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1

Introduction

On eBay—currently one of the world’s most successful internet marketplaces—

the seller of an item can choose among three basic mechanisms: first, she can

offer the item at a fixed or posted price p̄; second, she can conduct an auction

with a reserve price p; or, third—and this is the main issue of this study—,

she can set up an auction with a reserve price p and at the same time grant

an interested bidder the option to buy the item at a posted price p̄.1

An interesting question is which of these selling mechanisms a rational

seller decides upon and why. In order to answer this question, the behavior

of the potential buyers in the respective mechanisms must be taken into con-

sideration. The present analysis addresses this issue and studies an auction

format which is similar to the one offered by eBay. In particular, the following

questions arise and are investigated:

• When does a bidder accept a posted price offer? What are the key deter-

minants for a bidder’s decision?

• How does a posted price offer impact the seller’s revenue, the bidders’

payoffs, and the generated total surplus?

• Does it pay for the seller to also offer a posted price when conducting an

auction? What is an optimal, i. e. revenue maximizing, posted price offer?

1.1 Overview

The analysis applies a two-fold approach. In Chapter 2, a game theoretical

model of an auction with a posted price offer is developed. The model considers

the auction as a two-stage game. In the first stage, the seller decides on the

1 To simplify the use of pronouns, the seller of an item is considered female and
the potential buyers (generally bidders) are referred to by male pronouns.
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amount of the posted price—if offered at all—and offers it to one of the

potential bidders. In the second stage, the bidder to whom the offer is made

decides whether or not to accept it. If a posted price is not offered or if

it is rejected, the item is auctioned among all bidders. The game is solved

by backward induction: Firstly, the equilibrium strategies of the bidders are

derived given a posted price offer by the seller. Secondly, the equilibrium

outcome of the second stage, subject to the seller’s choice in the first stage,

then allows for the computation of the seller’s optimal strategy, i. e. the posted

price offer that maximizes her revenue.

After the theoretical analysis, an experimental investigation is conducted

in order to compare the theoretical predictions with the behavior of human

participants in the lab. In the experiment, subjects take on the roles of both

the sellers and the bidders. In parallel to the theoretical analysis, the sellers

may opt to offer a posted price and choose the respective amount. In addition,

the behavior of bidders in auctions with a posted price offer is observed. The

design of the experiment is presented in Chapter 3 and the results are reported

in Chapter 4. Chapter 5 discusses the limitations of the model and concludes

with an outlook on future work.

Auctions and posted price markets have both been intensively studied in

economic theory.2 Moreover, the use of experiments to investigate the two

market institutions is widely spread.3 Yet, relatively little is known about

hybrid mechanisms which combine an auction with a posted price offer.

It is only recently that theoretical literature on hybrid institutions com-

bining auctions with a posted price has started to evolve.4 The theoretical

model of the present analysis ties in with this discussion. It applies the inde-

pendent private values assumptions, yet places no further restrictions on the

number of bidders or their attitudes towards risk, and also allows for almost

arbitrary distributions of valuations. Thus, it is more general than most of the

existing papers. Moreover, the author is not aware of any experimental study

investigating an auction augmented by an additional posted price offer. The

experimental analysis presented in this paper bridges this gap.

2 An overview of auction theory is given, e. g., in the survey by Klemperer (1999) as
well as the textbooks by Krishna (2002) or Milgrom (2004). The theory of pricing
in a monopoly or in an oligopoly is discussed in most microeconomics textbooks
(e. g. Kreps 1990, Chapters 9 and 10; Mas-Colell et al. 1995, Chapter 12). Wang
(1993) compares auctions versus posted-price selling.

3 See, e. g., Kagel (1995) and Davis und Holt (1993, Chapter 4), respectively, for
an overview of auction and posted price experiments.

4 These papers are discussed in Section 2.6.



1.2 General Background 3

1.2 General Background

The analysis of an auction with a posted price offer (henceforth abbreviated

as APPO) is of a microeconomic nature. One investigates how a given set of

individual agents behaves in a particular mechanism. The rules of the mech-

anism are kept simple, the set of strategic alternatives is small, and outside

options are usually not considered.

The micro-level analysis constitutes the foundations for an evaluation of

the APPO market institution at the business level. Being able to estimate,

for example, how much a posted price offer is worth to the seller allows the

operator of a market to set the corresponding fees accordingly. Thus, the

analysis may provide a market operator with valuable information regarding

an optimal pricing scheme.

The structured design, implementation, and evaluation of markets is sub-

sumed under the term market engineering. According to Weinhardt et al.

(2003), the research program market engineering comprises a systematic and

theoretically grounded approach to the analysis, design, implementation, qual-

ity assurance, and further development of electronic markets. Holistic market

engineering focuses not only on the design of new markets; rather, the study of

institutions is considered one of the core activities (Neumann, 2004, p. 127ff).

In this sense, market engineering refers to an ongoing process which continu-

ously seeks to adapt to changes in the market environment, to better serve the

customers’ needs, or to take advantage of new technological developments.

Thus, the analysis of existing markets or market institutions like an APPO

may give valuable hints for potential improvement or the development of new

products and features. Within this framework, the present study pertains to

the evaluation of the economic performance of a market whilst the two-fold

analysis relates to the axiomatic and the experimental approaches (Neumann,

2004, p. 170ff).

Clearly, auctions and posted price offers differ significantly as market in-

stitutions and in terms of their characteristics. Nevertheless, they are not as

contrarian as they may seem at first glance. Rather, both a pure auction and

a pure posted price offer can be interpreted as special cases of the hybrid

APPO institution. Wang et al. (2004) point out that in the former institu-

tion, the posted price is set so high that it is never accepted whereas in the

latter case it is set so low that it is never rejected.5 In fact, combined auc-

tion/posted price mechanisms are neither new nor only observed at internet

marketplaces. Budish und Takeyama (2001, p. 326, fn. 2) note that an auction

with a posted price “bears some resemblance to the ‘$100-or-best-offer’ pric-

5 This paper is discussed in more detail in Section 2.6.
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ing mechanism often found in secondhand markets.” According to Mathews

(2003), the phenomenon of auctions augmented with a buyout option was first

noted explicitly by Lucking-Reiley (2000).

1.3 The Buy It Now Option on eBay

Several versions of auctions with a posted price offer can be found at different

internet marketplaces. The APPO model considered in the present analysis

most closely resembles eBay’s auction with a Buy It Now option.6 Before

the model is introduced in Chapter 2, its eBay archetype is described in the

following.7

Consider first a pure fixed price offer on eBay. The marketplace refers to

such an offer as the Buy It Now price. The offer is listed on eBay’s internet

page for a certain period of time. As soon as a buyer accepts the offer, he

acquires the item and pays the price the seller has asked for.

As with the posted price, an auction on eBay lasts for a pre-defined period

during which interested bidders are invited to submit (maximum) bids. The

auction starts at a reserve price p that the seller has set.8 Bidders then enter

so-called “maximum bids” that cannot be lower than the reserve price. At any

given time, the pseudonym of the current high bidder,9 i. e. the bidder who has

submitted the highest maximum bid, as well as the current price of the item

is publicly revealed.10 If no or only one bid has been entered, the current price

equals the reserve price p that the seller has set. Once two or more bids have

been submitted, the current price is the lesser of the highest maximum bid and

the second highest maximum bid plus a given bid increment. In case of a tie,

i. e. if the two highest maximum bids are equal, the high bidder is the bidder

who submitted his bid first and the current price is equal to his maximum bid.

The rules of eBay further require that any new bid must exceed the current

price by at least the bid increment. The bidder who is listed as highest bidder

6 See http://www.ebay.com or http://www.ebay.de.
7 Note that variations of the basic mechanism also exist. An important feature on

ebay.com is, for example, the option to specify a secret reserve price that is not
revealed to the bidders. This option as well as other variants are not addressed
in this analysis.

8 On eBay the reserve price is called “starting bid.”
9 The pseudonym is a self-chosen user name that a bidder (or seller) uses to log on

to the eBay platform. There is not necessarily a one-to-one relationship between
user names and persons, since several individuals can share one account (e. g.
families) or one person might maintain several accounts.

10 Different rules apply to so-called private auctions.
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at the end of the auction acquires the item and pays the auction’s closing

price.

If, finally, the seller decides to conduct an auction with a posted price,

a bidder can either bid in the auction or acquire the item for the posted

price. The latter option, however, is only available as long as no bid has been

entered. If the bidder opts for the posted price, the auction closes immediately

and the bidder acquires the item for the posted price. If, on the other hand,

the bidder submits a bid in the auction, the option to acquire the item for the

fixed price expires. Thenceforward, bidders may only bid in the auction, and

the above rules of an eBay auction apply to both the winner and the price

determination.11

1.4 A First Assessment

By means of an auction, the seller of an item is always able to generate

revenues at least as high as those generated by using a fixed price offer. To

see this, consider a fixed price offer p̄ and compare it with an auction in which

the seller sets the reserve price p = p̄. If the item is sold for the fixed price, the

seller collects p̄. In the same situation, the seller would collect at least p = p̄

in an auction because the closing price of the auction could well be above the

reserve price, but never below. If, on the other hand, the item is not sold in

the auction, no bidder values the item above the reserve price. Thus, the item

would not be sold for the posted price either, and the revenues are zero in

both institutions.

One might ask whether the performance regarding the revenues of the

hybrid institution, which combines an auction with a posted price offer, lies

somewhere in between a pure auction and a pure fixed price offer. Example 1.1,

however, shows that—at least ex-post—this is not true in general.

Example 1.1. Consider the situation of two risk neutral bidders, 1 and 2,

whose independent private valuations are uniformly distributed over [0; 1] and

let the reserve price be zero. Further assume that in a specific case the val-

uations of the bidders 1 and 2 are v1 = 0.9 and v2 = 0.2, respectively. The

11 Interesting variations of this mechanism can be found on Yahoo! (http://
auctions.shopping.yahoo.com) and LabX (http://www.labx.com). On the for-
mer site, the option to acquire the item for the posted price does not expire after
the first bid has been entered. Moreover, the auction closes immediately once
bidding reaches the posted price. Thus, the posted price also constitutes an up-
per bound of the auction’s revenue. Similarly, on LabX the posted price does not
expire upon the submission of an auction bid. Rather, the option expires 24 hours
before the scheduled closing time of the auction.
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probability distribution of the valuations is common knowledge; the actual

valuations, however, are private information of the respective bidders.

Neglecting the bid increment, an auction generates revenues of 0.2 because

bidder 2 will quit the auction if the current price reaches that amount.

Bidder 1, who does not know the valuation v2 of bidder 2, wins the auction

if v2 does not exceed his own valuation. In this case he acquires the item at a

price equal to v2 and gains v1 − v2. If bidder 1 does not win the auction, his

payoff is 0. Since valuations are uniformly distributed, the ex-ante expected

gain of bidder 1 calculates to
∫ 0.9

0
(0.9 − x) dx = 81

200 .

Assume now that bidder 1 can choose between a posted price offer p̄ = 0.4

and participating in the auction. If he accepts the posted price offer, he gains

v1 − p̄ = 1
2 , which is higher than the expected gain of 81

200 from participating

in the auction. Thus, the bidder will accept the posted price offer and the

seller collects revenues of p̄ = 0.4, which are higher than the revenues of 0.2

generated by the alternative auction. ��
Given a particular set of valuations, in Example 1.1 the auction combined

with a posted price offer outperforms a (pure) auction in terms of the seller’s

revenue. The following chapters investigate under which conditions this holds

more generally.



2

Model of the APPO Market Institution

In this chapter, a model of an auction with a posted price offer (APPO) will

be developed. As is common in the auction literature, an APPO is modeled

as a game with incomplete information (e. g. Wilson, 1992). In such a game,

a player i has a certain type θi ∈ Θi. Each player knows his own type, but

does not know the types of the other players. However, the ex-ante (joint)

probability distribution of the players’ types is common knowledge, as are the

players’ payoff functions contingent upon their types.1

To analyze games with incomplete information, Harsanyi (1967, 1968a,b)

introduces the concept of a Bayesian equilibrium, which is a natural extension

of the Nash equilibrium.2 Unless otherwise stated, the term equilibrium refers

to a Bayesian equilibrium in the subsequent analysis.

1 See, e. g., Fudenberg und Tirole (1991) for an introduction to the theory of games
with incomplete information.

2 Technically, a game with incomplete information can be transformed into an
extensive form game with imperfect information. In the transformed game, an
additional move by an artificial player “nature” is introduced prior to any action
by a player of the original game. In this first move (or the first n moves), nature
assigns each of the players a type. The information sets of the players are such
that they can observe only their own types, and not those of the other bidders. In
the transformed game, a player’s incomplete information becomes imperfect in-
formation about nature’s moves. Thus, the concept of a Nash equilibrium can be
applied to the transformed game (see Appendix A.1 for the notion of a Nash equi-
librium). A Bayesian equilibrium characterizes a strategy profile of the incomplete
information game that corresponds to a Nash equilibrium in the transformed or
expanded game with imperfect information.
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2.1 Preliminaries

2.1.1 Basic Assumptions

The APPO model is based on the symmetric independent private valuations

assumptions (SIPV, cf. e. g. McAfee und McMillan, 1987; Wolfstetter, 1999;

Krishna, 2002). In such a setting, a bidder’s type is simply a number that

represents his (monetary) valuation of the item for auction.

(A1) All bidders know with certainty their own monetary valuation

of an item put up for auction. However, bidders do not know the

other bidders’ valuations of the item.

(A2) Bidders consider all individual valuations but their own as ran-

dom variables. The (ex-ante) distribution function of a bidder’s

valuation is common knowledge. All valuations are stochastically

independent.

(A3) Bidders are symmetric, i. e. the distribution function of the

valuations is identical for all bidders.

Most authors who analyze auctions in an SIPV setting also assume that

bidders are risk neutral. The analysis of this chapter forgoes this assumption.

In fact, when analyzing the posted price offer, the possibility of risk averse

bidders will explicitly be taken into account.

2.1.2 Modeling the eBay Auction

The pure variant of the eBay auction, i. e. an auction in which the item for

sale is not also offered at a posted price, has similarities to both the English

and the second-price auctions. The similarity to the English auction relates

to its open bidding process and the fact that bidders are not restricted to

only one bid. In principle, they could repeatedly bid the minimum required

bid, i. e. the current price plus the bid increment, and quit the auction if that

minimum bid reaches or exceeds their valuation. Such a bidding process does

not differ from an English auction.3

On its help pages, however, eBay suggests another strategy to bidders:4

3 In an English auction, the sketched strategies even constitute an equilibrium if
the required minimum increment is assumed to be small enough to be neglected in
the analysis (cf., e. g., Krishna, 2002, p. 5; Milgrom und Weber, 1982a; Milgrom,
1989; Smith, 1987).

4 See http://pages.ebay.com/help/buy/proxy-bidding.html (July 8, 2004).
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Here’s how bidding on eBay works:

1. When you place a bid, you enter the maximum amount you’d be willing
to pay for the item. Your maximum amount is kept confidential from
other bidders and the seller.

2. The eBay system compares your bid to those of the other bidders.

3. The system places bids on your behalf, using only as much of your
bid as is necessary to maintain your high bid position (or to meet the
reserve price). The system will bid up to your maximum amount.

4. If another bidder has a higher maximum, you’ll be outbid. But, if no
other bidder has a higher maximum, you win the item. And you could
pay significantly less than your maximum price! This means you don’t
have to keep coming back to re-bid every time another bid is placed.

According to eBay, the advantage of the above strategy is that it makes

“bidding on auctions more convenient and less time-consuming for buyers.”5

The description on ebay.com, however, remains rather vague on what it means

by “as is necessary to maintain your high bid position.” Tests with a real

auction carried out on the site show that—if at least two valid bids have been

placed—the current price is always equal to the lesser of the highest maximum

bid and the second highest maximum bid plus the required bid increment.6

The technique in which a bidder submits his maximum bid to the platform

and allows the system to bid on his behalf is also referred to as proxy bidding.

The suggested procedure obviously resembles a second-price auction. Since,

however, the final price is generally higher than the second highest bid, eBay’s

auction format does not precisely conform to a second-price auction and the

following Example 2.1 shows that bidding one’s true maximum willingness to

pay is not a dominant strategy.7 In the example, the timing of bids is also

considered—an issue that has been neglected so far and that is investigated

in more detail in Section 2.1.3.

Example 2.1. Consider an auction that starts with a reserve price of $ 25

and let three bidders i = 1, 2, 3 participate in that auction. The three bidders

are willing to pay a maximum of $ 35, $ 31, and $ 30, respectively. As on eBay,

the bid increment is $ 1 and bidders can bid any dollar and cents amount.

Assume first that all bidders follow eBay’s advice: Bidder 1 starts the

bidding process by submitting a bid of $ 35. He becomes the high bidder and

the current price is $ 25. Now bidder 2 bids $ 31. This causes the current price

5 Ibid.
6 On the respective German site ebay.de, eBay states more clearly “Sie bezah-

len niemals mehr als Ihr Maximalgebot, sondern stets nur so viel, dass Sie den
Zweitbieter mit einem Erhöhungsschritt überbieten” (http://pages.ebay.de/
help/buy/proxy-bidding.html, July 8, 2004).

7 See Appendix A.1 for the notion of a dominant strategy.
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to jump to $ 31 + $ 1 = $ 32 and bidder 3 to refrain from bidding in the

auction. Bidder 1 wins the auction at the final price of $ 32.

Bidder 1 can, however, do better. An example is the following bid sequence:

Suppose that first bidder 3 places a bid of $ 30. The current price then yields

the reserve price of $ 25. If bidder 1 now enters a bid of $ 30.01, the current

price increases to $ 30.01 and no further bids will be placed. Bidder 1 again

wins the auction but pays only $ 30.01, i. e. almost two increments less than

according to the strategy suggested by eBay. ��
The bids in Example 2.1 constitute a (Nash) equilibrium, i. e. no bidder can

increase his payoff by deviating from his strategy given that all other bidders

choose the presented strategies.8 In fact, many more (Nash) equilibria exist,

but there is no equilibrium that fulfills stronger requirements such as ex-post

robustness or even dominance of strategies.9

Clearly, the required minimum bid increment and eBay’s rule for determin-

ing the current price are the main differences between a second-price auction

and the auction institution applied by eBay. The minimum increment also

defines the magnitude of the maximum difference between the bidders’ equi-

librium payoffs in a second-price auction and in an auction on eBay.10 For

simplicity, in the remainder of the text it is assumed that the required min-

imum bid increment is small and that it can be neglected in the analysis. If

one further restricts the strategy space to only one bid, an auction on eBay

is in fact equivalent to a second-price auction: the bidder who submits the

highest bid wins the auction and pays a price equal to the second highest

bid. It has been known since Vickrey (1961) that in such a situation, it is a

(weakly) dominant strategy for bidders to bid their true valuation (cf. also

Krishna, 2002). Thus, the bidder who values the auctioned item most will win

the auction and pay the second highest valuation.

Clearly, the open and iterative format of the eBay auction, i. e. the op-

tion to submit multiple bids and to react to other bidders’ actions, allows

8 Example 2.1 also constitutes a counter-example to the claim by Ockenfels und
Roth (forthcoming, p. 6, fn. 8) that in an auction on eBay “bidding one’s true
value is a strategy that always yields a payoff not more than the minimum incre-
ment s below the supremum achievable by any other strategy, regardless of the
strategies chosen by the other bidders.”

9 The definition of a Nash equilibrium as well as an equilibrium in dominant strate-
gies is given in Appendix A.1. A strategy profile (σ1(v1), σ2(v2), . . . , σn(vn)) is
said to form an ex-post equilibrium if and only if for every bidder i and for every
profile of valuations v = (v1, v2, . . . , vn) the strategy σi(·) is a best response to
σ−i(v−i) (cf., e. g., Holzman und Monderer, 2004).

10 Smith (1987) notes that in an English auction, the equilibrium price must lie in
the interval [v(2)−δ, v(2) +δ] if the minimum increment is denoted by δ. The same
applies to eBay’s proxy auction.
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for a much wider scope of strategic alternatives. The possibility for bidders

to act as in an English auction is only one of them. Note, however, that in a

private values setting, the revelation of information about other bidders’ valu-

ations during the bidding process is of no relevance for the bidders’ strategies.

Regardless of his attitude towards risk, a rational bidder will bid up to his

valuation and quit the auction once the current price reaches that amount (cf.

e. g. Kagel, 1995; Milgrom, 1989). If the minimum bid increment is assumed

to be small or negligible, again the bidder with the highest valuation wins the

auction and pays a price equal to the second highest valuation. Thus, extend-

ing the strategy space to that of an iterative auction format does not alter

the outcome.

The following analysis of eBay’s auction with a posted price offer builds

on that result. Whenever the posted price offer is not available to a bidder,

the auction is modeled as a sealed-bid second-price auction. It is assumed

that all bidders follow their dominant strategies and bid their true valuations.

Consequently, the auction’s revenues are assumed to equal the second highest

valuation.

2.1.3 Timing of Bids

In neither of the two stylized interpretations of an eBay auction presented

above is the concise timing of a bid of strategic significance—as long as a bid

is submitted at all. Nonetheless, the process of an auction on eBay and the

timing of bids have been subjects of academic investigations (e. g. Bajari und

Hortaçsu, 2003; Ockenfels und Roth, forthcoming; Roth und Ockenfels, 2002).

A particularly interesting area of research relates to the ending rule of an eBay

auction. Remember that an auction on eBay closes at a pre-determined point

in time (hard close) as opposed to accepting additional bids for at least a

minimum time interval after the receipt of every new bid (soft close).11 A

central result of the above investigations is that there are equilibria in which

bidders only submit their bids at the very last moment of an auction—a

phenomenon that is commonly referred to as sniping.

In the following, the line of reasoning for sniping is summarized. It is

then argued that the incentives for sniping do not exist if a posted price

offer is available to a bidder. Thus, when modeling a hybrid institution which

combines an auction with a posted price offer in the following sections, it will

11 The terms “hard close” and “soft close” were introduced by Roth and Ockenfels
(cf. e. g. Roth und Ockenfels, 2002). Examples of auctions with a soft close include
the internet auctions conducted by Amazon.com (http://auctions.amazon.com)
or Yahoo! (http://www.auctions.yahoo.com).
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be assumed that a bidder acts immediately if he can choose between accepting

the posted price offer and bidding in an auction.

In order to specifically address the issue of eBay’s strict ending rule, mod-

eling the eBay auction (with no posted price offer) as a two-stage game has

been suggested. Bajari und Hortaçsu (2003), for example, consider an auction

that closes at time T . According to their model, the first stage consists of an

open ascending auction that stretches until T − ε. During the first stage, bid-

ders can submit bids, drop out of the auction, observe other bidders drop out,

and rejoin the auction without restrictions. The second stage resembles the

last moment of the eBay auction. It lasts from (T −ε) until T—a time interval

too short for bidders to react to other bids. This stage reflects a second-price

sealed-bid auction in which all bidders—including those who dropped out or

did not bid at all in the first stage—are invited to submit a final bid.

In the cited paper, Bajari und Hortaçsu specify an econometric model for

analyzing empirical data. Investigating a setting which is based on Wilson’s

(1977) symmetric common value model, they claim that “[b]idding zero (or

not bidding at all) in the first stage of the auction and participating only

in the second stage of the auction is a symmetric Nash equilibrium of the

eBay auction” (ibid., p. 338). Thus, according to their model, bids may be

submitted only shortly before the auction closes.

The main driver for Bajari und Hortaçsu’s claim is that in the analyzed

common value setting, bidders have an incentive not to reveal their private

signal or estimate of the true common value of the item to other bidders in

the open auction of the first stage.12

Ockenfels und Roth (forthcoming) use a similar approach. In their model,

the first stage lasts over the time interval [0; T ) and the final stage takes place

precisely at T . However, they further stipulate that a bid submitted at the

final stage is only successfully transmitted with a positive probability ε < 1.

With the probability (1 − ε), the bid gets lost or does not reach the auction

site in time due to erratic delays in internet traffic. Ockenfels und Roth show

that in their model, sniping pays even in a private values setting—the setting

that has also been chosen for this analysis.

To illustrate profitable sniping, the authors consider an example in which

two bidders, 1 and 2, both value the item for auction at h. If both bid in an

12 The incentive of bidders not to reveal private information is a well-known result
of auction theory. Cf., e. g., Milgrom und Weber (1982a,b) for a discussion on
revealing private information. Milgrom und Weber (1982a) show in particular
that if the item for sale has a common value component, the expected price in an
English auction is not less than in a second-price sealed-bid auction due to the
revelation of information during the bidding process (linkage principle).
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auction up to their valuation, they both receive a payoff of zero.13 Another

symmetric equilibrium that yields higher expected payoffs is given by the

following strategy profile: On the equilibrium path, neither bidder submits a

bid prior to T . At time T , both players submit a bid of h. Off the equilibrium

path, a bidder immediately bids h as soon as the other player submits a bid

prior to T . If the reserve price is given by p < h, the expected payoff of a

bidder is ε (1 − ε) (h − p) > 0.

Ockenfels und Roth claim that the above example can be extended to the

case with n bidders and non-degenerated distributions of bidders’ valuations.

A strategy profile of late bidding (sniping) may still constitute an equilibrium.

The result, however, is sensitive to the parameters p and ε, the number of

bidders, and the distribution of valuations.

Note that in the above auction setting there are other equilibria that yield

even higher expected payoffs. The following strategy profile is an example.

Following Ockenfels und Roth, for once the bid increment s is taken into

consideration in order to precisely establish the properties of an equilibrium.

The presented strategies, however, differ from those of the cited authors.

Assume that h is much larger than p and s (in particular, assume that

p + 2s < h) and let bidder 1 join the auction slightly before bidder 2, i. e.

bidder 1 can submit a bid before bidder 2 is able to act. Now consider the

following strategies: Bidder 1 submits a bid b slightly above the reserve price p

plus one increment s, but below p+2s (i. e. p+s < b < p+2s) before bidder 2

enters the scene. The current price is then the reserve price p. Now bidder 2

submits a bid of p + s. Due to eBay’s rules of incrementing the current price,

it will jump to b, but bidder 1 remains the high bidder. On the equilibrium

path, no further bids will be submitted before T , but at T , both bidders again

bid h. As above, off the equilibrium path both bidders will immediately bid

h if the other bidder submits a bid before T . Because b < p+ 2s, and because

bidder 1 remains the high bidder, bidder 2’s bid reveals to all bidders that

neither bidder has bid his full valuation h. This allows the enforcement of the

strategies. Applying this strategy profile, bidder 1 receives a payoff of (h− b)

with a probability of (1 − ε) (1 − ε), (i. e. the case in which none of the bids

at T reaches the auction platform in time) and a payoff of (h− p− 2s) with a

probability of ε (1−ε) (i. e. the case in which only bidder 1’s bid is successfully

transmitted). Bidder 2 obtains a positive profit if only his bid is successfully

transmitted. Thus, his expected payoff yields ε (1− ε) (h− p− 2s− ε). If both

bidders submit their bid successfully at T , they both receive a payoff of 0.

13 Ockenfels und Roth do not ignore the minimum bid increment. In that respect
their analysis is more precise than the summary above. The simplification of the
presentation, however, does not affect the main result.
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Suppose the ex-ante probability of becoming bidder 1 or bidder 2 is 0.5. Since

h is assumed to be much larger than p and s, the expected payoffs of both

bidders then exceed the expected payoffs in the cited example from Ockenfels

und Roth.

For a (pure) auction on eBay, both of the above strategy profiles are

examples of equilibria with private valuations (subject to suited parameters,

such as the reserve price, the bid increment, or the probability distribution

of valuations). By analyzing the properties of a perfect equilibrium, it will

be established that an immediate action dominates waiting if a posted price

offer is available to a bidder.14 Note that this does not rule out sniping: after

a bidder has submitted a very low bid, the posted price offer expires and the

bidders might continue to bid according to strategies that involve sniping.

The strategy profile given in the previous paragraph is an example.

For the next proposition, it is helpful to denote the history of an auction at

time τ by a set Hτ , which contains all information about the auction process

up until τ that has been made available by eBay’s bidding platform.

Proposition 2.1 (Immediate action). Consider an auction on eBay in

which the item is also offered at a posted price. Let the bidders i =

1, 2, . . . , n have private valuations for the auctioned item and let the auc-

tion close at T . At any point in time τ ≤ T , a bidder may either wait,

i. e. do nothing, place a bid b ∈ R+, or—as long as the history Hτ of the

auction is the empty set ∅—accept the posted price offer. A strategy σi

of bidder i maps any point of time τ and any history Hτ into an action

a = σi(τ, Hτ ) with a ∈ {‘wait’} ∪ R+ ∪ {‘accept’}.
If, at time τ , the posted price offer is available to a (risk neutral or risk

averse) bidder i who values the item higher than the reserve price, then

in a perfect equilibrium σ∗ bidder i either places an immediate bid of

some amount b or immediately accepts the posted price offer, i. e. ∀ i, τ :

σ∗
i (τ, ∅) �= ‘wait’.

Proof. (Sketch.) Assume to the contrary that at τ a bidder decides to wait,

even though no bids have been submitted by that time, i. e. ∃ i, τ : σ∗
i (τ, ∅) =

‘wait’. If the strategy of the waiting bidder is part of a strategy profile σ∗

which constitutes a perfect equilibrium, then a sequence of (mixed) strategy

profiles sz and a sequence of trembling functions ηz exist with limz→∞ ηz =

0 and limz→∞ sz = σ∗.15 Moreover, for all z the profile sz constitutes a

14 See Berninghaus et al. (2002) or van Damme (1991) for the notion of a perfect
equilibrium. The concept goes back to Selten (1975).

15 Note that the notation is somewhat vague. Strictly speaking, a strategy profile
which constitutes a perfect equilibrium is itself a mixed strategy profile. Addi-
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Nash equilibrium of the perturbed game Γ (ηz) in which the strategy space is

restricted to the set of mixed strategies that assign each pure strategy σi a

positive density of at least ηt(σi). Thus, within the next time interval, both

the acceptance of the posted price offer and the submission of a bid occur

with positive probability.

In order to sketch the remainder of the proof, it will be assumed for sim-

plicity’s sake that in the perturbed game only those bidders competing with

the considered bidder are restricted to the perturbed mixed strategies. In that

case, the strategy σ∗
i of the considered waiting bidder must be a best reply,

even if the other bidders choose the action ‘accept’ or bid some amount b with

positive probability within the next time interval.

Because the considered bidder values the item above the reserve price, his

expected utility from participating in the auction is at least zero.

Assume first that at time τ , the utility of the considered bidder from

accepting the posted price offer is higher than his expected utility from par-

ticipating in the auction. If he does not accept the offer immediately, then in

the perturbed game, another bidder either accepts the posted price offer, or

places a bid in the auction during the next small time interval with positive

probability. In the former case, the utility of the considered bidder is reduced

to zero; in the latter case, the bidder is forced into an auction because the

posted price offer expires. According to the assumption, however, the auc-

tion yields lower expected utility than the posted price offer. Thus, the action

‘wait’ cannot belong to an equilibrium strategy.

Assume now that the considered bidder prefers an auction to the posted

price offer. The bidder realizes the maximum payoff in the auction if he obtains

the item for the reserve price. In the chosen setting with private valuations

there is no disadvantage of placing such a bid immediately. The considered

bidder i wins the auction if his valuation vi is the highest valuation among

all bidders. Denote the bidder with the second highest valuation by j and his

valuation by vj . In the perturbed game, bidder j will accept the posted price

offer with positive probability. Because vj < vi, bidder i is well-advised to act

quickly. By bidding immediately he will extinguish the posted price offer and

win the auction.

According to Proposition 2.1, the posted price offer is available to a bidder

in only two cases:

1. The bidder is the first to become aware of the auction.

tional notational difficulties arise because both the time and the amount of a bid
are continuous variables. This sketch of proof, however, reflects the idea of the
reasoning behind the proposition.
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2. All bidders who became aware of the auction before the considered bidder

valued the item below the reserve price.

The APPO model focuses on the first case. For the sake of clarity, in an

APPO there is only one bidder to whom the posted price offer is available. If

that bidder rejects the option, an auction will be conducted. Thus, the APPO

model differs slightly from the mechanism applied by eBay.

Still, an APPO is very similar to its archetype, and the analysis of the

APPO model provides a valuable insight into the mechanism applied by eBay.

The model thus helps to better understand the strategies and decisions of

bidders and sellers. From the buyer’s point of view the difference mentioned

above can be neglected: If a bidder 0 becomes aware of an auction on eBay

at time τ0, he estimates the number n of bidders j = 1, . . . , n who will also

become aware of the auction before it closes at T . He will also estimate the

distribution of the highest valuation among all these bidders and calculate

his expected utility from participating in the auction. In an SIPV setting,

the valuations and strategies of bidders j = 1, . . . , n or, more precisely, the

expected utility of bidder 0 from participating in the auction is independent

of how many bidders with a valuation lower than the reserve price became

aware of the auction before τ0.
16

2.1.4 Definition of an APPO

Based on the preparatory remarks in the previous sections, this section intro-

duces a formal model of an auction with a posted price offer. A fundamental

assumption of the model is that the posted price option is offered to exactly

one randomly selected bidder. If this bidder rejects the offer, an auction will

be conducted and the posted price offer will not be offered to any other bid-

der. The underlying assumption is that the bidder who is the first to become

aware of an APPO’s archetype—a real auction with a posted price offer on

eBay—is in an advantageous position: he can choose to accept the posted

price offer or he can submit an auction bid. According to Proposition 2.1,

the bidder will submit a bid immediately if he favors an auction to a posted

price offer. In this case, the posted price offer expires on eBay as it does in

an APPO. There are, however, two differences: First, in an APPO, a bidder

cannot relinquish his right to exercise the posted price offer so that it can be

16 Of course, this does not hold for the seller: Imagine that a bidder −1 becomes
aware of an auction at time τ−1. Since the bidder’s valuation is lower than the
reserve price, he not only rejects the posted price offer but also declines to bid
in the auction. In this case, it makes a difference to the seller whether the next
bidder 0 is again granted the posted price offer or not.
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exercised by another bidder. Second, if a bidder on eBay decides not to bid in

an auction at all because the reserve price exceeds his valuation, the posted

price offer does not expire. It does expire, however, in an APPO.

Due to the hard ending rule of eBay, its proxy bidding mechanism, and

its rule of incrementing the current price, there is no common agreement

among researchers how to model an auction on eBay (cf. Section 2.1.2). In

this analysis, the approach taken by Roth und Ockenfels (2002) is adopted

and eBay’s auction format is modeled as a standard second-price auction.

Definition 2.2 (APPO market institution). In an auction with a posted

price offer (APPO), the seller of an item sets both a reserve price p and a

posted price p̄. A randomly selected bidder is then asked whether he wants

to buy the item at the posted price. If the selected bidder accepts this offer

he acquires the item at the price p̄ and no auction will be conducted. If, on

the other hand, the selected bidder rejects the offer, the item is auctioned

among all bidders by means of a second-price auction with the reserve

price p.

The bidder who is offered the item at the posted price is called the decisive

bidder and the posted price offer is abbreviated as PPO.

Definition 2.3 (Corresponding auction). Let A be an APPO with a

reserve price p. A second-price auction with the same reserve price p

but no PPO is called the corresponding second-price auction of A or

corresponding auction for short.

Throughout this chapter it is assumed that a finite number n of bidders

participate in an APPO. Let N be the set of bidders. A bidder is referred to

by i ∈ N and the decisive bidder by ı̂ ∈ N . Note that the number n of bidders

may not be known in advance. In this case, n is considered the realization of

a random variable N whose probability distribution is known to all bidders

and the seller. If n ≥ 1, there is exactly one decisive bidder in each APPO.

The analysis refers to a symmetric independent private values setting. Each

bidder i ∈ N values the item at vi. The valuations vi are independent draws

of a random variable V with a cumulative probability distribution function

(cdf) F : R → [0; 1] that has a non-empty, convex support M ⊂ R. Moreover,

V is assumed to have a probability density function (pdf) that is referred to

by f := R → R+.

Let (v(1), v(2), . . . , v(n)) denote the ordered vector of n independent draw-

ings vi of V with v(1) ≥ v(2) ≥ . . . ≥ v(n). The valuations v(1) and v(2) can

then be interpreted as the realizations of random variables V(1),n and V(2),n,

respectively, or V(1) and V(2) for short. A realization of V(i),n is the ith high-

est value of a sample of size n. If the number n of drawings is known in
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advance, the distribution and the density of V(1) and V(2) are referred to by

F(1),n(v), f(1),n(v), F(2),n(v), and f(2),n(v).17 If n is not known in advance but

is itself the realization of a random variable, or if the number of bidders is

not of interest in a particular context, the distribution and the density of V(1)

and V(2) are denoted by G(1)(v), g(1)(v), G(2)(v), and g(2)(v), respectively. The

highest valuation of all bidders but bidder i is denoted by v(1),−i = maxj �=i{vj}
and its distribution and density by G(1),−i(v) and g(1),−i(v), respectively.

2.2 Equilibrium Strategies and the Acceptance

Threshold

It is a well-known result of auction theory that in a second-price auction with

private valuations, an equilibrium in (weakly) dominant strategies exists (e. g.

Krishna, 2002, p. 15). Obviously, this also holds in the corresponding auction

of an APPO if the decisive bidder has rejected the PPO. Proposition 2.4

establishes that result.

Proposition 2.4 (Equilibrium in the corresponding auction). Consi-

der an APPO in which the decisive bidder has rejected the PPO and let i

be a bidder with valuation vi.

In the corresponding auction, it is a (weakly) dominant strategy for bidder

i to bid his valuation vi if vi ≥ p and not to bid if vi < p.

Proof. Note that an APPO can be considered as a two-stage game. In the

first stage, the decisive bidder chooses whether or not to accept the PPO. If

the decisive bidder accepts the PPO, the game ends and the bidders will take

no further actions. If, however, the decisive bidder rejects the PPO, a second-

price auction will be conducted as a second stage. Thus, the equilibrium of the

corresponding auction is the equilibrium of the subgame of the APPO that

starts with the rejection of the PPO. A proof that the strategy given in the

proposition in fact constitutes an equilibrium in dominant strategies of the

corresponding second-price auction is omitted here and the reader is referred

to the literature (cf., e. g., Krishna, 2002, Milgrom, 1989).

In a second-price auction, the equilibrium in dominant strategies is inde-

pendent of the bidders’ attitudes towards risk (Kagel, 1995). A bidder’s atti-

tude towards risk, however, does affect his decision whether or not to accept

an APPO’s posted price offer. Let uı̂ : R → R denote bidder ı̂’s (von Neumann-

Morgenstern) utility function and assume that the utility function is strictly

17 For an introduction to order statistics cf. Appendix A.3.
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increasing and differentiable.18 Given that the decisive bidder ı̂ values the

item at vı̂, his utility is

uı̂(vı̂ − p̄) (2.1)

if he accepts the PPO. If, on the other hand, bidder ı̂ rejects the offer and

an auction is being conducted, several cases must be distinguished: Firstly,

uı̂(0) indicates bidder ı̂’s utility if he is not awarded the item. Secondly, with

a probability of G(1),−ı̂(p) bidder ı̂ obtains the item for the reserve price p,

in which case his utility is uı̂(vı̂ − p). Thirdly, if ı̂ values the item highest

among all bidders and if the highest valuation v(1),−ı̂ of all other bidders is

higher than the reserve price, his utility yields uı̂(vı̂−v(1),−ı̂). Remember that

the density of v(1),−ı̂ is given by g(1),−ı̂(v(1),−ı̂) and assume—without loss of

generality—that uı̂(0) = 0.19 Then the expected utility of bidder ı̂ is

Euı̂ =

{
0 if vı̂ < p,

uı̂(vı̂ − p)G(1),−ı̂(p) +
∫ vı̂

p
uı̂(vı̂ − x) g(1),−ı̂(x) dx otherwise .

(2.2)

Equations (2.1) and (2.2) shed light on the optimal strategy of the decisive

bidder, i. e. the strategy that maximizes his expected utility. The decisive

bidder will accept the PPO only if the utility from accepting the PPO is

at least as high as the expected revenues from the auction. If vı̂ ≥ p, the

condition for accepting the PPO yields

uı̂(vı̂ − p̄) ≥ uı̂(vı̂ − p)G(1),−ı̂(p) +

∫ vı̂

p

uı̂(vı̂ − x) g(1),−ı̂(x) dx . (2.3)

Applying the inverse of the utility function to (2.3), one obtains20

vı̂ − p̄ ≥ u−1
ı̂

(
uı̂(vı̂ − p)G(1),−ı̂(p) +

∫ vı̂

p

uı̂(vı̂ − x) g(1),−ı̂(x) dx

)

⇐⇒ p̄ ≤ vı̂ − u−1
ı̂

(
uı̂(vı̂ − p)G(1),−ı̂(p) +

∫ vı̂

p

uı̂(vı̂ − x) g(1),−ı̂(x) dx

)
. (2.4)

18 Cf. e. g. Mas-Colell et al. (1995, p. 170ff) for the notion of von Neumann-
Morgenstern utility (von Neumann and Morgenstern, 1944).

19 Von Neumann-Morgenstern utility representations of a preference relation ≺ over
lotteries are unique up to affine transformations αu(·) + β with α > 0 and β ∈ R
(Kreps, 1990, p. 76f). If necessary, a preference-preserving transformation of the
utility function with an appropriately chosen β ensures the assumption.

20 Since uı̂(·) is strictly increasing, the inverse u−1
ı̂ (·) of the utility function is well-

defined.
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In order to further elaborate on the strategy which maximizes expected

revenues, Definition 2.5 introduces the concept of a bidder’s acceptance thres-

hold, which plays a crucial role in the remainder of the analysis.

Definition 2.5 (Acceptance threshold). Consider an APPO with a re-

serve price p and a posted price offer p̄ and let the decisive bidder ı̂ value

the item at vı̂ > p. Then the term

tı̂(vı̂) := vı̂ − u−1
ı̂

(
uı̂(vı̂ − p)G(1),−ı̂(p) +

∫ vı̂

p

uı̂(vı̂ − x) g(1),−ı̂(x) dx

)

is called the acceptance threshold of the decisive bidder and the inequality

p̄ ≤ tı̂(vı̂)

is called the APPO threshold condition.

The acceptance threshold of Definition 2.5 is a rather complex term.

Lemma 2.6 introduces an alternative representation.

Lemma 2.6 (Alternative form of acceptance threshold). Equivalently

to Definition 2.5, the acceptance threshold of the decisive bidder in an

APPO can be written as

tı̂(vı̂) = vı̂ − u−1
ı̂

(∫ vı̂

p

u′
ı̂(vı̂ − x)G(1),−ı̂(x) dx

)
. (2.5)

Proof. According to Definition 2.5, the acceptance threshold is given by

tı̂(vı̂) = vı̂ − u−1
ı̂

(
uı̂(vı̂ − p)G(1),−ı̂(p) +

∫ vı̂

p

uı̂(vı̂ − x) g(1),−ı̂(x) dx

)
.

Integration by parts yields

tı̂(vı̂) = vı̂ − u−1
ı̂

(
uı̂(vı̂ − p)G(1),−ı̂(p) +

[
uı̂(vı̂ − x)G(1),−ı̂(x)

]vı̂

p

+

∫ vı̂

p

u′
ı̂(vı̂ − x)G(1),−ı̂(x) dx

)

= vı̂ − u−1
ı̂

(
uı̂(0)G(1),−ı̂(vı̂) +

∫ vı̂

p

u′
ı̂(vı̂ − x)G(1),−ı̂(x) dx

)

= vı̂ − u−1
ı̂

(∫ vı̂

p

u′
ı̂(vı̂ − x)G(1),−ı̂(x) dx

)
.
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For illustration, Figure 2.1 plots a decisive bidder’s threshold versus his

valuation, which is given on the abscissa. Remember that the acceptance thres-

p̄
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quit bid accept

t(v)

Valuation
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Figure 2.1. Strategy choices of a bidder

hold is only defined for valuations higher than the reserve price p. In the figure,

different valuation areas are mapped to the strategic options ‘quit’, ‘bid’, and

‘accept’. Based on the preceding calculations, the following Theorem 2.7 es-

tablishes that the bidder accepts the PPO if his threshold exceeds the posted

price p̄. From Proposition 2.4 one knows that the bidder does not submit a

bid if his valuation is lower than the reserve price p. In all other cases, the

bidder submits a bid equal to his valuation. As will be shown in Section 2.5,

the bidding area is not always a convex set.

Theorem 2.7 (Acceptance of the PPO). A decisive bidder ı̂ who values

the item for auction in an APPO at vı̂ ≥ p accepts a posted price offer

p̄ only if the threshold condition holds. He strictly prefers the PPO over

the corresponding auction if the threshold condition holds strictly and he

is indifferent between accepting the PPO and bidding in the auction if the

threshold condition holds with equality.

Proof. The “only-if”-part follows from the Equations (2.1)–(2.4). The

proofs of the “if”-part and the “indifference”-part run analogously.

A bidder who is offered a posted price option compares the utility of ac-

cepting the PPO with the expected utility of rejecting it, i. e. the expected
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utility from participating in the corresponding auction. The acceptance thres-

hold indicates the maximum posted price offer that a bidder with a given

valuation would accept, or, more precisely, the threshold is the posted price

at which a bidder is indifferent between accepting the offer and rejecting it. If

offered the posted price option, a bidder ı̂ accepts any p̄ < tı̂(vı) and rejects

any p̄ > tı̂(vı̂). Given the parameter p of an APPO, the cdf G(1),−ı̂(·), and

bidder ı̂’s utility function uı̂(·), the acceptance threshold is a function of vı̂.

Example 2.2. Consider an APPO with n symmetric bidders and independent

private valuations that are uniformly distributed over the interval [0; 1]. The

cdf of the valuations is

F (v) =

⎧⎨
⎩

0 if v < 0,

v if 0 ≤ v ≤ 1,

1 if 1 < v,

(2.6)

and the density is given by

f(v) =

⎧⎨
⎩

0 if v < 0,

1 if 0 ≤ v ≤ 1,

0 if 1 < v .

(2.7)

Thus, the first-order statistic’s density is f(1),n(v) = n Fn−1(v) f(v) (cf.

Appendix A.3).

Assume further that the decisive bidder ı̂ is risk neutral and let his utility

of an auction’s payoff x be uı̂(x) = x. Applying Lemma 2.6, the decisive

bidder’s acceptance threshold with respect to his valuation vı̂ is then given by

tı̂(vı̂) = vı̂ − u−1
ı̂

(∫ vı̂

p

u′
ı̂(vı̂ − x) G(1),−ı̂(x) dx

)
(2.8)

= vı̂ −
∫ vı̂

p

xn−1 dx (2.9)

= vı̂ +
1

n
pn − 1

n
vı̂

n . (2.10)

Figure 2.2 on the next page illustrates the acceptance threshold of the example

for p = 0 and n = 3 as well as n = 5 bidders. ��

2.3 Properties of the Acceptance Threshold

Figure 2.2 shows that the threshold functions lie below the first bisecting line.

This, of course, is a general result because accepting a PPO at a price that is
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Figure 2.2. Acceptance threshold for risk neutral bidders with [0; 1] uniformly
distributed valuations and p = 0

higher than a bidder’s valuation leads with certainty to a loss of the respec-

tive bidder.21 The first bisecting line thus constitutes an upper bound of the

acceptance threshold. In fact, the bisecting line is the acceptance threshold of

an extremely risk averse bidder who follows a maximin-strategy. Such a bidder

(weakly) prefers any posted price offer that does not exceed his valuation over

the corresponding auction, since in the auction the bidder bears the risk of

not obtaining the item at all, which would yield a payoff of zero.

The threshold function of a risk neutral bidder, on the other hand, consti-

tutes the lower bound of the threshold of a risk averse bidder: Such a bidder

prefers obtaining the item with certainty to the random outcome of the cor-

responding auction. In order to ensure the certain outcome at the given price

p̄, he is willing to pay a (risk) premium on top of the risk neutral threshold.

Thus, for any given valuation, the threshold of a risk averse bidder is higher

than the threshold of a risk neutral bidder. The opposite is the case for risk

loving bidders whose threshold lies below the risk neutral threshold. In the

case of an extremely risk loving bidder, i. e. a bidder who always prefers a lot-

tery over any certain outcome of that same lottery, the threshold is given by

the valuation-axis. Such a bidder would never accept a positive posted price

offer if there is a chance of obtaining the item for less in the corresponding

auction.

21 More formally, the result follows immediately from Lemma 2.6.
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Proposition 2.9 confirms the above argument by comparing the threshold

functions of two bidders who differ in their degree of risk aversion in the sense

of Arrow and Pratt (cf. A.2). Prior to stating the proposition, however, a

lemma is introduced that will be useful for the proof of the proposition.

Lemma 2.8 (Variation of Jensen’s inequality). Let f, g, and h be three

functions with domain and range R+ and a, b ∈ R+ (or b = ∞) with

a < b. Assume further that
∫ b

a
f(x) dx ≤ 1 and h(0) = 0. If h is concave,

then

h

(∫ b

a

f(x) g(x) dx

)
≥

∫ b

a

f(x)h(g(x)) dx .

Proof. Define α :=
∫ b

a
f(x). Note that 0 < α ≤ 1. If h is concave, then for

all x

h

(∫ b

a

f(x) g(x) dx

)

= h

(
α

(
1

α

∫ b

a

f(x) g(x) dx

)
+ (1 − α) 0

)

≥ α h

(
1

α

∫ b

a

f(x) g(x) dx

)
+ (1 − α) h(0)

= α h

(∫ b

a

1

α
f(x) g(x) dx

)
.

By construction
∫ b

a
1
α
f(x) dx = 1

α

∫ b

a
f(x) dx = 1 and Jensen’s inequality, as

stated e. g. in Sydsæter et al. (2000, p. 42), can be applied. One obtains

α h

(∫ b

a

1

α
f(x) g(x) dx

)

≥ α

∫ b

a

1

α
f(x)h(g(x)) dx

=

∫ b

a

f(x)h(g(x)) dx

which proves the lemma.

Since Lemma 2.8 does not require
∫ b

a
f(x) dx = 1, it is more general than

the assumptions of Jensen’s inequality in that respect. Note, however, that

the lemma requires h(0) = 0. In that sense it is more restrictive than the

latter.
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Proposition 2.9 (Acceptance threshold and risk aversion). Let i, j ∈
N be two bidders, of whom i is the more risk averse, i. e.

u′′
i (x)

u′
i(x)

≥ u′′
j (x)

u′
j(x)

∀x ∈ R .

Then the threshold functions ti(·) and tj(·) of the two bidders satisfy

ti(v) ≥ tj(v) ∀ v ∈ M .

Proof. Let ui(·) and uj(·) denote the utility functions of the two bidders

i and j and assume that bidder i is more risk averse than bidder j. According

to Pratt’s Theorem, a concave function z : R → R exists such that ui(v) =

z(uj(v)) ∀ v (see Appendix A.2). Since ui(0) = uj(0) = 0 and ui(x), uj(x) >

0 ∀x > 0, one has z(0) = 0 and λz(x) ≥ z(λx) ∀λ ≥ 1.

With symmetric distributions of bidders’ valuations G(1),−i ≡ G(1),−j and

g(1),−i ≡ g(1),−j. For convenience, define G(x) := G(1),−i(x) ∀x and g(x) :=

g(1),−i(x) ∀x as well as ξ :=
v
p

uj(v−x) g(1),−j(x) dx

1−G(1),−j(p) .

To be shown is

ti(v) ≥ tj(v) ∀ v ∈ M

⇐⇒ v − u−1
i

(
ui(v − p)G(1),−i(p) +

∫ v

p

ui(v − x) g(1),−i(x) dx

)

≥ v − u−1
j

(
uj(v − p)G(1),−j(p) +

∫ v

p

uj(v − x) g(1),−j(x) dx

)

⇐⇒ ui(v − p)G(1),−i(p) +

∫ v

p

ui(v − x) g(1),−i(x) dx

≤ z

(
uj(v − p)G(1),−i(p) +

∫ v

p

uj(v − x) g(1),−i(x) dx

)
. (2.11)

Starting with the right-hand side of Inequality (2.11), one obtains

z

(
uj(v − p)G(1),−j(p) +

∫ v

p

uj(v − x) g(1),−j(x) dx

)

= z
(
uj(v − p)G(1),−j(p) + ξ

(
1 − G(1),−j(p)

))
≥ G(1),−j(p) z(uj(v − p)) +

(
1 − G(1),−j(p)

)
z(ξ) (concavity of z)
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= G(1),−j(p) z(uj(v − p))

+
(
1 − G(1),−j(p)

)
z

(∫ v

p

uj(v − x)
g(1),−j

1 − G(1),−j(p)
dx

)

≥ G(1),−j(p) z(uj(v − p))

+
(
1 − G(1),−j(p)

) ∫ v

p

z(uj(v − x))
g(1),−j

1 − G(1),−j(p)
dx (Lemma 2.8)

= G(1),−j(p) ui(v − p) +

∫ v

p

ui(v − x) g(1),−j dx (Pratt’s theorem)

= ui(v − p) G(1),−i(p) +

∫ v

p

ui(v − x) g(1),−i dx (symmetry)

which equals the left-hand side of Inequality (2.11) and thus proves the propo-

sition.

Example 2.2 also suggests that a bidder’s threshold increases with his

valuation. While this is true if bidders are risk neutral, it does not hold in

general. The following Proposition 2.10 establishes the former and the subse-

quent (counter-) Example 2.3 proves the latter.

Proposition 2.10 (Monotonicity of the threshold in the valuation).

The threshold function ti(vi) of a risk neutral bidder i is strictly increasing

in vi.

Proof. Note first that the utility function ui(x) = x captures a risk neutral

bidder’s preferences (cf. fn. 19 on p. 19). The Equation (2.5) of Lemma 2.6

can thus be simplified to

ti(vi) = vi −
∫ vi

p

G(1),−i(x) dx

and the threshold’s derivative is

t′i(vi) = 1 − G(1),−i(vi)

> 0 ∀ vi < sup (M) .

The fact that the acceptance threshold may be decreasing in the valuation

is somewhat counter-intuitive. Example 2.3, however, shows that this may be

the case if bidders are risk averse. In light of Proposition 2.10, the example

is even more surprising. Remember that the acceptance threshold of a risk

averse bidder lies in between the risk neutral threshold and the first bisecting

line, which are both strictly increasing on M.
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Example 2.3. Let ı̂ be a risk averse bidder with uı̂(x) =
√

x and assume

further that a total of n = 2 bidders participate in the APPO. As in Exam-

ple 2.2, p = 0 and valuations are independently and uniformly distributed on

[0; 1]. The threshold function of the decisive bidder is22

tı̂(vı̂) = vı̂ − 4

9
v3

ı̂ . (2.12)
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Figure 2.3. Acceptance threshold of a risk averse bidder

In Figure 2.3 the solid line represents the threshold function tı̂(vı̂). For

low valuations, the threshold rises with the valuation. It declines, however,

for valuations that are larger than
√

3
2 . The reason is that the risk premium

declines sharply as the bidder’s valuation approaches the supremum of M. The

dotted and the dashed lines, respectively, contrast the acceptance threshold

against the first bisecting line and the corresponding threshold of a risk neutral

decisive bidder. ��
Example 2.2 in Section 2.2 also suggests that the threshold increases with

the number of bidders. Ceteris paribus, this is true regardless of the decisive

bidder’s risk attitude.

22 The calculation of the threshold function is rather mechanical. In Appendix A.4
the threshold function for the general case with n bidders and a decisive bidder
with a utility function u(v) = vα (α > 0) is derived. Equation (A.7) in the
Appendix can be used as a formula here.
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Proposition 2.11 (Effect of the number of bidders on the threshold).

Let i be a bidder in an APPO with a reserve price p and a known number

of (symmetric) bidders. For any given valuation vi, the threshold ti(vi)

rises with the number n of bidders.

Proof. Let F denote the common cdf of the bidders’ valuations and ui

bidder i’s utility function. Apply Equation (A.3) in the Appendix A.3 to

Lemma 2.6. Then the acceptance threshold ti(vi) yields

ti(vi) = vi − u−1
i

(∫ vi

p

u′
i(vi − x)Fn−1(x) dx

)
.

Since ui(x) is strictly increasing in x, u−1
i is strictly increasing too, and u′

i(·) >

0. Further, Fn−1(x) decreases in n, which proves the proposition.

Proposition 2.12 finally states that a bidder’s acceptance threshold rises

with the reserve price. Again, this result holds no matter what the bidder’s

risk attitude is.

Proposition 2.12 (Effect of the reserve price on the threshold). For

any given valuation vi, the acceptance threshold ti(vi) of bidder i increases

with the APPO’s reserve price p independent of the bidder’s attitude to-

wards risk.

Proof. Again, the proof starts with Lemma 2.6:

ti(vi) = vi − u−1
i

(∫ vi

p

u′
i(vi − x) G(1),−i(x) dx

)
.

The derivative g′(z) of the inverse g ≡ f−1 of an invertible function f defined

on I ⊂ R is g′(z) = 1
f ′(g(z)) whenever f ′(g(z)) �= 0 (see, e. g., Simon und

Blume, 1994, p. 79). Thus, the derivative of ti(vi) with respect to p yields

d

dp
ti(vi) =

u′
i(v − p) G(1),−i(p)

u′
i

(∫ vi

p
u′

i(vi − x) G(1),−i(x) dx
)

> 0 .

Proposition 2.12 shows that the reserve price and the PPO are not inde-

pendent of each other. The higher the seller sets the reserve price, the higher

the likelihood that the decisive bidder will accept the PPO. The reason is

obvious: the higher the reserve price is, the less attractive the corresponding

auction for the bidder is.
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2.4 Revenues in an APPO

When analyzing auctions, the expected revenues of the auctioneer are of par-

ticular interest. In this section, the expected revenues of an APPO are inves-

tigated and compared to those of a (pure) second-price auction.

First intuition suggests that offering a posted price option favors the bid-

ders at the expense of the seller. The decisive bidder accepts the PPO if that

offer is more attractive than the corresponding second-price auction. In fact,

a risk neutral bidder accepts the PPO if it is sufficiently low compared to

the expected price in the corresponding auction. Since, however, these two

numbers also correspond to the seller’s revenues, giving the bidder the possi-

bility to choose between the two alternatives conflicts with the sellers’ goal to

maximize revenues.

Theorem 2.13 shows that offering a posted price option in fact lowers the

seller’s expected revenues if the decisive bidder is risk neutral.

Theorem 2.13 (Revenues from an APPO with risk neutral bidders).

If bidders are risk neutral (or risk loving) and if there is a positive prob-

ability that the decisive bidder will accept the posted price offer, the ex-

pected revenues from an APPO are lower than those from the correspond-

ing second-price auction.

Proof. If the decisive bidder rejects the PPO, a second-price auction with

the reserve price p will be conducted. In this case the revenues from the APPO

are equal to the revenues from the corresponding auction.

If, on the other hand, the decisive bidder accepts the PPO, the APPO

revenues are given by p̄ and—because of Theorem 2.7—the threshold condition

holds. Note that uı̂(vı̂−p)G(1),−ı̂(p)+
∫ vı̂

p
uı̂(vı̂−x) g(1),−ı̂(x)dx is the expected

utility of the decisive bidder in the corresponding auction, conditional on

vı̂ ≥ p. If bidder ı̂ is risk neutral (or risk loving) this expected utility is

at least as high as his utility of the expected outcome of the corresponding

auction, conditional on vı̂ ≥ p. One obtains

p̄ ≤ vı̂ − u−1
ı̂

(
uı̂(vı̂ − p)G(1),−ı̂(p) +

∫ vı̂

p

uı̂(vı̂ − x) g(1),−ı̂(x) dx

)

≤ vı̂ − u−1
ı̂

(
uı̂

(
(vı̂ − p)G(1),−ı̂(p) +

∫ vı̂

p

(vı̂ − x) g(1),−ı̂(x) dx

))

= vı̂ + pG(1),−ı̂(p) − vı̂G(1),−ı̂(vı̂) +

∫ vı̂

p

x g(1),−ı̂(x) dx . (2.13)
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Consider now the alternative revenues RC from the corresponding auction,

conditional on both the threshold condition and vı̂ ≥ p, i. e. consider the

revenues the seller could obtain by a pure auction, given that the decisive

bidder ı̂’s valuation is so high that he would accept a PPO. Two mutually

exclusive cases can be distinguished: (i) bidder ı̂ wins the auction and (ii)

bidder ı̂ does not win the auction. In the first case RC
(i) = max {p, v(1),−ı̂} and

in the second case RC
(ii) ≥ vı̂ holds. Thus, the expected value of RC is

E[RC ] = E[RC
(i)] + E[RC

(ii)]

> pG(1),−ı̂(p) +

∫ vı̂

p

x g(1),−ı̂(x) dx + vı̂(1 − G(1),−ı̂(vı̂))

= vı̂ + pG(1),−ı̂(p)) − vı̂G(1),−ı̂(vı̂) +

∫ vı̂

p

x g(1),−ı̂(x) dx (2.14)

≥ p̄ . (2.15)

Put another way, if the decisive bidder accepts the PPO with positive prob-

ability, the expected revenues from the APPO are lower than those of the

corresponding second-price auction.

In the case of risk neutral bidders, Theorem 2.13 confirms the intuitive

conjecture that the seller does not gain from offering a posted price option

(cf. p. 29). Of course, the seller can set the PPO high enough so that it does not

damage revenues. If, for example, she sets the PPO above the supremum of the

support of the bidders’ valuations, it will never be accepted and consequently

the PPO does not affect revenues. Example 1.1 has shown that in certain

cases a rational bidder accepts the PPO even though he would have won

the alternative corresponding auction at a lower price, i. e. the corresponding

auction would have generated less revenue than the acceptance of the PPO.

Theorem 2.13, however, states that this does not hold for the ex-ante expected

values: the revenues of an APPO are lower than the expected revenues of an

alternative (pure) auction if the PPO is accepted. For the expected revenues

of an APPO, the result holds, even if the PPO is only accepted with positive

probability and not with certainty.

The above argument does not hold if the decisive bidder ı̂ is risk averse. To

see this, consider again the case of an extremely risk averse bidder who follows

the maximin strategy. The bidder accepts any PPO p̄ that does not exceed his

valuation vı̂. Note that the first-order statistic of the valuations of all bidders

but the decisive bidder constitutes an upper bound of the expected revenues

independent of vı̂. Since any PPO p̄ < sup (M) will be accepted with positive

probability by a decisive bidder applying the maximin strategy, a PPO with

E[V(1),−ı̂] < p̄ < sup (M) increases the expected revenues.
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Interestingly, offering a posted price option does not only pay if bidders

(or at least the decisive bidder) are strongly risk averse. According to Theo-

rem 2.14, it is possible for the seller to set a PPO p̄ such that the expected

revenues in the APPO are higher than in the corresponding auction even if

the decisive bidder is only slightly risk averse.

Theorem 2.14 (Revenues from an APPO with risk averse bidders).

If the decisive bidder is risk averse, then a PPO p̄ exists such that the ex-

pected revenues in the APPO are higher than those from the corresponding

second-price auction.

Proof. Assume first that the decisive bidder ı̂ has maximum valuation, i. e.

vı̂ = sup (M) and let the expected revenues from the corresponding auction be

denoted by E[RC | vı̂ = sup (M)]. In this case, bidder ı̂ wins the corresponding

auction with certainty and E[RC | vı̂ = sup (M)] = E[V(1),n−1]. If the decisive

bidder were risk neutral, the expected revenues from the corresponding auc-

tion would equal the bidder’s acceptance threshold. Since, however, bidder ı̂

is risk averse, he strictly prefers a PPO p̄ = E[V(1),n−1] over the uncertain

price in the corresponding auction. Thus, tı̂(sup (M)) > E[V(1),n−1] holds.

Now, consider a PPO p̄ with E[V(1),n−1] < p̄ < tı̂(sup (M)), i. e. a PPO

that lies in between the expected revenues of an auction if the decisive bidder

had maximum valuation and the acceptance threshold of the decisive bidder

in that same case. Since p̄ is lower than tı̂(sup (M)), such a PPO will be

accepted with positive probability, and not only then if the decisive bidder

has maximum valuation. Since, in addition, p̄ is higher than E[V(1),n−1], the

expected revenues are higher than in the corresponding auction.

Example 2.4 (Continuation of Example 2.3). Consider again an APPO

in which n = 2 bidders participate. As in Example 2.3, valuations are indepen-

dently and uniformly distributed over [0; 1] and the decisive bidder’s utility

function is given by uı̂(x) =
√

x.

Assume first that the seller sets no or a very high PPO, e. g. p̄ > 1. In

that case, the PPO will never be accepted and the APPO is equivalent to a

standard second-price auction. If, in addition, the seller sets no reserve price

(i. e. p = 0), the expected revenues equal the expected value of the second-

order statistic E[V(2),2] = 1
3 .

How does the situation change if the seller sets a (reasonable) PPO? The

proof of Theorem 2.14 suggests the choice of a PPO p̄ with E[V(1),n−1] <

p̄ < tı̂(sup (M)). Note that this condition is sufficient, but not necessary

for the APPO to outperform a (pure) auction.23 In this example, a PPO

23 In fact, the revenue maximizing PPO of the given example is not in that interval.
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p̄ = tı̂(sup (M)) = tı̂(1) = 5
9 yields the desired result and is computationally

manageable. Equation (2.12) states the decisive bidder’s acceptance threshold

tı̂(vı̂) = vı̂ − 4
9v3

ı̂ . Thus, the decisive bidder will accept the PPO if

vı̂ − 4

9
v3

ı̂ ≥ 5

9
.

Since, by construction, vı̂ = 1 solves the cubic equation

−4

9
v3

ı̂ + vı̂ − 5

9
= 0 , (2.16)

a polynomial division by (vı̂ − 1) simplifies (2.16), which can then be easily

solved. One obtains

−4

9
v2

ı̂ − 4

9
vı̂ +

1

3
p2 +

5

9
= 0 (2.17)

⇐⇒ vı̂1/2
= −1

2
±

√
6 + 3p2

2
. (2.18)

Thus, (2.16) has three real valued solutions, − 1
2

(√
6 + 1

)
, 1

2

(√
6 − 1

)
, and 1,

but only the second solution is an interior point of the support of the decisive

bidder’s valuation. For this reason, define v∗ := 1
2

(√
6 − 1

)
and distinguish

two cases for the calculation of the expected revenues: (a) the decisive bidder

accepts the PPO, i. e. vı̂ ≥ v∗, and (b) the decisive bidder rejects the PPO, i. e.

vı̂ < v∗. In the latter case, an auction is being conducted in which either the

decisive bidder ı̂ or the other bidder −ı̂ obtains the item. Let the expected

revenues of the aforementioned cases be denoted by Ra and Rb with Rb =

Rı̂
b + R−ı̂

b , respectively. The expected revenues E[R] of the APPO are then

given by Ra + Rb:

Ra = p̄ (1 − v∗)

=
5

9

(
1 − 1

2

(√
6 − 1

))

=
5

6
− 5

√
6

18

Rb = Rı̂
b + R−ı̂

b

=

∫ v∗

0

∫ v

0

x dx dv +

∫ v∗

0

v

∫ 1

v

1 dx dv

=
1

2
(v∗)2 − 1

6
(v∗)3

=
61

48
− 7

16

√
6
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E[R] = Ra + Rb

=
101

48
− 103

144

√
6

≈ .3521 >
1

3
.

The expected revenues of the APPO in fact exceed the expected revenues of

a pure auction. ��

2.5 Optimal APPOs

Finally, the reserve price deserves a closer look. It is a well-known result that

by setting a suited reserve price p > 0, the seller can increase expected rev-

enues even though she risks not selling the item at all. In a second-price auction

with independent private valuations, the seller optimally sets the reserve price

p such that

p =
1 − F (p)

f(p)
(2.19)

is satisfied (e. g. McAfee und McMillan, 1987; Myerson, 1981).24 Interestingly,

the optimal reserve price depends only on the distribution F of the bidders’

valuations but not on the number of bidders. Thus, the optimal reserve price

equals the optimal take-it-or-leave-it price a seller would offer if there were

exactly one interested buyer.

Example 2.5 shows that by means of an appropriately chosen reserve price,

the seller can also increase expected revenues in an APPO.

Example 2.5 (Continuation of Example 2.4). In contrast to the previous

examples, the reserve price is no longer fixed at zero. Solving Equation (2.19)

yields the optimal reserve price p∗ = 1
2 of a second-price auction. Remember

that F denotes the cdf of the bidders’ valuations and f(i),n the density of the

ith-order statistic. The expected revenues E[R] of an optimal second-price

auction evaluate to

24 If the hazard rate f(v)/(1 − F (v)) is not strictly increasing, Equation (2.19)
may have multiple roots. In this case, the seller chooses the solution of (2.19)
that yields the highest expected revenues of all solutions (cf. Wolfstetter, 1999,
p. 213).
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E[R] = 2 p F (p)
(
1 − F (p)

)
+

∫ 1

p

x f(2),2(x) dx

= 2 p2(1 − p) +

∫ 1

p

x (2 − 2x) dx

=
1

4
+

[
x2 − 2

3
x3

]1

1
2

=
5

12
.

Thus, 5
12 are the maximum of the expected revenues in a second-price auction.

Now consider an APPO in which the reserve price is set to p = 1
2 , as in the

optimal second-price auction. According to Theorem 2.14, in an APPO with

risk averse bidders, the seller can increase expected revenues by offering an

appropriately chosen posted price. Taking the reserve price p = 1
2 as given, in

the following the optimal, i. e. the revenue maximizing, PPO is derived. Then

the expected revenues are calculated. It will be shown that these revenues not

only exceed the expected revenues of the optimal second-price auction above,

but also the revenues of the APPO in Example 2.4.

In order to determine the revenue maximizing PPO p̄∗, one starts with the

decisive bidder’s acceptance threshold, which is given by Definition 2.5

tı̂(vı̂) = vı̂ − u−1
ı̂

(
uı̂(vı̂ − p)G(1),−ı̂(p) +

∫ vı̂

p

uı̂(vı̂ − x) g(1),−ı̂(x) dx

)

= vı̂ −
(√

vı̂ − p p +

∫ vı̂

p

√
vı̂ − x dx

)2

= vı̂ −
(√

vı̂ − p p +

[
2

3
(vı̂ − x)

3
2

]vı̂

p

)2

= vı̂ − 4

9
v3

ı̂ +
1

3
vı̂p

2 +
1

9
p3 . (2.20)

Applying p = 1
2 in (2.20) yields

tı̂(vı̂) = −4

9
v3

ı̂ +
13

12
vı̂ +

1

72
. (2.21)

Figure 2.4 illustrates the example. The solid line shows the acceptance thres-

hold of the decisive bidder and the horizontal dotted line represents the reserve

price p = 1
2 . Remember that the threshold is only defined for valuations higher

than the reserve price. Note that the threshold has an interior maximum and

decreases for large valuations. We will focus the search for the optimal p̄∗ on
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Figure 2.4. Acceptance threshold of a risk averse bidder if p > 0

values smaller than tı̂(1) = 47
72—indicated in the figure by the dashed hori-

zontal line. This simplifies the calculation since it allows the assumption that

there exists a valuation v∗ above which the decisive bidder will accept the

PPO (otherwise bidders with large valuations would reject the PPO). The

assumption also narrows down the interval of feasible values for v∗. Because

tı̂(− 1
2 + 3

4

√
3) = 47

72 , the value vı̂ = − 1
2 + 3

4

√
3 constitutes an upper bound for

v∗.25 Moreover, v∗ > p must hold. Thus, we search for a v∗ ∈ [
1
2 ;− 1

2 + 3
4

√
3
]
.

The results will later show that these assumptions were feasible.26

In order to determine v∗, one needs to solve

tı̂(vı̂) = p̄

⇐⇒ −4

9
v3

ı̂ +
13

12
vı̂ +

1

72
= p̄ . (2.22)

25 As in Example 2.4, the cubic equation tı̂(vı̂) = tı̂(1) ⇐⇒ − 4
9
v3

ı̂ + 13
12

vı̂ − 46
72

= 0
is reduced to a quadratic form through a polynomial division by (vı̂ − 1). The
value vı̂ = − 1

2
+ 3

4

√
3 is one of the solutions of the remaining quadratic equation

− 4
9
v2

ı̂ − 4
9
vı̂ + 46

72
= 0.

26 Strictly speaking, the argument only shows that the identified p∗ is a local ex-
tremum. The proof that p∗ is also a global maximum is rather technical and left
out here.
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Cardano’s formula27 offers three real valued solutions of Equation (2.22);

selecting the one that lies within the above interval, one obtains

v∗ =
1

4

√
13

(
− cos

(
π

3
− 1

3
cos−1

(
72p̄ − 1

169

√
13

))

+
√

3 sin

(
π

3
− 1

3
cos−1

(
72p̄− 1

169

√
13

)))
. (2.23)

In Example 2.4, several cases were distinguished for the calculation of

expected revenues. Taking the reserve price into account, the classification

of cases must be refined. Case (a), in which the decisive bidder accepts the

PPO, remains unchanged. If (b) the decisive bidder rejects the PPO, it is now

further required that the reserve price is not binding in the corresponding

auction. Two additional cases arise: (c) the item is sold for the reserve price

and (d) the item is not sold at all. Analogously to Example 2.4, the expected

revenues of these cases are denoted by Ra, Rb, Rc, and Rd, respectively, and

E[R] = Ra +Rb +Rc +Rd holds for the total expected revenues. Because the

decisive bidder accepts the PPO if his valuation exceeds v∗, the formula for

expected revenues yields

Ra = p̄ (1 − v∗)

Rb =

∫ v∗

p

∫ v

p

x dx dv +

∫ v∗

p

v

∫ 1

v

1 dx dv

Rc = p
(
p (1 − p) + p (v∗ − p)

)
Rd = 0

E[R] = Ra + Rb + Rc + Rd

= p̄ − p̄ v∗ − 1

6
(v∗)3 +

1

2
(v∗)2 +

1

2
p2v∗ − 4

3
p3 +

1

2
p2 . (2.24)

With p = 1
2 one obtains from Equation (2.24)

E[R] = p̄ − p̄ v∗ − (v∗)3

6
+

(v∗)2

2
+

v∗

8
− 1

24
. (2.25)

In order to maximize expected revenues, differentiate (2.25) with respect to

p̄. Note that v∗ is a function of p̄ with derivative v∗′(p̄):

27 For a description of Cardano’s formula, see Gellert et al. (1969). The formula goes
back to Tartaglia and was first published by Cardano in his mathematical work
Ars Magna (1545).
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dE[R]

dp̄
= 1 − p̄ v∗′(p̄) − v∗ +

(
−1

2
(v∗)2 + v∗ +

1

8

)
v∗′(p̄)

!
= 0

⇐⇒ 1 − v∗

v∗′(p̄)
− p̄ − 1

2
(v∗)2 + v∗ +

1

8
= 0 . (2.26)

Equation (2.26) yields the first-order condition for a revenue maximizing PPO

p̄. One obtains v′(p̄) from Equation (2.23). Plugging both Equation (2.23) and

its derivative into Equation (2.26) finally yields the optimal PPO. The actual

calculations of the last two steps, however, are spared the reader but have been

passed on to a computer algebra program.28 The solution comprises complex

trigonometric terms and the numerical value is

p̄∗ ≈ 0.6523 . (2.27)

Applying (2.27) to Equations (2.23) and (2.25) yields v∗ ≈ 0.7971, and the

expected revenues with the optimally chosen PPO are

E[R] ≈ 0.4236 . (2.28)

Note that in fact v∗ ∈ [
1
2 ;− 1

2 + 3
4

√
3
]
, which justifies the above assump-

tion. Further, as indicated at the beginning of the example, the expected

revenues E[R] = 0.4236 exceed both the expected revenues of 5
12 in the (pure)

second-price auction as well as those of an APPO with no reserve price, as in

Example 2.4.29 ��
The following Example 2.6, however, shows that Equation (2.19), which

determines the optimal reserve price in a pure auction, does not hold for

the optimal reserve price of an APPO. Instead, the seller can do better by

setting a slightly different reserve price. One might be tempted into thinking

that a higher reserve price favors the seller since a higher reserve price also

increases the decisive bidder’s threshold (cf. Proposition 2.12). This increases

the probability that the decisive will bidder accept the PPO or allow the seller

to set a higher PPO. However, the opposite is true. The optimal reserve price

balances the (expected) increase in revenue if the second highest valuation

is low with the opportunity costs in the event that the item remains unsold

because the highest valuation is also low. In an APPO, however, the decisive

bidder accepts the PPO if his valuation is high. These cases can therefore be

taken out of consideration when determining the optimal reserve price. Thus,

28 The computations have been performed with Maple version 9.51.
29 Strictly speaking, the comparison is not appropriate since in Example 2.4 the

revenues of an APPO with an arbitrarily chosen PPO are calculated, as opposed
to a revenue maximizing PPO. However, selecting a revenue maximizing PPO in
Example 2.4 increases the expected revenue from 0.3521 to only 0.3522.
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the increase in revenue by means of a given reserve price is lower in an APPO

than in a second-price auction while the risk of not selling the item remains the

same. The optimal reserve price of a second-price auction therefore exceeds

the optimal reserve price of an APPO.

To maximize an APPO’s revenue, one needs to simultaneously optimize

over both the reserve price and the posted price. Let E[R(p, p̄)] denote the

expected revenue for a given reserve price p and a posted price p̄. The opti-

mization problem of the seller then reads

max
p, p̄ ∈M

{E[R(p, p̄)]} . (2.29)

Example 2.6 solves the problem (2.29) for the setting of Example 2.5.

Example 2.6 (Continuation of Example 2.5). Calculating the optimal

combination of the reserve price and the posted price runs analogously to Ex-

ample 2.5. The difference is that the expected revenue must be differentiated

with respect to both p and p̄. Then, instead of Equation 2.19, the first-order

condition is given by a system of two equations, which again can be easily

solved by a computer algebra program. The tricky part remains inverting

the threshold condition—in our case again a cubic equation—and picking the

right solution (which also satisfies the second-order condition) for the remain-

ing calculations. Depending on the parameters p and p̄, quite a few cases must

be distinguished.

In our example, the solution is

p∗ ≈ 0.4839

p̄∗ ≈ 0.6456

E[R]p∗,p̄∗ ≈ 0.4238 .

Note that the expected revenue is higher compared to the case with a

reserve price of p = 1
2 . The additional gain, however, is rather marginal. ��

Theorem 2.15 (APPO outperforms second-price auction). If bidders

are risk averse, then a combination of an APPO’s reserve price p and

a posted price p̄ exists such that the respective APPO generates higher

expected revenues than any second-price auction.

Proof. Assume to the contrary that a second-price auction with a reserve

price p′ yields higher expected revenue than the revenue maximizing APPO

with reserve price p and PPO p̄. Because of Theorem 2.14, a posted price p̄′

exists such that an APPO with the reserve price p′ and the PPO p̄′ generates
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higher revenue than the second-price auction. This contradicts the assumption

that the above APPO is revenue maximizing among all APPOs.

2.6 Discussion and Related Literature

Several authors have investigated hybrid market institutions that combine

auctions with posted price offers and are similar to the model of an APPO

presented in the previous sections. Worth mentioning in particular are the

works by Budish und Takeyama (2001), Hidvégi et al. (2003), Reynolds und

Wooders (2003), Mathews (2002, 2003, 2004a, 2004b), Mathews und Katzman

(forthcoming), and Wang et al. (2004). In this section, these papers will be

summarized and contrasted to the APPO model. An outlook on an extension

to multi-unit demand by Kirkegaard und Overgaard (2004) completes the

section.

It has become common in the literature to refer to a posted or fixed price

offer supplementing an auction as a buy price—irrespective of the concise rules

of the auction and the rules regarding the buy price. To ease discussion, this

labeling has been adopted in this section. Unfortunately, however, the term

Buy Price is also employed by Yahoo! as the name for its buy price variant.

In the text, capital initials are used to indicate the Yahoo! variant.

2.6.1 The Model of Budish und Takeyama

Budish und Takeyama (2001) are the first to analyze buy price auctions. They

investigate a variation of eBay’s hybrid mechanism in which—in contrast to

the APPO model and its eBay archetype—the posted price offer does not

expire once a bidder submits an auction bid. The model is motivated by the

institutions that are available to sellers on the auction sites of Yahoo! or

Amazon.com. As mentioned above, Yahoo! refers to its counterpart to eBay’s

Buy It Now feature as Buy Price. Amazon.com calls it Take-It Price.

Since the buy prices on Yahoo! and Amazon.com do not expire if a bidder

enters an auction bid, the buy price is not only an option for a bidder to

acquire the item with certainty; it also constitutes a maximum price of the

auction. Yahoo! explicitly states that an auction closes automatically once the

bids reach the Buy Price.30 Thus, an auction price that exceeds the Buy Price

is not possible, and by offering a Buy Price, the seller rules out the possibility

of generating higher revenues.

30 See http://help.yahoo.com/help/us/auct/asell/amerc/amerc-11.html (Oc-
tober 13, 2004).
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Budish und Takeyama analyze Yahoo!’s Buy Price in a two-bidder setting

with private valuations. Each bidder is of one of two types, i. e. a bidder may

either value the item high or low. The probability that a bidder is of the low

valuation type L, in which case his valuation is vL, is ε. With a probability of

(1 − ε) the bidder is of the high valuation type H and values the item at vH .

If a bidder of type i is awarded the item for a price p, his utility is given by

u(vi − p).31

Consider the case that no buy price is available. In Budish und Takeyama’s

model, the bidders then bid up to their valuation. If the bidders differ in type,

the bidder with the high valuation is awarded the item. If both bidders are

the same type, a coin is tossed in order to determine which bidder obtains the

item. In all cases, the auction price equals the valuation of the bidder who

loses the auction. Thus, the seller’s expected revenues E[RA] of a pure auction

evaluate to

E[RA] = ε2 vL + 2 ε (1 − ε)vL + (1 − ε)2 vH . (2.30)

The utility of a high valuation bidder is u(0) = 0 if the other bidder is also

a high valuation bidder, whilst the utility is u
(
vH − vL

)
if the other bidder

has a low valuation. Thus, the expected utility of a high valuation bidder is

given by

ε u(vH − vL) . (2.31)

Assume now that the seller offers a buy price B. The utility of a high

valuation bidder who accepts the buy price is then u
(
vH − B

)
. As above, if

both bidders seek to accept the buy price, tossing a coin determines which

bidder is awarded the item. If high valuation bidders follow a strategy of always

accepting the buy price, the expected utility of a high valuation bidder yields

ε u(vH − B) +
1 − ε

2
u

(
vH − B

)
=

1 + ε

2
u

(
vH − B

)
. (2.32)

Since the auction price can never be lower than vL, Budish und Takeyama

argue that the seller will only offer a buy price B > vL. Consequently, the low

valuation bidder will never accept the buy price. In fact, in the two-bidder

model with two bidder types there is no equilibrium in which the low valuation

bidder earns a positive payoff.

31 The two-bidders two-valuations setting was introduced by Maskin und Riley
(1985).
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The cited authors derive a symmetric equilibrium in which a high valuation

bidder immediately accepts the buy price and a low valuation bidder bids up

to vL in the auction. From Equations (2.31) and (2.32) one obtains a condition

necessary for a symmetric equilibrium:

1 + ε

2
u

(
vH − B

) ≥ ε u
(
vH − vL

)
⇐⇒ B ≤ vH − u−1

(
2ε

1 + ε
u

(
vH − vL

))
. (2.33)

The inequality (2.33) corresponds to the threshold condition of the APPO

model: if the condition holds, a high valuation bidder prefers accepting the buy

price rather than participating in an auction. Thus, in a symmetric equilibrium

a high valuation bidder accepts the buy price if the inequality (2.33) holds.

In all other cases bidders bid up to their valuation.32

Note that the inequality (2.33) captures the analyzed scenario with two

bidders and two discrete valuations vH and vL. It also reflects the fact that

both bidders might seek to acquire the item for the buy price, as is possible

on Yahoo! but not in an APPO. However, the model fails to take the com-

plete structure of possible actions as well as the information feedback during

the bidding process into account. The given strategies would work well if an

auction with a buy price were modeled as a sealed bid institution in which

a bidder enters a two-part strategy before the bidding begins: firstly, he in-

dicates whether or not he is willing to buy the item at the buy price B and,

secondly, he indicates how far he would bid in an English auction if the item

is not sold at the buy price. In such a setting, an auction would be conducted

only if no bidder were willing to accept the buy price.

Budish und Takeyama, however, explicitly seek to address an English auc-

tion which is augmented with a buy price that does not expire once a bidder

submits a bid. In such a situation, consider an auction with one low and one

high valuation bidder and assume that the low valuation bidder starts the

bidding process by submitting a very low bid. If the strategy profile described

above does in fact constitute an equilibrium, the high valuation bidder would

know that the competing bidder has a low valuation. Thus, in an auction the

high valuation bidder would win the item for the price vL. According to the

above strategy profile, however, the high valuation bidder accepts the buy

price B. Clearly, since B > vL, this cannot be optimal.

Nonetheless, the model is interesting and highly relevant for analyzing auc-

tions with an additional fixed price component. Despite their goal to analyze

an English auction augmented with a non-expiring buy price, the model of

32 According to Budish und Takeyama this is also the only symmetric equilibrium.



42 2 Model of the APPO Market Institution

Budish und Takeyama rather refers to the following two-stage scenario: In the

first stage, bidders are asked whether they are willing to accept the buy price.

If the item remains unsold in the first stage, a second stage follows in which

the item is auctioned off by means of a second-price auction. The difference

to the APPO model is that all and not only one bidder may accept the posted

price offer.

In Budish und Takeyama’s model the seller sets the buy price B∗ optimally

so that (2.33) is fulfilled with equality. Thus, B∗ is the highest buy price that

will be accepted by a high valuation bidder. Any lower buy price would also

lower the seller’s revenues. The authors note that “[s]trictly speaking, the

optimal buy price should actually be understood to be some arbitrarily small

amount, ε, less than that defined [by B∗]” (p. 328, fn. 7).

Based on the above findings, Budish und Takeyama derive three main

results:

1. For the case of risk neutral bidders, the expected revenues of a pure auction

and an English auction augmented with the buy price B∗ are equal.

2. If bidders are risk averse, the seller is strictly better off by offering the

buy price B∗.
3. With risk averse bidders, the expected revenues of an auction augmented

with a buy price B∗ may even be higher than those of a first-price sealed-

bid auction.

The first two results are basically identical to those of the APPO model. Note

that the optimal buy price B∗ is defined such that the high value holder is

indifferent between accepting the buy price and bidding in the auction. If,

analogously, the PPO p̄ in an APPO were set such that a risk neutral bidder

with maximum valuation were indifferent between the PPO and bidding in

the auction, this would not affect the seller’s expected revenues, even if the

PPO were in fact accepted by bidders with full valuation. However, taking

Budish und Takeyama’s comment into account, according to which the opti-

mal buy price is some ε smaller than B∗, their first result is indeed equivalent

to Theorem 2.13 of Section 2.4: With risk neutral bidders, neither the seller in

their model nor the seller in an APPO can profit from offering a buy price. If

the buy price is set such that a bidder with maximum valuation is indifferent

between the buy price and bidding in an auction, the expected revenues in

both institutions are equal to the revenues in a pure second-price (or English)

auction.

A similar link can be established between the second result above and

Theorem 2.14 of Section 2.4: if bidders are risk averse in both Budish und

Takeyama’s model of an auction with a buy price and an APPO, the seller

can increase expected revenues by offering a suited buy price.
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The issue of Budish und Takeyama’s third result addresses the compari-

son between a standard first-price (or Dutch) auction and an English auction

augmented with a buy price. It is a well-known result that with private val-

uations and risk averse bidders, a first-price sealed-bid auction yields higher

revenues than an English (or a second-price) auction (e. g. Maskin und Riley,

1984; McAfee und McMillan, 1987; Klemperer, 1999). In order to see this, re-

member that the equilibrium strategies of an English auction do not depend

on the bidders’ attitude towards risk. By choosing a bid in a first-price auc-

tion, however, a bidder trades the probability of winning the auction against

the price he has to pay should he in fact win the auction. Compared to a risk

neutral bidder, a risk averse bidder is willing to pay a higher price in order

to increase the probability of winning. From the revenue equivalence theorem

(Milgrom, 1989; Klemperer, 1999) it is known that with risk neutral bidders

and symmetric independent private valuations, the expected revenues of an

English and a first-price auction are equal. Since in a first-price auction (but

not in an English auction) a risk averse bidder bids more aggressively than a

risk neutral bidder, a first-price auction yields higher revenues than an English

auction if bidders are risk averse.

Interestingly, Budish und Takeyama find that in their model, the English

auction augmented with a buy price may even yield higher revenues than a

standard first-price sealed bid-auction. It is not known whether an APPO or

a first-price sealed-bid auction yields higher expected revenues. This remains

an interesting question for future research. Since the model of an APPO has

not yet been compared to a first-price sealed-bid auction, a more detailed

description of Budish und Takeyama’s line of reasoning is not included here

and the reader is referred to the original paper.

The paper by Budish und Takeyama is innovative in being the first to ad-

dress fixed price components as complementary features of standard auctions.

By differentiating between risk neutral and risk averse bidders, the authors

show in an analysis of Yahoo!’s Buy Price that “this seemingly irrational auc-

tion mechanism” can in fact “improve the seller’s profits” in terms of expected

revenues (p. 325). Still, restricting attention to only two bidders and only

two possible bidder types rather limits the scope of the model. The authors

themselves note that introducing a larger number of bidder types “admits

the possibility of inefficient outcomes” and speculate that “the effectiveness

of the buy price to enhance sellers’ profits when bidders are risk averse may

be diminished” (p. 328). The APPO model shows that with more than two

bidder types an outcome may in fact be inefficient. However, Theorem 2.14

in Section 2.4 also shows that the expected revenues of an APPO still exceed

the revenues of a pure auction.
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2.6.2 Thorough Analysis of Yahoo!’s Buy Price

In a barely observed paper, Hidvégi et al. (2003) relax the restriction imposed

by Budish und Takeyama (2001) to only two bidders and only two bidder

types. Rather, they consider a model with n bidders and arbitrarily distributed

valuations. With respect to the distribution of valuations, the paper is more

general in terms of methodology than most of the papers that will be presented

in the following sections. It is, however, only cited by Wang et al. (2004) and

appears to be unknown to the other authors investigating buy price options.33

Hidvégi et al. further investigate Yahoo!’s buy price auction. The paper is

rather comprehensive regarding the description of the auction setup. For ex-

ample, the authors explicitly state that in their model, the seller “has commit-

ted not to list her item if she receives no valid bid”, or that each bidder knows

the total number of bidders at the opening of the auction but that they “do

not know how many bidders remain active” during the auction (p. 2). These

assumptions are crucial for the model and are also made, e. g., by Reynolds

und Wooders (2003)—without, however, being explicitly stated.

The paper proves that under certain conditions Yahoo!’s buy price auction

yields the same expected revenue as the standard auctions—even if the buy

price is accepted with positive probability: They show that in a symmetric

equilibrium, a bidder i with valuation vi accepts the buy price once the auction

price reaches a certain critical level s(vi). Then they prove that the function

s(·) is monotonically decreasing and conclude that the auction is efficient

since the bidder with the highest valuation will accept the buy price first.34

If bidders are risk neutral, the revenue equivalence theorem ensures that all

efficient auctions, i. e. also Yahoo!’s buy price auction, yield the same expected

revenues.

Hidvégi et al. derive other results too. In summary, their findings are:

1. If either the seller or the bidders are risk averse, the seller can gain higher

expected utility by offering a buy price.

2. If the buy price is set sufficiently high, Yahoo!’s buy price auction is

efficient, i. e. the bidder with the highest valuation wins the item even

if the buy price is accepted with positive probability.

33 Wang et al. (2004) actually refer to an earlier draft of that paper from 2002.
The results of Hidvégi et al. (2003) and the earlier draft from 2002 are ba-
sically identical; only the presentation has been rearranged and some sections
were rewritten. The 2002 draft is available online (http://ruby.bus.utexas.edu/
~gengxj/dss/session9/BuyPrice.pdf, October 20, 2004).

34 They further require that the buy price is set high enough so that it will only
be executed after the bidding process has started and the current auction price
exceeds the auction’s reserve price. Efficiency is not guaranteed if a bidder would
accept the buy price immediately at the start of the auction.
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3. Under the assumptions of 2. above, bidders with constant absolute risk

aversion are indifferent between a buy price auction and a standard En-

glish auction.35

As will be shown in the next section, the last result is also supported by

Reynolds und Wooders (2003), who make the same observation not only with

respect to the English (or second-price) auction, but all standard auction for-

mats. Without being stated by either Hidvégi et al. or Reynolds und Wooders,

another direct and interesting consequence of this result is that the expected

utility of bidders with constant absolute risk aversion is independent of the

buy price B.

2.6.3 Comparison of Yahoo!’s and eBay’s Buy Price Variants

Reynolds und Wooders (2003) do not only consider Yahoo!’s variant of an

auction with a Buy Price but also compare that auction with eBay’s variant

of an auction with a Buy It Now price. They commonly refer to both of these

auction types as buy price auctions.

Following Budish und Takeyama (2001), Reynolds und Wooders consider a

model with only two bidders. However, they allow valuations to be uniformly

distributed on the interval [v; v̄].

For the eBay variant, Reynolds und Wooders characterize a bidder’s strat-

egy by a so-called cutoff value. They derive a symmetric equilibrium in which

the cutoff value c represents the lowest valuation of a bidder who accepts a

given buy price B. A bidder i, following a strategy characterized by a cutoff

value c, accepts the buy price if his valuation vi ∈ [v; v̄] is at least as high

as the cutoff value (vi ≥ c); the bidder rejects the buy price if his valuation

is below the cutoff value (vi < c).36 In the latter case, the bidder bids up to

his valuation in the auction. Note that the cutoff value is a function of the

buy price B.37 Thus, the cutoff value is the inverse of the bidder’s threshold

ti(vi) in an APPO, which is a function of a bidder’s valuation, indicating up

to which amount a bidder i with valuation vi would accept a PPO p̄.

Since the buy price offer on Yahoo! does not expire once a bidder places

a bid, a strategy for bidding in that auction is somewhat more complex.

Reynolds und Wooders model the Yahoo! auction as an ascending clock auc-

tion in which the auction price is raised continuously from v to B. At any

35 See Definition A.5 on page 141 for the notion of absolute risk aversion.
36 Actually, Reynolds und Wooders do not consider the case of a bidder with a

valuation equal to the cutoff value.
37 In the cited paper, the buy price is technically taken as given and the cutoff value

is simply denoted as a number.
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point during the rise of the auction price, a bidder can either wait (i. e. re-

main in the auction), drop out of the auction, or claim the item. If a bidder

drops out, the other bidder obtains the item at the current auction price. If

a bidder claims the item, it is awarded to him at the buy price B and the

auction closes. Given that framework, a bidding strategy is characterized by

a function f : [B, v̄] → [v; B] which maps a bidder’s valuation to the auction

price at which he claims the item by accepting the buy price offer. A bidder

with a valuation below B never exercises that option. Instead, he remains in

the auction until the auction price reaches his valuation, at which point he

drops out.

Reynolds und Wooders analyze above settings both for risk neutral bidders

and for bidders with constant absolute risk aversion. They derive the following

results:

1. If bidders are risk neutral, a buy price may be set so high that it is not

exercised in the eBay variant. The same buy price, however, is exercised

in the Yahoo! variant with positive probability. Moreover, in this case,

the two buy price auctions and a standard English auction yield the same

expected revenues.

2. If bidders are risk neutral, eBay’s and Yahoo!’s variants of buy price auc-

tions with the same buy price B are revenue equivalent.

3. If a buy price B is exercised with positive probability in the eBay variant

by risk neutral bidders, the eBay and the Yahoo! variants with the same

buy price B yield lower revenues than a standard English auction.

4. For bidders with constant absolute risk aversion, the Yahoo! variant yields

higher revenues than the eBay variant with the same buy price B. The

expected utility of a bidder, however, is equal in both auction formats.38

5. There are buy prices such that for bidders with constant absolute risk

aversion, both the eBay and the Yahoo! variants yield higher expected

revenues than a standard English auction.

Throughout the analysis, Reynolds und Wooders take the buy price B as

given. They show that for a wide range of buy prices, offering such an option is

profitable for the seller. However, they do not seek to identify a buy price that

maximizes the seller’s expected revenue. The papers that will be presented in

the following sections address this issue too. Moreover, the restriction to only

two bidders is lifted.
38 It is interesting to note that bidders with constant absolute risk aversion are

indifferent among all standard auctions (cf. Matthews, 1987). Even though these
auctions (may) differ with respect to the revenues of the seller, they are equivalent
with regard to the expected utility of the bidders. Thus, in this case the two buy
price auctions yield the same expected bidder utility as all four standard auctions.
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2.6.4 Impatience and Risk Aversion

While Budish und Takeyama (2001) motivate their model with Yahoo!’s auc-

tion augmented with a buy price and Reynolds und Wooders (2003) compare

the buy price formats of Yahoo! and eBay, Mathews (2002) suggests a model

in his doctoral dissertation that focuses on eBay’s Buy It Now feature, which

he refers to as a buyout option. Based on this dissertation, Mathews has pub-

lished a family of four papers (one together with Katzman) that address the

issue of the Buy It Now price. The papers are closely related and build on each

other. Note, however, that the publication dates do not reflect the dependen-

cies of the papers with respect to the development of the line of reasoning.

Mathews (2004a) introduces the basic model of an auction with a buy-

out option and analyzes time impatience on the side of either the seller or

the buyers. Mathews (2003) focuses on a scenario in which the seller is risk

averse rather than impatient and in which the bidders are indifferent as to

when a transaction takes place. Both the 2004a and the 2003 paper assume

that bidders’ valuations are independently and uniformly distributed on [0; 1].

Mathews und Katzman (forthcoming) further investigate the model of Math-

ews (2003) by allowing the independent private valuations to be arbitrarily

distributed and by also taking a reserve price into account. Finally, Mathews

(2004b) elaborates on the bidder welfare in an auction with a buyout option.

Mathews diverges from Budish und Takeyama (2001) or Reynolds und

Wooders (2003) by considering auctions in which n ∈ N participate, rather

than having only two bidders. Moreover, bidder valuations are drawn from

a continuous distribution. In all of Mathews’ papers, however, bidders are

assumed to be risk neutral. His model and its main results are summarized in

the following.

Mathews (2004a) assumes that an auction lasts from time 0 to 1 and

that each bidder i arrives at the auction at a random time ti ∈ [0; 1]. After

arriving at the auction, a bidder may either accept the buyout option, submit

a (proxy) bid or wait, i. e. do nothing. If the bidder submits a bid, the buyout

option expires not only for him but also for all other bidders. The item is then

auctioned off by means of an ascending price auction with proxy bidding.

Mathews analyzes the model for bidder valuations vi and arrival times ti that

are both independently and uniformly distributed over [0; 1].

The utility of a bidder i∗ who is awarded the item for a price p at time

t ≥ ti∗ is u(vi∗ − p, t) = (vi∗ − p) δt with δ ∈ (0; 1] representing the common

degree of the bidders’ impatience. Thus, if a bidder i∗ with valuation vi∗

accepts a buyout option of B at t ∈ [ti∗ ; 1], his utility is given by (vi∗ −B) δt.

If, alternatively, the buyout option is not accepted, the item is awarded in an
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auction that lasts until t = 1. The utility of the winning bidder i∗ is then

(vi∗ − p) δ with p denoting the final price of the auction.

Mathews shows that in equilibrium, a bidder will either accept the buyout

option or submit a proxy bid immediately upon arriving at the auction. He

further shows that in equilibrium, bidder i accepts the buyout option if

B ≤ vi − vn
i

n
δ1−ti (2.34)

holds.

The model by Mathews is very similar to the APPO model. In both models,

there is exactly one bidder who has the power to decide whether an auction is

conducted or not. Moreover, Equation (2.34) resembles the APPO’s threshold

condition. In fact, in scenarios that are covered by both Mathews (2004a)

and the APPO model, the condition (2.34) and the threshold condition are

equivalent. To see this, note that Mathews restricts the analysis to risk neutral

bidders with uniformly distributed valuations.39 Moreover, he does not take

a possible reserve price into consideration. Equation (2.10) in Example 2.2

gives the respective threshold of a risk neutral bidder i in an APPO with

uniformly distributed valuations. Setting the reserve price p = 0 yields the

APPO’s threshold condition

p̄ ≤ vi − 1

n
vn

i . (2.35)

In order to account for bidders who are indifferent as to when a transaction

occurs, set δ = 1 in Equation (2.34) and the equivalence is obvious.

Based on the above model, Mathews (2004a) derives the following results:

1. If either the seller or the bidders are time impatient, the seller can profit

from offering a buyout option that is accepted with positive probability.

2. Allowing an impatient seller to offer a buyout option results in an increase

in all bidders’ (ex-ante) expected payoffs compared to a pure second-price

(or English) auction.

The second result above is particularly noteworthy because the buyout

option gives rise to outcomes which are possibly inefficient. This aspect is

considered later.

Mathews (2004a) does not consider positive reserve prices. Interestingly,

however, he conjectures that “[s]uch a minimum opening bid would likely

increase the probability that the option is successfully exercised” (p. 15). He

39 Since the utility functions ui(x, t) = x δt are linear in the payoff x = vi − p,
bidders are risk neutral with respect to the monetary payoff x = vi − p.
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also provides empirical data from eBay that support his hypothesis. Note that

the hypothesis is confirmed by—or at least congruent with—Proposition 2.12

of the APPO model.

A slightly different approach is taken in Mathews (2003). In contrast to

the 2004a paper, both the bidders and the seller are indifferent as to when a

transaction occurs. Instead, the seller is assumed to be risk averse.

The results obtained are very similar to those above:

1. If bidders are risk neutral and indifferent as to when a transaction takes

place, a risk averse seller can profit from offering a buyout option that is

accepted with positive probability.

2. Allowing a risk averse seller to offer a buyout option results in an increase

in all bidders’ (ex-ante) expected payoffs compared to a pure second-price

(or English) auction.

Moreover, Mathews finds that a seller s1 who is more risk averse than a

seller s2 offers a buyout option B1 that is not higher than a buyout option B2

seller s2 would offer in the same situation. As a consequence, the probability

that a buyout option is exercised as well as the probability of an (ex-post)

inefficient outcome (weakly) increases as the seller becomes more risk averse.

Mathews’s results and those of the APPO model complement each other.

While Mathews concentrates on varying the characteristics of the seller, the

analysis of an APPO focuses on the bidders and their attitudes towards risk.

The models show that an additional fixed price option (the buyout option or

the PPO) enhances the attractiveness of an English (or second-price) auction

if either the seller or the bidders are risk averse. Neither side of the transac-

tion, however, is able to realize all of the additional (ex-ante) expected surplus.

Instead, the increase in (ex-ante) expected utility is shared among all partic-

ipants. In all cases, the gain in ex-ante expected utility is linked to a loss in

the sum of ex-post payoffs since exercising the buyout option or the PPO may

yield inefficient outcomes, i. e. the item might not be awarded to the bidder

who values it highest.

Mathews und Katzman (forthcoming) extend the analysis of the previous

paper by allowing for any distribution of valuations rather than only the

uniform distribution. Moreover, a reserve price set by the seller is now taken

into consideration. The authors observe that the first result above, i. e. the fact

that the seller can profit from offering a buyout option, does not depend on

the distribution of valuations. However, they find that the second result, i. e.

the (ex-ante) gain in expected profits by all bidders, depends crucially on that

distribution. Note that the buyout option allows for inefficient outcomes. In

these cases the high bidder is clearly worse off ex-post compared to a standard



50 2 Model of the APPO Market Institution

second-price auction. Mathews und Katzman establish that if the distribution

of valuations is convex, all bidders gain ex-ante from a buyout option even

though a bidder with a high valuation may suffer from the option ex-post.

The impact of the valuations’ distribution function on the ex-ante bidder

welfare is further investigated in Mathews (2004b). Denote the interval of

feasible valuations by M ⊂ R and the distribution and the density function

by F : M → [0; 1] and f : M → R+, respectively. Mathews restricts his

attention to the case M = [0; 1] and confirms the result from Mathews und

Katzman (forthcoming) by proving that the offer of a buy price raises all

bidders’ ex-ante expected payoffs compared to a standard English auction if

f ′(x) ≥ 0 ∀x ∈ [0; 1]. Moreover, he shows that if f ′(x) < 0 ∀x ∈ [0; 1], a

bidder with a sufficiently high valuation would prefer the seller not to offer a

buyout option.

2.6.5 Participation Costs

Wang et al. (2004) examine eBay’s variant of a buy price auction by taking

bidders’ participation costs into account. The authors argue that when bidding

in an online auction, bidders incur costs associated with waiting and following

the bidding process. A bidder does not face these costs when exercising the

buyout option, but only when bidding in the auction. When bidding, however,

the bidder has to bear these costs irrespective of whether he wins the auction

or not.40

Once more, the model by Wang et al. builds on the assumption that bid-

ders’ valuations are independently and uniformly distributed on [0; 1]. More-

over, both the bidders and the seller are considered risk neutral.41 In their

model, Wang et al. let the bidders arrive sequentially at the auction and allow

only the first bidder to exercise the Buy It Now option. The point of time at

which a bidder arrives, however, has no further consequences. This feature is

thus equivalent to randomly selecting the decisive bidder in the APPO model

and captures the property that the Buy It Now option expires once a bidder

submits a bid in an auction on eBay.

Given the buy price B and the participation costs c for bidding, Wang

et al. calculate a symmetric equilibrium. The respective equilibrium strate-

gies can be described by two characteristic values, the so-called participation

40 Rather than participation costs, one might more appropriately label these costs
as bidding costs.

41 The authors argue that “[a]lthough some auctioneers could be risk averse, many
large retailers that have opened eBay stores, like Dell, IBM, Sun Microsystems,
and Sony are unlikely to be risk averse.” Even though many models (including
the APPO model) assume that sellers are risk neutral, this reasoning is certainly
questionable.
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threshold sa and the buy threshold sb. The participation threshold indicates

the valuation at which the respective bidder is indifferent between bidding

in the auction and not participating at all whilst the buy threshold is the

valuation at which the bidder is indifferent between bidding in the auction

and exercising the Buy It Now option. Several cases arise of which the most

interesting is

0 ≤ sa ≤ sb ≤ 1 and

sa < B .

In this case, the complete strategy of a bidder i with valuation vi is not to

bid if 0 ≤ vi < sa, to bid in the auction if sa ≤ vi < sb, and to exercise the

Buy It Now option if sb ≤ vi ≤ 1.

Clearly, the participation threshold is mainly driven by the participation

costs c. The higher the costs c, the more likely it is that a bidder will not bid

in an auction. In equilibrium the participation threshold evaluates to

sa = n
√

c .

Thus, the participation threshold also increases with the number of bidders

n.

According to Wang et al. the buy threshold solves

sb − B =
sn

b − c

n
. (2.36)

Rearranging (2.36) and setting c = 0 yields B = sb − sn
b

n
, i. e. if there are

no participation costs, the buy threshold of Wang et al. (2004) equals the

threshold of a bidder in an APPO. The authors show that the buy threshold

decreases in the participation costs c. Thus, ceteris paribus, the acceptance

of the Buy It Now option becomes more attractive as the participation costs

increase.

Wang et al. also seek to derive the Buy It Now price B∗ that maximizes the

seller’s revenue. The result stated in Proposition 3 of their paper is, however,

inconsistent with the other papers discussed so far. According to Wang et al.

(2004) the optimal Buy It Now price B∗ is

B∗ =
2 + Ra

3
− 2(1 − c)

3n
(2.37)

with Ra denoting the expected revenues of a pure English auction with no buy

price. Setting the participation costs c = 0, Equation (2.37) suggests to the

seller offering a Buy It Now price B that is accepted with positive probability.
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The analyses by Reynolds und Wooders (2003), Mathews (2004a, 2003), as

well as the APPO model, however, show that offering such a Buy It Now price

does not pay for a risk neutral seller in the setting investigated by Wang et al.

One finds the solution of that discrepancy in the proof of the proposition

that Wang et al. give in their appendix: “In order to get an analytically

tractable result for the optimal buy-it-now price we use a second-order Taylor

series expansion to approximate sn around the upper bound of the value

distribution. [. . . ] Based upon a comparison with simulated numerical results

this approximation is very accurate” (p. 33). Apparently, the approximation is

not accurate enough for numerical examples and it is definitely not analytically

correct as claimed in the text.

The approximation does, however, give some qualitative insight into the

behavior of the seller. For example, the optimal buy price B∗ increases with the

number of bidders n.42 This leads Wang et al. to conjecture that, if the number

of bidders increases, the Buy It Now option will be offered less frequently—

a hypothesis that they examine with empirical data. They report that they

find their hypothesis affirmed by data that they collected from eBay in four

categories (memory sticks, iPod players, and two different kitchen mixers).

2.6.6 Extension: Multi-unit Demand

Kirkegaard und Overgaard (2004) extend the analysis of auctions with a buy

price to the case in which bidders have multi-unit demand.43 They analyze a

situation with n bidders and two sellers, 1 and 2. Each of the sellers initially

owns one item which she values at 0. Bidders have positive but decreasing

marginal valuations for the two items. More precisely, Kirkegaard und Over-

gaard assume that the bidders’ valuations of the first item are independently

distributed on an interval [0, v̄]. Further, there is some k with 0 < k < 1 and

the valuation of the second item of a bidder i who values the first item at vi

is given by kvi.

The authors refer to a benchmark model by Black und de Meza (1992)

who show that in the above situation a sequence of two second-price sealed-

bid auctions yields an efficient outcome and increasing revenues from the first

to the second auction.

42 Remember that the revenue Ra is also a function of n.
43 Kirkegaard und Overgaard refer to their paper as “incomplete”, yet the current

draft comprises 48 single-spaced pages.
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In contrast to the benchmark model, Kirkegaard und Overgaard allow the

first (but not the second) seller to offer a buy price. The following schedule

describes the bidding procedure:44

1. Seller 1 announces a buy price B.

2. Bidders indicate whether they wish to accept the buy price. If exactly

one bidder accepts the buy price, he is awarded the item. If more than

one bidder is willing to accept the offer, the item is awarded by a random

method. In both cases, the bidder who is awarded the item pays the buy

price B.

3. If no bidder is willing to accept the buy price, seller 1 auctions her item

by means of a second-price auction.

4. Seller 2 auctions the second item through a second-price auction.

Kirkegaard und Overgaard consider risk neutral bidders and compute a

symmetric equilibrium for bidding in that auction sequence. Based on the

bidding equilibrium they also derive the optimal buy price of seller 1 in the

first auction. They obtain the following results:

1. Seller 1 can gain from offering a buy price, i. e. a carefully selected buy

price increases the expected revenues in the first auction.

2. If seller 1 offers a buy price, the auction may result in an inefficient out-

come.

3. If seller 1 offers a buy price, the expected revenue decreases from the first

to the second auction.

4. Further, a buy price in the first auction reduces seller 2’s expected revenues

in the second auction. Moreover, even the sum of the revenues in the first

and the second auction is lower in comparison to the case without a buy

price.

The results by Kirkegaard und Overgaard are particularly noteworthy for

two reasons. Firstly, in the multi-unit case, the buy price reverses the ranking

of the auctions’ revenues. Remember that according to Black und de Meza

(1992), revenues increase from the first to the second auction in the benchmark

case without buy prices. Kirkegaard und Overgaard show that with a buy

price, it is the first auction that yields higher revenues. Secondly, in the case

of an isolated one-unit auction with risk neutral (and not impatient) bidders,

the APPO model, as well as the papers presented in the previous sections

44 Interestingly, Kirkegaard und Overgaard choose a setting similar to that of Bud-
ish und Takeyama (2001). While Budish und Takeyama claim that this setting
resembles Yahoo!’s variant of a buy price auction, Kirkegaard und Overgaard
relate this setting to “a buy-out price of the eBay-variety.”
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shows that the seller cannot increase expected revenues by means of offering a

buy price. Kirkegaard und Overgaard give an explanation as to why offering

a buy price could be rational for a risk neutral seller even if bidders are also

risk neutral.

2.7 Summary

All models that were discussed in this chapter are based on the symmetric

independent private values assumptions. Thus, in the APPO model as well as

in the presented alternative approaches that are suggested in the literature,

the bidders know their own valuation for the object but not those of the other

bidders. Moreover, all bidders are ex-ante symmetric and their valuations are

independent of each other. All models analyze an auction with a buy price as

a non-repeated game, i. e. the auction is conducted only once and the agents

will not meet again in the future. A seller who does not sell the item may not

relist it and the bidders have no alternative source of acquiring the item for a

price below their private valuation.

In all models, some kind of a threshold strategy is derived and the charac-

teristics of this threshold strategy are discussed in varying degrees of detail.

All models investigate the expected revenues (or the expected utility) of the

seller. Table 2.1 summarizes the different assumptions made by the respective

authors and contrasts them to the APPO model.45 The table classifies the

models with respect to the distribution of valuations, the number of bidders,

and the characteristics of the agents. An agent’s characteristic is determined

in particular by its attitude towards risk. Mathews (2003) and Wang et al.

(2004) also consider impatient agents and bidders that incur participation

costs, respectively. The table also lists the format of the auction if the buy

price is not accepted and states whether a reserve price p > 0 is taken into

consideration. Finally, the table shows whether the buy price is offered to all

bidders or only to one randomly selected bidder. In the column “variant”,

an entry “eBay” indicates that the buy price expires once the bidding has

started. The entry “Yahoo!” indicates that the buy price may be accepted

even after bidders have submitted bids.

Table 2.2 summarizes the main results of the models. For ease of notation,

in the results column any remark with respect to the revenues or the agents’

utility refers to the respective expected values. A result “offering a posted price

does not pay for the seller” means that for any posted price offer the expected

45 The model by Kirkegaard und Overgaard (2004) is not included in the table due
to its focus on multi-unit demand.
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revenues of the seller are lower than the expected revenues of the corresponding

pure auction. There may well be particular cases, i. e. particular realizations

of valuations, for which the opposite is true.

Table 2.2: Overview of the results

Model Results

APPO

• In equilibrium, the strategy of the decisive bidder ı̂ with
valuation vı̂ is characterized by a threshold function
tı̂(vı̂).

• The decisive bidder accepts a buy price (PPO) p̄ if p̄ ≤
tı̂(vı̂).

• The acceptance threshold increases with
– the number of bidders,
– the reserve price, and
– the degree of risk aversion of the decisive bidder.

• If bidders are risk neutral (or risk loving),
– offering a buy price does not pay for the seller.

• If bidders are risk averse,
– the seller can profit from offering a buy price,
– an optimal APPO outperforms an optimal second-

price auction with respect to revenues.

Budish/
Takeyama

• If bidders are risk neutral,
– offering a buy price does not pay for the seller.

• If bidders are risk averse,
– the seller can profit from offering a buy price,

– the revenues of second-price auction with a buy
price exceed even the revenues of a first-price auc-
tion.
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Hidvégi et al.

• Bidders accept a (given) buy price once the auction
price reaches a certain level. This level decreases with
the bidders’ valuations.

• The seller can profit from offering a buy price if either
the seller or the bidders are risk averse.

• If bidders are risk neutral (and the buy price is set
sufficiently high),
– a buy price auction yields the same revenue as a

(pure) standard auction—this holds even if the buy
price is accepted with positive probability.

• If bidders are risk averse (and the buy price is set suf-
ficiently high),
– the seller can profit from offering a buy price,

– a buy price auction is efficient,
– bidders with constant absolute risk aversion are in-

different between a (pure) English auction and a
buy price auction.

Reynolds/
Wooders

• If bidders are risk neutral,
– the revenues of the buy price variants of eBay and

Yahoo! are the same,
– a sufficiently high buy price might not be ac-

cepted in the eBay variant but it will in the Yahoo!
variant—in this case the two buy price auctions
yield the same revenues as a pure English auction,

– if the buy price is exercised with positive probabil-
ity in the eBay variant, the two buy price auctions
yield lower revenue than a pure English auction.

• If bidders have constant absolute risk aversion,
– the bidders are indifferent between the two auction

formats,
– the Yahoo! variant yields higher revenue than the

eBay variant,
– the buy price can be set such that both variants

yield higher revenues than a (pure) English auction.

Mathews (2004a)

• The seller can profit from offering a buyout option if
either the seller or the bidders are impatient.

• A buyout option offered by an impatient seller also in-
creases the bidders’ payoffs.
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Mathews (2003)

• A risk averse seller can profit from offering a buyout
option.

• The more risk averse a seller is, the lower is the buyout
option that this seller optimally offers.

• A buyout option offered by a risk averse seller also in-
creases the bidders’ payoffs.

Mathews (2004b)

Mathews/
Katzman

• A risk averse seller can profit from offering a buyout
option (see also Mathews, 2003).

• Whether the bidders also profit from a buyout offer
depends on the distribution of bidders’ valuations.

Wang et al.

• Equilibrium strategy of bidder i with valuation vi is
characterized by the participation threshold sa and the
buy threshold sb.

• If sa ≤ vi < sb, bidder i bids in the auction.

• If sb ≤ vi, bidder i accepts the buy price.

• Participation threshold increases with
– the bidding costs and
– the number of bidders.

• Buy threshold decreases with the bidding costs.

• Optimal buy price increases with the number of bid-
ders.



3

Design of the APPO Experiment

3.1 Motivation and Research Questions

There may be many potential explanations why a seller would also offer a

posted price when conducting an auction. From a theoretical perspective that

builds on the notion of rational bidders and sellers, the main drivers for posted

price offers are risk aversion or impatience on either side of the transaction,

as well as explicit or implicit transaction costs. Of course, many more expla-

nations are possible.

The theoretical analysis of the APPO model has focused on the bidders’

attitudes towards risk. Neither impatience nor transaction costs have been

modeled. Moreover, the analysis has only investigated the expected revenues

of the seller rather than her expected utility with respect to some utility

function. Thus, throughout the theoretical analysis, the seller is considered

risk neutral.

The theoretical analysis has resulted in two main findings:

1. If bidders are risk neutral (or risk loving), offering a PPO is not worthwhile

for the seller (Theorem 2.13).

2. If bidders are risk averse, the seller can set the PPO p̄ such that the

expected revenues of an APPO with the PPO p̄ will be higher than those

of a (pure) second-price auction (Theorem 2.14).

The second result also holds in a more general environment. For a wide

range of settings, it is sufficient to assume that the decisive bidder is risk

averse with positive probability. The theorem even holds if there are bidders

with different attitudes towards risk. If the decisive bidder is risk loving or risk

neutral, the seller’s revenue is not affected. Such a bidder will simply reject a

PPO if it is appropriately set. The seller can still gain if the decisive bidder

turns out to be risk averse.
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In fact, bidders on eBay most likely differ in their risk attitudes. There

might be some bidders who consider bidding fun and who appreciate in par-

ticular the gambling component of online auctions—these bidders are risk

loving. However, it appears reasonable to assume that a core of bidders exists

that is risk averse rather than risk neutral.

Can one conclude from the above that the APPO model sufficiently ex-

plains the agents’ behavior in auctions on eBay? Is the phenomenon of sellers

offering Buy It Now options on eBay simply due to the existence of risk averse

bidders? Do sellers correctly anticipate the bidding strategies of these bidders?

Unfortunately, the analysis of real-world phenomena is not that simple.

As with any model, the results of the theoretical analysis of the APPO model

leave some questions unanswered. The most fundamental issues are:

1. The APPO model is based on the assumption of rational bidders and

sellers. However, actual bidders and sellers may not always behave in

accordance with the theory.

2. The APPO market institution is similar to an auction with a Buy It Now

price on eBay. It is, however, not exactly the same as an auction on eBay.

Thus, bidders and sellers may behave differently in an auction on eBay

and in an APPO.

Regarding the first issue above, remember that calculating the theoretical

solution is rather challenging. An auction participant might not be able or

willing to exert such mental effort within the short time frame when deciding

on his or her strategy.1 The second issue relates to the fact that the APPO

model is built on several artificial assumptions that do not hold in a real-world

setting. To name but a few, the model assumes that bidders are symmetric

and that the number of bidders as well as the probability distribution function

of their valuations is common knowledge. Moreover, in the model, bidders

demand only one unit of an item and sellers try to sell a particular item only

once. Relaxing these assumptions might alter the behavior of the agents and

in turn the outcome of an auction.

In order to shed more light on the posted price option, a computer-based

experiment has been conducted. The experiment aims to analyze the APPO

model empirically, i. e. it mainly addresses the first of the two drawbacks of the

theoretical model that were mentioned above. The key questions that guide

the analysis are:

1 The use of gender-specific pronouns has nothing to do with the actual sex of
the subjects in the experiment. Rather, the notation follows the previous use of
pronouns: bidders are referred to by the pronouns “he” or “his” and the sellers
by the female counterparts “she” or “her”. In the experiment, the participants
were randomly selected and the group of subjects was of mixed gender.
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1. Is the bidders’ behavior in an APPO consistent with the theory developed

in Chapter 2?

2. Do sellers offer a posted price? Are they in fact able to extract additional

revenue by offering a posted price?

3. Besides the seller’s revenue, how does the existence of the PPO affect the

bidders’ surplus and the social surplus?

3.2 Treatments

The research questions require a two-fold analysis that investigates the be-

havior of both the bidders and the sellers. In order to address the two groups

of agents, the present analysis applies an experimental design with separate

sessions for bidders and sellers.

In principle, one could have observed bidders and sellers simultaneously by

having them participate in the same sessions. As will be shown in the following,

however, the chosen design yields several advantages. By separating bidders

and sellers,

• the treatments without a PPO and the treatments with a PPO can be set

up very similarly,

• more data are generated at lower cost, and

• distortions of the incentive-compatibility of the payoff function are mini-

mized.

Regarding the above advantages, it should first of all be noted that in order

to compare auctions with and without a PPO, the respective experimental

treatments must be set up analogously. They should only differ in the presence

of absence of the PPO, but—as far as possible—not in any other parameter.

Note that settings in which a seller is present and those in which she is not

might be perceived quite differently by the participants. In the latter case, the

individual participants compete not only against each other for the item; as

a group, they also play against the (anonymous) auctioneer, and by means of

their bids, they determine the size of the total bidder surplus that is shared

among them. In the former case, such an interpretation might shift towards

splitting the total surplus of an auction between the bidders and the seller, who

is now part of the group. Issues that are difficult to control in an experiment

(but which are not the object of this investigation), like envy and fairness,

might play a different role in the two settings.

Consequently, if a seller participates in a treatment with a PPO, she should

also be present if auctions without a PPO are under investigation. In the latter
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case, however, the seller would have nothing to do. Having a subject in an

experiment who has nothing to do, is not just a cost issue for the experimenter.

More importantly, it might be confusing for some participants, as they might

be distracted by the presence of a participant who is not actively involved

in the experiment. The separation of bidders and sellers in the chosen design

avoids this problem because bidders and sellers are never physically present

in the lab at the same time.

Second, one of the research questions is whether or not the seller offers a

PPO. In the lab, one wants to observe what the seller actually does. If she

decides, however, not to offer this option, nothing can be learned about the

behavior of the bidders with respect to a PPO. When the behavior of the

bidders is under investigation, it is more valuable for the analysis to ensure

that a PPO is in fact being offered. By analyzing bidders and sellers separately,

this can easily be achieved.

Finally, there is also a practical aspect: If the number of bidders in an

auction is not too low, the expected revenue of the seller will be much higher

than the expected payoffs of the bidders.2 This, again, might give rise to sev-

eral distortions. From ultimatum game experiments it is known, for example,

that the proposer, who is in a more advantageous position than the responder,

generally offers the responder a much larger share of the pie than the theory

suggests (e. g. Camerer und Thaler, 1995; Güth, 2000).3 Similarly, the seller

in an APPO experiment might set the PPO rather low in order to share her

profit with the bidders. Moreover, ultimatum game experiments show that

the responder often punishes a proposer who offers only a small share of the

money by rejecting the offer (ibid). If the seller does not offer a low enough

PPO, might bidders in the experiment refuse to bid aggressively? Of course,

this is highly speculative. However, the argument illustrates the risk of distor-

tional effects that stem from the interplay of bidders and sellers. Again, the

separation of bidders and sellers avoids these issues.

As mentioned earlier, the sessions with bidders were conducted with auc-

tions both with and without a PPO in order to study its effect. Since in

auctions without a posted price offer there is nothing for sellers to decide,

only auctions in which they could set a PPO were conducted with them.

2 If valuations are independently and uniformly distributed on an interval [0; α],
this holds if at least two bidders participate in an auction.

3 In the ultimatum game, two players, called the proposer and the responder, obtain
the opportunity to share an amount of money. First, the proposer offers some
share of the money to the responder. If the responder accepts the offer, she is paid
that share and the proposer keeps the rest. If, however, the responder rejects the
offer, both players receive nothing. According to the theory, the proposer would
offer the smallest currency unit and the responder would accept that offer.
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Thus, there are three treatment families that will hereafter be referred to by

A, B, and S.

Treatment family A constitutes the benchmark case. In this treatment,

auctions without a PPO are conducted and the behavior of bidders is observed.

Treatment family B deals with bidders in auctions in which a PPO is available,

and treatment family S focuses on the PPOs that the sellers set.

All treatment families were conducted with both three and five bidders.

This results in a total of six different treatments: A3, A5, B3, B5, S3, and S5

(see Table 3.1). All treatments were conducted separately and each subject

participated in only one of the treatments.

Table 3.1. Overview of treatments in the experiment

Treatment Role of participants Description

A3 bidder no PPO, 3 bidders per auction
A5 bidder no PPO, 5 bidders per auction
B3 bidder PPO available, 3 bidders per auction
B5 bidder PPO available, 5 bidders per auction
S3 seller PPO available, 3 bidders per auction
S5 seller PPO available, 5 bidders per auction

3.3 Collecting Data: the Strategy Method

The separation of bidders and sellers poses a challenge for the design of the

APPO experiment. On the one hand, one seeks to confront the sellers with

a realistic decision problem, i. e. a situation in which actual bidders decide

whether or not to accept a PPO. On the other hand, however, in the S-

treatments bidders are not present in the lab.

The APPO experiment addresses this challenge by applying the strategy

method. According to this method, participants are asked for their entire

strategy as opposed to observing individual actions during the course of the

experiment. The term strategy follows the notion of game theory by referring

to a complete and concise plan that defines an action of a participant for

any possible state of the experiment. Recording the bidders’ strategies in the

B-treatments and mapping the sellers in each S-treatment auction to one of

the observed bidders’ strategy profiles allows the evaluation of the auctions

in the S-treatments based on actual bidder behavior.
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The strategy method was introduced by Selten (1967) and has been used by

several authors since then.4 According to Brosig et al. (2003) “[t]he obvious

advantage of this method is that it immediately generates data for all of

the information sets in a game and greatly reduces the cost of experimental

research.” The fact that the strategy method collects data for all nodes of a

game (and not only those that are on the actual path of the chosen strategy

profiles) is crucial for the APPO experiment. The separation of bidders and

sellers is only possible because the strategy method provides the answer of

the decisive bidder to any PPO as well as his bid in an auction if the seller

decides not to tender a PPO.

The above quote by Brosig et al. also mentions the cost advantage of the

strategy method. This holds true for the APPO experiment as well because

the strategy method greatly enhances the sufficiency of the data collected

for the analysis. Consider, for example, an APPO in which the seller does

not offer a PPO: if only the actions of the participants were recorded, the

experiment would not generate any data with respect to the reaction of the

decisive bidder to the PPO. Note that based on the theory, a seller is expected

to set the PPO, if she offers one at all, rather high. Only a small fraction

of the bidders are then candidates for accepting the offer. Note, also, that

one needs n bidders for each auction—and only one of these bidders, the

decisive bidder, is potentially offered a PPO. Moreover, what can be learned

if a decisive bidder with a very high valuation accepts a rather low PPO, and

what if a bidder with a low valuation rejects a high PPO? If only the actual

actions of the participants were observed and recorded, a large number of

participants might be necessary to obtain a data set that is sufficiently large

for the analysis. By not only recording the ‘accept’ / ‘reject’ decisions of the

decisive bidder with respect to a given PPO but also the acceptance threshold

of all bidders, i. e. the maximum PPOs the bidders are willing to accept, the

APPO experiment yields more valuable data.

From a theoretical perspective, the outcomes of experiments conducted

using the strategy method should not differ from those in which the protocol

method is applied.5 Often, however, experiments (such as the APPO exper-

iment) are used to test whether theoretical predictions hold in a laboratory

setting and significant differences are frequently found. This raises the ques-

tion of whether the strategy and protocol methods in fact lead to identical

outcomes. Potential distortions may arise because under the strategy method

subjects are forced to think about the game as a whole and to submit an entire

strategy rather than to concentrate on their individual actions. Differences of

4 See Brosig et al. (2003) for an overview of strategy method experiments.
5 The term “protocol method” was introduced by Selten (1967) in reference to the

traditional method of recording the actual actions of the participants.
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this kind, however, are per se neither an advantage nor a disadvantage of the

strategy method (Roth, 1995).

Assessing the method, Roth (1995) acknowledges its above-mentioned ad-

vantage of generating much more data than the protocol method. However,

he also identifies a disadvantage in pointing out that the strategy method

“removes from experimental observations the possible effects of the timing of

decisions” (p. 322). In reference to ultimatum games, Roth argues that “it will

not be possible to observe any effects that may be due to the accepter/rejecter

making her decision after the proposer has made his decision, knowing what

has been proposed” (ibid, original italics). A similar critique may apply to the

APPO experiment. Note that in a real setting, the seller decides on a PPO

and a bidder then knows whether he is being offered a PPO or not. Moreover,

the bidder knows the amount of the PPO if it is offered to him. The APPO

experiment turns this order around. First, a bidder submits his acceptance

threshold and learns only thereafter (i) whether he was offered a PPO or not

and (ii) the amount of the PPO.6 Then, second, the seller decides about a

PPO in a separate session. However, this PPO, if offered, is not presented to

a bidder who accepts or rejects it. Rather, the PPO is matched with bidder

strategies which have been recorded days before the sellers are invited to the

lab.

While Roth (1995) only speculates about differences between the strategy

and the protocol methods, Brandts und Charness (2000) analyze whether such

differences actually exist. They investigate sequential versions of the prisoner’s

dilemma and the chicken game. Both games are played in two treatments. In

the so-called “hot” treatment, the protocol method is applied and the “cold”

treatment is played according to the strategy method. Interestingly, Brandts

und Charness find no differences between the two treatments. Similar results

are also reported e. g. in Cason und Mui (1998).

Güth et al. (2001), on the other hand, observe quite the opposite. They

compare three implementations of the mini-ultimatum game, which only differ

in the allocation implied by the “high” offer.7 Applying the protocol method,

Güth et al. (2001) find that the proposer offers “high” more often if this

option leads to exactly equal shares. The “high” option is chosen significantly

less frequently if the resulting allocation is not exactly equal—regardless of

whether this allocation would favor the proposer or the responder. Moreover,

6 Note also that this PPO is randomly drawn by a computer and not by a human
subject.

7 In contrast to the ultimatum game, in a mini-ultimatum game the proposer can
choose between only two options, “high” and “low”, rather than proposing any

allocation. Often, the “high” option translates to an allocation of roughly equal
shares and the “low” option yields only a marginal share to the responder.
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the responder rejects a “low” offer more often if an alternative offer of exactly

equal shares has been available. The phenomenon diminishes if the strategy

method is applied. Another example of different results between the protocol

and the strategy method is shown in Hoffman et al. (1998), who study trust

in a bargaining experiment.

Revert now to this study’s experiment. Given a bidder’s valuation, his

strategy in an APPO is the maximum PPO p̄ that the bidder will accept if the

PPO is offered to him and the amount b that he will bid in the corresponding

auction if the PPO is rejected by the decisive bidder.8 In the benchmark case

without a PPO, i. e. the treatments A3 and A5, a bidder’s strategy is the bid

he submits.9 Figures 3.1 and 3.2 display screenshots of the participants’ user

interface in the A and the B-treatments.10 The screens show the difference

between the two treatments. In the A-treatments, a bidder’s strategy in an

auction consists of only one number, namely his bid (Figure 3.1). In the B-

treatments, bidders have to enter two numbers: the maximum posted price

they are willing to accept and their bid in the corresponding auction in case

the decisive bidder rejects the PPO (Figure 3.2).

In the B-treatments, a PPO is offered in every auction. The amount p̄

of the PPO is chosen randomly before the start of the experiment. A com-

puterized random number generator determined a PPO for every round of

the experiment.11 The same PPO is offered in all simultaneous auctions of

a session and the same sequence of PPOs is applied in all sessions of the

B-treatments.12

After all bidders have entered their strategies, the auction round is eval-

uated and only then is the amount p̄ of an auction’s PPO announced to the

participants in the B-treatments. In treatments A3 and A5, the winning bidder

and the auction price are determined according to the rules of a second-price

auction (see p. 73 for details). In treatments B3 and B5, the auction bids are

only evaluated if the item is not awarded to the decisive bidder, i. e. if the pre-

8 Strictly speaking, in a sequence of twelve auctions a game theoretical strategy
covers an agent’s concise and complete plan for the behavior in the whole sequence
of auctions. With regard to the setup as a stranger experiment (see Section 3.4),
however, in this paper, the term strategy refers to only one auction.

9 One could also argue that a bidder’s strategy consists of the threshold and the bid-
ding functions t(v) and b(v). In the experiment, however, a bidder was informed
about his valuation before he had to decide on a strategy.

10 The experiment was conducted in German. Figures 3.1 and 3.2 are translations
of the original screens. In Appendix D.2 the screens that were actually used in
the experiment are shown.

11 In the experiment, the subjects participate in a sequence of auctions. These auc-
tions are also referred to as rounds (see Section 3.5 for details).

12 The PPOs offered in the experiment are given in Table B.6 of Appendix B.
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Figure 3.1. Bidding screen in treatments A3 and A5

determined PPO is higher than the maximum PPO that the decisive bidder

is willing to accept. The decisive bidder (or more precisely his identification

number) in each auction is randomly selected before the experiment is started

and remains identical for the two sessions of each of the two treatments B3 and

B5. The identification numbers of the decisive bidders of all auction rounds

are indicated by a bold font face in Tables B.1 and B.2 in Appendix B. In

neither the A nor the B-treatments is a seller physically present. Rather, a

(virtual) seller is built into the software.

The behavior of the seller is investigated in treatments S3 and S5. Her

strategic options are illustrated in Figure 3.3: she first indicates whether or

not she wishes to offer a PPO and, if so, she specifies, secondly, the respective

amount. Since the seller’s decision depends on her expectation regarding the

bidders’ responses to a PPO, it is crucial for the analysis to map the seller

with actual rather than fictitious bidder behavior. It has been mentioned

above that in order to do that, the strategies of the bidders in treatments B3

and B5 are recorded and saved in the system. The auctions in treatments S3

and S5 are then evaluated based on both the PPOs set by the sellers, i. e. the

actual subjects in these treatments, and the strategies of the bidders which
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Figure 3.2. Bidding screen in treatments B3 and B5

have been recorded in the B-treatments. Section 3.5 elaborates on the details

of the implementation of the experiment and describes how the sellers are

matched to the recorded strategies of the bidders.

3.4 Setup as a Stranger Experiment and Independency

of Observations

The numerical calculations in Chapter 2 show that the differences between the

expected revenues of an APPO and a pure auction can be rather small. As a

consequence, one of the difficulties in designing the experiment is generating

a data set that is large enough to identify these differences—if they exist at

all.

In order to solve this difficulty, the experiment is conducted as a stranger

experiment, i. e. the formation of the groups changes from round to round.

There is one rotating schedule for the sessions with three bidders and one for

the sessions with five bidders. These rotating schedules are determined before

the start of the first session and they are kept identical over all sessions with
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Figure 3.3. Seller’s screen in treatments S3 and S5

three and five bidders, respectively. The concise composition of the groups

is given in Tables B.1 and B.2 in Appendix B. Note that the experiment is

not set up as a perfect stranger experiment in which the probability that

two subjects are mapped to the same group more than once is zero—with

15 bidders, twelve rounds and more than two bidders per auction, this is not

possible. Yet the number of re-matchings is minimized and the design ensures

that the same group never meets twice. In the experiment, the bidders are not

informed with whom they are bidding in a particular auction. Only after an

auction they learn the identification number of the bidder who was awarded

the item.

According to Davis und Holt (1993, p. 528), the stranger method allows

“a researcher to generate multiple observations with a single cohort, while

simultaneously maintaining the independence of these observations. [...] [T]he

idea is to rotate participants in such a manner that each person in a cohort

meets each of the others only once. [...] If understood and believed by the

subjects, it will induce a series of single-period games.” The authors add,

however, that the stranger method does not guarantee independence. In fact,

they argue that a single participant might behave so bizarrely that he confuses
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all the peers in his group. This bizarre behavior could then affect all later

rounds in which the peers participate. Even worse, due to the rematching,

this participant would infect all (or at least many) subjects within the cohort.

In this case, the individual outcomes observed in different rounds and/or

groups of the cohort are clearly not independent of one another. In general,

however, the setup as a stranger experiment reduces the dependency of single

observations, which will be very helpful in the analysis.

In the chosen design of the experiment, each subject participates in a se-

quence of twelve auctions (cf. Section 3.5). Because the same subjects are

observed several times, the outcomes of these auctions are, of course, not in-

dependent. At least three sources of dependency exist: First of all, the sample

of subjects is smaller than the number of observations. Each participant is

observed in several auctions and certain characteristics of the individual par-

ticipants are thus repeatedly reflected in the data. Secondly, subjects gain

experience over time and may systematically alter their behavior during the

course of the experiment. Finally, repeated games may give rise to strategic

patterns that are not typical for one-shot games. Collusive bidding, i. e. a tacit

“agreement” to submit only very low bids and to extract high payoffs, could

be an example. In this case, the behavior in a single auction is not a strategy

in itself, but only a component of a more extensive strategy. As such a strat-

egy embraces several rounds and may depend heavily on the history of past

auctions.

In spite of the above issues, the analysis seeks as many data points as

possible. Justified by the setup as a stranger experiment, the collected ob-

servations are referred to as quasi-independent and treated as if they were

independent. Nonetheless, the analysis acknowledges that strictly speaking,

this is not true. As a consequence, the results of the statistical tests based

on the quasi-independent observations are more liberal than the reported p-

values imply. With respect to the three critical issues raised above, the follow-

ing paragraphs once more discuss the implications of the quasi-independent

observations for the analysis of the APPO experiment.

First of all, there is not much one can do with respect to the dependency

of the auction results on the small set of experimental subjects. Note that a

bidder’s induced valuation changed from round to round and, in some sense,

a bidder was assigned a new task in every round. However, this does not

completely solve the issue of dependent observations and this dependency thus

remains a flaw of the experimental design. This flaw was tolerated, however,

to keep the costs of the experiment under control.13

13 Having chosen a stranger setup, it is not possible to analyze the data based on ag-
gregate group results as, for example, the average results of independent cohorts.



3.4 Setup as a Stranger Experiment and Independency of Observations 71

Second, as discussed in Section 3.8, paired tests are performed in order

to compare the experimental results. This reduces the effect of trends over

time (e. g. learning by subjects). The analysis assumes that if a systematic

trend exists, this trend is reflected similarly in the results of the A and the B-

treatments. Since a paired test considers the differences between the results,

the effect of the trend diminishes. The design ensures that a matched pair

always comprises results of the same round, i. e. a result of an A-treatment

observed in round i is only compared with a result of the same round i of the

corresponding B-treatment.

Third, the setup as a stranger experiment also minimizes a potential bias

caused by (collusive) effects within the groups. Changing the composition of

groups from round to round limits the cohorts’ possibilities of developing and

applying long-term strategic behavior.

Another issue that relates to the (in-)dependence of observations concerns

the setup of treatment S5. The objective is to generate a large data set without

inflating the costs of the experiment. Thus, one seeks to observe a sufficiently

large number of sellers. If each seller were to be matched with a unique set

of bidding data, however, the experiment would be very expensive due to the

costs of inviting and paying additional bidders. This is particularly the case

for auctions with five bidders.

The problem is solved by assigning each of the profiles of bidding strategies

which are recorded in treatment B5 not only to one but to two different sellers.

The chosen design doubles the size of the seller sample without incurring

additional costs for bidders. When analyzing the auction outcomes, however,

the difficulty arises that, again, the data are not independent. Because each

bidding strategy observed in treatment B5 is duplicated, it is incorporated

twice in the outcomes of the auctions in the treatment S5.14 Thus, it is not

appropriate to base a statistical test on all individual auctions of treatment

S5.

For the above reason, the outcomes of S5 are reported in two separate sets

of data labeled “Observation I” and “Observation II”. The two observations

differ in the sellers, i. e. the subjects of treatment S5, but are based on pair-

Due to the re-matching of the bidders, all auctions are ultimately dependent and
independent cohorts do not exist.

14 Strictly speaking, not only the outcomes, i. e. the revenues, the winning bidders’
payoffs, and the social surplus, but also the observations with respect to the be-
havior of the sellers are dependent. In each instance there are two sellers that share
the same sequence of strategy profiles of bidders. Such a pair of sellers therefore
experiences a similar history of auction outcomes. Moreover, even the strategy
profiles of different bidders are not independent but only quasi-independent. This
kind of dependency, however, is considered marginal and is neglected in the anal-
ysis of the behavior of the sellers.
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wise identical bidding data. The statistical tests comparing the results of the

treatments with and without a PPO in auctions with five bidders are each run

twice: the first run is based on “Observation I” and the second run is based

on “Observation II”. The p-values of both runs are given. Because the two

runs are based on the same bidding data not only of treatment B5 but also of

treatment A5, they are not independent. Rather, they should be interpreted

as substitutes.

An alternative possibility for testing would be to calculate the arithmetic

mean of all pairs in Observations I and II. This approach, however, has been

rejected because it would significantly alter the structure of the data. It will

be shown in Section 4.2, for example, that the data is characterized on the

one hand by a large number of observations consistent with the theoreti-

cal benchmark and on the other hand by a substantial share of observations

which deviate strongly from this benchmark. There are relatively few observa-

tions with medium deviations from the theory. Averaging pairs of observations

would overstate the fraction of medium deviations from the theory and reduce

the impact of outliers.

3.5 Further Design Parameters

Each of the treatments A3, A5, B3, and B5 is conducted with two sessions

with 15 subjects participating in each of these sessions. Thus, a total of 30

bidders is observed in each treatment. Within a session, the bidders take part

in a sequence of twelve consecutive auctions that are also referred to as rounds.

Since there are three bidders per auction in the sessions of treatments A3 and

B3, in every round of these sessions the 15 participants are mapped to one of

five auctions that are conducted simultaneously. Analogously, in the sessions

of the treatments A5 and B5, three simultaneous auctions are conducted in

each round. Bidders who bid in the same auction are also said to constitute

a group in that round.

In the experiment, the participants do not trade real objects. Rather, in

every round a virtual item is auctioned for which the bidders’ private valua-

tions are induced: if a participant is awarded the item, the difference between

his valuation and the price to pay is credited to the bidder’s experimental

account. The bidders’ valuations in the experiment are randomly and in-

dependently drawn from the discrete uniform distribution over the support

M = {1, 2, . . . , 100}. The ex-ante probability distribution is made known to

the participants.

The data set of the valuations is composed of a (12 × 15) matrix that

assigns each of the 15 bidders a valuation for each round. All valuations are
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drawn before the start of the first session of the experiment. They are shown

in Table B.5 in Appendix B. Note that the same table of valuations is used in

all sessions with bidders. Thus, the analysis allows for a pairwise comparison

of strategies between the A and the B-treatments as well as a comparison

between auctions with three and with five bidders. Friedman und Sunder

(1994, pp. 68, 100) argue in favor of designs that produce matched-pair data

because they sharpen the test when analyzing the data.

The treatments S3 and S5 are investigated in one session each with ten and

twelve participants, respectively. Remember that there are five simultaneous

auctions in every round of treatment B3. Because two sessions of B3 are

conducted, the bidders’ strategies in a total of ten auctions are observed per

round. Thus, in every round each seller can be mapped to a separate set

of bidders’ strategies. Treatment S5 is set up accordingly. Since there are

five bidders per auction, in the two sessions of treatment B5 only six bidder

groups can be observed per round. When the behavior of sellers is being

investigated, these data sets are duplicated, i. e. the data set of every auction

in treatment B5 is assigned to two different sellers, which allows treatment

S5 to be conducted with twelve sellers. Following the design principle of a

stranger experiment, the assignment of bidder groups of treatment family B

to sellers in treatment family S is randomized.

Finally, the rules of the auction in the A-treatments as well as the rules

of the corresponding auction in the B-treatments deserve a detailed look. In

the APPO model, the corresponding auction is modeled as a second-price or

Vickrey auction (Vickrey, 1961). Following the APPO model, a second-price

auction is (internally) implemented in the experiment. This auction format is

known to perform poorly in experimental settings, however. Several authors

observe a significant share of bidders who deviate from their dominant strat-

egy, with a majority bidding more aggressively than according to the theory

(e. g. Kagel und Levin, 1993; Kagel, 1995; Harstad, 2000).15 In order to pre-

vent these distortions, the participants are instructed to enter the bidding

limit of a computerized agent who bids on their behalf in an English auc-

tion. Technically, the auction institution of the experiment is thus an English

proxy auction. The authors cited above report that the English auction per-

forms much better than the second-price auction in experimental settings, and

theoretically, the implemented proxy version is equivalent to a second-price

auction. Much care was devoted to the wording of the instructions to precisely

15 In a specific setting of a multi-attribute procurement auction, Seifert und Strecker
(2003) observe to the contrary significantly more defensive than aggressive bids
compared to the dominant strategy.
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describe the auction rules and to avoid any strategic guidance. Moreover, two

examples are given in the instructions for illustration.16

In the experiment, the reserve price is set to one currency unit and the

integer numbers N are the set of feasible bids.17 Thus, there is a positive

probability of tied bids which are resolved by a random method.

Table 3.2 once more summarizes the design parameters which differ among

the sessions of the experiment. All treatments share the following properties:

• Model framework: induced symmetric independent private valuations

• Bidder valuations: uniformly distributed over {1, 2, . . . , 100}
• Auction institution: English proxy auction

– Feasible bids: integer values

– Reserve price: 1 currency unit

– Minimum increment: 1 currency unit

Table 3.2. Summary of design parameters

Treatment
Parameter A3 A5 B3 B5 S3 S5

Number of Rounds 12 12 12 12 12 12
Bidders per auction 3 5 3 5 3 5
Auctions per round 5 3 5 3 10 12
Subjects per session 15 15 15 15 10 12
Number of sessions 2 2 2 2 1 1
Total subjects 30 30 30 30 10 12
Total auctions 120 72 120 72 120 144
Data gathered bids thresholds; bids PPOs y/n; p̄

3.6 Conducting the Experiment

The experiment was conducted at the experimental laboratory of the Informa-

tion Management and Systems research group at the University of Karlsruhe

16 The complete instructions are available for download from http://www.

stefanseifert.de/downloads/appo.
17 A difficult but important issue is the minimum increment of bids. The instructions

lay out that a computerized auctioneer will start the auction by offering the item
for a price of one currency unit to the bidding agents. As long as at least two
bidding agents indicate their willingness to buy, the price is increased by one unit.
If only one bidder remains in the auction, he is awarded the item and pays the
last price at which two (or more) bidders were still active in the auction.
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in the fall of 2003 and was carried out in German. Subjects in the experiment

were students from various disciplines, with a majority from the Department

of Economics and Business Engineering. The students were randomly selected

for participation from a large subject pool of more than 2,000 volunteers. None

of the subjects had ever participated in a forward auction experiment at the

University of Karlsruhe before.18

The experiment was computerized. It was programmed and conducted

with the software z-Tree (Fischbacher, 1999). The participants entered their

decisions on computer terminals that were set up in individual, visually iso-

lated cabins (Figures D.1 and D.2 in Appendix D show the experimental lab

and a participant cabin). These cabins or seats were labeled with the letters

‘A’, ‘B’, . . . , ‘O’. Upon arrival at the experimental lab, the participants ran-

domly drew a card that revealed the letter of their cabin. In addition to the

computer terminal, participants found a pen, a ruler, and two sheets of blank

paper in the cabin. The paper was intended for the participants’ personal use

and was not collected or analyzed. Communication between the participants

was not permitted.

After the subjects had been seated, they received written instructions,

which were also read aloud by a research assistant.19 To ensure that they had

understood the rules of the experiment, the participants had to answer an

extensive online questionnaire before the actual experiment was started. The

questionnaire comprised—depending on the treatment—12 to 19 questions

covering all the rules given in the instructions.

Once the questionnaires had been processed, the software assigned identifi-

cation numbers to the participants. These numbers served as the participants’

names throughout the experiment. In the A and B-treatments the numbers

ranged from 1 to 15 and in treatments S3 and S5 they ranged from 1 to 10 and

1 to 12, respectively. The identification numbers were randomly mapped to

the participants in every session and had nothing to do with their seat labels.

The subjects participated in twelve auction rounds. There were no trial

rounds. At the beginning of each round, the participants were informed about

their assigned valuation for the (virtual) item in the current round. The val-

uation was displayed on the bidding screens on the participants’ computer

terminal (see the figures in Appendix D.2). If a participant was awarded the

item, the difference between his valuation and the price he had to pay was

credited to his experimental account. The current account balance as well as

18 Some of the students might have participated in a multi-attribute procurement
auction experiment in the fall of 2002 (cf. Strecker, 2004).

19 For details on the instructions see http://www.stefanseifert.de/downloads/

appo.
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the history of the past auction rounds were visible to the participants through-

out the entire session.20

Reading the instructions and answering the questionnaire took about half

the time of an experimental session. On average, a session lasted just under an

hour. At the end of an experimental session, the subjects were paid in cash.

Valuations and prices in the experiment were calculated in currency units. The

conversion mechanism was explained in the instructions and thus known to the

participants. In treatments A3 and B3 the bidders’ final account balance was

divided by 10 and then yielded the payoff in euros. Thus, the bidders received

10 euro cents for every currency unit in the experiment. In treatments A5 and

B5, the final account balance was divided by 4, i. e. the participants were paid

25 euro cents per currency unit in the experiment. In treatments S3 and S5

the conversion factor from the currency units in the experiment to euros was

0.02 and 0.015, respectively.

There was no show-up fee or up-front payment. Table 3.3 shows the average

as well as the minimum and the maximum payoffs of the participants in the

different treatments. In one of the two sessions of treatment B5, the calculated

payoff of three participants was negative. For legal reasons, however, the rules

of the experiment guaranteed that participants could not incur losses. Thus,

these subjects were paid a zero payoff. In all other sessions, all participants

received positive payoffs.

Table 3.3. Payoffs of the participants in euros

Treatment Participants
Payoff [e]

Minimum Maximum Mean
A3 30 0.90 24.60 10.85
A5 30 2.25 18.00 9.95
B3 30 3.20 25.30 11.15
B5 30 −19.00 24.50 8.73
S3 10 7.16 13.12 10.85
S5 12 10.16 12.81 11.95

overall 142 −19.00 25.30 10.37

20 For each completed auction in which a subject participated, the history showed
the valuation and chosen strategy of this subject as well as the auction’s outcome.
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3.7 Analytic Solution

In order to obtain a benchmark for the experimental results, in this section

the theoretical solution of the setting described in the previous sections is

derived.

Let V denote the random variable whose realizations yield the bidders’

valuations. Its distribution F has the support M = {1, 2, . . . , 100} and all

valuations are ex-ante equally likely. Thus, the probability f(v) that a bidder

has valuation v is

f(v) = Pr(V = v)

=

{
1

100 if v ∈ {1, 2, . . . , 100}
0 otherwise

and for integer values v the cdf F (v) is given by

F (v) =

⎧⎨
⎩

0 if v < 1
v

100 if v ∈ {1, 2, . . . , 100}
1 if v > 100 .

Remember that the APPO model in Chapter 2 builds on continuously

distributed valuations. Since valuations in the experiment are realizations of

a discrete rather than a continuous random variable, the formulae for the

distribution of the first-and the second-order statistic given in Section A.3

need a few adjustments. In the following, the values of v are restricted to the

support {1, 2, . . . , 100} of the distribution F . One obtains for the first-order

statistic

F(1),n(v) = Fn(v)

=
( v

100

)n

f(1),n(v) = F(1),n(v) − F(1),n(v − 1)

=
( v

100

)n

−
(

v − 1

100

)n

and for the second-order statistic
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F(2),n(v) = F(1),n(v) + n Fn−1(v) (1 − F (v))

=
( v

100

)n

+ n
( v

100

)n−1 (
1 − v

100

)
f(2),n(v) = F(2),n(v) − F(2),n(v − 1)

=
( v

100

)n

+ n
( v

100

)n−1 (
1 − v

100

)

−
(

v − 1

100

)n

− n

(
v − 1

100

)n−1 (
1 − v − 1

100

)
.

Thus, if no PPO is being offered, the expected valuation E[V(1)] of the

winner of an auction and the expected revenues E[R] of the seller calculate to

E[V(1)] =

100∑
v=1

v f(1),n(v) (3.1)

and

E[R] =

100∑
v=1

v f(2),n(v) , (3.2)

respectively.

Denote the payoff of bidder i in a particular auction by Πi and the payoff

of the winning bidder by Π(1). The expected payoff E[Πi|vi] of a bidder i with

valuation vi is then given by

E[Πi|vi] =

vi∑
j=1

(vi − j) f(1),n−1(j) (3.3)

and the ex-ante expected payoff E[Πi] of a bidder is

E[Πi] =

100∑
v=1

E[Πi|v]f(v) . (3.4)

Finally, one obtains the expected payoff E[Π(1)] of the winner of an auction

by

E[Π(1)] = n E[Πi] . (3.5)

For the treatments with n = 3 bidders, i. e. the treatments A3, B3, and

S3, one obtains with the above formulae (3.1), (3.2), (3.4), and (3.5)
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E[V(1)] =
30199

400
≈ 75.50

E[R] = 50.5

E[Πi] =
3333

400
≈ 8.33

E[Π(1)] ≈ 25.00

and for the treatments with n = 5 bidders, i. e. the treatments A5, B5, and

S5,

E[V(1)] =
335316667

4000000
≈ 83.83

E[R] =
134333333

2000000
≈ 67.17

E[Πi] =
66650001

20000000
≈ 3.33

E[Π(1)] ≈ 16.66

holds.

Remember that the above formulae are based on the assumption of risk

neutral bidders and sellers. In such a setting, the seller does not quote a PPO

that is accepted with positive probability. Note also that the given values

E[V(1)], E[R], E[Πi], E[Π(1)] refer to the ex-ante expected values. In Sec-

tion B.4 of the Appendix, the theoretical outcomes of all auctions in the

A-treatments are summarized given the parameters of the experiment.

Now consider the case that a PPO is being offered. Since a risk neutral

bidder ı̂ with valuation vı̂ accepts a PPO p̄ if vı̂ − p̄ ≥ E[Πı̂|vı̂] ⇐⇒ p̄ ≤
vı̂ − E[Πı̂], the acceptance threshold tı̂(vı̂) is given by

tı̂(vı̂) = vı̂ − E[Πı̂|vı̂] .

Using Equation (3.3), one obtains for the treatments with n = 3 bidders

tı̂(vı̂) =
59999

60000
vı̂ +

1

20000
v2

ı̂ − 1

30000
v3

ı̂ (3.6)

and for the treatments with n = 5 bidders

tı̂(vı̂) =
3000000001

3000000000
vı̂ − 1

300000000
v3

ı̂ +
1

200000000
v4

ı̂ − 1

500000000
v5

ı̂ .(3.7)
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3.8 Statistical Tests for the Analysis of the Experiment

In order to identify major characteristics of the experimental results, the sta-

tistical analysis applies tests for differences between the treatments with re-

spect to both the central tendency and the dispersion of the observations.

Moreover, tests for trend and tests for the goodness of fit with respect to a

common or the normal distribution are performed.

The statistical computations are conducted using the software package

R: A Language and Environment for Statistical Computing, version 2.0.0

(The R Development Core Team, 2004).21 R provides ready-to-use imple-

mentations for all tests applied in the analysis. In particular, the func-

tions wilcox.test (Wilcoxon rank sum test and Wilcoxon signed ranks test),

fligner.test (Fligner-Killeen test), cor.test (test for association), chisq.test (χ2-

test), and shapiro.test (Shapiro-Wilk goodness-of-fit test) have been used.

The Fligner-Killeen test (1976) is a non-parametric alternative to the F-

test investigating the homogeneity of variances. It is preferable to the F-test

because the latter not only assumes that the data is normally distributed but

is also sensitive to violations of this assumption (e. g. Pearson, 1931). In the

APPO experiment, normality cannot be guaranteed. In fact, it will be shown

in Section 4.2 that—based on the data of the experiment—the hypothesis

of normality should be rejected. The Fligner-Killeen test is barely discussed

in standard textbooks. A study by Conover et al. (1981) compares fifty-six

tests for homogeneity of variances and argues in favor of the Fligner-Killeen

procedure by highlighting both its power and its robustness.

Using the parameter method = “spearman”, the procedure cor.test tests

for independence (or, more precisely, the correlation) of data based on Spear-

man’s rank correlation coefficient rs. If the correlation is computed between

the observed series of size m and the position numbers (1, 2, . . . , m) of the

observations within the series, the correlation coefficient is equivalent to the

rank-based statistic D used to test against trend within a series of data.22 In

fact, Lehmann (1975, p. 300) shows that

rs = 1 − 6D

m3 − m
.

The R procedure cor.test supplies both the rank correlation coefficient rs and

the statistic D.

The χ2-test needs no further comment. It is discussed in most statistics

textbooks (e. g. Wonnacott und Wonnacott, 1990; Hartung et al., 1999). In

21 In addition, most of the figures are generated by R.
22 Because the correlation is computed based on ranks, the vector of the positions

can consist of any date information, as e. g. (1950, 1951, . . . , 1964).
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the analysis, it is performed to test whether classified observations stem from

the same distribution.

The procedure shapiro.test is based on Shapiro und Wilk’s (1965) W statis-

tic. This statistic is invariant with respect to both the mean and the variance

of the underlying distribution. Hence, it is appropriate for a test of normality

if neither the true mean nor the true variance is known.

The main focus of the statistical analysis, however, is whether offering a

PPO affects the revenues, the bidders’ payoffs, or the social surplus. Thus,

these variables are tested for differences in central tendency and the Wilcoxon

signed ranks test (WSR) is applied for this purpose. Because the WSR plays

a prominent role in the analysis, this test and its assumptions are discussed

in more detail in the remainder of this section. The WSR is contrasted to

its alternatives to test for differences in central tendency and the reasoning

behind the selection of this particular test is laid out.

The tests most commonly applied to investigate differences in central ten-

dency are the median test, the t-test, and the Wilcoxon rank sum test, which is

also often referred to as the Mann-Whitney U-test. As indicated by its name,

the median test compares the medians of two distributions. In the APPO

experiment, however, one is more interested in the distributions’ means than

the medians. A seller, for example, might want to know which mechanism

yields higher revenues on average, as opposed to which mechanism more often

yields higher revenues. The t-test straightforwardly investigates the difference

in the means of two populations. However, this test also assumes that the

populations from which the samples are drawn are normally distributed.23

The Wilcoxon rank sum test, finally, forbears from the normality assumption

but is not free of assumptions, as will be shown later in this section.24

In the controlled setting of the experiment, the same set of random bid-

der valuations was used in the A and the B-treatments. This design results

in matched pairs rather than independent samples and allows the use of one-

sample tests on the differences of the paired observations. The respective coun-

23 Note, however, that several authors have argued that the t-test is robust to viola-
tions of the normality assumption. The discussion goes back as far as Rider (1929).
Glass et al. (1972) hold a similar view and call “[t]he flight to non-parametrics
[. . . ] unnecessary” (p. 237).

24 Further discussions of the tests mentioned here can be found in almost any statis-
tics textbook. For the t-test see, e. g. Moore und McCabe (2003) or Wonnacott
und Wonnacott (1990). Siegel und Castellan (1988) provide an overview of non-
parametric tests. A detailed discussion of non-parametric tests, including a com-
parison with the t-test, is given in Lehmann (1975).
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terparts for matched pairs of the above-mentioned tests are the sign test,25

the paired or one-sample t-test, and the Wilcoxon signed ranks test. The paired

versions of the tests are generally more powerful (e. g. Davis und Holt, 1993,

p. 30f, p. 547ff; Friedman und Sunder, 1994, p. 100f).

Using a paired test also has a technical advantage. It will be shown in

Section 4.2 that the treatments with and without a PPO differ significantly in

dispersion. In this case, the performance of a pure t-test is negatively affected

(Hsu, 1938; Scheffé, 1959). More recently, Zimmerman (2000) found that the

Wilcoxon rank sum test suffers from a similar flaw. If two populations differ

in their variability, the Type I error of the Wilcoxon rank sum test markedly

exceeds the stated p-value.26 Based on the dispersion tests of Section 4.2, the

pure variants of neither the t-test nor the Wilcoxon test are suitable for the

analysis of the APPO experiment.27

Thanks to the work of Welch (1938, 1947) and Satterthwaite (1946), adap-

tations of the t-test for the case of heterogeneous variances exist and are

commonly available in most statistical software packages. Yet the t-test also

assumes that the data is normally distributed—an assumption that is not

fulfilled, as will also be shown in Section 4.2. In analogy to the adaptations

by Welch and Satterthwaite, Fligner und Policello (1981) suggest a modifica-

tion of the Wilcoxon rank sum test, the so-called robust rank order test, as a

non-parametric two-sample test for populations with heterogeneous variances.

Unfortunately, however, the robust rank order test is rarely implemented in

statistical standard software and critical values are only known for small sam-

25 The proposed analogy stems from a practical view. Clearly, the difference of the
median of two groups of data is not the same as the deviation from zero of the
median of paired differences of the same data.

26 Loosely speaking, the Wilcoxon rank sum test may identify differences in the
shape rather than a difference in the location of the two populations’ distributions.
Cf. the discussion on page 85.

27 Box (1953) criticizes preliminary tests on the homogeneity of variances because
he considers the t-test for comparing the means of two populations as more robust
than traditional dispersion tests: “To make the preliminary test on variances is
rather like putting to sea in a rowing boat to find out whether conditions are
sufficiently calm for an ocean liner to leave port!” Zimmerman (1996) raises a
similar concern. He finds that two-stage procedures, i. e. a preliminary test on
variances in combination with either the t-test or the Wilcoxon test, are ineffective
and distortive with respect to the significance level. The bias between the Type I
error and the reported p-value is particularly high if the samples are of unequal
size and, interestingly, if the difference of the variances is small. Note that the
Fligner-Killeen test, which is used in this analysis for the comparison of variances,
was developed only after Box’s study. Since it is a distribution-free test, the
critique of the former author should not apply. Zimmerman’s objections are met
by noting that the sample sizes are equal and the differences of the variances are
large.
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ples (Feltovich, 2003).28 Moreover, Feltovich notes that the convergence of the

robust rank order statistic to the normal distribution is rather slow.

Due to the above reasons, the following analysis applies the WSR to test

for differences in central tendency. As its analogon for independent samples,

the WSR considers ranks rather than the cardinal values of the data. It is a

distribution-free test, which differs from the t-test by not requiring that the

observations stem from a normal distribution. Being a paired test, the WSR

also avoids the issue of heterogeneous variances because only one sample—

the differences of the matched pairs—is being considered. Since the WSR is

based on ranks, the test uses not only the direction of the differences within

pairs but also their relative magnitude. Compared to the sign test, this has

the advantage of taking more information into account (Siegel und Castellan,

1988, p. 87; Hartung et al., 1999, p. 243).

According to Schaich und Hamerle (1984) or Sheskin (2003), the WSR

requires that the underlying distribution is symmetric with respect to some

ξ.29 The hypothesis being tested reads

H0 : ξ = 0 versus H1 : ξ �= 0 .

In this case the rejection of H0 is straightforward. It follows from the assump-

tion that both the median and the mean are ξ. Thus, if H0 is rejected, the

central tendency is different from ξ.

Unfortunately, however, the symmetry assumption is rather strong.30

Moreover, it is unlikely to hold in the APPO experiment. Consider, e. g.,

the social surplus: By construction, it is bounded by the maximum of the bid-

ders’ valuations and one would expect that low deviations from the maximum

occur more frequently than large deviations. Thus, if two treatments differ in

the average surplus, the distribution of this difference will be skewed rather

than symmetric.

Hartung et al. (e. g. 1999, p. 243) forbear from the symmetry assumption.

Instead, these authors test whether observations can be interpreted as draw-

ings from a symmetric distribution F , i. e. whether F (ξ + x) = 1 − F (ξ − x)

holds for all x. Testing for differences in paired observations, one sets ξ = 0

and the null hypothesis is then stated as

28 Fligner und Policello (1981) present critical values for sample sizes up to 12.
Feltovich (forthcoming) provides critical values for different significance levels for
sample sizes up to 40. Available software is not yet that advanced.

29 Often it is also required that the distribution is continuous.
30 Note that the distribution of matched pairs of a certain variable is, of course, sym-

metric if two treatments do not differ with respect to this variable. The reversal,
however, does not hold.
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H0 : F (x) = 1 − F (−x) ∀x . (3.8)

The rejection of the null hypothesis is now more difficult to interpret.31

Siegel und Castellan (1988, p. 87) suggest that “the researcher can make the

judgment of ‘greater than’ between any pair’s two values” if the test is run

on the differences of matched pairs of two treatments. The following example

shows that such a judgement ignores the fact that H0 might be rejected simply

because F is not symmetric if the null hypothesis is stated according to (3.8).

Clearly, both the mean and the median of a random variable with dis-

tribution F are zero if in fact F (x) = 1 − F (−x) holds for all x. Thus, two

treatments do not differ in central tendency if the above null hypothesis is

true. With respect to the quote by Siegel und Castellan, however, note that

the reversal does not hold in general. Neither the mean nor the median must

be non-zero if the distribution is not symmetric with respect to zero. For

illustration, consider the vector

x = (−300,−221,−220,−219,−218,−217,−216,−215,−214,−213,−212,

−1, 0, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211)

of hypothetical observations. Based on this sample, the WSR rejects the (two-

sided) null hypothesis at a 10% confidence level but both the mean and the

median of the sample are zero.32 Of course it is possible to construct continu-

ous distributions with a true mean and median at zero that are likely to yield

outcomes similar to the above sample. If samples of such a distribution are

tested by the WSR, the Type I error will be much higher than the p-values

given by the test.

The opposite may occur as well. Consider, e. g., a random variable with a

density that has four narrow peaks at −5,−1, 3, and 4 of approximately the

same probability mass. This density is not symmetric with respect to zero.

Moreover, both the expected value and the median are greater than zero. Still,

the WSR is likely to fail to reject the null hypothesis (Type II error). In fact,

as the sample size grows the p-value converges to 1.

31 Moran und Solomon (2002, p. 316) make a similar comment on the Wilcoxon
rank sum test: “[...] the interpretation of the null hypothesis being tested with
the [Wilcoxon rank sum] test is not easily described; conventional interpretation
(including examples provided by statistical packages) would have it that the null
hypothesis is one of equal group medians, but such is not the case, rather it is a
test for equality of group mean ranks.”

32 The procedure wilcox.test (and similarly the procedure wilcox.exact) of the R
software computes a p-value of 8.9% and suggests that the “true µ is not equal
to 0.”
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The above examples illustrate failures of the WSR in investigating differ-

ences in central tendency. Similar weaknesses of its two-sample counterpart,

the Wilcoxon rank sum test, have been the subject of a variety of studies and

are well documented.33 It is argued, e. g., that the Wilcoxon rank sum test—

despite being a distribution-free test—is not a test without assumptions (see,

e. g., Moran und Solomon, 2002, and the references therein). Feltovich (2003)

notes that the Wilcoxon rank sum test investigates differences of the first mo-

ment of a population assuming that higher-order moments are the same. “[I]ts

interpretation as a test of medians is valid when the only distributional differ-

ence is a shift in location” (Moran und Solomon, 2002, p. 316). Of course, a

difference in medians is equivalent to a difference in means and even to first-

order stochastic dominance if two distributions are in fact equally shaped and

differ only in their location. For many applications, it is convenient to relax

the assumptions of the test and to only require that the respective distribu-

tion functions do not intersect. In such a setting, the Wilcoxon rank sum test

tests for first-order stochastic dominance. In fact, the test is introduced in this

vein, e. g. in Bosch (1998, p. 711f).

In the literature, the WSR is not discussed as intensely as the Wilcoxon

rank sum test. Presumably, however, the above argument holds similarly

for the WSR. Rather than comparing the shape and the location of the

distributions of two populations, one considers the distributions F (x) and

G(x) := 1−F (−x) ∀x constructed from the same sample. Under the assump-

tion that F and G do not intersect, i. e.

� x1, x2 : F (x1) > G(x1) ∧ F (x2) < G(x2) , (3.9)

it follows from the rejection of the null hypothesis

H0 : F (x) = G(x) ∀x

that the mean (and generally also the median) of F are different from zero. In

fact, the two examples which were given above to illustrate Type I and Type II

errors of the WSR involve distribution pairs F (x) and G(x) = 1−F (−x) which

intersect several times.

Alternatively, the test assumption (3.9) can equivalently be stated as

F (x) ≥ 1 − F (−x) ∀x or F (x) ≤ 1 − F (−x) ∀x .

33 In addition to the weaknesses of the Wilcoxon rank sum test itself, Bergmann
et al. (2000) find differences in the implementation of the test in various statistics
packages. The reported p-values range “from significant to nonsignificant at the
5 % level” (p. 72).
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Note that this is much less restrictive than the symmetry assumption generally

mentioned in the literature.



4

Results of the Experiment

This chapter presents the results of the experiment. First, Section 4.1 gives

a rather descriptive overview. The data are presented in more detail in the

subsequent Section 4.2 and an inferential analysis which tests the significance

of the results with respect to the auction outcomes is provided in Section 4.3.

The behavior of the bidders is discussed in Section 4.4 and the behavior of the

sellers is investigated in Section 4.5. Section 4.6 summarizes the main findings.

4.1 Overview

To start the analysis, Figures 4.1, 4.2, and 4.3 give an overview of the exper-

imental results by plotting the average revenue, the average winning bidder’s

payoff, and the average social surplus, respectively. Each figure contrasts—for

both the auctions with three (a) and five bidders (b)—the equilibrium out-

comes (bars labeled “Theory”) with the experimental results of the auctions

without a PPO (“A3” and “A5”) and the auctions with a PPO (“B/S3” and

“B/S5”).

According to the figures, a PPO appears to slightly lower both the rev-

enues and the social surplus. In the auctions with three bidders, the average

revenue and social surplus decrease from 49.0 to 45.2 and from 76.1 to 74.8,

respectively. With five bidders, the revenue and the social surplus average 67.1

and 83.6 in treatment A5, but only 66.4 and 80.8 if the seller can choose to

propose a PPO in B/S5. Interestingly, the effect of the PPO on the winning

bidders’ payoffs seems to depend on the number of bidders. With three bid-

ders, the winning bidders’ payoffs in treatment B/S3 (29.6) are on average

higher than both the equilibrium payoffs (28.1) and the bidders’ payoffs in

treatment A3 (27.1). With five bidders the opposite is observed: in this case

the average of the winning bidders’ payoffs in treatment B/S5 (14.4) is more
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Figure 4.1. Average revenue
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Figure 4.2. Average winning bidder’s payoff

than 10% lower than in treatment A5 (16.6) or the theoretical benchmark

(16.7).

The theoretical benchmark in Figures 4.1–4.3 refers to the equilibrium

outcomes of an auction in which a PPO does not exist or a scenario in which

a risk neutral seller faces risk neutral bidders. In the latter case the seller will

opt against offering a PPO that would be accepted with positive probability.

The calculations of the average theoretical benchmark are based on the actual

realizations of the bidders’ valuations in the experiment. For each auction, i. e.
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Figure 4.3. Average social surplus

for each set of bidder valuations in the experiment, the equilibrium outcome

is derived and the auctioneer’s revenue, the winning bidder’s payoff as well

as the social surplus are determined. The equilibrium calculations comprise

60 auctions (twelve rounds with five groups each) for the treatments with

three bidders and 36 auctions (twelve rounds with three groups each) for the

treatments with five bidders.1

The calculations with respect to the results of treatments A3 and A5 are

straightforward. Since two sessions of each treatment were conducted, the

given results average over 120 (= 2 × 60) and 72 (= 2 × 36) auctions, re-

spectively. Some comments should be made, however, regarding the auctions

with a PPO. The auction outcomes of the treatments B3 and B5 cannot be

analyzed meaningfully on their own. These treatments provide insight into

the behavior of the individual bidders and will be discussed in more detail

in Section 4.4. With respect to the revenue, the payoffs, and the social sur-

plus, however, the results are significantly distorted since the PPOs in the

B-treatments were randomly set.2 Meaningful outcomes of auctions with a

PPO can be obtained by matching the recorded strategy profiles of the bid-

ders in treatments B3 and B5 with the strategies of the sellers in treatments

S3 and S5, respectively. The outcomes constructed in this vein are indicated

1 The equilibrium outcomes of all individual auctions are given in Tables B.7 and
B.8 in Appendix B.

2 See Sections 3.3 and 3.4 for details on the setup of the B-treatments. The PPOs
used in the experiment are given in Table B.6 in Appendix B.



90 4 Results of the Experiment

by B/S3 and B/S5.3 Again, the results of treatment B/S3 are based on 120

individual auctions. In treatment S5, however, each of the recorded bidders’

strategy profiles of the 72 auctions of treatment B5 was mapped to two differ-

ent sellers. Thus, treatment B/S5 covers the decisions of sellers with respect

to setting a PPO in a total of 144 individual auctions, of which every other is

based on the same bidding data.

Tables 4.1 and 4.2 summarize the information of Figures 4.1–4.3. In con-

trast to Figures 4.1–4.3, the tables provide two theoretical benchmarks. The

first row in each table refers to the expected analytical solution as calculated

in Section 3.7. The second row is based on the actual valuations of the bidders

in the experiment and yields the numbers of the above figures. The differences

between the first and second rows reflect the influence of random when deter-

mining the valuations. In order to obtain meaningful results, the experimental

observations must be compared to the second row of the tables.4 The theoret-

ical benchmarks are labeled A3 and A5 in the first column in order to indicate

that a PPO is not available.

Table 4.1. Theoretical solution and experimental results with three bidders

Treatment Description Revenue Payoff Surplus

A3
Theoretical solution

50.5 25.0 75.5
(ex-ante expected values)

A3
Theoretical solution (mean) 48.9 28.1 76.9
with valuations of experiment (100%) (100%) (100%)

A3 Experimental results (mean)
49.0 27.1 76.1

(100.3%) (96.7%) (99.0%)

B/S3 Experimental results (mean)
45.2 29.6 74.8

(92.5%) (105.4%) (97.2%)

The third and fourth rows show the experimental results. In order to fa-

cilitate the comparison of the treatments, Tables 4.1 and 4.2 also display the

relative performance of the experimental outcomes with respect to the theo-

3 Since the recorded behavior of bidders in treatments B3 and B5 was used to pa-
rameterize and to evaluate the auctions in treatments S3 and S5, the outcomes of
B/S3 and B/S5 can be derived from the respective S-treatments alone. The nota-
tions B/S3 and B/S5 have been chosen to indicate that these results incorporate
the observed behavior of both bidders and sellers.

4 Remember that in all sessions of both the A and B-treatments the same set of
bidder valuations was used (cf. Section 3.5). The valuations are listed in Table
B.5 in Appendix B.
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retical benchmark.5 Note that both the auctioneer’s revenue and the bidders’

payoffs in the experiment can be lower or higher than those predicted by the

theory. The social surplus, i. e. the sum of the auctioneer’s revenue and the

bidders’ payoffs, however, cannot be higher than the surplus in equilibrium.

If the surplus of an auction in the experiment equals the equilibrium surplus,

the auction is efficient. If it is lower than the equilibrium surplus, the auction

is not efficient.

Table 4.2. Theoretical solution and experimental results with five bidders

Treatment Description Revenue Payoff Surplus

A5
Theoretical solution

67.2 16.7 83.8
(ex-ante expected values)

A5
Theoretical solution (mean) 67.4 16.7 84.1
with valuations of experiment (100%) (100%) (100%)

A5 Experimental results (mean)
67.1 16.6 83.6

(99.5%) (99.3%) (99.5%)

B/S5 Experimental results (mean)
66.4 14.4 80.8

(98.5%) (86.4%) (96.1%)

The two tables show that the experimental results of the treatments with-

out a PPO are very close to the theoretical benchmark. In fact, in both A3

and A5 only six out of a total of 120 and 72 auctions (i. e. 5% and 8%, re-

spectively) are not efficient. In all other auctions the item is awarded to the

bidder with the highest valuation. The auctions in the B-treatments are not

as efficient. In treatment B/S3 18 out of 120 (15%) auctions and in treatment

B/S5 25 out of 144 (17%) auctions are not efficient. This is consistent with

the observation that the B-treatments result in lower social surplus than the

A-treatments. An inferential analysis of the different treatments is provided

in Section 4.3.

5 The percentages are calculated based on the average outcomes. Note that on an
individual basis, the percentage may not exist since the winning bidder’s payoff
may be zero. This case does in fact occur in the theoretical benchmark in round 4
of group 1 (treatment A3) since the two highest valuations are equal in this
auction.
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4.2 Individual Auction Outcomes

After the introductory overview in the last section, this section presents the

experimental results with respect to the auction outcomes in more detail. The

individual behavior of the bidders and the sellers is investigated in Sections

4.4 and 4.5, respectively.

In order to precisely render the results, a few preliminary remarks on the

notation are necessary. In Chapters 2 and 3 the symbols R, Π(1), and V(1)

denote the equilibrium outcomes of an auction. Since in the experiment the

winning bidder is not necessarily the bidder with the highest valuation, a

slightly different notation is chosen to denote experimental outcomes. The

symbols R̂, Π̂ , and V̂ indicate the auctioneer’s revenue, the payoff of the win-

ning bidder, and the social surplus of an auction in the experiment. Because

the winning bidder’s payoff is the difference between his valuation and the

price paid, the social surplus V̂ = R̂ + Π̂ equals the valuation of the win-

ning bidder even if the item is not awarded to the bidder with the highest

valuation.

Tables 4.3, 4.4, 4.5, and 4.6 display the outcomes of all individual auctions

in the treatments A3, A5, B/S3, and B/S5. Table 4.3 provides the results of

treatment A3. The table is arranged in two sections. The top section shows

the results of the first and the bottom section the results of the second ses-

sion. Each section provides five triple-columns—one for each of the five groups

observed in that session—documenting the revenue, the winning bidder’s pay-

off, and the social surplus of that group.6 In addition to the results of each

round, the table also provides the groups’ average results as well as the respec-

tive minima and maxima. Finally, the overall mean and the sample standard

deviation of the results are given.7

The results of treatment A5 are shown in Table 4.4. What differs from

treatment A3 is that in each session of treatment A5 only three groups per

round were observed. Thus, the two sections of the table are arranged side

by side rather than one below the other. Apart from that the table is set up

analogously to Table 4.3.

Table 4.5 displays the results of the combined treatment B/S3. Containing

five bidder groups per round, the table follows the layout of Table 4.3. In this

6 Remember that the experiment was set up as a stranger experiment and that
participants were assigned to different groups in every round (cf. Section 3.4).

7 As is common in descriptive statistics, the sample standard deviation is calculated

by taking the square root of the sample variance s2 = (xi−x̄)2

n−1
. While s2 is an

unbiased estimator of the true variance σ2, i. e. E[s2] = σ2, this does not hold for
the standard deviation. Due to Jensen’s inequality, E[

√
s2] < E[s2] = σ. Thus,√

s2 understates the true standard deviation σ (cf. e. g. Bosch, 1998, p. 425).
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treatment the posted price option was available. A bold font face indicates

those auctions in which the PPO was accepted. If the item was nevertheless

awarded to the bidder who submitted the highest maximum bid, only the

revenue is set in bold face. An example is the entry (50, 41, 91) in round 1

of group 2. In this case, the auction’s closing price, 50, is determined by the

PPO set by the seller rather than by the second highest bid.8 The social

surplus of 91, however, is not affected by the acceptance of the PPO. Further,

if the item was awarded to a bidder who did not submit the highest bid, the

winning bidder’s payoff as well as the social surplus is also highlighted by bold

numbers, e. g. (40, 9, 49) in round 5 of group 1.

Remember that every strategy profile of bidders that was observed in

treatment B5 has been assigned to two different sellers in treatment S5. Thus,

Table 4.6—summarizing the outcomes of the combined treatment B/S5—

contains twice as many individual auctions as observed in treatment B5 and

stretches over two pages. The overall layout of the table is similar to Table

4.4, i. e. the bidder groups of the two sessions of treatment B5 are arranged

side by side. The logic of highlighting individual outcomes by using a bold

font face to indicate the acceptance of a PPO is the same as in Table 4.5.

The first page (labeled “Observation I”, p. 97) and the second page (labeled

“Observation II”, p. 98) of Table 4.6 differ in terms of sellers but are based

on the same bidding data.9 This means, e. g., that the two triple-entries for

group 1 in round 1 on pages 97 and 98, i. e. the data (68, 23, 91) and (70,

21, 91), respectively, refer to the same bidders and their strategy profiles,

but to two different sellers. Apparently, both sellers offered a PPO that was

accepted by the decisive bidder, who had a valuation of 91. The respective

PPOs were 68 and 70. For illustration purposes, consider two further examples:

firstly, round 1 of group 5 (which refers to the bidder group 2 in session 2 of

treatment B5) of Observations I and II and, secondly, round 3 of group 3 of

the two observations. In the first case, i. e. the two identical triples (40, 24,

64), neither of the two sellers offered a PPO that was accepted by the decisive

bidder. Thus, the two outcomes are equivalent: both auctions closed at a price

of 40, the winning bidder’s payoff was 24, and a social surplus was 64. Recall

that the underlying strategy profiles of the bidders are the same. In the latter

8 Remember that in the theory laid out in Chapter 2, the corresponding auction
of an APPO is modeled as a second-price auction. In the experiment, an English
proxy auction is implemented. From a theoretical perspective the two institutions
are equivalent. Thus, in the following ‘bid’ and ‘maximum bid’ are not differen-
tiated.

9 Consequently, the statistical analysis of these data is difficult. Because the ob-
served bidding behavior is duplicated in the table, the calculated standard devi-
ation most likely underestimates the true standard deviation.
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Table 4.3. Treatment A3 — Outcomes of individual auctions in the experiment

Session 1

Group

Round
1 2 3 4 5

R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂

1 70 7 77 64 27 91 19 15 34 44 52 96 42 24 66
2 28 22 50 23 43 66 72 6 78 47 45 92 45 23 68
3 56 43 99 20 35 55 35 48 83 71 7 78 63 36 99
4 82 1 83 35 46 81 77 12 89 15 39 54 38 41 79
5 49 4 53 77 −57 20 24 72 96 12 51 63 50 21 71
6 62 4 66 50 24 74 50 3 53 30 13 43 35 64 99
7 47 38 85 61 30 91 35 49 84 89 3 92 80 14 94
8 53 20 73 35 59 94 60 38 98 79 21 100 73 4 77
9 73 4 77 59 1 60 32 19 51 14 26 40 45 46 91
10 23 65 88 30 31 61 81 −3 78 7 76 83 52 6 58
11 62 15 77 60 28 88 64 24 88 50 18 68 41 58 99
12 35 17 52 62 13 75 34 47 81 25 50 75 74 21 95

mean 53.3 20.0 73.3 48.0 23.3 71.3 48.6 27.5 76.1 40.3 33.4 73.7 53.2 29.8 83.0

min 23 1 50 20 −57 20 19 −3 34 7 3 40 35 4 58
max 82 65 99 77 59 94 81 72 98 89 76 100 80 64 99

Session 2

Group

Round
1 2 3 4 5

R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂

1 70 7 77 64 27 91 20 14 34 40 56 96 48 18 66
2 35 15 50 20 46 66 73 5 78 45 47 92 63 5 68
3 56 43 99 20 35 55 26 57 83 61 17 78 80 17 97
4 75 8 83 45 36 81 70 19 89 20 34 54 38 41 79
5 52 −3 49 46 32 78 24 72 96 14 49 63 45 26 71
6 66 −3 63 50 24 74 53 25 78 34 9 43 35 64 99
7 57 28 85 86 5 91 27 57 84 90 2 92 80 14 94
8 58 15 73 34 60 94 54 44 98 80 20 100 72 5 77
9 72 5 77 43 17 60 40 11 51 14 26 40 44 47 91
10 23 65 88 31 30 61 78 3 81 7 76 83 57 1 58
11 62 15 77 54 34 88 80 8 88 51 17 68 41 58 99
12 43 9 52 60 15 75 35 46 81 26 49 75 74 21 95

mean 55.8 17.0 72.8 46.1 30.1 76.2 48.3 30.1 78.4 40.2 33.5 73.7 56.4 26.4 82.8

min 23 −3 49 20 5 55 20 3 34 7 2 40 35 1 58
max 75 65 99 86 60 94 80 72 98 90 76 100 80 64 99

overall mean of R̂: 49.0 overall mean of Π̂: 27.1 overall mean of V̂ : 76.1

std. dev. of R̂: 20.6 std. dev. of Π̂: 21.6 std. dev. of V̂ : 17.4
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Table 4.5. Treatment B/S3 — Outcomes of individual auctions in the experiment

Groups 1–5 (bidder groups 1–5 of session 1 of treatment B3)

Group

Round
1 2 3 4 5

R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂

1 17 52 69 50 41 91 15 19 34 25 71 96 35 31 66
2 26 24 50 20 46 66 65 8 73 40 52 92 60 3 63
3 56 43 99 10 10 20 26 57 83 71 7 78 75 22 97
4 65 18 83 30 51 81 65 24 89 15 39 54 38 41 79
5 40 9 49 15 63 78 22 74 96 14 49 63 50 21 71
6 10 53 63 41 33 74 30 23 53 34 9 43 45 54 99
7 46 39 85 48 43 91 45 39 84 89 3 92 30 64 94
8 60 13 73 5 30 35 49 49 98 75 5 80 71 6 77
9 73 4 77 43 17 60 31 20 51 11 29 40 40 51 91
10 22 66 88 31 30 61 78 3 81 7 76 83 28 30 58
11 62 15 77 53 35 88 63 25 88 25 43 68 41 58 99
12 35 17 52 56 19 75 48 33 81 26 49 75 74 21 95

mean 42.7 29.4 72.1 33.5 34.8 68.3 44.8 31.2 75.9 36.0 36.0 72.0 48.9 33.5 82.4

min 10 4 49 5 10 20 15 3 34 7 3 40 28 3 58
max 73 66 99 56 63 91 78 74 98 89 76 96 75 64 99

Groups 6–10 (bidder groups 1–5 of session 2 of treatment B3)

Group

Round
6 7 8 9 10

R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂ R̂ Π̂ V̂

1 68 9 77 72 19 91 8 12 20 44 52 96 33 33 66
2 26 24 50 23 43 66 70 8 78 70 22 92 35 28 63
3 50 49 99 19 36 55 21 62 83 49 22 71 96 3 99
4 80 3 83 34 47 81 75 2 77 35 19 54 37 42 79
5 49 4 53 44 34 78 24 72 96 12 51 63 66 −16 50
6 45 18 63 45 29 74 55 23 78 40 3 43 30 69 99
7 47 38 85 73 18 91 47 37 84 89 3 92 66 15 81
8 55 18 73 33 61 94 50 48 98 79 21 100 73 4 77
9 50 27 77 60 −17 43 30 21 51 13 27 40 37 54 91
10 21 67 88 31 30 61 72 9 81 63 20 83 52 6 58
11 61 16 77 52 36 88 62 26 88 63 5 68 41 58 99
12 35 17 52 51 24 75 65 16 81 54 21 75 74 21 95

mean 48.9 24.2 73.1 44.8 30.0 74.8 48.3 28.0 76.3 50.9 22.2 73.1 53.3 26.4 79.8

min 21 3 50 19 −17 43 8 2 20 12 3 40 30 −16 50
max 80 67 99 73 61 94 75 72 98 89 52 100 96 69 99

overall mean of R̂: 45.2 overall mean of Π̂: 29.6 overall mean of V̂ : 74.8

std. dev. of R̂: 20.9 std. dev. of Π̂: 20.3 std. dev. of V̂ : 18.1
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example, i. e. the triples (65, 13, 78) and (78, 19, 97), only one of the two

sellers offered a PPO that was accepted by the decisive bidder. Moreover, the

decisive bidder was not the participant who submitted the highest bid. Thus,

the two outcomes differ in all three components.

In order to facilitate the examination and interpretation of the data pro-

vided in Tables 4.3–4.6, Figures 4.4–4.6 plot the empirical distribution of the

revenue, the winning bidder’s payoff, and the social surplus. The graphical rep-

resentations are helpful for a comparison of the individual auction outcomes.

Figure 4.4(a) shows, for example, that for the auctions with three bidders the

distribution of the revenues of treatment A3 lies below the respective curve

of treatment B/S3 for (almost) all revenue values. This suggests that a PPO

significantly lowers the revenues which is, in fact, the case—the statistical test

is given in Section 4.3.
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Figure 4.4. Empirical distributions of revenues

Similar observations can be made with respect to the social surplus (Figure

4.6). For both auctions with three and five bidders the distributions of the

A-treatments lie below the B/S-treatments. The difference is not very large

and sometimes the curves lie one upon the other, but the distribution of the

A-treatment is never greater than that of the respective B/S-treatment. It will

be shown in Section 4.3 that the difference in surplus is in fact significant.

Figure 4.5(a) shows a reverse order of the treatments’ distributions. In

analogy to first-order stochastic dominance, one observes that the winning

bidders’ payoffs of the B/S-treatment dominate the payoffs of the pure auc-

tions. Thus, the figure supports the hypothesis that in the auctions with three
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Figure 4.5. Empirical distributions of winning bidders’ payoffs
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Figure 4.6. Empirical distributions of social surplus

bidders the bidders benefit from a PPO—an observation that has already been

made in Section 4.1.

In the case of the auctions with five bidders, Figures 4.4(b) and 4.5(b)

show no indication regarding the central tendency of the revenues and the

bidders’ payoffs in treatments A5 and B/S5. Interestingly, however, Figure

4.5(b) does suggest that the treatments A5 and B/S5 differ in the dispersion

of the bidders’ payoffs. For low payoffs the distribution of B/S5 is greater and

for large payoffs it is smaller than the respective distribution of A5.
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In Section 3.8, the statistical methods used in the analysis were briefly

introduced. Inter alia, the choice of the selected tests was accounted for by

the presumption that the experimental data might be non-normal and that

the treatments might differ in dispersion. In the remainder of this section,

it is shown that both of these presumptions in fact hold. Moreover, the ap-

plicability of the WSR is investigated by scrutinizing whether the empirical

distribution functions and their respective mirror images intersect.10

The discussion starts with a closer look at the differences in dispersion.

Tables 4.3–4.6 show—in addition to the outcomes of all individual auctions—

the range of each group’s results as well as the overall standard deviation

within each treatment. The variability of the results, however, is not only an

effect of varying bidders’ behavior but is primarily due to the dispersion of

the bidders’ random valuations. Thus, the range and the standard deviation

are of limited meaning and difficult to compare.

In order to reduce the impact of the random bidder valuations and to fa-

cilitate a comparison of the variability of the auction outcomes, one can com-

pute the difference between the observed outcomes and the theoretical bench-

mark.11 Such a transformation eliminates the influence of random insofar as

a transformed outcome is zero if the observed result equals the equilibrium

outcome. Non-zero values indicate deviations from the theoretical benchmark.

Moreover, any systematic constant deviation from the benchmark would lead

to a zero variance of the transformed experimental outcomes.

Table 4.7 displays the standard deviation of the transformed experimen-

tal outcomes for each treatment, i. e. the standard deviation of the differ-

ences between the experimental results and the theoretical benchmark, rather

than the standard deviation of the results themselves. The table shows that

10 Another issue with respect to the applicability of the WSR relates to the inde-
pendence of the data. Remember that all observations are treated as if they were
independent (quasi-independence). The independence assumption does not hold
if the data reveal a trend during the course of the experiment (e. g. learning, ex-
perience, . . . ). It will be shown in Section 4.4.1 that the bids do in fact become
more aggressive over time. In Section 3.4, it was argued, however, that even if
such a trend exists, one would expect a similar trend to exist in all treatments.
Thus, the trend diminishes if one considers the differences of matched pairs on
which the WSR is performed. In order to verify the argument, for each treatment
and for each round, the average results with respect to the revenues, the bidders’
payoffs, and the social surplus are computed. Testing for trend over the series
of the matched differences between any pair of treatments reveals that the null
hypothesis, that there is no trend within these differences, cannot be rejected at
a 5% significance level. Thus, the trend in the individual data does not seriously
restrict the application of the WSR.

11 The theoretical benchmark is given by the equilibrium outcomes of a second-price
auction. These outcomes are listed in Tables B.7 and B.8 in Appendix B.
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Table 4.7. Comparison of variability of experimental results

Standard deviation of difference between
A-treatment B/S-treatment

experimental and equilibrium outcomes
3

b
id

d
er

s

Revenues 6.5 14.3

Winning bidder’s payoff 10.3 14.7

Social surplus 5.8 7.5

5
b
id

d
er

s

Revenues 5.3 10.9a

Winning bidder’s payoff 5.4 15.1a

Social surplus 2.1 9.4a

aRemember that bidding behavior is duplicated in treatment B/S5. Thus, this

calculation underestimates the true standard deviation. Cf. fn. 9 on page 93.

the variability—if measured by the standard deviation of the transformed

outcomes—is higher in the B/S-treatments than in the A-treatments. In fact,

this difference is statistically significant.12 Thus, the existence of the PPO

gives rise to a stronger variability of the auction outcomes.

The goodness of fit of the experimental data with respect to the normal

distribution is illustrated in Figure 4.7 using the observed revenues as an

example. For both the treatments with three bidders (a) and five bidders (b),

the figure shows a histogram of the paired differences in revenues and a fitted

normal curve.13 Each of the two histograms is based on eleven classes of equal

width and the middle class is centered around the mean of the sample. The

two normal curves are plotted using the maximum likelihood estimators of

12 To test for significance, the Fligner-Killeen test is performed. The test translates
rank scores into a χ2-statistic with one degree of freedom. For the treatments
with three bidders the sample size mA3 = mB3 = 120 and the test statistic for
the revenues, the winning bidders’ payoffs, and the social surplus are χ2

R̂
= 26.6,

χ2
Π̂

= 22.6, and χ2
V̂

= 6.7. The respective p-values are all smaller than 1%.
For the treatments with five bidders, the analysis is complicated because the
bidding data is duplicated in B5. In order to avoid artificially overstating the
number of observations, the test is conservatively estimated by averaging over
the Observations I and II of B5. This yields lower standard deviations than those
reported in Table 4.7 of sR̂ = 8.9, sΠ̂ = 13.6, and sV̂ = 8.8. The sample sizes are
now mA3 = mB3 = 72, and χ2

R̂
= 14.0, χ2

Π̂
= 18.3, and χ2

V̂
= 5.5. The p-values

with respect to the standard deviation of the revenues and the winning bidders’
payoffs are again smaller than 1% and for the social surplus p-value = 1.9%. Note
that the results are conservative due to the systematic underestimation of the
variances in the treatment B/S5.

13 Figure 4.7(b) is based on Observation I of treatment B/S5 (cf. Section 4.2). The
respective graph based on Observation II looks very similar.
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Figure 4.7. Histogram of experimental outcomes compared to density of normal
distribution (the figure shows the differences in revenues between the A and B/S-
treatments)

the mean and the standard deviation.14 The figure shows that—compared

to the normal distribution—the experimental data is characterized by high

peaks around zero and a larger probability mass at its tails. Meanwhile, the

observed data has a relatively low density for medium deviations from the

mean.

To test the goodness of fit of the paired differences in the experimental

outcomes with respect to a normal distribution, a Shapiro-Wilk test is per-

formed. The test shows that the null hypothesis, that the data is normally

distributed, must be rejected.15 The result confirms the rejection of the t and

the F-tests for investigating differences in central tendency and dispersion of

the experimental data.

14 For three bidders the two maximum-likelihood estimators are µ̃ = 3.8 and σ̃ =
14.9, and for five bidders the respective estimators are µ̃ = 0.6 and σ̃ = 10.9.

15 For n = 3 bidders, the sample size m3 = 120 and the Shapiro-Wilk statistics
with respect to the differences in revenues, the winning bidders’ payoffs, and the
social surplus are WR̂ = 0.88, WΠ̂ = 0.78, and WV̂ = 0.36, respectively. Since
the bidding data of treatment B5 was duplicated in treatment S5, two separate
tests have been conducted to test whether the differences in treatment A5 and the
combined treatment B/S5 are normally distributed. The two separate tests are
based on identical bidder data in treatments A5 and B5, but independent seller
groups in treatment S5 (Observation I and Observation II). In all cases the sample
size m5 = 72. The test statistics are WR̂,I = 0.84, WR̂,II = 0.77, WΠ̂,I = 0.74,
WΠ̂,II = 0.74, WV̂ ,I = 0.52, and WV̂ ,II = 0.50. All reported p-values are smaller
than 1%—this holds for the differences in revenues, the winning bidders’ payoffs,
and the social surplus, both for the experiments with three and with five bidders.
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Figure 4.8. Empirical distributions of the differences in revenues

−100 −50 0 50 100

0
.0

0.
2

0
.4

0.
6

0
.8

1.
0

Difference in payoff

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
c
y

−100 −50 0 50 100

0
.0

0.
2

0
.4

0.
6

0
.8

1.
0

Difference in payoff

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
c
y

A − B/S

B/S − A

(a) n = 3 bidders

−50 0 50

0
.0

0.
2

0
.4

0.
6

0
.8

1.
0

Difference in payoff

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
c
y

−50 0 50

0
.0

0.
2

0
.4

0.
6

0
.8

1.
0

Difference in payoff

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
c
y

A − B/S

B/S − A

(b) n = 5 bidders (Observation I)

Figure 4.9. Empirical distributions of the differences in payoffs

Finally, Figures 4.8–4.10 link the data of the experiment back to the as-

sumptions of the WSR (cf. Section 3.8). Each plot contains two distribution

functions: one of them is based on the differences derived by subtracting the

results of the B-treatment from the results of the A-treatment and the other

one is based on the reversal differences. Note that if the former distribution is

denoted by F and the latter by G, G(x) = 1−F (−x) holds for all x. Accord-

ing to the discussion on pages 83f, these two functions should not intersect in

order for the WSR to be applicable.
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Figure 4.10. Empirical distributions of the differences in surpluses

The figures show that the respective pairs of the distribution functions

are similarly shaped. More important is the fact that the distributions in

Figures 4.8(a), 4.10(a), and 4.10(b) do not intersect (for some values they

lie upon each other). There are no major intersections in 4.9(a) either. In

Section 4.3 it is shown that these are exactly those cases in which the null

hypothesis F (x) = G(x) is rejected. Thus, the assumptions of the WSR hold

and the danger of obtaining false positive results due to technical reasons, i. e.

a systematic underestimation of the Type I error by the p-value, is low.

4.3 Comparison of Auction Outcomes

In Section 4.1 the average results of the four treatments A3, A5, B/S3, and

B/S5 were presented. The preliminary findings indicate that if the PPO is

available, both the average revenue and the average social surplus are lower

than in the auctions without a PPO. The results with respect to the bidders’

payoffs are not that clear: in the auctions with three bidders, the bidders

gain from the existence of the PPO but the opposite holds for the auctions

with five bidders. The graphs of the empirical distributions in Section 4.2 on

the one hand call into question the significance of the results with respect to

the revenues and the bidders’ payoffs in the auctions with five bidders. On

the other hand, they strengthen the assumption that in the auctions with

three bidders, auctions with a PPO yield lower revenues for the seller but

higher bidder payoffs. Moreover, pure auctions appear to be more efficient
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than auctions with a PPO regardless of the number of bidders. In this section,

the statistical significance of these findings is more thoroughly investigated.

In light of the preparations of the previous sections, the comparison of

the different treatments is relatively straightforward. The individual auction

outcomes are considered quasi-independent and the Wilcoxon signed ranks

test (WSR) is performed on the paired differences of these outcomes (cf. Sec-

tion 3.4). For all tests a significance level of 5% (two-sided) is applied.16

Table 4.8. Comparison of auction outcomes

Variable Observation Two-sided WSR

3
b
id

d
e
rs Revenue Treatment A3 outperforms B3 m′ = 76; V + = 3, 822.5; p-value < 1%

Bidder payoff Treatment B3 outperforms A3 m′ = 32; V + = 1, 994; p-value = 1.7%

Social surplus Treatment A3 outperforms B3 m′ = 16; V + = 180.5; p-value < 1%

5
b
id

d
e
rs

Revenue —
m′

I = 38; V +
I = 994; p-value = 28.2%

m′
II = 33; V +

II = 847.5; p-value = 87.0%

Bidder payoff —
m′

I = 25; V +
I = 934; p-value = 71.3%

m′
II = 24; V +

II = 860.5; p-value = 97.2%

Social surplus Treatment A5 outperforms B5
m′

I = 13; V +
I = 155; p-value = 1.6%

m′
II = 12; V +

II = 138.5; p-value = 2.2%

Table 4.8 summarizes the findings.17 As conjectured in Section 4.2, the

differences between the auctions with and without a PPO are significant in

the treatments with three bidders: In this case, a pure auction outperforms

an APPO in terms of the sellers’ revenues and the social surplus, i. e. a pure

auction yields significantly higher revenues and is also more efficient. The

reverse holds for the bidders’ payoffs, i. e. the bidders profit from a PPO.

Moreover, the results are also significant with respect to the surplus in auctions

with five bidders. Here again, a pure auction is more efficient. The observed

differences with respect to the revenues and the bidders’ payoffs, however, are

not significant for the auctions with five bidders.

16 Due to ties or the size of the sample, the software may internally estimate the
p-values by a normal approximation of the test statistic. A correction to account
for the continuity of the approximation is applied. Moreover, the implementation
of the test eliminates equal values (i. e. ties at zero). The reduced sample size is
denoted by m′. The original sample sizes for the treatments with three bidders
are m = 120 and for five bidders m = 72.

17 In the treatments with five bidders the tests have been run twice—once based
on Observation I and then based on Observation II. An alternative calculation
averaging the two observations yields only slightly different p-values and results
in the same classification significant/non-significant.
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In the following, the factors that are responsible for the differences identi-

fied in Table 4.8 are investigated. It has already been mentioned in Section 4.1

that the results of the A-treatments are very close to the theoretical bench-

mark given by the equilibrium outcomes of a second-price auction. Tables 4.1

and 4.2 show that the results of the combined B/S-treatment are also close,

but not as close, to this benchmark. This is not very surprising since the A-

treatments just implement a second-price auction, while in the B-treatments

an additional degree of freedom is introduced by the existence of the PPOs.

Interestingly, the following analysis of the impact of the PPO shows that

it is not necessarily the PPO itself, i. e. the offer and the acceptance of a PPO

that causes the observed differences. Rather—at least for the revenues and

the winning bidders’ payoffs—the differences are due to a shift in the bids

that the participants submit in the case that the PPO is not accepted.

The design of the experiment allows the construction of two additional

virtual treatments. Firstly, one can evaluate the bidders’ strategies recorded

in the treatments B3 and B5 as if the seller had not offered a PPO. These

first virtual treatments will be referred to by B3/no PPO and B5/no PPO,

respectively. Remember that in the B-treatments the bidders entered two

numbers: (i) their acceptance threshold up to which they were willing to

accept a PPO if offered to them and (ii) their bid in a second-price auction in

the case that an auction was conducted. Rather than matching the recorded

strategy profiles with the PPOs set by the sellers in treatments S3 and S5,

respectively, the virtual treatments B3/no PPO and B5/no PPO match the

strategies of the bidders with fictitious sellers that never propose a PPO. Thus,

the outcomes of the A and the B/no PPO-treatments would have been the

same if the bidders in the A-treatments had submitted the same bids as the

bidders in the B-treatments.

Secondly, one could assume that the subjects in the B-treatments did in

fact submit the same bids as the subjects in the A-treatments. Thus, one

constructs fictitious bidding strategies based on the bids submitted in the

A-treatments and the acceptance thresholds observed in the B-treatments

and matches these strategies with the actual PPOs of the sellers in the S-

treatments. The virtual treatments constructed in this manner are referred to

by A/S3 and A/S5. Note that from a theoretical perspective, there is no reason

why a bidder should submit different bids in the A and the B-treatments.

The relation between the actual and the virtual treatments is illustrated

in Figures 4.11–4.14. Along one axis, the bids are kept constant and the effect

of the PPO itself is isolated by comparing treatments with and without a

PPO. Along the other axis nothing is varied with respect to the PPO. The

bids, however, differ along this axis. The arrowed edges start at a node rep-
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resenting a treatment based on the bids of an A-treatment and they end at

a node representing a treatment based on the bids of a B-treatment. At the

edge labeled “no PPO” two treatments without a PPO are compared and

at the edge “with PPO” exactly the same PPOs are offered and accepted.

The outcomes at this edge differ only in those auctions in which the PPO is

rejected.

The outcome of an auction in the B/S-treatment can be different from the

outcome of the respective auction in the A-treatment if the decisive bidder

either accepts the PPO in the B/S-treatment or if the submitted bids differ.

The Figures 4.11–4.14 separate these two effects. Bold arrowed edges indicate

that the effect which the respective edge represents is significant at the 5%

level.18
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Figure 4.11. Effect of a PPO on the revenues in auctions with n = 3 bidders

Consider Figures 4.11 and 4.12. These figures analyze the differences re-

garding the revenues and the winning bidders’ payoffs in the auctions with

three bidders. The thin arrowed edges of the figures show that the null hy-

18 Again, the WSR has been performed on paired differences. For clarity, the pre-
sentation dispenses with listing all individual test statistics and concentrates on
the p-values.
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pothesis, that the PPO has no direct effect, cannot be rejected.19 In other

words, if auctions are replaced by the acceptance of the PPO, neither the

revenues nor the winning bidders’ payoffs change significantly. Rather, the

figures reveal a shift in the bidding behavior from treatment A3 to treatment

B3. This shift—represented by the bold arrowed edges—strongly affects the

auction outcomes.20 The revenues calculated on the basis of the bids of A3

are higher than those based on the bids of B3 and the opposite holds for

the winning bidders’ payoffs. This raises the presumption that subjects bid

more defensively in treatment B3 than in treatment A3. In Section 4.4, this

presumption is tested on the basis of individual bids.

Table 4.8 on page 106 not only reports significant differences between the

A3 and the B3-treatments with respect to the revenues and the winning bid-

ders’ payoffs, but also differences with respect to the social surplus, irrespec-

tive of the number of bidders. Analogously to Figures 4.11 and 4.12, Figures

4.13 and 4.14 investigate the differences in the social surplus. It turns out that

19 The (two-sided) p-values with respect to the revenue are 95% (bids of A3) and
79% (bids of B3) and with respect to the bidders’ payoffs 35% (bids of A3) and
28% (bids of B3).

20 The respective (two-sided) p-values of all four bold edges in Figures 4.11 and 4.12
are smaller than 1%.
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Figure 4.13. Effect of a PPO on the social surplus in auctions with n = 3 bidders
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no significant differences can be identified if one substitutes the bids of the

A-treatments with the bids of the B-treatments—independent of whether the

PPOs are taken into consideration or not. However, with both sets of bids,

the social surplus decreases when the accepted PPOs are considered. This

decrease is significant for the bids of treatments A3 and A5. If the auctions

are evaluated based on the bids of the B-treatments, the difference is not

significant.21

The discrepancies between Figures 4.11 and 4.12, on the one hand, and

Figures 4.13 and 4.14, on the other hand, are noteworthy. There is, however, a

plausible explanation. Remember that the observed differences in the revenues

and the payoffs have opposite signs. Since the social surplus is defined as the

sum of the revenues and the bidders’ payoffs, the two effects cancel each other

out. In fact, if all bids in an auction were similarly reduced, the winner of

the auction would not change and, thus, the social surplus would be identical.

This explains why the differences caused by the effect of the PPO on bids

diminish when looking at the social surplus. Consider now the axis “effect of

the PPO itself.” There is no ex-ante reason to assume that offering a PPO

to a randomly selected bidder will increase the efficiency of the mechanism.22

Thus, the lower surplus in the treatments with a PPO comes as no surprise.

The reason that this difference can be classified as significant based on the

bids of the A but not on the bids of the B-treatments by the statistical test

may be due to the fact that the bids of the A-treatments are relatively close

to the theory and that there is too much noise in the bidding data of the B-

treatments. A corresponding presumption has already been made in Section

4.1; it will be proven in the next section. Moreover, the effect of the PPO itself

does not appear to be strong enough to substantiate the differences regarding

the revenues or the bidders’ payoffs.

4.4 Behavior of the Bidders

Having focused in the previous sections on the outcomes of the auctions, i. e.

the revenues, the bidders’ payoffs, and the social surplus, the analysis now

shifts towards the behavior of the individual participants. The question of

21 Since for the auctions with three bidders the classification significant/not signifi-
cant is not clear-cut, the respective p-values are incorporated in Figure 4.13. With
respect to the auctions with five bidders, only the edge “bids of treatment A5”
represents significant differences (the p-values of Observations I and II are 2.2%
and 5.8%, respectively; averaging the two observations yields a p-value < 1%).

22 Note that a second-price auction is an efficient mechanism, i. e. in theory a second-
price auction awards the item to the bidder who values it highest.
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interest is whether the patterns which the theory predicts for the behavior of

rational bidders are reflected in the data.

1. Do bidders apply their dominant strategy when bidding in an auction, i. e.

do they bid their valuation of the item?

• Are there differences between the bids in the A and the B-treatments?

• Does the number of bidders influence the bids?

2. Is the acceptance threshold of the bidders in accordance with the theoret-

ical model presented in Chapter 2?

• Is the first bisecting line an upper bound of the acceptance threshold?

• Does the theoretical acceptance threshold of a risk neutral bidder con-

stitute a lower bound of the acceptance threshold, i. e. is the observed

behavior consistent with the presumption of risk neutral or risk averse

bidders?

• Does the acceptance threshold increase with the number of bidders?

4.4.1 Bidding Behavior

To start the analysis, Figures 4.15 and 4.16 provide an overview of the sub-

jects’ bids in the A and the B-treatments, respectively. The two figures relate

the bids to the valuation of the respective bidder. Each plot contains 360 data

points (30 subjects, 12 rounds). The complete tables with all data are shown

in the Appendix C (Tables C.1–C.4).
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Figure 4.15. Bids in treatments A3 and A5
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Figure 4.16. Bids in treatments B3 and B5

The figures show that the bids are close to the theoretical benchmark.

Particularly in the A-treatments many points lie on or close to the diagonal

(not drawn in the figures). There are somewhat more deviations in the plots

of the B-treatments. Thus, the figures strengthen the presumption made in

Sections 4.1 and 4.3 that there is more noise in the data of the B than the

A-treatments.

In order to measure how well the dominant strategy b̃i = vi predicts the

observed bids b̂i, the determination coefficients

B = 1 −
∑

i(b̂i − b̃i)
2∑

i(b̂i − b̄)2

with b̄ denoting the mean of the observed bids are calculated. The determi-

nation coefficient B takes on values in the range [0; 1]. Values close to one

indicate that the observed variance is well explained by theory. If, otherwise,

the value of B is low, the theory provides little insight into what has been

observed in the experiment.

Table 4.9 depicts the respective values which show that the concept of the

dominant strategy explains more of the observed variance in the A-treatments

than in the B-treatments.23

23 The determination coefficient B, also denoted by r2, is common in regression
analysis. Note that the dominant strategy bids b̃i = vi do not stem from a linear

regression. Thus, the identity i(b̂i−b̃i)
2

i(b̂i−b̄)2
+ i(b̃i−b̄)2

i(b̂i−b̄)2
= 1 which is known from

regression analysis (e. g. Wonnacott und Wonnacott, 1990, Chapter 15) does not



114 4 Results of the Experiment

Table 4.9. Determination coefficients relating the observed bids to the dominant
strategy

Treatment
Determination
coefficient B

A3 94.3%
A5 95.6%
B3 86.8%
B5 86.0%

The issue becomes even more apparent if one classifies the data. Consider,

e. g., one class that comprises those bids b̂i which equal the bidder’s valuation

vi. The bids that deviate by one currency unit from the valuation constitute

a second class, whereas a third class is based on the bids which deviate by

more than one currency unit. The respective frequencies of bids falling in

these classes are captured by the contingency tables which are shown in Table

4.10. The table reveals that for both n = 3 and n = 5 bidders, the first class

contains more bids in the A-treatments than in the B-treatments. The reverse

holds for the third class, which is larger in the B than in the A-treatments.

The table also renders the χ2-statistic, according to which the hypothesis that

the bids in the A and the B-treatments originate from the same distribution

should be rejected.24

One can conclude from the above that bids are in fact closer to the theory

in the A-treatments than in the B-treatments. It appears that the additional

complexity which accompanies the existence of a PPO makes the auction

institution less transparent and veils the strategic characteristics of bidding

in the pure auction.

The analysis now shifts to the first question posed at the beginning of this

section. It will be investigated whether (i) the existence of a PPO or (ii) the

number of bidders has an impact on the bids submitted. According to the

theory, one would not expect such differences. In Section 4.3, however, the

presumption was made that in the experiment participants bid more defen-

sively in treatment B3 than in A3. Since the bids in the B-treatments deviate

from the theory more than in the A-treatments, an additional shift in location

would not be surprising. Table 4.11 shows the average bid in each treatment.

hold in the current setting. This confines the interpretation of the determination
coefficient as the percentage of explained variance over total variance.

24 The test, however, should be interpreted with care because the 360 individual
data points stem from only 30 different bidders. Thus, the observations are not
independent but only quasi-independent (cf. Section 3.4).
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Table 4.10. Contingency tables of bids

(a) n = 3 bidders

Treatment b̂i = vi |b̂i − vi| = 1 |b̂i − vi| > 1
∑

A3 193 (54%) 97 (27%) 70 (19%) 360 (100%)
B3 151 (42%) 100 (28%) 109 (30%) 360 (100%)∑

344 (48%) 197 (27%) 179 (25%) 720 (100%)

χ2 ≈ 13.7, df = 2, p-value < 1%

(b) n = 5 bidders

Treatment b̂i = vi |b̂i − vi| = 1 |b̂i − vi| > 1
∑

A5 248 (69%) 62 (17%) 50 (14%) 360 (100%)
B5 138 (38%) 114 (32%) 108 (30%) 360 (100%)∑

386 (54%) 176 (24%) 158 (22%) 720 (100%)

χ2 ≈ 68.0, df = 2, p-value < 1%

By construction of the experiment, the average valuations are identical in all

treatments.

Table 4.11. Average bids in the different treatments

Treatment Mean valuation Mean bid

A3 50.3 50.7
A5 50.3 50.1
B3 50.3 46.9
B5 50.3 51.3

mean 50.3 49.8

Interestingly, Figure 4.16 reveals a tendency of underbidding (i. e. bidding

less than one’s private valuation for the item) in B3 but appears to reveal

the opposite, i. e. a slight tendency of overbidding, in B5. Table 4.11 supports

this observation: The average valuation is 50.3 and the average bid in B3

is only 46.9. In treatment B5, on the other hand, the average bid (51.3) is

higher than the average valuation (50.3). It will be shown in the following,

however, that overbidding in B5 is not a strong result. The reason is that in

this treatment six of the seven strongest deviations from theory stem from

only one bidder. As a consequence, there are still more bidders who bid below
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rather than above their valuation (on average a total of 20 bidders underbid,

whereas only 7 bidders overbid).

Thus, for a more thorough look, it is more meaningful to condense the

data and to aggregate over individual bidders. In a second step, the data is

again classified. For all bidders the average deviation bi − vi is calculated and

five classes are considered. Table 4.12 displays the frequencies of bidders in

these classes.

Table 4.12. Frequencies of bidders deviating from theory with their bids

Average deviation from theory (bi − vi)
Treatment Underbidding Theory Overbidding

∑
(−∞,−1) [−1, 0) {0} (0, 1] (1,∞)

A3 6 (20%) 5 (17%) 11 (36%) 3 (10%) 5 (17%) 30 (100%)
B3 14 (47%) 7 (23%) 6 (20%) 1 (3%) 2 (7%) 30 (100%)
A5 6 (20%) 6 (20%) 15 (50%) 0 (0%) 3 (10%) 30 (100%)
B5 10 (33%) 10 (33%) 3 (10%) 2 (7%) 5 (17%) 30 (100%)∑

36 (30%) 28 (23%) 35 (29%) 6 (5%) 15 (13%) 120 (100%)

χ2 ≈ 21.7, df = 12, p-value = 4.1%

According to Table 4.12, it is unlikely that bidders behave similarly in all

treatments. In particular, the table strengthens the presumption that subjects

bid more defensively in B3 than in A3.25 The table also shows that—in con-

trast to the first impression suggested by Figure 4.16—underbidding is more

common in B5 than in A5. Apart from that, however, the table gives only

little support for a pairwise comparison of individual treatments.

Because a χ2-test based on the contingencies of Table 4.12 is not strong

enough for an inferential analysis, a more powerful test is performed. Remem-

ber that the table of the bidders’ valuations is kept identical over all sessions

of the experiment. Thus, one can again consider paired differences of the data.

For every treatment, the average bid of each bidder is calculated.26 A paired

test is then based on the differences in the average bids of pairs of bidders with

the same sequence of valuations. Table 4.13 shows the results of a Wilcoxon

signed ranks test (WSR).27

25 The respective χ2-test, however, is not strong enough to prove the difference:
χ2 ≈ 7.4, df = 4, p-value = 12.1%.

26 The average bids of all treatments are given in Table 4.11.
27 One might think that the average bids are normally distributed due to the central

limit theorem (see e. g. Kempthorne und Folks, 1971, section 6.11). Performing a
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Table 4.13. Comparison of treatments with respect to bidding behavior

Treatments Observation
Mean difference ∆ /

Two-sided WSR

A3 vs. B3 Bids in A3 are higher than in B3
∆ = 3.8

m′ = 29; V + = 333.5; p-value = 1.3%

A5 vs. B5 —
∆ = −1.2

m′ = 30; V + = 255; p-value = 65.1%

A3 vs. A5 —
∆ = 0.5

m′ = 21; V + = 129; p-value = 65.1%

B3 vs. B5 —
∆ = −4.4

m′ = 27; V + = 123; p-value = 11.6%

The tests show that a significant difference in the bidding behavior can

be identified only between the treatments A3 and B3. Participants bid more

defensively in the latter treatment. In fact, the bids in treatment B3 are the

lowest of all treatments. This also explains the differences in the average rev-

enue (which is lower in B3 than in A3) and the average bidder payoff (which

is higher in B3) which were identified in Section 4.3. In all other cases, no

significant differences are found. This is particularly noteworthy because the

average bid in B5 is even higher than the average bid in A3. Apparently, how-

ever, there is so much noise in the data of the B-treatments that a significant

difference between B3 and B5 is not observed.

Finally, the development of the bidding behavior during the course of the

experiment is investigated. As an illustration, Figures 4.17–4.22 depict the

the average bids per round in relation to the average valuation. The figures

on page 118 refer to the A-treatments and the figures on page 119 refer to the

B-treatments (since the valuations were kept identical, Figures 4.17 and 4.20

are also identical).

Most interesting are the Figures 4.19 and 4.22. These figures display the

difference between the average bid and the average valuation per round, i. e.

the deviation from the dominant strategy. The figures also show Spearman’s

rank correlation coefficient r of the observed differences versus the round

numbers. This coefficient is positive in all treatments. Thus, all treatments

exhibit an upward trend and the bidding becomes more aggressive. Performing

a test for trend on the data of the figures reveals that the increase in the

Shapiro-Wilk test reveals that even for the average deviations from theory, this
is not the case. An explanation is that neither the different bids of one bidder are
independent, nor are the deviations of the different bidders identically distributed.
Thus, the t-test is not appropriate and the WSR is utilized.
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Figure 4.17. Average valuation per round
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(a) n = 3 bidders
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(b) n = 5 bidders

Figure 4.18. Average bid per round in the A-treatments
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Figure 4.19. Average deviation of bids from theory in the A-treatments
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Figure 4.20. Average valuation per round (identical to Figure 4.17)
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(a) n = 3 bidders
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(b) n = 5 bidders

Figure 4.21. Average bid per round in the B-treatments
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Figure 4.22. Average deviation of bids from theory in the B-treatments
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aggressiveness of the bids is significant in the treatments A3 and B3.28 In the

treatments with five bidders, the trend is not strong enough to be verified by

statistical methods.29 Moreover, in all treatments, bidding starts at a level

below the valuation (underbidding).

The observed patterns are in accordance with the observations made by

Harstad (2000) who investigates the English and the second-price auction

using a series of experiments. Harstad finds that in second-price auctions in-

experienced bidders initially bid mostly below their valuation. Then “bidding

rapidly becomes more aggressive, quickly breaking through the threshold of

bidding equal to the value [and] [b]ehavior does settle down to a persistent

level of overbidding” (p. 267), Harstad explains the “substantial and persis-

tent overbidding” (p. 261) by the feedback mechanism of the second-price

auction: a “subject might overbid, win, and still make money” and concludes

that “[s]uch an occurrence may be viewed (mistakenly) as positive feedback”

(p. 262).

If Harstad’s hypothesis of overbidding due to the feedback mechanism is

true, one might conjecture that the observed phenomenon is stronger, when

fewer bidders participate in an auction: a lower number of bidders increases

the likelihood of winning an auction and, ceteris paribus, reduces the risk of

paying more than the valuation when winning with a bid above valuation. This

would explain why a strong increase in the bidding level can be observed in the

treatments with three bidders, while the increase is weak in the treatments

with five bidders. Note that Harstad does not vary the number of bidders.

Rather, he conducts all auctions with six bidders.30 It seems that the effect

of increasing bidding levels and persistent overbidding is much stronger in

Harstad’s experiment. This can easily be explained because in the APPO

experiment the second-price auction is introduced as an English proxy auction.

The English auction is known to perform much better in experimental settings

(e. g. also Harstad, 2000). Since the English proxy auction has elements of both

the English and the second-price auction, it is reasonable to assume that its

performance is somewhere in between the two framing formats.

28 Test for trend: m = 12, D = 108, and p-value = 3.4% (two-sided) for A3 and
m = 12, D = 50, and p-value < 1% (two-sided) for B3.

29 Test for trend: m = 12, D = 232, and p-value = 55% (two-sided) for A5 and
m = 12, D = 196, and p-value = 31% (two-sided) for B5.

30 In some sessions the number of bidders decreases due to the bankruptcy of indi-
vidual subjects.
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4.4.2 Acceptance Thresholds in the B-treatments

This section investigates the behavior of subjects with respect to the key

feature of an APPO: the posted price offer (PPO). In Chapter 2, the concept

of the acceptance threshold was introduced. The acceptance threshold is the

maximum PPO a bidder is willing to accept. Moreover, a small corridor for

the acceptance threshold of rational risk neutral or risk averse bidders was

derived.

Figure 4.23 depicts the acceptance thresholds observed in the experiment

and contrasts them with the above-mentioned corridor indicated by the dashed

lines. The figure shows that most of the observed threshold values lie below

the diagonal that constitutes the upper bound of the corridor. Accepting a

PPO above this upper bound yields a loss for the respective bidder. The fact

that only a few threshold values exceed the upper bound suggests that this is

well understood by the participants.

There are, however, many threshold values which even lie below the lower

bound of the corridor. Bidders with such low thresholds abstain from accepting

a PPO, which would yield a positive and risk-free payoff that is higher than the

expected payoff from participating in the corresponding auction. In a model

based on rational bidders, this can only be explained if the bidders are risk

loving (cf. Section 2.3).
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Figure 4.23. Acceptance thresholds in treatments B3 and B5

Table 4.14 once more illustrates the persistency of low threshold values: in

both treatments more than half of the observed thresholds are below the risk
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neutral benchmark. It would be inappropriate, however, to conclude that the

experimental participants are risk loving. It is more likely that the individ-

ual computation of the threshold exceeds the mental arithmetic skills of the

subjects in the quick course of the experiment. Remember that the derivation

of the theoretical benchmark involves rather complex computations. Since

the observed threshold values are rather low, the participants probably over-

estimate the payoffs they might earn in the corresponding auction, which

constitutes the alternative to accepting a PPO.

Table 4.14. Acceptance threshold: observed values and theoretical corridor

Treatment
Classification of observed threshold ∑

Below corridor Within corridor Above corridor

B3 194 (54%) 147 (41%) 19 (5%) 360 (100%)
B5 209 (58%) 122 (34%) 29 (8%) 360 (100%)∑

403 (56%) 269 (37%) 48 (7%) 720 (100%)

Nonetheless, Figure 4.23 reveals several characteristics which correspond

to the theory. The first one has already been mentioned: only a few threshold

values are above the theoretical corridor; of all observations, less than 10%

fall in this region (cf. Table 4.14).

Secondly, if one takes into account that the subjects might differ in their

estimates regarding the uncertain outcome of the corresponding auction, as

well as their preferences over these outcomes, the scatter plots reveal similari-

ties to the overall shape of the theoretical corridor. The plots are rather dense

close to the diagonal, and they become sparser towards the bottom right cor-

ner. Note that (i) the threshold values increase with the valuation and (ii)

the range of the observations widens for large valuations. The correlation of

the observed thresholds with the valuations is substantiated by Pearson’s cor-

relations coefficient. The coefficient computes to rB3 = 0.80 for treatment B3

and rB5 = 0.85 for treatment B5. To verify that the dispersion of the observed

thresholds also increases, consider the lower third of the valuations (i. e. the

valuations from 1 to 33) and the upper third of the valuations (i. e. the val-

uations from 67 to 100). In the lower third more than 60% (B3: 64%, B5:

67%) of all thresholds deviate from the respective valuations by at most one

currency unit. Looking at the upper third, however, one finds that 59% (B3)

and 50% (B5) of the thresholds deviate by at least ten currency units.

Thirdly, Figure 4.23 supports the theoretical claim that the threshold in-

creases with the number of bidders (cf. Proposition 2.11 in Section 2.3). In

fact, in treatment B3, the average threshold is 9.9 currency units lower than
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the average valuation. In treatment B5, the respective difference is on av-

erage only 3.7 currency units. The difference between the two treatments is

statistically significant.31

One can conclude that the experimental observations yield characteristics

that are roughly in accordance with the theoretical predictions. The most

fundamental difference to the model in Chapter 2 is that the subjects in the

experiment reveal a strong tendency towards rather low threshold values. The

low thresholds can be explained by overly optimistic estimations regarding

the alternative payoffs in the corresponding auction.

Remember that the seller can only profit from offering a PPO as compared

to conducting a pure auction if the acceptance thresholds of the bidders lie

above the risk neutral threshold, i. e. above the lower bound of the theoretical

corridor. In Section 3.1, it was argued that it need not be the case that all

bidders behave as if they were risk averse. Rather, it would be sufficient if a

certain share of such bidders existed. The experimental results, however, sug-

gest that this share comprises less than half of the bidders. Thus, substantial

gains from offering a PPO cannot be expected.

Analogously to Section 4.4, this section is completed by a brief look at the

development of the subjects’ acceptance thresholds. The development is illus-

trated in Figures 4.24 and 4.25. Again, the average threshold and the average

valuation are computed for each round. Figure 4.24 comprises the average

threshold and the average valuation and Figure 4.25 depicts the difference

between the two series. This difference indicates by how much the bidders

shade their valuations on average. As a measure for a potential trend, the lat-

ter figure also shows Spearman’s rank correlation coefficient r of the average

shaded amounts versus the respective round numbers.

The figures reveal some variability in the amount by which the bidders’

thresholds shade the respective valuations. It appears that the higher the

valuation, the larger the gap between the average threshold and the average

valuation, but a clear trend over time cannot be identified.32 Note, however,

that the figures nicely illustrate that the thresholds are higher in treatment B5

than in treatment B3. As a consequence, in B5 the gap between the threshold

and the valuation is smaller than in treatment B3.

31 WSR: m = 30, V + = 380, p-value < 1% (two-sided). In order to conduct the
test, the average bid is computed for each subject. Then, the WSR is performed
on matched pairs of bidders with the same sequence of valuations.

32 Test for trend: m = 12, D = 314, p-value = 76.3% (two-sided).
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Figure 4.24. Average threshold and valuation per round in the B-treatments
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Figure 4.25. Average gap between valuation and threshold in the B-treatments

4.5 Behavior of the Sellers

Having investigated the bidders’ bids as well as their thresholds, the analysis

now shifts towards the behavior of the sellers. The results in Section 4.4.2 show

that compared to the theory, the bidders’ thresholds are rather low. Thus, the

potential gains for the sellers from offering a PPO are at most marginal.

For the analysis the following questions are of particular interest:
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• Do the sellers offer a PPO?

• What is the amount of an offered PPO?

• Do the sellers choose PPOs which are accepted by the bidders?

• Is the PPO suitable for raising the sellers’ revenues?

To start the analysis, Tables 4.15 and 4.16 provide an overview of the data.

The tables display the PPOs set by the sellers in the treatments B/S3 and

B/S5.33 The PPOs which were accepted by the decisive bidder are highlighted

by a bold font face, whilst a dash indicates that no PPO was offered.

Table 4.15. PPOs set by the sellers in treatment B/S3

Seller
Round 1 2 3 4 5 6 7 8 9 10 mean #

1 – – 50 70 72 73 25 – – 50 56.7 6
2 88 50 40 70 – 70 45 – 100 60 65.4 8
3 – 50 49 – 72 66 52 – 100 82 67.3 7
4 – 50 55 – 66 65 – 40 100 80 65.1 7
5 – 40 55 90 66 69 – – 90 75 69.3 7
6 – 45 45 80 67 67 10 40 80 60 54.9 9
7 50 45 47 80 66 60 – – 70 65 60.4 8
8 50 49 55 – 67 60 5 – 65 – 50.1 7
9 – 50 60 – 67 64 – – 65 – 61.2 5
10 50 50 60 85 67 63 – – 65 82 65.3 8
11 – 50 50 80 67 64 55 – 65 – 61.6 7
12 – 48 59 80 67 72 55 – 65 66 64.0 8

mean 59.5 47.9 52.1 79.4 67.6 66.1 35.3 40.0 78.6 68.9 61.8
# 4 11 12 8 11 12 7 2 11 9 87

In the treatment B/S3 the seller offered a PPO in 87 (73%) of the 120

auctions and the average offered PPO is 61.8. The decisive bidder accepted

26 (30%) of the offered PPOs and rejected 61 (70%). This means that the

PPO was accepted in only 22% of all auctions. The average of the accepted

PPOs is 50.0 and the mean of the rejected PPOs is 66.8.

In the treatment B/S5 a PPO was offered in 119 (83%) of the 144 auctions,

but only 24 (20%) of these offers were accepted. Thus, in this treatment only

17% of all auctions ended with the acceptance of the PPO. As suggested by

the theory, the PPOs appear to be higher than in the treatments with three

33 The notation B/S3 and B/S5 as opposed to S3 and S5 has been chosen in order
to emphasize that the sellers’ experience with the strategies of the bidders might
have influenced their decisions.
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Table 4.16. PPOs set by the sellers in treatment B/S5

Seller
Round 1 2 3 4 5 6 7 8 9 10 11 12 mean #

1 67 5 40 56 78 – – 60 68 70 70 – 57.1 9
2 70 – 80 – 66 80 90 70 74 80 60 60 73.0 10
3 65 25 55 45 72 75 80 – 72 85 65 – 63.9 10
4 67 50 – – 89 – 80 – 75 90 70 120 80.1 8
5 70 – 90 85 89 70 80 70 80 95 65 80 79.5 11
6 75 – – – 88 75 80 90 80 85 60 90 80.3 9
7 75 755 75 – 82 78 77 80 80 80 65 75 138.4 11
8 75 100 – – 84 80 75 70 80 75 65 99 80.3 10
9 75 – 75 – 90 85 75 – 80 – 70 85 79.4 8
10 75 – – 70 86 75 70 80 80 80 70 80 76.6 10
11 77 80 80 – 88 80 73 90 88 90 70 75 81.0 11
12 75 200 90 85 92 75 70 90 88 75 75 90 92.1 12

mean 72.2 173.6 73.1 68.2 83.7 77.3 77.3 77.8 78.8 82.3 67.1 85.4 82.7
# 12 7 8 5 12 10 11 9 12 11 12 10 119

bidders: The overall mean equals 82.7 and the average of the rejected PPOs

is 88.2. The accepted PPOs average 61.1.

Remember that a seller is able to raise her expected revenue if the PPO is

set above the threshold of a risk neutral bidder with maximum valuation. In

treatment B/S3 this boundary computes to 67.17 and in B/S5 the respective

value is 80.50 (cf. Section 3.7). These values also relate to the upper bound

of the expected revenues in a pure auction given any valuation of the decisive

bidder. Thus, if a PPO above this boundary is accepted by the decisive bidder

(e. g. due to risk aversion), the seller’s revenue (which is then equal to the

PPO) is higher than her expected revenue given the valuation of the decisive

bidder. Note that a risk neutral bidder will never accept such a high PPO (cf.

Section 2.2).

By plotting histograms of the chosen PPOs, Figure 4.26 gives a more

descriptive summary of the data. The histograms are based on ten classes, each

of which is ten currency units wide. In addition, for each treatment a vertical

dashed line indicates the above-mentioned boundary. According to the theory,

PPOs above this boundary increase the expected revenue if accepted by the

decisive bidder. Whether lower PPOs raise or lower the expected revenue

depends on the bidders’ attitudes towards risk. By offering PPOs below the

given boundary, the seller risks that the PPO will be accepted in cases in

which a pure auction would yield higher (expected) revenues.

Comparing the data of Tables 4.15 and 4.16 with the revenue increasing

boundary shows that in B/S3 only 25 (29%) of the 87 PPOs and in B/S5 only
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Figure 4.26. Posted price offers set by the sellers in treatments B/S3 and B/S5

33 (28%) of the 119 PPOs are at or above the respective boundary.34 Taking

the fact into account that the acceptance thresholds of the bidders are rather

low, the PPOs offered by the sellers do not appear conducive to increasing

the revenue.

To further pinpoint this issue, consider the PPOs which are accepted by the

decisive bidders. Remember that if a bidder accepts the PPO, his valuation is

rather high. In this case, the revenue of an alternative pure auction is expected

to exceed the average revenue. Thus, in order to increase expected revenues,

the average accepted PPO should be substantially higher than the revenues of

an alternative pure auction. However, the data reveal that in treatment B/S3

the average accepted PPO equals 50.0, which is approximately the same as

the average revenue in treatment A3 (49.0). In B/S5 the average accepted

PPO (61.1) is even lower than the average revenues in A5 (67.1). Thus, the

sellers do not employ the posted price offer sophisticatedly enough to take

advantage of this mechanism. It appears as if the sellers—similarly to the

bidders—underestimate the expected revenue of a pure auction. Alternatively,

low PPOs can also be explained by risk averse sellers because such offers reduce

34 Of the 33 PPOs above the boundary in B/S5, three PPOs are even higher than
the maximum valuation. These PPOs will never be accepted by a rational bidder.
In the following they are considered as outliers and are taken out of the remainder
of the analysis.
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the variability of the revenues.35 Note, however, that an assumption of risk

averse participants is not consistent with the observed behavior of the bidders.

Even though the sellers do not extract additional revenue from offering

a PPO, Figure 4.26 suggests that the impact of the number of bidders is

well understood by the sellers: the histograms show that the frequencies of

relatively high PPOs are higher in B/S5 than in B/S3. Performing a Wilcoxon

rank sum test verifies that the increase in the amount of the PPOs from three

to five bidders is statistically significant at the 5% level.36

Analogously to the discussion of the bidding behavior, this section con-

cludes with a look at the development of the sellers’ PPOs over time. Two

variables are differentiated. Figure 4.27 depicts the fraction of sellers who of-

fer a PPO in each round and Figure 4.28 displays the average amount of the

PPOs being offered.

For the treatments with three bidders, the figures show some variability in

the fraction of sellers offering a PPO and the PPO itself but they do not reveal

a clear trend.37 A slight trend can, however, be observed in the treatments

with five bidders. Both the fraction and the amount of the PPOs increase

during the course of the experiment. The latter increase is also statistically

significant at the 5% level but the former is not.38

If the hypothesis that the sellers offer low PPOs because on average they

underestimate the expected revenue in a pure auction, one would expect them

to adjust their offers once they have learned better. The increasing PPOs in

treatment B/S5 can be interpreted in this sense. Since, however, a significant

trend is not observed in B/S3, the information feedback mechanism of an

APPO deserves a closer look.

Consider the individual PPOs set by the seller and focus on those PPOs

which the seller changes in the following round.39 First of all, in treat-

ment B/S5 there are 16 accepted PPOs which are followed by a higher PPO

35 Risk averse sellers are considered in the (theoretical) model by Mathews (2003).
See Section 2.6 for a discussion of this model.

36 Wilcoxon rank sum / Mann-Whitney-U test: mB/S3 = 10, mB/S5 = 12, U = 25,
p-value = 2.0% (two-sided). The three outliers at 120, 200, and 755 in B/S5 were
taken out of the data; with respect to the result of the test, this correction keeps
the test conservative. Note that there are no matched pairs within the group of
sellers.

37 The observations rest on a test for trend. For the share of sellers offering a PPO:
m = 12, D = 232, p-value = 55.0% (two-sided); and for the average amount of
the PPOs: m = 12, D = 338, p-value = 57.3% (two-sided).

38 Test for trend regarding the fraction of sellers: m = 12, D = 155, p-value = 13.4%
(two-sided); regarding the amount of the PPOs: m = 12, D = 58, p-value < 1%
(two-sided).

39 PPOs followed by either the same or no PPO are not considered.
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Figure 4.27. Share of sellers offering posted price offers in treatments B/S3 and
B/S5
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Figure 4.28. Posted price offers set by the sellers in treatments B/S3 and B/S5

in the subsequent round. The opposite, i. e. an accepted PPO followed by a

lower offer, is not observed (cf. Table 4.16 on page 126). Clearly, if a PPO is

accepted, there is no reason for the seller to lower this offer in the next round.

Rather, the accepted PPO may encourage the seller to ask for a higher price

in the next round.



130 4 Results of the Experiment

Note, however, that the seller actually learns the revenue of an auction

only if the PPO is rejected. In B/S5 there are 25 rejected PPOs followed by

a higher PPO in the subsequent round and the seller decreases her offer 31

times. Of these 31 reductions of the PPO occur 30 after the seller experienced

auction revenues which were smaller than the respective PPO. Apparently,

this is bad news for the seller and causes her to offer a lower PPO in the next

round.

In some cases, however, the feedback mechanism may also be misleading.

Possibly, even the lack of a significant upward trend in treatment B3 can be

explained by the misinterpretation of the information feedback in an APPO.

Consider, for example, seller 9 in Table 4.15 (p. 125). This seller starts in

round 2 by offering a PPO at 100 and offers the same PPO in rounds 3

and 4. From round 5 to round 8, the seller continuously lowers her offer and

finally sets it at 65 from round 8 on to the end of the session. The decisive

bidders reject all but the final PPO in round 12. This may well be perceived

as negative feedback. In addition, from rounds 2 to 6, the seller’s auction

revenues are lower than her offered PPO.40

Similarly, the mechanism may slow down the adjustment of low PPOs

towards higher PPOs. This is illustrated by seller 3 in treatment B/S3, who

offers rather low PPOs. If no or a rather high PPO had been offered, the

revenues of the corresponding auction in rounds 1 to 6 would be 8, 48, 71, 30,

22, and 62. In the respective rounds, the seller sets her PPOs at 50, 40, 49,

55, 55, and 45. In rounds 2, 3, and 6 the PPOs are accepted (cf. Table 4.15,

p. 125). Thus, the seller experiences auction revenues only when they are low

(8, 30, and 22 in rounds 1, 4, and 5) and receives no feedback with respect to

higher auction revenues (namely 48, 71, and 62) in the rounds in which her

PPO is accepted.

The above argument shows that the information feedback of a mechanism

plays an important role with respect to the evolution of strategies. In this

manner, the analysis ties in to work by Harstad (2000).

4.6 Summary

To conclude this chapter, the main findings of the experiment are summarized.

With respect to the outcomes of the auctions, i. e. the social surplus, the

revenue, and the bidders’ payoffs, the following observations are made:

40 The auction revenues in these rounds are 65, 50, 35, 24, and 34. Compare with
the PPOs at 100, 100, 100, 90, and 80, respectively.
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1. An APPO yields a lower social surplus than the corresponding English

auction with proxy bidding, i. e. a pure auction is more efficient than an

APPO. This result holds regardless of the number of bidders.

2. In the treatments with three bidders, the corresponding pure auction gen-

erates higher revenues for the seller than an APPO.

3. In accordance with Observation 2, in the treatments with three bidders the

payoffs of the bidders are higher in an APPO than in the corresponding

pure auction.

4. The variability of the outcomes is higher in the treatments with a PPO.

Further, the experimental results show that only the first of the above re-

sults can be attributed to the proposal and the acceptance of a PPO. Another

important factor which accounts for the observed differences is a change in

the bidding behavior of the participants. This is supported by the individual

bidding data.

5. In an APPO, the bidders deviate more strongly and more often from the

dominant strategy bids. This explains not only Observation 4 above but

also adds to the likelihood of inefficient outcomes in an APPO (Observa-

tion 1).

6. Moreover, in the auctions with three bidders, the participants submit

more defensive bids in an APPO than in a pure auction. This is the

reason for the lower revenue (Observation 2) and the higher bidder payoffs

(Observation 3) in an APPO.

7. During the course of the experiment, the APPO bids become more ag-

gressive and the observed underbidding (Observation 6) diminishes over

time.

With respect to the bidders’ acceptance thresholds, the study finds:

8. Overall, the thresholds of the bidders tend to be lower than predicted by

theory.

Possibly, the low thresholds of the bidders can be explained if bidders tend

to underestimate the expected final price of an auction.

Finally, the behavior of the sellers is investigated.

9. In the APPOs, sellers quite frequently quote a PPO, i. e. in more than

two-thirds of all APPOs.

10. Similar to the low bidders’ thresholds (Obseration 8), the sellers are ob-

served to quote rather low PPOs compared to the theoretical predictions.
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11. In the APPOs with five bidders, an increasing trend in the amount of the

sellers’ PPOs can be observed.

The fact that the sellers choose to propose PPOs which lower their average

revenue is noteworthy. One possible reason for the low PPOs could be that

the subjects in the role of sellers are risk averse. Risk aversion, however, does

not explain the observed behavior of the bidders. The low PPOs of the sellers

can more plausibly (and in line with the defensive thresholds of the bidders)

be explained by rather low estimates on the part of the subjects with respect

to the revenue in a pure auction. If this presumption holds, it could also serve

as an explanation for the increase in the sellers’ PPOs over time. In this case,

the observed increase could be a reaction of the sellers to the experience they

gain during the course of the experiment.
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Conclusion and Outlook

Recently, internet marketplaces like eBay and Yahoo! have extended the flex-

ibility of the selling mechanisms available on their platforms. The product

features “Buy It Now” or “Buy Price”, for example, allow the seller of an

item to offer an additional posted price when conducting an auction. Bidders

can then decide whether to bid in the auction or to acquire the item for the

fixed price offer.

If a bidder submits a bid in the auction, the posted price offer expires on

eBay. Thus, the final price in the auction—which is conducted as an English

auction with proxy bidding—may be below or above the posted price. More-

over, a bidder runs the risk of not winning the auction at all. By accepting

the fixed price offer, the bidder can eliminate these risks and acquire the item

with certainty.

The present study introduces a model of an auction with a posted price

offer (APPO) based upon the auction with a Buy It Now option on eBay. In

the APPO model, the posted price offer (PPO) is extended to exactly one of

the n bidders in the auction. The underlying rationale is that on eBay the

PPO expires if it is not accepted by a bidder who would rather submit a bid

in the auction. The PPO is then no longer available to any other bidder. If

the bidder rejects the PPO in the APPO model, a second-price auction is

conducted.

5.1 Summary of Main Results

In order to analyze the APPO institution, the concept of a bidder’s acceptance

threshold, which yields the maximum PPO the bidder is willing to accept, is

introduced. The APPO model is then investigated both theoretically and by a
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lab experiment. Both approaches are based on the independent private values

assumptions.

In the theoretical part of this study, an APPO is considered as a Bayesian

game and solved by equilibrium analysis. If the PPO is rejected, an equilibrium

in dominant strategies exists for the subsequent subgame. The threshold of a

bidder with respect to the acceptance of the PPO can be derived by backward

induction. It is shown that the threshold increases with the number of bidders,

their degree of risk aversion, and the auction’s reserve price. Moreover, if a

bidder is risk neutral, his threshold rises globally with his valuation.

Applying the bidders’ acceptance thresholds, the expected revenue of an

APPO is calculated given a PPO set by the seller. Once more using backward

induction, the seller’s revenue maximizing PPO is determined. The analysis

results in two main findings:

1. If the bidders are risk neutral or risk loving, the seller cannot gain from

offering an additional PPO when conducting an auction.

2. If the bidders are risk averse, the seller can set a PPO such that the

expected revenues exceed those of a pure auction.

Note that the second result also holds if a non-zero reserve price is taken into

consideration: if bidders are risk averse, then for any given reserve price p a

PPO p̄ exists such that the respective APPO outperforms the corresponding

second-price auction in terms of the expected revenue.

Finally, optimal APPOs are considered, i. e. APPOs in which the seller

simultaneously maximizes over the reserve price and the PPO in order to

maximize her expected revenue. On the basis of an example, it is also ar-

gued that the optimal reserve price in an APPO is lower than the revenue

maximizing reserve price in the respective pure second-price auction.

The second part of the study investigates actual bidder and seller behavior

in a lab experiment. In the experiment, both the bidders and the sellers are

investigated in APPOs with three and five bidders. Moreover, pure auctions

without a PPO were conducted as a benchmark.

To a large extent, the lab experiment confirms the predictions of the theo-

retical model. The experiment, however, also reveals characteristics that can-

not be explained by the model.

1. Both the bidders and the sellers appear to underestimate the expected

revenue in an auction. As a consequence, the thresholds of the bidders as

well as the PPOs set by the sellers are on average lower than predicted

by the model.

2. The variability of the bids with respect to the dominant strategy increases

if a PPO is available. The increase in dispersion is explained by the addi-
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tional complexity that comes along with the existence of the PPO, which

makes the auction institution less transparent.

3. Moreover, in the treatments with three bidders, the bids are significantly

lower in an APPO than in a benchmark treatment without a PPO.

The low PPOs set by the sellers could also be explained by risk aversion.

However, the behavior of subjects in the role of bidders is not coherent with

risk averse decision making. Thus, the conjecture that the participants in the

experiment underestimate the expected auction price regardless of their roles

accounts for the observed results more consistently.

Based on the above findings, the following conclusions stand to reason.

First, the low thresholds and the low PPOs observed in the experiment call

into question the effectiveness of the PPO as a suitable means for increasing

the seller’s expected revenue. In fact, the experimental data do not show

an increase in revenue due to the bidders’ acceptance of PPOs. Rather, the

increase in the variability of the bids negatively affects the efficiency of the

institution. Because bidders more often deviate from bidding their valuation in

comparison to a pure auction, the item is less often awarded to the bidder with

the highest valuation. This clearly lowers the total surplus which the bidders

and the sellers share. Finally, there is no obvious explanation for the last of

the above observations. However, the low bids in an APPO with three bidders

have an important consequence: the revenues in an APPO are significantly

lower than those in a pure auction. On the other hand, due to defensive bids,

the bidders’ payoffs are higher in an APPO. The effect is not observed in the

treatments with five bidders.

5.2 Limitations of the Study

Both the theoretical and the experimental analyses of an APPO concern a

simplified model of auctions with a Buy It Now option or a Buy Price as

available on eBay or Yahoo!. To a certain degree, the generality of the results

is limited by the assorted assumptions of the model.

An apparent difference between the APPO model and an auction on the

internet is that in a real auction the number of participants is not given or

known to all participants. Rather, an auction is listed for a certain time period

and—loosely speaking—discovered by an arbitrary number of bidders during

the time of its listing.

In addition, the analysis is based on the assumptions of the symmetric

independent private values model. In both the theoretical model and the ex-

periment, the distribution function of a bidder’s valuation is known to all
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participants. Moreover, this distribution is the same for all bidders and all

valuations are independent. One would presume that this does not hold in

real settings: Bidders may not be symmetric and, generally, the distribution

functions of their valuations are not known to all bidders. Even more im-

portantly, the quality of an item traded at an online auction is not perfectly

observable—nor is the trustworthiness of the seller. Thus, there is a clear

unknown common value component.

One of the reasons for offering a PPO might also be that either party

prefers an early transaction to waiting for an auction to close. A bidder might

be willing to pay a premium and a seller could be willing to offer a discount in

relation to the expected final price of an auction if the transaction is initiated

early. A similar argument also holds for implicit transaction costs. Particu-

larly for low valued items, a bidder might prefer an immediate transaction as

opposed to running the risk of being outbid and possibly having to search for

an alternative auction of a similar item.

The last point also relates to another issue. An APPO is considered as a

one-shot game. Within the model, a seller can try to sell a particular item

in one auction only. Similarly, the bidders can acquire the item in only this

auction. A bidder who is not awarded the item receives a zero payoff. Both of

these assumptions may not hold in reality: A seller can easily relist an unsold

item—this is even facilitated by actual platforms. In addition, several auctions

often offer similar items. This substantially increases the strategy space of the

bidders.

5.3 Outlook

This study has investigated a market institution which combines an auction

with a posted price offer. By proposing a game theoretical model which is more

general than those in previous literature and conducting conducting the first

known experimental analysis of an auction with a posted price offer, it has laid

the basis for further studies which aim to extend the scope of the presented

results. Both the model and the employed methodology—game theoretical

modeling combined with experimental economics—bear the potential of being

deepened and broadened by the market engineer.

Firstly, the model can be extended. In the context of internet auctions, a

natural extension of the APPO model is to not fix the number of bidders in

advance but to consider the arrivals of bidders as a realization of a stochastic

process. Such an extension would not only address the issue of a random

number of bidders; explicitly taking the time process of bidding into account

would also allow the modeling of both bidders’ and sellers’ time preferences.
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The resulting model is likely to capture still unknown yet important aspects

of the actual bidding process. Moreover, it would be interesting to study the

effect of bids as value signals in a setting with common or affiliated values.

Note that an APPO promotes early bids because by submitting a bid, bidders

can disable the PPO. In a common value setting, this is in the interest of the

seller.

Secondly, the theoretical and experimental approaches to analyzing market

institutions can be supplemented by empirical methods. Both the theoretical

model and the experimental investigation have applied a simplified model

of reality. In order to increase the external validity of the results, a further

direction for future research is to focus on real auctions rather than simplified

models. The idea is to analyze field data from auctions with a posted price offer

which are actually run at internet marketplaces. Because internet auctions can

be monitored not only over their duration but are also available for scrutiny

after the closing of the auction, a considerable amount of data is available for

evaluation.

Thirdly, the domain of the application can be refined. Consider, for exam-

ple, a procurement setting. In such a situation, a (corporate) buyer seeks to

acquire an item from one of several potential suppliers. Clearly, more complex

valuation models may be necessary. The item’s value may be uncertain due

to, for example, the unknown cost of development and (future) production.

It may also have negotiable attributes such as certain technical features or

service levels which cannot or should not be specified in advance. In such sce-

narios, multi-attribute auction protocols may be applied. Moreover, a buyer

may want to purchase several different goods or services which may be ob-

tained either from a single supplier or from several different vendors. The

delivery of a large number of computers in combination with a service con-

tract could be an example. Since it is not known in advance whether the

buyer should package the hardware with the service and tender the bundle

or whether he should purchase the goods individually, combinatorial auctions

should be considered. Both multi-attribute and combinatorial auctions can be

augmented by posted offers.

Finally, the market operator and its business model may be the focus of

investigation. The analysis would then shift towards an operator’s business

model, its tariff structure, and the strategic strength of a particular model in

a competitive environment. How well, for example, does a model perform if

customers—buyers and sellers—can choose between alternative marketplaces?

Again, the same set of methodological approaches is available to the market

engineer: Competition of homogeneous or heterogeneous markets can be stud-

ied analytically as well as by laboratory experiments. As the complexity of



138 5 Conclusion and Outlook

the analytical models grows, computer-based simulations may supplement the

tool-box.



A

Mathematical Fundamentals

A.1 Basic Concepts of Game Theory

Let N = {1, 2, . . . , n} be a set of players and denote for all i ∈ N the set of

strategies of player i by Σi and the set of strategy profiles by Σ = Σ1 ×Σ2 ×
. . .×Σn. The payoff (utility) of a player i is captured by a function ui : Σ → R

and the payoffs of all players, given a strategy profile σ ∈ Σ, are in short

written as u(σ) with u : Σ → Rn and u(σ) = (u1(σ), u2(σ), . . . , un(σ)).

Using the above notation, a game can be described by a triple (N, Σ, u).

For convenience we also define Σ−i := Σ1 × Σ2 × . . . × Σi−1 × Σi+1 × . . . Σn

as the set of strategy combinations of all players but player i.

Definition A.1 (Dominant strategy). Let Γ = (N, Σ, u) be a game and

i ∈ N a player. A strategy σ∗
i ∈ Σi is called a dominant strategy of player

i if and only if

∀σi ∈ Σi, ∀σ−i ∈ Σ−i : ui(σ
∗
i , σ−i) ≥ ui(σi, σ−i) and (A.1)

∀σi �= σ∗
i : ∃σ−i ∈ Σ−i : ui(σ

∗
i , σ−i) > ui(σi, σ−i) . (A.2)

An equivalent definition can be found e. g. in Mas-Colell et al. (1995,

p. 238).1

A weaker form (that could equivalently be used in this dissertation) is

common in the mechanism design literature (see, e. g., Jackson, 2003, whose

notation, however, is quite different due to the focus of his paper). Here σ∗
i

is called a dominant strategy even if it does not weakly dominate a single

1 Oddly, in Excercise 8.B.2 Mas-Colell et al. (1995, p. 262) consider a game in which
“a player has two weakly dominant strategies.” This, of course, is not possible
with the given definition of a dominant strategy.
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σi ∈ Σi. This definition is consistent with Holler und Illing (1996, p. 53) or

Osborne und Rubinstein (1998, p. 181).

Yet another definition is given by Berninghaus et al. (2002, p. 20) or

Pfähler und Wiese (1998, p. 46). There, the additional constraint reads

∃σ−i ∈ Σ−i : ∀σi �= σ∗
i : ui(σ

∗
i , σ−i) > ui(σi, σ−i). This, however, is

not consistent with the common notion that bidding one’s true valuation is a

dominant strategy in the Vickrey auction.

Fortunately, there is no disunity in the literature regarding the definition

of a Nash equilibrium.

Definition A.2 (Nash equilibrium). Let Γ = (N, Σ, u) be a game. A

strategy profile σ∗ ∈ Σ is called a Nash equilibrium or equilibrium for

short if and only if

∀ i ∈ N, ∀σi ∈ Σi : ui(σ
∗) ≥ ui(σi, σ

∗
−i) .

Using the notion of a dominant strategy, the following definition refines

the concept of a Nash equilibrium.

Definition A.3 (Equilibrium in dominant strategies). Let Γ = (N, Σ, u)

be a game. A strategy profile σ∗ = (σ∗
1 , σ∗

2 , . . . , σ∗
n) ∈ Σ is called an

equilibrium in dominant strategies if and only if

∀ i ∈ N : σ∗
i is a dominant strategy of player i .

Clearly, Definition A.3 is much stronger than Definition A.2. There are only

a few games which have an equilibrium in dominant strategies.

A.2 Risk Measurement by Arrow and Pratt

The concept most commonly applied to measure the degree of an agent’s

risk aversion was independently suggested by Kenneth J. Arrow and John W.

Pratt (cf. Pratt, 1964, and the references therein). The following presentation

follows Kruschwitz (1995) and Wolfstetter (1999).

Definition A.4 (Markowitz risk premium). Let X be a real-valued ran-

dom variable and w0 the initial wealth of an agent whose preferences over

lotteries are represented by a utility function u : R → R. The term

π(X, w0) = w0 + E[X ] − u−1 (E[u(w0 + X)])

is called risk premium.
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Definition A.5 (Absolute and relative risk aversion). Let u : R → R be

a continuous, strictly increasing, and twice differentiable utility function

for money. The term

ARA(x) = −u′′(x)

u′(x)

is called absolute risk aversion and the term

RRA(x) = ARA(x) x

is called relative risk aversion.

Based on Definition A.5, one can compare two utility functions with re-

spect to the degree of risk aversion that they exhibit:

Definition A.6 (Higher degree of risk aversion). Let ui, uj : R → R be

two continuous, strictly increasing and twice differentiable utility functions

for money. The function ui is said to exhibit higher risk aversion than uj

in the sense of Arrow and Pratt, if and only if

−u′′
i (x)

u′
i(x)

≥ −u′′
j (x)

u′
j(x)

∀x ∈ R .

The following Theorem A.7 originates from Pratt (1964).

Theorem A.7 (Pratt). Let ui, uj : R → R be two continuous, strictly in-

creasing and twice differentiable utility functions for money and X a real-

valued random variable. Then the following conditions are equivalent

(i) −u′′

i (x)
u′

i(x) ≥ −u′′

j (x)

u′

j(x) ∀x ∈ R

(ii) ∃(z : R → R) : z′(x) ≥ 0, z′′(x) ≤ 0, ui(x) = z(uj(x)) ∀x ∈ R

(iii) for any random variable X, ∀w0 : πi(X, w0) ≥ πj(X, w0) .

Part (iii) of Theorem A.7 intuitively illustrates Definition A.6: an agent

i is considered more risk averse than an agent j if at any given (but identi-

cal) respective level of initial wealth, the risk premium agent i demands for

accepting a lottery X (or the certainty equivalent i is willing to pay in order

to avoid the lottery) is higher than that of agent j.
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A.3 Order Statistics

Let X be a (continuous) random variable with a cdf F : R → [0; 1] and a

pdf f : R → R+ and let x1, x2, . . . , xn be n independent drawings of that

variable.2 Now consider an ordered list of the realizations and denote the

largest realization by x(1), the second largest by x(2), etc. so that

x(1) ≥ x(2) ≥ . . . ≥ x(n) .

Of course, x(1), x(2), . . . , x(n) are again realizations of implicitly defined ran-

dom variables

X(1), X(2), . . . , X(n) .

The variable X , the cdf F , and the pdf f are respectively called parent (ran-

dom) variable, parent distribution, and parent density, and X(1), X(2), and

X(i) are referred to as first-order, second-order, and ith-order statistics.3 In

this section, general formulae for the distribution and the density of the order

statistics will be derived.

The probability that x(1) is not larger than a given x is equal to the

probability that no individual xi is larger than x. One obtains

F(1),n(x) = Fn(x) (A.3)

f(1),n(x) = n Fn−1(x) f(x) . (A.4)

Analogously, the probability that x(i) is not larger than x is equal to the

probability that not more than (i − 1) of the individual realizations of X are

larger than x. The probability that exactly j realizations are larger than x

calculates to

Pr(∃j! y ∈ {x1, x2, . . . , xn} : y > x) =

(
n

j

)
Fn−j(x) (1 − F (x))j

.

2 The following formulae can easily be extended to the case with discrete random
variables.

3 In the statistics literature, the first-order statistic typically refers to the lowest
realization and the nth-order statistic to the largest realization (cf. e. g. Arnold
et al., 1992; David, 1981). Economists tend to reverse the ranking when analyzing
auctions (e. g. McAfee und McMillan, 1987). This paper adopts the reversed nota-
tion particularly since it provides a simple notation for the statistic of the largest
valuation in an auction if the number n of bidders is not known in advance. Note
that the order statistics are well defined even if n = 0 is possible with positive
probability. The respective distribution function F(1)(v) is then to be read in the
sense that (1 − F(1)(v)) denotes the probability that there is no valuation that
exceeds v.
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Thus, the distribution of the nth-order statistic yields

F(i),n =

i−1∑
j=0

(
n

j

)
Fn−j(x) (1 − F (x))

j
. (A.5)

One possibility to obtain the density of X(i) is to differentiate Equation (A.5)

with respect to x. An alternative form of the pdf is given by Equation (A.6):

f(i),n(x) =
n!

(n − i)! (i − 1)!
f(x) Fn−i(x) (1 − F (x))i−1 . (A.6)

In fact, this alternative form is much simpler because it entails a closed form

rather than the sum of i elements. To prove that Equation (A.6) does in fact

yield the density, integrate Equation (A.6) by parts (i − 1) times.

A.4 Acceptance Threshold of Bidders in Example 2.3

This section is an addendum to Example 2.3 (page 27) of Section 2.3. In the

example, the rather mechanical computation of the acceptance threshold is

left out in the main text. It is given in the following.

Consider an APPO with n bidders i = 1, 2, . . . , n whose valuations vi

are independently and uniformly distributed over the interval [0; 1]. Let the

reserve price be p = 0. In this section the threshold function tı̂(vı̂) of bidder

ı̂ with a utility function uı̂(x) = xα (α > 0) is derived. According to Lemma

2.6 the threshold function is

tı̂(vı̂) = vı̂ − u−1
ı̂

(∫ vı̂

p

u′
ı̂(vı̂ − x)G(1),−ı̂(x) dx

)
.

Because valuations are uniformly distributed over [0; 1], G(1),−ı̂(x) = xn−1

holds and one obtains

tı̂(vı̂) = vı̂ − u−1
ı̂

(∫ vı̂

0

α(vı̂ − x)α−1 xn−1 dx

)
.

Integration by parts yields

tı̂(vı̂) = vı̂ − u−1
ı̂

(
− [

(vı̂ − x)α xn−1
]vı̂

0
+

∫ vı̂

0

(v − x)α (n − 1) xn−2 dx

)

and by repeating integration by parts another (n − 2) times one obtains
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= vı̂ − u−1
ı̂

(
α

∫ vı̂

0

(
n−2∏
i=0

1

α + i

)
(vı̂ − x)α+n−2 (n − 1)! dx

)

= vı̂ − u−1
ı̂

(
(n − 1)!

[
−

(
n−1∏
i=1

1

α + i

)
(v − x)α+n−1

]vı̂

0

)

= vı̂ −
(

(n − 1)!∏n−1
i=1 (α + i)

) 1
α

v1+ n−1
α . (A.7)
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Parameters of the Experiment

In this chapter of the Appendix, the parameters of the experimental setup are

laid out in detail. A thorough description of the experimental design is given

in Chapter 3.

For each of the treatments A3, A5, B3, and B5, two sessions were con-

ducted and in each session 15 bidders participated in a sequence of twelve

auctions.1 Thus, in each of the treatments investigating bidder behavior, a

total of 30 bidders participated.

In treatments S3 and S5, the behavior of sellers in an APPO is investigated.

There was one session of treatment S3 with ten sellers and one session of

treatment S5 with twelve sellers. In fact, the data of each auction in treatment

B3 were mapped to exactly one seller in treatment S3 and each auction’s

data in treatment B5 were mapped to two different sellers in treatment S5,

respectively (see Section 3.4 for details).

Note that the identification numbers of the subjects in the following sec-

tions refer to their internal names. In the experiment, the identification num-

bers were randomly assigned to the participants’ seat labels (letters from ‘A’

to ‘O’). Participants were only informed about their own identification number

and not about the numbers of the other participants in the lab.

B.1 Assignment of Participants to Groups

In treatments A3 and B3, each auction was conducted with three bidders

whilst in treatments A5 and B5 five bidders participated in each auction.

Since a session was conducted with 15 bidders, in every round of each session

1 The limitation to 15 participants in each session was due to the capacity con-
straints of the experimental lab.
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of the treatments A3 and B3 there were five groups of bidders and in each

session of the treatments A5 and B5 there were three groups of bidders.

The experiment was conducted as a stranger experiment, i. e. the compo-

sition of the groups varied from round to round. The schedules according to

which bidders were assigned to groups are given in Tables B.1 and B.2. In

these tables the groups are numbered from 1 to 5 and 1 to 3, respectively. In

round 2 of the treatments A3 and B3, for example, bidders 1, 4, and 7 are all

assigned to group 1. Thus, these bidders participated in the same auction.

Table B.1. Assignment of bidders to groups in treatments A3 and B3

Bidder Round
1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 2 2 2 1 5 3 4 5 4 3
3 1 3 3 3 4 2 5 4 5 4 3 2
4 2 1 2 3 3 1 3 4 2 2 1 5
5 2 2 1 5 4 4 2 5 1 2 2 2
6 2 3 5 1 2 2 1 5 5 5 5 5
7 3 1 3 4 2 3 2 1 5 3 4 4
8 3 5 1 2 3 5 1 2 3 4 4 1
9 3 4 4 1 5 4 3 2 4 4 2 5
10 4 2 5 4 1 2 2 2 2 1 5 3
11 4 4 2 5 3 4 4 1 4 2 5 4
12 4 5 4 3 5 5 5 5 1 3 3 3
13 5 3 4 4 4 5 4 3 3 1 3 4
14 5 5 5 5 5 3 4 4 3 5 1 2
15 5 4 3 2 1 3 3 3 2 3 2 1

Before the experiment began, the decisive bidder of every auction in the

treatments B3 and B5 was determined by a random method. In the Tables

B.1 and B.2, the decisive bidder is highlighted by a bold font face.

Note that the group numbers were only used internally in the system.

They were not communicated to the participants. Moreover, the participants

were neither informed about the schedule assigning bidders to groups nor did

they know with whom they were bidding in an auction.

In the sessions of the treatments B3 and B5, the strategies applied by the

bidders, i. e. the chosen acceptance thresholds and the chosen bidding limits,

were recorded and saved in the system. In treatments S3 and S5, participants

in the role of sellers were confronted with the recorded strategies of the bidders

in treatments B3 and B5, respectively. Thus, in every round a seller had to
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Table B.2. Assignment of bidders to groups in treatments A5 and B5

Bidder Round
1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1
2 3 2 3 3 2 2 2 2 2 3 3 3
3 1 1 2 2 3 3 1 1 2 2 3 3
4 2 2 1 2 1 1 3 3 1 2 1 1
5 1 2 1 3 2 1 1 2 2 2 2 2
6 2 1 2 2 1 1 2 3 3 1 3 2
7 2 2 1 3 3 3 3 1 1 1 2 1
8 3 2 2 3 2 1 3 3 1 2 1 3
9 2 3 3 2 3 3 3 1 3 1 2 1
10 1 3 2 1 3 2 1 3 1 3 2 2
11 3 3 2 1 2 3 2 2 2 3 2 1
12 1 1 1 1 2 2 2 2 3 3 3 3
13 2 3 3 3 3 2 3 1 3 2 1 3
14 3 1 3 2 1 2 2 3 3 3 3 2
15 3 3 3 1 1 3 1 2 2 1 1 2

decide whether to offer a PPO, and, if so, she had to specify its amount. The

seller’s payoff in an APPO in treatments S3 and S5 was then determined based

on her own decisions and the recorded strategies of the bidders in treatments

B3 and B5.

As with the bidders, the sellers participated in a sequence of twelve auc-

tions. Moreover, an auction that was played, e. g., in round 3 with the bidders

was also assigned to a seller in round 3. Following the stranger design, however,

the assignment of sellers to bidder groups varied from round to round.

In a session of treatment B3, there were five auctions in every round.

Because two sessions were conducted, a total of ten auction data sets was

available per round. It was thus convenient to investigate treatment S3 in a

session with ten sellers and to map in every round the ten different auction

data sets to different sellers.

Similarly to Table B.1, Table B.3 shows the assignment of the sellers to

the bidder groups. The group numbers 1 through 5 in Table B.3 refer to the

bidder groups 1 through 5 of session 1 of treatment B3 and the group numbers

5 through 10 refer to the groups 1 through 5 of session 2 of treatment B3.

Because in treatment B5 five bidders participated in an auction, only three

auctions were conducted per session and round in this treatment. Because

two sessions were conducted, six different auction data sets were recorded for

every round. In order to increase the number of observations, treatment S5 was
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Table B.3. Assignment of sellers to bidder groups in treatment S3

Seller
Round

1 2 3 4 5 6 7 8 9 10 11 12
1 6 6 10 6 4 10 9 8 2 1 4 6
2 1 7 8 10 1 5 3 7 6 3 3 3
3 8 4 9 2 3 6 8 6 5 7 9 7
4 10 9 5 8 7 2 6 4 3 6 5 1
5 7 10 2 7 10 8 10 3 4 10 1 2
6 3 8 1 1 6 3 1 1 9 9 6 5
7 4 1 7 3 2 1 5 2 8 4 7 10
8 9 2 3 4 5 9 2 5 7 2 8 4
9 5 3 6 9 8 4 4 10 1 8 10 8
10 2 5 4 5 9 7 7 9 10 5 2 9

investigated in one session with twelve sellers and each recorded auction’s data

set of treatment B5 was assigned to two different sellers. Table B.2 displays

the assignment of sellers to bidder groups in that treatment. Similar to Table

B.3, in Table B.4 the group numbers 1 through 3 refer to the bidder groups

of session 1 of treatment B5 and the group numbers 4 through 6 refer to the

bidder groups of session 2 of treatment B5. Note that in all rounds each group

number is mapped with two different sellers.

Table B.4. Assignment of sellers to bidder groups in treatment S5

Seller
Round

1 2 3 4 5 6 7 8 9 10 11 12
1 6 4 6 2 1 3 1 4 4 3 6 6
2 3 3 1 4 2 6 5 5 2 5 5 5
3 2 2 6 5 6 1 1 2 5 1 1 1
4 4 6 4 3 5 3 5 1 3 6 4 4
5 5 1 5 5 2 1 6 6 1 6 3 3
6 3 5 1 1 4 6 3 1 6 5 6 1
7 6 1 5 2 4 2 4 4 6 2 2 5
8 4 4 2 1 6 4 4 6 2 4 3 6
9 1 5 3 6 5 5 6 2 3 2 5 2
10 1 3 4 3 3 4 3 3 4 4 2 3
11 2 6 3 4 3 5 2 3 5 3 4 2
12 5 2 2 6 1 2 2 5 1 1 1 4
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B.2 Bidder Valuations

Table B.5 shows the valuations of the bidders in the experiment. All valuations

are random integer numbers from 1 to 100. They were independently drawn

from a uniform distribution by a computer algebra program before the start

of the experiment. The same set of valuations was used in all sessions of the

treatments A3, A5, B3, and B5.2

The table also shows the mean of the valuations for each round as well as

the overall mean, which at 50.3 is slightly below its theoretical prediction of

50.5.

Table B.5. Bidder valuations

Bidder Round
1 2 3 4 5 6 7 8 9 10 11 12

1 69 27 99 25 49 17 47 53 77 12 77 29
2 77 66 55 35 45 63 81 53 14 53 68 34
3 19 39 83 89 15 51 30 100 45 83 2 61
4 64 50 10 61 24 66 84 68 19 12 32 74
5 91 14 56 79 12 25 48 77 37 61 45 39
6 26 73 26 83 78 20 85 15 35 16 16 46
7 20 9 6 10 20 78 86 73 91 49 51 21
8 34 68 17 81 6 35 33 94 18 7 13 35
9 9 48 8 83 50 43 9 35 11 3 88 95
10 44 23 99 54 53 74 91 33 60 88 41 81
11 96 35 20 38 96 34 92 38 40 31 99 26
12 6 35 71 77 26 99 94 73 73 81 88 4
13 42 78 78 15 63 17 74 98 31 22 63 75
14 23 63 97 23 71 31 90 80 51 58 62 75
15 66 92 26 30 39 53 27 49 43 78 53 52

mean 45.7 48.0 50.1 52.2 43.1 47.1 64.7 62.6 43.0 43.6 53.2 49.8
Overall mean: 50.3

2 There are exceptions, though. For technical reasons, in the experiments with five
bidders in each auction, i. e. the treatments A5 and B5, the valuations of bidders
2 and 12 were interchanged in round 9 and 10 as were the valuations of bidders
9 and 11 in round 10. The table represents the valuations in treatments A3 and
B3.



150 B Parameters of the Experiment

B.3 Posted Price Offers in Treatments B3 and B5

Table B.6 displays the predetermined PPOs in the treatments B3 and B5.

In any given round, all bidder groups were presented with the same prede-

termined PPO, which was kept equal throughout all sessions. Moreover, no

distinction was made with respect to the size of a bidder group. The PPO was

only varied from round to round.

Table B.6. Predetermined posted price offers in treatments B3 and B5

Round
1 2 3 4 5 6 7 8 9 10 11 12

PPO 65 69 80 65 58 67 67 60 56 74 51 74

B.4 Theoretical Solutions of Treatments A3 and A5

It was shown in Section 3.7 that if no PPO is available and if n = 3 bidders

participate in an auction, the expected values for the seller’s revenue E[R],

the winning bidder’s payoff E[Π(1)], and the valuation E[V(1)] of the winner

of an auction are

E[R] = 50.5

E[V(1)] ≈ 75.50

E[Π(1)] ≈ 25.00 .

The above numbers refer to the ex-ante expected values. Table B.7 lists

the respective numbers given the bidders’ valuations in the experiment (cf.

Table B.5). The table displays the seller’s revenues R as well as the payoff Π(1)

and the valuation V(1) of the winning bidder of all auctions in the experiment

with three bidders if—in the absence of a PPO—the participants bid in the

auctions according to their dominant strategy, i. e. if they submitted their true

valuation as their maximum bid.

Similarly, Table B.8 shows the respective theoretical solution of the ex-

periments with n = 5 bidders. For comparison, the ex-ante expected values

are



B.4 Theoretical Solutions of Treatments A3 and A5 151

E[R] ≈ 67.17

E[V(1)] ≈ 83.83

E[Π(1)] ≈ 16.66 .

Table B.7. Treatment A3 — Theoretical solutions of individual auctions

Group

Round
1 2 3 4 5

R Π(1) V(1) R Π(1) V(1) R Π(1) V(1) R Π(1) V(1) R Π(1) V(1)

1 69 8 77 64 27 91 20 14 34 44 52 96 42 24 66
2 27 23 50 23 43 66 73 5 78 48 44 92 63 5 68
3 56 43 99 20 35 55 26 57 83 71 7 78 97 2 99
4 83 0 83 35 46 81 77 12 89 15 39 54 38 41 79
5 49 4 53 45 33 78 24 72 96 15 48 63 50 21 71
6 63 3 66 51 23 74 53 25 78 34 9 43 35 64 99
7 47 38 85 86 5 91 27 57 84 90 2 92 81 13 94
8 53 20 73 35 59 94 53 45 98 80 20 100 73 4 77
9 73 4 77 43 17 60 31 20 51 14 26 40 45 46 91
10 22 66 88 31 30 61 78 3 81 7 76 83 53 5 58
11 62 15 77 53 35 88 63 25 88 51 17 68 41 58 99
12 35 17 52 61 14 75 34 47 81 26 49 75 74 21 95

mean 53.3 20.1 73.3 45.6 30.6 76.2 46.6 31.8 78.4 41.3 32.4 73.7 57.7 25.3 83.0

overall mean R: 48.9 overall mean Π(1): 28.1 overall mean V(1): 76.9
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Table B.8. Treatment A5 — Theoretical solutions of individual auctions

Group

Round
1 2 3

R Π(1) V(1) R Π(1) V(1) R Π(1) V(1)

1 69 22 91 42 22 64 77 19 96
2 63 10 73 66 2 68 78 14 92
3 71 28 99 83 16 99 78 19 97
4 54 23 77 83 6 89 79 2 81
5 71 7 78 45 51 96 53 10 63
6 35 31 66 74 25 99 53 25 78
7 48 43 91 92 2 94 84 2 86
8 98 2 100 73 4 77 80 14 94
9 77 14 91 45 28 73 35 16 51
10 49 29 78 61 22 83 81 7 88
11 63 14 77 88 11 99 68 20 88
12 74 21 95 75 6 81 61 14 75

mean 64.3 20.3 84.7 68.9 16.3 85.2 68.9 13.5 82.4

overall mean R: 67.4
overall mean Π(1): 16.7
overall mean V(1): 84.1
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Strategies of the Bidders in the Experiment

In this appendix, the strategies chosen by the bidders in the experiment are

individually listed. The induced valuations of the bidders are denoted by vi,

the observed bids by b̂i, and the acceptance threshold in the B-treatments by

t̂i.

C.1 Treatment A3: Three Bidders, no PPO

See Table C.1 on pages 154–155.

C.2 Treatment A5: Five Bidders, no PPO

See Table C.2 on pages 156–157.

C.3 Treatment B3: Three Bidders, PPO

See Table C.3 on pages 158–159.

C.4 Treatment B5: Five Bidders, PPO

See Table C.4 on pages 160–161.
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Table C.1: Strategies of the bidders in treatment A3

Session 1

Bidder

Round
1 2 3 4 5

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 69 70 77 76 19 16 64 64 91 91
2 27 28 66 64 39 37 50 50 14 14
3 99 100 55 54 83 80 10 10 56 56
4 25 26 35 35 89 87 61 61 79 79
5 49 49 45 44 15 2 24 24 12 12
6 17 17 63 62 51 50 66 66 25 25
7 47 47 81 80 30 30 84 84 48 48
8 53 53 53 52 100 99 68 68 77 77
9 77 77 14 14 45 45 19 19 37 37
10 12 12 53 52 83 83 12 12 61 61
11 77 77 68 68 2 5 32 32 45 45
12 29 29 34 34 61 62 74 74 39 39

mean 48.4 48.8 53.7 52.9 51.4 49.7 47.0 47.0 48.7 48.7

Bidder

Round
6 7 8 9 10

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 26 25 20 19 34 33 9 8 44 44
2 73 72 9 8 68 67 48 47 23 23
3 26 25 6 5 17 16 8 7 99 99
4 83 82 10 9 81 81 83 82 54 54
5 78 77 20 100 6 6 50 50 53 53
6 20 19 78 50 35 35 43 42 74 74
7 85 84 86 61 33 33 9 8 91 91
8 15 14 73 70 94 93 35 35 33 33
9 35 34 91 90 18 18 11 12 60 60
10 16 15 49 48 7 7 3 3 88 88
11 16 15 51 50 13 13 88 88 41 41
12 46 45 21 20 35 35 95 95 81 81

mean 43.3 42.3 42.8 44.2 36.8 36.4 40.2 39.8 61.8 61.8

Bidder

Round
11 12 13 14 15

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 96 96 6 6 42 42 23 20 66 72
2 35 10 35 35 78 78 63 45 92 100
3 20 20 71 71 78 78 97 63 26 35
4 38 38 77 77 15 15 23 22 30 35
5 96 96 26 26 63 64 71 62 39 46
6 34 30 99 99 17 18 31 30 53 67
7 92 92 94 94 74 75 90 89 27 35
8 38 37 73 73 98 99 80 79 49 60
9 40 39 73 73 31 32 51 50 43 59
10 31 30 81 81 22 23 58 57 78 93
11 99 99 88 88 63 64 62 62 53 60
12 26 25 4 4 75 76 75 75 52 61

mean 53.8 51.0 60.6 60.6 54.7 55.3 60.3 54.5 50.7 60.3

continued on page 155 . . .
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Table C.1 (continued . . . )

Session 2

Bidder

Round
1 2 3 4 5

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 69 70 77 80 19 18 64 64 91 91
2 27 35 66 70 39 38 50 50 14 14
3 99 100 55 57 83 82 10 10 56 56
4 25 44 35 45 89 88 61 61 79 79
5 49 77 45 46 15 14 24 24 12 12
6 17 26 63 75 51 50 66 66 25 25
7 47 57 81 80 30 29 84 84 48 48
8 53 58 53 54 100 99 68 68 77 77
9 77 86 14 14 45 44 19 19 37 37
10 12 15 53 57 83 82 12 12 61 61
11 77 86 68 70 2 1 32 32 45 45
12 29 43 34 35 61 60 74 74 39 39

mean 48.4 58.1 53.7 56.9 51.4 50.4 47.0 47.0 48.7 48.7

Bidder

Round
6 7 8 9 10

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 26 26 20 20 34 34 9 8 44 40
2 73 73 9 9 68 68 48 45 23 20
3 26 26 6 6 17 17 8 7 99 80
4 83 83 10 10 81 81 83 75 54 53
5 78 78 20 20 6 6 50 45 53 52
6 20 20 78 78 35 35 43 42 74 73
7 85 85 86 86 33 33 9 8 91 91
8 15 15 73 73 94 94 35 34 33 33
9 35 35 91 91 18 18 11 10 60 60
10 16 16 49 49 7 7 3 2 88 88
11 16 16 51 51 13 13 88 88 41 41
12 46 46 21 21 35 35 95 95 81 81

mean 43.3 43.3 42.8 42.8 36.8 36.8 40.2 38.3 61.8 59.3

Bidder

Round
11 12 13 14 15

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 96 96 6 5 42 48 23 23 66 60
2 35 35 35 30 78 85 63 63 92 92
3 20 20 71 61 78 89 97 97 26 26
4 38 38 77 70 15 20 23 23 30 30
5 96 96 26 25 63 89 71 71 39 45
6 34 34 99 85 17 20 31 31 53 53
7 92 92 94 91 74 90 90 90 27 27
8 38 38 73 72 98 100 80 80 49 49
9 40 40 73 72 31 40 51 51 43 43
10 31 31 81 81 22 23 58 58 78 78
11 99 99 88 88 63 80 62 62 53 54
12 26 26 4 4 75 80 75 75 52 52

mean 53.8 53.8 60.6 57.0 54.7 63.7 60.3 60.3 50.7 50.8
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Table C.2: Strategies of the bidders in treatment A5

Session 1

Bidder

Round
1 2 3 4 5

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 69 68 77 77 19 19 64 64 91 91
2 27 26 66 66 39 39 50 50 14 14
3 99 98 55 55 83 83 10 10 56 56
4 25 24 35 35 89 89 61 61 79 79
5 49 48 45 45 15 15 24 24 12 12
6 17 16 63 63 51 51 66 66 25 25
7 47 46 81 81 30 30 84 84 48 48
8 53 52 53 53 100 100 68 68 77 77
9 77 77 73 73 45 45 19 19 37 37
10 12 12 81 81 83 83 12 12 61 61
11 77 77 68 68 2 2 32 32 45 45
12 29 29 34 34 61 61 74 74 39 39

mean 48.4 47.8 60.9 60.9 51.4 51.4 47.0 47.0 48.7 48.7

Bidder

Round
6 7 8 9 10

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 26 26 20 19 34 33 9 7 44 40
2 73 73 9 8 68 65 48 41 23 22
3 26 26 6 5 17 45 8 8 99 72
4 83 83 10 9 81 71 83 82 54 53
5 78 78 20 19 6 55 50 50 53 52
6 20 20 78 77 35 40 43 43 74 74
7 85 85 86 85 33 35 9 9 91 91
8 15 15 73 72 94 82 35 35 33 33
9 35 35 91 90 18 25 11 11 60 60
10 16 16 49 48 7 15 31 31 88 88
11 16 16 51 50 13 25 88 88 41 41
12 46 46 21 20 35 32 95 95 81 81

mean 43.3 43.3 42.8 41.8 36.8 43.6 42.5 41.7 61.8 58.9

Bidder

Round
11 12 13 14 15

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 96 80 6 6 42 40 23 23 66 50
2 35 35 35 35 78 66 63 63 92 80
3 20 20 71 71 78 66 97 97 26 20
4 38 38 77 77 15 15 23 23 30 20
5 96 96 26 26 63 60 71 71 39 30
6 34 34 99 99 17 17 31 31 53 53
7 92 92 94 94 74 74 90 90 27 27
8 38 38 73 73 98 98 80 80 49 49
9 40 40 14 14 31 31 51 51 43 43
10 3 3 53 53 22 22 58 58 78 75
11 99 99 88 88 63 64 62 62 53 53
12 26 26 4 4 75 76 75 75 52 52

mean 51.4 50.1 53.3 53.3 54.7 52.4 60.3 60.3 50.7 46.0

continued on page 157 . . .
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Table C.2 (continued . . . )

Session 2

Bidder

Round
1 2 3 4 5

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 69 60 77 76 19 19 64 64 91 91
2 27 25 66 66 39 39 50 50 14 14
3 99 90 55 55 83 83 10 10 56 56
4 25 20 35 35 89 89 61 61 79 79
5 49 48 45 45 15 15 24 24 12 12
6 17 17 63 63 51 51 66 66 25 25
7 47 45 81 81 30 30 84 84 48 48
8 53 50 53 53 100 100 68 68 77 77
9 77 77 73 73 45 45 19 19 37 37
10 12 12 81 81 83 83 12 12 61 61
11 77 77 68 68 2 2 32 32 45 45
12 29 29 34 34 61 61 74 74 39 39

mean 48.4 45.8 60.9 60.8 51.4 51.4 47.0 47.0 48.7 48.7

Bidder

Round
6 7 8 9 10

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 26 26 20 20 34 34 9 8 44 43
2 73 100 9 9 68 68 48 42 23 22
3 26 27 6 6 17 17 8 7 99 98
4 83 100 10 10 81 81 83 75 54 53
5 78 90 20 20 6 6 50 46 53 52
6 20 21 78 78 35 35 43 40 74 73
7 85 86 86 86 33 33 9 10 91 90
8 15 16 73 73 94 94 35 32 33 32
9 35 36 91 91 18 18 11 11 60 59
10 16 16 49 49 7 7 31 27 88 87
11 16 16 51 51 13 13 88 84 41 40
12 46 47 21 21 35 35 95 87 81 80

mean 43.3 48.4 42.8 42.8 36.8 36.8 42.5 39.1 61.8 60.8

Bidder

Round
11 12 13 14 15

vi b̂i vi b̂i vi b̂i vi b̂i vi b̂i

1 96 96 6 6 42 42 23 23 66 65
2 35 35 35 65 78 78 63 63 92 91
3 20 20 71 55 78 78 97 97 26 25
4 38 38 77 100 15 15 23 23 30 29
5 96 96 26 77 63 63 71 71 39 38
6 34 34 99 80 17 17 31 31 53 52
7 92 92 94 88 74 74 90 90 27 26
8 38 38 73 80 98 98 80 80 49 48
9 40 40 14 14 31 31 51 51 43 42
10 3 3 53 53 22 22 58 58 78 77
11 99 99 88 88 63 63 62 62 53 52
12 26 26 4 4 75 75 75 75 52 51

mean 51.4 51.4 53.3 59.2 54.7 54.7 60.3 60.3 50.7 49.7
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Table C.3: Strategies of the bidders in treatment B3

Session 1

Bidder

Round
1 2 3 4 5

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 69 68 68 77 12 15 19 16 17 64 52 60 91 75 91
2 27 26 26 66 15 22 39 30 31 50 44 48 14 13 14
3 99 40 98 55 7 10 83 60 65 10 8 10 56 50 56
4 25 24 24 35 6 8 89 59 69 61 56 58 79 50 79
5 49 48 48 45 8 11 15 10 14 24 20 22 12 11 12
6 17 16 16 63 11 22 51 30 41 66 60 65 25 24 25
7 47 40 46 81 29 30 30 25 25 84 80 83 48 40 48
8 53 40 53 53 25 27 100 50 75 68 65 67 77 50 77
9 77 40 77 14 1 4 45 30 40 19 16 19 37 36 37
10 12 12 12 53 25 28 83 70 73 12 10 12 61 50 61
11 77 70 77 68 25 53 2 2 2 32 25 32 45 40 45
12 29 28 29 34 30 31 61 59 56 74 70 74 39 36 39

mean 48.4 37.7 47.8 53.7 16.2 21.8 51.4 36.8 42.3 47.0 42.2 45.8 48.7 39.6 48.7

Bidder

Round
6 7 8 9 10

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 26 25 25 20 15 15 34 34 34 9 9 9 44 35 41
2 73 53 72 9 8 8 68 68 68 48 48 48 23 22 20
3 26 25 25 6 5 5 17 17 17 8 8 8 99 50 75
4 83 60 82 10 8 8 81 81 81 83 69 83 54 50 52
5 78 60 77 20 15 15 6 6 6 50 50 50 53 50 52
6 20 19 19 78 50 30 35 35 35 43 43 43 74 65 74
7 85 60 84 86 60 32 33 33 33 9 9 9 91 65 90
8 15 14 15 73 65 46 94 70 94 35 35 35 33 33 35
9 35 34 34 91 70 51 18 18 18 11 11 11 60 45 60
10 16 15 15 49 40 33 7 7 7 3 3 3 88 65 88
11 16 15 15 51 20 25 13 13 13 88 70 88 41 41 41
12 46 40 45 21 10 10 35 35 35 95 60 95 81 65 81

mean 43.3 35.0 42.3 42.8 30.5 23.2 36.8 34.8 36.8 40.2 34.6 40.2 61.8 48.8 59.1

Bidder

Round
11 12 13 14 15

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 96 70 96 6 4 5 42 25 35 23 13 22 66 40 50
2 35 30 35 35 35 33 78 45 65 63 62 50 92 60 92
3 20 20 20 71 70 71 78 65 78 97 96 96 26 20 26
4 38 35 38 77 77 65 15 14 15 23 22 22 30 20 30
5 96 60 96 26 10 15 63 50 63 71 50 70 39 30 39
6 34 30 34 99 80 85 17 10 17 31 20 30 53 35 53
7 92 45 92 94 70 90 74 40 74 90 50 89 27 20 27
8 38 35 38 73 60 71 98 40 98 80 40 80 49 35 49
9 40 35 40 73 65 73 31 15 31 51 25 50 43 30 43
10 31 25 31 81 79 81 22 10 22 58 25 58 78 30 78
11 99 45 99 88 70 88 63 40 63 62 30 62 53 30 53
12 26 25 26 4 4 4 75 40 75 75 30 75 52 10 52

mean 53.8 37.9 53.8 60.6 52.0 56.8 54.7 32.8 53.0 60.3 38.6 58.7 50.7 30.0 49.3

continued on page 159 . . .
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Table C.3 (continued . . . )

Session 2

Bidder

Round
1 2 3 4 5

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 69 68 68 77 76 76 19 10 12 64 63 63 91 85 75
2 27 26 26 66 65 65 39 30 32 50 50 50 14 13 13
3 99 98 98 55 54 54 83 73 70 10 10 10 56 50 50
4 25 25 25 35 34 34 89 80 75 61 61 61 79 78 65
5 49 48 49 45 44 44 15 10 7 24 24 24 12 12 12
6 17 16 17 63 62 62 51 41 45 66 66 66 25 24 27
7 47 46 47 81 80 80 30 22 22 84 84 84 48 40 42
8 53 52 53 53 52 52 100 91 91 68 60 68 77 77 77
9 77 70 77 14 13 13 45 36 37 19 19 19 37 37 37
10 12 12 12 53 52 52 83 74 75 12 12 12 61 61 61
11 77 45 77 68 67 67 2 1 1 32 32 32 45 45 45
12 29 29 35 34 33 33 61 30 51 74 65 74 39 39 39

mean 48.4 44.6 48.7 53.7 52.7 52.7 51.4 41.5 43.2 47.0 45.5 46.9 48.7 46.8 45.3

Bidder

Round
6 7 8 9 10

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 26 25 25 20 16 16 34 15 3 9 6 8 44 43 44
2 73 43 72 9 5 6 68 40 30 48 38 40 23 23 23
3 26 25 25 6 8 5 17 8 5 8 40 8 99 99 99
4 83 43 82 10 45 35 81 65 57 83 90 80 54 53 54
5 78 50 77 20 40 30 6 5 5 50 80 48 53 52 53
6 20 19 19 78 74 65 35 30 30 43 50 40 74 54 74
7 85 45 84 86 80 73 33 32 26 9 10 8 91 50 91
8 15 14 14 73 71 71 94 1 90 35 40 32 33 33 33
9 35 34 34 91 89 89 18 16 16 11 60 10 60 59 60
10 16 15 15 49 46 46 7 6 6 3 10 2 88 60 88
11 16 15 15 51 63 63 13 12 12 88 95 80 41 40 41
12 46 45 45 21 54 54 35 33 33 95 100 90 81 65 81

mean 43.3 31.1 42.3 42.8 49.3 46.1 36.8 21.9 26.1 40.2 51.6 37.2 61.8 52.6 61.8

Bidder

Round
11 12 13 14 15

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 96 90 95 6 6 6 42 37 33 23 22 22 66 70 75
2 35 34 34 35 35 35 78 70 72 63 40 62 92 70 90
3 20 19 19 71 71 71 78 72 75 97 1 96 26 18 21
4 38 25 37 77 77 77 15 13 14 23 22 22 30 26 28
5 96 25 95 26 26 26 63 50 59 71 40 70 39 35 40
6 34 15 33 99 99 99 17 16 16 31 30 30 53 50 55
7 92 20 91 94 94 94 74 62 73 90 60 89 27 30 30
8 38 25 38 73 73 73 98 70 97 80 50 79 49 57 60
9 40 40 40 73 73 73 31 30 30 51 40 50 43 60 62
10 31 31 31 81 81 81 22 21 21 58 40 57 78 72 72
11 99 62 99 88 88 88 63 50 62 62 45 61 53 50 52
12 26 26 26 4 4 4 75 60 75 75 55 74 52 45 45

mean 53.8 34.3 53.2 60.6 60.6 60.6 54.7 45.9 52.3 60.3 37.1 59.3 50.7 48.6 52.5
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Table C.4: Strategies of the bidders in treatment B5

Session 1

Bidder

Round
1 2 3 4 5

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 69 56 68 77 70 71 19 20 25 64 63 63 91 90 90
2 27 22 26 66 55 62 39 50 50 50 49 49 14 14 14
3 99 70 98 55 50 51 83 90 90 10 9 1 56 50 55
4 25 24 24 35 32 33 89 100 101 61 60 60 79 65 78
5 49 45 48 45 42 42 15 20 21 24 23 23 12 12 12
6 17 16 16 63 60 59 51 60 61 66 65 65 25 24 24
7 47 42 46 81 75 79 30 40 41 84 50 83 48 40 47
8 53 45 52 53 50 52 100 100 111 68 67 67 77 60 76
9 77 61 76 73 70 72 45 45 55 19 18 18 37 36 36
10 12 11 11 81 79 80 83 90 92 12 11 11 61 60 60
11 77 61 76 68 66 67 2 2 2 32 31 31 45 44 44
12 29 25 28 34 30 34 61 65 70 74 69 73 39 38 39

mean 48.4 39.8 47.4 60.9 56.6 58.5 51.4 56.8 59.9 47.0 42.9 45.3 48.7 44.4 47.9

Bidder

Round
6 7 8 9 10

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 26 26 26 20 20 49 34 34 34 9 5 5 44 40 43
2 73 73 64 9 9 49 68 68 68 48 25 42 23 20 22
3 26 26 25 6 6 49 17 17 17 8 8 8 99 90 98
4 83 83 83 10 1 49 81 81 81 83 68 79 54 50 53
5 78 78 78 20 1 20 6 6 6 50 20 46 53 50 52
6 20 20 20 78 40 78 35 35 35 43 39 39 74 70 73
7 85 85 85 86 68 75 33 33 33 9 9 9 91 90 90
8 15 15 15 73 66 79 94 94 94 35 30 30 33 30 32
9 35 35 35 91 70 99 18 18 18 11 100 11 60 55 59
10 16 16 16 49 48 49 7 7 7 31 1 35 88 87 87
11 16 16 16 51 23 51 13 13 13 88 70 80 41 40 40
12 46 46 46 21 10 21 35 35 35 95 80 94 81 80 80

mean 43.3 43.3 42.4 42.8 30.2 55.7 36.8 36.8 36.8 42.5 37.9 39.8 61.8 58.5 60.8

Bidder

Round
11 12 13 14 15

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 96 70 98 6 8 12 42 1 41 23 20 22 66 60 60
2 35 30 35 35 45 40 78 70 77 63 35 62 92 85 88
3 20 19 20 71 78 81 78 65 78 97 40 85 26 15 20
4 38 37 38 77 77 90 15 15 15 23 20 22 30 20 24
5 96 70 96 26 26 28 63 60 63 71 45 70 39 33 37
6 34 33 34 99 99 100 17 17 17 31 28 30 53 45 48
7 92 70 92 94 94 99 74 65 73 90 60 80 27 25 25
8 38 37 38 73 73 83 98 75 97 80 60 79 49 45 40
9 40 39 40 14 14 20 31 30 30 51 45 65 43 50 40
10 3 3 3 53 53 60 22 21 21 58 45 65 78 75 77
11 99 70 99 88 88 95 63 55 63 62 58 65 53 53 53
12 26 25 26 4 4 4 75 70 75 75 60 77 52 50 51

mean 51.4 41.9 51.6 53.3 54.9 59.3 54.7 45.3 54.2 60.3 43.0 60.2 50.7 46.3 46.9

continued on page 161 . . .
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Table C.4 (continued . . . )

Session 2

Bidder

Round
1 2 3 4 5

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 69 20 55 77 57 77 19 10 10 64 63 63 91 72 90
2 27 27 25 66 46 66 39 20 39 50 49 50 14 13 13
3 99 99 90 55 51 55 83 55 83 10 10 10 56 52 55
4 25 25 25 35 33 35 89 65 89 61 61 61 79 67 78
5 49 49 49 45 43 45 15 10 15 24 24 24 12 11 11
6 17 17 17 63 47 63 51 40 51 66 66 66 25 24 24
7 47 47 47 81 69 81 30 20 30 84 84 84 48 44 47
8 53 53 53 53 50 53 100 65 100 68 68 68 77 66 76
9 77 100 77 73 65 73 45 30 45 19 19 19 37 36 36
10 12 100 12 81 69 81 83 61 83 12 12 12 61 51 60
11 77 77 77 68 67 68 2 1 2 32 32 32 45 44 44
12 29 29 29 34 33 34 61 40 64 74 74 74 39 38 38

mean 48.4 53.6 46.3 60.9 52.5 60.9 51.4 34.8 50.9 47.0 46.8 46.9 48.7 43.2 47.7

Bidder

Round
6 7 8 9 10

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 26 26 26 20 15 19 34 20 30 9 35 20 44 43 44
2 73 73 73 9 5 8 68 55 67 48 100 95 23 22 23
3 26 26 26 6 3 5 17 16 16 8 64 59 99 70 99
4 83 83 79 10 8 4 81 80 80 83 150 45 54 51 54
5 78 78 78 20 14 19 6 5 5 50 76 70 53 51 53
6 20 20 20 78 77 77 35 34 34 43 88 74 74 68 74
7 85 85 85 86 70 85 33 32 32 9 56 66 91 70 91
8 15 15 15 73 60 72 94 93 93 35 66 78 33 32 33
9 35 35 35 91 70 90 18 17 17 11 90 88 60 55 60
10 16 16 16 49 35 47 7 6 6 31 55 100 88 68 88
11 16 16 16 51 49 50 13 12 12 88 77 99 41 40 41
12 46 46 46 21 20 20 35 34 34 95 120 99 81 65 81

mean 43.3 43.3 42.9 42.8 35.5 41.3 36.8 33.7 35.5 42.5 81.4 74.4 61.8 52.9 61.8

Bidder

Round
11 12 13 14 15

vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i vi t̂i b̂i

1 96 90 78 6 5 7 42 36 40 23 19 20 66 60 66
2 35 51 40 35 34 36 78 63 65 63 50 55 92 92 92
3 20 51 45 71 60 72 78 74 70 97 60 90 26 26 26
4 38 35 40 77 60 78 15 14 13 23 20 20 30 30 30
5 96 87 72 26 15 27 63 61 53 71 50 70 39 39 39
6 34 28 33 99 70 100 17 17 15 31 20 31 53 53 53
7 92 70 71 94 80 95 74 73 70 90 70 90 27 27 27
8 38 32 35 73 66 74 98 96 80 80 70 80 49 49 49
9 40 35 38 14 14 15 31 31 28 51 40 51 43 43 43
10 3 3 3 53 53 54 22 21 20 58 50 58 78 78 78
11 99 73 93 88 40 89 63 62 61 62 50 62 53 53 53
12 26 23 25 4 4 5 75 74 71 75 70 75 52 52 100

mean 51.4 48.2 47.8 53.3 41.8 54.3 54.7 51.8 48.8 60.3 47.4 58.5 50.7 50.2 54.7
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Pictures and Screenshots

D.1 Pictures of the IW Experimental Lab

Figure D.1. Experimental lab at the Institute of Information Engineering and
Management, University of Karlsruhe
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Figure D.2. Participant cabin in the experimental lab
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D.2 Screenshots of the Experimental Software

Figures D.3–D.12 show selected screenshots of the experiment software. The

Figures D.3–D.5 refer to the treatment family A and Figures D.6–D.12 show

screens of the B-treatments. In both cases, first the bidding screen is presented

and then the different result screens are shown.

Figure D.3. Bidding screen in treatment A
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Figure D.4. Result screen of winning bidder in treatment A

Figure D.5. Result screen of losing bidder in treatment A
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Figure D.6. Bidding screen in treatment B

Figure D.7. Result screen of decisive bidder who accepted the PPO in treatment B
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Figure D.8. Result screen of decisive bidder who rejected the PPO and won the
corresponding auction in treatment B

Figure D.9. Result screen of decisive bidder who rejected the PPO and lost the
corresponding auction in treatment B
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Figure D.10. Result screen of non-decisive bidder if the decisive bidder accepted
the PPO in treatment B

Figure D.11. Result screen of non-decisive bidder who won the corresponding
auction treatment B
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Figure D.12. Result screen of non-decisive bidder who lost the corresponding auc-
tion in treatment B
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H. Sauermann (Hrsg.), Beiträge zur experimentellen Wirtschaftsforschung,

Jahrgang 1, J. C. B. Mohr (Paul Siebeck), Tübingen, S. 136–168.
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Abbreviations and Symbols

Abbreviations

APPO auction with a posted price offer

CARA constant absolute risk aversion

cdf cumulative probability distribution function

cf. confer

fn. footnote

ibid. ibidem, at the same place

p., pp. page, pages

pdf probability density function

PPO posted price offer

SIPV symmetric independent private values model

std. dev. standard deviation

WSR Wilcoxon signed ranks test

Symbols

Unless otherwise stated, lower case letters denote numbers, upper case letters

indicate random variables, and calligraphic letters refer to sets.

∃ there exists (at least) one . . .

∃i! there exist exactly i . . .

∅ empty set

f ≡ g f(x) = g(x) ∀x

fn(x) (f(x))n (n ≥ 0)

f−1(·) inverse function: f−1(f(x)) = x ∀x
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b̂i (maximum) bid of bidder i in the experiment

b̃i dominant strategy bid of bidder i

b̄ average bid

B buy price in an auction; also determination coeffi-

cient

E[·] expected value

F distribution function of random variable with den-

sity f

F(i),n, f(i),n distribution, density of ith-order statistic subject

to n drawings

G(i), g(i) distribution, density of ith-order statistic if the to-

tal number of drawings is not known or not of in-

terest

G(1),−i, g(1),−i distribution, density of first-order statistic, subject

to all but the ith-drawing

m size of a random sample

n number of bidders

N set of natural numbers

p price

p reserve price in an auction

p̄ posted price offer (PPO)

π 3.141...; also Markovitz risk-premium

Π(1) payoff of winning bidder in an auction

Π̂ payoff of winning bidder in the experiment

Pr probability

r Spearman’s rank or Pearson’s correlation coeffi-

cient, depending on context

R revenue of an auction

R̂ revenue of an auction in the experiment

RC revenue of the corresponding auction of an APPO

R set of real numbers

R+ set of positive real numbers including zero

ti acceptance threshold of bidder i

t̂i acceptance threshold of bidder i in the experiment

T closing time of an auction

vi valuation of bidder i

V(1) valuation of winning bidder, total surplus of an

auction

V̂ valuation of winning bidder in the experiment, to-

tal surplus of an experimental outcome
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Definitions, propositions, and theorems are numbered consecutively. Examples

are numbered separately. Proofs and examples are terminated by the symbols

and �, respectively.

Sellers and buyers are referred to by female and male pronouns, respectively.
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