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Introduction

This research monograph is a systematic exposition of the background, methods, and
recent results in the theory of cycle spaces of flag domains. Some of the methods are
now standard, but many are new. The exposition is carried out from the viewpoint
of complex algebraic and differential geometry. Except for certain foundational
material, which is readily available from standard texts, it is essentially self-contained;
at points where this is not the case we give extensive references.

After developing the background material on complex flag manifolds and repre-
sentation theory, we give an exposition (with a number of new results) of the complex
geometric methods that lead to our characterizations of (group theoretically defined)
cycle spaces and to a number of consequences. Then we give a brief indication of just
how those results are related to the representation theory of semisimple Lie groups
through, for example, the theory of double fibration transforms, and we indicate the
connection to the variation of Hodge structure. Finally, we work out detailed local
descriptions of the relevant full Barlet cycle spaces.

Cycle space theory is a basic chapter in complex analysis. Since the 1960s its
importance has been underlined by its role in the geometry of flag domains, and by
applications in the representation theory of semisimple Lie groups. This developed
very slowly until a few of years ago when methods of complex geometry, in particular
those involving Schubert slices, Schubert domains, Iwasawa domains and support-
ing hypersurfaces, were introduced. In the late 1990s, and continuing through early
2002, we developed those methods and used them to give a precise description of
cycle spaces for flag domains. This effectively enabled the use of double fibration
transforms in all flag domain situations. That has very interesting consequences for
the geometric construction of representations of semisimple Lie groups, especially
for the construction of singular representations. It also has many potential interest-
ing consequences for automorphic cohomology, other aspects of variation of Hodge
structure, and moduli of compact complex manifolds. In this book we prove these
recent results, filling in the background as necessary, and present new results that
complete the picture.

Let us now roughly outline the contents of the book. Detailed references are, of
course, contained throughout. Further notes and comments on a larger scope of the
theory are contained at the end of each chapter.



xii Introduction

We begin with a real linear semisimple group G0 which for all practical purposes
can be assumed to be simple. It is embedded in its complexification G and acts
naturally on every G-homogeneous manifold Z = G/Q. Here we restrict to the case
of flag manifolds; in other wordsZ is assumed to be compact Kähler, or equivalentlyZ
isG-equivariantly projective algebraic. Also equivalently,Q is a parabolic subgroup.

Part I, “Introduction to Flag Domain Theory,’’ is primarily devoted to preliminary
and foundational material, and also to older results concerning flag manifolds and
flag domains. Chapter 1 starts with a review of structure and finite-dimensional
representation theory for semisimple Lie groups and algebras, introduces the structure
theory for parabolic subalgebras and parabolic subgroups and ends with a discussion
of homogeneous vector bundles and the Bott–Borel–Weil Theorem.

Chapter 2 contains the first combinatorial results for the G0-action on Z. In
particular, it is shown that the set OrbZ(G0) of G0-orbits in Z is finite. Hence, by
dimension at least one G0-orbit is open in Z. This research monograph is devoted to
the study of the cycle spaces of G0-orbits on Z.

In Chapter 3 we give a complete description of the G0-orbit structure for the case
where G0 is the group of a bounded symmetric domain and Z is the dual compact
hermitian symmetric space, for example where G0 corresponds to the open unit ball
in Cn and Z = CPn.

We then turn our attention, in Chapter 4, to a discussion of the first results for
the open G0-orbits D in Z. We discuss their structure, compact subvarieties, and
holomorphic functions. The compact subvarieties we discuss are of fundamental
importance; they will be the base cycles in our treatment of cycle spaces.

A q-dimensional cycle in a complex manifold D is a linear combination
n1C1 + · · · + nkCk where the coefficients are positive integers and the Cj are
q-dimensional, irreducible compact subvarieties of D. One should think of a generic
cycle as a compact subvarietyC = 1.C. However, in general multiplicities cannot be
avoided. For example, a family of quadric curvesC in P2(C) can degenerate to a sum
L1 +L2 of two lines, and these can further degenerate to a double line. On the other
hand, in the case of interest in this monograph the base cycles of our considerations
are of the simple form C = 1.C.

We make serious use of certain recently developed methods in the theory of
cycle spaces. These are explained in some detail in Section 7.4. In particular the
complex structure on the space Cq(X) of q-dimensional cycles in a complex space X
is explained. Then, also in Section 7.4, we explain the basics of a certain incidence
geometry that leads to the construction of divisors and their associated meromorphic
functions on the cycle space. This is of fundamental importance for our approach.

Cycles appear as follows in the study of open G0-orbits D in Z: Every maximal
compact subgroup K0 in G0 possesses exactly one orbit C0 in D that is a complex
submanifold of Z. This result is proved in Section 4.3. In this case the relevant cycle
space would seem to be the connected component containing the q-dimensional cycle
C0 in Cq(D).

As a first step one considers a possibly smaller space MD which is more easily
defined by the group theory at hand. For this it is first appropriate to note that
Cq(Z) is a locally finite-dimensional complex space whose irreducible components
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are compact projective varieties. The induced action of G is algebraic; in particular,
the orbit G.C0 is Zariski open in its closure X. Let MD be the connected component
of the intersection G.C0 ∩ Cq(D) which contains C0. Therefore MD is just the set
of cycles C in Cq(D) for which there is a curve {gt } in G starting at the identity such
that {gt (C0)} is a curve in Cq(D) from C0 to C.

Recent developments have shown that the component C of Cq(D) which contains
C0 may be much bigger than MD . A complete representation-theoretic local descrip-
tion of C, i.e., of its tangent space at C0, is given in Part IV. In fact global properties
of C can often be derived from this description. However, with the exception of this
local description, most of the present work is devoted to the global properties of cycle
spaces of the type MD .

Also in Chapter 4 we look at the important case where the open orbit D carries
an invariant measure, and, finally, in that case we construct a q-convex exhaustion
function on D. This fact, which is proved in Section 4.7, implies that C, and a
fortiori MD , is a Stein space. A sketch of the complex analysis background required
for this and related matters which appear throughout the monograph is presented in
Section 4.6.

The q-convex exhaustion function onD gives us a very natural plurisubharmonic
exhaustion function on MD . In some sense that Stein property was one of the
first main goals of the theory, because it allows one to transfer a number of analytic
considerations from the domainD, where more often than not there are no nonconstant
holomorphic functions and cohomology can be unwieldy, to the cycle space MD or
to C, which have optimal properties from the view of complex analysis. This reflects
the philosophy of the double fibration transformation discussed in Chapter 14. In
fact, in Part II we prove in general, by very different methods, that the cycle space
is Stein.

At this point it should be mentioned that it is possible that q = 0. In this case
C = MD = D. Furthermore this only happens if D is a bounded symmetric
domain B embedded as a G0-orbit in its compact dual Z. This is a situation of great
classical interest, but from the point of view of cycle spaces it can be regarded as well
understood.

In the context of cycle spaces, the cases where G0 is a group of hermitian type,
in other words where K0 has a positive-dimensional center, or, equivalently, where
G0/K0 is a bounded symmetric domain, must occasionally be handled with special
methods. This is primarily due to the fact that in the hermitian case the complexifi-
cation k of the Lie algebra k0 of K0 is not a maximal subalgebra of g0.

Certain foundational results for the hermitian case are proved in Chapter 5. For
example, the product B × B of the bounded domain with its complex conjugate is
identified as an open domain in G/K . Assuming that MD is neither B nor B, in
special cases that are easily identified, it is shown that MD ⊂ B × B. Later, in
Section 9.1C, we use Schubert incidence geometry to show that MD = B × B in
this situation. In Chapter 5 this is shown for the classical groups of hermitian type
by means of elementary flag geometry.

Part II, “Cycle Spaces as Universal Domains,’’ is a systematic presentation of
our recent work which describes in a precise way the cycle spaces associated to the
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G0-orbits in Z = G/Q. Let OrbZ(G0) denote the set of all G0-orbits on Z. While
much of the work is involved with the case of an open orbit D, any γ ∈ OrbZ(G0)

has a naturally associated cycle space C(γ ) that can be realized as an open set in a
G-orbit in the appropriate cycle space Cq(Z). If γ is an open orbit D, it follows by
definition that C(γ ) =MD .

The main result for the cycle domains C(γ ) can be stated as follows: For every
real form G0 there exists a precisely computable universal domain U so that, with a
few well-understood exceptions which only occur in the hermitian cases, C(γ ) = U
for all γ ∈ OrbZ(G0).

The full cycle space C of an open orbit is considered later in Chapter 13. There,
using somewhat delicate calculations of cohomology groups of certain homogeneous
vector bundles on the base cycle C0, it is shown that C is smooth, and the tangent
space TC0(C) is computed as a K-module.

For certain families of orbits of real forms G0 in certain Z = G/Q we show that
this tangent space is just the tangent space of the orbitG.C0. In such a case it follows
that C =MD = U , where U is a certain universal domain. So in those cases there is
nothing new.

For the remaining families it is shown that this tangent space is a K-direct sum
of the tangent space of the G-orbit and a nontrivial concretely computed irreducible
representation space. These cycle spaces C are therefore bigger than MD and contain
much more information than the universal domain U .

We refer to the domain U as universal, because it appears as the basicG0-manifold
in a number of important contexts in algebraic and differential geometry, cycle space
theory, and harmonic analysis. Its importance in representation theory was recognized
early on by S. Gindikin, and it was described from the point of view of proper G0-
actions in 1990 by Akhiezer and Gindikin [AkG]. In this research monograph we
look at it from a number of perspectives.

The definition of the universal domain can be motivated by considering possibil-
ities for an appropriate complexification of the symmetric space G0/K0.

Let x0 be the base point in the affine homogeneous space � := G/K , i.e., the
point 1K where G has isotropy subgroup K . Note the �0 := G0.x0 ∼= G0/K0 is
the symmetric space of noncompact type for G0 and is embedded as a closed, totally
real submanifold of �. Thus in a certain sense � = G/K can be regarded as a
complexification of �0 = G0/K0. However, if one is looking for a G0-invariant
complexification where, e.g., invariant metrics or measures are available, then � is
too large.

An appropriate smaller domain is defined as follows. Let G0 = K0A0N0 be
an Iwasawa decomposition. Define the polyhedron ω0 in a0 to be the connected
component containing 0 ∈ a0 of the intersection of the half-spaces{

ξ ∈ a0 | α(ξ) � π

2

}
as α runs over the set of all roots. Then U := G0. exp(iω0)(x0).

In Part II we begin by describing results of Burns, Halverscheid and Hind [BHH]
which show in particular that U can be naturally identified with the maximal domain
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of existence �adpt of the adapted complex structure in the tangent bundle T�0. This
underlines the complex differential geometric importance of U .

Another basic result from [BHH] is proved in Section 6.3: AG0-invariant function
ρ : U → R is plurisubharmonic if and only if its pullback to u, by the map ξ �→
exp(iξ)(x0), is convex. Our proof, which is somewhat different from the original
one, involves a description of the induced partial complex structure on the G0-orbits
in U .

In Chapter 7 we introduce basic Schubert incidence geometry which is used for
our description of MD , or more generally for C(γ ) for any γ ∈ OrbZ(G0).

A Schubert variety S is by definition the closure in Z of an orbit of a Borel
subgroup B. The Borel groups that are appropriate for our considerations, i.e., for
incidence geometry involving cycles, are those which contain the solvable group
A0N0 of an Iwasawa decomposition G0 = K0A0N0. We refer to these as Iwasawa–
Borel subgroups. These are just the Borel subgroups whose fixed points in Z lie on
the unique closed G0-orbit.

If O is an orbit of an Iwasawa–Borel group and S = O∪̇Y is the associated
Schubert variety, then we consider the intersection of O with the base cycle C0 in an
open G0-orbit D. For topological reasons there must be q-codimensional Schubert
varieties with S ∩ C0 �= ∅. For such an S one checks that this intersection is finite
and is contained in O. In fact, this holds not just for C0 but for every C ∈MD .

Thus there is a naturally associated B-invariant incidence variety,

IY := {C ∈ Cq(Z) | C ∩ Y �= ∅},
which lies in the complement of MD in Cq(Z). By intersecting it with the orbitG.C0
and observing that K is contained in the G-stabilizer of C0 we uniquely lift IY to a
B-invariant variety H in the space � = G/K in which U lives. Doing the same for
MD , we can directly compare IY , U and the cycle space.

Define EH (MD) to be the connected component containing the neutral point x0
of the complement in G/K of the closed set⋃

g∈G0

g(H) =
⋃
k∈K0

k(H).

This set is viewed as an envelope around MD which is defined by the compact family
{k(H)}k∈K0 of analytic hypersurfaces. Of course it depends on the Schubert cycle S,
and therefore it is appropriate to define the Schubert domain SD as the intersection of
all of theses envelopes as S ranges over all q-codimensional Schubert varieties which
have nonempty intersection with C0. Obviously MD ⊂ SD .

As a first step in understanding SD we consider an a priori smaller set, namely the
intersection of the envelopes EH , where H ranges over all B-invariant hypersurfaces
in G/K . Using properties of G0-invariant plurisubharmonic function on U , we show
in Section 7.2B that this contains the universal domain U . Since it is defined by the
Iwasawa decomposition, we therefore refer to it as the Iwasawa envelope EI(U). The
opposite inclusion EI(U) ⊂ U , which is due to L. Barchini [Ba], is also proved in
Section 7.2B. Thus one sees that U agrees with its Iwasawa envelope,
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U = EI(U).

It should be mentioned that, in the meantime, T. Matsuki has given a purely combina-
torial proof of this fact [M4], i.e., a proof which avoids the use of analytic tools. This
and other applications of his basic methods [M2, M3] could perhaps lead to complex
analysis-free proofs of our results which are valid in more general settings. We prefer
here to attempt to blend the geometric and analytic methods into the representation-
theoretic setting.

The envelope EI(U) is a very natural object of consideration in harmonic analysis.
In that context it is usually denoted by �. It is known to be the maximal domain of
analytic continuation of spherical functions, and for that reason its characterization
as the universal domain is important. For this reason, using other methods which
only handle the case of the classical groups, Krotz and Stanton have also shown that
it agrees with U [KS].

As indicated above, our interest in the Iwasawa envelope originated from our
effort to relate the Schubert domain SD to U . Due to the equality U = EI(U) and the
formal inclusion EI (U) ⊂ SD , it then follows that U ⊂ SD . In Chapter 9 we show
that, in fact, MD = SD . This is done by constructing an incidence hypersurfaceH at
every boundary point of MD . It should be remarked that using the results in Chapter
10 a simpler, but non constructive, proof of this can be given.

One of the essential concepts for our approach is that of a Schubert slice. In the
case of an open G0-orbit D is defined as follows.

LetC0 be the base cycle inD, define q := dimC0, and let S be a q-codimensional
Schubert variety defined by an Iwasawa–Borel group B such that S ∩ C0 �= ∅. It is
shown that this intersection is contained in the open B-orbit in S, and that it is finite
and transversal (see Chapter 9). Also, for every z ∈ S ∩ C0 the orbit 	 := A0N0(z)

is open in S and closed in D.
We refer to 	 as the Schubert slice determined by the base point z. In fact S ∩D

is the union of these Schubert slices. The closure c
(	) of any Schubert slide 	
meets every G0-orbit in D, and 	 meets every C ∈ MD at exactly one point. See
Chapter 9.

These results and the analogous statements forG0-orbits of any dimension require
a geometric understanding of the orbit duality theorem which was originally proved
by combinatorial methods (in the case of open orbits in [W3] and in general by
Matsuki [M2], [M3]).

The symplectic geometric approach to orbit duality is explained in Chapter 8.
This is based on a fundamental idea of Uzawa, and in our context was first carried
out in detail for the case of G/B in [MUV]. That was extended to the general case
of Z = G/Q by Bremigan and Lorch [BL], and in Chapter 8 we present their proof
of the orbit duality theorem.

Having shown that U ⊂ MD , in Chapter 10 we give a precise description of
MD . In this matter the case of groups G0 of hermitian type must be treated with
care. The reason is that K is not a maximal (up to components) subgroup of G; it
is the reductive part of two maximal parabolic subgroups P± = KS±, where G/P+
and G/P− are the compact duals of the bounded symmetric domains B and B that
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correspond to G0. If π± : G/K → G/P± are the natural projections and we regard
MD as a domain in � = G/K as above, then it is quite possible that MD agrees
with π−1− (B) or π−1+ (B). For example, if D = B or D = B, then this is obviously
the case.

There are other interesting cases where this happens. However, in all such cases
the base cycle is P+- or P−-invariant, and it immediately follows that the true cycle
space, i.e., the space MD regarded in the cycle space Cq(Z) and not lifted to G/K ,
is either B or B.

Otherwise it follows that there is some incidence hypersurfaceH which is neither
a lift from a B-invariant hypersurface in G/P+ nor from G/P−. Note that for G0
not of hermitian type, there is no possibility for such a lift. Thus, after this small
discussion of the hermitian case, it is enough to consider MD again as being lifted
in G/K and being contained in an envelope EH(U), where H is not a lift.

In the language of algebraic geometry, this implies that the line bundle defined by
the reduced divisor H in the cycle space Cq(Z) induces a finite G-equivariant map
from the orbit G.C0 onto G/K̆ , where K̆ is at most a finite extension of K . Hence,
up to a finite map, which in the end plays no role at all, one may regard MD as being
contained in G/K in the situation at hand.

In Chapter 10 it is shown that domains of the type EH, where H is not a lift,
are Kobayashi-hyperbolic. In particular there is no nonconstant map f : C → MD

in the situation where there is a hypersurface H in its complement which is not a
lift. Then there is an exposition of the main result of [FH], which says that U is the
maximal, G0-invariant, Kobayashi-hyperbolic, Stein domain in G/K that contains
the base point x0 = 1K corresponding to the base cycle C0.

Now the envelope EH is clearlyG0-invariant and is shown to be Stein by classical
methods. Since it contains the universal domain and the U is maximal with respect
to the three basic properties, it follows that EH = U .

However, in this situation the cycle space has been trapped,

U ⊂MD = SD ⊂ EH(U) = U,
and therefore MD = U with the exception of the hermitian cases explained above.

The description of the cycles spaces associated to openG0-orbits inZ is completed
in Chapter 10, and in Chapter 11 we turn to the cycle space C(γ ) of an arbitrary G0-
orbit γ ∈ OrbZ(G0). In order to define C(γ ) it is important to recall that Matsuki
duality states that for every γ ∈ OrbZ(G0) there exists κ ∈ OrbZ(K) so that γ ∩ κ is
compact, and conversely for every κ there exists such a γ . In this situation we refer
to (γ, κ) as a dual pair.

In view of the duality it is natural to define the cycle space of γ to be

C(γ ) : component of 1K in {gK ∈ G/K | g(κ) ∩ γ is nonempty and compact}.
This is well defined because κ is K-invariant. The point to having C(γ ) ⊂ G/K is
that we are going to compare it to U using the results of Chapter 10.

This definition of C(γ ) (see [GM]) turns out to be the right one, but a priori there
could be difficulties with it. The problem is that it is not clear whether the condition
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that g(κ) ∩ γ be compact, or even the condition that g(c
(κ)) ∩ γ be compact, is
an open condition. Our classification work in Chapter 11 handles this difficulty and
extends the open orbit result to this general case: If G0 is of hermitian type and c
(κ)
is P− (respectively, P+)-invariant, then C(γ ) is B (respectively, B). Otherwise,
C(γ ) = U .

The final chapter in Part II, Chapter 13, is devoted to three types of examples.
First, we discuss very roughly the first results for SL(n;R) which were proved by
the Schubert slice method [HS]. Second, using Grassmann geometry, a differential
geometric characterization of U , and the characterization of MD which was discussed
above, it is shown that in many cases one can regard MD as the differential-geometric
product B×B of the riemannian symmetric space B = G0/K0 with itself. The action
on this realization is in very simple rational form. It should be emphasized that this
holds, for example, for Sp(p, q), and not just for the hermitian case. (In the hermitian
case MD is biholomorphic to B or to B×B.) Third, we look at the simplest hermitian
examples and compare the slice methods presented here with those coming from the
classical theory (see [W12]).

Part III, “Analytic and Geometric Consequences,’’ is where we apply the results of
Parts I and II to the mechanism of the double fibration transform, as well as to certain
other matters. We start in Chapter 14 with a general discussion of double fibration
transforms. Under the proper assumptions the double fibration transform is a natural
equivariant map P : Hq(D;O(E))→ H 0(MD;O(E′)), where E is a homogeneous
vector bundle on D and E′ is a certain derived bundle on the cycle space.

It had long been conjectured that if E is sufficiently negative, then P should be
injective, and would therefore realize the cohomological representation space in the
simpler situation in a space of sections of a bundle. It had also been known that
in order to prove this, it would be sufficient to prove that the fiber F of the map
µ : X→ D from the universal family of cycles to D is contractible.

The main new development in Chapter 14 yields a proof of this fact. To do this
one uses the characterization MD = U to show that MD is a cell. Then one notes that
every Schubert slice 	 defines an A0N0-equivariant holomorphic map MD → 	

which is a differentiable bundle and whose fiber is also F . Since 	 is a cell this
bundle is trivial, and it then follows that F is also contractible.

With injectivity proved for the double fibration transform, one has another tool
for studying possibly singular unitary representations of real reductive Lie groups.
We end Chapter 14 with a sketch of the background and a number of references to
the literature for this potential application.

One cannot say that so far there have been important applications of the theory
of moduli of compact complex manifolds to the cycle space theory presented here,
or conversely. However, period domains for moduli problems are quite often open
G0-orbitsD in some flag manifoldG/Q. It is quite possible that there will be stronger
interaction between these subjects in the near future, and therefore we indicate the
connections along with background material in Part III.

In Chapter 15 we present a very brief exposition of Griffiths’ period map. The
period domains in this case are closely related to hermitian symmetric spaces of
noncompact type, i.e., to bounded symmetric domains. In the case of the moduli of
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marked K3 surfaces, the period domain is an open SO(3, 19)-orbit in a 20-dimensional
quadric. The cycles which are in the G0-orbit of the base cycle C0, i.e., the set
�0 = G0(1K) of real points in MD , can be interpreted in the context of quaternionic
geometry. Further, this set of real points is a one-to-one correspondence with the set
of Ricci-flat Calabi–Yau metrics on the underlying differentiable manifold of the K3
surface.

Part IV is devoted to considerations of the full cycle space C of an open G0-
orbit D, i.e., the irreducible component containing C0 in Cq(D). This contains MD

as a closed submanifold [HoH]. We have already seen that it is possible that C is
larger than MD . For example, if D is the unique open SL(3;R)-orbit on the full flag
manifold of SL(3;C), this is indeed the case; see Section 13.1C. On the other hand,
in some cases it is quite clear that MD = C, for example in the case of the open
SL(n+ 1;R)-orbit in Pn.

The results proved in Part IV give a local description of C at the base cycle C0
in an arbitrary open G0-orbit D in an arbitrary flag manifold Z = G/Q. The cases
where MD = C are precisely described.

There are numerous series where C is larger, i.e., where MD is a proper sub-
manifold of C, and where the generic cycle is not reachable from the base cycle by
a transformation in G. In those cases it is shown that C is smooth at C0, and its
tangent space TC0C is precisely computed as a K-representation space. Although the
calculations here are local, it is expected that together with certain fibration methods
they will yield a global description of C. These “new’’ cycle domains are the most
natural ones from the complex geometric point of view, and we expect that they will
be useful in representation theory.

The local description of C atC0 actually has nothing to do with the domainD. This
simply means that the K-module structure of the tangent space TC0(C) is explicitly
computed. Conceptually speaking, it is clear what needs to be done, but substantial
technical work is required to reach the goal of precisely describing these spaces. Let
us give a very rough summary of the necessary steps.

In Chapter 17 we compute the normal bundle NZ(C0) of a closed K-orbit C in
Z in abstract terms, as a holomorphic K-homogeneous vector bundle. The goal is
to prove the vanishing of H 1(C0;O(NZ(C0))), i.e., the smoothness of Cq(Z) at C0,
and to compute the tangent space H 0(C0;O(NZ(C0))) as a K-module.

In these introductory remarks we put aside the work required to prove the van-
ishing theorem. Let us only give an idea of computation of the tangent space in the
(notationally simplest) measurable, non-hermitian case.

In the notation of Part IV, the tangent space in that case has a natural decomposition

H 0(C;O(NZ(C))) = s⊕H 1(C;O(E((q+ θ(q))q))),

where g = k + s is the decomposition of the Lie algebra g of G under the Cartan
involution θ of the real group G0, and where (q + θ(q))q is the s-component of
q + θ(q), and where E((q + θ(q))q) is the K-homogeneous holomorphic vector
bundle K ×K∩Q (q+ θ(q))q) defined by the (isotropy) representation of K ∩Q on
(q+ θ(q))q.
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One is naturally led to apply the Bott–Borel–Weil Theorem to compute
H 1(C;O(E((q+θ(q))q) as aK-module. Since the isotropy representation ofK∩Q
on qs is usually reducible, one must first compute the cohomology groups of the quo-
tient bundles which arise from a natural filtration of E((q + θ(q))q). The filtration
is constructed so that the Bott–Borel–Weil Theorem can indeed be applied to these
bundles. In the language of Section 18.1, one must compute the weights λwith λ+ρ
regular and of index 1 and 2.

Astarting point for this computation is the description of the highest weights of the
representation of k on s. These highest weights are known, and for the convenience
of the reader we recall the result in Section 17.4. In Chapter 18 we indicate the
connection with weighted affine Dynkin diagrams.

Knowledge of these weights for a fixed Cartan subgroup (maximal complex torus)
in the isotropy subgroup of K leads to knowledge of all weights of that torus on s.
Then in turn one can calculate the weights λ on (qs + θ(qs))s with λ + ρ regular
and of index 1 and 2. This work is carried out in Chapters 18 and 19. It gives
an explicit method for computing the cohomology groups of the quotient bundles.
The essential result is the String Lemma (see 18.4.4). The Cohomology Lemma
(see 18.5.6) then gives the method of computing the original cohomology groups
H ∗(C;O(E((qs + θ(qs))s))) from those of the quotient bundles.

The String and Cohomology lemmas are quite explicit, and it is clear that within
finite time one should be able compute the complementary space

H 1(C;O(E((qs + θ(qs))s)))

to the tangent space TC(G.C) of the G-orbit G.C in TC(Cq(Z)). Chapter 20 is
devoted to these calculations. It is necessary to consider five infinite series and three
exceptional cases. In most cases, depending on the weights which are determined by
the base cycle at hand, both vanishing and nonvanishing occurs.

The work in Part IV is partially contained in the Tübinger Habilitationsschrift
[Fe2] of the first author. There he carried out the computations for the case of the
full flag manifold G/B. His work on the general case Z = G/Q appears for the first
time in this book.

We thank our many colleagues and collaborators over the years, too many to name
here, who introduced us to the topics that come together to comprise this monograph.
We thank Ann Kostant of Birkhäuser Boston for this opportunity to give a systematic
presentation of the complex-geometric approach to cycle space theory.
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Overview

In this as well as the introductions to the other parts of the book we sketch our main
goals and outline the structure of the part at hand. More detailed summaries are given
at the beginning of every chapter.

Here we first present the basic background material on semisimple Lie algebras
and Lie groups. Much of this is necessarily combinatorial in nature. Nevertheless,
certain aspects are given from a complex geometric viewpoint which reflects the main
spirit of this monograph.

Much of this book is devoted to the study of the action of a noncompact real form
G0 of a complex semisimple group G on a flag manifold Z = G/Q. The action of
the complexification K of a maximal compact subgroup K0 of G0 is also of basic
importance.

One special case is of particular interest in complex analysis and representation
theory. This is the case where Z is a hermitian symmetric space of compact type and
one of the open G0-orbits on Z is the dual bounded symmetric domain of G0. We go
into substantial detail on this hermitian case in Part I because it provides an important
class of explicit examples that serve to illustrate the general setting.

The closed K-orbits in Z play a fundamental role in our work. As a first example
of duality, each is contained in a unique open G0-orbit D, and there it is the unique
complex K0-orbit C. One is therefore led to study spaces of cycles in Z or D
which contain C. The foundational material for the study of the open G0-orbits and
associated cycle spaces is provided in this part. First, complex analytic results are
proved, e.g., on the holomorphic convexity of certain cycle spaces in the case where
the open G0-orbit possesses an invariant pseudo-Kähler metric.

Part I is organized as follows. Most of Chapter 1 is devoted to the Lie theoretic
background which is used throughout the monograph. The last two sections, on ho-
mogeneous bundles and the Bott–Borel–Weil Theorem, are of particular importance
both in our consideration of the double fibration transform (see Chapter 14 in Part III)
and the cycle deformation theory of Part IV.

The brief Chapter 2 introduces the Bruhat decomposition. An important applica-
tion, Corollary 2.1.3, proves the existence of certain Cartan algebras defined over the
reals. That result is the key to understanding the isotropy subgroups of G0 on Z.

Chapter 3 is devoted to the case where G0 is of hermitian type. Substantial
information on the action of G0 on the associated compact hermitian symmetric
space is given in this chapter. Later on in Sections 5.4 and 5.5 detailed results on
the cycle spaces for the action of a hermitian real form on any of the associated flag
manifolds Z are obtained.

The basic setup for cycle spaces associated to open G0-orbits is presented in
Chapter 4. In addition to providing foundational material, we discuss the holomorphic
reduction and show that its base is a bounded symmetric domain (see Theorem 4.4.3).
In this chapter we also introduce the notion of a measurable openG0-orbit. There are
a number of equivalent conditions for this (Theorem 14.5.1), one being the existence
of an invariant pseudo-Kähler metric. This metric arises from invariant metrics on the
anticanonical bundles of the open orbit and the ambient space Z, the latter being the
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Kähler–Einstein metric on Z which is invariant under a compact real from of G. We
then present a brief exposition of Levi geometry, oriented toward the notions of Stein
manifold and various degrees of holomorphic convexity, notions which later translate
into cohomology vanishing theorems for holomorphic vector bundles over open G0-
orbits. Chapter 4 ends with the construction of a certain exhaustion function for
measurable open orbits, which makes those cohomology vanishing theorems explicit.

In Chapter 5 it is shown that the exhaustion of a measurable openG0-orbit, which
is constructed in Chapter 4 and is closely related to the above mentioned Kähler–
Einstein metric, induces a K0-invariant plurisubharmonic exhaustion of the cycle
space MD . As a consequence it follows that in the measurable case MD is a Stein
manifold. The proof of this is given in Section 5.3. In fact, the Stein property, and
much more, holds in general; see Theorems 11.3.1 and 11.3.7.

At the beginning of Chapter 5 we explain the holomorphic hermitian setting, the
setting where the base cycleC is stabilized by a much larger group P than its defining
groupK . In factP is a parabolic subgroup ofGwith reductive componentK , the flag
manifoldG/P is the associated symmetric space of compact type, and the cycle space
MD is just the associated bounded domain. See Section 5.3 and Proposition 5.4.8.
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Structure of Complex Flag Manifolds

In this chapter we recall some basic notions of semisimple Lie group structure, finite-
dimensional representation theory, and Bott–Borel–Weil theory. The two objectives
here are to establish a system of notation and to recall certain standard or near-standard
results that we need later on. Section 1 consists of some basic definitions concerning
Lie algebras, Lie groups, Cartan subalgebras, and Dynkin diagrams. Then in Section
2 we recall the Cartan highest weight theory for finite-dimensional representations
of semisimple Lie algebras, and we record the Dynkin diagrams of the adjoint repre-
sentations. We introduce parabolic subalgebras, parabolic subgroups, and complex
flag manifolds, is Sections 3 and 4. Section 5 discusses homogeneous holomorphic
vector bundles, and Section 6 shows how the Bott–Borel–Weil Theorem describes
their Dolbeault (or sheaf) cohomologies.

1.1 Structure theory and the root decomposition

We assume that the reader has some familiarity with Lie groups and Lie algebras,
but we recall some basic facts in order to establish notation and terminology. This
material can, of course, be found in standard texts such as those of Hochschild [Hoch],
Humphreys [Hu1], Knapp [Kna] and Varadarajan [V].

Let g be a finite-dimensional Lie algebra over a field F. In other words it is a
finite-dimensional vector space over F with an algebra structure g× g→ g, denoted
(ξ, η) �→ [ξ, η], that is alternating ([ξ, ξ ] = 0) and satisfies the Jacobi identity

[ξ, [η, ζ ]] + [η, [ζ, ξ ]] + [ζ, [ξ, η]] = 0.

The Lie algebra g is

• commutative or abelian if the composition is identically zero, [g, g] = 0;
• nilpotent if the descending central series g0 = g, gk+1 = [g, gk] is eventu-

ally zero;
• solvable if the derived series g(0) = g, g(k+1) = [g(k), g(k)] is eventually zero;
• simple if it has no proper ideal and is not commutative;
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• semisimple if it has no nonzero solvable ideal;
• reductive if it is the direct sum of a semisimple ideal and a commutative ideal.

The following are equivalent: (i) g is semisimple, (ii) g is a direct sum of simple
ideals, and (iii) the Killing form 〈ξ, η〉 of g is nondegenerate as a bilinear form on the
underlying vector space. Here recall that 〈ξ, η〉 = trace(ad(ξ) ad(η)) where ad(ξ) is
the linear transformation ζ �→ [ξ, ζ ] of g.

From this point on, F is R or C. Let G be a finite-dimensional Lie group over
F. We always denote the Lie algebra by the corresponding lower case German letter,
in this case g. We say that G is commutative (respectively, nilpotent, respectively,
solvable) if it has that property as a group. If G is connected it is equivalent to the
corresponding property for g. In any case, we say that G is simple (respectively,
semisimple, respectively, reductive) if g is simple (respectively, semisimple, respec-
tively, reductive), whether G is connected or not. In the setting of linear algebraic
groups (and in much of this book) it is natural to add the condition that the compo-
nent group G/G0 be finite, but the greater generality of the definition above is more
suitable in the representation theory of real reductive Lie groups.

There are two caveats here. First, a simple Lie group need not be simple as
an abstract group; it may have (necessarily discrete) nontrivial center. Second, the
meaning of reductive in the category of linear algebraic groups is different from the
one we have just given, which applies to the category of finite-dimensional Lie groups.
This distinction has no effect on the structure of complex flag manifolds or on the
real group orbit structure of those flag manifolds, but it does have consequences for
the representation theory of real reductive Lie groups; see [W2] and [W3].

The set of all linear transformations of a vector space V forms a Lie algebra with
composition [ξ, η] = ξη − ηξ . It is denoted gl(V ), and the ideal consisting of trace
zero transformations is denoted sl(V ). If V = Fn one usually writes gl(n;F) for
gl(V ) and sl(n;F) for sl(V ). The adjoint representation of g is the Lie algebra
homomorphism ad : g→ gl(g) given by ad(ξ)(η) = [ξ, η].

If G is a Lie group with Lie algebra g, we denote the exponential map by
exp : g → G. Here we view g as the algebra of all right-invariant vector fields
on the differentiable manifold G, and t �→ exp(tξ) is the integral curve for ξ pa-
rameterized so that exp(0) = 1. Now we have the adjoint representation G, the
homomorphism of G into the group of invertible linear transformations of g given
by Ad(g)(ξ) = d

dt
|t=0 g exp(tξ)g−1. Evidently Ad(G) is a subgroup of the group

Aut(g) of automorphisms of g. If G is connected, then Ad(G) is denoted Int(g)
and called the group of inner automorphisms of g. Given g, we can express any
connected G in the form G̃/Z where G̃ is the connected simply connected Lie group
with Lie algebra g and Z is a discrete central subgroup; thus G and G̃ lead to the
same group Int(g), and Int(g) is well defined.

Since we will be dealing with real and complex Lie groups and Lie algebras at
the same time, we need a way to distinguish them. We denote complex Lie groups by
upper case Latin letters, and denote real Lie groups by upper case Latin letters with
subscript 0, say G and G0. We denote complex Lie algebras by lower case German
letters, and denote real Lie algebras by lower case German letters with subscript 0,
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say g and g0. When a Lie group is denoted by some upper case Latin letter, its Lie
algebra is denoted by the corresponding lower case German letter, so for example h
would be the Lie algebra of H and g0 would be the Lie algebra of G0. Given a Lie
subalgebra h ⊂ g where g is the Lie algebra of G, we write H without comment for
the analytic subgroup of G corresponding to H . Given Lie groups G0 ⊂ G, we say
that G0 is a real form of G if g is the complexification of g0. And finally, given a
real form G0 of G and a Lie subgroup H of G stable under complex conjugation of
G over G0, we write H0 for the real form H ∩G0 of H .

There is one exception: we denote a compact real form of G (if it exists) by Gu

and its Lie algebra by gu. If G has only finitely many topological components, then
it has a compact real form Gu if and only if it is reductive. In other words, G is
reductive if and only if it is the complexification of a compact Lie group.

Let g be a complex Lie algebra. Asubalgebra h ⊂ g is called a Cartan subalgebra
if it is nilpotent and is equal to its own normalizer. Then g = h+∑α∈	 gα , where 	
is the set of all nonzero homomorphisms α : h → C such that the generalized joint
eigenspace

gα = {η ∈ g | (Ad(ξ)− α(ξ) Id)n(η) = 0 for n� 0 whenever ξ ∈ h}
is nonzero. Then the elements of 	 = 	(g, h) are the roots of g relative to h,
the summands gα are the root spaces, and g = h +∑α∈	 gα is the root space
decomposition.

Let g0 be a real Lie algebra. Again, a subalgebra h0 ⊂ g0 is called a Cartan
subalgebra if it is nilpotent and is equal to its own normalizer. Suppose that h0 is a
Cartan subalgebra. If the generalized joint eigenvalues for Ad(h0) are real valued,
then one has root space decomposition g0 = h0 +∑α∈	(g0)α as above. In general,
however, one must look at the way that g0 meets the summands in the root space
decomposition of g for the Cartan subalgebra h.

Now let g be a complex semisimple Lie algebra. Then the root space decom-
position is much cleaner. First, the Cartan subalgebras are commutative, and they
are all conjugate by the group Int(g) of inner automorphisms of g. Fix one such
Cartan subalgebra h. The root spaces gα all are 1-dimensional. The Killing form is
nondegenerate on h. In fact h has a distinguished real form

hR = {ξ ∈ h | α(ξ) ∈ R for all α ∈ 	},
and the Killing form is positive definite on hR.

The Killing form also satisfies several important conditions: 〈h, gα〉 = 0 for all
roots α ∈ 	(g, h); 〈gα, gβ〉 = 0 if α + β �= 0; and 〈·, ·〉 defines a nondegenerate
pairing of gα with g−α . This last condition can be formulated: the restriction of
〈·, ·〉 to gα + g−α is a nondegenerate bilinear form there. These conditions lead to an
explicit classification of the complex reductive Lie algebras.

We just saw, implicitly, that α ∈ 	 = 	(g, h) implies −α ∈ 	. A positive
root system is a subset 	+ = 	+(g, h) such that (i) 	 is the disjoint union of 	+
and −	+, and (ii) if α, β ∈ 	+ and α + β ∈ 	 then α + β ∈ 	+. The Weyl
chambers for (g, h) are the topological components of hR \ (∪α∈	(g,h)α⊥) where
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α⊥ denotes the root hyperplane {ξ ∈ hR | α(ξ) = 0}. The Weyl chambers are
convex open cones in hR, and they are in one-to-one correspondence C ↔ 	+
with the set of all positive root systems. If C and 	+ correspond then C =
{ξ ∈ hR | α(ξ) > 0 for all α ∈ 	+} and 	+ = {α ∈ 	 | α(ξ) > 0 for all ξ ∈ C}.
Given 	+ we refer to the corresponding Weyl chamber as the positive Weyl
chamber.

The simple root system or root basis corresponding to a positive root system
	+ = 	+(g, h) is the set of minimal positive roots, given by

� = {ψ ∈ 	+(g, h) | ψ is not a sum of two positive roots}.

A root α ∈ 	+ is simple if and only if the corresponding root hyperplane α⊥ bounds
the positive Weyl chamber at a nonzero point of its boundary. When � is the simple
root system for 	+, every root has form α =∑ψ∈� nψ(α)ψ , where the nψ(α) are
integers, either all � 0 for α ∈ 	+ or all � 0 for −α ∈ 	+. Evidently this gives
a one-to-one correspondence 	+ ↔ � between the set of positive root systems and
the set of simple root systems.

Let � = {ψ1, . . . , ψ
} denote a simple root system of g. The Dynkin diagram
� = �g of g is the graph whose set of vertices is �, and in which vertices ψi and ψj
are attached by

2〈ψi,ψj 〉
〈ψj ,ψj 〉

2〈ψj ,ψi 〉
〈ψi,ψi 〉 lines, with an arrowhead pointing toward ψi in case

〈ψi, ψi〉 < 〈ψj ,ψj 〉. Simplicity of g corresponds to connectedness of �g. Using
the Bourbaki order on �, the possibilities for connected Dynkin diagrams are

(1.1.1a) �

ψ1

�

ψ2

� � � �

ψ


(type A
, 
 � 1)

(1.1.1b) �

ψ1

�

ψ2

� � � �

ψ
−1
〉 �

ψ


(type B
, 
 � 2)

(1.1.1c) �

ψ1

�

ψ2

� � � �

ψ
−1
〈 �

ψ


(type C
, 
 � 3)

(1.1.1d) �

ψ1

�

ψ2

� � � �

ψ
−2
��� �

ψ
−1
��� �

ψ


(type D
, 
 � 4)

(1.1.1e) �

ψ1
〈 �

ψ2

(type G2)

(1.1.1f) �

ψ1

�

ψ2
〉 �

ψ3

�

ψ4

(type F4)

(1.1.1g)

�
ψ1

�
ψ3

�
ψ4

�
ψ5

�
ψ6

� ψ2

(type E6)
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(1.1.1h)

�
ψ1

�
ψ3

�
ψ4

�
ψ5

�
ψ6

�
ψ7

� ψ2

(type E7)

(1.1.1i)

�
ψ1

�
ψ3

�
ψ4

�
ψ5

�
ψ6

�
ψ7

�
ψ8

� ψ2

(type E8)

If g is a complex reductive Lie algebra, we decompose g = z⊕ g′ where z is the
center and g′ = [g, g] is semisimple, and we apply the above considerations to g′.
Then the Cartan subalgebra h = z⊕ h′ where h′ = h ∩ g′ is a Cartan subalgebra of
g′, the roots all vanish on z, 	(g, h) = 	(g′, h′), and 	+(g, h) = 	+(g′, h′). In this
case hR means h′

R
, and the definitions are exactly as above.

Let G be a complex reductive Lie group, and let h be a Cartan subalgebra of g.
The corresponding Cartan subgroup of G is the centralizer of h in G, given by

(1.1.2) H = ZG(h) := {g ∈ G | Ad(g)ξ = ξ for all ξ ∈ h}.
If G is semisimple it is a linear algebraic group. If G is a connected algebraic group,
then its Cartan subgroups are algebraic tori, groups isomorphic to C∗ × · · · × C∗.
We reserve the term tori for (compact) products of circle groups.

One also has the normalizer of h in G, given by

(1.1.3) NG(h) := {g ∈ G | Ad(g)h ⊂ h},
and the Weyl group of G is defined to be W(G,H) = NG(h)/H . The adjoint
representation of G gives a faithful realization of W(G,H) as a finite group of
linear transformations of hR. If G is connected, then H is connected and W(G,H)

is realized as the group of linear transformations of hR that is generated by the
reflections1 in the root hyperplanes α⊥ = {ξ ∈ hR | α(ξ) = 0}. That finite reflection
group is defined, whether or not G is connected, to be the Weyl group of g and
denoted W(g, h).

Let G be a complex reductive Lie group, and let h be a Cartan subalgebra of g.
The Weyl group W(g, h) is simply transitive on the set of all positive root systems
	+(g, h). Now we have one to one correspondences between (i) the elements of the
Weyl group W(g, h), (ii) the set of positive root systems 	+(g, h), (iii) the set of
simple root systems �, and (iv) the set of all Weyl chambers in hR.

1.2 Cartan highest weight theory

Let g be a complex semisimple Lie algebra and h a Cartan subalgebra. Let G be
the (unique) connected simply connected Lie group with Lie algebra g. Let V be a

1 Remember that the Killing form is positive definite on hR.
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finite-dimensional complex vector space. We write gl(V ) for the complex Lie algebra
of all linear transformations of V , with composition [a, b] = ab − ba. It is the Lie
algebra of the complex reductive Lie group GL(V ), which consists of all invertible
linear transformations of V with complex manifold structure given by the matrices
for any choice of basis of V . By a representation of g on V we mean a complex Lie
algebra homomorphism ν : g → gl(V ). By a representation of G on V we mean a
holomorphic homomorphismπ : G→ GL(V ). In each caseV is the representation
space.

Since G is connected and simply connected, there is a one-to-one correspon-
dence between representations of g on V and representations of G on V . In effect,
π : G → GL(V ) defines the associated Lie algebra map dπ : g → gl(V ), and
ν : g → gl(V ) integrates to a representation π : G → GL(V ) such that ν = dπ .
If G′ is any connected Lie group with Lie algebra g, then it is a quotient G/Z of
its universal covering group G by a finite central subgroup Z, π ′ : G′ → GL(V )

always defines a representation dπ ′ of g, but ν : g→ gl(V ) defines a representation
of G′ if and only if the associated representation π of G annihilates Z.

A subspace of V is π(G)-invariant if and only if it is dπ(g)-invariant. Every
(finite-dimensional complex) representation π of G is semisimple or completely
reducible in the sense that every proper invariant subspace V1 of V has an invariant
complementV2. So ifπi is the representation defined on the proper invariant subspace
Vi then V = V1⊕V2, and we say that π is the direct sum π1⊕π2. That is equivalent
to dπ = dπ1 ⊕ dπ2. If there is no proper invariant subspace we say that π and dπ
are irreducible. The key fact here is the following.

Lemma 1.2.1. Every finite-dimensional complex representation of a complex semi-
simple Lie algebra (or of a connected complex Lie group) is completely reducible,
and thus is a direct sum of irreducible representations.

This reduces the study of finite-dimensional complex representations of g and G
to the case of irreducible representations.

Two representations π1 and π2 of G are equivalent if there is an isomorphism
T : V1 ∼= V2 of the representation spaces that intertwines them in the sense that
T (π1(g)(v)) = π2(g)(T (v)) for all g ∈ G and all v ∈ V1. Since G is connected,
that is equivalent to the condition that T intertwines the Lie algebra representations
dπ1 and dπ2. Therefore π1 and π2 are equivalent if and only if dπ1 and dπ2 are
equivalent.

Fix a Cartan subalgebra h of g and an irreducible (finite-dimensional complex)
representation ν of g on V . Then ν(h) is a commuting family of diagonalizable linear
transformations, so ν(h) is simultaneously diagonalizable. Thus V =∑γ∈M(g,ν) Vγ
where M(g, ν) is a set of linear functionals on h and

Vγ = {v ∈ V | ν(ξ)(v) = γ (ξ)v for all ξ ∈ h} �= 0.

M(g, ν) is the weight system of ν, its elements are the weights of ν, and if γ ∈
M(g, ν) then Vγ is the corresponding weight space. The elements of the various
weight spaces are called weight vectors. Note that M(g, ad) = 	(g, h) ∪ {0}.
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In order to emphasize the weight system, rather than the representation, we some-
times write M(h, V ) for M(g, ν), where V is the representation space of ν.

Every weight takes real values on hR. Thus we may view M(g, ν) ⊂ h∗
R

and
view h∗

R
as the real span of the roots. More precisely, the set of all possible weights

(ν variable) forms a lattice, the weight lattice �wt , in h∗
R

. Similarly, the integer
span of the roots is a lattice �rt in h∗

R
called the root lattice. If � is the simple root

system corresponding to any positive root system, then � is an R-basis of h∗
R

and a
Z-basis of �rt . Note �rt ⊂ �wt by construction. The quotient �wt/�rt is naturally
isomorphic to the center of the connected simply connected complex Lie group G

with Lie algebra g.
Now fix a positive root system 	+ = 	+(g, h). Choose a weight γ . Since

M(g, ν) is finite we have a least integer k � 0 such that ν(
∑

α∈	+ gα)
k+1(Vγ ) = 0.

Let v be a weight vector in ν(
∑

α∈	+ gα)
k(Vγ ), say v = vλ ∈ Vλ. Then∑


�0 ν(h+
∑

α∈	+ g−α)
(vλ) is an invariant subspace of V (this takes some com-
putation), so it is equal to V by irreducibility. We say that a weight γ is less than a
weight δ, and that δ is greater than γ , written γ < δ, if we can go from γ to δ through
a string of weights obtained by adding one simple root at a time, in other words if
there is a string γ = γ0, γ1, . . . , γr = δ such that γi = γi−1 +ψi for 1 � i � r with
everyψi simple. The weight λ is greater than any other weight of V , and we call it the
highest weight of V . Analogously there is also a lowest weight. All this depends,
of course, on the choice of 	+(g, h). The ingredients just described fit together as
follows. This material can be found in standard texts such as [Hoch], [Hu1], [Kna]
and [V], mentioned in connection with structure theory.

Theorem 1.2.2 (Cartan highest weight theory). Let g be a finite-dimensional com-
plex semisimple Lie algebra, h a Cartan subalgebra, and 	+ = 	+(g, h) a positive
root system.

• Every irreducible ( finite-dimensional complex) representation ν of g has a unique
highest weight.

• If two irreducible ( finite-dimensional complex) representations have the same
highest weight, then they are equivalent.

• By duality carry the Killing form inner product from hR to an inner product 〈·, ·〉
on h∗R . Then a linear functional λ ∈ h∗ is the highest weight of some irreducible
( finite-dimensional complex) representation of g if and only if (i) λ ∈ h∗

R
, and

(ii) 2〈λ,ψ〉
〈ψ,ψ〉 is an integer � 0 for every simple root ψ .

We enumerate the simple root system, � = {ψ1, . . . , ψr} where r = dim h =
rank g. Define fundamental highest weights ξi by

2〈ξi ,ψj 〉
〈ψj ,ψj 〉 = δi,j . Then the highest

weights are just the linear combinations λ = ∑r
1 niξi where the ni are nonnegative

integers. It is standard to indicate the irreducible representation νλ of highest weight
λ = ∑ niξi by use of the Dynkin diagram �g as follows. The vertices of �g are
the elements of �, and we write ni by the vertex ψi whenever ni �= 0. Thus the
adjoint representations of the complex simple Lie algebras are indicated by the first
three columns of Table 1.2.3.
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Table 1.2.3. Adjoint Representations

Type of g Adjoint Representation of g
Highest
Weight

Other Dominant
Weights �= 0

A
, 
 � 1 �
2 or �

1
� � � � �

1
ξ1 + ξ


B
, 
 � 2 � �
1

� � � � 〉 � ξ2 ξ1

C
, 
 � 3 �
2

� � � � � 〈 � 2ξ1 ξ2

D
, 
 � 4

� �
1

� � � ��� �

�� �

ξ2

G2
� 〈 �

1
ξ2 ξ1

F4
�
1

� 〉 � � ξ1 ξ4

E6

� � � � �

�1 ξ2

E7

�

1
� � � � �

� ξ1

E8

� � � � � � �

1

� ξ8

Corollary 1.2.4. Let νλ be the irreducible representation of g with highest weight λ,
and let V be its representation space. Then the dual (contragredient) ν∗λ , represen-
tation of g on the linear dual space V ∗, is the irreducible representation of g with
lowest weight −λ.

Proof. Compare the weight space decompositions V = ∑γ∈M(g,νλ)
Vγ and V ∗ =∑

γ∈M(g,ν∗λ) Vγ . Since (ν(ξ)v, v∗) + (v, ν∗(ξ)v∗) = 0, the duality between V and
V ∗ is h-equivariant, so it pairs Vγ with V ∗−γ . In particular the weight systems satisfy
M(g, ν∗λ) = −M(g, νλ), and so −λ is the lowest weight of ν∗λ . ��

Now let us note the extension of Theorem 1.2.2 from semisimple g to reductive
g. Decompose the complex reductive Lie algebra g = z ⊕ g′ as before, where z
is its center and the semisimple g′ is derived algebra [g, g]. If z �= 0 every linear
functional ζ on z defines a nonsemisimple representations of g by functional ζ on z
defines a representation by z + ξ ′ �→ ( 0 ζ(z)

0 0

)
of g for z ∈ z and ξ ′ ∈ g′. Thus we

must explicitly require semisimplicity in order to reduce considerations to irreducible
representations.

Now, essentially as in Theorem 1.2.2, let g be a finite-dimensional complex reduc-
tive Lie algebra, h a Cartan subalgebra, and 	+ a positive root system. Decompose
g = z ⊕ g′, and thus also h = z ⊕ h′. In an irreducible representation ν of g, the
center z acts by scalars, so ν = νz ⊗ ν′, where
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• νz is a linear functional on the commutative algebra z,

• ν′ is an irreducible representation of the semisimple algebra g′, and

• we define (νz ⊗ ν′)(z+ ξ ′) = νz(z)+ ν′(ξ ′) for z ∈ z and ξ ′ ∈ g′.

Thus ν has a unique highest weight λ = νz + λ′, where λ′ is the highest weight of
ν′, and λ determines ν up to equivalence. Moreover, a linear functional λ ∈ h∗ is the
highest weight of some irreducible (finite-dimensional complex) representation of g

if and only if (i) λ ∈ z∗⊕h∗
R

, and (ii) 2〈λ,ψ〉
〈ψ,ψ〉 is an integer � 0 for every simple rootψ .

Here note that the Killing form ignores the z∗-component of λ, so that z∗-component
can be any linear functional on z.

Now we carry the Cartan highest weight theory over to the group level. There is
not too much to that, except that we have to be careful that the group representations
are well defined. Let G be a complex connected reductive Lie group and π an
irreducible complex finite-dimensional representation ofG. Then dπ is an irreducible
representation of g, and consequently it has some highest weight λ as described
just above. Since λ determines dπ up to equivalence, it also determines π up to
equivalence. Thus we say that λ is the highest weight of π . If λ is the highest weight
of an irreducible representation ν of g, we integrate ν to a representation π of the
connected simply connected group G̃ with Lie algebra g, obtaining a representation
π of highest weight λ such that dπ = ν. Thus the Cartan highest weight theory is
the same for complex reductive Lie algebras and connected complex reductive Lie
groups. In general, when G is connected but not necessarily simply connected, we
expressG = G̃/Z where G̃ is the connected simply connected group with Lie algebra
g, and Z is a discrete central subgroup of G̃. Then a linear functional λ ∈ h∗ is the
highest weight of some irreducible (finite-dimensional complex) representation of G
if and only if the associated representation π̃ of G̃ annihilates Z; that is an integrality
condition on λ.

Let g0 be a (finite-dimensional) real reductive Lie algebra. Let h0 be a Cartan
subalgebra of g0 and choose a positive root system 	+(g, h). The decomposition
g = z⊕ g′ of its complexification gives corresponding decompositions g0 = z0⊕ g′0
and h0 = z0⊕ h′0. If ν is an irreducible representation of g with representation space
V = Vν , then ν0 := ν|g0 is an irreducible representation2 of g0. If ν0 is an irreducible
representation of g0 on a complex vector space V , then the complex linear extension
ν of ν0 : g0 → gl(V ) is an irreducible representation of g on V . We have in effect
proved the following:

Let g0 be a real form of a complex reductive Lie algebra g. Restriction
ν �→ ν|g0 and complexification ν0 �→ ν0 ⊗ C give a one-to-one correspon-
dence between finite-dimensional representations of g and finite-dimensional
representations of g0. This correspondence preserves equivalence, semisim-
plicity, and irreducibility.

2 Although ν0 is a real Lie algebra homomorphism, irreducibility means that there are no
proper ν0(g0)-invariant complex subspaces of V .
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If ν is irreducible with highest weight λ, then we also refer to λ as the highest weight
of ν|g0 . Thus the Cartan highest weight theory (Theorem 1.2.2) is available for real
semisimple Lie algebras, and then for real reductive Lie algebras as well.

The situation is the same on the level of connected real reductive Lie groups. Let
G0 be a connected real reductive Lie group, G̃0 its universal covering group, and G̃
the connected simply connected Lie group with Lie algebra g. Then G̃ has a smallest
discrete central subgroup Z, and quotient G = G̃/Z, such that the inclusion g0 ↪→ g
induces a well-defined real Lie group homomorphism G0 → G. Write Z0 for the
kernel of this homomorphism, so g0 ↪→ g defines an inclusion G0/Z0 ↪→ G. The
point is that G̃ is universal for finite-dimensional representations of G0:

Ifπ0 is a representation ofG0 on a (finite-dimensional) complex vector space
V , then π0 annihilates Z0 and gives a representations of G0/Z0, g0 and g on
V . If ν is a representation of g onV and π̃ is the corresponding representation
of G̃ on V , then ν corresponds to a representation π0 of G0 if and only if π̃
annihilates Z.

For example, let ˜SL(2;R) denote the universal covering group of the group SL(2;R)
of all 2× 2 real matrices of trace 0. Let G0 = ˜SL(2;R). Then Z0 is an infinite cyclic
group, and the irreducible finite-dimensional representations of G0 are the ones that
factor through SL(2;R).

The real reductive group situation simplifies in the compact case. Let Gu be a
compact connected Lie group, G̃u its universal covering group, and G̃ the connected
simply connected Lie group with Lie algebra g. Then G̃u is a real analytic subgroup
of G̃. If we expressGu = G̃u/Z nowGu is a real analytic subgroup of the connected
complex reductive Lie group G := G̃/Z. Thus Gu has the same finite-dimensional
representation theory and highest weight theory as the connected complex reductive
Lie group G.

Also, since Gu is compact, one can prove that every continuous irreducible rep-
resentation πu of Gu on a Fréchet space V is finite-dimensional and is equivalent to
a unitary representation. In other words, the representation space V has a positive
definite hermitian form h such that h(πu(g)u, πu(g)v) = h(u, v) for all g ∈ Gu

and u, v ∈ V . Recall that one can construct h by starting with any positive definite
hermitian form h′ on V and defining h(u, v) = ∫

Gu
h(πu(g)u, πu(g)v)dg.

The picture becomes complicated, and the highest weight theory is only part of
the story when G (or G0) is not connected. After all, the case dimG = 0 is the
finite-dimensional representation theory of discrete groups.

1.3 Borel subgroups and subalgebras

In this section and the next we recall the theory of parabolic subgroups and their Lie
algebras, starting with Borel subalgebras and Borel subgroups. Much of this material
can be found in standard texts, for example those of Knapp [Kna, Chapter VII] and
Humphreys [Hu2, Part VIII], but the treatment in [W10, Part 1] is better oriented
toward our needs here.
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Let g be a complex semisimple Lie algebra and h a Cartan subalgebra. Let
	 = 	(g, h) denote the corresponding root system, and fix a positive subsystem
	+ = 	+(g, h). The corresponding Borel subalgebra is

(1.3.1) b = h+
∑
α∈	+

g−α ⊂ g.

The Borel subalgebra b is solvable. It is the semidirect sum of the nilpotent ideal∑
α∈	+ g−α with a complementary reductive algebra h. In other words, it has its

nilradical3 b−n =∑ g−α and with Levi complement h.
For example, if g = sl(n;C), Lie algebra of trace-free linear transformations of

Cn, we can choose h to consist of the diagonal matrices of trace 0. We make the
standard choice, 	+(g, h) = {εi − εj | 1 � i < j � n}, where εk on a diagonal
matrix picks out the kth diagonal entry. Then b consists of the lower triangular n× n

complex matrices of trace 0.
In general a subalgebra b ⊂ g is called a Borel subalgebra if it is Int(g)-conjugate

to a subalgebra of the form (1.3.1), in other words if there exist choices of h and
	+(g, h) such that b is given by (1.3.1).

Let G denote the connected simply connected Lie group with Lie algebra g.
The Cartan subgroup of G corresponding to h is the centralizer of h in G, given by
(1.1.2). It has Lie algebra h, and it is connected because G is connected, complex
and semisimple. The Borel subgroup B ⊂ G corresponding to a Borel subalgebra
b ⊂ g is defined to be the normalizer of G in b, given by

(1.3.2) B = NG(b) := {g ∈ G | Ad(g)b = b}.
As indicated by their names here, these notions are due to A. Borel (see [Bo1];

also see [Bo2]).
For example, let G = SL(n;C) corresponding to g = sl(n;C). Use the Cartan

subalgebra h ⊂ g and the positive root system 	+(g, h) mentioned just after (1.3.1).
The corresponding Borel subgroup B consists of the lower triangular matrices in G,
so it is just the G-stabilizer of the flag F = (F1 � F2 � · · · � Fn−1) of subspaces of
Cn given by Fj = Span(en−j+1, . . . , en) in the standard basis {ei}. It follows that,
in general, the Borel subalgebras of G = SL(n;C) are just the G-stabilizers of flags
F = (F1 � F2 � · · · � Fn−1) where Fj is a j -dimensional subspace of Cn.

Here are the basic facts on Borel subgroups.

Lemma 1.3.3. In the notation of (1.3.1) and (1.3.2), B has Lie algebra b, B is its
own normalizer in G, B is a closed connected subgroup of G, and G/B is simply
connected.

Proof. The Borel subgroup B is closed in G by definition (1.3.2). It follows that the
normalizer E = NG(B) is closed in G and consequently E is a Lie subgroup. Let e

3 Here we describe the nilradical as a sum of negative root spaces, rather than positive, so
that, in applications, positive functionals on h will correspond to positive bundles (instead
of negative bundles), and holomorphic discrete series representations will be highest weight
(instead of lowest weight) representations.
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denote the Lie algebra of E. Then b ⊂ e and [e, b] ⊂ b. Any subalgebra of g that
properly contains b must be of the form b+∑σ∈S gα with S ⊂ 	+, because h ⊂ b.
Thus it would contain a 3-dimensional simple subalgebra and could not normalize b.
Now e = b, in particular E normalizes b, so E = B. This shows both that B is its
own normalizer and that B has Lie algebra b.

Here is a complex-analytic proof that B is connected and G/B is simply con-
nected. Let Bop denote the opposite Borel subgroup, corresponding to the Borel
subalgebra bop = h+b+n where b+n =∑α∈	+ gα . ThenBop∩B = H , so the orbit
Bop(1B) in G/B is a submanifold of full dimension, thus open, and the unipotent
radical B+n = exp(b+n) is transitive on that orbit. An open orbit of a complex Lie
group in a connected complex manifold is the complement of a closed analytic subset
E. Thus the open B+n-orbit, which is biholomorphic to CdimG/B , is the complement
of such a set E in G/B. Since E has real codimension � 2 in G/B, it follows that
G/B is simply connected, and thus that B is connected.

Here is the standard Lie structure theory proof that B is connected and G/B

is simply connected. Let b ∈ B. All Levi complements to the nilradical B−n (in
other words all closed subgroups of B that project isomorphically onto B/B−n) are
conjugate by the identity componentB0 ofB, so we have b′ ∈ bB0 that normalizes h.
Let w = Ad(b′)|h ∈ W(g, h). Then w preserves the positive root system 	+. Since
the Weyl group W(g, h) is simply transitive on the set of all positive subsystems of
	(g, h), now w = 1, in other words b′ belongs to the Cartan subgroup H defined by
h. Since G is connected, H is connected, so b′ ∈ H ⊂ B0. We have proved that B
is connected, and it follows that G/B is simply connected. ��

Some of the other basic facts are not quite as obvious.

Lemma 1.3.4 (See J. Tits [T1]). Let Gu ⊂ G be a compact real form. Then Gu is
transitive on X = G/B, and X has a Gu-invariant Kähler metric. In particular X
has the structure of a compact Kähler manifold.

Remark. As the argument will show, the Gu-invariant Kähler metrics on X form a
convex open cone in R
 where 
 = dim h. This cone is sometimes called the Kähler
cone. ♦
Indication of proof. It suffices to consider a Gu constructed by means of a “Weyl
basis’’ of g using h and 	+. See, for example, [V, p. 280]. This yields a real form
gu ⊂ g on which the Killing form is negative definite. Then the G-normalizer of gu
coincides with the real analytic subgroup of G for gu, that is, Gu. By construction
hu = gu ∩ h is the real form of h on which the roots take pure imaginary values, and
g ∩ b = hu. Now a dimension count shows that the Gu-orbit of the identity coset
x0 = 1B ∈ G/B = X is open in X. It is also closed in X because Gu is compact.
This proves the transitivity and thus proves that X is compact.

Let λ ∈ h∗ such that 〈λ, α〉 > 0 for every α ∈ 	+. Extend λ to a linear functional
on g by λ(gγ ) = 0 for every γ ∈ 	. Define dλ : g×g→ C by dλ(ξ, η) = λ([ξ, η]).
The argument of [T1] shows that dλ pushes down to a Gu-invariant closed 2-form
ω of maximal rank on X, and ω combines with the complex structure to define a
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Gu-invariant Kähler metric on X. Thus, for every λ in the positive Weyl chamber of
(g, h, 	+), we have a Gu-invariant Kähler metric on X. ��

The above argument really is a Lie algebra cohomology argument. There, λ is a
1-cochain for Lie algebra cohomology of (g, h) and dλ is a 2-cocycle.

Lemma 1.3.5. There is a finite-dimensional irreducible representation π of G with
the following property: Let [v] be the image of a lowest weight vector in the projective
space P(Vπ) corresponding to the representation space of π . Then the action of G
on Vπ induces a holomorphic action of G on P(Vπ), and B is the G-stabilizer of [v].
In particular X = G/B is a complex projective variety.

Proof. For example, let ρ = 1
2

∑
α∈	+ α as usual and let π be the irreducible rep-

resentation of highest weight ρ. The lowest weight is −ρ and the assertions are
immediate. ��
Lemma 1.3.6. The group B is a maximal solvable subgroup of G.

Proof. The argument of Lemma 1.3.3 shows that b is a maximal solvable subalgebra
of g and that any Lie subgroup of G with Lie algebra b is B itself. If E ⊂ G is a
solvable subgroup and B ⊂ E, then the closure of E in G has those same properties,
we may assume E is closed in G. But then E is a solvable Lie subgroup of G. Thus
its Lie algebra e is solvable, so e = b and E = B. We conclude that B is maximal
solvable. ��

A theorem of Borel (see [Bo1], or see [Bo2]) says that any connected Lie group
R acting linearly on a complex projective variety X has a fixed point. Applying
this to X = G/B, it follows that such a group R is contained in some conjugate of
B. This shows that the Borel subgroups are exactly the maximal connected solvable
subgroups of G. That’s how Borel originally defined them. In view of Lemma 1.3.3,
our definitions (1.3.1) and (1.3.2) are equivalent to those of Borel.

Given the Cartan subalgebra h, the Borel subalgebras and subgroups given by
(1.3.1) and (1.3.2) are usually called the standard Borels.

Here is a proof of Borel’s fixed point theorem mentioned above. Let X be a
subvariety of P(V ) where V is a complex vector space with a linear action of a
Lie group R, where R stabilizes X. Then by Lie’s Theorem R stabilizes a full
flag F0 ⊂ F1 ⊂ · · · ⊂ Fn = P(V ) of projective linear subspaces. Note that
Fj \Fj−1 ∼= Cj . Recall that every compact subvariety of Cj is finite. If X is a finite
set, then the assertion follows from the fact thatR is connected. Otherwise, Fn−1 has
nonempty intersection with X. So either X ⊂ Fn−1, and we apply induction on the
dimension of the ambient projective space, or the dimension of some component of
X ∩ Fn−1 is smaller than that of X and we apply induction on the dimension of X to
that component.

1.4 Parabolic subgroups and subalgebras

A subalgebra q ⊂ g is called parabolic if it contains a Borel subalgebra. The concept,
as specified by the root space decomposition below, is due to J. Tits [T0]. The
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relation with Borel subalgebras and Borel subgroups was discovered later. Recall the
expository references [Hu2], [Kna], and [W10] at the beginning of Section 1.3.

Let � be the simple root system corresponding to 	+ and let � be an arbitrary
subset of �. Every α ∈ 	 has a unique expression α =∑ψ∈� nψ(α)ψ , where the
nψ(α) are integers, all � 0 if α ∈ 	+ and all � 0 if α ∈ 	− = −	+. Set

(1.4.1) �r = {α ∈ 	 | nψ(α) = 0 whenever ψ /∈ �}
and

(1.4.2) �n = {α ∈ 	+ | α /∈ �r} = {α ∈ 	 | nψ(α) > 0 for some ψ /∈ �}.
Now define

(1.4.3) q� = qr� + q−n� with qr� = h+
∑

α∈�r
gα and q−n� =

∑
α∈�n

g−α.

Then q� is a subalgebra of g that contains the Borel subalgebra (1.3.1), so it is a
parabolic subalgebra of g.

Proposition 1.4.4. Let q ⊂ g be a subalgebra that contains the Borel subalgebra
given by b = h +∑α∈	+ g−α of g. Then there is a set � of simple roots such that
q = q�.

Proof. Define � = {ψ ∈ � | gψ ⊂ q}. Then q� ⊂ q, and we must prove
q ⊂ q�. Both contain b, so this comes down to showing that α ∈ 	+, gα ⊂ q
implies nψ(α) = 0 whenever ψ ∈ � \ �. We will prove this by induction on the
level 
(α) =∑ nψ(α).

If 
(α) = 1 then α is simple, and so gα ⊂ q implies α ∈ �. Then ψ /∈ � implies
ψ �= α. Thus nψ(α) = 0.

Now let 
(α) = 
0 > 1 and suppose that nψ ′(γ ) = 0 for all ψ ′ ∈ � \ �,
whenever γ ∈ 	+ and gγ ⊂ q with 
(γ ) < 
0. Suppose first that we can (and do)
choose ψ ∈ � such that γ = α − ψ is a root. Then

gγ = [gα, g−ψ ] ⊂ [q, b−n] ⊂ [q, q] ⊂ q.

If ψ ′ ∈ � \ �, then nψ ′(α) = nψ ′(γ ), which is zero by the induction hypothesis.
Secondly, suppose that we cannot (and do not) choose ψ from among the elements
of �. Then

gψ = [gα, g−γ ] ⊂ [q, b−n] ⊂ [q, q] ⊂ q.

Therefore ψ ∈ � which is a contradiction. We have proved nψ ′(γ ) = 0 for all
ψ ′ ∈ � \�. Proposition 1.4.4 is proved. ��

The parabolic subgroup Q ⊂ G corresponding to a given parabolic subalgebra
q ⊂ g is defined to be the G-normalizer of q, that is,

(1.4.5) Q = {g ∈ G | Ad(g)q = q}.
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When q = q� we also write Q = Q�. The basic facts on parabolic subgroups are
most easily derived from the corresponding results for Borel subgroups.

For example, when G = SL(n;C) we can interpret Proposition 1.4.4 as follows.
The Borel subgroup B is the stabilizer of a particular flag

F = (F1 � F2 � · · · � Fn−1)

of subspaces of Cn. Then the parabolic subgroups Q of G that contain B are in
one-to-one correspondence with the dimension sequences 0 < d1 < · · · < dq < n.
There 0 � q < n. The parabolic Q corresponds to 0 < d1 < · · · < dq < n if and
only if it is the G-stabilizer of the partial flag (Fd1 � · · · � Fdq ).

Lemma 1.4.6. The parabolic subgroup Q ⊂ G defined by (1.4.5) has Lie algebra q.
That groupQ is a closed connected subgroup ofG, and is equal to its own normalizer
in G. In particular, a Lie subgroup of G is parabolic if and only if it contains a Borel
subgroup.

Proof. The argument of Lemma 1.3.3 shows that Q has Lie algebra q, is closed and
connected, and is equal to its own G-normalizer. Let S ⊂ G be a Lie subgroup that
contains a Borel subgroupB. Then its Lie algebra s contains b and is hence parabolic.
Because S is pinched between the analytic subgroup of G for s and the G-normalizer
of s, which coincide because parabolic subgroups are closed and connected, S is the
parabolic subgroup of G for s. ��
Lemma 1.4.7. The parabolic subgroupQ = Q� is the semidirect productQ−n� ·Qr

�

of its unipotent radical Q−n� with a reductive (Levi) complement Qr
�. Here Q−n�

is the analytic group exp(q−n� ) and Qr
� is the connected reductive group with Lie

algebra qr�.

Proof. Let Q−n� denote the analytic subgroup of G with Lie algebra q−n� and let Qr
�

denote the analytic subgroup for qr�. They have trivial intersection and therefore we
have the semidirect product group Q−n� · Qr

�. That semidirect product group is an
open subgroup of the connected group Q = Q� and consequently they are equal. ��

Let B ⊂ Q ⊂ G consist of a Borel subgroup contained in a parabolic subgroup.
Then we have complex homogeneous quotient spaces X = G/B and Z = G/Q and
a G-equivariant holomorphic projection X→ Z given by gB �→ gQ. In particular,
transitivity of Gu on X gives transitivity of Gu on Z in

Lemma 1.4.8 (J. Tits [T1]). Let Gu ⊂ G be a compact real form. Then Gu is
transitive on Z = G/Q, and Z has a Gu-invariant Kähler metric. In particular Z
has the structure of a compact Kähler manifold.

The argument of Lemma 1.3.4 is easily modified to prove the Kähler statement
in Lemma 1.4.8. Just take λ in the dual space of the center of qr such that 〈λ, α〉 > 0
for all α ∈ �n. Note that, as before, the Gu-invariant Kähler metrics on Z form a
nonempty convex open cone.
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Lemma 1.4.9. Fix a standard parabolic subgroup Q = Q� in G. Then there is a
finite-dimensional irreducible representation π ofG with the following property: Let
[v] be the image of a lowest weight vector in the projective space P(Vπ) corresponding
to the representation space of π . Then the action of G on Vπ induces a holomorphic
action of G on P(Vπ), and Q is the G-stabilizer of [v]. In particular Z = G/Q is a
complex projective variety.

Proof. We use the argument of Lemma 1.3.5, with a different choice of highest
weight. Recall ρ = 1

2

∑
α∈	+ α and set ρ� = 1

2

∑
α∈(�r∩	+) α. Let ψ ∈ �. Then

2〈ρ�,ψ〉
〈ψ,ψ〉 = 1 for ψ ∈ �, and 2〈ρ�,ψ〉

〈ψ,ψ〉 = 0 for ψ /∈ �. Now let π be the irreducible
representation of G with lowest weight −(ρ − ρ�), in other words highest weight
w(ρ − ρ�), where w is the element of the Weyl group that sends 	+ to its negative.
Then the assertions are immediate. ��

At this point we summarize as follows.

Proposition 1.4.10 ([T0], [T1]). Let Q be a complex algebraic group that is a Lie
subgroup of G. Then the following conditions are equivalent:

(1) G/Q is a compact complex manifold.
(2) G/Q is a complex projective variety.
(3) IfGu denotes a compact real form ofG, thenG/Q is aGu-homogeneous compact

Kähler manifold.
(4) G/Q is the projective space orbit of an extremal weight vector in an irreducible

finite-dimensional representation of G.
(5) G/Q is a G-equivariant quotient manifold of G/B, for some Borel subgroup

B ⊂ G.
(6) Q is a parabolic subgroup of G.

If those conditions hold, then Q is connected and G/Q is simply connected.

We will simply refer to these spaces Z = G/Q as complex flag manifolds.

1.5 Homogeneous holomorphic vector bundles

In this section we look at the structure of homogeneous holomorphic vector bundles
over complex flag manifolds Z = G/Q = Gu/Lu. Let p : E → Z be a fiber bundle
with typical fiber E and structure group J . We say that the fiber bundle p : E → Z

is a vector bundle if E is a (real or complex) vector space and J is a subgroup of
GL(V ). It is holomorphic if E is a complex manifold, the fibers are closed complex
submanifolds, and the action J×E→ E is holomorphic. Combining these concepts,
p : E → Z is a holomorphic vector bundle if it is a complex vector bundle and is
a holomorphic fiber bundle.

There is a slightly delicate point here. In order for J ×E→ E to be holomorphic
one wants the vector spaceE to be complex and the structure group J to be a complex
Lie group. In fact we will often meet situations where the structure group initially
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is a real Lie group and the holomorphic vector bundle structure is defined by an
extension of that real structure group to a complex Lie group. This is based on [TW]
and explained in Lemma 1.6.1 below.

We say that p : E → Z is G-homogeneous (respectively, Gu-homogeneous)
if the action of G (respectively, Gu) on Z lifts to an action on E, and the stabilizer
of the typical fiber E is contained in the structure group J . Finally, p : E → Z

is a G-homogeneous (or just homogeneous) holomorphic vector bundle if it is
a holomorphic vector bundle that is G-homogeneous in such a way that the action
G× E → E is holomorphic.

The G-homogeneous holomorphic vector bundles over Z are constructed as fol-
lows. Fix a holomorphic representation χ of Q on a finite-dimensional complex
vector space E = Eχ . Define a complex manifold E = Eχ := G ×Q Eχ , where
G×Q Eχ is the quotient of G× Eχ by the equivalence relation

(gq, e) ∼ (g, χ(q)e) for g ∈ G, q ∈ Q, and e ∈ Eχ.

Write [g, e] for the equivalence class of (g, e). The projection p : Eχ → Z is given
by p[g, e] = gQ. The fiber p−1(gQ) = {[g, e] | e ∈ Eχ } ∼= Eχ is a complex
submanifold of Eχ . The natural action of G on Eχ is given by g[g′, e] = [gg′, e].
For the holomorphic local trivializations, consider the holomorphic principal bundle
G → G/Q = Z with structure group Q and note that p : Eχ → Z is bundle
associated by the action χ of Q on Eχ .

Proposition 1.5.1. Let Z be a complex flag manifold G/Q. Every G-homogeneous
holomorphic vector bundle p : E → Z is holomorphically equivalent to a vector
bundle Eχ → Z constructed as just above, where χ is the action of Q on the fiber
E = Eχ := p−1(1Q). Two such bundles, Eχ ′ → Z and Eχ ′′ , are equivalent by a
G-equivariant holomorphic bundle map if and only if the representations χ ′ and χ ′′
of Q are equivalent.

Proof. Let p : E → Z be a G-homogeneous holomorphic vector bundle and let χ
denote the action of Q on the fiber E = Eχ := p−1(1Q). Then χ is a holomorphic
representation of Q, and we have the bundle Eχ → Z constructed just above. Let
U be a small open neighborhood of 0 in a complex vector space complement to q in
g. Then (ξ, e) �→ [exp(ξ), e] gives a holomorphic trivialization of E over the open
set V = exp(U)Q ⊂ Z. This is the same holomorphic local trivialization as the
one given by the associated bundle construction. Now both E → Z and Eχ → Z

have the same holomorphic local trivialization over V , so they are holomorphically
equivalent by G-homogeneity. ��

Let Eχ ′ be a χ(Q)-invariant subspace of Eχ , where χ ′ denotes the correspond-
ing subrepresentation of Q. The constructions used in Proposition 1.5.1 exhibit
Eχ ′ as a G-homogeneous holomorphic vector subbundle of Eχ . Conversely a G-
homogeneous holomorphic vector subbundle E of Eχ gives a subrepresentation χ ′
of χ such that E = Eχ ′ . Thus, composition series (or direct sum decompositions)
for χ correspond to those for Eχ . In particular, when χ is completely reducible
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(respectively, irreducible) we will refer to Eχ as completely reducible (respectively,
irreducible). Here note

Lemma 1.5.2. Let χ be an irreducible complex finite-dimensional representation of
Q. Thenχ annihilates the nilradical unipotent radicalQ−n ofQ, so it factors through
an irreducible representation χr of the reductive component Qr ∼= Q/Q−n.

Corollary 1.5.3. The holomorphic bundle equivalence classes of irreducible G-
homogeneous holomorphic vector bundles E → Z are in natural one-to-one cor-
respondence with the equivalence classes of finite-dimensional irreducible repre-
sentations of Qr , and in particular are parameterized by highest weights of those
representations.

Now consider holomorphic vector bundles E → Z that are Gu-homogeneous. It
is automatic here that E → Z is G-homogeneous.

Proposition 1.5.4. Let p : E → Z be a holomorphic vector bundle that is Gu-
homogeneous. Then it carries a unique structure of G-homogeneous holomorphic
vector bundle such that the original action of Gu on E is the restriction of the action
of G on E.

Proof. We can assume that the real form Gu is the one defined by a complex con-
jugation σ that stabilizes the Cartan subalgebra used to define q. Then the isotropy
subgroup Gu ∩Q of Gu at 1Q is a compact real form Qr

u of Qr . It is connected by
Lemma 1.4.7. As in the proof of Proposition 1.5.1, let χu denote the action of Qr

u

on the fiber E = p−1(1Q). Then we obtain p : E → Z as Eχu → Z using the
construction of Proposition 1.5.1. However, χu extends uniquely to a holomorphic
representation of Qr on E, and that representation lifts uniquely to a holomorphic
representation χ of Q on E. That defines the G-homogeneous holomorphic vector
bundle Eχ with the required relation to E. ��

In view of Proposition 1.5.4, we can now speak ofGu-homogeneous holomorphic
vector bundles over Z.

Corollary 1.5.5. The holomorphic bundle equivalence classes of irreducible Gu-
homogeneous holomorphic vector bundles E → Z are in natural one-to-one cor-
respondence with the equivalence classes of irreducible representations of Qr

u, and
in particular are parameterized by highest weights of those representations.

1.6 The Bott–Borel–Weil Theorem

Let p : Eχ → Z be an irreducible G-homogeneous holomorphic vector bundle.
Write O(E) for the sheaf of (germs of) holomorphic sections. Then the natural action
ofG on Eχ andZ induces a representation ofG on each of the Dolbeault cohomology
spaces Hk(Z;O(E)). The Bott–Borel–Weil Theorem gives a precise description of
these cohomologies as G-modules in terms of the highest weight of χ .
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It does not matter whether one describes the Hk(Z;O(E)) as G-modules or as
Gu-modules, because the continuous representation theory of a compact group Gu

is the same as the completely reducible holomorphic representation theory of its
complexification G. In other words, the Cartan highest weight theory is exactly the
same for G and Gu.

A section of p : Eχ → Z over an open set U ⊂ Z is a function s : U → Eχ

such that s(z) ∈ p−1(z) for all z ∈ U . Expressing Eχ = G ×Q Eχ , the section s

takes the form s(gQ) = [g, fs(g)], where fs : {g ∈ G | gQ ∈ U} → Eχ satisfies
fs(gq) = χ(q)−1fs(g) for g ∈ G, gQ ∈ U, q ∈ Q. In particular, the space of
all global sections is identified with the space of all functions f : G → Eχ such
that f (gq) = χ(q)−1f (g) for g ∈ G and q ∈ Q. The point is that now the natural
action (for the moment denote it by π ) of G on the space of global sections is given
by (π(g)f )(g′) = f (g−1g′).

A section s of p : Eχ → Z over an open set U ⊂ Z is smooth of class Ck if and
only if the corresponding function fs : {g ∈ G | gQ ∈ U} → Eχ is Ck . Similarly, s
is holomorphic if and only if fs is holomorphic.

Lemma 1.6.1 (Compare [TW]). View Z as Gu/Lu, where Lu = Qr
u, and view

p : Eχ → Z as a Gu-homogeneous holomorphic vector bundle. Then a function
f : Gu → Eχ is a holomorphic section of p : Eχ → Z if and only if

(1.6.2) f (g; ξ)+ dχ(ξ)(f (g)) = 0 for g ∈ Gu and ξ ∈ q,

where the right derivative f (g; ξ) is given by

(1.6.3) f (g; ξ1 + iξ2) = d

dt

∣∣∣∣
t=0

fs(g exp(tξ1))+ i
d

dt

∣∣∣∣
t=0

fs(g exp(tξ2))

for g ∈ Gu and ξ1, ξ2 ∈ gu.

Proof. We only need to consider the case where f is smooth. Since Lu is connected,
the section condition f (g
) = χ(
)−1f (g) is equivalent to

f (g; ξ)+ dχλ(ξ)f (g) = 0 for all ξ ∈ l = qr .

As ξ ranges over the antiholomorphic tangent space q−n of Z, the equation
f (g; ξ) + dχλ(ξ)f (g) = 0 for all ξ ∈ q−n is the Cauchy–Riemann system for
the section s with f = fs . Thus (1.6.2) characterizes holomorphic sections. ��

Recall the Peter–Weyl Theorem. Let J be a compact topological group. Let
J × J act on L2(J ) by left and right translations: (t (j1, j2)f )(j) = f (j−1

1 jj2)

Write Ĵ for the set of all equivalence classes of irreducible unitary representations of
J . In the connected Lie group case it is given by the highest weights of irreducible
representations. If γ ∈ Ĵ , and if Vγ denotes its representation space, then the space
of matrix coefficients is spanned by the functions fu,v(j) := v(γ (j)u) for j ∈ J ,
v ∈ Vγ and u ∈ V ∗γ . This identifies that space of matrix coefficients with Vγ ⊗ V ∗γ .

The Peter–Weyl Theorem says that L2(J ) is the Hilbert space direct sum of those
subspaces,
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L2(J ) =
∑

γ∈Ĵ Vγ ⊗ V ∗γ ,

as J×J module, where on the left translation action t (j1, 1) preserves each summand
Vγ ⊗ V ∗γ and acts there on the factor Vγ , and the right translation action t (1, j2)

preserves each summand Vγ ⊗ V ∗γ and acts there on the factor V ∗γ .
We apply the Peter–Weyl Theorem to the irreducible Gu-homogeneous holomor-

phic vector bundle Eχλ → Z, where χδ denotes the irreducible complex representa-
tion of Lu of highest weight δ. The space of Eχλ -valued square integrable functions
on Gu is

(1.6.4)
L2(Gu)⊗ Eχλ =

(∑
πγ ∈Ĝu

Vπγ ⊗ V ∗πγ

)
⊗ Eχλ

=
∑

πγ ∈Ĝu

Vπγ ⊗ (V ∗πγ ⊗ Eχλ),

where πγ denotes the irreducible representation of Gu (or of G) of highest weight γ .
Here the left action of Gu is on the first factor Vπγ and the right action of its isotropy
subgroup Lu is on the factor V ∗πγ ⊗ Eχλ . A function f ∈ L2(Gu,Eχλ) is a section

of Eχλ → Z. Thus it satisfies f (g
) = χ(
)−1f (g). That says that f is fixed by
the right action of Lu. We have seen that the space of square integrable sections of
Eχλ → Z is the Gu-module

(1.6.5) L2(Z;Eχλ) =
∑

πγ ∈Ĝu

Vπγ ⊗ (V ∗πγ ⊗ Eχλ)
Lu.

In general, writem(δ, γ )= mult(χδ, πγ ) for the multiplicity ofχδ ∈ L̂u as a summand
of πγ |Lu . Using Lemma 1.2.4 we now have the highest weight formulation of the
Frobenius Reciprocity Theorem:

(1.6.6) L2(Z;Eχλ) =
∑

πγ ∈Ĝu

Vπγ ⊗ Cm(λ,γ ).

Thus πγ occurs exactly m(λ, γ ) times as a subrepresentation of the left regular rep-
resentation of Gu on the space L2(Z;Eχλ) of L2 sections of Eχλ → Z.

Continuous sections, in particular holomorphic sections, are automatically L2.
Let H 0(Z;O(Eχλ)) denote the space of holomorphic sections of Eχλ → Z. Now
H 0(Z;O(Eχλ)) is given by

Theorem 1.6.7 (Borel–Weil Theorem [Ser]). If λ is dominant for Gu, that is, if
〈λ,ψ〉 � 0 for every simple rootψ of	+(g, h), thenGandGu act onH 0(Z;O(Eχλ))

by the irreducible representation of highest weight λ. If λ is not dominant for Gu,
then H 0(Z;O(Eχλ) = 0.

Proof. Combine Lemma 1.6.1 with (1.6.5) to see that the space of (automatically
L2) holomorphic sections is

H 0(Z;O(Eχλ)) =
∑

πγ ∈Ĝu

Vπγ ⊗
(
(V ∗πγ ⊗ Eχλ)

Lu ∩ (V ∗πγ ⊗ Eχλ)
q−n
)
.
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Here q−n acts trivially on Eχλ . Thus (V ∗πγ ⊗ Eχλ)
q−n = (V ∗πγ )

q−n ⊗ Eχλ , and

dπ∗γ (q−n) permutes the irreducible summands of dπ∗γ |qr , lowering their lowest
weights and annihilating only the summand whose lowest weight is lowest of all
of them. But Lemma 1.2.4 says that the lowest one is −γ . Thus (V ∗πγ ⊗ Eχλ)

q−n =
E∗χγ ⊗ Eχλ . Now

H 0(Z;O(Eχλ)) =
∑

πγ ∈Ĝu

Vπγ ⊗ (E∗χγ ⊗ Eχλ)
Lu

as G-module. Since Lemma 1.2.4 says that (E∗χγ ⊗ Eχλ)
Lu is 0 for γ �= λ and is C

for γ = λ. That proves the Borel–Weil Theorem. ��
The Bott–Borel–Weil Theorem interprets the space of holomorphic sections as 0-

cohomology, as we have done by using the notationH 0(Z;O(Eχλ)), and describes the
action ofG andGu on the higher cohomologies as well. There are two approaches, Lie
algebra cohomology and the Leray spectral sequence [Bot2], [Kos2]. The argument
given above for Theorem 1.6.7 is really a Lie algebra cohomology argument. A
proof of the Bott–Borel–Weil Theorem would take us too far away from our goal of
understanding cycle spaces, so we only state the result. See Warner’s book [War,
Section 3.1.2] for a complete concise exposition.

Theorem 1.6.8 (Bott–Borel–Weil Theorem [Bot2]). Let Eχλ → Z be a Gu-homo-
geneous holomorphic vector bundle. Let ρ = 1

2

∑
α∈	+(g,h) α, half the sum of the

positive roots.

1. If λ + ρ is singular (〈α + ρ, α〉 = 0 for some α ∈ 	(g, h)), then every
Hk(Z;O(Eχλ)) = 0.

2. Suppose that λ+ ρ is regular, i.e., 〈α + ρ, α〉 �= 0 for all α ∈ 	(g, h). Let w be
the unique element of the Weyl group such that 〈w(λ+ρ), ψ〉 > 0 for every sim-
ple root ψ . Define4 q = q(λ + ρ) = #{α ∈ 	+(g, h) | 〈λ + ρ, α〉 < 0}.
Then Hk(Z;O(Eχλ)) = 0 for k �= q, and G and Gu act irreducibly on
Hq((Z;O(Eχλ))by the irreducible representation of highest weightw(λ+ρ)−ρ.

Later we will need to know the expression of the Bott–Borel–Weil theorem in the
framework of Lie algebra cohomology. Compare [War, Section 2.5].

We first recall the basic definitions for relative Lie algebra cohomology. Let π be
a representation of g on a complex vector spaceVπ . The space ofVπ -valued cochains
is Cq(g;Vπ) := Hom(

∧qg, Vπ ) for q > 0, and C0(g;Vπ) := Vπ . The coboundary
operator δ : Cq(g;Vπ)→ Cq+1(g;Vπ) is defined by

δ(ω)(ξ0, . . . , ξq) =
q∑

j=0

(−1)jπ(ξj )
(
ω(ξ0, . . . , ξ̂j , . . . , ξq)

)
+

∑
0�r<s�q

(−1)r+sω([ξr , ξs], ξ0, . . . , ξ̂r , . . . , ξ̂s , . . . , ξq).

4 One can see that q is the minimal length of a word expressing w as a product of simple root
reflections.
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(Here the notation ŵ means that w is omitted.) It has the property that δ2 = 0. The
cocycles are Zq(g;Vπ) kernel of δ : Cq(g;Vπ)→ Cq+1(g;Vπ) and the cobound-
aries are Bq(g;Vπ): image of δ : Cq−1(g;Vπ)→ Cq(g;Vπ) Then the Lie algebra
cohomology is

(1.6.9) Hq(g;Vπ) := Zq(g;Vπ)/Bq(g;Vπ).
Now let h be a subalgebra of g. Then we have a subcomplex {Cq(g, h;Vπ), δ} of
{Cq(g;Vπ), δ} as follows. The space of Vπ -valued relative cochains is

Cq(g, h;Vπ) := Homh(
∧q

(g/h), Vπ)

= {ω ∈ Cq(g;Vπ) | Lξω = 0 = ıξω for all ξ ∈ h} for q > 0,

C0(g; h;Vπ) := V h
π = {v ∈ Vπ | π(ξ)v = 0 for all ξ ∈ h},

where Lξ is Lie derivative and ıξ is interior product. Essentially as before, the space
of relative cocycles is

Zq(g, h;Vπ): kernel of δ : Cq−1(g, h;Vπ)→ Cq(g, h;Vπ)
and the space of relative coboundaries is

Bq(g, h;Vπ): image of δ : Cq−1(g, h;Vπ)→ Cq(g, h;Vπ).
The relative Lie algebra cohomology is

(1.6.10) Hq(g, h;Vπ) := Zq(g, h;Vπ)/Bq(g, h;Vπ).
Note in particular thatH 0(g, h;Vπ) = Vπ . The Lie algebra cohomology formulation
of the Bott–Borel–Weil Theorem is the following.

Theorem 1.6.11 ([Bot2, Section 1.6]). Let χν be an irreducible representation of
Q with representation space Eχν and highest weight ν. Let πλ be an irreducible
representation of G with representation space Vπλ and highest weight λ. Then
HomG(Vλ,H

•(G/Q;O(Eχν )) = H •(q, qr ;Homq(Vπλ, Eχν )). Here the cohomol-
ogy on the right is relative Lie algebra cohomology.
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Real Group Orbits

In this chapter we record the basic facts used to study a real group orbit G0(z) in
a complex flag manifold Z = G/Q. We start with the Bruhat decomposition as
completed by Harish-Chandra, and use it to analyze the root structure of the real
isotropy algebra g0 ∩ qz. This leads directly to a codimension formula for G0(z) in
Z, to a (finite) bound on the number of G0-orbits, and to the existence of open orbits.

2.1 Bruhat Lemma and an application

The Bruhat Lemma for the complex flag manifold X = G/B is as follows. We
may assume that B is given by (1.3.1) and (1.3.2). Consider the Weyl group W =
W(g, h) := NG(H)/H . Given w ∈ W choose a representative sw ∈ NG(H). Let
x0 = 1B ∈ G/B = X. The weakest form of the Bruhat decomposition [HC0] is
sufficient for our needs. It is the following.

Lemma 2.1.1 (Bruhat [Bru], Harish-Chandra [HC0]). The manifold X is the dis-
joint union of the B-orbits B(swx0), w ∈ W . The B-orbit

O = B(swx0) ∼= B/(B ∩ Ad(sw)B)

is holomorphically (in fact, C-algebraically) equivalent to Cdim O, and O has di-
mension #{α ∈ 	+ | w(α) ∈ 	+}.

This decomposes X as a union of cells, as follows. The isotropy subgroup of
B at swx0 is B ∩ Bw, where Bw is the analytic subgroup of G with Lie algebra
bw = h +∑β∈w(	+) g−β . This decomposes B as Nw(B ∩ Bw), where Nw is the
unipotent analytic subgroup of G with Lie algebra nw = ∑α∈	+∩w(	−) g−α . Now
n+w :=

∑
α∈	+∩w(	+) gα represents the holomorphic tangent space of B(swx0), and

ξ �→ exp(ξ)(swx0) is a biholomorphic map of n+w onto B(swx0).

Lemma 2.1.2. If Q1 and Q2 are parabolic subgroups of G, then Q1 ∩Q2 contains
a Cartan subgroup of G.
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Proof. Let b and b′ be Borel subalgebras of g. We will show that b ∩ b′ contains
a Cartan subalgebra of g. For this, we may assume that b is our standard Borel
h +∑α∈	+ g−α . Let B and B ′ be the corresponding Borel subgroups of G. Then
B ′ is the G-stabilizer of a point x′ ∈ X = G/B. Following the Bruhat Lemma 2.1.1,
we may take x′ = bswx0 for some b ∈ B and w ∈ W . Without loss of generality
we conjugate by b−1. Now we may assume x′ = swx0. Then B ′ = Ad(sw)B and
therefore b′ = ad(sw)b, which contains h.

Every h ∈ H normalizes both b and b′, so h ∈ B ∩ B ′. Thus the intersection of
two Borel subgroups contains a Cartan subgroup. The lemma follows. ��

Let G0 be a real form of G. In other words, G0 is a Lie subgroup of G whose
Lie algebra g0 is a real form of g. Although G is connected, G0 does not have to be
connected. We always write τ both for the complex conjugation of g over g0 and for
the corresponding conjugation of G over G0. So τ denotes both the antiholomorphic
involution of g with fixed point set g0 and the antiholomorphic involution of G such
that G0 is an open subgroup of the fixed point set of τ .

We recall some key notation: θ is the Cartan involution of g0 and G0 that com-
mutes with τ . We extend θ to holomorphic involutions of g and G. Now σ := τθ

is the complex conjugation of G over its θ -stable compact real form Gu and is also
complex conjugation of g over gu.

Corollary 2.1.3. If q is a parabolic subalgebra of g, then q ∩ τq contains a τ -stable
Cartan subalgebra of g.

Proof. Set r = q ∩ τq. It is a τ -stable complex subalgebra of g, and therefore
r0 = g0 ∩ r is a real form of r and τ induces the complex conjugation of r over r0.
Choose a Cartan subalgebra j0 of r0. Its complexification j is a Cartan subalgebra
of r. Lemma 2.1.2 says that r contains Cartan subalgebras of g. Thus j is a τ -stable
Cartan subalgebra of g. ��

We have the parabolic subgroupQ ⊂ G and the complex flag manifoldZ = G/Q.
Since Q is its own normalizer in G, we may view Z as the space of all G-conjugates
of q, by the correspondence gQ ↔ Ad(g)q. We will write qz for the parabolic
subalgebra of g corresponding to z ∈ Z, and will write Qz for the corresponding
parabolic subgroup of G.

2.2 Real isotropy

Here is the principal strategy for dealing withG0-orbits onZ. We will use it constantly.
Consider the orbitG0(z). The isotropy subgroup ofG0 at z isG0∩Qz. That isotropy
subgroup has Lie algebra g0∩qz, which is a real form of qz∩τqz. Corollary 2.1.3 says
that qz ∩ τqz contains a τ -stable Cartan subalgebra h of g. Now qz contains a Borel
subalgebra of g that contains h. Express that Borel subalgebra as b = h+∑α∈	+ gα
for an appropriate choice of positive root system 	+ = 	+(g, h). We have proved
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Theorem 2.2.1. Let G0 be a real form of the complex semisimple Lie group G, let τ
denote complex conjugation of g over g0, and consider an orbit G0(z) on a complex
flag manifold Z = G/Q. Then there exist a τ -stable Cartan subalgebra h ⊂ qz of g,
a positive root system	+ = 	+(g, h), and a set� of simple roots, such that qz = q�
and Qz = Q�.

Corollary 2.2.2. In the notation of Theorem 2.2.1, qz ∩ τqz is the semidirect sum of
its nilpotent radical

(q−n� ∩ τq−n� )+ (qr� ∩ τq−n� )+ (q−n� ∩ τqr�)
with the Levi complement

qr� ∩ τqr� = h+
∑

�r∩τ�r

gα.

In particular, dimR g0 ∩ qz = dimC qr� + |�n ∩ τ�n|.
Proof. The subspace (q−n� ∩ τq−n� ) + (qr� ∩ τq−n� ) + (q−n� ∩ τqr�) of q� ∩ τq� is
the sum of all root spaces gα ⊂ q� ∩ τq� such that g−α �⊂ q� ∩ τq�. So it is the
nilradical of q� ∩ τq�. The subspace qr� ∩ τqr� = h +∑�r∩τ�r gα is a reductive
subalgebra that is a vector space complement. Hence it is a Levi complement. Now
compute

dimR g0 ∩ qz

= dimC q� ∩ τq� = dimC h+ |(�r ∪�n) ∩ τ(�r ∪�n)|
= (dimC h+ |�r ∩ τ�r | + |�n ∩ τ�r | + |�r ∩ τ�n|)+ |�n ∩ τ�n|
= dimC qr� + |�n ∩ τ�n|,

as asserted. ��
Corollary 2.2.3. In the notation of Theorem 2.2.1,

codimR(G0(z) ⊂ Z) = |�n ∩ τ�n|.
In particular, G0(z) is open in Z if and only if �n ∩ τ�n is empty.

Proof. In view of Corollary 2.2.2, the codimension in question is given by

codimR(G0(z) ⊂ Z)

= dimR Z − dimR G0(z)

= 2|�n| − [dimR G0 − dimR(G0 ∩Qz)]
= 2|�n| − [(dimR h+ |�r | + 2|�n|)− (dimR h+ |�r | + |�n ∩ τ�n|)]
= |�n ∩ τ�n|,

as asserted. ��
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Corollary 2.2.4. There are only finitely many G0-orbits on Z. The maximal-
dimensional orbits are open and the minimal-dimensional orbits are closed.

Proof. There are only finitely many G0-conjugacy classes of Cartan subalgebras
h0 ⊂ g0, so the number of G0-conjugacy classes of τ -stable Cartan subalgebras
h ⊂ g is finite. Given such an h, the number of positive root systems 	+ is finite.
Given (h, 	+), the number of sets � of simple roots is finite. Thus the number of
possibilities for Q� is finite up to G0-conjugacy. This proves that the number of
G0-orbits on Z is finite. It also gives a (very) rough upper bound on the number. The
other statements follow because the closure of an orbit is a union of orbits. ��

We refer to the open G0-orbits on Z as flag domains. As G0-invariant open
subsets of Z, the flag domains D ⊂ Z are G0-homogeneous complex manifolds. At
the other extreme, we will see that theG0-closed orbit is unique, and that it sometimes
has an interpretation as the Shilov boundary of a particular flag domain.
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Orbit Structure for Hermitian Symmetric Spaces

In this chapter we look at the case where Z is an irreducible hermitian symmetric
space Gu/K0 of compact type, viewed as a complex flag manifold G/Q, and G0
is the real form of G that is hermitian in the sense that D0 = G0/K0 is a bounded
symmetric domain. In Section 1 we construct the maximal set of strongly orthogonal
noncompact positive roots, the partial Cayley transforms, and the conjugacy classes
of Cartan subalgebras of g0. These constructions are the foundation for the special
features of the hermitian symmetric spaces. Then in Section 2 we indicate theG0-orbit
structure of Z in the hermitian symmetric space case.

Since Z is an irreducible hermitian symmetric space, G is a connected complex
simple Lie group, and for convenience we suppose that G is simply connected.

3.1 Strongly orthogonal roots

First, recall our standard notation. Fix a Cartan involution θ of G0. Thus θ is an
involutive automorphism ofG0 whose fixed point setK0 = Gθ

0 is a maximal compact
subgroup. Since G is simply connected we can extend θ holomorphically to G. The
corresponding decompositions into (±1)-eigenspaces of dθ are g0 = k0 + s0 and
g = k+ s where k0 is the Lie algebra of K0 = Gθ

0. Then Gu ⊂ G is the compact real
form of G that is the analytic subgroup for the compact real form gu = k0 + su of g
where su =

√−1s0 of g. Recall that τ is complex conjugation of G over G0 and of
g over g0. Now σ := θτ is complex conjugation of G over Gu and of g over gu.

There is a compact Cartan subalgebra t0 ⊂ k0 of g0. If α ∈ 	(g, t), then either
gα ⊂ k and we say that the root α is compact, or gα ⊂ s and we say that α is
noncompact. There is a simple root system � = {ψ0, . . . , ψm} such that ψ0 is
noncompact and the other ψi are compact. Furthermore, ψ0 is a long root, and every
noncompact positive root is of the formψ0+∑1�i�m niψi with each integer ni � 0.
Thus g = k+ s+ + s− where

(3.1.1) k = t+
∑
n0=0

gα, s+ =
∑
n0=1

gα, and s− =
∑

n0=−1

gα.
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Here q = q{ψ1,...,ψm}. In other words

(3.1.2) qr = k, qn = s+, q−n = s−, and therefore q = k+ s−.

The Cartan subalgebras of g0 all are Ad(G0)-conjugate to one of the h�,0 given as
follows. Let � = {γ1, . . . , γr} be a set of noncompact positive roots that is strongly
orthogonal in the sense that

(3.1.3) if 1 � i < j � r then none of ± γi ± γj is a root.

Then each g[γi] = [gγi , g−γi ] + gγi + g−γi ∼= sl(2,C), say with

hγi ↔
(

1 0
0 −1

)
, eγi ↔

(
0 1
0 0

)
, fγi ↔

(
0 0
1 0

)
,

where hγi ∈ [gγi , g−γi ], eγi ∈ gγi and fγi ∈ g−γi as usual, and such that g0[γi] =
g0 ∩ gγi

∼= su(1, 1) is spanned by

√−1hγi , eγi + fγi , and
√−1(eγi − fγi ).

Thus
√−1hγi spans the compact Cartan subalgebra tγi = g0[γi] ∩ t of g0[γi] and

eγi + fγi spans the noncompact Cartan subalgebra aγi = g0[γi] ∩ s of g0[γi]. Strong
orthogonality (3.1.3) says [g[γi], g[γj ]] = 0 for 1 � i < j � r . Define

(3.1.4) t� =
∑

1�i�r

tγi and a� =
∑

1�i�r

aγi .

Then g has Cartan subalgebras

(3.1.5) t = t� + (t ∩ t⊥� ) and h� = a� + (t ∩ t⊥� ).

They are Int(g)-conjugate, for the partial Cayley transform

(3.1.6) c� =
∏

1�i�r

exp
(
π
4

√−1(eγi − fγi )
)

satisfies Ad(c�)t� = a�.

However, their real forms

(3.1.7) t0 = g0 ∩ t and h�,0 = g0 ∩ h�

are not Ad(G0)-conjugate except in the trivial case where � is empty, for the Killing
form has rank m = dim t0 and signature 2|�| −m on h�,0. More precisely, we have
the following.

Proposition 3.1.8. Every Cartan subalgebra of g0 is Ad(G0)-conjugate to one of the
h�,0, and Cartan subalgebras h�,0 and h�′,0 are Ad(G0)-conjugate if and only if the
cardinalities |�| = |�′|.
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We recall Kostant’s cascade construction of a maximal set of strongly orthogonal
noncompact positive roots in 	(g, t). This set has cardinality 
 = rankR g0 and is
given by

(3.1.9)

� ={ξ1, . . . , ξ
}, where

ξ1 is the maximal (necessarily noncompact positive) root and

ξm+1 is a maximal noncompact positive root ⊥ {ξ1, . . . , ξm}.
The roots ξi are long, and any set of strongly orthogonal noncompact positive long
roots in 	(g, t) is W(G0, T0)-conjugate to a subset of �. Further, the Weyl group
W(G0, T0) induces every permutation of �.

The notion of strong orthogonality of roots was developed in various forms: by
Harish-Chandra [HC1] for the study of the holomorphic discrete series, by B. Kostant
[Kos1] and later by M. Sugiura [Su] for the construction and classification of real
Cartan subalgebras, and by C. C. Moore [Mo] for an analysis of compactifications of
the bounded symmetric domains.

3.2 Orbits and Cayley transforms

Let z0 = 1Q ∈ G/Q = Z denote the base point of our flag manifold Z when Z is
viewed as a homogeneous space. The Cartan subalgebra h�,0 ⊂ g0 leads to the orbits
G0(c�c

2
�z0) ⊂ Z, where � ∪� is a set of strongly orthogonal noncompact positive

roots in 	(g, t) with � and � disjoint. In view of the Weyl group equivalence just
discussed, we may take � = {ξ1, . . . , ξr} and � = {ξr+1, . . . , ξr+s}, both inside �.
Using G0 = K0 exp(a�,0)K0 one arrives at

Theorem 3.2.1. The G0-orbits on Z are just the orbits D�,� = G0(c�c
2
�z0) where

� and � are disjoint subsets of �. Two such orbits D�,� and D�′,�′ are equal if and
only if cardinalities |�| = |�′| and |�| = |�′|. An orbit D�,� is open if and only if
� is empty, closed if and only if (�,�) = (�,∅). An orbit D�′,�′ is in the closure of
D�,� if and only if |�′| � |�| and |� ∪�| � |�′ ∪�′|.
Example 3.2.2. Before indicating the proof of Theorem 3.2.1, we illustrate it with
the case G0 = SU (m, n). Thus G = SL(m + n;C), Z is the complex Grass-
mann manifold of n-dimensional linear subspaces of Cm+n, and G acts on Z by
g([v1 ∧ · · · ∧ vn]) = [gv1 ∧ · · · ∧ gvn]. (As usual, [w1 ∧ · · · ∧w
] denotes the linear
span of {w1, . . . , w
}.)

Fix an ordered basis e = {e1, . . . , em+n} of Cm+n. Then

z0 = [em+1 ∧ · · · ∧ em+n] ∈ Z
will be our base point. We write linear transformations of Cm+n in matrix form
relative to e, often in block matrix form

(
A B
C D

)
, where A is m×m, B is m× n, C is

n×m and D is n× n. In particular,

Q = {g ∈ G | gz0 = z0} =
{(

A B
C D

) | B = 0 and (detA)(detD) = 1
}
.
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We fix the hermitian form h(u, v) = −∑m
j=1 u

jvj +∑n
k=1 u

m+kvm+k on Cm+n,

where u =∑ uiei and v =∑ viei . Then our real form is

G0 = SU (m, n) = {g ∈ G | h(gu, gv) = h(u, v) for all u, v ∈ Cm+n}.

The Cartan involution ofG0 is θ : g �→
(
Im 0
0 −In

)
g
(
Im 0
0 −In

)
. It defines the maximal

compact subgroup

K0 = Gθ
0 =

{(
A 0
0 D

) | A ∈ U(m),D ∈ U(n), and (detA)(detD) = 1
}
.

The corresponding Lie algebra decompositions g0 = k0 + s0 and g = k + s are
given by

k0 =
{(

A 0
0 D

) | A+ A∗ = 0,D +D∗ = 0, trace(A)+ trace(D) = 0
}
,

k = {( A 0
0 D

) | trace(A)+ trace(D) = 0
}
,

s0 =
{(

0 B
B∗ 0

)}
and s = s+ + s− where s+ =

{(
0 B
0 0

)}
and s− =

{(
0 0
C 0

)}
.

In particular the compact real form of G with Lie algebra gu = k0 +
√−1s0 is

Gu = SU (m+ n) = {g ∈ G | hu(gu, gv) = hu(u, v) for all u, v ∈ Cm+n},
where hu(u, v) =∑m+n

j=1 ujvj . That exhibits Z as the irreducible compact hermitian
symmetric space Gu/K0 = SU (m+ n)/S(U(m)× U(n).

The symmetric space rank of Z is r = min{m, n}. The maximal set � =
{ξi, . . . , ξr} of strongly orthogonal noncompact positive roots, relative to the diagonal
Cartan subalgebra, is given by

ξ = εi − εm+n−i , where εj (diag{a1, . . . , am+n}) = aj .

This is the cascade construction (3.1.9). Let G[ξi] be the SL(2;C) of the plane
[ei ∧ em+n−i], extended to act trivially on the span of the other ej , and G0[ξi] =
G[ξi] ∩G0 ∼= SL(2;R). We have partial Cayley transforms

ci(ei) = 1√−2
(
√−1ei + em+n−i ), ci(em+n−i ) = 1√−2

(ei +
√−1em+n−i ),

and ci(ej ) = ej for i �= j �= m+ n− i. We now check that the points

zs,t = c1c2 . . . csc
2
s+1c

2
s+2 . . . c

2
s+t z0 ∈ Z, 0 � s � t � r,

play the role of (and in fact are) the c�c2
�z0 of Theorem 3.2.1.

To z ∈ Z we associate the triple (a, b, c) where h|z has rank a + b with a

positive and b negative signs, and nullity c = n− (a + b). The only restrictions are
a + b + c = n, 0 � a + c � n, 0 � b + c � n and 0 � c � r . For example, we
associate (t, n− s − t, s) to zs,t . Thus each admissible triple is associated to exactly
one of the zs,t . If the same triple is associated to z and z′, then the hermitian version
of Witt’s theorem shows that z′ ∈ G0(z). Thus
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(3.2.3) the G0-orbits on Z are just the G0(zs,t ), 0 � s � t � r.

In particular,

there are precisely 1
2 (r + 1)(r + 2) G0-orbits on Z,

the open orbits are the r + 1 orbits G0(z0,t ), 0 � t � r, and(3.2.4)

G0(zr,r ) is the unique closed orbit.

The orbit G0(z0) = G0(z0,0) consists of the negative definite n-dimensional sub-
spaces of (Cm+n, h). Any such subspace z has a basis b(z) of the form {v1, . . . , vn},
where vk = (

∑m
j=1 xi,j ej ) + em+k . Hence z is represented by the m × n matrix

X = (xj,k). The condition that z be negative definite is I − XX∗ � 0, where � 0
means positive definite. Thus G0(z0) is the bounded symmetric domain of m × n

matrices X such that I − XX∗ � 0. Its boundary consists of the m× n matrices X
such that I − XX∗ is positive semidefinite but not positive definite, in other words
the union of the G0(xs, 0), 1 � s � r . The closed orbit

G0(zr,r ) = {m× n matrices X | XX∗ = I }
is the Bergman–Shilov boundary of G0(z0) (see [KW]). In the tube domain case,
m = n = r , the Bergman–Shilov boundary is frequently viewed as the unitary
group U(r). ♦
3.2.5. Indication of proof of Theorem 3.2.1. The idea of the proof of Theorem
3.2.1 is the use of the polysphere G[�](z0) in Z. Here, if � is a subset of
the maximal set � of strongly orthogonal noncompact roots, then G[�] denotes∏

ξ∈� G[ξ ]. Thus G[�](z0) is the product
∏

ξ∈� G[ξ ](z0) of Riemann spheres.
The orbits of G0[ξ ] = G[ξ ] ∩ G0 on the Riemann sphere S[ξ ] = G[ξ ](z0) are the
lower hemisphere G0[ξ ](z0), the equator G0[ξ ](cξ (z0), and the upper hemisphere
G0[ξ ](c2

ξ (z0). NowK0G[�](z0) = Z tells us that everyG0-orbit onZ is of the form

D�,� = G0(c�c
2
�z0), where � and � are disjoint subsets of �, as asserted. Since

{w ∈ W(G0.T0) | w� = �} induces every permutation of�, the orbitD�,� depends
only on the cardinalities of � and� in the sense that |�| = |�′| and |�| = |�′| imply
D�,� = D�′,�′ .

The delicate point now is the converse. It states that if D�,� = D�′,�′ , then
|�| = |�′| and |�| = |�′|. Normalize the Gu-invariant Kähler metric on Z so that
the spheres S[ξ ] have circumference 2π . Denote

z∞ = c2
�(z0) and � = � \ (� ∪�).

Then one expects that inf {dist(z, z0)
2 | z ∈ D�,�} = |� ∪ �|(π2 )2 and

inf {dist(z, z∞)2 | z ∈ D�,�} = |� ∪ �|(π2 )2. From those numbers one easily
computes |�| and |�|. While the expectation is correct, it has to be done carefully.

Theorem 3.2.1 follows by looking at the closure and boundary properties of the
G0[�]-orbits in the polysphere

∏
ξ∈� S[ξ ]. ��
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Strongly orthogonal roots and partial Cayley transforms were used by Korányi
and Wolf [KW], [WK] to describe theG0-orbit structure of the closure of the bounded
symmetric domain D∅,∅ in its compact dual, and then by Wolf [W2] for all the G0-
orbits. See [W4] for a detailed exposition. The special root orders here are based
on results of Borel and de Siebenthal [BoS]. Strongly orthogonal roots and the
Borel-de Siebenthal root order have since become a standard tool in the structure and
representation theories of semisimple Lie algebras.



4

Open Orbits

In this chapter we describe the basic structure of flag domains, i.e., of open real group
orbits D = G0(z) in complex flag manifolds Z = G/Q. In Section 1 we prove
that every elliptic automorphism of g0 fixes a regular semisimple element, using a
variation of de Sibenthal’s technique for the case of gu. Then in Section 2 we establish
the relation between fundamental Cartan subalgebras h0 ⊂ g0 and open G0-orbits
in Z. In Section 3 we prove the existence and uniqueness (relative to a choice of
Cartan involution) of the base cycle in D. That is the starting point for the theory
of our cycle space MD . Section 4 is a digression in which we describe the ring of
holomorphic functions on a flag domain. In Section 5 we introduce the concept of
measurable open orbit. Section 6 is an exposition of Levi geometry, oriented toward
the notions of Stein manifold and various degrees of holomorphic convexity. Those
concepts later translate into cohomology vanishing theorems for holomorphic vector
bundles over flag domains. In Section 7 we see that measurable open orbits carry
certain canonical exhaustion functions, and that those exhaustion functions give a
measure of the holomorphic convexity/concavity of the open orbit, thus making the
cohomology vanishing theorems explicit for the case of measurable flag domains.

4.1 Automorphisms and regular elements

Fix a Cartan involution θ of g0 and G0. It is an automorphism of square 1, and
K0 = Gθ

0 is a maximal compact subgroup of G0. Decompose g0 = k0 + s0, where
k0 is the Lie algebra of K0 and is the (+1)-eigenspace of θ on g0, and s0 is the (−1)-
eigenspace. The Killing form of g0 is negative definite on k0 and positive definite on
s0, and k0 ⊥ s0 under the Killing form.

An automorphism of g0 is called semisimple if its complex linear extension to
g is diagonalizable. A semisimple automorphism of g0 is called elliptic if all its
eigenvalues have absolute value 1. For example, automorphisms of finite order
are elliptic. An element ξ ∈ g0 is called semisimple if the linear transformation
ad(ξ) of g is diagonalizable, in other words if the inner automorphisms Ad(exp(tξ))
are semisimple. A semisimple element ξ ∈ g0 is called regular if its centralizer
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zg0(ξ) := {η ∈ g0 | [ξ, η] = 0} is a Cartan subalgebra of g0. This section is devoted
to the following.

Theorem 4.1.1 (Essentially [dS, Proposition 2, p. 56]). Let g0 be a real reductive
Lie algebra and let α be an elliptic (e.g., finite order) automorphism of g0. Then g0
has a regular semisimple element fixed by α.

Proof. It suffices to consider the case where the adjoint representation of G0 is
faithful, so G0 is identified with a finite index subgroup of Aut(g0), and there it
suffices to consider the case where G0 is identified with all of Aut(g0). Thus, in
the proof we write G0 for Aut(g0). Now α belongs to some maximal compact
subgroup of G0. All maximal compact subgroups of G0 are conjugate. Thus we
may replace α within its conjugacy class in Aut(g0) and suppose that it preserves
our given K0 = Gθ

0. Thus α commutes with the Cartan involution θ and preserves
the Cartan decomposition g0 = k0 + s0. We extend α by complex linearity to an
automorphism of g, and it also preserves the compact real form gu = k0 + is0. The
result [dS, Proposition 2, p. 56] of J. de Siebenthal says that the fixed point set gαu
contains a regular element of gu.

Since θ commutes with α it preserves gαu . Thus θ preserves some Cartan subal-
gebra tu of gαu . We may assume that α-fixed gu-regular element to be contained in tu.
Write it as ξ + iη, where ξ ∈ tu∩ k0 and iη ∈ tu∩ is0. Now α(ξ) = ξ and α(η) = η,
and α fixes the element ξ +η of g0. Thus we need only prove that ξ +η is g0-regular.

Let hu denote the centralizer of tu in gu. It is a Cartan subalgebra because gu
contains a regular element. Its complexification h is thus a Cartan subalgebra of g,
and h0 := h ∩ g0 is a Cartan subalgebra of g0. Since ξ + iη is gu-regular, hu is its
centralizer in gu, and thus h is its centralizer of g. As ξ and iη both belong to the
commutative algebra tu, they commute and if follows that

h ⊂ zg(ξ) ∩ zg(η) ⊂ zg(ξ + iη) = h.

Also, since ad(ξ) has all eigenvalues pure imaginary and ad(η) has all eigenvalues
real, there is no cancellation of eigenvalues between them in expressing ad(ξ + η) =
ad(ξ) + ad(η). Thus h ⊂ zg(ξ + η) ⊂ zg(ξ + iη) = h. Now zg(ξ + η) = h.
Therefore zg0(ξ + η) = h0, and ξ + η is an α-fixed regular element of g0. ��

4.2 Fundamental Cartan subalgebras and open G0-orbits

Every Cartan subalgebra of g0 is Ad(G0)-conjugate to a θ -stable Cartan subalgebra
of g0. A θ -stable Cartan subalgebra h0 ⊂ g0 is called fundamental or maximally
compact if it maximizes dim (h0∩k0), in other words if h0∩k0 is a Cartan subalgebra
of k0. It is called compact if it is contained in k0, which is a more stringent condition.
More generally, a Cartan subalgebra of g0 is called fundamental or maximally
compact if it is conjugate to a θ -stable fundamental Cartan subalgebra.

Lemma 4.2.1. The following conditions are equivalent for a θ -stable Cartan subal-
gebra h0 ⊂ g0.
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(i) h0 is a fundamental Cartan subalgebra of g0,
(ii) h0 ∩ k0 contains a regular element of g0, and
(iii) there is a positive root system 	+ = 	+(g, h), h = h0 ⊗ C, with

τ	+ = 	−.

A θ -stable Cartan subalgebra h0 ⊂ g0 is compact if and only if τ	+ = 	− for every
positive root system 	+(g, h). Any two fundamental Cartan subalgebras of g0 are
conjugate.

Proof. Split h0 = t0 + a0 where t0 = h0 ∩ k0 and a0 = h0 ∩ s0. Then (i) implies
(ii) because k0 contains a regular element ζ of g0, by Theorem 4.1.1. Conjugating,
we may suppose that ζ ∈ t0. Then {α ∈ 	(g, h) | α(√−1ζ ) > 0} is a positive root
system sent to its negative by τ . Thus (ii) implies (iii). If (i) fails, then we have a
root α such that α(t0) = 0. Therefore τ(α) = α and (iii) fails, and thus (iii) implies
(i). That proves the equivalence statement.

If h0 ⊂ k0, then τ sends every root to its negative. So τ	+ = 	− for every
positive root system 	+ = 	+(g, h). If τ	+ = 	− for every positive root system
	+(g, h), then τ sends every root to its negative. Hence a0 = 0 and h0 is compact.

Let h0 and ′h0 be fundamental Cartan subalgebras of g0. In order to prove that
they are are g0-conjugate we may assume that they are both θ -stable. Any two
Cartan subalgebras of k0 are conjugate, so we may assume t0 = ′t0. Then they have
a regular element ζ in common, and consequently each is the g0-centralizer of ζ ,
forcing h0 = ′h0. ��
Theorem 4.2.2. LetZ = G/Q be a complex flag manifold, G semisimple and simply
connected, and let G0 be a real form of G. The orbit G0(z) is open in Z if and only
if qz = q�, where

(i) qz ∩ g0 contains a fundamental Cartan subalgebra h0 ⊂ g0 and
(ii) � is a set of simple roots for a system 	+ = 	+(g, h), h = h0 ⊗ C, such that

τ	+ = 	−.

Let Q1 ⊂ Q2 be parabolic subgroups of G, Zi = G/Qi the resulting complex flag
manifolds, π : Z1 → Z2 the natural projection gQ1 �→ gQ2, and zi = 1Qi ∈ Zi .
Then

(1) if G0(x1) is open in Z1, then π(G0(x1)) = G0(x2) is open in Z2, and
(2) if G0(x2) is open in Z2, then π−1(G0(x2)) contains an open G0-orbit.

Proof. We start with the assertions on π : Z1 → Z2. If G0(z2) is open in Z2,
then π−1(G0(z2)) is open in Z1. Hence it contains a (necessarily open) orbit of full
dimension. If G0(z1) is open in Z1, then π(G0(z1) = G0(z2) is open in Z2 because
π is an open map.

Suppose for the moment that Q is a Borel subgroup of G. Then there is just one
simple root system � such that Q has form Q�. There � is empty and �n = 	+.
Thus the open orbit criterion �n ∩ τ�n = ∅ of Corollary 2.2.3 says τ	+ = 	−.
Using Lemma 4.2.1, it follows that G0(z) is open in Z if and only if (i) and (ii) hold.
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In the general case, we apply (1) and (2) with Q1 Borel and Q2 = Q. Thus (i)
and (ii) imply that G0(z) is open in Z, and if G0(z) is open in Z, then we use the
positive root system for the Borel (Q1)z′1 , where G0(z

′
1) ⊂ π−1(G0(z)) is open, in

order to verify (i) and (ii). ��
Computing first on G/B, and then pushing down to G/Q, we obtain

Corollary 4.2.3. Fix h0 = θh0, 	+(g, h) and � as in Theorem 4.2.2. Let W(g, h)h0

and W(qr�, h)
h0 denote the respective subgroups of Weyl groups that stabilize

h0. Then the open G0-orbits on Z are parameterized by the double coset space
W(k, h ∩ k)\W(g, h)h0/W(qrz, h)

h0 .

Corollary 4.2.4. Suppose that G0 has a compact Cartan subgroup, i.e., that k0 con-
tains a Cartan subalgebra of g0. Then an orbit G0(z) is open in Z if and only if
g0 ∩ qz contains a compact Cartan subalgebra h0 of g0, and then, in the notation of
Theorem 4.2.2, the openG0-orbits onZ are parameterized by the double coset space
W(k, h)\W(g, h)/W(qrz, h).

4.3 Compact subvarieties of open orbits

Here we examine the way k0 sits in both k and g0, and prove prove the following

Theorem 4.3.1. LetZ = G/Q be a complex flag manifold, G semisimple and simply
connected, and let G0 be a real form of G. Let z ∈ Z such that D = G0(z)

is open in Z, and suppose that h0 ⊂ g0 ∩ qz is a θ -stable fundamental Cartan
subalgebra of g0. Then K0(z) is a compact complex submanifold of G0(z). Let
K be the complexification of K0. It is an analytic subgroup of G with Lie algebra
k = k0 ⊗ C. Then K0(z) = K(z) ∼= K/(K ∩Qz) is a complex flag manifold of K .

LetC ⊂ D be a compact complex submanifold. Then the following are equivalent:
(i) C is a K0-orbit, (ii) C is a K-orbit, (iii) C = K0(z).

Remark. Theorem 4.3.1 is the first instance of the duality between the sets of G0-
orbits and K-orbits on Z. This is made precise in Proposition 4.3.3. See Theo-
rem 8.3.2 below for the geometric formulation of that duality. ♦
Proof. Suppose that we know the theorem for X = G/B where B ⊂ Q is a Borel
subgroup of G. Let π : X→ Z be the natural projection. Choose x ∈ π−1(z) such
that G0(x) is open and h0 ⊂ bx . Since K0(x) is a compact complex submanifold
of G0(x), also K0(z) = π(K0(x)) is a compact complex submanifold of D, and
K0(x) = K(x) implies K0(z) = π(K0(x)) = π(K(x)) = K(z). Of course K(z) ∼=
K/(K ∩Qz). Since K(z) is closed in Z it is a projective variety. Therefore K ∩Qz

is a parabolic subgroup of K and K(z) is a complex flag manifold. That reduces the
first assertion to the case where Q is a Borel subgroup of G.

Now we prove the first assertion in the case where Q is a Borel subgroup of G.
In that case τ	+ = 	− and therefore qz ∩ τqz = h. Choose ζ ∈ (h0 ∩ k0) such that
	+ = {α ∈ 	 | α(√−1ζ ) > 0}. The holomorphic tangent space to Z (and thus to
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D) at z is the sum of the gα for α ∈ 	+, in other words it is the sum of the positive
eigenspaces of ad(

√−1ζ ), and the antiholomorphic tangent space is the sum of the
negative eigenspaces of ad(

√−1ζ ). By construction ad(ζ ) preserves k0. So now the
complexification of the real tangent space of K0(z) at z is the sum of its intersections
with the holomorphic and the antiholomorphic tangent spaces of D. Thus K0(z) is a
complex submanifold of D. It is compact because K0 is compact, so it is a projective
algebraic subvariety of Z, and thus is K-stable with K-isotropy parabolic in K . That
proves the first assertion when Q is a Borel subgroup of G, and thus proves it in
general.

The argument of the first assertion shows that (i) and (ii) are equivalent in the
second assertion, and that (iii) implies (i) and (ii). Now suppose that we are given
(i) and (ii), say with C = K0(w) = K(w) ⊂ D. Then k0 ∩ qw contains a Cartan
subalgebra ′hk0 of k0, and moving w within the K0-orbit we may assume that ′hk0 =
h0 ∩ k0. As ′hk0 contains a regular element of g0, it follows that h0 ⊂ qw. Thus
w = g(z) for some element g ∈ K0 that normalizes h0. Now g represents an element
of the Weyl group W(k0, h0 ∩ k0). Hence g ∈ K0, and K0(w) = K0(z) = C. ��
Lemma 4.3.2. Let bk be a Borel subalgebra of k, and let b be a Borel subalgebra of
g that contains bk. Then θ(b) = b.

Proof. Choose a τ -stable Cartan subalgebra t in bk. There is just one Cartan sub-
algebra h of g that contains t, because t contains a regular element of g and h must
be its centralizer. We can assume that this regular element is contained in it0, and
hence it is automatic that h is τ -stable and θ -stable. By construction, h0 := h∩ g0 is
a fundamental Cartan subalgebra of g0. Since t extends to a Cartan subalgebra of g
that is contained in b, we have h ⊂ b.

Choose ξ ∈ h such that b = h+∑α(ξ)>0 g−α . Since t contains regular elements
of g we have bk = b∩ k =∑ν(ξ)>0 k−ν . Now suppose α is a root of (g, h) such that
g−α ⊂ b but g−θ(α) �⊂ b. In particular, then, α �= θ(α). Denote v = g−α + g−θ(α).
Then dim v = 2, dim(v ∩ k) = 1, and dim(v ∩ s) = 1. Also, α �= θ(α) says that
neither of g−α and g−θ(α) is contained in k nor in s. Now any two of g−α , g−θ(α),
v ∩ k and v ∩ s spans v. Set ν = α|t. Then v ∩ k = k−ν . If k−ν ⊂ bk, then
v = g−α + (v ∩ k) ⊂ b. Hence g−θ(α) ⊂ b and therefore we need only prove that
k−ν ⊂ bk.

Suppose k−ν �⊂ bk. Denote v′ = gα + gθ(α). Then v′ ∩ k = kν ⊂ bk ⊂ b. Also,
g−θ(α) �⊂ b implies gθ(α) ⊂ b. The two spaces v′ ∩ k and gθ(α) span v′, in particular
v′ ⊂ b. That forces gα ⊂ b, in other words g−α �⊂ b, which contradicts our initial
assumption on α. Thus k−ν ⊂ bk. That completes the proof. ��
Proposition 4.3.3. Every open G0-orbit D ⊂ Z contains a unique closed K-orbit.
Every closed K-orbit on Z is contained in a (necessarily unique) open G0-orbit.
This sets up a duality between the set of open G0-orbits on Z and the set of closed
K-orbits on Z.

Proof. The first assertion is contained in Theorem 4.3.1. Now let F = K(z) be a
closed orbit in Z = G/Q. Apply Proposition 1.4.10 to F = K/(K ∩ Qz) to see
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that K ∩Qz is a parabolic subgroup of K , and that the compact real form K0 of K
acts transitively on F . Let T0 ⊂ K0 be a Cartan subgroup and extend it to a θ -stable
fundamental Cartan subgroup H0 of G0.

Let b be a Borel subalgebra of g such that bk ⊂ b ⊂ qz. Then there is a regular
element ξ ∈ h such that b = h +∑α(ξ)>0 g−α . Lemma 4.3.2 says that θ(b) = b.
Thus it also follows that b = h +∑α(θ(ξ))>0 g−α . Now b = h +∑α(η)>0 g−α ,
where η = ξ + θ(ξ). Thus the positive root system 	+(g, h) that defines b is given
by the regular element η ∈ it0 of g, and in particular τ	+(g, h) = −	+(g, h).
Theorem 4.2.2 now says that G0(z) is open in Z, and K(z) = K0(z) ⊂ G0(z). ��

As we saw before, or by Corollary 4.2.4, the compact real formGu ⊂ G is transi-
tive on Z. This gives us a realization Z = Gu/Lu, where Lu ⊂ Gu is the centralizer
of a torus subgroup Su. Spaces of that form have some beautiful topological proper-
ties. For example, Z is compact and simply connected, and its integral cohomology
is torsion free and is nonzero only in even degrees. In view of Theorem 4.3.1, this
also holds for the compact subvariety K0(z) ⊂ G0(z):

Lemma 4.3.4. K0(z) is compact and simply connected, and its integral cohomology
is torsion free and is nonzero only in even degrees.

Theorem 8.3.1 below shows thatK0(z) is a critical set of a certain flow onG0(z) in
such a way that K0(z) is a deformation retraction of G0(z). See the third paragraph
of Chapter 8. Thus G0(z) has the same homotopy and cohomological properties
(except, of course, compactness) as K0(z). The integral cohomology statement is
known from the work of Bott and Samelson in the 1950s, and here it will follow
from discussion of Section 7.1A. in particular we will prove the somewhat stronger
Proposition 7.1.7. With Theorem 8.3.1 one then arrives at

Proposition 4.3.5. Let Z = G/Q be a complex flag manifold, G semisimple and
simply connected, and let G0 be a real form of G. Let z ∈ Z such that D = G0(z)

is open in Z. Then D is simply connected and the isotropy subgroup (Qz ∩ τQz)0
of G0 at z is connected. The integral cohomologies Hq(D;Z) are torsion free, and
Hq(D;Z) = 0 whenever q is odd.

The material of this section is taken from [W2], except for Lemma 4.3.2 and the
resulting extension of Theorem 4.3.1 in Proposition 4.3.3, which are taken from [Fe2].
Theorem 4.3.1 was the first instance of a phenomenon now called Matsuki duality.
Further developments of that phenomenon are due to Matsuki [M3], to Mirkovič,
Uzawa and Vilonen [MUV], and to Bremigan and Lorch [BL], in that chronological
order. See Theorem 8.3.2 below.

4.4 Holomorphic functions

The compact subvarietyC = K0(z) also has a strong influence on the function theory
for an open orbit D = G0(z) ⊂ Z. The idea is that a holomorphic function on D
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must be constant on gC whenever g ∈ G and gC ⊂ D. Hence, if there are too many
translates of C inside D, then that holomorphic function must be constant on D. But
this has to be formulated carefully.

Definition 4.4.1. Let Z = G/Q be a complex flag manifold, G semisimple and
simply connected, and let G0 be a real form of G. Let z ∈ Z such that G0(z) is open
in Z. Then there are decompositions G = G1× · · · ×Gm and Q = Q1× · · · ×Qm

withQi = Q∩Gi and everyGi simple. Consider the corresponding decompositions
Z = Z1×· · ·×Zm withZi = Gi/Qi and z = (z1, . . . , zm),G0 = G1,0×· · ·×Gm,0,
G0(z) = G1,0(z1)× · · · ×Gm,0(zm) and K0(z) = K1,0(z1)× · · · ×Km,0(zm). If

(i) Gi,0 ∩ (Qi)zi = ((Qi)zi ∩ τ(Qi)zi )0 is compact, thus contained in Ki,0,
(ii) Gi,0/Ki,0 is a hermitian symmetric coset space, and
(iii) Gi,0(zi) → Gi,0/Ki,0 is holomorphic for one of the two invariant complex

structures on Gi,0/Ki,0,

then we set Li = Ki so that Li,0 = Ki,0. Otherwise we set Li = Gi and therefore
Li,0 = Gi,0. Note that each Gi,0/Li,0 is a bounded symmetric domain, irreducible
or reduced to a point. Set L = L0 × · · · × Lm so L0 = L1,0 × · · · × Lm,0. Then we
say that

(4.4.2) D(G0, z) := G0/L0 = (G1,0/L1,0)× · · · × (Gm,0/Lm,0)

is the bounded symmetric domain subordinate to G0(z).

Now we can state a precise result for holomorphic functions on G0(z).

Theorem 4.4.3. LetZ = G/Q be a complex flag manifold, G semisimple and simply
connected, and let G0 be a real form of G. Let z ∈ Z with G0(z) be open in
Z. Let D(G0, z) be the bounded symmetric domain subordinate to G0(z). Then
π : g(z) �→ gL0 is a holomorphic map ofG0(z) ontoD(G0, z), and the holomorphic
functions on G0(z) are just the f̃ = f ·π , where f : D(G0, z)→ C is holomorphic.

Proof. It suffices to consider the case where G0 is simple. Let A denote the algebra
of all holomorphic functions on G0(z), and consider the quotient W = G0(z)/A
of G0(z) by the relation z1 ∼ z2 ⇔ f (z1) = f (z2) for every f ∈ A. Then W

is of the form G0/M0 for some subgroup M0 ⊂ G0 that contains G0 ∩ Qz. Since
holomorphic functions separate points on the maximal hermitian symmetric quotient
D(G0, z) = G0/L0 of (4.4.2), we have M0 ⊂ L0. Every holomorphic function is
constant on the compact complex manifoldC = K0(z) and on itsG0-translates. Thus
K0 ⊂ M0 ⊂ L0. As K0 is a maximal subgroup of G0, the only possibilities are (i)
K0 = M0 = L0, (ii) K0 = M0 and L0 = G0, and (iii) M0 = L0 = G0.

The content of Theorem 4.4.3 is that M0 = L0. If M0 �= L0, then K0 = M0
and L0 = G0. But G0 ∩Qz ⊂ M0, and G0/M0 has an invariant complex structure.
Therefore K0 = M0 implies that G0(z) fibers over the hermitian symmetric space
G0/K0 = W , and this forces L0 = K0. That excludes possibility (ii), so either (i) or
(iii) holds, and Theorem 4.4.3 is proved. ��
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One can prove a result for holomorphic sections of line bundles L → G0(z) that
is similar to Theorem 4.4.3. It is somewhat more complicated and depends on the
double fibration transform described in Chapter 14 below, in particular on the notion
of cycle space described in Chapter 5. Roughly speaking, it says that holomorphic
sections of L → G0(z) are determined by smooth families of holomorphic sections
of the restrictions L|C → C where C ranges over the family ofG-translates ofK0(z)

that remain inside G0(z).

4.5 Measurability of open orbits

A flag domain D = G0(z) ⊂ Z is called measurable if it carries a G0-invariant
volume element. This is the type of flag domain currently of most interest in repre-
sentation theory. The basic structure is given by the following.

Theorem 4.5.1 ([W2]). Let G0(z) be an open orbit in the complex flag manifold
Z = G/Q. Then the following conditions are equivalent:

(4.5.2a) The orbit G0(z) is measurable.
(4.5.2b) G0 ∩Qz is the G0-centralizer of a (compact) torus subgroup of G0.
(4.5.2c) D has a G0-invariant, possibly indefinite, Kähler metric, thus a G0-

invariant measure obtained from the volume form of that metric.
(4.5.2d) τ�r = �r , and τ�n = −�n, where qz = q�.
(4.5.2e) qz ∩ τqz is reductive, i.e., qz ∩ τqz = qrz ∩ τprz.
(4.5.2f) qz ∩ τqz = qrz.
(4.5.2g) τq is G-conjugate to the parabolic subalgebra qr + qn opposite to q.

In particular, since (4.5.2g) is independent of choice of z, it follows that if one open
G0-orbit on Z is measurable, then all open G0-orbits are measurable.

Condition (4.5.2d) is also automatic if Q is a Borel subgroup of G, and more
generally Condition (4.5.2g) provides a quick test for measurability.

Condition (4.5.2d) holds whenever the Cartan subalgebra h0 = h ∩ g0 of g0
corresponds to a compact Cartan subgroup H0 ⊂ G0, where h = τh is the Cartan
subalgebra relative to which qz = q�. For in that case τα = −α for every α in
�(g, h). (In particular, if G0 has discrete series representations, so that by a result of
Harish-Chandra it has a compact Cartan subgroup, then every open G0-orbit on Z is
measurable.) Thus we have the following.

Corollary 4.5.3. If G0 has a compact Cartan subgroup, for example, if G0 is hermi-
tian, then every open G0-orbit on Z is measurable.

Example 4.5.4. Let Z be the complex projective space Pn(C). Then Z = G/Q,
where G = SL(n;C) and Q is the G-stabilizer of a line in Cn+1. Now let G0 =
SL(n+ 1;R). This means that we have a basis {e1, . . . , en+1} in which G0 consists
of the real matrices of determinant 1. There are two G0-orbits: the closed orbit
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G0([v]) = G0([en+1]) whenever [v] = [v] ∈ Pn(C) and the open orbit G0([v]) =
G0([e1 +

√−1en+1]) whenever [v] �= [v] ∈ Pn(C). If n > 1, then the isotropy
subgroup of G0 at [e1 +

√−1en+1] is not reductive. Hence the open orbit is not
measurable. ♦
Example 4.5.5. Example 4.5.4 is a special case of the following. Let n > 1 and
consider a dimension sequence δ : 0 < d1 < · · · < dk < n. Then we have the
classical complex flag manifold Zδ consisting of flags

z = ({0} ⊂ �d1 ⊂ · · · ⊂ �dk ⊂ Cn),

where �d is a d-dimensional linear subspace of Cn. According to [HS], the orbit
G0(z) is open if and only if, for each {i, j}, dim(�di ∩ τ(�dj )) is minimal, i.e., is
equal to max{di + dj − n, 0}. By [HW2, Proposition 2.4], the open G0-orbits on
Zδ are measurable if and only if δ is symmetric in the sense that (d1, . . . , dk) =
(n− dk, . . . , n− d1). ♦
Example 4.5.6. Let G0 be the underlying real Lie group structure of a complex Lie
group J . In other words G0 is a complex Lie group J viewed as a real Lie group.
Then g = j ⊕ j with g0 embedded as the diagonal. Here j is the Lie algebra j with
the conjugate complex structure. Thus G ∼= G0×G0 with G0 embedded diagonally,
and τ(g1, g2) = (g2, g1). Consider a complex flag manifold Z = G/Q. Then Q is
of the form Q1×Q2 with τ(Q) = Q2×Q1, where Q1 is parabolic in the first factor
G0 and Q2 is parabolic in the second factor. Thus τ(Q) is conjugate to the parabolic
subgroup of G opposite to Q if and only if Q2 is conjugate to the parabolic subgroup
of G0 opposite to Q1. Now the open G0-orbits on Z are measurable if and only if
Q1 and Q2 are (up to conjugacy) opposite parabolic subgroups of G0. ♦
4.5.7. Proof of Theorem 4.5.1. Since G0(z) is open, Corollary 2.2.2 says that
qz ∩ τqz has nilpotent radical (qrz ∩ τq−nz ) + (τqrz ∩ q−nz ) and Levi complement
qrz∩τqrz. Equivalence of (4.5.2d), (4.5.2e) and (4.5.2f) follows directly, and of course
(4.5.2d) implies (4.5.2g). Two parabolic subalgebras containing the same Borel are
conjugate if and only if they are equal. So in fact (4.5.2g) implies (4.5.2d) as well.
Consequently (4.5.2d), (4.5.2e), (4.5.2f) and (4.5.2g) are equivalent.

The orbit G0(z) is measurable if and only if the action of the isotropy subgroup
G0 ∩Qz on the real tangent space g0/(g0 ∩ qz) is by linear transformations of deter-
minant ±1. That condition is that ad(qz ∩ τqz) acts on g/(qz ∩ τqz) with trace 0. In
other words ad(qz ∩ τqz) acts on qz ∩ τqz itself with trace 0. Using Corollary 2.2.2,
now qz ∩ τqz is reductive. Thus (4.5.2a) and (4.5.2e) are equivalent.

Suppose that G0(z) is measurable. Now we know that G0 ∩Qz is the complex-
ification of the Levi component Qr

z = τQr
z of Qz. If we express qz = q� as usual,

then qrz is the centralizer of v = {ξ ∈ h | ψ(ξ) = 0 for all ψ ∈ �}. Now qrz is the
g-centralizer of t = v ∩ k, and G0 ∩Qz is the G0-centralizer of the (compact) torus
subgroup T0 = exp(t ∩ g0) of G0 and (4.5.2a) implies (4.5.2b).

Suppose that G0 ∩ Qz is the centralizer of a torus T0 ⊂ G0. Then it is the
centralizer of some element ζ ∈ t0, and now we have the 1-form η on G0(z) given at
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z by the Killing form inner product formula ηz(h) = 〈ζ, h〉. By construction, ω = dη

is a closed nondegenerate G0-invariant 2-form on G0(z). Hence it is the imaginary
part of the (possibly indefinite) G0-invariant Kähler metric on G0(z) whose real part
is given by the Killing form of g0. Thus (4.5.2b) implies (4.5.2c), which of course
implies (4.5.2a). This completes the proof. ��

4.6 Background on Levi geometry

In Section 4.7 below, we see that measurable openG0-orbits possess exhaustion func-
tions have properties which are important from the viewpoint of complex analysis. It
is therefore appropriate at this stage to sketch some background information on the
geometry of such exhaustions and the implications, e.g., for analytic continuation and
the vanishing of certain cohomology groups. See, for example, [Gu], [GF], [GR1],
and [GR2] for systematic treatments.

4.6A Hartogs Theorems

The first hint that a sort of curvature is relevant for analytic continuation theorems in
several complex variables can be found in theorems of Hartogs type. These certainly
reflect the fact that complex analysis in dimensions greater than one is really quite
different from the one variable version. The following is such a theorem. Let (z, w)
be the standard coordinates in C2 and think of the z-axis as a parameter space for
geometric figures in the w-plane. For example, let Dz := {(z, w) | |w| < 1} be a
disk and Az := {(z, w) : 1− ε < |w| < 1} be an annulus. An example of a Hartogs
figureH in C2 is the union of the family of disksDz for |z| < 1−δ with the familyAz

of annuli for 1−δ � |z| < 1. One should visualize the moving disks which suddenly
change to moving annuli. One speaks of filling in the Hartogs figure to obtain the
polydisk Ĥ := {(z, w) | |z| < 1 and |w| < 1}. Hartogs’ continuation theorem states
that a function which is holomorphic on H extends holomorphically to Ĥ .

4.6B Holomorphic convexity

One of the major developments in complex analysis in several variables was the
realization that certain convexity concepts lie behind the strong continuation prop-
erties. At the analytic level one such is defined as follows by the full algebra
of holomorphic functions O(D) on a domain D. If K is a compact subset of
D, then its holomorphic convex hull K̂ is defined as the intersection of the sets
P(f ) := {p ∈ D | |f (p)| � |f |K} as f runs through O(D). One says that D is
holomorphically convex if K̂ is compact for every compact subset K of D.

A theorem of H. Cartan and P. Thullen relates this concept to analytic continuation
phenomena as follows. A domain D is said to be a domain of holomorphy if, given
a divergent sequence {zn} ⊂ D, there exists f ∈ O(D) which is unbounded along it.
In other words, one cannot extend all holomorphic functions on D to a truly larger
domain D̂.
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Theorem 4.6.1 (Cartan–Thullen). A domain D in Cn is a domain of holomorphy if
and only if it is holomorphically convex.

4.6C Levi convexity

There is a very close relationship between holomorphic convexity and a certain com-
plex geometric convexity of the boundary bd(D). For this, consider a smooth (local)
real hypersurface 	 containing 0 ∈ Cn with n > 1. It is the zero set {ρ = 0} in some
neighborhood U of 0 of a smooth function with dρ �= 0 on U . This is viewed as a
piece of a boundary of a domain D, where U ∩D = {ρ < 0}. The real tangent space
T0	 = Ker(dρ(0)) contains a unique maximal (1-codimensional) complex subspace
T C

0 	 = Ker(∂ρ(0)) = H . The signature of the restriction of the complex Hessian
(or Levi form) i∂∂ρ to H is a biholomorphic invariant of 	. In this notation the
Hessian is a real alternating 2-form which is compatible with the complex structure,
and its signature is defined to be the signature of the associated symmetric form.

If the restriction of this Levi form to the complex tangent space has a negative
eigenvalue, i.e., if the boundary bd(D) has a certain degree of concavity, then there
is a map map F : �→ U of the unit disk � which is biholomophic onto its image
with F(0) = 0, and otherwise F(c
(�)) ⊂ D. The reader can imagine pushing the
image of this map into the domain to obtain a family of disks that are in the domain,
and pushing it in the outward pointing direction to obtain annuli that are also in the
domain. Making this precise, one builds a (higher-dimensional) Hartogs figure H at
the base point 0 so that Ĥ is an open neighborhood of 0. In particular this proves
the Theorem of E. E. Levi: Every function holomorphic on U ∩ D extends to a
neighborhood of 0. This can be globally formulated as follows.

Theorem 4.6.2. If D is a domain of holomorphy with smooth boundary in Cn, then
bd(D) is Levi pseudoconvex.

Here the terminology Levi pseudoconvex is used to denote the condition that the
restriction of the Levi form to the complex tangent space of every boundary point is
positive semidefinite.

One of the guiding problems of complex analysis in higher dimensions is the Levi
problem. This is the question of just when the converse of Levi’s Theorem is valid:

Levi Problem. Is a domainDwith smooth Levi pseudoconvex boundary in a complex
manifold necessarily a domain of holomorphy?

Stated in this form it is not true, but for domains in Cn or in Stein manifolds,
which are discussed below, it is true.

4.6D Stein manifolds

The founding fathers of the first phase of “modern complex analysis’’ (Cartan, Oka,
and Thullen) realized that domains of holomorphy form the basic class of spaces
where it would be possible to solve the important problems of the subject concerning
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the existence of holomorphic or meromorphic functions with reasonably prescribed
properties. In fact, Oka formulated a principle which more or less states that if a
complex analytic problem which is well formulated on a domain of holomorphy has
a continuous solution, then it should have a holomorphic solution. Given the flexibilty
of continous functions and the rigidity of holomorphic functions, this would seem
doubtful, but in fact is true.

Beginning in the late 1930s, Stein worked on problems related to this “Oka Princi-
ple,’’in particular, on those related to what we would now call the algebraic topological
aspects of the subject, and he was led to formulate conditions on a general complex
manifold X which should hold if problems of the above type are to be solved. First,
his axiom of holomorphic convexity was simply that, given a divergent sequence {xn}
in X, there should be a function f ∈ O(X) such that {f (xn)} is unbounded. Sec-
ondly, holomorphic functions should separate points in the sense that, given distinct
points x1, x2 ∈ X, there exists f ∈ O(X) with f (x1) �= f (x2). Finally, globally
defined holomorphic functions should give local coordinates. Assuming that X is
n-dimensional, this means that, given a point x ∈ X, there exist f1, . . . , fn ∈ O(X)

such that df1(x) ∧ · · · ∧ dfn(x) �= 0.
This definition is so important that we restate it formally.

Definition 4.6.3. A complex analytic space X is a Stein space if it satisfies the fol-
lowing:

• Separation property: Given a point x0 ∈ X there exists a holomorphic map
F : X→ CN such that x0 is isolated in its fiber.

• Holomorphic convexity: If {pn} ⊂ X is a divergent sequence, then there exists
f ∈ O(X) such that lim supn→∞ |f (pn)| = ∞.

Assuming Stein’s axioms, Cartan and Serre then produced a powerful theory
in the context of sheaf cohomology which proved certain vanishing theorems that
led to the desired existence theorems. It should be mentioned that Grauert’s ver-
sion of the Cartan–Serre theory requires only very weak versions of Stein’s axioms:
(1) the connected component containing K of the holomorphic convex hull K̂
of every compact set should be compact, and (2) given x ∈ X, there are func-
tions f1, . . . , fm ∈ O(X) so that x is an isolated point in the fiber of the map
F := (f1, . . . , fm) : X→ Cm. Of course the results also hold for complex spaces.

The following are examples of the strong properties of Stein manifolds X for
holomorphic vector bundles E → X. The Dolbeault cohomology Hq(X;E) of ∂-
closed E-valued (0, q)-forms modulo ∂-exact forms of the same type vanishes for
all q � 1 (a special case of Theorem B). Global sections of E separate points and
give coordinates onX (an indication of TheoremA). The bundle E is holomorphically
trivial if and only if it is topologically trivial (an indication of Grauert’s Oka Principle).

Holomorphically convex domains in Cn are Stein manifolds, and since closed
complex submanifolds of Stein manifolds are Stein, it follows that any closed complex
submanifold of Cn is Stein. In particular, affine varieties are Stein spaces.

Remmert’s theorem states the converse: An n-dimensional Stein manifold can be
embedded as a closed complex submanifold of C2n+1. A nontrivial result of Behnke
and Stein implies that every noncompact Riemann surface is also Stein.
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4.6E Strongly pseudoconvex domains

A relatively compact domain D with smooth boundary in a complex manifold is said
to be strongly pseudoconvex if the restriction of the Levi form of a local defining
function to the complex tangent space of bd(D) at each boundary point is positive
definite. This condition turns out to be equivalent to bd(D) being defined as the
0-set of a smooth strictly plurisubharmonic function ρ : U → R, where U is some
neighborhood of bd(D). The condition that ρ be strict plurisubharmonic is that the
full complex Hessian i∂∂̄ρ is positive definite. Grauert showed that such a domain
is almost Stein:

Theorem 4.6.4. D has a compact subvariety E, and a holomorphic map R :
D → D′ onto a Stein space D′, such that E is mapped to a finite subset E′ and
R|D \ E→ D′ \ E′ is biholomorphic.

This solution of the Levi Problem leads to another important characterization of
Stein manifolds:

Theorem 4.6.5. A complex manifold is Stein if and only if it possesses a strictly
plurisubharmonic exhaustion function.

4.6F The conditions of q-convexity and q-completeness

If Z is a compact complex manifold embedded in a projective space P(V ), and H is
the intersection of Z and the 0-set of a homogeneous polynomial which is nowhere
locally identically zero on Z, then H is 1-codimensional in Z and the complement
Z \H is Stein. Thus we think of Z \H as having maximal positive Levi curvature.

For considerations of complements of higher codimensional varieties, and in par-
ticular for our study of the Levi geometry of open G0-orbits in flag manifolds, it is
important to understand the situation where the positive definite condition is weak-
ened. The works of Andreotti and Grauert (see [AnG]) are aimed at understanding
such manifolds.

A complex manifold X is said to be q-convex if it possesses an exhaustion
ρ : X → R�0 such that every point outside of a compact subset of X the com-
plex Hessian of ρ has at least n − q positive eigenvalues. It is difficult to keep the
numbers in mind, but the following might help: 0-convex is the same as “almost
Stein,’’ i.e., outside of a compact set the exhaustion is strongly plurisubharmonic.

Caveat: In the older literature (e.g., starting with [AnG] and as late as [W8]) one
finds “(q + 1)-convex’’ used for the condition of n− q positive eigenvalues outside
a compact set, where the current convention (as here) is to write “q-convex.’’

One says thatX is q-complete if the condition on the compact set can be dropped,
i.e., there is an exhaustion ρ whose Hessian at every point point ofX has at least n−q
positive eigenvalues. Thus 0-complete means that X has a strictly plurisubharmonic
exhaustion, in other words that it is Stein. Caveat: in the older literature one finds
“(q + 1)-complete’’ used to express the condition of n − q positive eigenvalues
everywhere, while now we write “q-complete.’’
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As we will see in the next section, measurable openG0-orbits inZ are q-complete,
where the exhaustion which exhibits this property is of a natural group-theoretic na-
ture. For such manifolds Andreotti and Grauert have proved the following funda-
mental vanishing theorem.

Theorem 4.6.6. If X is q-complete and F is a coherent analytic sheaf on X, then
Hk(X;F) = 0 for all k > q.

Here Hk(X,F) is the Cech-cohomology with coefficients in F . If F is the sheaf
of germs of local sections in a holomorphic vector bundle E, then this cohomology
is just the above mentioned Dolbeault coholomology. Note that if q = 0, then this
is exactly the vanishing theorem of Stein theory. In many situations one also has
the q-nonvanishing type of theorem that is reflected by Theorem A in the Stein case.
Roughly stated, this means that one can expect thatHq(X,F) is a very rich space, for
example one that is appropriate for geometric realization of group representations.

In closing we should note that Andreotti and Grauert also prove vanishing theo-
rems and finiteness theorems under assumptions of concavity as well as just under the
assumption of a Levi condition outside a compact subset. For example, if X is only
known to be q-convex, then nevertheless Hk(X;F) is finite dimensional for every
coherent analytic sheaf F , for all k > q.

4.7 The exhaustion function for measurable open orbits

Measurable open orbits D = G0(z) ⊂ Z carry an especially useful real analytic
exhaustion function ϕ : D → R whose Levi form L(ϕ) has at least n − q positive
eigenvalues at every point of D, where n = dimC D, C0 = K0(z) is the compact
subvariety of Theorem 4.3.1, and q = dimC C0. In this section we construct that
exhaustion function and look at some of its consequences.

Let KZ → Z and KD = KZ|D → D denote the canonical line bundles. Those
are the top exterior powers

∧n
(T1,0

Z ) and
∧n

(T1,0
D ), n = dimC Z = dimC D, of the

holomorphic tangent bundles. Their dual bundles

(4.7.1) LZ = K∗Z → Z and LD = K∗D → D

are the homogeneous holomorphic line bundles over Z associated to the character

(4.7.2) eλ : Qz → C defined by eλ(p) = detAd(p)|qnz .
Write D = G0/V0, where V0 is the real form G0 ∩ Qz of Qr

z. Write V for the
complexification Qr

z of V0, ρ
G/V

for half the sum of the roots that occur in qnz , and
λ = 2ρ

G/V
. If α ∈ 	(g, h), then (i) 〈α, λ〉 = 0 and α ∈ �r , or (ii) 〈α, λ〉 > 0 and

α ∈ �n, or (iii) 〈α, λ〉 < 0 and α ∈ �−n. Now τλ = −λ. Decompose g0 = k0 + s0
under the Cartan involution with fixed point set k0, thus decomposing the Cartan
subalgebra h0 ⊂ g0 ∩ qz as h0 = t0 + a0 with t0 = h0 ∩ k0 and a0 = h0 ∩ s0. Then
λ(a0) = 0.
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View D = G0/V0 and Z = Gu/Vu where Gu is the analytic subgroup of G for
the compact real form gu = k0+

√−1s0 and Vu is the compact real form Gu∩Qz of
Qr
z. Then eλ : V → C is unitary on both Vu and V0. The Killing form and complex

structure of g define indefinite-hermitian metrics on the holomorphic tangent spaces.
Thus

LZ → Z = Gu/Vu has a Gu-invariant hermitian metric hu,

LD → D = G0/V0 has a G0-invariant hermitian metric h0.
(4.7.3)

Lemma 4.7.4. The hermitian form
√−1∂∂ log hu on the holomorphic tangent bundle

of Z is negative definite. The hermitian form
√−1∂∂ log h0 on the holomorphic

tangent bundle of D has signature (n− q, q) where n = dimC D and q = dimC C.

Proof. Let qz = q� as usual. If α ∈ 	(g, h) let 0 �= eα ∈ gα .
The hermitian metric h0 on LD → D has connection form λ and curvature form

ω0 = 2π
√−1 dλ = −∂∂ log h0. Let α, β ∈ �n. Then

• if τβ �= −α: λ([eα, τeβ ]) = 0 and 〈eα, τeβ〉 = 0,
• if τβ = −α: there exists c �= 0 such that [eα, τeβ ] = chα and λ([eα, τeβ ]) =

(λ, α)c = (λ, α)〈eα, τeβ〉.
Let x =∑ xα , y =∑ yβ ∈ qn where xγ , yγ ∈ gγ . Then

(
√−1∂∂ log h0)(x, y) = 2πdλ(x, τy) = πλ([x, τy])

= π
∑

α,β∈�n
(λ, α)〈eα, τeβ〉.

Each (λ, α) > 0, and 〈x, τy〉 is positive definite on s∩qnz , negative definite on k∩qnz .
This completes the proof of the h0-statement of Lemma 4.7.4.

The calculation for hu is essentially the same, except that we use the complex
conjugation σ = θτ of g over gu rather than the complex conjugation τ of g over g0 :

(
√−1∂∂ log hu)(x, y) = 2πdλ(x, σy) = πλ([x, σy])

= π
∑

α,β∈�n
(λ, α)〈eα, σeβ〉.

The difference here is that 〈x, σy〉 is negative definite on all of qn. This proves the
hu-statement of Lemma 4.7.4. ��

Lemma 4.7.5. Define ϕ : D → R by ϕ = log(h0/hu). Then the Levi form L(ϕ)
has at least n− s positive eigenvalues at every point of D.

Proof. Compute L(ϕ) =
√−1∂∂ϕ =

√−1∂∂ log h0 −
√−1∂∂ log hu and apply

Lemma 4.7.4. ��

Lemma 4.7.6. ϕ : D→ R is an exhaustion function.
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Proof. Since ϕ is a strictly positive function, we need only check that the set
{z ∈ D | ϕ(z) � c} is compact for every c ∈ R. For that, it suffices to show
that e−ϕ has a continuous extension from D to the compact manifold Z that vanishes
on the topological boundary bd(D) of D in Z.

Choose a G0-invariant metric h∗0 on L∗D = KD → D and a Gu-invariant metric
h∗u on L∗Z = KZ → Z, normalized so that h0h

∗
0 = 1 on D and huh∗u = 1 on Z. Then

e−ϕ = h∗0/h∗u. So it suffices to show that h∗0/h∗u has a continuous extension from D

to Z that vanishes on bd(D).
The holomorphic cotangent bundle T∗Z → Z has fiber given by Ad(g)(qnz )

∗ =
Ad(g)(q−nz ) at g(z). Thus its Gu-invariant hermitian metric is given on the fiber
Ad(g)(q−nz ) at g(z) by Fu(ξ, η) = −〈ξ, τθη〉 where 〈, 〉 is the Killing form. Simi-
larly the G0-invariant indefinite-hermitian metric on T∗D → D is given on the fiber
Ad(g)(q−nz ) at g(z) by F(ξ, η) = −〈ξ, τη〉. But KZ = det T∗Z and KD = det T∗D .
Thus

h∗0/h∗u = c · (determinant of F with respect to Fu)

for some nonzero real constant c. This extends from D to a C∞ function on Z

given by

(4.7.7) f (g(z)) = c · (det F |Ad(g)(q−nz ) relative to det Fu|Ad(g)(q−nz )).

It remains only to show that f vanishes on bd(D). If g(z) ∈ bd(D), then
G0(g(z)) is not open in Z, and Ad(g)(qz) + τ Ad(g)(qz) �= g. Thus there exists
an α ∈ 	(g,Ad(g)h) such that g−α �⊂ Ad(g)(qz) + τ Ad(g)(qz), in other words
gα ⊂ Ad(g)(q−nz ) ∩ τ Ad(g)(q−nz ). If β ∈ 	(g,Ad(g)h) with gβ ⊂ Ad(g)(q−nz ),
then F(gα, gβ) = 0, and so f (g(z)) = 0. Thus ϕ is an exhaustion function for
D in Z. ��

Combining Lemmas 4.7.5 and 4.7.6, we see that ϕ is an exhaustion function on
D whose Levi form has at least n− s positive eigenvalues at every point of D. This
proves the following.

Theorem 4.7.8. LetZ = G/Q be a complex flag manifold, G semisimple and simply
connected, and let G0 be a real form of G. Let D = G0(z) ⊂ Z = G/Q be a
measurable open orbit. Let C = K0(z), maximal compact subvariety of D. Then D
is q-complete where q = dimC C. In particular, if F → D is a coherent analytic
sheaf, then Hk(D;F) = 0 for k > q.

Corollary 4.7.9. If E → D is a holomorphic vector bundle, then Hr(D;O(E)) = 0
for r > q.

On the other hand, if the bundle E → D is (sufficiently) negative [GrS], then
methods based on the Bott–Borel–Weil Theorem show that Hr(D;O(E)) = 0 for
r < q. As a consequence we have vanishing except for r = q.

Corollary 4.7.10. If E → D is (sufficiently) negative, then Hr(D;O(E)) = 0 for
r �= q.
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Corollary 4.7.10 will be very important when we discuss double fibration trans-
forms.

The material of this section is developed in [S1] for the setting where G0 has a
compact Cartan subgroup and Z = G/B, where B is a Borel subgroup of G, then
in [WeW] for the more general setting in which the isotropy subgroup V0 of G0 at a
point z ∈ D is compact, and finally in [SW] for the situation considered here where
V0 has only to be reductive.



5

The Cycle Space of a Flag Domain

In this chapter we assemble the basic facts on cycle spaces of flag domains. For the
most part they are based on the structure theory of semisimple Lie groups and Lie
algebras. The more subtle results, based on new complex-geometric methods, will
be studied in Part II.

Section 1 consists of the definition of the cycle space MD and its complex struc-
ture. In Section 2 we pin down the degenerate case where G0 is noncompact but acts
transitively on Z, and we describe the three cases of interest. For reasons involving
bounded symmetric domains, those three cases are the “hermitian holomorphic’’case,
the “hermitian nonholomorphic’’ case, and the “generic’’ (or “non-hermitian’’) case.
Sections 3, 4 and 5 are concerned with special situations. In Section 3 we sketch the
proof that if the open G0-orbit D ⊂ Z is measurable, then the exhaustion function of
Section 4.7 lifts to a strictly plurisubharmonic exhaustion function on the cycle space
MD , and consequently MD is Stein. In Section 4 we look at special features of the
hermitian case (where G0/K0 is a bounded symmetric domain B). In the hermitian
holomorphic case one easily sees that MD = B. In the hermitian nonholomorphic
case we see some natural inclusions MD ⊂ B×B ⊂ G/K . In Section 5 we describe
MD explicitly, in terms of Grassmann manifolds, in the hermitian cases with G0
classical. There the distinction between the holomorphic cases (where MD = B)
and the nonholomorphic cases (where we verify MD = B × B) is clear.

For several years the understanding of MD was limited to the examples just
described. The complete analysis of MD requires the complex-geometric methods
of Part II.

5.1 Definitions and first properties

Fix z ∈ Z such that D = G0(z) is open in Z. For convenience we suppose that z is
the base point in Z = G/Q. Thus Q = Qz and q = qz, and we fix a fundamental
Cartan subalgebra h0 ∈ g0 ∩ qz. For notational consistency with many papers in this
area, we write L for the Levi component Qr of Q. So D is measurable if and only if
Q ∩G0 is a real form L0 of L, and in this case D ∼= G0/L0.
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Fix a Cartan involution θ of G0 that stabilizes the Cartan subgroup H0 ⊂ G0,
and denote its fixed point sets on G0 and G by K0 = Gθ

0 and K = Gθ . Then K0 is a
maximal compact subgroup ofG0 andK is its complexification; L∩K0 is a compact
real form of L ∩K and K0(z) ∼= K0/(L ∩K0). Now H0 ∩K0 is a Cartan subgroup
of K0.

Theorem 4.3.1 tells us that C0 = K0(z) = K(z) ∼= K/(K ∩ Qz) is a compact
complex submanifold of D and is essentially unique. We define C0 to be the base
cycle in D.

Example 5.1.1. LetZ be the complex projective space Pn(C) and letG0 = SU (n, 1).
Let {e1, . . . , en+1} denote the standard basis of Cn+1 relative to which the hermitian

form defining G0 is 〈u, v〉 =
(∑

1�a�n uava

)
−un+1vn+1 where u = ∑ uaea and

v =∑ vaea . Then G0 has three orbits on Z: (i) the (open) unit ball B in Cn inside
Z, consisting of the negative definite lines, (ii) the (2n − 1)-sphere S which is the
boundary of B, consisting of the null lines, and (iii) the complement D of B ∪ S,
consisting of the positive definite lines. The flag domain D is the nonconvex open
G0-orbit on Z in the following sense. From the complex analytic viewpoint it is not
pseudoconvex. From the euclidean viewpoint of Cn ⊂ Pn(C), D ∩Cn is nonconvex
in the usual sense. Here C0 is the hyperplane at infinity, complement to Cn in Z. In
homogeneous coordinates [z1, . . . , zn+1], B is given by

∑
1�a�n |za|2 < |zn+1|2, S

is given by
∑

1�a�n |za|2 = |zn+1|2, D is given by
∑

1�a�n |za|2 > |zn+1|2, and

C0 is given by |zn+1|2 = 0. ♦
Example 5.1.2. Let Z be the complex projective space Pn(C) and let G0 =
SL(n + 1;R). Let {e1, . . . , en+1} denote the standard basis of Cn+1 relative to
which G0 is given by the action of the real matrices, as in Example 4.5.4. Re-
call that there are just two G0-orbits, the closed orbit G0([en+1]) ∼= Pn(R) and the
open orbit G0([e1 +

√−1en+1]). The special orthogonal group K0 = SO(n + 1)
and its complexification K = SO(n + 1;C) are defined by the bilinear form
b(u, v) =∑1�a�n+1 uava , where u =∑ uaea and v =∑ vaea . Here

{[u+ iv] ∈ Pn(C) | u ∈ Rn+1, v ∈ Rn+1, 0 �= b(u, u) = b(v, v), and b(u, v) = 0}
is the base cycle C0 for the open orbit. ♦
Lemma 5.1.3. Fix an open G0-orbit D = G0(z) ⊂ Z and let C0 be the base cycle.
Let J = {g ∈ G | gC0 = C0}. Then J is a closed complex subgroup of G, the
quotient manifold MZ := {gC0 | g ∈ G} ∼= G/J has a natural structure of G-
homogeneous complex manifold, and the subset {gC0 | g ∈ G and gC0 ⊂ D} is
open in MZ .

Proof. The group J is a closed complex subgroup ofG, because it is the stabilizer of
a subvariety in a holomorphic action. That defines the G-invariant complex structure
on MZ

∼= G/J . The subset {gC0 | g ∈ G and gC0 ⊂ D} is open in MZ , because
D is open and C0 is compact. ��
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In [WeW] the group-theoretic cycle space was introduced as follows.

Definition 5.1.4. Recall from Lemma 5.1.3 that {gC0 | g ∈ G and gC0 ⊂ D} is an
open subset of the complex manifold MZ . The cycle space of D is

(5.1.5) MD : topological component of C0 in {gC0 | g ∈ G and gC0 ⊂ D}.
with the natural complex manifold structure as open submanifold of MZ .

5.2 The three cases

In order to understand the structure of Z, D and MD we may assume that G0 is
simple, because G0 is a local direct product of simple groups, and Z, D and MD

break up as global direct products along the local direct product decomposition of
G0. From this point on G0 is simple unless we say otherwise.

Since g0 is simple and j contains k, there are only a few possibilities, one trivial.
The trivial one is the case j = g, in other words the case where G0 acts transitively
on Z, and MD is reduced to a single point. The following describes the cases where
this occurs.

Proposition 5.2.1 ([O1], [O2]). The (connected) noncompact real forms G0 ⊂ G

transitive on Z are precisely those given as follows.

1. Z = P2n−1(C), complex projective (2n−1)-space;G = SL(2n;C) andG0 is the
quaternion linear group SL(n;H), which has maximal compact subgroup Sp(n).

2. Z = SO(2r + 2)/U(r + 1), unitary structures on R2r+2; G = SO(2r + 2;C)
andG0 is the Lorenz group SO(1, 2r+1), which has maximal compact subgroup
SO(2r + 1).

The Lie algebra j contains k. Except whenG0/K0 is a bounded symmetric domain,
k is a maximal subalgebra of g. Therefore either j = g as in Proposition 5.2.1, or
j = k. If G0/K0 is a bounded symmetric domain, there is another case, j = k + s−
or j = k + s+. From now on we ignore the trivial case of Proposition 5.2.1 and
concentrate on the other cases:

1. Hermitian holomorphic case. G0/K0 is a bounded symmetric domain B, we
have the usual decomposition g = s+ + k+ s−, and j is one of k+ s±.

2. Hermitian nonholomorphic case. G0/K0 is a bounded symmetric domain B
and j = k.

3. Generic (or non-hermitian) case. G0/K0 does not have aG0-invariant com-
plex structure.

The two hermitian cases are distinguished as follows:

Lemma 5.2.2. Suppose that G0/K0 is a bounded symmetric domain B. Then D is
measurable, say D = G0/L0, and there is a double fibration
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G0/(L0 ∩K0)

D B
��� ���

We are in the hermitian holomorphic case if and only if the double fibration is holo-
morphic,1 in other words if the two projections are simultaneously holomorphic for
some choice between B and the complex conjugate structure B and some choice of
invariant complex structure on G0/(L0∩K0). (If the latter choice exists, it is unique
because G0/(L0 ∩K0) = {(z, C) ∈ D × B | z ∈ C ∈ D}.)
Proof. Since G0 is of hermitian type, k0 contains a fundamental Cartan subalgebra
h0 of g0. Thus D is measurable and we may assume h0 ⊂ l0 = (g0 ∩ qz).

Suppose that the double fibration is holomorphic. Then there is a choice of positive
root system 	+(g, h) such that the corresponding Borel subalgebra

b = h+ b−n ⊂ ((k+ s−) ∩ qz).

Now bk + s− = b = bl + q−nz , where bk and bl are the Borel subalgebras of k and l
given by intersection with b. In particular s− ⊂ qz. If z′ ∈ C0, say z′ = k(z) where
k ∈ K , then S−(z′) = S−(k(z)) = k(S−(z)) = k(z) = z′. Hence S− fixes every
point ofC0, and in particular S− ⊂ J . Thus we are in the hermitian holomorphic case.

Conversely, suppose that we are in the hermitian holomorphic case, say J = KS−.
Since S− is solvable and preserves the projective variety C0, it has a fixed point on
C0. The argument just above shows that S− fixes every point of C0, in particular that
S− ⊂ Qz. Now the projections of the double fibration simultaneously holomorphic,
in other words the double fibration is holomorphic. ��

In Part III we will study double fibration transforms, the most famous case of
which is the Penrose transform, using results of Part II on the structure of the cycle
space. Then we will describe some connections between cycle spaces and the unitary
representation theory of semisimple Lie groups. Finally we will indicate some of the
applications of cycle spaces to variation of Hodge structure, specifically to period
matrix domains and construction of automorphic cohomology classes by Poincaré
ϑ-series.

5.3 Cycle spaces of measurable open orbits are Stein

In connection with construction of automorphic cohomology, Wells [We1] showed
by direct computation that MD is a Stein manifold in the particular case D ∼=
SO(2h, k)/(U(h) × SO(k)). That result was extended in Wells–Wolf [WeW] to

1 By holomorphic fibration we mean a holomorphically locally trivial fiber space, essentially
a holomorphic fiber bundle, except perhaps lacking a complex structure group. This is an
important distinction, because the presence of a complex structure group would have many
implications that are not available otherwise.
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the more general situation of open G0-orbits D of the form G0/L0 with L0 compact,
using a special case of the double fibration transform together with somewhat general
methods of complex analysis (Andreotti–Grauert [AnG], Andreotti–Norguet [AN],
Docquier–Grauert [DG]) associated to questions of holomorphic convexity and the
Levi problem. Finally, when D is a measurable open orbit, Wolf [W8] combined his
extension of boundary component theory of bounded symmetric domains (see [W2],
or see [W4]) with the exhaustion function ϕ : D → R, to construct an essentially
canonically defined strictly plurisubharmonic exhaustion function on MD . In view
of Grauert’s solution [Gra] to the Levi Problem—a complex manifold is Stein if and
only if it has a C∞ strictly plurisubharmonic exhaustion function—it follows that if
D is measurable, then MD is a Stein manifold. In Part II below we will use complex-
geometric methods to prove in general that MD is a Stein manifold, but in the general
situation we do not construct a canonical strictly plurisubharmonic exhaustion.

Case: D is of hermitian holomorphic type. Here we may assumeD = G0(z)

and J = KQ−, and therefore MZ = G/J is the compact hermitian symmetric space
dual to the bounded symmetric domain B. Now B ⊂ MD ⊂ MZ because MD is
invariant by the action ofG0 on MZ . In Theorem 3.2.1 we give a precise description
of the G0-orbit structure of MZ , and the closure relations among the G0-orbits, in
terms of partial Cayley transforms. If MD contains a G0-orbit O, then it contains
every open G0-orbit whose closure contains O, because MD is open in MZ .

We indicate the operator norm argument of [W8] which shows that MD cannot
contain an open orbit different from B; a detailed argument based on Schubert cycles
will be given below in Proposition 9.1.7. A convexity theorem of R. Hermann (see
[W4, p. 286]) says that the bounded symmetric domain is given by

B = G0KS−/KS− = {exp(ζ )(z0) | ζ ∈ s+ with ||ξ ||g < 1},
where ||ξ ||g is the operator norm of ad(ξ). Let ||ξ || denote the norm on g associated
to the positive definite hermitian inner product 〈ξ, η〉 = −b(ξ, τθη), where b is
the Killing form. Let V0 denote the isotropy subgroup of G0 at z. Using Harish-
Chandra’s result G0 ⊂ exp(s+)K exp(s−) and comparing the norms ||ξ ||g and ||ξ ||,
Herman’s result tells us that every g ∈ G0 has expression g = exp(ζ1+ ζ2)k exp(η),
where η ∈ s−, k ∈ K , ζ2 ∈ Ad(k)(v ∩ s+), and where ζ1 ∈ s+ is orthogonal to
Ad(k)(v ∩ s+). It follows that there is a number a = aG > 0 such that, in this
expression, ||ζ1||g < aG. From this one proves that f̃ (g) = ||ζ1||g pushes down to a
well-defined function f : D → R, and 0 � f (gz0) < aG. If MD contains an open
orbitD	,∅ �= B, the roots in	 define a product of |	| Riemann spheres inZ, and the
restriction of f to the diagonal in that product is unbounded. From that contradiction
one concludes MD = B. In particular one sees that MD is Stein.

Case: D is not of hermitian holomorphic type. Then J has identity compo-
nent K . Hence, J is reductive and MZ = G/J is affine. Define

β :MD → R+ by β(gC0) = sup
y∈C0

ϕ(g(y)).

Since ϕ is an exhaustion function and the gC0 are compact, one can prove that
β : MD → R+ blows up at every boundary point of MD . From the specific con-
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struction of ϕ, and a close look at the real analytic variety given by dϕ = 0, one
sees that β is continuous, piecewise Cω and plurisubharmonic. Now a modification
suggested by results of Docquier and Grauert [DG] gives a Cω strictly plurisubhar-
monic exhaustion function ψ = ϕ + ν constructed as follows. Since MZ is Stein
there is a proper holomorphic embedding f : MZ → C2n+1 with closed image, by
Remmert’s theorem. Define ν(C) := ||f (C)||2 for C ∈ MD . Since MD carries
a strictly plurisubharmonic exhaustion function, Grauert’s solution [Gra] to the Levi
Problem shows that MD is Stein.

Using Grauert’s solution of the q-Levi Problem and a natural integral transform,
Andreotti and Norguet proved that Cq(D) is Stein under the conditions that D is q-
complete and contained in the smooth points of a projective variety, and that the Levi
form of the exhaustion function is nondegenerate at every point of D [AN]. The first
two conditions are satisfied in our case, but it is not known whether the Levi form is
nondegenerate at all points.

In [NS] the nongeneracy condition was eliminated, but it was still required thatD
be contained in the smooth points of a projective variety. Finally, Barlet proved the
result with no superfluous conditions [B2]: If D is a q-complete complex space, then
Cq(D) is Stein. Furthermore, if D is only q-convex, then it still follows that Cq(D)
is holomorphically convex.

The methods of proof of these results are a bit technical, in part due to the fact
that the cycle space can be singular. However, the basic approach which was intiated
by Andreotti and Norguet (also see [NS]) is particularly interesting for representation
theory, and therefore we outline it here. For the details on the full space Cq(D) of
cycles see Section 7.4A.

If α is a ∂̄-closed (q, q)-form and ξ is its cohomology class in Hq(D;�q), then

AN(ξ)(C) :=
∫
C

α

defines a linear map AN : Hq(D;�q)→ O(Cq(D)). If D is a q-complete domain
in a projective variety, then using the solution of the above mentioned Levi Problem
one builds sufficiently many cohomology classes in Hq(D;�q) to prove that Cq(D)
is Stein with respect to the image of AN . In particular, given a divergent sequence
{Cn} of cycles there exists ξ ∈ Hq(D;�q) so that lim

n→∞AN(ξ)(Cn) = ∞, and, if C1

andC2 are different cycles in Cq(D), there exists ξ ∈ Hq(D;�q)withAN(ξ)(C1) �=
AN(ξ)(C2).

5.4 The cycle space in the hermitian case

In this section G0 is of hermitian type, and we relate the cycle space MD of an open
orbit G0(z0) = D ⊂ Z = G/Q to the bounded symmetric domain B ∼= G0/K0
associated to G0. We just saw that MD is B or B when D is of holomorphic type,
and Proposition 5.4.8 gives yet another proof of that. Here we show that if D is not
of holomorphic type, then MD ⊂ B × B where both are appropriately embedded in
G/K . The opposite containment will be proved in Part II below.
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In order to distinguish our basic flag manifold Z = G/Q from the hermitian
symmetric flag manifolds containing B and the complex conjugate structure B, we
modify the notation of Chapter 3 as follows. The parabolic subgroups ofG containing
K0 are P+ = KS+ and P− = KS−, the corresponding flag manifolds are X+ =
G/P+ and X− = G/P−, the base points there are the x± = 1P± ∈ X±, and the
choices of complex structures are normalized by B = G0(x−) ⊂ X− and B =
G0(x+) ⊂ X+.

5.4A B × B ⊂ G/K

Lemma 5.4.1. We have (G0 ×G0)(x−, x+) ⊂ δG(x−, x+) ⊂ X− ×X+, where δG
is the diagonal in G×G, and both of these orbits are open in X− ×X+.

Proof. Let g1, g2 ∈ G0. Use G0 ⊂ S+KS− to write g−1
2 g1 = exp(η+)k exp(η−)

with k ∈ K and η± ∈ s±. Then

(g1x−, g2x+) = δg2(g
−1
2 g1x−, x+) = δg2(exp(η+)x−, x+)

= δg2(exp(η+)x−, exp(η+)x+)
= δg2 δ exp(η+)(x−, x+) ∈ δG(x−, x+)

shows that (G0 ×G0)(x−, x+) ⊂ δG(x−, x+) ⊂ X− ×X+. They are open because
G0(x−) = B is open in X− and G0(x+) = B is open in X+. Hence they all have full
dimension. ��

The isotropy subgroup of δG at (x−, x+) is

{(g, g) ∈ G×G | gx− = x− and gx+ = x+};
in other words,

{(g, g) ∈ G×G | g ∈ P− ∩ P+ = K}.
Thus

(5.4.2) δG has isotropy subgroup δK at (x−, x+), i.e., δG(x−, x+) ∼= G/K.

We combine (5.4.2) with Lemma 5.4.1. This gives us the first part of the following.

Proposition 5.4.3. There is a natural holomorphic embedding of B × B into G/K .
Let π : G/K → G/J =MZ be the natural projection. If the open G0-orbit D ⊂ Z

is not of holomorphic type, then π is injective on B × B.

Remark. In Part II we will discuss a certain universal domain U ⊂ G/K , which
in the hermitian nonholomorphic case is B × B, and prove (Corollary 11.3.6) that
π : G/K → G/J is injective on U wheneverD is not of holomorphic type. The proof
just below is valid only in the hermitian nonholomorphic case, but it is considerably
simpler than the proof in the general nonholomorphic case. ♦
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Proof. Suppose that D is not of holomorphic type. Let g1, g
′
1, g2, g

′
2 ∈ G0 and

suppose π(g1x−, g2x+) = π(g′1x−, g′2x+). As in the argument of Lemma 5.4.1,
write

g−1
2 g1 = exp(η+)k exp(η−) so (g1x−, g2x+) = δg2 δ exp(η+)(x−, x+).

Similarly, this time reversing roles of the two factors,

g′1
−1
g′2 = exp(η′−)k′ exp(η′+) so (g′1x−, g′2x+) = δg′1 δ exp(η′−)(x−, x+).

The hypothesis π(g1x−, g2x+) = π(g′1x−, g′2x+) now provides j ∈ J such that
g2 exp(η+) = g′1 exp(η−)j . In other words, (g′1)−1g2 ∈ S−jS+.

Let {wi} be a set of representatives of the double coset space WK\WG/WK for
the Weyl groups of G and K . The Bruhat decomposition of G for X+ is G =⋃

i P−wiP+, the real group G0 is contained in the cell P−P+ for wi = 1, and G0
does not meet any other cell P−wiP+.

Since D is of nonholomorphic type J ⊂ NGu(K0)K , we may write j = nk

with n ∈ NGu(K0) and k ∈ K . Express n = wk0 with w ∈ {wi} and
k0 ∈ K0. Then j = k′′wk′′′ ∈ KwK with k,′′ k′′′ ∈ K . Therefore (g′1)−1g2 =
exp(η′−)k′′wk′′′ exp(−η+) ∈ P−wP+. In particular G0 meets P−wP+, and con-
sequently w = 1 ∈ WK and j ∈ K . This shows g2 exp(η+)K = g′1 exp(η′−)K .
Now

(g1x−, g2x+) = δg2 δ exp(η+)(x−, x+)
= δg′1 δ exp(η′−)(x−, x+) = (g′1x−, g′2x+)

as asserted. That completes the proof. ��

5.4B MD ⊂ B × B

If v is a subspace of g normalized by the Cartan subalgebra h, then

v = (v ∩ h)+
∑

α∈	(v,h)
gα,

and that defines a set	(v, h) of roots. For example	(g, h) is, as already defined, the
whole root system; 	(k, h) consists of the compact (relative to g0) roots, 	(s+, h)
consists of the noncompact positive roots, and 	(s−, h) consists of the noncompact
negative roots.

Lemma 5.4.4. One or both of �(q+nz0
∩ s±, h) contains a long root of g.

Proof. If all the roots of g are of the same length there is nothing to prove. If there
are two root lengths, the only possibilities are (i) G0 = Sp(n;R) up to a covering
and (ii) G0 = SO(2, 2k + 1) up to a covering.

Case (i). D = G0(z) ⊂ Z is open and q = qz0 . The positive root system is adapted
to q. Therefore q−nz0

is spanned by negative root spaces. Let γ be the maximal root.
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Then γ ∈ 	(q+nz0
, h) and γ is long. Every compact root of g0 = sp(n;R) is short.

So γ is noncompact and is hence contained in one of s±. Lemma 5.4.4 is proved in
case (i).

Case (ii). In this case g has a simple root system of the form {α1, . . . , αk+1} with
α1 noncompact and the other αi compact. Here αi = εi − εi+1 for 1 � i � k

and αk+1 = εk+1 with the εi mutually orthogonal and of the same length. The
noncompact positive roots are the α1 + · · · + αm with 1 � m � k + 1 and the
(α1+ · · · + αm)+ 2(αm+1+ · · · + αk+1). All are long except α1+ · · · + αk+1 = ε1,
which is short. Now at least one of 	(q+nz0

∩ s±, h) contains a long root unless both
q+nz0

∩ s+ = gε1 and q+nz0
∩ s− = g−ε1 . That is impossible because q+nz0

is nilpotent.
Lemma 5.4.4 is proved in case (ii). ��

Interchange s+ and s− if necessary so that 	(q+nz0
∩ s+, h) contains at least one

long root. Recall the G0-orbit structure of X± from Theorem 3.2.1 and the sketch
of its proof. In particular we use the notation � = {ξ1, . . . , ξ
} for the maximal
set (3.1.9) of strongly orthogonal roots in 	(s+, h) and c� for the partial Cayley
transform defined by a subset � ⊂ �.

Lemma 5.4.5. Suppose � ⊂ � ∩ �(q+nz0
, h). If � ∩ �(q+nz0

, h) is nonempty, then
c�(z0) is not contained in any open G0-orbit on Z.

Proof. The isotropy subgroup of G0 at c�(z) has Lie algebra g0 ∩ q′, where
q′ = Ad (c�)q. If γ ∈ � ∩ �(q+nz0

, h) then, by [WZ0, (3.5)], Ad (c�)(e−γ ) =

Ad (c�)( 1
2 (xγ +

√−1yγ )) = 1
2 (xγ −

√−1hγ ). But xγ ,
√−1hγ ∈ g0, and so now

Ad (c�)(e−γ ) ∈ g0 ∩ q′. Evidently Ad (c�)(eγ ) /∈ g0 ∩ q′. Conclusion: g0 ∩ q′ is
not reductive. As the G0-orbits on Z are measurable, now G0(c�(z)) cannot be open
in Z [W2, Theorem 6.3]. ��

We also need the following topological lemma.

Lemma 5.4.6. Let X1 and X2 be topological spaces, let Bi ⊂ Xi be open subsets,
and let M ⊂ (X1 × X2) be a connected open subset such that (i) M meets B1 × B2
and (ii) M ∩ (bd(B1)× B2) = ∅ = M ∩ (B1 × bd(B2)). Then M ⊂ (B1 × B2).

Proof. (X1×X2)\M is closed in (X1×X2) becauseM is open, contains (bd(B1)×
B2)∪ (B1× bd(B2)) by (ii), and thus contains the closure of the set (bd(B1)×B2)∪
(B1 × bd(B2)). That closure contains the boundary of the open set B1 × B2. Thus

M =
(
M ∩ (B1 × B2)

)
∪
(
M ∩ ((X1 ×X2) \ closure (B1 × B2)

))
.

As M is connected and meets B1 × B2, now M ⊂ (B1 × B2). ��
Now we come to the main result of this section.

Theorem 5.4.7. Let G0 be of hermitian type, let Z = G/Q be a complex flag mani-
fold, and letD = G0(z) ⊂ Z = G/Q be an openG0-orbit that is not of holomorphic
type. View B × B ⊂ MZ as in Proposition 5.4.3 and MD ⊂ MZ as usual. Then
MD ⊂ B × B.
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Proof. Retain the notation of the proof of Lemma 5.4.1. Suppose that (g1x−, g2x+)
belongs to the boundary of B×B inX−×X+. The closure ofG0KS− inG is contained
in S+KS−, and similarly the closure of G0KS+ in G is contained in S−KS+. That
allows us to write g−1

2 g1 = exp(η+)k exp(η−) with η± ∈ s± and k ∈ K , as before.
We will prove that g2 exp(η+)C0 �⊂ D, that is, g2 exp(η+)C0 /∈ MD . The theorem
will follow. The proof breaks into three cases, according to the way (g1x−, g2x+)
sits in the boundary of B × B.

Case 1. Here g1x− ∈ bd(B) and g2x+ ∈ B with g1, g2 ∈ G. We may suppose
g2 ∈ G0. Then g−1

2 g1x− also belongs to the boundary of B in X−. So

g−1
2 g1x− ∈ k0G0[� \ �](c�(x−))

for some k0 ∈ K0 and � ⊂ �, because

G0(c�x−) = K0G0[� \ �](c�x−).

Thus g−1
2 g1(x+) = k0g0c�(x−), g0 ∈ G0[� \ �]. From its definition, Ad(cγ )

maps xγ to itself, yγ to −hγ , and hγ to yγ ; so Ad(c2
γ )h0 = h0. Now, using strong

orthogonality of �, we decompose

g0 =
∏
�\�

(
exp(η+,ξ )kξ exp(η−,ξ )

)
and

c� =
∏
�

(
exp(

√−1eγ ) exp(
√

2hγ ) exp(
√−1e−γ )

)
with η±,ξ ∈ g±ξ for ξ ∈ � \ �. Set η±,γ =

√−1e±γ for γ ∈ �. Now

(g1x−, g2x+) = δg2 δ exp(Ad(k0)η
′+)(x−, x+), where η′+ =

∑
ξ∈�η+,ξ .

By Lemma 5.4.4,	(q+nz0
, h)∩	(s+, h) contains a long root. Thus, changing k0 within

K0, in other words modifying the choice of z0 withinC0 = K(z0), we may assume that
� meets 	(q+nz0

, h). Any two subsets of�with the same cardinality areW(K0, H0)-
conjugate. In particular, changing k0 within K0, in other words, by modifying the
choice of z0 withinC0 = K(z0), we may assume that� meets 	(q+nz0

, h). By Lemma
5.4.5 c�∩	(q+nz0 ,h)(z0) is not contained in any open G0-orbit on Z.

Whenever ξ ∈ � and g ∈ G[ξ ] has the decomposition g = exp(η+)k exp(η−),
η± ∈ g±ξ and k ∈ K ∩G[ξ ]. Then k ∈ H ⊂ Qz0 and

(1) if ξ ∈ 	(qz0)), then η+ ∈ gξ ⊂ qz0 so exp(η+)(z0) = z0, and
(2) if ξ ∈ 	(q+nz0

), then η− ∈ g−ξ ⊂ q−nz0
and thus

exp(η+)(z0) = exp(η+)k exp(η−)(z0) = g(z0).
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Now
exp(η+)(k0z0) = exp(Ad(k0)(η

′+))(k0z0)

= k0 exp(η′+)(z0) = k0g0c�(z0) /∈ D,
and we conclude that g2 exp(η+)C0 �⊂ D.

Case 2. Here g1x− ∈ B and g2x+ ∈ bd(B). The argument is exactly as in Case 1,
but with the roles of B and B reversed. Here note that this reversal of roles replaces
� by −� and c� by c−� .

Case 3. Here g1x− ∈ bd(B) and g2x+ ∈ bd(B). Then MD is connected, MD meets
B×B becauseC0 ∈MD∩(B×B), and MD∩

(
bd(B)×B ) = ∅ = MD∩

(B×bd(B))
by Cases 1 and 2. Case 3 now follows from Lemma 5.4.6. ��

The same type of argument gives a short proof of the following result from [W8].

Proposition 5.4.8. If D is of holomorphic type, then MD is biholomorphic to either
B or B.

Proof. We may assume that MZ = X− = G/KS− by switching s± if necessary.
It is clear that gC ⊂ D for g ∈ G0, and as a result B ⊂ MD . Now suppose that
gx− (for some g ∈ G) is in the boundary of B ⊂ X−. Then gx− = g0c�(x−) for
some g0 ∈ G0 and some � �= ∅. Conjugating by an element of K0 we may assume
� ∩�(r+, h) �= ∅. Now, for �′ = � ∩�(r+, h), gC contains g0c�(z) = g0c�′(z).
By Lemma 5.4.5 that is not in an open orbit. ��

5.4C A reduction for B × B ⊂ MD

We prove a reduction result that is used in Chapter 5.5D below (see [WZ1]).

Proposition 5.4.9. Suppose that B × B ⊂ MD whenever D is an open G0-orbit on
G/Q that is not of holomorphic type, in the case where Q is a Borel subgroup of G.
Then the same is true when Q is any parabolic subgroup of G.

Proof. The base cycle in the open orbit D = G(z) ⊂ Z is C = K(z) = K0(z).
We may, and do, take Q to be the G-stabilizer of z; in other words we assume that
q = qz. Let Q′ ⊂ Q be any parabolic subgroup of G contained in Q such that
G0 ∩Q′ contains a compact Cartan subgroup H0 ⊂ K0 of G0, let Z′ = G/Q′ be the
corresponding flag manifold, and letπ : Z′ → Z denote the associatedG-equivariant
projection gQ′ �→ gQ. Write z′ ∈ Z′ for the base point 1Q′. Then D′ = G0(z

′) is
open in Z′, because g0 ∩ q′ contains a compact Cartan subalgebra of g0. We have set
things up so that Y ′ = K(z′) = K0(z

′) is a maximal compact subvariety of D′.
Since D is not of holomorphic type, both intersections r− ∩ s± are nonzero. But

r− is contained in the nilradical r′− of q′. Now both intersections r′− ∩s± are nonzero,
and so D′ is not of holomorphic type.

If g ∈ G with gY ′ ⊂ D′ then gK0 ⊂ G0Q
′. Therefore gK0 ⊂ G0Q and thus

gY ⊂ D. In other words, π maps MD′ to MD . It follows from Proposition 5.4.3 that
this map is an injection. Thus, inside G/K we have MD′ ⊂MD . If B×B ⊂MD′
then it follows that B × B ⊂ MD . The assertion of the Proposition is the special
case where Q′ is a Borel subgroup. ��
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5.5 The classical hermitian case

As an example of the structure of cycle spaces, we look at the case where G0 is a
classical group of hermitian type. In this case the structure of MD was worked out
in [WZ1] by elementary means. The result is the following

Theorem 5.5.1. Let G0 be a classical simple Lie group of hermitian type. Let D =
G0(z) ⊂ Z = G/Q be an open G0-orbit. If D is of holomorphic type, then the cycle
space MD is biholomorphic either to B or to B. If D is not of holomorphic type,
then MD is biholomorphic to B × B.

As we will see later, Theorem 5.5.1 holds without the requirement that G0 be
classical, and even that is a special case of the general result. But in the present case
one has an elementary treatment.

We run through the classical cases. In each case, the standard basis of Cm will
be denoted {e1, . . . , em}. Without further comment we will decompose vectors as
v =∑ vj ej . We will have symmetric bilinear forms (·, ·) or antisymmetric bilinear
forms ω(·, ·) on Cm and the term isotropic will refer only to those bilinear forms. We
will also have hermitian forms 〈·, ·〉 on Cm, and the term signature will refer only to
those hermitian forms. In each case the flag manifold Z and the bounded symmetric
domains B and B are described in terms of flags

F = (Fd1 � · · · � Fdr )

of subspaces of Cn, where 0 < d1 < · · · < dr < n and dim Fj = j , and of block
form matrices. We write Cp×q for the space of p × q complex matrices.

In the first three classical cases we work directly, but the orbit descriptions can
be very complicated in the fourth classical case. So in that case we use Proposition
5.4.9 to reduce considerations to the case where Q is a Borel subgroup of G.

5.5A Type I: B = {Z ∈ Cp×q | I − Z∗Z � 0}
Here G = SL(n;C) and G0 = SU (p, q), indefinite unitary group defined by the
hermitian form 〈u, v〉 =∑p

j=1 vjwj −∑q

j=1 vp+jwp+j with p + q = n.
The hermitian symmetric flagX− = G/KS− is identified with the Grassmannian

of q-planes in Cn, the base point x− = [ep+1 ∧ · · · ∧ ep+q ], and B = G0(x−)
consists of the negative definite q-planes. Similarly, X+ = G/KS+ is identified
with the Grassmannian of p-planes in Cn, x+ = [e1 ∧ · · · ∧ ep], and B = G0(x+)
consists of the positive definite p-planes. The embedding

B × B ⊂ G/K = G(x−, x+) ⊂ X− ×X+

of Proposition 5.4.3 is given by

B × B = {(V ,W) ⊂ (X− ×X+) | V � 0 and W � 0} and

G/K = G(x−, x+) = {(V ,W) ∈ (X− ×X+) | V ∩W = 0}.
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The flag manifold Z = Zd consists of all flags F = (Fd1 � · · · � Fdr ) of
subspaces of Cn for some fixed dimension sequence d : 0 < d1 < · · · < dr < n.
In view of Witt’s theorem, the G0-orbits on Zd are the Da,b defined as follows. We
have sequences a : 0 � a1 � · · · � ar � p and b : 0 � b1 � · · · � br � q with
ai+bi = di , andDa,b consists of all flags F ∈ Zd such that Fdi has signature (ai, bi)
relative to 〈·, ·〉 for 1 � i � r . Then Da,b = G0(za,b), where

za,b = (za,b,1 � · · · � za,b,r ) with

za,b,i = Span(e1, e2, . . . , eai ; en, en−1, . . . , en−bi+1) if ai, bi > 0,

= Span(e1, e2, . . . , eai ) if ai > 0 = bi,

= Span(en, en−1, . . . , en−bi+1) if ai = 0 < bi.

Open orbitsDa,b = Da′,b′ if and only if a = a′ and b = b′; andDa,b is biholomorphic
to Da′,b′ if and only if either (i) a = a′ and b = b′ or (ii) p = q, a = b′ and a′ = b.

Now fix the open orbit Da,b. Given (V ,W) ∈ G/K ⊂ (X− ×X+) we define

CV,W = {F ∈ Z | dim Fj ∩ V = aj and dim Fj ∩W = bj for all j}.
Our base cycle C0 = K(za,b) = Cx−,x+ . If g ∈ G, then gC0 = Cgx−,gx+ . If
(V ,W) ∈ B × B, then CV,W ⊂ Da,b, in other words CV,W ∈MDa,b

. Thus

(V ,W) �→ CV,W

defines a map η : B×B →MDa,b
. If a1 = · · · = ar = 0, then bi = di for 1 � i � r ,

and η(V,W) depends only on V ; then η : B ∼= MDa,b
. If s1 = · · · = sr = 0, then

ai = di for 1 � i � r , and η(V,W) depends only on W ; then η : B ∼= MDa,b
.

Those are the cases where Da,b is of holomorphic type. In the nonholomorphic
cases, η : B × B ∼=MDr,s . Theorem 5.5.1 is verified when B is of Type I.

5.5B Type II: B = {Z ∈ Cn×n | Z = tZ and I − Z · Z∗ � 0}
Here G = Sp(n;C) and G0 = Sp(n;R). These are the complex and real symplectic
groups, defined by the antisymmetric bilinear form

ω(v,w) =
n∑

j=1

(vjwn+j − vn+jwj )

on C2n and R2n, respectively. For convenience we realize G0 as G∩U(n, n), where
U(n, n) is the unitary group of the hermitian form

〈v,w〉 =
n∑

j=1

vjwj −
n∑

j=1

vn+jwn+j .

The hermitian symmetric flagX− = G/KS− is identified with the Grassmannian
of ω-isotropic n-planes in C2n, the base point x− = Span(en+1, . . . , e2n), and B =
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G0(x−) consists of the negative definite ω-isotropic n-planes. Similarly, X+ =
G/KS+ is identified with the Grassmannian of ω-isotropic n-planes in C2n, x+ =
Span(e1, . . . , en), and B = G0(x+) consists of the positive definite ω-isotropic n-
planes. The embedding

B × B ⊂ G/K = G(x−, x+) ⊂ X− ×X+

of Proposition 5.4.3 is given by

B × B = {(V ,W) ⊂ (X− ×X+) | V � 0 and W � 0} and

G/K = G(x−, x+) = {(V ,W) ∈ (X− ×X+) | V ∩W = 0}.

The flag manifold Z = Zd consists of all flags F = (Fd1 � · · · � Fdr ) of
subspaces of C2n for some fixed dimension sequence d : 0 < d1 < · · · < dr � n.
The variation on Witt’s theorem that we need here is the following.

Lemma 5.5.2. Let U1, U2 ⊂ C2n be ω-isotropic subspaces of the same nondegener-
ate signature for 〈·, ·〉. Then there exists g ∈ G0 with gU1 = U2.

The G0-orbits on Zd are again determined by the signature sequence of the flag.
Therefore the open G0-orbits are the Da,b which are defined as follows. We have
sequences a : 0 � a1 � · · · � ar and b : 0 � b1 � · · · � br with ai + bi = di , and
Da,b consists of all flags F ∈ Zd such that Fdi has signature (ai, bi) relative to 〈·, ·〉,
for 1 � i � r . Then Da,b = G0(za,b), where

za,b = (za,b,1 � · · · � za,b,r ) with

za,b,i = Span(e1, . . . , eai ; e2n, e2n−1, . . . , e2n−bi+1) if ai, bi > 0,

= Span(e1, e2, . . . , eai ) if ai > 0 = bi,

= Span(e2n, e2n−1, . . . , e2n−bi+1) if ai = 0 < bi.

Open orbits Da,b = Da′,b′ if and only if a = a′ and b = b′; Da,b is biholomorphic
to Da′,b′ if and only if either (i) a = a′ and b = b′ or (ii) a = b′ and a′ = b.

Now fix the open orbit Da,b. Given (V ,W) ∈ G/K ⊂ (X− × X+) we again
define

CV,W = {F ∈ Z | dim Fj ∩ V = aj and dim Fj ∩W = bj for all j}.

Our base cycle C0 = K(za,b) = Cx−,x+ . If g ∈ G, then gC0 = Cgx−,gx+ . If
(V ,W) ∈ B × B, then CV,W ⊂ Da,b, so CV,W ∈ MDa,b

. Thus (V ,W) �→ CV,W

defines a map η : B×B →MDa,b
. If a1 = · · · = ar = 0, then bi = di for 1 � i � r

and η(V,W) depends only on V ; then η : B ∼= MDa,b
. If s1 = · · · = sr = 0, then

ai = di for 1 � i � r and η(V,W) depends only on W ; then η : B ∼= MDa,b
.

Those are the cases where Da,b is of holomorphic type. In the nonholomorphic
cases, η : B × B ∼=MDr,s . Theorem 5.5.1 is verified when B is of type II.
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5.5C Type III: B = {Z ∈ Cn×n | Z = −tZ and I − Z · Z∗ � 0}
Here G = SO(2n;C), special orthogonal group defined by the symmetric bilinear
form (v,w) =∑n

j=1(vjwn+j + vn+jwj ) on C2n, and G0 = SO∗(2n), the real form
with maximal compact subgroupU(n). We realizeG0 asG∩U(n, n), whereU(n, n)
is the unitary group of 〈v,w〉 =∑n

j=1 vjwj −∑n
j=1 vn+jwn+j .

The hermitian symmetric flagsX± = G/KS± are identified with the two choices
of connected component in the Grassmannian of isotropic (relative to (·, ·)) n-planes
in C2n. The components in question are distinguished by orientation. X− has base
point x− = Span(en+1, . . . , e2n), X− = G(x−), and B = G0(x−) consists of the
negative definite isotropic n-planes in X−. Similarly, X+ has base point x+ =
Span(e1, . . . , en), X+ = G(x+), and B = G0(x+) consists of the positive definite
isotropic n-planes in X+. The embedding

B × B ⊂ G/K = G(x−, x+) ⊂ X− ×X+

of Proposition 5.4.3 is given by

B × B = {(V ,W) ⊂ (X− ×X+) | V � 0 and W � 0} and

G/K = G(x−, x+) = {(V ,W) ∈ (X− ×X+) | V ∩W = 0}.
The flag manifold Z = Zd consists of all flags F = (Fd1 � · · · � Fdr ) of

subspaces of C2n for some fixed dimension sequence d : 0 < d1 < · · · < dr � n.
The variation on Witt’s theorem that we need here is the following.

Lemma 5.5.3. LetU1, U2 ⊂ C2n be (·, ·)-isotropic subspaces of the same nondegen-
erate signature for 〈·, ·〉. If dimUi = n, then assume also that the Ui are contained
in the same X±. Then there exists g ∈ G0 with gU1 = U2.

As in the Type II case, it follows that the open G0-orbits in Z = G/Q are
determined by the signature sequences of the subspaces in the flag. Hence the
open G0-orbits are the Da,b which are defined as follows. We have sequences
a : 0 � a1 � · · · � ar � n and b : 0 � b1 � · · · � br � n subject to the
conditions (i) ai + bi = di for 1 � i � r , (ii) if r = n, in which case an + bn = n,
then Span(e1, e2, . . . , ean; e2n, e2n−1, . . . , e2n−bn+1) ∈ X−. Here (ii) is a parity con-
dition on an. Then Da,b consists of all F ∈ Z such that (i) Fdi has signature (ai, bi)
for 1 � i � r and (ii) if r = n then Fn ∈ X−. In other words Da,b = G0(za,b),
where

za,b = (za,b,1 � · · · � za,b,r ) with

za,b,i = Span(e1, . . . , eai ; e2n, e2n−1, . . . , e2n−bi+1) if ai, bi > 0,

= Span(e1, e2, . . . , eai ) if ai > 0 = bi,

= Span(e2n, e2n−1, . . . , e2n−bi+1) if ai = 0 < bi.

Again,Da,b = Da′,b′ just when a = a′ and b = b′, butDa,b is biholomorphic toDb,a .
Now fix the open orbit Da,b. Given (V ,W) ∈ G/K ⊂ (X− ×X+) we yet again

define
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CV,W = {F ∈ Z | dim Fj ∩ V = aj and dim Fj ∩W = bj for all j}.
Our base cycle C0 = K(za,b) = Cx−,x+ . If g ∈ G, then gC0 = Cgx−,gx+ . If
(V ,W) ∈ B × B, then CV,W ⊂ Da,b so CV,W ∈ MDa,b

. Thus (V ,W) �→ CV,W

defines a map η : B×B →MDa,b
. If a1 = · · · = ar = 0, then bi = di for 1 � i � r

and η(V,W) depends only on V ; then η : B ∼= MDa,b
. If s1 = · · · = sr = 0, then

ai = di for 1 � i � r , and η(V,W) depends only on W ; then η : B ∼= MDa,b
.

Those are the cases where Da,b is of holomorphic type. In the nonholomorphic cases
η : B × B ∼=MDr,s . Theorem 5.5.1 is verified when B is of type III.

5.5D Type IV: B = {Z ∈ Cn | 1 + (|tZ · Z|2 − 2Z∗ · Z) > 0, I − Z∗ · Z > 0}
Here G = SO(2 + n;C), the special orthogonal group defined by the symmetric
bilinear form (v,w) = ∑2

j=1 vjwj −∑2+n
j=3 vjwj on C2+n, and G0 is the identity

component of SO(2, n). We view G0 as the identity component of G ∩ U(2, n),
where U(2, n) is defined by the hermitian form 〈v,w〉 = (v,w).

The hermitian symmetric flags X± = G/KS± are each identified with the space
of (·, ·) isotropic lines in C2+n. Thus X± are nondegenerate quadrics in Pn+1(C).
X± has base point x± = (e1 ± ie2)C. The bounded domains B = G0(x−) and
B = G0(x+), and each consists of the 〈·, ·〉 positive definite (·, ·) isotropic lines. The
embedding

B × B ⊂ G/K = G(x−, x+) ⊂ X− ×X+
of Proposition 5.4.3 is given by

B × B = {(V ,W) ∈ (X− ×X+) | V � 0 and W � 0} and

G/K = G(x−, x+) = {(V ,W) ∈ (X− ×X+) | V �⊥ W }.
Here � (positive definite) refers to the hermitian form 〈·, ·〉 and ⊥ refers to the
symmetric bilinear form (·, ·).

The flag manifold Z = Zd is a connected component of the space

Z̃ = {F = (Fd1 � · · · � Fdr ) | dim Fi = di and (Fdi , Fdi ) = 0 ∀i}
of isotropic flags in C2+n for the dimension sequence d : 0 < d1 < . . . dr � m,
where m = [n2 ]+ 1. If n is even and r = m, then Z̃ has two topological components;
otherwise Z = Z̃. In any case

Z+ = G([(e1 + ie2) ∧ (e3 + ie4) ∧ · · · ∧ (e2m−1 + ie2m)])
is a connected component in the variety of all maximal isotropic subspaces of
C2+n, and

Z =
{
F = (Fd1 � · · · � Fdr )

∣∣∣∣dim Fdi = di and (Fdi , Fdi ) = 0 ∀i,
and further if r = m then Fdr ∈ Z+

}
.

The appropriate variation on Witt’s Theorem for our considerations here is the fol-
lowing.
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Lemma 5.5.4. Let U1, U2 ⊂ C2+n be (·, ·)-isotropic subspaces of the same nonde-
generate signature for 〈·, ·〉. Then there exists g ∈ O(2 + n;C) ∩ U(2, n) with
gU1 = U2.

It will follow that the open G0-orbits on the Z are essentially determined by the
signature sequences of the subspaces in the flag. It is a bit complicated to make this
precise. Thus we now assume that Q is a Borel subgroup of G, in other words, that
the dimension sequence d : 1 < 2 < · · · < m− 1 < m. Write Z for Zd .

More or less as in the earlier cases it follows that the open G0-orbits on the
full flag Z = G/Q are essentially determined by the signature sequences of the
subspaces in the flag. Let 1 � k � m, and define points z±k ∈ Z and G0-orbits
D±k = G0(z

±
k ) ⊂ Z by

z±k = (z±k,1 ⊂ · · · ⊂ z±k,m), where

z±k,j = Span(e3 + ie4, . . . , e2j+1 + ie2j+2) for j < k,

z±k,j = Span(e1 ± ie2, . . . , e3 + ie4, . . . , e2j−1 + ie2j ) for j � k.

ThenD±k = G0(z
±
k ) consists of all F ∈ Z such thatFj has signature (0, j) for j < k,

signature (1, j − 1) for j � k, and Fj meets G0(x±) for j � k. The open G0-orbits
on Z are the D±k , and they are distinct. The open (O(2+ n;C) ∩ U(2, n))-orbits on
Z are the D+k ∪D−k .

Fix k and ε with 1 � k � m and ε = ±. Let

(V ,W) ∈ G/K = (X− ×X+).

So V = vC andW = wC, where v,w ∈ C2+n are isotropic vectors with (v,w) �= 0.
Define CV,W to be⎧⎪⎨⎪⎩F ∈ Z

∣∣∣∣∣∣∣
dim Fj ∩ Span(v,w) = 0 and dim Fj ∩ Span(v,w)⊥ = j, j < k,

dim Fj ∩ Span(v,w) = 1 and dim Fj ∩ Span(v,w)⊥ = j − 1, j � k,

v ∈ Fj if ε = + and j � k; w ∈ Fj if ε = − and j � k

⎫⎪⎬⎪⎭.
As above,⊥ refers to the symmetric bilinear form. Note that the only isotropic vectors
in Span(v,w) are the multiples of v and the multiples of w.

Denote D = D±k so that C = K(z±k ) = Cx−,x+ . If g ∈ G, then gC = Cgx−,gx+ .
Arguing as in [WZ1, Lemma 5.1], we check

if (V ,W) ∈ B × B, then CV,W ⊂ D±k , so CV,W ∈MD±k
.

Now (V ,W) �→ CV,W defines a map η : B × B → MD±k
. If k = 1 and if ε = +,

then η(V,W) depends only on V ; if k = 1 and ε = −, then η(V,W) depends only
on W ; those are the cases where D±k is of holomorphic type. In the nonholomorphic
cases, η injects B × B into MD±k

and we have B × B ⊂MD±k
.

Now Theorem 5.5.1 is verified when B is of type IV and Q is a Borel subgroup
of G. In view of Proposition 5.4.9, that verifies it whenever B is of type IV. This
completes the proof of Theorem 5.5.1.
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Overview

In this part we study various G0-invariant domains that are contained in the complex
affine symmetric space � = G/K and that contain the riemannian symmetric space
G0/K0. Except in the holomorphic hermitian case, which is discussed in sufficient
detail in Part I, one such domain is the cycle space of any G0-orbit in any G-flag
manifold Z. Although up to this point we have restricted our attention to open G0-
orbits, the case of lower-dimensional orbits is also treated here in Chapter 12.

It turns out that the cycle domains have many different faces in the sense that
they agree with various other domains which are defined in completely different
ways. For example, these arise in the study of cut point loci of the dual compact
symmetric space Gu/K0, which is also embedded in �. From another differential
or symplectic geometric viewpoint, these are domains of existence of the adapted
complex structure on the tangent bundle of the riemannian symmetric space. As
a basic definition for this universal domain U we use the one given by Akhiezer
and Gindikin which guarantees a proper G0-action. Other definitions involve, for
example, maximal domains of existence for holomorphic extension of functions of
representation-theoretic importance on G0/K0.

The new tool which is implemented here is the use of special Schubert varieties
which cut the base cycleC in a perfect way. Associated to such varieties are incidence
hypersurfaces (or divisors) which are contained in the complement of the given cycle
space in �. Meromorphic functions with poles along these hypersurfaces, and the
envelopes which are constructed by removing all appropriate translates of them, are
of particular importance.

The main result of this part states that all of these domains are the same. In
particular, they agree with U and as a result only depend on the real form G0, and not
on the flag manifold Z or the orbit under consideration.

The proofs utilize both complex analytic and group-theoretic techniques. The
key final result which yields the classification states that U can be characterized as
the maximal G0-invariant, Kobayashi hyperbolic Stein domain in � that contains
the riemannian symmetric space G0/K0. Its proof involves, for example, a rather
detailed analysis of the boundary of U .

This part is structured as follows. In Chapter 6 we introduce in detail three of
the domains mentioned above. These are the domains which arise through metric
considerations and the universal domain U . The basic relation between G0-invariant
plurisubharmonic functions U and convex functions on a certain Weyl chamber are
proved.

Chapter 7 is devoted to certain aspects of the complex geometry which comes
from complex hypersurfaces H in � that are invariant under Borel groups B which
contain a factorA0N0 of an Iwasawa decompositionG0 = K0A0N0. Removing these
divisors, we define the resulting the connected component which contains G0/K0 to
be the Iwasawa envelope EI . Theorem 7.2.7 shows that U = EI .

In Chapter 7 we also introduce the reader to Barlet’s construction of the cycle
space (see Section 7.4). This, along with the principle of the trace transform, is used
to show that B-invariant incidence varieties defined by certain Schubert varieties are
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in fact particular examples of the hypersurfaces that go into the construction of EI .
These then define another Stein G0-invariant envelope which by definition contains
both U and the cycle space MD (see Corollary 7.4.13).

In order to derive precise information on the Schubert varieties that cut K-orbits
transversally we need information arising in the symplectic geometric proof of the
duality between the G0-orbits and K-orbits in Z. This Matsuki duality is proved in
Chapter 8, and the precise information on the Schubert intersection theory is given in
Chapter 9 (see Theorem 9.1.1). As a result we construct complex supporting varieties
at every boundary point of every G0-orbit (Proposition 9.1.4). These yield incidence
varieties in � on the boundary of every given cycle space. With a bit of care, given
a boundary point of the cycle space MD of an open G0-orbit, we construct in an
algorithmic way a supporting B-invariant hypersurface at that point (see Section
9.2). This already pins down the location of MD as itself being an envelope which
contains U . This result is also a consequence of the considerations of hyperbolicity
in Chapter 11.

In Chapter 10 we analyze the boundary of U . This is done from the point of view
of theG0-invariant theory. In particular, for a point p in a generic nonclosed orbit, we
construct a three-dimensional semisimple subgroup S of G0 with a two-dimensional
orbit S(p) which closes up in a controlled way to a point of the closed orbit in the
closure of G0(p) (see Section 10.6B). We refer to the orbits S(p) as SL(2) models.
These are up to a 2:1 cover two-dimensional affine quadrics, i.e., the affine symmetric
space associated to SL2(C). They cut U in the universal domain of SL(2;R) (Theorem
10.6.9). This tool is used in a fundamental way for the characterization of U as the
maximalG0-invariant, hyperbolic Stein domain containing the riemannian symmetric
space G0/K0. This result is stated and proved in Chapter 11 (see Theorems 11.3.1
and 11.3.7).

Chapter 12 is devoted to implementing the methods developed in the previous
sections as well as a number of new techniques to prove that, with the usual exception
of the hermitian holomorphic case, even for lower-dimensional orbits the cycle space
agrees with the universal domain U (Theorem 12.1.3).

In the last chapter of this part we display our general methods in the case of
SL(n;R). We also give concrete topological realizations of U for a number of series
of classical groups. Finally, we compare the Schubert slice method with another slice
method which works quite well in the special case where Z is a compact hermitian
symmetric space.
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Universal Domains

One of the purposes of this monograph is to show that an open G0-orbit D in
Z either is of hermitian holomorphic type in which case the cycle space MD is
the associated bounded symmetric domain B or B, or is not of hermitian holo-
morphic type in which case MD is naturally isomorphic to a certain univer-
sal domain U . Here we introduce U from several viewpoints and derive cer-
tain of its basic properties. The main aspects of this chapter can be summarized
as follows.

In Section 1 we discuss certain differential geometric properties of the com-
pact symmetric space Gu/K0, which is closely related to U . This leads to a nat-
urally defined G0-invariant tubular neighborhood �C of the 0-section of the tan-
gent bundle of the riemannian symmetric space G0/K0. It is then shown that
the polar map defines a diffeomorphism ! : �C → �AG =: U onto a neigh-
borhood �AG in the affine symmetric space G/K (Proposition 6.1.1). The do-
main �AG was defined in [AkG] as a thickening of G0/K0 which is appropri-
ate for the study of proper actions of G0. It is concretely defined by a cer-
tain restricted root polytope P in the a0-part of an Iwasawa decomposition g0 =
k0 + a0 + n0 : U = G0 exp(iP )(x0), where x0 is the base point in G/K . Section
1 closes with a proof that U = B × B in the case where G0 is of hermitian type
(Proposition 6.1.9).

Section 2 begins with a brief discussion of the adapted complex structure on
neighborhoods of the 0-section of the tangent bundle of a Cω (real analytic) rieman-
nian manifold (M, g). In the case of the symmetric space M = G0/K0 it is shown
that the maximal domain of definition �adpt of this structure is biholomorphically
equivalent to U , also by the polar map (Proposition 6.2.3).

The main point of Section 3 is to prove a characterization of G0-invariant strictly
plurisubharmonic functions on U as theG0-invariant functions that pullback to strictly
convex functions on P , by the map ξ �→ exp(iξ)(x0) (Theorem 6.3.1). In order to
prove this basic result of [BHH], we derive detailed information on the Cauchy–
Riemann structure of the G0-orbits in U and on the Levi form of G0-invariant hyper-
surfaces in U .
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6.1 Definitions and first properties

Throughout this chapter we assume that the complex semisimple Lie group G is
simply connected. Note that under this assumption the set of fixed points, Gν, is
connected for every continuous involutive group automorphism ν : G → G. As
before τ denotes the complex conjugation of G over G0 and θ is a Cartan involution
of G0, which we extend holomorphically to G. That extension is also denoted by
θ and it commutes with τ. Note that σ = τθ = θσ is the Cartan involution of the
complex group G, where Gσ = Gu is a θ -stable compact real form of G. The fixed
point set Gθ is the connected complex subgroup K of G which is isomorphic to the
universal complexification of the maximal compact subgroup K0 = Gθ

0.

Unless otherwise stated we assume (without loss of generality) that the real Lie
group G0 is simple.

Let � denote the complex homogeneous space G/K . Select the base point
x0 = 1K. The stabilizers Gx0 = K and (G0)x0 = G0 ∩K = K0. Equipped with its
invariant metric, theG0-orbit of x0 is the riemannian symmetric space�0 = G0/K0,
embedded as a closed totally real subspace with dimR �0 = dimC �.

If g0 = k0 + s0 is the Cartan decomposition defined by θ , then the tangent space
Tx0�0 is the K0-module g0/k0, which we identify with s0, and the tangent bundle of
�0 is the G0-homogeneous vector bundle

T�0 = G0 ×K0 s0 → G0/K0 = �0.

Consider the polar coordinate mapping

! : G0 ×K0 s0 → G/K, [(g, ξ)] �→ g · exp(iξ)(x0).

In the following sections we will discuss basic properties of! on canonically defined
neighborhoods of the 0-section of T�0.

6.1A Differential geometric viewpoint

In � = G/K we consider the orbit �u := Gu(x0) = Gu/K0. Equipped with its
invariant metric, it is a compact riemannian symmetric space and is embedded as
a totally real submanifold of �. The complex structure of the complex symmetric
space yields a canonical identification i : s0 = Tx0�0 → Tx0�u = is0, and we have
Tx0� = Tx0�0 ⊕ Tx0�u. The riemannian exponential map exp : Tx0�u → �u is
surjective and can be written as the composition of the Lie group exponential map
exp : is0 → Gu and the projection Gu → Gu/K0. Hence, exp : Tx0�u → �u

coincides with the restriction of the polar mapping: ! : Tx0�0 → �u ⊂ �. In [C]
Crittenden describes a basic differential geometric property of this map.

Before we state the relevant results, we recall some basic differential geometric
constructions. Given a complete riemannian manifold M let exp : Tx0M → M

denote the exponential map at some point x0 ∈ M and

d expw : Tw(Tx0M)→ Texp(w)M



6.1 Definitions and first properties 79

its differential at w ∈ Tx0M. Let W = W(x0) ⊂ Tx0M be the connected component
containing 0 ∈ Tx0 of the set of tangent vectorsw such that (d exp)w is invertible. The
set Conj(x0) := exp(bd(W)) is referred to as the conjugate locus. Let V = V (x0) be
the set of allv ∈ Tx0M such that t �→ exp tv t ∈ [0, 1], is the unique length minimizing
geodesic segment connecting x0 and exp v. The set Cut(x0) := exp(bd(V )) is the cut
locus defined by x0.

It should be noted that exp : V (x0)→ exp(V (x0)) is a diffeomorphism andM =
expV (x0) ∪̇Cut(x0). The example of a flat torus shows that, in general, V (x0) �=
W(x0), and exp : W(x0) → exp(W(x0)) need not be injective. However, in our
situation we have the following.

Proposition 6.1.1 ([C]). Let M = �u be a compact simply connected riemannian
symmetric space. Then the sets V (x0) and W(x0) are equal. In particular !|W is a
diffeomorphism onto its image.

Now let V = W ⊂ Tx0�u
∼= Tx0�0 as above. The open set

(6.1.2) 1
2�u := exp( 1

2V ) = !( 1
2V )

is a sort of hemisphere in �u, half way to the cut locus,

(6.1.3) 1
2�u = {exp(tξ) | ξ ∈ bd(V (x0)) and |t | < 1

2 }.
It can be computed explicitly in terms of roots.

To do this, regard V as a K0-invariant domain in s0, where K0 × s0 → s0 is
the restriction of the adjoint representation of G0 on g0. Let a0 be a maximal abelian
subalgebra of s0.Recall that any two such algebras a0, a

′
0 are conjugate by an element

of K0. Fix such a0 and let 	(g0, a0) denote the corresponding restricted root system,
i.e., the set of all nonzero weights of the R-diagonalizable representation adg0 |a0 of
a0 on g0. Let ξ be a regular element in a0, i.e., α(ξ) �= 0 for all α ∈ 	(g0, a0). If
k0 ∈ K0 and k0(ξ) ∈ a0, then k0(a0) = a0 and k0 ∈ NK0(a0). Thus

s
reg
0 = K0 ×NK0

a
reg
0 .

As a resultV = K0·ω0, whereω0 is a certain domain in a0 which is invariant under the
Weyl groupW := NK0(a0)/ZK0(a0). Crittenden [C] showed thatω0 is the connected
component containing 0 of

a0 \
⋃

α∈	(g0,a0)

Hα,

where Hα := {ξ ∈ a0 : α(ξ) = π
2 }. Thus we now define ω0 to be this set, i.e.,

ω0 = {ξ ∈ a0 : |α(ξ)| < π
2 for all α ∈ 	(g0, a0)} and state the following result for

further reference in our context.

Proposition 6.1.4 ([C]). The restriction

!|K0·ω0 : K0·ω0 → 1
2�u = K0· exp(iω0)(x0)

is a diffeomorphism.
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6.1B Proper actions

The set �AG := G0· exp(iω0)(x0) = G0· 12�u ⊂ � was introduced from the point
of view of complex geometry and representation theory in [AkG]. For many things,
for example the existence of G0-invariant metrics, it is important to consider G0-
invariant domains in � on which the action of G0 is proper. One of the main goals
of [AkG] is to define such a neighborhood of �0 in �.

Recall that a continuous action of a topological group L on a Hausdorff space
X is proper if the induced map L × X → X × X, (
, x) �→ (
(x), x) is a proper
mapping. In terms of sequences this means that if 
n(xn) → y and xn → x, then,
after going to a subsequence, 
n → 
 ∈ L. All isotropy groups Lx are compact for a
proper action of L, and all orbits L(x) are closed.

Proposition 6.1.5 ([AkG]). If ξ ∈ ω0 and x = exp(iξ)(x0), then the isotropy group
(G0)x is the (compact) centralizer ZK0(ξ). If x ∈ exp(ia0)(x0) is in the boundary of
exp(iω0)(x0), then (G0)x is noncompact.

This implies that for every ξ ∈ ω0 ⊂ Tx0�0 the restriction

!|G0·ξ : G0·ξ → G0· exp(iξ)(x0)

is an (equivariant) diffeomorphism. To simplify notation, let �C := G0·ω0 denote
an open invariant neighborhood of the 0-section �0 in the tangent bundle T�0 =
G0×K0 s0. Using Proposition 6.1.4 and the fact that Tx( 1

2�u)+Tx(G0(x)) = Tx�AG

for all x ∈ 1
2�u (see [AkG]), one can summarize the above results as follows.

Proposition 6.1.6. The restriction

!|�C
: �C → �AG

is a diffeomorphism, the action of G0 on �AG is proper, the differential d!x at
x ∈ bd(�C) is not invertible.

Proof. If Vs := K0·ω0, then the fact that ! is injective along Vs and all G0-orbits,
along with its equivariance, implies that it is injective on �C = G0 ×K0 Vs. By
definition �AG = G0·!(Vs) and therefore it is surjective. The above transversality
statement, along with the fact that d!x has maximal rank both along Vs and all G0-
orbits shows that it is a local diffeomorphism at all points of Vs. Since �C = G0·Vs,
! is equivariant, and the injectivity has already been proved, it follows that it is a
global diffeomorphism.

Since the G0-action on �0 = G0/K0 is proper, the induced action on T�0 is
likewise proper. Since !|�C

: �C → �AG is an equivariant diffeomorphism it
follows that the action of G0 on �AG is proper.

Finally, since the isotropy subgroups of G0 at points of the boundary of
exp(iω0).x0 are noncompact and the boundary of ω0 in Tx0�0 is mapped to this
boundary, it follows that ! is not a local diffeomorphism at any x ∈ bd(ω0). There-
fore the same statement is true for every point of bd(�C) = G0. bd(ω0). ��
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Remark. It should be underlined that !(bd�C) � bd�AG. ♦
In its form G0· exp(iω0)(x0) the domain discussed above was first brought to our

attention by the work in [AkG]. As a consequence we originally denoted it by �AG.
It turns out that it is naturally equivalent to a number of other domains, including �C

and the cycle spaces, which are defined from a variety of viewpoints. So now, unless
we have a particular construction in mind, we denote

(6.1.7) U = U(G0) = G0· exp(iω0)(x0)

to underline its universal character.
Before proceeding to other characterizations of U , we consider a basic concrete

example, and indicate the identification of U with B × B in the hermitian case.

6.1C The universal domain in the hermitian case

In order to describe U in the general hermitian case, it is essentially enough to under-
stand the simplest example.

Example 6.1.8. Let 〈·, ·〉 denote the standard hermitian product of signature (1,1),
|| · || the corresponding norm, G := SL(2;C) and G0 the real form SU (1, 1) =
Isom(C2, 〈·, ·〉)∩G of G. Identify X− ×X+ with P1(C)×P1(C) equipped with the
diagonal action ofG0. In this way we may assume that B is the set of negative lines in
the first factor and B is the set of positive lines in the second factor. The natural base
point x0 is ([0 : 1], [1 : 0]) ∈ B×B. HereGu = SU (2) is also acting diagonally and,
if h : C2 × C2 → C denotes the corresponding standard positive definite hermitian
product, then Gu(x0) = {([v], [w]) | h(v,w) = 0}.

The isotropy subgroups of G0 at points of 	 := Gu(x0) ∩ (B × B) are compact,
and therefore 	 ⊂ U . Further, � := G(x0) is the complement of the diagonal in
X− ×X+ and the Shilov boundary of the polydisk B × B intersects � in a cylinder,
i.e., the complement of the diagonal circle in the 2-torus. This is, in fact, a G0-orbit
with noncompact isotropy. Since bd(	) is contained in this orbit, it follows that
U = G0.	.

In this special case we now show that U = B × B, i.e., G0.	 = B × B. For this
it is convenient to introduce the G0-invariant function (which looks rather like the
Fubini–Study metric)

α : B × B → R�0 defined by ([v], [w]) �→ − |〈v,w〉|2
‖v‖2‖w‖2 .

At the vector space level, if ‖v1‖2 = ‖v2‖2, ‖w1‖2 = ‖w2‖2 and 〈v1, w1〉 =
〈v2, w2〉, then there is an isometry g ∈ G0 for which g(v1) = v2 and g(w1) = w2.
At the level of projective spaces, for (([v1], [w1]), ([v2], [w2])) ∈ B × B we may
choose representatives so that ‖v1‖2 = ‖v2‖2 = 1, ‖w1‖2 = ‖w2‖2 = −1 and
〈vi, wi〉 ∈ R�0 in both cases. Thus α([v1], [w1]) = α([v2], [w2]) if and only if there
exists g ∈ G0 with g([v1], [w1]) = ([v2], [w2]).
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Note that ([a : b], [−b : a]) with |a|2 − |b|2 > 0 is a general point of 	 and that
α|	 : 	→ R�0 is surjective. Consequently, α takes on all of its values on 	 and so
G0.	 = B × B. ♦

The general hermitian case reduces to the above example by applying Harish-
Chandra’s polydisk slice theorem, which we now recall (also see Chapter 3). Let g0
be of hermitian type with Cartan decomposition g0 = k0 + s0. Then every maximal
abelian subalgebra a0 ⊂ s0 has a basis {ξ1, . . . , ξr} with the following properties.

1. There exist three-dimensional θ -stable commuting subalgebras li,0 ⊂ g0 with
ξi ∈ li,0 for all i.

2. Each li,0 ∼= su(1, 1) has induced Cartan decomposition li,0 = ki,0 + si,0 with
ai = 〈ξi〉 ⊂ si,0.

3. L0 denotes th analytic subgroup of G0 with Lie algebra l0 = l1,0 ⊕ · · · ⊕ lr,0.
Then L0(z0) is a polydisk D = D1 × · · · × Dr embedded as a closed complex
submanifold of B = G0/K0. Here the disks Di are orbits Li,0(z0) of the groups
associated to the individual factors.

4. Let L and Li denote the respective complexifications of L0 and Li,0. Regard B
in its compact dual X = G/P−, where P− is the isotropy subgroup of G at z0.
Then the orbit Li(z0) =: Xi is complex analytically isomorphic to P1(C) and
(X1 × . . . Xr) ∩ B = D1 × . . . Dr .

5. K0.D = B.

The following is proved from the point of view of the adapted complex structure
in [BHH]. The proof here is essentially that given in [Ha].

Proposition 6.1.9. If G0 is of hermitian type, then U = B × B.

Proof. Let X− and X+ be the associated compact hermitian symmetric spaces with
B = G0(x−) and B = G0(x+). If x0 := (x−, x+), then � = G(x0) = G/K and the
product B × B is embedded in � by Proposition 5.4.3.

Let ω0 be the defining polyhedron for U = U(G0) and ωi that for each Ui =
Di × Di . Since the isotropy subgroup of L0 at every point of the boundary of
	 = 	1×· · ·×	r is noncompact andL0 is closed inG0, it follows that exp(iω0)(x0)

is contained in exp(iω1) · · · · · exp(iωr)(x0).
Conversely, since the action of G0 on B × B is proper, its isotropy groups along

the latter set are compact and consequently

exp(iω0)(x0) = exp(iω1) · · · exp(iωr)(x0).

Therefore, if D = D1 × · · · ×Dr and U(L0) = D×D is embedded in B×B in the
obvious way, it is enough to show that G0.U(L0) = B×B. For this, just notice that
if x ∈ B × B is arbitrary, then, after moving it appropriately with an element of G0,
we may assume that its projection in B is the base point x−.

Now the isotropy subgroup K0 of G0 at x− acts on the fiber {x−} × B as the
G0-isotropy at x− on B. Thus, by the Polydisk Theorem, x may be further moved to
a point of {x−} ×D by an element of K0. ��
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Recall 1
2�u from (6.1.2), and its geometric characterization (6.1.3) in the compact

symmetric space �u = Gu(x0) ∼= Gu/K0. That compact symmetric space sits in
its complexification � = G(x0) ∼= G/K . With a glance at the polydisk one sees
that, in Proposition 6.1.9, B = 1

2�u as a G0−orbit in �u = Gu(x0) = X+ and
U = G0.

1
2�u

∼= B × B by g0gu(x0) = (g0(x0), gu(x0) = (g0(x−), gu(x+)). The
projection B × B → B is given by g0gu(x0) �→ gu(x0).

6.2 Adapted structure

The adapted complex structure and its maximal domains of existence in the tangent
bundle of a riemannian manifold N are, in general, difficult to compute. Here we
describe these in the case N = �0 = G0/K0 via a natural identification with U .

6.2A Background

If (N, g) is a riemannian manifold, which for simplicity we first assume to be com-
plete, then a parameterized geodesic γ : R → �u induces a map γ ′ : TR → TN .
We refer to its image as the riemannian leaf through γ ′(0) in TN .

Let us identify TR with the complex numbers so that the base, or 0-section,
corresponds to the R-axis and the fiber over 0 ∈ R, i.e., T0R, to the iR-axis. In this
way a point z = t + is ∈ C corresponds to the tangent vector s d

dt

∣∣
t
.

An integrable complex structure on a domain D in T�u is said to be adapted
if, after identifying TR with C, wherever it makes sense, every lifted geodesic γ ′
is holomorphic. This definition is clearly local and therefore γ need not be globally
defined.

Assuming that N and g are real analytic, it is known that on sufficiently small
neighborhoods of points in the 0-section the adapted complex structures exist and are
unique. These can also be characterized as the unique complex structures with the
property

dc‖ · ‖2
g = λg where, as usual, dcf := J (df ) = df ◦ J−1.

Here ‖ · ‖2
g is the norm squared function on TN which is defined by g, and λg is the

pullback of the standard Liouville form on T ∗N via the identification TN ∼= T ∗N
defined by g. It follows that ddc‖ · ‖2

g is the pullback ωg of the standard symplectic

form and ‖ · ‖2
g is strictly plurisubharmonic, i.e., ωg is kählerian.

We refer to a domain in TN as starlike if it is invariant under the contractions de-
fined by scalar multiplication. The following was noted in [Sz] in a slightly restricted
setting, but the proof is valid in the general starlike case (see [Ha]).

Proposition 6.2.1. Let (N, g) be real analytic and D be a starlike domain equipped
with an adapted complex structure J . Then J is real analytic with respect to the
standard real analytic structure of TN .
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Corollary 6.2.2. An adapted structure on a starlike domain D is unique and there
exists a unique maximal starlike domain of existence of the adapted structure.

Proof. This follows from the identity principle and the fact that adapted structure is
unique near the 0-section. The second statement follows from the first and the fact
that intersections and unions of starlike domains are starlike. ��

6.2B � : �adpt → U is biholomorphic

Let us restrict to the context of N = �0 = G0/K0 equipped with the invariant
metric defined by the Killing form. Define �adpt to be the maximal starlike domain
of existence for the adapted complex structure J .

Since geodesics γ are simply orbits of one-parameter groups, it is clear that
the restriction !|Lγ to the riemannian leaf Lγ equipped with its adapted complex
structure is holomorphic. Thus, by the uniqueness of the adapted structure on �adpt
it follows that

!|�adpt : �adpt → �

is holomorphic.
Using the fact that !|�C

is a diffeomorphism onto its image, �C possesses the
pullback complex structure coming from �. Since the riemannian leaves correspond
to the orbits of the complex one-parameter groups in �, this structure is clearly
adapted. Thus �C ⊂ �adpt.

The following was proved in [BHH] via an explicit calculation of J in a natural
basis of Jacobi fields. Here we follow another proof in [Ha].

Proposition 6.2.3. The domains �adpt and �C are the same and

! : �adpt → U

is biholomorphic.

Proof. By Proposition 6.1.6 the differential !∗(x) has nonmaximal rank for all
x ∈ bd(�C). If �adpt � �C , this would be contrary to ! being holomorphic at
such points, because the set of degeneracy of ! would be a complex variety of real
codimension two, whereas bd(�C) has codimension 1. ��

6.3 Invariant CR structure and pseudoconvexity

A main goal of this section is to prove a basic result of [BHH] on the existence of
G0-invariant strictly plurisubharmonic functions on U . For this it we must introduce
some notation.

Let ω0 be as above with U := G0. exp(iω0).x0. The Weyl-group W :=
NK0(a0)/ZK0(a0) acts on ω0 in the usual way.
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LetC(U)G0 denote the space ofG0-invariant real-valued continuous functions on
U , and let C(ω0)

W be the algebra of continuous W -invariant functions. Restriction
canonically defines an injective map

R : C(U)→ C(ω0)
W .

Its inverse is the extension map

E : C(ω0)
W → C(U)G0

which is defined by E(f )(g(x)) = f (x) for x ∈ ω0 and g ∈ G. Thus these maps are
easily seen to be (topological) isomorphisms.

Here we are interested in restriction of strictly plurisubharmonic functions and
extension of strictly convex functions. In principle such functions need only be con-
tinuous (or just semicontinuous), but we wish to compute derivatives, e.g., Hessians,
and therefore we must consider the restrictions of R and E to C∞ functions. In fact
they are also isomorphisms (see, e.g., [HH]). In this case something must be proved,
because it is not completely clear that the extension of a smooth function is smooth.

Let SPSH denote the cone of smooth G0-invariant strictly plurisubharmonic
functions on U , andSC the smoothW -invariant strictly convex functions onω. Recall
a smooth function f is strictly plurisubharmonic is the complex Hessian ddcf is
positive definite, and that strong convexity onω0 is defined by the positive definiteness
of the real Hessian in the vector space coordinates given by the open embedding of
ω0 in a0.

If A is as usual the complexification of A0, then, wherever it is defined, the
restriction of a strictly plurisubharmonic function on U is strictly plurisubharmonic
on the orbit A(x0). A comparison of the real and complex Hessians on A(x0) shows
that an A0-invariant function is strictly plurisubharmonic on A(x0) if and only if it is
strongly convex when regarded as a function on ia0. This is a local statement, and
consequently restriction defines a mapping

R : SPSH → SC.

The important question for us goes in the converse direction. In this regard, the
goal of this section is to show that the image of E : SC → C∞(U)G0 is exactly the
space SPSH . This yields the following result.

Theorem 6.3.1 ([BHH]). The mapping E : SC → SPSH is an isomorphism.

We prove this by analyzing the Levi geometry of G0-invariant hypersurfaces in
U , and hope that this viewpoint is of interest in its own right. Before getting on with
the proof let us note an important consequence.

For this observe that since theG0-action on U is proper, it makes sense to consider
G0-invariant functions on U as functions on the Hausdorff orbit space U/G0. If ρ is
G0-invariant on U and the induced function on U/G0 is an exhaustion, then we refer
to ρ as an exhaustion modulo G0.
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The restriction of a G0-invariant strictly plurisubharmonic function ρ on U to the
part of the orbitA(x)which is contained in U is strictly plurisubharmonic and strongly
convex along exp(ia0)-orbits. Furthermore, since such a restriction is K0-invariant,
it must be symmetric along the lines orthogonal to the reflection hyperplanes, and
therefore has an absolute minimum along these lines at the base point x0. If ξ ∈ a0 it
follows that the restriction ρ|exp(iRξ)(x0)∩U is an exhaustion with absolute minimum
at the base point.

Such exhaustions along lines are in general not exhaustions of the polyhedral
domain exp(ω0). However, applying the above theorem to a function u ∈ SC which
is an exhaustion, we have the following result.

Corollary 6.3.2. There exist strictly plurisubharmonic functions on U that are ex-
haustions modulo G0.

Corollary 6.3.3 ([BHH]). The domain U is Stein.

Proof. Let � be a cocompact discrete subgroup of G0 acting freely on G0/K0. Then
� acts properly and freely on U . A strictly plurisubharmonic function ρ on U which
is an exhaustion modulo G0 induces a strictly plurisubharmonic exhaustion of �\U .
Thus this manifold is Stein. Since covering spaces of Stein manifolds are Stein, it
follows that U is likewise Stein. ��

6.3A The G0-orbits as CR submanifolds

We now turn to a brief study of the invariant CR structures on the G0-orbits in U and
related results which then yield a proof of Theorem 6.3.1. The proof here emphasizes
aspects which are slightly different from those in [BHH].

Observe that if ξ is a regular element in a0 and x = exp(iξ).x0, then the centralizer
m0 of a0 in k0 agrees with the isotropy algebra (g0)x . Therefore it is convenient to
write the Iwasawa decomposition of g0 as

g0 = θn0 + (m0 + a0)+ n0.

This is a vector space direct sum, where n0 denotes the direct sum
∑

α>0 gα of positive
root spaces. Here the positive a0-root system corresponds to a Weyl chamber that
contains all of the ξ ∈ a0 under discussion.

For x = exp(iξ)(x0) we consider the orbit M := G0(x) as a CR submanifold of
U and compute its tangent andCR tangent spaces at x. TheCR tangent space of a real
submanifoldM in a complex manifoldZ is defined to be the intersection T CR

x (M) :=
Tx(M)∩JTx(M), whereJ is the complex structure ofZ. If the dimension of this space
is constant along M , then one refers to M as a Cauchy–Riemann or CR manifold.
If M is a G0-orbit as in the case of present interest, then, since the complexification
G of G0 acts transitively on Z, it follows that TxZ = TxM + JTxM . Such CR

submanifolds of Z are called generic. In the present monograph we use the notation
and various points of view of the subject of CR manifolds, but in fact use none of its
basic results, e.g., on analytic continuation (see [BER] for a systematic treatment and
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[BF, KZ] for exemplary analytic results in a group action context). These manifolds
have long been useful in the representation theory of real semisimple Lie groups
[W3].

Throughout, if η ∈ g0, then η̂ denotes the associated field on U and η̂(x) its
evaluation at x.

Lemma 6.3.4. If η ∈ gα ⊂ n0, then

η̂(x) = e−iα(ξ) exp(iξ)∗(̂η(x0)) and θ̂η(x) = eiα(ξ)(exp(iξ)∗(θ̂η(x0)).

If α(ξ) �= 0, then η̂(x) and θ̂η(x) span a complex line in Tx� which is contained in
TxM . If α(ξ) = 0, then η̂(x) = −θ̂η(x).
Proof. The formulas are immediate consequence of Ad ◦ exp = ead. The conclusion
concerning the complex line then follows from the fact that η+θη ∈ k0 and therefore
the corresponding field vanishes at x0. ��

Now define

n0
ξ,0 =

∑
α>0,α(ξ)=0

gα and n1
ξ,0 =

∑
α>0,α(ξ)�=0

gα.

Both are subalgebras of n0, n1
ξ,0 is an ideal in n0, n0 = n1

ξ,0 + n0
ξ,0 semidirect sum,

and a0 + n0
ξ,0 + θ(n0

ξ,0) is the centralizer of ξ in g0.
It follows that

(g0)x = zk0(ξ) = m0 + dξ ,

where dξ is the span of the η + θη for η ∈ n0
ξ,0. In particular

codim�G0(x) = dim a0 + dim n0
ξ,0.

Now let N1
ξ be the complex Lie group associated to n1

ξ := n1
ξ,0 + in1

ξ,0. Observe

that Tx(N1
ξ (x)) is also generated by the complex lines in the above lemma, and

therefore
Tx(N

1
ξ (x)) ⊂ T CR

x (Mx) := Tx(Mx) ∩ J (Tx(Mx)).

We identify elements of g0 with tangent vectors at x by η �→ η̂(x).

Proposition 6.3.5. If ξ ∈ ω0 and x = exp(iξ)(x0), then the Cauchy–Riemann
tangent space T CR

x (Mx) agrees with Tx(N
1
ξ (x)) which in turn is identified with

η1
ξ,0 ⊕ θη1

ξ,0. Furthermore,

Tx(Mx) ∼= a0 + n0
ξ,0 + (n1

ξ,0 + θn1
ξ,0).

Proof. The expression for TxMx follows from the above formula for the isotropy
algebra (g0)x , and therefore we must only check that T CR

x Mx = TxN
1
ξ (x). If

η ∈ a0 + n0
ξ,0, then iη̂(x) is tangent to the fiber K0 exp(iω).x0. Since all G0-

orbits in U are transversal to this fiber, it follows that under the identification with a
subspace of TxMx , the space a0+n0

ξ,0 has empty intersection with T CR
x Mx . But it is

complementary to a space which is contained in T CR
x Mx , and therefore the desired

result follows. ��
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Remark 6.3.6.N1
ξ is the unipotent radical of the parabolic groupPξ =ZG(ξ).N

1
ξ . ♦

If M is a CR manifold, then its intrinsic vector-valued Levi form

LM(m) : T CR
m M × T CR

m M → TmM/T CR
m M

at a point m ∈ M is defined by

LM(m)(v,w) = [v, Jw](m) (mod T CR
m M).

Here [v, Jw] is computed as follows. Extend v and w to vector fields v† and w† on
M , let [v†, Jw†] be the usual Lie bracket of vector fields, and then [v, Jw](m) :=
[v†, Jw†](m).
Proposition 6.3.7. For every x ∈ U the Levi form LM(x) of the G0-orbit M := Mx

is nondegenerate.

Proof. The orbit M = G0(x) is contained in the level set of the norm function ‖ · ‖2

at x. Since this function is strictly plurisubharmonic, it follows that its Levi form is
positive definite. Thus LM(x)(v, v) �= 0 for all v ∈ T CR

x M , and in particular LM(x)

is nondegenerate. ��
Our eventual goal is to describe certain properties the Levi form of aG0-invariant

real hypersurface in U . For this it is important to observe that the CR tangent space
T CR
x M = Tx(N

1
ξ (x)) has a natural complement in Tx�, namely the tangent space of

the orbit ZG(ξ)(x) of the reductive part of the parabolic group P = ZG(ξ).N
1
ξ . In

fact the real points ZG0(ξ)(x) of this orbit define a natural complement to T CR
x (Mx)

in Tx(Mx).
To see this, first observe that ZG(ξ) = ZG(iξ) is τ -invariant; in particular, it

has ZG0(ξ) as a real form. Furthermore, since x = exp(iξ)(x0) and Gx0 = K , it is
immediate that ZG(ξ)x = ZK(ξ). Since ZG0(ξ)x = ZK0(ξ), which we saw in the
proof that (g0)x = zk0(ξreg)+dξ,0, we are in the same situation as our initial one with
ZG0(ξ)(x) = ZG0(ξ)/ZK0(ξ) being the real points of ZG(ξ)(x) = ZG(ξ)/ZK(ξ).

Proposition 6.3.8. The tangent spaces split as follows:

Tx� = Tx(ZG(ξ)(x))⊕ T CR
x Mx = Tx(ZG(ξ)(x))⊕ Tx(N

1
ξ (x))

and Tx(Mx) = Tx(ZG0(ξ))⊕ T CR
x Mx.

Proof. Tx� = Tx(A(x)) ⊕ Tx(N(x)) = Tx(A(x)) ⊕ Tx(N
0
ξ (x)) ⊕ Tx(N

1
ξ (x)) =

Tx(ZG(ξ)(x))⊕Tx(N1
ξ (x)). SinceT CR

x (Mx) = Tx(N
1
ξ (x)), the first equality follows.

The second then follows from the identifications

Tx(ZG0(ξ)(x)) = â0(x)+ n̂0
0

and

T CR
x (Mx) = Tx(N

1
ξ (x)) = n̂1

ξ,0(x)+ θ̂n
1
ξ,0(x)

together with Remark 6.3.6. ��
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6.3B Invariant CR hypersurfaces

Whenever ρ : U → R is a G0-invariant smooth function, x = exp(iξ)(x0), and
dρ(x) �= 0, we refer to the level set H = {ρ = ρ(x)} as an invariant hypersurface.
We now compute the part of T CR

x H determined by the action of G0.
If Ã is the center of the centralizerZG(ξ), thenZG(ξ) = Z′G(ξ).Ãwith Ã∩Z′G(ξ)

finite. Of course Ã containsA and z′g0
(ξ) is generated as a Lie algebra by n0

ξ,0+θn0
ξ,0.

For η ∈ n0
ξ,0, let l0(η) be the three-dimensional algebra generated by η and θη,

and let L0(η) be the associated subgroup ofG0. Since in this case η+ θη ∈ (g0)x , its
orbitL0(η)(x) is a totally real copy of the unit complex disk contained inG0(x). The
orbit L(η)(x) of the associated complex group is a two-dimensional complex affine
quadric which we denote by Q2(η).

Proposition 6.3.9. If H is a G0-invariant CR hypersurface in U , then

TxQ2(η) ⊂ T CR
x H.

Proof. Since L0(η)(x) ⊂ H , the real space Tx(L0(η)) is contained in TxH . Note
that for any Iwasawa decomposition l0(η) = k0(η)+ a0(η)+ n0(η) the space îa0(η)

is invariant with respect to the Cartan involution of l0, which is conjugation by an ele-
ment ofL0. Thus the defining function ρ is symmetric along the orbit exp(ia0(η))(x)

and consequently dρ also vanishes on îa0(η). Since linear combinations of spaces
of this type fill out the remaining directions in Tx(L(η)(x)), the desired result
follows. ��
Corollary 6.3.10. The tangent space Tx(Z′G(ξ).N1

ξ (x)) is contained in the CR tan-
gent space of every invariant hypersurface H .

Proof. The algebra z′g(ξ) is spanned by the three-dimensional algebras l(η). ��

Let Cx := T CR
x H ∩ Tx(ZG(ξ)(x)) and note that by the splitting results above it

follows that T CR
x H = Cx ⊕ T CR

x Mx.

Proposition 6.3.11. The splitting T CR
x H = Cx⊕T CR

x Mx is orthogonal with respect
to the intrinsic Levi form LH .

Proof. Extend v ∈ Cx to v† = ∑(aiv
†
i + biJ v

†
i ), where the v†

i are invariant fields
coming from zg0(ξ). (For w ∈ Tx(N1

ξ (x)) we recall that it is a linear combination of

vectors η̂(x) and θ̂η(x), where η ∈ n1
0. Thus we extend it as a g0-field w† which is

the same linear combination.)
To show that LH (v,w) = 0 we observe that [v†, Jw†](x) is contained in

Tx(N
1
ξ (x)). This follows immediately from the way the vectors have been extended

as fields and the fact that zg0(ξ) normalizes the vector space n1
ξ,0+θn1

ξ,0, which when

evaluated at x becomes the (J -invariant) CR tangent space Tx(N1
ξ (x)). ��
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6.3C Geometry of the full Levi form ddcρ

As above, we consider a smooth G0-invariant function ρ on U and x = exp(iξ).x0
with ξ ∈ ω0 and dρ(x) �= 0. Note that in the case of a CR hypersurface, the vector-
valued Levi form takes values in a one-dimensional vector space and therefore is a
bilinear form in the usual sense; in that case it is of the form ddcρ.

Assume further that exp(iξ t) is transversal to the level set H := {ρ = ρ(x)} at x
and define P to be the complex curve exp(iξz)(x0), z ∈ C.

Proposition 6.3.12. The decomposition Tx� = TxP ⊕ T CR
x H is orthogonal with

respect to the full Levi form ddcρ(x).

Proof. In order to show that ddcρ(x)(v,w) = 0 for v ∈ TxP and w ∈ T CR
x H we

must extend these vectors to vectors v† and w† and prove that

(6.3.13) v†Jw†(ρ)+ w†Jv†(ρ)− J [v†, Jw†](ρ)
vanishes at x. Take v† to be aG-field coming from the center ã of zg(ξ). Decompose
w = y + z according to the splitting in Proposition 6.3.11.

For x̃ ∈ A(x0) we extend y to a ZG(ξ)-field y† in the complementary space Cx̃ .
In particular y†(ρ) = Jy†(ρ) = 0 along A(x0). Similarly we extend z to a N1

ξ -field
which is CR tangent to every ρ-level set along A(x). Since the one-parameter group
which defines v† commutes with ZG(ξ) and normalizes N1

ξ , all terms of (6.3.13)
vanish. ��

Recall the extension isomorphism E : C∞(ω0)
W → C∞(U)G0 .

Theorem 6.3.14. If u is strictly convex and ρ = E(u), then ddcρ(x) > 0.

Proof. Observe that f : C → R, z �→ ρ(exp(zξ)), is R-invariant and strictly convex
along iR. Thus ddcρ(x) > 0 on the perpendicular space Px .

Secondly, we note that ρ is strictly plurisubharmonic at x = exp(iξ) if ξ is
sufficiently small. To see this, it is convenient to consider U as a neighborhood of
�0 = G0/K0 in the tangent bundle T�0 equipped with the adapted structure. For
ξ = 0, i.e., along the 0-section �0, we use the identification of J (Tx0�0) with the
tangent space of the fiber of T�0, i.e., with Tx0�0, and use the invariance of ρ to
identify the complex Hessian ddcρ(x0) with the real Hessian of the restriction of ρ
to that fiber.

Now this restriction is strongly convex onω0, isK0-invariant andK0.ω0 = Tx0�0.
Thus ρ is strictly convex along every line in the fiber Tx0�0 and therefore the Hessian
of the restriction of ρ is positive definite. Hence, as we indicated before, ρ is indeed
strictly plurisubharmonic in some neighborhood of �0. Hence, it is enough to show
that the intrinsic Levi form LH is nondegenerate for all such x.

For this we use the orthogonal splitting T CR
x H = Cx ⊕ T CR

x Mx of Proposition
6.3.11. Identifying g0 with its dual by the Killing form, T CR

x Mx can be regarded
as the tangent space at ξ of the adjoint orbit Ad(G0)(ξ). Since the (nondegenerate)
coadjoint symplectic form is defined in this way by the projection of Lie brackets
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[γ, δ], where γ, δ ∈ n1
ξ,0 ⊕ θn1

ξ,0, to the space generated by ξ , we see that LH is

nondegenerate on T CR
x M .

For the part Cx we note that it is the tangent space of an orbit Z′G(ξ).Ã1(x),
where Ã1 ⊂ Ã is the complex subgroup defined by Tx(Ã(x) ∩ H) = Tx(Ã

1(x)).
The restriction of ρ to this orbit is of the form Ẽ (̃u) where ũ is strictly convex, but
the new base point x plays the role of the old x̃0 of this complex homogeneous space
equipped with a real form as in our basic situation. Thus this restriction is strictly
plurisubharmonic near x. Consequently LH is nondegenerate on Cx as well. ��

This completes the proof of Theorem 6.3.1, which we stated in the introduction
of this section.
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B-Invariant Hypersurfaces in MZ

Our main tool for relating the cycle spaces MD of G0 flag domains to the universal
domain U = U(G0) is a sort of incidence geometry that pairs cycles inD with certain
Schubert varieties of complementary dimension. The resulting incidence varieties
are algebraic subvarieties of MZ which are invariant under certain special Borel
subgroups of G. We begin here with first definitions and background information on
these groups, their invariant varieties, and basic aspects of the intersection theory.

Section 1 begins with a summary of the basic facts on actions of Borel subgroups
B ⊂ G on the varieties at hand, in particular on G/Q and G/K . After this gen-
eral introduction we restrict to Iwasawa Borel subgroups, i.e., those that contain the
solvable part A0N0 of an Iwasawa decomposition G0 = K0A0N0.

If O is aB-orbit onZ, then the associated Schubert variety is defined as its closure
S := c
(O) = O∪̇Y . The Schubert varieties of dimension q := dimC C0, whose
intersection withC0 is not empty, play a fundamental role throughout this monograph.
The key is that the associated incidence varieties

H := IY := {C ∈MZ | C ∩ Y �= ∅}
are B-invariant analytic hypersurfaces in the complement MZ \MD (Proposition
7.4.11).

In Section 2 we introduce the notion of the envelope EH defined by a B-invariant
hypersurface H in MZ . It is the topological component of the base point in the
complement MZ \ (⋃g∈G0

g(H)). For later purposes in the hermitian holomorphic
case, where MZ is the compact dual of the bounded symmetric domain B = G0/K0,
we show that EH = B (Proposition 7.2.2). In the nonholomorphic cases, where MD

is contained in an at most finite quotient of the affine symmetric space G/K , it is
shown in Section 2 that EI = U (Theorem 7.2.7). One of our main results, in Chapter
11 (Corollary 11.3.2), is that EH = U for every B-invariant hypersurface H in G/K
which is not a lift.

Section 3 is devoted to proving the basic facts on Iwasawa–Schubert slices 	;
see Propositions 7.3.7 through 7.3.11. If S is a q-codimensional Schubert variety
which has nonempty intersection with C0, then the associated Schubert slices 	 are
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defined to be the connected components of the intersection S ∩ D. For example, it
is shown that the intersection 	 ∩C0 is transversal and consists of exactly one point
z, and 	 = A0N0(z). Furthermore, 	 is closed in D and its closure c
(	) in Z has
nonempty intersection with every K0-orbit in c
(D).

The main goal of Section 4 is to prove the result on incidence hypersurfaces
mentioned above (Proposition 7.4.11). However in Section 4 we also take the op-
portunity to introduce the basic notions of Barlet’s cycle space theory and even to
indicate some of the ideas that go into the construction of that cycle space. We also
prove the basic properties of the trace transform (Section 7.4B); they could well be
useful in semisimple representation theory.

The viewpoint presented here, as well as the consequences and developments in
Chapter 9, was initiated in [HS] for the case of SL(n;R), presented with a certain
degree of generality in [H], and developed to their present form in [HW3] by use of
methods described in Chapter 8.

7.1 Iwasawa–Borel subgroups and their Schubert varieties

7.1A Spherical varieties

Recall that byB we denote a Borel subgroup of a complex reductive Lie groupG, i.e.,
a maximal connected, solvable subgroup. Such is a complex algebraic subgroup of
G and any two are conjugate. IfZ = G/Q is a projectiveG-homogeneous manifold,
then as a consequence of Borel’s fixed point and normalizer theorems, every B has a
unique fixed point in Z.

Remark 7.1.1. In this section we will continue to speak of reductive algebraic groups,
but it should be noted that the center of G fixes Z pointwise, and consequently in this
context it would be sufficient to consider the semisimple case. ♦
Definition 7.1.2. If G is a complex reductive group, then an irreducible algebraic
G-variety X is spherical if one (hence every) Borel subgroup B of G has an open
orbit in X.

The following is a first basic theorem in the subject of spherical G-varieties (see,
e.g., [Br]).

Proposition 7.1.3. IfX is a sphericalG-variety andB is a Borel subgroup ofG, then
B has only finitely many orbits in X.

As abstract manifolds B-orbits are quite simple.

Proposition 7.1.4. Let S be a connected, complex algebraic group and H ⊂ S a
complex algebraic subgroup. If S is solvable, then the homogeneous spaceX = S/H

is algebraically equivalent to (C∗)m × Cn.
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Proof. Let S = L�U be a Levi decomposition of S. HereU is the unipotent radical
of S and L is a maximal reductive subgroup. Then U is isomorphic to some Cn, and
L is isomorphic to (C∗)r . Thus L is a maximal complex torus in S. If U = {1}, then
S is a complex torus, and the assertion is immediate.

If U �= {1}, let ZU be the identity component of its center and consider the
principal bundle

X = S/H → S/ZUH = (C∗)k × C
 := Y,

where the identification of the base with (C∗)k × (C)
 follows by the induction
assumption. Since the structure group of this bundle is an abelian algebraic group
isomorphic to some (Cp,+) andH 1(Y ;Op) = 0, the bundleX→ Y is algebraically
trivial. The assertion follows. ��

The two types of homogeneous spaces of complex Lie groups that are relevant for
this book, the rational projective manifolds G/Q and the affine homogeneous spaces
G/K , are spherical varieties. In the former case this is noted above. In the latter case
it follows from the fact that if G0 = A0N0K0 is an Iwasawa decomposition and B is
a Borel subgroup of G that contains A0N0, then BK is open in G.

As pointed out in the Bruhat Lemma 2.1.1, the B-orbits in G/B, and thus also
in G/Q, are holomorphically equivalent to complex vector spaces Cdim O, and, in
particular, are topological cells. On the other hand,B-orbits onG/K need not be cells.

Example 7.1.5. Let G = SL(2;C). Then K ∼= C∗, and a given Borel subgroup B

of G has trivial intersection with a generic conjugate of K . Thus the open B-orbit in
G/K is complex algebraically isomorphic to C∗ × C. ♦

We emphasize the algebraic nature of the setting described just above. Let us
formally state the basic properties that we use without further discussion in what
follows.

Fact. Let G be a complex algebraic group, L an algebraic subgroup, and X = G/L

the associated algebraic homogeneous space. If H is an algebraic subgroup of G,
then every orbit H(x) ⊂ X is Zariski open in its closure.

Definition 7.1.6. AB-orbit O inZ = G/Q is a Schubert cell. Its closure S = c
(O)

is the associated Schubert variety.

Notice that the Schubert cells O = Cm(O) define a CW complex structure on
Z = G/Q. This is particularly simple, because dimR O = 2m and the boundary of
every cell O is comprised of cells which are of real dimension � dimR O − 2. Thus
the homology of Z can be described as follows in terms of the set S of all Schubert
varieties, and incidentally this gives an algebraic geometry proof of Proposition 4.3.5,
whose proof was topological.

Proposition 7.1.7. The homology H∗(Z,Z) of a compact algebraic homogeneous
manifold Z = G/Q of a reductive group is the free Z-module generated by the set S
of Schubert varieties associated to a Borel subgroup B of G.
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7.1B Schubert varieties related to the G0-action

Let us return to the basic situation of this monograph. We are studying the action
of a simple real form G0 of the complex semisimple group G on a complex flag
manifold Z = G/Q. The Iwasawa decompositions of G0 play a basic role in our
considerations. If G0 = K0A0N0 is such a decomposition, we refer to the solvable
group A0N0 as its Iwasawa component.

Following our usual notational convention, A and N are the respective complex-
ifications of A0 and N0 in G. They are algebraic subgroups of G, and AN = A�N

is a Levi decomposition of the solvable complex algebraic group AN . Note that
A ∼= (C∗)r , i.e., A is an algebraic torus, and that N is a unipotent subgroup of G.

Definition 7.1.8. We refer to a Borel subgroup G which contains some Iwasawa
component A0N0 of G0 as an Iwasawa–Borel subgroup. If B is such a subgroup
and O = B(z) is a B-orbit in Z = G/Q, then its closure S := c
(O) in Z will be
called an Iwasawa–Schubert variety.

The Iwasawa–Borel subgroups can be geometrically described in terms of theG0-
action on G/B. For this we first recall the general fact that the set OrbZ(G0) of G0-
orbits in anyZ = G/Q is finite and that there is a unique closed orbit γc
 ∈ OrbZ(G0)

(see [W2, Theorem 3.3] or Chapter 8 below). If Z = G/B, we denote this orbit by
γ
G/B
c
 . Recall that Z = G/B parameterizes the set of Borel subgroups of G by
z �→ Bz, because B is its own normalizer in G.

Proposition 7.1.9. The closed G0-orbit γG/Bc
 in Z = G/B parameterizes the set of
Iwasawa–Borel subgroups in G.

Proof. Let G0 = K0A0N0 be an Iwasawa decomposition of G0. The Iwasawa com-
ponent A0N0 is a simply connected real algebraic group; in particular its maximal
compact subgroup is {1}. Therefore any compact A0N0-orbit in a space where it is
acting algebraically is just a fixed point. Consequently A0N0 fixes a point x in γG/Bc
 ,

i.e., Bx ⊃ A0N0 is an Iwasawa–Borel subgroup. Since K0 acts transitively on γG/Bc

and on the Iwasawa decompositions with compact partK0, it follows that every point
in γG/Bc
 has an Iwasawa–Borel subgroup as its isotropy group.

Conversely, if B ⊃ A0N0 for an Iwasawa decomposition G0 = K0A0N0, and
B = Bz, then G0(z) is compact, so G0(z) = K0(z) = γ

G/B
c
 and z ∈ γG/Bc
 . ��

7.2 Envelope construction

If F is an open relatively compact set in R2, then one can define its envelope E(F )
as the intersection of the half-planes that contain it. For this construction it is enough
to consider an appropriate compact family L of lines L in the complement of F and
then

EL(F ) :=
(
R2 \

⋃
{L | L ∈ L}

)0
,
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where the superscript indicates the connected component containingF . By a compact
family {Ys}s∈S of closed subsets in a Hausdorff topological spaceX we mean a closed
subset Y of S × X, where S is compact with the following properties. First, the
restriction p : Y → S of the projection S × X → S is surjective, and second, if
s ∈ S, then p−1(s) = Ys . Note that the restriction Y → X of S × X → X is
automatically proper.

This type of construction makes very good sense in complex analysis. There the
appropriate analog of R2, where the notion of convexity is available, is that of a Stein
manifold (or complex space), which we discussed and defined in Section 4.6D.

For example, suppose that F is a (not necessarily relatively compact) domain in
a Stein manifold X and H is a compact family of complex analytic hypersurfaces H
contained in X \ F .

SinceX is smooth, a complex hypersurface inX can be locally defined by defined
by one equation. More precisely, there is an open covering U = {Uα} of X with the
property that if H ∈ H there are holomorphic functions fα ∈ O(Uα) with

H ∩ Uα = {x ∈ Uα | fα(x) = 0}.
We may choose those functions with the additional property that fα = fαβfβ on the
overlap Uα ∩ Uβ where the fαβ : Uα ∩ Uβ → C∗ are holomorphic and nowhere
vanishing. We may therefore regard {fαβ} as the set of transition functions for a
holomorphic line bundle L → X and regard {fα} as defining a holomorphic section
s ∈ �(X;L). Now define EH(F ) =

(
X \⋃{H | H ∈ H})0.

This construction of L from H , just above, is the standard construction of a line
bundle from a divisor.

Proposition 7.2.1. The envelope EH(F ) of a domain F in a Stein manifoldX defined
by a compact family of complex hypersurfaces H is Stein.

Proof. For every point p ∈ bd(EH(F )) there is a complex supporting hypersurface
H ∈ H which contains p and is contained in the complement of EH(F ). Let H =
{x ∈ H | s(x) = 0} for some s ∈ �(X;L). Since X is Stein, it follows that �(X;L)
is quite large; in particular there exists t ∈ �(X;L) with t (p) �= 0. Now m = t/s

is a meromorphic function and its restriction f to EH(F ) is holomorphic. Further, p
is in the polar set of f , and since t (p) �= 0, f is not indeterminate at p. Thus, for
{pn} ⊂ EH(F ) with pn → p, limn→∞ |h(pn)| = ∞. ��

Our strategy for describing the cycle spaces MD in terms of universal domains
is to pinch them between certain envelopes which for complex analytic reasons turn
out to be equal. As was explained in Chapter 5, the ambient cycle space MZ is
either a compact hermitian symmetric space X = G/Q or is a finite quotient of the
affine symmetric space G/K . Thus we begin our discussion of relevant envelopes
by considering these two G-homogeneous spaces.

7.2A Hermitian symmetric spaces

Let G0 be simple and of hermitian type. Let X = G/P be the compact hermitian
symmetric space dual to G0/K0. Consider the action of an Iwasawa–Borel subgroup
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B on X = G/P . Recall that P is a maximal parabolic subgroup of G; consequently
the Betti number b2(X) = 1. By Poincaré duality the irreducible components of
the complement of the open B-orbit in X generate H 2(X;Z). So there is a unique
irreducibleB-invariant hypersurfaceH inX. Define H = {k0(H) | k0 ∈ K0}, which
is the same as {g0(H) | g0 ∈ G0}.

If B = G0(x0) is the bounded hermitian symmetric space G0/K0 embedded as
an open G0-orbit in X, with K0 = {g ∈ G0 | g(x0) = x0}, and if B contains the
Iwasawa component of a decomposition G0 = A0N0K0, then B is contained in the
open cell X \H . Thus B is contained in the complement of every hypersurface in H
and we consider the envelope EH(B).

Proposition 7.2.2. EH(B) = B.

Proof. Since the complement of every hypersurface H ∈ H is just Cn, which of
course is Stein, every such H has nonempty intersection with every open G0-orbit
whose (compact) base cycle is positive-dimensional. Therefore EH(B) is contained
in the complement of the union of the closures of such open orbits.

If B is not of tube type, then it is the only open G0-orbit in which the base cycle is
just a point. Thus it is enough to consider the tube type case where there are two copies
of B embedded as open orbits in X. Those G0-orbits can be characterized by the fact
that their base cycles are just points. However, in this case we see that EH(B) = B
as well. This follows, e.g., because bd(B) contains an open dense G0-orbit γ whose
Levi form is not completely degenerate (here we disregard the one-dimensional case).
If this piece were part of the boundary of the other copy, then along that boundary
the other copy would be pseudoconcave, contrary to B being Stein. ��

7.2B Affine symmetric spaces

Throughout this section G0 = K0A0N0 is an Iwasawa decomposition, B is an
Iwasawa–Borel subgroup of G that contains A0N0, and we consider the action of
B on the (spherical) affine homogeneous space � = G/K .

If x0 is the base point 1K in � := G/K , then B(x0) is open and its complement
is a B-invariant algebraic set H . Note that Gu/K0 is a strong deformation retract
of � and B(x0) is of the form Ck × (C∗)
. Thus, for topological reasons B(x0) is
not equal to the full space �. Furthermore, since B(x0) is Stein, its complement is
an analytic hypersurface in �. Of course that complement consists of a number of
irreducible components.

We now wish to show that the hypersurfaces H , discussed above, lie in the
complement of the universal domain U . The following property of plurisubharmonic
functions plays a key role in our proof.

Lemma 7.2.3. Let ρ be a strictly plurisubharmonic function on a n-dimensional com-
plex manifold X. Let M be a real submanifold of X. Suppose that M is contained in
the zero set {dρ = 0}. Then M is isotropic with respect to the symplectic form ddcρ.
In particular M is totally real and dimR M � n.
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Proof. If λ := dcρ and i : M ↪→ X is the natural injection, then ı∗(λ) = 0, and
i∗(ddcρ) = di∗(λ) = 0. ��
Proposition 7.2.4. �\H contains the universal domain U with base point x0, defined
in (6.1.7).

Proof. Corollary 6.3.2 gives us a strictly plurisubharmonic G0-invariant function
ρ : U → R+ that is an exhaustion function modulo G0 of U . Denote 	 :=
K0 exp(iω0)(x0) and note that ρ|	 is a proper exhaustion.

If H ∩ U �= ∅, then H ∩	 �= ∅ because H is A0N0-invariant. Let x1 ∈ H ∩	
such that ρ(x1) = min{ρ(x) | x ∈ H ∩ 	}. It follows that ρ|AN(x1) has a local
minimum along A0N0(x1). Thus by Lemma 7.2.3 the orbit A0N0(x1) is a totally
real submanifold of AN(x1). On the other hand U can be identified with a domain
in the tangent bundle of G0/K0 (see Proposition 6.1.6) and in that realization every
A0N0-orbit is a section over G0/K0. In particular dimR A0N0(x0) = dimC AN(x1).
But since A0N0(x1) is totally real, this is only possible when AN(x1) is open in �,
contrary to H being a B-invariant proper analytic subset. ��
Remark 7.2.5. In the second author’s proof [H] of Proposition 7.2.4 only a G0-
invariant strictly plurisubharmonic function without the additional exhaustion condi-
tion was used. This is not sufficient, because the minimum might not be achieved.
Thus here we use an exhaustion modulo the action ofG0. In the meantime T. Matsuki
gave an algebraic proof that holds in greater generality [M4]. ♦

Now let I := {k0(H) : k0 ∈ K0}. As noted earlier, I = {g0(H) : g0 ∈ G0}.
Since H ⊂ � \ U and U is G0-invariant, we may consider the envelope EI(U).
Proposition 7.2.4 can be reformulated as EI(U) ⊃ U . The reverse inclusion was
proved by L. Barchini [Ba]. The following adapts the central part of her argument to
the spirit of the present text.

Proposition 7.2.6. EI(U) ⊂ U .

Proof. Assume that EI(U) is not contained in U . Then there exists a sequence
{zn} ⊂ U ∩ EI(U) with zn → z ∈ bd(U) ∩ EI(U). From the definition of U it
follows that there exist {gm} ⊂ G0 and {wm} ⊂ exp(iω0) such that gm(wm) = zm.

Write gm = kmamnm in aK0A0N0-decomposition ofG0. Since {km} is contained
in the compact group K0, we may assume km → k, and therefore that gm = amnm.

Since ω0 is relatively compact in a0, we may assume wm → w ∈ c
(exp(iω0)).
Thus wm = smx0, where {sm} ⊂ exp(iω0) and sm → s. Write amnn(wm) =
amnmsmx0 = ãmñmx0, where ãm = amsm and ñm = s−1

m nmsm are elements of A and
N , respectively.

Now {zm} and the limit z are contained in EI(U) which is in turn contained
in AN(x0). Furthermore, AN acts freely on this orbit. Thus ãm → ã ∈ A and
ñm → ñ ∈ N with ãñ(x0) = z. Since sm → s, it follows that am → a ∈ A0 and
nm → n ∈ N0 with an(w) = z. Since z /∈ U , it follows that w ∈ bd(exp(iω0)), and
z ∈ EI(U) implies that w ∈ EI(U).
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On the other hand, w ∈ bd(exp(iω0)). Hence the isotropy subgroup of G0 at w
is noncompact. But EI(U) is Kobayashi hyperbolic (see [H], or see Remark 7.2.9).
Therefore theG-action on EI(U) is proper (see, e.g., [H] and also Chapter 11) below.
Consequently w �= EI(U). That contradicts the assumption EI(U) �⊂ U . ��

Combining Propositions 7.2.4 and 7.2.6 we have

Theorem 7.2.7. EI(U) = U .

Remark 7.2.8. This result also follows from the inclusion U ⊂ EH(U) and the fact
that U is a maximal G0-invariant, Stein, Kobayashi hyperbolic domain in �. See
Theorem 11.3.1 below. ♦
Remark 7.2.9. The Kobayashi hyperbolicity of envelopes such as EI(U) is a com-
pletely general fact, proved below in Chapter 11. We have taken the liberty of using
it here. While the concept of hyperbolicity is of importance in our proofs of classi-
fication results, it should be emphasized that, except in very special cases, we have
essentially no concrete information on the Kobayashi metric. ♦

In Chapter 12 we will see that one can define a cycle space C{γ } for everyG0-orbit
γ ∈ OrbZ(G0), which is quite analogous to the cycle space MD of an open orbit D.
See [GM] for the first results on such cycle spaces. Those cycle spaces are closely
related to the duality between the K-orbits and G0-orbits in Z that we will discuss in
Chapter 8.

In any flag manifold Z = G/Q the K-orbit dual to the closed G0-orbit γc
 is
just the open K-orbit κop. To visualize the geometry, just note that since γc
 is a
G0-orbit, it is not contained in a proper complex analytic subset of Z. Since K0 also
acts transitively on γc
, it is immediate that the K-orbit, κop, of any point on γc
 is
open in Z. Duality in this case is the simple statement that κop contains γc
. The dual
statement to (5.1.5) is

C′{γc
} : topological component of κop in {g(κop) | g ∈ G and g(κop) ⊃ γc
}.

Note that C′{γc
} = G{γc
}/K̆ where K̆ = {g ∈ G | g(κop) = κop} and

G{γc
} : topological component of 1 in {g ∈ G | g(κop) ⊃ γc
}.

The isotropy K̆ contains K so we have the projection G{γc
}/K → C′{γc
}. As in
the case of MD we would like to lift C′{γc
} up toG{γc
}/K , which is an open subset
of G/K , equipped with a base point x0, where it can be compared to EI(U). Thus
we define the cycle space to be

(7.2.10) C{γc
} := G{γc
}/K.
Proposition 7.2.11. Suppose that Q is a Borel subgroup of G. Then the cycle space
C{γc
} of the closed G0-orbit γc
 agrees with the Iwasawa envelope EI(U). Thus
U = EI(U) = C{γc
}.
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Proof. Both EI(U) and C{γc
} are defined as connected components of open sets
which contain a fixed base point. Thus it is enough to show that the full sets, i.e.,
without going to the connected components, are the same. We do this in G before
dividing out by the right action of K . At that level the appropriate statement is
{g ∈ G : g(κop) ⊃ γc
} = ⋂k0∈K0

k0ANK . For this observe that if B ⊃ AN is
regarded as a point in γc
, then

g ∈ {g′ ∈ G | g′(κop) ⊃ γc
} ⇔ g−1G0B ⊂ KB = KAN ⇔ g−1G0 ⊂ KAN.

Thus

{g ∈ G : g(κop) ⊃ Z0} = {g ∈ G : g−1G0 ⊂ KAN}
= {g ∈ G : g−1g0 ∈ KAN ∀ g0 ∈ G0}
= {g ∈ G : g−1

0 g ∈ ANK ∀ g0 ∈ G0}
=
⋂

g0∈G0
g0ANK =

⋂
k0∈K0

k0ANK.

This completes the proof. ��
Remark 7.2.12. Proposition 7.2.11 holds for any flag manifold Z = G/Q; see The-
orem 12.5.3 below. The proof given above, the case Q = B, was communicated to
us by Roger Zierau. ♦

7.3 Schubert intersection properties

Here we return to our considerations of cycles in open G0-orbits. As before, K0
is a fixed choice of a maximal compact subgroup of G0, D is an open G0-orbit in
Z = G/Q, and C0 is the unique complex K0-orbit contained in D.

Fix an Iwasawa–Borel subgroup B containing the Iwasawa component A0N0 of
a decomposition G0 = K0A0N0. Denote
(7.3.1)

SC0 := {B-Schubert varieties S | dim S + dimC0 = dimD and S ∩ C0 �= ∅}.
The B-Schubert varieties generate the homology of Z, and C0 is topologically non-
trivial. Consequently, SC0 �= ∅.

If S ∈ SC0 , then S is the closure of aB-orbit O, and we express that as S = O ∪̇Y .
In this section we will see that S ∩ D ⊂ O. We will also see that the intersection
S ∩C is finite and transversal at each of its points for every C ∈MD . In fact we will
see that each connected component 	 of S ∩D contains exactly one point of S ∩ C
and is a closed A0N0-orbit in D.

The connection to B-invariant hypersurfaces in MZ is given by incidence geom-
etry: the B-invariant incidence subvariety

IY := {C ∈MZ | C ∩ Y �= ∅}
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of MZ is a hypersurface whose components are polar sets of certain rational functions
on �. Those functions are constructed by the trace-transform method of [BK]. The
union H of all hypersurface components of IY is contained in MD in MZ \MD .
Therefore, if Y := {k0(H) | k0 ∈ K0}, then the envelope EY (MD) is an outer
approximation to MD .

We begin as usual with a fixed Iwasawa decomposition G0 = K0A0N0 and a
Borel subgroup B of G that contains A0N0.

Lemma 7.3.2. Every A0N0-orbit in D has nonempty intersection with C0. If p is
such an intersection point, then

(7.3.3) Tp(A0N0(p))+ Tp(C0) = TpD.

Proof. The first statement follows immediately from the fact that A0N0(C0) =
A0N0K0(p) = G0(p) = D. The second statement is again just a consequence
of G0 = K0A0N0. ��
Corollary 7.3.4. Recall that q := dimC C0. If S is an Iwasawa–Schubert variety
with codimC S � q + 1, then S ∩D = ∅.

Proof. If p ∈ S ∩ D, then dimR Tp(A0N0(p)) + dimR Tp(C0) � 2(dimC S +
dimC C0) < dimR D, in contradiction to Lemma 7.3.2. ��

Lemma 7.3.2 has a number of other useful consequences.

Proposition 7.3.5. If S ∈ SC0 and p ∈ S∩C0, thenA0N0(p) is open in S and closed
in D.

Proof. Since dimC S + dimC C0 = dimC D, the sum of the spaces in (7.3.3) is a
direct sum and dimR A0N0(p) = dimR S. Thus A0N0(p) is open in S. If this orbit
were not closed in D, then it would have an A0N0-orbit of lower dimension on its
boundary. But this would be contrary to Lemma 7.3.2, because its real codimension
would be smaller than the real dimension of C0. ��
Definition 7.3.6. An orbit 	 := A0N0(p) of a point p ∈ S ∩C0 is called a Schubert
slice.

Let S = O ∪̇Y be the closure of a B-orbit. Suppose that S ∈ SC0 . Since
Tp	 ⊕ TpC0 = TpD, we have the following observation.

Proposition 7.3.7. The intersection S ∩ C is finite and contained in O, and at each
of its points it is transversal in D. Express S ∩ C = {z1, . . . zd}. Then the 	j :=
A0N0(zj ) are the associated Schubert slices, and S ∩ D = O ∩ D is the disjoint
union of the 	j .

Proof. Transversality, and thus finiteness of the intersection, follow from the above
direct sum decomposition of TpD and the fact that the Schubert slices are open in S.

Since the components of S ∩D are A0N0-invariant, every A0N0-orbit in D has
nonempty intersection with C0, and for dimension reasons such orbits must be open
in S ∩D. It is therefore immediate that such a component is a Schubert slice. ��
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We wish to understand phenomena at the boundary of D. For this the following
is a basic tool.

Proposition 7.3.8. The closure c
(	) in c
(D) of a Schubert slice 	 satisfies
K0.c
(	) = c
(D). In particular, bd(	) has nonempty intersection with every
G0-orbit in bd(D).

Proof. SinceK0 is compact,K0.c
(	) is compact; in particular it is closed in c
(D).
Note K0.	 = K0A0N0(p) = G0(p) = D for the p ∈ C0 ∩ S that is the base point
for 	. Thus K0.c
(	) is dense in c
(D) and equality follows. ��

We now turn to the proof of the following basic fact.

Proposition 7.3.9. The intersection C0 ∩	 of the base cycle with any Schubert slice
consists of exactly one point.

The proof uses the Retraction Theorem 8.3.1 of Chapter 8, which holds for any
G0-orbit in Z. We state it here in our present context of open orbits. Compare
[W2, Theorem 5.4].

Proposition 7.3.10. The base cycle C0 is a strong deformation retract of the open
orbit D. In particular, D is simply connected.

Thus the G0-isotropy at points of C0 ∩ S splits according to the Iwasawa decom-
position.

Proposition 7.3.11. If S ∈ SC0 and z ∈ S ∩ C0, then the mapping

α : (K0 ∩Qz)× (A0N0 ∩Qz)→ (G0 ∩Qz), given by α(k0, a0n0) = k0a0n0,

is a diffeomorphism.

Proof of Proposition 7.3.11. The Iwasawa decomposition G0 = K0A0N0 defines
a diffeomorphism K0 × A0N0 → G0 that restricts to α, and consequently α is a
diffeomorphism onto its image.

For surjectivity note that dim(K0∩Qz)+dim(A0N0∩Qz) = dim(G0∩Qz) be-
cause dimK0+dim(A0N0) = dimG0 and dimK0(z)+dimA0N0(z) = dimG0(z).
Thus the image Image(α) is open inG0∩Qz. Observe that the compact groupK0∩Qz

acts freely and locally transitively on (G0∩Qz)/(A0N0∩Qz). Consequently, Im(α)

is also closed in G0 ∩ Qz. We will see (Theorem 8.3.1) that C0 is a strong defor-
mation retract of D, and therefore π1(D) = {1}. Thus G0 ∩ Qz is connected and
Image(α) = G0 ∩Qz. ��
Proof of Proposition 7.3.9. For z ∈ 	 ∩C0 suppose that 	 = (A0N0)(z) intersects
C0 in a (possibly additional) point z′. Since z′ ∈ C0, there exists k0 ∈ K0 with
k0(z

′) = z. But z′ = (a0n0)(z) for some a0n0 ∈ A0N0 as well. So k0a0n0 ∈
(G0 ∩Qz), and it follows from Proposition 7.3.11 above that k0 ∈ (K0 ∩Qz) and
therefore z′ = z. ��
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As a consequence of Proposition 7.3.9, we obtain precise information about the
intersection C ∩ S for any C ∈MD .

Theorem 7.3.12. Let S ∈ SC0 and define d to be the topological intersection number
[S].[C0]. Then S ∩D is a disjoint union 	1∪̇ . . . ∪̇	d of d Schubert slices 	j . Fur-
thermore, for each j and every cycle C ∈MD the intersection C ∩	j is transversal
and consists of a single point.

Proof. The intersection S ∩ C0 = {z1, . . . , zd} is transversal at each of its points,
and by Proposition 7.3.9 each of the Schubert slices 	j = (A0N0)(zj ) satisfies
	j ∩C0 = {zj }. It follows that there are exactly d distinct Schubert slices. They are
disjoint because two distinct A0N0-orbits must be disjoint.

If C ∈ MD and dimC ∩ S > 0, then C ∩ S could not be contained in the
Stein manifold O. Thus C ∩ Y �= ∅, contrary to the fact that Y ⊂ (Z \ D). Thus
C ∩ S = C ∩O is finite.

Now O is the disjoint union of the 	j , and the 	j all are closed submanifolds of
D. Let J be the set of C ∈ MD such that C ∩ 	j is nonempty and transversal for
all j . Clearly J is an open subset of MD and we replace it by its component which
contains C0. Now [S].[C] = d for all C ∈ MD, and C ∩O is finite and contains at
least d points for all C ∈ J . If C ∈ J it follows that |C ∩ 	j | = 1 for all j . If C1
were a boundary point of J in MD, then C1 ∩ 	j would still consist of one point
for all j , but at least one of these intersections, Ci ∩ 	j0 , would not be transversal.
However, the condition of nontransversal intersection with 	j0 defines an analytic
set A in MD, and every cycle C in MD which is near C1 intersects 	j0 in at least
two points. Since we can choose C to be in J , this is a contradiction. Consequently
J is closed in MD, and J =MD as desired. ��

7.4 Trace transform

Here we begin with a brief discussion of the construction and basic properties of the
cycle space Cq(X) of q-dimensional cycles in a complex space X.

After introducing the trace transform and proving certain of its general proper-
ties, we turn to the setting of this book and discuss the trace transform defined by
Iwasawa–Schubert varieties in Z = G/Q. The resulting polar sets of trace trans-
formed meromorphic functions, or equivalently the associated incidence divisors, are
of basic importance for our concept of Schubert domain, defined here, and the re-
sulting description of the cycle spaces MD (and later the more general cycle spaces
C{γ }).

Throughout this work we have tried to minimize the technical difficulties involved
with singular complex spaces. In fact, for most of our considerations it is enough to
stay in the realm of complex manifolds. However, this is not possible when dealing
with cycle spaces. The complex spaces in this setting are, however, reduced . This
means that their local models are zero sets A = {f1 = · · · = fk = 0} of finitely
many holomorphic functions on open subsets U in some Cn. Local holomorphic
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functions then are just restrictions of holomorphic functions on open subsets of U .
In many contexts it is sufficient to consider normal complex spaces. This means that
Riemann’s theorem on removable singularities holds: If X is the complex space, Y
is an analytic subset and f ∈ O(X \ Y ) is locally bounded near Y , then f extends to
a holomorphic function on X. See [GR1] and [GR2] for precise definitions and the
basic theory.

7.4A Introduction to Barlet cycle spaces

Our brief discussion of cycle spaces (in the sense of D. Barlet) begins at the level of
points.

If X is a normal complex space, then the set of unordered k-tuples of points in X
is denoted by Symk(X). It can be identified with the quotient of the k-fold product
X × · · · ×X by the standard action of the symmetric group Sk .

Symk(X) carries the quotient topology for π : X × · · · × X → Symk(X). A
function f on an open subset U of Symk(X) is said to be holomorphic if and only if
f ◦π is holomorphic on π−1(U). In this way, starting with a normal complex space,
it follows [Car] that Symk(X) is a normal complex space and π is holomorphic.

Let us write a point in Symk(X) as a sum c = n1x1 + · · · + nmxm, where the
coefficients nj are positive integers and the xj are 0-dimensional analytic subsets of
X, each consisting of one point which we also denote by xj . In this notation Symk(X)

is the cycle space of all 0-dimensional cycles c.
An n-dimensional cycle in an arbitrary complex space X is a formal sum C =

n1C1 + · · · + nmCm, where the coefficients are positive integers, and the Cj are
irreducible n-dimensional compact analytic subsets of X. Its support |C| is defined
to be the union of the varieties Cj . The space of all n-dimensional cycles in X is
denoted by Cn(X).

The space Cn(X) has a canonical complex structure. Near a cycle C it is defined
by setting up local charts that are called scales. An essential step for this is to set up
a local analytic set as an analytic cover of, for example, a polydisk.

For this, let A be an analytic subset of pure dimension n in an open subset W of
Cn+p. For simplicity it may be assumed that the origin 0 is the base point in A. Then
there are linear subspaces Cn and Cp and polydisks U ⊂ Cn and B ⊂ Cp such that
c
(U)× c
(B) ⊂ W and A ∩ (c
(U)× bd(B)) = ∅.

Replacing A by A ∩ (U × B), we consider the projection π : A → U onto the
first factor. This is an analytic cover representation of A near the base point. It is a
finite-fibered, proper, surjective holomorphic map. Outside a nowhere dense analytic
subset E ⊂ U it is a k-sheeted unramified covering map. That defines a holomorphic
map U \ E → Symk(B) which extends holomorphically, by Riemann’s theorem on
removable singularities, to a holomorphic map ψ : U → Symk(B). In a naïve way
we may think of ψ as a local coordinate representation of a piece A of a cycle, and
moving ψ in Hol(U,Symk(B)) gives us candidates for local charts in nearby cycles.

Definition 7.4.1. A scale in X is a triple E = (U, B, f ) such that U ⊂ Cn and
B ⊂ Cp are relatively compact polydisks, and f : XE → Cn+p is an embedding of
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an open subset XE of X into an open neighborhood of c
(U) × c
(B) in Cn+p. If
C ∈ Cn(X) is a cycle and the analytic cover condition

f (|C| ∩XE) ∩ (c
(U)× bd(B)) = ∅
is fulfilled, then one says that E is adapted to C.

If E is a scale which is adapted to an n-cycle C, then C induces a ramified cover
of degree degEC = kE onto U and its associated map U → SymkE (B).

The following definition gives the correct condition for gluing local ramified
covering representations in Hol(U, Symk(B)).

Definition 7.4.2. Let S be a complex space and let {Cs}s∈S be a family of n-cycles
in X.

1. The family {Cs} is called analytic if, for every s0 ∈ S and every scale E =
(U, B, f ) adapted to Cs0 , there exists an open neighborhood SE of s0 in S such
that

a) E is adapted to Cs for all s ∈ SE ,
b) degECs = degECs0 for all s ∈ SE , and
c) the map gE : SE × U → SymkE (B), defined by the condition that gE(s, ·)

is the holomorphic map induced by Cs , is holomorphic.
2. The family is called an analytic family of cycles if for every s0 ∈ S and every

open neighborhood W of |Cs0 | there exists an open neighborhood S′ of s0 such
that |Cs | ⊂ W for all s ∈ S′.
The graph XS of a family {Cs} of n-cycles is defined by the natural incidence

relation:
XS := {(s, x) ∈ S ×X : x ∈ |Cs |}.

It is an analytic subset of S × X. The maps p : XS → S and π : XS → Cn(X)

are defined by the respective projections. The topological condition for {Cs} to be an
analytic family of cycles is that π be proper.

The following basic existence theorem is due to D. Barlet [B1].

Theorem 7.4.3. The set Cn(X) carries a complex structure such that the following
conditions are fulfilled:

(1) The family {Cs}s∈Cn(X) is an analytic family of compact n-cycles.
(2) The maps p and π are holomorphic and π is proper.
(3) If {Cs}s∈S is an analytic family of n-cycles, the map S → Cn(X), s �→ Cs , is

holomorphic.

7.4B Basic properties of the trace transform

Here we introduce the trace transform in its simplest version and prove those of its
properties that are needed for our work. These are just the tip of the iceberg of a much
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deeper subject which has been developed by D. Barlet and his coworkers; see, e.g.,
[BKa], [BK], [BM1], [BM2], and [BM3].

For our applications it is enough to consider a complex manifold Z, a closed
analytic set S in Z of pure codimension q and a closed analytic subset Y of S of
pure codimension 1. Let �(S,O(∗Y )) denote the space of meromorphic functions
on S with poles contained in Y . The incidence variety IY is defined by IY := {C ∈
Cq(Z) : C ∩ Y �= ∅}, and the trace transform is a canonically defined linear map
Tr : �(S,O(∗Y ))→ �(Cq(Z),O(∗IY )). For the definition of Tr we consider the set

� := {C ∈ Cq(Z) | C ∩ Y = ∅ and C ∩ T is finite}.
Lemma 7.4.4. � is Zariski open in Cq(Z).
Proof. It is sufficient for us to show that each of the conditions (i) C ∩ Y �= ∅ and
(ii) dim C ∩ Y � 1 defines a closed analytic subset of Cq(Z).

Consider the graph X ⊂ Z × Cq(Z) of the universal family of q-cycles param-
eterized by Cq(Z) and let p : X → Z and π : X → Cq(Z) be the projections.
Then C satisfies the first condition if and only if C ∈ π(p−1(Y )). Since π is proper,
π(p−1(Y )) is closed and therefore the first condition defines a closed analytic subset.

Observe that C satisfies the second condition if and only if the restriction of π to
p−1(Y ) has a positive-dimensional fiber over the point C in Cq(Z). Again since π is
proper, this is a closed analytic subset. Now � is Zariski open in Cq(Z). ��

For f ∈ �(S,O(∗)) define the function Tr(f ) : �→ C by

Tr(f )(C) =
∑

zj∈C∩T
f (zj )

(counting multiplicities). The following is the main result required for our applica-
tions. Also see [HS, Appendix].

Proposition 7.4.5. LetX be a closed irreducible subspace of Cq(Z) such thatX∩� �=
∅. In particular X ∩ � is a dense, Zariski open set in X. Then f �→ Tr(f ) is
holomorphic on X ∩� and extends meromorphically to X.

Proof. The essential point is to observe that f �→ Tr(f ) is the composition of two
maps. The first is the intersection map

I : � ∩�→ Symk(S \ Y )
given by I (C) = C ∩ S (in the cycle sense), where k ∈ N depends on X. Moreover,
the map I extends to a meromorphic map Î : X→ Symk(T ), because

H = {(C, (t1 . . . tk), t) ∈ X × Symk(T )× T | t ∈ C and ∃i such that ti = t}
is a closed, analytic set in X × Symk(T )× S which is proper over X.

The second map is f �→ trace(f ), where trace(f ) : Symk(T \Y )→ C is defined
by trace(f )(t1 . . . tk) = ∑k

j=1 f (tj ). Of course trace(f ) is holomorphic. We now

prove that it extends meromorphically to the full space Symk(T ).



108 7 B-Invariant Hypersurfaces in MZ

Let (t01 . . . t
0
k ) ∈ Symk(T ) such that some of the t0i belong to Y . Choose g

holomorphic near {t01 }∪ · · · ∪ {t0k } such that F := g×f is holomorphic; for example

take g ≡ 1 near t0i if t0i �= Y . Let ϕ(t1 . . . tk) = ∏k
j=1 g(tj ) for (t1 . . . tk) near

(t01 . . . t
0
k ). Then

(ϕ × trace(f ))(t1 . . . tk) =
k∑

j=1

g(t1) · · · · · ĝ(tj ) · · · · · g(tk) · F(tj )

is holomorphic on Symk(T ) near (t01 . . . t
0
k ) by the standard theorem on symmetric

functions. Hence trace(f ) is meromorphic on Symk(T ).
Now Tr(f ) is meromorphic as the composition trace(f ) ◦ Î of two meromorphic

maps. ��
Using the above result it is shown in [BK] that Tr(f ) is holomorphic onX\IY . In

our applications this is clear because, if S∩Y is positive-dimensional, thenC∩Y �= ∅.
In any case, as stated above, if we replace IY by X ∩ IY , then Tr : �(S,O(∗Y ))→
�(X,O(∗IY )).

We would also like to remark on the connection to the Andreotti–Norguet
transform (see [AN] and [BM1]). For this let �q be the sheaf of holomorphic
q-forms and Hq(Z \ Y ;�q) the associated Dolbeault cohomology space. A class
ξ = [α] in Hq(Z \ Y ;�q) defines a holomorphic function AN(ξ) on Cq(Z \ Y ) by
AN(ξ)(C) = ∫

C
ω.

Now a function f ∈ �(S,O(∗Y )) defines a Dolbeault class ξ in a very natural
way. For this, let c

S
be the fundamental class of S (see [B1]). This is the class of

the integration current [S], and for f as above we may regard f c
S

as an element of
Hq(Z \ Y ;�q). It then follows that Tr(f ) = AN(f c

S
); see [BM1], [HS].

The above discussion would be of no interest if �(S,O(∗Y )) contained only the
constant functions. Hence, we now restrict to a situation where we are guaranteed
many nonconstant meromorphic functions. Let us say that Y has an ample Cartier
structure in S if S is compact and there is a holomorphic embedding of S in a
projective space P(V ) so that Y is the intersection of S with a projective hyperplane
H .

Theorem 7.4.6. Suppose that Y has an ample Cartier structure, and let X be is
a closed irreducible subset of the cycle space Cq(Z). Let {Cn} be a sequence of
cycles in X ∩ � such that there exist points pn ∈ Cn ∩ S with the property that
pn → p ∈ Y . Then, after going to a subsequence and renaming the coordinates,
there exists f ∈ �(S,O(∗Y )) such that lim |T r(f )(Cn)| = ∞. In particular, IY =
{C ∈ X | C ∩ Y �= ∅} is an analytic hypersurface.

Proof. Embed S in a projective space CPm so that Y is the intersection with a hy-
perplane H , and regard the complement as being Cm with coordinates (z1, . . . , zm).
Since pn → p ∈ Y , by going to a subsequence, we may assume that z1(pn)→∞.

Furthermore, it may be assumed that the number of points in Cn ∩ S is constant,
say k. We write this intersection as {p1

n, . . . , p
k
n}, where pn = p1

n. Thus for each n
we have the k-tuple vn = (z1(p

1
n), . . . , z1(p

k
n)) ∈ Ck .
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Now let sn be the point in Symk(C) associated to vn. Since vn is a divergent
sequence in Ck , it follows that sn diverges in Symk(C), and consequently there is a
regular function f on Symk(C) with lim sup |f (sn)| = ∞.

We regard f as a regular function on Ck that is invariant under the permutation
group Sk . The ring of Sk-invariant functions on Ck is the polynomial algebra gen-
erated by the Newton polynomials N0, . . . , Nk . Thus, there is a Newton polynomial

N
 such that lim sup |N
(vn)| = ∞, i.e., lim sup
∣∣∣∑j z1(p

j
n)


∣∣∣ = ∞. Hence we let

P(z1, . . . , zk) = z
1, and it follows that lim sup |Tr(P )(Cn)| = ∞. ��

7.4C Schubert trace transform

Here we apply Theorem 7.4.6 to the case where S is a Schubert variety.
Recall our standard situation, whereZ = G/Q is the given homogeneous projec-

tive manifold, G0 is a noncompact real form of G, B is an Iwasawa–Borel subgroup
and S = O ∪̇Y is a Schubert variety which is the closure of someB-orbit O. In order
to apply Theorem 7.4.6, we determine a B-equivariant embedding ϕ : S → P(V )
into a certain projective space.

For this, let L → Z be a very ample bundle. Without loss of generality we may
assume that G is simply connected, and therefore L is a G-bundle. The embedding
ϕ : Z→ P(V ), where V = �(Z,L)∗, is G-equivariant. Restricting ϕ to S we have

Proposition 7.4.7. There exists a B-equivariant embedding ϕ : S → P(V ) into a
projective space.

In this situation the following observation is extremely useful.

Lemma 7.4.8. All orbits of a connected unipotent group U of affine transformations
of Cn are closed.

Proof. The proof goes by induction on n, where the beginning step is straightforward.
We regard such an action on Cn as an action on Pn with homogeneous coordinates

[z0 : · · · : zn] so that the hyperplane {z0 = 0} is stabilized, and its complement is
the Cn in question. Equip the latter with affine coordinates (w1, . . . , wn), where
wj = zj /z0. We may also assume that the action is in triangular form with respect
to these coordinates, i.e.,

(w1, . . . , wn) �→ (w1 + a10, w2 + a21w1 + a20, . . . , wn + ann−1wn−1 + · · · + an0).

Thus the projection π : Cn → Cn−1, (w1, . . . , wn) �→ (w1, . . . wn−1), is U -
equivariant with respect to the obvious affine action of U on Cn−1. By the induction
assumption we may assume that every U -orbit in Cn−1 is closed.

Now let p ∈ Cn be given, define q := π(p), and consider the equivariant map
π : U(p) → U(q) of orbits. Note that the closure c
(U(p)) is mapped onto the
closed orbit U(q). Thus any orbit on the boundary of U(p) would necessarily have
at least the same dimension as that of U(q). Consequently, if U(p) and U(q) have
the same dimension, then U(p) is closed.
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We may therefore suppose that the map π : U(p)→ U(q) has one-dimensional
fiber. Due to the fact that the group is unipotent, this fiber is isomorphic to C.
Hence, such fibers equal the corresponding fibers of the full projection π : Cn →
Cn−1. Thus U(p) is the full π -preimage of the closed set U(q) and is consequently
closed. ��
Corollary 7.4.9. Let U be a unipotent algebraic group acting algebraically on a
projective space P(V ). If S = O ∪ Y is the closure on a U -orbit O which is not
contained in a proper projective subspace, then Y is the intersection of S with a
U -invariant linear hyperplane H .

Proof. Since U is unipotent, it possesses an invariant hyperplane H . Clearly H ∩ S
is contained in the complement Y of the open orbit O. Now U acts as a group of
affine transformations on the complement of H in P(V ). Hence, it follows from the
above Proposition that the open U -orbit in S is closed in P(V ) \H . Thus it is closed
in S \H , and the desired result follows. ��
Corollary 7.4.10. If S = O ∪ Y is a Schubert variety in Z of an Iwasawa–Borel
subgroup B of G, then Y has an ample Cartier structure. In particular, if S is q-
codimensional andX is an irreducible closed subspace of Cq(Z), then the conclusions
of Theorem 7.4.6 hold.

Proof. By Proposition 7.4.7 we may regard S as being B-equivariantly embedded
in some projective space P(V ). We replace P(V ) by the smallest projective sub-
space which contains S. Thus the assumptions of Corollary 7.4.9 are fulfilled for the
maximal unipotent subgroup U of B, because U acts transitively on O. ��

As a first consequence of this corollary we obtain an outer approximation for MD

in MZ . For this we first recall our setup.
The domain D is an open G0-orbit in Z = G/Q. It contains the base cycle

C0, which is determined by a choice of maximal compact subgroup K0 in G0. We
consider an Iwasawa–Borel subgroup B, i.e., a Borel subgroup of G that contains the
A0N0 of an Iwasawa decomposition G0 = K0A0N0.

If S is a B-Schubert variety in SC0 , in other words S has codimension q and
S ∩ C0 �= ∅, then we may apply the above corollary and reach the conclusion of
Theorem 7.4.6 for the situation where X is the closure of MZ in Cq(Z).

To minimize notation, replace IY by its intersection H with MZ . This is clearly
nonempty because there are elements g ∈ G that move the base point of D to a point
in Y . Furthermore, since codimC Y = q + 1, we know from Corollary 7.3.4 that
Y ∩D = ∅. Now the following is immediate.

Proposition 7.4.11. For every S ∈ SC0 the incidence variety H is a B-invariant
analytic hypersurface in the complement of MD in MZ .

Let H denote the family {k(H)}k∈K0 . Proposition 7.4.11 implies that the envelope
EH contains MD . Of course every S ∈ SC0 yields such an envelope.
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Definition 7.4.12. The connected component containing MD in the intersection of
the envelopes EH, S ∈ SC0 , is called the Schubert domain SD .

As a consequence of Proposition 7.4.11, the fact (Proposition 7.2.1) that envelopes
are Stein, and the facts that intersections and connected components of Stein domains
are Stein, we have the following result.

Corollary 7.4.13. The Schubert domain SD is a G0-invariant Stein domain in MZ

that contains the cycle space MD .

We regard SD as the best outer approximation of MD which can be constructed
by Schubert intersection theory. It is one of the main results of this book that, in fact,
MD = SD . See Corollary 9.2.6 and Theorem 11.3.7 below.
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Orbit Duality via Momentum Geometry

The starting point for considerations of the cycle space MD is that there is a unique
complexK0-orbit C0 in every openG0-orbitD inZ = G/Q. Equivalently, C0 is the
unique closedK-orbit inD. Here we shall show that this reflects a duality between the
set OrbZ(K) of K-orbits and the set OrbZ(G0) of G0-orbits in Z: there is a bijective
correspondence γ ↔ κ between OrbZ(G0) and OrbZ(K) such that γ ∈ OrbZ(G0)

is in correspondence with κ ∈ OrbZ(K) if and only if γ ∩ κ is a K0-orbit.
In this generality the duality was first proved by combinatorial methods [M1],

[M2]. More recently, it was derived as a by-product of understanding certain as-
pects of the K0-momentum geometry of Z [MUV], [BL]. Here we adapt the latter
viewpoint, following the treatment in [BL]. The main result can be formulated as
follows.

Letω be aGu-invariant Kähler form onZ, and letµK0 : Z→ k∗0 be the associated
K0-moment map. Define E := ‖µK0‖2 to be the energy function computed with
respect to a K0-invariant Killing norm, and ∇E its gradient field computed with
respect to the associated Kähler metric. Then the critical set C = {z ∈ Z | ∇E = 0}
is a finite union of K0-orbits κ0. Let CritZ(K0) be the set of all such K0-orbits κ0. If
z ∈ κ0, define κ(κ0) := K(z) and γ (κ0) := G0(z). The basic duality theorem states
that these maps are bijective correspondences:

OrbZ(K) ∼= CritZ(K0) ∼= OrbZ(G0).

In fact, κ = κ(κ0) and γ = γ (κ0) are dual to each other if and only if κ ∩ γ = κ0.
Furthermore, the (K0-equivariant) gradient flow of ∇E is tangent to all K- and G0-
orbits. It is hyperbolic in the sense that if (κ, γ ) is a dual pair with κ ∩ γ = κ0, then
the flow of ∇E realizes κ0 as a strong deformation retract of γ and the flow of−∇E
realizes κ0 as a strong deformation retract of κ . See Theorem 8.3.1.

This chapter is organized as follows. Certain standard information concerning
Gu-invariant Kähler structures on Z is summarized in Section 1. In Section 2 the
energy function E is computed in terms of the Lie algebra structures at hand. This
yields a precise Lie algebraic condition for a point z ∈ Z to be a critical point of ∇E:
the reductive part of the isotropy algebra qz (which is the complexification of (gu)z)
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contains a Cartan subalgebra which is both σ -invariant and τ -invariant (Theorem
8.2.5). This is used to give an exact description of the Hessian of E at any such
critical point (Theorem 8.2.13). In Section 3 the duality theorem is then proved as a
consequence of Bott’s results on Morse theory (Theorems 8.3.1 and 8.3.2). Finally,
in Section 4 we prove the ordering principle; it says that if (γ1, κ1) and (γ2, κ2) are
dual pairs, then γ1 is contained in the closure of γ2 if and only if κ2 is contained in
the closure of κ1.

8.1 Coadjoint orbits

8.1A Symplectic structures and moment maps

Let L be a connected Lie group acting via Ad∗ on the dual space l∗ of its Lie algebra.
If ξ ∈ l let ξ̂ denote the associated vector field on l∗. Recall that if α ∈ l∗, then

ωα(̂ζα, η̂α) := α([ζ, η])
defines a nondegenerate antisymmetric bilinear form on the tangent space TαO of
the orbit O := Ad∗(L)(α) which is invariant under the action of the isotropy group
Lα . The resulting differential form ωO on O is closed and is therefore an L-invariant
symplectic form.

Suppose that L acts as a group of symplectic diffeomorphisms on a symplectic
manifold (M,ω), and thatµ : M → l∗ is a smooth equivariant map. Thenµ is called
a moment map for the action of L if, for every ζ ∈ l, the function µζ := ζ ◦ µ
is a Hamiltonian of the field ζ̂M , i.e., dµζ = îζMω. In the case of a coadjoint orbit

(O, ωO) the inclusion idO ↪→ l∗ is a moment map. Furthermore, if L̃ is a Lie
subgroup ofL, then a moment mapµL̃ : O → l̃∗ is given by the canonical projection
l∗ → l̃∗.

If L is semisimple with Killing form 〈, 〉 we identify l with l∗ by ξ �→ 〈ξ, ·〉. In
this way the invariant symplectic form on the orbit O := Ad(L)(ξ) can be written as

ωO(ξ)(̂ζ (ξ), η̂(ξ)) = 〈ξ, [ζ, η]〉.
The moment map µ : O → l is unique in the case of semisimple groups and, again,
is just the inclusion O ↪→ l.

8.1B Compatibility of the complex structure

Now we restrict to our principal case of interest, the case where Z is a complex
flag manifold G/Q. Thus Z is a compact complex homogeneous G-manifold. We
suppose that the parabolic subgroup Q corresponds to the base point z0 ∈ Z. As
usual let Gu be a compact real from of G which is likewise acting transitively on Z.
Recall that σ denotes the complex conjugation which defines Gu.

Let Lu denote the isotropy subgroup of Gu at the base point z0. It is a compact
real form of the Levi factor (reductive component) of Q. If ξ is a generic element
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of the center z(lu), then Lu is its centralizer in Gu. Thus we may regard Z as the
adjoint orbit O := Ad(Gu)(ξ) equipped with the invariant symplectic formωO. This
identifies ξ with the base point z0 ∈ Gu/Lu = G/Q. We now show that with these
identifications, ωO is compatible with the complex structure of Z.

The inclusion gu ↪→ g defines an isomorphism gu/lu → g/q of real vector spaces.
That isomorphism defines anLu-invariant complex vector space structure J on gu/lu.
Compatibility means that

〈ξ, [Jζ, Jη]〉 = 〈ξ, [ζ, η]〉 for all ζ, η ∈ gu.

To show this let Tu be a maximal torus inLu, i.e., T := T C
u is a Cartan subgroup of

L := LC
u . Choose a positive root system	+ such that q = r−+l, where r− =∑ g−α

as α runs over the set of positive roots not involved in l. Also, let r+ =∑ g+α , where
α runs over the positive roots not involved in l. Identify r+ with the holomorphic
tangent space g/q and define

I : r+ = g/q→ gu/lu by ζ �→ 1
2 (ζ + σ(ζ ))mod(lu).

It is immediate that I is the projection onto the image of the inclusion gu ↪→ g, and
therefore the complex structure J is given by

J (ζ + σ(ζ )) := i(ζ − σ(ζ )).

In what follows we often let 〈, 〉 denote the complex bilinear extension of the
Killing form of gu to g. For example, if ξ is the base point chosen as above, then
b(ζ, η) := 〈ξ, [ζ, η]〉 defines an antisymmetric C-bilinear form for which r+ and
r− = σ(r+) are isotropic subspaces. Thus, for example,

(8.1.1) 〈ξ, [ζ + σ(ζ ), η + σ(η)]〉 = 〈ξ, [ζ, σ (η)] + [σ(ζ ), η]〉 = 2〈ξ, [ζ, σ (η)]〉.
Proposition 8.1.2. The complex structure J preserves the coadjoint symplectic form
ωO.

Proof. Since the last expression in (8.1.1) is left unchanged if both ζ and η are
multiplied by i, the result is immediate. ��

Now ω is nondegenerate, but of course we must choose ξ more carefully in order
to insure that it is positive definite. For this it is useful to note that the associated
hermitian metric is given by

(8.1.3) h(ζ, η) = ω(iζ, η)+ iω(ζ, η) = 2〈iξ, [ζ, σ (η)]〉
for ζ, η ∈ g (projected to g/q ∼= r+).

Proposition 8.1.4. For every root space gα in r+ choose 0 �= ζα ∈ gα and define
iHα := [ζα, σ (ζα)]. Let P = {ν ∈ tu | 〈ν,Hα〉 < 0 whenever gα ∈ r+}. Then P is
a nonempty open cone, and if ξ ∈ P , the associated form ω is kählerian.

Proof. Let ρ = 1
2

∑
α∈	+ α. Then ρ(Hα) > 0, in other words, 〈ρ,Hα〉 > 0, for

every α ∈ 	+. Thus −ρ ∈ P and so P is not empty. It is open because it is defined
by strict inequalities. From (8.1.3), the definition of P implies that h(ζα, ζα) > 0 for
all such root spaces (see (8.1.3)). Since the root decomposition of r+ is h-orthogonal,
the desired result is immediate. ��
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8.2 The K0-energy function

Recall our standard setup: τ is complex conjugation of G over G0, θ is the Cartan
involution ofG0 with fixed point setK0, and σ = τθ = θτ is complex conjugation of
G over its compact real form Gu. As usual θ also denotes the holomorphic extension
of θ to G.

Equip gu with its standard inner product structure based on the positive definite
hermitian inner product (ξ, η) := −〈ξ, σ (η)〉 on g. Then gu = k0+ is0 is orthogonal.
We split the Gu-moment map, idZ = µGu = µk0 +µis0 , where µk0 and µis0 are the
projections on the respective components.

As was observed above, µk0 is indeed a moment map for the K0-action on Z.
Note that since Z is a single orbit Ad(Gu)(ξ), ‖idZ‖2 is a constant. We normalize
that constant to be 1. Thus

1 = ‖µk0‖2 + ‖µis0‖2.

8.2A Basics on the gradient field

Here we explicitly compute the gradient of the energy function E := ‖µk0‖2 with
respect to the metric defined by the Kähler formω. For this it is convenient to think in
general terms of a moment mapµ : M → g∗u. Take {ξ∗1 , . . . , ξ∗m} to be an orthonormal
basis of g∗u. Sinceµξ = ξ ◦µ : M → g∗µ (by definition) it follows thatµ =∑µξi ξ

∗
i .

Note that dµξi = ıξi ω (interior product). Therefore

‖µ‖2 =
∑

µ2
ξi

and

d‖µ‖2 = 2
∑

µξi dµξi = 2
∑

µξi îξi ω = 2
∑

µξiRe h(J ξ̂i , ·).
The following is a translation into our concrete setting.

Proposition 8.2.1. If {ξ1, . . . , ξk} is an orthonormal basis of k0 and {ξk+1, . . . , ξm}
is an orthonormal basis of is0, then

∇E = ∇‖µk0‖2 =
k

2
∑
j=1

µξj J ξ̂j = −∇‖µis0‖2 = −
m

2
∑

j=k+1

µξj J ξ̂j .

Corollary 8.2.2. The gradient field∇E is tangent to both theK- andG0-orbits inZ.

8.2B Characterization of the critical points

Let C = {z ∈ Z : ∇E(z) = 0}, the (K0-invariant) set of critical points of the energy
function.

If g ∈ Gu and z = g(z0) ∈ Z, then Ad(g) sends our choices of lu, l, r− and r+
at z0 over to the corresponding spaces at z. The results are independent of choice of
g that sends z0 to z. We will commit an abuse of notation, identifying the objects at
z0 with their images at z, thus speaking of the decomposition
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g = q+ r+ = r− + l+ r+

without reference to z. We will also refer to Ad(g)ξ as ξ when we are working at
z = g(z0).

The gradient field ∇E is computed as follows. First, since µk0 is defined by
projection,

µk0(z) = 1
2 (id + τ)µGu(z) = 1

2 (ξ + τ(ξ)).

Thus
E(z) = − 1

4 〈ξ + τ(ξ), ξ + τ(ξ)〉 = 1
2 (1− 〈ξ, τ (ξ)〉).

Proposition 8.2.3. If ζ ∈ gu, then ζ̂ (E) = −〈ζ, [ξ, τξ ]〉.
Proof. First, note that

ζ̂ (〈ξ, τ (ξ)〉 = d
dt

∣∣
t=0〈Ad(exp(ζ t))(ξ), τ (Ad(exp(ζ t))(ξ))〉.

Thus,

ζ̂ (E) = − 1
2 ζ̂ 〈(ξ, τ (ξ)〉) = − 1

2

(〈[ζ, ξ ], τ (ξ)〉 + 〈ξ, τ ([ζ, ξ ])〉)
= −〈ζ − τ(ζ ), [ξ, τ (ξ)]〉 = −〈ζ, [ξ, τ (ξ)]〉,

as asserted. ��
Proposition 8.2.3 tells us that ∇E = 0 just where [ξ, τ (ξ)] = 0. Write ξ =

ξτ + ξ−τ according to the decomposition gu = k0 + is0. This yields the following

Corollary 8.2.4. C = {z ∈ Z | [ξτ , ξ−τ ] = 0}.
Using this characterization of the set of critical points, we now prove the basic

fact from which all further results follow by elementary calculation.

Theorem 8.2.5. A point z ∈ Z is critical for ∇E, i.e., z ∈ C, if and only if the
reductive part lz of the isotropy algebra qz has a Cartan subalgebra that is both τ -
and σ -invariant.

Before turning to the proof, we note that l = lz0 has Cartan subalgebras that are
τ - and σ -invariant.

Lemma 8.2.6. Let l be a complex semisimple Lie algebra with involutions σ and τ as
above. Then there exists a Cartan subalgebra t in l which is both σ - and τ -invariant.

Proof. If g0 = k0 + s0 is the Cartan decomposition, a0 is a maximal abelian sub-
space of s0, and t0 is a maximal torus in the centralizer m0 of a0 in k0, then the
complexification t of t0 + a0 does the job. ��
Proof of Theorem 8.2.5. Suppose z ∈ C, i.e., that ξτ and ξ−τ commute. Since
ξτ and ξ−τ are semisimple, they are contained in a Cartan subalgebra h of l. Thus
ZG(ξ

τ , ξ−τ ) := ZG(ξ
τ )∩ZG(ξ−τ ) is connected, reductive, and σ - and τ -invariant.

Note that h is a Cartan subalgebra of g because l has full rank in g.
Conversely, let h be a τ -invariant Cartan subalgebra of h. Since ξ ∈ z(l), it

follows that ξ ∈ h, and since τ(ξ) ∈ h, it follows that ξ and τ(ξ) commute. ��
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8.2C Tangent spaces at the critical points

Here we compute the tangent spaces Tz(K(z)) and Tz(G0(z)) at a critical point z ∈ C.
As usual

g = q+ r+ = σ(r+)+ l+ r+ and r− = σ(r+) at z.

Our discussions of roots in this section refer to a τ - and σ -invariant Cartan subalgebra
h of l, as in Lemma 8.2.6.

The set of roots 	(r+, h) which are involved in r+ is the disjoint union of three
sets of roots. Those and the corresponding subspaces of r+ are as follows:

(i) 	1 = {α ∈ 	(r+, h) | τ ∗(α) ∈ 	(r+, h)} and r1 =
∑

α∈	1
gα,

(ii) 	2 = {α ∈ 	(r+, h) | τ ∗(α) ∈ 	(r−, h)} and r2 =
∑

α∈	2
gα,

(iii) 	3 = {α ∈ 	(r+, h) | τ ∗(α) ∈ 	(l, h)} and r3 =
∑

α∈	3
gα.

Now r+ = r1 + r2 + r3, vector space direct sum, where

r1 = r+ ∩ τ(r+) = rτ+ + r−τ+ ,

r2 = r+ ∩ τ(r−) = r+ ∩ θ(r+) = rθ+ + r−θ+ , and

r3 = r+ ∩ τ(l).
Proposition 8.2.7. Let z ∈ Z be a critical point of the gradient field ∇E, i.e., z ∈ C.
Identify Tz(Z) with r+. Then

Tz(G0(z)) = rτ++r2+r3, Tz(K(z)) = r1+rθ++r3, and Tz(K0(z)) = rτ++rθ++r3.

Proof. Let m := l + τ(l), u1 := σ(r1) + r1, and u2 := σ(r2) + r2. Since the
decomposition g = u1 + u2 +m is τ - and σ -invariant, it is a matter of projecting the
fixed point spaces of τ , σ and (the complex linear involution) θ in these components
into r+.

Let us begin with m. Its projection into r+ is r3 = r+ ∩ τ(l). Observe that if
ζ ∈ r3, then (id + σ)(id + τ)(ζ ) is in m, is τ - and σ -fixed, and projects to a multiple
of ζ . Thus Tz(K0(z)) ⊃ r3, and consequently the same holds for Tz(G0(z)) and
Tz(K(z)).

Since the decomposition u1 = σ(r1)+r1 is τ -invariant, the projection of uτ1 is just
rτ1 = rτ+. For ζ ∈ rτ+ observe that (id + σ)(id + τ)(ζ ) projects to 2ζ . Consequently,
rτ+ ⊂ Tz(K0(z)). Since the intersection of Tz(G0(z)) with r1 has already been shown
to be rτ+, the same holds for Tz(K0(z)). Finally, r1 is the complexification of rτ+ and
thus the r1 is contained in the complex vector space Tz(K(z)).

To complete the task, consider u2. Its decomposition u2 = τ(r2) + r2 is θ -
invariant. Hence, the projection of uθ2 is rθ2 = rθ+. Computing as above, if ζ ∈ rθ+,
then (id + σ)(id + τ)(ζ ) projects to 2ζ , and therefore the intersections of both
Tz(K(z)) and Tz(K0(z)) with r2 are rθ+. Finally, uτ2 ∩ r2 = {0}. So by dimension it
projects surjectively, in other words, Tz(G0(z)) ⊃ r2. ��
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8.2D The Hessian of the energy function

Using Proposition 8.2.3, we are able to directly compute the Hessian Hess(E) of E
at a critical point z ∈ C.

Lemma 8.2.8. If ζ, η ∈ gu and z ∈ C then, at z,

Hess(E)(̂ζ , η̂) = η̂ζ̂ (E) = 1
2 〈[ζ − τ(ζ ), τ (ξ)], [η − τ(η), ξ ]〉.

Proof. From the next to last expression for ζ̂ (E) in the argument of Proposition 8.2.3
we have

2η̂(̂ζ (E)) = −η̂〈ζ − τ(ζ ), [ξ, τ (ξ)]〉
= − d

dt

∣∣
t=0〈ζ − τ(ζ ), [Ad(exp(tη))(ξ), τ (Ad(exp(tη))(ξ))]〉.

Standard manipulations, and the fact that ∇E(z) = 0 and thus [ξ, τ (ξ)] = 0, lead
us to

2 Hess(E)(̂ζ , η̂) = −〈ζ − τ(ζ ), [[η, ξ ], τ (ξ)] + [ξ, τ ([η, ξ ])]〉
= −〈ζ − τ(ζ ), [[η − τ(η), ξ ], τ (ξ)]〉
= 〈[ζ − τ(ζ ), τ (ξ)], [η − τ(η), ξ ]〉,

as asserted. ��
This formula becomes quite simple when expressed in terms of root vectors.

Proposition 8.2.9. Let z ∈ C. Identify Tz(Z) with r+, as usual. Let ζα ∈ gα and
ζβ ∈ gβ be root vectors in r+. Let ζ ′α and ζ ′β denote the real vector fields on Z

defined by the respective projections 1
2 (ζα + σ(ζα)) and 1

2 (ζβ + σ(ζβ)) to gu. Set
c(α) = − 1

2α(ξ)α(τ(ξ)). Then

(8.2.10) Hess(E)(ζ ′α, ζ ′β) = c(α)〈(ζα, σ (ζβ)− τ(ζβ)− θ(ζβ)〉 at z.

Proof. If γ is a root, denote Vγ := (ζγ + σ(ζγ ) − τ(ζγ + σ(ζγ )). Then Lemma
8.2.8 gives us

8 Hess(E)(ζ ′α, ζ ′β) = 〈[Vα, τ(ξ)], [Vβ, ξ ]〉.
Using σ(ξ) = ξ , σ(Vα) = Vα , τ(Vα) = −Vα , τσ = θ , and 〈r+, r+〉 = 0, we
compute

〈[Vα, τ(ξ)], [Vβ, ξ ]〉 = 2〈[ζα, τ (ξ)], [Vβ, ξ ]〉 + 2〈[ζα, ξ ], [Vβ, τ(ξ)]〉
= −2α(τ(ξ))〈ζα, [Vβ, τ(ξ)]〉 − 2α(ξ)〈ζα, [Vβ, τ(ξ)]〉
= −4α(ξ)α(τ(ξ))〈ζ, Vβ〉.

Thus Hess(E)(ζ ′α, ζ ′β) = c(α)〈ζα, σ (ζβ)− τ(ζβ)− θ(ζβ)〉, as asserted. ��
Corollary 8.2.11. If z ∈ C, then the decomposition

TzZ ∼= r1 + r2 + r3

is Hess(E)-orthogonal.
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Proof. This follows immediately from the above formula (8.2.10), the fact that the
decomposition g = u1 + u2 + m is invariant with respect to all involutions at hand,
and that the root spaces gα and gβ are Killing form orthogonal unless β = −α. ��

Now let us compute Hess(E)|ri , i = 1, 2.

Lemma 8.2.12. Root spaces gα and gβ in r1 are Hess(E)-orthogonal unless β = α

or β = τ(α). In r2 they are Hess(E)-orthogonal unless β = α or β = θ(α).

Proof. This follows immediately from formula (8.2.10), because, for example in the
case of r1, if τ(α) �= β �= α, then no term in σ(ζβ)− τ(ζβ)− θ(ζβ) is in g−α . ��

Finally, let us compute the Hess(E) norms ‖ · ‖2
Hess in the root spaces in r1 and

r2. For gα ⊂ r1 and ζα ∈ gα \ {0}
Hess(E)(ζ ′α, ζ ′α) = c(α)〈ζα, σ (ζα)− θ(ζα〉

and
Hess(E)(ζ ′α, τ (ζα)′) = c(α)〈ζα, θ(ζα)− σ(ζα)〉.

Also note that Hess(E)(ζ ′α, ζ ′α) = Hess(E)(τ (ζα)′, τ (ζα)′).
Suppose τ(ζα) /∈ gα . If ζ := aζα + bτ(ζα) for a, b ∈ C, then

‖aζ ′α + bτ(ζα)
′‖2

Hess = c(α)|a − b|2〈ζα, σ (ζα)〉.
Now suppose τ(ζα) ∈ gα . Since rτ is contained in the tangent space Tz(K0(z)),
which is in the degeneracy of Hess(E), we may assume that τ(ζα) = −ζα; then
Hess(E)-norm is just twice that above.

In both of the cases above the norm square has a factor |a − b|. Its vanishing
defines a line {t (ζα + τ(ζα))} in the complex vector space r+. That line is either
contained in r+ or has intersection 0 with r+. But if t is real, then t (ζα + τ(ζα)) is in
the fixed point set of τ , which has intersection 0 with r+. Thus Hess(E) is positive
definite on r1.

In case gα is in r2 and ζ = aζα + bθ(ζα), we give a similar argument. If
τ(ζα) /∈ g−α , then

Hess(E)(ζ ′α, ζ ′α) = c(α)〈ζα, σ (ζα)〉
and

Hess(E)(ζ ′α, θ(ζα)′) = −c(α)〈ζα, σ (ζα)〉.
If τ(ζα) ∈ g−α , then θ(ζα) = ±ζα , and since rθ is contained in Tz(K0(z)), which
is in the degeneracy of Hess(E), we may assume that θ(ζα) = −ζα . Again the
Hess(E)-norm is just twice that above.

We have c(α) < 0 because gα is in r2. Consequently

‖ζ ′‖2
Hess < 0 unless a = b.

But by the same argument as for the r1 case above, if a = b, then ζ /∈ r2.
These calculations can be summarized as follows.
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Theorem 8.2.13. Let κ ∈ OrbZ(K) and γ ∈ OrbZ(G0), and suppose that z ∈ κ ∩ γ
is a critical point of the energy function E. Then the degeneracy of the Hessian
of the energy function E at z is the tangent space Tzκ0 at z of κ0 = K0(z). The
induced forms on the quotients Tzκ/Tzκ0 and Tzγ /Tzκ0 are, respectively, positive
and negative definite.

8.3 Duality

Here we apply elementary aspects of Bott–Morse theory to complete the proofs of
the duality and retraction statements which were mentioned in the introduction of this
chapter.

As we have seen in the previous sections, the energy function E : Z→ R�0 has
the following properties:

• C = {z ∈ Z : ∇E(z) = 0} consists of finitely many K0-orbits κ0.
• For z ∈ κ0 ⊂ C the orbits κ = K(z) and γ = G0(z) satisfy

Tzκ + Tzγ = TzZ and Tzκ ∩ Tzγ = Tzκ0.

• The degeneracy of the Hessian of E is Tzκ0 and the induced form on Tzκ/Tzκ0
(respectively, Tzγ /Tzκ0 ) is positive (respectively, negative) definite.

In particular, E is a Bott–Morse function (see, e.g., [AB]).
The Bott–Morse Lemma then yields a smooth embedding of a tubular neighbor-

hood Tκ0 of the normal bundle of κ0 in Z, such that ∇E is tangent to its fibers, and
such that every base point z ∈ κ0 of each such fiber (Tκ0)z an isolated critical point
of ∇E|(Tκ0 )z

. This has strong consequences for the limiting behavior of ∇E.
We formulate these for t →+∞ and γ ∈ OrbZ(G0). The analogous results hold

for t →−∞ and κ ∈ OrbZ(K).
Let {e(t)}t∈R denote the one-parameter group for ∇E. If z ∈ (Tκ0)z0 , then

classical Morse theory applies. For example, if there exists a sequence tn → ∞ so
that {e(tn)(z)} ⊂ Tκ0 , then

lim
t→∞ e(t)(z) = z0.

In this case, z ∈ γ , where γ is the G0-orbit of Theorem 8.2.13.

Theorem 8.3.1. For every z ∈ Z the following hold:

1. lim
t→∞ e(t)(z) =: π(z) exists and is in C.

2. Every γ ∈ OrbZ(G0) contains a unique critical orbit κ0 ⊂ C. The mapping
π : γ → κ0, z �→ lim

t→∞e(t)(z), is well defined, smooth, and K0-equivariant.

3. The action mapping R × γ → γ , z �→ e(t)(z), extended to R ∪ {∞} by the
limiting process, realizes κ0 as aK0-equivariant strong deformation retract of γ .

All of the above hold if γ is replaced by κ ∈ OrbZ(K) and e(t) by e(−t).
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Proof. For Assertion 1 observe that if z ∈ γ , then e(t).z ∈ γ for all t ∈ R. If not,
then let t0 be the smallest (in absolute value) time such that e(t0)(z) is in some other
orbit γ̃ in bd(γ ). Since ∇E is tangent to all G0-orbits, it follows that e(t) ∈ γ̃ for
all t near t0, contrary to the minimality assumption.

Now let tn →∞ with zn := e(tn)(z)→ z0. Of course, z0 is contained in some
κ0 ⊂ C. Therefore, for n sufficiently large, zn ∈ Tκ0 . Thus the local observations
above show that z0 ∈ γ = G0(z), and z0 = lim

t→∞e(t)(z) is well defined.

For Assertion 2 we remark that if e(t)(z) is in some Tκ0 , then e(t)(U) ⊂ Tκ0 for
U a sufficiently small neighborhood of z. Thus

A(κ0) := {z ∈ γ : lim
t→∞ e(t)(z) ∈ κ0}

is open in γ . Since γ is connected, it follows that A(κ0) = γ , where κ0 is the unique
critical K0-orbit in γ . Thus the fact that π |(Tκ0∩γ ) is well defined and smooth implies
the global result.

Assertion 3 follows immediately from Assertion 2.
The same argument applies to the situation where e(t) is replaced by e(−t) and

γ by κ ∈ OrbZ(K). ��
For z ∈ κ0 ⊂ C define κ(κ0) := K(z) and γ (κ0) := G0(z). Then Assertion 2

can be reformulated by stating that κ : C → OrbZ(K) and γ : C → OrbZ(G0) are
bijections. These in turn establish a bijection

OrbZ(K) ∼= OrbZ(G0).

If κ and γ correspond to each other in this bijection, then we say that (κ, γ ) is a dual
pair. We now collect some useful characterizations of dual pairs.

Theorem 8.3.2. The following are equivalent:

1. κ ∩ γ consists of exactly one K0-orbit κ0.
2. κ ∩ γ contains an isolated K0-orbit κ0.
3. (κ, γ ) is a dual pair.
4. κ ∩ γ is compact.

Proof. Since ∇E is tangent to both the G0- and K-orbits in Z, if κ0 is isolated in
κ ∩ γ , it is contained in C, i.e., (κ, γ ) is a dual pair. Thus (1)⇒ (2)⇒ (3).

For the remaining implications note that if the intersection κ ∈ OrbZ(K) and
γ ∈ OrbZ(G0) contains a point z /∈ C, then the full noncompact orbit e(t).z is
contained in this intersection. Now, e.g., lim

t→∞ e(t).z is in some orbit κ̃ on the boundary

of κ , because the critical set in κ is repulsive with respect to this flow. Thus, if κ ∩ γ
contains a noncritical point, then it is noncompact.

Reversing this, if κ∩γ is compact, then it is contained inC and therefore consists
of a unique critical orbit κ0, i.e., (4)⇒ (1).

Finally, assume that (κ, γ ) is a dual pair. If the intersection κ ∩ γ were not
compact, it would contain a point z /∈ C. For example, this would imply that



8.4 Orbit ordering 123

lim
t→−∞ e(t).z = z0 ∈ κ0 ⊂ γ.

But this is contrary to lim
t→−∞ e(t).z being in some orbit γ̃ in bd(γ ). Therefore (3)⇒

(4), and the proof is complete. ��
Corollary 8.3.3. Suppose that (κ, γ ) is not a dual pair and that κ ∩ γ �= ∅. Then for
every w ∈ κ ∩ γ the gradient ∇E is nowhere tangent to K0.w, and for ε sufficiently
small, the action map

(−ε, ε)×K0.w→ κ ∩ γ, by (t, z) �→ e(t)(z),

is a diffeomorphism onto its imageM , which is a locally closed submanifold of κ∩γ .

Proof. If ∇E were everywhere tangent to K0.w, then e(t) would not flow to the
critical orbit. Since e(t) is K0-equivariant, it follows that ∇E is nowhere tangent to
K0.w and the desired result is immediate. ��

8.4 Orbit ordering

In this brief subsection, we complete Chapter 8 with a proof that duality reverses the
partial ordering on orbits that is defined by orbit closure.

If γ1, γ2 ∈ OrbZ(G0), then we write γ1 < γ2 whenever γ2 ⊂ c
(γ1) \ γ1.
Similarly, κ1 < κ2 means that κ2 ⊂ c
(κ1) \ κ1 for κ1, κ2 ∈ OrbZ(K).

Theorem 8.4.1. If (γ1, κ1) and (γ2, κ2) are dual pairs, then γ1 < γ2 if and only if
κ2 < κ1.

The proof of Theorem 8.4.1 requires some technical preparation beyond the basic
results of this section on gradient flows. For this, let (γ, κ) be a dual pair and suppose
p0 ∈ γ ∩ κ . Since

Tp0κ + Tp0γ = Tp0Z,

it follows that there exists a local submanifold � ⊂ G0 containing 1 such that (i) the
action map � → Z, g �→ g(p0), is a diffeomorphism of � onto its image �(p0),
and (ii) �(p0) is transversal to κ in Z. This transversality says

(8.4.2) Tp0κ ⊕ Tp0�(p0) = Tp0Z.

In the next section we will show that � can be chosen so that �(p0) has very
special properties, but here any such submanifold �, 1 ∈ � ⊂ G0 and satisfying (i)
and (ii) above, suffices.

Lemma 8.4.3. If U is a sufficiently small neighborhood of p0 in κ , and � is chosen
sufficiently small, then the action map

α : �× U → Z

is a diffeomorphism of �× U onto an open neighborhood V of p0 in Z.
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Proof. It follows immediately from the transversality (8.4.2) that the differential of
α at (1, p0) is an isomorphism onto Tp0Z. ��
Corollary 8.4.4. If � and U are chosen as above and � × U is identified with its
α-image �(U), then every orbit γ̃ ∈ OrbZ(G0) that meets �× U also meets U . In
particular, then γ̃ ∩ κ �= ∅.

Proof. If p = (g0, u) ∈ γ̃ ∩ (�× U), then g−1
0 (p) = (1, ũ) ∈ γ̃ ∩ U . ��

Proof of Theorem 8.4.1. Suppose thatγ1 < γ2, i.e., γ2 ⊂ c
(γ1)\γ1. An application
of the above corollary to γ := γ2, κ := κ2, and γ̃ := γ1 shows that κ2 ∩ γ1 �= ∅.

Now use the gradient flow ϕt . It realizes γ1∩κ1 as a strong deformation retract of
γ1. Applying it to p ∈ κ2∩γ1 it follows that lim

t→∞ϕt (p) ∈ κ1. But c
(κ2) is invariant

by this flow, and therefore it follows that κ1 ⊂ c
(κ2) \ κ2, i.e., κ2 < κ1. ��
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Schubert Slices in the Context of Duality

With the basic results on duality available (see Chapter 8), it is possible to prove
the existence of Schubert slices for arbitrary G0-orbits γ in Z. As a consequence
one observes that every point in the boundary bd(D) of an open G0-orbit in Z is
contained in a (q + 1)-codimensional Schubert variety which in turn is contained in
the complement of D.

The existence of these boundary supporting varieties is sufficient for completing
the detailed description of MD in the case whereG0 is of hermitian type, thus showing
that MD is B or B for domains of holomorphic type, and is M = B × B = U
otherwise.

Even if G0 is not of hermitian type, this also implies the inclusions

(9.0.1) U ⊂MD ⊂ EH
for every incidence hypersurface H which is defined by a q-codimensional Schubert
variety which has nonempty intersection with C0. Since the Schubert domain SD is
defined to be the connected component containing the base point of the intersection of
all such EH, it is immediate that MD ⊂ SD . In fact another more delicate construction
shows that MD = SD . In particular this shows that MD is a Stein domain, a result
whose proof for the measurable case (by completely different methods) was indicated
in Section 5.3.

The above summarizes the main results of the present chapter. We now outline its
organization. The existence and basic properties of Schubert slices for arbitrary G0-
orbits (Theorem 9.1.1) is proved at the outset of Section 1. This yields the existence
of the boundary supporting varieties mentioned above (see Proposition 9.1.4).

The incidence variety IS in MZ of a boundary supporting variety S may not be a
hypersurface, i.e., it may have higher codimension. However, since every boundary
point of MD is contained in such an S, it follows that the boundary of MD is
contained in the complement of the intersection of the open B-orbits as B ranges
over all Iwasawa–Borel subgroups of G. In particular, U ⊂ MD . This is the new
ingredient which leads to the inclusions (9.0.1); see Theorem 9.1.5.

The description of MD in the hermitian case (Propositions 9.1.7 and 9.1.8) is an
immediate consequence of this result together with Theorem 5.4.7.
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Finally, Section 2 is devoted to a somewhat refined construction which, given
a point C in the boundary of MD , provides a B-invariant incidence hypersurface
which contains C and which is contained in the complement of MD in MZ; see
Corollary 9.2.4. This proves that MD = SD . It should be noted that the completely
different methods of Chapters 10 and 11 show that EH = U . Therefore the inclusions
(9.0.1) imply that U = MD = SD , unless of course D is of hermitian holomorphic
type. This is an essentially stronger result than MD = SD which is proved here.
However, since the method of proof of Corollary 9.2.4 is constructive, it might be
useful for applications.

9.1 Schubert slices in arbitrary G0-orbits

As above let OrbZ(G0) and OrbZ(K) be the sets of orbits of G0 and K in a given
homogeneous rational manifold Z = G/Q. For an Iwasawa decomposition G0 =
K0A0N0 we consider a Borel subgroupB ofGwhich containsA0N0. We letSκ denote
the set ofB-Schubert varieties S of complementary dimension to κ inZ such that S∩
c
(κ) �= ∅. Since theB-Schubert varieties generate the integral homologyH∗(Z,Z),
it follows that Sκ is nonempty. As usual S = O ∪ Y denotes the decomposition of a
Schubert variety into its open B-orbit O and its boundary Y .

9.1A Existence theorem

This section is devoted to the following existence theorem for Schubert slices 	 in
any G0-orbit. Many of the proofs are essentially the same as those for the case of an
open G0-orbit.

Theorem 9.1.1. If (γ, κ) ∈ Orb(G0) × Orb(K) is a dual pair and S ∈ Sκ , then the
following hold.

1. The intersection S ∩ c
(κ) is finite and contained in γ ∩ κ . If w ∈ S ∩ κ , then
(AN)(w) = B(w) = O, in particular the intersection S ∩ c
(κ) takes place at
smooth points of both varieties. Furthermore, this intersection is transversal at
each of its points:

TwS ⊕ Twκ = TwZ.

2. The orbit 	 = 	(γ, S,w) = (A0N0)(w) is open in S and is closed in γ with
	 ∩ κ = {w}.

3. The map K0 × c
(	)→ c
(γ ), given by (k0, z) �→ k0(z), is surjective.

Proof of Assertion 1. Letw ∈ S∩c
(κ). Then Tw(AN(w))+Tw(K(w)) = Tw(Z)

because g = a + n + k. As w ∈ S = c
(O) and AN ⊂ B, we have dimAN(w) �
dimB(w) � dim O = dim S. Furthermore w ∈ c
(κ). Thus dimK(w) � dim κ .

If w were not in κ , this inequality would be strict, in violation of the above
additivity of the dimensions of the tangent spaces. Thus w ∈ κ and Tw(Z) =
Tw(S) + Tw(κ). Since dim S + dim κ = dimZ, this sum is direct, i.e., Tw(Z) =
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Tw(S)⊕ Tw(κ). In particular the intersection is transversal at each of its points and
therefore finite. It also follows that dimAN(w) = dim S. Thus AN(w) is open in
S. Now if B ∩K =: BK , then B = BKAN , and since BK stabilizes both S and κ , it
follows that BK ⊂ Bw and consequently AN(w) = B(w) = O.

We have already seen that K(w) is open in κ , forcing K(w) = κ . It only remains
to show that S ∩ κ is contained in the dual γ of κ . For this let γ̂ = G0(w). Since
	 = (A0N0)(w) is transversal to κ inZ, it is also transversal toK0(w) in γ̂ . If γ̂ were
not dual to κ , then γ̂ ∩ κ ⊃ M as in Corollary 8.3.3, and thus (A0N0(w))∩M would
be positive-dimensional. This is of course contrary to A0N0(w) being transversal to
κ at w, and it follows that γ̂ = γ is dual to κ . ��
Proof of Assertion 2. G0 = K0A0N0 implies Tw(K0(w))+Tw(A0N0(w)) = Twγ .
Furthermore, Tw(K(w)) ⊕ Tw(AN(w)) = TwZ. Also, by duality, we have
dim(Kw)+dim γ = dimZ−dimK0(w). Hence dimAN(w)+dimK0(w) = dim γ

and dimA0N0(w) = dimAN(w) is forced. Therefore, 	 = A0N0(w) is open in S.
If 	 were not closed in γ , there would be an orbit of lower dimension on its

boundary. But sinceG0 = K0A0N0, everyA0N0-orbit in γ meetsK0(w), and if p is
such an intersection point, then Tp(γ ) = Tp(K(p))+ Tp(A0N0(p)). This would be
impossible, because A0N0(p) has smaller dimension than the orbit A0N0(w), which
is transversal to K0(w) = K0(p) in γ .

Finally, we must show that 	 ∩ κ = {w}. The proof of this exactly follows the
line of the proof of Proposition 7.3.9. As in that proof we show that the natural map
α : (K0 ∩Qw)× (A0N0 ∩Qw)→ (G0 ∩Qw), given by α(k0, a0n0) = k0a0n0 and
the image is open in G0 ∩Qw.

Since K0(w) is a strong deformation retract of γ , by Theorem 8.3.1. Thus
(G0 ∩Qw)/(K0 ∩Qw) is connected; in other words, every component of G0 ∩Qw

contains a component of K0 ∩Qw, and it follows that α is surjective. The proof of
the one point intersection property then continues exactly as in the proof for Propo-
sition 7.3.9. ��
Proof of Assertion 3. Since K0 is compact, the image K0(c
(γ )) is closed in c
(γ ).
Since γ = K0(	), this image is clearly dense in c
(γ ). ��

9.1B Supporting Schubert varieties at points of bd(D)

We now return to the setting of an open G0-orbit D in Z with q-dimensional base
cycleC0. Given a point p ∈ bd(D)we use Schubert slices at generic points of bd(D)
to construct a (q + 1)-codimensional Iwasawa–Schubert variety Sbd with p ∈ Sbd
and Sbd ⊂ Z \D.

Although this confirms a sort of complex analytic q-convexity of bd(D), it should
be underlined that, since Sbd contains a Schubert slice 	 that is contained in bd(D),
it is not clear how 	 fits into the Levi geometry of the given boundary orbit. In
particular, in the case where the boundary component at hand is a nondegenerate,
mixed Levi signature hypersurface, the tangent bundle of 	 could be Levi isotropic.

We will say that a point p ∈ bd(D) is generic, and write p ∈ bdgen(D) if
γp = G0(p) is open in bd(D). It is clear that bdgen(D) is open and dense in bd(D).
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For p ∈ bdgen(D) the orbit γ = γp need not be a real hypersurface in Z. For
example, G0 = SL(n+ 1;R) has exactly two orbits in Pn(C), an open orbit and its
complement Pn(R).

Lemma 9.1.2. For p ∈ bd(D)gen, γ = G0(p), and κ dual to γ , it follows that
κ ∩D �= ∅. Furthermore, if C0 is the base cycle in D, then q = dimC0 < dim κ .

Proof. The property κ ∩D �= ∅ follows from the fact that γ is open in bd(D), and
from the transversality of the intersection κ ∩γ in Z which follows from the fact that
(κ, γ ) is a dual pair.

For the dimension estimate, note that it follows from theK0-equivariant retraction
property of Theorem 8.3.1 that C0 is dimension-theoretically a minimal K0-orbit in
D, e.g., theK0-orbits in κ ∩D are at least of its dimension. As κ is not compact, now
dim κ > dimC0. ��

The above lemma is also an immediate consequence of Theorem 8.4.1.

We will also make use of the following basic fact about Schubert varieties.

Lemma 9.1.3. Let B be a Borel subgroup of G and S a k-dimensional B-Schubert
variety in Z. Choose 
 ∈ N so that dimZ � 
 � k. Then there exists a B-Schubert
variety S′ with dim S′ = 
 and S′ ⊃ S.

Proof. We may assume that S �= Z. Let O be the open B-orbit in S and let O′ be a
B-orbit of minimal dimension among those orbits with c
(O′) � O.

For p ∈ O it follows that c
(O′) \ O = O′ near p. Since O′ is affine, it then
follows that dim O′ = dim O + 1. Applying this argument recursively, we find
Schubert varieties S′ := c
(O′) of every intermediate dimension 
. ��

We now come to the main result on supporting Schubert varieties.

Proposition 9.1.4. LetD be an openG0-orbit onZ. Fix a boundary pointp ∈ bd(D).
Then there exist an Iwasawa decomposition G0 = K0A0N0, an Iwasawa–Borel
subgroup B ⊃ A0N0, and a B-Schubert variety Sbd , such that

(1) p ∈ Sbd ⊂ Z \D,
(2) codimZ Sbd = q + 1, and
(3) the incidence variety ISbd := {C ∈MZ : C∩Sbd �= ∅} is contained in MZ\MD .

Proof. Let p ∈ bd(D)gen, let γ = G0(p), and let κ be dual to γ . First consider the
case where p ∈ γ ∩ κ . From Lemma 9.1.2, codim S � q + 1 for every S ∈ Sκ .

Now, given S ∈ Sκ and p ∈ S ∩ κ as above, let Sbd be a (q + 1)-codimensional
Schubert variety containing S; see Lemma 9.1.3. Suppose that Sbd meets C0. Since
dimC C0 = q and codimC Sbd = q + 1, and every A0N0-orbit in D has nonempty
intersection with C0, there would be a point of intersection z ∈ Sbd ∩ C0. But
A0N0(z) ⊂ Sbd, and so it would follow that

q = dimC C0 � codimC A0N0(z) � codimC Sbd = q + 1.
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This contradiction implies that Sbd does not meet D. On the other hand, using
Theorem 9.1.1, it meets everyG0-orbit in c
(γ ). Thus, by conjugating appropriately,
we have the desired result for any point in the closure of γ . Since γ was chosen to
be an arbitrary orbit in bdgen(D) which is dense, the result follows for every point of
bd(D). Furthermore, Sbd ⊂ Z and consequently ISbd is contained in the complement
of MD in MZ . ��

In view of Proposition 9.1.4 we are now able to pinch MD between a universal
domain and the Schubert domain SD . In order to state this result in as uniform a way
as possible, we introduce some notation.

Recall that there are two possibilities for MD , as described in Chapter 5. In the
hermitian holomorphic case it is the bounded symmetric domain B = G0/K0 (or
its complex conjugate structure B) inside the compact dual symmetric flag manifold
MZ = G/KS−. In the general case it is a domain in the affine homogeneous space
MZ = G/K̆ whereπ : G/K → G/K̆ is a finite cover. In the hermitian holomorphic
case the base point z0 corresponding toC0 has been chosen to be the identity coset (in
other words the origin) in B, and in the general case it is the identity coset 1K̆ ∈ G/K̆ .
Here, in the general case, we write K̆ instead of the previously used J to emphasize
the relation with K .

The universal domain U was defined (6.1.7) as a subdomain of G/K , but here
we consider its image Ŭ in G/K̆ . In the hermitian holomorphic case we let Ŭ := B.
In this way we can directly compare Ŭ to the cycle spaces MD and their various
envelopes.

At the level of G/K it was shown in Chapter 7 that U agrees with the Iwasawa-
envelope EI(U); see Proposition 7.2.11. This carries over to exactly the same state-
ment in G/K̆ . Thus, unless we are in the hermitian holomorphic setting, we know
that Ŭ = EI(Ŭ) ⊂ SD . In the holomorphic hermitian setting we have already shown
that Ŭ agrees with any of its envelopes; see Proposition 7.2.2. Thus Ŭ = SD in
that case.

Theorem 9.1.5. If D is an open G0-orbit in a flag manifold Z = G/Q, then
Ŭ ⊂MD ⊂ SD .

Proof. Proposition 9.1.4 shows that every boundary point of MD contains a point
of an incidence variety ISbd , which is invariant by some Iwasawa–Borel subgroup B
of G. Such points are contained in B-invariant hypersurfaces and therefore are in the
complement of EI(Ŭ). Thus bd(MD) is contained in the complement of EI(Ŭ) = Ŭ
and consequently Ŭ ⊂MD .

Corollary 7.4.13 implies MD ⊂ SD . ��

Remark 9.1.6. As we will see below, Theorem 9.1.5 combines with Theorem 5.4.7
to give a detailed classification in the hermitian case. In the non-hermitian case,
methods involving Kobayashi hyperbolicity show that Ŭ = SD; see Chapters 11 and
12. Furthermore, the projection π : U → Ŭ is biholomorphic; see Lemma 11.3.4.
Thus in the non-hermitian case we have the classification U ∼= Ŭ =MD = SD . ♦
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9.1C Classification in the hermitian case

Let us begin by giving yet another proof of the classification theorem in the hermitian
holomorphic case, this time in the spirit of Schubert intersection theory.

Proposition 9.1.7. In the hermitian holomorphic case MD is B or B.

Proof. Since Ŭ = B in this case, Theorem 9.1.5 shows that B ⊂ MD ⊂ SD . Now
SD is the intersection of all envelopes defined by the Schubert varieties S ∈ SC0 .
Thus it is enough to show that one such envelope EY (B) agrees with B.

Here the complement of the open B-orbit in G/P is an irreducible hypersurface
H which contains every proper B-Schubert variety, and it follows that H contains
the B-Schubert slices in every G0-orbit. In particular H has nonempty intersection
with every G0-orbit γ in bd(B). Thus it is clear that EY (B) = B. ��

Now let us turn to the nonholomorphic hermitian case. By Theorem 5.4.7 we
already know that MD ⊂ Ŭ . Thus the inclusion in Theorem 9.1.5 does the job.

Proposition 9.1.8. In the nonholomorphic hermitian case MD = Ŭ ∼= U ∼= B × B.

Proof. As mentioned above, Theorem 5.4.7, together with Theorem 9.1.5, yields
MD = Ŭ . As noted earlier, π |U : U → Ŭ is biholomorphic. Finally, the equivalence
of U and B × B is the content of Proposition 6.1.9. ��

9.2 Supporting hypersurfaces at the boundary of MD

As mentioned above, in Chapter 10, we use indirect methods to prove that U agrees
with the Schubert domain SD; see Chapter 11. By definition every point of the
boundary of SD contains a hypersurface which is contained in the polar set of a
rational function on MZ which is regular on MD . In this section we explicitly
construct these polar sets and functions, and thereby show that MD = SD .

Precisely speaking, given C ∈ bd(MD), we determine a point p ∈ C ∩ bd(D)
and a Schubert variety S ∈ SC0 such that S = O ∪̇Y and p ∈ Y . Of course
codimY = q+1 and Y ⊂ Z \D as above. Thus we may apply the results of Section
7.4, in particular Proposition 7.4.11, to obtain a B-invariant incidence hypersurface
that contains the boundary point C and is contained in the complement MZ \MD .

Here, given p ∈ C∩bd(D), we consider Iwasawa–Schubert varieties S = O ∪̇E
of minimal possible dimension that satisfy the conditions

(9.2.1)

(1) p ∈ E,
(2) S ∩D �= ∅, and

(3) Z \D contains every irreducible component of E that contains p.

Notation:

AE is the union of all the irreducible components of E contained in Z \D, and
BE is the union of the remaining components of E.
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So of course E = AE ∪ BE . Note that by starting with the Schubert variety S0 :=
Sbd as in the Proposition 9.1.4, and by considering a chain S0 ⊂ S1 ⊂ . . . with
dim Si+1 = dim Si + 1, we eventually come to a Schubert variety S = Sk with
the properties (9.2.1). Given p, the Schubert variety S may not be unique, but
dim S = n− q + δ � n− q for some δ = δS � 0.

The following proposition gives a constructive method for determining an B-
invariant incidence hypersurface that contains C and is itself contained in the com-
plement MZ \MD . Starting with S that satisfies (9.2.1), we apply the following
result.

Proposition 9.2.2. If δ > 0, then C ∩ AE ∩ BE �= ∅.

Applying Proposition 9.2.2, if δ > 0, we take a point p1 ∈ C ∩ AE ∩ BE and
replace S by aBE-component S1 ofE that containsp1. Possibly there are components
of E1 := S1 \O1 that contain p1 and also have nonempty intersection with D. If this
is the case, we replace S1 by any such component. Since this S1 still has nonempty
intersection with the Iwasawa–Borel invariant AE , at least some of the components
of itsE1 do not intersect in this way. Continuing in this way, we eventually determine
an S1 that satisfies the conditions (9.2.1) at p1. The procedure stops because Schubert
varieties of dimension less than n− q have empty intersection with D.

Corollary 9.2.3. If S0 satisfies the conditions (9.2.1) at p0, there exist p1 ∈ bd(D)
and a Schubert subvariety S1 ⊂ S0 that satisfies these conditions at p1 and has
dimension n− q.

Proof. We recursively apply the procedure indicated above until δ = 0. ��
Corollary 9.2.4. If C ∈ bd(MD), then there exists an Iwasawa–Schubert variety
S ∈ SC0 of dimension n− q such that Y := S \O meets C.

Corollary 9.2.5. Let C ∈ bd(MD). Then there exist an Iwasawa–Borel subgroup B
of G and a B-Schubert variety S = O∪̇Y in SC0 such that the incidence variety IY
is an analytic hypersurface and C ⊂ IY ⊂ (MZ \MD).

Proof. This follows immediately from Proposition 7.4.11. ��
This can be equivalently formulated as follows.

Corollary 9.2.6. MD = SD .

Let us now turn to certain technical preparations for the proof of Proposition 9.2.2.
Recall the basic maps ν : XZ → MZ and µ : XZ → Z. Define XS to be the

µ-preimage of S in XZ . Since ν is proper and XS is closed, the restriction ν|XS
is

likewise proper. Furthermore, since [S].[C0] = d > 0 and MZ is connected, every
cycle parameterized by MZ has nonempty intersection with S, and consequently
ν|XS

: XS → XZ is surjective. Finally, the ν|XS
-preimage of a cycle C can be

identified with C ∩ S.
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All orbits of the Iwasawa–Borel group that defined S are transversal to the base
cycle C0 in the sense that the sum of the tangent spaces at an intersection point is that
of the ambient spaceZ. In particular,C0∩S has pure dimension with dimC0∩S = δ.
Thus the generic cycle in MZ has this property as well.

Choose a one-dimensional (local) disk � in MZ with C corresponding to its
origin, such that Iz := ν−1(z) is δ-dimensional for z �= 0. Define Z to be the closure
of ν−1(� \ {0}) in XS . The map νZ := ν|Z : Z → � is proper and its fibers are
purely δ-dimensional.

In what follows we use the standard moving lemma of intersection theory and
argue using a desingularization π̃ : S̃ → S, where only points E are blown up. Let
Ẽ, Ã and B̃ denote the corresponding π̃ -preimages. By taking � in generic position,
we may assume that for z �= 0 no component of Iz is contained in E. Hence we may
lift the family Z → � in XS to a family Z̃ → � in XS̃ of δ-dimensional varieties
such that Z̃ → Z is finite to one outside of the fiber over 0 ∈ �. Let Ĩz denote the
fiber of Z̃→ � at z ∈ �, and shrink Z̃ so that Ĩ := Ĩ0 is connected. Since Ĩz∩ Ã = ∅
for z �= 0, it follows that the intersection class [Ĩ ].[Ã] in the homology of S̃ is zero.

An irreducible component of Ĩ is one of the following types: it intersects Ã but not
B̃, or it intersects both Ã and B̃, or it intersects B̃ but not Ã. Write Ĩ = ĨA∪ ĨAB ∪ ĨB
correspondingly.

Lemma 9.2.7. ĨAB �= ∅.

Proof. Since ĨA ∪ ĨAB �= ∅, it is enough to consider the case where ĨA �= ∅. Let H
be a hyperplane section in Z with H ∩ S = E (see Proposition 7.4.9), and put H in
a continuous family Ht of hyperplanes with H0 = H such that Ht ∩ IA is (δ − 1)-
dimensional for t �= 0 and such that the lift Ẽt ofEt := Ht ∩S contains no irreducible
component of ĨA. In particular, Ẽt .ĨA �= 0 for t �= 0. Since ĨA.Ã = ĨA.Ẽ = ĨA.Ẽt ,
it follows that ĨA.Ã �= 0. But 0 = Ĩ .Ã = ĨA.Ã+ ĨAB.Ã and therefore ĨAB �= ∅. ��
Proof of Proposition 9.2.2. We first consider the case δ � 2. Since ĨAB �= ∅, it
follows that some irreducible component I ′ of I has nonempty intersection with both
A andB. Of course I ′ ∩E = (I ′ ∩A)∪(I ′ ∩B). ButE is the support of a hyperplane
section, and since dim I ′ � 2, it follows that (I ′ ∩ E) is connected. In particular
(I ′ ∩A)meets (I ′ ∩B). Therefore I ′ ∩A∩B �= ∅, and consequentlyC∩A∩B �= ∅.

Now suppose that δ = 1, i.e., that Ĩ is one-dimensional. Since Ĩ .Ã = 0, the
(nonempty) intersection Ĩ ∩ Ã is not discrete. We will show that some component of
ĨAB is contained in Ã. It will follow immediately that C ∩ A ∩ B �= ∅.

For this we assume to the contrary that every component of Ĩ which is contained
in Ã is in ĨA. We decompose Ĩ = Ĩ1 ∪ Ĩ2, where Ĩ1 consists of those components of
Ĩ which are contained in Ã and Ĩ2 of those which have discrete or empty intersection
with Ã.

Now Ĩ1.Ã = Ĩ1.Ẽ. Choosing Ht as above, we have Ĩ1.Ẽ = Ĩ1.Ẽt � 0 for t �= 0.
If Ĩ2 �= ĨB , then Ĩ2.Ã > 0. This would contradict 0 = Ĩ .Ã = Ĩ1Ã + Ĩ2.Ã. Thus
Ĩ2 = ĨB and Ĩ1 = ĨA. But ĨA and ĨB are disjoint, contrary to Ĩ being connected.
Thus it follows that ĨAB does indeed contain a component that is contained in Ã. The
proof is complete. ��
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Analysis of the Boundary of U

Let us review our progress toward a detailed description of the cycle spaces MD .
In the previous chapter the hermitian case was completely handled: in the hermi-
tian holomorphic case MD is the associated bounded symmetric domain B (or B);
otherwise MD is naturally identified with B × B. See Propositions 9.1.7 and 9.1.8.
Furthermore, in general we have the pinching Ŭ ⊂ MD ⊂ SD . Except in the her-
mitian holomorphic case the natural projection G/K → G/K̆ = MZ identifies Ŭ
with the universal domain U . Since SD is defined as the intersection of envelopes
defined by certainB-invariant hypersurfaces, we may also think of SD as contained in
G/K . Thus, if we are not in the hermitian holomorphic case, we have the inclusions
U ⊂MD ⊂ SD of G0-invariant Stein domains in G/K .

In Chapter 11 we will complete the discussion by showing that domains of the
type SD are Kobayashi hyperbolic and that the only G0-invariant, Stein, Kobayashi
hyperbolic domain containing U is U itself. Consequently, either U =MD = SD or
D is hermitian holomorphic and the above mentioned results apply.

The proof that U is maximal with respect to the properties of being G0-invariant,
Stein and Kobayashi hyperbolic makes strong use of the results in the present chapter.
The original research for these two chapters was carried out in [FH]. Before outlining
these in detail, we recall our notation.

As usual G0 is a simple, noncompact real form of the complex semisimple group
G. It is defined by the antiholomorphic involution τ at both the Lie algebra and group
level. We follow here the convention of using the same notation for involutions at the
group and Lie algebra levels. The Cartan involution θ : G0 → G0 which defines the
compact formK0 ofG0 extends uniquely to a holomorphic involution ofG, which we
also denote by θ . IfG is simply connected, then the fixed point setGθ = K = (K0)

C

is connected; in the general case we only have K ⊂ Gθ ⊂ NG(K). If not otherwise
stated, we assume in this chapter that G is a simply connected complex semisimple
Lie group. The holomorphic involution θ commutes with the complex conjugation
τ of G over G0, and σ := τθ = θτ defines another involution of G; it is complex
conjugation of G over a certain compact real form Gu and thus is a Cartan involution
of G.
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Note that σ is the antiholomorphic extension of θ . As before g0 = k0 + s0 is
the Cartan decomposition of g0 into (±1)-eigenspaces of θ : k0 = gθ0 and s0 = g−θ0 .
Similarly the holomorphic extension θ defines the complexified Cartan decomposition
g = k+ s := gθ + g−θ .

One goal of this chapter is to describe aspects of the invariant theory of the G0-
action on the complex symmetric spaceG/K which are relevant for our understanding
of this action on bd(U). In particular we characterize the closed orbits and, given a
nonclosed orbit, we show how to reach a point in the closed orbit in its closure by a
simple limiting procedure.

For this and virtually every consideration in this chapter the restricted root de-
composition of g is of central importance. This is reviewed in Section 10.1, where
basic principles of actions of real forms are also summarized. There we also discuss
in some detail the group AutR(g) of automorphisms of the underlying real Lie group
structure of g.

In Section 2 the basic G0-equivariant linearization map

η : G/K → AutR(g), g �→ τ Ad(g)θ Ad(g−1)

is introduced and studied in detail. For example, it is shown that G0(x) is closed in
G/K if and only if η(x) is semisimple (Proposition 10.2.7). The Jordan decompo-
sition ψ = sψuψ of ψ ∈ AutR(g) is of fundamental importance. Lifting to g, it is
shown in Lemma 10.2.9 that there is a unique E ∈ gsψ so that uψ = Ad(exp(E)).
These ad-nilpotent elements are later used to construct sl2-triples which are useful
for determining the closed orbit in the boundary of a given G0-orbit.

A semisimple element s ∈ AutR(g) can be further decomposed as a product
s = sellshyp, where the eigenvalues of sell (respectively, shyp) are in the unit circle S1

(respectively, in R>0). We say that an element x ∈ G/K is elliptic if η(x) = s = sell
is a semisimple element of elliptic type. The main result of Section 3 is that the set of
elliptic elements is justG0. exp(ia0)(x0), where x0 is the base point corresponding to
K in G/K Proposition 10.3.1 As a consequence the closed orbits in bd(U) are those
orbits in the set

(exp ia0)(x0) ∩ c
(U) = c
((exp iω0)(x0)) = exp(c
(iω0))(x0),

where as usual ω0 denotes the polyhedral domain in a0 which defines U by U :=
G0. exp(iω0)(x0).

The Luna Slice Theorem is the key tool for understanding the G0-action in a
neighborhood of a closed orbit. After explaining this in Section 4, we proceed to
compute its first main ingredient, namely the (reductive) isotropy group of the G0-
action at an arbitrary point in exp(ia0) (Proposition 10.4.7). In particular, this gives us
the basic information required in Section 6 for computations in a slice neighborhood
of a closed orbit in bd(U).

One main application of our boundary analysis is, given z ∈ bd(U), we determine
an sl2 triple in g0 so that the position with respect to U of the orbitS(z)of the associated
complex group gives us important information on G0-invariant domains that contain
U . The isotropy group Sz is either a complex torus in S or its normalizer, i.e., a 2:1
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extension of a torus. In the former case this is the two-dimensional affine quadric
which has P1(C) × P1(C) as its unique S-equivariant compactification. We have
discussed this two-dimensional example in Chapter 6, but we do so again here in
Section 5 in the context of the sl2 triples of the present chapter.

The orbit S(z) gives satisfactory information only at generic points of bd(U). In
fact the example of G0 = SL(5;R) shows that our method fails for at least certain
nongeneric boundary points (see Section 7).

By definition, generic boundary points are those points z so that the closed orbit
in G0(z) is of the form G0(z0), where z0 = exp(iξ) for ξ ∈ bd(ω0) which is in only
one root hyperplane, i.e., in a maximal-dimensional face of the polyhedron ω0.

Our first main goal in Section 6 is to show that the set bdgen(U) of generic
boundary points is open and dense in bd(U). In fact we show that its complement
has codimension � 1 (Corollary 10.6.4). This result is proved by showing that
going from generic to nongeneric fibers of the (real) categorical quotient has the
desired semicontinuity. For this we make strong use of our detailed information on
the nilpotent cone of the representation in the Luna slice (see Lemma 10.6.3) and
implement a basic theorem of Kostant and Rallis [KR].

Having shown that the generic points are indeed open and dense in the boundary,
we then prove the desired result about the intersection S(z)∩ U , namely that it is the
universal domain US in the affine quadric S/KS or its 2:1 quotient (Theorem 10.6.9).
This is one of the key results for the final step in the description of the cycle space
MD which is given in the next chapter.

10.1 Preparation

In this preparatory section we collect material which is used in the sequel.

10.1A Restricted roots

We now summarize some basic information on restricted root systems and decompo-
sitions. All is completely standard, and can be found with complete proofs in most
books on symmetric spaces (e.g., [Hel]) or on the representation theory of semisimple
Lie groups (e.g., [War]), but it is convenient for nonspecialists in Lie theory to have
it collected here.

As before, θ is a Cartan involution of the real semisimple Lie algebra g0 and
g0 = k0 + s0 is the corresponding Cartan decomposition. So the Killing form 〈 ·, · 〉
is negative definite on k0 and positive definite on s0, and thus h(ξ, ζ ) := −〈ξ, θ(ζ )〉
is positive definite on g0. Fix an abelian subalgebra a0 of g0 that is maximal among
those contained in s0. Then a0 is contained in a θ -stable Cartan subalgebra h0 =
(h0 ∩ k0) + a0 of g0. Restricting roots α ∈ 	(g, h) from h0 to a0 the root space
decomposition g = h+∑α∈	(g,h) gα leads to a decomposition

(10.1.2) g0 = zg0(a0)+
∑

λ∈	(g0,a0)
gλ0 = (m0 + a0)+

∑
λ∈	(g0,a0)

gλ0 .
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Here zg0(a0) is the g0-centralizer of a0. Since a0 is θ -stable and is maximal abelian in
s0 that centralizer has form m0+a0 where m0 = zg0(a0)∩ k0, and	(g0, a0) consists
of the nonzero α|a0 for α ∈ 	(g, h). Those restrictions are the restricted roots or
a0-roots. Every α ∈ 	(g, h) takes real values on a0, so ad(a0) is diagonalizable
over R; here the gλ0 for λ �= 0 (we write the λ as superscript to avoid cumbersome
notation) are the joint eigenspaces on g0. They are called restricted root spaces or
a0-root spaces. The set 	(g0, a0) is called the restricted root system or a0-root
system of g0.

The restricted root system	(g0, a0) inherits many properties from the root system
	(g, h). For example, with a slight bit of redundancy,

• using θ |a0 = −Id, if λ ∈ 	(g0, a0), then −λ ∈ 	(g0, a0) and θ(gλ0) = g−λ0 ,

• the Killing form is nondegenerate on each of m0, a0, and the gλ0 + g−λ0 for λ ∈
	(g0, a0), and those spaces are mutually orthogonal,

• the Killing form is zero on each gλ0 and pairs gλ0 with g−λ0 , and

• if λ,µ, λ+ µ ∈ 	(g0, a0) then [gλ0, gµ0 ] ⊂ g
λ+µ
0 .

Since the Killing form is positive definite on a0 it carries over to a positive definite
form (also denoted 〈 ·, · 〉) on a∗0. For computation it will be convenient to have the
notation

if λ ∈ a∗0, then Hλ ∈ a0 defined by 〈ξ,Hλ〉 = λ(ξ),

if λ ∈ a∗0, then hλ ∈ a0 defined by hλ := 2Hλ/〈Hλ,Hλ〉,
if λ,µ ∈ a∗0, then 〈λ|µ〉 := 2〈λ,µ〉

〈µ,µ〉 = λ(hµ),

if λ,µ ∈ 	(g0, a0), then the reflection sλ : ν �→ ν − 〈ν|λ〉λ preserves 	(g0, a0).

If λ ∈ 	(g0, a0), then Hλ is called the coroot for λ and hλ is the normalized coroot.
The group W(g0, a0) generated by the sλ, λ ∈ 	(g0, a0), is the small Weyl group,
and those sλ are the root reflections or Weyl reflections. The small Weyl group can
also be characterized as NG0(a0)/ZG0(a0). As in the complex case it acts simply
transitively on the set of all positive root systems.

The restricted root system is an example of abstract root system. For this and for
use in Part IV we recall the definition.

Definition 10.1.3. An abstract root system is a finite subset 	 of a real vector space
V that is furnished with a (positive definite) scalar product 〈 , 〉 such that

RS1. 	 generates V as a vector space,
RS2. 	 is preserved by all reflections sλ : v �→ v − 2 〈v,λ〉〈λ,λ〉 ·λ with λ ∈ 	, and

RS3. if λ,µ ∈ 	, then the numbers 2 〈µ,λ〉〈λ,λ〉 are integers.

It follows that if λ ∈ 	 and also a multiple cλ ∈ 	, then c ∈ {± 1
2 , ±1, ±2}.

RRS. If 	 ⊂ (V , 〈 , 〉) satisfies RS1, RS2, and RS3, and if λ, cλ ∈ 	 implies
c = ±1, then 	 is called a reduced root system.
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To every nonreduced root system 	 one can associate a reduced root system
	reduced either by removing all longest elements in 	 or by removing all shortest
elements.

As in Section 1.1, a positive root system in an abstract root system 	 is a subset
	+ = 	+(g, h) such that (i) 	 is the disjoint union of 	+ and −	+, and (ii) if
λ,µ ∈ 	+ and λ + µ ∈ 	, then λ + µ ∈ 	+. The Weyl chambers are the
topological components of V \ (⋃λ∈	 λ⊥

)
as before. Weyl chambers are on one-

to-one correspondence C ↔ 	+ with the set of all positive root systems, by C =
{ξ ∈ V | λ(ξ) > 0 for all λ ∈ 	+}. Thus one can also specify positive root systems
as subsets of 	 on one side of a hyperplane that does not meet 	.

Also as in Section 1.1, a positive abstract root system 	+ specifies the simple
subsystem � = {ψ ∈ 	+ | ψ �= λ + µ for any λ,µ ∈ 	+}, in other words the
indecomposable elements in 	+.

A restricted root system is a (possibly nonreduced) root system. We indicate the
proof because it depends on a notion that we need for the remainder of this chapter.

A triple {E+, H,E−} ⊂ g0 is called an sl2 triple if

[H,E+] = 2E+, [H,E−] = −2E−, and [E+, E−] = H.

It will be convenient to refer to E+, H , and E− as the nil-positive, hyperbolic and
nil-negative elements, respectively. Of course they generate a subalgebra isomorphic
to sl(2;R). A basic property is the following.

Lemma 10.1.3. If 0 �= E′ ∈ gλ0, then there is a multiple E = cE′ such that
{E,−θ(E), [E,−θ(E)]} is an sl2 triple.

An sl2 triple {E+, H,E−} is θ -adapted if E− = −θ(E+).
The proof of Lemma 10.1.3 is a matter of careful normalization. One can use the

result to prove the following.

Proposition 10.1.4. The set 	(g0, a0) of restricted roots is a (possibly nonreduced)
root system.

Proof. The set 	(g0, a0) spans a∗0, since otherwise the subalgebra {ζ ∈ a0 : λ(ζ ) =
0 for all λ ∈ 	} would be nonzero and central in g0, contradicting the assumption
that g0 is semisimple. That proves RS1.

RS2 and RS3 are direct consequences of Lemma 10.1.3, as follows. If λ ∈
	(g0, a0) the resulting θ -adapted sl2 triple has form {E+λ, E−λ, hλ}, where E±λ ∈
g±λ0 and hλ is the normalized coroot. Now the adjoint action of the corresponding
sl(2;R), call it g0[λ], shows that every λ-string {µ + kλ ∈ 	(g0, a0) | k ∈ Z} is
connected, so sλ(µ) ∈ 	(g0, a0), which is RS2. This is the same argument as for
ordinary complex root systems. The integrality RS3 follows from the fact that hλ has
integral eigenvalues {−d,−d + 2, . . . , d − 2, d} in an irreducible g0[λ]-module of
dimension d + 1. ��
Remark 10.1.5. As already mentioned, comparing the restricted roots (and the corre-
sponding root spaces) with the full root system and root spaces, the major differences
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are that (1) the restricted root system may be nonreduced and (2) dim gλ0 may be
bigger than one. The list of simple real forms g0 for which	(g0, a0) is nonreduced is

su(p, q), |p − q| � 2; sp(p, q), |p − q| � 1; so∗(4r + 2); e6(−14); f4(−20).

Here the numbers in parentheses on e6 and f4 are dim s0− dim k0; they determine the
real form at hand. ♦

The obvious [gλ0, gµ0 ] ⊂ g
λ+µ
0 can be sharpened, using θ -adapted sl2 triples, to

prove the following.

Lemma 10.1.6. Suppose that λ, µ, λ+ µ ∈ 	(g0, a0).

1. If 0 �= Eλ ∈ gλ0 and 0 �= Eµ ∈ g
µ
0 , then either [Eλ, g

µ
0 ] = g

λ+µ
0 or [gλ0, Eµ] =

g
λ+µ
0 . In particular, [gλ0, gµ0 ] = g

λ+µ
0 .

2. If λ ∈ 	(g0, a0), then [gλ0, g−λ0 ] ⊂ Rhλ ⊕m0 ⊂ a0 ⊕m0.

Proof. The integrality condition RS3 implies that λ(hµ)µ(hλ) ∈ {0, 1, 2, 3} for
nonproportional roots. It is also clear for λ = ±µ. The remaining case is µ = ±2λ.
In that case λ(h±2λ) = ±1 and±2λ(hλ) = ±4.Hence, either λ andµ are orthogonal
or at least one of the integers λ(hµ), µ(hλ) is equal ±1. In the latter case assume
λ(hµ) = ±1.

Given λ,µ ∈ 	(g0, a0), we may now assume that λ(hµ) ∈ {−1, 0, 1}. Consider
the θ -adapted sl2 triple {Eµ,E−µ, hµ}. The corresponding subalgebra g0[µ] stabi-

lizes the subspace W := ∑ g
λ+jµ
0 , in other words W is a finite-dimensional g0[µ]-

module. The g
λ+jµ
0 are the hµ-eigenspaces with eigenvalues (λ+ µ)(hµ)+ 2j. By

choice of λ and µ the eigenvalue λ(hµ) ∈ {1, 2, 3}. The elementary representation

theory of g0[µ] now tells us that ad(Eµ) : gλ0 → g
λ+µ
0 is surjective.

We have just proved assertion 1. Assertion 2 is obvious and we omit its
proof. ��

10.1B The group AutR(g)

Whenever g is a complex Lie algebra we define AutR(g) denote the group of Lie
algebra automorphisms of the underlying real Lie algebra structure of g. In our
case g is semisimple so the adjoint representation maps g isomorphically onto the
Lie algebra of AutR(g). Thus Aut(g) is an open subgroup of AutR(g). Since G is
connected and semisimple, Ad(G) is the identity component of AutR(g). The Cartan
involution σ = τθ of G (whose fixed point set is the compact real form Gu) carries
over to Aut(g) as the Cartan involution

σ̂ : AutR(g)→ AutR(g) by σ̂ (γ ) = σγ σ−1.

If γ is a linear transformation of g let γ ∗ denote its adjoint relative to the positive
definite h(ξ, η) := −〈ξ, θη〉 on the real vector space structure of g. One checks that
σ̂ : γ �→ (γ ∗)−1, and the fixed point set
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(10.1.7) KAut := {γ ∈ Aut(g) | γ ∗ = γ−1} = Aut∩O(g, h)
is a maximal compact subgroup of AutR(g). Then KAut meets every topological
component of AutR(g).

Proposition 10.1.7. Suppose that g is a complex simple Lie algebra. Then every
element ϕ ∈ AutR(g) is either a holomorphic or an antiholomorphic linear map. In
particular, if ν is any antiholomorphic automorphism of g, e.g., complex conjugation
over a real form, then AutR(g) = Aut(g) ∪̇ ν Aut(g).

Proof. Let J denote the complex structure on g. Then gC = g1,0 ⊕ g0,1, the direct
sum of ideals. Here g1,0 is the holomorphic tangent space, the (+i)-eigenspace of
JC, and g0,1 is the antiholomorphic tangent space, the (−i)-eigenspace of JC. These
ideals are unique, so either ϕC(g1,0) = g1,0 and ϕ is holomorphic, or ϕC(g1,0) = g0,1

and ϕ is antiholomorphic. ��

10.1C Varieties defined over R

A complex linear algebraic group H ⊂ GL(V ) is said to be defined over R if it is
the complexification of a real linear algebraic group. That means that there is a real
structure, i.e., an antiholomorphic R-linear involution µ : V → V such that H is
stable under the induced involutive automorphism µ̂ : ψ �→ µψµ−1 of GL(V ).
This definition is equivalent to the definition which says that H has a real structure
if the defining ideals of H have a generating system consisting of polynomials with
real coefficients. The subset HR = {h ∈ H | µ̂(h) = h} is called the set of real
points. For example, G0,Gu are the sets of real points GR of G with respect to the
real structures τ and σ , respectively.

Similarly, subvariety Y of a complex vector space W is defined over R if it is
the complexification of a real affine algebraic variety, in other words if it has a real
structure, i.e., if it is stable under a holomorphic linear involution ν : W → W .
Again, this is equivalent to the condition that the defining ideals are generated by
polynomials with real coefficients, and then YR = {y ∈ Y | ν(y) = y} is called the
set of real points.

A complex algebraic action H × Y → Y is said to be defined over R if H, Y are
defined over R as above and ν(h(y)) = µ̂(h)(ν(y)) for all h ∈ H, y ∈ Y.

Many actions have nonclosed orbits. A basic example is the conjugation action
of H on Y = H : The orbits here are the conjugacy classes. These are nonclosed (for
reductive H ) if and only if the corresponding elements have nontrivial unipotent part
in its Jordan decomposition. The set of closed orbits however can be parameterized
in a very convenient way (we discuss this in more detail in the next paragraph). We
conclude this paragraph by giving a relation between closed H and HR orbits. The
proof of the following proposition can be found in [BoHC, Proposition 2.3] or [Br,
Proposition 5.3].

Proposition 10.1.8. If H × Y → Y is an algebraic action defined over R, then the
intersection H ·y ∩ YR is either empty or is a finite union

⋃
l�j�
(HR)

0·yj of the
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orbits of the real form (HR)
0. The orbits (HR)

0·yj , yj ∈ YR, are closed if and only
if the H ·yj are closed.

10.1D Real and complex quotients

If there are nonclosed H -orbits in Y , then, furnished with the quotient topology, the
orbit space Y/H is not Hausdorff. In such a situation it is often appropriate to consider
an invariant-theoretic quotient. An example of such is the categorical quotient which
behaves well with respect to many natural functors and is by definition Hausdorff.
Let us sketch its basic properties

In the complex affine category a variety Y is completely determined by its (finitely
generated) algebra of global regular algebraic functions O(Y ) as the (maximal) spec-
trum Specm(O(Y )).

If the (complex) algebraic group H is reductive, the subalgebra O(Y )H of H -
invariant functions is finitely generated (see, e.g., [Kra]). The categorical quotient
Y//H is the affine variety Specm(O(Y )).

Let π : Y → Y//H be the canonical quotient map which is an affine algebraic
map. If Y is a normal space, the quotient Y//H is likewise normal. However, if Y
is smooth, the quotient may nevertheless be singular. The defining property of this
quotient is that in each fiber of π there is precisely one closed H -orbit. In particular,
the closure of every H -orbit contains precisely one closed H -orbit. It should be
noted that this property fails for nonaffine actions. For example, for the action of
main concern in this monograph, namelyK = (K0)

C acting on flag manifoldsG/Q,
there are several closedK-orbits, i.e., the base cycles in the respective openG0 orbits,
which are all contained in the closure of the unique open K-orbit in G/Q.

For real affine algebraic actions the situation with respect to closed orbits is
more complicated than that in the complex case. Let us consider for example a real
reductive group H with global Cartan decomposition H = K0 · exp s0, and suppose
that it is acting algebraically on a real affine variety Y.As in the complex situation, the
underlying set of the real categorical quotient Y//H parameterizes the closed orbits.
The real categorical quotient is a Hausdorff space, the quotient map p : Y → Y//H

is continuous and by definition every fiber of p contains precisely one closed H -
orbit. Unlike the complex case, one can only furnish Y//H with a structure of an
semialgebraic set [BCR], which in general is not algebraic. The simplest example
in this context is the action Z2 × R → R by change of sign. The quotient is the
semi-algebraic set R//Z2 = R/Z2 = [0,∞).

In many situations the real affine action arises as the restriction to the real points
of a complex affine action which is defined over R. Let H × Y → Y be such an
action and YR ⊂ Y be the real affine subvariety of real points. It is instructive to
compare the sets (Y//H)R, π(YR) and YR//HR, which in general are all different.
The following diagram explains the situation:
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YR YR Y⏐⏐%p
⏐⏐%π ⏐⏐%π

YR//HR

P−→ π(YR) ⊆ (Y//H)R ⊂ Y//H

.

The mapP : YR//HR → π(YR) is a finite semialgebraic map andπ(YR), by a theorem
of Tarski and Seidenberg, is a semialgebraic subset of (Y//H)R.

10.2 Linearization and the Jordan decomposition

10.2A Reduction to an action by conjugation

One of the objectives of this chapter is to give a description of the G0-orbit structure
in the boundary bd(U) of the universal domain U = G0· exp iω0(x0), considered as
an open subset of the smooth complex affine space � = G/K. Here, x0 denotes the
base point 1K ∈ G/K.

Recall that ω0 is the convex polyhedron in a0, a maximal abelian subalgebra in
s0 given by ω0 := {ξ ∈ a0 : |α(ξ)| < π

2 for all α ∈ 	(g0, a0)}, where 	(g0, a0)

denotes the system of restricted roots. By definition the subset exp iω0(x0) meets
every G0-orbit in U .

The structure of the general G0-orbits in G/K is more difficult to describe. To
put this in perspective, let us recall the G0-equivariant polar coordinate mapping
! : G0 ×K0 s0 → G/K of Chapter 6. The G0-action on G0 ×K0 s0, the total
space, is quite simple, because (1) it is proper, in particular, every orbit is closed,
(2) [1, ia0] = a0 meets every G0-orbit and (3) the intersection of a G0-orbit with a0
coincides with an orbit of the (small) Weyl group W(g0, a0).

While UC = !−1(U) !−→ U is a diffeomorphism, the property of ! being a
(local) diffeomorphism breaks down at the boundary points of UC. The restriction
! : bd(UC) → bd(U) is neither injective nor surjective; in particular, as we will
see in Corollary 10.6.4, the image !(bd(UC)) is of positive codimension in bd(U).
Further, it should be noted that there are nonclosed orbits in G/K , in fact most orbits
in bd(U) are not closed, and the closure of the set U = G0· exp ia0(x0) has a nonempty
complement in G/K.

Although the group action G0 × G/K → G/K and the corresponding orbit
structure seems at a first glance to be quite complicated, they can be well understood
by replacing the action by a certain action by conjugation. This is a well-known
technique (see [dCP], [BoHC], [HeSch]). For instance the actionK×G/K → G/K

is equivalent to a conjugation action using the map η : G→ G, g �→ θ(g)g−1,where
θ is the defining involution of the symmetric subgroup K.A simple check shows that
η factors over G/K and induces a K-equivariant map η : G/H → G where K acts
on G by conjugation.

Sometimes it is more convenient to work in Ad(G) = Int(g) ⊂ GL(g) rather than
in G. In that case the map η is given by g �→ θ ·Ad(g)·θ ·Ad(g−1). In our situation
the real form G0 = Gτ is acting on G/K and thus η should be modified as follows
(see [M2]):
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(10.2.1) η : G→ AutR(g), g �−→ τ · Ad(g) · θ · Ad(g−1).

Note that the image Image(η) ⊂ σ AutR(g)0.
Ifµ : g→ g is a linear map, we write gµ := Ad(g) ·µ ·Ad(g−1). In this notation,

η(g) = τ · gθ . Further, we also write g · ϕ := gϕ = Ad(g) · ϕ · Ad(g−1) when we
wish to stress that the action is by conjugation on AutR(g).

The proofs of the following statements are elementary and are omitted.

Lemma 10.2.2. Let η : G→ AutR(g) as defined in (10.2.1).

(i) The map η factors through G/K.
(ii) The induced map η : G/K → AutR(g) is G0-equivariant with respect to the

action by left translations on G/K and by conjugation in AutR(g).

For later purposes we state some simple properties of η with respect to various
involutions. Given an involution ν ∈ AutR(g), ν̂(ψ) = ν·ψ ·ν−1 is the corresponding
involution in Aut(AutR(g)).

Lemma 10.2.3. Let µ and ν be involutions of G. Then

(i) τ̂ (η(x)) = τ · η(x) · τ = η(x)−1, and
(ii) if µ, ν commute, then for every involution ζ that commutes with both µ and ν,

ζ̂ (η(x)) = η(ζ(x)).

10.2B Geometric properties of η

Here we give more detailed information on the fibers of η : G/K → AutR(g) and
the image Im(η) in the real reductive group AutR(g).

Lemma 10.2.4. The image Im(η) is Zariski closed in AutR(g).

Proof. The proof relies on the following well-known fact concerning conjugacy
classes (see [Hu2, Proposition 18.2] or [BoHC, Proposition 10.1]).

Proposition 10.2.5. Let H be a closed algebraic subgroup of GL(V ) and let s ∈
GL(V ) be a semisimple element which normalizesH . RegardH as acting on GL(V )
by conjugation. Then the orbit H · s := Ad(H)(s) is closed in GL(V ).

Note that Im(η) is closed if and only if {Ad(g)θ Ad(g−1) | g ∈ G} is closed in
GL(g). Apply Proposition 10.2.5 with s = θ and H = Ad(G). ��
Lemma 10.2.6 (NG(K)-invariance). The map η factors through a G0-equivariant
embedding

G/NG(K) ↪→ AutR(g);
in other words, η(x) = η(y) if and only if y = xg−1 for some g ∈ NG(K).
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Proof. We may write y = xg−1 for some g ∈ G. Thus it must be shown that
η(x) = η(xg−1) if and only if g ∈ NG. But η(x) = η(xg−1) is equivalent to
Ad(g)θ = θ Ad(g), which in turn is equivalent to the fact that Ad(g) stabilizes
the complexified Cartan decomposition g = k + s. If Ad(g) stabilizes k + s, then
Ad(g)(k) = k, i.e., g ∈ NG(K). On the other hand, if g ∈ NG(K), then Ad(g)(s) = s
because s is the orthogonal complement of k with respect to the Killing form of g. ��

We note that NG(K)/K is a finite abelian group. See [Fe1] for the classification.
Summary: η induces a G0-equivariant map η : G/K → Im(η) ⊂ AutR(g)

which is a finite abelian covering. An orbit G0·x in G/K is closed if and only if the
G0-conjugacy class of η(x) is closed in AutR(g). Hence, for our purposes it suffices
to understand the conjugation action G0 × Im(η)→ Im(η).

We have already pointed out that G · η(x) (= Ad(Ad(G))(η(x))) is closed if and
only if η(x) is semisimple. The same statement remains true if we replace G by the
real form G0.

Proposition 10.2.7. A G0-orbit G0·x in G/K is closed if and only if the element
η(x) ∈ AutR(g) is semisimple.

Proof. If η(x) is semisimple, G·η(x) is closed by Proposition 10.2.5. The orbit
G·η(x) is the homogeneous space G/ZG(η(x)). Note that as a consequence of
Lemma 10.2.3(i) the isotropy subgroup ZG(η(x)) is a τ -stable. The “if’’ part of the
proposition follows from the fact that G0·η(x) is closed in G·η(x). This is true under
broader conditions. More precisely, we have the following.

Lemma 10.2.8. Let τ : G → G be an arbitrary involutive automorphism of a
semisimple Lie group, G0 an open subgroup of Gτ and H ⊂ G an arbitrary closed
τ -stable subgroup. Then G0·x0 is closed in G/H with x0 = 1H .

Proof of the lemma. From the action of τ on the tangent space of G/H at x0, G0
acts locally transitively on the fixed point set of τ , which itself is closed. Thus every
G0 orbit in that fixed point set is already closed. ��

In order to prove the “only if’’ part we will show that if η(x) is not semisimple,
then one can construct a one-parameter subgroup {γ (t)} ⊂ G0 such that the closure
of {γ (t)η(x)γ (t)−1} belongs to an orbit G0.η(y) with semisimple η(y). This is a
classical idea and of course the key tool here is the Jordan decomposition. We recall
the basic facts in the next subsection.

10.2C Jordan decomposition

Classically one knows that every element z ∈ GLR(g) has a unique multiplicative
Jordan decomposition z = szuz = uzsz with a semisimple sz and a unipotent uz.
Let Endnil

R
(g) denote the set of nilpotent elements in EndR(g) and GLuni

R
(g) the set

of unipotent elements in GLR(g). The exponential map defines a bijection between
Endnil

R
(g) and GLuni

R
(g). The reverse map, log : GLuni

R
(g) → EndR(g) is given
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explicitly by the formula u �→ ∑∞
n=1(−1)n−1(u − I )n/n, where the sum contains

only finitely many nonzero terms.
We begin here by describing the particular properties of sψ and uψ for ψ an

automorphism of g. Since AutR(g) is an algebraic subgroup, the semisimple and
unipotent parts of an element ψ ∈ AutR(g) also belong to AutR(g). Let gψ denote
the subalgebra of elements fixed by ψ .

Lemma 10.2.9. Let sψ ·uψ be the Jordan decomposition of ψ ∈ AutR(g). Then there
is a unique ad-nilpotent element E ∈ g with uψ = Ad(expE) and E ∈ gψ .

Proof. Define N := log uψ ∈ End(g) and note that exp : RN → GLR(g) is
polynomial. Since exp ZN ⊂ AutR(g) now exp RN ⊂ Aut0(g) and N ∈ ad(g),
N = ad(E) for some E ∈ g. Since sψ · Ad(expE) = Ad(expE) · sψ and
ψ · Ad(expE) = Ad(expE) · ψ, we conclude that E ∈ gψ . ��

Now we are in the position to finish the following proof.

Proof of “only if’’ in Proposition 10.2.7. Assume that η = η(x) is not semisimple.
Let η = sη·Ad(expE) = sη·uη, Jordan decomposition withE ∈ gη(x)\0, by Lemma
10.2.9. The subalgebras gη and gsη carry more structure: given two involutions
µ, ν ∈ AutR(g), a direct computation shows that the subalgebra of fixed points
of µ·ν is given by gµ·ν = gν·µ = gµ ∩ gν ⊕ g−µ ∩ g−ν . In our situation, i.e.,
for η(x) = τ · xθ , we have τη(x)τ = η(x)−1. Consequently, τsητ = s−1

η and
τ Ad(exp(E))τ = Ad(exp(−E)). This shows that

(10.2.10) gsη = (gsη ∩ gτ )+ (gsη ∩ g−τ )

is reductive and τ -stable. Further, since sη · uη|gη = Id, we also have sη|gη =
uη|gη = Id, and consequently gη ⊂ gsη . We have proved the following. ��

Observation 10.2.11. If E = Eη(x) is the nilpotent element in the Jordan decompo-
sition of η(x) as in Lemma 10.2.9, then E ∈ (g−τ ∩ g−(xθ)) ⊂ (gsη ∩ g−τ ).

Next we construct a one-parameter subgroup {γ (t)} ⊂ AutR(g)with the property
limt→−∞ γ (t)(sηuη)γ (t)

−1 ∈ G0.sη. The key ingredient here is the Jacobson–
Morozov theorem. We state it in the form most suitable for us. Recall that a triple
{E,F,H } ⊂ g is called an sl2-triple if [H,E] = 2E, [H,F ] = −2F and [E,F ] =
H, in other words if {E,F,H } spans a Lie algebra isomorphic to sl2(K).An obvious
modification of the proof in [KR, Proposition 4], where the statement was proved for
complex symmetric pairs, yields the following.

Proposition 10.2.12. Let l be a real reductive Lie algebra and E ∈ l a nonzero ad-
nilpotent element. Then there exist F,H ∈ l such that {E,F,H } is an sl2-triple. If
µ : l→ l is an involutive automorphism and E ∈ l−µ, then one can choose F ∈ l−µ
and H ∈ lµ.
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As already remarked, gsη is a τ -stable reductive subalgebra such that the nilpotent
element E = Eη(x) lies in gsη ∩ g−τ . The above proposition gives us the elements
H ∈ gsη ∩ gτ and F ∈ gsη ∩ g−τ such that E,H,F is a sl2-triple. Define γ (t) :=
exp tH . Then

γ (t)η(x)γ (t)−1 = γ (t)(sηuη)γ (t)
−1

= (γ (t)sηγ (t)
−1)(γ (t)uηγ (t)

−1)

= sη(γ (t)Ad(expE)γ (t)−1) = sη Ad(exp(e2tE)
t→−∞−→ sη.

We have proved that if η(x) = sηuη with uη �= 1, then G0.sη is contained in the
closure of G0.η(x). The proof of Proposition 10.2.7 is now complete. ��

Although η : G→ AutR(g) is not a group homomorphism we can lift the Jordan
decomposition of η(x) to the group G as follows.

Proposition 10.2.13 (Lifting of the Jordan decomposition).

(i) Given g ∈ G, let η(g) = sηuη = sη · Ad(expE) be the Jordan decomposition
in AutR, where E ∈ g−τ ∩ g−(gθ) is the corresponding nilpotent element as in
Observation 10.2.11. Then η(exp( 1

2E) · g) = sη.
(ii) Let g ∈ G such that G0 · gx0 is closed in G/K, i.e., η(g) is semisimple. Let

0 �= E ∈ g−τ ∩ g−gθ be ad-nilpotent and define y := exp(− 1
2E) · gx0. Then

η(y) has Jordan decomposition syuy with sy = η(g) and uy = Ad(expE). In
particular, G0 · exp(− 1

2E)·gx0 is not closed.

Proof. We evaluate η(exp( 1
2E)g). Since τ(E) = −E and Ad(exp tE) commutes

with sη for every t ,

η(exp( 1
2E)g) = τ Ad(exp( 1

2E)) · Ad(g) · θ · Ad(g−1) · Ad(exp(− 1
2E))

= Ad(exp(− 1
2E)) · τ · Ad(g) · θ · Ad(g−1) · Ad(exp(− 1

2E))

= Ad(exp(− 1
2E)) · sηuη · Ad(exp(− 1

2E))

= sη · Ad(exp(− 1
2E)) · Ad(exp(E)) · Ad(exp(− 1

2E)) = sη.

A similar computation proves the claim for E ∈ g−τ ∩ g−gθ as in (ii). ��

10.3 Characterization of closed orbits

Polar decomposition of the eigenvalues of a semisimple element s ∈ GLR(V ) gives
s = sellshyp = shypsell, where sell is elliptic (eigenvalues all of absolute value 1)
and shyp is hyperbolic (eigenvalues all positive real). If g ∈ GLR(V ) that refines
its Jordan decomposition g = su to g = sellshypu, where all three terms commute
with each other. If g ∈ AutR(g) then all three terms belong to AutR(g). With
η : G/K → AutR(g) in mind, we define the set (G/K)ell ⊂ G/K of η-elliptic
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elements as the preimage of the set of elliptic semisimple elements in AutR(g). As
for any reductive linear group, an element of AutR(g) is elliptic semisimple if and
only if it belongs to some compact subgroup.

The main observation of this section is that every closed G0-orbit in c
(U) is
contained in the set (G/K)ell, (see Proposition 10.3.2). Before we give the precise
statement, we characterize the subset of η-elliptic elements in G/K.

Proposition 10.3.1 (Elliptic elements). The set (G/K)ell of η-elliptic elements co-
incides with G0 · exp(ia0)(x0).

Proof. The elements of G0.η(g) = {Ad(h)η(g)Ad(h)−1 | h ∈ G0} all have the
same eigenvalues so (G/K)ell is G0-invariant. Thus exp(ia0)(x0) ⊂ (G/K)ell will
imply G0 · exp (ia0)(x0) ⊂ (G/K)ell. To prove this inclusion note that, for ξ ∈ a0,
we have

η(exp(iξ(x0)) = τ Ad(exp(iξ))θ Ad(exp(−iξ))
= τθ Ad(exp(−2iξ)) = σ Ad(exp(−2iξ)).

Since exp ia0 ⊂ Gu, Ad(exp−2iξ) commutes with σ , so η(exp iξ(x0)) commutes
with σ. By (10.1.7) we conclude that η(exp(ia0)·x0) is contained in a maximal com-
pact subgroup of AutR(g), i.e., every element in η(exp(ia0)·x0) is elliptic. We have
proved G0 · exp (ia0)(x0) ⊂ (G/K)ell.

For the opposite inclusion, let η(g) be elliptic semisimple. Then it commutes
with a Cartan involution σ ′′ of g.

Claim. There exists h ∈ G0 such that η(hg) commutes with the original Cartan
involution σ.

Proof of the Claim. If σ ′′ does not commute with τ , we replace it by another Cartan
involution σ ′ which does. For define κ(ξ, ζ ) = −〈ξ, σ ′′ζ 〉 where we work on the
underlying real Lie algebra structure

R
g of g. Then κ is a positive definite symmetric

bilinear form on
R
g. Now compute κ(τσ ′′ξ, ζ ) = −〈τσ ′′ξ, σ ′′ζ 〉 = −〈σ ′′ξ, τσ ′′ζ 〉 =

−〈τσ ′′ζ, σ ′′ξ〉 = κ(τσ ′′ζ, ξ〉. This shows that τσ ′′ is diagonalizable over R as a linear
transformation of the real vector space

R
g. Thus ν := (τσ ′′)2 lies on a one-parameter

subgroup t �→ νt of Aut(g). Define σ ′ = ν
1
4 σ ′′ν− 1

4 . Following [Hel, Chapter III,
§7], σ ′ commutes with τ . By direct calculation one verifies that ν, and thus the νt ,
commute with η(g). It follows that σ ′ commutes with η(g).

In the above argument, νt ∈ Ad(G0) because ν commutes with τ . So the one-
parameter subgroup t �→ νt is of the form t �→ exp(tα) for some α ∈ g0.

Both σ ′ and our original σ commute with τ . So we have a Cartan involution θ ′
of g0 with σ ′ = τθ ′, and θ ′ is of the form Ad(Ad(h1))θ for some h1 ∈ G0. Thus
σ ′ = Ad(h1)σ Ad(h−1

1 ).
In analogy to the above construction of ν, one argues that µ := σσ ′σσ ′ lies on a

one-parameter subgroup t �→ µt of Aut(g), and µ
1
4 σ ′µ− 1

4 commutes with σ . Both

are Cartan involutions of g, so they are equal, σ = µ
1
4 σ ′µ− 1

4 . Again, µ commutes
with τ and it follows that t �→ µt is of the form t �→ exp(tβ) for some β ∈ g0. Now
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h := exp( 1
4β) ∈ G0 has the property that η(hg) commutes with σ . The Claim is

proved. ��
Replacing g by hg we may now assume that η(g) and σ commute. Now we will

adjust g so that it lies in Gu = Gσ . With respect to the global Cartan decomposition
of G defined by σ , write g = u exp(ζ ) with u ∈ Gu and σ(ζ ) = −ζ . We show
that in fact exp(ζ ) ∈ K . Since σ commutes with τ and Ad(u) and σ Ad(exp ζ ) =
Ad(exp(−ζ ))σ , we have

ση(g) = σ · (τ Ad(u)Ad(exp(ζ ))θ Ad(exp(−ζ ))Ad(u−1))

= τ Ad(u)Ad(exp(−ζ ))θ Ad(exp(ζ ))Ad(u−1) · σ.
On the other hand

ση(g) = η(g)σ = τ Ad(u)Ad(exp(ζ ))θ Ad(exp(−ζ ))Ad(u−1) · σ.
Combining these two equations, we obtain

Ad(exp(ζ )) · θ · Ad(exp(−ζ )) = Ad(exp(−ζ )) · θ · Ad(exp(ζ )),

so Ad(exp(2ζ )) commutes with θ . Since the restriction Ad : exp(igu) → Aut(g)
is injective, it follows that θ(exp(ζ )) = exp(ζ ), i.e., exp(ζ ) ∈ K . Replacing g

by g exp(−ζ ), it follows that g(x0) = g exp(−ζ )(x0); hence, we may assume that
g ∈ Gu.

Since Gu = K0 · exp(ia0) · K0, we may assume that g ∈ K0 exp(ia0) and
then translate it by left multiplication by an element of K0 to reach the following
conclusion: If g ∈ G is such that η(g) is elliptic, then there exists h ∈ G0 and l ∈ K
with hgl ∈ exp ia. In other words, there is h ∈ G0 with hg(x0) ∈ exp(ia0)(x0).
This proves the inclusion (G/K)ell ⊂ G0 · exp(ia0)(x0). ��

The boundary bd(U) in G/K contains nonclosed orbits. However, since G/K is
a real affine variety, every orbit G0(y) has unique closed G0-orbit in its closure. The
closed orbits in bd(U) can be described as follows.

Proposition 10.3.2. Every closed orbit G0(y) in bd(U) meets exp bd(iω0)(x0) and
every orbit G0(x) with x ∈ exp bd(iω0)(x0) is closed. Furthermore,

(exp ia0(x0)) ∩ c
(U) = c
(exp iω0(x0)) = exp(c
(iω0))(x0).

Proof. Let G0(y) be a closed orbit in bd(U). Choose sequences {ξn} in ω0 and {gn}
in G0 so that xn := gn exp(iξn)(x0) → y. Consider the corresponding sequences
η(xn) → η(y). Since the set of eigenvalues Spec(ϕ) ∈ Cn/Sn varies continu-
ously in ϕ, ellipticity of the η(xn) implies ellipticity for η(y). By Proposition 10.3.1
we have y ∈ G0· exp(iζ )(x0) for some ζ ∈ a0. By continuity, ζ ∈ bd(ω0), and
we have proved bd(U) ∩ (exp(ia0)(x0)) ⊂ exp(i bd(ω0))(x0). The opposite inclu-
sion is trivial. It follows that bd(U) ∩ (exp ia0(x0)) = exp(i bd(ω0))(x0). Now
(exp(ia0)(x0)) ∩ c
(U) = exp(c
(iω0))(x0). ��
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10.4 The slice theorem and related isotropy computations

An important tool for the investigation of nonclosed orbits in bd(U) is (a real version
of) the Luna slice theorem. Roughly speaking, given an algebraic action of a reductive
groupG on a smooth affine variety Y , aG-invariant neighborhood of a closedG-orbit
G(y) ∼= G/H is G-equivariantly isomorphic to a neighborhood of the zero section
of the homogeneous bundle G ×H V , where V ⊂ TyY is a H -stable subspace,
complementary to Ty(G(y)), and H × TyY → TyY is the linear isotropy action.
Here is the precise statement.

Theorem 10.4.1 (Slice Theorem). Let H × Y → Y be an affine algebraic action
defined over R with H reductive and Y smooth. Let y ∈ YR such that H(y) is
closed and let L denote the isotropy group at y. Then there is an L- stable open (in
the Hausdorff topology) neighborhood U ⊂ TyY/Ty(G(y)) and an L- equivariant
isomorphism e : U → e(U) ⊂ Y such that

H ×L U −→ Y [h, v] �−→ h(e(v))

is anH -equivariant isomorphism, defined over R, onto the image which is an openH -
stable neighborhood ofH(y). In particular, the above map defines anHR-equivariant
isomorphism ofHR×LR

UR onto an openHR-invariant neighborhood ofHR(y) inYR.

See [Br] for proofs and further details.
We apply the above theorem to a closed orbit G0(ax0) ⊂ G/K = � for a =

exp(iξ) and ξ ∈ a0. In the above notation, Y = G/K×G/K,H = diag(G) ⊂ G×G
and the real structures are τ̂ : Y → Y , (y1, y2) �→ (τ (y2), τ (y1)), and
τ : H → H . We identify � with YR = {(gK, τ(g)K) | g ∈ G}. Before going
further we must derive explicit information concerning the isotropy representation of
(G0)ax0 on Tax0(G/K).

10.4A Geometry of real orbits in G/K

Starting with a general situation, let K ⊂ G denote a complex symmetric subgroup
which is the fixed point set of a holomorphic involution θ : G → G. As usual x0
denotes the base point 1K in G/K. Given x = gx0 ∈ G/K let gx denote the Lie
algebra of the isotropy group gKg−1. We then have the identification Tx(G/K) =
g/gx = g−(gθ) where g

θ = Ad(g)·θ ·Ad(g−1).

The real form G0 = Gτ ⊂ G acts on � := G/K by left translations. Consider
an orbit M := G0(x) in �. Since G0 acts by biholomorphic transformations, the
complex structure on G/K induces a Cauchy–Riemann structure on M . In this
connection see Section 6.3. The first generalities in this situation can be stated as
follows. Let T CR

y M denote the Cauchy–Riemann tangent space TyM ∩ iTyM of M
at the point y.

Lemma 10.4.2. LetG be a complex Lie group,H a complex subgroup andX = G/H

the corresponding complex manifold. Let G0 be a real form of G defined by the
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involution τ. Consider the action by left translations G0 × X → X. Every orbit
M := G0 · y (which is a locally closed submanifold) carries a natural G0-invariant
Cauchy–Riemann structure. The corresponding subspaces of TyX = g/gy are given
as follows:

T CR
y M ↪−→ TyM ↪→ TyX y = gx0∥∥ ∥∥ ∥∥

gy + τgy

gy
↪−→ g0 + gy

gy
↪−→ g

gy
.

In our particular situation H = K is a symmetric subgroup, and we have the
identification Tgx0(G/K) = g−(gθ) = Ad(g)(s). Let pr : g → Ad(g)(s) denote
the linear projection. In order to describe the image of pr : g0 → g−(gθ), needed
for a description of the subspaces TxM and T CR

x M , it is necessary to give a more
explicit description of Ad(g). Further, in view of the above Slice Theorem, the G0-
orbit structure in a neighborhood of a closed orbit M = G0(x) is determined by the
isotropy action of G0 ∩Gx on Tx�/TxM.

Here we need only describe Ad(g) for g ∈ exp ia0. For x ∈ exp(ia0)(x0)we also
describe the normal space Tx�/TxM and the isotropy Lie algebra (g0)x in terms of
certain root spaces. The computation of Ad(exp iξ) for ξ ∈ a0 will be given with
respect to some appropriately chosen basis of g0 which is related to pairs gλ0, g

−λ
0 of

restricted root spaces.

10.4B Ad(exp(iξ)) and related subspaces

Fix a Cartan subalgebra t of m, so h := t+a is a Cartan subalgebra of g. We emphasize
our convention that a-root spaces are written with superscript while h-root spaces are
written with subscript. Thus, given a restricted root λ ∈ 	(g0, a0), the a-root and
a0-root spaces are

(10.4.3) gλ0 = g0 ∩ gλ where gλ :=
∑

{α∈	(g,h) | α|a=λ} gα,

and the resulting restricted root decompositions are

(10.4.4) g0 = m0 + a0 +
∑

	(g0,a0)
gλ0 and g = m+ a+

∑
	(g0,a0)

gλ.

If λ ∈ 	(g0, a0) then θ(gλ) = σ(gλ) = g−λ and τ(gλ) = gλ. So while the root
space summands in (10.4.4) are preserved by τ they are pairwise interchanged by σ
and θ . For this reason it will sometimes be convenient to have the notation

g
[λ]
0 = g0 ∩ g[λ] where g[λ] = gλ + g−λ

for the restricted root space parts of (10.4.4) preserved by all of τ , θ and σ .
Lemma 10.1.3 tells us that, for every pair {λ,−λ} ∈ 	(g0, a0) we can select

bases {Eλ
1 , . . . , E

λ
k } of gλ0 and {E−λ1 , . . . , E−λk } of g−λ0 such that the {Eλ

j , E
−λ
j , hλ}

are θ -adapted sl2-triples. Then we have
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(10.4.5)
Xλ
j := Eλ

j − E−λj = Eλ + θEλ ∈ gθ0 and

Yλj := Eλ
j + E−λj = Eλ − θEλ ∈ g−θ0 .

They satisfy the identities

(10.4.6) [Xλ
j , Y

λ
j ] = 2hλ [hλ,Xµ

j ] = µ(hλ)Y
µ
j [hλ, Yµj ] = µ(hλ)X

µ
j .

Each of the complex 2-planes 〈〈Xλ
j , Y

λ
j 〉〉C is stable under the action of Ad(exp ia0).

The proof of the following proposition makes extensive use of this basis.
We underline the fact that most of the spaces in the following proposition should

be viewed as real subspaces of the underlying real vector space structure of g.

Proposition 10.4.7. Let a = exp(iξ) ∈ exp(ia0), � = G/K and M = G0(ax0).

Select a positive system 	+(g0, a0). In the direct sums λ runs through elements of
	+(g0, a0) which satisfy the given (in)equalities.

Tax0� = a0 + ia0 +
∑

λ(ξ)∈Zπ

(g[λ])−θ +
∑

λ(ξ)∈ π
2 +Zπ

(g[λ])θ +
∑

λ(ξ)/∈Z
π
2

Ad(a)((g[λ])−θ )

Tax0M = a0 +
∑

λ(ξ)∈Zπ

(g
[λ]
0 )−θ +

∑
λ(ξ)∈ π

2 +Zπ

(g
[λ]
0 )θ +

∑
λ(ξ)/∈Z

π
2

Ad(a)((g[λ])−θ )

T CR
ax0

M =
∑

λ(ξ)/∈Z
π
2

Ad(a)((g[λ])−θ ).

Further, the real reductive subalgebra gη(a) = (g0 ∩ g
aθ )+ (ig0 ∩ g−(aθ)) defines a

real symmetric pair for which the isotropy algebra ah := (g0 ∩ g
aθ ) = (g0)ax0 and

the tangent component ar := (ig0 ∩g−(aθ)) is a (g0)ax0 -stable complement to Tax0M.

In terms of root spaces we have

(10.4.8) a
h = g0 ∩ g(

a
θ) = (g0)ax0 = m0 +

∑
λ(ξ)∈Zπ

(g
[λ]
0 )θ +

∑
λ(ξ)∈ π

2 +Zπ

(g
[λ]
0 )−θ

and

(10.4.9) ar = ig0∩g−(
a
θ) ∼= (Tax0M)⊥ ∼= ia0+

∑
λ(ξ)∈Zπ

i(g
[λ]
0 )−θ+

∑
λ(ξ)∈ π

2 +Zπ

i(g
[λ]
0 )θ .

Proof. Let a := exp iξ for ξ ∈ a0. We first compute Ad(a) on 〈〈Xλ
j , Y

λ
j 〉〉C with

respect to the basis of (10.4.5). The matrix presentation Mat(Ad(exp iξ))with respect
to {Xλ

j , Y
λ
j } is of the following shape:

(10.4.10)

Mat(Ad(exp iξ)) =
(

cosh λ(iξ) sinh λ(iξ)
sinh λ(iξ) cosh λ(iξ)

)
=
(

cos λ(ξ) i sin λ(ξ)
i sin λ(ξ) cos λ(ξ)

)
.

For λ(ξ) ∈ π
2 + Zπ or λ(ξ) ∈ Zπ the above matrices are particularly simple. Next,

we compute the restrictions of aθ and η(a) to 〈〈Xλ
j , Y

λ
j 〉〉C with respect to the real basis

{Xλ
j , iX

λ
j , Y

λ
j , iY

λ
j }:



10.4 The slice theorem and related isotropy computations 151

(10.4.11)

Mat(aθ) =

⎛⎜⎜⎝
cos 2λ(ξ) 0 0 sin 2λ(ξ)

0 cos 2λ(ξ) − sin 2λ(ξ) 0
0 − sin 2λ(ξ) − cos 2λ(ξ) 0

sin 2λ(ξ) 0 0 − cos 2λ(ξ)

⎞⎟⎟⎠ ,

Mat(η(a)) =

⎛⎜⎜⎝
cos 2λ(ξ) 0 0 sin 2λ(ξ)

0 − cos 2λ(ξ) sin 2λ(ξ) 0
0 − sin 2λ(ξ) − cos 2λ(ξ) 0

− sin 2λ(ξ) 0 0 cos 2λ(ξ)

⎞⎟⎟⎠ .

We are now in the position to compute the various subspaces in Lemma 10.4.2 in
terms of root spaces. In order to determine the projection

g0 ↪→ g = Ad(a)(k)+ Ad(a)(s)→ Ad(a)(s),

we first determine Ad(a−1)(g0) ⊂ g and its projection onto s. For this see

g0 ↪−→ g = g
a
θ + g−(

a
θ) −−−→ g−(

a
θ) ⊃ pr(g0) = Tax0M

Ad(a)
-⏐⏐ Ada

-⏐⏐
Ad(a−1)g0 ↪−→ g = gθ + g−θ −−−→ g−θ = s.

We need only to compute the projections of Ad(a−1)g
[λ]
0 ↪→ g[λ] → (g[λ])−θ . Recall

that the basis (10.4.5) respects the decomposition (g[λ])θ + (g[λ])−θ and we have
g[λ] = 〈〈Xλ

j : 1 � j � k〉〉 + 〈〈Yλj : 1 � j � k〉〉. A straightforward computation using

(10.4.10) shows that Ad(a−1)g
[λ]
0 → (g[λ])−θ is not surjective only if λ(ξ) ∈ π

2 Z.
More precisely, we have the following diagram:

pr(Ad(a−1)g0) = a0 +
∑

λ(ξ)=Zπ

(g
[λ]
0 )−θ +

∑
λ(ξ)= π

2 +Zπ

i(g
[λ]
0 )−θ +

∑
λ(ξ)�=Z

π
2

(g[λ])−θ

⏐⏐%Ad(a)
⏐⏐%(±1

±1

) ⏐⏐%( ±i
±i

)
Tax0M = a0 +

∑
λ(ξ)=Zπ

(g
[λ]
0 )−θ +

∑
λ(ξ)= π

2 +Zπ

(g
[λ]
0 )θ +

∑
λ(ξ)�=Z

π
2

Ad(a)((g[λ])−θ ).

The matrices next to the vertical arrows give the matrix description of Ad(a) with
respect to Xλ

j , Y
λ
j . This proves the formulas in the first part of the proposition.

Using (10.4.11), a similar computation gives the decomposition

gη(a) = (g0 ∩ g
aθ )+ (ig0 ∩ g−(aθ))

of the reductive subalgebra gη(a), as desired. Comparing the decompositions of
ig0∩g−aθ and Tax0M into the generalized root spaces, we see that these two subspaces
are complementary in Tax0� and stable under the real isotropy group. This proves
the second part of the statement. ��

From the above description concerning the isotropy Lie algebra we see that the
isotropy groups (G0)exp(iξ)(x0) are compact for ξ ∈ ω0, and are equal to M0 =
ZK0(a0) for generic points. The isotropy group becomes noncompact for ξ ∈ bd(ω0),
and the above proposition gives the precise description of the corresponding Lie
algebra.
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10.5 Example: Two-dimensional affine quadric

We illustrate the concepts introduced in this chapter with the example of the two-
dimensional quadric. This example appears at various points in this monograph, for
example Section 6.1C, and it is useful to look at it from several viewpoints.

Let V ∼= C2, G = SL(V ) = SL(2;C) and G0 = SU (1, 1). Thus V has a positive
definite scalar product 〈·, ·〉, we fix an orthonormal basis {v+, v−}, G0 is the special
unitary group of the hermitian form with matrix

(
1 0
0 −1

)
, andK ∼= C∗ is the subgroup

ofG that preserves each of the subspacesV± = Cv±. We will study the orbit structure
for the action of G0 on G/K .

10.5A Matrix realizations

The matrix realizations of our groups and their Lie algebras, relative to the basis
{v+, v−} of V , are

(10.5.1)

Mat(G0) =
{(

z w

w z

)∣∣∣∣ |z|2 − |w|2 = 1

}
,

Mat(g0) =
{(

iκ w

w −iκ
)∣∣∣∣ κ ∈ R

w ∈ C

}
=
{(

iκ 0
0 −iκ

)}
⊕
{(

0 w

w 0

)}
,

Mat(K) =
{(

d 0
0 d−1

)∣∣∣∣ d ∈ C∗
}
,

Mat(K0) =
{(

eiκ

e−iκ
)∣∣∣∣ κ ∈ R

}
.

In terms of matrices, the involutions θ, τ, σ are given as follows. The Cartan involu-
tion σ ofG, complex conjugation over its compact real formGu = SU (2) defined by

〈·, ·〉, is A �→ −A∗ on gu, A �→ (A∗)−1 on Gu. We usually write Ip,q for
(
Ip 0
0 −Iq

)
where Ir is the r × r identity matrix, so I1,1 =

(
1 0
0 −1

)
. Now

(10.5.2)

Mat(σ (X)) = −Mat(X)t =: θ Mat(X),

Mat(θ(X)) = I1,1 ·Mat(X) · I1,1,

Mat(τ (X)) = I1,1 · θ Mat(X) · I1,1.

Select a maximal abelian subalgebra a0 ⊂ s0, say a0 = R
( 0 −i
i 0

)
. Then a0 is a

split Cartan subalgebra in g0 = su(1, 1) ∼= sl2(R), and the corresponding roots are
	(g0, a0) = {±γ }with γ

( 0−ia
ia 0

) = 2a.We give the root decomposition in terms of a

θ -adapted sl2-triple {E−, E+, H } ⊂ g0 withH = hγ . Of course g0 = a0+g
γ

0+g
−γ
0 ,

and therefore

g0 = R
(

0 −i
i 0

)
+ R·1

2

(−i 1
1 i

)
+ R·1

2

(
i 1
1 −i

)
∼= Rhγ + RE+ + RE−.

For later purposes, we give a decomposition with θ -stable summands:
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g0 = a0 + (g
[γ ]
0 )θ + (g

[γ ]
0 )−θ

and thus

g0 = R
(

0 −i
i 0

)
+ R

(−i 0
0 i

)
+ R

(
0 1
1 0

)
= Rhγ + R(E+ − E−)+ R(E+ + E−).

Also note

(10.5.3)

exp(t ·ihγ ) = exp
(

0 t

−t 0

)
=
(

cos t sin t
− sin t cos t

)
∈ exp ia0,

exp(±πi
4 hγ ) =

√
2

2

(
1 ±1
∓1 1

)
,

Mat(aθ(X)) = R2 ·Mat(X) · R2 where a = exp(±πi
4 hγ ).

Note that along the subset exp R ihγ theG0-isotropy is positive-dimensional precisely

at the points exp( ihγ4 Z).

10.5B Natural compactifications

The two-dimensional homogeneous space � := G/K can be realized as an open
orbit in P1(C)× P1(C) and G/NG(K) as an open orbit in P2. These realizations are
the unique smooth G-equivariant compactifications of the respective homogeneous
spaces. The 2:1 covering G/K → G/N(K) can be extended to a branched covering
P1(C)× P1(C)→ P2(C).

In order to define the an appropriate action on the compactifications, we consider
P(V ) × P(V ) as a flag manifold of Ĝ := SL(2;C) × SL(2;C) = G × G. Let
" : P(V )× P(V ) ↪→ P(V ⊗ V ) = P(S2V ⊕∧2V ) be the Ĝ-equivariant embedding
given by ([v], [w]) �→ [v ⊗ w]. Note that V ⊗ V is an irreducible SL(2;C) ×
SL(2;C)-module. Consider G as the diagonal subgroup of G×G.As a G-module,
V ⊗ V = S2V ⊕∧2V. These two irreducible G-submodules are given explicitly by
the embeddings

(10.5.4)
jS : S2V → V ⊗ V is the linear extension of v·w �→ v ⊗ w + w ⊗ v

2
,

j∧ : ∧2V → V ⊗ V is the linear extension of v ∧ w �→ v ⊗ w − w ⊗ v

2
.

If πS and π∧ denote the respective projections of V ⊗ V to S2(V ) and ∧2(V ) then
πS ◦ jS = Id and π∧ ◦ j∧ = Id .

Any nonzero symplectic form on V , for example ω := v∗+ ∧ v∗−, determines
G. Also, ω defines V ∼= V ∗, identifying V ⊗ V with End V . The image of
" : P(V )× P(V ) ↪→ P(V ⊗ V ) is the quadric {[A] ∈ P(End V ) : det(A) = 0}.

The point {p} = [∧2V ] ∈ P(V ⊗ V ) does not belong to "(P1 × P1). Consider
the meromorphic projection π : P(V ⊗ V ) → P(S2V ) with {p} as center, i.e., π
blows up the point {p} but is holomorphic on P(V ⊗ V ) \ {p}. This map defines a
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holomorphic map π : P1 × P1 → P(S2V ), which is a branched 2:1 covering (see
the following diagram).

diag P1 ↪→ P1 × P1 = P1 × P1 ↪−→ P(V ⊗ V )⏐⏐% ⏐⏐% ⏐⏐% ⏐⏐%π
C ↪→ (P1 × P1)/Z2 �−→ P(S2V ) = P(S2V ).

The branch locus is formed by all points in "(P1× P1), at which the projection lines

 ( {p} in P(V ⊗ V ) are tangent to P1 × P1.

This map can also be described as the quotient of P1×P1 by the Z2 action, which
is given by interchanging the factors in P1 × P1.

10.6 sl2 models at generic points of bd(U)

In this section we determine certain two-dimensional sl2 models at generic points of
the boundary bd(U). These are closed subsets of G/K isomorphic to one of the two
affine quadrics, the quotient of S ∼= SL(2;C) by KS

∼= C∗ or by NG(KS). Given a
“generic’’ point y of bd(U), we construct an sl2-triple such that the orbit S(y) of the
associated complex group is one of the two homogeneous spaces mentioned above.
We refer to this as a SL2-model, because S(y) = S/KS is an affine homogeneous
space of the three-dimensional group S and the intersection S(y) ∩ U = US is its
associated universal domain.

Our first step here is to give a precise definition of the notion generic boundary
point and to show that the set of such points is open and dense in bd(U). Then,
given a generic point, we determine the appropriate sl2-triple and show that S has the
properties indicated above.

10.6A Generic boundary points

In order to define generic points in the boundary bd(U) we start with the boundary of
the polytope ω0 ⊂ a0. The generic points in bd ω0 are defined as follows:
(10.6.1)

bdgen(ω0) :=
{
ζ ∈ a0

∣∣∣∣ there exists precisely one λ ∈ 	(g0, a0) such that
λ(ζ ) = π/2, and µ(ζ ) /∈ π

2 Z for all µ ∈ 	 \ {±λ}
}
.

This set is stable under the (small) Weyl groupW(a0). If y ∈ bd(U)we know that the
closure of G0(y) contains exactly one closed G0-orbit. The point y is called generic
if that closed orbit is G0 · exp(iζ )(x0) for some ζ ∈ bdgen(ω0). We write bdgen(U)
for the set of generic boundary points.

Clearly bdgen(ω0) is open and dense in bd(ω0). However, it is not at all obvious
that bdgen(U) is dense in bd(U).We show that the complement of bdgen(U) in bd(U)
is of dimension less than dim bd(U); that justifies the name “generic.’’ As before,
a = exp iξ with ξ ∈ a0. A key tool for our description of all nonclosed orbits
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in a neighborhood of a closed one is the Slice Theorem 10.4.1, together with the
explicit description of the isotropy representation of (G0)ax0 on the complement T ⊥
of Tax0(G0·ax0) in the tangent space of G/K as worked out in Proposition 10.4.7.
In (10.4.9) we analyzed that complement as a real subspace ar of g stable under
conjugation by the real isotropy group aH := G0∩aKa−1. Also, we gave a complete
description of the Lie algebra ah of aH in (10.4.8). Those descriptions are augmented
in (10.6.2) and the preceding discussion.

Due to the Slice Theorem, the description of the orbit structure in a neighborhood
of a closed orbitG0 ·exp(iξ)(x0), ξ ∈ bd(ω0), can be deduced from the orbit structure
by the action of the isotropy group aH := G0 ∩ aKa−1 on ar. We are especially
interested in the description of the nonclosed orbits. Every such orbit G0(y) which
contains an orbit G0(ax0) in its closure intersects the cone aN ⊂ ar of ad-nilpotent
elements in ar. It is therefore necessary to estimate the size of aN .

Let p : � → �//G0 be the categorical quotient. Then a fiber p−1(p(ax0))

is the union of all orbits which have G0(ax0) in their closures. The generic
points bdgen(U) are those points which belong to the preimage of the subset
p(exp(i bdgen(ω0))(x0)) ⊂ �//G0. Note that bd(ω0) \ bdgen(ω0) is a closed 1-
codimensional subset in the piecewise linear boundary bd(ω0). The same is true
of the image p(exp

(
i(bd(ω0) \ bdgen(ω0))

)
(x0)) in the categorical quotient. The

main difficulty is to show that the fibers over the remaining points, that is, the
points of p(exp

(
i bd(ω0) \ bdgen(ω0)

)
(x0)) are no bigger than the fibers over

p(exp(i bdgen(ω0))(x0)).

In general the fibers of a quotient V → V//H need not all have the same di-
mension. A simple counterexample is the linear action of H = SL(2;C) on the
(d+ 1)-dimensional space V = C[X1, X2]d of homogeneous polynomials of degree
d � 5 where the fiber through 0 ∈ V is dimension-theoretically bigger than the
generic fiber.

One key point in our considerations is that the actions arise as isotropy actions
on symmetric pairs. Recall ah = (g0 ∩ g

aθ ) from (10.4.8) and ar = (ig0 ∩ g−(aθ))
from (10.4.9), and the result gη(a) = ah+ ar from Proposition 10.4.7. Since a belongs
to Gu = Gσ , it follows that ση(a) = η(a)σ (see Lemma 10.2.3) and σ ·aθ = a

θ ·σ .
Now the reductive subalgebra gη(a) and the subspaces ah, ar are stable under σ . Thus
also the semisimple part (gη(a))ss = [gη(a), gη(a)] and the center of gη(a), are stable
under σ, aθ and τ.At any rate, we have

(10.6.2) gη(a) = a
h ∩ gu + a

h ∩ igu + ar ∩ gu + ar ∩ igu.
We sometimes drop the upper index “a’’ if it is clear from the context to which
a = exp iξ we refer.

Recall that aN ⊂ ar denotes the cone of ad-nilpotent elements (nil cone). It is the
0-fiber in the categorical quotient ar→ ar//(G0 ∩ aKa−1).

Lemma 10.6.3. Let a = exp iξ with ξ ∈ a0 and gη(a) = ah+ ar as above. Then ia0
is a maximal toral subalgebra in ar. Further,

(i) the codimension of the nil cone aN in ar is greater or equal to dimR a0;
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(ii) if a ∈ exp ibdgen(ω0) then codimaq
aN = dimR a0.

Proof. For the dimension considerations we may deal only with the connected com-
ponent of aH at the identity. If there were an abelian subalgebra t � ia0 then,
according to Proposition 10.4.7, there would be a nonzero element

ζ ∈ t ∩
∑

λ(ξ)=Zπ

i(g
[λ]
0 )−θ +

∑
λ(ξ)= π

2 +Zπ

i(g
[λ]
0 )θ

which is absurd since ia0 acts nontrivially on every subspace i(g[λ]0 )±θ .
To simplify the notation during the proof, we write al for gη(a) and then drop the

upper index “a’’on al, ah and ar. This is possible because a = exp(iξ) does not change
during the proof.

In order to estimate the dimension of aN = N , we consider the complexification
lC = hC + rC of l; since l is totally real in g, lC can be viewed as a subalgebra of
g). As shown above, the subalgebra a = a0 + ia0 is a maximal toral subalgebra in
rC. The key fact now is that, due to a theorem of Kostant and Rallis [KR, Theorem
3], the dimension of the complex nil cone N̂ ⊂ rC coincides with the dimension of
a generic closed orbit, and the codimensions of these two sets in rC is dim a. Now,
N = N̂ ∩ r, and since aN is totally real in N̂ , we have dimR N � dimC N̂ .Note that
this inequality may be proper: if l = h+r is riemannian symmetric, then N̂ ∩r = {0}.

Next we show that if l comes from a generica ∈ exp(i bd)gen(ω0), then dimR N =
dimC N̂ . Since a ∈ exp i bdgen(ω0),

l = m0 + (g
[λ]
0 )−θ + {ζ ∈ ia0 | λ(ζ ) = 0} + Rihλ + i(g

[λ]
0 )θ

and r = {ζ ∈ ia0 | λ(ζ ) = 0} + Rihλ + i(g
[λ]
0 )θ .

Here λ is the restricted root with λ(ξ) = π/2. Note further that the subalgebra
{ζ ∈ ia0 | λ(ζ ) = 0} lies in the center of l. We claim that the real nil cone

N ⊂ R ihλ + i(g
[λ]
0 )θ = rss ⊂ m0 + (g

[λ]
0 )−θ + R ihλ ⊕ i(g

[λ]
0 )θ =: lss

has codimension 1 in rss . To see this, note that, since (lss , h ∩ lss) is a rank-one
symmetric pair, the ring of invariant functions is generated by a single quadratic
function, the real Killing form κ(ζ ) := 〈ζ, ζ 〉. Since N = κ−1(0) and this quadratic
form has negative (on Rihλ) and positive (on i(g[λ]0 )θ ) eigenvalues, κ−1(0) is a real
hypersurface in rss and the codimension of N in r is dimR a0. ��
Corollary 10.6.4. The set of nongeneric boundary points, bd(U) \ bdgen(U), is of
codimension at least 1 in bd(U)
Proof. We only need to compare codimensions (in � = G/K) of the fibers over
p(bd(U)) in the categorical quotient p : � −→ �//G0 Making use of the preceding
lemma we have codim p−1(p(z)) = dim a0 for z ∈ exp(i bdgen(ω))(x0), while

codim p−1(p(z)) � dim a0 for z ∈ (exp(i bd(ω0))(x0) \ exp(i bdgen(ω))(x0)).

The result now follows, because bd(ω0) \ bdgen(ω0) is of codimension 1. ��
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10.6B Construction of the three-dimensional subgroups

We construct two-dimensional quadrics at points bdgen(U) as orbits of appropriately
chosen subgroups S ⊂ G which are isomorphic to SL(2;C) or PSL(2;C). Every
such orbit S(y) is isomorphic to one of the quadrics discussed in Section 10.5.

As shown in Proposition 10.2.13 and Observation 10.2.11, every nonclosed G0-
orbit whose closure containsG0 exp(iξ)(x0), for some ξ ∈ a0, passes through a point
expE· exp(iξ)(x0) such that E ∈ g−(aθ) ∩ ig0 ⊂ gη(a) = gη(exp(iξ)) is nilpotent.
The theorem of Jacobson–Morozov (see Proposition 10.2.12) provides us with an
sl2-triple {E = E+, E−, H } that generates a subalgebra of g isomorphic to sl(2;C).
Since E+ ∈ ar, we may assume that E± ∈ ar and H ∈ ah. This is roughly how we
get S, but we still need to modify E appropriately.

Let gη(a) = gη(exp(iξ)) be the totally real subalgebra of g determined by ξ ∈
bd(ω0) ⊂ a0, and gη(a) = ah + ar the decomposition of the infinitesimal symmetric
space, given by τ or a

θ. Since exp(iξ) belongs to the maximal compact subgroup
Gσ = Gu of G, statement (ii) of Lemma 10.2.3 implies that this decomposition is
stable under σ. Recall that aH is the isotropy group G0 ∩ aKa−1. The fundamental
facts in this context are contained in the following

Proposition 10.6.5 (Perfect sl2-triples). Let E ∈ ar be ad-nilpotent element and let
{E = E+, E−, H } be an sl2-triple as above.

(i) There exists an element h ∈ a
H 0 such that

{E+1 , E−1 , H1} := {Ad(h)E+,Ad(h)E−,Ad(h)H }

is σ -adapted, i.e., σ(H1) = −H1 and σ(E+1 ) = −E−1 .
(ii) Recall that ia0 ⊂ ar. Given a σ -adapted triple as in (i), E+1 − E−1 is an elliptic

semisimple element, and there exists k ∈ K0 ∩ a
H such that the sl2-triple

{E+2 , E−2 , H2} := {Ad(k)E+1 ,Ad(k)E−1 ,Ad(k)H1}

has the property that E+2 − E−2 ∈ ia0.

Proof. The first statement is known [Sek, Lemma 1.4]. For the second statement
recall the decomposition (10.6.2) and note that (a) ia0 ⊂ r ∩ gu is a maximal toral
subalgebra, (b) E+1 − E−1 ∈ r ∩ gu since {E+1 , E−1 , H1} is σ -adapted, and (c) E+1 −
E−1 is semisimple elliptic in g because it is semisimple elliptic in the semisimple
subalgebra spanned by {E+1 , E−1 , H1}. Here we have dropped the “a’’ notation. The
claim follows now from the fact that any two maximal toral subalgebras in r∩ gu are
conjugate. ��

Now select a closed orbit in the boundary of U . Such an orbit contains a point of
the following shape (see Proposition 10.3.2):

exp iξ(x0) ≡ a(x0), ξ ∈ bd(ω0) ⊂ a0.
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Lemma 10.6.6. Every closed orbit G0 · exp iξ(x0) = G0(ax0) with ξ ∈ bd(ω0)

is contained in the closure of some nonclosed orbit. Let gη(exp iξ) = ah + ar as in
Proposition 10.4.7. If ξ ∈ bd(ω0), there is a nonzero nilpotent element in ar.

Proof. In view of Proposition 10.2.13 the first statement follows from the sec-
ond. Write gη(a) for gη(exp iξ). If ξ ∈ bd(ω0), then, for at least one restricted root,
we have λ(ξ) = π/2. Using the basis of (10.4.5), we see that the real span of
{Yλ, ihλ, iXλ} is a θ -stable subalgebra 〈〈Yλ, ihλ, iXλ〉〉R ⊂ gη(a) with ihλ, iXλ ∈ ar.
Since 〈〈Yλ, ihλ, iXλ〉〉R ∼= sl(2;R) it contains nilpotent elements; some of them, for
example, E = ihλ ± iXλ, are contained in ar. Such elements are ad-nilpotent in g.��

Given a closed orbit G0 · exp iξ(x0) in bd(U), one can select a sl2-triple
{E+2 , E−2 i, H2} with the properties specified in the second part of the Proposition
10.6.5 and such that G0(y) = G0 · exp(E+2 )(exp iξ)(x0) is a nonclosed orbit with
G0 · exp iξ(x0) in its closure. Define e+ := iE+2 , h := H2 and e− := −iE−2 .
They span an sl2-triple whose real span is contained in g0. The element E+2 −E−2 =−i(e+ + e−) considered as a vector in ia0 with the base point iξ ∈ bd(iω0) may or
may not point into the interior of iω0. Observe, however, that if necessary one can
always adjust E+2 − E−2 by an element w ∈ NaH (a0) such that Ad(w)(E+2 − E−2 )
points toward the interior of iω0.

We now define the group S to be the analytic subgroup of G with Lie algebra
〈〈E+2 , E−2 , H2〉〉C = 〈〈e+, e−, h〉〉C ∼= sl(2;C).

Finally we compute the isotropy algebra for S at ax0.By construction of the triple
{E+2 , E−2 , H2}, we have 〈〈E+2 , H2, E

−
2 〉〉C ∩ g

aθ = CH2. This is a Cartan subalgebra
in the Lie algebra of S. We conclude that

(10.6.7) either S(ax0) ∼= SL(2;C)/C∗ or S(ax0) ∼= SL(2;C)/N(C∗),
where C∗ is the Cartan subgroup with Lie algebra CH2 and N(C∗) is its normalizer.
In other words, the orbit S(ax0) is either a simply connected two-dimensional affine
quadric or a 2:1 quotient of such a quadric as described in Section 10.5. We refer to
such an orbit S(ax0) as a basic slice.

10.6C Intersections of the SL2-models with U
In this subsection we investigate the intersections of the S-orbits determined above
with the universal domain U = UG0 ⊂ G/K. This makes use of a real form S0 =
S ∩ G0 of S. Since SL(2;C)/C∗ and SL(2(;C)/N(C∗) are (minimal-dimensional)
analogs of G/K and G/K̆ , we have the universal domain US0 in S/(S ∩ K) ∼=
SL(2;C)/C∗ or in S/(S ∩ H̆ ) ∼= SL(2;C)/N(C∗). The main result here is that if
y ∈ bdgen(U) then S(y)∩U coincides with a universal domain US0 . We also give an
example of z ∈ bd(U) \ bdgen(U) for which S(z) ∩ U �= US0 .

If y ∈ bdgen(U), then the closed orbit in c
(G0(y)) has form G0 · exp iξ(x0)

with ξ ∈ bdgen(ω0). Then the structure of gη(exp iξ) is particularly simple, because
there is precisely one restricted root λ ∈ 	(g0, a0) with λ(ξ) = π/2, and if µ ∈
	(g0, a0) \ {±λ} then µ(ξ) /∈ π

2 Z. According to Proposition 10.4.7,
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gη(a) = a
h+ ar = (m0 + (g

[λ]
0 )−θ )+ (ia0 + i(g

[λ]
0 )θ ).

The key point here is that if we select a perfect sl2-triple (as explained in Proposition
10.6.5 and the following paragraph) with E+ ∈ ar, then the hyperbolic element H is
conjugate in 〈〈iE+, H − iE−〉〉 to the normalized coroot hλ. Here is the argument.

The Lie algebra of S is spanned by {e+, h, e−} := {iE+, H,−iE−} and is con-
tained in the symmetric space dual ah+ iar = m0+ a0+ gλ0 + g−λ0 of gη(a) = ah+ ar.
By Proposition 10.6.5(ii) we have e+ + e− ∈ a0, and a simple check confirms that{

1
2 (h− e+ + e−), e+ + e−, 1

2 (h+ e+ − e−)
}

is another sl2-triple in 〈〈e+, h, e−〉〉R. We claim that e+ + e− = ±hλ where hλ is the
normalized coroot. This is the consequence of the following

Observation 10.6.8. Let ẽ, h̃, f̃ be an sl2-triple in m0 + a0 + gλ0 + g−λ0 with h̃ ∈ a0.
Then h̃ = ±hλ.

Proof of the observation. The nil-positive element ẽ is contained either in gλ0 or
in g−λ0 , and the nil-negative element f̃ is contained in the other one. From
Lemma 10.1.6(ii) we conclude that h̃ ∈ Rhλ, h̃ = c·hλ. Then

2ẽ = [h̃, ẽ] = [chλ, ẽ] = ±cλ(hλ)ẽ = ±2c · ẽ,
where the sign depends on whether ẽ ∈ gλ0 or ẽ ∈ g−λ0 . We conclude that c = ±1 and
the observation is proved. ��

As noted earlier, we may assume that hλ, considered as a vector in a0 with
basis point ξ , points toward ω0, i.e., that it lies in the half plane λ(ζ ) < π

2 . It then
follows from the definition of ω0 that {t ∈ R | thλ + ξ ⊂ ω0} = (0, π2 ). Since
the defining set ωS,0 for the universal domain US0 is (−π

4 ,
π
4 )hλ in the sense that

US0 = S0 · exp(iωS,0)(x0), it follows that S · exp(iξ)(x0) ∩ UG0 = US0 .
Finally also note that the point exp(ie+)(ax0), which determines a nonclosed

G0-orbit in bdgen(U), belongs to S(ax0).
The main result of this section is the following summary of the preceding discus-

sion. Since the universal domain U in G/K is determined by the real form G0, we
emphasize this in comparison with US0 by writing it as UG0 .

Theorem 10.6.9. Let � = G/K , complexification of �0 = G0/K0, as usual, and
let UG0 ⊂ G/K be the universal domain. Every G0-orbit in bdgen(UG0) has a
point of the form y := exp(ie) exp(iξ)(x0), with e nilpotent, and there is a three-
dimensional complex simple Lie subgroup S that contains exp(ie), in other words
y ∈ S · exp(iξ)(x0). Further,

(i) S · exp(iξ)(x0) is isomorphic to an affine two-dimensional quadric, and
(ii) the intersection S · exp(iξ)(x0) ∩ UG0 = US0 .
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10.6D SL2-models at nongeneric boundary points

We close this chapter with an example which shows that the intersection with U of
an S-orbit at a nongeneric point z ∈ bd(U) with U can be smaller then the universal
domain US in S · z ∼= SL(2;C)/C∗.

LetG = SL(5;C) andK = SO(5;C), associated to the real formG0 = SL(5;R).
That real form is split: a0 is a full Cartan subalgebra of g0. We choose a0 as the set
of trace zero diagonal matrices diag(a1, . . . , a5) in sl(5;R) and use the simple root
system � = {ψ1, ψ2, ψ3, ψ4}, ψi(diag(a1, . . . , a5)) = ai − ai+1.

Let ξ in bd(ω0) and a = exp(iξ) such that G0 · exp iξ(x0) = G0(ax0) is a
totally real submanifold of G/K . The real isotropy Lie algebra here is isomorphic to
so(2, 3). The point we have in mind is uniquely determined by the equations

(10.6.10) ψ1(ξ) = ψ3(ξ) = ψ4(ξ) = 0 and ψ2(ξ) = π
2 .

In terms of matrices in M5(C), the involution of the corresponding infinitesimal
symmetric space g0 = h+ ir = g

aθ
0 ⊕ g−

aθ
0 is given as follows (we drop in h and r

the upper index a with a = exp iξ ):

(10.6.11)
Mat(aθ)(X) =I2,3(−Xt)I2,3 and Mat(θ)(X) = −Xt

with I2,3 = diag(1, 1,−1,−1,−1).

The orbit structure in a neighborhood ofG0 ·exp iξ(x0) is determined by the isotropy,
i.e., the adjoint action of ah ∼= so(2, 3) on iar. This action can be understood in the
following way: If V ∼= Rn and b2,3 is the symmetric bilinear form of signature (2, 3),
defining h then as a submodule r ⊂ S2V has codimension 1 and has complement
R · b23. In terms of matrices

r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
a1 p1 x1 x2 x3
p1 a2 x4 x5 x6
−x1 −x4 a3 q1 q3
−x2 −x5 q1 a4 q2
−x3 −x6 q3 q2 a5

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = a0 +

∑
λ(ξ)=Zπ

(g
[λ]
0 )−θ +

∑
λ(ξ)= π

2 +Zπ

(g
[λ]
0 )θ

of trace zero. Also see Proposition 10.4.7. Next, we select an appropriate element of
the nil cone in r. To find such an element we decompose r into weight spaces with
respect to the split component ah ⊂ h of a Cartan subalgebra of h. One such split
component is

ah =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
0 0 0 0 d1
0 0 0 d2 0
0 0 0 0 0
0 d2 0 0 0
d1 0 0 0 0

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

which is conjugate to the a0 in h = so(2, 3)with joint eigenvalues±d1,±d2, 0. Since
r ⊂ S2V , we conclude that the nonzero weight spaces are one-dimensional and the
weights are±2d1,±2d2 ± (d1 + d2),±(d1 − d2),±d1 ± d2, 0.A simple but tedious
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computation using MAPLE shows that any element lying in the sum r[d1−d2] + r[d2]
of the ah-weight spaces. Specifically, the

E =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
0 s s 0 0
s 0 0 −s t
−s 0 0 s t

0 s s 0 0
0 −t t 0 0

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
s �= 0 �= t

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
are nilpotent elements each of which which determines a nilpotent orbit of maximal
possible dimension. In our construction the only candidates for S are given by certain
perfectly chosen sl2-triples. A given E has to be extended to an sl2-triple and then
be replaced by and H -conjugate by the first element of a θ -adapted normal sl2-triple.
Here is an example:

e′ =

⎛⎜⎜⎜⎜⎝
0 1 1 0 0
1 0 0 −1

√
3

−1 0 0 1
√

3
0 1 1 0 0
0 −√3

√
3 0 0

⎞⎟⎟⎟⎟⎠, f ′ =

⎛⎜⎜⎜⎜⎝
0 1 −1 0 0
1 0 0 1 −√3
1 0 0 1

√
3

0 −1 1 0 0
0
√

3
√

3 0 0

⎞⎟⎟⎟⎟⎠, h′ =

⎛⎜⎜⎜⎜⎝
0 0 0 4 0
0 0 2 0 0
0 2 0 0 0
4 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠.

Conjugating this triple to an sl2-triple {e, f, h} with e + f ∈ a0, as in Proposi-
tion 10.6.5(ii), we have

e + f =

⎛⎜⎜⎜⎜⎝
4 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 4

⎞⎟⎟⎟⎟⎠ .

The key point here is that no matter how the hyperbolic element e+ f is adjusted by
an element of the Weyl group of the real isotropic group, the line through it does not
enter ω0. This means that at least locally the SL2 model stays outside the universal
domain.
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Invariant Kobayashi-Hyperbolic Stein Domains

Here we come to the final step in the proof of the description MD
∼= U . This is

done by showing that U is maximal with respect to the properties of being Stein,
Kobayashi hyperbolic and invariant with respect to the G0-action on G/K . In fact,
up to a choice of a base point it is the unique maximal domain with these properties.

In Section 1 we introduce the Kobayashi pseudometric and prove that the do-
mains in G/K which arise as envelopes defined by B-invariant hypersurfaces H are
hyperbolic except in the case when H is a lift from the compact dual G/P hermi-
tian symmetric space (Theorem 11.1.9). A basic ingredient for this is the fact that if
{Hs}s∈S is a family of hyperplanes in P(V ) which is parameterized by a connected
real analytic set S in P(V ∗) which is not contained in a proper projective linear sub-
space, then one can choose 2m+ 1 hyperplanes from the family (m := dimC P(V ))
so that the complement of their union is hyperbolic (Corollary 11.1.7).

The bulk of Section 2 is devoted to the two-dimensional case. To describe the
main result, we recall that in the previous chapter it was shown that an SL2-model can
be set up at any generic boundary point z ∈ bd(U). Up to obvious covers, this means
that there is a subgroup S ∼= SL(2;C) of G, which is τ -invariant with associated real
form S0 ∼= SL(2;R) such that the orbit S(z) = S/KS is a toy model of our original
situation. In particular, its intersection with U is the universal domain US0 associated
to the real form S0.

Concretely, this is just the simplest hermitian situation, where US0 = B × B̄ is
the two-dimensional polydisk embedded in the affine quadricQ2 = S/SK in the way
presented throughout this monograph

Using the concrete geometry of the situation, in particular using the realization
of SL2-model Q2 as the complement of the diagonal in P1 × P1, the envelope of
holomorphy of a G0-invariant domain which contains U as a proper subset is de-
scribed (see Corollaries 11.2.2, 11.2.3 and 11.2.4). This yields the following result
in Section 3. The domain US0 is the maximal G0-invariant domain of holomorphy
containing the base point in S/SK which is Kobayashi-hyperbolic (Theorem 11.3.1).
This in turn yields one of the basic theorems of this monograph which states that,
except in the hermitian holomorphic case, if H is an hypersurface in G/K which is
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invariant by an Iwasawa–Borel subgroup B of G, then its envelope EH agrees with
U (Corollary 11.3.2).

After dealing with a technical difficulty that arises when MD is contained in a
finite quotient of G/K (see Corollary 11.3.6), the complete description of MD is
given in Theorem 11.3.7, completing the proof that MD = U , except of course for
the case whereD is of hermitian holomorphic type (where MD is either the associated
bounded domain B or its complex conjugate).

11.1 Hyperbolicity of domains in G/K

11.1A The Kobayashi pseudometric

We begin by introducing the Kobayashi pseudometric dX on a connected complex
manifold X (see [K] for much more information). This is based on the basic special
case of the unit disk X = �1(0) = {z ∈ C | |z| < 0}, where the infinitesimal form
of the Poincaré metric is given by

ds2 = 1
2πi

1
(1−|z|2)2 dz⊗ dz̄.

This metric is defined by its invariance with respect to AutO(X) ∼= PSL(2;R). Its
geodesics are orbits of one-parameter subgroups of AutO(X) and it is complete. It has
constant negative Gauss curvature. The unit disk with this metric is the hyperbolic
plane H2. Let dP denote the associated (Poincaré) distance function.

Two points p and q in an arbitrary connected complex manifold X can be con-
nected by a chain of hyperbolic planes as follows. Choose a finite sequence of points
{pj }, 1 � j � n, in X with p1 = p and pn = q such that there exist holomorphic
maps ϕj : H2 → X with ϕj (zj ) = p and ϕj (wj ) = pj+1 for some zj , wj ∈ H2.
Let c denote this data and define the c-distance between p and q as

dc(p, q) =
∑

1�j�n
dP (zj , wj ).

Now letC denote the set of all data sets c for connectingp to q by a chain of hyperbolic
planes. The Kobayashi pseudometric is defined by

dX(p, q) = inf c∈Cdc(p, q).

Then dX is symmetric and satisfies the triangle inequality, but it can happen that
dX(p, q) = 0 with p �= q.

Example 11.1.1. The Kobayashi pseudometric of the complex plane C is identi-
cally zero.

Proof. Let �R(0) be the disk of radius R in C and let ϕR : �1(0)→ �R(0) be the
map given by dilation. For R sufficiently large it follows that p, q ∈ �R , and we
define the chain cR to consist of exactly the one hyperbolic plane given by ϕR . It is
immediate that limR→∞ dcR (p, q) = 0. ��
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Ifϕ : X→ Y is a holomorphic map, then, from the definition of the pseudometric,

dY (ϕ(p), ϕ(q)) � dX(p, q).

One speaks of holomorphic maps as being distance decreasing. For example, for
points p, q ∈ X in the image of a holomorphic curve ϕ : C → X it follows that
dX(p, q) = 0. If there are no such holomorphic curves, then one refers to X as
being Brody hyperbolic. If the pseudometric is a metric, i.e., if d(p, q) = 0 only
when p = q, then X is said to be Kobayashi hyperbolic. The weaker condition of
Brody hyperbolicity is equivalent to Kobayashi hyperbolicity in the case where X is
compact; see [K] for details.

The uniformization theorem tells us which one-dimensional manifolds X are hy-
perbolic and which are not. One sees directly thatdX = dP forX = H2. Furthermore,
if X̃ → X is a holomorphic covering map, then X̃is hyperbolic if and only if X is
hyperbolic. Hence, if X has universal holomorphic covering space �1(0), then it is
Kobayashi hyperbolic, and otherwise X is P1(C), C, C∗ or a torus, none of which is
Kobayashi hyperbolic. In fact in all of these cases dX ≡ 0.

Since polydisks in Cn are hyperbolic, the distance decreasing property implies
the hyperbolicity of bounded domains in Cn.

From the point of view of group actions hyperbolic manifolds X look very much
like bounded domains. This is due to the fact that AutOX is acting as a group of
isometries of dX. Using the theorem of Meyers and Steenrod, this in turn implies that
AutO X, equipped with the compact-open topology, is a Lie transformation group
acting properly on X (see [K]).

Let us note a consequence of this which is relevant for our considerations of
G0-invariant domains in G/K .

Proposition 11.1.2. A smooth almost effective action of a linear semisimple group G
of holomorphic transformations on a hyperbolic manifold is proper.

Proof. Let L := Aut(X)0. Since G has only finitely many components and is
semisimple, and the action has discrete kernel, G acts with finite kernel. Thus we
may assume that G is connected and is contained in L.

Now let R be the radical of L and L = R · S be a Levi–Malcev decomposition,
where S is the semisimple subgroup associated to the Lie algebra s of the decompo-
sition l = r+ s of the Lie algebra of L.

Project L to L/R = S/(R ∩ S) =: S and then apply the adjoint representation.
That defines a Lie morphism ϕ : L→ Ad(S). By definition, Ker(ϕ|G) is a discrete
central subgroup, thus finite because G is linear and semisimple. Since semisimple
subgroups of linear algebraic groups are themselves linear algebraic, it follows that
ϕ|G has closed image. Since ϕ|G has finite kernel, G is closed in L. Since the action
of L on X is proper, it follows that the G-action is likewise proper. ��

The notion of hyperbolicity plays a role in understanding theorems of Picard
type. For example, P1(C) punctured at three points, e.g., C \ {0, 1}, is hyperbolic
and therefore a nonconstant meromorphic map f : C → P1(C) can omit at most two
values.
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In higher dimensions it is in general not a simple matter to judge whether or not a
given manifold is hyperbolic. However, interpreting points in P1(C) as hyperplanes,
the analogous result holds for Pm(C):

Theorem 11.1.3 ([D]). The complement of the union of 2m+1 hyperplanes in general
position in Pm(C) is Kobayashi hyperbolic.

11.1B Families of hyperplanes

If V is a complex vector space, then P(V ∗) parameterizes the hyperplanes in P(V ),
in other words, the 1-codimensional subvarieties of P(V ) defined by linear functions
f ∈ V ∗ \ {0}. If L → X is a holomorphic line bundle over a complex manifold, then
a nonzero subspace V of the space �(X,L) of sections defines a meromorphic map

(11.1.4) ϕV : X→ P(V ∗) by x �→ Hx := {s ∈ V | s(x) = 0}.
Unless Hx = V , in which case x may be a point of indeterminacy of ϕV , Hx is a
hyperplane and ϕV indeed takes its values in P(V ∗).

Here we consider the above situation for X a G-homogeneous space, L → X

a G-bundle and V a G-invariant subspace of �(X,L). In particular the map ϕV is
G-equivariant. Since V is assumed to contain at least one nontrivial section and G
acts transitively on X, given x ∈ X there exists s ∈ V with s(x) �= 0. Thus in our
context ϕV : X→ P(V ∗) is always holomorphic.

Recalling the envelope construction of Section 7.2, we begin with a hypersurface
H in X that is the zero set {s = 0} of some section of L, and delete hypersurfaces
g0(H), for g0 ∈ G0, from X. Here the point [s] ∈ P(V ) is regarded as a hyperplane
Hs in P(V ∗) and it follows that ϕ−1

V (Hs) = H . More precisely, if 
 ∈ (V ∗)∗ = V is
a linear function defining Hs , then ϕ∗V (
) is a constant multiple of s.

We keep the above setting in mind and consider families of hyperplanes as subsets
S of the projective space P(V ) of a given complex vector space V . Such a subset is
said to have the normal crossing property if for every k ∈ N there existHs1 , . . . , Hsk ,
sα ∈ S, as follows. If I = {i1, . . . , i
} ⊂ {1, . . . , k} denote �I := ⋂a∈I Hsa . The
condition is that �I is of codimension 
 = |I |. If |I | > dimC V , then codimension
|I | means that �I = ∅.

Proposition 11.1.5. If S is an irreducible, real analytic subvariety whose projective
linear span 〈S〉C is the entire space P(V ), then S has the normal crossing property.

Proof. Given a set {Hs1 , . . . , Hsk } of hyperplanes with the normal crossing property
and a subset I ⊂ {s1, . . . , sk}, let

�I :=
⋂

s∈I Hs, H(I ) := {s ∈ S | Hs ⊃ �I } and E :=
⋃

�I �=∅
H(I ).

We wish to prove that S \ E �= ∅. For this note that each H(I ) is a real analytic
subvariety of S, and if S = E , then S = H(I ) for some I with �I �= ∅. However,
in such a case {H ∈ P(V ) : H ⊃ �I } would be a proper, linear subset of P(V ).
Consequently, S = E would contradict 〈S〉C = P(V ). Therefore there exists s ∈ S\E ,
or equivalently, {Hs1 , . . . , Hsk ,Hs} has the normal crossing property. ��
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If dimC P(V ∗) = m and the hyperplanesH1, . . . H2m+1 satisfy the normal cross-
ing condition, then they are in general position in the sense of Theorem 11.1.3.

Corollary 11.1.6. If S is an irreducible real analytic subvariety with 〈S〉C = P(V ),
then there are hyperplanes Hs1 , . . . , Hs2m+1 , sα ∈ S, such that

P(V ∗) \
(⋃

Hsi

)
is Kobayashi hyperbolic.

Our main application of this result is in the case where S is an orbit of the real
form at hand.

Corollary 11.1.7. Let G be a reductive complex Lie group, G0 a real form of G, and
V ∗ an irreducible (m + 1)-dimensional representation space for G. Suppose that
S a G0-orbit in P(V ). Then there exist hyperplanes H1, . . . , H2m+1 ∈ S so that
P(V ∗) \⋃Hj is Kobayashi hyperbolic.

Proof. From the irreducibility of the representation of G on V ∗, it follows that V is
likewise irreducible forG0. Thus 〈S〉C = P(V ). Now we apply Corollary 11.1.6 and
the desired result follows. ��

11.1C Hyperbolicity of envelopes

As we have seen throughout this part, hypersurfaces H in � = G/K , which are
invariant under the action of an Iwasawa–Borel subgroup B, play a key role in the
study of G0-invariant domains.

Recall for example that if H is the complement of the open B-orbit in G/K ,
i.e., the maximal B-invariant hypersurface, then the Iwasawa envelope EI(U) is the
connected component containing U of the set which is obtained by removing all
translates g0(H) for g0 ∈ G0. Proposition 7.2.11 shows that this envelope agrees
with the universal domain U . Therefore we may look at U in a new light. The same
goes for the Schubert domain SD , defined in Chapter 7 as the intersection of envelopes
that arise from Schubert intersection theory.

Here, independent of considerations of cycle spaces, we begin with any hyper-
surface H in G/K which is defined as above by a given Iwasawa Borel subgroup B.
As in the case of any of the envelopes, we remove all translates g0(H) for g0 ∈ G0.
This is a compact family, because G0(H) = K0(H). Obviously a component of
this set contains the Iwasawa envelope and therefore we regard this component as an
envelope EH(U).

Suppose first that G0 is hermitian, D is of holomorphic type, and H is the π -
preimage of the (unique) B-invariant hypersurface H̆ in one of the compact duals
G/P = G/P±. Let π : G/K → G/P denote the natural projection. Then the
envelope EH(U) is the π -preimage of the envelope EH̆(B). The latter is just B itself
by Proposition 7.2.2. Therefore EH(U) = π−1B.



168 11 Invariant Kobayashi-Hyperbolic Stein Domains

When we are not in the hermitian holomorphic case just described, we will prove
that EH(U) is Kobayashi hyperbolic, whether G0 is of hermitian type or not.

To show this we consider the holomorphic line bundle L → � = G/K defined
by the hypersurface H . In particular H is the zero set of an algebraic section s ∈
�(G/K;L). The span V := 〈G(s)〉 of its G-orbit in �(�,L) is finite-dimensional.
Since s is a B-eigenvector, b(s) = χ(b)s for some character χ on B, it follows that
the action of G on V is an irreducible representation.

Proposition 11.1.8. Unless G0 is hermitian, D is of holomorphic type, and H is a
lift of the unique B-invariant hypersurface in a compact dual G/P , the map

ϕV : G/K → G/K̆ = G(ϕV (x0)) ⊂ P(V ∗)

of (11.1.4) is a finite covering map.

Proof. Since ϕV isG-equivariant, its image is an orbit withG-isotropy K̆ at the neu-
tral point ϕV (x0). In the non-hermitian case K is dimension-theoretically maximal.
Thus in that case K̆/K is automatically finite.

If G0 is hermitian, then there is only one situation where

J := {g ∈ G | gC0 = C0}
is such that J/K is infinite, namely when J = KS± = P and ϕV is one of the two
canonical maps onto an associated compact hermitian symmetric spaceG/P±. Since
ϕV defines this map, it follows that H is a lift of the unique B hypersurface. We have
excluded that case. ��

The main result of this section is now an immediate consequence.

Theorem 11.1.9. If G0 is hermitian and H is a lift of the unique B-invariant hyper-
surface in a compact dualG/P , then EH(U) is the preimage under the canonical map
G/K → G/P of the associated bounded symmetric domain B. Otherwise, EH(U)
is Kobayashi hyperbolic.

Proof. By Proposition 7.2.2 it follows that the envelope defined by the unique B-
invariant hypersurface in a compact hermitian symmetric space is the bounded domain
B. Thus it is enough to consider the case where the map ϕV is finite to one.

In this case the envelope EH(U) is the connected component containing the neutral
point of the analogously defined set EH̆(Ŭ) in the finite quotientG/K̆ , where H̆ lifts to
H byϕV . The latter set is contained in the complement of the union of the hyperplanes
g0(H̆ ), g0 ∈ G0, in P(V ∗). This set of hyperplanes is a G0-orbit S in P(V ).

Since the G-representation on V is irreducible, we may apply Corollary 11.1.7:
The complement of finitely many appropriately chosen hyperplanes from S is Koba-
yashi hyperbolic. Since we have removed all of the hyperplanes which are param-
eterized by S, it follows that EH̆(Ŭ) is hyperbolic and, since EH(U)→ EH̆(Ŭ) is a
surjective holomorphic map with finite fibers, EH(U) is also hyperbolic. ��
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11.2 The maximal invariant Kobayashi-hyperbolic Stein domain
in an sl2-model

Let us recall the data of an sl2-model. The complex group S may be chosen to
be SL(2;C) with the real form S0 = SL(2;R) embedded in S as the subgroup of
matrices which have real entries. Let K0 = SO(2) be a maximal compact subgroup
of S0. To fix the notation, let D0 and D∞ be the open S0-orbits in P1(C). Choose
C ⊂ P1(C) = C ∪ {∞} in such a way that 0 ∈ D0 and ∞ ∈ D∞ are the K-fixed
points.

Let S act diagonally on Z = P1(C) × P1(C). The open orbit �, which is the
complement of the diagonal diag(P1(C)) in Z, is the affine symmetric space S/KS .

There are 4 open S0 × S0-orbits in P1(C)× P1(C), the bidisks Dα ×Dβ for any
pair (α, β) from {0,∞}. As S0-spaces (via the diagonal action) the domainsD0×D∞
and D∞ ×D0 are equivariantly biholomorphic; further, they are actually subsets of
�, and the riemannian symmetric space S0/K0 sits in each of them as the unique
two-dimensional totally real S0-orbit S0(0,∞) (or S0(∞, 0), respectively).

Depending on which of (0,∞) and (∞, 0) is chosen as a base point in �, either
domain can be considered as the universal domain U associated to the real form S0
of S. We let

U = D0 ×D∞ = S0. exp iω0.(0,∞)

with ω0 = (−π
4 ,

π
4 )h, where h is the normalized coroot.

Our main point here is to understand S0-invariant Stein domains in� that properly
contain U . The analysis is the same for each of the 4 open S0× S0-orbits, so we may
assume that such a domain meets D0 ×D0.

Let diag(D0) denote the diagonal {(u, u) | u ∈ D0} in D0 × D0 and observe
that (D0 ×D0) ∩� = D0 ×D0 � diag(D0). Furthermore, other than diag(D0), all
S0-orbits in D0 × D0 are closed real hypersurfaces. For p ∈ D0 × D0 let �(p) be
the domain in D0 × D0 bounded by S0(p) and diag(D0). We shall show that any
function holomorphic in a neighborhood of S0(p) extends holomorphically to �(p).
For this, define T := {(−t, t) : 0 � t < 1} ⊂ D0 × D0. It is a geometric slice for
the action of S0, i.e., S0(T ) = D0 × D0, and every S0-orbit in D0 × D0 meets T
in exactly one point. We say that a (one-dimensional) complex curve C ⊂ C2 ⊂ Z

is a supporting curve for bd(�(p)) at p if C ∩ c
(�(p)) = {p}. Here, c
(�(p))
denotes the topological closure in D0 ×D0.

Proposition 11.2.1. If p ∈ D0 × D0 � diag(D0), there is a supporting curve for
bd(�(p)) at p.

Proof. We consider D0 embedded in C as the unit disk. It is enough to construct
such a curve Ct ⊂ C2 at each point pt = (−t, t) ∈ T , t �= 0. We define it explicitly
as Ct := {(−t + z, t + z) : z ∈ C}.

To prove that Ct ∩ c
(�(pt )) = {pt }, let dP be the Poincaré metric of the unit
discD0 considered as a function dP : D0×D0 → R�0. It is an S0-invariant function
on D0 ×D0. In fact the values of dP parameterize the S0-orbits. We now claim that
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dP (−t + z, t + z) � dP (−t, t) = dP (pt ) for z ∈ C

with (−t + z, t + z) ∈ D0 × D0 with equality only for z = 0. In other words we
claim that Ct touches c
(�(pt )) only at pt .

To prove the above inequality, it is convenient to compare the Poincaré length of
the Euclidean segment seg(z− t, z+ t) in D0 with the length of seg(−t, t). Writing
the corresponding integral for the length, it is clear without explicit calculation that
d(−t + x, t + x) > d(−t, t) for z = x ∈ R � {0}. The same argument shows that
d(−t+x+ iy, t+x+ iy) > d(−t+x, t+x) for all nonzero y ∈ R. The proposition
follows. ��

From the above construction it follows that the boundary hypersurfaces S0(p) are
strongly pseudoconvex from the point of view of �(p). Therefore the following is
immediate.

Corollary 11.2.2. For p ∈ D0 × D0 � diag(D0) every function f which is holo-
morphic on the complement of �(p) in D0×D0 extends holomorphically across the
boundary component S0(p).

Observe that the set bdgen(D0 ×D∞) of generic boundary points, introduced in
Section 10.6, consists of the two S0-orbits:

bdgen(D0 ×D∞) = (bd(D0)×D∞) ∪̇(D0 × bd(D∞)).

In the following we assume without loss of generality that z ∈ bd(D0)×D∞.

Corollary 11.2.3. Let �̂ ⊂ Q2 ⊂ (P1(C)× P1(C)) be an S0-invariant Stein do-
main that contains D0 × D∞ and a boundary point z ∈ bd(D0) × D∞. Then(
(D0 × P1(C)) � diag(P1(C)

) ⊂ �̂.

Proof. If �̂ did not contain the full domain (D0×P1(C))\diag(P1(C)), it would have
a hypersurface orbit S0(p) in its boundary as in Corollary 11.2.2. The holomorphic
extension property in that corollary shows that �̂ is not Stein. ��

The same argument proves the following.

Corollary 11.2.4. An S0-invariant Stein domain that contains a boundary point z of
U necessarily contains the preimage of D0 or D∞ by one of the natural projections
of P1(C)× P1(C) \ diag(P1(C)) to a factor P1(C).

Let �̂ be as in Corollary 11.2.3. Then the fibers of �̂ → P1(C), given by
restriction of the natural projections of P1(C) × P1(C) \ diag(P1(C)) to a factor
P1(C), can be parameterized as nonconstant holomorphic curves f : C → �̂. In
particular, we have the following.

Corollary 11.2.5. An S0-invariant Stein domain �̂ in S/KS which properly contains
the universal domain US0 is not Brody hyperbolic.

This can be reformulated as follows.
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Corollary 11.2.6. The universal domain US0 is the unique maximal G0-invariant
Kobayashi hyperbolic Stein domain containing the base point x0 = (0,∞) in S/KS .

Proof. It remains to prove the uniqueness, but in this case given an S0-invariant
domain W , we consider the connected component IW of W ∩ (exp(iω0)(x0)) con-
taining x0. If IW �= exp(iω0)(x0), then S0(IW ) is a connected component of W
and therefore agrees with W . In particular, in that case W is contained in US0 .
Finally, if IW = exp(iω0)(x0), then W contains U and the result follows from
Corollary 11.2.5. ��

11.3 Maximality and the characterization of cycle domains

As a consequence of the existence of an SL2-model (given by Theorem 10.6.9), the
hyperbolicity of the relevant envelopes, and the work above in the two-dimensional
setting, we are now in a position to prove the main result of this chapter.

Theorem 11.3.1. The universal domain U is the unique maximalG0-invariant Koba-
yashi hyperbolic Stein domain in G/K that contains the base point x0.

Proof. First, suppose that W is a G0-invariant Kobayashi hyperbolic Stein domain
which contains a boundary point z of U . Since the generic boundary points of U are
dense, we may assume that z ∈ bdgen(U). Therefore by Theorem 10.6.9 there exists
an sl2-model such that z ∈ bd(US0) ⊂ S/KS . Again using the fact that the set of
generic boundary points is open and dense we may assume that z ∈ bdgen(US0).

Now apply Corollary 11.2.4 to W ∩ S(z). It follows that, since W is Stein, so is
this intersection, and therefore W ∩ S(z) contains the fibers of the projection to one
of the factors. Thus it is not hyperbolic (see Corollary 11.2.5) and as a consequence,
contrary to assumption, neither is W .

Therefore, W ⊂ U , and the result follows from the fact that U can be identified
with the Iwasawa envelope EI(U), which is Stein by Proposition 7.2.1 and Kobayashi
hyperbolic by Theorem 11.1.9 ��
Corollary 11.3.2. If H is a complex hypersurface in G/K which is invariant under
an Iwasawa–Borel subgroup B of G and (in the hermitian case) is not a lift of the
B-invariant hypersurface in a compact dual symmetric spaceG/P , then EH(U) = U .

Proof. Except in the case when H is such a lift, Theorem 11.1.9 says that EH(U) is
Kobayashi hyperbolic. It is Stein by Proposition 7.2.1, and by definition it is invariant.
Also by definition, EH(U) ⊃ EI(U) and we know that EI(U) = U (Theorem 7.2.7).
Thus the result follows from the fact that U is a maximal G0-invariant Kobayashi
hyperbolic Stein domain in G/K . ��

Now let us turn our attention to the cycle domains MD . We assume that we are
not in the holomorphic hermitian case, which has already been handled. Therefore,
by Theorem 9.1.5, Ŭ ⊂ MD ⊂ SD ⊂ MZ , where Ŭ is the image of U under the
projection π : G/K → G/K̆ =MZ .
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Since SD is the intersection of envelopes of the form EH̆(Ŭ), it follows from The-
orem 11.1.9 that it is hyperbolic. Therefore, since the map π is distance decreasing,
the connected component of its π -preimage which contains U is likewise hyperbolic.
Since SD is Stein and G0-invariant, this preimage also has these properties. Hence,
by Theorem 11.3.1 it agrees with U . Thus the following is immediate.

Proposition 11.3.3. Recall MZ = G/K̆ and the finite cover π : G/K → G/K̆ .
Define Ŭ := π(U). Then Ŭ =MD = SD .

We complete our work in this direction by noting that π |U : U → Ŭ is a biholo-
morphic covering map. The following is the first step in that direction.

Lemma 11.3.4. The restriction π |U : U → Ŭ is a covering map.

Proof. Let � := K̆/K act on G/K on the right. We must show that if γ ∈ �, then
either γ (U) = U or γ (U) ∩ U = ∅. If this were not the case, then an open piece of
bd(U) would be mapped by γ into U . As a consequence of the fact that every closed
G0-orbit in the boundary of U is in the closure of some other orbit (Lemma 10.6.6),
the set of points z ∈ bd(U) such that G(z0) is closed is a nowhere dense subset of
bd(U). Thus γ would map a nonclosed G0-orbit into U . This is contrary to the fact
that all G0-orbits in U are closed. Thus either γ (U) = U or γ (U) ∩ U = ∅, as
desired. ��
Proposition 11.3.5. The domain U is homeomorphic to a cell. In particular it is
connected, simply connected and contractible.

Proof. Every element of U has unique expression exp(ζ ) exp(ξ)(x0)with ζ ∈ s0 and
ξ ∈ Ad(K0)(iω0) ⊂ is0. Here s0 represents the (real) tangent space of the symmetric
space G0(x0) = G0/K0, is0 represents the (real) tangent space of the compact dual
symmetric space Gu(x0) = Gu/K0, and the map (ζ, ξ) �→ exp(ζ ) exp(ξ)(x0) is a
diffeomorphism of the convex open (in s) cell s0 × Ad(K0)(iω0) onto U . ��
Corollary 11.3.6. The restriction π |U : U → Ŭ is biholomorphic.

Proof. By Lemma 11.3.4 the restriction π |U : U → Ŭ is an unramified cover with
finite structure group, say �. Thus Ŭ = U/�. If γ ∈ � then its fixed point set Uγ

has the same Euler–Poincaré characteristic (= 1) as U [Bre]. Hence, Uγ �= ∅, and
thus γ = 1. Now � = {1}, in other words, π |U is biholomorphic. ��

We have now given the complete description of MD in terms of the universal
domain and Schubert incidence geometry.

Theorem 11.3.7. LetD be an openG0-orbit in the flag manifoldZ = G/Q. Let MD

be the associated cycle space, viewed as a domain in theG-homogeneous space MZ .
In the hermitian holomorphic case, B = Ŭ = MD = SD or B = Ŭ = MD = SD .
In all other cases, π : G/K → G/K̆ =MZ is a finite covering map with

U = {gK ∈ G/K | gC0 ⊂ D}0, Ŭ =MD = SD,
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and π |U : U → Ŭ is biholomorphic. In particular,

π : {gK ∈ G/K | gC0 ⊂ D}0 →MD

is biholomorphic.

Leaving aside the hermitian holomorphic case, we reiterate as follows the con-
ceptual aspects of the proof. Every boundary point C ∈ bd(MD) in G/K contains
a point p which itself is contained in a B-Iwasawa–Schubert variety S in Z which
is of complementary dimension to the base cycle and which is contained in the com-
plement of D. Thus C is contained in a B-invariant incidence variety which is in the
complement of MD . Since U agrees with the Iwasawa envelope EI , it contains no
such varieties and therefore U ⊂MD .

On the other hand, there areB-Schubert varieties S = O∪̇Y which are of comple-
mentary dimension to C and which have nonempty (finite) intersection with it. The
variety Y is contained in the complement of D and the incidence variety IY =: H is
a hypersurface in the complement of MD . Thus the envelope EH contains MD , and
in particular it contains U . But the envelope isG0-invariant, Stein and Kobayashi hy-
perbolic, and consequently it agrees with U . This then forces the equality MD = U .
In particular, every boundary point C of MD in G/K is contained a translate k(H)

for k an appropriate element of K0.



12

Cycle Spaces of Lower-Dimensional Orbits

As usual Z = G/Q is a homogeneous rational manifold. We work with a real form
G0 ⊂ G under the assumption that G0 is simple. Theorem 11.3.7 gave us a precise
description of the cycle space MD , where D is an open G0-orbit on Z.

Here we discuss the cycle spaces C{γ } of arbitrary orbits γ ∈ OrbZ(G0). As in
the case of open orbits, for the definition of these cycle spaces one starts with a dual
pair (κ, γ ) and then considers all transformations g ∈ G which preserve the defining
property of duality, i.e., the compactness of the intersection g(κ) ∩ γ . One must be
a bit careful with this definition (see Section 1 below), but in the end the cycle space
can be regarded as follows. If q := dimC κ , then C{γ } is the connected component
containing the base cycle c
(κ) of the space of all cycles g(c
(κ)) ∈ Cq(Z) such
that g ∈ G and g(c
(κ)) ∩ γ =: Mg is a smooth compact submanifold of γ . For
computational convenience the elements of C{γ } are taken to be the transformations
g as opposed to the cycles g(κ) or the intersections Mg .

The main result of the present chapter, Theorem 12.1.3, was proved originally
in [HN] and [N]. It gives the complete description of all such cycle spaces. The
methods of proof look very similar to those which were used for the case of an open
orbit, but there are a number of points where essentially new ideas are needed.

First, the Schubert varieties S = O ∪ Y are set up as in the case of an open
orbit. In particular Y is contained in the complement of a given nonclosed orbit γ .
However, it is a priori unclear whether the incidence variety IY is contained in the
complement of C{γ }. The material in Sections 2 and 3 is aimed at proving that it is
indeed contained in that complement, Theorem 12.3.3 being the concluding result.
Except for the usual type of hermitian exception, this yields the desired classification
result (Theorem 12.4.2) for the case where γ is not closed. It should be underlined
that for this the main result of the previous chapter, that U is a maximal G0-invariant
domain of holomorphy which is Kobayashi hyperbolic, is essential.

The second area where new methods are implemented is that where the group G0
at hand is hermitian and every incidence hypersurface in G/K , which is invariant
under an Iwasawa–Borel subgroup, is a lift from one of the two compact symmetric
spaces. In this case it is shown that c
(κ) is in fact invariant under one of the two
parabolics that containK and, just as in the case of open orbits of holomorphic type, it
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follows that the cycle space is either the bounded domain B or its conjugate (Theorem
12.4.4).

Finally, in Section 5 an additional argument must be made in order to handle the
case of closed orbits (Theorem 12.5.3).

12.1 Definition of cycle space

For the definition of C{γ }, recall the basic duality statements. If γ ∈ OrbZ(G0),
there is a uniqueK-orbit κ ∈ OrbZ(K) so that κ ∩γ is nonempty and compact. Then
we say that γ and κ are dual or that (κ, γ ) is a dual pair. If (κ, γ ) is a dual pair,
then the intersection κ ∩ γ =: M is transversal in Z and M is a K0-orbit K0(z0)

which is minimal in both κ and γ . As suggested in [GM], motivated by duality, one
would like to define C{γ } by means of its lift toG and define that lift as the connected
component containing the identity of {g ∈ G | g(κ) ∩ γ is nonempty and compact}.
At the outset it is not at all clear that this is a reasonable set, e.g., that it is open.
Therefore we define G{γ } to be the component of 1 in the interior of

(12.1.1) {g ∈ G | g(κ) ∩ γ is nonempty and compact}.
One of our first observations below is that the identity is indeed an interior point, and
that therefore this definition makes sense.

Note that G{γ } is invariant under the action of K by right multiplication on G.
Thus it is convenient, having chosen a fixed base point in G/K , to pass from G{γ }
to the

(12.1.2) cycle space: C{γ } := G{γ }/K ⊂ G/K.

At this level, the results for an open orbit γop can be formulated as follows. In the
holomorphic hermitian case C{γop} is the preimage in G/K of a bounded symmetric
domain B in a compact dual G/P := G/P±. Otherwise, C{γop} agrees with the
universal domain U .

In the case of open orbits γop there is no need to worry about the interior of G{γ },
because G{γop} is obviously open. If we lift the cycle space MD to G as we have
done here, then for γop = D we have exactly the same definition as that which was
used in the previous sections.

In this chapter we extend the open orbit result to all cycle spaces C{γ }.
Theorem 12.1.3. Let G0 be an arbitrary simple group of noncompact type. If G0
is hermitian and c
(κ) is P+-or P−-invariant, then C{γ } is the preimage by π+ :
G/K → G/P+ or by π− : G/K → G/P− of the associated bounded symmetric
domain. Otherwise, C{γ } = U .

The spirit of the work here is similar to that in the previous chapters. In addition
we make use of the following observation of [GM].

Proposition 12.1.4. If γ ∈ OrbZ(G0), then C{γ } ⊃⋂γop⊂G/B C{γop}.
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The description of C{γop} in Theorem 11.3.7 has the following consequence,
which was verified in [GM] for most cases.

Corollary 12.1.5. If γ ∈ OrbZ(G0), then the cycle space C{γ } contains the universal
domain U .

Proof. If G0 is not of hermitian type, then this is immediate, because C{γop} = U
for any open G0-orbit in any G-flag manifold (Theorem 11.3.7).

In the hermitian case there are two special open orbits γ+op and γ−op in G/B.

They are the ones that project to the bounded symmetric domains B and B. The
corresponding cycle spaces are the preimages of B and B in G/K and therefore
C{γ+op} ∩ C{γ−op} = B × B = U . ��

12.2 Intersection with Schubert varieties

The results here also strongly rely on the basic properties of Schubert slices from
Chapter 9. Let us recall the essential aspects of these results.

Given γ ∈ OrbZ(G0) and an Iwasawa Borel subgroup B, we consider the (topo-
logically defined) set ofB-Schubert varieties Sκ which are of complementary dimen-
sion to that of the dual orbit κ and have nonempty intersection with c
(κ). As usual,
we decompose S ∈ Sκ into its open B-orbit O and Y := S \O.

By Theorem 9.1.1 we know that S∩c
(κ) is a finite set {z1, . . . zd} in κ∩γ which
is contained in γ ∩O, and O ∩ γ = ⋃̇	j , where 	j = A0N0(zj ) are the Schubert
slices which are themselves open in O and closed in γ .

If 	 is a Schubert slice, then in particular K0(bd(	)) = bd(γ ). This has the
following consequence.

Proposition 12.2.1. If (κ, γ ) is a dual pair, then

c
(κ) ∩ c
(γ ) = κ ∩ γ.
Proof. If c
(κ)∩c
(γ ) contained a boundary point p of γ , then, by conjugation with
an appropriate element ofK0, we could find a Schubert variety S and a Schubert slice
	 in S with p ∈ bd(	). In particular, p would be in the complement of γ in S. This
is contrary to the fact that c
(κ) ∩ S is contained in γ .

Similarly, if p ∈ bd(κ) ∩ γ , then by conjugating appropriately we could choose
a Schubert slice S which contains it, and this is contrary to S ∩ c
(κ) being contained
in κ ∩ γ . ��

Note that this shows that if g ∈ G is sufficiently near the identity, then g(κ)∩γ is
still compact. Consequently our definition of the cycle space C{γ } makes sense and
furthermore it is nonempty.

Observe that if γ is closed, then the Schubert variety associated to an Iwasawa–
Borel subgroup is just its fixed point. This case must be handled separately (see
Section 12.5). Therefore, unless otherwise stated, from now on we assume that the
G0-orbit γ under consideration is not closed.
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The main goal of this chapter is to show that Schubert slices can be used to
determine whether a sequence of cycles exits C{γ }. This is precisely formulated as
follows.

Proposition 12.2.2. Let 	 be a Schubert slice and suppose that {gn} is a sequence
in G{γ } such that gn → g with gn(c
(κ)) ∩ 	 = {pn} and pn diverges in 	. Then
g /∈ G{γ }.

The proof requires a bit of preparation.

Lemma 12.2.3. For all g ∈ G{γ } the number of points in the intersection g(κ) ∩	
is bounded by the intersection number [S].[c
(κ)].

Proof. Since 	 can be regarded as a domain in O ∼= Cn and g(κ)∩ γ is compact, it
follows from the maximum principle that g(κ) ∩ 	 is finite, and then its cardinality
is bounded by the intersection number [S].[c
(κ)]. ��

Now let J be the connected component containing the identity of the interior of

{g ∈ G : |g(κ) ∩	| = 1 for all 	}.

Since c
(κ) ∩ c
(γ ) = κ ∩ γ , and |g(κ) ∩ 	| = 1 for all 	, it follows that g ∈ J
for g sufficiently close to the identity. Thus J is well defined and nonempty.

In the definition of J , for all 	 means for all choices of the maximal compact
group K0 and all Iwasawa factors A0N0, i.e., all Schubert slices which arise by G0-
conjugation of those 	 which are connected components of S ∩γ for a fixed S ∈ Sκ .

Lemma 12.2.4. For all g ∈ J , the intersection g(κ) ∩ γ is transversal.

Proof. If d denotes the intersection number [S].[c
(κ)], then the base cycle c
(κ)
intersects O in exactly d points. Furthermore, O ∩ γ is a disjoint union of Schubert
slices 	1, . . . , 	d with one intersection point in each slice. By definition, if g ∈
J , then g(c
(κ)) intersects each 	i in exactly one point as well. If any of such
intersection points were not transversal, then it would follow that |g̃(c
(κ))∩S| > d

for g̃ near g in J . ��

The following is a consequence of the above lemma.

Corollary 12.2.5. The intersection Mg = g(κ)∩ γ is a connected compact manifold
for all g ∈ J .

Now we want to prove that G{γ } is contained in J . The crux of the argument is
to show that it does not leak out.

Proposition 12.2.6. bd(J ) ∩G{γ } = ∅.
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Proof. Suppose to the contrary that g ∈ bd(J ) ∩ G{γ }. Let {gn} be a sequence in
J ∩G{γ } with gn → g. Then by Corollary 12.2.5, Mn := gn(κ) ∩ γ is a sequence
of compact connected manifolds in γ .

Let M̃ denote the limiting set, M̃ := limMn. It follows that M̃ is a connected
closed subset of c
(γ ). Now, M̃ ⊂ g(c
(κ))∩ c
(γ ) =: A ∪̇E,whereA = A1 ∪̇A2
with A1 := g(bd(κ)) ∩ c
(γ ) and A2 := g(κ) ∩ bd(γ ), and E := g(κ) ∩ γ .

The set A is closed, because A1 is the intersection of two closed sets, and a
sequence in A2 which converges in Z will either converge to a point of A2 or A1.

Since we have assumed that g ∈ G{γ }, it follows that E is compact. Thus

M̃ = (M̃ ∩ A) ∪̇(M̃ ∩ E)

is a decomposition of M̃ into disjoint open subsets of M̃ . Since M̃ is connected and
M̃ ∩ A �= ∅, we conclude that M̃ ⊂ A.

Consequently, for every relatively compact open neighborhood U of a point
p ∈ γ , there exists a positive integer N = N(U) such that gn(κ) ∩ U = ∅ for
all n > N .

Now we have assumed that g ∈ G{γ }, in particular, that E is nonempty. Hence,
for p ∈ E we can consider an Iwasawa–Schubert variety S = O ∪̇Y with p ∈ O.
Since E is compact, the complex analytic set g(c
(κ)) ∩ S must contain p as an
isolated point. Thus, for 	 a Schubert slice through p, the intersection g(κ) ∩ 	 is
isolated at p, and as a consequence, gn(κ) must have nonempty intersection with any
open neighborhood U = U(p) of p if n is sufficiently large. This is contrary to the
above statement and therefore g /∈ G{γ }. ��

Corollary 12.2.7. G{γ } ⊂ J .

Proof of Proposition 12.2.2. Again we argue by contradiction. Suppose that
g ∈ G{γ }. Then by Corollary 12.2.7, g(c
(κ))∩	 consists of exactly one point, say
q. Since pn diverges in 	, we may assume that pn → p ∈ c
(	) \	.

Now by definition G{γ } is open. Thus there exists a small h ∈ G with hg still
in G{γ } and hg(κ) ∩ 	 containing points near p and q. Thus, |hg(κ) ∩ 	| � 2, in
violation of G{γ } ⊂ J . ��

Corollary 12.2.8. Let {gn} be a sequence in G{γ } such that gn → g and such that
there exist pn ∈ gn(κ) ∩ (S ∩ γ ) with the property that the sequence {pn} diverges
in O. Then g /∈ G{γ }.

Proof. Since O ∩ γ is a finite union of Schubert slices 	1 ∪ · · · ∪	d , it follows that
some Schubert slice contains infinitely many points of the sequence {pn}. We may
therefore assume that the sequence {pn} is contained in some fixed Schubert slice 	.
This implies that pn diverges in c
(	) \ 	, and it follows from Proposition 12.2.2
that g /∈ G{γ }. ��



180 12 Cycle Spaces of Lower-Dimensional Orbits

12.3 Hypersurfaces in the complement of the cycle space

Given an Iwasawa–Borel subgroup B and an associated Schubert variety S = O ∪̇Y
in SK , we now show that the incidence variety IY is contained in the complement of
C{γ } in G/K . Here

IY = ĨY /K and ĨY = {g ∈ G | g(c
(κ)) ∩ Y �= ∅}.
Let us recall the pertinent result of Chapter 7, specifically Corollary 7.4.10.

Theorem 12.3.1. If g ∈ ĨY and {gn} ⊂ (G \ ĨY ), then there exists f ∈ �(S,O(∗Y ))
so that the meromorphic function m = Tr(f ) satisfies limm(gn)→∞.

It follows that IY is a B-invariant hypersurface.
If κ is closed, i.e., γ = D is open, then every g ∈ G{γ } satisfies g(c
(κ))∩Y = ∅.

Therefore, in the case of open orbits it immediately follows that IY is contained in
the complement of C{γ }. Our goal here is to prove this for all γ .

Let us begin by reviewing our standard notions and introducing several relevant
analytic subsets of G.

Throughout, (γ, κ) ∈ OrbZ(G0)×OrbZ(K) denotes a dual pair. For an Iwasawa–
Schubert variety S ∈ Sκ defined by an Iwasawa–Borel subgroup B, we have the
decomposition S = O∪̇Y , where O is the B-orbit in S. The incidence variety ĨY is
an analytic subset of G with the property that if g /∈ ĨY , then g(c
(κ)) ∩ S is finite.

Let p0 be a base point in κ ∩ γ ∩ S, and

US := {g ∈ G | g(p0) ∈ S}.
Note that Q := Gp0 acts on US on the right and realizes it as a Q-principal bundle
π : US → S. In particular, US is an irreducible analytic subset of G. For s ∈ S, let
Fs := π−1(s).

Set E := US ∩ ĨY and note that since US is irreducible, it is a nowhere dense,
analytic subset of US . Finally, let DS := {s ∈ S | Fs ⊂ E}. It is a proper analytic
subset of S.

By combining the following remark with the results of the previous section, we
will show that ĨY is contained in the complement of G{γ }.
Proposition 12.3.2. Given a point g ∈ US and a sequence {pn} ⊂ S \DS converging
to p = g(p0) ∈ Y , there exists a sequence of transformations {gn} ⊂ US \ E with
gn converging to g and gn(p0) = pn.

Proof. Let {Un} be a sequence of open subsets of US contracting to g, that is, Un ⊂
Un+1 for all n and

⋂
Un = {g}. Since π : US → S is an open mapping, it follows

that Vn := π(Un) is a sequence of open neighborhoods of p. Consequently, we
can renumber the sequence pn such that pn ∈ Vn for each n. Since the set E is a
nowhere dense analytic subset of US and pn /∈ DS , it follows that E ∩ (Fpn ∩Un) is
nowhere dense in Fpn ∩Un. We can therefore choose gn /∈ E ∩ (Fpn ∩Un) such that
gn(p0) = pn and gn → g. ��
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By Corollary 12.2.8 we know that the transformations g in Proposition 12.3.2 are
not in G{γ }. This is enough to prove the following main result of this section.

Theorem 12.3.3. For a noncompact G0-orbit γ with dual K-orbit κ and a Schubert
variety S = O ∪ Y in Sκ it follows that the incidence variety ĨY is contained in the
complement of G{γ } in G.

Proof. A given g ∈ ĨY might not be in US . However, for an arbitrarily small neigh-
borhood U of the identity in G, there exists k ∈ K and u ∈ U so that ugk ∈ US ∩ ĨY .
The use of u allows us to assume that g(κ) ∩ Y is nonempty, and then applying the
appropriate k yields g(p0) ∈ Y . Since both G{γ } and ĨY are invariant under the
action of K by right-multiplication, it follows from Proposition 12.3.2 and Corollary
12.2.8 that a dense subset of ĨY is contained in the complement of G{γ }. Since ĨY is
closed and G{γ } is open, this yields the desired result. ��

12.4 Cycle Spaces of nonclosed orbits

Just above we worked in the lift G{γ } of the cycle space. Now we turn to the cycle
space C{γ } = G{γ }/K ⊂ G/K , and compare it to the universal domain U .

Disregarding the origin of hypersurface H = IY as an incidence divisor and
defining the envelope EH(U) as usual, the main result of the previous section implies
that we have at least trapped the cycle space between two reasonable domains.

Theorem 12.4.1. If γ ∈ OrbG0 Z is noncompact, then U ⊂ C{γ } ⊂ EH(U).
Proof. The first inclusion is given in Corollary 12.1.5, and the second follows im-
mediately from the fact that H is contained in the complement of C{γ }, i.e., from
Theorem 12.3.3. ��

If EH(U) is Kobayashi-hyperbolic, the desired characterization C{γ } = U now
follows as a consequence of Theorem 11.3.7 because in that case U = EH(U). This
is always the case if G0 is not of hermitian type. If G0 is of hermitian type, it is
also the case if and only if H is not a lift of the B-invariant hypersurface from either
G/P+ or G/P−. Precisely speaking, H being a lift, e.g., from G/P+, means that the
H = π−1+ (H0), where π+ : G/K → G/P+ is the natural projection and H0 is the
(unique) B-invariant hypersurface in G/P+. Let us formalize this result.

Theorem 12.4.2. If γ is noncompact and either G0 is not of hermitian type or is
of hermitian type and for some Iwasawa–Borel subgroup B, there is a B-invariant
hypersurface H in the complement of C{γ } which is not a lift, then C{γ } = U .

Now let us turn to the situation where every H is a lift. In fact, if some H+ is a
lift from G/P+ and H− is a lift from G/P−, then H = H+ +H− is not a lift. Thus
it is sufficient to handle the situation in the following theorem.

Theorem 12.4.3. Suppose that if B is an Iwasawa–Borel subgroup of G, then every
B-invariant hypersurface in the complement of C{γ } is a lift from G/P+. Then c
(κ)
is P+-invariant.
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Proof. Assume to the contrary that c
(κ) is not P+-invariant. Let p0 ∈ γ be a base
point with K(p0) = κ . Since κ is not P+-invariant, c
(P+(p0)) contains c
(κ) as a
proper subvariety.

Now the intersection c
(κ) ∩ S ⊂ O is transversal in Z. Thus, every component
of P+(p0) ∩O is positive-dimensional, and since O = Cm(O), it follows that every
such component has at least one point of Y in its closure.

Thus for every arbitrarily small neighborhood U of the identity in G there exists
h ∈ P+ and g ∈ U such that gh(p0) ∈ Y . Thus gh ∈ ĨY which by assumption is a
lift from G/P+. But in that case g ∈ ĨY , and in particular g /∈ G{γ }. Of course this
violates C{γ } being an open neighborhood of the identity. ��

In summary, the following is the main result of this section.

Theorem 12.4.4. Suppose that γ is noncompact and that G0 is of hermitian type.
If c
(κ) is neither P+ invariant nor P− invariant, then C{γ } = U . If c
(κ) is P+
invariant (respectively, P− invariant), then C{γ } = B (respectively, C{γ } = B).
Proof. It is enough to show that if c
(κ) is P− invariant, then C{γ } = π−1(B). But
P− invariance of c
(κ) is the same as gP−g−1 invariance of g(c
(κ)). In other words,
if c
(κ) is P− invariant, then C{γ } is the π−-preimage of some domain B̆ in G/P−.
Since G0 acts transitively on B, it is immediate that B ⊂ B̆. On the other hand, for
any Iwasawa–Borel group B, the unique B-invariant hypersurfaceH0 is contained in
the complement of B̆. Thus the envelope EH0 generated by H0 is in the complement.
But we know from Theorem 7.2.2 that B = EH0 . ��

It should be underlined that in this result we are discussing the true cycle space
C{γ }, not just G{γ }/K . Of course in the case where we write C{γ } = U the natural
realization of C{γ } is in the G-orbit G/K̆ of c
(κ) in Cq(Z), and K̆ could very well
be a finite extension of K . However, from Theorem 11.3.7, the lift of C{γ } from
G/K̆ to G/K is biholomorphic.

12.5 Cycle spaces of closed orbits

Here we consider the case of the closedG0-orbit γc
 and its dual κop which is the open
K-orbit in Z. Note that κop is dense in Z. Duality is the statement that κop ⊃ γc
.
Thus we consider the boundary

bd(κop) = Z \ κop = A1 ∪ · · · ∪ Am

decomposed as a union of its irreducible components.
Each of the components Aj is a closed analytic subset of Z which contains a

Zariski open dense K-orbit κj , j = 1, . . . , m. The only K-orbit which has such a
κj in its boundary is the open K-orbit κop, i.e., κop < κj and κop is the only K-orbit
with this property.

Thus, if γj denotes the G0-orbit which is dual to κj , then γj < γc
 and γc
 is the
only G0-orbit with this property (Theorem 8.4.1). In other words,
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(12.5.1) c
(γj ) = γj ∪̇ γc
, j = 1, . . . , m.

This implies the following basic fact.

Proposition 12.5.2. If γj is dual to the K-orbit κj which is defined to be the open
K-orbit in the irreducible component Aj in the boundary of the open orbit κop, then
C{γj } ⊃ C{γc
}, j = 1, . . . , m.

Proof. Sinceγj is noncompact, it follows from work in the previous section that every
element g ∈ bd(G{γj }) is contained in the lift ĨY of some incidence divisor IY . In
other words, g(c
(κj ))∩ Y �= ∅. But Y consists of a single point which is contained
in γc
. Therefore g /∈ C{γc
}. Thus bd(C{γj }) is contained in the complement of
C{γc
}, and as a result C{γj } ⊃ C{γc
}. ��

The following completes our discussion of the cycle spaces C{γc
}.
Theorem 12.5.3. The cycle space C{γc
} of the closed G0-orbit in Z is equal to the
universal domain U .

Proof. By Corollary 12.1.5 and Proposition 12.5.2, if γj is any G0-orbit that is dual
to a K-orbit κj on the boundary of κop, then

U ⊂ C{γc
} ⊂ C{γj }.
Thus, if c
(κj ) is neither P+- nor P−-invariant, then C{γj } = U , and the desired
result follows.

If among the boundary orbits κj some c
(κ+) is P+-invariant and another c
(κ−)
is P−-invariant, then C{γ+} = B and C{γ−} = B, and therefore

U ⊂ C{γc
} ⊂ C{γ+} ∩ C{γ−} = B × B = U .

Hence, in this case we also have the desired result.
Finally, if every boundary orbit c
(κj ) is, e.g.,P−-invariant, then the entire bound-

ary bd(κop) is P−-invariant. Equivalently, κop is P−-invariant, and thus C{γc
} is
P−-invariant.

Since P− is parabolic and G/K is spherical, the P−-orbit of a generic point in
G/K is Zariski open. It follows that the complement of C{γc
} in G/K , which
is clearly nonempty, is contained in a proper analytic set. But this complement is
invariant by the real form G0, in contradiction to the Identity Principle. ��

We close this section with remarks on the complex geometry of certain of the γc

and κop.

Recall for this the (m0a0n0) decomposition. Here we have implicitly chosen a
Cartan decomposition g0 = k0 + s0, a0 is as usual an abelian subalgebra which is
maximal among those contained in s0, and, having chosen a positive chamber, n0 is
the direct sum of the positive a0-root (restricted root) spaces. The subalgebra m0 is
the centralizer of a0 in k0.
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If bm is a Borel subalgebra in the complexification m, then b := bm + a+ n is a
Borel subalgebra of g. In particular, P = MAN is a parabolic subgroup of G which
contains the Iwasawa–Borel subgroup B = BMAN . We consider the flag manifold
Z = G/P which, due to the fact thatP is the complexification ofM0A0N0, is defined
over the reals.

Let z0 ∈ Z be the neutral point corresponding to P and observe that the isotropy
groupKz0 is just the reductive groupM . Hence, the open orbit κop := K(z0) = K/M

is an affine K-homogeneous space. In particular, all of the boundary components
A1, . . . , Am of κop in Z are of codimension 1, and γop is a totally real submanifold
of Z which is in fact the set of real points

Now let ẑ0 be the neutral point in Ẑ = G/B which corresponds to the Iwasawa–
Borel group B defined above. Let π : G/B → G/P be the canonical projection and
note that M acts transitively on the fiber π−1(z0). Thus the open orbit κ̂op = K.̂z0 is
simply the π -preimage of κop, and in particular π |̂κop : κ̂op → κop is proper. This is
in fact the Remmert reduction of the holomorphically convex manifold κ̂op, which is
constructed by identifying points whenever all holomorphic functions take the same
value on them.

Let us summarize these remarks.

Proposition 12.5.4. Every boundary component Âj of the open K-orbit κ̂op in Ẑ =
G/B has codimension 1 and κ̂op is holomorphically convex. If P is the minimal
parabolic containing B, κop is the openK-orbit inZ = G/P , and π : G/B → G/P

is the natural map, then κ̂op is π -saturated and π : κop → κ̃op is the Remmert
reduction of κop onto the affine homogeneous space κ̃op.

Proof. If some component Â is of higher codimension and p̂ ∈ Â is a generic point,
e.g., is in no other Âj , then every function f̂ ∈ O(̂κop) extends holomorphically
across Â at p̂.

But if {p̂n} ⊂ κ̂op converges to p̂, thenpn := π(p̂n) diverges in the Stein manifold
κop. Thus there exists f ∈ O(κop) with lim |f (pn)| = ∞. Hence, f ◦ π =: f̂
certainly cannot be extended across Â at p̂.

The same argument shows that κ̂op is holomorphically convex, i.e., for every
divergent sequence in κ̂op there is a holomorphic function on κ̂op with
lim |f (pn)| = ∞.

The Remmert reduction is defined at the set-theoretic level by the equivalence
relation p ∼ q if and only if every f ∈ O(̂κop) satisfies f (p) = f (q). Since the
base κop of π : κ̂op → κop is Stein, the fiber is compact (isomorphic to M/BM )
and it is a locally trivial bundle, it is also immediate that the structure sheaf on the
base is the direct image sheaf. This is the structural requirement of the Remmert
reduction. ��
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Examples

Since the complex projective homogeneous manifolds Z = G/Q of G = SL(n;C)
are just the classical flag manifolds, it is possible to discuss the cycle spaces of real
forms of G in terms that are perhaps more familiar to complex geometers. Here
we outline the Schubert slice method for flag domains of SL(n;R) in this concrete
context. For proofs we refer to [HS].

The case G0 = SU (2, 1) is handled in more detail. In particular, for the most
interesting orbit G0-orbit in the three-dimensional manifold of full flags, it is shown
that the Schubert slices 	 are not Stein manifolds. This is contrary to our original
hope of deriving the Stein property of MD from that property of 	.

The SL(3,R)-domain D in G/B is also particularly interesting. In this case we
show that the full cycle space Cq(D) is essentially larger than MD .

Here we also give concrete realizations of the universal domains U for the real
forms SU (p, q), SO(p, q), and Sp(p, q). For SU (p, q) and Sp(p, q) they take the
traditional form I −W ∗W � 0, but the matrix realization for SO(p, q) is somewhat
surprising.

This chapter is organized as follows. In Section 1 we introduce the notation
for the classical flag manifolds, and state the characterization of the (at most two)
open SL(n;R)-orbits in terms of the real structure on the underlying vector space
(Proposition 13.1.1). The base cycle in this case is the set of flags that are maximally
isotropic with respect to the standard complex bilinear form (Proposition 13.1.3).

The relevant Schubert varieties in the case of SL(n;R) are stabilized by parabolic
groups having semisimple part SL(2,R)×· · ·×SL(2,R). Therefore the slices 	 are
also of a very special type, products Ck×�
 of complex vector spaces with polydisks
(Proposition 13.1.5).

At the end of Section 1 the SU (2, 1)-actions on the three possible flag varieties
are discussed in detail; in particular, the orbits are described in terms of the signatures
of the restricted forms. The Schubert slices for the most interesting open orbit in
G/B are shown to project biholomorphically to the complement P2 \ (c
(B)∪L) of
the union of the closure of the bounded symmetric space B with one of its complex
tangent lines L.
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Either of the standard projections π : G/B → G/P = P2 induces a holomorphic
map π∗ : Cq(D̃) → Cq(D) of the full cycle space of the open SL(n;R) in G/B

to the full cycle space of the open orbit in G/P . It is shown that Cq(D) = U .
However, Cq(D̃) is much larger. Here we give a precise description of the fiber of π∗
(Proposition 13.1.6).

In Section 2 the universal domains of the real forms mentioned above are con-
cretely realized in G-orbits in Grassmannians of q-planes defined over C, R and H,
respectively. The realizations of the symmetric spacesG0/K0 in this way are classical
(Proposition 13.2.1). The description of their “thickenings’’U requires a computation
with restricted roots (Proposition 13.2.4). This results in a concrete matrix domain
picture of the respective universal domains (Proposition 13.2.11).

13.1 Cycle spaces of open SL(n; R)-orbits

13.1A Open orbits and base cycles

Let V = Cn and consider a vector δ = (d1, . . . , dk) of integers for which
0 < d1 < · · · < dk < n. A flag (�1 � · · · � �k) with symbol or dimension
sequence δ is an increasing sequence of subspaces of V with dimC �j = dj . Let Zδ
denote the set of all flags in V with symbol δ, viewed as a homogeneous space G/Q
whereG = SL(n;C). ThenQ is a parabolic subgroup ofG andZδ is a homogeneous
projective variety. Conversely, if Z = G/Q is a homogeneous projective variety,
then it is of the form Zδ for some symbol δ. Here we sketch some information on
the cycle spaces MD of open orbits D of G0 = SL(n;R) on such complex flag
manifolds Zδ .

Let γ denote complex conjugation of V = Cn over Rn. We say that a flag
(�1 � · · · � �k) is γ -generic if γ (�i) ∩ �j has minimal possible dimension for
all i, j .

Proposition 13.1.1. An orbit G0(z) of a point z ∈ Zδ is open if and only if z is a
γ -generic flag.

For the proof of this and other such statements see [HS].
It can be shown that there are either one or two open orbits of G0 = SL(n;R)

on Zδ . The case of two open orbits occurs when V has even dimension n = 2m and
m ∈ δ. In that case aγ -genericm-dimensional subspace� ⊂ V defines an orientation
on the space VR = Rn of real points, by associating to an ordered basis {v1, . . . , vm}
of � the ordered basis {Re v1, Im v1; . . . ;Re vm, Im vm}. The orientation defined
by the latter depends only on �.

Let us be concrete about this matter of orientation. Let {e1, . . . , e2m} denote the
standard basis of V = C2m. Define εj = e2j−1 +

√−1e2j for 1 � j � m. In this
setting we will say that �0

m = Span(ε1, . . . , εm) is positively oriented, and that a
flag (�1 � · · · � �m � · · · � �k) is positively oriented if �m defines the same
orientation of VR as�0

m, negatively oriented if it defines the other orientation on VR.
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Proposition 13.1.2. Ifm = 2n andm ∈ δ, then the space of γ -generic flags inZδ has
two topological components, the positively oriented flags and the negatively oriented
flags, and each is a G0-orbit. Otherwise, the space of γ -generic flags in Zδ is the
unique open G0-orbit on Zδ .

Let b : V × V → C be the standard complex bilinear form, b(x, y) = ∑ xiyi
in the basis {ei}. It defines the complex special orthogonal group K = SO(n,C). A
flag (�1 � · · · � �k) is maximally isotropic (with respect to b) if, for all i and j ,
either �⊥i ⊂ �j or �⊥j ⊂ �i .

Proposition 13.1.3. The closed K-orbit C0 inside an open G0-orbit D in Zδ is the
manifold of maximally isotropic flags in D.

13.1B Schubert slices

The transversal slices used in [HS] may carry a bit more information than Schubert
slices. We exhibit this in the notationally simple case of the full flag manifold Z =
G/B in an even-dimensional space V = C2m.

A natural base point for the G0-orbit of positively oriented flags is

z0 =
([ε1] � [ε1 ∧ ε2] � · · · � [ε1 ∧ · · · ∧ εm] � [ε1 ∧ · · · ∧ εm ∧ γ (εm)]
� [ε1 ∧ · · · ∧ εm ∧ γ (εm) ∧ γ (εm−1)] � . . .

� [ε1 ∧ · · · ∧ εm ∧ γ (εm) ∧ · · · ∧ γ (ε2)]
)
.

Now consider the parabolic subgroup P ⊂ G defined as the stabilizer of

w = (W2 � W4 � · · · � W2m−2
)
, where W2j = [ε1 ∧ γ (ε1) ∧ · · · ∧ εj ∧ γ (εj )].

It is shown in [HS] that the closure S = c
(P (z0)) is a Schubert variety that has the
Iwasawa–Schubert properties which have been used throughout this book.

From our present viewpoint, given the base point z0, we would probably choose
the Borel subgroupB to be one that stabilizes the flag defined by the standard ordered
basis {e1, . . . , e2m}.

Of course the closures are the same, c
(P (z0)) = S = c
(B(z0)), but one sees the
Schubert slices more easily by using P . For example, let P ss denote the semisimple
component SL(2;C)×· · ·×SL(2;C) of P . It is the derived group of a reductive part
P r ofP defined by the decompositionV = W1⊕· · ·⊕Wm, whereWj = [εj∧γ (εj )].
Let P−n denote the unipotent radical of P . Hence, P = P rP−n semidirect product,
and we can fiber the P -orbit

(13.1.4) P(z0) = P/H → P/P−nH = P1(C)× · · · × P1(C)

with typical fiber P−n(z0) ∼= Ck , where H is the P -stabilizer of z0. The intersection
P0 = P r

0P
−n
0 := P ∩G0 is locally transitive on the intersection S∩D of the Schubert

variety with the open orbit D. In fact, as we know, A0N0 already is locally transitive
on that intersection. The action of P0 gives us the following additional information:
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1. The real unipotent radical P−n0 is transitive on the fibers of (13.1.4) over the open
P r

0 -orbits in the base.
2. The situation is inductive in the sense that the Schubert slices 	 are just the

preimages of the open P−n0 -orbits in the P r -homogeneous manifold (13.1.4).

Finally, we note that in general the Schubert slices for open SL(n;R)-orbits have
a very special form.

Proposition 13.1.5. A Schubert slice 	 of an open SL(n;R)-orbit in a flag manifold
Zδ is biholomorphic to the product Ck×�
 of a k-dimensional complex vector space
with an 
-dimensional polydisk.

This could very well shed some light on the representations of SL(n;R) on coho-
mology spaces associated to flag domains.

13.1C Flag domains of SL(3; R)

We specialize to V = C3, with G = SL(3;C) and G0 = SL(3;R), in order to give
more details on the above remarks concerning SL(n;R) in a concrete setting. In
particular, we give an example of the general results in Part IV, explicitly showing
that the full cycle space of the open G0-orbit D, in the manifold of full flags, is
essentially bigger than MD .

The group G0 has two orbits on P(V ), the closed orbit P(VR) consisting of real
points, and the open orbit D = P(V ) \ P(VR). In the notation introduced above, a
point in P(V ) is just a flag z = (L), whereL ⊂ V is a one-dimensional subspace. The
base cycle C0 is the manifold of isotropic lines. Choosing K0 = SO(VR) = SO(3)
we have C0 = {[z0, z1, z2] ∈ P(V ) | z2

0 + z2
1 + z2

2 = 0}.
Choose the base point z0 = ([ε1]) ∈ C0. Here ε1 = e1+

√−1e2 where {e1, e2, e3}
is the standard basis of V . We use the Borel subgroup B which is the G-stabilizer of
the full flag ([e1] � [e1 ∧ e2]). The closure S := c
(B(z0)) of its orbit of the base
point is the projective line P([e1 ∧ e2]). The intersection S ∩ P(VR) is the circle

SR = {[aε1 + bγ (ε1)] ∈ P(V ) | a2 + b2 = 1}
and the complement Y of the open B-orbit in S is just the fixed point z1 = [e1].

The space �(S;O(∗Y )) of meromorphic functions is the domain of definition of
the trace transform. It can be realized as the space of polynomials on C where z1 is
regarded as the point at ∞. We point out that S ∩ D has two components: it is the
union S1 ∪ S2 of two disks such that SR is their common boundary. In fact each of
those disks defines a trace transform.

Now we move to the space Z of full flags (�1 � �2) in V . Of course we have
the P1(C)-bundle Z → P(V ) given by (�1 � �2) �→ �1. The open G0-orbit D̃ in
Z is the set of all γ -generic flags there, and in this case (�1 � �2) is γ -generic if
and only if V = γ (�1)+�2. Note that P(V ) is not measurable in the sense of [W2],
and that D̃ is the measurable model or minimal measurable cover of the open orbit
D = P(V ) \ P(VR) in the sense of flag duality [HW1].
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The base cycle C̃0 in D̃ is a section of the restriction to C0 of the P1(C)-bundle
Z→ P(V ). It is the K0-orbit of the base point z̃0 = ([ε1] � [ε1 ∧ e3]). Since dim V

is odd, this expression lacks a bit in symmetry.
The appropriate Borel subgroup B is the stabilizer of the flag ([e1] � [e1 ∧ e2]),

as above, and the two-dimensional orbit Õ := B(̃z0) fibers as a C-bundle over
B(z0). The Schubert variety S̃ := c
(B(̃z0)) is the preimage of the one-dimensional
S = c
(B(z0)) under π : Z→ P(V ).

The complement Ỹ := S̃ \ Õ is the union of the fiber Ỹ1 := π−1(z1) and a section
Ỹ2 of π : S̃ → S. Finally, S̃ ∪ D̃ = S̃1 ∪ S̃2, union of the preimages of the Schubert
slices S1 and S2 with the section Ỹ2 removed. Therefore, in this case a Schubert slice
is just a product 	 = C×� of the complex line and a disk.

In order to obtain the full information afforded by B, we must also consider the
dual Schubert variety S̃∗ which is the π∗ preimage of the one-dimensional Schubert
variety S∗ in P(V ∗). Thus, in the case of the flag manifold Z, one has a total of four
Schubert slices for the open SL(3;R)-orbit D̃.

Finally let us compute the topological component C1(D̃) of (the one-dimensional
base cycle) C̃0 in the full cycle space of D̃. For this note that D̃ → D defines a
globally G0-equivariant, locally G-equivariant, holomorphic map C1(D̃)→ C1(D).

Now, any two nondegenerate quadrics in P(V ) differ by an element of G =
SL(3;C). Thus, if such a quadric lies in D, then it is MD . Furthermore, the only
degenerations of such smooth quadrics are two projective lines, either in general
position or a double line. Since every two-dimensional complex subspace of V
contains a one-dimensional real subspace, it follows that every projective line has a
real point. Thus no degenerate quadric is in C1(D) and it follows that C1(D) =MD

here.
Now we have a holomorphic fibration C1(D̃)→ MD , and we describe the fiber

F over the base cycle C0 ∈MD .

Proposition 13.1.6. The fiber F is the cycle space of the open SL(2;C)-orbit acting
on P1(C) × P1(C) as a real form of SL(2;C) × SL(2;C) by the action T (z,w) =
(T z, T ∗w), where T ∗ = (tT )−1 as usual.

Proof. The fiber F is {C̃ ∈ C1(D̃) | π(C̃) = C0}, where π is the standard projection
Z → P(V ), and C0 is the orbit of the base point z0 ∈ P(V ) under K = SO(3;C).
Therefore it is relevant to analyze the action of K on the preimage X := π−1(C0)

in Z.
Recall z0 = [ε1] and C̃0 = K(̃z0), where z̃0 = ([ε1] � [ε1 ∧ e1]). From Witt’s

theorem, if P1 and P2 are two planes in V that contain ε1 and are b-nondegenerate,
then there is an element of K that fixes ε1 and maps P1 to P2. Consequently, the
isotropy subgroup Kz0 acts transitively on the complement of z̃0 in π−1(z0). Since
π |X : X→ C0 is K-equivariant, now K has exactly two orbits in X, the base cycle
C̃0 and its complement.

The classification of almost homogeneous SL(2;C)-manifolds (see, for example,
[HL]) says thatX is biholomorphic to P1(C)×P1(C), where SL(2;C) acts diagonally
and C̃0 is the diagonal.
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Since K0 ⊂ G0, it stabilizes both X and D, and thus stabilizes the complement
A := X\D̃. The fiber of π |X : X→ C0 is a projective line P1(C) and its intersection
with D is the complement C of a single point. The set A consists of those points
and forms a C∞−section of π |X : X → C0. This has two consequences. First, A
is a K0-orbit on X. Second, dimR A = dimR C0 = 2. Of course dimR X = 4, and
consequently A is not a real hypersurface in X.

There are only two K0-orbits in P1(C) × P1(C) that are not real hypersurfaces:
the “antidiagonal’’ {([z0, z1], [w0.w1]) ∈ P1(C) × P1(C) | z0w0 + z1w1 = 0} and
the usual diagonal. Since the base cycle C̃0 is a complex K0-orbit in X, it follows
that A is the antidiagonal.

Thus the fiber F over C0 in the full cycle space of D̃ can be identified with the
space of cycles in P1(C) × P1(C) which are in the same irreducible component as
the diagonal and are contained in the complement of the antidiagonal. This is just
the linear cycle space MW , where W is the open orbit of G0 := SL(2;C) which
acts on P1(C) × P1(C) as a real form of SL(2;C) × SL(2;C) in the usual way:
T (z,w) = (T (z), T ∗(w)), where T ∗ = (tT )−1. ��

13.2 Cycle spaces for open SU(p, q; F)-orbits

We now describe the cycle spaces MD corresponding to flag domains of the real or-
thogonal groups SO0(p, q), the special unitary groups SU (p, q), and the quaternionic
unitary groups Sp(p, q), in terms of the riemannian symmetric spaces corresponding
to those groups. For that purpose we realize the symmetric spaces as real, complex
or quaternionic bounded domains; then the group acts by linear fractional transfor-
mations.

13.2A Dual Grassmann manifolds as bounded domains

Let F denote one of the fields R, C or H, let 0 � p � q be integers with n :=
p+q � 1, and write Fp,q for the right vector space Fn with hermitian form h(u, v) =∑

1�a�p uava −
∑

1�b�q ubvb. We write U(p, q;F) for the unitary group of Fp,q :
U(p, q;R) = O(p, q), U(p, q;C) = U(p, q) and U(p, q;H) = Sp(p, q). In this
context, they define our groups as follows.

F = R F = C F = H
G0 SU (p, q;R) = SO0(p, q) SU (p, q;C) = SU (p, q) SU (p, q;H) = Sp(p, q)
K0 SO(p)× SO(q) S(U(p)× U(q) Sp(p)× Sp(q)
G SO(p + q;C) SL(p + q;C) Sp(p + q;C)
Gu SO(p + q) SU (p + q) Sp(p + q)

The Grassmann manifold of q-dimensional linear subspaces of Fn is the rieman-
nian symmetric space

G(p, q;F) = SU (p + q;F)/S(U(p, 0;F)× U(0, q;F)).
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In effect it is Gu/K̆0, where K̆0 is the stabilizer of the subspace spanned by the last

q basis vectors, in other words, the centralizer of
(
Ip 0
0 −Iq

)
in Gu. If F �= R, then

K̆0 = K0; if F = R then K0 is a subgroup of index 2 in K̆0. In any case, G(p, q;F)
is a compact dual symmetric space of

B(p, q;F) = SU (p, q;F)/S(U(p, 0;F)× U(0, q;F))0 = G)/K0.

If F is C or H, then Gu is simply connected and K0 is connected. Thus G(p, q;F)
is simply connected in these cases. On the other hand G(p, q;R) has a 2-sheeted
riemannian covering space consisting of all oriented q-dimensional linear subspaces
of Rn. When F = R, we set aside the trivial case p = q = 1, where G(p, q;R) is
the real projective line.

We recall the following more or less standard result in order to establish notation.
Here we view Fn as consisting of column vectors so that our unitary groups act on it
by matrix multiplication from the left, as usual.

Proposition 13.2.1. Let {ea} be the standard basis of Fn with respect to which we
wrote the hermitian form h. Let x0 = Span{ep+1, . . . , ep+q} ∈ G(p, q;F), base
point. Then

B(p, q;F) = SU (p, q;F)(x0)

is the space of negative definite q-dimensional subspaces of Fp,q .
If x ∈ B(p, q;F), then it has a (unique) basis {u1, . . . , uq} of the form ub =

(
∑

1�a�p wa,bea)+ep+b, where the hermitian matrix (h(ub, uc)) is negative definite.

In other words, x is the column span of a (unique) matrix
(
W
Iq

)
, where W = (wa,b)

is p× q and Ip −WW ∗ � 0. Thus we identify B(p, q;F) with the bounded domain
{W ∈ Fp×q | Ip − WW ∗ � 0}. In this identification x0 is identified with the
p× q matrix 0, and the action of G0 = SU (p, q;F) on B(p, q;F) is given by linear
fractional transformations,(

A B
C D

) : W �→ (AW + B)(CW +D)−1,

where A is p × p, B is p × q, C is q × p, D is q × q, and CW +D is invertible.

Proof. The hermitian form variation on Witt’s theorem shows that U(p, q;F) acts
transitively on B(p, q;F). Hence, as asserted, B(p, q;F) = SU (p, q;F)(x0) is
the space of all negative definite q-dimensional linear subspaces of Fp,q . If x ∈
B(p, q;F) now x ∩ Span{e1, . . . , ep} = 0, so the orthogonal projection of Fp,q onto
x0 with kernel Span{e1, . . . , ep} = 0 is an isomorphism. Let {u1, . . . , uq} be the
basis of x that projects onto the basis {ep+1, . . . , ep+q} of x0. Negative definiteness
of x translates to negative definiteness for the hermitian matrix (h(ub, uc)), which in
turn translates to Ip −WW ∗ � 0.

G0 = SU (p, q;F) acts on the column span x of
(
W
Iq

)
by matrix multiplication,(

A B
C D

) (
W
Iq

)
= ( AW+BCW+D

)
. Here CW +D is nonsingular because that column span is

negative definite, and
(
AW+B
CW+D

)
has the same column span as

(
(AW+B)(CW+D)−1

Iq

)
.

This completes the proof. ��
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In the case F = R, the correspondence x �→ W of Proposition 13.2.1 is also
defined on the Grassmannian of oriented negative definite q-dimensional subspaces
of Rp+q , but the correspondence ignores orientation, and it is convenient for us to
work with the nonoriented Grassmannian.

Proposition 13.2.1 describes �0 = G0(x0) inside � = G/K . Now we describe
�u = Gu(x0) inside �.

We start by complexifying the “matrix space’’of Proposition 13.2.1. The universal
domain will sit naturally inside that complexification. For notational clarity we tensor
with a C whose square root of −1 we denote by 
. This is to avoid confusion with
pure imaginary elements of F. The following lemma is obvious.

Lemma 13.2.2. By abuse of notation, write h for the C-hermitian extension of h from
Fp,q to its complexification Fp,q

C
. Let

Fp,qu = SpanF{
e1, . . . , 
ep, ep+1, . . . , ep+q}.
By further abuse of notation let h also denote the restriction of the hermitian form
from Fp,q

C
to Fp,qu . Then 
ea �→ ea for 1 � a � p and eb �→ eb for 1 � b � q

defines an isometry of Fp,qu onto Fp,q .

Lemma 13.2.2 sets up notation for the following obvious remark.

Lemma 13.2.3. The orbit Gu(x0) ∼= G(p, q;F) consists of all q-dimensional F-
subspaces of Fp,qu .

When F �= R, where K0 is the isotropy subgroup of Gu at x0, Lemma 13.2.3
identifies �u ⊂ � geometrically as G(p, q;F). When F = R, it identifies �u

geometrically as the 2-sheeted universal covering space of G(p, q;F).

13.2B Restricted root analysis of 1
2�u

We can now give a complete description of 1
2�u. We will describe it in the Grass-

mannian G(p, q;F) and see explicitly that it is a cell. As a consequence its lift to
�u ⊂ � is bijective, and the description applies there as well.

Proposition 13.2.4. The domain 1
2�u ⊂ �u is given as follows:

1. Suppose that F is C or H. Then 1
2�u consists of all negative definite q-

dimensional F-subspaces of Fp,qu . Those are the subspaces that are column

spans of matrices
(

W
Iq

)
, where W ∈ Fp×q such that WW ∗ has eigenvalue ar-

ray {tan2(a1), . . . , tan2(ap)} with all ai real and |ai | < π/4 for 1 � i � p. The
latter condition can be formulated as Ip −WW ∗ � 0.

2. Suppose that F = R. Then 1
2�u consists of all q-dimensional subspaces of Rp,q

u

that are column spans of matrices
(

W
Iq

)
, where W ∈ Rp×q such that WW ∗ has

eigenvalue array {tan2(a1), . . . , tan2(ap)} with all ai real and
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Case p � 2: |ai | + |aj | < π/2 for 1 � i < j � p. That condition can be

formulated as Ip(p−1)/2 − 2
π

∧2
(

arctan
(√

WW ∗
))
� 0.

Case p = 1: |a1| < π/2. Then W is a row vector and the condition just says
that the square length ||W ||2 <∞ where ||W ||2 := WW ∗.

Proof. The isotropy subgroupGu atx0 is the group K̆0 = S(U(p, 0;F)×U(0, q;F)),
which is the centralizer inGu of

(
Ip 0
0 −Iq

)
. It has identity componentK0 = Gu∩G0,

and we have decompositions G0 = K0A0K0 and Gu = K0AuK0 where au = 
a0.
In matrices,
(13.2.5)

A0 = all aA :=
(

cosh(A) sinh(A) 0
sinh(A) cosh(A) 0

0 0 I

)
and Au = all a
A :=

(
cosh(
A) sinh(
A) 0
sinh(
A) cosh(
A) 0

0 0 I

)
,

whereA = diag{a1, . . . , ap} is a real diagonal p×p matrix. But cosh(
a) = cos(a)

and sinh(
a) = 
 sin(a). Hence a
A =
(

cos(A) 
 sin(A) 0

 sin(A) cos(A) 0

0 0 I

)
, and therefore a
A(x0) is

given by

SpanF{sin(a1)
e1 + cos(a1)ep+1, . . . , sin(ap)
ep + cos(ap)e2p, e2p+1, . . . , ep+q}.
This exhibits Au(x0) as a product of circles sin(a)
eb + cos(a)ep+b in Fp,qu .

Now, using Proposition 6.1.4, we run through the various cases to explicitly see
1
2�u in terms of restricted roots.

Case F = H. Here G0 = Sp(p, q), where 1 � p � q. Let n = p + q. We view G0
as a group of quaternionic matrices, and we use the Cartan subalgebra

h : all ξ = ξ(a1, . . . , an) :=
( diag{ap+1,...,a2p} diag{a1,...,ap} 0

diag{a1,...,ap} diag{ap+1,...,a2p} 0
0 0 diag{a2p+1,...,an}

)
with ai ∈ C. Here a consists of the η = η(a1, . . . , ap) := ξ(a1, . . . , ap, 0, . . . , 0).
Its real form a0 = {η(a1, . . . , ap) | ai ∈ R}, and au = 
a0.

As usual the εi : h → C are the eigenvalues of the corresponding 2n × 2n
matrices. The short roots are the ±εi ± εj , 1 � i < j � n, and the long roots are
the ±2εi , 1 � i � n. For the a-roots we set εk = 0 for p < k � n. Now the matrix
a
A of (13.2.5) is just exp(η(
a1, . . . , 
ap)), where A = diag{a1, . . . , ap}, ai ∈ R.
The values of the a-roots on η(
a1, . . . , 
ap) = log a
A are the ±2
ai and ±
ai ,
1 � i � p, and the ±
ai ± 
aj , 1 � i < j � p. Thus we have

(13.2.6) |α(η)| < π
2 for all a-roots α ⇔ each |2εi(η)| < π

2 ⇔ each |ai | < π
4 .

It is immediate from (13.2.6) that Au(x0) ∩ 1
2�u is given by the condition that, for

each index i, ai belongs to the component of 0 in the range | sin(ai)| < | cos(ai)|; so
1
2�u consists of the negative definite q-dimensional H-subspaces of Hp.q

u .

Case F = C. Here G0 = SU (p, q), where 1 � p � q. Let n = p+ q. We view G0
as a group of complex matrices, and we use the Cartan subalgebra h of all matrices
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ξ = ξ(a1, . . . , an) :=
( diag{ap+1,...,a2p} diag{a1,...,ap} 0

diag{a1,...,ap} diag{ap+1,...,a2p} 0
0 0 diag{a2p+1,...,an}

)
of trace zero with complex entries. Here a consists of the η = η(a1, . . . , ap) :=
ξ(a1, . . . , ap, 0, . . . , 0). Its real form a0 = {η(a1, . . . , ap) | ai ∈ R}, and au = 
a0.

As usual the εi : h → C are the joint eigenvalues. The roots are the ±(εi − εj ),
1 � i < j � n, and for the a-roots we set εk = 0 for 2p < k � n and εi = εp+i for
1 � i � n. Again the matrix a
A of (13.2.5) is just exp(η(
a1, . . . , 
ap)), whereA =
diag{a1, . . . , ap}, ai ∈ R, and values of the a-roots on η(
a1, . . . , 
ap) = log a
A
are the ±2
ai and ±
ai , 1 � i � p, and the ±(
ai − 
aj ), 1 � i < j � p. Thus
again we have

(13.2.7) |α(η)| < π
2 for all a-roots α ⇔ each |2εi(η)| < π

2 ⇔ each |ai | < π
4 ,

and it is immediate from (13.2.7) that Au(x0) ∩ 1
2�u is given by the condition that,

for each i, ai belongs to the component of 0 in the range | sin(ai)| < | cos(ai)|. So
1
2�u consists of the negative definite q-dimensional C-subspaces of Cp,q

u .

Case F = R. Here G0 = SO(p, q), where 1 � p � q. Let n = p+ q. We view G0
as a group of real matrices, and we use the Cartan subalgebra h of all

ξ = ξ(a1, . . . , am) :=
( 0 diag{a1,...,ap} 0

diag{a1,...,ap} 0 0
0 0 diag{r(ap+1),...,r(am),(0)}

)
,

where n is 2m or 2m+1, the ai ∈ C, r(a) = ( 0 a−a 0

)
, and the (0) is present just when

n is odd. Again, a consists of the η = η(a1, . . . , ap) := ξ(a1, . . . , ap, 0, . . . , 0). Its
real form a0 = {η(a1, . . . , ap) | ai ∈ R}, and au = 
a0. As before, the εi : h → C
are the eigenvalues. The roots are

• if n = 2m+ 1: the ±εi ± εj , 1 � i < j � m, and the ±εi , 1 � i � m;
• if n = 2m: the ±εi ± εj , 1 � i < j � m.

As before, the matrix a
A of (13.2.5) is just exp(η(
a1, . . . , 
ap)), where A =
diag{a1, . . . , ap}, ai ∈ R, and values of the a-roots on η(
a1, . . . , 
ap) = log a
A
are as follows:

• if n = 2m + 1 and p � 2: the ±
ai ± 
aj for 1 � i < j � p and the ±ai for
1 � i � p, corresponding to the a-root system {±εi ± εj ,±εk}1�i<j�p,1�k�p;

• if n = 2m and m− 1 � p � 2: the ±
ai ± 
aj for 1 � i < j � p and the ±ai
for 1 � i � p; then {±εi ± εj ,±εk}1�i<j�p,1�k�p is the corresponding a-root
system;

• if n = 2m and m = p � 2: the ±
ai ± 
aj for 1 � i < j � p, corresponding
to the a-root system {±εi ± εj }1�i<j�p; and

• if p = 1: ±a1, corresponding to the a-root system {±ε1}.
So if p � 2, we have |α(η)| < π

2 for all a-roots α if and only if

(13.2.8) |εi(η)| + |εj (η)| < π
2 for i < j ⇔ |ai | + |aj | < π

2 for i < j,
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and if p = 1, we have

(13.2.9) |α(η)| < π
2 for all a-roots α ⇔ |ε1(η)| < π

2 ⇔ |ai | < π
2 .

Suppose that p � 2. Then Au(x0) ∩ 1
2�u is specified by the condition that, for

1 � i < j � p, |ai | + |aj | < π
2 . Thus 1

2�u consists of the oriented column span

of matrices
(

W
Ip

)
such that WW ∗ is diagonalizable real eigenvalues t2i , 1 � i � p,

such that |ti |+ |tj | < π
2 for i < j . Here ti = tan ai . Thus we arrive at the description

of 1
2�u claimed in Proposition 13.2.4.
Suppose that p = 1. Then Au(x0) ∩ 1

2�u is specified by the condition that

|a1| < π
2 . Thus 1

2�u consists of the oriented column span of matrices
(

W
Ip

)
where

W is a 1×q real row matrix such thatWW ∗ = t21 with 0 � t21 < π
2 . Here t1 = tan a1.

So again we arrive at the description of 1
2�u claimed in Proposition 13.2.4, and that

completes the proof. ��

13.2C Geometric interpretation

We give a geometric interpretation of Proposition 13.2.4.
Suppose first that F is C or H. Since v and −v have the same linear span, the

antipode of x0 in the circle sin(a)
eb + cos(a)ep+b is given by a = π/2. Now
1
2�u∩Au(x0) consists of all the a
A(x0) for which every |ab| < π/4, in other words,
every | sin(ab)| < | cos(ab)|. Since

h
(
sin(a)
eb + cos(a)ep+b, sin(a)
eb + cos(a)ep+b

) = sin2(a)− cos2(a),

we have

1
2�u ∩ Au(x0) = {w ∈ Au(x0) | w is negative definite for h}.

All the structures here are K̆0-stable, and therefore

1
2�u = {w ∈ Gu(x0) | w is negative definite for h}.

Express this in terms of column span. The condition |ab| < π/4, in other words
| sin(ab)| < | cos(ab)|, ensures cos(ab) �= 0. So

a
A(x0) = Span{tan(a1)
e1 + ep+1, . . . , tan(ap)
ep + e2p, e2p+1, . . . , ep+q}.

In other words, a
A(x0) is the column span of
(

W
Iq

)
, where

WW ∗ = diag{tan2(a1), . . . , tan2(ap)},
and the condition |ab| < π/4 for 1

2�u just says that each | tan2(ab)| < 1, or equiv-
alently that Ip − WW ∗ � 0. That completes the proof for the cases where F is
C or H.
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Suppose that F = R. First consider the case where p � 2. Then the antipode of
x0 in the torus Au(x0) is cut out by

|ab| = π for 1 � b � p and |ab + ac| = π for 1 � b < c � p.

Up to K0-conjugacy we may take each ab � 0. Then these antipode conditions
simplify to ab + ac = π for 1 � b < c � p, and arguing as before we see

that a
A(x0) ∈ 1
2�u if and only if a
A(x0) is the column span of

(

W
Iq

)
, where

WW ∗ = diag{tan2(a1), . . . , tan2(ap)}, where |ai |+ |aj | < π/2 for 1 � i < j � p.
The alternate formulation now is an easy exercise.

Now suppose that p = 1. Then the antipode of x0 in the circle Au(x0) is the
point |a1| = π , which is x0 with the opposite orientation. Hence a
A(x0) ∈ 1

2�u

if and only if a
A(x0) is the column span of
(

W
Iq

)
, where WW ∗ = tan2(a1) with

|a1| < π/2. That just says tan2(a1) < ∞, which is not very interesting. But in any
case we now have the description of Proposition 13.2.4.

13.2D Matrix space interpretation

We now translate Proposition 13.2.4 into terms closer to those of the matrix space of
Proposition 13.2.1. Define

(13.2.10)
W(p, q;R) = {x ∈ G̃(p, q;R) | x ∩ Span{e1, . . . , ep} = 0} and

W(p, q;F) = {x ∈ G(p, q;F) | x ∩ Span{e1, . . . , ep} = 0} if F �= R.

Proposition 13.2.11. DefineW(p, q;F) = {x ∈ G(p, q;F) | x∩Span{e1, . . . , ep} =
0} if F �= R, and W(p, q;R) = {x ∈ G̃(p, q;R) | x ∩ Span{e1, . . . , ep} = 0}. Then
W(p, q;F) is a dense open subset of G(p, q;F), and(

W �→ column span of
(
W
Iq

))
(oriented if F = R)

identifies Fp×q with W(p, q;F). The complexification Fp×q
C

:= Fp×q ⊗R C is thus
identified with a dense open subset W(p, q;F)C of � = G/K that contains both �0
and 1

2�u. Specifically, in this identification,

�0 = {W ∈ Fp×q | Ip −WW ∗ � 0}
and 1

2�u is given by Proposition 13.2.4:

Case F �= R : 1
2�u = {
W ∈ 
Fp×q | Ip −WW ∗ � 0},

Case F = R, p � 2 : 1
2�u

=
{

W ∈ 
Rp×q

∣∣∣∣Ip(p−1)/2 − 2
π

∧2 (
arctan

(√
WW ∗

))
� 0

}
,

Case F = R, p = 1 : 1
2�u = {
W ∈ 
R1×q | √WW ∗ <∞} = 
R1×q .
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The action of G on Fp×q
C

is given, where defined (i.e., where CW +D is invertible),
by linear fractional transformations,(

A B
C D

) : W �→ (AW + B)(CW +D)−1.

Proof. First, suppose that F �= R. The complement G(p, q;F)\W(p, q;F) consists
of all elements x ∈ G(p, q;F) such that e1 ∧ · · · ∧ ep ∧ v1 ∧ . . . vq = 0 where {vb}
is a basis of x. So that complement is a closed proper subvariety and W(p, q;F)
is a dense open subset. The identification of Fp×q with W(p, q;F), and �0 inside
it, is exactly as in the argument of Proposition 13.2.1. This identification is based
on the use of the basis {ea, eb}, not on the basis {
ea, eb}. Thus, a q-dimensional

F-subspace of Fp×qu corresponds to a matrix
(
W
Iq

)
with W ∈ 
Fp×q . In view of

Proposition 13.2.4 this gives us the description {
W ∈ 
Fp×q | Ip −WW ∗ � 0}
of 1

2�u.
Let g = (

A B
C D

) ∈ G. Its action on q-dimensional subspaces of Fp,q
C

is given
on the column span of a matrix

(
W
I

)
by matrix multiplication, g

(
W
I

) = ( AW+BCW+D
)
,

so the corresponding action on Fp×q
C

is W �→ (AW + B)(CW + D)−1 whenever
CW +D is invertible.

If F = R the argument is essentially the same, with G(p, q;F) replaced by
G̃(p, q;R), the column spans are taken to be oriented, and with the description of
1
2�u given by Proposition 13.2.4. ��

Propositions 11.3.3 and 11.3.5 identify (in the nonholomorphic cases) the cycle
space MD with the universal domain U , and, in this SU (p, q;F) case, Proposi-
tion 13.2.11 gives the concrete geometric structure of U .

Corollary 13.2.12. Suppose that F = C or F = H. Let G0 = SU (p, q;F), let
Z = G/Q be a complex flag manifold, and letD = G0(z0) be an open orbit that is not
of holomorphic type. Then the natural action ofG0 on the bounded symmetric domain
B(p, q;F) = {W ∈ Fp×q | I −WW ∗ � 0} is by linear fractional transformations.
The cycle space

MD
∼= B(p, q;F)× 
B(p, q;F) ∼= B(p, q;F)× B(p, q;F)

where C = R+ 
R is used to complexify F. In the B(p, q;F)× 
B(p, q;F) picture,
the natural action of G0 on MD carries over to the holomorphic action by linear
fractional transformations,(

A B
C D

) : W �→ (AW + B)(CW +D)−1,

where W = W ′ + 
W ′′ with W ′,W ′′ ∈ B.

Proof. At this point, everything is proved except the statements concerning the action
of G0 on the B(p, q;F) × 
B(p, q;F) picture of MD . For that, note that every
element of B(p, q;F)× 
B(p, q;F) corresponds to a matrix

W = W ′ + 
W ′′ ∈ Fp×q
C

with W ′,W ′′ ∈ B(p, q;F).
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The holomorphic extension of
(
A B
C D

) : W �→ (AW + B)(CW + D)−1 from the
domain G0.C0 = B(p, q;F) to U = B(p, q;F)× 
B(p, q;F) is given by the same
formula, as asserted. ��
Corollary 13.2.13. Suppose that F = C or F = H. Then the group G0×G0 acts on

MD by
((

A′ B ′
C′ D′

)
,
(
A′′ B ′′
C′′ D′′

))
: (W ′, 
W ′′) �→

((A′W ′ + B ′)(C′W ′ +D′)−1, 
(A′′W ′′ + B ′′)(C′′W ′′ +D′′)−1),

where W ′,W ′′ ∈ B(p, q;F).
In Corollary 13.2.12 we recover the complex structure of MD by viewing the

second B(p, q;F) factor of MD as 
B(p, q;F) = 1
2�u, as in Proposition 13.2.11.

In the hermitian nonholomorphic cases this is, of course, the same as the adapted
complex structure.

Remark. Our considerations for the SU (p, q;F) cycle spaces, F = C or F = H,
are valid for cycle spaces corresponding to groups G0, where the corresponding
symmetric space �0 of noncompact type is naturally embedded in its compact dual
�u as 1

2�u. An example, whose geometry is essentially the same as above, is that
in which G0 = F4,B4 , the real form of F4 with maximal compact subgroup Spin(9),
where �0 is the Cayley hyperbolic plane and �u is the Cayley projective plane. ♦

13.3 Slice methods and trace transforms for SU(2, 1) domains

Consider V = C3 with the hermitian form given by 〈z,w〉 = z1w1 + z2w2 − z3w3
in a “standard’’ basis {e1, e2, e3}. Its group of isometries in G = SL(3;C) is the real
form G0 = SU (2, 1). The maximal compact subgroup K0 in G0 is the stabilizer of
the decomposition V = V + + V −, where V + = Span(e1, e2) and V − = Span(e3).

As is usual we refer to the elements L ∈ P(V ) as lines and to the elements
P ∈ P(V ∗) as planes. A point in the full flag manifold Z is denoted (L � P). The
standard projections are π : Z→ P(V ) and π∗ : Z→ P(V ∗).

Since G0 preserves the hermitian form, it also preserves the decomposition
P(V ) = D− ∪M0 ∪ D+ into sets of negative, isotropic and positive lines. Those
are the G0-orbits on P(V ), given by |z1|2 + |z2|2 < |z3|2, |z1|2 + |z2|2 = |z3|2, and
|z1|2 + |z2|2 > |z3|2, respectively.

Evidently |z1|2+|z2|2 < |z3|2 requires z3 �= 0. Therefore we use inhomogeneous
coordinates ui = zi/z3 and express

D− = {(u1, u2) ∈ C2 | |u1|2 + |u2|2 < 1}, where ui = zi/z3.

So we view D− as the unit ball in C2, view M ∼= S3 as its topological boundary, and
view D+ as the complement of its closure in P(V ).

The bounded domain D− is holomorphically separable. Thus, a connected com-
pact subvariety consists of a point. Hence, the base cycle is just a fixed point of
K0 = S(U(2)× U(1)), in this case the line V − = [0 : 0 : 1] ∈ P(V ). Its orthocom-
plement is the plane V + ∈ P(V ∗). The associated projective plane is a K0-orbit and
is therefore the base C+ in D+.
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13.3A Comparison of slice methods

In [W12] the Korányi–Wolf boundary component theory was used to fiber
K0-equivariantly an open G0-orbit D in a hermitian symmetric flag manifold
Z = G/KP− over its base cycle C0. The fiber S is a complex totally geodesic
submanifold of D that is biholomorphic to a bounded symmetric domain. That fiber
intersects every cycle C ∈ MD in exactly one point. Such a “slice’’ S is optimal
for purposes of the trace transform, in part because it is given geometrically and in
part because its function theory is explicit in terms of certain subgroups of G0. The
method, however, is a bit technical and works only in a rather special setting, while
the Schubert slice method works in general. Also, the slices are quite different: S has
bounded holomorphic functions, while in general Schubert slices may not. Now we
will compare the two methods for the orbit D+ ⊂ P2(C) of G0 = SU (2, 1).

For the Schubert slice we must choose a Borel subgroup B ⊂ G that contains the
component A0N0 of an Iwasawa decomposition G0 = K0A0N0. This is equivalent
to B fixing a point in the boundary of D−. That boundary is the sphere M0, and we
may assume that point is L1 := [1 : 0 : 1].

Every Borel subgroup of G has three orbits on P(V ). Start with its fixed flag
(L � P). The orbits are the line {L}, the set of all lines in P \ L, and the lines in
P(V ) \ P . In our case, L = L1 = [1 : 0 : 1] and P = Span(e1 + e3, e2). Thus P
is the projective line with equation z1 = z3, which is the complex tangent line to M0
at L1.

The base cycle C+ in D+ is just the plane z3 = 0. The Schubert variety is P ,
and P ∩C+ = {[0 : 1 : 0]}. Let L2 denote this intersection point. Now the Schubert
variety is the projective line determined by L1 and L2. Since the Schubert slices 	
are the components of the intersection of the Schubert variety at hand with the domain
D, and since P ∩ D+ = D \ L1, it is immediate that in this case there is only one
Schubert slice, 	 = P \ L1.

The slice of [W12] is determined without computation in this case, because there is
a uniqueK0-equivariant fibration ofD+ ontoC+. It is the restriction of the projection
of P(V ) from the base point L0. Consequently, this slice is the intersection of D+
with the projective line determined by L0 and L2 which is realized as the unit disk
in the complex line.

13.3B Schubert slices in the flag manifold

The group G0 = SU (2, 1) has three open orbits in the flag manifold Z. We will
describe their Schubert slices. For this it is convenient to regard these orbits as
fibered over the corresponding orbits in P(V ) and P(V ∗).

The antiholomorphic map P(V ) → P(V ∗), given by L �→ L⊥ on the level
of subspaces of V and V ∗, composes with complex conjugation to give a G0-
equivariant biholomorphic map L �→ L⊥. That map sends orbits to orbits. There
is no problem of complex structure, because, here, G0(z0) = G0(z0) = G0(z0).
Thus D⊥− = {P = L⊥ | L ∈ D−} can be regarded as the unit ball in C2,
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M⊥
0 = {P = L⊥ | L ∈ M0} is its boundary, and D⊥+ = {P = L⊥ | L ∈ D+}

is the complement.
TheG0-orbits inZ are described in terms of their projections to P(V ) and P(V ∗).

The three open orbits are D̃− = π−1(D−), all flags (L � P) where the line L � 0
and the plane P has sign(P ) = (1, 1); D̃+ = (π∗)−1(D⊥−), where L � 0 and
sign(P ) = (2, 0); and D̃0 = π−1(D+)∩ (π∗)−1(D⊥+), where L� 0 and sign(P ) =
(1, 1). Here we only discuss D̃− and D̃0.

The closed G0-orbit M̃ in Z consists of flags (L � P), where L is a null line
and P is positive semidefinite with nullity 0. Let L1 = [1 : 0 : 1]. Then π−1(L1)

meets the closed orbit in the single flag (L1 � P1), where P1 = Span(e1 + e3, e2).
As in the previous section, our Iwasawa–Borel subgroup B ⊂ G is the G-stabilizer
of the flag (L1 � P1), which is the unique point in the closed G0-orbit over L1 in the
manifold of full flags.

We will see in a moment that the cycles in all three open G0-orbits in Z are
one-dimensional. Therefore, from the point of view of Schubert slices, the two-
dimensional B-Schubert varieties are the ones of relevance. Since b2(Z) = 2, the
open B-orbit in Z must have exactly two components on its boundary. One such is
the preimage π−1(P1) of the one-dimensional Schubert variety P1 discussed above,
and the other is the analogous π∗ preimage.

Now we describe the cycles and the Schubert slices. The base cycle C̃− in the
domain D̃− = π−1(D−) is just the π -fiber over L0 = [0 : 0 : 1]. Let P ∗1 be the one-
dimensional B-Schubert cycle in P(V ∗). It is a complex tangent line to the boundary
of the bounded symmetric domain D⊥− in P(V ∗). The two-dimensional preimage
S∗ = (π∗)−1(P ∗1 ) is mapped by π onto P(V ). The restriction π |S∗ can be regarded
as the blowup S∗ → P(V ) of the B-fixed point L1.

In any case one immediately sees that 	∗ := S∗ ∩ D̃− is an exact slice for the
fibration π : D̃− → D−, and that 	∗ is biholomorphic to the unit ball in C2.

We turn now to the more interesting orbit, D̃0 = π−1(D+)∩ (π∗)−1(D⊥+), where
L� 0 and sign(P ) = (1, 1). Its boundary is the union of the boundaries of the other
open orbits. These intersect and are tangent to each other along the closed G0-orbit
M̃ . Thus bd(D̃0) is singular along M̃ , but is otherwise smooth and pseudoconcave.
Here we understand pseudoconcavity in the usual sense that the Levi form, restricted
to the complex tangent space, has at least one negative eigenvalue.

Let ρ and ρ∗ denote the obviousK0-invariant strongly pseudoconcave exhaustion
functions of D+ and D⊥+ . Here we understand “strongly pseudoconcave’’ to mean
that the Levi form is negative definite on the complex tangent space at each point of
the domain. Define ρ̃ = ρ ◦ π + ρ∗ ◦ π∗. Note that it is a strongly pseudoconcave
exhaustion function for D̃0.

The base cycle C̃0 in D̃0 is the intersection of the preimages of the base cycles in
D+ and D⊥+ . In fact it is just the set of flags (L � P), where P = V + is fixed and L
is an arbitrary line in P .

In the case of D̃0 the Schubert slices 	 := D̃0 ∩ S and 	∗ = D̃0 ∩ S∗ have
some intrinsic interest. Since the situation is symmetric, we only discuss 	. Of
course π∗|	 : 	 → D⊥+ is biholomorphic. Thus, as an abstract manifold, 	 is the
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complement in P2(C) of the union of a closed ball and a complex (projective) tangent
line to one of its boundary points. In particular, it is not Stein. Let us underline
this fact.

Remark. Schubert slices are not necessarily Stein manifolds. ♦
In the present case the boundary of 	 has three pieces: (1) the strongly

pseudoconcave smooth boundary which, from the other point of view, is the strongly
pseudoconvex boundary of the Schubert slice for the π∗-preimage of the hermitian
symmetric space D⊥− in P(V ∗), (2) the fibers in Z over the B-fixed points in P(V ),
and (3) the fibers in Z over the B-fixed points in P(V ∗). The fibers of (2) and (3)
have different character: the one is just the fiber of the P1(C)-bundle fibration of S
induced by π , and the other is blowdown by π∗|S .

Here S = O∪̇Y , where Y is the union of the fibers (2) and (3) mentioned above.
Recall that the trace transform associates to any function f ∈ �(S;O(∗Y )) a function
Tr(f ) with poles along the incidence hypersurface I.

Remark. Even in this simple case it would be very interesting to give a precise de-
scription of the subspace of O(MD̃0

) generated by the images of the
Tr : �(S;O(∗Y )) → O(MD̃0

) as S ranges over all Iwasawa–Schubert varieties.

Note that here MD̃0
∼= D− ×D−. ♦
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Overview

We now describe some of the analytic and geometric consequences of our results on
cycle spaces.

First, using the methods and results of Part II we study a certain natural mapping
from the q-cohomology of a homogeneous holomorphic vector bundle on a flag
domain D to a space of sections of a canonically derived bundle on MD . That is our
double fibration transform. Using structural results on Schubert slices, derived in
Part II, we show that this double fibration transform is injective whenever the bundle
over D is sufficiently negative.

Secondly, in contexts of representation theory and the theory of moduli of com-
plex varieties we indicate how new viewpoints can be developed and results can be
proved by using the principle of transferring problems from D to MD . For this one
can apply the results of this monograph, in particular the availability of a concrete
description of MD through the identification MD

∼= U . We exemplify this by indi-
cating connections to areas outside the basic theme of this monograph where cycle
spaces of flag domains play a role.

Briefly, we explain certain aspects of representation theory to complex geometers
and sketch complex geometric phenomena, in particular moduli theory, for specialists
in representation theory. In this spirit, our main goal of this second “consequence’’ is
to invite those who are working in one of these two areas to consider the interesting
problems in the other.

The double fibration transform indicated above is a map P which arises by pulling
back cohomology via µ∗ to the universal family X and then pushing it down to the
level of sections by ν∗. It is closely related to the trace transform of Section 7.4.

Without going into detail, there are two points in the proof which should be
underlined. The first is the fact that MD is contractible. This follows directly from
the identification MD

∼= U . It is perhaps of interest that we know of no other proof
of this seemingly harmless fact.

The second point has to do with a method that should be of general use. We
refer to this as the Schubert fibration MD → 	 defined by intersecting cycles with
a Schubert slice 	. It is a holomorphic map that is a real bundle and is equivariant
with respect to the Iwasawa component A0N0 which defines 	.

In addition to our work here on the double fibration transform, we indicate how
cycle spaces of flag domains arise in moduli theory. This theory arises from the at-
tempt to parameterize all integrable complex structures on a fixed compact orientable
differentiable manifold. If one requires a Hausdorff parameter space which itself has
complex structure and which has natural universality properties, then, at least as a
first step, it is necessary to simultaneously parameterize additional structures. In our
case these are called polarizations or markings and, under certain conditions which
are discussed here, the resulting spaces of polarized or marked complex manifolds
are embedded in flag domains by so-called period maps.

In the Griffiths theory these moduli spaces are embedded transversally to the
cycles in the flag domain D. In other cases, such as that of K3 surfaces which is
discussed here, the moduli space is the full flag domain.
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The meaning of cycles in moduli theory is not well understood. For example,
due to the results in Part II, we now know that the discrete subgroup � of G0,
which identifies complex varieties with the same complex structure but with different
polarizations, acts properly and holomorphically on MD. It would therefore seem
appropriate to study, e.g., automorphic forms on the domains U in connection with
moduli problems. Even doing this in the special case of the cycle space of the moduli
space of marked K3 surfaces would be of interest.

Let us now give a more detailed outline of the structure of this part. Chapter 14
is devoted to the double fibration transform. The map P is introduced in a general
context in Sections 14.1, 14.2 and 14.3. The main theorem on its injectivity, Theorem
14.3.8, requires the vanishing of a certain topological cohomology of the µ-fiber.
In our cycle space context this is a direct consequence of the fact that the Schubert
fibration is a topologically trivial bundle (see Theorem 14.5.2). A very brief sketch
of the related representation theory is included in the last section. We do this in order
to emphasize the possibility of constructing, analyzing, and perhaps even unitarizing,
possibly-singular representations by the double fibration transform method.

In Chapter 15 we sketch the basics of the moduli theory in connection with
variation of Hodge structure. The resulting period map has its image in a flag domain
D. In this caseD = G0/L0, whereL0 is compact, and the fibrationG0/L0 → G0/K0
has cycles as fibers. Here, the theory of �-automorphic forms can be discussed on
D, because the action there is proper. However, even in the hermitian holomorphic
case which arises most naturally in Griffiths’ theory, it is appropriate to carry this out
on MD .

The material in Chapter 16 shows how a certain flag domain, an open SO(3, 19)-
orbit D in a 20-dimensional quadric Z, arises as the space of all marked K3-surfaces.
After introductory remarks which indicate the importance of K3-surfaces within
Kodaira–Enriques classification theory, we explain three classical methods for con-
structing families of them; see Section 16.2. Basic results on the period mapping, in
particular, the fact that it realizesD as the space of marked K3-surfaces, are explained
without proof. Finally in Section 16.4, using the methods of Part II, we study in detail
the cycle space MD .
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The Double Fibration Transform

We begin by reviewing some generalities on the double fibration transform. In the
context of our spaces of q-dimensional cycles in open G0-orbits D in flag manifolds,
this is a mapping from q-cohomology with coefficients in a G0-homogeneous holo-
morphic vector bundle E on D to the space of sections of a naturally derived bundle
E′ on the cycle space MD .

The advantage is that we are basically dealing with holomorphic vector-valued
functions on MD instead of the original cohomology classes. However, this double
fibration transform is only of use if by applying it, we lose little or no information.
In other words, the key point is to prove its injectivity.

The basic method for proving this injectivity has been known for some time, but,
with the exception of certain hermitian cases, a topological ingredient was missing.
The methods of Part II of this monograph now provide this ingredient, and we prove
the appropriate injectivity result in the present chapter.

Our work here can be outlined as follows. In Sections 1 through 3 we recall the
basics of the double fibration transform and prove the injectivity result (Theorem
14.3.8) which requires the topological ingredient mentioned above. We refer to this
as the Buchdahl condition (14.2.2), which in our case requires the vanishing of certain
Betti numbers of the fiber of the projection µ : X→ D.

The double fibration transform amounts to pulling back cohomology classes to
X and pushing them down to MD by the usual direct image procedure. One obtains
sections in the direct image sheaf. In our setting, by analyzing the local G-action, we
show that this is in fact a vector bundle (Theorem 14.4.4).

Sections 5 and 6 are devoted to proving the required vanishing of the Betti numbers
of the µ-fiber. In fact, it is contractible. The method for proving this (see Theorem
14.5.2) involves the use of an A0N0-equivariant holomorphic map MD → 	 which
is associated to any Schubert slice 	. Due to their canonical nature, such fibrations
may find other applications in the future.

Section 7 sketches some of the representation theory of real reductive Lie groups
to which the double fibration transform has interesting potential applications.
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14.1 Double fibration

Let D be a complex manifold (later it will be an open orbit of a real reductive group
G0 on a complex flag manifold Z = G/Q of its complexification ). We suppose
that D fits into a holomorphic double fibration. This means that there are complex
manifolds M and X with maps

X
µ

D

ν

M
��� ���

(14.1.1)

where µ is a holomorphic submersion and ν is a proper holomorphic map which
is a locally trivial bundle. Given a holomorphic vector bundle E → D with a
certain extension property, we construct a holomorphic vector bundle E′ → M and
a transform

(14.1.2) P : Hq(D;O(E))→ H 0(M;O(E′)),

under mild conditions on (14.1.1). This construction is fairly standard (see, for
example, [BE], [PR1] and [M]), but we need several results specific to the case of
flag domains, and those include the extension property to which we alluded above.

14.2 Pullback

The first step is to pull cohomology back from D to X. As usual, OX → X denotes
the structure sheaf of a complex manifold X, and O(E) → X denotes the sheaf of
germs of holomorphic sections of a holomorphic vector bundle E → X. Thus we
have the sheaf O(E) → D. Let µ−1(O(E)) → X denote the inverse image sheaf.
For every integer r � 0 there is a natural map

(14.2.1) µ(r) : Hr(D;O(E))→ Hr(X;µ−1(O(E)))

given on the Čech cocycle level by µ(r)(c)(σ ) = c(µ(σ)), where c ∈ Zr(D;O(E))
and σ = (w0, . . . , wr) is a simplex. For every q � 0 we consider the Buchdahl
q-condition

(14.2.2)
the fiber F of µ : X→ D is connected

and Hr(F ;C) = 0 for 1 � r � q − 1.

Proposition 14.2.3 (See [Bu]). Fix q � 0. If (14.2.2) holds, then (14.2.1) is an
isomorphism for r � q − 1 and is injective for r = q. If the fibers of µ are
cohomologically acyclic, then (14.2.1) is an isomorphism for all r .
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Let µ∗(O(E)) := µ−1(O(E))⊗̂µ−1(OD)
OX → X denote the pullback sheaf. It

is a coherent analytic sheaf of OX-modules. Here µ∗(O(E)) = O(µ∗(E)) where
µ∗(E) is the pullback bundle. On the sheaf level, [σ ] �→ [σ ] ⊗ 1 defines a map
i : µ−1(O(E)) → µ∗(O(E)). For every p � 0, that map specifies maps in coho-
mology, the coefficient morphisms

(14.2.4) ip : Hp(X;µ−1(O(E)))→ Hp(X;µ∗(O(E))) = Hp(X;O(µ∗(E))).

Our natural pullback maps are the compositions j (p) = ip ·µ(p) of the maps (14.2.1)
and (14.2.4):

(14.2.5) j (p) : Hp(D;O(E))→ Hp(X;µ∗(O(E))) for p � 0.

One can realize these sheaf cohomologies as Dolbeault cohomologies, and then the
pullback maps (14.2.5) are given on the level of differential forms by the usual pull-
back [ω] �→ [µ∗(ω)].

14.3 Pushdown

In order to push the Hq(X;µ∗(O(E))) down to M, we assume that

(14.3.1) ν : X→M is a proper map and M is a Stein manifold.

The Leray direct image sheaves Rp(µ∗(O(E)))→ M are coherent [GR1]. As M
is Stein,

(14.3.2) Hq(M;Rp(O(E))) = 0 for p � 0 and q > 0.

Thus the Leray spectral sequence collapses and gives

(14.3.3) Hp(X;µ∗(O(E))) ∼= H 0(M;Rp(µ∗(O(E)))).

Definition 14.3.4. The double fibration transform for the holomorphic double fi-
bration (14.1.1) is the composition

(14.3.5) P : Hp(D;O(E))→ H 0(M;Rp(µ∗(O(E))))

of the maps (14.2.5) and (14.3.3).

In order for the double fibration transform (14.3.5) to be useful, two conditions
should be satisfied. They are

P : Hp(D;O(E))→ H 0(M;Rp(µ∗(O(E)))) should be injective,(14.3.6)

and there should be an explicit description of the image of P.(14.3.7)

Assuming (14.3.1), injectivity of P is equivalent to injectivity of j (p) in (14.2.5). The
most general way to approach this is the combination of vanishing and negativity in
Theorem 14.3.8 below, based on the Buchdahl conditions (14.2.2).

The general (assuming (14.3.1) injectivity question uses a spectral sequence ar-
gument for the relative Dolbeault complex of the holomorphic fibration µ : X→ D.
See [WZ2] for the details. The end result is
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Theorem 14.3.8. Fix q � 0. Suppose that the fiber F of µ : X → D is connected
and satisfies (14.2.2). Assume (14.3.1) that ν : X→M is proper and M is Stein, say
with fiber C. Let �r

µ(E)→ X denote the sheaf of relative µ∗E-valued holomorphic
r-forms on X with respect to µ : X → D. Suppose that Hp(C;�r

µ(E)|C) = 0 for
p < q, and r � 1. Then

P : Hq(D;O(E))→ H 0(M;Rq(µ∗O(E)))

is injective.

Remark 14.3.9. In the cases of interest to us, P has an explicit formula. We will see
that the Leray derived sheaf is given by

(14.3.10) Rq(µ∗(O(E))) = O(E′),

where E′ →M has fiber Hq(ν−1(C);O(µ∗(E)|ν−1(C))) at C.
Let ω be an E-valued (0, q)-form on D and [ω] ∈ Hq

∂
(D,E) its Dolbeault class.

Then P([ω]) is the section of E′ → M whose value P([ω])(C) at C ∈ M is
[µ∗(ω)|ν−1(C)]. In other words,

(14.3.11) P([ω])(C) = [µ∗(ω)|ν−1(C)] ∈ H 0
∂
(M;E′).

This is most conveniently interpreted by viewing P([ω])(C) as the Dolbeault class
of ω|C , and by viewing C �→ [ω|C] as a holomorphic section of the holomorphic
vector bundle E′ →M. ♦

14.4 Local G-structure of G0-bundles

We first show that homogeneous G0-bundles are locally homogeneous under the
complex group G and use that to carry bundles over D to bundles over MD .

A G0-homogeneous holomorphic vector bundle π : E → D is automatically
equipped with a local action ofG on the total space E by holomorphic transformations.
We now check localG-equivariance at the level of one-parameter subgroups. If ξ ∈ g,
ε > 0, and U is a relatively compact subset of D such that Ut := exp(tξ)(U) ⊂ D

for |t | < ε, then the vector field ξ̂E on E (generated by the local action of G) can be
integrated with arbitrary initial values in the open setπ−1(U), for all times t with |t | <
ε. Since G0 acts here as a group of holomorphic bundle transformations, the Identity
Principle says that gt := exp(tξ) also acts by holomorphic bundle transformations
on π−1(U). Thus the pullback bundle g∗t (E|Ut ) ∼= E|U for |t | < ε.

Proposition 14.4.1. Every C1 ∈ MD has a neighborhood V in MD such that
E|C1

∼= E|C for every C ∈ V .

Proof. We have just seen that we can choose a neighborhood W of 0 in g and
a neighborhood U of C1 in D such that if ξ ∈ W , then exp(ξ)(U) ⊂ D and
exp(ξ)∗ : E|exp(ξ)C1

∼= E|C1 . ��
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Corollary 14.4.2. If C1, C2 ∈MD then E|C1
∼= E|C2 .

Proof. This is immediate from Proposition 14.4.1 and the fact that MD is arcwise
connected. ��
Example 14.4.3. We have made use of the fact that a G0-homogeneous holomorphic
vector bundle is locally a G-homogeneous vector bundle. The following shows that
such a bundle is not in general the restriction of a globally defined G-homogeneous
holomorphic vector bundle over Z = G/Q. Let G0 = SL(3;R), so that G =
SL(3;C), and let Z = G/B where B is a Borel subgroup. The isotropy subgroup
of G0 in the open orbit D is a fundamental Cartan subgroup H0. At the appropriate
point of the open orbit, we have

h0 = all
(

a θ 0−θ a 0
0 0 −2a

)
for a, θ real, and H0 = all

(
ea cos θ sin θ 0
− sin θ ea cos θ 0

0 0 e−2a

)
.

The one-dimensional representations χc,n :
(
ea cos θ sin θ 0
− sin θ ea cos θ 0

0 0 e−2a

)
�→ einθ eca , for

c ∈ C and n ∈ Z, defineG0-homogeneous holomorphic line bundles Lc,n → D. The
bundle Lc,n → D extends to a G-homogeneous holomorphic line bundle L̃c,n → Z

if and only if χc,n extends to a well-defined holomorphic character on the complex
Cartan subgroup H . However, the extension is well defined if and only if c ∈ 2πZ.
♦

From Example 14.4.3 it is easily seen that every G0-homogeneous holomorphic
vector bundle E → D = G0(z0) extends to a G-homogeneous holomorphic vector
bundle Ẽ → Z if and only if G0 ∩ Qz0 has compact center—which, of course, is
automatic if G0 has a compact Cartan subgroup, i.e., if rank k = rank g. In [HW4]
we incorrectly asserted that the extension always exists, as a consequence of [TW,
Theorem 3.6]. However, the only use of the extension in [HW4] was to derive a
proof of Corollary 14.4.2, for use as in Theorem 14.4.4, which we now prove by
rather elementary considerations.

Theorem 14.4.4. LetD be an openG0-orbit onZ, let E → D be aG0-homogeneous
holomorphic vector bundle, and let q � 0. Then the Leray derived sheaf for ν is given
by Rq(O(µ∗E)) = O(E′), where E′ → MD is the G0-homogeneous, holomorphic
vector bundle with fiber Hq(C;O(E|C)) over C ∈MD given by Corollary 14.4.2.

Proof. The Leray construction gives sheaves Rq(O(µ∗E)) → MD and Corollary
14.4.2 shows that, in our case, Rq(O(µ∗E)) = O(E′), where E′ → MD is the
bundle described above. ��

14.5 The Schubert fibration

Let	 be a Schubert slice defined by an Iwasawa–Borel subgroupB, and suppose that
{z0} = 	 ∩ C0 consists of our base point z0. In the context of the double fibrations



212 14 The Double Fibration Transform

XD
µ

D

ν

MD

��� ���
and

XZ
µ̃

Z

ν̃

MZ

��� ���

(14.5.1)

the projection ν carries the fiber F = µ−1(z0) = {(z0, C) : z0 ∈ C} biholomorphi-
cally onto the analytic subset {C ∈MD : z0 ∈ C} of MD .

Now consider an arbitrary element C ∈ MZ with z0 ∈ C. By definition C =
g(C0) for some g ∈ G. Since z0 ∈ C, by adjusting g by an appropriate element of
K0 we may assume that g ∈ Q = Gz0 . Extend F to F̃ = µ̃−1(z0). Now F̃ is the
Q-orbit ofC0 in MZ . Also, F̃ is closed in MZ , for if a sequence {Ci} in F̃ converges
to C ∈MZ , then z0 ∈ C, because z0 ∈ Ci for each i. Hence C ∈ F̃ .

In the double fibration (14.5.1), the Q-orbit of C0 is identified with the fiber
F̃ = µ̃−1(z0). In particular, its open subset F = F̃ ∩ MD is a closed complex
submanifold on MD .

Propositions 7.3.7 and 7.3.9 say that if 	 is a Schubert slice, then for every
C ∈ MD the intersection C ∩ 	 is transversal and consists exactly of one point.
Thus we have an A0N0-equivariant map ϕ : MD → 	 defined by mapping C to its
point of intersection with 	. The fiber over z0 ∈ 	 is of course F .

Let J0 := (A0N0)z0 be the A0N0-isotropy at the base point and note that

A0N0 ×J0 F →MD, defined by [(a0n0, C)] �→ a0n0(C),

is well defined, smooth, and bijective. Thus ϕ : MD → 	 is naturally identified
with the smooth A0N0-equivariant bundle

π	 : A0N0 ×J0 F → A0N0/J0 = 	.

In this sense, every Schubert slice defines a Schubert fibration of the cycle space
MD .

Theorem 14.5.2. Let B be an Iwasawa–Borel subgroup of G and 	 an associated
Schubert slice for the open orbit D. Then the fibration π	 : MD → 	 is a holo-
morphic map onto a contractible base 	 and diffeomorphically realizes MD as the
product 	 × F .

Proof. Let J := Bz0 . The inclusions A0N0 ↪→ B and F ↪→ F̃ together define a
map A0N0 ×J0 F ↪→ B ×J F . That map realizes A0N0 ×J0 F

∼= MD as an open
subset of B×J F̃ . The latter is fibered over the open A0N0-orbit 	 in O = B(z0) by
the natural holomorphic projection π : B ×J F̃ → B/J . Since π	 is the restriction
π |MD

, it follows that π	 is holomorphic as well.
The fact that	 is a cell follows from the simple connectivity of the solvable group

A0N0 and the fact that it is acting algebraically. ��
Recall that �r

µ(E)→ XD denotes the sheaf of relative µ∗E-valued holomorphic
r-forms on X with respect to µ : XD → D.
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Corollary 14.5.3. Suppose that E → D is a holomorphic G0-homogeneous vector
bundle which is sufficiently negative so that Hp(C;�r

µ(E)|C) = 0 for p < q, and
r � 1. Then the double fibration transform

P : Hq(D;O(E))→ H 0(MD;O(E′))

is injective.

Proof. MD is contractible by Proposition 11.3.5 and Theorem 11.3.7. Since 	 is
likewise contractible and MD is diffeomorphic to	×F , it follows thatF is cohomo-
logically trivial. The Buchdahl conditions (14.2.2) follow. Proposition 14.2.3 now
says that (14.2.1) is an isomorphism for all r . Composing with coefficient morphisms,
the maps (14.2.4) also are isomorphisms. By Theorem 3.2.1 and Proposition 5.4.7,
if MD is not a point of B or B, then MD = U . Thus we know that the conditions
(14.3.1) are satisfied. The assertion now follows from Theorem 14.3.8. ��

14.6 Contractibility of the fiber

With a bit more work one can see that the fiberF of MD → 	 is contractible, not just
cohomologically trivial. We thank Peter Michor for showing us the following result
for the C∞−category, from which contractibility of F is immediate. His argument is
based on the existence of complete Ehresmann connections for smooth fiber bundles.

Proposition 14.6.1. Letp : M → S be a smooth fiber bundle with fiberF = p−1(s0).
If both M and S are contractible, then F is contractible.

Proof. Since S is contractible and smooth, an approximation gives us a smooth
contraction h : [0, 1]×S → S; here h(0, s) = s and h(1, s) = s0. Following [KMS,
§9.9], the bundle p : M → S has a complete Ehresmann connection. Completeness
means that every smooth curve in S has horizontal lifts to M . If m ∈ M , let t �→
H(t,m) denote the horizontal lift of t �→ h(t, p(m)) such that H(0,m) = m. Note
H(1,m) ∈ F . Fix a base pointm0 ∈ M and a smooth contraction I : [0, 1]×M → M

of M to m0; if m ∈ M , then I (0,m) = m and I (1,m) = m0. Denote f0 =
H(1,m0) ∈ F . Define J : [0, 1] × F by J (t, f ) = H(t, I (t, f )). Therefore
J (0, f ) = f and J (1, f ) = f0. Thus J is a contraction of F to f0, and consequently
F is contractible. ��

Now we can refine our requirements (14.3.6) and (14.3.7). Since Corollary 14.5.3
yields (14.3.6), this is a matter of refining (14.3.7). For this note that, sinceMD is a
contractible Stein manifold, the bundle E′ → MD is holomorphically trivial. Thus
(14.3.7) is sharpened to the following two-part problem:

(14.6.2) find a canonical method of holomorphic trivialization for the E′ →MD

and, in that canonical trivialization,
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(14.6.3) find a canonical system of PDE to describe the image of P.

Most of the material of this chapter is taken from [WZ2] and [HW4].
In the hermitian holomorphic case MD is B or B (Proposition 9.1.7), and one

knew from [WZ2, Section 4] that F and MD are contractible Stein manifolds. Thus
the Buchdahl conditions were immediate.

In the hermitian nonholomorphic case, where MD = B × B (see [HW3] or
[WZ3], or see Proposition 9.1.8), there had only been partial information (see [WZ2,
Theorem 6.6]) on the Buchdahl conditions, and that information had been based on
contractibility of F in the cases where G0 is a classical group of hermitian type.
Specifically, in the cases where G0 is a classical group of hermitian type, Wolf had
verified by explicit calculation that F is obtained recursively starting with a bounded
symmetric domain and building locally trivial bundles at each step (over the space of
the previous step) whose fibers are bounded symmetric domains. Thus F was known
to be an iterated fibration of bounded symmetric domains, in particular contractible,
in those special cases.

Those hermitian cases were the only cases where the topology of F was known.
In particular nothing was known in the non-hermitian cases. Now this matter is settled
by Theorem 11.3.7.

One small remark. In some cases one knows that Hq(D;O(E)) is an irreducible
representation space for a group under which all our constructions are equivariant,
and one sees directly that P is an intertwining operator, thus zero or injective. In
practice, however, we usually look for implications in the other directions.

14.7 Unitary representations of real reductive Lie groups

In this section we briefly indicate the role of the double fibration transform in the
representation theory of real reductive Lie groups.

Harish-Chandra’s analysis of the holomorphic discrete series can be viewed from
the perspective of the double fibration transform as follows. Let G0 be of hermitian
type, B = G0/K0. In this case, where D = B = XD =MD ,

• the double fibration transform is the identity, (14.3.6) is settled,
• the canonical holomorphic trivializations (14.6.2) of the bundles over D = MD

are given by the universal factor of automorphy, and
• the system (14.6.3) of PDE defining the image of P consists of the ∂ (here the

Cauchy–Riemann) operator.

Let Eλ → B denote the homogeneous holomorphic hermitian vector bundle asso-
ciated to the representation Eλ of K0 of highest weight λ. By use of his system of
strongly orthogonal noncompact positive roots, and the explicit holomorphic trivial-
ization of Eλ → B, Harish-Chandra proved (i) a holomorphic section of Eλ → B
is L2(B) if and only if its K0-isotypic components are L2(B), (ii) if some nonzero
K0-isotypic holomorphic section of Eλ → B is L2(B), then the constant section fλ,
value equal to the highest weight vector of Eλ, is L2(B), and (iii) fλ is L2(B) if and
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only if 〈λ + ρ, β〉 < 0, where ρ is half the sum of the positive roots and β is the
maximal root.

Narasimhan and Okamoto [NO] extended the Harish-Chandra construction to
“almost all’’ discrete series representations of a real group G0 of hermitian type,
again always working over D = B = XD = MD , where the double fibration
transform is more or less invisible.

The double fibration transform first became visible, at least in degenerate form, in
Schmid’s holomorphic construction of the discrete series [S3], [S5]. ThereZ = G/B

for some Borel subgroup B andD = G0/T0 where T0 is a compact Cartan subgroup,
T0 ⊂ K0 ⊂ G0. Only the “real form’’ φ : D → G0/K0 of the double fibration
appears. The real symmetric space G0/K0 appears instead of the cycle MD and
correspondingly D appears instead of the incidence space XD . Injectivity of this real
double fibration transform PR : Hq(D;E)→ H 0(G0/K0;E′) is given by Schmid’s
“Identity Theorem.’’ This theorem says that, under appropriate restrictions, a Dol-
beault class [ω] ∈ Hq(D;E) is zero if and only if the restrictionω|C is cohomologous
to zero for every fiber C of φ : D→ G0/K0. This was extended a bit by Wolf [W3],
for flag domains of the formD ∼= G0/L0 withG0 general reductive andL0 compactly
embedded in G0.

The double fibration transform first appeared in modern form in the paper [WeW]
of Wells and Wolf on Poincaré series and automorphic cohomology. The restriction
there was that D ∼= G0/L0 with L0 compact, and a small extension of the Identity
Theorem was used to, in effect, prove injectivity of the double fibration transform.

The Penrose transform applies to the case D = SU (2, 2)/S(U(1) × U(1, 2)).
There L0 is noncompact, and perhaps that is the first case of noncompact L0 to be
studied carefully (see [BE]). Background work on interesting flag domains with
noncompact isotropy includes parts of Berger’s classification [Be] of semisimple
symmetric spaces, Wolf’s study [W0] of isotropic pseudo-riemannian manifolds, and
[W2]. Important cases of construction of unitary representations using double fibra-
tion transforms on flag domains with noncompact isotropy were studied in Dunne–
Zierau [DZ] and Patton–Rossi [PR2]. This area was first studied systematically in
Wolf–Zierau [WZ2].

Finally, as noted in [W7], there are indications of a strong relation between the
double fibration transforms of [WZ2] and the construction of unitary representations
by indefinite harmonic theory of Rawnsley, Schmid, and Wolf [RSW].
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Variation of Hodge Structure

In this chapter we indicate the theory of moduli spaces in the sense of Griffiths for
Hodge manifolds X, in other words, what is called variation of Hodge structure.
For a comprehensive treatment of the bases of this theory, see the original treatment
in [Gr3] and [Gr4], a more up to date exposition in [V1] and [V2], or a summary of
recent developments in [Gr6]. There also are expositions contained in [Gr5], [S3],
[We1], and [We2]. We describe its tight connection with period matrix domains
which in fact are very interesting flag domains. The first Hodge–Riemann bilinear
relation specifies a complex flag manifoldZ = G/Q and the second Hodge–Riemann
bilinear relation specifies an open G0-orbit D ⊂ Z. The connection carries over to
cycle spaces and double fibration transforms. Along the way we will sketch some
relevant aspects automorphic cohomology theory.

There are two moduli space theories, the more traditional one based on the nat-
ural bigrading Hr(X;C) = ∑p+q=r Hp,q(X;C) of the full Dolbeault cohomolo-
gies and the one we consider in this chapter based on the subspaces Hr

0 (X;C) =∑
p+q=r H

p,q

0 (X;C) consisting of primitive cohomology classes in the sense of Lef-
schetz. Each has its own special features, each leads to an interesting automorphic
cohomology theory, and each has an elegant formulation based on the appropriate
period domain D and cycle space MD . In this chapter we concentrate on the moduli
space theory based on primitive classes. In the next chapter we will study K3 surfaces
and work out their moduli spaces from the more traditional viewpoint that uses the
full Dolbeault cohomology.

LetX denote a compact Kähler manifold and letω denote the Kähler form. A har-
monic differential form ξ on X is called primitive if the interior product ξ ) ω = 0,
intuitively if ω is not an exterior product factor of ξ . A Dolbeault cohomology class
on X is called primitive if it has a primitive harmonic representative. Alternatively,
the Lefschetz operator L : Hr(X;C)→ Hr+2(X;C), given on the Dolbeault level
by L([ξ ]) = [ω∧ ξ ], has the property that Ln−r is injective if 0 � r � n, where n =
dimC X. The primitive r-cohomology is given by Hr

0 (X;C) = 0 for r > dimC X

and Hr
0 (X;C) = {[ξ ] ∈ Hr(X;C) | Ln−r+1[ξ ] = 0} for r � dimC X. Since ω has

bidegree (1, 1), we always haveHr
0 (X;C) =

∑
p+q=r H

p,q

0 (X;C). The connection
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between these two formulations of primitive cohomology is the Lefschetz Theorem

Hp,q(X;C) =
⊕

LsH
p−s,q−s
0 (X;C),

where the sum is taken over those nonnegative s with p + q − 2s nonnegative.
Sinceω is real,L sendsHr(X;R) toHr+2(X;R). Thus we have the real primitive

cohomology, defined as above by ξ ) ω = 0 on the harmonic representative, given
by Hr

0 (X;R) = 0 for r > n and

Hr
0 (X;R) =

∑
p+q=r

(
H

p,q

0 (X;C)+H
q,p

0 (X;C)) ∩Hr(X;R).

The Lefschetz Theorem becomes

Hr
0 (X;R) =

⊕
Ls
([
(H

p−s,q−s
0 (X;C)+H

q−s,p−s
0 (X;C)

]
∩Hr−2s(X;R)

)
,

where here the sum is taken over nonnegative p, q and s with p + q = r and r − 2s
nonnegative.

The decomposition Hr
0 (X;C) =

∑
p+q=r H

p,q

0 (X;C) by bidegree specifies

the Hodge filtration (F 0 ⊂ F 1 ⊂ · · · ⊂ F r) of Hr
0 (X;C), where F s =∑

i<s H
r−i,i
0 (X;C). This defines the complex flag F(X) = (F 0 ⊂ F 1 ⊂ · · · ⊂ Fu),

where u = [ r−1
2 ], the integer part of (r−1)/2. The primitive cohomologyHr

0 (X;C)
carries a nondegenerate bilinear form b given (on Dolbeault representative differential
forms) by

b(ξ, η) = (−1)r(r+1)/2
∫
ωn−r ∧ ξ ∧ η.

Here ω is the Kähler form of X. Evidently b(Hp,q

0 (X;C),Hp′,q ′
0 (X;C)) = 0 unless

p + p′ = r = q + q ′. Define

c(ξ) = (
√−1)p−qξ for ξ ∈ Hq,p

0 (X;C).
Then the Hodge–Riemann bilinear relations are the following conditions on the
bilinear form b and an associated hermitian form w.

(15.1.1) b pairs Hp,q

0 (X;C) with its complex conjugate Hq,p

0 (X;C)
and

(15.1.2) w(ξ, η) := b(c(ξ), η) is positive definite on Hr
0 (X;C).

When n = r = 1, these are the classical period matrix conditions for Riemann
surfaces.

The bilinear form b is traditionally denoted by Q, but we have reserved Q for
a parabolic subgroup of a complex reductive group G. Also, the bilinear form is
sometimes written without the (−1)r(r+1)/2 factor, in which case that factor is inserted
into the hermitian form w so that w is positive definite on Hr

0 (X;C) as in (15.1.2).
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If r = 2t even, then b is symmetric. For i < t it is positive definite on the
real form

(H
r−i,i
0 (X;C)⊕H

i,r−i
0 (X;C)) ∩Hr(X;R)

of Hr−i,i
0 (X;C)⊕H

i,r−i
0 (X;C). It is negative definite on the real form H

t,t
0 (X;R)

ofHt,t
0 (X;C). Thus the identity component of the isometry group of (Hr

0 (X;C), b) is
the complex special orthogonal groupG = SO(2h+k;C), where k = dimH

t,t
0 (X;C)

and h = ∑i<t h
r−i,i
0 with hp,q0 = dimH

p,q

0 (X;C), and the identity component of
the isometry group of (Hr

0 (X;R), b) is its real form G0 = SO0(2h, k). (Here note
that the real special orthogonal group SO(2h, k) has two components unless hk = 0.)

The dimension sequence di = h
r,0
0 + · · · + h

r−i,i
0 of the flag F(X) specifies the

complex flag manifold

(15.1.3) Z = G/Q : b-isotropic flags (E0 ⊂ E1 ⊂ · · · ⊂ Et−1) in Hr
0 (X;C).

The second Hodge–Riemann bilinear relation (15.1.2) shows that the isotropy sub-
group L0 of G0 at F(X) is compact. More precisely, it gives us

(15.1.4) L0 = (U(h0)× · · · × U(ht−1)× SO(k),

where U(hi) is the unitary group of Hr−i,i
0 (X;C) and SO(k) is the orthogonal group

of Ht,t
0 (X;R). The Hodge–Riemann bilinear relations (15.1.1) and (15.1.2) say that

the flag F(X, ω) belongs to open G0-orbit

(15.1.5) D = {E | b � 0 on (Et−1 ⊕ Et−1) ∩Hr
0 (X;R)} ∼= SO0(2h, k)/L0

in the flag manifold Z = G/Q of (15.1.3).
If r is odd, say r = 2t − 1, then b is antisymmetric. Hence Hr

0 (X;C) has even
dimension 2m and the isometry group of (Hr

0 (X;C), b) is the complex symplectic
group G = Sp(m;C). The dimension sequence of the flag F(X) specifies the com-
plex flag manifold Z = G/Q consisting of all the flags E = (E0 ⊂ E1 ⊂ · · · ⊂ Et)

in Hr
0 (X;C) with b(Et , Et ) = 0. The isometry group of (Hr

0 (X;R), b) is the real
symplectic groupG0 = Sp(m;R). As above,G0 has compact isotropy subgroupL0 at
F(X), necessarily of the formU(h0)×· · ·×U(ht ). The flag F(X) is an element of the
open G0-orbit D = {E | b nondegenerate on each (Hr−i,i

0 (X;C)+H
i,r−i
0 (X;C))},

which is realized as Sp(m;R)/(U(h0)×· · ·×U(ht )), where hi = dimH
r−i,i
0 (X;C)

as before.
Both for r even and for r odd, G0 has compact isotropy subgroup L0 on D,

and as a result we have L0 ⊂ K0. Thus the holomorphic double fibration (14.5.1)
simplifies quite a lot; for example, it is implemented by the projectionD = G0/L0 →
G0/K0 ⊂MD onto a real form of MD .

The above discussion applies to every compact Kähler manifold. Now we are
going to consider families of compact Kähler manifolds with fixed underlying real
C∞−manifold, but in which the complex structure and the Kähler form vary. Thus
we will refine our notation and denote a compact Kähler manifold in the style X =
(X, J, ω), whereX is the underlyingC∞ manifold, J is the almost complex structure,
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and ω is the Kähler form. Similarly, we will write F(X) = F(X, J, ω) for the flag
defined by the Hodge filtration. As X varies, however, we will need to ensure that
these flags all live in the same flag manifold, and for this we introduce the notion of
marked Kähler manifold.

Fix a finite-dimensional real vector space VR, a lattice VZ in VR, an integral
bilinear form bZ on VZ, and an integer r > 0. We write VC for the complexification
ofVR and write bR and bC for the bilinear extensions of bZ toVR andVC. We suppose
that these choices are made in such a way that there exists an isometry

(15.1.6) ϕ : (Hr
0 (X;C), b

) ∼= (VC, bC)

for some compact Kähler manifold X, where b is the intersection form discussed
above. We refer to ϕ as a mark on X, and refer to (X, ϕ) as a marked compact
Kähler manifold. This terminology is standard for Riemann surfaces and K3 surfaces
and is used (often implicitly) in most treatments of variation of Hodge structure.

Let (X, ϕ) be a marked compact Kähler manifold. For purposes of the discussion
we suppose that r = 2t even and retain the corresponding notation from the discussion
above. But everything carries over with obvious modification for the cases where
r = 2t−1 odd. The isometry (15.1.6) carries the flag manifoldZ = G/Q of (15.1.3)
to the flag manifold (which we also denote Z = G/Q) of all bC-isotropic flags E =
(E0 ⊂ E1 ⊂ · · · ⊂ Et−1) in VC for the dimension sequence di = h

r,0
0 +· · ·+hr−i,i0 .

It carries the open G0-orbit D of (15.1.5) to the corresponding open G0-orbit in the
flag Z based on (VC, bC). That corresponding open G0-orbit, which we also denote
D, is specified by the condition that bC � 0 on (Et−1 ⊕ Et−1) ∩ VR.

Now consider a family {(Xa, ϕa) | a ∈ A} of marked compact Kähler manifolds,
where the Xa all have the same Hodge numbers hp,q0 = dimH

p,q

0 (Xa;C). Then we
have a well-defined period map

(15.1.7) ϕ : A→ D defined by ϕ(a) = ϕa(F(Xa)).

Here we have not imposed any conditions on the way that Xa varies with a ∈ A, nor
have we imposed any structure on the set A. Instead we have “related’’ the Xa by
means of their markings.

Now we look at the geometric picture, where {(Xa, ϕa) | a ∈ A} is a deformation
of some Xa0

. For that we suppose that we have a locally trivial C∞ fiber space π :
X → Awhose base and total space are complex manifolds, whose fibers are compact
complex submanifolds of the total space, and whose projection is a holomorphic map.
Let X denote the underlying C∞ manifold of the typical fiber, and denote the actual
fibers, as complex manifolds, by (X, Ja) where a ∈ A. It is automatic (but certainly
not trivial) that the Hodge numbers hp,q = dimHp,q((X, Ja);C) are locally constant
in a.

We also suppose that X carries a 2-form ω whose restriction ωa = ω|Xa is a
Kähler form on (X, Ja), so Xa := (X, Ja, ωa) is a compact Kähler manifold.

Suppose that the parameter space A is contractible. Then restriction of cohomol-
ogy classes gives isomorphisms resa : Hr(X ;C) ∼= Hr(Xa;C). Choose a0 ∈ A

and define
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ψa = resa0 ◦ res−1
a : Hr(Xa;C)→ Hr(Xa0;C).

By definition of the Kähler forms ωa , ψa sends [ωa] to [ωa0 ], and consequently it
commutes with exterior multiplication by the Kähler forms. Thus it restricts to an
isomorphism

ϕa : Hr
0 (Xa;C) ∼= Hr

0 (Xa0
;C)

of the primitive cohomologies.
As we indicated above, the Hodge numbers hp,q = dimHp,q(Xa;C) are in-

dependent of a ∈ A; see [V1, §9.3.2]. Given that fact, ϕa : Hp,q

0 (Xa;C) ∼=
H

p,q

0 (Xa0
;C). Thus the Hodge numbers hp,q0 = dimH

p,q

0 (Xa;C) are independent
of a ∈ A.

We interpret the map ϕa : Hr
0 (Xa;C) ∼= Hr

0 (Xa0
;C) as a mark on Xa where

VR := Hr
0 (Xa0

;R) and bR := ba0 |VR
, VZ := Hr

0 (Xa0
;Z) and bZ := ba0 |VZ

, and
VC := Hr

0 (Xa0
;C) and bC := ba0 . Then each (Xa, ϕa) is a marked compact Kähler

manifold, and the period map (15.1.7) is a map of complex manifolds. A famous
theorem of Griffiths [Gr3], [Gr4] says that it is holomorphic.

The integral homology Hr(X;Z) maps naturally into Hr(X;R) or Hr(X;C)
with kernel that is its torsion subgroup. Thus we view Hr(X;Z)/(torsion) as sitting
inside Hr(X;C). Similarly, the coefficient maps Z → R and Z → C define maps
Hr(X;Z)→ Hr(X;R) and Hr(X;Z)→ Hr(X;C) whose kernels are the torsion
subgroup of Hr(X;Z). The classes in the images of those maps are called integral.
By abuse of notation we write the lattice of integral elements as Hr(X;Z).

Consider the case where the Xa = (X, Ja, ωa) are Hodge manifolds, in other
words, where the [ωa] are integral. Equivalent formulations: (Xa, Ja) is a projective
algebraic variety in such a way that some positive integral multiple of [ωa] is the
pullback of the Chern class of the hyperplane bundle; Xa is a polarized Kähler
manifold; [ωa] is the Chern class of a positive line bundle on (X, Ja). In that case
the Lefschetz operator La : [ξ ] �→ [ωa ∧ ξ ] sends integral classes to integral classes.
Thus one has a well-defined notion of primitive integral cohomologyHr

0 (Xt ;Z), and
the period map (15.1.7), along with most of its ingredients, have interesting additional
structure.

Choose a Z-basis {γ1, . . . , γv} of Hr(X;Z)/(torsion). We view the γi as real
r-cycles on X, suitable for integration of r-forms.

Fix a family {(Xa, ϕa) | a ∈ A} of marked compact Kähler manifolds. If a ∈ A
now the period map ϕ sends it to a flag ϕ(a) in the vector space VC. Write ϕ(a) as
the bC-isotropic flag (E0

a ⊂ E1
a ⊂ · · · ⊂ Et−1

a ) in VC for the dimension sequence
di = h

r,0
0 + · · · + h

r−i,i
0 . Denote u = dt−1. Use the markings ϕa to make a coherent

choice of bases {β1
a , . . . , β

u
a } of theHr

0 (Xa;C), starting with a basis ofHr,0
0 (Xa;C),

then a basis ofHr−1,1
0 (Xa;C), and continuing through the subspaces in the flag ϕ(a).

This defines a u× v period matrix

(15.1.8) !(a) = !(Xa, ϕa) :=
⎛⎜⎝
∫
γ1
β1
a . . .

∫
γv
β1
a

...
...∫

γ1
βua . . .

∫
γv
βua

⎞⎟⎠ ,
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which of course specifies ϕ(a). Specifically, the period matrix map is a matrix
formulation of the period map ϕ.

As in the case of period matrices of Riemann surfaces, one can change the basis
{γi} by any integral element of G0 and change the basis {βja } by any element of G0
that does not change ϕ(a). Thus the moduli space for r-forms of marked compact
Kähler manifolds (X, J, ω) with given Hodge numbers hp,q0 := dimH

p,q

0 (X;C),
p + q = r , is contained in D and projects down into the arithmetic quotient as
follows.
(15.1.9)
�\D = GZ\G0/L0

= SO(2h, k;Z)\ SO(2h, k)/(U(h0)× · · · × U(ht−1)× SO(k)) for r even,

= Sp(m;Z)\Sp(m;R)/(U(h0)× · · · × U(ht )) for r odd,

where hi = h
r−i,i
0 , and � = GZ is defined by the lattice VZ in VR.

In the deformation setting π : X → A, where the period map is holomorphic,
the composition of the period map with the projection D → �\D is a well-defined
holomorphic map A→ �\D.

Classically one constructs �-automorphic functions on D as quotients of �-
invariant sections of holomorphic line bundles overD (automorphic forms of a given
weight). Also classically D is a bounded symmetric domain Sp(g;R)/U(g) and one
works in a fixed holomorphic trivialization of the line bundles over D where the �-
invariance condition is expressed by a transformation law. In this way one constructs
the function field of the moduli space �\D.

The classical theory of automorphic functions must be modified in our context,
because in generalD has no nonconstant holomorphic functions [W2], and in general
nontrivial homogeneous vector bundles over D have no nonzero holomorphic sec-
tions. Instead one considers sufficiently negative homogeneous holomorphic vector
bundles E → D. Roughly speaking, those are the bundles whose L2 cohomol-
ogy, and whose sheaf cohomology, viewed as G0-modules, have the same under-
lying Harish-Chandra module. Their cohomology occurs in degree dimC0, where
C0 ∼= K0/L0. One looks for automorphic cohomology, meaning�-invariant classes
in Hq(D;O(E)). That is a bit remote from the idea of a function field for �\D,
but the double fibration transform P : Hq(D;O(E)) → H 0(MD;O(E†)) and the
holomorphic trivialization of E† → MD carry the automorphic cohomology space
Hq(D;O(E))� to a space of holomorphic functions MD → Hq(C0;O(E|C0))with
a certain transformation law under�. In this sense�\MD can be a good replacement
for �\D as a universal deformation space.

In much of the literature one considers only the situation whereG0 is of hermitian
type and the bounded symmetric domain B = G0/K0 is used instead of MD . (Of
course they are the same if D is of hermitian holomorphic type.) When G0 is not
of hermitian type then again G0/K0 is used instead of MD , and it is considered
somewhat of an obstacle that G0/K0 is not a complex manifold. Our use of �\MD

addresses this point.
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In connection with construction of automorphic cohomology, Wells showed by
direct computation that MD is a Stein manifold in one particular case (r = 2) [We1].
That result was extended in Wells–Wolf [WeW] to the more general situation of
open G0-orbits D of the form G0/L0 with L0 compact, using a special case of the
double fibration transform together with somewhat general methods of complex anal-
ysis (Andreotti–Grauert [AnG], Andreotti–Norguet [AN], Docquier–Grauert [DG])
associated to questions of holomorphic convexity and the Levi problem. The goal
of [WeW] was construction of automorphic cohomology as convergent Poincaré ϑ-
series ϑ�(c) := ∑γ∈� γ ∗(c) where c ∈ Hq(D;O(E)) is a K0-finite cohomology
class. The relevant estimates were derived from semisimple representation theory,
specifically from Hecht–Schmid [HSc] and Schmid [S4], and by passing between D
and MD .

This theory of Poincaré ϑ-series and automorphic cohomology later was devel-
oped quite a bit. According to [W5], if � is any discrete subgroup of G0, E → D

is sufficiently negative and 1 � p � ∞, then every �-invariant Lp(�\D) class in
Hq(D;O(E)) can be realized as a Poincaré series ϑ�(c), where c ∈ Hq(D;O(E)) is
Lp(D). In particular this is close to the idea of catching all of the function field. The
“sufficiently’’ part of the “sufficiently negative’’ condition on E → D is relaxed in
Wallach–Wolf [WaW] by construction of an appropriate reproducing kernel. Finite
dimensionality of automorphic cohomology was proved by Williams [Wi1], [Wi2],
[Wi3], using the index theory of Moscovici and Connes, for the case where �\D
is compact. Despite this development, automorphic cohomology has not yet been
effectively applied to variation of Hodge structure. We expect that the new infor-
mation on the double fibration transform, presented in this monograph, will make a
difference here.
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Cycles in the K3 Period Domain

In this chapter we outline moduli space results for K3 surfaces which are marked with
a basis for their integral homology. This moduli space, which is often called a period
domain, is an open orbit D of G0 = SO0(3, 19) in a 20-dimensional quadric. We
compare it to the Griffiths domain discussed in Chapter 15. In particular, in the present
case the analogous discrete group does not act properly. Thus it is appropriate to move
to the level of the cycle space MD , which we compute through its identification with
the universal domain U .

Since we hope that this monograph will be of interest to colleagues and students
coming from a wide range of backgrounds, we begin this chapter with a sketch of some
basic information on complex surfaces in general and on K3 surfaces in particular.
Then, in Section 2 we give three basic methods of construction for K3 surfaces. First,
we explain the Kummer construction (see Proposition 16.2.1), which amounts to
going to the quotient of a compact torus by the group of order two generated by −id
and then blowing up the resulting 16 singularities in a canonical way. Then, by using
the adjunction formula and the Lefschetz Theorem, we note that smooth surfaces of
degree four in P3 are K3 surfaces (Proposition 16.2.2). Finally, we show that the 2 to
1 cover of P2 which is ramified over a smooth curve of degree six is also a K3 surface
(Proposition 16.2.3).

In Section 3 the notion of a marking is discussed and then we explain the Torelli
Theorem 16.3.3, which states that the space of all marked K3 surfaces can be naturally
identified with a certain open orbit D of G0 = SO0(3, 19). In this case, we have the
standard hermitian form of signature (3, 19) on C22. If b is the associated complex
bilinear form, then the manifold Z = G/Q is the 20-dimensional quadric defined by
b in P21. The groupG0 acts on this quadric, and the K3 period domain, i.e., the space
of all marked K3 surfaces, is the domain D of all positive lines in Z.

In Section 4 we discuss the relevant cycle spaces. Here the cycles themselves
are quadric curves which arise as the (transversal) intersection of Z with a projective
plane in P21.

As is explained in Section 4 (see Proposition 16.4.1) the cycles which are defined
over the reals correspond to Calabi–Yau metrics on the K3 surface. Here “real’’
means that the above mentioned plane is defined over the reals, or equivalently, that
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cycle itself is a base cycle which is defined by a choice of the maximal compact
subgroup K0.

We close the chapter with considerations which revolve around the Schubert
slices in D. In an interesting way this leads to related hermitian bounded domains of
the group SO(2, 18). Finally, using its identification with U and the matrix domain
realization presented in Chapter 14, we give an explicit description of the cycle space
MD . Of course it is our hope that this cycle space, and perhaps actions on it by
discrete subgroups of G0, will have interesting interpretations in moduli theory.

16.1 Position of K3 surfaces in the Kodaira classification

By surface we mean a connected compact complex manifold of complex dimension
2. Unlike the one-dimensional case many surfaces fail to be projective algebraic
varieties. For example, in order that a torus �\C2 have a nonconstant meromorphic
function, the lattice � must be rather special.

Surfaces have been classified in a rough sense by Kodaira; see [BPV]. The
analogous classification of projective algebraic surfaces came earlier, due at least in
part to the availability of the algebraic case of the Riemann–Roch Theorem. That
classification is generally credited to Enriques (see [Z]), but of course there were
many other contributors.

One of the basic invariants of any compact complex manifold X is its Kodaira
dimension κX, defined as follows.

If L → X is a holomorphic line bundle, we have the graded ring R(L) :=∑
k�1 �(X;O(Lk)) of sections of all the positive tensor powers of L. If R(L) = 0,

one defines the Kodaira dimension κ(L) to be −∞. If R(L) �= 0, one considers
its graded quotient field Q(L), the field generated by meromorphic functions on X
that are quotients of sections of some positive power of L. By definition, the Ko-
daira dimension κ(L) is the transcendence degree of Q(L) over C. A theorem of
Thimm, Siegel and Remmert says that analytically dependent meromorphic func-
tions on a compact complex manifold are algebraically dependent, and this implies
κ(L) � dimC(X).

The Kodaira dimension κ = κX of X is defined to be the Kodaira dimension
κ(KX) of the canonical line bundle KX = ∧n T∗X, n = dimC(X). If n = 1,
the possibilities are κ = −∞, 0, 1 corresponding to the possibilities X = P1(C),
X = �\C torus, and genus g(X) � 2, in other words whether X carries a Kähler
metric of constant Gauss curvature +1, 0 or −1. Of course most Riemann surfaces
fall into the last category.

The possibilities for Kodaira dimension of a surface are κ = −∞, 0, 1, 2. More
or less, as in the one-dimensional case, the class of surfaces with κ = 2 (surfaces of
general type) is large and, in fact, is still an area of intense research activity.

The class of surfaces where κ = −∞ contains the rational homogeneous surfaces
and those that fiber over a one-dimensional base with fiber P1(C). The algebraic
surfaces in this class are rather well understood but there remain interesting questions



16.2 Three classes of examples 227

on the complex manifold side. For example, are there surfaces in this class that have
no one-dimensional subvarieties?

Surfaces in the class κ = 1 can be studied by their canonical fibration onto a one-
dimensional base. The general fiber is a torus of complex dimension 1. Its complex
structure depends on the point over which it is the fiber, and many interesting families
of elliptic curves (with degeneration allowed) occur in this way.

The holomorphic tangent bundle of a complex torus X = �\Cn is (holomor-
phically) trivial; in particular, KX is trivial and thus κX = 0.

By definition, a K3 surface is a surface X with trivial canonical bundle and first
Betti number b1(X) = 0. Triviality of KX implies κX = 0, as in the case of a
complex torus. The class of surfaces with κ = 0 consists of the complex 2-tori,
the K3 surfaces, the (2 : 1) unramified quotients of K3 surfaces (these are called
Enriques surfaces), and a few other special types of surfaces.

For a number of reasons, some of which will emerge in what follows, K3 surfaces
play an extremely important role in complex geometry. For example, if X is a K3
surface, the condition that KX be trivial says that X has a holomorphic symplectic
form. The topological condition b1(X) = 0 is rather strong here, because it turns
out that X is simply connected. It is difficult to find examples of such manifolds in
higher dimensions except for those built up from K3 surfaces. And in fact, looking
at the surface picture for the first time, one might not even know where to look for
K3 surfaces.

16.2 Three classes of examples

We look at three different constructions that produce K3 surfaces.

16.2A The Kummer construction

Consider a complex 1-torus T1 = �1\C. Let �1 ⊂ Aut(T1) be the group of order
2 generated by z �→ −z on C, and define Z1 = �1\T1. Then Z1 is smooth, in fact
biholomorphic to P1(C), and its meromorphic function field M(Z1) =M(T1)

�1 =
C(℘) where ℘ is the Weierstrass ℘−function, and the quotient mapping T1 → Z1 is
the (2 : 1) ramified cover ℘ : T1 → P1(C).

In higher dimensions such quotients tend to be singular. For example, let � be
the subgroup of GL(2;C) which is generated by −I . Then the ring C[z,w]� of
invariants is generated by the three functions x1 = z2, x2 = zw and x3 = w2. The
only relation is the obvious one, x2

2 − x1x3 = 0. Thus the quotient is the variety Z
in C3 defined by this equation. If one removes the origin from Z, one obtains an
unramified cover C2 \ {0} → Z \ {0}, by (z, w) �→ (z2, zw,w2). So the fundamental
group π1(Z \ {0}) = Z2. Thus the origin is a singularity in Z.

The space Z has a natural desingularization. For this, note that the natural map
C3 \ {0} → P2(C) realizes Z \ {0} as a principal C∗ bundle over the smooth quadric
C = {[x1, x2, x3] | x2

2 = x1x3}. Completing this to a holomorphic line bundle at
the end that corresponds to the origin in Z, we obtain a complex manifold X with a
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natural holomorphic map π : X → Z that is biholomorphic except over the origin,
and there π−1(0) is the copy of C ∼= P1(C) that is the zero-section of the line bundle.

The Kummer construction amounts to carrying out the above procedure on a torus
T = �\C2. Just as in the one-dimensional case let � ⊂ AutC(T ) be generated by
the transformation −I of C2. Every point of T has a local coordinate neighborhood
in which � is given by −I .

The fixed point set of � on T consists of the 16 points that come from 1
2�(0),

in other words from the ± 1
2γi , where {γ1, γ2, γ3, γ4} is a generating set of the free

abelian group �. The quotient Z = �\T has 16 singular points, the images of the
fixed points of � on T . Since the desingularization process is a local procedure, we
may blow up each of them as above, obtaining a complex manifold X with 16 special
complex curves, and a natural holomorphic map π : X→ Z that blows these curves
down to the singular points in Z.

The manifold X is the Kummer surface associated to T , and we denote it by
Kum(T ). It is an interesting exercise to give a direct proof thatX = Kum(T ) is simply
connected. One can show as follows that X has a nowhere vanishing holomorphic
2-form ω. In the standard linear coordinate (z, w) on C2, the form dz ∧ dw is �-
invariant, so it is well defined on T and thus also on the complement of the 16 special
curves in X. One computes directly that it extends holomorphically to a nowhere
vanishing form ω on X. Thus we have

Proposition 16.2.1. The Kummer surface X = Kum(T ) of a torus T = �\C2 is a
K3 surface.

16.2B Quartic surfaces in P3(C)

Let C[z0, z1, . . . , zn](d) denote the set of homogeneous complex polynomials of
degree d in n + 1 variables. If Pd ∈ C[z0, z1, . . . , zn](d), then its zero set in
Cn+1 \ {0} is saturated by the fibration Cn+1 \ {0} → Pn(C). The associated zero set
X = N(Pd) ⊂ Pn(C) is a codimension 1 subvariety. It is of degree d in the sense
that it meets every projective line in Pn(C) in d points, counting multiplicity.

Now let us assume that X = N(Pd) is smooth. In particular this means that one
can compute with its normal bundle to obtain a precise description of the canonical
bundle, as follows. The embedding X ↪→ Pn(C) := Y gives an exact sequence

0 → T(X)→ T(Y )|X → NX → 0

of bundles over X, where T means tangent bundle and N means normal bundle. The
sequence of dual bundles,

0 → N∗X → T∗(Y )|X → T∗X→ 0

is exact. The adjunction formula says that the tensor product of the top exterior
powers of the two at the ends is equivalent to the top exterior power of the one in
the middle. Therefore, N∗X ⊗

∧n−1 T∗X ∼= ∧n T∗(Y )|X. In other words, canonical
bundles satisfy KX = KY |X⊗[X]|X, where [X] → Y is the line bundle associated to
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the divisor given by X. As X is of degree d in Y = Pn(C), the line bundle [X] → Y

is Hd , where H → Y is the hyperplane section bundle, the holomorphic line bundle
whose sections are the linear homogeneous polynomials. Now

KX = KY |X ⊗Hd |X = H−(n+1)|X ⊗Hd |X.
Thus, for d = n+ 1 the canonical bundle is trivial. In particular, smooth surfaces of
degree 4 in P3(C) have trivial canonical bundle.

From a theorem of Lefschetz on hyperplane sections,1 π1(X) = 1, in particular
b1(X) = 0. Thus we have a large family of K3 surfaces.

Proposition 16.2.2. A smooth quartic hypersurface in P3(C) is a K3 surface.

16.2C Galois coverings

We discuss the simplest means of constructing cyclic Galois coverings (mostly of
interest when they are ramified) π : X→ Y of a given compact connected complex
manifold Y . The point is that K3 surfaces arise as Galois coverings in many different
ways.

Given Y and a finite group � one looks for a connected complex manifold (or
complex space) X with � ⊂ AutC(X) and Y = �\X. Here the complex structure
on Y should be the quotient complex structure from X, in other words the structure
sheaf OY should be given by germs of �-invariant of holomorphic functions on X.
This is opposite to the viewpoint in the Kummer surface construction, because in that
case one starts with the torus and goes down, while here we go up. If � is cyclic of
order r , one can think of X as a sort of rth root of Y at the function space level.

To make this precise, let L → Y be a holomorphic line bundle that has an rth
root. In other words there is another holomorphic line bundle L1 → Y such that
L = Lr

1. Then the natural map π1 : L1 → L is given on the fiber coordinate level
by z �→ zr . Evidently it is ramified along the zero section, and away from the zero
section it is an (r : 1) unramified covering.

Now let s ∈ �(Y ;O(L)) such that Z := {y ∈ Y | s(y) = 0} is a smooth
submanifold of Y . To avoid trivial cases we suppose that (i) s is not identically zero
and (ii) s is sometimes zero. In other words ∅ �= Z �= Y . Then smoothness of Z
means that s(Y ) is transversal to the zero section in the total space of L. Define
X = π−1

1 (s(Y )) ⊂ L1. It is clear that X is smooth at points not in the zero section,
but it is smooth as well at zero section points because of the transversality. Also, X
is connected because Z �= ∅.

Thus restriction of π1 gives us a Galois covering π : X→ s(Y ) ∼= Y , where the
group of covering transformations is the cyclic group Zr . Now we look at a concrete
example that is very interesting from the viewpoint of K3 surfaces.

1 Here is the theorem in question. Let X be a compact complex manifold and L → X

a positive line bundle. Consider a holomorphic section s of L → X such that
H := {x ∈ X | s(x) = 0} meets the zero-section transversally, and H and X ∩ H are
smooth submanifolds ofX. Then the relative homotopyπi(X,X∩H) = 0 for i < dimC X.
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Let C be a smooth sextic curve in P2(C). So C is the zero set of a section
s ∈ �(P2(C);O(L)), where L is the sixth power H6 of the hyperplane bundle and
where s satisfies the conditions described above. Then H3 → H6 gives us a smooth
submanifold X ⊂ H3 and a (2 : 1) Galois covering π : X→ s(P2(C)) ∼= P2(C), as
before with L1 = H3 and L = H6. The covering group is Z2, and the covering is
ramified over C. Now we show that X is a K3 surface.

Repeat the covering construction using H → H3 to obtain a smooth surface
X1 ⊂ H which is a (3 : 1) ramified cover ofX. The advantage is thatX1 is a compact
submanifold of H, and H can be compactified to P3(C) by adding one point at∞, or
equivalently by adding a section at ∞ and blowing it down to a point. The surface
X1 can now be regarded as a surface in P3(C).

The adjunction formula for X1 ⊂ P3(C) says KX1 = Hd−4
P3(C)

|X1 , where X1 is of
degree d. We may take the homogeneous coordinate [z0 : z1 : z2 : z3] on P3(C)
in such a way that the zero-section of HP3(C) → P3(C) is given by z0 = 0 and the
covering H → H3 is given as a quotient of the Z3 action

[z0 : z1 : z2 : z3] → [z0 : ζz1 : ζz2 : ζz3].

We regard that zero section as a hyperplane U in P3(C). Since the maps H → H3

and H3 → H6 are biholomorphic on C, we take C in P3(C). Then X1 meets U
transversally and X1 ∩ U = C. Also, as our ramified coverings do nothing to the
zero-sections, C is a curve of degree 6 in U . Counting intersection points with lines,
it is a curve of degree 6 in P3(C). We have just checked that d = 6.

Since d = 6, the adjunction formula says KX1 = H2
P3(C)

|X1 . In other words z2
0|X1

is a section γ̃ of the canonical bundle KX1 . But it is invariant under the Z3 action of
H → H3, and so it is the pullback of a section γ of the canonical bundle KX. We
want to show that γ never vanishes which implies that the KX is trivial.

Choose local coordinates on X and X1 such that X1 → X is given by (z, w) �→
(z3, w). In those coordinates γ̃ has the form

f (z3, w)d(z3) ∧ dw = 3z2f (z3, w)dz ∧ dw.

Since z2
0 vanishes to order exactly 2 on C, the same holds for γ̃ , and thus f (z,w)

never vanishes on C. We have proved that γ never vanishes and, as desired, the KX

is trivial.
Consider the pullback p∗ : H 1(X;C) → H 1(X1;C) on de Rham cohomology

given by the covering p : X1 → X. If α is a closed 1-form on X and p∗(α) = df̃

exact, we may average with respect to the Z3 action and assume f̃ to be invariant.
Then f̃ = p∗f for a function f : X → C, and α = df . Thus p∗ : H 1(X;C) →
H 1(X1;C) is injective. But H 1(X1;C) = 0 by the Lefschetz Theorem, because X1
is a surface in P3(C). Thus b1(X) = 0, and therefore we have another large family
of K3 surfaces.

Proposition 16.2.3. A double cover of P2(C), ramified along a smooth sextic curve,
is a K3 surface.
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16.3 Parameterizing K3 surfaces

16.3A The moduli space of genus 1 Riemann surfaces

In order to indicate the procedure for describing the structure of the space of K3
surfaces, we first recall the situation for Riemann surfaces X of genus 1. This looks
very similar to the construction of Chapter 15, but the analogous domain in the K3 case
is very different. In the case of a genus 1 surfaceX, the space�(X) of holomorphic 1-
forms has dimension 1. Since holomorphic 1-forms are closed, �(X) can be viewed
as a complex line in the two-dimensional complex vector space H 1(X;C).

Recall the cap product (·, ·)X : H 1(X;Z)×H 1(X;Z)→ Z. It is the dual to the
intersection pairing on H1(X;Z), and if we extend coefficients (as in H 1(X;C) =
H 1(X;Z) ⊗Z C), it is given on the de Rham cohomology level as exterior product
of closed 1-forms followed by integration over X. In any case it is antisymmetric.
If we vary X, then (·, ·)X changes to an equivalent Z-valued antisymmetric bilinear
form on H 1(X;Z), but one must choose the equivalence.

In order to deal with equivalence of intersection pairing integral bilinear forms
we will compare with the standard lattice L = Z × Z and its standard alternating
pairing (z, z′) = z1z

′
2 − z2z

′
1. We define a marking ϕ of X to be an isomorphism

ϕ : (H 1(X;Z), (·, ·)X)→ (L, (·, ·)),
and denote the set of marked Riemann surfaces (X, ϕ) of genus 1 by M̂1.

Given (X, ϕ) ∈ M̂1, we identify H 1(X;C) using the standard symplectic space
(C2, (·, ·)C) with the C-bilinear extension of ϕ. Here (C2, (·, ·)C) is the complexi-
fication of (R2, (·, ·)R), and the R-bilinear extension of ϕ identifies H 1(X;R) with
(R2, (·, ·)R). Complex conjugation ofH 1(X;C) overH 1(X;R) exchanges de Rham
classes represented by holomorphic forms with those represented by antiholomorphic
forms and gives H 1(X;C) = �(X)⊕�(X). The hermitian pairing

H 1(X;C)×H 1(X;C)→ C by (α, β) �→ 1
2πi

∫
X

α ∧ β

carries over by ϕ to the standard hermitian pairing of signature (1, 1) on C2.
Fix an orientation on the underlying differentiable manifold of X and restrict

attention to those complex structures which induce that orientation. This gives us a
subset of M̂1 which we denote as M̂0

1. Then M̂1 is the disjoint union of M̂0
1 and

the corresponding subset using the conjugate complex structures, i.e., the opposite
orientation, and this will correspond to the decomposition of M̂1 into its topological
components. Given (X, ϕ) ∈ M̂0

1, we have the line ϕ(�(X)) in C2, and it is positive
with respect to the standard hermitian structure of signature (1, 1) on C2.

Decompose the projective space of C2 as P1(C) = D+ ∪ D0 ∪ D− according
to whether the element of P1(C), as a line in C2, is positive, null or negative with
respect to the standard hermitian structure of signature (1, 1).

Theorem 16.3.1. The map P : M̂0
1 → D+, given by P(X, ϕ) = ϕ(�(X)), is

bijective.
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In fact this result is holomorphic in the sense that if one moves a surface of genus
1 in an appropriately holomorphic way, then the corresponding movement in D+ is
holomorphic. See the remarks after Theorem 16.3.3.

Results of the above type are extremely useful, but in this case one can prove more:
one can forget the markings. More precisely, note that a given Riemann surface X
of genus 1 occurs in D+ with many different markings, corresponding to symplectic
changes of basis in the lattice L = Z×Z. Thus the space M1 of unmarked Riemann
surfaces of genus 1, and its part M0

1 for the given orientation, can be identified with
the respective quotients

M1 = Sp(1;Z)\M̂1 and M0
1 = Sp(1;Z)\M̂0

1.

The group Sp(1;Z) acts properly on M̂1, so as a result these quotients are com-
plex spaces which in general have rather simple singularities. In fact in this one-
dimensional situation they are smooth. The Jacobi modular function identifies M0

1
with C. Of course there is a great deal of important mathematics involving automor-
phic forms related to this picture.

16.3B The K3 period domain

Much of the above discussion can be carried out for K3 surfaces. However, the
discrete group which identifies markings does not act properly, and therefore it is
appropriate instead to move to the associated cycle space. Let us outline this situation.

Since the K3 spaces are simply connected the only interesting topological coho-
mology space at our disposal isH 2(X;Z). It comes with a nondegenerate intersection
pairing

(·, ·)X : H 2(X;Z)×H 2(X;Z)→ Z.

That pairing is symmetric and of signature (3, 19), and (H 2(X;Z), (·, ·)X) is isomor-
phic to the lattice

(16.3.2) (L, (·, ·)L) = L1,−1 ⊕ L1,−1 ⊕ L1,−1 ⊕ Lrt(E8)⊕ Lrt(E8)

where L1,−1 is the standard Z2 with ((x, y), (x′, y′)) = xx′ − yy′ and Lrt(E8) is the
root lattice of E8. The inner product on the root lattice E8 is the negative multiple
of the Killing form such that simple roots α have square norm (α, α) = −2. In
abbreviated notation one often writes L = 3H ⊕ 2E8. Decompose the cohomology
by bidegree,

H 2(X;C) = H 2,0(X;C)⊕H 1,1(X;C)⊕H 0,2(X;C).
Complex conjugation of H 2(X;C) over H 2(X;R) stabilizes H 1,1(X;C) and ex-
changesH 2,0(X;C)withH 0,2(X;C). At this stage of the investigation one does not
know that the K3 surfaces are Kähler. They are [Si], but the bidegree decomposition
does not require Kähler in the case at hand.

The space H 2,0(X;C) has dimension 1. Hence it is generated by any nonzero
holomorphic 2-form γ . More or less as before, define M̂ to be the space of marked
K3 surfaces (X, ϕ), where here
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ϕ : (H 2(X;Z), (·, ·)X)→ (L, (·, ·)L)
is an isomorphism of lattices equipped with bilinear forms, here of signatures (3, 19).
The scalar extension C22 has a symmetric bilinear form (·, ·) obtained from (·, ·)L.
It thus has a hermitian form 〈α, β〉 = (α, β) of signature (3, 19), where the overline
is complex conjugation of C22 over R22. Since γ is a 2-form, there is an implicit
positivity, and the condition 1

2πi

∫
X
γ ∧ γ > 0 translates to the line ϕ(H 2(X;C))

being positive definite in (C22, 〈·, ·〉).
We have γ ∧ γ = 0 from its bidegree, and that says

(ϕ(H 2,0(X;C)), ϕ(H 2,0(X;C))) = 0,

in other words, ϕ(H 2,0(X;C)) is an isotropic line in (C22, (·, ·)). We translate this
into the language of flag domains.

Let Z denote the quadric of (·, ·)-isotropic lines in C22. Decompose Z =
D+ ∪ D0 ∪ D− according to whether a line is positive, null or negative with re-
spect to 〈·, ·〉. The map

P : M̂→ D+ given by P(X, ϕ) = ϕ(H 2,0(X;C))
is called the period map, andD+ is called the period domain,2 for K3 surfaces. The
major result here (see [BBD]) is the following.

Theorem 16.3.3 (Torelli Theorem). The period map P : M̂→ D+ is bijective.

This result has a holomorphic aspect, proved by Andreotti, as follows. Given a
marked K3 surface (X0, ϕ0), there is a canonical local family π : X → S of marked
K3 surfaces, where S is open in C20, such that π has maximal rank, π−1(s) ∈ M̂
for every s ∈ S, and the map S → D+, given by s �→ P(π−1(s)), is biholomorphic
onto its image. See [BBD] for more information on this Kuranishi family of marked
K3 surfaces as well as many other aspects of K3 surface moduli.

Now we come to the point where the analogy to genus 1 Riemann surfaces is
no longer valid. The group that identifies pairs (X, ϕ1) and (X, ϕ2) of marked K3
surfaces is the integral orthogonal group � = SO(L, (·, ·)L). Its action on D+ is
far from proper, so the quotient �\D+ is not a reasonable space, for example is not
Hausdorff.

In some sense this is closely related to the fact that there are no nonconstant
holomorphic functions onD+, and that certain cohomology spaces are the appropriate
places to realize group representations. Those representations carry over (by a double
fibration transform) to representations on spaces of functions or vector bundle sections
on the cycle space MD+ , and the action of � on that space is proper.

2 Here is the reason for the word “period.’’ Choose a basis {ξ1, . . . , ξ22} of the homology
of the fixed underlying real manifold of X, which is dual to the standard basis of L. Then
the coordinates of γ are computed as the integrals over the ξi , and in analogy with the
one-dimensional case they are called “periods.’’
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16.4 The cycle space MD+

We have just seen thatD+ is naturally identified with the space of marked K3 surfaces.
HereD+ is the space of lines in the 20-dimensional nonsingular quadricZ ⊂ P21(C)
that are positive definite relative to a hermitian form 〈·, ·〉 on C22. In fact Z is a
homogeneous projective variety, i.e., a complex flag manifold, of the form G/Q,
where G = SO(22;C), and D+ is an open orbit of the real form G0 = SO0(3, 19)
of G. We want to take a careful look at the cycle space MD+ of D+, and we start by
describing the orbits of the various groups at hand.

16.4A The G0- and K-orbits in Z

The group G0 = SO0(3, 19) has four orbits in Z. The two open orbits are the spaces
D+ of positive lines inZ and the spaceD− of negative lines inZ. They are separated
by the real hypersurface D0 of null lines. In turn, D0 is the union of the closed orbit
ZR and its complement D′0 in D0, and ZR consists of the real points in Z.

The real group G0 has maximal compact subgroup K0 = SO(3) × SO(19).
It has complexification K = SO(3;C) × SO(19;C). The K-orbits dual to the
G0-orbits are given as follows. The base cycle in D+ is C+ := K(z+), where
z+ = [1 : i : 0 : 0 : · · · : 0]. The base cycle in D− is C− := K(z−), where
z− = [0 : 0 : 0 : 1 : i : 0 : · · · : 0]. The variety C− is a quadric curve isomorphic to
P1(C), and C+ is an 18-dimensional quadric. Those base cycles are the duals of the
open G0-orbits.

The dual of the closed G0-orbit ZR is the open K-orbit, which is the K-orbit of
any point of ZR, say of zR = [0 : 0 : 1 : 1 : 0 : · · · : 0]. It is affine algebraic and
is naturally identified with the tangent bundle of ZR = (S2 × S18)/{±I }. Since the
open K-orbit is affine, the remaining K-orbit is a hypersurface with two ends that
close up to C+ and C−, and z′0 = [0 : 1 : i : i : 1 : 0 : · · · : 0] is a natural base point
for this open K-orbit. Now the orbit is K(z′0) and it is a C∗ bundle over C+ × C−,
where each factor is blown down for partial compactification with the other.

16.4B Real cycles

The domain D+ is our primary concern here. Its base cycle C+ is easily described
in terms of the embedding Z ↪→ P21(C). If V is the span of e1, e2 and e3, then
C+ = P(V )∩Z. The group G0 acts on P(V ) as SO(3, 19), and P(V ) is defined over
R in a manner invariant under G0. Every cycle C in the component C1(D+) of C+
has the same degree 2 as C0, and thus spans a projective plane 〈C〉 ∼= P2(C). One
can check that C is a real point of MD+ if and only if 〈C〉 is defined over R.

Given a marked surface (X, ϕ) ∈ D+, we consider the open cone κ of de Rham
classes [ω] ∈ H 1,1(X;R) of Kähler forms ω on X. Recall H 2(X;Z) ∼= 3H ⊕ 2E8
from (16.3.2). The 2E8 summand contributes its 16 generators (corresponding to the
simple roots of the two E8 summands) to H 1,1(X;Z). Those generators have square
norm−2. In the case X = Kum(T ) each of those 16 generators is given by a rational
curve that results from desingularization of the torus quotient �\T .
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A Kähler class [ω] obviously has positive square norm in H 1,1(X;R), because
ω ∧ ω is a volume form, and if [η], [ζ ] ∈ H 2(X;Z), then their intersection pairing
is
∫
X
η ∧ ζ . Thus the Kähler classes determine a component in the cone C+(X) of

elements of positive square norm in H 1,1(X;R), and the Kähler cone κ is an open
subcone. In fact κ looks like a Weyl chamber cut out by the generators that come
from simple roots ofE8. It is the set of all [α] ∈ C+(X) such that if [β] ∈ H 1,1(X;R)
is effective with ([β], [β]) = −2, then ([α], [β]) > 0.

The isotropy subgroup of G0 on D+ at the point (X, ϕ) contains a copy of the
SO0(1, 19), and that SO0(1, 19) acts faithfully on the tangent space T(X,ϕ)(D+). This
is particularly clear at the base point z0 ∈ C+. Let κ1 denote the elements of κ that
correspond to Kähler metrics of volume 1: κ1 := {[ω] ∈ κ | ([ω], [ω]) = 1}. It can
be shown that T(X,ϕ)(D+) is canonically identifiable withH 1,1(X;C), which has real
form H 1,1(X;R), and that S0(1, 19) stabilizes and acts transitively on κ1. Therefore
we concentrate attention on the norm hypersurface κ1.3

The essential point now is the theorem ofYau [Y] that proved the Calabi Conjecture
on Ricci-flat manifolds: Every Kähler class in κ contains a unique Kähler–Einstein
metric. Here we identify the metric with its Kähler form ω and regard κ as the
space of Kähler–Einstein metrics on X. Since the canonical bundle KX is trivial, the
Kähler–Einstein property says that the metric is Ricci flat.

Recall thatH 2,0(X;C) has dimension 1 so that it is generated by the de Rham class
[γ ] of any nonzero holomorphic 2-form γ . Given a Kähler–Einstein class [ω] ∈ κ1,
we consider the subspace

V = VX,ϕ,[ω] := SpanC([γ ], [ω], [γ ])
ofL⊗Z C ∼= C22. Sinceω = ω, the space V is defined over R. We now indicate how
the cycle C = D+ ∩ V is a 2-sphere and is the set of all marked K3 surfaces whose
complex structure admits a Kähler–Einstein metric with the given Kähler form ω.

The Kähler–Einstein metric with Kähler form ω on the K3 surfaceX is Ricci-flat,
and consequently it has holonomy SU (2) = Sp(1). The centralizer of the holonomy
in the algebra of linear transformations of the real tangent space of X is a quaternion
algebra. The unit sphere in the pure imaginary component of that quaternion algebra
consists of almost complex structures that are invariant under parallel translation,
thus integrable. In terms of the usual pure imaginary elements I , J and K of the
quaternion algebra, I 2 = J 2 = K2 = −Id , IJ = K , KI = J , and JK = I , these
integrable almost complex structures are just the aI + bJ + cK with a, b, c real and
a2+ b2+ c2 = 1. They form a 2-sphere. This sphere is exactly the cycle C. Moving
the complex structure in this 2-sphere amounts to moving the K3 surface X in the
cycle C.

Recall the Kähler cone κ = κ(X, ϕ) of Kähler–Einstein structures on the under-
lying marked complex manifold (X, ϕ), and its real hypersurface κ1 of those that are
normalized to have volume 1.

Because of our strong reliance on the existence of the Kähler–Einstein metric
we refer to the cycles C = D+ ∩ V constructed above, from (X, ϕ) ∈ D+ and

3 Note the similarity with Köcher’s theory of tube domains and formally real Jordan algebras.
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[ω] ∈ κ = κ(X, ϕ), as Calabi–Yau quadrics. We summarize our discussion as
follows.

Proposition 16.4.1. The set of Calabi–Yau quadrics can be identified with the set of
real points in MD+ .

The proof follows from the material sketched above and from the fact that the
isotropy subgroup of G0 at (X, ϕ) stabilizes and acts transitively on κ1. Note that
this presents κ1 as the real hyperbolic 19-space SO0(1, 19)/ SO(19). It should be
underlined that the real points of MD+ are just those cycles C in D+ that span
projective planes 〈C〉 in P21(C) that are defined over R. The base cycle C+ is one
such.

Remark. It would be desirable to have a differential geometric or complex analytic
interpretation for cycles that are not real, and for what it means to move in an imaginary
direction in the cycle space. ♦

16.4C Schubert slices

Here we go explicitly through the Schubert slice construction for cycles inD+. There
are a number of simplifying factors in this case. For example, since the cycles are one-
dimensional, the relevant Schubert varieties are hypersurfaces inZ. Since b2(Z) = 1,
these are just the complements of the open B-orbits.

As above, letZ be the 20-dimensional quadric (z2
0+z2

1+z2
2)−(z2

3+· · ·+z2
21) = 0

in P21(C), and decompose Z = D− ∪D0 ∪D+ into the negative, null, and positive
lines. Recall that the D± = G0(z±) are the open orbits, z+ = [1 : i : 0 : 0 : · · · : 0]
and z− = [0 : 0 : 0 : 1 : i : 0 : · · · : 0]. D0 is the union of the closed orbit
ZR = G0(zR), zR = [0 : 0 : 1 : 1 : 0 : · · · : 0], with one other orbit, D′0 =
D0 \ ZR = G0(z

′
0), z

′
0 = [0 : 1 : i : i : 1 : 0 : · · · : 0].

Let B be an Iwasawa–Borel subgroup of G that fixes zR. Then the projective
tangent space to Z at zR is PT = {[z] ∈ P21(C) | z2 = z3}. Of course S := PT ∩Z
is B-invariant. Note that S is the 1-codimensional B-Schubert variety in Z, and the
components of S ∩ D+ are the Schubert slices. We are going to compute them and
also the variety Y := S \O that is used for the trace transform.

Let π : P21(C)→ P20(C) be the projection defined by the point zR. Geometric-
ally this means that, given p ∈ P21(C) \ {zR}, we identify all points on the projective
line determined by p and zR. Of course this map is not defined at zR. In coordinates
this map is given by [z0 : z1 : · · · : z21] �→ [z0 : z1 : z2 − z3 : z4 : · · · : z21].
Let [ξ0 : · · · : ξ20] be homogeneous coordinates on the image space. The projective
tangent space PT is mapped to the hyperplane ξ2 = 0. We refer to that hyperplane
as P19(C) with homogeneous coordinates [η0 : · · · : η19].

The projection π maps the intersection S = PT ∩Z to the quadric Z1 in P19(C)
defined by (η2

0 + η2
1)− (η2

2 + · · · + η2
19) = 0.

Now note that π : S → Z1 is equivariant with respect to the isotropy subgroup
SO0(2, 18) of G0 = SO0(3, 19) at zR. Also, of course, it is B-equivariant. Also note
that if p ∈ S, then p ∈ PT ∩D+ if and only if π(p) is positive for the hermitian form
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(|η0|2 + |η1|2)− (|η2|2 + · · · + |η19|2). The group SO0(2, 18) is the automorphism
group of a bounded symmetric domain of tube type, andZ1 is the associated hermitian
symmetric flag manifold. Thus, if we regard π as a regular map from P21(C) \ {zR},
we can describe the Schubert slices in D+ as follows.

Proposition 16.4.2. Let D′+ and D′′+ denote the two SO0(2, 18)-orbits in Z1 that are
bounded symmetric domains (of tube type). Then the B-Schubert slices in D+ are
their π -preimages, 	′ = π−1(D′+) and 	′′ = π−1(D′′+).

Finally, let us turn to the issue of describing Y . Since π(S) is the full quadric
Z1, it follows that Y is the preimage (including zR) of the complement of the open
B-orbit in Z1. This is just the intersection S1 = PT1 ∩ Z1 of Z1 with a projective
tangent space. So Y is a cone over a cone in a straightforward way.

16.4D Matrix description of the K3 period domain cycle space

The K3 period domain is a flag domain of the group G0 = SO0(3, 19), and thus
belongs to the family of cycle spaces considered in Section 13.2. Its structure is
given by Proposition 13.2.4 with (p, q,F) = (3, 19,R), as follows.

Corollary 16.4.3. The cycle space MD+ ∼= B1 × iB2 where

B1 is the real bounded symmetric domain {W1 ∈ R3×19 | I −W1W
∗
1 � 0},

and

B2 = {W2 ∈ R3×19 | W2W
∗
2 has eigenvalues

tan2(ai), ai ∈ R, |ai | + |aj | < π/2 for i �= j}.

The action ofG0 = SO0(3, 19) on MD+ is given by linear fractional transformations,(
A B
C D

) : W �→ (AW + B)(CW +D)−1,

where W = W1 + iW2 with W1 ∈ B and W2 ∈ B′.
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The Full Cycle Space
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Overview

In Part II above it is shown that our group-theoretically defined cycle space MD is a
closed submanifold of the Barlet cycle space C(D). It was also shown that MD is the
associated G0–bounded symmetric domain in the holomorphic hermitian case, and
otherwise is naturally identified with the universal domain U . This last result can be
regarded as a negative result which says that very little of the flag domain geometry
is reflected in this group-theoretically defined space of cycles.

Here we examine the position of MD in the full cycle space C(D). The main
result is the explicit determination of the module structure of the Zariski tangent
space T[C]C(Z) for all base cycles C in open G0-orbits in arbitrary flag manifolds Z.
Since MD is the connected component containing [C] of the intersection of the orbit
G([C]) with C(D), it is of interest to understand the representation of K on the space
V which is transversal to this orbit in the sense of a K-decomposition

T[C]C(Z) = T[C]G([C])⊕ V.

We show that C(Z) is smooth at [C], and consequently, in the cases where it is
nonzero, V really represents additional deformation parameters that are not due to
the symmetry group G.

By explicit determination of the module structure we mean that the highest weights
of the representation ofK on V are given in explicit terms. In fact the representations
which occur are very simple, but for a fixed g0 several representations can occur.
These depend on the cycle and the flag manifold at hand.

For certain real forms g0 general methods show that in fact MD is the component
of [C] in C(D), i.e., V = 0 (Theorem 18.4.13). However, the complementary list,
given in Tables 18.5.1 and 18.5.2, is quite substantial, and for many real forms which
occur in this list there are indeed cycles C and flag manifolds Z, where V �= 0.

Occasionally G is dimension theoretically smaller than the full automorphism
group Aut(Z), and therefore additional parameters appear for reasons of addi-
tional symmetry. However, this rarely happens, and when it does, we still have
dim CC0(Z) > dim Aut(Z)([C0]) in almost all cases. Thus there are indeed numer-
ous series of real forms where the geometry of the flag domain is reflected in the full
cycle space.

Let us now outline our method for carrying out the computations indicated above.
Throughout, θ denotes the complex linear extension of the Cartan involution of g0.
It defines the Cartan decomposition g = k + s. A pair (C,Z) consisting of a closed
K-orbit C in a G-flag manifold is given. The complex conjugation τ of g over g0
commutes with θ , and σ := τθ is complex conjugation of g over a τ -stable θ -stable
compact real form gu.

In Chapter 17 we begin by choosing a base point z in C with isotropy algebra q
in g, such that q contains a θ -invariant Borel subalgebra of g which in turn contains a
reference Borel subalgebra bref

k of k. Then b contains a fundamental θ -stable τ -stable
Cartan subalgebra h ⊂ q of g, so t := h ∩ k is a Cartan subalgebra of k contained
in bref

k .
The setM(t, s) of weights of t on s plays a key role in the considerations here. For

this reason a description of the full representation of k on s is given in Section 17.4.
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Our work here amounts to computing the representations of K on the cohomol-
ogy spaces H 0(C;O(NZ(C))) and H 1(C;O(NZ(C))), where NZ(C) is the normal
bundle of the cycle C in Z. Direct computations show that this can be transferred to
computingH 1(C;O(E)) andH 2(C;O(E)), where E is the homogeneous vector bun-
dle onC defined by the isotropy representation ofQK := K∩Q onF := (q+θq)∩s;
see Proposition 17.5.1. Note that in the measurable case this simplifies, because in
that case θq = q. Simplifications in the hermitian case are also noted in Chapter 17.

The most difficult aspects of our work in this part are contained in Chapter 18.
After introducing the notation for the relevant root systems, we point out that the set
of closed K-orbits in Z, i.e., the set of reference or base cycles in Z, is naturally
parameterized by a double coset quotient of the Weyl group, Wθ = NG(t)/ZG(t).
A convenient set of representatives Wθ

1 of the equivalence classes in this quotient is
used in an essential way in the final calculations in Chapters 19 and 20, where we
transfer the results from the simplest choice of a cycle to results for the other cycles
by the action of elements of Wθ

1 .
The cohomology groups indicated above are computed by the algorithm of the

Bott–Borel–Weil theorem. In the case at hand, where the bundle E is defined by a
representation of the nonreductive isotropy group onF , it is necessary to first go to the
filtration {Fj } ofF defined by the unipotent radical ofQK , compute the cohomologies
for the quotient bundles Fj+1/F j as homogeneous bundles of the reductive part of
QK , and then work back to the cohomology spaces of the original bundle E.

This is a matter of computing Bott regular weights of index 1 and 2. A priori this
might seem to be a difficult matter, but there are major simplifications and reductions
which can be made. For example, for the quotients from the filtration, the String
Lemma 18.4.4 shows that a weight µ of index 1 can only occur if it is the beginning
of a string µ,µ+ β, µ+ 2β in M(t, s), where β is a simple t-root on g and µ+ β is
dominant. The conditions on weights of index 2 are even more restrictive.

One consequence of the String Lemma is that the list of real forms where the space
V is possibly nonzero is now somewhat shorter; see Tables 18.5.1 and 18.5.2. Except
for two cases where g0 is complex and which are not difficult to handle, the algebra
k is at worst a direct sum of simple classical algebras. This is used in the concrete
calculations of Chapters 19 and 20, where convenient matrix models are employed.

The next major reduction is given by the Cohomological Lemma 18.5.6 which
precisely describes those representations that are allowed by the String Lemma and
that are to be found in the cohomology of the bundle E. With several exceptions,
which must be handled case by case, for example where g0 = so(2p + 1, 2q + 1),
this leads to the vanishing theorem which proves the smoothness of C(Z) at [C] for
any pair (C,Z) (Theorem 18.6.1).

In the last two chapters of this part we use the algorithm presented in Chapter 18
to compute theK-module V for every real form in Tables 18.5.1 and 18.5.2 and every
pair (C,Z). In Section 20.5 we record the summary as Table 20.5.2. For every g0 we
give the representations on the transversal space V which occur for some pair (C,Z).
In order to determine the pair, the reader must consult the summarizing theorems in
the individual sections where the calculations are carried out.
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Combinatorics of Normal Bundles of Base Cycles

In this chapter we translate the problem of giving the local description of the full
cycle spaces to that of computing certain representations.

17.1 Characterization of compact K-orbits

We begin by giving a combinatorial criterion for an orbitK(z) ⊂ Z to be compact, in
terms of the corresponding isotropy subalgebra qz. In view of the duality expressed
by Proposition 4.3.3 this corresponds to the criterion of Theorem 4.2.2 forG0(z) to be
open in Z. Recall that θ : G→ G and θ : g→ g denote the respective holomorphic
extensions of the Cartan involutions θ : G0 → G0 and θ : g0 → g0, and that the
product of any two of θ , τ , σ is equal to the third.

Proposition 17.1.1. In the following b is a Borel subalgebra of g.

1. If b is θ -stable, then bk := b ∩ k is a Borel subalgebra of k.
2. If b contains a Borel subalgebra bk of k, then b is θ -stable.
3. If z ∈ Z, then K(z) is compact if and only if qz contains a θ -stable Borel

subalgebra of g.

Proof. For assertion 1, express b = h+∑α(ξ)>0 g−α , where h is a θ -stable Cartan
subalgebra of g and ξ is a regular element of h. As θ(b) = b we can replace ξ by
θ(ξ) and then by ξ + θ(ξ). Hence we may assume ξ ∈ k. In other words, t := h ∩ k
is a Cartan subalgebra of k and bk = t+∑ν(ξ)>0 k−ν . Thus bk is a Borel subalgebra
of k.

Assertion 2 is Lemma 4.3.2.
If K(z) is closed in Z, then the proof of Proposition 4.3.3 constructs a θ -stable

Borel subalgebra of g that is contained in qz. If qz contains a θ -stable Borel subal-
gebra b ⊂ g, then K(z) is closed in Z by Assertion 1. This completes the proof of
Proposition 17.1.1. ��
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17.2 Base cycles and the arrangement of Borel subgroups

Given a flag manifold G/Q and a base cycle C = K(z) ⊂ Z we wish to locally
describe the cycle space C[C](Z) at the point [C]. In this and in the following sections
we develop combinatorial tools which allow us to computeT[C]C(Z) in an algorithmic
way. Here we explain the first step toward transition of our geometric situation to
the combinatorics of various root systems. Given an arbitrary pair (C,Z) (in other
words, given a real form g0 of a complex semisimple g, where we have selected a
G-flag manifold Z and a base cycle C = K(z)) we attach to it certain Lie algebra
data, bk ⊂ b ⊂ q ⊂ g, which encode all geometric information of the pair (C,Z).

Let g0 and a complex G-homogeneous flag manifold Z be given, let X be the
corresponding G-homogeneous full flag manifold, and π : X → Z a fixed G-
equivariant fibration. Proposition 17.1.1 gives us a useful description of closed K-
orbits in a complex flag manifold Z : Let C = K(z) ⊂ Z be such a closed orbit
(i.e., a base cycle). Then π−1(C) contains a (possibly not unique) base cycle CX =
K(x) ⊂ X. Given any such CX, we may assume that π(x) = z. The group data is
now obtained as follows. The selection of x determines the corresponding isotropy
group which is a Borel subgroup Bk ⊂ K . Further, the points x ∈ X and z ∈ Z

give rise to the groups B = Bx and Q = Qz, which are a Borel and a parabolic
subgroup of G. Hence, we have obtained the group data Bk ⊂ Bx ⊂ Qz ⊂ G.
Note that, according to Proposition 17.1.1, the Borel subgroup B = Bx is θ -stable
and Bk = B ∩ K. In this situation we often refer to the Borel subgroup Bk of K as
“small,’’ and the Borel subgroup B of G as “large.’’ Note also that Qk := Qz ∩K is
a parabolic subgroup in K such that C ∼= K/Qk; see the following diagram:

(17.2.1)

K/BK
choice−−−−−−→

of B=Bx K(x) = CX ⊂ π−1(C) ⊂ X = G/Bx⏐⏐% ⏐⏐% ⏐⏐%π
K/Qk

∼= K(z) = C ↪−−→ Z = G/Qz.

The subgroups Bk ⊂ B ⊂ Q are not unique. However, any two Borel subgroups
of K are conjugate, and the choice of such a (small) Borel subgroup amounts to a
choice of a base point x ∈ CX. Therefore, given g0, or, equivalently, given (g, θ)
(or g = k+ s) we may fix once and for all a Borel subgroup Bref

k and consider only
quadruples Bref

k ⊂ Bx ⊂ Qz ⊂ G. Finally, since all the above (sub)groups are
connected, there is no lost in passing to their Lie algebras. Recapitulating, given
(g, θ), to an arbitrary base cycleC in aG-flag manifoldZ we associate the quadruple
of Lie algebras

(17.2.2) bref
k ⊂ b ⊂ q ⊂ g

we refer to any such quadruple of Lie algebras as Lie algebra data associated to
(C,Z). It should be noted that once bref

k is fixed, there may be several (but finitely
many) large Borel subalgebras b containing bref

k . Corollary 18.3.6 describes in terms
of certain subgroups of the Weyl group W(g, h) the possibilities for the B which
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contain a given Bk. Once b is selected, in every conjugacy classes of parabolic
subalgebras in g there is precisely one representative q which contains b. In this
situation, the given flag manifold Z determines q. Thus given Lie algebra data
bref

k ⊂ b ⊂ q ⊂ g uniquely determine a base cycle C in a flag manifold Z.
Geometrically summarized, a choice of Borel subgroupB containingBk amounts

to a choice of closedK-orbit in G/B which lies overK(z) by the projectionG/B →
G/Q. Note that all such orbits are equivalent as abstract K-manifolds, but their
positions in the cycle space C(X), or even in the homology of X, may be very
different.

17.3 Normal bundles of base cycles

Consider a closedK-orbit (in other words a base cycle) C = K(z) inZ. ThenK acts
naturally on the holomorphic normal bundle

NZ(C) := (TZ|C)/TC,
and this gives NZ(C) the structure of a K-homogeneous holomorphic vector bundle.
In this section we study the structure of that bundle.

In the case of the full flag manifold X = G/B every base cycle C is biholomor-
phically equivalent to the (small) full flag manifold K/Bk. The particular embedding
C ↪→ X plays an essential role by the computation of the various cohomology groups
associated with the given normal bundle. Let b ⊃ bk = bref

k be the corresponding
Lie algebras as in Section 17.2 and B ⊃ Bk the corresponding Lie groups. Recall
B = θ(B), so that b = bk + bs. Therefore

(17.3.1)
NX(C) = (TX|C)/TC = (K ×Bk g/b)/(K ×Bk k/bk)

= (K ×Bk (k/bk + s/bs))/(K ×Bk k/bk) = K ×Bk s/bs.

The Bk-module s/bs is the normal space NX(C)x , and the module structure comes
from the adjoint action of K on s.

The above description (17.3.1) of the normal bundle ofC can be generalized to an
arbitrary flag manifold Z = G/Q. In this general case there are two complications.
First, for a given flag Z = G/Q and real form G0 of G, the base K-cycles may not
be diffeomorphic or even of the same dimension. Second, although qz contains a
θ -stable Borel subalgebra b, the parabolic qz need not be θ -stable.

To look at the latter point in more detail, consider the action θ as a graph auto-
morphism of the Dynkin diagram derived from the positive root system 	+ =
	+(g, h) defined by b. Then θ(	+) = 	+, and we regard parabolic algebra qz
as being q� for some set � of simple roots of 	+.

Lemma 17.3.2. The following conditions are equivalent: (i) θ(qz) = qz, (ii) θ(�) =
�, (iii) τ(�) = −�, and (iv) the open G0-orbits on Z are measurable.

Proof. Equivalence of (i) and (ii) is obvious. If α ∈ h∗
R

, then τ(α) = −θ(α).
Thus (ii) and (iii) are equivalent. Equivalence of (iii) and (iv) follows from Theo-
rem 4.5.1 and the observation that the condition (d) of Theorem 4.5.1 is equivalent to
τ(�) = −�. ��
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Theorem 4.5.1 and the classification of real simple Lie algebras now give us the
following.

Proposition 17.3.3. Let G0 be a noncompact connected real simple Lie group. Then
the only possibilities for g0 for which there exists a parabolic subgroup Q ⊂ G with
θ(qz) �= qz in the above setting are as follows:

(i) g0 = sl(n;R) (here g = sl(n;C) and k = so(n;C), n > 2),
(ii) g0 = sl(n;H) (= su∗(2n)) (here g = sl(2n;C) and k = sp(n;C), n > 1),
(iii) g0 = so(2p + 1, 2q + 1) (here g = so(2n+ 2;C) and

k = so(2p + 1;C)⊕ so(2q + 1;C), p + q > 0),

(iv) g0 = e6,f4 (= e6(−26)) (here g = e6(C) and k = f4(C)),
(v) g0 = e6,c4 (= e6(6)) (here g = e6(C) and k = sp(4;C)), and
(vi) G0 is the underlying real group of a complex simple Lie group.

If l is a θ -stable subspace of g we decompose l = lk + ls under θ . In the setting
of Section 17.1, where K(z) is a closed K-orbit in Z, the normal bundle to the base
cycle is described as follows.

Theorem 17.3.4. Let C = K(z) be a base cycle in Z. Then its holomorphic normal
bundle is the K-homogeneous holomorphic vector bundle

NZ(C) = K ×(Qz∩K) (s/(qz + θqz)s).

In the case where the open G0-orbits on Z are measurable, this reduces to NZ(C) =
K ×(Qz∩K) (s/qs).

Proof. In the measurable case, where the parabolic subalgebra qz = q is θ -stable, we
have the decompositionqz = qk+qs, and it is clear that TzZ/TzC = (g/qz)/(k/qk) =
s/qs is the normal space. In that case, since qs = θqs, we have NZ(C) =
K ×Qz∩K (s/(qz + θqz)s) as asserted.

In the general case, the computation of TzZ/TzC is only a bit more involved and
boils down to an exercise in linear algebra. Select a Cartan subalgebra t ⊂ k which
is contained in the isotropy algebra q = qz at z. Define q̃ := q ∩ θq and select a
complement f ⊂ q of q̃ consisting of root spaces. Select a θ -stable complement r ⊂ g
of q+θq (also consisting of root spaces). Note that r can be identified with g/(q+θq)
and rs with s/(q + θq)s. Further, note the following decompositions: q = q̃ ⊕ f,
q + θq = q̃ ⊕ f ⊕ θ f and g = q̃ ⊕ f ⊕ θ f ⊕ r. Since f ∩ k = 0 = f ∩ s, we have
f⊕ θ f = (f+ θ f)k ⊕ f. Now the typical fiber of NZ(C) is

g/(k+ q) =
(
(q+ θq)+ r

)/(
k+ f+ (q ∩ θq)

)
=
(
(q ∩ θq)+ (f+ θ f)+ r

)/(
k+ f+ (q ∩ θq)

)
= (f+ θ f+ r)/(k+ f) = ((f+ θ f)k + f+ r)/(k+ f) = rs = s/(q+ θq)s,
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as asserted. ��
Remark 17.3.5. The subalgebra q̃ := q∩θq (in the above proof) is parabolic, because
q = qz contains a θ -stable Borel subalgebra bz by Proposition 17.1.1. Define Z̃ :=
G/Q̃ and note that π : Z̃→ Z = G/Q is the minimal measurable fibration of [W9].
Define the points z = 1Q ∈ Z and z̃ = 1Q̃ ∈ Z̃. Note that C̃ := K ·̃z is a base cycle
in Z̃. By construction q ∩ k = q̃ ∩ k, giving an immediate proof of the fact [W9,
Lemma 2.5] that the natural projection Z̃→ Z maps C̃ biholomorphically onto C.

It will turn out that the components of C and C̃ of their respective Barlet cycle
spaces C(Z) and C(Z̃) satisfy dim CC(Z) � dim CC̃ (Z̃). ♦

The space H 0(C;O(NZ(C))) of global sections of the holomorphic normal
bundle describes the Zariski tangent space of C(Z) at its point C, and the space
H 1(C;O(NZ(C))) is the obstruction to the smoothness of C(Z) at C. The main goal
of this part is to determine these cohomology groups for all complex flag manifolds
Z = G/Q and all pairs of associated symmetric subgroups (G0,K), where G0 is a
noncompact real form of G, and all of the base cycles Cj = K(zj ).

The bundles here areK-homogeneous vector bundles over a small flag manifolds
C = K/QK , where QK denotes Q ∩ K . In general let E(F ) → K/QK denote
the homogeneous holomorphic vector bundle defined by a QK -module F . Thus, for
example, Theorem 17.3.4 says that NZ(C) = E(s/(qz + θ(qz))s).

If QK acts irreducibly on the holomorphic normal space s/(qz + θ(qz))s,
then the Bott–Borel–Weil Theorem gives a complete description of the K-modules
H 0(C;O(NZ(C))) and H 1(C;O(NZ(C))). However, in most cases the relevant
QK -modules are not even completely reducible, and we must consider certain of
their filtrations. The Bott–Borel–Weil Theorem does not apply directly in that
case, and Griffiths’ considerations of reducible bundles [Gr2] really require com-
plete reducibility. We therefore need further tools in order to extract the infor-
mation encoded in these filtrations and determine the various cohomology groups
Hj(C;O(NZ(C))) = Hj(C;O(E((q+ θq)s))), at least for j = 0 and j = 1.

17.4 Module structure of the tangent space of a symmetric space

Here we recall some facts concerning the symmetric spaces �0 = G0/K0, their
compact duals�u = Gu/K0, and their complexifications� = G/K . Our main point
is to describe the isotropy (tangent space) representation of k on the complexified
tangent space s. This material is taken from [WG1, Proposition 2.11] and [WG1,
Theorem 5.10]. Our description follows the treatment of [W6, Chapter 8]; there the
tangent space representations appear in table (8.11.2) for rank g = rank k and in table
(8.11.5) if rank g > rank k.

The Cartan involution θ of g0 preserves every simple ideal, and (g0, θ) then
breaks up as a direct sum of real simple Lie algebras with Cartan involution. This
corresponds to the decomposition of (g, θ) as a direct sum of minimal θ -stable ideals.
In more geometric terms, it corresponds exactly to the de Rham decomposition of�0
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(or, equivalently, �u) as a riemannian product of irreducible riemannian manifolds.
Thus we reduce our considerations to the irreducible case, i.e., to the case in which
g0 is simple.

Now assume that�0 is irreducible, i.e., that g0 is simple. If k0 is semisimple, then
�0 does not have a G0-invariant complex structure and the isotropy representation
of k on s is irreducible. That is the non-hermitian case. If k fails to be semisimple,
then �0 has a G0-invariant complex structure and the isotropy representation of k on
s is reducible. That is the hermitian case.

In the hermitian case we always have rank g = rank k, the center of k0 has dimen-
sion 1, and the decomposition of s into irreducible k modules is of the form s = s++s−
(See the first few paragraphs of Chapter 3.). Here s+ represents the holomorphic tan-
gent space of �0 and s− represents the antiholomorphic tangent space. Further,
k+ s± are maximal parabolic subalgebras of g with respective nilradicals s±, and the
elements of s± are Ad-nilpotent on all of g.

We first look at the tangent space representations of k on s in the cases
rank g = rank k. Let � = {ψ1, . . . , ψr} denote the simple root system, in other
words, the set of vertices of the Dynkin diagram �(g, h); roots ψi and ψj are

attached by
2〈ψi,ψj 〉
〈ψj ,ψj 〉

2〈ψj ,ψi 〉
〈ψi,ψi 〉 lines with an arrowhead pointing toward ψi in case

〈ψi, ψi〉 < 〈ψj ,ψj 〉. Let ψ0 denote the negative of the maximal root and express
that maximal root as

∑
niψi . Form the extended Dynkin diagram �̃(g, h); its set

of vertices is �̃ = {ψ0} ∪ � = {ψ0, ψ1, . . . , ψr}, and the rules for edges are the
same as for �(g, h). Now write 1 at the vertex for the negative ψ0 of the maximal
root and write ni at the vertex for ψi , 1 � i � r .

Recall the result of Borel and de Siebenthal [BoS] on the maximal subalgebras
of maximal rank in gu. First, they show that every maximal connected subgroup
Lu ⊂ Gu, such that rankKu = rankGu, has a central element z such that Lu is the
identity component of the centralizer of z in Gu. Then they look at the possibilities
for z and Lu. They start with the fundamental simplex

D = {h ∈ hR | ψj (h) � 0 for 1 � j � r and (−ψ0)(h) � 1},
and note the result of Cartan which says that every element of Gu is conjugate to an
element of exp(2πiD). The vertices of D are {v0, . . . , vr}, where v0 = 0,ψi(vj ) = 0
for i �= j , and ψj (vj ) = 1

nj
for 1 � j � r . In other words, if j > 0, then vj

corresponds under the Killing form to 1
nj

2ξj
〈ψj ,ψj 〉 , where ξj is the j th fundamental

highest weight. Here is the theorem of Borel and de Siebenthal.

Theorem 17.4.1 ([BoS]). Let the compact connected simple Lie group Gu, the fun-
damental simplex D, and its vertices vj be given as just above. Let 1 � j � r .

1. Suppose nj = 1. Let Lu be the centralizer of the circle group T 1
u =

{exp(2πitvj ) | t ∈ T}. Then Lu is a maximal connected subgroup of maxi-
mal rank in Gu, Lu = T 1

u · L′u local direct product where L′u is semisimple, and
{ψ1, . . . , ψj−1, ψj+1, . . . , ψr} is a system of simple roots for l′u. If g ∈ T 1

u is not
central in Gu, then Lu is the identity component of the centralizer of g.
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2. Suppose that nj is a prime p > 1. In this case gj := exp(2πivj ) has order p
modulo the center of Gu, in other words, Ad(gj ) is an inner automorphism of
order p. Let Lu be the identity component of the centralizer of gj . Then Lu is
a maximal connected subgroup of maximal rank in Gu, Lu is semisimple, and
{ψ0, ψ1, . . . , ψj−1, ψj+1, . . . , ψr} is a system of simple roots for lu.

3. If Lu is a maximal connected subgroup of maximal rank in Gu, then Lu is con-
jugate to one of the groups described just above.

The case nj = 1 gives the hermitian symmetric spaces, and the case nj = 2
gives the non-hermitian ones where rank g = rank k. To see this explicitly we look at
the possibilities for the extended Dynkin diagram and the coefficients nj . Using the
Bourbaki ordering on �, they are given in Table 17.4.2 for the classical cases and in
Table 17.4.3 for the exceptional cases.

This leads directly to the tangent space representations when rank g = rank k.
The result is more or less obvious in the hermitian case, and in the non-hermitian case
it seems to have been written down for the first time in [WG1, Proposition 2.11] (or
see [W6, Theorem 8.10.9]). The result is Theorem 17.4.4 below.

Table 17.4.2. Extended Dynkin Diagram �̃(g, h) with Coefficients

Ar , r � 1
�
1

ψ1

�
1

ψ2

� � � �
1

ψr

�1 ψ0

������ ������

Br , r � 2

�
1

ψ1

�
2

ψ2

� � � �
2

ψr−1
> �

2

ψr

�
1

ψ0
�

�
�

Cr , r � 3
�
1

ψ0
> �

2

ψ1

�
2

ψ2

� � � �
2

ψr−1
< �

1

ψr

Dr , r � 4

�
1

ψ1

�
2

ψ2

� � � �
2

ψr−2
��� �

1

ψr−1
��� �1

ψr

�
1

ψ0
�

�
�
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Table 17.4.3. Extended Dynkin Diagram �̃(g, h) with Coefficients

G2

�
3

ψ1
< �

2

ψ2

�
1

ψ0

F4

�
1

ψ0

�
2

ψ1

�
3

ψ2
> �

4

ψ3

�
2

ψ4

E6

�
1

ψ1

�
2

ψ3

�
3

ψ4

�
2

ψ5

�
1

ψ6

�2
ψ2

�
1

ψ0

E7

�
1

ψ0

�
2

ψ1

�
3

ψ3

�
4

ψ4

�
3

ψ5

�
2

ψ6

�
1

ψ7

�ψ22

E8

�
2

ψ1

�
4

ψ3

�
6

ψ4

�
5

ψ5

�
4

ψ6

�
3

ψ7

�
2

ψ8

�ψ23

�
1

ψ0

Theorem 17.4.4. Suppose that g0 is simple and rank g = rank k.

1. Suppose first that G0 is of hermitian type, so that k = zk ⊕ k′, where k′ = [k, k] is
the semisimple component of k, zk is the center, and dim zk = 1. Denote h′ = h ∩ k′.
Then �(k′, h′) is obtained from �(g, h) by deleting a vertex ψj with nj = 1. The
tangent space representation is a direct sum ν ⊕ ν∗, where ν is the representation on
s+. The representation ν is irreducible, its highest weight is the maximal root −ψ0,
and ν = χ ⊗ ν′ where χ = −ψ0|zk and ν′ represents k′.

2. In the non-hermitian case, k is semisimple, �(k, h) is obtained from �̃(g, h) by
deleting a vertex ψj , (1 � j � r) with nj = 2, and the tangent space representation
is the irreducible representation ν−ψj of k of highest weight −ψj .

3. Specifically, �(k′, h′) and the tangent space representation of k are given by
Tables 17.4.5 and 17.4.6. (Here recall that the ξi are the fundamental highest weights,
and that we denote the representation of highest weight

∑
niξi by writing ni over the

ith node of the Dynkin diagram whenever ni �= 0. Also recall that if u is a semisimple
Ad(t)-module, then M(t, u) denotes the weights (joint eigenvalues) of t on u).

Hermitian case: ν = χ ⊗ ν′ has highest weight −ψ0 in the root numbering of
�̃(g, h). In Table 17.4.5 the βi are the reordering of those ψj to conform to the
Bourbaki root order, and the ξi are the corresponding fundamental simple weights.
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Non-hermitian case: ν has highest weight −ψj , nj = 2, in the root numbering
of �̃(g, h). In Table 17.4.6 the βi form the reordering of the ψ to conform to the
Bourbaki root order, and the ξi are the corresponding fundamental simple weights.

Table 17.4.5. Tangent Space Representations: Hermitian Cases

g0 Representation of k′ on s+

nonmax
dominant
weights

in M(t, s+)

χ in
M(t, s+)?

su(1, q), q > 1
�

β1

� � �

βq−1

1

no

su(p, q), 2 � p � q

�

β1

1
� � �

βp−1

�

β ′1
� � �

β ′q−1

1

no

so(2, 2q + 1)
�

β1

1
�

β2

� � � �

βq−1
> �

βq χ yes

sp(r;R) �

β1

2
� � � �

βr−1 ξ2 + χ no

so(2, 2q), q � 1

�

β1

1
� � �

βq−2

�� �

βq−1

�� �

βq no

so∗(2r), r � 3
�

β1

�

β2

1
� � � �

βr−1 no

e6,T1D5 ≡ e6(−14)

�

β1

�

β2

�

β3

�� �

β4

�� �

β5

1

no

e7,T1E6 ≡ e7(−25)

�

β1
1 �

β3

�

β4

�

β5

�

β6

�β2 no

Proof. We take the description of the isotropy representation from [W6, Theorem
8.10.9]. In the hermitian case the tangent space representation has form ν⊕ν∗. Here
ν is irreducible with representation space s+ that contains the maximal root space.
The root order on 	(k, h) is induced from 	+(g, h). Thus the maximal root is the
highest weight of ν, as asserted.

In the non-hermitian case the tangent space representation ν is irreducible and
−ψi is one of its weights. If 0 < j �= i, then ψj + (−ψi) is not a root, hence not a
weight of ν. Furthermore, ψ0 + (−ψi) is not a root and hence it is not a weight of ν,
because its negative would be of the form (maximal root) + (simple root). Thus−ψi
is the highest weight of a summand of the irreducible representation ν.

The additional information in Tables 17.4.5 and 17.4.6 follows by direct compu-
tation. ��
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Table 17.4.6. Tangent Space Representations: Equal Rank Non-Hermitian Cases

g0 Representation of k on s
nonmax dominant
weights in M(t, s)

so(4, 2q + 1)
�

β1

1
�

β ′1

1
�

β ′′1

1
� � �

β ′′q−1

> �

β ′′q ξ1 + ξ ′1 from so(4) = A1A
′
1

so(2p, 3), p > 2

�

β1

1
� � �

βp−2

�� �

βp

�� �

βp−1

�

β ′1

2

ξ1 (vector rep) for so(2p)

so(2p, 2q + 1)
(p>2, q�2)

�

β1

1
� � �

βp−2

�� �

βp

�� �

βp−1

�

β ′1

1
� � �

β ′q−1

> �

β ′q ξ1 (vector rep) for so(2p)

sp(p, q)
(1�p�q)

�
β1

1
� � � �

βp−1
< �

βp

�

β ′1

1
� � � �

β ′q−1

< �

β ′q

so(4, 2q), q � 2

�

β1

1
�

β ′1

1
�

β ′′1

1
� � �

β ′′q−2

�� �

β ′′q−1

�� �

β ′′q

so(2p, 2q)
(2<p�q)

�

β1

1
� � �

βp−2

�� �

βp−1

�� �

βp

�

β ′1

1
� � �

β ′q−2

�� �

β ′q−1

�� �

β ′q

g2,A1A1

�

β1 (short)
3

�

β ′1 (long)
1

ξ1 + ξ ′1

f4,A1C3 ≡ f4(4)
�

β1

1
�

β ′1

1
<�

β ′2
�

β ′3 ξ1 + ξ ′3

f4,B4

�

β1

�

β2

�

β3
> �

β4

1

e6,A1A5

�

β1

1
�

β ′1
�

β ′2
�

β ′3

1
�

β ′4
�

β ′5

e7,A1D6

�

β1

�

β ′1
1 �

β ′2
�

β ′3
�

β ′4
�� �

β ′51
�� �

β ′6

e7,A7

�

β1

�

β2

�

β3

�

β4

1
�

β5

�

β6

�

β7

e8,A1E7

�

β1

1
�

β ′1
�

β ′3
�

β ′4
�

β ′5
�

β ′6
�

β ′7

1

�β ′2

e8,D8

�

β ′1
�

β ′2
�

β ′3
�

β ′4
�

β ′5
�

β ′6
�� �

β ′71
�� �

β ′8
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Now we turn to the case rank g > rank k.

Theorem 17.4.7 ([WG1, Theorem 5.10], or see [W6, pp. 291–292]). Suppose that
g0 is simple and rank g > rank k. Then k is semisimple and acts irreducibly on s as
follows. IfGu/K0 is the group manifold K0, then the tangent space representation of
k on s is just the adjoint representation of k; (those are listed in Table 1.2.3. IfGu/K0
is not a group manifold, then the tangent space representation of k on s is given
Table 17.4.8 below. There, the simple roots β ∈ �k are restrictions of simple roots
ψ ∈ �g and are enumerated in the Bourbaki order as in Tables 17.4.2 and 17.4.3 for
k, and the ξ are the fundamental simple weights of k for the βs.

Proof. We take the description of the isotropy representation from [W6, Section
8.11]. If g is not simple, then Gu/K0 is the group manifold K0, with k0 embedded
diagonally in gu ∼= k0 ⊕ k0 and θ(x, y) = (y, x). Then

su = {(x,−x) | x ∈ k0},
and the tangent space representation is the adjoint representation of k0. Those are
listed in Table 1.2.3.

Now suppose that g is simple. There are only a few possibilities. If g0 = sl(m;R),
then the action of k on s is the representation of so(m;C) on the space of m × m

symmetric complex matrices of trace 0. If g0 = sl(m;H), then the action of k on s
is the representation of sp(m;C) on the space of 2m × 2m antisymmetric complex
matrices. If g0 = so(2p + 1, 2q + 1), it is the tensor product of the usual vector
representations of so(2p+1) and so(2q+1). If g0 = e6,F4 , it is the unique irreducible
representation of f4 of degree 26, and if g0 = e6,C4 , it is the unique irreducible
representation of c4 of degree 42.

The additional information in Table 17.4.8 follows by direct computation. ��
In Section 18.2B we will note a connection between classification of symmetric

spaces, their tangent space representations (including most of the cases where rank k <
rank g), and a class of diagrams, due to Kač, that includes the extended Dynkin
diagrams.

17.5 Shift of degree in the cohomology

From now on we assume that g0 is a real simple Lie algebra. As noted above, the
general semisimple case is reduced to this case. If g0 is a direct sum of simple
ideals, that sum decomposition gives direct product decompositions of G and Q, and
everything splits:

• The flag manifold Z = G/Q and the base cycles C are direct products.
• The normal bundle NZ(C) of a base cycle C in Z is a direct sum of the normal

bundles of the corresponding factors.
• The cohomology groups Hk(C;O(NZ(C))) are the direct sums of the corre-

sponding cohomology groups for the simple factors.

Depending on the hermitian and non-hermitian cases, there are certain shifts in the
degrees of cohomology.
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Table 17.4.8. Tangent Space Representations When rank g > rank k

g0 Diagram of ν
maximal
weight

nonmax
dominant
weights

in M(t, s)

sl(3;R) �

β1

4
4ξ1 2ξ1, 0

sl(4;R) �

β1

2
�

β ′1

2
2ξ1 + 2ξ ′1 2ξ1, 2ξ ′1, 0

sl(5;R) �
2

β1

> �

β2 2ξ1 2ξ2, ξ1, 0

sl(6;R)
�
2

β1
�� �

β2�� �

β3 2ξ1 ξ2 + ξ3, 0

sl(2m;R),m � 4
�
2

β1

�

β2

� � � �

βm−2
�� �

βm−1�� �

βm 2ξ1 ξ2, 0

sl(2m+ 1;R),m � 3
�
2

β1

�

β2

� � � �

βm−1

> �

βm 2ξ1 ξ2, ξ1, 0

sl(m;H),m � 3
�

β1

�
1

β2

� � � �

βm−1
< �

βm ξ2 0

so(1, 2q + 1), q > 1
�

β1

1
� � � �

βq−1

> �

βq ξ1 0

so(3, 2q + 1), q > 1
�

β1

2
�

β ′1

1
� � � �

β ′q−1

> �

β ′q 2ξ1 + ξ ′1 2ξ1, ξ
′
1, 0

so(2p + 1, 2q + 1)
p,q>1

�

β1

1
�

β2

� � � �

βp−1
> �

βp

�

β ′1

1
�

β ′2
� � � �

β ′q−1

> �

β ′q
ξ1 + ξ ′1 ξ1, ξ

′
1, 0

e6,F4

�

β1

�

β2
> �

β3

�

β4

1

ξ4 0

e6,C4

�

β1

�

β2

�

β3
< �

β4

1

ξ4 ξ2, 0
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The non-hermitian case

This is the case where k acts irreducibly on s, equivalently where k is semisimple. If
rank k < rank g, then we are in this case; in particular, all nonmeasurable examples
belong to this class.

As before, K is the complex analytic subgroup of G with Lie algebra k, and
C = K(z) ⊂ Z is a base cycle such that the isotropy subgroup QK := K ∩ Q of
K at z contains Bref

k . We have the associated group data Bk ⊂ B ⊂ Q = Qz as in
Section 17.2.

Proposition 17.5.1. Suppose that G0 is not of hermitian type. Consider a base cycle
K(z) = C ⊂ Z = G/Q and let bk ⊂ b ⊂ q ⊂ g be a choice of associated Lie
algebra data. Then as K-modules

H 0(C;O(NZ(C))) = s⊕H 1(C;O(E((q+ θq)s))) and

Hk(C;O(NZ(C))) = Hk+1(C;O(E((q+ θq)s)))

for all k > 0.

Proof. The short exact sequence (q + θq)s ↪→ s → s/(q + θq)s of QK -modules
yields the exact sequence of K-homogeneous holomorphic vector bundles

0 −→ E((q+ θq)s) −→ E(s) −→ E(s/(q+ θq)s) = NZ(C) −→ 0.

The associated long exact cohomology sequence begins with
(17.5.2)

H 0(C;O(E((q+ θq)s))) ↪→ H 0(C;O(E(s))) −→ H 0(C;O(NZ(C))) −→
H 1(C;O(E((q+ θq)s))) −→ H 1(C;O(E(s))) −→ . . .

and then continues with
(17.5.3)

. . . Hk(C;O(E(s)))→ Hk(C;O(NZ(C)))→
Hk+1(C;O(E((q+ θq)s)))→ Hk+1(C;O(E(s))) . . .

for k � 1. Here E(s) → C = K/QK is a trivial holomorphic vector bundle,
because the representation qk × s→ s extends to a representation of K . Thus every
global holomorphic section of E(s) is constant (with respect to the K-equivariant
holomorphic trivialization) and H 0(C;O(E(s))) is just the irreducible k-module s.
Here E(s)→ C is trivial andC is projective rational. ThereforeHk(C;O(E(s))) = 0
for k > 1.

Irreducibility of K on s forces the inclusion

H 0(C;O(E((q+ θq)s))) ↪→ H 0(C;O(E(s)))

of (17.5.2) to be zero or isomorphic. If it were an isomorphism, then (q+ θq)s = s,
and thus the typical fiber s/(q + θq)s of NZ(C) → C would be zero. This forces
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C = Z. Then the K0-action (and thus the G0-action) would be transitive on Z. We
would therefore be in one of the two cases of Proposition 5.2.1. As discussed right
after Proposition 5.2.1, we agreed to exclude those cases.

Thus H 0(C;O(E((q+ θq)s))) ↪→ H 0(C;O(E(s))) is zero. Now (17.5.2) gives
us 0 → s → H 0(C;O(NZ(C))) → H 1(C;O(E((q + θq)s))) → 0, an exact
sequence of K-modules, which splits because K is semisimple. This proves the
assertion for 0-cohomology.

The second assertion follows from (17.5.3) because Hk(C;O(E(s))) = 0 for
k > 0, by the above argument. ��

The hermitian case

Here the reductive subalgebra k has one-dimensional center zk, and the action of k on
s decomposes into the direct sum s = s−+ s+ of two irreducible subrepresentations.
The θ -stable τ -stable fundamental (relative tog0) Cartan subalgebrahofg is contained
in k and we have the following decompositions:

• k = zk ⊕ ks , where ks = [k, k] is semisimple.
• h = zk ⊕ hs , where hs = h ∩ ks is a Cartan subalgebra in ks .

Note that there is an element ζ ∈ zk ∩ k0 that induces the complex structure on
s0 and s± is the (±i)-eigenspace of ad(ζ ) on g. Also, since rank g = rank k, Lemma
17.3.2 says that θ(q) = q. Since h ⊂ q, it follows that

q = θ(q) = qk + qs+ + qs− , where qs± := q ∩ s±.

Proposition 17.5.4. Suppose that G0 is of hermitian type. Consider a base cycle
K(z) = C ⊂ Z = G/Q and let bk ⊂ b ⊂ q ⊂ g be a choice of associated Lie
algebra data. Then we have K-module decompositions as follows.

1. If k > 0, then Hk(C;O(NZ(C))) = Hk+1(C;O(E(qs))).
2. If s− �⊂ q and s+ �⊂ q, then

H 0(C;O(NZ(C))) = s⊕H 1(C;O(E(qs+)))⊕H 1(C;O(E(qs−))).

3. If s+ ⊂ q but s− �⊂ q, then H 0(C;O(NZ(C))) = s− ⊕H 1(C;O(E(qs−))), and
4. If s− ⊂ q but s+ �⊂ q, then H 0(C;O(NZ(C))) = s+ ⊕H 1(C;O(E(qs+))).

Proof. We first deal with the 0-cohomology. As in the proof of Proposition 17.5.1, the
two short exact sequences 0 → qs± → s± → s±/qs± → 0 induce long cohomology
sequences. Since the bundles E(s+) → C and E(s−) → C are holomorphically
trivial, those cohomology sequences fit together as follows:

H0(C;O(E(qs+ )))
ı+
↪−→ H0(C;O(E(s+))) H1(C;O(E(qs+ )))

⊕ ⊕ → H0(C;O(NZ(C)))→ ⊕ → 0

H0(C;O(E(qs− )))
ı−
↪−→ H0(C;O(E(s−))) H1(C;O(E(qs− )))
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The vector bundles E(s±) → C are holomorphically trivial. Thus the inclusion
ı+ (respectively, ı−) is nonzero if and only if qs+ = s+ (respectively, qs− = s−).
Assertions 2, 3, and 4 now follow from the exactness of the cohomology sequences.

If k > 0, we have Hk(C;O(E(s±))) = 0, and the first statement is immediate,
as in the proof of Proposition 17.5.1. ��
Remarks.

1. In the case whereD is a bounded symmetric domain,D ⊂ G/KS− = G/Q = Z

with C reduced to a point, the projection from X = G/B to Z is especially
interesting. We may assume in that case that bk ⊂ b ⊂ k + s−. Let D̃ =
G0(1B), so that the projection fibers D̃ overD and the fibers must be the maximal
compact subvarieties gC̃, where g ∈ G0 and C̃ = K(1B). Since D is Stein and
contractible, and the structure group of the bundleG/B → G/Q is a complex Lie
group acting holomorphically, Grauert’s Oka principle implies that the fibration
D̃ → D is holomorphically trivial. Hence D̃ = C̃ ×D as complex manifolds.
A further consequence is that in such a case the component CC̃ (X) of the Barlet
cycle space is biholomorphic to Z.

2. Consider a general flag manifold Z′ = G/Q′ and an arbitrary base cycle C′ =
K(1Q′) ⊂ D′ = G0(Q

′). If s± ⊂ q′, then the Borel subalgebra bk ⊕ s± ⊂ q′.
The geometric interpretation of the inclusions s± ⊂ q′ is a bit complicated. One
case is similar to the one described just above, i.e., the case where exists a G-
equivariant fibration π : Z′ → Z as above. If there is such a fibration, then the
inclusion s± ⊂ q. However, if Q′ is not a Borel subgroup, there is a second
possibility. This can be described as follows.
Let � be the simple root system for the positive system 	+(g, h) defined by the
Borel subalgebra bk + s+. If � is the set of simple roots that defines q′ and the
noncompact simple root belongs to �, then there is no G-equivariant fibration
Z′ → Z. Only in this second case can H 1(C;E(qk)) be nonzero.

17.6 Equivariant filtrations

Let QK be a parabolic subgroup of K . In general, a finite-dimensional QK -module
Vπ is reducible but not completely reducible. We will encounter this phenomenon in
most cases under consideration, in particular, where the module is the normal space
NZ(C)z of a base K-cycle C in Z at some base point z ∈ C where the module
structure is given by the isotropy representation.

Let V be a QK -module. AQK -stable filtration

F •V : 0 = F 0V � F 1V � · · · � F
 = V

is called simple or irreducible if the quotient modules FjV/F j−1V are QK -
irreducible for 1 � j � 
. Simple filtrations are often called equivariant filtrations,
and it is an easy exercise in linear algebra to see (i) that they exist and (ii) that the
unordered set {FjV/F j−1V } of irreducible QK -modules is independent of choice
of equivariant filtration.
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We start with T ⊂ BK ⊂ QK = Q−nK Qr
K , where T is a τ -stable Cartan subgroup

of K , BK is a Borel subgroup of K , Q−nK is the unipotent radical of the parabolic
subgroup QK of K , and Qr

K is a reductive complement to Q−nK in QK . Since Q−nK
is normal and unipotent in QK , it acts trivially in any irreducible QK -module, and
thus a QK -module W is irreducible if and only if it is Qr

K -irreducible.
Fix a QK -module Vπ . There is a canonical filtration F •V , determined by the

nilpotent subgroup Q−nK , defined recursively as follows:

(17.6.1)
F 1V = {v ∈ V | π(g)v = v ∀g ∈ Q−nK }

Fj+1V = {v ∈ V | π(g)v − v ∈ Fj }.

ThisQ−nK -filtration is actually aQK -filtration. By construction,Q−nK acts trivially on
the quotients Fj/F j−1, and they are direct sums of irreducible QK -modules. Such
filtrations will serve our purposes just as well as the simple equivariant filtrations.
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Methods for Computing H 1(C; O(E((q + θq)s)))

18.1 Guide to the computation

Recall our basic setup. Throughout Z = G/Q is a complex flag manifold, G0 ⊂ G

is a real form, g0 = k0 + s0 is the decomposition of its Lie algebra under the Cartan
involution θ , and g = k+ s is the complexified Cartan decomposition. Let Nz denote
the normal space inZ of a closed orbitC = K(z) ∼= K/QK . It is aQK -module, where
QK acts by its isotropy representation on the tangent space of Z. More generally,
if Vπ is a QK -module arising in the context of normal bundles of closed K-orbits
C ⊂ Z, then we have the correspondingK-homogeneous holomorphic vector bundle
E(Vπ)→ C.

Every cohomology group Hp(C;O(E(Vπ))) is finite-dimensional because C is
compact, and is aK-module because E(Vπ)→ C isK-homogeneous. Our goal is to
develop a method which enables us to determine this module structure in some algo-
rithmic way. Any equivariant QK -filtration F •Vπ of Vπ yields a filtration E(F •Vπ)
of E(Vπ). Roughly speaking, our strategy is to deduce cohomology information
for E(Vπ) = NZ(C) from the QK -irreducible pieces of E(F jVπ/F

j−1Vπ). Of
course we use the Bott–Borel–Weil Theorem to determine the cohomologies of the
E(F jVπ/F

j−1Vπ).
Here are some of the central points of our procedure:

(A) Propositions 17.5.1 and 17.5.4 reduce the computation of Hk(C;O(NZ(C)))

for k = 0, 1 to a computation of Hk(C;O(E(V ))) for q = 1, 2, where V is a
certain QK -submodule of s. In order to understand such submodules in greater
detail, we make strong use of the descriptions in of s as a k-module Tables 17.4.5,
17.4.6, 1.2.3, and 17.4.8.

(B) Those descriptions lead to a determination of the t-weight systemM(t, s)where
t := h ∩ k.

(C) In order to determineHk(C;O(E(V ))), we first compute the cohomology spaces
Hk(C;O(E(F jV/F j−1V ))). The Bott–Borel–Weil Theorem 1.6.8 says that
these spaces vanish unless their weights µ, highest with respect to qk∩b+k , have
the properties
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(18.1.1)
regularity: µ+ ρk is nonsingular, i.e., 〈µ+ ρk, α〉 �= 0 for α ∈ 	(k, t),

whereρk is half the sum of the positive roots of k, and thenµ+ρk only contributes
to cohomology of degree k when the

(18.1.2) index: ind(µ+ ρk) := #{α ∈ 	+(k, t) | 〈µ+ ρk, α〉 < 0}
is k. We call such µ Bott-regular of index k. As noted in a footnote to the
Bott–Borel–Weil Theorem, ind(µ + ρk) is the minimal length (as a product
of simple root reflections) of the Weyl group element w ∈ W(k, t) such that
〈w(µ+ ρk), α〉 > 0 for all α ∈ 	+(k, t).

(D) Only the regular highest weights of index 1 or 2 can contribute nontrivially to
the modules Hk(C;O(E(F jV/F j−1V ))), k = 1, 2. The next major step is to
determine all such weights. See Lemma 18.4.4 and Table 18.5.3.

(E) As explained in Section 17.2 given a pair (C,Z) consisting of a base cycleC in a
flag manifoldZ, we associate Lie algebras bref

k ⊂ b ⊂ q ⊂ g. Givenµ ∈ M(t, s)
as in (B) and a parabolic subalgebra q ⊃ b ⊃ bk of g, we must decide whether or
notµ ∈ M(t, (q+θq)s). Ifµ ∈ M(t, (q+θq)s), we still have to decide whether
µ is also a highest weight for the representation of Qr

K on (q + θq)s. Putting
this together gives a complete description of Hk(C;O(E(F jV/F j−1V ))) as
k-module.

(F) Even when we know Hk(C;O(E(F jV/F j−1V ))) for all k, the nontrivial mod-
ules among them may or may not contribute toHk(C;O(E(V ))). The Cohomo-
logical Lemma 18.5.6 is the main tool for determining whether the cohomology
group Hk(C;O(E(F jV/F j−1V ))) contributes to Hk(C;O(E(V ))).

(G) Finally, having collected the necessary tools, we carry out the computation for
all flag manifolds, real forms and base cycles. It turns out that for certain real
forms the components of cycle spaces which contain the various base cycles C
in the various flag manifoldsZ are just the Zariski closures of theG-orbitsG(C)
in that cycle space C(Z) (see Theorem 18.4.13).

However, there are many real forms for which there exist components in the cycle
spaces of larger dimension than that of the correspondingG-orbitG(C). We explicitly
compute the module structure of NZ(C) for all base cycles C and flag manifolds Z
in Chapters 19 and 20.

18.2 Root systems and involutions

In Propositions 17.5.1 and 17.5.4 we saw that the cohomologies of the normal bundle
NZ(C) can be described as cohomology groups H •(C;O(E(V ))) for certain QK -
submodules of the K-module s. Although the (tangent space) representation of k on
s is given by Theorems 17.4.4 and 17.4.7, specifically in Tables 17.4.5, 17.4.6 and
17.4.8, we need a more explicit description of the t-weights on s in order to pick out
the ones that are highest weights for qk which lead to cohomology in degrees 0 and
1. We begin work on this in the present section.
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18.2A Restricted root systems

Given (g0, θ), we select a Cartan subalgebra t ⊂ k. The set of t-weights on s is a
subset of all t-weights M(t, g). A important step in our development of structural
information on M(t, s) is the fact that M(t, g) \ {0} is a root system.

We know from Lemma 4.2.1 that t is regular in g, i.e., the centralizer h := zg(t)
is a Cartan subalgebra of g. Of course g can be decomposed into joint eigenspaces
with respect to any toral subalgebra. In particular, we have the joint eigenspace
decomposition with respect to t:

g = h+
∑

λ∈M(t,g)\{0} gλ.

Here, as before, M(t, Vπ ) denotes the set of t-weights of a representation π of k on
Vπ . If 	(g, h) is the set of roots with respect to the centralizer h of t, the elements
of M(t, g) are the restrictions α|t of α ∈ 	(g, h). In particular, the weights are real
valued on tR = it0 = t ∩ hR. Since t is regular, every such restriction is nonzero. It
can of course happen that two different roots in 	(g, h) have the same restriction to
t.

Recall the Definition 10.1.3 of an abstract root system. If a0 ⊂ g0 denotes a
maximal split torus, then, as noted in Lemma 10.1.4, the restricted root system
	(g0, a0) := M(a0, g0) \ {0} is an abstract root system. The main remark here is that
	(g, t) := M(t, g)\ {0}, considered as a subset of t∗

R
, also is a (possibly nonreduced)

root system.
Since M(t, g) \ {0} consists of all t-restrictions of roots in 	(g, h), we still have

h ⊥ gλ for all λ ∈ M(t, g) \ {0} and gλ ⊥ gµ unless λ + µ = 0, and gλ is paired
nondegenerately with g−λ for all λ ∈ M(t, g). The complex conjugation σ = τθ of g
over gu defines a positive definite hermitian form F(x, y) = −〈x, σ (y)〉 on g. Since
σ(gα) = g−α for every α ∈ 	(g, h), we have σ(gλ) = g−λ for every λ ∈ 	(g, t).
Thus the decomposition g = h+∑λ∈	(g,t)\{0} gλ is F -orthogonal. This discussion
gives us

Lemma 18.2.1. If λ ∈ 	(g, t) and 0 �= e ∈ gλ, then 〈e, σ (e)〉 < 0, where we recall
that σ = τθ is complex conjugation of g over gu.

Further, for λ ∈ 	(g, t) we have the normalized coroot hλ ∈ tR as in Section
10.1A. If As t is fixed under θ , the root spaces gλ, λ ∈ M(t, g), are θ -stable, and we
decompose gλ = kλ + sλ under θ . If 0 �= e ∈ sλ then σ(e) ∈ s because σθ = θσ , so
[e, σ (e)] ∈ k. Similarly if 0 �= e ∈ kλ then [e, σ (e)] ∈ k. Since

〈h, [e, σ (e)]〉 = λ(h)〈e, σ (e)〉 = 〈h, hλ〉〈e, σ (e)〉 = 〈h, 〈e, σ (e)〉hλ〉
for every h ∈ t, we have the following.

Lemma 18.2.2. If 0 �= e ∈ kλ or 0 �= e ∈ sλ then 0 �= [e, σ (e)] ∈ R·hλ.

Proposition 18.2.3. 	(g, t) := M(t, g) \ {0} is a (possibly nonreduced) root system.
If g is simple, then 	(g, t) is irreducible.
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Proof. We run through the root system axioms for 	(g, t) ⊂ t∗
R

. The Killing form
is positive definite on h∗

R
, hence also on its subspace t∗

R
. 	(g, h) spans h∗

R
, so its t-

restrictions span t∗
R

. The h-root reflections sα : β �→ β− 2〈α,β〉
〈α,α〉 α preserve	(g, h) and

the 2〈α,β〉
〈α,α〉 are integers. From the finite-dimensional representation theory of sl(2;C),

these two conditions are equivalent to the following condition: If α ∈ 	(g, h), then
g[α] := [gα, g−α]+ gα+ g−α is isomorphic to sl(2;C). Now let γ ∈ 	(g, t) and let
eγ be a nonzero element of kγ or of sγ . Lemma 18.2.1 says 〈eγ , σ (eγ )〉 < 0. Denote
e−γ = cσ (eγ ) where c := − 2

〈eγ ,σ (eγ )〉〈γ,γ 〉 . Then {[eγ , e−γ ], eγ , e−γ } is a standard
generating set for a copy of sl(2;C) in g. The adjoint action of this sl(2;C) on g
gives the root system conditions (ii) and (iii) for 	. ��

From now on, we only write 	(g, t) for M(t, g) \ {0}, in order to emphasize its
root system properties. Our next step is to determine the set M(t, s) as a subset of
M(t, g). This is implicit in [WG1] and [WG2], but it is formulated in a better way by
Kač (see [Hel, Chapter X]), extending Theorem 17.4.1 of Borel and de Siebenthal.

Recall the action of θ on the simple root system� discussed before Lemma 17.3.2.
We view it as a graph automorphism of the Dynkin diagram �(g, h). It is classical
that Aut(�(g, h)) is canonically isomorphic to Out(g) := Aut(g)/ Int(g), the group
of outer automorphisms of g. When g is simple, Out(g) is trivial except for the cases
listed in the following table.

Table 18.2.4. Outer Automorphisms of Order 2

Type of g Out(g) Action of θ on �(g, h)

A
, 
 > 1 Z2 �

�

*
� � �

� � �

�

�

*
(

�

�

*
��� �

��� or

�

�

*
)

D4 D3 dihedral

� ���� �

��� �

*

D
, 
 > 4 Z2

� � � � � ���� �

���
�

*

E6 Z2

� ���� �

���
�

*
�

�

*

Compare [W6, p. 289]. Here note that any two elements of order 2 in Out(g)
are conjugate, so the action of θ does not depend on the choice of k. There is also
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one other graph automorphism, this time of order 3, and we mention it only for later
reference.

Table 18.2.5. Triality Automorphism

Type of g Out(g) Action of triality on �(g, h)

D4 D3 dihedral group

� ���� �

��� �

�
���	




�

In all cases of Tables 18.2.4 and 18.2.5, the action on the extended Dynkin diagram
�̃(g, h) is obtained from the action on �(g, h) by fixing the vertex β0 that is the
negative of the highest root.

The root system 	(g, t) is nonreduced if and only if it has a simple root β such
that 2β ∈ 	(g, t). This can happen only when there exist ψ ′, ψ ′′ ∈ 	(g, h) which
restrict to β and some combination

∑
ψ∈� niβi that restricts to 2β. But then ni = 0

for ψ ′ �= ψ �= ψ ′′. Thus that combination must be ψ ′ + ψ ′′, and we must have
ψ ′ +ψ ′′ ∈ 	(g, h). That can happen only when ψ ′ and ψ ′′ are adjacent nodes in the
Dynkin diagram �(g, h) with θ(ψ ′) = ψ ′′. A glance at Table 18.2.4 shows that this
happens only when g is of type A
 with 
 even.

If g0 is simple but g is not simple, then g is the direct sum of two simple ideals,
and every α ∈ 	(g, t) is the restriction of two roots, one from each simple ideal
(extended by zero to the other simple ideal). Thus the resulting restricted root system
is reduced, with each root of multiplicity 2.

We summarize this discussion as follows.

Proposition 18.2.6. Let g0 be simple. Then the root system 	(g, t) is reduced except
in the case where (g0, k0) = (sl(2m+ 1,C), so(2m+ 1)). In that case, 	(g, t) is of
type BCm, with root system

{±εi ± εj | 1 � i < j � m} ∪ {±εi | 1 � i � m} ∪ {±2εi | 1 � i � m},

with one simple root system given by

B = {β1, . . . , βm}, where βi = εi − εi+1 for 1 � i < m and βm = εm.

Fix a complex simple Lie algebra g, a Cartan subalgebra h, and a graph automor-
phism γ of the Dynkin diagram �(g, h). Then γ comes from an automorphism (also
denoted γ ) of g that preserves h, a positive root system 	+(g, h), and the associated
simple root system� = {ψ1, . . . , ψ
}. Thus γ fixes the maximal root−ψ0, permutes
�̃ = � ∪{ψ0}, and defines aa graph automorphism of the extended Dynkin diagram.

Let t denote the fixed point set of γ on h. Theorem 4.1.1 becomes
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Lemma 18.2.7. Let g be semisimple and let γ be a semisimple (diagonalizable) auto-
morphism of g. Let t be a Cartan subalgebra of the fixed point set gγ of γ on g. Then
t is contained in a γ -invariant Cartan subalgebra of g. Further, t contains regular
elements of g, in other words, if α ∈ 	(g, h), then α|t �= 0.

The restricted Dynkin diagram �(g, γ ) is obtained by restricting the ψj from h
to t. Let B = {β1, . . . , βm} denote the distinct restrictions with βj = ψj |t, and apply
the usual Dynkin diagram rules to B. The diagrams for the root systems 	(g, t) are
special cases. The restricted extended Dynkin diagram �̃(g, γ ) is obtained by also
restricting ψ0, say to β0. The coefficient nγ,j is the sum of the coefficients of the
ψk that restrict to βj , so nγ,0 = 1. The restricted extended Dynkin diagrams with
coefficients are as follows.

Case γ = 1. Then t = h, so �(g, γ ) = �(g, h), βj = ψj and �̃(g, γ ) = �̃(g, h)
with the same coefficients. These are given by Tables 17.4.2 and 17.4.3.

Case γ has order 2. Then, from Tables 17.4.2, 17.4.3 and 18.2.4 we derive the
diagrams of Table 18.2.8.

Table 18.2.8. Restricted Extended Diagram �̃(g, γ ) with Coefficients

Type of g Restricted Extended Diagram

A2m−1

�
1

β0
> �

2

β1

� � � �
2

βm−1
< �

1

βm

A2

�
1

β0
〉 �

2

β1

A2m, m > 1
�
1

β0
> �

2

β1

� � � �
2

βm−1

�
2

βm

D
, 
 � 4
�
1
β0
�

�
�

�
1

β1

�
2

β2

� � � �
2

β
−2
> �

2

β
−1

E6

�
1

β0

�
2

β2

�
3

β4
>�

4

β3

�
2

β1

Case γ has order 3. The only instance of this is triality on D4. This gives

�
1

β0

�
2

β2
> �

3

β1
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The second class of new diagrams consists of the affine diagrams. They appear
implicitly in [dS], but we need the explicit details. These diagrams are the ones
involved in Kač’ extension of the Borel-de Siebenthal Theorem 17.4.1. In that ex-
tension, Kač defined them axiomatically and carried out the classification (see [Hel,
Chapter X]). Here, we describe the result by comparison to the restricted extended
Dynkin diagrams �̃(g, γ ). The affine Dynkin diagram �(g, γ, aff) is constructed in
the same way as �̃(g, γ ), except that instead of replacingβj byβj = ψj |t, we replace
ψj by µj which is defined as the sum over the orbit �(ψj ), where � is the group of
graph automorphisms (necessarily of order 1, 2 or 3) generated by γ . However, if
2βj ∈ 	(g, t), in other words if ψj �= γ (ψj ) are adjacent in �(g, h), then we use
2µj instead of µj for the diagram. The affine Dynkin diagrams with coefficients,
and a certain related algebra g† that we will explain in Section 18.2B, are as follows.

Case γ = 1. If the graph symmetry γ is the identity, then �(g, γ ) = �(g, h), and
µj = ψj with the same coefficients, and the corresponding affine Dynkin diagrams
are given by Tables 17.4.2 and 17.4.3.

Case γ has order 2. Suppose that the graph symmetry γ as order 2. Then, from
Tables 17.4.2, 17.4.3 and 18.2.8 we have the affine Dynkin diagrams in Table 18.2.9.

Table 18.2.9. Affine Dynkin Diagrams �(g, γ, aff)

Type of g Type of g† Affine Dynkin Diagram with Coefficients

A2m−1 Dm+1

�
1

µ0
< �

1

µ1

� � � �
1

µm−1
> �

1

µm

A2 A2

�
2

µ0
〈 �

1

2µ1

A2m,m > 1 A2m

�
2

µ0
< �

2

µ1

� � � �
2

µm−1
< �

1

2µm

D
, 
 � 4 A2
−3
�
1
µ0
�

�
�

�
1

µ1

�
2

µ2

� � � �
2

µ
−2
< �

1

µ
−1

E6 E6

�
1

µ0

�
2

µ2

�
3

µ4
< �

2

µ3

�
1

µ1

Case γ has order 3. The only case where the graph symmetry γ has order 3 is
triality on D4, which gives

�
1

µ0

�
2

µ2
< �

1

µ1
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18.2B Digression: Affine Dynkin diagrams and classification of symmetric
spaces

One can use Table 18.2.9 to organize the classification of symmetric spaces.
Fix a complex simple Lie algebra g and an affine Dynkin diagram �(g, γ, aff)

with coefficients as in Table 18.2.9. We suppose that the vertices µj of �(g, γ, aff)
are numbered from 0 to m, with µ0 coming from the negative of the highest weight
of g. There is a single integral relation

∑m
j=0 n(µj )µj = 0, where the coefficients

n(µj ) are positive integers with no common factor �= 1.
Removing a vertex µi with n(µi) = 1, and ignoring the coefficients on the

remaining vertices, one obtains the Dynkin diagram of a semisimple Lie algebra k†,i .
If one already knows the classification of compact riemannian symmetric spaces, then
one will observe that there is a unique (up to conjugacy) simple subalgebra g† ⊂ g
such that {k†,i | n(µi) = 1} consists exactly of the complexifications of Lie algebras
k

†
0 that correspond to compact symmetric spaces G†

u/K
†
0 with rank k† < rank g†.

At first glance this cannot be used directly for the classification of symmetric spaces,
because it requires adjustment in the cases where g0 is simple but g is not, and because
it requires prior knowledge of the classification. But it does provide a uniform way
of viewing the result.

However these problems are not very serious. First, one knows from the basic
structure theory of symmetric spaces that the cases where g0 is simple, but g is not,
correspond to the group manifolds of the compact connected simply connected simple
Lie groups. Second, one can classify the admissible affine Dynkin diagrams and use
them to construct a certain graded Lie algebra by a variation on the construction for
affine Kač–Moody algebras, whose 0-level subalgebra is the appropriate algebra g†

(see [Hel, Section X.5]). It seems rather complicated, but it extends the Borel-de
Siebenthal result to include outer automorphisms, as follows.

We assume that g is simple. Let c := {c0, . . . , cm} be nonnegative integers with
no common factor �= 1. Then there is an automorphism θc of order k,

k = Ord(θc) = Ord(γ )
∑m

0
cjn(µj ),

on g†, defined by its action on simple root vectors by the equation

θc(eµj ) = exp(2πicj /k)eµj .

Conversely, every automorphism θc of finite order k arises in this way. The cases
k = 2 are as follows.

Ord(γ ) = 1. Then γ = 1, rank k = rank g, and g = g†. In the non-hermitian
case, ci = 0 except for one index i, and there n(µi) = 2. In the hermitian case there
are indices i �= j with ci = 1 = cj and n(µi) = 1 = n(µj ).

Ord(γ ) = 2. Then rank k† < rank g†. Here g �= g† in some cases, g = g† in
others, as indicated in Table 18.2.9. The coefficients cj vanish except for one index
i, and ci = 1 = n(µi).
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18.3 Various Weyl groups

In this section we review some basic properties of the various root systems that
naturally arise in our context, and we define a subgroup of the (large) Weyl group
W = W(g, h) which plays an important role for symmetric spaces G0/K0 when
rank k < rank g,

Recall the decomposition g = k + s as a sum of the eigenspaces of θ and the
corresponding decomposition h = hk + hs of a τ -stable θ -stable g0-fundamental
Cartan subalgebra of g. Here t := hk is a maximal toral subalgebra of k, and the
Killing form is nondegenerate on k, s, t and hs. We will usually write t rather than
hk.

The root systems which are in play here are the ordinary root system	 = 	(g, h),
the restricted root system 	θ := 	(g, t) of Proposition 18.2.3, and the ordinary, root
system 	k := 	(k, t). They are related by

(18.3.1) res : 	(g, h) = 	→ 	θ = 	(g, t) and 	(k, t) = 	k ↪→ 	θ = 	(g, t).

Since h is g0-fundamental in g, in other words, since t contains regular elements of g,
we have positive root systems	+ = 	+(g, h),	+θ = 	+(g, t), and	+k = 	+(k, t)
consistent with the maps of (18.3.1):

res : 	+(g, h) = 	+ → 	+θ = 	+(g, t) and

	+(k, t) = 	+k ↪→ 	+θ = 	+(g, t).
(18.3.2)

We write �, �θ and �k for the simple root systems of these consistent positive root
systems.

Remarks.

1. Without the assumption that the τ -stable θ -stable Cartan subalgebra h ⊂ g is
g0-fundamental, the restriction 	(g, t) may not be a root system.

2. Independent of whether or not h is g0-fundamental, we have the decomposition
	(g, h) = 	cpx ∪ 	θ ∪ 	−θ , where 	±θ = {α ∈ 	 : θα = ±α} and 	cpx :=
	 \ (	θ ∪	−θ ). The set 	θ should not be confused with 	θ = 	(g, t). In our
situation, where t is a Cartan subalgebra of k, we have	−θ = ∅. Also, 	cpx = ∅
if and only if h is contained either in k or in s. Further, if h is g0-fundamental and
α ∈ 	cpx, then α − θα is not a root, because (α − θα)|t = 0.

3. For arbitrary h and α ∈ 	θ we have gα ⊂ k or gα ⊂ s. For that reason we write
	θ = 	θ

k ∪	θ
s .

4. For a g0-fundamental h the root spaces gλ, λ ∈ 	(g, t) are at most two-
dimensional. Therefore, if α ∈ 	(g, h) and resα := α|t, then gresα = gα + gθα .
In particular, res	cpx ⊂ 	(k, t).

18.3A The group Wθ

We now discuss certain canonical subgroups of the Weyl groupW = W(g, h). Recall
that W(g, h) is the subgroup of GL(h) generated by the reflections sα with respect to
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roots α ∈ 	(g, h). This (large) Weyl group can be identified with the quotient group
NG(H)/H , where H is the Cartan subgroup of G for h.

All the Cartan subgroups discussed below are stable under θ and τ , hence also
under σ = θτ . Consequently, those three involutions stabilize the normalizerNG(H)

and thus act on W(g, h) = NG(H)/H .
The Weyl group Wk := W(k, t) acts on the centralizer h of t and therefore can be

considered as a subgroup of W(g, h). The subgroup which is most important for our
purposes is the group Wθ, which in general lies between W and Wk.

Definition 18.3.3. The group Wθ = Wθ(g, h) is the subgroup of W(g, h) consisting
of all elements that commute with θ .

This group can be described in a number of ways. For example,

Wθ(g, h) = {w ∈ W(g, h) ⊂ GL(h) : w ◦ θ = θ ◦ w}
= {w ∈ W(g, h) ⊂ GL(h) : w ◦ τ = τ ◦ w}
= {n ∈ NG(h) : Ad(θ(n))|h = Ad(n)|h }/H
= {n ∈ NG(h) : θ(n)−1n ∈ H }/H
= NG(h0)/ZG(h0) = NG(t)/ZG(t).

We view W(k, t) ⊂ W(g, h) by means of

NK(h)/ZK(h) = NK0(h0)/ZK0(h0) ∼= W(k, t).

Then W(k, t) ⊂ Wθ(g, h) ⊂ W(g, h).
If t is already a Cartan subalgebra of g, in other words, if rank k = rank g, then

the action of θ on W(g, h) is trivial and Wθ(g, h) = W(g, h). In general, however,
Wθ(g, h) ⊂ GL(h) need not be generated by reflections. Nevertheless the following
proposition shows that this group, which plays an important role in our computation
of the cohomology groups Hj(C;O(NZ(C))), is the Weyl group of a certain root
system.

Proposition 18.3.4. Let h be a τ -stable θ -stable g0-fundamental Cartan subalgebra
of g.

1. The group Wθ(g, h) stabilizes the decomposition

	(g, h) = 	cpx ∪	θ ∪	−θ .
Furthermore, Wθ(g, h) acts on the restricted root system 	(g, t). However, in
general it does not stabilize the decomposition 	θ = 	θ

k ∪	θ
s , and needs not to

preserve the subsystem 	(k, t) ⊂ 	(g, t)).
2. The restriction Wθ(g, h)→ GL(t) is a faithful representation of Wθ(g, h). The

restriction Wθ(g, h)→ GL(hs) is almost never faithful.
3. The action of Wθ(g, h) on t coincides with that of the Weyl group of 	(g, t).
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Proof.
1. These statements are straightforward. Examples in which the decomposition

	(g, t) = 	θ
k ∪ 	θ

s is not preserved by Wθ(g, h) (and consequently 	(k, t) =
res	θ

k ∪ res	cpx is also not preserved) can be given as follows: If rank g = rank k,
thenWθ = W and the decomposition	θ

k ∪	θ
s is nothing but the decomposition of	

into compact and noncompact roots. Clearly,W mixes	θ
k and	θ

s . One example with
rank g > rank k is g = so(2p+ 2q + 2;C) and k = so(2p+ 1;C)× so(2q + 1;C).
In the standard notation for roots of the Lie algebras of the orthogonal groups, as in
Section 19.4, we have 	θ

k = {±εj ± εk}1�j<k�p ∪ {±εj ± εk}p+1�j<k�p+q . But

Wθ(g, h) contains Sp+q which contains all permutations of ε1, . . . , εp+q .
2. Fix a θ -stable Borel b ⊃ h. Then b decomposes under t as a direct sum of

root spaces, b = h+∑λ∈	+(g,t) gλ (some gλ may be two-dimensional). In this way,
θ -stable Borel subalgebras determine θ -stable positive root systems 	+(g, h) and
	+(g, t) := res(	+(g, h)), and conversely.

Note that Wθ(g, h) acts on the set of all θ -stable Borel subalgebras that contain
a given Cartan subalgebra t of k. In other words, if a Borel b containing t is θ -
stable, then w(b) = b(w(	b)) is θ -stable. This is a simple consequence of the root
decomposition with respect to t. We write w(b) for Adnw(b), where nw ∈ N(T ) is
an arbitrary representative of w.

Let w ∈ Wθ ⊂ W such that w|t = id. Then w stabilizes the subset 	+(g, t),
and consequently w(b) = b. Since W(g, h) acts simply transitively on the set of
Borel subalgebras that contain h, we conclude that w = id, and it follows that
Wθ(g, h)× t→ t is faithful.

3. Let W(g, t) denote the subgroup of GL(t) generated by all reflections sλ for
λ ∈ 	(g, t). The first step is to show that W(g, t) ⊂ Wθ(g, t) = NG(t)/ZG(t). If
λ ∈ 	(g, t), define

slλ :=
{

sλ + s−λ + Chλ if gλ ∩ s �= 0.

kλ + k−λ + Chλ otherwise.

Select a σ -compatible sl(2;C)-triple {eλ, e−λ, hλ} from slλ: e−λ = −σeλ and
θ(eλ) = ±eλ. Finally, define

nλ := exp i π2 (eλ + e−λ) or nλ := exp π
2 (eλ − e−λ).

Then Ad(nλ) stabilizes t and acts on t as a reflection in the hyperplane
λ⊥ := {X ∈ t | λ(X) = 0}. This is a consequence of the following facts:
(i) t = Chλ + λ⊥, (ii) every element of exp slλ fixes (tk)[λ] pointwise, and
(iii) Ad(nλ)(hλ) = −hλ. Only the last point requires proof. Compute

Ad(nλ)(hλ) =
∑

(iπ/2)n

n! (ad(eλ + e−λ))n(hλ)

=
∑

(iπ/2)2k

2k! (ad(eλ + e−λ))2k(hλ)

+
∑

(iπ/2)2k+1

(2k+1)! (ad(eλ + e−λ))2k+1(hλ)
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=
∑

(iπ)2k

2k! · hλ +
∑

(iπ)2k+1

(2k+1)! · (e−λ − eλ)

= cosπ · hλ + i sin π · (e−λ − eλ) = −hλ.
This shows that Ad(nλ) ∈ Wθ(g, h), and therefore W(g, t) ⊂ Wθ(g, h).

The next step is to show that the above inclusion is an equality. For this observe
that sinceWθ(g, h) permutes the set	(g, t) of restricted roots, it stabilizes the regular
set treg = {ξ ∈ t | λ(ξ) �= 0∀λ ∈ 	(g, t)}. Therefore it permutes the Weyl chambers,
which are the connected components of treg ∩ tR in tR.

Now we show that Wθ(g, h) acts simply transitively on the chambers in tR of
the small Weyl group. For this, assume to the contrary that w ∈ Wθ(g, h) stabilizes
such a Weyl chamber C ⊂ tR (but perhaps not pointwise). Select nw ∈ N(H) with

Ad(nw) = w on t. Select a regular element ξ ∈ C and let η := ∑m
k=1

wk ·ξ
m

, where
m is the order of w in Wθ(g, h). Then η is a regular element in C, C is convex,
and Wθ(g, h) acts linearly on t. By construction w(η) = η. Since η is regular, its
centralizer ZG(η) coincides with the Cartan subgroup H = exp(h). It follows that
nw ∈ H , i.e., w = id. ��
Remark 18.3.5. The construction of the simple three-dimensional algebra slλ in the
proof of Proposition 18.3.4 is similar to the corresponding construction of slα :=
[gα, g−α] + gα + g−α where α ∈ 	(g, h). In both cases γ determines the connected
subgroup SLγ ⊂ G. If G is simply connected and γ ∈ 	(g, h), it is known that SLγ
is simply connected; but that fails when γ ∈ 	(g, t) and dim gγ = 2. ♦

As an application of the above proposition, we note the following.

Corollary 18.3.6. Let bk be a Borel subalgebra of k. Then the number of Borel
subalgebras in g that contain bk is exactly |Wθ(g, h)|/|W(k, t)|. More geometrically,
the number ofK-cycles inG/B, or equivalently the number of openG0-orbits inG/B,
is equal to |Wθ(g, h)|/|W(k, t)|.
Proof. Since Wθ(g, h) = W(g, t), it acts simply transitively on the set of Weyl
chambers for 	(g, t). Hence it likewise acts simply transitively on the set of all
θ -stable Borel subalgebras of g that contain h. ��
Remark 18.3.7. As above let t be a maximal toral subalgebra of k. The num-
ber of open G0-orbits in G/B was also computed in [W2, Theorem 4.6] and
[W2, Corollary 4.8] as a certain quotient |NG(h0)/ZG(h0)|/|W(k, t)|. Of course
Wθ(g, h) ∼= NG(h0)/ZG(h0), but Corollary 18.3.6 realizes the number of Borel
subalgebras that contain bk directly as a quotient of orders of Weyl groups.

Here we only consider the nontrivial situation 	θ �= 	. The type of the root
system 	θ (which, according to the above propositions determines Wθ ) can be read
off the affine Dynkin diagrams of Table 18.2.9. This is done as follows.

Consider the subdiagram, obtained by removing the root µ0 from �(g, γ, aff).
This subdiagram is the ordinary Dynkin diagram of 	θ . Equivalently, Table 18.2.8
also provides us with such a Dynkin diagram. Note also that the Weyl group W(	θ)

is equal to W(	reduced
θ ), where 	reduced

θ denotes a corresponding reduced root sub-
system. ♦
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For later use we define a section s : W(k, t)\Wθ(g, h) → Wθ(g, h) as follows.
Let bk be a fixed Borel subalgebra of k and b ⊃ bk a fixed Borel subalgebra of g.
Then b is θ -stable. Given w ∈ Wθ(g, h), w(b) is another θ -stable Borel subalgebra
of g that contains t. So w(b) ∩ k is a Borel subalgebra which may be different from
bk. Since W(k, t) acts simply transitively on the Borel subalgebras of k that contain
t, there is a unique element wk ∈ W(k, t) such that wkw(b) ∩ k = bk. We define

s : W(k, t) \Wθ(g, h)→ Wθ(g, h) by s(W(k, t)·w) := wkw.

This defines a particular subset Wθ
1 (g, h) ⊂ Wθ(g, h) by

(18.3.8) Wθ
1 (g, h) = image of s = {w ∈ Wθ(g, h) | w(b ∩ k) = b ∩ k}.

18.4 Some distinguished weights

In Section 17.4 we described the highest weights of the irreducible k-modules that
occur in s. The description was in terms of fundamental weights for (k′, t′) where
k′ = [k, k] is the semisimple component of k, t is a τ -stable Cartan subalgebra of k,
and t′ is the Cartan subalgebra t ∩ k′ of k′. From these highest weights we know, at
least in principle, the entire weight system M(t′, s) of the representation of k′ on s.

One of our main goals is to make the last statement effective. For this we begin
by recalling the notation. Let �k,wt denote the lattice of all weights of k relative to t,
and �+k,wt be the set of dominant ones, i.e.,

�+k,wt = {λ ∈ �k,wt | 〈λ, α〉 � 0 for every α ∈ 	+(k, t)}.
Recall that the weights of representations πλ of k with highest weight λ form a
saturated set:

M+(t, πλ) : = M(t, πλ) ∩�+k,wt = {µ ∈ �+k,wt | µ ≺ λ} and

M(t, πλ) = W(k, t) ·M+(t, πλ).
(18.4.1)

Here W(k, t) is the Weyl group of k relative to t as before, and ≺ denotes the partial
order on the weights defined by 	+(k, t): µ ≺ λ if and only if

λ− µ =
∑

α∈	+(k,t)nαα,

where nα � 0 for all α.
In practice, explicit determination of M+(t, πλ) and M(t, πλ) from λ can be

difficult, especially if M+(t, πλ) contains many dominant weights. In our particular
situation we have the advantage that (1) the weights in M(t, πλ) are elements of a
root system and (2) there are at most three nonzero dominant weights.

To start we recall that the highest weight λ, which is the unique maximal element
of M(t, πλ) relative to the partial order ≺ is also maximal with respect to the norm
|| · || given by the Killing form of g (see, e.g., [Hu1, Section 13.4]).
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Proposition 18.4.2. If µ, λ ∈ �+k,wt , µ �= λ, and µ ≺ λ, then ||µ|| < ||λ||.
Remarks.

• We apply the above statement as follows. In the Theorem 18.4.13, for a given
complex symmetric pair (g, k), g = k + s, we need to decide whether or not all
weights in M(t, s) \ 0 have the same length. If, according to the Tables 17.4.5,
17.4.6 and 17.4.8, there is a further dominant weight in the isotropy representation,
we immediately deduce that there exist nonzero weights with at least two different
lengths in M(t, s).

• Suppose that g0 is not of hermitian type, so that the action of k on s is an irreducible
representation πλ. Then M(t, πλ) is a subset of 	(g, t) ∪ {0}, and 	(g, t) is a
possibly nonreduced root system. Note that 0 ∈ M(t, πλ) if and only if rank k <
rank g. In view of Proposition 18.2.6 and Table 18.2.8, M(t, (q+ θq)s) contains
weights of at most 3 different lengths (including 0) if the root system is reduced
and four different lengths in the one case where the root system is not reduced.

18.4A Bott’s conditions

Given an irreducible (K∩Q)-moduleV µ of highest weightµwith respect toB+K∩Q,
the Bott–Borel–Weil Theorem 1.6.8 gives precise conditions for the nonvanishing of
cohomologiesH
(C;O(E(V µ))). Using the positive root system	+(k, t), we write
�k for the corresponding simple root system, and we define ρk = 1

2

∑
γ∈	+k γ =

ξβ1 + · · · + ξβr′ . Here, ξβj ∈ t∗ denotes the fundamental weights, i.e., weights
which are dual to the normalized coroots hβ1 , . . . , hβr′ . Bott’s conditions for the
nonvanishing of H
(C;O(E(V µ))) are

• µ+ ρk is k-regular (18.1.1), i.e., 〈µ+ ρk, γ 〉 �= 0 for all γ ∈ 	(k, t), and
• the index (see 18.1.2) satisfies ind(µ+ ρk) = 
.

If ϕ ∈ t∗
R

is k-regular there is a unique wϕ ∈ W(k, t) such that wϕ(ϕ). is dominant.
We denote that Weyl group translate by [ϕ]. The minimum number of simple root
reflections in an expression wϕ = sβj1

sβj2
· · · sβj
 (the length of wϕ as a word in the

simple root reflections) is equal to the index of ϕ.
We will need to understand the action of the Weyl group W(k, t) on the weight

lattice �k,wt ⊂ t∗
R

. This amounts to a characterization of certain β-strings in weight
systems M(t, Vϕ) ⊂ �k,wt . The generating elements of W(k, t) are the reflections
sβ : v �→ v − 2〈v,β〉

〈β,β〉 β ∼= v − 〈v|β〉β.

18.4B Selected values of µ(hλ)

We now discuss the possible values of µ(hλ) = 2〈µ,λ〉
〈λ,λ〉 , where λ and µ are weights

of the representation k × s → s. It turns out that there are only a few possibilities.
Since M(t, (q+ θq)s) ⊂ 	(g, t)∪{0} and 	(g, t) is a (not necessarily reduced) root
system, if λ,µ ∈ M(t, (q+ θq)s), then
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〈µ | λ〉 := 2〈µ,λ〉
〈λ,λ〉 ∈ {0, ±1, ±2, ±3, ±4}.

We now single out the largest values.

1. Let 2〈µ,λ〉
〈λ,λ〉 = ±4. Then µ = ±2λ and 	(g, t) is not reduced. As observed in

Proposition 18.2.6, this can happen if and only if the symmetric space G0/K0 is
of the form SL(2m+ 1;R)/ SO(2m+ 1).

2. Let 2〈µ,λ〉
〈λ,λ〉 = ±3. Then 	(g, t) is reduced. From the classification of complex

simple Lie algebras, it follows that 	(g, t) is the root system of the exceptional
simple Lie algebra g2, where in fact there are µ and λ such that ||µ||2 = 3||λ||2.
From Tables 17.4.2, 17.4.3 and 18.2.8, and of course the information in the
case where g0 is simple but g is not, we see that either g is of type g2 with
K0 = SO(4), or g = g2 ⊕ g2 with g0 embedded diagonally. Thus either Gu/K0
is G2(−14)/ SO(4) or Gu/K0 is the group manifold G2(−14).

We will discuss these three examples separately in Section 19.3, Section 20.4, and
Section 19.10. So we put them aside until then, and we suppose that 	(g, t) is not
isomorphic to either of the three examples described above. In other words, we
assume for now that

(18.4.3) 〈µ | λ〉 ∈ {±2, ±1, 0} for any two elements λ,µ ∈ 	(g, t).
This assumption will significantly shorten some of the following arguments. As
before, 	+(k, t) is our positive root system and �k is its simple subsystem.

Lemma 18.4.4 (String Lemma). Suppose that 	(g, t) satisfies (18.4.3), in other
words thatG0/K0 is not isometric to SL(2m+1;R)/ SO(2m+1), G2(2)/ SO(4), nor
G2(C)/G2(−14). Let µ ∈ M(t, s). Then

1. The weight µ is Bott-regular of index 1, if and only if there is a root β ∈ �k

such that (i) 2〈µ,β〉
〈β,β〉 = −2 and (ii) µ + β is 	+(k, t)-dominant. Equivalently,

there exists β ∈ �k such that {µ,µ + β,µ + 2β} is a β-string in M(t, s) with
µ + β dominant. Consequently, µ + β is not a highest weight of k on s, and
[µ+ ρk] − ρk = µ+ β. Two possibilities occur:
(a) The dominant root µ+ β is nonzero. Then β must be short.
(b) The dominant rootµ+β is zero. Thenµ can be any element of−�k∩M(t, s).

2. The weight µ is Bott-regular of index 2 if and only µ = −β1 − β2 for two
orthogonal simple roots β1, β2 ∈ �k such that β1 ± β2, β1, β2 ∈ M(t, s). Then
µ is long and the βj are short, and λ(µ) = [µ+ ρk] − ρk = 0.

In all cases the existence of µ with nontrivial dominant weight µ + β implies that
M(t, s) \ {0} contains weights of 2 different lengths.

Proof.
Assertion 1. The conditions that ind(µ+ρk) = 1 and µ+ρk is regular mean that

there is precisely one simple root β ∈ �k such that sβ(µ+ ρk) is regular dominant,

i.e., 2〈sβ (µ+ρk),β
′〉

〈β ′,β ′〉 � 1 for all β ′ ∈ �k. We now check that this simple root β satisfies
the conditions of Assertion 1.
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The action of the reflection sβ is

(18.4.5) sβ(µ+ ρk) = µ+ ρk − 2〈µ+ρk,β〉〈β,β〉 β = µ+ ρk −
(

1+ 2〈µ,β〉
〈β,β〉

)
β.

Since 2〈sβ (µ+ρk),β
′〉

〈β ′,β ′〉 � 1 for all β ′ ∈ 	+(k, t), in particular for β ′ = β, now
2〈µ,β〉
〈β,β〉 � −2. Since 2〈µ,β〉

〈β,β〉 � −2 by (18.4.3), now 2〈µ,β〉
〈β,β〉 = −2. Similarly,

2〈µ,β ′〉
〈β ′,β ′〉 � 2〈β,β ′〉

〈β ′,β ′〉 � 0 for β �= β ′ ∈ �k. In particular,

sβ(µ+ ρk) = µ+ ρk + β = [µ+ ρk],
and µ + β = [µ + ρk] − ρk must be dominant. Since 2〈µ,β〉

〈β,β〉 = −2, the β-string
through µ has length 3. Note that µ+ 2β may or may not be dominant.

If µ + β, the middle root in the string µ,µ + β,µ + 2β, is nonzero, then by
elementary geometry of the two-dimensional root systems we conclude that β and
the dominant weight β + µ are short. Since µ + 2β is also a weight in M(t, s), it
follows that µ + β cannot be a highest weight. If µ + β = 0, then µ = −β. All
elements β ′ ∈ −�k have the property that ind(β ′ + ρk) = 1 and β ′ + ρk is regular.
However, the subset −�k ∩M(t, s) of −�k may be proper or even empty.

If µ,µ + β,µ + 2β is a β-string in M(t, s), then by (18.4.3) it has maximal
length, and therefore 〈µ |β〉 = −2. Applying the reflection sβ , (18.4.5) shows that
sβ(µ+ ρk) = µ+ β + ρk. If µ+ β is dominant and β simple, then µ+ ρk is regular
dominant and of index 1.

Assertion 2. We investigate the possibility that ind(µ + ρk) = 2 and µ + ρk

is regular. By assumption, there exist 2 different roots β1, β2 ∈ �k such that
sβ2sβ1(µ+ ρk) is regular and dominant.

We check that 2〈µ,β1〉〈β1,β1〉 = 2〈µ,β2〉〈β2,β2〉 = −2 and 〈β1, β2〉 = 0. Write cj := 2〈µ,βj 〉
〈βj ,βj 〉 and,

to simplify the notation, bjk := 2〈βj ,βk〉
〈βk,βk〉 . Then

sβ2sβ1(µ+ ρk) = sβ2(µ+ ρk − (c1 + 1)β1)

= µ+ ρk − (c1 + 1)β1 − (c2 + 1− (c1 + 1)b12)β2.

The conditions
2〈sβ2 sβ1 (µ+ρk),βj 〉

〈βj ,βj 〉 � 1 for j = 1, 2 yield the inequalities

(18.4.6)
−(c1 + 1)− (c2 + 1)b21 + (c1 + 1)b12b21 � 1

and − (c2 + 1)+ (c1 + 1)b12 � 1.

Since �k is a simple root subsystem of a reduced root system 	(k, t), and we have
excluded the root system of type G2, we have b12b21 ∈ {0, 1, 2}. A direct check
shows that any of the 3 choices b12 = b21 = −1, b12 = −1, b21 = −2 and b12 =
−2, b21 = −1 contradicts our assumption (18.4.3).

When b12 = b21 = 0, (18.4.6) reduces to −(c1 + 1) � 1 and −(c2 + 1) � 1.
Those inequalities together with (18.4.3) imply 2〈µ,β1〉〈β1,β1〉 = 2〈µ,β2〉〈β2,β2〉 =−2. Furthermore,
〈β1, β2〉 = 0.
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Note that {µ,µ+β1, µ+ 2β1} is a string in M(t, s) with ||µ|| > ||µ+β1|| > 0.
(The case µ = −β1 can be excluded, for otherwise µ+ ρk would be of index 1.) On
the other hand, 2〈µ+β1,β2〉〈β2,β2〉 = 2〈µ,β2〉〈β2,β2〉 = −2. Hence,

{µ+ β1, µ+ β1 + β2, µ+ β1 + 2β2}
is another string in M(t, s) with ||µ + β1|| > ||µ + β1 + β2||. Since we assume
(18.4.3) that	(g, t) contains roots of at most two different lengths, µ+β1+β2 = 0.
As already mentioned, ±(β1 ± β2),±βj are all roots in 	(g, t). Since β1 and β2
are orthogonal simple roots in 	(k, t), ±(β1 + β2) cannot be contained in 	(k, t).
Hence, ±(β1 ± β2),±βj ∈ M(t, s), µ = −β1 − β2 is long, and β1 and β2 must be
short roots. ��

For certain pairs (g, θ), the String Lemma is a key tool in the proof that for
all G-homogeneous flag manifolds Z and all compact cycles C = K(z) ⊂ Z, the
component of the cycle space C(Z) that contains [C] is the topological (or algebraic)
closure of the corresponding orbit G([C]) in the cycle space.

In order to prove such a result we need some preliminaries. As usual G0 is a
real form of G, θ is the corresponding Cartan involution, Z = G/Q is a complex
flag manifold, and C ⊂ Z is a compact K-orbit. As explained in Section 17.2, this
situation corresponds to a choice of a Borel subalgebra bk ⊂ k, a Borel subalgebra
b ⊃ bk of g, with b ⊂ q. We fix a θ -stable fundamental Cartan subalgebra h0 of g0,
and thus the τ -stable Cartan subalgebra t = h ∩ k of k.

Following Propositions 17.5.1 and 17.5.4 we must compute the cohomologies
H
(C;O(E((q+ θq)s))). Let 0 = F 0(q+ θq)s ⊂ F 1(q+ θq)s ⊂ · · · be one of the
filtrations as in Section 17.6. For simplicity, write

(18.4.7) Fj := E(F j (q+ θq)s)

for the correspondingK-homogeneous holomorphic vector bundle overC. The short
exact sequences

(18.4.8) 0 −→ Fj −→ Fj+1 −→ Fj+1/Fj −→ 0 for j = 0, 1, 2 . . .

of K-homogeneous vector bundles induce the long exact cohomology sequences of
K-modules
(18.4.9)

→ H
−1(C;O(Fj+1/Fj ))
χ→H
(C;O(Fj ))

ϕ→ H
(C;O(Fj+1))

ψ→ H
(C;O(Fj+1/Fj ))→ H
+1(C;O(Fj ))→ .

Assume for some fixed 
 (=1 or 2 in our applications) and for all j � 0 that
H
(C;O(Fj+1/F j )) = 0. This implies that all maps ϕ in the above sequences
are surjective. Since H
(C;O(F1)) = H
(C;O(F1/F0)) = 0, we conclude that
each H
(C;O(E((q+ θq)s))) = 0. We have therefore proved the following fact.

Lemma 18.4.10. Suppose thatM(t, (q+θq)s) does not contain a Bott-regular weight
of index 
. Then H
(C;O(E((q+ θq)s))) = 0.
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The following is a direct consequence of the above remarks and the String Lemma.

Lemma 18.4.11. If 	(g, t) satisfies the condition (18.4.3), then for each j � 0,
H 2(C;O(Fj )) is either 0 or is a sum of trivial one-dimensional K-modules.

Now we look at the trivial K-submodules.

Lemma 18.4.12. The K-module H 0(C;O(NZ(C))) does not contain any trivial K-
submodules. In particular, as a submodule of H 0(C;O(NZ(C))), the cohomology
space H 1(C;O(E((q+ θq)s))) also has no trivial K-submodule.

Proof. Every one-dimensional trivial K-submodule L ⊂ H 0(C;O(NZ(C))) corre-
sponds to aK-fixed section s : C → K×QK

(s/(q+θq)s). A section s of this bundle
corresponds to a (K ∩Q)-equivariant map fs : K → s/(q+ θq)s, and s is K-fixed
exactly when fs is constant. For a K-fixed section s, the equivariance condition on
fs implies that K ∩Q fixes the vector fs(K) ∈ s/(q+ θq)s.

The quotient s/(q + θq)s decomposes into t-root spaces, and none of them is a
(K ∩Q)-trivial because t ⊂ b and s/hs → s/(q+ θq)s is a t-equivariant surjective
map. Thus there are no (K ∩Q)-fixed vectors in s/(q + θq)s. In other words, the
only K-fixed section s : C → K ×BK (s/(q + θq)s) is the 0-section, and therefore
H 0(C;O(NZ(C))) has no trivial K-submodule. ��

Even if some of the cohomology groups in 18.4.9 are nonzero, but are only direct
sums of trivial modules, we do not need to worry about cancellation and can conclude
that the trivial submodules do not contribute to H 1(C;O(E((q+ θq)s))).

Reviewing the discussion above, we come to our first result that gives a list of
those real forms g0 for which the component C[C](Z) of the cycle space coincides
with the topological closure of the orbit G([C]) in C(Z). Given g0, the result is
independent of the choice of the flag manifold Z = G/Q and closed K-orbit C ⊂ Z

under consideration.
The assumptions of the following theorem exclude the three cases of Section

18.4B that do not satisfy (18.4.3). We discuss them separately in Sections 19.3 and
20.4. Those are the cases where Gu/K0 is G2/ SO(4), SU (2r + 1)/ SO(2r + 1), or
the group manifold G2.

Theorem 18.4.13. Suppose that g0 is simple and that 	(g, t) satisfies (18.4.3),
in other words that g0 is not isomorphic to any of sl(2m + 1;R), g2(2), g2(C).
Further suppose that the affine Dynkin diagram in Tables 17.4.2 and 17.4.3 for
rank k = rank g, or Table 18.2.9 for rank k < rank g, satisfies one of the follow-
ing two conditions.:

1. All roots in the underlying affine Dynkin diagram have the same length.
2. The roots in the underlying affine Dynkin diagram have two different lengths, but

the (one or two) marked roots are short.

Then for every flag manifold Z = G/Q and every closed K-orbit C ⊂ Z, the Barlet
cycle space C(Z) is smooth at [C], and the component of [C] in C(Z) coincides with
the algebraic closure of the orbit G([C]).
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Proof. If the nonzero weights in M(t, s) have equal length, there is no 3-string
µ,µ + β,µ + 2β with nonzero dominant µ + β. Consequently, according to the
String Lemma 18.4.4, there are no Bott-regular weights µ ∈ M(t, s) of index 1
with λ(µ) = [µ + ρk] − ρk �= 0. Hence, a glance at the exact sequence in (18.4.9)
shows that for all j H 1(C;O(Fj )), Fj := E(F j (q + θq)s), is 0 or isomorphic
to a direct sum of trivial one-dimensional k-modules. Thus, together with Lemma
18.4.12 we conclude that H 1(C;O(E((q + θq)s))) = 0 for all C and q. In all
these cases, Propositions 17.5.1 and 17.5.4 tell us that the Zariski tangent space
T[C]C(Z) = H 0(C;O(E((q + θq)s))) is s or one of s±. Therefore, the dimensions
of the Zariski tangent space of C(Z) at [C] and the homogeneous space G([C]) are
equal, so C(Z) is smooth at [C]. Since the G-action on C is algebraic, G([C]) is
dense in the corresponding irreducible component of C(Z).

There is a nonzero weight ϕ in M(t, s) with ‖ϕ‖ �= ‖λhigh‖ (λhigh denotes the
highest weight of k× s→ s ork× s+ → s+) if and only if there is a dominant weight
ϕ̃ ∈ M(t, s)with ‖ϕ̃‖ = ‖ϕ‖ < ‖λhigh‖.This proves that the elements inM(t, s)\{0}
have equal length if and only if there is no nonzero dominant weight M(t, s) (or
M(t, s+), respectively), different from the highest weight ν. That information can
be read directly from Tables 17.4.5, 17.4.6 and 17.4.8.

The data given by a marked affine Dynkin diagram is also sufficient to decide
whether there exist dominant nonzero weights in M(t, s) which are shorter than the
highest weight. This relies on the following basic facts: (1) There are as many
different lengths of nonzero roots in 	(g, t) as many different root lengths appear
in the underlying affine Dynkin diagram of g0. (2) The marked roots are the lowest
weights of k×s→ sor k×s+ → s+, respectively. Now, if all roots in an affine Dynkin
diagram have equal length or the marked roots are short (and consequently there are
no shorter roots in 	(g, t) than the marked ones) then all elements in M(t, s) \ {0}
have equal length. This completes the proof of the theorem. ��

18.5 Computation of Bott-regular weights

The simple algebras g0 not covered by Theorem 18.4.13 are listed in Table 18.5.1. In
terms of combinatorics of roots they are those real forms for which the corresponding
k-module s contains nonzero t-weights of two different lengths. In terms of geometry
of cycle spaces they are those real forms for which we may hope to find G-flag
manifolds Z and cycles C such that the corresponding components C[C](Z) of the
cycle space has dimension larger than that of the orbit G·[C]. Of course, we need
only to discuss the cases where g0 is simple. In addition there are the three cases
listed in Table 18.5.2, which will be considered separately.

Our next goal is to determination all Bott-regular weights of index 1 and 2 in
the cases listed above. A priori, we do not know which real forms, for which there
are nonzero weights in M(t, s) of at least two different lengths, admit a Bott-regular
weights µ of index 1 and with λ(µ) �= 0 in M(t, s). Due to the first part of the String
Lemma 18.4.4, the task of finding Bott-regular elements µ in M(t, s) of index 1, at
least for all simple real forms g0 = k0+s0 which are different from sl(2r+1,R), g2(2)
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Table 18.5.1. Real Forms with Elements in M(t, p) \ 0 of Two Different Lengths

g g0 k0

so(2p + 2q + 1;C) so(2p, 2q + 1) so(2p)× so(2q + 1) p � 1
sp(n;C) sp(n;R) u(n)

f4(C) f4,C1C3 = f4(4) sp(1)× sp(3)
sl(2m;C) sl(2m;R) so(2m)

so(2p + 2q + 2;C) so(2p + 1, 2q + 1) so(2p + 1)× so(2q + 1) p, q � 1
e6(C) e6,C4 = e6(6) sp(4)

so(2m+ 1;C)⊕ so(2m+ 1;C) so(2m+ 1;C) so(2m+ 1) m � 2
sp(m;C)⊕ sp(m;C) sp(m;C) sp(m) m � 3

f4(C)⊕ f4(C) f4(C) f4(−52)

Table 18.5.2. Remaining Series and Cases That Do Not Satisfy (18.4.3)

g g0 k0

sl2m+1(C) sl2m+1(R) so(2m+ 1)
g2(C) g2,A1A1 = g2(2) so(4)

g2(C)⊕ g2(C) g2(C) g2(−14)

and g2(C), is reduced to the determination of just when, for simple β& ∈ �k and
dominant λ ∈ M(t, s), both weights λ± β& belong to M(t, s). Once such weights λ
and β& are detected, µ := λ − β is a Bott-regular of index 1 with λ(µ) = λ. As a
by-product of this computation, we have the following:

For all g0 in Tables 18.5.1 and 18.5.2, there exist
Bott-regular weights µ of index 1 with λ(µ) �= 0.

From the general classification results we know all dominant weights in M(t, s). If
�k has roots of two lengths only the short simple roots are candidates for β& as above.
For example, in all cases under consideration (with the exception of those in Table
18.5.2 and the two series (sp(2r;C), gl(r;C)) and (sl(2r;C), so(2r;C))). In fact,
in the remaining cases there are at most two such short roots, except in the case of
(e6, sp(4)), where there are three.

Although these general remarks restrict the set of candidates for β&we still need
some more explicit knowledge of M(t, s) is order to decide when λ± β& ∈ M(t, s).
The explicit determination of M(t, s) and g0 as in Table 18.5.1 is significantly sim-
plified by the following observations:

• All the Lie algebras k that come into question here are Lie algebra direct sums
k(1)⊕· · ·⊕k(
) (⊕z) of simple Lie algebras of classical type. Then the irreducible
representations k × s → s (or k × s± → s± in the hermitian case) are tensor
products of certain irreducible representations of the factors k(j). Suppose that
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t(1) ⊕ · · · ⊕ t(
) (⊕z) is the corresponding decomposition of the Cartan subalge-
bra t. The highest weights of the (tensor) representations k× s → s are listed in
Tables 17.4.5, 17.4.6 and 17.4.8 in the formλ = λ(1)+· · ·+λ(
) (±χ).The highest
weights λ(j) of the corresponding irreducible representations k(j)×V (j) → V (j)

which are a priori only defined on t(j) are considered as trivially extended to the
entire torus t.

• All the representations of the factors k(j) here are sufficiently “simple’’ to be un-
derstood with ad hoc methods: The “simplest’’ representation of a classical group
L (of type A
,B
, C
,D
 or a general linear group) is the standard representa-
tion V ξ1 ≡ V std

L where all weights M(tL, V
std
L ) are explicitly known. Inspecting

all relevant weights λ(j), it turns out that the representations k(j) × V (j) → V (j)

either are fundamental (V ξk and can be realized on appropriate subspaces of the
wedge powers

∧k
V ξ1 of the standard representation), or are appropriate subrep-

resentations of the symmetric square S2V ξ1 . With that information the weights
M(t, s) can be determined immediately. Consequently, it is straightforward to
decide whether λ± β& for a nonmaximal dominant λ ∈ M(t, s) : This is the case
if λ± β& can be expressed as sums ϕ(1) + · · · + ϕ(
)(±χ), where ϕ(j) denotes a
weight of the corresponding irreducible representation of k(j) of the above type.

• We defer discussion of the series (sl(2r+1;C), so(2r+1;C)) to Section 19.3, the
series (g2(C), so(4;C)) to Section 20.4 and the series (g2(C)× (g2(C), (g2(C))
to Section 19.10.

In summary, we list for all real simple Lie algebras of noncomplex type all β∗-strings
of length 3 (as in the String Lemma 18.4.4) with dominant nonzero weight in the
middle. They are given as columns in Table 18.5.3 on the next page. We also indicate
the corresponding simple short root(s) β& in �k.

Let β&i ∈ �k be the corresponding simple short roots in �k such that µi, µi +
β∗i , µi + 2β∗i as a 3-string as in the String Lemma (with an exception of g0 ∈
{g2(2), g2(C)} where the string has length 4, see 20.4). Let us now review our
situation. The main goal of this part of the monograph is to explicitly determine all
flag G-manifolds Z and base cycles (closed K-orbits) C ⊂ Z such that the space
of holomorphic sections in the normal bundle NZ(C), i.e., the Zariski tangent space
T[C]C(Z) of the cycle space C(Z) at the point [C] is larger than the subspace coming
from the G-orbit G·[C]. In fact, it turns out that in all cases C(Z) is smooth at [C]
(see Theorem 18.6.1), and hence we can simply speak of a tangent space.

As explained in Section 17.2, given the geometric data (C,Z), we assign to it the
Lie subalgebras bk ⊂ b ⊂ q ⊂ g, where b is a Borel subalgebra of g containing a
fixed Borel subalgebra bk ⊂ k, and q is a parabolic subalgebra q ⊃ b which is the
isotropy subalgebra at a base point z ∈ C. The tangent space T[C]C(Z) is bigger than
T[C](G·[C]) ∼= g/g[C] if and only if H 1(C;O(E((q+ θq)s))) �= 0 (see Propositions
17.5.1 and 17.5.4).

Recall that M(t, (q + θq)s) denotes the set of t-weights that appear in
(q + θq)s. By the Bott–Borel–Weil Theorem, a necessary (but not sufficient)
condition for the nonvanishing of H 1(C;O(E((q + θq)s))), more precisely of
V λ(µ) ⊂ H 1(C;O(E((q+ θq)s))), where
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Table 18.5.3. Dominant Weights and 3-Strings

Marked Affine Dynkin Diagrams of g0 3-Strings µ+ 2β&, µ+ β&, µ

so(2p, 2q + 1)
�
1

�
1

��


�
2

� �

β
(1)
1

�
2

�
2

β
(2)
1

�
2

� � �
2
> �
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(2)
sh (�= λhigh) p > 2, q > 1
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sh
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�
1

�
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��


�
2

�
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(1)
1

> �
2

β
(2)
sh

ξ(1) + β
(2)
sh = λhigh

ξ(1)

ξ (1) − β
(2)
sh

so(4, 2q + 1)
�
1

�
1

β(1)

β̃(1)

��


�
2

�
2

β
(2)
1

� � � � �
2
> �

2

β
(2)
q

ξ (1) + ξ̃ (1) + β
(2)
sh (�= λhigh)

ξ (1) + ξ̃ (1)

ξ (1) + ξ̃ (1) − β
(2)
sh

so(2, 2q + 1)
�
1

�
1

��


�
2

�
2

� � � � �
2

β1

> �
2

±χ + βsh (�= λhigh)

±χ
±χ − βsh

(r,R)

�
1

β1

> �
2

�
2

� � � �
2

βr−1

�
2
< �

1
ξ± + β&± ± χ (= λ

high
± )

ξ± ± χ ξ+ = ξ2, β
&+ = β1

ξ± − β&± ± χ ξ− = ξr−2, β
&− = βr−1

f4(4)
1

β(2)

� �
2

�
3

β
(1)
3

> �
4 2

�

β
(1)
1

ξ
(1)
1 + ξ(2) + β

(1)
2 (�= λhigh)

ξ
(1)
1 + ξ(2)

ξ
(1)
1 + ξ(2) − β

(1)
2

sl(2r + 1,R)
�
1

�
1

��


�
2

�
2

� � � � �
2

β1

> �
1 ξ2 + β1 (= λhigh = 2ξ1)

ξ2
ξ2 − β1

so(3, 2q + 1)

�
1

β
(1)
sh

< �
1

�
1

β
(2)
1

� � � � �
1

�
1
> �

1
ξ
(2)
1 + β(1) (= λhigh)

ξ
(2)
1
ξ
(2)
1 − β(1)

2ξ(1) + β
(2)
sh

2ξ(1)

2ξ(1) − β
(2)
sh

so(2p + 1, 2q + 1)

�
1

β
(1)
p (= β

(1)
sh )

< �
1

� � � �
11

β
(1)
1

�
1

�
1

β
(2)
1

1
� � � �

1
> �

1

β
(2)
q

ξ
(2)
1 + β

(1)
sh (= λhigh)

ξ
(2)
1
ξ
(2)
1 − β

(1)
sh

ξ
(1)
1 + β

(2)
sh

ξ
(1)
1
ξ
(1)
1 − β

(2)
sh

e6(6)1

β1

� �
2

�
3
< �

2

β4 = βlo

1
�

ξ2 + β3 ( �= λhigh = ξ4)

ξ2
ξ2 − β3



18.5 Computation of Bott-regular weights 281

(18.5.4) λ(µ) := [µ+ ρk] − ρk,

is the existence of Bott-regular weights µ of index 1 in M(t, (q + θq)s) ⊂ M(t, s).
We already know that λ(µ) �= 0, (see Lemma 18.4.12).

Table 18.5.3 specifies all such weights in M(t, s) for all symmetric pairs listed
in Table 18.5.1 for which g is simple. If g is not simple, in other words if g0 is the
underlying real structure of a complex simple Lie algebra, then k is isomorphic to that
complex Lie algebra, and the representation k × s → s is equivalent to the adjoint
representation of k. In that case the set of dominant weights inM(t, s) is well known,
and the corresponding Bott-regular elements are also easily found. We carry out the
details of this case in Sections 19.6 through 19.10.

Now we recall the relevant combinatorial objects. In general we have three
different root systems associated with (g, θ) : 	k := 	(k, t), 	θ := 	(g, t) and
	 := 	(g, h). Given Borel subalgebras bk ⊂ k and b ⊂ g, they determine the
positive root systems 	+k , 	

+
θ and 	+ and in turn the simple root systems �k =:

{β1, . . . , βr ′ } ⊂ 	k, �θ =: {γ1, . . . , γr} ⊂ 	θ, and � = {ψ1, . . . , ψm} ⊂ 	. Also
recall our convention for defining the roots determined by bk or b as the negative
roots. We write b+k and b+ for the opposite Borel subalgebras (with respect to the
given Cartan subalgebras).

Further, let a parabolic subalgebra q = qz with q ⊃ b ⊃ bk be given. Define
qk := q ∩ k and QK := Q ∩K. This (small) parabolic subalgebra is determined by
a subset �k ⊂ �k, in other words, qrk = t+∑δ∈〈〈�k〉〉Z kδ. We sometimes write qk as
(qk)�k to underline this dependence.

Assume that a Bott regular weight µ in Table 18.5.3 belongs to M(t, (q+ θq)s).
The remainder of this section is devoted to establishing criteria which enable
us to decide whether and when the representation space V λ(µ) is contained in
H 1(K/QK,O(E((q+ θq)s))).

For the following lemma recall that given ϕ ∈ 	(k, t), there are at most two roots
in 	(g, h), say ϕ† and possibly ϕ‡, such that ϕ†|t = ϕ‡|t = ϕ.

Lemma 18.5.5. Let µ be one of the Bott-regular weights in M(t, s) with dominant
weight λ(µ) = [µ+ ρk] − ρk �= 0. Then

1. λ(µ) = µ+n·β& with µ(hβ&) < 0 and n > 0 for precisely one short simple root
β& ∈ �k,

2. µ(hβ) � 0 for all β ∈ �k \ {β&}, and in particular
3. if β ∈ �k \ {β&}, then µ+ β /∈ M(t, s).

Let q ⊃ b ⊃ bk be a parabolic subalgebra as above and µ ∈ M(t, (q + θq)s). The
weight µ is a highest weight with respect to b+k ∩ qrk whenever the defining subset �k

of qrk is contained in �k \ {β&}. Equivalently, 〈〈�〉〉Z does not contain {(β&)†, (β&)‡}.
Proof. When g0 satisfies the condition (18.4.3) the String Lemma and its proof show
that there is precisely one β& ∈ �k such that µ(hβ&) = −2, µ = λ(µ)− β& (n = 1
in the statement of the Lemma) and µ(hβ) � 0 for all β ∈ �k \ {β&}; see (18.4.5)
and the following paragraph in the proof of the String Lemma. Were µ + β an
element in M(t, s), the previous inequality would imply µ − β ∈ M(t, s), and by
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the geometry of the string µ − β,µ,µ + β we would have elements longer than
µ. That would contradict the assumption (18.4.3). Hence, if β& does not belong
to �k, it follows that µ is highest with respect to b+k ∩ qrk. Finally, observe that

gβ
&† + gβ

&‡ = gβ
&† + θgβ

&†
is a θ -stable subspace, and consequently β& /∈ �k if and

only if {β&†, β&‡} �⊂ 〈〈�〉〉Z = 	(qr , h).
The remaining cases are g0 = sl(2m + 1;R), g0 = g2,SO(4) and g0 = g2(C).

They are settled in Sections 19.3, 20.4, and 19.10. ��
Let Fj (q + θq)s be an equivariant filtration of the qk-module (q + θq)s as in

Section 17.6, and for short write Fj for the corresponding homogeneous vector sub-
bundles of E = E((q + θq)s). There is a k ∈ N such that µ ∈ M(t, F k/F k+1).

Since Fk/F k+1 is a direct sum of irreducible qk-modules, we can apply the theo-
rem of Bott. Consequently, V λ(µ) ⊂ H 1(C;O(Fk/Fk+1)) if and only if the weight
µ is highest with respect to the subset �k = �k ∩ 	(qrk, t). Note that V λ(µ) ⊂
H 1(C;O(Fk/Fk+1)), but V λ(µ) may be not contained in H 1(C;O(E((q+ θq)s))).
This is explained in greater detail in the following Cohomological Lemma.

We retain the above notation. In the assumptions of the following lemma we do
not exclude the possibility of the existence of Bott-regular weights ν with λ(ν) =
[ν + ρk] − ρk = 0.

Lemma 18.5.6 (Cohomological Lemma). Let µi ∈ M(t, (q + θq)s), i = 1, 2, be
distinct Bott-regular weights of index 1 such that λ(µi) := [µi + ρk] − ρk �= 0. Let
β&i ∈ �k be the corresponding simple short roots in�k such thatµi, µi+β∗i , µi+2β∗i
is a 3-string as in the String Lemma (with the obvious exception of g0 = g2(2) or g2(C);
see Section 20.4).

1. If β&i ∈ �k, then V λ(µi) �⊂ H 1(C;O(E((q+θq)s))). In particular, if for all Bott-
regular weights µi ∈ M(t, (q+ θq)s) with λ(µi) �= 0 every β&i also belongs to
�k, then H 1(C;O(E((q+ θq)s))) = 0.

2. If β&i /∈ �k and µi + β&i /∈ M(t, (q+ θq)s), then

V λ(µi) ⊂ H 1(C;O(E((q+ θq)s))).

3. If β&i /∈ �k, but µi + β&i ∈ M(t, (q+ θq)s), then

V λ(µi) �⊂ H 1(C;O(E((q+ θq)s))).

Proof. Let 0 = F 0(q + θq)s ⊂ F 1(q + θq)s ⊂ · · · ⊂ F
(q + θq)s = (q + θq)s
be an equivariant filtration of (q + θq)s. Given a Bott-regular weight of index 1,
µj , there is precisely one k such that µj ∈ M(t, F k(q+ θq)s/F

k−1(q+ θq)s). Let
0 = F0 ⊂ F1 ⊂ · · · denote the corresponding filtration of homogeneous K-bundle
E((q+ θq)s) over C ∼= K/(K ∩Q).

For all k consider the long exact cohomology sequences of K-modules

(18.5.7)

−→H 0(C;O(Fk/Fk−1))
η1−→ H 1(C;O(Fk−1))

ϕ−→ H 1(C;O(Fk))

−→ H 1(C;O(Fk/Fk−1))
η2−→ H 2(C;O(Fk−1)) −→ H 2(C;O(Fk))

−→ H 2(C;O(Fk/Fk−1)) −→ . . .
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All cohomology groups appearing in (18.5.7) are finite sums of irreducibleK-modules
and all maps are k-equivariant. We now analyze these maps in greater detail.

The String Lemma 18.4.4 and the Bott–Borel–Weil Theorem tell us that, for all k,
H 2(C;O(F1)) and H 2(C;O(Fk/Fk−1)) are either zero or sums of one-dimensional
trivial k-modules. Inductively, the using exactness of

H 2(C;O(Fk−1)) −→ H 2(C;O(Fk)) −→ H 2(C;O(Fk/Fk−1)),

we conclude that H 2(C;O(F2)), H 2(C;O(F3)), etc., are zero or sums of one-
dimensional trivial modules. Thus, for every k,

(18.5.8) H 2(C;O(Fk)) is 0 or a direct sum of one-dimensional trivial modules.

Assume now that for all Bott-regular weights µj of index 1 with λ(µj ) �= 0,
the corresponding simple roots β&j (as in the String Lemma) are in �k. As shown in

the preceding lemma, in this case µj is not the highest weight of any qred
k -module

Fk(q + θq)s/F
k−1(q + θq)s, and therefore for all k the theorem of Bott implies

that V λ(µj ) �⊂ H 1(K/QK ;O(Fk/Fk−1)). For all k these cohomology groups are 0
or sums of trivial submodules. Thus an argument similar to that above shows that
for all k (and in particular for k = 
) H 1(C;O(Fk)) is also 0 or a direct sum of
one-dimensional trivial modules. Employing Lemma 18.4.12 we see that all of the
nonzero but trivial modules theH 1(C;O(Fk)) cancel. ThereforeH 1(C;O(F
)) = 0
and statement 1. is proved.

For statement 2 assume that µj ∈ M(t, F k(q+ θq)s/F
k−1(q+ θq)s) for some

k = n and β&j /∈ �k. In this case µj is highest with respect to qred
k ∩ (bk)+. Again

employing Bott’s theorem, we conclude that

V λ(µj ) ⊂ H 1(C;O(Fk/F k−1)).

By (18.5.8) the nontrivial submodule V λ(µj ) is contained in the kernel of η2, and
therefore V λ(µj ) ⊂ H 1(C;O(Fn)). By assumption,

λ(µj ) /∈ M(t, (q+ θq)s)

and consequently by the Borel–Weil Theorem [Ser], we have

V λ(µj ) �⊂ H 0(C;O(Fk/Fk−1)) for all k.

The exactness of the first row in (18.5.7) then guarantees that starting with k = n+ 1
the restrictions of the maps ϕ in (18.5.7) to V λ(µj ) must be injective for all k =
n+ 1, n+ 2, . . . . Hence, V λ(µj ) ⊂ H 1(C;O(F
)) = H 1(C;O(E((q+ θq)s))) and
the proof of (2) is complete.

For the last part of the lemma, we have to show that V λ(µj ) �⊂ H 1(C;O(E)).
Assume that the equivariant filtration is chosen as in (17.6.1). By construction of
F •(q + θq)s, we have µj ∈ Fn/Fn−1 and λ(µj ) ∈ Fn+1/Fn. In the present case
the Bott–Borel–Weil Theorem implies that both V λ(µ) ⊂ H 1(C;O(Fn/Fn−1)) and
V λ(µ) ⊂ H 0(C;O(Fn+1/Fn)). We would like to prove that
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ϕ : H 1(C;O(Fn))→ H 1(C;O(Fn+1)) kills V λ(µj ),

but we cannot simply use exactness of the long cohomology sequence

H 0(C;O(Fn)) ↪→ H 0(C;O(Fn+1))→ H 0(C;O(Fn+1/Fn))
→ H 1(C;O(Fn))

ϕ→ H 1(C;O(Fn+1)).

It might happen that V λ(µj ) is properly contained in H 0(C;O(Fn+1)), and in that
case ϕ would be injective if restricted to V λ(µj ). Fortunately, however, we have the
following fact.

Claim. V λ(µj ) �⊂ H 0(C;O(Fn+1)), and therefore V λ(µj ) �⊂ H 1(C;O(Fn+1)).

In order to prove this claim, we do not computeH 0(C;O(Fn+1)) directly but use
the Bott–Borel–Weil Theorem. According to Theorem 1.6.11,

HomG(V
λ(µj ), H 0(C;O(Fn+1))) = Homqk(V

λ(µj ), F n+1(q+ θq)s).

Therefore, it remains to show that Homqk(V
λ(µj ), F n+1(q+ θq)s) = 0. To see this,

let ψ : V λ(µj ) → Fn+1(q + θq)s be a qk-equivariant map. Since t ⊂ qk, ψ maps
weight spaces V [ξ ] ⊂ V λ(µj ) to gξ ∩ s ⊂ Fn+1(q + θq)s. Let vλ ∈ V λ(µj ) be a
nonzero highest vector. Since (bk)− ⊂ qk, the map ψ is uniquely determined by
ψ(vλ). Choose X ∈ g−β& ∩ k = k−β& . By equivariance, ψ(π(X)vλ) = [X,ψ(vλ)].
Since λ(hβ&) = 0 and λ is the highest weight, λ− β& is not a weight of V λ(µj ), i.e.,
π(X)vλ = 0.On the other hand, sλ−β& ⊂ Fn+1(q+θq)s) and therefore [sλ, k−β& ] �=
0. Consequently, ψ(vλ) = 0 and ψ = 0.

By the exactness of the long cohomology sequence, V λ(µj ) �⊂ H 1(C;O(Fk)) for
all k � n+ 1, and the last statement of the lemma follows. ��

18.6 Algorithm for computing the module structure of T[C]C(Z)

We retain the notation from the previous section: Let g be a complex semisimple Lie
algebra and g0 = k0+ s0 is a real form that is a simple real Lie algebra. Let (g, θ) be
the corresponding complex symmetric space. If (g, θ) does not belong to the lists in
Tables 18.5.1 or 18.5.2, then we have already shown that T[C]C(Z) = T[C](G([C]))
for all G-flag manifolds Z and all base cycles C ⊂ Z; see Theorem 18.4.13. In
particular, the cycle spaces C(Z) are smooth in that case. In fact this holds in complete
generality.

Theorem 18.6.1. For any flag manifold Z = G/Q and any base cycle C = K(z) ⊂
Z, the cycle space C(Z) is smooth at [C].
Proof. It is necessary to discuss three cases. First, if dim T[C]C = dimG·[C], then
C is smooth at [C]. This gives a proof of smoothness for all cycles and flags in the
cases where the symmetric pair (g, k) is excluded by Theorem 18.4.13. It remains
to deal with the symmetric pairs given in Tables 18.5.1 and 18.5.2. For spaces with
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rank g = rank k there are no Bott-regular weights of index 2 (see Chapter 19). The
same is true if g0 is of complex type. Thus it remains to handle the cases g0 =
sl(odd,R), sl(even,R), so(2p+1, 2q+1) and the exceptional case e6,C4 = e6(6). In
Chapter 20 we prove the smoothness of C at [C] case by case in the latter four cases
by showing H 1(C;O(NZ(C))) = 0 for all cycles and flags. ��

If (g, θ) is listed either in Table 18.5.1 or in Table 18.5.2, flag manifolds Z and
base cycles may (and in fact do, except for e6(6) and f4(4)) exist such that T[C]C(Z) �=
T[C](G([C])). Since the tangent space T[C]C(Z) has the structure of a K-module
coming from the isotropy representation of K on T[C]C, and since the group K is
reductive, the tangent space decomposes as a direct sum of irreducible K-modules.
At this stage we can already say even more: there is no trivial K-submodule in T[C]C;
see Lemma 18.4.12. By Lemma 18.5.6, given a flagG-manifoldZ and a cycleC ⊂ Z

we have

(18.6.2) T[C]C(Z) = T[C](G·[C])+
∑

λ(µi)∈M(C,Z)

V λ(µi).

Here V λ(µi) denotes the irreducible K-module with highest weight λ(µi), and
M(C,Z) is the set of these weights, where the µi are the Bott-regular weights of
index 1 in M(t, s) which occur in the particular situation. These will be computed
explicitly in the next chapter. The relation between µi and the highest weight is

λ(µi) = [µi + ρk] − ρk = µ+ nβ&i �= 0, n ∈ {1, 2}
with β&i given as in Lemma 18.5.5; (n = 2 occurs only for g2(2) and g2(C)). Our goal
now is to give an explicit description of M(C,Z) for every pair C ⊂ Z and every
complex symmetric pair (g, k) listed in the Tables 18.5.1 and 18.5.2.

Here we indicate an algorithm which enables us to determine the set M(C,Z)

(and therefore the tangent space T[C]C(Z)) for a given base cycleC and flag manifold
Z. In the following chapter we explicitly carry out such computation for all pairs
(C,Z) and for all complex symmetric pairs (g, k) given in Tables 18.5.1 and 18.5.2.

As in Section 17.2, let bref
k ⊂ b ⊂ q ⊂ g be the Lie algebra data associated to

(C,Z). We fix in each bref
k a maximal toral subalgebra t. It determines the Cartan

subalgebra h = zg(t) of g, and t = h∩ k. Each pair bref
k ⊂ b of Borel subalgebras (in

k and g, respectively) determines positive systems in the (in general three different)
root systems 	k(t),	θ (t) and 	(h) which in turn determine the root bases

�k = {β1, . . . , βr ′ } ⊂ 	k = 	(k.t),

�θ = {γ1, . . . , γr} ⊂ 	θ = 	(g, t),

� = {ψ1, . . . , ψm} ⊂ 	 = 	(g, h).

While �k = �ref
k remains fixed, every b ⊃ bk gives rise to a different root basis

�θ = �θ(b).
Next, the parabolic subalgebra q ⊂ g yields the (small) parabolic subalgebra

qk = q ∩ k. As already explained in the paragraphs preceding Lemma 18.5.5, both
parabolic subalgebras are uniquely described by the subsets
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� := �(q) = 	(q, h) ∩� and �k := �k(qk) = 	(qk, t) ∩�k.

The symmetric pairs (g, k) under consideration are subdivided into two classes,
depending on rank g = rank k or rank g > rank k. If g and k are of equal rank, then
clearly 	θ = 	 and �θ = �. Consequently, every parabolic subalgebra q ⊃ b is
θ-stable.

The more delicate case is when rank g > rank k and therefore 	θ �= 	. Note that
the root system 	θ for g0 of noncomplex type can be read off directly from the affine
Dynkin diagrams as given in Table 18.2.9: 	θ is irreducible and the corresponding
Dynkin diagram is obtained from the affine diagram in Table 18.2.9 by deleting the
vertex labeled µ0. Only for rank g > rank k does the complex involution θ induce a
nontrivial automorphism θ : � → � of the simple root system of (g, h). A parabolic
subalgebra q ⊃ b = b− need not be θ-stable and the equation q = θq holds if and
only if θ� = �.A θ -stable q can also be described by the subset �θ = 	(q, t)∩�θ .

This notation is maintained in the following chapters.

18.6A Structure equations

We implement the Cohomological Lemma 18.5.6 in order to decide for given Lie
algebra data bk ⊂ b ⊂ q and a Bott-regular weight µi ∈ M(t, s) of index 1, whether
or not V λ(µi) is a submodule of H 1(C;O(E((q + θq)s))) ⊂ H 0(C;O(NZ/C)). In
order to verify the conditions stated in the Cohomological Lemma it is sufficient have
the following information:

If q = θq: the Bott-regular weights µi ∈ M(t, s), the corresponding dominant
weights λ(µi) and the simple short roots β&i as linear combinations of the elements
of �θ . More precisely, in the case q = θq it is sufficient to have

(18.6.3) µi =∑�θ
mi
γ γ, λ(µi) =

∑
�θ

iγ γ = µi + nβ&i , β

&
i =

∑
�θ
biγ γ.

In the case q �= θq, it is sufficient to have the roots µ†
i , µ

‡
i , λ

†, λ‡, etc. as linear

combinations of the elements of �. Here, µ†
i , µ

‡
i ∈ 	(h) denote the roots with

µ
†
i |t = µi = µ

‡
i |t.

We refer to the above equations as the structure equations for µ, λ(µ) and β&

(or µ†, µ‡, λ†, etc.).
Since �θ is a root basis of the root system 	(g, t), � is a root basis of 	(g, h),

and M(t, s) ⊂ 	(g, t) ∪ {0}, in the above structure equations all coefficients are
integers of equal sign.

We write supp�θ
(µ) for the positive support {γ ∈ �θ | mγ > 0} and define

supports supp�θ
(λ(µ)) and supp�θ

(β&) similarly. In the same way, we have some

other supports supp�(µ
†) := {ψ ∈ � | m†

ψ > 0}, supp�(λ
†) := {ψ | 
†

ψ > 0},
supp�(λ

‡) := {ψ | 
‡
ψ > 0}, etc.

In the next subsection, assuming knowledge of the coefficients in (18.6.3), we
explain how the structure equations give us sufficient information to apply the Coho-
mological Lemma.
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18.6B Strategy of computation

Given a base cycle (C,Z) and data bk ⊂ b ⊂ q, we have the corresponding bases of
root systems, �θ and �, and the subsets �k ⊂ �k, � ⊂ �, determined by the given
parabolic subalgebra q (and potentially �θ ⊂ �θ if q is θ-stable). In the following
we show how the conditions of the Cohomological Lemma can be verified.

Let a Bott-regular element µi ∈ M(t, s) and β&i ∈ �k (as in the String Lemma
or Lemma 18.5.5) be given. If q is θ-stable, then it is completely determined by the
subset �θ ⊂ �θ . In such a case β&i ∈ �k if and only if supp�θ

(β&i ) ⊂ �θ .

The coefficients in the structure equations (18.6.3) are either all nonnegative or all
nonpositive. Suppose first that the coefficients forµi with respect to some choice of b
and � 0. Since	−θ = 	(b, t) ⊂ M(t, (q+θq)s) it follows thatµi ∈ M(t, (q+θq)s)
for all parabolics q ⊃ b.

Similarly, if the coefficients in the structure equation for µi (or λ(µi)) are pos-
itive, then µi or λ(µi) belongs to M(t, (q + θq)s) if and only if supp�θ

(µi) (or
supp�θ

(λ(µi)), respectively) is a subset of �θ .

The most delicate case is that in which θq �= q, i.e., the open G0-orbits in G/Q
are not measurable in sense of Theorem 4.5.1. As before, µi ∈ M(t, (q+θq)s) if and
only if either supp�(µ

†
i ) or supp�(λ

†
i ) belongs to�, the subset of� which described

the reductive part of q.We proceed similarly with the remaining key objects, i.e., with
λ(µi) and β&i

It remains only to determine the coefficients of the structure equations (18.6.3)
in each situation bref

k ⊂ b ⊂ q. In the cases when there are many Borel subalgebras
b containing the given bref

k , we develop a method for computing the coefficients in
(18.6.3) for all �θ(b) once the coefficients are established for one particular �θ,0 =
�θ(B0). In that situation we use our knowledge of the particular shape of the subset
Wθ

1 ⊂ Wθ ; see (18.3.8).
In the following chapters we discuss in complete detail each (g, θ) which is not

excluded by Theorem 18.4.13.
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Classification for Simple g0 with rank k < rank g

In this and the following chapter we carry out the detailed calculations of the tangent
space of the cycle space at every base cycle, where g0 belongs to one of the Tables
18.5.1 or 18.5.2. Recall if g0 is not in one of these tables, then (Theorem 18.4.13)
the corresponding component C[C](Z) of the cycle space coincides with the closure
of the orbit G·[C].

In the present chapter we deal with those symmetric pairs for which the symmetric
subalgebra k has smaller rank than g. There are two distinct possibilities here. One
is that the simple Lie algebra g0 is absolutely simple, i.e., g simple. The other is that
g0 is the underlying real Lie algebra structure of a complex simple Lie algebra l and
g ∼= l× l. In that case we say that g0 is of complex type.

For convenience, we give a list of all complex symmetric pairs (g, k) and the
corresponding real forms g0 that satisfy rank k < rank g and are not excluded in
Theorem 18.4.13.

g0 absolutely simple, i.e., not of complex type:

• the series g0 = sl(2r;R), i.e., (g, k) = (sl(2r;C), so(2r;C)),
• the series g0 = so(2p + 1, 2q + 1), i.e.,

(g, k) = (so(2r;C), so(2p+ 1;C)⊕ so(2q + 1;C)) with p, q � 1
and r = p + q + 1,

• the case g0 = e6,C4 , where (g, k) = (e6(C), sp(4;C)), and

• the series g0 = sl(2r + 1;R), i.e.,
(g, k) = (sl(2r + 1;C), so(2r + 1;C)).

g0 is of complex type:

• the series g0 = so(2r + 1,C),
• the series g0 = sp(r,C),
• the series g0 = f4(C).
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19.1 Strategy

Our strategy in the description of the module structure of T[C]C, i.e., the set M(C,Z)

of highest weights as in (18.6.2), is the following. Given a complex symmetric pair
(g, k), a τ -stable Cartan subalgebra t ⊂ k and the corresponding fundamental Cartan
subalgebra h = zg(t), we select

• a (small) Borel subalgebra bk = bref
k ⊂ k which contains t and determines the

simple roots �k = {β1, . . . , βr}, and
• a (large) Borel subalgebra bref ⊂ g which contains bk. It determines the bases

�θ = {γ1, . . . , γr} of 	(g, t) and � = {ψ1, . . . , ψn} of 	(g, h). Note that the
involution θ permutes the roots in �.

First, we determine the coefficients in (18.6.3) with respect to this particular
choice of bref

k ⊂ bref . Guided by the observation that the set Wθ
1 ⊂ Wθ , as given

in (18.3.8), parameterizes all Borel subalgebras b = w·bref which contain the given
bref

k , we proceed as follows. The simple root systems defined by the Borel subalgebra
w·bref are {wγ1, . . . , wγr} and {wψ1, . . . , wψm}. The coefficients in the equations
µ =∑�θ

mγ · wγ , µ† =∑�θ
m

†
ψ · wψ are the same as those in

(19.1.1) w−1µ =∑�θ
mγ · γ or w−1µ† =∑� m

†
ψ · ψ

The next steps in our computation are

• explicit determination of the reference bases {γ1, . . . , γr} and {ψ1, . . . , ψm},
• explicit determination of Wθ

1 and its action on t, and, finally,
• description of w−1µ,w−1λ as linear combinations of elements of �ref

θ or �ref .

This gives us the coefficients in the structure equations for b = w·bref .

As w runs through Wθ
1 , wb runs through the set of all Borel subalgebras of g that

contain the fixed bstd
k . Equivalently, the Lie algebra data bk ⊂ wbref ⊂ q runs

through the various data corresponding to all K-base cycles C in G-homogeneous
flag manifolds Z (see Section 17.2).

In the following sections we give matrix realizations of the classical complex Lie
algebras g for which the Cartan subalgebras t and h consist of diagonal matrices.

Notation. Mp×q(A) denotes the algebra of p×q matrices with coefficients in a ring
A, B+m = B+m(A) is the subalgebra of upper triangular matrices, and B−m denotes the
algebra of the lower triangular matrices. Matrix elements are denoted as usual by
Ajk , Bjk,, etc. By Rm ∈ Mm(Z) we denote the symmetric matrix with 1 on the

antidiagonal and 0 elsewhere, I = Im is the identity matrix and Ipq :=
(
Ip
−Iq

)
.

19.2 The series for g0 = sl(2r; R)

In this section we determine explicitly all coefficients in the structure equations 18.6.3
for the symmetric space (sl(2r;C), so(2r;C)). For this, we first select the reference
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Borel subalgebras bref
k ⊂ so(2r;C) and bref ⊂ sl(2r;C) in an appropriate matrix

realization of (g, k).
Define b(z,w) := zt ·R2r ·w which is a nondegenerate symmetric bilinear form

on C2r . View k = so(2r;C) as the Lie algebra of the isometry group of b. Here
g = sl(2r;C) is the Lie algebra of trace zero matrices in M2r (C), and k is the fixed
point set of the involution θ : X �→ R2r ·(−Xt)·R2r of g. To avoid confusion with
matrix multiplication, we write θ(X) as θX.

We choose Cartan subalgebra t of k to be h ∩ k, where h is the Cartan subalgebra
of g consisting of trace 0 diagonal matrices diag(δ1, . . . , δ2r ). Thus t ⊂ k is given by

(19.2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1
. . .

εr
−εr

. . .

−ε1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
⊂
{(

A B

C θA

)∣∣∣∣B = θB

C = θC

}

with A,B,C ∈ Mr (C). The reference Borel subalgebras are

bref
k = so(2r;C) ∩ B−2r and bref = sl(2r;C) ∩ B−2r .

In order to describe the various root systems, consider the diagonal entries ε1, . . . , εr
of (19.2.1) as linear functionals on t. Evidently they are orthogonal with respect
to the Killing form. Below, the various root systems and, with one exception, the
corresponding root bases �k and �θ are expressed in terms of the εj and ordered
according to the Bourbaki order. The exception is r = 3, where k = so(6,C) ∼=
sl(4,C), but where we choose the ordering induced by the orthogonal series D3
rather than by A3.

The long roots in 	θ are ±2εj and their root spaces are one-dimensional. The
short roots in 	θ have two-dimensional root spaces. The simple system for 	(g, h)
is determined by bref and denoted by � = {ψ1, . . . , ψ2r−1} such that ψj are the
consecutive simple roots in the Dynkin diagram ◦ ◦ · · · ◦. In terms of the
diagonal entries δj in h, considered as linear functionals on h (subject to the single
condition δ1 + · · · + δ2r = 0), we have ψk = δk − δk+1, 1 � k � 2r − 1. The
restrictionsψj |t = γj form the simple system for	(g, t). This and other root systems
and simple roots are

	k = {±(εj ± εk)} and �k =
{
ε1 − ε2, ε2 − ε3, . . . ,

εr−1 − εr

εr−1 + εr

}

=:
{

β1, β2 , . . . ,
βr−1

βr

}
,

	θ ∪ {0} = M(t, s) = {±(εj ± εk),±2εj , 0}, and

�θ = {ε1 − ε2, ε2 − ε3, . . . , εr−1 − εr , 2εr} =: {γ1, γ2, . . . , γr = γlo}.
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Before going further, let us discuss the low-dimensional cases. For r = 2 we
have g0 = sl(4;R) ∼= so(3, 3), which will be considered in Section 19.4. For r = 1
we have g0 = sl(2;R); that case is trivial from our point of view, because the only
relevant flag manifold is the projective line P1, the cycles C are points, and we have
C[C](P1) = P1 = SL(2;C)·[C].

For the remainder of this section we assume that r � 3. We use the above root
bases. For a given root α ∈ 	θ there are either one or two roots, α† and possibly
α‡ in 	 such that α†|t = α‡|t = α. Looking at Table 18.5.3 we see that the only
Bott-regular element µ and certain other weights which are relevant for the structure
equations are the following:

µ = 2ξ1 − 2β1 = 2ε2

= 2γ2 + · · · + 2γr−1 + γlo; here µ† = ψ2 + · · · + ψ2r−2

β& = β1 = γ1; here β&† = ψ1 and β&‡ = ψ2r−1

λ = λ(µ) = γ1 + 2γ2 + · · · + 2γr−1 + γlo;
here λ† = ψ1 + · · · + ψ2r−2 and λ‡ = ψ2 + · · · + ψ2r−1.

(19.2.2)

For this particular series, M(t, s) also contains Bott-regular weights of index 2,
namely,

µII = −βr−1 − βr = −2εr−1 ; here µ
†
II = −ψr−1 − ψr − ψr+1.

The next step is to determine the various large Borel subalgebras which contain bref
k .

According to Corollary 18.3.6, this can be done in terms of certain Weyl groups.
Since Wk

∼= W(t, so(2r)) ∼= Sr � Zr−1
2 and Wθ ∼= W(t, sp(r)) ∼= Sr � Zr

2,
it follows that |Wθ/Wk| = 2. Thus there are only two θ -stable Borel subalgebras
containing the given bref

k . Geometrically, this means that for g0 = sl(2r;R) there
are exactly two base cycles in the full flag G/B and consequently at most two base
cycles in a general flag manifold G/Q.

In order to find the second Borel subalgebra, we apply the reflection sγlo . This
is motivated by the observation that γlo = γr ∈ �θ \ �k. The new simple systems
which are determined by b̃ := sγlo(b

ref ) are

γ̃1 = γ1, . . . , γ̃r−2 = γr−2, γ̃r−1 = γr−1 + γlo, γ̃lo = −γlo;
ψ̃j = ψj for j < r − 1, ψ̃r−1 = ψr−1 + ψr, ψ̃r = −ψr, ψ̃r+1 = ψr + ψr+1.

A simple check shows that the coefficients in the structure equations with respect
to the root bases given by the second Borel subalgebra b̃ are identical with those in
(19.2.2).

Since we know the coefficients of the structure equations for all pairs C ⊂ Z, we
can use the Cohomological Lemma to prove the following.

Theorem 19.2.3. Let Z = G/Q, where the parabolic subalgebra q = q� is given by
a subset � ⊂ �, and let C ⊂ Z be any base cycle. Then in all cases C(Z) is smooth
at [C] and
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T[C]C(Z) =

⎧⎪⎨⎪⎩
T[C](G·[C]) if � �= {ψ2, ψ3, . . . , ψ2r−2}
T[C](G·[C])⊕ V

ξ2
so(2r) if � = {ψ2, ψ3, . . . , ψ2r−2}, r > 3,

T[C](G·[C])⊕ V
ξ2+ξ3
so(6) if � = {ψ2, ψ3, . . . , ψ2r−2}, r = 3,

where V ξ2
so(2r) (respectively, V ξ2+ξ3

so(6) ) indicates the representation of k = so(2r;C) on∧2
V std

so(2r). In particular, the set M(C,Z) in (18.6.2) either is empty or coincides
with {ξ2} (respectively, {ξ2 + ξ3}), where ξj is the j th fundamental highest weight of
so(2r;C).
Proof. We have noted that the structure equations for any of at most two base cycles in
a given flag manifoldZ = G/Q� are identical. Further, from the structure equations
(19.2.2),µ ∈ M(t, (q�+θq�)s) if and only if� ⊃ {ψ2, ψ3, . . . , ψ2r−2}. By the Co-
homological Lemma 18.5.6, the submoduleV ξ2

so(2r) is contained inH 1(C;O(E((q�+
θq�)s))) ⊂ T[C]C(Z) if and only if {β&†, β&‡} �⊂ 	(qr�, h) (Lemma 18.5.5) and nei-
ther of the roots λ†, λ‡ is contained in 〈〈�〉〉Z.

It remains to prove smoothness at all cycles C with dim T[C]C(Z) > dimG·[C].
Note that µII ∈ M(t, bs) ⊂ M(t, (q� + θq�)s). However, in the only relevant case
where � = {ψ2, ψ3, . . . , ψ2r−2}, both roots

βr−1 = εr−1 − εr = ψr−1|t = ψr+1|t and

βr = εr−1 + εr = (ψr−1 + ψr)|t = (ψr + ψr+1)|t
belong to M(t, qrk). Hence, µII is not highest with respect to qk ∩ (bref

k )+. Thus
H 2(C;O(Fj+1/Fj )) = 0 for all j � 0 (compare Lemma 18.4.10) and consequently
H 2(C;O(E((q� + θq�)s))) = H 1(C;O(NZ�(C))) = 0. ��

19.3 The series for g0 = sl(2r + 1; R)

This series of real simple Lie groups was excluded from the considerations above,
because the root system 	θ is not reduced and Condition 18.4.3 is not fulfilled. Thus
we determine the dominant and Bott-regular weights by ad hoc methods. As in the
preceding section, b : C2r+1 ×C2r+1 → C is the nondegenerate symmetric bilinear
form given by b(z,w) := zt ·R2r+1·w and θ : X �→ R2r+1·(−Xt)·R2r+1 =: θX is
the Cartan involution of g0 in terms of matrices. As before, we identify sl(2r + 1;C)
with the space of trace zero matrices in M2r+1(C). The matrix realization of t ⊂ k is
given by

(19.3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1
. . .

εr
0
−εr

. . .

−ε1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⊂
⎧⎨⎩
⎛⎝A u B

w 0 −utRr
C −Rrwt θA

⎞⎠∣∣∣∣∣∣B =
θB

C = θC

⎫⎬⎭.
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Select bref
k := so(2r+1;C)∩B−2r+1 and bref := sl(2r+1;C)∩B−2r+1 as the reference

Borel subalgebras. The root systems in question, and their simple subsystems�k and
�θ , can be expressed in terms of the εj as follows. For r � 2 we have

	k = {±(εj ± εk),±εj | j �= k} and

�k = {ε1 − ε2, ε2 − ε3, . . . , εr−1 − εr , εr} =: {β1, β2, . . . , βr−1, βsh};
	θ ∪ {0} = M(t, s) = {±(εj ± εk),±εj ,±2εj , 0 | j �= k} and

�θ = �k =: {γ1, . . . , γr−1, γr = γsh}.
The �k-dominant roots in 	θ can only be linear combinations of ξ1 = ε1 and ξ2 =
ε1 + ε2. Hence,

�+k,wt ∩M(t, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2ξ1 = 2ε1 = 2

∑
�k
βj

ξ2 = ε1 + ε2 = β1 + 2
∑

�k\β1
βj

ξ1 = 2ε1 = ∑
�k
βj

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

If r = 1, then 	k = {±ε1} ⊃ {ε1} = {β} = �k and 	θ = {±ε1,±2ε1}. The
dominant weights in �+k,wt ∩M(t, s) are 2β, β and 0.

Finally, let ψ1, . . . , ψ2r be the consecutive simple roots in 	(g, h) such that
ψj |t = βj = γj for j = 1, . . . , r.

Various Weyl groups. Concerning the various Weyl groups, note that Wθ = Wk =
W(t, so(2r + 1)) ∼= Sr �Zr

2. This follows from the fact that 	k is a reduced version
of 	θ . Therefore |Wθ/Wk| = 1 and the standard Borel subalgebra b chosen above is
the only Borel that contains bk. Hence, every flag manifold G/Q contains precisely
one base cycle C (with respect to g0 = sl(2r + 1,R)).

Consider the trivial case r = 1. Since rank of k = so(3,C) is 1 there are no
weights of index 2. Both weights −β and −2β are Bott-regular of index 1, while
λ(−β) = 0 and λ(−2β) = β = 2ξ �= 0.

The remainder of this section is devoted to the nontrivial case r > 1.

Bott-regular weights of index 1. Recall that 〈, 〉 denotes the Killing form on g
and 〈ϕ1 |ϕ2〉 := 2〈ϕ1,ϕ2〉〈ϕ2,ϕ2〉 . Going through the first part of the proof of the String
Lemma 18.4.4, one sees that it applies equally well to the situation where the numbers
〈ϕ1 |ϕ2〉, ϕj ∈ M(t, s), take values in the set {0,±1,±2,±4}. Ifβ ∈ �k is the simple
root with a dominant sβ(µ + ρk), then exactly as in the proof of the String Lemma,
we obtain the inequality µ(hβ) � −2.

Now if µ(hβ) = −4, then µ = −2β, and a simple check shows that−2β cannot
be Bott-regular of index 1 or 2 (recall that r � 2). Hence, µ(hβ) = −2 and we
may proceed as in the proof of the String Lemma. Either −µ ∈ M(t, s) ∩�k = �k

and λ(−βj ) = 0 for all simple βj , or µ is an edge of a 3-string µ,µ+ β&, µ+ 2β&

for some β& ∈ �k such that µ + β& is nonzero dominant. In the latter case λ(µ) =
µ + β&. Taking into consideration the above list of dominant weights in M(t, s), a
small calculation shows that there are two Bott-regular weights of index 1 such that
λ(µ) �= 0. These are
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µ = ξ2 − β1 = 2ε2 = 2β2 + · · · + 2βr−1 + 2βsh

= (ψ2 + · · · + ψ2r−1)|t
λ(µ) = ξ2 = ε1 + ε2 = β1 + 2β2 + · · · + 2βr−1 + 2βsh

= ∑2r−1
1 ψj |t or

∑2r
2 ψj |t

µ̃ = ξ1 − βsh = ε1 − εr = β1 + β2 + · · · + βr−1

= ψ1 + · · · + ψr−1|t or ψr+2 + · · · + ψ2r |t
λ(µ̃) = ξ1 = ε1 = β1 + · · · + βr−1 + βsh

= ψ1 + · · · + ψr |t or ψr+1 + · · · + ψ2r |t.
Bott-regular weights of index 2. In order to find Bott-regular weights µ of index
2, note that the claim in the second part of the String Lemma also remains true for
(g, k) = (sl(2r + 1;C), so(2r + 1;C)), i.e., in the case when 〈ϕ1 |ϕ2〉 belong to
{0,±1,±2,±4} for ϕj ∈ M(t, s). The inequalities (18.4.6) imply that the Bott-
regular weights µ of index 2 necessarily satisfy

(19.3.2) µ(hβ) = µ(hβ ′) = −2

for some pair β, β ′ of orthogonal simple roots. However, the argument in the proof of
Lemma 18.4.4, which forcesµ = −β−β ′ under the assumption (18.4.3), does not go
through here, because the nonreduced root systemM(t, s) contains roots of 3 different
lengths. A correct argument, which excludes the possibility that µ �= −β − β ′, goes
as follows. Observe that µ + β + β ′ = sβsβ ′(µ + ρk) − ρk is dominant. If it were
not 0, it could only be the shortest nonzero dominant weight in M(t, s), in other
words, µ + β + β ′ = ξ1 = ε1. Since β and β ′ are orthogonal, a glance at 	θ

shows that the only such combination of elements in 	θ (up to the order of β, β ′) is
µ = ε2 − εr = ∑r−1

2 βj , β = β1 = ε1 − ε2 and β ′ = βr = εr . In such a case,
however, µ(hβ1) = −1 which violates (19.3.2).

The remaining possibility forµ to be Bott-regular of index 2 is thenµ = −β−β ′.
Since the simple roots β and β ′ must be orthogonal,−β−β ′ would be a combination
of at least three different εj , and therefore cannot be an element in	θ . In conclusion,
in the case under consideration there are no Bott-regular weights µ of index 2 in
M(t, s), i.e., H 1(C;O(NZ(C))) = 0 for all flags Z and base cycles C.

Summarizing, we have proved the following.

Theorem 19.3.3. Suppose that g0 = sl(2r + 1;R). Let Z = G/Q, where the
parabolic subalgebra q = q� with � ⊂ �, and let C ⊂ Z be the (unique) base
cycle. If r > 1, then

T[C]C(Z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T[C](G·[C])⊕ V

ξ1
Br

if {ψ1, . . . , ψr−1} ⊂ � ⊂ � \ {ψr,ψr+1} or

if {ψr+2, . . . , ψ2r } ⊂ � ⊂ � \ {ψr,ψr+1}
T[C](G·[C])⊕ V

ξ2
Br

if � = {ψ2, ψ3, . . . , ψ2r−1}
T[C](G·[C]) otherwise.

In particular, the setM(C,Z) in the decomposition formula (18.6.2) is either empty or
contains one element from {ξ1, ξ2}, where ξ1, ξ2 are the first and second fundamental
weights of so(2r + 1;C).
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If r = 1, so g0 = sl(3;R), then T[C]C(Z) = T[C](G·[C]) and C[C](Z) ∼= CP5 if
Z = CP2, and T[C]C(Z) = T[C](G·[C])⊕ V std

so(3) if Z = SL(3;C)/B.

19.4 The series for g0 = so(2p + 1, 2q + 1)

Now we look at the cases corresponding to the series g0 = so(2p+ 1, 2q + 1). Here
g = so(2(r + 1);C), where r = p+ q, and we assume p � q. We only consider the
case where p, q � 1, disregarding the series so(1, 2r + 1) where the highest weight
of k × s → s is short. In the latter case Theorem 18.4.13 shows that there are no
Bott-regular weights µ ∈ M(t, s) with λ(µ) �= 0.

Again we choose appropriate matrix realizations. Define

so(2r + 2;C) = {X ∈ M2r+2(C) : R2r+2·(−X)t ·R2r+2 = X}.
Consider further the involutive automorphism of so(2r + 2;C), given by

θ : X �→
⎛⎝Ipq R2

−Iqp

⎞⎠ ·X ·
⎛⎝Ipq R2

−Iqp

⎞⎠ := θX.

Then the fixed point set gθ is k = so(2p + 1;C)× so(2q + 1;C). It consists of all
matrices

(19.4.1)

⎛⎜⎜⎜⎜⎜⎜⎝

Ap 0 up 0 Bp

0 Aq uq Bq 0

vp vq
0 0
0 0

−utqR −utpR
0 Cq −Rvtq θAq 0
Cp 0 −Rvtp 0 θAp

⎞⎟⎟⎟⎟⎟⎟⎠,

where A•, B•, C• ∈ M•(C), B = θB and C = θC, u• ∈ M•×2(C), v• ∈ M2×•(C)
with u•1 = u•2 and v1• = v2•. The Cartan subalgebra h of g consists of the diagonal
matrices in g,

(19.4.2) h = {Diag(ε1, . . . , εr+1)} :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1
. . .

εr+1
−εr+1

. . .

−ε1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
∼= Cr+1

and t is the subalgebra given by εr+1 = 0.
As before the εj , 1 � j � r + 1, denote the linear coordinate functions on h or

t. They are orthogonal with respect to the Killing form. The subalgebras bref
k ⊂ bref

consist of lower triangular matrices in the above matrix realizations of k and g. The
corresponding root systems and simple subsystems are given as follows.
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	 = {±εj ± εk}1�j<k�r+1,

� =
{
ε1 − ε2, . . . , εr−1 − εr ,

εr − εr+1
εr + εr+1

}
=:
{
ψ1, . . . , ψr−1,

ψr
ψr+1

}
,

	θ = {±εj ± εk}1�j<k�r ∪ {±εj }1�k�r ,

�θ = {ε1 − ε2, . . . , εr−1 − εr , εr} = {γ1, . . . , γr−1, γsh},
	k = 	

(1)
k ∪	(2)

k with

	
(1)
k = {±εj ± εk, i ± εj }1�j<k�p (respectively, {±ε1} for p = 1),

	
(2)
k = {±εj ± εk, ± εj }p+1�j<k�p+q (respectively, {±εr} for q = 1),

�
(1)
k = {ε1 − ε2, . . . , εp−1 − εp, εp} =: {β(1)1 , . . . , β

(1)
p−1, β

(1)
sh },

�
(2)
k = {εp+1 − εp+2, . . . , εr−1 − εr , εr}. =: {β(2)1 , . . . , β

(2)
q−1, β

(2)
sh }.

Looking at Table 17.4.8, or arguing directly as explained in the few paragraphs pre-

ceding Table 18.5.3, we see that as a k-module, s = V std
SO2p+1

⊗V std
SO2q+1

= V ξ
(1)
1 ⊗V ξ

(2)
1

for p, q > 1 (or= V 2ξ (1)⊗V ξ
(2)
1 for p = 1 < q, or= V 2ξ (1)⊗V 2ξ (2) for p = q = 1).

The modules V std
SO2p+1

and V std
SO2q+1

decompose into the one-dimensional t-eigenspaces
with weights {±εj , 0}1�j�p and {±εj , 0}p+1�j�p+q , respectively. With the aid of
this information the set M(t, s) can be immediately described. The structure equa-
tions with respect to the reference root basis � for the dominant, Bott-regular and
simple roots are given as follows (see also Table 18.5.3):

(19.4.3)

µ = ξ
(1)
1 − β

(2)
sh = ε1 − εr = ψ1 + · · · + ψr−1|t

(= 2ξ (1) − β
(2)
sh for p = 1),

λ = ξ
(1)
1 = ε1 = ψ1 + · · · + ψr−1 + ψr |t

= ψ1 + · · · + ψr−1 + ψr+1|t,
β& = β

(2)
sh = εr = ψr |t = ψr+1|t,

µ̃ = ξ
(2)
1 − β

(1)
sh = εp+1 − εp = −ψp|t (= 2ξ (2) − β

(1)
sh for q = 1),

λ̃ = ξ
(2)
1 = εp+1 = ψp+1 + · · · + ψr−1 + ψr |t

= ψp+1 + · · · + ψr−1 + ψr+1|t,
β̃& = β

(1)
sh = εp = ψp + · · · + ψr−1 + ψr |t

= ψp + · · · + ψr−1 + ψr+1|t.
The only Bott-regular weightµII ∈ M(t, s) of index 2 is, in view of the String Lemma,

µII = −β(1)sh − β
(2)
sh = −εp − εr = −ψp − · · · − ψr − ψr+1.

There are quite a few Borel subalgebras b of g that contain the fixed bref
k . To see

this we just compute the relevant Weyl groups. The Weyl group of 	θ is Wθ ∼=
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W(so(2r + 1)) ∼= Sr � Zr
2. Identify t with all r-tuples (ε1, . . . , εr ). The action

Wθ × t→ t is given as follows. The permutation group component Sr permutes the
entries ε1, . . . , εr , and Zr

2 acts on (ε1, . . . , εr ) by sign changes.
For the other Weyl group, decompose k = k(1) ⊕ k(2). Then

Wk = Wk(1) ×Wk(2) = (Sp � Zp

2 )× (Sq � Zq

2),

and therefore |Wθ |
|Wk| = r!

p!q! . Thus there are r!
p!q! θ-stable Borel subalgebras b of g that

contain the given bk.
Each such b gives rise to a base cycle C = Cb in G/B. In order to compute

T[C]C, we need to determine the coefficients in the structure equations with respect to
all root bases given by the various b. As explained in the introduction to this chapter,
we use the subset Wθ

1 ⊂ Wθ defined in (18.3.8).
Thus our next goal is to describe Wθ

1 = {w ∈ Wθ | w·bref ⊃ bref
k }. Before going

into this, we should recall that the elements w ∈ Wθ
1 are defined by the property that

wb ∩ k = bref
k . It can happen, however, that w·bref

k �= bref
k .

Borel subalgebras bref
k = b(1) × b(2), and b determine the Weyl chambers

C+(bref
k ) = {ξ ∈ tR | β(ξ) < 0 ∀β ∈ 	(bref

k , t)}
and

C+(b) = {ξ ∈ tR | γ (ξ) < 0 ∀ γ ∈ 	(b, t)}.
Note that b ⊃ bref

k if and only if C+(b) ⊂ C+(bref
k ). Now tR is identified with

the real diagonal matrices as in (19.4.2). The two Weyl chambers consist of all
D := Diag(δ1, . . . , δr , 0) whose diagonal entries satisfy appropriate inequalities,

(19.4.4) C+(bref
k ) = {D | δ1 > · · · > δp > 0 and δp+1 > · · · > δr > 0}

and

(19.4.5) C+(bref ) = {D | δ1 > · · · > δp > δp+1 > · · · > δp+q > 0}.
We now search for those elements w ∈ Wθ such that w · C+(bref ) ⊂ C+(bref

k ), in
other words for diagonal matrices D whose entries satisfy (19.4.5) and such that the
entries of w·D satisfy (19.4.4). We view Wθ ∼= Sr � Zr

2 as acting on the diagonal
entries ε1, . . . , εr of Diag(ε1, . . . , εr , 0). We claim that the elements from Wθ

1 can
be chosen from Sr . To see this, select elements j1 < j2 < · · · < jp from {1, . . . , r},
let j := {j1, . . . , jp}, and order the complementary set {1, . . . , r} \ j in increasing
order, i.e., as jp+1 < · · · < jp+q . Define wj ∈ Sr ⊂ Wθ acting by permutation on
the index set {1, . . . , r} by

w−1
j (1) = j1, w

−1
j (2) = j2, . . . , w−1

j (r) = jr .

We claim that as j := {j1, . . . , jp} runs through all p-element subsets of {1, . . . , r},
the wj exhaust Wθ

1 . For this, note that the action of the wj on the torus t ∼=
{Diag(ε1, . . . , εr , 0)} ∼= {(ε1, . . . , εr )} is given by

(19.4.6) wj (ε1, . . . , εr ) = (εw−1(1), . . . , εw−1(r)) = (εj1 , . . . , εjr ).
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Given δ1, . . . , δr which are subject to (19.4.5), for every j the components of
wj (δ1, . . . , δr ) are subject to (19.4.4). Finally note that for any linear functional
ν : t→ C, expressed as a linear combination of the εj , we havew−1

j ν(ε1, . . . , εr ) =
ν(wj (ε1, . . . , εr )) = ν(ε1, . . . , εr ).

Having an explicit description of the elements in Wθ
1 ⊂ Wθ , we apply them to

µ, λ = λ(µ), β& to compute w−1
j µ,w−1

j λ. Given j ⊂ {1, . . . , r} with |j | = p, we
obtain

(19.4.7)

w−1
j
µ = εj1 − εjr =

{
ψj1 + ψj1+1+ · · · + ψjr−1|t if j1 < jr ,

−ψq |t if j1 > jr ,

w−1
j
β& = εjr = ψjr + ψjr+1+ · · · + ψr−1 + ψr |t

= ψjr + ψjr+1+ · · · + ψr−1 + ψr+1|t,
w−1

j
λ = εj1 = ψj1 + ψj1+1+ · · · + ψr−1 + ψr |t

= ψj1 + ψj1+1+ · · · + ψr−1 + ψr+1|t,

w−1
j
µ̃ = εjp+1 − εjp =

{
−ψp if jp+1 > jp,

ψjp+1 + ψjp+1+1 + · · · + ψjp−1 if jp+1 < jp,

w−1
j
β̃& = εjp = ψjp + ψjp+1+ · · · + ψr−1 + ψr |t

= ψjp + ψjp+1+ · · · + ψr−1 + ψr+1|t,
w−1

j
λ̃ = εjp+1 = ψjp+1 + ψjp+1+1+ · · · + ψr−1 + ψr |t

= ψjp+1 + ψjp+1+1+ · · · + ψr−1 + ψr+1|t.
Since we know the coefficients in the corresponding structure equations explicitly,
the conditions of the Cohomological Lemma can be now checked for every C ⊂ Z.

Recall that given ν ∈ 	(g, t) we write ν† (and possibly also ν‡) for the roots in
	(g, h) such that ν†|t = ν = ν‡|t. In the statement of the following theorem we use
several times expressions of the form “supp(w−1(ν)) ⊂ �.’’ They are abbreviations
of the following relations:

• If ν ∈ {µ, µ̃, λ, λ̃}, then “supp(w−1(ν)) ⊂ �’’ means that the support of at
least one (w−1ν)† or (w−1ν)‡ is a subset of �. According to our convention
supp(

∑
nψψ) = {ψ ∈ � | nψ > 0}.

• For ν = β&, “supp(w−1(ν)) ⊂ �’’ means that supp(w−1β&)† ∪ supp(w−1β&)‡

is contained in �. Similarly, for ν = β̃&, “supp(w−1(ν)) ⊂ �’’ means that
supp(w−1β̃&)† ∪ supp(w−1β̃&)‡ is contained in �.

In this sense, if ν ∈ {µ, µ̃, λ, λ̃}, then “supp(w−1(ν)) �⊂ �’’ means that nei-
ther of the supports supp(w−1ν)†, supp(w−1ν)‡ is a subset of �. Similarly,
“supp(w−1(β&)) �⊂ �’’ means supp(w−1(β&))† ∪ supp(w−1(β&))‡ �⊂ �.

Theorem 19.4.8. In the series for g0 = so(2p + 1, 2q + 1), the cycle space C(Z)
is smooth at [C] for every base cycle C and every flag Z. The tangent space of the
cycle space C(Z) at various [C] is given as follows:

1. In the full flag manifold Z = G/B there exist two base cycles C(1), C(2) with
the following property. For every closed K-orbit C,
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T[C]C(X) =

⎧⎪⎨⎪⎩
T[C](G·[C])⊕ V std

SO(2p+1) if C = C(1),

T[C](G·[C])⊕ V std
SO(2q+1) if C = C(2),

T[C](G·[C]) if C �= C(j), j = 1, 2.

2. Let q = q� and Z = G/Q, where � ⊂ �. If j = {j1, . . . , jp} ⊂ {1, . . . , r}
with j1 < · · · < jp, and if and wj ∈ Wθ

1 as in (19.4.6), define the base cycle
C(wj ) := K·[wjB

ref ] ⊂ G/Bref . Let π : G/B → G/Q be the canonical
projection and set C := π(C(wj )). Then

T[C]C(Z) = T[C](G·[C])⊕
⊕

λ∈M(C,Z)

V λ,

where M(C,Z) ⊂ {λstd
SO(2p+1), λ

std
SO(2q+1)}, and M(C,Z) is given as follows:

(2a) M(C,Z) = ∅
(i) if supp(w−1

j µ) �⊂ � and supp(w−1
j µ̃) �⊂ �,

(ii) or if

⎧⎪⎨⎪⎩
either supp(w−1

j β&) or supp(w−1
j λ(µ)) ⊂ �

and

either supp(w−1
j (β̃&)) or supp(w−1

j λ(µ̃)) ⊂ �

(iii) or if

⎧⎪⎨⎪⎩
supp(w−1

j µ) �⊂ �

and

either supp(w−1
j (β̃&)) or supp(w−1

j λ(µ̃)) ⊂ �

(iv) or if

⎧⎪⎨⎪⎩
supp(w−1

j β&) or supp(w−1
j λ(µ)) ⊂ �

and

supp(w−1
j µ̃) �⊂ �.

(2b) M(C,Z) = {λstd
SO(2p+1)} if⎧⎪⎨⎪⎩

supp(w−1
j µ) ⊂ � and

supp(w−1
j β&) �⊂ � and

supp(w−1
j λ(µ)) �⊂ �

⎫⎪⎬⎪⎭ and

⎧⎪⎨⎪⎩
supp(w−1

j µ̃) �⊂ � or

supp(w−1
j (β̃&)) ⊂ � or

supp(w−1
j λ(µ̃)) ⊂ �

⎫⎪⎬⎪⎭ .

(2c) M(C,Z) = {λstd
SO(2q+1)} if⎧⎪⎨⎪⎩

supp(w−1
j µ) �⊂ � or

supp(w−1
j β&) ⊂ � or

supp(w−1
j λ(µ)) ⊂ �

⎫⎪⎬⎪⎭ and

⎧⎪⎨⎪⎩
supp(w−1

j µ̃) ⊂ � and

supp(w−1
j β̃&) �⊂ � and

supp(w−1
j λ(µ̃)) �⊂ �

⎫⎪⎬⎪⎭ .

(2d) M(C,Z) = {λstd
SO(2p+1), λ

std
SO(2q+1)} if⎧⎪⎨⎪⎩

supp(w−1
j µ) ⊂ � and

supp(w−1
j β&) �⊂ � and

supp(w−1
j λ(µ)) �⊂ �

⎫⎪⎬⎪⎭ and

⎧⎪⎨⎪⎩
supp(w−1

j µ̃) ⊂ � and

supp(w−1
j β̃&)) �⊂ � and

supp(w−1
j λ(µ̃)) �⊂ �.

⎫⎪⎬⎪⎭ .
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Proof. The decomposition of the Zariski tangent spaces as k-module given above
is obtained as a direct application of Lemma 18.5.5 and the Cohomological Lemma
together with the information given by the structure equations (19.4.7).

It remains only to prove the smoothness assertion. By Proposition 17.5.1 it suffices
to show that H 2(C;O(E((q+ θq)s))) = 0. Let t ⊂ bref

k ⊂ b ⊂ q be the Lie algebra
data associated to C ⊂ Z, let qk = qrk � q−nk be the decomposition of qk = q∩ k into
the reductive and nilpotent parts, and let

0 = F 0((q+ θq)s) ⊂ F 1((q+ θq)s) ⊂ · · · =: F 0 ⊂ F 1 ⊂ · · ·
be the canonical filtration of (q+ θq)s as in (17.6.1). Since

µII = −β(1)sh − β
(2)
sh ∈ M(t, ss) ⊂ M(t, (q+ θq)s),

there exists precisely one k such that µII ∈ M(t, F k/F k−1). Now there is only
one such Bott-regular weight of index 2. Hence the Bott–Borel–Weil Theorem 1.6.8
implies that H 2(C;O(Fj /Fj−1)) vanishes for all j except possibly for j = k. Thus
we have the exact k-equivariant sequences.

H 2(C;O(Fj )) −→ H 2(C;O(Fj+1)) −→ 0 for j �= k − 1, and

H 1(C;O(Fk+1)) −→ H 1(C;O(Fk+1/Fk)) ν−→ H 2(C;O(Fk))
η−→ H 2(C;O(Fk+1)) −→ 0.

Consequently, if neither +β(1)sh nor +β(2)sh belongs to M(t, (q + θq)s), then
H 2(C;O(Fk)) = H 2(C;O(Fk/Fk−1)) = C. If one of these weights is in M(t, s),
then µII is not (qs ∩ b+k )-highest and H(C;O(Fk)) vanishes. Thus in the latter case
H 2(C;O(Fk)) = 0 for all j .

It remains to study the case dimH 2(C;O(Fk)) = 1. Since b is θ -stable, we have
−β(1)sh ,−β(2)sh ∈ M(t, bs). Hence,−β(1)sh ,−β(2)sh ∈ M(t, F k+1/F k).

Inspecting the matrix realization (19.4.1), we see that for short roots
α ∈ 	(k, t) we have dim gα = 2, so α ∈ M(t, s). Consequently, −�k ∩M(t, s) =
{−β(1)sh ,−β(2)sh }. In our situation neither of the roots β(1)sh , β

(2)
sh is assumed to be in

M(t, (q + θq)s), i.e., −β(1)sh − β
(2)
sh is (qk ∩ b+k )-highest. Again using the Bott–

Borel–Weil Theorem, the isotypic component H 1(C;O(Fk+1/Fk))0 of the trivial
k-representation is two-dimensional. By (18.4.11) we need only to discuss the trivial
submodules.

Our next goal is to show that the map η in the above exact sequence is the zero
map. This implies that H 2(C;O(Fk+1)) = 0, so dimH 2(C;O(Fj+1)) = 0 for all
j � k. Since dimH 1(C;O(Fk+1/Fk)) = 2, the following statement completes the
proof of smoothness of the cycle space at every C ⊂ G/Q.

Claim. The isotypic component H 1(C;O(Fk+1((q + θq)s)))0 is at most one-
dimensional.
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Proof of the Claim. According to Theorem 1.6.11, it is sufficient to compute the
relative Lie algebra cohomologyH 1(qk, q

r
k;Fk+1((q+θq)s)).We show here that the

cocycle spaceZ1(qk, q
r
k;Fk+1((q+θq)s)) is at most one-dimensional. By definition,

Z1 ⊂ Homqrk
(q−nk , F k+1(q+ θq)s) ⊂ Homt(q

−n
k , F k+1(q+ θq)s).

Since q−nk and Fk+1(q + θq)s are direct sums of one-dimensional t-eigenspaces,
every element c in Homt(q

−n
k , F k+1((q+ θq)s)) has the form

∑
cϕIϕ . Here Iϕ is a

fixed nontrivial element in the space of maps Hom(kϕ, sϕ) between root spaces for
ϕ ∈ 	(q−nk , t) ∩M(t, F k+1) and c =∑ cφIφ is zero if restricted to the root spaces
parameterized by 	(q−nk , t) \ M(t, F k+1). Recall that only short roots in 	k have
two-dimensional t-root spaces. These are the roots

α
(1)
1 = −β(1)sh , α

(1)
2 = −β(1)sh − β

(1)
p−1, . . . , α

(1)
p = −β(1)sh − β

(1)
p−1 − · · · − β

(1)
1 ,

α
(2)
1 = −β(2)sh , α

(2)
2 = −β(2)sh − β

(2)
q−1, . . . , α

(2)
q = −β(2)sh − β

(2)
q−1 − · · · − β

(2)
1 .

Let �k = 	(qk, t) ∩ �k. By our assumption, {β(1)sh , β
(2)
sh } ∩ �k = ∅. Conse-

quently, all of the short roots α(•)• listed above belong to 	(q−n, t). In particular,
c =∑ c
j Iα(
)j

∈ Z1(qk, q
r
k, F

k+1(q + θq)s) for certain constants c
j . The key point

here is the observation that the cocycle condition

(19.4.9) dc (X, Y ) = [X, c(Y )] − [Y, c(X)] − c([X, Y ]) = 0

imposes sufficiently many conditions on the coefficients c
j . To see this, observe that

[k
α
(
)
j

, k−β(
)
j ′
] = k

α
(
)
j+1

for j ′ =
{
p − j if 
 = 1

q − j if 
 = 2

and that c(k−β(
)
j ′
) = 0, because β(•)

j ′ are long for all j ′. Consequently Lemma 19.4.9

implies that c(1)1 determines c(1)2 , . . . , c
(1)
p and c(2)1 determines c(2)2 , . . . , c

(2)
q . Finally,

since [k
α
(1)
1
, s

α
(2)
1
] �= 0 (we have assumed

α
(1)
1 + α

(2)
1 ∈ M(t, F k) ⊂ M(t, F k+1)),

we see that the condition ∂c = 0 also imposes a relation between c
(1)
1 and c

(2)
1 by

plugging in nontrivial ξ ∈ k
α
(1)
1

and ζ ∈ k
α
(2)
1

in the cocycle condition. This proves

that dimZ1(qk, q
r
k, F

k+1(q+ θq)s) � 1, and that proves the claim. ��

19.5 The case g0 = e6,C4

For this particular exceptional real form we determine the structure equations from
the geometry and combinatorics of the relevant root systems.
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Here we have	(g, h) = 	(e6) and	(k, t) = 	(sp(4)). In this case	θ = 	(f4)

because (1)	θ has roots of 2 different lengths, (2)	θ is reduced, and (3)	θ contains
	(k, t). Hence, 	θ can only be of type F4 or C4 (the root system B4 does not have
sufficiently many short roots). Counting dimensions, dim k = 36, dim s = 42, and
using the fact that the dimension of a root space gϕ for ϕ ∈ 	θ is at most two, it
follows that C4 is not possible.

Next we define bref from the simple root system

� =
⎧⎨⎩

ψ2
|

ψ1 ψ3 ψ4 ψ5 ψ6

⎫⎬⎭
and we set bref

k := bref ∩ k. The only point is to express the corresponding simple
system �k = {β1 β2 β3 < β4} in terms of �. These relations are given as
follows.

(19.5.1)

β1 = ψ2 + ψ3 + ψ4|t = ψ2 + ψ4 + ψ5|t,
β2 = ψ1|t = ψ6|t,
β3 = ψ3|t = ψ5|t,
βlo = β4 = ψ4.

These can be deduced from Table 18.2.4 or from the affine Dynkin diagram for E6 in
Table 18.2.9.

Corollary 18.3.6 gives the number of Borel subalgebras b ⊂ g that contain the
fixed Borel subalgebra bref

k . In our case it is

(19.5.2)
∣∣Wθ

Wk

∣∣ = |W(F4)||W(C4)| = 27·32

|S4|·|Z4
2|
= 3.

A simple check shows that the remaining two Borel subalgebras containing bref
k are

b′ := sψ2(b
ref ) and b′′ := sψ2+ψ4 ◦ sψ2(b

ref ).

From Table 18.5.3 we see that µ = ξ2 − β3 = (β1 + 2β2 + 2β3 + β4) − β3 is
the only Bott-regular weight of index 1, and the second part of the String Lemma
implies that there are no Bott-regular weights of index 2. This can also checked
directly by using the facts that (1) k× s→ s is the representation V ξ4

Sp(4), and (2) that
representation can be described as the kernel of the contraction map

ıω :∧4
V std →∧2

V std,

where V std = V ξ1 = ∑4
1 Vεj +

∑4
1 V−εj is the standard representation of k =

isom(V std, ω) ∼= sp(4,C), and Vt is the t-eigenspace with eigenvalue t . This gives
all weights in M(t, s) in terms of linear combinations of ε1, ε2, ε3, ε4.

We have collected all of the information which is needed to compute the coeffi-
cients of the three systems of structure equations. In fact, we need only to write µ as
a linear combination of elements in �,� ′, and � ′′
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(19.5.3)

µ = ψ1 + ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6|t
= ψ ′1 + ψ ′2 + ψ ′3 + 2ψ ′4 + ψ ′5 + ψ ′6|t
= ψ ′′1 + ψ ′′2 + ψ ′′3 + ψ ′′4 + ψ ′′5 + ψ ′′6 |t.

Since supp�•(µ
†) coincides with �• in all three cases, µ never belongs to M(t, (q+

θq)s) for any proper parabolic subalgebra q ⊂ g. The following theorem is the
consequence of this fact, because we have previously shown that for all other real
forms of e6(C) the relevant component of the cycle space is just the closure of the
G-orbit of the base cycle (see Theorem 18.4.13).

Theorem 19.5.4. Let G be the complex exceptional group E6. Then for all flags
Z = G/Q, all real forms g0 of g, and all base cycles C ⊂ Z, we have M(C,Z) = ∅,
in other words T[C]C(Z) = T[C](G·[C]).

19.6 Preliminaries for the cases where g0 is of complex type

In the rest of this chapter we deal with the cases where the real form g0 has a complex
structure J such that (g0, J ) is simple complex Lie algebra. We refer to such a g0
as a real form of complex type. In this case the complexification g = (g0)

C is the
direct sum of two simple ideals. We briefly recall the details of this situation.

Let l denote a simple complex Lie algebra of which g0 is the underlying real
structure. Its complexification has canonical decomposition lC = l1,0 ⊕ l0,1 into the
±i eigenspaces of JC. These are the two ideals in lC. The projection π1,0 : l→ l1,0

is a C-linear isomorphism, but there is no canonical C-linear isomorphism between
l0,1 and l unless we select an antiholomorphic involution in l.

In this case the Cartan involution θ : l → l is J -antilinear, and we may identify
lC with l⊕ l by the C-linear isomorphism

l⊕ l→ lC, (ξ, ζ ) �→ ( 1
2 (ξ − iJ ξ), 1

2 (θζ + iJ θζ )).

In this way l is embedded as the antilinear diagonal in lC = l ⊕ l by ξ �→ (ξ, θξ),
and the C-linear extension θ : l ⊕ l → l ⊕ l is given by reversing the components,
(ξ, ζ ) → (ζ, ξ). In particular, g = k + s, where k is the diagonal in l ⊕ l and
s = {(ξ,−ξ) : ξ ∈ l}.

Now select a Cartan subalgebra hl ⊂ l and consider the Cartan subalgebra h :=
hl ⊕ hl in l⊕ l.According to the above identifications the maximal torus t in k is the
diagonally embedded hl in its centralizer in g, and the latter is the direct sum hl⊕ hl.

Let res : h∗⊕h∗ → h∗ be the restriction map. Then	(k, t) = 	(g, t) = M(t, s)\{0}.
Finally, select a Borel subalgebra bl ⊂ l which we identify with bk by the diagonal
embedding in l⊕ l. It follows that the sum b := bl⊕bl is a θ -stable Borel subalgebra
in g. In fact it is the only one which contains bk. This is equivalent to the fact that
there is only one closed K-orbit C in any flag manifold G/Q = L/Q1 × L/Q2,
when g0 is a real form of complex type. Another coincidence, which considerably
simplifies all computations, is that the isotropy representation k × s → s coincides
with the adjoint representation of k = l on itself.
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As already mentioned, every parabolic subalgebra q that contains b = bl ⊕ bl is
a direct sum q = q1 ⊕ q2, where qj is a parabolic in l that contains bl. The algebra q
is θ-stable if and only if q1 = q2. In any case,

(19.6.1)

q+ θq =
∑

α∈(�r
Q1
∪�r

Q2
)∩	+(lα ⊕ lα) + b−,

q ∩ θq =
∑

α∈(�r
Q1
∩�r

Q2
∩	+)(lα ⊕ lα) + b−,

q ∩ k =
∑

α∈(�r
Q1
∩�r

Q2
∩	+)(lα ⊕ lα)

θ + bk,

where lα are the root spaces in l with respect to hl.

Let � denote the simple roots of l and �j the subsets of � which generate
�r
Qj
⊂ 	. The above decompositions allow us to easily verify the conditions of the

Cohomological Lemma and the String Lemma.
As already mentioned, the String Lemma implies that the cycle space C[C](G/Q)

coincides with the closure of the orbit G·[C] in all cases where the roots in the root
system of l ∼= g0 are of equal lengths. Further, for all real forms of complex type
the second part of the String Lemma tells us that there are no Bott-regular weights in
M(t, s) of index 2. Consequently,

The cycle spaces C[C](Z) are smooth for all real forms g0 of complex type.

This completes the proof of Theorem 18.6.1. ��
In the following we discuss the remaining three families of symmetric pairs in

greater detail in order to detect all cases where the cycle space has greater dimension
than the G-orbit of the base cycle.

19.7 The series for g0 = so(2r + 1; C)

Let β1, . . . , βr = βsh be the consecutive simple roots in the Dynkin diagram with
respect to 	+ = −	(bl, hl) as in Tables 17.4.2 and 17.4.3. As computed in Table
18.5.3, the only Bott-regular element of index 1 in M(t, s) is µ = β1 + · · · + βr−1,

β& = βr = βsh and λ(µ) = β1 + · · · + βr−1 + βr = ξ1, where ξ1 denotes the
first fundamental weight. The representation with highest weight ξ1 is the standard
representation of the orthogonal group, V ξ1 = V std

SO2r+1
.

As before let �j ⊂ �, j = 1, 2, denote the simple root systems that determine
the reductive parts Qr

j of the parabolic subgroup Q = Q1 ×Q2. Note that the case
when one of the parabolics Qj coincides with L is uninteresting, because in this case
G0,K and K0 act transitively on Z and consequently the corresponding component
in the cycle space is just a point. Recall that for every flag Z = G/Q and real form
of complex type there is the unique base cycle C. The following is therefore an
immediate consequence of the Cohomological Lemma.
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Theorem 19.7.1. Let Z = G/Q = L/Q1 × L/Q2 be the flag manifold and
�j ⊂ � = {β1, . . . , βr−1, βsh} the subsets defining Q1 and Q2. Then T[C]C(Z) =
T[C](G·[C]) ⊕ V std

SO2r+1
if and only if either {β1, . . . , βr−1} = �1 and Q2 �= L or

{β1, . . . , βr−1} = �2 and Q1 �= L. In all other cases T[C]C(Z) = T[C](G·[C]). In
other words, the set M(C,Z) as in (18.6.2) is either empty or consists of the single
element ξ1 which is the first fundamental weight of so(2r + 1;C).

19.8 The series for g0 = sp(r; C)

Let β1, . . . , βr = βlo be the consecutive simple roots in the Dynkin diagram with
respect to 	+ = −	(bl, hl) in the standard notation as in Tables 17.4.2 and 17.4.3.
Hereµ = 2β2+· · ·+2βr−1+βlo, β

& = β1, andλ(µ) = β1+2β2+· · ·+2βr−1+βr =
ξ2, where ξ2 denotes the second fundamental weight andV ξ2 = (

∧2
V std

Spr
)irr.As in the

previous case, the theorem below directly follows from the Cohomological Lemma.

Theorem 19.8.1. Let Z = G/Q = L/Q1 × L/Q2 be the flag manifold and
�j ⊂ � = {β1, . . . , βr−1, βlo} the subsets defining Q1 and Q2. Then T[C]C(Z) =
T[C](G·[C]) ⊕ V ξ2 if and only if either {β2, . . . , βr} = �1 and Q2 �= L or
{β2, . . . , βr} = �2 and Q1 �= L. In all other cases T[C]C(Z) = T[C](G·[C]) In
other words, the set M(C,Z) is either empty or consists of the single element ξ2
which is the second fundamental weight of sp(r;C).

19.9 The case g0 = f4(C)

As in the case we just considered, let β1, . . . , β4 be the simple roots of the exceptional
Lie algebra f4 as in Tables 17.4.2 and 17.4.3. The Bott-regular weight (see Table
18.5.3) of index one is µ = β1 + 2β2 + 2β3 + 2β4. The simple root β& as in
the Cohomological Lemma is ψ3. The dominant weight in the corresponding β&-
string is α1 + 2α2 + 3α3 + 2α4. This is just the fourth fundamental weight ξ4 of
f4. Note that the support of µ is the entire simple root system �l. It follows that if
M(t, (q + θq)s) contains µ, then according to (19.6.1) Q1 = L or Q2 = L. But in
that case λ(µ) ∈ M(t, (q+ θq)s), and the Cohomological Lemma has the following
consequence.

Theorem 19.9.1. Let Z = G/Q = L/Q1 × L/Q2 be an arbitrary F4 × F4- flag
manifold and let C be the unique base cycle. Then T[C]C(Z) = T[C](G·[C]), and the
component of the cycle space containing [C] is the closure of the orbit G·[C], i.e.,
M(C,Z) = ∅.

19.10 The case g0 = g2(C)

Since the roots of the exceptional Lie algebra g2 do not satisfy the condition (18.4.3),
we first have to directly determine the Bott-regular weights of indices one and two.
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Since M(t, s) can be identified with the roots of the complex Lie algebra g2 together
with 0, we directly check the following (i.e., without using the String Lemma) for a
given simple root system �g2 = {βsh, βlo}.
• The fundamental weights are ξsh = βlo + 2βsh and ξlo = 2βlo + 3βsh.
• There are no weights of index 2.
• The only Bott-regular weight of index 1 is µ = βlo and in this case λ(µ) =

µ+ 2βsh = ξsh.

Even though the String Lemma in its present formulation cannot be applied to
our situation, the Cohomological Lemma does indeed apply. Let Qlo and Qsh denote
the two proper parabolic subgroups of G2 with � = {βlo} and � = {βsh}. In this
notation we have the final result for real forms of complex type.

Theorem 19.10.1. LetZ = G2/Q1×G2/Q2 be aG2×G2-flag manifold andC ⊂ Z

the (unique) base cycle. Then T[C]C(Z) = T[C](G·[C])⊕V ξsh if and only if Q is one
of the parabolic subgroups Qlo ×Q2 with Q2 �= G2 or Q1 ×Qlo and Q1 �= G2. In
all other cases the corresponding component of the cycle space in the closure of the
orbit G·[C]. In other words, M(C,Z) is empty or consists of the first fundamental
weight ξ1 (compare Table 1.2.3) for g2(C).
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Classification for rank k = rank g

In this chapter we investigate the series of real forms g0 = k0+s0 for which rank k =
rank g. This means that a Cartan subalgebra t of k is already a Cartan subalgebra of g.
Consequently, all ad(t)-eigenspaces gϕ , ϕ ∈ 	θ , are one-dimensional and θ -stable.
In particular, θ stabilizes every parabolic subalgebra q ⊃ t. Therefore, throughout
this chapter we have

t = h, 	θ = 	, �θ = �, and q = q+ θq.

In this equal rank case, simple rootsβ ∈ �k ⊂ 	k do not belong toM(t, s). According
to the second part of the String Lemma 18.4.4, this implies that M(t, s) does not
contain any Bott-regular weights of index 2. Therefore, an analysis of the second
row in the exact sequence (18.5.7) shows that, for any given parabolic q ⊃ t and
filtration F 0qs ⊂ F 1qs ⊂ · · · the cohomology groups H 2(C;Fk) vanish for all k.
Hence, due to Propositions 17.5.1 and 17.5.4, we have proved the following.

Proposition 20.0.1. Let Z be any flag manifold and C ⊂ Z a base cycle associated
to a real form g0 with the property that rank g = rank k. Then H 1(C;NZ(C)) = 0
and consequently C(Z) is smooth at [C].

20.1 The series for g0 = sp(r; R)

The only series of real forms of g ∼= sp(r;C) which admits closed K-orbits C in flag
manifolds Z with cycle space component C[C](Z) larger than the closure of G([C])
are the hermitian real forms g0 ∼= sp(r;R).

Let us fix the notation in this case. In the one-dimensional center z0 of k0 there
exists an element J0 which induces a complex structure on s0 which can naturally be
identified with the tangent space at 1·K0 of G0/K0. Then G0/K0 is holomorphically
equivalent to a a bounded symmetric domain in (s0, ad(J0)).

Using k = k′ ⊕ zk = k′ ⊕C·J0 we write χ : t→ C for the linear functional given
by χ(J0) = i and χ(t ∩ k′) = 0. The complexified space s = (s0, ad(J0))

C has the
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decomposition s = s+ + s− where s± is the (±i)-eigenspace of ad(J0). Since s±
are direct sums of root spaces, we have a similar decomposition, qs = qs+ + qs− :=
(q ∩ s+)+ (q ∩ s−), for every parabolic algebra that contains t.

As a fine technical point, note that if C = K(z) ⊂ Z = G/Q is a cycle, then
the center ZK of K acts trivially on it. However, ZK (or zk) acts nontrivially on the
normal bundle NZ(C) = E(qs+)+ E(qs−) of C. Precisely, the center zk acts by ±χ
on E(qs±).

Let us give a matrix realization of t ⊂ k ⊂ g and express the various root systems
and weights in terms of the diagonal entries of t. To start with, define the skew-
symmetric matrix

Ra :=

⎛⎜⎜⎜⎝
−1

1
−1

1

..
.

−1
1

⎞⎟⎟⎟⎠ ∈ M2r

and the involutive automorphism η : X �→ Ra(−Xt)Ra =: ηX. The involution η

defines the complex Lie algebra g ∼= sp(r,C) as a subalgebra of M2r : sp(r,C) =
{X ∈ M2r (C) : X = ηX} and g0 ∼= sp(r,R) = sp(r,C) ∩ M2r (R). As the
complexification θ of an appropriate Cartan involution g0 → g0, we select θ(X) =
I r,r ·X·I r,r . In terms of matrices, the subalgebras k ⊂ g are

(20.1.1)

{(
A 0
0 ηA

)∣∣∣∣A ∈ Mr (C)
}
⊂
{(

A S+
S− ηA

)∣∣∣∣ S± = ηS±
}

and k has Cartan subalgebra t = h ∼= Cr , which consists of all matrices

Diag(ε1, . . . , εr ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1 0
. . .

...

εr 0 · · · 0
0 · · · 0 −εr

...
. . .

0 −ε1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Select J0 := i
2Ir,r ∈ t. Then the matrices of (r;C) with A = S− = 0, in (20.1.1), for

the+i eigenspace of ad(J0). Select bref
k = gl(r;C)∩B− and bref = sp(r;C)∩B−.

The corresponding positive and simple root systems are

	+k = {εj − εk}1�j<k�r ,

�k = {ε1 − ε2, . . . , εr−1 − εr} =: {β1, . . . , βr−1},
	+ = {εj ± εk}1�j<k�r ∪ {2εj }1�j�r ,

� = {ε1 − ε2, . . . , εr−1 − εr , 2εr} =: {ψ1, . . . , ψr−1, ψr = ψlo},
M(t, s)± = {±(εj + εk)}1�j<k�r ∪ {±2εj }1�j�r .
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The Bott-regular weights of index 1 have the decomposition µ± = µ′± ± χ with
χ = ( 2

r
ψ1 + 2·2

r
ψ2 + 3·2

r
ψ3 + · · · + 2(r−1)

r
ψr−1 + ψlo

) = 2
r
(ε1 + · · · + εr). If

µ′± : t→ C denote the semisimple parts which are trivially extended to zk, then

µ′+ = 2ξ ′1 − 2β1 = 2
r
(−β1 + (r − 2)β2 + (r − 3)β3 + · · · + βr−1),

µ′− = 2ξ ′r−1 − 2βr−1 = 2
r
(β1 + 2β2 + · · · + (r − 2)βr−2 − βr−1).

The following are the structure equations for the reference Borel subalgebras.

(20.1.2)

µ+ = 2ε2 = 2ψ2 + · · · + 2ψr−1 + ψlo,

λ(µ+) = ε1 + ε2 = ψ1 + 2ψ2 + · · · + 2ψr−1 + ψlo,

β&+ = ε1 − ε2 = ψ1,

µ− = −2εr−1 = −2ψr−1 − ψlo,

λ(µ−) = −εr−1 − εr = −ψr−1 − ψlo,

β&− = εr−1 − εr = ψr−1.

The next step is to express the weights µ±, λ±, β&± in terms of simple roots coming
from all the Borel subalgebrasb that containbref

k and differ from our reference subalge-
bra bref . Since k has the same rank as g, it follows thatWθ = W = W(Cr) ∼= Sr �Zr

2
and Wk

∼= W(Ar−1) ∼= Sr . By Corollary 18.3.6 there are |W |/|Wk| = 2r Borel sub-
algebras w̃(b) which contain a given Borel subalgebra bk of k.

As in Section 19.4, we explicitly determine the subset Wθ
1 ⊂ W = Sr � Zr

2
(see (18.3.8)). Identifying t with Cr , the subgroup Sr acts on Cr by permuta-
tions and Zr

2 by change of signs. Let j := {j1, . . . , jk} be an arbitrary sub-
set of {1, . . . , r} and {jk+1, . . . , jr} its complement. We order these sets by
j1 < j2 < · · · < jk and jk+1 < jk+2 < · · · < jr . Here, the number k = |j |
of elements in j is arbitrary; hence, in total there are 2r such subsets. Given j we
assign to it the sign change map scj : t → t, which acts on the diagonal entries
(ε1, . . . , εr ) �→ (scj (ε1), . . . , scj (εr )), where

scj (ε
) =
{
ε
 for 1 � 
 � |j |,
−ε
 for |j | + 1 � 
 � r

and the permutation map p = pj ∈ Sr

p(1) = j1, . . . , p(k) = jk,

p(k + 1) = jr , p(k + 2) = jr−1, . . . , p(r) = jk+1

which defines the Weyl group element p−1
j (ε1, . . . , εr ) := (εp(1), . . . , εp(r)). Finally,

define wj := scj ◦ p−1
j : t → t. Thus, in terms of the diagonal entries and k = |j |

we have

(20.1.3) wj (Diag(ε1, . . . , εr )) = Diag(εj1 , . . . , εjk ,−εjr ,−εjr−1 , . . . ,−εjk+1).
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To see that the 2r elements wj exhaust the set Wθ
1 , we first write the inequalities

defining the reference Weyl chambers (D = Diag(δ1, . . . , δr )):

C+(bref
k ) = {D : δ1 > · · · > δr},(20.1.4)

C+(bref ) = {D : δ1 > · · · > δr > 0}.(20.1.5)

We see that for each j and wj acting as in (20.1.3), the entries of elements of
wj (C+(bref )) satisfy condition (20.1.4), i.e., wj (C+(bref )) ⊂ C+(bref

k ). Hence Wθ
1

consists precisely of all such wj .
The following equations explicitly give the coefficients of the structure equations

for b = wj (b
ref ) j ⊂ {1, . . . , r} arbitrary subsets and k := |j | (See Section 19.4 for

an analogous case).

w−1
j µ+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2εj2 = 2ψj2 + 2ψj2+1 + · · · + 2ψr−1 + ψlo if k � 2,

−2εr = −ψlo if k = 1 and j1 �= r,

−2εr−1 = −(2ψr−1 + ψlo) if k = 1 and j1 = r

−2εr−1 = −(2ψr−1 + ψlo) if k = 0,

w−1
j λ(µ+) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

εj1 + εj2 = ψj1 + · · · + ψj2−1 + 2ψj2 +
+ 2ψj2+1 + · · · + 2ψr−1 + ψlo

if k � 2,

εj1 − εr = ψj1 + · · · + ψr−1 if k = 1 and j1 �= r,

εr − εr−1 = −ψr−1 if k = 1 and j1 = r,

−εr − εr−1 = −ψr−1 − ψlo if k = 0,

w−1
j β&+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εj1 − εj2 = ψj1 + · · · + ψj2−1 if k � 2,

εj1 + εr = ψj1 + · · · + ψr−1 + ψlo if k = 1 and j1 �= r,

εr + εr−1 = ψr−1 + ψlo if k = 1 and j1 = r,

−εr + εr−1 = ψr−1 if k = 0,

w−1
j µ− =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2εjk+2 = 2ψjk+2 + 2ψjk+2+1 + · · · + 2ψr−1 + ψlo if k < r − 1,

−2εr−1 = −2ψr−1 − ψlo if k = r − 1 and jr = r,

−2εr = −ψlo if k = r − 1 and jr �= r,

−2εr−1 = −2ψr−1 − ψlo if k = r,

w−1
j λ− =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

εjk+1 + εjk+2 = ψjk+1 + · · · + ψjk+2−1 +
2ψjk+2 + · · · + 2ψr−1 + ψlo

if k < r − 1,

−εr−1 + εr = −ψr−1 if k = r − 1 and jr = r,

εjr − εr = ψjr + ψjr+1 + · · · + ψr−1 if k = r − 1 and jr �= r,

−εr−1 − εr = −ψr−1 − ψlo if k = r,

w−1
j β∗− =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εjk+1 − εjk+2 = ψjk+1 + · · · + ψjk+2−1 for k < r − 1,

εr−1 + εr = ψr−1 + ψlo if k = r − 1 and jr = r,

εr + εjr = ψjr + · · · + ψr−1 + ψlo if k = r − 1 and jr �= r,

εr−1 − εr = ψr−1 if k = r.
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The above structure equations contain all necessary information in order to apply the
Cohomological Lemma along the lines explained in Section 18.6B.

Theorem 20.1.6. For the series (g, k) = (sp(r;C), gl(r;C)) the following are the
tangent modules at the base cycles [C] in the full cycle spaces.

• In the full flag X = G/Bref there are exactly r − 1 base cycles Cj

(1) ⊂ Z and

r − 1 base cycles Ck
(2) ⊂ Z such that for every closed K-orbit C

T[C]C(X) =

⎧⎪⎨⎪⎩
T[C](G·[C])⊕∧2

V std
GL(r;C) if C = C

j

(1) for some j,

T[C](G·[C])⊕∧2
(V std

GL(r;C))
∗ if C = Ck

(2) for some k,

T[C](G·[C]) otherwise.

• In the general case we have q = q�, with � ⊂ �, Z = G/Q, and the canoni-
cal projection π : G/Bref → G/Q. For j = {j1, . . . , jk} ⊂ {1, . . . , r}
with j1 < · · · < jk and wj ∈ Wθ

1 as in (20.1.3), define the reference
cycle C(wj ) := K·[wjB

ref ] ⊂ G/Bref and set C := π(C(wj )). Then
T[C]C(Z) = T[C](G·[C])⊕⊕λ∈M(C,Z) V

λ with

M(C,Z) ⊂ {λhigh
(∧2

V std
GL(r;C)

)
, λhigh

(∧2
(V std

GL(r;C))
∗)}.

Explicit computation ofM(C,Z) reduces to a verification of the relations between
the positive supports ofw−1

j (µ±), w−1
j (λ(µ±)), w−1

j (β&±) (which can be read off
directly from the above structure equations) in reference to the set �, as in the
Cohomological Lemma, exactly along the lines of Theorem 19.4.8.

20.2 The series for g0 = so(2p, 2q + 1)

This series can be handled by methods similar to those for the series in Section 19.4.
We assume that r = p + q � 2, because the case r = 1, where g = so(3;C), is
trivial. According to Theorem 18.4.13 we only need to consider q � 1. Note that
for p = 1 the corresponding series so(2, 2r − 1) is of hermitian type. For p > 1 the
algebra so(2p, 2q + 1) is not of hermitian type.

For all p and q we have t = zg(t) = h. To facilitate the explicit computa-
tions, we choose the matrix realizations of t = h and g = so(2r + 1,C) and write
Diag(ε1, . . . , εr ) for a diagonal matrix in t. The complex involutive automorphism
which defines k ∼= so(2p;C)× so(2q + 1;C) is chosen as follows:

θ(X) =
⎛⎝ Ip

−I2q+1
Ip

⎞⎠ ·X ·
⎛⎝ Ip

−I2q+1
Ip

⎞⎠ =: θX.
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Note that the diagonal Cartan subalgebra h is pointwise fixed by the above θ . For
convenience, we also describe the matrices in that realization of k. They are of the
following form (compare to (19.4.1) for a similar realization of k).

(20.2.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
Ap 0 0 0 Bp
0 Aq uq Bq 0
0 vq 0 −utqR 0
0 Cq −Rvtq θAq 0
Cp 0 0 0 θAp

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
B• = θB•
C• = θC•

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭.
Here, A•, B•, C• ∈ M•(C), uq ∈ Mq×1(C), and vq ∈ M1×q(C). Finally, we
select the standard Borel subalgebras bk ⊂ k ∼= so(2p;C) × so(2q + 1;C)
and b ⊂ g ∼= so(2r + 1;C), consisting of the lower-triangular matrices in
k ∼= so(2p;C) × so(2q + 1;C) and g ∼= so(2r + 1;C), respectively. These sub-
algebras are stable under the involution θ. In the hermitian case p = 1, we select
J0 := Diag(i, 0, . . . , 0) ∈ z′0, which determines the decomposition s = s+ + s−.

Next we give a (well-known) list of the various root systems and bases (with
respect to the reference Borels). This is done in terms of the standard coordinate
functions ε1, . . . , εr on t.

	 = {±εj ± εk}1�j<k�r ∪ {±εj }1�k�r ,

� = {ε1 − ε2, . . . , εr−1 − εr , εr} =: {ψ1, . . . , ψr−1, ψsh},
	k = 	

(1)
k ∪	(2)

k = {±εj ± εk}1�j<k�p ∪ {±εj ± εk,±εj }p+1�j<k�p+q,

�
(1)
k = {ε1 − ε2, . . . , εp−1 − εp, εp−1 + εp} =: {β(1)1 , . . . , β

(1)
p−1, β

(1)
p }, p � 3

{ε1 − ε2, ε1 + ε2} =: {β(1), β̃(1)}, p = 2

= ∅, p = 1,

�
(2)
k = {εp+1 − εp+2, . . . , εr−1 − εr , εr} =: {β(2)1 , . . . , β

(2)
q−1, β

(2)
sh }.

The Bott-regular weights of index 1 are listed in Table 18.5.3, rows 1 through 4.
All weights in M(t, s) can easily be determined using the fact that k = k(1) × k(2) ∼=
so(2p;C)×so(2q+1;C) and that s is isomorphic toV std

so(2p)⊗V std
so(2q+1) as a k-module.

In particular, for p = 1, V std
so(2) = W+ ⊕W− is a direct sum of two one-dimensional

modules in compliance with the fact that so(2, 2r − 1) is hermitian. If p > 1, it
follows that V std

so(2p) is irreducible. The dominant and Bott-regular weights of index
1 (since rank k = rank g, there are none of index 2) are the following.

In the non-hermitian cases we have

µ = ξ
(1)
1 − β

(2)
sh = ε1 − εr = ψ1 + · · · + ψr−1 for p � 3

= ξ (1) + ξ̃ (1) − β
(2)
sh for p = 2,

λ(µ) = ξ
(1)
1 = ε1 = ψ1 + · · · + ψr−1 + ψsh

= ξ (1) + ξ̃ (1) for p = 2,

β& = εr = ψsh.
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In the hermitian case (the case p = 1), χ = ε1 is a root in 	(g, h) and we have

µ± = χ − β
(2)
sh

−χ − β
(2)
sh

= ε1 − εr
−ε1 − εr

= ψ1 + · · · + ψr−1
−ψ1 − · · · − ψr−1 − 2ψsh,

λ(µ±) = ±ε1 = ±(ψ1 + · · · + ψr−1 + ψsh),

β& = εr = ψsh.

Note that in this case λ′± = λ(µ±)|t′ = 0, and the corresponding irreducible repre-
sentation V λ± of k = zk ⊕ k′ annihilates k′ and is one-dimensional. This is the only
class of hermitian real forms (and corresponding complex symmetric pairs) for which
the elements ±χ, a priori defined on zk and trivially extended to t, are roots in 	

and admit a 3-string ±χ − β&, ±χ , ±χ + β&. A geometric consequence of this fact
is that there may be nontrivial sections in H 0(C;O(NZ(C))) which are fixed by the
semisimple factor K ′ of K .

Lemma 18.4.12 says that H 0(C;O(NZ(C))) has no trivial K-submodules. Also,
K ′ acts transitively on C and its center ZK acts trivially, but ZK acts nontrivially on
NZ(C).

The next step is to determine explicitly the structure equations (18.6.3) for all
choices of Borel subalgebras b ⊂ g such that b ∩ k = bref

k . The number of different
Borel subalgebras with such property is given by Corollary 18.3.6, i.e.,

|W |
|Wk| =

|Sr � Zr
2|

|Sp � Zp−1
2 | · |Sq � Zq

2 |
= r!·2r
p!2p−1 · q!2q = 2

r!
p!q! .

In order to determine all such Borel subalgebras, we follow our usual strategy and
explicitly determine the subset Wθ

1 ⊂ W ∼= Sr � Zr
2. We use an explicit description

of the various Weyl chambers, associated with the given Borel subalgebras.
In both the hermitian and the non-hermitian cases, the Weyl chambers in hR = tR

for the reference Borel subalgebras consist of all D := Diag(δ1, . . . , δr ) subject to
the conditions

C+(bref
k ) =

{
D

∣∣∣ δ1 > · · · > δp, δp−1 + δp > 0
and δp+1 > · · · > δr > 0

}
, p > 1,(20.2.2)

C+(bref
k ) = zR × C+(bref

k′ ) = {D | ε2 > · · · > εr > 0}, p = 1,(20.2.3)

and

C+(bref ) = {D | δ1 > · · · > δp > δp+1 > · · · > δp+q > 0}.(20.2.4)

In the hermitian case, k = k′ ⊕ zk and t = t′ ⊕ zk, we have t′ = {D | ε1 = 0}.
Next we explicitly construct elements in the cross-section Wθ

1 ⊂ W of (18.3.8).
Just as in the Section 19.4, select elements j1 < j2 < · · · < jp from {1, . . . , r}, write
j := {j1, . . . , jp} (there are r!/(p!q!) such subsets), and order the complementary set
{1, . . . , r}\j in increasing order, i.e., as jp+1 < · · · < jp+q .Definewj ∈ Sr ⊂ Wθ ,
acting by permutation on the index set {1, . . . , r} by
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w−1
j (1) = j1, w

−1
j (2) = j2, . . . , w−1

j (r) = jr .

Counting wj s, the above construction gives only half of Wθ
1 . In order to obtain the

other half, consider the following element in W = Sr � Zr
2 which acts by change of

sign
s̃p(ε1, . . . , εp, εp+1, . . . , εr ) := (ε1, · · · − εp, εp+1, . . . , εr ).

The action of wj and s̃p ◦ wj on D := Diag(ε1, . . . , εr ) ∈ h is then

(20.2.5)
wj (D) = Diag(εj1 , . . . , εjp−1 , εjp , εjp+1 , . . . , εjr ),

s̃pwj (D) = Diag(εj1 , . . . , εjp−1 ,−εjp , εjp+1 , . . . , εjr ).

By inspecting the inequalities of (20.2.2) and (20.2.3), we have all the possibilities
for wjbref , s̃pwjbref containing bref

k .
We are now in the position to compute all of the coefficients in the structure

equations for µ, λ(µ) and β&. The non-hermitian and hermitian cases are dealt with
separately. For 2 � p � r − 1 we have

w−1
j (µ) = (s̃pwj )

−1(µ) = εj1 − εjr

=
{
ψj1 + ψj1+1 + · · · + ψjr−1 if j1 < q + 1,

−ψq if j1 = q + 1,

w−1
j (λ(µ)) = (s̃pwj )

−1(λ(µ)) = εj1 = ψj1 + ψj1+1 + · · · + ψsh,

w−1
j (β&) = (s̃pwj )

−1(β&) = εjr = ψjr + ψjr+1 + · · · + ψsh.

Theorem 20.2.6 (Non-hermitian case).

• The full flag manifold X = G/Bref has base cycles

C1 := C(wj ) = K(wjB
ref ) andC2 := C(s̃pwj ) = K(s̃pwjB

ref )

with j = {q + 1, q + 2, . . . , r}, wj and s̃piwj as in (20.2.5), such that for every
closed K-orbit C ⊂ X,

T[C]C(X) =
{
T[C](G·[C])⊕ V std

SO(2p) if C = C1 or C = C2,

T[C](G·[C]) otherwise.

• In the general case Z = G/Q�, with the projection π : G/Bref → G/Q� and
a base cycle C = π(K(wj ·Bref )) or C = π(K(s̃pwj ·Bref )), the set M(C,Z)

in the decomposition (18.6.2) is empty or equal to {λstd
SO(2p)}. As explained in

Theorem 19.4.8 the explicit formula for M(C,Z) is obtained by comparing the
various (positive) supports of w−1

j µ,w−1
j λ etc (which can be read directly from

the preceding structure equations) and �, and using the Cohomological Lemma,
along the lines as in Theorem 19.4.8.
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For p = 1 the structure equations are

w−1
j (µ+) =

{
εj1 − εr = ψj1 + · · ·ψr−1 if j1 �= r,

εr − εr−1 = −ψr−1 if j1 = r,

w−1
j (µ−) =

{
−εj1 − εr = −(ψj1 + · · · + ψr−1 + 2ψsh) if j1 �= r,

−εr − εr−1 = −ψr−1 − 2ψsh if j1 = r,

(s̃1wj )
−1(µ+) =

{
−εj1 − εr = −(ψj1 + · · ·ψr−1 + 2ψsh) if j1 �= r,

−εr − εr−1 = −ψr−1 − 2ψsh if j1 = r,

(s̃1wj )
−1(µ−) =

{
εj1 − εr = ψj1 + · · · + ψr−1 if j1 �= r,

εr − εr−1 = −ψr−1 if j1 = r,

w−1
j (λ±) =

{
±εj1 = ±(ψj1 + · · · + ψr−1 + ψsh) if j1 �= r,

±εr = ±ψsh if j1 = r,

(s̃1wj )
−1(λ±) =

{
∓εj1 = ∓(ψj1 + · · · + ψr−1 + ψsh) if j1 �= r,

∓εr = ∓ψsh if j1 = r,

w−1
j (β&) = εjr = ψjr + · · · + ψsh = (s̃1wj )

−1(β&).

Theorem 20.2.7 (Hermitian case).

• There are two base cycles in the full flag manifold X = G/Bref , namely C+ :=
K(w{r}Bref ) and C− := K(s̃1w{r}Bref ) (w{r} and s̃1w{r} as in (20.2.5)) such
that T[C±]C(X) = T[C±](G·[C±]) ⊕ V ±χ . Here, V ±χ are the k-modules for the
one-dimensional representations±χ. For all remaining base cycles C �= C± we
have T[C]C(Z) = T[C](G·[C]).

• In the case of a general flag manifold Z = G/Q� the tangent space T[C]C(Z)
either agrees with that of the G-orbit of [C] or T[C]C(Z) = T[C](G·[C])⊕ V ±χ
as C and Z varies. An explicit determination of the set M(C,Z) ⊂ {+χ,−χ}
for every C and Z is obtained by comparing the various (positive) supports of
w−1

j µ±, w−1
j λ± etc (which can be read directly from the preceding structure

equations) and �, exactly along the lines as in Theorem 19.4.8.

20.3 The case g0 = f4,C3A1

Inspection of the real forms g0 = k0 + s0 of f4(C) and the corresponding highest
weights of the representation k× s → s shows that the only real form which admits
in M(t, s) weights of two different length is g0 = f4(4) = f4,C3A1 . This can also be
deduced by looking at the abstract affine Dynkin diagrams �(g, ν, aff) which here is
the extended Dynkin diagram of f4(C). The marked affine Dynkin diagram for (g, k)
for g0 = f4(4) is given in Table 18.5.3, row 6.

We use some combinatorial and geometric properties of the Dynkin diagrams
to determine the structure equations. We start by selecting t = h ⊂ bref ⊂ f4(C)
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and let � = {ψ1 ψ2 > ψ3 ψ4} be the corresponding simple roots. That
(large) Borel subalgebra determines bref

k := bref ∩ k which in turns gives the basis

�k = {β(1)1 β2 < β3} ∪ {β(2)} of −�(bref
k , t). In this case the subalgebra k ∼=

sp(3;C)⊕ sp(1;C) is of classical type. From Table 17.4.6 we read off that

s = V
ξ
(1)
3

Sp(3) ⊗ V
ξ
(2)
1

SL(2;C) as k-module,

and that ξ (1)1 + ξ
(2)
1 is the nonmaximal dominant weight. So µ = ξ

(1)
1 + ξ

(2)
1 − β

(1)
2

is the only Bott-regular weight of index 1. The elements of �k = �
(1)
k ∪ �(2)

k are
expressed in terms of � as follows. This can either be immediately read off from the
marked affine Dynkin diagram in Table 18.5.3, row 6, or found in the tables in [Kna,
Appendix C.4].

(20.3.1)

β
(1)
1 = ψ4, β

(1)
2 = ψ3, β

(1)
3 = β

(1)
lo = ψ2,

β(2) = 2ψ1 + 3ψ2 + 4ψ3 + 2ψ4,

µ = (β
(1)
1 + β

(1)
2 + 1

2β
(1)
3 + 1

2β
(2))− β

(1)
2 =

= ψ1 + 2ψ2 + 2ψ3 + 2ψ4.

Next, we look for the structure equations with respect to nonreference Borel subal-
gebras b ⊃ bref

k . By Corollary 18.3.6, we have

|W |
|Wk| =

4!·2·3·4·2
|S3 � Z3

2 × Z2|
= 12.

In order to find the remaining 11 Borel subalgebras, or equivalently 11 simple root
systems �ref = �[1], . . . , �[12] such that 	+[d] ⊃ �ref

k , we successively apply reflec-

tions sα on 	ref . We use the elementary fact that if α is simple with respect to 	+[d],
then sα(	

+
[d]) = 	+[d] \ {α} ∪ {−α}. Hence, if 	−[d] ⊃ �(bref

k ), in order to decide if

sα(	
−
[d]) ⊃ 	(bref ), we only need to check if α /∈ 	k.

We now compute µ, λ(µ) and β& = ψ3 with respect to the simple system �[d]
for d = 2, . . . , 12. Each of the following bases �[k] arises from some �[j ] ⊂ 	+[j ]
by applying a simple reflection sα with α ∈ �[j ]. We express each root basis �[d] =
{ψ [d]1 , . . . , ψ

[d]
4 } in terms of �ref and write ν = (n1, n2, n3, n4) for ν = ∑ nkψk ,

where ψ1, . . . , ψ4 are the reference simple roots.
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ψ
[2]
1 = −(1000) ψ

[2]
2 = (1100) ψ

[2]
3 = (0010) ψ

[2]
4 = (0001)

µ = (1222)[2] λ = (1232)[2] β& = (0010)[2]

ψ
[3]
1 = (0100) ψ

[3]
2 = −(1100) ψ

[3]
3 = (1110) ψ

[3]
4 = (0001)

µ = (1122)[3] λ = (1232)[3] β& = (0110)[3]

ψ
[4]
1 = (0100) ψ

[4]
2 = (1120) ψ

[4]
3 = −(1110) ψ

[4]
4 = (1111)

µ = (1122)[4] λ = (1232)[4] β& = (0110)[4]

ψ
[5]
1 = (0100) ψ

[5]
2 = (1120) ψ

[5]
3 = (0001) ψ

[5]
4 = −(1111)

µ = (1231)[5] λ = (1120)[5] β& = (0111)[5]

ψ
[6]
1 = (1220) ψ

[6]
2 = −(1120) ψ

[6]
3 = (1121) ψ

[6]
4 = −(1111)

µ = (1231)[6] λ = (1220)[6] β& = (0011)[6]

ψ
[7]
1 = −(1220) ψ

[7]
2 = (0100) ψ

[7]
3 = (1121) ψ

[7]
4 = −(1111)

µ = (1231)[7] λ = (1220)[7] β& = (0011)[7]

ψ
[8]
1 = −(1220) ψ

[8]
2 = (0100) ψ

[8]
3 = (0010) ψ

[8]
4 = (1111)

µ = (1232)[8] λ = (1222)[8] β& = (0010)[8]

ψ
[9]
1 = (1220) ψ

[9]
2 = −(1120) ψ

[9]
3 = (0010) ψ

[9]
4 = (1111)

µ = (1232)[9] λ = (1222)[9] β& = (0010)[9]

ψ
[10]
1 = (1220) ψ

[10]
2 = (1122) ψ

[10]
3 = −(1121) ψ

[10]
4 = (0010)

µ = (1221)[10] λ = (1220)[10] β& = (0001)[10]

ψ
[11]
1 = −(1220) ψ

[11]
2 = (2342) ψ

[11]
3 = −(1121) ψ

[11]
4 = (0010)

µ = (1221)[11] λ = (1220)[11] β& = (0001)[11]

ψ
[12]
1 = (2342) ψ

[12]
2 = −(1122) ψ

[12]
3 = (0001) ψ

[12]
4 = (0010)

µ = (1121)[12] λ = (1120)[12] β& = (0001)[12]

From the above structure equations we see that support supp�[d](µ) agrees with
�[d] for all d = 1, . . . , 12. Hence, we have the following

Theorem 20.3.2. If G is the exceptional group with Lie algebra g = F4, then for
all G-flags Z, all real forms g0 ⊂ g and all corresponding base cycles C we have
T[C]C(Z) = T[C](G·[C]).

20.4 The case g0 = g2,A1A1

The only one real form g0 of G2(C) which is of noncompact type is the normal real
form g2(2). The corresponding complex symmetric pair is (g2(C), so(4;C)). In the
case under consideration the ranks of g and k are equal 2 and therefore we can easily
visualize the root systems 	 and 	k. The marked affine Dynkin diagram for (g, k)
is 1◦ 2• > 3◦ . This tells us that 3ξsh + ξlo = 3ξ (1) + ξ (2) is the highest weight for
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the representation of k ∼= A1 ⊕A1 of s. In order to determine the structure equation,
select the reference simple root system � = {ψsh, ψlo} of �(g, t) which gives the
reference Borel subalgebra bref . Set bk := b ∩ k. The corresponding simple root
system �k = {β(1), β(2)} of the root system of k is related to ψsh, ψlo as follows:
β(1) = ψsh and β(2) = 3ψsh + 2ψlo.

According to Corollary 18.3.6, given bref
k ⊃ t, the number of different Borel

subalgebras b ⊃ t, which contain bk is |W |/|Wk| = |W(G2)|/|W(so(4;C))| =
12/4 = 3. Below, we depict the three positive systems. They are given by bref =
b[1], b[2] and b[3], each of which containing bref

k . The light-gray cone is the Weyl
chamber of bref

k and the dark-gray cones correspond to the three Weyl chambers
which are determined by the three Borels.

β

βα = α

α

β

β

α

α

α   =

µµµ

+CB

(1) (1)

(2)

(1)
sh

lo

(2)

’’

(2)

[2]
lo

[2]
sh

lo
[3]

sh
[3]

β

β

ρ ρ ρ’

The present situation is not covered by the String Lemma. However, the informa-
tion needed for the Cohomological Lemma (see Section 18.6B) can be directly derived
from the above information. A simple check shows that µ := ψlo = − 3

2β
(1)− 1

2β
(2)

is the only Bott-regular weight of index one such that

λ(µ) = [µ+ ρk] − ρk = ρk = ξ
(1)
1 + ξ

(2)
1 = 1

2β
(1) + 1

2β
(2) �= 0.

(Of course, −β(1) and −β(2) are also Bott-regular weights of index one, but in these
cases [−β(j) + ρk] − ρk = 0; by Lemma 18.4.12, trivial representations do not
contribute to H 0(C;O(NZ(C)))). Note that λ(µ) is the highest weight of the tensor
representation V std

SL(2;C) ⊗ V std
SL(2;C), i.e., the highest weight of V std

SO(4;C).
There are 3 nonisomorphic flag manifolds which are homogeneous under the

complex exceptional Lie group G2, namely, the full flag manifold X = G/B, Zsh :=
G/Q�, with � = {ψsh}, and Zlo := G/Q� with � = {ψlo}.
Theorem 20.4.1. The infinitesimal cycle spaces for the case g0 = g2,A1A1 are listed
below. The set of highest weights which may occur for the isotropy representation
transversal to G·[C] consists of the single weight λ(V std

SO(4)) = ξ
(1)
1 + ξ

(2)
1 .

• There are three closed K-orbits in the full flag manifold X. For two, the corre-
sponding components C[Cj ](X) of the cycle spaces are bigger than the closures of

G·[Cj ] and at the infinitesimal level T[Cj ]C(X) = T[Cj ](G·[Cj ]) ⊕ V std
SO(4). For

the third, T[C]C(X) = T[C](G·[C]).
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• There are two closed K-orbits in Zsh. The corresponding components of the cy-
cle space C(Zsh) are T[C1]C(Zsh) = T[C1](G·[C1]) and T[C2]C(Zsh) =
T[C2](G·[C2])⊕ V std

SO(4).

• In the flag Zlo there are two closed K-orbits and each has T[C]C(Zlo) =
T[C](G·[C])⊕ V std

SO(4).

Remark. The Lie algebra aut(Zlo) of the automorphism group of Zlo = G2/Qlo
is so(7;C), which is considerably larger than g2(C). On the other hand,
aut(Zsh) = g2(C). ♦

20.5 Final table

In this section we summarize the computation of T[C]C(Z) for all base cycles C and
flag manifolds Z. We have observed quite early on (see Theorem 18.4.13) that for all
real forms not contained in Tables 18.5.1 and 18.5.2, we have

(20.5.1) T[C]C(Z) = T[C](G·[C]) for all corresponding base cycles and flags.

In the last two chapters we showed that there are still some real forms among
those in these tables for which (20.5.1) nevertheless holds. In the following table, we
list all those real forms for which there exist cycles and flags such that T[C]C(Z) =
T[C](G·[C]) ⊕⊕λ∈M(C,Z) V

λ with M(C,Z) �= ∅. For a given real form g0 we
list all possible nonempty sets M(C,Z) which occur. These are the sets of highest
weights that occur for the component of the K-isotropy representation at [C] which
is transversal to the orbit G·[C]. For the precise detail on the cycles C and an flag
manifoldsZwhere these occur, we refer to the corresponding theorems in Chapters 19
and 20.

We write ξ1, ξ2, . . . for the fundamental weights of a simple Lie algebras of types
Ar, . . . ,G2 using the Bourbaki order. In the case when k = k′ ⊕ zk is not semisimple
(i.e., g0 is of hermitian type) χ : t → C denotes the linear functional determined
by χ(J0) = i and χ(t′) = 0, where J0 denotes the element in k0 which defines
the complex structure on the real tangent space s0 at a base point of the associated
bounded symmetric domain G0/K0.



322 20 Classification for rank k = rank g

Table 20.5.2. Transversal Isotropy Representation on the Cycle Space

Real form g0
Type of

k

Occurring nonempty sets
M(C,Z)

sl(3;R) A1 {2ξ1}
sl(2r + 1,R)

r � 2
Br {ξ1}, {ξ2}

sl(4;R) A
(1)
1 × A

(2)
1 {2ξ(1)}, {2ξ(2)}, {2ξ(1), 2ξ(2)}

sl(6;R) A3 {ξ1 + ξ3}
sl(2r;R)
r � 4

Dr {ξ2}
so(3, 2q + 1)

q � 2
A
(1)
1 × B

(2)
q {2ξ(1)1 }, {ξ(2)1 }, {2ξ(1)1 , ξ

(2)
1 }

so(2p + 1, 2q + 1)
p, q � 2

B
(1)
p × B

(2)
q {ξ(1)1 }, {ξ(2)1 }, {ξ(1)1 , ξ

(2)
1 }

so(2, 2q + 1)
q � 1

Bq × C {χ}, {−χ}
so(4, 2q + 1)

q � 1
A
(1)
1 × A

(2)
1 × Bq {ξ(1)1 + ξ

(2)
1 }

so(6, 2q + 1)
q � 1

A
(1)
3 × B

(2)
q {ξ(1)2 }

so(2p, 2q + 1)
p � 4, q � 1

D
(1)
p × B

(2)
q {ξ(1)1 }

sp(r;R)
r � 3

Ar−1 × C
{ξ ′2 + χ}, {ξ ′

r−2 − χ}
{ξ ′2 + χ, ξ ′

r−2 − χ}
g2(2) A

(1)
1 × A

(2)
1 {ξ(1)1 + ξ

(2)
1 }

so(2r + 1;C)
r � 2

Br {ξ1}
sp(r;C), r � 3 Cr {ξ2}

g2(C) G2 {ξ1}
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bilinear relations

Hodge–Riemann, 218
Borel

subgroup, 15
Bott–Morse Lemma, 121
boundary point

generic, 154
nongeneric, 156

bounded domain
quaternionic, 190

bounded symmetric domain, 35
compact dual, 59
subordinate to a G0-orbit, 43

Bruhat
decomposition, 27
Lemma, 27

Buchdahl condition, 208
bundle

normal to cycle, 245
very ample, 109

Cartan
involution, 28
subgroup, 15

Cayley
hyperbolic plane, 198
projective plane, 198

cell
Schubert, 95
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fundamental, 108

coherent analytic sheaf, 52
cohomology

automorphic, 58, 222
integral, 42

cohomology class
primitive, 217

compactification
equivariant, 153

complex conjugation, 28
complex space
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complex structure
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component
Iwasawa, 96
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covering map, 172
critical points, 116
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SL(n;R)-orbits, 186
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full, 241
nonclosed orbits, 181

data
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diagram
Dynkin, 248

affine, 265
extended, 248
restricted, 264

discrete series
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domain

hyperbolic
Stein, 169

Schubert, 111
double fibration, 58

holomorphic, 208
dual pair, 114
Dynkin diagram, 8
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semisimple, 143
unipotent, 143

energy function
Hessian, 119

envelope, 96
hyperbolic, 168
Iwasawa, 100

exhaustion
modulo G0-action, 99

exhaustion function, 50
strictly plurisubharmonic, 59

filtration
equivariant, 257
Hodge, 218
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simple, 257

flag, 15
γ -generic, 186
flag domains, 30
flag manifold, 20
maximally isotropic, 187
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partial, 19

Frobenius Reciprocity Theorem, 24
function

automorphic, 222
energy, 116
exhaustion modulo G0, 85

functions
strictly convex, 85
strictly plurisubharmonic

invariant, 84

G0-orbit, 28
closed, 30
lower-dimensional

cycle space, 176
measurable, 44
open, 29, 41

Galois covering, 229
geodesic

minimizing segment, 79
gradient field, 116
Grassmann manifold, 33
group

quaternionic unitary, 190
real reductive, 142
symmetric, 105

group action
proper, 80

Harish-Chandra module, 222
hermitian case

holomorphic, 57
nonholomorphic, 57

hermitian symmetric space
compact type, 31

Hessian, 85
Hodge manifold, 221
Hodge structure

variation, 217
holomorphic convexity, 59
holonomy

SU (2), 235
homogeneous quotient spaces, 19
hyperbolic

Brody, 165
Kobayashi, 100, 165

hyperbolic plane, 164
hyperplane
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hypersurface
Cauchy–Riemann, 89
complementary, 180
complex analytic, 97
incidence, 94
B-invariant, 130

invariant analytic, 93
lift, 181

Identity Principle, 183
intersection

transversal, 178
intersection number

Schubert, 178
intersection theory

moving lemma, 132
Schubert, 130

involution
antiholomorphic, 28
holomorphic, 28

Jacobi field, 84
Jacobi identity, 5
Jordan decomposition, 143

K-orbit
closed, 41

Kähler
cone, 16
manifold, 16
metric, 16

Kähler manifold
marked, 220
polarized, 221

Killing form, 6
Kobayashi pseudometric, 164
Kodaira dimension, 226
Kuranishi family, 233

Lefschetz Theorem, 218
Leray spectral sequence, 209
Levi form, 50

intrinsic vector-valued, 88
Levi problem, 59
Lie algebra, 5

abelian, 5
adjoint representation, 6

Cartan
complexification, 28

center, 12
cohomology, 25
complex type, 289
derived, 12
derived series, 5
descending central series, 5
inner automorphisms, 6
nilpotent, 5
reductive, 6
regular element, 37
semisimple, 6
simple, 5
solvable, 5

Lie algebra cohomology
coboundary operator, 25
cochains, 25
relative cohomology, 26

Lie group, 6
adjoint representation, 6
real form, 7

compact, 7, 31, 34
unitary

indefinite, 66
Lie group, algebraic group, 20
line bundle

canonical, 50
Liouville form, 83
Lorenz group, 57
Luna slice theorem, 148

manifold
almost homogeneous, 189

Matsuki duality, 42
measurable model, 188
metric

hermitian
indefinite, 51

Kähler
indefinite, 44

Kähler–Einstein, 235
Kobayashi, 100

moment map, 114

nil cone, 155
normal crossing property, 166
normalizer, 9

operator
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Cauchy–Riemann, 214
orbits

partial ordering, 123

partial Cayley transform, 34
period map, 220, 233
Peter–Weyl Theorem, 23
Poincaré series, 223
points

real, 139
polar coordinate mapping, 78
principal bundle

holomorphic, 21
structure group, 21

projective
space, 17
variety, 20, 40

pseudoconcave, 98, 200

quadric
Calabi–Yau, 236

quaternion linear group, 57
quotient

categorical, 140
real, 140

Remmert reduction, 184
representation

completely reducible, 10
direct sum, 10
discrete series, 44
dual, 12
equivalence, 10
fundamental highest weight, 293
irreducible, 10
isotropy, 259
Lie algebra, 10
Lie group, 10
multiplicity, 24
semisimple, 10
unitary, 14
weight, 10

dominant, 24
fundamental highest, 11
highest, 11
integrality condition, 13
lattice, 11
lowest, 11
space, 10

string, 11
vector, 10

retract
strong deformation, 127

riemann surface
marked, 231

riemannian leaf, 83
root system

abstract, 136
restricted, 261

roots, 7
Bourbaki order, 8
compact, 31
noncompact, 31
positive root system, 7, 11
root basis, 8
root lattice, 11
root space decomposition, 7
root spaces, 7
simple root system, 8
strongly orthogonal, 32

cascade construction, 33
Weyl basis, 16

scale, 105
adapted, 106

Schubert
variety, 93

Schubert cycle, 59
Schubert fibration, 211
Schubert slice, 179
Schubert variety

supporting, 128
Shilov boundary, 30, 35, 81
simplex

fundamental, 248
sl2-triple, 137
θ -adapted, 149
perfect, 157

SL2-models, 154
slice

basic, 158
Schubert, 102
transversal, 187

standard representation, 279
Stein domain, 170
Stein manifold, 58
Stein space, 48
structure
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ample Cartier, 108
Cauchy–Riemann, 86
real, 139
semialgebraic, 140

structure equations, 286
subalgebra

Borel, 15
Levi complement, 15
nilradical, 15
reference, 244

Cartan, 7
compact, 31
fundamental, 38
maximally compact, 38

centralizer, 37
maximal, 248
parabolic, 17

subgroup
algebraic torus, 9
Borel

reference, 244
Cartan, 9

compact, 44
discrete

cocompact, 86
Iwasawa–Borel, 96
maximal compact, 31, 34

universal complexification, 78
parabolic, 18

Levi complement, 19
Levi component, 55
unipotent radical, 19

symmetric, 141
torus, 9

subgroups
Iwasawa–Borel, 93

submanifold
totally real, 78

subvariety
maximal compact, 52

surface
complex, 226
Enriques, 227
general type, 226
K3, 227

marked, 232
Kummer, 228

symmetric space

affine, 93
classification, 266
complex, 78
complexified, 159
dual, 159
irreducible, 248
riemannian, 78

symplectic form
coadjoint, 115
invariant, 115

symplectic manifold, 114

tangent bundle
holomorphic, 50

totally real, 89
transform

Andreotti–Norguet, 108
Penrose, 215
trace, 106

Schubert, 109
transformation

affine
unipotent, 109

linear fractional, 190

universal domain, 81, 99

variety
incidence, 107
Iwasawa-Schubert, 96, 102
Schubert, 95
spherical, 94

vector bundle, 20
completely reducible, 22
composition series, 21
Dolbeault cohomology spaces, 22
holomorphic, 20
holomorphic sections, 22
homogeneous, 21, 210
irreducible, 22

weight
highest

regular, 259
index, 260
nonsingular, 259

Weyl chamber, 7
positive, 8

Weyl group, 9
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A0N0, Iwasawa component, 93
Ad(·), Lie group adjoint action, 6
ad(·), Lie algebra adjoint action, 6
〈ξ, η〉, Killing form, 6
Aut(�), diagram automorphisms, 262
Aut(g), Lie algebra automorphisms, 6
AutR(g), R-automorphisms of g, 138

B, Borel subgroup, 15
B, bounded symmetric domain, 55
b = h+ b−n, Borel subalgebra, 15
b+n, nilpotent radical of bop, 16
B, conjugate symmetric domain, 55
bdgen(U), generic boundary of U , 154
bdgen(D), generic boundary of D, 127
bk, Borel subalgebra of k, 41
B
+
m, upper triangular matrices, 290

bop = h+ b+n, opposite Borel, 16

[C], cycle as a point, 279
C(U)G0 , G0-invariant functions, 85
C0 = K0(z), base cycle in D, 42
C{γ }, cycles as G/K-elements, 176
c� , Cayley transform, 32
χ , hermitian symmetric functional, 309
Conj(x0), conjugate locus, 79
Cq(X), cycle space of X, 104
cS , fundamental class of S, 108
Cut(x0), cut locus, 79

�(g, γ ), restricted diagram, 264
�(g, γ, aff), affine Dynkin diagram, 265
�g, Dynkin diagram of g, 8
�̃, extended Dynkin diagram, 248

�̃(g, γ ), restricted extended diagram, 264
dP , Poincaré distance function, 164
dX , Kobayashi pseudometric, 164

E, energy function, 116
E, holomorphic vector bundle, 20
E(Vπ ), homogeneous vector bundle defined

by representation π , 247
{E+, H,E−}, sl2-triple, 137
EH(F ), H -envelope of F , 97
EI (U), Iwasawa envelope, 99

F , flag, 15
F •V , stable filtration, 257

G, Lie group, 6
g, Lie algebra, 6
g′, commutator algebra of g, 9
G[�](z0), polysphere, 35
G0, real form of G, 7, 28
g0, real form of g, 28
G0(z), G0-orbit of z, 28
g0 = k0 + s0, θ -decomposition, 31
G0 = K0A0N0, Iwasawa decomp., 93
g = k+ s, θ -decomposition, 31
gα , root space, 7
�, strongly orthogonal roots, 32
γ , G0-orbit, 113
�(X;L), holomorphic sections, 97
γc
, closed G0-orbit, 182
γop, open G0-orbit, 176
G{γ }, cycles as G-elements, 176
G/K̆ , homogeneous space MZ , 129
(G/K)ell, G/K-elliptic elements, 145
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gl(V ), endomorphisms of V , 10
gϕ, Ad(g) conjugate of ϕ, 142
g±ν , ±ν-eigenspaces, 144
G/Q, complex flag manifold, 20
G×Q Eχ , bundle associated to χ , 21
Gu, compact real form of G, 7

H, hyperplane bundle, 229
h, Cartan subalgebra, 7
H2, hyperbolic plane, 164
Hess(E), Hessian of E, 119
Hk(Z;O(E)), sheaf cohomology, 22
Hp,q , Dolbeault cohomology, 232
Hq(g;Vπ ), Lie algebra cohomology, 26
hR, distinguished real form, 7
Hr

0 (X;C), primitive cohomology, 217

ind(µ+ ρk), Bott index, 260
Int(g), algebra inner automorphisms, 6
IY , incidence variety of Y , 101

K , complexification of K0, 78
k′ = [k, k], 250
K0 = Gθ

0, maximal compact in G0, 31
κ , K-orbit, 113
(κ, γ ), dual pair, 122
κop, open K-orbit, 182
κX , Kodaira dimension, 226
KZ , canonical bundle of Z, 50

L, line bundle, 97
L2(Z;E), L2 sections of E, 24
λg , Liouville form, 83
�k,wt , weight lattice, 271
�+k,wt , dominant weights, 271
λ(µ) = [µ+ ρk] − ρk, 273
lk, intersection with k, 246
LM , Levi form of M , 88
L(ϕ), Levi-form of ϕ, 51
ls, intersection with s, 246

M(C,Z), weights in T[C]-rep., 285
M(g, ν), weights of ν, 10
M(t, Vπ ), t-weights of π , 261
m0, centralizer of a0 in k0, 86
MD , group-theoretical cyclic space, 57
Mn, n× n matrices, 160
(M,ω), symplectic manifold, 114
Mp×q(A), matrices with coeff. in A, 290

µ∗E, pullback bundle, 209
µ−1(O(E)), pullback sheaf, 209
µk0 , k0-moment map, 116
µ : M → l∗, moment map, 114
µ ≺ λ, weight order, 271
MZ , G-orbit of C0, 56

(N, g), riemannian manifold, 83
NG(h), normalizer in G of h, 9
hλ, normalized coroot, 136
‖ · ‖2

g , metric norm, 83
νλ, highest weight representation, 11
NZ(C), base cycle normal bundle, 245

O, B orbit in G/Q, 27
O(E), sheaf of holomorphic sections, 22
�, homogeneous space G/K , 78
�r
µ(E), relative µ∗E-valued forms, 210

�u, homogeneous space Gu/K0, 78
(O, ωO), coadjoint orbit, 114
OrbZ(G0), orbits in Z of G0, 113
Out(g), outer automorphism group, 262

℘, Weierstrass ℘-function, 227
!, polar coordinate map, 78
�, simple root system, 8
P(V ), projective space of V , 17

Q, parabolic subgroup, 18
q = qr + q−n, parabolic subgroup, 17
Q−n, unipotent radical of Q, 19
q−n, nilradical of q, 17
Qr , Levi complement in Q, 19
qr , Levi complement in q, 17

R(L), graded cohomology ring, 226
rank g, rank of the Lie algebra, 11
ρk = 1

2
∑

γ∈	+k γ , 272

S = c
(O), Schubert variety, 93
SD , Schubert domain, 111
	, Schubert slice, 102
σ = τθ , involution defining gu, 28
	(g, h), roots of g relative to h, 7
	(g0, a0), restricted roots, 136
	+, positive root system, 7
	cpx = 	 \ (	θ ∪	−θ , 267
	k = 	(k, t), 267
	θ = 	(g, t), 267
sλ, root reflection, 136
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Specm(O(Y )), maximal ideals, 140
supp�θ

(µ), positive support of µ, 286

Symk(X), symmetric product of X, 105

t, torus hk in k, 267
τ , involution defining g0, 28
θ , Cartan involution on g0, 28
θ , holomorphic extension to g, 28
ϑ�(c), Poincaré ϑ-series, 223
TM , tangent bundle of M , 78
Tr, trace transform, 107
T CRx M , CR-tangent space, 88

U , universal domain, 81
Ŭ , universal domain in G/K̆ , 129

V std = V ξ1 , standard representation, 303

W = W(g, h), Weyl group, 9
Wk = W(k, t), 268
Wθ , centralizer of θ in W , 268
Wθ

1 , Im(s : Wk \Wθ → Wθ), 271

X, universal cycle family, 131
�, Kostant’s cascade set, 33
ξβj , fundamental weights, 272
(X, ϕ), marked Kähler manifold, 220
X±, hermitian symmetric flag manifolds, 61

Y//H , categorical quotient, 140
YR, real points of Y , 139

ZG(h), centralizer of h in G, 9
zg0(ξ), centralizer of ξ in g0, 38
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