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Preface

Although submanifolds complex manifolds has been an active field of study for
many years, in some sense this area is not sufficiently covered in the current
literature. This text deals with the CR submanifolds of complex manifolds,
with particular emphasis on CR submanifolds of complex projective space,
and it covers the topics which are necessary for learning the basic properties
of these manifolds. We are aware that it is impossible to give a complete
overview of these submanifolds, but we hope that these notes can serve as
an introduction to their study. We present the fundamental definitions and
results necessary for reaching the frontiers of research in this field.

There are many monographs dealing with some current interesting topics
in differential geometry, but most of these are written as encyclopedias, or
research monographs, gathering recent results and giving the readers ample
useful information about the topics. Therefore, these kinds of monographs are
attractive to specialists in differential geometry and related fields and accept-
able to professional differential geometers. However, for graduate students
who are less advanced in differential geometry, these texts might be hard
to read without assistance from their instructors. By contrast, the general
philosophy of this book is to begin with the elementary facts about complex
manifolds and their submanifolds, give some details and proofs, and introduce
the reader to the study of CR submanifolds of complex manifolds; especially
complex projective space. It includes only a few original results with precise
proofs, while the others are cited in the reference list. For this reason this
book is appropriate for graduate students majoring in differential geometry
and for researchers who are interested in geometry of complex manifolds and
its submanifolds.

Additionally, this research monograph is intended to give a rapid and ac-
cessible introduction to particular subjects, guiding the audience to topics
of current research and to more advanced and specialized literature, collect-
ing many results previously available only in research papers and providing
references to many other recently published papers. Our aim has been to
give a reasonably comprehensive and self-contained account of the subject,
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viii Preface

presenting mathematical results that are new or have not previously been
accessible in the literature. Our intention has been not only to provide rele-
vant techniques, results and their applications, but also to afford insight into
the motivations and ideas behind the theory.

The prerequisites for this text are the knowledge of the introductory
manifold theory and of curvature properties of Riemannian geometry.
Although we intended to write this material to be self-contained, as much
as possible, and to give complete proofs of all standard results, some basic
results could not be written only with the basic knowledge of Riemannian
geometry and for these results we only cite the references.

The first half of the text covers the basic material about the geometry of
submanifolds of complex manifolds. Special topics that are explored include
the (almost) complex structure, Kahler manifold, submersion and immersion,
and the structure equations of a submanifold. This part is based on the second
author’s lectures, given at Saitama University, Japan.

The second part of the text deals with real hypersurfaces and CR submani-
folds, with particular emphasis on CR submanifolds of maximal CR, dimension
in complex projective space. Fundamental results which are not new, but re-
cently published in some mathematical journals, are presented in detail. The
final six chapters contain the original results by the authors with complete
proofs.

We would like to express our appreciation to D. Blair, P. Bueken, A. Hini¢,
M. Lukié¢, S. Nagai, M. Prvanovié¢, L. Vanhecke, who spent considerable time
and effort in reading the original notes and who supplied us with valuable
suggestions, which resulted in many improvements of both the content and
the presentation.

We would also like to thank E. Loew of Springer and J. L. Spiegelman for
their kind assistance in the production of this book.

Mirjana Djori¢
Masafumi Okumura
June, 2009



1

Complex manifolds

Let us first recall the definition of a holomorphic function. Denote by C the
field of complex numbers. For a positive integer n, the n-dimensional complex
number space

C'={z]z=(z',...,2"),27 €C for 1<j<n}

is the Cartesian product of n copies of C. The standard Hermitian inner
product on C" is defined by

(a,b) = Zajgj, a,be C".
j=1

The associated norm |a| = (a,a)? induces the Euclidean metric in the usual
way: for a,b € C", dist(a,b) = |a —b|.

The (open) ball of radius r > 0 and center a € C™ is defined by
B(a,r)={z€ C" ||z —a| < r}.

The collection of balls {B(a,r) : r > 0 and rational} forms a countable
neighborhood basis at the point a for the topology of C™. The topology of
C" is identical with the one arising from the following identification (which
will be used throughout this manuscript) of C* with R?", where

R2":{(x17...,x2”),x-j€R for 1<j<2n}.

Given z = (z,...,2") € C", each coordinate 2z’ can be written as 2/ =

) + /=1y, with 27,97 € R. The mapping
C" 32— (l’l,yl, o 7:En’yn) c R2n

establishes an R-linear isomorphism between C™ and R?", which is com-
patible with the metric structures: a ball B(a,r) in C" is identified with a

M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 1
Developments in Mathematics 19, DOI 10.1007/978-1-4419-0434-8_1,
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2 1 Complex manifolds

Euclidean ball in R?™ of equal radius r. Because of this identification, all the
usual concepts from topology and analysis on real Euclidean spaces R2" carry
over immediately to C". In particular, we recall that D C C" is open if for
every a € D there is a ball B(a,r) C D with r > 0, and that an open set
D C C" is connected if and only if D is pathwise connected.

We now introduce the class of functions which is the principal object in
this section.

Definition 1.1. Let D be an open subset of C". A function f: D — C is
called differentiable at zg, if

}{1_)11%)%{f(zé,...,zo—&—h,...,zo)—f(zé,...,zo,...,zo)}

exists for every ¢ = 1,...,n. f is called holomorphic on D if f is differentiable
at any point of D.

If we denote this limit by ¢, the above condition is equivalent to
F2gy ooy 2y 20) = f(20, o 2y 28) — het = o (h)|h) (1.1)

where h — 0 implies a(h) — 0.

We put z* = ' +/—1y" and h = t + /—1s. Then (2!,...,2") € C" is
identified with (z1,9',... 2" y") € R?*" and consequently, (1.1) is equivalent
to

Flomh+toys+s,..0) = Fo,ah,yh,...) = (t+V—1s) + a'(t, s)|h],
for |h| = /12 + s2. With the notation

d=a'+V=1V, ol =+ VALY, f=ut VT,
we compute

ulooxh +Ftys+s,.0) V1o xl Ftyh s,
—u(. . xh s ) = V(b s, )
= (a't = b's) + v/ =1(a’s +0't) + V12 + s2(6' +V~17"),
that is,
ul.xh Ftys s, ) —ulo . xhyh, . ) = a't — bls + V2 4 s23
(o tyh s ) —u(exhyh, ) = ats F bt 12 5290

Thus,
h— 0 implies a(h) —0

is equivalent to requiring that



1 Complex manifolds 3
t—0,s— 0 implies [ — 0,7 — 0.

This shows that the real functions u and v are both totally differentiable at
Z0-

Taking the limit along the real axis, that is, h = ¢t — 0, of a holomorphic
function f = u + v/—1v, we compute

%(...,xé,yé,...):az, @(...,mg,yg,...):bl.

In the same way, taking the limit along the imaginary axis, that is, h = s — 0,
we obtain

@(’ma’y67):_bl’ @(...,x67y87-~-):a1.

Therefore, we conclude that if f = u+ +/—1v is a holomorphic function, then
the real functions u and v satisfy the following Cauchy-Riemann equations:

ou ov ou ov
- = — - = —— 1.2
oxt  Oyt’ oyt oxt (12)

Now, we consider the converse. Let u and v be differentiable functions that
satisfy the Cauchy-Riemann equations (1.2) and let f = u + +/—1v. Then

F(2hy 2 by 20) = f(20 s 2y 28 =ule .l +tys 4 s,...)
—u(...,xé,y&...)—v—l{v(...wé—&—t,yé—i—s,...)—v(...,x&yé,...)}.

Using the mean value theorem, we compute

u(...,x6+t,y8+s7...)—u(...,xé,yé,...):u(...,x6+t7yé+s,...)

—u(.. b b s, ) Ful b yh s ) —ule b yh )

:(‘?;Z g;z (~~~,$6,yé+9257...>s

du i ou i
= @(...,xo,yo,...)+e1 t+ a—yi(...,mo,yo,...)—i-e2 s,

(...,x6+91t,y6+3,...)t+

where 0 < 01,05 < 1 and €1, e — 0 when |h| — 0. Similarly, we have
(o xh A+ tyh s ) = v b yh, )
v i ov i
= %(...,xo,yo,...)—f—eg t+ 6—yi(...,x0,yo,...)—|—64 s.

Hence, using the Cauchy-Riemann equations, we obtain



4 1 Complex manifolds
1 1 n 1 i n
E{f(zo,...,zo+h,...,zo)—f(zo,...,zo,...,zo)}

= a;ﬂ e Ty Yoy - 1 h ayl Loy Yoy e 2

ov o t ov L s
+\/—1{(W(,$6,y6,)+€3>h+<ayl(,$6,y67)+64)h}
—(W(...,xo,yo,...)—’—El)h—i‘\/—l(axi(...,xo,yo,...)+€4>

v i i t v P
+v -1 (W(-~-7x0790a-~-)+63> 7 (axi(...,zo,yo,...)+62>

1 (Ou i v o
:((...73667y6,...)—|—\/—718xi(...,xé,yé,...))(t-{-\/_ls)

> w

S >w

t S

81— + 0g—

oy, o2y
ou i i v P t S
zaxi(...,:Eo,yo,...)+\/j1%(...,xo,y0,...)+51E+52E,

where d1, do — 0 whenever h — 0. Since |t/h| <1, |s/h| < 1, we conclude

: 1 ) n i n
hmf{f(z(l),...,zo+h,...,zo)—f(zé7...,zo,...,zo)}

o v o
:8391 (,a)‘%,yé,)—‘r\/—l%(.,x%,yé,.).

Thus, if differentiable real functions v and v satisfy the Cauchy-Riemann
equations, then f = u + +/—1v is differentiable.

Definition 1.2. Let D be an open subset of C™ and let ¢ be a mapping:
D — C™ defined by

w(zl7 72’“) = (wl’ 7wn)
1 is holomorphic if, for each i, functions w' = ¥*(z1,..., 2") are holomorphic
with respect to 27, j =1,...,n.

Now we recall the definition of a complex manifold. Roughly speaking, a
complex manifold is a topological space that locally looks like a neighborhood
in C". To be precise, we have

Definition 1.3. A Hausdorff space M is called a complex manifold of (complex)
dimension n, if M satisfies the following properties:

(1) there exists an open covering {Uy}aca of M and, for each «, there
exists a homeomorphism
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(2) for any two open sets U, and Ug with nonempty intersection, maps

foa =g oty "  ¥a(Ua NUp) — 1hs(Ua N Up),
fap = a0t 1 ¥s(Ua NUp) = ta(Ua NUp)

are holomorphic.

The set {(Un, o) }aca is called a system of holomorphic coordinate neighbor-
hoods.

We will often use the superscript to denote the dimension of a manifold.
The symbol M™ means that M is a manifold of (complex) dimension n.

Next, we consider some examples of complex manifolds. From the defini-
tion, it is clear that the product of two complex manifolds, or a connected
open subset in a complex manifold, are complex manifolds.

Ezxample 1.1. An n-dimensional complex space C™ and an open set of C™ are
complex manifolds. We may take the identity map id for . &

Ezxample 1.2. Riemann sphere.

Let
S? = {(z,y,2) e R} 2® +y* + 22 =1} .

We put Uy = S?\{n} and Uy = S?\ {s}, where n = (0,0,1) and s = (0,0, —1).
We define 91 : Uy — C and 5 : Uy — C to be the stereographic maps from
n and s, respectively, that is,

T++v—-1ly

1—2z 7

z—+-1y

wl(mvyaz): 142

Ua(z,y,2) =

Then maps 91 o ¥5 Loy o (e 1. C — C are holomorphic. Namely, for
Csw=u+~1v, fromu =%, v= 1% and 2? +y*> + 2% = 1, we conclude

w? +02 -1 2u 2v
= TE s Y=
uZ +0v2+1 w2 +0v2+1 uZ +0v2+1
Hence
2u 20 u? +v% -1
—1 ~1
= —]_ =
Uit (w) = oyt VT) <u2+02+1’u2+1}2+1’u2+v2+1
from which we have
_1 B u v 1
ol W) = G TV e Ty

Thus 13 o 97 ! is holomorphic. Similarly we can also prove that t; o vy Lig
holomorphic. Therefore, S? is a complex manifold, called Riemann sphere. ¢
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Ezample 1.3. Complex projective space P™(C).

Let 2 = (2%,...,2"™) and w = (w!,...,w" ") € C*F1\ {0} and set
w ~ z, if there exists a non-zero complex number « such that w = «z.
Then ~ defines the equivalence relation in C**1\ {0}. The complex projective
space P™(C) is the set of equivalence classes C"*1\ {0}/ ~ with the quotient
topology from C"*+1\ {0}.

Denote

Uy = {[(z4, ..., 2% ..., 2" ™ € P*(C) | 2™ # 0}

and let ¥, : U, — C" be the map defined by

1 a—1 a+1 n+1
z z z z
¢a([(zl,...7za,...7z"+1)}):(Zoé,..., o e )
Then, ¢, Y (w!, ... w") = [(wh,...,w* 1, w®, ..., w")] and therefore
1 a—1 1 « B—1 B+1 n
wﬁowil(’zla"'vzn)_ i,"wz ’7727’.“,27,27’.“’27 .
@ 2B 2B 7 2B 2B 28 7 2B 2P

Thus, 150, ! is holomorphic and the complex projective space is a complex
manifold. &

Definition 1.4. Let (U,%) be a holomorphic coordinate neighborhood of a
complex manifold M. A function f : U — C is holomorphic if the function
fow~t:9(U) — C is holomorphic.

Definition 1.5. Let M, N be complex manifolds and (U, %) a holomorphic
coordinate neighborhood of x € M. A continuous map ¢ : M — N is holo-
morphic if for any x € M and for any holomorphic coordinate neighborhood
(V,4') of N such that ¢(z) € V and ¢p(U) CV, ' opotp=t : p(U) — o' (V)

is holomorphic.

Since the coordinate changes are biholomorphic (i.e., two-way holomorphic),
the above definition of holomorphicity for maps is independent of the choice
of local holomorphic neighborhood systems.

Definition 1.6. M is called a complex submanifold of a complex manifold M,
if M satisfies the following conditions:
(1) M is a submanifold of M as a differentiable manifold;

(2) the injection + : M — M is holomorphic.



2

Almost complex structure

We recall the definition of an almost complex structure. First, we identify
a complex number z = x + /=1y with the element z = ze; + yes of a
two-dimensional vector space V', where (e1,e3) denotes the basis of V. Let
I:V — V be the endomorphism defined by

Iz=+/—1z=—y+izx.
Then we conclude
xler +yles = I(zey + yes) = [z = —yeq + xeo.
Therefore, the endomorphism [ is determined by
Iey =eq, Ieg = —eq.

Keeping this in mind, we introduce the endomorphism J of the tangent space
T, (M) of a complex manifold M at x € M.

Let M be an n-dimensional complex manifold. Identifying the local com-
plex coordinates (z1,...,2") with (a!,y%, ... 2", y"), where 2* = 2¢ ++/— 1y,
i = 1,....n, we regard M as a 2n-dimensional differentiable manifold.
The tangent space T,(M) of M at a point x € M has a natural basis

{0 )as (Fr)as s (520 )as (357)e |- For i =1,...,n, we put

s () @) (@)

Then J, defines an isomorphism J,, : T,(M) — T,(M). In fact, if we take
other local complex coordinates (w!,...,w™), where w® = u® + /—1v*, then
they satisfy the Cauchy-Riemann equations,

0x’ B oyt 0x’ B oyt
ouwl o’ ovi  oul
M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 7
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8 2 Almost complex structure

fori,j=1,...,n. Hence
0 B Ox’ oy’ 0
. <auz<)$;<w< ).+ o () )
(2 (L) -2 (L
N oui \dyi ) out \ dxi "
(2 i Lo (0N _ (0
N - ovt \ OyJ avi oxi ) ) \ov )’

and

0 B oz’ 0 0y’ 0
Jz(w);Z(w*& (ax> +avz']'(ayj>w)
(2 (0 v (o
L=\ Ovt \ Oyd L, Ovt \0xd )

(o (2) a0y Y_ (o
B r out \oy? ), Out \0z7 ), B out )

Thus J, is independent of the choice of holomorphic coordinates and is well-
defined. Regarding J as a map of the tangent bundle T(M) = U, cp, T (M),
we call J the (natural) almost complex structure of M.

Proposition 2.1. Let M and M’ be complex manifolds with almost complex
structures J and J', respectively. Then the map ¢ : M — M’ is holomorphic
if and only if ¢, o J = J o ¢, where ¢, denotes the differential map of ¢.

Proof. We identify holomorphic coordinates (z!,...,2") of M with (x!,y!,
.., 2™, y") and holomorphic coordinates (w?,...,w™) of M’ with (u!,v!,
u™, v™), where 2! = z° + /—1y* and w? = v/ + v/—1v7. Then

is expressed by

vl(...,xi,yi,...),...,um(...,xi,yi,...),vm(...,xi,yi,...))

in terms of the real coordinates. Thus we have
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ow _, ([ 0 ol [0
T (am>+axij <a>> (22)

o 9 Ol 0 )

Oxt Ovi Ozt Oud

b, (0 ol (0

Y (D)2 (2)) s
oul 0 ol 0

oyt vl Oyt Oud

il

o

©-

*
7 N
S| o
N——

Il
RN

7 N 7 N\ /—\ 7 N\

o))

On the other hand,
0 0 " (ou D ol 0
o9 (55) = (o7) =2 (Girow *om) - 0

0 ou? 8vj o)
Puod <8y1) & <8x1) Z:: <8x‘ 0w " ox W) - (29)

Comparing (2.2), (2.3) with (2.4), (2.5), yields the Cauchy-Riemann equations

oul ol o vl

or' oy’ oyt Ozt

Consequently, ¢ is holomorphic if and only if ¢, o J = J' 0 ¢,. O

Definition 2.1. A differentiable manifold M is said to be an almost complex
manifold if there exists a linear map J : T(M) — T(M) satisfying J? = —id
and J is said to be an almost complex structure of M.

As we have shown, a complex manifold M admits a naturally induced
almost complex structure from the complex structure, given by (2.1), and
consequently M is an almost complex manifold.

Proposition 2.2. An almost complex manifold M is even-dimensional.

Proof. Since J? = —id, for suitable basis of the tangent bundle we have
-1 0 0
g2 0 -1 0
0 -1

Hence, (—1)" = det J? = (det J)? > 0. Thus, n is even. O



10 2 Almost complex structure

Remark 2.1. Here we note that an even-dimensional differentiable manifold
does not necessarily admit an almost complex structure J. It is known, for
example, that S* does not possess an almost complex structure (see [54]).

The Nijenhuis tensor N of an almost complex structure J is defined by
N(X,Y)=JIX,Y] - [JX,Y] - [X,JY] = J[JX, JY] (2.6)
for any X,Y € T(M) and its tensorial property is established by the following
Proposition 2.3. For a function f on M, we have N(fX,Y) = fN(X,Y).

Proof. We note that [fX,Y] = f[X,Y] — (Y )X and therefore

N(fX,Y)=J|fX, Y] - [JfX, Y] - [fX,JY] = J[JfX,JY]
=JfX, Y] = [fJX. Y] = [fX, JY] = J[fJX,JY]
=J(fIX, Y] - (YNHX) - VX, Y]+ (Y )IX = f[X,JY]
+ ((JY) /)X = J(f[JX, TY] = ((JY)[)JX)
= f(JX,)Y]-[JX,Y] - [X,JY] - J[JX,JY])

+((IY)NX +((JY) ) I2X
= [N(X,Y),
which establishes the formula. a

Theorem 2.1. Let M be an almost compler manifold with almost complex
structure J. There exists a complex structure on M and J 1is the almost
complex structure which is induced from the complex structure on M if and
only if the Nijenhuis tensor N vanishes identically.

Proof. If M is a complex manifold, from Proposition 2.3, together with the
definition of J, the necessity of the theorem is rather trivial. To prove the
sufficiency of the theorem, we should use a theory of PDE and therefore we
omit it. (See [39] for a detailed proof.) O

Proposition 2.4. Let (M, J) be an almost complex manifold and suppose that
on M there exists an open covering U = {Uy} which satisfies the following
condition:

For each U, € U, there is a local coordinate system (x',x2,... 2*") such that,
at any point q € Uy,

0 0 0 0
Jq <ax2¢—1>q - (8332’3)(1’ Jq <3x21>q - <3x2¢—1>q

are satisfied for i = 1,...,n. Then M is a compler manifold and J is an
almost complex structure which is induced from the complex structure of M.
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Proof. Let (Un;at,...,2%"), (Ug;ut,...,u®™) € U such that U, N Ug # 0.
Then we have

0 = (ou¥ 1t 9 ou¥ 0
or2i-1 Z 9221 gu2i—1 ' 921 g2 )

0 " (ouFTt 0 ou? 0
or% Z_: ( 027 ouzi1 | a7 8u21> ' 2.7)
Applying J to the above two equations, we have
o " (ouPt D o 9
oz2i Z; <8x2i1 ou  Or2i-1 3u2j1> ’ (2.8)
]:

a N T o 9
Qi1 z; 0x2 Qu2i  Ox2 Gui-1)°
J:
Comparing relations (2.8) and (2.9), we conclude

Ou?i—1 B Ou? Ou?i—1 _ Ou? (2.9)
Or2i—1 - o2’ o2 - Or2i-1" :

We put
2= g2 T
wh = w21 4/ 1u?

Then (2',...,2") and (w!,...,w") are complex coordinates in U, and Ug,
respectively, and in U, N Vg it follows

wk:fk(zl,...,zn), fk:¢k+\/j1¢k’

where
qﬁk(xl,...,xz"):u%*l, ¢k(x17'..7x2n):u2k.

Hence, from (2.9), we deduce that f* is holomorphic with respect to z* and
therefore M is a complex manifold. O
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Complex vector spaces, complexification

In this section we recall some algebraic results on complex vector spaces,
applied to tangent and cotangent spaces of complex manifolds.

For the tangent space T,,(M) at = € M, we put
TE(M) = { X, + VoIV X, Vs € Tu(M))
and TS (M) is called the complezification of T, (M). We define
(Xo +V=1Yy) + (X, + V1Y) = (X, + X)) + V-1(Ya + Y))
and for C 3 ¢ = a + v/—1b,
c( Xy +V—-1Y,) = (aX, — bYy) + V—1(bX, + aYy).
Then T¢ (M) becomes a complex vector space. Identifying T, (M) with
{Xo +V-10,|X, € T, (M)},

we regard that T,(M) is a subspace of TS (M). For Z, = X, + /—1Y,, the
complex conjugate Z, of Z, is Z, = X, — /—1Y,. From this definition, we
easily see that for Z,, W, € TS (M),

Zy A+ Wy =Zy + Wy, cZy =T,
For a linear transformation A : T, (M) — T, (M), we put

A(X, +V—-1Y,) = AX, + V—1AY,.
Then A defines a linear transformation on 7. (M) and it satisfies

AZ, = AZ,, for Z,ecTS(M).

Proposition 3.1. dimc7.¢ (M) = dimg M.

M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 13
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14 3 Complex vector spaces, complexification

Proof. Let {e1,...,en} be a basis of T,,(M) and Z, € TS (M). Then

Zp = Xy +V—1Y, = ZXiei ++v/—1 ZYiei - Z(Xi +V=1Y")e;.
i=1 i=1 i=1
Thus, {e1,...,e,} is a basis of T.¢(M) and dimcT (M) = n. a

For a complex differentiable function f = f; + v/—1f2, we define the
derivative of f by a complex tangent vector X, + /—1Y, by

(Xo +V=1Ya) [ = (Xof1 = Yafo) + V-1(Xofo + Y 1)
and the bracket of complex vector fields by
(X 4+ V=1V, X' + V=1V = [X, X' = [V, Y] + V=1([X, Y] + [V, X']).
Then we have [Z, W] = [Z, W].

Let (M, J) be an almost complex manifold with almost complex struc-
ture J. Then J, can be extended as an isomorphism of T.¢ (M). We define

ngO,l)(M) and Tél’o)(M) respectively by
TOD(M) = {X, + V=1J,X,| X, € To(M)},

x

TEO(M) = (X, — V11, X, |X, € T.(M)}.

Then, we have
Proposition 3.2. Under the above assumptions,

Ty (M) =TV (M) & T30 (M),
where @& denotes the direct sum.

Proof. For any Z, € TC(M), it follows

(Zo +V—-1J0Z2) + E(Zx —V=1J.Z,)

Xo +V=1Y, + V-1J, (X, + V-1Y3))

Xy + V1Y, = V-11,(X, + V-1Y,))
— LYe) + V1T (X, — J,Yy))

Z,

N RN RN =N RN -

(
(
((x
(

(Xo + J.Y) \/jlc]x(Xm + JIYI)) )

+

where L(X, — J,Y,), 3(X, + J.Y,) € T,(M).
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If Z, € T"V(M) N T8O (M), we have
Zpy=Xo +V-1J, X, =Y, —v-1J,Y,,

from which, X, =Y, and J, X, = —J,Y,. Applying J,. to the last equation,
we have — X, = Y,, which implies X, =Y, = 0 and Z, = 0. Thus we have
the direct sum. a

We note that Z, € ngo’l)(M) if and only if J,Z, = —v/—1Z, and that
Z, € TSMO(M) if and only if J,Z, = V—1Z,.

Definition 3.1. A vector field Z : M > x — Z, is said to be a vector field of
type (0,1) if Z, € TV (M) and of type (1,0) if Z, € TSV (M).

Let
¢ = |J 17 (M), 7O = | TV (),
reM reEM
7O = | T8O ().
reM
TC (M) is a Lie algebra with respect to the bracket [ , ] and

T¢(M) =TOD (M) THO (M),
where & denotes the Whitney sum.

Theorem 3.1. TV (M) and T (M) are involutive if and only if the Ni-
jenhuis tensor N wvanishes identically.

Proof. First we note that for Z € TV (M), W € T (M), it follows
JZ = —=1Z, JW = V=IW

and therefore
N(Z,W) = JZW]—[JZ,W]|—[Z,JW] — J[JZ, JW]
= J[Z, W]+ V12, W] - -1[Z,W] - J[Z,W] = 0.
Let Z,W € T(®V(M). Then
N(Z,W) = J[Z,W] - [-V=1Z,W] - [Z,——1W] — J[-V/—1Z, —/—1W]
JZ W)+ V-1[Z,W] +—1[Z, W]+ J[Z, W]
=2(J[Z, W]+ V-1[Z,W]).

Thus
N(Z,W)=0 ifandonlyif J[Z,W]=-vV-1[Z,W],

that is, [Z,W] € TOD(M). In a similar way we can prove the case of
T (M), which completes the proof. O
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Let M be an n-dimensional complex manifold and let (z1,...,2") be com-
plex coordinates in a neighborhood U > z. We regard that M is a 2n-
dimensional differentiable manifold with local coordinates (xt, gyt . 2y,
where 2! = z¢ +v/—1y’. Then (. ..,%,a%i,...) is a basis of T,(M) and also
a basis of TY(M). By definition of J which is induced from the complex
structure of M, it follows

3] 1/ 0 3] 1/ 0 3]
o =3 (o ( o)+ (o (5)
1 — 1/0 — 0
(8331 * ) (3a:i B _13yi) '
We put
0 1 —~ 0 1/ 0 — 0
o7 2 (8331 * ) 9z 2 (&El a _15)yi) (3:1)

which yields

o _ 0,0 F( a‘>’ ]

ot 0z ozt 9zt 07 9zt o7

From (3.1), we knovv that any X € TSY(M) can be expressed as a linear

combination of and i=1,...,n. On the other hand, suppose that

627 671 )

~( ;0 ; 0
Z( 8zl+bazi)_0'

i=1

Then, from (3.1), it follows

n

) 9
Z(al + b’)amz

i=1

=0.

Hence, a’ + b* = 0 and a’ — b = 0 which implies a’ = b =0fori=1,...,n

Therefore we conclude that
0 9 9
b azn . b azl . b b azn ”

9
9zt ) 7
forms a basis of TS (M).

For a natural basis of a tangent space T, (M) at x € M we consider its
dual basis {(dz'),, (dy')s, ..., (dz™), (dy™), } in the cotangent space T}, (M)*
and we put

(dz"), = (dz")s + V—1(dy")s, (dz"), = (d2")y — V—1(dy")z.  (3.2)

Consequently, it follows
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1 6 _ 1 i 7 i_ — i _1 i 1\ __ £t
(d2). (azj)x—2<dx VT, (50 ﬁayj)z—2<6j+6j>—aj,

o (2 Lo i (2 )

In the same way we have

(dz")o (é)azﬂ)m =0, (dz"), (;)m — 5.

This shows that
{(dzl)x, (d7)a, ..., (d2")a, (d?")x} (3.3)

is the dual basis of

() () (). (&)} oo

Remark 3.1. Note that the reason why the minus sign and the factor % appear

in (3.1) is because we wanted to choose the basis (3.3) to be dual to (3.4)
defined by (3.2).

We write for a C*° function f defined on a neighborhood of x € M,
(6 )= of and(a )= 9/ We have

920 = Bz oz )] = oz
o\ _of o\ of
¥ (azi> o ¥ (af) o7
and therefore
N~ (O i OF
df;(azidz +a?.dz>. (3.5)

Definition 3.2. Let r be a positive integer such that r = p + ¢ where p,
q are nonnegative integers. Let an r-form w on M be spanned by the set
{dz"" A -+ Ndzie AdZI N -+ A dZIe}, where {iq,...,4,} and {j1,...,],} Tun
over the set of all increasing multi-indices of length p and ¢. Then w is called
a complex differential form of type (p, q).

Since an r-form w of type (p, q), we have just defined, can be expressed as

W= Y Wi, 02 A AdE AE A N dE (3.6)
i1 <. <ip
J1<--<Jq

using (3.2), we can easily prove the following
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Proposition 3.3. Let w and n be complex differential forms.
(1) Ifwis of type (p,q), then @ is of type (¢, p).

(2) If w is of type (p,q) and n is of type (p',q’), then w A n is of type
(p+p.a+d).

Further, using (3.5) and (3.6), we compute the exterior differential dw of
any complex r-form w of type (p, q).

S Z(‘M e R e LY
ozk

1< <ip k=1
J1<--<dg

CAdZP ANAZIN - A dFe
p+1

_ Z Z 21..,15...2p+1]1 ]qd i1 A .
0z’

i1<-<ipp1 s=1
j1<--<iq

o ANdZPHYANdEIA - A dFa
g+1

AR IEIE e

i< <ip  t=
J1<---<dg41

o ANdZP NN - A dFTe
Therefore, dw is expressed as a sum of (r + 1)-forms of type (p + 1,q) and
of type (p,q + 1), denoted respectively by dw and dw. Thus we obtain two
differential operators 0 and 0 and this information is written as
dw = 0w+ 0w, d=0+0. (3.7)
Proposition 3.4. Let w, n be r-forms on M and a € C. Then we have

O(w+n) =0w+0dn, O(w+n) =0w+dn, I(aw)=adw, Jlaw)= adw.

Proof. Tt is sufficient to prove the above relations for an r-form of type (p, q).
We compare the following two equations:

d(w+1n) = dw + dn = dw + On + Ow + On,
d(w+n) =0(w+n)+0(w+n).

Since dw + 97 is of type (p + 1,¢) and dw + 9n is of type (p,q + 1), the first
two relations are satisfied. Similarly, we can prove the other relations. O

Proposition 3.5. For differential operators 0, 0 and r-form w, we have

Pw=0 (B0+0)w=0, Tw=0 o=0w, 0&=70w.
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Proof. Since d?> = 0, using (3.7) and Proposition 3.4, we compute

0 = d*w = d(0w + Ow)
= (0w + Ow) + 9(Ow + Ow)
= 0%w + (00 + 00w + 0 w.

As 9%w is of type (p+2,q), (00 + 00)w is of type (p+ 1,q¢+ 1) and 3w is of
type (p,q + 2), we conclude that each of them vanishes.
To prove the other relations, we remember the definition of dw, that is,

dw = dw. Therefore, dw = dw + Ow. On the other hand, using (3.7), it follows
dw = 0w + 0w. Comparing the type of the right hand members of the last
two equations, we get the other two relations of the proposition. ad

Theorem 3.2. Let f be a function defined on an open set of M. Then the
following three conditions are equivalent:

(1) of =0; (2 gf, =0fori=1,...,n; (3) f is holomorphic.

Proof. Since 0f =Y i, g;ﬁ condition (1) is equivalent to (2).

We put f = fi +v—1f; and 2* = ' +/—1y". Then 2 6*1' = 0 is equivalent
aw = —/— gf. Hence,

0 0
(fi +V=1f2) = —V=1—(f1 + V—1fa).
o’ oy’
This implies that 8f1 = gf? and gi? = 251 for i = 1,...,n. These are the
Cauchy-Riemann equatlons and therefore f is holomorphlc O

Definition 3.3. A p-form w is said to be a holomorphic p-form if w is of type
(p,0) and dw is of type (p+ 1,0).

This is equivalent to saying that w is of type (p,0) and dw = 0.
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Kahler manifolds

Kahler manifolds are the most studied among complex manifolds. In this
section we provide basic material about these manifolds and we present several
examples. In particular, we prove that the complex projective space is a Kahler
manifold.

Definition 4.1. Let (M, J) be an almost complex manifold. If a Riemannian
metric g satisfies
9(X,Y) =g(J X, JY) (4.1)

for any X, Y € T(M), g is said to be a Hermitian metric and the almost
complex manifold (M, J) with Hermitian metric g is said to be an almost
Hermitian manifold.

Therefore, using (4.1), we conclude
g(JX,Y)=g(J?X,JY) = —g(X, JY),
which means that J is skew-symmetric.
Moreover, we prove

Theorem 4.1. On any almost complex manifold, there exists a Hermitian
metric.

Proof. On M there exists a Riemannian metric g’. We put
1
It is easy to see that g is a Hermitian metric. O

Let (M,J) be an almost Hermitian manifold with Hermitian metric g.
The fundamental 2-form, Kdhler form  of M is defined by

Q(X,Y) = g(JX,Y) (4.2)
for all vector fields X and Y on M.
M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 21
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22 4 Kahler manifolds
Lemma 4.1. Q is skew symmetric, that is, Q(X,Y) = —Q(Y, X).
Proof. Using (4.1) and (4.2) we compute

QY, X) = g(JY,X) = g(J?Y, JX) = —g(Y, JX) = —Q(X,Y). O

Let V be the Levi-Civita connection with respect to the Hermitian metric
g, that is, V satisfies Vg = 0 and [X,Y] = VxY — VyX. We now express
the Nijenhuis tensor N using the Levi-Civita connection V with respect to
the Hermitian metric g.

NX,Y)=JX,Y]-[JX,Y] - [X,JY] - J[JX, JY]
=J(VxY —VyX)—-V,xY + Vy(JX)
—Vx(JY)+ Vi X —-JVsx(JY) - V,v(JX))
=JVxY —JVyX - VxY +(Vy )X + JVyX — (VxJ)Y
—JIJVxY+Vyy X —JVix )Y +VixY +J(Vyv J)X = Vv X.

Thus we have
N(X,Y) = (VyJ)X = (VxJ)Y + J(VyyJ)X = J(V xJ)Y. (4.3)

Definition 4.2. If a complex manifold (M, J) with Hermitian metric g satis-
fies dQ2 = 0, then (M, J) is called a Kdhler manifold and the metric g is called
a Kahler metric.

Theorem 4.2. A necessary and sufficient condition that a complex manifold
(M, J) with Hermitian metric is a Kahler manifold is VxJ = 0 for any
X e T(M).

Proof. Since for a p-form w we have

p+1
do(X1, .., Xp1) = Y (D" N (Vxw) (X1, Xk Xppn) (44)

k=1
it follows
dUX,Y, Z) = (VxQ)(Y,Z2) — (VyQ)(X,Z) + (VzQ)(X,Y).
On the other hand,

(Vx)(Y, Z) = Vx (Y, 2)) - QAVxY, Z) = Q(Y,Vx Z)
— Vx(g(JY, 2)) — g(JV XY, Z) — g(JY,Vx Z)
=g((VxJ)Y,Z).

Hence we have
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dUX, Y, Z) = g(Vx )Y, Z) — g(Vy )X, Z) + g(VzJ) X, Y).

Thus the sufficiency is obvious. To prove the necessity, we note that J(JX) =
J?X = —X. Differentiating covariantly this equation, we have

(VyJ)JX + J(VyJ)X + J*Vy X = -Vy X,
from which it follows
(Vy )JX =—-J(VyJ)X. (4.5)
Making use of (4.5), we compute
dUJX,Y,JZ) — dQUJY, X, JZ)
9g(Vyx )Y, JZ) — g(Vy )IX,JZ) 4+ g((VyzJ)JX,Y)
—9(Voy )X, JZ) +g(Vx J)JY, JZ) = g(Vs2J)]Y, X)
JViy )X —J(Vix )Y, Z)+g(J(Vy )X, JZ)
J(Vx Y, JZ)+ g(VyzJ)JX,Y)—g(VzJ)JY, X)

= g(

—9(

=g9(N(X,Y),Z) —g(Vy )X — (VxJ)Y, Z)
9(J(Vy )X, JZ) = g(J(VxJ)Y,JZ)
g(
= g(
= g(

+ +

(VJZJ)JX Y) — g((VJzJ)JY, X)
N
N

);
);

Thus, N = 0 and dQ2 = 0 imply that J(VzJ) = 0. Since J is isomorphism,
this implies that Vx.J = 0 for any X € T(M), which completes the proof. O

)= 9(J(Vyz )X, Y) +g(J(V,2J)Y, X)

(X,Y),Z
(X,Y), Z) + 29(J(V 12 J)Y, X).

Now we give some examples of Kahler manifolds.

Example 4.1. Any complex manifold M of dimcM = 1 is Kdhler manifold.

The Kahler form €2 is a 2-form and therefore df? is a 3-form. But dimg M =
2dimc M = 2. Hence df2 vanishes identically. &

Ezample 4.2. n-dimensional complex space C™.

Since C™ can be identified with R?*", let (,) be the Euclidean metric of
R?". Then we have

9 ON_[9 9N_s. 9 9N _,
ozt 0xd /| \oyi oy ) ox’ oyl |
o)
(f)y

This, together with J (82'i> = 82
Hermitian metric of (C",J). We put

Z) = _az“ implies that (,) is a
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n

Q=Y (awdz" Ada' + bda® Ady' + cpdy® A dy')
k,l=1

and note that

o 0 o 0
k l — drk U (R,
de” N dy (8:10“ (“)xj> de” N dy (8yi7 Byj> 0,

o 9 9 9 3 9
k ! — gk ! _ ok !
de” A dy (5':Ei’8yj> de (axi)dy (5‘yj) de (aya)dy (a;w‘)

_ skgl
= okl

Then

Q(@x’ 6m1> Zakl5 J*aij'

On the other hand, it follows

0 0 0 0 0 0
Q(Wﬂ)—<J(aﬂ)w>—<ayi,w>—o

Hence we have a;; = 0. In entirely the same way, we conclude b;; = d;; and
¢;j = 0. Thus, the Kéhler form Q of (C™,J) is represented by

Q= Z da® A dyF. (4.6)
k=1

From (4.6) we conclude that dQ2 = 0 and that (C™,.J), with usual Euclidean
metric, is a Kahler manifold. &

Ezample 4.3. Complex projective space P™(C).
According to notation from Example 1.3, we express P™(C) by
{[(z°2%...,2M)]|z* € C,i=0,...,n}.

Let U; be an open subset of P"(C) defined by 2/ # 0 and put t = 'z—:,
J,k=0,1,...,n on U;. Then

0 41 —1 ,j+1
(7, tj, ot 87, t])
is a local coordinate system in U; and we put

Ztkt _Z|t§|2.

k=0

Then, on U; N Uy, it follows f; = fkt;?f?. Since t? is holomorphic on Uj;, and
in particular on U; N Uy, it follows dlog t? = 0 and therefore
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85105;%? = —5810gf§ = —gglogt;? =0 on U;NUs.

Hence
90log f; = 90 (log fr + logth + logf;?) = 001log fi

on U; N Uy, which shows that 001og f; does not depend on the choice of local
coordinates. Moreover, d01og f; is a closed 2-form, since

d(0d1log f;) = (0 + 0)(0dlog f;) = 0

Further we note that 90 log f; is purely imaginary. In fact, f; is a real function
and thus

f; =1, log f; =log f;.

Therefore it follows

8(5 log f]) = gglog fj = 5810g fj = —8810g fj = —85 log fj

and consequently

Q =+v—-1901og f; (4.7)
is a globally defined closed 2-form on P™(C). Since

-k -k iih
dO*log f; 9*(log >, tﬁj) >k tﬁj)(shi — Lt

— —3 -k
ot ot oth ot (Do, tht;)?

the explicit expression of 2 is

_ 1 »
O = v=10d1log f; = V/—1 Z & Ostfj dt" A dF

h,i=1 j 7

i dth A dt (4.8)

Zk )5hz
-V
h;1 (Zk tkt )?

We put
9(X,Y) = Q(X, JY)

and show that ¢ is a Hermitian metric. First we show that g is symmetric.

Let X and Y be real tangent vector fields of P*(C). Then they can be
expressed on U; respectively as

9 h 0
X = al— = h ]
z( i) V¥ (w2
) —\/—18‘% , we have

J

Since J(-2

6t§) = 8t1 and J(
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Substituting this in (4.8), we obtain
02 i
V=1 Z G085 iy i (x, 7Y
h,i=1 th tJ

Y T8 1 gy — (v x)
h,i=1 at?at]

9(X,Y)

and we conclude that g is symmetric.

Further, from (4.8) and using the Schwarz inequality, it follows that g is
positive definite. Namely,

(SR t5T)(0, afal) — 32, () (T o)

9(X,X) =2

(X, thT)?
o Sl P S, P — IS et
AHRE =0

We call this metric g the Fubini-Study metric. Since
g(JX,JY)=QJX,J?Y)=Q(JX,-Y) =QX,JY) = g(X,Y),

we conclude that g is a Hermitian metric on P”(C) and therefore (P"(C), J)
is a Kéhler manifold with a K&hler metric g. &
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Structure equations of a submanifold

A differentiable mapping ¢ of M into M’ is called an immersion if (1.), is
injective for every point x of M. Here 1, is the usual differential map . :
Tp(M) — T, (M'). We say then that M is immersed in M’ by + or that
M is an immersed submanifold of M'. When an immersion 2 is injective, it
is called an embedding of M into M’. We say then that M (or the image
1(M)) is an embedded submanifold (or, simply, a submanifold) of M’. In this
sense, throughout what follows, we adopt the convention that by submanifold
we mean embedded submanifold. If the dimensions of M and M’ are n and
n + p, respectively, the number p is called the codimension of a submanifold
M. The interested reader is referred to [5] and [33] for further information
and more details.

In this section the reader will be reminded of some important properties
of submanifolds, and some auxiliary results will be quoted or derived, such
as the well-known Gauss and Weingarten formulae, the equation of Gauss,
Codazzi and Ricci-Kiithne.

Let M and M’ be differentiable manifolds and f be a differentiable map
f: M — M’'. Note that for a given vector field X on M, it follows that f,X
is not always a vector field on M’. For this purpose, we first define the notion
of a vector field along the map f.

Definition 5.1. A vector field along the map f : M — M’ is a differentiable
map

X'"M>z— X, €Ty (M') which satisfies 7(X}) = f(x),
for any « € M, where 7 is the natural projection 7 : T(M') — M.

Ezample 5.1. Let © be a curve on M’ defined on an open interval (a,b) = M
and let f be a differentiable map f : M — M’, defined by

f:M>t—a(t)e M.
Then the tangent vector field z'(t) of the curve z is a vector field along f.

M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 27
Developments in Mathematics 19, DOI 10.1007/978-1-4419-0434-8_5,
© Springer Science+Business Media, LLC 2010



28 5 Structure equations of a submanifold

Ezxample 5.2. Let X’ be a given vector field on M’. For a differentiable map
f: M — M’, we can define a vector field on M, by X, = X}(z). Then X' is
a vector field along f. O

Ezxample 5.3. Let X be a vector field on M. The vector field X', which is
obtained by X, = (f.).(Xy), z € M, is a vector field along f and we denote
this vector field by f.X. Example 5.1 is a special case of this example, that

is, } = f*(%). O
We denote by X(M) and X, the set of differentiable vector fields on M

and the set of vector fields along f, respectively.

The covariant differentiation V', Y with respect to given linear connection
V' of M’ is defined for vector fields X', Y’ on M’. Since the vector field along
f is not always the vector field on M’, we define the covariant differentiation
along the map f.

Definition 5.2. Let M’ be a differentiable manifold with linear connection
and V'’ be the covariant differentiation with respect to this connection. Then,
a map

X(M)xX;> (Y, X)— VyX € Xy

which satisfies the following properties (1)—(4) is determined uniquely and the
map X(M') x Xy — Xy is called a covariant differentiation along f.

(1) If Yy, Ys € X(M), then
by, X = Ve X + V5, X.
(2) For a function A on M,
v X = AV, X,
(3) For X1, X» € X4,
Vi (X1 + X2) = Vy X1 + Vi Xo.
(4) For a function X on M’,
VL (NX) = (YA)X + NV, X,
where N'X € Xy, since (N X), = N(2)X, for x € f(M) C M".

Now, let M be an n-dimensional submanifold of an (n + p)-dimensional
Riemannian manifold (M,g) and 2 : M — (M,g) be the immersion. One
more piece of notation: throughout the manuscript we also denote by @ the
differential 2, of the immersion, or we omit to mention 2, for brevity of nota-
tion. Then, for Y € T (M), +Y is a vector field along the immersion +.
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Further, we define a Riemannian metric g on M by
9(X,Y) =7g(X 1Y),

where X,Y € T(M). The Riemannian metric g is called the induced metric
from g and the immersion ¢ is called an isometric immersion. The tangent

bundle T'(M) splits into the tangential part and the normal part to M, that
is,

T(M) =T(M) & T+(M),
where T(M) = J,cp To(M) is the tangent bundle of M in M, T+(M) =

Usen Tf(-z)(M) is the normal bundle of M in M and TZJ(-I)(M) denotes the

orthogonal complement of 175 (M) in T}, (M ).

Let V be the Levi-Civita connection of (M,g). Using Definition 5.2, re-
garding V as a covariant differentiation along 2, we can derive the following
Gauss formula

V¥ =1VxY + h(X,Y), (5.1)

where X,Y € T(M). It is easily verified that V defines a connection of M
which is called the induced connection from V, while the normal part h(X,Y)
defines the second fundamental form h of M.

Theorem 5.1. V is the Levi-Civita connection with respect to the induced
Riemannian metric g.

Proof. Since V is the Levi-Civita connection with respect to g, the torsion
tensor 1" vanishes identically and therefore

T(1X,1Y) = Vx1¥ — Vy1X — 1X,1Y] = 0.
Using relation (5.1), we compute
1VxY +h(X,Y) =1 Vy X —h(Y,X) —[X, Y] =0. (5.2)
Considering the tangential part of relation (5.2), we conclude
VxY - VyX — [X,Y] = T(X,Y) =0,

which implies that V is torsion-free. From the normal part of relation (5.2),
we deduce
hMX,Y)=h(Y,X). (5.3)

We now prove that V is a metric connection. Since V is a metric connection
of M, we have

X(g(Y,2)) = X(g(tY,12)) = g(Vx1Y,1Z) + g(1Y,Vx1Z). (5.4)

On the other hand,
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X(g(¥,2))

(Vxg)(Y,Z2) +9(VxY,Z) +g(Y,VxZ)
(Vxg) Y, 2)+9(VxY,1Z) +g(Y, 2 Vx Z)
= (Vx9) (Y, Z) +g(Vx1Y,2Z) + g(1Y,Vx1Z). (5.5)

Comparing relations (5.4) and (5.5), we conclude (Vxg)(Y,Z) = 0 and con-
sequently Vxg = 0. Thus, V is a metric connection, which completes the
proof. O

Let ¢ be a normal vector field on M. Then V x& splits into the tangential
part and the normal part, that is, the following Weingarten formula holds:

Vx&=—1A¢X + Dxé. (5.6)

Ag is called the shape operator with respect to the normal vector field £. It is
easy to check that A¢ is a linear mapping from the tangent bundle 7'(M) into
itself and that D defines a connection on the normal bundle T+ (M). We call
D the normal connection of M in M.

Differentiating covariantly g(+Y, &) = 0, we obtain
9(Vx1Y,€) +g(1Y, Vx&) =0,
from which it follows
GgVxY + h(X,Y),£) + (1Y, —1A: X + Dx§) = 0.

Thus, we have
9(AeX)Y) =g(h(X,Y),§). (5.7)

Using (5.3) and (5.7), we conclude that the shape operator is symmetric.

Let &1,...,&, be an orthonormal frame of T+ (M) and denote A¢, by A,.
Then the Weingarten formula (5.6) can be written as

Vxéa = —14aX + Dx&a, Dx&a = Zsab )b, (5.8)

where the s, are called the coefficients of the third fundamental form of M
in M. For simplicity, we sometimes suppress the explicit dependence on X in
the notation. The coefficients of the third fundamental form satisfy

Sab + Sva = 0. (5.9)
Namely, using (5.8), we compute

X9(&a, &) = ?(vxfa, &)+ 9(&as Vx &)

Zsac fmfb +9 Eaazsbc

= Sab(X) —+ Sba(X).



5 Structure equations of a submanifold 31

On the other hand, Xg(&,,&,) = X0a = 0. Comparing the last two equations,
we obtain (5.9).

Particularly, in the case when the difference of the dimension of M and
M is two, we use the notation

S12 = —S921 = S. (510)

Definition 5.3. A submanifold M of M is called a totally geodesic submani-
fold of M if for every geodesic 7(s) of M, curve vy(s) is a geodesic of M.

Theorem 5.2. A submanifold M is totally geodesic if and only if the second
fundamental form h vanishes identically.

Proof. Let v(s) be a geodesic of M, i.e., let V4% = 0. Therefore, using relation
(5.1), it follows
Vioy =1Vs5y + h(¥,79) = h(¥,7).

Consequently, if the second fundamental form h vanishes identically, M is
totally geodesic. Conversely, if M is totally geodesic, it follows h(%,%) =
0. Since through any point © € M, for any X € T,(M), there exists a
geodesic y(s) whose tangent vector at z is X,, we deduce h(X,X) = 0, for
any X. Therefore, h(X +Y, X +Y) = 0 and using relation (5.3), we conclude
h(X,Y) = 0, which completes the proof. O

Theorem 5.2 and relation (5.7) imply

Corollary 5.1. M is a totally geodesic submanifold if and only if relation
A¢ = 0 holds for any normal vector field § of M. Particularly, M is totally
geodesic if and only if Ay = --- = A, = 0 for an orthonormal frame field

&1,..,& of TH(M).

We now consider how the shape operators A, and the third fundamental
form s, change when we choose another orthonormal frame field T+ (M). Let

P
§=> T'&, a=1,...,p (5.11)

b=1
Since &1, ...,&, are orthonormal, we conclude TP (x) € SO(p), at any point

rze M.
Now, let us compute Vx¢&,. First, using relations (5.8) and (5.11), we
obtain

p
Vil = A X+ (X)L
c=1

p
= ALX + > s (X)TL G, (5.12)
b,c=1
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On the other hand, we have

{(XT))& + TPV x &}

g\
I
M@

S
Il

1

|
M’E

{ XTb §b+Tb( ZAbX+ZSbc c)}

c=1

<
Il

1
p

p p
=) TPAX+) {XT;’ + ZT;scb(X)} & (5.13)
b=1 b=1 c=1

Comparing relations (5.13) and (5.12), we conclude

p
= TiA, (5.14)
b=1
p p
N (XTI = XTE + Y Tesa(X). (5.15)
c=1 c=1

Definition 5.4. The vector field defined by

p

u= % Z(trace An)éa

a=1
is called the mean curvature vector field of M.

Theorem 5.3. The mean curvature vector field p is independent of the choice
of orthonormal basis &1, ...,&,.

Proof. Let ¢, a = 1,...,p be another orthonormal frame field of T+ (M).
Then &, = Y1_, Tb&, for T2 € SO(p). Therefore, making use of (5.14), we
obtain

p P
nu = Z(trace Al = Z (TP trace Ay)TCE,
a=1 a,b,c=1

[
NE

(trace A,)&, = n u,

Il
-

a

which completes the proof. a

Definition 5.5. The length || of the mean curvature vector field p is called
the mean curvature of the submanifold M.

Proposition 5.1. Let x € M be such a point that u(x) # 0. At x we choose
an orthonormal basis &1, ...,&, of T(M) in such a way that & is in the
direction of the mean curvature vector field p. Then

n|pu| = trace Ay, traceAqg =0 fora=2,...,p
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Proof. Definition 5.4 and Theorem 5.3 imply
P

nu=nlu & = Z(traee An)éa,

a=1
from which it follows

P
(trace Ay — nlu|)&1 + Z(trace Ag)éa =0
a=2
Since &i,...,&, are orthonormal, we conclude that n|u| = trace A; and
trace A, =0 fora=2,...,p. O

Proposition 5.2. The mean curvature vector field u is parallel with respect
to the normal connection if and only if

p
X (traced,) + Z (traceAdp) spe(X) =0, a=1,...,p. (5.16)
b=1

Proof. Definition 5.4 and relation (5.8) imply

an,U = X ((traceAa)fa)

I
M»s

(X (traceA,))E, + (traceA,) (—ZAQX + Z sab(X)§b> }

a=1 b=1
p p p
= — Z (traced,) A, X + Z {X(traceA + Z traceAp)Spq ( )} &a.
a=1 a=1 b=1
Thus we have
p p
”DX/J:Z{ X (trace A, —|—Z trace Ap) Spa (X )}fa,
a=1 b=1

which establishes the formula (5.16). O

Proposition 5.3. If u is parallel with respect to the normal connection, then
the mean curvature is constant.

Proof. From Proposition 5.2, if u is parallel with respect to the normal con-
nection, it follows

9 2
X|u|* = 3 Z (X (trace Ag)) (trace Ag)
a=1

9 2
:*7§ (trace A, ) (trace Ap)spe(X) = 0,
n
a,b=1

since relation (5.9) states that the coefficients of the third fundamental form
are skew-symmetric. a
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Definition 5.6. If the mean curvature vector field p vanishes at a point x €
M, the point z is called a minimal point and if 4 vanishes identically on M,
submanifold M is called a minimal submanifold of M.

From Definition 5.6 we easily deduce

Proposition 5.4. The submanifold M is minimal if and only if trace A, = 0,
a=1,...,p.

Let &1,...,& be mutually orthonormal normal vector fields of M and
let A, X = poX,a=1,...,pfor any X € T(M), for the shape operators
A,. From (5.14) it may be concluded that, if we take another orthonormal
basis £1,...,§,, the corresponding shape operators A;, satisfy A, X = pj, X.
Therefore, we can give the following

Definition 5.7. If the shape operator A, satisfies A, X = p, X for a =
1 ,, the submanifold M is called a totally umbilical submanifold.

yoeee

Now we study the case when a local orthonormal normal frame field
§1,---,&, can be chosen in such a way that the third fundamental form van-
ishes, namely, s/, = 0 for a, b = 1,...,p. Using relation (5.15), this is
equivalent to finding 7% € SO(p) which satisfy

p
dT) +> Tgse, = 0. (5.17)

c=1

By the well-known Poincaré Lemma, it follows that the existence of a solution
of the equation

p
A Tise =0 (5.18)
c=1

guarantees the existence of such T?. Since equation (5.18) is equivalent to
P P
D dTE A s+ Y T dse, =0, (5.19)
c=1 c=1

using equation (5.17), we compute

p p
Z Tg (dsdb — Z Sde N\ 5cb> =0. (520)
d=1

c=1

As T4 € SO(p), using (5.20), we conclude that we can choose a local ortho-
normal frame field of 7+ (M) in such a way that the third fundamental form
vanishes, if the following relation holds:

P
deb*ZSdc/\Scb =0, for d,b=1,...,p. (5.21)

c=1
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Now, let R denote the curvature tensor of M. Then, using the Gauss
formula (5.1) and the Weingarten formula (5.8), for X, Y € T(M), we obtain

R(uX,2YnZ =VxVyiZ —VyVxi1Z —VixypZ

P
=Vx <NYZ + Zg(AaY, Z)§a> —Vy (zVXZ

a=1

+ ijlg(Aax, Z>£a> —VixyZ - 29 J[X.Y],2)
ATy 24 D 9(AX,VyZ)E,
b

+ 3 {9(VxA)Y. Z) + g(AVXY, Z) + g(AY, Vx Z)} &
+ > g(AY, Z)(—1A.X + Zsab )Es)

- z;yvxz =Y 9(AY,VxZ)&

- Z{ vyAbX Z) + 9(4Vy X, Z) + 9(Au X, Vy Z)} &,
- Zg (AuX, Z)(—14 Y+Zsab )Ep)

ZVXYZ Zg X Y] Z)f
=1 {VXVYZ - VyVxZ — V[XxY]Z

- Z(g(AaYa Z)AaX - g(AaXa Z)AGY)}

+Z{ VxA Zsba AbY Z)
((VYA Zsba AbX Z)} fa
=1 {R(X, Y)Z = (9(AaY, Z)AaX — g(AuX, Z)AaY)}

+ Z { (VxAl)Y = (VyAd)X, Z)

Z 550 (X)g(AY, Z) — spa(Y)g(ApX, Z)} &,
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Thus we have the following Gauss equation:
B P
GF(ROX, Y 1Z, W) = g(R(X,Y)Z, W) Z{ (Ao, Z)g(Au X, W)
a=1
9(AuX, Z)g(AY, W) } (5.22)
and Codazzi equation

G(ROX, Y NZ,6.) = g ((VXAa)Y — (VyA)X, Z)

+Z{8ba 9 AY.2) — su (Vg X. D)} (5.29)

After computing R(:.X,1Y)&, in the same way, we obtain

E(ZXa ZY)fa = vaYfa - vaXga - v[X,Y]Sa

{ (VxA)Y + (VyA)X — Z (5ap(Y)ApX — s0p(X )AbY)}
+ Z { vXSab (stab)(X) - g((AaAb - AbAa)X7 Y)
+ Z Sac Scb sac(X)scb(Y)]}gb,

and we deduce the following Ricci-Kihne equation:

GROX, 1Y )60, 6) = 9 (Ada — A4 4) XY ) + (Vicsa) (V) = (Vysa) (X)

+ Z {Sac )sep(X) — sac(X)scb(Y)} . (5.24)

We define the normal curvature R+ of M in M in the following way:
RH(X,Y)¢ = DxDy&, — Dy Dx& — Dix,y)&a-

Then, we compute
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L 1
RH(X,Y)é, = (VX (Z Sab(Y)§b>> - (VY (Z Sab(X)§b>>
b b
= sa (X, YD &
b

= Z {X(Sab(y))fb + Z Sab(Y)Sbc(X>€c -Y (Sab(X)) &b
b c

— Zsab(X)Sbc(Y)gc} - Z Sab ([X’ YD &b
c b

NE

{X (5a6(Y)) =Y (5a5(X)) — sap ([X,Y])

b=1

+
M=

(500500 (X) = 5e(X)sc0(Y)) } &

c=1
p p
= Z {dsab(X, Y)-— Z Sac N Seb(X, Y)} . (5.25)
b=1 c=1
Hence, using (5.25), we conclude
p
GR(X,Y )0, &) = dsap(X,Y) = D sac A sep(X,Y). (5.26)

c=1
Thus, relations (5.24), (4.4) and (5.26) imply Ricci equation
G(ROX, Y )0, &) = g ([Ap, Aa) X, Y) + G(RH(X,Y)Ea, &) (5.27)

If the normal curvature R+ of M in M vanishes identically, we say that the
normal connection of M is flat. Using relations (5.21) and (5.26), we prove
the following meaning of the normal connection:

Proposition 5.5. If the normal curvature R* vanishes identically, we can
choose an orthonormal frame field &q, a = 1,...,p of T-(M) in such a way
that the third fundamental form vanishes.
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Submanifolds of a Euclidean space

In this section, we give characterizations of typical submanifolds of Euclidean
space. First of all, we prove the following.

Theorem 6.1. An n-dimensional totally geodesic submanifold M of (n + p)-
dimensional Euclidean space E"TP is an open submanifold of n-dimensional
FEuclidean space. If M is complete, then M is an n-dimensional Euclidean
space.

Proof. Since the ambient manifold is a Euclidean space, the Ricci-Kiithne equa-
tion (5.27) implies R+ (X,Y)¢, = 0, that is, the normal curvature vanishes
identically. According to Proposition 5.5, we can choose orthonormal normal
vector fields &1, ...,&, to M in such a way that the corresponding third funda-
mental form will vanish. Therefore, Vx§&, = 0, since M is a totally geodesic
submanifold.

Now, let us define in a neighborhood U(z) of x € M, p functions f,,
a=1,...,p by fo = (x,&), where x denotes the position vector field of
x € M and (,) the Euclidean metric of the ambient manifold E"*?. Then

Xfa = X<X7£a> - <ZX7£G> + <X7vX§a> =0,

holds for any X € T(M), which means that f, = constant for a = 1,...,p.
Thus, for x = Y 1" Pate;, &, = S P €l e;, we compute

(x,&) =2 &+ a2 =, a=1,...,p.

This shows that U(z) lies in the intersection of p hyperplanes whose nor-
mal vectors are linearly independent, that is, there exists an n-dimensional
Euclidean space E" such that U(xz) C E". However, since U(z) is an open
subset of E™, U(x) is n-dimensional. Therefore, M is an open subset of E™.
Particularly, if M is complete, M is an n-dimensional Euclidean space. This
completes the proof. a

M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 39
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Next we consider a totally umbilical submanifold of Euclidean space. In
the following, we assume that a totally umbilical submanifold means it is not
a totally geodesic submanifold.

Theorem 6.2. An n-dimensional totally umbilical submanifold M of (n+p)-
dimensional Euclidean space E"TP is an open submanifold of n-dimensional
sphere S™ and if M is complete, M is an n-dimensional sphere.

Proof. Since M is not totally geodesic, we can choose orthonormal normal

fields &1, &5, ..., &, in such a way that & is a unit vector field in the direction
of the mean curvature vector field u. Proposition 5.1 now implies trace A, = 0
for a = 2,...,p, where A/ denotes the shape operator with respect to the

normal &/. Analysis similar to that in the proof of Theorem 6.1, using the
Ricci-Kithne equation (5.27), shows that we can choose orthonormal fields
&2,...,&p normal to M, such that the corresponding third fundamental form
will vanish. Hence we have

Vx1Y =1VxY + g(A1 X, Y)E;. (6.1)

Moreover, the Codazzi equation (5.23) reduces to (Xp1)Y = (Yp1)X. Since
X and Y are linearly independent, we conclude that p; is constant.

Now we define p — 1 functions f, by f, = (x,&.), a = 2,...,p. Then
we obtain that the f, are constant and in entirely the same manner as in
the proof of Theorem 6.1, we deduce that M lies in the intersection of p — 1
hyperplanes whose normal vectors are linearly independent, that is, there
exists an (n + 1)-dimensional Euclidean space E"*! such that M c E"*1.

Further, we denote by j and 5’ the immersion M — E"*! and the totally
geodesic immersion E"T1 — E"*P_ respectively. Then 7 = j' o j and

vxly = ij’ OjY = ]/V/ij
=J'UVxY +g(AX,Y)E) =1VxY +g(A'X, V)i’ (6.2)

Comparing relations (6.1) and (6.2), we obtain A’X = A1 X = p1 X.
As M is a hypersurface of E"t!, the position vector field x of M satisfies

1 1
X<x+£’>=0, x—P|=
p1 1]

for any X € T(M), where P = x + i{’. This shows that P is a fixed point,

in EtL, for x € M and that any point of M has constant distance % from

[p1]
the fixed point P. Hence M lies on a sphere of radius ﬁ in E"*! and the

theorem follows. O
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Submanifolds of a complex manifold

Let M be a complex manifold with _the natural almost complex structure J
and let M be a real submanifold of M.

Proposition 7.1. For any point x € M, let S,(M) be a subspace of the
tangent space Ty(M). Then Sy(M) N JSy(M) is a J-invariant subspace of
T.(M).

Proof. Let us suppose X € S;(M) N JSy(M). Then X € S,(M), implies
JX € JS;(M). On the other hand, X € JS,(M) implies the existence of
Y € S, (M) such that JY = X. Hence, JX = J?Y = -Y € S,(M). Thus,
JX € Sp(M) N JS(M), which shows that S, (M) N JS,(M) is J-invariant
subspace of T, (M). O

Definition 7.1. We call H, (M) = JT,(M)NT,(M) the holomorphic tangent
space of M.

Proposition 7.2. H, (M) is the mazimal J-invariant subspace of T,(M).

Proof. According to Proposition 7.1, H,(M) is a J-invariant subspace of
T.(M). To prove that H,(M) is a maximal J-invariant subspace, let T, (M)
be a J-invariant subspace of T,,(M). Then we have JT,(M) C T.(M). For
any X € Th.(M) C T,(M), it follows JX € JT.(M) C T,(M). We denote
JX =Y, then —X = J2X = JY € JT,(M) C JT,(M). Hence X € JT,(M)
and consequently X € H,(M). This shows that T,(M) C H,(M), which
completes the proof. a

The totally real part of T,(M) is R, (M) = T,(M)/H,(M).
Proposition 7.3. JR,(M)N R, (M) = {0}.
Proof. Since H, (M) is the maximal J-invariant subspace of T, (M), JR,(M)N

R.(M) C H,(M). Henceif X € JR,(M)NR, (M), then X € R, (M)NH, (M)
which implies that X = 0. Thus, JR,(M) N R,(M) = {0}. O

From the above it also follows
M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 41
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Proposition 7.4. T,(M) = H,(M) & R,(M).

Proposition 7.5. Let M be an n-dimensional submanifold of real (n+p)-
dimensional complex manifold (M, J). Then we have

n—p<dimgH, (M) <n. (7.1)
Proof. H,(M) C T,(M) implies that dimg H,(M) < dim T, (M) = n. On
the other hand, T,(M) + JT,(M) C T, (M) implies that
dimg T, () (M) > dimT, (M) + dim JT;, (M) — dimg H, (M),

from which
n+p > 2n — dimg H,(M).

Hence we have dimg H, (M) > n — p, which completes the proof. O

From Proposition 7.5, it may be concluded that dimg H, (M) is an even
number between n — p and n. Therefore, under the above assumptions, we
have

Corollary 7.1. 0 < dimg R, (M) < p.

Proof. Since dimg R, (M) = dimgT, (M) — dimgr H, (M), using Proposition
7.5, we establish the formula. O

Ezxample 7.1. Let
M={ze€C"||z] =1,Imz" =0}

={Ghy' ey € R D (@) + () = Ly =0}
i=1

Then dim M = 2n — 2 and p = 2 and ayi” is normal to M. From Proposition
7.5, it follows
2n — 4 < dimg H,(M) < 2n — 2.

Let p; be the point of M, represented by
2l=22=...=2"2=0, 2" t=1, 2" =0.
As a point of R?", p; is represented by
xl — yl — ... = 33”_2 — yn—2 =0, mn—l =1, yn—l — g = yn —0.

Therefore, #?,1 is a normal vector to M at p;. Hence

o 0 o B o 0
Tpl(M)—span{amlaaylw--aaxnzvaynzvaynpaxn}
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and J(%) = %, J(ayf,l) = —amf,l are orthogonal to T}, (M). Therefore

0 0
RPI(M) = Span {8y”—1’8x"}’

o 0 0 0
le(M) = Span {M’W"”’W’W}.

This shows that dimg H,, (M) = 2n — 4.
Next, we take the point p; € M represented by

2l=0,...,2"t=02"=1

As a point of R?", py is represented by

x1:yl:,.,:xnflzynflzo,xnzl,y"=0~

Then a%, % are normal vectors to M, at py and JT,,(M) = T, (M), since
J(527) = 507+ J (g57) = — 5oz~ Hence Hy, (M) = T, (M) and dimg Hy,, (M) =

= oy
2n — 2.

From this example we conclude that, in general, the dimension of H,(M)
varies depending on the point p € M. &

Now we give the definition of a CR submanifold.

Definition 7.2. [41] If H,(M) has constant dimension with respect to z €
M, the submanifold M is called a Cauchy-Riemann submanifold or briefly CR

submanifold and the constant complex dimension is called the CR dimension
of M.

Example 7.2.  J-invariant submanifolds.

Let (M,.J) be a complex manifold and ¢ : M — M be an embedding. If
for any 2 € M, the subspace «T,(M) is an invariant subspace of T, (M)
with respect to J, that is,

JiT, (M) C T, (M),

the submanifold M is called a J-invariant submanifold, or invariant submanifold,
for short. Moreover, since J is an isomorphism, we conclude

JiT, (M) = 1T, (M).

Consequently,
H,(M)=T,(M), dimgpH,(M)=n
and M is a CR submanifold.

Theorem 7.1. An invariant submanifold M of a complex manifold (M, J) is
a complex submanifold.
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Proof. Since JiT,(M) C 1T (M), for any X € T,,(M), we may put
JiX =1J'X. (7.2)
Then, J' : T, (M) — T, (M) is an isomorphism. Moreover,
—1X = JAX = o' X =4(J')2 X

implies (J/)2X = —X. Thus, J’ defines an almost complex structure on M.

Further, the Nijenhuis tensor N with respect to J vanishes identically
on M, since J is the almost complex structure induced from the complex
structure of M. Particularly for X,Y € T, (M), it follows

N(X, 1Y) = JpX, Y] = [1X,0Y] — (1 X, oY ] = J[J2 X, JiY]
= JiX,Y]| - J' X, 2Y]| — 1 X2 J'Y] = T[] X0 J'Y]
= (J'[X,Y] - [J'X,Y] - [X,JY] - J[J'X, J'Y])
= N(X,Y) = 0.
This, together with relation (7.2) and Theorem 2.1, implies that 2 is holo-

morphic and (M, J') is a complex manifold, with the induced almost complex
structure J’ from J of M. Consequently, dimg M is even. O

Example 7.3.  Real hypersurfaces.

Since for a real hypersurface M™ of a complex manifold from Proposition
7.5 it follows dimg H, (M) = n — 1, we conclude that M is a CR submanifold.

2

Example 7.4.  Totally real submanifolds.

If H.(M) = {0} holds at every point x € M, M is called a totally real
submanifold. We remark that for a totally real submanifold M of M, it follows
R, (M) =T,(M).

Using Proposition 7.5 we conclude that if M is a totally real submanifold,
we have
n—p < dimgpH, (M) =0.

Therefore n < p and the following proposition follows.

Proposition 7.6. The dimension of a totally real submanifold is less than or
equal to the codimension of the submanifold in the ambient manifold.

We now present one example of a totally real submanifold. Let

M={z++V-1lye C"y =0}
={(z',0,2%,0,...,2",0)|z' €eR,i=1,...,n}.
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Since in this case

100 < {2

0’ 0z Dam

and J(52) = 8%“ it follows JT, (M) N T,(M) = {0}, and therefore, M is a
totally real submanifold of n-dimensional complex space C". &

Ezample 7.5.  Let (M, J1) and (M3, J2) be complex manifolds with almost
complex structures J; and Jy. Then M = My x M5 is a complex manifold
with respect to the almost complex structure J = J; & Js.

£0r a totally real submanifold M; of M; and a complex submanifoLd M,y
of My, the product manifold M = M; x Ms is a CR submanifold of M and
dim (JT(M) NT(M)) = dim (JT(Ms) N T(Ms)) = dim M,. o

Now, let M be a real hypersurface of a Kahler manifold. Then
dimg R, (M) =1, JR, (M) L R, (M),

because of the skew symmetric property of J. On the other hand, for
X € R, (M), Y € Hy(M), we have g(JX,Y) = —g(X,JY) = 0 and hence
JR,(M) L H,(M). Consequently,

that is, J R, (M) is orthogonal to T,,(M ). However, for the higher codimension
case J R, (M) is not always orthogonal to T,,(M) and we provide a counterex-
ample in the following.

Ezxample 7.6. Let

M = {(z',2%) € C*|Imz* = Rez? Im2z* =0},
={(@"y"y"0) e RYa',y' € R}

denote the submanifold of C2. Then, since

o o0 0 0
T,(C?) =span { —, —, ——=, —= o,
2(C) =sp {8391 oy’ Ox? 5‘y2}
and since a point z € M can be described as the position vector, which can
be expressed as a linear combination of basis vectors, it follows

a0 0
7 Ot y(?yl Y ou2

Therefore,

o 0 0
Tx(M) = Span {axl,ayl + 8{1,'2}



46 7 Submanifolds of a complex manifold

0 0
oyt 0x2) ozt oy’

e}
o1

and since

it follows H, (M) = {0}. However, J (327) = aiyl is not orthogonal to T, (M).

¢

Let (M, J,g) be a Hermitian manifold. In [1] A. Bejancu gave another
definition of CR submanifolds.

0,

Definition 7.3. [1] M is called a CR submanifold if there exists a pair of
orthogonal complementary distributions (A, A+) of T(M) such that

for any ze M, JA,=A, and JAi‘CTx(M)J‘.

Proposition 7.7. If M is a CR submanifold in the sense of Definition 7.3,
then M is a CR submanifold in the sense of Definition 7.2.

Proof. First we note that A, C H,(M), since from Proposition 7.2 we know
that H, (M) is the maximal J-invariant subspace of T, (M ). Further, if there
exists X € H, (M) such that X ¢ A,, then

X=X +Xo, X1€A,, XyeAl,

since A, and Aj; are mutually complement. Then it follows JX = JX;+J X5
where J Xy € T,(M)*, contrary to X € H,(M). Therefore, A, = H,(M).
Finally, since A is a distribution, dimA, is constant, which completes the
proof. a

If the CR dimension of M™ is %7 we call M a CR submanifold of maxi-
mal CR dimension. In that case, let eq,...,e, be an orthonormal basis of
T,(M) such that ej,...,en—1 € Hy(M). Then e, € T,(M)\ H,(M) and
G(Jren,vej) = —ge,, Jre;) = 0, j = 1,...,n — 1, since Jie; € Hy(M).
Therefore, Jue,, € T:-(M) and, using Proposition 7.7, we conclude

Proposition 7.8. If M is a CR submanifold of maximal CR dimension, then
Definition 7.2 and Definition 7.3 are equivalent.

On the other hand, as we show in the following, when the CR dimension

of M is less than "T_l, the converse of Proposition 7.7 is false.

Let M be a CR submanifold of CR dimension ”T’Q Choosing an ortho-

normal basis ey, e9,...,€,_2,en_1,€, of T,(M) in such a way that

€1,69,...,6h_92 € JTm(M) ﬂTz(M),



7 Submanifolds of a complex manifold 47

we can write

Je;, € JT,(M)NT, (M), i=1,...,n—2,
n—2
Jen_1= Z a‘e; + \ey, + normal part,
i=1
n—2
Je, = Z b'e; — Aep—1 + normal part.
i=1

It follows immediately that o’ = 0, b* = 0 for ¢ = 1,...,n — 2 and that
A=7(Jen—1,€n).

Now we choose another orthonormal pair of vectors: e/, _; and e/,. Then,
for some 6, we have
/
n—1

e

e =ep_1c080 + e, siné,

| = —en_18in6 + e, cosd

and consequently

g
g
= Ag(e, cos — e, _18inb, —e,_1sinf + e, cosh)
A(cos? 0 + sin? 0) = .

—~

This shows that A is independent of the choice of e,,_1 and e,,.

Therefore, since A is not necessarily identically equal to zero, we conclude
that a CR submanifold defined by Definition 7.2 is not always a CR submani-
fold defined in the sense of Definition 7.3. Especially, computing A in Example
7.6, we obtain

gD 00N [0 o 9N
S\ oz oyl " ox2/  \oyl'oyl 022/
Since dim H(M) = 0 and A is not identically equal to zero, we conclude

that Example 7.6 is one of the examples of CR submanifolds in the sense of
Definition 7.2, but not in the sense of Definition 7.3.

Now, let M be a submanifold of a complex manifold. Then for any X €
T(M), JuX can be written as a sum of the tangential part +F'X and the
normal part v(X) in the following way:

J1X =1FX +v(X). (7.3)

Then F' is an endomorphism on the tangent bundle T (M) and v is a normal
bundle valued 1-form on M.
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Proposition 7.9. If M is a CR submanifold in the sense of Definition 7.3,
then the endomorphism F satisfies F> + F = 0 and rank F = dim A. Con-
versely, if the endomorphism F satisfies F3 + F = 0 and rank F is constant
forx € M, then M is a CR submanifold in the sense of Definition 7.3.

Proof. Let M be a CR submanifold in the sense of Definition 7.3 and let
X € T(M). Then we have X = X; + X5, where X; € A and X, € A+, Using
Definition 7.3, it follows that v(X7) = 0 and F X5 = 0 and consequently, using
(7.3), we write

X = JAX, =1 F?X, +u(FX)), —1Xy=J%Xy = Ju(Xp).

Separating and comparing the tangential parts and the normal parts, we con-
clude
F2X, = - X, v(FX;) =0.

Hence, J1F X; = 1F%X; € T(M) and FX; € A. Therefore
JAX = IF X, + Ju(Xs) = 1F% X, + v(FX;) —1 Xy = o(F2X; — Xo),
JhX = Ji(F?X) — Xo) = 1F(F2X; — X3) +v(F?X; — X»)
= 13X —v(Xy).

On the other hand, we have
F3X = F3X, + F*X, = F3X,
and
v(X) =v(X71) +v(X2) = v(Xo),
which implies
JhX = —iX = 1 FX —v(X) =1F3X —v(X).
Thus, F satisfies F2 + F = 0 and rank F' = dim A.

Conversely, suppose that F satisfies F? + F = 0 and let rank of F be r.
We put

At ={XeTM
A={XeT(M

)IFX =0},

)g(X,Y)=0,Y € At}

Then, by definition, JAL C T+(M) and for X € A, Y € AL we obtain
G(J1 X, 1Y) = —g(uX, JWY) = —g(1 X, v(Y)) = 0.

Hence J:X L A+ and therefore JA = A, and the proof is complete. O

_ Especially, let M be a J-invariant submanifold of a Kahler manifold

(M, J). That is, for any X € T(M), J1X € T(M) and J induces the natu-

ral almost complex structure J' on M (see Example 7.2). First we note the
following
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Lemma 7.1. If M is a J-invariant submanifold of a complex manifold (M, J)
with Hermitian metric g, then for any & € T;-(M), it follows J& € T;-(M).

Proof. Under the conditions stated above, it follows

0=9(X,§) =g(J1X, JE) =g(J' X, JE). (7.4)
Since J' : T, (M) — T,(M) is an isomorphism, for any Y € T,(M) there
exists X € T,(M) such that Y = J'X. Thus, equation (7.4) shows that for
any Y € T,,(M), g(2Y, J€) = 0 and therefore J¢ € T;-(M). O

Theorem 7.2. A J-invariant submanifold M of a Kéihler manifold (M, J) is
a Kdhler manifold.

Proof. Since M is a J-invariant submanifold of a Kihler manifold (M, .J),
relation (7.2) and Theorem 4.2 imply

JiY =4J'Y, VxJ=0, (7.5)

for all X,Y € T(M). Therefore, differentiating covariantly the first relation
and using the second relation of (7.5), the Gauss formula (5.1) implies

JVx1Y =1Vx(J'Y)+hX,JY). (7.6)

Using again the Gauss formula and the first relation of (7.5), we can rewrite
relation (7.6) as

W'VXY + Jh(X,Y) =1(VxJ)Y +1J'VxY + h(X,JY). (7.7)

Separating the tangential part and the normal part of relation (7.7), we con-
clude
Jh(X,Y)=h(X,JY) (7.8)

and VxJ' = 0. Therefore, (M, J') is a Kéhler manifold, by Theorem 4.2. O

Ezample 7.7. Let M be a submanifold of a complex Euclidean space C™ de-
fined by

M={(z1,-- - 2m, Zm+1, -+ 2n) € C" | Zpms; = fi(z1, ..., Zm), (7.9)
j=1,....,n—m} for m<n,

where f; are holomorphic functions on C™. Putting

zi=x;+v-—1ly;, i=1,...,m,
fi=gi+v-1h;, j=1,...,n—m,

we can identify M with a submanifold of E?” defined by
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M = {(xlaylw-wxnayn) € E2n‘xm+j :gj(xlvyla”'axmvym)a
Ym+j = hj(xl,y17---7l'm,ym)}7 j = 17 y—m. (710)

Let (u1,v1,...,Umn,Vnm) be a local coordinate system of M. Then the
defining equation for M is given by

Ti = Ui, Yi =V L=1,...,Mm,
Tm+j = gj('rlﬁylr "axﬂ’uym)7
ym+j:hj(l‘l,yl,...,l‘m,ym), j=1,...,n—m,

and consequently

Oz Oyx o Ovp Oy

= =" = = A1
Bui 81)1- 61 ’ 8vi 8u1 0’ (7 )
8xm+j 8gj 8$m+j agj
= = = 12
T = e B0 = Doy’ (7.12)
OYym+j _ Oh; Wmij _ Oh;
= = —-— .].
8ui 8uz ’ 61)1‘ 8vi ’ (7 3)
fork=1,....m,i=14,....m,j=1,....,n—m.

The tangent space T, (M) at « € M is spanned by

{<8ii)w’ (ai)gc’ zlm} (7.14)

For the immersion 2 : M — E?", we have
zn: 8@ 0 5y,\ i
(f?uz &~ ou; 8:10)\ Ou; 0y

i Oox, O Byki e Jg; +8hj 0
ou; 8xk Ou; Oy, — Ou; 8xm+] i Omts )

k=1 J

Therefore, using (7.11)—(7.13), we compute

0 0 <K [dg; O Oh; 0
_ _9 1
! (é)ul) ox; + ; (5% 0Ty j - Ou; aymﬂ') (7.15)
and similarly
0 o <= [dg; 0 oh; 0
= . .1
' (3%) dy. ; <5”i Demry | O aymﬂ') (710

Applying J to (7.15), we have
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o\ o "Crag o on, 0
p— - . .1
e <8uz> y; * Z (auz amerj Ou; amerj) (7 7)

Jj=1

Since f; are holomorphic functions, they satisfy the Cauchy-Riemann equa-

tions, namely,
5‘gj o 8h] 8gj _ 8h]

aui - avi ’ 8’01' B 8ui ’
and using (7.16) and (7.17), we compute

0\ _ 0 \N[dg o _oh 0 \_ (0
7 (au’b> B 8yl * Z <a’0i axm+j + (9’[)7; 3ymﬂ) = (GU,L) ' (718)

j=1

In entirely the same way, we obtain

()= (2) o

Using (7.18) and (7.19) we conclude that JT' (M) C T(M). Hence we deduce
that M is a J-invariant submanifold of C". Since C" is a K&ahler manifold,
using Theorem 7.2, it follows that M is a Kahler manifold. &

According to Theorem 7.2, we can choose an orthonormal normal basis &,
€« € TH(M), in such a way that £,- = J&,, fora = 1,...,q, where ¢ = L.
Consequently, we can write

h(Xa Y) = Z{Q(AGX, Y)ga + Q(Aa*Xv Y)ga*} (7'20)

a=1

where A,+ denotes the shape operator with respect to £,+. Thus, combining
(7.8) with (7.20) gives

)=

Jh(Xa Y) = {g(AaXa Y)ga* - g(Aa*Xv Y)ga}

a=1

{g(AaX7 J/Y>fa + g<Aa*Xa J/Y)Ea*}

[
M=

2
Il

1
X,J'Y),

Il
>
—

and therefore
g(A X, JY) = —g(As- X,Y), g(A.X,Y)=g(AsX,JY),

that is, Ay« = J'Aq, Ay = —J'Ag+. Since J' is skew-symmetric and A, and
A,+ are symmetric, we conclude

trace A = —trace J' A, =0, trace A, =traceJ'A, =0 for a=1,...,q.

Thus, using Proposition 5.4, we have proved
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Theorem 7.3. A J-invariant submanifold of a Kdhler manifold is a minimal
submanifold.

Here we note that

g(AJ'X)Y) = —g(X,JAY) = —g(X, Ag-Y)
=—g(AnX,Y) = —g(J' A, X,)Y)

and an analogous consideration implies

Agd = —J A, Aged =—J Aq-. (7.21)
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The Levi form

Let M be a complex manifold with the natural almost complex structure
J and let M be a real submanifold of M. In this section we consider the
involutivity of the complexification of a holomorphic tangent bundle. For this
purpose, the Levi form plays a very important role.

Let HY(M) be the complexification of the holomorphic tangent space
H,(M) and
HOY(M) = [1X + V=1 X |X € H, (M)},
HOO(M) = [1X — V=T11X|X € Hy (M)}
Then we have
H (M) = HD (M) & HO (M),

We define the following subbundles of the complexification of the tangent
bundle T¢ (M)

qHOM) = | B (M), HOV(M) = ] HD (M),
xeM xeM
HYO (M) = ) HMO (M).
xeM

We begin with a well-known result.

Proposition 8.1. Both distributions HOV (M) and HMO (M) are involu-
tive.

Proof. We only show that H(®1 (M) is involutive, because the other case can
be proved in entirely the same way. We compute [V, W] for V, W € HOD ().
Then, for some X,Y € H(M), we have

[V,W] =1 X +vV-1J1XiY ++/—1J1Y]
= (1 X,2Y] — [ X, oY) + V=1([J2 X, Y] + (X, J2Y]).  (8.1)
M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 53

Developments in Mathematics 19, DOI 10.1007/978-1-4419-0434-8_8,
© Springer Science+Business Media, LLC 2010



54 8 The Levi form

Since M is a complex manifold, the Nijenhuis tensor

N(X,0Y) = JpX Y| — J[NX, hWY] — o X, JiY] — [J1X, Y]
vanishes identically and we obtain
[1X,Y] = [Jo X, JoY] = J(—[1 X, JiY] — [J1X,2Y]),
(1 X, 1Y) + [J1 X, 2Y] = J (o X, Y] — [Jo X, J2Y]). (8.2)
Now, using (8.1) and (8.2), we get
[V, W] = pX,2Y] — [1X, JoY] + V=1 J(1X,2Y] — [J1 X, J1Y]).

Since X,Y € H(M), it follows that JiX,JJiY € T(M) and therefore we
conclude
[1X,Y] = [o X, WY ] € T(M).

Also, from the above discussions, it follows
[( X,0Y] — [W X, Y] € JT (M)
and this implies that H (%1 (M) is involutive. 0

Proposition 8.2. If H(M) is involutive, the integral submanifold of H (M)
s a complex manifold.

Proof. If X € H(M), then J1X =1FX +v(X) =1FX and F? = —id. Thus
F is an almost complex structure on the integral submanifold. Since the
ambient manifold M is a complex manifold, the Nijenhuis tensor N(:X,:Y) =
0. Therefore we have
[(X,0Y] — [ X, oY ] + J[Jo X, oY) + J[ X, JiY]
=1[X,Y] —o[FX,FY]|+ W[FX,Y]|+ o[ X, FY] =0,

that is,
X, Y| —o[FX, FY|++F[FX,Y]|+v([FX,Y])+F[X, FY]+v([X, FY]) = 0.

The tangential part of the last equation is just the Nijenhuis tensor N(X,Y).
Hence the integral submanifold is a complex manifold with almost complex
structure F'. g

Lemma 8.1. The normal part of J[J1X,1Y] is equal to the normal part of
J[JY, 2 X].

Proof. From relation (8.2), we have
X, Y] —[FX,FY] = J([J1Y;: X] = [J1X,2Y]).

The left hand members of the last equation are tangent to M and therefore
the normal part of the right hand members must be zero. This completes the
proof. O
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As we have shown, both HOD (M) and HM9 (M) are involutive. But
this does not imply that HE (M) = HOV(M) @ H1LO (M) is involutive and
therefore let us consider the involutivity of H(M).

Let V.€¢ HOV(M), W € HYO(M). Then, for some X, Y € H(M),
V=1 X+v-1J1X and W =Y — v/—1J:Y and consequently

[V, W] = [1X,2Y] + [1X, JiY] — V=1([1 X, J1Y] — [J1X,2Y]).

Since XY € H(M), it follows J:X = «FX, JiY = +FY and therefore
[J1X, JaY], 1 X, JoY], [J2X,2Y] € T(M). Hence [V,W] € T (M). However,
in general, [V, W] ¢ JTC(M).

Lemma 8.2. Under the above assumptions, a necessary and sufficient condi-
tion for [V,W] € HY(M) is that JuX, JiY]| — J[J1X,2Y] € T(M).

Proof. First we note that J[:X, JiY] — J[J:X,:Y] € T(M) is equivalent to
[1X, JiY] — [J1X,1Y] € JT(M). Then by definition of H (M), the necessity
is trivial. To prove the sufficiency, we take X' € H(M). X' € JT(M) implies
that there exists X € T(M) such that +X’ = J+X and we have

(X 2Y] + [1 X, iY] = [1X,0Y ] + [J%X, JiY]
= [1X,2Y] — X, Y] € JT(M).

This completes the proof. a

The Levi form is defined in such a way that it measures the degree to
which HY (M) fails to be involutive. As we have shown, the normal part of
J[J1X,Y] is equal to that of J[J:Y,:X]. We give the following definition of
Levi form.

Definition 8.1. The Levi form L is the projection of J[J:X,1Y] to T+ (M)
for X, Y € H(M).

Theorem 8.1. [31] Let M be a complex manifold with torsion-free affine con-

nection V whose parallel translation leaves the almost complex structure J
invariant and M be a real submanifold of M. Then we have

L(X,Y) = h(X,Y) + h(FX,FY), (8.3)

Jor XY € H(M), where h denotes the second fundamental form with respect
to V and F is defined by (7.3).

Proof. As we have shown, X € H(M), implies J1X = «FX and therefore,
using the Gauss formula (5.1), we compute
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J[J1X,2Y] = JpF X, Y] = o [FX,Y]
= J1(VpxY — Vy(FX))
= J (VpxY — h(FX,Y) = VyitFX + h(Y,FX))
= J (VpxY — Vyi1FX)
= Vrx(J1Y) = Vy (J1FX)
= Vrx1FY — Vy1F?X
= valFY + vyZX
= 1Vrx(FY)+h(FX,FY)+1VyX + h(Y, X).

Using Definition 8.1, this establishes the formula (8.3).
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The principal circle bundle S?"*1(P"(C), S?)

It is well known that an odd-dimensional sphere is a circle bundle over the
complex projective space (see [33]). Consequently, many geometric properties
of the complex projective space are inherited from those of the sphere. Espe-
cially, at the end of this section, we prove that the complex projective space
has constant holomorphic sectional curvature.

Let C"! be the (n + 1)-dimensional complex space with natural Kéhler
structure (J', (,)) recalled in Example 4.2 and let S>"T! be the unit sphere
defined by

n+1
S2n+1 — {(Zl, ) n+1 Cn+1‘ Z _ 1}
n+1
_ 1 1 n+1 n+1 R2n+2 =1
—{($7y7...,$ ‘Z ]_ }

The unit normal vector field & to S2"*! is given by

n+1
i 0 0
fz—Z(z g Y ayi>'

i=1

From
<J/’£v £> = <J/2§7 J/£> = _<£a J/£>7
it follows (J'¢,€) = 0, that is, J'¢ € T(S?"+1). We put
JE =V, (9.1)
where ¢ denotes the immersion of S2"*! into C"*!. From the Hermitian

property of (), it is easily seen that V' is a unit tangent vector field of S2"+!
and with respect to the natural basis, 2V’ is represented by

n+1
9 9
V=2 (_yz o Y 81/") '

i=1

M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 57
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Let us denote by ¢’ the metric on S?"*!, induced by the metric (,). Defining
the 1-form u’' on S2"+1 by

u(X) =g (V,X') = (V1 X"), for X' €T (S*F1),
we can write
u = Z(fyidxi + ztdy?).
i=1

Let v* be the i-th component of 2V’ with respect to complex coordinates
2t = 2% 4 v/=1y* of C™*!. Then, 1V is represented as a position vector field
by v* = 1/—1 2" and consequently, the integral curve of ¢V’ is a great circle

S'={eV~190< 6 < 2r}.
We define a map 8?71 x 8! — 827+ by
(z,eV710) > zeV 10
Then, S! acts on S?"*! freely and the quotient space of S2"*! by the equiv-

alence relation induced by S! is the complex projective space P"(C). Thus
we get the principal circle bundle S>"T1(P"(C), S!). We put

Hy(S*"1) = {X" € T,(8™" ) u/(X") = 0}.

Then v’ defines a connection form of the principal circle bundle S"+1(P"(C),
S!) and we have

T,(S*"*1) = Hp(S*"*!) @ span {V} }.

We call Hj,(S*"*') and span{V,} the horizontal subspace and the vertical
subspace of Tp(SQ"“), respectively. By definition, the horizontal subspace
H,(S*"*1) is isomorphic to Ty, (P™(C)), where 7 is the natural projection
from S2"*! onto P"(C). Therefore, for a vector field X on P"(C), there
exists unique horizontal vector field X’ of S?"*1 such that 7(X’) = X. The
vector field X’ is called the horizontal lift of X and we denote it by X*.

Proposition 9.1. As a subspace of T,(C*™1), H,(S*"*1) is a J'-invariant
subspace.

Proof. By definition (9.1) of the vertical vector field V', for X’ € H,(S*" 1),
it follows
(JW X' &) = =X, JE&) = (1 X'2V') = 0.

This shows that J2.X’" € T,(S?"*1). In entirely the same way we compute
(JWX' V'Y = (X', JWV') = (X', =€) =0

and hence J1X’ € H(S?"*1), which completes the proof. a
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Therefore, the almost complex structure J can be induced on T, P™(C)
and we set
(JX)* = JWX*. (9.2)

Next, using the Gauss formula (5.1) for the vertical vector field V'’ and a
horizontal vector field X’ of T},(S*"*!), we compute

VEAV =V V! + g (A X, V)¢
=1V V' + (X' V)¢
= ZV/X/V/, (93)

where V¥ denotes the Euclidean connection of E?"*2, V' denotes the con-
nection of S2"*! and A’ denotes the shape operator with respect to &.
Now, using relations (9.3), (9.1) and the Weingarten formula (5.6), we
conclude

Vi V= -VE (7€) = —J'VE¢
=J(AX") = JWX'. (9.4)

Consequently, according to notation (9.2), relation (9.4) can be written as
ViV = (JX)*. (9.5)

We note that, since by definition, the Lie derivative of a horizontal lift of
a vector field with respect to a vertical vector field is zero, it follows

0=LyX* = [V, X*] = V), X* = Vy.V'
and using (9.5), we conclude
LX = (JX). (9.6)

We define a Riemannian metric g and a connection V in P"(C) respec-
tively by

g(X,Y) :g/(X*’Y*)’ (97)
VY = n(Viy. V). 9.8)

Then (VxY)* is the horizontal part of V/,.Y* and therefore
Y= (VxY) + ¢ (V. Y, VOV (9.9)
Using relations (9.5) and (9.7), we compute
g (Vi Y" V') = =g/ (V" V. V') = =g'(V", (JX)") = —g(Y, ] X),
and, using (9.9), we conclude

Vi Y* = (VxY)* — g(JX,Y)V'. (9.10)
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Proposition 9.2. V is the Levi-Civita connection for g.
Proof. Let T be the torsion tensor field of V. Then we have
T(X,)Y)=VxY -VyX — [X,)Y] =7V3.Y* — V. X* — [r X", 7Y%
=7(Vi.Y* = Vy. X" = [X*Y"]) = n(T'(X*,Y*)) = 0.
Hence V is torsion-free. We now show that V is a metric connection.

(Vxg)(Y, Z) = X(g(Y, 2)) —g(VxY,Z) = g(Y,Vx Z)
=X"(g'(V",27) =g (VxY)", Z7) = g'(Y", (Vx 2)").
Since Z* is horizontal, using relation (9.9), it follows
g (VxY)", 2%) = ¢ (Vx.Y", Z7)
and we compute
(Vx9)(X,Y) = X*(¢'(Y*,2%) — ¢'(Vx.Y*, Z*) — ¢'(Y*,V'x. Z")
= (Vx.g)(Y", 27) =0,

where we have used the fact that V' is the Levi-Civita connection for g’. Thus,
V is the Levi-Civita connection for g and the proof is complete. O

Further, let T' be a curve on $2"+1 whose tangent vector field <& is hori-

zontal and put
V(s) = w(I'(s)).
dr

Then ~(s) is a curve in P"(C) and the tangent vector field 7 of y(s) is 7(%;)-

Therefore % is the horizontal lift of 4 and

dr
;; . N— 7'[' ! JE—
4l ( i ds> ’

Hence, if I'(s) is a geodesic of S2"T1 then ~(s) is a geodesic of P*(C).

Conversely, let v(s) be a geodesic of P™(C) through a point x € P"(C).
Then through any point w € 7= 1(x) C S?"*1 there exists a unique geodesic
T'(s) whose tangent vector at w is 4*(0). Thus, I'(s) is the horizontal lift of
the geodesic v(s) and it may be expressed as

I'(s) = w coss + 4" sin s,

where we regard that w is the position vector at the initial point w € S2"+! C
Cntl = E2"*2. Hence any geodesic v(s) of P"(C) is written as

v(s) = m(wcos s + 4" sin s).

By virtue of (9.10), it follows
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[(X*Y*] = [X,Y]" + ¢ (X", Y*],V)V'
= [X, Y] + ¢ (V. Y* = Vo X* V)V’
= [X,Y]" + ¢ (VxY)" —g(JX,Y)V' — (VyX)*
+ g(JY, X))V, V)V
and therefore
[(X*Y*] = [X,Y]" —29(JX,Y)V'. (9.11)

Consequently, using (9.5), (9.6), (9.10) and (9.11), the curvature tensor R of
P"(C) is calculated as follows:

R(X,Y)Z =VxVyZ ~VyVxZ —Vixy|Z
= (V- (Vv 2)* = Ve (VX Z)* — Vix v Z°}
= m{Vx- (V3. Z" + g(JY, 2)V') = V3. (V5. Z" + g(J X, Z)V')
- v,[X*,Y’*]Jr2g(JX,Y)V’Z*}
= 1 {Vi. Vi 2 + g(JY, Z)V. V! — V. Vix. Z*
— g(JX, Z)Vy V' = Vixe y 2" = 29(JX,Y )V}, 2}
= T{R/(X*,Y*)Z* 4+ g(JY, Z)J1X* — g(JX, Z)JY*
— 29(JX,Y)J"Z*}.

Since the curvature tensor R’ of 82" t! satisfies

R/(X*, Y*)Z* _ g/(Y*, Z*)X* _ QI(X*, Z*)Y*
= g(Y, 2)X* — g(X, Z2)Y*, (9.12)

we conclude that the curvature tensor of P™(C) is given by

R(X,Y)Z = g(Y, 2)X — g(X,2)Y + g(JY, Z)JX
g(JX,2)JY —29(JX,Y)JZ. (9.13)

Let Kxy be the sectional curvature of P"(C). Then, by definition of the
sectional curvature and (9.13), it follows that

9(R(X,Y)Y, X)
9(X, X)g(Y,Y) — g(X,Y)?
gV, Y)g(X, X) — g(X,Y)* +39(JX,Y)?

9(X, X)g(Y,Y) — g(X,Y)?

39(JX,Y)?
g(X, X)g(Y,Y) - g(X,Y)?

Kxy =

=1+ =14 3cos,

where 6 is the angle between the planes {X,Y} and {JX,JY}. Since 0 <
6 < 7, in P"(C), we conclude

1< Kxy <4 (9.14)
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The holomorphic sectional curvature H(X) of a complex manifold is defined
by
9(R(X, JX)J X, X)

HX)=K = 1
(X) X,JX 4(X, X)? (9.15)
The holomorphic sectional curvature of P™(C) is 4 since
39(X, X)?
HX)=14+ ——F—5 =4. 1
=1+ iz xe (9.16)

More generally, a Kahler manifold M is called a complex space form if it
has constant holomorphic sectional curvature, namely, if H(X) is a constant
for all J-invariant planes {X, JX} in T, (M) and for all points z € M.

Now, let the holomorphic sectional curvature H(X) be independent of
X € T, (M) for all z € M, namely, let k(z) be a real-valued function on M
such that H(X) = 4k(z). Then by (9.15) we have

G(R(X, JX)TX, X) = 4k(x)g(X, X)?,
for any X € T, (M), from which it follows
D 9(R(X,JY)TZ,W) = dk(x) Y g(X,Y)g(Z, W) (9.17)
P P

where ), denotes the sum of all permutations with respect to XY ,Z,W €
T.(M).

Since M is a Kéahler manifold, Theorem 4.2 implies VxJ = 0 for any X
and therefore,
R(X,Y)JZ =JR(X,Y)Z.

Hence, we compute
g(R(X, Y)JZ, W) =g(JR(X,Y)Z, W) =—g(R(X,Y)Z, JW)
=g(R(X,Y)JW, Z). (9.18)
Now, relation (9.17) and repeated application of the property
9(R(X,Y)Z,W) = g(R(W, 2)Y, X)
of the curvature tensor R and relation (9.18) imply
g(R(X,JY)IW, Z) + g(R(X,JZ)JY,W) + g(R(X, JW)JY, Z)
=4k(2){g(X,Y)g(Z, W) + g(X, Z)g(Y, W) + g(X, W)g(Y, Z)}.

Substituting JY and JW for Y and W in the above equation, respectively,
we get
= 4k(z){g9(X,JY)g(Z,IJW) + g(X, 2)g(Y, W) + g(X, JW)g(JY, Z)}.
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Taking the skew symmetric part of this equation with respect to Z and W
and using the Bianchi identity, we obtain

29(R(X, Y)W, Z) + g(R(X, JZ)JW,Y) — g(R(X, JW)JZ,Y)
+9(R(X, W)Y, Z) + g(R(X, Z)WY)

=4k(x){-29(X, JY)g(JZ, W) — g(X,W)g(Y, Z) (9.19)
+9(X, Z)g(Y, W) — g(X, JZ)g(JY, W) + g(X, JW)g(JY, Z)}.

On the other hand, from (9.18) it follows

9(R(X,JZ)JW,Y) — g(R(X, JW)JZ,Y)

= g(R(X,JZ)JW,Y) + g(R(X, JW)Y, JZ)

= —g(R(X,Y)JZ,JW) = —g(JR(X,Y)Z,JW)

= —g(R(X,Y)Z,W). (9.20)

Using (9.20), relation (9.19) becomes

g(R(X,Y)Z,W) = k(z){g(X,W)g(Y, Z) — g(X, Z)g(Y, W)
+9(JY, Z)g(JX, W) — g(JX, Z)g(JY, W) — 29(JX,Y)g(JZ, W)},

that is, the Riemannian curvature tensor R of a complex space form is given
by

R(X,Y)Z = k(z) {g(Y, 2)X — (X, 2)Y + g(JY, Z)J X
— g(JX,2)JY —29(JX,Y)JZ}. (9.21)

Using the second Bianchi identity, it can be proved that k(x) is constant.

Moreover, it is well-known that two complete, simply connected complex
space forms of the same constant holomorphic sectional curvature are iso-
metric and biholomorphic. Any Kéhler manifold of constant holomorphic
sectional curvature k is locally isometric to one of the following spaces:

complex FEuclidean space c”, (k=0),
complex projective space P"(C), (k>0),
complex hyperbolic space H"(C), (k<0).

For the proof and more details we refer the reader to [33], [68].
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Submersion and immersion

As we have seen in Section 9, geometric properties of complex projective space
are induced from that of an odd-dimensional sphere. Therefore, for studying
submanifolds of a complex projective space, it is of great interest how to
pull down some formulae deduced for submanifolds of a sphere to those for
submanifolds of a complex projective space.

Let M be an n-dimensional submanifold of P*3* (C) and 7~ 1(M) be the
circle bundle over M which is compatible with the Hopf map

n+p

Q).

7. Sttt L p

Then 7=1(M) is a submanifold of S"*?*1. The compatibility with the Hopf
map is expressed by m o1’ = 207, where ¢« and ¢/ are the immersions of M
into P*2"(C) and 7~ (M) into S"*P+!  respectively (see Section 9, but be
aware that in Section 10 our notation of immersions is in conflict with that of
Section 9).

Let &, a =1,...,p be orthonormal normal local fields to M in p* (C),
and let &’s be the horizontal lifts of {,. Then £’s are mutually orthonormal
normal local fields to 7= 1(M) in S"*P+1. Consequently, using relation (9.7),
at each point y € 7~ 1(M), we compute

9°((1X)*, &) = 70X, &) =0,
9> (V' &) =0,
g(fmfb) = 6aba

g (' X*,€)
(V€
9°(&:.&)

where ¢g° and § denote the Riemannian metric on S™*7*! and Pt (C),

respectively. Here V/ = 'V is a unit tangent vector field of S**P*! defined
by relation (9.1), namely, J'¢ = —f V' where f denotes the immersion of
Sn+P+l into ™5, J' is the natural almost complex structure of C* 5

and & is the unit normal vector field to SP+P+L,

M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 65
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Now, let V¥, V/, V and V be the Riemannian connections of S"tP+1
n+p

7Y (M), P2 (C) and M, respectively. By means of the Gauss formula (5.1)
and relations (7.3) and (9.10), we compute

VA Y* = V3. (0Y)* = (VxY)* —g(J1X, V)V
= (VxY +h(X,Y))* + guF X Y)'V
=1/ (VxY)" + (h(X,Y))" + g(FX,Y )V, (10.1)

where g is the metric on M. On the other hand, we also have
V3 Y* =d Ve Y + B (X", V™)
=/ ((VxY)" +g(FX,Y)V) + I'(X",Y"), (10.2)

where h and h’ denote the second fundamental form of M and 7~!(M), re-
spectively. Comparing the vertical part and the horizontal part of relations
(10.1) and (10.2), we conclude

R(X*Y*) = (h(X,Y))", (10.3)
that is,
D G(ALXTYE = <Zg (AaX,Y)E ) Zg (AaX,Y)E,
a=1 a=1 a=1

where A, and A/, are the shape operators with respect to normal vector fields
&, and & of M and 7~1(M), respectively. Consequently, we have

g(ALX*Y*)=g(A,X,Y), for a=1,...,p.

Next, using (5.8), we calculate V5.£* as follows:

V3.8 = —ALX* + Di.& = /AL X" + Z st (X)Er (10.4)
b=1

On the other hand, using relation (9.10), we compute

vs*f; = (nga)* _g(JZX ga)l/v

= (—14aX + Dx&,)" Zu (&, &)V
P
_ )+ Gw(08) — (XY, (105)
b=1
where we have put
P
NIX =1FX + > u(X)a. (10.6)

a=1
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Comparing relations (10.4) and (10.5), we conclude
ALXY = (A X)* +u(X)V = (A X)* + g(Ua, XV, (10.7)
D'y.&; = (Dx&a)", (10.8)
that is, s/, (X*) = sq(X)*, where U, is defined by

p
Jé=—=1Ua+ Y Palo, (10.9)

and consequently u*(X) = g(U,, X).
Now, we consider V€%, Using (9.6) and (10.9) it follows

p
Vi = (J&) = —U; + > Pufy. (10.10)

b=1
On the other hand, from the Weingarten formula, we have
Votr = ALV 4+ Dy &8 = — A’V+Zsab : (10.11)
b=1

Consequently, using (10.10) and (10.11), we obtain
AV =Ur, s, (V)= Py, (10.12)

a?

Ve = (J&)" +U;. (10.13)
From (10.7) and (10.12), we get
g (A JALX* V") = g(AaAp X, Y) + u®(X)u(Y), (10.14)
and especially,
G(APX* Y*) = g(A2X,Y) + u®(X)u®(Y). (10.15)

For z € M, let {ey,...,e,} be an orthonormal basis of T,.(M) and y be a point
of m=1(M) such that 7(y) = x. We take an orthonormal basis {e7, ... e}, V}
of T,(m~1(M)). Then, using (10.12) and (10.15), we compute

P
ZtraceA' Z{Zg (AL eX) + g (AV,V)}
a=1

a=1 =1

DD (9(AdPer @) +ut(eu(en) + g (A,V, A, V)}
a=1 =1

{trace A2 4 2¢(U,,U,)}. (10.16)

NE

a=1

Summarizing, we conclude
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Proposition 10.1. Under the above assumptions, the following inequality

P P
Z trace A2 > Z trace A2
a=1 a=1

s always valid. The equality holds, if and only if M is a J-invariant subman-
ifold.

Proposition 10.2. Under the conditions stated above, if 7=1(M) is a totally
geodesic submanifold of S"TPHL, then M is a totally geodesic, J-invariant
submanifold.

Proof. Since 7~1(M) is a totally geodesic submanifold of S"*7*1 using Corol-
lary 5.1, it follows A/, = 0. Relation (10.16) then implies A, =0 and U, = 0,
which, using relation (10.9), completes the proof. O

Further, for the normal curvature of M in P*2" (C), using relations (5.27)
and (9.13), we obtain

GRH(X,Y )0, &) = u?(V)u"(X) — u(X)u"(Y)
— 29(FX,Y)Pay + 9([Aa, 4] X, V).

Therefore, if M is a totally geodesic, J-invariant submanifold, we conclude

9(RH(X,Y)80. &) = —2g(FX,Y)Puy. (10.17)
In this case the normal space T (M) is also J-invariant and P, never vanish.
We have thus proved
Proposition 10.3. The normal curvature of a totally geodesic, J-invariant
submanifold of a complex projective space never vanishes.

This proposition shows that the normal connection of the complex pro-
jective space which is immersed standardly in a higher dimensional complex
projective space, is not flat.

Finally, we give a relation between the normal curvatures R+ and R’ Lof
M and 7~ 1(M), respectively, where M is an n-dimensional submanifold of

P"2"(C) and 7~ !(M) is the circle bundle over M which is compatible with
the Hopf map m. Using relation (10.14), we obtain

9 ([A4, A X YY) = g([Aa, A X Y) + 0 (X)u (V) — u®(Y)u'(X)
and therefore, using relation (5.27), it follows
— P REWXTAYELE) + o5 (R (X YEL€)
= —g(R(X, 1Y), &) + (R (X, V)80, &) + u’ (X)u (V) — u’ (YV)u® (X).

Using the expressions (9.12) and (9.13), for curvature tensors of S**7*1 and
PTLTﬂj(C)7 respectively, and using relations (10.6) and (10.9), we compute

(R (X*,Y)E,€6) =GR (X, Y)a, &) + 29(FX,Y) Py (10.18)
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Hypersurfaces of a Riemannian manifold of
constant curvature

The theory of hypersurfaces, defined as submanifolds of codimension one, is
one of the most fundamental theories of submanifolds. Therefore, in Sections
11-13 we consider hypersurfaces of a Riemannian manifold of constant cur-
vature. This research, combined with the results obtained in Section 10, will
contribute to studying real hypersurfaces of complex projective space in Sec-
tion 16.

If the sectional curvature is constant for all planes 7 in T, (M) and for all
points z of M, then M is called a space of constant curvature. A Riemannian
manifold of constant curvature is called a space form. Sometimes, a space form
is defined as a complete simply connected Riemannian manifold of constant
curvature. The following theorem due to Schur is well-known. For the proof
and more details we refer the reader to [33], [68].

Theorem 11.1. Let M be a connected Riemannian manifold of dimension
greater than two. If the sectional curvature depends only on the point x, then
M is a space of constant curvature.

For a Riemannian manifold (M,7g) of constant curvature k, the curvature
tensor R of M has the following form:

RX,Y)Z =K3g(Y,Z2)X —9(X,Z)Y}, (11.1)

for X,Y,Z € T(3).

Any space of constant curvature is locally isometric to one of the following
spaces:

Euclidean space E", (k=0),

sphere S*, (k>0),
hyperbolic space H", (k< 0).
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Further, let M be a hypersurface of (M,g) and let 2 : M — M denote the
isometric immersion. Then the Gauss formula (5.1) and Weingarten formula
(5.6) reduce respectively to

Vx1¥ =1VxY + g(AX,Y)E, (11.2)
Vxé = —1AX, (11.3)

where ¢ is a local choice of unit normal, X, Y € T(M) and A is the shape
operator in the direction of £.

Consequently, denoting by R the curvature tensor of a hypersurface M of
a Riemannian manifold M of constant curvature k, the Gauss equation (5.22)
becomes

R(X,Y)Z = k{g(Y, Z)X — g(X, Z)Y} + g(AY, Z)AX — g(AX, Z)AY (11.4)
and the Codazzi equation (5.23) leads to
(VxA)Y = (VyA)X, (11.5)

since

9J(VxAY — (Vy A)X, Z) = g(R(X, 1Y nZ,§)
= k{g(1Y,212)g(:X,§) — 9(eX,22)g(eY, &)}
= 0. (11.6)

The eigenvalues of the shape operator A are called the principal curvatures
of the hypersurface M. In the following, we assume that all principal curva-
tures of M are constant and we denote by T the eigenspace corresponding
to eigenvalue A, that is,

T\={XeT(M)|AX = \X}.
Lemma 11.1. For X € T(M), Y € T\, Z € T,,, it follows
(VX A)Y, Z) = (A= w)g(VxY, Z). (11.7)
Proof. Since the shape operator A is symmetric, we conclude
9(VxA)Y,Z) = g(Vx(AY),Z) — g(AVxY,Z) = (A — p)g(VxY,Z). O

Lemma 11.2. Let A and p be principal curvatures of M. Then we have
(1) VxY eT, ZfX, Y e T)\,
(2) VxY LT\ if X eTy, Y€ T, A# .
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Proof. For any Z € T(M), by (11.5), it follows

9(AVxY, Z) = g(Vx(AY), Z) — g((Vx A)Y, Z)

— \(VxY, Z) — g((VZA)X,Y)
=XN(VxY,Z) — g(Vz(AX),Y) + g(Vz X, AY)
= \g(VxY, Z),

and we conclude AV xY = AV xY. This proves (1).
For Z € Ty, by Lemma 11.1, it follows
9(VxA)Y, Z) = (n = Ng(VxY, Z). (11.8)
On the other hand, by Codazzi equation (11.6) and Lemma 11.1, we compute
9(VxA)Z,)Y) = g(VZzA)X,Y) = (A= p)g(VzX,Y). (11.9)

Using (1), it follows Vz X € T) for X, Z € Ty and therefore g(VzX,Y) = 0.
Since Vx A is symmetric, combining relations (11.8) and (11.9), we obtain

(n=Ng(VxY,Z)= (A= p)g(VzX,Y)=0.

Hence, if A # u, then VxY L T). O

Now we prove a theorem of E. Cartan [6], [7], [29] for a hypersurface M™
whose principal curvatures are all constant.

Theorem 11.2. Let M be a hypersurface of a Riemannian manifold M of
constant curvature k. Assume that E1,...,E, are local orthonormal vector
fields of M satisfying AFE; = M\ E;, with \; constant. Then for every i €
{1,...,n}, we have

— =0. 11.10
Ai — A ( )

=1
AjFEN

Proof. From the Gauss equation (11.4), it follows
R(E;, E;)Ej = (k+ \iXj)E;. (11.11)

On the other hand, using the definition of a curvature tensor R, for A; # A,
we compute

9(R(E;, Ej)E;, E;) = g(VE,VEEj, E;) — 9(VE,VE Ej, E;)
- 9(Vie, B, E), Ei)
=9(VE Ej, Vg E;) — 9(Vig, B, ), Ei),

using Lemma 11.2. Hence, we conclude
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k+XiXj =9(VE E;, Vi Ei) — 9(Vig, 5L, Ei) (11.12)
By Lemma 11.1, we get
9((V 1551 A Eis Ey) = (i = A)g(Vis, 5,1 Br. Ey)
= (N = )9V, g1 B, Ei)
from which it follows

9((Vig, g, A) Es, Ej)
9(V1B..m,) Ej Bi) = : /\-lx 2 (11.13)
J i

Now, we compute

9((Ve,A)
=9((Ve,A)E;, Vi, Ej) — 9(VE,A)E;, Vi, E)
9((Vig,A)

Vi, A)E;, Vg Ej) — 9(VE,A)E;, Vi, E)

=\ —X)9(VE Ej, Vi E),
that is,
9((Vig, g5, E;, E;) = (N — X\j)9(VE, E;, Vg, E;). (11.14)
Combining (11.12), (11.13) and (11.14), it follows
k+ XA =29(Vi, By, Vi, E). (11.15)
Using Lemma 11.1, we conclude
9(Ve,A)E;, Es) = (Aj = As)9(V e, Ej, Es)

and therefore we have

_ g((vKA)E]a ES) )

B, E,) = 1.1
g(vE7 3 ) )\] — s ( 6)
Since Vg, E; = >, g(VE,Ej, Es)E;, relation (11.15) becomes
k+Xidi=2 Y (Ve E;, E)g(Vg, Ei, E,). (11.17)

s=1
AoFENj
Substituting (11.16) into (11.17), we get

. 9(VEAE; B,
A =2 ) (A._EAS)(AJ-—AS)'

T
s=1
AsFENjNi
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Since Vg, A is symmetric, we compute

n n

k + )\z)\J
j=1 Ai = Aj s=1
XA NZE

>\i - )\s '

which proves (11.10). O

As an application of Theorem 11.2, we prove the following

Theorem 11.3. Let M be a hypersurface of a space of nonpositive constant
curvature whose principal curvatures are constant. Then at most two of them
are distinct. If the ambient manifold is a Fuclidean space and M has two
distinct principal curvatures, then one of them must be zero.

Proof. First, we consider the case when the ambient manifold is a Euclidean
space. Then (11.10) becomes
Aidj
Ai — A

:07

for any principal curvature \;. Now, let A\; be the least positive principal
curvature. Then each term /\’:_’\/\7] is negative and consequently, A; = 0, for all

Ai # Aj. If all principal curvatures are nonpositive, we take ); in such a way
that |\;| is the greatest of principal curvatures and using entirely the same
argument as in the above discussion, we obtain A; = 0 for all A\; # A;.

Next, let the ambient manifold be a space of negative constant curvature.
In this case we may suppose that £k = —1. We take ); in such a way that the
other principal curvatures cannot be between \; and 1 . Note that we can take
such );, for example, to be the smallest principal curvature which is bigger
than 1 or we can take the largest principal curvature satisfying 0 < A; < 1.
Then every ’\A‘)‘j ;jl is negative, unless \; = )\i This completes the proof. O

Further we consider the hypersurfaces M of a Euclidean space whose prin-
cipal curvatures are constant. Using Theorem 11.3, it follows that M has
at most two distinct principal curvatures. If the principal curvatures are all
identical, M is either totally geodesic or totally umbilical. In this case, if M
is complete, by Theorems 6.1 and 6.2, M = E™ or M = S™.

Now suppose that M has two distinct principal curvatures. Then, by
Theorem 11.3, one of them must be 0 and we denote by A the nonzero principal
curvature. Since A is constant, the multiplicity » of A is also constant and

Dy = {X € T(M)|AX = AX},
= {X € T(M)|AX =0}
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define distributions of dimension r and dimension n — r, respectively. By
Lemma 11.2, Dy and Dg are both involutive and if X € Dy, Y € Dy, then
VxY € Dy, Vy X € D, which shows that Dy and Dy are parallel along their
normals in M.

Lemma 11.3. The integral submanifolds My of Dy and My of Dy are both
totally geodesic in M.

Proof. For X € Dy and Y € Dy, we have g(X,Y) = 0, from which
9(VzX,Y)+ g(X,VzY) = 0. If Z € Dy, by Lemma 11.2) VzY € D,
and g(VzX,Y) = 0. This shows that M) is totally geodesic in M. In entirely
the same way, we can see that M, is totally geodesic. a

Therefore, using the de Rham [52] decomposition theorem, we have
Lemma 11.4. If M is complete, M is a product manifold My x M.

Lemma 11.5. M, is totally umbilical in E™t' and My is totally geodesic in
| DU

Proof. Let ¢/ be the immersion of M), into M. Then for any X', Y' € T(M)) =
D), we have

n+1
VxnodY =100V Y + > g'(A,X, Y, (11.18)
a=r+1

where ¢’ is the induced Riemannian metric of M), &.’s are orthonormal nor-
mals to My in E"*! and A/, are corresponding shape operators of £.. Choo-
sing a unit normal £, ; as &, which is the unit normal to M in E"*!, relation
(11.18) becomes

VxnotV' =100 Vi Y/ + > g/(AX Y, + g/ (A, [, X', Y')E. (11.19)
a=r+1

On the other hand, we have

VxnolY =1Vxd'Y' + g(Ad/ X' /Y )¢

=/ V Y+ D g (AIX,YEY + g(AV XY,
a=r+1

where A/ denotes the shape operator of M, with respect to ¢, in M. By
Lemma 11.3, M, is totally geodesic in M, and consequently the last equation
can be written as

VxnodY' =104V, Y + N\ (X', Y')E. (11.20)
Comparing (11.19) and (11.20), we have A}, X’ = 0 and A;, ,; X’ = AX". Thus,

M, is a totally umbilical submanifold of E**!. Similarly, we can prove that

My is a totally geodesic submanifold of E"*1. O
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By Theorems 6.1 and 6.2, M) is an r-dimensional sphere S” and M, is
an (n — r)-dimensional Euclidean space E"~" and M = S” x E"~". Thus we
proved the following classification theorem.

Theorem 11.4. Let M be a hypersurface of an (n+1)-dimensional Fuclidean
space E" T whose principal curvatures are all constant. Then M is one of the
following:

(1) n-dimensional hypersphere S™;

(2) n-dimensional hyperplane E™;

(3) the product manifold of an r-dimensional sphere and an (n—r)-dimensional
Euclidean space S™ x E"~".
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Hypersurfaces of a sphere

Here we give several examples of hypersurfaces of a sphere.

Ezxample 12.1. Small sphere.
The hypersurface

(e | 1 1
M—{(yl,-~-,y"+2)€E"+2| W) =5 ytt= —}

A=1

is called the small sphere. Then M C S"*!(1/a) C E"*2 and M lies in a
hyperplane E"*! of E"+2 defined by

1 1
1_ .1 n+l __ _n+1 n+2 _
y =T,..., Yy ) Ve e

The unit normal vector field &; of E™+! to E**+2 is

0

4 gy

From the defining equation, we have Z?ii(yk)Q = 7z and the unit normal

vector field &, of M in Ertl is

n+1 9
L=b) v'5
= o
Since the unit normal vector field ¢ of S**+! in E"*2 i
n+2 a

5/20‘ yA77
& o

to find the unit normal vector field £ of M in S"*1(1/a), we put £ = a&s+B¢;.
Then, from ¢ = $& + ay™2&; and (£, &) = 0, we have

M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 7
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«
f: 0[52 — ng

Moreover (£,£) = 1 implies

I RS 1 a?b?
L=a® 30> (v") + EIE=IEN (-
A=1
Thus, o = — bzb_az) and consequently

n+1 a
f— Vi —a? (Zy ) =t (12.1)

Let V¥ be the Euclidean connection of E"*2 and ¢ = Z"Jrz %. Then we

have
vE, vE >\ 9
{= Z ,‘91 a YN

axJ

n+2 n+1 8
-V Z Zua)\:_ b2—a22<.>,

oxd

n+2
since a%ﬂ = 0. Thus, using Weingarten formula (5.6), we obtain

d B B)
VE (A 2 _ .2
b= g T (a;m)f b ‘”(axi)'

Hence we have, for any X € T'(M),

AX =2 — a2X, s(X) =0, (12.2)

which means that the small sphere M is a totally umbilical and not totally
geodesic submanifold of the sphere S"*1(1/a). O

Ezample 12.2. Product of spheres in S""1(a). Let

M= {(y', ..., yP T ut, TPy
p+1 n—p+1
Z( )? = a”cos? 0, Z 2 = a%sin? 0},

A=1

where 0 is a fixed constant and 1 < p < n—1. M is the product of two spheres
M7 and M5 where

p+1
M, = {(yl, o 7y]o+1) c Ep+1| Z(yA)2 — a2 C082 9} ,
A=1

n—p+1
My, = {(ul’ o 7un—;l)-i-1> c En—p+1| Z (uA)Q — a2 sin? 9} )

A=1
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Let & (respectively &) be the unit normal vector field to M; (respectively
M) in EPT! (respectively E"~P+1) namely,

p+1

_ A
f= acos@ Z 8y)"

1 ””’“ 9

&= —— u’\—/\.
asin £~ = Ou

n+2 n—p+1

Now we put y' =y!,... yPtl =yPH1 P2 =yl . "2 =y and we
regard that & and & are unit normal vector fields to M in E"*2. Since the
unit normal vector field & to S"*1(a) in E"*? is

n+2

- _= Z y (cos0)&1 + (sin0)&a,

to find the unit normal vector field £ = Z”+2 A to M in S"*1(a), we put
& = a1 + P& and use the conditions (£, &) =0 and (£,€) = 1. Then we have
(B = —cotf and a = sin f. Therefore we conclude

& = (sin#)& — (cos )&

1 p+1 n+2
=— |-t
. anHZy 5 +cotd Z V' — |,
A=p+2
that is, for 1 <A <p+1,
A 1 A
& = ——(tan0f)y (12.3)
a
and for p+2 <A <n+2,
A1 A
& = —(cotO)y™. (12.4)
a
Let (x!,...,2") denote the local coordinates of M. Then the immersion

1: M — E"*2 is represented by

yl = 1‘13 sy yp = xp’ (yp+1)2 =a? cos? 0 — f=1(xi)2’

yrP=artl Lyt =t ()P = a?sin 0 - L (20)2

Using Weingarten formula (5.6), we have, for 1 < j <p,
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o 0\ ., 2 ayroaer 9
— <a a) s <8xj>£ = D o o
Ap=1
n+2

ay* 0
B _7t 92 D dyr

1 0
—a tan 61 (8(]}'])

since gi’c] =0 for p+2 < p <n+2. With the notation

)
g = 2 A ger

we have A;? = f% tan 95}“ and s = 0 for 1 < 7 < p. In entirely the same way

we have Aé? = %cot 95;“ and s = 0 for p+1 < j < n. Thus the shape operator

A is represented by the matrix

1 /—tan6l O
A_a( 0 cot91>

and all the coefficients of the third fundamental form are equal to zero. This
means that the shape operator of the product of two spheres in S"*1(1/a)
has exactly two distinct principal curvatures. &

Example 12.3. [42] Let S?"*1 denote a unit sphere in E>"™2 namely,

n+1
S = {(@1,. s g1, Y155 Ynt) |Z ) =1

and let us consider a function

n+1 n+1 2
F(l'vy):F(xla'~';xn+1ay1>~~'7yn+1):{Z(‘r?_yz } +4<Z$zyz> .

i=1
For each 0 < 0 < 7, let
M'(2n,0) = {(z,y) € S*" T F(z,y) = cos® 20}

denote a hypersurface of S2"*1. Tt is well-known (see [42]) that the principal
curvatures of M’ (2n,0) are cot(6 — %), cot 8, cot(0 + F), cot(0 + §) = —tan6
with multiplicities n — 1, 1, n — 1, 1, respectively. &

Remark 12.1. R. Takagi in [57] proved that if a hypersurface M of S?"*! has
four constant principal curvatures and if the multiplicity of one of them is
equal to 1, then M is congruent to M’(2n, ).
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It is well-known that the sphere S"*l(%) of radius % is a Riemannian
manifold of constant curvature a. Now, let M be a hypersurface of S"1(1) c
E""2 and ¢ be the unit normal of M in S"(1). Let us denote with ¢ and j
the immersions M — S™*! and S"t! — E"*+2, respectively. Regarding M as
a submanifold of codimension 2 of E™*2, let us choose orthonormal normal
vector fields &; and & in such a way that & = j ¢ is normal to M in S™*! and
& is normal to S”*! in E"*2, that is, in the direction of the position vector
field of S**!. Then we compute

VRE = VRIE=jVREFRT(X,6) = —jorAX —ag®(1X,€) = —jor AX.

On the other hand, using the Weingarten formula (5.6) and the notation
(5.10), we obtain
VR = —jorhiX + s(X)Ea.

Comparing the above two equations, we conclude A; = A and s = 0. This
means that the shape operator A; with respect to &; is identical with the
shape operator A of M in S™*!. Further, if ¢ is the position vector field of
S"™t1 then & = —a ¢’ and therefore

VE& = —aVEEe = —ajor X.

On the other hand, using the Weingarten formula, we obtain
Vi = —jordsX —s(X)&

and consequently, Ao = al and s = 0. Now we prove

Theorem 12.1. A totally umbilical hypersurface M of S"H(é) is a sphere
or an open subset of a sphere.

Proof. Under the assumptions of Theorem 12.1, using the previous notation,
since M is a submanifold of E™*2, the shape operators of M are 4; = bl and
Ay = al. Using the Codazzi equation (11.5), it follows (Xb)Y = (Yb)X and
therefore b = constant. Hence,

V&G =—bjoiX,
ngg =—ajor1X.

For &5 = aéy — béa, it follows VL& = 0, that is, & is a constant vector field.
Since for the position vector field P of M we compute

X<P7£3> = <jOZX,£3> + <P7V)E(£3> = Oa

it follows (P, {3) = constant. Hence P € M lies on a plane defined by (P, £3) =
constant and on S”“(%). This means that M is an n-dimensional sphere or
an open subset of it. O
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Hypersurfaces of a sphere with parallel shape
operator

In [53] P. J. Ryan considered hypersurfaces of real space forms and specifically,
he gave a complete classification of hypersurfaces in the sphere which satisfy
a certain condition. The condition that the shape operator is parallel is its
special case. In this section we give the proof of this classification (in the
specific case V x A = 0) and furthermore, we show that the algebraic condition
(13.5) on the shape operator implies that it is parallel.

Let us suppose that the shape operator A of a hypersurface M™ of a unit
sphere is parallel. Then

R(X,Y)(AZ) = VxVy(AZ) — VyVx(AZ) — Vixy|(AZ)
— AR(X,Y)Z. (13.1)

Using the Gauss equation (5.22) and the form of the curvature tensor of
S"t1(1), given by (11.1) for k = 1, we compute

9(Y,AZ)X — g(X,AZ)Y + g(AY, AZ)AX — g(AX,AZ)AY
=g(Y,2)AX — g(X,Z)AY + g(AY, Z)A*’X — g(AX, Z)A?Y.

For an orthonormal basis {e;},i =1,...,n of T, (M) formed by the eigenvec-
tors of A,, corresponding to the eigenvalues A;, using (13.1), we conclude

Under the conditions stated above, we now prove several lemmas.
Lemma 13.1. For any x € M, rank A, =0 or rank A, = n.

Proof. Assume that rank A, # n. Then for some 7 we have \; = 0 and using
equation (13.2) it follows A\; = 0. Thus all eigenvalues of A, are zero and
rank A, = 0. a

Lemma 13.2. If A, # 0, then A, has at most two distinct eigenvalues.

M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 83
Developments in Mathematics 19, DOI 10.1007/978-1-4419-0434-8_13,
© Springer Science+Business Media, LLC 2010



84 13 Hypersurfaces of a sphere with parallel shape operator

Proof. Relation (13.2) for ¢ = 1 reads (A; — A1)(Aj A + 1) = 0. If Aj # Aq,
then A\; = —)\%, which shows that A, has at most two distinct eigenvalues. O

Lemma 13.3. If A has two distinct eigenvalues, then the multiplicities of the
eigenvalues are constant.

Proof. Let X be an eigenvalue of A of multiplicity p at © € M and multiplicity
qaty e M. Then f% has the multiplicity n —p at x and n—q at y. Therefore
we compute

(trace A) (z) — (trace A)(y) = pA(z) — gA(y) — (n — p>ﬁ o q>ﬁ
= (= @) + 3757) + 1) - M) + (0 ) 2
Since trace A is continuous, this implies p = q. a

Let A have exactly two distinct eigenvalues A and p(= f%) We put
Th(x) ={X, € To,(M)|A: X, = XX, },
T, (z) ={X, € T,(M)|A, X, = p X, }.

Then using Lemma 13.3, it follows that 7)(x) and T),(x) make distributions
Ty and T),.

Lemma 13.4. The distributions T\ and T, are both involutive.

Proof. Let us choose X, Y € T). Then, using Codazzi equation (11.5), it
follows
A[X,Y] = AVxY — AVy X
=Vx(AY) - (VxA)Y — Vy(AX) + (VyA)X
— (XA)Y — (YA)X + X, Y].
Hence,
(A= A[X,Y]=(XN)Y — (YN X. (13.3)
However, the left-hand members of (13.3) belong to 7). In fact, [X,Y] =
[X,Y]x + [X,Y], implies that
(A= ADXY] = (A= AD([X, Y]y + [X, Y],,)
=AX, YA+ AX,Y], - AX, Y]\ = \[X,Y],
— (- NIX. Y], € T
On the other hand, the right-hand members of (13.3) belong to T and there-

fore
AX,)Y] = \X,Y] (XY —(YNX =0. (13.4)

This shows that the distribution T} is involutive. In entirely the same way,
we can see that the distribution 7}, is also involutive. O
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Lemma 13.5. If the multiplicities of A\ are greater than one, then XA = 0
and Xp =0 for X € Ty.

Proof. If dimTy > 1, we can choose X, Y to be linearly independent. Thus
XX\ =0, using (13.4). Since p = —%, it follows Xpu = —% XA =0, and this
completes the proof. O

Theorem 13.1. Let M be a hypersurface of S™t' whose shape operator has
exactly two distinct eigenvalues, then M is locally a product of two spheres.

Proof. Let Ty and T}, be as above. If X € Ty, Y € T},, the Codazzi equation
yields
Vx(uY) —=Vy(AX) = AVxY — AVy X.

Since A and p are constant, we get (A — A)VyX = (A — ul)VxY. The
left-hand side is in 7}, while the right-hand side is in 7. Hence both sides are
zero, that is, Vy X € T, VxY € T,. For Z € T},

9(VzX,Y) +g(X,VzY) =Vz(9(X,Y)) =0.

On the other hand, VzY € T}, implies g(X,VzY) = 0. Thus, we have shown
VzX € TMl for all Z and X € T). Since THL =T\, we may write Vp, T\ C Ty
and V7, T, C T,,. This means that T} is a totally geodesic, parallel distribu-
tion. The same conclusion can be drawn for T),, namely, T}, is also a totally
geodesic, parallel distribution. Hence, by de Rham decomposition theorem
[52], M is locally isometric to the Riemannian product of the maximal inte-
gral manifolds M)y and M,,.

Now we consider the integral submanifold M. Let ¢y be the immersion
of My into M and j =101y, that is, § is the immersion of M, into S2"*! via
M. Denoting by h* and h}, the second fundamental form of M) in S2"+1
and in M, respectively, we may calculate for any X’, Y’ € T) the covariant
derivative V> of My as follows:

V3.3Y = iV Y 4+ hNX' YY)
=V5io01,Y
= ZVX/Z)\Y, + h(ZA X/, 5N Y/)
=1 {in VX Y + h (XY} + (X', YY)
= iV Y 1y WX YY) + h(1x X, 0,Y7).
Since M, is totally geodesic in M, h}, = 0 and we easily see that hN (X', Y’) =
h(X,Y) = g(AX,Y) = A\g(X,Y). By the Gauss equation, the curvature
tensor R* of M) satisfies
g BNX' YN Z W) =g(Y',§ZNg(GY W) — g X', 52 )g(GY " i)
+ h)\(Y/a Zl)h)\(le W/) - h/\(X/a Z/)h)‘(Y/, W/)
= (L+M){g(Y. 2)g(X, W) — g(X, Z)g(Y, W)}
=(1+ AQ){QA(Y/7 Zl)g/\(X/7 W/)
- gA(le Z/)gA(Y/7 W/)}
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This shows that the integral manifold M) is a Riemannian manifold of con-
stant curvature 1 + A2. In entirely the same way we obtain that M, is a
Riemannian manifold of constant curvature 1 + p2. Thus, M is locally a

. e 1 1 ot e }
product of two spheres of radius VESY and T respectively. This com

pletes the proof. a

Lemma 13.6. Let M be a hypersurface of a Riemannian manifold of constant
curvature k. If the shape operator A satisfies

A’X = a AX + kX, X € T(M) (13.5)
for some constant «, then
VxVyA—-VyVxA—-VixyAd=R(X,Y)A=0. (13.6)
Proof. From the definition of the curvature tensor, it follows

(VxVyA—-VyVxA-Vixy4)Z
— (R(X,Y)A)Z = R(X,Y)(AZ) — A(R(X,Y)Z)
= k{g(Y, AZ)X — g(X,AZ)Y} + g(AY, AZ)AX — g(AX, AZ)AY
— K{g(Y,2)AX — g(X,Z)AY} — g(AY, Z)A%2X + g(AX, Z)A%Y.
Substituting (13.5) into the last equation, we obtain the result. O
We note that relation (13.5) implies that the eigenvalues of A satisfy
M —a\—k=0.

Since a and k are constant, it follows that A is constant and therefore trace A,
trace A% are both constant.

Let {e1,...,e,} be an orthonormal basis in T, (M) and extend e, . .., e, to
vector fields in a neighborhood of = by parallel translation along geodesics with
respect to the Levi-Civita connection of M. Then Ve; =0 fori=1,...,n at

x. As V., A is symmetric, using the Codazzi equation, we compute

n

9 (Ve A)en, X) = glei, (Ve, A)X) =Y gles, (VxA)es)
=1 =1 =1

= trace Vx A = X trace A = 0,

that is,

n

> (Ve A)e; = 0. (13.7)

i=1
Differentiating (13.7) covariantly and making use of Ve; = 0 at x, we get

n

> (Vx Ve, A)e; =0. (13.8)

=1
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Let X be a tangent vector at x and extend it to a vector field in a normal
neighborhood of x by parallel translation along geodesics. Then, VX = 0 at
x. Therefore, at x, using (13.6), (13.8) and Codazzi equation, we obtain

n n

> {(Ve,VxA)es = (Vx Ve, A)es — (Vie, xjA)ei} = Y (Ve Vx Ae;

=1 i=1

NE

{Vei (VXAGZ') — (VXA)Veiei}

<.

n

Ve, (Ve, AX) = Z(vﬁiVeiA)X + i(vel-A)(veiX)

i=1 i=1

-

o
Il
N

(Ve,Ve, A)X = 0. (13.9)

-

©
I
—

Since trace A2 is constant, it follows

1 n
5 Y Xtrace A2 =) {g(VyVxAe;, Ae;) + g((Vx A)ei, (Vy A)e;) }
i=1

= Z{g((vyvam,Aeo +9((VyA)(VxA)es,e;)} = 0.

Hence
n

trace (Vy A)(VxA) = — Z g((VyVxA)e;, Ae;)

i=1
and therefore trace (VxA)? = — 3", g((VxVxA)e;, Ae;). Thus

n n

g(VA,VA) = Ztrace (Ve,A)? = — Z 9((Ve; Ve, A)es,ei) = 0,

i=1 i,j=1
that is, VA = 0. This shows that we have proved the following

Theorem 13.2. [45] Let M be a hypersurface of a Riemannian manifold
of constant curvature k. If the shape operator A satisfies (13.5), then VA = 0.
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Codimension reduction of a submanifold

Let us first recall the theory of curves in 3-dimensional Euclidean space E3.
The curve C, whose torsion vanishes identically, is a plane curve. In other
words, for the curve C' without torsion, there exists a 2-dimensional totally
geodesic subspace E? such that C C E? C E3. In general, a curve C is
a submanifold of codimension 2 of E2, but if its torsion is zero, it can be
regarded as a submanifold of codimension 1 in E?2, that is, the codimension
is reduced from 2 to 1.

In this section we consider such a reduction of codimension for a general
submanifold M of a Euclidean space, of a sphere and of a complex projective
space. Moreover, we give some sufficient conditions for the existence of totally
geodesic submanifolds M’ of the ambient manifolds M such that

M cM cM.

For an n-dimensional submanifold M of an (n+p)-dimensional Riemannian
manifold (M,g), the first normal space Ny(x) is defined to be the orthogonal
complement of {¢ € T;-(M)|A¢ = 0} in T;-(M). Let M be a Riemannian
manifold of constant curvature k. Then the curvature tensor R of M is given
by (11.1) and using (5.27), the normal curvature R+ of M is given by

g(RL(Xv Y)gayfb) = g([AayAb]X7Y)~ (141)

Lemma 14.1. Suppose that the first normal space N1(zx) is invariant under
parallel translation with respect to the normal connection and that the di-
mension of Ni(x) is constant. Let Ny(x) be the orthogonal complement of
Ny (z) in T;-(M) and for x € M, let S(x) = Tp(M) + Ny(x). Then for any
x € M there exist differentiable orthonormal vector fields &1, ...,&, defined in
a neighborhood U(x) of x such that

(1) for any y € U(x), £&1(y), - - -, &4(y) span N1(y) and Eg11(y), - - -, &p(y) span
NO(y);

(2) Vx&, =0 in U(x) fora>q+1;
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(3) S(y), fory € U(z), is invariant under parallel translation with respect to

the connection in M along any curve in U(z).

Proof. Since Ni(x) is invariant under parallel translation with respect to the
normal connection D, it follows that if £ € Ny, then Dx¢& € Ny. Hence, we
have for £ € N1, n € Ny,

g(DXThé) = Xﬁ(n,f) _E(TLDXé) = Oa

which shows that Ny is also invariant under the parallel translation with
respect to the normal connection. At z € M we choose orthonormal vec-
tors £1(x),...,&,(x) in such a way that & (z),...,& (x) span Ni(x) and
g+1(®), -, & () span Np(z). Extending 1, ...,&, to differentiable ortho-
normal normal vector fields defined in a neighborhood U (z) by parallel trans-
lation with respect to the normal connection along geodesics in M, proves
(1).

Let &1, ...,¢, be chosen as in (1). Since both Ny and Ny are invariant with
respect to the normal connection, it follows s/, =0, for a > ¢+ 1, b < ¢q. The
skew symmetric property of s/, implies s/, = 0, for a < ¢, b > ¢g+1. Moreover,
if a > ¢+ 1, then &, € Ny and consequently A’ = 0. Hence, for b=1,...,p,
it follows [A/, Aj]X = 0. This, together with (14.1), implies R (X, Y )&, = 0,
for a > g+1. In entirely the same way, we can choose local orthonormal normal
vector fields £1,...,&, in such a way that §,11,...,&, € span{{, q,...,&,}
and sqp = 0 for a,b > ¢+ 1. This proves (2).

To prove (3) it suffices to show that VxZ € S whenever Z € S and X is
tangent to M. This follows from (5.1), (5.6) and (1), (2) above. O

Now, let M be an (n + p)-dimensional Euclidean space.

Theorem 14.1. [28] Let M be an n-dimensional submanifold of an (n + p)-
dimensional Euclidean space E"P. If the first normal space Ny is invariant
under parallel translation with respect to the connection in the normal bundle

and q is the constant dimension of Ny, then there exists a totally geodesic
(n + q)-dimensional submanifold E"T¢ of E"TP such that M C E"T4,

Proof. For x € M let us define &1, ...,&, and U(x) as in Lemma 14.1. Further,
let us define functions f, = (x,&,), where x is the position vector and (,) is
the Euclidean inner product. Then

Xfo=Vxfa=0X&)+(x,Vx&) =0

for a > ¢+ 1 and X tangent to U(z). Thus, for x = Y77 ze; and ¢, =
S gie;, we have

<X7§a> = mlfi +o+ ‘Tn+p§(?+p = Ca,

for a > q + 1 where ¢, are constants. This shows that U(x) lies in the inter-
section of p — ¢ hyperplanes, whose normal vectors are linearly independent,
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and the desired result is true locally. That is, for x € M, there exist a neigh-
borhood U(z) of z and a Euclidean subspace E"*4 such that U(x) C E"*4.

To get the global result we use the connectedness of M. Let z, y € M
with neighborhoods U(z) and U(y), respectively, such that U(z) N U(y) # 0
and U(z) ¢ E}T, U(y) € EfT. Then U(z) NU(y) ¢ EYT" N ESTI. If
E;t? # ESY then E}TY N ELT = E"Y) r < ¢, and this implies that
dim Ny (z) < ¢ for z € U(z) NU(y). Since dim Ny = constant = ¢, we
conclude E7? = EST? which proves the global result. O

Theorem 14.2. [28] Let M be an n-dimensional submanifold of an (n + p)-
dimensional sphere S"TP. If the first normal space Ni(zx) is invariant under
parallel translation with respect to the connection in the normal bundle and q is

the constant dimension of N1, then there exists a totally geodesic submanifold
S"te of S"TP of dimension n + q such that M C S™+9.

Proof. Let 1 be the immersion of M into S"™? and let us consider S™*? as the
unit sphere in E"*P+1 with center at the origin of E**P+1. Denoting by ¢’ the
immersion S"*? — E"*P+l we can regard M as a submanifold of E*tr+!
with the immersion j = 2/ o1. Let n be the inward unit normal of S"*?
Ni(z) the first normal space for M in E"*P*! ¥ the Euclidean connection
in E"P1and let &,..., &, be chosen as in Lemma 14.1. Then, 1, = &,
a=1,...,p and 1 are mutually orthonormal normals to M in E"*PT1 We
note that Vxn = —jX and, using the Gauss formula (5.1), we compute

Vixne=Vxi'& =1Vx& — (1X,&)n=1Vx&
for X tangent to M. From this it follows
Ni(z) =2 Ny(z) + span {n(z)}

and therefore, N; is invariant under the parallel translation with respect to
the normal connection, where M is viewed as immersed in E**P+1. Thus,
by Theorem 14.1, there exists a totally geodesic subspace E"T9*! such that
M c Entetl that is,

E"tat! — 5T, (M) + o' Ny (z) + span {n(z)},

for any x € M. Hence E"t7t! contains 1 and therefore passes through the
origin of E"*P*!. Thus

M C EMTatl 0 8ntP(1) = §"H9(1)

which completes the proof. a

Let M be an n-dimensional submanifold of a complex projective space
P"2"(C) with complex structure J. For any X € T(M) and £ € T+(M),
J1X and J¢ are written as sums of the tangential and the normal parts in the

following way:



92 14 Codimension reduction of a submanifold
J1X =1 FX +v(X), J{=—lUe+ PC.
For the subspace
No(x) = {€ € T, (M)|A¢ = 0}
of TH(M), we put
Ho(x) = JNo(z) N No(z).
Then Hy(z) is the maximal J-invariant subspace of Ny(zr) and JHy(x) =

Hy(x), since J is an isomorphism. Moreover, we can easily conclude

Proposition 14.1. For any { € Ho(z), it follows A¢ =0 and Us = 0.

Further, we denote by Hj(x) the orthogonal complement of Hy(z) in
T;-(M). By definition, the first normal space N;(z) is a subspace of H;(x)
and we have

Proposition 14.2. If M is a complex submanifold of a Kdhler manifold, then
Hl(l‘) = Nl(l‘)

Proof. Since Hy(z) and Nj(z) are the orthogonal complements of Hp(z) and
No(z) respectively, it only remains to verify that Hy(xz) = No(x).
Using the Weingarten formula (5.6), it follows

Vx(J€) = IVxE& = J(—1A¢X + Dx§) = —J1A¢ X + JDxE, (14.2)

since J is covariantly constant. On the other hand, M being a complex
submanifold, T,(M) is J-invariant and so is T;-(M), that is, for any & €
T-(M), it follows J¢ € T;-(M). Hence we have

Vx(JE) = —1A X + Dx (JE). (14.3)

Comparing the tangential part and the normal part of equations (14.2) and
(14.3), we conclude
AJ&X = JZAEX.

Thus, if £ € Ny(z), then Aje = 0 and § € JNy(z). This shows that £ € Hy(x),
which completes the proof. a

Proposition 14.3. Let H(z) be a J-invariant subspace of Ho(z) and Hz(x)
be the orthogonal complement of H(x) in T;-(M). Then T,(M) ® Ha(x) is a
J-invariant subspace of Ty (M).

Proof. Note that

Ty (M) =T, (M) © Hy(x) ®© H(x).

Under the assumptions of a proposition, H(x) is J-invariant, that is JH(z) =
H(z). Thus, for any £ € H(x) there exists n € H(x) such that Jn = £. Let
Y €T, (M) @ Hz(z). Then for £ € H(z), it follows
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g(JY, &) =g(JY,Jn) =g(Y,n) = 0.

Consequently, JY € «T,(M) @ Hz(z) and hence, 1T,(M) & Ha(z) is a J-

invariant subspace of T, (M). O
For 2/ € =Y (M), let
Ny(@!) = € € TH (=~ (M))] Al = 0},
where A’f, is the shape operator with respect to £’. Then we have
Lemma 14.2. If 2’ is a point such that w(x') = x, then
No(2') = span{&;|A, = 0, U, = 0},
where &, € T;-(M) and & is the horizontal lift of &, at '

Proof. We note that using the horizontal lift X* of some X € T,(M), any
tangent vector X’ € Ty (7~ !(M)) can be decomposed as X' = X* + aV.
From (10.7) and the first equation of (10.12), it follows

ALX! = AL X* 4 aALV = (A X)* — g(Ua, X)V = aU?.

If A, = 0 and U, = 0 hold, then A/ X’ = 0, which implies & € N|(’).
Conversely, if £ € Nj(z'), we conclude

(A X)* — aU; = g(U,, X)V.

In the last equation, the left-hand side member is vertical. Hence, g(U,, X ) =
0 for any X € T, (M) and therefore U, = 0, A, = 0, which completes the
proof. a

Now we prove

Theorem 14.3. [48] Let M be an n-dimensional real submanifold of a real

(n + p)-dimensional complex projective space P"TM(C) and H(x) be a J-

invariant subspace of Hy(x). If the orthogonal complement Hs(x) of H(x)

in T:-(M) is invariant under parallel translation with respect to the normal

connection and q is the constant dimension of Hs, then there exists a real

(n+q)-dimensional totally geodesic complex projective subspace Pt (C) such
n+q

that M C P"2*(C).

Proof. We first prove that if M satisfies the conditions of Theorem 14.3, then
7~ 1(M) satisfies the conditions of Theorem 14.2.

For &, € H(z), it follows &, € Hy(z) and, by Proposition 14.1, we conclude
that A, = 0 and U, = 0 which, together with (10.7) and (10.9), implies
A! = 0. This shows that, for a point z’ such that 7(z') = z,
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H(z)" ={¢"[§ € H(x)}

is a subspace of N|(z’). Hence, the orthogonal complement

Hy(z)" = {7 € Ha(x)}

of H(z)* in T (n~1(M)) is a subspace of T35 (7 ~1(M)) such that N{(z') C
HQ(Q?)*
Since Ha(x) is invariant under parallel translation with respect to the

normal connection D, so is H(z). This means that Dx ¢ € H(x) holds for any
& € H(x). Thus, from (10.8), (10.13) and Proposition 14.1, we conclude

D.&" = (Dx§)" € H(x)",
Dy = —(J§)" € H(x)",

where D’ is the normal connection of 7=1(M) in S"*P*!. Hence H(z)* is
invariant under parallel translation with respect to the normal connection of
7~ (M) in S"HPFL

Theorem 14.2 now implies that there exists a totally geodesic submanifold
Sntatl of S TP+ guch that 7=1(M) € S"T9HL. Let U(z’) be a neighborhood
of such a point z’ that 7=!(2’) = z. Then the tangent space T,/ (S"9T1) of
a totally geodesic submanifold at y' € U(z') is

Ty (r=H (M) & Ha(y)" = (T,(M) & Ha(y))" @V,

where y = 7(y’).

For the geodesic v in the direction of V, vy is also a geodesic of S*+P+1
since S"19*1 is a totally geodesic submanifold. Thus, v is a great circle on a
unit sphere S"T4+1. Since 1V = V', the Hopf fibration S"+7+1 — P"2*(C)
by « is compatible with the Hopf fibration 7 : S*P+!l — PHTM(C) and the
tangent space of PHTH(C) at x is T,(M) @ Hy(z). Moreover, by Proposition
14.3, P (C) is a J-invariant subspace of P%(C), which completes the
proof. O
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CR submanifolds of maximal CR dimension

In this section we continue our study of CR submanifolds of complex manifolds
in the special case when the CR dimension is maximal. Having in mind

Proposition 7.8, let us suppose that the ambient space is a complex manifold

__nip

(M * ,J) equipped with a Hermitian metric g. If M is an n-dimensional CR
___n+tp

submanifold of maximal CR dimension of M * | then at each point x of M,

the real dimension of JT, (M) NTy(M) is n — 1. Therefore M is necessarily
odd-dimensional and there exists a unit vector &, normal to T, (M) such that

JT,(M) C Tp(M) ®span{,}, forany =z € M. (15.1)
Hence, for any X € T(M), we may write
J1X =1 FX +u(X)E, (15.2)

where F is an endomorphism acting on T (M) and u is one-form on M.
Since g is a Hermitian metric, J is skew-symmetric and therefore, using
(15.2) we compute
g(FX,Y)=g(J1X,1Y) = —g(tX, 1Y)
= —gOX, 1 FY +u(Y)) = —g(X, FY).
Hence, F is a skew-symmetric endomorphism acting on T'(M).

Now, assume that 7 is an element of T (M) which is orthogonal to €.
Then, for any X € T(M), using the Hermitian property (4.1) and (15.2), we
conclude

G(InaX) = —g(n, JiX) = =g FX +u(X)§) =0, (15.3)

which shows that Jn € T+(M). On the other hand, using (4.1), (15.2) and
(15.3), we obtain

0=90X,n) =g(J1X, Jn) = geF'X, Jn) + w(X)g(§, Jn) = w(X)g(£, In).
M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 95

Developments in Mathematics 19, DOI 10.1007/978-1-4419-0434-8_15,
© Springer Science+Business Media, LLC 2010



96 15 CR submanifolds of maximal CR dimension

Let us suppose that u,(X) = 0, for any X € T(M), at a point © € M. Then,
using (15.2), we conclude

JiX =+FX for all X eT(M).

Thus T, (M) is J-invariant and consequently M is even-dimensional (see Ex-
ample 7.2), which is a contradiction. Therefore we deduce

9(&, Jn) = 0. (15.4)

This means that Jn L T(M) @ span {£}. In other words, the subbundle
Ti- (M) = {n € T-(M)|g(n,&) = 0}

is J-invariant and this result will prove extremely useful. Summarizing we
have

Lemma 15.1. The subbundle Ti-(M) is J-invariant and we can choose a
local orthonormal basis of T+(M) in the following way:

gvflw-'quvfl*a'“agq*a
where £« = J&,, a=1,...,q and q:%‘

Moreover, since using (4.1) and (15.4) it follows g(J&,n) = —g(§, Jn) =0,
we conclude
JE = —U. (15.5)

Now, applying J to (15.2), (15.5) and comparing the tangential part and
the normal part to M, we deduce

F2X = - X +u(X)U, (15.6)
w(FX)=0, FU=0. (15.7)

A differentiable manifold M’ is said to have an almost contact structure if
it admits a vector field U, a one-form u and a (1, 1)-tensor field F' satisfying
(15.6) and (15.7). The tensor field F is called the almost contact tensor field.
In this sense, a CR submanifold of maximal CR dimension is equipped with an
almost contact structure which is naturally induced from the almost complex

__ntp
structure of the complex manifold (M * ,J).
Remark 15.1. The fact that the real hypersurface (resp. submanifold) of a

complex manifold which satisfies relation (15.1) admits a naturally induced
almost contact structure was first announced by Tashiro [58] (resp. [59]).

Denoting by ¢ the induced Riemannian metric from the Hermitian metric
g to M, using (15.2) and (15.5), we compute



15 CR submanifolds of maximal CR dimension 97

9(U,U) =9(JE, JE) =7(£,¢) = 1,
9(X,U) = g(X,2U) = —g(1X, J§) = g(J1.X, §)
= g(FX, &) + u(X)g(§, ) = u(X),

namely,
9(UU) =1, (15.8)
9(U, X) = u(X). (15.9)

Further, let us denote by V and V the Riemannian connections of M
and M, respectively, and by D the normal connection induced from V in the
normal bundle T (M). Using Lemma 15.1, we can write

Dx¢ = Z{sa Vo + Sax (X)éar} (15.10)

and the following lemma holds:

Lemma 15.2. Under the above notation, for a CR submanifold of mazimal
CR dimension, the vector field £ is parallel with respect to the normal connec-
tion D, if and only if s = sq= =0, fora=1,...,q.

Moreover, using the basis constructed in Lemma 15.1, the Weingarten
formulae can be written as follows:

Vxé=—1AX + ng (15.11)
= AX + Z{sa )a + sar (X)€ar 1,
Vxés = —14,X + Dx&, = —14,X — 5,(X)¢ (15.12)
+ Z{Sab )€ + Saps (X)Ep+ },
Vxéer = —zAa*X + Dx&qn (15.13)

q
= —1Ae X = 50 (X)E+ D {sarb(X)& + samp (X)),
b=1

where A, A,, Aq+ are the shape operators for the normals &, &,, &+, re-
spectively, and s’s are the coefficients of the normal connection D. They are
related to the second fundamental form by

hX,Y) = g(AX,Y)¢ (15.14)

q
+) {9(AuX, V)& + g(Aa- X, Y)E0x }.

a=1
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When the ambient complex manifold (M, J) is a Kéhler manifold, using The-
orem 4.2, it follows VJ = 0. Therefore, taking the covariant derivative of
Eax = J&q, and using (15.2), (15.5), (15.12) and (15.13), we compute

A X = FAX — 5.(X)U, (15.15)
A X = —FA X + 54+ (X)U, (15.16)
Sax (X) = u(A4.X) = g(AU, X), (15.17)
$a(X) = —u(Ag<X) = —g(4sU, X), (15.18)
Sarb* = Sab, Sa*b = —Sab*, (15.19)
for all X,Y tangent to M and a,b=1,...,q.
Further, since F' is skew-symmetric and A,, A+, a = 1,...,q are symmet-

ric, using relations (15.15) and (15.16), we compute

n
trace Ay« = Zg(Aa*ei, e;)

i=1
= Z{Q(FAaeu ei) — salei)g(U, e:)}
i=1
= trace FA, — s4(U) = —s4(U),
trace Ay = 84+ (U),
namely,
trace Ag = 5q+(U), trace Ag» = —s,(U), for a=1,...,q. (15.20)
Moreover, relations (15.15)—(15.18) imply
J((AF + FAL)X,Y) = u(Y)sa(X) — u(X)sa(Y), (15.21)
J((Ag F + FA)X,Y) = u(Y)s4+ (X) — u(X) 84+ (Y), (15.22)

foralla=1,...,q.
If the vector field £ is parallel with respect to the normal connection D,
using Lemma 15.2 and relations (15.15)—(15.18), we conclude
AU =0, AU =0, (15.23)
AgX = —FA,X, ApX=FAX, (15.24)

for all X tangent to M and alla=1,..., q.

Further, we differentiate (15.2) and (15.5) covariantly and compare the
tangential part and the normal part. Then we obtain

(VxF)Y = u(Y)AX — g(AY, X)U, (15.25)
(Vyu)(X) = g(FAY, X), (15.26)
VxU = FAX. (15.27)
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Now, let us suppose, for the moment, that the ambient manifold M is a
complex space form that is a Kéhler manifold of constant holomorphic sec-
tional curvature 4k. Then the curvature tensor R of M satisfies (9.21). Con-
sequently, using (15.2), the Gauss equation (5.22) and the Codazzi equation
(5.23) for the normal ¢ become

RIX,YV)Z =k {g(Y,2)X — g(X,Z)Y + g(FY, Z)FX
(FX,Z)FY —29(FX,Y)FZ}

+ g(AY, 2)AX — g(AX, Z)AY

—~

+

M=

{94, 2)4,X — g(A,X, 2) AV}

o>
I
—

+

o
I <
—

{g(Ab*Y, 2)Ap- X — g(Ap- X, Z)Ab*Y} : (15.28)

(VxA)Y — (VyA)X =k {u(X)FY —w(Y)FX — 2g(FX, Y)U}
+ Z {Sb(X)AbY — Sb(Y)AbX}
b=1
+3 {sb* (X)Ap-Y — s (Y)Ab*X} : (15.29)

o>
Il
—

for all X,Y,Z tangent to M, where R denotes the Riemannian curvature
tensor of M. Moreover, the Codazzi equations for normal vectors &,, &q«,
respectively, become

(VxA,)Y — (VyA )X = 5q(Y)AX — s4(X)AY

+ Z {sab JAY — sap(Y )AbX}

b=1
+3 {sab* (X)Ap-Y — Sapr (Y)Ab*X} : (15.30)
b=1
(VxAg)Y — (Vy Ag )X = s2(Y)AX — 54(X)AY

Sa*b AbY — Sa*b( )AbX}

>
{

S (X)Ap Y —sa*b*(Y)Ab*X} (15.31)

S
Il
—_

for X, YeT(M)anda=1,...,q.

Finally, we give some examples of CR submanifolds of maximal CR di-
mension.
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Example 15.1. From the above discussion, it is clear that real hypersurfaces
of a complex manifold are CR submanifolds of maximal CR dimension. <

Ezample 15.2. Let M’ be a complex submanifold of M with immersion #; and
M a real hypersurface of M’ with immersion 19 and 2 = 1129. We denote by
&’ the unit normal vector field to M in M’. Since 7; is holomorphic, it follows
that 2;.J" = Ju1, where J’ is the induced almost complex structure of M’ from
J. Now we have for X € T(M),

J1X = JigX = 11J10X =11 (10F' X + u(X)E') = 1F' X + u(X)1, €.

On the other hand, we may write

p
JIX =1FX + ) u'(X)&a,

a=1

where &,(a = 1,...,p) are local orthonormal vector fields normal to M in
M. If we choose £ in such a way that & = 11&’, then JiX = 1FX + u(X)E.
Thus, any real hypersurface M of a complex submanifold M’ of M is a CR
submanifold with maximal CR dimension of M. &

Example 15.3. Let M’ be a real hypersurface of M and 2; be the immersion.
Then, for any X’ € T(M'), we put

JuX' = F' X' +4'(X')E

Then F' and v’ define an almost contact structure of M’.

Further, let M be an odd-dimensional F’-invariant submanifold of M’,
that is, such that F'T(M) C T(M). Denote by 2o the immersion and put
1 = 13 0129. We choose a local orthonormal basis of T+(M) in T(M) in
such a way that & = & and &, ...,&, are orthonormal in T'(M’). Then, for
X € T(M),

p
JIX =1FX + ) u(X)&,.
a=1

Also we have

JiX = Jug 09X = 13 F'10X + /(10X )E
=13 00FX +u (10 X)¢ = 1FX + v (10X)E,

since M is F'-invariant submanifold. Comparing the above two equations,
we conclude u'(X) = u/(10X), u*(X) = 0, a = 2,...,p. Hence, any odd-
dimensional F’-invariant submanifold of a real hypersurface of M is a CR
submanifold of maximal CR dimension. &
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Ezample 15.4. In Example 15.2, let M’ be a totally geodesic complex subma-
nifold of M. Then, from the Weingarten formula, it follows

WXE = szlf = Zllefl + h/(loX, gl) = Zl(floA()X) = 72A0X,

where b/ and Ay denote the second fundamental form of M’ in M and the
shape operator of M in M’, respectively. The last equation implies Dx& = 0,
namely, £ is parallel with respect to the normal connection D. &

Ezample 15.5. Let us assume that, in Example 15.3, the shape operator A’ of
M’ in M is of the form

A X = X"+ (X)U', where U’ =1,U.
Consequently,

Vx& = Vx& = -uA'(10X)
=~ (Mg X + pt/ (10 X)U') = —AX — put (X )aU.

This implies that & is parallel with respect to the normal connection, since
Dx& =0. ¢
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Real hypersurfaces of a complex projective
space

Let M be a real hypersurface of a Kihler manifold (M, J) and let & be its
unit normal vector field. Then M is a CR submanifold of maximal CR dimen-
sion and £ is the distinguished normal vector field, used to define the almost
contact structure F on M, induced from the almost complex structure J of
M. Moreover, since a real hypersurface M of a Kahler manifold M has two
geometric structures: an almost contact structure F' and a submanifold struc-
ture represented by the shape operator A with respect to &, in this section we
study the commutativity condition of A and F' and we present its geometric
meaning.

We begin with several results on complex space forms.

Theorem 16.1. If a real hypersurface M of a complex space form M of con-
stant holomorphic sectional curvature 4k satisfies VA = 0, then the curvature
tensor R of M wvanishes identically.

Proof. From (9.21), the Codazzi equation (5.23) becomes
k{g(U, X)FY — g(U,Y)FX — 29(FX,Y)U} = (VxA)Y — (VyA)X = 0.

Suppose k # 0 and substitute U instead of Y in the equation above to obtain
FX =0 for all X € T(M). This is a contradiction. Hence k¥ = 0 and R
vanishes identically. O

Lemma 16.1. If the shape operator A of a real hypersurface M™ of a complex
space form satisfies AX = aX for any X € T(M), then « is constant.

Proof. Differentiating AX = aX covariantly, we have (VyA)X = (Ya)X.
By the Codazzi equation, it follows that
(Xa)Y — (Ya)X = (VxA)Y — (VyA)X
from which, for an orthonormal basis {es,...,e,} of T, (M),
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k Z{Q(U, X)g(Fe;,ei) — g(U,e:)g(FX, e;) — 29(FX, e;)g(U, e;)}

=(n—-1)Xa.

Since the left-hand members of the above equation vanish identically, it follows
Xa =0, namely, «a is constant. a

Since P"(C) is a complex space form with k¥ = 1, Theorem 16.1 and
Lemma 16.1 imply the following

Corollary 16.1. [60] In P™(C) there exists neither totally geodesic real hy-
persurfaces nor totally umbilical real hypersurfaces.

Now we give examples of real hypersurfaces of a complex projective space.

Ezample 16.1. [36] Let S>"*! be a sphere of radius 1 defined by >}, 22" = 1
in C"*!l = CPTL @ C9tL, (p+qg=n—1). In S we choose two spheres,
S2r*1 and S29*!, in such a way that they lie respectively in complex subspaces
CP+l and C9t! of C™*L. Then the product S?P*! x S2¢+1 is a hypersurface
of 8271 and may be expressed for a fixed t by the following equations:

P n+1
E 217" = cos’ t, E 2z = sin? t.
i=0 i=p+1

Since the S! action on S2P*+! x §2¢+! given by
(0;2°,...,2") = (eVT1920  eVTlm) = (W0, ..., w")

)

satisfies

P p p
E w'w' = E eV 10 iV =101 — E 27 = cos? t,
j i=0

i=0 i=0
n+1 n+1 n+1

E w'w' = g eVT10ieV =100 — E 27t = sin’ ¢,
i=p+1 i=p+1 1=p+1

the quotient manifold (S?P+! x §24+1) /S is a real hypersurface of P*(C). We
denote this hypersurface by MpC:q. It is represented by an equivalence class
[(2° 2, ..., 2")] containing a point (2, ..., 2P, 2PT1 ... 2") of §2PF1 x S2a+1,
Note that ng is congruent to M,fp.

Remark 16.1. Particularly, hypersurface Mé’?q is represented as the equiva-
lence class [(2°,21,...,2")] containing a point (20, 21,...,2") of St x §27~!

given by
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n
2929 = cos? ¢, Z 27" = sin? t.
i=1
Then the mapping f : M()C:n_l — 8§27~ C C" defined by

FUG 22 = (>

S2n—1

gives a diffeomorphism between M(fnf1 and , since
2 2
Gl IR Al R
- “ e R = tan .
20 20

Therefore, Mgn—1 is diffeomorphic to a (2n — 1)-dimensional sphere. Theo-
rem 19.3 implies that MOC:n_l (which is congruent to MS_LO) is a geodesic
hypersphere. &

Ezample 16.2. [56] We consider in S?"*! the hypersurface M’(n+1,t) defined

by
l
1> 2P =t,
j=0

where ¢ is a fixed positive number 0 < ¢ < 1. (Note that this is another
expression of the hypersurface defined in Example 12.3, using the complex
numbers.) The St action to M’(n + 1,t) satisfies

l

l l
DI TEND D O D SE )
j=0 j=0

Jj=0

and the quotient space M’(n + 1,t)/S! is a real hypersurface of P"(C). We
denote it by M (n,t). O

Let M be a real hypersurface of P?(C) and let 7= !(M) be the circle
bundle over M which is compatible with the Hopf map 7 : S?"+1 — P"(C).
Then 7=1(M) is a hypersurface of S?"*1. We denote by ¢’ the immersion of
77 1(M) into S?"*!. The compatibility 7 o2’ = 1 0 m with the Hopf map is
expressed by the following commutative diagram:

a1 (M) Y §2n+1

M P"(C)
For the unit normal vector field £ of M to P™(C), the horizontal lift £* of £ is
the unit normal vector field of 7=1(M) to S?"*!. For the vertical vector field

V' of the circle bundle 7= (M) (M, S'), vector field 'V is the vertical vector
field of the circle bundle S?"*(P"(C),S!). As we have shown in Section 9,
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the integral curve of +/V' is a great circle in S?"*! and therefore the integral
curve is a geodesic of S2"*1. Hence we have

V'V =4V, V' + ¢ AV, V)E =0
and consequently,
v V=0, g AV V) =0, (16.1)

where A’ is the shape operator of 7= (M).

The condition mo¢ = ¢on implies that ' X* = (1X)* and using (9.10), we
can calculate V '+ Y™ in the following two ways:

V'Y =4V d Y + g/ (A X*,Y*)e*
={(VxY)" +g(X,FY)V'} + ¢ (A X", V™)
=(VxY)" + g(X, FY)'V' + ¢ (A’ X", V"),
and
V5 Y* = V. (Y)* = (VxiY)* — g% ((X)*, JaY)*)i'V’
= (1IVxY + g(AX,Y)E)* — (/X *,/F'Y*)/ V'
=/(VxY)" +g(AX,Y)E* — ¢ (X", F'Y* V',

Comparing the last two equations we obtain
g (A X* Y*)=g(AX,Y). (16.2)
In the same way,
VAV = ViV + ¢ (A X* V)¢,
VAV = V5V = J 0 j(uX)* = (J1X)* = (FX 4+ u(X)€)*
— (WFX)" +u(X)E" = (FX)" +u(X)¢",

where J’ and ¢/ are the natural almost complex structure of C™*! and the
natural immersion of S2"*1! into C™, respectively, and we used the result of
Section 9. Comparing the above two equations, we conclude

Vi V! = Vi X* = (FX)*, J(AX* V') = u(X). (16.3)

We note that the first equation in (16.3) follows from the fact that [V’, X*]
is vertical. Since A’ is symmetric, using the second equation of (16.3), we
compute

JgUSX*)=g(U,X)=uX)=g¢(AX" V) =4¢(AV X"

and consequently
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AV =U*, (16.4)
Relations (15.8) and (16.4) imply
gAV AV =1

Using (16.2) and (16.3), we derive the following relation between the shape
operators A and A’

A'X* = (AX)" +g(U X)V". (16.5)
Lemma 16.2. For the shape operators A and A’ the following relation holds:
trace A" = trace A
and therefore m=*(M) is minimal if and only if M is minimal.

Proof. Let E;, i = 1,...,n be mutually orthonormal vector fields of M. In
T(r=1(M)), we take mutually orthonormal vector fields E/, i = 1,...,n + 1,
in such a way that E, = Ef, i =1,...,n and B = V", Then

n+1 n
trace A’ = Z g (A'EL E)) = Zg'(A’Ef, E 44 AV V).

i=1

By means of (16.1) and (16.5), it follows

trace A' =Y ¢ ((AE)* Ef) = > g (A'E;, V') g (V' E})
i=1 i=1
= Z g(AFE;, E;) = trace A,
i=1
which completes the proof. O

Lemma 16.3. Let A1,...,\, be the principal curvatures of M and U the
eigenvector field corresponding to the principal curvature A\, that is, AU =
AU. Then the principal curvatures of 7= 1(M) are given by Ai,..., An_1, it
and —%, where | = AnEyAntd V2/\+4

Proof. Let X; be the eigenvector field which corresponds to the principal
curvature \; # \,,. Then, by (16.5),

A'XF = (AX))" —g(U, X))V = (AX)* = \ X[

Thus for i = 1,...,n — 1, \; are principal curvatures of 7—*(M). To obtain
the other principal curvatures, we put these as u and v. The eigenvectors X',
Y’ which correspond to p and v must be linear combinations of V/ and U*
and we put
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X' =V'cosl+ U*sinb, Y' = ~V'sinf + U* cos .
Then A’X’ = uX’ and AY' = vY” imply that
AV’ cos + AU sin® = uV' cos + plU* sin 6,
—A'V'sinf + A'U* cos@ = —vV’ sin 6 + vU* cos 0.

Comparing the inner product ¢'(AX’, V') and ¢’(A'Y’, V') and making use
of (16.1), (16.2) and (16.3), we get 4 = —tan6 and v = —cotf. Thus the
principal curvatures of 7=1(M) are Ai,...,\,_1, —tan@, cotf for some 6.
To prove the last part of the Lemma, we recall Lemma 16.2. Consequently,
An = p+ v and pr = —1, which completes the proof. O

Lemma 16.4. If the shape operator A’ of m=1(M) is parallel, then FA = AF.

Proof. By (16.2), ¢'(A’X*,Y*) is invariant along the fiber. Using (16.5), it
follows

=V'(g (A X5Y7)

:g’(( v ANXT YY) + g (A'Vy, X7 YT 4 g (AX7, VY
=g (Vi A)X"Y7) + ¢ (AY™, (FX)") + ¢'(A'X™, (FY))
=g/ (Vv A) X" Y") + g(AY, FX) + g(AX, FY),

from which, if the shape operator A’ is parallel, we conclude g(FAX,Y) =
g(AFX,Y), that is, A and F' commute. O

Therefore, A and F' commute in the model space ng. Now we consider
the converse problem.

First we note that FFA = AF implies that U is an eigenvector field of A. In
fact, FAU = AFU = 0 implies that F2AU = 0. This, together with (15.6),
implies AU = aU, where a = g(AU, U).

Further, differentiating AU = aU covariantly, and using (15.27), we obtain
(VxA)U + AFAX = (Xa)U + aFAX.
Since Vx A is symmetric g((VxA)U,Y) = g((VxA)Y,U) and therefore

g(VxA)Y — (VyA)X,U) + g(AFAX,Y) — g(AFAY, X)
= (Xa)g(U,Y) - (Ya)g(U,X) 4+ ag(FAX,Y) — ag(FAY, X).

On the other hand, from the Codazzi equation, it follows

9(VxA)Y — (VyA)X,U)
= g(U, X)Q(FY7 U) - g(U, Y)g(FX7 U) - 29(FX7 Y)g(U, U)
= —29(FX,Y).
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Hence we have

—29(FX,Y)+2g(AFAX)Y) = (Xa)g9(U,Y) — (Ya)g(U, X)
+ 2ag(FAX,Y). (16.6)

Substituting Y for U in (16.6) and making use of the fact that « is an eigen-
value of A, we obtain Xa = g(U, X)Ua, from which grada = SU for some
(. Differentiating this covariantly, we have V ygrad o = (X3)U + 8FAX and
therefore

0=g(Vxgrada,Y) — g(Vygrad a, X)
= (XB)g(U,Y) = (YB)g(U, X) + 289(F X, Y). (16.7)

Substituting Y for U, we get X3 = ¢g(U, X)US and then (16.7) becomes
OFAX = 0. Assuming that there exists a point © € M such that §(z) # 0,
it follows FAX = 0 at x. Therefore, using (16.6), we conclude g(FX,Y) =0
for any X, Y € T(M). This is a contradiction, since n > 1. Hence 8 = 0 and
« is constant, namely, we proved

Lemma 16.5. If M satisfies the commutative condition FA = AF, then U
s an eigenvector of A with constant eigenvalue.

Further, if FA = AF, then relation (16.6) becomes
F(A’X — aAX — X) =0,
since Xa = g(U, X)Ua. Applying F' to this equation, we obtain
A?X —aAX — X +g(U, X)U = 0. (16.8)

Theorem 16.2. Let M be a real hypersurface of a complex projective space.
The shape operator A and the almost contact tensor F' commute if and only
if the shape operator A’ of #=1(M) C S?"*1 is parallel.

Proof. The necessity is already proved in Lemma 16.4. We now prove the
sufficiency. From Theorem 13.2, it is enough to show that if A satisfies (16.8)
this implies that A’ satisfies (13.5).

For z € M, let y € 7~ 1(x) C 7~ }(M) C S?"*+1. Since

Ty(r= (M) = Hy(n~"(M)) & span{Vy},
any X' € T,(m~'(M)) can be expressed at y as
X, =X, +4'(X,V)(y)V,,

where X is a tangent vector at z. Hence it is enough to show that A’ satisfies
(13.5) only for horizontal lift X* and the unit vertical vector V’. Making use
of (16.5), we have
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APX* —A'X* — X* = A((AX)* + g(U, X)V') — a((AX)*
+g(U, X)V') - X*
= (A’X —aAX - X +g(U, X)U)* = 0.

Thus for horizontal vector X’ at y, we obtain
APX' —aAX' - X' =0.
For a vertical vector V', using (16.4), we have
APV — qAV -V = AU —aU* -V’
= (AU)" + g(U,U)V' — aU* — V' = 0.

Thus, for any X’ € Ty(n~'(M)), we have A?X’ — aA’X’ — X’ = 0. Hence,
by Theorem 11.3, it follows that A’ is parallel. O

Theorems 13.2 and 16.2 imply

Theorem 16.3. [45] ng is the only complete real hypersurface of a complex
projective space whose shape operator A commutes with the almost contact
tensor F'.

Now we prove a classification theorem of real hypersurface of complex
Euclidean space which satisfies the commutative condition FA = AF by
almost the same discussion as above. In this case, the Codazzi equation takes
the form of (11.5) and in entirely the same way we know that the principal
curvature o is constant and the shape operator A satisfies FA2 X —aFAX =
0, from which

A’X —aX =0. (16.9)
This shows that M has at most two distinct constant principal curvatures and
one of them is zero. We consider the case that M has two distinct curvatures

a and 0. Let r be the multiplicity of a. Note that AU = aU # 0 and
FAU = aFU = 0 which means that

rank (FA) <r — 1.

Let X be an eigenvector of A corresponding to « which satisfies FAX = 0, and
g(X,U) = 0. Then F?2AX = 0 implies that AX = g(AX,U) = ag(X,U) = 0.
This means that such a vector X corresponds to the eigenvalue 0. Hence, there
exists no other vector than U which satisfies both FAX =0 and AX = aX.
Thus we get

rank (FA) > r — 1.

Combining the above two inequations, we have rank (FA) =r — 1.

On the other hand, putting w(X,Y) = g(FAX,Y), we define a 2-form w,
since FA = AF. From this fact, it follows » — 1 = rank (FA) = rank (w) =
even. This shows that r is an odd number.

Now, applying Theorem 11.4, we obtain
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Theorem 16.4. [44] Let M be a complete real hypersurface of a complex Eu-
clidean space E"TY. If M satisfies the commutative condition FA = AF, then
M is one of the following:

(1) n-dimensional hypersphere S™,
(2) n-dimensional hyperplane E™,
)

(3) product manifold of an odd-dimensional sphere and Euclidean space
S"x E"TT.
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Tubes over submanifolds

The examples given in Section 16 are sometimes referred to as tubes over
various submanifolds. Therefore in this section we introduce the notion of
a tube over a submanifold. For that purpose, let M be a submanifold of a
Riemannian manifold M and BM the bundle of unit normal vectors of M,
that is,

BM = U B.M
rzeM

= U {€w|§$ € Ta:l(M)a|§$| = 1}'

zeM

For a sufficiently small real number ¢t € R\ {0}, we can define the following
immersion:

¢e: BM — M,  ¢(§) = exp L&,

where exp denotes the exponential mapping of M. This ¢;(BM) with | induced
Riemannian metric from M is called the tube of radius t over M in M.

We illustrate this notion of a tube, beginning with Examples 17.1-17.4,
which are elementary and well-known examples.

Example 17.1. Let = be a point of M. Then
B.M = {X,| X, € T,(M),|X,| =1}

and ¢;(BM) is the focus of all points whose geodesic distance from z is t.
Thus, the tube over the 0-dimensional manifold x, namely, over one point, is
a geodesic hypersphere centered at x. &

Example 17.2. Let S(1) denote a circle in E3 defined by
S'(1) = {x = (cosu,sinu,0) € E*}
and let x denote the position vector field of S'(1). Then
M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 113
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n; = (—cosu, —sinw, 0),
ng = (0707 1)

are mutually orthonormal unit normal vectors to S*(1) in E* and any unit
normal vector ¢ to S'(1) in E? is given by

& = (—cosvcosu,—cosvsinu,sinv).

Since the geodesic in E? is a straight line and the position vector y of ¢;(S*(1))
is given by

vy =x+t€ = (cosu(l — tcosv),sinu(l — t cosv), tsinv),
we conclude that the tube over S'(1) in E? is a torus. &

Ezample 17.3. Now we consider the circle in Example 17.2 as a special curve
of S%(1). Then, BM = {(0,0,1),(0,0,—1)}. Since the geodesic y(t) of S%(1)
in the direction of £ is represented by

~(t) = costx + sin t&,
where x is the position vector of S!(1), it follows
@:(§) = (costcosu,costsinu,+sint).

Thus, the tube over S'(1) in S?(1) is the union of two circles of radius | cost
near the original circle S*(1). O

Ezample 17.4. Let S™(1) be the sphere which is the totally geodesic subman-
ifold of S"*P(1) defined by (x,0), where x denotes the position vector of a
point in §"(1) in E"*! and 0 = (0,...,0) denotes the zero vector in the p-
dimensional Euclidean space EP. Identifying T, E"TP+! with E*+P+1l the set
of unit normal vectors to S™(1) in S"*P(1) at x is

ByxS"(1) = {(0,y)|ly] =1}, 0 E""!, y € EP.

Since the geodesic v(t) of S™*P(1) in the direction of & is y(t) = costx +
sintéx, we have

¢:(BS"(1)) = {(costx,sinty) | |x| = [y| =1}
= S"(|cost|) x SP~I(|sint|). &

Now we prove that real hypersurfaces Mnc m and M(n,t), introduced in

Section 16, are tubes over some submanifolds.

Let P2 (C) be a totally geodesic, complex projective subspace of P (C)
and let 7 : S"+P+1(1) — P"2”(C) be the Hopf map. We deduce from Propo-
sition 10.2 that 7—}(P3(C)) = S"*1(1) is a totally geodesic submanifold of
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S"+P+1(1). For a unit normal vector ¢, at z € P%(C), the exponential map
¢, : B,P%(C) — P (C) is given by

é1(&x) = m(costw + sintél)) = nd}(€,),

where w is a point of 77!(P%(C)) = S"*1(1) such that 7(w) = x. Here ¢,
denotes the horizontal lift of &, at w and ¢, denotes the exponential map
B,,S™*1(1) — S"*P+1(1). This shows that any point of the tube over P2 (C)
is a m-image of a point of the tube around S™*1(1). This, together with
Example 17.4, implies that the tube around P (C) is

BP?%(C) = m(BS""!(1)) = m(S" (| cost]) x SP!(|sint|)) = MY

ni,n2’

where n; = % and ng = prl. Thus, we have

Proposition 17.1. Mfm is a tube over the totally geodesic complex subspace
P%(C) in P"3(C).

Particularly, for the case p = 1, using Remark 16.1, it follows BP % (C) =
ME ,, which leads to

n1,07

Corollary 17.1. The geodesic hypersphere M,?hO 18 a tube over totally geodesic
complex hyperplane.

Now we consider the tube over a real projective space in a complex projec-
tive space. Let (u1,v1,...,Un11,Unt1) be homogeneous coordinates of P (C)
in C"*! = R?"*2  that is,

n+1

(W1, 01,5 Unt1s Unt1) € SR Z(u? Jr”iz) =1L
i=1

Then, as a submanifold of P™(C), a real projective space P"(R) is represented
by
n+1

(u1,0,...,Un41,0), Zu? =1
i=1

(u1,0,...,un+1,0) belongs to the equivalence class
n+1
[(ug cosf,uysing, ... u,yq1co86,u,yqsind)], Z u? =1
i=1

in 827+, That is, the position vector field w of the submanifold
Mn+1 _ Wfl(Pn(R)) C SQn+1 C Cn+1 _ R2n+2

is given by
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n+1 a
wW = Z Uj (COS 9 > s
v;

where 7 is the Hopf fibration 7 : S+ — P7(C). Since the tangent space of
M+ is given by

T (M™T1) :span{cos@ 0 + sin 6 0

t=1,...,n+1,
8ul 8’1)1}

the unit normal & to M™*! in §27+1 is

n+1 ) )
£ = Za] ( blnHT —|—cos¢9(%j) ,

J

where anll aj = 1. For the natural almost complex structure J of Crrllit

follows that -
n
0 0
J = i | — 3]
w Zu( i a)

i=1

is the vertical vector field with respect to m and, therefore, tangent to M™*1.

Hence we have
n+1

(Jw, &) = Zalul =0. (17.1)

The position vector field z of the tube of radius ¢ over M™*+1 c 827+ s

z = wcost + Esint

n+1 8 a
= Z (u; cos B cost — a; sinfsint) + (u;sinf cost + a; cosfsint) .
We put
r; = u; cosf cost — a; sinfsint,
y; = u;sinfcost + a; cosfsint.
Then (z1,Y1,.-.,%n+1,Ynt+1) are coordinates of the tube over ML

S2ntl c R27*2, It is an easy matter to use (17.1) and obtain

n+1 n+1 2
{Z(mf —y? } +4 (Z x1y1> = cos? 2t,

=1

which is the equation from Example 12.3. Using the arguments of Example
17.2 and Proposition 17.1, we have

Proposition 17.2. M(n,t) is a tube of radius t over the real projective space
P*(R) in P*(C).
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Next, we show that M (n,t) is also a tube over a complex quadric Q" in
a complex projective space P"(C). A complex quadric Q"' is defined by

n+1
anl = {(wla"'awn-i-l) € Pn(C)| szz = 0} )
1=1

where w;, i = 1,...,n+1 are homogeneous coordinates of P"(C). Thus Q!
can be equivalently defined as

Q= {77 <\}§(U+ lev)) |u€ 8™ ve S Cc R (u,v) = 0}7

where 7 is the Hopf fibration 7 : §2"*! — P"(C), that is,

n+1

vy = Z uv; =0, (17.2)
i=1

n+1

(w1, ung1) €S" CRML Y w2 =1, (17.3)
=1
n+1

(v1,...,011) €S" CR™ Y "0 =1 (17.4)
=1

Let M?"~1 = 7=1(Q"~!) C S?"*1. Then we can express M2"~! by
1
Mt = {ﬁ(ul,vl, vy Upta, ’Un+1) S g2ntl C R2n+2} .

Since the normal space T+ (M?7~1) in S2"*! is spanned by the following two

unit vectors:
i 09
8ul 1811,» ’
1

00
vi aul i 8vi ’

any unit normal vector & to M?"~! in S?"*! ig given by

& =mncosh+ Jnsinb
n+1

) N
\[Z{ u10089+%8m9)8 + (- vicose+ui81n0)avi}.

Thus, for the position vector field w of M2~ the position vector z of a tube
BM?"~1 is given by
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z = wecost + Esint

1R i)
= 7 ; {[ui(cost + cosfsint) + v; sin 0 sin t] o,

0
+ [vi(cost — cosOsint) + u; sin §sin t] } .
87)1‘
Setting

1
x; = —={u;(cost + cosfsint) + v;sinfsint},

V2

1
i = — {v;(cost — cosfsint) + u; sinfsint},
y ﬁ{ ( ) }

(T1,Y1, -+, Tni1,Yns1) define coordinates of the tube By, M?"~ 1. By straight-
forward computation, using (17.2), (17.3) and (17.4), we obtain

n+1 2 n+t1 2 .
{Z(mf — yf)} +4 (Z xiyi> = sin® 2t = cos® 2 (Z — t) .
i=1

i=1
Thus, we have

Proposition 17.3. M (n,t) is a tube of radius § —t over the complex quadric
Q"' in P™(C).

Remark 17.1. Using the notation of Example 12.3, we conclude
e P"(R) satisfies F(z,y) = 1, that is, 8 = 0;

o Q" ! satisfies F(x,y) = 0, that is, § = T
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Levi form of CR submanifolds of maximal CR
dimension of a complex space form

Considering the Levi form on CR submanifolds M™ of maximal CR dimension

n+p
2

of complex space forms M ? , we prove in this section that on some remark-
able real submanifolds of complex projective space the Levi form can never
vanish and we determine all such submanifolds in the case when the ambient
manifold is a complex Euclidean space.

In the following, we establish several formulas in the case when U is the
eigenvector of the shape operator A. Let U be an eigenvector of A corre-
sponding to the eigenvalue «. Taking the covariant derivative of AU = aU
and using (15.27), we obtain

(VxA)U + AFAX = (Xa)U + aFAX
and hence
9g((VxA)Y,U)+ g(AFAX,Y) = (Xa)g(U,Y) + ag(FAX,Y).
Thus

9g((VxA)Y — (VyA)X,U) 4+ 29g(AFAX,Y) =
(Xa)g(U,Y) — (Ya)g(U, X) + 20g(FAX,Y).

Consequently the Codazzi equation (15.29) yields

2%(FY, X) + 2g(AFAX,Y) (18.1)
= (Xa)uY) - (Ya)u(X)+ ag((FA+ AF)X,Y).

Putting Y = U in (18.1) and making use of AY = aU, we get
Xa=u(X)Uca.
This, together with (18.1), implies that
—2kFX +2AFAX = a(FA+ AF)X. (18.2)
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Lemma 18.1. Let U be an eigenvector of A corresponding to the eigenvalue
a and let X be the eigenvector of A corresponding to the second eigenvalue .

Then we have
2\ —a)AFX = 2k + o\ FX.

Proof. Let X be an eigenvector of A which corresponds to A, then, from (18.2),
it follows
—2kFX + 2 AFX = a\FX + aAFX,

from which Lemma 18.1 follows. a
Now, let us consider the Levi form of CR submanifolds of maximal CR

dimension of a complex space form. Using Theorem 8.1, we have

P
LIX,Y) =) {g(AX,Y)+ g(AFX, FY)}E,, (18.3)
a=1
for X, Y € H(M). Next, we note that for any
X,Y € H(M) = T(M)n JT(M),
there exist V, W € T'(M) such that
1X =iV =1FV, Y = W =+FW and FV, FW € H(M).

Using this notation, we may write (18.3) as follows:

L(X,Y) = zp:{g(AaFV, FW) + g(AF?V, F2W)}¢,

a=1

= zp:{g(AaFV» FW) + g(AV, W) —u(V)g(A U, W)

— u(W)g(AuU, V) + u(V)u(W)g(AuU,U)}Ea, (18.4)

where we have used (15.2) and (15.6).

We assume now that U is an eigenvector of A, corresponding to the eigen-
value o and that the Levi form vanishes at a point € M. Using relation
(18.4) for a = 1, we obtain

g(AV — FAFV — au(V)U, W) = 0. (18.5)

We note that here W is chosen in such a way that Y = FW, Y € H(M).
However, since
g(AV — FAFV — oau(V)U,U) =0, (18.6)

using (18.5) and (18.6), we get

AV — FAFV — au(V)U = 0. (18.7)
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Now, let V, be an eigenvector of A at x with the eigenvalue A, such that
V. is orthogonal to U at x. Then Lemma 18.1 and relation (18.7) imply

k+A=0. (18.8)
Thus we have

Theorem 18.1. Let M be an n-dimensional (n > 3) CR submanifold of CR
dimension %‘1 of a complex space form. If U is an eigenvector of the shape
operator A with respect to &, then the Levi form vanishes only when the holo-
morphic sectional curvature of the ambient manifold is nonpositive.

Definition 18.1. A real hypersurface M is called strictly pseudoconvex if, at
each point of M, the Levi form is either positive or negative definite. If the
Levi form is semi-definite, then M is called pseudoconvez.

Theorem 18.2. [19] Let M be an n-dimensional (n > 3) CR submanifold of
CR dimension ”Tfl of a complex projective space. If M satisfies the conditions
of Theorem 18.1, then the Levi form cannot vanish identically. Especially, if

M is a real hypersurface, then M is pseudoconver.

Corollary 18.1. In M

»q» the Levi form can never vanish, that is, qu 18
pseudoconvex.

Proof. The construction of Mg , and Lemma 16.2 imply that FF'A = AF, from
which we easily see that U is an eigenvector of A. Thus from Theorem 18.2,
the corollary follows. a

Now, let the ambient space M be an even-dimensional Euclidean space
E"*P equipped with its natural Kachler structure, that is, M = C(+r)/2,
In this case, using the relation (18.8), it follows that all eigenvalues of the
shape operator A, except the one corresponding to U, are equal to zero and

therefore the shape operator A can be diagonalized as follows:

o}
0
A =
0
In the remainder of this section we assume that & = & is parallel with
respect to the normal connection. Then in the case of @« = 0, Theorem
n+p

14.1 implies that there exists a totally geodesic hypersurface E"tP~! of C ™2
which contains M.

Further, let o # 0. Then « is not necessarily constant and it may take the
value zero at some point. However, U is an eigenvector which never vanishes
since it has unit length. This implies that AX = 0 for any X orthogonal to
U.
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Now, let D be the distribution determined by the tangent vectors ortho-
gonal to U. Then it follows from relation (15.27) that g([X,Y],U) = 0 for
all X)Y € D and hence, the distribution D is involutive. Moreover, relation
(15.27) implies VxU = 0 for all X tangent to M and we conclude that M
is locally a product of Mp and a curve tangent to U, where Mp denotes an
integral submanifold of D. Also, from VxU = 0, we derive that Mp is a
totally geodesic hypersurface of M and consequently the shape operator of
M~p for the normal U vanishes identically. Furthermore, since A =0 on D, it
follows that the first normal space of Mp is a subspace of span {&3, ..., &}

Further, as £ = &; is parallel with respect to the normal connection, it
follows

E(ngavg):_g(gavDXg)zov for a:2a"'7p'

Moreover, using the second relation in (5.8), it follows g(Dx&,,U) = 0 for a =
2,...,p. Therefore, span{&s, ..., §,} is invariant under the parallel translation
with respect to the normal connection of Mp in C"+* and Theorem 14.1 then
implies that there exists a totally geodesic E"tP~2 in C"3* which contains
Mp.

From these results follows

Theorem 18.3. [19] Let M be an n-dimensional (n > 3) CR submanifold of

CR dimension %71 of C™3* such that the distinguished normal vector field &
to M 1is parallel with respect to the normal connection and U is an eigenvector
of the shape operator A with respect to £. Then the Levi form can vanish only
in the following two cases:

(1) M is contained in a hyperplane orthogonal to &;

(2) M is locally a Riemannian product v X Mp, where 7 is a curve tangent
to U and Mp is contained in an (n + p — 2)-dimensional subspace E"TP~2,

In the second case M is a CR-product, that is, it is locally a product of a
holomorphic submanifold Mp and a totally real submanifold -y.
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Eigenvalues of the shape operator A of CR
submanifolds of maximal CR dimension of a
complex space form

In this section, we assume that M is an n(> 3)-dimensional CR, submanifold
of maximal CR dimension of a complex space form M with constant holo-
morphic sectional curvature 4k and that the distinguished normal ¢ is parallel
with respect to the normal connection. Then from Lemma 15.2, the Codazzi
equation becomes

(VxA)Y — (VyA)X =k {u(X)FY —w(Y)FX — 2g(FX, Y)U} . (19.1)

We first prove

Theorem 19.1. If the shape operator A for & has only one eigenvalue, then
M is a complex Fuclidean space.

Proof. According to the assumption, it follows that A = 0 or AX = aX for
all X € T(M). In both cases the Codazzi equation (19.1) implies

(Xa)Y — (Ya)X =k {u(X)FY —w(Y)FX - 2g(FX, Y)U} ,
for all X, Y € T(M). Putting Y = U, the last equation reduces to
U)X — (Xa)U = kFX.

Since dim M > 3, we can choose U, X and F'X in such a way that they are
linearly independent and, hence, k = 0. This completes the proof. a

From now on we suppose that the dimension of the submanifold M is
greater than three. Further, we assume that the shape operator A has exactly
two distinct eigenvalues: A\ and p. We are going to prove that, in this case,
one of the eigenvectors must be U. To that purpose, we denote by T and T},
the eigenspaces corresponding to the eigenvalue A and p, respectively. Now
suppose

U=pX+4qV, (19.2)
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for nonzero functions p and ¢, where X € T\ and V € T}, are unit vector fields
on some open subset of M where U is not an eigenvector of the shape operator
A. Since dim M > 3, at least one of T and T}, has dimension minimum three,
and we may suppose that dim 7Ty > 3. Then, denoting

S/\:{YGTA‘Q(YvX):O}> SM:{WETM|9(WV>:O}7

we can choose Y, Z mutually orthonormal in S}, since dim Sy > 2. Then,
from (19.2) it follows that Y and Z are orthogonal to U and the Codazzi
equation (19.1) becomes

(ZAN)Y = (YN Z + (M — A)[Z,Y] = 2kg(FY, Z)U. (19.3)

Since U and (A — A)[Z,Y] are orthogonal to Y and Z, we conclude that
YA=0forall Y € Sy. Now, relation (19.3) reduces to

(M — A)[Z,Y] =2kg(FY, Z)U

where the left-hand side is orthogonal to T). Therefore, if £ # 0, FY is
orthogonal to Sy for every Y € S, since p and ¢ are nonzero functions.

Further, we consider the Codazzi equation for Y € S and the particular
vector field X. Since X, Y are in T), it reduces to

(XA)Y — (YA)X + (M — A)[X,Y] = k{pFY — 29(FX,Y)U}.  (19.4)

We have shown that YA = 0, and we now conclude that XA = 0 for all
X €T, since (M — A)[X,Y], FY and U are orthogonal to Y. Thus, relation
(19.4) becomes

(M — A)[X,Y] =k {pFY — 29(FX,Y)U}. (19.5)

Now, the left-hand side of relation (19.5) is orthogonal to X € Ty and we
obtain
3kpg(FX,Y)=0.

Therefore F'Y is orthogonal to X, because k # 0 and p is a nonzero function.
As a result, F'Y € T}, since we proved that F'Y is orthogonal to Sy and to
X. Moreover,

0=g(FY,U) = qg(FY,V),

which means that FY is orthogonal to V', because ¢ # 0. We have thus
shown that F'Y € S, that is, F(S)) C S, since we proved that FY € T,
and g(FY,V) =0.

Finally from the assumption (19.2) it follows that all Y € S are ortho-
gonal to U and then, according to (15.2), we have +F'Y = J:Y, for all Y € S).
This means that F is injective on Sy and thus, dim S, > dim Sy > 2. Conse-
quently, we may reverse the roles of the above-specified A and p to show that
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F(S,) C Sx. Hence, dim S,, = dim Sy and therefore, M is even-dimensional,
since, taking into account X and V', we have dim M = 2dim S + 2. This is
a contradiction, and we conclude that p or ¢ is identically zero, and U is an
eigenvector of the shape operator A. Thus the following lemma holds:

Lemma 19.1. Let M be an (n + p)-dimensional Kihler manifold of constant
holomorphic sectional curvature 4k, with n > 3 and k # 0. Then, assuming
that the shape operator A has exactly two distinct eigenvalues, it follows that
U is an eigenvector of A.

Lemma 19.2. If AF + FA = 0 holds at a point of the submanifold M, then
the holomorphic sectional curvature of the ambient manifold is nonpositive.

Proof. Tt follows from the assumption of the lemma and relation (15.7) that U
is an eigenvector of the shape operator A, that is, AU = aU. Differentiating
this equation covariantly and making use of the Codazzi equation (19.1), we
obtain

2kg(FX,Y) 4+ 29(AFAX,Y) = (Xa)u(Y) — (Ya)u(X)
+ ag((FA+ AF)X,Y). (19.6)

Putting Y = U in relation (19.6), we get
Xa=uX)Ua, (19.7)

since U is an eigenvector of the shape operator A. Using relations (19.6) and
(19.7), it follows

2%g(FX,Y) 4+ 29(AFAX,Y) = ag(FA+ AF)X,Y), (19.8)

from which kg(FY, X) = g(AX, FAY). Putting X = FY in the last relation,
we obtain

kg(FY,FY)=g(AFY,FAY) = —g(FAY,FAY) <0,
and therefore k < 0, since rank F' = n — 1. O

Until further notice we assume that M is a Kahler manifold of constant
positive holomorphic sectional curvature.

Lemma 19.3. Let U be an eigenvector of the shape operator A. If f is a
function on M satisfying

Xf = (Ufu(X) (19.9)

for any X € T(M), then f is constant on M.
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Proof. First taking the covariant derivative of (19.9), we obtain
Y(UfHiu(X) - XUHuwY)+ (Uf)g(FA+ AF)Y,X) =0.

Putting Y = U in the last relation, we get X(Uf) = U(U f)u(X). Now, the
last two equations imply

(Ufg((FA+ AF)X,Y) = 0.

Finally, since the holomorphic sectional curvature is positive, after using
Lemma 19.2; it follows Uf = 0 and therefore relation (19.9) implies that
f is constant. O

Lemma 19.4. If the shape operator A has exactly two distinct eigenvalues,
then they are constant.

Proof. According to Lemma 19.1, U is an eigenvector of the shape operator A,
that is, AU = aU. Hence using relation (19.7) and Lemma 19.3, we conclude
that « is constant.

Now denoting another eigenvalue of A by A and the corresponding eigen-
vector by X, and using (19.8), we obtain the following relation:

2k 4+ a
AFX = —FX. 19.10
2\ — o ( )
The last relation implies that F'X is an eigenvector corresponding to the

eigenvalue

2k +a)
22—«
if X is an eigenvector corresponding to the eigenvalue A\. As A has exactly
two distinct eigenvalues, it follows = a or p = A, and hence A is constant,
since o and k are constant. O

(19.11)

In the following, we want to prove that, in the case when A has exactly
two distinct eigenvalues, the multiplicity of the eigenvalue « corresponding to
the eigenvector U is one. Supposing that X is an eigenvector of A such that
AX = AX and g(X,U) = 0, it follows, using relation (19.10), that

AFX = uFX, where A=pu, or A=« or u=a«,

since A has exactly two distinct eigenvalues. In the case A = « or pu = a,
using relation (19.11), we conclude that the shape operator A has two distinct

. 2 . .
eigenvalues: a and 2’“% Therefore, the proof is separated into two cases.

First, we suppose that the shape operator A has two distinct eigenvalues:
a and A = u. Then, it follows, using relation (19.11), that

M —a)\ =k (19.12)
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Moreover, using relation (19.10), we conclude that T) is invariant under the
action of F'. Further, suppose that the multiplicity of « is greater than one
and let X € T, and ¢g(X,U) = 0. Then it follows from relation (19.10) that

2k + o
o

AFX =

FX = \FX,

since k # 0. Therefore FX € Ty and consequently, AF?X = AF2X, that is,
AX = AX, which is a contradiction since A\ # a.

Now we turn to the case when the shape operator A has two distinct

. 2
eigenvalues o and A = 25+ Tet

D, = {X|AX = aX,g(X,U) =0}, D= {X|AX =AX}.

Since both eigenvalues are constants, it follows that D, and D) are v1- and vo-
dimensional distributions, respectively, such that F D, = D) and F D) = D,,.
Then we have

Lemma 19.5. Assuming that X belongs to D, (or D)), it follows that A, X,
a=2,...,p, belongs to D, (or D).

Proof. Since £ is parallel with respect to the normal connection, using Lemma
15.2, Ricci equation (5.27) and (9.21), we easily see that [A, A,] = 0, which
implies our assertion. g

Lemma 19.6. If X and Y belong to D,, (or D)), then, Vy X belongs to D,
(or Dy), respectively.

Proof. We are going to prove only the case when X, Y € D,, having in mind
that the proof of the case X, Y € D, is analogous.

First, we note that g(Vy X,U) = 0 since X is orthogonal to U and FY €
D). Now, using this fact, it follows g(AVy X,U) = 0. Further, to prove that
AVyX = aVy X, for X, Y € D,, assume Z € T(M) is orthogonal to U.
Then, using the Codazzi equation (19.1), it follows that

G(AVy X, Z) = g(Vy(AX) — g(Vy A)X, 2)
— ag(Vy X, Z) - g(X, (Vy 4)2)
=ag(VyX,Z) —g(X,(VzA)Y)
uY)g(X,FZ) —uw(Z)g(X,FY)+29(FZ,Y)u(X)}
— ag(Vy X, Z) — g(X, (V7 A)Y)
ag(VyX,Z) — g(X,Vz(AY) — AV2Y)
=ag(Vy X, Z),

since « is constant and A, Vy A are symmetric operators. This completes the
proof. O
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From now on, for any X € T(M), we denote by X, its D,-component
and, analogously, by X, its Dy-component. Then, assuming that X € D,,
W € Dy, after differentiating the relation g(X, W) = 0 and using Lemma
19.6, we obtain

Lemma 19.7. Supposing that X € D, and W € Dy, it follows that
VwX € D, ®span{U}, VxW € Dy @ span{U},
that is,

VX = (VwX)a — Ag(X, FW)U,
VXW == (wa))\ — ag(VV, FX)U.

Now, we are ready to prove

Lemma 19.8. Under the same assumptions as above, withn > 2p—1, p > 2,
if the shape operator A has exactly two distinct eigenvalues, it follows that
the multiplicity of the eigenvalue o corresponding to the eigenvector U of the
shape operator A is one.

Proof. Assume that the multiplicity of « is greater than one. Then, if X € D,,
and V, W € D,, taking account of Lemmas 19.4, 19.6, 19.7 and relations
(15.25), (15.27), (19.12), we get

R(X, V)W = (VxVyW)x = Vy(VxW)x = Vv v, W+ (Viv, x). W)a
+ aXg(W, FX)FV — (a + Ng(FV, X))V W. (19.13)

On the other hand, using Gauss equation (5.22) and (9.21), it follows from
Lemma 19.5,

R(X, V)W = k{g(V,W)X — g(FX,W)FV — 2g(FX,V)FW}

p
+aXg(V, W)X+ g(A.V, W) A, X. (19.14)

a=2

Further, comparing the D,-components in relations (19.13) and (19.14), we
obtain

adgW, FX)FV — (a + A g(FV, X)(VoW)a = k{g(V. W)X
—g(FX,W)FV —29(FX,V)FW} + aAg(V,W)X

p
+)g(AW, V)AL X. (19.15)

a=2

Since dim D), = "T_l >p—1, for a fixed W € D) and for a = 2,...,p, there
exists V' € D, such that g(A,W,V) = 0. Moreover, we can choose X € D,
in such a way that g(X, FV) = 0, since dim D, > 2. Taking these X and V
and using relation (19.15), it follows that a4k = 0, which is a contradiction
with the relation (19.12), since k > 0. O
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Remark 19.1. When M is a real hypersurface of a complex projective space
P (C) with exactly two distinct eigenvalues of the shape operator A, the
multiplicity of the eigenvalue « corresponding to the eigenvector U of the
shape operator is one.

Namely, in the case of a real hypersurface, relation (19.14) becomes
R(X, VYW =k{g(V,W)X —g(FX,W)FV =2¢(FX,V)FW}+aAg(V, W)X,
and, consequently, relation (19.15) becomes

arg(W, FX)FV — (a+ Ng(FV, X)(VuW)a = k {g(V,W)X — g(FX,W)FV
— 29(FX,V)FW} + arg(V, W)X, (19.16)

Moreover, since dim D, > 2, we can choose X € D, in such a way that
g(X, FV) = 0. Therefore, using relation (19.16), we can now proceed analo-
gously as in the proof of Lemma 19.8.

Further, if M is an n-dimensional (n > 2p — 1, p > 2) CR submanifold
of CR dimension "7*1 of a complex projective space P%(C) with two dis-
tinct eigenvalues of the shape operator A, using the above consideration, we

conclude that A can be diagonalized as follows:

a 0 ......
0 X ......
......... A
and we may write
AX = AX + (a— Nu(X)U. (19.17)

Further, let S"*7+1 be the unit sphere in E"+P+2 = C*%** and consider

the Hopf fibration 7 : S"*P+1 — P"3*(C). We note that the position vector

. ntpt2 | .
z € S"PTl in C— 2 is a unit normal vector to S"P*! at z and that

Vv —1z = =V, where V] is the unit vertical vector at z of the principal fiber
n+p

bundle ST+ (P2 (C), S1). The fundamental equations for the submersion
are given by (9.5) and (9.10).

Let T'(z,£,7), —00 < r < 00, be the geodesic in the complex projective

space p** (C) parameterized by arc-length r such that
D(z,6,0) =2 € P*5*(C) and T (,€,0)=¢.
In terms of the vector representation of P#(C), ['(z,&,r) can be described

as follows. If w € S"™P*! such that m(w) = x and &* € T, (S"™P*1) is the
horizontal lift of £&. Then
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I(z,&,r) = m(cosrw + sinrg™).
We define a map @, by
O, (x) =T(x,&r) = m(cosrw + sinr ™)

and we compute (®,).X for X € T,,(M). To that purpose, let v(t) be a curve
in M with the initial tangent vector % (0) = X and ~*(¢) be the horizontal
lift of y(¢) to S+ with v*(0) = w and 7*(0) = X7. Then

D, (v(t)) = 7(cos " (t)) + sinr™ (7" (1)),

and therefore, (®,.). X = (m.).(77(0)), where (t) is a curve on S"*?*! defined
by
n(t) = cosry*(t) +sinr ™ (v7(1))

and z = cosrw + sinr £*. Considering 7n(t) as a curve in C™%* we obtain
7(0) = cosr X, + sinr V. &7,

. . . . . . nt+p+2 .
where V¥ is the Euclidean covariant derivative in C~ 2 . Since

V& = Vi & — ¢/ (X5, 6w = VY. &,

using relation (9.10) and the assumption that ¢ is parallel with respect to the
normal connection, it follows

(m)w(Vi. §%) = Vx€ = —AX + Dx& = —AX.

Moreover,
Vi: & = —(AX)" +¢'(Vix. €, Vo)V, (19.18)

where (AX)* is the horizontal lift of AX. On the other hand, using (15.5)
and (9.4), we obtain

§ (T, V0) = —g (65, V. V') = (6", (JX)") = —g(U, X).  (19.19)
Hence, from (19.18) and (19.19), we get

Vi, € = —(AX)* - g(U, X)V.
Thus, we have

(D)X = (m4)2(cosr X + sianE;jjg*)
= () (cos Xy, +sinrVy. £)
— (r#). (cos X7 — sinr((AX)* + g(U, X)V2)).  (19.20)

Now, if we put
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W(X) =cosrX, —sinr((AX)" + g(U, X)V.)),
it follows
W.(U) = (cosr — asinr)US +sinr V.,
since U is an eigenvector of the shape operator A.

We need to find the horizontal component of W/(U), since r is the arc
length of the geodesic I'(z, &, 7) in PHTM(C). Using the fact that
V! = —/—1z = cosrV, +sinrU;,
we compute
g (WLU), V)V =sinr(2cosr — asinr)(cosrV,, + sinrU),
and therefore, the horizontal part (W.(U))* of W/(U) is given by
(WLUNT = (cos2r — % sin2r)(—sinr V. + cosr US). (19.21)
From relations (19.20) and (19.21), it follows

(,).U = (,)(cos 2r — % sin2r)(—sinr V7, + cosr UZ),  (19.22)
(@,).X = (me)(cosr X —sinr)((AX):, + g(U, X)V,). (19.23)

In particular, if & = 2 cot 2r, it follows from (19.22) that (®,.),U = 0. Further,
if X is an eigenvector orthogonal to U and using relation (19.23), we get

(@)X = (m4)2((cosT — Asinr) X).

Since the multiplicity of « is one and k = 1, we have A> — Aa — 1 = 0 and
therefore,
A = cot 2r 4 csc 2r.

e If A =cot2r + csc2r, then (9,),X =0, for any x € M and X € T, (M),
which means that @, (M) is a single point.

e If A = cot 2r — csc2r, then we first note that cot 2(r — 5 ) = cot 2r. Hence
(@T,%)*U = 0. Now, using r — 5 instead of r, we obtain A = cotr, and

therefore (®,_z ). X = 0. Consequently, ®._z (M) is a single point.
Finally, using the definition of ®, and ®,_ =z, we can state the following

Theorem 19.2. [15] Let M be an n-dimensional (n > 2p — 1, p > 2) CR
submanifold of CR dimension ”T_l of a complex projective space p*t (C). If
the shape operator A with respect to the distinguished normal vector field & has
exactly two distinct eigenvalues, and if £ is parallel with respect to the normal
connection, then there exists a geodesic hypersphere S of P%(C) such that

M lies on S.
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If a real hypersurface M has only two distinct principal curvatures, from
Theorem 19.2, there exists such a geodesic hypersphere S such that M C S.
In this case, dim M = dim S = n implies that M is an open submanifold of S
and if M is complete, M = S. Thus we have

Theorem 19.3. [8] If a real hypersurface M of a complex projective space

P%(C) has two distinct principal curvatures, then M is an open part of
geodesic hypersphere. As a consequence of this, MOC:q for g = =L is a geodesic

2
hypersphere.
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CR submanifolds of maximal CR dimension

satisfying the condition
h(FX,Y)+ h(X,FY)=0

In Sections 20 and 21 we show how some algebraic relations between the
naturally induced almost contact structure tensor and the second fundamental
form imply the complete classification of CR submanifolds of maximal CR
dimension of constant, nonnegative holomorphic sectional curvature.

In this section we study CR submanifolds M" of maximal CR dimen-
sion of ”%”’—dimensional complex space forms M of nonnegative holomorphic
sectional curvature which satisfy the condition

WEFX,Y)+h(X,FY) =0, (20.1)
for all X,Y € T(M). Using Lemma 15.1 and relation (15.14), we obtain
WFX,Y) +h(X,FY) = {g(AFX,Y) + g(AX, FY)}¢

+ > {[9(AFX,Y) + g(AX, FY)l&,
a=1

+ [9(Ae- FX,Y) 4 g(Aa= X, FY)|€a+ }.

Therefore, since F' is skew-symmetric, it follows that the relation (20.1) is
equivalent to

AF = F A, (20.2)

AF = FA,, (20.3)

ApF = FAg. (20.4)

Further, if relation (20.2) holds at a point of the submanifold M, using (15.6)

and (15.7), we get
AU = aU, (20.5)

where we have put a = u(AU). Thus, the following lemma holds:

Lemma 20.1. Let M be an n-dimensional CR submanifold of mazimal CR
dimension of a Kdhler manifold M. If the condition (20.2) is satisfied, then
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U is an eigenvector of the shape operator A with respect to the distinguished
normal vector field &, at any point of M.

Using (15.15), (20.3) and (15.7), it follows
AU = —5,(U)U. (20.6)

From the last relation and (15.15), we obtain
$a(X) = 84 (U)u(X). (20.7)

Now, since the condition (20.3) is satisfied, using relations (15.21) and (20.7),
it follows F'A, = 0. The proof of F'A,~ = 0 is analogous: using (15.15), (20.3),
(15.6) and (15.7), we obtain

AU = 5.+ (U)U (20.8)
and using (15.15), it follows
Sax(X) = 8o+ (U)u(X). (20.9)

Now, since the condition (20.4) is satisfied, using relations (15.22) and (20.9),
it follows FA,« = 0. Therefore, using (20.3) and (20.4), we have

AF=0=FA, AgpF=0=FA,. (20.10)
Further, using relations (15.14), (20.9) and (20.10), we obtain
Ay X = s (U)u(X)U, A X = —s5,(U)u(X)U. (20.11)

From now on, we suppose that the ambient manifold M is a complex space
form, that is, a complete Kéhler manifold of constant holomorphic sectional
curvature 4k. First, we prove the following

Lemma 20.2. Let M be an n-dimensional CR submanifold of mazimal CR
dimension of a complex space form M. If the condition (20.1) is satisfied,
then

(1) the distinguished normal vector field & is parallel with respect to the
normal connection, or

(2) the ambient manifold M is a complex Euclidean space and M is a
locally Fuclidean space.

Proof. First, using (15.30), (20.7) and (20.10), it follows
F((VxA,Y — (VyA)X) =s,(U)(w(Y)FAX —u(X)FAY). (20.12)

Now, differentiating the relation (20.10), we obtain
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(VxF)AY + F(VxA,Y =0. (20.13)
Further, using (15.20), (20.11) and (20.5), we get
(VxF)AY = so«(U)u(Y)(AX — au(X)U), (20.14)
and therefore, it follows
F((VxA,)Y — (VyA4,)X) = s (U)(w(X)AY —u(Y)AX). (20.15)
Using relations (20.12) and (20.15), after replacing Y by U, it follows
$a(U)FAX = 54+ (U)(au(X)U — AX), (20.16)

since AU = aU (Lemma 20.1).

Now, let X € T(M), X L U be an eigenvector of the shape operator
A with respect to distinguished normal vector field ¢, namely, AX = A X.
Then, using (20.2) and (20.16), we obtain

Asa (U)X + Asq(U)FX = 0. (20.17)

Therefore, since X and FX are linearly independent, it follows Dx& = 0
(since s4+(U) = 0 = 5,(U) and using relations (20.7) and (20.9)), or A = 0.
Further, we consider the case A = 0. Then the eigenvalues of the shape
operator A are « and 0 and the multiplicity of the eigenvalue « is one.
Therefore we may write
AY = au(Y)U (20.18)

and it follows
FAY =0. (20.19)

Differentiating the last relation and using (15.20), it follows
F((VxA)Y — (VyA)X) + u(AY)AX — u(AX)AY = 0. (20.20)
Further, using (15.6), (15.7), (15.29) and (20.10), we obtain
F(VxAY — (VyA)X) =k(u}Y)X —u(X)Y). (20.21)
Now, from (20.20) and (20.21), it follows
w(AX)AY —u(AY)AX = k(u(Y)X — u(X)Y). (20.22)

Replacing Y by F'Y in the last relation, we obtain k£ = 0, that is, the ambient
manifold is a complex Euclidean space.

Finally, using (20.11), (20.18) and the Gauss equation (15.28), it follows
R(X,Y)Z =0, that is, M is a locally Euclidean space. O
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Now we consider the case when the ambient manifold M# is a complex
space form and when the CR submanifold M of maximal CR dimension satis-
fies (1) in Lemma 20.2, that is, the case when the distinguished normal vector
£ is parallel with respect to the normal connection D which is induced from
V, namely,

DXf = Z{Sa(X)ga + Sax (X)ga*} - Oa (20'23)

from which it follows
Sa=8q¢+=0, a=1,...,q. (20.24)
Therefore, using relations (15.14) and (15.15), we obtain

Ay =FA,, Ag=-FAy, a=1,...,q, (20.25)
1
AU =0=AU, a=1,...,q, q:pT. (20.26)

Moreover, using (15.21) and (15.22), we obtain
AgF + FAy =0, ApF+FAp=0, a=1,....q. (20.27)

Further, we continue our investigation of the condition (20.1). Since this
condition is equivalent to (20.2), (20.3) and (20.4), using (20.25) and (20.27),
it follows

A, =0=A4, a=1,...,q.

Namely, we proved that the following lemma holds:

Lemma 20.3. Let M be a complete n-dimensional CR submanifold of CR
dimension "7*1 of a complex space form. If the distinguished normal vector
field & is parallel with respect to the normal connection and if the condition
(20.1) is satisfied, then A, =0 = Ay, a = 1,...,q, where A,, Ay~ are the

shape operators for the normals &,, .+, respectively.
Combining this result with Theorem 14.3, we prove

Theorem 20.1. Let M be a complete n-dimensional CR submanifold of CR
dimension "T_l of a complex space form of nonnegative holomorphic sectional
curvature. If the distinguished mormal vector field & is parallel with respect
to the normal connection and if the condition (20.1) is satisfied, then there
exists a totally geodesic complex space form M' of M such that M is a real

hypersurface of M’'.

Proof. First, we put No(z) = {{ € T;-(M)|A¢ = 0} and let Ho(z) be the
maximal J-invariant subspace of No(z), that is, Ho(z) = JNo(z) N No(z).
Then, using Lemma 20.3 and Theorem 14.3, the submanifold M may be
regarded as a real hypersurface of c*, P (C), which are totally geodesic
submanifolds in CnTw, p* (C), because here we consider only the case when

the ambient manifolds have nonnegative holomorphic sectional curvature. O
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In what follows we denote CHTH, P (C), by M’ and by #; the immersion
of M into M’ and by 15 the totally geodesic immersion of M’ into C*%*,

P 2" (C), respectively. Then, from the Gauss formula (5.1), it follows that

ViuY =uVxY + g(A'X,Y)E,

where A’ is the corresponding shape operator and £’ is a unit normal vector
field to M in M’. Consequently, using the Gauss formula (5.1) and ¢ = 15 - 11,
we derive

VXZQ o Zly = ZQV/X’LlY + I_’L(ZlX, 21Y)
= 12 (Z1VXY + g(A,X, Y)fl), (2028)

since M’ is totally geodesic in C"TM, Pt (C). Further, comparing relation

(20.28) with relation (5.1), it follows that £ = 12§’ and A = A’. As M’ is a

complex submanifold of Cn;]a7 pr* (C) with the induced complex structure

J', we have Jio X' =1 J' X', X' € T(M’). Thus, from (15.2) it follows that

JiX =] 11X =1F' X + V(X)) =1F'X +V(X)¢ (20.29)

and therefore, we conclude that ' = F’ and ¢/ = u and since M, for which
condition (20.2) is fulfilled, is a real hypersurface of P (C), C"s, we
may use Theorems 16.3 and 16.4, and therefore, using Lemma 20.2 prove the

following theorem:

Theorem 20.2. [23] Let M be a complete n-dimensional CR submanifold
of mazimal CR dimension of an ”J{p-dimensional complex space form M of

nonnegative holomorphic sectional curvature. If the condition

WEX,Y)+h(X,FY)=0, for all X,Y €T(M)

1s satisfied, where F is the induced almost contact structure and h is the second
fundamental form of M, then one of the following statements holds:

(1) M is a complete n-dimensional CR submanifold of CR dimension an

of a complex Fuclidean space Cn;p, and then M is isometric to E™ S™,
S2k+1 % En72k71.
)

(2) M is a complete n-dimensional CR submanifold of CR dimension "Tfl

of a complex projective space PnTH)(C), and then M is isometric to M,gl, for
some k, | satisfying 2k + 2l =n — 1.

Remark 20.1. When M is a complex hyperbolic space H™" (C), the complete
classification is given in [23].
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Contact CR submanifolds of maximal CR
dimension

In this section we study CR submanifolds M™ of maximal CR, dimension of a
n+p

2

complex space form M which satisfy the condition

WFX,Y)—h(X,FY)=g(FX,Y)y, neT(M) (21.1)

for all X, Y € T (M), where n does not have zero points.

For now, let (M,.J,g) be a Kihler manifold. According to Lemma 15.1
and setting

q
n=p§+ Z(paga + Pa*ga*)a
a=1

we conclude that the condition (21.1) is equivalent to

AFX + FAX = pFX, (21.2)

A FX + FAX = p°FX, (21.3)

A FX 4+ FA.- X = p* FX, (21.4)
p—1

for all @ = 1,...,q, ¢ = 55~ since F is a skew-symmetric endomorphism
acting on T'(M). Here we also used relation (15.14).

Combining relations (4.4), (15.2), (15.26) and (21.2), we compute
du(X,Y) = (Vxu)(Y) = (Vyu)(X)
=g(FA+AF)X,Y)
=pg(FX,Y). (21.5)
Then, since F' has rank n — 1, we conclude

uANdul--- ANdu #0. (21.6)

We recall the definition of a contact manifold. A manifold M?™+! is said
to be a contact manifold if it carries a global one-form u such that
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A (du)™ # 0 (21.7)

everywhere on M. The one-form wu is called the contact form.

Relation (21.6) now proves

Proposition 21.1. If M is a CR submanifold of mazimal CR dimension of
a Kdhler manifold, which satisfies the condition (21.2), for p # 0, then M is
a contact manifold.

Further, using (21.5), (4.2) and (15.2), we obtain

du(X,Y) = pg(FX,Y) = pguFX,Y)
= pg(J1X,1Y) = pQ(2.X,1.Y)
=m"QX,)Y), (21.8)

where +* is the pull-back map which commutes with the exterior derivative.
Consequently, using (21.8), we compute dp = 0 since

0=d*u=dpA"Q+ pd*Q = dp AN *Q+ p*dQ = dp A 1*Q,
which yields

Lemma 21.1. If M™, n > 3 is a CR submanifold of maximal CR dimension
of a Kdhler manifold, which satisfies the condition (21.2), then p is constant.

Lemma 21.2. Let M be an n-dimensional CR submanifold of mazximal CR
dimension of a Kdhler manifold M. If the condition (21.1) is satisfied, it
follows

FA, +AF =0, FAg+ Ay F =0, (21.9)

that is, p* =0, p“* =0,a=1,...,q.

Proof. Since the condition (21.1) is equivalent to (21.2), (21.3) and (21.4),
using (15.21) and (15.22), we get

p*g(FX,Y) = sa(X)u(Y) — sa(Y)u(X), (21.10)
P GFX,Y) = $q-(X)u(Y) — 5q- (Y)u(X). (21.11)

Next, we put Y = U in (21.10) and (21.11) and use (15.7) to obtain
$a(X) = s,(U)u(X), 8¢+ (X) = sa (U)u(X). (21.12)

Substituting (21.12) into (15.21) and (15.22), we get (21.9). Finally, using
(21.3) and (21.4), we have p® =0 and p* =0, fora=1,...,q. O

Remark 21.1. From Lemma 21.2, together with (21.1), we conclude that p
does not have zero points.
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Further, using (21.9) and (15.7), it follows
FAU =0, FA,.U=0. (21.13)

Therefore, using (21.13) and (15.6), we obtain
AU = 54« (U)U,  ApU = —5,(U)U. (21.14)

Further, if relation (21.2) holds at a point of the submanifold M, using
(15.6) and (15.7), we get that U is an eigenvector of the shape operator A
with respect to distinguished normal vector field &, at any point of M, namely,

AU = al, (21.15)
where we have put a = u(AU). Namely, we proved

Lemma 21.3. Let M be an n-dimensional CR submanifold of mazimal CR
dimension of a Kéihler manifold M. If the condition (21.1) is satisfied, then U
s an eigenvector of the shape operator A with respect to distinguished normal
vector field &, at any point of M.

From now on we assume that the ambient manifold M is a complex space
form.
Using Ricci-Kiihne formula (5.24), Gauss equation (5.22), relations (15.2)
and (15.5), we obtain
0=g(R(X,2Y)&, &) = g(AAX,Y) — g(A,AX,Y)
+ (VXSa)(Y) - (VYSa)(X)

q
+ ) [56(Y) 560 (X) + 53 (V)50 (X)
b=1
— $5(X)3pa(Y) — sp+ (X)) 8p+0 (V)] (21.16)
We now prove the following extremely useful

Lemma 21.4. Let M be a complete n-dimensional CR submanifold of CR
dimension ”Tfl of a complex space form. If the condition (21.1) is satis-
fied, then the distinguished normal vector field & is parallel with respect to the
normal connection.

Proof. Let us compute g((VxAe)Y — (VyAe+)X,U) in the following two
ways. First, differentiating the relation (15.15) and using (15.25), (15.27),
(21.14) and (21.15), we obtain

9(VxAa)Y,U) = g(VxF)AY,U) + g(F(VxA.)Y,U) = (Vxsa)(Y)
= —g(AeAX,Y) + ases (U)u(X)u(Y) — (Vxsa)(Y). (21.17)

Reversing X and Y and subtracting thus yields
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9(VxAa:)Y — (VyAe)X,U) = g((AA, — A,A)X,Y)
= (Vx8a)(Y) + (Vysa)(X). (21.18)

Substituting (15.31) into (21.18) and using (21.15), we obtain

g((AAa - AaA)Xa Y) - (VXSQ)( ) (VYSa)(X) = (2119)

Z{Sa b(X)g(ApY,U) — sa=5(Y)g(Ar X, U)}

+ Z{Sa v (X)g(Ap Y, U) = a1+ (Y)g(Ap- X, U) }.

Now, using (15.15), (15.17), (15.19), relations (21.16) and (21.19) yield
g((A4A, — A, A)X,Y)=0, for all XY e T(M). (21.20)

Next, differentiating the second relation of (21.14) and using (15.27) and
(21.2), we obtain

9(VxAe)Y — (VyAe)X,U) + g((Ag-FA + AFA,)X,Y)  (21.21)
= Y (5(U))u(X) = X (54 (U))u(Y) = psa(U) g(FX.Y).

Since g(FX,FY) = g(X,Y) — uw(X)u(Y), using (15.15), (15.17), (21.15) and
(21.12), we compute

G(Ap- FA+ AFA)X,Y) = g(AX, AY) — w(AX)u(A,Y)
— 9(AY, AgX) + u(AY )u(A. X)
= g(AX, A,Y) — g(AY, A, X)
+ g(AY, U)sq- (U)u(X) — g(AX, U)sa (U)u(Y)
= g((AA — AA)X,Y). (21.22)

Codazzi equation (15.31), together with (15.18), (15.17) and (21.15), yields

9(VxAg)Y — (VyAg-) Z{Sa “5(X) 5 (V) = sa=p(Y) s+ (X)}
+ D {5arb (V)55(X) = saep- (X) (V) }- (21.23)
b=1

Now, using (21.22) and (21.23), relation (21.21) reads

Z{Sa*b )b+ (Y) — S (Y )86+ (X) — Sqep (X)5p(Y) + 80+ (Y)55(X)}

((AaA - AAa) aY) = Y(Sa(U))u(X) - X(Sa(U))u(Y)
—psao(U)g(FX,Y). (21.24)
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Further, replacing Y by U in relation (21.24) and using (21.12), we obtain

X(54(U)) = Ulsq Z{sab )86+ (U) = savp (X)sp(U)

) [sars s (O) + s (D)0 (21.25)

since, using (21.14) and (21.15), we compute g((4,A—AA,)X,U) = 0. Com-
bining relation (21.25) with (21.24) and using (21.12), we get

g((AAa - AaA)X7 Y) = psa(U)g(FX7 Y) (2126)

Thus (21.20) and (21.26) imply s,(U) = 0 and consequently, from (21.12) we
conclude s,(X) = 0. In entirely the same way, we obtain s,« = 0, which
completes the proof. O

Remark 21.2. A slight change in the proof of (21.20), implies
g((AAy — A A)X,Y) =0, for all XY € T(M). (21.27)

Further, using (21.15) and (15.27), we calculate directly
(VxA)U = (Xa)U + aFAX — AFAX

and, since A is a symmetric operator, taking the inner product of (VxA)U
with Y, we obtain

9(VxA)Y,U) = (Xa)u(Y)+ ag(FAX,Y) — g(AFAX,Y). (21.28)
Then, interchanging X and Y in (21.28) and subtracting, gives

9(VxA)Y — (Vy A)X,U) = (Xa)u(Y) — (Ya)u(X) (21.29)
+ a(g(FAX,Y) — g(FAY, X)) — g(AFAX,Y) + g(AF AY, X).

Since M is a CR submanifold of a complex space form, the Codazzi equation
(15.29), Lemma 21.4 and relation (21.29) imply

(Xa)u(Y) — (Yo)u(X) + ag((FA + AF)X,Y)
— 29(AFAX,Y) = —2kg(FX,Y). (21.30)

If we set Y = U in (21.30), we get Xa = fu(X), where § = Uq, that is,
grad a = GU. (21.31)

Taking the covariant derivative of (21.31), reversing X and Y and subtracting
the two equations and using (21.2), we obtain

0=g(Vygrada, X) — g(Vxgrada,Y)
= Y Pu(X) = (XB)u(Y) + pBg(FY, X). (21.32)



144 21 Contact CR submanifolds of maximal CR dimension

Replacing Y by U in (21.32), we get X3 = (UB)u(X) and substituting this
into (21.32), we have p8g(FX,Y) = 0. Since p # 0, we conclude 8 = 0. This,
together with (21.31), implies that « is constant and we have thus proved

Lemma 21.5. Let M be a complete n-dimensional CR submanifold of CR

dimension "T_l of a complex space form. If the condition (21.1) is satisfied,

then the eigenvalue o = u(AU), corresponding to U, is constant.
Consequently, since « is constant, relation (21.30) becomes
a(FA+ AF)X —2AFAX = —2kFX. (21.33)
Applying F' to relation (21.33) and using (21.2), we obtain
242X — 2pAX + (ap + 2k) X — (20° — ap + 2k)u(X)U = 0, (21.34)
and we are thus led to the following

Lemma 21.6. Let M be a complete n-dimensional CR submanifold of CR

dimension "T_l of a complex space form. If the condition (21.1) is satisfied,

then A has at most three distinct eigenvalues and they are constant.

Proof. On account of Lemma 21.4 and Lemma 21.5, we know that a is a con-
stant eigenvalue, corresponding to the eigenvector U. Since A is a symmetric
operator, let X be another eigenvector with the corresponding eigenvalue .
Then, according to (21.34), it follows

202 — 2p\ + (ap +2k) =0 (21.35)

since X 1 U. Thus A has at most three distinct eigenvalues which are all
constant. O

Now, using Lemma 21.4 and relation (15.15), it follows A« = FA,. Com-
bining this with relation (21.27) and (21.9), we obtain

A FAY + AFA,Y =0,

for any tangent vector Y. Therefore, using (21.2), (21.9) and (21.20), we
conclude
p AJFY — 24,AFY = 0. (21.36)

For another eigenvector X, orthogonal to U, with the corresponding eigen-
value A, since X can be written as X = FY and AFY = AFY = )\ X, we can
rewrite (21.36) as

(p—2NA, X =0. (21.37)

First we consider the case when one of the eigenvalues A is different from
£. It follows from (21.37) that A, X = 0 for all X | U. Further, using (15.18)
and Lemma 21.4, it follows
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g(AUY) =5,(Y) =0, forallY € T(M)

and therefore A,U = 0. Hence, taking into account that A, X = 0, for all X
orthogonal to U, it follows A, =0fora=1,...,q.

Using this procedure, the proof of Ay« =0, a =1,...,q is essentially the
same, and so we omit it. Hence, the following lemma holds:

Lemma 21.7. Let M be a complete n-dimensional CR submanifold of CR di-
mension an of an "Tﬂ—dimensional complex space form M. If the condition
(21.1) is satisfied and p # 2\, where X is another eigenvector of A, orthogonal
to U, with the corresponding eigenvalue A, then Ay =0 = Ag+, a=1,...,q,
q= %, where A, A,, Aq~ are the shape operators for the normals &, &,, &q~,

respectively.
Making use of this result, we prove

Theorem 21.1. Let M be a complete n-dimensional CR submanifold of CR
n—1 . . ntp .

5= of a complex projective space P72 (C) (respectively a com-
plex Euclidean space CnTﬂ?). If the condition (21.1) is satisfied and p # 2,
where X is another eigenvector of A, orthogonal to U, with the correspond-
ing eigenvalue X\, then there exists a totally geodesic complex projective sub-
space P (C) (respectively complex subspace C%) oanTer (C) (respectively
CnTﬂj) such that M is real hypersurface oanTJrl (C) (respectively C%).

dimension

Proof. First, let us define
No(x) = {€ € T, (M)|A¢ = 0}
and let Hy(x) be the maximal J-invariant subspace of Ny(z), that is,
Ho(x) = JNo(z) N No(z).
Then, using Lemma 21.10, it follows

No(z) = span{&i(z),..., & (x), &1+ (), ..., &= (2) }.

Since J&, = &4+, we have JNy(z) = Ny(z) and consequently

Hy(z) = JNo(x) N No(z) = span {&1(2), ..., &(x), &ix(2), ..., &g () }.

Hence the orthogonal complement H;(x) of Ho(z) in T;-(M) is spanned by
&, which is parallel with respect to the normal connection, by Lemma 21.4.
Therefore, we can apply the codimension reduction theorems (see Section 14).

If M is a complex projective space, applying Theorem 14.3 we conclude
that there exists a real (n+1)-dimensional totally geodesic complex projective

subspace P (C), such that M is a real hypersurface of it.
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If M is a complex Euclidean space, applying Theorem 14.1 we conclude
that there exists a real (n + 1)-dimensional totally geodesic Euclidean space
E"*1 such that M is a real hypersurface of it. Since T(E"*!) = T(M) & ¢,
we have

X' =1X +a¢, for X' €T(E"™), X eT(M),

Then, by (15.2) and (15.5), it follows
JX' = "X + Jaf = 1FX +u(X)é —aU € T(M) @ € = T(E™).

and we conclude that E"*! is J-invariant and therefore complex. Conse-
quently, there exists a real (n + 1)-dimensional totally geodesic complex Eu-
clidean subspace of CnTH, such that M is its real hypersurface. a

Therefore, we can apply the results of real hypersurface theory. Namely,
using Theorem 21.1, the submanifold M can be regarded as a real hypersurface
of P%(C) (respectively C"2), which is a totally geodesic submanifold in

Pt (C) (respectively c** ). In what follows we denote by 2; the immersion
of M into P"2" (C) (respectively C*2"), and by 15 the totally geodesic im-
mersion of PnTH(C) (respectively CHTH) into P%(C) (respectively C#).
Then, from the Gauss formula (5.1), it follows

lelly =unVxY + g(A/X,Y)g,

where ¢ is a unit normal vector field to M in P*3 (C) (respectively C"=")
and A’ is the corresponding shape operator. Consequently, by using the Gauss
formula and ¢+ = 15 - 11, we derive

VxwonY =15V +h(nX, 1Y) =10 VxY +g(AX,Y)E) (21.38)

since P"3" (C)(respectively C"2) is totally geodesic in PHTM(C) (respec-
tively CnTer) Further, comparing relation (21.38) with relation (5.1), it fol-
lows that € = 156’ and A = A’. As P™%
plex submanifold of Pt (C) (respectively CTLTH), with the induced complex
structure J’, we have

(C) (respectively C%) is a com-

n

JuX' =uJ' X', X' TP (C)).
Thus, from (15.2) it follows
JiX =]y X = 1F' X + V(X)) =1F' X +v/(X)E

and therefore, we conclude that F' = F’ and v/ = w.

Further, we suppose that the ambient manifold is a complex Euclidean
space. Then, we have
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Theorem 21.2. [21] Let M be a complete n-dimensional CR submanifold of
mazimal CR dimension of a complex Euclidean space c"", If the condition

h(FX,Y)— WX, FY) =g(FX,Y)n, 7’€TL(M)

is satisfied, where F and h are the induced almost contact structure and the
second fundamental form of M, respectively, then M 1is congruent to one of
the following:

s”, ST xE"7,

or there exists a geodesic hypersphere S”‘“’_l(ﬁ) of C™3" such that M is an

invariant submanifold by the almost contact structure F' of the hypersphere

Sn+p—1 (Ell)

Proof. We first consider the case p # 2. Then, by Theorem 21.1, M and A
are respectively regarded as a hypersurface of C** and its shape operator
in C"3". Hence, using Lemma 21.6 and Theorem 11.4, we conclude that M
must be one of S, E™ and S” x E"~". However, from (21.2), it follows that
E” cannot satisfy the condition (21.1). Now, let us determine the dimension
r of the component S” of S” x E"~". Using Theorem 11.3, it follows that one
principal curvature must be 0, which is a solution of (21.35). Since k£ = 0 and
p # 0, « = 0 and the principal curvatures are p and 0. Moreover, it is easily
seen that F'Dy = D,, F'D, = Dy, where

Do ={X e T(M)|AX =0, X LU},
D, = {X e T(M)| AX = pX}.

Hence, dim Dy = dim D, = "T_l The components S” and E"~" are the

integral manifolds of D, and Do @ span {U}, r = 251, respectively.

Next, we consider the case when p = 2\. Then, substituting this into
(21.35), we have A(A — a) = 0, since k = 0. Moreover, using the fact that
A= £ #0, we conclude that the shape operator A has only one eigenvalue a,
and therefore, M lies on a hypersphere S"+P~1(1.).

o]

Finally we prove that M is an invariant submanifold by the almost contact
structure F’ of S"*P~1. Denoting by 10 the immersion of S"+?~! into C™3~,
we have

JZ()X = Zoﬁ‘X + ’a(X)g,

for any X € T(S), since ¢ is also unit normal to S"*P~1 in C™s". Here

(F,@,€) is the induced contact structure of S**P~1 If X =+ X where ¢’ is
immersion of M into S"*P~! we have

Jiwg o' X = 10FV' X + u(2 X)E.

Comparing the tangential and normal part, and using (15.2), for + = 1 - ¢/,
we conclude u(X) = @(vX) and F'X = /FX . This shows that M is an
invariant submanifold of S”*P~1 and wu is the restriction of the contact form
@ of Sntr—1, O
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Further, in the case when the ambient manifold is a complex projective
n+

2" (C), the theorem to be proved is the following

space P

Theorem 21.3. [25] Let M be a complete n-dimensional CR submanifold of

maximal CR dimension of a complex projective space P (C) which satisfies
the condition

hFX,Y)—hX,FY)=g(FX,Y)y, ne&T+(M) (21.39)

for all X, Y € T(M), where i does not have zero points. Then one of the
following holds:

n—1

(1) M is congruent to a geodesic hypersphere MOC:k for k= "5=;
(2) M is congruent to M(n,0);
n+p

(3) there exists a geodesic hypersphere S of P~z (C) such that M is an
invariant submanifold by the almost contact structure F' of S.

We begin by proving

Lemma 21.8. Let M be an n-dimensional CR submanifold of maximal CR
dimension of a complex projective space Pt (C) which satisfies the condition
(21.1). Then the multiplicity of the eigenvalue « is one.

Proof. First we consider the case that p % 2\. Then, by Theorem 21.1, M and
A are respectively regarded as a real hypersurface of P (C) and the shape
operator of M in P"3* (C). Let X L U be an eigenvector of A corresponding
to the eigenvalue a. Then from (21.2), we obtain that FX is an eigenvector
of A corresponding to p — a. Since, using Lemma 21.9, it follows that A has
at most three distinct eigenvalues, we conclude p—a = a or p—a = A, where
A is the solution of (21.35). Therefore, let p — o = A. Then, substituting
this into (21.35) we obtain 2a? — pa + 2 = 0. Using (21.35) again, we get
A =aor A =p— a. Thus solutions of (21.35) are o and p — . This means
that A has only two distinct eigenvalues. Since A is regarded as the shape
operator of a real hypersurface in P (C), we can apply Lemma 19.8, more
precisely Remark 19.1, and obtain that the multiplicity of « is 1, which is a
contradiction.

Next we consider the case p = 2\, where X is an eigenvector of A with
corresponding eigenvalue A # «. Let the multiplicity of a be r. Then

trace A =ra+ (n — r)g (21.40)

Using (21.2) and (15.6) we get
—AX +u(AX)U + FAFX = p(—X +uw(X)U). (21.41)

Taking the trace of (21.41), we obtain
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trace A = g(n -1 +a. (21.42)

Using (21.40) and (21.42), we get

p
(r—l)(a—i) =0.

Since a # £, it follows r = 1. 0

Proof of Theorem 21.3. Lemma 21.8 shows that as a real hypersur-
face of P35 (C), M has at most three distinct principal curvatures and the
multiplicity of the eigenvalue « is 1.

If M has only two distinct principal curvatures, by Theorem 19.3, M is a
geodesic hypersphere Mgk for k = "T_l

If M has three distinct principal curvatures A1, A2 and «, by Lemma 16.3,
as a hypersurface of S"*2, 7#=!(M) has four principal curvatures Ai, A2,
n—1

and —i with respective multiplicities 5=, ”771, 1 and 1. Thus, by Remark

12.1, 7= 1(M) is congruent to M’(n,0) and M = wM’(n,0) = M(n, ).
Hence, when p # 2\, M is congruent to M,SO for k = ”T_l or to M(n,0).

Next we consider the case p = 2A. Let X be an eigenvector of A with
corresponding eigenvalue A # «. Using (21.2), we conclude that

AFX = (p— \FX,

namely, it follows that F'X is an eigenvector with the corresponding eigenvalue

p— A =2X—X= A Therefore, the only eigenvalues of A are a and A = §.

Hence, from Theorem 19.2, it follows that there exists a geodesic hypersphere
n+p

S of P72 (C) such that M lies on S.

We can now proceed analogously to the proof of Theorem 21.2 and con-
clude that M is F’ invariant, which completes the proof of Theorem 21.3.
|

Remark 21.3. The case when the ambient manifold M is a complex hyperbolic

space H"#" (C) is studied and the complete classification is given in [26] while
the main results appear in [22].
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Invariant submanifolds of real hypersurfaces of
complex space forms

In Remark 15.1 we recalled that real hypersurfaces of a complex manifold
admit a naturally induced almost contact structure F” from the almost com-
plex structure of the ambient manifold. In Theorem 21.3 we proved that if
M is a complete n-dimensional CR submanifold of maximal CR dimension of
a complex projective space PHTH'(C) satisfying the condition (21.1), then M

is congruent to a geodesic hypersphere Mgk for k = "7’1, or to M(n,0), or
n+p

there exists a geodesic hypersphere S of Pz (C) such that M is an invari-
ant submanifold by the almost contact structure F’ of S. It is easy to check

that for the geodesic hypersphere MOC:k for k = ”51, the following relation is
satisfied:

A'F' + F'A' = pF’, (22.1)

where A’ is its shape operator. An easy computation, using Lemma 3.4 in
[56], shows that M (n,0) also satisfies relation (22.1).

Consequently, it appears interesting to solve the following problem

Does an F'-invariant submanifold of a geodesic hypersphere S of a complex
space form satisfy the condition (21.1)?

First, we prove that any odd-dimensional F’-invariant submanifold of a
real hypersurface of a complex manifold M is a CR submanifold of maximal
CR dimension. Considering this problem, it is natural to continue exploring
Example 15.3 with more details.

Let M be a real (m+1)-dimensional complex manifold with natural almost
complex structure J and a Hermitian metric g.

We consider a real hypersurface M’ of M and an n-dimensional submani-
fold M of M’ with immersions 21 and 1g, respectively. Then M is a submani-
fold of M with the immersion 2 = 1;29. The Riemannian metric g’ of M’ and
g of M are induced from the Hermitian metric g of M in such a way that

M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 151
Developments in Mathematics 19, DOI 10.1007/978-1-4419-0434-8_22,
© Springer Science+Business Media, LLC 2010
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gI(XIﬂY/) = ?(ZlX,vlly/)a for ley/ € T(M/)v
g(X,Y) = ¢ (10X,0Y) =g(0X,Y), for XY e€T(M).

Let us denote by & the unit normal local field to M” in T'(M). Since a real
hypersurface is a CR submanifold of maximal CR dimension (see Example
15.1), using the results of Section 15, it follows that M’ is endowed with
the induced almost contact structure (F”,w’, U’) which satisfies (15.6), (15.7),
(15.9) and (15.27).

Now, let us assume that M is invariant under the action of the almost
contact tensor F’, that is, F'T(M) C T(M), for the tangent bundle T'(M).
Consequently, if we denote by UL the normal part of U’ in M’, we may write

FlipX =10 FX, U' = 1U + U, (22.2)
where F' is an endomorphism acting on T'(M) and we can deduce

Proposition 22.1. For an F'-invariant submanifold M of M’, only the fol-
lowing two cases for the vector field U' can occur:

(1) U’ is always tangent to M and M is necessarily odd-dimensional.

(2) U’ is never tangent to M and M is necessarily even-dimensional.
Proof. From (15.6) and (22.2), it follows

F%0X = —10X + ' (10X )10U + /(10 X) U,
F%0X = FliyFX =1 F%X.

Comparing the tangential part and normal part of the above equations, we
conclude

F2X = X + 4 (wX)U, ' (1pX)U* =0, (22.3)
If w'(10X) = 0 is satisfied at a point & of M, the first equation of (22.3)
reads F2X = —X. Thus, F is an almost complex structure and M is even-

dimensional. Moreover, from

0=1'(10X) =g (U, 10X) = g (10U + U*,20X) = g(U, X),
for all X € T(M), we conclude U = 0. Therefore, using (22.2), it follows
U’ = U+, which shows that U’ is never tangent to M.

If v (10X) # 0 at some point € M, then it follows from (22.3) that
Ul =0at x € M, that is, U’ = 1U. This shows that U’ is always tangent
to M and from (22.3) we conclude

F?X =X+ g(U, X)U.

Using the notation D, = {X € T,(M) : g(X,U) = 0}, we conclude
that F' acts as an almost complex structure on D, and therefore, D,. is even-
dimensional. Consequently,
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T,(M) =D, & span{U}
and M is odd-dimensional, which completes the proof. a
For an odd-dimensional submanifold M, using U’ = 10U, we compute
1= g/(UI7 Ul) = gl(ZOU7 ZOU) = g(U7 U>7
F2X = X + 4/ (00 X)U = =X + ¢ (U 10 X)U = - X + g(U, X)U,
0=F'U = FigU = 10 FU,
and, consequently, FU = 0. Hence, if we define the one-form u on M by

u(X) = g(U, X), then u(X) = /(20X ) and (F,u,U) defines an almost contact
structure on M.

Further, let &, ...,&, (p = m —n) denotes the orthonormal normal frame
field to M in M’. Since

gl(F/£ZI7ZOX) = _g/<£(lz7F/Z0X> = _g/(gngOFX) = 07

we conclude that the normal space span{¢j,...,{,}, is an F'-invariant sub-
space of T,,(M') at each point z € M. Hence we may write

p
F'&, =" Puf.
b=1

Now, we consider the submanifold M of M " as a submanifold of a complex
manifold M. We choose an orthonormal normal frame &i,...,&+1 of M in
M in such a way that

fp-‘rl = 57 fa - 2151/17 a = 1, ..., D.

Then, from the above discussions, we easily conclude

JuX = 1F X +u(X)E, (22.4)
JE = —al, (22.5)
p
Jéo = Jug, =uF'¢,=> Pu&, a=1,...p. (22.6)
b=1

This shows that span{&i, ..., &y}, is a J-invariant subspace of T, (M).

Denoting by V and V' the Riemannian connections of M and M’, respec-
tively, the Gauss formula (5.1) yields

P
VY =10VxY + 3 g(A,X,Y)E, (22.7)
a=1
where A!’s are the shape operators of M with respect to £,. We denote by
Aand A, (a =1,...,p), the shape operators of M with respect to £ and &,
respectively. Then,
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p
VxY =1VxY + g(AX,Y)E+ ) g(AaX,Y)E, (22.8)

a=1

where V is the Riemannian connection of M. On the other hand, using (5.1)
and (22.7), we compute

ﬁxly = vxhloy = ’LlV/X’LoY + g/(A/’LoX, 7,0Y)§

p
=u(1VxY + > g(A,X,Y)E) + g (A19X,20Y )€

a=1
P
=1VxY + ¢ (A X, 10V )+ g(A,X,Y ). (22.9)
a=1
Comparing (22.8) and (22.9), we conclude
9(AX)Y) = g'(A0X,0Y),  g(AX.Y) = g(A,X,Y), (22.10)

from which it follows A, = A fora=1,...,p.
The Weingarten formulae (5.6) for M are

p
Vx¢=—1AX +) sa(X)a

a=1
p
=1 (—0AX + ) s4(X)E)) (22.11)
B a=1 )
nga = *ZAaX - Sa(X)g + Zsab(X)fb, (2212)
b=1

where s, = Spi1a, Sab are the components of the third fundamental form of
M in M and a =1,...,p. On the other hand,

ﬁxf == 7Z1A/10X, (2213)
Vxéa = uVix&, +9' (A0 X, €,)¢
p
= 1 ALX + D shy(X)& + g/ (A10X, €))E, (22.14)
b=1

where we denote by s/, the components of the third fundamental form of M
in M and a = 1,...,p. Comparing the tangential part and normal part of
the equations (22.11)-(22.14), we obtain

p
ApX =10AX =) sa(X)E,

a=1

5q4(X) = —g' (A1 X, ), sy = Sab- (22.15)
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Now, let M be a Kihler manifold. Then differentiating (22.5) covariantly
and using (22.6), (22.8), (22.11) and (22.4), we compute

Jva = —leU

r
= —VxU — g(AX, U)f - Zg(AaXa U)éav
a=1

p
JVXE = J(—1AX + Y 5a(X)E)

a=1
p
= 1 FAX —u(AX)¢ + Z 5a(X)Pap&s
a,b=1
and consequently it follows
p
VxU=FAX,  g(AX,U) == 5,(X)Ps. (22.16)
b=1

Let R and R’ denote the curvature tensors of M and its hypersurface M/,
respectively. Then the Gauss equation (5.22) and the Codazzi equation (5.23)
for the normals &,, a=1,...,p of M in M yield

G RuX uY")Z uW) =g R (X, YNZ W) - gAY Zg(AX W)
+g'(A X’ ZNg' (AY', W), (22.17)

G(R(X, 1Y 1Z,8) = g(Vx Aa)Y = (Vy Ad)X, 2)
+ 5a(X)g(AY, Z) — 5a(Y)9(AX, Z) (22.18)

P

+ Z{Sba AbY Z) Sba(Y)g(AbX, Z)}

Now, let the ambient manifold M be a complex space form. Then its
curvature tensor R is given by (9.21), for some constant k and therefore

G(R(X,1Y 1Z,€4) = 0, (22.19)

since span{&s,...,&,} is J-invariant. Consequently, using (22.18) and (22.19),
it follows

(VxAa)Y — (Vy A )X = sa( JAX — s4(X)AY

+Z{sab ALY — sa(Y)Ap X} (22.20)

Now we consider the case when the shape operator A’ of the real hyper-
surface M’ has the form

A'X' = aX' + pu (XU, (22.21)

and we prove the following
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Theorem 22.1. Let M’ be a real hypersurface of a nonflat complex space
form whose shape operator A’ has the form (22.21) and let M be an F’'-
invariant submanifold of M'. Then U’ is always tangent to M and M 1is
odd-dimensional.

Proof. Suppose, contrary to our claim, that U’ is not tangent to M. Then,
using the second equation of (22.3), we compute

0="1'(20X) =9 U, 0X)=g(wU+U"1X)=g(UX),

for all X € T(M) and we conclude U = 0 and U’ = U+. Therefore, let us
choose the other normals in such a way that &, = U’ and that Ay, denotes
the shape operator for the normal U’. Since the shape operator A’ has the
form given by (22.21), using relations (15.7) and (15.27), we compute

ViU = F AvwwX = F'(aX + Bu' (10 X)U') = aF'1pX = argFX.

On the other hand, using the Weingarten formula (5.6) for the normal U’, we
have

p
V/XU/ = —’L()AU/X + Z SUa(X)féL-
a=2

Comparing the above two equations, we conclude Ay X = —aF X. Since Ay
is symmetric and F' is skew-symmetric, it follows a = 0 and consequently,
using (15.7), (15.27), we compute

A'X =pd (XU, ViU =0. (22.22)

Since M is a complex space form, using (9.21), (15.2), (22.17) and (22.22),
we obtain

R/(X/7 Y’)Z/ — k{g’(Y’, Z/)X/ _ g/()(l7 Z/)y/ + g/(F/Y/, Z/)F/X/
_ g/(};v/)(/7 Z/)Flyl _ 2gl(F/X/, Y/)F/Z/}
and consequently
R(X", YWU' =k UYX - ¢ (X, UY'}. (22.23)
On the other hand, the second equation of (22.22) implies
R(X", YU =o0.

Consequently, using (22.23), it follows k = 0, which is a contradiction, since
we have assumed that the ambient manifold M is nonflat. Therefore, U’ is
tangent to M. Repeating the same procedure as at the end of the proof of
Proposition 22.1, we conclude that M is odd-dimensional, which completes
the proof. O
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Remark 22.1. An obvious question to ask is

Does the assertion of Theorem 22.1 continue to hold when the ambient
manifold M is a complex Euclidean space?

We construct here a counterexample.

Example 22.1. Let M’ be a real hypersurface of C**! defined by

M =C"x S = {(Zl’-..7zn’e\/_719) c C”“}
= {($17y17 . 7$n,y"7cos6‘,sin6‘) c ]_3271-‘,-2}7

where 2 = 2 ++/—1y*, i =1,...,n. We note that the defining function f of
M’ is

fat oyt g ey = (@ () - 1 (22.24)

With respect to local coordinates (u', ..., u*", 8) of M’, we compute

w1 oy rt=4L4...,n
oz’ 0y’ .
W—W—(L ]71—17...,71
ort oy
0 o0 o T ooon
8xn+1 B 6xn+1 B 8yn+1 B 8yn+1 B O -
a2t T PuB | ouit | gu o I T heon
o n+1 ) n+1
x(%‘ = —sin, yf)& = cosf. (22.25)

For the immersion ¢, : M’ — E?"*2_ we have
ntl k
ay* 0 o)
11 <6U,23 1> 2_: <au2j 1 axk + WW) = @, (2226)
N
oy’

0
1\ Gui
0 0 0
(89) smHax e cos&ay T (22.28)

Further, using the defining function (22.24), we compute

n+1
of o 8f 0
grad f = Z (&W or? Gyi ayi>

0 0
— n+1 n+1
ik <x Gkt T Y 5yn+1>

(22.27)
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and consequently |grad f|?> = 4. Hence the unit normal vector field ¢ is given
by

0 1o} 0
_ .n+1 n+1 . .
f =X 6(13"""1 + Yy 6yn+1 = COS QW + Slnew (2229)
and therefore
. 0 0
J§ = - SIDHW + cos GW = —ZlU/. (2230)
Comparing (22.28) and (22.30), we deduce that
0
U=—-——. 22.31
20 (22.31)

Now, let M be a submanifold of M’ with the immersion 2o defined by

M = {(z*,y*,..., 2", y",0,...,0,cos0,sin )| = const.}.

For a local coordinate system (v?,...,v%") of M, we have
rt = u27,71 —_ ,U2i71, yz _ u2i _ ,UQZ’ i = 17 ,27,
and 9 9 9 9
10 < n ) = . 5 10 <> = — 5. (2232)
81)2271 au2171 8,022 8u21

Let ¢’ denote the induced metric from the Euclidean metric (,) of the ambient
manifold E2°. Then, for i = 1,...,2r, using (22.26), (22.28), (22.31), (22.32)
we compute

o5 ) (s (2)-5)
o (5) 0 (3)

0 . 0 0
= — <6$i,—81n98$n+1 +C0898yn+1> = 0

By a similar argument, it follows

0
o (o) o) -0

and we conclude that U’ is normal to M.

Now, using relation (22.29) we compute

V5 ¢=VE5 (=0, (22.33)
ou’

vt

9
V%f =1 (69) = U, (22.34)
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where V¥ is the covariant derivative in C"*!. On the other hand, for the
hypersurface M’, the Weingarten formula (5.6) implies

VEE=—nAX, (22.35)

where A’ is the shape operator with respect to the normal vector field £. Using
(22.33), (22.34) and (22.35), it follows

AU = -U", (22.36)
AX' =0, for X' LU (22.37)

Therefore, decomposing X’ as X’ =Y’ + aU’, where Y’ L U’, using (22.36)
and (22.37), we compute A’X’ = —aU’ and a = —g'(A’X’,U’). Consequently,
the shape operator A’ has the form (22.21), namely,

AX = —g (U, XU

In order to prove that M is F’-invariant, using (22.26), (22.27), (22.32),
we note the following:

0 0 0 0
t gv2i-1) — %o gu2i-1) [} oui—1 )~ 9z’
0 0 0 0
(gom) = () = (5m) =

On the other hand, since U’ is normal to M, using (22.27) and (22.32), we
obtain

0 0 0
oy~ T ow =T (a)

0 0
=1 F"g (EW“) +4 (87)2“7Ul> 3

:le'z()( 0 ) (22.38)

Op2i—1

Using (22.27) and (22.32) it follows

0 0 0
aiyi =1 (aqu) =117 ((9’1)21) . (2239)

Considering relations (22.38) and (22.39), we deduce

0 0
ZlF/’LO (8’1}211) = 11% <8'L}27’>

from which we conclude
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0 0
FIZQ (81}211> =10 <6'U22) . (2240)
A slight change in the above proof shows
0 0
F/ZO (%27) = —10 (WH) . (22.41)
Combining (22.40) and (22.41) we have proved that M is an F’-invariant
submanifold of M’. &

Now we consider the case when M is an odd-dimensional submanifold of a
real hypersurface M’ whose shape operator A’ satisfies relation (20.14). Using
(22.10) and the first equation of (22.16), we obtain

AX = aX + pu(X)U, VxU =aFX (22.42)
and we prove

Lemma 22.1. If the shape operator A’ of the real hypersurface M’ satisfies
relation (22.21), it follows s, = 0 and AU =0, a = 1,...,p, for its F'-
invariant submanifold M .

Proof. Using relations (22.21) and (22.15), we obtain
sa(X) = —¢' (A0 X, &) = —g'(a10 X + Bu' (10X )0U, &) = 0.

Since A, is symmetric, using the second equation of (22.16), we compute
9(A. X, U) = g(AU,X) =0 for any X € T(M), which completes the proof.
a

Further, differentiating relation A,U = 0 covariantly and using (22.42),
we obtain (VxA,)U + aA,FX = 0. Hence, we have

9(VxAa)Y = (VyAa)X,U) = g((Vx AU, Y) — g((Vy Aa)U, X)
= —o{g(A.FX,Y)—g(A,FY, X)}. (22.43)
On the other hand, using relations (22.20) and (5.9) and Lemma 22.1, it
follows

9(VxA2)Y =(Vy Au) X, U) = > {5an(X)g(ApU, Y) =s5a(Y)g(A4U, X)} = 0,
b=1

which together with relation (22.43) gives ag((A,F + FA,)X,Y) = 0. There-
fore, for o # 0, we conclude

AyF + FA, =0. (22.44)
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Finally, for a # 0, using the relation (5.7) between the second fundamental
form and the shape operator and relations (22.42), (22.44), we calculate

MFEX,Y) = h(X,FY) = {g(AFX,Y) — g(AFY, X)}¢

+ > {9(AFX,Y) = g(AFY, X))}

a=1

p
=20g(FX,Y)6+ ) g((AaF + FA)X,Y)E,
a=1

=2ag(FX,Y)¢E.

In a complex projective space, the real hypersurface whose shape operator
satisfies (22.21) is a geodesic hypersphere (see Theorem 19.3) and in this
case a = cotf), 0 < 0 < 5. Therefore a # 0 and the following theorem is
established from the above discussion.

Theorem 22.2. [27] Let M’ be a real hypersurface of a complex projective
space whose shape operator A’ has the form (22.21). Then for any F'-invariant
submanifold M of M', its second fundamental form h satisfies the condition

(21.1).

Moreover, since the rank of F' is n — 1 and from the second equation of
(22.42) it follows

du(X,Y) = X(u(Y)) = Y (u(X)) —u([X,Y]) = g(VxU,Y) = g(VyU, X)
=a(g(FX,Y) —g(FY, X)) = 2ag(FX,Y),

we conclude that u A (du)* # 0, k = 251 and u is a contact form.

Corollary 22.1. Any F'-invariant submanifold M of a real hypersurface M’
of a complex projective space whose shape operator A’ has the form (22.21),
s a contact manifold.

Remark 22.2. When M is a complex hyperbolic space HnTﬂ)(C), the results
analogous to those formulated as Theorem 22.2 are stated and proved in [27].

Remark 22.3. When the ambient manifold M is a complex projective space,
the (22.21) on the shape operator A’ of the real hypersurface M’, which
appears in Theorems 22.1 and 22.2, is equivalent to requiring that “the real
hypersurface M’ has exactly two principal curvatures.” This follows from
Remark 19.1. However, if the ambient manifold is a complex hyperbolic space,
it occurs that M has exactly two principal curvatures, but the shape operator
A’ fails to satisfy (20.14) (see [37] for more details).
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The scalar curvature of CR submanifolds of
maximal CR dimension

In this section we first recall the so-called Bochner technique and we give a
sufficient condition for a minimal CR subgrnanifold M™ of maximal CR dimen-
sion of the complex projective space P“z" (C) to be MC,, 2r + 25 = n — 1,

r,8)
namely, a tube over a totally geodesic complex subspace.

Since the ambient manifold is the complex projective space P"=" (C) with
Fubini-Study metric of constant holomorphic sectional curvature 4, using re-
lation (15.28), we compute the Ricci tensor Ric and the scalar curvature p of
M, respectively:

Ric(X,Y) = (n+2)g9(X,Y) — 3u(X)u(Y) + (trace A)g(AX,Y) — g(A%X,Y)
- zq:{(trace A)g(AX,Y) + (trace Ay-)g(Aq- X, Y)
— ;ngx, Y) —g(AZ. X, Y)}, (23.1)
p=(n+3)(n—1)+ (trace A)? — trace A*

a
+ Z{(trace Ag)? + (trace Ag-)? — trace A2 — trace A%.}.  (23.2)

a=1
Now we prove the following

Lemma 23.1. Let M be an n-dimensional compact, minimal CR submanifold
of mazximal CR dimension oanTer (C). If the scalar curvature p of M satisfies

p=(n+2)(n-1),
then F' and A commute, Ag = Ag» =0, a=1,...,q and p=(n+2)(n —1).

Proof. The proof is based on the so-called Bochner technique (see [65]).
Namely, using the famous Green’s theorem, that is, the fact that on a compact
manifold M,

M. Djorié, M. Okumura, CR Submanifolds of Complex Projective Space, 163
Developments in Mathematics 19, DOI 10.1007/978-1-4419-0434-8_23,
© Springer Science+Business Media, LLC 2010
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for any X eT(M), / divX x1=0,
M
where *1 is the volume element of M, and calculating
div (VxX) — div ((div X) X),

K. Yano ([63], [64], [65]) established the following integral formula:

/ {Ric(X, X) + %\L(X)gP — VX2 = (divX)?} x1 =0,
M

(23.3)

where X is an arbitrary tangent vector field on M, |Y] is the length of Y with
respect to the Riemannian metric g of M and L(X) is the operator of Lie

derivative with respect to X.
We put X = U in (23.3) to obtain

/ (Ric(U, U) + %|L(U)g|2 VU = (divU)2} %1 = 0.
M

On the other hand, making use of (15.27), we compute

divU = trace (FA) =0
a
Z |L(U)g|* = 2 {trace (FA)? + trace A* — g(A°U,U)},
a=1
q
> VU = trace A — g(A”U, V).

a=1

Since M is minimal submanifold, using Proposition 5.4, it follows
trace A = trace A, = trace A, =0, a=1,...,q.

Therefore, using (23.1) and (23.2), we compute

q
Ric(U,U) =n—1—g(A2U,U) = > {g(A2U,U) + g(AZ.U,U)}
a=1

q
p=(n+3)(n—1)—trace A> — Z {trace A2 + trace AZ. } .
a=1

(23.4)

(23.5)

(23.6)

(23.7)

(23.8)

(23.9)

Substituting (23.5), (23.7) and (23.8) into (23.4) and making use of (23.9), we

conclude

[ {3k +o- -

a=1

(23.10)

q
+ Z trace A2 4 trace A%, — g(A2U,U) — g(A%.U, U)} *1=0.
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Now, we choose mutually orthonormal vector fields eq,...,e, in such a way
that e,, = U. Since the shape operator is symmetric, it follows

trace A2 + trace A2, — g(A2U,U) — g(A2.U,U)
n—1

= Z {9(AZei e;) + g(AZ-eire)}
=1

n—1

= Z {g(AaeiaAaei) + g(Aa*eiaAa*ei)} > 0.

i=1

Therefore, using relation (23.10), it follows that if p > (n + 2)(n — 1), then
the integrand is nonnegative and we compute

LU)g=0, p=Mn+2)(n—1), Aze;=Ase; =0, (23.11)

fora=1,...,gand i =1,...,n— 1. Consequently, it follows F'A = AF since
using relation (15.27), we compute

0=(LU)9(X,Y) =g(VxUY)+g(VyU X) = g(FA- AF)X,Y).
Moreover, using relation (23.11), it follows
A X =A4,+X =0, for any X LU, (23.12)
or equivalently
AFX =A,FX =0, forany X e€T(M). (23.13)
On the other hand, since M is minimal, Proposition 5.4 and relation (15.20)

imply
34(U) = 84« (U) = 0. (23.14)

Now, substituting U instead of Y in (15.21) and (15.22), and using relations
(23.13) and (23.14), we obtain

g(FAX,U) = 54(X), g(FAnX,U) = s4«(X). (23.15)

Since F' is skew-symmetric, using relation (15.7), we deduce from (23.15)
5a(X) =0=15,+(X)=0. (23.16)
Therefore, using relations (15.17) and (15.18), it follows A,U = A.«U = 0,

which together with (23.11) implies A, = A, = 0.
This completes the proof. a

Now we prove the following;:
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Theorem 23.1. Let M be an n-dimensional compact, minimal CR subman-
ifold of CR dimension ”?*1 in the complex projective space P#(C). If the
scalar curvature p of M s greater than or equal to (n + 2)(n — 1), then there
exists a totally geodesic complex projective subspace PHTH(C) such that M C

P (C).
Proof. Define Ny = {¢ € T;-(M) : A¢ = 0}. We note that, in this case,

NO('T) = Span {51(33)7 s afq(x)7§1* (aj)v s 7&1* ($)}

In fact, as a consequence of Lemma 23.1, A, =0= A, fora=1,...,q, and
therefore

span {&1(2), ..., §4(x), &1+(2), .., &g ()} C No(z).

On the other hand, for any n € Ny(z), we put n = p°&+>20_ {p®&+p* €ur}.
Then
q *
0= A'r] = pOA + Z{paAa +p* Aus} = pOA =0,
a=1

since A, = A, =0fora=1,...,q. Hence p® =0 and

n= Z{paga +pa*€a*} € span {51(17)7 s 7€q(x)7€1* (QL‘), s 7§q* (JC)}

a=1

Moreover, since J&, = &+, we have JNo(z) = Ny(z) and consequently

Hy(z) = JNo(x) N No(z) = span{&1(x), ..., &(x), &1+ (2), ..., &g (2) }.

Hence the orthogonal complement H;(x) of Hy(z) in T;- (M) is span {¢}.

Using relation (23.16), it follows that Hp(z) is invariant under parallel
translation with respect to the normal connection, and applying Theorem
14.3, we conclude the proof. a

From Theorem 23.1, we deduce that the submanifold M can be regarded
as a real hypersurface of P%(C) which is a totally geodesic submanifold

of P*3" (C). In what follows we denote the totally geodesic submanifold

n+1

P2 (C) by M’ and by #; the immersion of M into M’ and by 1, the totally

geodesic immersion of M’ into P*3* (C). Then, using the Gauss formula (5.1),
it follows

VfXZlY =nVxY + h/(X,Y) =uVxY + g/(A/X, Y)fl, (23.17)

where I’ is the second fundamental form of M in M’, A’ is the corresponding
shape operator and ¢’ is the unit normal vector field to M in M’. Since
1 = 19 011, we have
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VxiweonuY =1uViuY +h(11X,1Y)
=1(1VxY +g(4' X, Y)¢), (23.18)
since M’ is totally geodesic in PHTH(C). Comparing relations (5.1) and

(23.18), we conclude
E = 22§/a A= A/'

Further, as M’ is a complex submanifold of Pt (C), relation
JZQX/ = ZQJ/X/

holds for any X’ € T(M'), where J' is the induced complex structure of
n+1

M’ =P 2z (C). Thus, using relation (15.2), we compute

JiX = JigouX =1 X =wuuF'X +d (X))
=1 F'X + 4/ (X))t =1F' X +u/(X)E. (23.19)

Comparing relations (23.19) and (15.2), we conclude
F=F, 4 =u

Consequently, by Theorem 23.1, we deduce that M is a real hypersurface of

n+1

P72 (C) which satisfies F' A’ = A’F’. Applying Theorem 16.3, we obtain

Theorem 23.2. [24] If M is an n-dimensional compact, minimal CR subman-
ifold of mazimal CR dimension oanTH) (C), whose scalar curvature p satisfies

p=(n+2)(n—1),
then M 1is congruent to MES for some r, s satisfying 2r +2s =n — 1.

Remark 23.1. Theorem 23.2 was proved in [10] under the condition that the
distinguished normal vector field ¢ is parallel with respect to the normal con-
nection.
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immersion, 27

induced connection, 29
induced metric, 29
invariant submanifold, 43
isometric immersion, 29

CR submanifold of maximal CR Kahler form, 21
dimension, 46 Kahler manifold, 22
curvature tensor of P"(C), 61 Kéahler metric, 22

derivative by a complex tangent vector, Levi form, 55
14 Levi-Civita connection, 22
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mean curvature of the submanifold, 32 sectional curvature, 61
mean curvature vector field, 32 shape operator, 30

minimal submanifold, 34

Nijenhuis tensor, 10
norm, 1

normal bundle, 29
normal connection, 30
normal curvature, 36

principal circle bundle, 58
principal curvature, 70
product of spheres, 78
pseudoconvex, 121

real projective space, 115
Ricci equation, 37

Ricci tensor, 163
Ricci-Kiihne equation, 36
Riemann sphere, 5

Riemannian curvature tensor, 63, 99

scalar curvature, 163

second fundamental form, 29

small sphere, 77

space form, 69

space of constant curvature, 69

sphere, 40, 69

sphere, unit, 57

stereographic map, 5

strictly pseudoconvex, 121

submanifold, 27

system of holomorphic coordinate
neighborhoods, 5

tangent bundle, 8

third fundamental form, 30
totally geodesic submanifold, 31
totally real submanifold, 44
totally umbilical submanifold, 34
tube, 113

vector field along the map, 27

Weingarten formula, 30, 70, 97
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