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Preface

The continuous and increasing interest concerning vector optimization percep-
tible in the research community, where contributions dealing with the theory
of duality abound lately, constitutes the main motivation that led to writing
this book. Decisive was also the research experience of the authors in this
field, materialized in a number of works published within the last decade. The
need for a book on duality in vector optimization comes from the fact that
despite the large amount of papers in journals and proceedings volumes, no
book mainly concentrated on this topic was available so far in the scientific
landscape. There is a considerable presence of books, not all recent releases,
on vector optimization in the literature. We mention here the ones due to
Chen, Huang and Yang (cf. [49]), Ehrgott and Gandibleux (cf. [65]), Eichfelder
(cf. [66]), Goh and Yang (cf. [77]), Göpfert and Nehse (cf. [80]), Göpfert, Ri-
ahi, Tammer and Zălinescu (cf. [81]), Jahn (cf. [104]), Kaliszewski (cf. [108]),
Luc (cf. [125]), Miettinen (cf. [130]), Mishra, Wang and Lai (cf. [131, 132])
and Sawaragi, Nakayama and Tanino (cf. [163]), where vector duality is at
most tangentially treated. We hope that from our efforts will benefit not only
researchers interested in vector optimization, but also graduate and under-
graduate students.

The framework we consider is taken as general as possible, namely we
work in (locally convex) topological vector spaces, going to the usual finite di-
mensional setting when this brings additional insights or relevant connections
to the existing literature. We tried to add a certain order in the not always
correct or rigorous results one can meet in the different segments of the vast
literature addressed here. The investigations we perform in the book are al-
ways accompanied by the well-developed apparatus of conjugate duality for
scalar convex optimization problems. Actually, a whole chapter is dedicated to
classical results, but also to new achievements in this field. An additional mo-
tivation for this, as well as for displaying a consistent preliminary chapter on
convex analysis and vector optimization, was our intention to keep the book
as self-contained as possible. Four chapters remained for the vector duality it-
self, two of them directly extending the conjugate duality from the scalar case,
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another one focusing on the Wolfe and Mond-Weir duality concepts, while the
last one deals with the broader class of set-valued optimization problems.

S.-M. Grad and G. Wanka are grateful to R. I. Boţ for the improvements
he brought during the correction process. The authors want to express their
sincere thanks to Ernö Robert Csetnek for reading a preliminary version of
this book and for providing useful comments and suggestions that enhanced
its quality. Thanks are also due to André Heinrich, Ioan Bogdan Hodrea and
Catrin Schönyan for typewriting parts of the manuscript. We would like to
thank our families for their unconditioned support and patience during writing
this book. Without this background the authors would not have found the time
and energy to bring this work to an end.

For updates and errata we refer the reader to

http://www.tu-chemnitz.de/mathematik/approximation/dvo

Chemnitz, Germany, Radu Ioan Boţ
April 2009 Sorin-Mihai Grad

Gert Wanka
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1

Introduction

The conception of this book had a twofold motivation. The lack of a book
or monograph intensively dedicated to duality in vector optimization, differ-
ent to the scalar case where the theory is widely treated and well-founded,
and, on the other hand, the continuously increasing number of publications
dealing with this topic from different points of view. With this monograph
we provide an overview of the major duality concepts in vector optimization,
concomitantly emphasizing the achievements we brought to this field during
the last decade. Working in a general framework, we encompass the majority
of the contributions to this topic in the literature. We mainly work in (locally
convex) topological vector spaces, resorting to the usual finite dimensional
setting especially when we relate to situations met in the literature. Addition-
ally, we followed the aim of bringing a certain order in the diversity of results
not always having the necessary rigor. Nevertheless, we did not go through all
the branches and ramifications of the main classes of vector duality results,
leaving the general setting only for pointing out the ones with major impact
on the development of the field. Thus the list of references is far from be-
ing complete, containing mainly some representative works connected to this
area, only a few vis-á-vis the large number of publications touching this topic,
though.

Given a vector (minimum) optimization problem, by vector duality we
understand attaching dual vector (maximum) optimization problems to it and
investigating the existence of weak, strong and, sometimes, converse duality.
When the values attained by the objective function of the dual problem over
its feasible set do not surpass the ones of the primal objective function, we say
that we have weak duality. Starting from a solution to the primal problem,
when a solution to the dual problem is discovered, such that the two objective
functions coincide, we are in the situation called strong duality. Converse
duality means that the existence of a solution to the dual problem allows to
prove that the primal problem has a solution such that both of the objective
values coincide. A variety of types of solutions can be considered to a vector
optimization problem, each of them giving rise to different vector duals to the

1R.I. Bo  et al., Duality in Vector Optimization, Vector Optimization,
DOI 10.1007/978-3-642-02886-1_1,
© Springer-Verlag Berlin Heidelberg 2009
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2 1 Introduction

primal. When the vector problem is specialized to the scalar case, the vector
dual turns out to be a corresponding known scalar dual.

Three major directions in vector duality are brought into attention in
this book. The first one has its roots in the conjugate duality for scalar op-
timization problems. It is characterized by the fact that in the structure of
the vector dual problems the formulation of a conjugate dual problem to the
scalarized problem one can attach to the primal vector optimization problem
can always be recognized. Studying vector duality is strongly based on the
well-developed duality in scalar optimization. In this context are included the
classical duality concepts due to Jahn (cf. [101, 104]) for Lagrange duality,
Breckner and Kolumbán (cf. [42, 43]) for Fenchel duality, as well as the one
due to Nakayama (cf. [142, 144]) which is based on geometric duality. The
celebrated linear vector duals from the pioneering works due to Gale, Kuhn
and Tucker (cf. [70]), Kornbluth (cf. [118]), Schönefeld (cf. [167]), Rödder
(cf. [161]) and Isermann (cf. [96, 97]) belong here, too. The second vector
duality concept considered here gravitates around Wolfe (cf. [166, 202]) and
Mond-Weir duality (cf. [138, 195, 197]). The formulation of the vector duals
is again based on scalar duality, but this time the optimality conditions for
the scalarized primal-dual pair appear explicitly. A characteristic of this vec-
tor duality principle is the possibility to employ different types of generalized
convexity concepts for the functions involved. This direction currently enjoys
a blossoming development, nevertheless we restrict ourselves to the classical
setting, working under hypotheses of convexity, pseudoconvexity or quasicon-
vexity, respectively. Invexity assumptions are considered here, too, but we
do not go beyond, as the techniques used when working with its many and
sometimes quite artificial and too complicated generalizations are the same.
The third direction concerns set-valued optimization problems, which actually
are extensions of the vector optimization ones. The duality considered here
meets the philosophy from the scalar case, too, being based on the notion of
vector conjugacy. By employing two different minimality notions, correspond-
ing set-valued conjugate theories are developed, in each of them set-valued
duality being introduced and investigated. The first one is based on works
due to Tanino and Sawaragi (cf. [180]) and Sawaragi, Nakayama and Tanino
(cf. [163]), while the second one has its roots in contributions due to Tanino
(cf. [177,178]), Kawasaki (cf. [114]) and Song (cf. [168–170]).

Besides this introductive one, the book contains six chapters, whose de-
scriptions are given in the following.

Chapter 2. Basic notions and results in convex analysis, as well as min-
imality concepts for sets are introduced here. The first section deals with
preliminaries on convex sets, for which algebraical as well as topological prop-
erties are displayed. The concepts of partial ordering and cone are intensively
investigated. Different generalized interiority notions for convex sets are in-
troduced, as they play important roles in formulating regularity conditions.
Some basic separation theorems are recalled, since their usage is propagated
through the whole book. A section on convex functions follows, where basic
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algebraic and topological properties in Hausdorff locally convex spaces are
presented. For vector functions notions which extend the scalar convexity and
lower semicontinuity are discussed. Conjugate functions constitute the core
of the third section. Their basic properties are presented and the proof of
the classical Fenchel-Moreau theorem is given. Subdifferentiability of convex
functions is considered, too, and its connections to the conjugate functions are
outlined. In the fourth section of this chapter we introduce several classes of
minimality notions for a subset of a vector space partially ordered by a convex
cone. We mention here the classical Pareto minimality, the weak minimality,
as well as the proper minimality notions in the sense of Geoffrion, Hurwicz,
Borwein, Benson, Henig and Lampe and linear scalarization, respectively. The
relations between them are stressed, and sufficient conditions which guaran-
tee their coincidence are provided. The situations when one can characterize
these minimality notions via linear scalarization are taken into discussion. The
last section concerns the formulation of a general vector minimization prob-
lem and different efficiency notions for it, in connection to the minimality
concepts treated previously.

Chapter 3. The aim of this chapter is to describe the conjugate dual-
ity theory for scalar optimization problems, a cornerstone for the later vector
duality investigations. We begin with a section in which we describe the gen-
eral perturbation approach for constructing a dual problem, employed to two
different classes of problems, namely the unconstrained one having a com-
position with a linear continuous mapping as objective function and the one
with geometric and cone constraints. For the first one we consider the classical
Fenchel dual problem, while for the latter we deal with three different dual
problems, the Lagrange dual, the Fenchel dual and the Fenchel-Lagrange dual.
The next section is dedicated to formulating regularity conditions for achiev-
ing strong duality, namely the situation when the optimal objective values of
the primal and dual problem coincide and the latter has an optimal solution.
First we deal with the general optimization problem, for which two kinds of
such conditions are given, namely interiority type ones and closedness type
ones. The latter arose mainly from the research carried out by the authors
in the last years. Each of these regularity conditions is particularized to the
two classes of problems mentioned above. Necessary and sufficient optimality
conditions expressed via conjugate functions, as well as subdifferentials, and
saddle point assertions are delivered in the third section, first for the general
scalar optimization problem, afterwards for its particular instances consid-
ered throughout this chapter. The next section is dedicated to duality for the
composed convex optimization problem, to which we assign two different con-
jugate dual problems. We also provide in each case corresponding regularity
conditions, strong duality statements, optimality conditions and saddle point
assertions. For all these classes of scalar problems, including the general one,
we give in the last section of this chapter stable strong duality results and cor-
responding subdifferential formulae. By stable strong duality we understand
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the situation when the strong duality is not violated when adding any linear
continuous functional to the objective function of the primal problem.

Chapter 4. This is the first chapter where we deal with duality for vec-
tor optimization problems, considered in a very general framework where the
image space is an arbitrary partially ordered Hausdorff locally convex space.
Throughout the whole chapter we parallelly deal with vector duals constructed
by means of linear scalarization with respect to properly and weakly efficient
solutions, respectively. We begin with Fenchel type vector duality for the op-
timization problem having as objective function the sum of a vector func-
tion with the composition of another vector function with a linear continuous
mapping. For the primal-dual pair considered here we give weak, strong and
converse duality assertions. We also put the dual in relation to the classical
one in [42,43]. In the second section we consider the problem with geometric
and cone constraints and the duality developed here extends the geometric
approach from [142, 144], new results with respect to it being achieved. In
analogy to the scalar case, in the third section we introduce a vector duality
scheme based on a general perturbation approach, particularizing it to the
vector minimization problem with geometric and cone constraints. To the lat-
ter we assign different vector dual problems and we investigate the relations
between them. Among these we rediscover the celebrated vector dual problem
from [101, 104]. In the general scheme we provide, the vector geometric dual
from the previous section is also incorporated. The fourth section deals with
vector duality via a general scalarization. The vector duals are constructed
by using different scalarization functions, where the investigations from the
previous chapter made for composed convex problems play an important role.
Besides linear scalarization, as special cases we consider here the maximum(-
linear) scalarization, the set scalarization and the (semi)norm scalarization.
We close the chapter by dealing with a linear vector optimization problem in-
troduced in general spaces, by means of the duality schemes developed in the
previous sections. We discuss the situation when the sets of maximal elements
attached to all these duals become equal.

Chapter 5. The investigations on vector duality from the previous chap-
ter are completed here by considering new Fenchel type and Fenchel-Lagrange
type vector duals for the case when the image space of the objective functions
is finite dimensional, culminating in a review on linear vector duality. The
initial section introduces two new Fenchel type vector duals to the problem of
minimizing the sum of a vector function with a composition of another vector
function with a linear continuous mapping, one with respect to properly ef-
ficient solution, the other concerning weakly efficient solutions. Comparisons
of the new duals with the ones considered in the previous chapter to the
same primal are also given. In the second section we extend the family of
Fenchel-Lagrange vector dual problems to the problem of minimizing a vec-
tor function with respect to both geometric and cone constraints introduced
in [24, 36, 184] concerning properly efficient solutions for the situation when
the functions involved are defined on Hausdorff locally convex spaces, giving
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moreover corresponding Fenchel-Lagrange vector duals with respect to weakly
efficient solutions. We also show that in the case when the cone constraints
are linear equalities each of the two families of vector duals we introduced
consists of a single dual. We compare the vector duals given in the previous
section with the ones from the previous chapter and with some new vector
duals we introduce here for the same primal in the third section, stressing that
under certain regularity conditions the sets of maximal, respectively weakly
maximal, solutions of these vector duals coincide. In the fourth section we
investigate what happens to the vector duals introduced in the previous two
sections when the primal problem has a linear vector objective function and
geometric and linear constraints. In the last section we consider all the spaces
to be finite dimensional, treating the so-called classical linear vector duality.
The vector duals considered for vector problems with constraints concern-
ing efficient solutions in this chapter and in the previous one are written in
this particular framework, being compared among them and also with the
linear vector duals considered in [84, 96]. A general scheme regarding their
sets of maximal elements is also provided. Moreover, we recall the classical
linear vector duals in [70, 118]. When working with weakly efficient elements
we compare the vector duals introduced so far, giving again a general scheme
regarding their weakly maximal elements.

Chapter 6. An overview on the most important aspects regarding Wolfe
duality and Mond-Weir duality is brought in this chapter. The first section is
dedicated to scalar Wolfe and Mond-Weir duality. We start by working with
convex optimization problems in Hausdorff locally convex spaces, then when
particularizing the framework to finite dimensional spaces, we rediscover the
dual in [166]. Taking the functions involved to be moreover differentiable, the
classical duals in [138, 202] are recalled. Replacing in the differentiable case
the convexity hypotheses by pseudoconvexity, quasiconvexity and invexity as-
sumptions for the functions involved, respectively, weak and strong duality
statements are also proven. In the second section we deal with vector Wolfe
duality and Mond-Weir duality. We cover first the nondifferentiable case, when
convexity plays a key role, then we take the functions involved to be differ-
entiable, replacing afterwards the convexity assumptions by the mentioned
generalized convexity hypotheses on the functions involved. We work paral-
lelly with vector duals concerning both properly and weakly efficient solutions,
delivering weak and strong duality statements. In this way we cover the most
important results published so far in the field, see [62, 191, 192, 197], cor-
recting moreover some inaccuracies intermingled in the literature. Two kinds
of special Wolfe duality type and Mond-Weir duality type investigations are
presented in the third section. Following papers like [14, 140, 196] we present
other Wolfe and Mond-Weir type dual problems for which strong duality holds
without assuming any regularity condition, both in the nondifferentiable and
differentiable case. We treat similarly the vector case, starting from [63,198].
Symmetric Wolfe type duality and Mond-Weir type duality can be found in
this book, too, and here the primal problems have a special formulation, the



6 1 Introduction

functions involved being taken twice differentiable. We begin with the scalar
case, via [136, 138], turning then to the vector case where we recall results
based on [115, 171]. Wolfe and Mond-Weir fractional duality are taken into
consideration in the fourth section, following the two main directions in the
literature, introduced in [100, 164] and [13], respectively, in the scalar case,
and [193, 194] in the vector case. In the last section, turning again to convex
functions defined on general spaces, we generalize the Wolfe and Mond-Weir
duality concepts, introducing for the first time in the literature a perturbation
approach in connection to them. Thus one can treat via generalized Wolfe
duality and Mond-Weir duality both classes of optimization problems consid-
ered in the scalar case. The duals obtained via the Lagrange perturbation turn
out to be, in the finite dimensional case, the classical Wolfe and Mond-Weir
duals from the literature, respectively. We also deliver a Wolfe type and a
Mond-Weir type duality scheme for general vector optimization problems.

Chapter 7. The last chapter of the book entails investigations on set-
valued optimization problems, by involving the so-called vector conjugacy,
considered here with respect to two different minimality notions. In the first
section we begin by introducing the conjugate, biconjugate and subdifferential
of a set-valued map, following the approach from [163, 180]. The minimality
notions are extended to sets in topological vector spaces to which infinite
elements are attached. Some basic properties of these notions are discussed
by outlining a certain analogy to their scalar correspondents. A perturbation
approach for introducing a set-valued dual to a general set-valued optimiza-
tion problem is employed and sufficient conditions for stability and strong
duality are provided. By means of the same minimality notions a second ap-
proach, based on the so-called vector k-conjugacy, is considered, while similar
issues are addressed. In the second section, by dealing in parallel with the
two vector conjugacy approaches mentioned above, Lagrange, Fenchel and
Fenchel-Lagrange set-valued duals are introduced for the set-valued optimiza-
tion problem with constraints. For all these duals corresponding stability cri-
teria, strong duality statements and necessary and sufficient optimality con-
ditions are delivered. The set-valued problem having a composition with a
linear continuous mapping as objective map and its Fenchel set-valued dual
are the object of similar investigations in the next section. An application to
constructing set-valued gap maps for vector variational inequalities closes the
section. A further set-valued duality scheme, this time based on weak mini-
mality in the same sense as in [168–170,178] is presented in the next section.
Its advantages opposite to the approach from the previous sections as concerns
the conjugate calculus are outlined. Also here, a general set-valued dual via
the perturbation approach is introduced to a general set-valued optimization
problem, stability and strong duality statements being provided. As a partic-
ular instance of the general duality scheme, we deal first with the set-valued
optimization problem with constraints to which we attach the same three
types of set-valued duals as in the second section. Regularity conditions for
strong duality and necessary and sufficient optimality conditions are stressed.
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From the same point of view, investigations on the set-valued optimization
problem having a composition with a linear continuous mapping as objective
map, regarding its Fenchel dual, are performed. Their implementation in the
construction of set-valued gap maps for set-valued equilibrium problems closes
this last section.



2

Preliminaries on convex analysis and vector
optimization

In this chapter we introduce some basic notions and results in convex anal-
ysis and vector optimization in order to make the book as self-contained as
possible. The reader is supposed to have basic notions of functional analysis.

2.1 Convex sets

This section is dedicated mainly to the presentation of convex sets and their
properties. With some exceptions the results we present in this section are
given without proofs, as these can be found in the books and monographs on
this topic mentioned in the bibliographical notes at the end of the chapter.
All around this book we denote by R

n the n-dimensional real vector space,
while by R

n
+ =

{

x = (x1, . . . , xn)T ∈ R
n : xi ≥ 0 for all i = 1, . . . , n

}

we
denote its nonnegative orthant. By N = {1, 2, ...} we denote the set of natural
numbers, while ∅ is the empty set. All the vectors are considered as column
vectors. An upper index T transposes a column vector to a row one and vice
versa. By R

m×n we denote the space of the m × n matrices with real entries.
When we have a matrix A ∈ R

m×n, by Ai, i = 1, . . . , m, we denote its rows
and, naturally, by AT its transpose. By ei ∈ R

n we denote the i-th unit vector
of R

n, while by e :=
∑n

i=1 ei ∈ R
n we understand the vector having all entries

equal to 1. If a function f takes everywhere the value a ∈ R we write f ≡ a.

2.1.1 Algebraic properties of convex sets

Let X be a real nontrivial vector space. A linear subspace of X is a nonempty
subset of it which is invariant with respect to the addition and the scalar
multiplication on X. Note that an intersection of linear subspaces is itself a
linear subspace. The algebraic dual space of X is defined as the set of all
linear functionals on X and it is denoted by X#. Given any linear functional
x# ∈ X#, we denote its value at x ∈ X by 〈x#, x〉.
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10 2 Preliminaries on convex analysis and vector optimization

For x# ∈ X#\{0} and λ ∈ R the set H := {x ∈ X : 〈x#, x〉 = λ} is called
hyperplane. The sets {x ∈ X : 〈x#, x〉 ≤ λ} and {x ∈ X : 〈x#, x〉 ≥ λ} are the
closed halfspaces determined by the hyperplane H, while {x ∈ X : 〈x#, x〉 <
λ} and {x ∈ X : 〈x#, x〉 > λ} are the open halfspaces determined by H. In
order to simplify the presentation, the origins of all spaces will be denoted by
0, since the space where this notation is used always arises from the context.
By ΔXm we denote the set {(x, . . . , x) ∈ Xm : x ∈ X}, which is a linear
subspace of Xm := X × ... × X = {(x1, . . . , xm) : xi ∈ X, i = 1, . . . , m}.

If U and V are two subsets of X, their Minkowski sum is defined as U +
V := {u + v : u ∈ U, v ∈ V }. For U ⊆ X we define also x + U = U + x :=
U + {x} when x ∈ X, λU := {λu : u ∈ U} when λ ∈ R and ΛU := ∪λ∈Λ λU
when Λ ⊆ R. According to these definitions one has that U + ∅ = ∅ + U = ∅
and λ∅ = ∅ whenever U ⊆ X and λ ∈ R. Moreover, if U ⊆ V ⊆ X and U 	= V
we write U � V .

Some important classes of subsets of a real vector space X follow. Let be
U ⊆ X. If [−1, 1]U ⊆ U , then U is said to be a balanced set. When U = −U
we say that U is symmetric, while U is called absorbing if for all x ∈ X there
is some λ > 0 such that one has x ∈ λU .
Affine and convex sets. Before introducing the notions of affine and convex
sets, some necessary prerequisites follow. Taking some xi ∈ X and λi ∈ R,
i = 1, . . . , n, the sum

∑n
i=1 λixi is said to be a linear combination of the

vectors {xi : i = 1, . . . , n}. The vectors xi ∈ X, i = 1, . . . , n, are called
linearly independent if from

∑n
i=1 λixi = 0 follows λi = 0 for all i = 1, . . . , n.

The linear hull of a set U ⊆ X,

lin(U) :=
{ n
∑

i=1

λixi : n ∈ N, xi ∈ U, λi ∈ R, i = 1, . . . , n

}

,

is the intersection of all linear subspaces containing U , being the smallest
linear subspace having U as a subset.

The set U ⊆ X is called affine if λx + (1 − λ)y ∈ U whenever λ ∈ R. The
intersection of arbitrarily many affine sets is affine, too. The smallest affine
set containing U or, equivalently, the intersection of all affine sets having U
as a subset is the affine hull of U ,

aff(U) :=
{ n
∑

i=1

λixi : n ∈ N, xi ∈ U, λi ∈ R, i = 1, . . . , n,

n
∑

i=1

λi = 1
}

.

A set U ⊆ X is called convex if

{λx + (1 − λ)y : λ ∈ [0, 1]} ⊆ U for all x, y ∈ U.

Obviously, ∅ and the whole space X are convex sets, as well as the hyperplanes,
linear subspaces, affine sets and any set containing a single element. An ex-
ample of a convex set in R

n is the standard (n − 1)-simplex which is the set
Δn := {x = (x1, . . . , xn)T ∈ R

n
+ :

∑n
i=1 xi = 1}. Given xi ∈ X, i = 1, . . . , n,
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and (λ1, . . . , λn)T ∈ Δn, the sum
∑n

i=1 λixi is said to be a convex combination
of the elements xi, i = 1, . . . , n. The intersection of arbitrarily many convex
sets is convex, while in general the union of convex sets is not convex. Note
also that when U and V are convex subsets of X, for all α, β ∈ R the set
αU + βV is convex, too.

If Xi, i = 1, . . . , m, are nontrivial real vector spaces, then Ui ⊆ Xi, i =
1, . . . , m, are convex sets if and only if

∏m
i=1 Ui is a convex set in

∏m
i=1 Xi.

When X and Y are nontrivial real vector spaces and U ⊆ X×Y , the projection
of U on X is the set PrX(U) := {x ∈ X : ∃y ∈ Y such that (x, y) ∈ U}. If U
is convex then PrX(U) is convex, too.

When U is a subset of the real vector space X, the intersection of all
convex sets containing U is the convex hull of U ,

co(U) :=
{ n
∑

i=1

λixi : n ∈ N, xi ∈ U, i = 1, . . . , n, (λ1, . . . , λn)T ∈ Δn

}

,

which is the smallest convex set with U as a subset. If U and V are subsets
of X, for all α, β ∈ R one gets co(αU + βV ) = α co(U) + β co(V ).

A special case of convex sets are the polyhedral sets which are finite in-
tersections of closed halfspaces. If U and V are polyhedral sets, then for all
λ, μ ∈ R the set λU + μV is polyhedral, too.

Consider another nontrivial real vector space Y and let T : X → Y be
a given mapping. The image of a set U ⊆ X through T is the set T (U) :=
{T (u) : u ∈ U}, while the counter image of a set W ⊆ Y through T is
T−1(W ) := {x ∈ X : T (x) ∈ W}. The mapping A is called linear if A(x+y) =
Ax + Ay and A(λx) = λAx for all x, y ∈ X and all λ ∈ R or, equivalently, if

A(αx + βy) = αAx + βAy ∀x, y ∈ X ∀α, β ∈ R.

If A : X → Y is a linear mapping and U ⊆ X is a linear subspace, then A(U)
is a linear subspace, too. On the other hand, if W ⊆ Y is a linear subspace,
then A−1(W ) is a linear subspace, too. A special linear mapping is the identity
function on X, idX : X → X defined by idX(x) = x for all x ∈ X.

The mapping T : X → Y is said to be affine if

T (λx + (1 − λ)y) = λT (x) + (1 − λ)T (y) ∀x, y ∈ X ∀λ ∈ R.

If T : X → Y is an affine mapping and the set U ⊆ X is affine (or convex),
then T (U) is affine (or convex), too. Moreover, if W ⊆ Y is affine (or convex),
then T−1(W ) is affine (or convex), too.
Cones. A nonempty set K ⊆ X which satisfies the condition λK ⊆ K for
all λ ≥ 0 is said to be a cone. Throughout this book we assume, as follows
by the definition, that the considered cones always contain the origin. The
intersection of a family of cones is a cone, too.

A convex cone is a cone which is a convex set. One can prove that a cone
K is convex if and only if K +K ⊆ K. If K is a convex cone, then its linearity
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space l(K) = K ∩ (−K) is a linear subspace. A cone K is said to be pointed if
l(K) = {0}. The cones K = {0} and K = X are called trivial cones. Typical
examples of nontrivial cones which occur in optimization are, when X = R

n,
the nonnegative orthant R

n
+ and the lexicographic cone

R
n
lex := {0} ∪ {x ∈ R

n : x1 > 0}∪
{x ∈ R

n : ∃k ∈ {2, ..., n} such that xi = 0 ∀i ∈ {1, . . . , k − 1} and xk > 0
}

,

while for X = R
n×n the cone of symmetric positive semidefinite matrices

Sn
+ := {A ∈ R

n×n : A = AT , 〈x, Ax〉 ≥ 0 ∀x ∈ R
n}. Note that in R one can

find only four cones: {0}, R+, −R+ and R.
The conical hull of a set U ⊆ X, denoted by cone(U), is the intersection of

all the cones which contain U , being the smallest cone in X that contains U .
One can show that cone(U) = ∪λ≥0 λU . When U is convex, then lin(U −x) =
cone(U − x) and, consequently, aff(U) = x + cone(U − U), whenever x ∈ U .

The convex conical hull of a set U ⊆ X,

coneco(U) :=
{ n
∑

i=1

λixi : n ∈ N, xi ∈ U, λi ≥ 0, i = 1, . . . , n

}

,

is the intersection of all the convex cones that contain U , being the smallest
convex cone having U as a subset. One has coneco(U) = cone(co(U)) =
co(cone(U)). Due to the Minkowski-Weyl theorem, a set U ⊆ R

n is polyhedral
if and only if there are two finite sets V,W ⊆ R

n such that U = co(V ) +
coneco(W ).

If K is a nontrivial convex cone, then U ⊆ K is called a base of the cone K
if each x ∈ K\{0} has an unique representation of the form x = λu for some
λ > 0 and u ∈ U . Each nontrivial convex cone with a base in a nontrivial real
vector space is pointed.

If K ⊆ X is a given cone, its algebraic dual cone is K# := {x# ∈ X# :
〈x#, x〉 ≥ 0 for all x ∈ K}. The set K# is a convex cone. If C and K are cones
in X, one has (C +K)# = C# ∩K# = (C ∪K)# and C# +K# ⊆ (C ∩K)#.
If the two cones satisfy C ⊆ K, then C# ⊇ K#.

Given a set U ⊆ X and x ∈ U we consider the normal cone to U at x,

N(U, x) = {x# ∈ X# : 〈x#, y − x〉 ≤ 0 ∀y ∈ U},

which is a convex cone.
Partial orderings. Very important, not only in convex analysis, is to consider
certain orderings on the spaces one works with. Let the nonempty set R ⊆
X × X be a so-called binary relation on X. The elements x, y ∈ X are said
in this case to be in relation R if (x, y) ∈ R and we write also xRy. A binary
relation R is said to be a partial ordering on the vector space X if it satisfies
the following axioms

(i) reflexivity : for all x ∈ X it holds xRx;
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(ii) transitivity : for all x, y, z ∈ X from xRy and yRz follows xRz;
(iii) compatibility with the linear structure:

- for all x, y, z, w ∈ X from xRy and zRw follows (x + z)R(y + w);
- for all x, y ∈ X and λ ∈ R+ from xRy follows (λx)R(λy).

In such a situation it is common to use the symbol “≤” and to write x ≤ y for
xRy. The partial ordering “≤” is called antisymmetric if for x, y ∈ X fulfilling
x ≤ y and y ≤ x there is x = y. A real vector space equipped with a partial
ordering is called a partially ordered vector space.

If there is a partial ordering “≤” on X, then the set {x ∈ X : 0 ≤ x} is a
convex cone. If the partial ordering “≤” is moreover antisymmetric, this cone
is also pointed. Vice versa, having a convex cone K ⊆ X, it induces on X a
partial ordering relation “�K” defined as follows

�K :=
{

(x, y) ∈ X × X : y − x ∈ K
}

.

If K is pointed, then “�K” is antisymmetric. To write x �K y, also the
notation y �K x is used, while x �K y means y − x /∈ K. We denote also
x ≤K y if x �K y and x 	= y, while x �K y is used when x ≤K y is not fulfilled.
A convex cone which induces a partial ordering on X is called ordering cone.
For the natural partial ordering on R

n, which is introduced by R
n
+, we use

“�” instead of “�R
n
+
” and also “≤” for “≤R

n
+
”.

By R we denote the extended real space which consists of R∪ {±∞}. The
operations on R are the usual ones on R to which we add the following natural
ones: λ+(+∞) = (+∞)+λ := +∞ ∀λ ∈ (−∞, +∞], λ+(−∞) = (−∞)+λ :=
−∞ ∀λ ∈ [−∞,+∞), λ · (+∞) := +∞ ∀λ ∈ (0,+∞], λ · (+∞) := −∞ ∀λ ∈
[−∞, 0), λ · (−∞) := −∞ ∀λ ∈ (0,+∞] and λ · (−∞) := +∞ ∀λ ∈ [−∞, 0).
We also assume by convention that

(+∞) + (−∞) = (−∞) + (+∞) := +∞, 0(+∞) := +∞ and 0(−∞) := 0.

In analogy to the extended real space we attach to X a greatest and a small-
est element with respect to “�K”, denoted by +∞K and −∞K , respectively,
which do not belong to X and let X := X ∪{±∞K}. Then for x ∈ X it holds
−∞K �K x �K +∞K . Similarly, we assume that −∞K ≤K x ≤K +∞K for
any x ∈ X. On X we consider the following operations, in analogy to the ones
stated above for the extended real space: x + (+∞K) = (+∞K) + x := +∞K

∀x ∈ X ∪ {+∞K}, x + (−∞K) = (−∞K) + x := −∞K ∀x ∈ X ∪ {−∞K},
λ · (+∞K) := +∞K ∀λ ∈ (0,+∞], λ · (+∞K) := −∞K ∀λ ∈ [−∞, 0),
λ · (−∞K) := −∞K ∀λ ∈ (0,+∞] and λ · (−∞K) := +∞K ∀λ ∈ [−∞, 0). We
consider also the following conventions

(+∞K) + (−∞K) = (−∞K) + (+∞K) := +∞K ,
0(+∞K) := +∞K and 0(−∞K) := 0.

(2.1)

Moreover, if x# ∈ K# we let 〈x#, +∞K〉 := +∞.
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Algebraic interiority notions. Even without assuming a topological structure
on X, different algebraic interiority notions can be considered for its subsets,
as follows. The algebraic interior , also called core, of a set U ⊆ X is

core(U) :=
{

x ∈ X : for every y ∈ X∃δ > 0 such that x + λy ∈ U∀λ ∈ [0, δ]
}

.

It is clear that core(U) ⊆ U . The algebraic interior with respect to the affine
hull of U is called the intrinsic core of U , being the set

icr(U) :=
{

x ∈ X : for every y ∈ aff(U)∃δ > 0 such that x+λy ∈ U∀λ ∈ [0, δ]
}

.

There is core(U) ⊆ icr(U). If x ∈ U and U is convex, then x ∈ core(U) if and
only if cone(U − x) = X and, on the other hand, x ∈ icr(U) if and only if
cone(U −x) is a linear subspace, or, equivalently, cone(U −x) = cone(U −U).

Taking two subsets U and V of X we have U + core(V ) ⊆ core(U + V ),
with equality if V = core(V ). The equality holds also in case U and V are
convex and core(V ) 	= ∅, as proved in [176]. Note also that a set U ⊆ X is
absorbing if and only if 0 ∈ core(U). If K is a cone in X with core(K) 	= ∅,
then K−K = X and, consequently, K# is pointed. When K is a convex cone
then core(K) ∪ {0} is a convex cone, too, and core(K) = core(K) + K. If K
is a convex cone with nonempty algebraic interior, then one has core(K) =
{

x ∈ X : 〈x#, x〉 > 0 ∀x# ∈ K#\{0}
}

.

2.1.2 Topological properties of convex sets

Further we consider X being a real topological vector space, i.e. a real vector
space endowed with a topology T which renders continuous the following
functions

(x, y) �→ x + y, x, y ∈ X and (λ, x) �→ λx, x ∈ X,λ ∈ R.

Throughout the book, if we speak about (topological) vector spaces, we al-
ways mean real nontrivial (topological) vector spaces, this means not equal
to {0}. Moreover we agree to omit further the word “real” in such contexts.
A topological space for which any two different elements have disjoint neigh-
borhoods is said to be Hausdorff . A topological vector space X is said to be
metrizable if it can be endowed with a metric which is compatible with its
topology. Every metrizable vector space is Hausdorff.

For a set U ⊆ X we denote by int(U) the interior of U and by cl(U) its
closure. Then bd(U) = cl(U)\ int(U) is called the boundary of U .

If Y is a topological vector space and T : X → Y is a linear mapping,
then there is T (cl(U)) ⊆ cl(T (U)) for every U ⊆ X. If U is a convex subset
of X, x ∈ int(U) and y ∈ cl(U), then {λx + (1 − λ)y : λ ∈ (0, 1]} ⊆ int(U).
For U ⊆ X there is int(U) ⊆ core(U). If U is convex and one of the following
conditions is fulfilled: int(U) 	= ∅; X is a Banach space and U is closed; X
is finite dimensional, then int(U) = core(U). If U is convex and int(U) 	= ∅,
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then it holds int(U) = int(cl(U)) and cl(int(U)) = cl(U). The interior and the
closure of a convex set in a topological vector space are convex, too. If U is
a subset of X, then the intersection of all closed convex sets containing U is
the closed convex hull of U , denoted by co(U), and it is the smallest closed
convex set containing U . It is also the closure of the convex hull of U .

When K ⊆ X is a convex cone with core(K) 	= ∅ we denote ̂K := core(K)∪
{0} and, for x, y ∈ X which satisfy y − x ∈ core(K) we write x <K y. When
int(K) 	= ∅, x <K y means y − x ∈ int(K). Concerning the elements +∞K

and −∞K introduced in the previous subsection we assume that for all x ∈ X
one has −∞K <K x <K +∞K .

In R
n we work with the Euclidean topology induced by the Euclidean norm.

The open ball centered in x ∈ R
n and with radius ε > 0 is denoted by B(x, ε),

while the closed ball centered in x ∈ R
n and with radius ε > 0 is denoted by

B(x, ε).
Dual spaces. The set of all linear continuous mappings defined on X and
taking values in the topological vector space Y is denoted by L(X,Y ).

The topological vector space L(X, R) is said to be the topological dual
space of X, being denoted by X∗. Further, we refer with “dual” to topological
duals, not to algebraical ones, unless otherwise specified. Analogously to vector
spaces, by 〈x∗, x〉 we denote the value taken at x ∈ X by the linear continuous
functional x∗ ∈ X∗. The hyperplane H := {x ∈ X : 〈x#, x〉 = λ} with
x# ∈ X# and λ ∈ R is closed if and only if x# is continuous.

For a mapping A ∈ L(X,Y ) we consider its adjoint mapping A∗ ∈
L(Y ∗,X∗) defined by 〈A∗y∗, x〉 := 〈y∗, Ax〉 for all x ∈ X and y∗ ∈ Y ∗.
When X = R

n and Y = R
m, A can be identified with an m × n matrix and

A∗ coincides with AT .
For every x∗ ∈ X∗ let the seminorm px∗ : X → R defined by px∗(x) :=

|〈x∗, x〉|. The coarsest topology on X which makes all the seminorms px∗ ,
for x∗ ∈ X∗, continuous is called the weak topology on X induced by X∗,
being denoted w(X,X∗). Every weakly closed set in X, i.e. closed in the
weak topology, is closed also in the original topology on X, while the reverse
assertion does not always hold.

Considering for all x ∈ X the seminorms px : X∗ → R, px(x∗) = |〈x∗, x〉|,
one defines analogously a topology on X∗, called the weak∗ topology , denoted
w(X∗,X). When one works with X∗ endowed with the topology w(X∗,X),
the bidual space X∗∗ of X, defined as the topological dual of X∗, can be
identified with X.
Locally convex spaces. By a local base B of the topological vector space X
endowed with the topology T we understand a collection of neighborhoods of
zero from T such that every neighborhood of zero contains an element of B.
Then a set belongs to T if and only if it can be written as a union of translates
of members of B. A topological vector space is called locally convex if it has
a local base whose members are convex sets. In a Hausdorff locally convex
space the weakly closed convex sets are identical with the closed convex sets.
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A locally convex space is called Fréchet if it is complete and metrizable by a
metric which is invariant to translations.

If X is a Hausdorff locally convex space, to a nonempty subset U of it one
can introduce the Bouligand tangent cone at x ∈ cl(U), which is

T (U, x) :=
{

y ∈ X : ∃(xl)l≥1 ∈ U and (λl)l≥1 > 0 such that

lim
l→+∞

xl = x and lim
l→+∞

λl(xl − x) = y
}

.

Whenever U 	= ∅ and x ∈ cl(U), T (U, x) is a cone and T (U, x) ⊆ cl(cone(U −
x)). For a convex set U ⊆ X there is cone(U − x) ⊆ T (U, x), which yields in
this case that cl(T (U, x)) = cl(cone(U − x)). If X is metrizable, then T (U, x)
is closed and, thus, if U is convex one has T (U, x) = cl(cone(U − x)) for all
x ∈ cl(U).
Topological dual cones. Analogously to the algebraic dual cone used when
working in vector spaces, one can consider a dual cone in topological vector
spaces, too. When K is a cone in X, its topological dual cone, further called
simply dual cone, is

K∗ :=
{

x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0 for all x ∈ K
}

.

The cone K∗ is always convex and weak∗ closed. If K is a convex cone with
nonempty interior, then there is int(K) =

{

x ∈ X : 〈x∗, x〉 > 0 ∀x∗ ∈
K∗\{0}

}

. If C and K are convex closed cones in X, then (C ∩ K)∗ =
clw(X∗,X)(C∗ + K∗) and the closure can be removed, for instance, when
C ∩ int(K) 	= ∅.

The bidual cone of a cone K ⊆ X is

K∗∗ := {x ∈ X : 〈x∗, x〉 ≥ 0 for all x∗ ∈ K∗}.
Note that K∗∗ = co(K). When X∗ is endowed with the weak∗ topology then
K∗∗ is nothing but the dual cone of K∗.
Topological interiority notions. Let, unless otherwise specified, X be a Haus-
dorff locally convex space and X∗ its topological dual space endowed with the
weak∗ topology. Besides the already introduced interiority notions, which are
defined only by algebraical means, we deal in this book also with topological
notions of generalized interiors for a set.

The quasi relative interior of U ⊆ X is

qri(U) :=
{

x ∈ U : cl(cone(U − x)) is a linear subspace
}

.

If U is convex, then x ∈ qri(U) if and only if x ∈ U and N(U, x) is a linear
subspace of X∗ (cf. [21]). The quasi interior of a set U ⊆ X is the set

qi(U) :=
{

x ∈ U : cl(cone(U − x)) = X
}

.

Note that qi(U) is a subset of qri(U). When U is convex one has x ∈ qi(U) if
and only if x ∈ U and N(U, x) = {0} (cf. [26, 27]) and also that if qi(U) 	= ∅
then qi(U) = qri(U). The next result provides a characterization for the quasi
interior of the dual cone of a convex closed cone.
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Proposition 2.1.1. If K ⊆ X is a convex closed cone, then

qi(K∗) =
{

x∗ ∈ K∗ : 〈x∗, x〉 > 0 for all x ∈ K\{0}
}

. (2.2)

Proof. Assume first that there is some x∗ ∈ qi(K∗) not belonging to set in the
right-hand side of (2.2). Then there is some x ∈ K\{0} such that 〈x∗, x〉 = 0.
As 〈y∗, x〉 ≥ 0 for all y∗ ∈ K∗, we obtain 〈y∗−x∗,−x〉 ≤ 0 for all y∗ ∈ K∗, i.e.
−x ∈ N(K∗, x∗) = {0}. As this cannot take place because x 	= 0, it follows
that qi(K∗) ⊆ {x∗ ∈ K∗ : 〈x∗, x〉 > 0 ∀x ∈ K\{0}}. Assume now the existence
of some x∗ ∈ K∗\ qi(K∗) which fulfills 〈x∗, x〉 > 0 whenever x ∈ K\{0}. Then
there is some y ∈ X\{0} such that 〈y∗−x∗, y〉 ≤ 0 for all y∗ ∈ K∗. This yields
〈y∗, y〉 ≤ 〈x∗, y〉 for all y∗ ∈ K∗. Taking into consideration that K∗ is a cone,
this implies 〈y∗, y〉 ≤ 0 whenever y∗ ∈ K∗, i.e. y ∈ −K∗∗. As K is convex
and closed we get y ∈ −K\{0}, thus 〈x∗, y〉 < 0, which if false. Consequently,
(2.2) holds. ��

Whenever K ⊆ X is a convex cone, even if not necessarily closed, the
above proposition motivates the use of the name quasi interior of the dual
cone of K for the set

K∗0 :=
{

x∗ ∈ K∗ : 〈x∗, x〉 > 0 for all x ∈ K\{0}
}

.

In case X is a separable normed space and K is a pointed convex closed
cone, the Krein-Rutman theorem guarantees the nonemptiness of K∗0 (see
[104, Theorem 3.38]). Considering X = l2 and K = l2+, it can be noted that
(l2+)∗0 is nonempty, different to int((l2+)∗) = int(l2+) which is an empty set.
If K∗0 	= ∅ then K is pointed. If K is closed and intw(X∗,X)(K∗) 	= ∅, then
intw(X∗,X)(K∗) = K∗0.

The strong quasi relative interior of a set U ⊆ X is

sqri(U) :=
{

x ∈ U : cone(U − x) is a closed linear subspace
}

.

It is known that core(U) ⊆ sqri(U) ⊆ icr(U). If U is convex, then u ∈ sqri(U)
if and only if u ∈ icr(U) and aff(U − u) is a closed linear subspace. Assuming
additionally that X = R

n and U ⊆ R
n, there is qi(U) = int(U) and icr(U) =

sqri(U) = qri(U) = ri(U), where

ri(U) :=
{

x ∈ aff(U) : ∃ε > 0 such that B(x, ε) ∩ aff(U) ⊆ U
}

is the relative interior of the set U .
Separation theorems. Separation statements are very important in convex
analysis and optimization, being crucial in the proofs of some of the basic
results. In the following we present the ones which we need later in this book.
We begin with a classical result in topological vector spaces followed by its
version for real vector spaces and a consequence.
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Theorem 2.1.2. (Eidelheit) Let U and V be nonempty convex subsets of the
topological vector space X with int(U) 	= ∅. Then int(U) ∩ V = ∅ if and only
if there are some x∗ ∈ X∗\{0} and λ ∈ R such that

sup
x∈U

〈x∗, x〉 ≤ λ ≤ inf
x∈V

〈x∗, x〉

and 〈x∗, x〉 < λ for all x ∈ int(U).

Theorem 2.1.3. Let U and V be nonempty convex subsets of a vector space
X with core(U) 	= ∅. Then core(U) ∩ V = ∅ if and only if there are some
x# ∈ X#\{0} and λ ∈ R such that

sup
x∈U

〈x#, x〉 ≤ λ ≤ inf
x∈V

〈x#, x〉

and 〈x#, x〉 < λ for all x ∈ core(U).

Corollary 2.1.4. Let U and V be nonempty convex subsets of the topological
vector space X such that int(U − V ) 	= ∅. Then 0 /∈ int(U − V ) if and only if
there exists an x∗ ∈ X∗\{0} such that

sup
x∈U

〈x∗, x〉 ≤ inf
x∈V

〈x∗, x〉.

When working in locally convex spaces one has the following separation
result.

Theorem 2.1.5. (Tuckey) Let U and V be nonempty convex subsets of the
locally convex space X, one compact and the other closed. Then U ∩ V = ∅ if
and only if there exists an x∗ ∈ X∗\{0} such that

sup
x∈U

〈x∗, x〉 < inf
x∈V

〈x∗, x〉.

Corollary 2.1.6. Let U and V be nonempty convex subsets of the locally con-
vex space X. Then 0 /∈ cl(U − V ) if and only if there exists an x∗ ∈ X∗\{0}
such that

sup
x∈U

〈x∗, x〉 < inf
x∈V

〈x∗, x〉.

In finite dimensional spaces, i.e. when X = R
n, we also have the following

separation statement involving relative interiors.

Theorem 2.1.7. Let U and V be nonempty convex sets in R
n. Then ri(U)∩

ri(V ) = ∅ if and only if there exists an x∗ ∈ X∗\{0} such that

sup
x∈U

〈x∗, x〉 ≤ inf
x∈V

〈x∗, x〉

and
inf
x∈U

〈x∗, x〉 < sup
x∈V

〈x∗, x〉.
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2.2 Convex functions

In this section X and Y are considered, unless otherwise specified, Hausdorff
locally convex spaces and X∗ and Y ∗ their topological dual spaces, respec-
tively. We list some well-known basic results on convex functions, but, as in
the previous section, without proofs concerning the most of them. They can
be found in different textbooks and monographs devoted to convex analysis,
functional analysis, optimization theory, etc. (cf. [67, 90,104,157,207]).

2.2.1 Algebraic properties of convex functions

We begin with some basic definitions and results.

Definition 2.2.1. A function f : X → R is called convex if for all x, y ∈ X
and all λ ∈ [0, 1] one has

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). (2.3)

A function f : X → R is said to be concave if (−f) is convex.

Remark 2.2.1. Given a convex set U ⊆ X we say that a function f : U → R is
convex on U if (2.3) holds for all x, y ∈ U and every λ ∈ [0, 1]. The function
f is said to be concave on U if (−f) is convex on U . The extension of the
function f to the whole space is the function

f̃ : X → R, f̃(x) :=
{

f(x), if x ∈ U,
+∞, otherwise.

It is a simple verification to prove that f̃ is convex if and only if U is a convex
set and f is convex on U . Thus the theory built for functions defined on
the whole space X and having values in R can be employed for real-valued
functions defined on subsets of X, too.

In case X = R the following convexity criterion can be useful.

Remark 2.2.2. Consider (a, b) ⊆ R and the twice differentiable function f :
(a, b) → R. Then f is convex (concave) on (a, b) if and only if f ′′(x) ≥ (≤)0
for all x ∈ (a, b).

Definition 2.2.2. A function f : X → R is called strictly convex if for all
x, y ∈ X with x 	= y and all λ ∈ (0, 1) one has (2.3) fulfilled as a strict
inequality. A function f : X → R is called strictly concave if (−f) is strictly
convex.

Example 2.2.1. (a) The indicator function

δU : X → R, δU (x) :=
{

0, if x ∈ U,
+∞, otherwise,
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of a set U ⊆ X is convex if and only if U is convex.
(b) Let A be a n × n positive semidefinite matrix with real entries. Then

the function f : R
n → R, f(x) = xT Ax, is convex. If A is positive definite,

then f is strictly convex.
(c) If ‖ · ‖ denotes a norm on a vector space X, then x �→ ‖x‖ is a convex

function.

One can easily prove that a function f : X → R is convex if and only if
for any n ∈ N, xi ∈ X and λi ∈ R+, i = 1, . . . , n, such that

∑n
i=1 λi = 1,

Jensen’s inequality is satisfied, namely

f

( n
∑

i=1

λixi

)

≤
n

∑

i=1

λif(xi).

For a function f : X → R we consider the (effective) domain dom f :=
{x ∈ X : f(x) < +∞} and the epigraph epi f := {(x, r) ∈ X × R : f(x) ≤ r}.
The strict epigraph of f is epis f := {(x, r) ∈ X × R : f(x) < r}. A function
f : X → R is called proper if f(x) > −∞ for all x ∈ X and dom f 	= ∅.
Otherwise f is said to be improper.

A characterization of the convexity of a function through the convexity of
its epigraph is given in the next result.

Proposition 2.2.1. Let the function f : X → R. The following assertions
are equivalent:

(i) f is convex;
(ii) epi f is convex;
(iii) epis f is convex.

Remark 2.2.3. For f : X → R we have PrX(epi f) = dom f . Thus, if f is
convex, then its domain is a convex set.

If f : X → R and λ ∈ R, we call {x ∈ X : f(x) ≤ λ} the level set of f at
λ and {x ∈ X : f(x) < λ} is said to be the strict level set of f at λ. If f is
convex, then the level sets and the strict level sets of f at λ are convex, for
all λ ∈ R. The opposite assertion is not true in general.

Definition 2.2.3. A function f : X → R is called

(a) subadditive if for all x, y ∈ X one has f(x + y) ≤ f(x) + f(y);
(b) positively homogenous if f(0) = 0 and for all x ∈ X and all λ > 0 one

has f(λx) = λf(x);
(c) sublinear if it is subadditive and positively homogenous.

Example 2.2.2. Given a nonempty set U ⊆ X, its support function σU : X∗ →
R defined by σU (x∗) := sup{〈x∗, x〉 : x ∈ U} is sublinear.
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Notice that a convex function f : X → R is sublinear if and only if it is
also positively homogenous.

Let be given the convex functions f, g : X → R. Then f +g and λf , λ ≥ 0,
are convex. One should notice that, due to the way the operations on the
extended real space are defined, there is 0f = δdom f .

Proposition 2.2.2. Given a family of functions fi : X → R, i ∈ I, where I is
an arbitrary index set, one has epi(supi∈I fi) = ∩i∈I epi fi. Consequently, the
pointwise supremum f : X → R of a family of convex functions fi : X → R,
i ∈ I, defined by f(x) = supi∈I fi(x) is a convex function, too.

Consider the Hausdorff locally convex spaces Xi, i = 1, . . . , m, and take
X =

∏m
i=1 Xi. Given the convex functions fi : Xi → R, i = 1, . . . , m, the

function f : X → R defined by f(x1, . . . , xm) =
∑m

i=1 fi(xi) is convex, too.
Obviously, dom f =

∏m
i=1 dom fi.

Consider U ⊆ X × R a given set. To U we associate the so-called lower
bound function φU : X → R defined as

φU (x) := inf{t ∈ R : (x, t) ∈ U}.

For an arbitrary function f : X → R it holds f(x) = φepi f (x) for all x ∈ X. If
U is a convex set, then φU is a convex function. By means of the lower bound
function we introduce in the following the convex hull of a function.

Definition 2.2.4. Consider a function f : X → R. The function co f : X →
R, defined by

co f(x) := φco(epi f)(x) = inf{t ∈ R : (x, t) ∈ co(epi f)},

is called the convex hull of f .

It is clear from the construction that the convex hull of a function f :
X → R is convex and it is the greatest convex function less than or equal to
f . Consequently,

co f = sup{g : X → R : g(x) ≤ f(x) for all x ∈ X and g is convex}.

Thus, f is convex if and only if f = co f . Regarding the convex hull of f we
have also the following result.

Proposition 2.2.3. Let the function f : X → R be given. Then the con-
vex hull of its domain coincides with the domain of its convex hull, namely
co(dom f) = dom(co f). Moreover, there is epis(co f) ⊆ co(epi f) = epi(co f).

Next we consider some notions which extend the classical monotonicity to
functions defined on partially ordered spaces.

Definition 2.2.5. Let be the vector space V partially ordered by the convex
cone K, a nonempty set W ⊆ V and g : V → R a given function.
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(a) If g(x) ≤ g(y) for all x, y ∈ W such that x �K y, the function g is called
K-increasing on W .

(b) If g(x) < g(y) for all x, y ∈ W such that x ≤K y, the function g is called
strongly K-increasing on W .

(c) If g is K-increasing on W , core(K) 	= ∅ and for all x, y ∈ W fulfilling
x <K y follows g(x) < g(y), the function g is called strictly K-increasing
on W .

(d) When W = V we call these classes of functions K-increasing, strongly
K-increasing and strictly K-increasing, respectively.

Remark 2.2.4. When X = R, the R+-increasing functions are actually the in-
creasing functions, while the strongly and the strictly R+-increasing functions
are actually the strictly increasing functions.

Remark 2.2.5. For a cone K ⊆ V with core(K) 	= ∅, we defined ̂K :=
core(K) ∪ {0}. Then the definition of the strictly K-increasing functions on
a set W ⊆ V coincide with the strongly ̂K-increasing functions on W . When
int(K) 	= ∅ one has int(K) = core(K), thus the core of the cone K can be
replaced in Definition 2.2.5 by the interior of K.

Example 2.2.3. Consider a vector space V and a linear functional v# ∈ V #.
If v# ∈ K#, then the definition of the algebraic dual cone secures that for
all v1, v2 ∈ V such that v1 �K v2 we have 〈v#, v2 − v1〉 ≥ 0. Therefore
〈v#, v1〉 ≤ 〈v#, v2〉 and this means that the elements of K# are actually
K-increasing linear functions on the vector space V .

If v# ∈ K#0 := {x# ∈ K# : 〈x#, x〉 > 0 for all x ∈ K\{0}}, which can be
seen as the analogous of K∗0 in vector spaces, then for all v1, v2 ∈ V such that
v1 ≤K v2 it holds 〈v#, v2 − v1〉 > 0. According to the previous definition this
means that the elements of K#0 are strongly K-increasing linear functions on
V .

On the other hand, if core(K) 	= ∅, then, according to the representation
core(K) = {v ∈ V : 〈v#, v〉 > 0 ∀v# ∈ K#\{0}}, every v# ∈ K#\{0} is
strictly K-increasing on V .

There are notions given for functions with extended real values that can
be formulated also for functions mapping from X into vector spaces. Let V
be Hausdorff locally convex space partially ordered by the convex cone K and
V = V ∪ {±∞K}.

The domain of a vector function h : X → V is the set dom h := {x ∈
X : h(x) 	= +∞K}. When h(x) 	= −∞K for all x ∈ X and domh 	= ∅ we
call h proper . The K-epigraph of a vector function h : X → V is the set
epiK h := {(x, v) ∈ X × V : h(x) �K v}.

Definition 2.2.6. A vector function h : X → V is said to be K-convex if
epiK h is a convex set.
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One can easily prove that a function h : X → V ∪ {+∞K} is K-convex if
and only if

h(λx + (1 − λ)y) �K λh(x) + (1 − λ)h(y) ∀x, y ∈ X ∀λ ∈ [0, 1].

For a convex set U ⊆ X we say that the function h : U → V is K-convex on
U if h(λx+(1−λ)y) �K λh(x)+(1−λ)h(y) for all x, y ∈ U and all λ ∈ [0, 1].
Considering the function

h̃ : X → V , h̃(x) :=
{

h(x), if x ∈ U,
+∞K , otherwise,

note that h̃ is K-convex if and only if U is convex and h is K-convex on U .
Having a set U ⊆ X, its vector indicator function is

δV
U : X → V , δV

U (x) :=
{

0, if x ∈ U,
+∞K , otherwise.

Then δV
U is K-convex if and only if U is convex.

Remark 2.2.6. Let h : X → V be a given vector function. For v∗ ∈ K∗ we
shall use the notation (v∗h) : X → R for the function defined by (v∗h)(x) :=
〈v∗, h(x)〉 and one can easily notice that dom(v∗h) = dom h.

The proof of the following result is straightforward.

Theorem 2.2.4. Let be the convex and K-increasing function f : V ∪
{+∞K} → R defined with the convention f(+∞K) = +∞ and consider the
proper K-convex function h : X → V . Then the function f ◦ h : X → R is
convex.

Corollary 2.2.5. Let be the convex function f : V → R and the affine map-
ping T : X → V . Then the function f ◦ T : X → R is convex.

Proof. For K = {0}, the mapping T is K-convex and the result follows by
Theorem 2.2.4. ��

Another important function attached to a given function Φ : X × Y → R

is the so-called infimal value function to it, defined as follows

h : Y → R, h(y) := inf{Φ(x, y) : x ∈ X}.

Theorem 2.2.6. Given a convex function Φ : X × Y → R, its infimal value
function is convex, too.

Proof. One can prove that epis h = PrY ×R(epis Φ). As the projection preserves
the convexity and epis Φ is convex, it follows that epis h is convex, too. By
Proposition 2.2.1, h is convex. ��
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Remark 2.2.7. It can also be proven that

PrY ×R(epi Φ) ⊆ epih ⊆ cl(PrY ×R(epi Φ)).

As a special case of Theorem 2.2.6 we obtain the following result.

Theorem 2.2.7. Let be the convex function f : X → R and T ∈ L(X,V ).
Then the infimal function of f through T ,

Tf : V → R, (Tf)(y) := inf{f(x) : Tx = y}

is convex, too.

For an arbitrary function f : X → R and T ∈ L(X,V ) it holds dom(Tf) =
T (dom f).

The following notion can also be introduced as a particular instance of
the infimal function of a given function through a suitable linear continuous
mapping, as can be seen below. Though, we introduce it directly because of
its importance in convex analysis and optimization.

Definition 2.2.7. The infimal convolution of the functions fi : X → R, i =
1, . . . , m, is the function

f1� . . . �fm : X → R, (f1� . . . �fm)(x):=inf
{ m
∑

i=1

fi(xi) :xi ∈ X,

m
∑

i=1

xi = x

}

.

When for x ∈ X the infimum within is attained we say that the infimal con-
volution is exact at x. When the infimal convolution is exact everywhere we
call it simply exact.

For fi : X → R, i = 1, . . . , m, given functions, f : Xm → R defined by
f(x1, . . . , xm) =

∑m
i=1 fi(xi) and A ∈ L(Xm,X), A(x1, . . . , xm) =

∑m
i=1 xi it

holds Af = f1� . . . �fm. Thus dom(f1� . . . �fm) =
∑m

i=1 dom fi. By Theo-
rem 2.2.7 it follows that if fi : X → R, i = 1, . . . , m, are convex, as stated in
the following theorem, their infimal convolution is convex, too.

Theorem 2.2.8. Given the convex functions fi : X → R, i = 1, . . . , m, then
their infimal convolution f1� . . . �fm : X → R is convex, too.

The notion we introduce next is a generalization of the K-convexity (see
Definition 2.2.6).

Definition 2.2.8. A vector function h : X → V ∪ {+∞K} is called K-
convexlike if for all x, y ∈ X and all λ ∈ [0, 1] there is some z ∈ X such
that h(z) �K λh(x) + (1 − λ)h(y).
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It is easy to see that h : X → V ∪ {+∞K} is K-convexlike if and only if
h(dom h) + K is a convex set.

For U ⊆ X a given nonempty set we call h : U → V K-convexlike on U
if for all x, y ∈ U and all λ ∈ [0, 1] there is some z ∈ U such that h(z) �K

λh(x)+(1−λ)h(y). Note that h is K-convexlike on U if and only if h(U)+K
is a convex set.

Remark 2.2.8. Every K-convex function h : X → V ∪{+∞K} is K-convexlike,
but not all K-convexlike functions are K-convex. Consider, for instance, R

2

partially ordered by the cone R
2
+. Take the function h : R → R

2 ∪ {+∞R
2
+
}

defined by h(x) = (x, sin x) if x ∈ [−π, π] and h(x) = +∞R
2
+

otherwise. It can
be proven that h is R

2
+-convexlike, but not R

2
+-convex.

2.2.2 Topological properties of convex functions

In this section we deal with topological notions for functions, which alongside
the convexity endow them with special properties.

Definition 2.2.9. A function f : X → R is called lower semicontinuous at
x̄ ∈ X if lim infx→x̄ f(x) ≥ f(x̄). A function f is said to be upper semicontin-
uous at x̄ if (−f) is lower semicontinuous at x̄. When a function f is lower
(upper) semicontinuous at all x ∈ X we call it lower (upper) semicontinuous.

Obviously, f : X → R is continuous at x̄ ∈ X if and only if f is lower and
upper semicontinuous at x̄ ∈ X.

In the following we give some equivalent characterizations of the lower
semicontinuity of a function.

Theorem 2.2.9. Let be the function f : X → R. The following statements
are equivalent:

(i) f is lower semicontinuous;
(ii) epi f is closed;
(iii) the level set {x ∈ X : f(x) ≤ λ} is closed for all λ ∈ R.

Example 2.2.4. Given a set U ⊆ X, its indicator function δU is lower semi-
continuous if and only if U is closed, while the support function σU is always
weak∗ lower semicontinuous.

Proposition 2.2.10. The pointwise supremum of a family of lower semicon-
tinuous functions fi : X → R, i ∈ I, where I is an arbitrary index set,
f : X → R defined by f(x) = supi∈I fi(x) is lower semicontinuous, too.

Proposition 2.2.11. If f, g : X → R are lower semicontinuous at x ∈ X and
λ ∈ (0,+∞), then f + g and λf are lower semicontinuous at x, too.

Via the lower bound function one can introduce the lower semicontinuous
hull of a function as follows.
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Definition 2.2.10. Consider a function f : X → R. The function f̄ : X → R,
defined by

f̄(x) := φcl(epi f)(x) = inf{t : (x, t) ∈ cl(epi f)}
is called the lower semicontinuous hull of f .

Example 2.2.5. If f : R → R, f = δ(−∞,0), then obviously f̄ = δ(−∞,0].

Theorem 2.2.12. Let be the function f : X → R. Then the following state-
ments are true

(a) epi f̄ = cl(epi f);
(b) dom f ⊆ dom f̄ ⊆ cl(dom f);
(c) f̄(x) = lim infy→x f(y) for all x ∈ X.

Remark 2.2.9. For a given function f : X → R f̄ is the greatest lower semi-
continuous function less than or equal to f . Consequently,

f̄ = sup{g : X → R : g(x) ≤ f(x) ∀x ∈ X and g is lower semicontinuous}.

In the following we deal with functions that are both convex and lower
semicontinuous and show some of the properties this class of functions is
endowed with.

Theorem 2.2.13. Let be f : X → R a convex function . Then f is lower
semicontinuous if and only if it is weakly lower semicontinuous.

Proposition 2.2.14. If f : X → R is convex and lower semicontinuous, but
not proper, then f cannot take finite values, i.e. f is everywhere equal to +∞
or f takes the value −∞ everywhere on its domain.

Proposition 2.2.14 has as consequence the fact that if f : X → R is convex
and lower semicontinuous and finite somewhere, then f(x) > −∞ for all
x ∈ X. By Proposition 2.2.1 and Theorem 2.2.12 follows that if f : X → R

is convex then f̄ is convex, too. Further, by Proposition 2.2.14 one has that
if there is some x̄ ∈ X such that f(x̄) = −∞, then f̄(x) = −∞ for all
x ∈ dom f̄ ⊇ dom f .

We come now to a fundamental result linking a convex and lower semicon-
tinuous function with the set of its affine minorants. A function g : X → R

is said to be affine if there are some x∗ ∈ X∗ and c ∈ R such that
g(x) = 〈x∗, x〉 + c for all x ∈ X. If f : X → R is a given function, then
any affine function g : X → R which fulfills g(x) ≤ f(x) for all x ∈ X is said
to be an affine minorant of f .

Theorem 2.2.15. Let be the given function f : X → R. Then f is convex
and lower semicontinuous and takes nowhere the value −∞ if and only if its
set of affine minorants is nonempty and f is the pointwise supremum of this
set.
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Proof. The sufficiency is obvious, as a pointwise supremum of a family of
affine functions is convex, by Proposition 2.2.2, and lower semicontinuous, via
Proposition 2.2.10, noting that a function having an affine minorant cannot
take the value −∞.

To verify the necessity we first prove that the set

M :=
{

(x∗, α) ∈ X∗ × R : 〈x∗, x〉 + α ≤ f(x) ∀x ∈ X
}

is nonempty. If f ≡ +∞ then for all x∗ ∈ X∗ and α ∈ R we have 〈x∗, x〉+α ≤
f(x) for all x ∈ X, i.e. (x∗, α) ∈ M .

Otherwise, there must be at least an element y ∈ X such that f(y) ∈ R.
Then epi f 	= ∅ and (y, f(y) − 1) /∈ epi f . As the hypotheses guarantee that
epi f is convex and closed, applying Theorem 2.1.5 follows the existence of
some x∗ ∈ X∗ and α ∈ R, (x∗, α) 	= (0, 0), such that

〈x∗, y〉 + α(f(y) − 1) < 〈x∗, x〉 + αr ∀(x, r) ∈ epi f.

As (y, f(y)) ∈ epi f , it follows α > 0 and (1/α)〈x∗, y − x〉 + f(y) − 1 < r for
all (x, r) ∈ epi f . Taking into consideration that whenever x ∈ dom f there is
(x, f(x)) ∈ epi f , the last inequality yields (1/α)〈x∗, y − x〉+ f(y)− 1 < f(x)
for all x ∈ dom f , and one can easily note that this inequality is valid actually
for all x ∈ X. Consequently, the function x �→ 〈(−1/α)x∗, x〉+ (1/α)〈x∗, y〉+
f(y) − 1 is an affine minorant of f , thus M 	= ∅ in this case, too.

For all x ∈ X one has

f(x) ≥ sup
{

〈x∗, x〉 + α : (x∗, α) ∈ X∗ × R, 〈x∗, z〉 + α ≤ f(z) ∀z ∈ X
}

and next we prove that this inequality is always fulfilled as equality. Assume
that there are some x̄ ∈ X and r̄ ∈ R such that

f(x̄) > r̄ > sup
{

〈x∗, x̄〉 + α : (x∗, α) ∈ X∗ × R, 〈x∗, z〉 + α ≤ f(z) ∀z ∈ X
}

.
(2.4)

Then (x̄, r̄) /∈ epi f . Applying again Theorem 2.1.5 we obtain some x̄∗ ∈ X∗

and ᾱ ∈ R, (x̄∗, ᾱ) 	= (0, 0), and an ε > 0 such that

〈x̄∗, x〉 + ᾱr > 〈x̄∗, x̄〉 + ᾱr̄ + ε ∀(x, r) ∈ epi f. (2.5)

For (z, s) ∈ epi f we get (z, s + t) ∈ epi f for all t ≥ 0, thus ᾱ ≥ 0. Assume
that f(x̄) ∈ R. Then we obtain ᾱ(f(x̄)− r̄) > ε, which yields ᾱ > 0. Thus for
all x ∈ dom f one has f(x) > (1/ᾱ)〈x̄∗, x̄ − x〉 + r̄ + (1/ᾱ)ε > (1/ᾱ)〈x̄∗, x̄ −
x〉 + r̄. As the function x �→ 〈(−1/ᾱ)x̄∗, x〉 + 〈(1/ᾱ)x̄∗, x̄〉 + r̄ is an affine
minorant of f taking at x = x̄ the value r̄, we obtain a contradiction to (2.4).
Consequently, f(x̄) = +∞. Assuming ᾱ > 0 we reach again a contradiction,
thus ᾱ = 0. Consider then the function x �→ −〈x̄∗, x − x̄〉 + ε. By (2.5)
one gets −〈x̄∗, x − x̄〉 + ε ≤ 0 for all x ∈ dom f . As M 	= ∅, there are
some y∗ ∈ X∗ and β ∈ R such that 〈y∗, z〉 + β ≤ f(z) whenever z ∈ X.
Denote γ := (r̄ − 〈y∗, x̄〉 − β)/ε. It is clear that γ > 0 and that the function
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x �→ 〈y∗ − γx̄∗, x〉 + 〈γx̄∗, x̄〉 + β + γε is affine. For all x ∈ dom f there
is 〈y∗ − γx̄∗, x〉 + 〈γx̄∗, x̄〉 + β + γε = 〈y∗, x〉 + β + γ(〈−x̄∗, x − x̄〉 + ε) ≤
〈y∗, x〉 + β ≤ f(x), thus x �→ 〈y∗ − γx̄∗, x〉 + 〈γx̄∗, x̄〉 + β + γε is an affine
minorant of f and for x = x̄ one gets 〈y∗ − γx̄∗, x̄〉 + 〈γx̄∗, x̄〉 + β + γε = r̄,
which contradicts (2.4). Thus f is the pointwise supremum of the set of its
affine minorants. ��

The lower bound function can be also used to introduce the lower semi-
continuous convex hull of a function.

Definition 2.2.11. Consider a function f : X → R. The function cof : X →
R, defined by

cof(x) := φco(epi f)(x) = inf{t : (x, t) ∈ co(epi f)}

is called the lower semicontinuous convex hull of f .

Some properties this notion is endowed with follow.

Theorem 2.2.16. Let f : X → R be a given function. Then the following
statements are true

(a) epi(cof) = co(epi f);
(b) dom(co f) = co(dom f) ⊆ dom(cof) ⊆ cl(dom(co f)) = co(dom f).

Remark 2.2.10. It is clear from the construction that the lower semicontinuous
convex hull of a function f : X → R is convex and lower semicontinuous and
it is the greatest convex lower semicontinuous function less than or equal to
f . Consequently,

cof = sup{g : X → R : g(x) ≤ f(x) for all x ∈ X and
g is convex and lower semicontinuous}.

Now we turn our attention to continuity properties of convex functions.

Theorem 2.2.17. Let be f : X → R a convex function. The following state-
ments are equivalent:

(i) there is a nonempty open subset of X on which f is bounded from above
by a finite constant and is not everywhere equal to −∞;

(ii) f is proper and continuous on the interior of its effective domain, which
is nonempty.

As a consequence of Theorem 2.2.17 it follows that a convex function
f : X → R is continuous on int(dom f) if and only if int(epi f) 	= ∅. If we
take X = R

n, every proper and convex function f : R
n → R is continuous on

ri(dom f). Consequently, every convex function f : R
n → R is continuous.

Besides associating new functions to a given function, the lower bound
function can be used to define the notion of a gauge of a given set. For U ⊆ X,
consider the set cone(U × {1}) = {(λx, λ) : λ ∈ R+, x ∈ U}. If U is convex
and closed, then cone(U × {1}) is convex and closed, too.
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Definition 2.2.12. Given a convex absorbing subset U of a vector space X,
the gauge (or Minkowski function) associated to it is the function γU : X → R

defined by

γU (x) := φcone(U×{1})(x) = inf{λ ≥ 0 : x ∈ λU}.

In this situation, U is called the unit ball of the gauge γU .

Proposition 2.2.18. (a) If X is a vector space and U ⊆ X is absorbing and
convex, then γU is sublinear and core(U) = {x ∈ X : γU (x) < 1}. If U is
moreover symmetric, then γU is a seminorm.

(b) If X is a topological vector space and U ⊆ X is a convex neighborhood
of 0, then γU is continuous, int(U) = {x ∈ X : γU (x) < 1} and cl(U) =
{x ∈ X : γU (x) ≤ 1}.

There are several extensions of the notion of lower semicontinuity for vector
functions based on the properties of the lower semicontinuous functions. We
recall here three of them, which are mostly used in convex optimization. Like
before, V is a Hausdorff locally convex space partially ordered by the convex
cone K.

Definition 2.2.13. A function h : X → V ∪ {+∞K} is called

(a) K-lower semicontinuous at x ∈ X if for any neighborhood W of zero in
V and for any b ∈ V satisfying b �K h(x), there exists a neighborhood U
of x in X such that h(U) ⊆ b + W + K ∪ {+∞K};

(b) star K-lower semicontinuous at x ∈ X if (k∗h) is lower semicontinuous
at x for all k∗ ∈ K∗.

Remark 2.2.11. The K-lower semicontinuity of a function h : X → V ∪
{+∞K} was introduced by Penot ant Théra in [150], being later refined
in [50]. For all x ∈ dom h the definition of the K-lower semicontinuity of
h at x amounts to asking for any neighborhood W of zero in V the existence
of a neighborhood U of x in X such that h(U) ⊆ h(x) + W + K ∪ {+∞K}.
The notion of star K-lower semicontinuity was first considered in [106].

Definition 2.2.14. A function h : X → V ∪ {+∞K} is called

(a) K-lower semicontinuous if it is K-lower semicontinuous at every x ∈ X;
(b) star K-lower semicontinuous if it is star K-lower semicontinuous at every

x ∈ X;
(c) K-epi closed if epiK h is closed.

Proposition 2.2.19. Let be the function h : X → V ∪ {+∞K}.
(a) If h is K-lower semicontinuous at x ∈ X, then it is also star K-lower

semicontinuous at x.
(b) If h is star K-lower semicontinuous, then it is also K-epi closed.
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The following example shows that there are K-epi closed functions which
are not star K-lower semicontinuous.

Example 2.2.6. Consider the function

h : R → R
2 ∪ {+∞R

2
+
}, h(x) =

{

( 1
x , x), if x > 0,

+∞R
2
+
, otherwise.

It can be verified that h is R
2
+-convex and R

2
+-epi-closed, but not star R

2
+-

lower semicontinuous. For instance, for k∗ = (0, 1)T ∈ (R2
+)∗ = R

2
+ one has

((0, 1)T h)(x) =
{

x, if x > 0,
+∞, otherwise,

which is not lower semicontinuous.

Remark 2.2.12. When V = R and K = R+, the notions of K-lower semicon-
tinuity, star K-lower semicontinuity and K-epi closedness collapse into the
classical notion of lower semicontinuity.

2.3 Conjugate functions and subdifferentiability

Throughout this entire section we consider X to be a Hausdorff locally convex
space with its topological dual space X∗ endowed with the weak∗ topology.

2.3.1 Conjugate functions

Let f : X → R be a given function. In the following we deal with the notion of
conjugate function of f , a basic one in the theory of convex analysis and very
important for establishing a general duality theory for convex optimization
problems (see chapter 3 for more on this topic).

Definition 2.3.1. The function

f∗ : X∗ → R, f∗(x∗) := sup
x∈X

{〈x∗, x〉 − f(x)}

is said to be the (Fenchel) conjugate function of f .

Note that for all x∗ ∈ X∗ it holds f∗(x∗) = supx∈dom f{〈x∗, x〉 − f(x)}.
Some of the investigations we make in this book will employ the conjugate

function of f with respect to the nonempty set S ⊆ X, defined by

f∗
S : X∗ → R, f∗

S(x∗) := (f + δS)∗(x∗) = sup
x∈S

{〈x∗, x〉 − f(x)}.

Lemma 2.3.1. (a) If the function f is proper, then f∗(x∗) > −∞ for all
x∗ ∈ X∗.
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(b) The function f∗ is proper if and only if dom f 	= ∅ and f has an affine
minorant.

Proof. (a) If the function f is proper, then by definition there exists some
x̄ ∈ X such that f(x̄) ∈ R. Then for all x∗ ∈ X∗ it holds f∗(x∗) =
supx∈X{〈x∗, x〉 − f(x)} ≥ 〈x∗, x̄〉 − f(x̄) > −∞.

(b) Suppose first that the function f∗ is proper. By definition there exists
x̄∗ ∈ X∗ such that that f∗(x̄∗) ∈ R. Since f∗(x̄∗) = supx∈X{〈x̄∗, x〉−f(x)} ≥
〈x̄∗, x〉 − f(x) for all x ∈ X, x �→ 〈x̄∗, x〉 − f∗(x̄∗) is an affine minorant of the
function f . Assuming that dom f = ∅ or, equivalently, f ≡ +∞, one would
have that f∗ ≡ −∞, which would contradict the assumption that f∗ is proper.
Thus dom f must be a nonempty set.

Assume now that dom f 	= ∅ and that there exist x̄∗ ∈ X∗ and c ∈ R such
that f(x) ≥ 〈x̄∗, x〉+c for all x ∈ X. Obviously, the function f is proper and by
(a) we get f∗ > −∞ on X∗. Moreover, f∗(x̄∗) = supx∈X{〈x̄∗, x〉−f(x)} ≤ −c,
whence f∗ is proper. ��

It is straightforward to verify that in case f is not proper one either has
f∗ ≡ −∞ (if f ≡ +∞) or f∗ ≡ +∞ (if there exists an x ∈ X with f(x) =
−∞). In case dom f 	= ∅ and f has an affine minorant x �→ 〈x∗, x〉 + c,
with x∗ ∈ X∗ and c ∈ R it holds, as we have seen, −c ≥ f∗(x∗). Under
these circumstances, −f∗(x∗) represents the largest value c ∈ R for which
x �→ 〈x∗, x〉 + c is an affine minorant of f .

Remark 2.3.1. It is a direct consequence of Definition 2.3.1 that f∗ is the
pointwise supremum of the family of affine functions gx : X∗ → R, gx(x∗) =
〈x∗, x〉 − f(x), x ∈ dom f . Therefore f∗ turns out to be a convex and lower
semicontinuous function.

Next we collect some elementary properties of conjugate functions.

Proposition 2.3.2. Let f, g, fi : X → R, i ∈ I, be given functions, where I
is an arbitrary index set. Then the following statements hold

(a) f(x) + f∗(x∗) ≥ 〈x∗, x〉 ∀x ∈ X ∀x∗ ∈ X∗ (Young-Fenchel inequality);
(b) infx∈X f(x) = −f∗(0);
(c) f ≤ g on X implies f∗ ≥ g∗ on X∗;
(d) (supi∈I fi)∗ ≤ infi∈I f∗

i and (infi∈I fi)∗ = supi∈I f∗
i ;

(e) (λf)∗(x∗) = λf∗((1/λ)x∗) ∀x∗ ∈ X∗ ∀λ > 0;
(f) (f + β)∗ = f∗ − β ∀β ∈ R;
(g) for fx0(x) = f(x − x0), when x0 ∈ X, there is (fx0)

∗(x∗) = f∗(x∗) +
〈x∗, x0〉 ∀x∗ ∈ X∗;

(h) for fx∗
0
(x) = f(x) + 〈x∗

0, x〉, when x∗
0 ∈ X∗, there is (fx∗

0
)∗(x∗) = f∗(x∗ −

x∗
0) ∀x∗ ∈ X∗;

(i) for Y a Hausdorff locally convex space and A : Y → X a linear continuous
invertible mapping there is (f ◦ A)∗ = f∗ ◦ (A−1)∗;

(j) (f + g)∗(x∗ + y∗) ≤ f∗(x∗) + g∗(y∗) ∀x∗, y∗ ∈ X∗;
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(k) (λf + (1 − λ)g)∗(x∗) ≤ λf∗(x∗) + (1 − λ)g∗(x∗) ∀x∗ ∈ X∗ ∀λ ∈ (0, 1);
(l) for f : X1 × . . . × Xm → R, f(x1, . . . , xm) =

∑m
i=1 fi(xi), where Xi is

a Hausdorff locally convex space and fi : Xi → R, i = 1, . . . , m, there is
f∗(x∗

1, . . . , x
∗
m) =

∑m
i=1 f∗

i (x∗
i ) ∀(x∗

1, . . . , x
∗
m) ∈ X∗

1 × . . . × X∗
m.

Proof. The verification of the above assertions is an obvious consequence of
Definition 2.3.1. Therefore we confine ourselves only to point out the proof of
the statements (d) and (i).

(d) For all j ∈ I and x∗ ∈ X∗ we have (supi∈I fi)∗(x∗) = supx∈X{〈x∗, x〉−
supi∈I fi(x)} ≤ supx∈X{〈x∗, x〉 − fj(x)} = f∗

j (x∗). Taking the infimum over
j ∈ I at the right-hand side of this inequality yields the wanted result.

In the second part of the statement, for all x∗ ∈ X∗ we have (infi∈I fi)∗(x∗)
= supx∈X{〈x∗, x〉 − infi∈I fi(x)} = supi∈I supx∈X{〈x∗, x〉 − fi(x)} = supi∈I

f∗
i (x∗).

(i) Let x∗ ∈ X∗ be arbitrarily taken. It holds (f◦A)∗(x∗) = supx∈X{〈x∗, x〉
−f(Ax)} = supy∈Y {〈x∗, A−1y〉 − f(y)} = supy∈Y {〈(A−1)∗x∗, y〉 − f(y)} =
f∗((A−1)∗x∗) = (f∗ ◦ (A−1)∗)(x∗) and the desired relation is proved. ��

Remark 2.3.2. The convention (+∞)+(−∞) = (−∞)+(+∞) = +∞ ensures
that the Young-Fenchel inequality applies also to improper functions.

For a function defined on the dual space X∗ one can introduce its conjugate
function analogously. More precisely, if we consider g : X∗ → R, then

g∗ : X → R, g∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − g(x∗)}

is the conjugate function of g. In particular, to the function f : X → R we
can attach the so-called biconjugate function of f , which is defined as the
conjugate function of the conjugate f∗, i.e.

f∗∗ : X → R, f∗∗(x) := (f∗)∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f∗(x∗)}.

The next lemma is a direct consequence of the Young-Fenchel inequality.

Lemma 2.3.3. For all x ∈ X it holds f∗∗(x) ≤ f(x).

Next the conjugates of some convex functions needed later are provided.

Example 2.3.1. Let X = R and f : R → R.
(a) If f(x) = (1/2)x2, x ∈ R, then f∗(x∗) = (1/2)(x∗)2 for x∗ ∈ R.
(b) If f(x) = ex, x ∈ R, then

f∗(x∗) =

⎧

⎨

⎩

x∗(lnx∗ − 1), if x∗ > 0,
0, if x∗ = 0,
+∞, if x∗ < 0.

(c) If
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f(x) =

⎧

⎨

⎩

x(lnx − 1), if x > 0,
0, if x = 0,
+∞, if x < 0,

then f∗(x∗) = ex∗
for x∗ ∈ R.

Example 2.3.2. Let be f : X → R, f(x) = 〈y∗, x〉+c, with y∗ ∈ X∗ and c ∈ R.
Then

f∗(x∗) = δ{y∗}(x∗) − c =
{

−c, if x∗ = y∗,
+∞, otherwise.

Example 2.3.3. Let be U ⊆ X. Then for all x∗ ∈ X∗ there is

δ∗U (x∗) = sup
x∈X

{〈x∗, x〉 − δU (x)} = sup
x∈U

〈x∗, x〉 = σU (x∗).

Example 2.3.4. (a) Given a convex absorbing subset U of X, the conjugate of
its gauge γU : X → R at some x∗ ∈ X∗ is

(γU )∗(x∗) = sup
x∈X

{

〈x∗, x〉 − inf{λ ≥ 0 : x ∈ λU}
}

= sup
x∈X

⎧

⎨

⎩

〈x∗, x〉 + sup
λ≥0,
x∈λU

{−λ}

⎫

⎬

⎭

= sup
λ≥0

{

− λ + sup
y∈U

〈x∗, λy〉
}

= sup
λ≥0

{

λ

(

sup
y∈U

〈x∗, y〉 − 1
)}

=
{

0, if σU (x∗) ≤ 1,
+∞, otherwise.

(b) Let (X, ‖ · ‖) be a normed vector space and (X∗, ‖ · ‖∗) its topological
dual space. The conjugate of the norm function can be deduced from the one
of the gauge corresponding to the set U = {x ∈ X : ‖x‖ ≤ 1}, since γU = ‖ · ‖
and σU = ‖ · ‖∗. Therefore for x∗ ∈ X∗ one has

(‖ · ‖)∗(x∗) =
{

0, if ‖x∗‖∗ ≤ 1,
+∞, otherwise.

Example 2.3.5. Let X be a normed space and f : X → R, f(x) = (1/p)‖x‖p,
1 < p < ∞. Then f∗(x∗) = (1/q)‖x∗‖q

∗ for x∗ ∈ X∗, where (1/p) + (1/q) = 1.

The results we prove next are necessary for deriving further statements,
in particular concerning duality.

Proposition 2.3.4. The following relations are always fulfilled

(a) f∗ = (f̄)∗ = (cof)∗ on X∗;
(b) f∗∗ ≤ cof ≤ f̄ ≤ f on X.

Proof. (a) Taking a careful look at the way the functions cof and f̄ are
defined, it is not hard to see that on X the inequalities cof ≤ f̄ ≤ f are
always fulfilled (see also Theorem 2.2.12(a)). Applying Proposition 2.3.2(c)
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we get (cof)∗ ≥ f̄∗ ≥ f∗ on X∗. In order to get the desired conclusion, we
prove that (cof)∗ ≤ f∗. Let x∗ ∈ X∗ be arbitrarily taken. We treat further
three cases.

If f∗(x∗) = +∞ we get (cof)∗(x∗) = (f̄)∗(x∗) = f∗(x∗) = +∞.
If f∗(x∗) = −∞, then f∗∗ ≡ +∞ and, by Lemma 2.3.3, one has f ≡ +∞.

This implies further f̄ = cof = f ≡ +∞ and, consequently, (cof)∗(x∗) =
(f̄)∗(x∗) = f∗(x∗) = −∞.

It remains to consider the case f∗(x∗) ∈ R. Consider the function g :
X → R, g(x) = 〈x∗, x〉 − f∗(x∗). According to the Young-Fenchel inequality
for all x ∈ X we have g(x) ≤ f(x), which is equivalent to epi g ⊇ epi f .
Since g is an affine function, epi g is a convex and closed set and it holds
epi g ⊇ co(epi f). By Theorem 2.2.16(a) we get epi g ⊇ epi(cof), and from
here we deduce that g(x) = 〈x∗, x〉 − f∗(x∗) ≤ cof(x) for all x ∈ X. This
implies (cof)∗(x∗) = supx∈X{〈x∗, x〉 − cof(x)} ≤ f∗(x∗) and in this way the
statement (a) has been verified.

(b) We only have to justify f∗∗ ≤ cof on X. As the equality f∗ = (cof)∗ is
secured by (a), it holds f∗∗ = (cof)∗∗ ≤ cof on X, where the last inequality
follows by Lemma 2.3.3. ��

Because of the inequality f∗∗ ≤ f on X, arises in a natural way the
question when does the coincidence of f and f∗∗ occur. The next statement
gives an answer.

Theorem 2.3.5. If f : X → R is proper, convex and lower semicontinuous,
then f∗ is proper and f = f∗∗.

Proof. We prove first that f∗ is proper. As f is proper, dom f 	= ∅ and, by
Theorem 2.2.15, f has an affine minorant. Thus Lemma 2.3.1(b) guarantees
the properness of f∗. We prove next that f = f∗∗. For all x ∈ X we have

f∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f∗(x∗)} = sup
x∗∈X∗,c∈R,
f∗(x∗)≤−c

{〈x∗, x〉 + c} =

sup{〈x∗, x〉 + c : x∗ ∈ X∗, c ∈ R, 〈x∗, z〉 + c ≤ f(z) ∀z ∈ X}
and this is equal, again by Theorem 2.2.15, to f(x). ��

The well-known Fenchel-Moreau theorem follows as a direct consequence
of Theorem 2.3.5. Because of its fame and historical importance we cite it
here as a separate statement.

Theorem 2.3.6. (Fenchel-Moreau) Let f : X → R be a proper function.
Then f = f∗∗ if and only if f is convex and lower semicontinuous.

Corollary 2.3.7. Let f : X → R. If cof > −∞, then f∗∗ = cof .

Proof. If cof is proper, then the conclusion follows by Proposition 2.3.4(a)
and Theorem 2.3.5. If cof ≡ +∞, then cof = f∗∗ ≡ +∞ and the result holds
also in this case. ��
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Remark 2.3.3. It is an immediate conclusion of Theorem 2.3.5 that for a con-
vex function f : X → R its conjugate function f∗ is proper if and only if f̄ is
proper.

Remark 2.3.4. Until now we have attached to a function f : X → R the
conjugate function f∗ and the biconjugate function f∗∗. It is natural to ask if
it makes sense to consider the conjugate of the latter, namely f∗∗∗ : X∗ → R

defined by f∗∗∗ = (f∗∗)∗. Since we always have f∗ = f∗∗∗, this is not the case.
In order to prove this we treat two cases.

Let us assume first that the function f∗ is proper. Since f∗ is also convex
and lower semicontinuous, Theorem 2.3.5 secures the equality f∗∗∗ = (f∗)∗∗ =
f∗. Assume now that the function f∗ is not proper. If f∗ ≡ +∞ then f∗∗ ≡
−∞ and this implies f∗∗∗ ≡ +∞. If there is an x∗ such that f∗(x∗) = −∞,
then f∗∗ ≡ +∞, which yields f∗∗∗ ≡ −∞. Moreover, by Lemma 2.3.3 it is
obvious that f ≡ +∞ and so f∗ ≡ −∞.

In convex analysis it is very natural and often also very useful to refor-
mulate results employing functions in the language of their epigraphs. This
applies also to conjugacy properties and the corresponding operations.

Let Y be another Hausdorff locally convex space whose topological dual
space Y ∗ is endowed with the weak∗ topology. For f : X → R a given function
and A ∈ L(X,Y ) we calculate in the following the conjugate of the infimal
function of f through A and derive from it the formula for the conjugate of the
infimal convolution of a finite family of functions fi : X → R, i = 1, . . . , m.

Proposition 2.3.8. (a) Let f : X → R be a given function and A ∈ L(X,Y ).
Then it holds (Af)∗ = f∗ ◦ A∗.

(b) Let fi : X → R, i = 1, . . . , m, be given functions. Then (f1� . . . �fm)∗ =
∑m

i=1 f∗
i .

Proof. (a) By definition there holds for any y∗ ∈ Y ∗

(Af)∗(y∗) = sup
y∈Y

{〈y∗, y〉 − (Af)(y)} = sup
y∈Y

{〈y∗, y〉 − inf
x∈X,Ax=y

f(x)} =

sup
x∈X

{〈y∗, Ax〉 − f(x)} = sup
x∈X

{〈A∗y∗, x〉 − f(x)} = (f∗ ◦ A∗)(y∗).

(b) Taking f : Xm → R, f(x1, . . . , xm) =
∑m

i=1 fi(xi) and A ∈ L(Xm,X),
A(x1, . . . , xm) =

∑m
i=1 xi, we have seen that Af = f1� . . . �fm. Applying

the result from (a) we get (f1� . . . �fm)∗ = f∗ ◦ A∗. The conclusion follows
by using Proposition 2.3.2(l) and the fact that A∗x∗ = (x∗, . . . , x∗) for all
x∗ ∈ X∗. ��

Of course, it is also of interest, to give a formula for the conjugate of
the sum of a finite number of functions. A first calculation shows that for
xi∗ ∈ X∗, i = 1, . . . , m, there is
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( m
∑

i=1

fi

)∗( m
∑

i=1

xi∗
)

= sup
x∈X

{ m
∑

i=1

〈xi∗, x〉 −
m
∑

i=1

fi(x)
}

≤
m
∑

i=1

sup
x∈X

{〈xi∗, x〉 − fi(x)} =
m
∑

i=1

f∗
i (xi∗).

Consequently, for x∗ ∈ X∗,

( m
∑

i=1

fi

)∗
(x∗) ≤ inf

{ m
∑

i=1

f∗
i (xi∗) :

m
∑

i=1

xi∗ = x∗
}

= (f∗
1 � . . . �f∗

m)(x∗).

(2.6)
In a natural way the question of the coincidence of both sides of (2.6) arises.
We can give first an equivalent characterization of this situation (see [38]).

Proposition 2.3.9. Let fi : X → R, i = 1, . . . , m, be proper functions such
that ∩m

i=1 dom fi 	= ∅. Then the following statements are equivalent:

(i) epi
(∑m

i=1 fi

)∗ =
∑m

i=1 epi f∗
i ;

(ii)
(∑m

i=1 fi

)∗ = f∗
1 � . . . �f∗

m and the infimal convolution is exact.

Proof. (i) ⇒ (ii) Let x∗ ∈ X∗ be arbitrarily taken. Then
(∑m

i=1 fi

)∗(x∗) >

−∞. If
(∑m

i=1 fi

)∗(x∗) = +∞ then (ii) is automatically fulfilled, thus we
consider further that

(∑m
i=1 fi

)∗(x∗) < +∞, i.e.
(

x∗,
(∑m

i=1 fi

)∗(x∗)
)

∈
epi

(∑m
i=1 fi

)∗. By (i) there exist (xi∗, ri) ∈ epi f∗
i , i = 1, . . . , m, such that

x∗ =
∑m

i=1 xi∗ and
(∑m

i=1 fi)∗(x∗) =
∑m

i=1 ri. This implies f∗
i (xi∗) ≤ ri,

i = 1, . . . , m, followed by
∑m

i=1 f∗
i (xi∗) ≤

(∑m
i=1 fi

)∗(x∗). Consequently,
(f∗

1 � . . . �f∗
m)(x∗) ≤

(∑m
i=1 fi

)∗(x∗), which, combined with (2.6), yields (ii).
(ii) ⇒ (i) Let the pairs (xi∗, ri) ∈ epi f∗

i , i = 1, . . . , m, be given. Then
(∑m

i=1 fi

)∗ (∑m
i=1 xi∗) ≤

∑m
i=1 f∗

i (xi∗) ≤
∑m

i=1 ri, i.e.
(∑m

i=1 xi∗,
∑m

i=1 ri

)

∈
epi

(∑m
i=1 fi

)∗. Therefore epi
(∑m

i=1 fi

)∗ ⊇
∑m

i=1 epi f∗
i and this inclusion is

always valid. Taking now some arbitrary pair (x∗, r) ∈ epi
(∑m

i=1 fi

)∗, we
get

(∑m
i=1 fi

)∗(x∗) ≤ r. By (ii) there exist some xi∗ ∈ X∗, i = 1, . . . , m,
such that

∑m
i=1 xi∗ = x∗ and

∑m
i=1 f∗

i (xi∗) ≤ r. This yields the existence of
some ri ∈ R, i = 1, . . . , m, with

∑m
i=1 ri = r, such that f∗

i (xi∗) ≤ ri for
all i = 1, . . . , m. Then (x∗, r∗) =

(∑m
i=1 xi∗,

∑m
i=1 ri

)

∈
∑m

i=1 epi f∗
i and the

proof is complete. ��

In order to give a sufficient condition for the equality in (2.6) note first that
for any proper functions fi : X → R, i = 1, . . . , m, fulfilling ∩m

i=1 dom fi 	= ∅,
there is

cl
( m
∑

i=1

epi fi

)

⊇ epi(f1� . . . �fm) ⊇
m
∑

i=1

epi fi,

which has as consequence that
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cl(epi(f1� . . . �fm)) = epi f1� . . . �fm = cl
( m
∑

i=1

epi fi

)

. (2.7)

The following two results characterize the epigraph of the conjugate of the
sum of finitely many functions.

Theorem 2.3.10. Let be fi : X → R, i = 1, . . . , m, proper, convex and lower
semicontinuous functions fulfilling ∩m

i=1 dom fi 	= ∅. Then one has
( m
∑

i=1

fi

)∗
= f∗

1 � . . . �f∗
m,

and, consequently,

epi
( m
∑

i=1

fi

)∗
= epi f∗

1 � . . . �f∗
m = cl

( m
∑

i=1

epi f∗
i

)

.

Proof. By Theorem 2.2.12(b) we get

m
∑

i=1

dom f∗
i = dom(f∗

1 � . . . �f∗
m) ⊆ dom f∗

1 � . . . �f∗
m.

Since Theorem 2.3.5 ensures that f∗
i , i = 1, . . . , m, are proper functions, it

holds
∑m

i=1 dom f∗
i 	= ∅, consequently, dom f∗

1 � . . . �f∗
m 	= ∅. Assuming that

there is some x∗ ∈ X∗ such that f∗
1 � . . . �f∗

m(x∗) = −∞, we get
∑m

i=1 f∗∗
i =

∑m
i=1 fi ≡ +∞, which contradicts the hypothesis ∩m

i=1 dom fi 	= ∅. Therefore
f∗
1 � . . . �f∗

m is a proper function. We can apply now Theorem 2.3.5, which
yields f∗

1 � . . . �f∗
m =

(

f∗
1 � . . . �f∗

m

)∗∗. Using Proposition 2.3.4(a) and Propo-
sition 2.3.8(b), it follows f∗

1 � . . . �f∗
m =

(

f∗
1 � . . . �f∗

m

)∗∗ =
(∑m

i=1 f∗∗
i

)∗.
Then the first formula follows via Theorem 2.3.5 and, together with (2.7), it
yields the second one, too. ��

Remark 2.3.5. For two proper, convex and lower semicontinuous functions
f, g : X → R fulfilling dom f ∩ dom g 	= ∅, Theorem 2.3.10 yields the classical
Moreau-Rockafellar formula, namely

(f + g)∗ = f∗�g∗.

Turning to epigraphs, we get

epi(f + g)∗ = epi f∗�g∗ = cl(epi f∗ + epi g∗).

Remark 2.3.6. As seen in Theorem 2.3.10 and Proposition 2.3.9, a sufficient
condition to have equality in (2.6) for the proper functions fi : X → R,
i = 1, . . . , m, when ∩m

i=1 dom fi 	= ∅ and all these functions are convex and
lower semicontinuous, is

∑m
i=1 epi f∗

i closed. For other sufficient conditions
that guarantee the equality in (2.6) we refer to section 3.5.
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We close this subsection by characterizing the conjugate of a K-increasing
function, which will be useful in chapter 3 when dealing with composed convex
optimization problems. Let V be a Hausdorff locally convex space, partially
ordered by a convex cone K ⊆ V .

Proposition 2.3.11. If g : V → R is a K-increasing function with dom g 	=
∅, then g∗(v∗) = +∞ for all v∗ /∈ K∗, i.e. dom g∗ ⊆ K∗.

Proof. If K = {0} the conclusion follows automatically. Assume that K 	= {0}
and take an arbitrary v∗ /∈ K∗. By definition there exists v̄ ∈ K such that
〈v∗, v̄〉 < 0. Since for some arbitrary ṽ ∈ dom g and for all α > 0 we have
g(ṽ − αv̄) ≤ g(ṽ), it is straightforward to see that

g∗(v∗) = sup
v∈V

{〈v∗, v〉 − g(v)} ≥ sup
α>0

{〈v∗, ṽ − αv̄〉 − g(ṽ − αv̄)}

≥ sup
α>0

{〈v∗, ṽ − αv̄〉 − g(ṽ)} = 〈v∗, ṽ〉 − g(ṽ) + sup
α>0

{−α〈v∗, v̄〉} = +∞,

and the proof is complete. ��

2.3.2 Subdifferentiability

In nondifferentiable convex optimization the classical (Gâteaux) differentia-
bility may be replaced by the so-called subdifferentiability. To have a differen-
tiability notion is extremely beneficial in analysis and optimization not only
from the theoretical, but also from the numerical point of view. It allows, for
instance, to formulate functional equations to describe mathematical objects
and models for practical problems or to give optimality conditions in different
fields of mathematical programming, variational calculus, for optimal control
problems etc.

In this book we consider in the most situations scalar and multiobjective
programming problems which involve convex sets and convex functions, with-
out making use of the classical differentiability which is included as a special
case of the general setting.

Definition 2.3.2. Let f : X → R be a given function and take an arbitrary
x ∈ X such that f(x) ∈ R. The set

∂f(x) := {x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X}

is said to be the (convex) subdifferential of f at x. Its elements are called
subgradients of f at x. We say that the function f is subdifferentiable at x if
∂f(x) 	= ∅.

If f(x) /∈ R we consider by convention ∂f(x) := ∅.

Example 2.3.6. For U ⊆ X and f = δU : X → R, one can easily show that for
all x ∈ U there is ∂δU (x) = N(U, x).



2.3 Conjugate functions and subdifferentiability 39

If f : X → R is subdifferentiable at x with f(x) ∈ R and x∗ ∈ ∂f(x), then
the function h : X → R, h(y) = 〈x∗, y〉 + f(x) − 〈x∗, x〉 is an affine minorant
of f . Moreover, this affine minorant coincides at x with f . In the following
statement we give a characterization of the elements x∗ ∈ ∂f(x) according to
the fact that for x∗ and x the Fenchel-Young inequality is fulfilled as equality.

Theorem 2.3.12. Let the function f : X → R be given and x ∈ X. Then
x∗ ∈ ∂f(x) if and only if f(x) + f∗(x∗) = 〈x∗, x〉.

Proof. Let x∗ ∈ ∂f(x). Then f(x) ∈ R and f∗(x∗) = sup{〈x∗, y〉 − f(y) :
y ∈ X} ≤ 〈x∗, x〉 − f(x). Since the opposite inequality is always true, f(x) +
f∗(x∗) = 〈x∗, x〉 follows.

Vice versa, let x ∈ X and x∗ ∈ X∗ be such that f(x) + f∗(x∗) = 〈x∗, x〉.
Then f(x) ∈ R and 〈x∗, x〉 − f(x) = f∗(x∗) = supy∈X{〈x∗, y〉 − f(y)} ≥
〈x∗, y〉 − f(y) for all y ∈ X, and hence x∗ ∈ ∂f(x). ��

For f : X → R a given function one has that x ∈ X with f(x) ∈ R is
a solution of the optimization problem infx∈X f(x) if and only if 0 ∈ ∂f(x).
In general one can express necessary and sufficient optimality conditions for
optimization problems by means of subdifferentials as we shall see in section
3.3.

Proposition 2.3.13. (a) For a given function f : X → R, one has ∂(f +
〈x∗, ·〉)(x) = ∂f(x) + x∗ for all x∗ ∈ X∗ and all x ∈ X.

(b) For f : X1 × . . . × Xm → R, f(x1, . . . , xm) =
∑m

i=1 fi(xi), where Xi is
a Hausdorff locally convex space and fi : Xi → R, i = 1, . . . , m, there is
∂f(x1, . . . , xm) =

∏m
i=1 ∂fi(xi) for all (x1, . . . , xm) ∈ X1 × . . . × Xm.

Theorem 2.3.14. Let f : X → R and x ∈ X. The subdifferential ∂f(x) is a
(possibly empty) convex and closed set in X∗.

Proof. If f(x) = ±∞ there is nothing to prove. Let be f(x) ∈ R. By the
Young-Fenchel inequality and Theorem 2.3.12 it follows that x∗ ∈ ∂f(x) if and
only if f(x) + f∗(x∗) ≤ 〈x∗, x〉. Therefore one can rewrite the subdifferential
of the function f at x as the level set of the convex and lower semicontinuous
function x∗ �→ −〈x∗, x〉+f∗(x∗) at −f(x), i.e. ∂f(x) = {x∗ ∈ X∗ : −〈x∗, x〉+
f∗(x∗) ≤ −f(x)}. This guarantees the convexity and, via Theorem 2.2.9, the
closedness of ∂f(x). ��

The aim of the next theorem is to present some connections between the
subdifferentials of the functions f , f̄ and cof .

Theorem 2.3.15. Let be f : X → R and x ∈ X be such that ∂f(x) 	= ∅.
Then it holds

(a) cof(x) = f̄(x) = f(x) and the functions f , f̄ and cof are proper and f is
lower semicontinuous at x;

(b) ∂(cof)(x) = ∂f̄(x) = ∂f(x);



40 2 Preliminaries on convex analysis and vector optimization

(c) f∗∗ = cof .

Proof. (a) Let x∗ ∈ ∂f(x) be arbitrarily taken and consider the function
h : X → R, h(y) = 〈x∗, y〉 + f(x) − 〈x∗, x〉, which is an affine minorant of f .
Note that f(x) ∈ R. Since h is also convex and lower semicontinuous it holds
h ≤ cof ≤ f̄ ≤ f . Taking into consideration that f(x) = h(x) we deduce
that f(x) = h(x) ≤ cof(x) ≤ f̄(x) ≤ f(x) and the desired equalities follow.
This also implies that the function f is lower semicontinuous at x and the
properness of f , f̄ and cof follows easily.

(b) If x∗ ∈ ∂f(x) then, by definition, f(y) ≥ f(x) + 〈x∗, y − x〉 for all
y ∈ X. As y �→ 〈x∗, y − x〉 + f(x) is a convex and lower semicontinuous
function which is everywhere less than or equal to f , using (a) we get cof(y) ≥
cof(x) + 〈x∗, y − x〉 for all y ∈ X. Thus x∗ ∈ ∂(cof)(x) and the inclusion
∂f(x) ⊆ ∂(cof)(x) follows. Assume now that x∗ ∈ ∂(cof)(x). Because of (a),
for all y ∈ X we have f(y) − f(x) ≥ cof(y) − cof(x) ≥ 〈x∗, y − x〉, i.e. x∗ ∈
∂f(x). Therefore ∂(cof)(x) ⊆ ∂f(x) and we actually have ∂f(x) = ∂(cof)(x).
Following the same idea one can also prove that ∂f(x) = ∂f̄(x).

(c) The assertion follows from (a) and Corollary 2.3.7. ��

Theorem 2.3.16. Let be f : X → R and x ∈ X.

(a) If ∂f(x) 	= ∅, then f(x) = f∗∗(x).
(b) If f(x) = f∗∗(x), then ∂f(x) = ∂f∗∗(x).

Proof. (a) The statement follows directly from Theorem 2.3.15(a), (c).
(b) If f(x) = f∗∗(x) = ±∞, then by convention we have ∂f(x) =

∂f∗∗(x) = ∅. Otherwise, Theorem 2.3.12 and Remark 2.3.4 allow to con-
clude that x∗ ∈ ∂f(x) ⇔ f∗(x∗) = −f(x) + 〈x∗, x〉 ⇔ f∗∗∗(x∗) = −f∗∗(x) +
〈x∗, x〉 ⇔ x∗ ∈ ∂f∗∗(x). ��

Our next aim is to point out that the calculation rules which are available
for the classical differential can be applied in general only partially to the
subdifferential. Using Definition 2.3.2 it is easy to prove that for a given
function f : X → R and x ∈ X it holds

∂(λf)(x) = λ∂f(x) for all λ > 0.

Coming now to the sum, for some given arbitrary proper functions fi : X → R,
i = 1, . . . , m, one can only prove in general that for x ∈ X it holds

m
∑

i=1

∂fi(x) ⊆ ∂

( m
∑

i=1

fi

)

(x). (2.8)

We refer the reader to section 3.5 for sufficient conditions which guarantee,
when the functions fi, i = 1, . . . , m, are convex, equality in (2.8).

The next result displays some connections between the subdifferential of
a given function f and the one of its conjugate.
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Theorem 2.3.17. Let be f : X → R and x ∈ X.

(a) If x∗ ∈ ∂f(x), then x ∈ ∂f∗(x∗).
(b) If f(x) = f∗∗(x), then x∗ ∈ ∂f(x) if and only if x ∈ ∂f∗(x∗).
(c) If f is proper, convex and lower semicontinuous, then x∗ ∈ ∂f(x) if and

only if x ∈ ∂f∗(x∗).

Proof. (a) Since x∗ ∈ ∂f(x), according to Theorem 2.3.12 we have f(x) +
f∗(x∗) = 〈x∗, x〉. But f∗∗(x) ≤ f(x), by Lemma 2.3.3, and thus f∗∗(x) +
f∗(x∗) ≤ 〈x∗, x〉. As the reverse inequality is always fulfilled, using once more
Theorem 2.3.12, we get x ∈ ∂f∗(x∗).

(b) Because of (a) only the sufficiency must be proven. For any x ∈
∂f∗(x∗), again by Theorem 2.3.12, it holds 〈x∗, x〉 = f∗(x∗) + f∗∗(x) =
f∗(x∗) + f(x) and therefore x∗ ∈ ∂f(x).

(c) Theorem 2.3.5 yields f = f∗∗ and the equivalence follows from (b). ��

A classical assertion on the existence of a subgradient is given in the fol-
lowing statement (cf. [67]).

Theorem 2.3.18. Let the convex function f : X → R be finite and continuous
at some point x ∈ X. Then ∂f(x) 	= ∅, i.e. f is subdifferentiable at x.

Theorem 2.3.18 follows easily as a consequence of the Fenchel duality state-
ment Theorem 3.2.6, which we give in the next chapter. For further results
concerning subdifferential calculus we refer to section 3.5 and the book [207].

We conclude this subsection by resuming the relations between the sub-
differentiability and the rather classical notion of Gâteaux differentiability
accompanied by some further properties of the Gâteaux differential.

Definition 2.3.3. Let f : X → R be a proper function and x ∈ dom f . If the
limit

lim
t↓0

f(x + ty) − f(x)
t

exists we call it the directional derivative of f at x in the direction y ∈ X and
we denote it by f ′(x; y). If there exists an x∗ ∈ X∗ such that f ′(x; y) = 〈x∗, y〉
for all y ∈ X, then f is said to be Gâteaux differentiable at x, x∗ is called
the Gâteaux differential of f at x and it is denoted by ∇f(x), i.e. f ′(x; y) =
〈∇f(x), y〉 for all y ∈ X.

We need to note that if f is proper and convex and x ∈ dom f then f ′(x; y)
exists for all y ∈ X (cf. [207, Theorem 2.1.12]). If, additionally, f is continuous
at x ∈ dom f then for all y ∈ X there is f ′(x; y) = max{〈x∗, y〉 : x∗ ∈ ∂f(x)}.
For convex functions the Gâteaux differentiability and the uniqueness of the
subgradient are closely related, as stated below.

Proposition 2.3.19. Let f : X → R be a proper and convex function and
x ∈ dom f .
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(a) If x ∈ core(dom f) and f is Gâteaux differentiable at x, then f is subdif-
ferentiable at x and ∂f(x) = {∇f(x)}.

(b) If f is continuous at x and its subdifferential ∂f(x) is a singleton, then f
is Gâteaux differentiable at x and ∂f(x) = {∇f(x)}.

In the next results the convexity of a Gâteaux differentiable function is
characterized.

Proposition 2.3.20. Let U ⊆ X be a nonempty, open and convex set and
f : U → R a Gâteaux differentiable function on U . Then the function f is
convex on U if and only if f(y) ≥ f(x)+ 〈∇f(x), y−x〉 for all x, y ∈ U . This
is further equivalent to 〈∇f(y) −∇f(x), y − x〉 ≥ 0 for all x, y ∈ U .

2.4 Minimal and maximal elements of sets

It is characteristic for vector optimization problems that, different to scalar
programming problems, more than one conflicting objectives have to be taken
into consideration. Thus, the objective values may be considered as vectors
in a finite or even infinite dimensional vector space. As an example let us
mention the Markowitz portfolio optimization problem which aims at finding
an optimal portfolio of several risky securities, e.g. stocks and shares of com-
panies. There are two reasonable objectives, the expected return which has to
be maximized, and the risk (measured via the variance of the expected return
or any other risk measure) that has to be minimized. These both objectives
are conflicting because in general the risk grows if the expected return is in-
creasing. This conflict must be reflected by a corresponding partial ordering
relation in the two dimensional objective space. Such an ordering relation al-
lows to compare different vector objective values in, at least, a partial sense.
Based on the considered partial ordering one can define distinct types of solu-
tions in connection to a vector optimization problem. Partial orderings in the
sense considered in this book are defined by convex cones as we have already
done in section 2.1. The basic terminology for such solutions is that of effi-
ciency, i.e. we consider different types of so-called efficient solutions. For the
first time efficient solutions have been considered by Edgeworth in [60] and
Pareto in [148].

In this section we present different notions of minimality (maximality)
for sets in vector spaces. In the next section these notions will be employed
when introducing different efficiency solution concepts for vector optimization
problems.

2.4.1 Minimality

Unless otherwise mentioned, in the following we consider V to be a vector
space partially ordered by a convex cone K ⊆ V .
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First of all let us define the usual notion of minimality for a nonempty set
M ⊆ V with respect to the partial ordering “�K” induced by K. Initially,
we confine ourselves to the case where the ordering cone K is pointed, i.e.
l(K) = {0}, in which case “�K” is antisymmetric, since this is the situation
mostly encountered within this book and also in the majority of practical
applications of vector optimization.

Definition 2.4.1. An element v̄ ∈ M is said to be a minimal element of M
(regarding the partial ordering induced by K) if there is no v ∈ M satisfying
v ≤K v̄. The set of all minimal elements of M is denoted by Min(M,K) and
it is called the minimal set of M (regarding the partial ordering defined by K).

Remark 2.4.1. There are several obviously equivalent formulations for an el-
ement v̄ ∈ M to be a minimal element of M . We list some of them in the
following:

(i) there is no v ∈ M such that v̄ − v ∈ K\{0};
(ii) from v �K v̄, v ∈ M , follows v = v̄;
(iii) from v �K v̄, v ∈ M , follows v �K v̄;
(iv) (v̄ − K) ∩ M = {v̄};
(v) (M − v̄) ∩ (−K) = {0};
(vi) for all v ∈ M there is v �K v̄.

We would like to underline that for the equivalence (ii) ⇔ (iii) the pointedness
of K is indispensable.

Example 2.4.1. An important case which occurs in practice is when V = R
k

and K = R
k
+. Let M ⊆ R

k. Then v̄ = (v̄1, . . . , v̄k)T ∈ M is a minimal element
of M if there is no v = (v1, . . . , vk)T ∈ M such that v 	= v̄ and vi ≤ v̄i for
all i = 1, . . . , k, i.e. there is no v = (v1, . . . , vk)T ∈ M fulfilling vi ≤ v̄i for all
i = 1, . . . , k and vj < v̄j for at least one j ∈ {1, . . . , k}.

In an analogous way one can define the notion of maximal element of a
set M .

Definition 2.4.2. An element v̄ ∈ M is said to be a maximal element of M
(regarding the partial ordering induced by K) if there is no v ∈ M satisfying
v ≥K v̄. The set of all maximal elements of M is denoted by Max(M,K) and
it is called the maximal set of M (regarding the partial ordering defined by
K).

Remark 2.4.2. As in Remark 2.4.1 one can give the following equivalent for-
mulations for the maximality of an element v̄ ∈ M in M :

(i) there is no v ∈ M such that v − v̄ ∈ K\{0};
(ii) from v �K v̄, v ∈ M , follows v = v̄;
(iii) from v �K v̄, v ∈ M , follows v �K v̄;
(iv) (v̄ + K) ∩ M = {v̄};
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(v) (M − v̄) ∩ K = {0};
(vi) for all v ∈ M there is v �K v̄.

Remark 2.4.3. The problem of finding the maximal elements of the set M re-
garding the cone K may be reformulated as the problem of finding the minimal
elements of the set (−M) regarding K or, equivalently, as the problem of find-
ing the minimal elements of the set M regarding the partial ordering induced
by the cone (−K). It holds Max(M,K) = Min(M,−K) = −Min(−M,K).

Although we mostly confine ourselves within this book to the most impor-
tant framework of partial orderings induced by pointed convex cones, for the
sake of completeness we present also the definition of minimality regarding
a partial ordering induced by a convex but not pointed cone K. As noted
in subsection 2.1.1, in this situation l(K) = K ∩ (−K) is a linear subspace
of V not equal to {0}. If this situation occurs, then Definition 2.4.1 is not
always suitable for defining minimal elements, and this because it may hap-
pen to have a v ∈ M , v 	= v̄, such that v �K v̄ �K v. More precisely, if
v̄ − v ∈ l(K) ⊆ K then v − v̄ ∈ l(K) ⊆ K, too, and now it is clear that
Definition 2.4.1 cannot be used if the ordering cone K is not pointed. This
situation can be avoided if instead of Definition 2.4.1 one uses the following
definition due to Borwein [19] (see also Remark 2.4.1(iii)).

Definition 2.4.3. Let K ⊆ V be an arbitrary ordering cone. An element
v̄ ∈ M is said to be a minimal element of M (regarding the partial ordering
induced by K), if from v �K v̄, v ∈ M , follows v �K v̄.

From this definition immediately follows that if v̄ ∈ M is a minimal ele-
ment of M then any ṽ ∈ M such that ṽ �K v̄ is also a minimal element of M .
To see this take an arbitrary v ∈ M such that v �K ṽ. Since v̄ ∈ Min(M,K),
it holds v �K v̄ �K ṽ and so ṽ ∈ Min(M,K).

We observe further that v̄ being minimal means that for all v ∈ M fulfilling
v �K v̄ it is binding to have v̄ − v ∈ l(K). If K is a pointed cone then
l(K) = {0} and in this case we have v̄ = v. Therefore Definition 2.4.3 applies
to pointed cones K, too, while Definition 2.4.1 can be seen as a particular
case of it.

Next we give some equivalent formulations to the notion of minimality in
case the cone K is not assumed to be pointed. More precisely, v̄ ∈ M is a
minimal element of M if and only if one of the following conditions is fulfilled:

(i) there is no v ∈ M such that v̄ − v ∈ K\l(K);
(ii) (v̄ − K) ∩ M ⊆ v̄ + K;
(iii) (−K) ∩ (M − v̄) ⊆ K.

The maximal elements of the set M (in case the cone K is not assumed
pointed) can be defined following the same idea as in Definition 2.4.3. Analo-
gously to Remark 2.4.3 one has Max(M,K)=Min(M,−K)=−Min(−M,K).

The next result describes the relation between the minimal elements of
the sets M and M + K.
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Lemma 2.4.1. (a) It holds Min(M,K) ⊆ Min(M + K, K).
(b) If K is pointed, then Min(M,K) = Min(M + K, K).

Proof. (a) Take an arbitrary v̄ ∈ Min(M,K). By definition v̄ ∈ M ⊆ M + K.
Let us prove now that for v ∈ M + K such that v �K v̄ the relation v̄ �K v
holds, too. Since v ∈ M + K we have v = ṽ + k for some ṽ ∈ M and k ∈ K.
Obviously ṽ = v − k �K v̄ − k �K v̄. But the minimality of v̄ secures v̄ �K ṽ
and, since ṽ = v − k �K v, the desired conclusion follows.

(b) Assuming now K pointed, let v̄ ∈ Min(M +K, K). We have v̄ ∈ M +K
and we show that actually v̄ ∈ M . Assuming the contrary implies v̄ = ṽ + k
with ṽ ∈ M and k ∈ K\{0}. This yields ṽ ≤K v̄ and as ṽ ∈ M +K, one would
get a contradiction to the minimality of v̄ in M + K. Following a similar
reasoning one can prove that in fact v̄ ∈ Min(M,K). Now (a) yields the
desired conclusion. ��

The next minimality notion we introduce is the so-called strong minimality.
We work in the same setting, with V a vector space partially ordered by the
(not necessarily pointed) convex cone K and M a nonempty subset of V .

Definition 2.4.4. An element v̄ ∈ M is said to be a strongly minimal element
of M (regarding the partial ordering induced by K) if v̄ �K v for all v ∈ M ,
i.e. M ⊆ v̄ + K.

For vector optimization this definition is of secondary importance be-
cause in the most practical cases strongly minimal elements do not exist.
If we consider the classical situation when V = R

k and K = R
k
+, then

the strong minimality of v̄ ∈ M ⊆ R
k means v̄i ≤ vi, i = 1, . . . , k, for all

v = (v1, . . . , vk)T ∈ M . Thus, in case of a multiobjective optimization prob-
lem, this must imply that all the k components of its objective function attain
their minima at the same point, i.e. the objectives are not conflicting as it is
typical for vector optimization.

Obviously, every strongly minimal element is minimal. A strongly maximal
element v̄ ∈ M is defined in analogous manner, namely one must have v̄ �K v
for all v ∈ M .

2.4.2 Weak minimality

Although from the practical point of view not so important as the minimal el-
ements, the so-called weakly minimal elements of a given set are of theoretical
interest, one of the arguments sustaining this assertion being that they allow
a complete characterization by linear scalarization in the convex case, which
is not always possible with minimal elements. We consider in this subsection
V to be a vector space partially ordered by the convex cone K ⊆ V fulfilling
core(K) 	= ∅ and M ⊆ V being a nonempty set.
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Definition 2.4.5. An element v̄ ∈ M is said to be a weakly minimal element
of M (regarding the partial ordering induced by K) if (v̄ − core(K))∩M = ∅.
The set of all weakly minimal elements of M is denoted by WMin(M,K) and
it is called the weakly minimal set of M (regarding the partial ordering induced
by K).

The relation (v̄ − core(K))∩M = ∅ in Definition 2.4.5 is obviously equiv-
alent to (M − v̄)∩ (− core(K)) = ∅. From here follows that WMin(M,V ) = ∅.
Whenever the cone K is nontrivial one may also notice that if we consider
as ordering cone ̂K = core(K)∪{0}, then v̄ ∈ WMin(M,K) if and only if
(v̄ − ̂K) ∩ M = {v̄}, or, equivalently, v̄ ∈ Min(M, ̂K) (see Remark 2.4.1(iv)).
Of course, if K = ̂K, then the minimal and weakly minimal elements of M
regarding the partial ordering induced by K coincide. This, however, is not
the case in general.

If K 	= V , any minimal element of M is also weakly minimal, since (v̄ −
K) ∩ M ⊆ v̄ + K implies (v̄ − core(K)) ∩ M = ∅. Indeed, notice that (v̄ −
core(K))∩ (v̄ + K) = ∅, as in this situation − core(K)∩K = ∅. This result is
summarized in the following statement.

Proposition 2.4.2. If K 	= V , then Min(M,K) ⊆ WMin(M,K).

Next we provide a result, similar to Lemma 2.4.1, for the weakly minimal
elements of a set M ⊆ V , the proof of which being relinquished to the reader
(see, for instance, [104, Lemma 4.13]).

Lemma 2.4.3. It holds

(a) WMin(M,K) ⊆ WMin(M + K, K);
(b) WMin(M + K, K) ∩ M ⊆ WMin(M,K).

Remark 2.4.4. When V is taken to be a topological vector space, in the above
assertions the algebraic interior core(K) can be replaced with the topological
interior int(K) when the latter is nonempty.

Weakly maximal elements may be defined analogously, namely an element
v̄ ∈ M is called a weakly maximal element of M (regarding the partial ordering
induced by K) if (v̄+core(K))∩M = ∅. The set of all weakly maximal elements
of M is denoted by WMax(M,K) and it is called the weakly maximal set of
M . Also here it holds WMax(M,K) = WMin(M,−K) = −WMin(−M,K).

Consequently, one can formulate obvious variants of Lemma 2.4.1, Propo-
sition 2.4.2 and Lemma 2.4.3 for maximal and weakly maximal elements of
the set M , respectively.

2.4.3 Proper minimality

There is another very important notion of minimality subsumed under the
category of properly minimal elements. Properly minimal elements turn out
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to be minimal elements with additional properties. There are a lot of different
kinds of properly minimal elements. In the following we present an overview
of their distinct definitions and establish some relations between them. The
majority of these notions have been introduced in connection to some vector
optimization problems under the name proper efficiency. We introduce them
in this subsection as proper minimality notions for a given set by extending
to this general situation the corresponding notions for vector optimization
problems. To this end one has only to take in this situation M to be the
image set of the feasible set through the objective function. Let us mention
also that here we work only with properly minimal elements, for considering
properly maximal elements one needs only replace the cone K by −K.

The first notion we present concerns a nonempty set M ⊆ R
k when the

space R
k is partially ordered by the cone K = R

k
+, being inspired by Geof-

frion’s paper [71].

Definition 2.4.6. An element v̄ = (v̄1, . . . , v̄k)T ∈ M is said to be a properly
minimal element of M in the sense of Geoffrion if v̄ ∈ Min(M, Rk

+) and if
there exists a real number N > 0 such that for every i ∈ {1, . . . , k} and every
v = (v1, . . . , vk)T ∈ M satisfying vi < v̄i there exists at least one j ∈ {1, . . . , k}
such that v̄j < vj and

v̄i − vi

vj − v̄j
≤ N.

The set of all properly minimal elements of M in the sense of Geoffrion is
denoted by PMinGe(M, Rk

+).

The definition above can be interpreted as follows: a decrease in one com-
ponent relative to v̄ entails an increase in at least another component such
that the ratio of the absolute values of those differences is bounded. In mul-
tiobjective optimization this means that the trade-offs among the different
components of the vector objective function are bounded. In economics un-
bounded trade-offs are mostly undesirable. However, not only with respect to
the practical applications but also from the theoretical point of view, properly
minimal (or maximal) elements have nice and beneficial properties as we will
see in the next subsection.

One can establish an analogous lemma to Lemma 2.4.1 and Lemma 2.4.3
by replacing M with M + R

k
+.

Lemma 2.4.4. There is PMinGe(M + R
k
+, Rk

+) = PMinGe(M, Rk
+).

Proof. Take an arbitrary v̄ ∈ PMinGe(M + R
k
+, Rk

+). By definition v̄ ∈
Min(M + R

k
+, Rk

+) and, by Lemma 2.4.1, it holds v̄ ∈ Min(M, Rk
+). This

implies, in particular, that v̄ ∈ M . Because M ⊆ M + R
k
+, Definition 2.4.6

applies to any v ∈ M , i.e. v̄ ∈ PMinGe(M, Rk
+).

Now let v̄ ∈ PMinGe(M, Rk
+) and N > 0 be the positive constant provided

by Definition 2.4.6. Clearly v̄ ∈ M + R
k
+ and by Lemma 2.4.1, we get v̄ ∈

Min(M, Rk
+) = Min(M + R

k
+, Rk

+). Take an arbitrary v = ṽ + h ∈ M + R
k
+
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where ṽ ∈ M and h ∈ R
k
+ and i ∈ {1, . . . , k} such that vi = ṽi + hi < v̄i.

Obviously ṽi < v̄i and, according to Definition 2.4.6, there exists at least one
j ∈ {1, . . . , k} such that v̄j < ṽj and

v̄i − ṽi

ṽj − v̄j
≤ N.

But this implies v̄j < ṽj + hj = vj and

v̄i − vi

vj − v̄j
=

v̄i − ṽi − hi

ṽj + hj − v̄j
≤ v̄i − ṽi

ṽj − v̄j
≤ N.

Consequently, we get v̄ ∈ PMinGe(M + R
k
+, Rk

+). ��

Already ten years earlier Hurwicz [93] has introduced a notion of proper
efficiency for vector optimization problems which has been generalized in [83]
to sets in partially ordered topological vector spaces.

Further we assume that V is a topological vector space partially ordered
by the pointed convex cone K and M ⊆ V is an arbitrary nonempty set.

Definition 2.4.7. An element v̄ ∈ M is said to be a properly minimal element
of M in the sense of Hurwicz if cl(coneco((M − v̄)∪K)) ∩ (−K) = {0}. The
set of all properly minimal elements of M in the sense of Hurwicz is denoted
by PMinHu(M,K).

This definition seems to be in a certain manner natural if it is compared
with the definition of minimality of v̄ ∈ M in the equivalent formulation given
in Remark 2.4.1(v) which states that (M − v̄)∩(−K) = {0}. Because M − v̄ ⊆
cl(coneco((M − v̄)∪K)) it is clear that PMinHu(M,K) ⊆ Min(M,K).

Lemma 2.4.5. There is PMinHu(M + K, K) = PMinHu(M,K).

Proof. Noting that coneco((M − v̄)∪K) = coneco((M + K − v̄)∪K), we
obtain the conclusion. ��

Geoffrion’s definition of proper efficiency is very illustrative concerning
economical and geometrical aspects. But its drawback is the restriction to
the ordering cone K = R

k
+. To overcome this disadvantage Borwein proposed

in [17] a notion of proper efficiency for vector maximization problems given in
Hausdorff locally convex spaces partially ordered by a pointed convex closed
cone which generalizes Geoffrion’s definition. We employ Borwein’s definition
to sets and use the notion proper minimality instead of proper efficiency in
accordance with our general context.

For the remaining part of this subsection we take V to be a Hausdorff
locally convex space partially ordered by the pointed convex cone K and
M ⊆ V an arbitrary nonempty set.
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Definition 2.4.8. An element v̄ ∈ M is said to be a properly minimal element
of M in the sense of Borwein if cl(T (M + K, v̄)) ∩ (−K) = {0}. The set of
all properly minimal elements of M in the sense of Borwein is denoted by
PMinBo(M,K).

Remark 2.4.5. The proper minimality in the sense of Borwein can be equiva-
lently written as 0 ∈ Min(cl(T (M +K, v̄)),K). Observing that T (M +K, v̄) =
T (M + K − v̄, 0) one can see the affinity of this kind of proper minimality to
the notion of minimality, via Remark 2.4.1(v) and Lemma 2.4.1. The element
v̄ ∈ M is minimal if and only if (M + K − v̄) ∩ (−K) = {v̄}. Thus Borwein’s
definition of proper minimality is nothing else than additionally demanding
cl(T (M + K − v̄, 0)) ∩ (−K) = {0}. Moreover, if V is metrizable, then the
tangent cone is closed and in this situation one may omit the closure operation
within Definition 2.4.8.

Remark 2.4.6. (a) Let us mention here that in the original definition in [17] the
ordering cone was not explicitly assumed to be pointed. But this has to be as-
sumed, otherwise PMinBo(M,K) is the empty set. Indeed, if K is not pointed,
then let v ∈ K ∩ (−K), v 	= 0, be arbitrarily chosen and v̄ ∈ PMinBo(M,K).
Setting vl = v̄ + (1/l)v ∈ M + K for l ≥ 1, we get liml→+∞ vl = v̄ and
liml→∞ l(vl − v̄) = v. But this means nothing else than v ∈ T (M + K, v̄).
Therefore cl(T (M + K, v̄)) ∩ (−K) 	= {0} and this means that in this situa-
tion PMinBo(M,K) = ∅.

(b) A second observation in this context is that in the original definition for
a vector maximization problem a properly efficient solution is, additionally, as-
sumed to be an efficient solution. This would mean to require in our definition
that v̄ ∈ Min(M,K). But this hypothesis is superfluous and turns out to be a
consequence of the condition cl(T (M +K, v̄))∩(−K) = {0}. The conclusion is
obvious if K = {0}. Assume that K 	= {0} and that for a v̄ ∈ PMinBo(M,K)
it holds v̄ /∈ Min(M,K). Then there exists v ∈ M such that v̄ − v ∈ K\{0}.
We show that v− v̄ ∈ T (M +K, v̄). Setting vl = v̄+(1/l)(v− v̄), l ≥ 1, we can
easily see that vl = v + ((l − 1)/l)(v̄ − v) ∈ M + K for l ≥ 1. Even more, as
liml→+∞ vl = v̄ and liml→+∞ l(vl− v̄) = v− v̄, it follows v− v̄ ∈ T (M +K, v̄).
Finally, since 0 	= v − v̄ ∈ T (M + K, v̄) ∩ (−K) ⊆ cl(T (M + K, v̄)) ∩ (−K),
the equality cl(T (M + K, v̄)) ∩ (−K) = {0} fails, and this contradicts the
assumption v̄ ∈ PMinBo(M,K).

Since by the convexity of K it holds (M +K)+K = M +K, the following
result follows easily via Lemma 2.4.1 and Remark 2.4.6(b).

Lemma 2.4.6. There is PMinBo(M + K, K) = PMinBo(M,K).

Regarding the proper minimality in the sense of Geoffrion and in the sense
of Borwein in case V = R

k and K = R
k
+, we have that for a nonempty set

M ⊆ R
k it holds PMinGe(M, Rk

+) ⊆ PMinBo(M, Rk
+), which can be proven

similarly as in [17, Proposition 1]. The following result, giving a sufficient
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condition for the coincidence of both notions, can also be proven similarly as
for a corresponding assertion in [17] regarding a vector maximization problem
under convexity assumptions.

Proposition 2.4.7. If M ⊆ R
k is nonempty and M + R

k
+ is convex, then

PMinGe(M, Rk
+) = PMinBo(M, Rk

+).

The next proper minimality notion we consider here originates from Ben-
son’s paper [15] and it was introduced in order to extend Geoffrion’s proper
minimality.

Definition 2.4.9. An element v̄ ∈ M is said to be a properly minimal element
of M in the sense of Benson if cl(cone(M + K − v̄)) ∩ (−K) = {0}. The set
of all properly minimal elements of M in the sense of Benson is denoted by
PMinBe(M,K).

Remark 2.4.7. In [15] the notion introduced above was given as proper effi-
ciency for vector maximum problems in finite dimensional spaces, with the
efficiency of the elements in discussion additionally assumed. This means in
our situation to supplementary impose the condition v̄ ∈ Min(M,K). But this
is superfluous since M − v̄ ⊆ cl(cone(M + K − v̄)) implies v̄ ∈ Min(M,K) if
cl(cone(M + K − v̄)) ∩ (−K) = {0}, i.e. (M − v̄) ∩ (−K) = {0}, too.

The next result is a consequence of the convexity of K along with Lemma
2.4.1 and Remark 2.4.7.

Lemma 2.4.8. There is PMinBe(M + K, K) = PMinBe(M,K).

As mentioned above, for V = R
k and K = R

k
+, when M ⊆ R

k is an ar-
bitrary nonempty set, it holds (cf. [15]) PMinGe(M, Rk

+) = PMinBe(M, Rk
+).

By taking into consideration the way Borwein’s and Benson’s proper mini-
malities are defined, one has that PMinBe(M,K) ⊆ PMinBo(M,K) is always
fulfilled. Further, let us notice that for v̄ ∈ M it holds cone(M + K − v̄) ⊆
coneco((M − v̄) ∪ K), the two sets being equal if M + K is convex. Thus we
have in general that PMinHu(M,K) ⊆ PMinBe(M,K), while when M +K is
convex it follows that PMinHu(M,K) = PMinBe(M,K) = PMinBo(M,K).

In the following we introduce another proper minimality concept due to
Borwein (cf. [18]), which is similar to Definition 2.4.9.

Definition 2.4.10. An element v̄ ∈ M is said to be a properly minimal ele-
ment of M in the global sense of Borwein if cl(cone(M − v̄)) ∩ (−K) = {0}.
The set of all properly minimal elements of M in the global sense of Borwein
is denoted by PMinGBo(M,K).

If for v̄ ∈ M Definition 2.4.10 is satisfied, then also (M − v̄)∩ (−K) = {0}
and, due to Remark 2.4.1(v), we have v̄ ∈ Min(M,K). Furthermore, it is
always true that PMinBe(M,K) = PMinGBo(M + K, K).

The next result relates PMinGBo(M + K, K) to PMinGBo(M,K).
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Proposition 2.4.9. There is PMinGBo(M + K, K) ⊆ PMinGBo(M,K).

Proof. Take an arbitrary v̄ ∈ PMinGBo(M + K, K). Thus v̄ ∈ M and
cl(cone(M + K − v̄)) ∩ (−K) = {0}. Since M − v̄ ⊆ M + K − v̄ it fol-
lows that cl(cone(M − v̄))∩ (−K) ⊆ cl(cone(M + K − v̄))∩ (−K) = {0} and,
consequently, cl(cone(M − v̄)) ∩ (−K) = {0}, which completes the proof. ��

Obviously, we have that PMinBe(M,K) ⊆ PMinGBo(M, K). On the other
hand, no relation of inclusion between PMinBo(M,K) and PMinGBo(M,K)
can be given in general. Obviously, when M+K is convex, then PMinBo(M,K)
⊆ PMinGBo(M,K).

A formally different minimality approach is the one introduced by Henig
[88] and Lampe [122] by employing a nontrivial convex cone K ′ containing in
its interior the given ordering cone K.

Definition 2.4.11. An element v̄ ∈ M is said to be a properly minimal ele-
ment of M in the sense of Henig and Lampe if there exists a nontrivial convex
cone K ′ ⊆ X with K\{0} ⊆ int(K ′) such that (M − v̄) ∩ (−K ′) = {0}. The
set of all properly minimal elements of M in the sense of Henig and Lampe
is denoted by PMinHe−La(M,K).

If the cone K ′ is assumed also pointed, instead of (M−v̄)∩(−K ′) = {0} one
can write v̄ ∈ Min(M,K ′). It is an immediate consequence of this definition
that v̄ ∈ PMinHe−La(M,K) implies v̄ ∈ Min(M,K).

Lemma 2.4.10. There is PMinHe−La(M + K, K) = PMinHe−La(M,K).

Proof. Let v̄ ∈ PMinHe−La(M + K, K) be arbitrarily taken. Then one can
easily show that v̄ ∈ M . Moreover, there exists a nontrivial convex cone
K ′ such that K\{0} ⊆ int(K ′) and (M + K − v̄) ∩ (−K ′) = {0}. Thus
(M − v̄) ∩ (−K′) = {0} and so v̄ ∈ PMinHe−La(M,K).

Vice versa, take v̄ ∈ PMinHe−La(M,K). Then v̄ ∈ M ⊆ M + K and
there exists a nontrivial convex cone K ′ such that K\{0} ⊆ int(K ′) and
(M − v̄) ∩ (−K ′) = {0}. We prove that (M + K − v̄) ∩ (−K ′) = {0}. If we
assume the contrary there would exist v ∈ M , k ∈ K and k′ ∈ K ′\{0} such
that v + k − v̄ = −k′. Then v − v̄ = −(k + k′) ∈ −(K + (K ′\{0})) ⊆ −(K ′ +
(K ′\{0})) ⊆ −K ′ and so k + k′ = 0. Consequently, −k ∈ K ′ ∩ (− int(K ′)),
which leads to a contradiction. Therefore v̄ ∈ PMinHe−La(M +K, K) and the
proof is complete. ��

The following statement reveals the relation between the proper minimal-
ity notions in the sense of Benson and in the sense of Henig and Lampe.

Proposition 2.4.11. There is PMinHe−La(M,K) ⊆ PMinBe(M,K).

Proof. If K = {0} the inclusion follows automatically. Assume that K 	= {0}.
Let v̄ ∈ PMinHe−La(M,K). Then v̄ ∈ M and there exists a nontrivial convex
cone K ′ such that K\{0} ⊆ int(K ′) and (M − v̄) ∩ (−K ′) = {0}. We prove
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that cl(cone(M +K − v̄))∩ (−K) = {0}. To this end we assume the contrary,
namely that there exists a k ∈ K\{0} such that −k ∈ cl(cone(M + K − v̄)).
Thus −k ∈ int(−K′) and consequently there exist ṽ ∈ M , k̃ ∈ K and λ̃ ≥
0 such that λ̃(ṽ + k̃ − v̄) ∈ int(−K ′). Obviously, λ̃ 	= 0 and so ṽ − v̄ ∈
− int(K ′)−K ′ ⊆ − int(K ′). This yields that ṽ− v̄ 	= 0, contradicting the fact
that (M − v̄) ∩ (−K ′) = {0}. ��

The following proper minimality notion, based on linear scalarization, al-
lows the treatment of minimal elements as solutions of scalar optimization
problems.

Definition 2.4.12. An element v̄ ∈ M is said to be a properly minimal ele-
ment of M in the sense of linear scalarization if there exists a v∗ ∈ K∗0 such
that 〈v∗, v̄〉 ≤ 〈v∗, v〉 for all v ∈ M . The set of properly minimal elements of
M in the sense of linear scalarization is denoted by PMinLSc(M,K).

The properly minimal elements of M in the sense of linear scalarization
are also minimal, as the next result shows.

Proposition 2.4.12. There is PMinLSc(M,K) ⊆ Min(M,K).

Proof. Take v̄ ∈ PMinLSc(M,K) with the corresponding v∗ ∈ K∗0. If v̄ /∈
Min(M,K), then there exists v ∈ M satisfying v ≤K v̄. As v∗ ∈ K∗0 and
v̄ − v ∈ K\{0}, there is 〈v∗, v̄ − v〉 > 0, contradicting Definition 2.4.12. ��

Simple examples illustrating that the opposite inclusion is in general not
fulfilled can be found in [80]. Without any additional assumption on M , the
properly minimal elements in the sense of linear scalarization of M and M +K
coincide. The simple proof of this assertion is left to the reader.

Lemma 2.4.13. There is PMinLSc(M + K, K) = PMinLSc(M,K).

The connection between the properly minimal elements in the sense of
linear scalarization and the properly minimal elements in the sense of Hurwicz
and Henig and Lampe, respectively, is outlined in the following statements.

Proposition 2.4.14. There is PMinLSc(M,K) ⊆ PMinHu(M,K).

Proof. If K = {0} there is nothing to be proven. Assume that K 	= {0} and
take v̄ ∈ PMinLSc(M,K). Then v̄ ∈ M and there exists v∗ ∈ K∗0 such that
〈v∗, v〉 ≥ 0 for all v ∈ M − v̄. This means that for all v ∈ (M − v̄)∪K it holds
〈v∗, v〉 ≥ 0 and, consequently, 〈v∗, v〉 ≥ 0 for all v ∈ cl(coneco(M − v̄) ∪ K).

Assuming that there exists a k ∈ K \ {0} such that −k ∈ cl(coneco(M −
v̄) ∪ K), we get 〈v∗, k〉 ≤ 0. On the other hand, since v∗ ∈ K∗0 there is
〈v∗, k〉 > 0. ��

Proposition 2.4.15. There is PMinLSc(M,K) ⊆ PMinHe−La(M,K).
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Proof. Take an abitrary v̄ ∈ PMinLSc(M,K). Then v̄ ∈ M and there exists
v∗ ∈ K∗0 such that 〈v∗, v〉 ≥ 0 for all v ∈ M − v̄. Let be K ′ := {v ∈
X : 〈v∗, v〉 > 0} ∪ {0}. Obviously, K ′ is a nontrivial convex cone and, since
v∗ ∈ K∗0, K\{0} ⊆ int(K ′) = {v ∈ X : 〈v∗, v〉 > 0}.

We prove that (M − v̄)∩ (−K′) = {0}. Assuming the contrary yields that
there exists v ∈ M such that v̄− v ∈ K′\{0}, or, equivalently, 〈v∗, v̄− v〉 > 0.
This contradicts the fact that 〈v∗, v̄〉 ≤ 〈v∗, v〉 for all v ∈ M . ��

Remark 2.4.8. In case the set M + K is convex Lemma 2.4.13 allows to char-
acterize the properly minimal elements v̄ ∈ PMinLSc(M,K) as solutions of
the scalar convex optimization problem

min
v∈M+K

〈v∗, v〉

with an appropriate v∗ ∈ K∗0. This again makes it possible to derive necessary
and sufficient optimality conditions via scalar duality and also to construct
vector dual problems in particular in the case when M is the image set of
a feasible set through the objective function of a given vector optimization
problem.

Summarizing the results proven above, we come to the following general
scheme for the proper minimal sets introduced in this section. First we con-
sider the general situation of an underlying Hausdorff locally convex space V
partially ordered by the pointed convex cone K and let M ⊆ V be a nonempty
set.

Proposition 2.4.16. There holds

PMinLSc(M,K)⊆ PMinHu(M,K)
PMinHe−La(M,K) ⊆PMinBe(M,K)⊆ PMinGBo(M,K)

PMinBo(M,K).

If M + K is convex, then

PMinLSc(M,K) ⊆ PMinHe−La(M,K) ⊆ PMinHu(M,K)

= PMinBe(M,K) = PMinBo(M,K) ⊆ PMinGBo(M,K).

Under additional hypotheses some opposite inclusions hold, too. We begin
with a statement that can be proven by considering some results from [83].

Proposition 2.4.17. (a) If the ordering cone K is closed and it has a com-
pact base, then PMinLSc(M,K) = PMinHu(M,K).

(b) If V is normed, the ordering cone K is closed and it has a weakly compact
base, then PMinHe−La(M,K) = PMinBe(M,K) = PMinGBo(M,K).

Whenever V = R
k and K = R

k
+ more inclusions turn into equalities in

the scheme considered in Proposition 2.4.16 one can be include the properly
minimal elements in the sense of Geoffrion, too.
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Proposition 2.4.18. Let V = R
k, K = R

k
+ and M ⊆ R

k a nonempty set.

(a) Then it holds

PMinLSc(M, Rk
+) = PMinHu(M, Rk

+) ⊆ PMinHe−La(M, Rk
+) =

PMinBe(M, Rk
+)=PMinGe(M, Rk

+)=PMinGBo(M, Rk
+)⊆PMinBo(M, Rk

+).

(b) If, additionally, M +R
k
+ is convex, then all the inclusions in (a) turn into

equalities.

Remark 2.4.9. In section 4.4 we consider other minimality notions with respect
to general increasing scalarization functions used only there, while in chapter
7 some minimality notions introduced in this section are extended for sets
M ⊆ V .

2.4.4 Linear scalarization

In this subsection we turn our attention to linear scalarization and its connec-
tions to the different minimality concepts introduced before. Scalarization in
general allows us to associate a scalar optimization problem to a given vector
optimization problem. This is very closely related to the monotonicity prop-
erties of the scalarizing function. In this context the dual cone and the quasi
interior of the dual cone of the underlying ordering cone plays a crucial role.
As noticed in Remark 2.4.8, characterizing minimal, weakly minimal or prop-
erly minimal elements of a given set by monotone scalarization, in particular
linear scalarization, offers the possibility to investigate these notions by means
of techniques which come from the scalar optimization.

Unless otherwise mentioned, in this subsection we consider V to be a vector
space partially ordered by a convex cone K ⊆ V . If the pointedness of the
cone K is required in some particular result, it will be explicitly mentioned.
Moreover, the set M ⊆ V is assumed to be nonempty.

Lemma 2.4.19. Let f : V → R be a given function.

(a) If f is K-increasing on M and there exists an uniquely determined element
v̄ ∈ M satisfying f(v̄) ≤ f(v) for all v ∈ M , then v̄ ∈ Min(M,K).

(b) If f is strongly K-increasing on M and there exists v̄ ∈ M satisfying
f(v̄) ≤ f(v) for all v ∈ M , then v̄ ∈ Min(M,K).

Proof. (a) Assuming v̄ /∈ Min(M,K) yields the existence of v ∈ M such that
v ≤K v̄. Taking into consideration the fact that f is K-increasing we get
f(v) ≤ f(v̄). Thus f(v) = f(v̄) and this contradicts the uniqueness of v̄ as
solution of the problem minv∈M f(v).

(b) Arguing as in part (a) in case v̄ /∈ Min(M,K) one can find an element
v ∈ M such that f(v) < f(v̄), but this contradicts the minimality of f(v̄). ��

For weakly minimal elements one has the following analogous characteri-
zation. Note that no difficulties arise if the ordering cone K is not pointed.
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Lemma 2.4.20. Suppose that core(K) 	= ∅ and consider a function f : V →
R which is strictly K-increasing on M . If there is an element v̄ ∈ M fulfilling
f(v̄) ≤ f(v) for all v ∈ M , then v̄ ∈ WMin(M,K).

Proof. If v̄ /∈ WMin(M,K) then there exists v ∈ (v̄ − core(K)) ∩ M . This
implies f(v) < f(v̄), contradicting the assumption. ��

The next scalarization result provides a necessary optimality condition for
the minimal elements of M . One can notice the usefulness of the assumption
of convexity for M + K, which allows giving such characterizations even if M
is not a convex set. We refer to the previous subsections for the connections
between the minimality properties of the sets M and M + K.

Theorem 2.4.21. Assume that the ordering cone K is nontrivial and pointed,
M + K is convex and core(M + K) 	= ∅. If v̄ ∈ Min(M,K), then there exists
some v# ∈ K#\{0} such that 〈v#, v̄〉 ≤ 〈v#, v〉 for all v ∈ M .

Proof. If v̄ ∈ Min(M,K), then according to Lemma 2.4.1(a) we have v̄ ∈
Min(M + K, K), too, and this can be equivalently rewritten as (M + K −
v̄) ∩ (−K) = {0}. Even more, as M + K − v̄ and (−K) are convex sets,
core(M + K − v̄) 	= ∅ and core(M + K − v̄) ∩ (−K) = ∅, Theorem 2.1.3 can
be applied. Thus there exist v̄# ∈ V #\{0} and λ ∈ R such that

〈v̄#, v + k1 − v̄〉 ≤ λ ≤ 〈v̄#,−k2〉 ∀v ∈ M ∀k1, k2 ∈ K. (2.9)

If there exists k̄ ∈ K\{0} such that 〈v̄#, k̄〉 > 0, then choosing k1 = αk̄ for
α > 0, we obtain a contradiction to (2.9), as the left-hand side is unbounded
for α → +∞. Thus 〈v̄#, k〉 ≤ 0 for all k ∈ K\{0} and this actually means
that v̄# ∈ −K#. Taking k1 = k2 = 0 and setting v# := −v̄# ∈ K# we get
〈v#, v̄〉 ≤ 〈v#, v〉 for all v ∈ M , which completes the proof. ��

It is clear that by means of the topological version of Eidelheit’s separa-
tion theorem one can state an analogous scalarization result for the minimal
elements of a subset M of a topological vector space.

Corollary 2.4.22. Let V be a topological vector space partially ordered by a
nontrivial pointed convex cone K. Moreover, assume that M + K is convex
and int(M + K) 	= ∅. If v̄ ∈ Min(M,K), then there exists v∗ ∈ K∗\{0} such
that 〈v∗, v̄〉 ≤ 〈v∗, v〉 for all v ∈ M .

Now we present, again in the vector space setting, sufficient conditions for
minimality which are immediate consequences of Lemma 2.4.19 and Example
2.2.3.

Theorem 2.4.23. (a) If there exists v# ∈ K# and v̄ ∈ M such that 〈v#, v̄〉 <
〈v#, v〉 for all v ∈ M , v 	= v̄, then v̄ ∈ Min(M,K).

(b) If there exist v# ∈ K#0 and v̄ ∈ M such that 〈v#, v̄〉 ≤ 〈v#, v〉 for all
v ∈ M , then v̄ ∈ Min(M,K).
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Remark 2.4.10. (a) In Theorem 2.4.23(b) it is not necessary to impose the
pointedness of K, because otherwise K#0 = ∅.

(b) The necessary condition in Theorem 2.4.21 is not also sufficient be-
cause, as follows from Theorem 2.4.23(a), for this we need a strict inequality.
Indeed, if 〈v#, v̄〉 ≤ 〈v#, v〉 is for all v ∈ M fulfilled, then v̄ is weakly minimal
to M , (see Theorem 2.4.25 below), but not necessarily minimal.

We would like to mention that in locally convex spaces partially ordered by
a convex closed cone the strongly minimal elements can be as well equivalently
characterized via linear scalarization by using linear continuous functionals
from K∗ (see [104, Theorem 5.6]). We omit giving this statement here, since
strongly minimal elements are not interesting from the viewpoint of vector
optimization and do not play any role in this book.

Next we turn our attention to necessary and sufficient optimality condi-
tions characterizing via linear scalarization the weakly minimal elements of a
nonempty subset of a vector space.

Theorem 2.4.24. Let K ⊆ V be such that core(K) 	= ∅ and M +K is convex.
If v̄ ∈ WMin(M,K) then there exists v# ∈ K#\{0} such that 〈v#, v̄〉 ≤
〈v#, v〉 for all v ∈ M .

Proof. The proof follows the lines of the proof of Theorem 2.4.21 using again
the algebraic version of Eidelheit’s separation theorem. ��

Theorem 2.4.25. Suppose that core(K) 	= ∅. If there exist v# ∈ K#\{0}
and v̄ ∈ M such that for all v ∈ M it holds 〈v#, v̄〉 ≤ 〈v#, v〉, then v̄ ∈
WMin(M,K).

Proof. The assertion is a straightforward conclusion of Lemma 2.4.20 and
Example 2.2.3. ��

Combining Theorem 2.4.24 and Theorem 2.4.25 one obtains an equivalent
characterization via linear scalarization for weakly minimal elements.

Corollary 2.4.26. Let K ⊆ V be such that core(K) 	= ∅ and M+K is convex.
Then v̄ ∈ WMin(M,K) if and only if there exists v# ∈ K#\{0} satisfying
〈v#, v̄〉 ≤ 〈v#, v〉 for all v ∈ M .

The following remark plays an important role when dealing with vector
duality with respect to weakly minimal elements.

Remark 2.4.11. Assuming that V is a topological vector space partially or-
dered by the convex cone K with int(K) 	= ∅ and M ⊆ V is a nonempty
set with M + K convex, then by using the topological version of Eidelheit’s
separation theorem and the analog of Lemma 2.4.19 and Example 2.2.3 for
topological vector spaces, one gets that v̄ ∈ WMin(M,K) if and only if there
exists a v∗ ∈ K∗\{0} such that 〈v∗, v̄〉 ≤ 〈v∗, v〉 for all v ∈ M . Theorem
2.4.24 and Theorem 2.4.25 remain valid when formulated in a corresponding
topological framework.
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After characterizing minimal and weakly minimal elements of a set M ⊆ V
regarding the partial ordering induced by the convex cone K ⊆ V via lin-
ear scalarization it is natural to ask whether it is possible to give analogous
characterizations also for the properly minimal elements. First of all let us
take a closer look at Definition 2.4.12, where we introduced PMinLSc(M,K),
the set of properly minimal elements of M with respect to linear scalar-
ization. This definition itself is already based on linear scalarization. If we
look at Proposition 2.4.17(a) we see that under some additional hypotheses
PMinLSc(M,K) = PMinHu(M,K), i.e. the properly minimal elements of M
in the sense of Hurwicz may be characterized by linear scalarization using
a functional v∗ ∈ K∗0. Even more, as follows from Proposition 2.4.18(b), if
V = R

k, K = R
k
+ and M + K is a convex set, then all the properly mini-

mal elements introduced in this section may be characterized in an equivalent
manner by linear scalarization. But as far as properly minimal elements in the
sense of Borwein are concerned, there exists a more general linear scalarization
result, which can be proven like [104, Theorem 5.11 and Theorem 5.21].

Theorem 2.4.27. Let V be a Hausdorff locally convex space partially or-
dered by the pointed convex closed cone K with intw(V ∗,V )(K∗) 	= ∅ and
the nonempty set M ⊆ V for which we assume that M + K is convex.
Then v̄ ∈ PMinBo(M,K) if and only if there exists v∗ ∈ K∗0 such that
〈v∗, v̄〉 ≤ 〈v∗, v〉 for all v ∈ M .

Remark 2.4.12. One should notice that for V = R
k, K = R

k
+ and M ⊆ R

k

with M + R
k
+ convex, when the hypotheses of Theorem 2.4.27 are fulfilled,

there is

PMinLSc(M, Rk
+) = PMinHu(M, Rk

+) = PMinHe−La(M, Rk
+) =

PMinBe(M, Rk
+) = PMinGe(M, Rk

+) = PMinGBo(M, Rk
+) = PMinBo(M, Rk

+),

which is nothing but the assertion of Proposition 2.4.18(b).

2.5 Vector optimization problems

An optimization problem consisting in the minimization or maximization of
several objective functions is a particular case of a vector optimization prob-
lem, for which one can find in the literature also the denotations multiobjective
(or multicriteria) optimization (or programming) problem as well as multiple
objective optimization (or programming) problem. The characteristic feature
is the occurrence of several conflicting objectives, i.e. not all objectives under
consideration attain their minimal or maximal values at the same element of
the feasible set, which is a subset of the space where the objective functions
are defined on, sometimes called decision space (or input space). In most real
life decisions it is much more realistic to take into account not only one objec-
tive but different ones. For instance, if we look at an investment decision on
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the capital market it is reasonable to consider at least two objectives, namely
the expected return which has to be maximized and the risk of an investment
in a security or a portfolio of securities which should be minimized. In other
situations one wants to minimize the cost and to maximize different features
of quality of a product or a production process or to minimize the production
time and to maximize the production capacity etc. It is obvious that such
objectives often appear in a conflicting manner or as conflicting interests be-
tween different persons, groups of people or within a single decision-maker
itself.

A widely used way of assessing the multiple objectives is on the base of
partial ordering relations induced by convex cones. This allows to compare
different vector objective values in the sense that an objective value is pre-
ferred if it is less than (if we consider a minimization problem) or greater than
(if case of a maximization problem) another one with respect to the consid-
ered partial ordering induced by the underlying convex cone. The solutions
are defined by those objective values that cannot be improved by another one
in the sense of this preference notion. Thus, one immediately sees that the
notions of minimal elements for sets introduced in section 2.4 turn out to be
natural solution concepts in vector optimization. Although in many practical
applications the number of considered objectives is finite, from a mathemat-
ical point of view the objective space (or image space), sometimes also called
outcome space, may be an infinite dimensional space. So, for the sake of gen-
erality, we will define the vector optimization problem initially by considering
general vector spaces for the decision and outcome spaces, the latter partially
ordered by a convex cone.

Let X and V be vector spaces and assume that V is partially ordered by
the convex cone K ⊆ V . For a given proper function h : X → V = V ∪{±∞K}
we investigate the vector optimization problem formally denoted by

(PV G) Min
x∈X

h(x).

It consists in determining the minimal, weakly minimal or properly min-
imal elements of the image set of X through h, also called outcome set (or
image set), h(dom h) = {v ∈ V : ∃x ∈ dom h, v = h(x)}. In other words, we
are interested in determining the sets Min(h(dom h),K), WMin(h(dom h),K)
or PMin(h(dom h),K), where PMin is a generic notation for all sets of prop-
erly minimal elements. On the other hand, we are also interested in finding the
so-called efficient, weakly efficient or properly efficient solutions to (PV G).

Definition 2.5.1. An element x̄ ∈ X is said to be

(a) an efficient solution to the vector optimization problem (PV G) if x̄ ∈
dom h and h(x̄) ∈ Min(h(dom h),K);

(b) a weakly efficient solution to the vector optimization problem (PV G) if
x̄ ∈ dom h and h(x̄) ∈ WMin(h(dom h),K);
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(c) a properly efficient solution to the vector optimization problem (PV G) if
x̄ ∈ dom h and h(x̄) ∈ PMin(h(dom h),K).

The set containing all the efficient solutions to (PV G) is called the effi-
ciency set of (PV G), the one containing all the weakly efficient solutions to
(PV G) is said to be the weak efficiency set of (PV G), while the name used for
the one containing all the properly efficient solutions to (PV G) is the proper
efficiency set of (PV G).

It is worth mentioning that in many cases in practice a decision-maker
is only interested to have a subset or even a single element of one of these
efficiency sets. This is a direct consequence of the practical requirements in
applications.

Frequently, one looks for efficient elements in a nonempty subset A ⊆ X,
where the objective function is h : A → V . This problem can be reformulated
in the form of (PV G) by considering as objective function h̃ : X → V ,

h̃(x) =
{

h(x), if x ∈ A,
+∞K , otherwise.

Although we have just defined the efficient solutions via the minimality
notions for the image set, for the sake of convenience let us state them in an
explicit manner.

Definition 2.5.2. An element x̄ ∈ X is said to be an efficient solution to the
vector optimization problem (PV G) if x̄ ∈ dom h and for all x ∈ dom h from
h(x) �K h(x̄) follows h(x̄) �K h(x). The set of efficient solutions to (PV G)
is denoted by Eff(PV G).

As pointed out in the previous section, there are several equivalent formu-
lations for x̄ ∈ Eff(PV G), like, for example, (h(x̄)−K)∩h(dom h) ⊆ h(x̄)+K
and, in case K is pointed, (h(x̄) − K) ∩ h(dom h) = {h(x̄)}.

Definition 2.5.3. Suppose that core(K) 	= ∅. An element x̄ ∈ X is said to
be a weakly efficient solution to the vector optimization problem (PV G) if
x̄ ∈ dom h and (h(x̄) − core(K)) ∩ h(dom h) = ∅. The set of weakly efficient
solutions to (PV G) is denoted by WEff(PV G).

One can see that x̄ ∈ WEff(PV G) if and only if x̄ ∈ dom h and there is
no x ∈ dom h satisfying h(x) <K h(x̄) .

Taking into consideration Proposition 2.4.2, whenever core(K) 	= ∅ and
K 	= V , we have Eff(PV G) ⊆ WEff(PV G). In section 2.4 we have pointed
out the close connection between the different types of minimal elements to
the sets M and M + K, when M ⊆ X is a nonempty set. These results are
important in the context of scalarization since we have seen that the property
of M+K to be convex is sufficient for the characterization of minimal elements
of M by means of linear scalarization. We may transfer this to the vector
optimization problem in an obvious manner.
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From section 2.2 we know that if h : X → V is a proper function, the
assumption that h(dom h) + K is convex is equivalent to the property that
the function h is K-convexlike. This allows to establish scalarization results
for vector optimization problems with K-convexlike and indirectly with K-
convex objective functions.

In an analogous manner one can deliver explicitly definitions for the dif-
ferent notions of properly efficient solutions. We restrict ourselves here only
to the properly efficient solutions with respect to linear scalarization based on
Definition 2.4.12 because this type of properly efficient solutions will be later
involved in different duality statements for vector optimization problems.

Let us suppose that V is a Hausdorff locally convex space partially ordered
by a pointed convex cone K. One can alternatively define the properly efficient
solutions in the sense of linear scalarization in the following manner.

Definition 2.5.4. An element x̄ ∈ X is said to be a properly efficient solution
to (PV G) in the sense of linear scalarization if there exists v∗ ∈ K∗0 such
that (v∗h)(x̄) ≤ (v∗h)(x) for all x ∈ X. The set of properly efficient solutions
in the sense of linear scalarization to (PV G) is denoted by PEffLSc(PV G).

In other words, x̄ ∈ PEffLSc(PV C) if and only if x̄ is an optimal solution
to the scalar optimization problem

min
x∈X

(v∗h)(x).

The results in this section can be used for providing corresponding charac-
terizations for the properly efficient solutions to (PV G) by means of linear
scalarization.
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many results, partially with some modified proofs and some extensions, the
reader can find in the mentioned books.

As far as subdifferentiability is concerned we refer to the mentioned books,
too. Subdifferentiability is closely related to conjugacy as we have conveyed in
this chapter and as an appropriate reference for this notion we quote here the
book [159] of Rockafellar. Concerning partially ordered vector spaces we would
like to refer to the initiating paper [110] of Kantorovitch, which is more than
seventy years old. Books in this field are due to Nachbin [141], Peressini [151],
Jameson [105] and others. Fuchssteiner and Lusky investigated convex cones
in [69].

In vector optimization one of the essential and basic notions is that of min-
imal elements of a set regarding the partial ordering induced by a convex cone.
The first definition of proper minimal elements has been proposed by Kuhn
and Tucker [119] for finite dimensional vector optimization problems under
differentiability assumptions, followed by the one due to Hurwicz [93]. Geof-
frion introduced his widely used and economically inspired definition in [71],
also for finite dimensional vector maximum problems. Later, more general
notions of properly efficient elements, also for infinite dimensional vector op-
timization problems, came into discussion in papers written by Borwein [17],
Benson [15], etc.

Very beneficial regarding the connections to scalar optimization is the
characterization of different types of properly efficient and weakly efficient
solutions by linear scalarization. For contributions on the relations between
different kinds of properly minimal elements of a set we refer to [83,87] and the
book [81], while linear scalarization results for minimal, properly and weakly
minimal (or efficient) solutions can be found in Jahn’s book [104].
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Conjugate duality in scalar optimization

The aim of this chapter is to describe the so-called conjugate duality theory for
scalar optimization problems, which represents a cornerstone in the duality
theory for vector optimization problems. The most duality concepts which can
be found in the literature on vector optimization, this book being no exception,
have the origin in well-developed duality theories for scalar problems. This
is the reason why we intensively deal in this chapter with the scalar case,
providing some results to which we relate later.

3.1 Perturbation theory and dual problems

In this section we describe a general approach for introducing a conjugate
dual optimization problem to a scalar one. We treat first a general scalar
optimization problem, followed by some important particular instances of it.

3.1.1 The general scalar optimization problem

Let X be a Hausdorff locally convex space and F : X → R a given function.
In this section we assign to the general optimization problem

(PG) inf
x∈X

F (x)

a conjugate dual problem introduced by making use of the so-called perturba-
tion approach. To this end we consider another Hausdorff locally convex space
Y and the function Φ : X × Y → R fulfilling Φ(x, 0) = F (x) for all x ∈ X.
The function Φ is the so-called perturbation function of the problem (PG). In
this way one can embed the problem (PG) into a family of so-called perturbed
problems which looks like

(PGy) inf
x∈X

Φ(x, y),
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where y ∈ Y . Obviously, the problem

(PG0) inf
x∈X

Φ(x, 0)

is nothing else than the initial optimization problem (PG). A conjugate dual
problem to (PG) can be now formulated as being

(DG) sup
y∗∈Y ∗

{−Φ∗(0, y∗)},

where Φ∗ : X∗ × Y ∗ → R is the conjugate function of Φ. Throughout this
chapter we assume that the topological dual spaces X∗ and Y ∗ of the space of
the feasible variables X and of the space of the perturbation variables Y , re-
spectively, are both endowed with the corresponding weak* topology (denoted
by w(X∗,X) and w(Y ∗, Y ), respectively).

Further, let us denote by v(PG) and v(DG) the optimal objective values of
the problems (PG) and (DG), respectively. The next result shows that weak
duality is a consequence of the way in which the dual problem was defined.

Theorem 3.1.1. It holds

−∞ ≤ v(DG) ≤ v(PG) ≤ +∞.

Proof. For all x ∈ X and all y∗ ∈ Y ∗, by the Young-Fenchel inequality one
has

Φ(x, 0) + Φ∗(0, y∗) ≥ 〈0, x〉 + 〈y∗, 0〉 = 0 ⇔ Φ(x, 0) ≥ −Φ∗(0, y∗),

which implies that v(PG) ≥ v(DG). ��

In the following we characterize the existence of strong duality, namely of the
situation when the gap between v(PG) and v(DG) disappears and the dual
(DG) has an optimal solution. Here an important role is played by the infimal
value function of Φ, h : Y → R, h(y) = inf{Φ(x, y) : x ∈ X}. One can notice
that v(PGy) = h(y) and v(PG) = h(0). The next proposition connects the
infimal value function h to the optimal objective valued of the dual problem.

Proposition 3.1.2. If h : Y → R is the infimal value function of Φ, then one
has v(DG) = h∗∗(0).

Proof. For all y∗ ∈ Y ∗, by the definition of the conjugate function, we get

h∗(y∗) = sup
y∈Y

{〈y∗, y〉 − h(y)} = sup
x∈X,
y∈Y

{〈y∗, y〉 − Φ(x, y)} = Φ∗(0, y∗). (3.1)

Thus
h∗∗(0) = sup

y∗∈Y ∗
{−h∗(y∗)} = sup

y∗∈Y ∗
{−Φ∗(0, y∗)} = v(DG)

and this concludes the proof. ��
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Remark 3.1.1. One can easily notice that the relation which states the weak
duality, i.e. v(DG) ≤ v(PG) can be equivalently written as h∗∗(0) ≤ h(0). By
Lemma 2.3.3 we know that this inequality is always true.

Definition 3.1.1. We say that the problem (PG) is normal if h(0) ∈ R and
h is lower semicontinuous at 0.

For the following result we refer to [67].

Theorem 3.1.3. Assume that Φ : X×Y → R is a proper and convex function.
Then the following statements are equivalent:

(i) the problem (PG) is normal;
(ii) it holds v(PG) = v(DG) and this value is finite.

Proof. (i) ⇒ (ii). Let h̄ : Y → R be the lower semicontinuous hull of h. By
Proposition 2.3.4(b) it holds

h∗∗(y) ≤ h̄(y) ≤ h(y) ∀y ∈ Y. (3.2)

Since Φ is convex one has that h is convex (cf. Theorem 2.2.6) and this means
that h̄ is convex, too (cf. Proposition 2.2.1 and Theorem 2.2.12(a)). The prob-
lem (PG) being normal, it follows that h̄(0) = h(0) ∈ R. Using that h̄ is a con-
vex and lower semicontinuous function, Proposition 2.2.14 implies that h̄(y) >
−∞ for all y ∈ Y . This guarantees the properness of h̄. Taking now Corollary
2.3.7 into consideration we obtain h̄ = (h̄)∗∗ = ((h̄)∗)∗ = (h∗)∗ = h∗∗ and so
h∗∗(0) = h̄(0) = h(0) ∈ R. Since v(PG) = h(0) and v(DG) = h∗∗(0), (ii) is
valid.

(ii) ⇒ (i). As we have seen, the statement (ii) can be equivalently written
as h∗∗(0) = h(0) ∈ R. Then, by (3.2), we get that h̄(0) = h(0) ∈ R, which
means that (PG) is normal. ��

The notion we introduce in the definition below characterizes the existence
of strong duality for (PG) and (DG) (see also [67]).

Definition 3.1.2. We say that the problem (PG) is stable if h(0) ∈ R and h
is subdifferentiable at 0.

Theorem 3.1.4. Assume that Φ : X×Y → R is a proper and convex function.
Then the following statements are equivalent:

(i) the problem (PG) is stable;
(ii) the problem (PG) is normal and the dual (DG) has an optimal solution.

In this situation the set of optimal solutions to (DG) is equal to ∂h(0).

Proof. (i) ⇒ (ii). Assume that h(0) ∈ R and ∂h(0) 	= ∅. By Theorem 2.3.16(a)
we get that h(0) = h∗∗(0) and this is nothing else than v(PG) = v(DG) ∈ R.
Then, by Theorem 3.1.3, (PG) is normal. Further, let us consider an element
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ȳ∗ ∈ ∂h(0). We have h(0) + h∗(ȳ∗) = 0 (cf. Theorem 2.3.12) or, equivalently,
v(PG) = h(0) = −h∗(ȳ∗) = −Φ∗(0, ȳ∗). By Theorem 3.1.1 follows that ȳ∗ is
an optimal solution to (DG).

(ii) ⇒ (i). Assume now that (PG) is normal and that the dual (DG) has
an optimal solution ȳ∗. Applying again Theorem 3.1.3 and relation (3.1) we
get h(0) = v(PG) = v(DG) = −Φ∗(0, ȳ∗) = −h∗(ȳ∗) ∈ R, which is the same
as h(0) + h∗(ȳ∗) = 0 ⇔ ȳ∗ ∈ ∂h(0). Consequently, we have proved that the
set ∂h(0) is nonempty and this guarantees the stability of (PG). ��

Since for a given primal problem and its conjugate dual the stability com-
pletely characterizes the existence of strong duality, one of the main issues in
the optimization theory is to give sufficient conditions, called regularity con-
ditions, which guarantee that a problem is stable. An overview of this kind of
conditions for different classes of optimization problems will be given in the
next section.

In the following we construct by means of the general perturbation ap-
proach described above conjugate dual problems to different primal optimiza-
tion problems and corresponding perturbation functions. As one can notice,
in this way some classical duality concepts, like the ones due to Fenchel and
Lagrange, can be provided.

3.1.2 Optimization problems having the composition with a linear
continuous mapping in the objective function

Consider the following primal optimization problem

(PA) inf
x∈X

{f(x) + g(Ax)},

where X and Y are Hausdorff locally convex spaces, A ∈ L(X,Y ) and f :
X → R and g : Y → R are proper functions fulfilling dom f∩A−1(dom g) 	= ∅.
The perturbation function we consider for assigning a dual problem to (PA) is
ΦA : X×Y → R, ΦA(x, y) = f(x)+g(Ax+y), where y ∈ Y is the perturbation
variable. Obviously, ΦA(x, 0) = f(x) + g(Ax) for all x ∈ X. The conjugate
function of ΦA, (ΦA)∗ : X∗ × Y ∗ → R, has for all (x∗, y∗) ∈ X∗ × Y ∗ the
following formulation

(ΦA)∗(x∗, y∗) = sup
x∈X,
y∈Y

{〈x∗, x〉 + 〈y∗, y〉 − f(x) − g(Ax + y)} = sup
x∈X,
r∈Y

{〈x∗, x〉+

〈y∗, r − Ax〉 − f(x) − g(r)} = sup
x∈X,
r∈Y

{〈x∗ − A∗y∗, x〉 + 〈y∗, r〉 − f(x) − g(r)}

= f∗(x∗ − A∗y∗) + g∗(y∗). (3.3)

The conjugate dual to (PA) obtained by means of the perturbation func-
tion ΦA is
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(DA) sup
y∗∈Y ∗

{−(ΦA)∗(0, y∗)},

which is nothing else than

(DA) sup
y∗∈Y ∗

{−f∗(−A∗y∗) − g∗(y∗)}.

The dual (DA) is the so-called Fenchel dual problem to (PA). By the weak
duality assertion, Theorem 3.1.1, it follows v(DA) ≤ v(PA).

Next we consider a particular instance of (PA), by taking X = Y and
A = idX . The primal problems becomes

(P id) inf
x∈X

{f(x) + g(x)},

while the perturbation function turns out to be Φid : X ×X → R, Φid(x, y) =
f(x) + g(x + y). Its conjugate function (Φid)∗ : X∗ × X∗ → R is given by the
following formula

(Φid)∗(x∗, y∗) = f∗(x∗ − y∗) + g∗(y∗) ∀(x∗, y∗) ∈ X∗ × X∗. (3.4)

The dual problem of (P id) is obtained as a special case of (DA), namely
being

(Did) sup
y∗∈X∗

{−f∗(−y∗) − g∗(y∗)},

which is actually the classical Fenchel dual problem to (P id). The existence
of weak duality between (P id) and (Did) follows also from Theorem 3.1.1.

The next optimization problem to which we assign a conjugate dual is
another special case of (PA) obtained by choosing f : X → R, f ≡ 0. This
leads to the primal problem

(PAg ) inf
x∈X

{g(Ax)}

and to the corresponding perturbation function ΦAg : X×Y → R, ΦAg (x, y) =
g(Ax+y). The conjugate of ΦAg is the function (ΦAg )∗ : X∗×Y ∗ → R defined
for all (x∗, y∗) ∈ X∗ × Y ∗ by

(ΦAg )∗(x∗, y∗) = f∗(x∗ − A∗y∗) + g∗(y∗) = δ{A∗y∗}(x∗) + g∗(y∗) (3.5)

and leads to the following dual problem to (PAg )

(DAg ) sup
y∗∈Y ∗,
A∗y∗=0

{−g∗(y∗)}.

By Theorem 3.1.1 it holds v(DAg ) ≤ v(PAg ).
The next pair of primal-dual problems that we consider here will be intro-

duced as a special instance of (PAg )− (DAg ). Let fi : X → R, i = 1, ...,m, be
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proper functions and take Y = Xm, g : Xm → R, g(x1, ..., xm) =
∑m

i=1 fi(xi)
and A : X → Xm, Ax = (x, ..., x). The primal optimization problem (PAg )
has now the following formulation

(PΣ) inf
x∈X

{

m
∑

i=1

fi(x)

}

.

Since for all (x1∗, ..., xm∗) ∈ (X∗)m, g∗(x1∗, ..., xm∗) =
∑m

i=1 f∗
i (xi∗) (cf.

Proposition 2.3.2(l)) and A∗(x1∗, ..., xm∗) =
∑m

i=1 xi∗, we get by means of
(DAg ) the following dual problem to (PΣ)

(DΣ) sup
xi∗∈X∗,i=1,...,m,

mP

i=1
xi∗=0

{

−
m
∑

i=1

f∗
i (xi∗)

}

.

Also for this pair of primal-dual problems we have weak duality, i.e. v(DΣ) ≤
v(PΣ).

3.1.3 Optimization problems with geometric and cone constraints

The primal problem we consider in this subsection is

(PC) inf
x∈A

f(x),

A = {x ∈ S : g(x) ∈ −C}

where X is a Hausdorff locally convex space, Z is another Hausdorff locally
convex space partially ordered by the convex cone C ⊆ Z, S ⊆ X is a given
nonempty set, f : X → R a proper function and g : X → Z = Z ∪ {±∞C} a
proper vector function fulfilling dom f ∩ S ∩ g−1(−C) 	= ∅.

By considering different perturbation functions we first assign in the follow-
ing three dual problems to (PC) and then we establish the relations between
their optimal objective values. The first dual we get is the classical Lagrange
dual.

To begin let take Z as the space of the perturbation variables and define
ΦCL : X × Z → R,

ΦCL(x, z) =
{

f(x), if x ∈ S, g(x) ∈ z − C,
+∞, otherwise.

For this choice of the perturbation function we have ΦCL(x, 0) = f(x)+δA(x)
for all x ∈ X. The conjugate function of ΦCL , (ΦCL)∗ : X∗ × Z∗ → R has for
all (x∗, z∗) ∈ X∗ × Z∗ the following form

(ΦCL)∗(x∗, z∗) = sup
x∈X,
z∈Z

{〈x∗, x〉 + 〈z∗, z〉 − ΦCL(x, z)} = sup
x∈S,z∈Z,

g(x)−z∈−C

{〈x∗, x〉+
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〈z∗, z〉 − f(x)} = sup
x∈S,s∈−C

{〈x∗, x〉 + 〈z∗, g(x) − s〉 − f(x)} =

sup
s∈−C

{〈−z∗, s〉} + sup
x∈S

{〈x∗, x〉 + 〈z∗, g(x)〉 − f(x)}.

Since for all z∗ ∈ Z∗

sup
s∈−C

{〈−z∗, s〉} = δ−C∗(z∗),

we get further for all (x∗, z∗) ∈ X∗ × Z∗

(ΦCL)∗(x∗, z∗) = (f + (−z∗g))∗S(x∗) + δ−C∗(z∗). (3.6)

Thus the dual problem to (PC) which we obtain by means of the perturbation
function ΦCL is

(DCL) sup
z∗∈Z∗

{

−(ΦCL)∗(0, z∗)
}

,

which becomes
(DCL) sup

z∗∈C∗
{−(f + (z∗g))∗S(0)} ,

or, equivalently,
(DCL) sup

z∗∈C∗
inf
x∈S

{f(x) + (z∗g)(x)}.

The optimization problem (DCL) is the classical Lagrange dual problem to
(PC). By Theorem 3.1.1 we automatically have that v(DCL) ≤ v(PC).

The second perturbation function we consider for (PC) is ΦCF : X ×X →
R,

ΦCF (x, y) =
{

f(x + y), if x ∈ S, g(x) ∈ −C,
+∞, otherwise,

with X being the space of the perturbation variables. Obviously, ΦCF (x, 0) =
f(x) + δA(x) for all x ∈ X. Because of ΦCF (x, y) = δA(x) + f(x + y) for all
(x, y) ∈ X ×X, the formula of its conjugate function (ΦCF )∗ : X∗ ×X∗ → R

can be directly provided via (3.4). Thus for all (x∗, y∗) ∈ X∗ × X∗ we get

(ΦCF )∗(x∗, y∗) = σA(x∗ − y∗) + f∗(y∗) (3.7)

and this leads to the following conjugate dual problem to (PC)

(DCF ) sup
y∗∈X∗

{−f∗(y∗) − σA(−y∗)}.

Since the primal problem (PC) can be written as

(PC) inf
x∈X

{f(x) + δA(x)} ,

one can notice that (DCF ) is nothing else than its Fenchel dual problem (cf.
subsection 3.1.2). This is the reason why we call (DCF ) the Fenchel dual
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problem to (PC). Also in this case the weak duality, i.e. v(DCF ) ≤ v(PC), is
fulfilled.

The last conjugate dual problem we consider to (PC) is obtained by
perturbing both the argument of the objective function and the cone con-
straints. We take X × Z as the space of perturbation variables and define
ΦCF L : X × X × Z → R by

ΦCF L(x, y, z) =
{

f(x + y), if x ∈ S, g(x) ∈ z − C,
+∞, otherwise.

The equality ΦCF L(x, 0, 0) = f(x) + δA(x) is again for all x ∈ X fulfilled.
For (x∗, y∗, z∗) ∈ X∗ × X∗ × Z∗ the conjugate function of ΦCF L , (ΦCF L)∗ :
X∗ × X∗ × Z∗ → R, looks like

(ΦCF L)∗(x∗, y∗, z∗) = sup
x∈X,y∈X,

z∈Z

{〈x∗, x〉 + 〈y∗, y〉 + 〈z∗, z〉 − ΦCF L(x, y, z)} =

sup
x∈S,y∈X,z∈Z,

g(x)−z∈−C

{〈x∗, x〉 + 〈y∗, y〉 + 〈z∗, z〉 − f(x + y)} = sup
x∈S,r∈X,

s∈−C

{〈x∗, x〉+

〈y∗, r − x〉 + 〈z∗, g(x) − s〉 − f(r)} = sup
x∈S

{〈x∗ − y∗, x〉 + 〈z∗, g(x)〉}+

sup
r∈X

{〈y∗, r〉 − f(r)} + sup
s∈−C

{〈−z∗, s〉}

= f∗(y∗) + (−z∗g)∗S(x∗ − y∗) + δ−C∗(z∗). (3.8)

One can define now the following dual problem to (PC)

(DCF L) sup
y∗∈X∗,z∗∈Z∗

{

−(ΦCF L)∗(0, y∗, z∗)
}

,

which is actually

(DCF L) sup
y∗∈X∗,z∗∈C∗

{−f∗(y∗) − (z∗g)∗S(−y∗)} .

We call (DCF L) the Fenchel-Lagrange dual problem of (PC), since it can be
seen as a combination of the classical Fenchel and Lagrange duals. By the
weak duality theorem we have v(DCF L) ≤ v(PC).

The three dual problems considered here for the optimization problem
with geometric and cone constraints have been introduced and studied for
problems in finite dimensional spaces in [186] and for problems in infinite
dimensional spaces in [39].

Remark 3.1.2. The name Fenchel-Lagrange for the dual problem (DCF L) is
motivated by the fact that in the definition of ΦCF L we perturb both the cone
constraints (like for (DCL)) and the argument of the objective function (like
for (DCF )). Another motivation for the choice of this name can be found in
the following considerations.
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The Lagrange dual problem to (PC)

(DCL) sup
z∗∈C∗

inf
x∈S

{f(x) + (z∗g)(x)}

can also be formulated as

(DCL) sup
z∗∈C∗

inf
x∈X

{f(x) + ((z∗g) + δS)(x)}.

Consider for a fixed z∗ ∈ C∗ the infimum problem in the objective function
of the problem above

inf
x∈X

{f(x) + ((z∗g) + δS)(x)}.

Its Fenchel dual (cf. subsection 3.1.2) is

sup
y∗∈X∗

{−f∗(y∗) − (z∗g)∗S(−y∗)} .

By taking in the objective function of (DCL) instead of the infimum problem
its Fenchel dual, one gets exactly the Fenchel-Lagrange dual to (PC) (weak
duality is automatically ensured).

Consider now the Fenchel dual problem of (PC)

(DCF ) sup
y∗∈X∗

{−f∗(y∗) − σA(−y∗)},

which is the same as

(DCF ) sup
y∗∈X∗

{−f∗(y∗) + inf
x∈A

〈y∗, x〉}.

We fix an element y∗ ∈ X∗ and consider the infimum problem which appears
in the objective function of (DCF )

inf
x∈A

〈y∗, x〉.

Its Lagrange dual is

sup
z∗∈C∗

inf
x∈S

{〈y∗, x〉 + (z∗g)(x)} = sup
z∗∈C∗

{−(z∗g)∗S(−y∗)} .

By taking in the objective function of (DCF ) instead of the infimum problem
its Lagrange dual, what we get is again exactly the Fenchel-Lagrange dual to
(PC) (weak duality is also in this situation automatically ensured).

Having now the three dual problems for the optimization problem with
geometric and cone constraints, it is natural to try to find out which rela-
tions exist between their optimal objective values. The weak duality theorem
Theorem 3.1.1 is guaranteeing that these values are less than or equal to the
optimal objective value of the primal problem, but the following results offer
a more precise answer to this question.
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Proposition 3.1.5. It holds v(DCF L) ≤ v(DCL).

Proof. Let z∗ ∈ C∗ be fixed. Since the optimization problem

sup
y∗∈X∗

{−f∗(y∗) − (z∗g)∗S(−y∗)}

is the Fenchel dual to

inf
x∈X

{f(x) + ((z∗g) + δS)(x)},

we obtain that (cf. Theorem 3.1.1)

sup
y∗∈X∗

{−f∗(y∗) − (z∗g)∗S(−y∗)} ≤ inf
x∈X

{f(x) + ((z∗g) + δS)(x)}.

Taking the supremum over z∗ ∈ C∗ in both sides of the equality above, the
inequality v(DCF L) ≤ v(DCL) follows automatically. ��

Proposition 3.1.6. It holds v(DCF L) ≤ v(DCF ).

Proof. Let be y∗ ∈ X∗ fixed. We have seen in Remark 3.1.2 that

sup
z∗∈C∗

{−(z∗g)∗S(−y∗)}

is the Lagrange dual problem to

inf
x∈A

〈y∗, x〉.

This implies that

−f∗(y∗) + sup
z∗∈C∗

{−(z∗g)∗S(−y∗)} ≤ −f∗(y∗) + inf
x∈A

〈y∗, x〉.

Taking the supremum over y∗ ∈ X∗ in both sides of the inequality above, we
get v(DCF L) ≤ v(DCF ). ��

Combining the results of the last two propositions we obtain the following
scheme for the relations between the optimal objective values of the primal
problem (PC) and of the three conjugate duals introduced in this subsection
(see also [39,186])

v(DCF L) ≤ v(DCL)
v(DCF ) ≤ v(PC). (3.9)

Remark 3.1.3. In [186] one can find examples which show that the inequalities
in (3.9) can be strict and, on the other hand, that in general between v(DCL)
and v(DCF ) no ordering relation can be established. In order to close the gap
between the optimal objective values in (3.9) and to guarantee the existence of
optimal solutions to the duals, one needs so-called regularity conditions. The
next section is dedicated to the formulation of different regularity conditions
and strong duality results for the primal-dual pairs considered in this section.
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3.2 Regularity conditions and strong duality

The regularity conditions we give first are regarding the primal optimization
problem (PG) and its conjugate dual (DG). They are expressed by means of
the perturbation function Φ and guarantee the stability of (PG). Afterwards
we derive from these general conditions corresponding regularity conditions
for the different classes of primal-dual problems considered in section 3.1 and
also state strong duality theorems.

3.2.1 Regularity conditions for the general scalar optimization
problem

Throughout this subsection we assume that Φ is a proper and convex function
with 0 ∈ PrY (dom Φ).

The first regularity conditions we give are so-called generalized interior
point regularity conditions. We start with a classical regularity condition
stated in a general framework, in which the space of the feasible variables
X and the space of the perturbation variables Y are assumed to be Hausdorff
locally convex spaces:

(RCΦ
1 ) ∃x′ ∈ X such that (x′, 0) ∈ dom Φ and Φ(x′, ·) is continuous at 0.

For the next three regularity conditions we have to assume that X and Y are
Fréchet spaces (cf. [158,205]):

(RCΦ
2 ) X and Y are Fréchet spaces, Φ is lower semicontinuous and

0 ∈ sqri(PrY (dom Φ)).

The regularity condition (RCΦ
2 ) is the weakest one in relation to the following

regularity conditions which involve further generalized interiority notions (cf.
[158]):

(RCΦ
2′) X and Y are Fréchet spaces, Φ is lower semicontinuous and

0 ∈ core(PrY (dom Φ)),

respectively,

(RCΦ
2′′) X and Y are Fréchet spaces, Φ is lower semicontinuous and

0 ∈ int(PrY (dom Φ)).

Regarding the last two conditions we want to make the following comment.
In case Φ is convex and lower semicontinuous its infimal value function
h : Y → R, h(y) = infx∈X Φ(x, y), is convex but not necessarily lower semi-
continuous, fulfilling domh = PrY (dom Φ). Nevertheless, when X and Y are
Fréchet spaces, by [207, Proposition 2.2.18] the function h is li-convex. Us-
ing [207, Theorem 2.2.20] it follows that core(domh) = int(dom h), which
has as consequence the equivalence of the regularity conditions (RCΦ

2′) and
(RCΦ

2′′). Thus, (RCΦ
2′′) ⇔ (RCΦ

2′) ⇒ (RCΦ
2 ), all these conditions being implied

by (RCΦ
1 ) when X and Y are Fréchet spaces and Φ is lower semicontinuous.
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Another generalized interior point regularity condition, we consider of in-
terest especially when dealing with convex optimization problems in finite
dimensional spaces, is the following (cf. [157,207]):

(RCΦ
3 ) dim(lin(PrY (dom Φ))) < +∞ and 0 ∈ ri(PrY (dom Φ)).

Now we state the strong duality theorem for the pair of primal-dual problems
(PG) − (DG) (for the proof, see [67,157,158,207]).

Theorem 3.2.1. Let Φ : X × Y → R be a proper and convex function such
that 0 ∈ PrY (dom Φ). If one of the regularity conditions (RCΦ

i ), i ∈ {1, 2, 3},
is fulfilled, then v(PG) = v(DG) and the dual has an optimal solution.

Let us come now to a different class of regularity conditions, called closedness
type regularity conditions. They are expressed by means of the epigraph of the
conjugate of the perturbation function Φ, provided that X and Y are Haus-
dorff locally convex spaces and Φ is a proper, convex and lower semicontinuous
function.

We prove first the following important result (see also [155]).

Theorem 3.2.2. Let Φ : X × Y → R be a proper, convex and lower semicon-
tinuous function fulfilling that 0 ∈ PrY (dom Φ). Then the following statements
are equivalent:

(i) sup
x∈X

{〈x∗, x〉 − Φ(x, 0)} = min
y∗∈Y ∗

{Φ∗(x∗, y∗)} ∀x∗ ∈ X∗;

(ii) PrX∗×R(epi Φ∗) is closed in the topology w(X∗,X) × R.

Proof. Let η : X∗ → R, η(x∗) = inf{Φ∗(x∗, y∗) : y∗ ∈ Y ∗} be the infimal value
function of the conjugate function of Φ. Then, as pointed out in Remark 2.2.7,
we have that

PrX∗×R(epi Φ∗) ⊆ epi η ⊆ cl(PrX∗×R(epi Φ∗)). (3.10)

By using the Fenchel-Moreau theorem (Theorem 2.3.6) we obtain the following
sequence of equalities which hold for all x ∈ X

η∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − η(x∗)} = sup
x∗∈X∗

{

〈x∗, x〉 − inf
y∗∈Y ∗

{Φ∗(x∗, y∗)}
}

= sup
x∗∈X∗,y∗∈Y ∗

{〈x∗, x〉 − Φ∗(x∗, y∗)} = Φ∗∗(x, 0) = Φ(x, 0).

As η is convex (cf. Theorem 2.2.6), it follows that η̄ is also convex. More than
that, the latter is not identical +∞. Otherwise would follow that (η)∗(x) =
η∗(x) = −∞ for all x ∈ X, but this would contradict the properness of Φ.

Because of 0 ∈ PrY (dom Φ), there exists x0 ∈ X such that Φ(x0, 0) < +∞.
Then by the Young-Fenchel inequality we get

η(x∗) = inf
y∗∈Y ∗

{Φ∗(x∗, y∗)} ≥ 〈x∗, x0〉 − Φ(x0, 0) ∀x∗ ∈ X∗
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and this yields η(x∗) ≥ 〈x∗, x0〉 − Φ(x0, 0) > −∞ for all x∗ ∈ X∗.
This means that η is also proper and by using Corollary 2.3.7 we obtain

for all x∗ ∈ X∗

sup
x∈X

{〈x∗, x〉 − Φ(x, 0)} = sup
x∈X

{〈x∗, x〉 − η∗(x)}

= η∗∗(x∗) = η(x∗) ≤ η(x∗) = inf
y∗∈Y ∗

{Φ∗(x∗, y∗)}. (3.11)

(i) ⇒ (ii). In case relation (i) is fulfilled, from (3.11) follows that η is lower
semicontinuous and that for all x∗ ∈ X∗ there exists y∗ ∈ Y ∗ such that
η(x∗) = Φ∗(x∗, y∗). From here we have that epi η ⊆ PrX∗×R(epi Φ∗). Taking
now into consideration (3.10) it follows that epi η = PrX∗×R(epi Φ∗) and this
proves that PrX∗×R(epi Φ∗) is closed in the topology w(X∗,X) × R.

(ii) ⇒ (i). Assuming that PrX∗×R(epi Φ∗) is closed in the topology
w(X∗,X)×R, relation (3.10) implies that η is a lower semicontinuous function
and epi η = PrX∗×R(epi Φ∗). This is nothing else than that for all x∗ ∈ X∗

η(x∗) = miny∗∈Y ∗{Φ∗(x∗, y∗)}. Considering again (3.11) one can easily con-
clude that for all x∗ ∈ X∗ the equality

sup
x∈X

{〈x∗, x〉 − Φ(x, 0)} = min
y∗∈Y ∗

{Φ∗(x∗, y∗)}

holds. ��

Inspired by Theorem 3.2.2 we can state the following closedness type reg-
ularity condition:

(RCΦ
4 ) Φ is lower semicontinuous and PrX∗×R(epi Φ∗) is closed in

the topology w(X∗,X) × R.

Theorem 3.2.3. Let Φ : X×Y → R be a proper and convex function such that
0 ∈ PrY (dom Φ). If the regularity condition (RCΦ

4 ) is fulfilled, then v(PG) =
v(DG) and the dual has an optimal solution.

Proof. The conclusion follows from Theorem 3.2.2(ii) ⇒ (i), by considering
(i) for x∗ = 0. ��

Remark 3.2.1. Whenever Φ is proper, convex and lower semicontinuous, then
the conditions (RCΦ

i ), i ∈ {2, 2′, 2′′}, are sufficient for having (RCΦ
4 ) fulfilled.

In what follows we particularize the general regularity conditions as well
as the strong duality theorems introduced above for the primal-dual pairs of
optimization problems given in the previous section.
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3.2.2 Regularity conditions for problems having the composition
with a linear continuous mapping in the objective function

For X and Y Hausdorff locally convex spaces, A ∈ L(X,Y ), f : X → R and
g : Y → R proper and convex functions fulfilling dom f ∩ A−1(dom g) 	= ∅ we
consider the optimization problem from subsection 3.1.2

(PA) inf
x∈X

{f(x) + g(Ax)},

along with the perturbation function ΦA : X × Y → R, ΦA(x, y) = f(x) +
g(Ax + y).

The regularity condition (RCΦ
1 ) becomes in this particular case

(RCA
1 ) ∃x′ ∈ X such that f(x′) + g(Ax′) < +∞ and the function

y �→ f(x′) + g(Ax′ + y) is continuous at 0

or, equivalently,

(RCA
1 ) ∃x′ ∈ dom f ∩ A−1(dom g) such that g is continuous at Ax′.

In Fréchet spaces, since PrY (dom ΦA) = {y ∈ Y : ∃x ∈ dom f such that y ∈
dom g − Ax} = dom g − A(dom f), we can state the following regularity con-
dition for (PA) − (DA)

(RCA
2 ) X and Y are Fréchet spaces, f and g are lower semicontinuous

and 0 ∈ sqri(dom g − A(dom f))

along with its stronger versions

(RCA
2′) X and Y are Fréchet spaces, f and g are lower semicontinuous

and 0 ∈ core(dom g − A(dom f))

and

(RCA
2′′) X and Y are Fréchet spaces, f and g are lower semicontinuous

and 0 ∈ int(dom g − A(dom f)),

which are in fact equivalent.
The condition (RCA

2 ) was introduced in [160], while (RCA
2′) was given for

the first time in Banach spaces in [158]. In the finite dimensional case one has
for the the pair of problems (PA) − (DA) the following regularity condition

(RCA
3 ) dim(lin(dom g − A(dom f)))<+∞ and ri(A(dom f))∩ri(dom g) 	=∅.

The next strong duality theorem follows by Theorem 3.2.1.

Theorem 3.2.4. Let f : X → R, g : Y → R be proper and convex functions
and A ∈ L(X,Y ) such that dom f ∩ A−1(dom g) 	= ∅. If one of the regularity
conditions (RCA

i ), i ∈ {1, 2, 3}, is fulfilled, then v(PA) = v(DA) and the dual
has an optimal solution.
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For further regularity conditions, expressed my means of the quasi interior
and quasi relative interior of the domains of the functions involved, which
also guarantee strong duality for (PA) − (DA), we refer to [27]. In order to
derive an appropriate closedness type condition for this primal-dual pair we
use the formula of the conjugate of ΦA (cf. (3.3)), which states that for all
(x∗, y∗) ∈ X∗ × Y ∗ it holds (ΦA)∗(x∗, y∗) = f∗(x∗ − A∗y∗) + g∗(y∗). Thus

(x∗, r) ∈ PrX∗×R(epi(ΦA)∗) ⇔ ∃y∗ ∈ Y ∗ such that f∗(x∗ − A∗y∗)

+g∗(y∗) ≤ r ⇔ ∃y∗ ∈ Y ∗ such that (x∗ − A∗y∗, r − g∗(y∗)) ∈ epi f∗

⇔ ∃y∗ ∈ Y ∗ such that (x∗, r) ∈ epi f∗ + (A∗y∗, g∗(y∗))

⇔ (x∗, r) ∈ epi f∗ + (A∗ × idR)(epi g∗).

Here A∗ × idR : Y ∗ ×R → X∗ ×R is defined as (A∗ × idR)(y∗, r) = (A∗y∗, r).
This leads to the following regularity condition

(RCA
4 ) f and g are lower semicontinuous and epi f∗ + (A∗ × idR)(epi g∗)

is closed in the topology w(X∗,X) × R.

From Theorem 3.2.3 one can deduce the following strong duality theorem.

Theorem 3.2.5. Let f : X → R and g : Y → R be proper and convex
functions and A ∈ L(X,Y ) such that dom f∩A−1(dom g) 	= ∅. If the regularity
condition (RCA

4 ) is fulfilled, then v(PA) = v(DA) and the dual has an optimal
solution.

Remark 3.2.2. The regularity condition (RCA
4 ) has been introduced by Boţ

and Wanka in [38]. In case the functions f and g are lower semicontinuous
(RCA

4 ) is proven to be implied by the generalized interior point regularity
conditions given in the literature for the pair of problems (PA)−(DA). In [38]
it is shown by means of some examples that (RCA

4 ) is indeed weaker than the
other regularity conditions considered for this pair of primal-dual problems.

In case X = Y and A = idX the regularity conditions enunciated for (PA)
become

(RC id
1 ) ∃x′ ∈ dom f ∩ dom g such that g is continuous at x′,

in case X is a Fréchet space

(RC id
2 ) X is a Fréchet space, f and g are lower semicontinuous

and 0 ∈ sqri(dom g − dom f),

along with its stronger versions

(RC id
2′ ) X is a Fréchet space, f and g are lower semicontinuous

and 0 ∈ core(dom g − dom f)

and
(RC id

2′′) X is a Fréchet space, f and g are lower semicontinuous
and 0 ∈ int(dom g − dom f),
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which are in fact equivalent, in the finite dimensional case

(RC id
3 ) dim(lin(dom g − dom f)) < +∞ and ri(dom f) ∩ ri(dom g) 	=∅,

while the closedness type regularity condition states

(RC id
4 ) f and g are lower semicontinuous and epi f∗ + epi g∗

is closed in the topology w(X∗,X) × R,

respectively. Condition (RC id
2 ) was introduced by Attouch and Breézis in [7]

(and bears their names), while (RC id
4 ) is due to Burachik and Jeyakumar

(cf. [41]; see also the paper of Boţ and Wanka [38]). The strong duality theorem
follows automatically from Theorem 3.2.4 and Theorem 3.2.5.

Theorem 3.2.6. Let f, g : X → R be proper and convex functions such that
dom f ∩ dom g 	= ∅. If one of the regularity conditions (RC id

i ), i ∈ {1, 2, 3, 4},
is fulfilled, then v(P id) = v(Did) and the dual has an optimal solution.

We come now to a second special case, namely the one where f ≡ 0.
In this case it obviously holds epi f∗ = {0} × R+. The regularity conditions
introduced for (PA) give rise to the following formulations

(RC
Ag

1 ) ∃x′ ∈ A−1(dom g) such that g is continuous at Ax′,

in case X and Y are Fréchet spaces

(RC
Ag

2 ) X and Y are Fréchet spaces, g is lower semicontinuous
and 0 ∈ sqri(dom g − A(X)),

along with its stronger versions

(RC
Ag

2′ ) X and Y are Fréchet spaces, g is lower semicontinuous
and 0 ∈ core(dom g − A(X))

and

(RC
Ag

2′′ ) X and Y are Fréchet spaces, g is lower semicontinuous
and 0 ∈ int(dom g − A(X)),

which are in fact equivalent, in the finite dimensional case

(RC
Ag

3 ) dim(lin(dom g − A(X))) < +∞ and ri(A(X)) ∩ri(dom g) 	=∅,
while the closedness type regularity condition states that

(RC
Ag

4 ) g is lower semicontinuous and (A∗ × idR)(epi g∗)
is closed in the topology w(X∗,X) × R.

Theorem 3.2.7. Let g : Y → R be a proper and convex function and A ∈
L(X,Y ) such that A−1(dom g) 	= ∅. If one of the regularity conditions (RC

Ag

i ),
i ∈ {1, 2, 3, 4}, is fulfilled, then v(PAg ) = v(DAg ) and the dual has an optimal
solution.
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Next we particularize the problem (PAg ) in a similar way like in section
3.1. Let fi : X → R, i = 1, ...,m, be proper and convex functions, Y = Xm,
g : Xm → R, g(x1, ..., xm) =

∑m
i=1 fi(xi) and A : X → Xm, Ax = (x, ..., x).

Obviously, it holds dom g =
∏m

i=1 dom fi and A−1(dom g) =
⋂m

i=1 dom fi. In

this situation the condition (RC
Ag

1 ) states that there exists x′ ∈
m
⋂

i=1

dom fi

such that fi is continuous at x′, i = 1, ...,m. Nevertheless, we state here a
weaker condition, asking (only) that

(RCΣ
1 ) ∃x′ ∈

m
∩

i=1
dom fi such that m − 1 of the functions

fi, i = 1, ...,m, are continuous at x′.

That (RCΣ
1 ) guarantees strong duality for the primal-dual pair (PΣ)− (DΣ)

follows, for instance, by applying (RC id
1 ) for m − 1 times.

Coming back to the special choice of the function g and of the mapping
A from above, one has dom g − A(X) =

∏m
i=1 dom fi − ΔXm . Thus (RC

Ag

i ),
i ∈ {2, 2′, 2′′, 3}, lead to the following regularity conditions (if X is a Fréchet
space, then Xm is a Fréchet space, too):

(RCΣ
2 ) X is a Fréchet space, fi is lower semicontinuous, i = 1, ...,m,

and 0 ∈ sqri
(

m
∏

i=1

dom fi − ΔXm

)

,

along with its stronger versions

(RCΣ
2′ ) X is a Fréchet space, fi is lower semicontinuous, i = 1, ...,m,

and 0 ∈ core
(

m
∏

i=1

dom fi − ΔXm

)

and
(RCΣ

2′′) X is a Fréchet space, fi is lower semicontinuous, i = 1, ...,m,

and 0 ∈ int
(

m
∏

i=1

dom fi − ΔXm

)

,

which are in fact equivalent, while in the finite dimensional case we have

(RCΣ
3 ) dim

(

lin
(

m
∏

i=1

dom fi − ΔXm

))

< +∞ and
m
⋂

i=1

ri(dom fi) 	= ∅.

For stating the closedness type regularity condition we need to establish the
shape of the set (A∗ × idR)(epi g∗). One has

(x∗, r) ∈ (A∗ × idR)(epi g∗) ⇔ ∃(x1∗, ..., xm∗) ∈ (X∗)m such that

g∗(x1∗, ..., xm∗) ≤ r and A∗(x1∗, ..., xm∗) = x∗ ⇔ ∃(x1∗, ..., xm∗) ∈ (X∗)m

such that
m
∑

i=1

f∗
i (xi∗) ≤ r and

m
∑

i=1

xi∗ = x∗ ⇔ (x∗, r) ∈
m
∑

i=1

epi f∗
i .

Thus (RC
Ag

4 ) is nothing else than
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(RCΣ
4 ) fi is lower semicontinuous, i = 1, ...,m, and

m
∑

i=1

epi f∗
i is closed

in the topology w(X∗,X) × R.

Remark 3.2.3. The regularity condition (RCΣ
1 ) can also be obtained as a par-

ticular instance of (RCΦ
1 ) when considering an appropriate perturbation func-

tion. This should have m−1 perturbation variables, perturbing the arguments
of m− 1 of the functions fi, i = 1, ...,m. One can prove that, when employing
the regularity conditions (RCΦ

i ), i ∈ {2, 2′, 2′′, 3, 4}, for this perturbation func-
tion one obtains nothing else than equivalent formulations for the regularity
conditions (RCΣ

i ), i ∈ {2, 2′, 2′′, 3, 4}, respectively.

We state the strong duality theorem for the primal-dual pair (PΣ) − (DΣ).

Theorem 3.2.8. Let fi : X → R, i = 1, ...,m, be proper and convex functions
such that

⋂m
i=1 dom fi 	= ∅. If one of the regularity conditions (RCΣ

i ), i ∈
{1, 2, 3, 4}, is fulfilled, then v(PΣ) = v(DΣ) and the dual has an optimal
solution.

3.2.3 Regularity conditions for problems with geometric and cone
constraints

In this subsection we consider again the primal problem (PC) (cf. subsection
3.1.3)

(PC) inf
x∈A

f(x),

A = {x ∈ S : g(x) ∈ −C}
where X is a Hausdorff locally convex space, Z is another Hausdorff locally
convex space partially ordered by the convex cone C ⊆ Z, S ⊆ X is a given
nonempty convex set, f : X → R a proper and convex function and g : X → Z
a proper and C-convex function fulfilling dom f ∩ S ∩ g−1(−C) 	= ∅.

We deal first with regularity conditions for (PC) and its Lagrange dual
(DCL), which we derive from the general ones by considering as perturbation
function ΦCL : X × Z → R,

ΦCL(x, z) =
{

f(x), if x ∈ S, g(x) ∈ z − C,
+∞, otherwise.

The first condition we introduce is the well-known Slater constraint qualifica-
tion

(RCCL
1 ) ∃x′ ∈ dom f ∩ S such that g(x′) ∈ − int(C).

Indeed, having for x′ ∈ X that (x′, 0) ∈ dom ΦCL and ΦCL(x′, ·) is continuous
at 0, this is nothing else than supposing that x′ ∈ dom f ∩ S and δ−C is
continuous at g(x′) or, equivalently, x′ ∈ dom f ∩ S and g(x′) ∈ − int(C).

We come now to the class of regularity conditions which assumes that X
and Z are Fréchet spaces. One has PrZ(dom ΦCL) = g(dom f∩S∩dom g)+C.
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In order to guarantee the lower semicontinuity of ΦCL we additionally assume
that S is a closed set, f is a lower semicontinuous function and g is a C-epi
closed function. As under these assumptions the epigraph of the perturbation
function

epi ΦCL = {(x, z, r) ∈ X ×Z ×R : (x, r) ∈ epi f} ∩ (S ×Z ×R)∩ (epiC g ×R)

is a closed set, the perturbation function ΦCL is lower semicontinuous. These
considerations lead to the following regularity condition

(RCCL
2 ) X and Z are Fréchet spaces, S is closed, f is lower semicontinuous,

g is C-epi closed and 0 ∈ sqri (g(dom f ∩ S ∩ dom g) + C),

along with its stronger versions

(RCCL

2′ ) X and Z are Fréchet spaces, S is closed, f is lower semicontinuous,
g is C-epi closed and 0 ∈ core (g(dom f ∩ S ∩ dom g) + C)

and

(RCCL

2′′ ) X and Z are Fréchet spaces, S is closed, f is lower semicontinuous,
g is C-epi closed and 0 ∈ int (g(dom f ∩ S ∩ dom g) + C),

which are in fact equivalent. Mentioning that in the finite dimensional case
the regularity condition looks like

(RCCL
3 ) dim (lin (g(dom f ∩ S ∩ dom g) + C)) < +∞ and

0 ∈ ri (g(dom f ∩ S ∩ dom g) + C),

we can give the following strong duality theorem for the pair (PC) − (DCL),
which is a consequence of Theorem 3.2.1.

Theorem 3.2.9. Let Z be partially ordered by the convex cone C ⊆ Z, S ⊆ X
be a nonempty convex set, f : X → R a proper and convex function and
g : X → Z a proper and C-convex function such that dom f∩S∩g−1(−C) 	= ∅.
If one of the regularity conditions (RCCL

i ), i ∈ {1, 2, 3}, is fulfilled, then
v(PC) = v(DCL) and the dual has an optimal solution.

We come now to the formulation of the closedness type regularity condition
and to this aim we determine the set PrX∗×R(epi(ΦCL)∗). By (3.6) one has

(x∗, r) ∈ PrX∗×R(epi(ΦCL)∗) ⇔ ∃z∗ ∈ −C∗ such that (f + (−z∗g))∗S(x∗) ≤ r

⇔ (x∗, r) ∈
⋃

z∗∈C∗

epi(f + (z∗g) + δS)∗

and this provides the following regularity condition
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(RCCL
4 ) S is closed, f is lower semicontinuous, g is C-epi closed

and
⋃

z∗∈C∗
epi(f + (z∗g) + δS)∗ is closed in the topology

w(X∗,X) × R.

From Theorem 3.2.3 we get the following result.

Theorem 3.2.10. Let Z be partially ordered by the convex cone C ⊆ Z, S ⊆
X be a nonempty convex set, f : X → R a proper and convex function and
g : X → Z a proper and C-convex function such that dom f∩S∩g−1(−C) 	= ∅.
If the regularity condition (RCCL

4 ) is fulfilled, then v(PC) = v(DCL) and the
dual has an optimal solution.

Remark 3.2.4. The regularity condition (RCCL
4 ) was introduced by Boţ, Grad

and Wanka in [32] (see also [31]). There has been shown that, concerning the
function g, it is enough to assume that g is C-epi closed, different to other
regularity conditions given in the literature, which assume for g the stronger
hypotheses of C-lower semicontinuity or star C-lower semicontinuity, respec-
tively. In case S is closed, f is lower semicontinuous and g is C-epi closed,
(RCCL

4 ) has been proven to be weaker than the generalized interior point
regularity conditions given with respect to Lagrange duality in the literature.

We turn our attention now to the regularity conditions which guarantee
strong duality for (PC) and its dual (DCF ), the perturbation function used in
this context being ΦCF : X ×X → R, ΦCF (x, y) = δA(x)+f(x+y). They can
be derived from the ones given in subsection 3.2.2 in the general framework of
Fenchel duality. The assumptions we made in the beginning of this subsection
imply that A is a nonempty convex set. Then (RC id

i ), i ∈ {1, 2, 2′, 2′′, 3, 4},
lead to the following conditions

(RCCF
1 ) ∃x′ ∈ dom f ∩ A such that f is continuous at x′,

in case X is a Fréchet space

(RCCF
2 ) X is a Fréchet space, A is closed, f is lower semicontinuous

and 0 ∈ sqri(dom f −A),

along with its stronger versions

(RCCF

2′ ) X is a Fréchet space, A is closed, f is lower semicontinuous
and 0 ∈ core(dom f −A)

and

(RCCF

2′′ ) X is a Fréchet space, A is closed, f is lower semicontinuous
and 0 ∈ int(dom f −A),

which are in fact equivalent, in the finite dimensional case

(RCCF
3 ) dim(lin(dom f −A)) < +∞ and ri(dom f) ∩ ri(A) 	= ∅,

while the closedness type regularity condition states that
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(RCCF
4 ) A is closed, f is lower semicontinuous and epi f∗ + epi σA

is closed in the topology w(X∗,X) × R,

respectively. From Theorem 3.2.6 we get the following result.

Theorem 3.2.11. Let Z be partially ordered by the convex cone C ⊆ Z, S ⊆
X be a nonempty convex set, f : X → R a proper and convex function and
g : X → Z a proper and C-convex function such that dom f∩S∩g−1(−C) 	= ∅.
If one of the regularity conditions (RCCF

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then
v(PC) = v(DCF ) and the dual has an optimal solution.

The third conjugate dual problem we introduced for (PC) is the so-called
Fenchel-Lagrange dual obtained via the perturbation function ΦCF L : X ×
X × Z → R,

ΦCF L(x, y, z) =
{

f(x + y), if x ∈ S, g(x) ∈ z − C,
+∞, otherwise.

The first regularity condition we state for the pair of problems (PC)−(DCF L)
is given in the general framework regarding the spaces X and Z

(RCCF L
1 ) ∃x′ ∈ dom f ∩ S such that f is continuous at x′

and g(x′) ∈ − int(C).

One can easily see that (RCCF L
1 ) is exactly the reformulation of (RCΦ

1 ) when
considering as perturbation function ΦCF L . We show in the following that

PrX×Z(dom ΦCF L) = dom f × C − epi(−C)(−g) ∩ (S × Z),

where we consider the projection on the product of the last two spaces in the
domain of definition of ΦCF L . Indeed,

(y, z) ∈ PrX×Z(dom ΦCF L) ⇔ ∃x ∈ X such that ΦCF L(x, y, z) < +∞

⇔ ∃x ∈ S such that x + y ∈ dom f and g(x) ∈ z − C ⇔ ∃x ∈ S such that

(y, z) ∈ (dom f − x) × (g(x) + C) ⇔ ∃x ∈ S such that (y, z) ∈ dom f × C

−(x,−g(x)) ⇔ (y, z) ∈ dom f × C − epi(−C)(−g) ∩ (S × Z)

and this leads to the desired formula.
One can formulate the following generalized interior point regularity con-

dition

(RCCF L
2 ) X and Z are Fréchet spaces, S is closed, f is lower

semicontinuous, g is C-epi closed and
0 ∈ sqri

(

dom f × C − epi(−C)(−g) ∩ (S × Z)
)

,

along with its stronger versions
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(RCCF L

2′ ) X and Z are Fréchet spaces, S is closed, f is lower
semicontinuous, g is C-epi closed and
0 ∈ core

(

dom f × C − epi(−C)(−g) ∩ (S × Z)
)

and
(RCCF L

2′′ ) X and Z are Fréchet spaces, S is closed, f is lower
semicontinuous, g is C-epi closed and
0 ∈ int

(

dom f × C − epi(−C)(−g) ∩ (S × Z)
)

,

which are in fact equivalent, while in the finite dimensional case one can state

(RCCF L
3 ) dim

(

lin
(

dom f × C − epi(−C)(−g) ∩ (S × Z)
))

< +∞ and

0 ∈ ri
(

dom f × C − epi(−C)(−g) ∩ (S × Z)
)

.

The strong duality theorem for the pair (PC)−(DCF L) follows from Theorem
3.2.1.

Theorem 3.2.12. Let Z be partially ordered by the convex cone C ⊆ Z, S ⊆
X be a nonempty convex set, f : X → R a proper and convex function and
g : X → Z a proper and C-convex function such that dom f∩S∩g−1(−C) 	= ∅.
If one of the regularity conditions (RCCF L

i ), i ∈ {1, 2, 3}, is fulfilled, then
v(PC) = v(DCF L) and the dual has an optimal solution.

Before introducing the closedness type condition we need to determine first
the set PrX∗×R(epi(ΦCF L)∗). One has, by (3.8),

(x∗, r) ∈ PrX∗×R(epi(ΦCF L)∗) ⇔ ∃(y∗, z∗) ∈ X∗ × Z∗ such that

(ΦCF L)∗(x∗, y∗, z∗) ≤ r ⇔ ∃(y∗, z∗) ∈ X∗ × C∗ such that f∗(y∗)

+(z∗g)∗S(x∗ − y∗) ≤ r ⇔ ∃(y∗, z∗) ∈ X∗ × C∗ such that (x∗ − y∗, r − f∗(y∗))

∈ epi(z∗g)∗S ⇔ ∃(y∗, z∗) ∈ X∗×C∗ such that (x∗, r) ∈ (y∗, f∗(y∗))+epi(z∗g)∗S

⇔ (x∗, r) ∈ epi f∗ +
⋃

z∗∈C∗

epi((z∗g) + δS)∗.

In conclusion, PrX∗×R(epi(ΦCF L)∗) = epi f∗ +
⋃

z∗∈C∗ epi((z∗g) + δS)∗ and
thus the closedness type regularity condition looks like

(RCCF L
4 ) S is closed, f is lower semicontinuous, g is C-epi closed

and epi f∗ +
⋃

z∗∈C∗
epi((z∗g) + δS)∗ is closed in the topology

w(X∗,X) × R,

while the strong duality theorem can be enunciated as follows.

Theorem 3.2.13. Let Z be partially ordered by the convex cone C ⊆ Z, S ⊆
X be a nonempty convex set, f : X → R a proper and convex function and
g : X → Z a proper and C-convex function such that dom f∩S∩g−1(−C) 	= ∅.
If the regularity condition (RCCF L

4 ) is fulfilled, then v(PC) = v(DCF L) and
the dual has an optimal solution.
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Remark 3.2.5. Taking into consideration the relations that exist between the
optimal objective values of the three conjugate duals to (PC) (cf. (3.9)), one
has that if between (PC) and (DCF L) strong duality holds, then v(PC) =
v(DCL) = v(DCF ) = v(DCF L). Moreover, if (ȳ∗, z̄∗) ∈ X∗ × C∗ is an optimal
solution to (DCF L), then ȳ∗ ∈ X∗ is an optimal solution to (DCF ) and z̄∗ ∈ C∗

is an optimal solution to (DCL). This means that for the pairs (PC)− (DCL)
and (PC) − (DCF ) strong duality holds, too.

We close the section by considering a particular instance of the primal
problem (PC) for which we give some weak regularity conditions which ensure
strong duality between it and the three conjugate dual problems assigned to
it. Consider S ⊆ R

n to be a nonempty convex set, f : R
n → R a proper

and convex function and g : R
n → R

m, g(x) = (g1(x), ..., gm(x))T a vector
function having each component gi, i = 1, ...,m, convex. We consider as primal
problem

( ˜PC) inf
x∈A

f(x).

A = {x ∈ S : g(x) � 0}

Assume that dom f ∩S ∩ g−1(−R
m
+ ) 	= ∅. Further, let be L = {i ∈ {1, ...,m} :

gi is affine} and N = {1, ...,m}\L. Consider the following regularity condition
(cf. [186])

(˜RC
CF L

) ∃x′ ∈ ri(dom f) ∩ ri(S) such that gi(x′) ≤ 0, i ∈ L, and
gi(x′) < 0, i ∈ N .

In [186] the following strong duality theorem has been formulated.

Theorem 3.2.14. Let S ⊆ R
n be a nonempty convex set, f : R

n → R a
proper and convex function and g : R

n → R
m, g(x) = (g1(x), ..., gm(x))T

a vector function having each component gi, i = 1, ...,m, convex such that

dom f ∩ S ∩ g−1(−R
m
+ ) 	= ∅. If the regularity condition (˜RC

CF L

) is fulfilled,
then for (PC) and its Fenchel-Lagrange dual strong duality holds, namely
v( ˜PC) = v( ˜DCF L) and the dual has an optimal solution.

Remark 3.2.6. The condition (˜RC
CF L

) is ensuring strong duality also for the
Fenchel and Lagrange dual problems. Nevertheless, for having strong duality
between ( ˜PC) and its Fenchel dual it is enough to assume that (cf. [157,186])

(˜RC
CF

) ri(dom f) ∩ ri(A) 	= ∅

holds, while for having strong duality between ( ˜PC) and its Lagrange dual it
is enough to assume that (cf. [157,186])

(˜RC
CL

) ∃x′ ∈ ri(dom f ∩ S) such that gi(x′) ≤ 0, i ∈ L, and
gi(x′) < 0, i ∈ N

holds.
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3.3 Optimality conditions and saddle points

In this section we derive by using the already given strong duality theorems
necessary and sufficient optimality conditions for the pairs of primal-dual
problems considered until now in this chapter. For these pairs we also de-
fine, taking into consideration the corresponding perturbation functions, so-
called Lagrangian functions (cf. [67]) and give some characterizations of their
saddle points with respect to the optimal solutions to the primal and dual
problems. All this will be first done in the general case (for the primal-dual
pair (PG) − (DG)), followed by a particularization to the different classes of
optimization problems treated above.

3.3.1 The general scalar optimization problem

Assume that the perturbation function Φ : X×Y → R is a proper function ful-
filling 0 ∈ PrY (dom Φ). The following theorem (cf. [67]) formulates necessary
and sufficient optimality conditions for the primal-dual pair (PG) − (DG).

Theorem 3.3.1. (a) Assume that Φ : X×Y → R is a proper and convex func-
tion such that 0 ∈ PrY (dom Φ). Let x̄ ∈ X be an optimal solution to (PG)
and assume that one of the regularity conditions (RCΦ

i ), i ∈ {1, 2, 3, 4},
is fulfilled. Then there exists ȳ∗ ∈ Y ∗, an optimal solution to (DG), such
that

Φ(x̄, 0) + Φ∗(0, ȳ∗) = 0 (3.12)

or, equivalently,
(0, ȳ∗) ∈ ∂Φ(x̄, 0). (3.13)

(b) Assume that x̄ ∈ X and ȳ∗ ∈ Y ∗ fulfill one of the relations above. Then
x̄ is an optimal solution to (PG), ȳ∗ is an optimal solution to (DG) and
v(PG) = v(DG).

Proof. (a) By Theorem 3.2.1 and Theorem 3.2.3 follows that there exists
ȳ∗ ∈ Y ∗ such that

Φ(x̄, 0) = v(PG) = v(DG) = −Φ∗(0, ȳ∗) ∈ R.

Thus Φ(x̄, 0) + Φ∗(0, ȳ∗) = 0 or, equivalently, by Theorem 2.3.12, (0, ȳ∗) ∈
∂Φ(x̄, 0).

(b) The assumption that (3.12) or (3.13) are fulfilled automatically guaran-
tees that Φ(x̄, 0) ∈ R. Since, by the weak duality theorem −Φ∗(0, y∗) ≤ Φ(x, 0)
for all x ∈ X and all y∗ ∈ Y ∗, we get that −Φ∗(0, ȳ∗) = supy∗∈Y ∗{−Φ∗(0, y∗)}
= v(DG), Φ(x̄, 0) = infx∈X{Φ(x, 0)} = v(PG) and that these values are equal.
��

Remark 3.3.1. We want to underline the fact that the statement (b) in the
theorem above is true in the most general case without any assumption for Φ
regarding convexity or the fulfillment of any regularity condition.
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We come now to the definition of the Lagrangian function for the pair of
primal-dual problems (PG) − (DG) (cf. [67]). This will be done by means of
the perturbation function Φ.

Definition 3.3.1. The function LΦ : X × Y ∗ → R defined by

LΦ(x, y∗) = inf
y∈Y

{Φ(x, y) − 〈y∗, y〉}

is called the Lagrangian function of the pair of primal-dual problems (PG) −
(DG) relative to the perturbation function Φ.

One can easily see that for all x ∈ X it holds LΦ(x, y∗) = −Φ∗
x(y∗) for

all y∗ ∈ Y ∗, where Φx : Y → R is defined by Φx(y) = Φ(x, y). Thus for all
x ∈ X the function LΦ(x, ·) is concave and upper semicontinuous. On the
other hand, assuming that Φ is convex, for all y∗ ∈ Y ∗ the function LΦ(·, y∗)
is also convex (cf. Theorem 2.2.6).

In the following we express the problems (PG) and (DG) in terms of the
Lagrangian function LΦ. For all (x∗, y∗) ∈ X∗ × Y ∗ we have

Φ∗(x∗, y∗) = sup
x∈X,y∈Y

{〈x∗, x〉 + 〈y∗, y〉 − Φ(x, y)} = sup
x∈X

{〈x∗, x〉−

inf
y∈Y

{Φ(x, y) − 〈y∗, y〉}} = sup
x∈X

{

〈x∗, x〉 − LΦ(x, y∗)
}

and so
−Φ∗(0, y∗) = inf

x∈X
LΦ(x, y∗) ∀y∗ ∈ Y ∗. (3.14)

Then the dual (DG) can be reformulated as

(DG) sup
y∗∈Y ∗

inf
x∈X

LΦ(x, y∗).

Assume in the following that for all x ∈ X the function Φx is convex and
lower semicontinuous and it fulfills Φx(y) > −∞ for all y ∈ Y . In case Φ is a
proper, convex and lower semicontinuous function, the assumption required
above is fulfilled for all x ∈ X.

Thus for a given x ∈ X one has

Φx(y) = Φ∗∗
x (y) = sup

y∗∈Y ∗
{〈y∗, y〉 − Φ∗

x(y∗)}

= sup
y∗∈Y ∗

{

〈y∗, y〉 + LΦ(x, y∗)
}

∀y ∈ Y.

For y = 0 one gets

Φ(x, 0) = Φx(0) = sup
y∗∈Y ∗

LΦ(x, y∗) ∀x ∈ X (3.15)

and the problem (PG) can be reformulated as
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(PG) inf
x∈X

sup
y∗∈Y ∗

LΦ(x, y∗).

By these reformulations of the primal and dual problems the weak duality
theorem is nothing else than the well-known “minmax”-inequality

sup
y∗∈Y ∗

inf
x∈X

LΦ(x, y∗) ≤ inf
x∈X

sup
y∗∈Y ∗

LΦ(x, y∗). (3.16)

Definition 3.3.2. We say that (x̄, ȳ∗) ∈ X × Y ∗ is a saddle point of the
Lagrangian function LΦ if

LΦ(x̄, y∗) ≤ LΦ(x̄, ȳ∗) ≤ LΦ(x, ȳ∗) ∀x ∈ X ∀y∗ ∈ Y ∗. (3.17)

Next we relate the saddle points of the Lagrangian function LΦ to the
optimal solutions to the problems (PG) and (DG).

Theorem 3.3.2. Assume that for all x ∈ X the function Φx : Y → R is
a convex and lower semicontinuous function fulfilling Φx(y) > −∞ for all
y ∈ Y . Then the following statements are equivalent:

(i) (x̄, ȳ∗) is a saddle point of LΦ;
(ii) x̄ ∈ X is an optimal solution to (PG), ȳ∗ ∈ Y ∗ is an optimal solution to

(DG) and v(PG) = v(DG).

Proof. (i) ⇒ (ii). Since (x̄, ȳ∗) is a saddle point of LΦ, by (3.14) and (3.15)
follows that

−Φ∗(0, ȳ∗) = inf
x∈X

LΦ(x, ȳ∗) = LΦ(x̄, ȳ∗) = sup
y∗∈Y ∗

LΦ(x̄, y∗) = Φ(x̄, 0).

Thus Φ(x̄, 0) + Φ∗(0, ȳ∗) = 0 and the conclusion follows by Theorem 3.3.1(b).
(ii) ⇒ (i). Using again (3.14) and (3.15) we have

−Φ∗(0, ȳ∗) = inf
x∈X

LΦ(x, ȳ∗) ≤ LΦ(x̄, ȳ∗)

and
Φ(x̄, 0) = sup

y∗∈Y ∗
LΦ(x̄, y∗) ≥ LΦ(x̄, ȳ∗),

respectively. Since v(PG) = v(DG) is equivalent to Φ(x̄, 0) = −Φ∗(0, ȳ∗), it
holds

sup
y∗∈Y ∗

LΦ(x̄, y∗) = LΦ(x̄, ȳ∗) = inf
x∈X

LΦ(x, ȳ∗),

which means that (x̄, ȳ∗) is a saddle point of LΦ. ��

Remark 3.3.2. For all x ∈ X the inequality Φ(x, 0) ≥ supy∗∈Y ∗ LΦ(x, y∗) is
always true. This means that the implication (ii) ⇒ (i) in the theorem above
is true in the most general case without any assumption for Φ.
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Theorem 3.3.1 and Theorem 3.3.2 lead to the following result.

Corollary 3.3.3. Assume that Φ : X×Y → R is a proper and convex function
such that 0 ∈ PrY (dom Φ) and Φx is lower semicontinuous for all x ∈ X. Let
one of the regularity conditions (RCΦ

i ), i ∈ {1, 2, 3, 4}, be fulfilled. Then x̄ ∈ X
is an optimal solution to (PG) if and only if there exists ȳ∗ ∈ Y ∗ such that
(x̄, ȳ∗) is a saddle point of LΦ. In this case ȳ∗ is an optimal solution to the
dual (DG).

In what follows we give necessary and sufficient optimality conditions and,
respectively, introduce corresponding Lagrangian functions for the different
particular pairs of primal-dual problems derived from the general one (PG)−
(DG). The connection between the saddle points of these Lagrangian functions
and the optimal solutions to the corresponding problems is also established.

3.3.2 Problems having the composition with a linear continuous
mapping in the objective function

Let X and Y be Hausdorff locally convex spaces, f : X → R and g : Y → R

be proper functions and A ∈ L(X,Y ) fulfilling dom f ∩ A−1(dom g) 	= ∅ and
consider the primal problem

(PA) inf
x∈X

{f(x) + g(Ax)}

and its Fenchel dual

(DA) sup
y∗∈Y ∗

{−f∗(−A∗y∗) − g∗(y∗)}.

We can state the following result.

Theorem 3.3.4. (a) Let f : X → R, g : Y → R be proper and convex func-
tions and A ∈ L(X,Y ) such that dom f ∩ A−1(dom g) 	= ∅. Let x̄ ∈ X be
an optimal solution to (PA) and assume that one of the regularity con-
ditions (RCA

i ), i ∈ {1, 2, 3, 4}, is fulfilled. Then there exists ȳ∗ ∈ Y ∗, an
optimal solution to (DA), such that
(i) f(x̄) + f∗(−A∗ȳ∗) = 〈−ȳ∗, Ax̄〉;
(ii) g(Ax̄) + g∗(ȳ∗) = 〈ȳ∗, Ax̄〉.

(b) Assume that x̄ ∈ X and ȳ∗ ∈ Y ∗ fulfill the relations (i) − (ii). Then x̄
is an optimal solution to (PA), ȳ∗ is an optimal solution to (DA) and
v(PA) = v(DA).

Proof. The result follows from Theorem 3.3.1. What we have to prove is just
that in this particular case the relation (3.12) is equivalent to (i)−(ii). Indeed,
(3.12) can be rewritten as

ΦA(x̄, 0) + (ΦA)∗(0, ȳ∗) = 0 ⇔ f(x̄) + g(Ax̄) + f∗(−A∗ȳ∗) + g∗(ȳ∗) = 0



90 3 Conjugate duality in scalar optimization

⇔ [f(x̄) + f∗(−A∗ȳ∗) − 〈−A∗ȳ∗, x̄〉] + [g(Ax̄) + g∗(ȳ∗) − 〈ȳ∗, Ax̄〉] = 0.

On the other hand, the Young-Fenchel inequality implies f(x̄)+f∗(−A∗ȳ∗)−
〈−A∗ȳ∗, x̄〉 ≥ 0 and g(Ax̄) + g∗(ȳ∗) − 〈ȳ∗, Ax̄〉 ≥ 0, which means that these
inequalities must be fulfilled as equalities. This concludes the proof. ��

Remark 3.3.3. The optimality conditions (i) − (ii) in Theorem 3.3.4 can be
equivalently written as

−A∗ȳ∗ ∈ ∂f(x̄) and ȳ∗ ∈ ∂g(Ax̄).

The Lagrangian function assigned to the pair of primal-dual problems
(PA) − (DA), LA : X × Y ∗ → R, is defined by

LA(x, y∗) = inf
y∈Y

[ΦA(x, y) − 〈y∗, y〉] = inf
y∈Y

[f(x) + g(Ax + y) − 〈y∗, y〉]

= f(x) + inf
r∈Y

[g(r) − 〈y∗, r − Ax〉] = f(x) + 〈A∗y∗, x〉 − g∗(y∗).

Thus
sup

y∗∈Y ∗
inf

x∈X
LA(x, y∗) = sup

y∗∈Y ∗
{−f∗(−A∗y∗) − g∗(y∗)}

and
inf

x∈X
sup

y∗∈Y ∗
LA(x, y∗) = inf

x∈X
{f(x) + g∗∗(Ax)}.

The assumption that for all x ∈ X the mapping ΦA
x : Y → R is convex,

lower semicontinuous and fulfills ΦA
x (y) > −∞ for all y ∈ Y is nothing else

than assuming that g is a convex and lower semicontinuous function such that
g(y) > −∞ for all y ∈ Y . This is what we do in the following. By Theorem
3.3.2 we get the next result which holds without any assumption regarding f .

Theorem 3.3.5. Assume that g is a convex and lower semicontinuous func-
tion fulfilling g(y) > −∞ for all y ∈ Y . Then the following statements are
equivalent:

(i) (x̄, ȳ∗) is a saddle point of LA;
(ii) x̄ ∈ X is an optimal solution to (PA), ȳ∗ ∈ Y ∗ is an optimal solution to

(DA) and v(PA) = v(DA).

Remark 3.3.4. The hypotheses of Theorem 3.3.5 are natural, since in this case,
g(Ax) = g∗∗(Ax) for all x ∈ X, which implies that infx∈X supy∗∈Y ∗ LA(x, y∗)
= infx∈X{f(x) + g(Ax)}. As in general g∗∗(Ax) ≤ g(Ax) for all x ∈ X,
the implication (ii) ⇒ (i) in the theorem above is true without any further
assumption.

Corollary 3.3.3 is providing the following characterization of the saddle
points of LA.
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Corollary 3.3.6. Assume that f : X → R is a proper and convex func-
tion, g : Y → R a proper, convex and lower semicontinuous function and
A ∈ L(X,Y ) such that dom f ∩ A−1(dom g) 	= ∅. Let one of the regularity
conditions (RCA

i ), i ∈ {1, 2, 3, 4}, be fulfilled. Then x̄ ∈ X is an optimal solu-
tion to (PA) if and only if there exists ȳ∗ ∈ Y ∗ such that (x̄, ȳ∗) is a saddle
point of LA. In this case ȳ∗ is an optimal solution to the dual (DA).

In case X = Y and A = idX , under the assumption that f, g : X → R are
proper functions fulfilling dom f ∩ dom g 	= ∅, we get the following necessary
and sufficient optimality conditions for the primal problem

(P id) inf
x∈X

{f(x) + g(x)}

and its Fenchel dual

(Did) sup
y∗∈X∗

{−f∗(−y∗) − g∗(y∗)}.

Theorem 3.3.7. (a) Let f, g : X → R be proper and convex functions such
that dom f ∩ dom g 	= ∅. Let x̄ ∈ X be an optimal solution to (P id) and
assume that one of the regularity conditions (RC id

i ), i ∈ {1, 2, 3, 4}, is
fulfilled. Then there exists ȳ∗ ∈ X∗, an optimal solution to (Did), such
that
(i) f(x̄) + f∗(−ȳ∗) = 〈−ȳ∗, x̄〉;
(ii) g(x̄) + g∗(ȳ∗) = 〈ȳ∗, x̄〉.

(b) Assume that x̄ ∈ X and ȳ∗ ∈ X∗ fulfill the relations (i) − (ii). Then x̄
is an optimal solution to (P id), ȳ∗ is an optimal solution to (Did) and
v(P id) = v(Did).

Remark 3.3.5. The optimality conditions (i) − (ii) in Theorem 3.3.7 can be
equivalently written as

ȳ∗ ∈ (−∂f(x̄)) ∩ ∂g(x̄).

The Lagrangian function assigned to the pair of primal-dual problems
(P id)−(Did), Lid : X×X∗ → R, looks like Lid(x, y∗) = f(x)+〈y∗, x〉−g∗(y∗)
and one has

sup
y∗∈X∗

inf
x∈X

Lid(x, y∗) = sup
y∗∈X∗

{−f∗(−y∗) − g∗(y∗)}

and
inf

x∈X
sup

y∗∈X∗
Lid(x, y∗) = inf

x∈X
{f(x) + g∗∗(x)}.

For the following result we omit asking that g is proper. The following two
results are consequences of Theorem 3.3.5 and Corollary 3.3.6, respectively.
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Theorem 3.3.8. Assume that g is a convex and lower semicontinuous func-
tion fulfilling g(x) > −∞ for all x ∈ X. Then the following statements are
equivalent:

(i) (x̄, ȳ∗) is a saddle point of Lid;
(ii) x̄ ∈ X is an optimal solution to (P id), ȳ∗ ∈ X∗ is an optimal solution to

(Did) and v(P id) = v(Did).

Corollary 3.3.9. Assume that f, g : X → R are proper and convex function
such that g is lower semicontinuous and dom f ∩ dom g 	= ∅. Let one of the
regularity conditions (RC id

i ), i ∈ {1, 2, 3, 4}, be fulfilled. Then x̄ ∈ X is an
optimal solution to (P id) if and only if there exists ȳ∗ ∈ X∗ such that (x̄, ȳ∗)
is a saddle point of Lid. In this case ȳ∗ is an optimal solution to the dual
(Did).

Now let f : X → R be such that f ≡ 0, g : Y → R be a proper function,
A ∈ L(X,Y ) fulfilling A−1(dom g) 	= ∅ and consider the following pair of
primal-dual problems (cf. 3.1.2)

(PAg ) inf
x∈X

{g(Ax)}

and
(DAg ) sup

y∗∈Y ∗,
A∗y∗=0

{−g∗(y∗)},

respectively. Since f∗(x∗) = δ{0}(x∗) for all x∗ ∈ X∗, from Theorem 3.3.4 one
can derive the following result.

Theorem 3.3.10. (a) Let g : Y → R be a proper and convex function and
A ∈ L(X,Y ) such that A−1(dom g) 	= ∅. Let x̄ ∈ X be an optimal solution
to (PAg ) and assume that one of the regularity conditions (RC

Ag

i ), i ∈
{1, 2, 3, 4}, is fulfilled. Then there exists ȳ∗ ∈ Y ∗, an optimal solution to
(DAg ), such that
(i) A∗ȳ∗ = 0;
(ii) g(Ax̄) + g∗(ȳ∗) = 〈ȳ∗, Ax̄〉.

(b) Assume that x̄ ∈ X and ȳ∗ ∈ Y ∗ fulfill the relations (i) − (ii). Then x̄
is an optimal solution to (PAg ), ȳ∗ is an optimal solution to (DAg ) and
v(PAg) = v(DAg ).

Remark 3.3.6. The optimality conditions (i) − (ii) in Theorem 3.3.10 can be
equivalently written as

A∗ȳ∗ = 0 and ȳ∗ ∈ ∂g(Ax̄).

The Lagrangian function of the pair of primal-dual problems (PAg ) −
(DAg ), LAg : X × Y ∗ → R, LAg (x, y∗) = 〈A∗y∗, x〉 − g∗(y∗) verifies
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sup
y∗∈Y ∗

inf
x∈X

LAg (x, y∗) = sup
y∗∈Y ∗,
A∗y∗=0

{−g∗(y∗)}

and
inf

x∈X
sup

y∗∈Y ∗
LAg (x, y∗) = inf

x∈X
{g∗∗(Ax)}.

For the following result we omit asking that g is proper. Theorem 3.3.5 and
Corollary 3.3.6 lead to the following results, respectively.

Theorem 3.3.11. Assume that g is a convex and lower semicontinuous func-
tion fulfilling g(y) > −∞ for all y ∈ Y . Then the following statements are
equivalent:

(i) (x̄, ȳ∗) is a saddle point of LAg ;
(ii) x̄ ∈ X is an optimal solution to (PAg ), ȳ∗ ∈ Y ∗ is an optimal solution to

(DAg ) and v(PAg) = v(DAg ).

Corollary 3.3.12. Assume that g : Y → R is a proper, convex and lower
semicontinuous function and A ∈ L(X,Y ) such that A−1(dom g) 	= ∅. Let one
of the regularity conditions (RC

Ag

i ), i ∈ {1, 2, 3, 4}, be fulfilled. Then x̄ ∈ X
is an optimal solution to (PAg) if and only if there exists ȳ∗ ∈ Y ∗ such that
(x̄, ȳ∗) is a saddle point of LAg . In this case ȳ∗ is an optimal solution to the
dual (DAg ).

We close this subsection by considering fi : X → R, i = 1, ...,m, proper
functions such that

⋂m
i=1 dom fi 	= ∅. For the primal optimization problem

(PΣ) inf
x∈X

{

m
∑

i=1

fi(x)

}

we obtained in subsection 3.1.2 the following dual

(DΣ) sup
xi∗∈X∗,i=1,...,m,

mP

i=1
xi∗=0

{

−
m
∑

i=1

f∗
i (xi∗)

}

.

Using Theorem 3.3.10, one can easily prove the following result.

Theorem 3.3.13. (a) Let fi : X → R, i = 1, ...,m, be proper and convex
functions such that

⋂m
i=1 dom fi 	= ∅. Let x̄ ∈ X be an optimal solu-

tion to (PΣ) and assume that one of the regularity conditions (RCΣ
i ), i ∈

{1, 2, 3, 4}, is fulfilled. Then there exists (x̄1∗, ..., x̄m∗) ∈ (X∗)m, an opti-
mal solution to (DΣ), such that

(i)
m
∑

i=1

x̄i∗ = 0;

(ii) fi(x̄) + f∗
i (x̄i∗) = 〈x̄i∗, x̄〉, i = 1, ...,m.
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(b) Assume that x̄ ∈ X and (x̄1∗, ..., x̄m∗) ∈ (X∗)m fulfill the relations (i) −
(ii). Then x̄ is an optimal solution to (PΣ), (x̄1∗, ..., x̄m∗) is an optimal
solution to (DΣ) and v(PΣ) = v(DΣ).

Proof. The result is a direct consequence of Theorem 3.3.10, where (i) and
(ii) look like

∑m
i=1 x̄i∗ = 0 and

∑m
i=1 fi(x̄) +

∑m
i=1 f∗

i (x̄i∗) =
〈∑m

i=1 x̄i∗, x̄
〉

,
respectively. Since for all i = 1, ...,m, fi(x̄) + f∗

i (x̄i∗) ≥ 〈x̄i∗, x̄〉, the latter is
further equivalent to fi(x̄) + f∗

i (x̄i∗) = 〈x̄i∗, x̄〉 for all i = 1, ...,m. ��

Remark 3.3.7. The optimality conditions (i) − (ii) in Theorem 3.3.13 can be
equivalently written as

m
∑

i=1

x̄i∗ = 0 and x̄i∗ ∈ ∂fi(x̄), i = 1, ...,m.

The Lagrangian function of the pair of primal-dual problems (PΣ)− (DΣ)
is LΣ : X × (X∗)m → R, LΣ(x, x1∗, ..., xm∗) =

∑m
i=1〈xi∗, x〉 −

∑m
i=1 f∗

i (xi∗)
and it verifies

sup
(x1∗,...,xm∗)∈(X∗)m

inf
x∈X

LΣ(x, x1∗, ..., xm∗) = sup
xi∗∈X∗,i=1,...,m,

mP

i=1
xi∗=0

{

−
m
∑

i=1

f∗
i (xi∗)

}

and

inf
x∈X

sup
(x1∗,...,xm∗)∈(X∗)m

LΣ(x, x1∗, ..., xm∗) = inf
x∈X

{

m
∑

i=1

f∗∗
i (x)

}

.

For the next result we omit asking that the functions fi, i = 1, ...,m, are
proper. Theorem 3.3.11 and Corollary 3.3.12 lead to the following results,
respectively.

Theorem 3.3.14. Assume for all i = 1, ...,m, that fi : X → R are convex
and lower semicontinuous functions fulfilling fi(x) > −∞ for all x ∈ X. Then
the following statements are equivalent:

(i) (x̄, x̄1∗, ..., x̄m∗) is a saddle point of LΣ;
(ii) x̄ ∈ X is an optimal solution to (PΣ), (x̄1∗, ..., x̄m∗) ∈ (X∗)m is an opti-

mal solution to (DΣ) and v(PΣ) = v(DΣ).

Corollary 3.3.15. Assume that fi : X → R, i = 1, ...,m, are proper, convex
and lower semicontinuous functions such that

⋂m
i=1 dom fi 	= ∅. Let one of

the regularity conditions (RCΣ
i ), i ∈ {1, 2, 3, 4}, be fulfilled. Then x̄ ∈ X is

an optimal solution to (PΣ) if and only if there exists (x̄1∗, ..., x̄m∗) ∈ (X∗)m

such that (x̄, x̄1∗, ..., x̄m∗) is a saddle point of LΣ. In this case (x̄1∗, ..., x̄m∗)
is an optimal solution to the dual (DΣ).
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3.3.3 Problems with geometric and cone constraints

Consider now the Hausdorff locally convex spaces X and Z, the latter being
partially ordered by the convex cone C ⊆ Z, S a nonempty subset of X and
f : X → R and g : X → Z proper functions fulfilling dom f∩S∩g−1(−C) 	= ∅.
For the optimization problem

(PC) inf
x∈A

f(x),

A = {x ∈ S : g(x) ∈ −C}

and its three conjugate duals introduced in subsection 3.1.3 we derive neces-
sary and sufficient optimality conditions, introduce corresponding Lagrangian
functions and characterize the existence of saddle points for the latter.

We consider first the Lagrange dual problem to (PC)

(DCL) sup
z∗∈C∗

inf
x∈S

{f(x) + (z∗g)(x)}

and formulate the optimality conditions for the pair (PC) − (DCL).

Theorem 3.3.16. (a) Let Z be partially ordered by the convex cone C ⊆ Z,
S ⊆ X be a nonempty convex set, f : X → R a proper and convex function
and g : X → Z a proper and C-convex function such that dom f ∩ S ∩
g−1(−C) 	= ∅. If x̄ ∈ A is an optimal solution to (PC) and one of the
regularity conditions (RCCL

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then there exists
z̄∗ ∈ C∗, an optimal solution to (DCL), such that
(i) min

x∈S
{f(x) + (z̄∗g)(x)} = f(x̄);

(ii) (z̄∗g)(x̄) = 0.
(b) Assume that x̄ ∈ A and z̄∗ ∈ C∗ fulfill the relations (i) − (ii). Then x̄

is an optimal solution to (PC), z̄∗ is an optimal solution to (DCL) and
v(PC) = v(DCL).

Proof. The result follows by Theorem 3.3.1, since (i) − (ii) are nothing else
than an equivalent formulation of (3.12). Indeed, ΦCL(x̄, 0)+(ΦCL)∗(0, z̄∗) = 0
is nothing else than f(x̄)−infx∈S{f(x)+(z̄∗g)(x)} = 0. But, as infx∈S{f(x)+
(z̄∗g)(x)} ≤ f(x̄) + (z̄∗g)(x̄), this is true only if (z̄∗g)(x̄) ≥ 0, which the same
with (z̄∗g)(x̄) = 0 (since g(x̄) ∈ −C and z̄∗ ∈ C∗). This leads to the desired
conclusion. ��

Remark 3.3.8. The optimality conditions (i) − (ii) in Theorem 3.3.16 can be
equivalently written as

0 ∈ ∂(f + (z̄∗g) + δS)(x̄) and (z̄∗g)(x̄) = 0.

The Lagrangian function introduced by the perturbation function ΦCL ,
LCL : X × Z∗ → R, has the following formulation

LCL(x, z∗) = inf
z∈Z

{

ΦCL(x, z) − 〈z∗, z〉
}



96 3 Conjugate duality in scalar optimization

=

{

inf
z∈g(x)+C

{f(x) − 〈z∗, z〉} , if x ∈ S,

+∞, otherwise,

=

{

f(x) + inf
s∈C

{−〈z∗, g(x) + s〉} , if x ∈ S,

+∞, otherwise,

=

{

f(x) + (−z∗g)(x) + inf
s∈C

〈−z∗, s〉, if x ∈ S,

+∞, otherwise,

=

⎧

⎨

⎩

f(x) + (−z∗g)(x), if x ∈ S, z∗ ∈ −C∗,
−∞, if x ∈ S, z∗ /∈ −C∗,
+∞, otherwise.

Thus
sup

z∗∈Z∗
inf

x∈X
LCL(x, z∗) = sup

z∗∈Z∗
inf
x∈S

LCL(x, z∗)

= sup
z∗∈−C∗

inf
x∈S

{f(x) + (−z∗g)(x)} = sup
z∗∈C∗

inf
x∈S

{f(x) + (z∗g)(x)}

and
inf

x∈X
sup

z∗∈Z∗
LCL(x, z∗) = inf

x∈S
sup

z∗∈−C∗
{f(x) + (−z∗g)(x)}

= inf
x∈S

{

f(x) + sup
z∗∈C∗

〈z∗, g(x)〉
}

.

Since for all x ∈ S, sup
z∗∈C∗

〈z∗, g(x)〉 = δ−C∗∗(g(x)), we obtain

inf
x∈X

sup
z∗∈Z∗

LCL(x, z∗) = inf
x∈S,

g(x)∈−C∗∗

f(x) = inf
x∈S,

g(x)∈− cl(C)

f(x).

If C is closed, then one has that

inf
x∈X

sup
z∗∈Z∗

LCL(x, z∗) = inf
x∈S,

g(x)∈−C

f(x).

For the next result, which is a consequence of Theorem 3.3.2, excepting the
additional closedness for the convex cone C, no other assumption regarding
the sets and functions involved is made. This is because of the fact that for
all x ∈ X the function ΦCL

x : Z → R, ΦCL
x (z) = f(x) + δS(x) + δg(x)+C(z), is

convex and lower semicontinuous and fulfills ΦCL
x (z) > −∞ for all z ∈ Z.

Theorem 3.3.17. Assume that C is closed. The following statements are
equivalent:

(i) (x̄,−z̄∗) is a saddle point of LCL ;
(ii) x̄ ∈ A is an optimal solution to (PC), z̄∗ ∈ C∗ is an optimal solution to

(DCL) and v(PC) = v(DCL).
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The following assertion is a consequence of Corollary 3.3.3.

Corollary 3.3.18. Let Z be partially ordered by the convex closed cone C ⊆
Z, S ⊆ X be a nonempty convex set, f : X → R a proper and con-
vex function and g : X → Z a proper and C-convex function such that
dom f ∩ S ∩ g−1(−C) 	= ∅. Assume that one of the regularity conditions
(RCCL

i ), i ∈ {1, 2, 3, 4}, is fulfilled. Then x̄ ∈ A is an optimal solution to
(PC) if and only if there exists z̄∗ ∈ −C∗ such that (x̄, z̄∗) is a saddle point
of LCL . In this case −z̄∗ is an optimal solution to the dual (DCL).

Coming now to the Fenchel dual problem to (PC) (cf. subsection 3.1.3)

(DCF ) sup
y∗∈X∗

{−f∗(y∗) − σA(−y∗)}

the necessary and sufficient optimality conditions can be obtained also in this
case by particularizing the general ones.

Theorem 3.3.19. (a) Let Z be partially ordered by the convex cone C ⊆ Z,
S ⊆ X be a nonempty convex set, f : X → R a proper and convex function
and g : X → Z a proper and C-convex function such that dom f ∩ S ∩
g−1(−C) 	= ∅. If x̄ ∈ A is an optimal solution to (PC) and one of the
regularity conditions (RCCF

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then there exists
ȳ∗ ∈ X∗, an optimal solution to (DCF ), such that
(i) min

x∈A
〈ȳ∗, x〉 = 〈ȳ∗, x̄〉;

(ii) f(x̄) + f∗(ȳ∗) = 〈ȳ∗, x̄〉.
(b) Assume that x̄ ∈ A and ȳ∗ ∈ X∗ fulfill the relations (i) − (ii). Then x̄

is an optimal solution to (PC), ȳ∗ is an optimal solution to (DCF ) and
v(PC) = v(DCF ).

Proof. The result follows from Theorem 3.3.7 by taking into consideration
that δ∗A(y∗) = supx∈A〈y∗, x〉 for all y∗ ∈ X∗. ��

Remark 3.3.9. The optimality conditions (i) − (ii) in Theorem 3.3.19 can be
equivalently written as

ȳ∗ ∈ ∂f(x̄) ∩ (−N(A, x̄)).

The Lagrangian function for (PC) − (DCF ) is LCF : X × X∗ → R,
LCF (x, y∗) = δA(x) + 〈y∗, x〉 − f∗(y∗), and one has

sup
y∗∈X∗

inf
x∈X

LCF (x, y∗) = sup
y∗∈X∗

{−f∗(y∗) − σA(−y∗)}

and
inf

x∈X
sup

y∗∈Y ∗
LCF (x, y∗) = inf

x∈X
{f∗∗(x) + δA(x)}.

For the next result we omit asking that f is proper. Theorem 3.3.8 and Corol-
lary 3.3.9 lead to the following assertions, respectively.
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Theorem 3.3.20. Assume that f is a convex and lower semicontinuous func-
tion fulfilling f(x) > −∞ for all x ∈ X. Then the following statements are
equivalent:

(i) (x̄, ȳ∗) is a saddle point of LCF ;
(ii) x̄ ∈ A is an optimal solution to (PC), ȳ∗ ∈ X∗ is an optimal solution to

(DCF ) and v(PC) = v(DCF ).

Corollary 3.3.21. Let Z be partially ordered by the convex cone C ⊆ Z,
S ⊆ X be a nonempty convex set, f : X → R a proper, convex and lower
semicontinuous function and g : X → Z a proper and C-convex function such
that dom f ∩ S ∩ g−1(−C) 	= ∅. Assume that one of the regularity conditions
(RCCF

i ), i ∈ {1, 2, 3, 4}, is fulfilled. Then x̄ ∈ A is an optimal solution to
(PC) if and only if there exists ȳ∗ ∈ X∗ such that (x̄, ȳ∗) is a saddle point of
LCF . In this case ȳ∗ is an optimal solution to the dual (DCF ).

Concerning the Fenchel-Lagrange dual problem to (PC)

(DCF L) sup
y∗∈X∗,z∗∈C∗

{−f∗(y∗) − (z∗g)∗S(−y∗)} ,

we can derive by means of Theorem 3.3.1 the following necessary and sufficient
optimality conditions.

Theorem 3.3.22. (a) Let Z be partially ordered by the convex cone C ⊆ Z,
S ⊆ X be a nonempty convex set, f : X → R a proper and convex function
and g : X → Z a proper and C-convex function such that dom f ∩ S ∩
g−1(−C) 	= ∅. If x̄ ∈ A is an optimal solution to (PC) and one of the
regularity conditions (RCCF L

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then there exists
(ȳ∗, z̄∗) ∈ X∗ × C∗, an optimal solution to (DCF L), such that
(i) (z̄∗g)∗S(−ȳ∗) = −〈ȳ∗, x̄〉;
(ii) (z̄∗g)(x̄) = 0;
(iii) f(x̄) + f∗(ȳ∗) = 〈ȳ∗, x̄〉.

(b) Assume that x̄ ∈ A and (ȳ∗, z̄∗) ∈ X∗ ×C∗ fulfill the relations (i)− (iii).
Then x̄ is an optimal solution to (PC), (ȳ∗, z̄∗) is an optimal solution to
(DCF L) and v(PC) = v(DCF L).

Proof. We prove that for this pair of primal-dual problems relation (3.12)
is equivalent to the fact that (i) − (iii) are fulfilled. Indeed, for x̄ ∈ A and
(ȳ∗, z̄∗) ∈ X∗ × C∗ one has

ΦCF L(x̄, 0, 0) + (ΦCF L)∗(0, ȳ∗, z̄∗) = 0 ⇔ f(x̄) + f∗(ȳ∗) + (z̄∗g)∗S(−ȳ∗) = 0

⇔ [(z̄∗g)∗S(−ȳ∗) + (z̄∗g)(x̄) − 〈−ȳ∗, x̄〉] + [−(z̄∗g)(x̄)]

+ [f(x̄) + f∗(ȳ∗) − 〈ȳ∗, x̄〉] = 0.

Since (z̄∗g)∗S(−ȳ∗) + (z̄∗g)(x̄) − 〈−ȳ∗, x̄〉 ≥ 0, −(z̄∗g)(x̄) ≥ 0 and f(x̄) +
f∗(ȳ∗)−〈ȳ∗, x̄〉 ≥ 0, all the inequalities must be fulfilled as equalities and the
conclusion follows. ��
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Remark 3.3.10. The optimality conditions (i) − (iii) in Theorem 3.3.19 can
be equivalently written as

ȳ∗ ∈ ∂f(x̄) ∩ (−∂((z̄∗g) + δS)(x̄)) and (z̄∗g)(x̄) = 0.

The Lagrangian function LCF L : X × X∗ × Z∗ → R looks like

LCF L(x, y∗, z∗) = inf
y∈X,
z∈Z

{

ΦCF L(x, y, z) − 〈y∗, y〉 − 〈z∗, z〉
}

=

⎧

⎨

⎩

inf
y∈X,

z∈g(x)+C

{f(x + y) − 〈y∗, y〉 − 〈z∗, z〉} , if x ∈ S,

+∞, otherwise,

=

⎧

⎨

⎩

inf
r∈X,
s∈C

{f(r) − 〈y∗, r − x〉 − 〈z∗, g(x) + s〉} , if x ∈ S,

+∞, otherwise,

=

{

〈y∗, x〉 − 〈z∗, g(x)〉 − f∗(y∗) + inf
s∈C

〈−z∗, s〉, if x ∈ S,

+∞, otherwise,

=

⎧

⎨

⎩

〈y∗, x〉 − 〈z∗, g(x)〉 − f∗(y∗), if x ∈ S, z∗ ∈ −C∗,
−∞, if x ∈ S, z∗ /∈ −C∗,
+∞, otherwise.

In this way we get that

sup
(y∗,z∗)∈X∗×Z∗

inf
x∈X

LCF L(x, y∗, z∗) = sup
(y∗,z∗)∈X∗×Z∗

inf
x∈S

LCF L(x, y∗, z∗)

= sup
y∗∈X∗,−z∗∈C∗

{

−f∗(y∗) + inf
x∈S

{〈y∗, x〉 + 〈−z∗, g(x)〉}
}

= sup
y∗∈X∗,z∗∈C∗

{−f∗(y∗) − (z∗g)∗S(−y∗)}

and
inf

x∈X
sup

(y∗,z∗)∈X∗×Z∗
LCF L(x, y∗, z∗)

= inf
x∈S

{

sup
y∗∈X∗

{〈y∗, x〉 − f∗(y∗)} + sup
−z∗∈C∗

〈−z∗, g(x)〉
}

= inf
x∈S

{

f∗∗(x) + δ{y∈X:g(y)∈−C∗∗}(x)
}

= inf
x∈S,

g(x)∈− cl(C)

f∗∗(x).

The characterization of the saddle points of LCF L via the optimal solutions of
the pair (PC)−(DCF L) follows. As above we can again weaken the properness
assumption for f .
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Theorem 3.3.23. Assume that C is closed and that f is a convex and lower
semicontinuous function fulfilling f(x) > −∞ for all x ∈ X. Then the follow-
ing statements are equivalent:

(i) (x̄, ȳ∗, z̄∗) is a saddle point of LCF L ;
(ii) x̄ ∈ A is an optimal solution to (PC), (ȳ∗,−z̄∗) ∈ X∗ ×C∗ is an optimal

solution to (DCF L) and v(PC) = v(DCF L).

Corollary 3.3.24. Let Z be partially ordered by the convex closed cone C ⊆
Z, S ⊆ X be a nonempty convex set, f : X → R a proper, convex and lower
semicontinuous function and g : X → Z a proper and C-convex function such
that dom f ∩ S ∩ g−1(−C) 	= ∅. Assume that one of the regularity conditions
(RCCF L

i ), i ∈ {1, 2, 3, 4}, is fulfilled. Then x̄ ∈ A is an optimal solution to
(PC) if and only if there exists (ȳ∗, z̄∗) ∈ X∗ ×−C∗ such that (x̄, ȳ∗, z̄∗) is a
saddle point of LCF L . In this case (ȳ∗,−z̄∗) is an optimal solution to the dual
(DCF L).

3.4 The composed convex optimization problem

In this section we construct by means of the perturbation approach described
in section 3.1 two conjugate dual problems to the composed convex optimiza-
tion problem. We give also regularity conditions which guarantee the existence
of strong duality and derive from the latter necessary and sufficient optimal-
ity conditions. Lagrangian functions for each pair of primal-dual problems are
also introduced.

Let X and Z be Hausdorff locally convex spaces, where Z is assumed
to be partially ordered by the convex cone C ⊆ Z. Consider f : X → R a
proper and convex function, h : X → Z a proper and C-convex function and
g : Z ∪ {+∞C} → R a proper, convex and C-increasing function fulfilling
g(+∞C) = +∞ and h(dom f ∩ dom h) ∩ dom g 	= ∅. The primal problem we
deal with in this section is

(PCC) inf
x∈X

{f(x) + g ◦ h(x)} .

3.4.1 A first dual problem to (P CC)

Let Z be the space of perturbation variables and ΦCC1 : X × Z → R be the
perturbation function defined by ΦCC1(x, z) = f(x) + g(h(x) + z). Obviously,
ΦCC1(x, 0) = f(x) + g(h(x)) for all x ∈ X. The conjugate function (ΦCC1)∗ :
X∗ × Z∗ → R of ΦCC1 has for all (x∗, z∗) ∈ X∗ × Z∗ the following form

(ΦCC1)∗(x∗, z∗) = sup
x∈X,
z∈Z

{〈x∗, x〉 + 〈z∗, z〉 − f(x) − g(h(x) + z)}
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= sup
x∈X,
s∈Z

{〈x∗, x〉 + 〈z∗, s − h(x)〉 − f(x) − g(s)}

= sup
x∈X

{〈x∗, x〉 − 〈z∗, h(x)〉 − f(x)} + sup
s∈Z

{〈z∗, s〉 − g(s)}

= (f + (z∗h))∗(x∗) + g∗(z∗).

Since g is C-increasing we have by Proposition 2.3.11 that g∗(z∗) = +∞ if
z∗ /∈ C∗. Thus

(ΦCC1)∗(x∗, z∗) = (f + (z∗h))∗(x∗) + g∗(z∗) + δC∗(z∗). (3.18)

The dual problem we get by means of ΦCC1 is

(DCC1) sup
z∗∈C∗

{

−(ΦCC1)∗(0, z∗)
}

,

which is nothing else than

(DCC1) sup
z∗∈C∗

{−g∗(z∗) − (f + (z∗h))∗(0)} .

By Theorem 3.1.1 it holds v(DCC1) ≤ v(PCC). In the following we introduce
some regularity conditions which close the gap between these optimal objec-
tive values and ensure that the dual has an optimal solution. First, let us
mention that the assumptions we made at the beginning of the section guar-
antee the properness and convexity of ΦCC1 . The regularity conditions which
follows are derived from the general ones given in section 3.2.

The regularity condition (RCΦ
1 ) assumes in general that there exists x′ ∈ X

such that (x′, 0) ∈ dom ΦCC1 and ΦCC1(x′, ·) is continuous at 0, and becomes
in this special case

(RCCC1
1 ) ∃x′ ∈ dom f ∩ dom h ∩ h−1(dom g) such that

g is continuous at h(x′).

In order to provide regularity conditions in case X and Z are Fréchet
spaces we have to establish the set PrZ(dom ΦCC1) and to guarantee lower
semicontinuity for ΦCC1 . First notice that

z ∈ PrZ(dom ΦCC1) ⇔ ∃x ∈ X such that ΦCC1(x, z) < +∞

⇔ ∃x ∈ dom f ∩ dom h such that z ∈ dom g − h(x)

⇔ z ∈ dom g − h(dom f ∩ dom h),

and so PrZ(dom ΦCC1) = dom g − h(dom f ∩ dom h).
Next we show that if f and g are lower semicontinuous and h is star C-

lower semicontinuous, i.e. (z∗h) is lower semicontinuous for all z∗ ∈ C∗, then
ΦCC1 is lower semicontinuous. To this end we calculate the biconjugate of
ΦCC1 . We have for all (x, z) ∈ X × Z
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(ΦCC1)∗∗(x, z) = sup
x∗∈X∗,
z∗∈Z∗

{

〈x∗, x〉 + 〈z∗, z〉 − (ΦCC1)∗(x∗, z∗)
}

= sup
x∗∈X∗,
z∗∈C∗

{〈x∗, x〉 + 〈z∗, z〉 − (f + (z∗h))∗(x∗) − g∗(z∗)}

= sup
z∗∈C∗

{

〈z∗, z〉 − g∗(z∗) + sup
x∗∈X∗

{〈x∗, x〉 − (f + (z∗h))∗(x∗)}
}

= sup
z∗∈C∗

{〈z∗, z〉 − g∗(z∗) + (f + (z∗h))∗∗(x)} .

Since for all z∗ ∈ C∗, f + (z∗h) is proper, convex and lower semicontinuous
and g is proper, convex and lower semicontinuous, we get by Theorem 2.3.5
that

(ΦCC1)∗∗(x, z) = sup
z∗∈C∗

{〈z∗, z〉 − g∗(z∗) + f(x) + (z∗h)(x)}

= f(x) + sup
z∗∈C∗

{〈z∗, h(x) + z〉 − g∗(z∗)}

= f(x) + sup
z∗∈Z∗

{〈z∗, h(x) + z〉 − g∗(z∗)}

= f(x) + g∗∗(h(x) + z) = f(x) + g(h(x) + z) = ΦCC1(x, z),

which proves, via Theorem 2.3.6, that ΦCC1 is lower semicontinuous. We can
state now the following regularity condition

(RCCC1
2 ) X and Z are Fréchet spaces, f and g are lower semicontinuous,

h is star C-lower semicontinuous and
0 ∈ sqri (dom g − h(dom f ∩ dom h)),

along with its stronger variants

(RCCC1
2′ ) X and Z are Fréchet spaces, f and g are lower semicontinuous,

h is star C-lower semicontinuous and
0 ∈ core (dom g − h(dom f ∩ dom h))

and

(RCCC1
2′′ ) X and Z are Fréchet spaces, f and g are lower semicontinuous,

h is star C-lower semicontinuous and
0 ∈ int (dom g − h(dom f ∩ dom h)) ,

which are in fact equivalent. In the finite dimensional case one can consider
as regularity condition

(RCCC1
3 ) dim (lin (dom g − h(dom f ∩ dom h))) < +∞ and

ri(dom g) ∩ ri (h(dom f ∩ dom h)) 	= ∅.
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The conditions (RCCC1
2 ) and (RCCC1

2′ ) have been introduced in [50] but under
the assumption that h is a C-lower semicontinuous function. The condition
(RCCC1

1 ) is a classical one, while (RCCC1
3 ) has been stated for the first time

in [204]. A refinement of (RCCC1
3 ) for X and Z finite dimensional spaces has

been given by the authors in [30].
Before enunciating the strong duality theorem we formulate a closedness

type regularity condition for the composed convex optimization problem. To
this end, along the lower semicontinuity of ΦCC1 , we have to ensure that
PrX∗×R(epi(ΦCC1)∗) is closed in the topology w(X∗,X) × R. One has

(x∗, r) ∈ PrX∗×R(epi(ΦCC1)∗) ⇔ ∃z∗ ∈ Z∗ such that (ΦCC1)∗(x∗, z∗) ≤ r

⇔ ∃z∗ ∈ C∗ such that (f + (z∗h))∗(x∗) + g∗(z∗) ≤ r ⇔ ∃z∗ ∈ C∗ such that

(x∗, r) ∈ epi(f + (z∗h))∗ + (0, g∗(z∗)),

which means that

PrX∗×R(epi(ΦCC1)∗) =
⋃

z∗∈C∗

(epi(f + (z∗h))∗ + (0, g∗(z∗))) .

Thus the closedness type regularity condition looks like (cf. [33])

(RCCC1
4 ) f and g are lower semicontinuous, h is star C-lower

semicontinuous and
⋃

z∗∈C∗
(epi(f + (z∗h))∗ + (0, g∗(z∗)))

is closed in the topology w(X∗,X) × R.

The strong duality theorem follows as a consequence of Theorem 3.2.1 and
Theorem 3.2.3.

Theorem 3.4.1. Let Z be partially ordered by the convex cone C ⊆ Z, f :
X → R be a proper and convex function, h : X → Z∪{+∞C} a proper and C-
convex function and g : Z ∪ {+∞C} → R a proper, convex and C-increasing
function such that g(+∞C) = +∞ and h(dom f ∩ dom h) ∩ dom g 	= ∅. If
one of the regularity conditions (RCCC1

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then
v(PCC) = v(DCC1) and the dual has an optimal solution.

The necessary and sufficient optimality conditions for the pair of primal-dual
problems (PCC) − (DCC1) are a consequence of Theorem 3.3.1.

Theorem 3.4.2. (a) Let Z be partially ordered by the convex cone C ⊆ Z,
f : X → R be a proper and convex function, h : X → Z∪{+∞C} a proper
and C-convex function and g : Z ∪ {+∞C} → R a proper, convex and C-
increasing function such that g(+∞C) = +∞ and h(dom f ∩ dom h) ∩
dom g 	= ∅. Let x̄ ∈ X be an optimal solution to (PCC) and assume that
one of the regularity conditions (RCCC1

i ), i ∈ {1, 2, 3, 4}, is fulfilled. Then
there exists z̄∗ ∈ C∗, an optimal solution to (DCC1), such that
(i) min

x∈X
{f(x) + (z̄∗h)(x)} = f(x̄) + (z̄∗h)(x̄);
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(ii) g∗(z̄∗) + g(h(x̄)) = (z̄∗h)(x̄).
(b) Assume that x̄ ∈ X and z̄∗ ∈ C∗ fulfill the relations (i) − (ii). Then x̄ is

an optimal solution to (PCC), z̄∗ is an optimal solution to (DCC1) and
v(PCC) = v(DCC1).

Proof. We show that the relation (3.12) becomes in this special case (i)− (ii)
and in this way the result follows by Theorem 3.3.1. We have that ΦCC1(x̄, 0)+
(ΦCC1)∗(0, z̄∗) = 0 is equivalent to z̄∗ ∈ C∗ and

f(x̄) + g(h(x̄)) + g∗(z̄∗) + (f + (z̄∗h))∗(0) = 0 ⇔ z̄∗ ∈ C∗ and

[f(x̄) + (z̄∗h)(x̄) + (f + (z̄∗h))∗(0)] + [g∗(z̄∗) + g(h(x̄)) − 〈z̄∗, h(x̄)〉] = 0.

Since f(x̄)+(z̄∗h)(x̄)+(f+(z̄∗h))∗(0) ≥ 0 and g∗(z̄∗)+g(h(x̄))−〈z̄∗, h(x̄)〉 ≥ 0,
the inequalities must be satisfied as equalities and so the desired conclusion
follows. ��

Remark 3.4.1. The optimality conditions (i) − (ii) in Theorem 3.4.2 can be
equivalently written as

0 ∈ ∂(f + (z̄∗h))(x̄) and z̄∗ ∈ ∂g(h(x̄)).

The Lagrangian function assigned to (PCC)−(DCC1) is denoted by LCC1 :
X × Z∗ → R, being defined for all (x, z∗) ∈ X × Z∗ by

LCC1(x, z∗) = inf
z∈Z

{ΦCC1(x, z) − 〈z∗, z〉} = inf
z∈Z

{f(x) + g(h(x) + z) − 〈z∗, z〉}

= f(x) + inf
s∈Z

{g(s) − 〈z∗, s − h(x)〉} = f(x) + (z∗h)(x) + inf
s∈Z

{g(s) − 〈z∗, s〉}

= f(x) + (z∗h)(x) − g∗(z∗) =
{

f(x) + (z∗h)(x) − g∗(z∗), if z∗ ∈ C∗,
−∞, otherwise.

Thus

sup
z∗∈Z∗

inf
x∈X

LCC1(x, z∗) = sup
z∗∈C∗

{−g∗(z∗) − (f + (z∗h))∗(0)}

and
inf

x∈X
sup

z∗∈Z∗
LCC1(x, z∗) = inf

x∈X
{f(x) + g∗∗(h(x))}.

We have the following characterization for the saddle points of the Lagrangian
LCC1 , where the properness assumption for g is slightly weakened.

Theorem 3.4.3. Assume that g is a convex and lower semicontinuous func-
tion fulfilling g(z) > −∞ for all z ∈ Z. Then the following statements are
equivalent:

(i) (x̄, z̄∗) is a saddle point of LCC1 ;
(ii) x̄ ∈ X is an optimal solution to (PCC), z̄∗ ∈ C∗ is an optimal solution to

(DCC1) and v(PCC) = v(DCC1).
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Remark 3.4.2. Since for all x ∈ X g∗∗(h(x)) ≤ g(h(x)), the implication (ii) ⇒
(i) in Theorem 3.4.3 holds in the most general case without any assumption.

The following statement is a consequence of Corollary 3.3.3.

Corollary 3.4.4. Let Z be partially ordered by the convex cone C ⊆ Z, S ⊆ X
be a nonempty convex set, f : X → R be a proper and convex function,
h : X → Z∪{+∞C} a proper and C-convex function and g : Z∪{+∞C} → R

a proper, convex, lower semicontinuous and C-increasing function fulfilling
g(+∞C) = +∞ and h(dom f ∩ dom h) ∩ dom g 	= ∅. Assume that one of the
regularity conditions (RCCC1

i ), i ∈ {1, 2, 3, 4}, is fulfilled. Then x̄ ∈ X is an
optimal solution to (PCC) if and only if there exists z̄∗ ∈ C∗ such that (x̄, z̄∗)
is a saddle point of LCC1 . In this case z̄∗ is an optimal solution to the dual
(DCC1).

3.4.2 A second dual problem to (P CC)

Let now X×Z be the space of perturbation variables and ΦCC2 : X×X×Z →
R the perturbation function defined by ΦCC2(x, y, z) = f(x + y) + g(h(x) +
z). Obviously, ΦCC2(x, 0, 0) = f(x) + g(h(x)) for all x ∈ X. The conjugate
function (ΦCC2)∗ : X∗ × X∗ × Z∗ → R of ΦCC2 looks for all (x∗, y∗, z∗) ∈
X∗ × X∗ × Z∗ like

(ΦCC2)∗(x∗, y∗, z∗) = sup
x,y∈X,

z∈Z

{〈x∗, x〉 + 〈y∗, y〉 + 〈z∗, z〉 − f(x + y)

−g(h(x) + z)} = sup
x,r∈X,

s∈Z

{〈x∗, x〉 + 〈y∗, r − x〉 + 〈z∗, s − h(x)〉 − f(r) − g(s)}

= sup
x∈X

{〈x∗ − y∗, x〉 − 〈z∗, h(x)〉} + sup
s∈Z

{〈z∗, s〉 − g(s)} + sup
r∈Y

{〈y∗, r〉 − f(r)}

= (z∗h)∗(x∗ − y∗) + f∗(y∗) + g∗(z∗).

Taking again Proposition 2.3.11 into consideration, we get

(ΦCC2)∗(x∗, y∗, z∗) = (z∗h)∗(x∗ − y∗) + f∗(y∗) + g∗(z∗) + δC∗(z∗). (3.19)

The dual problem of (PCC) obtained via the perturbation function ΦCC2 is

(DCC2) sup
y∗∈X∗,z∗∈Z∗

{

−(ΦCC2)∗(0, y∗, z∗)
}

or, equivalently,

(DCC2) sup
y∗∈X∗,z∗∈C∗

{−g∗(z∗) − f∗(y∗) − (z∗h)∗(−y∗)} .

Since the existence of weak duality is always ensured by Theorem 3.1.1, we
look now for some regularity conditions for having also in this case strong
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duality. The properness and convexity of ΦCC2 follow by the assumptions
considered in this section and thus one can derive these regularity conditions
from the general ones given in section 3.2. The condition (RCΦ

1 ) leads in this
special case to

(RCCC2
1 ) ∃x′ ∈ dom f ∩ dom h ∩ h−1(dom g) such that f is continuous

at x′ and g is continuous at h(x′).

Assuming that X and Z are Fréchet spaces as in (RCΦ
2 ), we have to guar-

antee that ΦCC2 is lower semicontinuous and 0 ∈ sqri(PrX×Z(dom ΦCC2)).
Similar to the considerations in the previous section one can show that if f
and g are lower semicontinuous and h is star C-lower semicontinuous, then
ΦCC2 is lower semicontinuous, too. Further, one can notice that

PrX×Z(dom ΦCC2) = dom f × dom g − epiC h,

where the projection on the product of the last two spaces in the domain of
definition of ΦCC2 is considered. Indeed, this is a consequence of the following
sequence of equivalences

(y, z) ∈ PrX×Z(dom ΦCC2) ⇔ ∃x ∈ X such that ΦCC2(x, y, z) < +∞

⇔ ∃x ∈ dom h such that x + y ∈ dom f and h(x) + z ∈ dom g

⇔ ∃x ∈ dom h such that (y, z) ∈ dom f × dom g − (x, h(x))

⇔ (y, z) ∈ dom f × dom g − epiC h.

For the last equivalence the assumption that g is C-increasing is here deter-
minant.

When X and Z are Fréchet spaces we can formulate the following condition

(RCCC2
2 ) X and Z are Fréchet spaces, f and g are lower semicontinuous,

h is star C-lower semicontinuous and
0 ∈ sqri (dom f × dom g − epiC h)

along with its stronger variants

(RCCC2
2′ ) X and Z are Fréchet spaces, f and g are lower semicontinuous,

h is star C-lower semicontinuous and
0 ∈ core (dom f × dom g − epiC h)

and

(RCCC2
2′′ ) X and Z are Fréchet spaces, f and g are lower semicontinuous,

h is star C-lower semicontinuous and
0 ∈ int (dom f × dom g − epiC h) ,

which are in fact equivalent, while in the finite dimensional case one has

(RCCC2
3 ) dim (lin (dom f × dom g − epiC h)) < +∞ and

ri(dom f × dom g) ∩ ri(epiC h) 	= ∅.
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Let us determine now the set PrX∗×R(epi(ΦCC2)∗). It holds

(x∗, r) ∈ PrX∗×R(epi(ΦCC2)∗) ⇔ ∃y∗ ∈ X∗ and ∃z∗ ∈ Z∗ such that

(ΦCC2)∗(x∗, y∗, z∗) ≤ r ⇔ ∃y∗ ∈ X∗ and ∃z∗ ∈ C∗ such that (z∗h)∗(x∗ − y∗)

+f∗(y∗) + g∗(z∗) ≤ r ⇔ ∃(y∗, z∗) ∈ X∗ × C∗ such that (x∗, r) ∈ (y∗, f∗(y∗))

+ epi(z∗h)∗ + (0, g∗(z∗)) ⇔ ∃z∗ ∈ C∗ such that (x∗, r) ∈ epi f∗ + epi(z∗h)∗

+(0, g∗(z∗)) ⇔ (x∗, r) ∈ epi f∗ +
⋃

z∗∈C∗

(epi(z∗h)∗ + (0, g∗(z∗))) .

This leads to the following closedness type regularity condition (cf. [33])

(RCCC2
4 ) f and g are lower semicontinuous, h is star C-lower

semicontinuous and epi f∗ +
⋃

z∗∈C∗
(epi(z∗h)∗ + (0, g∗(z∗)))

is closed in the topology w(X∗,X) × R.

We can formulate the following strong duality theorem.

Theorem 3.4.5. Let Z be partially ordered by the convex cone C ⊆ Z, f :
X → R be a proper and convex function, h : X → Z∪{+∞C} a proper and C-
convex function and g : Z ∪ {+∞C} → R a proper, convex and C-increasing
function such that g(+∞C) = +∞ and h(dom f ∩ dom h) ∩ dom g 	= ∅. If
one of the regularity conditions (RCCC2

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then
v(PCC) = v(DCC2) and the dual has an optimal solution.

Remark 3.4.3. (a) Since for all z∗ ∈ C∗

(f + (z∗h))∗(0) ≤ inf
y∗∈X∗

{f∗(y∗) + (z∗h)∗(−y∗)}, (3.20)

it is obvious that in general one has v(DCC2) ≤ v(DCC1) ≤ v(PCC). This
means that if for (PCC) and (DCC2) strong duality holds, then we also have
v(PCC) = v(DCC1). Moreover, if (ȳ∗, z̄∗) ∈ X∗×C∗ is an optimal solution to
(DCC2), then z̄∗ ∈ C∗ is an optimal solution to (DCC1). Thus for (PCC) and
(DCC1) strong duality holds, too.

(b) The authors have given in [31] closedness type regularity conditions for
strong duality between (PCC) and the duals (DCC1) and (DCC2), respectively,
also in case h is only C-epi closed. Those regularity conditions are stronger
than (RCCC1

4 ) and (RCCC2
4 ), respectively, which is quite natural since we

assume less for the function h.

The necessary and sufficient optimality conditions for the pair of primal-
dual problems (PCC) − (DCC2) follow.

Theorem 3.4.6. (a) Let the assumptions of Theorem 3.4.5 be fulfilled and
assume that x̄ ∈ X is an optimal solution to (PCC) and that one of
the regularity conditions (RCCC2

i ), i ∈ {1, 2, 3, 4}, is fulfilled. Then there
exists (ȳ∗, z̄∗) ∈ X∗ × C∗, an optimal solution to (DCC2), such that
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(i) min
x∈X

{〈ȳ∗, x〉 + (z̄∗h)(x)} = 〈ȳ∗, x̄〉 + (z̄∗h)(x̄);

(ii) f∗(ȳ∗) + f(x̄) = 〈ȳ∗, x̄〉;
(iii) g∗(z̄∗) + g(h(x̄)) = (z̄∗h)(x̄).

(b) Assume that x̄ ∈ X and (ȳ∗, z̄∗) ∈ X∗ ×C∗ fulfill the relations (i)− (iii).
Then x̄ is an optimal solution to (PCC), (ȳ∗, z̄∗) is an optimal solution
to (DCC2) and v(PCC) = v(DCC2).

Proof. We have just to evaluate the relation (3.12) and to show that it is
equivalent to (i) − (iii). By Theorem 3.3.1 the conclusion will follow au-
tomatically. Indeed, ΦCC2(x̄, 0, 0) + (ΦCC2)∗(0, ȳ∗, z̄∗) = 0 is equivalent to
(ȳ∗, z̄∗) ∈ X∗ × C∗ and

f(x̄) + g(h(x̄)) + f∗(ȳ∗) + g∗(z̄∗) + (z̄∗h)∗(−ȳ∗) = 0,

which is the same as (ȳ∗, z̄∗) ∈ X∗ × C∗ and

{f∗(ȳ∗) + f(x̄) − 〈ȳ∗, x̄〉} + {g∗(z̄∗) + g(h(x̄)) − (z̄∗h)(x̄)}

+
{

〈ȳ∗, x̄〉 + (z̄∗h)(x̄) − inf
x∈X

{〈ȳ∗, x〉 + (z̄∗h)(x)}
}

= 0.

Since the summands in the braces are nonnegative, they must be equal to zero
and this leads to the desired conclusion. ��

Remark 3.4.4. The optimality conditions (i) − (iii) in Theorem 3.4.6 can be
equivalently written as

ȳ∗ ∈ ∂f(x̄) ∩ (−∂(z̄∗g)(x̄)) and z̄∗ ∈ ∂g(h(x̄)).

The Lagrangian function of the pair of primal-dual problems (PCC) −
(DCC2) is denoted by LCC2 : X × X∗ × Z∗ → R and is defined for all
(x, y∗, z∗) ∈ X × X∗ × Z∗ as being

LCC2(x, y∗, z∗) = inf
y∈X,
z∈Z

{ΦCC2(x, y, z) − 〈y∗, y〉 − 〈z∗, z〉}

= inf
y∈X,
z∈Z

{f(x+y)+g(h(x)+z)−〈y∗, y〉−〈z∗, z〉} = inf
r∈X,
s∈Z

{f(r)+g(s)−〈y∗, r−x〉

−〈z∗, s − h(x)〉} = 〈y∗, x〉 + (z∗h)(x) + inf
r∈Y

{f(r) − 〈y∗, r〉}

+ inf
s∈Z

{g(s) − 〈z∗, s〉} = 〈y∗, x〉 + (z∗h)(x) − f∗(y∗) − g∗(z∗)

=
{

〈y∗, x〉 + (z∗h)(x) − f∗(y∗) − g∗(z∗), if z∗ ∈ C∗,
−∞, otherwise.

It holds
sup

y∗∈X∗,z∗∈Z∗
inf

x∈X
LCC2(x, y∗z∗)
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= sup
y∗∈X∗,z∗∈C∗

{

−f∗(y∗) − g∗(z∗) + inf
x∈X

{〈y∗, x〉 + (z∗h)(x)}
}

= sup
y∗∈X∗,z∗∈Z∗

{−f∗(y∗) − g∗(z∗) − (z∗h)∗(−y∗)}

and
inf

x∈X
sup

y∗∈X∗,z∗∈C∗
LCC2(x, y∗, z∗)

= inf
x∈X

{

sup
y∗∈Y ∗

{〈y∗, x〉 − f∗(y∗)} + sup
z∗∈Z∗

{〈z∗, h(x)〉 − g∗(z∗)}
}

= inf
x∈X

{f∗∗(x) + g∗∗(h(x))} .

By Theorem 3.3.2 we obtain the following result, where we omit assuming
properness for f and g.

Theorem 3.4.7. Assume that f and g are convex and lower semicontinuous
functions fulfilling f(x) > −∞ for all x ∈ X and g(z) > −∞ for all z ∈ Z,
respectively. Then the following statements are equivalent:

(i) (x̄, ȳ∗, z̄∗) is a saddle point of LCC2 ;
(ii) x̄ ∈ X is an optimal solution to (PCC), (ȳ∗, z̄∗) ∈ X∗ ×C∗ is an optimal

solution to (DCC2) and v(PCC) = v(DCC2).

Remark 3.4.5. Since f∗∗(x) ≤ f(x) and g∗∗(h(x)) ≤ g(h(x)) for all x ∈ X, the
implication (ii) ⇒ (i) in Theorem 3.4.7 holds always without any assumption
on the functions involved.

Combining Theorem 3.4.5 and Theorem 3.4.7 one can state the following
result.

Corollary 3.4.8. Let Z be partially ordered by the convex cone C ⊆ Z, S ⊆ X
be a nonempty convex set, f : X → R a proper, convex and lower semicon-
tinuous function, h : X → Z ∪ {+∞C} a proper and C-convex function and
g : Z∪{+∞C} → R a proper, convex, lower semicontinuous and C-increasing
function fulfilling g(+∞C) = +∞ and h(dom f ∩ dom h) ∩ dom g 	= ∅. As-
sume that one of the regularity conditions (RCCC2

i ), i ∈ {1, 2, 3, 4}, is ful-
filled. Then x̄ ∈ X is an optimal solution to (PCC) if and only if there exists
(ȳ∗, z̄∗) ∈ X∗×C∗ such that (x̄, ȳ∗, z̄∗) is a saddle point of LCC2 . In this case
(ȳ∗, z̄∗) is an optimal solution to the dual (DCC2).

3.5 Stable strong duality and formulae for conjugate
functions and subdifferentials

The aim of this section is to introduce the concept of stable strong duality, to
prove that the regularity conditions introduced in section 3.2 ensure it and to
derive as a consequence of it different formulae for conjugate functions and
subdifferentials.
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3.5.1 Stable strong duality for the general scalar optimization
problem

Consider again the general optimization problem

(PG) inf
x∈X

Φ(x, 0),

where Φ : X × Y → R is a perturbation function and X and Y are Hausdorff
locally convex spaces. By means of Φ we assigned in section 3.1 to (PG) the
following dual problem

(DG) sup
y∗∈Y ∗

{−Φ∗(0, y∗)}.

For every x∗ ∈ X∗ one can consider the following extended primal optimization
problem

(PGx∗
) inf

x∈X
{Φ(x, 0) − 〈x∗, x〉}.

The function Φx∗
: X ×Y → R, Φx∗

(x, y) = Φ(x, y)−〈x∗, x〉 is a perturbation
function for (PGx∗

) and it introduces the following conjugate dual

(DGx∗
) sup

y∗∈Y ∗
{−(Φx∗

)∗(0, y∗)}.

Since
(Φx∗

)∗(u∗, y∗) = sup
x∈X,
y∈Y

{

〈u∗, x〉 + 〈y∗, y〉 − Φx∗
(x, y)

}

= sup
x∈X,
y∈Y

{〈u∗ + x∗, x〉 + 〈y∗, y〉 − Φ(x, y)} = Φ∗(u∗ + x∗, y∗),

we get for every x∗ ∈ X∗ the following formulation for the conjugate dual of
(PGx∗

)
(DGx∗

) sup
y∗∈Y ∗

{−Φ∗(x∗, y∗)}.

The following definition introduces the notion of stable strong duality.

Definition 3.5.1. We say that between the optimization problems (PG) and
(DG) stable strong duality holds, if for all x∗ ∈ X∗ for (PGx∗

) and (DGx∗
)

strong duality holds, i.e. v(PGx∗
) = v(DGx∗

) and the dual (DGx∗
) has an

optimal solution.

Next we show that the regularity conditions we introduced in order to
guarantee strong duality for (PG) and (DG) are also guaranteeing the exis-
tence of stable strong duality for (PG) and (DG).

Assume that Φ is a proper and convex function with 0 ∈ PrY (dom Φ). For
all x∗ ∈ X∗ we have dom Φx∗

= dom Φ. Obviously, the generalized interior
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point regularity conditions (RCΦ
i ), i ∈ {1, 2, 3}, are sufficient for strong du-

ality for (PGx∗
) and (DGx∗

). Coming now to the closedness type regularity
condition (RCΦ

4 ), if this is fulfilled, then by Theorem 3.2.2 follows that

sup
x∈X

{〈x∗, x〉 − Φ(x, 0)} = min
y∗∈Y ∗

{Φ∗(x∗, y∗)} ∀x∗ ∈ X∗,

which is the same with v(PGx∗
) = v(DGx∗

) and the dual (DGx∗
) has an

optimal solution, for all x∗ ∈ X∗. Thus one can state the following stable
strong duality result (see [25]).

Theorem 3.5.1. Let Φ : X×Y → R be a proper and convex function such that
0 ∈ PrY (dom Φ). If one of the regularity conditions (RCΦ

i ), i ∈ {1, 2, 3, 4}, is
fulfilled, then for (PG) and (DG) stable strong duality holds, which is nothing
else than

sup
x∈X

{〈x∗, x〉 − Φ(x, 0)} = min
y∗∈Y ∗

{Φ∗(x∗, y∗)} ∀x∗ ∈ X∗. (3.21)

Next we state for the different pairs of scalar primal-dual problems investi-
gated in this chapter stable strong duality theorems. We also show that the
existence of stable strong duality is a sufficient condition for deriving different
subdifferential formulae.

The approach we choose is the following: we start with the optimization
problem with a composed convex function as objective function and treat the
other classes of optimization problems as special cases of it.

3.5.2 The composed convex optimization problem

Let X and Z be Hausdorff locally convex spaces, where Z is assumed to be
partially ordered by the convex cone C ⊆ Z. Consider f : X → R a proper
and convex function, h : X → Z ∪ {+∞C} a proper and C-convex function
and g : Z ∪{+∞C} → R a proper, convex and C-increasing function fulfilling
g(+∞C) = +∞ and h(dom f ∩ dom h) ∩ dom g 	= ∅. For the optimization
problem

(PCC) inf
x∈X

{f(x) + g ◦ h(x)} ,

by using as perturbation function ΦCC1 : X × Z → R, ΦCC1(x, z) = f(x) +
g(h(x) + z), we introduced in section 3.4 the following dual problem

(DCC1) sup
z∗∈C∗

{−g∗(z∗) − (f + (z∗h))∗(0)} .

Next one can state the following result.

Theorem 3.5.2. (a) Let Z be partially ordered by the convex cone C ⊆ Z,
f : X → R be a proper and convex function, h : X → Z∪{+∞C} a proper
and C-convex function and g : Z ∪ {+∞C} → R a proper, convex and C-
increasing function such that g(+∞C) = +∞ and h(dom f ∩ dom h) ∩
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dom g 	= ∅. If one of the regularity conditions (RCCC1
i ), i ∈ {1, 2, 3, 4}, is

fulfilled, then for (PCC) and (DCC1) stable strong duality holds, that is

(f + g ◦ h)∗(x∗) = min
z∗∈C∗

{g∗(z∗) + (f + (z∗h))∗(x∗)} ∀x∗ ∈ X∗. (3.22)

(b) If for (PCC) and (DCC1) stable strong duality holds, then for all x ∈ X
one has

∂(f + g ◦ h)(x) =
⋃

z∗∈∂g(h(x))

∂(f + (z∗h))(x). (3.23)

Proof. (a) The assertion follows as a consequence of Theorem 3.4.1, Theorem
3.5.1 and relation (3.18).

(b) In case x /∈ dom f ∩ dom h ∩ h−1(dom g) the conclusion follows via
the conventions made for the subdifferential. Let be x ∈ dom f ∩ dom h ∩
h−1(dom g).

”⊇” Consider z∗ ∈ ∂g(h(x)) and x∗ ∈ ∂(f + (z∗h))(x). We have

〈z∗, z − h(x)〉 ≤ g(z) − g(h(x)) ∀z ∈ Z

and
〈x∗, t − x〉 ≤ (f + (z∗h))(t) − (f + (z∗h))(x) ∀t ∈ X.

Take an arbitrary t ∈ X. If h(t) = +∞C , then g(h(t)) = +∞ and (f + g ◦
h)(t) = +∞. Thus 〈x∗, t − x〉 ≤ (f + g ◦ h)(t) − (f + g ◦ h)(x).

In case h(t) ∈ Z we have

〈x∗, t − x〉 ≤ f(t) − f(x) + 〈z∗, h(t) − h(x)〉 ≤ f(t) − f(x)

+g(h(t)) − g(h(x)) = (f + g ◦ h)(t) − (f + g ◦ h)(x).

Since in both situations 〈x∗, t − x〉 ≤ (f + g ◦ h)(t) − (f + g ◦ h)(x) for all
t ∈ X, it follows that x∗ ∈ ∂(f + g ◦ h)(x).

”⊆” For proving the opposite inclusion we take an arbitrary x∗ ∈ ∂(f +
g ◦h)(x). By Theorem 2.3.12 we get (f + g ◦h)∗(x∗)+ (f + g ◦h)(x) = 〈x∗, x〉.
Since (3.22) holds, there exists z̄∗ ∈ C∗ such that (f + g ◦ h)∗(x∗) = g∗(z̄∗) +
(f + (z̄∗h))∗(x∗) and by means of the Young-Fenchel inequality we obtain
further

〈x∗, x〉 = g∗(z̄∗) + g(h(x)) + (f + (z̄∗h))∗(x∗) + f(x)

≥ (z̄∗h)(x) + f(x) + (f + (z̄∗h))∗(x∗) ≥ 〈x∗, x〉.
The inequalities in the relation above must be fulfilled as equalities and this
means that

g∗(z̄∗) + g(h(x)) = 〈z̄∗, h(x)〉 ⇔ z̄∗ ∈ ∂g(h(x))

and

(f + (z̄∗h))∗(x∗) + (f + z̄∗h)(x) = 〈x∗, x〉 ⇔ x∗ ∈ ∂(f + z̄∗h)(x),

respectively. In conclusion, x∗ ∈
⋃

z∗∈∂g(h(x)) ∂(f +(z∗h))(x) and this delivers
the desired result. ��
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Remark 3.5.1. From the proof of the previous theorem one can easily deduce
that the inclusion

⋃

z∗∈∂g(h(x))

∂(f + (z∗h))(x) ⊆ ∂(f + g ◦ h)(x)

holds for all x ∈ X without any other assumption.

Considering ΦCC2 : X×X×Z → R, ΦCC2(x, y, z) = f(x+y)+g(h(x)+z),
as perturbation function, in subsection 3.4.2 we introduced to (PCC) another
dual problem, which can be seen as a refinement of (DCC1), namely

(DCC2) sup
y∗∈X∗,z∗∈C∗

{−g∗(z∗) − f∗(y∗) − (z∗h)∗(−y∗)} .

Like for (DCC1), one can formulate also for (DCC2) a stable strong duality
theorem.

Theorem 3.5.3. (a) Let Z be partially ordered by the convex cone C ⊆ Z,
f : X → R be a proper and convex function, h : X → Z∪{+∞C} a proper
and C-convex function and g : Z ∪ {+∞C} → R a proper, convex and C-
increasing function such that g(+∞C) = +∞ and h(dom f ∩ dom h) ∩
dom g 	= ∅. If one of the regularity conditions (RCCC2

i ), i ∈ {1, 2, 3, 4}, is
fulfilled, then for (PCC) and (DCC2) stable strong duality holds, that is

(f + g ◦ h)∗(x∗) = min
y∗∈X∗,
z∗∈C∗

{g∗(z∗) + f∗(y∗) + (z∗h)∗(x∗ − y∗)} ∀x∗ ∈ X∗.

(3.24)
(b) If for (PCC) and (DCC2) stable strong duality holds, then for all x ∈ X

one has
∂(f + g ◦ h)(x) = ∂f(x) +

⋃

z∗∈∂g(h(x))

∂(z∗h)(x). (3.25)

Proof. (a) The assertion follows as a consequence of Theorem 3.4.1, Theorem
3.5.1 and relation (3.19).

(b) We omit giving the proof of (3.25) as it is similar to the one given for
(3.23). ��

Remark 3.5.2. (a) For all x∗ ∈ X∗ the following inequalities are fulfilled (see
also Remark 3.4.3)

(f + g ◦ h)∗(x∗) ≤ inf
z∗∈C∗

{g∗(z∗) + (f + (z∗h))∗(x∗)}

≤ inf
y∗∈X∗,
z∗∈C∗

{g∗(z∗) + f∗(y∗) + (z∗h)∗(x∗ − y∗)} .

Thus, if (3.24) holds, then (3.22) holds, too.
(b) From the proof of Theorem 3.5.3 follows that for all x ∈ X
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∂f(x) +
⋃

z∗∈∂g(h(x))

∂(z∗h)(x) ⊆
⋃

z∗∈∂g(h(x))

∂(f + (z∗h))(x)

⊆ ∂(f + g ◦ h)(x),

which is true without any other assumption. This means that if (3.25) holds,
then (3.23) holds, too.

In the following we consider different classes of optimization problems
and show how they can be treated as special cases of the composed convex
optimization problem (PCC). Formulae for conjugate functions and subdif-
ferentials are also derived from the general ones given in Theorem 3.5.2 and
Theorem 3.5.3, respectively.

3.5.3 Problems having the composition with a linear continuous
mapping in the objective function

Consider X and Y Hausdorff locally convex spaces, f : X → R and g : Y → R

proper and convex functions and A ∈ L(X,Y ) fulfilling dom f∩A−1(dom g) 	=
∅. To the primal problem

(PA) inf
x∈X

{f(x) + g(Ax)}

we assigned the following dual

(DA) sup
y∗∈Y ∗

{−f∗(−A∗y∗) − g∗(y∗)}.

From Theorem 3.5.1 and (3.3) we get the following result (see also Theorem
3.2.4 and Theorem 3.2.5).

Theorem 3.5.4. Let f : X → R and g : Y → R be proper and convex
functions and A ∈ L(X,Y ) such that dom f ∩ A−1(dom g) 	= ∅. If one of the
regularity conditions (RCA

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then for (PA) and
(DA) stable strong duality holds, that is

(f+g◦A)∗(x∗) = (f∗�A∗g∗)(x∗)= min
y∗∈Y ∗

{f∗(x∗ − A∗y∗) + g∗(y∗)} ∀x∗ ∈ X∗.

(3.26)

For deriving a formula for ∂(f + g ◦ A)(x), when x ∈ X, we reformulate
(PA) in the framework of (PCC). Let h : X → Y , h(x) = Ax and take as
ordering cone of Y C = {0}, which is convex and closed. For this choice
h is proper and C-convex and g is C-increasing. Moreover, C∗ = Y ∗ and
for all z∗ ∈ Y ∗ it holds (cf. Proposition 2.3.2(h)) (f + (z∗h))∗(x∗) = (f +
〈A∗z∗, ·〉)∗(x∗) = f∗(x∗ − A∗z∗) for all x∗ ∈ X∗. Notice that we also have
dom f ∩ dom h ∩ h−1(dom g) = dom f ∩ A−1(dom g) Thus the formula (3.26)
is nothing else than (3.22). But, as we have seen in the proof of Theorem
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3.5.2, if (3.22) holds, then for all x ∈ X, one has (cf. (3.23) and Proposition
2.3.13(a))

∂(f + g ◦ A)(x) = ∂(f + g ◦ h)(x) =
⋃

z∗∈∂g(h(x))

∂(f + (z∗h))(x)

=
⋃

z∗∈∂g(Ax)

∂(f +〈A∗z∗, ·〉)(x) = ∂f(x)+
⋃

z∗∈∂g(Ax)

A∗z∗ = ∂f(x)+A∗∂g(Ax).

This leads to the following statement.

Theorem 3.5.5. If for (PA) and (DA) stable strong duality holds, then for
all x ∈ X one has

∂(f + g ◦ A)(x) = ∂f(x) + A∗∂g(Ax). (3.27)

Remark 3.5.3. One can notice that for this special choice of h the formula
(3.24) turns out to be (3.26), too. Indeed,

(f + g ◦ h)∗(x∗) = min
y∗∈X∗,
z∗∈C∗

{g∗(z∗) + f∗(y∗) + (z∗h)∗(x∗ − y∗)} ∀x∗ ∈ X∗

is nothing else than

(f+g◦A)∗(x∗) = min
y∗,z∗∈X∗

{g∗(z∗) + f∗(y∗) + (〈A∗z∗, ·〉)∗(x∗ − y∗)} ∀x∗ ∈ X∗

⇔ (f + g ◦ A)∗(x∗) = min
y∗,z∗∈X∗,

x∗=y∗+A∗z∗

{g∗(z∗) + f∗(y∗)} ∀x∗ ∈ X∗

⇔ (f + g ◦ A)∗(x∗) = min
y∗∈X∗

{f∗(x∗ − A∗y∗) + g∗(y∗)} ∀x∗ ∈ X∗.

More than that, one can easily see that (3.25) is in this case equivalent to
(3.27).

In case X = Y and A = idX , by Theorem 3.5.4 and Theorem 3.5.5 we get
the following results concerning the primal problem

(P id) inf
x∈X

{f(x) + g(x)}

and its Fenchel dual

(Did) sup
y∗∈X∗

{−f∗(−y∗) − g∗(y∗)}.

Theorem 3.5.6. (a) Let f, g : X → R be proper and convex functions such
that dom f ∩ dom g 	= ∅. If one of the regularity conditions (RC id

i ), i ∈
{1, 2, 3, 4}, is fulfilled, then for (P id) and (Did) stable strong duality holds,
that is

(f + g)∗(x∗) = (f∗�g∗)(x∗) = min
y∗∈X∗

{f∗(x∗ − y∗) + g∗(y∗)} ∀x∗ ∈ X∗.

(3.28)
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(b) If for (P id) and (Did) stable strong duality holds, then for all x ∈ X one
has

∂(f + g)(x) = ∂f(x) + ∂g(x). (3.29)

Another consequence of Theorem 3.5.4 and Theorem 3.5.5 can be delivered
whenever f : X → R, f ≡ 0, by considering the primal problem

(PAg ) inf
x∈X

{g(Ax)}

along with its conjugate dual

(DAg ) sup
y∗∈Y ∗,
A∗y∗=0

{−g∗(y∗)}.

Theorem 3.5.7. (a) Let g : Y → R be a proper and convex function and
A ∈ L(X,Y ) such that A−1(dom g) 	= ∅. If one of the regularity conditions
(RC

Ag

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then for (PAg) and (DAg ) stable strong
duality holds, that is

(g◦A)∗(x∗) = (A∗g∗)(x∗) = min {g∗(y∗) : x∗ = A∗y∗} ∀x∗ ∈ X∗. (3.30)

(b) If for (PAg ) and (DAg ) stable strong duality holds, then for all x ∈ X one
has

∂(g ◦ A)(x) = A∗∂g(Ax). (3.31)

Further, consider fi : X → R, i = 1, ...,m, proper and convex functions
such that

⋂m
i=1 dom fi 	= ∅. We take g : Xm → R, g(x1, ..., xm) =

∑m
i=1 fi(xi)

and A : X → Xm, Ax = (x, ..., x). To the primal optimization problem

(PΣ) inf
x∈X

{

m
∑

i=1

fi(x)

}

we assigned the following conjugate dual

(DΣ) sup
xi∗∈X∗,i=1,...,m,

mP

i=1
xi∗=0

{

−
m
∑

i=1

f∗
i (xi∗)

}

.

Theorem 3.5.7 and Proposition 2.3.13(b) lead to the following result (see also
Theorem 3.2.8), noticing that for all (x1∗, ..., xm∗) ∈ (X∗)m, g∗(x1∗, ..., xm∗) =
∑m

i=1 f∗
i (xi∗) and A∗(x1∗, ..., xm∗) =

∑m
i=1 xi∗.

Theorem 3.5.8. (a) Let fi : X → R, i = 1, ...,m, be proper and convex func-
tions such that

⋂m
i=1 dom fi 	= ∅. If one of the regularity conditions (RCΣ

i ),
i ∈ {1, 2, 3, 4}, is fulfilled, then for (PΣ) and (DΣ) stable strong duality
holds, that is
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(

m
∑

i=1

fi

)∗
(x∗) = (f∗

1 �...�f∗
m)(x∗) =

min

{

m
∑

i=1

f∗
i (xi∗) : x∗ =

m
∑

i=1

xi∗
}

∀x∗ ∈ X∗. (3.32)

(b) If for (PΣ) and (DΣ) stable strong duality holds, then for all x ∈ X one
has

∂

(

m
∑

i=1

fi

)

(x) =
m
∑

i=1

∂fi(x). (3.33)

3.5.4 Problems with geometric and cone constraints

Consider the Hausdorff locally convex spaces X and Z, the latter partially
ordered by the convex cone C ⊆ Z, S a nonempty and convex subset of X,
f : X → R a proper and convex function and g : X → Z a proper and
C-convex function fulfilling dom f ∩ S ∩ g−1(−C) 	= ∅. For the optimization
problem

(PC) inf
x∈A

f(x),

A = {x ∈ S : g(x) ∈ −C}
and its Lagrange dual problem

(DCL) sup
z∗∈C∗

inf
x∈S

{f(x) + (z∗g)(x)}

we formulate in the following a stable strong duality result by using Theorem
3.5.1 and relation (3.6) (see also Theorem 3.2.9 and Theorem 3.2.10).

Theorem 3.5.9. Let Z be partially ordered by the convex cone C ⊆ Z, S ⊆ X
be a nonempty convex set, f : X → R a proper and convex function and
g : X → Z a proper and C-convex function such that dom f∩S∩g−1(−C) 	= ∅.
If one of the regularity conditions (RCCL

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then for
(PC) and (DCL) stable strong duality holds, that is

(f + δA)∗(x∗) = min
z∗∈C∗

(f + (z∗g))∗S(x∗) ∀x∗ ∈ X∗. (3.34)

Next we rewrite (PC) as a particularization of the composed convex problem
(PCC). Define h̃ : X → Z ∪ {+∞C} by

h̃(x) =
{

g(x), if x ∈ S,
+∞C , otherwise,

and g̃ : Z ∪ {+∞C} → R, which fulfills g̃ = δ−C . We also suppose that
g̃(+∞C) = +∞. For all x ∈ X and x∗ ∈ X∗ it holds
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(f + g̃ ◦ h̃)(x) =
{

f(x), if x ∈ S, g(x) ∈ −C,
+∞, otherwise,

and
(f + g̃ ◦ h̃)∗(x∗) = (f + δA)∗(x∗).

Further, for z∗ ∈ Z∗ we have

g̃∗(z∗) =
{

0, if z∗ ∈ C∗,
+∞, otherwise,

while if z∗ ∈ C∗ it holds

(z∗h̃)(x) =
{

(z∗g)(x), if x ∈ S,
+∞, otherwise = ((z∗g) + δS)(x) ∀x ∈ X.

This means that (3.34) is nothing else than relation (3.22) applied for f, g̃ and
h̃, since the latter asserts that

(f + g̃ ◦ h̃)∗(x∗) = min
z∗∈C∗

{

g̃∗(z∗) + (f + (z∗h̃))∗(x∗)
}

∀x∗ ∈ X∗

⇔ (f + δA)∗(x∗) = min
z∗∈C∗

{(f + (z∗g) + δS)∗(x∗)} ∀x∗ ∈ X∗

⇔ (f + δA)∗(x∗) = min
z∗∈C∗

{(f + (z∗g))∗S(x∗)} ∀x∗ ∈ X∗.

On the other hand, by Theorem 3.5.2 relation (3.22) guarantees that for all
x ∈ X one has

∂(f + g̃ ◦ h̃)(x) =
⋃

z∗∈∂g̃(h̃(x))

∂(f + (z∗h̃))(x). (3.35)

One can easily notice that dom f ∩ dom h̃ ∩ h̃−1(dom g̃) = dom f ∩ S ∩
g−1(−C), (f + g̃ ◦ h̃)(x) = (f + δA)(x) for all x ∈ X and, for z∗ ∈ C∗,
(f + z∗h̃)(x) = (f +(z∗g)+ δS)(x) for all x ∈ X. Moreover, for x ∈ A it holds

z∗ ∈ ∂g̃(h̃(x)) ⇔ g̃∗(z∗) + g̃(h̃(x)) = 〈z∗, h̃(x)〉

⇔ z∗ ∈ C∗ and (z∗g)(x) = 0.

Thus, in this special case, relation (3.35) can be equivalently written as

∂(f + δA)(x) =
⋃

z∗∈C∗,
(z∗g)(x)=0

∂(f + (z∗g) + δS)(x) ∀x ∈ X

and this leads to the following result.

Theorem 3.5.10. If for (PC) and (DCL) stable strong duality holds, then for
all x ∈ X one has

∂(f + δA)(x) =
⋃

z∗∈C∗,
(z∗g)(x)=0

∂(f + (z∗g) + δS)(x). (3.36)
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Considering now the Fenchel dual to (PC)

(DCF ) sup
y∗∈X∗

{−f∗(y∗) − σA(−y∗)},

by Theorem 3.5.1, Theorem 3.2.11 and relations (3.7) and (3.29) we get the
following result.

Theorem 3.5.11. (a) Let Z be partially ordered by the convex cone C ⊆ Z,
S ⊆ X be a nonempty convex set, f : X → R a proper and convex function
and g : X → Z a proper and C-convex function such that dom f ∩ S ∩
g−1(−C) 	= ∅. If one of the regularity conditions (RCCF

i ), i ∈ {1, 2, 3, 4},
is fulfilled, then for (PC) and (DCF ) stable strong duality holds, that is

(f + δA)∗(x∗) = min
y∗∈X∗

{f∗(y∗) + σA(x∗ − y∗)} ∀x∗ ∈ X∗. (3.37)

(b) If for (PC) and (DCF ) stable strong duality holds, then for all x ∈ X one
has

∂(f + δA)(x) = ∂f(x) + N(A, x). (3.38)

Remark 3.5.4. Theorem 3.5.11 indirectly provides regularity conditions under
which the so-called Pshenichnyi-Rockafellar formula, which is nothing else
than relation (3.38) in case g ≡ 0, is fulfilled.

The third dual to (PC) we consider here is the Fenchel-Lagrange dual

(DCF L) sup
y∗∈X∗,z∗∈C∗

{−f∗(y∗) − (z∗g)∗S(−y∗)} .

First we characterize the stable strong duality for (PC) and (DCF L) (cf. The-
orem 3.5.1, Theorem 3.2.12, Theorem 3.2.13 and relation (3.8)).

Theorem 3.5.12. Let Z be partially ordered by the convex cone C ⊆ Z, S ⊆
X be a nonempty convex set, f : X → R a proper and convex function and
g : X → Z a proper and C-convex function such that dom f∩S∩g−1(−C) 	= ∅.
If one of the regularity conditions (RCCF L

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then
for (PC) and (DCF L) stable strong duality holds, that is

(f + δA)∗(x∗) = min
y∗∈X∗,z∗∈C∗

{f∗(y∗) + (z∗g)∗S(x∗ − y∗)} ∀x∗ ∈ X∗. (3.39)

By using the notations we made above, relation (3.39) is nothing else than

(f+g̃◦h̃)∗(x∗) = min
y∗∈X∗,z∗∈C∗

{

g̃∗(z∗) + f∗(y∗) + (z∗h̃)∗(x∗ − y∗)
}

∀x∗ ∈ X∗,

which is relation (3.24) in Theorem 3.5.3. By this theorem one has that for
all x ∈ X (cf. (3.25))



120 3 Conjugate duality in scalar optimization

∂(f + g̃ ◦ h̃)(x) = ∂f(x) +
⋃

z∗∈∂g̃(h̃(x))

∂(z∗h̃)(x)

or, equivalently, for all x ∈ X

∂(f + δA)(x) = ∂f(x) +
⋃

z∗∈C∗,
(z∗g)(x)=0

∂((z∗g) + δS)(x).

The following result closes the section.

Theorem 3.5.13. If for (PC) and (DCF L) stable strong duality holds, then
for all x ∈ X one has

∂(f + δA)(x) = ∂f(x) +
⋃

z∗∈C∗,
(z∗g)(x)=0

∂((z∗g) + δS)(x). (3.40)
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Conjugate vector duality via scalarization

In this chapter we introduce to different vector optimization problems cor-
responding vector dual problems by using some duality concepts having as
starting point the scalar duality theory. Since there is a certain similarity
between its definition and the one of the duals introduced via scalarization,
we also investigate the classical geometric vector duality concept. More than
that, we give a general approach for treating duality in vector optimization
independently from the nature of the scalarization functions considered. We
also provide a first look at the duality theory for linear vector optimization
problems in Hausdorff locally convex spaces.

4.1 Fenchel type vector duality

Let X,Y and V be Hausdorff locally convex spaces and assume that V is
partially ordered by the nontrivial pointed convex cone K ⊆ V . Further, let
f : X → V = V ∪ {±∞K} and g : Y → V be given proper and K-convex
functions and A ∈ L(X,Y ) such that dom f ∩ A−1(dom g) 	= ∅.

To the primal vector optimization problem

(PV A) Min
x∈X

{f(x) + g(Ax)}

we introduce dual vector optimization problems with respect to both prop-
erly efficient solutions in the sense of linear scalarization and weakly efficient
solutions and prove weak, strong and converse duality theorems.

4.1.1 Duality with respect to properly efficient solutions

In this subsection we investigate a duality approach to (PV A) with respect to
properly efficient solutions in the sense of linear scalarization. Since we do not
have to differentiate between different classes of such solutions we call them
simply properly efficient solutions. We say that x̄ ∈ X is a properly efficient
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solution to (PV A) if x̄ ∈ dom f ∩ A−1(dom g) and f(x̄) ∈ PMinLSc((f + g ◦
A)(dom f∩A−1(dom g)),K). This means that there exists v∗ ∈ K∗0 such that
〈v∗, (f + g ◦ A)(x̄)〉 ≤ 〈v∗, (f + g ◦ A)(x)〉 for all x ∈ X.

The vector dual problem to (PV A) we investigate in this subsection is

(DV A) Max
(v∗,y∗,v)∈BA

hA(v∗, y∗, v),

where

BA = {(v∗, y∗, v) ∈ K∗0 × Y ∗ × V : 〈v∗, v〉 ≤ −(v∗f)∗(−A∗y∗) − (v∗g)∗(y∗)}

and
hA(v∗, y∗, v) = v.

We prove first the existence of weak duality for (PV A) and (DV A).

Theorem 4.1.1. There is no x ∈ X and no (v∗, y∗, v) ∈ BA such that (f +
g ◦ A)(x) ≤K hA(v∗, y∗, v).

Proof. We assume the contrary, namely that there exist x ∈ X and (v∗, y∗, v) ∈
BA such that v−(f +g◦A)(x) = hA(v∗, y∗, v)−(f +g◦A)(x) ≥K 0. It is obvi-
ous that x ∈ dom f ∩ A−1(dom g) and that 〈v∗, v〉 > 〈v∗, f(x)〉 + 〈v∗, g(Ax)〉.
On the other hand, we have

〈v∗, f(x)〉 + 〈v∗, g(Ax)〉 ≥ inf
y∈X

{〈v∗, f(y)〉 + 〈v∗, g(Ay)〉}.

Since the infimum on the right-hand side of the relation above is greater than
or equal to the optimal objective value of its corresponding scalar Fenchel
dual problem (cf. subsection 3.1.2), it holds

〈v∗, v〉 > inf
y∈X

{(v∗f)(y) + (v∗g)(Ay)}

≥ sup
z∗∈Y ∗

{−(v∗f)∗(−A∗z∗) − (v∗g)∗(z∗)} ≥ −(v∗f)∗(−A∗y∗) − (v∗g)∗(y∗).

As this contradicts the fact that (v∗, y∗, v) ∈ BA, the conclusion follows. ��

In order to be able to prove the following strong duality theorem for the
primal-dual vector pair (PV A)− (DV A) we have to impose a regularity con-
dition which actually ensures the existence of strong duality for the scalar
problem

inf
x∈X

{(v∗f)(x) + (v∗g)(Ax)}

and its Fenchel dual

sup
y∗∈Y ∗

{−(v∗f)∗(−A∗y∗) − (v∗g)∗(y∗)},

for all v∗ ∈ K∗0. This means that we are looking for sufficient conditions
which are independent from the choice of v∗ ∈ K∗0 and therefore we consider
the following regularity condition
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(RCV A) ∃x′ ∈ dom f ∩ A−1(dom g) such that g is continuous at Ax′.

One can notice that (RCV A) as well as the generalized interior point regularity
conditions which can be considered here are in this situation preferable to a
closedness type condition, as they are formulated independently of the choice
of v∗ ∈ K∗0.

Theorem 4.1.2. Assume that the regularity condition (RCV A) is fulfilled. If
x̄ ∈ X is a properly efficient solution to (PV A), then there exists (v̄∗, ȳ∗, v̄),
an efficient solution to (DV A), such that (f + g ◦ A)(x̄) = hA(v̄∗, ȳ∗, v̄) = v̄.

Proof. Having x̄ ∈ X a properly efficient solution to (PV A), it follows that
x̄ ∈ dom f ∩ A−1(dom g) and that there exists v̄∗ ∈ K∗0, which fulfills

〈v̄∗, (f + g ◦ A)(x̄)〉 = inf
x∈X

{(v̄∗f)(x) + (v̄∗g)(Ax)}.

The functions (v̄∗f) : X → R and (v̄∗g) : Y → R are proper and convex
functions with dom(v̄∗f) = dom f and dom(v̄∗g) = dom g. The regularity
condition (RCV A) yields that (v̄∗g) is continuous at Ax′ and so, by Theorem
3.2.4, there exists ȳ∗ ∈ Y ∗ such that

〈v̄∗, (f + g ◦ A)(x̄)〉 = inf
x∈X

{(v̄∗f)(x) + (v̄∗g)(Ax)}

= sup
y∗∈Y ∗

{−(v̄∗f)∗(−A∗y∗) − (v̄∗g)∗(y∗)} = −(v̄∗f)∗(−A∗ȳ∗) − (v̄∗g)∗(ȳ∗).

Defining v̄ := (f + g ◦ A)(x̄) ∈ V one has (v̄∗, ȳ∗, v̄) ∈ BA. Assuming that
(v̄∗, ȳ∗, v̄) is not an efficient solution to (DV A), there must exist an element
(v∗, y∗, v) in BA such that (f + g ◦ A)(x̄) = v̄ ≤K v = hA(v∗, y∗, v). But this
contradicts Theorem 4.1.1 and in this way the conclusion follows. ��

Remark 4.1.1. In case X and Y are Fréchet spaces and the functions f and
g are star K-lower semicontinuous, instead of assuming (RCV A) fulfilled, for
having strong duality for (PV A) and (DV A) it is enough to assume that
0 ∈ sqri(dom g−A(dom f)). On the other hand, if lin(dom g−A(dom f)) is a
finite dimensional linear subspace one can ask that ri(A(dom f))∩ri(dom g) 	=
∅. In both situations Theorem 3.2.4 guarantees strong duality for the scalar
problem

inf
x∈X

{(v∗f)(x) + (v∗g)(Ax)}

and its Fenchel dual problem for all v∗ ∈ K∗0.

The next result plays an important role in proving the converse duality
theorem.

Theorem 4.1.3. Assume that BA is nonempty and that the regularity condi-
tion (RCV A) is fulfilled. Then

V \ cl
(

(f + g ◦ A)(dom f ∩ A−1(dom g)) + K
)

⊆ core(hA(BA)).
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Proof. Let v̄ ∈ V \ cl
(

(f + g ◦ A)(dom f ∩ A−1(dom g)) + K
)

be arbitrarily
chosen. Since cl

(

(f + g ◦ A)(dom f ∩ A−1(dom g)) + K
)

⊆ V is a convex and
closed set, by Theorem 2.1.5 there exist v̄∗ ∈ V ∗ \ {0} and α ∈ R such that

〈v̄∗, v̄〉 < α < 〈v̄∗, v〉 ∀v ∈ cl
(

(f + g ◦ A)(dom f ∩ A−1(dom g)) + K
)

. (4.1)

Obviously, v̄∗ ∈ K∗ \ {0}. Further, since BA 	= ∅, there exists (ṽ∗, ỹ∗, ṽ) ∈
K∗0 × Y ∗ × V fulfilling

〈ṽ∗, ṽ〉 ≤ −(ṽ∗f)∗(−A∗ỹ∗) − (ṽ∗g)∗(ỹ∗) ≤ inf
x∈X

〈ṽ∗, (f + g ◦ A)(x)〉. (4.2)

Denote by γ := α − 〈v̄∗, v̄〉 > 0. For all s ∈ (0, 1) we have

〈sṽ∗ + (1− s)v̄∗, v̄〉 = 〈v̄∗, v̄〉+ s(〈ṽ∗, v̄〉− 〈v̄∗, v̄〉) = α− γ + s(〈ṽ∗, v̄〉−α + γ),

while, by (4.1) and (4.2), for all v ∈ (f + g ◦A)(dom f ∩A−1(dom g)) it holds

〈sṽ∗ + (1 − s)v̄∗, v〉 > s〈ṽ∗, ṽ〉 + (1 − s)α = α + s(〈ṽ∗, ṽ〉 − α).

Now we choose s̄ ∈ (0, 1) close enough to 0 such that s̄(〈ṽ∗, v̄〉−α + γ) < γ/2
and s̄(〈ṽ∗, ṽ〉 − α) > −γ/2. For v∗

s̄ := s̄ṽ∗ + (1 − s̄)v̄∗ ∈ K∗0 it holds

〈v∗s̄ , v̄〉 < α − γ

2
< 〈v∗

s̄ , v〉 ∀v ∈ (f + g ◦ A)(dom f ∩ A−1(dom g)),

which implies that

〈v∗s̄ , v̄〉 < inf
x∈X

〈v∗
s̄ , (f + g ◦ A)(x)〉.

Using the fact that the regularity assumption (RCV A) is fulfilled, by Theorem
3.2.4 there exists y∗

s̄ ∈ Y ∗ such that

〈v∗
s̄ , v̄〉 < inf

x∈X
〈v∗

s̄ , (f + g ◦ A)(x)〉
= sup

y∗∈Y ∗
{−(v∗

s̄f)∗(−A∗y∗) − (v∗s̄g)∗(y∗)} = −(v∗s̄f)∗(−A∗y∗
s̄ ) − (v∗s̄g)∗(y∗

s̄ ).

(4.3)
Let ε > 0 be such that

〈v∗
s̄ , v̄〉 + ε < −(v∗s̄f)∗(−A∗y∗

s̄ ) − (v∗s̄g)∗(y∗
s̄ ).

For all v ∈ V there exists δv > 0 such that it holds

〈v∗
s̄ , v̄ + λv〉 ≤ 〈v∗

s̄ , v̄〉 + ε < −(v∗s̄f)∗(−A∗y∗
s̄ ) − (v∗s̄g)∗(y∗

s̄ ) ∀λ ∈ [0, δv].

This means that for all λ ∈ [0, δv], (v∗
s̄ , y∗

s̄ , v̄ +λv) ∈ BA and, further, v̄ +λv ∈
hA(BA). In conclusion, v̄ ∈ core(hA(BA)). ��

We come now to the proof of the converse duality theorem.
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Theorem 4.1.4. Assume that the regularity condition (RCV A) is fulfilled
and that the set (f + g ◦ A)(dom f ∩ A−1(dom g)) + K is closed. Then for
every efficient solution (v̄∗, ȳ∗, v̄) to (DV A) there exists x̄ ∈ X, a properly
efficient solution to (PV A), such that (f + g ◦ A)(x̄) = hA(v̄∗, ȳ∗, v̄) = v̄.

Proof. Assume that v̄ /∈ (f + g ◦ A)(dom f ∩ A−1(dom g)) + K. By Theorem
4.1.3 follows that v̄ ∈ core(hA(BA)). Thus for k ∈ K \ {0} there exists λ > 0
such that vλ := v̄ + λk ≥K v̄ and vλ ∈ hA(BA). Since this contradicts the
fact that (v̄∗, ȳ∗, v̄) is an efficient solution to (DV A), we must have v̄ ∈ (f +
g ◦ A)(dom f ∩ A−1(dom g)) + K. This means that there exist x̄ ∈ dom f ∩
A−1(dom g) and k̄ ∈ K fulfilling v̄ = (f + g ◦ A)(x̄) + k̄. By Theorem 4.1.1
follows that k̄ = 0 and, consequently, v̄ = (f + g ◦ A)(x̄). Since

〈v̄∗, (f + g ◦ A)(x̄)〉 = 〈v̄∗, v̄〉

≤ −(v̄∗f)∗(−A∗ȳ∗) − (v̄∗g)∗(ȳ∗) ≤ inf
x∈X

〈v̄∗, (f + g ◦ A)(x)〉,

x̄ is a properly efficient solution to (PV A). ��

Remark 4.1.2. In the following we want to point out that in Theorem 4.1.3
and, consequently, in Theorem 4.1.4 the regularity condition (RCV A) can be
replaced with a weaker sufficient condition. As we have seen, in case (RCV A)
is fulfilled, for all v∗ ∈ K∗0 one has that

inf
x∈X

〈v∗, (f + g ◦ A)(x)〉 = sup
y∗∈Y ∗

{−(v∗f)∗(−A∗y∗) − (v∗g)∗(y∗)}

and the supremum is attained. This means that for all v∗ ∈ K∗0 the scalar
optimization problem

inf
x∈X

〈v∗, (f + g ◦ A)(x)〉

is stable (cf. section 3.1). But for the purposes of the last two theorems it is
enough to assume that (see also [101]) for all v∗ ∈ K∗0 the problem

inf
x∈X

〈v∗, (f + g ◦ A)(x)〉

is normal with respect to its Fenchel dual. This means that the optimal ob-
jective values of the infimum problem from above coincide with the optimal
objective value of its Fenchel dual even if the existence of an optimal solution
to the dual is not guaranteed. Nevertheless, this is enough to ensure in the
proof of Theorem 4.1.3 the existence of y∗

s̄ ∈ Y ∗ such that (see relation (4.3))

〈v∗
s̄ , v̄〉 < −(v∗

s̄f)∗(−A∗y∗
s̄ ) − (v∗s̄g)∗(y∗

s̄ ).

Having this fulfilled, the conclusion of the theorem follows in an identical
manner.
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The scalar Fenchel duality was involved for the first time in the definition of
a vector dual problem by Breckner and Kolumbán in [42,43] in a very general
framework (for more details the reader can consult also [73]). Particularizing
the approach introduced in these works to the primal problem (PV A) one
gets the following dual vector optimization problem

(DV A
BK) Max

(v∗,y∗,v)∈BA
BK

hA
BK(v∗, y∗, v),

where

BA
BK = {(v∗, y∗, v) ∈ K∗0 ×Y ∗×V : 〈v∗, v〉 = −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗)}

and
hA

BK(v∗, y∗, v) = v.

It is not hard to see that hA
BK(BA

BK) ⊆ hA(BA) and that this inclusion is in
general strict. This fact together with Theorem 4.1.1 guarantees that between
(PV A) and (DV A

BK) weak duality holds, too. Instead of proving the strong and
converse duality theorems for this primal-dual pair we show that (see also [28])
the sets of maximal elements of hA

BK(BA
BK) and hA(BA) coincide. In this way

the mentioned duality results will follow automatically from Theorem 4.1.2
and Theorem 4.1.4, respectively. According to the notations in section 2.4
the sets of maximal elements of hA

BK(BA
BK) and hA(BA) regarding the partial

ordering induced by the cone K will be denoted by Max(hA
BK(BA

BK),K) and
Max(hA(BA),K), respectively.

Theorem 4.1.5. It holds Max(hA
BK(BA

BK),K) = Max(hA(BA),K).

Proof. ”⊆” Let be (v̄∗, ȳ∗, v̄) ∈ BA
BK such that v̄ ∈ Max(hA

BK(BA
BK),K). Then

it holds v̄ ∈ hA
BK(BA

BK) ⊆ hA(BA). Assuming that v̄ /∈ Max(hA(BA),K), there
exists (v∗, y∗, v) ∈ BA fulfilling v ≥K v̄. It is obvious that (v∗, y∗, v) /∈ BA

BK ,
which means that

〈v∗, v〉 < −(v∗f)∗(−A∗y∗) − (v∗g)∗(y∗).

Consequently, there exists ṽ ∈ v + K \ {0} such that

〈v∗, ṽ〉 = −(v∗f)∗(−A∗y∗) − (v∗g)∗(y∗),

which yields (v∗, y∗, ṽ) ∈ BA
BK . Further, we have ṽ ≥K v̄ and this contradicts

the maximality of ṽ in hA
BK(BA

BK). Hence we must have Max(hA
BK(BA

BK),K) ⊆
Max(hA(BA),K).

”⊇” We take an element (v̄∗, ȳ∗, v̄) ∈ BA such that v̄ ∈ Max(hA(BA),K)
and prove first that (v̄∗, ȳ∗, v̄) ∈ BA

BK . Assuming the contrary, one has

〈v̄∗, v̄〉 < −(v̄∗f)∗(−A∗ȳ∗) − (v̄∗g)∗(ȳ∗).

In this situation it is easy to find ṽ ∈ v̄ + K \ {0} fulfilling
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〈v̄∗, v̄〉 < 〈v̄∗, ṽ〉 = −(v̄∗f)∗(−A∗ȳ∗) − (v̄∗g)∗(ȳ∗).

As (v̄∗, ȳ∗, ṽ) ∈ BA and ṽ ≥K v̄ this leads to a contradiction to the fact
that v̄ belongs to Max(hA(BA),K). Consequently, v̄ ∈ hA

BK(BA
BK). We sup-

pose further that v̄ /∈ Max(hA
BK(BA

BK),K). Then there exists v ∈ hA
BK(BA

BK)
such that v ≥K v̄. Since hA

BK(BA
BK) ⊆ hA(BA), it yields v ∈ hA(BA), but

this contradicts the maximality of v̄ in hA(BA). Thus the opposite inclusion
Max(hA(BA),K) ⊆ Max(hA

BK(BA
BK),K) is also shown. ��

Remark 4.1.3. We emphasize the fact that in the proof of the previous theorem
no assumptions regarding the functions and sets involved in the formulation
of (PV A) have been used. This means that the maximal sets of hA(BA) and
hA

BK(BA
BK) are always identical.

In case V = R and K = R+ one can identify V with R = R ∪ {±∞} and,
assuming that f : X → R and g : Y → R are proper and convex functions,
the primal problem (PV A) becomes in this particular case

(PA) inf
x∈X

{f(x) + g(Ax)}.

In this situation finding the properly efficient solutions to (PV A) means in fact
establishing which are the optimal solutions to (PA). An element (v∗, y∗, v)
belongs to BA if and only if v∗ > 0, y∗ ∈ Y ∗ and v ∈ R fulfill

v∗v ≤ −(v∗f)∗(−A∗y∗) − (v∗g)∗(y∗)

or, equivalently,

v∗v ≤ −v∗f∗
(

− 1
v∗A∗y∗

)

− v∗g∗
(

1
v∗ y∗

)

⇔ v ≤ −f∗
(

− 1
v∗A∗y∗

)

− g∗
(

1
v∗ y∗

)

.

The vector dual problem looks in this case like

(DA) sup
v∗>0,y∗∈Y ∗

{

−f∗
(

− 1
v∗A∗y∗

)

− g∗
(

1
v∗ y∗

)}

or, equivalently,

(DA) sup
y∗∈Y ∗

{−f∗(−A∗y∗) − g∗(y∗)} ,

which is nothing else than the classical scalar Fenchel dual problem to (PA)
(cf. subsection 3.1.2). The same conclusion can be drawn when particularizing
in an analogous way the vector dual problem (DV A

BK).
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4.1.2 Duality with respect to weakly efficient solutions

Next we assume that the ordering cone K has a nonempty interior and we
introduce a dual vector problem to

(PV A
w ) WMin

x∈X
{f(x) + g ◦ A(x)},

which puts in relation the weakly efficient solutions to the primal vector and
the dual vector problems. We say that x̄ ∈ X is a weakly efficient solution
to (PV A

w ) if x̄ ∈ dom f ∩ A−1(dom g) and f(x̄) ∈ WMin((f + g ◦ A)(dom f ∩
A−1(dom g)),K). The dual vector problem, which we investigate in the fol-
lowing, is defined by slightly modifying the formulation of (DV A)

(DV A
w ) WMax

(v∗,y∗,v)∈BA
w

hA
w(v∗, y∗, v),

where

BA
w = {(v∗, y∗, v) ∈ (K∗ \ {0}) × Y ∗ × V :

〈v∗, v〉 ≤ −(v∗f)∗(−A∗y∗) − (v∗g)∗(y∗)}

and
hA

w(v∗, y∗, v) = v.

Next we prove the weak duality theorem for (PV A
w ) and (DV A

w ).

Theorem 4.1.6. There is no x ∈ X and no (v∗, y∗, v) ∈ BA
w such that (f +

g ◦ A)(x) <K hA
w(v∗, y∗, v).

Proof. Assume that there exist x ∈ X and (v∗, y∗, v) ∈ BA
w such that v− (f +

g ◦A)(x) = hA
w(v∗, y∗, v)− (f +g ◦A)(x) >K 0. Thus x ∈ dom f ∩A−1(dom g)

and since v∗ ∈ K∗ \ {0} one has

〈v∗, (f + g ◦ A)(x)〉 < 〈v∗, v〉 ≤ −(v∗f)∗(−A∗y∗) − (v∗g)∗(y∗).

Like in the proof of Theorem 4.1.1, this leads to a contradiction. ��

We come now to the proof of the strong duality theorem.

Theorem 4.1.7. Assume that the regularity condition (RCV A) is fulfilled. If
x̄ ∈ X is a weakly efficient solution to (PV A

w ), then there exists (v̄∗, ȳ∗, v̄), a
weakly efficient solution to (DV A

w ), such that (f+g◦A)(x̄) = hA
w(v̄∗, ȳ∗, v̄) = v̄.

Proof. If x̄ ∈ X is a weakly efficient solution to (PV A
w ), then x̄ ∈ dom f ∩

A−1(dom g) and (f + g ◦ A)(x̄) is a weakly minimal element of the set (f +
g ◦A)(dom f ∩A−1(dom g)) ⊆ V . As (f + g ◦A)(dom f ∩A−1(dom g)) + K is
a nonempty convex set, by Corollary 2.4.26 (see Remark 2.4.11), there exists
v̄∗ ∈ K∗ \ {0}, such that

〈v̄∗, (f + g ◦ A)(x̄)〉 = inf
x∈X

{(v̄∗f)(x) + (v̄∗g)(Ax)}.
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Like in the proof of Theorem 4.1.2, one can provide a ȳ∗ ∈ Y ∗ such that
(v̄∗, ȳ∗, v̄) ∈ BA

w , where v̄ := (f + g ◦ A)(x̄) ∈ V . Further, by Theorem
4.1.6 there exists no (v∗, y∗, v) in BA

w such that (f + g ◦ A)(x̄) = v̄ <K v =
hA(v∗, y∗, v), which means that in fact (v̄∗, ȳ∗, v̄) is a weakly efficient solution
to (DV A

w ). ��

A converse duality theorem for the vector primal-dual pair (PV A
w )−(DV A

w )
can be also given. To this end we prove first the following preliminary result.

Theorem 4.1.8. Assume that the regularity condition (RCV A) is fulfilled.
Then

V \ cl
(

(f + g ◦ A)(dom f ∩ A−1(dom g)) + K
)

⊆ core(hA
w(BA

w)).

Proof. Let v̄ ∈ V \ cl
(

(f + g ◦ A)(dom f ∩ A−1(dom g)) + K
)

be arbitrarily
chosen. Since cl

(

(f + g ◦ A)(dom f ∩ A−1(dom g)) + K
)

⊆ V is a convex and
closed set, there exist v̄∗ ∈ K∗ \ {0} and α ∈ R such that

〈v̄∗, v̄〉 < α ≤ inf
x∈X

{(v̄∗f)(x) + (v̄∗g)(Ax)}.

Having (RCV A) fulfilled and one obtains a ȳ∗ ∈ Y ∗ such that

〈v̄∗, v̄〉 < −(v̄∗f)∗(−A∗ȳ∗) − (v̄∗g)∗(ȳ∗).

As in the proof of Theorem 4.1.3 one can conclude that v̄ ∈ core(hA
w(BA

w)).
��

Now we are able to prove the converse duality result.

Theorem 4.1.9. Assume that the regularity condition (RCV A) is fulfilled
and that the set (f + g ◦ A)(dom f ∩ A−1(dom g)) + K is closed. Then for
every weakly efficient solution (v̄∗, ȳ∗, v̄) to (DV A

w ) one has that v̄ is a weakly
minimal element of the set (f + g ◦ A)(dom f ∩ A−1(dom g)) + K.

Proof. We assume that v̄ /∈ (f +g◦A)(dom f ∩A−1(dom g))+K. By Theorem
4.1.8, one has v̄ ∈ core(hA

w(BA
w)). Considering an element k ∈ int(K) there ex-

ists λ > 0 such that vλ := v̄+λk >K v̄ and vλ ∈ hA
w(BA

w). This contradicts the
fact that (v̄∗, ȳ∗, v̄) is a weakly efficient solution to (DV A

w ) and, consequently,
we must have that v̄ ∈ (f + g ◦A)(dom f ∩A−1(dom g)) + K. Supposing that
v̄ is not a weakly minimal element of this set, there exist x ∈ X and k ∈ K
such that (f + g ◦A)(x) �K (f + g ◦A)(x) + k <K v̄. Theorem 4.1.6 leads to
a contradiction and this provides the desired conclusion. ��

Remark 4.1.4. (a) The observations made in Remark 4.1.1 and Remark 4.1.2
apply also for the strong and converse duality theorems, respectively, given
for the primal-dual vector pair (PV A

w ) - (DV A
w ).

(b) Another dual problem to (PV A
w ) can be defined in analogy to (DV A

BK)
as being
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(DV A
BKw) WMax

(v∗,y∗,v)∈BA
BKw

hA
BKw(v∗, y∗, v),

where

BA
BKw = {(v∗, y∗, v) ∈ (K∗ \ {0}) × Y ∗ × V :

〈v∗, v〉 = −(v∗f)∗(−A∗y∗) − (v∗g)∗(y∗)}

and
hA

BKw(v∗, y∗, v) = v.

Also in this case one has in general that hA
BKw(BA

BKw) � hA
w(BA

w) and it can be
shown, like in the proof of Theorem 4.1.5 that the weakly maximal elements
of these sets coincide.

(c) Particularizing (DV A
w ) and (DV A

BKw) for V = R and K = R+ they
both turn out to be the classical scalar Fenchel dual optimization problem.

4.2 Constrained vector optimization: a geometric
approach

In this section we consider as primal problem a vector optimization prob-
lem with geometric and cone constraints. With respect to both properly and
weakly efficient solutions to the primal we define a corresponding dual vec-
tor optimization problem by means of a so-called geometric approach which
was considered for the first time by Nakayama for vector problems in finite
dimensional spaces (cf. [142–144]).

Let X,Z and V be Hausdorff locally convex spaces and assume that Z
is partially ordered by the convex cone C ⊆ Z, while V is partially ordered
by the nontrivial pointed convex cone K ⊆ V . Further, let S ⊆ X be a
nonempty convex set, f : X → V = V ∪ {±∞K} a proper and K-convex
function and g : X → Z = Z ∪ {±∞C} a proper and C-convex function such
that dom f ∩S ∩ g−1(−C) 	= ∅. The primal vector optimization problem with
geometric and cone constraints we deal here with is

(PV C) Min
x∈A

f(x).

A = {x ∈ S : g(x) ∈ −C}

4.2.1 Duality with respect to properly efficient solutions

The dual vector problem we construct in this part is with respect to the prop-
erly efficient solutions to (PV C) in the sense of linear scalarization, which we
simply shall call properly efficient solutions. We say that x̄ ∈ A is a properly ef-
ficient solution to (PV C) if x̄ ∈ dom f and f(x̄) ∈ PMinLSc(f(dom f∩A),K).
This means that there exists v∗ ∈ K∗0 such that 〈v∗, f(x̄)〉 ≤ 〈v∗, f(x)〉 for all
x ∈ A. Consider the following dual vector problem with respect to the class
of efficient solutions
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(DV CN ) Max
(U,v)∈BCN

hCN (U, v),

where

BCN = {(U, v) ∈ L+(Z, V ) × V :
�x ∈ S ∩ dom g such that v ≥K f(x) + U(g(x))},

L+(Z, V ) = {U ∈ L(Z, V ) : U(C) ⊆ K}
and

hCN (U, v) = v.

The set L+(Z, V ) is known in the literature as the set of positive mappings
(cf. [52,156]). We first prove that for (PV C) and (DV CN ) weak duality holds.

Theorem 4.2.1. There is no x ∈ A and no (U, v) ∈ BCN such that f(x) ≤K

hCN (U, v).

Proof. We assume the contrary, namely that there exist x ∈ A and (U, v) ∈
BCN such that v = hCN (U, v) ≥K f(x). Since g(x) ∈ −C and U ∈ L+(Z, V )
we have that U(g(x)) ∈ −K, which yields f(x)+U(g(x)) �K f(x) ≤K v. But
this contradicts the fact that (U, v) is a feasible element to the dual (DV CN )
and so the proof is done. ��

The next theorem proves that under the fulfilment of the regularity con-
dition

(RCV CL) ∃x′ ∈ dom f ∩ S such that g(x′) ∈ − int(C)

the existence of strong duality for (PV C) and (DV CN ) is guaranteed.

Theorem 4.2.2. Assume that the regularity condition (RCV CL) is fulfilled.
If x̄ ∈ A is a properly efficient solution to (PV C), then there exists (U, v̄), an
efficient solution to (DV CN ), such that f(x̄) = hCN (U, v̄) = v̄.

Proof. Since x̄ ∈ X is a properly efficient solution to (PV C), there exists
v̄∗ ∈ K∗0 such that x̄ is an optimal solution to the scalar optimization problem

inf
x∈A

〈v̄∗, f(x)〉.

Using that (RCV CL) is fulfilled and taking into consideration the fact that
dom(v̄∗f) = dom f , by Theorem 3.3.16 follows that there exists z̄∗ ∈ C∗ such
that

〈v̄∗, f(x̄)〉 = inf
x∈S

{〈v̄∗, f(x)〉 + 〈z̄∗, g(x)〉} (4.4)

and
〈z̄∗, g(x̄)〉 = 0. (4.5)

Next we show that there exists a positive operator U ∈ L+(Z, V ) such that
U

∗
v̄∗ = z̄∗.
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As v̄∗ ∈ K∗0 there exists μ̄ ∈ K such that 〈v̄∗, μ̄〉 = 1. Define U : Z → V
by Uz = 〈z̄∗, z〉μ̄. It is obvious that U is linear and continuous. Further,
take an arbitrary c ∈ C. As z̄∗ ∈ C∗ one has that 〈z̄∗, c〉 ≥ 0, which yields
〈z̄∗, c〉μ̄ ∈ K. This is nothing else than U(C) ⊆ K and so U ∈ L+(Z, V ). More
than this, for all z ∈ Z it holds

〈U∗
v̄∗, z〉 = 〈v̄∗, Uz〉 = 〈z̄∗, z〉〈v̄∗, μ̄〉 = 〈z̄∗, z〉,

which means that U
∗
v̄∗ = z̄∗.

Taking v̄ := f(x̄) one can see that (U, v̄) ∈ BCN . Indeed, a ssuming the
contrary, one would have that there exists x ∈ S ∩ dom g such that f(x̄) =
v̄ ≥K f(x) + U(g(x)). Thus

〈v̄∗, f(x̄)〉 > 〈v̄∗, f(x)〉 + 〈v̄∗, U(g(x))〉

= 〈v̄∗, f(x)〉 + 〈U∗
v̄∗, g(x)〉 = 〈v̄∗, f(x)〉 + 〈z̄∗, g(x)〉.

But this contradicts relation (4.4) and this means that (U, v̄) is a feasible
solution to the dual problem (DV CN ). In order to get the desired conclusion
one has only to show that (U, v̄) is an efficient solution to (DV CN ). If this
were not the case, then there would exist a feasible element (U, v) to (DV CN )
such that v ≥K v̄ = f(x̄). In this way we obtain a contradiction to Theorem
4.2.1 and the desired conclusion follows. ��
Remark 4.2.1. As follows from the proof of the previous theorem, the regu-
larity condition (RCV CL) is used in order to ensure the existence of strong
duality for the scalar optimization problem

inf
x∈A

〈v̄∗, f(x)〉

and its Lagrange dual problem

sup
z∗∈C∗

inf
x∈S

{〈v̄∗, f(x)〉 + 〈z∗, g(x)〉}.

This condition assumes implicitly that the cone C has a nonempty interior,
an assumption which can fail in a lot of situations. In case X and Z are
Fréchet spaces, S is closed, f is star K-lower semicontinuous and g is C-epi
closed one can suppose instead, that 0 ∈ sqri(g(dom f ∩ S ∩ dom g) + C) (cf.
subsection 3.2.3). On the other hand, if lin(g(dom f∩S∩dom g)+C) is a finite
dimensional linear subspace, (RCV CL) can be replaced with the assumption
0 ∈ ri(g(dom f ∩ S ∩ dom g) + C).

Remark 4.2.2. In Nakayama’s papers [142–144], where the concept of geomet-
ric duality for vector optimization problems in finite dimensional spaces has
been introduced, the properly efficient solutions are also defined in the sense
of linear scalarization, but by considering v̄∗ from int(K∗). Working with the
quasi interior of K∗ we are able to cover a broader class of optimization prob-
lems, namely the ones for which one has K∗0 	= ∅, even if the interior of the
dual cone is empty.
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Before coming to the converse duality theorem we deliver some inclusion
relations involving the set hCN (BCN ) which extend [142, Proposition 3.1].

Proposition 4.2.3. It holds

hCN (BCN ) − K = hCN (BCN ) ⊆ cl (V \ (f(dom f ∩ A) + K)) . (4.6)

Proof. That hCN (BCN ) − K ⊇ hCN (BCN ) is obvious. Further, consider an
arbitrary element v ∈ hCN (BCN )−K. This means that there exist k ∈ K and
U ∈ L+(Z, V ) such that (U, v + k) ∈ BCN or, equivalently, v + k �K f(x) +
U(g(x)) for all x ∈ S∩dom g. From here follows that v �K f(x)+U(g(x)) for
all x ∈ S∩dom g, which is nothing else than (U, v) ∈ BCN . Thus v ∈ hCN (BCN )
and the equality in (4.6) is proven.

In order to show that hCN (BCN ) ⊆ cl (V \ (f(dom f ∩ A) + K)), it is
enough to prove that the sets hCN (BCN ) and int (f(dom f ∩ A) + K) have
no point in common. Assume that this is not the case and that ṽ is a common
element of these sets. Choosing k̃ ∈ K \ {0} one has that there exists λ̃ > 0
such that ṽ − λ̃k̃ ∈ int (f(dom f ∩ A) + K). But this implies that there exists
x̃ ∈ dom f ∩A with the property that ṽ ≥K f(x̃), which is a contradiction to
Theorem 4.2.1. ��

The next result will play a crucial role in proving the converse duality
theorem.

Theorem 4.2.4. Assume that qi(K) 	= ∅ and that the regularity condition
(RCV CL) is fulfilled. Then it holds

V \ cl (f(dom f ∩ A) + K) ⊆ hCN (BCN ) − (K \ {0}). (4.7)

Proof. Take an arbitrary element v̄ ∈ V \ cl (f(dom f ∩ A) + K). As dom f ∩
A 	= ∅ and f is a K-convex function one has that cl (f(dom f ∩ A) + K) is
a nonempty convex and closed subset of V . Theorem 2.1.5 guarantees the
existence of v̄∗ ∈ Y ∗ \ {0} and α ∈ R such that

〈v̄∗, v̄〉 < α < 〈v̄∗, v〉 ∀v ∈ cl (f(dom f ∩ A) + K) .

That v̄∗ ∈ K∗ \ {0} follows automatically. More than that, the relation above
implies

〈v̄∗, v̄〉 < inf
x∈A

〈v̄∗, f(x)〉.

Thus, by Theorem 3.2.9 there exists z̄∗ ∈ C∗ fulfilling

〈v̄∗, v̄〉 < inf
x∈A

〈v̄∗, f(x)〉 = inf
x∈S

{〈v̄∗, f(x)〉 + 〈z̄∗, g(x)〉}. (4.8)

As in the proof of Proposition 2.1.1 one can show that qi(K) ⊆ {v ∈ K :
〈v∗, v〉 > 0 for all v∗ ∈ K∗ \ {0}}. On the other hand, the assumption of
the nonemptiness for qi(K) guarantees the existence of a nonzero element in
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this set. Thus there exists μ̄ ∈ K such that 〈v̄∗, μ̄〉 = 1. Like in the proof of
Theorem 4.2.2 one can construct a linear continuous mapping U ∈ L+(Z, V )
such that U

∗
v̄∗ = z̄∗ and so relation (4.8) yields that

〈v̄∗, v̄〉 < inf
x∈S

{〈v̄∗, f(x)〉 + 〈v̄∗, U(g(x))〉} = inf
x∈S

〈v̄∗, f(x) + U(g(x))〉.

Then there exists ṽ ∈ v̄ + (K \ {0}) such that

〈v̄∗, v̄〉 < 〈v̄∗, ṽ〉 < inf
x∈S

〈v̄∗, f(x) + U(g(x))〉. (4.9)

Since v̄ ∈ ṽ− (K \ {0}), in order to get the desired conclusion it is enough
to prove that ṽ ∈ hCN (BCN ). We claim that (U, ṽ) ∈ BCN . Were this not the
case, one could find an element x̄ ∈ S∩dom g such that ṽ ≥K f(x̄)+U(g(x̄)),
which would imply 〈v̄∗, ṽ〉 ≥ 〈v̄∗, f(x̄)+U(g(x̄))〉. Since this would contradict
relation (4.9), we must have v̄ ∈ ṽ − (K \ {0}) ⊆ hCN (BCN ) − (K \ {0}). ��

Remark 4.2.3. The regularity condition (RCV CL) is used in the proof of The-
orem 4.2.4 in order to guarantee the existence of strong duality for the scalar
optimization problem

inf
x∈A

〈v̄∗, f(x)〉

and its Lagrange dual problem, more precisely, to ensure the existence of an
element z̄∗ ∈ C∗ such that relation (4.8) is true. In fact, it is enough to assume
that for all v∗ ∈ K∗ \ {0} the optimization problem

inf
x∈A

〈v∗, f(x)〉

is normal with respect to its Lagrange dual. This means that

inf
x∈A

〈v∗, f(x)〉 = sup
z∗∈C∗

inf
x∈S

{〈v∗, f(x)〉 + 〈z∗, g(x)〉},

whereby the existence of an optimal solution to the dual is no further guaran-
teed. Nevertheless, this assumption is enough for getting an element z̄∗ ∈ C∗

which fulfills
〈v∗, v〉 < inf

x∈S
{〈v∗, f(x)〉 + 〈z̄∗, g(x)〉}.

Remark 4.2.4. Combining the last two results one has that, in case qi(K) 	= ∅
and (RCV CL) is fulfilled, the following relations of inclusion hold

V \ cl (f(dom f ∩ A) + K) ⊆ hCN (BCN ) − (K \ {0})
⊆ hCN (BCN ) − K = hCN (BCN ) ⊆ cl (V \ (f(dom f ∩ A) + K)) .

(4.10)

Relation (4.10) generalizes [142, Proposition 3.1], providing a refinement of
this result as well as an extension of it to infinite dimensional spaces. It is also
worth mentioning that the assumptions we consider in this section are weaker
than the ones in the original work.
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We come now to the converse duality theorem for (PV C) and (DV CN ).

Theorem 4.2.5. Assume that qi(K) 	= ∅, the regularity condition (RCV CL)
is fulfilled and the set f(dom f ∩ A) + K is closed. Then for every efficient
solution (U, v̄) to (DV CN ) there exists x̄ ∈ A, an efficient solution to (PV C),
such that f(x̄) = hCN (U, v̄) = v̄.

Proof. We start by showing that v̄ ∈ f(dom f∩A)+K. Assuming the contrary,
by Theorem 4.2.4 one has v̄ ∈ hCN (BCN )− (K \{0}), which means that there
exists (U, v) ∈ BCN fulfilling v ≥K v̄. But this contradicts the fact that (U, v̄)
is an efficient solution to (DV CN ). Thus v̄ ∈ f(dom f ∩ A) + K and so there
exist x̄ ∈ dom f ∩ A and k̄ ∈ K for which v̄ = f(x̄) + k̄. By the weak duality
result (see Theorem 4.2.1) follows that k̄ = 0, which yields v̄ = f(x̄). That x̄
is an efficient solution to (PV C) follows also by Theorem 4.2.1. ��

Remark 4.2.5. (a) As pointed out in Remark 4.2.3 the converse duality the-
orem remains valid even if one supposes that for all v∗ ∈ K∗ \ {0} the opti-
mization problem

inf
x∈A

〈v∗, f(x)〉

is normal with respect to its Lagrange dual.
(b) Working in finite dimensional spaces, Nakayama has given in [142–144]

a converse duality result for the vector primal-dual pair (PV C)− (DV CN ) in
a more particular framework, namely by considering C ⊆ R

m and K ⊆ R
k

convex closed cones with nonempty interiors, S ⊆ R
n a nonempty convex set,

f : R
n → R

k a K-convex function and g : R
n → R

m a C-convex function.
Assuming that a Slater type condition is fulfilled, that the set (f, g)(S)+K×C
is closed and that there exists at least one properly efficient solution to (PV C),
Nakayama proves that for (PV C) and (DV CN ) converse duality holds. As one
can see, the assumption regarding the existence of a properly efficient solution
to the primal is not necessary, while instead of asking that (f, g)(S) + K ×C
is closed one can consider in this particular situation the weaker hypothesis
that f(A) + K is closed.

4.2.2 Duality with respect to weakly efficient solutions

In this second part of the section 4.2 we suppose that int(K) 	= ∅ and provide
a vector dual problem to

(PV C
w ) WMin

x∈A
f(x),

A = {x ∈ S : g(x) ∈ −C}

which this time relates the weakly efficient solutions to the primal and dual
problem. We say that x̄ ∈ A is a weakly efficient solution to (PV C

w ) if x̄ ∈
dom f and f(x̄) ∈ WMin(f(dom f ∩ A),K). The vector dual is defined as
follows
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(DV CN
w ) WMax

(U,v)∈BCN
w

hCN
w (U, v),

where

BCN
w = {(U, v) ∈ L+(Z, V ) × V :

�x ∈ S ∩ dom g such that v >K f(x) + U(g(x))},

and
hCN

w (U, v) = v.

Since int(K) ⊆ K \ {0} one has that BCN ⊆ BCN
w and, consequently,

hCN (BCN ) ⊆ hCN
w (BCN

w ). The weak and strong duality statements follow.

Theorem 4.2.6. There is no x ∈ A and no (U, v) ∈ BCN
w such that f(x) <K

hCN
w (U, v).

We omit the proof of Theorem 4.2.6 as it follows in the lines of Theorem
4.2.1.

Theorem 4.2.7. Assume that the regularity condition (RCV CL) is fulfilled.
If x̄ ∈ A is a weakly efficient solution to (PV C

w ), then there exists (U, v̄), a
weakly efficient solution to (DV CN

w ), such that f(x̄) = hCN
w (U, v̄) = v̄.

Proof. If x̄ ∈ X is a weakly efficient efficient solution to (PV C
w ), then x̄ ∈

dom f ∩A and f(x̄) is a weakly minimal element of the set f(dom f ∩A) ⊆ V .
Using that f(dom f ∩ A) + K is a nonempty convex set, by Corollary 2.4.26
(see also Remark 2.4.11) there exists v̄∗ ∈ K∗ \ {0} such that x̄ is an optimal
solution to the scalar optimization problem

inf
x∈A

〈v̄∗, f(x)〉.

Like in the proof of Theorem 4.2.2 one can construct an element U ∈ L+(Z, V )
such that for v̄ = f(x̄) it holds (U, v̄) ∈ BCN ⊆ BCN

w . By Theorem 4.2.6 no
(U, v) ∈ BCN

w , fulfilling v >K f(x), exists and this means that (U, v̄) is a
weakly efficient solution to the dual (DV CN

w ). ��

In analogy to Proposition 4.2.3 and Theorem 4.2.4 one can prove the fol-
lowing results, respectively. One can notice that since int(K) was assumed
nonempty, the assumption of the nonemptiness for the quasi interior of the
cone K becomes superfluous, thus it is omitted.

Proposition 4.2.8. It holds

hCN
w (BCN

w ) − K = hCN
w (BCN

w ) ⊆ cl (V \ (f(dom f ∩ A) + K)) . (4.11)

Theorem 4.2.9. Assume that the regularity condition (RCV CL) is fulfilled.
Then it holds

V \ cl (f(dom f ∩ A) + K) ⊆ hCN (BCN ) − int(K) ⊆ hCN
w (BCN

w ) − int(K).
(4.12)
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Combining (4.11) and (4.12), under the hypothesis that (RCV CL) is ful-
filled, one gets the following relations of inclusion

V \ cl (f(dom f ∩ A) + K) ⊆ hCN
w (BCN

w ) − int(K)
⊆ hCN

w (BCN
w ) − K = hCN

w (BCN
w ) ⊆ cl (V \ (f(dom f ∩ A) + K)) ,

(4.13)

which are useful when proving the converse duality theorem for (PV C
w ) and

(DV CN
w ). This is what we do next.

Theorem 4.2.10. Assume that the regularity condition (RCV CL) is fulfilled
and that the set f(dom f ∩ A) + K is closed. Then for every weakly efficient
solution (U, v̄) to (DV CN

w ) one has that v̄ is a weakly minimal element of the
set f(dom f ∩ A) + K.

Proof. Assuming that v̄ /∈ f(dom f ∩ A) + K, by (4.13) follows that v̄ ∈
hCN

w (BCN
w )− int(K). Thus there exists (U, v) ∈ BCN

w such that v >K v̄, which
contradicts the fact that (U, v̄) is a weakly efficient solution to (DV CN

w ). Con-
sequently, v̄ ∈ f(dom f ∩ A) + K and since there is no x ∈ dom f ∩ A with
v̄ >K f(x), v̄ turns out to be a weakly minimal element of f(dom f ∩A)+K.
��

Remark 4.2.6. (a) The observation made in Remark 4.2.1 applies also for the
strong duality theorem given for (PV C

w ) and (DV CL
w ). In other words, also for

this primal-dual vector pair the regularity condition (RCV CL) can be replaced
with alternative regularity conditions if X and Z are Fréchet spaces and some
topological assumptions for the sets and functions involved are fulfilled or, on
the other hand, if lin(g(dom f ∩S ∩ dom g) + C) is a finite dimensional linear
subspace.

(b) In both Theorem 4.2.9 and Theorem 4.2.10 instead of assuming that
(RCV CL) holds one can suppose the weaker assumption that for all v∗ ∈
K∗ \ {0} the optimization problem

inf
x∈A

〈v∗, f(x)〉

is normal with respect to its Lagrange dual. The argumentation is the same
as in Remark 4.2.3.

4.3 Constrained vector optimization: a linear
scalarization approach

In the third section of this chapter we construct further dual problems to
(PV C) with respect to the properly efficient solutions, all these duals having in
common the fact that in the formulation of their feasible sets scalar conjugate
dual problems are involved. This duality scheme was used for the first time
by Jahn in [101], where a vector dual problem to (PV C) has been introduced
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having as starting point the classical scalar Lagrange duality. The relations
between the maximal sets of the duals considered here are investigated and
some considerations on the duality for (PV C) with respect to weakly efficient
solutions are made.

To begin we introduce a general approach for defining a vector dual prob-
lem based on linear scalarization which will provide as particular instances
the above-mentioned vector dual problems to (PV C).

4.3.1 A general approach for constructing a vector dual problem
via linear scalarization

Let X and V be Hausdorff locally convex spaces and assume that V is partially
ordered by the nontrivial pointed convex cone K ⊆ V . Let F : X → V =
V ∪ {±∞K} be a proper and K-convex function and consider the general
vector optimization problem

(PV G) Min
x∈X

F (x).

Take Y another Hausdorff locally convex space and Φ : X × Y → V a proper
and K-convex so-called vector perturbation function with Φ(x, 0) = F (x) for
all x ∈ X. We say that x̄ ∈ X is a properly efficient solution to (PV G) (here
also considered in the sense of linear scalarization) if x̄ ∈ dom F and F (x̄) ∈
PMinLSc(F (dom F ),K). A vector dual problem to (PV G) with respect to
the properly efficient solutions can be introduced in the following way (for a
related approach, see [78])

(DV G) Max
(v∗,y∗,v)∈BG

hG(v∗, y∗, v),

where

BG = {(v∗, y∗, v) ∈ K∗0 × Y ∗ × V : 〈v∗, v〉 ≤ −(v∗Φ)∗(0,−y∗)}

and
hG(v∗, y∗, v) = v.

We prove that for the primal-dual pair (PV G) − (DV G) weak duality is
ensured.

Theorem 4.3.1. There is no x ∈ X and no (v∗, y∗, v) ∈ BG such that
F (x) ≤K hG(v∗, y∗, v).

Proof. We assume the contrary, namely that there exist x ∈ X and (v∗, y∗, v) ∈
BG such that F (x) ≤K hG(v∗, y∗, v) = v. It is obvious that x ∈ dom F and
〈v∗, v〉 > 〈v∗, F (x)〉.

On the other hand, by applying the Young-Fenchel inequality, it holds

〈v∗, v〉 ≤ −(v∗Φ)∗(0,−y∗) ≤ 〈v∗, F (x)〉,

which leads to a contradiction. ��
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For proving strong duality we consider the following regularity condition

(RCV Φ) ∃x′ ∈ X such that (x′, 0) ∈ dom Φ and Φ(x′, ·) is continuous at 0.

Theorem 4.3.2. Assume that the regularity condition (RCV Φ) is fulfilled. If
x̄ ∈ X is a properly efficient solution to (PV G), then there exists (v̄∗, ȳ∗, v̄),
an efficient solution to (DV G), such that F (x̄) = hG(v̄∗, ȳ∗, v̄) = v̄.

Proof. Since x̄ ∈ X is a properly efficient solution to (PV G), it follows that
x̄ ∈ dom F and there exists v̄∗ ∈ K∗0 fulfilling

〈v̄∗, F (x̄)〉 = inf
x∈X

〈v̄∗, F (x)〉 = inf
x∈X

(v̄∗Φ)(x, 0).

The function (x, y) �→ (v̄∗Φ)(x, y) is proper and convex and one has that
there exists x′ ∈ X such that (x′, 0) ∈ dom(v̄∗Φ) = dom Φ and (v̄∗Φ)(x′, ·) is
continuous at 0. By Theorem 3.2.1, there exists ȳ∗ ∈ Y ∗ such that

〈v̄∗, F (x̄)〉 = inf
x∈X

(v̄∗Φ)(x, 0) = sup
y∗∈Y ∗

{−(v̄∗Φ)∗(0,−y∗)} = −(v̄∗Φ)∗(0,−ȳ∗).

This has as consequence the fact that for v̄ = F (x̄) the element (v̄∗, ȳ∗, v̄) is
a feasible solution to (DV G). By the weak duality statement (see Theorem
4.3.1) it follows that (v̄∗, ȳ∗, v̄) is an efficient solution to (DV G). ��

Remark 4.3.1. For having strong duality it is enough to assume that for all
v∗ ∈ K∗0 the scalar optimization problem

inf
x∈X

(v̄∗Φ)(x, 0)

is stable. In case X and Y are Fréchet spaces, Φ is star K-lower semicontinuous
and 0 ∈ sqri(PrY (dom Φ)) this is guaranteed by Theorem 3.2.1. The same
happens if lin(PrY (dom Φ)) is a finite dimensional linear subspace and 0 ∈
ri(PrY (dom Φ)).

Before coming to the converse duality theorem we prove a preliminary
result.

Theorem 4.3.3. Assume that BG is nonempty and that the regularity condi-
tion (RCV Φ) is fulfilled. Then

V \ cl (F (dom F ) + K) ⊆ core(hG(BG)).

Proof. Consider an arbitrary element v̄ ∈ V \ cl (F (dom F ) + K). The set
cl (F (dom F ) + K) ⊆ V is convex and closed and, by Theorem 2.1.5, there
exists v̄∗ ∈ V ∗ \ {0} and α ∈ R fulfills

〈v̄∗, v̄〉 < α < 〈v̄∗, v〉 ∀v ∈ cl (F (dom F ) + K) . (4.14)

One can easily see that v̄∗ ∈ K∗ \ {0}. Further, since BG 	= ∅, there exists
(ṽ∗, ỹ∗, ṽ) ∈ K∗0 × Y ∗ × V such that
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〈ṽ∗, ṽ〉 ≤ −(ṽ∗Φ)∗(0,−ỹ∗) ≤ inf
x∈X

〈ṽ∗, F (x)〉. (4.15)

Denote by γ := α − 〈v̄∗, v̄〉 > 0. For all s ∈ (0, 1) it holds

〈sṽ∗ + (1− s)v̄∗, v̄〉 = 〈v̄∗, v̄〉+ s(〈ṽ∗, v̄〉− 〈v̄∗, v̄〉) = α− γ + s(〈ṽ∗, v̄〉−α + γ),

while, by (4.14) and (4.15), for all v ∈ F (dom F ) + K it holds

〈sṽ∗ + (1 − s)v̄∗, v〉 > s〈ṽ∗, ṽ〉 + (1 − s)α = α + s(〈ṽ∗, ṽ〉 − α).

Thus one can choose s̄ ∈ (0, 1) close enough to 0 such that s̄(〈ṽ∗, v̄〉−α+γ) <
γ/2 and s̄(〈ṽ∗, ṽ〉 − α) > −γ/2. For v∗

s̄ := s̄ṽ∗ + (1 − s̄)v̄∗ ∈ K∗0 it holds

〈v∗
s̄ , v̄〉 < α − γ

2
< 〈v∗

s̄ , v〉 ∀v ∈ F (dom F ),

which yields that
〈v∗

s̄ , v̄〉 < inf
x∈X

〈v∗
s̄ , F (x)〉. (4.16)

Taking into account that (RCV Φ) is fulfilled, there exists y∗
s̄ ∈ Y ∗ such

that

〈v∗
s̄ , v̄〉 < inf

x∈X
(v∗

s̄Φ)(x, 0) = sup
y∗∈Y ∗

{−(v∗
s̄Φ)∗(0,−y∗)} = −(v∗s̄Φ)∗(0,−y∗

s̄ ).

(4.17)
Obviously, v̄ ∈ hG(BG). Let ε > 0 be such that

〈v∗
s̄ , v̄〉 + ε < −(v∗

s̄Φ)∗(0,−y∗
s̄ ).

Then for all v ∈ V there exists δv > 0 such that

〈v∗
s̄ , v̄ + λv〉 ≤ 〈v∗

s̄ , v̄〉 + ε < −(v∗
s̄Φ)∗(0,−y∗

s̄ ) ∀λ ∈ [0, δv].

So, for all λ ∈ [0, δv], (v∗
s̄ , y∗

s̄ , v̄ + λv) ∈ BG and therefore v̄ + λv ∈ hG(BG). In
conclusion, v̄ ∈ core(hG(BG)). ��

Next we state the converse duality theorem.

Theorem 4.3.4. Assume that the regularity condition (RCV Φ) is fulfilled and
that the set F (dom F )+K is closed. Then for every efficient solution (v̄∗, ȳ∗, v̄)
to (DV G) there exists x̄ ∈ X, a properly efficient solution to (PV G), such
that F (x̄) = hG(v̄∗, ȳ∗, v̄) = v̄.

Proof. Assuming that v̄ /∈ F (dom F ) + K, by the previous result follows that
v̄ ∈ core(hG(BG)). Thus for k ∈ K \ {0} there exists λ > 0 such that vλ :=
v̄ + λk ≥K v̄ and vλ ∈ hG(BG). This contradicts the fact that (v̄∗, ȳ∗, v̄) is
an efficient solution to (DV G). Thus we must have v̄ ∈ F (dom F ) + K and
this means that there exists x̄ ∈ dom F and k̄ ∈ K fulfilling v̄ = F (x̄) + k̄. By
Theorem 4.3.1 it follows that k̄ = 0 and, consequently, v̄ = F (x̄). Since

〈v̄∗, F (x̄)〉 = 〈v̄∗, v̄〉 ≤ −(v̄∗Φ)∗(0,−ȳ∗) ≤ inf
x∈X

〈v̄∗, F (x)〉,

x̄ is a properly efficient solution to (PV G). ��
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Remark 4.3.2. In Theorem 4.3.3 and, consequently, in Theorem 4.3.4 the reg-
ularity condition (RCV Φ) can be replaced with the weaker assumption that
for all v∗ ∈ K∗0 the problem

inf
x∈X

〈v∗, F (x)〉

is normal. Normality, even if does not guarantee that the conjugate dual of
this scalar problem has an optimal solution, ensures that

inf
x∈X

〈v∗, F (x)〉 = sup
y∗∈Y ∗

{−(v∗Φ)∗(0,−y∗)}.

This is enough to guarantee in the proof of Theorem 4.3.3, together with
(4.16), the existence of y∗

s̄ ∈ Y ∗ such that

〈v∗
s̄ , v̄〉 < −(v∗

s̄Φ)(0,−y∗
s̄ ).

Remark 4.3.3. Going back to the vector optimization (PV A) treated in section
4.1 one can notice that for Φ : X ×Y → V , Φ(x, y) = f(x)+ g(Ax+ y), which
is in that setting a proper and K-convex function, (DV G) becomes exactly
the vector dual problem (DV A). The regularity condition (RCV A) is nothing
else than (RCV Φ) and this means that the weak, strong and converse duality
results stated for the primal-dual vector pair (PV A) − (DV A) are particular
instances of those introduced in this subsection.

Remark 4.3.4. In case V = R and K = R+ one can identify V with R and for
F : X → R a proper and convex function, the primal vector problem becomes

(PG) inf
x∈X

F (x).

For Φ : X × Y → R fulfilling Φ(x, 0) = F (x) for all x ∈ X one has that
(v∗, y∗, v) belongs to BG if and only if v∗ > 0, y∗ ∈ Y ∗ and v ∈ R fulfill

v∗v ≤ −(v∗Φ)∗(0,−y∗) ⇔ v∗v ≤ −v∗Φ∗
(

0,− 1
v∗ y∗

)

⇔ v ≤ −Φ∗
(

0,− 1
v∗ y∗

)

.

The dual vector problem has in this case the following formulation

(DG) sup
v∗>0,y∗∈Y ∗

{

−Φ∗
(

0,− 1
v∗ y∗

)}

or, equivalently,
(DG) sup

y∗∈Y ∗
{−Φ∗ (0,−y∗)} ,

which is the general conjugate dual problem to (PG) investigated in section
3.1.



144 4 Conjugate vector duality via scalarization

4.3.2 Vector dual problems to (PV C) as particular instances of
the general approach

For the primal vector optimization problem (PV C) introduced in section 4.2
we construct some vector dual problems via the general approach described
above by considering different vector perturbation functions taking at (x, 0)
the value f(x)+δV

A(x) for all x ∈ X. We do this in analogy to the investigations
made in subsection 3.1.3 in the scalar case and assume to this end that the
hypotheses stated for the sets and functions involved in the formulation of
(PV C) are fulfilled.

Consider first ΦCL : X × Z → V defined by

ΦCL(x, z) =
{

f(x), if x ∈ S, g(x) ∈ z − C,
+∞K , otherwise.

For v∗ ∈ K∗0 the formula for the conjugate of (v∗ΦCL) can be deduced from
(3.6) and in this way one obtains the following Lagrange type vector dual
problem to (PV C)

(DV CL) Max
(v∗,z∗,v)∈BCL

hCL(v∗, z∗, v),

where

BCL =
{

(v∗, z∗, v) ∈ K∗0 × C∗ × V : 〈v∗, v〉 ≤ inf
x∈S

{(v∗f)(x) + (z∗g)(x)}
}

and
hCL(v∗, z∗, v) = v.

The weak, strong and converse duality results given in the previous sub-
section in the general case lead to the following statement.

Theorem 4.3.5. (a) There is no x ∈ A and no (v∗, z∗, v) ∈ BCL such that
f(x) ≤K hCL(v∗, z∗, v).

(b) If (RCV CL) is fulfilled and x̄ ∈ A is a properly efficient solution to (PV C),
then there exists (v̄∗, z̄∗, v̄), an efficient solution to (DV CL), such that
f(x̄) = hCL(v̄∗, z̄∗, v̄) = v̄.

(c) If (RCV CL) is fulfilled, f(dom f ∩ A) + K is closed and (v̄∗, z̄∗, v̄) is an
efficient solution to (DV CL), then there exists x̄ ∈ A, a properly efficient
solution to (PV C), such that f(x̄) = hCL(v̄∗, z̄∗, v̄) = v̄.

Remark 4.3.5. (a) The dual problem (DV CL) is one of the classical vector
duality concepts which exist in the literature. It was introduced by Jahn in
[101] (see also [103,104]), where also corresponding weak, strong and converse
duality results have been proven.

(b) In Theorem 4.3.5(b) the regularity condition (RCV CL) can be replaced
in case X and Z are Fréchet spaces, S is closed, f is star K-lower semicontinu-
ous and g is C-epi closed with the condition 0 ∈ sqri(g(dom f∩S∩dom g)+C).



4.3 Constrained vector optimization: a linear scalarization approach 145

If lin(g(dom f ∩S∩dom g)+C) is a finite dimensional linear subspace one can
assume instead that 0 ∈ ri(g(dom f ∩ S ∩ dom g) + C). As noticed in Remark
4.3.2 in the general case, in Theorem 4.3.5(c) the regularity condition can be
replaced with the assumption that for all v∗ ∈ K∗0 the optimization problem

inf
x∈A

〈v∗, f(x)〉

is normal with respect to its Lagrange dual (see also [101, Theorem 2.5]).
(c) If V = R and K = R+, then (PV C) turns out to be the scalar opti-

mization problem with geometric and cone constraints (PC), while (DV CL)
is nothing else than the classical scalar Lagrange dual problem to (PC) (cf.
subsection 3.1.3).

The second vector perturbation function we consider in this subsection is
ΦCF : X × X → V ,

ΦCF (x, y) =
{

f(x + y), if x ∈ A,
+∞K , otherwise,

which leads by taking into consideration (3.7) to the following so-called
Fenchel type vector dual problem to (PV C) (cf. [36, 37])

(DV CF ) Max
(v∗,y∗,v)∈BCF

hCF (v∗, y∗, v),

where

BCF =
{

(v∗, y∗, v) ∈ K∗0 × X∗ × V : 〈v∗, v〉 ≤ −(v∗f)∗(y∗) − σA(−y∗)
}

and
hCF (v∗, y∗, v) = v.

Considering as regularity condition

(RCV CF ) ∃x′ ∈ dom f ∩ A such that f is continuous at x′,

the results in the previous subsection can be summarized to the following
theorem.

Theorem 4.3.6. (a) There is no x ∈ A and no (v∗, y∗, v) ∈ BCF such that
f(x) ≤K hCF (v∗, y∗, v).

(b) If (RCV CF ) is fulfilled and x̄ ∈ A is a properly efficient solution to
(PV C), then there exists (v̄∗, ȳ∗, v̄), an efficient solution to (DV CF ), such
that f(x̄) = hCF (v̄∗, ȳ∗, v̄) = v̄.

(c) If (RCV CF ) is fulfilled, f(dom f ∩ A) + K is closed and (v̄∗, ȳ∗, v̄) is an
efficient solution to (DV CF ), then there exists x̄ ∈ A, a properly efficient
solution to (PV C), such that f(x̄) = hCF (v̄∗, ȳ∗, v̄) = v̄.
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Remark 4.3.6. (a) In statement (b) of Theorem 4.3.6 the regularity condition
(RCV CF ) can be replaced in case X is a Fréchet space, A is closed and f
is star K-lower semicontinuous with the condition 0 ∈ sqri(dom f − A). If
lin(dom f −A) is a finite dimensional linear subspace one can assume instead
that 0 ∈ ri(dom f − A). In Theorem 4.3.6(c) the regularity condition can be
replaced with the assumption that for all v∗ ∈ K∗0 the optimization problem

inf
x∈A

〈v∗, f(x)〉

is normal with respect to its Fenchel dual.
(b) If V = R and K = R+, then (DV CF ) is nothing else than the scalar

Fenchel dual problem to (PC) (cf. subsection 3.1.3).

The third vector perturbation function we treat is ΦCF L : X×X×Z → V ,

ΦCF L(x, y, z) =
{

f(x + y), if x ∈ S, g(x) ∈ z − C,
+∞K , otherwise.

The formula for the conjugate of (v∗ΦCF L), when v∗ ∈ K∗0, follows from
(3.8) and it provides the following so-called Fenchel-Lagrange type vector dual
problem to (PV C) (cf. [36, 37])

(DV CF L) Max
(v∗,y∗,z∗,v)∈BCF L

hCF L(v∗, y∗, z∗, v),

where

BCF L =
{

(v∗, y∗, z∗, v) ∈ K∗0 × X∗ × C∗ × V :
〈v∗, v〉 ≤ −(v∗f)∗(y∗) − (z∗g)∗S(−y∗)

}

and
hCF L(v∗, y∗, z∗, v) = v.

We introduce the following regularity condition

(RCV CF L) ∃x′ ∈ dom f ∩ S such that f is continuous at x′

and g(x′) ∈ − int(C)

and thus one can derive from the weak, strong and converse duality theorems
in the previous subsection the following result.

Theorem 4.3.7. (a) There is no x ∈ A and no (v∗, y∗, z∗, v) ∈ BCF L such
that f(x) ≤K hCF L(v∗, y∗, z∗, v).

(b) If (RCV CF L) is fulfilled and x̄ ∈ A is a properly efficient solution to
(PV C), then there exists (v̄∗, ȳ∗, z̄∗, v̄), an efficient solution to (DV CF L),
such that f(x̄) = hCF L(v̄∗, ȳ∗, z̄∗, v̄) = v̄.

(c) If (RCV CF L) is fulfilled, f(dom f ∩ A) + K is closed and (v̄∗, ȳ∗, z̄∗, v̄)
is an efficient solution to (DV CF L), then there exists x̄ ∈ A, a properly
efficient solution to (PV C), such that f(x̄) = hCF L(v̄∗, ȳ∗, z̄∗, v̄) = v̄.
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Remark 4.3.7. (a) If X and Z are Fréchet spaces, S is closed, f is star K-
lower semicontinuous and g is C-epi closed, then the regularity condition
in the statement (b) of Theorem 4.3.7 can be replaced with the condition
0 ∈ sqri(dom f × C − epi−C(−g) ∩ (S × Z)). If the linear subspace generated
by dom f × C − epi−C(−g) ∩ (S × Z) is finite dimensional, then one can
assume instead, that 0 belongs to the relative interior of this set. More than
that, in Theorem 4.3.7(c) (RCV CF L) can be weakened by assuming that for
all v∗ ∈ K∗0 the optimization problem

inf
x∈A

〈v∗, f(x)〉

is normal with respect to its Fenchel-Lagrange dual.
(b) In case V = R and K = R+, then (DV CF L) is exactly the scalar

Fenchel-Lagrange dual problem to (PC) (cf. subsection 3.1.3).

The last vector dual problem to (PV C) investigated in this subsection is
not related to any conjugate dual of the scalarized primal problem. What we
do is in fact involving in the definition of its feasible set the scalarized problem
itself. The vector dual looks like

(DV CP ) Max
(v∗,v)∈BCP

hCP (v∗, v),

where

BCP =
{

(v∗, v) ∈ K∗0 × V : 〈v∗, v〉 ≤ inf
x∈A

〈v∗, f(x)〉
}

and
hCP (v∗, v) = v.

We omit the proofs of the weak and strong duality theorems since these as-
sertions follow automatically.

Theorem 4.3.8. There is no x ∈ A and no (v∗, v) ∈ BCP such that f(x) ≤K

hCP (v∗, v).

Theorem 4.3.9. If x̄ ∈ A is a properly efficient solution to (PV C), then there
exists (v̄∗, v̄), an efficient solution to (DV CP ), such that f(x̄) = hCP (v̄∗, v̄)
= v̄.

The proofs of the two statements in the next result can be made in analogy
to the ones of Theorem 4.3.3 and Theorem 4.3.4, respectively.

Theorem 4.3.10. (a) Assume that BCP is nonempty. Then

V \ cl (f(dom f ∩ A) + K) ⊆ core(hCP (BCP )).

(b) If f(dom f∩A)+K is closed and (v̄∗, v̄) is an efficient solution to (DV CP ),
then there exists x̄ ∈ A, a properly efficient solution to (PV C), such that
f(x̄) = hCP (v̄∗, v̄) = v̄.

Remark 4.3.8. Different to the strong and converse duality theorems given in
this subsection for Theorem 4.3.9 and Theorem 4.3.10 no regularity condition
is needed.
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4.3.3 The relations between the dual vector problems to (PV C)

In this subsection we investigate some inclusion relations between the image
sets of the feasible sets through the objective functions of the vector duals of
(PV C) introduced in this chapter. We start by proving two general results
which are fulfilled without any further assumptions.

Proposition 4.3.11. It holds

(a) hCF L(BCF L) ⊆ hCL(BCL);
(b) hCF L(BCF L) ⊆ hCF (BCF ).

Proof. Let (v∗, y∗, z∗, v) ∈ BCF L be arbitrarily chosen. We have (see also the
proof of Proposition 3.1.5)

〈v∗, v〉 ≤ −(v∗f)∗(y∗) − (z∗g)∗S(−y∗)

≤ inf
x∈X

{(v∗f)(x) + ((z∗g) + δS) (x)} = inf
x∈S

{(v∗f)(x) + (z∗g)(x)}

and so v = hCL(v∗, z∗, v) ∈ hCL(BCL).
On the other hand, it holds (see also the proof of Proposition 3.1.6)

〈v∗, v〉 ≤ −(v∗f)∗(y∗) − (z∗g)∗S(−y∗) = −(v∗f)∗(y∗)

+ inf
x∈S

{〈y∗, x〉 + 〈z∗, g(x)〉} ≤ −(v∗f)∗(y∗) + inf
x∈A

〈y∗, x〉

= −(v∗f)∗(y∗) − σA(−y∗),

which means that v = hCF (v∗, y∗, v) ∈ hCF (BCF ). ��

Proposition 4.3.12. It holds

(a) hCL(BCL) ⊆ hCP (BCP );
(b) hCF (BCF ) ⊆ hCP (BCP ).

Proof. (a) For (v∗, z∗, v) ∈ BCL one has

〈v∗, v〉 ≤ inf
x∈S

{(v∗f)(x) + (z∗g)(x)} ≤ inf
x∈A

(v∗f)(x),

which guarantees that v = hCP (v∗, v) ∈ hCP (BCP ).
(b) For (v∗, y∗, v) ∈ BCF one has

〈v∗, v〉 ≤ −(v∗f)∗(y∗) − σA(−y∗) ≤ inf
x∈X

{(v∗f)(x) + δA(x)} = inf
x∈A

(v∗f)(x),

and so v = hCP (v∗, v) ∈ hCP (BCP ). ��
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Proposition 4.3.11 and Proposition 4.3.12 provide the following general
scheme (cf. [36, 37])

hCF L(BCF L) ⊆ hCL(BCL)
hCF (BCF ) ⊆ hCP (BCP ). (4.18)

We invite the reader to consult [36, 37] for examples which show that
in general the inclusion relations above can be strict. Further we give some
sufficient conditions which close the “gaps” between the sets involved in (4.18).

Theorem 4.3.13. Assume that there exists x′ ∈ dom f ∩S ∩ dom g such that
f is continuous at x′. Then hCF L(BCF L) = hCL(BCL).

Proof. As follows from Proposition 4.3.11(a), it is enough to prove that for
an arbitrary v ∈ hCL(BCL) it holds v ∈ hCF L(BCF L). Let be v ∈ hCL(BCL)
and (v∗, z∗) ∈ K∗0 × C∗ such that (v∗, z∗, v) ∈ BCL or, equivalently,

〈v∗, v〉 ≤ inf
x∈S

{(v∗f)(x) + (z∗g)(x)} = inf
x∈X

{(v∗f)(x) + ((z∗g) + δS) (x)}.

As dom((z∗g) + δS) = S ∩ dom g, by Theorem 3.2.6 follows that there exists
ȳ∗ ∈ X∗ fulfilling

inf
x∈X

{(v∗f)(x) + ((z∗g) + δS) (x)} = sup
y∗∈X∗

{−(v∗f)∗(y∗) − (z∗g)∗S(−y∗)}

= −(v∗f)∗(ȳ∗) − (z∗g)∗S(−ȳ∗).

Thus (v∗, ȳ∗, z∗, v) ∈ BCF L and, consequently, v ∈ hCF L(BCF L). ��

Theorem 4.3.14. Assume that there exists x′ ∈ A such that g(x′) ∈ − int(C).
Then hCF L(BCF L) = hCF (BCF ).

Proof. As follows from Proposition 4.3.11(b), it is enough to prove that for an
arbitrary v ∈ hCF (BCF ) if holds v ∈ hCF L(BCF L). Let be v ∈ hCF (BCF ) and
(v∗, y∗) ∈ K∗0 × X∗ such that (v∗, y∗, v) ∈ BCF or, equivalently,

〈v∗, v〉 ≤ −(v∗f)∗(y∗) − σA(−y∗).

By Theorem 3.2.9, there exists z̄∗ ∈ C∗ such that

σA(−y∗) = − inf
x∈A

〈y∗, x〉 = − sup
z∗∈C∗

inf
x∈S

{〈y∗, x〉 + (z∗g)(x)}

= − inf
x∈S

{〈y∗, x〉 + (z̄∗g)(x)} = (z̄∗g)∗S(−y∗)

and this yields
〈v∗, v〉 ≤ −(v∗f)∗(y∗) − (z̄∗g)∗S(−y∗).

Thus (v∗, y∗, z̄∗, v) ∈ BCF L and, consequently, v ∈ hCF L(BCF L). ��
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Combining the last two theorems it follows that in case (RCV CF L) is
fulfilled, then hCF L(BCF L) = hCF (BCF ) = hCL(BCL). The next theorem
shows that actually all inclusion relations in (4.18) are in fact equalities (see
also [36,37]).

Theorem 4.3.15. Assume that the regularity condition (RCV CF L) is ful-
filled. Then

hCF L(BCF L) = hCF (BCF ) = hCL(BCL) = hCP (BCP ). (4.19)

Consequently, under this hypothesis the maximal sets of the image sets of
the feasible set through the objective functions of the vector dual problems
(DV CF L), (DV CF ), (DV CL) and (DV CP ) are identical.

Proof. What we prove is that for an arbitrary v ∈ hCP (BCP ) it holds v ∈
hCF L(BCF L). Let be v ∈ hCP (BCP ) and v∗ ∈ K∗0 such that (v∗, v) ∈ BCP or,
equivalently,

〈v∗, v〉 ≤ inf
x∈A

〈v∗, f(x)〉.

By Theorem 3.2.12, there exist ȳ∗ ∈ X∗ and z̄∗ ∈ C∗ such that

inf
x∈A

〈v∗, f(x)〉 = sup
y∗∈X∗,z∗∈C∗

{−(v∗f)∗(y∗) − (z∗g)∗S(−y∗)}

= −(v∗f)∗(ȳ∗) − (z̄∗g)∗S(−ȳ∗),

which yields (v∗, ȳ∗, z̄∗, v) ∈ BCF L and, consequently, v ∈ hCF L(BCF L). ��

Remark 4.3.9. (a) If X is a Fréchet space, S ∩ dom g is closed and f is star
K-lower semicontinuous, then the regularity condition in Theorem 4.3.13 can
be replaced with the assumption that 0 ∈ sqri(dom f − (S ∩ dom g)). If the
linear subspace lin(dom f − (S ∩ dom g)) is finite dimensional, then one can
assume that 0 ∈ ri(dom f − (S ∩ dom g)).

(b) If X and Z are Fréchet spaces, S is closed and g is C-epi closed, then the
regularity condition in Theorem 4.3.14 can be replaced with the assumption
that 0 ∈ sqri(g(S∩dom g)+C). If the linear subspace lin(g(S∩dom g)+C) is fi-
nite dimensional, then one can assume that 0 ∈ ri(g(S∩dom g)+C). Assuming
additionally that f is star K-lower semicontinuous, then one can ask instead of
(RCV CF L) in Theorem 4.3.15 that 0 ∈ sqri(dom f×C−epi(−C)(−g)∩(S×Z)).
If the linear subspace spanned by dom f × C − epi(−C)(−g) ∩ (S × Z) has a
finite dimension, then for guaranteeing the conclusion in Theorem 4.3.15 one
needs only to assume that 0 belongs to the relative interior of this set.

(c) Consider X = R
n, Z = R

m, C = R
m
+ , S ⊆ R

n a nonempty convex
set, g : R

n → R
m a given R

m
+ -convex function and fi : R

n → R, i = 1, ..., k,
proper and convex functions such that

⋂k
i=1 dom fi ∩ S ∩ g−1(−R

m
+ ) 	= ∅. Let

also be V = R
k, K = R

k
+, V = Rk = R

k ∪{±∞
R

k
+
} and f : R

n → Rk, defined
by
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f(x) =

⎧

⎨

⎩

(f1(x), ..., fk(x))T , if x ∈
k
⋂

i=1

dom fi,

+∞
R

k
+
, otherwise.

In this setting we introduce the following primal vector optimization problem

(˜PV
C

) Min
x∈A

f(x).

A = {x ∈ S : g(x) � 0}

As in the general case it is possible to construct for (˜PV
C

) different vector
dual problems in analogy to the ones introduced in this section. By Theorem
3.2.14 follows that, in order to have for these duals the equality in (4.19)
fulfilled, it is enough to impose a sufficient condition which in this particular
case looks like

(R̃CV
CF L

) ∃x′ ∈ ri
(

k
⋂

i=1

dom fi

)

∩ ri(S) such that

gi(x′) ≤ 0, i ∈ L, and gi(x′) < 0, i ∈ N ,

where L and N are the sets of indices defined in the end of section 3.2.

In the remaining part of the section we investigate the relations between
the classical vector duality concepts due to Jahn and Nakayama for the vec-
tor optimization problem with geometric and cone constraints. We start by
proving the following general result.

Proposition 4.3.16. It holds hCL(BCL) ⊆ hCN (BCN ).

Proof. Let be an arbitrary v ∈ hCL(BCL). Then there exists (v∗, z∗) ∈ K∗0 ×
C∗ such that (v∗, z∗, v) ∈ BCL or, equivalently, 〈v∗, v〉 ≤ infx∈S{(v∗f)(x) +
(z∗g)(x)}. Like in the proof of Theorem 4.2.2 one can provide an U ∈ L(Z, V )
fulfilling U∗v∗ = z∗ and U(C) ⊆ K. We prove that (U, v) ∈ BCN and to this
end we assume the contrary, namely that there exists x ∈ S∩dom g such that
v ≥K f(x) + U(g(x)). Thus

〈v∗, v〉 > 〈v∗, f(x)〉 + 〈U∗v∗, g(x)〉 = (v∗f)(x) + (z∗g)(x),

which leads to a contradiction. In conclusion, v = hCN (U, v) ∈ hCN (BCN ). ��

Example 4.3.1. (cf. [37]) Let be X = V = R
2, Z = R, C = R+, K = R

2
+,

S = {x = (x1, x2)T ∈ R
2 : x1 ≥ 0, x2 ≥ 0 such that x2 > 0 if x1 ∈ [0, 1)},

g : R
2 → R, g ≡ 0 and f1, f2 : R

2 → R defined by

f1(x) =
{

x1, if x = (x1, x2)T ∈ S,
+∞, otherwise,

and
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f2(x) =
{

x2, if x = (x1, x2)T ∈ S,
+∞, otherwise.

For the dual problems of the primal vector optimization problem

Min
x∈A

(

f1(x)
f2(x)

)

A = {x ∈ S : g(x) ≤ 0}

it holds hCF L(BCF L) = hCF (BCF ) = hCL(BCL) = hCP (BCP ). This is the
case because of the fact that the regularity condition stated for (PV C) in the
particular formulation from Remark 4.3.9(c) is fulfilled (for x′ = (1, 1)T ∈
ri(S) it holds g(x′) ≤ 0). In this particular case Nakayama’s vector dual
problem looks like

(DV CN ) Max
(q,v)∈BCN

hCN (q, v),

where

BCN =
{

(q, v) ∈ R
2
+ × R

2 : q = (q1, q2)T and
�x ∈ S such that v ≥ f(x) + (q1g(x), q2g(x))T

}

,

= {(q, v) ∈ R
2
+ × R

2 : �x ∈ S such that v ≥ x}
and

hCN (q, v) = v.

Thus hCN (BCN ) = (R2 \S)∪ {(1, 0)T } and Max(hCN (BCN ), R2
+) = {(1, 0)T }.

Assuming that (1, 0)T ∈ hCL(BCL) = hCP (BCP ) it follows that there ex-
ists v∗ = (v∗

1 , v∗
2)T ∈ int(R2

+) fulfilling v∗
1 ≤ infx∈A{v∗

1f1(x) + v∗
2f2(x)} =

infx∈S{v∗
1x1+v∗

2x2}. Since for all l ≥ 1, (1/l, 1/l) ∈ A, it must hold v∗1 ≤ 0 and
so we come to a contradiction. Thus (1, 0)T /∈ hCP (BCP ) = hCL(BCL), which

means that even having (R̃CV
CF L

) fulfilled, for hCN (BCN ) and hCL(BCL) one
can have in general a strict inclusion. More than that, Max(hCN (BCN ), R2

+) �

Max(hCL(BCL), R2
+).

On the other hand, for v∗ = (1, 1)T ∈ int(R2
+) it holds (v∗, (0, 0)T ) ∈ BCP

and so (0, 0)T ∈ hCP (BCP ). Moreover, one can easily see that (0, 0)T ∈
Max(hCP (BCP ), R2

+) = Max(hCL(BCL), R2
+). As (0, 0)T is not a maximal ele-

ment in hCN (BCN ), one can conclude that in general Max(hCL(BCL), R2
+) �

Max(hCN (BCN ), R2
+). Sufficient conditions for having equality between the

maximal sets of hCL(BCL) and hCN (BCN ) are given in the following theorem.

Theorem 4.3.17. Assume that the regularity condition (RCV CL) is fulfilled
and that the set f(dom f ∩ A) + K is closed. Then the following statements
are true

(a) Max(hCL(BCL),K) ⊆ Max(hCN (BCN ),K);
(b) if, additionally, qi(K) 	= ∅ and every efficient solution to (PV C) is also

properly efficient, then Max(hCL(BCL),K) = Max(hCN (BCN ),K).



4.3 Constrained vector optimization: a linear scalarization approach 153

Proof. The statement (a) follows from Theorem 4.3.5(c) and Theorem 4.2.2,
while statement (b) follows from Theorem 4.2.5 and Theorem 4.3.5(b). ��

Combining the assertions in the theorem above the following corollary can
be stated.

Corollary 4.3.18. Assume that qi(K) 	= ∅, the regularity condition (RCV CL)
is fulfilled, the set f(dom f ∩ A) + K is closed and every efficient solution
to (PV C) is also properly efficient. Then it holds Min(f(dom f ∩ A),K) =
Max(hCN (BCN ),K) = Max(hCL(BCL),K).

As one will see in section 5.5, all the assumptions of Corollary 4.3.18 are
for instance fulfilled when one deals with linear vector optimization problems
in finite dimensional spaces.

Remark 4.3.10. (a) If X and Z are Fréchet spaces, S is closed, f is star K-
lower semicontinuous and g is C-epi closed, then one can replace the regu-
larity condition (RCV CL) in Theorem 4.3.17 and Corollary 4.3.18 with the
assumption that 0 ∈ sqri(g(dom f ∩ S ∩ dom g) + C). If the linear subspace
lin(g(dom f ∩S∩dom g)+C) is finite dimensional, then one can alternatively
assume that 0 ∈ ri(g(dom f ∩ S ∩ dom g) + C).

(b) Corollary 4.3.18 improves some similar statements given by Nakayama
in [142–144] in finite dimensional spaces and under stronger assumptions (see
also Remark 4.2.5(b)).

(c) Replacing in the formulation of Corollary 4.3.18 (RCV CL) by the reg-
ularity condition (RCV CF L), by Theorem 4.3.15 one can conclude that

Min(f(dom f ∩ A),K) = Max(hCN (BCN ),K) = Max(hCP (BCP ),K)

= Max(hCL(BCL),K) = Max(hCF (BCF ),K) = Max(hCF L(BCF L),K).

4.3.4 Duality with respect to weakly efficient solutions

In the following we suppose that int(K) 	= ∅ and give a general approach for
constructing vector dual problems with respect to weakly efficient solutions.
In particular we construct different vector dual problems to (PV C

w ) and study
the relations between them. In these investigations the set of weakly maximal
elements of hCN

w (BCN
w ) will be also involved.

For F : X → V = V ∪ {±∞K} a proper and K-convex functions we
consider the general vector optimization problem

(PV Gw) WMin
x∈X

F (x).

We say that x̄ ∈ X is a weakly efficient solution to (PV Gw) if x̄ ∈ dom F and
F (x̄) ∈ WMin(F (dom F ),K). We consider as vector perturbation function
Φ : X×Y → V and define the following vector dual problem to (PV Gw) with
respect to the weakly efficient solutions as being
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(DV Gw) WMax
(v∗,y∗,v)∈BG

w

hG
w(v∗, y∗, v),

where

BG
w = {(v∗, y∗, v) ∈ (K∗ \ {0}) × Y ∗ × V : 〈v∗, v〉 ≤ −(v∗Φ)∗(0,−y∗)}

and
hG

w(v∗, y∗, v) = v.

As follows from the following two results, for (PV Gw) and (DV Gw) weak and
strong duality hold.

Theorem 4.3.19. There is no x ∈ X and no (v∗, y∗, v) ∈ BG
w such that

F (x) <K hG
w(v∗, y∗, v).

Proof. We assume the contrary, namely that there exist x ∈ X and (v∗, y∗, v) ∈
BG

w such that F (x) <K hG
w(v∗, y∗, v) = v. Then it holds x ∈ dom F and

〈v∗, v〉 > 〈v∗, F (x)〉.
On the other hand, 〈v∗, v〉 ≤ −(v∗Φ)∗(0,−y∗) ≤ 〈v∗, F (x)〉, and this leads

to a contradiction. ��

Theorem 4.3.20. Assume that the regularity condition (RCV Φ) is fulfilled.
If x̄ ∈ X is a weakly efficient solution to (PV Gw), then there exists (v̄∗, ȳ∗, v̄),
a weakly efficient solution to (DV Gw), such that F (x̄) = hG

w(v̄∗, ȳ∗, v̄) = v̄.

Proof. Since x̄ ∈ X is a weakly efficient solution to (PV Gw), then x̄ ∈ dom F
and F (x̄) is a weakly minimal element of the set F (dom F ) ⊆ V . By Corollary
2.4.26 (see also Remark 2.4.11), there exists v∗ ∈ K∗ \ {0} which satisfies

〈v̄∗, F (x̄)〉 = inf
x∈X

〈v̄∗, F (x)〉 = inf
x∈X

(v̄∗Φ)(x, 0).

Applying now Theorem 3.2.1 one gets that there exists ȳ∗ ∈ Y ∗ such that

〈v̄∗, F (x̄)〉 = inf
x∈X

(v̄∗Φ)(x, 0) = sup
y∗∈Y ∗

{−(v̄∗Φ)∗(0,−y∗)} = −(v̄∗Φ)∗(0,−ȳ∗).

For v̄ = F (x̄) one has (v̄∗, ȳ∗, v̄) ∈ BG
w . That (v̄∗, ȳ∗, v̄) is a weakly efficient

solution to (DV Gw) follows by Theorem 4.3.19. ��

Before stating the converse duality theorem we prove the following pre-
liminary result.

Theorem 4.3.21. Assume that the regularity condition (RCV Φ) is fulfilled.
Then

V \ cl (F (dom F ) + K) ⊆ core(hG
w(BG

w )).
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Proof. Consider v̄ be an arbitrary element in V \ cl (F (dom F ) + K). Since
the set cl (F (dom F ) + K) ⊆ V is convex and closed, by Theorem 2.1.5 there
exists v̄∗ ∈ K∗ \ {0} and α ∈ R such that

〈v̄∗, v̄〉 < α < 〈v̄∗, v〉 ∀v ∈ cl (F (dom F ) + K) .

Thus
〈v̄∗, v̄〉 < α ≤ inf

x∈X
(v̄∗F )(x) = inf

x∈X
(v̄∗Φ)(x, 0)

and, consequently, there exists ȳ∗ ∈ Y ∗ such that

〈v̄∗, v̄〉 < −(v̄∗Φ)(0,−ȳ∗).

Obviously, v̄ ∈ hG
w(BG

w ). Like in the proof of Theorem 4.3.3 it can be proven
that in fact we have more, namely that v̄ ∈ core(hG

w(BG
w )). ��

The converse duality theorem is a direct consequence of the previous result.

Theorem 4.3.22. Assume that the regularity condition (RCV Φ) is fulfilled
and that the set F (dom F ) + K is closed. Then for every weakly efficient
solution (v̄∗, ȳ∗, v̄) to (DV Gw) one has that v̄ is a weakly minimal element of
the set F (dom F ) + K.

Proof. Assuming that v̄ /∈ F (dom F ) + K, by Theorem 4.3.21 follows that
v̄ ∈ core(hG

w(BG
w )). Considering an element k ∈ int(K) there exists λ > 0

such that vλ := v̄ + λk >K v̄ and vλ ∈ hG
w(BG

w ). This contradicts the fact
that (v̄∗, ȳ∗, v̄) is a weakly efficient solution to (DV Gw). Supposing that v̄ is
not a weakly minimal element of F (dom F ) + K, it follows that there exist
x̄ ∈ dom F and k̄ ∈ K satisfying v̄ >K F (x̄)+ k̄ �K F (x̄), but this contradicts
Theorem 4.3.19. ��

Remark 4.3.11. (a) The observations pointed out in Remark 4.3.1 and Remark
4.3.2 apply also for the strong and converse duality theorems, respectively,
given for the primal-dual vector pair (PV Gw) − (DV Gw).

(b) The duality approach developed in subsection 4.1.2 for (PV A
w ) follows

as a particular case of this general scheme by considering Φ : X × Y → V ,
Φ(x, y) = f(x) + g(Ax + y).

(c) In case V = R and K = R+ the vector dual problem (DV Gw) has the
following formulation

(DG) sup
v∗>0,y∗∈Y ∗

{

−Φ∗
(

0,− 1
v∗ y∗

)}

or, equivalently,
(DG) sup

y∗∈Y ∗
{−Φ∗ (0,−y∗)} ,

and this is again (see the remark in the end of subsection 4.3.1) the general
conjugate dual problem to (PG).
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Similarly to the approach in subsection 4.3.2 one can construct by using the
general scheme different vector dual problems to (PV C

w ) with respect to weakly
efficient solutions. Even if their formulations are close to the formulations of
the vector duals in subsection 4.3.2, we introduce them here for the sake of
completeness along with the theorems which provide the weak, strong and
converse duality.

We start with the Lagrange type vector dual problem to (PV C
w ) with respect

to the weakly efficient solutions (see also [104])

(DV CL
w ) WMax

(v∗,z∗,v)∈BCL
w

hCL
w (v∗, z∗, v),

where

BCL
w =

{

(v∗, z∗, v) ∈ (K∗\{0})×C∗×V : 〈v∗, v〉 ≤ inf
x∈S

{(v∗f)(x)+(z∗g)(x)}
}

and
hCL(v∗, z∗, v) = v.

The weak, strong and converse duality results given above lead to the
following statement.

Theorem 4.3.23. (a) There is no x ∈ A and no (v∗, z∗, v) ∈ BCL
w such that

f(x) <K hCL
w (v∗, z∗, v).

(b) If (RCV CL) is fulfilled and x̄ ∈ A is a weakly efficient solution to (PV C
w ),

then there exists (v̄∗, z̄∗, v̄), a weakly efficient solution to (DV CL
w ), such

that f(x̄) = hCL
w (v̄∗, z̄∗, v̄) = v̄.

(c) If (RCV CL) is fulfilled, f(dom f ∩ A) + K is closed and (v̄∗, z̄∗, v̄) is a
weakly efficient solution to (DV CL

w ), then v̄ is a weakly minimal element
of the set f(dom f ∩ A) + K.

The Fenchel type vector dual problem to (PV C
w ) with respect to the weakly

efficient solutions has the following formulation

(DV CF
w ) WMax

(v∗,y∗,v)∈BCF
w

hCF
w (v∗, y∗, v),

where

BCF
w =

{

(v∗, y∗, v) ∈ (K∗ \{0})×X∗×V : 〈v∗, v〉 ≤ −(v∗f)∗(y∗)−σA(−y∗)
}

and
hCF

w (v∗, z∗, v) = v.

Theorem 4.3.24. (a) There is no x ∈ A and no (v∗, y∗, v) ∈ BCF
w such that

f(x) <K hCF
w (v∗, y∗, v).

(b) If (RCV CF ) is fulfilled and x̄ ∈ A is a weakly efficient solution to (PV C
w ),

then there exists (v̄∗, ȳ∗, v̄), a weakly efficient solution to (DV CF
w ), such

that f(x̄) = hCF
w (v̄∗, ȳ∗, v̄) = v̄.
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(c) If (RCV CF ) is fulfilled, f(dom f ∩ A) + K is closed and (v̄∗, ȳ∗, v̄) is a
weakly efficient solution to (DV CF

w ), then v̄ is a weakly minimal element
of the set f(dom f ∩ A) + K.

The next vector dual problem we introduce is the Fenchel-Lagrange type
vector dual problem to (PV C

w ) with respect to the weakly efficient solutions

(DV CF L
w ) WMax

(v∗,y∗,z∗,v)∈BCF L
w

hCF L
w (v∗, y∗, z∗, v),

where

BCF L
w =

{

(v∗, y∗, z∗, v) ∈ (K∗ \ {0}) × X∗ × C∗ × V :
〈v∗, v〉 ≤ −(v∗f)∗(y∗) − (z∗g)∗S(−y∗)

}

and
hCF L

w (v∗, y∗, z∗, v) = v.

Theorem 4.3.25. (a) There is no x ∈ A and no (v∗, y∗, z∗, v) ∈ BCF L
w such

that f(x) <K hCF L
w (v∗, y∗, z∗, v).

(b) If (RCV CF L) is fulfilled and x̄ ∈ A is a weakly efficient solution to (PV C
w ),

then there exists (v̄∗, ȳ∗, z̄∗, v̄), a weakly efficient solution to (DV CF L
w ),

such that f(x̄) = hCF L
w (v̄∗, ȳ∗, z̄∗, v̄) = v̄.

(c) If (RCV CF L) is fulfilled, f(dom f ∩A)+K is closed and (v̄∗, ȳ∗, z̄∗, v̄) is a
weakly efficient solution to (DV CF L

w ), then v̄ is a weakly minimal element
of the set f(dom f ∩ A) + K.

In analogy to (DV CP ) we define the following dual vector problem to
(PCV

w ) with respect to the weakly efficient solutions

(DV CP
w ) WMax

(v∗,v)∈BCP
w

hCP
w (v∗, v),

where

BCP
w =

{

(v∗, v) ∈ (K∗ \ {0}) × V : 〈v∗, v〉 ≤ inf
x∈A

〈v∗, f(x)〉
}

and
hCP

w (v∗, v) = v.

Theorem 4.3.26. (a) There is no x ∈ A and no (v∗, v) ∈ BCP
w such that

f(x) <K hCP
w (v∗, v).

(b) If x̄ ∈ A is a weakly efficient solution to (PV C
w ), then there exists (v̄∗, v̄),

a weakly efficient solution to (DV CP
w ), such that f(x̄) = hCP

w (v̄∗, v̄) = v̄.
(c) If f(dom f ∩A) + K is closed and (v̄∗, v̄) is a weakly efficient solution to

(DV CP
w ), then v̄ is a weakly minimal element of the set f(dom f ∩A)+K.

Remark 4.3.12. The observations pointed out in Remark 4.3.5(b)−(c), Remark
4.3.6, Remark 4.3.7 and Remark 4.3.8 apply also for the vector duals (DV CL

w ),
(DV CF

w ), (DV CF L
w ) and (DV CP

w ), respectively.
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Following the proofs of Proposition 4.3.11 and Proposition 4.3.12 one can
easily show that the following relations of inclusion hold

hCF L
w (BCF L

w ) ⊆ hCL
w (BCL

w )
hCF

w (BCF
w ) ⊆ hCP

w (BCP
w ). (4.20)

In analogy to Theorem 4.3.13, Theorem 4.3.14 and Theorem 4.3.15 the
following results can be shown.

Theorem 4.3.27. Assume that there exists x′ ∈ dom f ∩S ∩ dom g such that
f is continuous at x′. Then hCF L

w (BCF L
w ) = hCL

w (BCL
w ).

Theorem 4.3.28. Assume that there exists x′ ∈ A such that g(x′) ∈ − int(C).
Then hCF L

w (BCF L
w ) = hCF

w (BCF
w ).

Theorem 4.3.29. Assume that the regularity condition (RCV CF L) is ful-
filled. Then

hCF L
w (BCF L

w ) = hCF
w (BCF

w ) = hCL
w (BCL

w ) = hCP
w (BCP

w ). (4.21)

Consequently, under this hypothesis the maximal sets of the image sets of
the feasible set through the objective functions of the vector dual problems
(DV CF L

w ), (DV CF
w ), (DV CL

w ) and (DV CP
w ) are identical.

Remark 4.3.13. The theorems above remain valid even if one replaces the
regularity conditions supposed in their hypotheses with different generalized
interior point conditions. To this end one has to consider the observation in
Remark 4.3.9 which applies also here.

Next we investigate the connections between the duality concepts intro-
duced by Nakayama and Jahn, this time with respect to the weakly efficient
solutions.

Theorem 4.3.30. It holds hCL
w (BCL

w ) = hCN
w (BCN

w ).

Proof. That hCL
w (BCL

w ) ⊆ hCN
w (BCN

w ) can be proven like in Proposition 4.3.16,
by taking into consideration that the interior of K is nonempty. We prove
here the opposite inclusion and to this end we consider an arbitrary element
v ∈ hCN

w (BCN
w ). Thus there exists U ∈ L+(Z, V ) with the property that there

is no x ∈ S ∩ dom g fulfilling v >K f(x) + U(g(x)) or, equivalently,

(v − int(K)) ∩ (f + U ◦ g)(dom f ∩ S ∩ dom g) = ∅

⇔ int(v − K) ∩ ((f + U ◦ g)(dom f ∩ S ∩ dom g) + K) = ∅.
The sets v − K and (f + U ◦ g)(dom f ∩ S ∩ dom g) + K are convex subsets
of V . By Theorem 2.1.2, there exist v∗ ∈ V ∗ \ {0} and α ∈ R which satisfy

〈v∗, v − k1〉 ≤ α ≤ 〈v∗, (f + U ◦ g)(x)〉 +〈v∗, k2〉 (4.22)
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for all x ∈ dom f ∩ S ∩ dom g and all k1, k2 ∈ K. One can easily show that
v∗ ∈ K∗ \ {0}. Taking in (4.22) k1 = k2 = 0 it yields

〈v∗, v〉 ≤ 〈v∗, f(x)〉 + 〈U∗v∗, g(x)〉 ∀x ∈ dom f ∩ S ∩ dom g.

Denote z∗ := U∗v∗. Since U(C) ⊆ K, for all c ∈ C it holds 〈U∗v∗, c〉 =
〈v∗, Uc〉 ≥ 0, which implies that z∗ = U∗v∗ ∈ C∗. Consequently, for the
element (v∗, z∗, v) ∈ (K∗ \ {0}) × C∗ × V one has

〈v∗, v〉 ≤ inf
x∈S

{(v∗f)(x) + (z∗g)(x)},

which means that (v∗, z∗, v) ∈ BCL
w and so v ∈ hCL

w (BCL
w ). ��

Remark 4.3.14. If (RCV CF L) is fulfilled, then Theorem 4.3.29 and Theorem
4.3.30 yield

hCF L
w (BCF L

w ) = hCF
w (BCF

w ) = hCL
w (BCL

w ) = hCP
w (BCP

w ) = hCN
w (BCN

w ).

Thus, under this hypothesis, the weakly maximal elements of these sets coin-
cide. If, additionally, f(dom f ∩ A) + K is closed, then one has

WMin(f(dom f ∩ A),K) ⊆ WMax(hCF L
w (BCF L

w ),K) = WMax(hCF
w (BCF

w ),K)

= WMax(hCL
w (BCL

w ),K) = WMax(hCP
w (BCP

w ),K)

= WMax(hCN
w (BCN

w ),K) ⊆ WMin(f(dom f ∩ A) + K, K).

4.4 Vector duality via a general scalarization

In this section we first develop a general duality scheme for the vector opti-
mization problem with geometric and cone constraints

(PV C) Min
x∈A

f(x),

A = {x ∈ S : g(x) ∈ −C}

in the same setting as considered in section 4.2 with respect to a general class
of efficient solutions introduced via a general scalarization function. Through-
out this section we assume that int(K) 	= ∅. In this framework we prove weak
and strong duality theorems and derive necessary and sufficient optimality
conditions. As particular instances we consider some particular scalarization
functions widely used in the literature on vector optimization.
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4.4.1 A general duality scheme with respect to a general
scalarization

Let S be an arbitrary set of proper and convex functions s : V ∪{+∞K} → R

fulfilling s(+∞K) = +∞, f(dom f ∩ A) + K ⊆ dom s and such that s is K-
strongly increasing on the set f(dom f ∩A) + K. Let us recall that s is called
K-strongly increasing on f(dom f ∩ A) + K if for x, y ∈ f(dom f ∩ A) + K
such that x − y ∈ K and x 	= y it holds s(x) > s(y). The elements of the
set S are called scalarization functions. Following the ideas in [72, 74, 79] we
consider the following notion.

Definition 4.4.1. An element x̄ ∈ A is said to be an S-properly efficient
solution to (PV C) if x̄ ∈ dom f and there exists an s ∈ S such that s(f(x̄)) ≤
s(f(x)) for all x ∈ A.

If x̄ ∈ A is an S-properly efficient solution to (PV C), then x̄ is also an
efficient solution to (PV C). On the other hand, x̄ is an optimal solution to
the scalar optimization problem

(PCS ) inf
x∈A

s(f(x)).

Next we construct a scalar conjugate dual problem to (PCS ) which will be
the starting point for defining a vector dual to (PV C) with respect to the
set of scalarization functions S. The duality schemes for a convex composed
optimization problem developed in section 3.4 cannot be used at this point,
as they are applicable only in case s ∈ S is K-increasing on V ∪ {+∞K}.
But this assumption is too strong, being not fulfilled by the majority of the
scalarization functions one can meet in the literature. Nevertheless, even if we
assume less, a conjugate dual problem to (PCS ) can be constructed.

We start by rewriting (PCS ) in the following equivalent form

(PCS ) inf
x∈A,y∈V,

f(x)−y�K0

s(y),

which is in fact nothing else than

(PCS ) inf
(x,y)∈S×V,g(x)∈−C,

f(x)−y�K0

s(y).

The Lagrange dual problem to (PCS ) is

sup
k∗∈K∗,z∗∈C∗

inf
x∈S,y∈V

{s(y) + 〈z∗, g(x)〉 + 〈k∗, f(x) − y〉}

= sup
k∗∈K∗,z∗∈C∗

{

inf
x∈S

{(k∗f)(x) + (z∗g)(x)} + inf
y∈V

{〈−k∗, y〉 + s(y)}
}
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= sup
k∗∈K∗,z∗∈C∗

{

−s∗(k∗) + inf
x∈X

{(k∗f)(x) + ((z∗g) + δS)(x)}
}

.

Replacing the infimum problem in the objective function of the optimization
problem from above with its Fenchel dual we finally get the following conjugate
dual problem to (PCS )

(DCS ) sup
y∗∈X∗,k∗∈K∗,

z∗∈C∗

{−s∗(k∗) − (k∗f)∗(y∗) − (z∗g)∗S(−y∗)} .

That v(PCS ) ≥ v(DCS ) follows automatically from the construction of the
dual. Next we investigate the existence of strong duality in case the regularity
condition (RCV CF L) is fulfilled.

Theorem 4.4.1. If the regularity condition (RCV CF L) is fulfilled, then it
holds v(PCS ) = v(DCS ) and the dual has an optimal solution.

Proof. The regularity condition assumed along with the hypothesis that
int(K) 	= ∅ guarantee that there exists y′ ∈ Y such that y′ ∈ f(x′)+ int(K) ⊆
f(dom f ∩ A) + K ⊆ dom s. Thus there exists (x′, y′) ∈ (dom f ∩ S) × dom s
with the property that g(x′) ∈ − int(C) and f(x′) − y′ ∈ − int(K). By Theo-
rem 3.2.12 follows that there exist k̄∗ ∈ K∗ and z̄∗ ∈ C∗ such that

v(PCS ) = sup
k∗∈K∗,z∗∈C∗

{

−s∗(k∗) + inf
x∈S

{(k∗f)(x) + (z∗g)(x)}
}

= −s∗(k̄∗)

+ inf
x∈S

{(k̄∗f)(x) + (z̄∗g)(x)} = −s∗(k̄∗) + inf
x∈X

{(k̄∗f)(x) + ((z̄∗g) + δS)(x)}.

Taking again into consideration (RCV CF L), as x′ ∈ dom f ∩ S ∩ dom g =
dom(k̄∗f)∩ dom((z̄∗g) + δS) and (k̄∗f) is continuous at x′, by Theorem 3.2.6
there exists ȳ∗ ∈ X∗ which satisfies

inf
x∈X

{(k̄∗f)(x) + ((z̄∗g) + δS)(x)} = sup
y∗∈X∗

{−(k̄∗f)∗(y∗) − (z̄∗g)∗S(−y∗)}

= −(k̄∗f)∗(ȳ∗) − (z̄∗g)∗S(−ȳ∗).

In conclusion,

v(PCS ) = v(DCS ) = −s∗(k̄∗) − (k̄∗f)∗(ȳ∗) − (z̄∗g)∗S(−ȳ∗)

and (ȳ∗, k̄∗, z̄∗) is an optimal solution to (DCS ). ��

Remark 4.4.1. (a) The dual problem (DCS ) can be seen as a Fenchel-Lagrange
type dual problem to (PCS ), since when constructing it we consider first the
Lagrange dual to (PCS ) and after that the Fenchel dual to the inner infimum
optimization problem which appears in the objective function of the Lagrange
dual.
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(b) By defining in an appropriate way a perturbation function for (PCS )
one can obtain the conjugate dual (DCS ) by means of the general duality
approach developed in section 3.1. The general regularity conditions (RCΦ

i ),
i ∈ {2, 2′, 2′′, 3, 4}, would provide regularity conditions for the primal-dual
pair (PCS )− (DCS ) even if the interiors of K and C are empty. We leave this
to the reader, as in this section our main purpose is not necessary to refine
the regularity condition (RCV CF L), but to develop a general duality scheme
for (PV C) with respect to different general scalarization functions.

The dual vector optimization problem to (PV C) we investigate in this
section is the following (cf. [29])

(DV CS ) Max
(s,y∗,k∗,z∗,v)∈BCS

hCS (s, y∗, k∗, z∗, v),

where

BCS = {(s, y∗, k∗, z∗, v) ∈ S × X∗ × K∗ × C∗ × V :
s(v) ≤ −s∗(k∗) − (k∗f)∗(y∗) − (z∗g)∗S(−y∗)}

and
hCS (s, y∗, k∗, z∗, v) = v.

The weak and strong duality statements follow.

Theorem 4.4.2. There is no x ∈ A and no (s, y∗, k∗, z∗, v) ∈ BCS such that
f(x) ≤K hCS (s, y∗, k∗, z∗, v).

Proof. We assume that there exist x ∈ A and (s, y∗, k∗, z∗, v) ∈ BCS such
that f(x) ≤K hCS (s, y∗, k∗, z∗, v) = v. It is obvious that x ∈ dom f and so
x ∈ dom f ∩A. Thus v ∈ f(dom f ∩A)+K and, as s is K-strongly increasing
on f(dom f ∩ A) + K, it follows that s(f(x)) < s(v). On the other hand,

s(v) ≤ −s∗(k∗) − (k∗f)∗(y∗) − (z∗g)∗S(−y∗) ≤ inf
x∈A

s(f(x)),

and this leads to a contradiction. ��

Theorem 4.4.3. Assume that the regularity condition (RCV CF L) is ful-
filled. If x̄ ∈ A is an S-properly efficient solution to (PV C), then there
exists (s̄, ȳ∗, k̄∗, z̄∗, v̄), an efficient solution to (DV CS ), such that f(x̄) =
hCS (s̄, ȳ∗, k̄∗, z̄∗, v̄) = v̄.

Proof. According to Definition 4.4.1 there exists s̄ ∈ S such that x̄ is an
optimal solution to the optimization problem

inf
x∈A

s̄(f(x)).

As (RCV CF L) is assumed, by Theorem 4.4.1 there exists (ȳ∗, k̄∗, z̄∗) ∈ X∗ ×
K∗ × C∗ such that
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s̄(f(x̄)) = −s̄∗(k̄∗) − (k̄∗f)∗(ȳ∗) − (z̄∗g)∗S(−ȳ∗).

For v̄ := f(x̄) one obviously has (s̄, ȳ∗, k̄∗, z̄∗, v̄) ∈ BCS . That (s̄, ȳ∗, k̄∗, z̄∗, v̄)
is an efficient solution to (DV CS ) follows by Theorem 4.4.2. ��

The next result provides necessary and sufficient optimality conditions
for the S-properly efficient solutions to (PV C). As we will see in the next
subsection the linear scalarization can be seen as a particular instance of
the general approach, thus one can derive from Theorem 4.4.4 necessary and
sufficient optimality conditions for the primal-dual pairs investigated in the
previous sections of this chapter.

Theorem 4.4.4. (a) Let x̄ ∈ A be an S-properly efficient solution to (PV C)
and the regularity condition (RCCF L) be fulfilled. Then there exists
(s̄, ȳ∗, k̄∗, z̄∗, v̄) ∈ BCS , an efficient solution to (DV CS ), such that
(i) f(x̄) = v̄;
(ii) s∗(k̄∗) + s̄(f(x̄)) = 〈k̄∗, f(x̄)〉;
(iii) (k̄∗f)∗(ȳ∗) + (k̄∗f)(x̄) = 〈ȳ∗, x̄〉;
(iv) (z̄∗g)∗S(−ȳ∗) = −〈ȳ∗, x̄〉;
(v) (z̄∗g)(x̄) = 0.

(b) Assume that x̄ ∈ A and (s̄, ȳ∗, k̄∗, z̄∗, v̄) ∈ BCS fulfill the relations (i)−(v).
Then x̄ is an S-properly efficient solution to (PV C) and (s̄, ȳ∗, k̄∗, z̄∗, v̄)
is an efficient solution to the dual problem (DV CS ).

Proof. The previous theorem yields the existence of an efficient solution
(s̄, ȳ∗, k̄∗, z̄∗, v̄) to the dual problem (DV CS ) such that v̄ = f(x̄) and

s̄(f(x̄)) + s̄∗(k̄∗) + (k̄∗f)∗(ȳ∗) + (z̄∗g)∗S(−ȳ∗) = 0. (4.23)

By the Young-Fenchel inequality one has

s∗(k̄∗) + s̄(f(x)) − 〈k̄∗, f(x)〉 ≥ 0,

(k̄∗f)∗(ȳ∗) + (k̄∗f)(x) − 〈ȳ∗, x̄〉 ≥ 0,

(z̄∗g)∗S(−ȳ∗) + (z̄∗g)(x̄) − 〈−ȳ∗, x̄〉 ≥ 0,

while since z̄∗ ∈ C∗ and g(x̄) ∈ −C it follows

−(z̄∗g)(x̄) ≥ 0.

The sum of the terms in the left hand side of the inequalities above is equal
to 0 (cf. (4.23)) and this means that they all must be equal to 0. This proves
that assertion in (a) is true.

The assertion in (b) follows immediately even without the fulfillment of
(RCCF L), because summing up the equalities in (ii)−(v) yields (4.23), which,
along with (i), implies that x̄ is an S-properly efficient solution to (PV C).
Relation (4.23) and the weak duality property imply that (s̄, ȳ∗, k̄∗, z̄∗, v̄) is
an efficient solution to (DV CS ). ��
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Remark 4.4.2. The optimality conditions (i) − (v) in Theorem 4.4.4 can be
equivalently written as

v̄ = f(x̄), k̄∗ ∈ ∂f(x̄), ȳ∗ ∈ ∂k(x̄) ∩ (−∂((z̄∗g) + δS)(x̄)) and (z̄∗g)(x̄) = 0.

In the remaining part of the subsection we turn our attention to the weakly
efficient solutions to (PV C). We notice first that x̄ is a weakly efficient solution
to (PV C) if and only if it is an efficient solution to (PV C) with respect to the
nontrivial pointed convex cone ̂K = int(K) ∪ {0}. One can easily prove that
int( ̂K) = int(K).

Let T be an arbitrary set of proper and convex functions s : V ∪{+∞K} →
R such that s(+∞K) = +∞, f(dom f ∩ A) + K ⊆ dom s and s is K-strictly
increasing on the set f(dom f∩A)+K. Let us recall that s is called K-strictly
increasing on f(dom f ∩A)+K if s is K-increasing on f(dom f ∩A)+K and
for x, y ∈ f(dom f ∩ A) + K such that x − y ∈ int(K) it holds s(x) > s(y).

A vector dual problem to (PV C) with respect to the set of scalarization
functions T will be now introduced by replacing S with T in the feasible set of
the dual (DV CS ). This new dual will be denoted by (DV CT ) and its feasible
set and objective function will be denoted by BCT and hCT , respectively. We
come now to the weak and strong duality theorems.

Theorem 4.4.5. There is no x ∈ A and no (s, y∗, k∗, z∗, v) ∈ BCT such that
f(x) <K hCT (s, y∗, k∗, z∗, v).

Proof. Let be x ∈ A and (s, y∗, k∗, z∗, v) ∈ BCT such that f(x) <K

hCT (s, y∗, k∗, z∗, v) or, equivalently, f(x) ≤ bK hCT (s, y∗, k∗, z∗, v). The fact
that s is K-strictly increasing implies that s is ̂K-strongly increasing. The
conclusion follows now by taking into consideration Theorem 4.4.2. ��

Theorem 4.4.6. Assume that the regularity condition (RCV CF L) is fulfilled.
If x̄ ∈ A is a T -properly efficient solution to (PV C), then there exists
(s̄, ȳ∗, k̄∗, z̄∗, v̄), a weakly efficient solution to (DV CT ), such that f(x̄) =
hCT (s̄, ȳ∗, k̄∗, z̄∗, v̄) = v̄.

Proof. The result follows from Theorem 4.4.3 by using that every K-strictly
increasing function is also ̂K-strongly increasing and that every efficient so-
lution with respect to ̂K is a weakly efficient solution with respect to K.
��

By a similar argument like in the proof of the theorem above and using
Theorem 4.4.4 we obtain the following characterization for T -properly efficient
solutions to (PV C).

Theorem 4.4.7. (a) Let x̄ ∈ A be a T -properly efficient solution to (PV C)
and the regularity conditions (RCCF L) be fulfilled. Then there exists
(s̄, ȳ∗, k̄∗, z̄∗, v̄) ∈ BCT , a weakly efficient solution to (DV CT ), such that
the relations (i) − (v) in Theorem 4.4.4 are fulfilled.
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(b) Assume that x̄ ∈ A and (s̄, ȳ∗, k̄∗, z̄∗, v̄) ∈ BCT fulfill the relations (i)−(v)
in Theorem 4.4.4. Then x̄ is a T -properly efficient solution to (PV C) and
(s̄, ȳ∗, k̄∗, z̄∗, v̄) is a weakly efficient solution to the dual problem (DV CT ).

In the remaining part of the section we consider different particular classes
of scalarization functions given in the literature and adapt the vector dual
problem and the duality results introduced above to these scalarization con-
cepts. The scalarizations we consider in the following are the linear scalar-
ization, the maximum(-linear) scalarization, the set scalarization and the
(semi)norm scalarization.

4.4.2 Linear scalarization

The linear scalarization is the most famous and widely used scalarization in
vector optimization and assumes that the scalarization functions are strongly
increasing linear continuous functions. We consider the following set of scalar-
ization functions

Sl = {sv∗ : V ∪ {+∞K} → R : v∗ ∈ K∗0,
sv∗(v) = 〈v∗, v〉 ∀v ∈ V ∪ {+∞K}}.

By the conventions we made, for sv∗ ∈ Sl it holds sv∗(+∞K) = +∞. The
Sl-properly efficient solutions to (PV C) are the classical properly efficient
solutions to (PV C) in the sense of linear scalarization used in the sections
4.2 and 4.3. Obviously, for all v∗ ∈ K∗0, f(dom f ∩ A) + K ⊆ V = dom sv∗

and sv∗ is K-strongly increasing, linear and continuous. Noticing that for all
k∗ ∈ K∗ one has s∗v∗(k∗) = δv∗(k∗), the dual vector problem (DV CS ) becomes

(DV CSl ) Max
(v∗,y∗,z∗,v)∈BCSl

hCSl (v∗, y∗, z∗, v),

where

BCSl = {(v∗, y∗, z∗, v) ∈ K∗0 × X∗ × C∗ × V :
〈v∗, v〉 ≤ −(v∗f)∗(y∗) − (z∗g)∗S(−y∗)}

and
hCSl (v∗, y∗, z∗, v) = v.

It is easy to observe that (DV CSl ) is exactly the Fenchel-Lagrange type dual
problem (DV CF L) investigated in the section 4.3. The weak duality result
Theorem 4.4.2 and the strong duality result Theorem 4.4.3 become the state-
ments (a) and (b) in Theorem 4.3.7, respectively.

Now considering as set of scalarization functions

Tl = {sv∗ : V ∪ {+∞K} → R : v∗ ∈ K∗ \ {0},
sv∗(v) = 〈v∗, v〉 ∀v ∈ V ∪ {+∞K}},
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it yields that every scalarization function sv∗ ∈ Tl is K-strictly increasing,
linear and continuous, while its domain contains f(dom f ∩A) + K. Because
of Corollary 2.4.26 (see also Remark 2.4.11) one can easily see that x̄ ∈ A is
a Tl-properly efficient solution to (PV C) if and only if x̄ is a weakly efficient
solution to (PV C). The dual which we introduce with respect to the set of
scalarization functions Tl is

(DV CTl ) Max
(v∗,y∗,z∗,v)∈BCTl

hCTl (v∗, y∗, z∗, v),

where

BCTl = {(v∗, y∗, z∗, v) ∈ (K∗ \ {0}) × X∗ × C∗ × V :
〈v∗, v〉 ≤ −(v∗f)∗(y∗) − (z∗g)∗S(−y∗)}

and
hCTl (v∗, y∗, z∗, v) = v

and is nothing else than (DV CF L
w ). By particularizing the weak duality result

Theorem 4.4.5 and the strong duality result in Theorem 4.4.6 for the set of
scalarization functions Tl we rediscover the statements (a) and (b) in Theorem
4.3.25, respectively.

4.4.3 Maximum(-linear) scalarization

In case V is a finite dimensional space one of the scalarizations one can meet
especially in the applications of vector optimization is the so-called Tchebyshev
(or, maximum) scalarization. We deal here with a more general scalarization
function defined by combining a weighted maximum scalarization function (cf.
[104,179]) with a linear function. This so-called maximum-linear scalarization
function was also investigated by Mitani and Nakayama in [133].

Assume that V = R
k, K = R

k
+, V ∪{+∞K} = R

k∪{+∞
R

k
+
} and that fi :

R
n → R, i = 1, ..., k, are proper and convex functions such that

⋂k
i=1 dom fi∩

S ∩ g−1(−C) 	= ∅. Further we define f : X → R
k ∪{+∞

R
k
+
} as being (see also

Remark 4.3.9(c))

f(x) =

⎧

⎨

⎩

(f1(x), ..., fk(x))T , if x ∈
k
⋂

i=1

dom fi,

+∞
R

k
+
, otherwise.

Let also be η ≥ 0. For w = (w1, ..., wk)T ∈ int(Rk
+) and a = (a1, ..., ak)T ∈ R

k

we consider the scalarization function sw,a : R
k ∪ {+∞

R
k
+
} → R, defined by

sw,a(y) = max
j=1,...,k

{wj(yj − aj)} + η

k
∑

j=1

wjyj , y = (y1, ..., yk)T ∈ R
k,
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whereby sw,a(+∞
R

k
+
) = +∞. For all w ∈ int(Rk

+) and a ∈ R
k, sw,a is con-

vex and R
k
+-strictly increasing and fulfills f

(

∩k
i=1 dom fi ∩ A

)

+ R
k
+ ⊆ R

k =
dom s. We introduce the following set of scalarization functions

Tml = {sw,a : R
k ∪ {+∞

R
k
+
} → R : (w, a) ∈ int(Rk

+) × R
k}.

An element x̄ ∈ A is a Tml-properly efficient solution to (PV C) if there exist

w ∈ int(Rk
+) and a ∈ R

k such that max
j=1,...,k

{wj(fj(x̄) − aj)} + η
k
∑

j=1

wjfj(x̄) ≤

max
j=1,...,k

{wj(fj(x) − aj)} + η
k
∑

j=1

wjfj(x) for all x ∈ A.

Let be w = (w1, ..., wk)T ∈ int(Rk
+) and a = (a1, ..., ak)T ∈ R

k fixed. The
conjugate function of sw,a ∈ Tml has, for β ∈ R

k the following formulation

s∗w,a(β) = sup
y∈Rk

{

βT y − max
j=1,...,k

{

wj(yj − aj)
}

− η
k

∑

j=1

wjyj

}

= sup
y∈Rk

{

(β − ηw)T y − max
j=1,...,k

{

wj(yj − aj)
}

}

= sup
u∈Rk

{

(β − ηw)T (u + a) − max
j=1,...,k

{

wjuj

}

}

=

⎧

⎨

⎩

(β − ηw)T a, if ηw � β and
k
∑

j=1

βj

wj
= kη + 1,

+∞, otherwise.

By identifying the scalarization function sw,a ∈ Tml with the pair (w, a)
for w ∈ int(Rk

+) and a ∈ R
k, the dual vector problem to (PV C) with respect

to the set of scalarization functions Tml is

(DV CTml ) WMax
(w,a,y∗,β,z∗,v)∈BCTml

hCTml (w, a, y∗, β, z∗, v),

where

BCTml =

{

(w, a, y∗, β, z∗, v) ∈ int(Rk
+) × R

k × X∗ × R
k
+ × C∗ × R

k :

ηw � β,
k
∑

j=1

βj

wj
= kη + 1, max

j=1,...,k
{wj(vj − aj)} + η

k
∑

j=1

wjvj

≤ (β − ηw)T a −
(

k
∑

j=1

βjfj

)∗
(y∗) − (z∗g)∗S(−y∗)

}

and
hCTml (w, a, y∗, β, z∗, v) = v.

Theorem 4.4.5 and Theorem 4.4.6 lead to the following results, respectively.
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Theorem 4.4.8. There is no x ∈ A and no (w, a, y∗, β, z∗, v) ∈ BCTml such
that fi(x) < h

CTml
i (w, a, y∗, β, z∗, v) = vi, i = 1, ..., k.

Theorem 4.4.9. Assume that the regularity condition (RCV CF L) is fulfilled.
If x̄ ∈ A is a Tml-properly efficient solution to (PV C), then there ex-
ists (w̄, ā, ȳ∗, β̄, z̄∗, v̄), a weakly efficient solution to (DV CTml ), such that
fi(x̄) = h

CTml
i (w̄, ā, ȳ∗, β̄, z̄∗, v̄) = v̄i, i = 1, ..., k.

In case η = 0 the maximum-linear scalarization becomes the weighted
Tchebyshev scalarization. Moreover, when the scalarization function is the
maximum function, i.e. wj = 1 and aj = 0 for all j = 1, ..., k, then the set of
scalarization functions has only one element, namely

Tm =
{

s : R
k ∪ {+∞

R
k
+
} → R : s(y) = max

j=1,...,k
yj ∀y ∈ R

k, s(∞
R

k
+
) = +∞

}

and an element x̄ ∈ A is said to be a Tm-properly efficient solution to (PV C) if
maxj=1,...,k fj(x̄) ≤ maxj=1,...,k fj(x) for all x ∈ A. The dual vector problem
to (PV C) with respect to the set of scalarization functions Tm is in this
particular case

(DV CTm ) WMax
(y∗,β,z∗,v)∈BCTm

hCTm (y∗, β, z∗, v),

where

BCTm =

{

(y∗, β, z∗, v) ∈ X∗ × R
k
+ × C∗ × R

k :
k
∑

j=1

βj = 1,

max
j=1,...,k

{vj} ≤ −
(

k
∑

j=1

βjfj

)∗
(y∗) − (z∗g)∗S(−y∗)

}

and
hCTm (y∗, β, z∗, v) = v.

The weak and strong duality theorems for the vector primal-dual pair (PV C)−
(DV CTm ) follow as particular instances of Theorem 4.4.8 and 4.4.9, respec-
tively.

4.4.4 Set scalarization

Under the name set scalarization we include those scalarization approaches
for which the scalarization functions are defined by means of some given sets.
We consider here a quite general scalarization function in connection to the
one due to Gerth and Weidner (cf. [75]). This scalarization function was in-
vestigated also in [173,175,188].

Consider the nonempty convex set E ⊆ V which satisfies cl(E)+int(K) ⊆
int(E). For all μ ∈ int(K) we define sμ : V ∪ {+∞K} → R by
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sμ(v) = inf
{

t ∈ R : v ∈ tμ − cl(E)
}

.

Notice that sμ(+∞K) = +∞. According to [75, 188], for μ ∈ int(K) the
function sμ is convex, K-strictly increasing and takes only real values, thus
f(dom f ∩ A) + K ⊆ V = dom sμ. Further, let be

Ts = {sμ : V ∪ {+∞K} → R : μ ∈ int(K)}.

An element x̄ ∈ A is said to be a Ts-properly efficient solution to (PV C) if
there exist μ ∈ int(K) such that sμ(f(x̄)) ≤ sμ(f(x)) for all x ∈ A.

In order to formulate the vector dual problem to (PV C) that arises in this
case we need the conjugate function of sμ, when μ ∈ int(K) is fixed. It is
s∗μ : V ∗ → R,

s∗μ(k∗) = sup
v∈V

⎧

⎨

⎩

〈k∗, v〉 − inf
t∈R,

v∈tμ−cl(E)

t

⎫

⎬

⎭

= sup
v∈V,t∈R,

v∈tμ−cl(E)

{〈k∗, v〉 − t}

= sup
t∈R

{

− t + sup
u∈− cl(E)

〈k∗, u + tμ〉
}

= sup
t∈R

{

t(〈k∗, μ〉 − 1) + sup
u∈− cl(E)

〈k∗, u〉
}

=
{

σ− cl(E)(k∗), if 〈k∗, μ〉 = 1,
+∞, otherwise.

Now we are able to formulate the vector dual problem attached to (PV C) via
the set scalarization. It is

(DV CTs ) WMax
(μ,y∗,k∗,z∗,v)∈BCTs

hCTs (μ, y∗, k∗, z∗, v),

where

BCTs = {(μ, y∗, k∗, z∗, v) ∈ int(K) × X∗ × K∗ × C∗ × V : 〈k∗, μ〉 = 1,
sμ(v) ≤ −σ− cl(E)(k∗) − (k∗f)∗(y∗) − (z∗g)∗S(−y∗)}

and
hCTs (μ, y∗, k∗, z∗, v) = v.

The weak and strong duality theorems are particularizations of Theorem 4.4.5
and Theorem 4.4.6, respectively.

Theorem 4.4.10. There is no x ∈ A and no (μ, y∗, k∗, z∗, v) ∈ BCTs such
that f(x) <K hCTs (μ, y∗, k∗, z∗, v).

Theorem 4.4.11. Assume that the regularity condition (RCV CF L) is ful-
filled. If x̄ ∈ A is a Ts-properly efficient solution to (PV C), then there
exists (μ̄, ȳ∗, k̄∗, z̄∗, v̄), a weakly efficient solution to (DV CTs ), such that
f(x̄) = hCTs (μ̄, ȳ∗, k̄∗, z̄∗, v̄) = v̄.
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Let us come now to a special case of the set scalarization, the so-called
set scalarization with a conical set. To this end we take E = K and notice
that, since K is a convex cone, the condition cl(E) + int(K) ⊆ int(K) is
automatically as equality fulfilled. For all ν ∈ int(K) we define sν : V ∪
{+∞K} → R by

sν(v) = inf
{

t ∈ R : v ∈ tν − cl(K)
}

.

We notice that therefore sν(+∞K) = +∞. Let be

Tsc = {sν : V ∪ {+∞K} → R : ν ∈ int(K)}.

An element x̄ ∈ A is said to be a Tsc-properly efficient solution to (PV C) if
there exists ν ∈ int(K) such that sν(f(x̄)) ≤ sν(f(x)) for all x ∈ A. Among
the authors who have used this scalarization approach we cite here Kaliszewski
(cf. [107]), Rubinov and Gasimov (cf. [162]) and Tammer (cf. [172]). Since
σ− cl(K) = δK∗ , for all ν ∈ int(K) the conjugate function of sν has the following
formulation

s∗ν(k∗) =
{

0, if k∗ ∈ K∗, 〈k∗, ν〉 = 1,
+∞, otherwise,

which leads to the following dual vector problem

(DV CTsc ) WMax
(ν,y∗,k∗,z∗,v)∈BCTsc

hCTsc (ν, y∗, k∗, z∗, v),

where

BCTsc = {(ν, y∗, k∗, z∗, v) ∈ int(K) × X∗ × K∗ × C∗ × V :
〈k∗, ν〉 = 1, sν(v) ≤ −(k∗f)∗(y∗) − (z∗g)∗S(−y∗)}

and
hCTsc (ν, y∗, k∗, z∗, v) = v.

The weak and strong duality theorems have similar formulations to the ones
given for the vector primal-dual pair (PV C) − (DV CTs ), therefore we omit
them.

In the framework provided by the set scalarization can be brought also the
scalarization approach introduced in [189] which involves polyhedral sets in
finite dimensional spaces as well as the scalarization approach treated in [175]
which involves sets generated by norms. The reader is referred to [188] for a
deeper analysis of an approach for embedding classical scalarization functions
into the set scalarization concept.

4.4.5 (Semi)Norm scalarization

The investigations we make in this subsection have as starting point the fact
that in some circumstances (semi)norms on V turn out to be K-strongly
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increasing functions. This has been noticed by many authors; we cite here
only the works [104,165,201]. The scalarization functions we investigate in the
following are based on K-strongly increasing gauges. This kind of scalarization
functions has been used in [187] for location problems and in [45] for goal
programming.

Assume first that there exists b ∈ V such that f(dom f ∩A) ⊆ b + K. We
consider E ⊆ V a convex set such that 0 ∈ int(E) and its (Minkowski) gauge
γE is K-strongly increasing on K. Since 0 ∈ int(E) it yields that γE(v) ∈ R

for all v ∈ V .

Remark 4.4.3. If V is a Hilbert space, then the norm of V is K-strongly in-
creasing on K if and only if K ⊆ K∗ (cf. [104]). This is the case if, for instance,
V = R

k and K is the non-negative orthant in R
k. Not only the Euclidean norm

is R
k
+-strongly increasing on R

k
+, but also the oblique norms (cf. [165, 175])

are R
k
+-strongly increasing on R

k
+.

For all a ∈ b − K define sa : V ∪ {+∞K} → R by

sa(v) =
{

γE(v − a), if v ∈ b + K,
+∞, otherwise,

while at +∞K we take sa(+∞K) = +∞. Let be a ∈ b − K fixed. Obviously,
sa is convex and it holds f(dom f ∩A) ⊆ b+K = dom sa. For all v, w ∈ b+K
such that v ≤K w it holds v − a ≤K w − a. As a ∈ b − K ⇔ −a ∈ −b + K,
v − a and w− a belong to K and so γE(v − a) < γE(w− a) ⇔ sa(v) < sa(w).
This means that sa is K-strongly increasing on b + K. Consequently, since
f(dom f ∩ A) ⊆ b + K, sa is K-strongly increasing on f(dom f ∩ A).

Considering the following family of scalarization functions

Sg = {sa : V ∪ {+∞K} → R : a ∈ b − K},

we say that an element x̄ ∈ A is a Sg-properly efficient solution to (PV C) if
there exists a ∈ b − K such that sa(f(x̄)) ≤ sa(f(x)) for all x ∈ A.

We calculate next the conjugate function of sa for a ∈ b−K fixed. Let be
k∗ ∈ V ∗. Due to Proposition 2.2.18(b) the gauge function γE is continuous.
By using Theorem 3.5.6(a), we have that

(sa)∗(k∗) = (γE(· − a) + δb+K)∗(k∗)

= min
w∗∈V ∗

{

(γE(· − a))∗(k∗ − w∗) + δ∗b+K(w∗)
}

.

Further,

(γE(· − a))∗(k∗ − w∗) = sup
v∈V

{〈k∗ − w∗, v〉 − γE(v − a)}

= sup
u∈V

{〈k∗ − w∗, u + a〉 − γE(u)} = 〈k∗ − w∗, a〉 + γ∗
E(k∗ − w∗).
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For the conjugate of a gauge we have (see Example 2.3.4(a))

γ∗
E(k∗ − w∗) =

{

0, if σE(k∗ − w∗) ≤ 1,
+∞, otherwise,

and, on the other hand, it holds,

δ∗b+K(w∗) = 〈w∗, b〉 + δ∗K(w∗).

Consequently, we get for the conjugate of sa at k∗ the following formula

(sa)∗(k∗) = min
w∗∈−K∗,

σE(k∗−w∗)≤1

{〈k∗ − w∗, a〉 + 〈w∗, b〉}

= 〈k∗, a〉 + min
w∗∈−K∗,

σE(k∗−w∗)≤1

〈w∗, b − a〉.

The vector dual problem to (PV C) with respect to gauge scalarization is

(DV CSg ) Max
(a,y∗,k∗,z∗,w∗,v)∈BCSg

hCSg (a, y∗, k∗, z∗, w∗, v),

where

BCSg =
{

(a, y∗, k∗, z∗, w∗, v) ∈ (b − K) × X∗ × K∗ × C∗ ×(−K∗)×(b + K) :
σE(k∗ − w∗) ≤ 1, γE(v − a) ≤ 〈w∗, a − b〉
−〈k∗, a〉 − (k∗f)∗(y∗) − (z∗g)∗S(−y∗)

}

and
hCSg (a, y∗, k∗, z∗, w∗, v) = v.

Remark 4.4.4. We emphasize that σE defines the so-called dual gauge to γE

and if γE is a norm it turns out to be the dual norm.

The following results follow from Theorem 4.4.2 and Theorem 4.4.3, re-
spectively.

Theorem 4.4.12. There is no x ∈ A and no (a, y∗, k∗, z∗, w∗, v) ∈ BCSg such
that f(x) ≤K hCSg (a, y∗, k∗, z∗, w∗, v).

Theorem 4.4.13. Assume that the regularity condition (RCV CF L) is ful-
filled. If x̄ ∈ A is a Sg-properly efficient solution to (PV C), then there ex-
ists (ā, ȳ∗, k̄∗, z̄∗, w̄∗, v̄), an efficient solution to (DV CSg ), such that f(x̄) =
hCSg (ā, ȳ∗, k̄∗, z̄∗, w̄∗, v̄) = v̄.

Remark 4.4.5. The duality approach described in this section can be consid-
ered also in the particular case when γE is a norm with the unit ball E.
Conditions which ensure that a norm is K-strongly increasing on a given set
have been investigated in [102,104,201].
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4.5 Linear vector duality

The duality theory for linear vector optimization problems has its starting
point in the paper of Gale, Kuhn and Tucker [70]. Their work was continued
by Kornbluth (cf. [118]), Rödder (cf. [161]) and Isermann (cf. [95–97]), who
developed different duality concepts for the linear case. All these investigations
have been done for problems stated in finite dimensional spaces, a framework
in which one can provide duality results in analogy to the ones existing in the
scalar linear duality theory. We intensively deal with linear vector optimization
problems in finite dimensional spaces in the following chapter. What we do
in this section is giving some preliminary results which hold for linear vector
problems in general spaces.

Let X,Z and V be Hausdorff locally convex spaces and assume that Z
is partially ordered by the convex cone C ⊆ Z, while V is partially ordered
by the nontrivial pointed convex cone K ⊆ V . Further, assume that S ⊆ X
is a convex cone, L ∈ L(X,V ), A ∈ L(X,Z) and b ∈ Z is a given element
such that A(S) ∩ (b + C) 	= ∅. The primal vector optimization problem we
investigate in this section is

(PV L) Min
x∈AL

Lx.

AL = {x ∈ S : Ax − b ∈ C}

4.5.1 The duals introduced via linear scalarization

We investigate here vector dual optimization problems to (PV L) with re-
spect to properly efficient solutions as particular instances of the vector duals
treated in section 4.3. To this end it is enough to notice that (PV L) is a par-
ticular formulation of (PV C) in case f : X → V , f(x) = Lx and g : X → Z,
g(x) = b − Ax. The functions f and g satisfy the assumptions imposed when
introducing the problem (PV C).

As for (v∗, z∗, v) ∈ K∗0 × C∗ × V it holds

〈v∗, v〉 ≤ inf
x∈S

{(v∗f)(x) + (z∗g)(x)} ⇔ 〈v∗, v〉 ≤ inf
x∈S

{〈v∗, Lx〉 + 〈z∗, b − Ax〉}

⇔ 〈v∗, v〉 ≤ 〈z∗, b〉 + inf
x∈S

{〈L∗v∗ − A∗z∗, x〉}

⇔ 〈v∗, v〉 ≤ 〈z∗, b〉 and L∗v∗ − A∗z∗ ∈ S∗,

the dual (DV CL) becomes in this special case (see also [101,104])

(DV LL) Max
(v∗,z∗,v)∈BLL

hLL(v∗, z∗, v),

where

BLL =
{

(v∗, z∗, v) ∈ K∗0 × C∗ × V : 〈v∗, v〉 ≤ 〈z∗, b〉 and L∗v∗ − A∗z∗ ∈ S∗}
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and
hLL(v∗, z∗, v) = v.

Coming now to the Fenchel type dual (DV CF ), since for all (v∗, y∗, v) ∈
K∗0 × X∗ × V one has

〈v∗, v〉 ≤ −(v∗f)∗(y∗)− σA(−y∗) ⇔ 〈v∗, v〉 ≤ − sup
x∈X

〈y∗ −L∗v∗, x〉 − σA(−y∗)

⇔ y∗ = L∗v∗ and 〈v∗, v〉 ≤ inf
x∈A

〈y∗, x〉,

this dual is nothing else than the vector dual which follows by particularizing
(DV CP ) in the linear case (this is the reason why we denote it by (DV LP ))

(DV LP ) Max
(v∗,v)∈BLP

hLP (v∗, v),

where

BLP =
{

(v∗, v) ∈ K∗0 × V : 〈v∗, v〉 ≤ inf
x∈A

〈L∗v∗, x〉
}

and
hLP (v∗, v) = v.

Now consider an element (v∗, y∗, z∗, v) ∈ K∗0 × X∗ × C∗ × V . The following
equivalences hold

〈v∗, v〉 ≤ −(v∗f)∗(y∗) − (z∗g)∗S(−y∗) ⇔ y∗ = L∗v∗ and 〈v∗, v〉 ≤ 〈z∗, b〉

+ inf
x∈S

{〈L∗v∗−A∗z∗, x〉} ⇔ y∗ = L∗v∗, 〈v∗, v〉 ≤ 〈z∗, b〉 and L∗v∗−A∗z∗ ∈ S∗.

Consequently, the vector dual problem (DV CF L) has in this case the same
formulation like (DV LL). This means that the vector dual problems investi-
gated in subsection 4.3.2 can be resumed in this particular case to only two
different vector duals. The weak, strong and converse duality theorems for the
primal-dual vector pairs (PV L)−(DV LL) and (PV L)−(DV LP ), respectively,
follow as particular instances of the corresponding results given in subsection
4.3.2.

Remark 4.5.1. A sufficient condition for having strong duality for (PV L) and
(DV LL) which follows as a particularization of (RCV CL) is

(RCV LL) ∃x′ ∈ S such that Ax′ − b ∈ int(C).

In case int(C) = ∅ and X and Z are Fréchet spaces, S is closed and C is
closed (this guarantees that g is C-epi closed) one can assume instead, that
b ∈ sqri(A(S)−C). If the linear subspace lin(A(S)−C) has a finite dimension,
then one can assume that b ∈ ri(A(S)−C) in order to achieve strong duality.
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With respect to the duals (DV LL) and (DV LP ) one has always that (cf.
(4.18)) hLL(BLL) ⊆ hLP (BLP ), while under any of the regularity conditions
mentioned in Remark 4.5.1 these sets become equal.

In what follows we put the dual (DV LL) in connection to another dual
vector problem to (PV L), which generalizes in a direct way the dual in scalar
linear programming. These investigations are based on ideas due to Jahn
published in [101, 104]. Let this vector dual, named in [104] abstract linear
optimization problem, be

(DV LJ ) Max
(v∗,U)∈BLJ

hLJ (v∗, U),

where

BLJ =
{

(v∗, U) ∈ K∗0 × L(Z, V ) : U∗v∗ ∈ C∗ and (L − U ◦ A)∗v∗ ∈ S∗}

and
hLJ (v∗, U) = Ub.

We prove first the following preliminary result.

Proposition 4.5.1. It holds hLJ (BLJ ) ⊆ hLL(BLL).

Proof. Let be (v∗, U) ∈ K∗0 × L(Z, V ) such that U∗v∗ ∈ C∗ and (L − U ◦
A)∗v∗ ∈ S∗. Take v = Ub and z∗ = U∗v∗. Thus it holds 〈v∗, v〉 = 〈v∗, Ub〉 =
〈U∗v∗, b〉 = 〈z∗, b〉 and (L−U ◦A)∗v∗ = L∗v∗−A∗(U∗v∗) = L∗v∗−A∗z∗ ∈ S∗.
This means that (v∗, z∗, v) ∈ BLL and Ub = v ∈ hLL(BLL). ��

The next statement (cf. [104, Theorem 8.13]) gives a sufficient condition
which ensures the coincidence of the maximal elements of hLJ (BLJ ) and
hLL(BLL) with respect to the partial ordering induced by the cone K.

Theorem 4.5.2. The following statements are fulfilled

(a) Max(hLJ (BLJ ),K) ⊆ Max(hLL(BLL), K);
(b) If b 	= 0, then Max(hLJ (BLJ ),K) = Max(hLL(BLL),K).

Proof. (a) If the set Max(hLJ (BLJ ),K) is empty, then the conclusion follows.
Let be Max(hLJ (BLJ ),K) 	= ∅. Suppose that b 	= 0 and consider (v∗, U) ∈

BLJ such that Ub is a maximal element of hLJ (BLJ ). By Proposition 4.5.1
one has that Ub ∈ hLL(BLL). Assume that Ub /∈ Max(hLL(BLL),K). Thus
there exists (v̄∗, z̄∗, v̄) ∈ BLL such that Ub ≤K v̄.

We can assume that 〈v̄∗, v̄〉 = 〈z̄∗, b〉. In case 〈v̄∗, v̄〉 < 〈z̄∗, b〉, it is easy to
find an element v ∈ K \ {0} such that (v̄∗, z̄∗, v̄ + v) ∈ BLL , Ub ≤K v̄ + v and
〈v̄∗, v̄+v〉 = 〈z̄∗, b〉. Therefore the element v̄+v would satisfy the requirements.
Having this fulfilled, we prove that there exists U ∈ L(Z, V ) such that Ub = v̄

and U
∗
v̄∗ = z̄∗.

First we suppose that 〈z̄∗, b〉 	= 0 and define U : Z → V by Uz =
(〈z̄∗, z〉/〈z̄∗, b〉)v̄. Obviously, U ∈ L(Z, V ) and it fulfills Ub = v̄ and U

∗
v̄∗ = z̄∗.
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In case 〈z̄∗, b〉 = 0, as b 	= 0 and v̄∗ ∈ K∗0, there exist z̃∗ ∈ Z∗ and ṽ ∈ V
such that 〈z̃∗, b〉 = 〈v̄∗, ṽ〉 = 1. We define in this case U : Z → V as being
Uz = 〈z̄∗, z〉ṽ + 〈z̃∗, z〉v̄. It is evident that U ∈ L(Z, V ) and Ub = v̄. More
than that, for all z ∈ Z it holds

〈U∗
v̄∗, z〉 = 〈v̄∗, Uz〉 = 〈z̄∗, z〉 + 〈z̃∗, z〉〈v̄∗, v̄〉 = 〈z̄∗, z〉

and so U
∗
v̄∗ = z̄∗. Since L∗v̄∗ − A∗z̄∗ = (L − U ◦ A)∗v̄∗ ∈ S∗, one has that

(v̄∗, U) ∈ BLJ . But Ub ≤K v̄ = Ub leads to a contradiction and, consequently,
Ub ∈ Max(hLL(BLL),K).

In case b = 0 we have that Max(hLJ (BLJ ),K) = {0} and, by Proposition
4.5.1, 0 ∈ hLL(BLL). Assume that 0 /∈ Max(hLL(BLL),K). Thus there exists
(v̄∗, z̄∗, v̄) ∈ BLL such that 0 ≤K v̄. But this means that 0 < 〈v̄∗, v̄〉, which
contradicts the relation 〈v̄∗, v̄〉 ≤ 〈z̄∗, b〉 = 0. In this way we get the desired
result.

(b) Assume that b 	= 0 and consider an arbitrary v̄ ∈ Max(hLL(BLL),K).
Thus there exist v̄∗ ∈ K∗0 and z̄∗ ∈ C∗ such that 〈v̄∗, v̄〉 ≤ 〈z̄∗, b〉 and
L∗v̄∗ −A∗z̄∗ ∈ S∗. If 〈v̄∗, v̄〉 < 〈z̄∗, b〉, then there exists v ∈ K \ {0} such that
(v̄∗, z̄∗, v̄ + v) ∈ BLL , which contradicts the maximality of v̄ in hLL(BLL).
Thus 〈v̄∗, v̄〉 = 〈z̄∗, b〉. As in the proof of statement (a) one can construct
U ∈ L(Z, V ) such that Ub = v̄ and U

∗
v̄∗ = z̄∗. This yields that (v̄∗, U) ∈ BLJ .

Proposition 4.5.1 ensures that v̄ = Ub ∈ Max(hLJ (BLJ ),K). ��

Remark 4.5.2. The previous result states that in case b 	= 0 one can consider
as dual problem to (PV L) the following vector optimization problem

(DV LJ ) Max
v∗∈K∗0,U∈L(Z,V ),

U∗v∗∈C∗,(L−U◦A)∗v∗∈S∗

Ub,

which has a very close formulation to the one of the dual problem in scalar
linear programming. An elaborated discussion on the connections between the
different formulations for the dual vector linear problems in finite dimensional
spaces existing in the literature will be done in the next chapter.

4.5.2 Linear vector duality with respect to weakly efficient
solutions

When int(K) 	= ∅, similar to the investigations above, one can introduce two
vector dual problems to

(PV L
w ) WMin

x∈A
Lx.

AL = {x ∈ S : Ax − b ∈ C}

with respect to the weakly efficient solutions by particularizing the duals in-
troduced in subsection 4.3.4. The vector duals (DV CL

w ) and (DV CF L
w ) turn

out to be
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(DV LL
w ) WMax

(v∗,z∗,v)∈BLL
w

hLL
w (v∗, z∗, v),

where

BLL
w =

{

(v∗, z∗, v) ∈ (K∗ \ {0}) × C∗ × V :
〈v∗, v〉 ≤ 〈z∗, b〉 and L∗v∗ − A∗z∗ ∈ S∗}

and
hLL

w (v∗, z∗, v) = v,

while the vector duals (DV CF
w ) and (DV CP

w ) become

(DV LP
w ) WMax

(v∗,v)∈BLP
w

hLP
w (v∗, v),

where

BLP
w =

{

(v∗, v) ∈ (K∗ \ {0}) × V : 〈v∗, v〉 ≤ inf
x∈A

〈L∗v∗, x〉
}

and
hLL

w (v∗, v) = v.

We always have that hLL
w (BLL

w ) ⊆ hLP
w (BLP

w ) and under the regularity
conditions considered in Remark 4.5.1 these sets coincide.

In analogy to (DV LJ ) one can introduce the following dual problem to
(PV L

w ) with respect to the weakly efficient solutions (cf. [104])

(DV LJ
w ) WMax

(v∗,U)∈BLJ
w

hLJ
w (v∗, U),

where

BLJ
w =

{

(v∗, U) ∈ (K∗ \{0})×L(Z, V ) : U∗v∗ ∈ C∗ and (L−U ◦A)∗v∗ ∈ S∗}

and
hLJ

w (v∗, U) = Ub.

The proof of the following results can be done in the lines of the proofs of
Proposition 4.5.1 and Theorem 4.5.2, respectively.

Proposition 4.5.3. It holds hLJ
w (BLJ

w ) ⊆ hLL
w (BLL

w ).

Theorem 4.5.4. The following statements are fulfilled

(a) WMax(hLJ
w (BLJ

w ),K) ⊆ WMax(hLL
w (BLL

w ),K);
(b) If b 	= 0, then WMax(hLJ

w (BLJ
w ),K) = WMax(hLL

w (BLL
w ),K).

Remark 4.5.3. In case b 	= 0 one can consider as dual problem to (PV L
w )

with respect to the weakly efficient solutions the following vector optimization
problem

(DV LJ
w ) WMax

v∗∈K∗\{0},U∈L(Z,V ),
U∗v∗∈C∗,(L−U◦A)∗v∗∈S∗

Ub.
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4.5.3 Nakayama’s geometric dual in the linear case

The next dual vector problem to (PV L) we investigate with respect to prop-
erly efficient solutions is Nakayama’s geometric dual. The problem (DV CN )
looks in this particular case like

(DV LN ) Max
(U,v)∈BLN

hLN (U, v),

where

BLN = {(U, v) ∈ L+(Z, V ) × V :
�x ∈ S such that v − Ub ≥K (L − U ◦ A)x}

and
hLN (U, v) = v.

Proposition 4.3.16 and Proposition 4.5.1 yield

hLJ (BLJ ) ⊆ hLL(BLL) ⊆ hLN (BLN ).

If (RCV L) is fulfilled and L
(

S ∩ A−1(b + C)
)

+K is closed, Theorem 4.3.17(a)
and Theorem 4.5.2(a) imply

Max(hLJ (BLJ ),K) ⊆ Max(hLL(BLL),K) ⊆ Max(hLN (BLN ),K).

If, additionally, b 	= 0, qi(K) 	= ∅ and every efficient solution to (PV L) is
properly efficient, then, by Theorem 4.3.17(b) and Theorem 4.5.2(b), follows
that

Max(hLJ (BLJ ),K) = Max(hLL(BLL),K) = Max(hLN (BLN ),K). (4.24)

In the next chapter we show that for the linear vector optimization prob-
lems stated in finite dimensional spaces relation (4.24) is automatically ful-
filled. Obviously, in the general case, in the statements above the assumption
that (RCV L) is fulfilled can be replaced with some weaker regularity condi-
tions (cf. Remark 4.5.1).

Assuming next that int(K) 	= ∅, via (DV CN
w ) we get the following vector

dual problem, this time to (PV L
w ) with respect to the weakly efficient solutions

(DV LN
w ) WMax

(U,v)∈BLN
w

hLN
w (U, v),

where

BLN
w = {(U, v) ∈ L+(Z, V ) × V :

�x ∈ Ssuch that v − Ub >K (L − U ◦ A)x}

and
hLN

w (U, v) = v.
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Theorem 4.3.30 and Proposition 4.5.3 yield

hLJ
w (BLJ

w ) ⊆ hLL
w (BLL

w ) = hLN
w (BLN

w ),

while from Theorem 4.5.4(a) follows that

WMax(hLJ
w (BLJ

w ),K) ⊆ WMax(hLL
w (BLL

w ),K) = WMax(hLN
w (BLN

w ),K).

If b 	= 0, then the sets in the relation above are all equal, namely it holds

WMax(hLJ
w (BLJ

w ),K) = WMax(hLL
w (BLL

w ),K) = WMax(hLN
w (BLN

w ),K).
(4.25)
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duality theory. In [36,37] (see also [24]), for a primal vector problem with ge-
ometric and cone constraints stated in finite dimensional spaces, Boţ and
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be very fruitful since it can be employed for different particular scalarization
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The literature on duality for linear vector optimization problems is very
large. We mention here only the works of Gale, Kuhn and Tucker (cf. [70]),
Kornbluth (cf. [118]), Rödder (cf. [161]), Isermann (cf. [95–97]) and Nakayama
(cf. [144]). Very important references for the infinite dimensional case are
the works of Jahn [101, 104], where also connections to earlier results due to
Isermann are established.



5

Conjugate duality for vector optimization
problems with finite dimensional image spaces

In this chapter we introduce new conjugate vector dual problems to the primal
problems treated in the previous chapter in case their objective functions have
finite dimensional image spaces. Weak, strong and converse duality assertions
are proven and these duals are compared with the ones introduced in chapter
4. Note that the properly efficient solutions considered in this chapter are in
the sense of linear scalarization.

5.1 Another Fenchel type vector dual problem

Throughout this section we consider two Hausdorff locally convex spaces X
and Y , the proper functions fi : X → R and gi : Y → R, i = 1, . . . , k, and
A ∈ L(X,Y ) such that ∩k

i=1(dom fi ∩ A−1(dom gi)) 	= ∅. Further, we assume
that the image space V = R

k is partially ordered by the cone K = R
k
+ and

denote according to the notations in section 2.1 Rk = R
k ∪ {±∞

R
k
+
}. For

f : X → Rk, f(x) =

⎧

⎨

⎩

(f1(x), . . . , fk(x))T , if x ∈
k
∩

i=1
dom fi,

+∞
R

k
+
, otherwise,

and

g : Y → Rk, g(y) =

⎧

⎨

⎩

(g1(y), . . . , gk(y))T , if y ∈
k
∩

i=1
dom gi,

+∞
R

k
+
, otherwise,

we introduce the following primal vector optimization problem

(PV FA) Min
x∈X

{f(x) + g(Ax)},

which will constitute the object of our investigations in this section. The
primal problem (PV FA) can be explicitly written as
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(PV FA) Min
x∈X

⎛

⎜

⎝

f1(x) + g1(Ax)
...

fk(x) + gk(Ax)

⎞

⎟

⎠ .

The aim of our investigation is to introduce a new vector dual problem to
(PV FA) and to establish weak, strong and converse duality assertions with
respect to both properly efficient solutions in the sense of linear scalarization
(called simply properly efficient solutions) and weakly efficient solutions to
(PV FA).

5.1.1 Duality with respect to properly efficient solutions

In this subsection we provide a vector dual problem to (PV FA) with respect to
its properly efficient solutions. According to Definition 2.5.1 we say that x̄ ∈ X
is a properly efficient solution to (PV FA) in the sense of linear scalarization
if x̄ ∈ ∩k

i=1(dom fi ∩ A−1(dom gi)) and (f + g ◦ A)(x̄) ∈ PMinLSc

(

(f + g ◦
A)(∩k

i=1(dom fi ∩A−1(dom gi))), Rk
+

)

. Since K∗0 = int(Rk
+) this is the case if

there exists λ = (λ1, . . . , λk)T ∈ int(Rk
+) such that (cf. Definition 2.4.12)

k
∑

i=1

λi(fi(x̄) + gi(Ax̄)) ≤
k

∑

i=1

λi(fi(x) + gi(Ax)) ∀x ∈ X.

This is the reason why we first investigate, for a fixed λ = (λ1, . . . , λk)T ∈
int(Rk

+), the following scalar optimization problem

(PFA
λ ) inf

x∈X

{ k
∑

i=1

λi(fi(x) + gi(Ax))
}

.

The vector dual problem to (PV FA) that we introduce in this section will
have its origins in the conjugate scalar dual to (PFA

λ ). Via the investigations
done in subsection 3.1.2 one can associate to (PFA

λ ) (see the primal-dual pair
(PA) − (DA)) the dual problem

sup
y∗∈Y ∗

{

−
( k
∑

i=1

λifi

)∗
(A∗y∗) −

( k
∑

i=1

λigi

)∗
(−y∗)

}

,

and, on the other hand (see the primal-dual pair (PΣ) − (DΣ) in subsection
3.1.2 and Proposition 2.3.2(e)), the dual problem

sup
xi∗∈X∗,i=1,...,k,

kP

i=1
λix

i∗=0

{

−
k

∑

i=1

λi(fi + gi ◦ A)∗(xi∗)
}

.
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But a valuable scalar dual problem to (PFA
λ ), which should constitute the

starting point for the formulation of the vector dual needs to have separated
the functions fi and gi, i = 1, . . . , k, in its formula. In order to construct such
a problem we employ the general approach from section 3.1. To this aim, let
us consider the perturbation function ΦA

λ : X × Xk × Y k → R,

ΦA
λ (x, x1, . . . , xk, y1, . . . , yk) =

k
∑

i=1

λi(fi(x + xi) + gi(Ax + yi)),

with (x1, . . . , xk, y1, . . . , yk) ∈ Xk × Y k as perturbation variables. The con-
jugate of ΦA

λ , (ΦA
λ )∗ : X∗ × (X∗)k × (Y ∗)k → R, is given by the following

formula

(ΦA
λ )∗(x∗, x1∗, . . . , xk∗, y1∗, . . . , yk∗) = sup

x,xi∈X,yi∈Y,
i=1,...,k

{

〈x∗, x〉 +
k

∑

i=1

〈xi∗, xi〉

+
k

∑

i=1

〈yi∗, yi〉 −
k

∑

i=1

(λifi)(x + xi) −
k

∑

i=1

(λigi)(Ax + yi)
}

=

⎧

⎨

⎩

k
∑

i=1

(

(λifi)∗(xi∗) + (λigi)∗(yi∗)
)

, if
k
∑

i=1

(xi∗ + A∗yi∗) = x∗,

+∞, otherwise.

This provides the following conjugate dual to (PFA
λ )

(DFA
λ ) sup

xi∗∈X∗,yi∗∈Y ∗
i ,i=1,...,k,

kP

i=1
(xi∗+A∗yi∗)=0

{

−
k

∑

i=1

(

(λifi)∗(xi∗) + (λigi)∗(yi∗)
)

}

,

which, via Proposition 2.3.2(e), can be equivalently written as

(DFA
λ ) sup

xi∗∈X∗,yi∗∈Y ∗
i ,i=1,...,k,

kP

i=1
λi(x

i∗+A∗yi∗)=0

{

−
k

∑

i=1

λif
∗
i (xi∗) −

k
∑

i=1

λig
∗
i (yi∗)

}

.

In what follows we provide regularity conditions for the primal-dual pair
(PFA

λ )−(DFA
λ ) which are deduced from the general ones given in section 3.2.

Let us notice that we consider here only generalized interior point conditions,
since they do not depend on the choice of λ, which would not be the case for
the closedness type ones.

The reason why we proceed in this way is given by the fact that these
regularity conditions will be employed in guaranteeing strong duality for the
vector optimization problem (PV FA) and its dual that is introduced below.
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Guaranteeing the scalar strong duality for (PFA
λ ) − (DFA

λ ) will be an inter-
mediate step in this approach and we have to ensure that this is the case for
all λ ∈ int(Rk

+). This fact motivates the need to use regularity conditions that
are independent of λ.

One can notice that whenever fi and gi, i = 1, . . . , k, are convex, then
ΦA

λ is convex, too. For this primal-dual pair one can consider the following
regularity condition (see the discussion made in subsection 3.2.2 in connection
to the primal-dual pair (PΣ) − (DΣ))

(RCFA
1 ) ∃x′ ∈

k
∩

i=1
(dom fi ∩ A−1(dom gi)) such that k − 1 of the

functions fi, i = 1, . . . , k, are continuous at x′ and
gi is continuous at Ax′, i = 1, . . . , k.

Before stating further regularity conditions, we also note that if fi and gi,
i = 1, . . . , k, are lower semicontinuous, then ΦA

λ is lower semicontinuous, too.
Further, it holds (x1, . . . , xk, y1, . . . , yk) ∈ PrXk×Y k(dom ΦA

λ ) if and only if
there exists an x ∈ X such that xi ∈ dom fi − x and yi ∈ dom gi −Ax for i =
1, . . . , k. This is further equivalent to (x1, . . . , xk, y1, . . . , yk) ∈

∏k
i=1 dom fi ×

∏k
i=1 dom gi − ΔXk,A, where ΔXk,A = {(x, . . . , x, Ax, . . . , Ax) : x ∈ X} ⊆

Xk×Y k. This leads to the following regularity condition (obtained via (RCΦ
2 ))

(RCFA
2 ) X and Y are Fréchet spaces, fi and gi are lower semicontinuous,

i = 1, . . . , k, and 0 ∈ sqri
(

k
∏

i=1

dom fi ×
k
∏

i=1

dom gi − ΔXk,A

)

,

along with its stronger versions

(RCFA
2′ ) X and Y are Fréchet spaces, fi and gi are lower semicontinuous,

i = 1, . . . , k, and 0 ∈ core
(

k
∏

i=1

dom fi ×
k
∏

i=1

dom gi − ΔXk,A

)

and

(RCFA
2′′) X and Y are Fréchet spaces, fi and gi are lower semicontinuous,

i = 1, . . . , k, and 0 ∈ int
(

k
∏

i=1

dom fi ×
k
∏

i=1

dom gi − ΔXk,A

)

,

which are in fact equivalent. In the finite dimensional case one has from (RCΦ
3 )

(RCFA
3 ) dim

(

lin
(

k
∏

i=1

dom fi ×
k
∏

i=1

dom gi − ΔXk,A

))

< +∞

and 0 ∈ ri
(

k
∏

i=1

dom fi ×
k
∏

i=1

dom gi − ΔXk,A

)

.

We can state now the strong duality theorem for the scalar primal-dual
pair (PFA

λ ) − (DFA
λ ).

Theorem 5.1.1. Let fi : X → R and gi : Y → R, i = 1, . . . , k, be proper and
convex functions, A ∈ L(X,Y ) such that ∩k

i=1(dom fi∩A−1(dom gi)) 	= ∅ and
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λ ∈ int(Rk
+) be arbitrarily chosen. If one of the regularity conditions (RCFA

i ),
i ∈ {1, 2, 3}, is fulfilled, then v(PFA

λ ) = v(DFA
λ ) and the dual has an optimal

solution.

Remark 5.1.1. In order to deliver strong duality statements for (PFA
λ ) and

(DFA
λ ) one can also combine the regularity conditions given in subsection

3.2.2. We exemplify this here by the ones expressed via the strong quasi-
relative interior. Thus, assuming

X and Y are Fréchet spaces, fi and gi are lower semicontinuous,

i = 1, . . . , k, 0 ∈ sqri
(

k
∩

i=1
dom gi − A

(

k
∩

i=1
dom fi

))

,

0 ∈ sqri
(

k
∏

i=1

dom fi − ΔXk

)

and 0 ∈ sqri
(

k
∏

i=1

dom gi − ΔY k

)

,

or

X and Y are Fréchet spaces, fi and gi are lower semicontinuous,

i = 1, . . . , k, 0 ∈ sqri
(

k
∏

i=1

(

dom fi ∩ A−1(dom gi)
)

− ΔXk

)

and 0 ∈ sqri
(

dom gi − A(dom fi)
)

, i = 1, . . . , k,

guarantees the existence of strong duality for the primal-dual pair (PFA
λ ) −

(DFA
λ ) for all λ ∈ int(Rk

+).

Let us come now to the formulation of the necessary and sufficient optimality
conditions for the primal-dual pair (PFA

λ ) − (DFA
λ ).

Theorem 5.1.2. (a) Let fi : X → R and gi : Y → R, i = 1, . . . , k,
be proper and convex functions, A ∈ L(X,Y ) such that ∩k

i=1(dom fi ∩
A−1(dom gi)) 	= ∅ and λ ∈ int(Rk

+) be arbitrarily chosen. If x̄ ∈ X is an
optimal solution to (PFA

λ ) and one of the regularity conditions (RCFA
i ),

i ∈ {1, 2, 3}, is fulfilled, then there exists
(

x̄1∗, . . . , x̄k∗, ȳ1∗, . . . , ȳk∗)

∈ (X∗)k × (Y ∗)k, an optimal solution to the dual problem (DFA
λ ), such

that
(i)

∑k
i=1 λi(x̄i∗ + A∗ȳi∗) = 0;

(ii) fi(x̄) + f∗
i (x̄i∗) = 〈x̄i∗, x̄〉, i = 1, . . . , k;

(iii) gi(Ax̄) + g∗i (ȳi∗) = 〈ȳi∗, Ax̄〉, i = 1, . . . , k.
(b) For a given λ ∈ int(Rk

+) assume that x̄ ∈ X and
(

x̄1∗, . . . , x̄k∗, ȳ1∗, . . . ,
ȳk∗) ∈ (X∗)k × (Y ∗)k fulfill the relations (i)− (iii). Then x̄ is an optimal
solution to (PFA

λ ), (x̄1∗, . . . , x̄k∗, ȳ1∗, . . . , ȳk∗) is an optimal solution to
(DFA

λ ) and v(PFA
λ ) = v(DFA

λ ).

Proof. The proof follows in the lines of the ones given for Theorem 3.3.4 and
Theorem 3.3.13. ��

Remark 5.1.2. The optimality conditions (i) − (iii) in Theorem 5.1.2 can be
equivalently written as
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k
∑

i=1

λi(x̄i∗ + A∗ȳi∗) = 0, x̄i∗ ∈ ∂fi(x̄) and ȳ∗
i ∈ ∂gi(Ax̄), i = 1, ...,m.

We can introduce now the following multiobjective dual problem to
(PV FA), which can also be seen as a Fenchel type vector dual (see also section
4.1),

(DV FA) Max
(λ,x∗,y∗,t)∈BF A

hFA(λ, x∗, y∗, t),

where

BFA =
{

(λ, x∗, y∗, t) ∈ int(Rk
+) ×

k
∏

i=1

dom f∗
i ×

k
∏

i=1

dom g∗i × R
k :

λ = (λ1, . . . , λk)T , x∗ = (x1∗, . . . , xk∗),
y∗ = (y1∗, . . . , yk∗), t = (t1, . . . , tk)T ,

k
∑

i=1

λi(xi∗ + A∗yi∗) = 0,
k

∑

i=1

λiti = 0
}

and

hFA(λ, x∗, y∗, t) =

⎛

⎜

⎝

−f∗
1 (x1∗) − g∗1(y1∗) + t1

...
−f∗

k (xk∗) − g∗k(yk∗) + tk

⎞

⎟

⎠ .

The properness of the functions fi and gi, i = 1, . . . , k, and Lemma 2.3.1(a)
ensure that hFA(BFA) ⊆ R

k. According to Definition 2.5.1, an element
(λ̄, x̄∗, ȳ∗, t̄) is said to be efficient to the problem (DV FA) if hFA(λ̄, x̄∗, ȳ∗, t̄) ∈
Max(hFA(BFA), Rk

+). Moreover, an element (λ̄, x̄∗, ȳ∗, t̄) is weakly efficient
to (DV FA) if hFA(λ̄, x̄∗, ȳ∗, t̄) ∈ WMax(hFA(BFA), Rk

+). The weak duality
property for (PV FA) and (DV FA) follows.

Theorem 5.1.3. There is no x ∈ X and no (λ, x∗, y∗, t) ∈ BFA such that
fi(x) + gi(Ax) ≤ hFA

i (λ, x∗, y∗, t), i = 1, . . . , k, and fj(x) + gj(Ax) <
hFA

j (λ, x∗, y∗, t) for at least one j ∈ {1, . . . , k}.

Proof. Let us suppose the contrary, namely that there exist x ∈ X and
(x∗, y∗, λ, t) ∈ BFA fulfilling fi(x)+gi(Ax) ≤ hFA

i (λ, x∗, y∗, t), for i = 1, . . . , k,
and fj(x) + gj(Ax) < hFA

j (λ, x∗, y∗, t) for at least one j ∈ {1, . . . , k}. As
λi > 0 for i = 1, . . . , k, we get

∑k
i=1 λi(fi(x)+ gi(Ax)) <

∑k
i=1 λi(−f∗

i (xi∗)−
g∗i (yi∗)+ ti) = −

∑k
i=1 λi(f∗

i (xi∗)+g∗i (yi∗)). Thus we acquire
∑k

i=1 λi(fi(x)+
gi(Ax)) < −

∑k
i=1 λi(f∗

i (xi∗) + g∗i (yi∗)), which is impossible because of the
weak duality for the problems (PFA

λ ) and (DFA
λ ), which secures the reverse

inequality. ��

We come now to the vector strong duality statement for (PV FA) and
(DV FA). In what follows we assume that the functions fi and gi, i = 1, . . . , k,
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are convex. In order to maintain the symmetry to the investigations made
in the previous chapter, we assume also here for the strong vector duality
results the fulfillment of a regularity condition in general Hausdorff locally
convex spaces and then remark that these remain valid also when some other
regularity conditions are verified. At first we work with (RCFA

1 ), renamed as

(RCV FA) ∃x′ ∈
k
∩

i=1
(dom fi ∩ A−1(dom gi)) such that k − 1 of the

functions fi, i = 1, . . . , k, are continuous at x′ and
gi is continuous at Ax′, i = 1, . . . , k.

Theorem 5.1.4. Assume that the regularity condition (RCV FA) is fulfilled.
If x̄ ∈ X is a properly efficient solution to (PV FA) then there exists
(λ̄, x̄∗, ȳ∗, t̄), an efficient solution to (DV FA), such that fi(x̄) + gi(Ax̄) =
hFA

i (λ̄, x̄∗, ȳ∗, t̄) for i = 1, . . . , k.

Proof. As x̄ is a properly efficient solution to (PV FA), there exists a vector
λ̄ ∈ int(Rk

+) such that x̄ is an optimal solution to the scalar problem (PFA
λ̄

).
Even more, according to Theorem 5.1.2 its dual problem (DFA

λ̄
) admits an op-

timal solution (x̄1∗, . . . , x̄k∗, ȳ1∗, . . . , ȳk∗) such that the optimality conditions
(i) − (iii) of Theorem 5.1.2 are fulfilled. Further let be x̄∗ := (x̄1∗, . . . , x̄k∗),
ȳ∗ := (ȳ1∗, . . . , ȳk∗) and t̄ := (t̄1, . . . , t̄k)T with t̄i = 〈x̄i∗ + A∗ȳi∗, x̄〉, for
i = 1, . . . , k. Thus x̄∗ ∈

∏k
i=1 dom f∗

i , ȳ∗ ∈
∏k

i=1 dom g∗i ,
∑k

i=1 λ̄it̄i = 0
and (λ̄, x̄∗, ȳ∗, t̄) ∈ BFA. Using the assertions (ii) − (iii) of Theorem 5.1.2,
we get for i = 1, . . . , k, hi(λ̄, x̄∗, ȳ∗, t̄) = −f∗

i (x̄i∗) − g∗i (ȳi∗) + t̄i = fi(x̄) −
〈x̄i∗, x̄〉+gi(Ax̄)−〈ȳi∗, Ax̄〉+ 〈x̄i∗ +A∗ȳi∗, x̄〉 = fi(x̄)+gi(Ax̄). The efficiency
of (λ̄, x̄∗, ȳ∗, t̄) is a direct consequence of Theorem 5.1.3. ��

To be able to give a converse duality assertion for the vector problems
(PV FA) and (DV FA) we need the following statement.

Theorem 5.1.5. Assume that BFA is nonempty and that the regularity con-
dition (RCV FA) is fulfilled. Then

R
k\ cl((f +g ◦A)(∩k

i=1(dom fi∩A−1(dom gi)))+R
k
+) ⊆ hFA(BFA)− int(Rk

+).

Proof. Let be v̄ ∈ R
k\ cl((f + g ◦ A)(∩k

i=1(dom fi ∩ A−1(dom gi))) + R
k
+).

Similarly to the proof of Theorem 4.1.3 (see also Theorem 4.3.3) one can
prove that there exists λ̄ ∈ int(Rk

+) such that

k
∑

i=1

λ̄iv̄i < inf
x∈X

{ k
∑

i=1

λ̄i

(

fi(x) + gi(Ax)
)

}

.

According to Theorem 5.1.1, there exist x̄∗ = (x̄1∗, . . . , x̄k∗) ∈
∏k

i=1 dom f∗
i

and ȳ∗ = (ȳ1∗, . . . , ȳk∗) ∈
∏k

i=1 dom g∗i such that
∑k

i=1 λ̄i(x̄i∗ + A∗ȳi∗) = 0
and
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inf
x∈X

{ k
∑

i=1

λ̄i(fi(x) + gi(Ax))
}

= −
k

∑

i=1

λ̄i(f∗
i (x̄i∗) + g∗i (ȳi∗)).

Thus (λ̄, x̄∗, ȳ∗, 0) ∈ BFA and it holds

k
∑

i=1

λ̄iv̄i <

k
∑

i=1

λ̄ih
FA
i (λ̄, x̄∗, ȳ∗, 0). (5.1)

Consider the hyperplane with the normal vector λ̄

H =
{

hFA(λ̄, x̄∗, ȳ∗, 0) + t : t ∈ R
k,

k
∑

i=1

λ̄iti = 0
}

=
{

v ∈ R
k :

k
∑

i=1

λ̄ivi =
k

∑

i=1

λ̄ih
FA
i (λ̄, x̄∗, ȳ∗, 0)

}

.

One can easily see that H ⊆ hFA(BFA), while from (5.1) we deduce that
v̄ is an element of the open halfspace H− =

{

v ∈ R
k :

∑k
i=1 λ̄ivi <

∑k
i=1 λ̄ih

FA
i (λ̄, x̄∗, ȳ∗, 0)

}

. The orthogonal projection of v̄ on H is an ele-
ment ṽ := v̄ + δλ̄ ∈ H ⊆ hFA(BFA) with δ > 0 (we refer for instance
to [58] for an explicit formula for δ). Since λ̄ ∈ int(Rk

+), it follows that
v̄ ∈ hFA(BFA) − int(Rk

+). ��

Remark 5.1.3. We refer the reader to a comparison of the result in Theorem
5.1.5 with the one given in Theorem 4.3.3 for the primal-dual pair (PV G) −
(DV G). A direct consequence of the latter result is that, when (RCV Φ) is
fulfilled and (λ̄, ȳ∗, v̄) is an efficient solution to (DV G), then hG(λ̄, ȳ∗, v̄) ∈
cl(F (dom F ) + K). As proven below, a similar result can be given for the
primal-dual pair (PV F A) − (DV FA), but this does not result as directly as
for (PV G)− (DV G). This result ensures the fact that the duality gap may be
excluded in the sense that the objective value of every dual weakly efficient
solution and implicitly of every dual efficient solution is the limit of a sequence
of elements from the image set of the primal problem.

Theorem 5.1.6. Assume that the regularity condition (RCV FA) is fulfilled
and that (λ̄, x̄∗, ȳ∗, t̄) ∈ BFA is a weakly efficient solution to (DV FA). Then
hFA(λ̄, x̄∗, ȳ∗, t̄) ∈ cl((f + g ◦ A)(∩k

i=1(dom fi ∩ A−1(dom gi)))).

Proof. Since (λ̄, x̄∗, ȳ∗, t̄) ∈ BFA is a weakly efficient solution to (DV FA), by
Theorem 5.1.5 follows that

hFA(λ̄, x̄∗, ȳ∗, t̄) ∈ cl
(

(f + g ◦ A)
(

k
∩

i=1
(dom fi ∩ A−1(dom gi))

)

+ R
k
+

)

.

Assuming the contrary implies the existence of v̄ ∈ hFA(BFA) such that
hFA(λ̄, x̄∗, ȳ∗, t̄) < v̄. But this contradicts the weak efficiency of (λ̄, x̄∗, ȳ∗, t̄)
to the vector dual problem.
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Then there exist {vl} ⊆ (f + g ◦ A)(∩k
i=1(dom fi ∩ A−1(dom gi))) and

rl ∈ R
k
+ such that vl + rl → hFA(λ̄, x̄∗, ȳ∗, t̄) when l → +∞. For all l ≥ 1

let be xl ∈ ∩k
i=1(dom fi ∩ A−1(dom gi)) with vl = (f + g ◦ A)(xl). The weak

duality theorem for (PFA
λ ) − (DFA

λ ) yields for all l ≥ 1

k
∑

i=1

λ̄ih
FA
i (λ̄, x̄∗, ȳ∗, t̄) = −

k
∑

i=1

λ̄i

(

f∗
i (x̄i∗) + g∗i (ȳi∗)

)

≤
k

∑

i=1

λ̄i

(

fi(xl) + gi(Axl)
)

=
k

∑

i=1

λ̄iv
l
i ≤

k
∑

i=1

λ̄i(vl
i + rl

i).

We have that liml→+∞
∑k

i=1 λ̄i(vl
i + rl

i) =
∑k

i=1 λ̄ih
FA
i (λ̄, x̄∗, ȳ∗, t̄) and

this implies that

lim
l→+∞

k
∑

i=1

λ̄iv
l
i =

k
∑

i=1

λ̄ih
FA
i (λ̄, x̄∗, ȳ∗, t̄).

Consequently, liml→+∞
∑k

i=1 λ̄ir
l
i = 0. Since rl ∈ R

k
+ for all l ≥ 1, this can be

the case only if liml→+∞ rl = 0. In conclusion, liml→+∞ vl = hFA(λ̄, x̄∗, ȳ∗, t̄)
and so hFA(λ̄, x̄∗, ȳ∗, t̄) ∈ cl((f + g ◦ A)(∩k

i=1(dom fi ∩ A−1(dom gi)))). ��

A direct consequence of Theorem 5.1.6 is the following converse duality
statement, which we state for dual weakly efficient solutions, its validity for
dual efficient solutions being an immediate consequence.

Theorem 5.1.7. Assume that the regularity condition (RCV FA) is fulfilled
and that the set (f + g ◦ A)(∩k

i=1(dom fi ∩ A−1(dom gi))) + R
k
+ is closed.

Then for every weakly efficient solution (λ̄, x̄∗, ȳ∗, t̄) to (DV FA) there exists
a properly efficient solution x̄ ∈ X to (PV FA) such that fi(x̄) + gi(Ax̄) =
hFA

i (λ̄, x̄∗, ȳ∗, t̄) for i = 1, . . . , k.

Proof. As seen in the proof of Theorem 5.1.6, the weak efficiency of (λ̄, x̄∗, ȳ∗, t̄)
to the dual problem ensures that hFA(λ̄, x̄∗, ȳ∗, t̄) ∈ cl((f+g◦A)(∩k

i=1(dom fi∩
A−1(dom gi))) + R

k
+) = (f + g ◦ A)(∩k

i=1(dom fi ∩ A−1(dom gi))) + R
k
+.

This means that hFA(λ̄, x̄∗, ȳ∗, t̄) = (f + g ◦ A)(x̄) + r̄ for some x̄ ∈
∩k

i=1(dom fi ∩ A−1(dom gi)) and r̄ ∈ R
k
+. But r̄ = 0, otherwise the weak

duality (see Theorem 5.1.3) would be violated. It remains to prove that x̄ is
properly efficient to (PV FA). Since hFA(λ̄, x̄∗, ȳ∗, t̄) = (f + g ◦A)(x̄) it holds
∑k

i=1 λ̄i(fi + gi ◦ A)(x̄) =
∑k

i=1 λ̄ih
FA
i (λ̄, x̄∗, ȳ∗, t̄) =

∑k
i=1 λ̄i(−f∗

i (x̄i∗) −
g∗i (ȳi∗)) ≤ infx∈X

{∑k
i=1 λ̄i(fi + gi ◦ A)(x)

}

. Therefore x̄ is an optimal solu-
tion to (PFA

λ̄
) and this proves that x̄ is properly efficient to (PV FA). ��

Remark 5.1.4. (a) One can easily notice that all the results given above re-
main valid if the vector dual (DV FA) is slightly modified by replacing in



190 5 Vector duality with finite dimensional image spaces

the formulation of the feasible set BFA the restriction
∑k

i=1 λiti = 0 with
∑k

i=1 λiti ≤ 0.
(b) Since the proof of the theorem given above uses as a main tool the

scalar strong duality result for (PFA
λ ) and (DFA

λ ) when λ ∈ int(Rk
+), it is

clear that the regularity condition (RCV FA) can be replaced by any of the
regularity conditions (RCFA

i ), i ∈ {2, 2′, 2′′, 3}. In theorems 5.1.5-5.1.7, the
regularity condition can be replaced by the assumption that for all λ ∈ int(Rk

+)
the optimization problem (PFA

λ ) is normal with respect to its conjugate dual
problem (DFA

λ ).
(c) Theorem 5.1.7 remains valid even if instead of asking that (f + g ◦

A)(∩k
i=1(dom fi ∩ A−1(dom gi))) + R

k
+ is closed one assumes that (f + g ◦

A)(∩k
i=1(dom fi ∩ A−1(dom gi))) is closed.

(d) Combining the assertions of Theorem 5.1.4 and Theorem 5.1.7 makes it
immediately clear that under the hypotheses of the latter any weakly efficient
solution to (DV FA) is also efficient to it.

(e) In case k = 1, i.e. if V = R and K = R+, the problems (PV FA) and
(DV FA) become (see also subsection 3.1.2)

(PA) inf
x∈X

{f(x) + g(Ax)}

and, respectively,

(DA) sup
(λ,x∗,y∗,t)∈BF A

{−f∗(x∗) − g∗(y∗) + t},

where

BFA = {(λ, x∗, y∗, t) ∈ int(R+) × X∗ × Y ∗ × R : λ(x∗ + A∗y∗) = 0, λt = 0}.

Obviously the dual problem can be equivalently written as

sup
y∗∈Y ∗

{−f∗(−A∗y∗) − g∗(y∗)},

which is, indeed, the classical Fenchel dual problem to (PA) (cf. subsection
3.1.2). This motivates giving the name Fenchel type vector dual problem to
(DV FA).

Remark 5.1.5. (a) In case X = Y , A = idX and fi, gi : X → R, i = 1, . . . , k,
are given proper functions, (PV FA) becomes

(PV F id) Min
x∈X

⎛

⎜

⎝

f1(x) + g1(x)
...

fk(x) + gk(x)

⎞

⎟

⎠ .

With (DV FA) one gets the following Fenchel type vector dual to (PV F id)
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(DV F id) Max
(λ,x∗,y∗,t)∈BF id

hF id(λ, x∗, y∗, t),

where

BF id =
{

(λ, x∗, y∗, t) ∈ int(Rk
+) ×

k
∏

i=1

dom f∗
i ×

k
∏

i=1

dom g∗i × R
k :

λ = (λ1, . . . , λk)T , x∗ = (x1∗, . . . , xk∗),
y∗ = (y1∗, . . . , yk∗), t = (t1, . . . , tk)T ,

k
∑

i=1

λi(xi∗ + yi∗) = 0,

k
∑

i=1

λiti = 0
}

and

hF id(λ, x∗, y∗, t) =

⎛

⎜

⎝

−f∗
1 (x1∗) − g∗1(y1∗) + t1

...
−f∗

k (xk∗) − g∗k(yk∗) + tk

⎞

⎟

⎠ .

The weak, strong and converse duality for (PV FF id) − (DV FF id) follow as
particular instances of the corresponding statements given in this subsection.

(b) If one takes in the above setting that gi ≡ 0 for i = 1, . . . , k, the primal
vector problem becomes

(PV F f ) Min
x∈X

⎛

⎜

⎝

f1(x)
...

fk(x)

⎞

⎟

⎠ ,

while its Fenchel type vector dual turns into

(DV F f ) Max
(λ,x∗,t)∈Bf

hf (λ, x∗, t),

where

Bf =
{

(λ, x∗, t) ∈ int(Rk
+) ×

k
∏

i=1

dom f∗
i × R

k : λ = (λ1, . . . , λk)T ,

x∗ = (x1∗, . . . , xk∗), t = (t1, . . . , tk)T ,
k

∑

i=1

λix
i∗ = 0,

k
∑

i=1

λiti = 0
}

and

hf (λ, x∗, t) =

⎛

⎜

⎝

−f∗
1 (x1∗) + t1

...
−f∗

k (xk∗) + tk

⎞

⎟

⎠ .

By particularizing the corresponding statements given in this subsection we
get weak, strong and converse duality for the primal-dual pair (PV F f ) −
(DV F f ).



192 5 Vector duality with finite dimensional image spaces

5.1.2 Comparisons to (DV A) and (DV A
BK)

Working in the same setting as above, in this subsection we investigate the
relations between the image sets of the feasible sets through their objective
functions for (DV FA) and the other two Fenchel type vector duals introduced
in section 4.1, (DV A) and (DV A

BK), when V = R
k. In this special instance

the duals considered in the above mentioned section look like

(DV A) Max
(λ,y∗,v)∈BA

hA(λ, y∗, v),

where

BA =
{

(λ, y∗, v) ∈ int(Rk
+) × Y ∗ × R

k :

k
∑

i=1

λivi ≤ −
( k
∑

i=1

λifi

)∗
(−A∗y∗) −

( k
∑

i=1

λigi

)∗
(y∗)

}

and
hA(λ, y∗, v) = v,

and, respectively,

(DV A
BK) Max

(λ,y∗,v)∈BA
BK

hA
BK(λ, y∗, v),

where

BA
BK =

{

(λ, y∗, v) ∈ int(Rk
+) × Y ∗ × R

k :

k
∑

i=1

λivi = −
( k
∑

i=1

λifi

)∗
(−A∗y∗) −

( k
∑

i=1

λigi

)∗
(y∗)

}

and
hA

BK(λ, y∗, v) = v.

We noticed in subsection 4.1.1 that hA
BK(BA

BK) ⊆ hA(BA). In the following we
prove that whenever a regularity condition is fulfilled it holds hA

BK(BA
BK) ⊆

hFA(BFA) ⊆ hA(BA). We begin by proving a general result.

Proposition 5.1.8. It holds hFA(BFA) ⊆ hA(BA).

Proof. Let be (λ, x∗, y∗, t) ∈ BFA arbitrarily chosen and set z∗ :=
∑k

i=1 λiy
i∗

∈ Y ∗. It holds hFA(λ, x∗, y∗, t) ∈ R
k,

∑k
i=1 λix

i∗ = −A∗(
∑k

i=1 λi∗
i ) = −A∗z∗

and, consequently,

k
∑

i=1

λih
FA
i (λ, x∗, y∗, t)=

k
∑

i=1

λi

(

−f∗
i (xi∗)−g∗i (yi∗)+ ti

)

=−
k

∑

i=1

(

(λifi)∗(λix
i∗)



5.1 Another Fenchel type vector dual problem 193

+(λigi)∗(λiy
i∗)

)

≤ −
( k
∑

i=1

λifi

)∗
(−A∗z∗) −

( k
∑

i=1

λigi

)∗
(z∗).

Thus for v := hFA(λ, x∗, y∗, t) it holds (λ, z∗, v) ∈ BA and, consequently,
hFA(λ, x∗, y∗, t) ∈ hA(BA). ��

Next we investigate the relation between hA
BK(BA

BK) and hFA(BFA).

Proposition 5.1.9. Assume that one of the regularity conditions (RCΣ
i ), i ∈

{1, 2, 3}, stated for {f1, . . . , fk} and, respectively, {g1, . . . , gk} is fulfilled. Then
it holds hA

BK(BA
BK) ⊆ hFA(BFA).

Proof. Let be v ∈ hA
BK(BA

BK). Then there exist λ ∈ int(Rk
+) and z∗ ∈ Y ∗ such

that (λ, z∗, v) ∈ BA
BK . Furthermore,

∑k
i=1 λivi = −

(∑k
i=1 λifi

)∗(−A∗z∗) −
(∑k

i=1 λigi

)∗(z∗). By Theorem 3.5.8(a), there exist x∗ = (x1∗, . . . , xk∗) ∈
(X∗)k and y∗ = (y1∗, . . . , yk∗) ∈ (Y ∗)k such that

∑k
i=1 λix

i∗ = −A∗z∗,
∑k

i=1 λiy
i∗ = z∗,

(∑k
i=1 λifi

)∗(−A∗z∗) =
∑k

i=1 λif
∗
i (xi∗) and

(∑k
i=1 λigi

)∗

(z∗) =
∑k

i=1 λig
∗
i (yi∗). Therefore,

∑k
i=1 λi(xi∗ + A∗yi∗) = 0 and

∑k
i=1 λivi =

−
∑k

i=1 λif
∗
i (xi∗) −

∑k
i=1 λig

∗
i (yi∗). Taking ti := vi + f∗

i (xi∗) + g∗i (yi∗) ∈ R,
for i = 1, . . . , k, we have that

∑k
i=1 λiti = 0, and so v = hFA(λ, x∗, y∗, t) ∈

hFA(BFA). ��

Under the hypotheses of Proposition 5.1.9, it holds

hA
BK(BA

BK) ⊆ hFA(BFA) ⊆ hA(BA).

Obviously, (RCV FA) is a sufficient condition which guarantees these inclu-
sions. Next we discuss two examples which prove that the inclusions of these
image sets are in general strict, i.e.

hA
BK(BA

BK) � hFA(BFA) � hA(BA).

Example 5.1.1. (a) Take V = R
2, K = R

2
+, f, g : R → R

2 given by f(x) =
(x − 1,−x − 1)T and g(x) = (x,−x)T for x ∈ R, and A = idR. We show that
in this situation hFA(BFA) � hA(BA).

For λ = (1, 1)T , z∗ = 0 and v = (−2,−2)T , there is (λ, z∗, v) ∈ BA

and v ∈ hA(BA), since λ1v1 + λ2v2 = −4 < −2 = −(f1 + f2)∗(−z∗) −
(g1 + g2)∗(z∗). We show that v /∈ hFA(BFA). Let us suppose by contradic-
tion that there exist (λ̄, x̄∗, ȳ∗, t̄) ∈ BFA such that hFA(λ̄, x̄∗, ȳ∗, t̄) = v. This
means that hFA

i (λ̄, x̄∗, ȳ∗, t̄) = −f∗
i (x̄i∗) − g∗i (ȳi∗) + t̄i = −2, for i = 1, 2

and one must necessarily have that x̄∗ = (1,−1)T and ȳ∗ = (1,−1)T .
Moreover,

∑2
i=1 λ̄i(x̄i∗ + ȳi∗) = 0, which means that λ̄1 − λ̄2 = 0. We ob-

tain −f∗
i (x̄i∗) − g∗i (ȳi∗) + t̄i = −1 + t̄i = −2, for i = 1, 2, meaning that

t̄1 = t̄2 = −1. Since we have supposed that (λ̄, x̄∗, ȳ∗, t̄) ∈ BFA, the equality
∑2

i=1 λ̄it̄i = −2λ̄1 must hold. But this is a contradiction to λ ∈ int(R2
+).
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Consequently, v = (−2,−2)T ∈ hA(BA), there exists no (λ̄, x̄∗, ȳ∗, t̄) ∈ BFA

such that hFA(λ̄, x̄∗, ȳ∗, t̄) = v, which shows that hFA(BFA) � hA(BA).
(b) Consider again V = R

2, K = R
2
+, while f, g : R → R

2 are given by
f(x) = (2x2 − 1, x2)T and g(x) = (−2x,−x+1)T for x ∈ R, and A = idR. We
prove that hA

BK(BA
BK) � hFA(BFA).

For λ = (1, 1)T , x∗ = (3, 0)T ∈ dom f∗
1 × dom f∗

2 , y∗ = (−2,−1)T ∈
dom g∗1 × dom g∗2 and t = (3/8,−3/8)T , we have both relations

∑2
i=1 λi(xi∗

+yi∗) = 0 and
∑2

i=1 λiti = 0 fulfilled. Thus, (λ, x∗, y∗, t) ∈ BFA and
hFA(λ, x∗, y∗, t) = (−14/8, 5/8)T ∈ hFA(BFA). Suppose that there exist
(λ̄, z̄∗, v̄) ∈ BA

BK such that v̄ = hFA(λ, x∗, y∗, t). Then

λ̄1v̄1 + λ̄2v̄2 = inf
x∈R

{

z∗x+x2(2λ̄1 + λ̄2)− λ̄1

}

+ inf
x∈R

{

x(−z∗− 2λ̄1 − λ̄2)+ λ̄2

}

.

This means that (−14/8)λ̄1 + (5/8)λ̄2 = −(2λ̄1 + λ̄2)/4 − λ̄1 + λ̄2, which
is equivalent to 2λ̄1 + λ̄2 = 0, obviously a contradiction to λ ∈ int(R2

+).
Therefore there is no (λ̄, z̄∗, v̄) ∈ BA

BK such that v̄ = hFA(λ, x∗, y∗, t). Then
hA

BK(BA
BK) � hFA(BFA).

We close the subsection by the following result.
Combining Proposition 5.1.8, Proposition 5.1.9 and Theorem 4.1.5, one

obtains the following statement.

Theorem 5.1.10. Assume that one of the regularity conditions (RCΣ
i ), i ∈

{1, 2, 3}, stated for {f1, . . . , fk} and, respectively, {g1, . . . , gk} is fulfilled. Then
it holds

Max
(

hA
BK(BA

BK), Rk
+

)

= Max
(

hFA(BFA), Rk
+

)

= Max
(

hA(BA), Rk
+

)

.

Proof. By Theorem 4.1.5 follows that Max
(

hA
BK(BA

BK), Rk
+

)

= Max
(

hA(BA),
R

k
+

)

. Take now d ∈ Max
(

hFA(BFA), Rk
+

)

. Then d ∈ hFA(BFA) and, by
Proposition 5.1.8, d ∈ hA(BA). Assuming d /∈ Max

(

hA(BA), Rk
+

)

implies
d′ ∈ hA(BA) with d ≤ d′. Thus one can easily construct an element
d′′ ∈ hA

BK(BA
BK) with d′ � d′′ and so d ≤ d′′. But, by Proposition 5.1.9,

d′′ must belong to hFA(BFA) and this leads to a contradiction. Consequently,
Max

(

hFA(BFA), Rk
+

)

⊆ Max
(

hA(BA), Rk
+

)

. In order to prove the opposite
inclusion we consider an arbitrary element d ∈ Max

(

hA(BA), Rk
+

)

. Then
d ∈ Max

(

hA
BK(BA

BK), Rk
+

)

⊆ hA
BK(BA

BK) ⊆ hFA(BFA). Were d not a maximal
element of hFA(BFA), we would again obtain a contradiction. This completes
the proof. ��

5.1.3 Duality with respect to weakly efficient solutions

In the last part of this section we discuss a duality concept similar to the
one introduced above for (PV FA), but this time with respect to the weakly
efficient solutions. To this aim, we assume in the following that X and Y
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are Hausdorff locally convex spaces, the convex functions fi : X → R and
gi : Y → R, i = 1, . . . , k, have their effective domains equal to the whole space
(see Remark 5.1.6 for a comment concerning this choice) and A ∈ L(X,Y ).
The vector dual problem with respect to weakly efficient solutions that we
introduce to the primal vector optimization problem

(PV FA
w ) WMin

x∈X

⎛

⎜

⎝

f1(x) + g1(Ax)
...

fk(x) + gk(Ax)

⎞

⎟

⎠

is
(DV FA

w ) WMax
(λ,x∗,y∗,t)∈BF A

w

hFA
w (λ, x∗, y∗, t),

where

BFA
w =

{

(λ, x∗, y∗, t) ∈ (Rk
+\{0}) ×

k
∏

i=1

dom f∗
i ×

k
∏

i=1

dom g∗i × R
k :

λ = (λ1, . . . , λk)T , x∗ = (x1∗, . . . , xk∗),
y∗ = (y1∗, . . . , yk∗), t = (t1, . . . , tk)T ,

k
∑

i=1

λi(xi∗ + A∗yi∗) = 0,

k
∑

i=1

λiti = 0
}

and

hFA
w (λ, x∗, y∗, t) =

⎛

⎜

⎝

−f∗
1 (x1∗) − g∗1(y1∗) + t1

...
−f∗

k (xk∗) − g∗k(yk∗) + tk

⎞

⎟

⎠ .

According to Definition 2.5.1, an element x̄ ∈ X is a weakly efficient
solution to (PV FA

w ) if (f + g ◦ A)(x̄) ∈ WMin((f + g ◦ A)(X), Rk
+), where

f = (f1, . . . , fk)T and g = (g1, . . . , gk)T . One can note that hFA
w (λ, x∗, y∗, t) ⊆

R
k and, according to the same statement, (λ̄, x̄∗, ȳ∗, t̄) is said to be a weakly

efficient solution to (DV FA
w ) when hFA

w (λ̄, x̄∗, ȳ∗, t̄) ∈ WMax(hFA
w (BFA

W ), Rk
+).

The following result presents the weak duality statement for (PV FA
w ) and

(DV FA
w ). We omit its proof since it follows analogous to the proof of Theorem

5.1.3.

Theorem 5.1.11. There is no x ∈ X and no (λ, x∗, y∗, t) ∈ BFA
w such that

fi(x) + gi(Ax) < hFA
wi (λ, x∗, y∗, t) for i = 1, . . . , k.

Before stating the strong duality result, we consider the following regular-
ity condition, the choice of which being discussed in Remark 5.1.7

(RCV FA
w ) k − 1 of the functions fi, i = 1, ..., k, and gi, i = 1, . . . , k,

are continuous.
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Theorem 5.1.12. Assume that the regularity condition (RCV FA
w ) is ful-

filled. If x̄ ∈ X is a weakly efficient solution to (PV FA
w ) then there exists

(λ̄, x̄∗, ȳ∗, t̄), a weakly efficient solution to (DV FA
w ), such that fi(x̄)+gi(Ax̄) =

hFA
wi (λ̄, x̄∗, ȳ∗, t̄) for i = 1, . . . , k.

Proof. Let x̄ be a weakly efficient solution to (PV FA
w ). Then (f + g ◦A)(x̄) ∈

WMin((f + g ◦ A)(X), Rk
+). Obviously, (f + g ◦ A)(X) + R

k
+ is a convex set,

thus by Corollary 2.4.26 there exists λ̄ ∈ R
k
+\{0} such that x̄ is an optimal

solution to the scalar problem

(PFA
wλ̄) inf

x∈X

{

∑

i∈I(λ̄)

λ̄i(fi(x) + gi(Ax))
}

,

where I(λ̄) =
{

i ∈ {1, . . . , k} : λ̄i > 0
}

is a nonempty set. Applying the same
scheme as for (PFA

λ̄
) and (DFA

λ̄
), we obtain as dual to (PFA

λ̄
) the following

optimization problem

(DFA
wλ̄) sup

xi∗∈X∗,yi∗∈Y ∗
i ,i∈I(λ̄),

P

i∈I(λ̄)
λ̄i(x

i∗+A∗yi∗)=0

{

−
∑

i∈I(λ̄)

λ̄if
∗
i (xi∗) −

∑

i∈I(λ̄)

λ̄ig
∗
i (yi∗)

}

.

By Theorem 5.1.1 follows that for the primal-dual pair (PFA
wλ̄

) − (DFA
wλ̄

)
strong duality holds, while Theorem 5.1.2 ensures that there exist x̄i∗ ∈
dom f∗

i and ȳi∗ ∈ dom g∗i , i ∈ I(λ̄), such that

(i)
∑

i∈I(λ̄) λ̄i(x̄i∗ + Aȳi∗) = 0;
(ii) fi(x̄) + f∗

i (x̄i∗) = 〈x̄i∗, x̄〉, i ∈ I(λ̄);
(iii) gi(Ax̄) + g∗i (ȳi∗) = 〈ȳi∗, Ax̄〉, i ∈ I(λ̄).

As (RCV FA) holds, one can choose some x̄i∗ ∈ dom f∗
i and ȳi∗ ∈ dom g∗i for

i /∈ I(λ̄). Taking x̄∗ = (x̄1∗, . . . , x̄k∗) ∈
∏k

i=1 dom f∗
i and ȳ∗ = (ȳ1∗, . . . , ȳk∗) ∈

∏k
i=1 dom g∗i , one has, via (i) that

∑k
i=1 λ̄i(x̄i∗ + Aȳi∗) = 0. On the other

hand, let us take, for each i ∈ I(λ̄), t̄i := 〈x̄i∗ + A∗ȳi∗, x̄〉 ∈ R and, for each
i /∈ I(λ̄), t̄i := fi(x̄) + gi(Ax̄) + f∗

i (x̄i∗) + g∗i (ȳi∗). Therefore,
∑k

i=1 λ̄it̄i = 0
and (λ̄, x̄∗, ȳ∗, t̄) ∈ BFA

w . Moreover, for i = 1, . . . , k, it holds fi(x̄) + gi(Ax̄) =
−f∗

i (x̄i∗)−g∗i (ȳi∗)+t̄i. The fact that (λ̄, x̄∗, ȳ∗, t̄) is weakly efficient to (DV FA
w )

is a direct consequence of Theorem 5.1.11. ��

Remark 5.1.6. A closer look into the proof of Theorem 5.1.12 makes clear why
it is necessary to consider when dealing with weakly efficient solutions that the
functions fi and gi, i = 1, . . . , k, have full domains. Otherwise, if x̄ is a weakly
efficient solution to (PV FA

w ), there must exist λ̄ = (λ̄1, . . . , λ̄k)T ∈ R
k
+\{0}

such that x̄ is an optimal solution to the scalar optimization problem

inf
x∈X

{

∑

i∈I(λ̄)

λ̄i(fi(x) + g(Ax)) +
∑

i/∈I(λ̄)

(

δdom fi
(x) + δdom gi

(Ax)
)

}

.
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This is because 0(+∞) = (+∞). By means of the duality scheme from sub-
section 5.1.1, one can assign as dual problem to it

sup
xi∗∈X∗,yi∗∈Y ∗

i ,i=1,...,k,
P

i∈I(λ̄)
λ̄i(x

i∗+A∗yi∗)+
P

i/∈I(λ̄)
(xi∗+A∗yi∗)=0

{

−
∑

i∈I(λ̄)

λ̄i

(

f∗
i (xi∗) − g∗i (yi∗)

)

−

∑

i/∈I(λ̄)

(

σdom fi
(xi∗) + σdom gi

(yi∗)
)

}

.

One can prove for this primal-dual pair the existence of strong duality
under some sufficient regularity conditions and also provide necessary and
sufficient optimality conditions. Nevertheless, the optimality conditions corre-
sponding to (i)− (iii) from the proof of Theorem 5.1.12 do not lead to vector
strong duality for (PV FA

w ) and (DV FA
w ). This was the reason why we work

when treating the vector duality with respect to weakly efficient solutions in
the setting dom fi = X and dom gi = Y , for i = 1, . . . , k, which is in fact the
usual one in the literature when dealing with the same topic.

Remark 5.1.7. Assuming that fi and gi, i = 1, . . . , k, are convex, let us take
a look at the regularity condition (RCV FA

w ), which seems to be very strong.
Even if (RCV FA), which is a renaming for (RCFA

1 ) in section 5.1, seems at
the first look to be weaker, stating that in case there exists x′ ∈ X such that
k−1 of the functions fi, i = 1, ..., k, are continuous at x′ and gi is continuous at
Ax′, for i = 1, . . . , k, then by Theorem 2.2.17 follows that those k−1 functions
fi, i = 1, . . . , k, as well as the functions gi, i = 1, . . . , k, must be continuous
on the whole space X. Considering the condition (RCFA

i ), i ∈ {2, 2′, 2′′},
let us notice that even if the spaces X and Y are assumed to be Fréchet,
consequently barreled, and fi and gi, i = 1, . . . , k, are lower semicontinuous,
all of them must be continuous on X (see for instance [207, Theorem 2.2.20]).
So in this case any of (RCFA

i ), i ∈ {2, 2′, 2′′}, is nothing else than (RCV FA
w ).

Finally, we can see that condition (RCFA
3 ) asks nothing else than X and

Y to be finite dimensional. But in this context the continuity of fi and gi,
i = 1, . . . , k, is obviously guaranteed, so (RCFA

3 ) implies (RCV FA
w ).

By employing the techniques from the proofs of Theorem 4.1.8 and The-
orem 5.1.5 one can show the following result.

Theorem 5.1.13. Assume that the regularity condition (RCV FA
w ) is fulfilled.

Then
R

k\ cl((f + g ◦ A)(X) + R
k
+) ⊆ hFA

w (BFA
w ) − (Rk

+ \ {0}).

Nevertheless, different to the investigations in subsection 5.1.1, one cannot
directly obtain from here the converse duality theorem for (PV FA

w )−(DV FA
w ).

To this aim we have to consider first the vector duals (DV A
w ) and (DV A

BKw)
introduced in subsection 4.1.2. It can be always proven that hFA

w (BFA
w ) ⊆
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hA
w(BA

w) and, under (RCV FA
w ), that hA

BKw(BA
BKw) ⊆ hFA

w (BFA
w ). Since we

always have that WMax(hA
BKw(BA

BKw), Rk
+) = WMax(hA

w(BA
w), Rk

+), when
the condition (RCV FA

w ) is fulfilled, it holds

WMax(hA
BKw(BA

BKw), Rk
+) = WMax(hFA

w (BFA
w ), Rk

+) = WMax(hA
w(BA

w), Rk
+).

Thus the converse duality result for the primal-dual pair (PV FA
w ) −

(DV FA
w ) follows as consequence of Theorem 4.1.9.

Theorem 5.1.14. Assume that the regularity condition (RCV FA
w ) is fulfilled

and that the set (f + g ◦A)(X)+R
k
+ is closed. Then for every weakly efficient

solution (λ̄, x̄∗, ȳ∗, t̄) to (DV FA
w ) one has that hFA

w (λ̄, x̄∗, ȳ∗, t̄) is a weakly
minimal element of the set (f + g ◦ A)(X) + R

k
+.

Remark 5.1.8. (a) The results given above remain valid if we slightly modify
the vector dual (DV FA

w ) by replacing in the formulation of the feasible set
∑k

i=1 λiti = 0 by
∑k

i=1 λiti ≤ 0.
(b) In case k = 1, i.e. V = R and K = R+, the vector dual problem

(DV FA
w ) becomes the classical scalar Fenchel dual problem introduced in

chapter 3.
(c) In case X = Y , A = idX and fi, gi : X → R, i = 1, . . . , k, are given

functions, one can formulate a dual for

(PV F id
w ) WMin

x∈X

⎛

⎜

⎝

f1(x) + g1(x)
...

fk(x) + gk(x)

⎞

⎟

⎠ ,

with respect to weakly efficient solutions by slightly modifying (DV F id) by
replacing λ ∈ int(Rk

+) with λ ∈ R
k
+\{0}. The same applies for the problem

(PV F f
w) WMin

x∈X

⎛

⎜

⎝

f1(x)
...

fk(x)

⎞

⎟

⎠ ,

whose dual being obtained by slightly modifying in the same way (DV F f ). For
these primal-dual pairs of vector problems weak, strong and converse duality
statements follow from the ones given in the general case for (PV FA

w ) and
(DV FA

w ).

5.2 A family of Fenchel-Lagrange type vector duals

Different duality approaches were proposed for the cone constrained vector
optimization problems with finite dimensional image sets of the objective vec-
tor functions. In the following we present one which is based on the Fenchel-
Lagrange dual problems attached to the family obtained by linearly scalarizing
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the primal vector optimization problem, introduced in [182,183] and general-
ized and refined in [24,36,37,184,185]. In these papers all the spaces involved
were taken finite dimensional. Here we work in a more general framework.

Let X and Z be Hausdorff locally convex spaces, with the latter partially
ordered by the convex cone C ⊆ Z. Further, let S ⊆ X, fi : X → R, i =
1, . . . , k, be proper functions and g : X → Z a proper function such that
∩k

i=1 dom fi∩S∩g−1(−C) 	= ∅. Further, assume that the image space V = R
k

is partially ordered by the cone K = R
k
+ and consider the vector function

f : X → Rk, f(x) =

⎧

⎨

⎩

(f1(x), . . . , fk(x))T , if x ∈
k
∩

i=1
dom fi,

+∞
R

k
+
, otherwise.

Due to the hypotheses on the functions fi, i = 1, . . . , k, f is proper. When fi,
i = 1, . . . , k, are convex, f is also R

k
+-convex. The primal vector optimization

problem with geometric and cone constraints we work in this section with is

(PV FC) Min
x∈A

f(x).

A = {x ∈ S : g(x) ∈ −C}

5.2.1 Duality with respect to properly efficient solutions

Similar to the previous section, we say that x̄ ∈ A is a properly efficient
solution to (PV FC) in the sense of linear scalarization if x̄ ∈ ∩k

i=1 dom fi

and f(x̄) ∈ PMinLSc

(

f(∩k
i=1 dom fi ∩ A), Rk

+

)

. This means that there exists
λ ∈ int(Rk

+) such that
∑k

i=1 λifi(x̄) ≤
∑k

i=1 λifi(x) for all x ∈ A (cf. section
2.4). This is the reason why we first investigate, for a fixed λ = (λ1, . . . , λk)T ∈
int(Rk

+), the following scalar optimization problem

(PFC
λ ) inf

x∈A

{ k
∑

i=1

λifi(x)
}

.

The vector dual problem to (PV FC) which we introduce in this section will
have its origins in the conjugate scalar dual to (PFC

λ ). Via the investigations
done in subsection 3.1.3 one can associate to (PFC

λ ) as there (see the primal-
dual pair (PC) − (DCF L)) the dual problem

sup
y∗∈X∗,z∗∈C∗

{

−
( k
∑

i=1

λifi

)∗
(y∗) − (z∗g)∗S(−y∗)

}

,

which is not satisfactory for our purposes, since for the formulation of the
vector dual we need to have the functions fi, i = 1, . . . , k, separated in the
formula of the scalar dual to (PFC

λ ). In order to construct such a problem,
we employ the general approach investigated in section 3.1. To this aim, let
us consider the following perturbation function ΦC

λ : X × Xk × Z → R,
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ΦC
λ (x, x1, . . . , xk, z) =

⎧

⎨

⎩

k
∑

i=1

λifi(x + xi), if x ∈ S, g(x) − z ∈ −C,

+∞, otherwise,

with (x1, . . . , xk, z) ∈ Xk ×Z as perturbation variables. The conjugate of ΦC
λ ,

(ΦC
λ )∗ : X∗ × (X∗)k × Z∗ → R, is given by the following formula

(ΦC
λ )∗(x∗, y1∗, . . . , yk∗, z∗)= sup

x∈S,xi∈X,i=1,...,k,
z∈Z,g(x)−z∈−C

{

〈x∗, x〉 +
k

∑

i=1

〈yi∗, xi〉 + 〈z∗, z〉

−
k

∑

i=1

(λifi)(x + xi)
}

=
k

∑

i=1

(λifi)∗(yi∗) + (z∗g)∗S

(

x∗ −
k

∑

i=1

yi∗
)

+ δC∗(z∗).

This provides the following conjugate dual to (PFC
λ )

(DFC
λ ) sup

yi∗∈X∗,i=1,...,k,
z∗∈C∗

{

−
k

∑

i=1

(λifi)∗(yi∗) − (z∗g)∗S

(

−
k

∑

i=1

yi∗
)}

,

which, via Proposition 2.3.2(e), can be equivalently written as

(DFC
λ ) sup

yi∗∈X∗,i=1,...,k,
z∗∈C∗

{

−
k

∑

i=1

λif
∗
i (yi∗) − (z∗g)∗S

(

−
k

∑

i=1

λiy
i∗
)}

.

In what follows we provide regularity conditions for the primal-dual pair
(PFC

λ )− (DFC
λ ) that are independent of λ, which we deduce from the general

ones given in section 3.2.
One can notice that in case the set S is convex, the functions fi, i =

1, . . . , k, are convex and the function g is C-convex, ΦC
λ is convex, too. The

regularity condition (RCΦ
1 ) (cf. section 3.2) becomes in this case

(RCFC
1 ) ∃x′ ∈

k
∩

i=1
dom fi ∩ S such that fi is continuous at x′,

i = 1, . . . , k, and g(x′) ∈ − int(C).

Before stating further regularity conditions, we also note that if S is closed,
fi is lower semicontinuous, i = 1, . . . , k, and g is C-epi closed, then ΦC

λ is lower
semicontinuous, too. Further, it holds (x1, . . . , xk, z) ∈ PrXk×Z(dom ΦC

λ ) if
and only if there exists an x ∈ S ∩ dom g such that xi ∈ dom fi − x for
i = 1, . . . , k and z ∈ g(x)+C. This is further equivalent to the existence of an
x ∈ S∩dom g such that (x1, . . . , xk, z) ∈

∏k
i=1 dom fi ×C − (x, . . . , x,−g(x)),

which can also be written as (x1, . . . , xk, z) ∈
∏k

i=1 dom fi×C−ΔSk,g, where
ΔSk,g = {(x, . . . , x,−g(x)) : x ∈ S ∩ dom g} ⊆ Xk × Z. This leads to the
following regularity condition (obtained via (RCΦ

2 ))
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(RCFC
2 ) X and Z are Fréchet spaces, S is closed, fi is lower

semicontinuous, i = 1, . . . , k, g is C-epi closed and

0 ∈ sqri
(

k
∏

i=1

dom fi × C − ΔSk,g

)

,

along with its stronger versions

(RCFC
2′ ) X and Z are Fréchet spaces, S is closed, fi is lower

semicontinuous, i = 1, . . . , k, g is C-epi closed and

0 ∈ core
(

k
∏

i=1

dom fi × C − ΔSk,g

)

and

(RCFC
2′′) X and Z are Fréchet spaces, S is closed, fi is lower

semicontinuous, i = 1, . . . , k, g is C-epi closed and

0 ∈ int
(

k
∏

i=1

dom fi × C − ΔSk,g

)

,

which are in fact equivalent. In the finite dimensional case one has from (RCΦ
3 )

(RCFC
3 ) dim

(

lin
(

k
∏

i=1

dom fi × C − ΔSk,g

))

< +∞

and 0 ∈ ri
(

k
∏

i=1

dom fi × C − ΔSk,g

)

.

We can state now the strong duality theorem for the scalar primal-dual pair
(PFC

λ ) − (DFC
λ ).

Theorem 5.2.1. Let S ⊆ X be a nonempty convex set, fi : X → R,
i = 1, . . . , k, be proper and convex functions, g : X → Z a proper and C-
convex function such that ∩k

i=1 dom fi ∩S ∩ g−1(−C) 	= ∅ and λ ∈ int(Rk
+) be

arbitrarily chosen. If one of the regularity conditions (RCFC
i ), i ∈ {1, 2, 3},

is fulfilled, then v(PFC
λ ) = v(DFC

λ ) and the dual has an optimal solution.

Remark 5.2.1. In order to deliver strong duality statements for (PFC
λ ) and

(DFC
λ ) one can also combine the regularity conditions given in subsection

3.2.2. We exemplify this here by the ones expressed via the strong quasi-
relative interior. Thus, assuming

X and Z are Fréchet spaces, S is closed,
fi is lower semicontinuous, i = 1, . . . , k, g is C-epi closed,

0 ∈ sqri
(

k
∩

i=1
dom fi × C − epi−C(−g) ∩ (S × Z)

)

,

and 0 ∈ sqri
(

k
∏

i=1

dom fi − ΔXk

)

,

guarantees the existence of strong duality for the primal-dual pair (PFC
λ ) −

(DFC
λ ) for all λ ∈ int(Rk

+).
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Let us come now to the formulation of the necessary and sufficient optimality
conditions for the primal-dual pair (PFC

λ ) − (DFC
λ ).

Theorem 5.2.2. (a) Let S ⊆ X be a nonempty convex set, fi : X → R,
i = 1, . . . , k, be proper and convex functions, g : X → Z a proper and C-
convex function such that ∩k

i=1 dom fi∩S∩g−1(−C) 	= ∅ and λ ∈ int(Rk
+)

be arbitrarily chosen. If x̄ ∈ X is an optimal solution to (PFC
λ ) and one

of the regularity conditions (RCFC
i ), i ∈ {1, 2, 3}, is fulfilled, then there

exists
(

ȳ1∗, . . . , ȳk∗, z̄∗
)

∈ (X∗)k × C∗, an optimal solution to the dual
problem (DFC

λ ), such that
(i) (z̄∗g)∗S

(

−
∑k

i=1 λiȳ
i∗) = 〈−

∑k
i=1 λiȳ

i∗, x̄〉;
(ii) (z̄∗g)(x̄) = 0;
(iii) fi(x̄) + f∗

i (ȳi∗) = 〈ȳi∗, x̄〉, i = 1, . . . , k.
(b) For a given λ ∈ int(Rk

+) assume that x̄ ∈ X and
(

ȳ1∗, . . . , ȳk∗, z̄∗
)

∈
(X∗)k×C∗ fulfill the relations (i)−(iii). Then x̄ is an optimal solution to
(PFC

λ ), (ȳ1∗, . . . , ȳk∗, z̄∗) is an optimal solution to (DFC
λ ) and v(PFC

λ ) =
v(DFC

λ ).

Proof. The proof follows in the lines of the ones given for Theorem 3.3.13 and
Theorem 3.3.22. ��

Remark 5.2.2. The optimality conditions (i) − (iii) in Theorem 5.2.2 can be
equivalently written as

−
k

∑

i=1

λiȳ
i∗ ∈ ∂((z̄∗g) + δS)(x̄), (z̄∗g)(x̄) = 0 and ȳi∗ ∈ ∂fi(x̄), i = 1, ..., k.

We introduce in the following not only one vector dual problem to
(PV FC), but a family of such problems, which are of Fenchel-Lagrange type
(see also section 4.3). For this, the following set is required,

F =
{

α = (α1, . . . , αk)T : int(Rk
+) → int(Rk

+) :

k
∑

i=1

λiαi(λ) = 1 ∀λ = (λ1, . . . , λk)T ∈ int(Rk
+)

}

.

For each α ∈ F we attach to (PV FC) the following dual vector optimiza-
tion problem

(DV FCα) Max
(λ,y∗,z∗,t)∈BCα

hCα(λ, y∗, z∗, t),

where
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BCα =
{

(λ, y∗, z∗, t) ∈ int(Rk
+)×

k
∏

i=1

dom f∗
i ×(Z∗)k×R

k :λ = (λ1, . . . , λk)T ,

y∗=(y1∗, . . . , yk∗), z∗=(z1∗, . . . , zk∗), t=(t1, . . . , tk)T ,

−αi(λ)
k

∑

j=1

λjy
j∗ ∈ dom(zi∗g)∗S , i = 1, . . . , k,

k
∑

i=1

λiz
i∗ ∈ C∗,

k
∑

i=1

λiti = 0
}

and

hCα(λ, y∗, z∗, t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−f∗
1 (y1∗) − (z1∗g)∗S

(

− α1(λ)
k
∑

j=1

λjy
j∗
)

+ t1

...

−f∗
k (yk∗) − (zk∗g)∗S

(

− αk(λ)
k
∑

j=1

λjy
j∗
)

+ tk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Whenever α ∈ F , the properness of the functions fi, i = 1, . . . , k, and g along
with Lemma 2.3.1(a) ensure that hCα(BCα) ⊆ R

k. According to Definition
2.5.1, an element (λ̄, ȳ∗, z̄∗, t̄) ∈ BCα is said to be efficient to (DV FCα) if
hCα(λ̄, ȳ∗, z̄∗, t̄) ∈ Max(hCα(BCα), Rk

+), while if if hCα(λ̄, ȳ∗, z̄∗, t̄) ∈ WMax
(hCα(BCα), Rk

+) we call (λ̄, ȳ∗, z̄∗, t̄) ∈ BCα weakly efficient to (DV FCα). Next
we prove that for each of the vector duals we just introduced there is weak
duality.

Theorem 5.2.3. Let α ∈ F be fixed. Then there is no x ∈ A and no
(λ, y∗, z∗, t) ∈ BCα such that fi(x) ≤ hCα

i (λ, y∗, z∗, t) for i = 1, . . . , k, and
fj(x) < hCα

j (λ, y∗, z∗, t) for at least one j ∈ {1, . . . , k}.

Proof. Assume the contrary, namely that there are some x ∈ X and (λ, y∗, z∗,
t) ∈ BCα such that fi(x) ≤ hCα

i (λ, y∗, z∗, t) for each i = 1, . . . , k, and fj(x) <

hCα
j (λ, y∗, z∗, t) for at least one j ∈ {1, . . . , k}. Consequently,

∑k
i=1 λifi(x) <

∑k
i=1 λih

Cα
i (λ, y∗, z∗, t) = −

∑k
i=1 λi

(

f∗
i (yi∗)+(zi∗g)∗S

(

−αi(λ)
∑k

j=1 λjy
j∗))

+
∑k

i=1 λiti = −
∑k

i=1 λi

(

f∗
i (yi∗) + (zi∗g)∗S

(

− αi(λ)
∑k

j=1 λjy
j∗)), which,

by the Young-Fenchel inequality, is less than or equal to
∑k

i=1 λifi(x) since
〈(
∑k

i=1 λiαi(λ))
∑k

j=1 λjy
j∗, x〉 = 〈

∑k
i=1 λiy

i∗, x〉 and
(∑k

i=1 λiz
i∗g

)

(x) ≤ 0
and we reached a contradiction. ��

We come now to the vector strong duality statement for (PV FC) and
(DV FCα). In what follows we assume that the nonempty set S is convex, the
functions fi, i = 1, . . . , k, are convex and the function g is C-convex. In order
to maintain the analogy to the investigations made in the previous chapter,
we assume also here for the strong vector duality results the fulfillment of a
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regularity condition and then remark that these remain valid when others are
verified, too. In this case we work with (RCFC

1 ), renamed as

(RCV FC) ∃x′ ∈
k
∩

i=1
dom fi ∩ S such that fi is continuous at x′,

i = 1, . . . , k, and g(x′) ∈ − int(C).

Theorem 5.2.4. Let α ∈ F be fixed and assume that the regularity condition
(RCV FC) is fulfilled. If x̄ ∈ A is a properly efficient solution to (PV FC)
then there exists (λ̄, ȳ∗, z̄∗, t̄), an efficient solution to (DV FCα), such that
fi(x̄) = hCα

i (λ̄, ȳ∗, z̄∗, t̄) for i = 1, . . . , k.

Proof. Given the proper efficiency of x̄ to (PV F C), there is some λ̄ ∈ int(Rk
+)

such that x̄ is an optimal solution to (PFC
λ̄

). Because of Theorem 5.2.1, there
is strong duality for this scalar optimization problem and its Fenchel-Lagrange
type dual (DFC

λ̄
), which has an optimal solution, say (ȳ1∗, . . . , ȳk∗, w̄∗) such

that the optimality conditions (i) − (iii) in Theorem 5.2.2 hold. Take z̄i∗ :=
αi(λ̄)w̄∗ and t̄i := 〈ȳi∗, x̄〉 + (z̄i∗g)∗S

(

− αi(λ̄)
∑k

j=1 λ̄j ȳ
j∗), i = 1, . . . , k, and

let z̄∗ := (z̄1∗, . . . , z̄k∗) and t̄ := (t̄1, . . . , t̄k)T . Then
∑k

i=1 λ̄iz̄
i∗ = w̄∗ ∈ C∗.

Note that whenever i ∈ {1, . . . , k} one has (z̄i∗g)∗S
(

− αi(λ̄)
∑k

j=1 λ̄j ȳ
j∗) =

αi(λ̄)(w̄∗g)∗S
(

−
∑k

j=1 λ̄j ȳ
j∗) and thus −αi(λ̄)

∑k
j=1 λ̄j ȳ

j∗ ∈ dom(z̄i∗g)∗S for
i = 1, . . . , k. Then, using the above mentioned optimality conditions, we get

k
∑

i=1

λ̄it̄i =

〈

k
∑

j=1

λ̄j ȳ
j∗, x̄

〉

+
k

∑

i=1

λ̄iαi(λ̄)(w̄∗g)∗S

(

−
k

∑

j=1

λ̄j ȳ
j∗
)

=

〈

k
∑

j=1

λ̄j ȳ
j∗, x̄

〉

+ (w̄∗g)∗S

(

−
k

∑

j=1

λ̄j ȳ
j∗
)

= 0,

which yields that (λ̄, ȳ∗, z̄∗, t̄) is feasible to (DV FCα), where ȳ∗ = (ȳ1∗, . . . ,
ȳk∗). Moreover, whenever i ∈ {1, . . . , k} hCα

i (λ̄, ȳ∗, z̄∗, t̄) = −f∗
i (ȳi∗) +

〈ȳi∗, x̄〉 = fi(x̄), via the optimality condition (iii) of Theorem 5.2.2. The
efficiency of (λ̄, ȳ∗, z̄∗, t̄) to (DV FCα) follows by applying Theorem 5.2.3. Be-
cause α ∈ F was arbitrarily chosen, the conclusion follows. ��

To give the converse duality statement for the vector problems (PV FC)
and (DV FCα), α ∈ F , two preliminary statements are needed.

Theorem 5.2.5. Let α ∈ F be fixed and assume that BCα is nonempty and
that the regularity condition (RCV FC) is fulfilled. Then

R
k\ cl(f(∩k

i=1 dom fi ∩ A) + R
k
+) ⊆ hCα(BCα) − int(Rk

+).

Proof. Let v̄ ∈ R
k\ cl(f(∩k

i=1 dom fi ∩ A) + R
k
+). Similarly to the proof of

Theorem 4.3.3 one can prove that there exists λ̄ ∈ int(Rk
+) such that
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k
∑

i=1

λ̄iv̄i < inf
x∈A

{ k
∑

i=1

λ̄ifi(x)
}

.

According to Theorem 5.2.1, there exist ȳ∗ = (ȳ1∗, . . . , ȳk∗) ∈
∏k

i=1 dom f∗
i

and w̄∗ ∈ C∗ such that

inf
x∈X

{ k
∑

i=1

λ̄ifi(x)
}

= −
k

∑

i=1

λ̄if
∗
i (ȳi∗) − (w̄∗g)∗S

(

−
k

∑

i=1

λ̄iȳ
i∗
)

.

Let z̄i∗ := αi(λ̄)w̄∗, i = 1, . . . , k, and z̄∗ := (z̄1∗, . . . , z̄k∗). Then
∑k

i=1 λ̄iz̄
i∗ =

w̄∗ ∈ C∗. Thus (λ̄, ȳ∗, z̄∗, 0) ∈ BCα and it holds

k
∑

i=1

λ̄iv̄i <
k

∑

i=1

λ̄ih
Cα
i (λ̄, ȳ∗, z̄∗, 0). (5.2)

Consider the hyperplane with the normal vector λ̄

H =
{

hCα(λ̄, ȳ∗, z̄∗, 0) + t : t ∈ R
k,

k
∑

i=1

λ̄iti = 0
}

=
{

v ∈ R
k :

k
∑

i=1

λ̄ivi =
k

∑

i=1

λ̄ih
Cα
i (λ̄, ȳ∗, z̄∗, 0)

}

.

One can easily see that H ⊆ hCα(BCα), while from (5.2) we deduce that
v̄ is an element of the open halfspace H− =

{

v ∈ R
k :

∑k
i=1 λ̄ivi <

∑k
i=1 λ̄ih

Cα
i (λ̄, ȳ∗, z̄∗, 0)

}

. The orthogonal projection of v̄ on H is an element
ṽ = v̄ + δλ̄ ∈ H ⊆ hCα(BCα) with δ > 0. Since λ̄ ∈ int(Rk

+), it follows that
v̄ ∈ hCα(BCα) − int(Rk

+). ��

Remark 5.2.3. We refer the reader to a comparison of the result in Theorem
5.2.5 with the one given in Theorem 4.3.3 for the primal-dual pair (PV G) −
(DV G). A direct consequence of this latter result is that, when (RCV Φ) is
fulfilled and (λ̄, ȳ∗, v̄) is an efficient solution to (DV G), then hG(λ̄, ȳ∗, v̄) ∈
cl(F (dom F )+K). As proven below, a similar result can be given, when α ∈ F ,
for the primal-dual pair (PV F C)−(DV FCα), but this does not result directly
as for (PV G) − (DV G).

Theorem 5.2.6. Let α ∈ F be fixed and assume the regularity condition
(RCV FC) fulfilled. If (λ̄, ȳ∗, z̄∗, t̄) ∈ BCα is a weakly efficient solution to
(DV FCα), then hCα(λ̄, ȳ∗, z̄∗, t̄) ∈ cl(f(∩k

i=1 dom fi ∩ A)).

Proof. Since (λ̄, ȳ∗, z̄∗, t̄) ∈ BCα is a weakly efficient solution to (DV FCα), by
Theorem 5.2.5 follows that

hCα(λ̄, ȳ∗, ȳ∗, t̄) ∈ cl
(

f

(

k
∩

i=1
dom fi ∩ A

)

+ R
k
+

)

.
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Assuming the contrary implies the existence of v̄ ∈ hCα(BCα) such that
hCα(λ̄, ȳ∗, z̄∗, t̄) < v̄. But this contradicts the weak efficiency of (λ̄, ȳ∗, z̄∗, t̄)
to the vector dual problem.

Then there exist {vl} ⊆ f(∩k
i=1 dom fi∩A) and rl ∈ R

k
+ such that vl+rl →

hCα(λ̄, ȳ∗, z̄∗, t̄) when l → +∞. For all l ≥ 1 let be xl ∈ ∩k
i=1 dom fi ∩A with

vl = f(xl). But the weak duality theorem for (PFC
λ ) − (DFC

λ ) yields for all
l ≥ 1

k
∑

i=1

λ̄ih
Cα
i (λ̄, ȳ∗, z̄∗, t̄) =

k
∑

i=1

λ̄i

(

− f∗
i (ȳi∗) −

(

z̄i∗g
)∗
S

(

− αi(λ̄i)
k

∑

j=1

λ̄j ȳ
j∗
))

+
k

∑

i=1

λ̄it̄i ≤
k

∑

i=1

λ̄ifi(xl) −
〈

k
∑

i=1

λ̄iȳ
i∗, xl

〉

+
k

∑

i=1

λ̄i(z̄i∗g + δS)(xl)

+

〈

k
∑

i=1

λ̄iȳ
i∗, xl

〉

≤
k

∑

i=1

λ̄ifi(xl) =
k

∑

i=1

λ̄iv
l
i ≤

k
∑

i=1

λ̄i(vl
i + rl

i).

We have liml→+∞
∑k

i=1 λ̄i(vl
i +rl

i) =
∑k

i=1 λ̄ih
Cα
i (λ̄, ȳ∗, z̄∗, t̄) and this implies

that

lim
l→+∞

k
∑

i=1

λ̄iv
l
i =

k
∑

i=1

λ̄ih
Cα
i (λ̄, ȳ∗, z̄∗, t̄).

Consequently, liml→+∞
∑k

i=1 λ̄ir
l
i = 0. Since rl ∈ R

k
+ for all l ≥ 1, this can be

the case only if liml→+∞ rl = 0. In conclusion, liml→+∞ vl = hCα(λ̄, ȳ∗, z̄∗, t̄)
and so hCα(λ̄, ȳ∗, z̄∗, t̄) ∈ cl(f(∩k

i=1 dom fi ∩ A)). ��

A direct consequence of Theorem 5.2.6 is the following converse duality
statement.

Theorem 5.2.7. Let α ∈ F be fixed and assume that the regularity condition
(RCV FC) is fulfilled and that the set f(∩k

i=1 dom fi∩A)+R
k
+ is closed. Then

for every weakly efficient solution (λ̄, ȳ∗, z̄∗, t̄) to (DV FCα), there exists x̄ ∈
A, a properly efficient solution to (PV FC), such that fi(x̄) = hCα

i (λ̄, ȳ∗, z̄∗, t̄),
i = 1, . . . , k.

Proof. As seen in the proof of Theorem 5.2.6, the weak efficiency of (λ̄, ȳ∗, z̄∗, t̄)
to the dual ensures that hCα(λ̄, ȳ∗, z̄∗, t̄) ∈ cl(f(∩k

i=1 dom fi ∩ A) + R
k
+) =

f(∩k
i=1 dom fi ∩ A) + R

k
+.

This means that hCα(λ̄, ȳ∗, z̄∗, t̄) = f(x̄) + r̄ for some x̄ ∈ ∩k
i=1 dom fi ∩A

and r̄ ∈ R
k
+. But r̄ = 0, otherwise the weak duality (see Theorem 5.2.3) would

be violated. Even more, the weak duality proves also the efficiency of x̄ to
(PV FC). It remains to prove that x̄ is a properly efficient to (PV FC). Since
hCα(λ̄, ȳ∗, z̄∗, t̄) = f(x̄) it holds

k
∑

i=1

λ̄ifi(x̄) =
k

∑

i=1

λ̄ih
Cα
i (λ̄, ȳ∗, z̄∗, t̄) = −

k
∑

i=1

λ̄i

(

f∗
i (ȳi∗)
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+(z̄i∗g)∗S

(

− αi(λ̄)
k

∑

j=1

λ̄j ȳ
j∗
)

+ t̄i

)

≤ inf
x∈A

{ k
∑

i=1

λ̄ifi(x)
}

.

Therefore x̄ is an optimal solution to (PFC
λ̄

) and this proves that x̄ is a
properly efficient solution to (PV FC). ��

Remark 5.2.4. Note also that an alternative converse duality statement can
be obtained following the method used in [184].

Remark 5.2.5. (a) One can easily notice that all the results given above remain
valid whenever α ∈ F if the vector dual (DV FCα) is slightly modified by
replacing in the formulation of the feasible set BCα the restriction

∑k
i=1 λiti =

0 by
∑k

i=1 λiti ≤ 0.
(b) Since the proof of the theorem given above uses as a main tool the

scalar strong duality result for (PFC
λ ) and (DFC

λ ) when λ ∈ int(Rk
+), it is

always true that the regularity condition (RCV FC) can be replaced by any
of the regularity conditions (RCFC

i ), i ∈ {2, 2′, 2′′, 3}. In theorems 5.2.5-
5.2.7, the regularity condition can be replaced by the assumption that for all
λ ∈ int(Rk

+) the optimization problem (PFC
λ ) is normal with respect to its

conjugate dual problem (DFC
λ ).

(c) Theorem 5.2.7 remains valid even if instead of asking that the set
f(∩k

i=1 dom fi ∩ A) + R
k
+ is closed one assumes that f(∩k

i=1 dom fi ∩ A) is
closed.

(d) Combining the assertions of Theorem 5.2.4 and Theorem 5.2.7 makes it
immediately clear that under the hypotheses of the latter any weakly efficient
solution to (DV FCα) is also efficient to it for any α ∈ F .

(e) In case k = 1, i.e. if V = R and K = R+, the problems (PV FC) and
(DV FCα), where α ∈ F , become (see also subsection 3.2.2)

(PC) inf
x∈A

f(x)

and, respectively,

(DCF L) sup
(λ,y∗,z∗,t)∈BCα

{−f∗(y∗) − (z∗g)∗S(−y∗) + t},

where

BCα = {(λ, y∗, z∗, t) ∈ int(R+) × dom f∗ × C∗ × R : λt = 0}.

Obviously the dual problem can be equivalently written as

sup
y∗∈X∗,z∗∈C∗

{−f∗(y∗) − (z∗g)∗S(−y∗)},

which is, indeed, the Fenchel-Lagrange dual problem to (PC) (cf. subsection
3.1.3). This motivates giving the name Fenchel-Lagrange type vector dual
problem to (DV FCα).
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Remark 5.2.6. For particular choices of the function α ∈ F one obtains differ-
ent vector duals to (PV FC). For instance, when

α(λ) =
(

1
kλ1

, . . . ,
1

kλk

)T

∀λ = (λ1, . . . , λk)T ∈ int(Rk
+),

(DV FCα) turns out to be the dual problem introduced in [184] for the case
S = X = R

n, which generalizes the one considered in [182, 183]. Another
interesting special case occurs when we take

α(λ) =

⎛

⎜

⎜

⎜

⎝

1
k
∑

i=1

λi

, . . . ,
1

k
∑

i=1

λi

⎞

⎟

⎟

⎟

⎠

T

∀λ = (λ1, . . . , λk)T ∈ int(Rk
+).

Considering in the feasible set of (DV FCα) formulated in this case that all
zi∗, i = 1, . . . , k, are equal, one obtains a vector dual problem introduced to
(PV FC) in [36,37] for the case S = X = R

n, namely

(DV FCM ) Max
(λ,y∗,z∗,t)∈BCM

hCM (λ, y∗, z∗, t),

where

BCM =
{

(λ, y∗, z∗, t) ∈ int(Rk
+) ×

k
∏

i=1

dom f∗
i × C∗ × R

k : λ = (λ1, . . . , λk)T ,

y∗ = (y1∗, . . . , yk∗), t = (t1, . . . , tk)T ,

−1
k
∑

j=1

λj

k
∑

j=1

λjy
j∗ ∈ dom(z∗g)∗S ,

k
∑

i=1

λiti = 0
}

and

hCM (λ, y∗, z∗, t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−f∗
1 (y1∗) − (z∗g)∗S

(

− 1
kP

j=1
λj

k
∑

j=1

λjy
j∗
)

+ t1

...

−f∗
k (yk∗) − (z∗g)∗S

(

− 1
kP

j=1
λj

k
∑

j=1

λjy
j∗
)

+ tk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The vector duality statements given in Theorem 5.2.3, Theorem 5.2.4 and
Theorem 5.2.7 hold when replacing (DV FCα) with (DV FCM ), too. In section
5.3 we prove that hCM (BCM ) is a subset of hCα(BCα) whenever α ∈ F .
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5.2.2 Duality with respect to weakly efficient solutions

In the second part of this section we discuss a duality concept similar to the
one introduced above for (PV FC), but this time with respect to the weakly
efficient solutions. To this aim, we assume in the following that X and Z
are Hausdorff locally convex spaces, with the latter partially ordered by the
convex cone C ⊆ Z. Further, let the convex set S ⊆ X, the convex functions
fi : X → R, i = 1, . . . , k, having their effective domains equal to the whole
space X (see Remark 5.2.7 for a comment concerning this choice) and the
proper and C-convex function g : X → Z such that S ∩ g−1(−C) 	= ∅.
Further, assume that the image space V = R

k is partially ordered by the cone
K = R

k
+ and consider the vector function f = (f1, ..., fk)T . The primal vector

optimization problem with geometric and cone constraints with respect to
weakly efficient solutions we work in this section with is

(PV FC
w ) WMin

x∈A
f(x).

A = {x ∈ S : g(x) ∈ −C}

Considering the set

Fw =
{

β = (β1, . . . , βk)T : (Rk
+\{0}) → int(Rk

+) :

k
∑

i=1

λiβi(λ) = 1 ∀λ = (λ1, . . . , λk)T ∈ R
k
+\{0}

}

,

for each β ∈ Fw we attach to (PV FC
w ) the following dual vector problem with

respect to weakly efficient solutions

(DV F
Cβ
w ) WMax

(λ,y∗,z∗,t)∈BCβ
w

h
Cβ
w (λ, y∗, z∗, t),

where

BCβ
w =

{

(λ, y∗, z∗, t) ∈ (Rk
+\{0})×

k
∏

i=1

dom f∗
i ×(Z∗)k×R

k :λ=(λ1, . . . , λk)T ,

y∗=(y1∗, . . . , yk∗), z∗=(z1∗, . . . , zk∗), t=(t1, . . . , tk)T ,

−βi(λ)
k

∑

j=1

λjy
j∗ ∈ dom(zi∗g)∗S , i = 1, . . . , k,

k
∑

i=1

λiz
i∗ ∈ C∗,

k
∑

i=1

λiti = 0
}

and
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h
Cβ
w (λ, y∗, z∗, t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−f∗
1 (y1∗) − (z1∗g)∗S

(

− β1(λ)
k
∑

j=1

λjy
j∗
)

+ t1

...

−f∗
k (yk∗) − (zk∗g)∗S

(

− βk(λ)
k
∑

j=1

λjy
j∗
)

+ tk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Whenever β ∈ Fw one has that h
Cβ
w (BCβ

w ) ⊆ R
k. According to Definition

2.5.1, while an element x̄ ∈ A is a weakly efficient solution to (PV FC
w ) if

f(x̄) ∈ WMin(f(A), Rk
+), an element (λ̄, ȳ∗, z̄∗, t̄) ∈ BCβ

w is said to be weakly
efficient to (DV F

Cβ
w ) if h

Cβ
w (λ̄, ȳ∗, z̄∗, t̄) ∈ WMax(hCβ

w (BCβ
w ), Rk

+).
The next statement gives a weak duality result for (PV FC

w ) and (DV F
Cβ
w ),

β ∈ Fw, which can be proven analogously to Theorem 5.2.3.

Theorem 5.2.8. Let β ∈ Fw be fixed. Then there is no x ∈ X and no
(λ, y∗, z∗, t) ∈ BCβ

w such that fi(x) < h
Cβ

wi (λ, y∗, z∗, t) for i = 1, . . . , k.

Before stating the strong duality result, we consider the following regular-
ity condition, the choice of which can be sustained by a discussion similar to
the one in Remark 5.1.7,

(RCV FC
w ) fi is continuous, i = 1, . . . , k, and 0 ∈ g(S ∩ dom g) + int(C).

Theorem 5.2.9. Let β ∈ Fw be fixed and assume that the regularity condition
(RCV FC

w ) is fulfilled. If x̄ ∈ A is a weakly efficient solution to (PV FC
w ) then

there exists (λ̄, ȳ∗, z̄∗, t̄), a weakly efficient solution to (DV F
Cβ
w ), such that

fi(x̄) = h
Cβ

wi (λ̄, ȳ∗, z̄∗, t̄), i = 1, . . . , k.

Proof. Let x̄ be a weakly efficient solution to (PV FC
w ). This means that f(x̄) ∈

WMin (f(A), Rk
+). Obviously, f(A) + R

k
+ is a convex set, thus by Corollary

2.4.26 there exists λ̄ ∈ R
k
+\{0} such that x̄ is an optimal solution to the scalar

problem

(PFC
wλ̄) inf

x∈X

{

∑

i∈I(λ̄)

λ̄ifi(x)
}

,

where I(λ̄) =
{

i ∈ {1, . . . , k} : λ̄i > 0
}

is a nonempty set. Applying the same
scheme as for (PFC

λ̄
) and (DFC

λ̄
), we obtain as a scalar dual to (PFC

λ̄
) the

following optimization problem

(DFC
wλ̄) sup

yi∗∈X∗,i∈I(λ̄),
w∗∈C∗

{

−
∑

i∈I(λ̄)

λ̄if
∗
i (yi∗) − (w∗g)∗S

(

−
∑

i∈I(λ̄)

λ̄iy
i∗
)}

.

By Theorem 5.2.1 follows that for the primal-dual pair (PFC
wλ̄

) − (DFC
wλ̄

)
strong duality holds, while Theorem 5.2.2 ensures that there exist x̄i∗ ∈
dom f∗

i , i ∈ I(λ̄), and w̄∗ ∈ C∗ such that
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(i) (w̄∗g)∗S
(

−
∑

i∈I(λ̄) λiȳ
i∗) = 〈−

∑

i∈I(λ̄) λiȳ
i∗, x̄〉;

(ii) (w̄∗g)(x̄) = 0;
(iii) fi(x̄) + f∗

i (ȳi∗) = 〈ȳi∗, x̄〉, i ∈ I(λ̄).

As (RCV FC
w ) holds, one can choose some ȳi∗ ∈ dom f∗

i for i /∈ I(λ̄). Tak-
ing ȳ∗ := (ȳ1∗, . . . , ȳk∗) ∈

∏k
i=1 dom f∗

i , one has, via (i) that (w̄∗g)∗S
(

−
∑k

i=1 λ̄iȳ
i∗) = 〈−

∑k
i=1 λ̄iȳ

i∗, x̄〉. Let us take, for each i = 1, . . . , k, z̄i∗ :=
βi(λ̄)w̄∗ and denote z̄∗ = (z̄1∗, . . . , z̄k∗). Then

∑k
i=1 λ̄iz̄

i∗ = w̄∗ ∈ C∗. Note
that whenever i ∈ {1, . . . , k} one has, as explained in the proof of Theorem
5.2.4, (z̄i∗g)∗S

(

− βi(λ̄)
∑k

j=1 λ̄j ȳ
j∗) = βi(λ̄)(w̄∗g)∗S

(

−
∑k

j=1 λ̄j ȳ
j∗) and so

−βi(λ̄)
∑k

j=1 λ̄j ȳ
j∗ ∈ dom(z̄i∗g)∗S . Take also

t̄i := 〈ȳi∗, x̄〉 + (z̄i∗g)∗S

⎛

⎝−βi(λ̄)
k

∑

j=1

λ̄j ȳ
j∗

⎞

⎠

when i ∈ I(λ̄),

t̄i := fi(x̄) + f∗
i (ȳi∗) + (z̄i∗g)∗S

⎛

⎝−βi(λ̄)
k

∑

j=1

λ̄j ȳ
j∗

⎞

⎠

when i /∈ I(λ̄) and denote t̄ := (t̄1, . . . , t̄k)T . It can be verified that
∑k

i=1 λ̄it̄i =
0 and (λ̄, ȳ∗, z̄∗, t̄) ∈ BCβ . Moreover, for i = 1, . . . , k, it holds fi(x̄) =
−f∗

i (ȳi∗) − (z̄i∗g)∗S
(

− βi(λ̄)
∑k

j=1 λ̄j ȳ
j∗) + t̄i. The fact that (λ̄, ȳ∗, z̄∗, t̄) is

weakly efficient to (DV F
Cβ
w ) is a direct consequence of Theorem 5.2.8. ��

Remark 5.2.7. A discussion similar to the one in Remark 5.1.6 makes clear
why it is necessary to consider when dealing with weakly efficient solutions
that the functions fi, i = 1, . . . , k, have full domains.

Remark 5.2.8. Analogously to Remark 5.1.7, note that assuming continuity
for fi, i = 1, ..., k, in (RCV FC

w ) is not too strong. Even if (RCV FC) seems
at the first look to be weaker, by Theorem 2.2.17 follows that in the setting
considered in this subsection it turns out to be nothing but (RCV FC

w ). Never-
theless, this condition can be replaced in the results gathered in this subsection
with (RCFC

i ), i ∈ {2, 2′, 2′′, 3}, adapted to the situation where dom fi = X
for i = 1, ..., k.

The proof of the following theorem can be done by combining the ideas
from the proofs of Theorem 4.3.21 and Theorem 5.2.5.

Theorem 5.2.10. Let β ∈ Fw be fixed and assume that the regularity condi-
tion (RCV FC

w ) is fulfilled. Then

R
k\ cl(f(A) + R

k
+) ⊆ h

Cβ
w (BCβ

w ) − (Rk
+ \ {0}).
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The converse duality theorem for the primal-dual pair treated here does
not follow as a direct consequence of this result, as it was the case for
(PV FC) − (DV FC). Nevertheless, we are able to state such a result with
the mention that it turns out to be an implication of Theorem 4.3.25(c) and
Theorem 5.3.9, which we state in the forthcoming section.

Theorem 5.2.11. Let β ∈ Fw be fixed and assume that the regularity condi-
tion (RCV FC

w ) is fulfilled and that the set f(A)+R
k
+ is closed. Then for every

weakly efficient solution (λ̄, ȳ∗, z̄∗, t̄) to (DV F
Cβ
w ) one has that h

Cβ
w (λ̄, ȳ∗, z̄∗, t̄)

is a weakly minimal element of the set f(A) + R
k
+.

Remark 5.2.9. The observations pointed our in Remark 5.2.1 and Remark
5.2.8 are valid for Theorem 5.2.9 and Theorem 5.2.11, too, while the ones
from Remark 5.2.6, except for the first particular case, can be applied to
vector duality with respect to weakly efficient solutions, too. Note that the
analogous vector dual to (DV FCM ) from the latter remark is

(DV FCM
w ) WMax

(λ,y∗,z∗,t)∈BCM
w

hCM
w (λ, y∗, z∗, t),

where

BCM
w =

{

(λ, y∗, z∗, t) ∈ (Rk
+\{0})×

k
∏

i=1

dom f∗
i ×C∗×R

k : λ = (λ1, . . . , λk)T ,

y∗ = (y1∗, . . . , yk∗), t = (t1, . . . , tk)T ,

k
∑

i=1

λiti = 0,

−1
k
∑

j=1

λj

k
∑

j=1

λjy
j∗ ∈ dom(z∗g)∗S

}

and

hCM
w (λ, y∗, z∗, t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−f∗
1 (y1∗) − (z∗g)∗S

(

− 1
kP

j=1
λj

k
∑

j=1

λjy
j∗
)

+ t1

...

−f∗
k (yk∗) − (z∗g)∗S

(

− 1
kP

j=1
λj

k
∑

j=1

λjy
j∗
)

+ tk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

5.2.3 Duality for linearly constrained vector optimization problems

In the following we see what happens to the duals introduced in the previous
two subsections when working with the linearly constrained vector minimiza-
tion primal problem
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(PV FL) Min
x∈AL

f(x),

AL = {x ∈ S : Ax − b ∈ C}

where X and Z are Hausdorff locally convex spaces, with the latter partially
ordered by the convex cone C ⊆ Z, S ⊆ X is a convex cone, fi : X → R, i =
1, . . . , k, are proper functions, A ∈ L(X,Z) and b ∈ Z fulfill A(∩k

i=1 dom fi ∩
S)∩ (b + C) 	= ∅. Assume that the image space R

k is partially ordered by the
cone R

k
+. Consider the vector function f : X → Rk defined as in the beginning

of the section. One can immediately notice that (PV FL) is a special case of
(PV FC), for g(x) = b − Ax for x ∈ X and S being moreover a cone. Like
in subsection 5.2.1, for each α ∈ F we attach to (PV FL) a dual problem
obtained by particularizing (DV FCα). Noting that

(z∗g)∗S(x∗) = sup
x∈S

{〈x∗, x〉 + 〈z∗, Ax − b〉} = −〈z∗, b〉 + sup
x∈S

〈x∗ + A∗z∗, x〉

= −〈z∗, b〉 + δ{A∗z∗+x∗∈−S∗}(x∗)

for any x∗ ∈ X∗ and z∗ ∈ Z∗, the dual in discussion turns into

(DV FLα) Max
(λ,y∗,z∗,t)∈BLα

hLα(λ, y∗, z∗, t),

where

BLα =
{

(λ, y∗, z∗, t) ∈ int(Rk
+)×

k
∏

i=1

dom f∗
i ×(Z∗)k×R

k : λ=(λ1, . . . , λk)T ,

y∗=(y1∗, . . . , yk∗), z∗=(z1∗, . . . , zk∗), t=(t1, . . . , tk)T ,
k

∑

i=1

λiz
i∗ ∈ C∗,

k
∑

i=1

λiti = 0,

αi(λ)
k

∑

j=1

λjy
j∗ − A∗zi∗ ∈ S∗, i = 1, . . . , k

}

and

hLα(λ, y∗, z∗, t) =

⎛

⎜

⎝

〈z1∗, b〉 + t1 − f∗
1 (y1∗)

...
〈zk∗, b〉 + tk − f∗

k (yk∗)

⎞

⎟

⎠ .

One can notice that at (DV FLα) the parameter α is present only in the
feasible set. However, we show that all (DV FLα), α ∈ F , are equivalent to
each other and α plays no role in this case.

Let α ∈ F . First we demonstrate that taking the set
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BL=
{

(λ, y∗, w∗, v) ∈ int(Rk
+) ×

k
∏

i=1

dom f∗
i × (Z∗)k × R

k : λ = (λ1, . . . , λk)T ,

y∗=(y1∗, . . . , yk∗), w∗=(w1∗, . . . , wk∗), v=(v1, . . . , vk)T ,
k

∑

i=1

λiw
i∗ ∈ C∗,

k
∑

i=1

λivi = 0,

k
∑

i=1

λi(yi∗ − A∗wi∗) ∈ S∗
}

,

one has hLα(BLα) = hLα(BL).
The inclusion “⊆” follows immediately, since whenever (λ, y∗, z∗, t) ∈ BLα

one can directly verify that (λ, y∗, z∗, t) ∈ BL. To prove the opposite in-
clusion, when (λ, y∗, w∗, v) ∈ BL take zi∗ := αi(λ)

∑k
j=1 λjw

j∗, ti :=

vi + 〈wi∗, b〉 − 〈αi(λ)
∑k

j=1 λjw
j∗, b〉, i = 1, . . . , k, and t = (t1, ..., tk)T .

Therefore it follows that (λ, y∗, z∗, t) ∈ BLα . Moreover, for i = 1, . . . , k,
hLα

i (λ, y∗, z∗, t) = 〈zi∗, b〉+ti−f∗
i (yi∗) = 〈αi(λ)

∑k
j=1 λjw

j∗, b〉+vi+〈wi∗, b〉−
〈αi(λ)

∑k
j=1 λjw

j∗, b〉 − f∗
i (yi∗) = 〈wi∗, b〉 + vi − f∗

i (yi∗) = hLα
i (λ, y∗, w∗, v).

Therefore for all α ∈ F the duals (DV FLα) collapse into

(DV FL) Max
(λ,y∗,w∗,v)∈BL

hL(λ, y∗, w∗, v),

where

hL(λ, y∗, w∗, v) =

⎛

⎜

⎝

〈w1∗, b〉 + v1 − f∗
1 (y1∗)

...
〈wk∗, b〉 + vk − f∗

k (yk∗)

⎞

⎟

⎠ .

The formulation of this dual problem can be further simplified, depending
on the way b is taken.

When b = 0, (DV FL) turns into

(DV FL) Max
(λ,y∗,v)∈BL

hL(λ, y∗, v),

where

BL =
{

(λ, y∗, v) ∈ int(Rk
+) ×

k
∏

i=1

dom f∗
i × R

k, λ = (λ1, . . . , λk)T ,

y∗ = (y1∗, . . . , yk∗), v = (v1, . . . , vk)T ,
k

∑

i=1

λivi = 0,

k
∑

i=1

λiy
i∗ ∈ A∗(C∗) + S∗

}

and

hL(λ, y∗, v) =

⎛

⎜

⎝

v1 − f∗
1 (y1∗)
...

vk − f∗
k (yk∗)

⎞

⎟

⎠ .
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On the other hand, when b 	= 0 the vector dual problem (DV FL) can be
equivalently rewritten as

(DV FL) Max
(λ,y∗,q∗)∈BL

hL(λ, y∗, q∗),

where

BL =
{

(λ, y∗, q∗) ∈ int(Rk
+) ×

k
∏

i=1

dom f∗
i × (Z∗)k : λ = (λ1, . . . , λk)T ,

y∗ = (y1∗, . . . , yk∗), q∗ = (q1∗, . . . , qk∗),
k

∑

i=1

λiq
i∗ ∈ C∗,

k
∑

i=1

λi(yi∗ − A∗q∗i ) ∈ S∗
}

and

hL(λ, y∗, q∗) =

⎛

⎜

⎝

〈q1∗, b〉 − f∗
1 (y1∗)

...
〈qk∗, b〉 − f∗

k (yk∗)

⎞

⎟

⎠ .

To prove this, take wi∗ := qi∗ and vi := 0, i = 1, . . . , k, while for the inverse
inclusion, let qi∗ := wi∗ + viζ, i = 1, . . . , k, where ζ ∈ Z∗ is taken such that
〈ζ, b〉 = 1.

The vector dual problem (DV FCM ) introduced in Remark 5.2.6 turns in
the special case treated in this subsection into

(DV FLM ) Max
(λ,y∗,z∗,v)∈BLM

hLM (λ, y∗, z∗, v),

where

BLM =
{

(λ, y∗, z∗, v) ∈ int(Rk
+) ×

k
∏

i=1

dom f∗
i × C∗ × R

k : λ = (λ1, . . . , λk)T ,

y∗ = (y1∗, . . . , yk∗), v = (v1, . . . , vk)T ,
k

∑

i=1

λivi = 0,

k
∑

i=1

λi(yi∗ − A∗z∗) ∈ S∗
}

and

hLM (λ, y∗, z∗, v) =

⎛

⎜

⎝

〈z∗, b〉 + v1 − f∗
1 (y1∗)

...
〈z∗, b〉 + vk − f∗

k (yk∗)

⎞

⎟

⎠ .

Note that when b = 0 this turns into (DV FL), too.
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Remark 5.2.10. Weak duality for the primal problem (PV FL) and its vector
dual (DV FL) holds from the general case. To obtain strong and converse
duality for this pair of problems, one can consider the regularity condition

(RCV FL) ∃x′ ∈
k
∩

i=1
dom fi ∩ S such that fi is continuous at x′,

i = 1, . . . , k, and Ax′ − b ∈ int(C),

or one of the regularity conditions mentioned in Remark 5.2.5(b) adapted to
this particular situation.

Remark 5.2.11. The results obtained within this subsection extend the ones
in [182–184], where all the spaces involved were taken finite dimensional and
those in [174] where the entries of the objective vector function were sums of
norms and linear functions.

With the only change in the framework consisting in taking the functions
fi : X → R, i = 1, . . . , k, like in subsection 5.2.2, namely having full domains,
similar considerations can be made when we are dealing with the weakly
efficient solutions to the primal problem

(PV FL
w ) WMin

x∈AL
f(x).

AL = {x ∈ S : Ax − b ∈ C}

Like in subsection 5.2.2, for each β ∈ Fw we can attach to (PV FL
w ) a dual

problem obtained by particularizing (DV F
Cβ
w ), but all these duals coincide,

being actually

(DV FL
w ) WMax

(λ,y∗,w∗,v)∈BL
w

hL
w(λ, y∗, w∗, v),

where

BL
w=

{

(λ, y∗, w∗, v) ∈ (Rk
+\{0})×

k
∏

i=1

dom f∗
i ×(Z∗)k×R

k : λ=(λ1, . . . , λk)T ,

y∗=(y1∗, . . . , yk∗), w∗=(w1∗, . . . , wk∗), v=(v1, . . . , vk)T ,
k

∑

i=1

λiw
i∗ ∈ C∗,

k
∑

i=1

λivi = 0,

k
∑

i=1

λi(yi∗−A∗wi∗) ∈ S∗
}

and

hL
w(λ, y∗, w∗, v) =

⎛

⎜

⎝

〈w1∗, b〉 + v1 − f∗
1 (y1∗)

...
〈wk∗, b〉 + vk − f∗

k (yk∗)

⎞

⎟

⎠ .

The formulation of this dual problem can be further simplified.
When b = 0 (DV FL

w ) turns into
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(DV FL
w ) WMax

(λ,y∗,v)∈BL
w

hL
w(λ, y∗, v),

where

BL
w =

{

(λ, y∗, v) ∈ (Rk
+\{0}) ×

k
∏

i=1

dom f∗
i × R

k : λ = (λ1, . . . , λk)T ,

y∗ = (y1∗, . . . , yk∗), v = (v1, . . . , vk)T ,
k

∑

i=1

λivi = 0,

k
∑

i=1

λiy
i∗ ∈ A∗(C∗) + S∗

}

and

hL
w(λ, y∗, v) =

⎛

⎜

⎝

v1 − f∗
1 (y1∗)
...

vk − f∗
k (yk∗)

⎞

⎟

⎠ .

On the other hand, when b 	= 0, (DV FL
w ) can be equivalently rewritten as

(DV FL
w ) WMax

(λ,y∗,q∗)∈BL
w

hL
w(λ, y∗, q∗),

where

BL
w =

{

(λ, y∗, q∗) ∈ (Rk
+\{0}) ×

k
∏

i=1

dom f∗
i × (Z∗)k : λ = (λ1, . . . , λk)T ,

y∗ = (y1∗, . . . , yk∗), q∗ = (q1∗, . . . , qk∗),
k

∑

i=1

λiq
i∗ ∈ C∗,

k
∑

i=1

λi(yi∗ − A∗qi∗) ∈ S∗
}

and

hL
w(λ, y∗, q∗) =

⎛

⎜

⎝

〈q1∗, b〉 − f∗
1 (y1∗)

...
〈qk∗, b〉 − f∗

k (yk∗)

⎞

⎟

⎠ .

The vector dual problem (DV FCM
w ) turns in the special case treated in

this subsection into

(DV FLM
w ) WMax

(λ,y∗,z∗,v)∈BLM
w

hLM
w (λ, y∗, z∗, v),

where
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BLM
w =

{

(λ, y∗, z∗, v) ∈ (Rk
+\{0}) ×

k
∏

i=1

dom f∗
i × C∗ × R

k : λ=(λ1, . . . , λk)T ,

y∗ = (y1∗, . . . , yk∗), v = (v1, . . . , vk)T ,
k

∑

i=1

λivi = 0,

k
∑

i=1

λi(yi∗ − A∗z∗) ∈ S∗
}

and

hLM
w (λ, y∗, z∗, v) =

⎛

⎜

⎝

〈z∗, b〉 + v1 − f∗
1 (y1∗)

...
〈z∗, b〉 + vk − f∗

k (yk∗)

⎞

⎟

⎠

and when b = 0 it coincides with (DV FL
w ).

Remark 5.2.12. Weak duality for the primal problem (PV FL
w ) and its vector

dual (DV FL
w ) holds from the general case. To obtain strong and converse

duality for this pair of problems, one can consider the regularity condition

(RCV FL
w ) fi is continuous, i = 1, . . . , k, and b ∈ A(S) − int(C),

or one of the regularity conditions mentioned in Remark 5.2.8 adapted to this
particular context.

5.3 Comparisons between different duals to (PV F C)

In the following we investigate, like in subsection 4.3.3, inclusion relations
between the image sets of the feasible sets through the objective functions of
different vector duals to (PV FC). Besides (DV FCα) and (DV FCM ), given in
section 5.2, in chapter 4 we introduced several vector duals to (PV FC) from
which we recall (DV CF L), formulated in the framework of this chapter as

(DV FCF L) Max
(λ,y∗,z∗,v)∈BCF L

hCF L(λ, y∗, z∗, v),

where

BCF L =
{

(λ, y∗, z∗, v) ∈ int(Rk
+) × X∗ × C∗ × R

k : λ = (λ1, . . . , λk)T ,

v = (v1, . . . , vk)T ,
k

∑

i=1

λivi ≤ −
( k
∑

i=1

λifi

)∗
(y∗) − (z∗g)∗S(−y∗)

}

and
hCF L(λ, y∗, z∗, v) = v.
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By slightly modifying the formulation of (DV FCF L) we consider another vec-
tor dual to (PV FC) that looks like

(DV FC gF L) Max
(λ,y∗,z∗,v)∈BC gF L

hC gF L(λ, y∗, z∗, v),

where

BC gF L =
{

(λ, y∗, z∗, v) ∈ int(Rk
+) × (X∗)k × C∗ × R

k : λ = (λ1, . . . , λk)T ,

y∗ = (y1∗, . . . , yk∗), v = (v1, . . . , vk)T ,
k

∑

i=1

λivi ≤ −
k

∑

i=1

λif
∗
i (yi∗) − (z∗g)∗S

(

−
k

∑

j=1

λjy
j∗
)}

and
hC gF L(λ, y∗, z∗, v) = v.

We begin by comparing the image sets of the feasible sets through the
objective functions of the vector duals to (PV FC) introduced in this chapter,
(DV FCα), for α ∈ F , and (DV FCM ).

Theorem 5.3.1. Let α ∈ F be fixed. Then hCM (BCM ) ⊆ hCα(BCα).

Proof. Take an arbitrary element d = (d1, . . . , dk)T ∈ hCM (BCM ). Then there
is a feasible point (λ, y∗, z∗, t) ∈ BCM such that

di = −f∗
i (yi∗) − (z∗g)∗S

⎛

⎜

⎜

⎜

⎝

− 1
k
∑

j=1

λj

k
∑

j=1

λjy
j∗

⎞

⎟

⎟

⎟

⎠

+ ti, i = 1, . . . , k.

Take z̄i∗ := αi(λ)
(∑k

j=1 λj

)

z∗, i = 1, . . . , k, and denote z̄∗ :=
(

z̄1∗, . . . , z̄k∗).
Then

k
∑

i=1

λiz̄
i∗ =

k
∑

i=1

λiαi(λ)
( k
∑

j=1

λj

)

z∗ =
( k
∑

i=1

λi

)

z∗ ∈ C∗

and, for i = 1, . . . , k,

(z̄i∗g)∗S

(

− αi(λ)
k

∑

j=1

λjy
j∗
)

=

(

αi(λ)
k

∑

j=1

λj

)

(z∗g)∗S

⎛

⎜

⎜

⎜

⎝

− 1
k
∑

j=1

λj

k
∑

j=1

λjy
j∗

⎞

⎟

⎟

⎟

⎠

.

Consequently, −αi(λ)
∑k

j=1 λjy
j∗ ∈ dom(z̄i∗g)∗S for i = 1, . . . , k. For all i =

1, . . . , k, let
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t̄i := ti + (z̄i∗g)∗S

(

− αi(λ)
k

∑

j=1

λjy
j∗
)

− (z∗g)∗S

⎛

⎜

⎜

⎜

⎝

− 1
k
∑

j=1

λj

k
∑

j=1

λjy
j∗

⎞

⎟

⎟

⎟

⎠

.

We obtain immediately that t̄ := (t̄1, . . . , t̄k)T ∈ R
k and

∑k
i=1 λit̄i =

∑k
i=1 λiti = 0, which yields (λ, y∗, z̄∗, t̄) ∈ BCα . Moreover,

di = −f∗
i (yi∗) − (z̄i∗g)∗S

(

− αi(λ)
k

∑

j=1

λjy
j∗
)

+ t̄i ∀i = 1, . . . , k,

i.e. d = hCα(λ, y∗, z̄∗, t̄). Therefore, hCM (BCM ) ⊆ hCα(BCα). ��
With the following example (from [24, 36]) we show that the inclusion just
proven can sometimes be strict.

Example 5.3.1. Let be α ∈ F fixed, k = 2, X = S = R, Z = C = R
2, f1, f2 :

R → R, defined by f1 = f2 ≡ 0, and g : R → R
2, g(x) = (g1(x), g2(x))T ,

where g1, g2 : R → R, defined by

g1(x) =
{

1, if x < 0,
e−x, if x ≥ 0,

and g2(x) =
{

ex, if x < 0,
1, if x ≥ 0.

For z∗ = (z∗1 , z∗2), z∗1 = (1,−1)T , z∗2 = (−1, 1)T , we have

(z∗1g)(x) =
{

1 − ex, if x < 0,
e−x − 1, if x ≥ 0,

and (z∗2g)(x) =
{

−1 + ex, if x < 0,
1 − e−x, if x ≥ 0.

Taking y∗ = (y∗
1 , y∗

2)T = (0, 0)T , λ = (1, 1)T and t = (1/2,−1/2)T , we have
λ1z

∗
1+λ2z

∗
2 = (0, 0)T ∈ C∗ = {(0, 0)T }, λ1t1+λ2t2 = 0 and f∗

1 (0) = f∗
2 (0) = 0.

This means that

d =

⎛

⎝

− 1
2

− 3
2

⎞

⎠ =

⎛

⎝

−(z∗1g)∗(0) + t1

−(z∗2g)∗(0) + t2

⎞

⎠ = hCα(λ, y∗, z∗, t),

i.e. d ∈ hCα(BCα). Let us show now that d /∈ hCM (BCM ). If this were not true,
then there would exist an element (λ̄, ȳ∗, z̄∗, t̄) ∈ BCM such that

⎛

⎝

− 1
2

− 3
2

⎞

⎠ =

⎛

⎜

⎜

⎝

−f∗
1 (ȳ∗

1) − (z̄∗g)∗
(

− λ̄1ȳ∗
1+λ̄2ȳ∗

2
λ̄1+λ̄2

)

+ t̄1

−f∗
2 (ȳ∗

2) − (z̄∗g)∗
(

− λ̄1ȳ∗
1+λ̄2ȳ∗

2
λ̄1+λ̄2

)

+ t̄2

⎞

⎟

⎟

⎠

.

It follows that f∗
1 (ȳ∗

1), f∗
2 (ȳ∗

2) ∈ R, but, in order to happen this, we must have
ȳ∗
1 = ȳ∗

2 = 0, f∗
1 (ȳ∗

1) = f∗
2 (ȳ∗

2) = 0 and z̄∗ = 0, thus (z̄∗g)∗(0) = 0. These yield
t̄1 = −1/2 and t̄2 = −3/2. Consequently, λ̄1t̄1 + λ̄2t̄2 = −(λ̄1 + 3λ̄2)/2 < 0.
This contradicts λ̄1t̄1 + λ̄2t̄2 = 0, therefore d /∈ hCM (BCM ), i.e. the inclusion
proven in Theorem 5.3.1 may be strict.



5.3 Comparisons between different duals to (PV F C) 221

The next pair of vector duals to (PV FC) we deal with consists of (DV FCα)
and (DV FC gF L).

Theorem 5.3.2. Let α ∈ F be fixed. Then hCα(BCα) ⊆ hC gF L(BC gF L).

Proof. Let d = (d1, . . . , dk)T ∈ hCα(BCα). Then there exists (λ, y∗, z∗, t) ∈
BCα such that d = hCα(λ, y∗, z∗, t). Denote z̄∗ :=

∑k
i=1 λiz

i∗. We have z̄∗ ∈
C∗ and

k
∑

i=1

λidi = −
k

∑

i=1

λif
∗
i (yi∗) −

k
∑

i=1

λi(zi∗g)∗S

(

− αi(λ)
k

∑

j=1

λjy
j∗
)

+
k

∑

j=1

λjtj .

The Young-Fenchel inequality yields

−(zi∗g)∗S

(

− αi(λ)
k

∑

j=1

λjy
j∗
)

≤ (zi∗g)(x) +

〈

αi(λ)
k

∑

j=1

λjy
j∗, x

〉

for i = 1, . . . , k, and all x ∈ S. Consequently,

k
∑

i=1

λidi ≤ −
k

∑

i=1

λif
∗
i (yi∗) +

(( k
∑

i=1

λiz
i∗
)

g

)

(x) +
( k
∑

i=1

λiαi(λ)
)

〈

k
∑

i=1

λiy
i∗, x

〉

= −
k

∑

i=1

λif
∗
i (yi∗) + (z̄∗g)(x) +

〈

k
∑

i=1

λiy
i∗, x

〉

∀x ∈ S.

This yields

k
∑

i=1

λidi ≤ −
k

∑

i=1

λif
∗
i (yi∗) + inf

x∈S

{

(z̄∗g)(x) +
〈 k
∑

i=1

λiy
i∗, x

〉}

= −
k

∑

i=1

λif
∗
i (yi∗) − (z̄∗g)∗S

(

−
k

∑

i=1

λiy
i∗
)

,

i.e. (λ, y∗, z̄∗, d) ∈ BC gF L . Therefore d ∈ hC gF L(BC gF L) and, since d was arbi-
trarily chosen, the desired inclusion is proven. ��

With the following example we show that the inclusion just proven can be
strict in general.

Example 5.3.2. Fix an α ∈ F and take k = 2, X = S = R, Z = R
2, C = R

2
+,

f1, f2 : R → R, defined by f1 = f2 ≡ 0 and g : R → R
2, g(x) = (x+1,−x)T for

x ∈ R. For y∗ = (y∗
1 , y∗

2)T = (0, 0)T , z∗ = (1, 1)T ∈ C∗ = R
2
+, λ = (λ1, λ2)T ,

λ1 = λ2 = 1 and d = (d1, d2)T , d1 = d2 = −1, we have f∗
1 (y∗

1) = 0, f∗
2 (y∗

2) = 0
and (z∗g)∗

(

− λ1y
∗
1 − λ2y

∗
2

)

= −1, so

λ1d1 + λ2d2 = −2 < 1 = −f∗
1 (y∗

1) − f∗
2 (y∗

2) − (z∗g)∗
(

− λ1y
∗
1 − λ2y

∗
2

)

,
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which implies that d = (−1,−1)T ∈ hC gF L(BC gF L).
Assuming that d ∈ hCα(BCα) yields (λ̄, ȳ∗, z̄∗, t̄) ∈ BCα , with t̄ =

(t̄1, t̄2)T ∈ R
2, ȳ∗ = (ȳ∗

1 , ȳ∗
2) ∈ R

2 and z̄∗ = (z̄1∗, z̄2∗), z̄1∗, z̄2∗ ∈ R
2, such

that
⎛

⎝

−1

−1

⎞

⎠ =

⎛

⎝

−f∗
1 (ȳ∗

1) − (z̄1∗g)∗(−α1(λ̄)(λ̄1ȳ
∗
1 + λ̄2ȳ

∗
2)) + t̄1

−f∗
2 (ȳ∗

2) − (z̄2∗g)∗(−α2(λ̄)(λ̄1ȳ
∗
1 + λ̄2ȳ

∗
2)) + t̄2

⎞

⎠ .

Because f∗
1 (ȳ∗

1), f∗
2 (ȳ∗

2) ∈ R, we must have ȳ∗
1 = ȳ∗

2 = 0 and f∗
1 (ȳ∗

1) = f∗
2 (ȳ∗

2) =
0. This yields −1 = −(z̄1∗g)∗(0) + t̄1 = −(z̄2∗g)∗(0) + t̄2. Denoting z̄i∗ =
(z̄i∗

1 , z̄i∗
2 )T , i = 1, 2, we obtain (z̄i∗g)∗(0) = −z̄i∗

1 , i = 1, 2. From (λ̄, ȳ∗, z̄∗, t̄) ∈
BCα one has λ̄1t̄1 + λ̄2t̄2 = 0 and λ̄1z̄

1∗ + λ̄2z̄
2∗ � 0, the latter implying

λ̄1z̄
1∗
1 + λ̄2z̄

2∗
1 ≥ 0. We get

⎛

⎝

−1

−1

⎞

⎠ =

⎛

⎝

z̄1∗
1 + t̄1

z̄2∗
1 + t̄2

⎞

⎠ ,

which yields −λ̄1 − λ̄2 = λ̄1z̄
1∗
1 + λ̄2z̄

2∗
1 . The sum in the left-hand side is

negative, while in the right-hand side there is, as proven above, a nonnegative
term. Therefore we reached a contradiction and, consequently, d /∈ hCα(BCα),
thus the inclusion proven in Theorem 5.3.2 is strict in this example.

Using eventually Proposition 2.3.2(e), (j) one can easily prove the next
inclusion. It is followed by an example which shows that it can be strict in
general.

Theorem 5.3.3. There is hC gF L(BC gF L) ⊆ hCF L(BCF L).

Example 5.3.3. Take X = S = Z = R, C = R+, g : R → R, defined by
g(x) = x for x ∈ R and f1, f2 : R → R, defined by

f1(x) =

⎧

⎨

⎩

x ln x − x, if x > 0,
0, if x = 0,
+∞, otherwise,

and f2(x) =

⎧

⎨

⎩

x2

2 , if x ≤ 0,

+∞, otherwise.

The conjugates of f1 and f2 are (see Example 2.3.1) f∗
1 , f∗

2 : R → R, defined
by f∗

1 (x∗) = ex∗
, for x∗ ∈ R and, respectively,

f∗
2 (x∗) =

{

x∗2

2 , if x∗ ≤ 0,
0, if x∗ > 0,

while (λ1f1 + λ2f2)∗(x∗) = 0 for λ1, λ2 > 0 and x∗ ∈ R.
For λ = (λ1, λ2)T , λ1 = λ2 = 1, v = (v1, v2)T , v1 = v2 = 0, z∗ = 1 and

y∗ = −1, we have λ1v1 + λ2v2 = 0 = −(λ1f1 + λ2f2)∗(−1) − (z∗g)∗(1), thus
v ∈ hCF L(BCF L).
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Assuming that v ∈ hC gF L(BC gF L), there exist some λ̄ = (λ̄1, λ̄2)T > 0,
ȳ∗ = (ȳ1∗, ȳ2∗)T ∈ R

2, z̄∗ ∈ R+ and v̄ = (v̄1, v̄2)T ∈ R
2 such that

λ̄1v̄1 + λ̄2v̄2 = 0 ≤ −λ̄1f
∗
1 (ȳ1∗)− λ̄2f

∗
2 (ȳ2∗)− (z̄∗g)∗

(

− λ̄1ȳ
1∗− λ̄2ȳ

2∗). (5.3)

As (z̄∗g)∗ = δ{z̄∗}, we get λ̄1ȳ
1∗+ λ̄2ȳ

2∗ = −z̄∗ and (z̄∗g)∗
(

− λ̄1ȳ
1∗− λ̄2ȳ

2∗) =
0. On the other hand, λ̄1f

∗
1 (ȳ1∗) = λ̄1e

ȳ1∗
> 0 and λ̄2f

∗
2 (ȳ2∗) ≥ 0 for ȳ2∗ ∈ R,

thus the term on the right-hand side of (5.3) is negative and we reached a
contradiction. Consequently, d /∈ hC gF L(BC gF L).

Remark 5.3.1. The inclusions proven in Theorem 5.3.1, Theorem 5.3.2 and
Theorem 5.3.3 hold in the most general case. Moreover, as can be seen in
Example 5.3.1, Example 5.3.2 and Example 5.3.3 these inclusions can be strict.
Consequently, for all α ∈ F there is

hCM (BCM ) � hCα(BCα) � hC gF L(BC gF L) � hCF L(BCF L).

Further we show for the duals dealt with in this subsection that even
if the images of their feasible sets through their objective vector functions
satisfy sometimes strict inclusions, the maximal elements of three of these
sets coincide and, under a weak regularity condition, also the fourth set is
equal to them.

Theorem 5.3.4. Let α ∈ F be fixed. Then there is

Max
(

hCM (BCM ), Rk
+

)

= Max
(

hCα(BCα), Rk
+

)

= Max
(

hC gF L(BC gF L), Rk
+

)

.

Proof. We show first that Max
(

hCM (BCM ), Rk
+

)

⊆ Max
(

hC gF L (BC gF L), Rk
+

)

.
Let be d ∈ Max

(

hCM (BCM ), Rk
+

)

. Then d ∈ hCM (BCM ), thus, by Theorem
5.3.1 and Theorem 5.3.2, d ∈ hC gF L(BC gF L), too. This means that there is
an element (λ, y∗, z∗, v) ∈ BC gF L such that v = hC gF L(λ, y∗, z∗, v) = d. Sup-
pose that this is not a maximal element in hC gF L(BC gF L). Then there exists
(λ̄, ȳ∗, z̄∗, v̄) ∈ BC gF L such that d ≤ v̄. Denote λ̄ = (λ̄1, . . . , λ̄k)T ∈ int(Rk

+)
and ȳ∗ = (ȳ1∗, . . . , ȳk∗) ∈

∏k
i=1 dom f∗

i . Then

k
∑

i=1

λ̄idi <

k
∑

i=1

λ̄iv̄i ≤ −
k

∑

i=1

λ̄if
∗
i (ȳi∗) − (z̄∗g)∗S

(

−
k

∑

i=1

λ̄iȳ
i∗
)

. (5.4)

As this cannot happen if (z̄∗g)∗S(−
∑k

i=1 λ̄iȳ
i∗) = +∞, it follows −

∑k
i=1 λ̄iȳ

i∗

∈ dom(z̄∗g)∗S . Without losing the generality we can assume the second inequal-
ity in (5.4) fulfilled as equality.

Considering z̃∗ :=
(

1/(
∑k

i=1 λ̄i)
)

z̄∗ ∈ C∗ and, for i = 1, . . . , k,

t̄i := f∗
i (ȳi∗) + (z̃∗g)∗S

⎛

⎜

⎜

⎜

⎝

− 1
k
∑

j=1

λ̄j

k
∑

j=1

λ̄j ȳ
j∗

⎞

⎟

⎟

⎟

⎠

+ v̄i
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= f∗
i (ȳi∗) +

1
k
∑

j=1

λ̄j

(z̄∗g)∗S

(

−
k

∑

j=1

λ̄j ȳ
j∗
)

+ v̄i ∈ R,

we obtain an element (λ̄, ȳ∗, z̃∗, t̄) satisfying z̃∗ ∈ C∗, λ̄ ∈ int(Rk
+) and

k
∑

i=1

λ̄it̄i =
k

∑

i=1

λ̄iv̄i +
k

∑

i=1

λ̄if
∗
i (ȳi∗) + (z̄∗g)∗S

(

−
k

∑

j=1

λ̄j ȳ
j∗
)

= 0.

Therefore (λ̄, ȳ∗, z̃∗, t̄) ∈ hCM (BCM ) and hCM (λ̄, ȳ∗, z̃∗, t̄) = v̄. As this contra-
dicts the maximality of d in hCM (BCM ), our supposition is false, consequently
the maximal elements of hCM (BCM ) are maximal in hC gF L(BC gF L), too.

To prove that this holds conversely, too, let v be maximal in hC gF L(BC gF L).
Then there are some λ ∈ int(Rk

+), y∗ = (y1∗, . . . , yk∗) ∈ (X∗)k and
z∗ ∈ C∗ such that (λ, y∗, z∗, v) ∈ BC gF L , i.e.

∑k
i=1 λivi = −

∑k
i=1 λif

∗
i (yi∗) −

(z∗g)∗S(−
∑k

i=1 λiy
i∗). Thus −

∑k
i=1 λiy

i∗ ∈ dom(z∗g)∗S . Taking z̄∗ =
(

1/

(
∑k

i=1 λi)
)

z∗ ∈ C∗ and t = (t1, . . . , tk)T where for each i = 1, . . . , k,

ti := f∗
i (yi∗) + (z̄∗g)∗S

⎛

⎜

⎜

⎜

⎝

− 1
k
∑

j=1

λj

k
∑

j=1

λjy
j∗

⎞

⎟

⎟

⎟

⎠

+ vi ∈ R,

we get
∑k

i=1 λiti = 0, which means that (λ, y∗, z̄∗, t) ∈ BCM . Therefore v =
hCM (λ, y∗, z̄∗, t) ∈ hCM (BCM ). Assuming that v is not maximal in hCM (BCM ),
we obtain the existence of some d̄ ∈ hCM (BCM ) such that v ≤ d̄. Theorem
5.3.1 yields then d̄ ∈ hC gF L(BC gF L), but, since v ≤ d̄, the maximality of v in
hC gF L(BC gF L) is contradicted. Therefore, the maximal elements of hC gF L(BC gF L)
are maximal in hCM (BCM ), too. Consequently,

Max
(

hCM (BCM ), Rk
+

)

= Max
(

hC gF L(BC gF L), Rk
+

)

.

Take now d ∈ Max
(

hCα(BCα), Rk
+

)

. Then d ∈ hCα(BCα) and by The-
orem 5.3.2 it follows d ∈ hC gF L(BC gF L). Suppose that d is not maximal in
hC gF L(BC gF L). Then there exists an element (λ̄, ȳ∗, z̄∗, v̄) ∈ BC gF L such that
d ≤ v̄ and

k
∑

i=1

λ̄iv̄i = −
k

∑

i=1

λ̄if
∗(ȳi∗) − (z̄∗g)∗S

(

−
k

∑

j=1

λ̄j ȳ
j∗
)

,

where ȳ∗ = (ȳ1∗, . . . , ȳk∗), v̄ = (v̄1, . . . , v̄k)T and λ̄ = (λ̄1, . . . , λ̄k)T . Conse-
quently, −

∑k
j=1 λ̄j ȳ

j∗ ∈ dom(z̄∗g)∗S .
Taking z̃∗ := (z̃1∗, . . . , z̃k∗) where for each i = 1, . . . , k, z̃i∗ := αi(λ̄)z̄∗,
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t̄i :=f∗
i (ȳi∗) + (z̃i∗g)∗S

(

− αi(λ̄)
k

∑

j=1

λ̄j ȳ
j∗
)

+ v̄i

=f∗
i (ȳi∗) + αi(λ̄)(z̄∗g)∗S

(

−
k

∑

j=1

λ̄j ȳ
j∗
)

+ v̄i,

for i = 1, ..., k, and t̄ := (t̄1, ..., t̄k)T ∈ R
k, we obtain an element (λ̄, ȳ∗, z̃∗, t̄) ∈

BCα for which hCα(λ̄, ȳ∗, z̃∗, t̄) = v̄ ≥ d. This contradicts the maximality of
d in hCα(BCα), therefore our supposition fails and consequently d is maximal
in hC gF L(BC gF L), too.

Take now v to be maximal in hC gF L(BC gF L). Then it is maximal in
hCM (BCM ), too. By Theorem 5.3.1 we obtain then v ∈ hCα(BCα). Assum-
ing it to be not maximal in the latter set, there should be a d ∈ hCα(BCα)
such that v ≤ d. By Theorem 5.3.2 it follows d ∈ hC gF L(BC gF L), which contra-
dicts the maximality of v in this set. Consequently, the maximal elements of
hC gF L(BC gF L) are maximal in hCα(BCα), too, and we are done. ��

Theorem 5.3.5. If one of the regularity conditions (RCΣ
i ), i ∈ {1, 2, 3}, is

fulfilled, then Max
(

hC gF L(BC gF L), Rk
+

)

= Max
(

hCF L(BCF L), Rk
+

)

.

Proof. Using Theorem 3.5.8(a) one can immediately show that under the
fulfillment of any of the regularity conditions (RCΣ

i ), i ∈ {1, 2, 3}, the vector
duals in discussion coincide. ��

Combining Theorem 5.3.4 and Theorem 5.3.5, we see that under a weak
regularity condition the maximal elements of the vector dual problems con-
sidered in this section coincide.

Theorem 5.3.6. Let α ∈ F be fixed. If one of the regularity conditions
(RCΣ

i ), i ∈ {1, 2, 3}, is fulfilled, then

Max
(

hCM (BCM ), Rk
+

)

= Max
(

hCα(BCα), Rk
+

)

=

Max
(

hC gF L(BC gF L), Rk
+

)

= Max
(

hCF L(BCF L), Rk
+

)

.

Remark 5.3.2. Recall that in chapter 4 besides (DV FCF L) several vector duals
to (PV C) were introduced, and in (4.18) and Proposition 4.3.16 other inclu-
sions similar to the ones in Remark 5.3.1 were given. Combining Theorem
5.3.6 and Theorem 4.3.15 one gets that under (RCV FC) (see also Remark
4.3.9(b)) the maximal elements of all the sets mentioned in (4.18) and Remark
5.3.1 coincide.

Remark 5.3.3. The converse duality statement in Theorem 5.2.7 can be proven
alternatively by making use of Theorem 5.3.6 and Theorem 4.3.7.
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Similar considerations can be made when dealing with weakly efficient
solutions, too. For the remainder of this section take the functions fi, i =
1, . . . , k, with full domains. The following statements are given without proofs,
since these are similar to the ones of the corresponding statements concerning
efficient solutions. Recall the Fenchel-Lagrange type vector dual with respect
to weakly efficient solutions introduced in chapter 4

(DV FCF L
w ) WMax

(λ,y∗,z∗,v)∈BCF L
w

hCF L
w (λ, y∗, z∗, v),

where

BCF L
w =

{

(λ, y∗, z∗, v) ∈ (Rk
+\{0}) × X∗ × C∗ × R

k : λ = (λ1, . . . , λk)T ,

v = (v1, . . . , vk)T ,
k

∑

i=1

λivi ≤ −
( k
∑

i=1

λifi

)∗
(y∗) − (z∗g)∗S(−y∗)

}

and
hCF L

w (λ, y∗, z∗, v) = v.

Analogously to the vector dual introduced in the beginning of the section, con-
sider the following dual problem to (PV FC

w ) with respect to weakly efficient
solutions

(DV F
C gF L
w ) WMax

(λ,y∗,z∗,v)∈BC gF L
w

h
C gF L
w (λ, y∗, z∗, v),

where

BC gF L
w =

{

(λ, y∗, z∗, v) ∈ (Rk
+\{0}) × (X∗)k × C∗ × R

k : λ = (λ1, . . . , λk)T ,

y∗ = (y1∗, . . . , yk∗), v = (v1, . . . , vk)T ,
k

∑

i=1

λivi ≤ −
k

∑

i=1

λif
∗
i (yi∗) − (z∗g)∗S

(

−
k

∑

i=1

λiy
i∗
)}

and
h

C gF L
w (λ, y∗, z∗, v) = v.

First we compare the images of the feasible sets through their objective
functions of the vector duals with respect to weakly efficient solutions dealt
with so far.

Theorem 5.3.7. Let β ∈ Fw be fixed. Then there is

hCM
w (BCM

w ) ⊆ h
Cβ
w (BCβ

w ) ⊆ h
C gF L
w (BC gF L

w ) ⊆ hCF L
w (BCF L

w ).

Next we obtain that the weakly maximal elements of the first three sets men-
tioned in Theorem 5.3.7 coincide.
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Theorem 5.3.8. Let β ∈ Fw be fixed. Then there is

WMax
(

hCM
w (BCM

w ), Rk
+

)

=WMax
(

h
Cβ
w (BCβ

w ), Rk
+

)

=WMax
(

h
C gF L
w (BC gF L

w ), Rk
+

)

.

Under a weak regularity condition, the weakly maximal elements of these
sets coincide with the weakly efficient solutions to (DV FCF L

w ), too.

Theorem 5.3.9. Let β ∈ Fw be fixed. If k−1 of the functions fi, i = 1, . . . , k,
are continuous, one has

WMax
(

hCM
w (BCM

w ), Rk
+

)

= WMax
(

h
Cβ
w (BCβ

w ), Rk
+

)

=

WMax
(

h
C gF L
w (BC gF L

w ), Rk
+

)

= WMax
(

hCF L
w (BCF L

w ), Rk
+

)

.

Remark 5.3.4. From Remark 4.3.14 and Theorem 5.3.9 we deduce that under
the fulfillment of (RCV FC

w ) (see also Remark 4.3.9(b)) the weakly maximal
elements of all the sets mentioned in Theorem 5.3.7 and Remark 4.3.14 coin-
cide.

5.4 Linear vector duality for problems with finite
dimensional image spaces

In this section we deal with vector duality for linear vector optimization prob-
lems with objective functions mapping into finite dimensional spaces, contin-
uing in this framework the work from section 4.5. There, some vector duals to
a primal linear vector optimization problem (PV L) were obtained by partic-
ularizing the vector dual problems introduced in sections 4.2 and 4.3. In the
following we see what happens to the duals introduced in section 5.2 in this
particular instance and we compare all these mentioned duals.

5.4.1 Duality with respect to properly efficient solutions

In subsection 5.2.3 we have already considered a primal vector optimiza-
tion problem with both geometric and linear cone inequality constraints.
Maintaining the framework introduced in section 5.2, we go now further
by taking the objective function to be linear and continuous, namely for
L = (L1, . . . , Lk)T : X → R

k we consider the primal vector optimization
problem

(PV FL) Min
x∈AL

Lx.

AL = {x ∈ S : Ax − b ∈ C}

First we assign to it the vector duals which are particular instances of (DV FL)
and (DV FLM ), respectively. Noting that (Li)∗ = δ{Li} for i = 1, . . . , k, we
see that the variable y∗ = (y1∗, . . . , yk∗) ∈

∏k
i=1 dom f∗

i can be eliminated
and these vector duals are
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(DV FL) Max
(λ,z∗,v)∈BL

hL(λ, z∗, v),

where

BL =
{

(λ, z∗, v) ∈ int(Rk
+) × (Z∗)k × R

k : λ = (λ1, . . . , λk)T ,

z∗ = (z1∗, . . . , zk∗), v = (v1, . . . , vk)T ,
k

∑

i=1

λiz
i∗∈C∗,

k
∑

i=1

λivi = 0,

k
∑

i=1

λi(Li − A∗zi∗)∈S∗
}

and

hL(λ, z∗, v) =

⎛

⎜

⎝

〈z1∗, b〉 + v1

...
〈zk∗, b〉 + vk

⎞

⎟

⎠

and, respectively,

(DV FLM ) Max
(λ,z∗,v)∈BLM

hLM (λ, z∗, v),

where

BLM=
{

(λ, z∗, v) ∈ int(Rk
+) × C∗ × R

k : λ=(λ1, . . . , λk)T , v=(v1, . . . , vk)T ,

k
∑

i=1

λivi = 0,

k
∑

i=1

λi(Li − A∗z∗) ∈ S∗
}

and

hLM (λ, z∗, v) =

⎛

⎜

⎝

〈z∗, b〉 + v1

...
〈z∗, b〉 + vk

⎞

⎟

⎠ .

The latter can be rewritten also as

(DV FLM ) Max
(λ,z∗,v)∈BLM

hLM (λ, z∗, v),

where

BLM =
{

(λ, z∗, v) ∈ int(Rk
+) × C∗ × R

k : λ = (λ1, . . . , λk)T ,

v = (v1, . . . , vk)T ,
k

∑

i=1

λivi = 0,
k

∑

i=1

λiLi − A∗z∗ ∈ S∗
}

and
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hLM (λ, z∗, v) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
kP

i=1
λi

〈z∗, b〉 + v1

...
1

kP

i=1
λi

〈z∗, b〉 + vk

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Like in subsection 5.2.3, to simplify the formulation of (DV FL) we consider
two cases.

When b = 0 we have already noticed that (DV FL) and (DV FLM ) coin-
cide, having the following formulation

(DV FL) Max
(λ,v)∈BL

hL(λ, v),

where

BL =
{

(λ, v) ∈ int(Rk
+) × R

k : λ = (λ1, . . . , λk)T , v = (v1, . . . , vk)T ,

k
∑

i=1

λivi = 0,

k
∑

i=1

λiLi ∈ A∗(C∗) + S∗
}

and
hL(λ, v) = v.

In the other case, namely when b 	= 0, (DV FL) becomes

(DV FL) Max
(λ,q∗)∈BL

hL(λ, q∗),

where

BL =
{

(λ, q∗) ∈ int(Rk
+) × (Z∗)k : λ = (λ1, . . . , λk)T , q∗ = (q1∗, . . . , qk∗),

k
∑

i=1

λiq
i∗ ∈ C∗,

k
∑

i=1

λi(Li − A∗qi∗) ∈ S∗
}

and

hL(λ, q∗) =

⎛

⎜

⎝

〈q1∗, b〉
...

〈qk∗, b〉

⎞

⎟

⎠ .

Comparing (DV FL) in case b 	= 0 with the vector dual problem introduced
in [101], denoted in section 4.5 by (DV FLJ ), one can see that these two vector
dual problems coincide.

The weak, strong and converse duality theorems for the primal-dual vector
pairs (PV FL) − (DV FLM ) and (PV FL) − (DV FL), respectively, follow as
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particular instances of the corresponding results given in subsection 5.2.1 (see
also Remark 5.2.10).

Now let us compare the images of the feasible sets through their objective
functions of these duals and the maximal elements of these sets with the ones
of the other duals assigned to (PV FL) in subsection 4.5.1. Some inclusion
relations concerning these image sets were already proven in more general
contexts. In the following we show other inclusions.

Proposition 5.4.1. One has hLJ (BLJ ) ⊆ hLM (BLM ).

Proof. Let d ∈ hLJ (BLJ ), i.e. there are some λ = (λ1, . . . , λk)T ∈ int(Rk
+)

and U = (U1, . . . , Uk)T ∈ L(Z, Rk) such that (λ,U) ∈ BLJ and d =
(d1, . . . , dk)T = Ub. Denote z∗ :=

∑k
i=1 λiUi and

v := Ub − 1
k
∑

i=1

λi

⎛

⎜

⎝

〈z∗, b〉
...

〈z∗, b〉

⎞

⎟

⎠ .

Thus
∑k

i=1 λiLi − A∗z∗ =
∑k

i=1 λi(Li − A∗Ui) ∈ S∗ and di = Uib =
(1/

∑k
j=1 λj)〈z∗, b〉 + vi for i = 1, . . . , k. Further have

k
∑

i=1

λivi =
k

∑

i=1

λi

⎛

⎜

⎜

⎜

⎝

Uib −
〈z∗, b〉

k
∑

j=1

λj

⎞

⎟

⎟

⎟

⎠

= 〈z∗, b〉 − 〈z∗, b〉 = 0,

which yields d ∈ hLM (BLM ). ��

Remark 5.4.1. Regarding the vector duals to (PV FL) just mentioned, using
Theorem 5.3.1 and Proposition 5.4.1 one can see that in general it holds

hLJ (BLJ ) ⊆ hLM (BLM ) ⊆ hL(BL).

In case b 	= 0, via the observation following the last formulation of (DV FL),
we obtain that there is

hLJ (BLJ ) = hLM (BLM ) = hL(BL),

while in case b = 0 one has

hLJ (BLJ ) ⊆ hLM (BLM ) = hL(BL).

Remark 5.4.2. Given the results and considerations from above, we have the
following scheme involving the images of the feasible sets through their ob-
jective functions of the linear vector duals with respect to properly efficient
solutions assigned to (PV FL) in both chapter 4 and chapter 5



5.4 Linear vector duality for problems with finite dimensional image spaces 231

hLJ (BLJ ) ⊆ hLM (BLM ) = hL(BL) ⊆ hLL(BLL) ⊆ hLN (BLN )
hLP (BLP ).

In chapter 4 and chapter 5 there were introduced other vector duals, too, but
(DV FCF L) and (DV FC gF L) coincide in this particular case with (DV CL) and
(DV CF ) turns out to be exactly (DV CP ), thus they will be not mentioned
further in this chapter, as the framework becomes more particular.

In more specialized settings some of the inclusions given in this scheme
become equalities as follows.

(a) In case b 	= 0, the scheme from above becomes, via Remark 5.4.1,

hLJ (BLJ ) = hLM (BLM ) = hL(BL) ⊆ hLL(BLL) ⊆ hLN (BLN )
hLP (BLP ).

(b) Provided the fulfillment of any of the regularity conditions mentioned in
Remark 4.5.1, the scheme turns into

hLJ (BLJ )⊆hLM (BLM )=hL(BL)⊆hLL(BLL)=hLP (BLP )⊆hLN (BLN ).

Remark 5.4.3. Since the regularity conditions required in Theorem 5.3.6 are
all automatically fulfilled in this case, it follows that the sets of maximal
elements of hLM (BLM ) and hL(BL) coincide with the ones of hLL(BLL). Thus
we have the following scheme concerning the maximal elements of the sets
considered in Remark 5.4.2

Max
(

hLJ (BLJ ), Rk
+

)

⊆ Max
(

hLM (BLM ), Rk
+

)

= Max
(

hL(BL), Rk
+

)

= Max
(

hLL(BLL), Rk
+

)

⊆ Max
(

hLN (BLN ), Rk
+

)

.

In more particular frameworks some of the inclusions given in this scheme
become equalities, as follows.

(a) When b 	= 0 the scheme becomes (see also Theorem 4.5.2)

Max
(

hLJ (BLJ ), Rk
+

)

= Max
(

hLM (BLM ), Rk
+

)

= Max
(

hL(BL), Rk
+

)

= Max
(

hLL(BLL), Rk
+

)

⊆ Max
(

hLN (BLN ), Rk
+

)

.

(b) If every efficient solution to (PV FL) is also properly efficient the scheme
becomes (cf. Theorem 4.3.17)

Max
(

hLJ (BLJ ), Rk
+

)

⊆ Max
(

hLM (BLM ), Rk
+

)

= Max
(

hL(BL), Rk
+

)

= Max
(

hLL(BLL), Rk
+

)

= Max
(

hLN (BLN ), Rk
+

)

.

(c) Provided the fulfillment of one of the regularity conditions mentioned in
Remark 4.5.1 the scheme can be enriched as follows

Max
(

hLJ (BLJ ), Rk
+

)

⊆ Max
(

hLM (BLM ), Rk
+

)

= Max
(

hL(BL), Rk
+

)

=

Max
(

hLL(BLL), Rk
+

)

= Max
(

hLP (BLP ), Rk
+

)

⊆ Max
(

hLN (BLN ), Rk
+

)

.

Note also that in general Max
(

hLL(BLL), Rk
+

)

is not a subset of Max
(

hLP

(BLP ), Rk
+

)

even if we have hLL(BLL) ⊆ hLP (BLP ).
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5.4.2 Duality with respect to weakly efficient solutions

Parallelly to subsection 5.4.1 where the vector optimization problems were
considered with respect to efficient and properly efficient solutions, we work
with weakly efficient ones, too. Consider the framework from the beginning
of subsection 5.4.1 and the primal vector optimization problem with respect
to weakly efficient solutions

(PV FL
w ) WMin

x∈AL
Lx.

AL = {x ∈ S : Ax − b ∈ C}

As L takes values in R
k, we are in the framework in which the investigations

involving weakly efficient solutions are carried out in this chapter. First we
assign to (PV FL

w ) the vector duals which are particular instances of (DV FL
w )

and (DV FLM
w ), respectively. They are

(DV FL
w ) WMax

(λ,z∗,v)∈BL
w

hL
w(λ, z∗, v),

where

BL
w =

{

(λ, z∗, v) ∈ (Rk
+\{0}) × (Z∗)k × R

k : λ = (λ1, . . . , λk)T ,

v = (v1, . . . , vk)T , z∗ = (z1∗, . . . , zk∗),
k

∑

i=1

λivi = 0,

k
∑

i=1

λiz
i∗ ∈ C∗,

k
∑

i=1

λi(Li − A∗zi∗) ∈ S∗
}

and

hL
w(λ, z∗, v) =

⎛

⎜

⎝

〈z1∗, b〉 + v1

...
〈zk∗, b〉 + vk

⎞

⎟

⎠ ,

and, respectively (see the reformulation of (DV FLM ) from subsection 5.4.1),

(DV FLM
w ) WMax

(λ,z∗,v)∈BLM
w

hLM
w (λ, z∗, v),

where

BLM
w =

{

(λ, z∗, v) ∈ (Rk
+\{0}) × C∗ × R

k : λ = (λ1, . . . , λk)T ,

v = (v1, . . . , vk)T ,

k
∑

i=1

λivi = 0,

k
∑

i=1

λiLi − A∗z∗ ∈ S∗
}

and
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hLM
w (λ, z∗, v) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
kP

i=1
λi

〈z∗, b〉 + v1

...
1

kP

i=1
λi

〈z∗, b〉 + vk

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Note that we have hL(BL) ⊆ hL
w(BL

w) and hLM (BLM ) ⊆ hLM
w (BLM

w ).
Like in subsection 5.2.3, to simplify the formulation of (DV FL

w ) we consider
two cases. When b = 0 we get

(DV FL
w ) WMax

(λ,v)∈BL
w

hL
w(λ, v),

where

BL
w =

{

(λ, v) ∈ (Rk
+\{0}) × R

k : λ = (λ1, . . . , λk)T , v = (v1, . . . , vk)T ,

k
∑

i=1

λivi = 0,

k
∑

i=1

λiLi ∈ A∗(C∗) + S∗
}

and
hL

w(λ, v) = v,

and this coincides with (DV FLM
w ), while in case b 	= 0, (DV FL

w ) becomes

(DV FL
w ) WMax

(λ,q∗)∈BL
w

hL
w(λ, q∗),

where

BL
w =

{

(λ, q∗) ∈ (Rk
+\{0}) × (Z∗)k : λ = (λ1, . . . , λk)T , q∗ = (q1∗, . . . , qk∗),

k
∑

i=1

λiq
i∗ ∈ C∗,

k
∑

i=1

λi(Li − A∗qi∗) ∈ S∗
}

,

and

hL
w(λ, q∗) =

⎛

⎜

⎝

〈q1∗, b〉
...

〈qk∗, b〉

⎞

⎟

⎠ .

Analogously to the similar conjugate vector dual obtained in the considered
framework with respect to properly efficient solutions, (DV FL

w ) turns out to
coincide, when b 	= 0, with the vector dual (DV LJ

w ) from subsection 4.5.2.
The weak, strong and converse duality theorems for the primal-dual vector

pairs (PV FL
w ) − (DV FLM

w ) and (PV FL
w ) − (DV FL

w ), respectively, follow as
particular instances of the corresponding results given in subsection 5.2.2 (see
also Remark 5.2.12).
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Now let us compare the images of the feasible sets through their objective
functions of these duals and the weakly maximal elements of these sets with
the ones of the other duals assigned to (PV FL

w ) in sections 4.2 and 4.3.
Some inclusion relations concerning these image sets were already proven

in more general contexts. In the following we show another inclusion, whose
proof is omitted being analogous to the one of Proposition 5.4.1, followed by
the general schemes involving the image sets of all the duals in discussion.

Proposition 5.4.2. One has hLJ
w (BLJ

w ) ⊆ hLM
w (BLM

w ).

Remark 5.4.4. Like in subsection 5.4.1, we give a scheme involving the images
of the feasible sets through their objective functions of the vector duals with
respect to weakly efficient solutions assigned so far to (PV FL

w )

hLJ
w (BLJ

w ) ⊆ hLM
w (BLM

w ) = hL
w(BL

w) ⊆ hLL
w (BLL

w ) = hLN
w (BLN

w ) ⊆ hLP
w (BLP

w ).

In chapter 4 and chapter 5 there were introduced other vector duals, too,
like (DV FCF L

w ) and (DV F
C gF L
w ), which coincide in this particular case with

(DV CL
w ), and (DV CF

w ) which is nothing but (DV CP
w ), thus they will be not

mentioned further in this chapter, as the framework becomes more particular.
In more specialized settings some of the inclusions given in this scheme

become equalities, as follows.

(a) In case b 	= 0 this scheme turns into

hLJ
w (BLJ

w )=hLM
w (BLM

w )=hL
w(BL

w)⊆hLL
w (BLL

w )=hLN
w (BLN

w )⊆hLP
w (BLP

w ).

(b) Under one of the regularity conditions mentioned in Remark 4.5.1, the
scheme becomes

hLJ
w (BLJ

w )⊆hLM
w (BLM

w )=hL
w(BL

w)⊆hLL
w (BLL

w )=hLN
w (BLN

w )=hLP
w (BLP

w ).

Remark 5.4.5. Since the regularity condition required in Theorem 5.3.9 is au-
tomatically fulfilled in this particular case, it follows that concerning the
weakly maximal elements of the sets mentioned in Remark 5.4.4 we have

WMax
(

hLJ
w (BLJ

w ), Rk
+

)

⊆ WMax
(

hLM
w (BLM

w ), Rk
+

)

= WMax
(

hL
w(BL

w), Rk
+

)

= WMax
(

hLL
w (BLL

w ), Rk
+

)

= WMax
(

hLN
w (BLN

w ), Rk
+

)

.

In more particular frameworks this scheme can be developed as follows.

(a) In case b 	= 0 this scheme turns into

WMax
(

hLJ
w (BLJ

w ), Rk
+

)

=WMax
(

hLM
w (BLM

w ), Rk
+

)

=WMax
(

hL
w(BL

w), Rk
+

)

= WMax
(

hLL
w (BLL

w ), Rk
+

)

= WMax
(

hLN
w (BLN

w ), Rk
+

)

.
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(b) Under one of the regularity conditions mentioned in Remark 4.5.1, the
scheme becomes

WMax
(

hLJ
w (BLJ

w ), Rk
+

)

⊆ WMax
(

hLM
w (BLM

w ), Rk
+

)

=

WMax
(

hL
w(BL

w), Rk
+

)

= WMax
(

hLL
w (BLL

w ), Rk
+

)

=

WMax
(

hLN
w (BLN

w ), Rk
+

)

= WMax
(

hLP
w (BLP

w ), Rk
+

)

.

Note also that in general WMax
(

hLL
w (BLL

w ), Rk
+

)

is not a subset of WMax
(

hLP
w

(BLP
w ), Rk

+

)

even if we have hLL
w (BLL

w ) ⊆ hLP
w (BLP

w ).

5.5 Classical linear vector duality in finite dimensional
spaces

The primal problem dealt with in the previous section generalizes the classical
linear vector optimization problem considered in the literature and treated
further. In the following we see what happens to the duals considered so far
by us when the primal is the classical linear vector optimization problem in
finite dimensional spaces and we recall some of the classical duals from the
literature on linear vector duality. Comparing the image sets of the feasible
sets through the objective functions of the vector duals and then their subsets
of (weakly) maximal elements allows us to give an overview over the linear
vector duality concepts considered so far in the literature.

5.5.1 Duality with respect to efficient solutions

To deal with the classical linear vector duality in finite dimensional spaces,
let the matrices A ∈ R

m×n and L ∈ R
k×n and the vector b ∈ R

m be such
that b ∈ A(Rn

+). We consider the primal linear vector optimization problem
treated first by Isermann in [97]

(PV L) Min
x∈AL

Lx.

AL = {x ∈ R
n
+ : Ax = b}

This primal linear vector problem is actually a special case of (PV FL) con-
sidered in section 5.4 (or section 4.5) for X = R

n, C = {0} and S = R
n
+ and,

A, b and L as introduced above.
An important result regarding the solutions to (PV L) in the case treated

in this subsection was given in [98] and in a slightly simplified presentation
in [64]. Two preparatory lemmata precede it.

Lemma 5.5.1. A point x̄ ∈ AL is efficient to (PV L) if and only if the linear
optimization problem
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sup
{ k
∑

i=1

yi : (x, y) ∈ R
n
+ × R

k
+, y = (y1, . . . , yk)T , Ax = b, Lx + Iy = Lx̄

}

,

has an optimal solution (x̂, 0).

Lemma 5.5.2. A point x̄ ∈ AL is efficient to (PV L) if and only if the linear
optimization problem

inf
{

uT b + vT Lx̄ : (u, v) ∈ R
m × R

k, v = (v1, . . . , vk)T , vi ≥ 1, i = 1, . . . , k,
uT A + vT L � 0

}

has an optimal solution (û, v̂) fulfilling ûT b + v̂T Lx̄ = 0.

Remark 5.5.1. The linear scalar optimization problem considered in Lemma
5.5.2 is the dual of the one used in Lemma 5.5.1.

The following statement, proven in [98], characterizes the properly efficient
solutions in the sense of linear scalarization to (PV L), by showing that they
coincide with the efficient solutions to the same vector problem.

Theorem 5.5.3. Every efficient solution to (PV L) is also properly efficient
and vice versa.

Proof. Since it is known by Proposition 2.4.12 that any properly efficient
solution to (PV L) is efficient, too, it remains to show only the converse im-
plication.

Let x̄ ∈ AL be efficient to (PV L). Then the optimal objective value of the
linear minimization considered in Lemma 5.5.2 is 0 and it is attained at some
feasible (û, v̂). Then û solves also the linear programming problem

inf
{

uT b : u ∈ R
m, uT A � −v̂T L

}

,

hence its dual
sup

{

− v̂T Lx : x ∈ R
n
+, Ax = b

}

has as optimal objective value ûT b = −v̂T Lx̄. From here it follows that
v̂T Lx̄ ≤ v̂T Lx for all x ∈ AL, i.e. x̄ is properly efficient to (PV L). ��

Therefore in the framework considered in this subsection we deal only with
efficient solutions to (PV L), as the study of the properly efficient ones reduces
to them, too. Given this, it becomes clear why considering in this section the
vector duals to (PV L) with respect to efficient solutions and not with respect
to properly efficient solutions as in most of this book.

Before particularizing into this special setting the vector duals considered
before to (PV FL), we introduce the celebrated vector dual to (PV L) due to
Isermann (cf. [97])

(DV LI ) Max
U∈BLI

hLI (U),
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where

BLI =
{

U ∈ R
k×m : �x ∈ R

n
+ such that (L − UA)x ≤ 0

}

and
hLI (U) = Ub.

Next we see what happens to the vector duals to (PV FL) considered so
far in the present framework, where the primal linear vector optimization
problem is (PV L). We begin with the dual stated in [101,104]

(DV LJ ) Max
(λ,U)∈BLJ

hLJ (λ,U),

where
BLJ =

{

(λ,U) ∈ int(Rk
+) × R

k×m : (L − UA)T λ ∈ R
n
+

}

and
hLJ (λ,U) = Ub,

followed by the two vector duals we introduced in section 5.2

(DV LM ) Max
(λ,z,v)∈BLM

hLM (λ, z, v),

where

BLM =
{

(λ, z, v) ∈ int(Rk
+) × R

m × R
k : λT v = 0 and LT λ − AT z ∈ R

n
+

}

and
hLM (λ, z, v) =

1
k
∑

i=1

λi

zT b + v

and, respectively,
(DV L) Max

(λ,U,v)∈BL
hL(λ,U, v),

where

BL =
{

(λ,U, v) ∈ int(Rk
+) × R

k×m × R
k : λT v = 0 and (L − UA)T λ ∈ R

n
+

}

and
hL(λ,U, v) = Ub + v.

From section 4.3 we have other two vector duals to (PV L), namely the La-
grange type one, which, as noted before, is equivalent to the Fenchel-Lagrange
type ones,

(DV LL) Max
(λ,z,v)∈BLL

hLL(λ, z, v),

where
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BLL =
{

(λ, z, v) ∈ int(Rk
+)×R

m×R
k : λT v−zT b ≤ 0 and LT λ−AT z ∈ R

n
+

}

and
hLL(λ, z, v) = v,

and

(DV LP ) Max
(λ,v)∈BLP

hLP (λ, v),

where
BLP =

{

(λ, v) ∈ int(Rk
+) × R

k : λT v ≤ inf
x∈AL

λT Lx
}

and
hLP (λ, v) = v,

which is equivalent to the Fenchel type one, while in section 4.2 we considered
Nakayama’s vector dual

(DV LN ) Max
(U,v)∈BLN

hLN (U, v),

where

BLN =
{

(U, v) ∈ R
k×m
+ × R

k : �x ∈ R
n
+ such that v − Ub ≥ (L − UA)x

}

and
hLN (U, v) = v.

As noted in Remark 5.4.2 the images of the feasible sets through their objective
functions of these vector duals satisfy the following scheme of inclusions

hLJ (BLJ ) ⊆ hLM (BLM ) = hL(BL) ⊆ hLL(BLL) = hLP (BLP ) ⊆ hLN (BLN ),

while via Remark 5.4.3 we know that their sets of maximal elements are in
the following relations

Max
(

hLJ (BLJ ), Rk
+

)

⊆ Max
(

hLM (BLM ), Rk
+

)

= Max
(

hL(BL), Rk
+

)

=

Max
(

hLL(BLL), Rk
+

)

= Max
(

hLP (BLP ), Rk
+

)

= Max
(

hLN (BLN ), Rk
+

)

,
(5.5)

where the last equality follows by using Remark 5.4.3(b) and Theorem 5.5.3.
When b 	= 0 the first inclusion turns into equality in each of these

schemes, while when b = 0, as noted in the proof of Theorem 4.5.2, either
Max

(

hLJ (BLJ ), Rk
+

)

= {0} or this set is empty. We refer to [101] for an ex-
ample which shows that the first inclusion relation in (5.5) can be strict when
b = 0.

Now let us see where can (DV LI ) be integrated into these chains of inclu-
sions. Via [101] we have the following statement.
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Proposition 5.5.4. One has hLI (BLI ) = hLJ (BLJ ).

Proof. Let (λ,U) ∈ BLJ . Then (L−UA)T λ ∈ R
n
+. Assume that there is some

x ∈ R
n
+ such that UAx ≥ Lx. Then λT (L − UA)x < 0. On the other hand,

(

(L−UA)T λ
)T

x = λT (L−UA)x ≥ 0, therefore we obtained a contradiction.
Consequently, for all x ∈ R

n
+ there is UAx � Lx, i.e. U ∈ BLI . As the objective

function of both these problems is Ub, it follows hLI (BLI ) ⊇ hLJ (BLJ ).
To prove the opposite inclusion, let be U ∈ BLI . Then, for i = 1, . . . , k,

the system of inequalities
{

x � 0, (L − UA)x � 0,
(L − UA)ix < 0,

has no solution. Consequently, for i = 1, . . . , k,

inf{(L − UA)ix : x ∈ R
n
+, (L − UA)x � 0} ≥ 0.

Due to Theorem 3.2.14 (see also Remark 3.2.6), there are some νi ∈ R
n
+ and

μi ∈ R
k
+ such that inf{(L−UA)ix− (νi)T x + (μi)T (L−UA)x : x ∈ R

n} ≥ 0
for i = 1, . . . , k. This yields

inf{xT ((L − UA)i − νi + (μi)T (L − UA)) : x ∈ R
n} ≥ 0,

which implies

(L − UA)i − νi + (μi)T (L − UA) = 0 ∀i = 1, . . . , k.

Thus (L − UA)T (μi + ei) = νi ∈ R
n
+ for i = 1, . . . , k. This yields (L −

UA)T (
∑k

i=1 μi + e) =
∑k

i=1 νi ∈ R
n
+. As

∑k
i=1 μi + e ∈ int(Rk

+) it follows
(
∑k

i=1 μi + e, U) ∈ BLJ and, consequently, hLI (BLI ) = hLJ (BLJ ). ��

Combining (5.5), the comments following it and Proposition 5.5.4, we see
that the sets of efficient solutions to all the vector duals to (PV L) considered
in this section coincide when b 	= 0, while in case b = 0 the last five of them
coincide, while ones of the duals formulated by Jahn in [101, 104] and by
Isermann in [97] either contain only the element 0 or they are empty. Using
Remark (5.5), it is clear that it is enough to give only a duality statement for
all the vector duals with respect to efficient solutions we considered here, with
the notable exception of (DV LJ ) in case b = 0. As the weak duality follows
directly from the general case, the regularity conditions that ensure strong and
converse duality are automatically satisfied (see Theorem 3.2.14 and Remark
3.2.6), and the set L(AL)+R

k
+ is closed since AL is polyhedral and L is linear,

the duality assertions given before for (DV FL) yield the following statement.

Theorem 5.5.5. (a) There is no x ∈ AL and no (λ,U, v) ∈ BL such that
Lx ≤ Ub + v.

(b) If x̄ ∈ AL is an efficient solution to (PV L), then there exists (λ̄, U, v̄) ∈
BL, an efficient solution to (DV L), such that Lx̄ = Ub + v̄.
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(c) If (λ̄, U, v̄) ∈ BL is an efficient solution to (DV L), then there exists x̄ ∈
AL, an efficient solution to (PV L), such that Lx̄ = Ub + v̄.

Remark 5.5.2. (a) From a historical point of view it is interesting to notice
that the first pair of primal-dual linear vector optimization problems was
considered by Gale, Kuhn and Tucker in [70]. For the primal problem

(PV LGKT ) Min
(D,x,y)∈AL

GKT

D,

where

AL
GKT = {(D,x, y) ∈ R

k×p × R
n
+ × int(Rp

+) : Ax = By and Dy − Lx ∈ R
k
+},

they took as vector dual

(DV LGKT ) Max
(V,z,v)∈BL

GKT

V,

where

BL
GKT = {(V, z, v)∈R

k×p×R
m×int(Rk

+) : LT v −AT z ∈ R
n
+, V T v −BT z � 0}.

Here B ∈ R
m×p is a given matrix and for matrices a componentwise partial

ordering analogously to the one for vectors introduced via the nonnegative
orthant is considered.

One of the classical particular instances of (PV LGKT ) is obtained by taking
p = 1 and y = 1 (see also [96]). Thus one gets as primal problem

(PV LG) Min
(d,x)∈ALG

d,

where
ALG = {(d, x) ∈ R

k × R
n
+ : Ax = b and d − Lx ∈ R

k
+},

which is actually equivalent to (PV L). Here it is worth noticing that the vector
dual of this problem, attached to it via the duality scheme of Gale, Kuhn and
Tucker,

(DV LG) Max
(λ,z,v)∈BL

G

v,

where

BL
G = {(λ, z, v) ∈ int(Rk

+)× R
m × R

k : LT λ−AT z ∈ R
n
+ and λT v − zT b ≤ 0}

is nothing else than (DV LL), the particularization to the linear case of the
vector dual from section 4.3.

(b) Another pair of primal-dual linear vector optimization problems im-
portant mainly from the historical point of view was considered by Kornbluth
in [118], namely
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(PV LK ) Min
(x,y)∈ALK

Lx,

ALK = {(x, y) ∈ R
n
+ × int(Rk

+) : Ax + By = 0}

and its vector dual

(DV LK ) Max
(v,w)∈BLK

BT v,

LK = {(v, w) ∈ R
m
+ × int(Rk

+) : AT v + LT w ∈ R
n
+}

where A ∈ R
m×n, B ∈ R

m×k and L ∈ R
k×n. Although in [118] properly

efficient solutions to these vector optimization problems were taken into con-
sideration, by Theorem 5.5.3 we know that it this framework they coincide
with the efficient ones of the same problems. As proven in [95], a pair (x̄, ȳ)
is efficient to (PV LK ) if and only if there is a D ∈ R

k×p ∈ AL
GKT such that

(D, x̄, ȳ) is efficient to (PV LGKT ) and, regarding the vector duals, a pair (x̄, ȳ)
is efficient to (DV LK ) if and only if there is a V ∈ R

k×p ∈ BL
GKT such that

(V , x̄, ȳ) is efficient to (DV LGKT ).

To overcome the duality gaps signaled in the literature for the problems
(DV LJ ) and (DV LI ) when b = 0 (see also Example 5.5.1) in [84] was recently
proposed a new dual problem to (PV L), which, slightly rewritten, is

(DV LH ) Max
U∈BLH

hLH (U),

where

BLH =
{

U ∈ R
k×m : �x ∈ R

n
+ such that (L − UA)x ≤ 0

}

and
hLH (U) = Ub + Min

(

(L − UA)(Rn
+), Rk

+

)

.

Originally this dual was introduced in a more general framework, namely
by considering an arbitrary nontrivial pointed convex closed cone K in R

k,
instead of R

k
+. In the following we put this vector dual problem in relation

to (DV L), which is the vector dual introduced and investigated in section 5.2
applied to (PV L).

Proposition 5.5.6. It holds hLH (BLH ) ⊆ hL(BL).

Proof. Let d ∈ hLH (BLH ). Then there are some U ∈ BLH and x̄ ∈ R
n
+ such

that d = Ub+(L−UA)x̄ and (L−UA)x̄ ∈ Min
(

(L−UA)(Rn
+), Rk

+

)

. Denote
t := (t1, . . . , tk)T = (L−UA)x̄. Due to the minimality of t in (L−UA)(Rn

+),
there is no x ∈ R

n
+ such that (L−UA)x ≤ t. Thus, for i = 1, . . . , k, the system

of inequalities
⎧

⎨

⎩

x � 0,
(L − UA)x − t � 0,
(L − UA)ix − ti < 0,
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has no solution. Similarly to the proof of Proposition 5.5.4 it follows

inf
−x�0,

(L−UA)x−t�0

{(L − UA)ix − ti} ≥ 0 ∀i = 1, . . . , k,

and because of the second inequality constraint all these infima turn out to
be equal to 0. Due to Theorem 3.2.14 (see also Remark 3.2.6), there are some
νi ∈ R

n
+ and μi ∈ R

k
+ such that for i = 1, . . . , k, one has

0 = inf
−x�0,

(L−UA)x−t�0

{(L − UA)ix − ti} =

inf
x∈Rn

{

xT
(

(L − UA)i − νi + (μi)T(L − UA)
)

− ti − (μi)Tt
}

.

Consequently, (L−UA)i −νi +(μi)T (L−UA) = 0 and ti +(μi)T t = 0 for i =
1, . . . , k. Taking λ =

∑k
i=1 μi + e, we obtain directly that

∑k
i=1 λiti = 0 and

(L − UA)T λ =
∑k

i=1 νi � 0, which means that (λ,U, t) ∈ BL. As, moreover,
d = Ub + (L − UA)x̄ = Ub + t, we get hLH (BLH ) ⊆ hL(BL). ��

As the following example shows, the inclusion opposite to the one proven
above does not always hold.

Example 5.5.1. (cf. [40], see also [84]) Let L = (1,−1)T , n = 1, k = 2, A = 0
and b = 0. The classical linear vector optimization primal problem is now

(PV L) Min
x∈R+

Lx.

It is not difficult to note that (DV LH ) actually coincides with (PV L), therefore
hLH (BLH ) = {(x,−x) : x ∈ R+}. On the other hand, (DV L) turns into

(DV L) Max
λ1≥λ2>0,

v∈R

(

−λ2
λ1

1

)

v.

It is clear that hL(BL) is larger than hLH (BLH ), as for instance (−1/2, 1)T ∈
hL(BL)\hLH (BLH ).

Proposition 5.5.7. One has Max
(

hL(BL), Rk
+

)

⊆ Max
(

hLH (BLH ), Rk
+

)

.

Proof. First we show that Max
(

hL(BL), Rk
+

)

is a subset of hLH (BLH ). Let
d be a maximal element of hL(BL), i.e. (DV L) has an efficient solution
(λ̄, U, v̄) ∈ BL and d = Ub + v̄. Assume that there is some x ∈ R

n
+ such

that (L−UA)x ≤ v̄. Taking into consideration the definition of BL, it follows

0 = λ̄T v̄ > λ̄T (L − UA)x ≥ 0,

which cannot happen. Thus there is no x ∈ R
n
+ fulfilling (L − UA)x ≤ v̄.
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Suppose that there is no x ∈ R
n
+ fulfilling (L − UA)x � v̄, too. Then by

Gale’s theorem of the alternative (see [127, page 35]) it follows that the system
⎧

⎨

⎩

λ ≥ 0,
λT v̄ < 0,
(L − UA)T λ ≥ 0,

has a solution λ = (λ1, . . . , λk)T ∈ R
k
+. Denote λ̃ = (1/2)(λ̄ + λ). Clearly λ̃ ∈

int(Rk
+) and it fulfills also

∑k
i=1 λ̃iv̄i < 0 and (L−UA)T λ̃ � 0. Therefore there

is some ṽ ≥ v̄ for which
∑k

i=1 λ̃iṽi = 0. Consequently, Ub + ṽ ≥ Ub + v̄ = d.
Noting that (λ̃, U, ṽ) ∈ BL, we reached a contradiction to the maximality of d
in hL(BL). Therefore, the existence of some x̄ ∈ R

n
+ for which (L−UA)x̄ � v̄

is granted, and by what we have proven in the beginning of the proof it follows
v̄ = (L − UA)x̄ ∈ Min

(

(L − UA)(Rn
+), Rk

+

)

As (L−UA)x̄ = v̄, it follows that U ∈ BLH . Indeed, assuming the contrary,
there would exist x ∈ R

n
+ with (L−UA)x ≤ 0 and consequently (L−UA)(x̄+

x) ≤ v̄. As we have seen in the first part of the proof, this is impossible.
Consequently, U is feasible to (DV LH ) and Ub + (L − UA)x̄ = Ub + v̄ =
hL(λ̄, U, v̄) ∈ hLH (U). This means that

Max
(

hL(BL), Rk
+

)

⊆ hLH (BLH ). (5.6)

Assuming that there is some d̄ ∈ Max
(

hL(BL), Rk
+

)

\Max
(

hLH (BLH ), Rk
+

)

,
we get that there is some d̃ ∈ hLH (BLH ), fulfilling d̄ ≤ d̃. By (5.6) and
Proposition 5.5.6, it follows d̃ ∈ hL(BL). As d̄ ≤ d̃, we obtained a contra-
diction to the maximality of d̄ in this set. Therefore Max

(

hL(BL), Rk
+

)

⊆
Max

(

hLH (BLH ), Rk
+

)

. ��
Remark 5.5.3. The reverse inclusion to the one given in Proposition 5.5.7 fol-
lows via [84, Theorem 3.14] and Theorem 5.5.5. Consequently,

Max
(

hL(BL), Rk
+

)

= Max
(

hLH (BLH ), Rk
+

)

.

Therefore, the schemes employing the vector duals to (PV L) considered earlier
in this section can be completed, using also Proposition 5.5.4 and Theorem
5.5.5, as follows

hLI (BLI ) = hLJ (BLJ ) ⊆ hLH (BLH ) ⊆ hLM (BLM )

= hL(BL) ⊆ hLL(BLL) = hLP (BLP ) ⊆ hLN (BLN ),

and, respectively, for the sets of maximal elements,

Max
(

hLI (BLI ), Rk
+

)

= Max
(

hLJ (BLJ ), Rk
+

)

⊆ Min
(

L(AL), Rk
+

)

=

Max
(

hLH (BLH ), Rk
+

)

= Max
(

hLM (BLM ), Rk
+

)

= Max
(

hL(BL), Rk
+

)

=

Max
(

hLL(BLL), Rk
+

)

= Max
(

hLP (BLP ), Rk
+

)

= Max
(

hLN (BLN ), Rk
+

)

.

When b 	= 0 the inclusion in the latter relation becomes an equality, i.e. all
the sets in the scheme above coincide.
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5.5.2 Duality with respect to weakly efficient solutions

Consider now (PV FL
w ) in the particular framework when X = R

n, C = {0}
and S = R

n
+, namely

(PV L
w ) WMin

x∈AL
Lx.

AL = {x ∈ R
n
+ : Ax = b}

In this situation the vector dual problems considered to it in chapter 4
and subsection 5.2.2 can be written as follows. We begin with the one from
[101,104]

(DV LJ
w ) WMax

(λ,U)∈BLJ
w

hLJ
w (λ,U),

where

BLJ
w =

{

(λ,U) ∈ (Rk
+\{0}) × R

k×m : (L − UA)T λ ∈ R
n
+

}

and
hLJ

w (λ,U) = Ub,

followed by the duals introduced in this chapter

(DV LM
w ) WMax

(λ,z,v)∈BLM
w

hLM
w (λ, z, v),

where

BLM
w =

{

(λ, z, v) ∈ (Rk
+\{0}) × R

m × R
k : λT v = 0 and LT λ − AT z ∈ R

n
+

}

and
hLM

w (λ, z, v) =
1

k
∑

i=1

λi

zT b + v

and, respectively,

(DV L
w ) WMax

(λ,U,v)∈BL
w

hL
w(λ,U, v),

where

BL
w =

{

(λ,U, v) ∈ (Rk
+\{0}) × R

k×m × R
k : λT v = 0 and (L − UA)T λ ∈ R

n
+

}

and
hL

w(λ,U, v) = Ub + v.

We also have the Lagrange type one, which as observed before is equivalent
to the Fenchel-Lagrange type ones,

(DV LL
w ) WMax

(λ,z,v)∈BLL
w

hLL
w (λ, z, v),
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where

BLL
w =

{

(λ, z, v) ∈ (Rk
+\{0})×R

m×R
k : λT v−zT b ≤ 0 and LT λ−AT z ∈ R

n
+

}

and
hLL

w (λ, z, v) = v,

then

(DV LP
w ) WMax

(λ,v)∈BLP
w

hLP
w (λ, v),

where
BLP

w =
{

(λ, v) ∈ (Rk
+\{0}) × R

k : λT v ≤ inf
x∈AL

λT Lx
}

and
hLP

w (λ, v) = v,

which is equivalent to the Fenchel type dual, while in section 4.2 we considered
Nakayama’s vector dual

(DV LN
w ) WMax

(U,v)∈BLN
w

hLN
w (U, v),

where

BLN
w =

{

(U, v) ∈ R
k×m
+ × R

k : �x ∈ R
n
+ such that v − Ub > (L − UA)x

}

and
hLN

w (U, v) = v.

Remark 5.5.4. The scheme of inclusions of the images of the feasible sets
through their objective functions of the vector duals with respect to weakly
efficient solutions which follows from Remark 5.4.4 in the particular setting
we work now in is

hLJ
w (BLJ

w ) ⊆ hLM
w (BLM

w ) = hL
w(BL

w) ⊆ hLL
w (BLL

w ) = hLP
w (BLP

w ) = hLN
w (BLN

w ).

For the weakly maximal elements of these sets we have then

WMax
(

hLJ
w (BLJ

w ), Rk
+

)

⊆WMax
(

hLM
w (BLM

w ), Rk
+

)

=WMax
(

hL
w(BL

w), Rk
+

)

=

WMax
(

hLL
w (BLL

w ), Rk
+

)

=WMax
(

hLP
w (BLP

w ), Rk
+

)

=WMax
(

hLN
w (BLN

w ), Rk
+

)

.

When b 	= 0 the first inclusion turns into equality in each of these schemes,
while when b = 0, either WMax

(

hLJ (BLJ ), Rk
+

)

= {0} or this set is empty.
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For (PV L
w ) and the vector duals mentioned above the weak, strong and

converse duality statements can be derived directly from the ones given before
in more general frameworks, but, using the advantages of the linear duality
stressed in the comments before Theorem 5.5.5, it is possible to prove them
under weaker hypotheses as follows. Using Remark 5.5.4, it is clear that it is
enough to give only the following duality statement, which holds for all the
vector duals with respect to weakly efficient solutions we considered here, with
the notable exception of (DV LJ

w ) in case b = 0.

Theorem 5.5.8. (a) There is no x ∈ AL and no (λ,U, v) ∈ BL
w such that

Lx < Ub + v.
(b) If x̄ ∈ AL is a weakly efficient solution to (PV L

w ), then there exists
(λ̄, U, v̄) ∈ BL

w, a weakly efficient solution to (DV L
w ), fulfilling Lx̄ = Ub+v̄.

(c) If (λ̄, U, v̄) ∈ BL
w is a weakly efficient solution to (DV L

w ), then Ub + v̄ ∈
WMin

(

L(AL) + R
k
+, Rk

+

)

.

Remark 5.5.5. Combining Remark 5.5.4 and Theorem 5.5.8, one has when
b 	= 0

WMin
(

L(AL), Rk
+

)

⊆ WMax
(

hLJ
w (BLJ

w ), Rk
+

)

= WMax
(

hLM
w (BLM

w ), Rk
+

)

=

WMax
(

hL
w(BL

w), Rk
+

)

= WMax
(

hLL
w (BLL

w ), Rk
+

)

= WMax
(

hLP
w (BLP

w ), Rk
+

)

= WMax
(

hLN
w (BLN

w ), Rk
+

)

⊆ WMin
(

L(AL) + R
k
+, Rk

+

)

,

while when b = 0 it holds

WMax
(

hLJ
w (BLJ

w ), Rk
+

)

⊆ WMin
(

L(AL), Rk
+

)

⊆ WMax
(

hLM
w (BLM

w ), Rk
+

)

=

WMax
(

hL
w(BL

w), Rk
+

)

= WMax
(

hLL
w (BLL

w ), Rk
+

)

= WMax
(

hLP
w (BLP

w ), Rk
+

)

= WMax
(

hLN
w (BLN

w ), Rk
+

)

⊆ WMin
(

L(AL) + R
k
+, Rk

+

)

.

Bibliographical notes

As mentioned in the bibliographical notes of chapter 4, the works where vector
duality based on the classical scalar Fenchel duality is considered are quite sel-
dom. The paper where the approach used by us in section 5.1 was introduced
is [28], where all the spaces involved were taken finite dimensional.

The scalar Fenchel-Lagrange duality, introduced in [186], was quickly ap-
plied to vector duality, too, in the sense that it was considered for the scalar-
ized problems attached to vector optimization problems and the vector duals
attached to these contained the scalar duals not only in the feasible sets like
in the cases attached in chapter 4, but also in the objective functions. This
was first done by Boţ and Wanka for linearly constrained vector optimization
problems in [182,183], and soon after for cone constrained ones in [184]. These
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investigations were continued in [24,36,37,185], where a whole class of Fenchel-
Lagrange type vector dual problems was assigned to a cone constrained vector
optimization problem and comparisons involving the image sets through the
objective functions of these duals and of some other vector duals known in
the literature and the corresponding maximal sets were performed.

Among the first papers on linear vector duality in finite dimensional spaces
belong [70] of Gale, Kuhn and Tucker and Kornbluth’s [118]. Then Iser-
mann has done intensive research on linear vector duality in finite dimen-
sional spaces, introducing in [97] a new vector dual to the primal linear vector
optimization problem and comparing his result to the previously mentioned
ones. He also proved in [98] that proper efficiency and efficiency coincide for
primal linear vector optimization problems in finite dimensional spaces. Later,
Jahn has shown in [101] that the vector dual he proposed for linear vector
optimization problems turns out to be equivalent to Isermann’s one, noting
for the latter that it has as major drawback the fact that when b = 0 duality
could not be established. This issue was claimed to be solved in [84], where
a new vector dual for the classical linear vector optimization problem was in-
troduced by considering as objective function a set-valued mapping. However,
the Fenchel-Lagrange type vector duality introduced earlier in [24, 36] works
fine in the linear case when b = 0, too.



6

Wolfe and Mond-Weir duality concepts

In this chapter we present scalar and vector duality based on the classical
Wolfe and Mond-Weir duality concepts. As the field is very vast, especially
because of different generalizations of the notion of convexity for the functions
employed, we limited our exposition to a reasonable framework, large enough
to present the most relevant facts in the area. We shall work in parallel with
the two mentioned duality concepts. Note that the properly efficient solutions
that appear in this chapter are considered in the sense of linear scalarization
(see Definition 2.4.12), unless otherwise specified.

6.1 Classical scalar Wolfe and Mond-Weir duality

For the beginnings of Wolfe duality the reader is referred to [202], while the
first paper on Mond-Weir duality is considered to be [138]. In both of them
the functions involved were taken differentiable, but afterwards both these
duality concepts were extended to nondifferentiable functions by making use of
convexity. We begin our presentation with the convex case, treating after that
the situation when the functions involved are assumed moreover differentiable.

6.1.1 Scalar Wolfe and Mond-Weir duality: nondifferentiable case

Like in section 3.1.3, let X and Z be Hausdorff locally convex spaces, the latter
partially ordered by the convex cone C ⊆ Z, and consider the nonempty set
S ⊆ X and the proper functions f : X → R and g : X → Z, fulfilling
dom f ∩ S ∩ g−1(−C) 	= ∅. The primal problem we treat further is

(PC) inf
x∈A

f(x).

A = {x ∈ S : g(x) ∈ −C}

To it we attach the Wolfe dual problem
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(DC
W ) sup

u∈S,z∗∈C∗,
0∈∂f(u)+∂(z∗g)(u)+N(S,u)

{f(u) + 〈z∗, g(u)〉}

and the Mond-Weir dual problem

(DC
MW ) sup

u∈S,z∗∈C∗,〈z∗,g(u)〉≥0,
0∈∂f(u)+∂(z∗g)(u)+N(S,u)

f(u).

Note that the feasible set of (DC
MW ) is included in the one of (DC

W ). The weak
and strong duality statements follow.

Theorem 6.1.1. One has v(DC
MW ) ≤ v(DC

W ) ≤ v(PC).

Proof. We distinguish two cases. If the feasible set of (DC
W ) is empty, then

so is the one of (DC
MW ), in which case the optimal objective values of these

problems are both equal to −∞, which is clearly less than or equal to v(PC).
Otherwise, let u ∈ S and z∗ ∈ C∗, fulfilling 0 ∈ ∂f(u) + ∂(z∗g)(u) +

N(S, u). If 〈z∗, g(u)〉 ≥ 0 then (u, z∗) is feasible to (DC
MW ) and f(u) ≤

f(u) + 〈z∗, g(u)〉. Taking now in both sides of this inequality the suprema
regarding all pairs (u, z∗) feasible to (DC

MW ) we obtain in the left-hand side
v(DC

MW ), while in the right-hand side there is the supremum of the objec-
tive function of (DC

W ) concerning only some of the feasible solutions to this
problem. Consequently, v(DC

MW ) ≤ v(DC
W ).

Since 0 ∈ ∂f(u) + ∂(z∗g)(u) + N(S, u), by (2.8) follows 0 ∈ ∂(f + (z∗g) +
δS)(u), i.e. for all x ∈ S one has f(x) + 〈z∗, g(x)〉 ≥ f(u) + 〈z∗, g(u)〉. Taking
in the left-hand side of this inequality the infimum regarding all x ∈ S for
which g(x) ∈ −C, we obtain there a value less than v(PC). Considering then
in the right-hand side of the same inequality the supremum regarding all pairs
(u, z∗) feasible to (DC

W ), it follows v(DC
W ) ≤ v(PC). ��

Theorem 6.1.2. Assume that S ⊆ X is a convex set, f : X → R a proper
and convex function and g : X → Z a proper and C-convex function such
that dom f ∩ S ∩ g−1(−C) 	= ∅. If one of the regularity conditions (RCCL

i ),
i ∈ {1, 2, 3, 4} is fulfilled, (PC) has an optimal solution x̄ ∈ A and one of the
following additional conditions

(i) f and g are continuous at a point in dom f ∩ dom g ∩ S;
(ii) dom f ∩dom g∩ int(S) 	= ∅ and f or g is continuous at a point in dom f ∩

dom g;
(iii) X is a Fréchet space, f is lower semicontinuous, g is star C-lower semi-

continuous, S is closed and 0 ∈ sqri(dom f × dom g × S − ΔX3);
(iv) dim(lin(dom f × dom g × S − ΔX3)) < +∞ and 0 ∈ ri(dom f × dom g ×

S − ΔX3);

is fulfilled, then v(PC) = v(DC
W ) = v(DC

MW ) and there is some z̄∗ ∈ C∗ with
(z̄∗g)(x̄) = 0 such that (x̄, z̄∗) is an optimal solution to each of the duals.
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Proof. By Theorem 3.3.16 the hypotheses ensure the existence of some z̄∗ ∈
C∗ for which f(x̄) = infx∈S{f(x) + (z̄∗g)(x)} and (z̄∗g)(x̄) = 0. These yield
0 ∈ ∂(f+(z̄∗g)+δS)(x̄), which, when any of the additional conditions (i)−(iv)
holds, means actually, via Theorem 3.5.8, 0 ∈ ∂f(x̄) + ∂(z̄∗g)(x̄) + N(S, x̄).
Therefore (x̄, z̄∗) is feasible to both (DC

W ) and (DC
MW ). Note also that

f(x̄) = f(x̄)+ (z̄∗g)(x̄), which implies, via Theorem 6.1.1, v(PC) = v(DC
W ) =

v(DC
MW ) and that both duals in discussion have (x̄, z̄∗) among their optimal

solutions. ��

Remark 6.1.1. If X = R
n, Z = R

m, C = R
m
+ , f : R

n → R and g =
(g1, . . . , gm)T : R

n → R
m, then (DC

W ) turns out to be the Wolfe dual problem
mentioned in [109] (see also [99,121]). In this case there is no need to assume
in Theorem 6.1.2 the fulfillment of the additional conditions (i) − (iv).

Remark 6.1.2. In the framework of Remark 6.1.1 assuming moreover that S =
R

n the dual (DC
W ) turns out to be the classical nondifferentiable Wolfe dual

problem introduced by Schechter in [166]

(DC
W ) sup

u∈R
n,z∗=(z∗

1 ,...,z∗
m)T ∈R

m
+ ,

0∈∂f(u)+
mP

j=1
z∗

j ∂gj(u)

{

f(u) + z∗T g(u)
}

,

while (DC
MW ) becomes the nondifferentiable Mond-Weir dual problem

(DC
MW ) sup

u∈R
n,z∗=(z∗

1 ,...,z∗
m)T ∈R

m
+ , z∗T g(u)≥0,

0∈∂f(u)+
mP

j=1
z∗

j ∂gj(u)

f(u).

6.1.2 Scalar Wolfe and Mond-Weir duality: differentiable case

Very important for both Wolfe and Mond-Weir duality concepts is the differ-
entiable case, i.e. the situation when the sets involved are taken open and the
functions differentiable.

Like in the previous subsection let X be a Hausdorff locally convex space
and take Z = R

m partially ordered by the nonnegative orthant R
m
+ . Consider

the nonempty open set S ⊆ X and the real-valued functions f : S → R

and gj : S → R, j = 1, . . . , m, all Gâteaux differentiable on S and fulfilling
S ∩ g−1(−R

m
+ ) 	= ∅, where g = (g1, . . . , gm)T : S → R

m. Notice that one
can consider also here the framework of subsection 6.1.1 by working with the
extensions to the whole space of the functions involved, f̃ : X → R, f̃ = f +δS

and g̃ : X → Rm, g̃ = g + δR
m

S . To the primal problem

(PC) inf
x∈A

f(x)

A = {x ∈ S : g(x) ∈ −R
m
+}
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we attach in this section the differentiable Wolfe dual problem

(DDC
W ) sup

u∈S,z∗=(z∗
1 ,...,z∗

m)T ∈R
m
+ ,

∇f(u)+∇(z∗T g)(u)=0

{

f(u) + z∗T g(u)
}

and the differentiable Mond-Weir dual problem

(DDC
MW ) sup

u∈S,z∗=(z∗
1 ,...,z∗

m)T ∈R
m
+ ,

∇f(u)+∇(z∗T g)(u)=0,z∗T g(u)≥0

f(u).

When the functions involved are taken Fréchet differentiable, the formulation
of these duals is formally the same. Note that the the feasible set of (DDC

MW )
is included in the one of (DDC

W ), which has as consequence that v(DDC
MW ) ≤

v(DDC
W ). The weak and strong duality statements for the case when convexity

is additionally assumed follow.

Theorem 6.1.3. Assume that S is moreover convex and the functions f and
gj, j = 1, . . . , m, are convex on S. Then it holds v(DDC

MW ) ≤ v(DDC
W ) ≤

v(PC).

Proof. For z∗ = (z∗1 , . . . , z∗m)T ∈ R
m
+ and u ∈ S there is, via Theorem 3.5.8,

∂(z∗g)(u) =
∑m

j=1 ∂(z∗j gj)(u) =
∑m

j=1 z∗j ∂gj(u). By Proposition 2.3.19(a) it
follows that for all u ∈ S one has ∂f(u) = {∇f(u)} and ∂gj(u) = {∇gj(u)},
j = 1, . . . , m. Moreover, N(S, u) = {0}, and we get that (DDC

MW ) and (DDC
W )

are actually (DC
MW ) and (DDC

W ), respectively. The conclusion follows by The-
orem 6.1.1. ��

Theorem 6.1.4. Assume that S is moreover convex, the functions f and gj,
j = 1, . . . , m, are convex on S, and that 0 ∈ ri(g(S) + R

k
+). If (PC) has an

optimal solution x̄, then v(PC) = v(DDC
W ) = v(DDC

MW ) and there is some
z̄∗ ∈ R

m
+ such that (x̄, z̄∗) is an optimal solution to each of the duals.

Proof. As noted in the proof of Theorem 6.1.3, the differentiable duals to
(PC) introduced in this subsection coincide under the present hypotheses with
the dual problems introduced in subsection 6.1.1, namely (DC

W ) and (DC
MW ),

respectively. The conclusion follows directly from Theorem 6.1.2, as condition
(i) from there is fulfilled. ��

Remark 6.1.3. The regularity condition considered in Theorem 6.1.4 is actu-
ally (RCCL

3 ), introduced in subsection 3.2.3, written in the particular setting
considered here. Note that the conclusion of the theorem remains valid if one
replaces the regularity condition by any of (RCCL

i ), i ∈ {1, 2, 4}, as all these
conditions imply (RCCL

3 ) in this context. Note also that if X = R
n as a reg-

ularity condition in Theorem 6.1.4 one can use also
(

˜RC
CL)

from Remark
3.2.6.
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Remark 6.1.4. As it will be noted in the next subsection, the convexity as-
sumptions from the hypotheses of Theorem 6.1.3 and Theorem 6.1.4 can be
relaxed to some generalized convexity ones. Though, as the next example
from [127] shows, such hypotheses cannot be completely removed without
losing the duality for (PC) and (DDC

W ) (or (DDC
MW )). Other examples sus-

taining this are available in [138].

Example 6.1.1. Take X = R, S = R and f, g : R → R defined by f(x) = −e−x2

and g(x) = 1 − x. Note that f is not convex and that v(PC) = −1/e. Then
the optimal objective value of the differentiable Wolfe dual is

v(DDC
W ) = sup

u∈R,z∗∈R+,

2ue−u2
=z∗

{−e−u2 −uz∗ + z∗} = sup
u∈R+

{e−u2
(−1 + 2u− 2u2)} = 0,

and this supremum is nowhere attained. Therefore, not even the weak duality
for this pair of primal-dual optimization problems is guaranteed.

Remark 6.1.5. If X = R
n the dual (DDC

W ) turns out to be the Wolfe dual
problem mentioned in [126, 127]. When moreover S = R

n
+, (DDC

MW ) and
(DDC

W ) are actually the dual problems treated in [138, section 3]. When X =
S = R

n, (DDC
W ) becomes the classical (differentiable) Wolfe dual problem

introduced in [202] and mentioned also in [11], while (DDC
MW ) is the classical

(differentiable) Mond-Weir dual problem introduced in [138].

Besides the ones already presented here, there were proposed in the lit-
erature other dual problems which are based on the Wolfe and Mond-Weir
duality concepts, respectively. Take X = R

n. In [126] the following Wolfe
type dual problem to (PC)

(

DDC
fW

)

sup
u∈S,z∗=(z∗

1 ,...,z∗
m)T ∈R

m
+ ,

∇f(u)+∇
(

z∗T g
)

(u)∈−N(A,u)

{

f(u) + z∗T g(u)
}

was treated, while in [138] were considered some different dual problems to
(PC) for the case S = R

n. These can be formulated actually for an arbitrary
nonempty open set S ⊆ R

n, as follows. A Mond-Weir type dual is
(

DDC

M̃W

)

sup
u∈S,z∗=(z∗

1 ,...,z∗
m)T ∈R

m
+ ,

z∗
j gj(u)≥0,j=1,...,m,

∇f(u)+∇
(

z∗T g
)

(u)=0

f(u),

while by considering the disjoint sets Jl ⊆ {1, . . . , m}, l = 0, . . . , s, such that
∪s

l=0Jl = {1, . . . , m}, the following dual problem to (PC) was introduced,

(DDC
W−MW ) sup

u∈S,z∗=(z∗
1 ,...,z∗

m)T ∈R
m
+ ,

P

j∈Jl

z∗
j gj(u)≥0, l=1,...,s,

∇f(u)+∇
(

z∗T g
)

(u)=0

{

f(u) +
∑

j∈J0

z∗j gj(u)
}

.
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The latter dual is constructed as a “combination” of the Wolfe and Mond-Weir
dual problems, which can be rediscovered as special instances of it. Taking
J0 = {1, . . . , m}, (DDC

W−MW ) turns into (DDC
W ), while if J0 = ∅ and s = 1

it becomes (DDC
MW ). Also

(

DDC

M̃W

)

can be obtained as a particular case
of (DDC

W−MW ) by taking J0 = ∅, s = m and each Jl, l ∈ {1, . . . , m} to
be a singleton. Besides these, other similar Wolfe or Mond-Weir type duals
were proposed in literature to (PC), see for instance [137], while in papers
like [126, 135, 138] Wolfe or Mond-Weir type duals were considered to the
problem obtained by attaching to (PC) affine equality constraints. Since the
so-obtained primal is actually a special case of (PC) and most of the duals to
it can be obtained as particular instances of (DDC

W−MW ) we will not mention
them here.

Regarding the optimal objective values of the duals introduced above,
taking into account only the way they are defined one can prove the following
inequalities.

Proposition 6.1.5. It holds

v
(

DDC

M̃W

)

≤ v(DDC
W−MW )

v(DDC
MW ) ≤ v(DDC

W ) ≤ v
(

DDC
fW

)

.

Remark 6.1.6. For all these duals weak duality statements are not always valid
in the most general case, being usually proven under some generalized con-
vexity assumptions, as it done within the next subsection.

6.1.3 Scalar Wolfe and Mond-Weir duality under generalized
convexity hypotheses

We work further in the framework of the second part of subsection 6.1.2,
namely when X = R

n, S ⊆ R
n is a nonempty open set, Z = R

m is partially
ordered by the nonnegative orthant R

m
+ and the real-valued functions f : S →

R and gj : S → R, j = 1, . . . , m, are Fréchet differentiable on S and fulfill
S ∩ g−1(−R

m
+ ) 	= ∅, where g = (g1, . . . , gm)T . As there is no possibility of

confusion, we denote the Fréchet differential of f at x by ∇f(x), too. In order
to prove duality statements for the dual optimization problems attached in
subsection 6.1.2 to

(PC) inf
x∈A

f(x),

A = {x ∈ S : g(x) � 0}

we need to introduce some generalizations of convexity for the functions in-
volved. We refer to [127] for the proofs of the characterizations and the existing
relations between these notions.

For a nonempty convex set U ⊆ X and f : U → R we say that f is
quasiconvex on U if for all x, y ∈ U such that f(x) < f(y) and all λ ∈ (0, 1)
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there is f(λx + (1 − λ)y) < f(y). When f : R
n → R is quasiconvex on R

n we
call it quasiconvex.

If U ⊆ X is, additionally, open and f : U → R is Fréchet differentiable,
then f is quasiconvex on U if and only if for all x, y ∈ U such that f(y) ≥ f(x)
there is ∇f(y)T (y − x) ≥ 0.

Given a nonempty open set U ⊆ R
n, a Fréchet differentiable function

f : U → R is said to be pseudoconvex on U if for all x, y ∈ U such that
∇f(x)T (y − x) ≥ 0 one has f(y) ≥ f(x). When f : R

n → R is pseudoconvex
on R

n we call it pseudoconvex. If −f is pseudoconvex we call the function f
pseudoconcave.

If U ⊆ R
n is nonempty, convex and open and the Fréchet differentiable

function f : U → R is pseudoconvex on U , then f is quasiconvex on U , too.
If U ⊆ R

n is an open set and a function η : U × U → R
n is given, a

function f : U → R, Fréchet differentiable on U , is called invex with respect
to η on U if f(x) − f(u) ≥ ∇f(u)T η(x, u) for all x, u ∈ U . When f : R

n → R

is invex with respect to η on R
n we call it invex with respect to η.

Remark 6.1.7. Let be the convex set U ⊆ R
n and f : U → R a given function.

If f is convex on U , then f is quasiconvex on U , too. If U is an open set and
f is convex and Fréchet differentiable on U , then it is pseudoconvex on U and
also invex with respect to η : U × U → R, η(x, u) = x − u. In general, the
reverse implications fail to hold.

Now we give duality statements involving the duals mentioned in sub-
section 6.1.2, where the generalizations of convexity introduced above play
important roles. As underlined by Example 6.1.1, in the differentiable case
weak duality requires different hypotheses for the functions involved, unlike
what happens when not necessarily differentiable functions are taken into con-
sideration and the gradients are replaced by convex subgradients. Note that
in many papers on Wolfe duality and Mond-Weir duality, respectively, the
importance of the regularity conditions is minimal, in some of them they be-
ing not even stated or named. When convexity is not assumed, the classical
regularity condition due to Kuhn and Tucker is largely used in the differen-
tiable case. To state it consider x̄ ∈ A and denote the set of active indices of
g at x̄ by I(x̄) = {j ∈ {1, . . . , m} : gj(x̄) = 0}. The Kuhn-Tucker regularity
condition at x̄ ∈ A is

(RCC
KT )(x̄) for all d ∈ R

n such that ∇gi(x̄)T d ≤ 0 for all i ∈ I(x̄), there
exists ϕ : [0, 1]→R

n differentiable at 0 such that ϕ(0) = x̄,
ϕ([0, 1]) ⊆ A and ∇ϕ(0) = td for some t > 0.

As seen in the following statement (cf. [127, Theorem 7.3.7]), this reg-
ularity condition (and others that can be found in [127, Chapter 7] and in
Remark 6.1.8) is sufficient for providing the Karush-Kuhn-Tucker optimality
conditions for (PC).
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Lemma 6.1.6. Assume that x̄ ∈ A is an optimal solution to (PC) and
that (RCC

KT )(x̄) is fulfilled. Then there exists z̄∗ ∈ R
m
+ such that ∇f(x̄) +

∇
(

z̄∗T g
)

(x̄) = 0 and z̄∗T g(x̄) = 0.

Remark 6.1.8. Let us recall other regularity conditions used in the literature
when dealing with duality for problems involving differentiable functions. For
a given x̄ ∈ A we have the Abadie constraint qualification

(ACQ)(x̄) T (A, x̄) =
{

d ∈ R
n : ∇gi(x̄)T d ≤ 0, i ∈ I(x̄)

}

,

the Mangasarian-Fromovitz constraint qualification

(MFCQ)(x̄) ∃d ∈ R
n : ∇gi(x̄)T d < 0 ∀i ∈ I(x̄),

and the Linear Independence constraint qualification

(LICQ)(x̄) ∇gi(x̄), i ∈ I(x̄), are linear independent.

If f and gj , j = 1, . . . , m, are Fréchet continuously differentiable, one has
(LICQ)(x̄) ⇒ (MFCQ)(x̄) ⇒ (ACQ)(x̄) and all of them guarantee, if x̄ is
a local minimum to (PC), the existence of a z̄∗ ∈ R

m
+ such that ∇f(x̄) +

∇
(

z̄∗T g
)

(x̄) = 0 and z̄∗T g(x̄) = 0. Though, we work further with (RCC
KT )(x̄)

since the hypotheses it requires to work, i.e. f and gj , j = 1, . . . , m, are Fréchet
differentiable on the open set S, are minimal.

In the light of Lemma 6.1.6, one can conclude that in order to give a com-
plete duality scheme in the setting considered in this section one has only
to ensure the existence of weak duality, since strong duality follows under
(RCC

KT )(x̄) automatically. Next we prove the existence of weak duality and
also strong duality for problems where the convexity is replaced by pseudo-
convexity and quasiconvexity.

Theorem 6.1.7. Assume that for each (u, z∗) feasible to the dual
(

DDC
fW

)

the
function f + z∗T g is pseudoconvex on S. Then v(PC) ≥ v

(

DDC
fW

)

.

Proof. Let x ∈ A and (u, z∗) be feasible to
(

DDC
fW

)

. Then one has
(

∇(f +

z∗T g)(u)
)T (x − u) ≥ 0. Using the pseudoconvexity of f + z∗T g on S we

get f(x) + z∗T g(x) ≥ f(u) + z∗T g(u), which yields, taking into account that
z∗ ∈ R

m
+ and g(x) ∈ −R

m
+ , f(x) ≥ f(u)+ z∗T g(u). As the feasible points were

chosen arbitrarily, there is weak duality for the problems in discussion. ��

Theorem 6.1.8. Assume that for each (u, z∗) feasible to the dual (DDC
W ) the

function f + z∗T g is pseudoconvex on S. Then v(PC) ≥ v(DDC
W ).

Proof. Let x ∈ A and (u, z∗) be feasible to (DDC
W ). Then

(

∇(f + z∗T g)(u)
)T

(x−u) = 0 and the pseudoconvexity of f +z∗T g on S yields f(x)+z∗T g(x) ≥
f(u) + z∗T g(u), which implies, taking into account that z∗ ∈ R

m
+ and g(x) ∈

−R
m
+ , f(x) ≥ f(u) + z∗T g(u). As the feasible points were chosen arbitrarily,

there is weak duality for the problems in discussion. ��
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Analogously one can prove also the following weak duality statements.

Theorem 6.1.9. (a) If for each (u, z∗) feasible to the dual (DDC
MW ) the func-

tion f + z∗T g is pseudoconvex on S, then v(PC) ≥ v(DDC
MW ).

(b) If for each (u, z∗) feasible to the dual
(

DDC

M̃W

)

the function f + z∗T g is
pseudoconvex on S, then v(PC) ≥ v

(

DDC

M̃W

)

.
(c) If for each (u, z∗) feasible to the dual (DDC

W−MW ) the function f + z∗T g
is pseudoconvex on S, then v(PC) ≥ v(DDC

W−MW ).

Now we give the corresponding strong duality statements.

Theorem 6.1.10. Assume that for each (u, z∗) feasible to the dual (DDC
W )

the function f + z∗T g is pseudoconvex on S. If x̄ ∈ A is an optimal solution
to (PC) and the regularity condition (RCC

KT )(x̄) is fulfilled, then v(PC) =
v(DDC

W ) and there is a z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is an optimal solution to

the dual.

Proof. The fulfillment of (RCC
KT )(x̄) guarantees, via Lemma 6.1.6, that there

is some z̄∗ ∈ R
m
+ such that ∇f(x̄) + ∇

(

z̄∗T g
)

(x̄) = 0 and z̄∗T g(x̄) = 0.
Consequently, (x̄, z̄∗) is feasible to (DDC

W ) and f(x̄) = f(x̄) + z̄∗T g(x̄). Using
Theorem 6.1.8 we obtain v(PC) = v(DDC

W ) and that (x̄, z̄∗) is an optimal
solution to the dual. ��

Analogously one can prove the following strong duality statements.

Theorem 6.1.11. Assume that for each (u, z∗) feasible to the dual (DDC
MW )

the function f + z∗T g is pseudoconvex on S. If x̄ ∈ A is an optimal solution
to (PC) and the regularity condition (RCC

KT )(x̄) is fulfilled, then v(PC) =
v(DDC

MW ) and there is a z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is an optimal solution to

the dual.

Theorem 6.1.12. Assume that x̄ ∈ A is an optimal solution to (PC) and the
regularity condition (RCC

KT )(x̄) is fulfilled.

(a) If for each (u, z∗) feasible to the dual
(

DDC
fW

)

the function f + z∗T g is
pseudoconvex on S, then v(PC) = v

(

DDC
fW

)

and there is a z̄∗ ∈ R
m
+ such

that (x̄, z̄∗) is an optimal solution to the dual.
(b) If for each (u, z∗) feasible to the dual

(

DDC

M̃W

)

the function f + z∗T g is
pseudoconvex on S, then v(PC) = v

(

DDC

M̃W

)

and there is a z̄∗ ∈ R
m
+

such that (x̄, z̄∗) is an optimal solution to the dual.
(c) If for each (u, z∗) feasible to the dual (DDC

W−MW ) the function f+z∗T g is
pseudoconvex on S, then v(PC) = v(DDC

W−MW ) and there is a z̄∗ ∈ R
m
+

such that (x̄, z̄∗) is an optimal solution to the dual.

Other duality statements involving pseudoconvexity and quasiconvexity,
valid only for the Mond-Weir type duals, follow.
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Theorem 6.1.13. Assume that the set S is moreover convex.

(a) If f is pseudoconvex on S and z∗T g is quasiconvex on S whenever (u, z∗)
is feasible to (DDC

MW ), then v(PC) ≥ v(DDC
MW ).

(b) If f is pseudoconvex on S and gj is quasiconvex on S for j = 1, . . . , m,
then v(PC) ≥ v

(

DDC

M̃W

)

.
(c) If f +

∑

l∈J0
z∗l gl(u) is pseudoconvex on S and

∑

j∈Jl
z∗j gj is quasiconvex

on S for l = 1, . . . , s, whenever (u, z∗) is feasible to (DDC
W−MW ), then

v(PC) ≥ v(DDC
W−MW ).

Proof. We prove only (a), the other weak duality statements following anal-
ogously. Let x ∈ A and a pair (u, z∗) feasible to (DDC

MW ). Then z∗T (g(u) −
g(x)) ≥ 0 and by the quasiconvexity on S of z∗T g one gets ∇(z∗T g)(u)T (u −
x) ≥ 0. This is nothing but ∇f(u)T (x − u) ≥ 0, which, because f is pseu-
doconvex on S, yields f(x) ≥ f(u). As the mentioned feasible points were
arbitrarily chosen, by taking in the left-hand side of the last inequality the
infimum after x ∈ A and in the right-hand side the supremum regarding all
the pairs (u, z∗) feasible to (DDC

MW ), one gets v(PC) ≥ v(DDC
MW ). ��

Remark 6.1.9. The hypotheses used in the latter theorem do not always ensure
also the weak duality for (PC) and (DDC

W ) or
(

DDC
fW

)

. See Example 6.1.1
where the objective function is pseudoconvex and the constraint function is
quasiconvex or [138] for other counter-examples.

Theorem 6.1.14. Assume that the set S is moreover convex, x̄ ∈ A is an
optimal solution to (PC) and the regularity condition (RCC

KT )(x̄) is fulfilled.

(a) If f is pseudoconvex on S and z∗T g is quasiconvex on S whenever (u, z∗) is
feasible to (DDC

MW ), then v(PC) = v(DDC
MW ) and there is some z̄∗ ∈ R

m
+

such that (x̄, z̄∗) is an optimal solution to the dual.
(b) f is pseudoconvex on S and gj is quasiconvex on S for j = 1, . . . , m, then

v(PC) = v
(

DDC

M̃W

)

and there is some z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is an

optimal solution to the dual.
(c) If f +

∑

l∈J0
z∗l gl(u) is pseudoconvex on S and

∑

j∈Jl
z∗j gj is quasiconvex

on S for l = 1, . . . , s, whenever (u, z∗) is feasible to (DDC
W−MW ), then

v(PC) = v(DDC
W−MW ) and there is some z̄∗ ∈ R

m
+ such that (x̄, z̄∗) is

an optimal solution to the dual.

Proof. We prove only (a), the other strong duality statements following anal-
ogously. The fulfillment of (RCC

KT )(x̄) guarantees via Lemma 6.1.6 that there
is some z̄∗ ∈ R

m
+ such that ∇f(x̄) + ∇

(

z̄∗T g
)

(x̄) = 0 and z̄∗T g(x̄) = 0.
Consequently, (x̄, z̄∗) is feasible to (DDC

MW ) and f(x̄) is a value taken by
both objective functions of the primal and dual, in the corresponding feasible
set, respectively. Due to Theorem 6.1.13, we obtain v(PC) = v(DDC

MW ) and
consequently (x̄, z̄∗) is an optimal solution to the dual. ��
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Remark 6.1.10. The hypotheses used in the latter theorem do not always guar-
antee also the strong duality for (PC) and (DDC

W ) or
(

DDC
fW

)

. The regularity
condition ensures the existence of a common value taken by the objective
functions of the primal and dual but, as pointed out in Remark 6.1.9, the
optimal objective value of the dual can surpass the one of the primal.

Another class of generalizations of convexity employed in Wolfe and Mond-
Weir duality is invexity. The classical invexity was extended in many ways
during the recent years, but the lack of examples justifying these notions
and the complexity of the way they are introduced made us to remain in a
reasonable framework by not considering them here.

Theorem 6.1.15. Assume that the functions f and gj, j = 1, . . . , m, are
invex with respect to the given function η : S × S → R

n on S. Then v(PC) ≥
v(DDC

W ).

Proof. Let be x ∈ A and (u, z∗) feasible to (DDC
W ). Then one has ∇f(u) =

−∇(z∗T g)(u) and z∗T g(x) ≤ 0. Due to the invexity of f on S there is
f(x)−(f(u)+z∗T g(u)) ≥ ∇f(u)T η(x, u)−z∗T g(u) = −∇(z∗T g)(u)T η(x, u)−
z∗T g(u). Using now the invexity of gj on S, j = 1, . . . , m, we obtain
−∇(z∗T g)(u)T η(x, u)−z∗T g(u) ≥ −z∗T g(x) ≥ 0. Consequently, f(x)−(f(u)+
z∗T g(u)) ≥ 0. Since the feasible points were chosen arbitrarily, there is weak
duality for the problems in discussion. ��

Analogously one can prove the following statement.

Theorem 6.1.16. Assume that the functions f and gj, j = 1, . . . , m, are
invex with respect to the function η : S×S → R

n, η(x, u) = x−u, on S. Then
v(PC) ≥

(

DDC
fW

)

.

Via Proposition 6.1.5, Theorem 6.1.15 yields the following consequences.

Theorem 6.1.17. Assume that the functions f and gj, j = 1, . . . , m, are
invex with respect to the given function η : S × S → R

n on S. Then v(PC) ≥
v(DDC

MW ), v(PC) ≥
(

DDC

M̃W

)

and v(PC) ≥ (DDC
W−MW ).

To obtain strong duality we employ again the regularity condition due to
Kuhn and Tucker, alongside the invexity hypotheses used for weak duality.

Theorem 6.1.18. Assume that the functions f and gj, j = 1, . . . , m, are
invex with respect to the given function η : S × S → R

n on S. If x̄ ∈ A is an
optimal solution to (PC) and the regularity condition (RCC

KT )(x̄) is fulfilled,
then v(PC) = v(DDC

W ) and there is a z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is an optimal

solution to the dual.

Proof. The fulfillment of (RCC
KT )(x̄) guarantees via Lemma 6.1.6 that there

is some z̄∗ ∈ R
m
+ such that ∇f(x̄) + ∇

(

z̄∗T g
)

(x̄) = 0 and z̄∗T g(x̄) = 0.
Consequently, (x̄, z̄∗) is feasible to (DDC

W ) and f(x̄) is a value taken by both
objective functions, of the primal and dual, in the corresponding feasible set,
respectively. Due to Theorem 6.1.15, we obtain v(PC) = v(DDC

W ) and that
(x̄, z̄∗) is an optimal solution to the dual. ��
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Theorem 6.1.19. Assume that the functions f and gj, j = 1, . . . , m, are
invex with respect to the function η : S × S → R

n, η(x, u) = x − u, on S. If
x̄ ∈ A is an optimal solution to (PC) and the regularity condition (RCC

KT )(x̄)
is fulfilled, then v(PC) = v

(

DDC
fW

)

and there is a z̄∗ ∈ R
m
+ such that (x̄, z̄∗)

is an optimal solution to the dual.

Theorem 6.1.20. Assume that the functions f and gj, j = 1, . . . , m, are
invex with respect to the given function η : S × S → R

n on S. If x̄ ∈ A
is an optimal solution to (PC) and the regularity condition (RCC

KT )(x̄) is
fulfilled, then v(PC) = v(DDC

MW ) = v
(

DDC

M̃W

)

= v(DDC
W−MW ) and there

is z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is an optimal solution to each of the duals.

Finally, we give without proofs a pair of weak and strong duality state-
ments stated in [135] for Wolfe duality where neither convexity nor one of its
generalizations are assumed for any of the sets and functions involved, being
replaced by a condition imposed on the objective function of the dual.

Theorem 6.1.21. If for each (u, z∗) feasible to (DDC
W ) there is f(u) +

z∗T g(u) = infx∈S

{

f(x) + z∗T g(x)
}

, then v(PC) ≥ v(DDC
W ).

Theorem 6.1.22. If x̄ ∈ A is an optimal solution to (PC), the regularity
condition (RCC

KT )(x̄) is fulfilled and for each (u, z∗) feasible to (DDC
W ) there

is f(u) + z∗T g(u) = infx∈S

{

f(x) + z∗T g(x)
}

, then v(PC) = v(DDC
W ) and

there is a z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is an optimal solution to the dual.

Remark 6.1.11. Some of the weak and strong duality statements given in this
subsection were collected from [11,85,126,138]. Note also that in [128] equiv-
alent characterizations of weak and strong duality for (PC) and (DDC

W ) via
different types of generalized invexities were given.

Remark 6.1.12. Assuming the functions f and gj , j = 1, . . . , m, Fréchet con-
tinuously differentiable on S, the strong duality statements given within this
subsection remain valid when replacing the regularity condition (RCC

KT )(x̄)
with any of the regularity conditions considered in Remark 6.1.8.

6.2 Classical vector Wolfe and Mond-Weir duality

The Wolfe and Mond-Weir duality concepts were employed in vector optimiza-
tion, too. Like in the previous section we begin with the nondifferentiable case,
turning then our attention to the situation when the functions involved are
assumed to be differentiable. Duality theorems are given under both convex-
ity and generalized convexity assumptions. Note that the proper efficiency is
considered in the sense of linear scalarization.
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6.2.1 Vector Wolfe and Mond-Weir duality: nondifferentiable case

Let X and Z be Hausdorff locally convex spaces, the latter partially ordered
by the convex cone C ⊆ Z, and consider the nonempty convex set S ⊆ X,
the proper and convex functions fi : X → R, i = 1, . . . , k, and the proper
and C-convex function g : X → Z, fulfilling ∩k

i=1 dom fi ∩ S ∩ g−1(−C) 	= ∅.
Consider the vector function

f : X → Rk, f(x) =

⎧

⎨

⎩

(f1(x), . . . , fk(x))T , if x ∈
k
∩

i=1
dom fi,

+∞
R

k
+
, otherwise.

Due to the hypotheses on the functions fi, i = 1, . . . , k, f is proper and R
k
+-

convex. Let be the primal vector optimization problem with geometric and
cone constraints

(PV C) Min
x∈A

f(x).

A = {x ∈ S : g(x) ∈ −C}
According to Definition 2.5.4 we say that an element x̄ ∈ A is properly efficient
solution to (PV C) in the sense of linear scalarization if x̄ ∈ ∩k

i=1 dom fi and
f(x̄) ∈ PMinLSc(f(∩k

i=1 dom fi ∩ A), Rk
+). To (PV C) we attach the Wolfe

vector dual problem with respect to properly efficient solutions

(DV C
W ) Max

(λ,u,z∗)∈BC
W

hC
W (λ, u, z∗),

where

BC
W =

{

(λ, u, z∗) ∈ int(Rk
+) × S × C∗ : λ = (λ1, . . . , λk)T ,

k
∑

i=1

λi = 1, 0 ∈ ∂

( k
∑

i=1

λifi

)

(u) + ∂(z∗g)(u) + N(S, u)
}

and

hC
W (λ, u, z∗) =

⎛

⎜

⎝

f1(u) + 〈z∗, g(u)〉
...

fk(u) + 〈z∗, g(u)〉

⎞

⎟

⎠

and the Mond-Weir vector dual problem with respect to properly efficient
solutions

(DV C
MW ) Max

(λ,u,z∗)∈BC
MW

hC
MW (λ, u, z∗),

where

BC
MW =

{

(λ, u, z∗) ∈ int(Rk
+) × S × C∗ : λ = (λ1, . . . , λk)T ,

k
∑

i=1

λi = 1,

(z∗g)(u)≥0, 0∈∂

( k
∑

i=1

λifi

)

(u)+∂(z∗g)(u)+N(S, u)
}
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and
hC

MW (λ, u, z∗) = f(u).

Note that BC
MW ⊆ BC

W and both hC
MW (BC

MW ) and hC
W (BC

W ) are subsets of R
k.

Weak and strong duality statements follow.

Theorem 6.2.1. There is no x ∈ A and no (λ, u, z∗) ∈ BC
W such that fi(x) ≤

hC
Wi(λ, u, z∗) for all i = 1, . . . , k, and fj(x) < hC

Wj(λ, u, z∗) for at least one
j ∈ {1, . . . , k}.

Proof. Assume that there are some x ∈ A and (λ, u, z∗) ∈ BC
W such that

fi(x) ≤ hC
Wi(λ, u, z∗) for all i = 1, . . . , k, and fj(x) < hC

Wj(λ, u, z∗) for at
least one j ∈ {1, . . . , k}. From here we obtain immediately

∑k
i=1 λifi(x) <

∑k
i=1 λih

C
Wi(λ, u, z∗). On the other hand, from the way the feasible set of

the dual is defined one gets, via (2.8),
∑k

i=1 λi(fi(x) + (z∗g)(x) + δS(x)) −
∑k

i=1 λi(fi(u)+(z∗g)(u)+δS(u)) ≥ 0. Taking into consideration that x, u ∈ S

and that (z∗g)(x) ≤ 0, we obtain
∑k

i=1 λifi(x) ≥
∑k

i=1 λifi(u) + (z∗g)(u) =
∑k

i=1 λi hC
Wi(λ, u, z∗), which contradicts the inequality obtained in the begin-

ning of the proof. Thus the supposition we made is false and there is weak
duality for the problems in discussion. ��

Note that the convexity assumptions on S, fi, i = 1, . . . , k, and g are not
necessary for proving the weak duality statement.

Concerning the solutions concepts we use here, recall that (λ, u, z∗) ∈ BC
W

is efficient to (DV C
W ) if hC

W (λ, u, z∗) ∈ Min(hC
W (BC

W ), Rk
+) and (λ, u, z∗) ∈

BC
MW is efficient to (DV C

MW ) if hC
MW (λ, u, z∗) ∈ Min(hC

MW (BC
MW ), R

k
+), re-

spectively.
For strong duality we use the following regularity condition (see also sec-

tion 4.2)

(RCV CL) ∃x′ ∈
k
∩

i=1
dom fi ∩ S such that g(x′) ∈ − int(C).

Theorem 6.2.2. Assume that the regularity condition (RCV CL) is fulfilled. If
x̄ is a properly efficient solution to (PV C) and one of the following additional
conditions

(i) fi, i = 1, . . . , k, and g are continuous at a point in ∩k
i=1 dom fi∩dom g∩S;

(ii) ∩k
i=1 dom fi ∩ dom g ∩ int(S) 	= ∅ and (fi is continuous at a point in

∩k
i=1 dom fi ∩ dom g for i = 1, . . . , k, or g is continuous at a point in

∩k
i=1 dom fi ∩ dom g);

is fulfilled, then there exists (λ̄, z̄∗) ∈ int(Rk
+) × C∗ such that (λ̄, x̄, z̄∗) is an

efficient solution to (DV C
W ) and fi(x̄) = hC

Wi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Proof. Since x̄ is a properly efficient solution to (PV C), there is a λ̃ =
(λ̃1, . . . , λ̃k)T ∈ int(Rk

+) such that x̄ is an optimal solution to the scalar opti-
mization problem
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inf
x∈A

k
∑

i=1

λ̃ifi(x).

Denoting λ̄ := (1/(
∑k

i=1 λ̃i))λ̃, it is obvious that λ̄ = (λ̄1, . . . , λ̄k)T ∈ int(Rk
+),

∑k
i=1 λ̄i = 1 and x̄ is an optimal solution to the scalar optimization problem

inf
x∈A

k
∑

i=1

λ̄ifi(x).

Now Theorem 3.3.16 ensures the existence of some z̄∗ ∈ C∗ for which
∑k

i=1 λ̄ifi (x̄) = infx∈S{
∑k

i=1 λ̄ifi(x) + (z̄∗g)(x)} and (z̄∗g)(x̄) = 0. These
yield 0 ∈ ∂(

∑k
i=1 λ̄ifi + (z̄∗g) + δS)(x̄), which, when one of the addi-

tional conditions (i) − (ii) is fulfilled, means actually 0 ∈ ∂(
∑k

i=1 λ̄ifi)(x̄) +
∂(z̄∗g)(x̄) + N(S, x̄). Therefore (λ̄, x̄, z̄∗) is feasible to (DV C

W ). Note also that
fi(x̄) = fi(x̄) + (z̄∗g)(x̄) for i = 1, . . . , k. The efficiency of (λ̄, x̄, z̄∗) to (DV C

W )
follows by Theorem 6.2.1. ��

Analogously one can prove similar duality statements for the Mond-Weir
vector dual to (PV C).

Theorem 6.2.3. There is no x ∈ A and no (λ, u, z∗) ∈ BC
MW such that

fi(x) ≤ hC
MWi(λ, u, z∗) for i = 1, . . . , k, and fj(x) < hC

MWj(λ, u, z∗) for at
least one j ∈ {1, . . . , k}.

Theorem 6.2.4. Assume that the regularity condition (RCV CL) is fulfilled.
If x̄ is a properly efficient solution to (PV C) and one of the additional con-
ditions (i) − (ii) from Theorem 6.2.2 is satisfied, then there exists (λ̄, z̄∗) ∈
int(Rk

+) × C∗ such that (λ̄, x̄, z̄∗) is an efficient solution to (DV C
MW ) and

fi(x̄) = hC
MWi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Remark 6.2.1. (a) The conclusions of Theorem 6.2.2 and Theorem 6.2.4, re-
spectively, remain valid if one replaces the regularity condition (RCV CL) by
any condition that ensures the stability of the scalar optimization problem

inf
x∈A

k
∑

i=1

λ̄ifi(x)

with respect to its Lagrange dual. For instance (see also Remark 4.3.5), in case
X and Z are Fréchet spaces, S is closed, fi is lower semicontinuous, i = 1, ..., k,
and g is C-epi closed, one can use the condition 0 ∈ sqri(g(∩k

i=1 dom fi ∩ S ∩
dom g)+C), while if lin(g(∩k

i=1 dom fi∩S∩dom g)+C) is a finite dimensional
linear subspace one can assume instead that 0 ∈ ri(g(∩k

i=1 dom fi∩S∩dom g)+
C).

(b) Instead of the additional conditions (i) − (ii) one can consider in the
last strong duality theorems, for instance, conditions similar to (iii)− (iv) in
Theorem 6.1.2, like
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(iii’) X is a Fréchet space, S is closed, fi is lower semicontinuous, i = 1, ..., k, g is
star C-lower semicontinuous and 0 ∈ sqri(∩k

i=1 dom fi×dom g×S−ΔX3);
(iv’) dim(lin(∩k

i=1 dom fi ×dom g×S−ΔX3)) < +∞ and 0 ∈ ri(∩k
i=1 dom fi ×

dom g × S − ΔX3).

Remark 6.2.2. When k = 1 the duals and the duality statements from the this
subsection collapse into the corresponding ones from the scalar case.

6.2.2 Vector Wolfe and Mond-Weir duality: differentiable case

Next we assume that the functions involved in the formulation of the primal
vector optimization problem (PV C) are differentiable. Let X be a Hausdorff
locally convex space, take Z = R

m, partially ordered by the nonnegative
orthant R

m
+ and consider the nonempty open and not necessarily convex set

S ⊆ X, while the functions fi : S → R, i = 1, . . . , k, and gj : S → R, j =
1, . . . , m, are assumed to be Gâteaux differentiable on S, but not necessarily
convex on S. Denote f = (f1, . . . , fk)T and g = (g1, . . . , gm)T and assume
that they fulfill S∩g−1(−R

m
+ ) 	= ∅. To the primal vector optimization problem

(PV C)
(PV C) Min

x∈A
f(x)

A = {x ∈ S : g(x) � 0}
we attach the differentiable Wolfe vector dual problem with respect to prop-
erly efficient solutions

(DDV C
W ) Max

(λ,u,z∗)∈BDC
W

hDC
W (λ, u, z∗),

where

BDC
W =

{

(λ, u, z∗) ∈ int(Rk
+) × S × R

m
+ : λ = (λ1, . . . , λk)T ,

z∗ = (z∗1 , . . . , z∗m)T ,

k
∑

i=1

λi = 1,

∇
( k
∑

i=1

λifi

)

(u) + ∇
( m
∑

j=1

z∗j gj

)

(u) = 0
}

and

hDC
W (λ, y∗, u) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1(u) +
m
∑

j=1

z∗j gj(u)

...

fk(u) +
m
∑

j=1

z∗j gj(u)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

and the differentiable Mond-Weir vector dual problem with respect to prop-
erly efficient solutions
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(DDV C
MW ) Max

(λ,u,z∗)∈BDC
MW

hDC
MW (λ, u, z∗),

where

BDC
MW =

{

(λ, u, z∗) ∈ int(Rk
+) × S × R

m
+ : λ = (λ1, . . . , λk)T ,

k
∑

i=1

λi = 1,

z∗ = (z∗1 , . . . , z∗m)T ,

m
∑

j=1

z∗j gj(u) ≥ 0,

∇
( k
∑

i=1

λifi

)

(u) + ∇
( m
∑

j=1

z∗j gj

)

(u) = 0
}

and
hDC

MW (λ, u, z∗) = f(u).

When the functions involved are taken Fréchet differentiable, the formu-
lation of these duals is formally the same. Note that BDC

MW ⊆ BDC
W and

hDC
MW (BDC

MW ), hDC
W (BDC

W ) ⊆ R
k. The weak and strong duality statements fol-

low, first for the convex case, then for the situation when the functions involved
have only some generalized convexity properties. The proofs in the convex case
follow from the ones given in subsection 6.2.1.

Theorem 6.2.5. Assume that the set S is moreover convex and the functions
fi : S → R, i = 1, . . . , k, and gj : S → R, j = 1, . . . , m, are convex on S. Then
there is no x ∈ A and no (λ, u, z∗) ∈ BDC

W such that fi(x) ≤ hDC
Wi (λ, u, z∗) for

i = 1, . . . , k, and fj(x) < hDC
Wj (λ, u, z∗) for at least one j ∈ {1, . . . , k}.

Theorem 6.2.6. Assume that the set S is moreover convex, the functions
fi : S → R, i = 1, . . . , k, and gj : S → R, j = 1, . . . , m, are convex on S
and the regularity condition (RCV CL) is fulfilled. If x̄ is a properly efficient
solution to (PV C), then there exists (λ̄, z̄∗) ∈ int(Rk

+)×R
m
+ such that (λ̄, x̄, z̄∗)

is an efficient solution to (DDV C
W ) and fi(x̄) = hDC

Wi (λ̄, x̄, z̄∗) for i = 1, . . . , k.

Theorem 6.2.7. Assume that the set S is moreover convex and the functions
fi : S → R, i = 1, . . . , k, and gj : S → R, j = 1, . . . , m, are convex on S. Then
there is no x ∈ A and no (λ, u, z∗) ∈ BDC

MW such that fi(x) ≤ hDC
MWi(λ, u, z∗)

for i = 1, . . . , k, and fj(x) < hDC
MWj(λ, u, z∗) for at least one j ∈ {1, . . . , k}.

Theorem 6.2.8. Assume that the set S is moreover convex, the functions fi :
S → R, i = 1, . . . , k, and gj : S → R, j = 1, . . . , m, are convex on S and the
regularity condition (RCV CL) is fulfilled. If x̄ is a properly efficient solution
to (PV C), then there exists (λ̄, z̄∗) ∈ int(Rk

+) × R
m
+ such that (λ̄, x̄, z̄∗) is an

efficient solution to (DDV C
MW ) and fi(x̄) = hDC

MWi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Remark 6.2.3. Note that in both Theorem 6.2.6 and Theorem 6.2.8 the regu-
larity condition can be replaced according to Remark 6.2.1(a).
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Now let us focus on vector duality for the pairs of vector problems we
considered so far when generalized convexity properties are considered for the
functions in discussion. For this, let X = R

n, Z = R
m and C = R

m
+ and take

the functions fi : S → R, i = 1, . . . , k, and gj : S → R, j = 1, . . . , m, be
Fréchet differentiable on S. First, only pseudoconvexity is used.

Theorem 6.2.9. Assume that S is moreover convex and for each (λ, u, z∗) ∈
BDC

W the function fi +z∗T g is pseudoconvex on S, for i = 1, . . . , k. Then there
is no x ∈ A and no (λ, u, z∗) ∈ BDC

W such that fi(x) ≤ hDC
Wi (λ, u, z∗) for

i = 1, . . . , k, and fj(x) < hDC
Wj (λ, u, z∗) for at least one j ∈ {1, . . . , k}.

Proof. Assume the contrary, i.e. that there are some x ∈ A and (λ, u, z∗) ∈
BDC

W with fi(x) ≤ hDC
Wi (λ, u, z∗) for i = 1, . . . , k, and fj(x) < hDC

Wj (λ, u, z∗) for
at least one j ∈ {1, . . . , k}. The functions fi+z∗T g, i = 1, . . . , k, being pseudo-
convex on S, thus also quasiconvex on S, we get ∇(fi +z∗T g)(u)T (x−u) ≤ 0,
i = 1, . . . , k. On the other hand, the pseudoconvexity on S of fj +z∗T g yields,
since fj(x) < hDC

Wj (λ, u, z∗), ∇(fj + z∗T g)(u)T (x − u) < 0. Consequently,
∇(

∑k
i=1 λifi +z∗T g)(u)T (x−u) < 0, which contradicts one of the constraints

of the vector dual problem. Consequently, there is weak duality for the prob-
lems in discussion. ��

Theorem 6.2.10. Assume that the set S is moreover convex and for each
(λ, u, z∗) ∈ BDC

W the function fi + z∗T g is pseudoconvex on S for i = 1, . . . , k.
If x̄ is a properly efficient solution to (PV C) and the regularity condition
(RCC

KT )(x̄) is fulfilled, then there exists (λ̄, z̄∗) ∈ int(Rk
+) × R

m
+ such that

(λ̄, x̄, z̄∗) is an efficient solution to (DDV C
W ) and fi(x̄) = hDC

Wi (λ̄, x̄, z̄∗) for
i = 1, . . . , k.

Proof. The satisfaction of the regularity condition ensures the existence of
some λ̄ ∈ int(Rk

+) and z̄∗ ∈ R
m
+ such that

∑k
i=1 λ̄i = 1, ∇(

∑k
i=1 λ̄ifi)(x̄) +

∇(z̄∗T g)(x̄) = 0 and z̄∗T g(x̄) = 0. Thus (λ̄, x̄, z̄∗) ∈ BDC
W . The efficiency of

this element to the vector dual follows via Theorem 6.2.9. ��

Similar duality statements for the differentiable Mond-Weir vector dual
can be proven analogously.

Theorem 6.2.11. Assume that the set S is moreover convex and for each
(λ, u, z∗) ∈ BDC

MW the function fi +z∗T g is pseudoconvex on S for i = 1, . . . , k.
Then there is no x ∈ A and no (λ, u, z∗) ∈ BDC

MW such that fi(x) ≤
hDC

MWi(λ, u, z∗) for i = 1, . . . , k, and fj(x) < hDC
MWj(λ, u, z∗) for at least one

j ∈ {1, . . . , k}.

Theorem 6.2.12. Assume that the set S is moreover convex and for each
(λ, u, z∗) ∈ BDC

MW the function fi +z∗T g is pseudoconvex on S for i = 1, . . . , k.
If x̄ is a properly efficient solution to (PV C) and the regularity condition
(RCC

KT )(x̄) is fulfilled, then there exists (λ̄, z̄∗) ∈ int(Rk
+) × R

m
+ such that

(λ̄, x̄, z̄∗) is an efficient solution to (DDV C
MW ) and fi(x̄) = hDC

MWi(λ̄, x̄, z̄∗)
for i = 1, . . . , k.
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Duality statements for the differentiable Mond-Weir vector dual can be
obtained under weaker hypotheses by employing also quasiconvexity.

Theorem 6.2.13. Assume that the set S is moreover convex, fi is pseudo-
convex on S, i = 1, . . . , k, and for each (λ, u, z∗) ∈ BDC

MW the function z∗T g
is quasiconvex on S. Then there is no x ∈ A and no (λ, u, z∗) ∈ BDC

MW such
that fi(x) ≤ hDC

MWi(λ, u, z∗) for i = 1, . . . , k, and fj(x) < hDC
MWj(λ, u, z∗) for

at least one j ∈ {1, . . . , k}.

Proof. Assume the contrary, i.e. that there are some x ∈ A and (λ, u, z∗) ∈
BDC

MW such that fi(x) ≤ hDC
MWi(λ, u, z∗) for i = 1, . . . , k, and fj(x) <

hDC
MWj(λ, u, z∗) for at least one j ∈ {1, . . . , k}. The functions fi, i = 1, . . . , k,

being pseudoconvex on S, thus also quasiconvex on S, we get ∇fi(u)T (x −
u) ≤ 0, i = 1, . . . , k. Moreover, the pseudoconvexity on S of fj implies
∇fj(u)T (x − u) < 0 and consequently ∇(

∑k
i=1 λifi)(u)T (x − u) < 0, that

yields, using the construction of BDC
MW , ∇

(

z∗T g
)

(u)T (x − u) > 0. On the
other hand, the way the feasible sets of the pair of problems in discussion
are built yields z∗T g(x) ≤ z∗T g(u). Employing here the quasiconvexity on S
of z∗T g it follows ∇

(

z∗T g
)

(u)T (x − u) ≤ 0, which contradicts a previously
obtained inequality. Consequently, there is weak duality for the problems in
discussion. ��

The following strong duality statement can be proven similarly to the
corresponding assertion involving Wolfe vector duality, via Theorem 6.2.13.

Theorem 6.2.14. Assume that the set S is moreover convex, fi is pseu-
doconvex on S, i = 1, . . . , k, and for each (λ, u, z∗) ∈ BDC

MW the function
z∗T g is quasiconvex on S. If x̄ is a properly efficient solution to (PV C) and
the regularity condition (RCC

KT )(x̄) is fulfilled, then there exists (λ̄, z̄∗) ∈
int(Rk

+) × R
m
+ such that (λ̄, x̄, z̄∗) is an efficient solution to (DDV C

MW ) and
fi(x̄) = hDC

MWi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Remark 6.2.4. In Theorem 6.2.13 and Theorem 6.2.14 the hypothesis of pseu-
doconvexity on S for fi, i = 1, . . . , k, can be replaced by assuming that
∑k

i=1 λifi is pseudoconvex on S whenever (λ, u, z∗) ∈ BDC
MW .

Vector duality statements of Wolfe type and Mond-Weir type when the
functions involved are invex with respect to the same function on S are con-
sidered, too. The skipped proofs are analogous to the ones just presented in
this subsection.

Theorem 6.2.15. Assume that the functions fi, i = 1, . . . , k, and gj, j =
1, . . . , m, are invex with respect to the same η : S × S → R

n on S. Then
there is no x ∈ A and no (λ, u, z∗) ∈ BDC

W such that fi(x) ≤ hDC
Wi (λ, u, z∗) for

i = 1, . . . , k, and fj(x) < hDC
Wj (λ, u, z∗) for at least one j ∈ {1, . . . , k}.



268 6 Wolfe and Mond-Weir duality concepts

Proof. Assume the contrary, i.e. that there are some x ∈ A and (λ, u, z∗) ∈
BDC

W with fi(x) ≤ hDC
Wi (λ, u, z∗) for i = 1, . . . , k, and fj(x) < hDC

Wj (λ, u, z∗)
for at least one j ∈ {1, . . . , k}. Then

∑k
i=1 λi(fi(x) − (fi(u) + z∗T g(u))) < 0.

On the other hand, by using the invexity hypotheses, we get
∑k

i=1 λi(fi(x)−
(fi(u) + z∗T g(u))) ≥ η(x, u)T (∇(

∑k
i=1 λifi)(u) + ∇(z∗T g)(u)) − z∗T g(x) =

−z∗T g(x) ≥ 0, which contradicts the first obtained inequality. Consequently,
there is weak duality for the problems in discussion. ��

Theorem 6.2.16. Assume that the functions fi, i = 1, . . . , k, and gj, j =
1, . . . , m, are invex with respect to the same η : S × S → R

n on S. If x̄ is a
properly efficient solution to (PV C) and the regularity condition (RCC

KT )(x̄)
is fulfilled, then there exists (λ̄, z̄∗) ∈ int(Rk

+) × R
m
+ such that (λ̄, x̄, z̄∗) is an

efficient solution to (DDV C
W ) and fi(x̄) = hDC

Wi (λ̄, x̄, z̄∗) for i = 1, . . . , k.

Analogously, one can prove the similar statements for the Mond-Weir vec-
tor dual.

Theorem 6.2.17. Assume that the functions fi, i = 1, . . . , k, and gj, j =
1, . . . , m, are invex with respect to the same η : S ×S → R

n on S. Then there
is no x ∈ A and no (λ, u, z∗) ∈ BDC

MW such that fi(x) ≤ hDC
MWi(λ, u, z∗) for

i = 1, . . . , k, and fj(x) < hDC
MWj(λ, u, z∗) for at least one j ∈ {1, . . . , k}.

Theorem 6.2.18. Assume that the functions fi, i = 1, . . . , k, and gj, j =
1, . . . , m, are invex with respect to the same η : S × S → R

n on S. If x̄ is a
properly efficient solution to (PV C) and the regularity condition (RCC

KT )(x̄)
is fulfilled, then there exists (λ̄, z̄∗) ∈ int(Rk

+) × R
m
+ such that (λ̄, x̄, z̄∗) is an

efficient solution to (DDV C
MW ) and fi(x̄) = hDC

MWi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Remark 6.2.5. The statements on Wolfe and Mond-Weir vector duality from
above remain valid when the invexity hypotheses are replaced by asking
∑k

i=1 λifi and z∗T g to be invex with respect to the same η on S for all
(λ, u, z∗) feasible to the corresponding vector dual.

Remark 6.2.6. In papers like [62, 191, 192] it is claimed to be proven strong
duality statements for (PV C) and its Wolfe and Mond-Weir vector dual prob-
lems where properly efficient solutions in the sense of Geoffrion are obtained
for the vector duals under hypotheses similar to the ones considered in this
section. We doubt that the proofs of those results are correct.

Remark 6.2.7. In papers like [61,99,195] there are given strong duality state-
ments for (PV C) and its Wolfe and Mond-Weir vector dual problems where
efficient solutions are considered for the primal and efficient solutions are ob-
tained for the vector duals. These assertions are based on the fact that x̄ ∈ A
is efficient to (PV C) if and only if it is an optimal solution to each of the
scalar optimization problems
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inf
x∈A,

fj(x)≤fj(x̄),
j∈{1,...,k}\{i}

fi(x)

where i = 1, . . . , k. In this case the regularity conditions that ensure strong
vector duality are too demanding, namely asking the stability of each of these
scalar optimization problems. This is why we omit these investigations from
our presentation.

Remark 6.2.8. In [6] a Mond-Weir vector dual problem to (PV C) is proposed,
where the constraint

∑m
j=1 z∗j gj(u) ≥ 0 is replaced by z∗j gj(u) ≥ 0 for j =

1, . . . , m. Weak and strong duality are proven under invexity hypotheses.

Remark 6.2.9. Assuming the functions fi, i = 1, . . . , k, and gj , j = 1, . . . , m,
to be Fréchet continuously differentiable on S, the strong duality statements
given within this subsection remain valid when replacing the regularity con-
dition (RCC

KT )(x̄) with any of the regularity conditions considered in Remark
6.1.8.

Remark 6.2.10. When k = 1 the duals and the duality statements from the
this subsection collapse into the corresponding ones from the scalar case.

6.2.3 Vector Wolfe and Mond-Weir duality with respect to weakly
efficient solutions

Let X and Z be Hausdorff locally convex spaces, the latter partially ordered
by the convex cone C ⊆ Z, and consider the nonempty convex set S ⊆ X,
the proper and convex functions fi : X → R, i = 1, . . . , k, and the proper
and C-convex function g : X → Z fulfilling ∩k

i=1 dom fi ∩ S ∩ g−1(−C) 	= ∅.
Further, consider the vector function

f : X → Rk, f(x) =

⎧

⎨

⎩

(f1(x), . . . , fk(x))T , if x ∈
k
∩

i=1
dom fi,

+∞
R

k
+
, otherwise,

which is proper and R
k
+-convex. Let be the primal vector optimization problem

with geometric and cone constraints

(PV C
w ) WMin

x∈A
f(x).

A = {x ∈ S : g(x) ∈ −C}

According to Definition 2.5.1, an element x̄ ∈ A is said to be a weakly efficient
solution to (PV C

w ) if x̄ ∈ ∩k
i=1 dom fi and f(x̄) ∈ WMin(f(∩k

i=1 dom fi ∩
A), Rk

+). To (PV C
w ) we attach the Wolfe vector dual problem with respect to

weakly efficient solutions

(DV C
Ww) Max

(λ,u,z∗)∈BC
W w

hC
Ww(λ, u, z∗),
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where

BC
Ww =

{

(λ, u, z∗) ∈ (Rk
+\{0}) × S × C∗ : λ = (λ1, . . . , λk)T ,

k
∑

i=1

λi = 1,

0 ∈ ∂

( k
∑

i=1

λifi

)

(u) + ∂(z∗g)(u) + N(S, u)
}

and

hC
Ww(λ, u, z∗) =

⎛

⎜

⎝

f1(u) + 〈z∗, g(u)〉
...

fk(u) + 〈z∗, g(u)〉

⎞

⎟

⎠ ,

and the Mond-Weir vector dual problem with respect to weakly efficient so-
lutions

(DV C
MWw) Max

(λ,u,z∗)∈BC
MW w

hC
MWw(λ, u, z∗),

where

BC
MWw =

{

(λ, u, z∗) ∈ (Rk
+\{0}) × S × C∗ : λ = (λ1, . . . , λk)T ,

k
∑

i=1

λi = 1,

(z∗g)(u)≥0, 0∈∂

( k
∑

i=1

λifi

)

(u)+∂(z∗g)(u)+N(S, u)
}

and
hC

MWw(λ, u, z∗) = f(u).

Note that BC
MWw ⊆ BC

Ww, while hC
Ww(BC

Ww) and hC
MWw(BC

MWw) are sub-
sets of R

k. The weak and strong duality statements follow. Some proofs are
skipped, being similar to the ones in subsection 6.2.1 and subsection 6.2.2

Theorem 6.2.19. There is no x ∈ A and no (λ, u, z∗) ∈ BC
Ww such that

fi(x) < hC
Wwi(λ, u, z∗) for all i = 1, . . . , k.

Theorem 6.2.20. If x̄ is a weakly efficient solution to (PV C
w ), the regularity

condition (RCV CL) is fulfilled and one of the following additional conditions
(i) − (ii) from Theorem 6.2.2 is fulfilled, then there exists (λ̄, z̄∗) ∈ (Rk

+ \
{0}) × C∗ such that (λ̄, x̄, z̄∗) is a weakly efficient solution to (DV C

Ww) and
fi(x̄) = hC

Wwi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Proof. Since f(x̄) ∈ WMin(f(∩k
i=1 dom fi ∩ A), Rk

+), there is a λ̄ ∈ R
k
+\{0}

such that x̄ is an optimal solution to the scalar optimization problem

inf
x∈A

k
∑

i=1

λ̄ifi(x).
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Like in the proof of Theorem 6.2.2, one can take without loss of generality
∑k

i=1 λ̄i = 1. Denoting I(λ̄) = {i ∈ {1, . . . , k} : λ̄i > 0} 	= ∅, we obtain that x̄
is an optimal solution to the scalar optimization problem

inf
x∈A

{

∑

i∈I(λ̄)

λ̄ifi(x) + δ ∩
i/∈I(λ̄)

dom fi
(x)

}

.

Analogously to the proof of Theorem 6.2.2, by Theorem 3.3.16 there is z̄∗ ∈ C∗

for which (z̄∗g)(x̄) = 0 and 0 ∈ ∂
(∑

i∈I(λ̄) λ̄ifi + δ∩i/∈I(λ̄) dom fi
+ (z̄∗g) +

δS

)

(x̄). By one of the additional conditions (i) − (ii), one gets further 0 ∈
∂
(∑

i∈I(λ̄) λ̄ifi+δ∩i/∈I(λ̄) dom fi

)

(x̄)+∂(z̄∗g)(x̄)+N(S, x̄) = ∂
(∑k

i=1 λ̄ifi

)

(x̄)+
∂(z̄∗g)(x̄) + N(S, x̄). Therefore (λ̄, x̄, z̄∗) is feasible to (DV C

W ). Note also that
fi(x̄) = fi(x̄) + (z̄∗g)(x̄) for i = 1, . . . , k. The weak efficiency of (λ̄, x̄, z̄∗) to
(DV C

W ) follows by Theorem 6.2.19. ��

Theorem 6.2.21. There is no x ∈ A and no (λ, u, z∗) ∈ BC
MWw such that

fi(x) < hC
MWwi(λ, u, z∗) for all i = 1, . . . , k.

Theorem 6.2.22. If x̄ is a weakly efficient solution to (PV C
w ), the regularity

condition (RCV CL) is fulfilled and one of the following additional conditions
(i) − (ii) from Theorem 6.2.2 is fulfilled, then there exists (λ̄, z̄∗) ∈ (Rk

+ \
{0}) × C∗ such that (λ̄, x̄, z̄∗) is a weakly efficient solution to (DV C

MWw) and
fi(x̄) = hC

MWwi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Remark 6.2.11. (a) Note that in both Theorem 6.2.20 and Theorem 6.2.22 the
regularity condition (RCV CL) can be replaced according to Remark 6.2.1(a),
while as additional condition one can assume (iv′).

(b) It is worth noticing that in the strong duality theorems mentioned
above one cannot use directly the eventual fulfillment of the additional condi-
tion (iii′) from Remark 6.2.1, since δ∩i/∈I(λ̄) dom fi

is only proper and convex,
but not necessarily lower semicontinuous, when fi, i = 1, . . . , k, are proper,
convex and lower semicontinuous. When X and Z are Fréchet spaces, to con-
sider additional conditions similar to (iii)′ from Remark 6.2.1 the reader is
referred to [207].

Remark 6.2.12. In [200], where all the spaces involved are taken normed and
the functions f and g are cone-convex, vector duality of Wolfe type is consid-
ered with respect to weakly efficient solutions.

For the remainder of this subsection we take Z = R
m, C = R

m
+ and

S ⊆ X an open set, not necessarily convex. First let the functions fi : S → R,
i = 1, . . . , k, and gj : S → R, j = 1, . . . , m, be Gâteaux differentiable on S
and not necessarily convex on S and denote g = (g1, . . . , gm)T .

The differentiable Wolfe vector dual problem with respect to weakly effi-
cient solutions is
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(DDV C
W ) Max

(λ,u,z∗)∈BDC
W w

hDC
Ww(λ, u, z∗),

where

BDC
Ww =

{

(λ, u, z∗) ∈ (Rk
+\{0}) × S × R

m
+ : λ = (λ1, . . . , λk)T ,

z∗ = (z∗1 , . . . , z∗m)T ,

k
∑

i=1

λi = 1,

∇
( k
∑

i=1

λifi

)

(u) + ∇
( m
∑

j=1

z∗j gj

)

(u) = 0
}

and

hDC
Ww(λ, y∗, u) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1(u) +
m
∑

j=1

z∗j gj(u)

...

fk(u) +
m
∑

j=1

z∗j gj(u)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

and the differentiable Mond-Weir vector dual problem with respect to weakly
efficient solutions

(DDV C
MW ) Max

(λ,u,z∗)∈BDC
MW w

hDC
MWw(λ, u, z∗),

where

BDC
MWw =

{

(λ, u, z∗) ∈ (Rk
+\{0}) × S × R

m
+ : λ = (λ1, . . . , λk)T ,

k
∑

i=1

λi = 1,

z∗ = (z∗1 , . . . , z∗m)T ,

m
∑

j=1

z∗j gj(u) ≥ 0,

∇
( k
∑

i=1

λifi

)

(u) + ∇
( m
∑

j=1

z∗j gj

)

(u) = 0
}

and
hDC

MWw(λ, u, z∗) = f(u).

When the functions involved are taken Fréchet differentiable the formula-
tion of these duals is formally the same. Note that BDC

MWw ⊆ BDC
Ww and

hDC
MWw(BDC

MWw), hDC
Ww(BDC

Ww) ⊆ R
k. Weak and strong duality statements for

these vector duals follow.

Theorem 6.2.23. Assume that the set S is moreover convex and the func-
tions fi, i = 1, . . . , k, and gj, j = 1, . . . , m, are convex on S. Then there
is no x ∈ A and no (λ, u, z∗) ∈ BDC

Ww such that fi(x) < hDC
Wwi(λ, u, z∗) for

i = 1, . . . , k.
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Theorem 6.2.24. Assume that the set S is moreover convex and the func-
tions fi, i = 1, . . . , k, and gj, j = 1, . . . , m, are convex on S. If x̄ is a weakly
efficient solution to (PV C

w ) and the regularity condition (RCV CL) is fulfilled,
then there exists (λ̄, z̄∗) ∈ (Rk

+ \ {0}) × R
m
+ such that (λ̄, x̄, z̄∗) is a weakly

efficient solution to (DDV C
Ww) and fi(x̄) = hDC

Wwi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Theorem 6.2.25. Assume that the set S is moreover convex and the func-
tions fi, i = 1, . . . , k, and gj, j = 1, . . . , m, are convex on S. Then there is
no x ∈ A and no (λ, u, z∗) ∈ BDC

MWw such that fi(x) < hDC
MWwi(λ, u, z∗) for

i = 1, . . . , k.

Theorem 6.2.26. Assume that the set S is moreover convex and the func-
tions fi, i = 1, . . . , k, and gj, j = 1, . . . , m, are convex on S. If x̄ is a weakly
efficient solution to (PV C

w ) and the regularity condition (RCV CL) is fulfilled,
then there exists (λ̄, z̄∗) ∈ (Rk

+ \ {0}) × R
m
+ such that (λ̄, x̄, z̄∗) is a weakly

efficient solution to (DV DC
MWw) and fi(x̄) = hDC

MWwi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Remark 6.2.13. Note that in both Theorem 6.2.24 and Theorem 6.2.26 the
regularity conditions can be replaced according to Remark 6.2.1(a).

Generalized convexity properties can be considered for the functions in-
volved without losing the vector duality statements. Further let be X = R

n

and the functions fi : S → R, i = 1, . . . , k, and gj : S → R, j = 1, . . . , m,
Fréchet differentiable on S and not necessarily convex on S. We begin with
the duality statements for the differentiable Wolfe vector dual.

Theorem 6.2.27. Assume that for each (λ, u, z∗) ∈ BDC
Ww the function fi +

z∗T g is pseudoconvex on S for i = 1, . . . , k. Then there is no x ∈ A and no
(λ, u, z∗) ∈ BDC

Ww such that fi(x) < hDC
Wwi(λ, u, z∗) for i = 1, . . . , k.

Theorem 6.2.28. Assume that for each (λ, u, z∗) ∈ BDC
Ww the function fi +

z∗T g is pseudoconvex on S for i = 1, . . . , k. If x̄ is a weakly efficient solution to
(PV C

w ) and the regularity condition (RCC
KT )(x̄) is satisfied, then there exists

(λ̄, z̄∗) ∈ (Rk
+ \ {0}) × R

m
+ such that (λ̄, x̄, z̄∗) is a weakly efficient solution to

(DDV C
Ww) and fi(x̄) = hDC

Wwi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

The duality statements for the differentiable Mond-Weir vector dual follow.

Theorem 6.2.29. Assume that for each (λ, u, z∗) ∈ BDC
MWw the function fi +

z∗T g is pseudoconvex on S for i = 1, . . . , k. Then there is no x ∈ A and no
(λ, u, z∗) ∈ BDC

MWw such that fi(x) < hDC
MWwi(λ, u, z∗) for i = 1, . . . , k.

Theorem 6.2.30. Assume that for each (λ, u, z∗) ∈ BDC
MWw the function fi +

z∗T g is pseudoconvex on S for i = 1, . . . , k. If x̄ is a weakly efficient solution to
(PV C

w ) and the regularity condition (RCC
KT )(x̄) is satisfied, then there exists

(λ̄, z̄∗) ∈ (Rk
+ \ {0}) × R

m
+ such that (λ̄, x̄, z̄∗) is a weakly efficient solution to

(DDV C
MWw) and fi(x̄) = hDC

MWwi(λ̄, x̄, z̄∗) for i = 1, . . . , k.
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Note that, unlike the corresponding statements from the previous subsec-
tion, in the last four assertions it was not necessary to impose the convexity of
the set S. Duality statements involving the differentiable Mond-Weir vector
dual can be obtained under weaker hypotheses by employing also quasicon-
vexity.

Theorem 6.2.31. Assume that that the set S is moreover convex, fi is
pseudoconvex on S, i = 1, . . . , k, and z∗T g is quasiconvex on S for each
(λ, u, z∗) ∈ BDC

MWw. Then there is no x ∈ A and no (λ, u, z∗) ∈ BDC
MWw such

that fi(x) < hDC
MWwi(λ, u, z∗) for i = 1, . . . , k.

Theorem 6.2.32. Assume that that the set S is moreover convex, fi is pseu-
doconvex on S, i = 1, . . . , k, and z∗T g is quasiconvex on S for each (λ, u, z∗) ∈
BDC

MWw. If x̄ is a weakly efficient solution to (PV C
w ) and the regularity con-

dition (RCC
KT )(x̄) is satisfied, then there exists (λ̄, z̄∗) ∈ (Rk

+ \ {0}) × R
m
+

such that (λ̄, x̄, z̄∗) is a weakly efficient solution to (DDV C
MWw) and fi(x̄) =

hDC
MWwi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Remark 6.2.14. In Theorem 6.2.31 and Theorem 6.2.32 the hypothesis of pseu-
doconvexity on S for fi, i = 1, . . . , k, can be replaced by assuming that
∑k

i=1 λifi is pseudoconvex on S for each (λ, u, z∗) ∈ BDC
MWw.

Remark 6.2.15. In [197], in the case S = R
n, Wolfe vector duality was proven

under the generalized convexity hypotheses of Theorem 6.2.27 and Mond-Weir
vector duality under the ones of Theorem 6.2.31, both with respect to weakly
efficient solutions.

Invexity can be employed to deliver vector duality statements in this sub-
section, too, and here it is not necessary to have the set S moreover convex.

Theorem 6.2.33. Assume that the functions fi, i = 1, . . . , k, and gj, j =
1, . . . , m, are invex with respect to the same η : S ×S → R

n on S. Then there
is no x ∈ A and no (λ, u, z∗) ∈ BDC

Ww such that fi(x) < hDC
Wwi(λ, u, z∗) for

i = 1, . . . , k.

Theorem 6.2.34. Assume that the functions fi, i = 1, . . . , k, and gj, j =
1, . . . , m, are invex with respect to the same η : S × S → R

n on S. If x̄ is
a weakly efficient solution to (PV C

w ) and the regularity condition (RCC
KT )(x̄)

is fulfilled, then there exists (λ̄, z̄∗) ∈ (Rk
+ \ {0}) × R

m
+ such that (λ̄, x̄, z̄∗)

is a weakly efficient solution to (DDV C
Ww) and fi(x̄) = hDC

Wwi(λ̄, x̄, z̄∗) for
i = 1, . . . , k.

Theorem 6.2.35. Assume that the functions fi, i = 1, . . . , k, and gj, j =
1, . . . , m, are invex with respect to the same η : S ×S → R

n on S. Then there
is no x ∈ A and no (λ, u, z∗) ∈ BDC

MWw such that fi(x) < hDC
MWwi(λ, u, z∗) for

i = 1, . . . , k.
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Theorem 6.2.36. Assume that the functions fi, i = 1, . . . , k, and gj, j =
1, . . . , m, are invex with respect to the same η : S × S → R

n on S. If x̄ is
a weakly efficient solution to (PV C

w ) and the regularity condition (RCC
KT )(x̄)

is fulfilled, then there exists (λ̄, z̄∗) ∈ (Rk
+ \ {0}) × R

m
+ such that (λ̄, x̄, z̄∗) is

a weakly efficient solution to (DDV C
MWw) and fi(x̄) = hDC

MWwi(λ̄, x̄, z̄∗) for
i = 1, . . . , k.

Remark 6.2.16. The statements on Wolfe and Mond-Weir vector duality from
above remain valid when the invexity hypotheses are replaced by asking
∑k

i=1 λifi and
∑m

j=1 z∗j gj to be invex with respect to the same η : S ×S → R

on S for all (λ, u, z∗) feasible to the corresponding dual.

Remark 6.2.17. In [6] another Mond-Weir vector dual problem to (PV C
w )

with respect to weakly efficient solutions is proposed, where the constraint
∑m

j=1 z∗j gj ≥ 0 is replaced by z∗j gj(u) ≥ 0 for j = 1, . . . , m. Weak and strong
duality are proven under invexity hypotheses.

Remark 6.2.18. Assuming the functions fi, i = 1, . . . , k, and gj , j = 1, . . . , m,
Fréchet continuously differentiable on S, the strong duality statements for the
differentiable duals given within this subsection remain valid when replacing
the regularity condition (RCC

KT )(x̄) with any of the regularity conditions con-
sidered in Remark 6.1.8.

Remark 6.2.19. When k = 1 the duals and the duality statements from the
this subsection collapse into the corresponding ones from the scalar case.

Remark 6.2.20. Other vector duals of Wolfe and Mond-Weir types or closely
related to them were considered in the literature, too. In [134] there is men-
tioned a vector dual problem to (PV C) constructed in a similar way to the
scalar dual problem

(

DDC

M̃W

)

. In [197] a so-called Wolfe-Mond-Weir type
vector dual is proposed, while in [203] a similar one is proposed to a spe-
cial case of (PV C). On the other hand, in [53], working in normed spaces,
a Wolfe type vector dual is considered, where the functionals that bring the
constraint vector function of the primal vector minimization problem in the
objective function of the dual, in our case z∗, are only linear, not also contin-
uous. Something similar can be found for V = R

k and Z = R
m in [55], where

the mentioned functionals are actually linear maps mapping C into a cone
that contains K, and in [145]. Vector dual problems to (PV C) constructed
in a similar way to the scalar dual problem (DDC

W−MW ) can be found also
in [44,134,191,197].

6.3 Other Wolfe and Mond-Weir type duals and special
cases

In this section we present some applications of the Wolfe and Mond-Weir
duality concepts, first for constructing new dual problems for which the strong
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duality occurs without the fulfillment of any regularity condition, then for
introducing dual problems whose duals are actually their corresponding primal
problems, obtaining the so-called symmetric duality.

6.3.1 Scalar Wolfe and Mond-Weir duality without regularity
conditions

Sometimes the validity of regularity conditions is not so easy to verify and
different methods were proposed in order to avoid this situation without losing
the strong duality for the problem in discussion. A way to overcome this
difficulty is to consider stronger regularity conditions that are easier verifiable,
but this method has as drawback the fact that there are situations when these
stronger regularity condition are not fulfilled. Another possibility is the one
presented in the following, namely to assign to the primal problem a dual
for which the strong duality is automatically valid, without any additional
assumption.

The scalar primal problem we investigate here is a particular case of (PC),
obtained for X = R

n, Z = R
m, C = R

m
+ , S = R

n and the convex functions
f : R

n → R and gj : R
n → R, j = 1, . . . , m, with g−1(Rm

+ ) 	= ∅. Denote
g = (g1, . . . , gm)T . Then the primal problem becomes

(PC) inf
x∈A

f(x).

A = {x ∈ R
n : g(x) � 0}

We give first some Wolfe and Mond-Weir type duals for it for which there is
strong duality without the fulfillment of a regularity condition. To do this,
let be the set of binding constraints Z(g) := ∩x∈AI(x) = {j ∈ {1, . . . , m} :
gj(x) = 0 ∀x ∈ A} and the following so-called set of constant directions of
Z(g) at x ∈ A

D=
Z(g)(x) := {d ∈ R

n|∃t > 0 : gj(x + sd) = gj(x) ∀s ∈ [0, t) ∀j ∈ Z(g)}.

For any x ∈ A the set D=
Z(g)(x) is a convex cone.

To (PC) we attach a Wolfe type dual problem (cf. [140])

(DWC
W ) sup

u∈R
n,z∗=(z∗

1 ,...,z∗
m)T ∈R

m
+ ,

gj(u)=0 ∀j∈Z(g),

0∈∂f(u)+
mP

j=1
z∗

j ∂gj(u)−(D=
Z(g)(u))∗

{

f(u) +
m
∑

j=1

z∗j gj(u)
}

,

and a Mond-Weir type dual

(DWC
MW ) sup

u∈R
n,z∗=(z∗

1 ,...,z∗
m)T ∈R

m
+ ,

gj(u)=0 ∀j∈Z(g),
mP

j=1
z∗

j gj(u)≥0

0∈∂f(u)+
mP

j=1
z∗

j ∂gj(u)−(D=
Z(g)(u))∗

f(u).
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Note that the feasible set of (DWC
MW ) is included in the one of (DWC

W ). To
give duality statements for (PC) and these duals the following preliminary
results are needed (cf. [140]).

Lemma 6.3.1. The set {x ∈ R
n : gj(x) = 0 ∀j ∈ Z(g)} is convex.

Proof. Take x, y ∈ R
n such that gj(x) = gj(y) = 0 for all j ∈ Z(g) and an

arbitrary t ∈ (0, 1). Denote z := tx + (1 − t)y. Showing that gj(z) = 0 for all
j ∈ Z(g) would yield the desired convexity.

Assume to the contrary that gj(z) 	= 0 for some j ∈ Z(g). Due to the
convexity of gj we must have gj(z) < 0. Thus z /∈ A. Take w ∈ ri(A) and
construct the half-line W := {z + t(w − z) : t ≥ 0}. Surely w belongs to the
set A ∩ W .

Were there other points in this set, one would have gi(s) = 0 for all i ∈ Z(g)
and all s ∈ A ∩ W . Thus gj would take the value 0 along a segment of a line
which contains z and there is also gj(z) < 0. But this cannot happen for the
convex function gj , consequently A ∩ W = {w}. As z /∈ A, there is some
l ∈ {1, . . . , m} such that gl(w) ≤ 0 and gl(z) > 0. We cannot have l ∈ Z(g),
since this would yield gl(x) = gl(y) = 0, which together with gl(z) > 0
contradicts the convexity of gl. Then l ∈ {1, . . . , m}\Z(g).

Assume now that gl(w) < 0. As gl is convex, there is some tl ∈ (0, 1) such
that gl(tlw+(1− tl)z) = 0. From all the l’s obtained as above, choose the one
which delivers the largest tl and denote it by l̄. Then gl(tl̄w+(1−tl̄)z) ≤ 0 for
all these l’s. As for any other i ∈ {1, . . . , m} we have gi(z) ≤ 0 and gi(w) ≤ 0,
it follows gi(tl̄w + (1 − tl̄)z) ≤ 0, therefore tl̄w + (1 − tl̄)z ∈ A and, since
tl̄w+(1− tl̄)z ∈ W , there is another point in A∩W besides w. As this cannot
happen, it follows gl(w) = 0. As l ∈ {1, . . . , m}\Z(g), there is some point
w̄ ∈ A such that gl(w̄) < 0 and, since w ∈ ri(A), there is a nontrivial segment
on the line containing both w and w̄ completely contained in ri(A), on which
gl takes everywhere the value 0. But gl is convex, thus it cannot happen to
take the value 0 on a segment of a line and a negative value at another point
of the line. Consequently our initial assumptions is false, thus gi(z) = 0 for
i ∈ Z(g). ��

Lemma 6.3.2. If x ∈ A and u ∈ R
n are such that gj(u) = 0 for j ∈ Z(g),

then d∗T (x − u) ≥ 0 whenever d∗ ∈ (D=
Z(g)(u))∗.

Proof. It is enough to show that gi(u + t(x − u)) = gi(tx + (1 − t)u) = 0 for
i ∈ Z(g) and all t ∈ (0, 1) as this yields (x− u) ∈ D=

Z(g)(u), fact that leads to
the desired conclusion. Were it not true, then there would exist j ∈ Z(g) and
t̄ ∈ (0, 1) such that gj(u + t̄(x − u)) < 0, which contradicts the convexity of
the set {x ∈ R

n : gj(x) = 0 ∀j ∈ Z(g)} proven in Lemma 6.3.1. ��

The proof of the following statement can be found in [14].

Lemma 6.3.3. A necessary and sufficient condition for x̄ ∈ A to be an opti-
mal solution to (PC) is the existence of some z∗j ∈ R+, where j ∈ J(g, x̄) :=



278 6 Wolfe and Mond-Weir duality concepts

{

i ∈ {1, . . . , m}\Z(g) : gi(x̄) = 0
}

, for which ∂f(x̄) +
∑

j∈J(g,x̄) z∗j ∂gj(x̄) ⊆
(D=

Z(g)(x̄))∗.

The weak and strong duality statements follow.

Theorem 6.3.4. One has v(DWC
MW ) ≤ v(DWC

W ) ≤ v(PC).

Proof. Let be u ∈ R
n such that gj(u) = 0 for j ∈ Z(g) and z∗ =

(z∗1 , . . . , z∗m)T ∈ R
m
+ , fulfilling ∂f(u) +

∑m
j=1 z∗j ∂gj(u) ∩ (D=

Z(g)(u))∗ 	= ∅.
If

∑m
j=1 z∗j gj(u) ≥ 0 then (u, z∗) is feasible to (DWC

MW ) and f(u) ≤
f(u) +

∑m
j=1 z∗j gj(u). Taking now in both sides of this inequality the supre-

mum regarding all pairs (u, z∗) feasible to (DWC
MW ) we obtain in the left-hand

side v(DWC
MW ), while in the right-hand side there is the supremum of the ob-

jective function of (DWC
W ) concerning only some of the feasible solutions to

this problem. Consequently, v(DWC
MW ) ≤ v(DWC

W ).
Take now an element (u, z∗) feasible to (DWC

W ). Then there are some u∗ ∈
∂f(u), wj∗ ∈ ∂gj(u), j = 1, . . . , m, and d∗ ∈ (D=

Z(g)(u))∗ such that u∗ +
+
∑m

j=1 z∗j wj∗ = d∗. Then for all x ∈ A we have

f(x) −
(

f(u) +
m
∑

j=1

z∗j gj(u)
)

≥ u∗T (x − u) −
m
∑

j=1

z∗j gj(u)

= −
m
∑

j=1

z∗j wj∗T
(x − u) −

m
∑

j=1

z∗j gj(u) + d∗T (x − u)

≥
m
∑

j=1

z∗j (gj(u) − gj(x)) −
m
∑

j=1

z∗j gj(u) = −
m
∑

j=1

z∗j gj(x) ≥ 0.

As the feasible points were arbitrarily chosen, we get v(DWC
W ) ≤ v(PC). ��

Theorem 6.3.5. If x̄ ∈ A is an optimal solution to (PC), then v(PC) =
v(DWC

W ) and there exists z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is an optimal solution to

(DWC
W ).

Proof. As x̄ solves (PC), Lemma 6.3.3 ensures the existence of some z̄∗j ∈
R+, j ∈ J(g, x̄), for which 0 ∈ ∂f(x̄) +

∑

j∈J(g,x̄) z̄∗j ∂gj(x̄) − (D=
Z(g)(x̄))∗.

Take z̄∗j = 0 for j ∈ {1, . . . , m}\J(g, x̄). Thus 0 ∈ ∂f(x̄) +
∑m

j=1 z̄∗j ∂gj(x̄) −
(D=

Z(g)(x̄))∗ and we obtained a z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is feasible to (DWC

W )
and

∑m
j=1 z̄∗j gj(x̄) = 0. Then f(x̄) = f(x̄) +

∑m
j=1 z̄∗j gj(x̄), i.e. the objective

functions of the primal and dual take a common value. Employing Theorem
6.3.4 we obtain the desired conclusion. ��

Theorem 6.3.6. If x̄ ∈ A is an optimal solution to (PC), then v(PC) =
v(DWC

MW ) and there exists z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is an optimal solution to

(DWC
MW ).
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Proof. Analogously to the proof of Theorem 6.3.5 we obtain a z̄∗ ∈ R
m
+ such

that (x̄, z̄∗) is feasible to (DWC
MW ). Then the objective functions of the primal

and dual take a common value, f(x̄). Employing Theorem 6.3.4 we obtain
again the conclusion. ��

Remark 6.3.1. According to [140], the constraints gj(u) = 0 for j ∈ Z(g)
can be replaced in the formulations of (DWC

W ) and (DWC
MW ), respectively, by

gj(u) ≤ 0 for j ∈ Z(g) without affecting the duality statements.

Similar assertions can be made also when the functions f : R
n → R and

gj : R
n → R, j = 1, . . . , m, are moreover Gâteaux differentiable. Then the

subdifferentials that appear in the formulations of the duals introduced in
this subsection turn into gradients and both of these duals can be obtained
as special cases of the dual considered to (PC) in [196], as an analogous
to (DDC

W−MW ) from subsection 6.1.2. To give it, consider the disjoint sets
Jl ⊆ {1, . . . , m}, l = 0, . . . , s, such that ∪s

l=0Jl = {1, . . . , m}. The dual in
discussion, a “combination” of the Wolfe and Mond-Weir duality concepts, is

(DDWC
W−MW ) sup

u∈R
n,z∗=(z∗

1 ,...,z∗
m)T ∈R

m
+ ,

gj(u)=0 ∀j∈Z(g),
P

j∈Jl

z∗
j gj(u)≥0, l=1,...,s,

∇f(u)+∇
( mP

j=1
z∗

j gj

)

(u)∈(D=
Z(g)(u))∗

{

f(u) +
∑

j∈J0

z∗j gj(u)
}

.

Taking J0 = {1, . . . , m}, (DDC
W−MW n) turns into a differentiable Wolfe

type dual to (PC),

(DDWC
W ) sup

u∈R
n,z∗=(z∗

1 ,...,z∗
m)T ∈R

m
+ , gj(u)=0 ∀j∈Z(g),

∇f(u)+∇
( mP

j=1
z∗

j gj

)

(u)∈(D=
Z(g)(u))∗

{

f(u) +
m
∑

j=1

z∗j gj(u)
}

,

while if J0 = ∅ we obtain differentiable Mond-Weir type duals to (PC), namely
if for some l ∈ {1, . . . , s} there is Jl = {1, . . . , m} we get

(DDWC
MW ) sup

u∈R
n,z∗=(z∗

1 ,...,z∗
m)T ∈R

m
+ ,

gj(u)=0 ∀j∈Z(g),
mP

j=1
z∗

j gj(u)≥0,

∇f(u)+∇
( mP

j=1
z∗

j gj

)

(u)∈(D=
Z(g)(u))∗

f(u),

and when s = k and each Jl, l ∈ {1, . . . , m} is a singleton, (DDWC
W−MW ) is

(

DDWC

M̃W

)

sup
u∈R

n,z∗=(z∗
1 ,...,z∗

m)T ∈R
m
+ ,

gj(u)=0 ∀j∈Z(g), z∗
j gj(u)≥0, j=1,...,m,

∇f(u)+∇
( mP

j=1
z∗

j gj

)

(u)∈(D=
Z(g)(u))∗

f(u).
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Analogously to the proofs of Theorem 6.3.4, Theorem 6.3.5 and Theorem
6.3.6 we get the following weak and strong duality statements for (PC) and
(DDWC

W−MW ), from which one can deduce weak and strong duality assertions
for (DDWC

W ), (DDWC
MW ) and

(

DDWC

M̃W

)

, too.

Theorem 6.3.7. One has v(DDWC
W−MW ) ≤ v(PC).

Theorem 6.3.8. If x̄ ∈ A is an optimal solution to (PC), then v(PC) =
v(DDWC

W−MW ) and there exists z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is an optimal solu-

tion to (DDWC
W−MW ).

Remark 6.3.2. In [196] it is claimed to have been proven that Theorem 6.3.7
and Theorem 6.3.8 remain valid also when replacing the convexity hypotheses
imposed here on f and gj , j = 1, . . . , m, by weaker assumptions of pseudocon-
vexity and quasiconvexity and taking these functions Fréchet differentiable.
However, the proof of the weak duality statement uses Lemma 6.3.2, which
is demonstrated by making use of Lemma 6.3.1, where the convexity of gj ,
j = 1, . . . , m, is decisive.

Remark 6.3.3. When there exists x′ ∈ R
n such that g(x′) ∈ − int(Rm

+ ), in
other words the classical Slater constraint qualification is fulfilled, in [14,140]
is stated that Z(g) = ∅ and, consequently, D=

Z(g)(u) = R
n and (D=

Z(g)(u))∗ =
{0}. In this situation the results given in this subsection turn out to collapse
into the classical ones from section 6.1.

6.3.2 Vector Wolfe and Mond-Weir duality without regularity
conditions

There are Wolfe type and Mond-Weir type vector duals for which the strong
duality holds without regularity conditions, too. The way they are presented
here has its roots in [63, 198]. The primal vector optimization problem con-
sidered there is (PV C), formulated for X = R

n, Z = R
m, S = R

n,
C = R

m
+ , V = R

k partially ordered by the corresponding nonnegative or-
thant, f = (f1, . . . , fk)T : R

n → R
k and g = (g1, . . . , gm)T : R

n → R
m, with

fi, i = 1, . . . , k, and gj , j = 1, . . . , m, convex functions.
We give in the following Wolfe and Mond-Weir type vector duals to (PV C)

with respect to properly efficient solutions where strong duality holds without
any regularity condition.

The Wolfe type vector dual for (PV C) with respect to properly efficient
solutions we consider here is

(DV WC
W ) Max

(λ,u,z∗)∈BW C
W

hWC
W (λ, u, z∗),

where
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BWC
W =

{

(λ, u, z∗) ∈ int(Rm
+ ) × R

n × R
m
+ : λ = (λ1, . . . , λk)T ,

k
∑

i=1

λi = 1,

z∗ = (z∗1 , . . . , z∗m)T , gj(u) = 0 ∀j ∈ Z(g),

0 ∈ ∂

( k
∑

i=1

λifi

)

(u) + ∂

( m
∑

j=1

z∗j gj

)

(u) − (D=
Z(g)(u))∗

}

and

hWC
W (λ, u, z∗) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1(u) +
m
∑

j=1

z∗j gj(u)

...

fk(u) +
m
∑

j=1

z∗j gj(u)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

while the corresponding Mond-Weir type vector dual is

(DV WC
MW ) Max

(λ,u,z∗)∈BW C
MW

hWC
MW (λ, u, z∗),

where

BWC
MW =

{

(λ, u, z∗) ∈ int(Rm
+ ) × R

n × R
m
+ : λ = (λ1, . . . , λk)T ,

k
∑

i=1

λi = 1,

z∗=(z∗1 , . . . , z∗m)T , gj(u)=0∀j∈Z(g),
m
∑

j=1

z∗j gj(u)≥0,

0 ∈ ∂

( k
∑

i=1

λifi

)

(u) + ∂

( m
∑

j=1

z∗j gj

)

(u) − (D=
Z(g)(u))∗

}

and
hWC

MW (λ, u, z∗) = f(u).

The weak and strong duality statements for (PV C) and these dual prob-
lems follow.

Theorem 6.3.9. (a) There is no x ∈ A and no (λ, u, z∗) ∈ BWC
W such that

fi(x) ≤ hWC
Wi (λ, u, z∗) for i = 1, . . . , k, and fj(x) < hWC

Wj (λ, u, z∗) for at
least one j ∈ {1, . . . , k}.

(b) If x̄ is a properly efficient solution to (PV C), then there exists (λ̄, z̄∗) ∈
int(Rk

+)×R
m
+ such that (λ̄, x̄, z̄∗) is an efficient solution to (DV WC

W ) and
fi(x̄) = hWC

Wi (λ̄, x̄, z̄∗) for i = 1, . . . , k.

Proof. (a) Assume that there are x ∈ A and (λ, u, z∗) ∈ BWC
W for which

fi(x) ≤ hWC
Wi (λ, u, z∗) for i = 1, . . . , k, and fj(x) < hWC

Wj (λ, u, z∗) for at least
one j ∈ {1, . . . , k}. Then

∑k
i=1 λifi(x) <

∑k
i=1 λifi(u)+

∑m
j=1 z∗j gj(u). On the
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other hand, using the way the feasible set of the dual problem is constructed
and Lemma 6.3.2, we get, like in the proof of Theorem 6.3.4,

k
∑

i=1

λifi(x) ≥
k

∑

i=1

λifi(u) +
m
∑

j=1

z∗j gj(u),

which contradicts the inequality obtained above. Consequently, the initial
supposition turns out to be false and there is the desired weak duality.

(b) The proper efficiency of x̄ to (PV C) delivers a λ̄ = (λ̄1, . . . , λ̄k)T ∈
int(Rk

+), which can be taken to fulfill
∑k

i=1 λ̄i = 1, such that x̄ is an optimal
solution to the problem

inf
x∈A

k
∑

i=1

λ̄ifi(x),

while by using Lemma 6.3.3 we can construct an element z̄∗ = (z̄∗1 , . . . , z̄∗m)T ∈
R

m
+ such that 0 ∈ ∂(

∑k
i=1 λ̄ifi)(x̄) +

∑

j∈J(g,x̄) z̄∗j ∂gj(x̄) − (D=
Z(g)(x̄))∗ and

z̄∗j = 0, j ∈ {1, . . . , m}\J(g, x̄). Thus 0 ∈ ∂(
∑k

i=1 λ̄ifi)(x̄) +
∑m

j=1 z̄∗j ∂gj(x̄)−
(D=

Z(g)(x̄))∗ and (λ̄, x̄, z̄∗) is feasible to (DV WC
W ).

The efficiency of (λ̄, x̄, z̄∗) to (DV WC
W ) follows via (a). ��

Analogously one can prove the following statement.

Theorem 6.3.10. (a) There is no x ∈ A and no (λ, u, z∗) ∈ BWC
MW such that

fi(x) ≤ hWC
MWi(λ, u, z∗) for i = 1, . . . , k, and fj(x) < hWC

MWj(λ, u, z∗) for
at least one j ∈ {1, . . . , k}.

(b) If x̄ is a properly efficient solution to (PV C), then there exists a (λ̄, z̄∗) ∈
int(Rk

+)×R
m
+ such that (λ̄, x̄, z̄∗) is an efficient solution to (DV WC

MW ) and
fi(x̄) = hWC

MWi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Remark 6.3.4. When the functions involved are taken moreover Gâteaux dif-
ferentiable one can formulate, starting eventually from the scalar differentiable
duals (DDWC

W ), (DDWC
MW ) and

(

DDWC

M̃W

)

, differentiable vector duals to (PV C)
for which strong duality holds without asking the fulfillment of any regularity
condition. A Mond-Weir type such vector dual is given in [63].

Remark 6.3.5. In [63] there are introduced Wolfe and Mond-Weir type vector
duals to (PV C) with respect to efficient solutions for which strong duality
holds without asking the fulfillment of any regularity condition. However, their
formulation is more complicated than (DV WC

W ) and (DV WC
MW ), respectively,

thus we do not treat them here.

Remark 6.3.6. In [63] it is claimed to prove weak and strong duality state-
ments for the differentiable version of (DV WC

MW ) under pseudoconvexity and
quasiconvexity assumptions for the functions involved. As stated in Remark
6.3.2, we doubt that these results are valid. Moreover, in [198] it is claimed
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that in Theorem 6.3.9 properly efficient solutions in the sense of Geoffrion
to the vector dual can be obtained. We doubt that the proof given there is
correct.

Remark 6.3.7. Statements similar to Remark 6.3.1 and Remark 6.3.3 hold in
the vector case, too. Note also that when k = 1 the duals and the duality
statements from the vector case collapse into the corresponding ones from the
scalar case.

6.3.3 Scalar Wolfe and Mond-Weir symmetric duality

Wolfe and Mond Weir duality approaches were incorporated also in the so-
called symmetric duality, as it is known the situation when the dual of the
dual problem is the primal problem itself. Mond-Weir symmetric duality was
considered since the inception of the Mond-Weir duality in [138]. Unlike the
special case treated in subsection 6.3.1, the primal problem in a symmetric
primal-dual pair has a special formulation, being no more the classical con-
strained optimization problem (PC) or (PV C), respectively.

We begin with the scalar case. Let be the twice Fréchet differentiable
function f : R

n×R
q → R and the pointed convex closed cones with nonempty

interiors C1 ⊆ R
n and C2 ⊆ R

q. The gradient of f with respect to its first
variable is denoted by ∇xf , while the one with respect to its second variable
∇yf . Moreover, the Hessian matrices of f with respect to the first and second
variable, respectively, are denoted by ∇xxf and ∇yyf , respectively. The Jacobi
matrix of ∇xf with respect to the second variable is denoted by ∇xyf , while
the Jacobi matrix of ∇yf with respect to the first variable is denoted by ∇yxf .

The Wolfe type symmetric duality scheme we propose generalizes the one
treated in [136] and it consists of the primal problem

(PS
W ) inf

x∈C1,y∈R
q,

∇yf(x,y)∈−C∗
2

{

f(x, y) − yT∇yf(x, y)
}

and the dual problem

(DS
W ) sup

u∈R
n,z∈C2,

∇xf(u,z)∈C∗
1

{

f(u, z) − uT∇xf(u, z)
}

.

Mond-Weir type symmetric duality schemes were considered in the litera-
ture, too. We present here a scheme of type that generalizes the one introduced
in [138], consisting of the primal problem

(PS
MW ) inf

x∈C1,y∈R
q,

∇yf(x,y)∈−C∗
2 ,

yT ∇yf(x,y)≥0

f(x, y)

and the dual problem
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(DS
MW ) sup

u∈R
n,z∈C2,

∇xf(u,z)∈C∗
1 ,

uT ∇xf(u,z)≤0

f(u, z).

Remark 6.3.8. The pairs of symmetric dual problems proposed in [136, 138]
are special situations of the ones considered above, obtainable when the cones
C1 and C2 are the corresponding nonnegative orthants.

The weak and strong duality statements for these pair of problems follow.
We begin with the Wolfe type one.

Theorem 6.3.11. Assume that f(·, y) is convex for any fixed y ∈ R
q and

f(x, ·) is concave for any fixed x ∈ R
n. Then v(DS

W ) ≤ v(PS
W ).

Proof. Let (x, y) be feasible to the primal and (u, z) be feasible to the dual.
The convexity hypotheses yield f(x, z) − f(u, z) ≥ (x − u)T∇xf(u, z) and
(z − y)T∇yf(x, y) ≥ f(x, z) − f(x, y). Summing these relations up, one gets

f(x, y)−yT∇yf(x, y)−(f(u, z)−uT∇xf(u, z)) ≥ xT∇xf(u, z)−zT∇yf(x, y),

and the term in the right-hand side is nonnegative because of the way the
feasible sets of the two problems are constructed. Since the feasible points
were arbitrarily chosen, it follows v(DS

W ) ≤ v(PS
W ). ��

Theorem 6.3.12. Assume that f(·, y) is convex for any fixed y ∈ R
q and

f(x, ·) is concave for any fixed x ∈ R
n. If (x̄, ȳ) is an optimal solution to

(PS
W ) and ∇yyf(x̄, ȳ) is positive or negative definite, then (x̄, ȳ) is an optimal

solution to (DS
W ), too, and v(PS

W ) = v(DS
W ).

Proof. Since (x̄, ȳ) is an optimal solution to (PS
W ), by the Fritz John optimality

conditions (see, for instance, [56, 57]) there exists a pair (t, τ) ∈ R+ × C2,
(t, τ) 	= 0, such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t∇xf(x̄, ȳ) + (τ − tȳ)T∇yxf(x̄, ȳ) = 0,
(τ − tȳ)T∇yyf(x̄, ȳ) = 0,
τT∇yf(x̄, ȳ) = 0,
∇yf(x̄, ȳ) ∈ −C∗

2 , x̄ ∈ C∗
1 , ȳ ∈ R

q.

As ∇yyf(x̄, ȳ) is positive or negative definite, multiplying the second equality
from above by τ − tȳ we should get in the left-hand side a nonzero value,
unless if τ − tȳ = 0. Thus tȳ = τ . If t = 0 then τ = 0, which cannot happen.
Thus t > 0 and ȳ = (1/t)τ ∈ C2. Therefore ȳT∇yf(x̄, ȳ) = 0. More than this,
∇xf(x̄, ȳ) = 0 and so (x̄, ȳ) is feasible to (DS

W ). Consequently,

f(x̄, ȳ) − ȳT∇yf(x̄, ȳ) = f(x̄, ȳ) = f(x̄, ȳ) − x̄T∇xf(x̄, ȳ),

i.e. at (x̄, ȳ) the values of the the objective functions of the primal and dual
coincide. By Theorem 6.3.11 it follows that (x̄, ȳ) is an optimal solution to
the dual and, consequently, there is strong duality. ��
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For weak and strong duality regarding the Mond-Weir type pair of dual
problems one can consider the convexity hypotheses of Theorem 6.3.11, but
they are valid under generalized convexity assumptions as shown below.

Theorem 6.3.13. Assume that f(·, y) is pseudoconvex for any y ∈ R
q and

f(x, ·) is pseudoconcave for any fixed x ∈ R
n. Then v(DS

MW ) ≤ v(PS
MW ).

Proof. Let (x, y) be feasible to the primal and (u, z) be feasible to the
dual. Then xT∇xf(u, z) ≥ 0 and zT∇yf(x, y) ≤ 0, consequently, (x −
u)T∇xf(u, z) ≥ 0 and (z − y)T∇y(−f(x, y)) ≥ 0. The pseudoconvexity hy-
potheses yield then f(x, y) ≥ f(u, y) and, respectively, −f(u, z) ≥ −f(u, y).
Summing these two inequalities one gets f(x, y) ≥ f(u, z). Since the feasible
points were arbitrarily chosen, it follows v(DS

W ) ≤ v(PS
W ). ��

The proof of the strong duality statement is analogous to the one of The-
orem 6.3.12, the only difference consisting in the weak duality statement that
yields the conclusion.

Theorem 6.3.14. Assume that f(·, y) is pseudoconvex for any y ∈ R
q and

f(x, ·) is pseudoconcave for any fixed x ∈ R
n. If (x̄, ȳ) is an optimal solution

to (PS
MW ) and ∇yyf(x̄, ȳ) is positive or negative definite, then (x̄, ȳ) is an

optimal solution to (DS
MW ), too, and v(DS

MW ) = v(PS
MW ).

6.3.4 Vector Wolfe and Mond-Weir symmetric duality

Now we treat the vector case. Consider the twice Fréchet differentiable func-
tion f = (f1, . . . , fk)T : R

n × R
q → R

k and the pointed convex closed cones
with nonempty interiors C1 ⊆ R

n and C2 ⊆ R
q. Assume that fi(·, y) is con-

vex for any fixed y ∈ R
q and fi(x, ·) is concave for any fixed x ∈ R

n for
i = 1, . . . , k.

The Wolfe type pair of symmetric primal-dual vector problems with re-
spect to efficient solutions we work with consists of

(PV S
W ) Min

(λ,x,y)∈AS
W

fS
W (λ, x, y),

where

AS
W =

{

(λ, x, y) ∈ int(Rk
+) × C1 × R

q : λ = (λ1, . . . , λk)T ,

k
∑

i=1

λi = 1,∇y

( k
∑

i=1

λifi

)

(x, y) ∈ −C∗
2

}

and
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fS
W (λ, x, y) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1(x, y) − yT∇y

(

k
∑

i=1

λifi

)

(x, y)

...

fk(x, y) − yT∇y

(

k
∑

i=1

λifi

)

(x, y)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and
(DV S

W ) Max
(λ,u,z)∈BS

W

hS
W (λ, u, z),

where

BS
W =

{

(λ, u, z) ∈ int(Rk
+) × R

n × C2 : λ = (λ1, . . . , λk)T ,

k
∑

i=1

λi = 1,∇x

( k
∑

i=1

λifi

)

(u, z) ∈ C∗
1

}

and

hS
W (λ, u, z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1(u, z) − uT∇x

(

k
∑

i=1

λifi

)

(u, z)

...

fk(u, z) − uT∇x

(

k
∑

i=1

λifi

)

(u, z)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

while the corresponding Mond-Weir type pair contains

(PV S
MW ) Min

(λ,x,y)∈AS
MW

fS
MW (λ, x, y),

where

AS
MW =

{

(λ, x, y) ∈ int(Rk
+) × C1 × R

q : λ = (λ1, . . . , λk)T ,

k
∑

i=1

λi = 1,

∇y

( k
∑

i=1

λifi

)

(x, y)∈−C∗
2 , yT∇y

( k
∑

i=1

λifi

)

(x, y)≥0
}

and
fS

MW (λ, x, y) = f(x, y)

and
(DV S

MW ) Max
(λ,u,z)∈BS

MW

hS
MW (λ, u, z),

where

BS
MW =

{

(λ, u, z) ∈ int(Rk
+) × R

n × C2 : λ = (λ1, . . . , λk)T ,
k

∑

i=1

λi = 1,

∇x

( k
∑

i=1

λifi

)

(u, z) ∈ C∗
1 , uT∇x

( k
∑

i=1

λifi

)

(u, z) ≤ 0
}
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and
hS

MW (λ, u, z) = f(u, z).

Remark 6.3.9. Different pairs of symmetric vector problems of both Wolfe and
Mond-Weir types were considered in the literature, see for instance [111,115,
116,137,139,171,199], in [116] even a “combination” of Wolfe type and Mond-
Weir type pairs of symmetric vector dual problems is proposed. Some of these
problems are considered with respect to properly efficient solutions, some with
respect to efficient solutions and there are pairs of problems considered with
respect to weakly efficient solutions, too. We choose to consider only pairs of
problems with respect to efficient solutions because in all these papers the
main tool for showing the coincidence of the objective values of the primal
and dual at some point is vaguely mentioned, making us having doubts in the
correctness of some of those results.

Remark 6.3.10. In some of the papers dealing with symmetric Wolfe or Mond-
Weir type vector duality the variable λ is fixed before, being not considered
as variable in any of the primal and dual symmetric vector optimization prob-
lems. However, when it comes to strong duality the proofs are not very accu-
rate.

In the following we state weak and strong duality type statements for the
primal-dual pair of Wolfe type symmetric vector problems follow. Due to the
special formulation of the symmetric vector optimization problems we deal
with, these assertions are not weak and strong vector duality statements as
understood anywhere else in this book.

Theorem 6.3.15. Let be λ ∈ int(Rk
+) with

∑k
i=1 λi = 1, such that (λ, x, y) ∈

AS
W and (λ, u, z) ∈ BS

W . Then it is not possible to have fS
Wi(λ, x, y) ≤

hS
Wi(λ, u, z) for i = 1, . . . , k and fS

Wj(λ, x, y) < hS
Wj(λ, u, z) for at least one

j ∈ {1, . . . , k}.

Proof. Assume that it is possible to choose (λ, x, y) ∈ AS
W and (λ, u, z) ∈

BS
W such that fS

Wi(λ, x, y) ≤ hS
Wi(λ, u, z) for i = 1, . . . , k and fS

Wj(λ, x, y) ≤
hS

Wj(λ, u, z) for at least one j ∈ {1, . . . , k}. Then

k
∑

i=1

λifi(x, y)−yT∇y

( k
∑

i=1

λifi

)

(x, y)−
k

∑

i=1

λifi(u, z)+uT∇x

( k
∑

i=1

λifi

)

(u, z) < 0.

(6.1)
On the other hand, the convexity hypotheses yield

k
∑

i=1

λifi(x, z) −
k

∑

i=1

λifi(u, z) ≥ (x − u)T∇x

(

k
∑

i=1

λifi

)

(u, z)

and, respectively,
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(z − y)T∇y

(

k
∑

i=1

λifi

)

(x, y) ≥
k

∑

i=1

λifi(x, z) −
k

∑

i=1

λifi(x, y).

Summing these relations up, one gets

k
∑

i=1

λifi(x, y) − yT∇y

( k
∑

i=1

λifi

)

(x, y)−

( k
∑

i=1

λifi(u, z) − uT∇x

( k
∑

i=1

λifi(u, z)
))

≥

xT∇x

( k
∑

i=1

λifi

)

(u, z) − zT∇y

( k
∑

i=1

λifi

)

(x, y) ≥ 0,

where the last inequality follows because of the way the feasible sets of the two
problems are constructed. This contradicts (6.1), thus the desired conclusion
follows. ��

The following result from [171] delivers necessary Fritz-John optimality
conditions for a vector optimization problem, being useful for the strong du-
ality type statement following it.

Lemma 6.3.16. Let S ⊆ R
n be a nonempty convex set, C ⊆ R

m a convex
closed cone with nonempty interior and f = (f1, . . . , fk)T : R

n → R
k and g =

(g1, . . . , gm)T : R
n → R

m vector-valued functions such that fi, i = 1, . . . , k,
and gj, j = 1, . . . , m, are Fréchet differentiable. If x̄ ∈ A is a weakly efficient
solution to

(PV C
w ) WMin

x∈A
f(x),

A = {x ∈ S : g(x) ∈ −C}

then there exist α = (α1, . . . , αk)T ∈ R
k
+ and β = (β1, . . . , βm)T ∈ C∗ with

(α, β) 	= (0, 0) fulfilling the following optimality conditions

(i) ∇
(∑k

i=1 αifi

)

(x̄)T (x− x̄) +∇
(∑m

j=1 βjgj

)

(x̄)T (x− x̄) ≥ 0 for all x ∈ S;
(ii)

∑m
j=1 βjgj(x̄) = 0.

Now we give a strong duality type statement for (PV S
W ) and (DV S

W ).

Theorem 6.3.17. Let (λ̄, x̄, ȳ) be an efficient solution to (PV S
W ). If the

matrix ∇yy(
∑k

i=1 λ̄ifi)(x̄, ȳ) is positive or negative definite and the vectors
{∇yfi(x̄, ȳ) : i = 1, . . . , k} are linearly independent, then (λ̄, x̄, ȳ) ∈ BS

W and
fS

Wi(λ̄, x̄, ȳ) = hS
Wi(λ̄, x̄, ȳ) for i = 1, . . . , k.

Proof. Since (λ̄, x̄, ȳ) is an efficient solution to (PV S
W ), it is also a weakly

efficient solution to (PV S
W ). The assumptions made on the cone C2 ensure



6.3 Other Wolfe and Mond-Weir type duals and special cases 289

that int(C∗
2 ) 	= ∅. We can apply Lemma 6.3.16 and in this way we obtain a

pair (α, β) ∈ R
k
+ × C2\{(0, 0)} such that

(

β −
(

αT e
)

ȳ
)T ∇yf(x̄, ȳ)T (λ − λ̄) ≥ 0 ∀λ ∈ int(Rk

+) with
k

∑

i=1

λi = 1, (6.2)

(

αT∇xf(x̄, ȳ)T + (β − (αT e)ȳ)T∇yx

( k
∑

i=1

λ̄ifi

)

(x̄, ȳ)T

)

(x− x̄) ≥ 0 ∀x ∈ C1,

(6.3)

(α − (αT e)λ̄)T∇yf(x̄, ȳ) + (β − (αT e)ȳ)T∇yy

( k
∑

i=1

λ̄ifi

)

(x̄, ȳ) = 0 (6.4)

and

βT∇y

( k
∑

i=1

λ̄ifi

)

(x̄, ȳ) = 0. (6.5)

Assume that α = 0. Then from (6.4) follows that βT∇yy

(∑k
i=1 λ̄ifi

)

(x̄, ȳ) = 0
and, consequently, βT∇yy

(∑k
i=1 λ̄ifi

)

(x̄, ȳ)β = 0. Taking into consideration
the assumption made on ∇yy(

∑k
i=1 λ̄ifi)(x̄, ȳ), it follows that β = 0 and this

leads to a contradiction. Consequently, α 	= 0.
One can easily see that from (6.2) we obtain that there exists γ ∈ R such

that ∇yf(x̄, ȳ)
(

β − (αT e)ȳ
)

= γe. Thus multiplying (6.4) from the right with
(β − (αT e)ȳ) it follows that

(β − (αT e)ȳ)T∇yy

( k
∑

i=1

λ̄ifi

)

(x̄, ȳ)(β − (αT e)ȳ) = 0,

which, because of the positive or negative definiteness of ∇yy(
∑k

i=1 λ̄ifi)(x̄, ȳ),
yields β − (αT e)ȳ = 0. This guarantees that ȳ ∈ C2 and, via (6.5),

ȳT∇y

( k
∑

i=1

λ̄ifi

)

(x̄, ȳ) = 0.

Further, (6.4) turns out to be (α − (αT e)λ̄)T∇yf(x̄, ȳ) = 0. As the vec-
tors {∇yfi(x̄, ȳ) : i = 1, . . . , k} are linearly independent, we must have
α − (αT e)λ̄ = 0. Writing (6.3) after getting these relations, it becomes

∇x

( k
∑

i=1

λ̄ifi

)

(x̄, ȳ)T (x − x̄) ≥ 0 ∀x ∈ C1

and from here one has

xT∇x

( k
∑

i=1

λ̄ifi

)

(x̄, ȳ) ≥ 0 ∀x ∈ C1.
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Consequently,

x̄T∇x

( k
∑

i=1

λ̄ifi

)

(x̄, ȳ) = 0.

Since C1 is a convex closed cone, it yields ∇x(
∑k

i=1 λ̄ifi)(x̄, ȳ) ∈ C∗
1 and

so (λ̄, x̄, ȳ) ∈ BS
W . More than that, as one can easily verify, fS

W (λ̄, x̄, ȳ) =
hS

W (λ̄, x̄, ȳ). ��

For the pair of Mond-Weir type problems the weak and strong duality type
statements can be proven analogously.

Theorem 6.3.18. Let be λ ∈ int(Rk
+) with

∑k
i=1 λi = 1, such that (λ, x, y) ∈

AS
MW and (λ, u, z) ∈ BS

MW . Then it is not possible to have fS
MWi(λ, x, y) ≤

hS
MWi(λ, u, z) for i = 1, . . . , k and fS

MWj(λ, x, y) < hS
MWj(λ, u, z) for at least

one j ∈ {1, . . . , k}.

Theorem 6.3.19. Let (λ̄, x̄, ȳ) be an efficient solution to (PV S
MW ). If the

matrix ∇yy(
∑k

i=1 λ̄ifi)(x̄, ȳ) is positive or negative definite and the vectors
{∇yfi(x̄, ȳ) : i = 1, . . . , k} are linearly independent, then (λ̄, x̄, ȳ) ∈ BS

MW and
fS

MWi(λ̄, x̄, ȳ) = hS
MWi(λ̄, x̄, ȳ) for i = 1, . . . , k.

Remark 6.3.11. A special case of symmetric duality is the so-called self-
duality, namely the situation when the dual can be rewritten in a form which
coincides with the one of the primal problem. This can be obtained for in-
stance when the objective functions of the primal symmetric duals are skew
symmetric. We refer to [115,138,171] for more on Wolfe type and Mond-Weir
type self-duality.

Remark 6.3.12. Using some remarks from [139,199], one can notice that care-
fully choosing the function f , the primal-dual pairs considered within this
subsection become special cases of the primal-dual pairs of vector problems
from subsection 6.2.3.

6.4 Wolfe and Mond-Weir fractional duality

6.4.1 Wolfe and Mond-Weir duality in scalar fractional
programming

Wolfe and Mond-Weir duality concepts were used in fractional programming,
too, even though not directly due to the special way such problems look
like. There are different ways to attach a dual to the primal scalar fractional
programming problem

(PQC) inf
x∈AQ

f(x)
h(x) ,

AQ = {x ∈ S : g(x) ∈ −R
m
+}
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where S ⊆ R
n is a nonempty convex set, f : R

n → R and gj : R
n → R,

j = 1, . . . , m, are convex functions and h : R
n → R is a concave function such

that S ∩ g−1(−C) 	= ∅, where g = (g1, . . . , gm)T . Assume that for all x ∈ S it
holds f(x) ≥ 0 and h(x) > 0. In general (PQC) is not a convex problem. The
two main approaches used in the literature to assign dual problems to it are
(cf. [13,194]) the one due to Jagannathan and Schaible, which can be applied
also for nondifferentiable functions and, respectively, the one of Bector, where
differentiability for the functions involved is essential.

Jagannathan (cf. [100]) and Schaible (cf. [164]) have considered a dual
based on Dinkelbach’s classical approach (cf. [59]) to fractional programming
problems, namely

(DQC
W−JS) sup

u∈S,z∗∈R
m
+ ,z∗=(z∗

1 ,...,z∗
m)T ,t∈R+,

f(u)−th(u)+
mP

j=1
z∗

j gj(u)≥0,

0∈∂f(u)+t∂(−h)(u)+∂
( mP

j=1
z∗

j gj

)

(u)+N(S,u)

t.

This dual is of Wolfe type and one of Mond-Weir type can be attached to
(PQC) by this approach, too, namely

(DQC
MW−JS) sup

u∈S,z∗∈R
m
+ ,z∗=(z∗

1 ,...,z∗
m)T ,t∈R+,

f(u)−th(u)≥0,
mP

j=1
z∗

j gj(u)≥0,

0∈∂f(u)+t∂(−h)(u)+∂
( mP

j=1
z∗

j gj

)

(u)+N(S,u)

t.

From the way the feasible sets of these duals are constructed, it follows that
whenever (u, z∗, t) is feasible to the Wolfe type dual one has 0 ≤ t ≤ (f(u) +
∑m

j=1 z∗j gj(u))/h(u), while when (u, z∗, t) is feasible to the Mond-Weir type
dual there is 0 ≤ t ≤ f(u)/h(u). Moreover, the feasible set of (DQC

MW−JS) is
contained in the one of (DQC

W−JS). Weak and strong duality statements for
the problems just introduced follow.

Theorem 6.4.1. One has v(DQC
W−JS) ≤ v(PQC).

Proof. Let be x = (x1, . . . , xn)T ∈ AQ and (u, z∗, t) be feasible to (DQC
W−JS),

with u = (u1, . . . , un)T and z∗ = (z∗1 , . . . , z∗m)T . Then there are some
u∗, y∗, w∗ ∈ R

n, u∗ = (u∗
1, . . . , u

∗
n)T , y∗ = (y∗

1 , . . . , y∗
n)T , w∗ = (w∗

1 , . . . , w∗
n)T ,

such that u∗ ∈ ∂f(u), y∗ ∈ ∂(
∑m

j=1 z∗j gj)(u), w∗ ∈ N(S, u) and −u∗ − y∗ −
w∗ ∈ t∂(−h)(u). We have f(x) − f(u) ≥

∑n
i=1 u∗

i (xi − ui),
∑m

j=1 z∗j gj(x) −
∑m

j=1 z∗j gj(u) ≥
∑n

i=1 y∗
i (xi − ui), δS(x) − δS(u) ≥

∑n
i=1 w∗

i (xi − ui) and
t(−h(x)+h(u)) ≥ −

∑n
i=1(u

∗
i +y∗

i +w∗
i )(xi−ui). Then f(x)+

∑m
j=1 z∗j gj(x)−

th(x) + δS(x) ≥ f(u) +
∑m

j=1 z∗j gj(u) − th(u) + δS(u) and the term in
the right-hand side is nonnegative according to the way the feasible set
of the dual is defined. Taking into consideration that x, u ∈ S, we get
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f(x) +
∑m

j=1 z∗j gj(x) − th(x) ≥ 0, followed by (f +
∑m

j=1 z∗j gj(x))/h(x) ≥ t.
Since

∑m
j=1 z∗j gj(x) ≤ 0, the latter inequality yields f(x)/h(x) ≥ t. As the fea-

sible points considered in the beginning of the proof were arbitrarily chosen,
it follows v(DQC

W−JS) ≤ v(PQC). ��

Theorem 6.4.2. If (PQC) has an optimal solution x̄ ∈ AQ and 0 ∈ ri(g(S)+
R

m
+ ), then v(PQC) = v(DQC

W−JS) and there is some (z̄∗, t̄) ∈ R
m
+ × R+ such

that (x̄, z̄∗, t̄) is an optimal solution to the dual.

Proof. From Dinkelbach’s approach (cf. [59]) it is known that if x̄ ∈ AQ solves
(PQC), then it is an optimal solution to the convex minimization problem

inf
x∈AQ

{f(x) − t̄h(x)},

where t̄ := v(PQC) = f(x̄)/h(x̄) ≥ 0, and the optimal objective value of the
latter is 0. Using Theorem 6.1.2 for the above scalar optimization problem and
its Wolfe dual, we get that there is some z̄∗ ∈ R

m
+ such that

∑m
j=1 z̄∗j gj(x̄) = 0

and

0 ∈ ∂f(x̄) + t̄∂(−h)(x̄) + ∂

( m
∑

j=1

z̄∗j gj

)

(x̄) + N(S, x̄).

Consequently, (x̄, z̄∗, t̄), where z̄∗ = (z̄∗1 , . . . , z̄∗m)T , is feasible to (DQC
W−JS)

and the objective functions of (PQC) and (DQC
W−JS) share a common value.

By Theorem 6.4.1, (x̄, z̄∗, t̄) is an optimal solution to (DQC
W−JS) and the

strong duality is proven. ��

Analogously, one can show the following assertions.

Theorem 6.4.3. One has v(DQC
MW−JS) ≤ v(PQC).

Theorem 6.4.4. If (PQC) has an optimal solution x̄ ∈ AQ and 0 ∈ ri(g(S)+
R

m
+ ), then v(PQC) = v(DQC

MW−JS) and there is some (z̄∗, t̄) ∈ R
m
+ ×R such

that (x̄, z̄∗, t̄) is an optimal solution to the dual.

Another dual to (PQC) was introduced by Bector (cf. [13]) and its formu-
lation requires the set S ⊆ R

n to be nonempty, convex and open, the functions
f : S → R and gj : S → R, j = 1, . . . , m, to be convex and Fréchet differen-
tiable on S, and h : S → R to be concave and Fréchet differentiable on S such
that S ∩ g−1(−C) 	= ∅, where g = (g1, . . . , gm)T . We also assume that for all
x ∈ S f(x) ≥ 0 and h(x) > 0. The so-called Bector dual problem of Wolfe
type to (PQC) is

(DQC
W−B) sup

u∈S,z∗=(z∗
1 ,...,z∗

m)T ∈R
m
+ ,

∇

0

B
@

f+
mP

j=1
z∗

j gj

h

1

C
A(u)=0

f(u) +
m
∑

j=1

z∗j gj(u)

h(u)
.
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Analogously, a Bector dual problem of Mond-Weir type can be attached to
(PQC), namely

(DQC
MW−B) sup

u∈S,z∗=(z∗
1 ,...,z∗

m)T ∈R
m
+ ,

mP

j=1
z∗

j gj(u)≥0,

∇

0

B
@

f+
mP

j=1
z∗

j gj

h

1

C
A(u)=0

f(u)
h(u)

.

Note that the feasible set of (DQC
MW−B) is contained in the one of (DQC

W−B).
Weak and strong duality assertions for both these duals follow.

Theorem 6.4.5. One has v(DQC
W−B) ≤ v(PQC).

Proof. Let x ∈ AQ and (u, z∗) be feasible to (DQC
W−B). Then one has

∇

⎛

⎜

⎜

⎝

f +
m
∑

j=1

z∗j gj

h

⎞

⎟

⎟

⎠

(u)T (x − u) = 0,

which yields, via [126, Lemma 3.2.1],

f(x) +
m
∑

j=1

z∗j gj(x)

h(x)
≥

f(u) +
m
∑

j=1

z∗j gj(u)

h(u)
.

Because we also have
∑m

j=1 z∗j gj(x) ≤ 0, it follows

f(x)
h(x)

≥
f(u) +

m
∑

j=1

z∗j gj(u)

h(u)
.

As x and (u, z∗) were arbitrarily chosen, we get v(DQC
W−B) ≤ v(PQC). ��

Theorem 6.4.6. If (PQC) has an optimal solution x̄ ∈ AQ and the regularity
condition (RCC

KT )(x̄) is fulfilled, then v(PQC) = v(DQC
W−B) and there is a

z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is an optimal solution to the dual.

Proof. The problem (PQC) has the same optimal solutions and optimal ob-
jective value as

inf
x∈S,

1
h(x) g(x)∈−R

m
+

f(x)
h(x)

.

Thus x̄ is an optimal solution to this optimization problem and applying
Lemma 6.1.6 for it one obtains a z̄∗ = (z̄∗1 , . . . , z̄∗m)T ∈ R

m
+ for which
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∇

⎛

⎜

⎜

⎝

f +
m
∑

j=1

z̄∗j gj

h

⎞

⎟

⎟

⎠

(x̄) = 0

and
∑m

j=1 z̄∗j gj(x̄) = 0. Thus (x̄, z̄∗) is feasible to (DQC
W−B) and

f(x̄)
h(x̄)

=
f(x̄) +

m
∑

j=1

z̄∗j gj(x̄)

h(x̄)
.

Using Theorem 6.4.5 it follows that (x̄, z̄∗) is an optimal solution to the dual
problem and we have strong duality. ��

Analogously one can prove the following similar statements for the Mond-
Weir type dual.

Theorem 6.4.7. One has v(DQC
MW−B) ≤ v(PQC).

Theorem 6.4.8. If (PQC) has an optimal solution x̄ ∈ AQ and the regularity
condition (RCC

KT )(x̄) is fulfilled, then v(PQC) = v(DQC
MW−B) and there is

some z̄∗ ∈ R
m
+ such that (x̄, z̄∗) is an optimal solution to the dual.

Remark 6.4.1. The regularity condition used in Theorem 6.4.6 and Theorem
6.4.8, can be replaced according to Remark 6.1.8 when the functions involved
are Fréchet continuously differentiable on S.

Remark 6.4.2. In [100] the dual (DQC
W−JS) is considered to (PQC) when AQ

is assumed to be bounded and S = R
n. In [126] the dual (DQC

W−B) with the
additional constraint f(u) +

∑m
j=1 z∗j gj(u) ≥ 0 is considered and also another

similar dual where the constraint involving gradients is constructed analo-
gously to

(

DDC
fW

)

. A direct Mond-Weir dual to (PQC) is mentioned in [190].
Nevertheless, in [11] the dual (DQC

W−B) is considered, without the convexity
assumptions on the functions involved, but for the weak and strong duality
statements the objective function of the dual is assumed to be pseudoconvex.
Note also that in [13] duals of both types are assigned to (PQC) which is
considered only in the case when h is linear.

6.4.2 Wolfe and Mond-Weir duality in vector fractional
programming

Several vector dual problems were proposed also for the primal vector frac-
tional programming problem

(PV QC) Min
x∈AQ

fQ(x),

where
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AQ = {x ∈ S : g(x) ∈ −R
m
+}

and

fQ(x) =

⎛

⎜

⎜

⎝

f1(x)
h1(x)

...
fk(x)
hk(x)

⎞

⎟

⎟

⎠

,

with S ⊆ R
n a nonempty convex set, the functions fi, gj : R

n → R, convex
and hi : R

n → R concave for i = 1, . . . , k, j = 1, . . . , m, and S∩g−1(−C) 	= ∅,
for g = (g1, . . . , gm)T . We also assume that fi(x) ≥ 0 for i = 1, ..., k, and the
following additional hypothesis

∃a, b ∈ R, 0 < a < b such that hi(x) ∈ [a, b], i = 1, . . . , k, for all x ∈ S. (6.6)

We recall that an element x̄ ∈ AQ is said to be a properly efficient solution
in the sense of Geoffrion to (PV QC) if fQ(x̄) ∈ PMinGe

(

fQ(AQ), Rk
+

)

.
These vector duals were constructed starting from the scalar duals for the

fractional programming problem presented in subsection 6.4.1. In the follow-
ing we present some of these duals, considered with respect to properly effi-
cient solutions in the sense of Geoffrion, alongside the corresponding duality
statements.

We begin with extensions to vector duality of the scalar duals constructed
by following the ideas of Jagannathan and Schaible. The Wolfe type vector
dual introduced in [193] is

(DV QC
W−JS) Max

(λ,u,z∗,v)∈BQ
W−JS

hQ
W−JS(λ, u, z∗, v),

where

BQ
W−JS =

{

(λ, u, z∗, v) ∈ int(Rk
+) × S × R

m
+ × R

k
+ : λ = (λ1, . . . , λk)T ,

z∗ = (z∗1 , . . . , z∗m)T , v = (v1, . . . , vk)T ,
k

∑

i=1

λi(fi(u) − vihi(u)) +
m
∑

j=1

z∗j gj(u) ≥ 0,

0 ∈ ∂

( k
∑

i=1

λifi

)

(u) +
k

∑

i=1

vi∂(−λihi)(u)

+∂

( m
∑

j=1

z∗j gj

)

(u) + N(S, u)
}

and
hQ

W−JS(λ, u, z∗, v) = v,

while the one of Mond-Weir type is
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(DV QC
MW−JS) Max

(λ,uz∗,v)∈BQ
MW−JS

hQ
MW−JS(λ, u, z∗, v),

where

BQ
MW−JS =

{

(λ, u, z∗, v) ∈ int(Rk
+) × S × R

m
+ × R

k
+ : λ = (λ1, . . . , λk)T ,

z∗ = (z∗1 , . . . , z∗m)T , v = (v1, . . . , vk)T ,
k

∑

i=1

λi(fi(u) − vihi(u)) ≥ 0,
m
∑

j=1

z∗j gj(u) ≥ 0,

0 ∈ ∂

( k
∑

i=1

λifi

)

(u) +
k

∑

i=1

vi∂(−λihi)(u)

+∂

( m
∑

j=1

z∗j gj

)

(u) + N(S, u)
}

and
hQ

MW−JS(λ, u, z∗, v) = v.

Note that BQ
MW−JS ⊆ BQ

W−JS . Weak and strong duality statements follow.

Theorem 6.4.9. There is no x ∈ AQ and no (λ, u, z∗, v) ∈ BQ
W−JS such that

fQ
i (x) ≤ hQ

W−JSi(λ, u, z∗, v) for i = 1, . . . , k, and fQ
j (x) ≤ hQ

W−JSj(λ, u, z∗, v)
for at least one j ∈ {1, . . . , k}.

Proof. Assume that there are some x ∈ AQ and (λ, u, z∗, v) ∈ BQ
W−JS

such that fQ
i (x) ≤ hQ

Wi−JS(λ, u, z∗, v) for i = 1, . . . , k, and fQ
j (x) <

hQ
Wj−JS(λ, u, z∗, v) for at least one j ∈ {1, . . . , k}. This yields fi(x) ≤ vihi(x)

for i = 1, . . . , k, and fj(x) < vjhj(x) for at least one j ∈ {1, . . . , k}, followed
by

∑k
i=1 λifi(x) <

∑k
i=1 λivihi(x), i.e.

k
∑

i=1

λi(fi(x) − vihi(x)) < 0. (6.7)

On the other hand,

0 ∈ ∂

( k
∑

i=1

λifi

)

(u) +
k

∑

i=1

vi∂(−λihi)(u) + ∂

( m
∑

j=1

z∗j gj

)

(u) + N(S, u)

means that there are u∗, y∗, w∗
i , t∗ ∈ R

n, i = 1, . . . , k, such that u∗ ∈
∂(

∑k
i=1 λifi)(u), w∗

i ∈ ∂(−λihi)(u), i = 1, . . . , k, y∗ ∈ ∂(
∑m

j=1 z∗j gj)(u),

t∗ ∈ N(S, u) and u∗ +
∑k

i=1 viw
∗
i + y∗ + t∗ = 0. Then

∑k
i=1 λifi(x) −

∑k
i=1 viλihi(x) +

∑m
j=1 z∗j gj(x) + δS(x) ≥

∑k
i=1 λifi(u) −

∑k
i=1 viλihi(u) +
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∑m
j=1 z∗j gj(u) + δS(u) ≥ 0 and, as

∑m
j=1 z∗j gj(x) ≤ 0, we get

∑k
i=1 λi(fi(x) −

vihi(x)) ≥ 0, which contradicts (6.7). Consequently, the desired weak duality
assertion holds. ��

Theorem 6.4.10. If x̄ ∈ AQ is a properly efficient solution to (PV QC) in
the sense of Geoffrion and 0 ∈ ri(g(S) + R

m
+ ), then there exists (λ̄, z̄∗, v̄) ∈

int(Rk
+)×R

m
+×R

k
+ such that (λ̄,x̄,z̄∗,v̄) is an efficient solution to (DV QC

W−JS)
and fQ

i (x̄) = hQ
W−JSi(λ̄, x̄, z̄∗, v̄) for i = 1, . . . , k.

Proof. In both [193, Theorem 3] and [112, Lemma 1] it is proven that x̄ is
properly efficient to (PV QC) in the sense of Geoffrion if and only if it is
properly efficient in the sense of Geoffrion to the vector optimization problem

Min
x∈AQ

⎛

⎜

⎜

⎝

f1(x) − f1(x̄)
h1(x̄)h1(x)
...

fk(x) − fk(x̄)
hm(x̄)hm(x)

⎞

⎟

⎟

⎠

.

In fact this is the place where we need to assume (6.6). Unfortunately, this
assumption is omitted in [112, 193], but we have doubts that without it the
above-mentioned equivalence is valid. Proposition 2.4.18(b) ensures now that
the properly minimal elements of the set

(

f1 −
f1(x̄)
h1(x̄)

h1, . . . , fk − fk(x̄)
hk(x̄)

hk

)T

(AQ)

considered in the sense of Geoffrion coincide with its properly efficient so-
lutions in the sense of linear scalarization. Thus thus there is some λ̄ =
(λ̄1, . . . , λ̄k)T ∈ int(Rk

+) such that x̄ minimizes the scalar convex optimiza-
tion problem

inf
x∈AQ

k
∑

i=1

λ̄i

(

fi(x) − fi(x̄)
hi(x̄)

hi(x)
)

.

Applying now Theorem 6.1.2, there is strong duality for this scalar opti-
mization problem and its Wolfe dual, thus there is some z̄∗ ∈ R

m
+ for which

z̄∗T g(x̄) = 0 and

0 ∈ ∂

( k
∑

i=1

λ̄ifi

)

(x̄) +
k

∑

i=1

v̄i∂(−λ̄ihi)(x̄) + ∂

( m
∑

j=1

z̄∗j gj

)

(x̄) + N(S, x̄),

where v̄i = fi(x̄)/hi(x̄), i = 1, . . . , k. Consequently, (λ̄, x̄, z̄∗, v̄) ∈ BQ
W−JS and

fQ(x̄) = hQ
W−JS(λ̄, x̄, z̄∗, v̄). The efficiency of (λ̄, x̄, z̄∗, v̄) to the vector dual

follows by Theorem 6.4.9. ��

Analogously one can prove the following duality statements for the Mond-
Weir type vector dual.
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Theorem 6.4.11. There is no x ∈ AQ and no (λ, u, z∗, v) ∈ BQ
MW−JS

such that fQ
i (x) ≤ hQ

MW−JSi(λ, u, z∗, v) for i = 1, . . . , k, and fQ
j (x) ≤

hQ
MW−JSj(λ, u, z∗, v) for at least one j ∈ {1, . . . , k}.

Theorem 6.4.12. If x̄ ∈ AQ is a properly efficient solution to (PV QC) in
the sense of Geoffrion and 0 ∈ ri(g(S) + R

m
+ ), then there exists (λ̄, z̄∗, v̄) ∈

int(Rk
+)×R

m
+×R

k
+ such that (λ̄, x̄, z̄∗, v̄) is an efficient solution to(DV QC

MW−JS)
and fQ

i (x̄) = hQ
MW−JSi(λ̄, x̄, z̄∗, v̄) for i = 1, . . . , k.

Now let us turn our attention to the vector fractional duals that can be
constructed starting from the scalar Bector duals considered in section 6.1.
For this we consider the primal vector fractional programming problem with
respect to weakly efficient solutions

(PV QC
w) WMin

x∈AQ
fQ(x),

where
AQ = {x ∈ S : g(x) ∈ −R

m
+}

and

fQ(x) =

⎛

⎜

⎜

⎝

f1(x)
h1(x)

...
fk(x)
hk(x)

⎞

⎟

⎟

⎠

.

We assume that S ⊆ R
n is a nonempty, convex and open set, the func-

tions fi : S → R, gj : S → R, i = 1, ..., k, j = 1, . . . , m, are convex and
Fréchet differentiable on S, and the functions hi : S → R, i = 1, ..., k, are
concave and Fréchet differentiable on S such that S ∩ g−1(−C) 	= ∅, where
g = (g1, . . . , gm)T . We also assume that fi(x) ≥ 0 and hi(x) > 0 for i = 1, ..., k,
and all x ∈ S. As we consider here a different approach to the one described
above, we allow us to weaken the assumption (6.6) concerning the denom-
inators of the components of the primal objective function. Following [194]
we consider the following Bector vector dual of Wolfe type to (PV QC

w) with
respect to weakly efficient solutions

(DV QC
W−Bw) WMax

(λ,u,z∗)∈BQ
W−Bw

hQ
W−Bw(λ, u, z∗),

where
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BQ
W−Bw =

{

(λ, u, z∗) ∈ (Rk
+\{0}) × S × R

m
+ : λ = (λ1, . . . , λk)T ,

z∗ = (z∗1 , . . . , z∗m)T ,

k
∑

i=1

λi = 1,

k
∑

i=1

λi∇

⎛

⎜

⎜

⎝

fi +
m
∑

j=1

z∗j gj

hi

⎞

⎟

⎟

⎠

(u) = 0

}

and

hQ
W−Bw(λ, u, z∗) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f1(u)+
mP

j=1
z∗

j gj(u)

h1(u)

...
fk(u)+

mP

j=1
z∗

j gj(u)

hk(u)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Analogously, a Bector vector dual of Mond-Weir type with respect to weakly
efficient solutions can be given

(DV QC
MW−Bw) WMax

(λ,u,z∗)∈BQ
MW−Bw

hQ
MW−Bw(λ, u, z∗),

where

BQ
MW−Bw =

{

(λ, u, z∗) ∈ (Rk
+\{0}) × S × R

m
+ : λ = (λ1, . . . , λk)T ,

z∗ = (z∗1 , . . . , z∗m)T ,

k
∑

i=1

λi = 1,

m
∑

j=1

z∗j gj(u) ≥ 0,

k
∑

i=1

λi∇

⎛

⎜

⎜

⎝

fi +
m
∑

j=1

z∗j gj

hi

⎞

⎟

⎟

⎠

(u) = 0

}

and

hQ
MW−Bw(λ, u, z∗) =

⎛

⎜

⎜

⎝

f1(u)
h1(u)

...
fk(u)
hk(u)

⎞

⎟

⎟

⎠

.

Note that BQ
MW−Bw ⊆ BQ

W−Bw and hQ
MW−Bw(BQ

MW−Bw), hQ
W−Bw(BQ

W−Bw) ⊆
R

k. Weak and strong duality for these vector dual problems follow.

Theorem 6.4.13. There is no x ∈ AQ and no (λ, u, z∗) ∈ BQ
W−Bw such that

fQ
i (x) < hQ

W−Bwi(λ, u, z∗) for i = 1, . . . , k.
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Proof. Take some arbitrary feasible elements x ∈ AQ and (λ, u, z∗) ∈ BQ
W−Bw

for which fQ
i (x) < hQ

W−Bwi(λ, u, z∗) for i = 1, . . . , k. Since λi ≥ 0 and
hi(x)/hi(u) > 0 for i = 1, . . . , k, it holds

k
∑

i=1

λi
hi(x)
hi(u)

⎛

⎜

⎜

⎝

fi(x)
hi(x)

−
fi(u) +

m
∑

j=1

z∗j gj(u)

hi(u)

⎞

⎟

⎟

⎠

< 0.

Consider the function ϕ : S → R,

ϕ(x) =
k

∑

i=1

λi

hi(u)2

(

hi(u)
(

fi(x)+
m
∑

j=1

z∗j gj(x)
)

−hi(x)
(

fi(u)+
m
∑

j=1

z∗j gj(u)
))

.

The convexity hypotheses imply that ϕ is convex on S. Moreover, ϕ(u) = 0
and ∇ϕ(u) = 0. Consequently ϕ(x) ≥ 0, which, taking into account that
∑m

j=1 z∗j gj(x) ≤ 0, yields

k
∑

i=1

λi
hi(x)
hi(u)

⎛

⎜

⎜

⎝

fi(x)
hi(x)

−
fi(u) +

m
∑

j=1

z∗j gj(u)

hi(u)

⎞

⎟

⎟

⎠

≥ 0.

This provides a contradiction and, consequently, the desired weak duality
assertion holds. ��

Theorem 6.4.14. If x̄ ∈ AQ is a weakly efficient solution to (PV QC
w) and the

regularity condition (RCC
KT )(x̄) is fulfilled, then there exists (λ̄, z̄∗) ∈ (Rk

+ \
{0}) × R

m
+ such that (λ̄, x̄, z̄∗) is a weakly efficient solution to (DV QC

W−Bw)
and fQ

i (x̄) = hQ
W−Bwi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Proof. The hypotheses of the theorem allow applying [54, Theorem 1]. Thus
there exist λ̄ = (λ̄1, ..., λ̄k)T ∈ R

k
+\{0} with

∑k
i=1 λ̄i = 1 and z̃∗ =

(z̃∗1 , . . . , z̃∗m)T ∈ R
m
+ such that

∑m
j=1 z̃∗j gj(x̄) = 0 and

k
∑

i=1

λ̄i∇
(

fi

hi

)

(x̄) + ∇
( m
∑

j=1

z̃∗j gj

)

(x̄) = 0.

Consider
z̄∗ :=

1
k
∑

i=1

λ̄i

hi(x̄)

z̃∗ ∈ R
m
+ .

Then
∑m

j=1 z̄∗j gj(x̄) = 0 and
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k
∑

i=1

λ̄i∇

⎛

⎜

⎜

⎝

m
∑

j=1

z̄∗j gj

hi

⎞

⎟

⎟

⎠

(x̄) = ∇
(

z̃∗
T

g
)

(x̄).

Consequently,

k
∑

i=1

λ̄i∇

⎛

⎜

⎜

⎝

fi +
m
∑

j=1

z̄∗j gj

hi

⎞

⎟

⎟

⎠

(x̄) = 0,

thus (λ̄, x̄, z̄∗) is feasible to (DV QC
W−Bw) and fQ

i (x̄) = hQ
W−Bwi(λ̄, x̄, z̄∗) for

i = 1, . . . , k. The weak efficiency of (λ̄, x̄, z̄∗) to (DV QC
W−Bw) follows via

Theorem 6.4.13. ��
For the Mond-Weir type vector dual the proofs are analogous.

Theorem 6.4.15. There is no x ∈ AQ and no (λ, u, z∗) ∈ BQ
MW−Bw such

that fQ
i (x) < hQ

MW−Bwi(λ, u, z∗) for i = 1, . . . , k.

Theorem 6.4.16. If x̄ ∈ AQ is a weakly efficient solution to (PV QC
w) and the

regularity condition (RCC
KT )(x̄) is fulfilled, then there exists (λ̄, z̄∗) ∈ (Rk

+ \
{0})×R

m
+ such that (λ̄, x̄, z̄∗) is a weakly efficient solution to (DV QC

MW−Bw)
and fQ

i (x̄) = hQ
MW−Bwi(λ̄, x̄, z̄∗) for i = 1, . . . , k.

Remark 6.4.3. The regularity condition used in Theorem 6.4.14 and Theorem
6.4.16, can be replaced according to Remark 6.1.8 when all the functions
involved are Fréchet continuously differentiable on S.

Remark 6.4.4. Relaxing in their formulation the geometric constraint λ ∈
int(Rk

+) to λ ∈ R
k
+\{0}, the vector duals (DV QC

W−JS) and (DV QC
MW−JS)

turn into ones for which weakly efficient solutions to the primal problem
(PV QC) can be investigated, too. The weak and strong duality statements
follow analogously and one does not have to impose (6.6) in this case, but
only the positivity of the denominators on S.

Remark 6.4.5. In [193] instead of R
m
+ an arbitrary convex closed cone in R

m is
considered. Considering additional Fréchet differentiability hypotheses on the
functions f , g and h, (DV QC

W−JS) turns into the vector dual given in [194].
The vector dual given in [12,112] is actually (DV QC

MW−JS) for the case when
the functions involved are assumed Fréchet differentiable. Note also the vector
Mond-Weir dual to (PV QC) from [190].

Remark 6.4.6. In papers like [112,190,193,194] it is claimed that properly effi-
cient solutions to the vector duals considered there for (PV QC) are obtained
via strong duality. We doubt that the proofs of those results are correct or at
least complete.

Remark 6.4.7. When k = 1 the duals and the duality statements from the
vector case collapse into the ones from the scalar case.
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6.5 Generalized Wolfe and Mond-Weir duality: a
perturbation approach

In the following we show that a perturbation theory similar to the one devel-
oped in the beginning of chapter 3 can be successfully employed to the Wolfe
and Mond-Weir duality concepts.

6.5.1 Wolfe type and Mond-Weir type duals for general scalar
optimization problems

Like in chapter 3, let X and Y be Hausdorff locally convex spaces and con-
sider the proper function F : X → R. Assume moreover that the topological
dual spaces X∗ and Y ∗ are endowed with the corresponding weak∗ topolo-
gies. Making use of a proper perturbation function Φ : X × Y → R fulfilling
Φ(x, 0) = F (x) for all x ∈ X, to the general optimization problem

(PG) inf
x∈X

F (x),

we attach, besides
(DG) sup

y∗∈Y ∗
{−Φ∗(0, y∗)},

(see section 3.1), two more dual problems, namely a Wolfe type one

(DGW ) sup
u∈X,y∈Y,y∗∈Y ∗,
(0,y∗)∈∂Φ(u,y)

{−Φ∗(0, y∗)},

and a Mond-Weir type one

(DGM ) sup
u∈X,y∗∈Y ∗,

(0,y∗)∈∂Φ(u,0)

{Φ(u, 0)}.

Next we show that weak duality holds for (PG) and its new duals, too, as a
consequence of the way these dual problems are defined.

Theorem 6.5.1. There is

−∞ ≤ v(DGM ) ≤ v(DGW ) ≤ v(DG) ≤ v(PG) ≤ +∞.

Proof. Noting that (DGM ) can be obtained from (DGW ) by taking y = 0
it follows that −∞ ≤ v(DGM ) ≤ v(DGW ). On the other hand, (DGW ) is
actually the problem (DG) introduced in the third chapter, with an additional
constraint. Consequently, v(DGW ) ≤ v(DG) and, using Theorem 3.1.1, we are
done. ��

The strong duality statement comes next. The regularity conditions it uses
were introduced in section 3.2.
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Theorem 6.5.2. Let Φ : X × Y → R be a proper and convex function such
that 0 ∈ PrY (dom Φ). If (PG) has an optimal solution x̄ ∈ X and one of
the regularity conditions (RCΦ

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then v(PG) =
v(DGW ) = v(DGM ) and there is some ȳ∗ ∈ Y ∗ such that (x̄, 0, ȳ∗) is an
optimal solution to (DGW ) and (x̄, ȳ∗) an optimal solution to (DGM ).

Proof. Theorem 3.3.1 guarantees that under the present hypotheses there is
some ȳ∗ ∈ Y ∗ such that (0, ȳ∗) ∈ ∂Φ(x̄, 0). Thus (x̄, 0, ȳ∗) and (x̄, ȳ∗) are
feasible elements to (DGW ) and (DGM ), respectively. Moreover, Φ(x̄, 0) =
v(PG) = −Φ∗(0, ȳ∗) ≥ v(DGW ) ≥ v(DGM ) ≥ Φ(x̄, 0), which yields the
strong duality for (PG) and both its duals (DGW ) and (DGM ). Then (x̄, 0, ȳ∗)
turns out to be an optimal solution to (DGW ) and (x̄, ȳ∗) to (DGM ), respec-
tively. ��

Let us see now how do the dual problems arising from (DGW ) and (DGM )
look for some classes of primal problems considered in subsections 3.1.2 and
3.1.3.

6.5.2 Wolfe type and Mond-Weir type duals for different scalar
optimization problems

Consider first the primal optimization problem

(PA) inf
x∈X

{f(x) + g(Ax)},

where f : X → R and g : Y → R are proper functions and A ∈ L(X,Y ) fulfills
dom f ∩ A−1(dom g) 	= ∅. Like in section 3.1.2, the perturbation function
considered for assigning the Wolfe type and Mond-Weir type dual problems
to (PA) is ΦA : X × Y → R, ΦA(x, y) = f(x) + g(Ax + y). After some
calculations, these duals turn out to be

(DA
W ) sup

u∈X,y∈Y,y∗∈Y ∗,
y∗∈(A∗)−1(−∂f(u))∩∂g(Au+y)

{−f∗(−A∗y∗) − g∗(y∗)},

and, respectively,

(DA
M ) sup

u∈X,
(A∗)−1(−∂f(u))∩∂g(Au) �=∅

{f(u) + g(Au)}.

By Theorem 6.5.1 we obtain v(DA
M ) ≤ v(DA

W ) ≤ v(DA) ≤ v(PA), i.e. weak
duality for these dual problems to (PA), while for strong duality one needs
to assume that the functions f and g are convex, the existence of an optimal
solution to (PA) and the fulfillment of a regularity condition from (RCA

i ),
i ∈ {1, 2, 3, 4}, i.e. the hypotheses of Theorem 3.3.4(a).

Like in chapter 3 the problem (PA) can be specialized, for different choices
of the functions involved, to turn into different optimization problems, namely
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(P id), (PAg ) and (PΣ), for which the duals resulting from (DA
M ) and (DA

W )
can be derived, too. Because in the literature both Wolfe and Mond-Weir
duality concepts apply only for constrained optimization problems we will
not insist further on the unconstrained case.

Now let us turn our attention to the constrained optimization problems
treated in section 3.1.3. Let Z be another Hausdorff locally convex space
partially ordered by the convex cone C ⊆ Z. Consider the nonempty set
S ⊆ X and the proper functions f : X → R and g : X → Z, fulfilling
dom f ∩ S ∩ g−1(−C) 	= ∅. The primal problem we treat further is

(PC) inf
x∈A

f(x).

A = {x ∈ S : g(x) ∈ −C}

Using the perturbation functions from subsection 3.1.3 we assign to (PC)
three pairs of duals arising from (DGW ) and (DGM ), respectively.

Taking the perturbation function ΦCL , we obtain from (DGW ) the follow-
ing dual problem to (PC)

(DCL

W ) sup
u∈S,z∈Z,z∗∈−C∗,

g(u)−z∈−C,〈z∗,g(u)−z〉=0,
0∈∂(f+(−z∗g)+δS)(u)

{f(u) − 〈z∗, z〉},

which is nothing else than

(DCL

W ) sup
u∈S,z∗∈C∗,

0∈∂(f+(z∗g)+δS)(u)

{f(u) + 〈z∗, g(u)〉}.

We call this the Wolfe dual of Lagrange type to (PC), because it was obtained
via the perturbation function used in the framework of chapter 3 to get the
Lagrange dual to (PC). We shall see that in the particular instance where
the classical Wolfe duality was considered this dual turns into the well-known
Wolfe dual problem.

Analogously we get a dual problem to (PC) arising from (DGM ), i.e.

(DCL

M ) sup
u∈S,z∗∈C∗,

g(u)∈−C,〈z∗,g(u)〉≥0,
0∈∂(f+(z∗g)+δS)(u)

f(u),

further referred to as the Mond-Weir dual of Lagrange type to (PC). We name
it like this because it was obtained via the perturbation ΦCL and due to the
fact that in the particular instances where the classical Mond-Weir duality was
considered this dual turns into the Mond-Weir dual problem with a constraint
more, namely g(u) ∈ −C.

This makes us consider also a dual problem to (PC) which is obtained
from (DCL

M ) by removing the constraint g(u) ∈ −C, being
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(DCL

MW ) sup
u∈S,z∗∈C∗,〈z∗,g(u)〉≥0,

0∈∂(f+(z∗g)+δS)(u)

f(u).

By construction it is clear that v(DCL

M ) ≤ v(DCL

MW ). On the other hand,
whenever (u, z∗) is feasible to (DCL

MW ) it is feasible to (DCL

W ), too, and we
moreover have 〈z∗, g(u)〉 ≥ 0. This yields f(u) ≤ f(u) + 〈z∗, g(u)〉 ≤ v(DCL

W ).
Considering the supremum over all the pairs (u, z∗) feasible to (DCL

MW ) we
obtain v(DCL

MW ) ≤ v(DCL

W ). Applying the weak duality statement we get
v(DCL

M ) ≤ v(DCL

MW ) ≤ v(DCL

W ) ≤ v(DCL) ≤ v(PC).
Scalar dual problems to (PC) can be obtained from (DGW ) and (DGM )

with the perturbation function ΦCF , too. After some calculations, (DGW )
turns into

(DCF

W ) sup
u∈S,y∈X,y∗∈X∗,

y∗∈∂f(u+y)∩(−N(A,(u)))

{〈y∗, u〉 − f∗(y∗)},

further called the Wolfe dual of Fenchel type to (PC) since it was obtained via
the perturbation used earlier to assign the Fenchel dual to (PC) and because
(DGW ) was obtained by generalizing the classical Wolfe duality.

Similarly, the dual problem to (PC) arising from (DGM ) is

(DCF

M ) sup
u∈S,

0∈∂f(u)+N(A,(u))

f(u),

called the Mond-Weir dual of Fenchel type to (PC). From the weak duality
statement we get v(DCF

M ) ≤ v(DCF

W ) ≤ v(DCF ) ≤ v(PC).
The last perturbation function considered here is ΦCF L , which leads to the

following dual to (PC) we obtained from (DGW )

(DCF L

W ) sup
u∈S,y∈X,y∗∈X∗,z∗∈C∗,

y∗∈∂f(u+y)∩(−∂((z∗g)+δS)(u))

{〈y∗, u〉 + 〈z∗, g(u)〉 − f∗(y∗)},

further referred to as the Wolfe dual of Fenchel-Lagrange type to (PC).
Analogously, the dual problem to (PC) arising from (DGM ) is

(DCF L

M ) sup
u∈S,z∗∈C∗,

〈z∗,g(u)〉≥0,g(u)∈−C,
0∈∂f(u)+∂((z∗g)+δS)(u)

f(u),

called the Mond-Weir dual of Fenchel-Lagrange type to (PC).
Removing the constraint g(u) ∈ −C, we obtain from (DCF L

M ) the following
dual problem to (PC),

(DCF L

MW ) sup
u∈S,z∗∈C∗,〈z∗,g(u)〉≥0,
0∈∂f(u)+∂((z∗g)+δS)(u)

f(u).
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Applying the weak duality statement and using similar arguments to the
ones used concerning (DCL

MW ), we get v(DCF L

M ) ≤ v(DCF L

MW ) ≤ v(DCF L

W ) ≤
v(DCF L) ≤ v(PC).

Analogously to the proofs of Proposition 3.1.5 and Proposition 3.1.6, one
can show the following inequalities concerning the relations between the op-
timal objective values of the dual problems introduced in this section.

Proposition 6.5.3. One has

(i) v(DCF L

M ) ≤ v(DCL

M )
v(DCF

M )
≤ v(PC);

(ii) v(DCF L

MW ) ≤ v(DCL

MW ) ≤ v(PC).

Remark 6.5.1. By Theorem 3.5.8 one can give sufficient conditions that en-
sure that (DCL

W ) coincides with (DC
W ) and, respectively, (DCL

MW ) with (DC
MW ),

like the additional conditions (i) − (iv) from Theorem 6.1.2. Moreover, even
conditions of closedness type can be considered. As the hypotheses of Remark
6.1.1, Remark 6.1.2 and subsection 6.1.2 guarantee the fulfillment of at least
first two of these conditions, our claim from the beginning of the section that
we have embedded the Wolfe and Mond-Weir duality concepts into the per-
turbational approach is sustained. Furthermore, by Theorem 3.5.6, Theorem
3.5.9 and Theorem 3.5.13 one can give sufficient conditions that allow us to
have sums of subdifferentials instead of subdifferentials of sums of functions
in the feasible sets of (DCL

MW ) and (DCL

W ).

From the strong duality statement for (PG) and its duals (DGW ) and
(DGM ), Theorem 6.5.2, one can obtain strong duality results for the duals
considered in this subsection, by using the regularity conditions considered in
section 3.2.

6.5.3 Wolfe type and Mond-Weir type duals for general vector
optimization problems

Let X, Y and V be Hausdorff locally convex spaces and assume that V is
partially ordered by the nontrivial pointed convex cone K ⊆ V . Let F :
X → V be a proper and K-convex function and consider the general vector
optimization problem

(PV G) Min
x∈X

F (x).

Using the vector perturbation function Φ : X × Y → V , assumed proper and
fulfilling Φ(x, 0) = F (x) for all x ∈ X, we attach to (PV G) the following
vector dual problems with respect to properly efficient solutions in the sense
of linear scalarization

(DV GW ) Max
(v∗,u,y,y∗,r)∈BG

W

hG
W (v∗, u, y, y∗, r),
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where

BG
W = {(v∗, u, y, y∗, r) ∈ K∗0×X×Y ×Y ∗×(K\{0}) : (0, y∗) ∈ ∂(v∗Φ)(u, y)}

and

hG
W (v∗, u, y, y∗, r) = Φ(u, y) − 〈y∗, y〉

〈v∗, r〉 r

and
(DV GM ) Max

(v∗,u,y∗)∈BG
M

hG
M (v∗, u, y∗),

where

BG
M = {(v∗, u, y∗) ∈ K∗0 × X × Y ∗ : (0, y∗) ∈ ∂(v∗Φ)(u, 0)}

and
hG

M (v∗, u, y∗) = Φ(u, 0).

Note that hG
M (BG

M ) ⊆ hG
W (BG

W ) ⊆ V .

Remark 6.5.2. Considering the primal vector problem with respect to weakly
efficient solutions

(PV Gw) WMin
x∈X

F (x),

these vector duals in this subsection can be modified to become ones with
respect to weakly efficient solutions, too, by taking v∗ in the larger set K∗\{0}
and, concerning only (DV GW ), restricting the variable r to take values only
in int(K).

Remark 6.5.3. Fixing r ∈ K\{0}, we can also construct, starting from the
vector dual (DV GW ), a family of dual problems to (PV G), defined as

(DV GW (r)) Max
(v∗,u,y,y∗)∈BG

Wr

hG
Wr

(v∗, u, y, y∗),

where

BG
Wr

= {(v∗, u, y, y∗) ∈ K∗0 ×X ×Y ×Y ∗ : (0, y∗) ∈ ∂(v∗Φ)(u, y), 〈v∗, r〉 = 1}

and
hG

Wr
(v∗, u, y, y∗) = Φ(u, y) − 〈y∗, y〉r.

The way these vector dual problems to (PV G) are constructed is partially
based on ideas from [44, 200] and on a vector duality approach which has
been discussed in chapter 4. The duality statements are given without proofs,
which can be made either directly, or by analogy to the corresponding results
from chapter 4.

Theorem 6.5.4. There is no x ∈ X and no (v∗, u, y, y∗, r) ∈ BG
W such that

F (x) ≤K hG
W (v∗, u, y, y∗, r).
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Theorem 6.5.5. There is no x ∈ X and no (v∗, u, y∗) ∈ BG
M such that

F (x) ≤K hG
M (v∗, u, y∗).

Theorem 6.5.6. Assume the fulfillment of the following regularity condition

(RCV Φ) ∃x′ ∈ X such that (x′, 0) ∈ dom Φ and Φ(x′, ·) is continuous at 0.

If x̄ ∈ X is a properly efficient solution to (PV G), then there exists some
(v̄∗, ȳ, ȳ∗, r̄) ∈ K∗0 × Y × Y ∗ × (K \ {0}) such that (v̄∗, x̄, ȳ, ȳ∗, r̄) is an effi-
cient solution to (DV GW ), (v̄∗, x̄, ȳ∗) is an efficient solution to (DV GM ) and
F (x̄) = hG

W (v̄∗, x̄, ȳ, ȳ∗, r̄) = hG
M (v̄∗, x̄, ȳ∗).

Remark 6.5.4. As a regularity condition in Theorem 6.5.6 one can use any
condition that ensures for v∗ ∈ K∗0 the stability of the scalar optimization
problem

inf
x∈X

(v̄∗Φ)(x, 0)

with respect to its general conjugate dual, like (RCΦ
i ), i ∈ {1, 2, 3} from

Theorem 3.2.1. A closedness type regularity condition (see (RCΦ
4 ) in Theorem

3.2.3) could be taken into consideration, too, but it has as disadvantage the
fact that v̄∗ appears in its formulation.

Remark 6.5.5. In the particular instance when (PV G) is (PV C) one can con-
sider the perturbation functions introduced in subsection 4.3.2, obtaining thus
new vector duals. The vector dual problems treated in subsection 6.2.1 turn
out to be derivable from the duals introduced above considered when V = R

k

and K = R
k
+, the Wolfe vector dual after fixing r = e and the Mond-Weir

dual after removing the constraint g(u) ∈ −C, like in the scalar case, from
(DV GM ).

Remark 6.5.6. In case V = R and K = R+ for F : X → R proper and convex
the problem (PV G) becomes (PG), while the duals (DV GW ) and (DV GM )
turn into (DGW ) and (DGM ), respectively.

Remark 6.5.7. It is also possible to assign to (PV G) vector duals of Wolfe and
Mond-Weir type by following the approach in section 4.3, by employing the
scalar duals introduced in subsection 6.5.1.

Bibliographical notes

The Wolfe dual to a constrained scalar optimization problem was introduced
by Wolfe in [202], while the Mond-Weir dual followed twenty years later, due
to Mond and Weir [138]. In both cases the functions involved were considered
differentiable and endowed with generalized convexity properties. Then these
duality concepts evolved parallelly and one can distinguish two main directions
for both of them. On one hand, considering the primal problem convex, the
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differentiability assumptions were dropped and the gradients that appear in
the duals were replaced by subdifferentials. We mention here papers like [109,
166]. On the other hand, especially for Mond-Weir duality, the differentiability
continued to play an important role and the convexity assumptions on the
functions involved were weakened, in papers like [11, 126, 138]. Besides the
classical Mond-Weir dual, different closely related Mond-Weir type duals were
also proposed, as well as combinations of the Wolfe and Mond-Weir duals.

In the vector case, what we called here the classical Wolfe type and Mond
Weir type duals were constructed by following ideas from the literature. Wolfe
type vector duals were considered in [61,99,191,192,197,203], while for Mond-
Weir type vector duals we refer to [6,61,62,195,197]. In these papers different
duality instances were considered, with respect to properly efficient, efficient
and weakly efficient solutions, respectively. In both scalar and vector cases
there is also a rich literature on both Wolfe type and Mond Weir type duality
for optimization problems with geometric and both inequality and equality
constraints. Because they can be seen as special cases of the problems with
geometric and cone constraints, such problems were not treated here.

As they can be employed also to non-convex optimization problems, the
Wolfe and Mond-Weir duality concepts were considered in different applica-
tions, like duality without regularity condition (cf. [63, 109, 196, 198]), sym-
metric and self duality (cf. [111, 115, 116, 138, 171]), fractional programming
(cf. [5, 12,46,112]) etc.

In the last section we used the perturbation theory from chapters 3 and 4
in relation to the Wolfe and Mond-Weir duality concepts.



7

Duality for set-valued optimization problems
based on vector conjugacy

Since the early eighties of the last century there have been attempts to extend
the perturbation approach for scalar duality (as developed in chapter 3 from
scalar optimization problems) to vector duality in connection with different
generalizations of the conjugacy concept. The idea of conjugate functions and
subdifferentiability in scalar optimization is also fruitful in vector optimiza-
tion. But, because of the different solution notions in vector optimization and
the occurring partial orderings, there are several possibilities to define conju-
gate maps and vector-valued subgradients. In the current chapter we present
some of these approaches extended to set-valued maps and, starting from
these investigation, we develop a duality scheme for set-valued optimization
problems.

7.1 Conjugate duality based on efficient solutions

The perturbation approach to vector duality based on efficiency has been
developed in finite dimensional spaces by Tanino, Sawaragi and Nakayama
in [163,180]. We give here an extended approach in topological vector spaces,
while the optimization problems we treat involve set-valued maps instead of
only vector-valued functions.

7.1.1 Conjugate maps and the subdifferential of set-valued maps

First of all we need some preliminaries and definitions concerning minimality
and maximality notions for sets in extended topological vector spaces. To this
end we extend the definitions and results from subsection 2.4.1 to this general
setting.

Unless otherwise mentioned, in the following we consider X and V to be
topological vector spaces with X∗ and V ∗ topological dual spaces, respectively.
Moreover, let V be partially ordered by the nontrivial pointed convex cone
K ⊆ V . Next we define minimal and maximal elements of a set M ⊆ V =
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V ∪ {±∞K} with respect to the partial ordering induced by the cone K. As
one can easily notice, the definition below extends Definition 2.4.1 to sets in
V .

Definition 7.1.1. Let K be a nontrivial pointed convex cone in V and
M ⊆ V . In the case M = ∅, take by convention Min(M,K) = {+∞K}
and Max(M,K) = {−∞K}. Otherwise, we say that v̄ ∈ M is a minimal
element of M if there is no v ∈ M such that v ≤K v̄. The set of all minimal
elements of M is denoted by Min(M,K) and it is called the minimal set of
M . Accordingly, we say that v̄ ∈ M is a maximal element of M if there is no
v ∈ M such that v ≥K v̄. The set of all maximal elements of M is denoted by
Max(M,K) and it is called the maximal set of M .

It is easy to see that for the notions introduces in Definition 7.1.1 we have
Max(M,K) = Min(M,−K) = −Min(−M,K). The operations with sets in
V are taken like for sets in V , as mentioned in section 2.1. We also notice
that if −∞K ∈ Max(M,K), then M = {−∞K} or M = ∅, while when
+∞K ∈ Min(M,K) one has M = {+∞K} or M = ∅.

Throughout this chapter we agree that if K ⊆ V is a given ordering
cone and there is no possibility of confusion, then instead of Min(M,K)
and Max(M,K) the simplified notations MinM and MaxM , respectively,
are used.

Next we define the conjugate map, the biconjugate map and the sub-
differential of a set-valued map. For a set-valued map F : X ⇒ V let
its graph be gph F := {(x, v) ∈ X × V : v ∈ F (x)}, its domain be
dom F := {x ∈ X : F (x) 	= ∅ and F (x) 	= {+∞K}} and, for a set U ⊆ X,
denote F (U) := ∪x∈UF (x).

Definition 7.1.2. Let F : X ⇒ V be a set-valued map.

(a) The set-valued map

F ∗ : L(X,V ) ⇒ V , F ∗(T ) = Max ∪
x∈X

[Tx − F (x)],

is called the conjugate map of F .
(b) The set-valued map

F ∗∗ : X ⇒ V , F ∗∗(x) = Max ∪
T∈L(X,V )

[Tx − F ∗(T )],

is called the biconjugate map of F .
(c) The operator T ∈ L(X,V ) is said to be a subgradient of F at (x, v) ∈

gph F ∩ (X × V ) if

Tx − v ∈ Max ∪
y∈X

[Ty − F (y)].

The set of all subgradients of F at (x, v) ∈ gph F ∩ (X × V ) is called the
subdifferential of F at (x, v) and it is denoted by ∂F (x; v). Further, for all
x ∈ X denote ∂F (x) := ∪v∈F (x)∩V ∂F (x; v). If for all v ∈ F (x) ∩ V we
have ∂F (x; v) 	= ∅ then F is said to be subdifferentiable at x.
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It is easy to see that the previous definitions are inspired by the definitions
of the conjugate, biconjugate, subgradient and, respectively, subdifferential of
a function with values in the extended real-valued space. By particularizing
the above definition to the scalar case, we do not completely get the classical
definition from chapter 2 as far as conjugacy is concerned, because we use
“max” instead of “sup”. There are also notions of supremum and infimum
corresponding to maximality and minimality, but they have some computa-
tional disadvantages. In section 7.4 we deal with similar relations based on
weak minimality and weak maximality. That approach has better properties
and allows to develop a self-contained theory for vector conjugacy, subdiffer-
entiability and duality based on those weak type notions.

Remark 7.1.1. The particularization of Definition 7.1.2 to vector-valued func-
tions f : X → V follows directly. One gets for all T ∈ L(X,V ) for the
conjugate of f the following formula f∗(T ) = Max{Tx − f(x) : x ∈ X} =
Max{Tx−f(x) : x ∈ dom f}. If T ∈ L(X,V ) is a subgradient of f at (x̄, f(x̄)),
where x̄ ∈ X and f(x̄) ∈ V , we simply say that it is a subgradient of f at x̄.
Thus T x̄ − f(x̄) ∈ Max{Tx − f(x) : x ∈ X}, which is equivalent to the fact
that there is no x ∈ X such that Tx−f(x) ≥K T x̄−f(x̄), or, in other words,
for all x ∈ X there is f(x) − f(x̄) �K T (x − x̄). This is further equivalent to
f(x) − f(x̄) �K T (x − x̄) for all x ∈ X. The set of all subgradients of f at
x̄ ∈ X, when f(x̄) ∈ V , is said to be the subdifferential of f at x̄ and it is de-
noted by ∂f(x̄). It is easy to see that for V = R, K = R+, f : X → R, x̄ ∈ X
with f(x̄) ∈ R and T ∈ L(X, R) = X∗, the fact that f(x)− f(x̄) �K T (x− x̄)
for all x ∈ X is equivalent to f(x) − f(x̄) ≥ 〈T, x − x̄〉 for all x ∈ X. In this
way we rediscover the classical definition of the scalar subgradient as given in
Definition 2.3.2.

The conjugate map of the set-valued map F : X ⇒ V has some useful
properties. Let G : X ⇒ V be such that G(x) = F (x − x0), where x0 ∈ X is
arbitrarily taken. Then it holds

G∗(T ) = F ∗(T ) + Tx0 ∀T ∈ L(X,V ) (7.1)

and
G∗∗(x) = F ∗∗(x − x0) ∀x ∈ X. (7.2)

Indeed, for T ∈ L(X,V ) one has

G∗(T ) = Max ∪
x∈X

[Tx − G(x)] = Max ∪
x∈X

[Tx − F (x − x0)]

= Max ∪
y∈X

[T (y + x0) − F (y)] = Max ∪
y∈X

[Ty − F (y)] + Tx0 = F ∗(T ) + Tx0,

while, when x ∈ X, it holds

G∗∗(x) = Max ∪
T∈L(X,V )

[Tx − G∗(T )]
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= Max ∪
T∈L(X,V )

[T (x − x0) − F ∗(T )] = F ∗∗(x − x0).

Next we provide a result which can be seen as a generalization of the
Young-Fenchel inequality (cf. Proposition 2.3.2(a)).

Proposition 7.1.1. Let F : X ⇒ V be a set-valued map, x ∈ X and T ∈
L(X,V ). Then for all v ∈ F (x) and all v∗ ∈ F ∗(T ) it holds

v + v∗ �K Tx. (7.3)

Proof. Let x ∈ X and T ∈ L(X,V ) be fixed and take v ∈ F (x) and v∗ ∈
F ∗(T ).

Let us assume that v ∈ V . We prove first that it cannot hold v∗ = −∞K .
Otherwise, −∞K ∈ Max∪x∈X [Tx − F (x)] and one can easily deduce that
either F (x) = {+∞K} for all x ∈ X, or F (x) = ∅ for all x ∈ X. But this is not
in accordance with the above assumption v ∈ F (x)∩V . Thus v∗ ∈ V ∪{+∞K}.
If v∗ ∈ V , by taking into consideration the definition of maximality, one can
easily demonstrate that it is binding to have v∗

�K Tx − v, i.e. (7.3) is true.
On the other hand, when v∗ = +∞K , by taking into consideration the rules
for the addition with ±∞K , one can easily show that (7.3) is fulfilled in this
case, too.

Assume now that v = −∞K . Then +∞K ∈ ∪x∈X [Tx − F (x)] and, by
Definition 7.1.1 it yields v∗ = +∞K . By (2.1) we have v + v∗ = +∞K and so
(7.3) is fulfilled in this case, too.

In the third situation, namely when v = +∞K , one can notice that inde-
pendently of the value of v∗ relation (7.3) is always true. ��

Remark 7.1.2. For v ∈ F (x) and v∗ ∈ F ∗(T ∗) the generalized Young-Fenchel
inequality can be equivalently written as v + v∗−Tx /∈ −K\{0} or Tx− (v +
v∗) /∈ K\{0}.

In the scalar case the inequality f∗∗ ≤ f is always valid, as seen in Propo-
sition 2.3.4. An analogous result can be proven for set-valued maps.

Proposition 7.1.2. Let F : X ⇒ V be a set-valued map and x ∈ X. For all
v ∈ F (x) and all u ∈ F ∗∗(x) we have v �K u.

Proof. Let us first demonstrate the assertion for x = 0. According to Propo-
sition 7.1.1, for each v ∈ F (0) and each v̄ ∈ −∪T∈L(X,V ) F ∗(T ) there
is v − v̄ �K T0 = 0 or, equivalently, v̄ /∈ v + (K\{0}). As F ∗∗(0) =
Max∪T∈L(X,V )[T0 − F ∗(T )] = Max∪T∈L(X,V )[−F ∗(T )], it holds v �K u for
all u ∈ F ∗∗(0). Observe that this relation is valid also if ∪T∈L(X,V )[−F ∗(T )] =
∅, because in this situation F ∗∗(0) = {−∞K}.

Now let be x 	= 0. We define the set-valued map G : X ⇒ V , G(y) =
F (y + x). Taking into consideration relation (7.2), one has G∗∗(0) = F ∗∗(x).
Consequently, for all v ∈ F (x) = G(0) and all u ∈ F ∗∗(x) = G∗∗(0) the
assertion follows directly from the first part of the proof. ��
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Next, some elementary properties for conjugate maps and subgradients are
gathered. One can easily see that these results are actually generalizations of
the corresponding ones given for extended real-valued functions.

Proposition 7.1.3. (a) Let F : X ⇒ V be a set-valued map. Then for
(x, v) ∈ gph F ∩ (X × V ) it holds T ∈ ∂F (x; v) if and only if Tx − v ∈
F ∗(T ).

(b) Let f : X → V be a vector-valued function. Then for x ∈ X with f(x) ∈ V
there is T ∈ ∂f(x) if and only if Tx − f(x) ∈ f∗(T ).

Proof. The assertions are direct consequences of Definition 7.1.2. ��

Proposition 7.1.4. (a) Let F : X ⇒ V be a set-valued map and (x, v) ∈
gph F ∩ (X × V ). Then ∂F (x; v) 	= ∅ if and only if v ∈ F ∗∗(x). Conse-
quently, F is subdifferentiable at x if and only if F (x) ∩ V ⊆ F ∗∗(x).

(b) Let f : X → V be a vector-valued function. For any x ∈ X with f(x) ∈ V
we have ∂f(x) 	= ∅ if and only if f(x) ∈ f∗∗(x).

Proof. (a) Let (x, v) ∈ gph F ∩ (X × V ). Suppose that ∂F (x; v) 	= ∅ and let
T ∈ ∂F (x; v) be arbitrarily taken. According to Proposition 7.1.3 it holds
v ∈ Tx− F ∗(T ) ⊆ ∪T∈L(X,V )[Tx− F ∗(T )]. Proposition 7.1.1 says that v �K

Tx − v∗ for all T ∈ L(X,V ) and all v∗ ∈ F ∗(T ). But this actually means
that there is no ṽ ∈ ∪T∈L(X,V )[Tx − F ∗(T )] such that v ≤K ṽ and v ∈
Max∪T∈L(X,V )[Tx − F ∗(T )] = F ∗∗(x).

Now assume that v ∈ F ∗∗(x). By definition it holds v ∈ Tx − F ∗(T )
for some T ∈ L(X,V ). Proposition 7.1.3 yields T ∈ ∂F (x; v) and the first
equivalence is proven.

The equivalent characterization of the subdifferentiability of F at x follows
then directly from Definition 7.1.2.

(b) The assertion follows from (a) by taking into consideration Remark
7.1.1. ��

Lemma 7.1.5. Let M1,M2 ⊆ V be given sets. The following statements are
true

(a) if MinM1 	= ∅ and Min M2 	= ∅, then Min(M1 +M2) ⊆ Min M1 +MinM2;
(b) if Max M1 	= ∅ and Max M2 	= ∅, then Max(M1 + M2) ⊆ Max M1 +

Max M2.

Proof. (a) Let v ∈ Min(M1 + M2) be arbitrarily taken. We treat three cases.
Suppose first that v ∈ V . Then there exist v1 ∈ M1 and v2 ∈ M2 such

that v = v1 + v2. If v1 /∈ MinM1, there exists v̄1 ∈ M1 such that v̄1 ≤K v1.
Then v̄1 + v2 ∈ M1 + M2 and v̄1 + v2 ≤K v1 + v2 = v, which contradicts the
fact that v is a minimal element of M1 +M2. Thus v1 ∈ Min M1. By the same
argument one can prove that v2 ∈ MinM2, too.

Assume that v = +∞K . Then we actually have Min(M1 +M2) = {+∞K}
and this means that either M1+M2 = {+∞K} or M1+M2 = ∅. If M1+M2 =
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{+∞K}, then the sets M1 and M2 are nonempty and M1 = {+∞K} or
M2 = {+∞K}. In both cases, because Min M1 	= ∅ and MinM2 	= ∅, the right
hand side of the inclusion relation in (a) is equal to {+∞K}. If M1 +M2 = ∅,
then M1 = ∅ or M2 = ∅, meaning again that (a) is fulfilled.

Finally, we assume that v = −∞K . Then {−∞K} = Min(M1 + M2) and
−∞K ∈ M1 + M2. This also implies that M1 	= ∅ and M2 	= ∅. Without
loss of generality we may assume that −∞K ∈ M1. Taking into consideration
the calculation rules when dealing with ±∞K one can see that M2 	= {+∞K}
and so +∞K /∈ Min M2. Even more, since Min M2 is nonempty and MinM1 =
{−∞K}, it holds MinM1 + Min M2 = {−∞K}.

(b) This part follows from (a) by taking account of the fact that for M ⊆ V
one has MaxM = −Min(−M). ��

Corollary 7.1.6. Let M1,M2 ⊆ V be given. Then the inclusions Min(M1 +
M2) ⊆ Min M1 + Min M2 and Max(M1 + M2) ⊆ Max M1 + Max M2 hold
without additional assumptions.

Remark 7.1.3. If in the situation considered in Corollary 7.1.6 MinM1 = ∅ or
Min M2 = ∅, then Min(M1 + M2) = ∅, too (see the first part of the proof of
Lemma 7.1.5).

Definition 7.1.3. Let M ⊆ V be a given set.

(a) The set Min M is said to be externally stable if M\{+∞K} ⊆ Min M +K.
(b) The set Max M is said to be externally stable if M\{−∞K} ⊆ Max M−K.

Remark 7.1.4. External stability plays an important role in the following con-
siderations. Assuming it fulfilled for MinM , it means that each point of
M\{+∞K} outside the set of minimal elements of M is dominated by a
minimal element of M . That is why this property is sometimes called in the
literature the domination property (first introduced in [181]). Although differ-
ent criteria ensuring external stability can be found in the existent literature
(see [125] for more details), we quote here only one result given in finite di-
mensional spaces (see [163, Theorem 3.2.9]).

Let K be a convex cone in R
m. A set M ⊆ R

m is called K-compact if
the set (v − cl(K)) ∩ M is compact for any v ∈ M . If K is a pointed convex
closed cone in R

m and M ⊆ R
m is a nonempty K-compact set, then Min M

is externally stable.

Proposition 7.1.7. Let F, G : X ⇒ V be set-valued maps. Assume that for
all x ∈ X with +∞K ∈ F (x) it holds G(x) 	= ∅ and Max G(x) 	= ∅. Then

Max ∪
x∈X

[F (x) + G(x)] ⊆ Max ∪
x∈X

[F (x) + Max G(x)]. (7.4)

If, additionally, Max G(x) is externally stable for all x ∈ X, then the reverse
inclusion holds, too.
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Proof. First we prove (7.4). Take an arbitrary v ∈ Max∪x∈X [F (x) + G(x)].
Further we treat three cases.

Suppose first that v ∈ V . Then there exist x̄ ∈ X, v1 ∈ F (x̄) ∩ V and
v2 ∈ G(x̄) ∩ V such that v = v1 + v2. If v2 /∈ MaxG(x̄), by definition there
exists v̄2 ∈ G(x̄) such that v2 ≤K v̄2. Then v = v1 + v2 ≤K v1 + v̄2 ∈
∪x∈X [F (x) + G(x)] and this contradicts the maximality of v. Therefore v2 ∈
Max G(x̄) and so v = v1 + v2 ∈ ∪x∈X [F (x) + Max G(x)]. That v is a maximal
element of the set ∪x∈X [F (x) + Max G(x)] is a trivial consequence of the fact
that in this case the inclusion ∪x∈X [F (x) + MaxG(x)] ⊆ ∪x∈X [F (x) + G(x)]
holds.

Assume that v = +∞K . Then +∞K ∈ ∪x∈X [F (x)+G(x)] and this secures
the existence of some x̄ ∈ X such that +∞K ∈ F (x̄) + G(x̄). Then two
situations can occur: either +∞K ∈ F (x̄) and G(x̄) 	= ∅ or F (x̄) 	= ∅ and
+∞K ∈ G(x̄). If the first situation is valid, then we cannot have MaxG(x̄) =
∅ (the assumptions of the proposition impose this). Thus +∞K ∈ F (x̄) +
Max G(x̄) and from here we deduce that +∞K ∈ ∪x∈X [F (x) + MaxG(x)].
Consequently, Max∪x∈X [F (x) + MaxG(x)] = {+∞K}. Following a similar
reasoning the same equality can be proven also if the second situation occurs.
Finally, in this case it holds

Max ∪
x∈X

[F (x) + G(x)] = Max ∪
x∈X

[F (x) + Max G(x)] = {+∞K}.

Let us assume that v = −∞K . Then, according to Definition 7.1.1 either
∪x∈X [F (x) + G(x)] = {−∞K}, or ∪x∈X [F (x) + G(x)] = ∅.

In the first situation for all x ∈ X there is either F (x) + G(x) = {−∞K},
or F (x) + G(x) = ∅ and at least for one y ∈ X there is F (y) + G(y) =
{−∞K}. Let x ∈ X be fixed. If F (x)+G(x) = {−∞K} then F (x) = {−∞K}
and +∞K /∈ G(x), G(x) 	= ∅ or G(x) = {−∞K} and {+∞K} /∈ F (x),
F (x) 	= ∅. If F (x) + G(x) = ∅, then F (x) = ∅ or G(x) = ∅. If G(x) = ∅
then +∞K /∈ F (x) in accordance with our assumptions. In all these cases
one can see easily that F (x) + Max G(x) is equal to {−∞K} or ∅. Therefore,
Max∪x∈X [F (x) + Max G(x)] = {−∞K}. In fact, we have

Max ∪
x∈X

[F (x) + G(x)] = Max ∪
x∈X

[F (x) + Max G(x)] = {−∞K} . (7.5)

It remains to consider the second situation in this third case, namely when
the set ∪x∈X [F (x)+G(x)] is empty. Then F (x) + G(x) = ∅ for all x ∈ X.
Let x ∈ X be fixed. If F (x) = ∅, then F (x) + MaxG(x) = ∅. In the case
G(x) = ∅, by the assumptions made we must have that +∞K /∈ F (x) and
therefore F (x) + Max G(x) = F (x) + {−∞K} which is empty if F (x) = ∅
and {−∞K}, otherwise. Thus ∪x∈X [F (x) + MaxG(x)] is equal to {−∞K} or
∅ and in both situations we have Max∪x∈X [F (x) + MaxG(x)] = {−∞K}.
Consequently, (7.5) is also in this case valid.

Now let us prove that the reverse inclusion holds when MaxG(x) is exter-
nally stable for all x ∈ X.
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Let be v ∈ Max∪x∈X [F (x) + Max G(x)]. Suppose first that v ∈ V . Then
there exists x̄ ∈ X, v1 ∈ F (x̄) ∩ V and v2 ∈ Max G(x̄) ∩ V such that v =
v1 + v2. Thus v2 ∈ G(x̄) ∩ V . Consequently, v ∈ ∪x∈X [F (x) + G(x)]. If v /∈
Max∪x∈X [F (x) + G(x)] then there exists ṽ ∈ ∪x∈X [F (x) + G(x)] such that
ṽ ≥K v. By (7.4) follows that ṽ ∈ V . Let be x̃ ∈ X, ṽ1 ∈ F (x̃) ∩ V and
ṽ2 ∈ G(x̃) ∩ V , with ṽ = ṽ1 + ṽ2. Since G(x̃) \ {−∞K} ⊆ Max G(x̃) − K,
there exists ṽ3 ∈ MaxG(x̃) with ṽ3 �K ṽ2 and consequently ṽ1 + ṽ3 ≥K v. As
ṽ1 + ṽ3 ∈ ∪x∈X [F (x) + Max G(x)], this leads to a contradiction.

Assume now that v = +∞K . Then there exists x̄ ∈ X such that either
+∞K ∈ F (x̄) and MaxG(x̄) 	= ∅, or F (x̄) 	= ∅ and +∞K ∈ Max G(x̄). In
the first situation, by the assumption we made, it holds that G(x̄) 	= ∅ and
so +∞K ∈ F (x̄) + G(x̄). In the second situation we have +∞K ∈ G(x̄) and
also in this case one has +∞K ∈ F (x̄) + G(x̄). In conclusion, one can easily
see that Max∪x∈X [F (x) + G(x)] = {+∞K}.

We come now to the case when v = −∞K . Then either ∪x∈X [F (x) +
Max G(x)] = {−∞K}, or ∪x∈X [F (x) + Max G(x)] = ∅. In the first situation,
for all x ∈ X there is F (x) + Max G(x) = {−∞K} or F (x) + Max G(x) = ∅
and F (y) + Max G(y) = {−∞K} at least for one y ∈ X. Let x ∈ X be fixed.
If F (x) + MaxG(x) = {−∞K}, then either F (x) = {−∞K} and +∞K /∈
Max G(x), MaxG(x) 	= ∅, or Max G(x) = {−∞K} and +∞K /∈ F (x), F (x) 	=
∅. In both cases F (x) + G(x) is equal to {−∞K} or ∅. Assume now that
F (x) + MaxG(x) = ∅. Then F (x) = ∅, as we have that Max G(x) = ∅ cannot
occur because of the external stability of MaxG(x). Thus F (x) + G(x) = ∅
and one can see that in all these situations F (x) + G(x) is equal to {−∞K}
or ∅. Consequently, Max∪x∈X [F (x) + G(x)] = {−∞K}.

Now we consider the second situation in this third case, namely when
F (x) + MaxG(x) = ∅ for all x ∈ X. As seen above, this can be the case only
if F (x) = ∅ for all x ∈ X. This means that ∪x∈X [F (x) + G(x)] = ∅ and so
Max∪x∈X [F (x) + G(x)] = {−∞K}. One can easily conclude that also in this
case v ∈ Max∪x∈X [F (x) + G(x)] and the reverse inclusion is proven. ��

Corollary 7.1.8. Let F : X ⇒ V be a set-valued map. Then for any T ∈
L(X,V ) it holds

F ∗(T ) ⊆ Max ∪
x∈X

[Tx − MinF (x)].

If Min F (x) is externally stable for all x ∈ X, then the converse inclusion
holds, too.

Proof. Let us consider the maps ˜F : X ⇒ V , ˜F (x) = {Tx} and ˜G : X ⇒ V ,
˜G(x) = −F (x). Since for all x ∈ X it is impossible to have +∞K ∈ ˜F (x),
the assumption of Proposition 7.1.7 is automatically fulfilled. Even more, as
Max ˜G(x) = Max(−F (x)) = −Min F (x), the external stability of MinF (x)
guarantees the external stability of Max ˜G(x). Proposition 7.1.7 applied to ˜F

and ˜G leads to the desired inclusions. ��
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Corollary 7.1.9. Let F : X ⇒ V be a set-valued map and Max F (x) be
externally stable for all x ∈ X. Then Max∪x∈X F (x) = Max∪x∈X Max F (x).

Proof. Apply Proposition 7.1.7 to the maps ˜F : X ⇒ V , ˜F (x) = {0} and
˜G : X ⇒ V , ˜G(x) = F (x). ��

Remark 7.1.5. (a) The assertions of Proposition 7.1.7, Corollary 7.1.8 and
Corollary 7.1.9 may be formulated also for minimal elements. For instance one
has Min∪x∈X F (x) = Min∪x∈X MinF (x) if MinF (x) is externally stable for
all x ∈ X. We would also like to underline the fact that in Proposition 7.1.7
and its corollaries the external stability cannot be omitted (for details see [163,
Remark 6.1.1], where a counterexample has been given in finite dimensional
spaces).

(b) It is worth mentioning that all the basic notions and results presented
in this subsection concerning minimality and maximality remain true if con-
sidered in the framework of vector spaces X and V , the latter being partially
ordered by a nontrivial pointed convex cone K ⊆ V .

7.1.2 The perturbation approach for conjugate duality

In this subsection the perturbation approach from section 3.1 for scalar opti-
mization problems will be partially extended to set-valued optimization prob-
lems. Let F : X ⇒ V ∪{+∞K} be a set-valued map whose domain is a
nonempty set. We consider the general set-valued optimization problem

(PSV G) Min
x∈X

F (x).

This actually means to find the minimal elements of the image set F (X) ⊆
V ∪{+∞K} with respect to the partial ordering induced by the nontrivial
pointed convex cone K ⊆ V or, in other words, to look for an element x̄ ∈ X
such that there exists v̄ ∈ F (x̄) with v̄ ∈ MinF (X). In this situation the
element x̄ is said to be an efficient solution to the problem (PSV G) and
(x̄, v̄) is called a minimal pair to the problem (PSV G). A particular instance
of the previous problem arises when the set-valued map F is replaced with the
proper vector-valued function f : X → V ∪{+∞K}. In this case the problem
(PSV G) becomes

(PV G) Min
x∈X

f(x)

and one looks for efficient solutions x̄ ∈ X fulfilling f(x̄) ∈ Min f(X). The
efficient solutions to the problems (PSV G) and (PV G) may be described
via the subdifferential like in the scalar case, as follows from the way this is
defined.

Proposition 7.1.10. (a) An element x̄ ∈ X is an efficient solution to
(PSV G) if and only if there exists v̄ ∈ F (x̄) ∩ V such that 0 ∈ ∂F (x̄; v̄).
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(b) An element x̄ ∈ X, for which f(x̄) ∈ V , is an efficient solution to (PV G)
if and only if 0 ∈ ∂f(x̄).

Our next aim is to attach a set-valued dual problem to (PSV G). Notice
that all what follows can be done also for the problem (PV G), since, as seen
above, this problem can be treated as a special instance of (PSV G). Similarly
to section 3.1 we introduce a set-valued perturbation map Φ : X × Y ⇒
V ∪{+∞K} such that Φ(x, 0) = F (x) for all x ∈ X. The topological vector
space Y is called perturbation space and its topological dual space is denoted
by Y ∗. Then (PSV G) is embedded into a family of perturbed problems

(PSV Gy) Min
x∈X

Φ(x, y),

where y ∈ Y is the perturbation variable. Clearly, the problem (PSV G0)
coincides with the problem (PSV G). As in the scalar case the dual problem
is defined by making use of the conjugate of the perturbation map

Φ∗ : L(X,V ) × L(Y, V ) ⇒ V , Φ∗(T, Λ) = Max ∪
x∈X,y∈Y

[Tx + Λy − Φ(x, y)].

Thus to the primal problem (PSV G) one can attach the set-valued dual prob-
lem

(DSV G) Max
Λ∈L(Y,V )

{−Φ∗(0, Λ)}.

More precisely, we look for Λ ∈ L(Y, V ) such that there exists v̄∗ ∈ −Φ∗(0, Λ)
fulfilling v̄∗ ∈ Max∪Λ∈L(Y,V ){−Φ∗(0, Λ)}. In this case Λ ∈ L(Y, V ) is called
efficient solution to (DSV G) and (Λ, v̄∗) is said to be a maximal pair to
(DSV G). As expected, having in mind the scalar case, weak duality holds in
this very general setting.

Theorem 7.1.11. For all x ∈ X and all Λ ∈ L(Y, V ) there is Φ(x, 0) ∩
{−Φ∗(0, Λ) − (K\{0})} = ∅.

Proof. Let x ∈ X and Λ ∈ L(Y, V ) be arbitrarily taken. Assume that there
exists v ∈ Φ(x, 0)∩{−Φ∗(0, Λ)− (K\{0})}. Then one can find a v∗ ∈ Φ∗(0, Λ)
such that v + v∗ ∈ −K\{0}. But by Proposition 7.1.1 it holds v + v∗ �K 0
and this leads to a contradiction. ��

One can give for the weak duality result from Theorem 7.1.11 the following
equivalent formulation, followed by an immediate statement for the efficient
solutions to (PSV G) and (DSV G).

Corollary 7.1.12. (a) For all x ∈ X and all Λ ∈ L(Y, V ), it holds v �K v∗

whenever v ∈ F (x) and v∗ ∈ −Φ∗(0, Λ).
(b) Let be v̄ ∈ F (x̄) ∩ {−Φ∗(0, Λ)} for x̄ ∈ X and Λ ∈ L(Y, V ). Then x̄ is an

efficient solution and (x̄, v̄) is a minimal pair to (PSV G), while Λ is an
efficient solution and (Λ, v̄) is a maximal pair to (DSV G).
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Proof. (a) Obviously, the assertion is nothing but an equivalent formulation
of the statement of Theorem 7.1.11.

(b) Assume that (x̄, v̄) is not a minimal pair to (PSV G). Then there
exist x ∈ X and v ∈ F (x) = Φ(x, 0) such that v ≤K v̄, i.e. v ∈ Φ(x, 0) ∩
{−Φ∗(0, Λ) − (K\{0})}, which contradicts Theorem 7.1.11. Assuming (Λ, v̄)
not being a maximal pair to (DSV G) allows to deduce a contradiction to
Theorem 7.1.11 in a similar way. ��

Like for the scalar optimization problem (PG) considered in section 3.1 we
introduce in the set-valued case in an analogous way the minimal value map
H : Y ⇒ V ∪{+∞K} defined by H(y) = Min∪x∈X Φ(x, y) = MinΦ(X, y). It
is easy to see that for all y ∈ Y the set H(y) is actually the set of minimal ele-
ments of the image set of the problem (PSV Gy), while H(0) = MinΦ(X, 0) =
Min F (X) is the set of minimal elements of the image set of (PSV G). For some
arbitrary y ∈ Y we say that H(y) is externally stable if Min∪x∈X Φ(x, y) is
externally stable in the sense of Definition 7.1.3.

Lemma 7.1.13. For all Λ ∈ L(Y, V ) it holds Φ∗(0, Λ) ⊆ H∗(Λ). If H(y) is
externally stable for all y ∈ Y , then Φ∗(0, Λ) = H∗(Λ).

Proof. Let Λ ∈ L(X,V ) be fixed. We have

Φ∗(0, Λ) = Max ∪
x∈X,y∈Y

[Λy − Φ(x, y)] = Max ∪
y∈Y

[

Λy − ∪
x∈X

Φ(x, y)
]

and

H∗(Λ) = Max ∪
y∈Y

[Λy − H(y)] = Max ∪
y∈Y

[

Λy − Min ∪
x∈X

Φ(x, y)
]

= Max ∪
y∈Y

[

Λy + Max
(

− ∪
x∈X

Φ(x, y)
)]

.

Applying Proposition 7.1.7 to F : Y ⇒ V , F (y) = Λy, and G : Y ⇒ V ,
G(y) = −∪x∈X Φ(x, y), we get

Max ∪
y∈Y

[

Λy − ∪
x∈X

Φ(x, y)
]

⊆ Max ∪
y∈Y

[

Λy + Max
(

− ∪
x∈X

Φ(x, y)
)]

. (7.6)

Therefore Φ∗(0, Λ) ⊆ H∗(Λ). If Min∪x∈X Φ(x, y) is externally stable, then
Max(−∪x∈X Φ(x, y)) is externally stable for all y ∈ Y , too. In this case (7.6)
is fulfilled as equation, i.e. Φ∗(0, Λ) = H∗(Λ). ��

For the subsequent considerations we assume that H(y) is externally stable
for all y ∈ Y . Then H∗(Λ) = Φ∗(0, Λ) and the dual problem (DSV G) may be
equivalently written in the form

(DSV G) Max ∪
Λ∈L(Y,V )

{−H∗(Λ)}.

Lemma 7.1.14. It holds Max∪Λ∈L(Y,V ){−Φ∗(0, Λ)} = H∗∗(0).
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Proof. Using Lemma 7.1.13 it holds

H∗∗(0) = Max ∪
Λ∈L(Y,V )

{−H∗(Λ)} = Max ∪
Λ∈L(Y,V )

{−Φ∗(0, Λ)}

and this provides the desired conclusion. ��

Remark 7.1.6. It is not hard to see that Lemma 7.1.14 is a generalization of
Proposition 3.1.2 given for the scalar primal-dual pair (PG) − (DG).

Since H(0) and H∗∗(0) represent the sets of the minimal and maximal
elements of the image sets of the primal and dual problem, respectively, the
duality properties can be reflected by means of the relations between H(0)
and H∗∗(0). Strong duality applies for (PSV G)− (DSV G) if H(0) = H∗∗(0),
but also weakened versions like H(0) ⊆ H∗∗(0) are of interest. In the first
three sections of this chapter by strong duality we actually mean the latter
formulation.

Definition 7.1.4. The problem (PSV G) is called stable with respect to the
perturbation map Φ if the minimal value map H is subdifferentiable at 0.

We notice that in our hypotheses ±∞K /∈ H(0).
A quick look at Definition 7.1.4 shows the analogy with the definition

of stability for scalar programming problems. Of course, this definition (see
also [163] for finite dimensional spaces and vector-valued objective functions)
is motivated by Proposition 7.1.4, expressing that H is subdifferentiable at 0
if and only if H(0) ⊆ H∗∗(0). Thus stability equivalently characterizes strong
duality as formulated in the following theorem.

Theorem 7.1.15. The problem (PSV G) is stable if and only if for each effi-
cient solution x̄ ∈ X to (PSV G) and v̄ ∈ F (x̄) such that (x̄, v̄) is a minimal
pair to (PSV G) there exists an efficient solution Λ ∈ L(Y, V ) to (DSV G)
such that v̄ ∈ −Φ∗(0, Λ) and (Λ, v̄) is a maximal pair to (DSV G).

Proof. Let (PSV G) be stable. Then H is subdifferentiable at 0 and, according
to Proposition 7.1.4, as ±∞K /∈ H(0), this is equivalent to H(0) ⊆ H∗∗(0).
Take x̄ ∈ X efficient to (PSV G) with a corresponding v̄ ∈ F (x̄) such that
v̄ ∈ H(0). Then Lemma 7.1.14 secures the existence of Λ ∈ L(Y, V ) such
that v̄ ∈ −Φ∗(0, Λ). Further, Corollary 7.1.12 guarantees that v̄ is an efficient
solution and (Λ, v̄) is a maximal pair to (DSV G).

The above considerations can be done in the opposite direction yielding
H(0) ⊆ H∗∗(0). But this means that H is subdifferentiable at 0 and thus the
stability of (PSV G) has been proven. ��

Remark 7.1.7. Theorem 7.1.15 is a strong duality type assertion since it pro-
vides the existence of a common element v̄ in the objective values of the primal
and dual set-valued problems.
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We emphasize once again that external stability of H(y) for all y ∈ Y is
supposed. The importance of this fact also for Theorem 7.1.15 is underlined
by the above proof. The strong duality claimed in Theorem 7.1.15 implies the
following necessary optimality conditions of subdifferential type.

Theorem 7.1.16. The minimal pair (x̄, v̄) to (PSV G) and the corresponding
maximal pair (Λ, v̄) to (DSV G) from Theorem 7.1.15 satisfy the optimality
condition (0, Λ) ∈ ∂Φ(x̄, 0; v̄) or, equivalently, Λ ∈ ∂H(0; v̄).

Proof. According to Theorem 7.1.15, there is v̄ ∈ F (x̄) = Φ(x̄, 0) and v̄ ∈
−Φ∗(0, Λ). For T := 0 ∈ L(X,V ) this may be written as T x̄ + Λ0 − v̄ ∈
Φ∗(0, Λ). Proposition 7.1.3(a) says that this relation is equivalent to (0, Λ) ∈
∂Φ(x̄, 0; v̄). On the other hand, there holds v̄ ∈ H(0) and v̄ ∈ −H∗(Λ), which
is nothing but Λ0 − v̄ ∈ H∗(Λ). Applying again Proposition 7.1.3(a) yields
the equivalence to Λ ∈ ∂H(0; v̄). ��

It turns out that the necessary subdifferential conditions from Theorem
7.1.16 are sufficient for strong duality and for the existence of the primal and
dual efficient solutions, too.

Theorem 7.1.17. Let (x̄, v̄) ∈ gph F ∩ (X × V ) and Λ ∈ L(Y, V ) fulfill the
condition (0, Λ) ∈ ∂Φ(x̄, 0; v̄). Then x̄ is an efficient solution and (x̄, v̄) is
a minimal pair to (PSV G), while Λ is an efficient solution and (Λ, v̄) is a
maximal pair to (DSV G).

Proof. Since (0, Λ) ∈ ∂Φ(x̄, 0; v̄), according to Proposition 7.1.3(a), this is
equivalent to −v̄ ∈ Φ∗(0, Λ). As v̄ ∈ F (x̄), we finally get v̄ ∈ F (x̄) ∩
{−Φ∗(0, Λ)}. Corollary 7.1.12(b) provides the claimed assertion concerning
the efficiency of x̄ and Λ, as well as the minimality of (x̄, v̄) and the maximal-
ity of (Λ, v̄). ��

Remark 7.1.8. One could notice that for the above result no external stability
for H(y), when y ∈ Y , is required. Assuming that H(y) is externally stable
for all y ∈ Y , in order to obtain the same conclusion one can equivalently ask
instead of (0, Λ) ∈ ∂Φ(x̄, 0; v̄) that Λ ∈ ∂H(0, v̄).

Next we define the notions of epigraph and cone-convexity for a set-valued
map with values in V ∪{+∞K}.

Definition 7.1.5. Let F : X ⇒ V ∪{+∞K} be a set-valued map.

(a) The set
epiK F = {(x, v) ∈ X × V : v ∈ F (x) + K}

is called the K-epigraph of F .
(b) The map F is said to be K-convex if epiK F is a convex subset of X ×V .
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It is straightforward to prove that F is K-convex if and only if for all
x1, x2 ∈ X and all λ ∈ [0, 1] it holds

λF (x1) ∩ V + (1 − λ)F (x2) ∩ V ⊆ F (λx1 + (1 − λ)x2) + K.

Now we show the K-convexity of the minimal value map H under cone-
convexity assumptions for the perturbation map Φ along with the external
stability of H(y) for all y ∈ Y .

Lemma 7.1.18. Let Φ : X ×Y ⇒ V ∪{+∞K} be a K-convex set-valued map
and H(y) = MinΦ(X, y) be externally stable for all y ∈ Y . Then H is a
K-convex set-valued map.

Proof. We prove that

epiKH =
{

(y, v) ∈ Y × V : v ∈ Φ(X, y) + K
}

. (7.7)

Let be (y, v) ∈ epiK H. Then v ∈ H(y) + K ⊆ Φ(X, y) + K and the inclusion
“⊆” is proven.

Take now (y, v) ∈ Y × V with v ∈ Φ(X, y) + K. Then there exist v̄ ∈
Φ(X, y) ∩ V and k̄ ∈ K such that v = v̄ + k̄. As v̄ ⊆ H(y) + K, one has
v ∈ H(y) + K and so (y, v) ∈ epiK H. Thus (7.7) is proven.

Now it is easy to see that epiK H = PrY ×V (epiK Φ). Since epiK Φ is a
convex set, epiK H is a convex set, too. ��

The notion introduced in the following will play an important role in
characterizing the subdifferentiability of a set-valued map. Let F : X ⇒
V ∪{+∞K} be a set-valued map and T ∈ L(X,V ). We say that F ∗(T ) can
be completely characterized by scalarization when for a pair (x̄, v̄) ∈ gph F it
holds T x̄ − v̄ ∈ F ∗(T ) if and only if there exists k∗ ∈ K∗\{0} such that

〈k∗, T x̄ − v̄〉 = max
(x,v)∈gph F

〈k∗, Tx − v〉. (7.8)

Remark 7.1.9. One can interpret this definition as follows. Assume that F :
X ⇒ V is a set-valued map and that int(K) 	= ∅. For T ∈ L(X,V ) assume
that each weakly maximal element of the set ∪x∈X [Tx − F (x)] is maximal
and that the set ∪x∈X [Tx − F (x)] + K is convex. Then, via Corollary 2.4.26
for a pair (x̄, v̄) ∈ gph F one has that (x̄, v̄) ∈ F ∗(T ) if and only if there exists
k∗ ∈ K∗\{0} satisfying (7.8). This means that under these conditions F ∗(T )
can be completely characterized by scalarization.

Let us give now the announced sufficient condition for the subdifferentia-
bility of a set-valued map. One can notice that in the proof of the following
result we do not make use of the external stability of H(y) for y ∈ Y .

Proposition 7.1.19. Let F : X ⇒ V ∪{+∞K} be a K-convex set-valued map
such that MinF (x̄) = F (x̄) for some x̄ ∈ int(dom F ). If int(epiK F ) 	= ∅ and
F ∗(T ) can be completely characterized by scalarization for all T ∈ L(X,V ),
then F is subdifferentiable at x̄.
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Proof. Without loss of generality we may assume that x̄ = 0 ∈ int(dom F ).
One can notice that ∅ 	= F (0) ⊆ V . Take an arbitrary v̄ ∈ F (0) = MinF (0).
Then (0, v̄) /∈ int(epiK F ) and, since epiK F is convex, Theorem 2.1.2 can be
applied. Hence there exists a pair (x∗, k∗) ∈ X∗ × V ∗, (x∗, k∗) 	= (0, 0), such
that

〈x∗, 0〉 + 〈k∗, v̄〉 ≤ 〈x∗, x〉 + 〈k∗, v〉 for all (x, v) ∈ epiK F. (7.9)

One can easily show that k∗ ∈ K∗. Even more, it is not possible to have
k∗ = 0. Assuming the contrary, let U be a neighborhood of 0 in X with
U ⊆ dom F . Thus 〈x∗, u〉 ≥ 0 for all u ∈ U and this has as consequence the
fact that x∗ = 0. This is a contradiction, therefore k∗ 	= 0 and one can take
ṽ ∈ V such that 〈k∗, ṽ〉 = 1. Define T ∈ L(X,V ) by Tx := −〈x∗, x〉ṽ for
x ∈ X. Using (7.9) we deduce that for all (x, v) ∈ epiK F

〈k∗, v − Tx〉 = 〈k∗, v〉 + 〈x∗, x〉 ≥ 〈k∗, v̄〉 = 〈k∗, v̄ − T0〉.

But this relation holds for all (x, v) ∈ gph F , even if v = +∞K since
〈k∗,+∞K〉 = +∞. By the assumption we made, −v̄ ∈ F ∗(T ) and according
to Proposition 7.1.3 we have T ∈ ∂F (0; v̄). As v̄ ∈ F (0) has been arbitrarily
chosen, the subdifferentiability of F at 0 follows. ��

In an analogous manner one can prove the following stability result.

Theorem 7.1.20. Let the perturbation map Φ : X × Y ⇒ V ∪ {+∞K} be
K-convex and H : Y ⇒ V ∪ {+∞K}, H(y) = MinΦ(X, y), be externally
stable for all y ∈ Y . Assume that int(epiK H) 	= ∅ and that for the set-valued
map Ψ : Y ⇒ V ∪{+∞K}, Ψ(y) = Φ(X, y), there is 0 ∈ int(dom Ψ). If H∗(Λ)
can be completely characterized by scalarization for all Λ ∈ L(Y, V ), then the
primal problem (PSV G) is stable.

Proof. One can easily see that the set-valued map Ψ is K-convex. Since
Ψ(y)\{+∞K} ⊆ H(y) + K for all y ∈ Y , there is domΨ ⊆ dom H and so
0 ∈ int(dom H). Moreover, H(y) 	= ∅ and so MinH(y) = H(y) = MinΦ(X, y)
for all y ∈ Y . Further, by Lemma 7.1.18, H is K-convex and thus the subdif-
ferentiability of H at 0 is a direct consequence of Proposition 7.1.19. Conse-
quently, (PSV G) is stable. ��

Remark 7.1.10. Proposition 7.1.19 and Theorem 7.1.20 generalize correspond-
ing results of [163] obtained there in finite dimensional spaces while the objec-
tive function of the primal problem is assumed to be vector-valued (see [163,
Proposition 6.1.7 and Proposition 6.1.13]).

In Proposition 7.1.19 and Theorem 7.1.20 we have seen that int(epiK F )
and, respectively, int(epiK H) must be nonempty in order to apply a standard
separation theorem. Thus it is important to have simple criteria ensuring this.
For introducing such criteria, the following definition is useful.
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Definition 7.1.6. A set-valued map F : X ⇒ V ∪{+∞K} is said to be weakly
K-upper bounded on a set S ⊆ X if there exists an element b ∈ V such that
(x, b) ∈ epiK F for all x ∈ S.

It is straightforward to see that F is weakly K-upper bounded on S if
and only if there exists b ∈ V such that F (x) ∩ (b − K) 	= ∅ for all x ∈ S.
To establish a connection between the weakly K-upper boundedness and the
assumption epiK F 	= ∅ we have to suppose that int(K) 	= ∅. For this reason
in the following we assume it to be fulfilled.

Lemma 7.1.21. Let be int(K) 	= ∅ and F : X ⇒ V ∪{+∞K} be a set-valued
map. Then the following statements are equivalent:

(i) int(epiK F ) 	= ∅;
(ii) there exists x′ ∈ dom F such that F is weakly K-upper bounded on some

neighborhood of x′ in X.

The proof is straightforward. For details see [170, Theorem 6.1].

Remark 7.1.11. One can also imagine that appropriate topological properties
of a set-valued map F , like in scalar programming, imply the nonemptiness
of the interior of the K-epigraph of F . To this end one can assume that the
set-valued map F : X ⇒ V ∪{+∞K} is K-Hausdorff lower continuous on
int(dom F ). According to [147], F is K-Hausdorff lower continuous at x′ ∈ X
if for every neighborhood W of 0 in V there exists a neighborhood U of x′ in
X such that F (x′) ⊆ F (x) + W + K for all x ∈ dom F ∩ U .

Indeed, assume that for x′ ∈ dom F the map F is K-Hausdorff lower
continuous at x′. Let be k′ ∈ int(K) and W a neighborhood of 0 in V such that
k′ +W ⊆ K. Then there exists a neighborhood U of x′ in X with U ⊆ dom F
and F (x′) ⊆ F (x)+W +K for all x ∈ dom F ∩U . Let be b ∈ F (x′)∩V . Then
for all x ∈ U one has b + k′ ∈ F (x′) + k′ ⊆ F (x) + k′ + W + K ⊆ F (x) + K,
and thus statement (ii) in Lemma 7.1.21 is fulfilled.

Lemma 7.1.21 allows to substitute in both Proposition 7.1.19 and Theo-
rem 7.1.20 the assumptions concerning the nonemptiness of the K-epigraph
with the weakly K-upper boundedness condition. We come now to another
assertion which is useful for characterizing the stability of the set-valued op-
timization problem (PSV G).

Proposition 7.1.22. Assume that Ψ : Y ⇒ V ∪ {+∞K}, Ψ(y) = Φ(X, y), is
K-convex, H : Y ⇒ V ∪ {+∞K}, H(y) = MinΨ(y), is externally stable for
all y ∈ Y and there exists y′ ∈ dom Ψ such that Ψ is weakly K-upper bounded
on some neighborhood of y′. Then H is K-convex and int(epiK H) 	= ∅.

Proof. As follows from 7.7, it holds epiK H = epiK Ψ and, since Ψ is K-convex,
H is K-convex, too. The fact that int(epiK H) 	= ∅ follows by Lemma 7.1.21.
��
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Proposition 7.1.22 allows to reformulate Theorem 7.1.20, by replacing the
hypothesis int(epiK H) 	= ∅ with the assumptions concerning Ψ considered in
this las result.

Next we intend to expand the subdifferentiability and stability criteria
for set-valued maps by assuming convexity assumptions which allow to skip
imposing that the conjugate map can be completely characterized by scalar-
ization.

Definition 7.1.7. Let F : X ⇒ V ∪ {+∞K} be a set-valued map.

(a) F is said to be strictly K-convex if it is K-convex and if for all x1, x2 ∈ X,
x1 	= x2, and all λ ∈ (0, 1) there is

λF (x1) ∩ V + (1 − λ)F (x2) ∩ V ⊆ F (λx1 + (1 − λ)x2) + int(K).

(b) F is said to be K-convexlike on the nonempty set S ⊆ X if for all v1, v2 ∈
F (S) ∩ V and all λ ∈ [0, 1] there exists x̄ ∈ S such that

λv1 + (1 − λ)v2 ∈ F (x̄) + K.

(c) F is said to be strictly K-convexlike on the nonempty set S ⊆ X if for all
v1, v2 ∈ F (S) ∩ V , v1 	= v2, and all λ ∈ (0, 1) there exists x̄ ∈ S such that

λv1 + (1 − λ)v2 ∈ F (x̄) + int(K).

(d) When in (b) and (c) the set S coincides with the whole space, then we call
the set-valued map K-convexlike and strictly K-convexlike, respectively.

In the case F : X → V ∪ {+∞K} is a vector-valued function, then F is
K-convexlike on S if and only if (F (S)∩V )+K is convex. On the other hand,
a vector-valued function F : X → V is strictly K-convex if and only if for all
x1, x2 ∈ X, x1 	= x2, and all λ ∈ (0, 1) the inequality

F (λx1 + (1 − λ)x2) <K λF (x1) + (1 − λ)F (x2)

holds.
We notice that, different to the situation when vector-valued functions

are considered, only assuming the inclusion relation in Definition 7.1.7(a)
to be fulfilled does not imply that the set-valued map F is K-convex. On
the other hand, let us notice that if S ⊆ X is a nonempty convex set and
F : X ⇒ V ∪ {+∞K} is a K-convex set-valued map, then F is K-convexlike
on S, while if F is strictly K-convex, then it is strictly K-convexlike on S,
too.

Definition 7.1.8. Let Φ : X × Y ⇒ V ∪ {+∞K} be a set-valued map. The
map Φ is called

(a) K-convexlike-convex if for all yi ∈ Y , vi ∈ Φ(X, yi) ∩ V , i = 1, 2, and all
λ ∈ [0, 1] there exists x̄ ∈ X such that

λv1 + (1 − λ)v2 ∈ Φ(x̄, λy1 + (1 − λ)y2) + K; (7.10)
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(b) strictly-K-convexlike-convex if it is K-convexlike-convex and if for all yi ∈
Y , vi ∈ Φ(X, yi)∩ V , i = 1, 2, with y1 	= y2, and all λ ∈ (0, 1) there exists
x̄ ∈ X such that

λv1 + (1 − λ)v2 ∈ Φ(x̄, λy1 + (1 − λ)y2) + int(K). (7.11)

If Φ is K-convex then it is K-convexlike-convex, too, while when Φ is
strictly K-convex, it is strictly-K-convexlike-convex, too.

As above we consider Ψ : Y ⇒ V ∪ {+∞K}, Ψ(y) = Φ(X, y), and H :
Y ⇒ V ∪ {+∞K}, H(y) = MinΨ(y). The proof of the following statement is
straightforward.

Lemma 7.1.23. The map Φ is K-convexlike-convex if and only if the map Ψ
is K-convex, while Φ is strictly-K-convexlike-convex if and only if Ψ is strictly
K-convex.

Lemma 7.1.24. Let Ψ be strictly K-convex and H(y) externally stable for all
y ∈ Y . Then H is strictly K-convex.

Proof. As we have noticed in Proposition 7.1.22, under the imposed assump-
tions it holds epiK H = epiK Ψ and this guarantees the K-convexity of H.
Consider now y1, y2 ∈ Y , y1 	= y2, and λ ∈ (0, 1). Therefore

λH(y1) ∩ V + (1 − λ)H(y2) ∩ V ⊆ λΨ(y1) ∩ V + (1 − λ)Ψ(y2) ∩ V

⊆ Ψ(λy1 + (1 − λ)y2) ∩ V + int(K) ⊆ H(λy1 + (1 − λ)y2) + K + int(K)

= H(λy1 + (1 − λ)y2) + int(K).

This completes the proof. ��

By combining Lemma 7.1.23 and Lemma 7.1.24 one obtains the following
statement, which generalizes Lemma 7.1.18.

Lemma 7.1.25. (a) Let Φ be K-convexlike-convex and H(y) externally stable
for all y ∈ Y . Then H is K-convex.

(b) Let Φ be strictly-K-convexlike-convex and H(y) externally stable for all
y ∈ Y . Then H is strictly K-convex.

Now let us formulate a subdifferentiability result for set-valued maps by
assuming strict K-convexity. Comparing it to Proposition 7.1.19, one can
notice that one needs here a stronger convexity assumption, but the restrictive
property that F ∗(T ) can be completely characterized by scalarization for all
T ∈ L(X,V ) can be avoided. In the proof of the following result we do not
make use of the external stability of H(y) for y ∈ Y .

Proposition 7.1.26. Let the set-valued map F : X ⇒ V ∪{+∞K} be strictly
K-convex and weakly K-upper bounded on some neighborhood of x′ ∈ dom F
(or, equivalently, int(epiK F ) 	= ∅). If x̄ ∈ int(dom F ) and MinF (x̄) = F (x̄),
then F is subdifferentiable at x̄.
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Proof. Without loss of generality let x̄ = 0. Obviously, ∅ 	= F (0) ⊆ V . Take
an arbitrary v̄ ∈ F (0) = MinF (0). Then (0, v̄) /∈ int(epiK F ), which is a
nonempty set. Further, epiK F is convex and this allows to use Theorem 2.1.2
like in the proof of Proposition 7.1.19. Hence there are x∗ ∈ X∗ and k∗ ∈
K∗\{0} such that

〈k∗, v̄〉 ≤ 〈x∗, x〉 + 〈k∗, v〉 for all (x, v) ∈ epiKF. (7.12)

Now, the strict convexity of F allows to verify even the strict inequality

〈k∗, v̄〉 < 〈x∗, x〉 + 〈k∗, v〉 for all (x, v) ∈ epiKF with x 	= 0. (7.13)

Indeed, were (7.13) not fulfilled, then there would exist (x1, v1) ∈ epiK F with
x1 	= 0, such that 〈k∗, v̄〉 = 〈x∗, x1〉 + 〈k∗, v1〉. As

1
2
v1 +

1
2
v̄ ∈ 1

2
((F (x1) ∩ V ) + K) +

1
2
(F (0) ∩ V ) =

1
2
F (x1) ∩ V +

1
2
F (0) ∩ V + K ⊆ F

(

1
2
x1

)

+ int(K) + K = F

(

1
2
x1

)

+ int(K),

there exists in this situation k1 ∈ int(K) such that (1/2)v1 + (1/2)v̄ − k1 ∈
F ((1/2)x1). Thus we have

(

1
2
x1,

1
2
v1 +

1
2
v̄ − k1

)

∈ epiK F

and using (7.12) yields

〈k∗, v̄〉 ≤
〈

x∗,
1
2
x1

〉

+
〈

k∗,
1
2
v1 +

1
2
v̄ − k1

〉

or, equivalently,

1
2
〈k∗, v̄〉 ≤ 1

2
〈x∗, x1〉 +

1
2
〈k∗, v1〉 − 〈k∗, k1〉.

Since 〈k∗, k1〉 > 0, one has 〈k∗, v̄〉 < 〈x∗, x1〉 + 〈k∗, v1〉 and this contradicts
the equality from above. Thus (7.13) is valid. Let be ṽ ∈ V with 〈k∗, ṽ〉 = 1
and T ∈ L(X,V ) defined by Tx := −〈x∗, x〉ṽ for x ∈ X. Then from (7.13) we
get

〈k∗, v̄〉 < 〈x∗, x〉 + 〈k∗, v〉 = 〈k∗,−Tx〉 + 〈k∗, v〉 = 〈k∗, v − Tx〉 (7.14)

for all (x, v) ∈ epiK F with x 	= 0. Notice that this result is true for arbitrary
x ∈ X whenever v = +∞K . We prove that v̄ ∈ Min∪x∈X [F (x)−Tx]. Assum-
ing the contrary, there exist x̃ ∈ X\{0}, and ṽ ∈ F (x̃) such that ṽ−T x̃ ≤K v̄.
This means that

〈k∗, ṽ − T x̃〉 ≤ 〈k∗, v̄〉.
On the other hand, (7.14) implies 〈k∗, v̄〉 < 〈k∗, ṽ − T x̃〉, and this leads to
a contradiction. Consequently, v̄ ∈ Min∪x∈X [F (x) − Tx], or, equivalently,
−v̄ ∈ Max∪x∈X [Tx − F (x)], which means T ∈ ∂F (0; v̄). Since v̄ ∈ F (0) ∩ V
was arbitrarily chosen, F is subdifferentiable at 0. ��
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Proposition 7.1.26 allows to formulate a stability criterion in analogy to
Theorem 7.1.20, but which does not require that H∗(Λ) can be completely
characterized by scalarization for Λ ∈ L(Y, V ).

Theorem 7.1.27. Let the perturbation map Φ : X × Y ⇒ V ∪ {+∞K} be
strictly-K-convexlike-convex (or, equivalently, Ψ : Y ⇒ V ∪ {+∞K}, Ψ(y) =
Φ(X, y), be strictly K-convex) and H : Y ⇒ V ∪{+∞K}, H(y) = MinΦ(X, y),
be externally stable for all y ∈ Y . Assume there exists y′ ∈ dom Ψ such that
Ψ is weakly K-upper bounded on some neighborhood of y′. If 0 ∈ int(dom Ψ),
then the primal problem (PSV G) is stable.

Proof. Lemma 7.1.25 ensures that H is strictly K-convex and via Proposition
7.1.22 follows that int(epiK H) 	= ∅. Because H(0) = MinΦ(X, 0) it holds
Min H(0) = H(0) and, moreover, as shown in the proof of Theorem 7.1.20,
one has that dom Ψ ⊆ dom H. Consequently, 0 ∈ int(dom H). Proposition
7.1.26 ensures the subdifferentiability of H at 0 or, equivalently, the stability
of (PSV G). ��

7.1.3 A special approach - vector k-conjugacy and duality

The considerations made in the previous subsections of this chapter extend
the ones from [163] made when X = R

n, V = R
k, K = R

k
+ and the primal

objective function is vector-valued. When the objective space V is finite di-
mensional one can find in [180] another approach for defining conjugate maps
and subgradients, by replacing T ∈ L(X,V ) (or in the finite dimensional
case the corresponding matrix T ∈ R

k×n) with a linear continuous functional
mapping from X into R. In the following we extend that approach to infinite
dimensional spaces and set-valued maps.

Throughout this subsection let X, Y and V be topological vector spaces
with topological dual spaces X∗, Y ∗ and V ∗, respectively. Let V be partially
ordered by the nontrivial pointed convex cone K ⊆ V . Concerning the basic
notations and conventions with respect to minimal and maximal elements of
sets in V we refer to subsection 7.1.1.

Definition 7.1.9. Let F : X ⇒ V be a set-valued map and k ∈ V \{0} a given
element.

(a) The set-valued map

F ∗
k : X∗ ⇒ V , F ∗

k (x∗) = Max ∪
x∈X

[〈x∗, x〉k − F (x)],

is called the k-conjugate map of F .
(b) The set-valued map

F ∗∗
k : X ⇒ V , F ∗∗

k (x) = Max ∪
x∗∈X∗

[〈x∗, x〉k − F ∗
k (x∗)],

is called the k−biconjugate map of F .
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(c) The element x∗ ∈ X∗ is said to be a k-subgradient of F at (x, v), where
(x, v) ∈ gphF ∩ (X × V ), if

〈x∗, x〉k − v ∈ Max ∪
y∈X

[〈x∗, y〉k − F (y)].

The set of all k-subgradients of F at (x, v) ∈ gph F ∩ (X × V ) is called
the k-subdifferential of F at (x, v) and is denoted by ∂kF (x; v). Further,
for all x ∈ X denote ∂kF (x) := ∪v∈F (x)∂F (x; v). If for all v ∈ F (x) ∩ V
we have ∂kF (x; v) 	= ∅, then F is said to be k-subdifferentiable at x.

Remark 7.1.12. We refer also to Remark 7.1.1 concerning the vector-valued
case. Now, for a vector-valued function f : X → V , we use the notations f∗

k ,
f∗∗

k and ∂kf when particularizing Definition 7.1.9. If we consider V = R
k,

K = R
k
+, the vector k := (1, ..., 1)T and the function F : X → R

k vector-
valued, one rediscovers the original approach of this kind of conjugacy as
established in [180]. Even more, most of the results presented there can be
derived as particular instances of the results we give below.

In Definition 7.1.9, different from Definition 7.1.2, T ∈ L(X,V ) has the
special formulation Tx = 〈x∗, x〉k for x ∈ X. The generalized Young-Fenchel
inequality from Proposition 7.1.1 holds also for F ∗

k (x∗), as a particular case.
The other results and properties obtained in subsection 7.1.1 can be proven
in a similar way. Nevertheless, in particular, assertions containing F ∗∗

k require
new considerations since the k-biconjugate functions cannot be seen as a direct
particularization of the biconjugate from the previous subsections. Although
some modifications are necessary, the transfer of the proofs is straightforward.
Therefore Proposition 7.1.2, Proposition 7.1.3, Proposition 7.1.4 and Corollary
7.1.8 remain true for corresponding notions and assertions based on Definition
7.1.9.

Concerning the subgradient, it is easy to see that for x∗ ∈ X∗, if T ∈
L(X,V ), defined by Tx = 〈x∗, x〉k for x ∈ X, is a subgradient of F in the
sense of Definition 7.1.2, then x∗ is also a k−subgradient of F and vice versa.
But, in general one can have subgradients of F in the sense of Definition
7.1.2 that are not k−subgradients of F . Therefore the k-subdifferential of F
at (x, v) ∈ gph F ∩ (X × V ) is a subset of the subdifferential of F at the
same point in the sense of Definition 7.1.2. Thus, if F is k-subdifferentiable
at x ∈ X, then F is subdifferentiable at x ∈ X, too. The opposite statement
might fail.

Similar to the investigations made in the previous section, one can attach
to the primal problem (PSV G) a set-valued dual problem, this time based on
k-conjugate functions. Weak and strong duality assertions, like in subsection
7.1.2, can be proven in this case, too. Even more, Proposition 7.1.10 remains
true if 0 ∈ ∂F (x̄; v̄) is replaced by 0 ∈ ∂kF (x̄; v̄) in the statement (a), while
0 ∈ ∂f(x̄) is replaced by 0 ∈ ∂kf(x̄) in the statement (b).

Let us turn our attention to the set-valued optimization problem
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(PSV G) Min
x∈X

F (x)

treated in the previous subsections. As there we take as perturbation map
Φ : X×Y ⇒ V ∪{+∞K} such that Φ(x, 0) = F (x) for all x ∈ X. We consider
a fixed k ∈ V \{0}. Then Φ∗

k : X∗ × Y ∗ ⇒ V is defined by Φ∗
k(x∗, y∗) =

Max∪x∈X,y∈Y [(〈x∗, x〉+ 〈y∗, y〉)k−Φ(x, y)] and to (PSV G) we attach in this
way the set-valued dual problem

(DSV Gk) Max
y∗∈Y ∗

{−Φ∗
k(0, y∗)}.

By solving (DSV Gk) we mean finding those elements ȳ∗ ∈ Y ∗ such that
there exists v̄∗ ∈ −Φ∗

k(0, ȳ∗) fulfilling v̄∗ ∈ Max∪y∗∈Y ∗{−Φ∗
k(0, y∗)}. In this

situation ȳ∗ is said to be an efficient solution to (PSV G), while the tuple
(ȳ∗, v̄∗) is said to be a maximal pair to (DSV Gk).

Further we give some essential results without proofs, as these can be done
in a similar manner as in the previous subsection. First, let us consider the
weak duality assertion.

Theorem 7.1.28. For all x ∈ X and all y∗ ∈ Y ∗ there is Φ(x, 0) ∩
{−Φ∗

k(0, y∗) − (K\{0})} = ∅.

Corollary 7.1.29. (a) For all x ∈ X and all y∗ ∈ Y ∗ it holds v �K v∗,
whenever v ∈ F (x) and v∗ ∈ −Φ∗

k(0, y∗).
(b) Let be v̄ ∈ F (x̄) ∩ {−Φ∗

k(0, ȳ∗)} for x̄ ∈ X and ȳ∗ ∈ Y ∗. Then x̄ is an
efficient solution and (x̄, v̄) a minimal pair to (PSV G), while ȳ∗ is an
efficient solution and (ȳ∗, v̄) is a maximal pair to (DSV Gk).

As in subsection 7.1.2 the minimal value map of Φ is taken to be the
set-valued map H : Y ⇒ V ∪ {+∞K}, H(y) = Φ(X, y).

Lemma 7.1.30. The inclusion Φ∗
k(0, y∗) ⊆ H∗

k(y∗) holds for all y∗ ∈ Y ∗.
Moreover, if H(y) is externally stable for all y ∈ Y , then Φ∗

k(0, y∗) = H∗
k(y∗)

for all y∗ ∈ Y ∗.

In the following we suppose that H(y) is externally stable for all y ∈ Y .
Then the dual problem (DSV Gk) may be formally written as being

(DSV Gk) Max ∪
y∗∈Y ∗

{−H∗
k(y∗)}.

Lemma 7.1.31. It holds Max∪y∗∈Y ∗{−Φ∗
k(0, y∗)} = H∗∗

k (0).

As far as stability is concerned, we refer to Definition 7.1.4 and call
(PSV G) k-stable (with respect to the perturbation map Φ) if the minimal
value map H is k-subdifferentiable at 0. The next result concerns strong du-
ality.



7.1 Conjugate duality based on efficient solutions 333

Theorem 7.1.32. The problem (PSV G) is k-stable if and only if for each
efficient solution x̄ ∈ X to (PSV G) and v̄ ∈ F (x̄) such that (x̄, v̄) is a
minimal pair to (PSV G) there exist an efficient solution ȳ∗ ∈ Y ∗ such that
v̄ ∈ −Φ∗

k(0, ȳ∗) and (ȳ∗, v̄) is a maximal pair to (DSV Gk).

Obviously, this result corresponds to Theorem 7.1.15 and the external
stability of H is an essential feature in the proof.

Like in Theorem 7.1.16 and Theorem 7.1.17 one can state the following
optimality conditions.

Theorem 7.1.33. The minimal pair (x̄, v̄) to (PSV G) and the corresponding
maximal pair (ȳ∗, v̄) to (DSV Gk) from Theorem 7.1.32 satisfy the optimality
condition (0, ȳ∗) ∈ ∂kΦ(x̄, 0; v̄) or, equivalently, ȳ∗ ∈ ∂kH(0; v̄).

Theorem 7.1.34. Let (x̄, v̄) ∈ gph F ∩ (X × V ) and ȳ∗ ∈ Y ∗ fulfill the con-
dition (0, ȳ∗) ∈ ∂kΦ(x̄, 0; v̄). Then x̄ is an efficient solution and (x̄, v̄) is a
minimal pair to (PSV G), while ȳ∗ ∈ Y ∗ is an efficient solution and (ȳ∗, v̄) is
a maximal pair to (DSV Gk).

Remark 7.1.13. One can notice that in Theorem 7.1.34 no external stability
for H(y), when y ∈ Y , is asked. Assuming this additional hypothesis for all
y ∈ Y , in order to get the same conclusion in the theorem above, instead of
(0, ȳ∗) ∈ ∂kΦ(x̄, 0; v̄) one can equivalently ask that ȳ∗ ∈ ∂kH(0; v̄).

Let x∗ ∈ X∗ be fixed. We say that F ∗
k (x∗) can be completely characterized

by scalarization when for a pair (x̄, v̄) ∈ gph F one has 〈x∗, x̄〉k − v̄ ∈ F ∗
k (x∗)

if and only if there exists k∗ ∈ K∗\{0} such that

〈k∗, 〈x∗, x̄〉k − v̄〉 = max
(x,v)∈gph F

〈k∗, 〈x∗, x〉k − v〉.

The next result corresponds to the assertion in Proposition 7.1.19. Never-
theless, we prefer to give its proof, since the construction of the k-subgradient
is a bit more different. Moreover, for the next result we need to assume that
the interior of K is not empty. The external stability for H(y), when y ∈ Y ,
is for the following result not assumed.

Proposition 7.1.35. Let F : X ⇒ V ∪{+∞K} be a K-convex set-valued
map such that MinF (x̄) = F (x̄) for some x̄ ∈ int(dom F ) and assume that
k ∈ qi(K)∪(− qi(K)). If int(epiK F ) 	= ∅ and F ∗

k (x∗) can be completely char-
acterized by scalarization for all x∗ ∈ X∗, then F is k-subdifferentiable at
x̄.

Proof. Without loss of generality we assume that x̄ = 0. Obviously one has
∅ 	= F (0) ⊆ V . Following the same idea as in the proof of Proposition 7.1.19,
one can prove that for an arbitrary v̄ ∈ F (0) = MinF (0) there exists (x∗, k∗) ∈
X∗ × V ∗, k∗ ∈ K∗\{0}, such that the inequality

〈k∗, v̄〉 ≤ 〈x∗, x〉 + 〈k∗, v〉 (7.15)
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holds for all (x, v) ∈ epiK F . Since k ∈ qi(K)∪(− qi(K)), one can notice that
k 	= 0. Assuming the contrary, one would have that K∗ = {0}, which would
lead to a contradiction. Thus k 	= 0 and therefore 〈k∗, k〉 	= 0. Consequently,
we can define z∗ := −(1/〈k∗, k〉)x∗ ∈ X∗. Then, from (7.15), for all (x, v) ∈
epiK F we acquire

〈k∗, v̄〉 ≤ −〈k∗, k〉〈z∗, x〉 + 〈k∗, v〉 = 〈k∗, v − 〈z∗, x〉k〉. (7.16)

Since 〈k∗,+∞K〉 = +∞K for k∗ ∈ K∗\{0}, one can easily conclude that
(7.16) holds for all x ∈ X and all v ∈ F (x), even if v = +∞K . Thus −v̄ ∈
F ∗

k (z∗) and so z∗ ∈ ∂kF (0; v̄). As v̄ was arbitrarily taken in F (0), we finally
get that F is k-subdifferentiable at 0. ��

With these preparations the subsequent stability criterion can be delivered
(see Theorem 7.1.20 and its proof).

Theorem 7.1.36. Let the perturbation map Φ : X × Y ⇒ V ∪ {+∞K} be
K-convex and H : Y ⇒ V ∪{+∞K}, H(y) = MinΦ(X, y), be externally
stable for all y ∈ Y . Assume that k ∈ qi(K)∪(− qi(K)), int(epiK H) 	= ∅ and
that for the set-valued map Ψ : Y ⇒ V ∪{+∞K}, Ψ(y) = Φ(X, y), there is
0 ∈ int(dom Ψ). If H∗

k(y∗) can be completely characterized by scalarization for
each y∗ ∈ Y ∗, then the primal problem (PSV Gk) is k-stable.

As we know from Theorem 7.1.32 this criterion ensures strong duality.
Finally, to round the things out we notice that as in subsection 7.1.2 the

last two results concerning the k-subdifferentiability and, respectively, the
k-stability of (PSV G) may be reformulated by taking into account Lemma
7.1.21 and Proposition 7.1.22. In other words, one can replace in these state-
ments the nonemptiness of the interiors of epiK F and epiK H with the weakly
K-upper boundedness of F and H, respectively.

Furthermore, it is possible to refine these results via strict K-convexity
notions as in subsection 7.1.2. In particular, Proposition 7.1.26 and Theorem
7.1.27 can be reformulated regarding k-subdifferentiability and k-stability. In
this way we get some extensions of Proposition 7.1.35 and Theorem 7.1.36.
The assumptions are identical allowing to present here an abridged form of
the facts.

Corollary 7.1.37. (a) Assume that for x̄ ∈ int(dom F ) the hypotheses of
Proposition 7.1.26 are fulfilled and that k ∈ int(K)∪(− int(K)). Then
F is k-subdifferentiable at x̄.

(b) Assume that the hypotheses of Theorem 7.1.27 are fulfilled and that k ∈
int(K)∪(− int(K)). Then the primal problem (PSV Gk) is k-stable.

7.2 The set-valued optimization problem with
constraints

In the second section of this chapter we apply the perturbation approach
developed in the previous one to the general set-valued optimization problem
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with constraints. We consider different perturbations of the primal problem,
each of them providing a different set-valued dual problem. As primal set-
valued optimization problem we consider

(PSV C) Min
x∈A

F (x),

A = {x ∈ S : G(x) ∩ (−C) 	= ∅}

where X, Z and V are topological vector spaces with Z partially ordered by
the convex cone C ⊆ Z and V partially ordered by the nontrivial pointed
convex cone K ⊆ V , S ⊆ X is a nonempty set, while F : X ⇒ V ∪{+∞K}
and G : X ⇒ Z are set-valued maps such that dom F ∩ S ∩ G−1(−C) 	= ∅,
with G−1(−C) = {x ∈ X : G(x) ∩ (−C) 	= ∅}. By X∗, Z∗ and V ∗ we denote
the corresponding topological dual spaces of X, Z and V , respectively.

We deal with the minimal elements of the image set F (A) with respect to
the partial ordering induced by K. An element x̄ ∈ A is said to be an efficient
solution and (x̄, v̄) is said to be a minimal pair to (PSV C) if v̄ ∈ F (x̄) and
v̄ ∈ Min F (A). Obviously, (PSV C) may be considered as a particular case
of the problem (PSV G) we dealt with in section 7.1. We observe that the
constraint G(x) ∩ (−C) 	= ∅ is nothing else than the natural generalization
of the cone constraint g(x) ∈ −C for a vector-valued function g : X → Z.
If G is single-valued, then G(x) ∩ (−C) 	= ∅ reduces to the mentioned cone
constraint.

7.2.1 Duality based on general vector conjugacy

Let us define several set-valued perturbation maps which give, via their con-
jugate maps, different dual problems to (PSV C): the Lagrange perturbation
map ΦCL : X × Z ⇒ V ∪{+∞K},

ΦCL(x, z) =
{

F (x), if x ∈ S, G(x) ∩ (z − C) 	= ∅,
{+∞K}, otherwise,

the Fenchel perturbation map

ΦCF : X × X ⇒ V ∪{+∞K}, ΦCF (x, y) =
{

F (x + y), if x ∈ A,
{+∞K}, otherwise,

and, respectively, the Fenchel-Lagrange perturbation map ΦCF L : X×X×Z ⇒
V ∪{+∞K},

ΦCF L(x, y, z) =
{

F (x + y), if x ∈ S, G(x) ∩ (z − C) 	= ∅,
{+∞K}, otherwise.

As in subsection 7.1.2 we introduce for the different perturbation maps the
corresponding minimal value maps

HCL : Z ⇒ V ∪{+∞K}, HCL(z) = Min ∪
x∈X

ΦCL(x, z), z ∈ Z,
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HCF : X ⇒ V ∪{+∞K}, HCF (y) = Min ∪
x∈X

ΦCF (x, y), y ∈ X,

and, respectively, HCF L : X × Z ⇒ V ∪{+∞K},

HCF L(y, z) = Min ∪
x∈X

ΦCF L(x, y, z), y ∈ X, z ∈ Z.

By Lemma 7.1.13 it follows that in case HCL(z) is externally stable for all
z ∈ Z, then (HCL)∗(Λ) = (ΦCL)∗(0, Λ) for all Λ ∈ L(Z, V ), while if HCF (y)
is externally stable for all y ∈ X, then (HCF )∗(Γ ) = (ΦCF )∗(0, Γ ) for all
Γ ∈ L(X,V ). Assuming that HCF L(y, z) is externally stable for all (y, z) ∈
X × Z, then (HCF L)∗(Γ,Λ) = (ΦCF L)∗(0, Γ, Λ) for all Γ ∈ L(X,V ) and all
Λ ∈ L(Z, V ).

For formulating the dual problems we have to calculate the corresponding
conjugate maps to these perturbation maps. To this end we use the general
conjugacy concept as developed in subsections 7.1.1 and 7.1.2. For an arbitrary
Λ ∈ L(Z, V ) it holds

(ΦCL)∗(0, Λ)=Max ∪
x∈X,z∈Z

[Λz−ΦCL(x, z)]=Max ∪
x∈S,G(x)∩(z−C) �=∅

[Λz−F (x)].

Since G(x) ∩ (z − C) 	= ∅ is equivalent to z ∈ G(x) + C, we obtain

(ΦCL)∗(0, Λ)=Max ∪
x∈S,z∈G(x)+C

[Λz−F (x)]=Max ∪
x∈S

[Λ(G(x))+Λ(C)−F (x)].

(7.17)
Even more, if the set MaxΛ(C) is externally stable, then Proposition 7.1.7

secures the equality

(ΦCL)∗(0, Λ) = Max
{

∪
x∈S

[Λ(G(x)) − F (x)] + MaxΛ(C)
}

.

Pursuing the approach given in subsection 7.1.2 we associate to (PSV C) the
following set-valued dual problem

(DSV CL) Max ∪
Λ∈L(Z,V )

Min ∪
x∈S

[F (x) − Λ(G(x) + C)].

In case C 	= {0} a straightforward consideration shows that the existence of
an element c′ ∈ C \ {0} with the property Λc′ ∈ K \ {0} implies

Min ∪
x∈S

[F (x) − Λ(G(x) + C)] = ∅.

Therefore the mappings Λ ∈ L(Z, V ) fulfilling Λ(C) ∩ K 	= {0} have no
influence on the set of maximal elements of the dual problem (DSV CL). Hence
the final form of the dual problem, which is obviously valid also when C = {0},
is

(DSV CL) Max ∪
Λ∈L(Z,V ),

Λ(C)∩(−K)={0}
Min ∪

x∈S
[F (x) + Λ(G(x) + C)].
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We call (DSV CL) the Lagrange set-valued dual problem to (PSV C).
Theorem 7.1.11 implies that for (PSV C) and its Lagrange set-valued dual

problem (DSV CL) weak duality holds in the most general situation, even
without any assumptions like convexity or external stability. Under the sta-
bility assumption of (PSV C) with respect to the perturbation map ΦCL , the
strong duality for (PSV C) and (DSV CL) arises as a consequence of Theorem
7.1.15. We skip the detailed formulation of this result.

Next, we derive the Fenchel set-valued dual problem to (PSV C) by means
of the perturbation map ΦCF . For an arbitrary Γ ∈ L(X,V ) it holds

(ΦCF )∗(0, Γ ) = Max ∪
x,y∈X

[Γy − ΦCF (x, y)] = Max ∪
x∈A,y∈X

[Γy − F (x + y)].

Then we get

(ΦCF )∗(0, Γ ) = Max ∪
x∈A,y∈X

[Γy − F (y) − Γx]

= Max ∪
x,y∈X

{

[Γy − F (y)] + [−Γx − δV
A(x)]

}

= Max
{

∪
y∈X

[Γy − F (y)]+ ∪
x∈X

[−Γx − δV
A(x)]

}

= Max
{

∪
y∈X

[Γy − F (y)] − Γ (A)
}

.

If F ∗(Γ ) = Max∪y∈X [Γy − F (y)] is externally stable, then the dual problem
can be written in a more compact form. To this end one has to apply Propo-
sition 7.1.7 for the set-valued maps ˜F : X ⇒ V , ˜F (x) = [−Γx − δV

A(x)], and
˜G : X ⇒ V , ˜G(x) = ∪y∈X [Γy − F (y)]). Thus we obtain

(ΦCF )∗(0, Γ ) = Max ∪
x∈X

{

[−Γx − δV
A(x)] + ∪

y∈X
[Γy − F (y)]

}

= Max ∪
x∈X

{

[−Γx − δV
A(x)] + Max ∪

y∈X
[Γy − F (y)]

}

= Max ∪
x∈X

{

[−Γx − δV
A(x)] + F ∗(Γ )

}

= Max{F ∗(Γ ) − Γ (A)}.

Assuming additionally that (δV
A)∗(−Γ ) = Max∪x∈X [−Γx − δV

A(x)] is exter-
nally stable, which is the case when Γ (A) ⊆ Min Γ (A) + K or, equivalently,
when MinΓ (A) is externally stable, one obtains again via Proposition 7.1.7
that

(ΦCF )∗(0, Γ ) = Max[F ∗(Γ ) + Max(−Γ (A))]

= Max[F ∗(Γ ) − Min Γ (A)] = Max
{

F ∗(Γ ) + (δV
A)∗(Γ )

}

.

In the general case, without any external stability assumption, the Fenchel
set-valued dual problem to (PSV C) is
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(DSV CF ) Max ∪
Γ∈L(X,V )

Min
{

∪
y∈X

[F (y) − Γy] + Γ (A)
}

,

while when F ∗(Γ ) and MinΓ (A) are supposed externally stable for all Γ ∈
L(X,V ), the Fenchel set-valued dual becomes

(DSV CF ) Max ∪
Γ∈L(X,V )

Min[−F ∗(Γ ) + MinΓ (A)].

Dealing further with the third perturbation map ΦCF L we obtain for its
conjugate map, for Γ ∈ L(X,V ) and Λ ∈ L(Z, V ), the following formulation

(ΦCF L)∗(0, Γ, Λ) = Max ∪
x,y∈X,z∈Z

[Γy + Λz − ΦCF L(x, y, z)]

= Max ∪
x∈S,y∈X,z∈Z,
G(x)∩(z−C) �=∅

[Γy+Λz−F (x+y)] = Max ∪
x∈S,y∈X,
z∈G(x)+C

[Γy−F (y)−Γx+Λz]

= Max ∪
x∈S,y∈X

{[Γy − F (y)] + [−Γx + Λ(G(x))] + Λ(C)}

= Max
{

∪
y∈X

[Γy − F (y)] + ∪
x∈S

[−Γx + Λ(G(x))] + Λ(C)
}

.

In this general situation one can attach to (PSV C) the so-called Fenchel-
Lagrange set-valued dual problem

(DSV CF L) Max ∪
Γ∈L(X,V ),
Λ∈L(Z,V ),

Λ(C)∩(−K)={0}

Min
{

∪
y∈X

[F (y)−Γy]+ ∪
x∈S

[Γx+Λ(G(x))]+Λ(C)
}

.

Also here the dual problem can be written in a more compact form if ex-
ternal stability conditions are imposed. If F ∗(Γ ) = Max∪y∈X [Γy − F (y)] is
externally stable for all Γ ∈ L(X,V ), then the dual problem becomes

(DSV CF L) Max ∪
Γ∈L(X,V ),
Λ∈L(Z,V ),

Λ(C)∩(−K)={0}

Min
{

−F ∗(Γ ) + ∪
x∈S

[Γx + Λ(G(x))] + Λ(C)
}

.

If, additionally, also (ΛG)∗S(−Γ ) = Max∪x∈S [−Γx − Λ(G(x))] is externally
stable for all Λ ∈ L(Z, V ) and all Γ ∈ L(X,V ), then we acquire the following
formulation for the dual problem

(DSV CF L) Max ∪
Γ∈L(X,V ),Λ∈L(Z,V ),

Λ(C)∩(−K)={0}
Min[−F ∗(Γ ) − (ΛG)∗S(−Γ ) + Λ(C)].

Remark 7.2.1. The scalar optimization problem with geometric and cone con-
straints (PC) studied in chapter 3 can be seen as a particular case of (PSV C).
As one can notice in the following, by particularizing the set-valued duals to
the scalar setting we rediscover three dual problems similar to (DCL), (DCF )
and (DCF L), respectively, that have been formulated in section 3.1 in connec-
tion to (PC).
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Not only for the Lagrange set-valued dual problem, but also for the Fenchel
and Fenchel-Lagrange set-valued dual problems weak duality holds without
supposing any particular hypotheses. This is an immediate consequence of
Theorem 7.1.11. According to Theorem 7.1.15 strong duality is ensured under
stability assumptions for (PSV C) regarding the perturbation maps ΦCF and
ΦCF L , respectively. Using the strong duality and Remark 7.1.7 optimality con-
ditions can be easily derived. Even more, taking into consideration Theorem
7.1.16 and Theorem 7.1.17 these optimality conditions may be represented in
subdifferential form as necessary and sufficient conditions.

For the following we assume that the corresponding minimal value maps of
the three perturbation maps are externally stable. First we present optimality
conditions and strong duality by employing the Lagrange set-valued dual to
(PSV C)

(DSV CL) Max ∪
Λ∈L(Z,V ),

Λ(C)∩(−K)={0}
Min ∪

x∈S
[F (x) + Λ(G(x) + C)].

Theorem 7.2.1. (a) Suppose that the problem (PSV C) is stable with respect
to the perturbation map ΦCL . Let x̄ ∈ A be an efficient solution to (PSV C)
and v̄ ∈ F (x̄) such that (x̄, v̄) is a minimal pair to (PSV C). Then there
exists Λ ∈ L(Z, V ), an efficient solution to (DSV CL), with (Λ, v̄) corre-
sponding maximal pair such that strong duality holds and the following
conditions are fulfilled
(i) v̄ ∈ Min∪x∈S [F (x) + Λ(G(x) + C)];
(ii) Λ(C) ∩ (−K) = {0};
(iii) Λ(G(x̄) + C) ∩ (−K) = {0}.

(b) Assume that for x̄ ∈ A, v̄ ∈ F (x̄) ∩ V and Λ ∈ L(Z, V ) the conditions
(i) − (iii) are fulfilled. Then x̄ is an efficient solution and (x̄, v̄) is a
minimal pair to (PSV C), while Λ is an efficient solution and (Λ, v̄) is a
maximal pair to (DSV CL).

Proof. (a) By Theorem 7.1.15 there exists an efficient solution Λ ∈ L(Z, V ) to
(DSV CL) with corresponding maximal pair (Λ, v̄) fulfilling v̄ ∈ Min∪x∈S [F (x)
+Λ(G(x) + C)] and so (i) is verified. The condition (ii) follows from the con-
struction of the Lagrange set-valued dual problem. To prove (iii) notice first
that from x̄ ∈ A follows G(x̄) ∩ (−C) 	= ∅, consequently 0 ∈ Λ(G(x̄) + C) ∩
(−K). Assume now that there exists ṽ ∈ Λ(G(x̄) + C) ∩ ((−K)\{0}). Then

v̄ + ṽ ∈ F (x̄) + Λ(G(x̄) + C) ⊆ ∪
x∈S

[F (x) + Λ(G(x) + C)]

and v̄ + ṽ ≤K v̄, contradicting (i). Altogether, (iii) is true.
(b) The proof of this result is a direct consequence of Theorem 7.1.17. ��

Remark 7.2.2. Let us compare the optimality conditions (i)−(iii) in Theorem
7.2.1 with the optimality conditions given for the primal dual pair (PC) −
(DCL) in Theorem 3.3.16. Consider as image space V = R with the ordering
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cone K = R+. Then L(Z, R) = Z∗ and an element Λ ∈ Z∗ fulfilling Λ(C) ≥ 0
is in fact belonging to the dual cone C∗. Further assume that F : X →
R ∪ {+∞} and G : X → Z are single-valued maps. The Lagrange set-valued
dual problem (DSV CL) takes in this case the form

max
Λ∈C∗

min
x∈S

[F (x) + Λ(G(x))]

and now it is easy to recognize the similar formulation to the one of the scalar
Lagrange dual problem (DCL).

Concerning the optimality conditions, one can easily see that assertion
(i) of Theorem 7.2.1 becomes in this case F (x̄) = minx∈S [F (x) + Λ(G(x))],
while condition (ii) states that Λ ∈ C∗. Coming now to condition (iii), this
looks now like Λ(G(x̄) + C) ≥ 0, which is equivalent to Λ(G(x̄)) = 0. In this
way we rediscover as particular instance the three optimality conditions for
(PC) − (DCL) given in Theorem 3.3.16.

Next we provide optimality conditions for (PSV C) and its Fenchel set-
valued dual problem

(DSV CF ) Max ∪
Γ∈L(X,V )

Min[−F ∗(Γ ) + MinΓ (A)],

under the additional assumptions that F ∗(Γ ) and MinΓ (A) are externally
stable for all Γ ∈ L(X,V ). The proof of the following result is a consequence
of Theorem 7.1.15, Theorem 7.1.16 and Theorem 7.1.17.

Theorem 7.2.2. Let F ∗(Γ ) and MinΓ (A) be externally stable for all Γ ∈
L(X,V ).

(a) Suppose that the problem (PSV C) is stable with respect to the perturbation
map ΦCF . Let x̄ ∈ A be an efficient solution to (PSV C) and v̄ ∈ F (x̄) such
that (x̄, v̄) is a minimal pair to (PSV C). Then there exists Γ ∈ L(X,V ),
an efficient solution to (DSV CF ), with (Γ , v̄) corresponding maximal pair
such that strong duality holds and

v̄ ∈ Min[−F ∗(Γ ) + MinΓ (A)].

(b) Assume that for x̄ ∈ A, v̄ ∈ F (x̄) ∩ V and Γ ∈ L(X,V ) one has v̄ ∈
Min[−F ∗(Γ ) + MinΓ (A)]. Then x̄ is an efficient solution and (x̄, v̄) a
minimal pair to (PSV C), while Γ is an efficient solution and (Γ , v̄) a
maximal pair to (DSV CF ).

Remark 7.2.3. Considering the same setting as in Remark 7.2.2, we have that
L(X, R) = X∗. Assuming that for all Γ ∈ X∗ the supremum F ∗(Γ ) =
supx∈X{Γx − F (x)} and the infimum infx∈A(Γx) are attained, means that
both sets F ∗(Γ ) and MinΓ (A) are externally stable for all Γ ∈ X∗. The
Fenchel set-valued dual problem looks then like
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max
Γ∈X∗

[

−F ∗(Γ ) + min
x∈A

(Γx)
]

,

while the optimality condition in Theorem 7.2.2 can be written for x̄ ∈ A and
Γ ∈ X∗ as

F (x̄) = −F ∗(Γ ) + min
x∈A

(Γx),

or, equivalently,

min
x∈A

〈Γ , x〉 = Γ x̄ and F (x̄) + F ∗(Γ ) = Γ x̄.

The reader can notice the analogy of the optimality conditions offered above
to the ones in Theorem 3.3.19.

Next we give strong duality and corresponding optimality conditions for
(PSV C) and the Fenchel-Lagrange set-valued dual problem

(DSV CF L) Max ∪
Γ∈L(X,V ),Λ∈L(Z,V ),

Λ(C)∩(−K)={0}
Min[−F ∗(Γ ) − (ΛG)∗S(−Γ ) + Λ(C)],

in case F ∗(Γ ) and (ΛG)∗S(−Γ ) are externally stable for all Γ ∈ L(X,V ) and
all Λ ∈ L(Z, V ).

Theorem 7.2.3. Let F ∗(Γ ) and (ΛG)∗S(−Γ ) be externally stable for all Γ ∈
L(X,V ) and all Λ ∈ L(Z, V ).

(a) Suppose that the problem (PSV C) is stable with respect to the pertur-
bation map ΦCF L . Let x̄ ∈ A be an efficient solution to (PSV C) and
v̄ ∈ F (x̄) such that (x̄, v̄) is a minimal pair to (PSV C). Then there ex-
ists (Γ ,Λ) ∈ L(X,V )×L(Z, V ), an efficient solution to (DSV CF L), with
(Γ ,Λ, v̄) corresponding maximal pair such that strong duality holds and
the following conditions are fulfilled
(i) v̄ ∈ Min[−F ∗(Γ ) − (ΛG)∗S(−Γ ) + Λ(C)];
(ii) Λ(C) ∩ (−K) = {0};
(iii) Λ(G(x̄) + C) ∩ (−K) = {0}.

(b) Assume that for x̄ ∈ A, v̄ ∈ F (x̄) ∩ V and (Γ ,Λ) ∈ L(X,V ) × L(Z, V )
the conditions (i) − (iii) are fulfilled. Then x̄ is an efficient solution and
(x̄, v̄) a minimal pair to (PSV C), while (Γ ,Λ) is an efficient solution and
(Γ ,Λ, v̄) a maximal pair to (DSV CF L).

Proof. (a) By Theorem 7.1.15 there exists an efficient solution (Γ ,Λ) ∈
L(X,V ) × L(Z, V ) to (DSV CF L) with corresponding maximal pair (Γ ,Λ, v̄)
fulfilling v̄ ∈ Min[−F ∗(Γ ) − (ΛG)∗S(−Γ ) + Λ(C)], which is in fact (i). The
condition (ii) follows from the construction of the Fenchel-Lagrange set-
valued dual problem. To prove (iii) notice first that from x̄ ∈ A follows
G(x̄) ∩ (−C) 	= ∅, consequently 0 ∈ Λ(G(x̄) + C) ∩ (−K). Assume now that
there exists ṽ ∈ Λ(G(x̄) + C) ∩ ((−K)\{0}). Then
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v̄ + ṽ ∈ F (x̄) + Λ(G(x̄) + C) = F (x̄) − Γ (x̄) + Γ (x̄) + Λ(G(x̄)) + Λ(C)

⊆ ∪
y∈X

[F (y) − Γ (y)] + ∪
x∈S

[Γ (x) + Λ(G(x))] + Λ(C).

On the other hand, since F ∗(Γ ) and (ΛG)∗S(−Γ ) are externally stable, from
(i) it follows v̄ ∈ Min

{

∪y∈X [F (y) − Γ (y)] + ∪x∈S [Γ (x) + Λ(G(x))] + Λ(C)
}

.
Since v̄ + ṽ ≤K v̄, this leads to a contradiction and so (iii) is proven.

(b) The proof of this result is a direct consequence of Theorem 7.1.17. ��

Remark 7.2.4. Considering again the setting from Remark 7.2.2 and Remark
7.2.3, we assume that for all Γ ∈ X∗ and all Λ ∈ Z∗ the suprema F ∗(Γ ) :=
supx∈X{〈Γ, x〉 − F (x)} and (ΛG)∗S(−Γ ) := supx∈S{−〈Γ, x〉 − (ΛG)(x)} are
attained. Then the Fenchel-Lagrange set-valued dual problem (DSV CF L) is
nothing else than

max
Γ∈X∗,Λ∈C∗

[−F ∗(Γ ) − (ΛG)∗S(−Γ )],

while the optimality conditions (i) − (iii) in the previous result can be for-
mulated as F (x̄) = −F ∗(Γ ) − (ΛG)∗S(−Γ ), Λ ∈ C∗ and Λ(G(x̄)) = 0, re-
spectively. The first relation can be in this situation equivalently written as
F (x̄) + F ∗(Γ ) = Γ x̄ and Λ(G(x̄)) + (ΛG)∗S(−Γ ) = −Γ x̄. The analogy to
the optimality conditions stated for the primal-dual pair (PC) − (DCF L) in
Theorem 3.3.22 is also in this case remarkable.

7.2.2 Duality based on vector k-conjugacy

Within the current subsection we deal with duality for the primal set-valued
optimization problem (PSV C) based on the vector k-conjugacy approach in-
troduced in subsection 7.1.3 and for this purpose we use the same perturbation
maps ΦCL , ΦCF and ΦCF L which have been introduced at the beginning of
subsection 7.2.1.

Let k ∈ V \{0} be fixed. We begin with the calculation of the map (ΦCL)∗k.
For an arbitrary z∗ ∈ Z∗ it holds

(ΦCL)∗k(0, z∗) = Max ∪
x∈X,
z∈Z

[〈z∗, z〉k − ΦCL(x, z)]

= Max ∪
x∈S,z∈Z,
z∈G(x)+C

[〈z∗, z〉k − F (x)] = Max ∪
x∈S

[(z∗G)(x)k + z∗(C)k − F (x)],

where we denote (z∗G)(x) := {〈z∗, z〉 : z ∈ G(x)}. Therefore to the primal
problem (PSV C) we attach the Lagrange set-valued dual problem

(DSV CL

k ) Max ∪
z∗∈Z∗

Min ∪
x∈S

[F (x) − (z∗G)(x)k − z∗(C)k].

Let us additionally assume in the following that k ∈ K. If z∗ ∈ −C∗ then for
all c ∈ C it holds −〈z∗, c〉 ≥ 0. Thus −〈z∗, c〉k ∈ K and a straightforward
consideration shows that in this case the relation
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Min ∪
x∈S

[F (x) − (z∗G)(x)k − z∗(C)k] = Min ∪
x∈S

[F (x) − (z∗G)(x)k]

holds. On the other hand, if z∗ /∈ −C∗ then there exists some c̄ ∈ C such that
−〈z∗, c̄〉 < 0. Using the fact that for all α > 0 it holds αc̄ ∈ C one can easily
prove that

Min ∪
x∈S

[F (x) − 〈z∗, G(x)〉k − z∗(C)k] = ∅.

Remark 7.2.5. Following a similar reasoning one can show that if k ∈ −K,
then the previous comments regarding

Min ∪
x∈S

[F (x) − (z∗G)(x)k − z∗(C)k]

remain valid if z∗ ∈ C∗ and z∗ /∈ C∗, respectively. If, finally, k /∈ K ∪(−K),
then in general the set −z∗(C)k cannot be dropped in the formulation of the
dual problem.

The Lagrange set-valued dual problem to (PSV C) may be rewritten as

(DSV CL

k ) Max ∪
z∗∈C∗

Min ∪
x∈S

[F (x) + (z∗G)(x)k].

For V = R and K = R+ and when F and G are single-valued one can easily
notice the analogy of (DSV CL

k ) to the classical Lagrange dual problem (DCL)
from subsection 3.1.3, the only difference being that in its formulation we have
maximum and minimum instead of supremum and infimum, respectively.

Now let us determine the Fenchel set-valued dual problem to (PSV C). To
this end it is necessary to calculate the k-conjugate of the perturbation map
ΦCF . For an arbitrary y∗ ∈ X∗ it holds

(ΦCF )∗k(0, y∗) = Max ∪
x,y∈X

[〈y∗, y〉k − ΦCF (x, y)]

= Max ∪
x∈A,y∈X

[〈y∗, y〉k − F (y) − 〈y∗, x〉k].

Because k ∈ K, there holds

(ΦCF )∗k(0, y∗)=Max
{

∪
y∈X

[〈y∗, y〉k−F (y)]−y∗(A)k
}

=F ∗
k (y∗)+max

x∈A
〈−y∗, x〉k.

Notice that we encountered in the above formula also the situation when
minx∈A〈y∗, x〉 is not attained. In this case (ΦCF )∗k(0, y∗) = ∅. This leads to
the Fenchel set-valued dual problem to (PSV C)

(DSV CF

k ) Max ∪
y∗∈X∗

{

− F ∗
k (y∗) +

[

min
x∈A

〈y∗, x〉
]

k
}

.

The analogy of (DSV CF

k ) to the dual problem (DCF ) stated for the scalar
primal problem with geometric and cone constraints (PC) in subsection 3.1.3
can be easily recognized.
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Next we derive the Fenchel-Lagrange set-valued dual problem to (PSV C)
via vector k-conjugacy. For y∗ ∈ X∗ and z∗ ∈ Z∗ arbitrarily taken we have

(ΦCF L)∗k(0, y∗, z∗) = Max ∪
x,y∈X,z∈Z

[(〈y∗, y〉 + 〈z∗, z〉)k − ΦCF L(x, y, z)]

= Max ∪
x∈S,y∈X,
z∈G(x)+C

[〈y∗, y〉k − F (y) − 〈y∗, x〉k + 〈z∗, z〉k]

= Max ∪
x∈S,y∈X

{[〈y∗, y〉k − F (y)] + [−〈y∗, x〉k + (z∗G)(x)k] + z∗(C)k}.

Since we supposed that k ∈ K, we further have

(ΦCF L)∗k(0, y∗, z∗) = Max ∪
y∈X

[〈y∗, y〉k−F (y)]+
[

max
x∈S

(

−〈y∗, x〉+(z∗G)(x)
)

]

k

= F ∗
k (y∗) +

[

max
x∈S

(

− 〈y∗, x〉 + (z∗G)(x)
)]

k

if z∗ ∈ −C∗ and (ΦCF L)∗k(0, y∗, z∗) = ∅ if z∗ /∈ −C∗. Thus the Fenchel-
Lagrange set-valued dual problem to (PSV C) turns out to be

(DSV CF L

k ) Max ∪
y∗∈X∗,
z∗∈C∗

{

− F ∗
k (y∗) +

[

min
x∈S

(

〈y∗, x〉 + (z∗G)(x)
)

]

k
}

.

Also in this case it is easy to recognize the analogy to the formulation of
the scalar Fenchel-Lagrange dual problem (DCF L) stated to the primal scalar
problem (PC) in subsection 3.1.3.

It follows from Theorem 7.1.28 that weak duality holds for (PSV C) and
the three duals (DSV CL

k ), (DSV CF

k ) and (DSV CF L

k ), respectively. While weak
duality applies without any further assumptions, for having strong duality
we require external stability for the corresponding minimal value maps of the
three perturbation maps considered above. Indeed, Theorem 7.1.32 guarantees
strong duality under the stability of (PSV C) with respect to the perturba-
tion maps ΦCL or ΦCF or ΦCF L and using k-subdifferentiability as considered
in Definition 7.1.4. It is straightforward to transfer the formulation of The-
orem 7.1.32 and Theorem 7.1.34 to the three dual problems derived in this
subsection.

Theorem 7.2.4. Let be k ∈ K\{0}.
(a) Suppose that the problem (PSV C) is k-stable with respect to the perturba-

tion map ΦCL . Let x̄ ∈ A be an efficient solution to (PSV C) and v̄ ∈ F (x̄)
such that (x̄, v̄) is a minimal pair to (PSV C). Then there exists z̄∗ ∈ C∗,
an efficient solution to (DSV CL

k ), with (z̄∗, v̄) corresponding maximal pair
such that strong duality holds and the following conditions are fulfilled
(i) v̄ ∈ Min∪x∈S [F (x) + (z̄∗G)(x)k];
(ii) 〈z̄∗, z〉 = 0 for all z ∈ G(x̄) ∩ (−C).
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(b) Assume that for x̄ ∈ A, v̄ ∈ F (x̄)∩V and z̄∗ ∈ C∗ the conditions (i)−(ii)
are fulfilled. Then x̄ is an efficient solution and (x̄, v̄) a minimal pair to
(PSV C), while z̄∗ is an efficient solution and (z̄∗, v̄) a maximal pair to
(DSV CL

k ).

Proof. (a) Let x̄ ∈ A and v̄ ∈ F (x̄) be as supposed in the hypothesis. By
Theorem 7.1.32 there exists z̄∗ ∈ C∗, an efficient solution to (DSV CL

k ), with
(z̄∗, v̄) corresponding maximal pair such that v̄ ∈ Min∪x∈S [F (x)+(z̄∗G)(x)k].
Next, we show that (ii) also holds. Indeed, assume to the contrary that there
exists z̄ ∈ G(x̄)∩ (−C) such that 〈z̄∗, z̄〉 < 0. But this contradicts (i), because
v̄ + 〈z̄∗, z̄〉k ∈ F (x̄)+ (z̄∗G)(x̄)k ⊆ ∪x∈S [F (x)+ (z̄∗G)(x)k] and v̄ + 〈z̄∗, z̄〉k ∈
v̄ − {K\{0}}.

(b) The statement follows via Theorem 7.1.34. ��

The next result concerns the pair of set-valued optimization problems
(PSV C) − (DSV CF

k ).

Theorem 7.2.5. Let be k ∈ K\{0}.
(a) Suppose that the problem (PSV C) is k-stable with respect to the perturba-

tion map ΦCF . Let x̄ ∈ A be an efficient solution to (PSV C) and v̄ ∈ F (x̄)
such that (x̄, v̄) is a minimal pair to (PSV C). Then there exists ȳ∗ ∈ X∗,
an efficient solution to (DSV CF

k ), with (ȳ∗, v̄) corresponding maximal pair
such that strong duality holds and the following conditions are fulfilled
(i) v̄ ∈ −F ∗

k (ȳ∗) + 〈ȳ∗, x̄〉k;
(ii) 〈ȳ∗, x̄〉 = minx∈A〈ȳ∗, x〉.

(b) Assume that for x̄ ∈ A, v̄ ∈ F (x̄)∩V and ȳ∗ ∈ X∗ the conditions (i)−(ii)
are fulfilled. Then x̄ is an efficient solution and (x̄, v̄) a minimal pair to
(PSV C), while ȳ∗ is an efficient solution and (ȳ∗, v̄) a maximal pair to
(DSV CF

k ).

Proof. (a) Let x̄ ∈ A and v̄ ∈ F (x̄) be as assumed in the hypothesis. Then
by Theorem 7.1.32 follows that there exists ȳ∗ ∈ X∗, an efficient solution to
(DSV CF

k ), with (ȳ∗, v̄) corresponding maximal pair such that v̄ ∈ −F ∗
k (ȳ∗) +

[minx∈A〈ȳ∗, x〉]k. Hence, v̄ = −v∗ + [minx∈A〈ȳ∗, x〉]k for some v∗ ∈ F ∗
k (ȳ∗).

We show now that 〈ȳ∗, x̄〉 = minx∈A〈ȳ∗, x〉. Assume the opposite, namely that
minx∈A〈ȳ∗, x〉 < 〈ȳ∗, x̄〉. As v̄ ∈ F (x̄) and v∗ ∈ F ∗

k (ȳ∗), by Proposition 7.1.1
follows that v̄ + v∗ �K 〈ȳ∗, x̄〉k. But v̄ + v∗ = [minx∈A〈ȳ∗, x〉]k ≤K 〈ȳ∗, x̄〉k
generates a contradiction. Thus (ii) holds and from here it follows that v̄ ∈
−F ∗

k (ȳ∗) + [minx∈A〈ȳ∗, x〉]k = −F ∗
k (ȳ∗) + 〈ȳ∗, x̄〉k, i.e. (i) is also proven.

(b) The statement follows via Theorem 7.1.34. ��

Finally, it remains to state the strong duality statement along with
the optimality conditions for the Fenchel-Lagrange set-valued dual problem
(DSV CF L

k ).

Theorem 7.2.6. Let be k ∈ K\{0}.
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(a) Suppose that the problem (PSV C) is k-stable with respect to the pertur-
bation map ΦCF L . Let x̄ ∈ A be an efficient solution to (PSV C) and
v̄ ∈ F (x̄) such that (x̄, v̄) is a minimal pair to (PSV C). Then there exists
(ȳ∗, z̄∗) ∈ X∗×C∗, an efficient solution to (DSV CF L

k ), with (ȳ∗, z̄∗, v̄) cor-
responding maximal pair such that strong duality holds and the following
conditions are fulfilled
(i) v̄ ∈ −F ∗

k (ȳ∗) + 〈ȳ∗, x̄〉k;
(ii) 〈ȳ∗, x̄〉 = minx∈S{〈ȳ∗, x〉 + (z̄∗G)(x)};
(iii) 〈z̄∗, z〉 = 0 for all z ∈ G(x̄) ∩ (−C).

(b) Assume that for x̄ ∈ A, v̄ ∈ F (x̄)∩V and (ȳ∗, z̄∗) ∈ X∗×C∗ the conditions
(i)−(iii) are fulfilled. Then x̄ is an efficient solution and (x̄, v̄) a minimal
pair to (PSV C), while (ȳ∗, z̄∗) is an efficient solution and (ȳ∗, z̄∗, v̄) a
maximal pair to (DSV CF L

k ).

Proof. (a) Theorem 7.1.32 provides the existence of an efficient solution
(ȳ∗, z̄∗) ∈ X∗ × C∗ to (DSV CF L) with (ȳ∗, z̄∗, v̄) a corresponding maximal
pair such that v̄ ∈ −F ∗

k (ȳ∗) + [minx∈S{〈ȳ∗, x〉 + (z̄∗G)(x)}]k. The remaining
part of the proof can be done combining some similar considerations as within
the proofs of Theorem 7.2.4 and Theorem 7.2.5.

(b) The statement follows via Theorem 7.1.34. ��

Remark 7.2.6. (a) Let us note that the sufficiency of the optimality condi-
tions in Theorem 7.2.4, Theorem 7.2.5 and Theorem 7.2.6 is guaranteed even
without the external stability of the corresponding minimal value maps.

(b) Like in the previous subsection one can notice an analogy between the
optimality conditions in Theorem 7.2.4, Theorem 7.2.5 and Theorem 7.2.6
and the optimality conditions stated in section 3.3 for the primal-dual pairs
(PC) − (DCL), (PC) − (DCF ) and (PC) − (DCF L), respectively.

7.2.3 Stability criteria

This subsection is devoted to some results concerning the stability of the
primal problem (PSV C) with respect to the different perturbation maps we
have considered in this chapter. Such results are very beneficial as they permit
to get strong duality for (PSV C) and its Lagrange, Fenchel and Fenchel-
Lagrange set-valued dual problems, respectively. Stability of (PSV C) is closely
related to the underlying perturbation map. Let us start with ΦCL , which
was used for deriving the Lagrange set-valued dual problems (DSV CL) and
(DSV CL

k ), respectively.
As in the previous subsections all considered spaces are supposed to be

topological vector spaces, while the ordering cone K ⊆ V is assumed to be
nontrivial pointed convex with int(K) 	= ∅.

We start by providing a stability criterion for Lagrange set-valued duality.

Theorem 7.2.7. Let ΦCL be strictly-K-convexlike-convex and HCL(z) =
Min ΦCL(X, z) be externally stable for all z ∈ Z. If F is weakly K-upper
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bounded on dom F ∩ S and 0 ∈ int[G(dom F ∩ S) + C], then (PSV C) is sta-
ble with respect to the perturbation map ΦCL ; hence strong duality holds for
(PSV C) and its Lagrange set-valued dual problem (DSV CL).

Proof. For all z ∈ Z it holds ΨCL(z) ∩ V = ΦCL(X, z) ∩ V = F (dom F ∩
S ∩ G−1(z − C)) ∩ V . The consequence of the regularity condition 0 ∈
int[G(dom F ∩ S) + C] is the existence of a neighborhood W of 0 in Z with
W ⊆ G(dom F∩S)+C. On the other hand, we have that z ∈ G(dom F∩S)+C
if and only if

dom F ∩ S ∩ G−1(z − C) 	= ∅
and this is further equivalent to

F (dom F ∩ S ∩ G−1(z − C)) ∩ V 	= ∅.

Consequently, one has that W ⊆ dom ΨCL and from here follows 0 ∈
int(dom ΨCL). Obviously ΨCL is weakly K-upper bounded on W , since
ΨCL(z) ∩ V = F (dom F ∩ S ∩ G−1(z − C)) ∩ V 	= ∅ for all z ∈ W and F
is assumed to be weakly K-upper bounded on domF ∩ S. Therefore all the
hypotheses of Theorem 7.1.27 are fulfilled, which means that (PSV C) is sta-
ble with respect to ΦCL . Finally, Theorem 7.2.1 enforces the claimed strong
duality. ��

The condition 0 ∈ int[G(dom F ∩ S) + C] is fulfilled in particular if
G(dom F ∩ S) ∩ (− int(C)) 	= ∅, which can be seen as a generalized Slater
regularity condition for set-valued optimization problems. As we prove next,
imposing this stronger condition, we can drop the assumption of F being
weakly K-upper bounded on domF ∩ S.

Theorem 7.2.8. Let ΦCL be strictly-K-convexlike-convex and HCL(z) =
Min ΦCL(X, z) be externally stable for all z ∈ Z. If G(dom F∩S)∩(− int(C)) 	=
∅, then (PSV C) is stable with respect to the perturbation map ΦCL ; hence
strong duality holds for (PSV C) and its Lagrange set-valued dual problem
(DSV CL).

Proof. Let x′ ∈ dom F ∩ S be such that G(x′) ∩ (− int(C)) 	= ∅. Thus 0 ∈
G(x′) + int(C) ⊆ int(G(x′) + C). Then there exists W , a neighborhood of 0
in Z, such that W ⊆ G(x′) + C ⊆ G(dom F ∩ S) + C. As seen in the proof of
Theorem 7.2.7, W ⊆ dom ΨCL and so 0 ∈ int(dom ΨCL).

On the other hand, since x′ ∈ dom F ∩ S one can chose b ∈ F (x′) ∩ V .
For all z ∈ W we have that x′ ∈ G−1(z − C) and further b ∈ F (dom F ∩ S ∩
G−1(z −C))∩ V = ΨCL(z)∩ V ⊆ ΨCL(z) + K. Thus ΨCL is weakly K-upper
bounded on W and the conclusion follows via Theorem 7.1.27. ��

Remark 7.2.7. Consider the set-valued map F × G : X ⇒ (V ∪{+∞K}) × Z
defined by (F ×G)(x) = F (x)×G(x). We say that the set-valued map F ×G is
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strictly-K-convexlike-C-convexlike on a nonempty set S ⊆ X if it is (K ×C)-
convexlike on S and if for (vi, zi) ∈ (F × G)(S) ∩ (V × Z), i = 1, 2, with
v1 	= v2, and λ ∈ (0, 1) there exists x̄ ∈ S such that

λ(v1, z1) + (1 − λ)(v2, z2) ∈ (F (x̄), G(x̄)) + (int(K) × C). (7.18)

We emphasize that ΦCL is strictly-K-convexlike-convex if and only if F×G
is strictly-K-convexlike-C-convexlike on S. Indeed, we begin assuming that
F × G is strictly-K-convexlike-C-convexlike on S. We prove first that ΦCL is
K-convexlike-convex and consider to this purpose zi ∈ Z, vi ∈ ΦCL(X, zi)∩V ,
i = 1, 2, and λ ∈ [0, 1]. Then there exist xi ∈ S such that vi ∈ ΦCL(xi, zi)∩ V
and, consequently, zi ∈ G(xi) + C and vi ∈ F (xi) ∩ V for i = 1, 2. Further
there exist ci ∈ C such that (vi, zi−ci) ∈ (F (xi), G(xi))∩ (V ×Z) for i = 1, 2.
As F × G is (K × C)-convexlike on S, there is an x̄ ∈ S such that

λ(v1, z1 − c1) + (1 − λ)(v2, z2 − c2) ∈ (F (x̄), G(x̄)) + (K × C).

This means that λv1 + (1 − λ)v2 ∈ F (x̄) + K and

λz1 + (1 − λ)z2 ∈ G(x̄) + λc1 + (1 − λ)c2 + C ⊆ G(x̄) + C.

Thus ΦCL(x̄, λz1 + (1 − λ)z2) = F (x̄) and therefore λv1 + (1 − λ)v2 ∈
ΦCL(x̄, λz1 + (1 − λ)z2) + K. This verifies that ΦCL is K-convexlike-convex.
In a similar manner, using this time (7.18), one can prove that for ΦCL rela-
tion (7.11) in the definition of the strictly-K-convexlike-convexity is fulfilled,
guaranteeing that this perturbation function is a member of this class.

Vice versa, let us assume that ΦCL is strictly-K-convexlike-convex and
prove that F×G is strictly-K-convexlike-C-convexlike on S. Actually we prove
only that F ×G is (K ×C)-convexlike on S, the demonstration of the second
property in the definition of a strictly-K-convexlike-C-convexlike map follows
by using similar arguments. So let be (vi, zi) ∈ (F × G)(S) ∩ (V × Z), i =
1, 2, and λ ∈ [0, 1]. Then there exists xi ∈ S such that zi ∈ G(xi) and
vi ∈ F (xi) ∩ V and from here vi ∈ ΦCL(xi, zi) ⊆ ΦCL(X, zi) for i = 1, 2. As
ΦCL is K-convexlike-convex, there exists x̄ ∈ X such that λv1 + (1 − λ)v2 ∈
ΦCL(x̄, λz1 + (1 − λ)z2) + K and one has x̄ ∈ S, λz1 + (1 − λ)z2 ∈ G(x̄) + C
and λv1 + (1 − λ)v2 ∈ F (x̄) + K. This provides the (K × C)-convexlikeness
on S of F × G.

Consequently, instead of assuming that ΦCL is strictly-K-convexlike-
convex, one can require in the hypotheses of Theorem 7.2.7 and Theorem 7.2.8
conditions which are sufficient for having that F ×G is strictly-K-convexlike-
C-convexlike on S. For instance, if S is convex, F is strictly K-convex and G
is C-convex this fact is guaranteed.

It is also worth noticing that, via Corollary 7.1.37(b) a completely analo-
gous result can be given for the primal-dual pair (PSV C) − (DSV CL

k ).
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Corollary 7.2.9. Let be k ∈ int(K). Under the hypotheses of Theorem 7.2.7
or Theorem 7.2.8 the problem (PSV C) is k-stable with respect to the per-
turbation map ΦCL ; hence strong duality holds for (PSV C) and its Lagrange
set-valued dual problem (DSV CL

k ).

Remark 7.2.8. In [163] the multiobjective programming problem

Min
x∈A

f(x),

A = {x ∈ R
n : g(x) � 0}

where f : R
n → R

k and g : R
n → R

m are single-valued functions has been
investigated. The ordering cone in the image space V = R

k is K = R
k
+. This

problem is a special case of (PSV C). The associated Lagrange set-valued dual
problem looks like

Max ∪
z∗�0

Min ∪
x∈Rn

[f(x) + 〈z∗, g(x)〉e].

Obviously, this is a particular case of the general Lagrange set-valued dual
problem (DSV CL

k ) when k = e. Corollary 7.2.9 can be considered as a gener-
alization of the stability result claimed in [163, Proposition 6.1.16], while [163,
Theorem 6.1.4] turns out to be a special case of Theorem 7.2.4.

Next, we turn our attention to the Fenchel duality.

Theorem 7.2.10. Let ΦCF be strictly-K-convexlike-convex and HCF (y) =
Min ΦCF (X, y) be externally stable for all y ∈ X. If there exists x′ ∈ dom F∩A
such that F is weakly K-upper bounded on some neighborhood of x′, then
(PSV C) is stable with respect to the perturbation map ΦCF ; hence strong
duality holds for (PSV C) and its Fenchel set-valued dual problem (DSV CF ).

Proof. For all y ∈ Y we have ΨCF (y) ∩ V = ΦCF (X, y) ∩ V = F (A + y) ∩ V .
From the supposed weak K-upper boundedness follows the existence of a
neighborhood U of 0 in X and of an element b ∈ V such that F (x′ + y)∩ (b−
K) 	= ∅ for all y ∈ U . In other words, b ∈ F (A+y)∩V +K ⊆ ΨCF (y)+K. Thus
ΨCF is weakly K-upper bounded on U and U ⊆ dom ΨCF , which yields 0 ∈
int(dom ΨCF ). Now strong duality follows via Theorem 7.1.27 and Theorem
7.2.2. ��

Concerning the strong duality for (PSV C) and its Fenchel set-valued dual
problem (DSV CF ) one can give an alternative result. This is based on a
different perturbation map of the primal problem. If we define this as being
˜ΦCF : X × X ⇒ V ∪ {+∞K},

˜ΦCF (x, y) =
{

F (x), if x ∈ A + y,
{+∞K}, otherwise = F (x) + δV

A(x − y),

then a straightforward calculation shows that for Γ ∈ L(X,V )
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(˜ΦCF )∗(0, Γ ) = Max
{

∪
y∈X

[Γy − F (y)] − Γ (A)
}

= (ΦCF )∗(0, Γ ).

Thus both perturbation maps generate the same dual problem (DSV CF ). The
minimal value map is now ˜HCF : X ⇒ V ∪{+∞K}, ˜HCF (y) = Min ˜ΦCF (X, y)
for y ∈ X. Notice that for all y ∈ Y one has

˜ΨCF (y) = ˜ΦCF (X, y) = ΦCF (X, y) = ΨCF (y),

and thus the corresponding minimal value map ˜HCF coincides with HCF .

Theorem 7.2.11. Let ΦCF be strictly-K-convexlike-convex and HCF (y) =
Min ΦCF (X, y) be externally stable for all y ∈ X. If dom F ∩ int(A) 	= ∅,
then (PSV C) is stable with respect to the perturbation map ΦCF ; hence strong
duality holds for (PSV C) and its Fenchel set-valued dual problem (DSV CF ).

Proof. Let be x′ ∈ dom F ∩ int(A) and b ∈ F (x′) ∩ V . Then there exists U , a
neighborhood of 0 in X, such that x′−y ∈ A for all y ∈ U . Thus U ⊆ dom ΨCF

and, consequently, 0 ∈ int(dom ΨCF ).
On the other hand, for all y ∈ U one has b ∈ F (x′) + δV

A(x′ − y) ⊆
ΨCF (y)+K and this implies that ΨCF is weakly K-upper bounded on U . The
conclusion follows via Theorem 7.1.27. ��

Remark 7.2.9. One can see that A is convex if, in particular, S ⊆ X is convex
and G : X ⇒ Z is a C-convex set-valued map. Thus, assuming additionally
that F is K-convex, one gets that ΦCF is K-convex, too. Nevertheless, impos-
ing that F is strictly K-convex, it is not enough to guarantee in general that
ΦCF is strictly-K-convexlike-convex.

One can formulate completely analogous results for the problem (PSV C)
and its Fenchel set-valued dual problem (DSV CF

k ).

Corollary 7.2.12. Let be k ∈ int(K). Under the hypotheses of Theorem
7.2.10 or Theorem 7.2.11 the problem (PSV C) is k-stable with respect to the
perturbation map ΦCF ; hence strong duality holds for (PSV C) and its Fenchel
set-valued dual problem (DSV CF

k ).

It remains to deal with the Fenchel-Lagrange set-valued dual problem con-
cerning stability and strong duality.

Theorem 7.2.13. Let ΦCF L be strictly-K-convexlike-convex and HCF L(y, z)=
Min ΦCF L(X, y, z) be externally stable for all (y, z) ∈ X × Z. If F is weakly
K-upper bounded on dom F and U × W is a neighborhood of (0, 0) in X × Z
such that W ⊆ ∩y∈UG((dom F − y) ∩ S) + C, then (PSV C) is stable with
respect to the perturbation map ΦCF L ; hence strong duality holds for (PSV C)
and its Fenchel-Lagrange set-valued dual problem (DSV CF L).
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Proof. Notice first that for all (y, z) ∈ X × Z one has

ΨCF L(y, z) ∩ V = ΦCF L(X, y, z) ∩ V = F
(

S ∩ G−1(z − C) + y
)

∩ V.

Let U×W be a neighborhood of (0, 0) in X×Z fulfilling W ⊆ ∩y∈UG((dom F−
y) ∩ S) + C. From here follows that for all y ∈ U and z ∈ W it holds F

(

S ∩
G−1(z −C) + y

)

∩ V 	= ∅ and this yields ΨCF L(y, z) ∩ V 	= ∅. Thus U ×W ⊆
dom ΨCF L and so (0, 0) ∈ int(dom ΨCF L). Further, as F is assumed to be
weakly K-upper bounded on domF , ΨCF L is weakly K-upper bounded on
U × W and Theorem 7.1.27 leads to the desired conclusion. ��
Remark 7.2.10. If dom F = X one can assume as regularity condition in the
result above the existence of a neighborhood W of 0 in Z such that W ⊆
G(S) + C, in other words that 0 ∈ int[G(S) + C], which is nothing else but
the condition assumed in Theorem 7.2.7.

Another stability result for the Fenchel-Lagrange set-valued dual pair given
by employing the weakly K-upper boundedness of F follows (cf. [23]).

Theorem 7.2.14. Let ΦCF L be strictly-K-convexlike-convex and HCF L(y, z)=
Min ΦCF L(X, y, z) be externally stable for all (y, z) ∈ X × Z. If there exist
x′ ∈ S such that 0 ∈ int(G(x′) + C) and a neighborhood U of x′ in X such
that F is weakly K-upper bounded on U , then (PSV C) is stable with respect
to the perturbation map ΦCF L ; hence strong duality holds for (PSV C) and its
Fenchel-Lagrange set-valued dual problem (DSV CF L).

Proof. Because F is weakly K-upper bounded on U there exists an element
b ∈ V such that b ∈ F (x) + K for all x ∈ U . Then for all y ∈ U − x′,
which is a neighborhood of 0 in X, it holds b ∈ F (x′ + y) + K. Since we
have 0 ∈ int(G(x′) + C), there exists a neighborhood W of 0 in Z such that
x′ ∈ S ∩G−1(z−C) for all z ∈ W . Consequently, for all (y, z) ∈ (U −x′)×W
it holds

b ∈ F (x′ + y) + K ⊆ F (S ∩ G−1(z − C) + y) ∩ V + K ⊆ ΨCF L(y, z) + K.

Thus (0, 0) ∈ int(dom ΨCF L) and ΨCF L is weakly K-upper bounded on (U −
x′) × W . The conclusion follows via Theorem 7.1.27. ��
Remark 7.2.11. (a) One can easily check that ΦCF L is K-convex if S is convex,
F is a K-convex and G is a C-convex set-valued map. Nevertheless, addition-
ally assuming strict K-convexity for F is not sufficient in general to have that
ΦCF L is strictly-K-convexlike-convex.

(b) Taking a close look at the proof of Theorem 7.2.14 one can easily see
that for all y ∈ U − x′ and z ∈ W it holds z ∈ G((dom F − y)∩ S) + C. Thus
W ⊆ ∩y∈U−x′G((dom F − y) ∩ S) + C and the neighborhood (U − x′) × W
of (0, 0) in X × Z makes the condition assumed in Theorem 7.2.13 valid.
Nevertheless, the mentioned condition alone is not enough for having strong
duality. As follows from the proof of Theorem 7.2.13 one cannot in general
omit that F is weakly K-upper bounded on domF .
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Again we state that an analogous result holds for (PSV C) and its Fenchel-
Lagrange set-valued dual problem (DSV CF L

k ).

Corollary 7.2.15. Let be k ∈ int(K). Under the assumptions of Theorem
7.2.13 or Theorem 7.2.14, the problem (PSV C) is k-stable with respect to
the perturbation map ΦCF L ; hence strong duality holds for (PSV C) and its
Fenchel-Lagrange set-valued dual problem (DSV CF L

k ).

7.3 The set-valued optimization problem having the
composition with a linear continuous mapping in the
objective function

In this section we investigate the set-valued analog of the scalar problem (PA)
from subsection 3.1.2 with respect to duality and optimality conditions.

Consider X, Y and V topological vector spaces, V partially ordered by the
nontrivial pointed convex cone K ⊆ V , X∗, Y ∗ and V ∗ their corresponding
topological dual spaces, respectively, F : X ⇒ V ∪{+∞K} and G : Y ⇒
V ∪ {+∞K} set-valued maps and A ∈ L(X,Y ). The set-valued optimization
problem under discussion is

(PSV A) Min
x∈X

{F (x) + G(Ax)} .

Additionally, we impose the feasibility condition domF ∩ A−1(dom G) 	= ∅.
We refer the reader also to section 4.1 where we investigate the same problem
in case F and G are vector-valued functions and to section 5.1 where we
additionally assume that V = R

k and K = R
k
+.

7.3.1 Fenchel set-valued duality

Following the general perturbation approach described in section 7.1 we begin
by considering the set-valued perturbation map

ΦA : X × Y ⇒ V ∪ {+∞K}, ΦA(x, y) = F (x) + G(Ax + y).

For all x ∈ X it holds ΦA(x, 0) = F (x) + G(Ax). The corresponding min-
imal value map HA : Y ⇒ V ∪ {+∞K} is defined by HA(y) = MinΦA(X, y).
The problem (PSV A) means to deal with minimal elements of the image set
∪x∈X{F (x)+G(Ax)}, i.e. we look for an efficient solutions x̄ ∈ X and a corre-
sponding minimal pair (x̄, v̄) to (PSV A), which means that v̄ ∈ F (x̄)+G(Ax̄)
and v̄ ∈ Min∪x∈X{F (x) + G(Ax)}. For the formulation of the dual problem
we have to calculate the conjugate map to ΦA. First we use the general conju-
gacy concept from the subsections 7.1.1 and 7.1.2. Afterwards we apply also
the k-conjugation as developed in subsection 7.1.3.

For Γ ∈ L(Y, V ) there is
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(

ΦA
)∗

(0, Γ ) = Max ∪
x∈X,
y∈Y

[

Γy − ΦA(x, y)
]

= Max ∪
x∈X,
y∈Y

[Γy − F (x) − G(Ax + y)]

= Max ∪
x∈X,y∈Y

[Γy − Γ (Ax) − F (x) − G(y)]

= Max
{

∪
y∈Y

[Γy − G(y)] + ∪
x∈X

[−Γ (Ax) − F (x)]
}

.

Via the general duality approach one can associate to (PSV A) as set-valued
dual problem

(DSV A) Max ∪
Γ∈L(Y,V )

Min
{

∪
y∈Y

[G(y) − Γy] + ∪
x∈X

[Γ (Ax) + F (x)]
}

.

We call (DSV A) the Fenchel set-valued dual problem to (PSV A). The weak
duality result for (PSV A) and (DSV A) is a consequence of Theorem 7.1.11.
From now on HA(y) is assumed to be externally stable for all y ∈ Y . Then
Theorem 7.1.15 guarantees strong duality if stability for (PSV A) with respect
to ΦA is ensured. For all Γ ∈ L(Y, V ) we additionally assume that

F ∗(−Γ ◦ A) = Max ∪
x∈X

[−Γ (Ax) − F (x)]

and
G∗(Γ ) = Max ∪

y∈Y
[Γy − G(y)]

are externally stable. Then for all Γ ∈ L(Y, V ) we obtain via Proposition 7.1.7

(

ΦA
)∗

(0, Γ ) = Max ∪
x∈X

{

∪
y∈Y

[Γy − G(y)] + [−Γ (Ax) − F (x)]
}

= Max ∪
x∈X

{

Max ∪
y∈Y

[Γy − G(y)] + [−Γ (Ax) − F (x)]
}

= Max
{

G∗(Γ ) + ∪
x∈X

[−Γ (Ax) − F (x)]
}

= Max
{

G∗(Γ ) + Max ∪
x∈X

[−Γ (Ax) − F (x)]
}

= Max[G∗(Γ ) + F ∗(−Γ ◦ A)]

and the Fenchel set-valued dual problem becomes

(DSV A) Max ∪
Γ∈L(Y,V )

Min[−F ∗(−Γ ◦ A) − G∗(Γ )].

The following result is a consequence of Theorem 7.1.15, Theorem 7.1.16
and Theorem 7.1.17

Theorem 7.3.1. Let F ∗(−Γ ◦ A) and G∗(Γ ) be externally stable for all Γ ∈
L(Y, V ).
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(a) Suppose that the problem (PSV A) is stable with respect to the perturbation
map ΦA. Let x̄ ∈ X be an efficient solution to (PSV A) and v̄ ∈ F (x̄) +
G(Ax̄) such that (x̄, v̄) is a minimal pair to (PSV A). Then there exists
Γ ∈ L(Y, V ), an efficient solution to (DSV A), with (Γ , v̄) corresponding
maximal pair such that strong duality holds and

v̄ ∈ Min[−F ∗(−Γ ◦ A) − G∗(Γ )].

(b) Assume that for x̄ ∈ X, v̄ ∈ [F (x̄)+G(Ax̄)]∩V and Γ ∈ L(Y, V ) one has
v̄ ∈ Min[−F ∗(−Γ ◦A)−G∗(Γ )]. Then x̄ is an efficient solution and (x̄, v̄)
a minimal pair to (PSV A), while Γ is an efficient solution and (Γ , v̄) a
maximal pair to (DSV A).

Next we derive a Fenchel set-valued dual problem to (PSV A) based on
k-conjugation by using the perturbation map ΦA. Let k ∈ V \{0} be fixed.
For y∗ ∈ Y ∗ we have

(ΦA
k )∗(0, y∗) = Max ∪

x∈X,y∈Y

[

〈y∗, y〉k − ΦA(x, y)
]

= Max
{

∪
y∈Y

[〈y∗, y〉k − G(y)] + ∪
x∈X

[〈−A∗y∗, x〉k − F (x)]
}

.

Assuming the external stability of

F ∗
k (−A∗y∗) = Max ∪

x∈X
[〈−A∗y∗, x〉k − F (x)]

and of
G∗

k(y∗) = Max ∪
y∈Y

[〈y∗, y〉k − G(y)],

from Proposition 7.1.7 we conclude that

(ΦA
k )∗(0, y∗) = Max[G∗

k(y∗) + F ∗
k (−A∗y∗)].

Thus, the following Fenchel set-valued dual problem to (PSV A) arises from
the general theory in subsection 7.1.3

(DSV A
k ) Max ∪

y∗∈Y ∗
Min [−F ∗

k (−A∗y∗) − G∗
k(y∗)] .

For (PSV A) and (DSV A
k ) weak duality is satisfied, due to Theorem 7.1.28.

One can formulate by means of Theorem 7.1.32, Theorem 7.1.33 and Theorem
7.1.34 the analog of Theorem 7.3.1 for this kind of conjugacy.

Theorem 7.3.2. Let F ∗
k (−A∗y∗) and G∗(y∗) be externally stable for all y∗ ∈

Y ∗.
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(a) Suppose that the problem (PSV A) is k-stable with respect to the per-
turbation map ΦA. Let x̄ ∈ X be an efficient solution to (PSV A) and
v̄ ∈ F (x̄) + G(Ax̄) such that (x̄, v̄) is a minimal pair to (PSV A). Then
there exists ȳ∗ ∈ Y ∗, an efficient solution to (DSV A

k ), with (ȳ∗, v̄) corre-
sponding maximal pair such that strong duality holds and

v̄ ∈ Min[−F ∗
k (−A∗ȳ∗) − G∗

k(ȳ∗)].

(b) Assume that for x̄ ∈ X, v̄ ∈ [F (x̄) + G(Ax̄)] ∩ V and ȳ∗ ∈ Y ∗ one has
v̄ ∈ Min[−F ∗

k (−A∗ȳ∗)−G∗
k(ȳ∗)]. Then x̄ is an efficient solution and (x̄, v̄)

a minimal pair to (PSV A), while ȳ∗ is an efficient solution and (ȳ∗, v̄) a
maximal pair to (DSV A

k ).

We conclude this first subsection by giving some stability criteria implying
strong duality for (PSV A) and its both Fenchel set-valued dual problems
(DSV A) and (DSV A

k ), respectively. To this end we additionally assume that
int(K) 	= ∅.

Theorem 7.3.3. Let ΦA be strictly-K-convexlike-convex and HA(y) = Min
ΦA(X, y) be externally stable for all y ∈ Y . If there exists x′ ∈ dom F ∩
A−1(dom G) such that the map G is weakly K-upper bounded on some neigh-
borhood of Ax′, then (PSV A) is stable with respect to the perturbation map
ΦA; hence strong duality holds for (PSV A) and its Fenchel set-valued dual
problem (DSV A).

Proof. The stated weak K-upper boundedness of G leads to the existence of a
neighborhood U of 0 in Y and of some b ∈ V such that G(Ax′+y)∩(b−K) 	= ∅
for all y ∈ U . Let be v′ ∈ F (x′) ∩ V . Then v′ + b ∈ F (x′) + G(Ax′ + y) + K
and therefore finally v′ + b ∈ ΨA(y) + K for all y ∈ U . Hence, ΨA is weakly
K-upper bounded on U and U ⊆ dom ΨA. Thus 0 ∈ int(dom ΨA) and the
conclusion follows from Theorem 7.1.27. ��

Remark 7.3.1. In order to guarantee that ΦA is strictly-K-convexlike-convex
one has to assume that F and G are both strictly K-convex. Assuming this
property for only one of the two maps along with the K-convexity of the
other one is in general not sufficient for guaranteeing that ΦA is strictly-K-
convexlike-convex.

An analogous result applies via Corollary 7.1.37 to the primal-dual pair
(PSV A) − (DSV A

k ).

Corollary 7.3.4. Let be k ∈ int(K) ∪ (− int(K)). Under the assumptions of
Theorem 7.3.3, the problem (PSV A) is k-stable with respect to the perturba-
tion map ΦA; hence strong duality holds for (PSV A) and its Fenchel set-valued
dual problem (DSV A

k ).
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7.3.2 Set-valued gap maps for vector variational inequalities

So-called gap functions have been introduced first for scalar variational in-
equalities (cf. [8,77]) and they represent a tool for characterizing the solutions
of this class of problems.

Let us give first a brief introduction on this topic supporting on the
classical case of a variational inequality in finite dimensional spaces. Let
F : R

n → R
n be a vector-valued function and A ⊆ R

n a nonempty set.
The variational inequality problem consists in finding an element x ∈ A such
that

(V I) F (x)T (y − x) ≥ 0 ∀y ∈ A.

Variational inequality problems play an important role in different areas of
mathematics and its applications, in particular when considering partial dif-
ferential operators (cf. [117,208]) and optimization problems (cf. [86, 149]).

A function γ : A → R ∪ {+∞} is said to be a gap function for the varia-
tional inequality problem (V I) if it satisfies the following conditions

(a) γ(y) ≥ 0 for all y ∈ A;
(b) γ(x) = 0 if and only if x solves (V I).

Auslender (cf. [8]) introduced the following gap function

γV I
A : A → R ∪ {+∞}, γV I

A (x) = sup
y∈A

F (x)T (x − y),

and a closer look at its formulation makes clear that gap functions are closely
related to the duality theory in optimization (cf. [2]). A natural generaliza-
tion of (V I) are the vector variational inequalities (V V I) considered first by
Giannessi (cf. [76]), while for the extension of the concept of gap function to
(V V I) one can consult [48]. In this subsection we use the set-valued duality
developed within this section to construct some set-valued gap maps for a
general vector variational inequality.

First we introduce the vector variational inequality and the so-called set-
valued variational inequality we want further to deal with. Let X and V be
topological vector spaces, with V being partially ordered by the nontrivial
pointed convex cone K, F : X → L(X,V ) be a given function and A ⊆ X
a nonempty set. The vector variational inequality problem consists in finding
x ∈ A such that

(V V I) F (x)(y − x) �K 0 for all y ∈ A.

The problem (V V I) may be seen as a particular case of the set-valued vari-
ational inequality problem (SV V I) introduced below. Here, additionally one
has a set-valued map G : X ⇒ V ∪{+∞K} with G(x) 	= ∅ for all x ∈ X and
dom G 	= ∅. The problem to solve is to find an x ∈ X such that

(SV V I) F (x)(y − x) /∈ G(x) − G(y) − (K \ {0}) for all y ∈ X.
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More precisely, x ∈ X solves (SV V I) means that for all y ∈ X there is no
v ∈ G(x) − G(y) such that F (x)(y − x) ≤K v.

If G : X → V ∪{+∞K}, G = δV
A , then (SV V I) coincides with (V V I).

Next we introduce the notion of a set-valued gap map for (SV V I).

Definition 7.3.1. A set-valued map γ : X ⇒ V ∪{+∞K} is said to be a gap
map for (SV V I) if it satisfies the following conditions

(a) γ(y) ∩ (−K \ {0}) = ∅ for all y ∈ X;
(b) 0 ∈ γ(x) if and only if x solves (SV V I).

Remark 7.3.2. A set-valued map γ : A ⇒ V ∪{+∞K} is said to be a gap map
for (V V I) if it satisfies the following conditions

(a) γ(y) ∩ (−K \ {0}) = ∅ for all y ∈ A;
(b) 0 ∈ γ(x) if and only if x solves (V V I).

Obviously, the real-valued gap function defined above for (V I) results as a
special case of the latter.

We observe that x ∈ X is a solution to (SV V I) if and only if x ∈ dom G,
x is an efficient solution and (x, 0) a corresponding minimal pair to the set-
valued optimization problem

(PV SV V I ;x) Min
y∈X

{G(y) − G(x) + F (x)(y − x)}.

Consider a fixed x ∈ dom G. For ˜F : X ⇒ V ∪{+∞K}, ˜F (y) = G(y) − G(x),
and ˜G : X ⇒ V ∪{+∞K}, ˜G(y) = F (x)(y − x), one has dom ˜F ∩ dom ˜G =
dom G 	= ∅ and (PV SV V I ;x) can be equivalently written as

Min ∪
y∈X

{ ˜F (y) + ˜G(y)}.

The latter is a particular case of the vector-valued problem (PSV A) in the
particular situation when X = Y and A = idX . Using as perturbation map

Φid
x : X × X ⇒ V ∪ {+∞K}, Φid

x (y, z) = G(y) − G(x) + F (x)(y + z − x)

with the corresponding minimal value map H id
x : X ⇒ V ∪{+∞K}, H id

x (z) =
Min Φid

x (X, z), we obtain like in the previous subsection the following Fenchel
set-valued dual problem to (PV SV V I ; x)

(DV SV V I ;x) Max ∪
Γ∈L(X,V )

Min
[

(F (x)−Γ )(X)+ ∪
y∈X

(Γy+G(y))−F (x)x−G(x)
]

.

Further we show that when for Γ ∈ L(X,V ) one has (F (x) − Γ )(X) ∩
(K\{0}) 	= ∅, then

Min
[

(F (x) − Γ )(X) + ∪
y∈X

(Γy + G(y)) − F (x)x − G(x)
]

= ∅.
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If this were not true, there would exist ṽ ∈ V belonging to this minimum.
Therefore one would have that there exist x̃ ∈ X and ỹ ∈ X such that

ṽ ∈ (F (x) − Γ )x̃ + (Γ ỹ + G(ỹ)) − F (x)x − G(x).

Take any w̃ ∈ (F (x)−Γ )(X)∩(K\{0}). Then −w̃ ∈ (F (x)−Γ )(X)∩(−K\{0})
and ṽ − w̃ ≤K ṽ as well as

ṽ − w̃ ∈ (F (x) − Γ )(X) + ∪
y∈X

(Γy + G(y)) − F (x)x − G(x),

which generates a contradiction to the minimality of ṽ. Thus the dual
(DV SV V I ;x) can be equivalently written as

(DV SV V I ;x) Max ∪
Γ∈L(X,V ),

(F (x)−Γ )(X)∩K={0}
Min

{

(F (x)−Γ )(X)+∪
y∈X

(Γy+G(y))−F (x)x−G(x)
}

.

In order to study the stability of (PV SV V I ; x) with respect to the perturbation
map Φid

x , we assume in the following that the minimal value map H id
x (z) =

Min Φid
x (X, z) is externally stable for all z ∈ X.

Proposition 7.3.5. The problem (PV SV V I ; x) is stable with respect to the
perturbation map Φid

x .

Proof. We have to prove the subdifferentiability of H id
x at 0. To this end we

consider v ∈ V with v ∈ H id
x (0) = Min∪y∈X [G(y)−G(x)+F (x)(y−x)]. Next

we calculate the conjugate of H id
x at some arbitrary T ∈ L(X,V ). It holds

(H id
x )∗(T ) = Max ∪

z∈X

{

Tz − H id
x (z)

}

= Max ∪
z∈X

{

Tz − Min ∪
y∈X

[G(y) − G(x) + F (x)(y + z − x)]
}

= Max ∪
z∈X

{

(T − F (x))z − Min ∪
y∈X

[G(y) − G(x) + F (x)(y − x)]
}

.

Setting T = F (x) we get

(H id
x )∗(F (x)) = Max ∪

y∈X
[G(x) − G(y) + F (x)(x − y)] = −H id

x (0).

Hence v ∈ −(H id
x )∗(F (x)) and Proposition 7.1.3 ensures F (x) ∈ ∂H id

x (0; v).
The subdifferentiability of H id

x at 0 follows and this entails the claimed sta-
bility. ��

These preparations allow us to construct a gap map to (SV V I) by means
of the set-valued objective map of the Fenchel set-valued dual (DV SV V I ; x)
as being γSV V I : X ⇒ V ∪ {+∞K}, defined by

γSV V I(x) = ∪
Γ∈L(X,V ),

(F (x)−Γ )(X)∩K={0}
Max

{

(Γ−F (x))(X)+F (x)x+G(x)− ∪
y∈X

[Γy+G(y)]
}

.
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Theorem 7.3.6. The set-valued map γSV V I is a gap map of the set-valued
variational inequality problem (SV V I).

Proof. We verify that γSV V I fulfills the properties (a) and (b) of Definition
7.3.1.

Let us arbitrarily chose y ∈ X and v∗ ∈ γSV V I(y). Then there exists
Γ ∈ L(X,V ) fulfilling (F (y) − Γ )(X) ∩ K = {0} and

v∗ ∈ Max
{

(Γ − F (y))(X) + F (y)y + G(y)− ∪
z∈X

[Γz + G(z)]
}

= (Φid
y )∗(0, Γ ),

where Φid
y : X × X ⇒ V ∪ {+∞K} is defined as

Φid
y (u, z) = G(u) − G(y) + F (y)(u + z − y).

As 0 ∈ Φid
y (y, 0), by Corollary 7.1.12(a) one has v∗

�K 0, which proves (a).
We come now to (b). Let x ∈ X be a solution to (SV V I). Due to our

previous considerations x ∈ dom G, x is an efficient solution and (x, 0) is
a minimal pair to (PV SV V I ; x). As the problem (PV SV V I ; x) is stable with
respect to Φid

x , by Theorem 7.3.1 there exists an efficient solution Γ ∈ L(X,V )
to (DV SV V I ;x) with (Γ, 0) a corresponding maximal pair, fulfilling (F (x) −
Γ )(X) ∩ K = {0}. In particular it holds

0 ∈ Min
{

(F (x) − Γ )(X) − F (x)x − G(x) + ∪
y∈X

[Γy + G(y)]
}

and, consequently, 0 ∈ γSV V I(x).
Conversely, let be x ∈ X with 0 ∈ γSV V I(x). Hence there exists Γ ∈

L(X,V ) such that (F (x) − Γ )(X) ∩ K = {0} and

0 ∈ Max
{

(Γ − F (x))(X) + F (x)x + G(x)− ∪
y∈X

[Γy + G(y)]
}

= (Φid
x )∗(0, Γ ).

This implies that x ∈ dom G. On the other hand, we have 0 ∈ F (x)(x − x) +
G(x) − G(x) = Φid

x (x, 0) and applying Corollary 7.1.12(b) to this particular
situation we obtain that x is an efficient solution and (x, 0) a minimal pair
to (PV SV V I ;x), while Γ is an efficient solution and (Γ, 0) a maximal pair to
(DV SV V I ;x). Consequently, x is a solution to (SV V I). ��

Let us pay attention to the vector variational inequality problem (V V I)
as a particular case of (SV V I), by considering G : X → V ∪{+∞K}, G = δV

A .
Then, for a fixed x ∈ A, the family of set-valued minimum problems associated
to (V V I) is

(PV V V I ; x) Min
y∈A

{F (x)(y − x)}.

The corresponding Fenchel set-valued dual arises from (DV SV V I ; x) as being

(DV V V I ;x) Max ∪
Γ∈L(X,V ),

(F (x)−Γ )(X)∩K={0}
Min

{

(F (x)− Γ )(X)− F (x)x + Γ (A)
}

.
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Thus γV V I : A ⇒ V ∪ {+∞K},

γV V I(x) = ∪
Γ∈L(X,V ),

(F (x)−Γ )(X)∩K={0}
Max{(Γ − F (x))(X) + F (x)x − Γ (A)},

is the particularization of γSV V I to this special case. A particular instance of
γV V I was delivered in [1] in finite dimensional spaces, the ordering cone being
the nonnegative orthant of the image space. By Theorem 7.3.6 one obtains
the following result.

Theorem 7.3.7. The set-valued map γV V I is a gap map of the vector varia-
tional inequality problem (V V I).

Remark 7.3.3. One can carry out similar considerations concerning gap maps
for (SV V I) and (V V I) based on the Fenchel set-valued dual problems to
(PV SV V I ;x) and (PV V V I ; x), respectively, by using k-conjugation as devel-
oped in subsection 7.1.3, too (see [1] for a similar approach in finite dimen-
sional spaces).

7.4 Conjugate duality based on weakly efficient solutions

Another conjugate duality approach for set-valued optimization problems can
be developed if weakly efficient solutions are considered. Even more, the weak
ordering defined in this sense allows also to develop a fruitful concept of in-
fimum and supremum of a set in topological vector spaces. This makes it
possible to establish a conjugate duality approach for set-valued optimiza-
tion problems which is somewhat closer to the conjugate duality for scalar
optimization problems than the ones considered in the sections 7.1-7.3. This
concept has been introduced in topological vector spaces by Tanino in [178]
and developed by Song in [168–170].

In the following we summarize this approach and give some extensions and
applications of it.

7.4.1 Basic notions, conjugate maps and subdifferentiability

Within this section we generally assume that X and V are Hausdorff topolog-
ical vector spaces with V partially ordered by the nontrivial pointed convex
closed cone K with nonempty interior. In this section we work with the weak
ordering “<K” defined by means of int(K). On V we consider the addition and
the multiplication with scalars as done in section 2.1, excepting the conven-
tions in (2.1) which are not considered, as they will be in what follows avoided.
On the other hand, we assume that for x∗ ∈ K∗ it holds 〈x∗,−∞K〉 = −∞,
as this situation can occur in the forthcoming investigations.

Let M ⊆ V be a given set. The sets A(M) := {v ∈ V : ṽ <K v for
some ṽ ∈ M} and B(M) := {v ∈ V : v <K ṽ for some ṽ ∈ M} are called
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the set of elements above M and the set of elements below M , respectively.
Let us observe that if M ⊆ V is a nonempty set (i.e. ±∞K /∈ M), then
A(M) = {M + int(K)} ∪ {+∞K}, B(M) = {M − int(K)} ∪ {−∞K}, while,
obviously, A(∅) = B(∅) = ∅. In subsection 2.4.2 we have defined weakly
minimal and maximal elements of M when this is a subset of V . Now we give
a generalization of these notions whenever M is an arbitrary subset of V .

Definition 7.4.1. Let M ⊆ V be a given set.

(a) An element v̄ ∈ V is said to be a weakly infimal element of M if there is no
v ∈ M fulfilling v <K v̄ and if for any ṽ ∈ V such that v̄ <K ṽ there exists
some v ∈ M satisfying v <K ṽ. The set of the weakly infimal elements of
M is denoted by WInf(M,K) and it is called the weak infimum of M .

(b) An element v̄ ∈ M is said to be a weakly minimal element of M if there
is no v ∈ M fulfilling v <K v̄. The set of the weakly minimal elements of
M is denoted by WMin(M,K) and it is called the weak minimum of M .

(c) An element v̄ ∈ V is said to be a weakly supremal element of M if there is
no v ∈ M fulfilling v̄ <K v and if for any ṽ such that ṽ <K v̄ there exists
some v ∈ M satisfying ṽ <K v. The set of the weakly supremal elements
of M is denoted by WSup(M,K) and it is called the weak supremum of
M .

(d) An element v̄ ∈ M is said to be a weakly maximal element of M if there
is no v ∈ M fulfilling v̄ <K v. The set of the weakly maximal elements of
M is denoted by WMax(M,K) and it is called the weak maximum of M .

Remark 7.4.1. According to Definition 7.4.1 one has that WInf(∅,K) =
{+∞K}, WSup(∅,K) = {−∞K} and WMin(∅,K) = WMax(∅,K) = ∅.

Remark 7.4.2. Let M ⊆ V be a given set.
(a) One has v̄ ∈ WInf(M,K) if and only if v̄ /∈ A(M) and A(v̄) ⊆ A(M),

while v̄ ∈ WSup(M,K) if and only if v̄ /∈ B(M) and B(v̄) ⊆ B(M).
(b) In case M ⊆ V the notions weak minimum and weak maximum given

here coincide with the classical ones given in section 2.4.
(c) It is straightforward to see that WMin(M,K) = M ∩ WInf(M,K)

and WMax(M,K) = M ∩WSup(M,K). Further, there is B(M) = −A(−M),
WSup(M,K) = −WInf(−M,K) and WMax(M,K) = −WMin(−M,K).

(d) It holds WSup(M,K) = {−∞K} if and only if B(M) = ∅. This is the
case if and only if M = ∅ or M = {−∞K}. Moreover, WInf(M,K) = {+∞K}
if and only if A(M) = ∅. This is the case if and only if M = ∅ or M = {+∞K}.

(e) It holds WSup(M,K) = {+∞K} if and only if B(M) = V ∪ {−∞K}
and WInf(M,K) = {−∞K} if and only if A(M) = V ∪ {+∞K}.

Remark 7.4.3. For two arbitrary sets M1,M2 ⊆ V it holds M1∩A(M2) = ∅ ⇔
B(M1) ∩ M2 = ∅.

As the ordering cone K is assumed fixed, from now on we write for
convenience simply WInf M , WMinM , WSupM and WMaxM instead of
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WInf(M,K), WMin(M,K), WSup(M,K) and WMax(M,K), respectively.
The weak infimum and weak supremum of a set satisfy some fundamental
relations which are useful for developing a duality theory for set-valued opti-
mization problems regarding the weak ordering.

Let us summarize a few of these relations. For the straightforward proofs
we refer to [177] as far as the case V is finite dimensional is concerned. But the
results and proofs may be transferred in a straightforward manner to partially
ordered topological vector spaces (cf. [178]).

Proposition 7.4.1. Let M ⊆ V be a given set. Then it holds

(a) WSupM = WSupB(M);
(b) B(M) = B(WSupM);
(c) M ⊆ WSupM ∪B(M) = WSupM ∪B(WSupM);
(d) V = WSupM ∪A(WSupM)∪B(WSupM) and the three sets on the

right-hand side are disjoint.

One should notice that an analogous relations apply for the weak infimum,
too.

Proposition 7.4.2. (a) When M1,M2 ⊆ V are given sets it holds B(M1 +
M2) = B(M1) + B(M2), in case the sum +∞K + (−∞K) does not occur.

(b) When I is an arbitrary index set, for Mi ⊆ V given sets, i ∈ I, it holds
B(∪i∈I Mi) = ∪i∈I B(Mi).

Proposition 7.4.3. Let F, G : X ⇒ V be set-valued maps. Then it holds

WSup ∪
x∈X

[F (x) + G(x)] = WSup ∪
x∈X

[F (x) + WSupG(x)],

where it is assumed that the sum +∞K + (−∞K) does not occur.

Proof. By using Proposition 7.4.1(a), (b) and Proposition 7.4.2(a) we obtain

WSup ∪
x∈X

[F (x) + G(x)] = WSupB
(

∪
x∈X

[F (x) + G(x)]
)

= WSup ∪
x∈X

[B(F (x)) + B(G(x))] = WSup ∪
x∈X

[B(F (x)) + B(WSupG(x))]

= WSupB
(

∪
x∈X

[F (x) + WSupG(x)]
)

= WSup ∪
x∈X

[F (x) + WSupG(x)].

��

Remark 7.4.4. Concerning Proposition 7.4.3 let us refer to Proposition 7.1.7
where a similar result has been stated for maximal sets. There, in or-
der to guarantee the coincidence of the sets Max∪x∈X [F (x) + G(x)] and
Max∪x∈X [F (x) + MaxG(x)], external stability for MaxG(x) for all x ∈ X
has been supposed. The advantage of using the weak supremum is given by
the fact that such a restrictive condition can be omitted and this fact allows
to derive a set-valued duality theory with less restrictions.
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From Proposition 7.4.3 we obtain the following corollaries which play an
important role in our considerations.

Corollary 7.4.4. If F : X ⇒ V is a set-valued map, then

WSup ∪
x∈X

F (x) = WSup ∪
x∈X

WSupF (x).

Corollary 7.4.5. For M1,M2 ⊆ V given sets it holds

WSup(M1 ∪ M2) = WSup(WSupM1 ∪WSupM2).

Corollary 7.4.6. For M ⊆ V a given set it holdsWSupM =WSup(WSupM).

Next, conjugate maps and subdifferentials for set-valued maps based on
the weak supremum are introduced.

Definition 7.4.2. Let F : X ⇒ V be a set-valued map.

(a) The set-valued map

F ∗ : L(X,V ) ⇒ V , F ∗(T ) = WSup ∪
x∈X

[Tx − F (x)]

is called the conjugate map of F .
(b) The set-valued map

F ∗∗ : X ⇒ V , F ∗∗(x) = WSup ∪
T∈L(X,V )

[Tx − F ∗(T )]

is called the biconjugate map of F .
(c) The linear continuous operator T ∈ L(X,V ) is said to be a subgradient of

F at (x, v) ∈ gph F , if

Tx − v ∈ WMax ∪
y∈X

[Ty − F (y)].

The set of all subgradients of F at (x, v) is called the subdifferential of
F at (x, v) and it is denoted by ∂F (x; v). Further, for all x ∈ X denote
∂F (x) := ∪v∈F (x) ∂F (x; v). If for all v ∈ F (x) we have ∂F (x; v) 	= ∅ then
F is said to be subdifferentiable at x.

One can verify properties of conjugate maps and subgradients which are
analogous to the ones given in subsection 7.1.1 for the corresponding notions
based on Definition 7.1.2.

First, let us mention that the formulae (7.1) and (7.2) remain valid also for
the conjugate maps as defined above. Moreover, one also has a Young-Fenchel
type inequality.

Proposition 7.4.7. Let F : X ⇒ V be a set-valued map. For all x ∈ X and
all T ∈ L(X,V ) there is [F (x) − Tx] ∩ B(−F ∗(T )) = ∅.
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Proof. Since F ∗(T ) = WSup∪x∈X [Tx − F (x)], from Proposition 7.4.1(c) it
follows

Tx − F (x) ⊆ ∪
x∈X

[Tx − F (x)]

⊆ WSup ∪
x∈X

[Tx − F (x)]∪B
(

WSup ∪
x∈X

[Tx − F (x)]
)

= F ∗(T )∪B(F ∗(T )).

Further, Proposition 7.4.1(d) implies [Tx − F (x)] ∩ A(F ∗(T )) = ∅, which is
by Remark 7.4.2(c) equivalent to [F (x) − Tx] ∩ B(−F ∗(T )) = ∅. ��

Corollary 7.4.8. Let F : X ⇒ V be a set-valued map. For all x ∈ X and all
T ∈ L(X,V ) it holds v + v∗ 	<K Tx, whenever v ∈ F (x) and v∗ ∈ F ∗(T ).

Proof. Assume that the assertion fails. Then there exist x ∈ X, T ∈ L(X,V ),
v ∈ F (x) and v∗ ∈ F ∗(T ) such that v + v∗ <K Tx, i.e. v − Tx ∈ −v∗ −
int(K). But, by definition, −v∗ − int(K) ⊆ B(−F ∗(T )), therefore v − Tx ∈
B(−F ∗(T )), contradicting the assertion of Proposition 7.4.7. ��

Corollary 7.4.9. Let F : X ⇒ V be a set-valued map. If v ∈ F (0) and
v∗ ∈ −F ∗(T ), for T ∈ L(X,V ), then v 	<K v∗.

Proposition 7.4.10. Let F : X ⇒ V be a set-valued map. Then F (x) ∩
B(F ∗∗(x)) = ∅ and F (x) ⊆ F ∗∗(x)∪A(F ∗∗(x)) for all x ∈ X. In other
words, for all x ∈ X it holds v 	<K u, whenever v ∈ F (x) and u ∈ F ∗∗(x).

Proof. Let be x ∈ X. From Proposition 7.4.7 it follows that F (x) ∩ B(Tx −
F ∗(T )) = ∅ for all T ∈ L(X,V ). Using Proposition 7.4.1(b) we get

B
(

∪
T∈L(X,V )

[Tx−F ∗(T )]
)

= B
(

WSup ∪
T∈L(X,V )

[Tx−F ∗(T )]
)

= B(F ∗∗(x))

and further, by Proposition 7.4.2(b) and Proposition 7.4.7, there is F (x) ∩
B(F ∗∗(x)) = ∅. The definition of the biconjugate map and Proposition
7.4.1(d) imply F (x) ⊆ F ∗∗(x)∪A(F ∗∗(x)). This completes the proof. ��

Proposition 7.4.11. Let F : X ⇒ V be a set-valued map and x ∈ X. For
v ∈ F (x) there is T ∈ ∂F (x; v) if and only if Tx − v ∈ F ∗(T ).

Proof. Let x ∈ X be fixed and v ∈ F (x). By the definition of the subgradient
there is T ∈ ∂F (x; v) if and only if Tx − v ∈ WMax∪y∈X [Ty − F (y)]. By
Remark 7.4.2(c) this is nothing else than

Tx− v ∈ ∪
y∈X

[Ty −F (y)]∩WSup ∪
y∈X

[Ty −F (y)] = ∪
y∈X

[Ty −F (y)]∩F ∗(T ),

being further equivalent to Tx − v ∈ F ∗(T ). ��

The following result is an analog of Proposition 7.1.4.

Proposition 7.4.12. Let F : X ⇒ V be a set-valued map. If F is subdiffer-
entiable at x ∈ X, then F (x) ⊆ F ∗∗(x). If, additionally, F (x) = WInf F (x),
then F (x) = F ∗∗(x).
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Proof. Let be v ∈ F (x). The subdifferentiability of F at x entails by Proposi-
tion 7.4.11 the existence of some T ∈ L(X,V ) such that Tx−v ∈ F ∗(T ). Thus
there exists v̄∗ ∈ F ∗(T ) fulfilling v = Tx − v̄∗. Corollary 7.4.8 ensures that
it does not exist any T ∈ L(X,V ) and v∗ ∈ F ∗(T ) such that v <K Tx − v∗.
That means

v = Tx − v̄∗ ∈ WMax ∪
T∈L(X,V )

[Tx − F ∗(T )]

⊆ WSup ∪
T∈L(X,V )

[Tx − F ∗(T )] = F ∗∗(x)

and thus F (x) ⊆ F ∗∗(x). Now assume that F (x) = WInf F (x) and take an ar-
bitrary v ∈ F ∗∗(x). By Proposition 7.4.1(d), V = F (x)∪A(F (x))∪B(F (x))
and, in view of Proposition 7.4.10, v /∈ A(F (x)). Let us assume that v ∈
B(F (x)). Then there exists ṽ ∈ F (x) such that v <K ṽ. Because F is sup-
posed to be subdifferentiable at x, there exists ˜T ∈ L(X,V ) such that ˜Tx−ṽ ∈
F ∗( ˜T ). This means that v <K ṽ ∈ ˜Tx − F ∗( ˜T ), i.e. v ∈ B( ˜Tx − F ∗( ˜T )). But
this contradicts the assumption v ∈ F ∗∗(x) = WSup∪T∈L(X,V )[Tx− F ∗(T )].
Hence, v ∈ F (x) and, consequently, F ∗∗(x) ⊆ F (x). ��

For a set-valued map F : X ⇒ V we define its K-epigraph in a modified
manner than in Definition 7.1.5, namely being

epiKF = {(x, v) ∈ X × V : v ∈ (F (x) + K) ∪ A(F (x))}.

We say that F is K-convex if epiK F is convex. In case −∞K ∈ F (x) for some
x ∈ X, then (x, v) ∈ epiK F for all v ∈ V . Note that in case −∞K /∈ F (x) for
all x ∈ X, epiKF = {(x, v) ∈ X × V : v ∈ F (x) + K} and the K-convexity
is nothing else than the same notion as introduced in Definition 7.1.5(b). The
following lemma provides conditions ensuring that −∞K /∈ F (x) for all x ∈ X.

Lemma 7.4.13. Let F : X ⇒ V be a K-convex set-valued map such that
x̄ ∈ core(dom F ) with −∞K /∈ F (x̄) and WMinF (x̄) 	= ∅. Then −∞K /∈ F (x)
for all x ∈ X.

Proof. Without loss of generality suppose that x̄ = 0 and hence 0 ∈
core(dom F ), −∞K /∈ F (0) and WMinF (0) 	= ∅. Assume there exists
x̃ ∈ dom F such that −∞K ∈ F (x̃). Because of 0 ∈ core(dom F ) there ex-
ists an ε > 0 such that εx̃ ∈ dom F and also x̂ := −εx̃ ∈ dom F . Then
0 is representable as a convex combination of the elements x̃ ∈ dom F and
x̂ ∈ dom F , namely 0 = (1/(1+ε))x̂+(ε/(1+ε))x̃. From −∞K ∈ F (x̃) follows
(x̃, v) ∈ epiKF for all v ∈ V . Consider v̂ ∈ V such that (x̂, v̂) ∈ epiK F and
an arbitrary v ∈ V . We obtain by the convexity of epiK F

1
1 + ε

(x̂, v̂) +
ε

1 + ε
(x̃, v) =

(

0,
1

1 + ε
v̂ +

ε

1 + ε
v
)

∈ epiKF

and, consequently, (0, v) ∈ epiK F for all v ∈ V . This implies A(F (0)) =
V ∪{+∞K} and therefore, by Remark 7.4.2(e), WInf F (0) = {−∞K}. Since
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WMinF (0) = F (0)∩WInf F (0) 	= ∅, there must be −∞K ∈ F (0) and in this
way we obtain a contradiction. This leads to the desired conclusion. ��

Next we introduce a result which ensures the subdifferentiability of F .

Proposition 7.4.14. Let F : X ⇒ V ∪{+∞K} be a K-convex set-valued
map with int(epiK F ) 	= ∅. If x̄ ∈ int(dom F ) and F (x̄) ⊆ WInf F (x̄), then F
is subdifferentiable at x̄.

This proposition has been formulated and proven in [178, Proposition 4.3]
without assuming that int(epiK F ) 	= ∅. But this assumption is necessary
because the separation theorem used within the proof requires such a condition
as Song remarked in [168] (see also [170]). If, however, X and V are finite
dimensional, this assumption can be omitted.

7.4.2 The perturbation approach

In subsection 7.1.2 we have presented the perturbation approach based on
conjugate set-valued maps defined by means of minimality. Now we deal with
analogous investigations based on weak minimality using the preliminaries
from subsection 7.4.1.

Let X and V be Hausdorff topological vector spaces with X∗ and V ∗

topological dual spaces, respectively. As in section 7.1 we consider for a set-
valued map F : X ⇒ V ∪{+∞K} with domF 	= ∅ the general set-valued
optimization problem

(PSV Gw) WInf
x∈X

F (x)

and this time we are interested in weakly minimal elements or even weakly
infimal elements of the image set F (X) = ∪x∈X F (x) with respect to the
nontrivial pointed convex closed cone K ⊆ V with int(K) 	= ∅. An element
x̄ ∈ X such that there exists v̄ ∈ F (x̄) with v̄ ∈ WMinF (X) is called weakly
efficient solution to (PSV Gw), while the pair (x̄, v̄) is said to be a weakly
minimal pair to the problem (PSV Gw).

A particular instance of this problem arises when the set-valued map F is
replaced with the vector-valued function f : X → V ∪{+∞K}. In this case
(PSV Gw) becomes

(PV Gw) WInf
x∈X

f(x)

and we look for weakly efficient solutions x̄ ∈ X characterized as fulfilling
f(x̄) ∈ WMin f(X).

Proposition 7.4.15. The element x̄ ∈ X is a weakly efficient solution to
(PSV Gw) if and only if there exists v̄ ∈ F (x̄) such that 0 ∈ ∂F (x̄; v̄).

Similar to subsection 7.1.2 we associate a vector dual problem to (PSV Gw)
based on a corresponding perturbation approach. We introduce a set-valued
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perturbation map Φ : X × Y ⇒ V ∪{+∞K}, where Y is another Haus-
dorff topological vector space with the topological dual space Y ∗, such that
Φ(x, 0) = F (x) for all x ∈ X. The space Y is called the perturbation space.
Further, (PSV Gw) is embedded into a family of perturbed problems

(PSV Gwy) WInf
x∈X

Φ(x, y),

where y ∈ Y is the perturbation variable. The problem (PSV Gw0) coincides
with (PSV Gw).

Like in subsection 7.1.2, the dual problem is defined by means of the
conjugate of the perturbation map Φ∗ : L(X,V ) × L(Y, V ) ⇒ V ,

Φ∗(T, Λ) = WSup ∪
x∈X,y∈Y

[Tx + Λy − Φ(x, y)].

To the primal problem (PSV Gw) we attach the dual problem

(DSV Gw) WSup
Λ∈L(Y,V )

{−Φ∗(0, Λ)}.

We look for Λ ∈ L(Y, V ) such that there exists v̄∗ ∈ −Φ∗(0, Λ) fulfilling v̄∗ ∈
WMax∪Λ∈L(Y,V ){−Φ∗(0, Λ)}. Such a mapping Λ is called a weakly efficient
solution to (DSV Gw) and (Λ, v̄∗) is said to be a weakly maximal pair to
(DSV Gw). The next theorem expresses the weak duality for (PSV Gw) and
(DSV Gw).

Proposition 7.4.16. Let x ∈ X and Λ ∈ L(Y, V ) be given. Then −Φ∗(0, Λ)∩
A(Φ(x, 0)) = ∅ or, equivalently, Φ(x, 0) ∩ B(−Φ∗(0, Λ)) = ∅.

Proof. Assume that there exist x ∈ X and Λ ∈ L(Y, V ) such that −Φ∗(0, Λ)∩
A(Φ(x, 0)) 	= ∅. Let v be an element of this intersection. Then there exists
ṽ ∈ Φ(x, 0) fulfilling ṽ <K v. But this contradicts the statement in Corollary
7.4.8. The equivalent relation follows via Remark 7.4.3. ��

The last result can be reformulated as the following corollary, where we
denote

WInf(PSV Gw) := WInf
{

∪
x∈X

Φ(x, 0)
}

and
WSup(DSV Gw) := WSup

{

∪
Λ∈L(Y,V )

−Φ∗(0, Λ)
}

.

Corollary 7.4.17. It holds WSup(DSV Gw) ∩ A(WInf(PSV Gw)) = ∅ or,
equivalently, B(WSup(DSV Gw)) ∩ WInf(PSV Gw) = ∅.

Proof. Assume the contrary and take an element v ∈ WSup(DSV Gw)∩
A(WInf(PSV Gw)). As v ∈ A(WInf(PSV Gw)) = A(∪x∈XΦ(x, 0)), there
exists v′ ∈ Φ(x′, 0), for some x′ ∈ X, satisfying v′ <K v. Since v ∈
WSup{∪Λ∈L(Y,V ) − Φ∗(0, Λ)}, there exist ˜Λ ∈ L(Y, V ) and ṽ ∈ −Φ∗(0, ˜Λ),
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with v′ <K ṽ. Thus ṽ ∈ −Φ∗(0, ˜Λ) ∩ A(Φ(x′, 0)) and this contradicts the
statement of Proposition 7.4.16. The equivalent relation follows again via Re-
mark 7.4.3. ��
Remark 7.4.5. If we assume that the objective function of the primal problem
(PSV Gw) is a vector-valued function f : X → V ∪ {+∞K}, in other words if
we deal with (PV Gw), then the second condition in Proposition 7.4.16 may
be reformulated as f(x) = Φ(x, 0) /∈ B(−Φ∗(0, Λ)).

The following existence result for weakly efficient solutions is an easy con-
sequence of the weak duality result.

Corollary 7.4.18. Let be v̄ ∈ F (x̄)∩{−Φ∗(0, Λ)} for x̄ ∈ X and Λ ∈ L(Y, V ).
Then x̄ is a weakly efficient solution and (x̄, v̄) is a weakly minimal pair to
(PSV Gw), while Λ is a weakly efficient solution and (Λ, v̄) is a weakly maxi-
mal pair to (DSV Gw).

Proof. Assume that (x̄, v̄) is not a weakly minimal pair to (PSV Gw). Then
there exist x ∈ X and v ∈ F (x) = Φ(x, 0) such that v <K v̄. Thus v̄ ∈
A(Φ(x, 0)) and v̄ ∈ −Φ∗(0, Λ) which contradicts Proposition 7.4.16. A similar
argumentation shows the claimed assertion for (Λ, v̄). ��

In analogy to section 7.1, where we have used the minimal value map, we
consider here the so-called infimal value map H : Y ⇒ V defined by

H(y) = WInf(PSV Gwy) = WInf ∪
x∈X

Φ(x, y) = WInf Φ(X, y).

Then H(0) = WInf(PSV Gw) = WInf Φ(X, 0).

Lemma 7.4.19. For all Λ ∈ L(Y, V ) there is H∗(Λ) = Φ∗(0, Λ).

Proof. By the definition of the conjugate map we have for all Λ ∈ L(Y, V )
that

H∗(Λ) = WSup ∪
y∈Y

[Λy − H(y)] = WSup ∪
y∈Y

[Λy − WInf ∪
x∈X

Φ(x, y)]

= WSup ∪
y∈Y

WSup ∪
x∈X

[Λy − Φ(x, y)].

Further, by Corollary 7.4.4 we get H∗(Λ) = WSup∪x∈X,y∈Y [Λy − Φ(x, y)] =
Φ∗(0, Λ). ��

By using Lemma 7.4.19 WSup(DSV Gw) may be rewritten as

WSup(DSV Gw) = WSup ∪
Λ∈L(Y,V )

{−Φ∗(0, Λ)}

= WSup ∪
Λ∈L(Y,V )

{−H∗(Λ)} = H∗∗(0).

In other words, (DSV Gw) may be formally reformulated as

(DSV Gw) WSup
Λ∈L(Y,V )

{−H∗(Λ)}.
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Remark 7.4.6. As WInf(PSV Gw) = H(0), the duality for the pair (PSV Gw)−
(DSV Gw) can be expressed by means of H(0) and H∗∗(0). In particular,
WInf(PSV Gw) = WSup(DSV Gw) is nothing else than H(0) = H∗∗(0).
Throughout the last two sections of this chapter we understand under strong
duality the situation when H(0) = H∗∗(0).

The notion of stability of the primal problem with respect to the pertur-
bation map plays a crucial role when delivering strong duality assertions.

Definition 7.4.3. The problem (PSV Gw) is called stable with respect to the
perturbation map Φ if the infimal value map H is subdifferentiable at 0.

We prove next that stability ensures strong duality for the primal-dual
set-valued pair (PSV Gw) − (DSV Gw).

Theorem 7.4.20. If the problem (PSV Gw) is stable, then

WInf(PSV Gw) = WSup(DSV Gw) = WMax(DSV Gw).

Proof. If the problem (PSV Gw) is stable, then the infimal value map H is
subdifferentiable at 0 and, by Proposition 7.4.12, there is H(0) ⊆ H∗∗(0). On
the other hand, from Corollary 7.4.6 and Remark 7.4.2(c) follows

WInf H(0) = WInf WInf ∪
x∈X

Φ(x, 0) = WInf ∪
x∈X

Φ(x, 0) = H(0).

Then Proposition 7.4.12 implies H(0) = H∗∗(0) and, by Remark 7.4.6 this is
equivalent to WInf(PSV Gw) = WSup(DSV Gw). Since

WMax(DSV Gw) ⊆ WSup(DSV Gw) = WInf(PSV Gw),

it remains to show that WInf(PSV Gw) ⊆ WMax(DSV Gw). To this end
take an arbitrary v̄ ∈ WInf(PSV Gw) = H(0). Since H is subdifferentiable
at 0, there exists Λ ∈ L(Y, V ) such that Λ ∈ ∂H(0; v̄), in other words
Λ0 − v̄ ∈ WMax∪y∈Y [Λy − H(y)] ⊆ H∗(Λ) = Φ∗(0, Λ). Assuming that
v̄ /∈ WMax(DSV Gw) there would exist ˜Λ ∈ L(Y, V ) and ṽ ∈ −Φ∗(0, ˜Λ)
such that v̄ <K ṽ. From the definition of the weak infimum, using that v̄ ∈
WInf ∪x∈X Φ(x, 0) = H(0), follows that there exist x̃ ∈ X and v′ ∈ Φ(x̃, 0),
with the property v′ <K ṽ. Therefore ṽ ∈ −Φ∗(0, ˜Λ) ∩ A(Φ(x̃, 0)) which con-
tradicts Proposition 7.4.16. Thus v̄ ∈ WMax(DSV Gw) and this completes
the proof. ��

Theorem 7.4.21. Assume that the problem (PSV Gw) is stable. Then for
each weakly efficient solution x̄ ∈ X to (PSV Gw) and v̄ ∈ F (x̄) such that
(x̄, v̄) is a weakly minimal pair to (PSV Gw) there exists a weakly efficient
solution Λ ∈ L(Y, V ) to (DSV Gw) such that v̄ ∈ −Φ∗(0, Λ) and (Λ, v̄) is a
weakly maximal pair to (DSV Gw).
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Proof. Because (x̄, v̄) is a weakly minimal pair to (PSV Gw) there is v̄ ∈
H(0). Since H is subdifferentiable at 0 there exists Λ ∈ L(Y, V ) such that
Λ ∈ ∂H(0; v̄). Thus v̄ ∈ −Φ∗(0, Λ). On the other hand, by Theorem 7.4.20 we
have v̄ ∈ WMax(DSV Gw) and so Λ is a weakly efficient solution to (DSV Gw)
with (Λ, v̄) corresponding weakly maximal pair. ��

Next, we give necessary optimality conditions of subdifferential type.

Theorem 7.4.22. The weakly minimal pair (x̄, v̄) to (PSV Gw) and the corre-
sponding weakly maximal pair (Λ, v̄) to (DSV Gw) from Theorem 7.4.21 satisfy
the optimality conditions (0, Λ) ∈ ∂Φ(x̄, 0; v̄), or, equivalently, Λ ∈ ∂H(0; v̄).

Proof. The proof is completely analogous to the one of Theorem 7.1.16 if one
applies Proposition 7.4.11 instead of Proposition 7.1.3. ��

These necessary optimality conditions turn out to be sufficient for strong
duality. The proof of the following statement can be done in the lines of the
one of Theorem 7.1.17.

Theorem 7.4.23. Let x̄ ∈ X, v̄ ∈ F (x̄) and Λ ∈ L(Y, V ) fulfill (0, Λ) ∈
∂Φ(x̄, 0; v̄). Then x̄ is a weakly efficient solution and (x̄, v̄) a weakly minimal
pair to (PSV Gw), while Λ is a weakly efficient solution and (Λ, v̄) is a weakly
maximal pair to (DSV Gw).

Remark 7.4.7. In Theorem 7.4.23, instead of (0, Λ) ∈ ∂Φ(x̄, 0; v̄) one can
equivalently require that Λ ∈ ∂H(0; v̄).

Without assuming neither stability for (PSV Gw), nor the existence of a
weakly efficient solution to (PSV Gw), Song gives in [170, Theorem 6.3] some
equivalent conditions for strong duality. We state this result in the following.

Theorem 7.4.24. Let Λ ∈ L(Y, V ) be given. Then the following conditions
are equivalent:

(i) there exists v ∈ −Φ∗(0, Λ) with v ∈ WInf(PSV Gw) ∩ WMax(DSV Gw);
(ii) WInf(PSV Gw) ∩ (−Φ∗(0, Λ)) 	= ∅;
(iii) Λ ∈ ∂H(0).

Proof. It is clear that (i) implies (ii). To show that (ii) implies (iii), let be
v ∈ WInf(PSV Gw)∩ (−Φ∗(0, Λ)). Then by the definition of the infimal value
map H and by Lemma 7.4.19 it holds v ∈ H(0) ∩ (−H∗(Λ)) and so Λ0 − v ∈
H∗(Λ). Via Proposition 7.4.11 the last relation is equivalent to Λ ∈ ∂H(0; v),
which is a subset of ∂H(0). This proves (iii). Finally, (i) follows from (iii) as
in the proof of Theorem 7.4.20, with the mention that here we do not need
stability. We have that Λ ∈ ∂H(0; v) for some v ∈ H(0) = WInf(PSV Gw),
since ∂H(0) = ∪u∈H(0) ∂H(0;u), and as in the mentioned theorem it follows
that v ∈ −Φ∗(0, Λ) and v ∈ WMax(DSV Gw). ��
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Since the stability of the primal problem implies strong duality, it is impor-
tant to have criteria that entail this property. As in section 7.1, the so-called
weakly K-upper boundedness introduced in Definition 7.1.6 in connection to
a set-valued map plays a crucial role in this context.

Consider the set-valued map Ψ : Y ⇒ V ∪{+∞}, Ψ(y) = Φ(X, y). As
stated in Lemma 7.1.23, Ψ is K-convex if and only if Φ is K-convexlike-
convex. For the proof of the following lemma we refer to [168, Proposition
3.2].

Lemma 7.4.25. If Ψ is K-convex or, equivalently, Φ is K-convexlike-convex,
then H is K-convex.

The next result and its proof can be found in [168, Proposition 3.3].

Lemma 7.4.26. It holds epiK Ψ ⊆ epiK H ⊆ cl(epiK Ψ).

The previous two lemmata allow to derive the following stability result
(see [170, Theorem 6.4]).

Theorem 7.4.27. Let the perturbation map Φ : X × Y ⇒ V ∪{+∞} be K-
convexlike-convex (or, equivalently, Ψ be K-convex). Assume that there exists
y′ ∈ dom Ψ such that Ψ is weakly K-upper bounded on some neighborhood of
y′. If 0 ∈ int(dom Ψ), then the primal problem (PSV Gw) is stable.

Proof. First let us observe that by Lemma 7.4.25 the infimal value map
H is K-convex. Whenever H(0) = WInf Ψ(0) = {−∞K}, there is H∗ ≡
{+∞K}, meaning that H is subdifferentiable at 0. Consider the case when
H(0) 	= {−∞K}. The relation 0 ∈ int(dom Ψ) entails the existence of
U , a neighborhood of 0 in Y , such that U ⊆ dom Ψ . Thus U ⊆ dom H
and so 0 ∈ int(dom H). By Corollary 7.4.6 one has H(0) = WInf Ψ(0) =
WInf(WInf Ψ(0)) = WInf H(0) and so WMinH(0) = H(0) 	= ∅ and −∞K /∈
H(0).

Thus for H all the hypotheses of Lemma 7.4.13 are fulfilled and its ap-
plication yields −∞K /∈ H(y) for all y ∈ Y . Consequently, H is a set-
valued map which takes values in V ∪{+∞K}. Since Ψ is weakly K-upper
bounded on some neighborhood of y′ ∈ dom Ψ , by Lemma 7.1.21 there is
int(epiK Ψ) 	= ∅ and this implies, by Lemma 7.4.26, that int(epiK H) 	= ∅.
With H(0) = WInf H(0) and 0 ∈ int(dom H), the assumptions of Proposition
7.4.14 are satisfied. Therefore H is subdifferentiable at 0, which is nothing
else than that (PSV Gw) is stable. ��

Closely related to Theorem 7.4.27 is the following result, formulated by
Song in [169].

Theorem 7.4.28. Suppose that Φ : X × Y ⇒ V ∪{+∞} is K-convexlike-
convex (or, equivalently, Ψ is K-convex) and that the infimal value map H
is weakly K-upper bounded on some neighborhood of 0. Then (PSV Gw) is
stable.
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Proof. Because H is weakly K-upper bounded on a neighborhood of 0 one has
0 ∈ int(dom H). Like in the proof of Theorem 7.4.27 we get −∞K /∈ H(y) for
all y ∈ Y . Lemma 7.1.21 is now applicable and guarantees that int(epiK H) 	=
∅. The conclusion follows again via Proposition 7.4.14. ��

7.5 Some particular instances of (PSV Gw)

In this section we employ the approach described in section 7.4 to different
particular instances of (PSV Gw). We consider both the set-valued optimiza-
tion problem with constraints and the one having the composition with a
linear continuous mapping as objective map. An approach to gap functions
for set-valued equilibrium problems is also given.

7.5.1 The set-valued optimization problem with constraints

In this subsection we investigate the duality for the set-valued optimization
problem with constraints by using a similar procedure to the one considered
in subsection 7.2, but by employing weak minimality and weak maximality.
Again, we consider different perturbations of the primal problem which lead
to several set-valued dual optimization problems.

The set-valued primal problem we study is the following

(PSV C
w ) WInf

x∈A
F (x)

A = {x ∈ S : G(x) ∩ (−C) 	= ∅}

where X, Z and V are Hausdorff topological vector spaces, Z is partially
ordered by the convex cone C ⊆ Z and V is partially ordered by the nontrivial
pointed convex closed cone K ⊆ V , S ⊆ X is a nonempty set, while F : X ⇒
V ∪{+∞K} and G : X ⇒ Z are set-valued maps such that dom F ∩ S ∩
G−1(−C) 	= ∅. By X∗, Z∗ and V ∗ we denote the corresponding topological
dual spaces of X, Z and V , respectively.

We look for weakly efficient solutions to (PSV C
w ). These are elements

x̄ ∈ A such that there exists an element v̄ ∈ F (x̄) having the property v̄ ∈
WMinF (A). In this case the pair (x̄, v̄) is said to be a weakly minimal pair
to (PSV C

w ).
We consider the set-valued perturbation maps ΦCL , ΦCF and ΦCF L as

introduced in subsection 7.2.1 and formulate three set-valued duals to (PSV C
w )

via the conjugate maps of the perturbed maps. The calculations of the three
conjugate maps is done in the lines of the ones in subsection 7.2.1. Thus for
all Λ ∈ L(Z, V ) and all Γ ∈ L(X,V ) we obtain

(ΦCL)∗(0, Λ) = WSup ∪
x∈S

[Λ(G(x) + C) − F (x)],

(ΦCF )∗(0, Γ ) = WSup{F ∗(Γ ) − Γ (A)}
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and

(ΦCF L)∗(0, Γ, Λ) = WSup
{

F ∗(Γ ) + ∪
x∈S

[−Γx + Λ(G(x))] + Λ(C)
}

.

For determining (ΦCF )∗ and (ΦCF L)∗ Proposition 7.4.3 has been applied in
a similar way as Proposition 7.1.7 for the corresponding calculations in sub-
section 7.2.1. Again with Proposition 7.4.3 and by considering the following
conjugate map with respect to the set S

(−ΛG)∗S(−Γ ) = WSup ∪
x∈S

[−Γx + Λ(G(x))],

we get

(ΦCF L)∗(0, Γ, Λ) = WSup{F ∗(Γ ) + (−ΛG)∗S(−Γ ) + Λ(C)}.
Concerning the term Λ(C) in the formulae of (ΦCL)∗(0, Λ) and (ΦCF L)∗(0, Γ,
Λ) the following lemma is useful.

Lemma 7.5.1. Let be Λ ∈ L(Z, V ) and Γ ∈ L(X,V ). If Λ(C) ∩ int(K) 	= ∅,
then (ΦCL)∗(0, Λ) = {+∞K} and (ΦCF L)∗(0, Γ, Λ) = {+∞K}.
Proof. Let Λ ∈ L(Z, V ) be fixed and assume that for c′ ∈ C it holds Λc′ ∈
int(K). We prove that (ΦCL)∗(0, Λ) = {+∞K}. By similar arguments it can be
proven that for all Λ ∈ L(Z, V ) and Γ ∈ L(X,V ) one has (ΦCF L)∗(0, Γ, Λ) =
{+∞K}.

Consider an arbitrary ṽ ∈ V . We show that there exists v ∈ ∪x∈S [Λ(G(x)+
C) − F (x)] with v >K ṽ. Then, by definition, WSup∪x∈S [Λ(G(x) + C) −
F (x)] = {+∞K}. Indeed, since Λc′ ∈ int(K) there exists an absorbing neigh-
borhood W of 0 in V such that Λc′ + W ⊆ int(K). Thus W ⊆ −Λc′ + int(K)
and hence V = ∪α>0 α(−Λc′ + int(K)). For an x′ ∈ dom F ∩ S ∩ G−1(−C)
take v′ ∈ F (x′) ∩ V and z′ ∈ G(x′). By the above representation of V , there
exist α′ > 0 and k′ ∈ int(K) with the property Λz′ − v′ − ṽ = −Λ(α′c′) + k′.
Thus for v := Λz′+Λ(α′c′)−v′ ∈ Λ(G(x′))+Λ(C)−F (x′) ⊆ ∪x∈S [Λ(G(x))+
Λ(C) − F (x)], one has v >K ṽ. ��

Taking into consideration the last lemma and the definition of the set-
valued dual problem (DSV Gw) given in subsection 7.4.2 the following La-
grange set-valued dual problem may be associated to (PSV C

w )

(DSV CL
w ) WSup ∪

Λ∈L(Z,V )
Λ(C)∩(− int(K))=∅

WInf ∪
x∈S

[F (x) + Λ(G(x) + C)].

Analogously, the Fenchel set-valued dual problem reads as

(DSV CF
w ) WSup ∪

Γ∈L(X,V )
WInf{−F ∗(Γ ) + Γ (A)},

while the Fenchel-Lagrange set-valued dual problem becomes

(DSV CF L
w ) WSup

Γ∈L(X,V ),Λ∈L(Z,V )
Λ(C)∩(− int(K))=∅

WInf{−F ∗(Γ ) − (ΛG)∗S(−Γ ) + Λ(C)}.
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Remark 7.5.1. The problem (PSV C
w ) has been considered also in [170] with

respect to Lagrange duality. There the set-valued dual (DSV CL
w ) can be found

in some modified formulation.

The duality results obtained in subsection 7.4.2 for the primal-dual pair
(PSV Gw) − (DSV Gw) may be applied to the primal problem (PSV C

w ) and
its set-valued dual problems introduced above. In particular, weak duality is
fulfilled for (PSV C

w ) and (DSV CL
w ), (DSV CF

w ) and (DSV CF L
w ), respectively.

Concerning strong duality and optimality conditions, the general results from
section 7.4 are also applicable. First, let us consider optimality conditions and
strong duality for the Lagrange set-valued dual problem.

Theorem 7.5.2. (a) Suppose that the problem (PSV C
w ) is stable with respect

to the perturbation map ΦCL . Let x̄ ∈ A be a weakly efficient solution
to (PSV C

w ) and v̄ ∈ F (x̄) such that (x̄, v̄) is a weakly minimal pair to
(PSV C

w ). Then there exists Λ ∈ L(Z, V ), a weakly efficient solution to
(DSV CL

w ), with (Λ, v̄) corresponding weakly maximal pair such that strong
duality holds and the following conditions are fulfilled
(i) v̄ ∈ WInf ∪x∈S [F (x) + Λ(G(x) + C)];
(ii) Λ(C) ∩ (− int(K)) = ∅;
(iii) Λ(G(x̄) + C) ∩ (− int(K)) = ∅.

(b) Assume that for x̄ ∈ A, v̄ ∈ F (x̄) and Λ ∈ L(Z, V ) the conditions (i)−(iii)
are fulfilled. Then x̄ is a weakly efficient solution and (x̄, v̄) is a weakly
minimal pair to (PSV C

w ), while Λ is a weakly efficient solution and (Λ, v̄)
is a weakly maximal pair to (DSV CL

w ).

Proof. The proof is similar to the proof of Theorem 7.2.1 with some obvious
modifications. In particular, one has to use Theorem 7.4.21 instead of Theorem
7.1.15 as has been done in the proof of Theorem 7.2.1 ��

Using the Fenchel set-valued dual problem (DSV CF
w ) similar optimality

conditions as in Theorem 7.2.2 are available.

Theorem 7.5.3. (a) Suppose that the problem (PSV C
w ) is stable with respect

to the perturbation map ΦCF . Let x̄ ∈ A be a weakly efficient solution
to (PSV C

w ) and v̄ ∈ F (x̄) such that (x̄, v̄) is a weakly minimal pair to
(PSV C

w ). Then there exists Γ ∈ L(X,V ), a weakly efficient solution to
(DSV CF

w ), with (Γ , v̄) corresponding weakly maximal pair such that strong
duality holds and

v̄ ∈ WInf[−F ∗(Γ ) + Γ (A)].

(b) Assume that for x̄ ∈ A, v̄ ∈ F (x̄) and Γ ∈ L(X,V ) one has v̄ ∈
WInf[−F ∗(Γ ) + WInf Γ (A)]. Then x̄ is a weakly efficient solution and
(x̄, v̄) a weakly minimal pair to (PSV C

w ), while Γ is a weakly efficient
solution and (Γ , v̄) a weakly maximal pair to (DSV CF

w ).

By means of the Fenchel-Lagrange set-valued dual problem (DSV CF L
w )

analogous results can be derived.
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Theorem 7.5.4. (a) Suppose that the problem (PSV C
w ) is stable with respect

to the perturbation map ΦCF L . Let x̄ ∈ A be a weakly efficient solution
to (PSV C

w ) and v̄ ∈ F (x̄) such that (x̄, v̄) is a weakly minimal pair to
(PSV C

w ). Then there exists (Γ ,Λ) ∈ L(X,V )×L(Z, V ), a weakly efficient
solution to (DSV CF L

w ), with (Γ ,Λ, v̄) corresponding weakly maximal pair
such that strong duality holds and the following optimality conditions are
fulfilled
(i) v̄ ∈ WInf[−F ∗(Γ ) − (ΛG)∗S(−Γ ) + Λ(C)];
(ii) Λ(C) ∩ (− int(K)) = ∅;
(iii) Λ(G(x̄) + C) ∩ (− int(K)) = ∅.

(b) Assume that for x̄ ∈ A, v̄ ∈ F (x̄) and (Γ ,Λ) ∈ L(Z, V ) × L(X,V ) the
conditions (i)− (iii) are fulfilled. Then x̄ is a weakly efficient solution and
(x̄, v̄) a weakly minimal pair to (PSV C

w ), while (Γ ,Λ) is a weakly efficient
solution and (Γ ,Λ, v̄) a weakly maximal pair to (DSV CF L

w ).

The final part of this subsection is devoted to the introduction of some
conditions which guarantee the stability for the primal problem (PSV C

w ) in
the interaction with its different duals we derived above and, consequently,
the existence of strong duality for all these primal-dual pairs. First we deal
with the perturbation map ΦCL having in mind the Lagrange duality.

Theorem 7.5.5. Let F × G be K × C-convexlike on S and F be weakly K-
upper bounded on dom F ∩ S. If 0 ∈ int[G(dom F ∩ S) + C], then (PSV C

w )
is stable with respect to the perturbation map ΦCL ; hence WInf(PSV C

w ) =
WSup(DSV CL

w ) = WMax(DSV CL
w ).

Proof. As follows from Remark 7.2.7, the map ΦCL is K-convexlike-convex.
The consequence of the regularity condition is the same as in the proof of The-
orem 7.2.7, namely it holds 0 ∈ int(dom ΨCL), where ΨCL : Z ⇒ V ∪{+∞K},
ΨCL(z) := ΦCL(X, z). This map turns out to be weakly K-upper bounded on
a neighborhood of 0 in Z. Then Theorem 7.4.27 is applicable and provides
the desired stability. Further, Theorem 7.4.20 completes the proof. ��

If the generalized Slater regularity condition is valid, namely G(dom F ∩
S) ∩ (− int(C)) 	= ∅, then the interior point regularity condition in Theorem
7.5.5 is verified. On the other hand, we observe that if S is convex, F is K-
convex on S and G is C-convex on S, then F × G is K ×C-convex on S and
therefore also K × C-convexlike on S.

The previous result can be originally found in [170, Corollary 6.3]. As in
subsection 7.2.3 (see Theorem 7.2.8) one can give an alternative result for
stating strong duality for the Lagrange set-valued dual problem.

Theorem 7.5.6. Let F × G be K × C-convexlike on S. If G(dom F ∩ S) ∩
(− int(C)) 	= ∅, then (PSV C

w ) is stable with respect to the perturbation map
ΦCL ; hence WInf(PSV C

w ) = WSup(DSV CL
w ) = WMax(DSV CL

w ).

The next result concerns the stability with respect to the Fenchel pertur-
bation map ΦCF .
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Theorem 7.5.7. Let A ⊆ X be a convex set and F a K-convex set-valued
map. If there exists x′ ∈ dom F ∩ A such that F is weakly K-upper bounded
on some neighborhood of x′, then (PSV C

w ) is stable with respect to the pertur-
bation map ΦCF ; hence WInf(PSV C

w ) = WSup(DSV CF
w ) = WMax(DSV CF

w ).

Proof. Under the hypotheses of the theorem, the perturbation map ΦCF :
X × X ⇒ V ∪{+∞K}, ΦCF (x, y) = F (x + y) + δV

A(x), is K-convex and,
consequently, K-convexlike-convex. Like in the proof of Theorem 7.2.10, it
follows that ΨCF : X ⇒ V ∪{+∞K}, ΨCF (y) := ΦCF (X, y), is weakly K-
upper bounded on a neighborhood of 0 in X and that 0 ∈ int(dom ΨCF ). The
conclusion follows via Theorem 7.4.27 and Theorem 7.4.20. ��

Also here we give an alternative result, which can be proved in the lines
of Theorem 7.2.11.

Theorem 7.5.8. Let A ⊆ X be a convex set and F a K-convex set-valued
map. If dom F ∩ int(A) 	= ∅, then (PSV C

w ) is stable with respect to the pertur-
bation map ΦCF ; hence WInf(PSV C

w ) = WSup(DSV CF
w ) = WMax(DSV CF

w ).

Finally, we treat the stability with respect to the Fenchel-Lagrange duality.

Theorem 7.5.9. Let S ⊆ X be a convex set, F a K-convex set-valued
map and G a C-convex set-valued map. If F is weakly K-upper bounded
on dom F and U × W is a neighborhood of (0, 0) in X × Z such that
W ⊆ ∩y∈UG[(dom F − y) ∩ S] + C, then (PSV C

w ) is stable with respect
to the perturbation map ΦCF L ; hence WInf(PSV C

w ) = WSup(DSV CF L
w ) =

WMax(DSV CF L
w ).

Proof. It is easy to verify that ΦCF L is K-convex and, consequently, K-
convexlike-convex. Like in the proof of Theorem 7.2.13, it follows that ΨCF L :
X × Z ⇒ V ∪{+∞K}, ΨCF L(y, z) := ΦCF L(X, y, z), is weakly K-upper
bounded on U × W and 0 ∈ int(dom ΨCF L). The conclusion follows via The-
orem 7.4.27 and Theorem 7.4.20. ��

The following result can be proven in a similar way like Theorem 7.2.14.

Theorem 7.5.10. Let S ⊆ X be a convex set, F a K-convex set-valued
map and G a C-convex set-valued map. If there exist x′ ∈ S such that
0 ∈ int(G(x′) + C) and a neighborhood U of x′ in X such that F is weakly
K-upper bounded on U , then (PSV C

w ) is stable with respect to the perturbation
map ΦCF L ; hence WInf(PSV C

w ) = WSup(DSV CF L
w ) = WMax(DSV CF L

w )

Remark 7.5.2. In the papers [47, 123, 124] similar investigations concerning
vector conjugate duality based on the weak infimum notion used here are
provided and analogous perturbations as we have done here and in earlier
works (cf. [1, 3, 4, 23]) are proposed. Inclusion relations between the image
sets of the vector dual problems are given and saddle points and their rela-
tions to duality are also considered (cf. [124]). The stability assertions given
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in [124] concern the constrained vector optimization problem (PSV C
w ) with

vector-valued objective and constrained functions and coincide in this par-
ticular case with Theorem 7.5.6 and Theorem 7.5.10. In particular, these as-
sertions are special instances of the general assertions including more general
stability criteria claimed in Theorem 7.5.5 and Theorem 7.5.9. We refer fi-
nally to the fact that already in [23] for problems even more general than
(PSV C

w ) Fenchel-Lagrange type perturbations and corresponding set-valued
dual problems have been considered including stability criteria based on reg-
ularity conditions of Slater type as in Theorem 7.5.10. In [47,123] some mod-
ified Lagrange and Fenchel-Lagrange dual problems are introduced in whose
formulation the dual variables Λ are taken as being elements of the set of
positive mappings L+(Z, V ). The weak and strong duality assertions follow
analogously to the ones presented above.

7.5.2 The set-valued optimization problem having the composition
with a linear continuous mapping in the objective map

In the following we treat the problem (PSV A) as introduced in section
7.3, but with respect to weakly efficient solutions. Let X, Y and V be
Hausdorff topological vector spaces, V being partially ordered by the non-
trivial pointed convex cone K ⊆ V with int(K) 	= ∅, A ∈ L(X,Y ) and
F : X ⇒ V ∪{+∞K} and G : Y ⇒ V ∪{+∞K} be given set-valued maps
such that domF ∩ A−1(dom G) 	= ∅. The problem we treat here is

(PSV A
w ) WInf

x∈X
{F (x) + G(Ax)}.

An element x̄ ∈ X is said to be a weakly efficient solution to (PSV A
w ) if there

exists a v̄ ∈ F (x̄)+G(Ax̄) such that v̄ ∈ WMin∪x∈X{F (x)+G(Ax)}. In this
situation the pair (x̄, v̄) is said to be a weakly minimal pair to (PSV A

w ). Also
here we take as set-valued perturbation map

ΦA : X × Y ⇒ V ∪{+∞K}, ΦA(x, y) = F (x) + G(Ax + y).

Further, let be ΨA : Y ⇒ V ∪{+∞K}, ΨA(y) = ΦA(X, y) and let the in-
fimal value map HA : Y ⇒ V be defined by HA(y) = WInf ΨA(y) =
WInf ΦA(X, y). Then HA(0) = WInf ΦA(X, 0) = WInf(PSV A

w ). The calcula-
tion of the conjugate map (ΦA)∗ can be done similarly as in section 7.3, this
time by using Proposition 7.4.3 instead of Proposition 7.1.7. For Γ ∈ L(Y, V )
the conjugate looks like

(ΦA)∗(0, Γ ) = WSup{F ∗(−Γ ◦ A) + G∗(Γ )}.

By the general approach described in subsection 7.4.2 this leads to the follow-
ing Fenchel set-valued dual problem to (PSV A

w )

(DSV A
w ) WSup ∪

Γ∈L(Y,V )
WInf{−F ∗(−Γ ◦ A) − G∗(Γ )}
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For (DSV A
w ) we consider weakly efficient solutions and weakly maximal pairs

in accordance to the general definition in subsection 7.4.2. The above approach
verifies weak duality and this can be expressed via Corollary 7.4.17 in the form
A(WInf(PSV A

w )) ∩ WSup(DSV A
w ) = ∅. The next result is concerning strong

duality and follows by means of Theorem 7.4.21.

Theorem 7.5.11. (a) Suppose that the problem (PSV A
w ) is stable with respect

to the perturbation map ΦA. Let x̄ ∈ X be a weakly efficient solution to
(PSV A

w ) and v̄ ∈ F (x̄) + G(Ax̄) such that (x̄, v̄) is a weakly minimal pair
to (PSV A

w ). Then there exists Γ ∈ L(Y, V ), a weakly efficient solution to
(DSV A

w ), with (Γ , v̄) corresponding weakly maximal pair such that strong
duality holds and

v̄ ∈ WInf{−F ∗(−Γ ◦ A) − G∗(Γ )}.

(b) Assume that for x̄ ∈ X, v̄ ∈ F (x̄) + G(Ax̄) and Γ ∈ L(Y, V ) one has
v̄ ∈ WInf[−F ∗(−Γ ◦ A) − G∗(Γ )]. Then x̄ is a weakly efficient solution
and (x̄, v̄) a weakly minimal pair to (PSV A

w ), while Γ is a weakly efficient
solution and (Γ , v̄) is a weakly maximal pair to (DSV A

w ).

The next result supplies a stability and strong duality statement, respec-
tively, based on convexity and regularity assumptions for the functions occur-
ring in the primal problem.

Theorem 7.5.12. Let the set-valued maps F and G be K-convex. If there ex-
ists x′ ∈ dom F∩A−1(dom G) such that G is weakly K-upper bounded on some
neighborhood of Ax′, then (PSV A

w ) is stable with respect to the perturbation
map ΦA; hence WInf(PSV A

w ) = WSup(DSV A
w ) = WMax(DSV A

w ).

Proof. The convexity assumptions guarantee that ΦA is K-convex on X ×
Y . Like in the proof of Theorem 7.3.3, one can show that ΨA : Y ⇒ V ∪
{+∞K}, ΨA(y) = ΦA(X, y) is weakly K-upper bounded on a neighborhood
of 0 in Y and that 0 ∈ int(dom ΨA). Thus Theorem 7.4.27 implies the stability,
while Theorem 7.4.20 ensures the strong duality. ��

Remark 7.5.3. In case X = Y and A = idX Theorem 7.5.12 becomes [170,
Theorem 6.7].

Of particular interest is the study of the duality for the set-valued opti-
mization problem

(PSV S
w ) WInf

x∈S
F (x),

where S ⊆ X is a nonempty set and F : X ⇒ V ∪ {+∞} a set-valued map
such that dom F ∩ S 	= ∅. We reformulate this problem by making use of the
vector-valued indicator function δV

S as being

(PSV S
w ) WInf

x∈X
{F (x) + δV

S (x)}.
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Obviously, (PSV S
w ) is a particular case of (PSV A

w ), namely for X = Y , A =
idX and G = δV

S . Via (DSV A
w ) we get the following Fenchel set-valued dual

problem to (PSV S
w )

(DSV S
w ) WSup ∪

Γ∈L(X,V )
WInf{−F ∗(Γ ) + Γ (S)}.

A general assertion on strong duality can be given by particularizing Theorem
7.5.11, while via Theorem 7.5.12 one can give some verifiable conditions to
this purpose. It is interesting to notice that one can give, in particular, two
different conditions ensuring stability and therefore strong duality depend-
ing on whether we perturb F or δV

S . In other words one can consider the
perturbation maps

ΦS
1 : X × X ⇒ V ∪ {+∞K}, ΦS

1 (x, y) = F (x + y) + δV
S (x)

and
ΦS

2 : X × X ⇒ V ∪ {+∞K}, Φ2(x, y) = F (x) + δV
S (x + y),

both revealing the same dual problem (DSV S
w ). Employing ΦS

1 , we obtain
the following strong duality result, which is a direct consequence of Theorem
7.5.12.

Theorem 7.5.13. Let the set S ⊆ X be convex and F a K-convex set-valued
map. If there exists x′ ∈ dom F ∩S such that F is weakly K-upper bounded on
some neighborhood of x′, then (PSV S

w ) is stable with respect to the perturbation
map ΦS

1 ; hence WInf(PSV S
w ) = WSup(DSV S

w ) = WMax(DSV S
w ).

By using this time the perturbation map ΦS
2 , one can give another strong

duality statement for (PSV S
w ) and (DSV S

w ).

Theorem 7.5.14. Let the set S ⊆ X be convex and F a K-convex set-valued
map. If dom F ∩ int(S) 	= ∅, then (PSV S

w ) is stable with respect to the pertur-
bation map ΦS

1 ; hence WInf(PSV S
w ) = WSup(DSV S

w ) = WMax(DSV S
w ).

Proof. Since S is convex, δV
S is a K-convex map. For an x′ ∈ dom F ∩ int(S),

there exists U , a neighborhood of x′ in X such that U ⊆ S. As δV
S (x)∩(−K) 	=

∅ for all x ∈ S, it follows that δV
S is weakly K-upper bounded on U . Thus the

hypotheses of Theorem 7.5.12 are also in this case fulfilled and this provides
the conclusion. ��

7.5.3 Set-valued gap maps for set-valued equilibrium problems

In this subsection we deal with gap maps for set-valued equilibrium problems.
As in subsection 7.3.2, where we have dealt with gap maps for set-valued
variational inequalities, such maps give characterizations of the solutions of
the equilibrium problem. Vector equilibrium problems are generalizations of
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scalar equilibrium problems (cf. [16]). Equilibrium problems include optimiza-
tion, Nash equilibria, complementarity, fix point, saddle point and variational
problems. They have practical applications in many fields like game theory,
economics and mathematical physics.

Let us first recall the formulation of a scalar equilibrium problem in finite
dimensional spaces. Given a a nonempty set A ⊆ R

n, assume that f : A×A →
R∪{+∞} is a bifunction satisfying f(x, x) = 0 for all x ∈ A. The equilibrium
problem consists in finding an x ∈ A such that

(EP ) f(x, y) ≥ 0 for all y ∈ A.

A function γ : A → R∪{+∞} is said to be a gap function for (EP ) (cf. [129])
if it satisfies the following properties

(a) γ(y) ≥ 0 for all y ∈ A;
(b) γ(x) = 0 if and only if x is a solution to (EP ).

Next we consider the extension of the scalar equilibrium problem (EP ) to
the weak set-valued equilibrium problem.

Let X and V be Hausdorff topological vector spaces, V being partially
ordered by the nontrivial pointed convex cone K ⊆ V with int(K) 	= ∅, and
F : X × X ⇒ V ∪ {+∞K} a set-valued map. Further, let A ⊆ X be a
nonempty set with the property that 0 ∈ F (x, x) for all x ∈ A. The weak
set-valued equilibrium problem consists in finding an element x ∈ A such
that

(SV EPw) 0 /∈ F (x, y) + int(K) for all y ∈ A,

which means that for all y ∈ A there is no v ∈ F (x, y) with v <K 0.

Definition 7.5.1. A set-valued map γ : A ⇒ V ∪ {+∞K} is said to be a gap
map for (SV EPw) if it satisfies the following conditions

(a) 0 /∈ γ(y) + int(K) for all y ∈ A;
(b) 0 ∈ γ(x) if and only if x solves (SV EPw).

We observe that x ∈ A is a solution to (SV EPw) if and only if x is a
weakly efficient solution and (x, 0) is a weakly minimal pair to the set-valued
optimization problem

(PSV V EP
w ; x) WInf

y∈A
F (x, y),

which can be rewritten as

(PSV V EP
w ; x) WInf

y∈X
{F (x, y) + δV

A(y)}.

Its Fenchel set-valued dual problem looks like

(DSV V EP
w ; x) WSup ∪

Γ∈L(X,V )
WInf{−F ∗

x (Γ ) + Γ (A)},
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with F ∗
x (Γ ) = WSupy∈X{Γy − F (x, y)} being the conjugate map of the set-

valued map Fx : X ⇒ V ∪ {+∞K}, defined by Fx(y) = F (x, y). Let x ∈ A
be fixed. We consider the following regularity conditions ensuring stability for
(PSV V EP

w ;x), the first one being based on Theorem 7.5.13

(RCV EP
1 ;x) ∃y′ ∈ A such that Fx is weakly K-upper bounded

on some neighborhood of y′ in X.

while the other one on Theorem 7.5.14,

(RCV EP
2 ; x) dom Fx ∩ int(A) 	= ∅.

Proposition 7.5.15. Let A ⊆ X be a convex set and Fx a K-convex set-
valued map. If (RCV EP

1 ;x) or (RCV EP
2 ; x) is fulfilled, then WInf(PSV V EP

w ; x)
= WSup(DSV V EP

w ; x) = WMax(DSV V EP
w ; x).

Now we are ready to define a gap map for (SV EPw) by means of the
objective map of the Fenchel set-valued dual (DV V EP

w ; x), as being γV EP :
A ⇒ V ∪ {+∞K},

γV EP (x) = ∪
Γ∈L(X,V )

WSup[F ∗
x (Γ ) − Γ (A)].

Theorem 7.5.16. Let A ⊆ X be a convex set and Fx a K-convex set-valued
map for all x ∈ A. If for all x ∈ A (RCV EP

1 ; x) or (RCV EP
2 ; x) is fulfilled, then

γV EP is a gap map for the weak set-valued equilibrium problem (SV EPw).

Proof. We have to show that γV EP satisfies the properties (a) and (b) of
Definition 7.5.1.

Chose arbitrarily y ∈ A and v∗ ∈ γV EP (y). Then there exists Γ ∈ L(X,V )
such that v∗ ∈ WSup[F ∗

y (Γ ) − Γ (A)]. By the weak duality for (PSV V EP
w ; y)

and (DSV V EP
w ; y) follows that −v∗ /∈ A(Fy(y) + δV

A(y)). Since 0 ∈ Fy(y) +
δV
A(y), one has 0 	<K −v∗ or, equivalently, v∗ 	<K 0.

We come now to (b) and consider an arbitrary x ∈ A. If x ∈ A is a
solution to (SV EPw), then x is a weakly efficient solution and (x, 0) is a
weakly minimal pair to (PV V EP

w ; x). Thus 0 ∈ WMax(DV V EP
w ; x) and so

there exists Γ ∈ L(X,V ) with 0 ∈ WInf[−F ∗
x (Γ ) + Γ (A)]. This implies that

0 ∈ γV EP (x). Conversely, let be x ∈ A such that 0 ∈ γV EP (x). Then there
exists Γ ∈ L(X,V ) fulfilling 0 ∈ WSup[F ∗

x (Γ ) − Γ (A)]. Further, there is 0 ∈
F (x, x) + δV

A(x). Thus, by Theorem 7.5.11 follows that x is a weakly efficient
solution and (x, 0) is a weakly minimal pair to (PV V EP

w ; x). Consequently, x
turns out to be a solution to (SV EPw) and the condition (b) in Definition
7.5.1 is verified. ��

We close the section by investigating a particular case of (SV EPw), namely
the classical vector equilibrium problem. Let A ⊆ X be a nonempty set and
f : X → V ∪{+∞K} a vector-valued function. For F : X ×X → V ∪{+∞K}
defined by F (x, y) = f(y) − f(x) the weak set-valued equilibrium problem
(SV EPw) means to find an element x ∈ A such that
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(V EPw) f(y) 	<K f(x) for all y ∈ A.

One can see that x ∈ A is a solution to (V EPw) if and only if x is a weakly
efficient solution to

(PV A
w ) WInf

x∈A
f(x).

Let x ∈ A be fixed. Then the corresponding optimization problem to
(V EPw) reads as

(PV V EP
w ; x) WInf

y∈X
{f(y) − f(x) + δV

A(y)}.

Its Fenchel set-valued dual problem is

(DV V EP
w ;x) WSup ∪

Γ∈L(X,V )
WInf{−F ∗

x (Γ ) + Γ (A)},

with
F ∗

x (Γ ) = WSup
y∈X

{Γy − (f(y) − f(x))}

= f(x) + WSup
y∈X

{Γy − f(y)} = f(x) + f∗(Γ ).

This leads to the following formulation of the dual

(DV V EP
w ; x) WSup ∪

Γ∈L(X,V )
WInf{−f∗(Γ ) + Γ (A)} − f(x).

Thus the gap map γV EP : A ⇒ V ∪ {+∞K} turns out to be

γV EP (x) = f(x) + ∪
Γ∈L(X,V )

WSup[f∗(Γ ) − Γ (A)].

It is easy to see that the property 0 ∈ γV EP (y) + int(K) for all y ∈ A is
equivalent to the weak duality for the vector optimization problem (PV A

w )
and its Fenchel set-valued dual

(DV A
w ) WSup ∪

Γ∈L(X,V )
WInf{−f∗(Γ ) + Γ (A)}.

On the other hand, the relation 0 ∈ γV EP (x), for x ∈ A, expresses the strong
duality for the primal-dual pair (PV A

w ) − (DV A
w ).

Bibliographical notes

Different to the vector duality concepts presented in the other chapters of this
monograph that are mainly based on scalarization and scalar conjugacy, in
the present final chapter we have developed a duality theory for set-valued
optimization problems based on vector conjugation. We present this approach
separately for both efficient and weakly efficient solutions because despite
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similar assertions and results, the basic notions and investigations differ in
several aspects. The part dealing with efficiency and minimality has its roots
in the paper [180] of Tanino and Sawaragi, where the notions of conjugate
map and subdifferential for vector-valued functions taking values in a finite
dimensional space R

k with R
k
+ as ordering cone have been introduced. In their

book [163] Sawaragi, Nakayama and Tanino extended the approach from [180]
by working in a setting where the dual variables were represented via matrices.
On that background some first investigations have been devoted to conjugate
vector duality for finite dimensional multiobjective problems, in particular a
vector Lagrange dual problem has been displayed.

Some aspects of conjugate maps for Hausdorff topological vector spaces
and vector duality can be found in Luc’s book [125] as well as some investi-
gations on Lagrange duality and a kind of axiomatic duality. In the paper [1]
Altangerel, Boţ and Wanka extended and applied Tanino’s and Sawaragi’s
approach by introducing a Fenchel-Lagrange set-valued dual problem besides
the Lagrange and Fenchel set-valued dual problems for constrained vector
optimization problems in finite dimensional spaces. These results have been
applied for the construction of gap functions for vector variational inequalities.

In this chapter a comprehensive and detailed theory for set-valued conju-
gate duality in infinite dimensional spaces is developed, covering, in particular,
the results contained in the before mentioned works.

The second approach concerning vector conjugation is related to the no-
tions of infimal and supremal sets of a given set based on the weak ordering
introduced by a cone with nonempty interior. The basic notions associated
with this infimum and supremum concept can be found in the paper [177]
due to Tanino. This concept is similar to the one given earlier by Kawasaki
(cf. [114]) in finite dimensional spaces. In [178] Tanino has used it for deducing
a conjugate duality theory for vector optimization problems in topological vec-
tor spaces. We notice that several kinds of supremum and infimum definitions
in multidimensional spaces have been provided in the preceding time mostly
accompanied by considerations regarding conjugate vector as set-valued du-
ality in different settings (see [40,82,94,113,146,152–154,210]).

We mention, in particular, Song’s contributions [168–170], where the ap-
proach from Tanino [178] has been extended to Hausdorff topological vector
spaces and set-valued maps, since our investigations are carried out in that
framework (see also [1, 3, 4, 25]). Some recent results on this topic can be
found in [47, 123, 124]. The reader is referred also to a some different con-
jugation concept for set-valued optimization problems regarding duality, as
developed in [9, 10].
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39. Boţ RI, Wanka G (2006) An alternative formulation for a new closed cone
constraint qualification. Nonlinear Analysis Theory & Applications 64(6):1367–
1381

40. Brumelle S (1981) Duality for multiple objective convex programs. Mathemat-
ics of Operations Research 6(2):159–172

41. Burachik RS, Jeyakumar V (2005) A dual condition for the convex subdifferen-
tial sum formula with applications. Journal of Convex Analysis 12(2):279–290

42. Breckner W, Kolumbán I (1968) Dualität bei Optimierungsaugaben in Topol-
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80. Göpfert A, Nehse R (1990) Vektoroptimierung: Theorie, Verfahren und An-
wendungen. BG Teubner Verlagsgesellschaft, Leipzig
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135. Mititelu Ş (1992) Unitary and geometrical aspects of the Wolfe duality. Studii
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affine minorant, 26

cone, 11
bidual, 16
Bouligand tangent, 16
dual, 16
normal, 12
ordering, 13
pointed, 12
trivial, 12

constraint qualification
Abadie, 256
linear independence, 256
Mangasarian-Fromovitz, 256
Slater, 80

constraints
cone, 68
geometric, 68
linear, 173, 176, 213, 216, 227, 232,

235, 244

dual (scalar)
differentiable Mond-Weir, 252, 253,

279, 293
differentiable Wolfe, 252, 253, 279,

292
Fenchel, 67, 69
Fenchel-Lagrange, 70
Lagrange, 69
Mond-Weir, 250, 276, 291, 302
nondifferentiable Mond-Weir, 251
nondifferentiable Wolfe, 251
Wolfe, 249, 276, 291, 302

dual (set-valued)

Fenchel, 337, 343, 353, 373, 377

Fenchel-Lagrange, 338, 344, 373

Lagrange, 337, 342, 373

dual (vector)

abstract linear, 175, 177

Breckner-Kolumbán, 128

differentiable Mond-Weir, 264, 272,
299

differentiable Wolfe, 264, 271, 298

Fenchel type, 123, 130, 145, 156, 186,
195

Fenchel-Lagrange type, 146, 157, 202,
208, 209, 212, 219, 226

Gale-Kuhn-Tucker, 240

Isermann, 236

Kornbluth, 241

Lagrange type, 144, 156

Mond-Weir, 261, 270, 281, 295, 307

Nakayama, 132, 137

Wolfe, 261, 269, 280, 295, 306, 307

duality (scalar)

fractional, 290

Mond-Weir type scheme, 283

stable strong, 110

strong, 64, 74

symmetric, 283

weak, 64

Wolfe type scheme, 283

duality (set-valued)

strong, 322, 369

weak, 320, 367

duality (vector)

converse, 142, 155
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fractional, 294
linear, 173, 176, 227, 232, 235
Mond-Weir type scheme, 286
strong, 141, 154
symmetric, 285
weak, 140, 154
Wolfe type scheme, 285

element
maximal, 43, 44, 312
minimal, 43, 44, 312
properly minimal, see properly

minimal
weakly infimal, 361
weakly maximal, 46, 361
weakly minimal, 46, 361
weakly supremal, 361

Fenchel-Moreau theorem, 34
function (scalar)

K-increasing, 22
affine, 26
biconjugate, 32
concave, 19
conjugate, 30
convex, 19
directional derivative, 41
domain, 20
epigraph, 20
Fréchet differentiable, 254, 266, 273
Fréchet differential, 254
Gâteaux differentiable, 41
Gâteaux differential, 41
gap, 356, 380
indicator, 19
infimal value, 23, 64
invex, 255
Lagrangian, 87
lower bound, 21
lower semicontinuous, 25
perturbation, 63
proper, 20
pseudoconvex, 255
quasiconvex, 254
scalarization, 160, see scalarization
strictly K-increasing, 22
strongly K-increasing, 22
subdifferentiable, 38
subdifferential, 38

subgradient, 38
support, 20
upper semicontinuous, 25

function (vector)
K-convex, 22
K-convexlike, 24
K-epi closed, 29
K-epigraph, 22
K-lower semicontinuous, 29
domain, 22
indicator, 23
perturbation, 140
proper, 22
star K-lower semicontinuous, 29

gauge, 28
generalized interiors

algebraic interior, 14
intrinsic core, 14
quasi interior, 16
quasi interior of a dual cone, 17
quasi relative interior, 16
relative interior, 17
strong quasi relative interior, 17

hull (function)
convex, 21
lower semicontinuous, 26
lower semicontinuous convex, 28

hull (set)
affine, 10
closed convex, 15
conical, 12
convex, 11
convex conical, 12
linear, 10

hyperplane, 10

infimal convolution, 24

mapping
adjoint, 15
affine, 11
linear, 11
linear continuous, 15

Minkowski sum, 10
Moreau-Rockafellar formula, 37

optimality conditions, 86, 339, 344
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pair
maximal, 320, 332
minimal, 319
weakly maximal, 367
weakly minimal, 366

partial ordering, 12
perturbation variable, 64, 320, 367
problem (scalar)

composed convex, 100
conjugate dual, 64, see dual (scalar)
constrained, 68, 249
fractional, 290
general, 63, 302
normal, 65
perturbed, 63
primal, 63
scalarized, 141, 182, 196, 199, 210
stable, 65
unconstrained, 66

problem (set-valued)
k-stable, 332
constrained, 335, 372
dual, 320, 332, see dual (set-valued)
equilibrium, 380
general, 319
perturbed, 320, 367
primal, 319, 331
stable, 322, 369
unconstrained, 352, 377
variational inequality, 356

problem (vector)
constrained, 132, 137, 144, 199, 209,

261, 264, 269
dual, 140, 153, see dual (vector)
equilibrium, 382
fractional, 294
general, 140, 153, 306
linear, 173, 176, 227, 232, 235, 240,

241, 244
primal, 58, 140, 153
unconstrained, 123, 130, 181, 195
variational inequality, 356

properly minimal
in the global sense of Borwein, 50
in the sense of Benson, 50
in the sense of Borwein, 49
in the sense of Geoffrion, 47
in the sense of Henig and Lampe, 51
in the sense of Hurwicz, 48

in the sense of linear scalarization, 52

regularity condition, 73, see constraint
qualification

closedness type, 74, 75
generalized interior point, 73
generalized Slater, 347
Kuhn-Tucker, 255

saddle point, 88
scalarization

(semi)norm, 171
general, 159
linear, 165
maximum-linear, 166
set, 168
set (conical), 170
Tchebyshev, 168

separation theorems, 17
set

absorbing, 10
active indices, 255
affine, 10
convex, 10
efficiency, 59
elements above a set, 361
elements below a set, 361
externally stable (maximal), 316
externally stable (minimal), 316
feasible, 64
maximal, 43
minimal, 43
proper efficiency, 59
weak efficiency, 59
weak infimum, 361
weak maximum, 361
weak minimum, 361
weak supremum, 361
weakly maximal, 46
weakly minimal, 46

set-valued map, 312
K-convex, 323, 365
K-convexlike, 327
K-convexlike-convex, 327
K-epigraph, 323, 365
k-biconjugate, 330
k-conjugate, 330
k-subdifferentiable, 331
k-subdifferential, 331
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k-subgradient, 331

biconjugate, 312, 363

conjugate, 312, 363

domain, 312

gap, 357, 380

graph, 312

infimal value, 368

minimal value, 321, 332

perturbation, 320

strictly K-convex, 327

strictly K-convexlike, 327

strictly K-convexlike-convex, 328

strictly-K-convexlike-C-convexlike,
348

subdifferentiable, 312, 363

subdifferential, 312, 363

subgradient, 312, 363

weakly K-upper bounded, 326, 371

solution

S-properly efficient, 160

T -properly efficient, 164

efficient, 58, 59, 319, 320, 332
optimal, 64
properly efficient, 59, 60
weakly efficient, 58, 59, 366, 367

space
bidual, 15
Fréchet, 16
Hausdorff, 14
locally convex, 15
metrizable, 14
partially ordered, 13
perturbation, 63, 140, 320, 367
topological dual, 15
topological vector, 14

topology
weak, 15
weak∗, 15

Young-Fenchel inequality
scalar, 31
set-valued, 314, 363
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