-meet) principal. An analogous result holds for the “weak” case. In
particular, M is M-principal if and only if M is M*-principal.

This duality was used in [2.2] to develop a theory of co-primary decomposition
and co-grade for Artinian R-modules.
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Universalis 6, 131-145 (1976)
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3 Multiplication ideals, rings, and modules

Let R be a commutative ring. An ideal [ is a multiplication ideal if for each ideal
A C [, there is an ideal C with A = CI; we can take C = A : I. The ring R is a
multiplication ring if every ideal of R is a multiplication ideal. And an R-module M
is a multiplication module if for each submodule N of M, N = AM for some ideal
A of R; we can take A = N : M. Clearly a principal ideal (resp., cyclic R-module)
is a multiplication ideal (resp., multiplication module). Also, when working with
a multiplication module M we can usually assume that M is faithful by passing
toR/(0: M).

Early work focused mostly on multiplication rings which will be discussed at the
end of this section. Perhaps the first paper to focus on multiplication ideals in their
own right was [3.18] where it was shown that a finitely generated multiplication
ideal in a quasilocal ring is principal and that if J is a finitely generated multiplica-
tion ideal, then Jp is a principal ideal for each prime P. In [3.6] it was shown that
a finitely generated multiplication ideal / with O : I contained in only finitely many
maximal ideals is principal. In [3.1], we have the result that a multiplication ideal
in a quasilocal ring is principal. We give the simple proof. The result carries over to
multiplication modules over quasilocal rings, mutatis mutandis [3.5]. Theorem 3.1
easily extends to the result that a multiplication ideal (resp., module) I with 0 :
contained in only finitely many maximal ideals is principal, (resp., cyclic).

Theorem 3.1. [3.1] In a quasilocal ring every multiplication ideal is principal.

Proof. Let (R,M) be a quasilocal ring and A a multiplication ideal in R. Suppose
that A = X(xy). Then, (xy) = I5A for some ideal I, since A is a multiplication
ideal. Hence, A = X(xq) = ZIyA = (Zly)A. If X1y = R, then Iy, = R for some
index o because R is quasilocal. In this case, A = Ip,A = (xq, ). If ZIy # R, then
A = MA. Suppose that x € A. Then, there exists an ideal C with (x) = CA =C(MA) =
M(CA) = M(x); sox =0 by Nakayama’s Lemma. Thus, A = 0 is principal. O
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It is easily seen that if / is a multiplication ideal and S is a multiplicatively closed
subset of R, then I is a multiplication ideal of Ry (a similar result holds for multi-
plication modules). Hence, a multiplication ideal is locally principal. Moreover, for
I finitely generated, / is a multiplication ideal if and only if 7 is finitely generated
(since for I finitely generated, the equation /B = (B : I)I holds if and only if it
holds locally). See Theorem 4.4. However, a locally principal ideal need not be a
multiplication ideal (e.g., a nonfinitely generated ideal in an almost Dedekind do-
main). Conditions needed for a locally principal ideal to be a multiplication ideal
are given in Theorem 3.3.

However, the serious study of multiplication ideals was inaugurated in [3.2]. The
principal tool introduced was a variant of the trace ideal. Let / be an ideal of the
commutative ring R. Define 6(I) = Z.c;(Rx : I). Then, 6([) is an ideal with I C
0(I)C R.

The following theorem is a sample from [3.2].

Theorem 3.2. (1) For an ideal I in a commutative ring, the following three condi-

tions are equivalent: (a) I is meet principal, i.e., AINB = (AN (B :1))I for ideals A

and B of R, (b) I is a multiplication ideal, and (c) if M 2 6(1) is a maximal ideal,

then Iy = Oy

(2) Anideal I is finitely generated and locally principal if and only if 6(I) = R.

(3)  If1 is a multiplication ideal with htI > 0, then I is finitely generated.

(4)  For a multiplication ideal I and i € I, il is finitely generated.

(5) Let M be a maximal ideal of R. Then M is a multiplication ideal if and only
if either (a) M is finitely generated and locally principal or (b) Ry is a field.
If M is finitely generated and htM = 0, then M is principal and there exists
a positive integer n such that M" is generated by an idempotent, and Ry ~
R/M" is a direct summand of R.

Theorems 3.1 and 3.2 carry over to multiplication modules, mutatis mutandis,
where now for a module M, 0(M) = X,,cp(Rm : M). Alternatively, one can reduce
the study of multiplication modules to multiplication ideals via idealization.

Let R be a commutative ring and M an R-module. The idealization of R and M
is the commutative ring R(+)M with addition defined as (ry,m;) + (ry,m;) =
(r1 + r2, my + mp) and multiplication as (ry,my)(ra,my) = (riry,rimy + ramy).
Thus, R(+)M = R @ M as abelian groups, but we use the notation (+) to indicate
we are taking the idealization. Idealization was introduced by Nagata [3.15]; for
a recent survey of idealization see [3.4]. Here, 0 ® M is an ideal of R(4+)M with
(0@ M)? = 0. For an ideal I of R, (I ®M)(0 & M) = 0@ IM. Suppose that N is
a submodule of M. Then, N is a multiplication module if and only if 0® N is a
multiplication ideal of R(4)M. See [3.3] for details.

A. A. El-Bast and P. F. Smith [3.8] introduced an alternative, useful method for
studying multiplication modules. While their method does not make explicit use
of 8(M), it is essentially equivalent to the 8(M) approach. Let M be an R-module
and M a maximal ideal of R. They defined Th (M) = {m € M|(1 — p)m =0 for some
p € M} which is easily seen to be a submodule of M. They called M M-torsion if
Ty (M) = M. Since R — M is the saturation of 1+M, m € Th(M) < fm =0 for
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some f € R—M. Hence Ty (M) is the kernel of the natural map M — My¢ and M is
M-torsion < My = 0y¢. They defined M to be M-cyclic if there exists ¢ € M and
m € M such that (1 —g)M C Rm. Again, M is M-cyclic < there exists f € R—M and
m € M such that fM C Rm < M 2 6(M). They showed that M is a multiplication
module if and only if for each maximal ideal M of R, M is either M-torsion or M-
cyclic. Before we discuss the work of P. F. Smith and his co-authors, we list some
equivalent characterizations for multiplication modules taken from [3.3].

Theorem 3.3. Let M be an R-module and A a submodule of M. Then, the following
conditions on A are equivalent.

(1) A is a multiplication module.

(2)  If M is a maximal ideal of R with M 2 0(A), then Apg = Oy.
(3) IfBis a (cyclic) submodule of A, then 6(A)B = B.

(4)  For each maximal ideal of M of R, one of the following holds:

(a) Fora€ A, there exists m € M with (1 —m)a =0, i.e., A is M-torsion, or
(b) There exists ag € A and m € M with (1 —m)A C Ray, i.e., A is M-cyclic.

(5) For each maximal ideal M of R with Ay # Oy, there exists f € R— M and
ag € A with fA C Ray.

(6)  For each maximal ideal M of R with Ay # Ong, Apy is cyclic and (N : A) g =
(Nat = Ap) for each submodule N of M (of A).

(7) A is a meet principal submodule of M, i.e., IANN = (IN(N : A))A for all
ideals I of R and submodules N of M.

(8) Iflisanideal of R and N is a submodule of M with N C IA, then N = JA for
some ideal J C I.

We next discuss the seminal work of P. F. Smith and his co-authors on multi-
plication modules. In [3.8], the useful notions of M-torsion and M-cyclic modules
were introduced. It was shown that an R-module M is a multiplication module if
and only if NIH M = (N(I, + ann(M))M for every collection {I; } of ideals of R
and that a direct sum @©M, of R-modules is a multiplication R-module if and only
if each M), is a multiplication module and for each A, there exists an ideal A with
ApM;, = M), but Ay (X2 ©My) = 0. A proper submodule N of a multiplication
module M is maximal (resp., prime, essential) if and only if N = MM for some max-
imal (resp., prime, essential) ideal M of R. It follows that every proper submodule of
a multiplication module is contained in a proper maximal submodule. Moreover, a
multiplication module with only finitely many maximal submodules is cyclic. Thus
an Artinian multiplication module is cyclic.

Perhaps the neatest result of [3.8] is the following. Let M be a nonzero multi-
plication module with Z(M) = PiU---UP, and ann(M) C Py N---N P, for some
finite set of prime ideals of R (e.g., M is Noetherian). Then, M is isomorphic to B/A
where A C B are ideals of R with B/A invertible in R/A. Call such a multiplication
module trivial. Since Z(M) = Z(R) for a faithful multiplication R-module, it follows
that if R is Noetherian, then every nonzero multiplication R-module is trivial. In par-
ticular, a faithful multiplication R-module over a Noetherian ring is isomorphic to an
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invertible ideal and hence is finitely generated. The question of which rings R have
the property that each finitely generated multiplication R-module is trivial is con-
sidered in [3.13]. For example, it is shown that every finitely generated R-module is
trivial if and only if for every finitely generated multiplication R-module M we have
0: M =0:mfor some m € M. The somewhat surprising result is given that for any
commutative ring S and nonempty set of indeterminates {X; } over S, every finitely
generated faithful multiplication module over R = S[{X}, }] is trivial.

The paper [3.9] considers generalizations of multiplication modules to rings
without identity or modules which need not be unitary. Generalizing the case for
an ideal, an R-module M is called an AM-module if for each proper submodule N
of M, N = IM for some ideal I of R. Whether or not R has an identity, let R = R®Z
be the Dorroh extension of R, so R’ has an identity and every R-module is naturally
a unitary R’-module. If M is an AM-module, then M is a multiplication R’-module.
Call M is weak AM-module if M is a multiplication R’-module; so an AM-module
is a weak AM-module, but not conversely. Also, an AM-module M is almost unitary
in the sense that for each proper submodule N of M, N C RM. The relationship be-
tween these three properties is thoroughly investigated. Also, Mott’s Theorem for
multiplication rings (discussed later in this section) is generalized to AM-modules:
Every prime submodule of an R-module M is an AM-module implies every submod-
ule of M is an AM-module.

The literature on multiplication modules is quite extensive; consult Math
Reviews. Space does not permit us to discuss the many interesting results on
finitely generated multiplication modules obtained by A. G. Naoum and M. A.
K. Hasan using matrix methods. Some of their results are generalized in [3.16].
Finally, [3.17] relates multiplication modules to projective modules. Now W.
W. Smith [3.18] showed that a projective ideal is a multiplication ideal and
clearly a free R-module is multiplication if and only if at has rank 1. In [3.17],
it is shown that M being a multiplication R-module is equivalent to M being a
finitely projective R/(0 : M)-module (i.e., for every finitely generated submodule
N of M, there exists n > 1 and m; € M and R-homomorphisms 6; : M — R so that
x =01 (x)my + - -+ 6,(x)m, for all x € N) and any one of the following conditions
holding (1) every submodule of M is fully invariant, (2) End(M) is commutative, or
(3) M is locally cyclic.

We end this section with a brief report on multiplication rings, that is, rings in
which every ideal is a multiplication ideal. For simplicity, we assume that our rings
have an identity. Multiplication rings were introduced by Krull in 1936 and the
early theory is mostly due to Mori. See [3.10] for references. We remark that [3.10]
and [3.11] treat rings satisfying conditions weaker than the existence of an identity.
See [3.12] for a very readable account of multiplication rings. Let R be a multipli-
cation ring. For a maximal ideal M of R, each ideal of Ry, is the localization of a
multiplication ideal and thus is a multiplication ideal of Rjs. So every ideal of Ry,
is principal; thus Ry, is either a DVR or a SPIR. Call a ring R with property that
each Ry, is a DVR or SPIR an almost multiplication ring [3.7]. Thus, a multiplica-
tion ring is an almost multiplication, but the converse is false as an almost Dedekind
domain is an almost multiplication ring but need not be a multiplication ring.
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For an ideal A of a commutative ring R, the kernel of A is kerA = (N{ApNR|Pis a
minimal prime of A} = (N{Q|Q D A is P-primary where P is a minimal prime of A}.
In [3.7] it is shown that R is an almost multiplication ring if and only if each ideal
with prime radical is a prime power and that in an almost multiplication ring every
ideal is equal to its kernel. In [3.10] it is shown that every ideal with prime radical is
primary if and only if every ideal is equal to its kernel. The following theorem gives
a number of characterizations of multiplication rings.

Theorem 3.4. For a commutative ring R the following conditions are equivalent.

(1) R is a multiplication ring.
(2)  Each prime ideal of R is a multiplication ideal.
3)

(a) Every ideal is equal to its kernel,

(b)  Every primary ideal is a power of its radical,

(c) If P is a minimal prime of an ideal B and n is the least positive integer
such that P" is an isolated component of B and if P* # P"*!, then P does
not contain the intersection of the remaining isolated primary compo-
nents of B (or equivalently, if B C P" but BZ P"*!, then P* = B : (y) for
somey € R—P).

(4) T(R) is a multiplication ring, every regular ideal of R is invertible, and any
nonmaximal prime ideals of R are idempotent.

(5) Foreach prime ideal of R, P is invertible, or Rp is a field, or P is maximal and
Rp is an SPIR and there exists an idempotent contained in all prime ideals of
R except P.

Proof. The equivalence of (1)—(3) for rings with identity is given in [3.14]. This is
generalized to conditions weaker than having an identity in [3.10]. For the equiv-
alence of (1) and (2) also see [3.12]. The equivalence of (1), (4), and (5) is given
in [3.11], again in a context more general than rings with an identity. Finally, we
remark that [3.2] contains a simplified proof of the equivalence of (1), (2), and (5).

O

The paper by Griffin [3.11] contains many more interesting results on multiplica-
tion rings and is a “must read” for anyone contemplating research on multiplication
rings.
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4 Cancellation ideals and modules

Let R be a commutative ring. An ideal / of R is a cancellation ideal if whenever
IA = IB for ideals A and B of R, we have A = B. A principal ideal of R is a cancel-
lation ideal if and only if it is regular, clearly a cancellation ideal is faithful, and an
invertible ideal is a cancellation ideal. Unlike the case for multiplication ideals, it
is not at all clear that the localization of a cancellation ideal is again a cancellation
ideal. However, if Ij; is a cancellation ideal for each maximal ideal M of R, then
IA = IB gives IyAy = Iy By for every maximal ideal M, so Ay = By, and hence
A = B; so I is a cancellation ideal. Thus, an ideal that is locally a regular princi-
pal ideal is a cancellation ideal and as we shall see, the converse is true. Note that if
a,b € R, then (a,b)(a,b)* = (a,b)* = (a,b)(a*,b*), butin general (a,b)* # (a*,b*).
For a good introduction to cancellation ideals, see [1.1].

An integral domain R is almost Dedekind if Ry is a DVR for each maximal
ideal M of R. Gilmer [4.6] and Jensen [4.10] independently showed that a domain
R has every nonzero ideal a cancellation ideal if and only if R is almost Dedekind.

The first progress in characterizing cancellation ideals was made by Kaplan-
sky [4.11] and is given in [1.1, Exercise 7, page 67].

Proposition 4.1. Let (R,M) be a quasilocal ring, A an ideal of R, x1,...,x, € R and
B =A+ (x1,...,x). If B is a cancellation ideal, then B = A + (x;) for some i. In
particular, if B is a finitely generated cancellation ideal, then B is principal and
generated by a regular element.

Proof. Tt suffices to do the case n = 2; let B = A+ (x,y). Let J = (x* +
y?,xy,xA, yA,A?). Then, BJ = BB?*; so J = B>. So x* = A(x*> + y*)+ terms
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from (xy,xA,yA,A%). If L € M, 1 — A is a unit and (1 —A)x®> = y> +---; so
x* € (y*,xy,xA,yA,A?). Let K = (y) + A; so B> = BK, and hence B = K. Next,
suppose that A & M, so A is a unit. Then, y* € (x?,xy,xA,yA,A?) and with a proof
similar to the case A € M, we get B= (x) +A. O

Theorem 4.2. [4.4] Let R be a commutative ring with identity. An ideal I of R is a
cancellation ideal if and only if I is locally a regular principal ideal.

Proof. We have already remarked that <= holds. (=) Let M be a maximal ideal of R.
We show that Ij is a regular principal ideal. We can assume that / C M. Choose a
subset {by }gep Of I so that {bg} is an R/M-basis for I/MI. Suppose |A| > 1. Then,
for distinct o, 00 € A, we get I = (by,,ba,) + ({balot € A — {1, 00}}) + MI.
Now a modification of the proof of Proposition 4.1 by replacing “R is quasilocal”
by “A D MB” gives that say I = (bg, ) + ({ba|a € A —{ot1,00}}) + MI. But then
{bo|ot € A —{0p}} is an R/M-basis for I/MI, a contradiction. Hence, I = (a) + MI
for some a € I. Let b € I. Then, (b)I = (b)((a) +MI) = (a)(b) + M(b)I C (a)l +
M(b)I = ((a) + M(b))I. Hence, (b) C (a)+M(b). So (b)m C (a)y and hence Iy =
(a@)m- Suppose ca =0 in Ry. Then, (cI )y = (ca)y = O0p so (¢I)y = (¢MI)py. Since
(ch)y = (cMI)y for the other maximal ideals N, ¢I = ¢MI and hence (¢) = (¢)M.
Thus, ¢ = 0 in Ryy; so Iy is regular. O

It should be noted that while a cancellation ideal [ is locally a regular principal
ideal, I need not be regular, even if I is finitely generated [1.1, Exercise 10, page
456]. We have the following immediate corollary to Theorem 4.2.

Corollary 4.3. (1) Let R be a commutative ring, I a cancellation ideal of R, and S a
multiplicatively closed subset of 1. Then, Is is a cancellation ideal of Rs. (2) Let R
be a subring of the integral domain T. If I is a cancellation ideal of R, then IT is a
cancellation ideal of T.

In [4.5], nonzero locally principal ideals in an integral domain are investigated
with an emphasis on when they are invertible (or equivalently, finitely generated). It
is shown that for a nonzero-ideal / in an integral domain D, the following conditions
are equivalent: (1) I is locally principal, (2) I is a cancellation ideal, and (3) [ is a
faithfully flat D-module. The proof shows that (2)<(3) for any commutative ring.
A domain D is called an LPI-domain if each nonzero locally principal ideal is in-
vertible. It is shown that a finite character intersection of LPI-domains is again an
LPI-domain.

An ideal [ is called a quasi-cancellation ideal [4.3] if IB = IC for finitely gener-
ated ideals B and C of R implies B = C. While a finitely generated quasi-cancellation
ideal is a cancellation ideal, for any valuation domain (V,M) and 0 # x € M, Mx is
a quasi-cancellation ideal.

The notion of a cancellation ideal can be generalized to modules in several ways.
Let R be a commutative ring and M an R-module. Following [4.11], we say that
M is a (weak) cancellation module if for ideals I and J of R, IM = JM implies
I=JI+0:M=J+0:M). And M is a restricted cancellation module [4.2] if
IM = JM # 0 implies I = J. So a weak cancellation module M is a cancellation
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module if and only if it is faithful and an R-module M is a weak cancellation R-
module if and only if M is a cancellation R/(0:M)-module. Less obvious is that M
is arestricted cancellation R-module if and only if M is a weak cancellation module
and 0 : M is comparable to each ideal of R. In terms of the lattice of submodules, a
submodule N of an R-module M is a weak cancellation module if and only if N is a
weak join principal element of L(M). If M is a cancellation R-module, then M & N
is a cancellation R-module for any R-module N; hence, R@ N is a cancellation R-
module.

Perhaps the appropriate cyclic-like generalization of a cyclic module is a finitely
generated module that is locally cyclic. Our next theorem gives several characteri-
zations of such modules.

Theorem 4.4. For an R-module M the following conditions are equivalent.

(1) M is a finitely generated multiplication module.

(2) M is finitely generated and locally cyclic.

(3) M is a multiplication module and a weak cancellation module.

(4) M is a (weak) principal element of L(M), the lattice of submodules of M.

Proof. (1)=-(2) This follows from Theorem 3.1 and the fact that a localization of
a multiplication module is a multiplication module. (2)=-(3) For a finitely gener-
ated module the properties of being a multiplication module or a weak cancellation
module hold if and only if they hold locally. (3)=-(4) This follows from the
definitions and the fact that a weak principal element is a principal element in £(M).
(4)=(2) This is the previously mentioned result of McCarthy generalized to mod-
ules. (2)=>(1) This follows from (2)=(3). O

As with multiplication modules, the study of the various types of cancellation
modules can be reduced to the ideal case via idealization. Let M be an R-module
and N a submodule of M. In [4.2] it was shown that (1) N is a weak cancellation
submodule of M if and only if 0 N is a weak cancellation ideal of R(+)M, (2) N is
a cancellation submodule if and only if 0@ N is a weak cancellation ideal of R(+)M
and 0: (0®N)=0®M, and (3) 0@ N is a restricted cancellation ideal of R(+)M
if and only if N is a restricted cancellation submodule and for r € R, rN # 0 implies
M =M.

Using the previous results concerning idealization, we can give an example of a
weak cancellation ideal P that is not a join principal ideal, i.e., some homomorphic
image of P is not a weak cancellation ideal.

Example 4.5. Let (R,M) be an n-dimensional local domain that is not a DVR
and let M = R @ M. Hence M is a cancellation R-module. Then R(+)M is an n-
dimensional local ring with unique minimal prime P = 0 &M and P> = 0. Since
M is a cancellation R-module, P is a weak cancellation ideal of R(+)M. Since M
is not a cancellation ideal of R, 0 ® M is not a weak cancellation submodule of
M=R®M. So (0&M)/(0® (R®0)) ~ 0@ (0dM) is not a weak cancellation
ideal of (R®&M)/(0® (R 0)) ~ R(+)(0@® M). So P is not a join principal ideal of
R(+)M.
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If M is an R-module that is locally a cancellation module (i.e., My, is a cancella-
tion Ry¢-module for each maximal ideal M of R), then M is a cancellation module.
It is shown in [4.2] that the converse is true for a one-dimensional domain. The
general case remains open.

Our next result characterizes cancellation modules over a principal ideal ring R.
Since a PIR is a finite direct product of PIDs and SPIRs, Theorem 4.6(1) reduces
the question to the case where R is a SPIR or PID.

Theorem 4.6. [4.2] (1) Let R =R X --- X R, where each R; is a commutative ring
with identity. Let M = My X --- X My, where M; is an R;-module; so M is naturally
an R-module. Then M is a (weak) cancellation R-module if and only if each M; is a
(weak) cancellation Ri-module. However, M is a restricted cancellation R-module if
and only if either n = 1 and M = M is a restricted cancellation R|-module or n > 1
and either M = 0 or M is a cancellation R-module.

(2) Suppose that R is an SPIR and M an R-module. Then every R-module is a
weak cancellation R-module and a restricted cancellation R-module. But M is
a cancellation R-module if and only if M is faithful.

(3) Let R be a PID and M an R-module.

(a) M is a weak cancellation module if and only if Mis a cancellation module
or M is not faithful.

(b) If R has a unique maximal ideal, M is a restricted cancellation module
if and only if M is a weak cancellation module. If R has more than one
maximal ideal, then M is a restricted cancellation module if and only if
M =0 or M is a cancellation module.

(¢) M is a cancellation R-module if and only if for each maximal ideal M of
R, if M = A @ B where A is a divisible Ry¢-module and B is a reduced
Ro-module, then B is faithful.

Space does not permit us to discuss the work of M. Ali (see [4.1] for example)
and especially A. G. Naoum (see [4.12] for example). One topic covered is the
notion of a 1/2 (weak) cancellation module: M = IM implies [ =R (I4+0: M =R).

We end this section with a brief discussion of an alternative definition of a cancel-
lation R-submodule of K, the quotient field of R, due to Goeters and Olberding [4.7,
4.8,4.9]. They defined an R-submodule X of K to be a “cancellation module” if
XW = XY for R-submodules W and Y of K implies W =Y. Here XW is the R-
submodule generated by {xw|x € X,w € W}. To avoid confusion we call such an
R-module X a GO-cancellation module. They showed [4.7] that for a submodule
X of K, the following are equivalent: (1) X is a GO-cancellation module for R,
(2) X is locally a free R-module, (3) X is a faithfully flat R-module. Certainly a
GO-cancellation module is a cancellation module.

Goeters and Olberding [4.8] defined an ideal I of a domain R to have restricted
cancellation if IJ = IK implies J = K for nonzero ideals J and K of R with (I: 1) C
(J:J)N(K : K). They showed that this is equivalent to I being a cancellation ideal of
(I:1). The domain R is said to have restricted cancellation if each nonzero ideal of R
has restricted cancellation. In [4.9] they showed that R has restricted cancellation if
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and only if (a) Ry is stable (each nonzero ideal of Ry is invertible in (Rys : Ry))
for each maximal ideal M of R and (b) Spec(R/P) is Noetherian for each nonzero
prime ideal P of R.
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5 Gaussian polynomials and rings

This section is an update of Section 8 Content Formulas and Gaussian Polynomials
of the author’s survey article [5.2].

Let R be a commutative ring with identity. For f = ag+a; X + --- + a, X", the
content of fis c(f) = (ao,...,an). For g € R[X], itis clear that c(fg) C c(f)c(g), but
we may have strict containment (R = Z+ 2iZ, f =2i+2X =g;so c(fg) = (4) C
(4,4i) = ¢(f)c(g)). The polynomial f € R[X] is said to be Gaussian if ¢(fg) =
c(f)c(g) for all g € R[X] and R is Gaussian if each f € R[X] is Gaussian; i.e., the
“content formula” ¢(fg) = c¢(f)c(g) holds for all f,g € R[X]. Since f € R[X] is
Gaussian if and only if f/1 € Ry[X] is Gaussian for each maximal ideal M of R,
most questions concerning Gaussian polynomials can be reduced to the quasilocal
case. In particular, R is Gaussian if and only if each localization Ry is Gaussian.

For any commutative ring R and f,g € R[X] we have the Dedekind—Mertens
Lemma: c(fg)c(g)" = ¢(f)c(g)"+! where m + 1 is the number of elements needed
to generate c(f) locally. Hence, if ¢(g) is a cancellation ideal (e.g., invertible), g is
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Gaussian. Thus, a Priifer domain is Gaussian. For more on the Dedekind—Mertens
Lemma the reader is referred to [5.2].

Gaussian polynomials and rings were first considered by H. Tsang [5.10] (a.k.a.
H. T. Tang) who showed that if ¢(f) is locally principal, then f is Gaussian. The
converse is of course false for if (R, M) is a quasilocal ring with M? = 0, then every
f € R[X] is Gaussian. This leads to the following question first asked by Kaplansky.
Let R be a (quasilocal) ring and let f € R[X] be Gaussian. Suppose that ¢(f) is a
regular ideal, is ¢(f) (principal) invertible?

For more on the Dedekind—Mertens Lemma, its history and generalizations and
for results on the “content formula” for power series, monoid rings and graded rings
and involving star operations, see [5.2]. Concerning material from [5.2] we content
ourselves to a brief review of Kaplansky’s question.

It is not hard to show that if (R, M) is a quasilocal domain and f € R[X] is Gaus-
sian with ¢(f) doubly generated, then c¢(f) is principal. The first real progress on
Kaplansky’s question was made by Glaz and Vasconcelos [5.5] via Hilbert polyno-
mials and prestable ideals [5.3]. For example, they showed that if R is a Noetherian
integrally closed domain and f € R[X] is Gaussian, then ¢(f) is invertible. Then
Heinzer and Huneke [5.6] using techniques from approximately Gorenstein rings
showed that for R locally Noetherian and f € R[X]| Gaussian (or more generally,
c(fg) = c(f)c(g) for all g € R[X] with degg < deg f) with ¢(f) regular, then c(f)
is invertible. We now begin where we left off in [5.2].

Kaplansky’s question for R a quasilocal domain (and hence for R locally a do-
main) was answered in the affirmative by Loper and Roitman [5.7].

Theorem 5.1. Let R be a ring which is locally a domain. Then a nonzero polynomial
over R is Gaussian if and only if its content is locally principal.

We outline their approach which they state is inspired by [5.5] and in particular
its use of prestable ideals [5.3]. We can reduce to the case where R is a quasilocal
domain.

They first show that if f = f(X) € R[X] is Gaussian, then v(c(f)") < degf + 1
for sufficiently large n; here v(c(f)) is the minimal number of generators for
(c(f))™. It is enough to show that v(c(f)*") < degf + 1 for all m > 0. Let
F(X) = g0(X?) + Xg1(X2) where go(X), g1 (X) € RX]. Since c(f(—X)) = c(f(X));
() = (X)) c(f(=X)) = c(FX)F(-X)) = c(go(X?)? — X2g1 (X)) =
c(80(X)? — Xg1(X)?). Since deg(go(X)? — Xg1(X)?) = deg(/), we get v(c(/)?) <
deg f + 1. They next observe that /(X) = go(X)? — Xg1(X)? is Gaussian. To see this
note that if 4(X?) is Gaussian, so is 2(X). But go(X?)? — X2g1(X?)? = f(X) f(—X)
being the product of two Gaussian polynomials is Gaussian. Thus, (c(f))? =
c(€(X)) where £(X) is Gaussian. Thus we may proceed by induction on m to get
v(c(f)?") < degf + 1 forall m > 0.

Next, let R be the integral closure of R. Now cz(f") = Re(f") = Re(f)"; so by
the previous paragraph v(cg(f")) is bounded. So by [5.3] the ideal cz(f) = Re(f)
is prestable and hence invertible in R.

To descend from R to R, “take conjugates”. Let f(X) = ap+ a1 X +--- +a,X".
Now Re(f) is invertible, so 1 = X 1z;a; where z; € (Re(f)) ™. Let g(X) = £(X)
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I oznaiX = (ZjaiX ) (ZoziX" 7). So g(X) = £ 0;X € R[X] has o, = 1 and
F(X)|g(X) in K(X),K the quotient field of R. For each i # n, there is a monic
hi € R[X] with h;(e;) = 0. Decompose all the A;(X) into linear factors over some
integral extension D of R containing R: ;(X) = IT (21X = Bij). Let ¢(X) be the
product of all possible polynomials Zizjoﬁ,’jiX i where 0 < j; < m; for i # n, and
Jn =20, By = 1. Now @(X) € R[X] since the coefficients of ¢(X) can be expressed
as polynomials in the elements f;; that are symmetric in each sequence of indeter-
minates Xj1, ..., Xim, for i # n. Also ¢(¢(X)) = R. Now ¢ = fy for some y € K[X].
Since f is Gaussian R = ¢(@) = ¢(f)c(y); so ¢(f) is invertible.

Shortly afterwards, Lucas [5.8] extended Loper and Roitman’s result by replac-
ing the hypothesis that R is a domain by “the Gaussian polynomial f is a nonzero
divisor in R[X]; that is, ann(c(f)) = 0”. More precisely, he proved the following.

Theorem 5.2. Let R be a commutative ring and let f € R[X] with ann(c(f)) = 0.
Then the following are equivalent.

(1)  fis Gaussian.

(2)  c(f)Homg(c(f),R) =R.

(3)  c(f) is Qo-invertible where Qy is the ring of finite fractions over R.
(4)  For each maximal ideal M, c(f)y is an invertible ideal of Ry.

(5)  c(f)m is principal for each maximal ideal M of R.

Here, (3)=-(1) and the equivalence (2)<(5) are relatively straightforward. Lucas
proceeds by showing (1)=-(4). The proofs use ideas from [5.7], but not Theorem 5.1
itself. He first shows that for any commutative ring R, if f € R[X] is Gaussian, then
(c(f(X)))*" can be generated by deg f + 1 elements. Thus, there is an integer k
such that ¢(f)**! can be generated by k + 1 element. It is then shown that ¢(f)*Ry,
is a stable ideal of Ry and hence is a principal ideal of (c(f)X, : ¢(f),). Hence
c(f)%, generates a regular principal ideal of Ry; so c(f)Ry is invertible. Write f =
fo+ fiX+--+ f,X" and let ho,hy,...,h, € c(f)Ry with Zh,_; f; = 1. Then for
h= Zthj, fh = u € Ry with ¢(f)Ry. Thus, by [5.4], there exist v € Ry and w €
Ry with u = vw where c¢(w)Ry = Ry. So f(hw) = v as polynomials in the total
quotient ring T (Rys). Thus, Ry = c(v) = c¢(f(hw)) = (c¢(f)Rum )c(hw); so c(f)Ry is
invertible.

But what happens if ann(c(f)) # 0? In [5.9], Lucas gives the following.

Theorem 5.3. Let f € R[X] be a nonzero polynomial over a reduced ring R and let
R =R/ ann(c(f)). Then the following are equivalent.

(1)  fis Gaussian.

(2) f € R[X] is Gaussian.

(3)  c(f)R is a Qp-invertible ideal of R.
4)  c(f)R is locally principal.

(5)  c(f) is locally principal.
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As pointed out by Lucas, while there appears to be a relationship between f being
Gaussian and c(f)/(c(f)Nann(c(f))) being locally principal, the relationship is not
clear. A similar situation holds for join principal ideals (see Section 2).

Question 1. Ler 0 £ f € R[X] where R is a commutative ring. What is the relation-
ship between the following conditions.

(1) f is Gaussian, (2) c¢(f)/(c(f) Nann(c(f))) is locally principal, (3) c(f) is
Jjoin principal?

We end this section by briefly discussing Gaussian rings.

As previously mentioned, Gilmer and Tsang independently showed that an inte-
gral domain is Gaussian if and only if it is Priifer. More generally, for R reduced,
R is Gaussian if and only if R is arithmetical [5.9,5.10], and hence if R is Gaus-
sian R/ nil(R) is arithmetical. More generally, Lucas [5.9] has shown that a ring R
with nil(R) # 0, but nil(R)? = 0, is Gaussian if and only if I? is locally principal for
each finitely generated ideal I of R. For R quasilocal we have the following result
[5.9,5.10].

Theorem 5.4. Let R be a quasilocal ring. Then R is Gaussian if and only if (i) for
a,b € R, (a,b)? is principal and generated by either a*> or b* and (ii) for all a,b € R
with (a,b)? = (a®) and ab = 0, we have b* = 0.

In the case that (R, M) is local (= Noetherian plus quasilocal), Tsang [5.10] has
shown that R is Gaussian if and only if M/(0 : M) is principal. Using this, it was
shown [5.1] that a Noetherian ring R is Gaussian if and only if R is a finite direct
product of indecomposable Gaussian rings of the following two types (i) a zero-
dimensional local ring and (ii) a ring S in which every maximal ideal has height one
and all but a finite number of its maximal ideals are invertible, S has a unique mini-
mal prime P, §/P is a Dedekind domain, and PM, --- M, = 0 where {M,...,M,} is
the set of maximal ideals of S that are not invertible. (Conversely, a ring of type (ii)
is Gaussian.)
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6 Armendariz rings

For this section, a ring with be an associative ring with identity, not necessarily
commutative unless explicitly so stated. M. B. Rege and S. Chhawchharia [6.12]
introduced the notion of an Armendariz ring. They defined a ring R to be an Ar-
mendariz ring if whenever polynomials f(X) = ap+a;X + -+ a,X", g(X) =
bo+bi X +---+b,X" € RIX] satisfy f(X)g(X) =0, then a;b; = 0 for each i, j.
(So in the commutative case this amounts to saying the ¢(fg) = ¢(f)c(g) in the
case where ¢(fg) = 0.) They chose the name “Armendariz ring” because E. Armen-
dariz [6.2] had noted that a reduced ring satisfies this condition. They showed that a
homomorphic image of a PID is Armendariz and used the method of idealization to
give examples of Armendariz and non-Armendariz rings.

It is easily seen that if R is Armendariz and fi, ..., f, € R[X] with f;--- f, =0,
then a; - - -a, = 0 where q; is a coefficient of f;. Clearly a subring of an Armendariz
ring is again Armendariz. Rege and Chhawchharia raised the question of whether
R Armendariz implies R[X] is Armendariz. This question was soon answered in the
affirmative by the next paper to consider Armendariz rings.

Theorem 6.1. [6.1]

(1) A ring R is Armendariz if and only if R[X| is Armendariz.

(2) Let R be an Armendariz ring and let {Xy} be any set of commutating indeter-
minates over R. Then any subring of R[{X}] is Armendariz.

(3) Foraring R, the following conditions are equivalent.

(a) R is Armendariz.

(b) Let {X,} be any nonempty set of commuting indeterminates over R and
let fi,....fn € R[{X,}] with fi---fn = 0. If a; is any coefficient of f;,
thenay---a, =0.

We next briefly discuss some examples of Armendariz rings and stability prop-
erties of the Armendariz property given in [6.1]. Certainly, a direct product of rings
IIR is Armendariz if and only if each ring Ry is. A von Neumann regular rings
is Armendariz if and only if it is reduced (which of course is the case for R com-
mutative). Thus, the ring of n X n matrices over an Armendariz ring need not be
Armendariz. While a polynomial ring over an Armendariz ring is Armendariz and
a subring of an Armendariz ring is Armendariz, the homomorphic image of an Ar-
mendariz ring need not be Armendariz. In fact, for R commutative, each homomor-
phic image of R is Armendariz if and only if R is Gaussian. Now any arithmetical
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ring is Gaussian and hence Armendariz, so if R is Gaussian, R[X] is Armendariz.
However, for any ring R, commutative or not, R[X]/(X"), n > 2, is Armendariz if
and only if R is reduced. Thus, if R is a nonreduced arithmetical ring (e.g., Z/47Z),
then R[X] is Armendariz, but R[X]/(X") is not Armendariz for any n > 2. Suppose
that R is commutative and S is an overring of R. Then R is Armendariz if and only
if S is; hence R is Armendariz if and only if its total quotient ring 7'(R) is. Thus a
commutative ring R is Armendariz if and only if Rp is Armendariz for each maximal
prime P of zero divisors.

Rege and Chhawchhari showed that if k is a field and V is a vector space over k,
then the idealization k@ V is Armendariz. More generally, we have the following
example.

Example 6.2. [6.1] Let R be an integral domain and M an R-module. Then the ide-
alization R @ M is Armendariz if and only if M is an Armendariz R-module in the
sense that if f € R[X] and g € M[X] with fg = 0, then a;b; = 0 for each coefficient
a; of f and b; of g. In particular, if R is an integral domain and M is a torsion-free
R-module, then R ® M is Armendariz.

At this point we remark that it was well known to commutative ring theorists that
a reduced commutative ring satisfies the Armendariz property. For example, this
easily follows from the Dedekind—Mertens Lemma. Moreover, Gilmer, Grams, and
Parker [6.3] (in a paper submitted before [6.2]) had proved the stronger result that
if R is a reduced commutative ring and f, g € R[[X]] with fg = 0, then a;b; = 0 for
each coefficient a; of f and b; of g.

Since the appearance of [6.12] Math Reviews lists over fifty papers concerning
Armendariz rings; almost all of them with a noncommutative flavor. We cite only
a few of them and give a brief overview of some of the topics considered. The
interested reader should consult Math Reviews.

We have remarked that for R commutative, R is Armendariz if and only if
T(R) is. Several authors investigate the relationship between a noncommutative
ring R and various classical quotient rings of R being Armendariz; particularly see
[6.5] and [6.7]. In [6.7] it is shown that a right and left Goldie ring is Armendariz if
and only if it is reduced. In [6.5] it is shown that a right Ore ring R with right quotient
ring Q is Armendariz if and only if Q is. Also, a semiprime Goldie ring R is Armen-
dariz if and only if it is semicommutative (i.e., for every a € R, {b € R|ab = 0} is
an ideal). However, an example of an Armendariz ring that is not semicommutative
is given. Recall that a ring R is reversible if ab = 0 implies ba = 0. The relationship
between being reversible and Armendariz is investigated in [6.8]. For example, a
semiprime right Goldie ring is Armendariz if and only if it is reversible.

Other topics that have been considered are graded Armendariz rings, rings Ar-
mendariz to a monoid M [6.10] (i.e., if f,g € R[X;M] with fg =0, then ab = 0 for
each coefficient a of f and b of g). A ring R is power series Armendariz [6.6] if for
f=ZX2paiX',g =X biX' € R[[X]], X a commuting indeterminate, with fg =0,
then each a;b; = 0. Thus, by [6.3] a reduced commutative ring is power series Ar-
mendariz. A number of papers discuss “skew Armendariz rings”. Let ¢ be an en-
domorphism on R. Then R is said to be a-Armendariz (resp., a-skew Armendariz)
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if for f = X" ja;X',g = X" b;X" in the skew polynomial ring R[X; o] with fg =0,
then a;b; = 0 (resp., a;0t' (b;) = 0) for each i, j. See, for example [6.4].

Two other generalizations, unfortunately with the same name, are as follows.
In [6.9], a ring R is said to be a weak Armendariz ring if for agp + a1 X, by +
biX € R[X] with (ap+a1X)(bo+b1X) =0, then a;b; =0 for i,j € {0,1}. As
in the case of Gaussian polynomials, we could define f(X) = X' ja;,X’ € R[X] to
be left Armendariz (vesp., right Armendariz) if for each g = X" b, X' € R[X] with
fg =0 (resp., gf = 0) we have each a;b; = 0 (resp., b;ja; = 0). We could of course
restrict g to have degree less than or equal to some natural number m. Finally, in
[6.11] a ring R is said to be weak Armendariz if whenever fg = 0, then a;b; is
nilpotent and to be w-Armendariz if fg € nil(R[X]) implies each a;b; € nil(R).
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Zero-divisor graphs in commutative rings

David F. Anderson, Michael C. Axtell, and Joe A. Stickles, Jr.

Abstract This article surveys the recent and active area of zero-divisor graphs of
commutative rings. Notable algebraic and graphical results are given, followed by a
historical overview and an extensive bibliography.

1 Introduction

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of zero-
divisors. The zero-divisor graph of R, denoted by I'(R), is the (undirected) graph
with vertices Z(R)* = Z(R) \ {0}, the nonzero zero-divisors of R, and for distinct
x,y € Z(R)*, the vertices x and y are adjacent if and only if xy = 0. Thus, I'(R) is
the empty graph if and only if R is an integral domain. Moreover, I"'(R) is finite and
nonempty if and only if R is finite and not a field.

This article is a survey of recent results on zero-divisor graphs of commutative
rings and the interplay between zero-divisors and graph theory. We are interested in
how ring-theoretic properties of R determine graph-theoretic properties of I'(R), and
conversely, how graph-theoretic properties of I'(R) determine ring-theoretic prop-
erties of R. This subject is particularly appealing since techniques can vary from
simple computations to quite sophisticated ring theory, and in many cases, all the
rings or graphs satisfying a certain property can be explicitly listed. Moreover, sig-
nificant results have been obtained by graduate students in their masters or doctoral
theses and by undergraduates in REU programs.
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The concept of a zero-divisor graph was introduced by I. Beck [23] in 1988,
and then further studied by D. D. Anderson and M. Naseer [8]. However, they let
all the elements of R be vertices of the graph, and they were mainly interested in
colorings. Our definition of I'(R) and the emphasis on the interplay between the
graph-theoretic properties of I'(R) and the ring-theoretic properties of R are due to
D. F. Anderson and P. S. Livingston [14] in 1999. The origins and early history of
zero-divisor graphs will be discussed in more detail in Section 7.

The second section begins with the paper [14] that demonstrated the surprising
amount of structure present in I'(R). It was this structure that attracted ring theorists
to the area in the hopes that the graph-theoretic structure could reveal underlying al-
gebraic structure in Z(R). The next several sections focus on some important graph
theory results concerning I"(R). Planar and toroidal zero-divisor graphs are com-
pletely characterized in Section 6. The final section gives a brief history of I'(R)
emphasizing the original questions that motivated the area and mentions several
generalizations of I'(R). Most proofs are omitted in the interest of brevity, and we
do not claim to provide all noteworthy results in this field. The bibliography is our
attempt at providing an extensive list of publications in this area, although many of
the papers are not explicitly cited in this survey.

We next recall some concepts from graph theory. Let G be a (undirected) graph.
We say that G is connected if there is a path between any two distinct vertices. For
distinct vertices x and y in G, the distance between x and y, denoted by d(x,y), is
the length of a shortest path connecting x and y (d(x,x) = 0 and d(x,y) = o if no
such path exits). The diameter of G is diam(G) = sup{d(x,y) | x and y are vertices
of G}. A cycle of length n in G is a path of the form x; —xy — - -+ — x,, — x1, where
x; # xj when i # j. We define the girth of G, denoted by gr(G), as the length of a
shortest cycle in G, provided G contains a cycle; otherwise, gr(G) = oo. Finally, a
vertex of G is an end if it is adjacent to exactly one other vertex.

A graph G is complete if any two distinct vertices are adjacent. The complete
graph with n vertices will be denoted by K" (we allow n to be an infinite cardinal).
A complete bipartite graph is a graph G which may be partitioned into two disjoint
nonempty vertex sets A and B such that two distinct vertices are adjacent if and
only if they are in distinct vertex sets. If one of the vertex sets is a singleton, then
we call G a star graph. We denote the complete bipartite graph by K™", where
|A| = m and |B| = n (again, we allow m and n to be infinite cardinals); so a star
graph is a K. More generally, G is complete r-partite if G is the disjoint union of
r nonempty vertex sets and two distinct vertices are adjacent if and only if they are
in distinct vertex sets. Finally, let K™ be the graph formed by joining G; = K3
(= AUB with |A| = m and |B| = 3) to the star graph G, = K'"" by identifying the
center of G, and a point of B.

A subgraph G’ of a graph G is an induced subgraph of G if two vertices of G’ are
adjacent in G’ if and only if they are adjacent in G. Clearly, gr(G") > gr(G) when
G' is an induced subgraph of G, but there is no relationship between diam(G’) and
diam(G). A complete subgraph of G is called a clique. The cliqgue number of G,
denoted by cl(G), is the greatest integer r > 1 such that K" C G (if K" C G for
all integers r > 1, then we write c/(G) = o). The chromatic number of G, denoted
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by x(G), is the minimum number of colors needed to color the vertices of G so that
no two adjacent vertices have the same color. Clearly c/(G) < x(G).

Below we provide some examples of zero-divisor graphs. We will not distinguish
between isomorphic graphs (two graphs G and G’ are isomorphic if there is a bijec-
tion f between the vertices of G and the vertices of G’ such that x and y are adjacent
in G if and only if f(x) and f(y) are adjacent in G'). As usual, Z, Z,, Q, R, C,
and F, will denote the integers, integers modulo n, rational numbers, real numbers,
complex numbers, and the finite field with g elements, respectively. In Section 5,
loops will sometimes be added to vertices of I'(R) corresponding to zero-divisors x
with x> = 0.

Example 1.1. (a) ([12, Example 2.1]) We first give all possible nonempty zero-
divisor graphs I'(R) with |I"(R)| < 4. Up to isomorphism, each graph may be real-
ized as I"(R) by precisely the following rings: (i) Z4, Z»[X]/(X?); (i) Zo, Zo x Zo,
Z5[X]/(X2); (i) Ze, Zs, Za[X)/(X?), Za[X]/(2X, X2 — 2); (iv) Za[X,Y}/(X,Y)2,
Za[X]/(2,X)%, Za[X]/(X? + X + 1), F4[X]/(X?); (v) Zy x Fy; (Vi) Z3 x Z3; and
(vii) Zos, Zs[X]/(X?). These examples show that a zero-divisor graph may be real-
ized by more than one ring and that I'(R) does not detect nilpotent elements of R.

REVAVAN

® (i) (iii) @v)

V) (vi) (vii)

(b) Up to isomorphism, the following k" graph may be realized as I'(R) by
only Zy x Zy or Zy x Z»[X]/(X?) (Theorem 2.4, [14, p. 439], [36, Lemma 1.5], or
[64, (2.0)]). The second graph may be realized as I'(R) by only Zy 22 Z3 X Zy4 or
Z3 X ZQ[X]/(XZ).

(0.1)

(1,0) : 02 (1. 2) 6

0.3)
Zz X Z4 ZIZ
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Throughout, R will be a commutative ring with nonzero identity, set of prime
(resp., maximal, minimal prime, associated prime) ideals Spec(R) (resp., Max(R),
Min(R), Ass(R)), ideal of nilpotent elements nil(R), total quotient ring 7 (R) = Ry,
where S = R\ Z(R), and A* = A\ {0} for A C R. Recall that R is reduced if
nil(R) = {0}. We assume that a subring of a ring has the same identity element
as the ring, and an overring of R is a subring of T(R) containing R. The Krull di-
mension of R will be denoted by dim(R), and C will denote proper inclusion. To
avoid trivialities when I'(R) is the empty graph, we will implicitly assume when
necessary that R is not an integral domain. By [16, Theorem 8.7], an Artinian (e.g.,
finite) commutative ring is a finite direct product of local Artinian rings. Moreover,
Z(R) = nil(R) is the unique prime ideal in an Artinian local ring. Thus, a finite re-
duced commutative ring is a finite direct product of fields. For undefined notation or
terminology, see [38] for graph theory, and [16] or [45] for ring theory.

2 Diameter and girth

In this section, we study the girth and diameter of I'(R). However, we begin with the
comforting result from [14] that (nonempty) finite zero-divisor graphs come from
finite rings. This is really a result about zero-divisors and is due to N. Ganesan [43].

Theorem 2.1. ([43, Theorem 1], [14, Theorem 2.2]) Let R be a commutative ring.
Then T'(R) is finite if and only if either R is finite or R is an integral domain. In
particular; if 1 < |I'(R)| < oo, then R is finite and not a field. Moreover, |R| < |Z(R)|?
if R is not an integral domain.

Proof. 1t is sufficient to prove the “moreover” statement. Let x € Z(R)*. Then the
R-module homomorphism f : R — R given by f(r) = rx has kernel anng(x) and
image xR. Thus |R| = |anng(x)||xR| < |Z(R)|?.

The first “big” result in [14] showed that I'(R) is always connected and relatively
“compact.”

Theorem 2.2. ([14, Theorem 2.3]) Let R be a commutative ring. Then I (R) is con-
nected with diam(I'(R)) < 3.

Proof. Let x,y € Z(R)* be distinct. We will show that d(x,y) < 3. If xy = 0, then
d(x,y) = 1. So suppose that xy is nonzero. There are z,w € Z(R)* such that xz =
wy = 0. If zw # 0, then x — zw — y is a path of length 2; so d(x,y) = 2. If zw =0,
then x —z —w —y is a path of length at most 3 (we could have x = z or w = y). Thus,
d(x,y) <3, and hence I'(R) is connected and diam(I"(R)) < 3.

If G contains a cycle, then gr(G) < 2-diam(G) + 1 [38, Proposition 1.3.2].
So, if I'(R) contains a cycle, then gr(I'(R)) < 7 by Theorem 2.2. Anderson and
Livingston, however, noticed that all of the examples they considered had girths of
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3,4, or c. Based on this, they conjectured that if a zero-divisor graph has a cycle,
then its girth is 3 or 4. They were able to prove this if the ring was Artinian (e.g.,
finite) [14, Theorem 2.4]. The conjecture was proven independently by S. B. Mulay
[64] and F. DeMeyer and K. Schneider [36]. Additionally, short proofs have been
given by M. Axtell, J. Coykendall, and J. Stickles [17] and S. Wright [84].

Theorem 2.3. ([14, Theorem 2.4], [64, (1.4)], [36, Theorem 1.6]) Let R be a com-
mutative ring. If I'(R) contains a cycle, then gr(I'(R)) < 4.

Proof. Assume by way of contradiction that n = gr(I'(R)) is 5,6, or 7. Let x; —
Xy — -+ — X, —x1 be a cycle of minimum length. So, xjx3 # 0. If x1x3 # x; for
1 <i<n,thenxy —x3 —x4 —x1x3 — X7 is a 4-cycle, a contradiction. Thus, x;x3 = x;
for some 1 <i<n.If x;x3 =x1, thenx; —x, —x3 —x4 —x1 is a4-cycle. If x;x3 = x»,
then x, — x3 — x4 — xp is a 3-cycle. If x;x3 = x,,, then x; — x, — x,, — x| is a 3-cycle.
Hence, x1x3 # x1,X2, or x,. However, x| —xp — x1x3 — x, — x1 is then a 4-cycle, a
contradiction. Therefore, there must be a shorter cycle in I'(R), and gr(I"(R)) < 4.

Thus, diam(I"(R)) € {0,1,2,3} and gr(I"(R)) € {3,4,}. The examples given
in the Introduction show that all these possible values may occur. The next result
expands on Theorem 2.3.

Theorem 2.4. Let R be a commutative ring which is not an integral domain. Then
exactly one of the following holds:

(a) T'(R) has a cycle of length 3 or 4 (i.e., gr(I'(R)) < 4);
(b) I'(R) is a singleton or a star graph; or
(¢)T(R)=K" (i.e, R= 7y x Zy or R= T x Zo[X]/(X?)).

Moreover, if I'(R) contains a cycle, then every vertex of I' (R) is either an end or
part of a 3-cycle or a 4-cycle.

Proof. The finite case was observed in [14, p. 349], while the general case is inde-
pendently given in [36, Theorem 1.6] and [64, (1.4), (2.0), and (2.1)]. The “more-
over” statement is from [64, (1.4) and (2.1)].

Another characterization of girth was given in [15] using the fact that R and T (R)
have isomorphic zero-divisor graphs (Theorem 4.4). The following two theorems
explicitly characterize when the girth of a zero-divisor graph is 4 or oo, and thus
implicitly when the girth is 3.

Theorem 2.5. ([15, Theorems 2.2 and 2.4]) Let R be a reduced commutative ring.
(a) The following statements are equivalent.
(1) gr(T(R)) =4
(2) T(R) =K, X K;, where each K; is a field with |K;| > 3.
(3) T'(R) = K™" with m,n > 2.
(b) The following statements are equivalent.
(1) T'(R) is nonempty with gr(I'(R)) = oo.
(2) T(R) =7Zy x K, where K is a field.
(3) ' (R) =K' for some n > 1.
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Theorem 2.6. ([15, Theorems 2.3 and 2.5]) Let R be a commutative ring with
nil(R) nonzero.
(a) The following statements are equivalent.
(1) gr(I'(R)) = 4.
(2) R =D x B, where D is an integral domain with |D| > 3 and B = Z4 or
Z[X]/(X?). (Thus T(R) = T(D) x B.)
(3) T(R) =K" withm > 2.
(b) The following statements are equivalent.
(1) gr(I'(R)) = eo.
(2) R= B or R 7y x B, where B = 74 or 75[X]|/(X?), or T'(R) is a star
graph.
(3) T'(R) is a singleton, a K", ora K" for some n > 1.

Much of the research on zero-divisor graphs has focused on the girth and diam-
eter for certain classes of rings. For example, gr(I'(R)) is studied in terms of the
number of associated prime ideals of R in [3], and properties of I"(R) for a reduced
ring R are related to topological properties of Spec(R) in [74]. The girth and diam-
eter of the zero-divisor graph of the direct product of two commutative rings (not
necessarily with identity) are characterized in [21], and for diameter these ideas are
extended to finite direct products in [41]. Also, the girth and diameter of the zero-
divisor graph of an idealization are characterized in [18] and [15], and the girth and
diameter of I' (R x I) (the amalgamated duplication of a ring R along an ideal 7 [33])
are studied in [62]. The girth and diameter of I (R) for a commutative ring R which
satisfies certain divisibility conditions on elements or comparability conditions on
ideals or prime ideals are investigated in [10].

We next give a more detailed discussion of the zero-divisor graphs for polynomial
rings and power series rings. First, we consider the easier case for girth.

Theorem 2.7. ([17, Theorem 4.3], [15, Theorem 3.2]) Let R be a commutative
ring.
(a) Suppose that I'(R) is nonempty with gr(I"(R)) = es.
(1) IfR is reduced, then gr(I'(R[X])) = gr(I' (R[[X]])) = 4.
(2) If R is not reduced, then gr(I' (R[X])) = gr(I' (R] )
(b) 17 gr(T(R)) =3, then gr(T'(RIX])) = gr(T (RIX]])) = 3.
(¢) Suppose that gr(I'(R)) = 4.
(1) If R is reduced, then gr(I"(RX])) = gr(I" ( [[ ]])) =4
(2) IfR is not reduced, then gr(I'(R[X])) = )

Proof. From [17, Theorem 4.3], we have gr(I"(R)) < gr(I"(R[X])) = gr(I"(R[[X]])).
and equality holds if R is reduced and I'"(R) contains a cycle. The remaining cases
and the result as stated above are from [15, Theorem 3.2].

The “diameter” case is not so easy. This was first studied in [17], and some cases
for non-Noetherian commutative rings left open in [17] were resolved by T. G. Lucas
in [59]. However, we are content here to just mention the reduced case; the interested
reader should refer to [17,59], and [15] for related results. In particular, see [59,
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Theorems 3.4 and 3.6] for polynomial rings and [59, Section 5] for power series
rings. Recall that a ring R is a McCoy ring if each finitely generated ideal contained
in Z(R) has a nonzero annihilator.

Theorem 2.8. ([59, Theorem 4.9]) Let R be a reduced commutative ring that is not
an integral domain. Then

1 <diam(I'(R)) < diam(I"(R[X])) < diam(I"(R[[X]])) < 3.

Moreover; here are all possible sequences for these dimensions.

(1) diam(I'(R)) = 1 and diam(I"(R[X])) = diam(I"(R[[X]])) = 2 if and only if
R =75 X 7.

(2) diam(I'(R)) = diam(I'(R[X])) = diam(I"(R[[X]])) = 2 if and only if either
R has exactly two minimal primes and is not isomorphic to Z; X Zy or for each pair
of countably generated ideals I and J with nonzero annihilators, the sum I +J has
a nonzero annihilator (and R is a McCoy ring with Z(R) an ideal).

(3) diam(I'(R)) = diam(I"(R[X])) = 2 and diam(I"(R[[X]])) = 3 if and only if
R is a McCoy ring with Z(R) an ideal but there exists countably generated ideals I
and J with nonzero annihilators such that I 4+ J does not have a nonzero annihilator.

(4) diam(I'(R)) = 2 and diam(I"(R[X])) = diam(I"(R[[X]])) = 3 if and only if
Z(R) is an ideal and each two generated ideal contained in Z(R) has a nonzero
annihilator but R is not a McCoy ring.

(5) diam(I'(R)) = diam(I" (R[X])) = diam(I"(R[[X]])) = 3 if and only if R has
more than two minimal primes and there is a pair of zero-divisors a and b such that
(a,b) does not have a nonzero annihilator.

Let A C B be an extension of commutative rings with identity. In this case,
I'(A) is an induced subgraph of I'(B). It may happen that I'(A) = I"(B) for A C B
(this happens if and only if A is a pullback of a finite local ring [12, Theorem
4.3]). It is clear that gr(I'(B)) < gr(I"(A)). Moreover, for all m,n € {3,4,0} with
m < n, there is a proper extension A C B of reduced finite commutative rings
such that gr(I"(B)) = m and gr(I'(A)) = n [9, Example 2.1]. Again, the case
for the diameter is not so clear since although Z(A) C Z(B), it need not be the
case that Z(A) = Z(B) NA. In fact, for m,n € {0,1,2,3}, there is a proper ex-
tension A C B of commutative rings with diam(I"(A)) = m and diam(I"(B)) = n
unless (m,n) € {(0,0),(1,0),(2,0),(2,1),(3,0),(3,1)} [9, Proposition 3.2]. Thus,
diam(I'(A)) < diam(I"(B)) unless diam(I"(A)) = 3 and diam(I"(B)) = 2; specific
examples with diam(I"(A)) = 3 and diam(I"(B)) = 2 are given in [18, Example 3.7]
and [9, Example 3.7]. The next theorem gives conditions when this can happen.

Theorem 2.9. (a) ([9, Theorem 3.8]) Let A be a commutative ring with diam(I"(A))
= 3. Then there is a commutative extension ring B of A such that diam(I"(B)) = 2
if and only if Z(A) C M for some maximal ideal M of A. Moreover, if A is reduced,
then B can also be chosen to be reduced.

(b) ([9, Corollary 3.12]) Let A C B be an extension of commutative rings with
dim(A) = 0. Then diam(I"(A)) < diam(I"(B)). In particular, this holds if A is
Artinian or a finite commutative ring.
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Part (b) essentially follows from part (a) since diam(I"(R)) < 2 when Z(R) =
nil(R) [9, Lemma 3.11]. Theorem 2.9 illustrates a case where the zero-divisor graph
of an infinite ring may behave rather differently from that of a finite ring. Also note
that if B is an overring of A, then diam(I"(A)) = diam(I"(B)) by Corollary 4.5(a).

The above results demonstrate that the zero-divisor graph of a commutative ring
exhibits a remarkable amount of graphical structure that could perhaps provide some
insight into the algebraic structure of Z(R). The next several sections show some of
the results in which I'(R) provides information about R and Z(R).

3 What the size and shape of ' (R) implies

Theorem 2.1 can be generalized to only require that every vertex of I'(R) has finite
degree (i.e., every vertex is adjacent to only finitely many other vertices).

Theorem 3.1. ([4, Theorem 6]) If R is a commutative ring such that R is not an
integral domain and every vertex of I'(R) has finite degree, then R is a finite ring.

Proof. Suppose R is infinite and x,y € R* with xy = 0. Then yR* C ann(x). If yR*
is infinite, then x has infinite degree in I'(R), a contradiction. If yR* is finite, then
there exists an infinite A C R* such that ya; = ya, for all aj,a; € A. If ag is a fixed
element of A, then {ap —a | a € A} is an infinite subset of ann(y), and thus y has
infinite degree in I'(R), a contradiction. Hence, R is finite.

Thus, if R is not an integral domain, we have |Z(R)| < o < |R| < oo < every
vertex of I'(R) has finite degree. When R is Noetherian, an upper bound on |R)|
sometimes exists in terms of the degree of each vertex.

Theorem 3.2. ([69, Theorem 6.1]) Let R be a commutative Noetherian ring with
identity that is not an integral domain. Suppose that there exists a positive integer k
such that for all nonzero x € R, |ann(x)| < k. Then |R| < (k* — 2k +2)>.

Another way to study zero-divisor graphs is to approach the structures from the
opposite direction. In other words, given a graph G, is it possible to know when there
is a commutative ring R such that I"(R) 22 G? One series of results has provided a list
of all rings (up to isomorphism) whose zero-divisor graphs consist of n elements.
The graphs on n = 1,2, 3, or 4 vertices which can be realized as I'(R), and a com-
plete list of rings (up to isomorphism) producing those graphs, was given in [12,
Example 2.1] (Example 1.1(a)). S. P. Redmond showed in [69, Theorem 6.4] that
for n = 5, there were three non-isomorphic graphs that could be realized as I' (R),
while there were four non-isomorphic rings creating said graphs. Redmond contin-
ued this work in [72], where he provided all graphs on n = 6,7, ..., 14 vertices that
can be realized as the zero-divisor graph of a commutative ring with identity, and
lists all rings (up to isomorphism) which produce these graphs. In addition, Red-
mond gave an algorithm to find all commutative reduced rings with identity (up to
isomorphism) which give rise to a zero-divisor graph on n vertices for any n > 1.
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In a similar vein, J. D. LaGrange [47] developed an algorithm for constructing the
zero-divisor graph of a direct product of integral domains, as well as classified which
graphs are realizable as zero-divisor graphs of direct products of integral domains
or zero-divisor graphs of Boolean rings (also see [51]).

One can also ask for which positive integers n is there a commutative ring R with
| (R)| = n, equivalently, when is there a commutative ring R with |Z(R)| =n+ 1?
Using a formula for the number of zero-divisors in a direct product of rings by
R. Gilmer [44], S. P. Redmond [73] used computer calculations to show that there
are no reduced commutative rings with 1206, 1210, 1806, 3342, 5466, 6462, 6534,
6546, or 7430 zero-divisors. Additional work showed that there are no commutative
rings with 1210, 3342, or 5466 zero-divisors. Thus, there is no commutative ring R
(with identity) such that I"(R) has 1209, 3341, or 5465 vertices (for rings without
identity, see the comments after Theorem 3.3).

Two of the most elementary forms that a connected graph can take are being
complete or complete bipartite. Whenever the zero-divisor graph of a ring assumes
one of these two shapes, we gain a remarkable amount of information about the ring.
We first handle the “complete” case. By definition, xy = 0 for distinct x,y € Z(R) if
I'(R) is complete. Except in the case R = Z, x Z,, we must also have x> = 0 for all
x € Z(R), and thus Z(R) is an (prime) ideal of R. So, except for that case, a finite
ring R has I"(R) complete if and only if (R, M) is local and M? = 0.

Theorem 3.3. (a) ([14, Theorem 2.8]) Let R be a commutative ring. Then I'(R) is
complete if and only if either R = Zy X Zy or xy = 0 for all x,y € Z(R).

(b) ([14, Theorem 2.10]) Let R be a finite commutative ring. If I' (R) is complete,
then either R = 7 x 7y or (R,M) is local with M*> = 0, charR = p or p?, and
[T (R)| = p" — 1, where p is prime and n > 1.

Conversely, for each prime p and integer n > 1, the ring R = F,»[X]/(X?) has
I'(R) complete with |I"(R)| = p" — 1 [14, Example 2.11]. For a partial charac-
terization of which finite rings R have I'(R) complete, see [58, Section 3]. More
generally, for each infinite cardinal number o, let K be a field with |K| = o and
R=K[X]/(X?). Then I'(R) is complete and |I"(R)| = o.. However, for infinite rings,
I'(R) may be complete when R is not quasilocal. For example, R = Z4[X] is not
quasilocal, but I'(R) is complete since Z(R) = 2R. Theorem 3.3(b) not only illus-
trates the difference between finite and infinite rings, but also the necessity of an
identity. Let R be the additive group Z,; with multiplication defined by xy = 0 for
all x,y € R; then I'(R) is a complete graph on n vertices.

When I'(R) is a complete bipartite graph, we can say even more about R. Note
that for integral domains Ry and Ry, I'(R, X Ry) = K™", where m = |R| — 1 and
n = |Ry| — 1. The converse holds for finite rings except when the graph is a K'!
or K'2. Thus, K" = I"(R) for a finite commutative ring R if and only if m = plf' -1
andn = p];z — 1 for primes p1, p, and integers ki,k, > 1.
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Theorem 3.4. ([14, p. 439], [36, Theorem 1.14, Corollary 1.11]) Let R be a finite
commutative ring.

(a) T'(R) is complete bipartite if and only if either R = F| X F>, where Fy and
F, are finite fields, or R is isomorphic to Zo, Z3[X]/(X?), Zs, Z2[X]/(X?), or
Z4/(2X, X2 —2).

(b) I'(R) is a star graph if and only if either R = Z X F, where F is a finite field,
or R is isomorphic to Zo, 73[X|/(X?), Zs, Zo[X]/(X3), or Z4 ) (2X ,X?> —2).

For infinite complete bipartite zero-divisor graphs, see Theorems 2.5, 2.6, 3.6,
3.7, and [36, Theorems 1.12 and 1.14].

Complete r-partite graphs have been described by S. Akbari, H. R. Maimani, and
S. Yassemi [3]; some of their results are listed below. Of course, K" is a complete
n-partite graph (cf. Theorem 3.3).

Theorem 3.5. Let R be a commutative ring such that I'(R) is a complete r-partite
graph for r > 3 with vertex sets Vy,...,V,.

(a) ([3, Theorem 3.1]) At most one vertex set has more than one element. If
Vi = {x}, then x*> = 0. Further, Z(R) € Max(R) NAss(R).

(b) ([3, Theorem 3.2]) If R is finite, then R is local. Moreover, if |V,| > 2, then
there is a prime p and positive integers t and k such that r = p' and |R| = p*.

(c) ([3, Theorem 3.4]) If r = p for p prime, then |Z(R)| = p?,|R| = p°,
and R is isomorphic to exactly one of the rings Z,3,Z,[X,Y]/ (XY, Y2 —X), or
sz[Y]/(pY,Yz—ps), where 1 <s < p.

We next turn to characterizing the zero-divisor graphs of commutative rings with
von Neumann regular total quotient rings. Recall that a commutative ring R is von
Neumann regular if for each x € R, there is a y € R with x’y = x (equivalently,
R is reduced and dim(R) = 0 [45, Remark, p. 5]). The simplest examples of von
Neumann regular rings are direct products of fields.

Let G be a (undirected) graph. As in [54], for vertices a and b of G, we define
a < b if a and b are not adjacent and each vertex of G adjacent to a is also adjacent
to b; and define a ~ b if a < b and b < a. Thus, a ~ b if and only if a and b are
adjacent to exactly the same vertices. Clearly ~ is an equivalence relation on G. For
distinct vertices a and b of G, we say that a and b are orthogonal, written a L b, if
a and b are adjacent and there is no vertex ¢ of G which is adjacent to both a and b,
i.e., the edge a — b is not part of any triangle in G. We say that G is complemented if
for each vertex a of G, there is a vertex b of G (called a complement of a) such that
a L b, and that G is uniquely complemented if G is complemented and whenever
albandal c, then b~ c. Fora,b e Z(R)*, we have a ~ b in I'(R) if and only if
ann(a) \ {a} = ann(db) \ {b}.

We next determine when I'(R) is complemented or uniquely complemented.
Since I'(R) and I'(T'(R)) are isomorphic by Theorem 4.4, we can only character-
ize when T(R) is von Neumann regular. Work on the zero-divisor graph of a von
Neumann regular ring was initiated by R. Levy and J. Shapiro [54] and then contin-
ued in [13,46-48], and [49].
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Theorem 3.6. ([13, Theorem 3.5]) The following statements are equivalent for a
reduced commutative ring R.

(1) T(R) is von Neumann regular.

(2) I'(R) is uniquely complemented.

(3) T'(R) is complemented.

Moreover, a nonempty I'(R) is a star graph if and only if R = D X Z for some
integral domain D.

For nonreduced rings, we have the following characterizations.

Theorem 3.7. (a) ([13, Theorem 3.9]) Let R be a commutative ring with nil(R)
nonzero. If I’ (R) is uniquely complemented, then either I (R) is a star graph with at
most two edges or I' (R) is an infinite star graph with center x, where nil(R) = {0, x}.

(b) ([13, Theorem 3.14]) Let R be a commutative ring. Then I'(R) is comple-
mented, but not uniquely complemented, if and only if R is isomorphic to D X B,
where D is an integral domain and B is either Zy or 7o[X]/(X?).

A commutative ring R is a Boolean ring if x* = x for all x € R. Clearly, a Boolean
ring is von Neumann regular. The simplest example of a Boolean ring is the power
set of a set with symmetric difference as addition and intersection as multiplication
(i.e., a direct product of Z;’s). Note that R is Boolean if and only if T'(R) is Boolean,
and in this case T(R) = R. In [46], J. D. LaGrange used these ideas to characterize
Boolean rings in terms of zero-divisor graphs (also see [51]).

Theorem 3.8. ([46, Theorem 2.5]) A commutative ring R is a Boolean ring if and
only if either R = 7y or T'(R) is not the empty graph, R & {Z9,75[X]/(X*)}, and
I'(R) has the property that every vertex has a unique complement. In particular,
if [T (R)| > 3, then R is Boolean if and only if every vertex of I'(R) has a unique
complement.

Theorem 3.9. ([46, Theorem 4.3]) Let R be a commutative ring with the property
that every element of I'(R) is either an end or is adjacent to an end. Then exactly
one of the following holds:

(1) R= 7y x Zy or R= 7o x 75[X]/(X?) (i.e., [ (R) =K

(2) T'(R) is a star graph.

(3) R=Zy X Zn X L.

1,3

).

4 When does I'(R) = I'(S) imply that R = S?

A very natural question when studying zero-divisor graphs is whether they are
unique; i.e., is I'(R) = I'(S) if and only if R 22 §? Clearly, one direction holds, but
Example 1.1(a) shows that non-isomorphic rings may have isomorphic zero-divisor
graphs. Specifically, the zero-divisor graphs of Z; x Z, and Zg are isomorphic, yet
the two rings are clearly not isomorphic. This question has a positive answer when
the rings are finite products of finite fields.
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Theorem 4.1. ([12, Theorem 4.1]) Let R and S be finite reduced commutative rings
which are not fields. Then I'(R) 2 T'(S) if and only if R = S.

Earlier mentioned examples show that “reduced” is a necessary condition.
“Finite” is also a necessary condition since the rings R =7, X Z and S =7 x Q
are not isomorphic, but I'(R) and I'(S) are each a K''®. As becomes clear in
Theorem 4.3, Theorem 4.1 is really a cardinality result.

Theorem 4.1 is a remarkable result which says that for certain rings, the behavior
of the zero-divisors uniquely determines the entire ring. In fact, this result has been
generalized as shown in the two results below and Corollary 4.5(b). The special case
of Theorem 4.3 for finite fields is from [54, Corollary 2.4].

Theorem 4.2. ([4, Theorem 5]) Let R be a finite reduced commutative ring and S
not an integral domain. If I'(R) 2 I'(S), then R = S, unless R = 7, X 7 or Z¢, and
S'is a local ring.

Theorem 4.3. ([13, Theorem 2.11) Let {R; }ic; (|I| > 2) and {S;} jes be two families
of integral domains, and let R = [1;c;R; and S = [1;c;S;. Then I'(R) = T'(S) if
and only if there is a bijection @ : I — J such that |R;| = |Sy ;)| for each i € I. In
particular, if I'(R) = I'(S) and each R; is a finite field, then each S; is also a finite
field and R; = S(p(i) foreachi € I, and thus R = S.

The next theorem dashes any hope of completely characterizing many classes
of commutative rings solely in terms of zero-divisor graphs. This “problem” never
arises for finite rings since T(R) = R when R is finite.

Theorem 4.4. ([13, Theorem 2.2]) Let R be a commutative ring with total quotient
ring T (R). Then the graphs I' (T (R)) and I" (R) are isomorphic.

Corollary 4.5. (a) ([13, Corollary 2.3]) Let A and B be commutative rings. If
T(A) 2 T(B), then I'(A) = I'(B). In particular, I'(A) = I'(B) if B is an overring
of A.

(b) ([13, Corollaries 2.4 and 2.5]) Let A and B be reduced commutative Noethe-
rian rings which are not integral domains. Then I' (A) 2 I'(B) ifand only if there is a
bijection ¢ : Min(A) — Min(B) such that |A/P| = |B/@(P)| for each P € Min(A).
In particular, if Min(A) = {P),...,P,}, then I'(A) 2 I'(K; X --- X K;;), where each
K;i=T(A/P) is a field.

J. D. LaGrange has investigated the zero-divisor graph of the complete ring of
quotients Q(R) of R (see [52] for the definition of Q(R)) in [46,48], and [49]. In this
case, we may have I'(R) % I'(Q(R)) [46, p. 606].

Note that the two von Neumann regular rings Z, x R and Z, x C have isomor-
phic zero-divisor graphs by Theorem 4.3, but are not isomorphic. Also see [54]
for several related results and examples. However, a Boolean ring is determined
by its zero-divisor graph (cf. [13, Theorem 4.1], [51], [57, Theorem 2.1], and [58,
Section 4]).

Theorem 4.6. ([46, Theorem 4.1]) Let R be a commutative ring with nonzero
zero-divisors, not isomorphic to Lo or 73[X]/(X?). If S is a Boolean ring such
that I'(R) = I'(S), then R = S. In particular, if R and S are Boolean rings, then
I'(R) =2 I'(S) ifand only if R = S.
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Several authors have also studied (graph) automorphisms of I'(R). They were
first investigated in [14], and in more detail in [36, 64], and [66]. There is a natural
homomorphism ¢ : Aut(R) — Aut(I"(R)) which is injective when R is finite [14,
Theorem 3.1]. In general, ker(¢) is nonzero, but is abelian and may be identified
with a group of derivations (see [64, Section 3] and [36, Section 2]).

5 Ideals and Z(R)

The zero-divisors of a commutative ring typically exhibit little additive structure,
and it is this lack of closure under addition that prevents them from forming an
ideal. Thus, it is a natural to ask when Z(R) is an ideal of R. In particular, can
we determine conditions on I'(R) that will ensure Z(R) is an ideal? One approach
has been to create cases based on the diameter of I'(R). For example, if R is a
commutative ring with diam(I"(R)) = 0, then either Z(R) = {0} or Z(R) = {0,x}
with x? = 0. In the latter case, we must have x + x = 0 since x(x +x) = x> + x> = 0.
So in both instances Z(R) is an ideal. The case when diam(I"(R)) = 1 is also quickly
solved. By Theorem 3.3(a), I'(R) is complete if and only if R = Z) x Z; or xy =0
forall x,y € Z(R).If R= Z; x Z,, then Z(R) is clearly not an ideal. Otherwise, Z(R)
can quickly be shown to be closed under addition and hence an ideal. So, we turn
our attention to the case when diam(I"(R)) = 2. For this section, it will sometimes
be useful to consider any vertex corresponding to a zero-divisor x with x> = 0 as
having a loop attached; i.e., an edge connecting the vertex x to itself. We call such
a vertex looped. We denote this extension of I'(R) by I'*(R). Let R=R| X -+ X R,
be a product of finite local commutative rings (n > 2). Given I'*(R), M. Taylor [80]
has given an algorithm to determine n, |R;|, and I'(R;) foreach 1 <i < n.

Lemma 5.1. ([20, Lemma 3.1]) Let R be a commutative ring with diam(I'(R)) = 2.
Then Z(R) is an ideal if and only if for all pairs x,y € Z(R) there exists a nonzero
(not necessarily distinct) z such that xz = yz = 0.

Definition 5.2. A graph G is said to be star-shaped reducible if there exists a looped
vertex g € G such that g is connected to all other points in G.

In terms of I'*(R) where diam(I'*(R)) = 2, the condition that for all pairs
x,y € Z(R) there exists a nonzero (not necessarily distinct) z such that xz = yz =0
has a graph-theoretic description. Namely, if x — y, then either x or y has a loop
(x* =0 or y? = 0), or x — y is part of a cycle of length 3.

Theorem 5.3. ([20, Theorem 2.3], [9, Lemma 3.11]) Let R be a finite commuta-
tive ring with identity. Then Z(R) is an ideal if and only if T'*(R) is star-shaped
reducible. In this case, diam(I"(R)) < 2.

The case where R is infinite with diam(I"(R)) = 3 was settled in [59] and [9].
A method for producing a commutative ring R with diam(I"(R)) = 3 and Z(R) an
ideal was outlined in [59, Example 5.1], and this was actually accomplished in [9,
Example 3.13]. A simpler example is given in [20]
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As an interesting side note to the above results, the information revealed helped to
determine which finite graphs are realizable as zero-divisor graphs of commutative
rings (such rings must be finite by Theorem 2.1).

Theorem 5.4. ([20, Theorem 4.5]) If G is realizable as a zero-divisor graph of
a finite commutative ring with identity, then it is star-shaped reducible, complete
bipartite, or diam(G) = 3.

It is well known that Z(R) is the set-theoretic union of prime ideals [16, Exercise
14, p. 12]. By placing some modest restrictions on I"(R) and R, the union is over a
surprisingly small number of prime ideals.

Theorem 5.5. ([17, Proposition 3.4]) Let R be a commutative ring with diam(I'(R))
< 2 and let Z(R) = Ujc P for prime ideals P; of R. If there is an element in Z(R)
that is contained in a unique maximal P, then |A| < 2. In particular, if A is a finite
set (e.g., if R is Noetherian), then |A| < 2.

The following theorem is in the spirit of Theorems 2.5 and 2.6.

Theorem 5.6. ([15, Theorem 2.7]) Let R be a commutative ring with diam(I"(R))
< 2. Then exactly one of the following holds.

(1) Z(R) is an (prime) ideal of R.

(2) T(R) =K x Ky, where each K; is a field.

We close this section with three results from [59] that provide further links
between the ideal structure of R and Z(R) and diam(I"(R)).

Theorem 5.7. ([59, Theorem 2.1]) Let R be a reduced commutative ring. If R has
more than two minimal prime ideals and there are nonzero elements a,b € Z(R)
such that (a,b) has no nonzero annihilator, then diam(I"(R)) = 3.

It is of interest to note that Theorem 5.7 generalizes to the nonreduced case, and
in this case we do not need the assumption that R has more than two minimal primes
(see [59, Theorem 2.4]). A corollary to this appears below.

Theorem 5.8. ([59, Theorem 2.2]) Let R be a reduced commutative ring with Z(R)
not an ideal. Then diam(I'"(R)) < 2 if and only if R has exactly two minimal prime
ideals.

Corollary 5.9. ([59, Corollary 2.5]) If R is a non-reduced commutative ring such
that Z(R) is not an ideal, then diam(I" (R)) = 3.

6 Planar and toroidal graphs

A graph G is planar if it can be embedded (i.e., drawn with no crossings) in the
plane and is foroidal if it is not planar, but can be embedded in a torus. More gen-
erally, G has genus g if it can be embedded in a surface of genus g, but not in
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one of genus g — 1. Let ¥(G) denote the genus of G; so G is planar (resp., toroidal)
when ¥(G) = 0 (resp., ¥(G) = 1). In this section, we determine all finite commuta-
tive rings with planar or toroidal zero-divisor graphs.

For the planar case, the proof uses the theorem of Kuratowski [38, Theorem
4.4.6] that a graph G is planar if and only if it contains no subdivisions homeomor-
phic to K> or K3 and the fact that a finite commutative ring is the direct product
of a finite number of local rings. The idea is to get a bound on the number of local
ring factors, and then handle the local case. If I'(R) is planar, then R has at most 3
local ring factors since otherwise it would contain a K-, The cases for 2 or 3 local
ring factors are then handled separately. For a finite local ring (R,M), M" = 0 for
some positive integer n. If n > 5, then I'(R) would contain a K3, and thus not be
planar. The toroidal case is similar, but uses the facts that K™ is toroidal if and only
if m =5,6,7, while K** is toroidal and K3 is toroidal if and only if n = 3,4, 5,6.

The first work in this direction was given in [12], where they asked which finite
commutative rings R have I'(R) planar and gave the following partial answer.

Theorem 6.1. ([12, Theorem 5.1]) (a) Let R = Z,, where n > 2 is not prime. Then
I['(R) is planar if and only if n € {8,12,16,18,25,27}U{2p,3p| p is prime }.

(b) Let R=Zy, X -+ X Ly,, where r > 2 and 2 < ny < --- < np. Then I'(R)
is planar if and only if R is one of Zo X ZLa, Zo X L, Lo X ZLg, Lo X Ly, Zo X ZLp,
Z3 ><Z4, Z3 ><Z9, Z3 XZq, ZZXZ2XZ2, ZZXZ2XZ3, wherep22andq23are
primes.

Theorem 6.2. ([12, Theorem 5.2]) Let R, ,, = Zy[X]/(X™), where m,n > 2.
(a) I'(R,2) is planar if and only if n < 5.
(b) I'(R,3) is planar if and only if n < 3.
(¢) T'(Ry4) is planar if and only if n = 5.
(d) T'(Rnm) is never planar if m > 5.

S. Akbari, H. R. Maimani, and S. Yassemi [3] gave a partial answer by showing
that if I'(R) is planar, then R has at most 3 local ring factors, describing those local
ring factors, and giving the following theorem for when R is local.

Theorem 6.3. ([3, Theorems 1.2 and 1.4]) Let (R, M) be a finite local commutative
ring. Then I (R) is not planar if one of the following holds.

(1) |[R/M| >4 and |R| > 26.

(2) |R/M|=3and |R| > 28.

(3) |R/M|=2and |R| > 33.

In [3, Remark 1.5], they also asked the following question: “Is it true that,
for any local ring R of cardinality 32, which is not a field, I'(R) is not planar?”
N. O. Smith [76] answered their question affirmatively and explicitly gave all the
finite commutative rings with planar zero-divisor graphs (their zero-divisor graphs
are given in [77]). Their question has also been answered independently by H.-J.
Wang [82] and R. Belshoff and J. Chapman [25] ([76] was not reviewed in Math
Reviews). Belshoff and Chapman also give all finite local rings with planar zero-
divisor graphs using somewhat different techniques than [76].
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Theorem 6.4. ([76, Theorem 3.7]) Let R be a finite commutative ring (not
a field), and k a (finite) field. Then T'(R) is planar if and only if R is iso-
morphic to one of the following 44 types of rings: Zy X k, Zz X k, Zy X Za,
Z2 X Zz[X]/(XZ), Z3 X Z4, Z3 X Zz[X]/(XZ), Z2 X Z2 X ZQ, Zz X Zz X Z3,
Zz X Zg, Zz X Zz[X]/(X3), Z2 X Z4[X]/(2X,X2 — 2), Zz X Zg, Zz X Z3[X]/(X2),
Zs x Lo, L3 X Z3[X]/(X?), Za, Zo[X]/(X?), Zo, Z5[X]/(X?), Zs, Zo[X ]/(X3)
LX)/ QX X2~ 2), T TalX]/(X*), ZalX]/QX,XP—-2), ZyfX]/(X*-2)
X/ 42X+ 2), FX]/(XD), ZaX)/(X2 4K 1), ZalX,V]/(X.Y)

] )

) )

>

Z
Za[X1/(2.X)% Zop, ZsX)/(X°), Zs[X]/(X? — 3,3X), Zo[X 1/<x2 ~ 6,3X),
20 Y]/(XZ Y2 — XY), ZoX,Y]/(X?, Y2), Zg[X]/(2X — 4,X°), Zu[X]/(X?),
Z4[X]/(X? = 2X), Z4[X,Y]/ (X%, XY —2,Y> — XY,2X, 2Y), Z4[X,Y]/(X? XY —2,

Y2,2X,2Y), Zas, or Zs[X]/(X?).

Corollary 6.5. ([76, Corollary 3.8], [82, Theorem 3.2], [25, Proposition 5]) Let R
be a finite commutative local ring (not a field) with either |R| > 28 or |Z(R)| > 10.
Then I'(R) is not planar.

Note that the above corollary is best possible since R = Z,7 is a local ring with
|R| =27,|Z(R)| =9, and planar zero-divisor graph.

Smith [79] has also characterized the infinite planar zero-divisor graphs. Note
that if I"(R) is planar, then necessarily |I"(R)| < c¢; so a K% is planar if and only if
a < c. Moreover, the graphs given in the following theorem can all be realized as
the zero-divisor graphs of commutative rings [79, Remark 2.20].

Theorem 6.6. ([79, Theorem 2.19]) Let R be an infinite commutative ring (not an
integral domain) such that I (R) is planar. Then I (R) is isomorphic to either a star
graph, a K>%, where o < c, or the graph obtained by taking such a K> and adding
an edge between the two vertices of infinite degree.

We next proceed to zero-divisor graphs of genus one. This research was initi-
ated by H.-J. Wang in [82], where he determined which finite commutative rings of
the type in Theorems 6.1 and 6.2 have genus at most one, answered the question
about planar local rings raised in [3], and gave bounds on the cardinality of local
rings of genus one. The complete genus-one solution was achieved independently
by C. Wickham [83] and H.-J. Chiang-Hsieh, H.-J. Wang, and N. O. Smith [31]. The
planar case is also redone in [31]. All three papers also give partial results for zero-
divisor graphs of higher genus. The next theorem lists all the finite commutative
rings with y(I'(R)) = 1.

Theorem 6.7. ([83, Theorems 3.1 and 4.1], [31, Theorems 3.5.2 and 3.6.2]) Let R
be a finite commutative ring which is not a field.

(a) If R is local, then y(I'(R)) = 1 if and only if R is isomorphic
to one of the following 17 rings: Zs, Zao, Zo[X]/(X7), Fg[X]/(X?),
ZoX))(X3,XY,Y?), Zo[X,Y,Z]/(X,Y,2)?, Za[X]/(X?® +X + 1), Za[X]/(X? -
2,X%), ZalX]/(X* — 2,X5%), Z4[X,Y]/(X3, X* — 2,XY,Y?), Z4[X]/(X3, 2X),
Z4[X,Y]/(2X,2Y, X%, XY, Y?), Z7[X]/(X?), Zg[X]/(X?,2X), Zg[X]/(X*> —2,X7),
Zg[X]/(X*+2X —2,X°), or Zg[X]/(X? — 2x+2,X°).
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(b) If R is not local, then y(I'(R)) = 1 if and only if R is isomorphic to one
of the following 29 rings: Ty x Fy, By x Zs, Fy x Zg, Zs x Ls, Tn x F4[X]/(X?),
Ty X Zy[X] /(X2 +X +1), Zy x Z[X, Y]/ (X%, XY,Y?), Zy x Z4[X]/(2X,X?), Z3 x
Lo[X]/(X?), Zs X Za[X]/(X* = 2,X7), Ly X Lg, Lg X Fa,Fy X Zs[X]/(X?), Ly X La,
Z4 X ZQ[X]/(XZ), Zz[X]/(XZ) X ZQ[X]/(XZ), Z4 X Zs, Zs X ZQ[X]/(XZ), Z4 X Z7,
Z7 X ZQ[X]/(XZ), Zz X Z3 X Z3, Z3 X Z3 X Z3, Zz X Z3 X F4, Zz X Zz X ZS, Zz X
Z2 X Z7, Z2 X Zz X F4, Zz X Z2 X Z4, Z2 X Zz X ZQ[X]/(Xz), 0/’Z2 X Zz X Zz X ZQ.

We conclude this section by mentioning that H.-J. Chiang-Hsieh [30] has re-
cently determined all the finite commutative rings R such that I"(R) is projective
(a nonplanar graph is said to be projective if it can be embedded in the projective
plane). Such a ring has at most 4 prime ideals, and up to isomorphism, there are 36
finite commutative rings with projective zero-divisor graph.

7 Origins and generalizations

In this final section, we first trace the origins and early history of I"(R), and then
briefly mention several other directions this research has taken. It all started in 1988
when I. Beck [23] presented the idea of associating a “zero-divisor” graph with a
commutative ring. However, Beck used a slightly different definition for I'(R) and
was mainly interested in colorings. He let all elements of R be vertices; so O is
adjacent to every other vertex. We denote Beck’s zero-divisor graph of R by I(R)
(Beck just used R); so I'(R) is an induced subgraph of Ij(R).

If either R is an integral domain, R 2 Zy, or R = Z,[X]/(X?), then I3(R) is the
star graph K%, where o = |R*|; so gr(I9(R)) = . Otherwise, gr(IH(R)) = 3 since
0 and any two distinct zero-divisors x and y of R with xy = 0 determine a trian-
gle. Clearly, Ij(R) is always connected. We have diam(Io(R)) = 1 for R = Z,, and
diam(Ip(R)) = 2 for all other rings R since x — 0 —y is a path of length two be-
tween any two distinct nonzero elements x and y of R. Also, it is easily verified that
Io(R) is complete if and only if R 2 Z,, and I)(R) is complete bipartite if and only
if it is one of the star graphs mentioned above. We can always recover I'(R) from
Iy (R) except when Iy(R) is a K3, since in this case R could be either Fy, Z4, or
7,[X]/(X?), and thus I"(R) could either be empty or a singleton. Based on the above
comments and what we have seen in the earlier sections, it is clear that I'(R) has a
much richer and more appealing structure than Iy(R) and better reflects properties
of Z(R).

Beck’s focus was on rings that could be finitely colored, i.e., ¥ (In(R)) < . He
called such rings Colorings, and characterized these rings in the following theorem.

Theorem 7.1. ([23, Theorem 3.9]) The following conditions are equivalent for a
commutative ring R.

(1) x(Io(R)) is finite (i.e., R is a Coloring).

(2) cl(Io(R)) is finite.

(3) nil(R) is finite and equals a finite intersection of prime ideals.

(4) To(R) does not contain an infinite clique.
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Beck proved many other results about Colorings. For example, he showed that if
R is a Coloring, then Ass(R) is finite [23, Theorem 4.3] and for P € Ass(R), either Rp
is afield or P is a maximal ideal [23, Theorem 4.4]. He also investigated the stability
of the family of Colorings, and showed that a finite direct product of Colorings
is a Coloring [23, Theorem 5.5], a localization of a Coloring is a Coloring [23,
Theorem 5.8], and certain factor rings of Colorings are Colorings [23, Theorems 5.2,
5.4, and 5.6]. Moreover, Beck determined all the finite commutative rings R with
x(Io(R)) < 3[23, p. 226](see Theorem 7.4(a)-(b)).

It is easy to see that cl(Ip(R)) < x(Iy(R)) for any commutative ring R. Based on
the evidence given in the next theorem, Beck conjectured that y (Ig(R)) = cl(I3(R))
for any Coloring R.

Theorem 7.2. Let R be a commutative ring with ) (Io(R)) < ee.

(a) ([23, Theorem 3.8]) x(Io(R)) = cl(In(R)) = [Min(R)| + 1 if R is reduced.

(b) ([23, Theorem 6.13]) If R is a finite direct product of reduced rings and
principal ideal rings, then y(Io(R)) = cl(In(R)).

(c) ([23, Theorem 7.3]) Let n < 4 be a positive integer. Then ) (Iy(R)) = n if and
only if cl(Iy(R)) = n. Moreover, y(I(R)) =5 implies cl(Iy(R)) = 5.

In 1993, five years after Beck’s paper appeared, D. D. Anderson and M.
Naseer [8] provided a counterexample to Beck’s conjecture (also see [27] and
[39D).

Example 7.3. ([8, Theorem 2.1]) Let R be the commutative ring Z4[X,Y,Z]/(X?-2,
Y2 —2,7% 2X,2Y,2Z, XY, XZ, YZ —2). In this example, cl(I3(R)) = 5, but
x(Io(R)) = 6. This ring is a local ring (R,M) with 32 elements, R/M = Z,,
M? # 0, but M = 0. This counterexample is minimal in several senses. Firstly,
it has the smallest possible clique or chromatic number for a counterexample
by Theorem 7.2(c). Secondly, it is minimal in the sense that a Coloring S with
nil(S)? = 0 has x(I5(S)) = cl(Iy(S)) = |nil(S)| + 1 by [8, Theorem 3.1]. Finally,
it has the smallest number of elements possible since if S is a finite commutative
ring with |S| < 31, then x(Ip(S)) = cl(Ip(S)).

In addition, their paper contained several positive results. For example, they
showed that a Noetherian ring R is a Coloring if and only if it is a subring of a
finite direct product of fields and a finite ring [8, Theorem 3.6] and that a ring of the
form A/M{"1 ---M™ where A is a regular Noetherian ring, My, ...,M, are maximal
ideals of A with each A/M; finite, and my,...,m, are positive integers is a Coloring
and determined its chromatic number [8, Collorary 3.3]. They also determined the
finite commutative rings R with y (I(R)) = 4 (see Theorem 7.4(c)).

Although recent directions in zero-divisor graph theory have not involved color-
ings, the papers of Beck and Anderson—Naseer did determine the chromatic number
of certain rings. It is easy to see that c/(Io(R)) = cI(I'(R)) + 1 and x(Ip(R)) =
% (' (R))+ 1. Using those two facts and Theorem 7.2(c), the next theorem translates
their results about y (I(R))) to c¢/(I'(R)). The finite nonlocal commutative rings R
with ¢/(I"(R)) = 4 have been computed by N. O. Smith [76].
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Theorem 7.4. Let R be a finite commutative ring, and K1, K>, and K3 be finite fields.

(a) ([23, Proposition 2.2]) cl(I'(R)) = 1 if and only if R is isomorphic to Z4 or
2[X]/(X?).

(b) ([23, p. 226]) cl(I'(R)) =2 if and only if R is isomorphic to one of the
following 8 types of rings: K\ x Ko, Ky x Z4, K1 x Z[X]/(X?), Zs, Zo, Z3X]/(X?),
Zo[X]/ (%), or Zy[X]/(2X.X? — 2).

(c) ([8, Theorem 4.4]) cl(I'(R)) = 3 if and only if R is isomorphic to one of the
following 31 types of rings: 7y x Za, T4 X Zo[X]/(X?), Z2[X]/(X?) x Z5[X]/(X?),
Kl X K2 X K3, K1 X K2 X Z4, Kl X K2 X Zz[X]/(XZ), Kl X Zg, Kl X Zg, Kl X
Z3[X]/(X?), Ki x Zo[X]/(X?), Kix Za[X]/(2X,X> =2), Zis, Zo[X]/(X?),

ZyX)/(2X, X =2), ZyX]/(X*=2), ZaX]/(X*+2X+2), FaX]/(x?),
X2 AX 1), LYY TX/QXP L ZalX)/(X),
Zo[X

]
1/(
Z4[X]/(
1/(3X,X2=3), Zo[X]/(3X.X?—6), Zo[X,Y] /(X2 Y?—XY), Zo[X, Y]/ (X2, V?),
ZiX|/(2X —4.00), Z¥/(%), ZXJJGC20), ZyY)/0 37 -2,
X, 2Y), or Zy [X Y]/(X%,XY —2,X>—XY,2X,2Y).

Another 6years passed before the 1999 article by D. F. Anderson and
P. S. Livingston [14], which was based on Livingston’s 1997 Master’s Thesis [55].
This paper introduced our present definition of I'(R) and emphasized the interplay
between ring-theoretic properties of R and graph-theoretic properties of I'(R). Be-
sides the basic results on diameter and girth given in Section 2 and characterizations
of complete and complete bipartite zero-divisor graphs given in Section 3, they
also studied graph automorphisms of I"(R). Then in 2002, the papers by S. B. Mu-
lay [64] and F. DeMeyer and K. Schneider [36] were published. These two papers
built on the work in [14], independently answered the girth conjecture, and gave a
more detailed study of automorphisms of I"(R) (see Section 4).

Finally, the article by D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston
[12]in 2001 reviewed and consolidated earlier work on diameter and girth, did addi-
tional work on clique numbers, and initiated work on planar zero-divisor graphs (see
Section 6) and isomorphisms of zero-divisor graphs (see Section 4). They also gave
explicit formulas to compute the number of complete subgraphs (cliques) of I'(R)
of order n for R a finite reduced commutative ring or Z,» with p prime.

The two papers on Colorings ([23] and [8]) and the four papers on I'(R) [12, 14,
36, 64] discussed in this section contain many more results. The interested reader
should consult them to get a flavor for the formative work on zero-divisor graphs
of commutative rings. These papers either contain or motivate much of the work
discussed in earlier sections and the many generalizations discussed below.

This survey has concentrated on zero-divisor graphs of commutative rings with
identity. This idea has been extended in many different directions, usually to either
zero-divisor graphs for different algebraic structures or to different types of graphs
for commutative rings.

Zero-divisor graphs for noncommutative rings were first studied in [67]. In this
case, there are several possible definitions and the graph may be either directed or
undirected. Besides rings, the same definition makes sense for any algebraic struc-
ture with a zero element. For semigroups, this was first studied in [35]. A second
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direction would be to start with a commutative ring R and use a different set of
vertices or adjacency relation. For example, see [61,75], or [11]. Again, these ideas
can be extended to other algebraic structures.

A survey paper of this nature cannot hope to provide a complete picture of all
the avenues of research being pursued within the study of zero-divisor graphs. The
bibliography is our attempt to provide the reader with as complete as possible listing
of works in this area. Other avenues being explored include ideal-based zero-divisor
graphs, zero-divisor graphs of ideals, homology of zero-divisor graphs, and applying
a graph structure to other algebraic constructs such as factorizations into irreducibles
and to commuting elements in matrix algebras.

References

1. Akbari, S., Bidkhori, H., Mohammadian, A.: Commuting graphs of matrix algebras. Comm.
Algebra 36(11), 4020-4031 (2008)

2. Akbari, S., Ghandehari, M., Hadian, M., Mohammadian, A.: On commuting graphs of
semisimple rings. Linear Algebra Appl. 390, 345-355 (2004)

3. Akbari, S., Maimani, H.R., Yassemi, S.: When a zero-divisor graph is planar or a complete
r-partite graph. J. Algebra 270(1), 169-180 (2003)

4. Akbari, S., Mohammadian, A.: On the zero-divisor graph of a commutative ring. J. Algebra
274(2), 847-855 (2004)

5. Akbari, S., Mohammadian, A.: Zero-divisor graphs of non-commutative rings. J. Algebra
296(2), 462-479 (2006)

6. Akbari, S., Mohammadian, A.: On zero-divisor graphs of finite rings. J. Algebra 314(1),
168-184 (2007)

7. Akhtar, R., Lee, L.: Homology of zero-divisors. Rocky Mt. J. Math. 37(4), 1105-1126 (2007)

8. Anderson, D.D., Naseer, M.: Beck’s coloring of a commutative ring. J. Algebra 159(2),
500-514 (1993)

9. Anderson, D.FE.: On the diameter and girth of a zero-divisor graph, II. Houst. J. Math. 34(2),
361-371 (2008)

10. Anderson, D.F., Badawi, A.: On the zero-divisor graph of a ring. Comm. Algebra 36(8),
3073-3092 (2008)

11. Anderson, D.F.,, Badawi, A.: The total graph of a commutative ring. J. Algebra 320(7),
2706-2719 (2008)

12. Anderson, D.F, Frazier, A., Lauve, A., Livingston, P.S.: The zero-divisor graph of a commu-
tative ring, II. Lect. Notes Pure Appl. Math. 220, 61-72 (2001)

13. Anderson, D.F.,, Levy, R., Shapiro, J.: Zero-divisor graphs, von Neumann regular rings, and
Boolean algebras. J. Pure Appl. Algebra 180(3), 221-241 (2003)

14. Anderson, D.F, Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra
217(2), 434-447 (1999)

15. Anderson, D.F., Mulay, S.B.: On the diameter and girth of a zero-divisor graph. J. Pure Appl.
Algebra 210(2), 543-550 (2007)

16. Atiyah, M.F,, MacDonald, 1.G.: “Introduction to Commutative Algebra”. Perseus Book,
Cambridge, Massachusetts (1969)

17. Axtell, M., Coykendall, J., Stickles, J.: Zero-divisor graphs of polynomial and power series
over commutative rings. Comm. Algebra 33(6), 2043-2050 (2005)

18. Axtell, M., Stickles, J.: Zero-divisor graphs of idealizations. J. Pure Appl. Algebra 204(2),
235-243 (2006)

19. Axtell, M., Stickles, J.: Irreducible divisor graphs in commutative rings with zero-divisors.
Comm. Algebra 36(5), 18831893 (2008)



Zero-divisor graphs in commutative rings 43

20.

21.

22.

23.
24.

25.
26.

27.

28.

29.

30.

3L

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.

47.
48.

49.

Axtell, M., Stickles, J., Trampbachls, W.: Zero-divisor ideals and realizable zero-divisor
graphs. Involve 2(1), 17-27 (2009)

Axtell, M., Stickles, J., Warfel, J.: Zero-divisor graphs of direct products of commutative rings.
Houst. J. Math. 32(4), 985-994 (2006)

Azarpanah, F., Motamedi, M.: Zero-divisor graph of C(X). Acta. Math. Hung. 108(1-2),
25-36 (2005)

Beck, I.: Coloring of commutative rings. J. Algebra 116(1), 208-226 (1988)

Behboodi, M.: Zero divisor graphs for modules over commutative rings. J. Commut. Algebra,
to appear

Belshoff, R., Chapman, J.: Planar zero-divisor graphs. J. Algebra 316(1), 471-480 (2007)
Bhat, VK., Raina, R., Nehra, N., Prakash, O.: A note on zero divisor graph over rings. Int. J.
Contemp. Math. Sci. 2(13-16), 667-671 (2007)

Bhatwadekar, S.M., Dumaldar, M.N., Sharma, P.K.: Some non-chromatic rings. Comm. Alge-
bra 26(2), 477-505 (1998)

Canon, G., Neuburg, K., Redmond, S.P.: Zero-divisor graphs of nearrings and semigroups,
Nearrings and Nearfields, pp. 189-200. Springer, Dordrecht (2005)

Chakrabarty, 1., Ghosh, S., Mukherjee, T.K., Sen, M.K.: Intersection graphs of ideals of rings.
Electron. Notes Discrete Math. 23, 23-32 (2005)

Chiang-Hsieh, H.-J.: Classification of rings with projective zero-divisor graphs. J. Algebra
319(7), 2789-2802 (2008)

Chiang-Hsieh, H.-J., Wang, H.-J., Smith, N.O., Commutative rings with toroidal zero-divisor
graphs. Houst. J. Math. 36(1), 1-31 (2010)

Coykendall, J., Maney, J.: Irreducible divisor graphs. Comm. Algebra 35(3), 885-896 (2007)
D’Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal. J. Algebra
Appl. 6(3), 443-459 (2007)

DeMeyer, F., DeMeyer, L.: Zero-divisor graphs of semigroups. J. Algebra 283(1), 190-198
(2005)

DeMeyer, F., McKenzie, T., Schneider, K.: The zero-divisor graph of a commutative semi-
group. Semigroup Forum 65(2), 206-214 (2002)

DeMeyer, F., Schneider, K.: Automorphisms and zero-divisor graphs of commutative rings.
Int. J. Commut. Rings 1(3), 93-106 (2002)

DeMeyer, F., Schneider, K.: Automorphisms and zero-divisor graphs of commutative rings,
Commutative rings, pp. 25-37. Nova Science Publishers, Hauppauge, NY (2002). (Reprint of
[36D)

Diestel, R.: “Graph theory”. Springer, New York (1997)

Dumaldar, M.N., Sharma, P.K.: Comments over “Some non-chromatic rings”. Comm. Algebra
26(11), 3871-3883 (1998)

Ebrahimi Atani, S., Ebrahimi Sarvandi, Z.: Zero-divisor graphs of idealizations with respect
to prime modules. Int. J. Contemp. Math. Sci. 2(25-28), 1279-1283 (2007)

Ebrahimi Atani, S., Kohan, M.: The diameter of a zero-divisor graph for finite direct product
of commutative rings. Sarajevo J. Math. 3(16), 149-156 (2007)

Eslahchi, C., Rahimi, A.: The k-zero-divisor hypergraph of a commutative ring. Int. J. Math.
Math. Sci., Art. ID 50875, 15 (2007)

Ganesan, N.: Properties of rings with a finite number of zero-divisors. Math. Ann. 157,
215-218 (1964)

Gilmer, R.: Zero divisors in commutative rings. Am. Math. Monthly 93(5), 382-387 (1986)
Huckaba, J.A.: “Commutative rings with zero divisors”. Marcel Dekker, New York/Basil
(1988)

LaGrange, J.D.: Complemented zero-divisor graphs and Boolean rings. J. Algebra 315(2),
600-611 (2007)

LaGrange, J.D.: On realizing zero-divisor graphs. Comm. Algebra 36(12), 4509—4520 (2008)
LaGrange, J.D.: The cardinality of an annihilator class in a von Neumann regular ring. Int.
Electron. J. Algebra 4, 63-82 (2008)

LaGrange, J.D.: Invariants and isomorphism theorems for zero-divisor graphs of commutative
rings of quotients, preprint



44

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.
60.

61.

62.

63.
64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.
77.

78.

David F. Anderson, Michael C. Axtell, and Joe A. Stickles, Jr.

LaGrange, J.D.: Weakly central-vertex complete graphs with applications to commutative
rings. J. Pure Appl. Algebra 214(7), 1121-1130 (2010)

LaGrange, J.D.: Characterizations of three classes of zero-divisor graphs. Can. Math. Bull. to
appear

Lambeck, J.: “Lectures on rings and modules”. Blaisdell Publishing Company, Waltham
(1966)

Lauve, A.: Zero-divisor graphs of finite commutative rings. Honors Senior Thesis, The Uni-
versity of Oklahoma, Norman, OK, April, 1999

Levy, R., Shapiro, J.: The zero-divisor graph of von Neumann regular rings. Comm. Algebra
30(2), 745-750 (2002)

Livingston, P.S.: Structure in zero-divisor graphs of commutative rings. Masters Thesis, The
University of Tennessee, Knoxville, TN, Dec. 1997

Long, Y., Huang, Y.: The correspondence between zero-divisor graphs with 6 vertices and
their semigroups. J. Algebra Appl. 6(2), 287-290 (2007)

Lu, D., Tong, W.: The zero-divisor graphs of abelian regular rings. Northeast. Math. J. 20(3),
339-348 (2004)

Lu, D., Wu, T.: The zero-divisor graphs which are uniquely determined by neighborhoods.
Comm. Algebra 35(12), 3855-3864 (2007)

Lucas, T.G.: The diameter of a zero-divisor graph. J. Algebra 301(1), 174-193 (2006)
Maimani, H.R., Pournaki, M.R., Yassemi, S.: Zero-divisor graphs with respect to an ideal.
Comm. Algebra 34(3), 923-929 (2006)

Maimani, H.R., Salimi, M., Sattari, A., Yassemi, S.: Comaximal graphs of commutative rings.
J. Algebra 319(4), 1801-1808 (2008)

Maimani, H.R., Yassemi, S.: Zero-divisor graphs of amalgamated duplication of a ring along
an ideal. J. Pure Appl. Algebra 212(1), 168—174 (2008)

Maney, J.: Trreducible divisor graphs, II. Comm. Algebra 36(9), 3496-3513 (2008)

Mulay, S.B.: Cycles and symmetries of zero-divisors. Comm. Algebra 30(7), 3533-3558
(2002)

Mulay, S.B.: Rings having zero-divisor graphs of small diameter or large girth. Bull. Aust.
Math. Soc. 72(3), 481-490 (2005)

Mulay, S.B., Chance, M.: Symmetries of colored power-set graphs. J. Commut. Algebra, to
appear

Redmond, S.P.: The zero-divisor graph of a non-commutative ring. Int. J. Commut. Rings 1(4),
203-211 (2002)

Redmond, S.P.: The zero-divisor graph of a non-commutative ring, Commutative Rings,
pp- 39-47. Nova Science Publishers, Hauppauge, NY (2002). (Reprint of [67])

Redmond, S.P.: An ideal-based zero-divisor graph of a commutative ring. Comm. Algebra
31(9), 44254443 (2003)

Redmond, S.P.: Structure in the zero-divisor graph of a non-commutative ring. Houst. J. Math.
30(2), 345-355 (2004)

Redmond, S.P.: Central sets and radii of the zero-divisor graphs of commutative rings. Comm.
Algebra 34(7), 2389-2401 (2006)

Redmond, S.P.: On zero-divisor graphs of small finite commutative rings. Discrete Math.
307(9), 1155-1166 (2007)

Redmond, S.P.: Counting zero-divisors, Commutative Rings: New Research, pp. 7-12. Nova
Science Publishers, Hauppauge, NY (2009)

Samei, K.: The zero-divisor graph of a reduced ring. J. Pure Appl. Algebra 209(3), 813-821
(2007)

Sharma, P.K., Bharwadekar, S.M.: Zero-divisor graphs with respect to an ideal. J. Algebra
176(1), 124-127 (1995)

Smith, N.O.: Planar zero-divisor graphs. Int. J. Commut. Rings 2(4), 177-188 (2003)

Smith, N.O.: Graph-theoretic Properties of the Zero-Divisor Graph of a Ring. Dissertation,
The University of Tennessee, Knoxville, TN, May 2004

Smith, N.O.: Planar zero-divisor graphs, Focus on commutative rings research, pp. 177-186.
Nova Science Publishers, New York (2006). (Reprint of [76])



Zero-divisor graphs in commutative rings 45

79.
80.
81.
82.
83.

84.

85.
86.

87.

88.

Smith, N.O.: Infinite planar zero-divisor graphs. Comm. Algebra 35(1), 171-180 (2007)
Taylor, M.: Zero-divisor graphs with looped vertices. preprint

Vishne, U.: The graph of zero-divisor ideals. preprint

Wang, H.-J.: Zero-divisor graphs of genus one. J. Algebra 304(2), 666—-678 (2006)
Wickham, C.: Classification of rings with genus one zero-divisor graphs. Comm. Algebra
36(2), 325-345 (2008)

Wright, S.: Lengths of paths and cycles in zero-divisor graphs and digraphs of semigroups.
Comm. Algebra 35(6), 1987-1991 (2007)

Wu, T.: On directed zero-divisor graphs of finite rings. Discrete Math. 296(1), 73-86 (2005)
Wu, T., Lu, D.: Zero-divisor semigroups and some simple graphs. Comm. Algebra 34(8),
3043-3052 (2006)

Wu, T., Lu, D.: Sub-semigroups determined by the zero-divisor graph. Discrete Math. 308(22),
5122-5135 (2008)

Zuo, M., Wu, T.: A new graph structure of commutative semigroups. Semigroup Forum 70(1),
71-80 (2005)



Class semigroups and #-class semigroups
of integral domains

Silvana Bazzoni and Salah-Eddine Kabbaj

Abstract The class (resp., t-class) semigroup of an integral domain is the semigroup
of the isomorphy classes of the nonzero fractional ideals (resp., t-ideals) with the
operation induced by ideal (z-) multiplication. This paper surveys recent litera-
ture which studies ring-theoretic conditions that reflect reciprocally in the Clifford
property of the class (resp., #-class) semigroup. Precisely, it examines integral do-
mains with Clifford class (resp., t-class) semigroup and describes their idempotent
elements and the structure of their associated constituent groups.

1 Introduction

All rings considered in this paper are integral domains. The notion of ideal class
group of a domain is classical in commutative algebra and is also one of major
objects of investigation in algebraic number theory. Let R be a domain. The ideal
class group C(R) (also called Picard group) of R consists of the isomorphy classes
of the invertible ideals of R, that is, the factor group J(R)/P(R), where J(R) is the
group of invertible fractional ideals and P(R) is the subgroup of nonzero principal
fractional ideals of R. A famous result by Claiborne states that every Abelian group
can be regarded as the ideal class group of a Dedekind domain.

If R is Dedekind, then J(R) coincides with the semigroup F(R) of nonzero
fractional ideals of R. Thus, a natural generalization of the ideal class group is
the semigroup F(R)/P(R) of the isomorphy classes of nonzero fractional ideals
of R. The factor semigroup F(R)/P(R) is denoted by S(R) and called the class
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semigroup of R. The class semigroup of an order in an algebraic number field was
first investigated by Dade, Taussky and Zassenhaus [18] and later by Zanardo and
Zannier [59]. Halter-Koch [34] considered the case of the class semigroup of lattices
over Dedekind domains.

The investigation of the structure of a semigroup is not as attractive as the study
of a group. This is the reason why it is convenient to restrict attention to the case
of a particular type of semigroups, namely, the Clifford semigroups. A commu-
tative semigroup S (with 1) is said to be Clifford if every element x of S is (von
Neumann) regular, i.e., there exists @ € S such that x>a = x. The importance of a
Clifford semigroup S resides in its ability to stand as a disjoint union of groups G,
each one associated to an idempotent element e of the semigroup and connected by
bonding homomorphisms induced by multiplications by idempotent elements [16].
The semigroup S is said to be Boolean if for each x € S, x = x°.

Let R be a domain with quotient field K. For a nonzero fractional ideal  of R, let
I"':=(R:I)={x€ K |xI CR}. The v- and t-closures of / are defined, respectively,
by I, := (I"!')~" and I, := |JJ, where J ranges over the set of finitely generated
subideals of /. The ideal I is said to be divisorial or a v-ideal if I, = I, and I is said
to be a 7-ideal if I; = I. Under the ideal t-multiplication (I,J) — (1J);, the set F;(R)
of fractional ¢-ideals of R is a semigroup with unit R. An invertible element for this
operation is called a z-invertible z-ideal of R.

The t-operation in integral domains is considered as one of the keystones of
multiplicative ideal theory. It originated in Jaffard’s 1960 book “Les Systemes
d’Idéaux” [37] and was investigated by many authors in the 1980s. From the
t-operation stemmed the notion of (¢-)class group of an arbitrary domain, extend-
ing both notions of divisor class group (in Krull domains) and ideal class group
(in Priifer domains). Class groups were introduced and developed by Bouvier
and Zafrullah [12, 13], and have been extensively studied in the literature. The
(t-)class group of R, denoted CI(R), is the group under z-multiplication of fractional
t-invertible 7-ideals modulo its subgroup of nonzero principal fractional ideals. The
t-class semigroup of R, denoted §;(R), is the semigroup under 7-multiplication of
fractional f-ideals modulo its subsemigroup of nonzero principal fractional ideals.
One may view 8, (R) as the r-analogue of $(R), similarly as the (z-)class group C1(R)
is the r-analogue of the ideal class group C(R). We have the set-theoretic inclusions

C(R) C CI(R) C 8,(R) C 8(R).

The properties of the class group or class semigroup of a domain can be trans-
lated into ideal-theoretic information on the domain and conversely. If R is a Priifer
domain, C(R) = CI(R) and §,(R) = $(R); and then R is a Bézout domain if and only
if CI(R) = 0. If R is a Krull domain, CI(R) = §,(R) equals its usual divisor class
group, and then R is a UFD if and only if CI(R) = 0 (so that R is a UFD if and only
if every t-ideal of R is principal). Trivially, Dedekind domains (resp., PIDs) have
Clifford (resp., Boolean) class semigroup. In 1994, Zanardo and Zannier proved
that all orders in quadratic fields have Clifford class semigroup, whereas the ring
of all entire functions in the complex plane (which is Bézout) fails to have this
property [59].
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Thus, the natural question arising is to characterize the domains with Clifford
class (resp., t-class) semigroup and, moreover, to describe their idempotent elements
and the structure of their associated constituent groups.

2 Class semigroups of integral domains

A domain is said to be Clifford regular if its class semigroup is a Clifford semigroup.
The first significant example of a Clifford regular domain is a valuation domain. In
fact, in [9], Salce and the first named author proved that the class semigroup of
any valuation domain is a Clifford semigroup whose constituent groups are either
trivial or groups associated to the idempotent prime ideals of R. Next, the investi-
gation was carried over for the class of Priifer domains of finite character, that is,
the Priifer domains such that every nonzero ideal is contained in only finitely many
maximal ideals. In [5], the first named author proved that if R is a Priifer domain of
finite character, then R is a Clifford regular domain and moreover, in [6] and [7] a
description of the idempotent elements of §(R) and of their associated groups was
given.

A complete characterization of the class of integrally closed Clifford regular do-
mains was achieved in [8] where it is proved that it coincides with the class of
the Priifer domains of finite character. Moreover, [8] explores the relation between
Clifford regularity, stability and finite stability. Recall that an ideal of a commuta-
tive ring is said to be stable if it is projective over its endomorphism ring and a ring
R is said to be stable if every ideal of R is stable. The notion of stability was first
introduced in the Noetherian case with various different definitions which turned
out to be equivalent in the case of a local Noetherian ring (cf. [51]). Olberding has
described the structural properties of an arbitrary stable domain. In [51] and [50]
he proves that a domain is stable if and only if it is of finite character and locally
stable. Rush, in [52] considered the class of finitely stable rings, that is, rings with
the property that every finitely generated ideal is stable and proved that the integral
closure of such rings is a Priifer ring.

In [8], it is shown that the class of Clifford regular domains is properly interme-
diate between the class of finitely stable domains and the class of stable domains.
In particular, the integral closure of a Clifford regular domain is a Priifer domain.
Moreover, this implies that a Noetherian domain is Clifford regular if and only if it
is a stable domain. Thus, [8] provides for a characterization of the class of Clifford
regular domains in the classical cases of Noetherian and of integrally closed do-
mains. In the general case, the question of determining whether Clifford regularity
always implies finite character is still open.

In [8], was also outlined a relation between Clifford regularity and the local in-
vertibility property. A domain is said to have the local invertibility property if every
locally invertible ideal is invertible. In [5] and again in [8] the question of decid-
ing if a Priifer domain with the local invertibility property is necessarily of finite
character was proposed as a conjecture. The question was of a interest on its own
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independently of Clifford regularity and it attracted the interest of many authors.
Recently the validity of the conjecture has been proved by Holland, Martinez,
McGovern and Tesemma [36]. They translated the problem into a statement on the
lattice ordered group of the invertible fractional ideals of a Priifer domain and then
used classical results by Conrad [17] on lattice ordered groups.

2.1 Preliminaries and notations

Let S be a commutative multiplicative semigroup. The subsemigroup € of the idem-
potent elements of S has a natural partial order defined by ¢ < fifand only ifef =,
forevery e, f € €. Clearly, e A f = ef and thus € is a A-semilattice under this order.
An element a of a semigroup 8 is von Neumann regular if a = a*x for some x € 8.

Definition 2.1. A commutative semigroup 8 is a Clifford semigroup if every element
of § is regular.

By [16] a Clifford semigroup 8 is the disjoint union of the family of groups {G, |
e € £}, where G, is the largest subgroup of § containing the idempotent element e,
that is:
G, ={ae|abe=¢ forsome b€ §}.

In fact, if a € 8 and a = a%x, x € 8, then e = ax is the unique idempotent element such
that a € G,. We say that e = ax is the idempotent associated to a. The groups G, are
called the constituent groups of 8. If e < f are idempotent elements, that is fe = e,
the multiplication by e induces a group homomorphism q)ef : Gy — G, called the
bonding homomorphism between G and G.. Moreover, the set §* of the regular
elements of a commutative semigroup § is a Clifford subsemigroup of 8. In fact,
if a’x = a and e = ax, then also a’*xe = a and xe is a regular element of 8, since
(xe)*a = xe.

Throughout this section R will denote a domain and Q its field of quotients. For
R-submodules A and B of Q, (A : B) is defined as follows:

(A:B)={qe€Q|gBCA}.

A fractional ideal F of R is an R-submodule of Q such that (R : F) # 0. By an
overring of R is meant any ring between R and Q. We say that a domain R is of finite
character if every nonzero ideal of R is contained only in a finite number of maximal
ideals. If (P) is any property, we say that a fractional ideal F' of R satisfies (P) locally
if each localization FR,, of F at a maximal ideal m of R satisfies (P).

Let F(R) be the semigroup of the nonzero fractional ideals of R and let P(R) be
the subsemigroup of the nonzero principal fractional ideals of the domain R. The
factor semigroup F(R)/P(R) is denoted by S(R) and called the class semigroup
of R. For every nonzero ideal I of R, [I] will denote the isomorphism class of /.

Definition 2.2. A domain R is said to be Clifford regular if the class semigroup $(R)
of R is a Clifford semigroup.
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2.2 Basic properties of regular elements of S(R) and of Clifford
regular domains

If R is a domain and [ is a nonzero ideal of R, [I] is a regular element of S(R)
if and only if I = I>X for some fractional ideal X of R. Let E(I) = (I : I) be the
endomorphism ring of the ideal I of R. The homomorphisms from 7 to E(I) are
multiplication by elements of (E(I): I) = (I: I?). The trace ideal of I in E(I) is the
sum of the images of the homomorphisms of / into E (1), namely /(I : I?). Thus, we
have the following basic properties of regular elements of S(R).

Proposition 2.3 ([8, Lemma 1.1, Proposition 1.2]). Let I be a nonzero ideal of a
domain R with endomorphism ring E = (I : I) and let T =I(E : I) be the trace ideal
of I in E. Assume that [1] is a regular element of $(R), that is, I = I’X for some
fractional ideal X of R. The following hold:

() I=I*1:P).

(2) IX =T and [T] is an idempotent of 8(R) associated to [I].
(3) T isanidempotent ideal of E and IT = I.

4 E=(T:T)=(E:T)

Proof. (1) By assumption X C (I : I?) and so I = I’X C I?>(I : I?) C I implies I =
I*(1:17).

(2) and (3). Since (I: I?) = (E: I), part (1) implies IX = I>(E: )X =I(E: I),
hence T = IX is an idempotent ideal of E and IT =1 .

4 Wehave EC(E:T)=({:IT)=EandEC(T:T)C (E: T).

Recall that a nonzero ideal of a domain is said to be stable if it is projective,
or equivalently invertible, as an ideal of its endomorphism ring and R is said to be
(finitely) stable if every nonzero (finitely generated) ideal of R is stable.

An ideal I of a domain R is said to be L-stable (here L stands for Lipman) if Rl :=
Uy (I" : ") = (I : I), and R is called L-stable if every nonzero ideal is L-stable.
Lipman introduced the notion of stability in the specific setting of one-dimensional
commutative semi-local Noetherian rings in order to give a characterization of Arf
rings; in this context, L-stability coincides with Boole regularity [46].

The next proposition illustrates the relation between the notions of (finite) sta-
bility, L-stability and Clifford regularity. A preliminary key observation is furnished
by the following lemma.

Lemma 2.4 ([8, Lemma 2.1]). Let I be a nonzero finitely generated ideal of a
domain R. Then [I] is a regular element of 8(R) if and only if I is a stable ideal.

Proposition 2.5 ([8, Propositions 2.2 and 2.3, Lemma 2.6]).

(1) A stable domain is Clifford regular.
(2) A Clifford regular domain is finitely stable.
(3) A Clifford regular domain is L-stable.
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In order to better understand the situation, it is convenient to recall some properties
of finitely stable and stable domains.

Theorem 2.6 ([52, Proposition 2.1] and [51, Theorem 3.3]).

(1)  The integral closure of a finitely stable domain is a Priifer domain.
(2) A domain is stable if and only if it has finite character and every localization
at a maximal ideal is a stable domain.

It is also useful to state properties of Clifford regular domains relative to localization
and overrings. To this end we can state:

Lemma 2.7 ([8, Lemmas 2.14 and 2.5]).

(1) A fractional overring of a Clifford regular domain is Clifford regular.
(2) IfRis a Clifford regular domain and S is a multiplicatively closed subset of R,
then Ry is a Clifford regular domain.

Recall that an overring T of a domain R is fractional if T is a fractional ideal of R.
The next result is useful in reducing the problem of the characterization of a Clifford
regular domain to the local case: it states that a domain is Clifford regular if and only
if it is locally Clifford regular and the trace of any ideal in its endomorphism ring
localizes. In this vein, recall that [58] contributes to the classification of Clifford
regular local domains.

Proposition 2.8 ([8, Proposition 2.8]). Let R be a domain. The following are equiv-
alent:

(1) R s a Clifford regular domain;

(2)  For every maximal ideal m of R, R, is a Clifford regular domain and for every
ideal I of R, (I(I : I?)) s = Lu(Lyy : I2), i.e., the trace of the localization I, in
its endomorphism ring coincides with the localization at m of the trace of I in
its endomorphism ring.

In case the Clifford regular domain R is stable or integrally closed, a better result
can be proved.

Lemma 2.9. Let R be a stable or an integrally closed Clifford regular domain. If 1
is any ideal of R and m is any maximal ideal of R, then the following hold:

) (I:Dm= (I : L)
Q) (:P)y=Iy:12).

The connection between Clifford regularity and stability stated by Proposition 2.5
is better illustrated by the concepts of local stability and local invertibility in the
way that we are going to indicate.

Definition 2.10. A domain R is said to have the local invertibility property (resp.,
local stability property) if every locally invertible (resp., locally stable) ideal is
invertible (resp., stable).
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The next result is a consequence of Proposition 2.8 and the fact that a locally
invertible ideal of a domain is cancellative.

Proposition 2.11 ([8, Lemmas 4.2 and 5.7]). A Clifford regular domain has the
local invertibility property and the local stability property.

The preceding result together with the observation that stable domains are of finite
character, prompts one to ask if a Clifford regular domain is necessarily of finite
type. The question has a positive answer if the Clifford regular domain is Noetherian
or integrally closed as we are going to show in the next two sections.

2.3 The Noetherian case

From Proposition 2.5, the characterization of the Clifford regular Noetherian do-
mains is immediate.

Theorem 2.12 ([8, Theorem 3.1]). A Noetherian domain is Clifford regular if and
only if it is stable.

The Noetherian stable rings have been extensively studied by Sally and Vascon-
celos in the two papers [53] and [54]. We list some of their results.

(a) A stable Noetherian ring has Krull dimension at most 1.

(b) If every ideal of a domain R is two-generated (i.e., generated by at most two
elements), then R is stable.

(c) IfRis aNoetherian domain and the integral closure R of R is a finitely generated
R-module, then R is stable if and only if every ideal of R is two-generated.

(d) Ferrand and Raynaud [24, Proposition 3.1] constructed an example of a local
Noetherian stable domain admitting non two-generated ideals. This domain is not
Gorenstein.

(e) A local Noetherian Gorenstein domain is Clifford regular if and only if every
ideal is two-generated. ([8, Theorem 3.2])

It is not difficult to describe the idempotent elements of the class semigroup of a
Noetherian domain and the groups associated to them.

Proposition 2.13 ([8, Proposition 3.4 and Corollary 3.5]). Let R be a Noetherian
domain. The following hold:

(1)  The idempotent elements of S(R) are the isomorphy classes of the fractional
overrings of R and the groups associated to them are the ideal class groups of
the fractional overrings of R.

(2)  IfRis also a Clifford regular domain, then the class semigroup S(R) of R is the
disjoint union of the ideal class groups of the fractional overrings of R and the
bonding homomorphisms between the groups are induced by extending ideals
fo overrings.
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2.4 The integrally closed case

The starting point for the study of integrally closed Clifford regular domains is the
following fact.

Proposition 2.14 ([59, Proposition 3]). An integrally closed Clifford regular do-
main is a Priifer domain.

In [9], it was proved that any valuation domain is Clifford regular and in [5] the
result was extended by proving that a Priifer domain of finite character is a Clifford
regular domain. Finally, in [8] it was proved that an integrally closed Clifford regular
domain is of finite character.

While trying to prove the finite character property for a Clifford regular Priifer
domain, a more general problem arose and in the papers [7] and [8] the follow-
ing conjecture was posed. Its interest goes beyond the Clifford regularity of Priifer
domains.

Conjecture. If R is a Priifer domain with the local invertibility property, then R is of
finite character.

In [8], the conjecture was established in the affirmative for the class of Priifer
domains satisfying a particular condition. To state the condition we need to recall
a notion on prime ideals: a prime ideal P of a Priifer domain is branched if there
exists a prime ideal Q properly contained in P and such that there are no other prime
ideals properly between Q and P.

Theorem 2.15 ([8, Theorem 4.4]). Let R be a Priifer domain with the local in-
vertibility property. If the endomorphism ring of every branched prime ideal of R
satisfies the local invertibility property, then R is of finite character.

Theorem 2.15 together with Proposition 2.11 and the fact that every fractional
overring of a Clifford regular domain is again Clifford regular, imply the character-
ization of integrally closed Clifford regular domains.

Theorem 2.16 ([8, Theorem 4.5]). An integrally closed domain is Clifford regular
if and only if it is a Priifer domain of finite character.

We wish to talk a little about the conjecture mentioned above. It attracted the
interest of many authors and its validity has been proved recently. In [36], Holland,
Martinez, McGovern, and Tesemma proved that the conjecture is true by translating
the problem into a statement on lattice ordered groups. In fact, as shown by Brewer
and Klingler in [14], the group G of invertible fractional ideals of a Priifer domain
endowed with the reverse inclusion, is a latticed ordered group and the four authors
noticed that both the property of finite character and the local invertibility property
of a Priifer domain can be translated into statements on prime subgroups of the
group G and filters on the positive cone of G.

Then, they used a crucial result by Conrad [17] on lattice ordered groups with
finite basis to prove that the two statements translating the finite character and
the local invertibility property are equivalent, so that the validity of the conjecture
follows.
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Subsequently, McGovern [47] has provided a ring theoretic proof of the
conjecture by translating from the language of lattice ordered groups to the lan-
guage of ring theory the techniques used in [36]. At one point it was necessary to
introduce a suitable localization of the domain in order to translate the notion of the
kernel of a lattice homomorphism on the lattice ordered group.

Independently, almost at the same time, Halter-Koch [35] proved the validity of
the conjecture by using the language of ideal systems on cancellative commutative
monoids and he proved that an r-Priifer monoid with the local invertibility property
is a monoid of Krull type (see [33, Theorem 22.4]).

2.5 The structure of the class semigroup of an integrally closed
Clifford regular domain

In order to understand the structure of the class semigroup S(R) of a Clifford reg-
ular domain it is necessary to describe the idempotent elements, the constituent
groups associated to them and the bonding homomorphisms between those groups.
Complete information is available for the case of integrally closed Clifford regular
domains, that is, the class of Priifer domains of finite character.

In [9], Salce and the first named author proved that the class semigroup of a
valuation domain R is a Clifford semigroup with idempotent elements of two types:
they are represented either by fractional overrings of R, that is, localizations Rp at
prime ideals P, or by nonzero idempotent prime ideals. The groups corresponding
to localizations are trivial and the group associated to a nonzero idempotent prime
ideal P is described as a quotient of the form I" /T, where I is the value group of
the localization Rp and T is the completion of I" in the order topology. This group is
also called the archimedean group of the localizations Rp and denoted by ArchRp.

If 1 is a nonzero ideal of R, [I] belongs to ArchRp if and only if Rp is the endo-
morphism ring of 7 and [ is not principal as an Rp-ideal. Note that the endomorphism
ring of an ideal / of a valuation domain R is the localization of R at the prime ideal P
associated to I defined by P = {r € R| rl C I} (cf. [29, I p. 69]).

The idempotent elements, the constituent groups and the bonding homomor-
phisms of the class semigroup of a Priifer domain of finite character have been
characterized by the first named author in [6] and [7].

If 8(R) is a Clifford semigroup and I is a nonzero ideal of R, then by
Proposition 2.3, the unique idempotent of 8(R) associated to [I] is the trace ideal T
of I in its endomorphism ring, that is, T = I(I: I?). Moreover, every idempotent of
S(R) is of this form. The next two propositions describe the subsemigroup &(R) of
the idempotent elements of S(R)

Proposition 2.17 ([6, Theorem 3.1 and Proposition 3.2]). Assume that R is a
Priifer domain of finite character. Let I be a nonzero ideal of R such that [I] is



56 Silvana Bazzoni and Salah-Eddine Kabbaj

an idempotent element of S(R). Then there exists a unique nonzero idempotent
fractional ideal L isomorphic to I such that

L=P P P,D n>0
with uniquely determined factors satisfying the following conditions:

(1) D= (L: L) is a fractional overring of R;

(2) The P; are pairwise incomparable idempotent prime ideals of R;
(3) Each P.D is a maximal ideal of D;

4) D 2End(P).

The preceding result shows that the semigroup €(R) of the idempotent elements
of 8(R) is generated by the classes [P] and [D] where P vary among the nonzero
idempotent prime ideals of R and D are arbitrary overrings of R. Moreover, every
element of €(R) has a unique representation as a finite product of these classes
provided they satisfy the conditions of Proposition 2.17.

For each nonzero idempotent fractional ideal L, denote by Gy the constituent
group of §(R) associated to the idempotent element [L] of E(R), as defined in
Section 2.1. The properties and the structure of the groups Gz have been investi-
gated in [7].

We recall some useful information on ideals of a Priifer domain of finite
character.

Lemma 2.18 ([7, Lemma 3.1]). Let I and J be locally isomorphic ideals of a Priifer
domain of finite character R. Then there exists a finitely generated fractional ideal
B of D = End(I) such that I = BJ. In particular, if R is also a Bézout domain, then
1.

A key observation in order to describe the constituent groups of the class semi-
group of a Priifer domain of finite character R is to note that, for each nonzero
idempotent prime ideal P of R, there is a relation between Gp and the archimedean
group ArchRp of the valuation domain Rp (cf. [7, Proposition 3.3]). In fact, the
correspondence

[I] — [IRP], [I] € Gp

induces an epimorphism of Abelian groups
v: Gp — ArchRp

such that Kery = {[CP] |C is a finitely generated ideal of End(P)}. In particular,
Ker y = C(End(P)) and v is injective if and only if End(P) is a Bézout domain.

The preceding remark can be extended to each group Gy in the class semi-
group S(R).

Theorem 2.19 ([7, Theorem 3.5]). Assume that R is a Priifer domain of finite char-
acter. Let L=P;-Py----- P,D be a nonzero idempotent fractional ideal of R satisfying
the conditions of Proposition 2.17. For every nonzero ideal I of R such that [I] € Gy,
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consider the diagonal map nt([I]) = ([IRp,|,...,[IRp,]). Then the group Gy, fits in the
short exact sequence:

1 — @(D) — G 5 ArchRp, x --- x ArchRp, — 1.

If R is a Bézout domain, then so is every overring D of R, hence the ideal class
groups C(D) are all trivial. The constituent groups are then built up by means of the
groups associated to the idempotent prime ideals of R and the structure of the class
semigroup 8(R) is simpler, precisely we can state the following:

Proposition 2.20 ([7, Propesition 4.4]). If R is a Bézout domain of finite character,
then the constituent groups associated to every idempotent element of $(R) are iso-
morphic to a finite direct product of archimedean groups ArchRp of the valuation
domain Rp, where P is a nonzero idempotent prime ideal of R.

It remains to describe the partial order on the semigroup &(R) of the idempotent
elements and the bonding homomorphisms between the constituent groups of S(R).

Recalling that if P and Q are two idempotent prime ideals of a domain R, P C Q
if and only if PQ = P and if D and S are overrings of R, then S C D if and only if
SD = D, then the partial order on (R) is induced by the inclusion between prime
ideals and the reverse inclusion between fractional overrings. Moreover, we have:

Proposition 2.21 ([7, Proposition 4.1]). Assume that R is a Priifer domain of finite
character. Let L=P,-P,-----P,D, H=Q1-Q> - OS be nonzero idempotent
fractional ideals of R satisfying the conditions of Proposition 2.17. Then [L] < [H]
if and only if

() SCD,
(2) Foreveryl < j<keither Q;D =D or there exists 1 <i <nsuchthat Q; =P,

To describe the bonding homomorphisms between the constituent groups of the
class semigroup 8(R) it is convenient to consider the properties of two special types
of such homomorphisms, that is, those induced by multiplication by a fractional
overring of R or by an idempotent prime ideal of R.

Lemma 2.22 ([7, Lemma 4.2]). Let P, Q be nonzero idempotent prime ideals of the
Priifer domain of finite character R and let D and S be overrings of R such that
S CD. Then:

(1)  The maps
(])g: GS — GD and ¢5DI GP — GPD

are surjective homomorphisms induced by multiplication by D.
(2)  Assume that D D End(QP) and that P, Q are non-comparable, then:

(]);I?)Di GD — GPD and ¢3£DI GQD — GQPD

are injective homomorphisms induced by multiplication by P.
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The bonding homomorphisms are then described by the following proposition.

Proposition 2.23 ([7, Proposition 4.3]). Assume that R is a Priifer domain of fi-
nite character. Let L=P,-P>-----P,D, H= Q-0 ----- OS be nonzero idem-
potent fractional ideals of R satisfying the conditions of Proposition 2.17 and
such that [L] < [H|. Let K= Q1 - Q> -+ - OxD, then the bonding homomorphism
¢f : Gy — Gy is the composition of the bonding epimorphism q)llg and the bonding
monomorphism ¢, namely ¢ = oK o 9.

The results on the structure of the Clifford semigroup of a Priifer domain of
finite character have been generalized by Fuchs [28] by considering an arbitrary
Priifer domain R and restricting considerations to the subsemigroup 8'(R) of 8(R)
consisting of the isomorphy classes of ideals containing at least one element of finite
character.

2.6 Boole regular domains

Recall that a semigroup S (with 1) is said to be Boolean if for each x € S, x = x.

This subsection seeks ring-theoretic conditions of a domain R that reflects in the
Boolean property of its class semigroup S(R). Precisely, it characterizes integrally
closed domains with Boolean class semigroup; in this case, S(R) happens to iden-
tify with the Boolean semigroup formed of all fractional overrings of R. It also treats
Noetherian-like settings where the Clifford and Boolean properties of $(R) coincide
with stability conditions; a main feature is that the Clifford property forces 7-locally
Noetherian domains to be one-dimensional Noetherian domains. It closes with a
study of the transfer of the Clifford and Boolean properties to various pullback con-
structions. These results lead to new families of domains with Clifford or Boolean
class semigroup, moving therefore beyond the contexts of integrally closed domains
or Noetherian domains.
By analogy with Clifford regularity, we define Boole regularity as follows:

Definition 2.24 ([38]). A domain R is Boole regular if S(R) is a Boolean semigroup.

Clearly, a PID is Boole regular and a Boole regular domain is Clifford regular.
The integral closure of a Clifford regular domain is Priifer [8,59]. The next result is
an analogue for Boole regularity.

Proposition 2.25 ([38, Proposition 2.3]). The integral closure of a Boole regular
domain is Bézout.

A first application characterizes almost Krull domains subject to Clifford or
Boole regularity as shown below:

Corollary 2.26 ([38, Corollary 2.4]). A domain R is almost Krull and Boole (resp.,
Clifford) regular if and only if R is a PID (resp., Dedekind).
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A second application handles the transfer to polynomial rings:

Corollary 2.27 ([38, Corollary 2.5]). Let R be a domain and X an indeterminate
over R. Then:

R is a field <> R[X] is Boole regular <= R[X] is Clifford regular

One of the aims is to establish sufficient conditions for Boole regularity in
integrally closed domains. One needs first to examine the valuation case. For this
purpose, recall first a stability condition that best suits Boole regularity:

Definition 2.28. A domain R is strongly stable if each nonzero ideal I of R is prin-
cipal in its endomorphism ring (7 : I).

Note that for a domain R, the set Foy (R) of fractional overrings of R is a Boolean
semigroup with identity equal to R. Recall that a domain R is said to be strongly
discrete if P? & P for every nonzero prime ideal P of R [26].

Theorem 2.29 ([38,39, Theorem 3.2]). Let R be an integrally closed domain. Then
R is a strongly discrete Bézout domain of finite character if and only if R is strongly

~

stable. Moreover, when any one condition holds, R is Boole regular with $(R) =

The proof lies partially on the following lemmas.

Lemma 2.30. Let R be a domain. Then:

R is stable Boole regular <= R is strongly stable.

Lemma 2.31. Let R be an integrally closed domain. Then:

R is strongly discrete Clifford regular <= R is stable.

Lemma 2.32. Let V be a valuation domain. The following are equivalent:

(1)  Vpis a divisorial domain, for each nonzero prime ideal P of R;
(2) Vs a stable domain;
(3) V is a strongly discrete valuation domain.

Moreover, when any one condition holds, V is Boole regular.

This lemma gives rise to a large class of Boole regular domains that are not PIDs.
For example, any strongly discrete valuation domain of dimension > 2 (cf. [27]) is
a Boole regular domain which is not Noetherian. The rest of this subsection stud-
ies the class semigroups for two large classes of Noetherian-like domains, that is,
t-locally Noetherian domains and Mori domains. Precisely, it examines conditions
under which stability and strong stability characterize Clifford regularity and Boole
regularity, respectively.

Next, we review some terminology related to the w-operation. For a nonzero frac-
tional ideal I of R, I, := (J(I: J) where the union is taken over all finitely generated
ideals J of R with J~! = R. We say that / is a w-ideal if I, = I. The domain R is
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said to be Mori if it satisfies the ascending chain condition on divisorial ideals [3]
and strong Mori if it satisfies the ascending chain condition on w-ideals [23, 48].
Trivially, a Noetherian domain is strong Mori and a strong Mori domain is Mori.
Finally, we say that R is t-locally Noetherian if Ry is Noetherian for each 7-maximal
ideal M of R [43]. Recall that strong Mori domains are ¢-locally Noetherian [23,
Theorem 1.9].

The next result handles the ¢-locally Noetherian setting.

Theorem 2.33 ([38, Theorem 4.2]). Let R be a t-locally Noetherian domain. Then
R is Clifford (resp., Boole) regular if and only if R is stable (resp., strongly stable).
Moreover, when any one condition holds, R is either a field or a one-dimensional
Noetherian domain.

The proof relies partially on the next lemma.

Lemma 2.34. Let R be a Clifford regular domain. Then I ; R for each nonzero
proper ideal I of R. In particular, every maximal ideal of R is a t-ideal.

The above theorem asserts that a strong Mori Clifford regular domain is nec-
essarily Noetherian. Here, Clifford regularity forces the w-operation to be trivial
(see also [48, Proposition 1.3]). Also noteworthy is that while a t-locally Noethe-
rian stable domain is necessarily a one-dimensional L-stable domain, the converse
does not hold in general. For instance, consider an almost Dedekind domain which
is not Dedekind and appeal to Corollary 2.26. However, the equivalence holds for
Noetherian domains [8, Theorem 2.1] and [1, Proposition 2.4].

Corollary 2.35 ([38, Corollary 4.4]). Let R be a local Noetherian domain such
that the extension R C R is maximal, where R denotes the integral closure of R. The
following are equivalent:

(1)  Ris Boole regular;
(2) R s strongly stable;
(3) Ris stable and R is a PID.

This result generates new families of Boole regular domains beyond the class of
integrally closed domains.

Example 2.36. Let R := k[X?,X 3](X27X3) where k is a field and X an indeterminate

over k. Clearly, R = k[X]p, (x2 x3) is a PID and the extension R C R is maximal.
Further, R is a Noetherian Warfield domain, hence stable (cf. [10]). Consequently,
R is a one-dimensional non-integrally closed local Noetherian domain that is Boole
regular.

The next results handle the Mori setting. In what follows, we shall use R and R*
to denote the integral closure and complete integral closure, respectively, of a
domain R.
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Theorem 2.37 ([38, Theorem 4.7]). Let R be a Mori domain. Then the following

are equivalent:

(1) R is one-dimensional Clifford (resp., Boole) regular and R* is Mori;
(2) Ris stable (resp., strongly stable).

It is worth recalling that for a Noetherian domain R we have dim(R) = | <
dim(R*) = 1 < R* is Dedekind since here R* = R. The same result holds if R is
a Mori domain such that (R : R*) # 0 [4, Corollary 3.4(1) and Corollary 3.5(1)].
Also, it was stated that the “only if”” assertion holds for seminormal Mori domains
[4, Corollary 3.4(2)]. However, beyond these contexts, the problem remains open.
This explains the cohabitation of “dim(R) = 1” and “R* is Mori” assumptions in the
above theorem. In this vein, we set the following open question:

“Let R be a local Mori Clifford regular domain is it true that:
dim(R) = 1 <= R" is Dedekind?”

The next result partly draws on the above theorem and treats two well-studied
large classes of Mori domains [3]. Recall that a domain R is seminormal if x € R
whenever x € K and x*,x> € R.

Theorem 2.38 ([38, Theorem 4.9]). Let R be a Mori domain. Consider the follow-
ing statements:

(1)  The conductor (R: R*) #0,
(2) R is seminormal,
(3) The extension R C R* has at most one proper intermediate ring.

Assume that either (1), (2), or (3) holds. Then R is Clifford (resp., Boole) regular if
and only if R is stable (resp., strongly stable).

2.7 Pullbacks

The purpose here is to examine Clifford regularity and Boole regularity in pullback
constructions. This allows for the construction of new families of domains with
Clifford or Boolean class semigroup, beyond the contexts of integrally closed or
Noetherian domains.

Let us fix the notation for the rest of this subsection. Let 7 be a domain, M a
maximal ideal of T, K its residue field, ¢ : T — K the canonical surjection, D a
proper subring of K with quotient field k. Let R := ¢! (D) be the pullback issued
from the following diagram of canonical homomorphisms:

R— D

l l
0

T—K=T/M
Next, we announce the first theorem which provides a necessary and sufficient
condition for a pseudo-valuation domain (i.e., PVD) to inherit Clifford or Boole
regularity.
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Theorem 2.39 ([38, Theorem 5.1]).

(1) IfRis Clifford (resp., Boole) regular, then so are T and D, and [K : k] < 2.
(2) Assume D =k andT is a valuation (resp., strongly discrete valuation) domain.
Then R is Clifford (resp., Boole) regular if and only if [K : k| = 2.

The following example shows that this theorem does not hold in general, and
hence nor does the converse of (1).

Example 2.40. Let Z and QQ denote the ring of integers and field of rational numbers,
respectively, and let X and ¥ be indeterminates over Q. Set V := Q(v/2,v/3)[[X]],
M :=XQ(v/2,/3)[[X]], T := Q(v/2) + M, and R := Q + M. Both T and R are one-
dimensional local Noetherian domains arising from the DVR V, with T =V and
R = T. By the above theorem, T is Clifford (actually, Boole) regular, whereas
R is not. More specifically, the isomorphy class of the ideal I := X (Q + V2Q +
V/3Q+ M) is not regular in S(R).

Now, one can build original example using the above theorem as follows:

Example 2.41. Let n be an integer > 1. Let R be a PVD associated with a non-
Noetherian n-dimensional valuation (resp., strongly discrete valuation) domain
(V,M) with [V/M : R/M] = 2. Then R is an n-dimensional local Clifford (resp.,
Boole) regular domain that is neither integrally closed nor Noetherian.

Recall that a domain A is said to be conducive if the conductor (A : B) is nonzero
for each overring B of A other than its quotient field. Examples of conducive do-
mains include arbitrary pullbacks of the form R := D+ M arising from a valuation
domain V := K+ M [19, Propositions 2.1 and 2.2]. We are now able to announce the
last theorem of this subsection. It treats Clifford regularity, for the remaining case
“k = K”, for pullbacks R := ¢~ (D) where D is a conducive domain.

Theorem 2.42 ([38, Theorem 5.6]). Under the same notation as above, consider
the following statements:

(1) T is a valuation domain and R := ¢ ' (D),
(2) T :=K[X]and R:= D+ XK|[X], where X is an indeterminate over K.

Assume that D is a semilocal conducive domain with quotient field k = K and either
(1) or (2) holds. Then R is Clifford regular if and only if so is D.

Now a combination of Theorems 2.39 and 2.42 generates new families of
examples of Clifford regular domains, as shown by the following construction [38,
Example 5.8]:

Example 2.43. For every positive integer n > 2, there exists an example of a do-
main R satisfying the following conditions:

(1) dim(R) =n,

(2) R is neither integrally closed nor Noetherian,
(3) Ris Clifford regular,

(4) Each overring of R is Clifford regular,

(5) R has infinitely many maximal ideals.
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2.8 Open problems

By Proposition 2.5 the class of Clifford regular domains contains the class of stable
domains and is contained in the class of finitely stable domains. Both inclusions are
proper. In fact, every Priifer domain is finitely stable, but only the Priifer domains of
finite character are Clifford regular. Moreover, a Priifer domain is stable if and only
if it is of finite character and strongly discrete, that is, every nonzero prime ideal is
not idempotent (cf. [49, Theorem 4.6]), hence there exists a large class of nonsta-
ble integrally closed Clifford regular domains. The classification of stable domains
obtained by B. Olberding in [50], shows that there are stable domains which are
neither Noetherian nor integrally closed. Furthermore, there is an example of a non-
coherent stable domain ([50, Section 5]), hence there exist non-coherent Clifford
regular domains.

There are also examples of Clifford regular domains which are neither stable nor
integrally closed, as illustrated by [8, Example 6.1].

Example 2.44. Let ko be a field and let K be an extension field of ky such that
[K : ko] = 2. Consider a valuation domain V of the form K + M where M is the
maximal ideal of V and assume M2 = M. Let R be the domain ko + M. The ideals
of R can be easily described: they are either ideals of V or principal ideals of R.
Thus, R is Clifford regular, but it is not stable, since M is an idempotent ideal of R;
moreover the integral closure of Ris V.

There are still many questions related to the problem of characterizing the class
of Clifford regular domains in general. Note that if a domain R is stable, then R is of
finite character and every overring of R is again stable ([51, Theorems 3.3 and 5.1]).
If R is an integrally closed Clifford regular domain, then R is a Priifer domain of
finite character (Theorem 2.16) and thus the same holds for every overring of R.
Hence, the two subclasses of Clifford regular domains consisting of the stable do-
mains and of the integrally closed domains are closed for overrings and their mem-
bers are domains of finite character. We may ask the following major questions
concerning Clifford regular domains:

Question 2.45 [s every Clifford regular domain of finite character?

Question 2.46 (a) Is every overring of a Clifford regular domain again Clifford
regular?

(b) In particular, is the integral closure of a Clifford regular domain a Clifford
regular domain?

In [56], Sega gives partial answers to part (a) of this question. In particular, he
proves that if R is a Clifford regular domain such that the integral closure of R is
a fractional overring, then every overring of R is Clifford regular. An affirmative
answer to part (b) would imply that a Clifford regular domain is necessarily of finite
character, since the integral closure of a Clifford regular domain is a Priifer domain.

In view of the validity of the conjecture about the finite character of Priifer
domains with the local invertibility property proved in [36], Question 2.46 (b) may
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be weakened by asking if the integral closure of a Clifford regular domain satisfies
the local invertibility property. More generally we may ask:

Question 2.47 If a finitely stable domain satisfies the local invertibility property, is
it true that its integral closure satisfies the same property?

A positive answer to the above question would imply that a finitely stable domain
satisfying the local invertibility property has finite character.

Another interesting problem is to characterize the local Clifford regular domains.
The next example shows that not every finitely stable local domain is Clifford
regular.

Example 2.48. Let A be a DVR with quotient field Q and let B be the ring
Q[[X?,X?]]. Denote by P the maximal ideal of B and let R = A+ P. By [50,
Proposition 3.6], R is finitely stable but it is not L-stable. In fact,/ = Q+AX + P is
a fractional ideal of R, since JP C P C R and (J : J) = R, but J> = Q[[X]]. Thus, by
Proposition 2.5, R is not Clifford regular.

However, the following result holds.

Proposition 2.49 ([8, Corollary 5.6]). Let R be a local Clifford regular domain with
principal maximal ideal. Then R is a valuation domain.

In the case of a Clifford regular domain R of finite character a description of the
idempotent elements of S(R) is available. It generalizes the situation illustrated in
Proposition 2.17 for Clifford regular Priifer domains.

Lemma 2.50. Let R be a Clifford regular domain of finite character and let T be a
nonzero idempotent fractional ideal of R. If E = End(T), then either T = E or T is
a product of idempotent maximal ideals of E.

We end this subsection by recalling a partial result regarding the finite character
of Clifford regular domains. We denote by T(R) the set of maximal ideals m of R
for which there exists a finitely generated ideal with the property that m is the only
maximal ideal containing it.

Proposition 2.51. Let R be a finitely stable domain satisfying the local stability
property. Then every nonzero element of R is contained in at most a finite number
of maximal ideals of T(R). In particular the result holds for every Clifford regular
domain.

3 t-Class semigroups of integral domains

A domain R is called a PVMD (for Priifer v-multiplication domain) if the v-finite
v-ideals form a group under the -multiplication; equivalently, if Ry is a valuation
domain for each 7-maximal ideal M of R. Ideal -multiplication converts ring notions
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such as PID, Dedekind, Bézout, Priifer, and integrality to UFD, Krull, GCD, PVMD,
and pseudo-integrality, respectively. The pseudo-integrality (i.e., z-integrality) was
introduced and studied in 1991 by D. F. Anderson, Houston, and Zafrullah [2].

The t-class semigroup of R is defined by

8¢(R) := F:(R)/P(R)

where P(R) is the subsemigroup of JF;(R) consisting of nonzero principal frac-
tional ideals of R. Thus, §;(R) stands as the z-analogue of §(R), the class semigroup
of R. For the reader’s convenience we recall from the introduction the set-theoretic
inclusions:

C(R) CCI(R) C §/(R) C 8(R).

By analogy with Clifford regularity and Boole regularity (Section 2), we define
t-regularity as follows:

Definition 3.1 ([40]). A domain R is Clifford (resp., Boole) ¢-regular if 8,(R) is a
Clifford (resp., Boolean) semigroup.

This section reviews recent works that examine ring-theoretic conditions of a
domain R that reflect reciprocally in semigroup-theoretic properties of its ¢-class
semigroup 8, (R). Contexts that suit best s-regularity are studied in [40-42] in an
attempt to parallel analogous developments and generalize the results on class semi-
groups (reviewed in Section 2).

Namely, [40] treats the case of PVMDs extending Bazzoni’s results on Priifer
domains [5, 8]; [41] describes the idempotents of S;(R) and the structure of their
associated groups recovering well-known results on class semigroups of valuation
domains [9] and Priifer domains [6, 7]; and [42] studies the ¢-class semigroup of a
Noetherian domain. All results are illustrated by original examples distinguishing
between the two concepts of class semigroup and z-class semigroup. Notice that in
Priifer domains, the #- and trivial operations (and hence the #-class and class semi-
groups) coincide.

3.1 Basic results on t-regularity

Here, we discuss f-analogues of basic results on 7-regularity. First we notice that
Krull domains and UFDs are Clifford and Boole ¢-regular, respectively. These two
classes of domains serve as a starting ground for z-regularity as Dedekind domains
and PIDs do for regularity. Also, we will see that ¢-regularity stands as a default
measure for some classes of Krull-like domains, e.g., “UFD = Krull + Boole
t-regular.”” Moreover, while an integrally closed Clifford regular domain is Priifer
(Proposition 2.14), an integrally closed Clifford 7-regular domain need not be a
PVMD. An example is built to this end, as an application of the main theorem
of this subsection, which examines the transfer of ¢-regularity to pseudo-valuation
domains.
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The first result displays necessary and/or sufficient ideal-theoretic conditions for
the isomorphy class of an ideal to be regular in the ¢-class semigroup.

Lemma 3.2 ([40, Lemma 2.1]). Let [ be a t-ideal of a domain R. Then

(1) [1] is regular in 8;(R) if and only if I = (I*(I : I?)),.
(2) IfIis t-invertible, then [I] is regular in 8;(R).

A domain R is Krull if every #-ideal of R is t-invertible. From the lemma one
can obviously see that a Krull domain is Clifford ¢-regular. Recall that a domain R
is t-almost Dedekind if Ry, is a rank-one DVR for each r-maximal ideal M of R;
t-almost Dedekind domains lie strictly between Krull domains and general PVMDs
[43]. A domain R is said to be strongly #-discrete if it has no #-idempotent #-prime
ideals (i.e., for every ¢-prime ideal P, (Pz)t & P) [22]. The next results (cf. [40,
Proposition 2.3]) show that ¢-regularity measures how far some Krull-like domains
are from being Krull or UFDs.

Proposition 3.3. Let R be a domain. The following are equivalent:

(1) Ris Krull;
(2) Rist-almost Dedekind and Clifford t-regular;
(3) Ris strongly t-discrete, completely integrally closed, and Clifford t-regular.

Proposition 3.4. Let R be a domain. The following are equivalent:

(1) RisaUFD;

(2) Ris Krull and Boole t-regular;

(3) Rist-almost Dedekind and Boole t-regular;

(4) R is strongly t-discrete, completely integrally closed, and Boole t-regular.

Note that the assumptions in the previous results are not superfluous. For, the
(Bézout) ring of all entire functions in the complex plane is strongly (¢-)discrete [26,
Corollary 8.1.6] and completely integrally closed, but it is not (¢-)almost Dedekind
(since it has an infinite Krull dimension). Also, a non-discrete rank-one valuation
domain is completely integrally closed and Clifford (¢-)regular [9], but it is not Krull.

The z-regularity transfers to polynomial rings and factor rings providing more
examples of Clifford or Boole #-regular domains, as shown in the next result. Recall
that Clifford regularity of R[X] forces R to be a field (Corollary 2.27).

Proposition 3.5 ([40, Propositions 2.4 and 2.5]). Let R be a domain, X an indeter-
minate over R, and S a multiplicative subset of R.

(1)  Assume R is integrally closed. Then R is Clifford (resp., Boole) t-regular if and
only if so is R[X].
(2) If R is Clifford (resp., Boole) t-regular, then so is Rg.

Now, one needs to examine the integrally closed setting. At this point, recall
that an integrally closed Clifford (resp., Boole) regular domain is necessarily Priifer
(resp., Bézout) [38,59]. This fact does not hold for ¢-regularity; namely, an integrally
closed Clifford (or Boole) ¢-regular domain need not be a PVMD (i.e., ¢-Priifer).
Examples stem from the following theorem on the inheritance of ¢-regularity by
PVDs (for pseudo-valuation domains).
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Theorem 3.6 ([40, Theorem 2.7]). Let R be a PVD issued from a valuation domain
V. Then:

(1) R is Clifford t-regular.
(2) Ris Boole t-regular if and only if V is Boole regular.

Contrast this result with Theorem 2.39 about regularity; which asserts that if R
is a PVD issued from a valuation (resp., strongly discrete valuation) domain (V, M),
then R is a Clifford (resp., Boole) regular domain if and only if [V /M : R/M] = 2.

Now, using Theorem 3.6, one can build integrally closed Boole (hence Clifford)
t-regular domains which are not PVMDs. For instance, let k be a field and X,Y two
indeterminates over k. Let R := k+ M be the PVD associated to the rank-one DVR
V :=k(X)[[Y]] = k(X)+ M, where M =YV. Clearly, R is an integrally closed Boole
t-regular domain but not a PVMD [25, Theorem 4.1].

3.2 The PVMD case

A domain R is of finite 7-character if each proper f-ideal is contained in only
finitely many 7-maximal ideals. It is worthwhile recalling that the PVMDs of finite
t-character are exactly the Krull-type domains introduced and studied by Griffin in
1967-1968 [31, 32]. This subsection discusses the t-analogue for Bazzoni’s result
that “an integrally closed domain is Clifford regular if and only if it is a Priifer
domain of finite character” (Theorem 2.16). B

Recall from [2] that the pseudo-integral closure of a domain R is defined as R =
U(ZL: L), where I ranges over the set of finitely generated ideals of R; and R is
said to be pseudo-integrally closed if R = R. This is equivalent to saying that R is
a v-domain, i.e. a domain such that (I, : I,) = R for each nonzero finitely generated
ideal / of R. A domain with this property is called in Bourbaki’s language regularly
integrally closed [11, Chap. VII, Exercise 30]. Clearly R C R C R*, where R and R*
are respectively the integral closure and the complete integral closure of R. In view
of the example provided in the previous subsection, one has to elevate the “integrally
closed” assumption in Bazzoni’s result to “pseudo-integrally closed.” Accordingly,
in [40, Conjecture 3.1], the authors sustained the following:

Conjecture 3.7. A pseudo-integrally closed domain (i.e., v-domain) is Clifford
t-regular if and only if it is a PVMD of finite ¢-character.

The next result presented a crucial step towards a satisfactory ¢-analogue.

Theorem 3.8 ([40, Theorem 3.2]). A PVMD is Clifford t-regular if and only if it is
a Krull-type domain.

Since in Priifer domains the #- and trivial operations coincide, this theorem re-
covers Bazzoni’s result (mentioned above) and also uncovers the fact that in the
class of PVMDs, Clifford ¢-regularity coincides with the finite 7-character condition.
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The proof involves several preliminary lemmas, some of which are of independent
interest and their proofs differ in form from their respective analogues — if any — for
the trivial operation. These lemmas are listed below.

Lemma 3.9. Let R be a PVYMD and I a nonzero fractional ideal of R. Then for every
t-prime ideal P of R, I;lRp = IRp.

Lemma 3.10. Let R be a PYMD which is Clifford t-regular and I a nonzero frac-
tional ideal of R. Then I is t-invertible if and only if I is t-locally principal.

Lemma 3.11. Let R be a PVYMD which is Clifford t-regular and let P C Q be two
t-prime ideals of R. Then there exists a finitely generated ideal I of R such that
PCILCO.

Lemma 3.12. Let R be a PVMD which is Clifford t-regular and P a t-prime ideal of
R. Then (P : P) is a PVMD which is Clifford t-regular and P is a t-maximal ideal of
(P:P).

Lemma 3.13. Let R be a PVMD which is Clifford t-regular and Q a t-prime ideal of
R. Suppose there is a nonzero prime ideal P of R such that P C Q and ht(Q/P) = 1.
Then there exists a finitely generated subideal I of Q such that Max,(R,I) =
Max; (R, Q), where Max;(R,I) consists of t-maximal ideals containing I.

As a consequence of Theorem 3.8, the next result handles the context of strongly
t-discrete domains.

Corollary 3.14 ([40, Corollary 3.12]). Assume R is a strongly t-discrete domain.
Then R is a pseudo-integrally closed Clifford t-regular domain if and only if R is a
PVMD of finite t-character.

Recently, Halter-Koch solved Conjecture 3.7 by using the language of
ideal systems on cancellative commutative monoids. Precisely, he proved that
“every t-Clifford regular v-domain is a Krull-type domain” [35, Propositions 6.11
and 6.12]. This result combined with the “if” statement of Theorem 3.8 provides a
t-analogue for Bazzoni’s result (mentioned above):

Theorem 3.15. A v-domain is Clifford t-regular if and only if it is a Krull-type
domain.

The rest of this subsection is devoted to generating examples. For this purpose,
two results will handle the possible transfer of the PVMD notion endowed with
the finite #-character condition to pullbacks and polynomial rings, respectively. This
will allow for the construction of original families of Clifford z-regular domains via
PVMDs.

Proposition 3.16 ([40, Proposition 4.1]). Let T be a domain, M a maximal ideal
of T, K its residue field, ¢ : T — K the canonical surjection, and D a proper
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subring of K. Let R= ¢! (D) be the pullback issued from the following diagram of
canonical homomorphisms:

R— D

Lol
0

T —K=T/M
Then R is a PVMD of finite t-character if and only if D is a semilocal Bézout domain
with quotient field K and T is a Krull-type domain such that Ty is a valuation
domain.

Proposition 3.17 ([40, Proposition 4.2]). Let R be an integrally closed domain and
X an indeterminate over R. Then R has finite t-character if and only if so does R[X].

Note that the “integrally closed” condition is unnecessary in the above result, as
pointed out recently in [30]. Now one can build new families of Clifford ¢-regular
domains originating from the class of PVMDs via a combination of the two previous
results and Theorem 3.8 (cf. [40, Example 4.3]).

Example 3.18. For each integer n > 2, there exists a PVMD R,, subject to the fol-
lowing conditions:

(1) dim(R,) =n.

(2) R, is Clifford z-regular.
(3) Ry isnot Clifford regular.
(4) R, is not Krull.

Here are two ways to realize this. Let V be a rank-one valuation domain with quo-
tient field K. Let V = K + N be a rank-one non-strongly discrete valuation domain
(cf. [21, Remark 6(b)]). Take R, =V [X},..., X;—1]-

For n > 4, the classical D + M construction provides more examples. Indeed,
consider an increasing sequence of valuation domains V=V, C V, C,...,C V,»
such that, foreach i € {2,...,n— 2}, dim(V;) =i and V;/M; =V /N = K, where M;
denotes the maximal ideal of V;. Set T =V, _»[X] and M = (M,,_»,X). Therefore
R, = Vo + M is the desired example.

3.3 The structure of the t-class semigroup of a Krull-type domain

This subsection extends Bazzoni and Salce’s study of groups in the class semi-
group of a valuation domain [9] and recovers Bazzoni’s results on the constituents
groups of the class semigroup of a Priifer domain of finite character [6,7] to a larger
class of domains. Precisely, it describes the idempotents of S;(R) and the struc-
ture of their associated groups when R is a Krull-type domain (i.e., PVMD of finite
t-character). Indeed, it states that there are two types of idempotents in 8, (R): those
represented by fractional overrings of R and those represented by finite intersections
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of r-maximal ideals of fractional overrings of R. Further, it shows that the group
associated with an idempotent of the first type equals the class group of the fractional
overring, and characterizes the elements of the group associated with an idempotent
of the second type in terms of their localizations at ¢-prime ideals.

In any attempt to extend classical results on Priifer domains to PVMDs (via
t-closure), the #-linked notion plays a crucial role in order to make the -move pos-
sible. An overring T’ of a domain R is ¢-linked over R if, for each finitely generated
ideal  of R,I"' =R = (T :IT) = T [2,45). In Priifer domains, the ¢-linked property
coincides with the notion of overring (since every finitely generated proper ideal is
invertible and then its inverse is a fortiori different from R). Recall also that an over-
ring T of R is fractional if T is a fractional ideal of R. Of significant importance
too for the study of 7-class semigroups is the notion of f-idempotence; namely, a
t-ideal [ is t-idempotent if (I7), = I.

Let R be a PVMD. Note that T is a ¢-linked overring of R if and only if T is a
subintersection of R, that is, T = (Rp, where P ranges over some set of 7-prime
ideals of R [44, Theorem 3.8] or [15, p. 206]. Further, every ¢-linked overring of R
is a PVMD [44, Corollary 3.9]; in fact, this condition characterizes the notion of
PVMD [20, Theorem 2.10 ]. Finally, let  be a t-ideal of R. Then (7 : I) is a fractional
t-linked overring of R and hence a PVMD.

Theorem 3.8 asserts that if R is a Krull-type domain, then §;(R) is Clifford and
hence a disjoint union of subgroups Gy, where [/] ranges over the set of idempo-
tents of §;(R) and Gy, is the largest subgroup of §;(R) with unit [J]. At this point, it
is worthwhile recalling Bazzoni-Salce’s result that valuation domains have Clifford
class semigroup [9]. To the main result of this subsection:

Theorem 3.19 ([41, Theorem 2.1]). Let R be a Krull-type domain and I a t-ideal
of R. Set T := (I : I) and T'(I) := {finite intersections of t-idempotent t-maximal
ideals of T'}. Then [I] is an idempotent of 8;(R) if and only if there exists a unique
J € {T}UTI'(I) such that [I| = [J]. Moreover,

(1) IfJ =T, then Gy = CI(T);

) If J = My<i<, Qi € T'(I), then the sequence

0— (1) % Gy % 1 Giory] — 0
l 1

of natural group homomorphisms is exact, where G[Q,-TQ.] denotes the constituent
group of the Clifford semigroup 8(Ty,) associated with [Q;Ty,).

The proof of the theorem draws partially on the following lemmas, which are of
independent interest.

Lemma 3.20. Let R be a PVMD. Let T be a t-linked overring of R and Q a t-prime
ideal of T. Then P := QN R is a t-prime ideal of R with Rp = Top. If, in addition, Q
is t-idempotent in T, then so is P in R.

Lemma 3.21. Let R be a PYMD and T a t-linked overring of R. Let J be a common
(fractional) ideal of R and T. Then:
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(1) Jy, = J;, where t| denotes the t-operation with respect to T.
(2) Jisat-idempotent t-ideal of R <= J is a t-idempotent t-ideal of T.

Lemma 3.22. Let R be a PVMD, 1 at-ideal of R, and T := (1 :1). Let J := (), <;<, O,
where each Q; is a t-idempotent t-maximal ideal of T. Then J is a fractional
t-idempotent t-ideal of R.

Lemma 3.23. Let R be a PVMD, I a t-idempotent t-ideal of R, and M DO I a
t-maximal ideal of R. Then IRy is an idempotent (prime) ideal of Ry.

Lemma 3.24. Let R be a Krull-type domain, L a t-ideal of R, and J a t-idempotent
t-ideal of R. Then:

L] € Gy <= (L:L)=(J:J)and (JL(L: L*)); = (L(L: L)), = J.

Lemma 3.25. Let R be a PVMD and I a t-ideal of R. Then:

(1) [Tisat-idealof (I:1).
(2) IfRis Clifford t-regular, then so is (I : I).

Since in a Priifer domain the f-operation collapses to the trivial operation,
Theorem 3.19 recovers Bazzoni’s results on Priifer domains of finite character
(Proposition 2.17 and Theorem 2.19). Moreover, there is the following consequence:

Corollary 3.26 ([41, Corollary 2.9]). Let R be a Krull-type domain which is
strongly t-discrete. Then 8;(R) is a disjoint union of subgroups CI(T), where T
ranges over the set of fractional t-linked overrings of R.

Now one can develop numerous illustrative examples via Theorem 3.19 and
Corollary 3.26. Two families of such examples can be provided by means of poly-
nomial rings over valuation domains. First, the following lemma investigates this
setting:

Lemma 3.27 ([41, Lemma 3.1]). Let V be a nontrivial valuation domain and X an
indeterminate over' V. Then:

(1) R:=V[X]is a Krull-type domain which is not Priifer.

(2)  Every fractional t-linked overring of R has the form V,[X| for some nonzero
prime ideal p of V.

(3)  Every t-idempotent t-prime ideal of R has the form p[X] for some idempotent
prime ideal p of V.

Example 3.28. Let n be an integer > 1. Let V be an n-dimensional strongly discrete
valuation domain and let (0) C p; C p2 C ... C p, denote the chain of its prime
ideals. Let R := V[X], a Krull-type domain. A combination of Lemma 3.27 and
Corollary 3.26 yields

8:(R) = {Vp, [X]; Vp, [X], .., Vi, [X]}
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where, for each i, the class [V, [X]] in 8;(R) is identified with V},[X] (due to the
uniqueness stated by the main theorem).

Example 3.29. Let V be a one-dimensional valuation domain with idempotent
maximal ideal M and R := V[X], a Krull-type domain. By Theorem 3.19 and
Lemma 3.27, we have:

8,(R) = {[R]} U{[1] | I t-ideal of R with (111}, = M[X]}.

3.4 The Noetherian case

A domain R is called strong Mori if R satisfies the ascending chain condition on
w-ideals (cf. Section 2.6). Recall that the ¢-dimension of R, abbreviated r-dim(R), is
by definition equal to the length of the longest chain of #-prime ideals of R.

This subsection discusses z-regularity in Noetherian and Noetherian-like do-
mains. Precisely, it studies conditions under which #-stability (see definition below)
characterizes t-regularity. Unlike regularity, #-regularity over Noetherian domains
does not force the ¢-dimension to be one. However, Noetherian strong #-stable do-
mains happen to have #-dimension 1.

Recall that an ideal I of a domain R is said to be L-stable if R := Ups1 (1" 2 17)
=(:1).

The next result compares Clifford ¢-regularity to two forms of stability.

Theorem 3.30 ([42, Theorem 2.2]). Let R be a Noetherian domain and consider
the following:

(1) Ris Clifford t-regular,
(2) Eacht-ideal I of R is t-invertible in (I : I),
(3) Eacht-ideal is L-stable.

Then (1) = (2) = (3). Ift-dim(R) = 1, then the 3 conditions are equivalent.

Recall that an ideal I of a domain R is said to be stable (resp., strongly stable)
if I is invertible (resp., principal) in (7 : I), and R is called a stable (resp., strongly
stable) domain provided each nonzero ideal of R is stable (resp., strongly stable).
A stable domain is L-stable [1, Lemma 2.1]. By analogy, ¢-stability is defined in
[42] as follows:

Definition 3.31. A domain R is t-stable if each t-ideal of R is stable, and R is
strongly t-stable if each t-ideal of R is strongly stable.

Recall that a Noetherian domain R is Clifford regular if and only if R is stable if
and only if R is L-stable and dim(R) = 1 [8, Theorem 2.1] and [38, Corollary 4.3].
Unlike Clifford regularity, Clifford (or even Boole) ¢-regularity does not force a
Noetherian domain R to be of #-dimension one. In order to illustrate this fact with
an example, a result first establishes the transfer of Boole z-regularity to pullbacks
issued from local Noetherian domains.
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Proposition 3.32 ([42, Proposition 2.3]). Ler (T, M) be a local Noetherian domain
with residue field K and ¢ : T — K the canonical surjection. Let k be a proper
subfield of K and R := ¢~ (k) the pullback issued from the following diagram of
canonical homomorphisms:

R — &k

! 1

T Kk=T/M

Then R is Boole t-regular if and only if T is Boole t-regular.

Now the next example provides a Boole ¢-regular Noetherian domain with
t-dimension = 1.

Example 3.33. Let K be a field, X and Y two indeterminates over K, and k a proper
subfield of K. Let T := K[[X,Y]] =K+ M and R := k+ M where M := (X,Y).
Since T is a UFD, then T is Boole ¢-regular (Proposition 3.4). Further, R is a Boole
t-regular Noetherian domain by the above proposition. Further M is a v-ideal of R,
so that 7-dim(R) = dim(R) = 2, as desired.

Next, the main result of this subsection presents a r-analogue for Boole regularity
as stated in Theorem 2.33.

Theorem 3.34 ([42, Theorem 2.6]). Let R be a Noetherian domain. Then:
R is strongly t-stable <= R is Boole t-regular and t-dim(R) = 1.

An analogue of this result does not hold for Clifford ¢-regularity. For, there ex-
ists a Noetherian Clifford 7-regular domain with 7-dim(R) = 1 such that R is not
t-stable. Indeed, recall first that a domain R is said to be pseudo-Dedekind [43] (or
generalized Dedekind [57]) if every v-ideal is invertible. In [55], P. Samuel gave an
example of a Noetherian UFD R for which R[[X]] is not a UFD. In [43], Kang noted
that R[[X]] is a Noetherian Krull domain which is not pseudo-Dedekind (otherwise,
CI(R[[X]]) = CI(R) = 0 forces R[[X]] to be a UFD, absurd). Moreover, R[[X]] is a
Clifford ¢-regular domain with z-dimension 1 (since Krull). But R[[X]] not being
a UFD translates into the existence of a v-ideal of R[[X]] that is not invertible, as
desired.

The next result extends the above theorem to the larger class of strong Mori
domains.

Theorem 3.35 ([42, Theorem 2.10]). Let R be a strong Mori domain. Then:
R is strongly t-stable <= R is Boole t-regular and t-dim(R) = 1.

Unlike Clifford regularity, Clifford (or even Boole) 7-regularity does not force a
strong Mori domain to be Noetherian. Indeed, it suffices to consider a UFD which is
not Noetherian. We close with the following discussion about the limits and possible
extensions of the above results.
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Remark 3.36. (1) It is not known whether the assumption “¢-dim(R) = 17 in
Theorem 3.30 can be omitted.

(2) Following Proposition 2.25, the integral closure R of a Noetherian Boole regular
domain R is a PID. By analogy, it is not known if R is a UFD in the case of Boole
t-regularity. (It is the case if the conductor (R : R) # 0.)

(3) It is not known if the assumption “R strongly ¢-discrete, i.e., R has no
t-idempotent ¢-prime ideals” forces a Clifford ¢-regular Noetherian domain to
be of r-dimension one.
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Forcing algebras, syzygy bundles,
and tight closure

Holger Brenner

Abstract We give a survey about some recent work on tight closure and
Hilbert-Kunz theory from the viewpoint of vector bundles. This work is based
in understanding tight closure in terms of forcing algebras and the cohomolog-
ical dimension of torsors of syzygy bundles. These geometric methods allowed
to answer some fundamental questions of tight closure, in particular the equality
between tight closure and plus closure in graded dimension two over a finite field
and the rationality of the Hilbert-Kunz multiplicity in graded dimension two. More-
over, this approach showed that tight closure may behave weirdly under arithmetic
and geometric deformations, and provided a negative answer to the localization
problem.

1 Introduction

In this survey article, we describe some developments which led to a detailed
geometric understanding of tight closure in dimension two in terms of vector bun-
dles and torsors. Tight closure is a technique in positive characteristic introduced by
M. Hochster and C. Huneke 20 years ago [21-23,40]. We recall its definition. Let
R be a commutative ring of positive characteristic p with eth Frobenius homomor-
phism F¢ : R — R, f — f4, ¢ = p®. For an ideal I let 1[4 := F¢(I) be the extended
ideal under the eth Frobenius. Then the tight closure of I is given by

I" ={f € R: there exists 7,not in any minimal prime,

such that 7 f4 € 114 for g > 0}
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(in the domain case this means just ¢ # 0, and for all g). In this paper, we will
not deal with the applications of tight closure in commutative algebra, homological
algebra and algebraic geometry, but with some of its intrinsic problems. One of
them is whether tight closure commutes with localization, that is, whether for a
multiplicative system S C R the equality

(I')Rs = (IRs)"

holds (the inclusion C is always true). A directly related question is whether tight
closure is the same as plus closure. The plus closure of an ideal I in a domain R is
defined to be

It ={f € R: there exists R C S finite domain extension such that f € IS}.

This question is known as the tantalizing question of tight closure theory. The in-
clusion It C I* always holds. Since the plus closure commutes with localization, a
positive answer to the tantalizing question for a ring and all its localizations implies
a positive answer for the localization problem for this ring. The tantalizing ques-
tion is a problem already in dimension two, the localization problem starts to get
interesting in dimension three.

What makes these problems difficult is that there are no exact criteria for tight
closure. There exist many important inclusion criteria for tight closure, and in all
these cases the criteria also hold for plus closure (in general, with much more dif-
ficult proofs). The situation is that the heartlands of “tight closure country” and of
“non tight closure country” have been well exploited, but not much is known about
the thin line which separates them. This paper is about approaching this thin line
geometrically.

The original definition of tight closure, where one has to check infinitely many
conditions, is difficult to apply. The starting point of the work we are going
to present here is another description of tight closure due to Hochster as solid
closure based on the concept of forcing algebras. Forcing algebras were intro-
duced by Hochster in [19] in an attempt to build up a characteristic-free clo-
sure operation with similar properties as tight closure. This approach rests on
the fact that f € (fi,...,f,)* holds in R if and only if HI™R(A) £ 0, where
A=R[T\,....,T,]/(iTi + -+ fuT, — f) is the forcing algebra for these data (see
Theorem 5.1 for the exact statement). This gives a new interpretation for tight clo-
sure, where, at least at first glance, not infinitely many conditions are involved. This
cohomological interpretation can be refined geometrically, and the goal of this paper
is to describe how this is done and where it leads to. We give an overview.

We will describe the basic properties of forcing algebras in Section 2. A special
feature of the cohomological condition for tight closure is that it depends only on the
open subset D(mA) C SpecA. This open subset is a “torsor” over D(m) C SpecR, on
which the syzygy bundle Syz(fi, ..., f,) acts. This allows a more geometric view of
the situation (Section 3) . In general, closure operations for ideals can be expressed
with suitable properties of forcing algebras. We mention some examples of this
correspondence in Section 4 and come back to tight closure and solid closure in
Section 5.
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To obtain a detailed understanding, we restrict in Section 6 to the situation of
a two-dimensional standard-graded normal domain R over an algebraically closed
field and homogeneous R, -primary ideals. In this setting, the question about the co-
homological dimension is the question whether a torsor coming from forcing data
is an affine scheme. Moreover, to answer this question we can look at the corre-
sponding torsor over the smooth projective curve Proj R. This translates the question
into a projective situation. In particular, we can then use concepts from algebraic
geometry like semistable bundles and the strong Harder—Narasimhan filtration to
prove results. We obtain an exact numerical criterion for tight closure in this setting
(Theorems 6.2 and 6.3). The containment in the plus closure translates to a geomet-
ric condition for the torsors on the curve, and in the case where the base field is
the algebraic closure of a finite field we obtain the same criterion. This implies that
under all these assumptions, tight closure and plus closure coincide (Theorem 6.4).

With this geometric approach also some problems in Hilbert—Kunz theory could
be solved, in particular it was shown that the Hilbert—Kunz multiplicity is a rational
number in graded dimension two (Theorem 7.3). In fact, there is a formula for it in
terms of the strong Harder—Narasimhan filtration of the syzygy bundle. In Section 8,
we change the setting and look at families of two-dimensional rings parametrized by
a one-dimensional base. Typical bases are SpecZ (arithmetic deformations) or A}<
(geometric deformations). Natural questions are how tight closure, Hilbert—-Kunz
multiplicity and strong semistability of bundles vary in such a family. Examples
of P. Monsky already showed that the Hilbert—Kunz multiplicity behaves “weirdly”
in the sense that it is not almost constant. It follows from the geometric interpretation
that also strong semistability behaves wildly. Further extra work is needed to show
that tight closure also behaves wildly under such a deformation. We present the
example of Brenner—Katzman in the arithmetic case and of Brenner—Monsky in the
geometric case (Examples 8.4 and 8.7). The latter example shows also that tight
closure does not commute with localization and that even in the two-dimensional
situation, the tantalizing question has a negative answer, if the base field contains a
transcendental element. We close the paper with some open problems (Section 9).

As this is a survey article, we usually omit the proofs and refer to the original
research papers and to [9]. I thank Helena Fischbacher-Weitz, Almar Kaid, Axel
Stibler, and the referees for useful comments.

2 Forcing algebras

Let R be a commutative ring, let M be a finitely generated R-module and N C M a
finitely generated R-submodule. Let s € M be an element. The forcing algebra for
these data is constructed as follows: choose generators yq,...,y;,, for M and gener-
ators xp,...,x, for N. This gives rise to a surjective homomorphism ¢ : R — M, a
submodule N’ = ¢~ !(N) and a morphism R" — R™ which sends e; to a preimage x|
of x;. Altogether we get the commutative diagram with exact rows
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R" LN R™ — M/N — 0 (%)

! lo 1=
0 N N — M — M/N — 0
(o is a matrix). The element s is represented by (s1,...,8,) € R", and s belongs to

N if and only if the linear equation

n S1

In Sm

has a solution. An important insight due to Hochster is that this equation can be
formulated with new variables T1,...,T,, and then the “distance of s to N” — in
particular, whether s belongs to a certain closure of N — is reflected by properties of
the resulting (generic) forcing algebra. Explicitly, if « is the matrix describing the
submodule N as above and if (si,...,sy) represents s, then the forcing algebra is
defined by

A=R[Ty,...,T,]/(aT —s),

where aT — s stands for
T1 51

1, Sm

or, in other words, for the system of inhomogeneous linear equations

anTy + -+ + ap T, = s
an Ty + -+ + apdy, = s

amTi + -+ + aTy = s

In the case of an ideal I = (f1,...,fs) and f € R the forcing algebra is just
A=R[T,....,T,]/(fiTy + -+ fuT, — f). Forcing algebras are given by the easi-
est algebraic equations at all, namely linear equations. Yet we will see that forcing
algebras already have a rich geometry. Of course, starting from the data (M,N,s)
we had to make some choices in order to write down a forcing algebra, hence only
properties which are independent of these choices are interesting.
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The following lemma expresses the universal property of a forcing algebra.

Lemma 2.1. Let the situation be as above, and let R — R’ be a ring homomorphism.
Then there exists an R-algebra homomorphism A — R' if and only if s® 1 lies in
im(N®R' — M®R').

Proof. This follows from the right exactness of tensor products applied to the se-
quence (x) above.

The lemma implies in particular that for two forcing algebras A and A’ we have
(not uniquely determined) R-algebra homomorphisms A — A’ and A’ — A. It also
implies that s € N if and only if there exists an R-algebra homomorphism A — R
(equivalently, SpecA — SpecR has a section).

We continue with some easy geometric properties of the mapping SpecA —
SpecR. The formation of forcing algebras commutes with arbitrary base change
R — R'. Therefore, for every point p € SpecR the fiber ring A ®g k(p) is the forcing
algebra given by

a(p)T = s(p).

which is an inhomogeneous linear equation over the field x(p). Hence, the fiber
of SpecA — SpecR over p is the solution set to a system of linear inhomogenous
equations.

We know from linear algebra that the solution set to such a system might be
empty, or it is an affine space (in the sense of linear algebra) of dimension at least
n — m. Hence, one should think of SpecA — SpecR as a family of affine-linear
spaces varying with the base. Also, from linear algebra we know that such a solution
set is given by adding to one particular solution a solution of the corresponding
system of homogeneous of linear equations. The solution set to a(p)T =0 is a
vector space over k(p), and this solution set is the fiber over p of the forcing algebra
of the zero element, namely

BZR[T],...,T,,]/(OCT):R[Tl,...,Tn]/ (iaiﬂ},j— 1,...,m>.
i=1

As just remarked, the fibers of V = Spec B over a point p are vector spaces of pos-
sibly varying dimensions. Therefore, V is in general not a vector bundle. It is, how-
ever, a commutative group scheme over Spec R, where the addition is given by

VXV V,(S1,.0y80), (8], s80) — (s1+8), ... 80 +5))
(written on the level of sections) and the coaddition by
R[Ty,...,T,]/(aT) — R[Ty,...,T,]/(«T) @R[Tq, ..., T,] ) (aT), T + T; + T;.
This group scheme is the kernel group scheme of the group scheme homomorphism
oAy — AR

between the trivial additive group schemes of rank n and m. We call it the syzygy
group scheme for the given generators of N.
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The syzygy group scheme acts on the spectrum of a forcing algebra SpecA,
A =R[T]/(aT —s) for every s € M. The action is exactly as in linear algebra, by
adding a solution of the system of homogeneous equations to a solution of the sys-
tem of inhomogeneous equations. An understanding of the syzygy group scheme is
necessary before we can understand the forcing algebras.

Although V is not a vector bundle in general, it is not too far away. Let U C
SpecR be the open subset of points p where the mapping o/(p) is surjective. Then
the restricted group scheme V|y is a vector bundle of rank n — m. If M /N has its
support in a maximal ideal m, then the syzygy group scheme induces a vector bundle
on the punctured spectrum SpecR — {m}, which we call the syzygy bundle. Hence
on U we have a short exact sequence

0— Syz— O}, — O} — 0

of vector bundles on U.
We will mostly be interested in the situation where the submodule is an ideal
I C R in the ring. We usually fix ideal generators I = (f,..., f,) and (x) becomes

R”fl"%’th—>R/I—>O.

The ideal generators and an element f € R defines then the forcing equation f; 77 +
-+ fuT, — f = 0. Moreover, if the ideal is primary to a maximal ideal m, then we
have a syzygy bundle Syz = Syz(fi,..., fn) defined on D(m).

3 Forcing algebras and torsors

Let Z C SpecR be the support of M /N and let U = Spec R — Z be the open comple-
ment where o is surjective. Let s € M with forcing algebra A. We set T = SpecA|y
and we assume that the fibers are non-empty (in the ideal case this means that f is
not a unit). Then the action of the group scheme V on SpecA restricts to an action of
the syzygy bundle Syz = V| on T, and this action is simply transitive. This means
that locally the actions looks like the action of Syz on itself by addition.

In general, if a vector bundle 8 on a separated scheme U acts simply transitively
on a scheme 7' — U — such a scheme is called a geometric 8-forsor or an affine-
linear bundle —, then this corresponds to a cohomology class ¢ € H' (U,8) (where §
is now also the sheaf of sections in the vector bundle 8). This follows from the Cech
cohomology by taking an open covering where the action can be trivialized. Hence,
forcing data define, by restricting the forcing algebra, a torsor T over U.

On the other hand, the forcing data define the short exact sequence 0 — Syz —
O}, — O} — 0 and s is represented by an element s’ € R" — I'(U,0}}). By the
connecting homomorphism s” defines a cohomology class

c=08(s) e H'(U,Syz).

An explicit computation of Cech cohomology shows that this class corresponds to
the torsor given by the forcing algebra.
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Starting from a cohomology class ¢ € H'(U,8), one may construct a geometric
model for the torsor classified by c in the following way: because of H'(U,8) =
Ext! (Oy,8) we have an extension

0—8—8 — 0Oy —0.

This sequence induces projective bundles P(8Y) — P(8'V) and T(c) 2 P(8") —
P(8Y). If 8 = Syz(fi,...,f,) is the syzygy bundle for ideal generators, then the
extension given by the cohomology class J(f) coming from another element f is
easy to describe: it is just

0_>Syz(f17"'afn) _>Syz(f17"'7fn7f) —)OU —0

with the natural embedding (extending a syzygy by zero in the last component).
This follows again from an explicit computation in Cech cohomology.

If the base U is projective, a situation in which we will work starting with
Section 6, then P(8'V) is also a projective variety and P(8") is a subvariety of codi-
mension one, a divisor. Then properties of the torsor are reflected by properties of
the divisor and vice versa.

4 Forcing algebras and closure operations

A closure operation for ideals or for submodules is an assignment
N+— N°¢

for submodules N C M of R-modules M such that N C N¢ = (N¢)¢ holds. One often
requires further nice properties of a closure operation, like monotony or the indepen-
dence of representation (meaning that s € N¢ if and only if § € 0° in M /N). Forcing
algebras are very natural objects to study such closure operations. The underlying
philosophy is that s € N holds if and only if the forcing morphism SpecA — SpecR
fulfills a certain property (depending on and characterizing the closure operation).
The property is in general not uniquely determined; for the identical closure opera-
tion one can take the properties to be faithfully flat, to be (cyclic) pure, or to have a
(module- or ring-) section.

Let us consider some easy closure operations to get a feeling for this philoso-
phy. In Section 5 we will see how tight closure can be characterized with forcing
algebras.

Example 4.1. For the radical rad(I) the corresponding property is that SpecA —
SpecR is surjective. It is not surprising that a rough closure operation corresponds
to a rough property of a morphism. An immediate consequence of this viewpoint
is that we get at once a hint of what the radical of a submodule should be: namely
s € /N if and only if the forcing algebra is Spec-surjective. This is equivalent to the
property that s® 1 € im(N ®g K — M ®g K) for all homomorphism R — K to fields
(or just for all x(p), p € SpecR).
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Example 4.2. We now look at the integral closure of an ideal, which is defined by
I={f€R: thereexists f*+arf" '+ 4+a_1f+a=0,a,€I'}.

The integral closure was first used by Zariski as it describes the normalization of
blow-ups. What is the corresponding property of a morphism?

We look at an example. For R = K[X,Y] we have X?Y ¢ (X3,Y3) and
XY ¢ (X3,Y3). The inclusion follows from (X?Y)3 = X®y3 ¢ (X3,Y3)3. The
non-inclusion follows from the valuation criterion for integral closure: This says
for a noetherian domain R that f € I if and only if for all mappings to discrete
valuation rings @ : R — V we have ¢(f) € IV. In the example, the mapping
K[X,Y] — K[X], Y — X, yields X* ¢ (X?), so it can not belong to the integral
closure. In both cases the mapping SpecA — SpecR is surjective. In the sec-
ond case, the forcing algebra over the line V(Y — X) is given by the equation
T1X3 + X3 + X? = X?((T; + T»)X +1). The fiber over the zero point is a plane
and is an affine line over a hyperbola for every other point of the line. The topolo-
gies above and below are not much related: The inverse image of the non-closed
punctured line is closed, hence the topology downstairs does not carry the image
topology from upstairs. In fact, the relationship in general is

f € Iif and only if SpecA — SpecR is universally a submersion

(a submersion in the topological sense). This relies on the fact that both properties
can be checked with (in the noetherian case discrete) valuations (for this criterion
for submersions, see [15] and [1]).

Let us consider the forcing algebras for (X,Y) and 1 and for (X2,Y?) and XY
in K[X,Y]. The restricted spectra of the forcing algebras over the punctured plane
for these two forcing data are isomorphic, because both represent the torsor given
by the cohomology class ¢ = % € H'(D(X,Y),0). However, XY € (X2,Y2),
but 1 ¢ (X,Y) (not even in the radical). Hence, integral closure can be characterized
by the forcing algebra, but not by the induced torsor. An interesting feature of tight
closure is that it only depends on the cohomology class in the syzygy bundle and
the torsor induced by the forcing algebra, respectively.

Example 4.3. In the case of finitely generated algebras over the complex num-
bers, there is another interesting closure operation, called continuous closure.
An element s belongs to the continuous closure of N if the forcing algebra A is
such that the morphism C — SpecA — C — SpecR has a continuous section in the
complex topology. For an ideal I = (f,..., f,) this is equivalent to the existence of
complex-continuous functions gi,...,8, : C—SpecR — C such that 3! | g:fi = f
(as an identity on C — SpecR).

Remark 4.4. One can go one step further with the understanding of closure oper-
ations in terms of forcing algebras. For this we take the forcing algebras which
are allowed by the closure operation (i.e., forcing algebras for s,N,M, s € N°)
and declare them to be the defining covers of a (non-flat) Grothendieck topology.
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This works basically for all closure operations fulfilling certain natural conditions.
This embeds closure operations into the much broader context of Grothendieck
topologies, see [6].

5 Tight closure as solid closure

We come back to tight closure, and its interpretation in terms of forcing algebras
and solid closure.

Theorem 5.1. Let (R,m) be a local excellent normal domain of positive character-
istic and let I denote an wm-primary ideal. Then f € I* if and only if Hi™R(A) #£ 0,
where A denotes the forcing algebra.

Proof. We indicate the proof of the direction that the cohomological property im-
plies the tight closure inclusion. By the assumptions we may assume that R is
complete. Because of Hﬂme(A) # 0 there exists by Matlis-duality a non-trivial R-
module homomorphism y : A — R and we may assume W(1) =: ¢ # 0. In A we have
the equality f = 3" | f;T; and hence

n
1= fIT forall g = p°.
i=1

Applying the R-homomorphism ¥ to these equations gives
n
cof' =X fv(T),
i=1

which is exactly the tight closure condition (the y/(7;7) are the coefficients in R).
For the other direction see [19].

This theorem provides the bridge between tight closure and cohomological prop-
erties of forcing algebras. The first observation is that the property about local coho-
mology on the right hand side does not refer to positive characteristic. The closure
operation defined by this property is called solid closure, and the theorem says that
in positive characteristic and under the given further assumptions solid closure and
tight closure coincide. The hope was that this would provide a closure operation in
all (even mixed) characteristics with similar properties as tight closure. This hope
was however destroyed by the following example of Paul Roberts (see [36])

Example 5.2. (Roberts) Let K be a field of characteristic zero and consider
A=K[X,Y,Z]/ X’y + Y’ T, + 2°T5 — X*Y?7%).

Then H(3XYZ) (A) # 0. Therefore X?Y?Z* € (X3,Y3,Z%)*® in the regular ring

K[X,Y,Z]. This means that in a three-dimensional regular ring an ideal needs
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not be solidly-closed. It is, however, an important property of tight closure that ev-
ery regular ring is F-regular, namely that every ideal is tightly closed. Hence, solid
closure is not a good replacement for tight closure (for a variant called parasolid
closure with all good properties in equal characteristic zero, see [2]).

Despite this drawback, solid closure provides an important interpretation of tight
closure. First of all we have for d = dim(R) > 2 (the one-dimensional case is trivial)
the identities

HE (4) = HE 4 (A) = H ' (D(mA), 0).

This easy observation is quite important. The open subset D(mA) C SpecA is
exactly the torsor induced by the forcing algebra over the punctured spectrum
D(m) C SpecR. Hence, we derive at an important particularity of tight closure: tight
closure of primary ideals in a normal excellent local domain depends only on the
torsor (or, what is the same, only on the cohomology class of the syzygy bundle).
We recall from the last section that this property does not hold for integral closure.

By Theorem 5.1, tight closure can be understood by studying the global sheaf
cohomology of the torsor given by a first cohomology class of the syzygy bundle.
The forcing algebra provides a geometric model for this torsor. An element f be-
longs to the tight closure if and only if the cohomological dimension of the torsor T
is d — 1 (which is the cohomological dimension of D(m)), and f ¢ I'* if and only if
the cohomological dimension drops. Recall that the cohomological dimension of a
scheme U is the largest number i such that H'(U,F) # 0 for some (quasi-)coherent
sheaf J on U. In the quasiaffine case, where U C SpecB (as in the case of torsors
inside the spectrum of the forcing algebra), one only has to look at the structure
sheaf 7 = O.

In dimension two, this means that f € I* if and only if the cohomological di-
mension of the torsor is one, and f ¢ I* if and only if this is zero. By a theorem
of Serre ([18, Theorem II1.3.7]) cohomological dimension zero means that U is an
affine scheme, i.e., isomorphic as a scheme to the spectrum of a ring (do not confuse
the “affine” in affine scheme with the “affine” in affine-linear bundle).

It is, in general, a difficult question to decide whether a quasiaffine scheme is an
affine scheme. Even in the special case of torsors there is no general machinery to
answer it. A necessary condition is that the complement has pure codimension one
(which is fulfilled in the case of torsors). So far we have not gained any criterion
from our geometric interpretation.

6 Tight closure in graded dimension two

From now on we deal with the following situation: R is a two-dimensional normal
standard-graded domain over an algebraically closed field of any characteristic, I =
(fi,---,fn) is a homogeneous R, -primary ideal with homogeneous generators of
degree d; = deg(f;). Let C = ProjR be the corresponding smooth projective curve.
The ideal generators define the homogeneous resolution
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Sisnfn
0 — Syz(fis.... fu) — @ R(~d;) 4" R — R/T—0,

and the short exact sequence of vector bundles on C

0 — Syz(fi. .., fa) — By Oc(—di) 4" 0 — 0.

We also need the m-twists of this sequence for every m € Z,

0 — Syz(fi, ., fu)(m) — @} Oc(m —di) 4" 0 (m) — 0.

It follows from this presenting sequence by the additivity of rank and degree that
the vector bundle Syz(f7,..., f,)(m) has rank n — 1 and degree

(mn—1)— id,') degC
-1

(where degC = deg O¢(1) is the degree of the curve).

A homogeneous element f € R, = I'(C,O¢(m)) defines again a cohomology
class ¢ € H'(C,0¢(m)) as well as a torsor T (c) — C. This torsor is a homogeneous
version of the torsor induced by the forcing algebra on D(m) C SpecR. This can be
made more precise by endowing the forcing algebraA = R[Ty,...,T,))/(fiTi + - +
JfuTw — f) with a (not necessarily positive) Z-grading and taking T = D4 (Ry) C
ProjA. From this it follows that the affineness of this torsor on C is decisive for tight
closure. The translation of the tight closure problem via forcing algebras into torsors
over projective curves has the following advantages:

(1) We can work over a smooth projective curve, i.e., we have reduced the dimen-
sion of the base and we have removed the singularity.

(2) We can work in a projective setting and use intersection theory.

(3) We can use the theory of vector bundles, in particular the notion of semistable
bundles and their moduli spaces.

We will give a criterion when such a torsor is affine and hence when a homoge-
neous element belongs to the tight closure of a graded R, -primary ideal. For this
we need the following definition (for background on semistable bundles we refer
to [25]).

Definition 6.1. Let S be a locally free sheaf on a smooth projective curve C. Then
S is called semistable, if deg(T)/rk(T) < deg(8)/rk(8) holds for all subbundles
T # 0. In positive characteristic, 8 is called strongly semistable, if all Frobenius pull-
backs F¢*(8), e > 0, are semistable (here F : C — C denotes the absolute Frobenius
morphism).

Note that for the syzygy bundle we have the natural isomorphism (by pulling
back the presenting sequence)

F(Syz(fi,---, fu) = Syz(f,.. . fi])-
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Therefore, the Frobenius pull-back of the cohomology class &(f) €
H'(C.Syz(fi,.... fu) (m)) is

F(8(£)) = 8(f) € H'(C.,Syz(f{,.... ;) (qm)).

The following two results establish an exact numerical degree bound for tight
closure under the condition that the syzygy bundle is strongly semistable.

Theorem 6.2. Suppose that Syz(fi,...,f,) is strongly semistable. Then we have
Ry CI' form> (3 ,d;)/(n—1).

Proof. Note that the degree condition implies that 8 := Syz(fj, ..., f,)(m) has non-
negative degree. Let ¢ € H'(C,8) be any cohomology class (it might be §(f) for
some f of degree m). The pull-back F¢*(c) livesin H' (C, F¢*(8)). Let now k be such
that Oc(—k) ® @¢ has negative degree, where @ is the canonical sheaf on the curve.
Letz € I'(C,0¢(k)) = Ry, z# 0. Then zF**(c) € H'(C,F**(8) ® Oc(k)). However,
by degree considerations, these cohomology groups are zero: by Serre duality they
are dual to H(C, F**(8") ® O¢c(—k) ® @), and this bundle is semistable of negative
degree, hence it can not have global sections. Because of zF**(¢) = 0 it follows that
zf is in the image of the mapping given by f7, ..., £, so zf4 € [4l and f € I*.

Theorem 6.3. Suppose that Syz(fi,...,fn) is strongly semistable. Let m <
(X', di)) (n—1) and let f be a homogeneous element of degree m. Suppose
that P & 1 for a such that p* > gn(n— 1) (where g is the genus of C). Then
fer.

Proof. Here, the proof works with the torsor T defined by ¢ = 6(f). The syzygy
bundle 8§ = Syz(f1,...,f»)(m) has now negative degree, hence its dual bundle F =
8V is an ample vector bundle (as it is strongly semistable of positive degree). The
class defines a non-trivial dual extension 0 — O¢c — ¥ — F — 0. By the assumption
also a certain Frobenius pull-back of this extension is still non-trivial. Hence, F is

also ample and therefore P(F) C P(F') is an ample divisor and its complement
T =P(F) —P(F) is affine. Hence, f & I*.

Itis in general not easy to establish whether a bundle is strongly semistable or not.
However, even if we do not know whether the syzygy bundle is strongly semistable,
we can work with its strong Harder—Narasimhan filtration. The Harder—Narasimhan
filtration of a vector bundle 8§ on a smooth projective curve is a filtration

0=8C8 C8HC---C& 1C§=38
with 8;/8;_ semistable and descending slopes
H(81) > p(82/81) > -+ > u(8/8i-1).

Since the Frobenius pull-back of a semistable bundle need not be semistable
anymore, the Harder—Narasimhan filtration of F*(8) is quite unrelated to the
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Harder—Narasimhan filtration of S. However, by a result of A. Langer [29, Theorem
2.7], there exists a certain number e such that the quotients in the Harder—
Narasimhan filtration of F¢*(8) are strongly semistable. Such a filtration is called
strong. With a strong Harder—Narasimhan filtration one can now formulate an
exact numerical criterion for tight closure inclusion building on Theorems 6.2
and 6.3.

The criterion basically says that a torsor is affine (equivalently, f & I*), if and
only if the cohomology class is non-zero in some strongly semistable quotient of
negative degree of the strong Harder—Narasimhan filtration. One should remark here
that even if we start with a syzygy bundle, the bundles in the filtration are no syzygy
bundles, hence it is important to develop the theory of torsors of vector bundles
in full generality. From this numerical criterion one can deduce an answer to the
tantalizing question.

Theorem 6.4. Let K = Fp be the algebraic closure of a finite field and let R be a
normal standard-graded K-algebra of dimension two. Then I* = I for every R, -
primary homogeneous ideal.

Proof. This follows from the numerical criterion for the affineness of torsors men-
tioned above. The point is that the same criterion holds for the non-existence of pro-
jective curves inside the torsor. One reduces to the situation of a strongly semistable
bundle S of degree 0. Every cohomology class of such a bundle defines a non-affine
torsor and hence we have to show that there exists a projective curve inside, or equiv-
alently, that the cohomology class can be annihilated by a finite cover of the curve.
Here, is where the finiteness assumption about the field enters. S is defined over a
finite subfield I, C K, and it is represented (or rather, its S-equivalence class) by a
point in the moduli space of semistable bundles of that rank and degree 0. The Frobe-
nius pull-backs F¢*(8) are again semistable (by strong semistability) and they are
defined over the same finite field. Because semistable bundles form a bounded fam-
ily (itself the reason for the existence of the moduli space), there exist only finitely
many semistable bundles defined over IF;, of degree zero. Hence there exists a repeti-

tion, i.e., there exists ¢’ > e such that we have an isomorphism F¢*(8) 22 F¢*(S). By

a result of H. Lange and U. Stuhler [28] there exists a finite mapping C’ 2c it C
(with @ étale) such that the pull-back of the bundle is trivial. Then one is left with
the problem of annihilating a cohomology class ¢ € H'(C,O¢), which is possible
using Artin—Schreier theory (or the graded version of K. Smith’s parameter theorem,
[38,39]).

Remark 6.5. This theorem was extended by G. Dietz for R -primary ideals which
are not necessarily homogeneous [14]. The above proof shows how important the
assumption is that the base field is finite or the algebraic closure of a finite field.
Indeed, we will see in the last section that the statement is not true when the base
field contains transcendental elements. Also some results on Hilbert—Kunz functions
depend on the property that the base field is finite.
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7 Applications to Hilbert-Kunz theory

The geometric approach to tight closure was also successful in Hilbert—Kunz theory.
This theory originates in the work of E. Kunz [26,27] and was largely extended by
P. Monsky [17,32].

Let R be a commutative ring of positive characteristic and let / be an ideal which
is primary to a maximal ideal. Then all R/I lal, q = p¢, have finite length, and the
Hilbert—Kunz function of the ideal is defined to be

e— @(e) =1g(R/1PY.

Monsky proved the following fundamental theorem of Hilbert—Kunz theory
([32], [22, Theorem 6.7]).

Theorem 7.1. The limit ©
. o(e
el._IEo pedim(R)

exists (as a positive real number) and is called the Hilbert—Kunz multiplicity of I,
denoted by epx (I).

The Hilbert—Kunz multiplicity of the maximal ideal in a local ring is usually
denoted by epk (R) and is called the Hilbert—-Kunz multiplicity of R. It is an open
question whether this number is always rational. Strong numerical evidence sug-
gests that this is probably not true in dimension > 4, see [35]. We will deal with
the two-dimensional situation in a minute, but first we relate Hilbert—Kunz theory
to tight closure (see [22, Theorem 5.4]).

Theorem 7.2. Let R be an analytically unramified and formally equidimensional
local ring of positive characteristic and let I be an wm-primary ideal. Let f € R.
Then f € I'* if and only if
enk (1) = enx ((1,f)) -

This theorem means that the Hilbert—Kunz multiplicity is related to tight closure
in the same way as the Hilbert—Samuel multiplicity is related to integral closure.

We restrict now again to the case of an R -primary homogeneous ideal in a
standard-graded normal domain R of dimension two over an algebraically closed
field K of positive characteristic p. In this situation, Hilbert—Kunz theory is directly
related to global sections of the Frobenius pull-backs of the syzygy bundle on ProjR
(see Section 6). We shall see that it is possible to express the Hilbert—Kunz multi-
plicity in terms of the strong Harder—Narasimhan filtration of this bundle.

For homogeneous ideal generators fi,..., f, of degrees dy, ... ,d, we write down
again the presenting sequence on C = ProjR,

0 — Syz(fi,...., fn) —>@Oc ) "o —o0.

The m-twists of the Frobenius pull-backs of this sequence are

0 — Syz(0,.... £)(m) — @ Oc(m—qd) =L Oc(m) — 0,
i=1
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The global evaluation of the last short exact sequence is
" " ol
0 — I'(C,Syz(f},....f)(m)) — EPRu—qa,"—" R,

and the cokernel of the map on the right is

Rm/(flqv"'vfr?) = (R/I[q])m

Because of R/119 = @,,(R/111),,, the length of R/I'9) is the sum over the degrees m
of the K-dimensions of these cokernels. The sum is in fact finite because the ide-
als 79 are primary (or because H' (C,Syz(f{,...,f{)(m)) = 0 for m >> 0), but the
bound for the summation grows with g. Anyway, we have

dim(R/1'9)),, = dim(I"(C,O¢(m Zdlm (C,0c(m—qd;)))
+dim(I" (C,SYZ(f“, ,fn)( )

The computation of the dimensions dim(I"(C,0O¢(¢))) is easy, hence the prob-
lem is to control the global sections of Syz(f{,..., fi)(m), more precisely, its be-
havior for large ¢, and its sum over a suitable range of m. This behavior is en-
coded in the strong Harder—Narasimhan filtration of the syzygy bundle. Let e be
fixed and large enough such that the Harder—Narasimhan filtration of the pull-back
H =F*(Syz(fi,-..,fn)) = Syz(f{,.... fil) is strong. Let H; CH, j=1,...,1, be
the subsheaves occurring in the Harder—Narasimhan filtration and set

_ TR/

Vji= e deg(C) and rj= I'k(f]'fj/g'fjfl) .

Because the Harder—Narasimhan filtration of J{ and of all its pull-backs is strong,
these numbers are independent of e. The following theorem was shown by Brenner
and Trivedi independently [7,41].

Theorem 7.3. Let R be a normal two-dimensional standard-graded domain over an
algebraically closed field and let I = (f1,...,f,) be a homogeneous R -primary
ideal, d; = deg(f;). Then the Hilbert—Kunz multiplicity of I is given by the formula

eHK(I) = degT(C) (i‘l}’jV?—id?>
J= 1=

In particular, it is a rational number.

We can also say something about the behavior of the Hilbert—Kunz function un-
der the additional condition that the base field is the algebraic closure of a finite field
(see [8]).
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Theorem 7.4. Let R and I be as before and suppose that the base field is the alge-
braic closure of a finite field. Then the Hilbert—Kunz function has the form

@(e) = enx (™ +v(e),

where 7 is eventually periodic.

This theorem also shows that here the “linear term” in the Hilbert—Kunz function
exists and that it is zero. It was proved in [24] that for normal excellent R the Hilbert—
Kunz function looks like

ek g ™R 4 BgdmEB) =1 4 smaller terms.

For possible behavior of the second term in the non-normal case in dimension two
see [34]. See also Remark 8.2.

8 Arithmetic and geometric deformations of tight closure

The geometric interpretation of tight closure theory led to a fairly detailed under-
standing of tight closure in graded dimension two. The next easiest case is to study
how tight closure behaves in families of two-dimensional rings, parametrized by
a one dimensional ring. Depending on whether the base has mixed characteristic
(like Spec Z) or equal positive characteristic p (like Spec K[T] = AL) we talk about
arithmetic or geometric deformations.

More precisely, let D be a one-dimensional domain and let § be a D-standard-
graded domain of dimension three, such that for every point p € SpecD the fiber
rings Sy(p) = S ®@p K(p) are normal standard-graded domains over k(p) of dimen-
sion two. The data I = (fi,...,f,) in S and f € S determine corresponding data in
these fiber rings, and the syzygy bundle Syz(fi,..., f») on ProjS — SpecD deter-
mines syzygy bundles on the curves Cy(,) = ProjSy;). The natural questions here
are: how does the property f € I* (in Sy(,,)) depend on p, how does enx (I) depend
on p, how does strong semistability depend on p, how does the affineness of torsors
depend on p?

Semistability itself is an open property and behaves nicely in a family in the sense
that if the syzygy bundle is semistable on the curve over the generic point, then it
is semistable over almost all closed points. D. Gieseker gave in [16] an example
of a collection of bundles such that, depending on the parameter, the eth pull-back
is semistable, but the (e + 1)th is not semistable anymore (for every e). The prob-
lem how strong semistability behaves under arithmetic deformations was explicitly
formulated by Y. Miyaoka and by N. Shepherd-Barron [31,37].

In the context of Hilbert—-Kunz theory, this question has been studied by
P. Monsky [17, 33], both in the arithmetic and in the geometric case. Monsky
(and Han) gave examples that the Hilbert—Kunz multiplicity may vary in a family.
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Example 8.1. Let R, = Z/(p)[X,Y,Z]/(X* +Y* + Z*). Then the Hilbert-Kunz
multiplicity of the maximal ideal is

3forp==+1 mod8

enk (Rp) =
i (R ) {3+ 1/p?for p==+3 mod8

Note that by the theorem on prime numbers in arithmetic progressions there exist
infinitely many prime numbers of all these congruence types.

Remark 8.2. In the previous example, there occur infinitely many different values
for egk (R) depending on the characteristic, the limit as p — oo is, however, well
defined. Trivedi showed [42] that in the graded two-dimensional situation this limit
always exists, and that this limit can be computed by the Harder—Narasimhan filtra-
tion of the syzygy bundle in characteristic zero. Brenner showed that one can de-
fine, using this Harder—Narasimhan filtration, a Hilbert—-Kunz multiplicity directly
in characteristic zero, and that this Hilbert—Kunz multiplicity characterizes solid
closure [3] in the same way as Hilbert—Kunz multiplicity characterizes tight closure
in positive characteristic (Theorem 7.2 above). Combining these results one can say
that “solid closure is the limit of tight closure” in graded dimension two, in the
sense that f € I°® in characteristic zero if and only if the Hilbert—Kunz difference
enk (1, f)) — enx (I) tends to O for p — oo

It is an open question whether in all dimensions the Hilbert—Kunz multiplicity
has always a limit as p goes to infinity, whether this limit, if it exists, has an inter-
pretation in characteristic zero alone (independent of reduction to positive charac-
teristic) and what closure operation it would correspond to. See also [12].

In the geometric case, Monsky gave the following example [33].
Example 8.3. Let K = Z/(2) and let
S=17/Q)[T)[X,Y,Z]/(Z* + Z2XY + Z(X> + Y*) + (T + T*)X?Y?).

We consider S as an algebra over Z/(2)[T] (T has degree 0). Then the Hilbert-Kunz
multiplicity of the maximal ideal is

(i) = 3if k(p) = K(T) (generic case)
O [ 1/4™if x(p) =Z/(2)(¢) is finite over Z/(2) of degree m.

By the work of Brenner and Trivedi (see Section 7) these examples can be trans-
lated immediately into examples where strong semistability behaves weirdly. From
the first example we get an example of a vector bundle of rank two over a pro-
jective relative curve over SpecZ such that the bundle is semistable on the generic
curve (in characteristic zero), and is strongly semistable for infinitely many prime
reductions, but also not strongly semistable for infinitely many prime reductions.

From the second example we get an example of a vector bundle of rank two over
a projective relative curve over the affine line AIZ /2) such that the bundle is strongly
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semistable on the generic curve (over the function field Z/(2)(T)), but not strongly
semistable for the curve over any finite field (and the degree of the field extension
determines which Frobenius pull-back destabilizes).

To get examples where tight closure varies with the base one has to go one step
further (in short, weird behavior of Hilbert—Kunz multiplicity is a necessary condi-
tion for weird behavior of tight closure). Interesting behavior can only happen for
elements of degree (X.d;)/(n — 1) (the degree bound, see Theorems 6.2 and 6.3).

In [11], Brenner and M. Katzman showed that tight closure does not behave
uniformly under an arithmetic deformation, thus answering negatively a question
in [19].

Example 8.4. Let
R=Z/(p)X.Y, 2]/ (X" +Y" +27)

and I = (X*)Y* 7%, f =X3Y3.Then fcI*forp=3 mod7and f ¢ I* for p =2
mod 7 (see [11, Propositions 2.4 and 3.1]). Hence, we have infinitely many prime
reductions where the element belongs to the tight closure and infinitely many prime
reductions where it does not.

Remark 8.5. Arithmetic deformations are closely related to the question “what is
tight closure over a field of characteristic zero”. The general philosophy is that char-
acteristic zero behavior of tight closure should reflect the behavior of tight closure
for almost all primes, after expressing the relevant data over an arithmetic base. By
declaring f € I*, if this holds for almost all primes, one obtains a satisfactory theory
of tight closure in characteristic zero with the same impact as in positive charac-
teristic. This is a systematic way to do reduction to positive characteristic (see [22,
Appendix 1] and [20]). However, the example above shows that there is not always a
uniform behavior in positive characteristic. A consequence is also that solid closure
in characteristic zero is not the same as tight closure (but see Remark 8.2). From the
example we can deduce that f € I*°, but f ¢ I* in Q[X,Y,Z] /(X" +Y7 +Z7). Hence,
the search for a good tight closure operation in characteristic zero remains.

We now look at geometric deformations. They are directly related to the local-
ization problem and to the tantalizing problem which we have mentioned in the
introduction.

Lemma 8.6. Let D be a one-dimensional domain of finite type over Z./ (p) and let S
be a D-domain of finite type. Let f € S and I C S be an ideal. Suppose that local-
ization holds for S. If then f € I" in the generic fiber ring So(p), then also f € I" in
Sk(p) = S®p K(p) for almost all closed points p € SpecD.

Proof. The generic fiber ring is the localization of S at the multiplicative system
M = D —{0} (considered in S). So if f € I" holds in Sy p) = S, and if localization
holds, then there exists & € M such that 2f € I* in S (the global ring of the deforma-
tion). By the persistence of tight closure ([22, Theorem 2.3] applied to § — Sy(p))
it follows that if € I" in Sy, for all closed points p € SpecD. But /4 is a unit in
almost all residue class fields x(p), so the result follows.
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Example 8.7. Let
S=17/22)[T][X,Y,Z]/(Z* + Z*XY + Z(X> + Y3) + (T + T*)X*Y?)

as in Example 8.3 and let I = (X*, Y4 7%, f = Y373 (X*Y3 would not work).
Then f € I”, as is shown in [13], in the generic fiber ring Sz,/(2)(7), but f € I* in
S(p) for all closed points p € SpecD. Hence, tight closure does not commute with
localization.

Example 8.8. Let K = 7Z,/(2)(T) and R = K[X,Y,Z]/(Z* + Z°XY + Z(X? + Y3) +
(T +T?)X?Y?). This is the generic fiber ring of the previous example. It is a normal,
standard-graded domain of dimension two and it is defined over the function field.
In this ring we have Y373 € (X4,Y4,Z*%)*, but Y3Z* ¢ (X*,Y*,Z*)*. Hence, tight
closure is not the same as plus closure, not even in dimension two.

9 Some open problems

We collect some open questions and problems, together with some comments of
what is known and some guesses. We first list problems which are weaker variants
of the localization problem.

Question 9.1. Is F-regular the same as weakly F-regular?

Recall that a ring is called weakly F-regular if every ideal is tightly closed, and
F-regular if this is true for all localizations. A positive answer would have followed
from a positive answer to the localization problem. This path is not possible any-
more, but there are many positive results on this: it is true in the Gorenstein case, in
the graded case [30], it is true over an uncountable field (proved by Murthy, see [22,
Theorem 12.2]). All this shows that a positive result is likely, at least under some
additional assumptions.

Question 9.2. Does tight closure commute with the localization at one element?

There is no evidence why this should be true. It would be nice to see a counterex-
ample, and it would also be nice to have examples of bad behavior of tight closure
under geometric deformations in all characteristics.

Question 9.3. Suppose R is of finite type over a finite field. Is tight closure the same
as plus closure?

This is known in graded dimension two for R, -primary ideals by Theorem 6.4
and the extension for non-homogeneous ideals (but still graded ring) by Dietz
(see [14]). To attack this problem one probably needs first to establish new exact
criteria of what tight closure is. Even in dimension two, but not graded, the best way
to establish results is probably to develop a theory of strongly semistable modules
on a local ring.
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Can one characterize the rings where tight closure is plus closure? Are rings,
where every ideal coincides with its plus closure, F-regular? This is true for
Gorenstein rings.

For a two-dimensional standard-graded domain and the corresponding projective
curve, the following problems remain.

Question 9.4. Let C be a smooth projective curve over a field of positive character-
istic, and let £ be an invertible sheaf of degree zero. Let ¢ € H'(C,L) be a coho-
mology class. Does there exist a finite mapping C' — C, C’ another projective curve,
such that the pull-back annihilates c.

This is known for the structure sheaf O¢ and holds in general over (the algebraic
closure of) a finite field. It is probably not true over a field with transcendental ele-
ments, the heuristic being that otherwise there would be a uniform way to annihilate
the class over every finite field (an analogue is that every invertible sheaf of degree
zero over a finite field has finite order in Pic®(C), but the orders do not have much
in common as the field varies, and the order over larger fields might be infinite).

Question 9.5. Let R be a two-dimensional normal standard-graded domain and let /
be an R, -primary homogeneous ideal. Write ¢(e) = eygxp® + y(e). Is y(e) eventu-
ally periodic?

By Theorem 7.4 this is true if the base field is finite, but this question is open if
the base field contains transcendental elements. How does (the lowest term of) the
Hilbert—Kunz function behave under a geometric deformation?

Question 9.6. Let C — Spec D be a relative projective curve over an arithmetic base
like SpecZ, and let 8§ be a vector bundle over C. Suppose that the generic bundle
8o over the generic curve of characteristic zero is semistable. Is then 8, over C,
strongly semistable for infinitely many prime numbers p?

This question was first asked by Y. Miyaoka [31]. Corresponding questions for
an arithmetic family of two-dimensional rings are: Does there exist always infinitely
many prime numbers where the Hilbert—Kunz multiplicity coincides with the char-
acteristic zero limit? If an element belongs to the solid closure in characteristic zero,
does it belong to the tight closure for infinitely many prime reductions? In [5], there
is a series of examples where the number of primes with not strongly semistable
reduction has an arbitrary small density under the assumption that there exist in-
finitely many Sophie Germain prime numbers (a prime number p such that also
2p 4+ 1is prime).

We come back to arbitrary dimension.

Question 9.7. Understand tight closure geometrically, say for standard-graded
normal domains with an isolated singularity. The same for Hilbert—Kunz theory.
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Some progress in this direction has been made in [4] and in [10], but much
more has to be done. What is apparent from this work is that positivity proper-
ties of the top-dimensional syzygy bundle coming from a resolution are important.
A problem is that strong semistability controls global sections and by Serre duality
also top-dimensional cohomology, but one problem is to control the intermediate
cohomology.

Question 9.8. Find a good closure operation in equal characteristic zero, with tight
closure like properties, with no reduction to positive characteristic.

The notion of parasolid closure gives a first answer to this [2]. However, not
much is known about it beside that it fulfills the basic properties one expects from
tight closure, and many proofs depend on positive characteristic (though the notion
itself does not). Is there a more workable notion?

One should definitely try to understand here several candidates with the help
of forcing algebras and the corresponding Grothendieck topologies. A promis-
ing approach is to allow the forcing algebras as coverings which do not annihi-
late (top-dimensional) local cohomology unless it is annihilated by a resolution of
singularities.

Is there a closure operation which commutes with localization (this is also not
known for characteristic zero tight closure, but probably false)?

Question 9.9. Find a good closure operation in mixed characteristic and prove the
remaining homological conjectures.

In Hilbert—Kunz theory, the following questions are still open.

Question 9.10. Is the Hilbert—-Kunz multiplicity always a rational number? Is it at
least an algebraic number?

The answer to the first question is probably no, as the numerical material in [35]
suggests. However, this still has to be established.

Question 9.11. Prove or disprove that the Hilbert—-Kunz multiplicity has always a
limit as the characteristic tends to oo.

If it has, or in the cases where it has, one should also find a direct interpretation
in characteristic zero and study the corresponding closure operation.
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Beyond totally reflexive modules and back
A survey on gorenstein dimensions

Lars Winther Christensen, Hans-Bjgrn Foxby, and Henrik Holm

Abstract Starting from the notion of totally reflexive modules, we survey the theory
of Gorenstein homological dimensions for modules over commutative rings. The
account includes the theory’s connections with relative homological algebra and
with studies of local ring homomorphisms. It ends close to the starting point: with a
characterization of Gorenstein rings in terms of total acyclicity of complexes.

Introduction

An important motivation for the study of homological dimensions dates back to
1956, when Auslander and Buchsbaum [7] and Serre [98] proved:

Theorem A. Let R be a commutative Noetherian local ring with residue field k. Then
the following conditions are equivalent.

(i) Risregular.
(ii) k has finite projective dimension.
(iif) Every R-module has finite projective dimension.

This result opened to the solution of two long-standing conjectures of Krull. More-
over, it introduced the theme that finiteness of a homological dimension for all
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modules characterizes rings with special properties. Later work has shown that
modules of finite projective dimension over a general ring share many properties
with modules over a regular ring. This is an incitement to study homological dimen-
sions of individual modules.

In line with these ideas, Auslander and Bridger [6] introduced in 1969 the
G-dimension. It is a homological dimension for finitely generated modules over
a Noetherian ring, and it gives a characterization of Gorenstein local rings
(Theorem 1.27), which is similar to Theorem A. Indeed, R is Gorenstein if k
has finite G-dimension, and only if every finitely generated R-module has finite
G-dimension.

In the early 1990s, the G-dimension was extended beyond the realm of finitely
generated modules over a Noetherian ring. This was done by Enochs and Jenda who
introduced the notion of Gorenstein projective modules [41]. With the Gorenstein
projective dimension at hand, a perfect parallel to Theorem A becomes available
(Theorem 2.19). Subsequent work has shown that modules of finite Gorenstein pro-
jective dimension over a general ring share many properties with modules over a
Gorenstein ring.

Classical homological algebra as precedent

The notions of injective dimension and flat dimension for modules also have
Gorenstein counterparts. It was Enochs and Jenda who introduced Gorenstein
injective modules [41] and, in collaboration with Torrecillas, Gorenstein flat mod-
ules [47]. The study of Gorenstein dimensions is often called Gorenstein homologi-
cal algebra; it has taken directions from the following:

Meta Question. Given aresult in classical homological algebra, does it have a coun-
terpart in Gorenstein homological algebra?

To make this concrete, we review some classical results on homological dimensions
and point to their Gorenstein counterparts within the main text. In the balance of this
introduction, R is assumed to be a commutative Noetherian local ring with maximal
ideal m and residue field k = R/m.

DEPTH AND FINITELY GENERATED MODULES

The projective dimension of a finitely generated R-module is closely related to its
depth. This is captured by the Auslander—Buchsbaum Formula [8]:

Theorem B. For every finitely generated R-module M of finite projective dimension
there is an equality pdz M = depthR — depth, M.

The Gorenstein counterpart (Theorem 1.25) actually strengthens the classical result;
this is a recurring theme in Gorenstein homological algebra.
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The injective dimension of a non-zero finitely generated R-module is either
infinite or it takes a fixed value:

Theorem C. For every non-zero finitely generated R-module M of finite injective
dimension there is an equality idg M = depthR.

This result of Bass [20] has its Gorenstein counterpart in Theorem 3.24.

CHARACTERIZATIONS OF COHEN-MACAULAY RINGS

Existence of special modules of finite homological dimension characterizes Cohen—
Macaulay rings. The equivalence of (i) and (iii) in the theorem below is still re-
ferred to as Bass’ conjecture, even though it was settled more than 20 years ago.
Indeed, Peskine and Szpiro proved in [86] that it follows from the New Intersection
Theorem, which they proved ibid. for equicharacteristic rings. In 1987, Roberts [87]
settled the New Intersection Theorem completely.

Theorem D. The following conditions on R are equivalent.

(i) R is Cohen-Macaulay.
(ii) There is a non-zero R-module of finite length and finite projective dimension.
(iif) There is a non-zero finitely generated R-module of finite injective dimension.

A Gorenstein counterpart to this characterization is yet to be established; see
Questions 1.31 and 3.26.

Gorenstein rings are also characterized by existence of special modules of finite
homological dimension. The equivalence of (i) and (ii) below is due to Peskine and
Szpiro [86]. The equivalence of (i) and (iii) was conjectured by Vasconcelos [108]
and proved by Foxby [56]. The Gorenstein counterparts are given in Theorems 3.22
and 4.28; see also Question 4.29.

Theorem E. The following conditions on R are equivalent.

(i) R is Gorenstein.

(ii) There is a non-zero cyclic R-module of finite injective dimension.

(iif) There is a non-zero finitely generated R-module of finite projective dimension
and finite injective dimension.

LocAL RING HOMOMORPHISMS

The Frobenius endomorphism detects regularity of a local ring of positive
prime characteristic. The next theorem collects results of Avramov, Iyengar and
Miller [17], Kunz [82], and Rodicio [89]. The counterparts in Gorenstein homolo-
gical algebra to these results are given in Theorems 6.4 and 6.5.

Theorem F. Let R be of positive prime characteristic, and let ¢ denote its Frobenius
endomorphism. Then the following conditions are equivalent.
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(i) Risregular.

(ii) R has finite flat dimension as an R-module via ¢" for some n > 1.

(iif) R is flat as an R-module via ¢" for every n > 1.

(iv) R has finite injective dimension as an R-module via ¢" for some n > 1.

(v) R has injective dimension equal to dimR as an R-module via ¢" for
everyn > 1.

Let (S,n) be yet a commutative Noetherian local ring. A ring homomorphism
¢@: R— S is called local if there is an inclusion @(m) C n. A classical chapter of
local algebra, initiated by Grothendieck, studies transfer of ring theoretic proper-
ties along such homomorphisms. If ¢ is flat, then it is called Cohen—Macaulay or
Gorenstein if its closed fiber S/mS is, respectively, a Cohen—Macaulay ring or a
Gorenstein ring. These definitions have been extended to homomorphisms of finite
flat dimension. The theorem below collects results of Avramov and Foxby from [12]
and [14]; the Gorenstein counterparts are given in Theorems 7.8 and 7.11.

Theorem G. Let ¢: R — S be a local homomorphism and assume that § has finite
flat dimension as an R-module via ¢. Then the following hold:

(a) §is Cohen—Macaulay if and only if R and ¢ are Cohen—Macaulay.
(b) S is Gorenstein if and only if R and ¢ are Gorenstein.

VANISHING OF COHOMOLOGY

The projective dimension of a module M is at most n if and only if the abso-
lute cohomology functor Ext"*! (M, —) vanishes. Similarly (Theorem 5.25), M has
Gorenstein projective dimension at most n if and only if the relative cohomol-
ogy functor Ext’é}ﬁl (M, —) vanishes. Unfortunately, the similarity between the two
situations does not run too deep. We give a couple of examples:

The absolute Ext is balanced, that is, it can be computed from a projective
resolution of M or from an injective resolution of the second argument. In gen-
eral, however, the only known way to compute the relative Ext is from a (so-called)
proper Gorenstein projective resolution of M.

Secondly, if M is finitely generated, then the absolute Ext commutes with local-
ization, but the relative Ext is not known to do so, unless M has finite Gorenstein
projective dimension.

Such considerations motivate the search for an alternative characterization of
modules of finite Gorenstein projective dimension, and this has been a driving force
behind much research on Gorenstein dimensions within the past 15 years. What
follows is a brief review.

EQUIVALENCE OF MODULE CATEGORIES

For a finitely generated R-module, Foxby [57] gave a “resolution-free” criterion
for finiteness of the Gorenstein projective dimension; that is, one that does not
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involve construction of a Gorenstein projective resolution. This result from 1994
is Theorem 8.2. In 1996, Enochs, Jenda, and Xu [49] extended Foxby’s criterion to
non-finitely generated R-modules, provided that R is Cohen—Macaulay with a dua-
lizing module D. Their work is related to a 1972 generalization by Foxby [54] of a
theorem of Sharp [100]. Foxby’s version reads:

Theorem H. Let R be Cohen—Macaulay with a dualizing module D. Then the
horizontal arrows below are equivalences of categories of R-modules.
D®p—

Ap(R) Bp(R)
Homg(D,—)

D®p—
{A|pdgAis finite} 7 {B|idg B is finite}
Homg(D,—)

Here, Ap(R) is the Auslander class (Definition 9.1) with respect to D and Bp(R)
is the Bass class (Definition 9.4). What Enochs, Jenda, and Xu prove in [49] is that
the R-modules of finite Gorenstein projective dimension are exactly those in Ap(R),
and the modules in Bp(R) are exactly those of finite Gorenstein injective dimension.
Thus, the upper level equivalence in Theorem H is the Gorenstein counterpart of the
lower level equivalence.

A commutative Noetherian ring has a dualizing complex D if and only if
it is a homomorphic image of a Gorenstein ring of finite Krull dimension; see
Kawasaki [79]. For such rings, a result similar to Theorem H was proved by
Avramov and Foxby [13] in 1997. An interpretation in terms of Gorenstein dimen-
sions (Theorems 9.2 and 9.5) of the objects in Ap(R) and Bp(R) was established
by Christensen, Frankild, and Holm [31] in 2006. Testimony to the utility of these
results is the frequent occurrence—e.g., in Theorems 3.16, 4.13, 4.25, 4.30, 6.5,
6.8, 7.3, and 7.7—of the assumption that the ground ring is a homomorphic image
of a Gorenstein ring of finite Krull dimension. Recall that every complete local ring
satisfies this assumption.

Recent results, Theorems 2.20 and 4.27, by Esmkhani and Tousi [52]
and Theorem 9.11 by Christensen and Sather-Wagstaff [35] combine with
Theorems 9.2 and 9.5 to provide resolution-free criteria for finiteness of Gorenstein
dimensions over general local rings; see Remarks 9.3 and 9.12.

Scope and organization

A survey of this modest length is a portrait painted with broad pen strokes.
Inevitably, many details are omitted, and some generality has been traded in for
simplicity. We have chosen to focus on modules over commutative, and often
Noetherian, rings. Much of Gorenstein homological algebra, though, works flaw-
lessly over non-commutative rings, and there are statements in this survey about
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Noetherian rings that remain valid for coherent rings. Furthermore, most statements
about modules remain valid for complexes of modules. The reader will have to
consult the references to qualify these claims.

In most sections, the opening paragraph introduces the main references on the
topic. We strive to cite the strongest results available and, outside of this introduc-
tion, we do not attempt to trace the history of individual results. In notes, placed
at the end of sections, we give pointers to the literature on directions of research—
often new ones—that are not included in the survey. Even within the scope of this
paper, there are open ends, and more than a dozen questions and problems are found
throughout the text.

From this point on, R denotes a commutative ring. Any extra assumptions on R
are explicitly stated. We say that R is local if it is Noetherian and has a unique max-
imal ideal. We use the shorthand (R, m, k) for a local ring R with maximal ideal m
and residue field k = R/m.
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1 G-dimension of finitely generated modules

The topic of this section is Auslander and Bridger’s notion of G-dimension for
finitely generated modules over a Noetherian ring. The notes [5] from a seminar by
Auslander outline the theory of G-dimension over commutative Noetherian rings.
In [6] Auslander and Bridger treat the G-dimension within a more abstract frame-
work. Later expositions are given by Christensen [28] and by Magsek [84].

A complex M of modules is (in homological notation) an infinite sequence of
homomorphisms of R-modules

i1 9 i1
M= M5 M_; —--



Beyond totally reflexive modules and back 107

such that d;d;, ; = 0 for every i in Z. The ith homology module of M is H;(M) =

Kerd,/Imd,, ;. We call M acyclic if H;(M) = 0 for all i € Z.

Lemma 1.1. Let L be an acyclic complex of finitely generated projective R-modules.
The following conditions on L are equivalent.

(i) The complex Homg(L,R) is acyclic.

(ii) The complex Homg(L,F) is acyclic for every flat R-module F.

(iii) The complex E Qg L is acyclic for every injective R-module E.

Proof. The Lemma is proved in [28], but here is a cleaner argument: Let F be a flat module

and E be an injective module. As L consists of finitely generated projective modules, there is an
isomorphism of complexes

Homg (Homg(L,F),E) = Homg(F,E) Qg L.

It follows from this isomorphism, applied to F = R, that (i) implies (iii). Applied to a faithfully
injective module E, it shows that (iii) implies (i), as Homg(F,E) is an injective module. It is
evident that (ii) implies (i). O

The following nomenclature is due to Avramov and Martsinkovsky [19];
Lemma 1.6 clarifies the rationale behind it.

Definition 1.2. A complex L that satisfies the conditions in Lemma 1.1 is called
totally acyclic. An R-module M is called totally reflexive if there exists a totally
acyclic complex L such that M is isomorphic to Coker(L; — Ly).

Note that every finitely generated projective module L is totally reflexive; indeed,
the complex 0 — L — L — 0, with L in homological degrees 0 and —1, is totally
acyclic.

Example 1.3. If there exist elements x and y in R such that Anng(x) = (y) and
Anng(y) = (x), then the complex

DS RILRE R

is totally acyclic. Thus, (x) and (y) are totally reflexive R-modules. For instance, if
X and Y are non-zero non-units in an integral domain D, then their residue classes x
and y in R = D/(XY) generate totally reflexive R-modules.

An elementary construction of rings of this kind—Example 1.4 below—shows that
non-projective totally reflexive modules may exist over a variety of rings; see also
Problem 1.30.

Example 1.4. Let S be a commutative ring, and let m > 1 be an integer. Set R =
S[X]/(X™), and denote by x the residue class of X in R. Then for every integer n
between 1 and m — 1, the module (x") is totally reflexive.

From Lemma 1.1 it is straightforward to deduce:

Proposition 1.5. Let S be an R-algebra of finite flat dimension. For every totally
reflexive R-module G, the module S @ G is totally reflexive over S.

Proposition 1.5 applies to S = R/(x), where x is an R-regular sequence. If (R, m) is
local, then it also applies to the m-adic completion S = R.
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Noetherian rings

Recall that a finitely generated R-module M is called reflexive if the canonical map
from M to Homg(Homg(M,R),R) is an isomorphism. The following characteriza-
tion of totally reflexive modules goes back to [6, 4.11].

Lemma 1.6. Let R be Noetherian. A finitely generated R-module G is totally
reflexive if and only if it is reflexive and for every i > 1 one has

Exth(G,R) = 0 = Ext,(Homg(G,R),R).

Definition 1.7. An (augmented) G-resolution of a finitely generated module M is an
exact sequence - -- — G; — Gj_1 — --- — Gg — M — 0, where each module G; is
totally reflexive.

Note that if R is Noetherian, then every finitely generated R-module has a
G-resolution, indeed it has a resolution by finitely generated free modules.

Definition 1.8. Let R be Noetherian. For a finitely generated R-module M # 0 the
G-dimension, denoted by G-dimg M, is the least integer n > 0 such that there exists
a G-resolution of M with G; = 0 for all i > n. If no such n exists, then G-dimg M is
infinite. By convention, set G-dimg 0 = —oo.

The ‘G’ in the definition above is short for Gorenstein.
In [6, Chap. 3] one finds the next theorem and its corollary; see also [28, 1.2.7].

Theorem 1.9. Let R be Noetherian and M be a finitely generated R-module of finite
G-dimension. For every n > 0 the next conditions are equivalent.

(i) G-dimgM < n.

(ii) Exth(M,R) =0 forall i > n.

(iii) Exth(M,N) = 0 for all i > n and all R-modules N with fdg N finite.

(iv) In every augmented G-resolution

>G> Gy — - —>Gy—M—0
the module Coker(G,+1 — Gy) is totally reflexive.

Corollary 1.10. Let R be Noetherian. For every finitely generated R-module M of
finite G-dimension there is an equality

G-dimg M = sup{i € Z | Exto(M,R) #0}.

Remark 1.11. Examples due to Jorgensen and Sega [77] show that in Corollary 1.10
one cannot avoid the a priori condition that G-dimg M is finite.

Remark 1.12. For a module M as in Corollary 1.10, the small finitistic projective
dimension of R is an upper bound for G-dimg M; cf. Christensen and Iyengar
[33,3.1(a)].
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A standard argument, see [0, 3.16] or [19, 3.4], yields:

Proposition 1.13. Let R be Noetherian. If any two of the modules in an exact
sequence 0 —M' — M — M" — 0 of finitely generated R-modules have finite
G-dimension, then so has the third.

The following quantitative comparison establishes the G-dimension as a refine-
ment of the projective dimension for finitely generated modules. It is easily deduced
from Corollary 1.10; see [28, 1.2.10].

Proposition 1.14. Let R be Noetherian. For every finitely generated R-module M
one has G-dimg M < pdy M, and equality holds if pdp M is finite.

By [6, 4.15] the G-dimension of a module can be measured locally:

Proposition 1.15. Let R be Noetherian. For every finitely generated R-module M
there is an equality G-dimg M = sup{ G-dimg, My, | p € SpecR }.

For the projective dimension even more is known: Bass and Murthy [21, 4.5] prove
that if a finitely generated module over a Noetherian ring has finite projective di-
mension locally, then it has finite projective dimension globally—even if the ring
has infinite Krull dimension. A Gorenstein counterpart has recently been established
by Avramov, Iyengar, and Lipman [18, 6.3.4].

Theorem 1.16. Let R be Noetherian and let M be a finitely generated R-module. If
G-dimg,, M, is finite for every maximal ideal w in R, then G-dimg M is finite.

Recall that a local ring is called Gorenstein if it has finite self-injective dimen-
sion. A Noetherian ring is Gorenstein if its localization at each prime ideal is a
Gorenstein local ring, that is, idg, Ry is finite for every prime ideal p in R. Conse-
quently, the self-injective dimension of a Gorenstein ring equals its Krull dimen-
sion; that is idg R = dimR. The next result follows from [6, 4.20] in combination
with Proposition 1.15.

Theorem 1.17. Let R be Noetherian and n > 0 be an integer. Then R is Gorenstein
with dimR < n if and only if one has G-dimg M < n for every finitely generated
R-module M.

A corollary to Theorem 1.16 was established by Goto [63] already in 1982; it asserts
that also Gorenstein rings of infinite Krull dimension are characterized by finiteness
of G-dimension.

Theorem 1.18. Let R be Noetherian. Then R is Gorenstein if and only if every
finitely generated R-module has finite G-dimension.

Recall that the grade of a finitely generated module M over a Noetherian ring R
can be defined as follows:

gradex M = inf{i € Z | Exto(M,R) #0}.
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Foxby [55] makes the following:

Definition 1.19. Let R be Noetherian. A finitely generated R-module M is called
quasi-perfect if it has finite G-dimension equal to gradez M.

The next theorem applies to S = R/ (x), where x is an R-regular sequence. Special
(local) cases of the theorem are due to Golod [62] and to Avramov and Foxby [13,
7.11]. Christensen’s proof [29, 6.5] establishes the general case.

Theorem 1.20. Let R be Noetherian and S be a commutative Noetherian module-
finite R-algebra. If S is a quasi-perfect R-module of grade g such that Exti (S,R) S,
then the next equality holds for every finitely generated S-module N,

G-dimg N = G-dimg N + G-dimg S.

Note that an S-module has finite G-dimension over R if and only if it has finite
G-dimension over S; see also Theorem 7.7. The next question is raised in [13]; it
asks if the assumption of quasi-perfectness in Theorem 1.20 is necessary.

Question 1.21. Let R be Noetherian, let S be a commutative Noetherian module-
finite R-algebra, and let N be a finitely generated S-module. If G-dimgN and
G-dimg S are finite, is then G-dimg N finite?

This is known as the Transitivity Question. By [13,4.7] and [29, 3.15 and 6.5] it has
an affirmative answer if pdg N is finite; see also Theorem 7.4.

Local rings

Before we proceed with results on G-dimension of modules over local rings, we
make a qualitative comparison to the projective dimension. Theorem 1.20 reveals a
remarkable property of the G-dimension, one that has almost no counterpart for the
projective dimension. Here is an example:

Example 1.22. Let (R, m,k) be local of positive depth. Pick a regular element x in
m and set S = R/(x). Then one has gradez S = 1 = pd; S and Extk(S,R) = S, but
pdg N is infinite for every S-module N such that x is in m Anng N; see Shamash [99,
Section 3]. In particular, if R is regular and x is in m?, then § is not regular, so pdgk
is infinite while pdy & is finite; see Theorem A.

If G is a totally reflexive R-module, then every R-regular element is G-regular.
A strong converse holds for modules of finite projective dimension; it is (still) re-
ferred to as Auslander’s zero-divisor conjecture: let R be local and M # 0 be a
finitely generated R-module with pd, M finite. Then every M-regular element is R-
regular; for a proof see Roberts [88, 6.2.3]. An instance of Example 1.3 shows that
one can not relax the condition on M to finite G-dimension:

Example 1.23. Let k be a field and consider the local ring R = k[[X,Y]/(XY). Then
the residue class x of X generates a totally reflexive module. The element x is
(x)-regular but nevertheless a zero-divisor in R.
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While a tensor product of projective modules is projective, the next example
shows that totally reflexive modules do not have an analogous property.

Example 1.24. Let R be as in Example 1.23. The R-modules (x) and (y) are totally
reflexive, but (x) ®g (y) = k is not. Indeed, & is not a submodule of a free R-module.

The next result [6, 4.13] is parallel to Theorem B in the Introduction; it is known
as the Auslander—Bridger Formula.

Theorem 1.25. Let R be local. For every finitely generated R-module M of finite
G-dimension there is an equality

G-dimg M = depthR — depthy M.
In [84] Masek corrects the proof of [6, 4.13]. Proofs can also be found in [5] and [28].

By Lemma 1.6 the G-dimension is preserved under completion:

Proposition 1.26. Let R be local. For every finitely generated R-module M there is
an equality

G-dimg M = G-dimz(R @ M).

The following main result from [5, Section 3.2] is akin to Theorem A, but it
differs in that it only deals with finitely generated modules.

Theorem 1.27. For a local ring (R, m,k) the next conditions are equivalent.

(i) R is Gorenstein.
(ii) G-dimgk is finite.
(iii) G-dimg M is finite for every finitely generated R-module M.

It follows that non-projective totally reflexive modules exist over any non-regular
Gorenstein local ring. On the other hand, Example 1.4 shows that existence of
such modules does not identify the ground ring as a member of one of the stan-
dard classes, say, Cohen—Macaulay rings.

A theorem of Christensen, Piepmeyer, Striuli, and Takahashi [34, 4.3] shows that
fewness of totally reflexive modules comes in two distinct flavors:

Theorem 1.28. Let R be local. If there are only finitely many indecomposable to-
tally reflexive R-modules, up to isomorphism, then R is Gorenstein or every totally
reflexive R-module is free.

This dichotomy brings two problems to light:

Problem 1.29. Let R be a local ring that is not Gorenstein and assume that there
exists a non-free totally reflexive R-module. Find constructions that produce infinite
families of non-isomorphic indecomposable totally reflexive modules.

Problem 1.30. Describe the local rings over which every totally reflexive module is
free.
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While the first problem is posed in [34], the second one was already raised by
Avramov and Martsinkovsky [19], and it is proved ibid. that over a Golod local ring
that is not Gorenstein, every totally reflexive module is free. Another partial answer
to Problem 1.30 is obtained by Yoshino [116], and by Christensen and Veliche [36].
The problem is also studied by Takahashi in [105].

Finally, Theorem D in the Introduction motivates:

Question 1.31. Let R be a local ring. If there exists a non-zero R-module of finite
length and finite G-dimension, is then R Cohen—Macaulay?

A partial answer to this question is obtained by Takahashi [101, 2.3].

Notes

A topic that was only treated briefly above is constructions of totally reflexive modules. Such
constructions are found in [16] by Avramov, Gasharov and Peeva, in work of Takahashi and
Watanabe [106], and in Yoshino’s [116].

Hummel and Marley [73] extend the notion of G-dimension to finitely presented modules over
coherent rings and use it to define and study coherent Gorenstein rings.

Gerko [61, Section 2] studies a dimension—the PCI-dimension or CI,-dimension—based on a
subclass of the totally reflexive modules. Golod [62] studies a generalized notion of G-dimension:
the G¢e-dimension, based on total reflexivity with respect to a semidualizing module C. These
studies are continued by, among others, Gerko [61, Section 1] and Salarian, Sather-Wagstaff, and
Yassemi [91]; see also the notes in Section 8.

An approach to homological dimensions that is not treated in this survey is based on so-
called quasi-deformations. Several authors—among them Avramov, Gasharov, and Peeva [16] and
Veliche [109]—take this approach to define homological dimensions that are intermediate between
the projective dimension and the G-dimension for finitely generated modules. Gerko [61, Section 3]
defines a Cohen—Macaulay dimension, which is a refinement of the G-dimension. Avramov [10,
Section 8] surveys these dimensions.

2 Gorenstein projective dimension

To extend the G-dimension beyond the realm of finitely generated modules over
Noetherian rings, Enochs and Jenda [41] introduced the notion of Gorenstein pro-
jective modules. The same authors, and their collaborators, studied these modules
in several subsequent papers. The associated dimension, which is the focus of this
section, was studied by Christensen [28] and Holm [66].

In organization, this section is parallel to Section 1.

Definition 2.1. An R-module A is called Gorenstein projective if there exists an
acyclic complex P of projective R-modules such that Coker(P; — Py) = A and such
that Homg (P, Q) is acyclic for every projective R-module Q.

It is evident that every projective module is Gorenstein projective.

Example 2.2. Every totally reflexive module is Gorenstein projective; this follows
from Definition 1.2 and Lemma 1.1.
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Basic categorical properties are recorded in [66, Section 2]:

Proposition 2.3. The class of Gorenstein projective R-modules is closed under
direct sums and summands.

Every projective module is a direct summand of a free one. A parallel result
for Gorenstein projective modules, Theorem 2.5 below, is due to Bennis and
Mahdou [24, Section 2]; as substitute for free modules they define:

Definition 2.4. An R-module A is called strongly Gorenstein projective if there
exists an acyclic complex P of projective R-modules, in which all the differentials
are identical, such that Coker(P; — Py) = A, and such that Homg(P, Q) is acyclic
for every projective R-module Q.

Theorem 2.5. An R-module is Gorenstein projective if and only if it is a direct
summand of a strongly Gorenstein projective R-module.

Definition 2.6. An (augmented) Gorenstein projective resolution of a module M is
an exact sequence --- — A; —» Aj_1 — -+ — Ag — M — 0, where each module A;
is Gorenstein projective.

Note that every module has a Gorenstein projective resolution, as a free resolution
is trivially a Gorenstein projective one.

Definition 2.7. The Gorenstein projective dimension of a module M # 0, denoted
by Gpdp M, is the least integer n > 0 such that there exists a Gorenstein projective
resolution of M with A; = 0 for all i > n. If no such n exists, then Gpdy M is infinite.
By convention, set Gpdp 0 = —ee.

In [66, Section 2] one finds the next standard theorem and corollary.

Theorem 2.8. Let M be an R-module of finite Gorenstein projective dimension. For
every integer n > 0 the following conditions are equivalent.

(i) GpdgM < n.

(ii) Exty(M,Q) =0 for all i > n and all projective R-modules Q.

(iii) Exth(M,N) = 0 for all i > n and all R-modules N with pdg N finite.
(iv) In every augmented Gorenstein projective resolution

= A oA — oAy M —0
the module Coker(A,+1 — Ap) is Gorenstein projective.

Corollary 2.9. For every R-module M of finite Gorenstein projective dimension
there is an equality

Gpdg M = sup{i € Z | Ext,4(M, Q) # 0 for some projective R-module Q}.

Remark 2.10. For every R-module M as in the corollary, the finitistic projective
dimension of R is an upper bound for Gpd, M; see [66, 2.28].
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The next result [66, 2.24] extends Proposition 1.13.

Proposition 2.11. Let 0 — M’ — M — M" — 0 be an exact sequence of R-modules.
If any two of the modules have finite Gorenstein projective dimension, then so has
the third.

The Gorenstein projective dimension is a refinement of the projective dimension;
this follows from Corollary 2.9:

Proposition 2.12. For every R-module M one has Gpdy M < pdy M, and equality
holds if M has finite projective dimension.

Supplementary information comes from Holm [67, 2.2]:

Proposition 2.13. If M is an R-module of finite injective dimension, then there is an
equality Gpdpy M = pdy M.

The next result of Foxby is published in [32, Ascent table II(b)].

Proposition 2.14. Let S be an R-algebra of finite projective dimension. For ev-
ery Gorenstein projective R-module A, the module S Qg A is Gorenstein projective
over S.

Noetherian rings

Finiteness of the Gorenstein projective dimension characterizes Gorenstein rings.
The next result of Enochs and Jenda [43, 12.3.1] extends Theorem 1.17.

Theorem 2.15. Let R be Noetherian and n > 0 be an integer. Then R is Gorenstein
with dimR < n if and only if Gpdy M < n for every R-module M.

The next result [28, 4.2.6] compares the Gorenstein projective dimension to the
G-dimension.

Proposition 2.16. Let R be Noetherian. For every finitely generated R-module M
there is an equality Gpdy M = G-dimg M.

The Gorenstein projective dimension of a module can not be measured locally;
that is, Proposition 1.15 does not extend to non-finitely generated modules. As a
consequence of Proposition 2.14, though, one has the following:

Proposition 2.17. Let R be Noetherian of finite Krull dimension. For every
R-module M and every prime ideal p in R one has Gdep My, < Gpdp M.

Theorem E and Proposition 2.13 yield:

Theorem 2.18. Let R be Noetherian and M a finitely generated R-module. If
Gpdp M and idg M are finite, then Ry, is Gorenstein for all p € Suppg M.
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Local rings

The next characterization of Gorenstein local rings—akin to Theorem A in the
Introduction—follows from Theorems 1.27 and 2.15 via Proposition 2.16.

Theorem 2.19. For a local ring (R, m, k) the next conditions are equivalent.

(i) R is Gorenstein.
(ii) Gpdgk is finite.
(iif) GpdgM is finite for every R-module M.

The inequality in the next theorem is a consequence of Proposition 2.14. The
second assertion is due to Esmkhani and Tousi [52, 3.5], cf. [31, 4.1]. The result
should be compared to Proposition 1.26.

Theorem 2.20. Let R be local and M be an R-module. Then one has
Gpda(R@r M) < Gpdg M,

and iprdﬁ(1$®R M) is finite, then so is Gpdg M.

Notes

Holm and Jgrgensen [69] extend Golod’s [62] notion of G¢-dimension to non-finitely generated
modules in the form of a C-Gorenstein projective dimension. Further studies of this dimension are
made by White [112].

3 Gorenstein injective dimension

The notion of Gorenstein injective modules is (categorically) dual to that of
Gorenstein projective modules. The two were introduced in the same paper by
Enochs and Jenda [41] and investigated in subsequent works by the same authors,
by Christensen and Sather-Wagstaff [35], and by Holm [66].

This section is structured parallelly to the previous ones.

Definition 3.1. An R-module B is called Gorenstein injective if there exists an
acyclic complex I of injective R-modules such that Ker(/° — I') = B, and such
that Homg(E,I) is acyclic for every injective R-module E.

It is clear that every injective module is Gorenstein injective.

Example 3.2. Let L be a totally acyclic complex of finitely generated projective
R-modules, see Definition 1.2, and let I be an injective R-module. Then the acyclic
complex I = Homg(L,I) consists of injective modules, and from Lemma 1.1 it fol-
lows that the complex Homg(E,I) = Homg(E ®g L,I) is acyclic for every injective
module E. Thus, if G is a totally reflexive R-module and / is injective, then the
module Homg (G, I) is Gorenstein injective.
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Basic categorical properties are established in [66, 2.6]:

Proposition 3.3. The class of Gorenstein injective R-modules is closed under direct
products and summands.

Under extra assumptions on the ring, Theorem 3.16 gives more information.

Definition 3.4. An (augmented) Gorenstein injective resolution of a module M is
an exact sequence 0 — M — B — ... — B~! — B — ... where each module B’
is Gorenstein injective.

Note that every module has a Gorenstein injective resolution, as an injective
resolution is trivially a Gorenstein injective one.

Definition 3.5. The Gorenstein injective dimension of an R-module M # 0, denoted
by Gidgr M, is the least integer n > 0 such that there exists a Gorenstein injective
resolution of M with B! = 0 for all i > n. If no such #n exists, then Gidg M is infinite.
By convention, set Gidg 0 = —oo.

The next standard theorem is [66, 2.22].

Theorem 3.6. Let M be an R-module of finite Gorenstein injective dimension. For
every integer n > 0 the following conditions are equivalent.

(i) GidgM < n.

(ii) Exty(E,M) =0 for all i > n and all injective R-modules E.

(iii) Bxty(N,M) =0 for all i > n and all R-modules N with idg N finite.
(iv) In every augmented Gorenstein injective resolution

0—-M—B"—...pB~l _,p_,..
the module Ker(B" — B" ) is Gorenstein injective.

Corollary 3.7. For every R-module M of finite Gorenstein injective dimension there
is an equality

Gidg M = sup{i € Z | Exty(E, M) # 0 for some injective R-module E }.

Remark 3.8. For every R-module M as in the corollary, the finitistic injective
dimension of R is an upper bound for Gidg M; see [66, 2.29].

The next result [66, 2.25] is similar to Proposition 2.11.

Proposition 3.9. Let 0 — M’ — M — M"” — 0 be an exact sequence of R-modules.
If any two of the modules have finite Gorenstein injective dimension, then so has
the third.

The Gorenstein injective dimension is a refinement of the injective dimension;
this follows from Corollary 3.7:
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Proposition 3.10. For every R-module M one has Gidg M < idgM, and equality
holds if M has finite injective dimension.

Supplementary information comes from Holm [67, 2.1]:

Proposition 3.11. If M is an R-module of finite projective dimension, then there is
an equality Gidg M = idg M. In particular, one has Gidg R = idgr R.

In [32] Christensen and Holm study (co)base change of modules of finite
Gorenstein homological dimension. The following is elementary to verify:

Proposition 3.12. Let S be an R-algebra of finite projective dimension. For every
Gorenstein injective R-module B, the module Homg(S,B) is Gorenstein injective
over S.

For a conditional converse see Theorems 3.27 and 9.11.

The next result of Bennis, Mahdou, and Ouarghi [25, 2.2] should be compared
to characterizations of Gorenstein rings like Theorems 2.15 and 3.14, and also to
Theorems 2.18 and 3.21. It is a perfect Gorenstein counterpart to a classical result
due to Faith and Walker among others; see e.g. [111, 4.2.4].

Theorem 3.13. The following conditions on R are equivalent.

(i) R is quasi-Frobenius.

(ii) Every R-module is Gorenstein projective.

(iif) Every R-module is Gorenstein injective.

(iv) Every Gorenstein projective R-module is Gorenstein injective.
(v) Every Gorenstein injective R-module is Gorenstein projective.

Noetherian rings

Finiteness of the Gorenstein injective dimension characterizes Gorenstein rings; this
result is due to Enochs and Jenda [42, 3.1]:

Theorem 3.14. Let R be Noetherian and n > 0 be an integer. Then R is Gorenstein
with dimR < n if and only if Gidg M < n for every R-module M.

A ring is Noetherian if every countable direct sum of injective modules is injec-
tive (and only if every direct limit of injective modules is injective). The “if” part
has a perfect Gorenstein counterpart:

Proposition 3.15. If every countable direct sum of Gorenstein injective R-modules
is Gorenstein injective, then R is Noetherian.

Proof. ltis sufficient to see that every countable direct sum of injective R-modules is injective. Let
{E, }nen be a family of injective modules. By assumption, the module @ E,, is Gorenstein injective;
in particular, there is an epimorphism @: I - @E, such that I is injective and Homg(E, ) is
surjective for every injective R-module E. Applying this to E = E,, it is elementary to verify that ¢
is a split epimorphism. 0O
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Christensen, Frankild, and Holm [31, 6.9] provide a partial converse:

Theorem 3.16. Assume that R is a homomorphic image of a Gorenstein ring of finite
Krull dimension. Then the class of Gorenstein injective modules is closed under
direct limits; in particular, it is closed under direct sums.

As explained in the Introduction, the hypothesis on R in this theorem ensures the ex-
istence of a dualizing R-complex and an associated Bass class, cf. Section 9. These
tools are essential to the known proof of Theorem 3.16.

Question 3.17. Let R be Noetherian. Is then every direct limit of Gorenstein injective
R-modules Gorenstein injective?

Next follows a Gorenstein version of Chouinard’s formula [27, 3.1]; it is proved
in [35, 2.2]. Recall that the widrh of a module M over a local ring (R, m,k) is
defined as

widthg M = inf{i € Z | Torf (k, M) #0}.

Theorem 3.18. Let R be Noetherian. For every R-module M of finite Gorenstein
injective dimension there is an equality

Gidg M = { depth R, — widthg, M, | p € SpecR }.

Let M be an R-module, and let p be a prime ideal in R. Provided that Gidg, My
is finite, the inequality GidRp M, < Gidg M follows immediately from the theorem.
However, the next question remains open.

Question 3.19. Let R be Noetherian and B be a Gorenstein injective R-module. Is
then By, Gorenstein injective over R, for every prime ideal p in R?

A partial answer is known from [31, 5.5]:

Proposition 3.20. Assume that R is a homomorphic image of a Gorenstein ring of
finite Krull dimension. For every R-module M and every prime ideal p there is an
inequality Gidg, My < Gidg M.

Theorem E and Proposition 3.11 yield:

Theorem 3.21. Let R be Noetherian and M a finitely generated R-module. If Gidg M
and pdg M are finite, then Ry, is Gorenstein for all p € Suppp M.

Local rings
The following theorem of Foxby and Frankild [58, 4.5] generalizes work of Peskine
and Szpiro [86], cf. Theorem E.

Theorem 3.22. A local ring R is Gorenstein if and only if there exists a non-zero
cyclic R-module of finite Gorenstein injective dimension.
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Theorems 3.14 and 3.22 yield a parallel to Theorem1.27, akin to Theorem A.

Corollary 3.23. For a local ring (R, m,k) the next conditions are equivalent.

(i) R is Gorenstein.
(ii) Gidgk is finite.
(iif) Gidg M is finite for every R-module M.

The first part of the next theorem is due to Christensen, Frankild, and Iyen-
gar, and published in [58, 3.6]. The equality in Theorem 3.24—the Gorenstein
analogue of Theorem C in the Introduction—is proved by Khatami, Tousi, and
Yassemi [80, 2.5]; see also [35, 2.3].

Theorem 3.24. Let R be local and M # 0 be a finitely generated R-module. Then
Gidp M and Gidﬁ(l/?\@R M) are simultaneously finite, and when they are finite, there
is an equality

Gidgp M = depthR.

Remark 3.25. Let R be local and M # 0 be an R-module. If M has finite length and
finite G-dimension, then its Matlis dual has finite Gorenstein injective dimension,
cf. Example 3.2. See also Takahashi [103].

This remark and Theorem D from the Introduction motivate:

Question 3.26. Let R be local. If there exists a non-zero finitely generated R-module
of finite Gorenstein injective dimension, is then R Cohen—Macaulay?

A partial answer to this question is given by Yassemi [115, 1.3].

Esmkhani and Tousi [53, 2.5] prove the following conditional converse
to Proposition 3.12. Recall that an R-module M is said to be cotorsion if
Exth(F,M) = 0 for every flat R-module F.

Theorem 3.27. Let R be local. An R-module M is Gorenstein injective if and only if
it is cotorsion and Homg (R M) is Gorenstein injective over R

The example below demonstrates the necessity of the cotorsion hypothesis. Working
in the derived category one obtains a stronger result; see Theorem 9.11.

Example 3.28. Let (R,m) be a local domain which is not m-adically complete.
Aldrich, Enochs, and Lépez-Ramos [1, 3.3] show that the module HomR(ﬁ,R) is
zero and hence Gorenstein injective over R. However, Gidg R is infinite if R is not
Gorenstein, cf. Proposition 3.11.

Notes

Dual to the notion of strongly Gorenstein projective modules, see Definition 2.4, Bennis and
Mahdou [24] also study strongly Gorenstein injective modules.

Several authors—Asadollahi, Sahandi, Salarian, Sazeedeh, Sharif, and Yassemi—have studied
the relationship between Gorenstein injectivity and local cohomology; see [3], [90], [96], [97],
and [115].
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4 Gorenstein flat dimension

Another extension of the G-dimension is based on Gorenstein flat modules—a
notion due to Enochs, Jenda, and Torrecillas [47]. Christensen [28] and Holm [66]
are other main references for this section.

The organization of this section follows the pattern from Sections 1-3.

Definition 4.1. An R-module A is called Gorenstein flat if there exists an acyclic
complex F of flat R-modules such that Coker(F; — Fy) = A, and such that E Qg F
is acyclic for every injective R-module E.

It is evident that every flat module is Gorenstein flat.

Example 4.2. Every totally reflexive module is Gorenstein flat; this follows from
Definition 1.2 and Lemma 1.1.

Here is a direct consequence of Definition 4.1:
Proposition 4.3. The class of Gorenstein flat R-modules is closed under direct sums.

See Theorems 4.13 and 4.14 for further categorical properties of Gorenstein flat
modules.

Definition 4.4. An (augmented) Gorenstein flat resolution of a module M is an
exact sequence --- — A; > Aj_1 — -+ — Ag — M — 0, where each module A; is
Gorenstein flat.

Note that every module has a Gorenstein flat resolution, as a free resolution is
trivially a Gorenstein flat one.

Definition 4.5. The Gorenstein flat dimension of an R-module M # 0, denoted by
Gfdg M, is the least integer n > 0 such that there exists a Gorenstein flat resolu-
tion of M with A; = 0 for all i > n. If no such n exists, then Gfdg M is infinite. By
convention, set Gfdg 0 = —oo.

The next duality result is an immediate consequence of the definitions.

Proposition 4.6. Let M be an R-module. For every injective R-module E there is an
inequality Gidg Homg (M, E) < Gfdg M.

Recall that an R-module E is called faithfully injective if it is injective and
Homg(M,E) =0 only if M =0. The next question is inspired by the classical
situation. It has an affirmative answer for Noetherian rings; see Theorem 4.16.

Question 4.7. Let M and E be R-modules. If E is faithfully injective and the module
Homg (M, E) is Gorenstein injective, is then M Gorenstein flat?

A straightforward application of Proposition 4.6 shows that the Gorenstein flat
dimension is a refinement of the flat dimension; cf. Bennis [23, 2.2]:
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Proposition 4.8. For every R-module M one has GftdgM < fdg M, and equality
holds if M has finite flat dimension.

The following result is an immediate consequence of Definition 4.1. Over a local
ring a stronger result is available; see Theorem 4.27.

Proposition 4.9. Let S be a flat R-algebra. For every R-module M there is an
inequality Gfdg(S @g M) < Gfdg M.

Corollary 4.10. Let M be an R-module. For every prime ideal p in R there is an
inequality Gdep M, < Gfdgr M.

Noetherian rings

Finiteness of the Gorenstein flat dimension characterizes Gorenstein rings; this is a
result of Enochs and Jenda [42, 3.1]:

Theorem 4.11. Let R be Noetherian and n > 0 be an integer. Then R is Gorenstein
with dimR < n if and only if Gfdg M < n for every R-module M.

A ring is coherent if and only if every direct product of flat modules is flat. We
suggest the following problem:

Problem 4.12. Describe the rings over which every direct product of Gorenstein flat
modules is Gorenstein flat.

Partial answers are due to Christensen, Frankild, and Holm [31, 5.7] and to Murfet
and Salarian [85, 6.21].

Theorem 4.13. Let R be Noetherian. The class of Gorenstein flat R-modules is
closed under direct products under either of the following conditions:

(a) R is homomorphic image of a Gorenstein ring of finite Krull dimension.
(b) Ry is Gorenstein for every non-maximal prime ideal p in R.

The next result follows from work of Enochs, Jenda, and Lépez-Ramos [46, 2.1]
and [40, 3.3].

Theorem 4.14. Let R be Noetherian. Then the class of Gorenstein flat R-modules is
closed under direct summands and direct limits.

A result of Govorov [64] and Lazard [83, 1.2] asserts that a module is flat if and
only if it is a direct limit of finitely generated projective modules. For Gorenstein
flat modules, the situation is more complicated:

Remark 4.15. Let R be Noetherian. It follows from Example 4.2 and Theorem 4.14
that a direct limit of totally reflexive modules is Gorenstein flat. If R is Gorenstein
of finite Krull dimension, then every Gorenstein flat R-module can be written as
a direct limit of totally reflexive modules; see Enochs and Jenda [43, 10.3.8]. If
R is not Gorenstein, this conclusion may fail; see Beligiannis and Krause [22, 4.2
and 4.3] and Theorem 4.30.
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The next result [28, 6.4.2] gives a partial answer to Question 4.7.

Theorem 4.16. Let R be Noetherian, and let M and E be R-modules. If E is faithfully
injective, then there is an equality

GidR HomR (M7 E) = Gde M.

Theorem 4.17 is found in [66, 3.14]. It can be obtained by application of
Theorem 4.16 to Theorem 3.6.

Theorem 4.17. Let R be Noetherian and M be an R-module of finite Gorenstein flat
dimension. For every integer n > 0 the following are equivalent.

(i) GfdgM < n.

(ii) TorR(E,M) =0 for all i > n and all injective R-modules E.

(iii) Tor®(N,M) =0 for all i > n and all R-modules N with idg N finite.
(iv) In every augmented Gorenstein flat resolution

oo A A > > Ao M —0
the module Coker(A, 11 — Ap) is Gorenstein flat.

Corollary 4.18. Let R be Noetherian. For every R-module M of finite Gorenstein
flat dimension there is an equality

Gfdg M = sup{i € Z | TorX (E, M) # 0 for some injective R-module E }.

Remark 4.19. For every R-module M as in the corollary, the finitistic flat dimension
of R is an upper bound for Gfdg M; see [66, 3.24].

The next result [66, 3.15] follows by Theorem 4.16 and Proposition 3.9.

Proposition 4.20. Let R be Noetherian. If any two of the modules in an exact
sequence 0 — M' — M — M" — 0 have finite Gorenstein flat dimension, then so
has the third.

A result of Holm [67, 2.6] supplements Proposition 4.8:

Proposition 4.21. Let R be Noetherian of finite Krull dimension. For every
R-module M of finite injective dimension one has Gfdg M = fdg M.

Recall that the depth of a module M over a local ring (R, m, k) is given as
depthy M = inf{i € Z | Extl(k,M) #0}.

Theorem 4.22 is a Gorenstein version of Chouinard’s [27, 1.2]. It follows from
[66, 3.19] and [30, 2.4(b)]; see also Iyengar and Sather-Wagstaff [76, 8.8].
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Theorem 4.22. Let R be Noetherian. For every R-module M of finite Gorenstein flat
dimension there is an equality

Gfdg M = {depth R, — depthg, M, [ p € SpecR}.

The next two results compare the Gorenstein flat dimension to the Gorenstein
projective dimension. The inequality in Theorem 4.23 is [66, 3.4], and the second
assertion in this theorem is due to Esmkhani and Tousi [52, 3.4].

Theorem 4.23. Let R be Noetherian of finite Krull dimension, and let M be an
R-module. Then there is an inequality

Gfdr M < Gpdy M,
and if Gtdgr M is finite, then so is Gpdy M.

It is not known whether the inequality in Theorem 4.23 holds over every commuta-
tive ring. For finitely generated modules one has [28, 4.2.6 and 5.1.11]:

Proposition 4.24. Let R be Noetherian. For every finitely generated R-module M
there is an equality Gfdg M = Gpdy M = G-dimg M.

The next result [31, 5.1] is related to Theorem 4.16; the question that follows is
prompted by the classical situation.

Theorem 4.25. Assume that R is a homomorphic image of a Gorenstein ring of finite
Krull dimension. For every R-module M and every injective R-module E there is an
inequality

Gfdg Homg (M, E) < Gidg M,

and equality holds if E is faithfully injective.

Question 4.26. Let R be Noetherian and M and E be R-modules. If M is Gorenstein
injective and E is injective, is then Homg (M, E) Gorenstein flat?

Local rings

Over a local ring there is a stronger version [52, 3.5] of Proposition 4.9:
Theorem 4.27. Let R be local. For every R-module M there is an equality
Gfdz(R®r M) = Gfdg M.

Combination of [67, 2.1 and 2.2] with Theorem E yields the next result. Recall
that a non-zero finitely generated module has finite depth.
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Theorem 4.28. For a local ring R the following conditions are equivalent.

(i) R is Gorenstein.
(ii) There is an R-module M with depthy M, fdg M, and Gidgr M finite.
(iii) There is an R-module M with depthy M, idg M, and Gfdg M finite.

‘We have for a while been interested in:

Question 4.29. Let R be local. If there exists an R-module M with depthy M, Gfdg M,
and Gidg M finite, is then R Gorenstein?

A theorem of Jgrgensen and Holm [71] brings perspective to Remark 4.15.

Theorem 4.30. Assume that R is Henselian local and a homomorphic image of a
Gorenstein ring. If every Gorenstein flat R-module is a direct limit of totally reflexive
modules, then R is Gorenstein or every totally reflexive R-module is free.

Notes

Parallel to the notion of strongly Gorenstein projective modules, see Definition 2.4, Bennis and
Mahdou [24] also study strongly Gorenstein flat modules. A different notion of strongly Gorenstein
flat modules is studied by Ding, Li, and Mao in [38].

5 Relative homological algebra

Over a Gorenstein local ring, the totally reflexive modules are exactly the maximal
Cohen-Macaulay modules, and their representation theory is a classical topic. Over
rings that are not Gorenstein, the representation theory of totally reflexive modules
was taken up by Takahashi [102] and Yoshino [116]. Conclusive results have re-
cently been obtained by Christensen, Piepmeyer, Striuli, and Takahashi [34] and by
Holm and Jgrgensen [71]. These results are cast in the language of precovers and
preenvelopes; see Theorem 5.4.

Relative homological algebra studies dimensions and (co)homology functors
based on resolutions that are constructed via precovers or preenvelopes. Enochs and
Jenda and their collaborators have made extensive studies of the precovering and
preenveloping properties of the classes of Gorenstein flat and Gorenstein injective
modules. Many of their results are collected in [43].

Terminology

Let 3{ be a class of R-modules. Recall that an J{-precover (also called a right
H-approximation) of an R-module M is a homomorphism ¢: H — M with H in
H such that

Homg(H',¢): Homg(H',H) — Homg(H',M)
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is surjective for every H' in J{. That is, every homomorphism from a module
in J to M factors through ¢. Dually one defines J{-preenvelopes (also called left
H-approximations).

Remark 5.1. If J{ contains all projective modules, then every J{-precover is an
epimorphism. Thus, Gorenstein projective/flat precovers are epimorphisms.

If J{ contains all injective modules, then every J(-preenvelope is a mono-
morphism. Thus, every Gorenstein injective preenvelope is a monomorphism.

Fix an H-precover . It is called special if one has Exts (H', Ker @) = 0 for every
module H' in . It is called a cover (or a minimal right approximation) if in ev-
ery factorization ¢ = @y, the map y: H — H is an automorphism. If J{ is closed
under extensions, then every J{-cover is a special precover. This is known as Waka-
matsu’s lemma; see Xu [113, 2.1.1]. Dually one defines special H{-preenvelopes and
H-envelopes.

Remark 5.2. Let I be a complex of injective modules as in Definition 3.1. Then
every differential in I is a special injective precover of its image; this fact is used
in the proof of Proposition 3.15. Similarly, in a complex P of projective modules
as in Definition 2.1, every differential o, is a special projective preenvelope of the
cokernel of the previous differential d, ;.

Totally reflexive covers and envelopes

The next result of Avramov and Martsinkovsky [19, 3.1] corresponds over a
Gorenstein local ring to the existence of maximal Cohen—Macaulay approxima-
tions in the sense of Auslander and Buchweitz [9].

Proposition 5.3. Let R be Noetherian. For every finitely generated R-module M of
finite G-dimension there is an exact sequence 0 — K — G — M — 0 of finitely
generated modules, where G is totally reflexive and pdg K = max{0,G-dimg M — 1}.
In particular, every finitely generated R-module of finite G-dimension has a special
totally reflexive precover.

An unpublished result of Auslander states that every finitely generated module
over a Gorenstein local ring has a totally reflexive cover; see Enochs, Jenda, and
Xu [50] for a generalization. A strong converse is contained in the next theorem,
which combines Auslander’s result with recent work of several authors; see [34]
and [71].

Theorem 5.4. For a local ring (R, m,k) the next conditions are equivalent.

(i)  Every finitely generated R-module has a totally reflexive cover.
(ii) The residue field k has a special totally reflexive precover.
(iif) Every finitely generated R-module has a totally reflexive envelope.
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(iv) Every finitely generated R-module has a special totally reflexive preenvelope.
(v) R is Gorenstein or every totally reflexive R-module is free.

If R is local and Henselian (e.g. complete), then existence of a totally reflexive
precover implies existence of a totally reflexive cover; see [102, 2.5]. In that case
one can drop “special” in part (if) above. In general, though, the next question from
[34] remains open.

Question 5.5. Let (R,m,k) be local. If k has a totally reflexive precover, is then
R Gorenstein or every totally reflexive R-module free?

Gorenstein projective precovers

The following result is proved by Holm in [66, 2.10].

Proposition 5.6. For every R-module M of finite Gorenstein projective dimension
there is an exact sequence 0 — K — A — M — 0, where A is Gorenstein projective
and pdg K = max{0,Gpdg M — 1}. In particular, every R-module of finite Gorenstein
projective dimension has a special Gorenstein projective precover.

For an important class of rings, Jergensen [78] and Murfet and Salarian [85]
prove existence of Gorenstein projective precovers for all modules:

Theorem 5.7. If R is Noetherian of finite Krull dimension, then every R-module has
a Gorenstein projective precover.

Remark 5.8. Actually, the argument in Krause’s proof of [81, 7.12(1)] applies to the
setup in [78] and yields existence of a special Gorenstein projective precover for
every module over a ring as in Theorem 5.7.

Over any ring, every module has a special projective precover; hence:

Problem 5.9. Describe the rings over which every module has a (special) Gorenstein
projective precover.

Gorenstein injective preenvelopes

In [66, 2.15] one finds:

Proposition 5.10. For every R-module M of finite Gorenstein injective dimension
there is an exact sequence 0 — M — B — C — 0, where B is Gorenstein injective
and idg C = max{0,Gidg M — 1}. In particular, every R-module of finite Gorenstein
injective dimension has a special Gorenstein injective preenvelope.
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Over Noetherian rings, existence of Gorenstein injective preenvelopes for all
modules is proved by Enochs and Lépez-Ramos in [51]. Krause [81, 7.12] proves a
stronger result:

Theorem 5.11. If R is Noetherian, then every R-module has a special Gorenstein
injective preenvelope.

Over Gorenstein rings, Enochs, Jenda, and Xu [48, 6.1] prove even more:

Proposition 5.12. If R is Gorenstein of finite Krull dimension, then every R-module
has a Gorenstein injective envelope.

Over any ring, every module has an injective envelope; this suggests:

Problem 5.13. Describe the rings over which every module has a Gorenstein
injective (pre)envelope.

Over a Noetherian ring, every module has an injective cover; see Enochs
[39,2.1]. A Gorenstein version of this result is recently established by Holm
and Jgrgensen [72, 3.3(b)]:

Proposition 5.14. If R is a homomorphic image of a Gorenstein ring of finite Krull
dimension, then every R-module has a Gorenstein injective cover.

Gorenstein flat covers

The following existence result is due to Enochs and Lépez-Ramos [51, 2.11].
Theorem 5.15. If R is Noetherian, then every R-module has a Gorenstein flat cover.

Remark 5.16. Let R be Noetherian and M be a finitely generated R-module. If M has
finite G-dimension, then by Proposition 5.3 it has a finitely generated Gorenstein
projective/flat precover, cf. Proposition 4.24. If M has infinite G-dimension, it
still has a Gorenstein projective/flat precover by Theorems 5.7 and 5.15, but by
Theorem 5.4 this need not be finitely generated.

Over any ring, every module has a flat cover, as proved by Bican, El Bashir, and
Enochs [26]. This motivates:

Problem 5.17. Describe the rings over which every module has a Gorenstein flat
(pre)cover.

Over a Noetherian ring, every module has a flat preenvelope; cf. Enochs [39, 5.1].
A Gorenstein version of this result follows from Theorem 4.13 and [51, 2.5]:

Proposition 5.18. If R is a homomorphic image of a Gorenstein ring of finite Krull
dimension, then every R-module has a Gorenstein flat preenvelope.
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Relative cohomology via Gorenstein projective modules

The notion of a proper resolution is central in relative homological algebra. Here is
an instance:

Definition 5.19. An augmented Gorenstein projective resolution,
At = P A A P P Ay 0

of an R-module M is said to be proper if the complex Homg(A’,A*) is acyclic for
every Gorenstein projective R-module A’.

Remark 5.20. Assume that every R-module has a Gorenstein projective precover.
Then every R-module has a proper Gorenstein projective resolution constructed by
taking as ¢ a Gorenstein projective precover of M and as ¢; a Gorenstein projective
precover of Ker¢;_| fori > 0.

Definition 5.21. The relative Gorenstein projective dimension of an R-module
M # 0, denoted by rel-Gpdy M, is the least integer n > 0 such that there exists a
proper Gorenstein projective resolution of M with A; =0 for all i > n. If no such
n (or no such resolution) exists, then rel-Gpd, M is infinite. By convention, set
rel-Gpd, 0 = —oo.

The following result is a consequence of Proposition 5.6.
Proposition 5.22. For every R-module M one has rel-Gpdy M = Gpd M.
It is shown in [43, Section 8.2] that the next definition makes sense.

Definition 5.23. Let M and N be R-modules and assume that M has a proper
Gorenstein projective resolution A. The ith relative cohomology module
Extgp(M,N) is H' (Homg(A,N)).

Remark 5.24. Let R be Noetherian, and let M and N be finitely generated R-modules.
Unless M has finite G-dimension, it is not clear whether the cohomology modules
Extip (M, N) are finitely generated, cf. Remark 5.16.

Vanishing of relative cohomology ExtgP characterizes modules of finite
Gorenstein projective dimension. The proof is standard; see [68, 3.9].

Theorem 5.25. Let M be an R-module that has a proper Gorenstein projective
resolution. For every integer n > 0 the next conditions are equivalent.

(if) Extgp(M,—)=0foralli> n.
(iii) Extgp!(M,—) =0.
Remark 5.26. Relative cohomology based on totally reflexive modules is studied

in [19]. The results that correspond to Proposition 5.22 and Theorem 5.25 in that
setting are contained in [19, 4.8 and 4.2].
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Notes

Based on a notion of coproper Gorenstein injective resolutions, one can define a relative Gorenstein
injective dimension and cohomology functors Exté;1 with properties analogous to those of Exté;P
described above. There is, similarly, a relative Gorenstein flat dimension and a relative homology
theory based on proper Gorenstein projective/flat resolutions. The relative Gorenstein injective
dimension and the relative Gorenstein flat dimension were first studied by Enochs and Jenda [42]
for modules over Gorenstein rings. The question of balancedness for relative (co)homology is
treated by Enochs and Jenda [43], Holm [65], and Iacob [74].

In [19] Avramov and Martsinkovsky also study the connection between relative and Tate coho-
mology for finitely generated modules. This study is continued by Veliche [110] for arbitrary mod-
ules, and a dual theory is developed by Asadollahi and Salarian [4]. Jgrgensen [78], Krause [81],
and Takahashi [104] study connections between Gorenstein relative cohomology and generalized
notions of Tate cohomology.

Sather-Wagstaff and White [95] use relative cohomology to define an Euler characteristic for
modules of finite G-dimension. In collaboration with Sharif, they study cohomology theories
related to generalized Gorenstein dimensions [93].

6 Modules over local homomorphisms

In this section, ¢: (R,m) — (S,n) is a local homomorphism, that is, there is a
containment ¢@(m) C n. The topic is Gorenstein dimensions over R of finitely
generated S-modules. The utility of this point of view is illustrated by a gen-
eralization, due to Christensen and Iyengar [33, 4.1], of the Auslander-Bridger
Formula (Theorem 1.25):

Theorem 6.1. Let N be a finitely generated S-module. If N has finite Gorenstein flat
dimension as an R-module via ¢, then there is an equality

Gfdg N = depthR — depthy N.

For a finitely generated S-module N of finite flat dimension over R, this equality
follows from work of André [2, I1.57]. For a finitely generated S-module of finite
injective dimension over R, an affirmative answer to the next question is already in
[107, 5.2] by Takahashi and Yoshino.

Question 6.2. Let N be a non-zero finitely generated S-module. If N has finite
Gorenstein injective dimension as an R-module via ¢, does then the equality
Gidg N = depthR hold? (For ¢ = Idp this is Theorem 3.24.)

The next result of Christensen and Iyengar [33, 4.8] should be compared to
Theorem 4.27.

Theorem 6.3. Let N be a finitely generated S-module. If N has finite Gorenstein flat
dimension as an R-module via ¢, there is an equality

Gfdg N = Gfdg(S@sN).
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The Frobenius endomorphism

If R has positive prime characteristic, we denote by ¢ the Frobenius endomorphism
on R and by ¢" its n-fold composition. The next two theorems are special cases of
[76, 8.14 and 8.15] by Iyengar and Sather-Wagstaff and of [58, 5.5] by Foxby and
Frankild.; together, they constitute the Gorenstein counterpart of Theorem F.

Theorem 6.4. Let R be local of positive prime characteristic. The following condi-
tions are equivalent.

(i) R is Gorenstein.
(ii) R has finite Gorenstein flat dimension as an R-module via ¢" for some n > 1.
(iii) R is Gorenstein flat as an R-module via ¢" for every n > 1.

Theorem 6.5. Let R be local of positive prime characteristic, and assume that it is a
homomorphic image of a Gorenstein ring. The following conditions are equivalent.

(i) R is Gorenstein.

(ii) R has finite Gorenstein injective dimension as R-module via ¢" for some n> 1.

(iii) R has Gorenstein injective dimension equal to dimR as an R-module via ¢"
foreveryn > 1.

Part (iii) in Theorem 6.5 is actually not included in [58, 5.5]. Part (iii) follows, though, from part
(i) by Corollary 3.23 and Theorem 3.18.

G-dimension over a local homomorphism

The homomorphism ¢: (R,m) — (S, n) fits in a commutative diagram of local ho-
momorphisms:
R/
7 N

RTS%@

where ¢ is flat with regular closed fiber R'/mR’, the ring R’ is complete, and ¢’ is
surjective. Set ¢ = 1¢; a diagram as above is called a Cohen factorization of ¢.
This is a construction due to Avramov, Foxby, and Herzog [15, 1.1].

The next definition is due to Iyengar and Sather-Wagstaff [76, Section 3]; it is
proved ibid. that it is independent of the choice of Cohen factorization.

Definition 6.6. Choose a Cohen factorization of ¢ as above. For a finitely generated
S-module N, the G-dimension of N over ¢ is given as

G-dimy N = G-dimg (S @5 N) — edim(R'/mR’).

Example 6.7. Let k be a field and let ¢ be the extension from k to the power series
ring k[[x[]. Then one has G-dimg k[x] = —1.
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Iyengar and Sather-Wagstaff [76, 8.2] prove:

Theorem 6.8. Assume that R is a homomorphic image of a Gorenstein ring. A
finitely generated S-module N has finite G-dimension over ¢ if and only if it has
finite Gorenstein flat dimension as an R-module via ¢.

Itis clear from Example 6.7 that Gfdg N and G-dimg N need not be equal.

7 Local homomorphisms of finite G-dimension

This section treats transfer of ring theoretic properties along a local homomorphism
of finite G-dimension. Our focus is on the Gorenstein property, which was studied by
Avramov and Foxby in [13], and the Cohen—Macaulay property, studied by Frankild
in [59].

As in Section 6, ¢: (R,m)— (S,n) is a local homomorphism. In view
of Definition 6.6, a notion from [13, 4.3] can be defined as follows:

Definition 7.1. Set G-dim ¢ = G-dim, S; the homomorphism ¢ is said to be of finite
G-dimension if this number is finite.

Remark 7.2. The homomorphism ¢ has finite G-dimension if S has finite Gorenstein
flat dimension as an R-module via ¢, and the converse holds if R is a homomorphic
image of a Gorenstein ring. This follows from Theorems 6.3 and 6.8, in view of
[76,3.4.1],

The next descent result is [13, 4.6].

Theorem 7.3. Let ¢ be of finite G-dimension, and assume that R is a homomorphic
image of a Gorenstein ring. For every S-module N one has:

(a) If fdgN is finite then Gfdg N is finite.
(b) If idg N is finite then Gidg N is finite.

It is not known if the composition of two local homomorphisms of finite
G-dimension has finite G-dimension, but it would follow from an affirmative
answer to Question 1.21, cf. [13, 4.8]. Some insight is provided by Theorem 7.9
and the next result, which is due to Iyengar and Sather-Wagstaff [76, 5.2].

Theorem 7.4. Let w: S — T be a local homomorphism such that tdgT is finite.
Then G-dim y @ is finite if and only if G-dim @ is finite.
Quasi-Gorenstein homomorphisms

Let M be a finitely generated module over a local ring (R, m, k). For every integer
i > 0 the ith Bass number [15(M) is the dimension of the k-vector space Exty (k,M).
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Definition 7.5. The homomorphism ¢ is called quasi-Gorenstein if it has finite
G-dimension and for every i > 0 there is an equality of Bass numbers
i+depthR i+depth§
i P R) = g 5.
Example 7.6. If R is Gorenstein, then the natural surjection R — k is quasi-
Gorenstein. More generally, if ¢ is surjective and S is quasi-perfect as an R-

module via @, then ¢ is quasi-Gorenstein if and only if there is an isomorphism
Ext}(S,R) = S where g = G-dimg S with; see [13, 6.5, 7.1, 7.4].

Several characterizations of the quasi-Gorenstein property are given in [13, 7.4
and 7.5]. For example, it is sufficient that G-dim ¢ is finite and the equality of Bass
numbers holds for some i > 0.

The next ascent—descent result is [13, 7.9].

Theorem 7.7. Let ¢ be quasi-Gorenstein and assume that R is a homomorphic im-
age of a Gorenstein ring. For every S-module N one has:

(a) GfdgN is finite if and only if Gfdg N is finite.

(b) GidgN is finite if and only if Gidg N is finite.

Ascent and descent of the Gorenstein property is described by [13, 7.7.2]. It
should be compared to part (b) in Theorem G.

Theorem 7.8. The following conditions on ¢ are equivalent.

(i) R andS are Gorenstein.
(ii) R is Gorenstein and @ is quasi-Gorenstein.
(iii) S is Gorenstein and @ is of finite G-dimension.

The following (de)composition result is [13, 7.10, 8.9, and 8.10]. It should be
compared to Theorem 1.20.

Theorem 7.9. Assume that ¢ is quasi-Gorenstein, and let y: S — T be a local ho-
momorphism. The following assertions hold.

(a) G-dim yo is finite if and only if G-dim y is finite.
(b) wo is quasi-Gorenstein if and only if y is quasi-Gorenstein.

Quasi-Cohen—Macaulay homomorphisms

The next definition from [59, 5.8 and 6.2] uses terminology from Definition 1.19
and the remarks before Definition 6.6.

Definition 7.10. The homomorphism ¢ is quasi-Cohen—Macaulay, for short quasi-
CM, if ¢ has a Cohen factorization where S is quasi-perfect over R'.
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If ¢ is quasi-CM, then Sisa quasi-perfect R’-module in every Cohen factorization
of ¢; see [59, 5.8]. The following theorem is part of [59, 6.7]; it should be compared
to part (a) in Theorem G.

Theorem 7.11. The following assertions hold.

(a) IfRis Cohen—Macaulay and ¢ is quasi-CM, then S is Cohen—Macaulay.
(b) IfS is Cohen—Macaulay and G-dim @ is finite, then @ is quasi-CM.

In view of Theorem 7.9, Frankild’s work [59, 6.4 and 6.5] yields:

Theorem 7.12. Assume that ¢ is quasi-Gorenstein, and let y: S — T be a local
homomorphism. Then Y@ is quasi-CM if and only if y is quasi-CM.

Notes

The composition question addressed in the remarks before Theorem 7.4 is investigated further by
Sather-Wagstaft [92].

8 Reflexivity and finite G-dimension

In this section, R is Noetherian. Let M be a finitely generated R-module. If M is
totally reflexive, then the cohomology modules Ext}e (M,R) vanish for all i > 0.
The converse is true if M is known a priori to have finite G-dimension, cf. Corol-
lary 1.10. In general, though, one can not infer from such vanishing that M is to-
tally reflexive—explicit examples to this effect are constructed by Jorgensen and
Sega in [77]—and this has motivated a search for alternative criteria for finiteness
of G-dimension.

Reflexive complexes

One such criterion was given by Foxby and published in [114]. Its habitat is the
derived category D(R) of the category of R-modules. The objects in D(R) are
R-complexes, and there is a canonical functor F from the category of R-complexes
to D(R). This functor is the identity on objects and it maps homology isomorphisms
to isomorphisms in D(R). The restriction of F to modules is a full embedding of the
module category into D(R).

The homology H(M) of an R-complex M is a (graded) R-module, and M is said
to have finitely generated homology if this module is finitely generated. That is, if
every homology module H;(M) is finitely generated and only finitely many of them
are non-zero.

For R-modules M and N, the (co)homology of the derived Hom and tensor
product complexes gives the classical Ext and Tor modules:
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Exth(M,N) = H(RHomg(M,N)) and TorX(M,N) = H;(M ®%N).

Definition 8.1. An R-complex M is reflexive if M and RHomg (M, R) have finitely
generated homology and the canonical morphism

M — RHomg(RHomg (M, R),R)

is an isomorphism in the derived category D(R). The full subcategory of D(R)
whose objects are the reflexive R-complexes is denoted by R(R).

The requirement in the definition that the complex RHomg (M, R) has finitely generated homology
is redundant but retained for historical reasons; see [18, 3.3].

Theorem 8.2 below is Foxby’s criterion for finiteness of G-dimension of a finitely
generated module [114, 2.7]. It differs significantly from Definition 1.8 as it does
not involve construction of a G-resolution of the module.

Theorem 8.2. Let R be Noetherian. A finitely generated R-module has finite
G-dimension if and only if it belongs to R(R).

If R is local, then the next result is [28, 2.3.14]. In the generality stated below it
follows from Theorems 1.18 and 8.2: the implication (i) = (iif) is the least obvious,
it uses [28, 2.1.12].

Corollary 8.3. Let R be Noetherian. The following conditions are equivalent.

(i) R is Gorenstein.
(ii) Every R-module is in R(R).
(iii) Every R-complex with finitely generated homology is in R(R).

G-dimension of complexes

Having made the passage to the derived category, it is natural to consider
G-dimension for complexes. For every R-complex M with finitely generated ho-
mology there exists a complex G of finitely generated free R-modules, which is
isomorphic to M in D(R); see [11, 1.7(1)]. In Christensen’s [28, Chap. 2] one finds
the next definition and the two theorems that follow.

Definition 8.4. Let M be an R-complex with finitely generated homology. If H(M)
is not zero, then the G-dimension of M is the least integer n such that there exists
a complex G of totally reflexive R-modules which is isomorphic to M in D(R) and
has G; = 0O for all i > n. If no such integer n exists, then G-dimgM is infinite. If
H(M) =0, then G-dimg M = —oo by convention.

Note that this extends Definition 1.8. As a common generalization of Theorem 8.2
and Corollary 1.10 one has [28, 2.3.8]:
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Theorem 8.5. Let R be Noetherian. An R-complex M with finitely generated ho-
mology has finite G-dimension if an only if it is reflexive. Furthermore, for every
reflexive R-complex M there is an equality

G-dimgM = sup{i € Z | H'(RHomg(M,R)) #0}.

In broad terms, the theory of G-dimension for finitely generated modules extends
to complexes with finitely generated homology. One example is the next extension
[28, 2.3.13] of the Auslander—Bridger Formula (Theorem 1.25).

Theorem 8.6. Let R be local. For every complex M in R(R) one has
G-dimg M = depthR — depth, M.

Here, the depth of a complex M over a local ring (R, m, k) is defined by extension
of the definition for modules, that is,

depthy M = inf{i € Z | H'(RHomg (k,M)) #0}.

Notes

In [28, Chap. 2] the theory of G-dimension for complexes is developed in detail.

Generalized notions of G-dimension—based on reflexivity with respect to semidualizing mod-
ules and complexes—are studied by Avramov, Iyengar, and Lipman [18], Christensen [29],
Frankild and Sather-Wagstaff [60], Gerko [61], Golod [62], Holm and Jgrgensen [70], by Salarian,
Sather-Wagstaft, and Yassemi [91], and White [112]. See also the notes in Section 1.

9 Detecting finiteness of Gorenstein dimensions

In the previous section, we discussed a resolution-free characterization of modules
of finite G-dimension (Theorem 8.2). The topic of this section is similar characteri-
zations of modules of finite Gorenstein projective/injective/flat dimension. By work
of Christensen, Frankild, and Holm [31], appropriate criteria are available for mod-
ules over a Noetherian ring that has a dualizing complex (Theorems 9.2 and 9.5).
As mentioned in the Introduction, a Noetherian ring has a dualizing complex if and
only if it is a homomorphic image of a Gorenstein ring of finite Krull dimension. For
example, every complete local ring has a dualizing complex by Cohen’s structure
theorem.

Auslander categories

The next definition is due to Foxby; see [13, 3.1] and [54, Section 2].
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Definition 9.1. Let R be Noetherian and assume that it has a dualizing complex D.
The Auslander class A(R) is the full subcategory of the derived category D(R)
whose objects M satisfy the following conditions.

(1) H;(M) =0 for |i| > 0.
(2) H;(D®kM)=0fori> 0.
(3) The natural map M — RHomg(D,D ®% M) is invertible in D(R).

The relation to Gorenstein dimensions is given by [31, 4.1]:

Theorem 9.2. Let R be Noetherian and assume that it has a dualizing complex. For
every R-module M, the following conditions are equivalent.

(i) M has finite Gorenstein projective dimension.
(ii) M has finite Gorenstein flat dimension.
(iif) M belongs to A(R).

Remark 9.3. The equivalence of (i)/(ii) and (iii) in Theorem 9.2 provides a
resolution-free characterization of modules of finite Gorenstein projective/flat di-
mension over a ring that has a dualizing complex. Every complete local ring has
a dualizing complex, so in view of Theorem 2.20/4.27 there is a resolution-free
characterization of modules of finite Gorenstein projective/flat dimension over any
local ring.

The next definition is in [13, 3.1]; the theorem that follows is [31, 4.4].

Definition 9.4. Let R be Noetherian and assume that it has a dualizing complex D.
The Bass class B(R) is the full subcategory of the derived category D(R) whose
objects M satisfy the following conditions.

(1) H/(M) =0 for i| > 0.
(2) H'(RHomg(D,M)) =0 fori> 0.
(3) The natural map D @k RHomg(D,M) — M is invertible in D(R).

Theorem 9.5. Let R be Noetherian and assume that it has a dualizing complex. For
every R-module M, the following conditions are equivalent.

(i) M has finite Gorenstein injective dimension.
(ii) M belongs to B(R).

From the two theorems above and from Theorems 3.14 and 4.11 one gets:

Corollary 9.6. Let R be Noetherian and assume that it has a dualizing complex. The
following conditions are equivalent.

(i) R is Gorenstein.
(ii) Every R-complex M with H;(M) = 0 for |i| > 0 belongs to A(R).
(iii) Every R-complex M with H;(M) = 0 for |i| > 0 belongs to B(R).
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Gorenstein dimensions of complexes

It turns out to be convenient to extend the Gorenstein dimensions to complexes; this
is illustrated by Theorem 9.11 below.

In the following we use the notion of a semi-projective resolution. Every complex
has such a resolution, by [11, 1.6], and a projective resolution of a module is semi-
projective. In view of this and Theorem 2.8, the next definition, which is due to
Veliche [110, 3.1 and 3.4], extends Definition 2.7.

Definition 9.7. Let M be an R-complex. If H(M) # 0, then the Gorenstein projective
dimension of M is the least integer n such that H;(M) = O for all i > n and there
exists a semi-projective resolution P of M for which the module Coker(P, | — P,)
is Gorenstein projective. If no such n exists, then Gpdg M is infinite. If H(M) = 0,
then Gpdy M = —eo by convention.

In the next theorem, Vxhich is due to Iyengar and Krause [75, 8.1], the un-
bounded Auslander class A(R) is the full subcategory of D(R) whose objects satisfy
conditions (2) and (3) in Definition 9.1.

Theorem 9.8. Let R be Noetherian and assume that it has a dualizing complex. For
every R-complex M, the following conditions are equivalent.

(i) M has finite Gorenstein projective dimension.
(ii) M belongs to A(R).

One finds the next definition in [4, 2.2 and 2.3] by Asadollahi and Salarian. It
uses the notion of a semi-injective resolution. Every complex has such a resolution,
by [11, 1.6], and an injective resolution of a module is semi-injective. In view of
Theorem 3.6, the following extends Definition 3.5.

Definition 9.9. Let M be an R-complex. If H(M) # 0, then the Gorenstein injective
dimension of M is the least integer n such that H (M) = 0 for all i > n and there
exists a semi-injective resolution I of M for which the module Ker(I" — I"*!) is
Gorenstein injective. If no such integer n exists, then Gidg M is infinite. f H(M) =0,
then Gidg M = —oo by convention.

In the next result, which is [75, 8.2], the unbounded Bass class @(R) is the full
subcategory of D(R) whose objects satisfy (2) and (3) in Definition 9.4.

Theorem 9.10. Let R be Noetherian and assume that it has a dualizing complex.
For every R-complex M, the following conditions are equivalent.

(i) M has finite Gorenstein injective dimension.

(ii) M belongs to @(R)

The next result is [35, 1.7]; it should be compared to Theorem 3.27.
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Theorem 9.11. Let R be local. For every R-module M there is an equality
Gidg M = GidzRHomg (R, M).

Remark 9.12. Via this result, Theorem 9.10 gives a resolution-free characterization
of modules of finite Gorenstein injective dimension over any local ring.

Acyclicity versus total acyclicity

The next results characterize Gorenstein rings in terms of the complexes that define
Gorenstein projective/injective/flat modules. The first one is [75, 5.5].

Theorem 9.13. Let R be Noetherian and assume that it has a dualizing complex.
Then the following conditions are equivalent.

(i) R is Gorenstein.

(ii) For every acyclic complex P of projective R-modules and every projective
R-module Q, the complex Homg (P, Q) is acyclic.

(iii) For every acyclic complex I of injective R-modules and every injective
R-module E, the complex Homg(E,I) is acyclic.

In the terminology of [75], part (ii)/(iii) above says that every acyclic complex of
projective/injective modules is totally acyclic.
The final result is due to Christensen and Veliche [37]:

Theorem 9.14. Let R be Noetherian and assume that it has a dualizing complex.
Then there exist acyclic complexes F and I of flat R-modules and injective R-
modules, respectively, such that the following conditions are equivalent.

(i) R is Gorenstein.
(ii) For every injective R-module E, the complex E Qg F is acyclic.
(iii) For every injective R-module E, the complex Homg(E,I) is acyclic.

The complexes F and I in the theorem have explicit constructions. It is not known,
in general, if there is an explicit construction of an acyclic complex P of projective
R-modules such that R is Gorenstein if Homg (P, Q) is acyclic for every projective
R-module Q.

Notes

In broad terms, the theory of Gorenstein dimensions for modules extends to complexes. It is
developed in detail by Asadollahi and Salarian [4], Christensen, Frankild, and Holm [31] and [32],
Christensen and Sather-Wagstaft [35], and by Veliche [110].

Objects in Auslander and Bass classes with respect to semi-dualizing complexes have interpre-
tations in terms of generalized Gorenstein dimensions; see [44] and [45] by Enochs and Jenda, [69]
by Holm and Jgrgensen, and [92] by Sather-Wagstaff.
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Sharif, Sather-Wagstaff, and White [94] study totally acyclic complexes of Gorenstein projec-
tive modules. They show that the cokernels of the differentials in such complexes are Gorenstein
projective. That is, a “Gorenstein projective” module is Gorenstein projective.
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On v-domains: a survey

Marco Fontana and Muhammad Zafrullah

Abstract An integral domain D is a v-domain if, for every finitely generated nonzero
(fractional) ideal F of D, we have (FF~!')~! = D. The v-domains generalize Priifer
and Krull domains and have appeared in the literature with different names. This
paper is the result of an effort to put together information on this useful class of
integral domains. In this survey, we present old, recent and new characterizations
of v-domains along with some historical remarks. We also discuss the relationship
of v-domains with their various specializations and generalizations, giving suitable
examples.

1 Preliminaries and introduction

Let D be an integral domain with quotient field K. Let F(D) be the set of all nonzero
D-submodules of K and let F(D) be the set of all nonzero fractional ideals of D, i.e.,
A €F(D)if A € F(D) and there exists an element 0 # d € D with dA C D. Let f(D)
be the set of all nonzero finitely generated D-submodules of K. Then, obviously
f(D) C F(D) CF(D).

Recall that a star operation on D is a map * : F(D) — F(D), A — A*, such that
the following properties hold for all 0 # x € K and all A, B € F(D):

(1) D=D* (xA)* =xA";
(#2) A C Bimplies A* C B*;
(x3) ACA*and A*™ := (A*)" = A*.

(the reader may consult [53, Sections 32 and 34] for a quick review of star
operations).
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In [107], the authors introduced a useful gengralizatiog of the notion of a star
operation: a semistar operation on D is amap x : F(D) — F(D), E — E*, such that
the following properties hold for all 0 # x € K and all E,F € F(D):

(*1) (xE)* =xE™,
(x2) E CF implies E* C F*;
(x3) ECE*and E*:=(E*)"=E*.

Clearly, a semistar operation x on D, restricted to F(D), determines a star
operation if and only if D = D*.

If x is a star operation on D, then we can consider the map *, : F(D) — F(D)
defined as follows:

A= J{F*| Fe f(D)and F CA} forall A€ F(D).

Itis easy to see that *, is a star operation on D, called the star operation of finite type

associated to x. Note that F* = F'f for all F € f(D). A star operation # is called a
star operation of finite type (or a star operation of finite character) if x = . It is
easy to see that (x,), = x, (i.e., x, is of finite type).

If *; and *, are two star operations on D, we say that x; < %y if A"l C A*2
for all A € F(D). This is equivalent to saying that (A*1)* = A*2 = (A*2)"! for all
A € F(D). Obviously, for any star operation x on D, we have * ¢ < x,and if *; < xp,
then (*1)]’ < (*z)f.

Let I C D be anonzero ideal of D. We say that [ is a *-ideal of D if I* = I. We call
a x-ideal of D a x-prime ideal of D if it is also a prime ideal and we call a maximal
element in the set of all proper *-ideals of D a x-maximal ideal of D.

It is not hard to prove that a *-maximal ideal is a prime ideal and that each proper
* -ideal is contained in a * -maximal ideal.

Let A be a set of prime ideals of an integral domain D and set

E* :=(\{EDg| Q€ A} forallE € F(D).

The operation x4 is a semistar operation on D called the spectral semistar operation
associated to A. Clearly, it gives rise to a star operation on D if (and only if)
N{Dg|Q €A} =D.

Given a star operation * on D, when A coincides with Max "/ (D), the (nonempty)
set of all * -maximal ideals of D, the operation * defined as follows:

A" :=({ADg | 0 € Max"/ (D)} forall A € F(D)

determines a star operation on D, called the stable star operation of finite type
associated to *. It is not difficult to show that ¥ < x <k

It is easy to see that, mutatis mutandis, all the previous notions can be extended
to the case of a semistar operation.

Let A,B€ F(D), set (A:B):={z€ K|zBCA}, (A:pB):=(A:B)ND,
A~!l:=(D:A). As usual, we let vp (or just v) denote the v-operation defined by
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AV:=(D:(D:A)) = (A’1)7l for all A € F(D). Moreover, we denote (vp), by tp
(or just by t), the t-operation on D; and we denote the stable semistar operation
of finite type associated to vp (or, equivalently, to #p) by wp (or, just by w), i.e.,
Wwp = % = Z‘B

Clearly, wp < tp < vp. Moreover, from [53, Theorem 34.1(4)], we immediately
deduce that * < vp, and thus ¥ < wp and *, < tp, for each star operation * on D.

Integral ideals that are maximal with respect to being *-ideals, when x = v or ¢
or w are relevant in many situations. However, maximal v-ideals are not a common
sight. There are integral domains, such as a nondiscrete rank one valuation domain,
that do not have any maximal v-ideal [53, Exercise 12, p. 431]. Unlike maximal
v-ideals, the maximal ¢-ideals are everywhere, in that every ¢-ideal is contained in
at least one maximal z-ideal, which is always a prime ideal [80, Corollaries 1 and 2,
pp- 30-31] (or, [93, Proposition 3.1.2], in the integral domains setting). Note also
that the set of maximal ¢-ideals coincides with the set of maximal w-ideals [10,
Theorem 2.16].

We will denote simply by dp (or just d) the identity star operation on D and
clearly dp < *, for each star operation * on D. Another important star operation on
an integrally closed domain D is the bp-operation (or just b-operation) defined as
follows:

Abp = ﬂ {AV | V is a valuation overring of D} for all A € F(D).

Given a star operation on D, for A € F(D), we say that A is *-finite if there
exists a F € f(D) such that F* = A*. (Note that in the above definition, we do not
require that F C A.) It is immediate to see that if *; < %, are star operations and A
is x1-finite, then A is *;-finite. In particular, if A is *f-ﬁnite, then it is x-finite. The
converse is not true in general, and one can prove that A is * -finite if and only if
there exists F € f(D), F C A, such that F* = A* [126, Theorem 1.1].

Given a star operation on D, for A € F(D), we say that A is x-invertible if
(AA~1)* = D. From the fact that the set of maximal %-ideals, Max* (D), coincides
with the set of maximal * f-ideals, Max'f (D), [10, Theorem 2.16], it easily follows
that a nonzero fractional ideal A is *-invertible if and only if A is * -invertible (note

that if * is a star operation of finite type, then (AA~!)* = D if and only if AA~' Z Q
for all Q € Max*(D)).

An invertible ideal is a *-invertible x-ideal for any star operation * and, in fact, it
is easy to establish that, if *; and *, are two star operations on an integral domain D
with % < %, then any *;-invertible ideal is also *;-invertible.

A classical result due to Krull [80, Théoréme 8, Chap.I, §4] shows that for a
star operation * of finite type, #-invertibility implies *-finiteness. More precisely,
for A € F(D), we have that A is -invertible if and only if A and A~ are x -finite
(hence, in particular, *-finite) and A is x-invertible (see [46, Proposition 2.6] for the
semistar operation case).

We recall now some notions and properties of monoid theory needed later.
A nonempty set with a binary associative and commutative law of composition
“.”is called a semigroup. A monoid H is a semigroup that contains an identity
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element 1 (i.e., an element such that, for all x € H, 1-x = x-1 = x). If there is
an element o in 3 such that, for all x € H, 0-x = x-0 = 0, we say that H has a
zero element. Finally if, for all a,x,y in a monoid H with a # 0, a-x = a -y implies
that x =y we say that 3 is a cancellative monoid. In what follows we shall be work-
ing with commutative and cancellative monoids with or without zero. Note that, if
D is an integral domain then D can be considered as a monoid under multiplication
and, more precisely, D is a cancellative monoid with zero element 0.

Given a monoid JH, we can consider the set of invertible elements in H, denoted
by U(I) (or, by H*) and the set H*® := H \ {o}. Clearly, U(H) is a subgroup
of (the monoid) H* and the monoid I is called a groupoid if W(H) = H".
A monoid with a unique invertible element is called reduced. The monoid H /U(I)
is reduced. A monoid shall mean a reduced monoid unless specifically stated.

Given a monoid 3, we can easily develop a divisibility theory and we can in-
troduce a GCD. A GCD-monoid is a monoid having a uniquely determined GCD
for each finite set of elements. In a monoid I an element, distinct from the unit
element 1 and the zero element o, is called irreducible (or, atomic) if it is divisible
only by itself and 1. A monoid 3 is called atomic if every nonzero noninvertible
element of J{ is a product of finitely many atoms of JH{. A nonzero noninvertible
element p € H with the property that p | a- b, with a,b € I implies p |a or p | b
is called a prime element. It is easy to see that in a GCD-monoid, irreducible and
prime elements coincide.

Given a monoid H, we can also form the monoids of fractions of I and, when H
is cancellative, the groupoid of fractions ¢(JH) of I in the same manner, avoiding
the zero element o in the denominator, as in the constructions of the rings of fractions
and the field of fractions of an integral domain D.

S 0 0

This survey paper is the result of an effort to put together information on the
important class of integral domains called v-domains, i.e., integral domains in which
every finitely generated nonzero (fractional) ideal is v-invertible. In the present
work, we will use a ring theoretic approach. However, because in multiplicative
ideal theory we are mainly interested in the multiplicative structure of the integral
domains, the study of monoids came into multiplicative ideal theory at an early
stage. For instance, as we shall indicate in the sequel, v-domains came out of a
study of monoids. During the second half of the 20th century, essentially due to the
work of Griffin [57], and due to Gilmer’s books [53] and [54], multiplicative ideal
theory from a ring theoretic point of view became a hot topic for the ring theorists.
However, things appear to be changing. Halter-Koch has put together in [59], in the
language of monoids, essentially all that was available at that time and essentially
all that could be translated to the language of monoids. On the other hand, more
recently, Matsuda, under the influence of [54], is keen on converting into the lan-
guage of additive monoids and semistar operations all that is available and permits
conversion [95].

Since translation of results often depends upon the interest, motivation and imag-
ination of the “translator”, it is a difficult task to indicate what (and in which way)
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can be translated into the language of monoids, multiplicative or additive, or to the
language of semistar operations. But, one thing is certain, as we generalize, we gain
a larger playground but, at the same time, we lose the clarity and simplicity that we
had become so accustomed to.

With these remarks in mind, we indicate below some of the results that may or
may not carry over to the monoid treatment, and we outline some general problems
that can arise when looking for generalizations, without presuming to be exhaustive.
The first and foremost is any result to do with polynomial ring extensions may not
carry over to the language of monoids even though some of the concepts translated
to monoids do get used in the study of semigroup rings. The other trouble-spot is the
results on integral domains that use the identity (d-)operation. As soon as one con-
siders the multiplicative monoid of an integral domain, with or without zero, some
things get lost. For instance, the multiplicative monoid R\ {0} of a PID R, with more
than one maximal ideal, is no longer a principal ideal monoid, because a monoid
has only one maximal ideal, which in this case is not principal. All you can recover
is that R\{0} is a unique factorization monoid; similarly, from a Bézout domain
you can recover a GCD-monoid. Similar comments can be made for Dedekind and
Priifer domains. On the other hand, if the v-operation is involved then nearly every
result, other than the ones involving polynomial ring extensions, can be translated to
the language of monoids. So, a majority of old ring theoretic results on v-domains
and their specializations can be found in [59] and some in [95], in one form or
another. We will mention or we will provide precise references only for those re-
sults on monoids that caught our fancy for one reason or another, as indicated in the
sequel.

The case of semistar operations and the possibility of generalizing results on
v-domains, and their specializations, in this setting is somewhat difficult in that the
area of research has only recently opened up [107]. Moreover, a number of results
involving semistar invertibility are now available, showing a more complex situation
for the invertibility in the semistar operation setting see for instance [46, 109, 110].
However, in studying semistar operations, in connection with v-domains, we often
gain deeper insight, as recent work indicates, see [6, 14].

2 When and in what context did the v-domains show up?

2.1 The genesis

The v-domains are precisely the integral domains D for which the v-operation is
an “endlich arithmetisch brauchbar” operation, cf. [52, p. 391]. Recall that a star
operation * on an integral domain D is endlich arithmetisch brauchbar (for short,
e.a.b.) (respectively, arithmetisch brauchbar (for short, a.b.)) if for all F,G,H €
f(D) (respectively, F € f(D) and G,H € F(D)) (FG)* C (FH)* implies that
G* CH*.
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In [90], the author only considered the concept of “a.b. x-operation” (actually,
Krull’s original notation was “ '-Operation”, instead of “x-operation”). He did not
consider the (weaker) concept of “e.a.b. x-operation”.

The e.a.b. concept stems from the original version of Gilmer’s book [52]. The
results of Section 26 in [52] show that this (presumably) weaker concept is all
that one needs to develop a complete theory of Kronecker function rings. Robert
Gilmer explained to us saying that « I believe I was influenced to recognize this
because during the 1966 calendar year in our graduate algebra seminar (Bill Heinzer,
Jimmy Arnold, and Jim Brewer, among others, were in that seminar) we had cov-
ered Bourbaki’s Chaps.5 and 7 of Algebre Commutative, and the development in
Chap. 7 on the v-operation indicated that e.a.b. would be sufficient. >

Apparently there are no examples in the literature of star operations which are
e.a.b. but not a.b.. A forthcoming paper [45] (see also [44]) will contain an explicit
example to show that Krull’s a.b. condition is really stronger than the Gilmer’s e.a.b.
condition.

We asked Robert Gilmer and Joe Mott about the origins of v-domains. They had
the following to say: < We believe that Priifer’s paper [111] is the first to discuss
the concept in complete generality, though we still do not know who came up with
the name of “v-domain”. >

However, the basic notion of v-ideal appeared around 1929. More precisely, the
notion of quasi-equality of ideals (where, for A,B € F(D), A is quasi-equal to B, if
A~! = B™1), special cases of v-ideals and the observation that the classes of quasi-
equal ideals of a Noetherian integrally closed domain form a group first appeared
in [119] (cf. also [89, p. 121]), but this material was put into a more polished form
by E. Artin and in this form was published for the first time by Bartel Leendert van
der Waerden in “Modern Algebra” [120]. This book originated from notes taken by
the author from E. Artin’s lectures and it includes research of E. Noether and her
students. Note that the “v” of a v-ideal (or a v-operation) comes from the German
“Vielfachenideale” or “V-Ideale” (“ideal of multiples”), terminology used in [111,
Section 7]. It is important to recall also the papers [16] and [91] that introduce the
study of v-ideals and ¢-ideals in semigroups.

The paper [31] provides a clue to where v-domains came out as a separate class of
rings, though they were not called v-domains there. Note that [31] has been cited in
[80, p. 23] and, later, in [59, p.216], where it is mentioned that J. Dieudonné gives
an example of a v-domain that is not a Priifer v-multiplication domain (for short,
PvMD, i.e., an integral domain D in which every F € f(D) is t-invertible).

2.2 Priifer domains and v-domains

The v-domains generalize the Priifer domains (i.e., the integral domains D such
that Dy is a valuation domain for all M € Max(D)), since an integral domain D
is a Priifer domain if and only if every F € f(D) is invertible [53, Theorem 22.1].
Clearly, an invertible ideal is *-invertible for all star operations *. In particular, a
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Priifer domain is a Priifer x-multiplication domain (for short, PxMD, i.e., an integral
domain D such that, foreach F € f(D), F is * f-invertible [75, p.48]). Itis clear from
the definitions that a PxMD is a PvMD (since = < v for all star operations x, cf. [53,
Theorem 34.1]) and a PvMD is a v-domain.

The picture can be refined. M. Griffin, a student of Ribenboim’s, showed that D
is a PvMD if and only if Dy, is a valuation domain for each maximal ¢-ideal M of D
[57, Theorem 5]. A generalization of this result is given in [75, Theorem 1.1] by
showing that D is a PxMD if and only if Dy is a valuation domain for each maximal
*,-ideal Q of D.

Call a valuation overring V of D essential if V. = Dp for some prime ideal P of
D (which is invariably the center of V over D) and call D an essential domain if D
is expressible as an intersection of its essential valuation overrings. Clearly, a Priifer
domain is essential and so it is a PxMD and, in particular, a PvMD (because, in the
first case, D = (D¢ where Q varies over maximal * ;-ideals of D and Dy is a valua-
tion domain; in the second case, D = (| Dy where M varies over maximal 7-ideals of
D and Dy, is a valuation domain; see [57, Proposition 4] and [84, Proposition 2.9]).

From a local point of view, it is easy to see from the definitions that every integral
domain D that is locally essential is essential. The converse is not true and the first
example of an essential domain having a prime ideal P such that Dp is not essential
was given in [67].

Now add to this information the following well known result [85, Lemma 3.1]
that shows that the essential domains sit in between PvMD’s and v-domains.

Proposition 2.1. An essential domain is a v-domain.

Proof. Let A be a subset of Spec(D) such that D = N{Dp | P € A}, where each
Dp is a valuation domain with center P € A, let F' be a nonzero finitely generated
ideal of D, and let x4 be the star operation induced by the family of (flat) overrings
{Dp|P € A} onD. Then

(FF~ Yy = N{(FF")Dp |P€ A} =N{FDpF~'Dp | P € A}
= ({FDp(FDp)~!' |P €A} (because F is f.g.)
=(\{Dp|P €A} (because Dp is a valuation domain).

Therefore, (FF~')* = D and so (FF~!)" = D (since ¥4 < v [53, Theorem 34.1]).

For an alternate implicit proof of Proposition 2.1, and much more, the reader may
consult [124, Theorem 3.1 and Corollary 3.2].

Remark 2.2. (a) Note that Proposition 2.1 follows also from a general result for
essential monoids [59, Exercise 21.6 (i), p.244], but the result as stated above
(for essential domains) was already known for instance as an application of
[125, Lemma 4.5].

If we closely look at [59, Exercise 21.6, p.244], we note that part (ii) was al-
ready known for the special case of integral domains (i.e., an essential domain is
a PvMD if and only if the intersection of two principal ideals is a v-finite v-ideal,
[122, Lemma 8]) and part (iii) is related to the following fact concerning integral
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domains: for F € f(D), F is t-invertible if and only if (F~': F~!) = Dand F~!is
v-finite. The previous property follows immediately from the following statements:

(a.1) Let F € f(D), then F is t-invertible if and only if F is v-invertible and F~"
is v-finite;
(a.2) Let A € F(D), then A is v-invertible if and only if (A~' : A=1) = D.

The statement (a.1) can be found in [127] and (a.2) is posted in [ 128]. For reader’s
convenience, we next give their proofs.

For the “only if part” of (a.l), if F € f(D) is t-invertible, then F is clearly
v-invertible and F ! is also 7-invertible. Hence, F~! is ¢-finite and thus v-finite.

For a “semistar version” of (a.1), see for instance [46, Lemma 2.5].

For the “if part” of (a.2), note that AA~! C D and so (AA’I)’1 OD.Letxe
(AA~")~! hence xAA~' C DandsoxA~!' CA~!,ie,x€ (A"':A!) = D. For the
“only if part”, note that in general D C (A~! : A~!). For the reverse inclusion, let
x€ (A71: A1), hence xA~! C A~!. Multiplying both sides by A and applying the
v-operation, we have xD = x(AA~')" C (AA~!)Y =D, ie,xcDandsoD D (A~ :
A~1). A simple proof of (a.2) can also be deduced from [59, Theorem 13.4].

It is indeed remarkable that all those results known for integral domains can be
interpreted and extended to monoids.

(b) We have observed in (a) that a PyMD is an essential domain such that the
intersection of two principal ideals is a v-finite v-ideal. It can be also shown that D
is a PvMD if and only if (a) N (b) is t-invertible in D, for all nonzero a,b € D [94,
Corollary 1.8].

For v-domains we have the following “v-version” of the previous characterization
for PvMD’s:

D is a v-domain < (a) N (b) is v-invertible in D, for all nonzero a,b € D.

The idea of proof is simple and goes along the same lines as those of PvMD’s.
Recall that every F € f(D) is invertible (respectively, v-invertible; ¢-invertible) if
and only if every nonzero two generated ideal of D is invertible (respectively,
v-invertible; z-invertible) [111, p.7] or [53, Theorem 22.1] (respectively, for the
“y-invertibility case”, [99, Lemma 2.6]; for the “z-invertibility case”, [94, Lemma
1.7]); for the general case of star operations, see the following Remark 2.5 (c).
Moreover, for all nonzero a,b € D, we have:

(a,b)'=1iDNiD = L(aDNbD),
(a,b)(a,b)"' = L-(a,b)(aDNbD).

Therefore, in particular, the fractional ideal (a,b)~! (or, equivalently, (a,b)) is
v-invertible if and only if the ideal aD N bD is v-invertible.

(c) Note that, by the observations contained in the previous point (b), if D is a
Priifer domain then (a) N () is invertible in D, for all nonzero a,b € D. However,
the converse is not true, as we will see in Sections 2.3 and 2.5 (Irreversibility of



On v-domains: a survey 153
=-7). The reason for this is that aD N bD invertible allows only that the ideal %
(or, equivalently, (a,b)") is invertible and not necessarily the ideal (a, b).

Call a P-domain an integral domain such that every ring of fractions is essential
(or, equivalently, a locally essential domain, i.e., an integral domain D such that Dp
is essential, for each prime ideal P of D) [100, Proposition 1.1]. Note that every ring
of fractions of a PvMD is still a PyMD (see Section 3 for more details), in particular,
since a PvMD is essential, a locally PvMD is a P-domain. Examples of P-domains
include Krull domains. As a matter of fact, by using Griffin’s characterization of
PvMD’s [57, Theorem 5], a Krull domain is a PvMD, since in a Krull domain D the
maximal 7-ideals (= maximal v-ideals) coincide with the height 1 prime ideals [53,
Corollary 44.3 and 44.8] and D = (\{Dp | P is an height 1 prime ideal of D}, where
Dp is a discrete valuation domain for all height 1 prime ideals P of D [53, (43.1)].
Furthermore, it is well known that every ring of fractions of a Krull domain is still a
Krull domain [24, BAC, Chap.7, § 1, N. 4, Proposition 6].

With these observations at hand, we have the following picture:

Krull domain = PvMD;

Priifer domain = PvMD =, locally PvMD
=3 P-domain =-4 essential domain
=5 v-domain.

Remark 2.3. Note that P-domains were originally defined as the integral domains D
such that Dy is a valuation domain for every associated prime ideal Q of a principal
ideal of D (i.e., for every prime ideal which is minimal over an ideal of the type (aD:
bD) for some a € D and b € D\ aD) [100, p.2]. The P-domains were characterized
in a somewhat special way in [108, Corollary 2.3]: D is a P-domain if and only if D
is integrally closed and, for each u € K, D C DJ[u] satisfies INC at every associated
prime ideal Q of a principal ideal of D.

2.3 Bézout-type domains and v-domains

Recall that an integral domain D is a Bézout domain if every finitely generated ideal
of D is principal and D is a GCD domain if, for all nonzero a,b € D, a greatest
common divisor of a and b, GCD(a, D), exists and is in D. Among the characteri-
zations of the GCD domains we have that D is a GCD domain if and only if, for
every F € f(D), F" is principal or, equivalently, if and only if the intersection of
two (integral) principal ideals of D is still principal (see, for instance, [2, Theorem
4.1] and also Remark 2.2 (b)). From Remark 2.2 (b), we deduce immediately that a
GCD domain is a v-domain.

However, in between GCD domains and v-domains lie several other distin-
guished classes of integral domains. An important generalization of the notion of
GCD domain was introduced in [3] where an integral domain D is called a General-
ized GCD (for short, GGCD) domain if the intersection of two (integral) invertible
ideals of D is invertible D. It is well known that D is a GGCD domain if and only if,
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for each F € f(D), F" is invertible [3, Theorem 1]. In particular, a Priifer domain
is a GGCD domain. From the fact that an invertible ideal in a local domain is prin-
cipal [86, Theorem 59], we easily deduce that a GGCD domain is locally a GCD
domain. On the other hand, from the definition of PvMD, we easily deduce that a
GCD domain is a PvMD (see also [2, Section 3]). Therefore, we have the following
addition to the existing picture:

Bézout domain =-¢ GCD domain =7 GGCD domain
=g locally GCD domain =9 locally PvMD
=3 e =>4 ... =5 v-domain.

2.4 Integral closures and v-domains

Recall that an integral domain D with quotient field K is called a completely
integrally closed (for short, CIC) domain if D = {z € K | foralln>0,az" €
D for some nonzero a € D}. Tt is well known that the following statements are
equivalent.

() DisCIC:

(i) forall A€ F(D), (A”:A") = D;
(ii') forall A€ F(D), (A:A)=D;
(ii") forall A€ F(D), (A~':A™") = D;
(iii) forall A € F(D), (AA~1)Y = D;

(see [53, Theorem 34.3] and Remark 2.2 (a.2); for a general monoid version of this
characterization, see [59, p. 156]).

In Bourbaki [24, BAC, Chap. 7, § 1, Exercice 30], an integral domain D is called
regularly integrally closed if, for all F € f(D), F" is regular with respect to the
v-multiplication (i.e., if (FG)" = (FH)" for G,H € f(D) then G* = H").

Theorem 2.4. ([53, Theorem 34.6] and [24, BAC, Chap.7, § 1, Exercice 30 (b)])
Let D be an integral domain, then the following are equivalent.

(1) D is a regularly integrally closed domain.

(iiy) Forall F € f(D), (F":F") =D.

(iiiy) For all F € f(D) (FF~')~! = D (or, equivalently, (FF~')" = D).
(iv) D is a v-domain.

The original version of Theorem 2.4 appeared in [91, p.538] (see also [31, p. 139]
and [79, Theorem 13]). A general monoid version of the previous characterization
is given in [59, Theorem 19.2].

Remark 2.5. (a) Note that the condition

(ii’f)forallF e f(D),(F:F)=D

is equivalent to say that D is integrally closed [53, Proposition 34.7] and so it is
weaker than condition (iis) of the previous Theorem 2.4, since (F" : F") = (F" :
F)D(F:F).
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On the other hand, by Remark 2.2 (a.2), the condition
(i) forall F € f(D),(F~':F~')=D
is equivalent to the other statements of Theorem 2.4.

(b) By [99, Lemma 2.6], condition (iiiy) of the previous theorem is equivalent to
(iiip) Every nonzero fractional ideal with two generators is v-invertible.

This characterization is a variation of Priifer’s classical result that an integral
domain is Priifer if and only if each nonzero ideal with two generators is invertible
(Remark 2.2 (b)) and of the characterization of PvMD’s also recalled in that remark.

(c) Note that several classes of Priifer-like domains can be studied in a unified
frame by using star and semistar operations. For instance Priifer star-multiplication
domains were introduced in [75]. Later, in [39], the authors studied Priifer semistar-
multiplication domains and gave several characterizations of these domains, that are
new also for the classical case of PvMD’s. Other important contributions, in general
settings, were given recently in [110] and [63].

In [6, Section 2], given a star operation * on an integral domain D, the authors call
D a x-Priifer domain if every nonzero finitely generated ideal of D is *-invertible
(i.e., (FF~Y)* = D for all F € f(D)). (Note that *-Priifer domains were previously
introduced in the case of semistar operations x under the name of x-domains [47,
Section 2].) Since a *-invertible ideal is always v-invertible, a x-Priifer domain is
always a v-domain. More precisely, d-Priifer (respectively, ¢-Priifer; v-Priifer) do-
mains coincide with Priifer (respectively, Priifer v-multiplication; v-) domains.

Note that, in [6, Theorem 2.2], the authors show that a star operation ver-
sion of (iiip) considered in point (b) characterizes *-Priifer domains, i.e., D is
a x-Priifer domain if and only if every nonzero two generated ideal of D is -
invertible. An analogous result, in the general setting of monoids, can be found in
[59, Lemma 17.2].

(d)Let f(D) :={F" | F € f(D)} be the set of all divisorial ideals of finite type
of an integral domain D (in [31], this set is denoted by 91¢). By Theorem 2.4, we
have that a v-domain is an integral domain D such that each element F¥ € f*(D)
is v-invertible, but F~! (= (F")~!) does not necessarily belong to f*(D). When
(and only when), in a v-domain D, F~! € f"(D) for each F € f*(D), D is a PyMD
(Remark 2.2 (a.1)).

The “regular” teminology for the elements of f¥(D) used by [31, p. 139] (see the
above definition of F"¥ regular with respect to the v-multiplication) is totally different
from the notion of “von Neumann regular”, usually considered for elements of a
ring or of a semigroup. However, it may be instructive to record some observations
showing that, in the present situation, the two notions are somehow related.

Recall that, by a Clifford semigroup, we mean a multiplicative commutative semi-
group I, containing a unit element, such that each element a of 3 is von Neumann
regular (this means that there is b € I such that a*b = a).

(a) Let H be a commutative and cancellative monoid. If 3 is a Clifford semi-
group, then a is invertible in H (and conversely); in other words, JH is a group.

(B) Let D be a v-domain. If A € f(D) is von Neumann regular in the monoid
fY(D) under v-multiplication, then A is t-invertible (or, equivalently, Ale
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/¥(D)). Consequently, an integral domain D is a PvMD if and only if D is a
v-domain and the monoid f”(D) (under v-multiplication) is Clifford regular.

The proofs of (&) and (f) are straightforward, after recalling that f”(D) under
v-multiplication is a commutative monoid and, by definition, it is cancellative if D
is a v-domain.

Note that, in the “if part” of (f3), the assumption that D is a v-domain is essential.
As a matter of fact, it is not true that an integral domain D, such that every member
of the monoid f*(D) under the v-operation is von Neumann regular, is a v-domain.
For instance, in [129, Theorem 11] (see also [30]), the authors show that for every
quadratic order D, each nonzero ideal I of D satisfies I°J = cI, i.e., I’J(1/c) =1,
for some (nonzero) ideal J of D and some nonzero ¢ € D. So, in particular, in this
situation f(D) = F(D) and every element of the monoid f*(D) is von Neumann
regular (we do not even need to apply the v-operation in this case), however not
all quadratic orders are integrally closed (e.g., D := Z[\/g]) and so, in general, not
all elements of fV(D) are regular with respect to the v-operation (i.e., D is not a
v-domain).

Clifford regularity for class and f-class semigroups of ideals in various types
of integral domains was investigated, for instance, in [20 and 21, Bazzoni (1996),
(2001)] [49], [71, 72 and 73, Kabbaj-Mimouni, (2003), (2007), (2008)], [116], and
[54 and 55, Halter-Koch (2007), (2008)]. In particular, in the last paper, Halter-
Koch proves a stronger and much deeper version of (), that is, a v-domain having
its #-class semigroups of ideals Clifford regular is a domain of Krull-type (i.e., a
PvMD with finite #-character). This result generalizes [82, Theorem 3.2] on Priifer
v-multiplication domains.

(e) In the situation of point (d, B), the condition that every v-finite v-ideal is
regular, in the sense of von Neumann, in the larger monoid F*(D) := {AY | A €
F(D)} of all v-ideals of D (under v-multiplication) is too weak to imply that D is a
PvMD.

As a matter of fact, if we assume that D is a v-domain, then every A € V(D) is
v-invertible in the (larger) monoid F”(D). Therefore, A is von Neumann regular in
F¥(D), since (AB)" = D for some B € F'(D) and thus, multiplying both sides by A
and applying the v-operation, we get (A2B)" = A.

Remark 2.6. Regularly integrally closed integral domains make their appearance
with a different terminology in the study of a weaker form of integrality, intro-
duced in the paper [15]. Recall that, given an integral domain D with quotient field
K, an element z € K is called pseudo-integral over D if z € (F" : F") for some
F € f(D). The terms pseudo-integral closure (i.e., D := J{(F" : F")) | F € f(D)}
and pseudo-integrally closed domain (i.e., D = D) are coined in the obvious fash-
ion and it is clear from the definition that pseudo-integrally closed coincides with

regularly integrally closed.

From the previous observations, we have the following addition to the existing
picture:

CIC domain =1y v-domain =-; integrally closed domain.
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Note that in the Noetherian case, the previous three classes of domains coincide
(see the following Proposition 2.8 (2) or [53, Theorem 34.3 and Proposition 34.7]).
Recall also that Krull domains can be characterized by the property that, for all
A € F(D), A is t-invertible [85, Theorem 3.6]. This property is clearly stronger
than the condition (iiif) of previous Theorem 2.4 and, more precisely, it is strictly
stronger than (iiiz), since a Krull domain is CIC (by condition (iii) of the above char-
acterizations of CIC domains, see also [24, BAC, Chap.7, § 1, N. 3, Théoreme 2])
and a CIC domain is a v-domain, but the converse does not hold, as we will see in
the following Section 2.5.

Remark 2.7. Note that Okabe and Matsuda [106] generalized pseudo-integral
closure to the star operation setting. Given a star operation * on an integral domain
D, they call the *-integral closure of D its overring U{(F*: F*) | F € f(D)} denoted
by c¢1*(D) in [58]. Note that, in view of this notation, D = c1"(D) (Remark 2.6) and
the integral closure D of D coincides with ¢1¢(D) [53, Proposition 34.7]. Clearly,
if x) and *; are two star operations on D and | < *;, then c1*1(D) C c1*2(D). In
particular, for each star operation * on D, we have D Ccl* (D) CD.

It is not hard to see that c1*(D) is integrally closed [106, Theorem 2.8] and is
contained in the complete integral closure of D, which coincides with [J{(A : A) |
A € F(D)} [53, Theorem 34.3].

Recall also that, in [59, Section 3], the author introduces a star operation of fi-
nite type on the integral domain c¢1*(D), that we denote here by c1(x), defined as
follows, for all G € f(c1*(D)):

G = J{((F*: F")G)" | F € f(c1"(D))}.

Clearly, D°1(*) = c1*(D). Call an integral domain D s-integrally closed when D =
c1*(D). Then, from the fact that c1(x) is a star operation on c1*(D), it follows that
c1*(D) is c1(*)-integrally closed. In general, if D is not necessarily *-integrally
closed, then c1(x), defined on f(D), gives rise naturally to a semistar operation (of
finite type) on D [41, Definition 4.2].

Note that the domain D (= c1¥(D)), even if it is c1(v)-integrally closed, in
general is not v-integrally closed; a counterexample is given in [15, Example 2.1]
by using a construction due to [55]. On the other hand, since an integral domain D is
av-domain if and only if D = c1"(D) (Theorem 2.4), from the previous observation
we deduce that, in general, D is not a v-domain. On the other hand, using a particular
“D+ M construction”, in [106, Example 3.4], the authors construct an example of a
non—v-domain D such that D is a v-domain, i.e., D C D = c1"5(D).

2.5 Irreversibility of the implications “=,”

We start by observing that, under standard finiteness assumptions, several classes of
domains considered above coincide. Recall that an integral domain D is called
v-coherent if a finite intersection of v-finite v-ideals is a v-finite v-ideal or,
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equivalently, if F —1 is v-finite for all F € f(D) [35, Proposition 3.6], and it is
called a v-finite conductor domain if the intersection of two principal ideals is
v-finite [33]. From the definitions, it follows that a v-coherent domain is a v-finite
conductor domain. From Remark 2.2 (a.1), we deduce immediately that

D is a PvMD < D is a v-coherent v-domain.

In case of a v-domain, the notions of v-finite conductor domain and v-coherent do-
main coincide. As a matter of fact, as we have observed in Remark 2.5 (c), a PvMD
is exactly a -Priifer domain and an integral domain D is ¢-Priifer if and only if every
nonzero two generated ideal is 7-invertible. This translates to D is a PvMD if and
only if (a,b) is v-invertible and (a) N (b) is v-finite, for all a,b € D (see also Remark
2.5 (b)). In other words,

D is a PvMD < D is a v-finite conductor v-domain.

Recall that an integral domain D is a GGCD domain if and only if D is a PvMD
that is a locally GCD domain [3, Corollary 1 and p. 218] or [124, Corollary 3.4].
On the other hand, we have already observed that a locally GCD domain is essential
and it is known that an essential v-finite conductor domain is a PvMD [122, Lemma
8]. The situation is summarized in the following:

Proposition 2.8. Let D be an integral domain.

(1) Assume that D is a v-finite conductor (e.g., Noetherian) domain. Then, the fol-
lowing classes of domains coincide:
(a) PvMD’s;
(b) locally PvMD’s;
(c) P-domains;
(d) essential domains.
(e) locally v-domains;
) v-domains.
(2) Assume that D is a Noetherian domain. Then, the previous classes of domains
(a)—(f) coincide also with the following:
(g) Krull domains;
(h) CIC domains;
(1) integrally closed domains.
(3) Assume that D is a v-finite conductor (e.g., Noetherian) domain. Then, the fol-
lowing classes of domains coincide:
(G) GGCD domains;
(k) locally GCD domains.

Since the notion of Noetherian Bézout (respectively, Noetherian GCD) domain
coincides with the notion of PID or principal ideal domain (respectively, of
Noetherian UFD (= unique factorization domain) [53, Proposition 16.4]), in the
Noetherian case the picture of all classes considered above reduces to the following:

Dedekind domain =1 345 v-domain
PID =¢ UFD =73 locally UFD =>g 3 45 v-domain.
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In general, of the implications =, (with 0 <n < 11) discussed above all, except
=3, are known to be irreversible. We leave the case of irreversibility of =-3 as an
open question and proceed to give examples to show that all the other implications
are irreversible.

o Irreversibility of =g. Take any nondiscrete valuation domain or, more gener-
ally, a Priifer non-Dedekind domain.

e Irreversibility of = (even in the Noetherian case). Let D be a Priifer domain
that is not a field and let X be an indeterminate over D. Then, as D[X] is a PvMD
if and only if D is [93, Theorem 4.1.6] (see also [4, Proposition 6.5], [84, Theorem
3.7], [12, Corollary 3.3], and the following Section 4), we conclude that D[X] is
a PvMD that is not Priifer. An explicit example is Z[X], where Z is the ring of
integers.

e [rreversibility of =;. It is well known that every ring of fractions of a PvMD
is again a PvMD [69, Proposition 1.8] (see also the following Section 3). The fact
that =, is not reversible has been shown by producing examples of locally PvMD’s
that are not PvMD’s. In [100, Example 2.1] an example of a non PvMD essential
domain due to Heinzer and Ohm [69] was shown to have the property that it was
locally PvMD and hence a P-domain.

o Irreversibility of =-3: Open. However, as mentioned above, [100, Example 2.1]
shows the existence of a P-domain which is not a PvMD. Note that [125, Section 2]
gives a general method of constructing P-domains that are not PvMD’s.

o Irreversibility of =4. An example of an essential domain which is not a
P-domain was constructed in [67]. Recently, in [40, Example 2.3], the authors show
the existence of n-dimensional essential domains which are not P-domains, for all
n>2.

e Irreversibility of =5. Note that, by = ¢, a CIC domain is a v-domain and
Nagata solving with a counterexample a famous conjecture stated by Krull in 1936,
has produced an example of a one dimensional quasilocal CIC domain that is not a
valuation ring (cf. [101,102,114]). This proves that a v-domain may not be essential.
It would be desirable to have an example of a nonessential v-domain that is simpler
than Nagata’s example.

o Irreversibility of =4 (even in the Noetherian case). This case can be handled
in the same manner as that of =1, since a polynomial domain over a GCD domain
is still a GCD domain (cf. [86, Exercise 9, p. 42]).

e Irreversibility of =7 (even in the Noetherian case). Note that a Priifer domain
is a GGCD domain, since a GGCD domain is characterized by the fact that F" is
invertible for all F € f(D) [3, Theorem 1]. Moreover, a Priifer domain D is a Bézout
domain if and only if D is GCD. In fact, according to [28] a Priifer domain D
is Bézout if and only if D is a generalization of GCD domains called a Schreier
domain (i.e., an integrally closed integral domain whose group of divisibility is a
Riesz group, that is a partially ordered directed group G having the following inter-
polation property: given ai,as,...,am,b1,b2,...,b, € G with a; < b;, there exists
¢ € G with a; < ¢ < bj see [28] and also [2, Section 3]). Therefore, a Priifer non-
Bézout domain (e.g., a Dedekind non principal ideal domain, like Z[i\/g]) shows
the irreversibility of =7.
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o Irreversibility of =g. From the characterization of GGCD domains recalled
in the irreversibility of =7 [3, Theorem 1], it follows that a GGCD domain is a
PvMD. More precisely, as we have already observed just before Proposition 2.8, an
integral domain D is a GGCD domain if and only if D is a PvMD that is a locally
GCD domain. Finally, as noted above, there are examples in [125] of locally GCD
domains that are not PvMD’s. More explicitly, let E be the ring of entire functions
(i.e., complex functions that are analytic in the whole plane). It is well known that E
is a Bézout domain and every nonzero non unit x € E is uniquely expressible as an
associate of a “countable” product x = [] pfi, where e¢; > 0 and p; is an irreducible
function (i.e., a function having a unique root) [70, Theorems 6 and 9]. Let S be
the multiplicative set of E generated by the irreducible functions and let X be an
indeterminate over E, then E + X Eg[X] is a locally GCD domain that is not a PvMD
[125, Example 2.6 and Proposition 4.1].

e [rreversibility of =9 (even in the Noetherian case). This follows easily from the
fact that there do exist examples of Krull domains (which we have already observed
are locally PvMD’s) that are not locally factorial (e.g., a non-UFD local Noetherian
integrally closed domain, like the power series domain D[X]| constructed in [115],
where D is a two dimensional local Noetherian UFD). As a matter of fact, a Krull
domain which is a GCD domain is a UFD, since in a GCD domain, for all F € f(D),
FY is principal and so the class group C1(D) = 0 [25, Section 2]; on the other hand,
a Krull domain is factorial if and only if C1(D) = 0 [48, Proposition 6.1].

e Irreversibility of =g. Let R be an integral domain with quotient field L and
let X be an indeterminate over L. By [29, Theorem 4.42] T := R+ XL[X] is a
v-domain if and only if R is a v-domain. Therefore, if R is not equal to L, then
obviously T is an example of a v-domain that is not completely integrally closed
(the complete integral closure of T is L[X] [53, Lemma 26.5]). This establishes that
=10 18 not reversible.

Note that, in [35, Section 4] the transfer in pullback diagrams of the PvMD property
and related properties is studied. A characterization of v-domains in pullbacks is
proved in [50, Theorem 4.15]. We summarize these results in the following:

Theorem 2.9. Let R be an integral domain with quotient field k and let T be an
integral domain with a maximal ideal M such that L := T /M is a field extension
of k. Let ¢ : T — L be the canonical projection and consider the following pullback
diagram:

D (R) —— R

= !
| |
T = ¢7l(k) — k
| |
T LN §

Then, D is a v-domain (respectively, a PvMD) if and only if k = L, Ty is a valuation
domain and R and T are v-domains (respectively, PvMD’s).
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Remark 2.10. Recently, bringing to a sort of close a lot of efforts to restate results
of [29] in terms of very general pullbacks, in the paper [76], the authors use some
remarkable techniques to prove a generalization of the previous theorem. Although
that paper is not about v-domains in particular, it does have a few good results on v-
domains. One of these results will be recalled in Proposition 3.6. Another one, with
a pullback flavor, can be stated as follows: Let I be a nonzero ideal of an integral
domain D and set T := (I : I). If D is a v-domain (respectively, a PvMD) then T is
a v-domain (respectively, a PvMD) [76, Proposition 2.5].

o Irreversibility of =1;. Recall that an integral domain D is called a Mori do-
main if D satisfies ACC on its integral divisorial ideals. According to [103, Lemma
1] or [112], D is a Mori domain if and only if for every nonzero integral ideal I of
D there is a finitely generated ideal J C [ such that J¥ = 1" (see also [20] for an
updated survey on Mori domains). Thus, if D is a Mori domain then D is CIC (i.e.,
every nonzero ideal is v-invertible) if and only if D is a v-domain (i.e., every nonzero
finitely generated ideal is v-invertible). On the other hand, a completely integrally
closed Mori domain is a Krull domain (see for example [48, Theorem 3.6]). More
precisely, Mori v-domains coincide with Krull domains [104, Theorem]. Therefore,
an integrally closed Mori non Krull domain provides an example of the irreversibil-
ity of =11. An explicit example is given next.

It can be shown that, if X C L is an extension of fields and if X is an indeterminate
over L, then k + XL[X] is always a Mori domain (see, for example, [50, Theorem
4.18] and references there to previous papers by V. Barucci and M. Roitman). It is
easy to see that the complete integral closure of k + XL[X] is precisely L[X] [53,
Lemma 26.5]. Thus if k & L then k+ X L[X] is not completely integrally closed and,
as an easy consequence of the definition of integrality, it is integrally closed if and
only if k is algebraically closed in L. This shows that there do exist integrally closed
Mori domains that are not Krull. A very explicit example is given by Q + XR[X],
where R is the field of real numbers and Q is the algebraic closure of QQ in R.

3 v-domains and rings of fractions

We have already mentioned that, if S is a multiplicative set of a PvMD D, then Dy is
still a PvMD [69, Proposition 1.8]. The easiest proof of this fact can be given noting
that, given F € f(D), if F is t-invertible in D then F Dy is t-invertible in Dg, where S
is a multiplicative set of D [25, Lemma 2.6]. It is natural to ask if Dy is a v-domain
when D is a v-domain.

The answer is no. As a matter of fact an example of an essential domain D with a
prime ideal P such that Dp is not essential was given in [67]. What is interesting is
that an essential domain is a v-domain by Proposition 2.1 and that, in this example,
Dp is a (non essential) overring of the type k+ X L[X]x) = (k+XL[X])x.x), Where
Lis afield and £ its subfield that is algebraically closed in L. Now, a domain of type
k+ XL[X] (x) 1s an integrally closed local Mori domain, see [50, Theorem 4.18].
In the irreversibility of =-1;, we have also observed that if a Mori domain is a
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v-domain then it must be CIC, i.e., a Krull domain, and hence, in particular, an
essential domain. Therefore, Heinzer’s construction provides an example of an es-
sential (v-)domain D with a prime ideal P such that Dp is not a v-domain.

Note that a similar situation holds for CIC domains. If D is CIC then it may be
that for some multiplicative set S of D the ring of fractions Dy is not a completely
integrally closed domain. A well known example in this connection is the ring E of
entire functions. For E is a completely integrally closed Bézout domain that is infi-
nite dimensional (see [61 and 62, Henriksen (1952), (1953)], [53, Examples 16-21,
pp- 146-148] and [38, Section 8.1]). Localizing E at one of its prime ideals of
height greater than one would give a valuation domain of dimension greater than
one, which is obviously not completely integrally closed [53, Theorem 17.5]. For
another example of a CIC domain that has non—CIC rings of fractions, look at the
integral domain of integer-valued polynomials Int(Z) [7, Example 7.7 and the fol-
lowing paragraph at p. 127]. (This is a non-Bézout Priifer domain, being atomic and
two-dimensional.)

Note that these examples, like other well known examples of CIC domains with
some overring of fractions not CIC, are all such that their overrings of fractions
are at least v-domains (hence, they do not provide further counterexamples to the
transfer of the v-domain property to the overrings of fractions). As a matter of fact,
the examples that we have in mind are CIC Bézout domains with Krull dimension
>2 (and polynomial domains over them), constructed using the Krull-Jaffard-Ohm-
Heinzer Theorem (for the statement, a brief history and applications of this theorem
see [53, Theorem 18.6, p. 214, p. 136, Example 19.12]). Therefore, it would be
instructive to find an example of a CIC domain whose overrings of fractions are not
all v-domains. Slightly more generally, we have the following.

It is well known that if {D; | A € A} is a family of overrings of D with
D = (Njea D) and if each Dy is a completely integrally closed (respectively, in-
tegrally closed) domain then so is D (for the completely integrally closed case see
for instance [53, Exercise 11, p. 145]; the integrally closed case is a straightfor-
ward consequence of the definition). It is natural to ask if in the above statement
“completely integrally closed/integrally closed domain” is replaced by “v-domain”
the statement is still true.

The answer in general is no, because by Krull’s theorem every integrally closed
integral domain is expressible as an intersection of a family of its valuation overrings
(see e.g. [53, Theorem 19.8]) and of course a valuation domain is a v-domain. But,
an integrally closed domain is not necessarily a v-domain (see the irreversibility of
=11). If however each of D, is a ring of fractions of D, then the answer is yes.
A slightly more general statement is given next.

Proposition 3.1. Let {D; | A € A} be a family of flat overrings of D such that
D =yea Dy If each of Dy, is a v-domain then so is D.

Proof. Let v, be the v-operation on D, and let * := Av,, be the star operation on D
defined by A — A* := (", (AD,,)"*, for all A € F(D) [1, Theorem 2]. To show that
D is a v-domain it is sufficient to show that every nonzero finitely generated ideal
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is *-invertible (for * < v and so, if F € f(D) and (FF~!)* = D, then applying the
v-operation to both sides we get (FF~!)" = D).
Now, we have

(FF1) = M ((FF~")Dy)" = A ((FDy)(F~'Dy))"

N ((FD,)(FDy)~ "4 (since Dy is D-flat and F is f.g.)
=i D, (since D is a v, -domain)

=D.

Corollary 3.2. Let A be a nonempty family of prime ideals of D such that D =
({Dp | P € A}. If Dp is a v-domain for each P € A, then D is a v-domain. In
particular, if Dy is a v-domain for all M € Max(D) (for example, if D is locally a
v-domain, i.e., Dp is a v-domain for all P € Spec(D)), then D is a v-domain.

Note that the previous Proposition 3.1 and Corollary 3.2 generalize Proposition 2.1,
which ensures that an essential domain is a v-domain. Corollary 3.2 in turn leads to
an interesting conclusion concerning the overrings of fractions of a v-domain.

Corollary 3.3. Let S be a multiplicative set in D. If Dp is a v-domain for all prime
ideals P of D such that P is maximal with respect to being disjoint from S, then Dg
is a v-domain.

In Corollary 3.2 we have shown that, if Dy, is a v-domain for all M € Max(D),
then D is a v-domain. However, if Dp is a v-domain for all P € Spec(D), we get
much more in return. To indicate this, we note that, if S is a multiplicative set of D,
then Dsg = (N{Dyg | Q ranges over associated primes of principal ideals of D with
0NS =0} [26, Proposition 4] (the definition of associated primes of principal ideals
was recalled in Remark 2.3). Indeed, if we let S = {1}, then we have D =Dy | Q
ranges over all associated primes of principal ideals of D} (see also [86, Theorem
53] for a “maximal-type” version of this property). Using this terminology and the
information at hand, it is easy to prove the following result.

Proposition 3.4. Let D be an integral domain. Then, the following are equivalent.

(1)  Dis av-domain such that, for every multiplicative set S of D, Dg is a v-domain.
(i) For every nonzero prime ideal P of D, Dp is a v-domain.
(iii) For every associated prime of principal ideals of D, Q, D is a v-domain.

From the previous considerations, we have the following addition to the existing
picture:
locally PvMD =15 locally v-domain =3 v-domain.

The example discussed at the beginning of this section shows the irreversibility of
=13. Nagata’s example (given for the irreversibility of =-5) of a one dimensional
quasilocal CIC domain that is not a valuation ring shows also the irreversibility
of =15.
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Remark 3.5. In the spirit of Proposition 3.4, we can make the following statement
for CIC domains: Let D be an integral domain. Then, the following are equivalent:

(i) Dis a CIC domain such that, for every multiplicative set S of D, Ds is CIC.
(i) For every nonzero prime ideal P of D, Dp is CIC.
(iii) For every associated prime of a principal ideal of D, Q, D is CIC.

At the beginning of this section, we have mentioned the existence of examples
of v-domains (respectively, CIC domains) having some localization at prime ide-
als which is not a v-domain (respectively, a CIC domain). Therefore, the previous
equivalent properties (like the equivalent properties of Proposition 3.4) are strictly
stronger than the property of being a CIC domain (respectively, v-domain).

On the other hand, for the case of integrally closed domains, the fact that, for
every nonzero prime ideal P of D, Dp is integrally closed (or, for every maximal
ideal M of D, D)y is integrally closed) returns exactly the property that D is integrally
closed (i.e., the “integrally closed property” is a local property; see, for example,
[17, Proposition 5.13]). Note that, more generally, the semistar integral closure is a
local property (see for instance [60, Theorem 4.11]).

We have just observed that a ring of fractions of a v-domain may not be a
v-domain, however there are distinguished classes of overrings for which the ascent
of the v-domain property is possible.

Given an extension of integral domains D C T with the same field of quo-
tients, T is called v-linked (respectively, t-linked) over D if whenever I is a nonzero
(respectively, finitely generated) ideal of D with I=! = D we have (IT)"! =T.
It is clear that v-linked implies ¢-linked and it is not hard to prove that flat over-
ring implies z-linked [32, Proposition 2.2]. Moreover, the complete integral closure
and the pseudo-integral closure of an integral domain D are ¢-linked over D (see
[32, Proposition 2.2 and Corollary 2.3] or [58, Corollary 2]). Examples of v-linked
extensions can be constructed as follows: take any nonzero ideal I of an integral
domain then the overring 7 := (I" : I") is a v-linked overring of D [76, Lemma 3.3].

The ¢-linked extensions were used in [32] to deepen the study of PvMD’s. It is
known that an integral domain D is a PvMD if and only if each t-linked overring of D
is a PvMD (see [73, Proposition 1.6], [84, Theorem 3.8 and Corollary 3.9]). More
generally, in [32, Theorem 2.10], the authors prove that an integral domain D is a
PvMD if and only if each t-linked overring is integrally closed. On the other hand,
a ring of fractions of a v-domain may not be a v-domain, so a ¢-linked overring of
a v-domain may not be a v-domain. However, when it comes to a v-linked overring
we get a different story. The following result is proven in [76, Lemma 2.4].

Proposition 3.6. If D is a v-domain and T is a v-linked overring of D, then T is a
v-domain.

Proof. LetJ :=yT +y,T +---+y,T be anonzero finitely generated ideal of 7 and
set F:=y|D+y;D+---+y,D € f(D). Since D is a v-domain, (FF~!)" = D and,
since T is v-linked, we have (JF~'T)" = (FF~!T)" = T. We conclude easily that
(J(T:J)) =T.
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4 v-domains and polynomial extensions

4.1 The polynomial ring over a v-domain

As for the case of integrally closed domains and of completely integrally closed
domains [53, Corollary 10.8 and Theorem 13.9], we have observed in the proof
of irreversibility of = that, given an integral domain D and an indeterminate X
over D,

D[X]is a PvMD < D is a PvMD.

A similar statement holds for v-domains. As a matter of fact, the following
statements are equivalent (see part (4) of [12, Corollary 3.3]).

(i) ForeveryF € f(D), F" is v-invertible in D.
(ii) Forevery G € f(D[X]), G¥ is v-invertible in D[X].

This equivalence is essentially based on a polynomial characterization of inte-
grally closed domains given in [113], for which we need some introduction. Given
an integral domain D with quotient field K, an indeterminate X over K and a
polynomial f € K[X], we denote by cp(f) the content of f, i.e., the (fractional)
ideal of D generated by the coefficients of f. For every fractional ideal B of D[X],
set cp(B) := (¢p(f) | f € B). The integrally closed domains are characterized by
the following property: for each integral ideal J of D[X] such that JND # (0),
J' = (ep(J)[X])" = cp(J)"[X] (see [113, Section 3] and [12, Theorem 3.1]). More-
over, an integrally closed domain is an agreeable domain (i.e., for each fractional
ideal B of D[X], with B C K[X], there exists 0 # s € D -depending on B- with sB C D)
[12, Theorem 2.2]. (Note that agreeable domains were also studied in [65] under the
name of almost principal ideal domains.)

The previous considerations show that, for an integrally closed domain D, there is
a close relation between the divisorial ideals of D[X] and those of D [113, Theorem
1 and Remark 1]. The equivalence (i)«<>(ii) will now follow easily from the fact that,
given an agreeable domain, for every integral ideal J of D[X], there exist an integral
ideal J; of D[X] with J; N D # (0), a nonzero element d € D and a polynomial
f € DX] in such a way that J = d~' fJ; [12, Theorem 2.1].

On the other hand, using the definitions of v-invertibility and v-multiplicati-
on, one can easily show that for A € F(D), A is v-invertible if and only if A" is
v-invertible. By the previous equivalence (i)<(ii), we conclude that every F € f(D)
is v-invertible if and only if every G € f(D[X]) is v-invertible and this proves the
following:

Theorem 4.1. Given an integral domain D and an indeterminate X over D, D is a
v-domain if and only if D[X] is a v-domain.

Note that a much more interesting and general result was proved in terms of
pseudo-integral closures in [15, Theorem 1.5 and Corollary 1.6].
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4.2 v-domains and rational functions

Characterizations of v-domains can be also given in terms of rational functions,
using properties of the content of polynomials.

Recall that Gauss’ Lemma for the content of polynomials holds for Dedekind
domains (or, more generally, for Priifer domains). A more precise and general
statement is given next.

Lemma 4.2. Let D be an integral domain with quotient field K and let X be an
indeterminate over D. The following are equivalent.

(i) D is an integrally closed domain (respectively, a PvMD; a Priifer domain).
(ii) For all nonzero f,g € K[X), cn(f8)" = (cn(f)cn(g))” (respectively, cp(fg)"
= (cn(f)en(8))"s ep(fg) = cn(f)en(g))-

For the “Priifer domain part” of the previous lemma, see [53, Corollary 28.5],
[118], and [51]; for the “integrally closed domains part”, see [90, p. 557] and [113,
Lemme 1]; for the “PvMD’s part”, see [14, Corollary 1.6] and [27, Corollary 3.8].
For more on the history of Gauss’ Lemma, the reader may consult [68, p. 1306] and
[2, Section 8].

For general integral domains, we always have the inclusion of ideals cp(fg) C
ep(f)ep(g), and, more precisely, we have the following famous lemma due to
Dedekind and Mertens (for the proof, see [105] or [53, Theorem 28.1] and, for
some complementary information, see [2, Section 8]):

Lemma 4.3. In the situation of Lemma 4.2, let 0 # f, g € K[X] and let m := deg(g).
Then

ep(f)"en(fg) = cn(f)"ep(g).

A straightforward consequence of the previous lemma is the following:

Corollary 4.4. In the situation of Lemma 4.2, assume that, for a nonzero polynomial
f € K[X], ep(f) is v-invertible (e.g., t-invertible). Then cp(fg)’ = (cp(f)en(g))”
(or, equivalently, cp(fg)' = (cp(f)ep(g))'), for all nonzero g € K[X].

From Corollary 4.4 and from the “integrally closed domain part” of Lemma 4.2,
we have the following result (see [99, Theorem 2.4 and Section 3]):

Corollary 4.5. In the situation of Lemma 4.2, set Vp := {g € D[X] | ¢cp(g) is
v-invertible} and Tp := {g € D[X| | cp(g) is t-invertible}. Then, Tp and Vp are
multiplicative sets of D[X| with Tp C Vp. Furthermore, Vi (or, equivalently, Tp) is
saturated if and only if D is integrally closed.

It can be useful to observe that, from Remark 2.2 (a.1), we have
Tp ={g € Vp | cp(g)~" is t-finite}.

We are now in a position to give a characterization of v-domains (and PvMD’s) in
terms of rational functions (see [99, Theorems 2.5 and 3.1]).
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Theorem 4.6. Suppose that D is an integrally closed domain, then the following are
equivalent:

(i) D is a v-domain (respectively, a PvMD).

(i) Vp = D[X]\{0} (respectively, Tp = D[X]\{0}).

(iii) D[X]v, (respectively, DIX|r,) is a field (or, equivalently, D[X|v, = K(X)
(respectively, DX, = K(X))).

(iv) Each nonzero element z € K satisfies a polynomial f € D[X] such that cp(f)
is v-invertible (respectively, t-invertible).

Remark 4.7. Note that quasi Priifer domains (i.e., integral domains having inte-
gral closure Priifer [19]) can also be characterized by using properties of the
field of rational functions. In the situation of Lemma 4.2, set Sp := {g € D[X] |
¢p(g) is invertible}. Then, by Lemma 4.4, the multiplicative set Sp of D[X] is sat-
urated if and only if D is integrally closed. Moreover, D is quasi Priifer if and only
if D[X]g,, is a field (or, equivalently, D[X]s, = K(X)) if and only if each nonzero
element z € K satisfies a polynomial f € D[X] such that c¢p(f) is invertible [99,
Theorem 1.7].

Looking more carefully at the content of polynomials, it is obvious that the set
Np := {g € DIX] | ep(g)" = D}

is a subset of Tp and it is well known that Np is a saturated multiplicative set of D[X]
[84, Proposition 2.1]. We call the Nagata ring of D with respect to the v-operation
the ring:

Na(D,v) := D[X]u,, .

We can also consider

Kr(D,v):={f/g|f.g € DIX], 8 #0, cp(f)" S cp(g)"}

When v is an e.a.b. operation on D (i.e., when D is a v-domain) Kr(D,v) is
a ring called the Kronecker function ring of D with respect to the v-operation
[53, Theorem 32.7]. Clearly, in general, Na(D,v) C Kr(D,v). It is proven in [39,
Theorem 3.1 and Remark 3.1] that Na(D,v) = Kr(D,v) if and only if D is a PMD.

Remark 4.8. (a) Concerning Nagata and Kronecker function rings, note that a uni-
fied general treatment and semistar analogs of several results were obtained in the
recent years, see for instance [41-43].

(b) A general version of Lemma 4.2, in case of semistar operations, was recently
proved in [14, Corollary 1.2].

4.3 v-domains and uppers to zero

Recall that if X is an indeterminate over an integral domain D and if Q is a nonzero
prime ideal of D[X] such that QN D = (0) then Q is called an upper to zero. The
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“upper” terminology in polynomial rings is due to S. McAdam and was introduced
in the early 1970s. In a recent paper, Houston and Zafrullah introduce the UMyv-
domains as the integral domains such that the uppers to zero are maximal v-ideals
and they prove the following result [78, Theorem 3.3].

Theorem 4.9. Let D be an integral domain with quotient field K and let X be an
indeterminate over K. The following are equivalent.

(i) D is av-domain.

(i) D is an integrally closed UMv-domain.

(iii) D is integrally closed and every upper to zero in D[X] is v-invertible.

(iiip) D is integrally closed and every upper to zero of the type Qy := (K[X] N D[X]
with £ € D[X] a linear polynomial is v-invertible.

It would be unfair to end the section with this characterization of v-domains
without giving a hint about where the idea came from.

Gilmer and Hoffmann in 1975 gave a characterization of Priifer domains using
uppers to zero. This result is based on the following characterization of essential
valuation overrings of an integrally closed domain D: let P be a prime ideal of D,
then Dp is a valuation domain if and only if, for each upper to zero Q of D[X],
0 < P[X], [53, Theorem 19.15].

A globalization of the previous statement leads to the following result that can
be easily deduced from [56, Theorem 2].

Proposition 4.10. In the situation of Theorem 4.9, the following are equivalent:

(i) D is a Priifer domain.
(ii) D is integrally closed and if Q is an upper to zero of D|X], then Q ¢ M[X], for
all M € Max(D) (i.e., cp(Q) = D).

In [123, Proposition 4], the author proves a “t-version” of the previous result.

Proposition 4.11. In the situation of Theorem 4.9, the following are equivalent:

(i) Disa PvMD.
(ii) D is integrally closed and if Q upper to zero of D|X], then Q € M[X], for all
maximal t-ideal M of D (i.e., cp(Q)" = D).

The proof of the previous proposition relies on very basic properties of
polynomial rings.

Note that in [123, Lemma 7] it is also shown that, if D is a PyMD, then every
upper to zero in D[X] is a maximal z-ideal. As we observed in Section 1, unlike
maximal v-ideals, the maximal ¢-ideals are ubiquitous.

Around the same time, in [75, Proposition 2.6], the authors came up with a much
better result, using the *-operations much more efficiently. Briefly, this result said
that the converse holds, i.e., D is a PvMD if and only if D is an integrally closed
integral domain and every upper to zero in D[X] is a maximal t-ideal.
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It turns out that integral domains D such that their uppers to zero in D[X] are
maximal ¢-ideals (called UMt-domains in [77, Section 3]; see also [36] and, for a
survey on the subject, [74]) and domains such that, for each upper to zero Q of D[X],
¢p(Q)" = D had an independent life. In [77, Theorem 1.4], studying 7-invertibility,
the authors prove the following result.

Proposition 4.12. In the situation of Theorem 4.9, let Q be an upper to zero in D[X].
The following statements are equivalent.

(i) Qs a maximal t-ideal of D[X].
(il) Qs a t-invertible ideal of D[X].
(i) cp(Q)" = D.

Based on this result, one can see that the following statement is a precursor to
Theorem 4.9.

Proposition 4.13. Let D be an integral domain with quotient field K and let X be an
indeterminate over K. The following are equivalent.

(i) Disa PvMD.

(i) D is an integrally closed UMt-domain.

(iii) D is integrally closed and every upper to zero in D[X] is t-invertible.

(iiip) D is integrally closed and every upper to zero of the type Qp := (K[X|ND[X],
with { € D[X] a linear polynomial, is t-invertible.

Note that the equivalence (i)<-(ii) is in [77, Proposition 3.2]. (ii)<(iii) is
a consequence of previous Proposition 4.12. Obviously, (iii)=-(iiiy). (iiig)=-(i)
is a consequence of the characterization already cited that an integral domain D
is a PvMD if and only if each nonzero two generated ideal is t-invertible [94,
Lemma 1.7]. As a matter of fact, consider a nonzero two generated ideal I := (a,b)
in D, set £ :=a+ bX and Qy := (K[X] N D[X]. Since D is integrally closed, then
Q¢ = lep(£)~'D[X] by [113, Lemme 1, p. 282]. If Qy is t-invertible (in (D[X]), then
it is easy to conclude that cp(¢) = I is t-invertible (in D).

Remark 4.14. Note that Priifer domains may not be characterized by straight modi-
fications of conditions (ii) and (iii) of Proposition 4.13. As a matter of fact, if there
exists in D[X] an upper to zero which is also a maximal ideal, then the domain D
is a G(oldman)-domain (i.e., its quotient field is finitely generated over D), and
conversely [86, Theorems 18 and 24]. Moreover, every upper to zero in D[X] is
invertible if and only if D is a GGCD domain [11, Theorem 15].

On the other hand, a variation of condition (iiiz) of Proposition 4.13 does charac-
terize Priifer domains: D is a Priifer domain if and only if D is integrally closed and
every upper to zero of the type Q; := (K [X|ND[X| with £ € D[X] a linear polynomial
is such that cp(Qy) = D [75, Theorem 1.1].
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5 v-domains and GCD-theories

In [23, p. 170], a factorial monoid D is a commutative semigroup with a unit ele-
ment 1 (and without zero element) such that every element a € D can be uniquely
represented as a finite product of atomic (= irreducible) elements g; of D, i.e.,
a=4qiqz---q, with r > 0 and this factorization is unique up to the order of fac-
tors; for r = O this product is set equal to 1. As a consequence, it is easy to see that
this kind of uniqueness of factorization implies that 1 is the only invertible element
in D, i.e., U(D) = {1}. Moreover, it is not hard to see that, in a factorial monoid,
any two elements have GCD and every atom is a prime element [59, Theorem 10.7].
Let D be an integral domain and set D® := D\ {0}. In [23, p. 171] an integral
domain D is said to have a divisor theory if there is a factorial monoid D and a
semigroup homomorphism, denoted by (-): D* — D, given by a — (a), such that:

(D1) (a)|(b)inDifandonlyifa|binD fora,b e D°.
(D2) Ifg|(a)andg]| (b)theng| (atb)fora,be D* withatb#0andge D.
(D3) Letge D and set

g:={xeD® suchthat g| (x)} U{0}.

Then @ = b if and only if a = b for all a,b € D.

Given a divisor theory, the elements of the factorial monoid D are called divi-
sors of the integral domain D and the divisors of the type (a), for a € D are called
principal divisors of D.

Note that, in [117, p. 119], the author shows that the axiom (D2), which
guarantees that g is an ideal of D, for each divisor g € D, is unnecessary. Fur-
thermore, note that divisor theories were also considered in [98, Chap. 10], written
in the spirit of Jaffard’s volume [80].

Borevich and Shafarevich introduced domains with a divisor theory in order to
generalize Dedekind domains and unique factorization domains, along the lines of
Kronecker’s classical theory of “algebraic divisors” (cf. [88] and also [121] and
[34]). As a matter of fact, they proved that

(a) If an integral domain D has a divisor theory (=): D* — D then it has only one
(i.e., if (-): D* — D’ is another divisor theory then there is an isomorphism
D = D’ under which the principal divisors in D and D’, which correspond to a
given nonzero element a € D, are identified) [23, Theorem 1, p. 172];

(b) An integral domain D is a unique factorization domain if and only if D has a
divisor theory (—): D* — D in which every divisor of D is principal [23, Theorem
2,p. 174];

(c) Anintegral domain D is a Dedekind domain if and only if D has a divisor theory
(-): D* — D such that, for every prime element p of D, D/p is a field [23,
Chap. 3, Section 6.2].

Note that Borevich and Shafarevich do not enter into the details of the determi-
nation of those integral domains for which a theory of divisors can be constructed
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[23, p. 178], but it is known that they coincide with the Krull domains (see [120,
Section 105], [18, Theorem 5], [92, Section 5], and [87] for the monoid case). In
particular, note that, for a Krull domain, the group of non-zero fractional divisorial
ideals provides a divisor theory.

Taking the above definition as a starting point and recalling that (D2) is unnec-
essary, in [92], the author introduces a more general class of domains, called the
domain with a GCD-theory.

An integral domain D is said to have a GCD—theory if there is a GCD-monoid G
and a semigroup homomorphism, denoted by (-): D* — G, given by a — (a), such
that:

(G1) (a)|(b)inSGifandonlyifa|binD fora,be D*. 3
(G2) Letge€ G and set g:= {x € D* such that g| (x)} U{0}. Then @ = b if and
onlyifa="bforalla,be§.

Let Q := ¢(G) be the group of quotients of the GCD-monoid G. It is not hard to
prove that the natural extension a GCD-theory (-): D* — G to a group homomor-
phism (=) : K* — Q has the following properties:

(qG1) (o)’ | (B)" with respect to G if and only if ¢ | B with respect to D for o,
BeKk". 3

(qG2) Leth e Qandseth:={yecK® suchthat | (y)'} U{0} (the division in Q
is with respect to §). Then @ = b if and only if a = b for all a,b €Q.

In [92, Theorem 2.5], the author proves the following key result, that clarifies the
role of the ideal a. (Call, as before, divisors of D the elements of the GCD-monoid
G and principal divisors of D the divisors of the type (a), fora € D*.)

Proposition 5.1. Let D be an integral domain with GCD-theory (-): D* — G,
let a be any divisor of G and {(a;)}ier a family of principal divisors with a =
GCD({(ai)},g). Then a = ({ai},‘g)v =a"

Partly as a consequence of Proposition 5.1, we have a characterization of a
v-domain as a domain with GCD-theory [92, Theorem and Definition 2.9].

Theorem 5.2. Given an integral domain D, D is a ring with GCD—theory if and only
if D is a v-domain.

The “only if part” is a consequence of Proposition 5.1 (for details see
[92, Corollary 2.8]).

The proof of the “if part” is constructive and provides explicitly the GCD—-theory.
The GCD-monoid is constructed via Kronecker function rings. Recall that, when v
is an e.a.b. operation (i.e., when D is a v-domain (Theorem 2.4)), the Kronecker
function ring with respect to v, Kr(D,v), is well defined and is a Bézout domain
[53, Lemma 32.6 and Theorem 32.7]. Let K be the monoid Kr(D,v)*, let U :=
U(Kr(D,v)) be the group of invertible elements in Kr(D,v) and set G := K /U. The
canonical map:
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Kr(D,v)*
u

defines a GCD-theory for D, called the Kroneckerian GCD-theory for the
v-domain D. In particular, the GCD of elements in D is realized by the equivalence
class of a polynomial; more precisely, under this GCD-theory, given ag,ay,...,a,
in D*, GCD(ay,ai,...,an) := GCD([ao],[a1];---,[an]) = [ao + a1 X + - - -+ a,X"].

It is classically known [23, Chap. 3, Section 5] that the integral closure of a do-
main with divisor theory in a finite extension of fields is again a domain with divisor
theory. For integral domains with GCD-theory a stronger result holds.

[-]:D*—G= , a— la] (= the equivalence class of a in G)

Theorem 5.3. Let D be an integrally closed domain with field of fractions K and let
K C L be an algebraic field extension and let T be the integral closure of D in L.
Then T is a v-domain (i.e., domain with GCD-theory) if and only if D is a v-domain
(i.e., a domain with GCD-theory).

The proof of the previous result is given in [92, Theorem 3.1] and it is based on
the following facts:
In the situation of Theorem 5.3,

(a) Foreachideall of D, "> = (IT)'T NK [90, Satz 9, p. 675];
(b) If D is a v-domain, then the integral closure of Kr(D,vp) in the algebraic field
extension K (X) C L(X) coincides with Kr(T,vr) [92, Theorem 3.3].

Remark 5.4. (a) The notions of GCD-theory and divisor theory, being more in the
setting of monoid theory, have been given a monoid treatment [59, Exercises 18.10,
19.6 and Chap. 20].

(b) Note that a part of previous Theorem 5.3 appears also as a corollary to [61,
Theorem 3.6]. More precisely, let c1V(D) (:= U{F" : F") | F € f(D)}) be the
v-(integral) closure of D. We have already observed (Theorem 2.4 and Remark 2.6)
that an integral domain D is a v-domain if and only if D = c1”(D). There-
fore Theorem 5.3 is an easy consequence of the fact that, in the situation of
Theorem 5.3, it can be shown that c1V(T') is the integral closure of ¢1¥(D) in L
[61, Theorem 3.6].

(c) In [92, Section 4], the author develops a “stronger GCD-theory” in or-
der to characterize Pv"MD’s. A GCD-theory of finite type is a GCD-theory, (-),
with the property that each divisor a in the GCD-monoid G is such that a =
GCD((ay),(a2),.--,(an)) for a finite number of nonzero elements a; ,az, ... ,a, € D.
For a PvMD, the group of non-zero fractional ¢-finite ¢-ideals provides a GCD-
theory of finite type. (Note that the notion of a GCD—theory of finite type was intro-
duced in [18] under the name of “quasi divisor theory”. A thorough presentation of
this concept, including several characterizations of PxMD’s, is in [59, Chap. 20].)

The analogue of Theorem 5.2 can be stated as follows: Given an integral
domain D, D is a ring with GCD-theory of finite type if and only if D is a PvMD.
Also in this case, the GCD-theory of finite type and the GCD-monoid are con-
structed explicitly, via the Kronecker function ring Kr(D,v) (which coincides in
this situation with the Nagata ring Na(D, v)), for the details see [92, Theorem 4.4].
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Moreover, in [92, Theorem 4.6] there is given another proof of Priifer’s theorem
[L11, Section 11], analogous to Theorem 5.3: Let D be an integrally closed do-
main with field of fractions K and let K C L be an algebraic field extension and let
T be the integral closure of D in L. Then T is a PvMD (i.e., domain with GCD-
theory of finite type) if and only if D is PvMD (i.e., domain with GCD—theory of
finite type). Recall that a similar result holds for the special case of Priifer domains
[53, Theorem 22.3].

6 Ideal-theoretic characterizations of v-domains

Important progress in the knowledge of the ideal theory for v-domains was made in
1989, after a series of talks given by the second named author while visiting seve-
ral US universities. The results of various discussions of that period are contained
in the “A to Z” paper [5], which contains in particular some new characterizations
of v-domains and of completely integrally closed domains. These characterizations
were then expanded into a very long list of equivalent statements, providing further
characterizations of (several classes of) v-domains [13].

Proposition 6.1. Let D be an integral domain. Then, D is a v-domain if and only
if D is integrally closed and (FiNFN---NF,)" = F'NFyN---NFE, for all
F\,F,...,F, € f(D) (i.e., the v-operation distributes over finite intersections of
finitely generated fractional ideals).

The “if part” is contained in the “A to Z” paper (Theorem 7 of that paper, where
the converse was left open). The converse of this result was proved a few years later
in [96, Theorem 2].

Note that, even for a Noetherian 1-dimensional domain, the v-operation may
not distribute over finite intersections of (finitely generated) fractional ideals. For
instance, here is an example due to W. Heinzer cited in [9, Example 1.2], let k be
a field, X an indeterminate over k and set D := k[[X?,X* X3], F := (X3,X*) and
G := (X3,X7). Clearly, D is a non-integrally closed 1-dimensional local Noethe-
rian domain with maximal ideal M := (X3,X* X3) = F + G. It is easy to see that
F'=G'=M,andso FNG= (X3) = (FNG)" CF'NG" =M.

Recently, D.D. Anderson and Clarke have investigated the star operations that
distribute over finite intersections. In particular, in [8, Theorem 2.8], they proved
a star operation version of the “only if part” of Proposition 6.1 and, moreover, in
[8, Proposition 2.7] and [9, Lemma 3.1 and Theorem 3.2] they established several
other general equivalences that, particularized in the v-operation case, are summa-
rized in the following:

Proposition 6.2. Let D be an integral domain.

@ FENR/”RN---NE)=FNnNEnN---NF) foral Fi,F,....F, € f(D) if and
only if (F :p G)" = (F" :p G") forall F,G € f(D).

(b) The following are equivalent.
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(i) D is av-domain.
(ii) D is integrally closed and (F :p G)" = (F¥ :p G") for all F,G € f(D)
(iii) D is integrally closed and ((a,b)N(c,d))" = (a,b)" N(c,d)" for all nonzero

a,b,c,d € D.

(iv) D is integrally closed and ((a,b) N (c))" = (a,b)" N (c) for all nonzero
a,b,c e D.

(v) D is integrally closed and ((a,b) :p (c))” = ((a,b)" :p (¢)) for all nonzero
a,b,ceD.

Note that PvMD’s can be characterized by “t-versions” of the statements of
Proposition 6.2 (b) [9, Theorem 3.3]. Moreover, in [9], the authors also asked several
questions related to distribution of the v-operation over intersections. One of these
questions [8, Question 3.2(2)] can be stated as: Is it true that, if D is a v-domain,
then (ANB)" =A"NB" forall A,B € F(D)?

In [97, Example 3.4], the author has recently answered in the negative, construct-
ing a Priifer domain with two ideals A, B € F(D) such that (ANB)" #A"NB".

In a very recent paper [6], the authors classify the integral domains that come
under the umbrella of v-domains, called there x-Priifer domains for a given star
operation * (i.e., integral domains such that every nonzero finitely generated frac-
tional ideal is *-invertible). Since v-Priifer domains coincide with v-domains, this
paper provides also direct and general proofs of several relevant quotient-based char-
acterizations of v-domains given in [13, Theorem 4.1]. We collect in the following
theorem several of these ideal-theoretic characterizations in case of v-domains. For
the general statements in the star setting and for the proof the reader can consult [6,
Theorems 2.2 and 2.8].

Theorem 6.3. Given an integral domain D, the following properties are equivalent.

@) D is a v-domain.
(i) Forall A€ F(D) and F € f(D), A C F¥ implies AY = (BF)" for some B

€ F(D).
(i) (A:F)"=(A":F)=(AF ') forall A€ F(D)and F € f(D).
(iv) (A:F 'Y= (A":F')=(AF)" forall A€ F(D) and F € f(D).
(v) (F:A)Y=(F":A)=(FA ") forall A€ F(D)and F € f(D).

(viii) (A :
(={H e f(D)|H=H"
(ix) (((a):p (b)) + ((b) :p (a)))" = D for all nonzero a,b € D.
xp) ((FNG)(F+G))’ = (FG)" forall F,G € f(D).
xr) ((ANB)(A+B)) = (AB)" for all A,B € F(D).
(xif) (F(G"'NH"))" =(FG)"N(FH)" for all F,G,H € f(D).

(xigp) (F(A"NBY))" = (FA)"N(FB)" forall F € f(D) and A,B € F(D).
(xii) IfA,B € F(D) are v-invertible, then AN B and A + B are v-invertible.
(xiii) IfA,B € F(D) are v-invertible, then A + B is v-invertible.
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Note that some of the previous characterizations are remarkable for various rea-
sons. For instance, (xiii) is interesting in that while an invertible ideal (respectively,
t-invertible ¢-ideal) is finitely generated (respectively, ¢-finite) a v-invertible v-ideal
may not be v-finite. Condition (xr) in the star setting gives ((ANB)(A+ B))* =
(AB)* for all A,B € F(D) and for * = d (respectively, * = 1), it is a (known) char-
acterization of Priifer domains (respectively, PvMD’s), but for * = v is a brand-new
characterization of v-domains. More generally, note that, replacing in each of the
statements of the previous theorem v with the identity star operation d (respec-
tively, with t), we (re)obtain several characterizations of Priifer domains (respec-
tively, PvMD’s).

Franz Halter-Koch has recently shown a great deal of interest in the paper [6] and,
at the Fez Conference in June 2008, he has presented further systematic work in the
language of monoids, containing in particular the above characterizations [64].
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Tensor product of algebras over a field

Hassan Haghighi, Massoud Tousi, and Siamak Yassemi

Abstract This review paper deals with tensor products of algebras over a field. Let k
be a field and A, B be commutative k-algebras. We consider the following question:
“Which properties of A and B are conveyed to the k-algebra A ®; B?”. This field is
still developing and many contexts are yet to be explored. We will restrict the scope
of the present survey, mainly, to special rings.

1 Introduction

In this paper, we consider the following question: “Which properties of A and B are
conveyed to the k-algebra A ®; B?” This field is still developing and many contexts
are yet to be explored. We will restrict the scope of the present survey, mainly, to
special rings.

Throughout this note all rings and algebras considered are commutative with
identity elements, and all ring homomorphisms are unital. As well, k stands for
a field and A and B are commutative k-algebras. We use Spec(A), Max(A), and
Min(A) to denote the sets of prime ideals, maximal ideals, and minimal prime ideals,
respectively, of a ring A.
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1.1 Integral domain

Suppose that A and B are integral domains containing a field k. If the quotient
field k(A) of A is separable over k and k is algebraically closed in k(A), then A ®; B
is an integral domain, c.f. [16, p. 562, Ex. A1.2]. For example, if k is algebraically
closed, and A and B are arbitrary domains containing k, then A ®; B is an integral
domain.

1.2 Unit elements

In [51], the following theorem is given: Suppose k is an algebraically closed field,
A and B are commutative algebras over k, and k is algebraically closed in A and B.
Then every invertible element of A ®; B is of the form a ® b, where a is an invertible
element of A and b is an invertible element of B.

1.3 Local rings

In [52], Sweedler showed that for commutative algebras A and B over a common
field k, A ®; B is local if and only if the following hold

(i) A and B are local,
(i) A/J(A)®rB/J(B) is local (J(—) = Jacobson radical),
(iii) either A or B is algebraic over k.

In [33], it is shown that for A and B not necessarily commutative, A ®; B local
implies (i), (ii), and (iii), and a converse can be obtained by replacing (iii) by the
condition that A or B is locally finite by k. (An algebra is called locally finite if
every finite subset generates a finite dimensional subalgebra.)

In [42], it is shown that if A ®; B is semilocal, then A and B are semilocal.
In addition, in [32, Theorem 6] it is shown that if A ®; B is semilocal, then either A
or B is algebraic over k.

1.4 Noetherian rings

Several authors have been interested in studying when a tensor products of two
k-algebras is Noetherian. In [59] Vamos showed that the tensor products of two
k-algebras is not necessarily Noetherian. More precisely, let K be an extension field
of k and let K ®; K be the tensor product of K with itself over k. In [59, Theorem
11] Vamos proved that the following statements are equivalent:

(i) K ®K is Noetherian,
(i) the ascending chain condition is satisfied by the intermediary fields between k
and K,
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(iii) K is a finitely generated extension of k.

In [2], Baetica gives a different proof of the equivalence of (i) and (iii). While
the proof is longer than Vdmos’ proof, it is more “natural” because it considers the
three cases which appear in the usual structure theory of fields:

(1) K is a separable algebraic extension of k,
(2) K is purely inseparable over k,
(3) K is purely transcendental over k.

Moreover, in [2], some other results on when a tensor product is Noetherian are
also obtained. For example, let k be a field with characteristic p # 0, K a purely
inseparable field extension of k, and A a k-algebra. If A is a Noetherian local ring,
then A ®; K is a coherent local ring with Noetherian spectrum. Furthermore, A ®; K
is a Noetherian ring if and only if its maximal ideal is finitely generated; moreover
if the maximal ideal of A ®; K is nilpotent, then A ®; K is Noetherian.

2 Krull dimension

For a commutative ring R, let dim(R) be the classical Krull dimension of R, i.e.,
the supremum of length of chains of prime ideals of R, if this supremum exists,
and o if it does not. For an extension field K of the field k, denote by tr.degK/k
the transcendence degree of the extension or o if K does not have finite degree of
transcendence over k. In [46], Sharp proved the following result (actually, this result
appeared 10 years earlier in Grothendieck’s EGA [23, Remarque 4.2.1.4, p. 349]).

Theorem 2.1. For two extension fields K and L of the field k, dim(K ® L) =
min(trdegK/k, trdegL/k).

Sharp and P. Vadmos [47] generalized this result to the case of fields Ki,--- , K,
where n > 2. The authors showed the following.

Theorem 2.2. Let K1,K>,- -+ ,K, (n > 2) be extension fields of k and fori=1,--- ,n,
let t; = tr.deg(K; /). Then

dim(K1 ® - QK,) =t +tr+ -+ 1, —max{g]|1 <i<n}.

In [62], Wadsworth generalized the above results to the case where the al-
gebras are what he calls AF-domain over k (AF stands for “altitude formula”),
which is defined as follows: a commutative algebra D over k is an AF-ring if
ht(p) + tr.deg, (D/p) = tr.deg, (Dy) for each prime ideal p of D. (If A is a domain
tr.deg, (A) is the transcendence degree over k of its quotient field. For a non-domain
A, tr.deg, A = sup{tr.deg, (A/p)|p € Spec(A)}.) It is worth noting that the class of
AF-domains contains the most basic rings of algebraic geometry, including finitely
generated k-algebras that are domains. Wadsworth showed the following result, see
also [38, Theorem 4 and Remark].



184 Hassan Haghighi, Massoud Tousi, and Siamak Yassemi

Theorem 2.3 ([62, Theorem 3.8]). Assume that {D;}!_, is a finite family of AF-
domains that are algebras over k. Let t; = tr.deg, (Dj) < oo, and let d; = dim(D;).
Then

dim(D|®---®@D,) =t +ty+ -+ 1, —max{t; — d;j|1 <i<n}.

To show the necessity of the hypothesis that the domains D; should be AF-
domains, he gave an example of rank-one discrete valuation rings Vi, V;, each of
transcendence degree 2 over a field &, such that dim(V; ®; V}) = dim(V, @, V,) =3
while dim(V| ®; V») = 2. He also stated a formula for dim(A ®x B) which holds for
an AF-domain A, with no restriction on B.

Let us first recall some notation. We use A[n] to denote the polynomial ring
Alxy,--- ,x,] and p[n] to denote the prime ideal plx;,---,x,] of Afxy,---,x,]. Let
d,s be two integers with 0 < d < s. Set

D(s,d,A) = max{htp[xy,- - ,Xs] + Min(s,d + tr.deg (A/p))|p € Spec(A)}.
Theorem 2.4 ([62, Theorem 3.7]). Let A be an AF-domain. Then
dim(A ®; B) = D(tr.deg, (A),dim(A),B).

In [9], Bouchiba, Girolami, and Kabbaj showed that many (but not all) of
Wadsworth’s results can be extended from domains to rings with zero-divisors. In
particular, they provided a formula for the dimension of the tensor product A ®; B
where A is an AF-ring.

Theorem 2.5 ([9, Theorem 1.4]). Let A be an AF-ring and B any ring. Then
dim(A ®xB) = max{D(tr.deg, (Ap),ht(p),B)|p € Spec(A)}.

In addition, they gave a formula for dim(A; ®; --- ®;A,), where A; is AF-ring for
any i.

Lemma 2.6 ([9, Lemma 1.6]). Assume that Ay,--- A, are AF-rings that are alge-
bras over k, with n > 2. For i = 1,--- ,n, we denote tr.deg, ((Ai)p,) by ty, for any
pi € Spec(A;). Then dim(A; ®y - -- ®A,) is equal to

max{Min(ht(p) +ty, + - +tp,, tp, +ht(p2) +tp; +--Ftp, -,
tpl + +tp”71 +ht(pn))}7
where p; runs over Spec(A;) andi=1,--- ,n.

Then they determined a necessary and sufficient condition under which the
dimension of the tensor product of the AF-rings Ay,---,A, satisfies the formula
of Wadsworth’s Theorem 2.3. In this way, they presented a number of applications
of this result.
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Theorem 2.7 ([9, Theorem 1.8]). Assume that Ay,--- ,A, are AF-rings that are
algebras over k, with t; = tr.deg, (A) and d; = dim(A;). Then

dim(A| ;- Ap) =t 4+ +1t, —max{t;, — dj|1 <i<n}

if and only if for any i = 1,--- n there is m; € Max(4;) and r € {1,--- ,n}
such that ht(m;) = d, and for any j € {1,---,n} — {r}, tr.deg ((Aj)m;) = tj and
tr.degy (Aj/m;) < tr.degy (Ar/my).

Corollary 2.8 ([9, Corollaries 1.13 and 1.14]). Assume that Ay,--- ,A, are AF-
rings that are algebras over k, with t; = tr.degy (A;) and d; = dim(A;). Consider the
following statements:

(1)  tr.deg(Ai/pi) =t, foranyi=1,--- ,nand forany p; € Min(A;).
(i) Ay,---,A, are equidimensional.

If one of (i) or (ii) holds, then
dim(A; ® -+ QrAp) =11+ + 1, —max{t; — d;|1 <i< n}.

In [20], dimension formulas for the tensor product of two particular pullbacks are
established and a conjecture on the dimension formulas for more general pullbacks
is raised. In [10] such a conjecture is resolved. Consider the two pullbacks of k-
algebras fori =1,2:

R, — D;

! l
T, — K;

where, for i = 1,2, T; is an integral domain with maximal ideal M;, K; = T;/M;,
@; is the canonical surjection from 7; onto K;, D; is a proper subring of K; and
R, = (p;1 (D,)

Theorem 2.9 ([10, Theorem 1.9]). Assume that Ty, T>, D and D, are AF-domains
with dim(T;) = ht(M;) and dim(T,) = ht(M3). Then

dim(R; ®Ry) = max{ ht(M; [tr.deg, (R;)]) + D(tr.deg, (D;),dim(D;),R7),
ht(M;[tr.deg, (R;)]) + D(tr.deg, (D;),dim(D,),R;)}.

Notice that when the extension fields K; are transcendental over the domains D;,
the pullbacks R; are not AF-domains. In view of this, the above theorem allows us
to compute Krull dimension of tensor products of two k-algebras for a large class of
(not necessarily AF-domains) k-algebras.

Question 2.10. Let T;,T, be integral domains with only one of them is an
AF-domain. Find dim(R| ®;Ry).

However, if none of the 7;’s is an AF-domain, then the formula of Theorem 2.9
does not hold in general, see [62, Example 4.3]. In addition, [10, Example 3.4]
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illustrates the fact that in Theorem 2.9 the hypothesis “dim(7;) = ht(M;), i = 1,2”
cannot be deleted.

The polynomial rings R;[tr.deg, (K;) — tr.deg,(D;)] and Ry[tr.deg,(K;)—
tr.deg, (Dy)] turned out to be AF-domains [10, Proposition 2.2]. The purpose
of [5] and [7] is to investigate dim(A ®y B) in the general case where A[n] is an
AF-domain for some positive integer . It is worth reminding the reader that if A is
an AF-domain, then so is the polynomial ring A[n]. The converse fails in general.

Indeed, in [5], it is shown that if A is a one dimensional domain such that A[n]
is an AF-domain for some positive integer n and B is any k-algebra, then one can
express dim(A ® B) entirely in terms of numerical invariants of A and B. As an ap-
plication, the Krull dimension of A ®; B for a new family of k-algebras is computed.

In [7], Bouchiba provides a formula for dim(A ®4 B) in the case in which B is a
locally Jaffard domain and n < tr.deg, (B) is a positive integer such that A[n] is an
AF-domain. We recall that an AF-ring is a locally Jaffard ring [19].

One of the main results proved in [6] demonstrates:

Theorem 2.11 ([6, Theorem 1.1]). If B is an integral domain, then

dim(A[tr.deg, (B)]) — (tr.deg, (B) — dim(B)) < dim(A ®¢B)
< dim(Atr.deg, (B)]).

As a consequence, with the same assumptions, the author showed the following
result.

Corollary 2.12 ([6, Corollary 2]). If B is an integral domain, then

dim(A) +dim(B) < dim(A ®¢B)
< tr.degy (B) + (tr.deg, (B) + 1)dim(A).

Note that, for B := k[n], the previous formula gives back the classical result for
polynomials proved by Seidenberg in 1954 [48, Theorem 3] and extended by Jaffard
in 1960 [29, Corollary 2], that is,

dim(A) +n < dim(A[n]) <n+ (n+ 1)dim(A).

Corollary 2.11 states the analogues of the above mentioned inequalities of poly-
nomial rings for tensor products of k-algebras.

Theorem 2.10 yields the following consequences, which allow us to compute the
Krull dimension of tensor products for a new family of k-algebras outside the scope
of Wadsworth’s theorem 2.4.

Corollary 2.13 ([6, Corollary 1.5]). Let A be an integral domain and dim(A) =
tr.deg, (A). Then
dim(A ®; B) = dim(B|tr.deg, (A)]).
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Corollary 2.14 ([6, Corollary 1.6]). Let A be a domain and m a maximal ideal of A
such that tr.deg (A/m) = Min{tr.deg(A/M) : M € Max(A)}. Assume that ht(m) +
tr.deg, (A/m) = tr.deg, (A). Then

dim(A ®; B) = D(tr.deg, (A),dim(A),B).

Corollary 2.15 ([6, Corollary 1.7]). Let A be a domain. Let n be a maximal ideal
of B such that

ht(n[tr.deg, (A)]) = max{ht(M]tr.deg, (A)])|M € Max(B)}.
Iftr.deg, (A) < tr.deg, (B/n), then
dim(A ®; B) = dim(B]tr.deg, (A)]).

Example 2.2, Remark 2.3 and Example 2.5 of [6] showed that we are able to build
k-algebras that are domains and satisfy the conditions of Corollary 2.12, 2.13, and
2.14, while they are not AF-domains. In particular, Example 2.2 of [6] illustrates
the fact that the assumptions of Corollary 2.13 are actually weaker than those of
Theorem 2.4.

3 Special rings
3.1 Classical rings

Among Noetherian local rings there is a well-known chain:

Regular = Complete intersection = Gorenstein = Cohen—Macaulay.

These concepts are extended to non-local rings: for example a ring R is regular if
for all prime ideals p of R, Ry, is a regular local ring.

A Noetherian local ring R is a complete intersection (ring) if its completion R is
a residue class ring of a regular local ring S with respect to an ideal generated by an
S-sequence.

We investigate the cases where these properties are preserved under tensor prod-
uct operations. It is well-known that the tensor product A ®; B of regular rings is
not regular in general. In [63], Watanabe, Ishikawa, Tachibana, and Otsuka showed
that under a suitable condition, the tensor product of regular rings is a complete in-
tersection. It is proved in [23], that the tensor product S ®g T of Cohen—Macaulay
rings is again Cohen—Macaulay if we assume that 7" and S are commutative algebras
over ring R such that S is a flat R-module and 7 is a finitely generated R-module.
In [63], it is shown that the same is true for Gorenstein rings. Also, Watanabe et al.
showed that if A and B are two Gorenstein (resp., Cohen—Macaulay) rings, A ®y, B is
Noetherian and A /m is finitely generated over k for each maximal ideal m of A, then
A ®y, B is Gorenstein (resp., Cohen—Macaulay) ring. Recently, in [11], Bouchiba and
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Kabbaj showed that if A ®; B is Noetherian, then A ®; B is a Cohen—Macaulay ring
if and only if A and B are Cohen—Macaulay rings.

Recall that a Noetherian ring R satisfies Serre’s condition (S,) provided
depthR, > Min{n,dim(R,)} for all prime ideals p of R; and R satisfies condi-
tion (R,) if Ry, is a regular local ring for all prime ideals p with dim(Ry) < n.

In [53] we showed the following.

Theorem 3.1. Let A and B be non-zero k-algebras such that A @y B is Noetherian.
Then the following hold:

(a) A®yBislocally a complete intersection (resp., Gorenstein, Cohen—Macaulay)
if and only if A and B are locally a complete intersection (resp., Gorenstein,
Cohen—Macaulay).

(b) A ®y B satisfies (S,) if and only if A and B satisfy (S).

(¢) IfA®yB is regular then A and B are regular.

(d) If A®yB satisfies (R,) then A and B satisfy (Ry).

(e) The converse of parts (c) and (d) hold if char(k) = 0 or char(k) = p such that
k={aP|a € k}.

In view of the above result, one may ask the following:

Question 3.2. Let A and B be two non-zero k-algebras such that A ®; B is Noethe-
rian. Let A be a Cohen—Macaulay ring but not Gorenstein and B be a Gorenstein
ring. By part (a) of Theorem 3.1, the k-algebra A ®; B is Cohen—Macaulay but not
Gorenstein. What can be said about the structure of A ®; B? More generally we may
ask similar questions with regular, complete intersection, Gorenstein, or Cohen—
Macaulay rings.

3.2 Locally finite-dimensional rings, (stably) strong S-property,
(universal) catenarity

In order to treat Noetherian domains and Priifer domains in a unified manner,
Kaplansky [30] introduced the concepts of S(eidenberg)-domain and strong S-ring.
A domain R is called an S-domain if, for each height one prime ideal p of R,
the extension pR[x] to the polynomial ring in one variable also has height one.
A commutative ring R is said to be a strong S-ring if R/p is an S-domain for each
p € Spec(R). It is noteworthy that while R[x] is always an S-domain for any domain
R (see [17]), R[x] need not be a strong S-ring even when R is a strong S-ring. Thus,
R is said to be a stably strong S-ring (also called a universally strong S-ring) if the
polynomial ring R[xy, - - - ,x,] is a strong S-ring for each positive integer n.

Consider the following property that a ring R may satisfy.

(Q1) For any prime ideals p, p’ of R with p C p’, there exists a saturated chain
of prime ideals starting from p and ending at p’, and all such chains have the same
finite length.
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A ring R is called catenarian if it satisfies (Q1). A ring R is called universally
catenarian if R[xy,- - - ,x,] is catenarian for each positive integer n.

In [8], Bouchiba, Dobbs, and Kabbaj studied the prime ideal structure of A ®; B.
They sought necessary and sufficient conditions for such a tensor product to have
the S-property, (stably) strong S-property and (universal) catenarity. First they in-
vestigated the minimal prime ideal structure in tensor products of k-algebras. In this
direction, the following three results were given. Recall that a ring R satisfies MPC
(for Minimal Primes Comaximality) if the minimal prime ideals in R are pairwise
comaximal.

Proposition 3.3 ([8, Proposition 3.1]). If A and B are k-algebras such that A ®; B
satisfies MPC, then A and B satisfy MPC.

Theorem 3.4 ([8, Theorem 3.3]). Let k be an algebraically closed field. Then
A ®y, B satisfies MPC if and only if A and B each satisfies MPC.

Vamos [59, Corollary 4] proved that if K and L are field extensions of k, then K ®;
L satisfies MPC. The third result generalizes this result in the context of integrally
closed domains as follows:

Theorem 3.5 ([8, Theorem 3.4]). If A and B are integrally closed domains, then
A ®y B satisfies MPC.

Note that the above result can not be extended to arbitrary k-algebras. There
exist a separable algebraic field extension K of finite degree over k and a k-algebra
A satisfying MPC such that K ®; A fails to satisfy MPC (see [8, Example 3.2]).

Bouchiba et al. extended the domain-theoretic definitions of the S-property and
catenarity to the MPC context. In [8], aring R is called an S-ring if it is satisfies MPC
and for each height one ideal p of R, the extension pR|[x] has height one. Consider
the following property that a ring R may satisfy:

(Q2) R is locally finite dimensional and ht(p’) = ht(p) + 1 for each containment
p C p’ of adjacent prime ideals of R.

In [8], a ring R is said to be catenarian if R satisfies MPC and (Q2). Note that R
satisfies MPC and (Q1) if and only if R satisfies MPC and (Q2).

As an application, the authors established necessary and sufficient conditions for
A ®¢ B to be an S-ring:

Theorem 3.6 ([8, Theorem 3.9]). Let A ®; B satisfies MPC. Then A @ B is an
S-ring if and only if at least one of the following statements is satisfied.:

(1) A and B are S-rings,

(2) Ais an S-ring and tr.deg, (A/p) > 1 for each p € Min(A),

(3) Bisan S-ring and tr.deg, (B/q) > 1 for each q € Min(B),

(4) tr.deg,(A/p) and tr.deg, (B/q) = 1 for each p € Min(A) and q € Min(B).

To determine when a tensor product of k-algebras is catenarian, we first need to
know when it is locally finite dimensional (LFD for short).
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Theorem 3.7 ([8, Proposition 4.1]). Let A and B be k-algebras. Then the follow-
ing hold:

(a) IfA®yB is LFD, then so are A and B, and either tr.deg, (A/p) < o for each
prime ideal p € Spec(A) or tr.deg, (B/q) < e for each prime ideal q of B.

(b) If both A and B are LFD and either tr.deg, (A) < oo or tr.deg,(B) < oo, then
A®yB is LFD.
The converse holds provided A and B are domains.

Proposition 3.8 ([8, Proposition 4.4]). Let K be an algebraic field extension of k.
If K®y A is a strong S-ring (resp., catenarian), then A is a strong S-ring (resp.,
catenarian).

In [8], by giving an example, it is shown that there exists a k-algebra R which is
not an S-domain (resp., catenarian domain) and a field extension K of k such that
1 <tr.degy (K) < oo and K ® R is a strong S-ring (resp., catenarian). This shows that
Proposition 3.7 fails in general when the extension field K is no longer algebraic
over k.

Next, the authors investigated sufficient conditions on a k-algebra A and a field
extension K of k, for K ®; A to inherit the (stably) strong S-property and (universal)
catenarity.

In this direction, we can recall the following theorem and corollary from [8]:

Theorem 3.9 ([8, Theorem 4.9]). Let A be a Noetherian domain that is a k-algebra
and K a field extension of k such that tr.degy (K) < oo. Then K ® A is a stably strong
S-ring. If, in addition, K ® A satisfies MPC and A[x| is a catenarian, then K @i A is
universally catenarian.

Corollary 3.10 ([8, Corollary 4.10]). Let K and L be field extensions of k such
that tr.deg, (K) < eo. Then K ®y L is universally catenarian.

The main theorem of [8] asserts that:

Theorem 3.11 ([8, Theorem 4.13]). Let A be an LFD k-algebra and K a field
extension of k such that either tr.deg, (A) < o or tr.deg, (K) < e. Let B be a tran-
scendence basis of K over k, and let L be the separable algebraic closure of k(B)
in K. Assume that [L : k(B)] < . If A is a stably strong S-ring (resp., universally
catenarian and K ®y A satisfies MPC), then K ®y A is a stably strong S-ring (resp.,
universally catenarian).

This result leads to new families of stably strong S-rings and universally catenar-
ian rings. Also noteworthy is [8, Corollary 4.10], stating that the tensor product of
two field extensions of k, at least one of which is of finite transcendence degree, is
universally catenarian.

In [8], an example is given of a discrete rank one valuation domain V (hence uni-
versally catenarian) such that tr.deg, (V) < o and V ®; V not catenarian, illustrating
the importance of assuming K is a field in Theorem 3.10.
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Question 3.12. Let K be an algebraic field extension of k and A a strong S-ring
(resp., catenarian such that K ®; A satisfies MPC). Is K ®; A a strong S-ring (resp.,
catenarian)?

However, for the case where K is a transcendental field extension of k, the an-
swer is negative, as illustrated by [8, Examples 5.1 and 5.2], as follows: there exists
a strong S-domain (resp., catenarian domain) A which is a k-algebra such that L ®; A
is a strong S-ring (resp., catenarian) for any algebraic field extension L of k, while
K ®j A is not a strong S-ring (resp., catenarian) for some transcendental field ex-
tension K of k.

In [54], we give positive answer to this problem in some special cases. For
example, it is shown that K ®; A is universally catenarian if one of the following
holds:

(a) A is universally catenarian and K a finitely generated extension field of k.
(b) A is Noetherian universally catenarian and tr.deg, (K) < ce.
(c) Ais universally catenarian and K ®; A is Noetherian.

Also, another result along these lines is as follows.

Theorem 3.13 ([54, Theorem 2.7]). Let A be a Noetherian, catenarian and locally
equidimensional ring which is a k-algebra, with K an algebraic field extension of k.
If 41,92 € Spec(K @, A) are such that q1 C qo, then ht(q2/q1) = 1 or ht(q2/q1) =
htq, —htq;.

3.3 Approximately Cohen—Macaulay rings

Let (R, m) be a Noetherian local ring with dim(R) = d. Recall that R is a Gorenstein
ring if and only if there is an element @ of m such that R/a"R is a Gorenstein
ring of dimension d — 1 for every integer n > 0 (cf. [28]). Clearly, this is not true
for arbitrary Cohen—Macaulay rings. The local ring R is called an approximately
Cohen—Macaulay ring if either dim(R) = 0 or there exists an element a of m such
that R/a"R is a Cohen—Macaulay ring of dimension d — 1 for every integer n > 0
(cf. [22]). In [40], it is shown that if R is an approximately Cohen—Macaulay ring,
then so is the ring Ry, for any prime ideal p. Therefore, the concept of approximately
Cohen—Macaulay can be extended to non-local rings as follows.

A non-local ring R is an approximately Cohen—Macaulay ring if for all prime
ideals p of R, the ring Ry, is an approximately Cohen—Macaulay ring.

In [40], we proved the following result.

Theorem 3.14 ([40, Theorem 10]). Let T := A ®; B be a non-zero Noetherian
ring. Assume that A is not a Cohen—Macaulay ring. Then the following hold:

(1) If A is an approximately Cohen—Macaulay ring and B is a Cohen—Macaulay
ring, then T is an approximately Cohen—Macaulay ring.
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(ii) If T is an approximately Cohen—Macaulay ring, then B is a Cohen—Macaulay
ring.

(ii1) If A is a homomorphic image of a Cohen—Macaulay ring or k is algebraically
closed, then the following conditions are equivalent:

(a) T is an approximately Cohen—Macaulay ring.
(b) A is an approximately Cohen—Macaulay ring and B is a Cohen—Macaulay
ring.

3.4 Clean rings

An element in a ring R is called clean if it is the sum of a unit and an idempotent.
Following Nicholson, cf. [37], we call the ring R clean if every element in R is clean.
Examples of clean rings include all zero-dimensional rings (i.e., every prime ideal
is maximal) and local rings. Clean rings have been studied by several authors, for
example [1,24,37]. It is an open question whether the tensor product of two clean
algebras over a field is clean, cf. [24, Question 3]. In [55] we showed that:

Theorem 3.15. Let k be an algebraically closed field. Let A and B be algebras
over k. If A and B have a finite number of minimal prime ideals (e.g. A and B
Noetherian) then the following statements are equivalent:

(i) A®gBis clean.
(ii) The following hold

(a) A and B are clean.
(b) A or B is algebraic over k.

Using this result, we gave an example of two clean algebras A and B over a field
k where the tensor product A ®y B is not clean.

Example 3.16. Assume that k = C and A = B = C[|x|]. Then by [1, Proposition 12]
A and B are clean. We claim that A ®; B is not clean. Otherwise, since C is an
algebraically closed field and A(=B) is Noetherian, by Theorem 3.15 we have that A
or B is algebraic over C and hence A (=B) is equal to C. This is a contradiction.

3.5 Sequentially Cohen—Macaulay rings

The concept of sequentially Cohen—Macaulay module was introduced by Stanley
[49, p. 87] for graded modules and studied further by Herzog and Sbarra [27]. In [13]
Cuong and Nhan defined this notion for the local case as follows:

Definition 3.17. Let R be a Noetherian local ring. An R-module M is called a
sequentially Cohen—Macaulay module if there exists a filtration 0 = N9 C N| C
.-+ C N; = M of submodules of M such that
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(i) Each quotient N;/N;_; is Cohen—Macaulay.
(ii) dim(Ny/Ny) < dim(N,/Ny) < --- < dim(N; /N,—1).

In [56], we showed the following result:

Theorem 3.18 ([56, Corollary 12]). Let A and B be two k-algebras such that
T := A ®y; B is Noetherian. Then the following holds:

(i) If A is a Cohen—Macaulay ring and B is a locally sequentially Cohen—
Macaulay ring then A Qy B is a locally sequentially Cohen—Macaulay ring.

(i1) If B is a homomorphic image of a Cohen—Macaulay ring and if A Q@ B is
a locally sequentially Cohen—Macaulay ring then B is a locally sequentially
Cohen—Macaulay ring.

(iii) If k is algebraically closed and A is a Cohen—Macaulay ring and if A Q. B is
a locally sequentially Cohen—Macaulay ring then B is a locally sequentially
Cohen—Macaulay ring.

4 Combinatorial aspects

Let [n] := {1,---,n} be the vertex set and A a simplicial complex on [n]. Thus A
is a collection of subsets of [n] such that if F € A and F' C F, then F’ € A. Each
element F € A is called a face of A. The dimension of a face F is |F| — 1. Let
d =max{|F|: F € A} and define the dimension of A to be dim(A) =d — 1. A facet
is a maximal face of A (with respect to inclusion). A simplicial complex is called
pure if all facets have the same cardinality.

Let A be an abstract simplicial complex on the vertex set [n]. The Stanley—
Reisner ring k[A] of A over k is by definition the quotient ring R/I, where
R = k[xy,...,x,] is the polynomial ring over k, and I, is a squarefree monomial
ideal generated by all monomials x;, - - - x;, such that {ij,...,i»} ¢ A. When we talk
about algebraic properties of A we refer to those of its Stanley—Reisner ring. Let
A’ be a second simplicial complex whose vertex set differs from A. The simplicial
join A x A’ is defined to be the simplicial complex whose simplicies are of the form
ocUo’ whereog € Aand o’ € A'.

The algebraic and combinatorial properties of the simplicial join A x A’ through
the properties of A and A’ have been studied by a number of authors (cf. [3, 18,
41], and [64]). For instance, in [18], Froberg used the (graded) k-algebra isomor-
phism k[A x A'] ~ k[A] @ k[A'], and proved that the tensor product of two graded
k-algebras is Cohen—Macaulay (resp., Gorenstein) if and only if both of them are
Cohen—-Macaulay (resp., Gorenstein).

The approach of [43] is in the same spirit as [18], that is, via tensor product, but in
a more general setting. Assume that A and B are two standard graded k-algebras, i.e.,
finitely generated non-negatively graded k-algebras generated over k by elements of
degree 1, and M and N are two finitely generated graded modules over A and B,
respectively. In [43], various sorts of Cohen—-Macaulayness, cleanness, and pretty
cleanness of A ®; B-module M ®; N through the corresponding properties of M and
N are studied.
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Definition 4.1. Let M be a finitely generated graded module over a standard graded
k-algebra (A, m) with dimy (M) = d. The A-module M is called generalized Cohen—
Macaulay if the length of the local cohomology A-module H: (M) is finite for i =
0,1,...,d—1.

Theorem 4.2 ([43, Theorem 2.6]). Let M and N be two finitely generated graded
modules over standard graded k-algebras (A,m) and (B,n), respectively. Assume
that both dimy (M) and dimg(N) are positive. Then the following conditions are
equivalent:

(@) M ®N is generalized Cohen—Macaulay.
(b) M ®; N is Buchsbaum.

(¢) M &N is Cohen—Macaulay.

(d) Both M and N are Cohen—Macaulay.

Corollary 4.3. Let A and A’ be two simplicial complexes over disjoint vertex sets.
Then A x A’ is Buchsbaum (over k) if and only if A and A" are Cohen—-Macaulay
(over k).

Remark 4.4. The notion of generalized Cohen—Macaulay module was introduced
in [45]. For a simplicial complex A this notion coincides with the so-called
Buchsbaum property. Buchsbaum simplicial complexes have several algebraic and
combinatorial characterizations (cf. [35, 50]). For instance, a simplicial complex A
is Buchsbaum over a field k if and only if it is pure and locally Cohen—-Macaulay
(i.e., the link of each vertex is Cohen—Macaulay). Recall that the link of a face
0 € A is defined as links (0) :={t1€A|oNt=0,0UTE€A}.

For the next result we need to recall the definition of a graded sequentially
Cohen—-Macaulay module over a graded ring.

Definition 4.5 (Stanley [49]). Let A be a standard graded k-algebra. Let M be a
finitely generated A-module. We say M is sequentially Cohen—Macaulay if there
exists a finite filtration(called a Cohen—Macaulay filtration) of graded submodules
of M

O=MyCM;C---CM,=M

satisfying the following two conditions:

(1) Each quotient module M;/M;_; is Cohen—Macaulay,
(2) dim(M;/Mp) < dim(My/M;) < --- < dim(M,/M,_,), where dim denotes the
Krull dimension.

Theorem 4.6 ([43, Theorem 2.11]). Let A and B be two standard graded
k-algebras. Let M and N be two finitely generated graded modules over A and
B, respectively. Then M @i N is a sequentially Cohen—Macaulay A ®; B-module if
and only if M and N are sequentially Cohen—Macaulay over A and B, respectively.

Corollary 4.7. Let A and A’ be two simplicial complexes over disjoint vertex sets.
Then A x A’ is sequentially Cohen—Macaulay (over k) if and only if A and A’ are
sequentially Cohen—Macaulay (over k).
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Remark 4.8. (i) In [3] the authors presented a purely combinatorial argument to
show that sequential Cohen—Macaulayness is preserved under simplicial join.

(i) We refer the reader to [15, Theorem 3.3], [49, Proposition 11.2.10], and [60,
Proposition 1.4] for three different combinatorial characterizations of sequentially
Cohen—Macaulay simplicial complexes.

Let A be a simplicial complex on [1] of dimensiond — 1. Foreach 1 <i<d—1,
we define the pure i-th skeleton of A to be the pure subcomplex A (i) of A whose
facets are those faces F of A with |F| =i+ 1. We say that a simplicial complex A
is sequentially Cohen—Macaulay if A (i) is Cohen—Macaulay for all i.

Definition 4.9. Let M be a finitely generated graded module over a standard graded
k-algebra A with dimy (M) =d.

o The A-module M is called almost Cohen—Macaulay if depthM > d — 1.
e Let {Ny,...,N,} denote a reduced primary decomposition of the A-module M
where each N; is a p j-primary submodule of M. Let

Up (0) := ﬂ N;.
dim(A/p j)=d

The A-module M is called approximately Cohen—Macaulay whenever it is almost
Cohen—Macaulay and M /Uy, (0) is Cohen—Macaulay.

The original definition of the approximately Cohen—Macaulay property was
given by Goto for rings (see Section 3.3). The definition here was taken from [44,
Definition 4.4].

Theorem 4.10 ([43, Theorem 2.17]). Let M and N be two finitely generated graded
modules over standard graded k-algebras A and B, respectively. Assume that M is
not Cohen—Macaulay. Then

(1) M®yN is almost Cohen—Macaulay if and only if M is almost Cohen—Macaulay
and N is Cohen—Macaulay.

(2) M Ry N is approximately Cohen—Macaulay if and only if M is approximately
Cohen—Macaulay and N is Cohen—Macaulay.

Remark 4.11. For simplicial complexes, the notions of almost and approximately
Cohen—Macaulay have combinatorial characterizations. A simplicial complex A is
almost Cohen—Macaulay over a field k if and only if the codimension one skele-
ton of A is Cohen—Macaulay over k (cf. [4, Exercise 5.1.22]). Recall that the r-
skeleton of the simplicial complex A is defined as A" := {6 € A | dimo < r}.
By [44, Proposition 4.5], an approximately simplicial complex A can be described
combinatorially through the several combinatorial characterizations of sequential
Cohen—Macaulayness (cf. Remark 4.8(ii)).

Corollary 4.12. Let A and A’ be two simplicial complexes over disjoint vertex sets.
Then

(1) AxA’ is almost Cohen—Macaulay (over k) if and only if one of A or A’ is
Cohen—Macaulay (over k) and the other is almost Cohen—Macaulay (over k).
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(2) A xA’is approximately Cohen—Macaulay (over k) if and only if one of A or A’
is Cohen—Macaulay (over k) and the other is approximately Cohen—Macaulay
(over k).

Let A be a simplicial complex on [n] of dimension d — 1. We say that A is
shellable if A is pure and its facets can be ordered as Fi,F,,--- ,F, such that, for
all 2 < m, the subcomplex < Fy,---,Fj_1 > N < Fj > is pure of dimension d — 2.
We know by a result of Dress [14] that cleanness is an algebraic counterpart of
shellability. In [14, Corollary 2.9], Dress proved combinatorially that the join of
two shellable simplicial complexes is shellable. The aim of [43, Section 3] is to
present an algebraic way to show that shellability is preserved under tensor product.

For a nonzero finitely generated module M over a Noetherian ring A, it is well-
known (cf. [34, Theorem 6.4]) that there exists a finite prime filtration

F:0=MyCMC---CM,_ 1 CM, =M

with the cyclic quotients M;/M;_| ~ A/p; where p; € Supp,(M). The support of F
is the set of prime ideals Supp, (F) := {p1,...,pr}. By [34, Theorem 6.3], we have

Ming (M) C Assa (M) C Supp, (F) C Supp, (M).

Here, Supp, (M), Miny (M), and Asss (M) denote the usual support of M, the set of
minimal primes of Supp, (M), and the set of associated primes of M, respectively.

Definition 4.13 (Dress [14]). A prime filtration J of a nonzero finitely generated
module M over a Noetherian ring A is called clean if Supp,(F) C Ming(M). The
A-module M is called clean if it admits a clean filtration.

Remark 4.14. This notion of “clean module” when applied to a ring is completely
different with the other notion of “clean ring” which we used in 3.4.

The following result is shown in [43].

Theorem 4.15 ([43, Theorem 3.3]). Let A and B be two Noetherian k-algebras
such that A ®; B is Noetherian. Let M and N be two finitely generated modules
over A and B, respectively. Assume that A/p &y B/q is an integral domain for all
p € Assa(M) and q € Assp(N). If M and N are clean, then M @y N is clean.

Corollary 4.16 ([43, Corollary 3.8]). Let I and J be two arbitrary monomial ideals
in the polynomial rings R = k|xy,...,x,] and S = k[y1,...,ym|, respectively. Then
R/I®yS/J is clean if and only if R/I and S/J are clean.

The aim of [43, Section 4] is to present an algebraic way to show that the
notion of shellability for the simplicial multicomplexes introduced by Herzog and
Popescu [26] is preserved under simplicial join of multicomplexes. Here, we recall
some basic definitions and results related to multicomplexes, and we refer the reader
to [26, Section 9] for more details.
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For a subset I' C N2, where N, := NU {co} with a < e for all a € N, the set
of all maximal elements of I'" with respect to the componentwise partial order < is
denoted by M(I"). The subset I is called a multicomplex if it is closed under going
down, and for each element a € I, there exists m € M(I") with a < m.

For each multicomplex I" C N’ the k-subspace in R = k[xy,...,X,] spanned by
all monomials x{' ---x% with (ay,...,a,) € I' is a monomial ideal denoted by Ir-.
The correspondence I' ~~ k[I'] := R/I- constitutes a bijection from simplicial mul-
ticomplexes I' in N7 to monomial ideals inside R.

Let I C N be a second simplicial multicomplex. The simplicial join I" with I’
is the simplicial multicomplex

I'«r':={a+blaclandbel'} CNL™

where ~ : N — N and ~— : N” — N are canonical embeddings defined by
a:=(ay,...,a,,0,...,0)and b:= (0,...,0,by,...,b,) where a:= (aj,...,a,) and
b := (b1,...,by). As in the case of simplicial complexes, we have the (graded)
k-algebra isomorphism k[I" * I''| ~ k[["] @ k[T"’].

A multicomplex I is shellable in the sense of [26, Definition 10.2] if and only if
the k-algebra k[I'] is pretty clean in the following sense.

Definition 4.17 (Herzog-Popescu [26]). A prime filtration
F.0=MycM,C---CM, 1CM,=M

of a nonzero finitely generated module M over a Noetherian ring A with the cyclic
quotients M;/M;_| ~ A/p; is called pretty clean if for all i < j for which p; C p jit
follows that p; = p;. The module M is called pretty clean if it admits a pretty clean
filtration.

Theorem 4.18 ([43, Theorem 4.7]). Let M and N be two finitely generated graded
modules over standard graded Cohen—Macaulay k-algebras (A,m) and (B,n) with
canonical modules wj and @p, respectively. Assume that A/p Qi B/q is an integral
domain for all p € Assy(M) and q € Assg(N). If M and N are pretty clean modules
with pretty clean filtrations Fy and Fy such that A/p and B/q are Cohen—-Macaulay
Sorall p € Supp(Fuyr) and q € Supp(Fy), then M Q. N is pretty clean.

As a consequence of Theorem 4.18 we have the following result.

Corollary 4.19 ([43, Corollary 4.8]). Let I and J be two arbitrary monomial ide-
als in the polynomial rings R =k[x1,...,x,] and S =k[y1,...,ym], respectively. Then
R/1®;S/J is pretty clean if and only if R/I and S/J are pretty clean.

Theorem 4.18 is not quite satisfactory because it needs a lot of hypotheses. How-
ever, in some special cases like the following, we can reduce these assumptions.

Theorem 4.20 ([43, Theorem 4.9]). Let A and B be two Noetherian k-algebras
such that A ®y B is Noetherian. Assume that A/p ®; B/q is an integral domain for
all p € Ass(A) and q € Ass(B). If A is pretty clean and B is clean, then A ®y B is
pretty clean.
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Following these facts about pretty clean (clean) property an interesting
question is:

Question4.21. Let A and B be two Noetherian k-algebras such that A ®; B is
Noetherian. Let A /p ®; B/q be an integral domain for all p € Ass(A) and ¢ € Ass(B).
If A ®; B is pretty clean (resp., clean), are A and B pretty clean (resp., clean)?

5 Hilbert rings

In the literature, the following definitions are used interchangeably to define Hilbert
(also called Jacobson) rings.

(1) Aring R is called a Hilbert ring if each non-maximal prime ideal of R can be
represented as the intersection of maximal ideals.

(i) A ring R is called a Hilbert ring if for each prime ideal P of R, the Jacobson
radical of R/P is zero.

(i)’ Aring R is called a Hilbert ring if for each ideal I of R, the Jacobson radical of
R/I is nil.

(iii) A ring R is called a Hilbert ring if for each maximal ideal m of the polynomial
ring R[x], mNR is a maximal ideal of R.

(iv) A ring R is called a Hilbert ring if for a prime ideal P such that the quotient
field of R/P is finitely generated over R/P, then P is maximal.

These rings were independently studied by O. Goldman [21] and W. Krull [31],
who named them Hilbert rings and Jacobson rings, respectively, in order to gener-
alize the Hilbert’s Nullstellensatz, which is stated for algebraically closed fields, to
the general case. In [21], the algebraic version of Nullstellensatz is proved:

Theorem 5.1. Let R be a Hilbert ring. Any finitely generated R-algebra is a Hilbert
ring. Moreover, if S is a finitely generated R-algebra and n C S is a maximal ideal
of S then m = nNR is a maximal ideal of R and S/ is a finite algebraic extension
of R/m.

The definition of Hilbert ring immediately implies that every quotient of a Hilbert
ring is also a Hilbert ring. Moreover, it can be shown that if R is a Hilbert ring, then
every integral extension of R is a Hilbert ring.

Rings of Krull dimension zero, ring of integers, PIDs and more generally
Dedekind domains are Hilbert rings.

Even though every finitely generated algebra over a Hilbert ring is a Hilbert ring,
it is not true that any subalgebra of a Hilbert ring is a Hilbert ring. In [61], it is
proved if k is a countable field, then any k-algebra of transcendence degree more
than two contains a k-subalgebra which is not a Hilbert ring. On the other hand, this
author shows that if the k-algebra A is of transcendence degree at most two, then a
k-subalgebra of A is again a Hilbert ring.
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In [31], it is shown that the ring k[{x;};cn] is a Hilbert ring if and only if k has
uncountable cardinality. If the field k is replaced with a ring, the claim may not be
true. Regarding this claim, in [25], an example of a Hilbert ring R is constructed
which is uncountable but the polynomial ring R[{x;};cn] is not a Hilbert ring. Fur-
thermore, for the polynomial ring R[{x;}ic/] in an infinite number of indeterminates
to be a Hilbert ring, equivalent conditions are given.

Since the tensor product of k-algebras is a special kind of base change, a question
similar to the one in previous sections is: under what conditions is the tensor product
of two Hilbert k-algebras a Hilbert ring?

This question is settled in special cases. In [58, Theorem 5] it is proved that:

Theorem 5.2. Let K and L be extension fields of k and T = K @y L. Assume that
tr.degy (K) > tr.deg, (L) =n < eo. Then T is a Hilbert ring in which every maximal
ideal has height n.

This result is generalized in [39], and O’ Carroll and Qureshi raised the following
conjecture:

Let Ki,---, K, be fields of finite transcendence degree ?1,- - ,#, over a common
field k, respectively, and n > 2. Assume #; > ¢; for every i = 2,--- ,n. Then K| ®;
-+ ® K, 1s a Hilbert ring such that every maximal ideal is of height#, 4 - - - +¢,.

They proved this conjecture in two particular cases: where (1) 1y >t +---+1,
and (2) t; = 1 for all i > 2. On the other hand, the case where n = 2 is treated in
Theorem 5.2.

This conjecture is proved independently in [36] and [57] with different methods.
This result leads one to ask:

Question 5.3. Let A and B be two Hilbert k-algebras such that A ®; B is Noetherian.
Is A ®; B a Hilbert ring? Is it equidimensional?

Since A ®i B is a faithfully flat extension of A and B, the Noetherian assumption
on A ®; B implies both A and B are Noetherian too. If A and B are finitely generated
k-algebras, or if A is a finite field extension of k, or if A is a field extension of k and
B is a finitely generated k algebra, it can be shown that A ® B is a Hilbert ring.

In connection with 5.3, the paper [12] and references therein might be of interest.
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Multiplicative ideal theory in the context
of commutative monoids

Franz Halter-Koch*

Abstract It is well known that large parts of multiplicative ideal theory can be
derived in the language of commutative monoids. Classical parts of the theory
were treated in this context in my monograph “Ideal Systems” (Marcel Dekker,
1998). The main purpose of this article is to outline some recent developments
of multiplicative ideal theory (especially the concepts of spectral star operations
and semistar operations together with their applications) in a purely multiplicative
setting.

1 Introduction

General ideal theory of commutative rings has its origin in R. Dedekind’s multi-
plicative theory of algebraic numbers from the nineteenth century. It became an
autonomous theory by the work of W. Krull and E. Noether about 1930, and it
proved to be a most powerful tool in algebraic and arithmetic geometry and complex
analysis. Besides this mainstream movement towards algebraic geometry, there is a
modern development of multiplicative ideal theory based on the works of W. Krull
and H. Priifer.

The main objective of multiplicative ideal theory is the investigation of the multi-
plicative structure of integral domains by means of ideals or certain systems of ideals
of that domain. In doing so, Krull’s concept of ideal systems proved to be funda-
mental. Its presentation in R. Gilmer’s book [23], using the notion of star operations,
influenced most of the research done in this area during the last 40 years, yielding
a highly developed theory of integral domains characterized by ideal-theoretic or
valuation-theoretic properties.
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Fresh impetuses to the theory were given in the nineties by the concepts of
spectral star operations and semistar operations Spectral star operations were in-
troduced by Fanggui Wang and R.L. McCasland [11, 12] and shed new light on the
connection between local and global behavior of integral domains Semistar opera-
tions were introduce by A. Okabe and R. Matsuda [39] as a generalization of the
concept of star operations This new concept proved to be more flexible and made it
possible to extend the theory obtained by star operations to a larger class of integral
domains.

Already in the early history of the theory, it was observed that a great deal of
multiplicative ideal theory can be developed for commutative monoids disregarding
the additive structure of integral domains. In an axiomatic way, this was first done
by P. Lorenzen [34], and, in a more general setting, by K.E. Aubert [7]. A system-
atic presentation of this purely multiplicative theory was given in the volumes by
P. Jaffard [32], J. Mockor [37] and recently by the author [25].

The present article is based on the monograph [25]. Its main purpose is to outline
the development of multiplicative ideal theory during the last 20 years (especially
the concepts of spectral star operations and semistar operations) in the context of
commutative monoids. In doing so, instead of being encyclopedic, we focus on the
main results to outline the method, and we often only sketch proofs instead of giving
them in full detail.

2 Notations and preliminaries

By a monoid we always mean (deviating from the usual terminology) a commutative
multiplicative semigroup K containing a unit element 1 € K and a zero element
0 € K (satisfying Ox = O for all x € K) such that every non-zero element a € K is
cancellative (that is, ab = ac implies b = ¢ for all b, ¢ € K).

For any set X, we denote by X* the set of non-zero elements of X, by P¢(X) the
set of all finite subsets of X, and we set P¢(X) = {E € P¢(X) | E® # 0}. A family
(X3 )aca of subsets of X is called directed if, for any o, B € A there exists some
A € A such that Xo UXg C Xj.

For a monoid K, we denote by K* the group of invertible elements of K. For
subsets X,Y C K, we define XY ={xy|x€X,y€eY} and (X:Y)=(XxY)=
{z€eK|z¥ CX},andforc € K weset Xc=X{c} and (X:c) = (X:{c}).

A submonoid D C K is always assumed to contain 1 and 0, and a monoid homo-
morphism is assumed to respect 0 and 1.

In the sequel, let K be a monoid and D C K a submonoid.

A subset M C K is called a D-module if DM = M, and it is called an ideal of D if
itis a D-submodule of D. A subset T C K is called multiplicatively closed if 1 € T,
0¢ T and TT = T. For a multiplicatively closed subset T C K* and X C K, we
define

T'X={t""x|teT, xex}=Jtr 'X.
teT
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If TX = X, then the family (+~'X),cr is directed. If T C D is multiplicatively closed
and X is a D-module, then 7~'D C K is a submonoid, and T~'X = (T~'D)X is a
T~ D-module. We call T~! D the quotient monoid of D with respect to D. We call K
a quotient of D and write K = q(D) if D* C K* and K = D*"'D (then K* = K* is
a quotient group of D*®). Every monoid possesses a quotient which is unique up to
canonical isomorphisms. If K = q(D), then a subset X C K is called D-fractional if
¢X C D for some c € D°.

An ideal P C D is called a prime ideal of D if D\ P is multiplicatively closed.
If D\ P C K* and X C K, then we set Xp = (D\ P) " 'X.

In the following Lemma 2.1 we collect the elementary properties of quotient
monoids. Proofs are easy and left to the reader.

Lemma 2.1. Let T C DNK™* a multiplicatively closed subset.

1. If J C Dis anideal of D, then T~'J = (T~'D)J C T~'D is an ideal of T~'D,
JCTUND, and T='J =T~ 'D ifand only if JNT # 0.

2. If JC T 'Disanideal of T~'D, then J =T~ (JND).

3. The assignment P — T~'P defines a bijective map form the set of all prime
ideals P C D with PNT = 0 onto the set of all prime ideals of T~'P.

4. If P C D is aprime ideal and TNP =0, then P=T'PND, andif T =D\ P,
then T~'P = PDp = Dp \ Dy, is the greatest ideal of Dp.

5.If X,Y CK, then TN (X:Y) C(T7'X:T~'Y) = (T~'X:Y), and equality holds,
if Y is finite.

3 Definition and first properties of weak module systems

Let K be a monoid and D C K a submonoid.

Definition 3.1. A weak module system on K is a map

P(K) — P(K)
r:
X - X
such that for all ¢ € K and X, Y € P(K) the following conditions are fulfilled :

Ml1. XU{0} CX,.
M2. If X CY,, then X, CY,.
M3. X, C (cX)r.

A module system on K is a weak module system r on K such that, for all X C K and
ceK,

M3. X, = (cX),.

Let r be a weak module system on K. A subset A C K is called an r-moduleif A, = A,
and D is called an r-monoid if it is an r-module. We denote by M, (K) the set of all
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r-modules in K. An r-module A C K is called r-finite or r-finitely generated if A = E,
for some E € P¢(K). We denote by M,.¢(K) the set of all r-finite r-modules.

A (weak) module system r on K is called a (weak) D-module system if every
r-module is a D-module, and it is called a (weak) ideal system on K if it is a (weak)
K-module system. If r is a (weak) ideal system on K, then the r-modules are called
r-ideals, and in his case we shall often write J,(K) = M,(K) (to be concordant
with [25]).

The concept of a weak module system is a final step in a series of generaliza-
tions of the concepts of star and semistar operations on integral domains and that
of Lorenzen’s r-systems and Aubert’s x-systems on commutative monoids. This
concept also applies for not necessarily cancellative monoids, and in this setting
it was presented in [27] (where a purely multiplicative analog of the Marot property
for commutative rings was established). In this paper, however, we shall restrict to
cancellative monoids.

Examples will be discussed and presented later on in 5.6. In the meantime, the
interested reader is invited to consult [25, Sections 2.2 and 11.4] to see examples of
(weak) ideal systems and [30] to see examples of module systems.

In the following Proposition 3.2, we gather the elementary properties of weak
module systems. We shall use them freely throughout this article. Their proofs are
literally identical with those for weak ideal systems as presented in [25, Proposi-
tions 2.1, 2.3 and 2.4], and thus they will be omitted.

Proposition 3.2. Let r be a weak module system on K and X,Y C K.

1. 0, = {0}, and if ris a module system, then {0}, = {0}.

2. (X))r =X, andif X CY, then X, CY,. In particular, X, is the smallest r-module
containing X.

3. The intersection of any family of r-modules is again an r-module.

4. For every family (X3 ),ea in P(K) we have

U c (U Xx)r: ( U (X;L)r)r.

AEA AEA AEA

5. (XY), = (XY),r = (XYy)r = (X:Yr)r, and for every family (X3 )pca inP(K) we

have
(Uxr) =(Uer) =(Uean) .
AEA AEA

AEA

Equipped with the r-multiplication, defined by (X,Y) — (XY),, M,(K) is
a commutative semigroup with unit element {1}, and zero element 0,, and
M,.¢(K) C M, (K) is a subsemigroup.

6. (X:Y), C (X,:Y)=(X,:Y,) = (X,:Y),, and equality holds, if Y is finite. In
particular, if X is an r-module, then (X :Y) is also an r-module.
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Proposition 3.3. Let v be a weak module system on K.

1. D, is an r-monoid, and if A C K is a D-module, then A, is a D,-module.
In particular, {1}, is the smallest r-monoid contained in K, ris a weak {1},
module system, and if D C {1}, then {1}, = D,.

2. Let r be a weak D-module system. Then {1}, = D,, and if X C K, then X, =
D,X, = (DX),.

3. ris a weak D-module system if and only if ¢D C {c}, forall c € K, and if ris a
D-module system, then {c}, = cD, for all ¢ € K.

Proof. 1. We have D,D, C (DD), = D, C D,D,, and thus D, = D,D, C K is a
submonoid. If A C K is a D-module, then D,A, C (DA), =A, C D,A,. Hence A, =
D, A, is a D,-module.

2. {1}, is a D-module containing 1, hence D C {1}, C D,, and thus {1}, = D,..
If X C K, then X, C D, X, C (DX), = (DX,), = (X;)r = X;, and thus equality holds.

3. If r is a weak D-module system and ¢ € K, then {c}, is a D-module contain-
ing ¢, which implies ¢D C {c},. If ris a D-module system, then {c}, =c{1},=cD;.
Assume now that ¢cD C {c}, for all ¢ € K, and let A € M,(K). Then A C DA, and
if c € A, then Dc C {c}, C A, =A, hence DA = A, and thus r is a weak D-module
system. O

Definition 3.4. A weak module system r on K is called finitary or of finite type if
finitaryof finite type

X. = |J E forall XCK.
EcP¢(X)

Theorem 3.5. Let r be a weak module system on K. Then the following assertions
are equivalent:

(a) ris finitary.
(b) Forall X C K and a € X, there exists a finite subset E C X such that a € E,.
(c) For every directed family (X;)yca in P(K) we have

(U Xx>r = U

AEA AEA

(d) The union of every directed family of r-modules is again an r-module.

(e) If X CK, Ac M,(K) and A C X, then there is a finite subset E C X satisfying
ACE,.

In particular, if r is finitary, X C K and X, € M,.¢(K), then there exists a finite subset
E C X such that E, = X,.

Proof. The equivalence of (a) and (b) is obvious, and the equivalence of (a), (c)
and (d) is proved as the corresponding statements for weak ideal systems in [25,
Proposition 3.1].
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(b) = (e) Suppose that X C K and A = F, C X,, where F € P¢(K). For every
¢ € F, there is some E(c) € P¢(X) such that ¢ € E(c),. Then

E=|JE(c)ePi(X), FC|JE(c),CE andthus A=F, CE,.

ceE ceE

() = (b) If X C K and a € X,, then {a}, € M,¢(K) and {a}, C X,. Hence
there exists a finite subset E C X such that a € {a}, C E,.
The final statement follows from (e) withA=X,. O

Theorem 3.6.

1. Let r: P¢(K) — P(K) be a map satisfying the conditions M1, M2 and M3 in
Definition 3.1 for all X,Y € P¢(K) and ¢ € K. Then

7: P(K) - P(K), definedby Xr = |J E, forall XCK,
EGPf(X)

is the unique finitary weak module system on K satisfying 7|Ps(K) = r. Moreover,
if r has also the property M3’ for all X € P¢(K) and ¢ € K, then T is a module
system, and if ¢D C {c},forall ¢ € K, then F is a weak D-module system.

2. Let r be a (weak) module system on K. Then there exists a unique finitary (weak)
module system ¢ on K such that E, = E,, for all finite subsets of K. It is
given by

X.= |J E forall XCK,
EcP¢(X)

it satisfies (r¢)f = rs, Xy C X, forall X € P(K), M, ¢(K) = M,.¢(K), and if r
is a (weak) D-module system, then so is .

Proof. 1. It is easily checked that 7 satisfies the conditions M1, M2 and M3
resp. M3’ of Definition 3.1. Hence, 7 is a weak module system resp. a module sys-
tem, and obviously Er = E, for all finite subsets E C K. Hence, X7 = Ugep;(x) Er
for all X C K, and therefore 7 is finitary. If 7 is any finitary weak module system on
K with 7|P¢(K) = r, then

X5 = U E; = U E, =Xy, whichimplies 7=7.
E€P¢(X) EcP¢(X)

If ¢D C {c}, = {c}7 for all ¢ € K, then 7 is a weak D-module system by
Proposition 3.3.3.

2. By 1., applied for r|P¢(X), there exists a unique (weak) module system rf on
K such that E,, = E, for all E € P¢(X). If X C K, then X,, is given as asserted, and
if r is a (weak) D-module system, then so is r¢. By definition, we have M, ¢(K) =
M,.¢(K), and by the uniqueness of r¢ it follows that r¢ = r if and only if 7 is finitary,
and, in particular, (rf)f =rf. O
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Definition 3.7. 1. Let r: Ps(K) — P(K) be a map having the properties M1, M2
and M3 in Definition 3.1 for all X,Y € P¢(K) and ¢ € K. Then the unique
weak module system on K which coincides with r on P¢(K) (see Theorem 3.5.1)
is called the rotal system associated with r an is again denoted by r (instead
of 7).

2. Let r be a (weak) module system on K. Then the unique finitary (weak) module
system rf on K defined in Theorem 3.5.2 is called the finitary (weak) module
system associated with r.

4 Comparison and mappings of weak module systems

Let K be a monoid.

Definition 4.1. Let r and g be weak module systems on K. We call g finer than r
and r coarser than g and write r < g if X, C X,, for all subsets X C K.

Proposition 4.2. Let r and g be weak module systems on K. Then r¢ < r, and the
following assertions are equivalent :

(@) r<gq.

(b) Xy = (Xr)q forall subsets X C K.

(c) My(K) C M,(K).
If r is finitary, then there are also equivalent:

(d) E; CE, for all finite subsets E C K.

(e) My (K) C M, (K).

() My s(K) C M, (K).

(8) r<gr.
In particular, if r and q are both finitary, then r = q if and only if E, = E, for all
finite subsets E C K.
Proof. Straightforward (see also [25, Proposition 5.1]). O

Definition 4.3. Let ¢: K — L a monoid homomorphism, r a weak module system
on K and g a weak module system on L.

¢ is called an (r,q)-homomorphism if @(X,) C ¢(X), for all subsets X C K.
We denote by Homy,.,(K,L) the set of all (r,q)-homomorphisms ¢: K — L.

Proposition 4.4. Let ¢: K — L a monoid homomorphism, r a weak module system

on K and q a weak module system on L.

1. @ isan (r,q)-homomorphism if and only if ¢~'(A) € M,(K) forall A € My(L).

2. Let r be finitary and @(E;) C @(E)y for all E € P¢(K). Then ¢ is an
(r,q)-homomorphism.
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Proof. 1. If ¢ is an (r,q)-homomorphism and A € M, (L), then it follows that
(o1 (A)) Co(o'(A))g=0¢(p '(A)) CA.Hence ' (A), C ¢ '(A), and thus
¢~ '(4) = 7 (A), € M,(K).

Thus assume that ¢~!(A) € M,(K) for all A € M,(L), and let X C K. Then
¢ (9(X)g) EM(K),andas X C ¢~ (¢(X)) C ¢ (9(X)g), it follows that X, C
¢ ' (¢(X)q) and therefore @(X,) C @(X),.

2.If X C K and a € X,, then there is some E € P¢(X) such that a € E,, and thus
we obtain @(a) € ¢(E,) C ¢(E); C 9(X),. O

5 Extension and restriction of weak module systems

Let K be a monoid and D C K a submonoid.
Definition S.1. Let » be a weak module system on K. Then we define
rD]: P(K) = P(K) by X,p =(XD), forallX CK, and

rp: P(D) = P(D) by X, =X,pND=(XD),ND forall XCD.

We call r[D] the extension of rby D and rp the weak ideal system induced by r
on D (see Proposition 5.2.4).

Proposition 5.2. Let r be a (weak) module system on K.

1. r[D] is a (weak) D-module system on K, M, p(K) consists of all r-modules
which are equally D-modules, r < r[D], and r = r[D] if and only if r is a (weak)
D-module system.

2. r¢[D] is finitary, r¢[D] < r[D)s, and if r is finitary, then r[D] is also finitary.

3. rp = r[D|p is a weak ideal system on D, and if r is finitary, then rp is also
finitary.

4. Suppose that r ist a weak D-module system and D is an r-monoid. Then rp = r |
P(D), and if r is a module system, then rp is an ideal system on D.

5. If A € M(K) is a D-module, then AN D is an rp-ideal of D.

6. If q is another weak module system on K and r < g, then r[D] < ¢[D] and
D < 4.

7. If T C K is another submonoid, then r[D|[T] = r[TD).

Proof. 1.1tis easily checked that r[D] satisfies the conditions of Definition 3.1, and
thus it is a (weak) module system on K. If A € M, (K), then A = A, p) = (AD), is a
D,-module (hence a D-module) by Proposition 3.3.1. Conversely, if A € M,(K) is a
D-module, then A,p) = (AD), = A, = A and thus A € M, p|(K). Hence M, (K) C
M,(K) and thus r < r[D]. Moreover, r = r[D] holds if and only if every r-module is
a D-module, that is, if and only if r is a weak D-module system.
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2.If X CK and E € P¢(XD), then there exists some F € P¢(X) such that
E C FD. Hence

Xupj=&XD)= \J Ec U (FDy= U Fp =X,
EGPf(XD) FGPf(X) FG]P’f(X)

and thus r¢[D] < r[D]s. Applying this reasoning for r¢ instead of r, we obtain r¢[D] =
(r¢)¢[D] < r¢[D] < r¢[D], and therefore r¢[D] = r¢[DJs is finitary.

3. It is easily checked that rp = r[D]p satisfies the conditions of Definition 3.1,
and thus it is a (weak) module system on D.

If c € D, then ¢D C {c},DND = {c},, and thus rp is a weak ideal system on D
by Proposition 3.3.3. If r is finitary, X C D and a € X,,, = (XD), N D, then there
exists a finite subset E C XD such that a € E.ND. In particular, there exists a finite
subset E C X such that a € (ED),ND = E,,, and thus rp is finitary.

4. IfX C D, then X, C D,and X, = (XD),ND = X,ND = X, by Proposition 3.3.2.
If r is a module system, then rp = r|P(D) is an ideal system on D.

5. 1f A € M,(K) is a D-module, then A = A, = AD € M,(K), and therefore
ANDC(AND),,=[(AND)D],ND C (AD),ND =AND.

6. and 7. are obvious by the definitions. O

Proposition 5.3. Let T C DN K™ be multiplicatively closed, r a finitary D-module
system on K and X C K. Then T~ 'X, = (T’IX)r :Xr[T’lD]’ and if X C T~'D,

then X, | = T-'X,,.

Proof. Since TDX = DX and r is finitary, it follows that

(T~'DX), = (UleX) = Je"px), = Jr " (DX), = T (DX),,

teT " ter teT
hence T~'X, = T~!(DX), = (T~'DX), = (T~'X), (by Proposition 3.3.2), and by
definition we have (T~'DX), = Xr-1p)- X C T-'D, then X1y = (XT~'D),N
T-'D=T"'X,nT"'D=T"'X,,. O

Ip

Proposition 5.4. Assume that K = q(D), and let r: P(D) — P(D) be a module
system on D.

1. There exists a unique module system r.. on K such that X, =K if X C K is not
D-fractional, and X, = ¢~ (cX), if X C K and c € D* are such that cX C D.
In particular, ro |P(D) = r and D,., = D. Moreover, r.. is a D-module system if
and only if ris an ideal system on D, and then (rw)p =T.

2. The module system (r)f is the unique finitary module system on K satisfying
(reo)f | P(D) = rs. Moreover, (rw)s is a D-module system on K if and only if r is
an ideal system on D, and then ((r-)f)p = 5.

Proof. 1. Uniqueness is obvious. To prove existence, we define 7. as in the
assertion, making sure that for D-fractional subsets X C K the definition of X,
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does not depend on the element ¢ € D*® with cX C D. Then it is easily checked that
T+ has the properties of Definition 3.1.

We obviously have r.. |P(D) = r. Hence, if 1. is a D-module system on K, then
r is an ideal system on D. Conversely, let r be an ideal system on D. If X C K is not
D-fractional, then X, = K is a D-module. If X C K is D-fractional and ¢ € D*® is
such that cX C D, then (¢X),D = (cX),,and X, D =c ' (cX),D =c "' (cX), = X,..
Hence, r. is a D-module system, and (r..)p = r by definition.

2. (rw)f is a finitary module system on K. If X C D, then

Xpe= U En= |J E-=X;, hence (r.)¢|P(D)=rs.
EeP¢(X) EeP¢(X)

Consequently, if (r.)f is a D-module system on K, then rf is an ideal system on D.
Conversely, let ¢ be an ideal system on D and X C K. If E € P¢(X) and ¢ € D* is
such that cE C D, then

E..D=c "(cE),D=c""(cE)D=c""(cE); =c " (cE), = E,..

Hence, X,.).D = Ugep;(x) Er.D = Ugep; (x) Er. = X(..);» thus (r ) is a D-module
system, and ((rw)f)p = r by definition.

It remains to prove uniqueness. Let x be any finitary module system on K
satisfying x | P(D) = r¢. If E € P¢(K) and ¢ € D® is such that cE C D, then
Ey =[c N (cX)]y = ¢ (cE)x = ¢ ' (cE)yy = Er, = E(.),» and thus x = (r.)s by
Proposition4.2. 0O

Definition 5.5. Assume that K = q(D), and let r be a module system on D. Then the
module system 7., on K constructed in Proposition 5.4 is called the trivial extension
of r to a module system on K.

If r is a finitary module system on D, then (r.)f is called the natural extension
of r to a module system on K. In this case, we say that (r.)s is induced by r, and (as
there will be no risk of confusion) we write again r instead of (r.)s.

With this identification, every finitary module system r on D is a finitary module
system on K, and r is even a finitary ideal system on D if and only if 7 is a finitary
D-module system on K satisfying D, = {1}, = D.

Examples 5.6 (Examples of ideal systems and module systems)

1. The semigroup system s(D): P(D) — P(D) is defined by X = DX for
all X C D. It is a finitary ideal system on D, and Mp)(D) is the set of ordinary
semigroup ideals of D. For every ideal system r on D, we have s(D) < r.

The identical system s: P(K) — P(K) is defined by X; =X U{0} forallX C K.
It is a finitary module system on K, for every subset X C K we have Xp] = DX
(the D-module generated by X), and sp = s(D).

2. Assume that K = q(D). Then s(D) = s[D] is the finitary module system on K
induced by the semigroup system s(D) (according to Definition 5.5).

The module system v(D) on K is defined by X,(p) = (D:(D:X)) for all subsets
X CK.If X C K is not D-fractional, then X,(p) = K, and thus v(D) is the trivial
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extension of the classical “Vielfachensystem” vp on D (compare [25, Section 11.4]
and [23, Section 34]). Note that vp (and thus also v(D)) is usually not finitary. If
X C K is D-fractional, then
X,p)= () Db,
beK
XCbD
and for every ideal system r on D we have r < vp.

The associated finitary ideal system on D (which is identified with its natural
extension to a finitary module system on K) is the classical “¢-system” denoted by
t(D) = v(D)s. If r is any finitary ideal system on D, then r < #(D). But note that for
an overmonoid 7 O D in general (D)[T] # ¢(T).

3. Let D be a ring. The Dedekind system d(D): P(D) — P(D) is defined by
Xar) = r{X) (the usual ring ideal generated by X).

4. Let D be an integral domain and K = q(D). The additive system d: P(K) —
P(K) is givenby X; = z(X) (the additive group generated by X ) for all X C K.
Itis a finitary module system on K, and d[D] = d(D) (Xp) is the D-submodule of
K generated by X for every subset X C K).

Recall that a semistar operation = on D is a map

Myip)(K)* — Mypp)(K), X — X~
having the following properties for all X,Y C K and c € K:
(x1) (X)) =cX"; (x2) XCX"'=X" (x3) XCY = X"CY".
A (semi)star operation on D is a semistar operation satisfying D* = D (then
| F(D) N Mpp| (K) is a star operation in the classical sense, see [23, Section 32]).

If * is a semistar operation on D, then the map r*: P(K) — P(K), defined by
X+ = (Xgp))", is a D-module system on K such that d[D] < r* and r*|Mgyp (K)*
coincides with %. Moreover, * is a (semi)star operation if and only if D is an r*-
monoid (then *|Myp)(K)*® is a star operation and r*[P(D) is an ideal system
on D). r* is called the module system induced by .

Conversely, let r be a module system on K such that d[D] < r. Then
= 1| Myp)(K)* is a semistar operation on D, and r = r*" is the module system
induced by ;.

6 Prime and maximal ideals, spectral module systems

Let K be a monoid and D C K a submonoid.
Proposition 6.1. Let (r)),ca be a family of (weak) D-module systems on K, and
let r: P(K) — P(K) be defined by

X, = ﬂXm forall X CK
Ae€A

(if A =0, then r is the trivial weak module system on K, defined by X, = K for all
X CK).



214 Franz Halter-Koch

Then r is a (weak) D-module system on K, and r=inf{r) | L € A} is the
infimum of the family (r) ), ca in the partially ordered set of all weak D-module
systems on K [that is, for every weak module system x on K we have x < r if and
only ifx<ry forall A € A).

Proof. Obvious. 0O

Definition 6.2. Let r be a weak ideal system on D. We denote by r-spec(D) the
set of all prime r-ideals of D and by r-max(D) the set of all maximal elements in
J-(D)\ {D} (called r-maximal r-ideals). We say that r has enough primes if for
every J € J,(D) \ {D} there is some P € r-spec(D) such that J C P.

Proposition 6.3. Let r be a finitary weak ideal system on D. Then r has enough
primes. More precisely, the following assertions hold

1. If J€3,(D) and T C D* is a multiplicatively closed subset such that JNT =0,
then the set Q ={P¢€J,(D)|JCPand PNT =0} has maximal elements, and
every maximal element in Q is prime.

2. Every r-ideal J € 3,(D)\ {D} is contained in an r-maximal r-ideal of D, and
r-max(D) C r-spec(D)

Proof. [25, Theorems 6.3 and 6.4]. O

Proposition 6.4. Assume that K = q(D), let r be a finitary module system on K and
A € M,(K) a D-module. Then

A= ﬂ Ap. If Dis an r-monoid, then D = ﬂ Dp.
Perp-max(D) Perp-max(D)

Proof. Obviously, A C Ap for all P € rp-max (D). Thus assume that z € A}, for all
P € rp-max(D). Then I =z"'AND is an rp-ideal of D. For each P € rp-max(D),
there exists some s € D\ P such that sz € A, hence s € I and I ¢ P. Therefore we
obtain 1 € / and z € A by Proposition 6.3. O

In the sequel, we investigate two closely connected special classes of module
systems, spectral and stable ones (see Definition 6.10 for a formal definition). In the
case of semistar operations, they were introduced in [13] where its deep connection
with localizing systems was established. For the connection with localizing systems
in a purely multiplicative context we refer to [30]. In the case of integral domains,
spectral module systems describe the ideal theory of generalized Nagata rings (see
[19,20]).

Theorem 6.5. Assume that K = q(D), let q be a finitary D-module system on K,
A C gp-spec(D) and ga = inf{q[Dp] | P € A} (see Proposition 6.1).
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1. g4 is a D-module system on K satisfying q < qa. If X CK, then

DpXy=DpX,, forallP€A, and X, = () DrX,.
PeA
2. Forall A,B € M,(K) we have (ANB)y, =Ay, NBy,.
3. Forall P € A we have P;, N\D =P (and thus A C (qa)p-spec(D)).

4. If J C D is an ideal such that 1 ¢ Jy,» then there exists some P € A such that
J C P. In particular, (qa)p has enough primes.

Proof. 1. By Proposition 6.1, g5 = inf{g[Dp] | P € A} is a D-module system on K.
Since g < g[Dp] for all P € A, it follows that g < ga. If X C K, then X,p,| = DpX,
by Proposition 5.3, and thus

Xgs = () Xqipp) = () DPXq-
PeA PeA
Now X, C X;, C DpX, implies DpX, C DpX,;, C DpDpX; = DpX; and thus
DpX,=DpX,,.
2.1fA, B e My(K), then ANB € M,(K), and

(ANB)g, = (| Dp(ANB)= (| DpAN (| DpB=Aq, NBy, .
PecA PeA PeA

3.Let LQcA.If PZ Q,then D C Dy =PDg C FP;Dyp, and if P C Q, then
P,Dg D P;Dp. Hence we obtain

P,,ND= () P,DpND=P,DpND D P,
Q€eA

and it remains to prove that P,Dp N D C P. If z € P,Dp N D, then there is some
s € D\ P such that sz € P, D = P and therefore z € P.

4.1f J C D is an ideal and 1 ¢ J,,, then 1 ¢ J,Dp and thus 1 ¢ J,Dp N Dp for
some P € A. Since J,Dp NDp C Dp is an ideal and PDp = Dp \D;, we obtain
J;DpNDp C PDpandJ C J,DpND C PDpND=P. O

Theorem 6.6. Let g be a finitary (weak) D-module system on K, r a weak module
system on K, and define rlq]: P(K) — P(K) by

X = J (Xg:B) forall XCK.

BCD
1€B,

L. rlq] is a finitary (weak) D-module system on K satisfying q < r|q|, and
Xig={x€K|1€[(Xg:x)ND],} forall X CK.

2. Forall X,Y € My(K) we have (X NY ) g = X,1q N Yrig)-
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3. If BCDandl € By, then 1 € B,
4. If q <r, thenrlg] < rand (r[q))lq] = rlg]. In particular; q[q] = q.
5. If ¢ <r, then rp-max(D) C r|g|p-max(D), and equality holds if rp has enough

primes.

Proof. 1. Let X C K. Then (X, :B) is a D-module for every B C D, and thus X, is
a D-module. If B, B” C D are such that 1 € B and 1 € B/, then 1 € BB C (B'B"),
and (X;:B')U(X,:B") C (X,:B'B") (since X, is a D-module). Hence {(X,:B) |
BCD, 1€B,} isdirected, and since g is finitary, it follows that

(Xr[q])q = U (XCI:B)(J = U (XCI:B) :Xr[q] , and

BCD BCcD
1eB, 1€B,
xg=U([ U &]1:8)=U U E:B= U Ey
?GCDr EeP¢(X) ?CDEE]P)f X) EeP¢(X)

We show now that r[g] satisfies the conditions of Definition 3.1. Once this is done,
then by the above considerations r[g] is a finitary D-module system satisfying g <
rlg]. Thus let, X, Y C K and c € K.

MI. If BC D, then XB C XD C X, and thus X C (X;:B) C X,y-

M2. If X C ¥, and z € X,(,), then there is some B C D such that zB C X, C
(Yiig))g = Yyiq and thus z € (Y, :B) C Yy, since Y, is a D-module.

M3. and M3'. If B C D, then ((cX),:B) 2 (cXy4:B) = c¢(X,:B), and thus we
obtain (cX ),y 2 cXy(g-

It remains to prove that X, = {x€ K| 1 € [(X;:x)N D], }.

IfxeX, rla)» then there is some B C D such that 1 € B, and xB C X, whence B C
(X;:x)NDand 1 € B, C [(X,:x) N D],. Conversely, if x € K and 1 € [(X,:x) N D],
then B = (X;:x)ND C D, 1 € B, and x € (X;:B) C X,y

2.1fX, Y € My(K), then obviously (XNY),, C X,(;NY,(y- To prove the reverse
inclusion, let z € X, NY,(, and B'B" CDsuchthat1 €B,, 1€B/, zB' CX,=X
and zB” C Y, =Y. Then 1 € B.B! C (B'B"),, and since X and Y are D-modules, it
follows that zB'B” C XNY, whence z € (XNY:B'B") C (XNY),

3.If BCDand 1€ B, then 1 € (B;:B) C B,y

4. Assume thatg < r,andlet X C K. Ifx € X,[q], then it follows that 1 € [(X :
x) N D], C (X;:x), = (X, :x), which implies x € X,. Hence we obtain X,,) C X, and
thus r[g] < r. Applied with r[g] instead of r, this argument shows that (r[g])[¢g] < r[q]
To prove r[g] < (r[g])[g], let X C K and x € X, (. Then 1 € [(X,:x)ND], C [(X

ol
x)ND],, hence 1€ [(X,[q] :x)N D], [q] by 3. and thus x € X (rla))[q)- “
5. Assume that g < r, and let P € rp-max(D). Then r[g] < r by 4., hence r[g]p <
rp and thus P € 3, (D). Since r[g] (and thus also r[g]p) is finitary, there exists
some P' € rlg|p-max(D) such that P C P'. If P C P/, then 1 € P/ C P/, and thus
le Pr’[ D= Pr’[ 4+ & contradiction. Hence it follows that P = P’ € r|q]p-max(D).
Assume now that rp has enough primes, and let P € r[g]p-max(D). Then 1 ¢ P =
P,y ND and thus 1 ¢ P,ND = Py,. Therefore there exists some P’ € rp-spec(D) C

ql



Multiplicative ideal theory in the context of commutative monoids 217

(D) such that P, C P'. Hence P C P' and thus P = P’ € rp-spec(D). If P’ €
(D) such

Ian
rp-max (D), we are done. Otherwise, there exists some P” € J,,, (D) C I

that P C P”, and then P C P” yields a contradiction. O

qlp

Definition 6.7. Let g be a finitary (weak) D-module system and r a weak module
system on K. The finitary (weak) D-module system r|[g| defined in Theorem 6.6 is
called the g-stabilizer of r on D or the spectral extension of g by r on D.

Theorem 6.8. Assume that K = q(D), let q be a finitary D-module system and r a
module system on K.

1. r[q][Dp] = q[Dp] for all P € rp-spec(D), and if q < r, this holds for all P €
r[g]p-spec(D).

2. rlq] <inf{¢[Dp] | P € rp-spec(D)} (see Proposition 6.1). Equality holds if rp
has enough primes, and r|q] = inf{q[Dp] | P € rp-max(D)} if ris finitary.

3. If q <r, then rlg) =inf{g[Dp] | P € qp-spec(D), 1 ¢ P.}.

Proof. 1.Let P € rp-spec(D). Then g < r[q] implies ¢[Dp| < r[g][Dp]. To prove the
reverse inequality, we must show that X,(,p,) C Xy(p,) forall X C K. If X C K and
2 € X ipp) = Xig/Pp. let s € D\ P be such that sz € X,[g)- Then there is some B C D
such that 1 € B, and szB C X,,. Since 1 € B,, it follows that B ¢ P = P,ND, and if
t € B\ P, then stz € X, and z € X,Dp = X,(p, -

Assume now that g < r. Then (r[q])[g] = r[g], and we apply what we have just
proved for r[g] instead of r and obtain r[g|[Dp] = (r[q])[g][Dpr] = ¢q|Dp] for all
P € rlg]p-spec(D).

2. We must prove that X,,) C X,(p,] = X,Dp for all P € rp-spec(D) and X C K.
Thus let P € rp-spec(D), X CK, x€ X,{y and B C D such that 1 € B, and xB C X;.
Then it follows that B ¢ P = P,N D, and if s € B\ P, then xs € Xy, which implies
X e Xqu.

Assume now that rp has enough primes and x € X,p,) = X;Dp for all P €
rp-spec(D). For each P € rp-spec(D), let sp € D\ P be such that spz € X;. Then
B={sp| P € rp-spec(D)} C D and B ¢ P for all P € rp-spec(D). Hence B,, =
B,ND =D, whence 1 € B, and z € (X;:B) C X,y

If r is finitary, then so is rp. In particular, rp has enough primes, and for every
P € rp-spec(D) there exists some M € rp-max(D) such that P C M, hence Dy C Dp,
and it follows that

ﬂ Xq[Dp] = ﬂ Xq[Dp] forall X C K
Péerp-spec(D) Perp-max(D)

and consequently r[g] = inf{¢[Dp| | P € rp-max(D)}.

3.If ¢ < r, then gp < rp, rp-spec(D) C {P € gp-spec(D) | 1 ¢ P.} and thus
inf{ q[Dp] | P € gp-spec(D), 1 ¢ P.} < r[g]. To prove the reverse inequality, it suf-
fices to show that r[g] < ¢g[Dp]| for all P € gp-spec(D) such that 1 ¢ P.. Thus, let
Pegp-spec(D), 1 ¢ P, XCK, x€ X,{q and B C D such that 1 € B, and xB C X,.
Then we have B ¢ P, and if x € B\ P, then xs € Xy, whence x € X;Dp = Xq[DP]. O
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Remark 6.9. Let D be an integral domain with quotient field K, * a semistar
operation on D and r = r* the D-module system on K induced by * (see Example
5.6.4). If * is the spectral semistar operation associated with * (see [13]), then
Theorem 6.6 implies r[d] = r*, and in the case of star operations we also obtain
r[d] = r*v (where #,, is the star operation introduced in [3]) and #[d] =" = P
(where w = v is the star operation introduced in [11]).

Definition 6.10. Let g be a finitary D-module system and » a module system on K
such that g < r. Then r is called

o g-stable if X,NY, = (XNY), forall X,¥ € M,(K).
e g-spectral if r = g for some subset A C gp-spec(D) (see Theorem 6.5).

Theorem 6.11. Assume that K = q(D), let q be a finitary D-module system on K
such that D = Dy and r a module system on K such that g <r.
1. The following assertions are equivalent :
(@) r=rlgl.
(b) ris g-stable.
(©) [(X:E)ND),=(X,:E)ND, forall E € P¢(K) and X € M4(K).
2. ris g-spectral if and only if ris q-stable and rp has enough primes.

Proof. 1. (a) = (b) By Theorem 6.6.2.
(b) = (c) Let E € P¢(K) and X € M, (K). Then, as D = D,

[(X:E)ND], = ( N x*lme> — ) ¥ 'X,0D, = (X,:E)ND,.
xcE*® " xeE*

(c) = (a) By Theorem 6.6 we have ¢ < r[g] < r, and thus it suffices to prove
that X, C X, for all X € My(K). Thus let X € My(K) and x € X,. Then 1 € (X;:
x)ND, = [(X:x)N D], and therefore x € X, (.

2.1If r is g-spectral, then r is g-stable and rp has enough primes by Theorem 6.5.
If r is g-stable, then r = r[g] by 1., and if rp has enough primes, then r[g] is g-stable
by Theorem 6.8.3. O

7 A survey on valuation monoids and GCD-monoids

Let K be a monoid and D C K a submonoid such that K = q(D).

In this section, we gather several facts concerning GCD-monoids, valuation
monoids and their homomorphisms. For a more concise presentation of this topic
we refer to [25, Chaps. 10, 15 and 18].



Multiplicative ideal theory in the context of commutative monoids 219

Definition 7.1.

1. Let X C D. An element d € D is called a greatest common divisor of X if dD is
the smallest principal ideal containing X [equivalently, d | x for all x € E, and if
e€Dande|xforallx € X, thene|d (where the notion of divisibility in D is used
in the common way) ]. If GCD(X) = GCDp(X) denotes the set of all greatest
common divisors of X, then GCD(X) = dD* for every d € X. If D is reduced,
then X has at most one greatest common divisor, and we write d = ged(X) instead
of GCD(X) = {d}. If X = {ay,...,a}, we set GCD(ay,...,a,) = GCD(X)
resp. ged(ay,...,a,) = ged(X).

2. D is called a GCD-monoid if GCD(E) # 0 for all E € P¢(D) [equivalently,
GCD(a,b) # 0 for alla,b € D*].

3. D is called a valuation monoid if, for all a,b € D, either a|b or b|a. If ris a
module system on K, then D is called an r-valuation monoid (of K) if D is a
valuation monoid satisfying D, = D.

4. A homomorphism ¢: G; — G, of GCD-monoids is called a GCD-

homomorphism if ¢(GCD(E)) C GCD(¢(E)) for every E € P¢(G;). We denote
by Homgcp(G1,G2) the set of all GCD-homomorphisms ¢: G; — G».

By definition, D is a valuation monoid if and only if for every z € K* either z € D
orz—! € D.If D is a valuation monoid, then every monoid 7 such that D C T C K
is also a valuation monoid. Obviously, every valuation monoid is a GCD-monoid.

If D is a valuation monoid and E € P¢(K), then (after a suitable numbering)
E ={ay,...,a,} with a;D C ayD C ... C a,D, hence ED = a,D, and if E C D,
then GCD(E) = a,D*. In particular, the s-system is the only finitary ideal system
on D. We identify it with its natural extension to a D-module system on K, whence
s(D) =t(D) and D = {1},p) (see Example 5.6.2).

Lemma 7.2. Let D be a GCD-monoid.

1. If E,F € P¢(D) and b € D, then GCD(EF)=GCD(E)GCD(F) and GCD(bE)
=bGCD(E).

2. If a,b,c € D, GCD(a,b) =D* and albc, then a|c.

3. Every z € K has a representation in the form z = a~'b with a € D* and b € D
such that GCD(a,b) = D*. In this representation aD* and bD* are uniquely
determined by z.

4. If v=v(D), X CDandd € D, then

X, = ﬂ aD, and X,=dD ifandonlyif de€ GCD(X).

acD
XCaD

In particular, if E € P¢(D) and d € GCD(E), then E,py = dD.
5. Myp)£(K) = {aD | a € K}, and M, (p) ¢(K)* = K* /D is cancellative.
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Proof. 1., 2. and 3. are easy exercises in elementary number theory (see [25,
Chap. 10]).

4.1f a € D and X C aD, then X,, C aD, which implies C . To prove the reverse
inclusion, let z € D be such that z € aD for all a € D satisfying X C aD. We must
prove that z € X, = (D:(D:X)), thatis, zx € D for all x € (D:X). Thus, let x € (D:
X) C K, say x =c~'b, where ¢,b € D and GCD(b,c) = D*. Then ¢~'bX C D,
hence X C cb~'DND, and we assert that ¢h~'DND C ¢D. Indeed, if v € D and
cb~'v € D, then b|cv, hence b|v and thus ch~!v € ¢D. Now X C cD implies z € cX
and zx € bD C D.

Hence, it follows that X,, = dD if and only if dD is the smallest principal ideal
containing X, which by definition is equivalent to d € GCD(X).

5.If E € P¢(K), let ¢ € D* be such that cE C D and d € GCD(cE). Then cED =
dD = (cE),(p) and thus E;(p) = ¢~ 'dD. Hence the map 9: K* — M;(p) £(K), de-
fined by d(a) = aD, is a group epimorphism with kernel D* and induces an isomor-
phism M,p) ¢(K)* = K*/D*. O

Lemma 7.3. For i € {1,2}, let G; be a GCD-monoid, K; = q(G;) and t; = t(G;).
A monoid homomorphism @: K\ — K, is a (t1,t;)-homomorphism if and only if
0(G1) C Gy and ¢|Gy: Gi — Gy is a GCD-homomorphism. In particular, there
is a bijective map

Homy, ,(K1,K2) — Homgep(G1,Ga), definedby ¢ — ¢|G;.
Proof. Let first ¢ be a (t;,#,)-homomorphism. Then

e(G1) =o({1},) C{o(V)}, = {1}, = Ga.

Let E C G, be finite, d; € GCD(E) and d, € GCD(¢(E)). Then E;, = d;G}, and
¢©(D);, = d»G,. Since d; | x for all x € E, it follows that @(d;) |y for all y € ¢(E),
and thus @(d;) |da. But ¢(dy) € ¢(E;,) C 9(E);, = d2G, implies dy | ¢(d;) and
therefore ¢(d;) € d,G5 = GCD(¢(E)).

Assume now that ¢(Gy) C Gy, and let ¢ | G1: G| — G, be a GCD-homomor-
phism. It is obviously sufficient to prove @(E; ) C @(E),, for all E € P¢(Gy). If
E € P¢(G) and d € GCD(E), then ¢(d) € GCD(¢(E)), and therefore ¢(E;,) =
¢(dG) C ¢(d)Go = @(E),. O

Lemma 7.4. Let r be a finitary module system on K andV C K a valuation monoid.
ThenV =V, if and only if idk is an (r,t(V))-homomorphism.

Proof. 1f idk is an (r,#(V))-homomorphism, the V C V, C V;(y) =V, and thus V =
V,. Conversely, assume that V = V,. If E € P¢(K), then Lemma 7.2.5 implies that
E,y)=EV =aV forsome a € E, and therefore we obtain E, C (aV), = aV = E;(y).
Hence idk is an (r,#(V))-homomorphism by Proposition4.4. O

Proposition 7.5. Let G be a GCD-monoid, K =q(G), V C K a submonoid and
t=t(G).
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1. Let V be a valuation monoid. Then V =V, ifand only if G CV and G —V isa
GCD-homomorphism.

2. V is a t-valuation monoid if and only if V = Gp for some P € t-spec(G). In
particular, G is the intersection of all t-valuation monoids of K.

Proof. 1. By Lemma 7.4 we have V =V, if and only if idgk is a (¢,#(V))-homomor-
phism, and by Lemma 7.3 this holds if and only if G C V and G — V is a GCD-
homomorphism.

2. Letfirst V be at-valuation monoid. By Lemma 7.4, j= (G — V) isa (t,(V))-
homomorphism, and since ¢(V) = s(V), it follows by Proposition 4.4 that P =
G\V* = j~1(V\V*) € t-spec(G). Since G\ P C V*, we obtain Gp C V. To prove
the reverse inclusion, let z = a~'b € V, where a, b € G and GCDg(a,b) = G*. By
1., G =V is a GCD-homomorphism, hence GCDy (a,b) = V*, and thus either
acV*orbeV*. IfacV*, thena¢ P and thus z€ Gp. If b e V*, thenz € V
implies b € aV, and hence a € V and again z € Gp.

Assume now that P € t-spec(G) and z = a~'b € K, where a,b € D and
GCD(a,b) = D*. Then {a,b}, = D, hence {a,b}; ¢ P =P and thus either
a¢Porb¢ P.Ifa¢ P, thenz € Gp, and if b ¢ P, then z~! € Gp. Therefore Gp is
a valuation monoid, and (Gp), = (G;)p = Gp.

By Proposition 6.4, this implies that G is the intersection of all ¢-valuation
monoids of K. 0O

8 Integral closures and cancellation properties

Let K be a monoid and D C K a submonoid.
Proposition 8.1. Let r be a weak module system on K and A € M,.¢(K).

1. The following assertions are equivalent :
(@) A is cancellative in M,¢(K) (that is, for all finite subsets X,Y C K, if
(AX), = (AY),, then X, =Y;).
(b) For all finite subsets X, Y C K, if (AX), C (AY),, then X, C Y,.
(c) For all finite subsets X C K and ¢ € K, if ¢cA C (AX),, then c € X,.

(d) For all finite subsets X C K we have ((AX),:A) C X,
In each of the above assertions, the statement “for all finite subsets” can be
replaced by the statement “for all r-finite r-modules”.

2. M¢(K)* is cancellative if and only if ((EF),:E) C F, forall E € P§(K) and
F e Pf(K).

Proof. 1. (a) = (b) If (AX), C (AY),, then
(AY)r = [(AX)rU (AY)r]r = (AXUAY)r = [A(XUY)],,

and therefore X, C (X UY), =Y,
(b) = (¢) If cA C (AX),, then (A{c}), = (cA), C (AX),, and thus ¢ € {c}, C X,.
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(c) = (d) Ifz € ((AX),:A), then zA € (AX), and therefore z € X,..
(d) = (a) If (AX), = (AY),, then AX, C (AY), and AY, C (AX),, hence X, C
((AY),:A) C Yrand ¥, C ((AX),:A) C X,, whence X, =Y.

If X C K, then (AX), = (AX,),, and thus the statement “for all finite subsets” can
always be replaced by the statement “for all r-finite ~-modules”.

2.By 1.(d), since M,.¢(K)* is cancellative if and only if E, is cancellative for all
EcP;(K). O
Theorem 8.2. Let r be a finitary weak module system on K, and let

ra: P(K) - P(K) bedefinedby X, = U ((XB);:B).
BePg(K)

1. ry is a finitary weak module system on K, r < ra, and if r is a module system,
then so is r,.

2. M, £(K)* is cancellative, and if q is any finitary weak module system on K such
that r < q and My¢(K)® is cancellative, then ry < q. In particular, (ra)as = ra,
and M,.¢(K)* is cancellative if and only if r = r,.

3. r[D)a =ralD), and if r is a weak D-module system, then so is ra.

4. If Gis a reduced GCD-monoid and L = q(G), then

Homy,,(G))(K,L) = Hom,, /() (K,L).
In particular, every r-valuation monoid of K is an ry-valuation monoid of K.

Proof. 1.1f X C K and B € P¢(K), then X,B C (XB),. Therefore we obtain X, C
((XB),:B) C X, and, since r is finitary,

%= U (U #98)= U U @em= U &,

BePR(K) E€P¢(X) BeP (K) E€P¢(X) EcP¢(X)

Therefore, it remains to prove that r, is a (weak) module system, and by Theorem
3.6 we have to check the conditions of Definition 3.1 for all finite subsets X, Y C K
and ¢ € K. Thus, let X,Y € P¢(K) and ¢ € K. The verification of M1., M3. and
M3’. is straightforward.

M2. Let X CY,, and z € X,,. Then there exists some F € IPf(K) such that z €
((XF),:F), and since {((YB),:B) | B € P§(K)} is directed, there exists some B €
IP?(K) such that X C ((YB),:B). Then

2FB C (XF),B C (XBF), C [(YB),F], = (YFB),

and thus z € ((YFB),:FB) CY,,, since FB e P{(K).
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2. By Proposition 8.1 we must prove that ((EF),, :E) C F,, holds for all E €
P?(K) and F € P¢(K). Thus, let E € P§(K), F € P¢(K) and z € ((EF),,:E). Then
zE C (EF),, implies zE C ((EFB),:B) forsome B € P} (K) (since {((EFB),:B) |
B e P¢(K)} is directed). Hence, it follows that zEB C (EFB), and z € ((EFB),:
EB) C F,,, since EB € P¢(K).

Let now g be any finitary weak module system on K such that r < g and M, ¢(K)*®
is cancellative. For any X € P¢(K) and B € IP{(K), Proposition 8.1 implies ((XB),:
B) C ((XB)4:B) C X,, and thus r, < g by Proposition 4.4.2.

3. For X C K, itis easily checked that X, ip) = X, p),-

4. Since r < ra, every (ra,f)-homomorphism is an (r,7)-homomorphism. If
¢: K — L is an (r,#)-homomorphism, then by Proposition 4.4.2 we must prove
that @(X,,) C @(X);(g) forall X € P¢(K). If X € P¢(K), z € X, and B € P}(K) are
such that zB C (XB),, then

?(2)9(B) C ¢((XB),) C ¢(XB), = [o(X)9(B)]:

and therefore ¢(z) € ([@(X)@(B)];: @(B)) C ¢(X); by Proposition 8.1 and
Lemma 7.2.4.

If V C K is a valuation monoid, then it follows by Lemma 7.4 that V is an
r- (resp. ry-)valuation monoid if and only if idk is an (r,¢(V))- (resp. (ra,t(V))-
homomorphism. Hence, every r-valuation monoid is an r,-valuation monoid. O

Definition 8.3. Let r be a finitary weak module system on K. The finitary weak
module system r, is called the cancellative extension of r. An element a € K is
called r-integral over D if a € D,,. A subset X C K is called r-integral over D if
X C D,,. The monoid D,, is called the r-closure of D, and D is called r-closed if
D=D,,.

Remark 8.4. The notion of r-integrality generalizes the concept of integral elements
in commutative ring theory. If D is an integral domain and d = d(D) is the module
system induced by the Dedekind system on K, then Dy, is the integral closure of D.
Most results of the classical theory of integral elements (transitivity and localization
properties) continue to hold for r-integrality (see [25, Chap. 14] for details, [27] for
a version for not necessarily cancellative monoids and [15, Example 2.1] for the his-
tory of the concept). In Krull’s ancient terminology (which is still used in the theory
of semistar operations, see [23, Section 32]) ideal systems x for which Mx’f(K).
is cancellative, are called “e.a.b.” (endlich arithmetisch brauchbar). In the case of
ideal systems on monoids, the construction of r, goes back to P. Lorenzen [34] who
constructed a multiplicative substitute for the Kronecker function ring. A readable
overview of the development of the concepts and results related to Kronecker func-
tion rings and semistar operations was given by M. Fontana and K.A. Loper [20].

Definition 8.5. Let r be a finitary module system on K. We denote by A,(K) =
a(M,, ¢(K)) the quotient of the monoid M, (K) (M,,(K)*® is cancellative, see
Theorem 8.2.2). The group A,(K)* is a quotient group of M,, ¢(K)* and is called
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the Lorenzen r-group. For X € A,(K)*, we denote by X[~ its inverse in the group
A,(K)*. Then we obtain, by the very definition,

A(K)={CTYA|AeM, ¢(K), CeM,,+(K)*,}.

If A,A" € M, ¢(K) and C,C" € M, ¢(K)*, then CI=!]A = C'l"1A" if and only if
(AC'),, = (A'C),,, and multiplication in A,(K) is given by the formula (C[-'A).
(c'1AN) = ('), -1(AAY),. In particular, D,, = {1},, is the unit element of
A,(K). The submonoid

AF(K)={CTUA | AeM,, ¢(K), CEM,, £(K)*, ACC} C A(K)

is called the Lorenzen r-monoid. It is easily checked that A7 (K) C A,(K) isreally a
submonoid, and M, ¢(K) C A,(K). The Lorenzen homomorphism t,:K — A.(K)
is defined by 17.(a) = {a},, = aD,, e M, (K) C A.(K) forall a € K.

Theorem 8.6. Let r be a finitary module system on K, D C {1}, and K = q(D).

Let t =1t(AF(K)) be the t-system on A,(K) induced from A} (K).

1. If Ac M, £(K) and C € M,, £(K)®, then CI"YA € A" (K) if and only if A C C.

2. AF(K) is a reduced GCD-monoid, and A(K) is a quotient of A7 (K). If X,Y €
AT (K), then there exist A, B € M,, ¢(K) and C € M, ¢(K)*® such that AUB C C,
X =ClYA and Y = C-YUB. In this case, we have X |Y if and only if B C A,
and ged(X,Y) =CU(AUB),,.

3. Forevery X € A} (K), there exist E € P¢(D) and E' € P§(D) such that E,, C E],
and X = E, FVE,, = ged(1,(E")) " ged(1,(E).

4. The Lorenzen homomorphism 7.: K — A.(K) is an (ra,t)-homomorphism and
T |K*: K* — A(K)* is a group homomorphism satisfying Ker(t,|K*)=D]..

5. For every Z C K we have Z,, = 1, '[1,(Z),] = {c €K | {c}, € 7.(Z):}, and in
particular T, (A, (K)) = D,,.

Proof. The assertions 1. to 4. follow immediately from the definitions.

5. Let now first Z C K be finite, say Z = a 1A, where a € D* and A =
{ai,...,an} C D C {1},,. Then

Ar,={ar}r,U...U{an}r,)r, = ged({ar}r,, .- {an}r,)
= ged(,(ay), ..., (an)) = ged(t,.(A))

and therefore 7,(A); = A,,A;7(K) by Lemma 7.2.4. For ¢ € K, we have ¢ €
7, '[1,(2),] if and only if

r

1, (ac) = 1.(a)7,(c) € 1:(a)7(Z); = 1.(aZ); = 1,(A); = A, AT (K),

ra‘tr

and therefore we obtain

c € T 1(2)] < t(ac) €EALAT(K) < AL {ac},, € AF(K)

ra®*r

— {ac},, CA,, < ac€A,, =aZ,, < c€Z,.
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Hence, Z,, = 7, '(7,(Z);) and D,, = 7, '(z,({1},) = 7, ' (A1 (K)). If finally Z C K
is arbitrary, then

z,= U E.= U v'w@l=v'( U &) =t'@@)

E€P¢(Z) EcP¢(Z) FeP(1,(2))

In particular, it follows that 1,(Z.,) C 7,(Z);, and thus 7, is an (r,,)-homomor-
phism. 0O

Remark 8.7. Let D be an integral domain with quotient field K, * a semistar oper-
ation on D and r = r* the module system on K induced by *. Then the Lorenzen
r-monoid A," (K) is isomorphic to the monoid (Kr(D, *)) of principal ideals of the
semistar Kronecker function ring Kr(D,*) (see [19]). We recall the definition:
Kr(D, ) consists of all rational functions f/g with f, g € D[X] such that g # 0 and
there exists some i € D[X]* satisfying [c(f)c(h)]* C [c(g)c(h)]*. An isomorphism
(Kr(x,D)) — A (K) is given by the assignment (f/g) — c(g)[gl]c(f),a.

Theorem 8.8 (Universal property of the Lorenzen monoid). Let r be a finitary
module system on K, D C {1},,, K =q(D) andt =t(A,}(K)) the t-system on
Ar(K) induced from A (K). If G is a reduced GCD-monoid and L = q(G), then
there is a bijective map

Hom(,,,(G)) (Ar(K),L) ad Hom(m(G)) (K,L), deﬁned by ¢ — (]) OTy.

Proof. If @: A.(K) — L is a (t,7(G))-homomorphism, then ®o71,: K — L
is an (r,7(G))-homomorphism, since 7, is an (r,,#)-homomorphism and thus
also an (r,¢)-homomorphism. We prove that for every ¢ € Hom,,) (K,L)
there is a unique @ € Hom ) (A-(K),L) such that @ o7, = @. Thus let
(ONSS HOII](,,’,(G))(K,L).

By Lemma 7.3, the map Hom, () (A-(K),L) — Homgep (A," (K),G), defined
by @+ @|A(K),is bijective, and for @ € Hom(, ;) (A-(K),L) we have @ o1, =
¢ ifand only if [®@|A,"(K)]o(7,|D)= @|D (since K =q(D)). Hence it suffices to
prove that there exists a unique ¥ € Homgcp (A, (K),G) such that yo 7.(a) = ¢(a)
foralla € D°.

Uniqueness: If y € Homgep (A, (K), G) be such that yo 1.(a) = ¢(a) foralla € D*®
and X = ged(,(E')) " ged(,(E)) € A (K) (where E € P¢(D), E' € P§(D) and
E,, CE] ), then

y(X) = ged[y(1.(E"))] " ged[y(7(E))] = ged[@(E)] ' ged[o(E)]

and thus y is uniquely determined by ¢.

Existence : Define y provisionally by w(X) = ged(@(E")) ' gcd(@(E)) if X =
ged((E") U ged(t,(E)) with E € P¢(D), E' € P§(D) and E,, C E.. We must
prove the following assertions: 1) y(X) C G; 2) the definition is independent of
the choice of E and E’; 3) y is a GCD-homomorphism. The proofs are lengthy
but straightforward and are left to the reader. O
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Theorem 8.9. Let r be a finitary module system on K, D C {1}, and K = q(D).
Let t =t(A,F(K)) the t-system on A.(K) induced from A" (K). Let 'V be the set
of all r-valuation monoids in K and 'W the set of all t-valuation monoids in Ay(K).

Then V = {1, '(W)|W € W}.

Proof. f W € W and x € K\ 7, (W), then 7,(x) ™! = 7,(x~!) € W and therefore
x~ ! € 77 1(W). Hence 7, (W) is a valuation monoid, and since 7, is an (r,)-
homomorphism, it is even an r-valuation monoid and lies in V.

Letnow V € Vand m: K — K/V* the canonical epimorphism. Then V /V* is
areduced valuation monoid, q(V/V*) = K/V*, and we denote by t* =¢(V /V*) =
s(V /V*) the module system on K /V* which is induced by the 7-system on V /V*.
Since r < ry = s(V), it follows that 7 is an (r,#*)-homomorphism. By Theorem 8.8,
the assignment @ +— @ o7, defines a bijective map Homy, ;+)(A,(K),K/V*) —
Hom,,,+(K,K/V*). Hence there is a unique (¢,#*)-homomorphism @®: A,(K) —
K/V* such that @ o1, = &, and @ is surjective, since 7 is surjective. Now W =
@1 (V/V*) C A(K) is a valuation monoid, and 7, (W) = (@ o1,) ! (V/V*) =
=1 (V/V*) = V. Thus, it remains to prove that W, = W. Since @ is a (¢,t*)-
homomorphism, it follows that ®(W,) C @(W ) = (V/V*)x =V /V* and W, C
& Y(V/V*)=W,whence W, =W. O

Theorem 8.10. Let r be a finitary module system on K, D C {1},, and K =q(D). If
V(D) denotes the set of all r-valuation monoids of K containing D, then V,(D) =
V. (Dy,) and

D, ={l},= (] V.

VeV, (D)

Proof. By Theorem 8.2.4, a monoid V C K is an r-valuation monoid if and only if
it is an r,-valuation monoid. Hence V.(D) ="V,, (D) D V,,(D,,), and if V € V,(D),
then {1},, =D,, CV,, =V andthusV €V, (D,,).

Let 7,: K — A,(K) be the Lorenzen homomorphism, 7 =7(A," (K)) and W the set
of all ¢-valuation monoids in A,(K). By Theorem 8.9 we have V,(D) = {t. (W) |
W € W} and, applying Proposition 7.5.2 and Theorem 8.6.3, we obtain

D=7 'K =5 (W)= N5'm= N v. ©

wew wew VeV, (D)

Corollary 8.11. Let K = q(D) and r a finitary ideal system on D. Then D,, is the
intersection of all r-valuation monoids in K.

Remark 8.12. In the case of integral domains, Theorem 8.10 generalizes the con-
nection between semistar Kronecker function rings and valuation overrings as de-
veloped in [18]. In particular, Corollary 8.11 contains the classical fact that the
integral closure of an integral domain is the intersection of its valuation overrings
(see [23, (19.8)]).
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9 Invertible modules and Priifer-like conditions

Let K be a monoid and D C K a submonoid such that K = q(D).

This final section contains the basics of a purely multiplicative theory of semistar
invertibility and semistar Priifer domains as it was developed only recently by
M. Fontana with several co-authors (see [6,9, 15-18,21,22]). In particular, we refer
to the examples presented in these papers which show the semistar approach covers
really new classes of integral domains.

Definition 9.1. Let r be a module system on K. A D-module A C K is called
(r-finitely) r-invertible (relative D) if there exists a (finite) subset B C (D:A)
such that (AB), = D, [equivalently, 1 € (AB), ].

By definition, A is r-invertible if and only if A is r[D]-invertible. If A is
r-invertible, then A is g-invertible for every module system ¢ on K satisfying
r < g, and every D-module A’ with A C A’ C A, is also r-invertible.

Lemma 9.2. Let A C K be a D-module and B C K such that D = AB. Then A = aD
for some a € K.

Proof. Let P=D\D”*. Then PA C A, and we assert that PA # A. Indeed, if PA =A,
then P = PD = PAB = AB = D, a contradiction. If a € A\ AP, then aD C A, hence
aBD C AB = D. If aBD # D, then aBD C P, since aBD is an ideal of D, and then
a € aD = aABD C AP, a contradiction. Hence, aBD = D, and consequently A =
aABD =aD. O

Proposition 9.3. Let r be a module system on K, ¢ € K*, and let A C K be a
D-module.

1. A is r-invertible if and only if [A(D:A)], = D,, and then (D:A) and A, p) are
also r-invertible.

2. If A is r-invertible, then cA is also r-invertible, and A, is cancellative in M, (K).

3. A is r-invertible (relative D) if and only if A, is r-invertible (relative D, ) and
(Dy:A) = (D:A),.

4. If A1, Ay C K are D-modules, then A1A; is r-invertible if and only if A and A,
are both r-invertible.

Proof. 1.1f [A(D:A)], = D,, then A is r-invertible. If A is r-invertible, then there is
some B C (D:A) such that (AB), = D,, and since [A(D:A)], C D,, it follows that
[A(D:A)], = D,. Hence, (D:A) is r-invertible, and (by an iteration of the argument)
A, = (D:(D:A)) is also r-invertible.

2. Let A be r-invertible and B C (D:A) such that (AB), = D,. Since ¢~ !B C
(D:cA) and ((cA)(c™'B)), = D,, it follows that cA is also r-invertible. If X, Y €
M,(D) and (A;X), = (A,Y),, then it follows that X = [(BA),X], = [B(A:X)/], =
[B(A,Y),]r =[(BA),Y], =7, and thus A, is cancellative.
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3. By Proposition 3.3.3, A, is a D,-module. If A is r-invertible, then D, = [A(D:
A)], C [A-(D:A)]; C |A-(D;,:A)], = [Ar(D;:A})]r C Dy; hence equality holds, A,
is r-invertible (relative D,), and since A, is cancellative in M, (D), it follows that
(D:A), = (D,:A). To prove the converse, let A, be r-invertible (relative D,) and
(D:A), = (D,:A). Then it follows that [A(D:A)], = [A.(D:A),], = [A,(Dy:A),], =
[A-(D,:A})], = D,, and thus A is r-invertible relative D.

4.1f A1 A, is r-invertible, then there is some B C (D:AA;) such that (A1A;B), =
D,. Since A|B C (D:A;) and A;B C (D:A)), it follows that A and A, are both r-
invertible. If A and A, are r-invertible, then there exist By C (D:A;) and B, C (D:
A2) such that (AlBl)r = (A232)r = D,. Now (AlAzBle)r = [(AlBl)r(AZBZ)r]r =
D, and B|B; C (D:A1A,) implies that A} A, is r-invertible. O

Proposition 9.4. Let r be a finitary module system on K and A C K a D-module.

1. The following assertions are equivalent:
(a) A is r-invertible (relative D).
(b) There exists a finite subset F C (D:A) such that 1 € (AF);.
(c) Forall P € rp-max(D) we have A(D:A) ¢ P.
2. If A is r-invertible, then A, is r[D)-finite and A is r-finitely r-invertible.
3. If T C D is multiplicatively closed and A is r-invertible, then T~ 'A is r-invertible
(relative T~'D).

Proof. 1. (a) = (b) If BC (D:A) is such that 1 € (AB),, then (since r is finitary)
there exists a finite subset F C B such that 1 € (AF),.

(b) = (c) Assume that A(D:A) C P for some P € rp-max(D), and let F C
(D:A) be finite such that 1 € (AF),. Then it follows that 1 € (AF),ND C [A(D:
A)],ND C P.ND = P, a contradiction.

(c) = (a) Since A(D:A) C [A(D:A)],ND, it follows that the rp-ideal [A(D:
A)]-ND is contained in no P € rp-max (D). Hence it follows that [A(D:A)],ND =
D C [A(D:A)], and therefore [A(D:A)], = D,.

2.Let BC (D:A) be such that 1 € (AB),, and let E C A and F C B be finite
subsets satisfying 1 € (EF),. Then D, C (DEF), C (AF), C D,, which implies
D, = (AF);, and thus A is r-finitely r-invertible relative D. Moreover, it follows that
A, = DA, = (DEFA), = (DE), = E,{p|, and therefore A, is r[D]-finite.

3. If B C (D:A) is such that (AB), = D,, then B C (T~'D:T~'A) and
(T7'AB), = (T~'D),. Hence T~ 'A is r-invertible (relative 7~'D). O

Theorem 9.5. Let r be a finitary module system on K and A C K a D-module.

L. If Ais r-invertible and P € rp-spec(D), then Ap = aDp for some a € K*.

2. Suppose that for every P € rp-max(D) there is some ap € K* such that Ap =
apDp. If 'y is a finitary module system on K such that Dy, = D and A is y-finite,
then A is r-invertible.
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Proof. 1.LetA be r-invertible, B C (D:A) such that (AB), = D, and P € rp-spec(D).
Then AB ¢ P, and since AB C D is an ideal, we obtain Dp = (AB)p = ApBp. Now
the assertion follows by Lemma 9.2.

2. Suppose that A = E, for some E € P¢(K) and that A is not r-invertible. By
Proposition 9.4, there is some P € rp-spec(D) such that A(D:A) C P and thus ap(D:
A)p C PDp. Since D = D,, it follows that

(D:A)p = (D:E)p = (Dp:E) = (Dp:Ap) = ap'Dp
and thus PDp D ap(D:A)p = Dp, a contradiction. O

Definition 9.6. Let r and y be finitary module systems on K such thaty < rand D), =
D.Then D is called a y-basic r-Priifer monoid if every A € M, ¢(K) is r-invertible.

Remark 9.7. Let D be an integral domain, * a semistar operation on D and r = r*
the D-module system on K induced by *. Then D is a PxMD (as defined in [15]) if
and only if D is a basic d(D)-Priifer monoid.

Theorem 9.8. Let r,q and y be finitary module systems on K such that q is a
D-module system, y < q < r and Dy, = D.

1. If D is an y-basic r-Priifer monoid, then Dp is a valuation monoid for every
P € rp-spec(D).
2. The the following assertions are equivalent:
(a) D is a y-basic r-Priifer monoid.
(b) D is a y-basic r|q]-Priifer monoid.
(¢) Dp is a valuation monoid for every P € rp-max(D).

Proof. 1.Let P € rp-spec(D). Since Dp = Dy D, it suffices to prove that forall a, b €
D* we have either a € bDp or b € aDp. If a, b € D®, then {a,b}, is r-invertible by
the assumption: Let B C (D:{a,b},) = (D:{a,b}) be such that 1 € ({a,b},B),. We
assert thateven 1 € {a,b}BDp. Indeed, if not, then {a,b} BDp C PDp, which implies
{a,b}BC PDpND =P and 1 € ({a,b},B),ND = ({a,b}B),ND C P.ND =P, a
contradiction.

Now it follows that Dp = ({a,b}Dp)B and thus {a,b}Dp = c¢Dp for some ¢ €
Dp by Lemma 9.2. Hence, there exist u, v € Dp such that a = cu, b = cv, and
{u,v}Dp = Dp. Therefore we have either u € D, or v € Dy and thus either b € aDp
ora € bDp.

2.(a) = (c) By 1.

() = (a) Let A=E, € M,¢(K), where E € P¢(K), and assume that A is not
r-invertible. By Proposition 9.4 there exists some P € rp-max(D) such that A(D:
A) C P. Since Dp is a valuation monoid, we obtain EDp = aDp for some a € E, and
thus also Ap = EyDp = (EDp)y = aDp. Since [A(D:A)]p =Ap(D:E)p =Ap(Dp:
EDp) = aDp(Dp:aDp) = Dp, we obtain PDp D [A(D:A)]p = Dp, a contradiction.
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(a) < (b) By Theorem 6.6.5 we have rp-max(D) = r[g|p-max(D). We apply
the equivalence of (a) and (c) with r[g] instead of r and obtain the equivalence of
(a) and (b). O

Corollary 9.9. Let r and y be finitary module systems on K such that y < r and
Dy = D. If D is an y-basic r-Priifer monoid, then every y-monoid T satisfying
D C T CK is also an y-basic r-Priifer monoid.

Proof. By Theorem 9.8 it suffices to prove that 7p is a valuation monoid if P €
rr-max(T). If P € rr-max(T), then PND = P.NTND = P,ND. Hence, PND €
rp-spec(D), Dpnp is a valuation monoid, and since Dpnp C Tp, it follows that Tp is
also a valuation monoid.
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Projectively full ideals and compositions
of consistent systems of rank one discrete
valuation rings: a survey

William Heinzer, Louis J. Ratliff, Jr., and David E. Rush

Abstract Let I be a nonzero ideal in a Noetherian domain R. We survey recent
progress on conditions under which there exists a finite integral extension domain A
of R and an ideal J of A such that J is projectively full and projectively equivalent to
IA. We also survey recent work on compositions of consistent systems or rank one
discrete valuation rings.

1 Introduction

All rings in this paper are commutative with a unit 1 # 0. For an ideal K of a ring R,
we let K, denote the integral closure of K; thatis K, = {x € R | x satisfies an equation
of the form x" 4+ kix"~' 4+ ... + k;, = 0, where ki€ K/forj=1,...,h}. LetI be a
regular proper ideal of the Noetherian ring R, that is, I contains a regular element
of R and I # R. An ideal J of R is projectively equivalent to I if there exist positive
integers m and n such that (I""), = (J"),. The concept of projective equivalence of
ideals and the study of ideals projectively equivalent to / was introduced by Samuel
in [S] and further developed by Nagata in [N1] and Rees in [RE]. See [CHRR4] for a
recent survey. Let P(I) denote the set of integrally closed ideals that are projectively
equivalent to I. The ideal [ is said to be projectively full if P(I) = {(I"), | n > 1}
and P(I) is said to be projectively full if P(I) = P(J) for some projectively full ideal
J of R.

William Heinzer
Purdue University, West Lafayette, IN 47907-1395, e-mail: heinzer@math.purdue.edu

Louis J. Ratliff, Jr.
Department of Mathematics, University of California, Riverside, California 92521-0135
e-mail: ratliff@math.ucr.edu

David E. Rush
Department of Mathematics, University of California, Riverside, California 92521-0135
e-mail: rush@math.ucr.edu

M. Fontana et al. (eds.), Commutative Algebra: Noetherian and Non-Noetherian 233
Perspectives, DOI 10.1007/978-1-4419-6990-3_29,
(© Springer Science+Business Media, LLC 2011


heinzer@math.purdue.edu
ratliff@math.ucr.edu
rush@math.ucr.edu

234 William Heinzer, Louis J. Ratliff, Jr., and David E. Rush

The set Rees I of Rees valuation rings of  is a finite set of rank one discrete
valuation rings (DVRs) that determine the integral closure (I"), of I" for every
positive integer n and is the unique minimal set of DVRs having this property. Con-
sider the minimal primes z of R such that /R/z is a proper nonzero ideal. The set
Rees [ is the union of the sets Rees IR/z. Thus, one is reduced to describing the set
Rees I in the case where / is a nonzero proper ideal of a Noetherian integral domain
R. Consider the Rees ring R = R[t~!,I¢]. The integral closure R’ of R is a Krull
domain, so W = R;, is a DVR for each minimal prime p of t /'R, and V = W N F,
where F is the field of fractions of R, is also a DVR. The set Rees I of Rees valuation
rings of I is the set of DVRs V obtained in this way, cf. [SH, Section 10.1]. More
information on Rees valuations is in the article by Swanson [Sw], in this volume.

If (Vi,N1),...,(Va,N,) are the Rees valuation rings of I, then the integers
(e1,...,en), where IV; = Nfi , are the Rees integers of I. Necessary and sufficient
conditions for two regular proper ideals I and J to be projectively equivalent are that
(a) Rees I = Rees J and (b) the Rees integers of / and J are proportional [CHRR,
Theorem 3.4]. If ] is integrally closed and each Rees integer of / is one, then [ is a
projectively full radical ideal.’

A main goal in the papers [CHRR,CHRR2,CHRR3,CHRR4,HRR] and [HRR2],
is to answer the following question:

Question 1.1. Let / be a nonzero proper ideal in a Noetherian domain R. Under
what conditions does there exist a finite integral extension domain A of R such that
P(IA) contains an ideal J whose Rees integers are all equal to one?

Progress is made on Question 1.1 in [CHRR3, HRR, HRR2]. To describe this
progress, let I be a regular proper ideal of the Noetherian ring R, let by,...,b, be
regular elements in R that generate /, let X1, ..., X, be indeterminates, and for each
positive integer m > 1 let A,, = R[x1,...,xs] = R[X1,..., X, /(X" —by,...,. X" —
bg) andletJ,, = (x1,...,x5)Am. Let (Vi,N1),...,(Vy,N,) be the Rees valuation rings
of 1. Consider the following hypothesis on I = (by,...,bg)R:

(@) b;V; =1V; (=N, say)fori=1,...,gand j=1,...,n.
(b) the greatest common divisor c of ey, ..., e, is a unitin R.
(b) the least common multiple d of ey,...,e, is a unit in R.

Then the main result in [CHRR3] establishes the following:

Theorem 1.2. If (a) and (b) hold, then A. = R[xy,...,xg] is a finite free integral
extension ring of R and the ideal J. = (x1,...,xg)A. is projectively full and projec-
tively equivalent to IA.. Also, if R is an integral domain and if z is a minimal prime
ideal in A, then ((J; +2)/2)q is a projectively full ideal in A./z that is projectively
equivalent to (IA.+2)/z.

! Example 5.1 of [CHRR2] demonstrates that there exist integrally closed local domains (R, M) for
which M is not projectively full. Remark 4.10 and Example 4.14 of [CHRR] show that a sufficient,
but not necessary, condition for / to be projectively full is that the gcd of the Rees integers of / is
equal to one.
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We prove in [HRR, (3.19) and (3.20)] that if either (i) R contains an infinite field,
or (ii) R is a local ring with an infinite residue field, then it is possible to choose
generators by, ..., b, of I that satisfy assumption (a) of Theorem 1.2. In [HRR, (3.7)]
the following is established:

Theorem 1.3. If (a) and (b') hold, then for each positive multiple m of d that is a unit
in R the ideal (J,)) 4 is projectively full and (Ji)q is a radical ideal that is projectively
equivalent to IA,,. Also, the Rees integers of J,, are all equal to one and x;U is
the maximal ideal of U for each Rees valuation ring U of J,,, and fori=1,...,g.
Moreover; if R is an integral domain and if 7 is a minimal prime ideal in A, then
((Jm +2)/2)a is a projectively full radical ideal that is projectively equivalent to
(IAn+2)/z

Examples (3.22) and (3.23) of [HRR] show that even if R is the ring Z of ratio-
nal integers, condition (b") of Theorem 1.3 is needed for the proof given in [HRR].
However, the following result, which is the main result in [HRR2], shows that con-
ditions (a), (b) and (b) in Theorems 1.2 and 1.3 are not needed if R is a Noetherian
domain of altitude (or in other terminology Krull dimension) one.

Theorem 1.4. Let I be a nonzero proper ideal in a Noetherian integral domain R.

1. There exists a finite separable integral extension domain A of R and a positive
integer m such that all the Rees integers of IA are equal to m.

2. If R has altitude one, then there exists a finite separable integral extension do-
main A of R such that P(IA) contains an ideal H whose Rees integers are all
equal to one. Therefore H = Rad (IA) is a projectively full radical ideal that is
projectively equivalent to IA.

A classical theorem of Krull, stated as Theorem 2.1 below, is an important tool
in [HRR2]. We use the following terminology from [G] and [HRR2].

Definition 1.5. Let (V,N;),...,(V,,N,) be distinct DVRs of a field F and for
i=1,...,n let K; = V;/N; denote the residue field of V;. Let m be a positive in-
teger. By an m-consistent system for {Vi,...,V,}, we mean a collection of sets
S={S(V1),...,S(Vy)} satisfying the following conditions:

(M SVi) ={(Ki;, fij,eij) | j=1,...,si}, where K; ; is a simple algebraic field
extension of K;, f; j = [K,'J :Kj], and si,e; j € N (the set of positive integers).

(2) For each i, the sum 2;’-:1 e jfij=m.

Definition 1.6. The m-consistent system S for {Vy,...,V,} as in Definition 1.5 is
said to be realizable for {Vy,...,V,} if there exists a separable algebraic extension
field L of F such that:

(@ [L:F]=m.

(b) For 1 <i<n,V;hasexactly s; extensions (V; 1,Nj1),...,(Vis,Nis,) to L.

(c) Theresidue field V; j/N; ; of V; j is Kj-isomorphic to K; ;, so [K; j : Ki| = fi ;.
and the ramification index of V; ; over V; is ¢; j, so N;V; j = N; ;1.
If S and L are as above, we say the field L realizes S for {Vy,...,V,} or that L is a
realization of S for {Vy,...,V,}.
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In Sections 2-4, we summarize the main results in [HRR3] concerning the
realizability of a consistent system S for a finite set V.= {V,...,V,}, n > 1, of
distinct DVRs on a field F. These results are obtained by constructing and compos-
ing two realizable consistent systems that are related to S.

In Sections 5 and 6, we return to projectively full ideals. In Section 5, we sum-
marize results in [HRR4] concerning a Rees-good basis of a regular ideal / in a
Noetherian ring R. This is a basis that satisfies condition (a) above. The main result
in [HRR4] shows that there always exists a finite free integral extension ring A of R
such that JA has a Rees-good basis and the same Rees-integers as I (with, perhaps,
greater cardinality). In Section 6 we observe that [RR] implies that the homoge-
neous prime spectra of the Rees rings of two filtrations related to / are isomorphic
if and only if I is projectively full.

Our terminology is mainly as in Nagata [N2], so, for example, the term altitude
refers to what is often also called dimension or Krull dimension, and a basis of an
ideal is a set of generators of the ideal.

2 The realizability of m-consistent systems

The following theorem of Krull is an important tool in [HRR2] and [HRR3].

Theorem 2.1. (Krull [K]): Let (Vy,Ny), ..., (Va,N,) be distinct DVRs with quotient
field F, let m be a positive integer, and let S = {S(V}),...,S(V4)} be an m-consistent
system for {Vi,...,Vp}, where S(V;) = {(Ki j, fi,j,eij) | j=1,...,si} fori=1,...,n.
Then S is realizable for {Vy,...,V,} if one of the following conditions is satisfied:

(i) s; = 1 for at least one i.

(ii) F admits at least one DVR'V distinct from V1, ..., V,,.

(iii) For each monic polynomial X' + a1 X'~ +---+a, with a; € N'_,Vi =D, and
for each h €N, there exists an irreducible separable polynomial X' +b; X'~ ' 4+
b, € DIX] with b; —a; € N{" for eachl = 1,...,tandi=1,...,n.

Observe that condition (i) of Theorem 2.1 is a property of the m-consistent
system S = {S(V}),...,S(V,,)}, whereas condition (ii) is a property of the fam-
ily of DVRs with quotient field F, and condition (iii) is a property of the family
(Vi,N1)y .., (Vo Np).

The result of Krull stated in Theorem 2.1 is a generalization of a classical result
of Hasse [H] that shows that all m-consistent systems for a given finite set of distinct
DVRs of an algebraic number field F are realizable. This has been extended further
by P. Ribenboim, O. Endler and L. C. Hill, among others. For a good sampling of
these results on when an m-consistent system is realizable, see [E, Sections 25-27]
and [E2]. These references give several sufficient conditions on the realizability of
an m-consistent system for a given finite set V. = {Vj,...,V, } of distinct DVRs V;
with quotient field F.
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Remarks 2.2. (2.2.1) There is an obvious necessary condition for an m-consistent
system to be realizable. If n = 1 and V| is a Henselian DVR, then no m-consistent
system S = {S(V;)}, where S(V1) = {(Ki, f1,e1),...,(Ks, fs,es)} with s > 1 is re-
alizable for {V;}, since V; is Henselian if and only if V; has a unique extension
to each finite algebraic extension field of its quotient field F, cf. [N2, (43.12)]. It
follows from Theorem 2.1(ii) that if V is a Henselian DVR, then V is the unique
DVR with quotient field F. It is not true, however, that V being the unique DVR on
its quotient field implies that V is Henselian. For example, using that the field Q of
rational numbers admits only countably many DVRs, it is possible to repeatedly use
Theorem 2.1 to construct an infinite algebraic extension field F of @Q such that F
admits a unique DVR V having quotient field F' and yet V is not Henselian.

(2.2.2) Related to (2.2.1), it is shown in [R, Theorem 1] that, for each positive
integer n, there exist fields F, that admit exactly n DVRs (Vi,Ny),..., (V,,N,) hav-
ing quotient field F;. Moreover, the proof of [R, Theorem 1] shows that such F,
can be chosen so that there are no realizable m-consistent systems S for {Vi,...,V,}
having the property that m > 1, and, for each i = 1,...,n, S(V;) = {(Ki j, fi.j. i) |
j=1,...,s:} has at least one j with (Kj j, f; j,ei.j) = (Vi/Ni,1,1).

The following result given in [HRR3, Theorem 2.3] is a sufficient condition for
realizability; by Remark 2.2.1, the hypothesis n > 1 in Theorem 2.3 is essential.
The proof illustrates the method of “composing” realizable systems used in [HRR2],
[HRR3].

Theorem 2.3. Let (V1,Ny),...,(Va,Ny), n > 1, be distinct DVRs with quotient field
F, let m > 1 be a positive integer, and let

S={S(V1),....S(Vn)}
be an arbitrary m-consistent system for {Vy,...,V,}, where

S(Vi) = {(Kij fijreij) |7 =1, .81},

foreachi=1,...,n. Then S* = {S*(V}),...,8*(Vy)} is a realizable m*-consistent
system for {Vy,...,Vy}, where

S* (Vi) = {(Ki, fijsmeij) | j=1,....si},
foreachi=1,...,n.

Proof. If s; = 1 for some i = 1,...,n, then Theorem 2.1(i) implies that § is
a realizable m-consistent system and S* is a realizable m?-consistent system for
{V1,...,V,}, so it may be assumed thats; > 1 foreachi=1,...,n.

Define S;(V;) = S(V;) fori = 1,...,n—1 and S;(V,,) = {((Va/Nn),1,m)}, and
recall thatn > 1. Theorem 2.1(i) implies that S = {S; (V}),...,S1(V,)} is arealizable
m-consistent system for {V},...,V,}. Let L; be a realization of S| for {Vy,...,V,}.
Thus, L; is a separable algebraic extension field of F of degree m. Fori = 1,...,n
let (W; ;,N;, j) be the valuation rings of L; that lie over V;. It follows from the
prescription of S; that there are exactly s; such rings fori = 1,...,n— 1 and exactly
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one such ring for i = n. Also, W; ;/Nj j is (V;i/N;)-isomorphic to K; ; and N;W; ; =
N;j%ifori=1,...,n—1and j=1,...,s;, while W, | /N, | is (V;,;/N,)-isomorphic
to V,/N, and N,W,, 1 = N, 1™

Let So = {S2(Wi,1),- -, S2(Wa—1,5,)s S2(Wa,1 ) }, where S2 (Wi ;) = {(Ki,j, 1,m)}
fori=1,...,n—1and j =1,...,s;, and where S2(W,1) = {(Kp j, fnj.nj) | J =
1,...,s,}. Thus, S(W, 1) is essentially equal to S(V,,). It is readily checked that S5 is
an m-consistent system for W:= {W 1,...,W,_1, ,,W, 1}, and by Theorem 2.1(i)
it is realizable for W. Let L be a realization of S, for W. Thus, L is a separable
algebraic extension field of L; of degree m, and hence a separable algebraic ex-
tension field of F of degree m>. Moreover, for i = 1,....n—1 and j = 1,...,s;
there exists a unique valuation ring (U; ;, P, ;) of L that lies over W; j, and U; ; /P,
is (W; j/Ni j)-isomorphic to W; j/N; j; also, W; j/Nj j is (V;/N;)-isomorphic to K; ;,
so U; j/P.j is (Vi/Nj)-isomorphic to K; j, and N; ;U; j = P, j", so N;U; j = Nj j™i.
On the other hand, for i = n there are exactly s, valuation rings (Um s P, j) that lie
over (Wy.1,N,1), and for j = 1,...,8,, Upn j/Py,j is (Wy,1/Np,1)-isomorphic to K, ;,
and W, 1 /N,1 is (V,,/N,)-isomorphic to V,, /Ny, so Uy, j/P, j is (V,/N,)-isomorphic
to Ky, j, and N, 1Uy j = P, 7, so N,U, ; = P, j/"»i. It therefore follows that L is
a realization of the m?-consistent system §* = {S*(V),...,8*(V,)} for {V1,...,V,.},
where $*(V;) = {(Ki j, fij,meij) | j=1,...,s;} fori =1,...,n. Thus S* is a realiz-
able m?-consistent system for {V;,...,V,}. O

Corollary 2.4. Let R be a Noetherian domain, let I be a nonzero proper ideal in
R, let (V,N1),...,(Va,Ny), n > 1, be the Rees valuation rings of I, let m,sy, ..., s,
be positive integers, and let S = {S(V}),...,S(V,)} be an arbitrary m-consistent
system for {Vi,... . V,,}, say S(V;) = {(Kij, fij,eij) | j=1,....8i} fori=1,...,n.
Then there exists a separable algebraic extension field L of degree m* of the quotient
field of R such that, for each finite integral extension domain A of R with quotient
field L and for i = 1,...,n, IA has exactly s; Rees valuation rings (W; ;,N; ;) that
extend (V;,N;), and then, for j = 1,...,s;, the Rees integer of IA with respect to W, ;
is mej je; and [(Wi.j/Ni ;) : (Vi/Ni)] = fij.

Proof. By [HRR2, Remark 2.7], the extensions of the Rees valuation rings of I to
the field L are the Rees valuation rings of IA, so Corollary 2.4 follows immediately
from Theorem 2.3. O

Theorem 2.6, given in [HRR3, Theorem 2.7], is a sufficient condition for realiz-
ability under the hypothesis that each of the valuation rings (V;,N;),1 < i < n, has
a finite residue field. For this and other results using the hypothesis that the residue
fields are finite, we use the following remark.

Remarks 2.5. (2.5.1) Let F be a finite field. It is well known, see for example [ZS1,
pp- 82—84], that the following hold: (i) Each finite extension field H of F is separable
and thus a simple extension of F. (ii) If k is a positive integer and F is a fixed
algebraic closure of F, then there exists a unique extension field H C F with [H:F]
= k. (ili) If H, K C F are finite extension fields of F, then H C K if and only if
[H : F] divides [K : F].

(2.5.2) There are fields other than finite fields that satisfy the three conditions given
in (2.5.1).If E is an algebraically closed field of characteristic zero and F' is the field
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of fractions of the formal power series ring E|[[x]], then a theorem that goes back to
Newton implies that F' satisfies the conditions of (2.5.1) cf. [W, Theorem 3.1, p. 98].

Theorem 2.6. Let (Vi,Ny),...,(Vu,Ny), n > 1, be distinct DVRs with quotient field
F, where each V;/N; is finite. For each i let V;/N; denote a fixed algebraic closure
of Vi/Ni. Let m be a positive integer, and let S = {S(V}),...,S(V,)} be an arbitrary
m-consistent system for {Vy,...,V,}, where, fori=1,...,n, S(V;) ={(Kij, fi,j.€i;) |
Kij CVi/Niand j=1,...,si}. Fori=1,...,nlet T*(V;) = {(Ki;*,mfij,ei;) |
j=1,...,8}, where K; j* C m is the unique field extension of K; ; with [K; ;*
Kijl = m. Then T* = {T*(V}),...,T*(Vy)} is a realizable m*-consistent system for
{Vi,...,Vu}.

Remark 2.7. The hypothesis in Theorem 2.6 that each K; = V;/N; is finite is often
not essential. Specifically, if the set of extension fields of the K; have the following
properties (a)—(c), then it follows from the proof of Theorem 2.6 that the conclusion
holds, even though the K; are not finite:

(a) Fori=1,...,nand j = 1,...s; there exists a field K; ;* such that
[K,"j* : K,"j] =m.

(b) Each K; ;* is a simple extension of K.

(c) There exists i € {1,...,n} (say i = n) such that there exists a simple extension
field H, of K, of degree m such that H, C K, ;* for j = 1,...,s, (s0 [Ky ;" : Hp]
= fa,jfor j=1,...,5,).

Corollary 2.8. Let R be a Noetherian domain, let I be a nonzero proper ideal in R,
let (V1,N1),...,(Va,Ny), n > 1, be the Rees valuation rings of I, let m,sy,...,s, be
positive integers, and let S = {S(V1),...,S(Vn) } be an arbitrary m-consistent system
forVi, ... . Vu, sayS(Vi) ={(Ki, fij.eij) | i=1,...,si} fori=1,...,n. Assume that
each V;/N; is finite. Then there exists a separable algebraic extension field L of R ()
of degree m* such that, for each finite integral extension domain A of R with quotient
field L and fori = 1,...,n, IA has exactly s; Rees valuation rings (W; j,N; ;) lying
overV;, and then, for j = 1,...,s;, the Rees integer of IA with respect to W, ; is e; je;
and [(Wij/Ney) : (Vif )] = .

Proof. As in the proof of Corollary 2.4, this follows immediately from
Theorem 2.6. O

3 Radical-power ideals

We use the following notation and terminology.

Notation 3.1. Let D be a Dedekind domain with quotient field F # D, let My,..., M,
be distinct maximal ideals of D, and let I = M€ ---M,°" be an ideal in D, where
ey,...,e, are positive integers. Then:

(3.1.1) For each finite integral extension domain A of D (including D) let M;(A) =
{N| N is a maximal idealin A and NND € {My,...,M,}}.
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(3.1.2) Let E be a finite integral extension Dedekind domain of D and let V = {Ey |
N € My (E)}. If S is an m-consistent system for V, then by abuse of terminology we
sometimes say that S is an m-consistent system for My (E), and when N € M;(E)
we sometimes use S(N) in place of S(Ey).

Remarks 3.2. With the notation of (3.1), let S = {S(M}),...,S(M,)} be arealizable
m-consistent system for M;(D), where S(M;) = {(Kij, fi,j.eij) | j=1,...,s;} for
i=1,...,n. Let L be a field that realizes S for M;(D) and let E be the integral
closure of D in L. Then:

(3.2.1) [L : F] = m, and L has distinct DVRs (V; 1,Nj1),..., (Vis,Nis,) such that for
eachi, j: V; jNF = Dy, Vi j/Ni j is D/M;-isomorphic to K; j; [K; j : Ki| = fi j, where
K; = D/M;; and, M;V;; = N; j%i. Also, fori = 1,...,n, V;1,...,V are all of the
extensions of Dy, to L, so M;(E) = {N;;NE|i=1,...,nand j =1,...,s;}.
(3.2.2) E is a Dedekind domain that is a finite separable integral extension domain
of D,and IE = M ! ---M,*"E = Py 1°1°LL - P, o “nsn  where P ; = N; ;NE fori =
I,...,nand j=1,... s;.

Theorem 3.3 is proved in [HRR2, (2.11.1)], by composing n related consistent
systems. In [HRR3] a different proof is given which suggests the proof of the anal-
ogous “finite-residue-field degree” result, Theorem 4.1. Notice that Theorem 3.3
shows that every ideal / as in Notation 3.1 extends to a radical-power ideal in some
finite integral extension Dedekind domain.

Theorem 3.3. With the notation of (3.1) and (3.2), assume that n > 1. Then the
system S = {S(M,),...,S(My)} is a realizable e\ - - - en-consistent system for M; (D),
where, fori = 1,...,n, S(M;) = {(K;j,1, e"e'lfe”) | j =1,...,ei}. Therefore, there
exists a Dedekind domain E that is a finite separable integral extension domain of
D such that [L: F) = ey -+ - ey, where L (resp., F) is the quotient field of E (resp., D),

and, for i =1,...,n, there exist exactly e; maximal ideals N; 1,...,N;.,; in E that lie

over Mi and, for j=1,....e; [(E/Ni;) : (D/M:)] = 1 and MiEw,; = Ny & En,,,
so IE = (Rad (IE))e1en.

Corollary 3.4. Let I be a nonzero proper ideal in a Dedekind domain D. Then there
exists a finite separable integral extension Dedekind domain E of D such that [E =
(Rad (IE))™ for some positive integer m.

Proof. LetI = M °' N---NM,*" be an irredundant primary decomposition of /. If
n=1,then I = M°' = (Rad (I))*', so the conclusion holds with E = D and m =
ey. If n > 1, then the conclusion follows immediately from Theorem 3.3, since I =
Mlelﬂ...ﬁMnen :Mlel"'Mne”. 0

Corollary 3.5. Let k = m,“! - - - m,°" be the factorization of the positive integer k > 1
as a product of distinct prime integers m;. Then there exists an extension field L of Q
of degree ey -+-ey such that kE = [ITL (IT;L p; ;)|V"", where E is the integral
closure of Z in L and Myz(E) ={p1.1,---,Pne, }-
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Remark 3.6 shows that I sometimes extends to a radical power ideal in a simpler
realizable consistent system.

Remark 3.6. With the notation of (3.1) and (3.2), assume? that, for i = 1,...,n,
there exists a simple algebraic extension field K,-(l) of D/M; such that [K,-(l) :
(D/M;)] = e;. Then the system () = {S(D(M)),..., 80 (M,)}, where S1)(M;) =
(K e;, fr)} fori =1,...n, is an e ---e,-consistent system for M;(D). By
Theorem 2.1(i), it is realizable for M;(D). Also, if E is the integral closure of
D in a realization L of S() for M;(D), then IE = Jé1""», where J = Rad (IE).
More specifically, since E is the integral closure of D in a realization L of § ™) for

M; (D), for i = 1,...,n, there exists a unique maximal ideal N; in E that lies over
M;, and then E/N; = K;\') and M;Ey, = N;” % Ey,, so M(E = N; < ,so IE =

el en

(I Mi)E = I (N; )% = Jeren, where J = Ny -+ Nj.

Remark 3.7. Let V; = Dy, and S = {S(V}),...,S(V,)} be an arbitrary m-consistent
system for M;(D) = {M, ..., My}, where, fori = 1,....n, S(Vi) = {(Ki ;. fi.j.€i;) |
Jj=1,...,5;}. If we consider the s;, K; j, and f; ; as fixed in the m-consistent system
for M;(D) and the e;, ;j as variables subject to the constraint 2;": 1¢ijfi,j = m for

each i, then S gives amap N — N,/ (wheret =Y, s;) defined by
(e1,..,en) = (€1€1,15--- 18155 1€nn1s-- . Enens,)-

If we are interested only in the projective equivalence class of /E, it seems appro-
priate to consider the induced map given by S : N, — P/(N, ) = N.//~, where
(ar,...,ar) ~ (b1,...,by)if (ay,...,a;) = (cby,...,cb;) for some ¢ € Q. In this case,
Theorem 2.3 shows that the equations 2;": 1¢€i.jfi,j = m are the only restrictions on
the image of this map into P’ (N_ ). From this point of view, if we want an equation
IE = (Rad (IE))* for some finite separable integral extension Dedekind domain E
of D and for some positive integer k, then it is not necessary to compose two re-
alizable consistent systems, as in the proof of Theorem 3.3. Indeed, it suffices to
observe that we have an m-consistent system S = {S(M;),...,S(M,)}, where m =
er--ey and S(M;) = {(K;;,1,%5#) [ j=1,...,e;} fori = 1,...,n (realizable or

not), and then apply Theorem 2.3.

Theorem 3.3 extends to ideals in Noetherian domains of altitude one by using
the following result from [HRR2].

Proposition 3.8. [HRR2, 2.6] Let R be a Noetherian domain of altitude one with
quotient field F, let I be a nonzero proper ideal in R, let L be a finite algebraic
extension field of F, let E be the integral closure of R in L, and assume there ex-
ist distinct maximal ideals Ny,...,N, of E and positive integers ki,...,k,,h such

2 D may have a residue field D/M; that has no extension field K;(!) such that [K;()) : (D/M;)] = e;;
for example, D/M; may be algebraically closed, see also Example 3 in [R].
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that I[E = (le' ---N,,k”)h. Then there exists a finite integral extension domain A of
R with quotient field L and distinct maximal ideals Py,...,P, of A such that, for
i=1,...,n:

(i) PE=N.
(i) E/N;=A/P.
(iii)  (IA)a = (P11 Pf)")a.

Corollary 3.9. Let R be a Noetherian domain of altitude one, let I be a nonzero
proper ideal in R, let R' be the integral closure of R in its quotient field, and let
IR = M,°' ---M,*" be a normal primary decomposition of IR'. Then there ex-
ists a finite separable integral extension domain A of R such that (IA), =
((Rad (IA))1n),, and if A" denotes the integral closure of A in its quo-
tient field, then for each P € M;(A) we have: (i) PA" is a maximal ideal, and
(ii)A'/PA’ = A/P.

Proof. If n = 1, then IR’ = (Rad (IR"))*! and R’ is a Dedekind domain, so the
conclusion follows from Proposition 3.8.

If n > 1, then by hypothesis there are exactly n distinct maximal ideals
M;,...,M, in R’ that contain IR' and IR’ = M ¢! ---M,°". Also, R’ is a Dedekind do-
main, so by Theorem 3.3 there exists a finite separable integral extension Dedekind
domain E of R’ such that IE = (Rad (IE))¢!"*r. Then E is the integral closure
of R in the quotient field of E; the conclusions follow from this, together with
Proposition 3.8. 0O

When the exponents ej,...,e, have no common integer prime divisors,
Proposition 3.10 gives an additional way to compose realizable consistent sys-
tems to obtain a Dedekind domain E as in Theorem 3.3, but with the exponent
and degree e - --e, of Theorem 3.3 replaced with a smaller exponent and degree
d. This result is discussed in [HRR2, (2.11.2)], and [HRR3, (3.11)], and it yields
corresponding different versions of Corollaries 3.5 and 3.9. (When the exponents
ei,...,e, do have common integer prime divisors, see Remark 3.11.)

Proposition 3.10. With the notation of (3.1) and (3.2), assume that n > 1 and that
no prime integer divides each e;. Let d = p;™! - - - p;/"* be the least common multiple
of ey,...,e,, where py,...,py are distinct prime integers and my,...,my are posi-
tive integers. Then the system S = {S(M}),...,S(M,)} for M;(D), where, for i =
1L,...,n, S(M;) = {(Ki j,1, g) | j=1,...,e}, is a realizable d-consistent system for
M; (D). Also, if E is the integral closure of D in a realization L of S for M;(D), then
IE = (Rad (IE))".

Remark 3.11. Concerning the hypothesis in Proposition 3.10 that no prime integer
divides all ¢;, if, on the contrary, 7 is a prime integer that divides each e;, then let ¢
be the greatest common divisor of ey,...,e,. Fori = 1,...,n define k; by e; = ck;,
and let Iy = M %1 - M} s0 Ip¢ = ( S M{"')C =1/, M;" = I and no prime integer
divides all k;. Therefore, if the ring E of Theorem 3.3 is constructed for I in place
of 1, then IhE = (Rad (I)E))“, where d is the least common multiple of ki, ...k,
so IE = (Rad (IE))%.
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The following result, which is [HRR3, Proposition 3.13], characterizes the
conditions a realizable m-consistent system S’ for My (D) must satisfy in order that
IE = J' for some radical ideal J in E and for some positive integer ¢.

Proposition 3.12. Let D be a Dedekind domain with quotient field F # D, let
My,...,M, (n > 1) be distinct maximal ideals of D, let I = M\°! ---M,*" be an
ideal in D, where ey, ..., e, are positive integers, and let m be a positive integer. Let
§'={S'(M),...,S' (M)} be a realizable m-consistent system for {Dpy,,...,Dp, },
where S'(M;) = {(Kij, fij.eij) | j=1,....si} fori=1,...,n, and let E be the in-
tegral closure of D in a finite separable field extension L of F which realizes S’ for
{Dm,,...,Dm,}, so [L: F] = m. Then the following hold.:

(3.12.1) IE = J' for some radical ideal J in E and for some positive integer t if and
only if the products e;e; j are equal for all i, j, and then J = Rad (IE) and e;e; j = 1.
3.12.2) If IE = J™ (as in Theorem 3.3 and Proposition 3.10), then Z;i:lfi,j =e;
fori=1,... n

(3.12.3) IfIE = J', as in (3.12.1), and if no prime integer divides each e;, then m is
a positive multiple of t and t (and hence m) is a positive multiple of each e;.

4 Finite-residue-field degree analogues

Under the assumption that each of the residue fields D/M; is finite, “finite-residue-
field degree” analogues of results in Section 3 are given in [HRR3]. For example,
Theorem 4.1, which is [HRR3, Theorem 4.1], is a finite-residue-field degree ana-
logue of Theorem 3.3.

Theorem 4.1. With the notation of (3.1) and (3.2), assume that n > 1 and that each
K; = D/M,; is finite. For i = 1,...,n let f; be a positive integer such that [K; : F;] =
fi for some subfield F; of K;, and let K’ C K; be the unique extension field of
K; of degree f"’;l:f”, where K; is a fixed algebraic closure of K;. Then the system
T ={T(M,),...,T(M,)} is a realizable m-consistent system for M;(D), where m =
fi--fuand T(M;) = {(Ki , f"J;lff",l) |j=1,....fiYfori=1,....n(with K; j = K
for j =1,..., f;). Therefore there exists a Dedekind domain E that is a finite sep-
arable integral extension domain of D such that [L : F] = m (where L (resp., F) is
the quotient field of E (resp., D)) and, fori = 1,... n, there exist exactly f; maximal
ideals N 1,...,Njy in E that lie over M; and, for j = 1,..., f; M,~ENI.J. = Ni,jEN,-,j

and (E/Ni ) : Ki) = L5402, 50 [(E /Ny j) : ] = m.

Remark 4.2. The hypothesis in Theorem 4.1 that each K; = D; /M, is finite is often
not essential. Specifically, if the set of extension fields of the K; have the following
properties (a)—(c), then it follows from the proof of Theorem 4.1 that the conclusion
holds, even though the K; are not finite:

(a) Fori=1,...,n, K; has a subfield F; such that [K; : F;] = f;.
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(b) Withm = fi---f,, fori = 1,...,n K; has (not necessarily distinct) simple
extension fields Kj 1,...,K; y, such that [K; ; : K] = ;ﬂ
(¢) Fori=1,...,n—1, K; has simple extension fields H; ; such that [H; ; : K;] =

f‘f# and such that H; j C K; j (so [K; j : H; j| = f»).

Corollary 4.3 is a special case of Theorem 4.1; it is a finite-residue-field degree
analogue of Corollary 3.5.

Corollary 4.3. Let D be the ring of integers of an algebraic number field F and let
My,...,M, (n > 1) be distinct maximal ideals in D. For i = 1,... n let Z/m;Z be
the prime subfield of D/M; (possibly m; = 1; for some i # j € {1,...,n}) and let
fi = (D/M;) : (Z/mZ)). Then there exists a Dedekind domain E that is a finite
(separable) integral extension domain of D such that, for i = 1,...,n, there exist
exactly f; maximal ideals p;; in E that lie over M;, and then, for j = 1,...,f;,

MiEp;; = pijEp,; and [(E/pij) : (Z/ ML) = fi -~ fu-
Proof. This follows immediately from Theorem 4.1.

Corollary 4.4 is a finite-residue-field degree analogue of Corollary 3.9. Since hy-
potheses on infinite residue fields can sometimes be replaced by the hypotheses that
the residue fields have cardinality greater than or equal to a given positive integer,
Corollary 4.4 may be useful in this regard.

Corollary 4.4. Let R be a Noetherian domain of altitude one, let I be a nonzero
proper ideal in R, let R’ be the integral closure of R in its quotient field, let IR' =
M\°' - My (n > 1) be a normal primary decomposition of IR, and fori =1,... n
let [([R'/M;): (R/(M;NR))] = gi. Fori=1,...,n, assume that R' /M is finite, let f;
be a positive integer, and assume that [(R/(M;NR)) : F;] = f;, where F; is a subfield
of R/(M;NR). Then there exists a finite separable integral extension domain A of
R such that, for all P € M;(A), [(A/P) : F| = ITiL figi = [A(o) : R(o)]- Also, A may
be chosen so that, with A’ the integral closure of A in A(o), there exist exactly figi
maximal ideals P, j in A such that P, jA' "R' = M; and, for all P € M;(A) it holds
that PA' e My (A’) and A/P = A’ /(PA").

Proof. Since R’ is a Dedekind domain and [(R'/M;) : F;| = fig; fori = 1,...,n,
it follows from Theorem 4.1 that there exists a Dedekind domain E that is a fi-
nite separable integral extension domain of R’ such that [A(O) : R(O)] = II" | figi
and, fori = 1,...,n, there exist exactly f;g; maximal ideals N; 1,...,N; 1,¢, in E that
lie over M; and, for j = 1,..., figi, MiEn,; = N jE,; and [(E/N;;) : (R'/M;)] =
ﬁﬂﬁl@gﬂ, so [(E/Nyj) : F| = IT'", figi. The conclusions follow from this, together
with Proposition 3.8. O

Theorem 4.1 shows that if each residue field D/M; is finite and F; is a subfield
of D/M; such that [(D/M;) : F;] = f;, then there exists a finite separable integral
extension domain E of D such that [E(g) : D(g)] = [(E/N; ;) : Fi] = fi - fu forall i, j
(= m, say). Proposition 4.5 characterizes the conditions a realizable m-consistent
system 7’ for M;(D) must satisfy in order that [(E/N; ;) : F;] = fi--- f, forall i, j.
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Proposition 4.5. Let D be a Dedekind domain with quotient field F # D, let
My,..., M, (n> 1) be distinct maximal ideals of D, and assume that K; = D/M;
is finite for i = 1,...,n. For i = 1,...,n let f; be a positive integer such that
[K; : F] = f; for some subfield F; of K;. Let m be a positive integer and let T' =
{T'(My),...,T'(My)} be a realizable m-consistent system for M;(D), where, for
i=1,...,n, T'"(M;) = {(Kij.fij.eij) | j=1,...,8i}, and let E be the integral
closure ofD in a realization L of T' for My(D), so [L : F] = m. Then the following
hold:

(4.5.1) There exists a positive integer t such that [(E/N; ;) : Fi| =t for all i, j if and
only if the products fif; j are equal for all i, j, and then t = fif; ;.
(452)If[(E/N7J) F) = mfor all i, (as in Theorem 4.1), then 21 \¢€ij = fifor
i=1,.

“.5. 3) If [(E/N, j) Fl =t foralli,j, asin (4.5.1), and if no prime integer divides
each f;, then m is a positive multiple of t and t (and hence m) is a positive multiple

of each f;.

The following theorem that combines Theorems 3.3 and 4.1 is [HRRS3,
Theorem 5.1].

Theorem 4.6. With the notation of (3.1) and (3.2) (so I = M°! - - - M,°", where the e;
are positive integers and n > 1), assume that each K; = D/M, is finite and let K; be
a fixed algebraic closure of K;. For i = 1,...,n let f; be a positive integer such

that K; is an extension field of a subfield F; with [K; : F;] = f;, and let K;* be the
fifn
fi

unique extension field of K; of degree that is contained in K;. Then the sys-
tem U = {U(M,),..., UM, )} is a realizable ey - e,,fl - fu-consistent system for
M, (D), where, fori=1,. UM;) = {(Kij, "5 hdn S| j=1,... eifi} (with
Kij=K"forj=1,... ,e,f,) Therefore there exzstsla separable algebralc extension
field L of degree e ---enfi--- [ over the quotient field F of D, and a finite integral
extension Dedekind domain E of D with quotient field L such that, fori = 1,....n,
there are exactly e;f; maximal ideals N;1,...,N;y in E that lie over M;, and it
holds that [(E/Nj) : Fj] = fi--- fu for all i and j, and IE = (Rad (IE))*1"*" =
(Nig - Ny g, )1en,

5 Rees-good bases of ideals

We introduce the following terminology in [HRR4].

Definition 5.1. Let / be a regular proper ideal in a Noetherian ring R. An element
b €1 is said to be Rees-good for I in case bV = IV for all Rees valuation rings V
of I. A basis by,...,b, of I is said to be Rees-good in case b; is Rees-good for I for
i=1,...,g

Thus, assumption (a) of the Introduction is that the ideal I has a Rees-good basis.
We summarize in this section several results concerning Rees-good bases of ideals
that are proved in [HRR4].
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Notation 5.2. Let I be a regular proper ideal in a Noetherian ring R and let
{(Vi,N;)}'_, be the set of Rees valuation rings of /. For j € {1,...,n}, let H;
={xel|xV; S 1Vj}.

Lemma 5.3. With the notation of (5.2), the following hold:

(8.3.1) H; = H;V;N 1 is an ideal in R that is properly contained in I fori = 1,... n.
(5.3.2) An element b € I is Rees-good for I if and only if b ¢ H; U---U Hy,.

(5.3.3) If either 1 is principal or I has only one Rees valuation ring, then I has a
Rees-good basis.

Let I be a regular proper ideal of the Noetherian ring R. H. T. Muhly and
M. Sakuma prove in [MS, Lemma 3.1] that some power I of I contains an ele-
ment b such that bV = IXV for all Rees valuation rings V of I, or equivalently of
I¥. Thus b is a Rees-good element of I*. It follows that b” is a Rees-good element
of I* for every positive integer A. It is noted preceding Theorem 1.3 that if either
(1) R contains an infinite field or (ii) R is local with an infinite residue field, then all
regular proper ideals in R have a Rees-good basis.

Example 5.4 exhibits a Gorenstein local ring (R, M) of altitude one such that M
contains no Rees-good elements and no power of M has a Rees-good basis.

Example 5.4. Let F' be the field with two elements, let X, Y be independent indeter-
minates over F, let R = F[[X,Y]]/(XY (X +7)), and let x,y denote the images in R
of X,Y, respectively. Then M = (x,y)R has three Rees valuation rings

Vi:=F[X.Y]]/(X) Va:=F[X.Y]]/(Y) Vi:=F[XY]]/(X+Y).
With notation as in (5.2), notice that
Hy=xR+M> Hy,=yR+M?> and Hs= (x+y)R+M>

Therefore M = Hy U H, U H3, so M does not have any Rees-good elements. Since
xy(x+y) = 0 and F is of characteristic two, one has x>y = xy?, and for n > 3

xnfly :xn72y2 — ... :xynfl.
Thus {x", ¥"~ !y, y*} is a minimal basis of M" for every n > 2. It follows that the
only Rees-good element for M", up to congruence mod M" !, is x" +x"~ 1y +y", for
every n > 2. For g € M" can be written g = ax” + bx" "'y +¢y" +h with a,b,c € F
and h € M"*!, and g is a Rees-good element for M" if and only if a =b=c = 1.

The concept of asymptotic prime divisors as in Definition 5.5 is used in [HRR4].

Definition 5.5. Let / be a regular proper ideal in a Noetherian ring R. The set
of asymptotic prime divisors of I, denoted A™(I), is the set {P € Spec (R) | P €
Ass (R/(I'),) for some positive integer i}.

It is shown in [Mc, Proposition 3.9] that A (1) is a finite set and that for each
positive integer i, Ass (R/(I'),) C Ass (R/(I'1),).
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Theorem 5.6, which is proved in [HRR4], gives another sufficient condition,
besides (i) and (ii) in the Introduction, for I to have a Rees-good basis.

Theorem 5.6. With the notation of (5.2) and (5.5), assume that n > 2. The following
properties are equivalent.

(1) Card(R/p) > n for each p € A" (I) that is a maximal ideal of R.

(2) There exists a set U = {uy,...,u, } of elements in R such that the elements in
UU{ui—uj|i# jin{l,...,n}} are units in each Rees valuation ring of I.

If these hold, then each regular ideal H in R such that \J{q | q € A" (H)} C
U{p|p €A (I)} and Card(Rees H) < Card(Rees I) has a Rees-good basis. In
particular, each ideal H of R which is projectively equivalent to I has a Rees-good
basis.

Theorem 5.6 yields the following corollaries.

Corollary 5.7. Let I be a regular proper ideal in a Noetherian ring R and assume
that no member of A (I) is a maximal ideal of R. Then I has a Rees-good basis.

Corollary 5.8. Let R be a Noetherian ring and assume that R/M is infinite for all
maximal ideals M in R. Then every regular proper ideal in R has a Rees-good basis.

The concept of an unramified extension as in Definition 5.9 is used in
Theorem 5.10.

Definition 5.9. A quasi-local ring (R',M’) is unramified over a quasi-local ring
(R,M) in case R is a subring of R', M' = MR’, and R’ /M’ is separable over R/M. A
prime ideal p’ of R" is unramified over p' MR in case R’y is unramified over Ryng.

Theorem 5.10 is the main result in [HRR4]. For a regular proper ideal [ in a
Noetherian ring R, Theorem 5.10 implies the existence of a finite free integral ex-
tension ring of R that satisfies the conclusions of Theorems 1.2 and 1.3 even without
the assumption of hypothesis (a) of these theorems.

Theorem 5.10. Let I be a regular proper ideal in a Noetherian ring R. There exists
a simple free integral extension ring A of R such that:

1. For each regular ideal H in R whose asymptotic prime divisors are contained
in the union of the asymptotic prime divisors of I and for which Card(Rees H)
< Card(Rees I), the ring Ap is unramified over Rpng for each asymptotic prime
divisor P of HA;

2. Each Rees valuation ring of HA is unramified over its contraction to a Rees
valuation ring of H; and

3. The ideal HA has a Rees-good basis and the same Rees integers as H (with
possibly different cardinalities).

In particular, these properties hold for the ideal H = I.
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6 Projective equivalence and homogeneous prime spectra
of certain Rees rings

Rees rings of filtrations and closely related graded rings have played important
auxiliary roles in many research problems in commutative algebra. There are many
results about them in the literature, and a large portion of these results are concerned
with the set of homogeneous ideals.

We recall the following definitions.

Definition 6.1. Let R be a ring.

(6.1.1) A filtration f = {I;};>0 on R is a sequence of ideals I; of R such that:
(@) In = R; (b) I; O I;11 for all i € N (the set of nonnegative integers); and, (c)
I,‘Ij - Ii+j foralli,j e N.

(6.1.2) If f = {[;};>0 is a filtration on R and if M = {0 = ¢g,cy,c2,...} is an
additive submonoid of N then fM = {I;;}i>0- (It is shown in [RR, Theorem 3.3] that
M is a filtration on R.)

(6.1.3) The Rees ring of R with respect to a filtration f = {I;};>0 on R is the graded
subring R(R, f) = R[u,tf] = R[u,tI},t*L,...] of R[u,t], where  is an indeterminate
andu =1/1.

(6.1.4) The homogeneous prime spectrum of a graded ring A is denoted by
HSpec(A), so HSpec(A) = {p € Spec (A) | p is homogeneous}.

It is shown in [MRS, (2.4), (2.6), (2.8), and (2.9)] that: the set P(/) of all inte-
grally closed ideals that are projectively equivalent to a regular proper ideal / in a
Noetherian ring R is discrete and linearly ordered by inclusion; there exists a unique
positive integer d such that P(I) C {I( k) | k € N}, where I 1) is the integrally closed

k
d
ideal {x € R | x? € (I*),}; and, (i)l i))a = I i) And it is shown in [RR, (3.3)]
a d d
that P(I) (together with R) is a filtration f* on R which contains the filtration f =
{(Ia}iz0 = {I(;) }izo as a subfiltration, and, in turn, f* is a subfiltration of the filtra-

tion e = {I( i )},>O. Associated with these filtrations we have graded rings R|u,f] =
k
Rlu,tly), 1L 3),...] = A=R[u! 11 1),r*I 5),...| CB = Rlu, 191, Py, ]c

R(R,e) =R|[u, tI( 1y, tzl( 2y5e ] and these inclusion maps induce isomorphisms on the

a8
d

homogeneous prime spectra of these graded rings, so HSpec(R[u,?f]) = HSpec(A)
= HSpec(B) = HSpec(R|[u,te]). Since R[u,tf*] = R[u,tl(%]),tZI(%z), ...], this raises
the question of when HSpec(R[u,?f]) = HSpec(R[u,tf*]). It is shown in [RR, (4.8)]
that this holds if and only if ¢; = 1 if and only if P([) is projectively full. (An earlier
version of [RR] is referenced in [CHRR] under a slightly different title.)
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Direct-sum behavior of modules over
one-dimensional rings

Ryan Karr and Roger Wiegand

Abstract Let R be a reduced, one-dimensional Noetherian local ring whose integral
closure R is finitely generated over R. Since R is a direct product of finitely many
principal ideal domains (one for each minimal prime ideal of R), the indecompos-
able finitely generated R-modules are easily described, and every finitely generated
R-module is uniquely a direct sum of indecomposable modules. In this article we
will see how little of this good behavior trickles down to R. Indeed, there are rela-
tively few situations where one can describe all of the indecomposable R-modules,
or even the torsion-free ones. Moreover, a given finitely generated module can have
many different representations as a direct sum of indecomposable modules.

1 Finite Cohen—Macaulay type

If R is a one-dimensional reduced Noetherian local ring, the maximal Cohen—
Macaulay R-modules (those with depth 1) are exactly the non-zero finitely generated
torsion-free modules. One says that R has finite Cohen—Macaulay type provided
there are, up to isomorphism, only finitely many indecomposable maximal Cohen—
Macaulay modules. The following theorem classifies these rings:

Theorem 1.1. Let (R, m, k) be a one-dimensional, reduced, local Noetherian ring.
Then R has finite Cohen—Macaulay type if and only if

(DR1) The integral closure R of R in its total quotient ring can be generated by 3
elements as an R-module; and
(DR2) m(R/R) is a cyclic R-module. O
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The two conditions above were introduced by Drozd and Roiter in a remarkable
1967 paper [12]. They proved the theorem in the special case of a ring essentially fi-
nite over Z and asserted that it is true in general. In 1978 Green and Reiner [16] gave
a much more detailed proof of the theorem in this special case. In 1989 R. Wiegand
[43] proved necessity of the conditions (DR), in general, and sufficiency assuming
only that each residue field of R is separable over k = R/m. Since, by (DR1), the
residue field growth is of degree at most 3, this completed the proof of Theorem 1.1
except in the cases where char(k) = 2 or 3. The case of characteristic 3 was handled
by indirect methods in [45], leaving only the case where k is imperfect of character-
istic 2. In his 1994 Ph.D. dissertation, Nuri Cimen [6] then used explicit, and very
difficult, matrix reductions to prove the remaining case of the theorem.

We will sketch some of the main ingredients of the proof, though we will not
touch on the matrix reductions in [16] and [6]. The pullback representation, which
we describe in more generality than needed in this section, is a common theme in
most of the research leading up to the proof of the theorem. For the moment, let R be
any one-dimensional Noetherian ring, not necessarily local, and let R be the integral
closure of R in the total quotient ring K of R. We assume that R is finitely generated
as an R-module. (This assumption is no restriction: A reduced one-dimensional lo-
cal ring is automatically Cohen—Macaulay. If, further, R has finite Cohen—-Macaulay
type, then R has to be finitely generated over R (cf. [45, Lemma 1] or Proposition 1.2
below).) The conductor f := {r € R | rR C R} contains a non-zerodivisor of R; there-
fore R/§ and R/f are Artinian rings, and we have a pullback diagram

L

-l — X
=l ——

The bottom line of the pullback is an example of an Artinian pair [43], by which
we mean a module-finite extension A — B of commutative Artinian rings. Of course
this pullback has the additional property that R/f is a principal ideal ring. Given an
Artinian pair A = (A < B), one defines an A-module to be a pair V < W, where
W is a finitely generated projective B-module and V is an A-submodule of W with
the property that BV = W. A morphism (V| — W;) — (Vo — W) of A-modules is,
by definition, a B-homomorphism from W; to W, that carries V| into V,. With sub-
modules and direct sums defined in the obvious way, we get an additive category
in which every object has finite length. We say A has finite representation type pro-
vided there are, up to isomorphism, only finitely many indecomposable A-modules.
In the local case, the bottom line tells the whole story:

Proposition 1.2 ([43, (1.9)]). Let (R,m) be a one-dimensional, reduced, Noethe-
rian local ring with finite integral closure R. Then R has finite Cohen—-Macaulay
type if and only if the Artinian pair 5; — 5; has finite representation type. ]
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The proof of this proposition is not very hard. The key ingredients are the
following:

1. Krull-Remak—Schmidt: For an Artinian pair A, every A-module is uniquely
(up to order and isomorphism of the factors) a direct sum of indecomposable
A-modules.

2. Dickson’s Lemma [9]: Njj has no infinite antichains. (Here, Ny is the well-
ordered set of natural numbers, and Njj has the product partial order.)

3. Given a finitely generated, torsion-free R-module M, let RM be the R-submodule
of KM generated by M. Assume R # R. Then M| = M, <= the (R/§ — R/f)-
modules (M, /fM; — RM; /M) and (M>/iM, — RM, /§M,) are isomorphic.
(The fact that R is local is crucial here.)

The proof of Theorem 1.1 then reduces to the following:

Proposition 1.3. Let A = (A — B) be an Artinian pair in which A is local, with
maximal ideal m and residue field k. Assume that B is a principal ideal ring. Then
A has finite representation type if and only if the following conditions are satisfied:

(drl) dimg(B/mB) <3

B+A
(dr2) dim; 22T

— < 1. O
m2B+A

Green and Reiner proved Proposition 1.3 under the additional assumption that
the residue fields of B are all equal to k. There is an obvious way to eliminate resi-
due field growth, assuming one is trying to prove the more difficult implication that
(drl) and (dr2) imply finite representation type: Adjoin roots. More precisely, we
observe that by (drl) B has at most three local components, and at most one of these
has a residue field properly extending k. Moreover, the degree of the extension is at
most 3. Choose a primitive element 6, let f € A[T] be a monic polynomial reducing
to the minimal polynomial for 6, and pass to the Artinian pair A’ := (A’ — B'),
where A’ = A[T]/(f) and B = B4 A" = B[T]/(f). The problem is that if 0 is in-
separable then B’ may not be a principal ideal ring, and all bets are off. If, however,
0 is separable, all is well: The Drozd—Roiter conditions ascend to A’, and finite
representation type descends. This is not difficult, and the details are worked out in
[43]. (If k(0)/k is a non-Galois extension of degree 3, one has to repeat the con-
struction one more time.) This proves sufficiency of the Drozd—Roiter conditions,
except when k is imperfect of characteristic 2 or 3.

We now sketch the proof of the “if”” implication in Theorem 1.1 in the case of
residue field growth of degree 3. By (DR1), R must be local, say with maximal
ideal n (necessarily equal to mR) and residue field £. If R is seminormal (that is, R /§
is reduced), then R/f = ¢. The ring B’ described above is now a homomorphic image
of /[T] and therefore is a principal ideal ring (even if ¢/k is not separable). The work
of Green and Reiner [16] now shows that A’ has finite representation type, and the
descent argument of [43] proves that R has finite Cohen—Macaulay type.

Suppose now that R is not seminormal. Then f is properly contained in n. Still
assuming (DR1) and (DR2), and that [¢ : k] = 3, one can show [45, Lemma 4] that
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R is Gorenstein, with exactly one overring S (the seminormalization of R) strictly
between R and R. (The argument amounts to a careful computation of lengths, and
both (DR1) and (DR2) are used.) Now we use an argument that goes back to Bass’s
“ubiquity” paper [3, (7.2)]: Given a maximal Cohen—Macaulay R-module M, sup-
pose M has no free direct summand. Then M* = Homg (M, m), which is a module
over E := Endg(m). Clearly E contains R properly and therefore must contain S.
Thus M* is an S-module, and hence so is M**, which is isomorphic to M (as R
is Gorenstein and M is maximal Cohen—Macaulay). Thus every non-free indecom-
posable maximal Cohen—Macaulay R-module is actually an S-module. The Drozd-
Roiter conditions clearly pass to the seminormal ring S, which therefore has finite
Cohen—Macaulay type. It follows that R itself has finite Cohen—Macaulay type.

The remaining case, when R has a residue field that is purely inseparable of
degree two over k, was handled via difficult matrix reductions in Cimen’s four de
force [6].

Next, we will prove necessity of the conditions (DR). This was proved in [43],
but we will prove a stronger result here, giving a positive answer to the analog, in
the present context, of the second Brauer—Thrall conjecture. Recall that a module
M over a one-dimensional reduced Noetherian ring R has constant rank n, provided

Mp = Rg’) for each minimal prime ideal P.

Theorem 1.4. Let (R, m,k) be a one-dimensional, reduced, local Noetherian ring
with finite integral closure. Assume that either (DRI) or (DR2) fails. Let n be an
arbitrary positive integer.

1. There exists an indecomposable maximal Cohen—Macaulay R-module of con-
stant rank n.

2. If the residue field k is infinite, there exist |k| pairwise non-isomorphic indecom-
posable maximal Cohen—Macaulay modules of constant rank n.

We will prove (2) of Theorem 1.4. The additional arguments needed to prove (1)
when £ is finite are rather easy and are given in detail in [43]. Shifting the problem
down to the bottom line of the pullback, we let A = (A — B), where A = R/f and
B = R/f}. We keep the notation of Proposition 1.3, so that now m is the maximal ideal
of A. We assume that either (dr1) or (dr2) fails, and we want to build non-isomorphic
indecomposable A-modules V < W, with W = B"). Given any such A-module, the
module M defined by the pullback diagram

M — I_e(")

Lo

Vv—m W

will be an indecomposable maximal Cohen—Macaulay R-module, and non-
isomorphic A-modules will yield non-isomorphic R-modules.

We first deal with the annoying case where (dr1) holds but (dr2) fails. (The reader
might find it helpful to play along with the example k[[z*,77]].) Thus we assume, for
the moment, that
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dimy(B/mB) < 3 (1)
mB+4A

di 2

T ETA (2)

We claim that we actually have equality in (2). To see this, we note that m>BNA is
properly contained in m (lest mB C m?B). Computing lengths, we have

m’B+A A

‘ = >2.
A" m2B Am2ZBNA =

3)

Since B is a principal ideal ring, mB/m?B is a cyclic B/mB-module. Therefore, (1)
implies that

(x(mB/m’B) < 3. 4)
Finally, we have éAA;rgB = Uy Aﬁ(‘mB) = 1, and the claim now follows from (3)

and (4).

Now put C := A +mB, and note that C/mC = k[X,Y]/(X?,XY,Y?). The functor
(V,W) — (V,BW) from (A — C)-mod to A-mod is clearly faithful; and it is full, by
the requirement that CV = W. Therefore, this functor is injective on isomorphism
classes, and it preserves indecomposability. Therefore we may replace B by C in this
case (the only casualty being that B is now no longer a principal ideal ring).

Returning to the general case, where either (drl) or (dr2) fails, we put D := B/mB
when (drl) fails, and D = C/mC otherwise. We now have either

D is a principal ideal ring and dim D > 4, or 5)
D= k[X,Y]/(X? XY,Y?). (6)

We now pass to the Artinian pair (k — D). The functor (V,W) — (Y2 )
from (A — B)-mod to (k — D)-mod is surjective on isomorphism classes and re-
flects indecomposables. Therefore, it suffices to build our modules over the Artinian
pair (k — D).

We now describe a general construction, a modification of constructions found
in [7,12,43]. Let n be a fixed positive integer, and suppose we have chosen a,b € D
with {1,a,b} linearly independent over k. Let I be the n x n identity matrix, and
let H the n X n nilpotent Jordan block with 1’s on the superdiagonal and 0’s else-

where. For € k, we consider the n x 2n matrix ¥ := [I | al+b(tI+H)|. Put
W := D", viewed as columns, and let V; be the k-subspace of W spanned by the
columns of ¥.

Suppose, now, that we have a morphism (V;,W) — (V,,,W), given by an n x n
matrix @ over D. The requirement that @ (V) C V says there is a 2n X 2n matrix 0
over k such that

¥ =Y.0. )
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Write 6 = {? [51 , where o, 3,7, are n X n blocks. Then (7) gives the following

two equations:

o=0a+ay+bul+H)y
ap+bo(tI+H)=B+ad+bul+H)o (8)

Substituting the first equation into the second, and combining terms, we get a mess:

—B+a(a—68)+b(to—ud+aH—HS)+ (a+1tb)(a+ub)y
+ab(Hy+YH) + b*(HyH +tHy+ uyH) = 0. )

In the “annoying” case (6), we set a and b equal to the images of X and Y,
respectively. Then
A =b=ab=0 (10)

and from (9) and the linear independence of {1,a,b}, we get the equations
B =0, o=90, of(t—u)l+H)=Ho. (11)

If, now, ¢ is an isomorphism, we see from (8) that o has to be invertible. If, in
addition, ¢ # u, the third equation in (11) gives a contradiction, since the left side
is invertible and the right side is not. Thus, (V;,W) % (V,,,W) if ¢ # u. To see that
(V;,W) is indecomposable, we take u = ¢ and suppose @, as above, is idempotent.
Squaring the first equation in (8), and comparing “1” and “a” terms, we see that
o? = o and y = ay+ yo. But (11) says that «H = Ha, and it follows that o is in
k[H], which is a local ring. Therefore oz = 0 or 1, and either possibility forces y = 0.
Thus ¢ =0 or 1, as desired.

Having dealt with the annoying case, we assume from now on that that
dimy D > 4 and that D is a principal ideal ring. Assume, for the moment, that there
exists an element a € D such that {1,a,a?} is linearly independent. Choose any ele-
ment b € D such that {l,a,az,b} is linearly independent. Then, for almost all 7 € k,
the set {1,a,b, (a+1b)?} is linearly independent. (The set of such 7 is open, and it is
non-empty since it contains 0.) Moreover, for almost all ¢ € k, the set {1,a,b, (a+
tb)(a+ ub)} is linearly independent for almost all u € k. Thus, it will suffice to
show that if ¢ # u, and if {1,a,b, (a+tb)*} and {1,a,b,(a+tb)(a + ub)} are lin-
early independent over k, then (V; < W) is indecomposable and not isomorphic
to (V, — W).

Suppose, as before, that ¢ : (V; — W) — (V, — W) is a homomorphism. With
the same notation as in (7)—(9), we claim that y = 0. To do this, we use descending
induction on i and j to show that H'yH/ = 0 for all i,j = 0,...,n. If either i =
nor j = n this is clear. Assuming H"'yH/ = 0 and H'yH/*! = 0, we multiply
the mess (9) by H' on the left and H/ on the right. In the resulting equation, the
“ab” and “b*” terms are 0 by the inductive hypothesis. Since {1,a,b, (a +1b)(a +
ub)} is linearly independent, the “coefficient” H'yH/ of (a + tb)(a + ub) must be
0. This completes the induction and proves the claim. The rest of the proof that
(V; < W) is indecomposable and not isomorphic to (V,, < W) is the same as in the
annoying case.
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The special case, where {1,a,a’} is linearly dependent for every element a € A,
is analyzed in detail in [43]. This case reduces to the following three cases:

e Case 1: There are elements a,b € D such that {1,a,b} is linearly independent
over k and a*> = ab = b* = 0.

e Case 2: There are elements a,b € D such that {1,a,b,ab} is linearly independent
and a®> = b*> = 0.

e Case 3: The characteristic of k is 2, and there are elements a,b € D such that
{1,a,b,ab} is linearly independent and both a* and b* are in k.

We have already dealt with Case 1. In Case 2, the mess (9) again yields (11), and
we proceed exactly as before. In Case 3, the mess yields the equations

B = (a*+ tub®)y+b*(HyH + tHy+ uyH), a=24,
o((t—u)+H)=Ha, (t-+u)y+Hy+yH =0. (12)

Suppose ¢ # u. Then ¢ + u # 0 (characteristic two), and the fourth equation shows,
via the same descending induction argument as before, that y = 0. Then the third
equation and a now-familiar argument show that (V, — W) 2 (V,, — W).

Finally, we must show that (V; < W) is indecomposable in Case 3. Suppose t = u
and @? = @. The third and fourth equations of (12) now show that & and 7 are in
k[H]. In particular, oty = yo. Therefore, when we square the first equation of (8)

and compare “a” terms, we see that y = 20y = 0. Now ¢ = o € k[H], a local ring,
and it follows that ¢ = 0 or 1. This completes the proof of Theorem 1.4. O

One might expect that even if k is finite one could construct a countably infinite
family of pairwise non-isomorphic maximal Cohen—Macaulay modules of constant
rank #n. In fact, this is not the case:

Proposition 1.5. With (R,m,k) as in Theorem 1.1, suppose k is a finite field. Let n
be a positive integer. Then R has only finitely many isomorphism classes of maximal
Cohen—Macaulay modules of constant rank n.

Proof. Let A = (R/f — R/f) be the Artinian pair associated with R. Recall [43,
(1.7)] that two maximal Cohen—Macaulay R-modules M; and M, are isomorphic
if and only if their associated A-modules (M;/fM; — RM;/§M;) are isomorphic.
Therefore it is enough to show that there are only finitely many A-modules (V — W)
with W = (R/f)"). But this is clear because [W| < oo. o

1.1 Finiteness of the integral closure

Let (R, m) be a local Noetherian ring of dimension one, let K be the total quotient
ring {non-zerodivisors} ~!R, and let R be the integral closure of R in K. Suppose
R is not finitely generated over R. Then we can build an infinite ascending chain
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of finitely generated R-subalgebras of R. Each algebra in the chain is a maximal
Cohen-Macaulay R-module, and it is easy to see [45, Lemma 1] that no two of
the algebras are isomorphic as R-modules. It follows [45, Proposition 1] that R is
finitely generated as an R-module if R has finite Cohen—Macaulay type. If, now, R
is Cohen—Macaulay and x is a non-zero nilpotent element, we claim that R is not
finitely generated over R. To see this, choose a non-zerodivisor ¢ € m, and note that
R7 CR [% C %3 C ... is an infinite ascending chain of R-submodules of R. We have
proved:

Proposition 1.6. Let (R, m,k) be a one-dimensional, Cohen—Macaulay local ring
with finite Cohen—Macaulay type. Then R is reduced, and the integral closure R is
finitely generated as an R-module. O

What if R is not Cohen—Macaulay? The following result, together with
Theorem 1.1, gives the full classification of one-dimensional local rings of finite
Cohen—Macaulay type:

Theorem 1.7 ([45, Theorem 1]). Let (R,m) be a one-dimensional local ring, and
let N be the nilradical of R. Then R has finite Cohen—Macaulay type if and only if

(1) R/N has finite Cohen—Macaulay type, and
(2) miNN = (0) fori>>0. O

For example, k[[X,Y]]/(X?,XY) has finite Cohen-Macaulay type, since (x) is
the nilradical and (x,y)> N (x) = (0). However k[[X,Y]]/(X3,X?Y) has infinite
Cohen—Macaulay type: For each i > 1, xy"~! is a non-zero element of (x,y)’ N (x).

Corollary 1.8 ([45, Corollary 2]). Let (R,m) be a one-dimensional local ring.
Then R has finite Cohen—Macaulay type if and only if the m-adic completion R
has finite Cohen—Macaulay type. ]

The analogous statement can fail in higher dimensions (cf. Examples 2.1 and 2.2
of [33]).

1.2 Rings containing the rational numbers

For local rings containing Q, the rings of finite Cohen—Macaulay type have a
particularly nice classification. First, we recall the 1985 classification, by Greuel
and Knorrer, of complete equicharacteristic-zero singularities of finite Cohen—
Macaulay type. Recall that the simple (or “ADE”) plane curve singularities are the
following rings corresponding to certain Dynkin diagrams:

(An) KX, YN/ (X2 Y™ (n>1)
(Dy) KX, YN/Y (X2 +Y"2) (n>4)
(Ee)  k[[X,Y]]/(X*+Y*)
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(E7)  K[X,Y]]/X(X*+Y?)
(Es)  k[X.Y]]/(X*+Y°)

Theorem 1.9 ([17]). Let (R,m,k) be a one-dimensional complete local Cohen—
Macaulay ring containing Q, and assume that k is algebraically closed. Then R
has finite Cohen—Macaulay type if and only if R birationally dominates a simple
plane curve singularity. ]

To say that R birationally dominates a local ring S means that R sits between S
and the total quotient ring of S, and that the maximal ideal of R lies over the maximal
ideal of S. For example, the space curves k[[T3,T#,T]] and k[[T3,T°,T7]] have
finite Cohen—Macaulay type, since they birationally dominate the (Eg)-singularity
k[[T3,T7]]. To handle the case of a residue field that is not algebraically closed, we
quote the following theorem (which works in all dimensions):

Theorem 1.10 ([46, Theorem 3.3]). Let k be a field with separable closure k’,

and let f be a non-unit in the formal power series ring k[[Xo,...,X4]]. Then
k[[Xo,...,X4)]/(f) has finite CM type if and only if K*[[Xo, ..., X))/ (f) has finite
CM type. O

As one might expect, inseparable extensions can cause difficulties:

Example 1.11. Let k be an imperfect field of characteristic 2, choose o € k — K2
and put K := k(y/a). Let f = X* + a¥?, and put R := k[[X,Y]]/(f). Then R is a
one-dimensional complete local domain, and the integral closure R is generated, as
an R-module, by the two elements 1 and i; and both x and y multiply ;% into R. By
Theorem 1.1, R has finite Cohen—Macaulay type. On the other hand, Proposition 1.6
implies that K[[x,y]]/(f) does nor have finite Cohen—Macaulay type, since it is

Cohen—Macaulay and has non-zero nilpotents.

2 Bounded Cohen-Macaulay type

In this section, we consider one-dimensional Cohen—-Macaulay local rings (R, m, k).
We will say that R has bounded Cohen—Macaulay type provided there is a bound
on the multiplicities of the indecomposable maximal Cohen—Macaulay R-modules.
Since the notion of rank is perhaps more intuitive, we mention that if M is an R
module of constant rank r, then the multiplicity e(M) of M satisfies

e(M) =r-e(R).

If R is reduced, then Theorems 1.1 and 1.4 imply that finite and bounded Cohen—
Macaulay types agree. In 1980 Dieterich [10] observed that the group ring k[[X]][G]
has bounded Cohen—Macaulay type if |G| = 2 and char(k) = 2. Of course this
ring is just k[[X,Y]]/(Y?). In 1987 Buchweitz, Greuel and Schreyer [5] classified
the indecomposable maximal Cohen-Macaulay modules over k[[X,Y]]/(¥?) and
k[[X,Y]]/(XY?), the (A..) and (D..) singularities, for every field k. A consequence
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of their classification is that these singularities have bounded Cohen—Macaulay
type. Of course, by Proposition 1.6, these rings do not have finite Cohen—-Macaulay
type. Rather surprisingly, there is, in the complete equicharacteristic case, only one
additional ring with bounded but infinite Cohen—Macaulay type:

Theorem 2.1 ([34, Theorem 2.4]). Let (R, m, k) be a one-dimensional local Cohen—
Macaulay ring. Assume that R contains a field and that k is infinite. Then R has
bounded but infinite Cohen—Macaulay type if and only if the m-adic completion R
is k-isomorphic to one of the following:

(1) A:=K[X,Y]]/(¥?)
(2) B:=K[X,Y])/(XY?)
(3) C:=k[[XY,YZ,Z?%)], the endomorphism ring of the maximal ideal of B

If, on the other hand, R has unbounded Cohen—Macaulay type, then R has, for each
positive integer r, an indecomposable maximal Cohen—Macaulay module of con-
stant rank r. ad

The proof of the “only if” direction of this theorem involves some rather techni-
cal ideal theory. We don’t know whether or not the theorem is correct without the
assumption that k be infinite.

For the rings A and B of Theorem 2.1, we see from the explicit presentations in
[5] that the indecomposable maximal Cohen—Macaulay modules are generated by at
most two elements. This gives us a bound of six on the multiplicities of these mod-
ules. Since C = Endg(mp), where mp is the maximal ideal of B, we see that C is a
module-finite extension of B. Therefore every maximal Cohen—Macaulay C-module
M is also maximal Cohen—Macaulay when viewed as a B-module. Moreover, since
C is contained in the total quotient ring of B and M is torsion-free, we see that
Endg(M) = End¢(M). In particular, if M is indecomposable as a C-module, it is
also indecomposable as a B-module. Thus the multiplicities of the indecomposable
maximal Cohen—-Macaulay B-modules are also bounded by six. The “if” direction
of Theorem 2.1 now follows from the next theorem, on ascent to and descent from
the completion.

Theorem 2.2 ([34, Theorem 2.3]). Ler (R,m,k) be a one-dimensional Cohen—
Macaulay local ring with completion R. Assume R contains a field and that k is
infinite. Then R has bounded Cohen—Macaulay type if and only if R has bounded
Cohen—Macaulay type. Moreover, if R has unbounded Cohen—Macaulay type, then
R has, for every positive integer r, an indecomposable maximal Cohen—Macaulay
module of constant rank r. ]

By Lech’s Theorem [32, Theorem 1] each of the rings in Theorem 2.1 is the
completion of an integral domain. Suppose, for example, that (R, m,k) is a one-
dimensional local domain whose completion is k[[X,Y]]/(Y?). Then R has bounded
but infinite Cohen—Macaulay type. Therefore the assumption, in Theorem 1.4, that
R be finitely generated over R, cannot be removed.
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3 Modules with torsion

In this section, we consider arbitrary finitely generated modules over local rings of
dimension one. Every such ring (R, m) obviously has an infinite family of pairwise
non-isomorphic indecomposable modules, namely, the modules R/m". With a little
more work, one can produce indecomposable modules requiring arbitrarily many
generators, as long as R is not a principal ideal domain. To see this, fix n > 1, let
x and y be elements of m that are linearly independent modulo m?, and let / and
H be the n x n identity and nilpotent matrices used in the proof of Theorem 1.4.
Then the cokernel of the matrix x/ 4+ yH is indecomposable, and it clearly needs n
generators. To prove indecomposability, one can pass to R/m? and use an argument
similar to, but much easier than, the one used in the proof of Theorem 1.4. See, for
example, [21, Proposition 4.1] or [39]. Similar constructions can be found in the
work of Kronecker [28] and Weierstrass [40] on classifying pairs of matrices up to
simultaneous equivalence. The idea is not exactly new!

It is much more difficult to build indecomposable modules of large multiplicity.
Of course it is impossible to do so if R is a principal ideal ring. More generally, recall
from [29-31] that a local ring (R, m,k) is Dedekind-like provided R is reduced and
one-dimensional, the integral closure R is generated by at most two elements as
an R-module, and m is the Jacobson radical of R. In a long and difficult paper [30]
Levy and Klinger classify the indecomposable finitely generated modules over most
Dedekind-like rings. There is one exceptional case where the classification has not
yet been worked out, namely, where R is a local domain whose residue field is purely
inseparable of degree two over k. We will call these Dedekind-like rings exceptional.
The ring of Example 1.11 is such an exception. Before stating the next result, which
is a consequence of the classification in [30], we note that a Dedekind-like ring has
at most two minimal prime ideals and that the localization of R at a minimal prime
is a field. If R has two minimal primes P; and P, the rank of the R-module M is the
pair (r1,72), where r; is the dimension of Mp, as a vector space over Rp.

Theorem 3.1 ([30]). Let M be an indecomposable finitely generated module over a
local Dedekind-like ring R.

1. If R has two minimal prime ideals Py and P, then the rank of M is (0,0),
(1,0),(0,1) or (1,1).
2. If R is a domain and R is not exceptional, then M has rank 0,1 or 2. O

In a series of papers [20-22], Hassler, Klingler, and the present authors proved a
strong converse to this theorem:

Theorem 3.2 ([21, Theorem 1.2]). Let R be a local ring of dimension at least one,
and assume R is not a homomorphic image of a Dedekind-like ring. Let Py,... P
be an arbitrary set of pairwise incomparable non-maximal prime ideals, and let
ni,...,ns be non-negative integers. Then there are |k| R pairwise non-isomorphic

indecomposable R-modules My such that (My)p = Pii) for each i < s and
each o. O
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The proof [21] of this result is rather involved. It makes heavy use of the fact [29]
that the category of finite-length R-modules has wild representation type if R is not
a homomorphic image of a Dedekind-like ring.

4 Monoids of modules

In this section, we study the different ways in which a finitely generated module can
be decomposed as a direct sum of indecomposable modules. Let (R, m, k) be a local
ring and C a class of modules closed under isomorphism, finite direct sums, and
direct summands. We always assume that ¢ C R—mod, the class of all finitely gen-
erated R-modules. There is a set V(C) C C of representatives; each element M € C
is isomorphic to exactly one element [M] € V(C). We make V(C) into an additive
monoid in the obvious way: [M] + [N] = [M @ N]. This monoid encodes informa-
tion about direct-sum decompositions in €. We will tacitly assume that all of our
monoids are written additively, and that they are reduced (x+y=0 — x =y =0).

Suppose R is complete (in the m-adic topology). Then the Krull-Remak—Schmidt
theorem holds for finitely generated modules, that is, each M € R-mod is uniquely a
direct sum of indecomposable modules (up to isomorphism and ordering of the sum-

mands). In the language of monoids, V(R—mod) = N(()I), the free monoid with basis
{bi | i € I'}, where the b; range over a set of representatives for the indecomposable
finitely generated R-modules.

For a general local ring R, we can exploit the monoid homomorphism

j: V(R—mod) — V(R—mod)

taking [M] to [R ®g M. This homomorphism is injective [11, (2.5.8)], and it fol-
lows that the monoid R—mod is cancellative: x+z7=y+z = x =1y. (cf. [14,38].)
Since, in this section, we will deal only with local rings, all of our monoids are tac-
itly assumed to be cancellative.

The homomorphism j actually satisfies a much stronger condition. If x,y €
V(R—mod) and j(x) | j(y), then x | y. (For elements x and y in a monoid A we
say x divides y, written “x | y” provided there is an element A € A such that
x+ A =y.) Here is a proof, given by Reiner and Roggenkamp [36] in a slightly
different context: Suppose M’ and M are finitely generated modules over a local
ring R, and that §®RM | §®RM We 1dent1fy §®RM and §®RM w1th the
completions M’ and M of M’ and M. Choose R-homomorphisms ¢ : M’ — M and
v : M — M’ such that yo = 1. Since H := HomR(M’ M) is a finitely gener-
ated R-module, it follows that H = R ® H = Homj (M N). Therefore, @ can be
approximated to any order by an element of H. In fact order 1 suffices: Choose
f € Homg (M, N) such that f @ € mH. Similarly, we can choose g € HomR(N M)
with g— y € mHomR(N M) Then the image of gf — 1l is in mM, and now

Nakayama’s lemma implies that g f is surjective, and therefore an isomorphism. It
follows that g is a split surjection (with splitting map f(gf)~"). By faithful flatness
g is a split surjection.



Direct-sum behavior of modules over one-dimensional rings 263

A divisor homomorphism j : A — A; (between reduced, cancellative monoids)
is a homomorphism such that, for all x,y € Ay, j(x) | j(y) = x| y. The result we
just proved is a special case of the following theorem:

Theorem 4.1 ([24, Theorem 1.3]). Let R — S be a flat local homomorphism of
Noetherian local rings. Then the map V(R—mod) — V(S—mod) taking [M] to [S Qg
M) is a divisor homomorphism. O

Definition 4.2. A Krull monoid is a monoid that admits a divisor homomorphism
into a free monoid.

Every finitely generated Krull monoid admits a divisor homomorphism into N(()[)

for some positive integer ¢. Conversely, it follows easily from Dickson’s Lemma
(Item 2 following Proposition 1.2) that a monoid admitting a divisor homomorphism

to Ng) must be finitely generated.

Finitely generated Krull monoids are called positive normal affine semigroups
in [4]. From [4, Exercise 6.1.10, p. 252], we obtain the following characterization
of these monoids:

Proposition 4.3. The following conditions on a monoid A are equivalent:

1. A is a finitely generated Krull monoid.

2. A =2 GNNY for some positive integer t and some subgroup G of Z\V.

3. A =W NNW for some positive integer u and some Q-subspace W of Q).

4. There exist positive integers m,n and an m X n matrix & over 7, such that A =
N nker(ar). O

Item (4) says that a finitely generated Krull monoid can be regarded as the collection
of non-negative integer solutions of a homogeneous system of linear equations. For
this reason these monoids are sometimes called Diophantine monoids.

In order to study uniqueness of direct-sum decompositions, it is really enough
to examine a small piece of the class R-mod of all finitely generated modules.
Given a finitely generated module M, we let add(M) be the class of modules that
are isomorphic to direct summands of direct sums of finitely many copies of M.
We note that +(M) := V(add(M)) is a finitely generated Krull monoid, since the
divisor homomorphism j : V(R—mod) — V(R—mod) carries +(M) into the free
monoid generated by the isomorphism classes of the indecomposable direct sum-
mands of M.

The key to understanding the monoids V(R—mod) and + (M) is knowing which
modules over the completion actually come from R-modules. More generally, if
R — § is a ring homomorphism, we say that the S-module N is extended (from R)
provided there is an R-module M such that S ®g M = N. In dimension one, a beau-
tiful result due to Levy and Odenthal [35] tells us exactly which R-modules are
extended. First, we define, for any one-dimensional local ring (R, m, k) the Artinian
localization a(R) as follows:

a(R)=(R—(PU---UPR))"'R,
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where Py, ..., Ps are the minimal prime ideals of R (the prime ideals distinct from m).
If R is Cohen—Macaulay, this is just the classical quotient ring. If R is not Cohen—
Macaulay, the natural map R — a(R) is not one-to-one.

Theorem 4.4 ([35]) Let (R,m,k) be a one-dimensional local ring, and let N be a
finitely generated R-module. Then N is extended from R if and only if a(R ) ®pN is
extended from a(R). O

We refer the reader to [24, Theorem 4.1] for the proof of a somewhat more general
result.

We return now to the situation of Section 1, where (R, m, k) is a local ring whose
completion R is reduced. The localizations at the minimal primes are then fields. If
A:=L;x---xL,is a K-algebra, where K and the L; are fields, a finitely generated
A-module N is extended from K if and only if dimy, (L;N) = dimy;(L;N) for all , ;.
Therefore, Theorem 4.4 has the following consequence:

Corollary 4.5. Let (R, m,k) be a one-dimensional local ring whose completion Ris
reduced, and let N be a finitely generated R-module. Then N is extended from R if
and only if dimg, (Np) = dimg, (Ng) whenever P and Q are prime ideals of R lying
over the same prime ideal of R. In particular, if R is a domain, then N is extended if
and only if N has constant rank. ]

This gives us a strategy for producing strange direct-sum behavior:

(1) Find a one-dimensional domain R whose completion has lots of minimal
primes.

(2) Build indecomposable R-modules with highly non-constant ranks.

(3) Put them together in different ways to get constant-rank modules.

Suppose, for example, that R is a domain whose completion R has two minimal
primes P and Q. Suppose we can build indecomposable R-modules U,V,W and
X, with ranks (2,0),(0,2),(2,1) and (1,2), respectively. Then U &V is extended,
say, UV = M Similarly, there are R-modules N, F and G such that VoW & W =
N WeX2FandUBXHX =G. Using the Krull-Remak—Schmidt theorem over
R we see easily that no non-zero proper direct summand of any of the modules
M.N,F, G has constant rank. It follows from Corollary 4.5 that M,N,F and G
are indecomposable, and of course no two of them are isomorphic since (again
by Krull-Remak—Schmidt) their completions are pairwise non-isomorphic. Finally,
we see that M @ F @ F = N @ G, since the two modules have isomorphic comple-
tions. Thus we easily obtain a mild violation of Krull-Remak—Schmidt uniqueness
over R.

It’s easy to accomplish (1), getting a one-dimensional domain with a lot of split-
ting. In order to facilitate (2), however, we want to ensure that R /P has infinite
Cohen—-Macaulay type for each minimal prime ideal P. The following example from
[47] does the job nicely:

Example 4.6 ([47, (2.3)]). Fix a positive integer s, and let k be any field with || > s.
Choose distinct elements #1,...,#; € k. Let X be the complement of the union of the
maximal ideals (X —7;)k[X], i =1,...,s. We define R = R, by the pullback diagram
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R ——  XkX]

l |

k > 1k[X]

where 7 is the natural map. Then R is a one-dimensional local domain, and R is
reduced with exactly s minimal prime ideals.

Let Py,...,P; be the minimal prime ideals of R. By the rank of a finitely gen-
erated R-module N, we mean the s-tuple (rq,...,rs), where r; is the dimension
of Np, as a vector space over Rp.. A jazzed-up version of the argument used to prove
Theorem 1.4 yields the following:

Theorem 4.7 ([47, (2.4)]). Fix a positive integer s, and let (r1,...,rs) be any non-
trivial sequence of non-negative integers. Then Rs has an indecomposable maximal
Cohen—Macaulay module N with rank(N) = (ry,...,rs). O

Thus even the case s = 2 of Example 4.6 yields the pathology discussed after
Corollary 4.5

Recalling (4) of Proposition 4.3, we say that the finitely generated Krull monoid
A can be defined by m equations provided A = N(()") Nker(cr) for some n and some
m X n integer matrix . Given such an embedding of A in N(()"), we say a column
vector A € A is strictly positive provided each of its entries is a positive integer. By
decreasing n (and removing some columns from o) if necessary, we can harmlessly
assume (without changing m) that A contains a strictly positive element (cf. [49,
Remark 3.1]).

Corollary 4.8 ([47, Theorem 2.1]). Fix a non-negative integer m, and let R be the
ring Ry, 1 of Example 4.6. Let A be a finitely generated Krull monoid defined by m
equations and containing a strictly positive element A. Then there exist a maximal
Cohen—Macaulay R-module M and a commutative diagram

[.n
74
°es

A

in which
(1) i is the natural map taking [F) to [F),
(2) @ and y are monoid isomorphisms, and

G3) o((M]) = 2.

Proof. We have A = N(()") Nker(a), where o = [a;;] is an m x n matrix over Z.
Choose a positive integer & such that a;; > 0 for all i, j. For j = 1,...,n, choose,
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using Theorem 4.7, a maximal Cohen-Macaulay R-module L ; such that rank(L;) =
(alj +h,...,an; +h,h).

Given any column vector 8 = [by by ...b,|" € N(()n), putNg = Lgbl) D @Lg,b”).
The rank of Ng is

(i(alj—l—h)bj,...,i(amj+h)bj, (ibj) h) .
Jj= Jj=

j=1
Since R is a domain, Corollary 4.5 implies that Ng is in the image of j :
V(R—mod) — V(R—mod) if and only if Yii(aij+h)b; = (X)_; bj)h for each
i, that is, if and only if 8 € N(()") Nker(a) = A. To complete the proof, we let M be
the R-module (unique up to isomorphism) such that M=N 2. O

This corollary makes it very easy to demonstrate spectacular failure of Krull-
Remak—Schmidt uniqueness:

Example 4.9. Let A — { m eNP | 720 +y= 73z}. This has three atoms (minimal
non-zero elements), namely

0 73
a=|1. B:=|13|, y=1|0
1 1 72

Note that 73 = 3 + ¥, Taking s = 2 in Example 4.6, we get a local ring R and
indecomposable R-modules M, F, G such that M' ) has only the obvious direct-sum
decompositions for ¢ < 72, but M' P ~FaaG.

We define the splitting number spl(R) of a one-dimensional local ring R by

-~

spl(R) = |Spec(R)| — [Spec(R)]-

The splitting number of the ring R, in Example 4.6 is s — 1. Corollary 4.8 says
that every finitely generated Krull monoid defined by m equations can be realized
as +(M) for some finitely generated module over a one-dimensional local ring (in
fact, a domain essentially of finite type over Q) with splitting number m. This is the
best possible:

Theorem 4.10. Let M be a finitely generated module over a one-dimensional local
ring R with splitting number m. Then the Krull monoid +(M) is defined by m equa-
tions.

Proof. Write M= Vl(e') DD V,,(e"), where the V; are pairwise non-isomorphic
indecomposable R-modules and the e¢; are all positive. We have an embedding
+(M) — N(()") taking [F] to [b; ...b,]", where F = Vl(b‘) &---aV® and we
identify +(M) with its image A in N(()”). Given a prime P € Spec(R) with, say, ¢
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primes Qy,...,Q; lying over it, there are + — 1 homogeneous linear equations on
the b; that say that N has constant rank on the fiber over P (cf. Corollary 4.5).
Letting P vary over Spec(R), we obtain exactly m = spl(R) equations that must
be satisfied by elements of A. Conversely, if the b; satisfy these equations, then

N & Vl(bl) DD V,,(b”) has constant rank on each fiber of Spec(ﬁ) — Spec(R).

—

By Corollary 4.5, N is extended from an R-module, say N = F. Clearly F | M)
if u is large enough, and it follows from Theorem 4.1 that F € +(M), whence
[bl ...b,,]“eA. O

In [27], Karl Kattchee showed that, for each m, there is a finitely generated Krull
monoid A that cannot be defined by m equations. Thus, no single one-dimensional
local ring can realize every finitely generated Krull monoid in the form +(M) for a
finitely generated module M.

We have seen that the monoids +(M) have a very rich structure. In contrast,
the monoids V(R—mod), for R a one-dimensional reduced local ring, are pretty
boring. For certain Dedekind-like rings we will encounter the submonoid I of
the free monoid N(()RO) consisting of (finitely non-zero) sequences [q;] satisfying
>(—1)'a; = 0. For rings that are not Dedekind-like, we fix a positive integer ¢ and
let vi,va,vs, ... be an enumeration of the elements of Z(9). Let F be the free monoid
with countably infinite basis {by,by,b3, ...}, and define f : F — Z@) by b; — v;.
Now let 7 be an infinite cardinal, and define g : F () - 7@ by taking the map f on
each component. We let A(g,7) = ker(g). Finally, we let A(0,7) = N(()T), the free
monoid with basis of cardinality 7.

The following theorem, from [I5] and [21], is an easy consequence of
Theorem 2.2 and Theorem 4.4:

Theorem 4.11. Let (R, m, k) be a reduced one-dimensional local ring, with splitting
number g = spl(R). Put T = |k|R.
(1) IfRis not Dedekind-like, then V(R—mod) 2 A (g, T).
(2) IfRis a discrete valuation ring, then V(R—mod) = A (0, Xo) = N(()NO).
(3) IfR is Dedekind-like, R is not a discrete valuation ring, and q = 0,
then V(R—mod) 22 N¥),
(4) IfR is Dedekind-like and q > 0, then ¢ = 1 and V(R—mod) = I" ® N(()T).

In every case, the divisor class group of V(R—mod) is Z(9). O

The theorem raises two questions. First, what if R has non-zero nilpotents? The
problem is that we do not have, in this case, a useful criterion for an R-module to be
extended. Theorem 4.4 reduces the problem to the case of Artinian rings, but that
does not eliminate the difficulty. The interested reader is referred to [24, Section 6]
for a discussion of this problem.

Secondly, is there a similar classification of the monoid C(R) of isomorphism
classes of maximal Cohen—Macaulay modules (say, when the completion is re-
duced)? If R has finite Cohen—Macaulay type, such a classification has been worked
out by Nicholas Baeth and Melissa Luckas in [1] and [2]. At the other extreme,
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when each analytic branch has infinite Cohen—Macaulay type, Andrew Crabbe and
Silvia Saccon [8] have a result similar to Theorem 4.7 above, from which one can
decode the structure of C(R). The intermediate case, e.g., R = k[[X, Y]]/ X (X3 —Y*),
where R has infinite Cohen—Macaulay type but at least one branch has finite Cohen—
Macaulay type, is discussed in [8], but much less is known about the possible ranks
of the indecomposables in this case.

5 Direct-sum cancellation

Let R be a commutative Noetherian ring. In very general terms, the direct-sum can-
cellation question is this: If M, N, and L are R-modules in some fixed subcategory
€ € R—mod, where R—mod is the category of all finitely generated R-modules,
when does M & L = N & L always imply M = N? When this is the case, we say that
cancellation holds for R (with respect to the chosen category). Otherwise, we say
cancellation fails for R.

Evans [14] and Vasconcelos [38] showed that cancellation of arbitrary finitely
generated modules always holds over semilocal rings. Since the cancellation ques-
tion is interesting only if the ring is not semilocal, we focus largely on non-semilocal
rings in this section. However, the localizations of a ring R do play a role in answer-
ing some kinds of cancellation questions over R itself.

The cancellation question gained prominence in 1955 through its connection with
the celebrated conjecture of Serre [37]: If R is the polynomial ring in a finite number
of variables over a field, is every finitely generated projective R-module free? Serre
reduced his question to a cancellation question involving projective modules: If P
and Q are finitely generated projective R-modules such that PR = Q ® R, are P
and Q necessarily isomorphic?

Well before the proof of Serre’s Conjecture by Quillen and Suslin in 1976, the
cancellation question had taken on a life of its own. The emphasis shifted to other
categories of modules and other rings. In 1962, Chase [6] studied cancellation of
finitely generated torsion-free modules over two-dimensional rings. He proved, for
example, that torsion-free cancellation holds for the ring R = k[X,Y] when £ is an
algebraically closed field of characteristic zero. He also produced non-isomorphic
torsion-free modules A and B over R = R[X, Y] such that AR~ BPR.

The first known failure of cancellation for finitely generated modules is per-
haps due to Kaplansky, who used the non-triviality of the tangent bundle on the
two-sphere to produce a module T over R = R[X,Y]/(X?+Y? +Z% — 1) such that
T ®R = R3 and yet T % R%. For quite a while, every known failure of cancellation
for finitely generated modules over commutative rings involved rings of dimension
greater than one. Even as late as 1973, Eisenbud and Evans [13] raised the follow-
ing question: Does cancellation hold for arbitrary finitely generated modules over
one-dimensional Noetherian rings?

In the 1980s, effective techniques, such as those in [48], were developed for
studying the cancellation of finitely generated torsion-free modules over one-
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dimensional rings. We will sketch some of the main ideas. We assume, from now
on, that all modules are finitely generated.

Borrowing from the notation we used previously for local rings, we let R be a
one-dimensional domain such that the integral closure R of R in its quotient field is a
finitely generated R-module. As before, the conductor of R in R is denoted by . (The
reader may find it helpful to refer to the pullback that precedes Proposition 1.2.) The
main technique in [48] is to examine the relationship between M /fM and RM /M
for torsion-free R-modules M.

Given a torsion-free R-module M, one defines the so-called “delta group” of M,
denoted Ayy. This is the subgroup of (R/f)* consisting of determinants of automor-
phisms of RM /M that carry M /fM into itself. (See [48] for the basic properties of
Ayy.) There are two important facts we need:

() Ayaen = Ay - Ap.
2) If My, = Ny, for each maximal ideal m, then Ay = Ap.

The first fact allows one to restrict attention to indecomposable torsion-free
R-modules. The second fact says that the delta group is an invariant of the lo-
cal isomorphism class of M. Now let A; be the image of (R)* in (R/f)*. We call
this the group of liftable units with respect to f. The next theorem follows directly
from Lemma 1.6 and Proposition 1.9 in [48].

Theorem 5.1. Let R, R, and f be as above. Then R has torsion-free cancellation if
and only if (R/)* C Ay - As for all torsion-free R-modules M. a

Next, consider the cancellation question for arbitrary finitely generated modules.
We shall call this the mixed cancellation question. Is there a result similar to the
preceding theorem that pertains to the mixed cancellation question? Such a result
appears in [23]. Let S denote the complement of the union of the maximal ideals of
R that contain f. Then S™!R is a semilocal domain of dimension one. One defines
a delta group for S~'M, denoted Ag-1y,. From Corollary 4.4 of [23] one gets the
following result, where now Ag denotes the group of units of S~!R that lift to units
of R.

Theorem 5.2. Let R, R, and S be as above. Then R has mixed cancellation if and
only if (ST'R)* C Ag_1), - As for every finitely generated R-module M.

An important question one can raise at this point is whether torsion-free can-
cellation implies mixed cancellation. It was shown in [23] that the two kinds of
cancellation are not equivalent in general. We will give an example from that paper
in Section 5.2 below.

Suppose, now, that R is an order in an algebraic number field K. That is, suppose
Ok is the ring of algebraic integers of K and R is a subring of Ok such that QR = K.
(Then R = Ok.) If R is a quadratic order then R has finite Cohen—Macaulay type. In
[41], definitive results were obtained for torsion-free cancellation over quadratic or-
ders. In [26], one can find decisive answers to the torsion-free cancellation question
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for a large family of cubic orders having finite Cohen—Macaulay type. In these two
papers, each of the present authors used methods based on the calculation of delta
groups. We will revisit these results in more detail below.

In [25] and [26], a connection between cancellation and finite Cohen—Macaulay
type is exploited. The work is based on the idea that the failure of finite Cohen—
Macaulay type often implies the failure of cancellation. In these two papers, negative
answers to the torsion-free cancellation question are given for many quartic and
higher-degree orders.

In the remainder of this section, we will focus on the cancellation question for
one-dimensional Noetherian domains R, although many of the results given below
are known to hold for other classes of rings as well, especially for reduced rings.
Throughout, R will be a one-dimensional domain with quotient field K. Also, R will
always be the integral closure of R in K. We insist that R be finitely generated as an
R-module.

5.1 Torsion-free cancellation over one-dimensional domains

Let D(R) denote the kernel of the natural map on Picard groups PicR — PicR. If
D(R) # 0 then one can show that R has an invertible ideal 7 % R such that &R =
R®R (cf. [41, Corollary 2.4]). This is one of the easiest ways in which torsion-free
cancellation can fail. For certain kinds of rings, D(R) is exactly the obstruction to
torsion-free cancellation. For example, the following is from Theorem 0.1 of [44]:

Theorem 5.3. Let R be as above. Assume further that R is finitely generated as a
k-algebra for some infinite perfect field k. Then R has torsion-free cancellation if
and only if D(R) = 0. O

For examples of affine k-domains where D(R) = 0, we have Dedekind domains
and the rings F + XK[X], where k C F C K are field extensions of finite degree. In
fact [44, (1.7)], up to analytic isomorphism, these are the only examples! In par-
ticular [41, Corollary 3.3], an affine domain over an algebraically closed field has
torsion-free cancellation if and only if it is a Dedekind domain.

Another case where D(R) controls torsion-free cancellation is provided by
Theorem 2.7 of [41]:

Theorem 5.4. Let R be as above. Assume that every ideal of R is two-generated.
Then R has torsion-free cancellation if and only if D(R) = 0. O

In [41], the theorem above is applied to orders in quadratic number fields. We state
the following classification result for imaginary quadratic orders (Theorem 4.5 of

[41]):

Theorem 5.5. Let d be a squarefree negative integer, and let R be an order in
Q(\/E) Then R has torsion-free cancellation if and only if either R = R or else
R satisfies one of the following:
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(1) R="Z[\/d] where d =1 mod 8

(2) R=7Z[2v—1]

(3) R=Z[\V-3]

@) R=Z[3(1+v-3)] O

For real quadratic orders R, the situation is more complicated. The condition
D(R) = 0 depends on subtle arithmetical properties of the fundamental unit of R,
and it is extremely difficult to give a version of Theorem 5.5 that classifies those
real quadratic orders having torsion-free cancellation. But given any specific real
quadratic order R, a finite calculation involving the fundamental unit of R will de-
termine whether or not torsion-free cancellation holds.

The cancellation question can be answered decisively if one knows all the delta
groups that come from indecomposable torsion-free R-modules. In cases where
R has finite Cohen—Macaulay type, one has some hope of calculating these delta
groups. This is indeed the case for quadratic orders. The following result is equiva-
lent to Corollary 4.2 of [41] but is stated in terms of data intrinsic to the ring. Recall
that f is the conductor of R in R.

Theorem 5.6. Suppose R = Z + fOk is an order in a quadratic number field K,
where f € 7 is a nonzero nonunit. Then torsion-free cancellation holds for R if and

only if (R/f)* C (R/f)* - Ay. 0

Let us compare this with Theorem 5.1, where the statement of the condition
for cancellation to hold depends on the entire family of isomorphism classes of
indecomposable torsion-free R-modules. For a quadratic order R, it is known [3]
that every indecomposable torsion-free R-module has rank one. Furthermore, there
are only finitely many isomorphism classes of such modules. This makes it possi-
ble to replace the condition in Theorem 5.1 with a condition that depends only on
subgroups of (R/f)*.

We now state some results for cubic orders. It is well known that every quadratic
order R in K has the form R = Z + fOk for some nonzero rational integer f. While
this is not necessarily true for cubic orders, one can consider cubic orders of that
same form. Now, a cubic order R having finite Cohen—Macaulay type may have
indecomposable torsion-free modules of rank greater than 1. The following result
is a special case of Theorem 31 in [26] and depends crucially on the existence of
indecomposable torsion-free R-modules of rank two:

Theorem 5.7. Suppose R = Z + pOg is an order in a cubic number field K, where
p € Z is nonzero. Further, suppose pR is a prime ideal. Then torsion-free cancella-
tion holds for R if and only if

(M (R/7)
@) (R/})

(R/pR)* - Ay, and

< C
“C((R/5))*- A O



272 Ryan Karr and Roger Wiegand

This is similar to Theorem 5.6. Once again, the torsion-free cancellation question
for R is answered in terms of subgroups of (R/f)*. Using this result, one can find
examples of cubic orders R for which D(R) = 0 and yet torsion-free cancellation
fails for R.

There also exist many cubic orders that do not have finite Cohen—Macaulay type.
Moreover, most orders in number fields of degree four and higher do not have finite
Cohen-Macaulay type. Using the Drozd—Roiter conditions [12] (cf. Theorem 1.1 in
Section 1), we easily get the following (see Proposition 19 of [26]).

Lemma 5.8. Let K be a number field of degree d and suppose R = Z + fOk is an
order, where f € Z is a nonzero nonunit. Then R has finite Cohen—Macaulay type if
and only if either (i) d =2 or (ii) d = 3 and f is square-free. ]

Failure of finite Cohen—Macaulay type often leads to failure of torsion-free can-
cellation. Many such examples can be given using the following result, which is a
specialized version of Theorem 26 in [26].

Theorem 5.9. Let K be a number field of degree at least four. Suppose R =7+ fOg
is an order, where f € Z is a nonzero nonunit. Then torsion-free cancellation holds
for R if and only if (R/)* C A;. a

The condition appearing in the result above is quite satisfying, given that the
category of torsion-free R-modules for these orders is generally intractable. It turns
out that the condition (R/f)* C A is rarely satisfied. For example, the next result
follows directly from Corollary 7.1 in [25].

Corollary 5.10. Let K be a number field of degree four or higher. Then there are
only finitely many primes p € Z for which the order R = Z + pOk has torsion-free
cancellation. O

5.2 Mixed cancellation for one-dimensional domains

In [23], Hassler and Wiegand found a way to extend the techniques in [48] to handle
arbitrary finitely generated modules. The original motivation for the work in [23]
was the following question: When does torsion-free cancellation imply mixed can-
cellation? The following theorem gives a class of rings for which the answer is
affirmative (see Theorem 6.1 of [23]):

Theorem 5.11. Let R be a one-dimensional Noetherian domain. Further, suppose R
is finitely generated as k-algebra, where k is an infinite field of characteristic zero.
The following are equivalent:

(1) D(R)=0
(2) R has torsion-free cancellation
(3) R has mixed cancellation O
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In the same paper [23], the class of Dedekind-like rings is considered. A one-
dimensional, reduced, Noetherian ring R is defined to be Dedekind-like if Ry, is
Dedekind-like for all maximal ideals m of R. (See Section 3 for the definition of lo-
cal Dedekind-like rings.) The following is from Corollary 6.11 in [23] and depends
heavily on Levy and Klingler’s classification [30] of indecomposable modules over
local Dedekind-like rings:

Theorem 5.12. Suppose R is a Dedekind-like order in a number field. Then torsion-
free cancellation implies mixed cancellation. ]

Likewise, Hassler [18] has proved the following theorem. (We note that orders in
quadratic number fields need not be Dedekind-like. For example, Z[2+/—1] is not
Dedekind-like.)

Theorem 5.13. Suppose R is an order in an imaginary quadratic field. Then torsion-
free cancellation implies mixed cancellation. O

Now, suppose R is an order in a real quadratic field such that R is not Dedekind-
like. Does torsion-free cancellation still imply mixed cancellation over R? The au-

thors in [23] show that the order R = 7Z [17%] has torsion-free cancellation but

does not have mixed cancellation!

Finally, we remark that when R is an order in a real quadratic field, Hassler has
shown in [19] that the mixed cancellation question for R can often be answered by
a computation that involves the fundamental unit of R. The computation is a more
complicated version of the one mentioned in the paragraph that follows Theorem 5.5
above.
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The defect

Franz-Viktor Kuhlmann*

Abstract We give an introduction to the valuation theoretical phenomenon of
“defect”, also known as “ramification deficiency”. We describe the role it plays in
deep open problems in positive characteristic: local uniformization (the local form
of resolution of singularities), the model theory of valued fields, the structure the-
ory of valued function fields. We give several examples of algebraic extensions with
non-trivial defect. We indicate why Artin—Schreier defect extensions play a central
role and describe a way to classify them. Further, we give an overview of various re-
sults about the defect that help to tame or avoid it, in particular “stability” theorems
and theorems on “henselian rationality”, and show how they are applied. Finally, we
include a list of open problems.

1 Valued fields

Historically, there are three main origins of valued fields:

(1) Number theory: Kurt Hensel introduced the fields Q, of p-adic numbers and
proved the famous Hensel’s Lemma (see below) for them. They are defined as the
completions of Q with respect to the (ultra)metric induced by the p-adic valuations
of Q, similarly as the field of reals, R, is the completion of QQ with respect to the
usual metric induced by the ordering on Q.

(2) Ordered fields: R is the maximal archimedean ordered field; any ordered field
properly containing R will have infinite elements, that is, elements larger than all
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reals. Their inverses are infinitesimals. The classes of magnitude, called archimedean
classes, give rise to a natural valuation. These valuations are important in the theory
of ordered fields and in real algebraic geometry.

In connection with ordered fields and their classes of magnitude, Hans Hahn
[27] introduced an important class of valued fields, the (generalized) power series
fields. Take any field K and any ordered abelian group G. Let K((G)) (also de-
noted by K((t))) be the set of all maps u from G to K with well-ordered support
{g€ G| u(g)#0}. One can visualize the elements of K((G)) as formal power series
Y e Cgt® for which the support {g € G | ¢; # 0} is well-ordered. Using this condi-
tion one shows that K((G)) is a field. Also, one uses it to introduce the valuation:

v Y cgt® = min{g € G| ¢, # 0} (1)
geG
(the minimum exists because the support is well-ordered). This valuation is called
the canonical valuation or t-adic valuation of K((G)), and sometimes called the
minimum support valuation. Note that vt = 1. For G = Z, one obtains the field of
formal Laurent series K((7)).

(3) Function fields: if K is any field and X an indeterminate, then the rational
function field K(X) has a p(X)-adic valuation for every irreducible polynomial
p(X) € K[X], plus the 1/X-adic valuation. These valuations are trivial on K. As a
valuation can be extended to every extension field, these valuations together with the
p-adic valuations mentioned in (1) yield that a field admits a non-trivial valuation as
soon as it is not algebraic over a finite field. In particular, all algebraic function fields
over!K (i.e., finitely generated field extensions of K of transcendence degree > 1)
admit non-trivial valuations that are trivial on K. Such valued function fields play a
role in several areas of algebra and number theory, some of which we will mention
in this paper. Throughout, function field will always mean algebraic function field.

If K is a field with a valuation v, then we will denote its value group by vK and
its residue field by Kv. For a € K, its value is va, and its residue is av. An extension
of valued fields is written as (L'|L,v), meaning that L'|L is a field extension, v is a
valuation on L’ and L is equipped with the restriction of this valuation. Then there
is a natural embedding of the value group vL in the value group vL', and a natural
embedding of the residue field Lv in the residue field L'v. If both embeddings are
onto (which we just express by writing vL = vL' and Lv = L'v), then the extension
(L'|L,v) is called immediate. For a € L' we set v(a—L) :={v(a—c) | c € L}. The
easy proof of the following lemma is left to the reader:

Lemma 1.1. The extension (L'|L,v) is immediate if and only if for all a € L' there is
¢ € L such that v(a— c) > va. If the extension (L'|L,v) is immediate, then v(a — L)
has no maximal element and is an initial segment of vL, that is, if o € v(a — L) and
o> evL, then B €v(a—L).

If for each a € L and every « € vL’ there is ¢ € L such that v(a — ¢) > «, then
we say that (L,v) is dense in (L',v). If this holds, then the extension (L'|L,v) is
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immediate. The maximal extension in which (L, v) is dense is its completion (L,v)°,
which is unique up to isomorphism.

Every finite extension L' of a valued field (L,v) satisfies the fundamental
inequality (cf. (17.5) of [18] or Theorem 19 on p. 55 of [67]):

n> e;f; (2)

M

1

where n = [L’ : L] is the degree of the extension, vy, ..., vg are the distinct extensions
of v from L to L', e; = (v;L' : vL) are the respective ramification indices and f; =
[L'v; : Lv] are the respective inertia degrees. If g = 1 for every finite extension L'|L
then (L,v) is called henselian. This holds if and only if (L,v) satisfies Hensel’s
Lemma, that is, if f is a polynomial with coefficients in the valuation ring O of
(L,v) and there is b € O such that vf(b) > 0 and vf’(b) = 0, then there is a € O
such that f(a) =0 and v(b—a) > 0.

Every valued field (L,v) admits a henselization, that is, a minimal algebraic ex-
tension which is henselian (see Section 4 below). All henselizations are isomorphic
over L, so we will frequently talk of the henselization of (L,v), denoted by (L,v)".
The henselization becomes unique in absolute terms once we fix an extension of
the valuation v from L to its algebraic closure. All henselizations are immediate
separable-algebraic extensions. If (L', v) is a henselian extension field of (L,v), then
a henselization of (L, v) can be found inside of (L', v).

For the basic facts of valuation theory, we refer the reader to [5, Appendix],
[18, 19,59, 65, 67]. For ramification theory, we recommend [18, 19, 55]. For basic
facts of model theory, see [11].

For a field K, K will denote its algebraic closure and K*P will denote its
separable-algebraic closure. If charK = p, then K /P will denote its perfect hull.
If we have two subfields K, L of a field M (in our cases, we will usually have the
situation that L C K) then K.L will denote the smallest subfield of M which contains
both K and L; it is called the field compositum of K and L.

2 Two problems

Let us look at two important problems that will lead us to considering the phe-
nomenon of defect:

2.1 Elimination of ramification

Given a valued function field (F|K,v), we want to find nice generators of F over
K. For instance, if F|K is separable then it is separably generated, that is, there
is a transcendence basis T such that F|K(T) is a finite separable extension, hence
simple. So we can write F = K(T,a) with a separable-algebraic over K(T).
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In the presence of the valuation v, we may want to ask for more. The problem of
smooth local uniformization is to find generators xi,...,x, of F|K in the valuation
ring O of v on F such that the point xv,...,x,v is smooth, that is, the Implicit
Function Theorem holds in this point. We say that (F|K,v) is inertially generated if
there is a transcendence basis 7' such that F lies in the absolute inertia field K(T )’
(see Section 4 for its definition). A connection between both notions is given by
Theorem 1.6 of [35]:

Theorem 2.1. If (F|K,v) admits smooth local uniformization, then it is inertially
generated.

If (F|K,v) is inertially generated by the transcendence basis T, then vF = vK(T),
and Fv|K(T)v is separable. If this were not true, we would say that (F|K(T),v) is
ramified. Let us consider an example.

Example 2.2. Suppose that v is a discrete valuation on F* which is trivial on K and
such that Fv|K is algebraic. So there is an element ¢t € F such that vF = Zvt = vK(t).
Take the henselization F” of F with respect to some fixed extension of v to the
algebraic closure of F.

Assume that trdeg F|[K = 1; then F|K(¢) is finite. Take K(¢)" to be the henseliza-
tion of K(t) within F. Then F"|K(t)" is again finite since F" = F.K(t)" (cf.
Theorem 4.14 below). If trdeg F|K > 1, we can take T to be a transcendence basis
of F|K which contains ¢. Then again, F"|K(T)" is finite, and vF = vK(T). But does
that prove that F|K is inertially generated? Well, if for instance K is algebraically
closed, then it follows that Fv = K = K(T)v, so Fv|K(T)v is separable. But “in-
ertially generated” asks for more. In order to show that F|K is inertially generated
in this particular case, we would have to find 7 such that F C K (T)h, that is, the
extension F"|K(T)" is trivial (see Section 4).

Since K(T)" is henselian, there is only one extension of the given valuation from
K(T)" to F". By our choice of T, we have e = (vF" : vK(T)") = (vF : vK(T)) = 1,
and if K is algebraically closed, also f= (F"v: K(T)"v) = (Fv: K(T))v = 1. Hence
equality holds in the fundamental inequality (2) if and only if F”|K(T)" is trivial.

This example shows that it is important to know when the fundamental inequality
(2) is in fact an equality, or more precisely, what the quotient n/ef is. A first and
important answer is given by the Lemma of Ostrowski. Assume that (L'|L,v) is a
finite extension and the extension of v from L to L’ is unique. Then the Lemma of
Ostrowski says that

[L':L] = pY-(wL':vL)-[L'v:Lv] withv>0 (3)

where p is the characteristic exponent of Ly, that is, p = char Ly if this is positive,
and p = 1 otherwise. The Lemma of Ostrowski can be proved using Tschirnhausen
transformations (cf. [59, Theoreme 2, p. 236]). But it can also be deduced from
ramification theory, as we will point out in Section 4 (see also [67, Corollary to
Theorem 25, p. 78]).
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The factor d = d(L'|L,v) = p” is called the defect (or ramification deficiency as
in [67, p. 58]) of the extension (L'|L,v). If d= 1, then we call (L'|L,v) a defect-
less extension; otherwise, we call it a defect extension. Note that (L'|L,v) is always
defectless if charKv = 0.

We call (L,v) a defectless field, separably defectless field or inseparably defect-
less field if equality holds in the fundamental inequality (2) for every finite, finite
separable or finite purely inseparable, respectively, extension L’ of L. One can trace
this back to the case of unique extensions of the valuation; for the proof of the
following theorem, see [38] (a partial proof was already given in Theorem 18.2 of

[18]):

Theorem 2.3. A valued field (L,v) is a defectless field if and only if its henselization
is. The same holds for “separably defectless” and “inseparably defectless”.

Therefore, the Lemma of Ostrowski shows:
Corollary 2.4. Every valued field (L,v) with charLv = 0 is a defectless field.

The defect is multiplicative in the following sense. Let (L|K,v) and (M|L,v) be
finite extensions. Assume that the extension of v from K to M is unique. Then the
defect satisfies the following product formula

which is a consequence of the multiplicativity of the degree of field extensions and
of ramification index and inertia degree. This formula implies:

Lemma 2.5. (M|K,v) is defectless if and only if (M|L,v) and (L|K,v) are defectless.

Corollary 2.6. If (L,v) is a defectless field and (L' ,v) is a finite extension of (L,v),
then (L',v) is also a defectless field. Conversely, if there exists a finite extension
(L',v) of (L,v) such that (L',v) is a defectless field, the extension of v from L to L
is unique, and the extension (L'|L,v) is defectless, then (L,v) is a defectless field.
The same holds for “separably defectless” in the place of “defectless” if L'|L is
separable, and for “inseparably defectless” if L'|L is purely inseparable.

The situation of our Example 2.2 becomes more complicated when the valuations
are not discrete:

Example 2.7. There are valued function fields (F|K,v) of transcendence degree 2
with v trivial on K such that vF is not finitely generated. Already on a rational
function field K (x,y), the value group of a valuation trivial on K can be any subgroup
of the rationals Q (see Theorem 1.1 of [42] and the references given in that paper). In
such cases, if F is not a rational function field, it is not easy to find a transcendence
basis T such that vF = vK(T'). But even if we find such a T', what do we know then
about the extension (F"|K(T)" v)? For example, is it defectless?

An extension (L'|L,v) of henselian fields is called unramified if vL' = vL,
L'v|Lv is separable and every finite subextension of (L'|L,v) is defectless. Hence if
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charLv = 0, then (L'|L,v) is unramified already if vL' = vL. Note that our definition
of “unramified” is stronger than the definition in [18, Section 22] which does not
require “defectless”.

For a valued function field (F|K,v), elimination of ramification means to find
a transcendence basis 7 such that (F"|K(T)",v) is unramified. According to
Theorem 4.18 in Section 4 below, this is equivalent to F lying in the absolute
inertia field K(T')". Hence, (F|K,v) admits elimination of ramification if and only if
it is inertially generated.

If charK = 0 and v is trivial on K, then (F|K,v) is always inertially generated;
this follows from Zariski’s local uniformization [66] by Theorem 2.1. Since then
char Fv = charKv = charK = 0, Zariski did not have to deal with inseparable resi-
due field extensions and with defect. But if char K > 0, then the existence of defect
makes the problem of local uniformization much harder. This becomes visible in the
approach to local uniformization that is used in the papers [34] and [35]. Local uni-
formization can be proved for Abhyankar places in positive characteristic because
the defect does not appear [34]; we will discuss this in more detail below. For other
places [35], the defect has to be “killed” by a finite extension of the function field
(“alteration”).

2.2 Classification of valued fields up to elementary equivalence

Value group and residue field are invariants of a valued field, that is, two isomor-
phic valued fields have isomorphic value groups and isomorphic residue fields. But
two valued fields with the same value groups and residue fields need not at all be iso-
morphic. For example, the valued field (F,(r),v;) and (F,((r)),v,) both have value
group Z and residue field ), but they are not isomorphic since IF,(r) is countable
and F,,((¢)) is not.

In situations where classification up to isomorphism fails, classification up to el-
ementary equivalence may still be possible. Two algebraic structures are elemen-
tarily equivalent if they satisfy the same elementary (first order) sentences. For
example, Abraham Robinson proved that all algebraically closed valued fields of
fixed characteristic are elementarily equivalent (cf. [60, Theorem 4.3.12]). James Ax
and Simon Kochen and, independently, Yuri Ershov proved that two henselian val-
ued fields are elementarily equivalent if their value groups are elementarily equiv-
alent and their residue fields are elementarily equivalent and of characteristic O (cf.
[6] and [11, Theorem 5.4.12])). They also proved that all p-adically closed fields
are elementarily equivalent (cf. [7, Theorem 2]). Likewise, Alfred Tarski proved
that all real closed fields are elementarily equivalent (cf. [60, Theorem 4.3.3] or
[11, Theorem 5.4.4]). This remains true if we consider non-archimedean real closed
fields together with their natural valuations [12]. These facts (and the correspond-
ing model completeness results) all have important applications in algebra (for in-
stance, Nullstellensitze, Hilbert’s 17th Problem, cf. [28, Chap. A4, Section 2]). So
we would like to know when classification up to elementary equivalence is possible
for more general classes of valued fields.
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Two elementarily equivalent valued fields have elementarily equivalent value
groups and elementarily equivalent residue fields. When does the converse hold?
We mentioned already that the henselization is an immediate extension. So the ele-
mentary properties of value group and residue field do not determine whether a field
is henselian or not. But being henselian is an elementary property, expressed by a
scheme of elementary sentences, one each for all polynomials of degree n, where n
runs through all natural numbers. In our above example, (F,((¢)),v;) is henselian,
but (F,(r),v;) is not, so they are not elementarily equivalent. We see that in order to
have classification up to elementary equivalence relative to value groups and residue
fields, our fields need to be (at least) henselian. But if the characteristic of the resi-
due fields is positive, then we may have proper immediate algebraic extensions of
henselian valued fields, as we will see in the next section. So our fields need to be (at
least) algebraically maximal, that is, not admitting any proper immediate algebraic
extensions.

Our fields even have to be defectless. Indeed, every valued field (K,v) admits
a maximal immediate extension (M,v). Then (M,v) is maximal and therefore
henselian and defectless. Since vK = vM and Kv = Mv, we want that (K,v) = (M, v).
The property “henselian and defectless field” is elementary (cf. [16, 1.33], [38] or
the background information in [46]), so (K, v) should be a henselian defectless field.

If £ is an elementary language and A C B are L-structures, then we will say that
A is existentially closed in B and write A <3 B if every existential sentence with
parameters from A that holds in B also holds in A. When we talk of fields, then
we use the language of rings ({+,—,+,0,1}) or fields (adding the unary function
symbol “.~1”). When we talk of valued fields, we augment this language by a unary
relation symbol for the valuation ring or a binary relation symbol for valuation divis-
ibility (“vx < vy”). For ordered abelian groups, we use the language of groups aug-
mented by a binary predicate (“x < y”) for the ordering. For the meaning of “exis-
tentially closed in” in the settings of fields, valued fields and ordered abelian groups,
see [51, p. 183].

By model theoretical tools such as Robinson’s Test, the classification problem
can be transformed into the problem of finding conditions which ensure that the
following Ax—Kochen—Ershov Principle holds:

(K,v) C(L,v) AvK <3vL AKv<3Lv = (K,v) <3 (L,v). (5)

In order to prove that (K,v) <3 (L,v), we first note that existential sentences in L
only talk about finitely many elements of L, and these generate a function field over
K. So it suffices to show (K,v) <35 (F,v) for every function field F over K con-
tained in L. One tool to show that (K,v) <3 (F,v) is to prove an embedding lemma:
we wish to construct an embedding of (F,v) over K in some “big” (highly satu-
rated elementary) extension (K*,v*) of (K,v). Existential sentences are preserved
by embeddings and will then hold in (K*,v*) from where they can be pulled down
o (K,v). In order to construct the embedding, we need to understand the algebraic
structure of (F,v).
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Example 2.8. Assume that (K,v) is henselian (the same will then be true for
(K*,v*)) and that (F|K,v) is an immediate extension of transcendence degree
1. Pick an element x € F transcendental over K. Even if we know how to embed
(K(x),v) in (K*,v*), how can we extend this embedding to (F,v)? Practically the
only tool we have for such extensions is Hensel’s Lemma. So if F C K(x)", we can
use the universal property of henselizations (Theorem 4.11 below) to extend the
embedding to K (x)" and thus to F. If F is not a subfield of K(x)", we do not know
what to do.

More generally, we have to deal with extensions which are not immediate, but
for which the conditions “vK <3 vL” and “Kv <3 Lv” hold. By the saturation of
(K*,v*), they actually provide us with an embedding of vF over vK in v*K* and
an embedding of F'v over Kv in K*v*. Using Hensel’s Lemma, they can be lifted to
an embedding of (F,v) in (K*,v*) if (F,v) is inertially generated with a transcen-
dence basis T such that (K(T),v) can be embedded, as we will discuss at the end
of Section 5.1. If (F,v) is not inertially generated, we are lost again. So we see that
both of our problems share the important approach of elimination of ramification.

Before we discuss the stated problems further, let us give several examples of
defect extensions, in order to meet the enemy we are dealing with.

3 Examples for non-trivial defect

In this section, we shall give examples for extensions with defect > 1. There is one
basic example which is quick at hand. It is due to F. K. Schmidt.

Example 3.1. We consider IF,((¢)) with its canonical valuation v =v; . Since IF ,((¢))|
F,(¢) has infinite transcendence degree, we can choose some element s € F,((¢))
which is transcendental over IF, (7). Since (F,,((¢))|F,(¢),v) is an immediate exten-
sion, the same holds for (IF,(z,s)|F,(r),v) and thus also for (F,(z,s)|F,(z,s?),v).
The latter extension is purely inseparable of degree p (since s,¢ are algebraically
independent over I, the extension F,(s)|F,(s”) is linearly disjoint from IF,(¢,s”)|
F,(s”)). Hence, Theorem 4.1 shows that there is only one extension of the valua-
tion v from F,(¢,s”) to F,(t,s). So we have e = f = g = 1 for this extension and
consequently, its defect is p.

Remark 3.2. This example is the easiest one used in commutative algebra to show
that the integral closure of a noetherian ring of dimension 1 in a finite extension of
its quotient field need not be finitely generated.

In some sense, the field F,(z,s”) is the smallest possible admitting a defect
extension. Indeed, a function field of transcendence degree 1 over its prime field
IF,, is defectless under every valuation. More generally, a valued function field of
transcendence degree 1 over a subfield on which the valuation is trivial is always a
defectless field; this follows from Theorem 5.1 below.



The defect 285

With respect to defects, discrete valuations are not too bad. The following is easy
to prove (cf. [38]):

Theorem 3.3. Let (K,v) be a discretely valued field, that is, with value group
vK >~ 7.. Then every finite separable extension is defectless. If in addition charK =0,
then (K,v) is a defectless field.

A defect can appear “out of nothing” when a finite extension is lifted through
another finite extension:

Example 3.4. In the foregoing example, we can choose s such that vs > 1 = v¢t. Now
we consider the extensions (F,(t,s”)|F,(t7,s”),v) and (F,(t +s,5”)|F,(t7,s”),v)
of degree p. Both are defectless: since vF,(¢7,s”) = pZ and v(t +s) = vt = 1,
the index of vIF,(¢t”,s”) in vF,(t,s”) and in vF,(t +s,s”) must be (at least) p.
But F,(r,57).F,(t +5,57) = Fp(t,s), which shows that the defectless extension
(Fp(z,57)|Fp(t7,57),v) does not remain defectless if lifted up to F (¢ +s,s”) (and
vice versa).

We can derive from Example 3.1 an example of a defect extension of henselian
fields.

Example 3.5. We consider again the immediate extension (F,(z,s)|F,(,s”),v) of
Example 3.1. We take the henselization (F,(t,s),v)" of (F,(t,s),v) in F,(())
and the henselization (FF,(¢,s7),v)"