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Preface

Although submanifolds complex manifolds has been an active field of study for
many years, in some sense this area is not sufficiently covered in the current
literature. This text deals with the CR submanifolds of complex manifolds,
with particular emphasis on CR submanifolds of complex projective space,
and it covers the topics which are necessary for learning the basic properties
of these manifolds. We are aware that it is impossible to give a complete
overview of these submanifolds, but we hope that these notes can serve as
an introduction to their study. We present the fundamental definitions and
results necessary for reaching the frontiers of research in this field.

There are many monographs dealing with some current interesting topics
in differential geometry, but most of these are written as encyclopedias, or
research monographs, gathering recent results and giving the readers ample
useful information about the topics. Therefore, these kinds of monographs are
attractive to specialists in differential geometry and related fields and accept-
able to professional differential geometers. However, for graduate students
who are less advanced in differential geometry, these texts might be hard
to read without assistance from their instructors. By contrast, the general
philosophy of this book is to begin with the elementary facts about complex
manifolds and their submanifolds, give some details and proofs, and introduce
the reader to the study of CR submanifolds of complex manifolds; especially
complex projective space. It includes only a few original results with precise
proofs, while the others are cited in the reference list. For this reason this
book is appropriate for graduate students majoring in differential geometry
and for researchers who are interested in geometry of complex manifolds and
its submanifolds.

Additionally, this research monograph is intended to give a rapid and ac-
cessible introduction to particular subjects, guiding the audience to topics
of current research and to more advanced and specialized literature, collect-
ing many results previously available only in research papers and providing
references to many other recently published papers. Our aim has been to
give a reasonably comprehensive and self-contained account of the subject,
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viii Preface

presenting mathematical results that are new or have not previously been
accessible in the literature. Our intention has been not only to provide rele-
vant techniques, results and their applications, but also to afford insight into
the motivations and ideas behind the theory.

The prerequisites for this text are the knowledge of the introductory
manifold theory and of curvature properties of Riemannian geometry.
Although we intended to write this material to be self-contained, as much
as possible, and to give complete proofs of all standard results, some basic
results could not be written only with the basic knowledge of Riemannian
geometry and for these results we only cite the references.

The first half of the text covers the basic material about the geometry of
submanifolds of complex manifolds. Special topics that are explored include
the (almost) complex structure, Kähler manifold, submersion and immersion,
and the structure equations of a submanifold. This part is based on the second
author’s lectures, given at Saitama University, Japan.

The second part of the text deals with real hypersurfaces and CR submani-
folds, with particular emphasis on CR submanifolds of maximal CR dimension
in complex projective space. Fundamental results which are not new, but re-
cently published in some mathematical journals, are presented in detail. The
final six chapters contain the original results by the authors with complete
proofs.

We would like to express our appreciation to D. Blair, P. Bueken, A. Hinić,
M. Lukić, S. Nagai, M. Prvanović, L. Vanhecke, who spent considerable time
and effort in reading the original notes and who supplied us with valuable
suggestions, which resulted in many improvements of both the content and
the presentation.

We would also like to thank E. Loew of Springer and J. L. Spiegelman for
their kind assistance in the production of this book.

Mirjana Djorić
Masafumi Okumura

June, 2009



1

Complex manifolds

Let us first recall the definition of a holomorphic function. Denote by C the
field of complex numbers. For a positive integer n, the n-dimensional complex
number space

Cn = {z | z = (z1, . . . , zn), zj ∈ C for 1 ≤ j ≤ n}

is the Cartesian product of n copies of C. The standard Hermitian inner
product on Cn is defined by

(a, b) =
n∑

j=1

ajb
j
, a, b ∈ Cn.

The associated norm |a| = (a, a)
1
2 induces the Euclidean metric in the usual

way: for a, b ∈ Cn, dist(a, b) = |a − b|.
The (open) ball of radius r > 0 and center a ∈ Cn is defined by

B(a, r) = {z ∈ Cn | |z − a| < r}.

The collection of balls {B(a, r) : r > 0 and rational} forms a countable
neighborhood basis at the point a for the topology of Cn. The topology of
Cn is identical with the one arising from the following identification (which
will be used throughout this manuscript) of Cn with R2n, where

R2n = {(x1, . . . , x2n), xj ∈ R for 1 ≤ j ≤ 2n}.

Given z = (z1, . . . , zn) ∈ Cn, each coordinate zj can be written as zj =
xj +

√
−1yj , with xj , yj ∈ R. The mapping

Cn � z �→ (x1, y1, . . . , xn, yn) ∈ R2n

establishes an R-linear isomorphism between Cn and R2n, which is com-
patible with the metric structures: a ball B(a, r) in Cn is identified with a

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 1
Developments in Mathematics 19, DOI 10.1007/978-1-4419-0434-8 1,
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2 1 Complex manifolds

Euclidean ball in R2n of equal radius r. Because of this identification, all the
usual concepts from topology and analysis on real Euclidean spaces R2n carry
over immediately to Cn. In particular, we recall that D ⊂ Cn is open if for
every a ∈ D there is a ball B(a, r) ⊂ D with r > 0, and that an open set
D ⊂ Cn is connected if and only if D is pathwise connected.

We now introduce the class of functions which is the principal object in
this section.

Definition 1.1. Let D be an open subset of Cn. A function f : D → C is
called differentiable at z0, if

lim
h→0

1
h

{
f(z1

0 , . . . , zi
0 + h, . . . , zn

0 ) − f(z1
0 , . . . , zi

0, . . . , z
n
0 )

}

exists for every i = 1, . . . , n. f is called holomorphic on D if f is differentiable
at any point of D.

If we denote this limit by ci, the above condition is equivalent to

f(z1
0 , . . . , zi

0 + h, . . . , zn
0 ) − f(z1

0 , . . . , zi
0, . . . , z

n
0 ) − hci = αi(h)|h| (1.1)

where h → 0 implies αi(h) → 0.

We put zi = xi +
√
−1yi and h = t +

√
−1s. Then (z1, . . . , zn) ∈ Cn is

identified with (x1, y1, . . . , xn, yn) ∈ R2n and consequently, (1.1) is equivalent
to

f(. . . , xi
0 + t, yi

0 + s, . . . ) − f(. . . , xi
0, y

i
0, . . . ) = ci(t +

√
−1s) + αi(t, s)|h|,

for |h| =
√

t2 + s2. With the notation

ci = ai +
√
−1 bi, αi = βi +

√
−1 γi, f = u +

√
−1 v,

we compute

u(. . . , xi
0 + t, yi

0 + s, . . . ) +
√
−1v(. . . , xi

0 + t, yi
0 + s, . . . )

−u(. . . , xi
0, y

i
0, . . . ) −

√
−1v(. . . , xi

0, y
i
0, . . . )

= (ait − bis) +
√
−1(ais + bit) +

√
t2 + s2(βi +

√
−1γi),

that is,

u(. . . , xi
0 + t, yi

0 + s, . . . ) − u(. . . , xi
0, y

i
0, . . . ) = ait − bis +

√
t2 + s2βi,

v(. . . , xi
0 + t, yi

0 + s, . . . ) − v(. . . , xi
0, y

i
0, . . . ) = ais + bit +

√
t2 + s2γi.

Thus,
h → 0 implies α(h) → 0

is equivalent to requiring that



1 Complex manifolds 3

t → 0, s → 0 implies β → 0, γ → 0.

This shows that the real functions u and v are both totally differentiable at
z0.

Taking the limit along the real axis, that is, h = t → 0, of a holomorphic
function f = u +

√
−1v, we compute

∂u

∂xi
(. . . , xi

0, y
i
0, . . . ) = ai,

∂v

∂xi
(. . . , xi

0, y
i
0, . . . ) = bi.

In the same way, taking the limit along the imaginary axis, that is, h = s → 0,
we obtain

∂u

∂yi
(. . . , xi

0, y
i
0, . . . ) = −bi,

∂v

∂yi
(. . . , xi

0, y
i
0, . . . ) = ai.

Therefore, we conclude that if f = u +
√
−1v is a holomorphic function, then

the real functions u and v satisfy the following Cauchy-Riemann equations:

∂u

∂xi
=

∂v

∂yi
,

∂u

∂yi
= − ∂v

∂xi
. (1.2)

Now, we consider the converse. Let u and v be differentiable functions that
satisfy the Cauchy-Riemann equations (1.2) and let f = u +

√
−1v. Then

f(z1
0 , . . . , zi

0 + h, . . . , zn
0 ) − f(z1

0 , . . . , zi
0, . . . , z

n
0 ) = u(. . . , xi

0 + t, yi
0 + s, . . . )

−u(. . . , xi
0, y

i
0, . . . ) −

√
−1

{
v(. . . , xi

0 + t, yi
0 + s, . . . ) − v(. . . , xi

0, y
i
0, . . . )

}
.

Using the mean value theorem, we compute

u(. . . , xi
0 + t, yi

0 + s, . . . ) − u(. . . , xi
0, y

i
0, . . . ) = u(. . . , xi

0 + t, yi
0 + s, . . . )

−u(. . . , xi
0, y

i
0 + s, . . . ) + u(. . . , xi

0, y
i
0 + s, . . . ) − u(. . . , xi

0, y
i
0, . . . )

=
∂u

∂xi

(
. . . , xi

0 + θ1t, y
i
0 + s, . . .

)
t +

∂u

∂yi

(
. . . , xi

0, y
i
0 + θ2s, . . .

)
s

=
(

∂u

∂xi
(. . . , xi

0, y
i
0, . . . ) + ε1

)
t +

(
∂u

∂yi
(. . . , xi

0, y
i
0, . . . ) + ε2

)
s,

where 0 < θ1, θ2 < 1 and ε1, ε2 → 0 when |h| → 0. Similarly, we have

v(. . . , xi
0 + t, yi

0 + s, . . . ) − v(. . . , xi
0, y

i
0, . . . )

=
(

∂v

∂xi
(. . . , xi

0, y
i
0, . . . ) + ε3

)
t +

(
∂v

∂yi
(. . . , xi

0, y
i
0, . . . ) + ε4

)
s.

Hence, using the Cauchy-Riemann equations, we obtain



4 1 Complex manifolds

1
h

{
f(z1

0 , . . . , z0 + h, . . . , zn
0 ) − f(z1

0 , . . . , zi
0, . . . , z

n
0 )

}

=
(

∂u

∂xi
(. . . , xi

0, y
i
0, . . . ) + ε1

)
t

h
+

(
∂u

∂yi
(. . . , xi

0, y
i
0, . . . ) + ε2

)
s

h

+
√
−1

{(
∂v

∂xi
(. . . , xi

0, y
i
0, . . . ) + ε3

)
t

h
+

(
∂v

∂yi
(. . . , xi

0, y
i
0, . . . ) + ε4

)
s

h

}

=
(

∂u

∂xi
(. . . , xi

0, y
i
0, . . . ) + ε1

)
t

h
+
√
−1

(
∂u

∂xi
(. . . , xi

0, y
i
0, . . . ) + ε4

)
s

h

+
√
−1

(
∂v

∂xi
(. . . , xi

0, y
i
0, . . . ) + ε3

)
t

h
−

(
∂v

∂xi
(. . . , xi

0, y
i
0, . . . ) + ε2

)
s

h

=
1
h

(
∂u

∂xi
(. . . , xi

0, y
i
0, . . . ) +

√
−1

∂v

∂xi
(. . . , xi

0, y
i
0, . . . )

)
(t +

√
−1s)

+ δ1
t

h
+ δ2

s

h

=
∂u

∂xi
(. . . , xi

0, y
i
0, . . . ) +

√
−1

∂v

∂xi
(. . . , xi

0, y
i
0, . . . ) + δ1

t

h
+ δ2

s

h
,

where δ1, δ2 → 0 whenever h → 0. Since |t/h| ≤ 1, |s/h| ≤ 1, we conclude

lim
h→0

1
h

{
f(z1

0 , . . . , zi
0 + h, . . . , zn

0 ) − f(z1
0 , . . . , zi

0, . . . , z
n
0 )

}

=
∂u

∂xi
(. . . , xi

0, y
i
0, . . . ) +

√
−1

∂v

∂xi
(. . . , xi

0, y
i
0, . . . ).

Thus, if differentiable real functions u and v satisfy the Cauchy-Riemann
equations, then f = u +

√
−1v is differentiable.

Definition 1.2. Let D be an open subset of Cn and let ψ be a mapping:
D → Cn defined by

ψ(z1, . . . , zn) = (w1, . . . , wn).

ψ is holomorphic if, for each i, functions wi = ψi(z1, . . . , zn) are holomorphic
with respect to zj , j = 1, . . . , n.

Now we recall the definition of a complex manifold. Roughly speaking, a
complex manifold is a topological space that locally looks like a neighborhood
in Cn. To be precise, we have

Definition 1.3. A Hausdorff space M is called a complex manifold of (complex)
dimension n, if M satisfies the following properties:

(1) there exists an open covering {Uα}α∈A of M and, for each α, there
exists a homeomorphism

ψα : Uα → ψα(Uα) ⊂ Cn;
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(2) for any two open sets Uα and Uβ with nonempty intersection, maps

fβα = ψβ ◦ ψ−1
α : ψα(Uα ∩ Uβ) → ψβ(Uα ∩ Uβ),

fαβ = ψα ◦ ψ−1
β : ψβ(Uα ∩ Uβ) → ψα(Uα ∩ Uβ)

are holomorphic.

The set {(Uα, ψα)}α∈A is called a system of holomorphic coordinate neighbor-
hoods.

We will often use the superscript to denote the dimension of a manifold.
The symbol Mn means that M is a manifold of (complex) dimension n.

Next, we consider some examples of complex manifolds. From the defini-
tion, it is clear that the product of two complex manifolds, or a connected
open subset in a complex manifold, are complex manifolds.

Example 1.1. An n-dimensional complex space Cn and an open set of Cn are
complex manifolds. We may take the identity map id for ψ. ♦

Example 1.2. Riemann sphere.

Let
S2 =

{
(x, y, z) ∈ R3|x2 + y2 + z2 = 1

}
.

We put U1 = S2\{n} and U2 = S2\{s}, where n = (0, 0, 1) and s = (0, 0,−1).
We define ψ1 : U1 → C and ψ2 : U2 → C to be the stereographic maps from
n and s, respectively, that is,

ψ1(x, y, z) =
x +

√
−1 y

1 − z
, ψ2(x, y, z) =

x −
√
−1 y

1 + z
.

Then maps ψ1 ◦ ψ−1
2 , ψ2 ◦ ψ−1

1 : C → C are holomorphic. Namely, for
C � w = u+

√
−1v, from u = x

1−z , v = y
1−z and x2 +y2 +z2 = 1, we conclude

z =
u2 + v2 − 1
u2 + v2 + 1

, x =
2u

u2 + v2 + 1
, y =

2v

u2 + v2 + 1
.

Hence

ψ−1
1 (w) = ψ−1

1 (u +
√
−1v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1
u2 + v2 + 1

)

from which we have

ψ2 ◦ ψ−1
1 (w) =

u

u2 + v2
−
√
−1

v

u2 + v2
=

1
w

.

Thus ψ2 ◦ ψ−1
1 is holomorphic. Similarly we can also prove that ψ1 ◦ ψ−1

2 is
holomorphic. Therefore, S2 is a complex manifold, called Riemann sphere. ♦
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Example 1.3. Complex projective space Pn(C).

Let z = (z1, . . . , zn+1) and w = (w1, . . . , wn+1) ∈ Cn+1 \ {0} and set
w ∼ z, if there exists a non-zero complex number α such that w = αz.
Then ∼ defines the equivalence relation in Cn+1 \{0}. The complex projective
space Pn(C) is the set of equivalence classes Cn+1 \ {0}/ ∼ with the quotient
topology from Cn+1 \ {0}.

Denote

Uα = {[(z1, . . . , zα, . . . , zn+1)] ∈ Pn(C) | zα = 0}

and let ψα : Uα → Cn be the map defined by

ψα

(
[(z1, . . . , zα, . . . , zn+1)]

)
=

(
z1

zα
, . . . ,

zα−1

zα
,
zα+1

zα
, . . . ,

zn+1

zα

)
.

Then, ψ−1
α (w1, . . . , wn) = [(w1, . . . , wα−1, 1, wα, . . . , wn)] and therefore

ψβ ◦ ψ−1
α (z1, . . . , zn) =

(
z1

zβ
, . . . ,

zα−1

zβ
,

1
zβ

,
zα

zβ
, . . . ,

zβ−1

zβ
,
zβ+1

zβ
, . . . ,

zn

zβ

)
.

Thus, ψβ ◦ψ−1
α is holomorphic and the complex projective space is a complex

manifold. ♦

Definition 1.4. Let (U,ψ) be a holomorphic coordinate neighborhood of a
complex manifold M . A function f : U → C is holomorphic if the function
f ◦ ψ−1 : ψ(U) → C is holomorphic.

Definition 1.5. Let M , N be complex manifolds and (U,ψ) a holomorphic
coordinate neighborhood of x ∈ M . A continuous map φ : M → N is holo-
morphic if for any x ∈ M and for any holomorphic coordinate neighborhood
(V, ψ′) of N such that φ(x) ∈ V and φ(U) ⊂ V , ψ′ ◦ φ ◦ ψ−1 : ψ(U) → ψ′(V )
is holomorphic.

Since the coordinate changes are biholomorphic (i.e., two-way holomorphic),
the above definition of holomorphicity for maps is independent of the choice
of local holomorphic neighborhood systems.

Definition 1.6. M is called a complex submanifold of a complex manifold M ,
if M satisfies the following conditions:

(1) M is a submanifold of M as a differentiable manifold;

(2) the injection ı : M → M is holomorphic.



2

Almost complex structure

We recall the definition of an almost complex structure. First, we identify
a complex number z = x +

√
−1 y with the element z = x e1 + y e2 of a

two-dimensional vector space V , where (e1, e2) denotes the basis of V . Let
I : V → V be the endomorphism defined by

Iz =
√
−1z = −y + ix.

Then we conclude

xIe1 + yIe2 = I(xe1 + ye2) = Iz = −ye1 + xe2.

Therefore, the endomorphism I is determined by

Ie1 = e2, Ie2 = −e1.

Keeping this in mind, we introduce the endomorphism J of the tangent space
Tx(M) of a complex manifold M at x ∈ M .

Let M be an n-dimensional complex manifold. Identifying the local com-
plex coordinates (z1, . . . , zn) with (x1, y1, . . . , xn, yn), where zi = xi +

√
−1yi,

i = 1, . . . , n, we regard M as a 2n-dimensional differentiable manifold.
The tangent space Tx(M) of M at a point x ∈ M has a natural basis{

( ∂
∂x1 )x, ( ∂

∂y1 )x, . . . , ( ∂
∂xn )x, ( ∂

∂yn )x

}
. For i = 1, . . . , n, we put

Jx

(
∂

∂xi

)

x

=
(

∂

∂yi

)

x

, Jx

(
∂

∂yi

)

x

= −
(

∂

∂xi

)

x

. (2.1)

Then Jx defines an isomorphism Jx : Tx(M) → Tx(M). In fact, if we take
other local complex coordinates (w1, . . . , wn), where wi = ui +

√
−1vi, then

they satisfy the Cauchy-Riemann equations,

∂xi

∂uj
=

∂yi

∂vj
,

∂xi

∂vj
= − ∂yi

∂uj

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 7
Developments in Mathematics 19, DOI 10.1007/978-1-4419-0434-8 2,
c© Springer Science+Business Media, LLC 2010
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for i, j = 1, . . . , n. Hence

Jx

(
∂

∂ui

)

x

=
∑

j

(
∂xj

∂ui
Jx

(
∂

∂xj

)

x

+
∂yj

∂ui
Jx

(
∂

∂yj

)

x

)

=
∑

j

(
∂xj

∂ui

(
∂

∂yj

)

x

− ∂yj

∂ui

(
∂

∂xj

)

x

)

=
∑

j

(
∂yj

∂vi

(
∂

∂yj

)

x

+
∂xj

∂vi

(
∂

∂xj

)

x

)
=

(
∂

∂vi

)

x

,

and

Jx

(
∂

∂vi

)

x

=
∑

j

(
∂xj

∂vi
Jx

(
∂

∂xj

)

x

+
∂yj

∂vi
Jx

(
∂

∂yj

)

x

)

=
∑

j

(
∂xj

∂vi

(
∂

∂yj

)

x

− ∂yj

∂vi

(
∂

∂xj

)

x

)

=
∑

j

(
−∂yj

∂ui

(
∂

∂yj

)

x

− ∂xj

∂ui

(
∂

∂xj

)

x

)
= −

(
∂

∂ui

)

x

.

Thus Jx is independent of the choice of holomorphic coordinates and is well-
defined. Regarding J as a map of the tangent bundle T (M) =

⋃
x∈M Tx(M),

we call J the (natural) almost complex structure of M .

Proposition 2.1. Let M and M ′ be complex manifolds with almost complex
structures J and J ′, respectively. Then the map φ : M → M ′ is holomorphic
if and only if φ∗ ◦ J = J ′ ◦ φ∗, where φ∗ denotes the differential map of φ.

Proof. We identify holomorphic coordinates (z1, . . . , zn) of M with (x1, y1,
. . . , xn, yn) and holomorphic coordinates (w1, . . . , wm) of M ′ with (u1, v1, . . . ,
um, vm), where zi = xi +

√
−1yi and wj = uj +

√
−1vj . Then

φ(z1, . . . , zn) = (w1(z1, . . . , zn), . . . , wm(z1, . . . , zn))

is expressed by

φ(. . . , xi, yi, . . . ) =
(
u1(. . . , xi, yi, . . . ),

v1(. . . , xi, yi, . . . ), . . . , um(. . . , xi, yi, . . . ), vm(. . . , xi, yi, . . . )
)

in terms of the real coordinates. Thus we have
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J ′ ◦ φ∗

(
∂

∂xi

)
=

m∑

j=1

(
∂uj

∂xi
J ′

(
∂

∂uj

)
+

∂vj

∂xi
J ′

(
∂

∂vj

))
(2.2)

=
m∑

j=1

(
∂uj

∂xi

∂

∂vj
− ∂vj

∂xi

∂

∂uj

)
,

J ′ ◦ φ∗

(
∂

∂yi

)
=

m∑

j=1

(
∂uj

∂yi
J ′

(
∂

∂uj

)
+

∂vj

∂yi
J ′

(
∂

∂vj

))
(2.3)

=
m∑

j=1

(
∂uj

∂yi

∂

∂vj
− ∂vj

∂yi

∂

∂uj

)
.

On the other hand,

φ∗ ◦ J

(
∂

∂xi

)
= φ∗

(
∂

∂yi

)
=

m∑

j=1

(
∂uj

∂yi

∂

∂uj
+

∂vj

∂yi

∂

∂vj

)
, (2.4)

φ∗ ◦ J

(
∂

∂yi

)
= −φ∗

(
∂

∂xi

)
= −

m∑

j=1

(
∂uj

∂xi

∂

∂uj
+

∂vj

∂xi

∂

∂vj

)
. (2.5)

Comparing (2.2), (2.3) with (2.4), (2.5), yields the Cauchy-Riemann equations

∂uj

∂xi
=

∂vj

∂yi
,

∂uj

∂yi
= −∂vj

∂xi
.

Consequently, φ is holomorphic if and only if φ∗ ◦ J = J ′ ◦ φ∗. ��

Definition 2.1. A differentiable manifold M is said to be an almost complex
manifold if there exists a linear map J : T (M) → T (M) satisfying J2 = −id
and J is said to be an almost complex structure of M .

As we have shown, a complex manifold M admits a naturally induced
almost complex structure from the complex structure, given by (2.1), and
consequently M is an almost complex manifold.

Proposition 2.2. An almost complex manifold M is even-dimensional.

Proof. Since J2 = −id, for suitable basis of the tangent bundle we have

J2 =

⎛

⎜⎜⎝

−1 0 . . . 0
0 −1 . . . 0

. . . . . .
0 . . . . . . −1

⎞

⎟⎟⎠ .

Hence, (−1)n = det J2 = (detJ)2 ≥ 0. Thus, n is even. ��
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Remark 2.1. Here we note that an even-dimensional differentiable manifold
does not necessarily admit an almost complex structure J . It is known, for
example, that S4 does not possess an almost complex structure (see [54]).

The Nijenhuis tensor N of an almost complex structure J is defined by

N(X,Y ) = J [X,Y ] − [JX, Y ] − [X,JY ] − J [JX, JY ] (2.6)

for any X,Y ∈ T (M) and its tensorial property is established by the following

Proposition 2.3. For a function f on M , we have N(fX, Y ) = fN(X,Y ).

Proof. We note that [fX, Y ] = f [X,Y ] − (Y f)X and therefore

N(fX, Y ) = J [fX, Y ] − [JfX, Y ] − [fX, JY ] − J [JfX, JY ]
= J [fX, Y ] − [fJX, Y ] − [fX, JY ] − J [fJX, JY ]
= J(f [X,Y ] − (Y f)X) − f [JX, Y ] + (Y f)JX − f [X,JY ]
+ ((JY )f)X − J(f [JX, JY ] − ((JY )f)JX)
= f(J [X,Y ] − [JX, Y ] − [X,JY ] − J [JX, JY ])
+ ((JY )f)X + ((JY )f)J2X

= fN(X,Y ),

which establishes the formula. ��

Theorem 2.1. Let M be an almost complex manifold with almost complex
structure J . There exists a complex structure on M and J is the almost
complex structure which is induced from the complex structure on M if and
only if the Nijenhuis tensor N vanishes identically.

Proof. If M is a complex manifold, from Proposition 2.3, together with the
definition of J , the necessity of the theorem is rather trivial. To prove the
sufficiency of the theorem, we should use a theory of PDE and therefore we
omit it. (See [39] for a detailed proof.) ��

Proposition 2.4. Let (M,J) be an almost complex manifold and suppose that
on M there exists an open covering U = {Uα} which satisfies the following
condition:
For each Uα ∈ U , there is a local coordinate system (x1, x2, . . . , x2n) such that,
at any point q ∈ Uα,

Jq

(
∂

∂x2i−1

)

q

=
(

∂

∂x2i

)

q

, Jq

(
∂

∂x2i

)

q

= −
(

∂

∂x2i−1

)

q

are satisfied for i = 1, . . . , n. Then M is a complex manifold and J is an
almost complex structure which is induced from the complex structure of M .
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Proof. Let (Uα;x1, . . . , x2n), (Uβ ;u1, . . . , u2n) ∈ U such that Uα ∩ Uβ = ∅.
Then we have

∂

∂x2i−1
=

n∑

j=1

(
∂u2j−1

∂x2i−1

∂

∂u2j−1
+

∂u2j

∂x2i−1

∂

∂u2j

)
,

∂

∂x2i
=

n∑

j=1

(
∂u2j−1

∂x2i

∂

∂u2j−1
+

∂u2j

∂x2i

∂

∂u2j

)
. (2.7)

Applying J to the above two equations, we have

∂

∂x2i
=

n∑

j=1

(
∂u2j−1

∂x2i−1

∂

∂u2j
− ∂u2j

∂x2i−1

∂

∂u2j−1

)
, (2.8)

− ∂

∂x2i−1
=

n∑

j=1

(
∂u2j−1

∂x2i

∂

∂u2j
− ∂u2j

∂x2i

∂

∂u2j−1

)
.

Comparing relations (2.8) and (2.9), we conclude

∂u2j−1

∂x2i−1
=

∂u2j

∂x2i
,

∂u2j−1

∂x2i
= − ∂u2j

∂x2i−1
. (2.9)

We put

zi = x2i−1 +
√
−1x2i,

wi = u2i−1 +
√
−1u2i.

Then (z1, . . . , zn) and (w1, . . . , wn) are complex coordinates in Uα and Uβ ,
respectively, and in Uα ∩ Vβ it follows

wk = fk(z1, . . . , zn), fk = φk +
√
−1ψk,

where
φk(x1, . . . , x2n) = u2k−1, ψk(x1, . . . , x2n) = u2k.

Hence, from (2.9), we deduce that fk is holomorphic with respect to zi and
therefore M is a complex manifold. ��



3

Complex vector spaces, complexification

In this section we recall some algebraic results on complex vector spaces,
applied to tangent and cotangent spaces of complex manifolds.

For the tangent space Tx(M) at x ∈ M , we put

TC
x (M) =

{
Xx +

√
−1Yx|Xx, Yx ∈ Tx(M)

}

and TC
x (M) is called the complexification of Tx(M). We define

(Xx +
√
−1Yx) + (X ′

x +
√
−1Y ′

x) = (Xx + X ′
x) +

√
−1(Yx + Y ′

x)

and for C � c = a +
√
−1b,

c(Xx +
√
−1Yx) = (aXx − bYx) +

√
−1(bXx + aYx).

Then TC
x (M) becomes a complex vector space. Identifying Tx(M) with

{Xx +
√
−10x|Xx ∈ Tx(M)},

we regard that Tx(M) is a subspace of TC
x (M). For Zx = Xx +

√
−1Yx, the

complex conjugate Zx of Zx is Zx = Xx −
√
−1Yx. From this definition, we

easily see that for Zx, Wx ∈ TC
x (M),

Zx + Wx = Zx + Wx, cZx = cZx.

For a linear transformation A : Tx(M) → Tx(M), we put

A(Xx +
√
−1Yx) = AXx +

√
−1AYx.

Then A defines a linear transformation on TC
x (M) and it satisfies

AZx = AZx, for Zx ∈ TC
x (M).

Proposition 3.1. dimCTC
x (M) = dimRM .

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 13
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Proof. Let {e1, . . . , en} be a basis of Tx(M) and Zx ∈ TC
x (M). Then

Zx = Xx +
√
−1Yx =

n∑

i=1

Xiei +
√
−1

n∑

i=1

Y iei =
n∑

i=1

(Xi +
√
−1Y i)ei.

Thus, {e1, . . . , en} is a basis of TC
x (M) and dimCTC

x (M) = n. ��

For a complex differentiable function f = f1 +
√
−1f2, we define the

derivative of f by a complex tangent vector Xx +
√
−1Yx by

(Xx +
√
−1Yx)f = (Xxf1 − Yxf2) +

√
−1(Xxf2 + Yxf1)

and the bracket of complex vector fields by

[X +
√
−1Y,X ′ +

√
−1Y ′] = [X,X ′] − [Y, Y ′] +

√
−1([X,Y ′] + [Y,X ′]).

Then we have [Z,W ] = [Z,W ].

Let (M,J) be an almost complex manifold with almost complex struc-
ture J . Then Jx can be extended as an isomorphism of TC

x (M). We define
T

(0,1)
x (M) and T

(1,0)
x (M) respectively by

T (0,1)
x (M) = {Xx +

√
−1JxXx|Xx ∈ Tx(M)},

T (1,0)
x (M) = {Xx −

√
−1JxXx|Xx ∈ Tx(M)}.

Then, we have

Proposition 3.2. Under the above assumptions,

TC
x (M) = T (0,1)

x (M) ⊕ T (1,0)
x (M),

where ⊕ denotes the direct sum.

Proof. For any Zx ∈ TC
x (M), it follows

Zx =
1
2
(Zx +

√
−1JxZx) +

1
2
(Zx −

√
−1JxZx)

=
1
2

(
Xx +

√
−1Yx +

√
−1Jx(Xx +

√
−1Yx)

)

+
1
2

(
Xx +

√
−1Yx −

√
−1Jx(Xx +

√
−1Yx)

)

=
1
2

(
(Xx − JxYx) +

√
−1Jx(Xx − JxYx)

)

+
1
2

(
(Xx + JxYx) −

√
−1Jx(Xx + JxYx)

)
,

where 1
2 (Xx − JxYx), 1

2 (Xx + JxYx) ∈ Tx(M).
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If Zx ∈ T
(0,1)
x (M) ∩ T

(1,0)
x (M), we have

Zx = Xx +
√
−1JxXx = Yx −

√
−1JxYx,

from which, Xx = Yx and JxXx = −JxYx. Applying Jx to the last equation,
we have −Xx = Yx, which implies Xx = Yx = 0 and Zx = 0. Thus we have
the direct sum. ��

We note that Zx ∈ T
(0,1)
x (M) if and only if JxZx = −

√
−1Zx and that

Zx ∈ T
(1,0)
x (M) if and only if JxZx =

√
−1Zx.

Definition 3.1. A vector field Z : M � x � Zx is said to be a vector field of
type (0, 1) if Zx ∈ T

(0,1)
x (M) and of type (1, 0) if Zx ∈ T

(1,0)
x (M).

Let

TC(M) =
⋃

x∈M

TC
x (M), T (0,1)(M) =

⋃

x∈M

T (0,1)
x (M),

T (1,0)(M) =
⋃

x∈M

T (1,0)
x (M).

TC(M) is a Lie algebra with respect to the bracket [ , ] and

TC(M) = T (0,1)(M) ⊕ T (1,0)(M),

where ⊕ denotes the Whitney sum.

Theorem 3.1. T (0,1)(M) and T (1,0)(M) are involutive if and only if the Ni-
jenhuis tensor N vanishes identically.

Proof. First we note that for Z ∈ T (0,1)(M), W ∈ T (1,0)(M), it follows

JZ = −
√
−1Z, JW =

√
−1W

and therefore

N(Z,W ) = J [Z,W ] − [JZ,W ] − [Z, JW ] − J [JZ, JW ]
= J [Z,W ] +

√
−1[Z,W ] −

√
−1[Z,W ] − J [Z,W ] = 0.

Let Z,W ∈ T (0,1)(M). Then

N(Z,W ) = J [Z,W ] − [−
√
−1Z,W ] − [Z,−

√
−1W ] − J [−

√
−1Z,−

√
−1W ]

= J [Z,W ] +
√
−1[Z,W ] +

√
−1[Z,W ] + J [Z,W ]

= 2(J [Z,W ] +
√
−1[Z,W ]).

Thus
N(Z,W ) = 0 if and only if J [Z,W ] = −

√
−1[Z,W ],

that is, [Z,W ] ∈ T (0,1)(M). In a similar way we can prove the case of
T (1,0)(M), which completes the proof. ��
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Let M be an n-dimensional complex manifold and let (z1, . . . , zn) be com-
plex coordinates in a neighborhood U � x. We regard that M is a 2n-
dimensional differentiable manifold with local coordinates (x1, y1, . . . , xn, yn),
where zi = xi +

√
−1yi. Then (. . . , ∂

∂xi ,
∂

∂yi , . . . ) is a basis of Tx(M) and also
a basis of TC

x (M). By definition of J which is induced from the complex
structure of M , it follows

∂

∂xi
=

1
2

(
∂

∂xi
+
√
−1J

(
∂

∂xi

))
+

1
2

(
∂

∂xi
−
√
−1J

(
∂

∂xi

))

=
1
2

(
∂

∂xi
+
√
−1

∂

∂yi

)
+

1
2

(
∂

∂xi
−
√
−1

∂

∂yi

)
.

We put

∂

∂zi
=

1
2

(
∂

∂xi
+
√
−1

∂

∂yi

)
,

∂

∂zi
=

1
2

(
∂

∂xi
−
√
−1

∂

∂yi

)
(3.1)

which yields

∂

∂xi
=

∂

∂zi
+

∂

∂zi
,

∂

∂yi
=

√
−1

(
∂

∂zi
− ∂

∂zi

)
,

∂

∂zi
=

∂

∂zi
.

From (3.1), we know that any X ∈ TC
x (M) can be expressed as a linear

combination of ∂
∂zi and ∂

∂zi , i = 1, . . . , n. On the other hand, suppose that

n∑

i=1

(
ai ∂

∂zi
+ bi ∂

∂zi

)
= 0.

Then, from (3.1), it follows

n∑

i=1

(ai + bi)
∂

∂xi
+
√
−1

n∑

i=1

(ai − bi)
∂

∂yi
= 0.

Hence, ai + bi = 0 and ai − bi = 0 which implies ai = bi = 0 for i = 1, . . . , n.
Therefore we conclude that

{(
∂

∂z1

)

x

, . . . ,

(
∂

∂zn

)

x

,

(
∂

∂z1

)

x

, . . . ,

(
∂

∂zn

)

x

}

forms a basis of TC
x (M).

For a natural basis of a tangent space Tx(M) at x ∈ M we consider its
dual basis {(dx1)x, (dy1)x, . . . , (dxn)x, (dyn)x} in the cotangent space Tx(M)∗

and we put

(dzi)x = (dxi)x +
√
−1(dyi)x, (dzi)x = (dxi)x −

√
−1(dyi)x. (3.2)

Consequently, it follows
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(dzi)x

(
∂

∂zj

)

x

=
1
2
(dxi +

√
−1dyi)x

(
∂

∂xj
−
√
−1

∂

∂yj

)

x

=
1
2
(δi

j + δi
j) = δi

j ,

(dzi)x

(
∂

∂zj

)

x

=
1
2
(dxi +

√
−1dyi)x

(
∂

∂xj
+
√
−1

∂

∂yj

)

x

= 0.

In the same way we have

(dzi)x

(
∂

∂zj

)

x

= 0, (dzi)x

(
∂

∂zj

)

x

= δi
j .

This shows that
{

(dz1)x, (dz1)x, . . . , (dzn)x, (dzn)x

}
(3.3)

is the dual basis of
{(

∂

∂z1

)

x

,

(
∂

∂z1

)

x

, . . . ,

(
∂

∂zn

)

x

,

(
∂

∂zn

)

x

}
. (3.4)

Remark 3.1. Note that the reason why the minus sign and the factor 1
2 appear

in (3.1) is because we wanted to choose the basis (3.3) to be dual to (3.4)
defined by (3.2).

We write for a C∞ function f defined on a neighborhood of x ∈ M ,
( ∂

∂zi )f = ∂f
∂zi and ( ∂

∂zi )f = ∂f
∂zi . We have

df

(
∂

∂zi

)
=

∂f

∂zi
, df

(
∂

∂zi

)
=

∂f

∂zi

and therefore

df =
n∑

i=1

(
∂f

∂zi
dzi +

∂f

∂zi
dzi

)
. (3.5)

Definition 3.2. Let r be a positive integer such that r = p + q where p,
q are nonnegative integers. Let an r-form ω on M be spanned by the set
{dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq}, where {i1, . . . , ip} and {j1, . . . , jq} run
over the set of all increasing multi-indices of length p and q. Then ω is called
a complex differential form of type (p, q).

Since an r-form ω of type (p, q), we have just defined, can be expressed as

ω =
∑

i1<···<ip
j1<···<jq

ωi1...ipj1...jq
dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq , (3.6)

using (3.2), we can easily prove the following
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Proposition 3.3. Let ω and η be complex differential forms.

(1) If ω is of type (p, q), then ω is of type (q, p).

(2) If ω is of type (p, q) and η is of type (p′, q′), then ω ∧ η is of type
(p + p′, q + q′).

Further, using (3.5) and (3.6), we compute the exterior differential dω of
any complex r-form ω of type (p, q).

dω =
∑

i1<···<ip
j1<···<jq

n∑

k=1

(
∂ωi1...ipj1...jq

∂zk
dzk +

∂ωi1...ipj1...jq

∂zk
dzk

)
∧ dzi1 ∧ . . .

· · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq

=
∑

i1<···<ip+1
j1<···<jq

p+1∑

s=1

(−1)s−1
∂ωi1...îs...ip+1j1...jq

∂zis
dzi1 ∧ . . .

· · · ∧ dzip+1 ∧ dzj1 ∧ · · · ∧ dzjq

+ (−1)p
∑

i1<···<ip
j1<···<jq+1

q+1∑

t=1

(−1)t−1
∂ωi1...ipj1...ĵt...jq+1

∂zjt
dzi1 ∧ . . .

· · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq+1 .

Therefore, dω is expressed as a sum of (r + 1)-forms of type (p + 1, q) and
of type (p, q + 1), denoted respectively by ∂ω and ∂ω. Thus we obtain two
differential operators ∂ and ∂ and this information is written as

dω = ∂ω + ∂ω, d = ∂ + ∂. (3.7)

Proposition 3.4. Let ω, η be r-forms on M and a ∈ C. Then we have

∂(ω+η) = ∂ω+∂η, ∂(ω+η) = ∂ω+∂η, ∂(aω) = a∂ω, ∂(aω) = a∂ω.

Proof. It is sufficient to prove the above relations for an r-form of type (p, q).
We compare the following two equations:

d(ω + η) = dω + dη = ∂ω + ∂η + ∂ω + ∂η,

d(ω + η) = ∂(ω + η) + ∂(ω + η).

Since ∂ω + ∂η is of type (p + 1, q) and ∂ω + ∂η is of type (p, q + 1), the first
two relations are satisfied. Similarly, we can prove the other relations. ��

Proposition 3.5. For differential operators ∂, ∂ and r-form ω, we have

∂2ω = 0, (∂∂ + ∂∂)ω = 0, ∂
2
ω = 0, ∂ω = ∂ω, ∂ω = ∂ω.
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Proof. Since d2 = 0, using (3.7) and Proposition 3.4, we compute

0 = d2ω = d(∂ω + ∂ω)
= ∂(∂ω + ∂ω) + ∂(∂ω + ∂ω)

= ∂2ω + (∂∂ + ∂∂)ω + ∂
2
ω.

As ∂2ω is of type (p + 2, q), (∂∂ + ∂∂)ω is of type (p + 1, q + 1) and ∂
2
ω is of

type (p, q + 2), we conclude that each of them vanishes.

To prove the other relations, we remember the definition of dω, that is,
dω = dω. Therefore, dω = ∂ω + ∂ω. On the other hand, using (3.7), it follows
dω = ∂ω + ∂ω. Comparing the type of the right hand members of the last
two equations, we get the other two relations of the proposition. ��

Theorem 3.2. Let f be a function defined on an open set of M . Then the
following three conditions are equivalent:

(1) ∂f = 0 ; (2) ∂f
∂zi = 0 for i = 1, . . . , n ; (3) f is holomorphic.

Proof. Since ∂f =
∑n

i=1
∂f
∂zi dzi, condition (1) is equivalent to (2).

We put f = f1 +
√
−1f2 and zi = xi +

√
−1yi. Then ∂f

∂zi = 0 is equivalent
to ∂f

∂xi = −
√
−1 ∂f

∂yi . Hence,

∂

∂xi
(f1 +

√
−1f2) = −

√
−1

∂

∂yi
(f1 +

√
−1f2).

This implies that ∂f1
∂xi = ∂f2

∂yi and ∂f2
∂xi = −∂f1

∂yi for i = 1, . . . , n. These are the
Cauchy-Riemann equations and therefore f is holomorphic. ��

Definition 3.3. A p-form ω is said to be a holomorphic p-form if ω is of type
(p, 0) and dω is of type (p + 1, 0).

This is equivalent to saying that ω is of type (p, 0) and ∂ω = 0.



4

Kähler manifolds

Kähler manifolds are the most studied among complex manifolds. In this
section we provide basic material about these manifolds and we present several
examples. In particular, we prove that the complex projective space is a Kähler
manifold.

Definition 4.1. Let (M,J) be an almost complex manifold. If a Riemannian
metric g satisfies

g(X,Y ) = g(JX, JY ) (4.1)

for any X, Y ∈ T (M), g is said to be a Hermitian metric and the almost
complex manifold (M,J) with Hermitian metric g is said to be an almost
Hermitian manifold.

Therefore, using (4.1), we conclude

g(JX, Y ) = g(J2X,JY ) = −g(X,JY ),

which means that J is skew-symmetric.

Moreover, we prove

Theorem 4.1. On any almost complex manifold, there exists a Hermitian
metric.

Proof. On M there exists a Riemannian metric g′. We put

g(X,Y ) =
1
2
{g′(X,Y ) + g′(JX, JY )}.

It is easy to see that g is a Hermitian metric. ��

Let (M,J) be an almost Hermitian manifold with Hermitian metric g.
The fundamental 2-form, Kähler form Ω of M is defined by

Ω(X,Y ) = g(JX, Y ) (4.2)

for all vector fields X and Y on M .

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 21
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Lemma 4.1. Ω is skew symmetric, that is, Ω(X,Y ) = −Ω(Y,X).

Proof. Using (4.1) and (4.2) we compute

Ω(Y,X) = g(JY,X) = g(J2Y, JX) = −g(Y, JX) = −Ω(X,Y ). ��

Let ∇ be the Levi-Civita connection with respect to the Hermitian metric
g, that is, ∇ satisfies ∇g = 0 and [X,Y ] = ∇XY − ∇Y X. We now express
the Nijenhuis tensor N using the Levi-Civita connection ∇ with respect to
the Hermitian metric g.

N(X,Y ) = J [X,Y ] − [JX, Y ] − [X,JY ] − J [JX, JY ]
= J(∇XY −∇Y X) −∇JXY + ∇Y (JX)
− ∇X(JY ) + ∇JY X − J(∇JX(JY ) −∇JY (JX))
= J∇XY − J∇Y X −∇JXY + (∇Y J)X + J∇Y X − (∇XJ)Y
− J∇XY + ∇JY X − J(∇JXJ)Y + ∇JXY + J(∇JY J)X −∇JY X.

Thus we have

N(X,Y ) = (∇Y J)X − (∇XJ)Y + J(∇JY J)X − J(∇JXJ)Y. (4.3)

Definition 4.2. If a complex manifold (M,J) with Hermitian metric g satis-
fies dΩ = 0, then (M,J) is called a Kähler manifold and the metric g is called
a Kähler metric.

Theorem 4.2. A necessary and sufficient condition that a complex manifold
(M,J) with Hermitian metric is a Kähler manifold is ∇XJ = 0 for any
X ∈ T (M).

Proof. Since for a p-form ω we have

dω(X1, . . . , Xp+1) =
p+1∑

k=1

(−1)k−1(∇Xk
ω)(X1, . . . , X̂k, . . . , Xp+1) (4.4)

it follows

dΩ(X,Y,Z) = (∇XΩ)(Y,Z) − (∇Y Ω)(X,Z) + (∇ZΩ)(X,Y ).

On the other hand,

(∇XΩ)(Y,Z) = ∇X(Ω(Y,Z)) − Ω(∇XY,Z) − Ω(Y,∇XZ)
= ∇X(g(JY,Z)) − g(J∇XY,Z) − g(JY,∇XZ)
= g((∇XJ)Y,Z).

Hence we have
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dΩ(X,Y,Z) = g((∇XJ)Y,Z) − g((∇Y J)X,Z) + g((∇ZJ)X,Y ).

Thus the sufficiency is obvious. To prove the necessity, we note that J(JX) =
J2X = −X. Differentiating covariantly this equation, we have

(∇Y J)JX + J(∇Y J)X + J2∇Y X = −∇Y X,

from which it follows

(∇Y J)JX = −J(∇Y J)X. (4.5)

Making use of (4.5), we compute

dΩ(JX, Y, JZ) − dΩ(JY,X, JZ)
= g((∇JXJ)Y, JZ) − g((∇Y J)JX, JZ) + g((∇JZJ)JX, Y )
− g((∇JY J)X,JZ) + g((∇XJ)JY, JZ) − g((∇JZJ)JY,X)
= g(J(∇JY J)X − J(∇JXJ)Y,Z) + g(J(∇Y J)X,JZ)
− g(J(∇XJ)Y, JZ) + g((∇JZJ)JX, Y ) − g((∇JZJ)JY,X)
= g(N(X,Y ), Z) − g((∇Y J)X − (∇XJ)Y,Z)
+ g(J(∇Y J)X,JZ) − g(J(∇XJ)Y, JZ)
+ g((∇JZJ)JX, Y ) − g((∇JZJ)JY,X)
= g(N(X,Y ), Z) − g(J(∇JZJ)X,Y ) + g(J(∇JZJ)Y,X)
= g(N(X,Y ), Z) + 2g(J(∇JZJ)Y,X).

Thus, N = 0 and dΩ = 0 imply that J(∇JZJ) = 0. Since J is isomorphism,
this implies that ∇XJ = 0 for any X ∈ T (M), which completes the proof. ��

Now we give some examples of Kähler manifolds.

Example 4.1. Any complex manifold M of dimCM = 1 is Kähler manifold.

The Kähler form Ω is a 2-form and therefore dΩ is a 3-form. But dimRM =
2dimCM = 2. Hence dΩ vanishes identically. ♦

Example 4.2. n-dimensional complex space Cn.

Since Cn can be identified with R2n, let 〈, 〉 be the Euclidean metric of
R2n. Then we have

〈
∂

∂xi
,

∂

∂xj

〉
=

〈
∂

∂yi
,

∂

∂yj

〉
= δij ,

〈
∂

∂xi
,

∂

∂yj

〉
= 0.

This, together with J
(

∂
∂xi

)
= ∂

∂yi and J
(

∂
∂yi

)
= − ∂

∂xi , implies that 〈, 〉 is a
Hermitian metric of (Cn, J). We put
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Ω =
n∑

k,l=1

(akldxk ∧ dxl + bkldxk ∧ dyl + ckldyk ∧ dyl)

and note that

dxk ∧ dyl

(
∂

∂xi
,

∂

∂xj

)
= dxk ∧ dyl

(
∂

∂yi
,

∂

∂yj

)
= 0,

dxk ∧ dyl

(
∂

∂xi
,

∂

∂yj

)
= dxk

(
∂

∂xi

)
dyl

(
∂

∂yj

)
− dxk

(
∂

∂yj

)
dyl

(
∂

∂xi

)

= δk
i δl

j .

Then

Ω
(

∂

∂xi
,

∂

∂xj

)
=

n∑

k,l

aklδ
k
i δl

j = aij .

On the other hand, it follows

Ω
(

∂

∂xi
,

∂

∂xj

)
=

〈
J

(
∂

∂xi

)
,

∂

∂xj

〉
=

〈
∂

∂yi
,

∂

∂xj

〉
= 0.

Hence we have aij = 0. In entirely the same way, we conclude bij = δij and
cij = 0. Thus, the Kähler form Ω of (Cn, J) is represented by

Ω =
n∑

k=1

dxk ∧ dyk. (4.6)

From (4.6) we conclude that dΩ = 0 and that (Cn, J), with usual Euclidean
metric, is a Kähler manifold. ♦

Example 4.3. Complex projective space Pn(C).

According to notation from Example 1.3, we express Pn(C) by

{[(z0, z1, . . . , zn)] | zi ∈ C, i = 0, . . . , n}.

Let Uj be an open subset of Pn(C) defined by zj = 0 and put tkj = zk

zj ,
j, k = 0, 1, . . . , n on Uj . Then

(t0j , t1j , . . . , tj−1
j , tj+1

j , . . . , tnj )

is a local coordinate system in Uj and we put

fj =
n∑

k=0

tkj t
k
j =

n∑

k=0

|tkj |2.

Then, on Uj ∩ Uk, it follows fj = fktkj t
k
j . Since tkj is holomorphic on Uj , and

in particular on Uj ∩ Uk, it follows ∂ log tkj = 0 and therefore
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∂∂ log t
k
j = −∂∂ log t

k
j = −∂ ∂ log tkj = 0 on Uj ∩ Uk.

Hence
∂∂ log fj = ∂∂ (log fk + log tkj + log t

k
j ) = ∂∂ log fk

on Uj ∩Uk, which shows that ∂∂ log fj does not depend on the choice of local
coordinates. Moreover, ∂∂ log fj is a closed 2-form, since

d(∂∂ log fj) = (∂ + ∂)(∂∂ log fj) = 0.

Further we note that ∂∂ log fj is purely imaginary. In fact, fj is a real function
and thus

f j = fj , log fj = log fj .

Therefore it follows

∂(∂ log fj) = ∂ ∂ log fj = ∂∂log fj = −∂∂log fj = −∂∂ log fj

and consequently
Ω =

√
−1∂∂ log fj (4.7)

is a globally defined closed 2-form on Pn(C). Since

∂2 log fj

∂thj ∂t
i
j

=
∂2(log

∑
k tkj t

k
j )

∂tkj ∂t
i
j

=
(
∑

k tkj t
k
j )δhi − tijt

h
j

(
∑

k tkj t
k
j )2

,

the explicit expression of Ω is

Ω =
√
−1∂∂ log fj =

√
−1

n∑

h,i=1

∂2 log fj

∂thj ∂t
i
j

dthj ∧ dt
i
j

=
√
−1

n∑

h,i=1

(
∑

k tkj t
k
j )δhi − tijt

h
j

(
∑

k tkj t
k
j )2

dthj ∧ dt
i
j . (4.8)

We put
g(X,Y ) = Ω(X,JY )

and show that g is a Hermitian metric. First we show that g is symmetric.

Let X and Y be real tangent vector fields of Pn(C). Then they can be
expressed on Uj respectively as

X =
∑

i

(
αi ∂

∂tij
+ αi ∂

∂t
i
j

)
, Y =

∑

h

(
βh ∂

∂thj
+ β

h ∂

∂t
h
j

)
.

Since J( ∂
∂ti

j
) =

√
−1 ∂

∂ti
j

and J( ∂

∂t
i
j

) = −
√
−1 ∂

∂t
i
j

, we have
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JX =
√
−1

∑

k

(
αk ∂

∂tkj
− αk ∂

∂t
k
j

)
.

Substituting this in (4.8), we obtain

g(X,Y ) =
√
−1

n∑

h,i=1

∂2 log fj

∂thj ∂t
i
J

dthj ∧ dt
i
j(X,JY )

=
n∑

h,i=1

∂2 log fj

∂thj ∂t
i
j

(αhβ
i
+ βhαi) = g(Y,X)

and we conclude that g is symmetric.

Further, from (4.8) and using the Schwarz inequality, it follows that g is
positive definite. Namely,

g(X,X) = 2
(
∑

k tkj t
k
j )(

∑
i αiαi) −

∑
h,i(t

i
jα

i)(thj αh)

(
∑

k tkj t
k
j )2

= 2

∑
i |αi|2

∑
k |tkj |2 − |

∑
i tijα

i|2

(
∑

k |tkj |2)2
≥ 0,

We call this metric g the Fubini-Study metric. Since

g(JX, JY ) = Ω(JX, J2Y ) = Ω(JX,−Y ) = Ω(X,JY ) = g(X,Y ),

we conclude that g is a Hermitian metric on Pn(C) and therefore (Pn(C), J)
is a Kähler manifold with a Kähler metric g. ♦



5

Structure equations of a submanifold

A differentiable mapping ı of M into M ′ is called an immersion if (ı∗)x is
injective for every point x of M . Here ı∗ is the usual differential map ı∗ :
Tx(M) → Tı(x)(M ′). We say then that M is immersed in M ′ by ı or that
M is an immersed submanifold of M ′. When an immersion ı is injective, it
is called an embedding of M into M ′. We say then that M (or the image
ı(M)) is an embedded submanifold (or, simply, a submanifold) of M ′. In this
sense, throughout what follows, we adopt the convention that by submanifold
we mean embedded submanifold. If the dimensions of M and M ′ are n and
n + p, respectively, the number p is called the codimension of a submanifold
M . The interested reader is referred to [5] and [33] for further information
and more details.

In this section the reader will be reminded of some important properties
of submanifolds, and some auxiliary results will be quoted or derived, such
as the well-known Gauss and Weingarten formulae, the equation of Gauss,
Codazzi and Ricci-Kühne.

Let M and M ′ be differentiable manifolds and f be a differentiable map
f : M → M ′. Note that for a given vector field X on M , it follows that f∗X
is not always a vector field on M ′. For this purpose, we first define the notion
of a vector field along the map f .

Definition 5.1. A vector field along the map f : M → M ′ is a differentiable
map

X ′ : M � x �→ X ′
x ∈ Tf(x)(M ′) which satisfies π(X ′

x) = f(x),

for any x ∈ M , where π is the natural projection π : T (M ′) → M ′.

Example 5.1. Let x be a curve on M ′ defined on an open interval (a, b) = M
and let f be a differentiable map f : M → M ′, defined by

f : M � t �→ x(t) ∈ M ′.

Then the tangent vector field x′(t) of the curve x is a vector field along f . ♦

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 27
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Example 5.2. Let X ′ be a given vector field on M ′. For a differentiable map
f : M → M ′, we can define a vector field on M , by Xx = X ′

f(x). Then X ′ is
a vector field along f . ♦

Example 5.3. Let X be a vector field on M . The vector field X ′, which is
obtained by X ′

x = (f∗)x(Xx), x ∈ M , is a vector field along f and we denote
this vector field by f∗X. Example 5.1 is a special case of this example, that
is, x′

t = f∗( d
dt ). ♦

We denote by X(M) and Xf , the set of differentiable vector fields on M
and the set of vector fields along f , respectively.

The covariant differentiation ∇′
X′Y ′ with respect to given linear connection

∇′ of M ′ is defined for vector fields X ′, Y ′ on M ′. Since the vector field along
f is not always the vector field on M ′, we define the covariant differentiation
along the map f .

Definition 5.2. Let M ′ be a differentiable manifold with linear connection
and ∇′ be the covariant differentiation with respect to this connection. Then,
a map

X(M) × Xf � (Y,X) �→ ∇′
Y X ∈ Xf

which satisfies the following properties (1)–(4) is determined uniquely and the
map X(M ′) × Xf → Xf is called a covariant differentiation along f .

(1) If Y1, Y2 ∈ X(M), then

∇′
Y1+Y2

X = ∇′
Y1

X + ∇′
Y2

X.

(2) For a function λ on M ,

∇′
λY X = λ∇′

Y X.

(3) For X1, X2 ∈ Xf ,

∇′
Y (X1 + X2) = ∇′

Y X1 + ∇′
Y X2.

(4) For a function λ′ on M ′,

∇′
Y (λ′X) = (Y λ′)X + λ′∇′

Y X,

where λ′X ∈ Xf , since (λ′X)x = λ′(x)Xx for x ∈ f(M) ⊂ M ′.

Now, let M be an n-dimensional submanifold of an (n + p)-dimensional
Riemannian manifold (M, g) and ı : M → (M, g) be the immersion. One
more piece of notation: throughout the manuscript we also denote by ı the
differential ı∗ of the immersion, or we omit to mention ı, for brevity of nota-
tion. Then, for Y ∈ T (M), ıY is a vector field along the immersion ı.
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Further, we define a Riemannian metric g on M by

g(X,Y ) = g(ıX, ıY ),

where X,Y ∈ T (M). The Riemannian metric g is called the induced metric
from g and the immersion ı is called an isometric immersion. The tangent
bundle T (M) splits into the tangential part and the normal part to M , that
is,

T (M) = ıT (M) ⊕ T⊥(M),

where T (M) =
⋃

x∈M Tx(M) is the tangent bundle of M in M , T⊥(M) =⋃
x∈M T⊥

ı(x)(M) is the normal bundle of M in M and T⊥
ı(x)(M) denotes the

orthogonal complement of ıTx(M) in Tı(x)(M).

Let ∇ be the Levi-Civita connection of (M, g). Using Definition 5.2, re-
garding ∇ as a covariant differentiation along ı, we can derive the following
Gauss formula

∇X ıY = ı∇XY + h(X,Y ), (5.1)

where X,Y ∈ T (M). It is easily verified that ∇ defines a connection of M
which is called the induced connection from ∇, while the normal part h(X,Y )
defines the second fundamental form h of M .

Theorem 5.1. ∇ is the Levi-Civita connection with respect to the induced
Riemannian metric g.

Proof. Since ∇ is the Levi-Civita connection with respect to g, the torsion
tensor T vanishes identically and therefore

T (ıX, ıY ) = ∇X ıY −∇Y ıX − [ıX, ıY ] = 0.

Using relation (5.1), we compute

ı∇XY + h(X,Y ) − ı∇Y X − h(Y,X) − ı[X,Y ] = 0. (5.2)

Considering the tangential part of relation (5.2), we conclude

∇XY −∇Y X − [X,Y ] = T (X,Y ) = 0,

which implies that ∇ is torsion-free. From the normal part of relation (5.2),
we deduce

h(X,Y ) = h(Y,X). (5.3)

We now prove that ∇ is a metric connection. Since ∇ is a metric connection
of M , we have

X(g(Y,Z)) = X(g(ıY, ıZ)) = g(∇X ıY, ıZ) + g(ıY,∇X ıZ). (5.4)

On the other hand,
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X(g(Y,Z)) = (∇Xg)(Y,Z) + g(∇XY,Z) + g(Y,∇XZ)
= (∇Xg)(Y,Z) + g(ı∇XY, ıZ) + g(ıY, ı∇XZ)
= (∇Xg)(Y,Z) + g(∇X ıY, ıZ) + g(ıY,∇X ıZ). (5.5)

Comparing relations (5.4) and (5.5), we conclude (∇Xg)(Y,Z) = 0 and con-
sequently ∇Xg = 0. Thus, ∇ is a metric connection, which completes the
proof. ��

Let ξ be a normal vector field on M . Then ∇Xξ splits into the tangential
part and the normal part, that is, the following Weingarten formula holds:

∇Xξ = −ıAξX + DXξ. (5.6)

Aξ is called the shape operator with respect to the normal vector field ξ. It is
easy to check that Aξ is a linear mapping from the tangent bundle T (M) into
itself and that D defines a connection on the normal bundle T⊥(M). We call
D the normal connection of M in M .

Differentiating covariantly g(ıY, ξ) = 0, we obtain

g(∇X ıY, ξ) + g(ıY,∇Xξ) = 0,

from which it follows

g(ı∇XY + h(X,Y ), ξ) + g(ıY,−ıAξX + DXξ) = 0.

Thus, we have
g(AξX,Y ) = g(h(X,Y ), ξ). (5.7)

Using (5.3) and (5.7), we conclude that the shape operator is symmetric.

Let ξ1, . . . , ξp be an orthonormal frame of T⊥(M) and denote Aξa
by Aa.

Then the Weingarten formula (5.6) can be written as

∇Xξa = −ıAaX + DXξa, DXξa =
p∑

b=1

sab(X)ξb, (5.8)

where the sab are called the coefficients of the third fundamental form of M
in M . For simplicity, we sometimes suppress the explicit dependence on X in
the notation. The coefficients of the third fundamental form satisfy

sab + sba = 0. (5.9)

Namely, using (5.8), we compute

Xg(ξa, ξb) = g(∇Xξa, ξb) + g(ξa,∇Xξb)

= g(
p∑

c=1

sac(X)ξc, ξb) + g(ξa,

p∑

c=1

sbc(X)ξc)

= sab(X) + sba(X).
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On the other hand, Xg(ξa, ξb) = Xδab = 0. Comparing the last two equations,
we obtain (5.9).

Particularly, in the case when the difference of the dimension of M and
M is two, we use the notation

s12 = −s21 = s. (5.10)

Definition 5.3. A submanifold M of M is called a totally geodesic submani-
fold of M if for every geodesic γ(s) of M , curve ıγ(s) is a geodesic of M .

Theorem 5.2. A submanifold M is totally geodesic if and only if the second
fundamental form h vanishes identically.

Proof. Let γ(s) be a geodesic of M , i.e., let ∇γ̇ γ̇ = 0. Therefore, using relation
(5.1), it follows

∇γ̇ıγ̇ = ı∇γ̇ γ̇ + h(γ̇, γ̇) = h(γ̇, γ̇).

Consequently, if the second fundamental form h vanishes identically, M is
totally geodesic. Conversely, if M is totally geodesic, it follows h(γ̇, γ̇) =
0. Since through any point x ∈ M , for any X ∈ Tx(M), there exists a
geodesic γ(s) whose tangent vector at x is Xx, we deduce h(X,X) = 0, for
any X. Therefore, h(X +Y,X +Y ) = 0 and using relation (5.3), we conclude
h(X,Y ) = 0, which completes the proof. ��

Theorem 5.2 and relation (5.7) imply

Corollary 5.1. M is a totally geodesic submanifold if and only if relation
Aξ = 0 holds for any normal vector field ξ of M . Particularly, M is totally
geodesic if and only if A1 = · · · = Ap = 0 for an orthonormal frame field
ξ1, . . . , ξp of T⊥(M).

We now consider how the shape operators Aa and the third fundamental
form sab change when we choose another orthonormal frame field T⊥(M). Let

ξ′a =
p∑

b=1

T b
a ξb, a = 1, . . . , p. (5.11)

Since ξ′1, . . . , ξ
′
p are orthonormal, we conclude T b

a(x) ∈ SO(p), at any point
x ∈ M .

Now, let us compute ∇Xξ′a. First, using relations (5.8) and (5.11), we
obtain

∇Xξ′a = −ıA′
aX +

p∑

c=1

s′ac(X)ξ′c

= −ıA′
aX +

p∑

b,c=1

s′ac(X)T b
c ξb. (5.12)
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On the other hand, we have

∇Xξ′a =
p∑

b=1

{
(XT b

a)ξb + T b
a∇Xξb

}

=
p∑

b=1

{
(XT b

a)ξb + T b
a(−ıAbX +

p∑

c=1

sbc(X)ξc)

}

= −ı

p∑

b=1

T b
aAbX +

p∑

b=1

{
XT b

a +
p∑

c=1

T c
ascb(X)

}
ξb. (5.13)

Comparing relations (5.13) and (5.12), we conclude

A′
a =

p∑

b=1

T b
aAb, (5.14)

p∑

c=1

s′ac(X)T b
c = XT b

a +
p∑

c=1

T c
ascb(X). (5.15)

Definition 5.4. The vector field defined by

μ =
1
n

p∑

a=1

(trace Aa)ξa

is called the mean curvature vector field of M .

Theorem 5.3. The mean curvature vector field μ is independent of the choice
of orthonormal basis ξ1, . . . , ξp.

Proof. Let ξ′a, a = 1, . . . , p be another orthonormal frame field of T⊥(M).
Then ξ′a =

∑p
b=1 T b

aξb, for T b
a ∈ SO(p). Therefore, making use of (5.14), we

obtain

nμ′ =
p∑

a=1

(trace A′
a)ξ′a =

p∑

a,b,c=1

(T b
a trace Ab)T c

aξc

=
p∑

a=1

(trace Aa)ξa = nμ,

which completes the proof. ��
Definition 5.5. The length |μ| of the mean curvature vector field μ is called
the mean curvature of the submanifold M .

Proposition 5.1. Let x ∈ M be such a point that μ(x) = 0. At x we choose
an orthonormal basis ξ1, . . . , ξp of T⊥

x (M) in such a way that ξ1 is in the
direction of the mean curvature vector field μ. Then

n |μ| = traceA1, traceAa = 0 for a = 2, . . . , p.
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Proof. Definition 5.4 and Theorem 5.3 imply

nμ = n |μ| ξ1 =
p∑

a=1

(trace Aa)ξa,

from which it follows

(trace A1 − n|μ|)ξ1 +
p∑

a=2

(trace Aa)ξa = 0.

Since ξ1, . . . , ξp are orthonormal, we conclude that n |μ| = trace A1 and
trace Aa = 0 for a = 2, . . . , p. ��

Proposition 5.2. The mean curvature vector field μ is parallel with respect
to the normal connection if and only if

X (traceAa) +
p∑

b=1

(traceAb) sba(X) = 0, a = 1, . . . , p. (5.16)

Proof. Definition 5.4 and relation (5.8) imply

n∇Xμ =
p∑

a=1

∇X ((traceAa)ξa)

=
p∑

a=1

{
(X(traceAa))ξa + (traceAa)

(
−ıAaX +

p∑

b=1

sab(X)ξb

)}

= −ı

p∑

a=1

(traceAa) AaX +
p∑

a=1

{
X(traceAa) +

p∑

b=1

(traceAb)sba(X)

}
ξa.

Thus we have

nDXμ =
p∑

a=1

{
X (trace Aa) +

p∑

b=1

(trace Ab) sba(X)

}
ξa,

which establishes the formula (5.16). ��

Proposition 5.3. If μ is parallel with respect to the normal connection, then
the mean curvature is constant.

Proof. From Proposition 5.2, if μ is parallel with respect to the normal con-
nection, it follows

X|μ|2 =
2
n2

p∑

a=1

(X(trace Aa)) (trace Aa)

= − 2
n2

p∑

a,b=1

(trace Aa)(trace Ab)sba(X) = 0,

since relation (5.9) states that the coefficients of the third fundamental form
are skew-symmetric. ��
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Definition 5.6. If the mean curvature vector field μ vanishes at a point x ∈
M , the point x is called a minimal point and if μ vanishes identically on M ,
submanifold M is called a minimal submanifold of M .

From Definition 5.6 we easily deduce

Proposition 5.4. The submanifold M is minimal if and only if trace Aa = 0,
a = 1, . . . , p.

Let ξ1, . . . , ξp be mutually orthonormal normal vector fields of M and
let AaX = ρa X, a = 1, . . . , p for any X ∈ T (M), for the shape operators
Aa. From (5.14) it may be concluded that, if we take another orthonormal
basis ξ′1, . . . , ξ

′
p, the corresponding shape operators A′

a satisfy A′
aX = ρ′a X.

Therefore, we can give the following

Definition 5.7. If the shape operator Aa satisfies AaX = ρa X for a =
1, . . . , p, the submanifold M is called a totally umbilical submanifold.

Now we study the case when a local orthonormal normal frame field
ξ′1, . . . , ξ

′
p can be chosen in such a way that the third fundamental form van-

ishes, namely, s′ab = 0 for a, b = 1, . . . , p. Using relation (5.15), this is
equivalent to finding T b

a ∈ SO(p) which satisfy

dT b
a +

p∑

c=1

T c
ascb = 0. (5.17)

By the well-known Poincaré Lemma, it follows that the existence of a solution
of the equation

d

p∑

c=1

T c
ascb = 0 (5.18)

guarantees the existence of such T b
a . Since equation (5.18) is equivalent to

p∑

c=1

dT c
a ∧ scb +

p∑

c=1

T c
a dscb = 0, (5.19)

using equation (5.17), we compute

p∑

d=1

T d
a

(
dsdb −

p∑

c=1

sdc ∧ scb

)
= 0. (5.20)

As T d
a ∈ SO(p), using (5.20), we conclude that we can choose a local ortho-

normal frame field of T⊥(M) in such a way that the third fundamental form
vanishes, if the following relation holds:

dsdb −
p∑

c=1

sdc ∧ scb = 0, for d, b = 1, . . . , p. (5.21)
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Now, let R denote the curvature tensor of M . Then, using the Gauss
formula (5.1) and the Weingarten formula (5.8), for X, Y ∈ T (M), we obtain

R(ıX, ıY )ıZ = ∇X∇Y ıZ −∇Y ∇X ıZ −∇[X,Y ]ıZ

= ∇X

(
ı∇Y Z +

p∑

a=1

g(AaY,Z)ξa

)
−∇Y

(
ı∇XZ

+
p∑

a=1

g(AaX,Z)ξa

)
− ı∇[X,Y ]Z −

p∑

a=1

g(Aa[X,Y ], Z)

= ı∇X∇Y Z +
∑

b

g(AbX,∇Y Z)ξb

+
∑

a

{g((∇XAa)Y,Z) + g(Aa∇XY,Z) + g(AaY,∇XZ)} ξa

+
∑

a

g(AaY,Z)(−ıAaX +
∑

b

sab(X)ξb)

− ı∇Y ∇XZ −
∑

b

g(AaY,∇XZ)ξb

−
∑

a

{(g(∇Y Aa)X,Z) + g(Aa∇Y X,Z) + g(AaX,∇Y Z)} ξa

−
∑

a

g(AaX,Z)(−ıAaY +
∑

b

sab(Y )ξb)

− ı∇[X,Y ]Z −
∑

a

g(Aa[X,Y ], Z)ξa

= ı

{
∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

−
∑

a

(g(AaY,Z)AaX − g(AaX,Z)AaY )

}

+
∑

a

{
g((∇XAa)Y,Z) +

∑

b

sba(X)g(AbY,Z)

− g((∇Y Aa)X,Z) −
∑

b

sba(Y )g(AbX,Z)

}
ξa

= ı

{
R(X,Y )Z −

∑

a

(g(AaY,Z)AaX − g(AaX,Z)AaY )

}

+
∑

a

{
g((∇XAa)Y − (∇Y Aa)X,Z)

+
∑

b

sba(X)g(AbY,Z) − sba(Y )g(AbX,Z)

}
ξa.
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Thus we have the following Gauss equation:

g(R(ıX, ıY )ıZ, ıW ) = g(R(X,Y )Z,W ) −
p∑

a=1

{
g(AaY,Z)g(AaX,W )

− g(AaX,Z)g(AaY,W )
}

, (5.22)

and Codazzi equation

g(R(ıX, ıY )ıZ, ξa) = g
(
(∇XAa)Y − (∇Y Aa)X,Z

)

+
p∑

b=1

{
sba(X)g(AbY,Z) − sba(Y )g(AbX,Z)

}
. (5.23)

After computing R(ıX, ıY )ξa in the same way, we obtain

R(ıX, ıY )ξa = ∇X∇Y ξa −∇Y ∇Xξa −∇[X,Y ]ξa

= ı

{
−(∇XAa)Y + (∇Y Aa)X −

∑

b

(sab(Y )AbX − sab(X)AbY )

}

+
∑

b

{
(∇Xsab)(Y ) − (∇Y sab)(X) − g((AaAb − AbAa)X,Y )

+
∑

c

[sac(Y )scb(X) − sac(X)scb(Y )]

}
ξb,

and we deduce the following Ricci-Kühne equation:

g(R(ıX, ıY )ξa, ξb) = g
(
(AbAa − AaAb)X,Y

)
+ (∇Xsab)(Y ) − (∇Y sab)(X)

+
∑

c

{
sac(Y )scb(X) − sac(X)scb(Y )

}
. (5.24)

We define the normal curvature R⊥ of M in M in the following way:

R⊥(X,Y )ξa = DXDY ξa − DY DXξa − D[X,Y ]ξa.

Then, we compute



5 Structure equations of a submanifold 37

R⊥(X,Y )ξa =

(
∇X

(
∑

b

sab(Y )ξb

))⊥

−
(
∇Y

(
∑

b

sab(X)ξb

))⊥

−
∑

b

sab ([X,Y ]) ξb

=
∑

b

{
X(sab(Y ))ξb +

∑

c

sab(Y )sbc(X)ξc − Y (sab(X)) ξb

−
∑

c

sab(X)sbc(Y )ξc

}
−

∑

b

sab ([X,Y ]) ξb

=
p∑

b=1

{
X (sab(Y )) − Y (sab(X)) − sab ([X,Y ])

+
p∑

c=1

(
sac(Y )scb(X) − sac(X)scb(Y )

)}
ξb

=
p∑

b=1

{
dsab(X,Y ) −

p∑

c=1

sac ∧ scb(X,Y )

}
ξb. (5.25)

Hence, using (5.25), we conclude

g(R⊥(X,Y )ξa, ξb) = dsab(X,Y ) −
p∑

c=1

sac ∧ scb(X,Y ). (5.26)

Thus, relations (5.24), (4.4) and (5.26) imply Ricci equation

g(R(ıX, ıY )ξa, ξb) = g ([Ab, Aa]X,Y ) + g(R⊥(X,Y )ξa, ξb). (5.27)

If the normal curvature R⊥ of M in M vanishes identically, we say that the
normal connection of M is flat. Using relations (5.21) and (5.26), we prove
the following meaning of the normal connection:

Proposition 5.5. If the normal curvature R⊥ vanishes identically, we can
choose an orthonormal frame field ξa, a = 1, . . . , p of T⊥(M) in such a way
that the third fundamental form vanishes.
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Submanifolds of a Euclidean space

In this section, we give characterizations of typical submanifolds of Euclidean
space. First of all, we prove the following.

Theorem 6.1. An n-dimensional totally geodesic submanifold M of (n + p)-
dimensional Euclidean space En+p is an open submanifold of n-dimensional
Euclidean space. If M is complete, then M is an n-dimensional Euclidean
space.

Proof. Since the ambient manifold is a Euclidean space, the Ricci-Kühne equa-
tion (5.27) implies R⊥(X,Y )ξa = 0, that is, the normal curvature vanishes
identically. According to Proposition 5.5, we can choose orthonormal normal
vector fields ξ1, . . . , ξp to M in such a way that the corresponding third funda-
mental form will vanish. Therefore, ∇Xξa = 0, since M is a totally geodesic
submanifold.

Now, let us define in a neighborhood U(x) of x ∈ M , p functions fa,
a = 1, . . . , p by fa = 〈x, ξa〉, where x denotes the position vector field of
x ∈ M and 〈, 〉 the Euclidean metric of the ambient manifold En+p. Then

Xfa = X〈x, ξa〉 = 〈ıX, ξa〉 + 〈x,∇Xξa〉 = 0,

holds for any X ∈ T (M), which means that fa = constant for a = 1, . . . , p.
Thus, for x =

∑n+p
i=1 xiei, ξa =

∑n+p
i=1 ξi

aei, we compute

〈x, ξa〉 = x1ξ1
a + · · · + xn+pξn+p

a = ca, a = 1, . . . , p.

This shows that U(x) lies in the intersection of p hyperplanes whose nor-
mal vectors are linearly independent, that is, there exists an n-dimensional
Euclidean space En such that U(x) ⊂ En. However, since U(x) is an open
subset of En, U(x) is n-dimensional. Therefore, M is an open subset of En.
Particularly, if M is complete, M is an n-dimensional Euclidean space. This
completes the proof. ��
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Next we consider a totally umbilical submanifold of Euclidean space. In
the following, we assume that a totally umbilical submanifold means it is not
a totally geodesic submanifold.

Theorem 6.2. An n-dimensional totally umbilical submanifold M of (n+p)-
dimensional Euclidean space En+p is an open submanifold of n-dimensional
sphere Sn and if M is complete, M is an n-dimensional sphere.

Proof. Since M is not totally geodesic, we can choose orthonormal normal
fields ξ1, ξ′2, . . . , ξ

′
p in such a way that ξ1 is a unit vector field in the direction

of the mean curvature vector field μ. Proposition 5.1 now implies traceA′
a = 0

for a = 2, . . . , p, where A′
a denotes the shape operator with respect to the

normal ξ′a. Analysis similar to that in the proof of Theorem 6.1, using the
Ricci-Kühne equation (5.27), shows that we can choose orthonormal fields
ξ2, . . . , ξp normal to M , such that the corresponding third fundamental form
will vanish. Hence we have

∇X ıY = ı∇XY + g(A1X,Y )ξ1. (6.1)

Moreover, the Codazzi equation (5.23) reduces to (Xρ1)Y = (Y ρ1)X. Since
X and Y are linearly independent, we conclude that ρ1 is constant.

Now we define p − 1 functions fa by fa = 〈x, ξa〉, a = 2, . . . , p. Then
we obtain that the fa are constant and in entirely the same manner as in
the proof of Theorem 6.1, we deduce that M lies in the intersection of p − 1
hyperplanes whose normal vectors are linearly independent, that is, there
exists an (n + 1)-dimensional Euclidean space En+1 such that M ⊂ En+1.

Further, we denote by j and j′ the immersion M → En+1 and the totally
geodesic immersion En+1 → En+p, respectively. Then ı = j′ ◦ j and

∇X ıY = ∇Xj′ ◦ jY = j′∇′
XjY

= j′(j∇XY + g(A′X,Y )ξ′) = ı∇XY + g(A′X,Y )j′ξ′. (6.2)

Comparing relations (6.1) and (6.2), we obtain A′X = A1X = ρ1X.

As M is a hypersurface of En+1, the position vector field x of M satisfies

X

(
x +

1
ρ1

ξ′
)

= 0, |x − P | =
1

|ρ1|
,

for any X ∈ T (M), where P = x + 1
ρ1

ξ′. This shows that P is a fixed point,
in En+1, for x ∈ M and that any point of M has constant distance 1

|ρ1| from
the fixed point P . Hence M lies on a sphere of radius 1

|ρ1| in En+1 and the
theorem follows. ��
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Submanifolds of a complex manifold

Let M be a complex manifold with the natural almost complex structure J
and let M be a real submanifold of M .

Proposition 7.1. For any point x ∈ M , let Sx(M) be a subspace of the
tangent space Tx(M). Then Sx(M) ∩ JSx(M) is a J-invariant subspace of
Tx(M).

Proof. Let us suppose X ∈ Sx(M) ∩ JSx(M). Then X ∈ Sx(M), implies
JX ∈ JSx(M). On the other hand, X ∈ JSx(M) implies the existence of
Y ∈ Sx(M) such that JY = X. Hence, JX = J2Y = −Y ∈ Sx(M). Thus,
JX ∈ Sx(M) ∩ JSx(M), which shows that Sx(M) ∩ JSx(M) is J-invariant
subspace of Tx(M). ��

Definition 7.1. We call Hx(M) = JTx(M)∩Tx(M) the holomorphic tangent
space of M .

Proposition 7.2. Hx(M) is the maximal J-invariant subspace of Tx(M).

Proof. According to Proposition 7.1, Hx(M) is a J-invariant subspace of
Tx(M). To prove that Hx(M) is a maximal J-invariant subspace, let T ′

x(M)
be a J-invariant subspace of Tx(M). Then we have JT ′

x(M) ⊂ T ′
x(M). For

any X ∈ T ′
x(M) ⊂ Tx(M), it follows JX ∈ JT ′

x(M) ⊂ T ′
x(M). We denote

JX = Y , then −X = J2X = JY ∈ JT ′
x(M) ⊂ JTx(M). Hence X ∈ JTx(M)

and consequently X ∈ Hx(M). This shows that T ′
x(M) ⊂ Hx(M), which

completes the proof. ��
The totally real part of Tx(M) is Rx(M) = Tx(M)/Hx(M).

Proposition 7.3. JRx(M) ∩ Rx(M) = {0}.

Proof. Since Hx(M) is the maximal J-invariant subspace of Tx(M), JRx(M)∩
Rx(M) ⊂ Hx(M). Hence if X ∈ JRx(M)∩Rx(M), then X ∈ Rx(M)∩Hx(M)
which implies that X = 0. Thus, JRx(M) ∩ Rx(M) = {0}. ��

From the above it also follows
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Proposition 7.4. Tx(M) = Hx(M) ⊕ Rx(M).

Proposition 7.5. Let M be an n-dimensional submanifold of real (n + p)-
dimensional complex manifold (M,J). Then we have

n − p ≤ dimRHx(M) ≤ n. (7.1)

Proof. Hx(M) ⊂ Tx(M) implies that dimRHx(M) ≤ dim Tx(M) = n. On
the other hand, Tx(M) + JTx(M) ⊂ Tı(x)(M) implies that

dimRTı(x)(M) ≥ dimTx(M) + dimJTx(M) − dimRHx(M),

from which
n + p ≥ 2n − dimRHx(M).

Hence we have dimRHx(M) ≥ n − p, which completes the proof. ��

From Proposition 7.5, it may be concluded that dimRHx(M) is an even
number between n − p and n. Therefore, under the above assumptions, we
have

Corollary 7.1. 0 ≤ dimRRx(M) ≤ p.

Proof. Since dimRRx(M) = dimRTx(M) − dimRHx(M), using Proposition
7.5, we establish the formula. ��

Example 7.1. Let

M = {z ∈ Cn | |z| = 1, Imzn = 0}

= {(x1, y1, . . . , xn, yn) ∈ R2n |
n∑

i=1

((xi)2 + (yi)2) = 1, yn = 0}.

Then dim M = 2n − 2 and p = 2 and ∂
∂yn is normal to M . From Proposition

7.5, it follows
2n − 4 ≤ dimRHx(M) ≤ 2n − 2.

Let p1 be the point of M , represented by

z1 = z2 = · · · = zn−2 = 0, zn−1 = 1, zn = 0.

As a point of R2n, p1 is represented by

x1 = y1 = · · · = xn−2 = yn−2 = 0, xn−1 = 1, yn−1 = xn = yn = 0.

Therefore, ∂
∂xn−1 is a normal vector to M at p1. Hence

Tp1(M) = span
{

∂

∂x1
,

∂

∂y1
, . . . ,

∂

∂xn−2
,

∂

∂yn−2
,

∂

∂yn−1
,

∂

∂xn

}
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and J( ∂
∂xn ) = ∂

∂yn , J( ∂
∂yn−1 ) = − ∂

∂xn−1 are orthogonal to Tp1(M). Therefore

Rp1(M) = span
{

∂

∂yn−1
,

∂

∂xn

}
,

Hp1(M) = span
{

∂

∂x1
,

∂

∂y1
, . . . ,

∂

∂xn−2
,

∂

∂yn−2

}
.

This shows that dimRHp1(M) = 2n − 4.

Next, we take the point p2 ∈ M represented by

z1 = 0, . . . , zn−1 = 0, zn = 1.

As a point of R2n, p2 is represented by

x1 = y1 = · · · = xn−1 = yn−1 = 0, xn = 1, yn = 0.

Then ∂
∂xn , ∂

∂yn are normal vectors to M , at p2 and JTp2(M) = Tp2(M), since
J( ∂

∂xi ) = ∂
∂yi , J( ∂

∂yi ) = − ∂
∂xi . Hence Hp2(M) = Tp2(M) and dimRHp2(M) =

2n − 2.

From this example we conclude that, in general, the dimension of Hp(M)
varies depending on the point p ∈ M . ♦

Now we give the definition of a CR submanifold.

Definition 7.2. [41] If Hx(M) has constant dimension with respect to x ∈
M , the submanifold M is called a Cauchy-Riemann submanifold or briefly CR
submanifold and the constant complex dimension is called the CR dimension
of M .

Example 7.2. J-invariant submanifolds.

Let (M,J) be a complex manifold and ı : M → M be an embedding. If
for any x ∈ M , the subspace ıTx(M) is an invariant subspace of Tı(x)(M)
with respect to J , that is,

JıTx(M) ⊂ ıTx(M),

the submanifold M is called a J-invariant submanifold, or invariant submanifold,
for short. Moreover, since J is an isomorphism, we conclude

JıTx(M) = ıTx(M).

Consequently,
Hx(M) = Tx(M) , dimRHx(M) = n

and M is a CR submanifold.

Theorem 7.1. An invariant submanifold M of a complex manifold (M,J) is
a complex submanifold.
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Proof. Since JıTx(M) ⊂ ıT (M), for any X ∈ Tx(M), we may put

JıX = ıJ ′X. (7.2)

Then, J ′ : Tx(M) → Tx(M) is an isomorphism. Moreover,

−ıX = J2ıX = JıJ ′X = ı(J ′)2X

implies (J ′)2X = −X. Thus, J ′ defines an almost complex structure on M .

Further, the Nijenhuis tensor N with respect to J vanishes identically
on M , since J is the almost complex structure induced from the complex
structure of M . Particularly for X,Y ∈ Tx(M), it follows

N(ıX, ıY ) = J [ıX, ıY ] − [JıX, ıY ] − [ıX, JıY ] − J [JıX, JıY ]
= Jı[X,Y ] − [ıJ ′X, ıY ] − [ıX, ıJ ′Y ] − J [ıJ ′X, ıJ ′Y ]
= ı (J ′[X,Y ] − [J ′X,Y ] − [X,J ′Y ] − J ′[J ′X,J ′Y ])
= ıN(X,Y ) = 0.

This, together with relation (7.2) and Theorem 2.1, implies that ı is holo-
morphic and (M,J ′) is a complex manifold, with the induced almost complex
structure J ′ from J of M . Consequently, dimRM is even. ��

Example 7.3. Real hypersurfaces.

Since for a real hypersurface Mn of a complex manifold from Proposition
7.5 it follows dimRHx(M) = n− 1, we conclude that M is a CR submanifold.

♦

Example 7.4. Totally real submanifolds.

If Hx(M) = {0} holds at every point x ∈ M , M is called a totally real
submanifold. We remark that for a totally real submanifold M of M , it follows
Rx(M) = Tx(M).

Using Proposition 7.5 we conclude that if M is a totally real submanifold,
we have

n − p ≤ dimRHx(M) = 0.

Therefore n ≤ p and the following proposition follows.

Proposition 7.6. The dimension of a totally real submanifold is less than or
equal to the codimension of the submanifold in the ambient manifold.

We now present one example of a totally real submanifold. Let

M = {x +
√
−1y ∈ Cn| y = 0}

= {(x1, 0, x2, 0, . . . , xn, 0)|xi ∈ R, i = 1, . . . , n}.
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Since in this case

Tx(M) = span
{

∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

}

and J( ∂
∂xi ) = ∂

∂yi , it follows JTx(M) ∩ Tx(M) = {0}, and therefore, M is a
totally real submanifold of n-dimensional complex space Cn. ♦

Example 7.5. Let (M1, J1) and (M2, J2) be complex manifolds with almost
complex structures J1 and J2. Then M = M1 × M2 is a complex manifold
with respect to the almost complex structure J = J1 ⊕ J2.

For a totally real submanifold M1 of M1 and a complex submanifold M2

of M2, the product manifold M = M1 × M2 is a CR submanifold of M and
dim (JT (M) ∩ T (M)) = dim (JT (M2) ∩ T (M2)) = dim M2. ♦

Now, let M be a real hypersurface of a Kähler manifold. Then

dimRRx(M) = 1, JRx(M) ⊥ Rx(M),

because of the skew symmetric property of J . On the other hand, for
X ∈ Rx(M), Y ∈ Hx(M), we have g(JX, Y ) = −g(X,JY ) = 0 and hence
JRx(M) ⊥ Hx(M). Consequently,

JRx(M) ⊥ Hx(M) ⊕ Rx(M) = Tx(M),

that is, JRx(M) is orthogonal to Tx(M). However, for the higher codimension
case JRx(M) is not always orthogonal to Tx(M) and we provide a counterex-
ample in the following.

Example 7.6. Let

M = { (z1, z2) ∈ C2| Imz1 = Re z2, Im z2 = 0},
= { (x1, y1, y1, 0) ∈ R4|x1, y1 ∈ R}

denote the submanifold of C2. Then, since

Tx(C2) = span
{

∂

∂x1
,

∂

∂y1
,

∂

∂x2
,

∂

∂y2

}
,

and since a point x ∈ M can be described as the position vector, which can
be expressed as a linear combination of basis vectors, it follows

x = x1 ∂

∂x1
+ y1 ∂

∂y1
+ y1 ∂

∂x2
.

Therefore,

Tx(M) = span
{

∂

∂x1
,

∂

∂y1
+

∂

∂x2

}
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and since

J

(
∂

∂x1

)
=

∂

∂y1
,

J

(
∂

∂y1
+

∂

∂x2

)
= − ∂

∂x1
+

∂

∂y2
,

it follows Hx(M) = {0}. However, J
(

∂
∂x1

)
= ∂

∂y1 is not orthogonal to Tx(M).

♦

Let (M,J, g) be a Hermitian manifold. In [1] A. Bejancu gave another
definition of CR submanifolds.

Definition 7.3. [1] M is called a CR submanifold if there exists a pair of
orthogonal complementary distributions (Δ,Δ⊥) of T (M) such that

for any x ∈ M, JΔx = Δx and JΔ⊥
x ⊂ Tx(M)⊥.

Proposition 7.7. If M is a CR submanifold in the sense of Definition 7.3,
then M is a CR submanifold in the sense of Definition 7.2.

Proof. First we note that Δx ⊂ Hx(M), since from Proposition 7.2 we know
that Hx(M) is the maximal J-invariant subspace of Tx(M). Further, if there
exists X ∈ Hx(M) such that X /∈ Δx, then

X = X1 + X2, X1 ∈ Δx, X2 ∈ Δ⊥
x ,

since Δx and Δ⊥
x are mutually complement. Then it follows JX = JX1+JX2

where JX2 ∈ Tx(M)⊥, contrary to X ∈ Hx(M). Therefore, Δx = Hx(M).
Finally, since Δ is a distribution, dimΔx is constant, which completes the
proof. ��

If the CR dimension of Mn is n−1
2 , we call M a CR submanifold of maxi-

mal CR dimension. In that case, let e1, . . . , en be an orthonormal basis of
Tx(M) such that e1, . . . , en−1 ∈ Hx(M). Then en ∈ Tx(M) \ Hx(M) and
g(Jıen, ıej) = −g(ıen, Jıej) = 0, j = 1, . . . , n − 1, since Jıej ∈ Hx(M).
Therefore, Jıen ∈ T⊥

x (M) and, using Proposition 7.7, we conclude

Proposition 7.8. If M is a CR submanifold of maximal CR dimension, then
Definition 7.2 and Definition 7.3 are equivalent.

On the other hand, as we show in the following, when the CR dimension
of M is less than n−1

2 , the converse of Proposition 7.7 is false.

Let M be a CR submanifold of CR dimension n−2
2 . Choosing an ortho-

normal basis e1, e2, . . . , en−2, en−1, en of Tx(M) in such a way that

e1, e2, . . . , en−2 ∈ JTx(M) ∩ Tx(M),



7 Submanifolds of a complex manifold 47

we can write

Jei ∈ JTx(M) ∩ Tx(M), i = 1, . . . , n − 2,

Jen−1 =
n−2∑

i=1

aiei + λen + normal part,

Jen =
n−2∑

i=1

biei − λen−1 + normal part.

It follows immediately that ai = 0, bi = 0 for i = 1, . . . , n − 2 and that
λ = g(Jen−1, en).

Now we choose another orthonormal pair of vectors: e′n−1 and e′n. Then,
for some θ, we have

e′n−1 = en−1 cos θ + en sin θ,

e′n = −en−1 sin θ + en cos θ

and consequently

λ′ = g(Je′n−1, e
′
n)

= g(Jen−1 cos θ + Jen sin θ,−en−1 sin θ + en cos θ)
= λg(en cos θ − en−1 sin θ,−en−1 sin θ + en cos θ)
= λ(cos2 θ + sin2 θ) = λ.

This shows that λ is independent of the choice of en−1 and en.

Therefore, since λ is not necessarily identically equal to zero, we conclude
that a CR submanifold defined by Definition 7.2 is not always a CR submani-
fold defined in the sense of Definition 7.3. Especially, computing λ in Example
7.6, we obtain

λ =
〈

J
∂

∂x1
,

∂

∂y1
+

∂

∂x2

〉
=

〈
∂

∂y1
,

∂

∂y1
+

∂

∂x2

〉
= 1.

Since dimH(M) = 0 and λ is not identically equal to zero, we conclude
that Example 7.6 is one of the examples of CR submanifolds in the sense of
Definition 7.2, but not in the sense of Definition 7.3.

Now, let M be a submanifold of a complex manifold. Then for any X ∈
T (M), JıX can be written as a sum of the tangential part ıFX and the
normal part v(X) in the following way:

JıX = ıFX + v(X). (7.3)

Then F is an endomorphism on the tangent bundle T (M) and v is a normal
bundle valued 1-form on M .
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Proposition 7.9. If M is a CR submanifold in the sense of Definition 7.3,
then the endomorphism F satisfies F 3 + F = 0 and rankF = dim Δ. Con-
versely, if the endomorphism F satisfies F 3 + F = 0 and rankF is constant
for x ∈ M , then M is a CR submanifold in the sense of Definition 7.3.

Proof. Let M be a CR submanifold in the sense of Definition 7.3 and let
X ∈ T (M). Then we have X = X1 +X2, where X1 ∈ Δ and X2 ∈ Δ⊥. Using
Definition 7.3, it follows that v(X1) = 0 and FX2 = 0 and consequently, using
(7.3), we write

−ıX1 = J2ıX1 = ıF 2X1 + v(FX1), −ıX2 = J2ıX2 = Jv(X2).

Separating and comparing the tangential parts and the normal parts, we con-
clude

F 2X1 = −X1, v(FX1) = 0.

Hence, JıFX1 = ıF 2X1 ∈ T (M) and FX1 ∈ Δ. Therefore

J2ıX = JıFX1 + Jv(X2) = ıF 2X1 + v(FX1) − ıX2 = ı(F 2X1 − X2),
J3ıX = Jı(F 2X1 − X2) = ıF (F 2X1 − X2) + v(F 2X1 − X2)

= ıF 3X1 − v(X2).

On the other hand, we have

F 3X = F 3X1 + F 3X2 = F 3X1

and
v(X) = v(X1) + v(X2) = v(X2),

which implies

J3ıX = −JıX = −ıFX − v(X) = ıF 3X − v(X).

Thus, F satisfies F 3 + F = 0 and rankF = dim Δ.

Conversely, suppose that F satisfies F 3 + F = 0 and let rank of F be r.
We put

Δ⊥ = {X ∈ T (M)|FX = 0},
Δ = {X ∈ T (M)| g(X,Y ) = 0, Y ∈ Δ⊥}.

Then, by definition, JΔ⊥ ⊂ T⊥(M) and for X ∈ Δ, Y ∈ Δ⊥ we obtain

g(JıX, ıY ) = −g(ıX, JıY ) = −g(ıX, v(Y )) = 0.

Hence JıX ⊥ Δ⊥ and therefore JΔ = Δ, and the proof is complete. ��

Especially, let M be a J-invariant submanifold of a Kähler manifold
(M,J). That is, for any X ∈ T (M), JıX ∈ T (M) and J induces the natu-
ral almost complex structure J ′ on M (see Example 7.2). First we note the
following
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Lemma 7.1. If M is a J-invariant submanifold of a complex manifold (M,J)
with Hermitian metric g, then for any ξ ∈ T⊥

x (M), it follows Jξ ∈ T⊥
x (M).

Proof. Under the conditions stated above, it follows

0 = g(ıX, ξ) = g(JıX, Jξ) = g(ıJ ′X,Jξ). (7.4)

Since J ′ : Tx(M) → Tx(M) is an isomorphism, for any Y ∈ Tx(M) there
exists X ∈ Tx(M) such that Y = J ′X. Thus, equation (7.4) shows that for
any Y ∈ Tx(M), g(ıY, Jξ) = 0 and therefore Jξ ∈ T⊥

x (M). ��

Theorem 7.2. A J-invariant submanifold M of a Kähler manifold (M,J) is
a Kähler manifold.

Proof. Since M is a J-invariant submanifold of a Kähler manifold (M,J),
relation (7.2) and Theorem 4.2 imply

JıY = ıJ ′Y, ∇XJ = 0, (7.5)

for all X,Y ∈ T (M). Therefore, differentiating covariantly the first relation
and using the second relation of (7.5), the Gauss formula (5.1) implies

J∇X ıY = ı∇X(J ′Y ) + h(X,J ′Y ). (7.6)

Using again the Gauss formula and the first relation of (7.5), we can rewrite
relation (7.6) as

ıJ ′∇XY + Jh(X,Y ) = ı(∇XJ ′)Y + ıJ ′∇XY + h(X,J ′Y ). (7.7)

Separating the tangential part and the normal part of relation (7.7), we con-
clude

Jh(X,Y ) = h(X,J ′Y ) (7.8)

and ∇XJ ′ = 0. Therefore, (M,J ′) is a Kähler manifold, by Theorem 4.2. ��

Example 7.7. Let M be a submanifold of a complex Euclidean space Cn de-
fined by

M = {(z1, . . . , zm, zm+1, . . . , zn) ∈ Cn | zm+j = fj(z1, . . . , zm), (7.9)
j = 1, . . . , n − m} for m < n,

where fj are holomorphic functions on Cm. Putting

zi = xi +
√
−1yi, i = 1, . . . , m,

fj = gj +
√
−1hj , j = 1, . . . , n − m,

we can identify M with a submanifold of E2n defined by
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M = {(x1, y1, . . . , xn, yn) ∈ E2n|xm+j = gj(x1, y1, . . . , xm, ym),
ym+j = hj(x1, y1, . . . , xm, ym)}, j = 1, . . . , n − m. (7.10)

Let (u1, v1, . . . , um, vm) be a local coordinate system of M . Then the
defining equation for M is given by

xi = ui, yi = vi, i = i, . . . , m,

xm+j = gj(x1, y1, . . . , xm, ym),
ym+j = hj(x1, y1, . . . , xm, ym), j = 1, . . . , n − m,

and consequently

∂xk

∂ui
=

∂yk

∂vi
= δk

i ,
∂xk

∂vi
=

∂yk

∂ui
= 0, (7.11)

∂xm+j

∂ui
=

∂gj

∂ui
,

∂xm+j

∂vi
=

∂gj

∂vi
, (7.12)

∂ym+j

∂ui
=

∂hj

∂ui
,

∂ym+j

∂vi
=

∂hj

∂vi
, (7.13)

for k = 1, . . . ,m, i = i, . . . ,m, j = 1, . . . , n − m.

The tangent space Tx(M) at x ∈ M is spanned by
{(

∂

∂ui

)

x

,

(
∂

∂vi

)

x

, i = 1, . . . , m

}
. (7.14)

For the immersion ı : M → E2n, we have

ı

(
∂

∂ui

)
=

n∑

λ=1

(
∂xλ

∂ui

∂

∂xλ
+

∂yλ

∂ui

∂

∂yλ

)

=
m∑

k=1

(
∂xk

∂ui

∂

∂xk
+

∂yk

∂ui

∂

∂yk

)
+

n−m∑

j=1

(
∂gj

∂ui

∂

∂xm+j
+

∂hj

∂ui

∂

∂ym+j

)
.

Therefore, using (7.11)–(7.13), we compute

ı

(
∂

∂ui

)
=

∂

∂xi
+

n−m∑

j=1

(
∂gj

∂ui

∂

∂xm+j
+

∂hj

∂ui

∂

∂ym+j

)
(7.15)

and similarly

ı

(
∂

∂vi

)
=

∂

∂yi
+

n−m∑

j=1

(
∂gj

∂vi

∂

∂xm+j
+

∂hj

∂vi

∂

∂ym+j

)
. (7.16)

Applying J to (7.15), we have
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Jı

(
∂

∂ui

)
=

∂

∂yi
+

n−m∑

j=1

(
∂gj

∂ui

∂

∂ym+j
− ∂hj

∂ui

∂

∂xm+j

)
. (7.17)

Since fj are holomorphic functions, they satisfy the Cauchy-Riemann equa-
tions, namely,

∂gj

∂ui
=

∂hj

∂vi
,

∂gj

∂vi
= −∂hj

∂ui
,

and using (7.16) and (7.17), we compute

Jı

(
∂

∂ui

)
=

∂

∂yi
+

n−m∑

j=1

(
∂gj

∂vi

∂

∂xm+j
+

∂hj

∂vi

∂

∂ym+j

)
= ı

(
∂

∂vi

)
. (7.18)

In entirely the same way, we obtain

Jı

(
∂

∂vi

)
= −ı

(
∂

∂ui

)
. (7.19)

Using (7.18) and (7.19) we conclude that JT (M) ⊂ T (M). Hence we deduce
that M is a J-invariant submanifold of Cn. Since Cn is a Kähler manifold,
using Theorem 7.2, it follows that M is a Kähler manifold. ♦

According to Theorem 7.2, we can choose an orthonormal normal basis ξa,
ξa∗ ∈ T⊥

x (M), in such a way that ξa∗ = Jξa, for a = 1, . . . , q, where q = p
2 .

Consequently, we can write

h(X,Y ) =
q∑

a=1

{g(AaX,Y )ξa + g(Aa∗X,Y )ξa∗} (7.20)

where Aa∗ denotes the shape operator with respect to ξa∗ . Thus, combining
(7.8) with (7.20) gives

Jh(X,Y ) =
q∑

a=1

{g(AaX,Y )ξa∗ − g(Aa∗X,Y )ξa}

=
q∑

a=1

{g(AaX,J ′Y )ξa + g(Aa∗X,J ′Y )ξa∗}

= h(X,J ′Y ),

and therefore

g(AaX,J ′Y ) = −g(Aa∗X,Y ), g(AaX,Y ) = g(Aa∗X,J ′Y ),

that is, Aa∗ = J ′Aa, Aa = −J ′Aa∗ . Since J ′ is skew-symmetric and Aa and
Aa∗ are symmetric, we conclude

trace Aa = −trace J ′Aa∗ = 0, trace Aa∗ = trace J ′Aa = 0 for a = 1, . . . , q.

Thus, using Proposition 5.4, we have proved
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Theorem 7.3. A J-invariant submanifold of a Kähler manifold is a minimal
submanifold.

Here we note that

g(AaJ ′X,Y ) = −g(X,J ′AaY ) = −g(X,Aa∗Y )
= −g(Aa∗X,Y ) = −g(J ′AaX,Y )

and an analogous consideration implies

AaJ ′ = −J ′Aa, Aa∗J ′ = −J ′Aa∗ . (7.21)
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The Levi form

Let M be a complex manifold with the natural almost complex structure
J and let M be a real submanifold of M . In this section we consider the
involutivity of the complexification of a holomorphic tangent bundle. For this
purpose, the Levi form plays a very important role.

Let HC
x (M) be the complexification of the holomorphic tangent space

Hx(M) and

H(0,1)
x (M) =

{
ıX +

√
−1 JıX|X ∈ Hx(M)

}
,

H(1,0)
x (M) =

{
ıX −

√
−1 JıX|X ∈ Hx(M)

}
.

Then we have
HC

x (M) = H(0,1)
x (M) ⊕ H(1,0)

x (M).

We define the following subbundles of the complexification of the tangent
bundle TC(M)

HC(M) =
⋃

x∈M

HC
x (M), H(0,1)(M) =

⋃

x∈M

H(0,1)
x (M),

H(1,0)(M) =
⋃

x∈M

H(1,0)
x (M).

We begin with a well-known result.

Proposition 8.1. Both distributions H(0,1)(M) and H(1,0)(M) are involu-
tive.

Proof. We only show that H(0,1)(M) is involutive, because the other case can
be proved in entirely the same way. We compute [V,W ] for V,W ∈ H(0,1)(M).
Then, for some X,Y ∈ H(M), we have

[V,W ] = [ıX +
√
−1 JıX, ıY +

√
−1 JıY ]

= [ıX, ıY ] − [JıX, JıY ] +
√
−1([JıX, ıY ] + [ıX, JıY ]). (8.1)
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Since M is a complex manifold, the Nijenhuis tensor

N(ıX, ıY ) = J [ıX, ıY ] − J [JıX, JıY ] − [ıX, JıY ] − [JıX, ıY ]

vanishes identically and we obtain

[ıX, ıY ] − [JıX, JıY ] = J(−[ıX, JıY ] − [JıX, ıY ]),
[ıX, JıY ] + [JıX, ıY ] = J([ıX, ıY ] − [JıX, JıY ]). (8.2)

Now, using (8.1) and (8.2), we get

[V,W ] = [ıX, ıY ] − [JıX, JıY ] +
√
−1 J([ıX, ıY ] − [JıX, JıY ]).

Since X,Y ∈ H(M), it follows that JıX, JıY ∈ T (M) and therefore we
conclude

[ıX, ıY ] − [JıX, JıY ] ∈ T (M).

Also, from the above discussions, it follows

[ıX, ıY ] − [JıX, JıY ] ∈ JT (M)

and this implies that H(0,1)(M) is involutive. ��

Proposition 8.2. If H(M) is involutive, the integral submanifold of H(M)
is a complex manifold.

Proof. If X ∈ H(M), then JıX = ıFX + v(X) = ıFX and F 2 = −id. Thus
F is an almost complex structure on the integral submanifold. Since the
ambient manifold M is a complex manifold, the Nijenhuis tensor N(ıX, ıY ) =
0. Therefore we have

[ıX, ıY ] − [JıX, JıY ] + J [JıX, ıY ] + J [ıX, JıY ]
= ı[X,Y ] − ı[FX,FY ] + Jı[FX, Y ] + Jı[X,FY ] = 0,

that is,

ı[X,Y ]− ı[FX,FY ]+ ıF [FX, Y ]+ v([FX, Y ])+ ıF [X,FY ]+ v([X,FY ]) = 0.

The tangential part of the last equation is just the Nijenhuis tensor N(X,Y ).
Hence the integral submanifold is a complex manifold with almost complex
structure F . ��

Lemma 8.1. The normal part of J [JıX, ıY ] is equal to the normal part of
J [JıY, ıX].

Proof. From relation (8.2), we have

ı[X,Y ] − ı[FX,FY ] = J([JıY, ıX] − [JıX, ıY ]).

The left hand members of the last equation are tangent to M and therefore
the normal part of the right hand members must be zero. This completes the
proof. ��
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As we have shown, both H(0,1)(M) and H(1,0)(M) are involutive. But
this does not imply that HC(M) = H(0,1)(M) ⊕ H(1,0)(M) is involutive and
therefore let us consider the involutivity of HC(M).

Let V ∈ H(0,1)(M), W ∈ H(1,0)(M). Then, for some X, Y ∈ H(M),
V = ıX +

√
−1 JıX and W = ıY −

√
−1 JıY and consequently

[V,W ] = [ıX, ıY ] + [JıX, JıY ] −
√
−1([ıX, JıY ] − [JıX, ıY ]).

Since X,Y ∈ H(M), it follows JıX = ıFX, JıY = ıFY and therefore
[JıX, JıY ], [ıX, JıY ], [JıX, ıY ] ∈ T (M). Hence [V,W ] ∈ TC(M). However,
in general, [V,W ] /∈ JTC(M).

Lemma 8.2. Under the above assumptions, a necessary and sufficient condi-
tion for [V,W ] ∈ HC(M) is that J [ıX, JıY ] − J [JıX, ıY ] ∈ T (M).

Proof. First we note that J [ıX, JıY ] − J [JıX, ıY ] ∈ T (M) is equivalent to
[ıX, JıY ] − [JıX, ıY ] ∈ JT (M). Then by definition of HC(M), the necessity
is trivial. To prove the sufficiency, we take X ′ ∈ H(M). X ′ ∈ JT (M) implies
that there exists X ∈ T (M) such that ıX ′ = JıX and we have

[ıX ′, ıY ] + [JıX ′, JıY ] = [JıX, ıY ] + [J2ıX, JıY ]
= [JıX, ıY ] − [ıX, JıY ] ∈ JT (M).

This completes the proof. ��

The Levi form is defined in such a way that it measures the degree to
which HC(M) fails to be involutive. As we have shown, the normal part of
J [JıX, ıY ] is equal to that of J [JıY, ıX]. We give the following definition of
Levi form.

Definition 8.1. The Levi form L is the projection of J [JıX, ıY ] to T⊥(M)
for X,Y ∈ H(M).

Theorem 8.1. [31] Let M be a complex manifold with torsion-free affine con-
nection ∇ whose parallel translation leaves the almost complex structure J
invariant and M be a real submanifold of M . Then we have

L(X,Y ) = h(X,Y ) + h(FX,FY ), (8.3)

for X,Y ∈ H(M), where h denotes the second fundamental form with respect
to ∇ and F is defined by (7.3).

Proof. As we have shown, X ∈ H(M), implies JıX = ıFX and therefore,
using the Gauss formula (5.1), we compute
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J [JıX, ıY ] = J [ıFX, ıY ] = Jı[FX, Y ]
= Jı (∇FXY −∇Y (FX))
= J

(
∇FX ıY − h(FX, Y ) −∇Y ıFX + h(Y, FX)

)

= J
(
∇FX ıY −∇Y ıFX

)

= ∇FX(JıY ) −∇Y (JıFX)
= ∇FX ıFY −∇Y ıF 2X

= ∇FX ıFY + ∇Y ıX

= ı∇FX(FY ) + h(FX,FY ) + ı∇Y X + h(Y,X).

Using Definition 8.1, this establishes the formula (8.3). ��
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The principal circle bundle S2n+1(Pn(C), S1)

It is well known that an odd-dimensional sphere is a circle bundle over the
complex projective space (see [33]). Consequently, many geometric properties
of the complex projective space are inherited from those of the sphere. Espe-
cially, at the end of this section, we prove that the complex projective space
has constant holomorphic sectional curvature.

Let Cn+1 be the (n + 1)-dimensional complex space with natural Kähler
structure (J ′, 〈, 〉) recalled in Example 4.2 and let S2n+1 be the unit sphere
defined by

S2n+1 = {(z1, . . . , zn+1) ∈ Cn+1 |
n+1∑

i=1

zizi = 1}

= {(x1, y1, . . . , xn+1, yn+1) ∈ R2n+2 |
n+1∑

i=1

[(xi)2 + (yi)2] = 1}.

The unit normal vector field ξ to S2n+1 is given by

ξ = −
n+1∑

i=1

(
xi ∂

∂xi
+ yi ∂

∂yi

)
.

From
〈J ′ξ, ξ〉 = 〈J ′2ξ, J ′ξ〉 = −〈ξ, J ′ξ〉,

it follows 〈J ′ξ, ξ〉 = 0, that is, J ′ξ ∈ T (S2n+1). We put

J ′ξ = −ıV ′, (9.1)

where ı denotes the immersion of S2n+1 into Cn+1. From the Hermitian
property of 〈, 〉, it is easily seen that V ′ is a unit tangent vector field of S2n+1

and with respect to the natural basis, ıV ′ is represented by

ıV ′ =
n+1∑

i=1

(
−yi ∂

∂xi
+ xi ∂

∂yi

)
.
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Let us denote by g′ the metric on S2n+1, induced by the metric 〈, 〉. Defining
the 1-form u′ on S2n+1 by

u′(X ′) = g′(V ′,X ′) = 〈ıV ′, ıX ′〉, for X ′ ∈ T (S2n+1),

we can write

u′ =
n+1∑

i=1

(−yidxi + xidyi).

Let vi be the i-th component of ıV ′ with respect to complex coordinates
zi = xi +

√
−1yi of Cn+1. Then, ıV ′ is represented as a position vector field

by vi =
√
−1 zi and consequently, the integral curve of ıV ′ is a great circle

S1 = {e
√
−1θ| 0 ≤ θ < 2π}.

We define a map S2n+1 × S1 → S2n+1 by

(z, e
√
−1θ) �→ ze

√
−1θ.

Then, S1 acts on S2n+1 freely and the quotient space of S2n+1 by the equiv-
alence relation induced by S1 is the complex projective space Pn(C). Thus
we get the principal circle bundle S2n+1(Pn(C),S1). We put

Hp(S2n+1) = {X ′ ∈ Tp(S2n+1)|u′(X ′) = 0}.

Then u′ defines a connection form of the principal circle bundle S2n+1(Pn(C),
S1) and we have

Tp(S2n+1) = Hp(S2n+1) ⊕ span {V ′
p}.

We call Hp(S2n+1) and span {V ′
p} the horizontal subspace and the vertical

subspace of Tp(S2n+1), respectively. By definition, the horizontal subspace
Hp(S2n+1) is isomorphic to Tπ(p)(Pn(C)), where π is the natural projection
from S2n+1 onto Pn(C). Therefore, for a vector field X on Pn(C), there
exists unique horizontal vector field X ′ of S2n+1 such that π(X ′) = X. The
vector field X ′ is called the horizontal lift of X and we denote it by X∗.

Proposition 9.1. As a subspace of Tp(Cn+1), Hp(S2n+1) is a J ′-invariant
subspace.

Proof. By definition (9.1) of the vertical vector field V ′, for X ′ ∈ Hp(S2n+1),
it follows

〈J ′ıX ′, ξ〉 = −〈ıX ′, J ′ξ〉 = 〈ıX ′, ıV ′〉 = 0.

This shows that J ′ıX ′ ∈ Tp(S2n+1). In entirely the same way we compute

〈J ′ıX ′, ıV ′〉 = −〈ıX ′, J ′ıV ′〉 = 〈ıX ′,−ξ〉 = 0

and hence J ′ıX ′ ∈ H(S2n+1), which completes the proof. ��
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Therefore, the almost complex structure J can be induced on Tπ(p)Pn(C)
and we set

(JX)∗ = J ′ıX∗. (9.2)

Next, using the Gauss formula (5.1) for the vertical vector field V ′ and a
horizontal vector field X ′ of Tp(S2n+1), we compute

∇E
X′ ıV ′ = ı∇′

X′V ′ + g′(A′X ′, V ′)ξ
= ı∇′

X′V ′ + 〈ıX ′, ıV ′〉ξ
= ı∇′

X′V ′, (9.3)

where ∇E denotes the Euclidean connection of E2n+2, ∇′ denotes the con-
nection of S2n+1 and A′ denotes the shape operator with respect to ξ.
Now, using relations (9.3), (9.1) and the Weingarten formula (5.6), we
conclude

∇′
X′V ′ = −∇E

X′(J ′ξ) = −J ′∇E
X′ξ

= J ′(ıA′X ′) = J ′ıX ′. (9.4)

Consequently, according to notation (9.2), relation (9.4) can be written as

∇′
X∗V ′ = (JX)∗. (9.5)

We note that, since by definition, the Lie derivative of a horizontal lift of
a vector field with respect to a vertical vector field is zero, it follows

0 = LV ′X∗ = [V ′,X∗] = ∇′
V ′X∗ −∇′

X∗V ′

and using (9.5), we conclude

∇′
V ′X∗ = (JX)∗. (9.6)

We define a Riemannian metric g and a connection ∇ in Pn(C) respec-
tively by

g(X,Y ) = g′(X∗, Y ∗), (9.7)
∇XY = π(∇′

X∗Y ∗). (9.8)

Then (∇XY )∗ is the horizontal part of ∇′
X∗Y ∗ and therefore

∇′
X∗Y ∗ = (∇XY )∗ + g′(∇′

X∗Y ∗, V ′)V ′. (9.9)

Using relations (9.5) and (9.7), we compute

g′(∇′
X∗Y ∗, V ′) = −g′(Y ∗,∇′

X∗V ′) = −g′(Y ∗, (JX)∗) = −g(Y, JX),

and, using (9.9), we conclude

∇′
X∗Y ∗ = (∇XY )∗ − g(JX, Y )V ′. (9.10)
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Proposition 9.2. ∇ is the Levi-Civita connection for g.

Proof. Let T be the torsion tensor field of ∇. Then we have

T (X,Y ) = ∇XY −∇Y X − [X,Y ] = π∇′
X∗Y ∗ − π∇′

Y ∗X∗ − [πX∗, πY ∗]
= π(∇′

X∗Y ∗ −∇′
Y ∗X∗ − [X∗, Y ∗]) = π(T ′(X∗, Y ∗)) = 0.

Hence ∇ is torsion-free. We now show that ∇ is a metric connection.

(∇Xg)(Y,Z) = X(g(Y,Z)) − g(∇XY,Z) − g(Y,∇XZ)
= X∗(g′(Y ∗, Z∗)) − g′((∇XY )∗, Z∗) − g′(Y ∗, (∇XZ)∗).

Since Z∗ is horizontal, using relation (9.9), it follows

g′((∇XY )∗, Z∗) = g′(∇′
X∗Y ∗, Z∗)

and we compute

(∇Xg)(X,Y ) = X∗(g′(Y ∗, Z∗)) − g′(∇′
X∗Y ∗, Z∗) − g′(Y ∗,∇′

X∗Z∗)
= (∇′

X∗g′)(Y ∗, Z∗) = 0,

where we have used the fact that ∇′ is the Levi-Civita connection for g′. Thus,
∇ is the Levi-Civita connection for g and the proof is complete. ��

Further, let Γ be a curve on S2n+1 whose tangent vector field dΓ
ds is hori-

zontal and put
γ(s) = π(Γ(s)).

Then γ(s) is a curve in Pn(C) and the tangent vector field γ̇ of γ(s) is π(dΓ
ds ).

Therefore dΓ
ds is the horizontal lift of γ̇ and

∇γ̇ γ̇ = π

(
∇′

dΓ
ds

dΓ
ds

)
.

Hence, if Γ(s) is a geodesic of S2n+1, then γ(s) is a geodesic of Pn(C).

Conversely, let γ(s) be a geodesic of Pn(C) through a point x ∈ Pn(C).
Then through any point w ∈ π−1(x) ⊂ S2n+1, there exists a unique geodesic
Γ(s) whose tangent vector at w is γ̇∗(0). Thus, Γ(s) is the horizontal lift of
the geodesic γ(s) and it may be expressed as

Γ(s) = w cos s + γ̇∗ sin s,

where we regard that w is the position vector at the initial point w ∈ S2n+1 ⊂
Cn+1 = E2n+2. Hence any geodesic γ(s) of Pn(C) is written as

γ(s) = π(w cos s + γ̇∗ sin s).

By virtue of (9.10), it follows
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[X∗, Y ∗] = [X,Y ]∗ + g′([X∗, Y ∗], V ′)V ′

= [X,Y ]∗ + g′(∇′
X∗Y ∗ −∇′

Y ∗X∗, V ′)V ′

= [X,Y ]∗ + g′((∇XY )∗ − g(JX, Y )V ′ − (∇Y X)∗

+ g(JY,X)V ′, V ′)V ′

and therefore
[X∗, Y ∗] = [X,Y ]∗ − 2g(JX, Y )V ′. (9.11)

Consequently, using (9.5), (9.6), (9.10) and (9.11), the curvature tensor R of
Pn(C) is calculated as follows:

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

= π{∇′
X∗(∇Y Z)∗ −∇′

Y ∗(∇XZ)∗ −∇′
[X,Y ]∗Z

∗}
= π{∇′

X∗(∇′
Y ∗Z∗ + g(JY,Z)V ′) −∇′

Y ∗(∇′
X∗Z∗ + g(JX,Z)V ′)

− ∇′
[X∗,Y ∗]+2g(JX,Y )V ′Z∗}

= π{∇′
X∗∇′

Y ∗Z∗ + g(JY,Z)∇′
X∗V ′ −∇′

Y ∗∇′
X∗Z∗

− g(JX,Z)∇′
Y ∗V ′ −∇′

[X∗,Y ∗]Z
∗ − 2g(JX, Y )∇′

V ′Z∗}
= π{R′(X∗, Y ∗)Z∗ + g(JY,Z)J ′ıX∗ − g(JX,Z)J ′ıY ∗

− 2g(JX, Y )J ′ıZ∗}.

Since the curvature tensor R′ of S2n+1 satisfies

R′(X∗, Y ∗)Z∗ = g′(Y ∗, Z∗)X∗ − g′(X∗, Z∗)Y ∗

= g(Y,Z)X∗ − g(X,Z)Y ∗, (9.12)

we conclude that the curvature tensor of Pn(C) is given by

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ. (9.13)

Let KXY be the sectional curvature of Pn(C). Then, by definition of the
sectional curvature and (9.13), it follows that

KXY =
g(R(X,Y )Y,X)

g(X,X)g(Y, Y ) − g(X,Y )2

=
g(Y, Y )g(X,X) − g(X,Y )2 + 3g(JX, Y )2

g(X,X)g(Y, Y ) − g(X,Y )2

= 1 +
3g(JX, Y )2

g(X,X)g(Y, Y ) − g(X,Y )2
= 1 + 3 cos θ,

where θ is the angle between the planes {X,Y } and {JX, JY }. Since 0 ≤
θ ≤ π

2 , in Pn(C), we conclude

1 ≤ KXY ≤ 4. (9.14)
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The holomorphic sectional curvature H(X) of a complex manifold is defined
by

H(X) = KX,JX =
g(R(X,JX)JX,X)

g(X,X)2
. (9.15)

The holomorphic sectional curvature of Pn(C) is 4 since

H(X) = 1 +
3g(X,X)2

g(X,X)2
= 4. (9.16)

More generally, a Kähler manifold M is called a complex space form if it
has constant holomorphic sectional curvature, namely, if H(X) is a constant
for all J-invariant planes {X,JX} in Tx(M) and for all points x ∈ M .

Now, let the holomorphic sectional curvature H(X) be independent of
X ∈ Tx(M) for all x ∈ M , namely, let k(x) be a real-valued function on M
such that H(X) = 4 k(x). Then by (9.15) we have

g(R(X,JX)JX,X) = 4 k(x)g(X,X)2,

for any X ∈ Tx(M), from which it follows
∑

P

g(R(X,JY )JZ,W ) = 4 k(x)
∑

P

g(X,Y )g(Z,W ) (9.17)

where
∑

P denotes the sum of all permutations with respect to X,Y ,Z,W ∈
Tx(M).

Since M is a Kähler manifold, Theorem 4.2 implies ∇XJ = 0 for any X
and therefore,

R(X,Y )JZ = JR(X,Y )Z.

Hence, we compute

g(R(X,Y )JZ,W ) = g(JR(X,Y )Z,W ) = −g(R(X,Y )Z, JW )
= g(R(X,Y )JW,Z). (9.18)

Now, relation (9.17) and repeated application of the property

g(R(X,Y )Z,W ) = g(R(W,Z)Y,X)

of the curvature tensor R and relation (9.18) imply

g(R(X,JY )JW,Z) + g(R(X,JZ)JY,W ) + g(R(X,JW )JY,Z)
= 4 k(x){g(X,Y )g(Z,W ) + g(X,Z)g(Y,W ) + g(X,W )g(Y,Z)}.

Substituting JY and JW for Y and W in the above equation, respectively,
we get

g(R(X,Y )W,Z) − g(R(X,JZ)Y, JW ) + g(R(X,W )Y,Z)
= 4 k(x){g(X,JY )g(Z, JW ) + g(X,Z)g(Y,W ) + g(X,JW )g(JY,Z)}.
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Taking the skew symmetric part of this equation with respect to Z and W
and using the Bianchi identity, we obtain

2g(R(X,Y )W,Z) + g(R(X,JZ)JW, Y ) − g(R(X,JW )JZ, Y )
+g(R(X,W )Y,Z) + g(R(X,Z)W,Y )
= 4 k(x){−2g(X,JY )g(JZ,W ) − g(X,W )g(Y,Z) (9.19)
+g(X,Z)g(Y,W ) − g(X,JZ)g(JY,W ) + g(X,JW )g(JY,Z)}.

On the other hand, from (9.18) it follows

g(R(X,JZ)JW, Y ) − g(R(X,JW )JZ, Y )
= g(R(X,JZ)JW, Y ) + g(R(X,JW )Y, JZ)
= −g(R(X,Y )JZ, JW ) = −g(JR(X,Y )Z, JW )
= −g(R(X,Y )Z,W ). (9.20)

Using (9.20), relation (9.19) becomes

g(R(X,Y )Z,W ) = k(x){g(X,W )g(Y,Z) − g(X,Z)g(Y,W )
+g(JY,Z)g(JX,W ) − g(JX,Z)g(JY,W ) − 2g(JX, Y )g(JZ,W )},

that is, the Riemannian curvature tensor R of a complex space form is given
by

R(X,Y )Z = k(x) {g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ}. (9.21)

Using the second Bianchi identity, it can be proved that k(x) is constant.

Moreover, it is well-known that two complete, simply connected complex
space forms of the same constant holomorphic sectional curvature are iso-
metric and biholomorphic. Any Kähler manifold of constant holomorphic
sectional curvature k is locally isometric to one of the following spaces:

complex Euclidean space Cn, (k = 0),
complex projective space Pn(C), (k > 0),
complex hyperbolic space Hn(C), (k < 0).

For the proof and more details we refer the reader to [33], [68].
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Submersion and immersion

As we have seen in Section 9, geometric properties of complex projective space
are induced from that of an odd-dimensional sphere. Therefore, for studying
submanifolds of a complex projective space, it is of great interest how to
pull down some formulae deduced for submanifolds of a sphere to those for
submanifolds of a complex projective space.

Let M be an n-dimensional submanifold of P
n+p

2 (C) and π−1(M) be the
circle bundle over M which is compatible with the Hopf map

π : Sn+p+1 → P
n+p

2 (C).

Then π−1(M) is a submanifold of Sn+p+1. The compatibility with the Hopf
map is expressed by π ◦ ı′ = ı ◦ π, where ı and ı′ are the immersions of M

into P
n+p

2 (C) and π−1(M) into Sn+p+1, respectively (see Section 9, but be
aware that in Section 10 our notation of immersions is in conflict with that of
Section 9).

Let ξa, a = 1, . . . , p be orthonormal normal local fields to M in P
n+p

2 (C),
and let ξ∗a’s be the horizontal lifts of ξa. Then ξ∗a’s are mutually orthonormal
normal local fields to π−1(M) in Sn+p+1. Consequently, using relation (9.7),
at each point y ∈ π−1(M), we compute

gS(ı′X∗, ξ∗a) = gS((ıX)∗, ξ∗a) = g(ıX, ξa) = 0,
gS(ı′V, ξ∗a) = gS(V ′, ξ∗a) = 0,
gS(ξ∗a, ξ∗b ) = g(ξa, ξb) = δab,

where gS and g denote the Riemannian metric on Sn+p+1 and P
n+p

2 (C),
respectively. Here V ′ = ı′V is a unit tangent vector field of Sn+p+1 defined
by relation (9.1), namely, J ′ξ = −f V ′, where f denotes the immersion of
Sn+p+1 into C

n+p+2
2 , J ′ is the natural almost complex structure of C

n+p+2
2

and ξ is the unit normal vector field to Sn+p+1.
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Now, let ∇S , ∇′, ∇ and ∇ be the Riemannian connections of Sn+p+1,
π−1(M), P

n+p
2 (C) and M , respectively. By means of the Gauss formula (5.1)

and relations (7.3) and (9.10), we compute

∇S
X∗ ı′Y ∗ = ∇S

X∗(ıY )∗ = (∇X ıY )∗ − g(JıX, ıY )ı′V
= (ı∇XY + h(X,Y ))∗ + g(ıFX, ıY )ı′V
= ı′(∇XY )∗ + (h(X,Y ))∗ + g(FX, Y )ı′V, (10.1)

where g is the metric on M . On the other hand, we also have

∇S
X∗ ı′Y ∗ = ı′∇′

X∗Y ∗ + h′(X∗, Y ∗)
= ı′((∇XY )∗ + g(FX, Y )V ) + h′(X∗, Y ∗), (10.2)

where h and h′ denote the second fundamental form of M and π−1(M), re-
spectively. Comparing the vertical part and the horizontal part of relations
(10.1) and (10.2), we conclude

h′(X∗, Y ∗) = (h(X,Y ))∗, (10.3)

that is,

p∑

a=1

g′(A′
aX∗, Y ∗)ξ∗a =

(
p∑

a=1

g(AaX,Y )ξa

)∗

=
p∑

a=1

g(AaX,Y )ξ∗a,

where Aa and A′
a are the shape operators with respect to normal vector fields

ξa and ξ∗a of M and π−1(M), respectively. Consequently, we have

g′(A′
aX∗, Y ∗) = g(AaX,Y ), for a = 1, . . . , p.

Next, using (5.8), we calculate ∇S
X∗ξ∗a as follows:

∇S
X∗ξ∗a = −ı′A′

aX∗ + D′
X∗ξ∗a = −ı′A′

aX∗ +
p∑

b=1

s′ab(X
∗)ξ∗b . (10.4)

On the other hand, using relation (9.10), we compute

∇S
X∗ξ∗a = (∇Xξa)∗ − g(JıX, ξa)ı′V

= (−ıAaX + DXξa)∗ −
p∑

b=1

ub(X)g(ξb, ξa)ı′V

= −ı′(AaX)∗ +
p∑

b=1

(sab(X)ξb)∗ − ua(X)ı′V, (10.5)

where we have put

JıX = ıFX +
p∑

a=1

ua(X)ξa. (10.6)
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Comparing relations (10.4) and (10.5), we conclude

A′
aX∗ = (AaX)∗ + ua(X)V = (AaX)∗ + g(Ua,X)V, (10.7)

D′
X∗ξ∗a = (DXξa)∗, (10.8)

that is, s′ab(X
∗) = sab(X)∗, where Ua is defined by

Jξa = −ıUa +
p∑

b=1

Pabξb, (10.9)

and consequently ua(X) = g(Ua,X).

Now, we consider ∇S
V ξ∗a. Using (9.6) and (10.9) it follows

∇S
V ξ∗a = (Jξa)∗ = −ıU∗

a +
p∑

b=1

Pabξ
∗
b . (10.10)

On the other hand, from the Weingarten formula, we have

∇S
V ξ∗a = −ı′A′

aV + D′
V ξ∗a,= −ı′A′

aV +
p∑

b=1

s′ab(V )ξ∗b . (10.11)

Consequently, using (10.10) and (10.11), we obtain

A′
aV = U∗

a , s′ab(V ) = Pab, (10.12)
D′

V ξ∗a = (Jξa)∗ + ıU∗
a . (10.13)

From (10.7) and (10.12), we get

g′(A′
aA′

bX
∗, Y ∗) = g(AaAbX,Y ) + ub(X)ua(Y ), (10.14)

and especially,

g′(A′
a
2
X∗, Y ∗) = g(A2

aX,Y ) + ua(X)ua(Y ). (10.15)

For x ∈ M , let {e1, . . . , en} be an orthonormal basis of Tx(M) and y be a point
of π−1(M) such that π(y) = x. We take an orthonormal basis {e∗1, . . . , e∗n, V }
of Ty(π−1(M)). Then, using (10.12) and (10.15), we compute

p∑

a=1

trace A′
a
2 =

p∑

a=1

{
n∑

i=1

g′(A′
a
2
e∗i , e

∗
i ) + g′(A′2

aV, V )}

=
p∑

a=1

{
n∑

i=1

(g(Aa
2ei, ei) + ua(ei)ua(ei)) + g′(A′

aV,A′
aV )}

=
p∑

a=1

{trace A2
a + 2g(Ua, Ua)}. (10.16)

Summarizing, we conclude
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Proposition 10.1. Under the above assumptions, the following inequality
p∑

a=1

trace A′2
a ≥

p∑

a=1

trace A2
a

is always valid. The equality holds, if and only if M is a J-invariant subman-
ifold.

Proposition 10.2. Under the conditions stated above, if π−1(M) is a totally
geodesic submanifold of Sn+p+1, then M is a totally geodesic, J-invariant
submanifold.

Proof. Since π−1(M) is a totally geodesic submanifold of Sn+p+1, using Corol-
lary 5.1, it follows A′

a = 0. Relation (10.16) then implies Aa = 0 and Ua = 0,
which, using relation (10.9), completes the proof. ��

Further, for the normal curvature of M in P
n+p

2 (C), using relations (5.27)
and (9.13), we obtain

g(R⊥(X,Y )ξa, ξb) = ua(Y )ub(X) − ua(X)ub(Y )
− 2g(FX, Y )Pab + g([Aa, Ab]X,Y ).

Therefore, if M is a totally geodesic, J-invariant submanifold, we conclude

g(R⊥(X,Y )ξa, ξb) = −2g(FX, Y )Pab. (10.17)

In this case the normal space T⊥
x (M) is also J-invariant and Pab never vanish.

We have thus proved

Proposition 10.3. The normal curvature of a totally geodesic, J-invariant
submanifold of a complex projective space never vanishes.

This proposition shows that the normal connection of the complex pro-
jective space which is immersed standardly in a higher dimensional complex
projective space, is not flat.

Finally, we give a relation between the normal curvatures R⊥ and R′⊥ of
M and π−1(M), respectively, where M is an n-dimensional submanifold of
P

n+p
2 (C) and π−1(M) is the circle bundle over M which is compatible with

the Hopf map π. Using relation (10.14), we obtain

g′([A′
a, A′

b]X
∗, Y ∗) = g([Aa, Ab]X,Y ) + ub(X)ua(Y ) − ub(Y )ua(X)

and therefore, using relation (5.27), it follows

− gS(R′S(ı′X∗, ı′Y ∗)ξ∗a, ξ∗b ) + gS(R′⊥(X∗, Y ∗)ξ∗a, ξ∗b )
= −g(R(ıX, ıY )ξa, ξb) + g(R⊥(X,Y )ξa, ξb) + ub(X)ua(Y ) − ub(Y )ua(X).

Using the expressions (9.12) and (9.13), for curvature tensors of Sn+p+1 and
P

n+p
2 (C), respectively, and using relations (10.6) and (10.9), we compute

gS(R′⊥(X∗, Y ∗)ξ∗a, ξ∗b ) = g(R⊥(X,Y )ξa, ξb) + 2g(FX, Y )Pab. (10.18)
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Hypersurfaces of a Riemannian manifold of
constant curvature

The theory of hypersurfaces, defined as submanifolds of codimension one, is
one of the most fundamental theories of submanifolds. Therefore, in Sections
11–13 we consider hypersurfaces of a Riemannian manifold of constant cur-
vature. This research, combined with the results obtained in Section 10, will
contribute to studying real hypersurfaces of complex projective space in Sec-
tion 16.

If the sectional curvature is constant for all planes π in Tx(M) and for all
points x of M , then M is called a space of constant curvature. A Riemannian
manifold of constant curvature is called a space form. Sometimes, a space form
is defined as a complete simply connected Riemannian manifold of constant
curvature. The following theorem due to Schur is well-known. For the proof
and more details we refer the reader to [33], [68].

Theorem 11.1. Let M be a connected Riemannian manifold of dimension
greater than two. If the sectional curvature depends only on the point x, then
M is a space of constant curvature.

For a Riemannian manifold (M, g) of constant curvature k, the curvature
tensor R of M has the following form:

R(X,Y )Z = k{g(Y ,Z)X − g(X,Z)Y }, (11.1)

for X,Y ,Z ∈ T (M).

Any space of constant curvature is locally isometric to one of the following
spaces:

Euclidean space En, (k = 0),
sphere Sn, (k > 0),
hyperbolic space Hn, (k < 0).
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Further, let M be a hypersurface of (M, g) and let ı : M → M denote the
isometric immersion. Then the Gauss formula (5.1) and Weingarten formula
(5.6) reduce respectively to

∇X ıY = ı∇XY + g(AX,Y )ξ, (11.2)
∇Xξ = −ıAX, (11.3)

where ξ is a local choice of unit normal, X, Y ∈ T (M) and A is the shape
operator in the direction of ξ.

Consequently, denoting by R the curvature tensor of a hypersurface M of
a Riemannian manifold M of constant curvature k, the Gauss equation (5.22)
becomes

R(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y }+ g(AY,Z)AX − g(AX,Z)AY (11.4)

and the Codazzi equation (5.23) leads to

(∇XA)Y = (∇Y A)X, (11.5)

since

g((∇XA)Y − (∇Y A)X,Z) = g(R(ıX, ıY )ıZ, ξ)
= k{g(ıY, ıZ)g(ıX, ξ) − g(ıX, ıZ)g(ıY, ξ)}
= 0. (11.6)

The eigenvalues of the shape operator A are called the principal curvatures
of the hypersurface M . In the following, we assume that all principal curva-
tures of M are constant and we denote by Tλ the eigenspace corresponding
to eigenvalue λ, that is,

Tλ = {X ∈ T (M)|AX = λX}.

Lemma 11.1. For X ∈ T (M), Y ∈ Tλ, Z ∈ Tμ, it follows

g((∇XA)Y,Z) = (λ − μ)g(∇XY,Z). (11.7)

Proof. Since the shape operator A is symmetric, we conclude

g((∇XA)Y,Z) = g(∇X(AY ), Z) − g(A∇XY,Z) = (λ − μ)g(∇XY,Z). ��

Lemma 11.2. Let λ and μ be principal curvatures of M . Then we have

(1) ∇XY ∈ Tλ if X, Y ∈ Tλ,

(2) ∇XY ⊥ Tλ if X ∈ Tλ, Y ∈ Tμ, λ = μ.
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Proof. For any Z ∈ T (M), by (11.5), it follows

g(A∇XY,Z) = g((∇X(AY ), Z) − g((∇XA)Y,Z)
= λg(∇XY,Z) − g((∇ZA)X,Y )
= λg(∇XY,Z) − g(∇Z(AX), Y ) + g(∇ZX,AY )
= λg(∇XY,Z),

and we conclude A∇XY = λ∇XY . This proves (1).

For Z ∈ Tλ, by Lemma 11.1, it follows

g((∇XA)Y,Z) = (μ − λ)g(∇XY,Z). (11.8)

On the other hand, by Codazzi equation (11.6) and Lemma 11.1, we compute

g((∇XA)Z, Y ) = g((∇ZA)X,Y ) = (λ − μ)g(∇ZX,Y ). (11.9)

Using (1), it follows ∇ZX ∈ Tλ for X, Z ∈ Tλ and therefore g(∇ZX,Y ) = 0.
Since ∇XA is symmetric, combining relations (11.8) and (11.9), we obtain

(μ − λ)g(∇XY,Z) = (λ − μ)g(∇ZX,Y ) = 0.

Hence, if λ = μ, then ∇XY ⊥ Tλ. ��

Now we prove a theorem of E. Cartan [6], [7], [29] for a hypersurface Mn

whose principal curvatures are all constant.

Theorem 11.2. Let M be a hypersurface of a Riemannian manifold M of
constant curvature k. Assume that E1, . . . , En are local orthonormal vector
fields of M satisfying AEi = λiEi, with λi constant. Then for every i ∈
{1, . . . , n}, we have

n∑

j=1
λj 	=λi

k + λiλj

λi − λj
= 0. (11.10)

Proof. From the Gauss equation (11.4), it follows

R(Ei, Ej)Ej = (k + λiλj)Ei. (11.11)

On the other hand, using the definition of a curvature tensor R, for λi = λj ,
we compute

g(R(Ei, Ej)Ej , Ei) = g(∇Ei
∇Ej

Ej , Ei) − g(∇Ej
∇Ei

Ej , Ei)
− g(∇[Ei,Ej ]Ej , Ei)
= g(∇Ei

Ej ,∇Ej
Ei) − g(∇[Ei,Ej ]Ej , Ei),

using Lemma 11.2. Hence, we conclude
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k + λiλj = g(∇Ei
Ej ,∇Ej

Ei) − g(∇[Ei,Ej ]Ej , Ei) (11.12)

By Lemma 11.1, we get

g((∇[Ei,Ej ]A)Ei, Ej) = (λi − λj)g(∇[Ei,Ej ]Ei, Ej)
= (λj − λi)g(∇[Ei,Ej ]Ej , Ei)

from which it follows

g(∇[Ei,Ej ]Ej , Ei) =
g((∇[Ei,Ej ]A)Ei, Ej)

λj − λi
. (11.13)

Now, we compute

g((∇[Ei,Ej ]A)Ei, Ej) = g((∇Ei
A)Ej , [Ei, Ej ])

= g((∇Ei
A)Ej ,∇Ei

Ej) − g((∇Ei
A)Ej ,∇Ej

Ei)
= g((∇Ej

A)Ei,∇Ei
Ej) − g((∇Ei

A)Ej ,∇Ej
Ei)

= (λi − λj)g(∇Ei
Ej ,∇Ej

Ei),

that is,

g((∇[Ei,Ej ]A)Ej , Ei) = (λi − λj)g(∇Ei
Ej ,∇Ej

Ei). (11.14)

Combining (11.12), (11.13) and (11.14), it follows

k + λiλj = 2g(∇Ei
Ej ,∇Ej

Ei). (11.15)

Using Lemma 11.1, we conclude

g((∇Ei
A)Ej , Es) = (λj − λs)g(∇Ei

Ej , Es)

and therefore we have

g(∇Ei
Ej , Es) =

g((∇Ei
A)Ej , Es)

λj − λs
. (11.16)

Since ∇Ei
Ej =

∑n
s=1 g(∇Ei

Ej , Es)Es, relation (11.15) becomes

k + λiλj = 2
n∑

s=1
λs 	=λj

g(∇Ei
Ej , Es)g(∇Ej

Ei, Es). (11.17)

Substituting (11.16) into (11.17), we get

k + λiλj = 2
n∑

s=1
λs 	=λj ,λi

g((∇Ei
A)Ej , Es)2

(λi − λs)(λj − λs)
.
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Since ∇Ei
A is symmetric, we compute

n∑

j=1
λj 	=λi

k + λiλj

λi − λj
= −

n∑

s=1
λs 	=λi

k + λiλs

λi − λs
,

which proves (11.10). ��

As an application of Theorem 11.2, we prove the following

Theorem 11.3. Let M be a hypersurface of a space of nonpositive constant
curvature whose principal curvatures are constant. Then at most two of them
are distinct. If the ambient manifold is a Euclidean space and M has two
distinct principal curvatures, then one of them must be zero.

Proof. First, we consider the case when the ambient manifold is a Euclidean
space. Then (11.10) becomes

∑

j

λiλj

λi − λj
= 0,

for any principal curvature λi. Now, let λi be the least positive principal
curvature. Then each term λiλj

λi−λj
is negative and consequently, λj = 0, for all

λi = λj . If all principal curvatures are nonpositive, we take λi in such a way
that |λi| is the greatest of principal curvatures and using entirely the same
argument as in the above discussion, we obtain λj = 0 for all λj = λi.

Next, let the ambient manifold be a space of negative constant curvature.
In this case we may suppose that k = −1. We take λi in such a way that the
other principal curvatures cannot be between λi and 1

λi
. Note that we can take

such λi, for example, to be the smallest principal curvature which is bigger
than 1 or we can take the largest principal curvature satisfying 0 < λi < 1.
Then every λiλj−1

λi−λj
is negative, unless λj = 1

λi
. This completes the proof. ��

Further we consider the hypersurfaces M of a Euclidean space whose prin-
cipal curvatures are constant. Using Theorem 11.3, it follows that M has
at most two distinct principal curvatures. If the principal curvatures are all
identical, M is either totally geodesic or totally umbilical. In this case, if M
is complete, by Theorems 6.1 and 6.2, M = En or M = Sn.

Now suppose that M has two distinct principal curvatures. Then, by
Theorem 11.3, one of them must be 0 and we denote by λ the nonzero principal
curvature. Since λ is constant, the multiplicity r of λ is also constant and

Dλ = {X ∈ T (M)|AX = λX},
D0 = {X ∈ T (M)|AX = 0}
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define distributions of dimension r and dimension n − r, respectively. By
Lemma 11.2, Dλ and D0 are both involutive and if X ∈ Dλ, Y ∈ D0, then
∇XY ∈ D0, ∇Y X ∈ Dλ, which shows that Dλ and D0 are parallel along their
normals in M .

Lemma 11.3. The integral submanifolds Mλ of Dλ and M0 of D0 are both
totally geodesic in M .

Proof. For X ∈ Dλ and Y ∈ D0, we have g(X,Y ) = 0, from which
g(∇ZX,Y ) + g(X,∇ZY ) = 0. If Z ∈ Dλ, by Lemma 11.2, ∇ZY ∈ D0

and g(∇ZX,Y ) = 0. This shows that Mλ is totally geodesic in M . In entirely
the same way, we can see that M0 is totally geodesic. ��

Therefore, using the de Rham [52] decomposition theorem, we have

Lemma 11.4. If M is complete, M is a product manifold Mλ × M0.

Lemma 11.5. Mλ is totally umbilical in En+1 and M0 is totally geodesic in
En+1.

Proof. Let ı′ be the immersion of Mλ into M . Then for any X ′, Y ′ ∈ T (Mλ) =
Dλ, we have

∇X′ ı ◦ ı′Y ′ = ı ◦ ı′∇′
X′Y ′ +

n+1∑

a=r+1

g′(A′
aX ′, Y ′)ξ′a, (11.18)

where g′ is the induced Riemannian metric of Mλ, ξ′a’s are orthonormal nor-
mals to Mλ in En+1 and A′

a are corresponding shape operators of ξ′a. Choo-
sing a unit normal ξ′n+1 as ξ, which is the unit normal to M in En+1, relation
(11.18) becomes

∇X′ ı ◦ ı′Y ′ = ı ◦ ı′∇′
X′Y ′ +

n∑

a=r+1

g′(A′
aX ′, Y ′)ξ′a + g′(A′

n+1X
′, Y ′)ξ. (11.19)

On the other hand, we have

∇X′ ı ◦ ı′Y ′ = ı∇X′ ı′Y ′ + g(Aı′X ′, ı′Y ′)ξ

= ı{ı′∇′
X′Y +

n∑

a=r+1

g′(A′′
aX ′, Y ′)ξ′a} + g(Aı′X ′, ı′Y ′)ξ,

where A′′
a denotes the shape operator of Mλ with respect to ξ′a in M . By

Lemma 11.3, Mλ is totally geodesic in M , and consequently the last equation
can be written as

∇X′ ı ◦ ı′Y ′ = ı ◦ ı′∇′
X′Y ′ + λg′(X ′, Y ′)ξ. (11.20)

Comparing (11.19) and (11.20), we have A′
aX ′ = 0 and A′

n+1X
′ = λX ′. Thus,

Mλ is a totally umbilical submanifold of En+1. Similarly, we can prove that
M0 is a totally geodesic submanifold of En+1. ��
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By Theorems 6.1 and 6.2, Mλ is an r-dimensional sphere Sr and M0 is
an (n − r)-dimensional Euclidean space En−r and M = Sr ×En−r. Thus we
proved the following classification theorem.

Theorem 11.4. Let M be a hypersurface of an (n+1)-dimensional Euclidean
space En+1 whose principal curvatures are all constant. Then M is one of the
following:

(1) n-dimensional hypersphere Sn;
(2) n-dimensional hyperplane En;
(3) the product manifold of an r-dimensional sphere and an (n−r)-dimensional
Euclidean space Sr × En−r.
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Hypersurfaces of a sphere

Here we give several examples of hypersurfaces of a sphere.

Example 12.1. Small sphere.

The hypersurface

M =

{
(y1, . . . , yn+2) ∈ En+2|

n+2∑

λ=1

(
yλ

)2
=

1
a2

, yn+2 =

√
1
a2

− 1
b2

}

is called the small sphere. Then M ⊂ Sn+1(1/a) ⊂ En+2 and M lies in a
hyperplane En+1 of En+2 defined by

y1 = x1, . . . , yn+1 = xn+1, yn+2 =

√
1
a2

− 1
b2

.

The unit normal vector field ξ1 of En+1 to En+2 is

ξ1 =
∂

∂yn+2
.

From the defining equation, we have
∑n+1

λ=1(y
λ)2 = 1

b2 and the unit normal
vector field ξ2 of M in En+1 is

ξ2 = b

n+1∑

λ=1

yλ ∂

∂yλ
.

Since the unit normal vector field ξ′ of Sn+1 in En+2 is

ξ′ = a
n+2∑

λ=1

yλ ∂

∂yλ
,

to find the unit normal vector field ξ of M in Sn+1(1/a), we put ξ = αξ2+βξ1.
Then, from ξ′ = a

b ξ2 + ayn+2ξ1 and 〈ξ, ξ′〉 = 0, we have
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ξ = αξ2 −
α

byn+2
ξ1.

Moreover 〈ξ, ξ〉 = 1 implies

1 = α2

{
b2

n+1∑

λ=1

(
yλ

)2
+

1
b2(yn+2)2

}
=

α2b2

b2 − a2
.

Thus, α = −
√

b2−a2

b and consequently

ξ = −
√

b2 − a2

(
n+1∑

λ=1

yλ ∂

∂yλ

)
+

a

b

∂

∂yn+2
. (12.1)

Let ∇E be the Euclidean connection of En+2 and ξ =
∑n+2

λ=1 ξλ ∂
∂yλ . Then we

have

∇E
∂

∂xj
ξ =

∑

λ,μ

∂yμ

∂xj
∇E

∂
∂yμ

(
ξλ ∂

∂yλ

)

= −
√

b2 − a2

n+2∑

μ=1

∂yμ

∂xj

n+1∑

λ=1

δλ
μ

∂

∂yλ
= −

√
b2 − a2ı

(
∂

∂xj

)
,

since ∂yn+2

∂xj = 0. Thus, using Weingarten formula (5.6), we obtain

∇E
∂

∂xj
ξ = −ıA

∂

∂xj
+ s

(
∂

∂xj

)
ξ′ = −

√
b2 − a2ı

(
∂

∂xj

)
.

Hence we have, for any X ∈ T (M),

AX =
√

b2 − a2X, s(X) = 0, (12.2)

which means that the small sphere M is a totally umbilical and not totally
geodesic submanifold of the sphere Sn+1(1/a). ♦
Example 12.2. Product of spheres in Sn+1(a). Let

M = {(y1, . . . , yp+1, u1, . . . , un−p+1) |
p+1∑

λ=1

(yλ)2 = a2 cos2 θ,

n−p+1∑

λ=1

(uλ)2 = a2 sin2 θ},

where θ is a fixed constant and 1 ≤ p ≤ n−1. M is the product of two spheres
M1 and M2 where

M1 =

{
(y1, . . . , yp+1) ∈ Ep+1|

p+1∑

λ=1

(yλ)2 = a2 cos2 θ

}
,

M2 =

{
(u1, . . . , un−p+1) ∈ En−p+1|

n−p+1∑

λ=1

(uλ)2 = a2 sin2 θ

}
.
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Let ξ1 (respectively ξ2) be the unit normal vector field to M1 (respectively
M2) in Ep+1 (respectively En−p+1), namely,

ξ1 = − 1
a cos θ

p+1∑

λ=1

yλ ∂

∂yλ
,

ξ2 = − 1
a sin θ

n−p+1∑

λ=1

uλ ∂

∂uλ
.

Now we put y1 = y1, . . . , yp+1 = yp+1, yp+2 = u1, . . . , yn+2 = un−p+1 and we
regard that ξ1 and ξ2 are unit normal vector fields to M in En+2. Since the
unit normal vector field ξ′ to Sn+1(a) in En+2 is

ξ′ = −1
a

n+2∑

λ=1

yλ ∂

∂yλ
= (cos θ)ξ1 + (sin θ)ξ2,

to find the unit normal vector field ξ =
∑n+2

λ=1 ξλ ∂
∂yλ to M in Sn+1(a), we put

ξ = αξ1 + βξ2 and use the conditions 〈ξ, ξ′〉 = 0 and 〈ξ, ξ〉 = 1. Then we have
β = − cot θ and α = sin θ. Therefore we conclude

ξ = (sin θ)ξ1 − (cos θ)ξ2

=
1
a

⎛

⎝− tan θ

p+1∑

λ=1

yλ ∂

∂yλ
+ cot θ

n+2∑

λ=p+2

yλ ∂

∂yλ

⎞

⎠ ,

that is, for 1 ≤ λ ≤ p + 1,

ξλ = −1
a
(tan θ)yλ (12.3)

and for p + 2 ≤ λ ≤ n + 2,

ξλ =
1
a
(cot θ)yλ. (12.4)

Let (x1, . . . , xn) denote the local coordinates of M . Then the immersion
ı : M → En+2 is represented by

y1 = x1, . . . , yp = xp, (yp+1)2 = a2 cos2 θ −
∑p

i=1(x
i)2,

yp+2 = xp+1, . . . , yn+1 = xn, (yn+2)2 = a2 sin2 θ −
∑n

i=p+1(x
i)2.

Using Weingarten formula (5.6), we have, for 1 ≤ j ≤ p,
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−ıA

(
∂

∂xj

)
+ s

(
∂

∂xj

)
ξ′ =

n+2∑

λ,μ=1

∂yμ

∂xj

∂ξλ

∂yμ

∂

∂yλ

= −1
a

tan θ
n+2∑

μ=1

∂yμ

∂xj

∂

∂yμ

= −1
a

tan θ ı

(
∂

∂xj

)

since ∂yμ

∂xj = 0 for p + 2 ≤ μ ≤ n + 2. With the notation

A
∂

∂xj
=

n∑

k=1

Ak
j

∂

∂xk
,

we have Ak
j = − 1

a tan θδk
j and s = 0 for 1 ≤ j ≤ p. In entirely the same way

we have Ak
j = 1

a cot θδk
j and s = 0 for p+1 ≤ j ≤ n. Thus the shape operator

A is represented by the matrix

A =
1
a

(
− tan θI 0

0 cot θI

)

and all the coefficients of the third fundamental form are equal to zero. This
means that the shape operator of the product of two spheres in Sn+1(1/a)
has exactly two distinct principal curvatures. ♦

Example 12.3. [42] Let S2n+1 denote a unit sphere in E2n+2, namely,

S2n+1 = {(x1, . . . , xn+1, y1, . . . , yn+1)|
n+1∑

i=1

(x2
i + y2

i ) = 1}

and let us consider a function

F (x, y) = F (x1, . . . , xn+1, y1, . . . , yn+1) =

{
n+1∑

i=1

(x2
i − y2

i )

}2

+ 4

(
n+1∑

i=1

xiyi

)2

.

For each 0 < θ < π
4 , let

M ′(2n, θ) = {(x, y) ∈ S2n+1|F (x, y) = cos2 2θ}

denote a hypersurface of S2n+1. It is well-known (see [42]) that the principal
curvatures of M ′(2n, θ) are cot(θ− π

4 ), cot θ, cot(θ + π
4 ), cot(θ + π

2 ) = − tan θ
with multiplicities n − 1, 1, n − 1, 1, respectively. ♦

Remark 12.1. R. Takagi in [57] proved that if a hypersurface M of S2n+1 has
four constant principal curvatures and if the multiplicity of one of them is
equal to 1, then M is congruent to M ′(2n, θ).
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It is well-known that the sphere Sn+1( 1
a ) of radius 1

a is a Riemannian
manifold of constant curvature a. Now, let M be a hypersurface of Sn+1( 1

a ) ⊂
En+2 and ξ be the unit normal of M in Sn+1( 1

a ). Let us denote with ı and j
the immersions M → Sn+1 and Sn+1 → En+2, respectively. Regarding M as
a submanifold of codimension 2 of En+2, let us choose orthonormal normal
vector fields ξ1 and ξ2 in such a way that ξ1 = j ξ is normal to M in Sn+1 and
ξ2 is normal to Sn+1 in En+2, that is, in the direction of the position vector
field of Sn+1. Then we compute

∇E
Xξ1 = ∇E

Xjξ = j ∇S
Xξ + hS(ıX, ξ) = −j ◦ ı AX − a gS(ıX, ξ) = −j ◦ ı AX.

On the other hand, using the Weingarten formula (5.6) and the notation
(5.10), we obtain

∇E
Xξ1 = −j ◦ ıA1X + s(X)ξ2.

Comparing the above two equations, we conclude A1 = A and s = 0. This
means that the shape operator A1 with respect to ξ1 is identical with the
shape operator A of M in Sn+1. Further, if ξ′ is the position vector field of
Sn+1, then ξ2 = −a ξ′ and therefore

∇E
Xξ2 = −a∇E

Xξ′ = −a j ◦ ıX.

On the other hand, using the Weingarten formula, we obtain

∇E
Xξ2 = −j ◦ ı A2X − s(X)ξ1

and consequently, A2 = aI and s = 0. Now we prove

Theorem 12.1. A totally umbilical hypersurface M of Sn+1( 1
a ) is a sphere

or an open subset of a sphere.

Proof. Under the assumptions of Theorem 12.1, using the previous notation,
since M is a submanifold of En+2, the shape operators of M are A1 = bI and
A2 = aI. Using the Codazzi equation (11.5), it follows (Xb)Y = (Y b)X and
therefore b = constant. Hence,

∇E
Xξ1 = −b j ◦ ıX,

∇E
Xξ2 = −a j ◦ ıX.

For ξ3 = aξ1 − bξ2, it follows ∇E
Xξ3 = 0, that is, ξ3 is a constant vector field.

Since for the position vector field P of M we compute

X〈P, ξ3〉 = 〈j ◦ ıX, ξ3〉 + 〈P,∇E
Xξ3〉 = 0,

it follows 〈P, ξ3〉 = constant. Hence P ∈ M lies on a plane defined by 〈P, ξ3〉 =
constant and on Sn+1( 1

a ). This means that M is an n-dimensional sphere or
an open subset of it. ��
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Hypersurfaces of a sphere with parallel shape
operator

In [53] P. J. Ryan considered hypersurfaces of real space forms and specifically,
he gave a complete classification of hypersurfaces in the sphere which satisfy
a certain condition. The condition that the shape operator is parallel is its
special case. In this section we give the proof of this classification (in the
specific case ∇XA = 0) and furthermore, we show that the algebraic condition
(13.5) on the shape operator implies that it is parallel.

Let us suppose that the shape operator A of a hypersurface Mn of a unit
sphere is parallel. Then

R(X,Y )(AZ) = ∇X∇Y (AZ) −∇Y ∇X(AZ) −∇[X,Y ](AZ)
= AR(X,Y )Z. (13.1)

Using the Gauss equation (5.22) and the form of the curvature tensor of
Sn+1(1), given by (11.1) for k = 1, we compute

g(Y,AZ)X − g(X,AZ)Y + g(AY,AZ)AX − g(AX,AZ)AY

= g(Y,Z)AX − g(X,Z)AY + g(AY,Z)A2X − g(AX,Z)A2Y.

For an orthonormal basis {ei}, i = 1, . . . , n of Tx(M) formed by the eigenvec-
tors of Ax, corresponding to the eigenvalues λi, using (13.1), we conclude

(λj − λi)(λiλj + 1) = 0. (13.2)

Under the conditions stated above, we now prove several lemmas.

Lemma 13.1. For any x ∈ M , rankAx = 0 or rankAx = n.

Proof. Assume that rank Ax = n. Then for some i we have λi = 0 and using
equation (13.2) it follows λj = 0. Thus all eigenvalues of Ax are zero and
rank Ax = 0. ��

Lemma 13.2. If Ax = 0, then Ax has at most two distinct eigenvalues.
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Proof. Relation (13.2) for i = 1 reads (λj − λ1)(λjλ1 + 1) = 0. If λj = λ1,
then λj = − 1

λ1
, which shows that Ax has at most two distinct eigenvalues. ��

Lemma 13.3. If A has two distinct eigenvalues, then the multiplicities of the
eigenvalues are constant.

Proof. Let λ be an eigenvalue of A of multiplicity p at x ∈ M and multiplicity
q at y ∈ M . Then − 1

λ has the multiplicity n−p at x and n−q at y. Therefore
we compute

(trace A)(x) − (trace A)(y) = pλ(x) − qλ(y) − (n − p)
1

λ(x)
+ (n − q)

1
λ(y)

= (p − q)(λ(x) +
1

λ(x)
) + q(λ(x) − λ(y)) + (n − q)

λ(x) − λ(y)
λ(x)λ(y)

.

Since trace A is continuous, this implies p = q. ��

Let A have exactly two distinct eigenvalues λ and μ(= − 1
λ ). We put

Tλ(x) = {Xx ∈ Tx(M)|AxXx = λXx},
Tμ(x) = {Xx ∈ Tx(M)|AxXx = μXx}.

Then using Lemma 13.3, it follows that Tλ(x) and Tμ(x) make distributions
Tλ and Tμ.

Lemma 13.4. The distributions Tλ and Tμ are both involutive.

Proof. Let us choose X, Y ∈ Tλ. Then, using Codazzi equation (11.5), it
follows

A[X,Y ] = A∇XY − A∇Y X

= ∇X(AY ) − (∇XA)Y −∇Y (AX) + (∇Y A)X
= (Xλ)Y − (Y λ)X + λ[X,Y ].

Hence,
(A − λI)[X,Y ] = (Xλ)Y − (Y λ)X. (13.3)

However, the left-hand members of (13.3) belong to Tμ. In fact, [X,Y ] =
[X,Y ]λ + [X,Y ]μ implies that

(A − λI)[X,Y ] = (A − λI)([X,Y ]λ + [X,Y ]μ)
= A[X,Y ]λ + A[X,Y ]μ − λ[X,Y ]λ − λ[X,Y ]μ
= (μ − λ)[X,Y ]μ ∈ Tμ.

On the other hand, the right-hand members of (13.3) belong to Tλ and there-
fore

A[X,Y ] = λ[X,Y ] (Xλ)Y − (Y λ)X = 0. (13.4)

This shows that the distribution Tλ is involutive. In entirely the same way,
we can see that the distribution Tμ is also involutive. ��
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Lemma 13.5. If the multiplicities of λ are greater than one, then Xλ = 0
and Xμ = 0 for X ∈ Tλ.

Proof. If dimTλ > 1, we can choose X, Y to be linearly independent. Thus
Xλ = 0, using (13.4). Since μ = − 1

λ , it follows Xμ = − 1
λ2 Xλ = 0, and this

completes the proof. ��
Theorem 13.1. Let M be a hypersurface of Sn+1 whose shape operator has
exactly two distinct eigenvalues, then M is locally a product of two spheres.

Proof. Let Tλ and Tμ be as above. If X ∈ Tλ, Y ∈ Tμ, the Codazzi equation
yields

∇X(μY ) −∇Y (λX) = A∇XY − A∇Y X.

Since λ and μ are constant, we get (A − λI)∇Y X = (A − μI)∇XY . The
left-hand side is in Tμ while the right-hand side is in Tλ. Hence both sides are
zero, that is, ∇Y X ∈ Tλ, ∇XY ∈ Tμ. For Z ∈ Tλ,

g(∇ZX,Y ) + g(X,∇ZY ) = ∇Z(g(X,Y )) = 0.

On the other hand, ∇ZY ∈ Tμ implies g(X,∇ZY ) = 0. Thus, we have shown
∇ZX ∈ T⊥

μ for all Z and X ∈ Tλ. Since T⊥
μ = Tλ, we may write ∇Tλ

Tλ ⊂ Tλ

and ∇Tλ
Tμ ⊂ Tμ. This means that Tλ is a totally geodesic, parallel distribu-

tion. The same conclusion can be drawn for Tμ, namely, Tμ is also a totally
geodesic, parallel distribution. Hence, by de Rham decomposition theorem
[52], M is locally isometric to the Riemannian product of the maximal inte-
gral manifolds Mλ and Mμ.

Now we consider the integral submanifold Mλ. Let ıλ be the immersion
of Mλ into M and j = ı ◦ iλ, that is, j is the immersion of Mλ into S2n+1 via
M . Denoting by hλ and hλ

M the second fundamental form of Mλ in S2n+1

and in M , respectively, we may calculate for any X ′, Y ′ ∈ Tλ the covariant
derivative ∇λ of Mλ as follows:

∇S
X′jY ′ = j∇λ

X′Y ′ + hλ(X ′, Y ′)
= ∇S

X′ ı ◦ ıλ Y ′

= ı∇X′ ıλY ′ + h(ıλ X ′, ıλ Y ′)
= ı {ıλ ∇λ

X′Y ′ + hλ
M (X ′, Y ′)} + h(ıλX ′, ıλY ′)

= j∇λ
X′Y ′ + ı hλ

Mh(X ′, Y ′) + h(ıλX ′, ıλY ′).

Since Mλ is totally geodesic in M , hλ
M = 0 and we easily see that hλ(X ′, Y ′) =

h(X,Y ) = g(AX,Y ) = λg(X,Y ). By the Gauss equation, the curvature
tensor Rλ of Mλ satisfies

gλ(Rλ(X ′, Y ′)Z ′,W ′) = g(jY ′, jZ ′)g(jY ′, jW ′) − g(jX ′, jZ ′)g(jY ′, jW ′)
+ hλ(Y ′, Z ′)hλ(X ′,W ′) − hλ(X ′, Z ′)hλ(Y ′,W ′)
= (1 + λ2){g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )}
= (1 + λ2){gλ(Y ′, Z ′)gλ(X ′,W ′)
− gλ(X ′, Z ′)gλ(Y ′,W ′)}.
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This shows that the integral manifold Mλ is a Riemannian manifold of con-
stant curvature 1 + λ2. In entirely the same way we obtain that Mμ is a
Riemannian manifold of constant curvature 1 + μ2. Thus, M is locally a
product of two spheres of radius 1√

1+λ2 and 1√
1+μ2

, respectively. This com-

pletes the proof. ��

Lemma 13.6. Let M be a hypersurface of a Riemannian manifold of constant
curvature k. If the shape operator A satisfies

A2X = α AX + kX, X ∈ T (M) (13.5)

for some constant α, then

∇X∇Y A −∇Y ∇XA −∇[X,Y ]A = R(X,Y )A = 0. (13.6)

Proof. From the definition of the curvature tensor, it follows

(∇X∇Y A −∇Y ∇XA −∇[X,Y ]A)Z
= (R(X,Y )A)Z = R(X,Y )(AZ) − A(R(X,Y )Z)
= k{g(Y,AZ)X − g(X,AZ)Y } + g(AY,AZ)AX − g(AX,AZ)AY

− k{g(Y,Z)AX − g(X,Z)AY } − g(AY,Z)A2X + g(AX,Z)A2Y.

Substituting (13.5) into the last equation, we obtain the result. ��

We note that relation (13.5) implies that the eigenvalues of A satisfy

λ2 − αλ − k = 0.

Since α and k are constant, it follows that λ is constant and therefore trace A,
trace A2 are both constant.

Let {e1, . . . , en} be an orthonormal basis in Tx(M) and extend e1, . . . , en to
vector fields in a neighborhood of x by parallel translation along geodesics with
respect to the Levi-Civita connection of M . Then ∇ei = 0 for i = 1, . . . , n at
x. As ∇ei

A is symmetric, using the Codazzi equation, we compute

g(
n∑

i=1

(∇ei
A)ei,X) =

n∑

i=1

g(ei, (∇ei
A)X) =

n∑

i=1

g(ei, (∇XA)ei)

= trace∇XA = X trace A = 0,

that is,
n∑

i=1

(∇ei
A)ei = 0. (13.7)

Differentiating (13.7) covariantly and making use of ∇ei = 0 at x, we get

n∑

i=1

(∇X∇ei
A)ei = 0. (13.8)
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Let X be a tangent vector at x and extend it to a vector field in a normal
neighborhood of x by parallel translation along geodesics. Then, ∇X = 0 at
x. Therefore, at x, using (13.6), (13.8) and Codazzi equation, we obtain

n∑

i=1

{(∇ei
∇XA)ei − (∇X∇ei

A)ei − (∇[ei,X]A)ei} =
n∑

i=1

(∇ei
∇XA)ei

=
n∑

i=1

{∇ei
(∇XAei) − (∇XA)∇ei

ei}

=
n∑

i=1

∇ei
(∇ei

AX) =
n∑

i=1

(∇ei
∇ei

A)X +
n∑

i=1

(∇ei
A)(∇ei

X)

=
n∑

i=1

(∇ei
∇ei

A)X = 0. (13.9)

Since trace A2 is constant, it follows

1
2
Y Xtrace A2 =

n∑

i=1

{g(∇Y ∇XA)ei, Aei) + g((∇XA)ei, (∇Y A)ei)}

=
n∑

i=1

{g((∇Y ∇XA)ei, Aei) + g((∇Y A)(∇XA)ei, ei)} = 0.

Hence

trace (∇Y A)(∇XA) = −
n∑

i=1

g((∇Y ∇XA)ei, Aei)

and therefore trace (∇XA)2 = −
∑n

i=1 g((∇X∇XA)ei, Aei). Thus

g(∇A,∇A) =
n∑

i=1

trace (∇ei
A)2 = −

n∑

i,j=1

g((∇ej
∇ej

A)ei, ei) = 0,

that is, ∇A = 0. This shows that we have proved the following

Theorem 13.2. [45] Let M be a hypersurface of a Riemannian manifold
of constant curvature k. If the shape operator A satisfies (13.5), then ∇A = 0.
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Codimension reduction of a submanifold

Let us first recall the theory of curves in 3-dimensional Euclidean space E3.
The curve C, whose torsion vanishes identically, is a plane curve. In other
words, for the curve C without torsion, there exists a 2-dimensional totally
geodesic subspace E2 such that C ⊂ E2 ⊂ E3. In general, a curve C is
a submanifold of codimension 2 of E3, but if its torsion is zero, it can be
regarded as a submanifold of codimension 1 in E2, that is, the codimension
is reduced from 2 to 1.

In this section we consider such a reduction of codimension for a general
submanifold M of a Euclidean space, of a sphere and of a complex projective
space. Moreover, we give some sufficient conditions for the existence of totally
geodesic submanifolds M ′ of the ambient manifolds M such that

M ⊂ M ′ ⊂ M.

For an n-dimensional submanifold M of an (n+p)-dimensional Riemannian
manifold (M, g), the first normal space N1(x) is defined to be the orthogonal
complement of {ξ ∈ T⊥

x (M)|Aξ = 0} in T⊥
x (M). Let M be a Riemannian

manifold of constant curvature k. Then the curvature tensor R of M is given
by (11.1) and using (5.27), the normal curvature R⊥ of M is given by

g(R⊥(X,Y )ξa, ξb) = g([Aa, Ab]X,Y ). (14.1)

Lemma 14.1. Suppose that the first normal space N1(x) is invariant under
parallel translation with respect to the normal connection and that the di-
mension of N1(x) is constant. Let N0(x) be the orthogonal complement of
N1(x) in T⊥

x (M) and for x ∈ M , let S(x) = Tx(M) + N1(x). Then for any
x ∈ M there exist differentiable orthonormal vector fields ξ1, . . . , ξp defined in
a neighborhood U(x) of x such that

(1) for any y ∈ U(x), ξ1(y), . . . , ξq(y) span N1(y) and ξq+1(y), . . . , ξp(y) span
N0(y);

(2) ∇Xξa = 0 in U(x) for a ≥ q + 1;

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 89
Developments in Mathematics 19, DOI 10.1007/978-1-4419-0434-8 14,
c© Springer Science+Business Media, LLC 2010



90 14 Codimension reduction of a submanifold

(3) S(y), for y ∈ U(x), is invariant under parallel translation with respect to
the connection in M along any curve in U(x).

Proof. Since N1(x) is invariant under parallel translation with respect to the
normal connection D, it follows that if ξ ∈ N1, then DXξ ∈ N1. Hence, we
have for ξ ∈ N1, η ∈ N0,

g(DXη, ξ) = Xg(η, ξ) − g(η,DXξ) = 0,

which shows that N0 is also invariant under the parallel translation with
respect to the normal connection. At x ∈ M we choose orthonormal vec-
tors ξ′1(x), . . . , ξ′p(x) in such a way that ξ′1(x), . . . , ξ′q(x) span N1(x) and
ξ′q+1(x), . . . , ξ′p(x) span N0(x). Extending ξ′1, . . . , ξ

′
p to differentiable ortho-

normal normal vector fields defined in a neighborhood U(x) by parallel trans-
lation with respect to the normal connection along geodesics in M , proves
(1).

Let ξ′1, . . . , ξ
′
p be chosen as in (1). Since both N1 and N0 are invariant with

respect to the normal connection, it follows s′ab = 0, for a ≥ q + 1, b ≤ q. The
skew symmetric property of s′ab implies s′ab = 0, for a ≤ q, b ≥ q+1. Moreover,
if a ≥ q + 1, then ξ′a ∈ N0 and consequently A′

a = 0. Hence, for b = 1, . . . , p,
it follows [A′

a, A′
b]X = 0. This, together with (14.1), implies R⊥(X,Y )ξ′a = 0,

for a ≥ q+1. In entirely the same way, we can choose local orthonormal normal
vector fields ξ1, . . . , ξp in such a way that ξq+1, . . . , ξp ∈ span {ξ′q+1, . . . , ξ

′
p}

and sab = 0 for a, b ≥ q + 1. This proves (2).

To prove (3) it suffices to show that ∇XZ ∈ S whenever Z ∈ S and X is
tangent to M . This follows from (5.1), (5.6) and (1), (2) above. ��

Now, let M be an (n + p)-dimensional Euclidean space.

Theorem 14.1. [28] Let M be an n-dimensional submanifold of an (n + p)-
dimensional Euclidean space En+p. If the first normal space N1 is invariant
under parallel translation with respect to the connection in the normal bundle
and q is the constant dimension of N1, then there exists a totally geodesic
(n + q)-dimensional submanifold En+q of En+p such that M ⊂ En+q.

Proof. For x ∈ M let us define ξ1, . . . , ξp and U(x) as in Lemma 14.1. Further,
let us define functions fa = 〈x, ξa〉, where x is the position vector and 〈, 〉 is
the Euclidean inner product. Then

Xfa = ∇Xfa = 〈ıX, ξa〉 + 〈x,∇Xξa〉 = 0

for a ≥ q + 1 and X tangent to U(x). Thus, for x =
∑n+p

i=1 xiei and ξa =∑n+p
i=1 ξi

aei, we have

〈x, ξa〉 = x1ξ1
a + · · · + xn+pξn+p

a = ca,

for a ≥ q + 1 where ca are constants. This shows that U(x) lies in the inter-
section of p − q hyperplanes, whose normal vectors are linearly independent,
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and the desired result is true locally. That is, for x ∈ M , there exist a neigh-
borhood U(x) of x and a Euclidean subspace En+q such that U(x) ⊂ En+q.

To get the global result we use the connectedness of M . Let x, y ∈ M
with neighborhoods U(x) and U(y), respectively, such that U(x) ∩ U(y) = ∅
and U(x) ⊂ En+q

1 , U(y) ⊂ En+q
2 . Then U(x) ∩ U(y) ⊂ En+q

1 ∩ En+q
2 . If

En+q
1 = En+q

2 , then En+q
1 ∩ En+q

2 = En+r, r < q, and this implies that
dim N1(x) < q for z ∈ U(x) ∩ U(y). Since dimN1 = constant = q, we
conclude En+q

1 = En+q
2 , which proves the global result. ��

Theorem 14.2. [28] Let M be an n-dimensional submanifold of an (n + p)-
dimensional sphere Sn+p. If the first normal space N1(x) is invariant under
parallel translation with respect to the connection in the normal bundle and q is
the constant dimension of N1, then there exists a totally geodesic submanifold
Sn+q of Sn+p of dimension n + q such that M ⊂ Sn+q.

Proof. Let ı be the immersion of M into Sn+p and let us consider Sn+p as the
unit sphere in En+p+1 with center at the origin of En+p+1. Denoting by ı′ the
immersion Sn+p → En+p+1, we can regard M as a submanifold of En+p+1

with the immersion j = ı′ ◦ ı. Let η be the inward unit normal of Sn+p,
N1(x) the first normal space for M in En+p+1, ∇ the Euclidean connection
in En+p+1, and let ξ1, . . . , ξp be chosen as in Lemma 14.1. Then, ηa = ı′ξa,
a = 1, . . . , p and η are mutually orthonormal normals to M in En+p+1. We
note that ∇Xη = −jX and, using the Gauss formula (5.1), we compute

∇Xηa = ∇X ı′ξa = ı′∇Xξa − 〈ıX, ξa〉η = ı′∇Xξa

for X tangent to M . From this it follows

N1(x) = ı′N1(x) + span {η(x)}

and therefore, N1 is invariant under the parallel translation with respect to
the normal connection, where M is viewed as immersed in En+p+1. Thus,
by Theorem 14.1, there exists a totally geodesic subspace En+q+1 such that
M ⊂ En+q+1, that is,

En+q+1 = jTx(M) + ı′N1(x) + span {η(x)},

for any x ∈ M . Hence En+q+1 contains η and therefore passes through the
origin of En+p+1. Thus

M ⊂ En+q+1 ∩ Sn+p(1) = Sn+q(1),

which completes the proof. ��

Let M be an n-dimensional submanifold of a complex projective space
P

n+p
2 (C) with complex structure J . For any X ∈ T (M) and ξ ∈ T⊥(M),

JıX and Jξ are written as sums of the tangential and the normal parts in the
following way:
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JıX = ıFX + v(X), Jξ = −ıUξ + Pξ.

For the subspace
N0(x) = {ξ ∈ T⊥

x (M)|Aξ = 0}
of T⊥

x (M), we put
H0(x) = JN0(x) ∩ N0(x).

Then H0(x) is the maximal J-invariant subspace of N0(x) and JH0(x) =
H0(x), since J is an isomorphism. Moreover, we can easily conclude

Proposition 14.1. For any ξ ∈ H0(x), it follows Aξ = 0 and Uξ = 0.

Further, we denote by H1(x) the orthogonal complement of H0(x) in
T⊥

x (M). By definition, the first normal space N1(x) is a subspace of H1(x)
and we have

Proposition 14.2. If M is a complex submanifold of a Kähler manifold, then
H1(x) = N1(x).

Proof. Since H1(x) and N1(x) are the orthogonal complements of H0(x) and
N0(x) respectively, it only remains to verify that H0(x) = N0(x).

Using the Weingarten formula (5.6), it follows

∇X(Jξ) = J∇Xξ = J(−ıAξX + DXξ) = −JıAξX + JDXξ, (14.2)

since J is covariantly constant. On the other hand, M being a complex
submanifold, Tx(M) is J-invariant and so is T⊥

x (M), that is, for any ξ ∈
T⊥

x (M), it follows Jξ ∈ T⊥
x (M). Hence we have

∇X(Jξ) = −ıAJξX + DX(Jξ). (14.3)

Comparing the tangential part and the normal part of equations (14.2) and
(14.3), we conclude

AJξX = JıAξX.

Thus, if ξ ∈ N0(x), then AJξ = 0 and ξ ∈ JN0(x). This shows that ξ ∈ H0(x),
which completes the proof. ��

Proposition 14.3. Let H(x) be a J-invariant subspace of H0(x) and H2(x)
be the orthogonal complement of H(x) in T⊥

x (M). Then Tx(M) ⊕ H2(x) is a
J-invariant subspace of Tı(x)(M).

Proof. Note that

Tı(x)(M) = ıTx(M) ⊕ H2(x) ⊕ H(x).

Under the assumptions of a proposition, H(x) is J-invariant, that is JH(x) =
H(x). Thus, for any ξ ∈ H(x) there exists η ∈ H(x) such that Jη = ξ. Let
Y ∈ ıTx(M) ⊕ H2(x). Then for ξ ∈ H(x), it follows
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g(JY, ξ) = g(JY, Jη) = g(Y, η) = 0.

Consequently, JY ∈ ıTx(M) ⊕ H2(x) and hence, ıTx(M) ⊕ H2(x) is a J-
invariant subspace of Tx(M). ��

For x′ ∈ π−1(M), let

N ′
0(x

′) = {ξ′ ∈ T⊥
x′ (π−1(M))|A′

ξ′ = 0},

where A′
ξ′ is the shape operator with respect to ξ′. Then we have

Lemma 14.2. If x′ is a point such that π(x′) = x, then

N ′
0(x

′) = span{ξ∗a|Aa = 0, Ua = 0},

where ξa ∈ T⊥
x (M) and ξ∗a is the horizontal lift of ξa at x′.

Proof. We note that using the horizontal lift X∗ of some X ∈ Tx(M), any
tangent vector X ′ ∈ Tx′(π−1(M)) can be decomposed as X ′ = X∗ + αV .
From (10.7) and the first equation of (10.12), it follows

A′
aX ′ = A′

aX∗ + αA′
aV = (AaX)∗ − g(Ua,X)V − αU∗

a .

If Aa = 0 and Ua = 0 hold, then A′
aX ′ = 0, which implies ξ∗a ∈ N ′

0(x
′).

Conversely, if ξ∗a ∈ N ′
0(x

′), we conclude

(AaX)∗ − αU∗
a = g(Ua,X)V.

In the last equation, the left-hand side member is vertical. Hence, g(Ua,X) =
0 for any X ∈ Tx(M) and therefore Ua = 0, Aa = 0, which completes the
proof. ��

Now we prove

Theorem 14.3. [48] Let M be an n-dimensional real submanifold of a real
(n + p)-dimensional complex projective space P

n+p
2 (C) and H(x) be a J-

invariant subspace of H0(x). If the orthogonal complement H2(x) of H(x)
in T⊥

x (M) is invariant under parallel translation with respect to the normal
connection and q is the constant dimension of H2, then there exists a real
(n+q)-dimensional totally geodesic complex projective subspace P

n+q
2 (C) such

that M ⊂ P
n+q

2 (C).

Proof. We first prove that if M satisfies the conditions of Theorem 14.3, then
π−1(M) satisfies the conditions of Theorem 14.2.

For ξa ∈ H(x), it follows ξa ∈ H0(x) and, by Proposition 14.1, we conclude
that Aa = 0 and Ua = 0 which, together with (10.7) and (10.9), implies
A′

a = 0. This shows that, for a point x′ such that π(x′) = x,
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H(x)∗ = {ξ∗|ξ ∈ H(x)}

is a subspace of N ′
0(x

′). Hence, the orthogonal complement

H2(x)∗ = {ξ∗|ξ ∈ H2(x)}

of H(x)∗ in T⊥
x′ (π−1(M)) is a subspace of T⊥

x′ (π−1(M)) such that N ′
1(x

′) ⊂
H2(x)∗.

Since H2(x) is invariant under parallel translation with respect to the
normal connection D, so is H(x). This means that DXξ ∈ H(x) holds for any
ξ ∈ H(x). Thus, from (10.8), (10.13) and Proposition 14.1, we conclude

D′
X∗ξ∗ = (DXξ)∗ ∈ H(x)∗,

D′
V ξ∗ = −(Jξ)∗ ∈ H(x)∗,

where D′ is the normal connection of π−1(M) in Sn+p+1. Hence H(x)∗ is
invariant under parallel translation with respect to the normal connection of
π−1(M) in Sn+p+1.

Theorem 14.2 now implies that there exists a totally geodesic submanifold
Sn+q+1 of Sn+p+1 such that π−1(M) ⊂ Sn+q+1. Let U(x′) be a neighborhood
of such a point x′ that π−1(x′) = x. Then the tangent space Ty′(Sn+q+1) of
a totally geodesic submanifold at y′ ∈ U(x′) is

Ty′(π−1(M)) ⊕ H2(y)∗ = (Ty(M) ⊕ H2(y))∗ ⊕ ıV ,

where y = π(y′).

For the geodesic γ in the direction of V , ıγ is also a geodesic of Sn+p+1,
since Sn+q+1 is a totally geodesic submanifold. Thus, γ is a great circle on a
unit sphere Sn+q+1. Since ıV = V ′, the Hopf fibration Sn+q+1 → P

n+q
2 (C)

by γ is compatible with the Hopf fibration π : Sn+p+1 → P
n+p

2 (C) and the
tangent space of P

n+q
2 (C) at x is Tx(M) ⊕ H2(x). Moreover, by Proposition

14.3, P
n+q

2 (C) is a J-invariant subspace of P
n+p

2 (C), which completes the
proof. ��
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CR submanifolds of maximal CR dimension

In this section we continue our study of CR submanifolds of complex manifolds
in the special case when the CR dimension is maximal. Having in mind
Proposition 7.8, let us suppose that the ambient space is a complex manifold

(M
n+p

2 , J) equipped with a Hermitian metric g. If M is an n-dimensional CR

submanifold of maximal CR dimension of M
n+p

2 , then at each point x of M ,
the real dimension of JTx(M) ∩ Tx(M) is n − 1. Therefore M is necessarily
odd-dimensional and there exists a unit vector ξx normal to Tx(M) such that

JTx(M) ⊂ Tx(M) ⊕ span {ξx}, for any x ∈ M. (15.1)

Hence, for any X ∈ T (M), we may write

JıX = ıFX + u(X)ξ, (15.2)

where F is an endomorphism acting on T (M) and u is one-form on M .

Since g is a Hermitian metric, J is skew-symmetric and therefore, using
(15.2) we compute

g(FX, Y ) = g(JıX, ıY ) = −g(ıX, JıY )
= −g(ıX, ıFY + u(Y )ξ) = −g(X,FY ).

Hence, F is a skew-symmetric endomorphism acting on T (M).

Now, assume that η is an element of T⊥(M) which is orthogonal to ξ.
Then, for any X ∈ T (M), using the Hermitian property (4.1) and (15.2), we
conclude

g(Jη, ıX) = −g(η, JıX) = −g(η, ıFX + u(X)ξ) = 0, (15.3)

which shows that Jη ∈ T⊥(M). On the other hand, using (4.1), (15.2) and
(15.3), we obtain

0 = g(ıX, η) = g(JıX, Jη) = g(ıFX, Jη) + u(X)g(ξ, Jη) = u(X)g(ξ, Jη).

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 95
Developments in Mathematics 19, DOI 10.1007/978-1-4419-0434-8 15,
c© Springer Science+Business Media, LLC 2010
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Let us suppose that ux(X) = 0, for any X ∈ T (M), at a point x ∈ M . Then,
using (15.2), we conclude

JıX = ıFX for all X ∈ T (M).

Thus Tx(M) is J-invariant and consequently M is even-dimensional (see Ex-
ample 7.2), which is a contradiction. Therefore we deduce

g(ξ, Jη) = 0. (15.4)

This means that Jη ⊥ T (M) ⊕ span {ξ}. In other words, the subbundle

T⊥
1 (M) = {η ∈ T⊥(M)| g(η, ξ) = 0}

is J-invariant and this result will prove extremely useful. Summarizing we
have

Lemma 15.1. The subbundle T⊥
1 (M) is J-invariant and we can choose a

local orthonormal basis of T⊥(M) in the following way:

ξ, ξ1, . . . , ξq, ξ1∗ , . . . , ξq∗ ,

where ξa∗ = Jξa, a = 1, . . . , q and q = p−1
2 .

Moreover, since using (4.1) and (15.4) it follows g(Jξ, η) = −g(ξ, Jη) = 0,
we conclude

Jξ = −ıU. (15.5)

Now, applying J to (15.2), (15.5) and comparing the tangential part and
the normal part to M , we deduce

F 2X = −X + u(X)U, (15.6)
u(FX) = 0, FU = 0. (15.7)

A differentiable manifold M ′ is said to have an almost contact structure if
it admits a vector field U , a one-form u and a (1, 1)-tensor field F satisfying
(15.6) and (15.7). The tensor field F is called the almost contact tensor field.
In this sense, a CR submanifold of maximal CR dimension is equipped with an
almost contact structure which is naturally induced from the almost complex

structure of the complex manifold (M
n+p

2 , J) .

Remark 15.1. The fact that the real hypersurface (resp. submanifold) of a
complex manifold which satisfies relation (15.1) admits a naturally induced
almost contact structure was first announced by Tashiro [58] (resp. [59]).

Denoting by g the induced Riemannian metric from the Hermitian metric
g to M , using (15.2) and (15.5), we compute
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g(U,U) = g(Jξ, Jξ) = g(ξ, ξ) = 1,
g(X,U) = g(ıX, ıU) = −g(ıX, Jξ) = g(JıX, ξ)

= g(ıFX, ξ) + u(X)g(ξ, ξ) = u(X),

namely,

g(U,U) = 1, (15.8)
g(U,X) = u(X). (15.9)

Further, let us denote by ∇ and ∇ the Riemannian connections of M
and M , respectively, and by D the normal connection induced from ∇ in the
normal bundle T⊥(M). Using Lemma 15.1, we can write

DXξ =
q∑

a=1

{sa(X)ξa + sa∗(X)ξa∗} (15.10)

and the following lemma holds:

Lemma 15.2. Under the above notation, for a CR submanifold of maximal
CR dimension, the vector field ξ is parallel with respect to the normal connec-
tion D, if and only if sa = sa∗ = 0, for a = 1, . . . , q.

Moreover, using the basis constructed in Lemma 15.1, the Weingarten
formulae can be written as follows:

∇Xξ = −ıAX + DXξ (15.11)

= −ıAX +
q∑

a=1

{sa(X)ξa + sa∗(X)ξa∗},

∇Xξa = −ıAaX + DXξa = −ıAaX − sa(X)ξ (15.12)

+
q∑

b=1

{sab(X)ξb + sab∗(X)ξb∗},

∇Xξa∗ = −ıAa∗X + DXξa∗ (15.13)

= −ıAa∗X − sa∗(X)ξ +
q∑

b=1

{sa∗b(X)ξb + sa∗b∗(X)ξb∗},

where A, Aa, Aa∗ are the shape operators for the normals ξ, ξa, ξa∗ , re-
spectively, and s’s are the coefficients of the normal connection D. They are
related to the second fundamental form by

h(X,Y ) = g(AX,Y )ξ (15.14)

+
q∑

a=1

{g(AaX,Y )ξa + g(Aa∗X,Y )ξa∗}.
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When the ambient complex manifold (M,J) is a Kähler manifold, using The-
orem 4.2, it follows ∇J = 0. Therefore, taking the covariant derivative of
ξa∗ = Jξa, and using (15.2), (15.5), (15.12) and (15.13), we compute

Aa∗X = FAaX − sa(X)U, (15.15)
AaX = −FAa∗X + sa∗(X)U, (15.16)

sa∗(X) = u(AaX) = g(AaU,X), (15.17)
sa(X) = −u(Aa∗X) = −g(Aa∗U,X), (15.18)
sa∗b∗ = sab, sa∗b = −sab∗ , (15.19)

for all X,Y tangent to M and a, b = 1, . . . , q.

Further, since F is skew-symmetric and Aa, Aa∗ , a = 1, . . . , q are symmet-
ric, using relations (15.15) and (15.16), we compute

trace Aa∗ =
n∑

i=1

g(Aa∗ei, ei)

=
n∑

i=1

{g(FAaei, ei) − sa(ei)g(U, ei)}

= trace FAa − sa(U) = −sa(U),
trace Aa = sa∗(U),

namely,

trace Aa = sa∗(U), trace Aa∗ = −sa(U), for a = 1, . . . , q. (15.20)

Moreover, relations (15.15)–(15.18) imply

g((AaF + FAa)X,Y ) = u(Y )sa(X) − u(X)sa(Y ), (15.21)
g((Aa∗F + FAa∗)X,Y ) = u(Y )sa∗(X) − u(X)sa∗(Y ), (15.22)

for all a = 1, . . . , q.

If the vector field ξ is parallel with respect to the normal connection D,
using Lemma 15.2 and relations (15.15)–(15.18), we conclude

AaU = 0, Aa∗U = 0, (15.23)
AaX = −FAa∗X, Aa∗X = FAaX, (15.24)

for all X tangent to M and all a = 1, . . . , q.

Further, we differentiate (15.2) and (15.5) covariantly and compare the
tangential part and the normal part. Then we obtain

(∇XF )Y = u(Y )AX − g(AY,X)U, (15.25)
(∇Y u)(X) = g(FAY,X), (15.26)

∇XU = FAX. (15.27)
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Now, let us suppose, for the moment, that the ambient manifold M is a
complex space form that is a Kähler manifold of constant holomorphic sec-
tional curvature 4k. Then the curvature tensor R of M satisfies (9.21). Con-
sequently, using (15.2), the Gauss equation (5.22) and the Codazzi equation
(5.23) for the normal ξ become

R(X,Y )Z = k {g(Y,Z)X − g(X,Z)Y + g(FY,Z)FX

− g(FX,Z)FY − 2g(FX, Y )FZ}
+ g(AY,Z)AX − g(AX,Z)AY

+
q∑

b=1

{
g(AbY,Z)AbX − g(AbX,Z)AbY

}

+
q∑

b=1

{
g(Ab∗Y,Z)Ab∗X − g(Ab∗X,Z)Ab∗Y

}
, (15.28)

(∇XA)Y − (∇Y A)X = k
{

u(X)FY − u(Y )FX − 2g(FX, Y )U
}

+
q∑

b=1

{
sb(X)AbY − sb(Y )AbX

}

+
q∑

b=1

{
sb∗(X)Ab∗Y − sb∗(Y )Ab∗X

}
, (15.29)

for all X,Y,Z tangent to M , where R denotes the Riemannian curvature
tensor of M . Moreover, the Codazzi equations for normal vectors ξa, ξa∗ ,
respectively, become

(∇XAa)Y − (∇Y Aa)X = sa(Y )AX − sa(X)AY

+
q∑

b=1

{
sab(X)AbY − sab(Y )AbX

}

+
q∑

b=1

{
sab∗(X)Ab∗Y − sab∗(Y )Ab∗X

}
, (15.30)

(∇XAa∗)Y − (∇Y Aa∗)X = sa(Y )AX − sa(X)AY

+
q∑

b=1

{
sa∗b(X)AbY − sa∗b(Y )AbX

}

+
q∑

b=1

{
sa∗b∗(X)Ab∗Y − sa∗b∗(Y )Ab∗X

}
(15.31)

for X, Y ∈ T (M) and a = 1, . . . , q.

Finally, we give some examples of CR submanifolds of maximal CR di-
mension.
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Example 15.1. From the above discussion, it is clear that real hypersurfaces
of a complex manifold are CR submanifolds of maximal CR dimension. ♦

Example 15.2. Let M ′ be a complex submanifold of M with immersion ı1 and
M a real hypersurface of M ′ with immersion ı0 and ı = ı1ı0. We denote by
ξ′ the unit normal vector field to M in M ′. Since ı1 is holomorphic, it follows
that ı1J

′ = Jı1, where J ′ is the induced almost complex structure of M ′ from
J . Now we have for X ∈ T (M),

JıX = Jı1ı0X = ı1J
′ı0X = ı1(ı0F ′X + u(X)ξ′) = ıF ′X + u(X)ı1ξ′.

On the other hand, we may write

JıX = ıFX +
p∑

a=1

ua(X)ξa,

where ξa(a = 1, . . . , p) are local orthonormal vector fields normal to M in
M . If we choose ξ in such a way that ξ = ı1ξ

′, then JıX = ıFX + u(X)ξ.
Thus, any real hypersurface M of a complex submanifold M ′ of M is a CR
submanifold with maximal CR dimension of M . ♦

Example 15.3. Let M ′ be a real hypersurface of M and ı1 be the immersion.
Then, for any X ′ ∈ T (M ′), we put

Jı1X
′ = ı1F

′X ′ + u′(X ′)ξ.

Then F ′ and u′ define an almost contact structure of M ′.

Further, let M be an odd-dimensional F ′-invariant submanifold of M ′,
that is, such that F ′T (M) ⊂ T (M). Denote by ı0 the immersion and put
ı = ı1 ◦ ı0. We choose a local orthonormal basis of T⊥(M) in T (M) in
such a way that ξ1 = ξ and ξ2, . . . , ξp are orthonormal in T (M ′). Then, for
X ∈ T (M),

JıX = ıFX +
p∑

a=1

ua(X)ξa.

Also we have

JıX = Jı1 ◦ ı0X = ı1F
′ı0X + u′(ı0X)ξ

= ı1 ◦ ı0FX + u′(ı0X)ξ = ıFX + u′(ı0X)ξ,

since M is F ′-invariant submanifold. Comparing the above two equations,
we conclude u1(X) = u′(ı0X), ua(X) = 0, a = 2, . . . , p. Hence, any odd-
dimensional F ′-invariant submanifold of a real hypersurface of M is a CR
submanifold of maximal CR dimension. ♦
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Example 15.4. In Example 15.2, let M ′ be a totally geodesic complex subma-
nifold of M . Then, from the Weingarten formula, it follows

∇Xξ = ∇X ı1ξ = ı1∇′
Xξ′ + h′(ı0X, ξ′) = ı1(−ı0A0X) = −ıA0X,

where h′ and A0 denote the second fundamental form of M ′ in M and the
shape operator of M in M ′, respectively. The last equation implies DXξ = 0,
namely, ξ is parallel with respect to the normal connection D. ♦

Example 15.5. Let us assume that, in Example 15.3, the shape operator A′ of
M ′ in M is of the form

A′X ′ = λX ′ + μu′(X)U ′ , where U ′ = ı0U.

Consequently,

∇Xξ1 = ∇Xξ = −ı1A
′(ı0X)

= −ı1(λı0X + μu′(ı0X)U ′) = −ıλX − μu1(X)ıU.

This implies that ξ1 is parallel with respect to the normal connection, since
DXξ1 = 0. ♦



16

Real hypersurfaces of a complex projective
space

Let M be a real hypersurface of a Kähler manifold (M,J) and let ξ be its
unit normal vector field. Then M is a CR submanifold of maximal CR dimen-
sion and ξ is the distinguished normal vector field, used to define the almost
contact structure F on M , induced from the almost complex structure J of
M . Moreover, since a real hypersurface M of a Kähler manifold M has two
geometric structures: an almost contact structure F and a submanifold struc-
ture represented by the shape operator A with respect to ξ, in this section we
study the commutativity condition of A and F and we present its geometric
meaning.

We begin with several results on complex space forms.

Theorem 16.1. If a real hypersurface M of a complex space form M of con-
stant holomorphic sectional curvature 4k satisfies ∇A = 0, then the curvature
tensor R of M vanishes identically.

Proof. From (9.21), the Codazzi equation (5.23) becomes

k{g(U,X)FY − g(U, Y )FX − 2g(FX, Y )U} = (∇XA)Y − (∇Y A)X = 0.

Suppose k = 0 and substitute U instead of Y in the equation above to obtain
FX = 0 for all X ∈ T (M). This is a contradiction. Hence k = 0 and R
vanishes identically. ��

Lemma 16.1. If the shape operator A of a real hypersurface Mn of a complex
space form satisfies AX = αX for any X ∈ T (M), then α is constant.

Proof. Differentiating AX = αX covariantly, we have (∇Y A)X = (Y α)X.
By the Codazzi equation, it follows that

(Xα)Y − (Y α)X = (∇XA)Y − (∇Y A)X
= k{g(U,X)FY − g(U, Y )FX − 2g(FX, Y )U},

from which, for an orthonormal basis {e1, . . . , en} of Tx(M),

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 103
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k

n∑

i=1

{g(U,X)g(Fei, ei) − g(U, ei)g(FX, ei) − 2g(FX, ei)g(U, ei)}

= (n − 1)Xα.

Since the left-hand members of the above equation vanish identically, it follows
Xα = 0, namely, α is constant. ��

Since Pn(C) is a complex space form with k = 1, Theorem 16.1 and
Lemma 16.1 imply the following

Corollary 16.1. [60] In Pn(C) there exists neither totally geodesic real hy-
persurfaces nor totally umbilical real hypersurfaces.

Now we give examples of real hypersurfaces of a complex projective space.

Example 16.1. [36] Let S2n+1 be a sphere of radius 1 defined by
∑n

i=0 zizi = 1
in Cn+1 = Cp+1 ⊕ Cq+1, (p + q = n − 1). In S2n+1 we choose two spheres,
S2p+1 and S2q+1, in such a way that they lie respectively in complex subspaces
Cp+1 and Cq+1 of Cn+1. Then the product S2p+1 × S2q+1 is a hypersurface
of S2n+1 and may be expressed for a fixed t by the following equations:

p∑

i=0

zizi = cos2 t,

n+1∑

i=p+1

zizi = sin2 t.

Since the S1 action on S2p+1 × S2q+1 given by

(θ; z0, . . . , zn) �→ (e
√
−1θz0, . . . , e

√
−1θzn) = (w0, . . . , wn)

satisfies

p∑

i=0

wiwi =
p∑

i=0

e
√
−1θzie

√
−1θzi =

p∑

i=0

zizi = cos2 t,

n+1∑

i=p+1

wiwi =
n+1∑

i=p+1

e
√
−1θzie

√
−1θzi =

n+1∑

i=p+1

zizi = sin2 t,

the quotient manifold (S2p+1×S2q+1)/S1 is a real hypersurface of Pn(C). We
denote this hypersurface by MC

p,q. It is represented by an equivalence class
[(z0, z1, . . . , zn)] containing a point (z0, . . . , zp, zp+1, . . . , zn) of S2p+1×S2q+1.
Note that MC

p,q is congruent to MC
q,p.

Remark 16.1. Particularly, hypersurface MC
0,q is represented as the equiva-

lence class [(z0, z1, . . . , zn)] containing a point (z0, z1, . . . , zn) of S1 × S2n−1

given by
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z0z0 = cos2 t,

n∑

i=1

zizi = sin2 t.

Then the mapping f : MC
0,n−1 → S2n−1 ⊂ Cn defined by

f([(z0, z1, . . . , zn)]) =
(

z1

z0
, . . . ,

zn

z0

)

gives a diffeomorphism between MC
0,n−1 and S2n−1, since

∣∣∣∣
z1

z0

∣∣∣∣
2

+ · · · +
∣∣∣∣
zn

z0

∣∣∣∣
2

= tan2 t.

Therefore, MC
0,n−1 is diffeomorphic to a (2n − 1)-dimensional sphere. Theo-

rem 19.3 implies that MC
0,n−1 (which is congruent to MC

n−1,0) is a geodesic
hypersphere. ♦

Example 16.2. [56] We consider in S2n+1 the hypersurface M ′(n+1, t) defined
by

|
l∑

j=0

z2
j |2 = t,

where t is a fixed positive number 0 < t < 1. (Note that this is another
expression of the hypersurface defined in Example 12.3, using the complex
numbers.) The S1 action to M ′(n + 1, t) satisfies

|
l∑

j=0

w2
j |2 = |

∑
e2

√
−1θ

l∑

j=0

z2
j |2 = |

l∑

j=0

z2
j |2,

and the quotient space M ′(n + 1, t)/S1 is a real hypersurface of Pn(C). We
denote it by M(n, t). ♦

Let M be a real hypersurface of Pn(C) and let π−1(M) be the circle
bundle over M which is compatible with the Hopf map π : S2n+1 → Pn(C).
Then π−1(M) is a hypersurface of S2n+1. We denote by ı′ the immersion of
π−1(M) into S2n+1. The compatibility π ◦ ı′ = ı ◦ π with the Hopf map is
expressed by the following commutative diagram:

π−1(M) ı′−−−−−→ S2n+1
⏐⏐"π

⏐⏐"π

M −−−−−→
ı

Pn(C)

For the unit normal vector field ξ of M to Pn(C), the horizontal lift ξ∗ of ξ is
the unit normal vector field of π−1(M) to S2n+1. For the vertical vector field
V ′ of the circle bundle π−1(M)(M,S1), vector field ı′V ′ is the vertical vector
field of the circle bundle S2n+1(Pn(C),S1). As we have shown in Section 9,
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the integral curve of ı′V ′ is a great circle in S2n+1 and therefore the integral
curve is a geodesic of S2n+1. Hence we have

∇S
V ′ ı′V ′ = ı′∇′

V ′V ′ + g′(A′V ′, V ′)ξ∗ = 0

and consequently,

∇′
V ′V ′ = 0, g′(A′V ′, V ′) = 0, (16.1)

where A′ is the shape operator of π−1(M).

The condition π ◦ ı′ = ı ◦π implies that ı′X∗ = (ıX)∗ and using (9.10), we
can calculate ∇S

ı′X∗ ı′Y ∗ in the following two ways:

∇S
X∗ ı′Y ∗ = ı′∇′

X∗ ı′Y ∗ + g′(A′X∗, Y ∗)ξ∗

= ı′{(∇XY )∗ + g(X,FY )V ′} + g′(A′X∗, Y ∗)ξ∗

= ı′(∇XY )∗ + g(X,FY )ı′V ′ + g′(A′X∗, Y ∗)ξ∗,

and

∇S
X∗ ı′Y ∗ = ∇S

X∗(ıY )∗ = (∇X ıY )∗ − gS((ıX)∗, J(ıY )∗)i′V ′

= (ı∇XY + g(AX,Y )ξ)∗ − gS(ı′X∗, ı′F ′Y ∗)ı′V ′

= ı′(∇XY )∗ + g(AX,Y )ξ∗ − g′(X∗, F ′Y ∗)ıV ′.

Comparing the last two equations we obtain

g′(A′X∗, Y ∗) = g(AX,Y ). (16.2)

In the same way,

∇S
X∗ ı′V ′ = ı′∇′

X∗V ′ + g′(A′X∗, V ′)ξ∗,
∇S

X∗ ı′V ′ = ∇S
X∗ ı′V ′ = J ′ ◦ j(ıX)∗ = (JıX)∗ = (ıFX + u(X)ξ)∗

= (ıFX)∗ + u(X)ξ∗ = ı′(FX)∗ + u(X)ξ∗,

where J ′ and ı′ are the natural almost complex structure of Cn+1 and the
natural immersion of S2n+1 into Cn, respectively, and we used the result of
Section 9. Comparing the above two equations, we conclude

∇′
X∗V ′ = ∇′

V ′X∗ = (FX)∗, g′(A′X∗, V ′) = u(X). (16.3)

We note that the first equation in (16.3) follows from the fact that [V ′,X∗]
is vertical. Since A′ is symmetric, using the second equation of (16.3), we
compute

g′(U∗,X∗) = g(U,X) = u(X) = g′(A′X∗, V ′) = g′(A′V ′,X∗)

and consequently
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A′V ′ = U∗. (16.4)

Relations (15.8) and (16.4) imply

g′(A′V ′, A′V ′) = 1.

Using (16.2) and (16.3), we derive the following relation between the shape
operators A and A′:

A′X∗ = (AX)∗ + g(U,X)V ′. (16.5)

Lemma 16.2. For the shape operators A and A′ the following relation holds:

trace A′ = trace A

and therefore π−1(M) is minimal if and only if M is minimal.

Proof. Let Ei, i = 1, . . . , n be mutually orthonormal vector fields of M . In
T (π−1(M)), we take mutually orthonormal vector fields E′

i, i = 1, . . . , n + 1,
in such a way that E′

i = E∗
i , i = 1, . . . , n and E′n+1 = V ′. Then

trace A′ =
n+1∑

i=1

g′(A′E′
i, E

′
i) =

n∑

i=1

g′(A′E∗
i , E∗

i ) + g′(A′V ′, V ′).

By means of (16.1) and (16.5), it follows

trace A′ =
n∑

i=1

g′((AEi)∗, E∗
i ) −

n∑

i=1

g′(A′E∗
i , V ′)g′(V ′, E∗

i )

=
n∑

i=1

g(AEi, Ei) = trace A,

which completes the proof. ��

Lemma 16.3. Let λ1, . . . , λn be the principal curvatures of M and U the
eigenvector field corresponding to the principal curvature λn, that is, AU =
λnU . Then the principal curvatures of π−1(M) are given by λ1, . . . , λn−1, μ

and − 1
μ , where μ = λn±

√
λn+4

2 .

Proof. Let Xi be the eigenvector field which corresponds to the principal
curvature λi = λn. Then, by (16.5),

A′X∗
i = (AXi)∗ − g(U,X)V ′ = (AX)∗ = λiX

∗
i .

Thus for i = 1, . . . , n − 1, λi are principal curvatures of π−1(M). To obtain
the other principal curvatures, we put these as μ and ν. The eigenvectors X ′,
Y ′ which correspond to μ and ν must be linear combinations of V ′ and U∗

and we put
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X ′ = V ′ cos θ + U∗ sin θ, Y ′ = −V ′ sin θ + U∗ cos θ.

Then A′X ′ = μX ′ and AY ′ = νY ′ imply that

A′V ′ cos θ + A′U∗ sin θ = μV ′ cos θ + μU∗ sin θ,

−A′V ′ sin θ + A′U∗ cos θ = −νV ′ sin θ + νU∗ cos θ.

Comparing the inner product g′(AX ′, V ′) and g′(A′Y ′, V ′) and making use
of (16.1), (16.2) and (16.3), we get μ = − tan θ and ν = − cot θ. Thus the
principal curvatures of π−1(M) are λ1, . . . , λn−1, − tan θ, cot θ for some θ.
To prove the last part of the Lemma, we recall Lemma 16.2. Consequently,
λn = μ + ν and μν = −1, which completes the proof. ��

Lemma 16.4. If the shape operator A′ of π−1(M) is parallel, then FA = AF .

Proof. By (16.2), g′(A′X∗, Y ∗) is invariant along the fiber. Using (16.5), it
follows

0 = V ′(g′(A′X∗, Y ∗))
= g′((∇′

V ′A′)X∗, Y ∗) + g′(A′∇′
V ′X∗, Y ∗) + g′(A′X∗,∇′

V ′Y ∗)
= g′((∇′

V ′A′)X∗, Y ∗) + g′(AY ∗, (FX)∗) + g′(A′X∗, (FY )∗)
= g′((∇′

V ′A′)X∗, Y ∗) + g(AY,FX) + g(AX,FY ),

from which, if the shape operator A′ is parallel, we conclude g(FAX, Y ) =
g(AFX, Y ), that is, A and F commute. ��

Therefore, A and F commute in the model space MC
p,q. Now we consider

the converse problem.

First we note that FA = AF implies that U is an eigenvector field of A. In
fact, FAU = AFU = 0 implies that F 2AU = 0. This, together with (15.6),
implies AU = αU , where α = g(AU,U).

Further, differentiating AU = αU covariantly, and using (15.27), we obtain

(∇XA)U + AFAX = (Xα)U + αFAX.

Since ∇XA is symmetric g((∇XA)U, Y ) = g((∇XA)Y,U) and therefore

g((∇XA)Y − (∇Y A)X,U) + g(AFAX,Y ) − g(AFAY,X)
= (Xα)g(U, Y ) − (Y α)g(U,X) + αg(FAX, Y ) − αg(FAY,X).

On the other hand, from the Codazzi equation, it follows

g((∇XA)Y − (∇Y A)X,U)
= g(U,X)g(FY,U) − g(U, Y )g(FX,U) − 2g(FX, Y )g(U,U)
= −2g(FX, Y ).
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Hence we have

− 2g(FX, Y ) + 2g(AFAX,Y ) = (Xα)g(U, Y ) − (Y α)g(U,X)
+ 2αg(FAX, Y ). (16.6)

Substituting Y for U in (16.6) and making use of the fact that α is an eigen-
value of A, we obtain Xα = g(U,X)Uα, from which gradα = βU for some
β. Differentiating this covariantly, we have ∇Xgrad α = (Xβ)U +βFAX and
therefore

0 = g(∇Xgrad α, Y ) − g(∇Y grad α,X)
= (Xβ)g(U, Y ) − (Y β)g(U,X) + 2βg(FX, Y ). (16.7)

Substituting Y for U , we get Xβ = g(U,X)Uβ and then (16.7) becomes
βFAX = 0. Assuming that there exists a point x ∈ M such that β(x) = 0,
it follows FAX = 0 at x. Therefore, using (16.6), we conclude g(FX, Y ) = 0
for any X, Y ∈ T (M). This is a contradiction, since n > 1. Hence β = 0 and
α is constant, namely, we proved

Lemma 16.5. If M satisfies the commutative condition FA = AF , then U
is an eigenvector of A with constant eigenvalue.

Further, if FA = AF , then relation (16.6) becomes

F (A2X − αAX − X) = 0,

since Xα = g(U,X)Uα. Applying F to this equation, we obtain

A2X − αAX − X + g(U,X)U = 0. (16.8)

Theorem 16.2. Let M be a real hypersurface of a complex projective space.
The shape operator A and the almost contact tensor F commute if and only
if the shape operator A′ of π−1(M) ⊂ S2n+1 is parallel.

Proof. The necessity is already proved in Lemma 16.4. We now prove the
sufficiency. From Theorem 13.2, it is enough to show that if A satisfies (16.8)
this implies that A′ satisfies (13.5).

For x ∈ M , let y ∈ π−1(x) ⊂ π−1(M) ⊂ S2n+1. Since

Ty(π−1(M)) = Hy(π−1(M)) ⊕ span{V ′
y},

any X ′ ∈ Ty(π−1(M)) can be expressed at y as

X ′
y = X∗

y + g′(X ′, V ′)(y)V ′
y ,

where X is a tangent vector at x. Hence it is enough to show that A′ satisfies
(13.5) only for horizontal lift X∗ and the unit vertical vector V ′. Making use
of (16.5), we have
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A′2X∗ − αA′X∗ − X∗ = A′((AX)∗ + g(U,X)V ′) − α((AX)∗

+ g(U,X)V ′) − X∗

= (A2X − αAX − X + g(U,X)U)∗ = 0.

Thus for horizontal vector X ′ at y, we obtain

A′2X ′ − αA′X ′ − X ′ = 0.

For a vertical vector V ′, using (16.4), we have

A′2V ′ − αA′V ′ − V ′ = A′U∗ − αU∗ − V ′

= (AU)∗ + g(U,U)V ′ − αU∗ − V ′ = 0.

Thus, for any X ′ ∈ Ty(π−1(M)), we have A′2X ′ − αA′X ′ − X ′ = 0. Hence,
by Theorem 11.3, it follows that A′ is parallel. ��

Theorems 13.2 and 16.2 imply

Theorem 16.3. [45] MC
p,q is the only complete real hypersurface of a complex

projective space whose shape operator A commutes with the almost contact
tensor F .

Now we prove a classification theorem of real hypersurface of complex
Euclidean space which satisfies the commutative condition FA = AF by
almost the same discussion as above. In this case, the Codazzi equation takes
the form of (11.5) and in entirely the same way we know that the principal
curvature α is constant and the shape operator A satisfies FA2 X −αFAX =
0, from which

A2X − αX = 0. (16.9)

This shows that M has at most two distinct constant principal curvatures and
one of them is zero. We consider the case that M has two distinct curvatures
α and 0. Let r be the multiplicity of α. Note that AU = αU = 0 and
FAU = αFU = 0 which means that

rank (FA) ≤ r − 1.

Let X be an eigenvector of A corresponding to α which satisfies FAX = 0, and
g(X,U) = 0. Then F 2AX = 0 implies that AX = g(AX,U) = αg(X,U) = 0.
This means that such a vector X corresponds to the eigenvalue 0. Hence, there
exists no other vector than U which satisfies both FAX = 0 and AX = αX.
Thus we get

rank (FA) ≥ r − 1.

Combining the above two inequations, we have rank (FA) = r − 1.

On the other hand, putting ω(X,Y ) = g(FAX, Y ), we define a 2-form ω,
since FA = AF . From this fact, it follows r − 1 = rank (FA) = rank (ω) =
even. This shows that r is an odd number.

Now, applying Theorem 11.4, we obtain
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Theorem 16.4. [44] Let M be a complete real hypersurface of a complex Eu-
clidean space En+1. If M satisfies the commutative condition FA = AF , then
M is one of the following:

(1) n-dimensional hypersphere Sn,

(2) n-dimensional hyperplane En,

(3) product manifold of an odd-dimensional sphere and Euclidean space
Sr × En−r.
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Tubes over submanifolds

The examples given in Section 16 are sometimes referred to as tubes over
various submanifolds. Therefore in this section we introduce the notion of
a tube over a submanifold. For that purpose, let M be a submanifold of a
Riemannian manifold M and BM the bundle of unit normal vectors of M ,
that is,

BM =
⋃

x∈M

BxM

=
⋃

x∈M

{
ξx|ξx ∈ T⊥

x (M), |ξx| = 1
}

.

For a sufficiently small real number t ∈ R \ {0}, we can define the following
immersion:

φt : BM → M, φt(ξ) = exp tξ,

where exp denotes the exponential mapping of M . This φt(BM) with induced
Riemannian metric from M is called the tube of radius t over M in M .

We illustrate this notion of a tube, beginning with Examples 17.1–17.4,
which are elementary and well-known examples.

Example 17.1. Let x be a point of M . Then

BxM =
{
Xx |Xx ∈ Tx(M), |Xx| = 1

}

and φt(BM) is the focus of all points whose geodesic distance from x is t.
Thus, the tube over the 0-dimensional manifold x, namely, over one point, is
a geodesic hypersphere centered at x. ♦

Example 17.2. Let S1(1) denote a circle in E3 defined by

S1(1) =
{
x = (cos u, sin u, 0) ∈ E3

}

and let x denote the position vector field of S1(1). Then

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 113
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n1 = (− cos u,− sin u, 0),
n2 = (0, 0, 1)

are mutually orthonormal unit normal vectors to S1(1) in E3 and any unit
normal vector ξ to S1(1) in E3 is given by

ξ = (− cos v cos u,− cos v sinu, sin v).

Since the geodesic in E3 is a straight line and the position vector y of φt(S1(1))
is given by

y = x + tξ = (cos u(1 − t cos v), sin u(1 − t cos v), t sin v),

we conclude that the tube over S1(1) in E3 is a torus. ♦

Example 17.3. Now we consider the circle in Example 17.2 as a special curve
of S2(1). Then, BM = {(0, 0, 1), (0, 0,−1)}. Since the geodesic γ(t) of S2(1)
in the direction of ξ is represented by

γ(t) = cos tx + sin tξ,

where x is the position vector of S1(1), it follows

φt(ξ) = (cos t cos u, cos t sin u,± sin t).

Thus, the tube over S1(1) in S2(1) is the union of two circles of radius | cos t|
near the original circle S1(1). ♦

Example 17.4. Let Sn(1) be the sphere which is the totally geodesic subman-
ifold of Sn+p(1) defined by (x,0), where x denotes the position vector of a
point in Sn(1) in En+1 and 0 = (0, . . . , 0) denotes the zero vector in the p-
dimensional Euclidean space Ep. Identifying TxEn+p+1 with En+p+1, the set
of unit normal vectors to Sn(1) in Sn+p(1) at x is

BxSn(1) = {(0,y)| |y| = 1} , 0 ∈ En+1, y ∈ Ep.

Since the geodesic γ(t) of Sn+p(1) in the direction of ξx is γ(t) = cos tx +
sin tξx, we have

φt(BSn(1)) = {(cos tx, sin ty) | |x| = |y| = 1}
= Sn(| cos t|) × Sp−1(| sin t|). ♦

Now we prove that real hypersurfaces MC
n,m and M(n, t), introduced in

Section 16, are tubes over some submanifolds.

Let P
n
2 (C) be a totally geodesic, complex projective subspace of P

n+p
2 (C)

and let π : Sn+p+1(1) → P
n+p

2 (C) be the Hopf map. We deduce from Propo-
sition 10.2 that π−1(P

n
2 (C)) = Sn+1(1) is a totally geodesic submanifold of
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Sn+p+1(1). For a unit normal vector ξx at x ∈ P
n
2 (C), the exponential map

φt : BxP
n
2 (C) → P

n+p
2 (C) is given by

φt(ξx) = π(cos tw + sin tξ′w) = πφ′
t(ξ

′
w),

where w is a point of π−1(P
n
2 (C)) = Sn+1(1) such that π(w) = x. Here ξ′w

denotes the horizontal lift of ξx at w and φ′
t denotes the exponential map

BwSn+1(1) → Sn+p+1(1). This shows that any point of the tube over P
n
2 (C)

is a π-image of a point of the tube around Sn+1(1). This, together with
Example 17.4, implies that the tube around P

n
2 (C) is

BP
n
2 (C) = π(BSn+1(1)) = π(Sn+1(| cos t|) × Sp−1(| sin t|)) = MC

n1,n2
,

where n1 = n
2 and n2 = p−1

2 . Thus, we have

Proposition 17.1. MC
n,m is a tube over the totally geodesic complex subspace

P
n
2 (C) in P

n+p
2 (C).

Particularly, for the case p = 1, using Remark 16.1, it follows BP
n
2 (C) =

MC
n1,0, which leads to

Corollary 17.1. The geodesic hypersphere MC
n1,0 is a tube over totally geodesic

complex hyperplane.

Now we consider the tube over a real projective space in a complex projec-
tive space. Let (u1, v1, . . . , un+1, vn+1) be homogeneous coordinates of Pn(C)
in Cn+1 = R2n+2, that is,

(u1, v1, . . . , un+1, vn+1) ∈ S2n+1,

n+1∑

i=1

(u2
i + v2

i ) = 1.

Then, as a submanifold of Pn(C), a real projective space Pn(R) is represented
by

(u1, 0, . . . , un+1, 0),
n+1∑

i=1

u2
i = 1.

(u1, 0, . . . , un+1, 0) belongs to the equivalence class

[(u1 cos θ, u1 sin θ, . . . , un+1 cos θ, un+1 sin θ)],
n+1∑

i=1

u2
i = 1

in S2n+1. That is, the position vector field w of the submanifold

Mn+1 = π−1(Pn(R)) ⊂ S2n+1 ⊂ Cn+1 = R2n+2

is given by
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w =
n+1∑

i=1

ui

(
cos θ

∂

∂ui
+ sin θ

∂

∂vi

)
,

where π is the Hopf fibration π : S2n+1 → Pn(C). Since the tangent space of
Mn+1 is given by

Tw(Mn+1) = span
{

cos θ
∂

∂ui
+ sin θ

∂

∂vi

}
, i = 1, . . . , n + 1,

the unit normal ξ to Mn+1 in S2n+1 is

ξ =
n+1∑

j=1

aj

(
− sin θ

∂

∂uj
+ cos θ

∂

∂vj

)
,

where
∑n+1

j=1 a2
j = 1. For the natural almost complex structure J of Cn+1, it

follows that

Jw =
n+1∑

i=1

ui

(
− sin θ

∂

∂ui
+ cos θ

∂

∂vi

)

is the vertical vector field with respect to π and, therefore, tangent to Mn+1.
Hence we have

〈Jw, ξ〉 =
n+1∑

i=1

aiui = 0. (17.1)

The position vector field z of the tube of radius t over Mn+1 ⊂ S2n+1 is

z = w cos t + ξ sin t

=
n+1∑

i=1

{
(ui cos θ cos t − ai sin θ sin t)

∂

∂ui
+ (ui sin θ cos t + ai cos θ sin t)

∂

∂vi

}
.

We put

xi = ui cos θ cos t − ai sin θ sin t,

yi = ui sin θ cos t + ai cos θ sin t.

Then (x1, y1, . . . , xn+1, yn+1) are coordinates of the tube over Mn+1 ⊂
S2n+1 ⊂ R2n+2. It is an easy matter to use (17.1) and obtain

{
n+1∑

i=1

(x2
i − y2

i )

}2

+ 4

(
n+1∑

i=1

xiyi

)2

= cos2 2t,

which is the equation from Example 12.3. Using the arguments of Example
17.2 and Proposition 17.1, we have

Proposition 17.2. M(n, t) is a tube of radius t over the real projective space
Pn(R) in Pn(C).



17 Tubes over submanifolds 117

Next, we show that M(n, t) is also a tube over a complex quadric Qn−1 in
a complex projective space Pn(C). A complex quadric Qn−1 is defined by

Qn−1 =

{
(w1, . . . , wn+1) ∈ Pn(C)|

n+1∑

i=1

w2
i = 0

}
,

where wi, i = 1, . . . , n+1 are homogeneous coordinates of Pn(C). Thus Qn−1

can be equivalently defined as

Qn−1 =
{

π

(
1√
2
(u +

√
−1v)

)
|u ∈ Sn, v ∈ Sn ⊂ Rn+1, 〈u, v〉 = 0

}
,

where π is the Hopf fibration π : S2n+1 → Pn(C), that is,

〈u, v〉 =
n+1∑

i=1

uivi = 0, (17.2)

(u1, . . . , un+1) ∈ Sn ⊂ Rn+1,

n+1∑

i=1

u2
i = 1, (17.3)

(v1, . . . , vn+1) ∈ Sn ⊂ Rn+1,

n+1∑

i=1

v2
i = 1. (17.4)

Let M2n−1 = π−1(Qn−1) ⊂ S2n+1. Then we can express M2n−1 by

M2n−1 =
{

1√
2
(u1, v1, . . . , un+1, vn+1) ∈ S2n+1 ⊂ R2n+2

}
.

Since the normal space T⊥(M2n−1) in S2n+1 is spanned by the following two
unit vectors:

η =
1√
2

n+1∑

i=1

(
ui

∂

∂ui
− vi

∂

∂vi

)
,

Jη =
1√
2

n+1∑

i=1

(
vi

∂

∂ui
+ ui

∂

∂vi

)
,

any unit normal vector ξ to M2n−1 in S2n+1 is given by

ξ = η cos θ + Jη sin θ

=
1√
2

n+1∑

i=1

{
(ui cos θ + vi sin θ)

∂

∂ui
+ (−vi cos θ + ui sin θ)

∂

∂vi

}
.

Thus, for the position vector field w of M2n−1, the position vector z of a tube
BM2n−1 is given by
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z = w cos t + ξ sin t

=
1√
2

n+1∑

i=1

{
[ui(cos t + cos θ sin t) + vi sin θ sin t]

∂

∂ui

+ [vi(cos t − cos θ sin t) + ui sin θ sin t]
∂

∂vi

}
.

Setting

xi =
1√
2
{ui(cos t + cos θ sin t) + vi sin θ sin t} ,

yi =
1√
2
{vi(cos t − cos θ sin t) + ui sin θ sin t} ,

(x1, y1, . . . , xn+1, yn+1) define coordinates of the tube BwM2n−1. By straight-
forward computation, using (17.2), (17.3) and (17.4), we obtain

{
n+1∑

i=1

(x2
i − y2

i )

}2

+ 4

(
n+1∑

i=1

xiyi

)2

= sin2 2t = cos2 2
(π

4
− t

)
.

Thus, we have

Proposition 17.3. M(n, t) is a tube of radius π
4 − t over the complex quadric

Qn−1 in Pn(C).

Remark 17.1. Using the notation of Example 12.3, we conclude

• Pn(R) satisfies F (x, y) = 1, that is, θ = 0;

• Qn−1 satisfies F (x, y) = 0, that is, θ = π
4 .
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Levi form of CR submanifolds of maximal CR
dimension of a complex space form

Considering the Levi form on CR submanifolds Mn of maximal CR dimension

of complex space forms M
n+p

2 , we prove in this section that on some remark-
able real submanifolds of complex projective space the Levi form can never
vanish and we determine all such submanifolds in the case when the ambient
manifold is a complex Euclidean space.

In the following, we establish several formulas in the case when U is the
eigenvector of the shape operator A. Let U be an eigenvector of A corre-
sponding to the eigenvalue α. Taking the covariant derivative of AU = αU
and using (15.27), we obtain

(∇XA)U + AFAX = (Xα)U + αFAX

and hence

g((∇XA)Y,U) + g(AFAX,Y ) = (Xα)g(U, Y ) + αg(FAX, Y ).

Thus

g((∇XA)Y − (∇Y A)X,U) + 2g(AFAX,Y ) =
(Xα)g(U, Y ) − (Y α)g(U,X) + 2αg(FAX, Y ).

Consequently the Codazzi equation (15.29) yields

2k(FY,X) + 2g(AFAX,Y ) (18.1)
= (Xα)u(Y ) − (Y α)u(X) + αg((FA + AF )X,Y ).

Putting Y = U in (18.1) and making use of AY = αU , we get

Xα = u(X)Uα.

This, together with (18.1), implies that

− 2kFX + 2AFAX = α(FA + AF )X. (18.2)

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 119
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Lemma 18.1. Let U be an eigenvector of A corresponding to the eigenvalue
α and let X be the eigenvector of A corresponding to the second eigenvalue λ.
Then we have

(2λ − α)AFX = (2k + αλ)FX.

Proof. Let X be an eigenvector of A which corresponds to λ, then, from (18.2),
it follows

−2kFX + 2λAFX = αλFX + αAFX,

from which Lemma 18.1 follows. ��

Now, let us consider the Levi form of CR submanifolds of maximal CR
dimension of a complex space form. Using Theorem 8.1, we have

L(X,Y ) =
p∑

a=1

{g(AaX,Y ) + g(AaFX,FY )}ξa, (18.3)

for X, Y ∈ H(M). Next, we note that for any

X,Y ∈ H(M) = T (M) ∩ JT (M),

there exist V,W ∈ T (M) such that

ıX = JıV = ıFV, ıY = JıW = ıFW and FV, FW ∈ H(M).

Using this notation, we may write (18.3) as follows:

L(X,Y ) =
p∑

a=1

{g(AaFV, FW ) + g(AaF 2V, F 2W )}ξa

=
p∑

a=1

{g(AaFV, FW ) + g(AaV,W ) − u(V )g(AaU,W )

− u(W )g(AaU, V ) + u(V )u(W )g(AaU,U)}ξa, (18.4)

where we have used (15.2) and (15.6).

We assume now that U is an eigenvector of A, corresponding to the eigen-
value α and that the Levi form vanishes at a point x ∈ M . Using relation
(18.4) for a = 1, we obtain

g(AV − FAFV − αu(V )U,W ) = 0. (18.5)

We note that here W is chosen in such a way that Y = FW , Y ∈ H(M).
However, since

g(AV − FAFV − αu(V )U,U) = 0, (18.6)

using (18.5) and (18.6), we get

AV − FAFV − αu(V )U = 0. (18.7)
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Now, let Vx be an eigenvector of A at x with the eigenvalue λ, such that
Vx is orthogonal to U at x. Then Lemma 18.1 and relation (18.7) imply

k + λ2 = 0. (18.8)

Thus we have

Theorem 18.1. Let M be an n-dimensional (n ≥ 3) CR submanifold of CR
dimension n−1

2 of a complex space form. If U is an eigenvector of the shape
operator A with respect to ξ, then the Levi form vanishes only when the holo-
morphic sectional curvature of the ambient manifold is nonpositive.

Definition 18.1. A real hypersurface M is called strictly pseudoconvex if, at
each point of M , the Levi form is either positive or negative definite. If the
Levi form is semi-definite, then M is called pseudoconvex.

Theorem 18.2. [19] Let M be an n-dimensional (n ≥ 3) CR submanifold of
CR dimension n−1

2 of a complex projective space. If M satisfies the conditions
of Theorem 18.1, then the Levi form cannot vanish identically. Especially, if
M is a real hypersurface, then M is pseudoconvex.

Corollary 18.1. In MC
p,q, the Levi form can never vanish, that is, MC

p,q is
pseudoconvex.

Proof. The construction of MC
p,q and Lemma 16.2 imply that FA = AF , from

which we easily see that U is an eigenvector of A. Thus from Theorem 18.2,
the corollary follows. ��

Now, let the ambient space M be an even-dimensional Euclidean space
En+p equipped with its natural Kaehler structure, that is, M = C(n+p)/2.
In this case, using the relation (18.8), it follows that all eigenvalues of the
shape operator A, except the one corresponding to U , are equal to zero and
therefore the shape operator A can be diagonalized as follows:

A =

⎛

⎜⎜⎜⎝

α
0

. . .
0

⎞

⎟⎟⎟⎠ .

In the remainder of this section we assume that ξ = ξ1 is parallel with
respect to the normal connection. Then in the case of α = 0, Theorem
14.1 implies that there exists a totally geodesic hypersurface En+p−1 of C

n+p
2

which contains M .

Further, let α = 0. Then α is not necessarily constant and it may take the
value zero at some point. However, U is an eigenvector which never vanishes
since it has unit length. This implies that AX = 0 for any X orthogonal to
U .
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Now, let D be the distribution determined by the tangent vectors ortho-
gonal to U . Then it follows from relation (15.27) that g([X,Y ], U) = 0 for
all X,Y ∈ D and hence, the distribution D is involutive. Moreover, relation
(15.27) implies ∇XU = 0 for all X tangent to M and we conclude that M
is locally a product of MD and a curve tangent to U , where MD denotes an
integral submanifold of D. Also, from ∇XU = 0, we derive that MD is a
totally geodesic hypersurface of M and consequently the shape operator of
MD for the normal U vanishes identically. Furthermore, since A = 0 on D, it
follows that the first normal space of MD is a subspace of span {ξ2, . . . , ξp}.

Further, as ξ = ξ1 is parallel with respect to the normal connection, it
follows

g(DXξa, ξ) = −g(ξa,DXξ) = 0, for a = 2, . . . , p.

Moreover, using the second relation in (5.8), it follows g(DXξa, U) = 0 for a =
2, . . . , p. Therefore, span {ξ2, . . . , ξp} is invariant under the parallel translation
with respect to the normal connection of MD in C

n+p
2 and Theorem 14.1 then

implies that there exists a totally geodesic En+p−2 in C
n+p

2 which contains
MD.

From these results follows

Theorem 18.3. [19] Let M be an n-dimensional (n ≥ 3) CR submanifold of
CR dimension n−1

2 of C
n+p

2 such that the distinguished normal vector field ξ
to M is parallel with respect to the normal connection and U is an eigenvector
of the shape operator A with respect to ξ. Then the Levi form can vanish only
in the following two cases:

(1) M is contained in a hyperplane orthogonal to ξ;

(2) M is locally a Riemannian product γ×MD, where γ is a curve tangent
to U and MD is contained in an (n + p − 2)-dimensional subspace En+p−2.

In the second case M is a CR-product, that is, it is locally a product of a
holomorphic submanifold MD and a totally real submanifold γ.
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Eigenvalues of the shape operator A of CR
submanifolds of maximal CR dimension of a
complex space form

In this section, we assume that M is an n(≥ 3)-dimensional CR submanifold
of maximal CR dimension of a complex space form M with constant holo-
morphic sectional curvature 4k and that the distinguished normal ξ is parallel
with respect to the normal connection. Then from Lemma 15.2, the Codazzi
equation becomes

(∇XA)Y − (∇Y A)X = k
{

u(X)FY − u(Y )FX − 2g(FX, Y )U
}

. (19.1)

We first prove

Theorem 19.1. If the shape operator A for ξ has only one eigenvalue, then
M is a complex Euclidean space.

Proof. According to the assumption, it follows that A = 0 or AX = αX for
all X ∈ T (M). In both cases the Codazzi equation (19.1) implies

(Xα)Y − (Y α)X = k
{

u(X)FY − u(Y )FX − 2g(FX, Y )U
}

,

for all X, Y ∈ T (M). Putting Y = U , the last equation reduces to

(Uα)X − (Xα)U = kFX.

Since dimM ≥ 3, we can choose U , X and FX in such a way that they are
linearly independent and, hence, k = 0. This completes the proof. ��

From now on we suppose that the dimension of the submanifold M is
greater than three. Further, we assume that the shape operator A has exactly
two distinct eigenvalues: λ and μ. We are going to prove that, in this case,
one of the eigenvectors must be U . To that purpose, we denote by Tλ and Tμ

the eigenspaces corresponding to the eigenvalue λ and μ, respectively. Now
suppose

U = pX + qV, (19.2)

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 123
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for nonzero functions p and q, where X ∈ Tλ and V ∈ Tμ are unit vector fields
on some open subset of M where U is not an eigenvector of the shape operator
A. Since dim M > 3, at least one of Tλ and Tμ has dimension minimum three,
and we may suppose that dimTλ ≥ 3. Then, denoting

Sλ = {Y ∈ Tλ|g(Y,X) = 0}, Sμ = {W ∈ Tμ|g(W,V ) = 0},

we can choose Y , Z mutually orthonormal in Sλ, since dim Sλ ≥ 2. Then,
from (19.2) it follows that Y and Z are orthogonal to U and the Codazzi
equation (19.1) becomes

(Zλ)Y − (Y λ)Z + (λI − A)[Z, Y ] = 2kg(FY,Z)U. (19.3)

Since U and (λI − A)[Z, Y ] are orthogonal to Y and Z, we conclude that
Y λ = 0 for all Y ∈ Sλ. Now, relation (19.3) reduces to

(λI − A)[Z, Y ] = 2 k g(FY,Z)U

where the left-hand side is orthogonal to Tλ. Therefore, if k = 0, FY is
orthogonal to Sλ for every Y ∈ Sλ, since p and q are nonzero functions.

Further, we consider the Codazzi equation for Y ∈ Sλ and the particular
vector field X. Since X, Y are in Tλ, it reduces to

(Xλ)Y − (Y λ)X + (λI − A)[X,Y ] = k{pFY − 2g(FX, Y )U}. (19.4)

We have shown that Y λ = 0, and we now conclude that Xλ = 0 for all
X ∈ Tλ, since (λI −A)[X,Y ], FY and U are orthogonal to Y . Thus, relation
(19.4) becomes

(λI − A)[X,Y ] = k {pFY − 2g(FX, Y )U}. (19.5)

Now, the left-hand side of relation (19.5) is orthogonal to X ∈ Tλ and we
obtain

3 k p g(FX, Y ) = 0.

Therefore FY is orthogonal to X, because k = 0 and p is a nonzero function.
As a result, FY ∈ Tμ, since we proved that FY is orthogonal to Sλ and to
X. Moreover,

0 = g(FY,U) = qg(FY, V ),

which means that FY is orthogonal to V , because q = 0. We have thus
shown that FY ∈ Sμ, that is, F (Sλ) ⊂ Sμ, since we proved that FY ∈ Tμ

and g(FY, V ) = 0.

Finally from the assumption (19.2) it follows that all Y ∈ Sλ are ortho-
gonal to U and then, according to (15.2), we have ıFY = JıY , for all Y ∈ Sλ.
This means that F is injective on Sλ and thus, dimSμ ≥ dim Sλ ≥ 2. Conse-
quently, we may reverse the roles of the above-specified λ and μ to show that
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F (Sμ) ⊂ Sλ. Hence, dim Sμ = dim Sλ and therefore, M is even-dimensional,
since, taking into account X and V , we have dim M = 2dim Sλ + 2. This is
a contradiction, and we conclude that p or q is identically zero, and U is an
eigenvector of the shape operator A. Thus the following lemma holds:

Lemma 19.1. Let M be an (n + p)-dimensional Kähler manifold of constant
holomorphic sectional curvature 4k, with n > 3 and k = 0. Then, assuming
that the shape operator A has exactly two distinct eigenvalues, it follows that
U is an eigenvector of A.

Lemma 19.2. If AF + FA = 0 holds at a point of the submanifold M , then
the holomorphic sectional curvature of the ambient manifold is nonpositive.

Proof. It follows from the assumption of the lemma and relation (15.7) that U
is an eigenvector of the shape operator A, that is, AU = αU . Differentiating
this equation covariantly and making use of the Codazzi equation (19.1), we
obtain

2kg(FX, Y ) + 2g(AFAX,Y ) = (Xα)u(Y ) − (Y α)u(X)
+ αg((FA + AF )X,Y ). (19.6)

Putting Y = U in relation (19.6), we get

Xα = u(X)Uα, (19.7)

since U is an eigenvector of the shape operator A. Using relations (19.6) and
(19.7), it follows

2kg(FX, Y ) + 2g(AFAX,Y ) = αg((FA + AF )X,Y ), (19.8)

from which kg(FY,X) = g(AX,FAY ). Putting X = FY in the last relation,
we obtain

kg(FY, FY ) = g(AFY, FAY ) = −g(FAY, FAY ) ≤ 0,

and therefore k ≤ 0, since rank F = n − 1. ��

Until further notice we assume that M is a Kähler manifold of constant
positive holomorphic sectional curvature.

Lemma 19.3. Let U be an eigenvector of the shape operator A. If f is a
function on M satisfying

Xf = (Uf)u(X) (19.9)

for any X ∈ T (M), then f is constant on M .
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Proof. First taking the covariant derivative of (19.9), we obtain

Y (Uf)u(X) − X(Uf)u(Y ) + (Uf)g((FA + AF )Y,X) = 0.

Putting Y = U in the last relation, we get X(Uf) = U(Uf)u(X). Now, the
last two equations imply

(Uf)g((FA + AF )X,Y ) = 0.

Finally, since the holomorphic sectional curvature is positive, after using
Lemma 19.2, it follows Uf = 0 and therefore relation (19.9) implies that
f is constant. ��

Lemma 19.4. If the shape operator A has exactly two distinct eigenvalues,
then they are constant.

Proof. According to Lemma 19.1, U is an eigenvector of the shape operator A,
that is, AU = αU . Hence using relation (19.7) and Lemma 19.3, we conclude
that α is constant.

Now denoting another eigenvalue of A by λ and the corresponding eigen-
vector by X, and using (19.8), we obtain the following relation:

AFX =
2k + αλ

2λ − α
FX. (19.10)

The last relation implies that FX is an eigenvector corresponding to the
eigenvalue

μ =
2k + αλ

2λ − α
(19.11)

if X is an eigenvector corresponding to the eigenvalue λ. As A has exactly
two distinct eigenvalues, it follows μ = α or μ = λ, and hence λ is constant,
since α and k are constant. ��

In the following, we want to prove that, in the case when A has exactly
two distinct eigenvalues, the multiplicity of the eigenvalue α corresponding to
the eigenvector U is one. Supposing that X is an eigenvector of A such that
AX = λX and g(X,U) = 0, it follows, using relation (19.10), that

AFX = μFX, where λ = μ, or λ = α, or μ = α,

since A has exactly two distinct eigenvalues. In the case λ = α or μ = α,
using relation (19.11), we conclude that the shape operator A has two distinct
eigenvalues: α and 2k+α2

α . Therefore, the proof is separated into two cases.

First, we suppose that the shape operator A has two distinct eigenvalues:
α and λ = μ. Then, it follows, using relation (19.11), that

λ2 − αλ = k. (19.12)
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Moreover, using relation (19.10), we conclude that Tλ is invariant under the
action of F . Further, suppose that the multiplicity of α is greater than one
and let X ∈ Tα and g(X,U) = 0. Then it follows from relation (19.10) that

AFX =
2k + α2

α
FX = λFX,

since k = 0. Therefore FX ∈ Tλ and consequently, AF 2X = λF 2X, that is,
AX = λX, which is a contradiction since λ = α.

Now we turn to the case when the shape operator A has two distinct
eigenvalues α and λ = 2k+α2

α . Let

Dα = {X|AX = αX, g(X,U) = 0}, Dλ = {X|AX = λX}.

Since both eigenvalues are constants, it follows that Dα and Dλ are ν1- and ν2-
dimensional distributions, respectively, such that FDα = Dλ and FDλ = Dα.
Then we have

Lemma 19.5. Assuming that X belongs to Dα (or Dλ), it follows that AaX,
a = 2, . . . , p, belongs to Dα (or Dλ).

Proof. Since ξ is parallel with respect to the normal connection, using Lemma
15.2, Ricci equation (5.27) and (9.21), we easily see that [A,Aa] = 0, which
implies our assertion. ��

Lemma 19.6. If X and Y belong to Dα (or Dλ), then, ∇Y X belongs to Dα

(or Dλ), respectively.

Proof. We are going to prove only the case when X, Y ∈ Dα, having in mind
that the proof of the case X, Y ∈ Dλ is analogous.

First, we note that g(∇Y X,U) = 0 since X is orthogonal to U and FY ∈
Dλ. Now, using this fact, it follows g(A∇Y X,U) = 0. Further, to prove that
A∇Y X = α∇Y X, for X,Y ∈ Dα, assume Z ∈ T (M) is orthogonal to U .
Then, using the Codazzi equation (19.1), it follows that

g(A∇Y X,Z) = g(∇Y (AX) − g(∇Y A)X,Z)
= αg(∇Y X,Z) − g(X, (∇Y A)Z)
= αg(∇Y X,Z) − g(X, (∇ZA)Y )
− k{u(Y )g(X,FZ) − u(Z)g(X,FY ) + 2g(FZ, Y )u(X)}
= αg(∇Y X,Z) − g(X, (∇ZA)Y )
= αg(∇Y X,Z) − g(X,∇Z(AY ) − A∇ZY )
= αg(∇Y X,Z),

since α is constant and A, ∇Y A are symmetric operators. This completes the
proof. ��
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From now on, for any X ∈ T (M), we denote by Xα its Dα-component
and, analogously, by Xλ its Dλ-component. Then, assuming that X ∈ Dα,
W ∈ Dλ, after differentiating the relation g(X,W ) = 0 and using Lemma
19.6, we obtain

Lemma 19.7. Supposing that X ∈ Dα and W ∈ Dλ, it follows that

∇W X ∈ Dα ⊕ span {U}, ∇XW ∈ Dλ ⊕ span {U},

that is,

∇W X = (∇W X)α − λg(X,FW )U,

∇XW = (∇XW )λ − αg(W,FX)U.

Now, we are ready to prove

Lemma 19.8. Under the same assumptions as above, with n > 2p−1, p ≥ 2,
if the shape operator A has exactly two distinct eigenvalues, it follows that
the multiplicity of the eigenvalue α corresponding to the eigenvector U of the
shape operator A is one.

Proof. Assume that the multiplicity of α is greater than one. Then, if X ∈ Dα

and V , W ∈ Dλ, taking account of Lemmas 19.4, 19.6, 19.7 and relations
(15.25), (15.27), (19.12), we get

R(X,V )W = (∇X∇V W )λ −∇V (∇XW )λ −∇(∇XV )λ
W + (∇(∇V X)α

W )λ

+ αλg(W,FX)FV − (α + λ)g(FV,X)∇UW. (19.13)

On the other hand, using Gauss equation (5.22) and (9.21), it follows from
Lemma 19.5,

R(X,V )W = k{g(V,W )X − g(FX,W )FV − 2g(FX, V )FW}

+ αλg(V,W )X +
p∑

a=2

g(AaV,W )AaX. (19.14)

Further, comparing the Dα-components in relations (19.13) and (19.14), we
obtain

α λ g(W,FX)FV − (α + λ)g(FV,X)(∇UW )α = k{g(V,W )X
−g(FX,W )FV − 2g(FX, V )FW} + α λg(V,W )X

+
p∑

a=2

g(AaW,V )AaX. (19.15)

Since dimDλ = n−1
2 > p − 1, for a fixed W ∈ Dλ and for a = 2, . . . , p, there

exists V ∈ Dλ such that g(AαW,V ) = 0. Moreover, we can choose X ∈ Dα

in such a way that g(X,FV ) = 0, since dim Dα ≥ 2. Taking these X and V
and using relation (19.15), it follows that αλ+k = 0, which is a contradiction
with the relation (19.12), since k > 0. ��
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Remark 19.1. When M is a real hypersurface of a complex projective space
P

n+p
2 (C) with exactly two distinct eigenvalues of the shape operator A, the

multiplicity of the eigenvalue α corresponding to the eigenvector U of the
shape operator is one.

Namely, in the case of a real hypersurface, relation (19.14) becomes

R(X,V )W = k{g(V,W )X−g(FX,W )FV −2g(FX, V )FW}+α λ g(V,W )X,

and, consequently, relation (19.15) becomes

αλg(W,FX)FV − (α + λ)g(FV,X)(∇UW )α = k {g(V,W )X − g(FX,W )FV

− 2g(FX, V )FW} + αλg(V,W )X. (19.16)

Moreover, since dim Dα ≥ 2, we can choose X ∈ Dα in such a way that
g(X,FV ) = 0. Therefore, using relation (19.16), we can now proceed analo-
gously as in the proof of Lemma 19.8.

Further, if M is an n-dimensional (n > 2p − 1, p ≥ 2) CR submanifold
of CR dimension n−1

2 of a complex projective space P
n+p

2 (C) with two dis-
tinct eigenvalues of the shape operator A, using the above consideration, we
conclude that A can be diagonalized as follows:

⎛

⎜⎜⎝

α 0 . . . . . .
0 λ . . . . . .

. . . . . . . . . . . .

. . . . . . . . . λ

⎞

⎟⎟⎠

and we may write
AX = λX + (α − λ)u(X)U. (19.17)

Further, let Sn+p+1 be the unit sphere in En+p+2 = C
n+p+2

2 and consider
the Hopf fibration π : Sn+p+1 → P

n+p
2 (C). We note that the position vector

z ∈ Sn+p+1 in C
n+p+2

2 is a unit normal vector to Sn+p+1 at z and that√
−1z = −V ′

z , where V ′
z is the unit vertical vector at z of the principal fiber

bundle Sn+p+1(P
n+p

2 (C), S1). The fundamental equations for the submersion
are given by (9.5) and (9.10).

Let Γ(x, ξ, r), −∞ < r < ∞, be the geodesic in the complex projective
space P

n+p
2 (C) parameterized by arc-length r such that

Γ(x, ξ, 0) = x ∈ P
n+p

2 (C) and
−→
Γ (x, ξ, 0) = ξ.

In terms of the vector representation of P
n+p

2 (C), Γ(x, ξ, r) can be described
as follows. If w ∈ Sn+p+1, such that π(w) = x and ξ∗ ∈ Tw(Sn+p+1) is the
horizontal lift of ξ. Then
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Γ(x, ξ, r) = π(cos rw + sin rξ∗).

We define a map Φr by

Φr(x) = Γ(x, ξ, r) = π(cos r w + sin r ξ∗)

and we compute (Φr)∗X for X ∈ Tx(M). To that purpose, let γ(t) be a curve
in M with the initial tangent vector −→γ (0) = X and γ∗(t) be the horizontal
lift of γ(t) to Sn+p+1 with γ∗(0) = w and −→γ ∗(0) = X∗

w. Then

Φr(γ(t)) = π(cos rγ∗(t)) + sin rξ∗(γ∗(t)),

and therefore, (Φr)∗X = (π∗)z(−→η (0)), where η(t) is a curve on Sn+p+1 defined
by

η(t) = cos r γ∗(t) + sin r ξ∗ (γ∗(t))

and z = cos r w + sin r ξ∗. Considering η(t) as a curve in C
n+p+2

2 , we obtain

−→η (0) = cos r X∗
w + sin r∇E

X∗
w

ξ∗,

where ∇E is the Euclidean covariant derivative in C
n+p+2

2 . Since

∇E
X∗

w
ξ∗ = ∇′

X∗
w

ξ∗ − g′(X∗
w, ξ∗)w = ∇′

X∗
w

ξ∗,

using relation (9.10) and the assumption that ξ is parallel with respect to the
normal connection, it follows

(π∗)w(∇′
X∗

w
ξ∗) = ∇Xξ = −AX + DXξ = −AX.

Moreover,
∇′

X∗
w
ξ∗ = −(AX)∗ + g′(∇′

X∗
w
ξ∗, V ′

w)V ′
w, (19.18)

where (AX)∗ is the horizontal lift of AX. On the other hand, using (15.5)
and (9.4), we obtain

g′(∇′
X∗

w
ξ∗, V ′

w) = −g′(ξ∗,∇′
X∗

w
V ′) = −g′(ξ∗, (JX)∗) = −g(U,X). (19.19)

Hence, from (19.18) and (19.19), we get

∇′
X∗

w
ξ∗ = −(AX)∗ − g(U,X)V ′

w.

Thus, we have

(Φr)∗X = (π∗)z(cos rX∗
w + sin r∇E

X∗
w
ξ∗)

= (π∗)z(cos rX∗
w + sin r∇′

X∗
w
ξ∗)

= (π∗)z(cos rX∗
w − sin r((AX)∗ + g(U,X)V ′

w)). (19.20)

Now, if we put
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W ′
z(X) = cos rX∗

w − sin r((AX)∗ + g(U,X)V ′
w),

it follows
W ′

z(U) = (cos r − α sin r)U∗
w + sin r V ′

w,

since U is an eigenvector of the shape operator A.

We need to find the horizontal component of W ′
z(U), since r is the arc

length of the geodesic Γ(x, ξ, r) in P
n+p

2 (C). Using the fact that

V ′
z = −

√
−1z = cos rV ′

w + sin rU∗
w,

we compute

g′(W ′
z(U), V ′

z )V ′
z = sin r(2 cos r − α sin r)(cos rV ′

w + sin rU∗
w),

and therefore, the horizontal part (W ′
z(U))H of W ′

z(U) is given by

(W ′
z(U))H = (cos 2r − α

2
sin 2r)(− sin r V ′

w + cos r U∗
w). (19.21)

From relations (19.20) and (19.21), it follows

(Φr)∗U = (π∗)(cos 2r − α

2
sin 2r)(− sin r V ′

w + cos r U∗
w), (19.22)

(Φr)∗X = (π∗)(cos rX∗
w − sin r)((AX)∗w + g(U,X)V ′

w). (19.23)

In particular, if α = 2 cot 2r, it follows from (19.22) that (Φr)∗U = 0. Further,
if X is an eigenvector orthogonal to U and using relation (19.23), we get

(Φr)∗X = (π∗)z((cos r − λ sin r)X∗
w).

Since the multiplicity of α is one and k = 1, we have λ2 − λα − 1 = 0 and
therefore,

λ = cot 2r ± csc 2r.

• If λ = cot 2r + csc 2r, then (Φr)∗X = 0, for any x ∈ M and X ∈ Tx(M),
which means that Φr(M) is a single point.

• If λ = cot 2r − csc 2r, then we first note that cot 2(r − π
2 ) = cot 2r. Hence

(Φr−π
2
)∗U = 0. Now, using r − π

2 instead of r, we obtain λ = cot r, and
therefore (Φr−π

2
)∗X = 0. Consequently, Φr−π

2
(M) is a single point.

Finally, using the definition of Φr and Φr−π
2
, we can state the following

Theorem 19.2. [15] Let M be an n-dimensional (n > 2p − 1, p ≥ 2) CR
submanifold of CR dimension n−1

2 of a complex projective space P
n+p

2 (C). If
the shape operator A with respect to the distinguished normal vector field ξ has
exactly two distinct eigenvalues, and if ξ is parallel with respect to the normal
connection, then there exists a geodesic hypersphere S of P

n+p
2 (C) such that

M lies on S.
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If a real hypersurface M has only two distinct principal curvatures, from
Theorem 19.2, there exists such a geodesic hypersphere S such that M ⊂ S.
In this case, dim M = dimS = n implies that M is an open submanifold of S
and if M is complete, M = S. Thus we have

Theorem 19.3. [8] If a real hypersurface M of a complex projective space
P

n+1
2 (C) has two distinct principal curvatures, then M is an open part of

geodesic hypersphere. As a consequence of this, MC
0,q for q = n−1

2 is a geodesic
hypersphere.
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CR submanifolds of maximal CR dimension
satisfying the condition
h(FX, Y ) + h(X, FY ) = 0

In Sections 20 and 21 we show how some algebraic relations between the
naturally induced almost contact structure tensor and the second fundamental
form imply the complete classification of CR submanifolds of maximal CR
dimension of constant, nonnegative holomorphic sectional curvature.

In this section we study CR submanifolds Mn of maximal CR dimen-
sion of n+p

2 -dimensional complex space forms M of nonnegative holomorphic
sectional curvature which satisfy the condition

h(FX, Y ) + h(X,FY ) = 0, (20.1)

for all X,Y ∈ T (M). Using Lemma 15.1 and relation (15.14), we obtain

h(FX, Y ) + h(X,FY ) = {g(AFX, Y ) + g(AX,FY )}ξ

+
q∑

a=1

{[g(AaFX, Y ) + g(AaX,FY )]ξa

+ [g(Aa∗FX, Y ) + g(Aa∗X,FY )]ξa∗}.

Therefore, since F is skew-symmetric, it follows that the relation (20.1) is
equivalent to

AF = FA, (20.2)
AaF = FAa, (20.3)

Aa∗F = FAa∗ . (20.4)

Further, if relation (20.2) holds at a point of the submanifold M , using (15.6)
and (15.7), we get

AU = αU, (20.5)

where we have put α = u(AU). Thus, the following lemma holds:

Lemma 20.1. Let M be an n-dimensional CR submanifold of maximal CR
dimension of a Kähler manifold M . If the condition (20.2) is satisfied, then
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U is an eigenvector of the shape operator A with respect to the distinguished
normal vector field ξ , at any point of M .

Using (15.15), (20.3) and (15.7), it follows

Aa∗U = −sa(U)U. (20.6)

From the last relation and (15.15), we obtain

sa(X) = sa(U)u(X). (20.7)

Now, since the condition (20.3) is satisfied, using relations (15.21) and (20.7),
it follows FAa = 0. The proof of FAa∗ = 0 is analogous: using (15.15), (20.3),
(15.6) and (15.7), we obtain

AaU = sa∗(U)U (20.8)

and using (15.15), it follows

sa∗(X) = sa∗(U)u(X). (20.9)

Now, since the condition (20.4) is satisfied, using relations (15.22) and (20.9),
it follows FAa∗ = 0. Therefore, using (20.3) and (20.4), we have

AaF = 0 = FAa, Aa∗F = 0 = FAa∗ . (20.10)

Further, using relations (15.14), (20.9) and (20.10), we obtain

AaX = sa∗(U)u(X)U, Aa∗X = −sa(U)u(X)U. (20.11)

From now on, we suppose that the ambient manifold M is a complex space
form, that is, a complete Kähler manifold of constant holomorphic sectional
curvature 4k. First, we prove the following

Lemma 20.2. Let M be an n-dimensional CR submanifold of maximal CR
dimension of a complex space form M . If the condition (20.1) is satisfied,
then

(1) the distinguished normal vector field ξ is parallel with respect to the
normal connection, or

(2) the ambient manifold M is a complex Euclidean space and M is a
locally Euclidean space.

Proof. First, using (15.30), (20.7) and (20.10), it follows

F ((∇XAa)Y − (∇Y Aa)X) = sa(U)(u(Y )FAX − u(X)FAY ). (20.12)

Now, differentiating the relation (20.10), we obtain
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(∇XF )AaY + F (∇XAa)Y = 0. (20.13)

Further, using (15.20), (20.11) and (20.5), we get

(∇XF )AaY = sa∗(U)u(Y )(AX − αu(X)U), (20.14)

and therefore, it follows

F ((∇XAa)Y − (∇Y Aa)X) = sa∗(U)(u(X)AY − u(Y )AX). (20.15)

Using relations (20.12) and (20.15), after replacing Y by U , it follows

sa(U)FAX = sa∗(U)(αu(X)U − AX), (20.16)

since AU = αU (Lemma 20.1).

Now, let X ∈ T (M), X ⊥ U be an eigenvector of the shape operator
A with respect to distinguished normal vector field ξ , namely, AX = λX.
Then, using (20.2) and (20.16), we obtain

λsa∗(U)X + λsa(U)FX = 0. (20.17)

Therefore, since X and FX are linearly independent, it follows DXξ = 0
(since sa∗(U) = 0 = sa(U) and using relations (20.7) and (20.9)), or λ = 0.

Further, we consider the case λ = 0. Then the eigenvalues of the shape
operator A are α and 0 and the multiplicity of the eigenvalue α is one.
Therefore we may write

AY = αu(Y )U (20.18)

and it follows
FAY = 0. (20.19)

Differentiating the last relation and using (15.20), it follows

F ((∇XA)Y − (∇Y A)X) + u(AY )AX − u(AX)AY = 0. (20.20)

Further, using (15.6), (15.7), (15.29) and (20.10), we obtain

F ((∇XA)Y − (∇Y A)X) = k(u(Y )X − u(X)Y ). (20.21)

Now, from (20.20) and (20.21), it follows

u(AX)AY − u(AY )AX = k(u(Y )X − u(X)Y ). (20.22)

Replacing Y by FY in the last relation, we obtain k = 0, that is, the ambient
manifold is a complex Euclidean space.

Finally, using (20.11), (20.18) and the Gauss equation (15.28), it follows
R(X,Y )Z = 0, that is, M is a locally Euclidean space. ��
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Now we consider the case when the ambient manifold M
n+p

2 is a complex
space form and when the CR submanifold M of maximal CR dimension satis-
fies (1) in Lemma 20.2, that is, the case when the distinguished normal vector
ξ is parallel with respect to the normal connection D which is induced from
∇, namely,

DXξ =
q∑

a=1

{sa(X)ξa + sa∗(X)ξa∗} = 0, (20.23)

from which it follows

sa = sa∗ = 0, a = 1, . . . , q. (20.24)

Therefore, using relations (15.14) and (15.15), we obtain

Aa∗ = FAa, Aa = −FAa∗ , a = 1, . . . , q, (20.25)

Aa∗U = 0 = AaU, a = 1, . . . , q, q =
p − 1

2
. (20.26)

Moreover, using (15.21) and (15.22), we obtain

AaF + FAa = 0, Aa∗F + FAa∗ = 0, a = 1, . . . , q. (20.27)

Further, we continue our investigation of the condition (20.1). Since this
condition is equivalent to (20.2), (20.3) and (20.4), using (20.25) and (20.27),
it follows

Aa = 0 = Aa∗ , a = 1, . . . , q.

Namely, we proved that the following lemma holds:

Lemma 20.3. Let M be a complete n-dimensional CR submanifold of CR
dimension n−1

2 of a complex space form. If the distinguished normal vector
field ξ is parallel with respect to the normal connection and if the condition
(20.1) is satisfied, then Aa = 0 = Aa∗ , a = 1, . . . , q, where Aa, Aa∗ are the
shape operators for the normals ξa, ξa∗ , respectively.

Combining this result with Theorem 14.3, we prove

Theorem 20.1. Let M be a complete n-dimensional CR submanifold of CR
dimension n−1

2 of a complex space form of nonnegative holomorphic sectional
curvature. If the distinguished normal vector field ξ is parallel with respect
to the normal connection and if the condition (20.1) is satisfied, then there
exists a totally geodesic complex space form M ′ of M such that M is a real
hypersurface of M ′.

Proof. First, we put N0(x) = {ξ ∈ T⊥
x (M)|Aξ = 0} and let H0(x) be the

maximal J-invariant subspace of N0(x), that is, H0(x) = JN0(x) ∩ N0(x).
Then, using Lemma 20.3 and Theorem 14.3, the submanifold M may be
regarded as a real hypersurface of C

n+1
2 , P

n+1
2 (C), which are totally geodesic

submanifolds in C
n+p

2 , P
n+p

2 (C), because here we consider only the case when
the ambient manifolds have nonnegative holomorphic sectional curvature. ��
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In what follows we denote C
n+1

2 , P
n+1

2 (C), by M ′ and by ı1 the immersion
of M into M ′ and by ı2 the totally geodesic immersion of M ′ into C

n+p
2 ,

P
n+p

2 (C), respectively. Then, from the Gauss formula (5.1), it follows that

∇′
X ı1Y = ı1∇XY + g(A′X,Y )ξ′,

where A′ is the corresponding shape operator and ξ′ is a unit normal vector
field to M in M ′. Consequently, using the Gauss formula (5.1) and ı = ı2 · ı1,
we derive

∇X ı2 ◦ ı1Y = ı2∇′
X ı1Y + h̄(ı1X, ı1Y )

= ı2(ı1∇XY + g(A′X,Y )ξ′), (20.28)

since M ′ is totally geodesic in C
n+p

2 , P
n+p

2 (C). Further, comparing relation
(20.28) with relation (5.1), it follows that ξ = ı2ξ

′ and A = A′. As M ′ is a
complex submanifold of C

n+p
2 , P

n+p
2 (C) with the induced complex structure

J ′, we have Jı2X
′ = ı2J

′X ′, X ′ ∈ T (M ′). Thus, from (15.2) it follows that

JıX = ı2J
′ı1X = ıF ′X + ν′(X)ı2ξ′ = ıF ′X + ν′(X)ξ (20.29)

and therefore, we conclude that F = F ′ and ν′ = u and since M , for which
condition (20.2) is fulfilled, is a real hypersurface of P

n+1
2 (C), C

n+1
2 , we

may use Theorems 16.3 and 16.4, and therefore, using Lemma 20.2 prove the
following theorem:

Theorem 20.2. [23] Let M be a complete n-dimensional CR submanifold
of maximal CR dimension of an n+p

2 -dimensional complex space form M of
nonnegative holomorphic sectional curvature. If the condition

h(FX, Y ) + h(X,FY ) = 0, for all X,Y ∈ T (M)

is satisfied, where F is the induced almost contact structure and h is the second
fundamental form of M , then one of the following statements holds:

(1) M is a complete n-dimensional CR submanifold of CR dimension n−1
2

of a complex Euclidean space C
n+p

2 , and then M is isometric to En, Sn,
S2k+1 × En−2k−1;

(2) M is a complete n-dimensional CR submanifold of CR dimension n−1
2

of a complex projective space P
n+p

2 (C), and then M is isometric to MC
k,l, for

some k, l satisfying 2k + 2l = n − 1.

Remark 20.1. When M is a complex hyperbolic space H
n+p

2 (C), the complete
classification is given in [23].
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Contact CR submanifolds of maximal CR
dimension

In this section we study CR submanifolds Mn of maximal CR dimension of a

complex space form M
n+p

2 which satisfy the condition

h(FX, Y ) − h(X,FY ) = g(FX, Y )η, η ∈ T⊥(M) (21.1)

for all X, Y ∈ T (M), where η does not have zero points.

For now, let (M,J, g) be a Kähler manifold. According to Lemma 15.1
and setting

η = ρξ +
q∑

a=1

(ρaξa + ρa∗
ξa∗),

we conclude that the condition (21.1) is equivalent to

AFX + FAX = ρFX, (21.2)
AaFX + FAaX = ρaFX, (21.3)

Aa∗FX + FAa∗X = ρa∗
FX, (21.4)

for all a = 1, . . . , q, q = p−1
2 , since F is a skew-symmetric endomorphism

acting on T (M). Here we also used relation (15.14).

Combining relations (4.4), (15.2), (15.26) and (21.2), we compute

du(X,Y ) = (∇Xu)(Y ) − (∇Y u)(X)
= g((FA + AF )X,Y )
= ρ g(FX, Y ). (21.5)

Then, since F has rank n − 1, we conclude

u ∧ du ∧ · · · ∧ du = 0. (21.6)

We recall the definition of a contact manifold. A manifold M2m+1 is said
to be a contact manifold if it carries a global one-form u such that
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u ∧ (du)m = 0 (21.7)

everywhere on M . The one-form u is called the contact form.

Relation (21.6) now proves

Proposition 21.1. If M is a CR submanifold of maximal CR dimension of
a Kähler manifold, which satisfies the condition (21.2), for ρ = 0, then M is
a contact manifold.

Further, using (21.5), (4.2) and (15.2), we obtain

du(X,Y ) = ρ g(FX, Y ) = ρg(ıFX, ıY )
= ρg(JıX, ıY ) = ρΩ(ı∗X, ı∗Y )
= ρı∗Ω(X,Y ), (21.8)

where ı∗ is the pull-back map which commutes with the exterior derivative.
Consequently, using (21.8), we compute dρ = 0 since

0 = d2u = dρ ∧ ı∗Ω + ρdı∗Ω = dρ ∧ ı∗Ω + ρı∗dΩ = dρ ∧ ı∗Ω,

which yields

Lemma 21.1. If Mn, n > 3 is a CR submanifold of maximal CR dimension
of a Kähler manifold, which satisfies the condition (21.2), then ρ is constant.

Lemma 21.2. Let M be an n-dimensional CR submanifold of maximal CR
dimension of a Kähler manifold M . If the condition (21.1) is satisfied, it
follows

FAa + AaF = 0, FAa∗ + Aa∗F = 0, (21.9)

that is, ρa = 0, ρa∗
= 0, a = 1, . . . , q.

Proof. Since the condition (21.1) is equivalent to (21.2), (21.3) and (21.4),
using (15.21) and (15.22), we get

ρag(FX, Y ) = sa(X)u(Y ) − sa(Y )u(X), (21.10)
ρa∗

g(FX, Y ) = sa∗(X)u(Y ) − sa∗(Y )u(X). (21.11)

Next, we put Y = U in (21.10) and (21.11) and use (15.7) to obtain

sa(X) = sa(U)u(X), sa∗(X) = sa∗(U)u(X). (21.12)

Substituting (21.12) into (15.21) and (15.22), we get (21.9). Finally, using
(21.3) and (21.4), we have ρa = 0 and ρa∗

= 0, for a = 1, . . . , q. ��

Remark 21.1. From Lemma 21.2, together with (21.1), we conclude that ρ
does not have zero points.
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Further, using (21.9) and (15.7), it follows

FAaU = 0, FAa∗U = 0. (21.13)

Therefore, using (21.13) and (15.6), we obtain

AaU = sa∗(U)U, Aa∗U = −sa(U)U. (21.14)

Further, if relation (21.2) holds at a point of the submanifold M , using
(15.6) and (15.7), we get that U is an eigenvector of the shape operator A
with respect to distinguished normal vector field ξ, at any point of M , namely,

AU = αU, (21.15)

where we have put α = u(AU). Namely, we proved

Lemma 21.3. Let M be an n-dimensional CR submanifold of maximal CR
dimension of a Kähler manifold M . If the condition (21.1) is satisfied, then U
is an eigenvector of the shape operator A with respect to distinguished normal
vector field ξ, at any point of M .

From now on we assume that the ambient manifold M is a complex space
form.

Using Ricci-Kühne formula (5.24), Gauss equation (5.22), relations (15.2)
and (15.5), we obtain

0 = ḡ(R(ıX, ıY )ξa, ξ) = g(AAaX,Y ) − g(AaAX,Y )
+ (∇Xsa)(Y ) − (∇Y sa)(X)

+
q∑

b=1

[sb(Y )sba(X) + sb∗(Y )sb∗a(X)

− sb(X)sba(Y ) − sb∗(X)sb∗a(Y )]. (21.16)

We now prove the following extremely useful

Lemma 21.4. Let M be a complete n-dimensional CR submanifold of CR
dimension n−1

2 of a complex space form. If the condition (21.1) is satis-
fied, then the distinguished normal vector field ξ is parallel with respect to the
normal connection.

Proof. Let us compute g((∇XAa∗)Y − (∇Y Aa∗)X,U) in the following two
ways. First, differentiating the relation (15.15) and using (15.25), (15.27),
(21.14) and (21.15), we obtain

g((∇XAa∗)Y,U) = g((∇XF )AaY,U) + g(F (∇XAa)Y,U) − (∇Xsa)(Y )
= −g(AaAX,Y ) + αsa∗(U)u(X)u(Y ) − (∇Xsa)(Y ). (21.17)

Reversing X and Y and subtracting thus yields
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g((∇XAa∗)Y − (∇Y Aa∗)X,U) = g((AAa − AaA)X,Y )
− (∇Xsa)(Y ) + (∇Y sa)(X). (21.18)

Substituting (15.31) into (21.18) and using (21.15), we obtain

g((AAa − AaA)X,Y ) − (∇Xsa)(Y ) + (∇Y sa)(X) = (21.19)
q∑

b=1

{sa∗b(X)g(AbY,U) − sa∗b(Y )g(AbX,U)}

+
q∑

b=1

{sa∗b∗(X)g(Ab∗Y,U) − sa∗b∗(Y )g(Ab∗X,U)}.

Now, using (15.15), (15.17), (15.19), relations (21.16) and (21.19) yield

g((AAa − AaA)X,Y ) = 0, for all X,Y ∈ T (M). (21.20)

Next, differentiating the second relation of (21.14) and using (15.27) and
(21.2), we obtain

g((∇XAa∗)Y − (∇Y Aa∗)X,U) + g((Aa∗FA + AFAa∗)X,Y ) (21.21)
= Y (sa(U))u(X) − X(sa(U))u(Y ) − ρ sa(U) g(FX, Y ).

Since g(FX,FY ) = g(X,Y ) − u(X)u(Y ), using (15.15), (15.17), (21.15) and
(21.12), we compute

g((Aa∗FA + AFAa∗)X,Y ) = g(AX,AaY ) − u(AX)u(AaY )
− g(AY,AaX) + u(AY )u(AaX)
= g(AX,AaY ) − g(AY,AaX)
+ g(AY,U)sa∗(U)u(X) − g(AX,U)sa∗(U)u(Y )
= g((AaA − AAa)X,Y ). (21.22)

Codazzi equation (15.31), together with (15.18), (15.17) and (21.15), yields

g((∇XAa∗)Y − (∇Y Aa∗)X,U) =
q∑

b=1

{sa∗b(X)sb∗(Y ) − sa∗b(Y )sb∗(X)}

+
q∑

b=1

{sa∗b∗(Y )sb(X) − sa∗b∗(X)sb(Y )}. (21.23)

Now, using (21.22) and (21.23), relation (21.21) reads

q∑

b=1

{sa∗b(X)sb∗(Y ) − sa∗b(Y )sb∗(X) − sa∗b∗(X)sb(Y ) + sa∗b∗(Y )sb(X)}

+g((AaA − AAa)X,Y ) = Y (sa(U))u(X) − X(sa(U))u(Y )
− ρsa(U)g(FX, Y ). (21.24)
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Further, replacing Y by U in relation (21.24) and using (21.12), we obtain

X(sa(U)) = U(sa(U))u(X) −
q∑

b=1

{sa∗b(X)sb∗(U) − sa∗b∗(X)sb(U)

− u(X) [sa∗b(U)sb∗(U) + sa∗b∗(U)sb(U)]}, (21.25)

since, using (21.14) and (21.15), we compute g((AaA−AAa)X,U) = 0. Com-
bining relation (21.25) with (21.24) and using (21.12), we get

g((AAa − AaA)X,Y ) = ρsa(U)g(FX, Y ). (21.26)

Thus (21.20) and (21.26) imply sa(U) = 0 and consequently, from (21.12) we
conclude sa(X) = 0. In entirely the same way, we obtain sa∗ = 0, which
completes the proof. ��

Remark 21.2. A slight change in the proof of (21.20), implies

g((AAa∗ − Aa∗A)X,Y ) = 0, for all X,Y ∈ T (M). (21.27)

Further, using (21.15) and (15.27), we calculate directly

(∇XA)U = (Xα)U + αFAX − AFAX

and, since A is a symmetric operator, taking the inner product of (∇XA)U
with Y , we obtain

g((∇XA)Y,U) = (Xα)u(Y ) + αg(FAX, Y ) − g(AFAX,Y ). (21.28)

Then, interchanging X and Y in (21.28) and subtracting, gives

g((∇XA)Y − (∇Y A)X,U) = (Xα)u(Y ) − (Y α)u(X) (21.29)
+ α(g(FAX, Y ) − g(FAY,X)) − g(AFAX,Y ) + g(AFAY,X).

Since M is a CR submanifold of a complex space form, the Codazzi equation
(15.29), Lemma 21.4 and relation (21.29) imply

(Xα)u(Y ) − (Y α)u(X) + αg((FA + AF )X,Y )
− 2g(AFAX,Y ) = −2kg(FX, Y ). (21.30)

If we set Y = U in (21.30), we get Xα = βu(X), where β = Uα, that is,

grad α = βU. (21.31)

Taking the covariant derivative of (21.31), reversing X and Y and subtracting
the two equations and using (21.2), we obtain

0 = g(∇Y grad α,X) − g(∇Xgrad α, Y )
= (Y β)u(X) − (Xβ)u(Y ) + ρ β g(FY,X). (21.32)
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Replacing Y by U in (21.32), we get Xβ = (Uβ)u(X) and substituting this
into (21.32), we have ρβg(FX, Y ) = 0. Since ρ = 0, we conclude β = 0. This,
together with (21.31), implies that α is constant and we have thus proved

Lemma 21.5. Let M be a complete n-dimensional CR submanifold of CR
dimension n−1

2 of a complex space form. If the condition (21.1) is satisfied,
then the eigenvalue α = u(AU), corresponding to U , is constant.

Consequently, since α is constant, relation (21.30) becomes

α(FA + AF )X − 2AFAX = −2kFX. (21.33)

Applying F to relation (21.33) and using (21.2), we obtain

2A2X − 2ρAX + (αρ + 2k)X − (2α2 − αρ + 2k)u(X)U = 0, (21.34)

and we are thus led to the following

Lemma 21.6. Let M be a complete n-dimensional CR submanifold of CR
dimension n−1

2 of a complex space form. If the condition (21.1) is satisfied,
then A has at most three distinct eigenvalues and they are constant.

Proof. On account of Lemma 21.4 and Lemma 21.5, we know that α is a con-
stant eigenvalue, corresponding to the eigenvector U . Since A is a symmetric
operator, let X be another eigenvector with the corresponding eigenvalue λ.
Then, according to (21.34), it follows

2λ2 − 2ρλ + (αρ + 2k) = 0 (21.35)

since X ⊥ U . Thus A has at most three distinct eigenvalues which are all
constant. ��

Now, using Lemma 21.4 and relation (15.15), it follows Aa∗ = FAa. Com-
bining this with relation (21.27) and (21.9), we obtain

AaFAY + AFAaY = 0,

for any tangent vector Y . Therefore, using (21.2), (21.9) and (21.20), we
conclude

ρAaFY − 2AaAFY = 0. (21.36)

For another eigenvector X, orthogonal to U , with the corresponding eigen-
value λ, since X can be written as X = FY and AFY = λFY = λX, we can
rewrite (21.36) as

(ρ − 2λ)Aa X = 0. (21.37)

First we consider the case when one of the eigenvalues λ is different from
ρ
2 . It follows from (21.37) that AaX = 0 for all X ⊥ U . Further, using (15.18)
and Lemma 21.4, it follows
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g(AaU, Y ) = sa∗(Y ) = 0, for all Y ∈ T (M)

and therefore AaU = 0. Hence, taking into account that AaX = 0, for all X
orthogonal to U , it follows Aa = 0 for a = 1, . . . , q.

Using this procedure, the proof of Aa∗ = 0, a = 1, . . . , q is essentially the
same, and so we omit it. Hence, the following lemma holds:

Lemma 21.7. Let M be a complete n-dimensional CR submanifold of CR di-
mension n−1

2 of an n+p
2 -dimensional complex space form M . If the condition

(21.1) is satisfied and ρ = 2λ, where X is another eigenvector of A, orthogonal
to U , with the corresponding eigenvalue λ, then Aa = 0 = Aa∗ , a = 1, . . . , q,
q = p−1

2 , where A, Aa, Aa∗ are the shape operators for the normals ξ, ξa, ξa∗ ,
respectively.

Making use of this result, we prove

Theorem 21.1. Let M be a complete n-dimensional CR submanifold of CR
dimension n−1

2 of a complex projective space P
n+p

2 (C) (respectively a com-
plex Euclidean space C

n+p
2 ). If the condition (21.1) is satisfied and ρ = 2λ,

where X is another eigenvector of A, orthogonal to U , with the correspond-
ing eigenvalue λ, then there exists a totally geodesic complex projective sub-
space P

n+1
2 (C) (respectively complex subspace C

n+1
2 ) of P

n+p
2 (C) (respectively

C
n+p

2 ) such that M is real hypersurface of P
n+1

2 (C) (respectively C
n+1

2 ).

Proof. First, let us define

N0(x) = {ξ ∈ T⊥
x (M)|Aξ = 0}

and let H0(x) be the maximal J-invariant subspace of N0(x), that is,

H0(x) = JN0(x) ∩ N0(x).

Then, using Lemma 21.10, it follows

N0(x) = span {ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}.

Since Jξa = ξa∗ , we have JN0(x) = N0(x) and consequently

H0(x) = JN0(x) ∩ N0(x) = span {ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}.

Hence the orthogonal complement H1(x) of H0(x) in T⊥
x (M) is spanned by

ξ, which is parallel with respect to the normal connection, by Lemma 21.4.
Therefore, we can apply the codimension reduction theorems (see Section 14).

If M is a complex projective space, applying Theorem 14.3 we conclude
that there exists a real (n+1)-dimensional totally geodesic complex projective
subspace P

n+1
2 (C), such that M is a real hypersurface of it.
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If M is a complex Euclidean space, applying Theorem 14.1 we conclude
that there exists a real (n + 1)-dimensional totally geodesic Euclidean space
En+1, such that M is a real hypersurface of it. Since T (En+1) = T (M) ⊕ ξ,
we have

X ′ = ıX + aξ, for X ′ ∈ T (En+1), X ∈ T (M),

Then, by (15.2) and (15.5), it follows

JX ′ = JıX + Jaξ = ıFX + u(X)ξ − aıU ∈ T (M) ⊕ ξ = T (En+1).

and we conclude that En+1 is J-invariant and therefore complex. Conse-
quently, there exists a real (n + 1)-dimensional totally geodesic complex Eu-
clidean subspace of C

n+1
2 , such that M is its real hypersurface. ��

Therefore, we can apply the results of real hypersurface theory. Namely,
using Theorem 21.1, the submanifold M can be regarded as a real hypersurface
of P

n+1
2 (C) (respectively C

n+1
2 ), which is a totally geodesic submanifold in

P
n+p

2 (C) (respectively C
n+p

2 ). In what follows we denote by ı1 the immersion
of M into P

n+1
2 (C) (respectively C

n+1
2 ), and by ı2 the totally geodesic im-

mersion of P
n+1

2 (C) (respectively C
n+1

2 ) into P
n+p

2 (C) (respectively C
n+p

2 ).
Then, from the Gauss formula (5.1), it follows

∇′
X ı1Y = ı1∇XY + g(A′X,Y )ξ′,

where ξ′ is a unit normal vector field to M in P
n+1

2 (C) (respectively C
n+1

2 )
and A′ is the corresponding shape operator. Consequently, by using the Gauss
formula and ı = ı2 · ı1, we derive

∇X ı2 ◦ ı1Y = ı2∇′
X ı1Y + h̄(ı1X, ı1Y ) = ı2(ı1∇XY + g(A′X,Y )ξ′) (21.38)

since P
n+1

2 (C)(respectively C
n+1

2 ) is totally geodesic in P
n+p

2 (C) (respec-
tively C

n+p
2 ). Further, comparing relation (21.38) with relation (5.1), it fol-

lows that ξ = ı2ξ
′ and A = A′. As P

n+1
2 (C) (respectively C

n+1
2 ) is a com-

plex submanifold of P
n+p

2 (C) (respectively C
n+p

2 ), with the induced complex
structure J ′, we have

Jı2X
′ = ı2J

′X ′, X ′ ∈ T (P
n+1

2 (C)).

Thus, from (15.2) it follows

JıX = ı2J
′ı1X = ıF ′X + ν′(X)ı2ξ′ = ıF ′X + ν′(X)ξ

and therefore, we conclude that F = F ′ and ν′ = u.

Further, we suppose that the ambient manifold is a complex Euclidean
space. Then, we have
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Theorem 21.2. [21] Let M be a complete n-dimensional CR submanifold of
maximal CR dimension of a complex Euclidean space C

n+p
2 . If the condition

h(FX, Y ) − h(X,FY ) = g(FX, Y )η, η ∈ T⊥(M)

is satisfied, where F and h are the induced almost contact structure and the
second fundamental form of M , respectively, then M is congruent to one of
the following:

Sn, S
n−1

2 × E
n+1

2 ,

or there exists a geodesic hypersphere Sn+p−1( 1
|α| ) of C

n+p
2 such that M is an

invariant submanifold by the almost contact structure F ′ of the hypersphere
Sn+p−1( 1

|α| ).

Proof. We first consider the case ρ = 2λ. Then, by Theorem 21.1, M and A

are respectively regarded as a hypersurface of C
n+1

2 and its shape operator
in C

n+1
2 . Hence, using Lemma 21.6 and Theorem 11.4, we conclude that M

must be one of Sn, En and Sr × En−r. However, from (21.2), it follows that
En cannot satisfy the condition (21.1). Now, let us determine the dimension
r of the component Sr of Sr ×En−r. Using Theorem 11.3, it follows that one
principal curvature must be 0, which is a solution of (21.35). Since k = 0 and
ρ = 0, α = 0 and the principal curvatures are ρ and 0. Moreover, it is easily
seen that FD0 = Dρ, FDρ = D0, where

D0 = {X ∈ T (M)|AX = 0, X ⊥ U},
Dρ = {X ∈ T (M)|AX = ρX}.

Hence, dim D0 = dim Dρ = n−1
2 . The components Sr and En−r are the

integral manifolds of Dρ and D0 ⊕ span {U}, r = n−1
2 , respectively.

Next, we consider the case when ρ = 2λ. Then, substituting this into
(21.35), we have λ(λ − α) = 0, since k = 0. Moreover, using the fact that
λ = ρ

2 = 0, we conclude that the shape operator A has only one eigenvalue α,
and therefore, M lies on a hypersphere Sn+p−1( 1

|α| ).

Finally we prove that M is an invariant submanifold by the almost contact
structure F ′ of Sn+p−1. Denoting by ı0 the immersion of Sn+p−1 into C

m+p
2 ,

we have
Jı0X̃ = ı0F̃ X̃ + ũ(X̃)ξ ,

for any X̃ ∈ T (S), since ξ is also unit normal to Sn+p−1 in C
m+p

2 . Here
(F̃ , ũ, ξ) is the induced contact structure of Sn+p−1. If X̃ = ı′X, where ı′ is
immersion of M into Sn+p−1, we have

Jı0 ◦ ı′X = ı0F̃ ı′X + ũ(ı′X)ξ.

Comparing the tangential and normal part, and using (15.2), for ı = ı0 · ı′,
we conclude u(X) = ũ(ı′X) and F̃ ı′X = ı′FX . This shows that M is an
invariant submanifold of Sn+p−1 and u is the restriction of the contact form
ũ of Sn+p−1. ��
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Further, in the case when the ambient manifold is a complex projective
space P

n+p
2 (C), the theorem to be proved is the following

Theorem 21.3. [25] Let M be a complete n-dimensional CR submanifold of
maximal CR dimension of a complex projective space P

n+p
2 (C) which satisfies

the condition

h(FX, Y ) − h(X,FY ) = g(FX, Y )η, η ∈ T⊥(M) (21.39)

for all X, Y ∈ T (M), where η does not have zero points. Then one of the
following holds:

(1) M is congruent to a geodesic hypersphere MC
0,k for k = n−1

2 ;

(2) M is congruent to M(n, θ);

(3) there exists a geodesic hypersphere S of P
n+p

2 (C) such that M is an
invariant submanifold by the almost contact structure F ′ of S.

We begin by proving

Lemma 21.8. Let M be an n-dimensional CR submanifold of maximal CR
dimension of a complex projective space P

n+p
2 (C) which satisfies the condition

(21.1). Then the multiplicity of the eigenvalue α is one.

Proof. First we consider the case that ρ = 2λ. Then, by Theorem 21.1, M and
A are respectively regarded as a real hypersurface of P

n+1
2 (C) and the shape

operator of M in P
n+1

2 (C). Let X ⊥ U be an eigenvector of A corresponding
to the eigenvalue α. Then from (21.2), we obtain that FX is an eigenvector
of A corresponding to ρ − α. Since, using Lemma 21.9, it follows that A has
at most three distinct eigenvalues, we conclude ρ−α = α or ρ−α = λ, where
λ is the solution of (21.35). Therefore, let ρ − α = λ. Then, substituting
this into (21.35) we obtain 2α2 − ρα + 2 = 0. Using (21.35) again, we get
λ = α or λ = ρ − α. Thus solutions of (21.35) are α and ρ − α. This means
that A has only two distinct eigenvalues. Since A is regarded as the shape
operator of a real hypersurface in P

n+1
2 (C), we can apply Lemma 19.8, more

precisely Remark 19.1, and obtain that the multiplicity of α is 1, which is a
contradiction.

Next we consider the case ρ = 2λ, where X is an eigenvector of A with
corresponding eigenvalue λ = α. Let the multiplicity of α be r. Then

trace A = rα + (n − r)
ρ

2
. (21.40)

Using (21.2) and (15.6) we get

− AX + u(AX)U + FAFX = ρ(−X + u(X)U). (21.41)

Taking the trace of (21.41), we obtain



21 Contact CR submanifolds of maximal CR dimension 149

trace A =
ρ

2
(n − 1) + α. (21.42)

Using (21.40) and (21.42), we get

(r − 1)(α − ρ

2
) = 0.

Since α = ρ
2 , it follows r = 1. ��

Proof of Theorem 21.3. Lemma 21.8 shows that as a real hypersur-
face of P

n+1
2 (C), M has at most three distinct principal curvatures and the

multiplicity of the eigenvalue α is 1.

If M has only two distinct principal curvatures, by Theorem 19.3, M is a
geodesic hypersphere MC

0,k for k = n−1
2 .

If M has three distinct principal curvatures λ1, λ2 and α, by Lemma 16.3,
as a hypersurface of Sn+2, π−1(M) has four principal curvatures λ1, λ2, μ
and − 1

μ with respective multiplicities n−1
2 , n−1

2 , 1 and 1. Thus, by Remark
12.1, π−1(M) is congruent to M ′(n, θ) and M = πM ′(n, θ) = M(n, θ).

Hence, when ρ = 2λ, M is congruent to MC
k,0 for k = n−1

2 or to M(n, θ).

Next we consider the case ρ = 2λ. Let X be an eigenvector of A with
corresponding eigenvalue λ = α. Using (21.2), we conclude that

AFX = (ρ − λ)FX,

namely, it follows that FX is an eigenvector with the corresponding eigenvalue
ρ − λ = 2λ − λ = λ. Therefore, the only eigenvalues of A are α and λ = ρ

2 .
Hence, from Theorem 19.2, it follows that there exists a geodesic hypersphere
S of P

n+p
2 (C) such that M lies on S.

We can now proceed analogously to the proof of Theorem 21.2 and con-
clude that M is F ′ invariant, which completes the proof of Theorem 21.3.

�

Remark 21.3. The case when the ambient manifold M is a complex hyperbolic
space H

n+p
2 (C) is studied and the complete classification is given in [26] while

the main results appear in [22].
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Invariant submanifolds of real hypersurfaces of
complex space forms

In Remark 15.1 we recalled that real hypersurfaces of a complex manifold
admit a naturally induced almost contact structure F ′ from the almost com-
plex structure of the ambient manifold. In Theorem 21.3 we proved that if
M is a complete n-dimensional CR submanifold of maximal CR dimension of
a complex projective space P

n+p
2 (C) satisfying the condition (21.1), then M

is congruent to a geodesic hypersphere MC
0,k for k = n−1

2 , or to M(n, θ), or

there exists a geodesic hypersphere S of P
n+p

2 (C) such that M is an invari-
ant submanifold by the almost contact structure F ′ of S. It is easy to check
that for the geodesic hypersphere MC

0,k for k = n−1
2 , the following relation is

satisfied:

A′F ′ + F ′A′ = ρF ′, (22.1)

where A′ is its shape operator. An easy computation, using Lemma 3.4 in
[56], shows that M(n, θ) also satisfies relation (22.1).

Consequently, it appears interesting to solve the following problem

Does an F ′-invariant submanifold of a geodesic hypersphere S of a complex
space form satisfy the condition (21.1)?

First, we prove that any odd-dimensional F ′-invariant submanifold of a
real hypersurface of a complex manifold M is a CR submanifold of maximal
CR dimension. Considering this problem, it is natural to continue exploring
Example 15.3 with more details.

Let M be a real (m+1)-dimensional complex manifold with natural almost
complex structure J and a Hermitian metric g.

We consider a real hypersurface M ′ of M and an n-dimensional submani-
fold M of M ′ with immersions ı1 and ı0, respectively. Then M is a submani-
fold of M with the immersion ı = ı1ı0. The Riemannian metric g′ of M ′ and
g of M are induced from the Hermitian metric g of M in such a way that
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g′(X ′, Y ′) = g(ı1X ′, ı1Y
′), for X ′, Y ′ ∈ T (M ′),

g(X,Y ) = g′(ı0X, ı0Y ) = g(ıX, ıY ), for X,Y ∈ T (M).

Let us denote by ξ the unit normal local field to M ′ in T (M). Since a real
hypersurface is a CR submanifold of maximal CR dimension (see Example
15.1), using the results of Section 15, it follows that M ′ is endowed with
the induced almost contact structure (F ′, u′, U ′) which satisfies (15.6), (15.7),
(15.9) and (15.27).

Now, let us assume that M is invariant under the action of the almost
contact tensor F ′, that is, F ′T (M) ⊂ T (M), for the tangent bundle T (M).
Consequently, if we denote by U⊥ the normal part of U ′ in M ′, we may write

F ′ı0X = ı0FX, U ′ = ı0U + U⊥, (22.2)

where F is an endomorphism acting on T (M) and we can deduce

Proposition 22.1. For an F ′-invariant submanifold M of M ′, only the fol-
lowing two cases for the vector field U ′ can occur:

(1) U ′ is always tangent to M and M is necessarily odd-dimensional.

(2) U ′ is never tangent to M and M is necessarily even-dimensional.

Proof. From (15.6) and (22.2), it follows

F ′2ı0X = −ı0X + u′(ı0X)ı0U + u′(ı0X)U⊥,

F ′2ı0X = F ′ı0FX = ı0F
2X.

Comparing the tangential part and normal part of the above equations, we
conclude

F 2X = −X + u′(ı0X)U, u′(ı0X)U⊥ = 0. (22.3)

If u′(ı0X) = 0 is satisfied at a point x of M , the first equation of (22.3)
reads F 2X = −X. Thus, F is an almost complex structure and M is even-
dimensional. Moreover, from

0 = u′(ı0X) = g′(U ′, ı0X) = g′(ı0U + U⊥, ı0X) = g(U,X),

for all X ∈ T (M), we conclude U = 0. Therefore, using (22.2), it follows
U ′ = U⊥, which shows that U ′ is never tangent to M .

If u′(ı0X) = 0 at some point x ∈ M , then it follows from (22.3) that
U⊥ = 0 at x ∈ M , that is, U ′ = ı0U . This shows that U ′ is always tangent
to M and from (22.3) we conclude

F 2X = −X + g(U,X)U.

Using the notation Dx = {X ∈ Tx(M) : g(X,U) = 0}, we conclude
that F acts as an almost complex structure on Dx and therefore, Dx is even-
dimensional. Consequently,
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Tx(M) = Dx ⊕ span{U}

and M is odd-dimensional, which completes the proof. ��

For an odd-dimensional submanifold M , using U ′ = ı0U , we compute

1 = g′(U ′, U ′) = g′(ı0U, ı0U) = g(U,U),
F 2X = −X + u′(ı0X)U = −X + g′(U ′, ı0X)U = −X + g(U,X)U,

0 = F ′U ′ = F ′ı0U = ı0FU,

and, consequently, FU = 0. Hence, if we define the one-form u on M by
u(X) = g(U,X), then u(X) = u′(ı0X) and (F, u, U) defines an almost contact
structure on M .

Further, let ξ′1, . . . , ξ
′
p (p = m− n) denotes the orthonormal normal frame

field to M in M ′. Since

g′(F ′ξ′a, ı0X) = −g′(ξ′a, F ′ı0X) = −g′(ξ′a, ı0FX) = 0,

we conclude that the normal space span{ξ′1, . . . , ξ′p}x is an F ′-invariant sub-
space of Tx(M ′) at each point x ∈ M . Hence we may write

F ′ξ′a =
p∑

b=1

Pabξ
′
b.

Now, we consider the submanifold M of M ′ as a submanifold of a complex
manifold M . We choose an orthonormal normal frame ξ1, . . . , ξp+1 of M in
M in such a way that

ξp+1 = ξ, ξa = ı1ξ
′
a, a = 1, . . . , p.

Then, from the above discussions, we easily conclude

JıX = ıFX + u(X)ξ, (22.4)
Jξ = −ıU, (22.5)

Jξa = Jı1ξ
′
a = ı1F

′ξ′a =
p∑

b=1

Pabξb, a = 1, . . . , p. (22.6)

This shows that span{ξ1, . . . , ξp}x is a J-invariant subspace of Tx(M).

Denoting by ∇ and ∇′ the Riemannian connections of M and M ′, respec-
tively, the Gauss formula (5.1) yields

∇′
X ı0Y = ı0∇XY +

p∑

a=1

g(A′
aX,Y )ξ′a, (22.7)

where A′
a’s are the shape operators of M with respect to ξ′a. We denote by

A and Aa (a = 1, . . . , p), the shape operators of M with respect to ξ and ξa,
respectively. Then,
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∇X ıY = ı∇XY + g(AX,Y )ξ +
p∑

a=1

g(AaX,Y )ξa, (22.8)

where ∇ is the Riemannian connection of M . On the other hand, using (5.1)
and (22.7), we compute

∇X ıY = ∇X ı1ı0Y = ı1∇′
X ı0Y + g′(A′ı0X, ı0Y )ξ

= ı1(ı0∇XY +
p∑

a=1

g(A′
aX,Y )ξ′a) + g′(A′ı0X, ı0Y )ξ

= ı∇XY + g′(A′ı0X, ı0Y )ξ +
p∑

a=1

g(A′
aX,Y )ξa. (22.9)

Comparing (22.8) and (22.9), we conclude

g(AX,Y ) = g′(A′ı0X, ı0Y ), g(AaX,Y ) = g(A′
aX,Y ), (22.10)

from which it follows Aa = A′
a for a = 1, . . . , p.

The Weingarten formulae (5.6) for M are

∇Xξ = −ıAX +
p∑

a=1

sa(X)ξa

= ı1(−ı0AX +
p∑

a=1

sa(X)ξ′a) (22.11)

∇Xξa = −ıAaX − sa(X)ξ +
p∑

b=1

sab(X)ξb, (22.12)

where sa = sp+1 a, sab are the components of the third fundamental form of
M in M and a = 1, . . . , p. On the other hand,

∇Xξ = −ı1A
′ı0X, (22.13)

∇Xξa = ı1∇′
Xξ′a + g′(A′ı0X, ξ′a)ξ

= −ıA′
aX +

p∑

b=1

s′ab(X)ξb + g′(A′ı0X, ξ′a)ξ, (22.14)

where we denote by s′ab the components of the third fundamental form of M
in M ′ and a = 1, . . . , p. Comparing the tangential part and normal part of
the equations (22.11)–(22.14), we obtain

A′ı0X = ı0AX −
p∑

a=1

sa(X)ξ′a,

sa(X) = −g′(A′ı0X, ξ′a), s′ab = sab. (22.15)
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Now, let M be a Kähler manifold. Then differentiating (22.5) covariantly
and using (22.6), (22.8), (22.11) and (22.4), we compute

J∇Xξ = −∇X ıU

= −ı∇XU − g(AX,U)ξ −
p∑

a=1

g(AaX,U)ξa,

J∇Xξ = J(−ıAX +
p∑

a=1

sa(X)ξa)

= −ıFAX − u(AX)ξ +
p∑

a,b=1

sa(X)Pabξb

and consequently it follows

∇XU = FAX, g(AaX,U) = −
p∑

b=1

sb(X)Pba. (22.16)

Let R and R′ denote the curvature tensors of M and its hypersurface M ′,
respectively. Then the Gauss equation (5.22) and the Codazzi equation (5.23)
for the normals ξa, a = 1, . . . , p of M in M yield

g(R(ı1X ′, ı1Y
′)ı1Z ′, ı1W

′) = g′(R′(X ′, Y ′)Z ′,W ′) − g′(A′Y ′, Z ′)g′(A′X ′,W ′)
+ g′(A′X ′, Z ′)g′(A′Y ′,W ′), (22.17)

g(R(ıX, ıY )ıZ, ξa) = g((∇XAa)Y − (∇Y Aa)X,Z)
+ sa(X)g(AY,Z) − sa(Y )g(AX,Z) (22.18)

+
p∑

b=1

{sba(X)g(AbY,Z) − sba(Y )g(AbX,Z)}.

Now, let the ambient manifold M be a complex space form. Then its
curvature tensor R is given by (9.21), for some constant k and therefore

g(R(ıX, ıY )ıZ, ξa) = 0, (22.19)

since span{ξ1, . . . , ξp} is J-invariant. Consequently, using (22.18) and (22.19),
it follows

(∇XAa)Y − (∇Y Aa)X = sa(Y )AX − sa(X)AY

+
p∑

b=1

{sab(X)AbY − sab(Y )AbX}. (22.20)

Now we consider the case when the shape operator A′ of the real hyper-
surface M ′ has the form

A′X ′ = αX ′ + βu′(X ′)U ′, (22.21)

and we prove the following
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Theorem 22.1. Let M ′ be a real hypersurface of a nonflat complex space
form whose shape operator A′ has the form (22.21) and let M be an F ′-
invariant submanifold of M ′. Then U ′ is always tangent to M and M is
odd-dimensional.

Proof. Suppose, contrary to our claim, that U ′ is not tangent to M . Then,
using the second equation of (22.3), we compute

0 = u′(ı0X) = g′(U ′, ı0X) = g′(ı0U + U⊥, ı0X) = g(U,X),

for all X ∈ T (M) and we conclude U = 0 and U ′ = U⊥. Therefore, let us
choose the other normals in such a way that ξ′1 = U ′ and that AU ′ denotes
the shape operator for the normal U ′. Since the shape operator A′ has the
form given by (22.21), using relations (15.7) and (15.27), we compute

∇′
XU ′ = F ′A′ı0X = F ′(αı0X + βu′(ı0X)U ′) = αF ′ı0X = αı0FX.

On the other hand, using the Weingarten formula (5.6) for the normal U ′, we
have

∇′
XU ′ = −ı0AU ′X +

p∑

a=2

sUa(X)ξ′a.

Comparing the above two equations, we conclude AU ′X = −αFX. Since AU ′

is symmetric and F is skew-symmetric, it follows α = 0 and consequently,
using (15.7), (15.27), we compute

A′X ′ = βu′(X ′)U ′, ∇′
XU ′ = 0. (22.22)

Since M is a complex space form, using (9.21), (15.2), (22.17) and (22.22),
we obtain

R′(X ′, Y ′)Z ′ = k{g′(Y ′, Z ′)X ′ − g′(X ′, Z ′)Y ′ + g′(F ′Y ′, Z ′)F ′X ′

− g′(F ′X ′, Z ′)F ′Y ′ − 2g′(F ′X ′, Y ′)F ′Z ′}

and consequently

R′(X ′, Y ′)U ′ = k{g′(Y ′, U ′)X ′ − g′(X ′, U ′)Y ′}. (22.23)

On the other hand, the second equation of (22.22) implies

R′(X ′, Y ′)U ′ = 0.

Consequently, using (22.23), it follows k = 0, which is a contradiction, since
we have assumed that the ambient manifold M is nonflat. Therefore, U ′ is
tangent to M . Repeating the same procedure as at the end of the proof of
Proposition 22.1, we conclude that M is odd-dimensional, which completes
the proof. ��
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Remark 22.1. An obvious question to ask is

Does the assertion of Theorem 22.1 continue to hold when the ambient
manifold M is a complex Euclidean space?

We construct here a counterexample.

Example 22.1. Let M ′ be a real hypersurface of Cn+1 defined by

M ′ = Cn × S1 = {(z1, . . . , zn, e
√
−1θ) ∈ Cn+1}

= {(x1, y1, . . . , xn, yn, cos θ, sin θ) ∈ E2n+2},

where zi = xi +
√
−1yi, i = 1, . . . , n. We note that the defining function f of

M ′ is

f(x1, y1, . . . , xn, yn, xn+1, yn+1) = (xn+1)2 + (yn+1)2 − 1. (22.24)

With respect to local coordinates (u1, . . . , u2n, θ) of M ′, we compute

∂xi

∂u2j−1
=

∂yi

∂u2j
= δi

j , j, i = 1, . . . , n

∂xi

∂u2j
=

∂yi

∂u2j−1
= 0, j, i = 1, . . . , n

∂xi

∂θ
=

∂yi

∂θ
= 0, i = 1, . . . , n

∂xn+1

∂u2j−1
=

∂xn+1

∂u2j
=

∂yn+1

∂u2j−1
=

∂yn+1

∂u2j
= 0, j = 1, . . . , n

∂xn+1

∂θ
= − sin θ,

∂yn+1

∂θ
= cos θ. (22.25)

For the immersion ı1 : M ′ → E2n+2, we have

ı1

(
∂

∂u2j−1

)
=

n+1∑

k=1

(
∂xk

∂u2j−1

∂

∂xk
+

∂yk

∂u2j−1

∂

∂yk

)
=

∂

∂xj
, (22.26)

ı1

(
∂

∂u2j

)
=

∂

∂yj
, (22.27)

ı1

(
∂

∂θ

)
= − sin θ

∂

∂xn+1
+ cos θ

∂

∂yn+1
. (22.28)

Further, using the defining function (22.24), we compute

grad f =
n+1∑

i=1

(
∂f

∂xi

∂

∂xi
+

∂f

∂yi

∂

∂yi

)

= 2
(

xn+1 ∂

∂xn+1
+ yn+1 ∂

∂yn+1

)
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and consequently |grad f |2 = 4. Hence the unit normal vector field ξ is given
by

ξ = xn+1 ∂

∂xn+1
+ yn+1 ∂

∂yn+1
= cos θ

∂

∂xn+1
+ sin θ

∂

∂yn+1
(22.29)

and therefore

Jξ = − sin θ
∂

∂xn+1
+ cos θ

∂

∂yn+1
= −ı1U

′. (22.30)

Comparing (22.28) and (22.30), we deduce that

U ′ = − ∂

∂θ
. (22.31)

Now, let M be a submanifold of M ′ with the immersion ı0 defined by

M = {(x1, y1, . . . , xr, yr, 0, . . . , 0, cos θ, sin θ)| θ = const.}.

For a local coordinate system (v1, . . . , v2r) of M , we have

xi = u2i−1 = v2i−1, yi = u2i = v2i, i = 1, . . . , 2r

and

ı0

(
∂

∂v2i−1

)
=

∂

∂u2i−1
, ı0

(
∂

∂v2i

)
=

∂

∂u2i
. (22.32)

Let g′ denote the induced metric from the Euclidean metric 〈, 〉 of the ambient
manifold E2n. Then, for i = 1, . . . , 2r, using (22.26), (22.28), (22.31), (22.32)
we compute

g′
(

ı0

(
∂

∂v2i−1

)
, U ′

)
= g′

(
ı0

(
∂

∂v2i−1

)
,− ∂

∂θ

)

= −
〈

ı1

(
∂

∂u2i−1

)
, ı1

(
∂

∂θ

)〉

= −
〈

∂

∂xi
,− sin θ

∂

∂xn+1
+ cos θ

∂

∂yn+1

〉
= 0.

By a similar argument, it follows

g′
(

ı0

(
∂

∂v2i

)
, U ′

)
= 0

and we conclude that U ′ is normal to M .

Now, using relation (22.29) we compute

∇E
∂

∂ui
ξ = ∇E

∂

∂vi
ξ = 0, (22.33)

∇E
∂

∂θ
ξ = ı1

(
∂

∂θ

)
= −ı1U

′, (22.34)
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where ∇E is the covariant derivative in Cn+1. On the other hand, for the
hypersurface M ′, the Weingarten formula (5.6) implies

∇E
X′ξ = −ı1A

′X ′, (22.35)

where A′ is the shape operator with respect to the normal vector field ξ. Using
(22.33), (22.34) and (22.35), it follows

A′U ′ = −U ′, (22.36)
A′X ′ = 0, for X ′ ⊥ U ′. (22.37)

Therefore, decomposing X ′ as X ′ = Y ′ + aU ′, where Y ′ ⊥ U ′, using (22.36)
and (22.37), we compute A′X ′ = −aU ′ and a = −g′(A′X ′, U ′). Consequently,
the shape operator A′ has the form (22.21), namely,

A′X ′ = −g′(U ′,X ′)U ′.

In order to prove that M is F ′-invariant, using (22.26), (22.27), (22.32),
we note the following:

ı

(
∂

∂v2i−1

)
= ı1ı0

(
∂

∂v2i−1

)
= ı1

(
∂

∂u2i−1

)
=

∂

∂xi
,

ı

(
∂

∂v2i

)
= ı1ı0

(
∂

∂v2i

)
= ı1

(
∂

∂u2i

)
=

∂

∂yi
.

On the other hand, since U ′ is normal to M , using (22.27) and (22.32), we
obtain

∂

∂yi
= J

∂

∂xi
= Jı1ı0

(
∂

∂v2i−1

)

= ı1F
′ı0

(
∂

∂v2i−1

)
+ g′

(
∂

∂v2i−1
, U ′

)
ξ

= ı1F
′ı0

(
∂

∂v2i−1

)
. (22.38)

Using (22.27) and (22.32) it follows

∂

∂yi
= ı1

(
∂

∂u2i

)
= ı1ı0

(
∂

∂v2i

)
. (22.39)

Considering relations (22.38) and (22.39), we deduce

ı1F
′ı0

(
∂

∂v2i−1

)
= ı1ı0

(
∂

∂v2i

)

from which we conclude



160 22 Invariant submanifolds of real hypersurfaces of complex space forms

F ′ı0

(
∂

∂v2i−1

)
= ı0

(
∂

∂v2i

)
. (22.40)

A slight change in the above proof shows

F ′ı0

(
∂

∂v2i

)
= −ı0

(
∂

∂v2i−1

)
. (22.41)

Combining (22.40) and (22.41) we have proved that M is an F ′-invariant
submanifold of M ′. ♦

Now we consider the case when M is an odd-dimensional submanifold of a
real hypersurface M ′ whose shape operator A′ satisfies relation (20.14). Using
(22.10) and the first equation of (22.16), we obtain

AX = αX + βu(X)U, ∇XU = αFX (22.42)

and we prove

Lemma 22.1. If the shape operator A′ of the real hypersurface M ′ satisfies
relation (22.21), it follows sa = 0 and AaU = 0, a = 1, . . . , p, for its F ′-
invariant submanifold M .

Proof. Using relations (22.21) and (22.15), we obtain

sa(X) = −g′(A′ı0X, ξ′a) = −g′(αı0X + βu′(ı0X)ı0U, ξ′a) = 0.

Since Aa is symmetric, using the second equation of (22.16), we compute
g(AaX,U) = g(AaU,X) = 0 for any X ∈ T (M), which completes the proof.

��

Further, differentiating relation AaU = 0 covariantly and using (22.42),
we obtain (∇XAa)U + αAaFX = 0. Hence, we have

g((∇XAa)Y − (∇Y Aa)X,U) = g((∇XAa)U, Y ) − g((∇Y Aa)U,X)
= −α{g(AaFX, Y ) − g(AaFY,X)}. (22.43)

On the other hand, using relations (22.20) and (5.9) and Lemma 22.1, it
follows

g((∇XAa)Y −(∇Y Aa)X,U) =
p∑

b=1

{sab(X)g(AbU, Y )−sab(Y )g(AbU,X)} = 0,

which together with relation (22.43) gives αg((AaF +FAa)X,Y ) = 0. There-
fore, for α = 0, we conclude

AaF + FAa = 0. (22.44)
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Finally, for α = 0, using the relation (5.7) between the second fundamental
form and the shape operator and relations (22.42), (22.44), we calculate

h(FX, Y ) − h(X,FY ) = {g(AFX, Y ) − g(AFY,X)}ξ

+
p∑

a=1

{g(AaFX, Y ) − g(AaFY,X)}ξa

= 2αg(FX, Y )ξ +
p∑

a=1

g((AaF + FAa)X,Y )ξa

= 2αg(FX, Y )ξ.

In a complex projective space, the real hypersurface whose shape operator
satisfies (22.21) is a geodesic hypersphere (see Theorem 19.3) and in this
case α = cot θ, 0 < θ < π

2 . Therefore α = 0 and the following theorem is
established from the above discussion.

Theorem 22.2. [27] Let M ′ be a real hypersurface of a complex projective
space whose shape operator A′ has the form (22.21). Then for any F ′-invariant
submanifold M of M ′, its second fundamental form h satisfies the condition
(21.1).

Moreover, since the rank of F is n − 1 and from the second equation of
(22.42) it follows

du(X,Y ) = X(u(Y )) − Y (u(X)) − u([X,Y ]) = g(∇XU, Y ) − g(∇Y U,X)
= α(g(FX, Y ) − g(FY,X)) = 2αg(FX, Y ),

we conclude that u ∧ (du)k = 0, k = n−1
2 and u is a contact form.

Corollary 22.1. Any F ′-invariant submanifold M of a real hypersurface M ′

of a complex projective space whose shape operator A′ has the form (22.21),
is a contact manifold.

Remark 22.2. When M is a complex hyperbolic space H
n+p

2 (C), the results
analogous to those formulated as Theorem 22.2 are stated and proved in [27].

Remark 22.3. When the ambient manifold M is a complex projective space,
the (22.21) on the shape operator A′ of the real hypersurface M ′, which
appears in Theorems 22.1 and 22.2, is equivalent to requiring that “the real
hypersurface M ′ has exactly two principal curvatures.” This follows from
Remark 19.1. However, if the ambient manifold is a complex hyperbolic space,
it occurs that M has exactly two principal curvatures, but the shape operator
A′ fails to satisfy (20.14) (see [37] for more details).
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The scalar curvature of CR submanifolds of
maximal CR dimension

In this section we first recall the so-called Bochner technique and we give a
sufficient condition for a minimal CR submanifold Mn of maximal CR dimen-
sion of the complex projective space P

n+p
2 (C) to be MC

r,s, 2r + 2s = n − 1,
namely, a tube over a totally geodesic complex subspace.

Since the ambient manifold is the complex projective space P
n+p

2 (C) with
Fubini-Study metric of constant holomorphic sectional curvature 4, using re-
lation (15.28), we compute the Ricci tensor Ric and the scalar curvature ρ of
M , respectively:

Ric(X,Y ) = (n + 2)g(X,Y ) − 3u(X)u(Y ) + (trace A)g(AX,Y ) − g(A2X,Y )

+
q∑

a=1

{(trace Aa)g(AaX,Y ) + (trace Aa∗)g(Aa∗X,Y )

− g(A2
aX,Y ) − g(A2

a∗X,Y )}, (23.1)

ρ = (n + 3)(n − 1) + (trace A)2 − trace A2

+
q∑

a=1

{(trace Aa)2 + (trace Aa∗)2 − trace A2
a − trace A2

a∗}. (23.2)

Now we prove the following

Lemma 23.1. Let M be an n-dimensional compact, minimal CR submanifold
of maximal CR dimension of P

n+p
2 (C). If the scalar curvature ρ of M satisfies

ρ ≥ (n + 2)(n − 1),

then F and A commute, Aa = Aa∗ = 0, a = 1, . . . , q and ρ = (n + 2)(n − 1).

Proof. The proof is based on the so-called Bochner technique (see [65]).
Namely, using the famous Green’s theorem, that is, the fact that on a compact
manifold M ,

M. Djorić, M. Okumura, CR Submanifolds of Complex Projective Space, 163
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for any X ∈ T (M),
∫

M

div X ∗ 1 = 0,

where ∗1 is the volume element of M , and calculating

div (∇XX) − div ((divX)X),

K. Yano ([63], [64], [65]) established the following integral formula:
∫

M

{Ric(X,X) +
1
2
|L(X)g|2 − |∇X|2 − (div X)2} ∗ 1 = 0, (23.3)

where X is an arbitrary tangent vector field on M , |Y | is the length of Y with
respect to the Riemannian metric g of M and L(X) is the operator of Lie
derivative with respect to X.

We put X = U in (23.3) to obtain
∫

M

{Ric(U,U) +
1
2
|L(U)g|2 − |∇U |2 − (div U)2} ∗ 1 = 0. (23.4)

On the other hand, making use of (15.27), we compute

divU = trace (FA) = 0, (23.5)
q∑

a=1

|L(U)g|2 = 2
{
trace (FA)2 + trace A2 − g(A2U,U)

}
, (23.6)

q∑

a=1

|∇U |2 = trace A2 − g(A2U,U). (23.7)

Since M is minimal submanifold, using Proposition 5.4, it follows

trace A = trace Aa = trace Aa∗ = 0, a = 1, . . . , q.

Therefore, using (23.1) and (23.2), we compute

Ric(U,U) = n − 1 − g(A2U,U) −
q∑

a=1

{
g(A2

aU,U) + g(A2
a∗U,U)

}
, (23.8)

ρ = (n + 3)(n − 1) − trace A2 −
q∑

a=1

{
trace A2

a + trace A2
a∗

}
. (23.9)

Substituting (23.5), (23.7) and (23.8) into (23.4) and making use of (23.9), we
conclude

∫

M

{
1
2
|L(U)g|2 + ρ − (n + 2)(n − 1) (23.10)

+
q∑

a=1

trace A2
a + trace A2

a∗ − g(A2
aU,U) − g(A2

a∗U,U)
}

∗ 1 = 0.



23 The scalar curvature of CR submanifolds of maximal CR dimension 165

Now, we choose mutually orthonormal vector fields e1, . . . , en in such a way
that en = U . Since the shape operator is symmetric, it follows

trace A2
a + trace A2

a∗ − g(A2
aU,U) − g(A2

a∗U,U)

=
n−1∑

i=1

{
g(A2

aei, ei) + g(A2
a∗ei, ei)

}

=
n−1∑

i=1

{g(Aaei, Aaei) + g(Aa∗ei, Aa∗ei)} ≥ 0.

Therefore, using relation (23.10), it follows that if ρ ≥ (n + 2)(n − 1), then
the integrand is nonnegative and we compute

L(U)g = 0, ρ = (n + 2)(n − 1), Aaei = Aa∗ei = 0, (23.11)

for a = 1, . . . , q and i = 1, . . . , n− 1. Consequently, it follows FA = AF , since
using relation (15.27), we compute

0 = (L(U)g)(X,Y ) = g(∇XU, Y ) + g(∇Y U,X) = g((FA − AF )X,Y ).

Moreover, using relation (23.11), it follows

AaX = Aa∗X = 0, for any X ⊥ U, (23.12)

or equivalently

AaFX = Aa∗FX = 0, for any X ∈ T (M). (23.13)

On the other hand, since M is minimal, Proposition 5.4 and relation (15.20)
imply

sa(U) = sa∗(U) = 0. (23.14)

Now, substituting U instead of Y in (15.21) and (15.22), and using relations
(23.13) and (23.14), we obtain

g(FAaX,U) = sa(X), g(FAa∗X,U) = sa∗(X). (23.15)

Since F is skew-symmetric, using relation (15.7), we deduce from (23.15)

sa(X) = 0 = sa∗(X) = 0. (23.16)

Therefore, using relations (15.17) and (15.18), it follows AaU = Aa∗U = 0,
which together with (23.11) implies Aa = Aa∗ = 0.

This completes the proof. ��

Now we prove the following:
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Theorem 23.1. Let M be an n-dimensional compact, minimal CR subman-
ifold of CR dimension n−1

2 in the complex projective space P
n+p

2 (C). If the
scalar curvature ρ of M is greater than or equal to (n + 2)(n − 1), then there
exists a totally geodesic complex projective subspace P

n+1
2 (C) such that M ⊂

P
n+1

2 (C).

Proof. Define N0 = {ξ ∈ T⊥
x (M) : Aξ = 0}. We note that, in this case,

N0(x) = span {ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}.

In fact, as a consequence of Lemma 23.1, Aa = 0 = Aa∗ for a = 1, . . . , q, and
therefore

span {ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)} ⊂ N0(x).

On the other hand, for any η ∈ N0(x), we put η = p0ξ+
∑q

a=1{paξa+pa∗
ξa∗}.

Then

0 = Aη = p0A +
q∑

a=1

{paAa + pa∗
Aa∗} = p0A = 0,

since Aa = Aa∗ = 0 for a = 1, . . . , q. Hence p0 = 0 and

η =
q∑

a=1

{paξa + pa∗
ξa∗} ∈ span {ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}.

Moreover, since Jξa = ξa∗ , we have JN0(x) = N0(x) and consequently

H0(x) = JN0(x) ∩ N0(x) = span {ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}.

Hence the orthogonal complement H1(x) of H0(x) in T⊥
x (M) is span {ξ}.

Using relation (23.16), it follows that H1(x) is invariant under parallel
translation with respect to the normal connection, and applying Theorem
14.3, we conclude the proof. ��

From Theorem 23.1, we deduce that the submanifold M can be regarded
as a real hypersurface of P

n+1
2 (C) which is a totally geodesic submanifold

of P
n+p

2 (C). In what follows we denote the totally geodesic submanifold
P

n+1
2 (C) by M ′ and by ı1 the immersion of M into M ′ and by ı2 the totally

geodesic immersion of M ′ into P
n+p

2 (C). Then, using the Gauss formula (5.1),
it follows

∇′
X ı1Y = ı1∇XY + h′(X,Y ) = ı1∇XY + g′(A′X,Y )ξ′, (23.17)

where h′ is the second fundamental form of M in M ′, A′ is the corresponding
shape operator and ξ′ is the unit normal vector field to M in M ′. Since
ı = ı2 ◦ ı1, we have
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∇X ı2 ◦ ı1Y = ı2∇′
X ı1Y + h(ı1X, ı1Y )

= ı2(ı1∇XY + g(A′X,Y )ξ′), (23.18)

since M ′ is totally geodesic in P
n+p

2 (C). Comparing relations (5.1) and
(23.18), we conclude

ξ = ı2ξ
′, A = A′.

Further, as M ′ is a complex submanifold of P
n+p

2 (C), relation

Jı2X
′ = ı2J

′X ′

holds for any X ′ ∈ T (M ′), where J ′ is the induced complex structure of
M ′ = P

n+1
2 (C). Thus, using relation (15.2), we compute

JıX = Jı2 ◦ ı1X = ı2J
′ı1X = ı2(ı1F ′X + u′(X)ξ′)

= ıF ′X + u′(X)ı2ξ′ = ıF ′X + u′(X)ξ. (23.19)

Comparing relations (23.19) and (15.2), we conclude

F = F ′, u′ = u.

Consequently, by Theorem 23.1, we deduce that M is a real hypersurface of
P

n+1
2 (C) which satisfies F ′A′ = A′F ′. Applying Theorem 16.3, we obtain

Theorem 23.2. [24] If M is an n-dimensional compact, minimal CR subman-
ifold of maximal CR dimension of P

n+p
2 (C), whose scalar curvature ρ satisfies

ρ ≥ (n + 2)(n − 1),

then M is congruent to MC
r,s for some r, s satisfying 2r + 2s = n − 1.

Remark 23.1. Theorem 23.2 was proved in [10] under the condition that the
distinguished normal vector field ξ is parallel with respect to the normal con-
nection.
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