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Preface

In real-life world, decision makers usually face multiple objectives and need to make
the decision in a state of uncertainty. How do we obtain the optimal strategy in
uncertain environments? The purpose of the book is to provide random-like multiple
objective decision making to solve the question. This book aims at discussing a class
of uncertain phenomenon, that is, random-like uncertainty including random phe-
nomenon, bi-random phenomenon, random fuzzy phenomenon and random rough
phenomenon. Then random multiple objective decision making, bi-random multiple
objective decision making, random fuzzy multiple objective decision making and
random rough multiple objective decision making will be introduced one by one.

It was generally believed that the study of probability theory was started by
Pascal and Fermat in 1654 when they succeeded in deriving the exact probabili-
ties for certain gambling problems. From then on, people have broadly paid close
attention to the random phenomenon. Afterwards, probability theory was widely
applied to many social and technology problems, such as, vital statistics, premium
theory, astro observation, the theory of errors, quality control and so on. From the
seventeenth to nineteenth century, many distinguished scholars such as Bernoulli,
De-Moivre, Laplace, Gauss, Poisson, Tchebychev, and Markov made contributions
to the development of the probability theory. As the probability theory was applied
to more and more real-life problems in many fields, the basic definition proposed
by Laplace proved to be limiting, and unable to be used to deal with the usual ran-
dom events. Great progress was achieved when Von Mises initialized the concept
of sample space, and filled the gape between probability theory and measure theory
in 1931. Strict theoretical principles, however, did not exist until 1933, when the
outstanding mathematician Kolmogorov from former Soviet Union published the
famous paper “The basic concept of probability theory”, in which he put forward
the axiomatization structure which is considered the milestone and foundation of the
development of probability theory. Since then, probability theory has been the foun-
dation axioms system and has been widely applied to many fields. Soon after, Zadeh
and Pawlak initialized the fuzzy set theory in 1965 and rough set theory in 1982,
respectively. Generally, fuzzy events are regarded as an uncertainty that people sub-
jectively know for example, the temperature of water, ‘cold’ and ‘hot’, which isn’t
marked by a crisp number. Rough sets are generally regarded as a tool to distinguish
something which is not easily discriminated. However, many scholars believed that
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vi Preface

the traditional single-fold uncertain variables(random variables, fuzzy variables and
rough variables) have some difficulties in clearly describing complicated, change-
able realistic problems. In 1978, Kwakernaak combined randomness with fuzziness
and initialized the concept of the fuzzy random variable, then introduced its basic
definition and property. This viewpoint combining two different uncertain variables
to describe complicated events received approval from many scholars and helped
people move forward a further step in understanding uncertain events. Since then,
the concept of the random fuzzy variable, bi-random variable and random rough
variable have been proposed one by one by many scholars. Many papers and books
about the two-fold uncertain theory were presented, which consequently promoted
the development of two-fold uncertain theory. For example, the following descrip-
tion regarding the useful time of the spares in a factory proved the existence of a
two-fold uncertain phenomenon. It might be known that the lifetime � of a modern
engine is an exponentially distributed variable with an unknown mean Q� ,

�.x/ D
(

1
Q� e

�x= Q� ; if 0 � x <1
0; otherwise

(1)

Generally, there is some relevant information in practice. It is thus possible to
specify an interval in which the value of Q� is likely to lie, or give an approximate
estimation of the value of �. Here may be a random variable, or a fuzzy variable,
or a rough variable, thus it is regarded as a random-like two-fold uncertain variable.
Our research concentrates on random-like two-fold uncertain variables including
bi-random variables, random fuzzy variables and random rough variables, and then
deduces their properties and application to real-life world.

Multiobjective decision making problems are always a primary concern that
many scholars pay attention to as it mainly provides decision makers with the
help to find an optimal solution for many objectives with limited resources. Tra-
ditional multi-objective decision making usually consider problems with certain
parameters. However, it is a usual phenomena that many decision making problems
have abundant imprecise information. Hence, research into multiobjective decision
making with random-like parameters is very necessary. To trace the origin of multi-
objective decision making with certain parameters, we have to go to the eighteenth
century. Franklin introduced how to coordinate multiple objectives in 1772. Cournot
proposed the multi-objective decision making model from the standpoint of the eco-
nomics in 1836. Pareto firstly presented an optimal solution to the multi-objective
decision making model from the standpoint of the mathematics in 1896. The seeds
of what is a strong branch of operations research can be traced to the early work
of Kunh and Tucker and Koopmans in 1951. Later, Arrow proposed the concept
of efficient points in 1953. Danzig claimed in the paper ‘Review the origin of
the linear programming’ that stochastic programming would the most promising
areas for future research in 1955. Then the single objective and multi-objective
stochastic programming was widely researched and developed. As the fuzzy set
theory was gradually perfected, it was rapidly and widely applied into the fileds
of operations, management science, control theory and so on. In 1970, Bellman
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and Zadeh collaborated to propose a fuzzy decision making model based on multi-
objective programming. Similarly, after rough set theory was founded in 1982, it
was also applied to decision making problems. From then, it became an area that
attracted an enormous amount of attention because it is so useful for real-world
decision making. The monographs of Chankong and Hamies, Cohon, Hwang and
Masud, Osyczka, Sawaragi et al., and Steuer provide an extensive overview of the
area of multiobjective optimization. Theory and methods for multiobjective opti-
mization have been developed chiefly during the last century. Here we do not go
into the history as the orgin, the achievements and development can be found in the
literature. As the theory of two-fold uncertainty was rapidly developed, it was also
applied to the multiobjective decision making in recent years. Above all, the multi-
objective decision making model with uncertain parameters can be summarized as
follows:

maxŒf1.x; �/; f2.x; �/; : : : ; fm.x; �/�

s.t. x 2 X (2)

where x 2 X � Rn is an n-dimension decision variable, X is the constraint set, fi

is the objective function, and � is a random or fuzzy or rough variable or a two-fold
uncertain variable.

In this book, real-life problems are considered as the background, and we
present the random-like multi-objective decision making research. The basic the-
ory, model and algorithm are proposed and applied to solve realistic problems.
This book consists of 6 chapters. Chapter 1 reviews some preliminary knowl-
edge such as measure theory, probability theory, central limit theorem and the
Monte Carlo simulation and so on. Chapter 2 introduces the multi-objective deci-
sion making with random parameters and its application to DCs location problem.
This chapter first reviews the literature of DCs location problem, then proposes
the random multi-objective decision making model. Three sections introduce the
random expected value model, the random chance-constrained model and the ran-
dom dependent-chance model. In each section, we deduce the equivalent model of
those problems in which the random parameters have crisp distribution and lin-
ear relationships. We also propose the Monte Carlo simulation-based simulated
annealing algorithm to deal with those problems with random parameters and the
nonlinear relationship. Finally, in the last section, the proposed models and algo-
rithms have been applied to solve a realistic problem to show the efficiency of
the proposed models and algorithms. Chapters 3, 4 and 5 have the same struc-
ture as Chap. 2. Chapter 3 proposes the multi-objective decision making model with
bi-random parameters and introduces its application to flow shop scheduling prob-
lems. The equivalent models of the bi-random expected value model, bi-random
chance-constrained model and bi-random dependent-chance model with crisp dis-
tribution are deduced and the interactive fuzzy programming technique is proposed
to solve them. Then Ra-Ra simulation-based genetic algorithm is presented to solve
the Ra-Ra multi-objective decision making problems with unknown distributions.
Finally, the proposed models and algorithms are used to deal with a realistic flow
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shop scheduling problem with bi-random parameters. Chapter 4 proposes the multi-
objective decision making model with random fuzzy parameters and introduced
its application to the supply chain problems. The equivalent models of the ran-
dom fuzzy expected value model, random fuzzy chance-constrained model and
random fuzzy dependent-chance model with crisp distribution are deduced and
the interactive fuzzy programming technique is proposed to solve them. Then a
random fuzzy simulation-based genetic algorithm is presented to solve the ran-
dom fuzzy multi-objective decision making problems with unknown distribution.
Finally, the proposed models and algorithms are used to deal with realistic supply
chain problems with random fuzzy parameters. Chapter 5 proposes the multi-
objective decision making model with random rough parameters and introduces
its application to the inventory problems. The equivalent models of the random
rough expected value model, random rough chance-constrained model and random
rough dependent-chance model with crisp distributions are deduced and the inter-
active fuzzy programming technique is proposed to solve them. Then the random
rough simulation-based genetic algorithm is presented to solve the random rough
multi-objective decision making problems with unknown distribution. Finally, the
proposed models and algorithms are used to deal with realistic inventory prob-
lems with random rough parameters. Chapter 6 gives the methodological system
of the whole book including the motivation for researching random-like multi-
objective decision making, physics-based model system, mathematical model sys-
tem, model analysis system, algorithm systems, and research ideas and paradigm:
5MRP. Readers can understand the current research of random-like multiobjective
decision making and prepare for future research.
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Chapter 1
Random Set Theory

The last decades witnessed a deeper thrust of science into the production of mate-
rial goods. Thus, the successful management of research in such domains and
the basic functions of management and scientific organization can be expressed
almost entirely through quantitative methods. This explains the increasing use of
mathematical methods in applied work, as well as the present efforts to improve
them.

1.1 Algebra and � -Algebra

This section is only the prerequisite for reading this book about some definitions by
measure theory and Lebesgue integral. In this section we concentrate on measure,
Borel set, measurable function, Lebesgue integral, measure continuity theorem,
monotone convergence theorem and so on. Since these results are well-known,
we only introduce results and readers can refer to correlative literatures such as
[21, 26, 62, 95, 127, 128, 147, 175, 185, 223, 334].

Definition 1.1. (Srivastava [299]) Assume that ˝ is a nonempty set. A collection
A is called an algebra of subsets of ˝ if the following conditions hold:

(a) ˝ 2 A
(b) if A 2 A , then Ac 2 A

(c) if Ai 2 A , for i D 1; 2; : : : ; then
1S

iD1

Ai 2 A

If .c/ is replaced with closure under countable union, then A is called a
�-algebra over ˝ . Thus a �-algebra on ˝ is a family of subsets of ˝ that con-
tains ˝ and is closed under complement, under the formation of countable unions,
and under the formation of countable intersections. Apparently, each �-algebra on
˝ is an algebra on ˝ . Let’s consider the following examples.

Example 1.1. Assume that ˝ is a finite nonempty set. Then the smallest �-algebra
over ˝ is f˚;˝g, and the largest �-algebra over ˝ the power set P.˝/which is
combined with all subsets of ˝ .

J. Xu and L. Yao, Random-Like Multiple Objective Decision Making, Lecture Notes
in Economics and Mathematical Systems 647, DOI 10.1007/978-3-642-18000-2 1,
c� Springer-Verlag Berlin Heidelberg 2011
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2 1 Random Set Theory

Example 1.2. Let B be a nonempty subset of X . Then the smallest �-algebra
including B is f˚;˝;B;Bcg.
Example 1.3. Assume that ˝ is an infinite set, and A is combined with all finite
subsets of ˝ . Since ˝ 62 A and A is not closed under complement, it is not an
algebra (or a �-algebra) on ˝ .

Example 1.4. Assume that ˝ is an infinite set, and A is combined with all subsets
B of ˝ such that either B or Bc is finite. Then A is an algebra on ˝ . But since it
is not closed under the formation of countable unions, and so is not a �-algebra.

Example 1.5. Let A be the collection of all subsets of R that are unions of finitely
many intervals of the form .a; b�; .a;C1/, or .�1; b�. It is easy to check that
each set that belongs to A is the union of a finite disjoint collection of intervals of
the types listed above, and then to check that A is an algebra on R (the empty set
belongs to A , since it is the union of the empty, and hence finite, collection of inter-
vals). The algebra A is not a �-algebra; for example, the bounded open subintervals
of R are unions of sequences of sets in A , but do not themselves belong to A .

Remark 1.1. Let ˝ be a nonempty set. Then the intersection of an arbitrary
nonempty collection of �-algebras on˝ is a �-algebra on ˝ .

This remark implies the following result, which is an useful tool to construct a
�-algebra.

Remark 1.2. Assume that ˝ is a nonempty set and F is a family of subsets of ˝ .
Then there is a smallest �-algebra on ˝ that includes F .

Assume that R is combined with all real numbers, and Rn is the set of
n-dimensional real vectors. Suppose that a D .a1; a2; : : : ; an/ and b D .b1;

b2; : : : ; bn/ are vectors in Rn with ai < bi for i D 1; 2; : : : ; n. Kelley and Srinivasan
[155] defined the concepts of the open interval, closed interval, left-semiclosed
interval and right-semiclosed. The open interval of Rn is defined as

.a;b/ D f.x1; x2; : : : ; xn/jai < xi < bi ; i D 1; 2; : : : ; ng (1.1)

The closed interval, left-semiclosed interval and right-semiclosed interval are
defined as

Œa;b� D f.x1; x2; : : : ; xn/jai � xi � bi ; i D 1; 2; : : : ; ng (1.2)

Œa;b/ D f.x1; x2; : : : ; xn/jai � xi < bi ; i D 1; 2; : : : ; ng (1.3)

.a;b� D f.x1; x2; : : : ; xn/jai < xi � bi ; i D 1; 2; : : : ; ng (1.4)

Now let’s use the preceding basic properties to define an important family of
�-algebra.
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Definition 1.2. (Srivastava [299]) A Borel algebra on Rn is the �-algebra on Rn

generated by the collection of all open intervals of Rn and is denoted by B.Rn/.
Any element in B.Rn/ is called a Borel set.

Especially, in case n D 1, one generally writes B.R/ in place of B.R1/. We may
also replace the open intervals in Definition 1.2 with other classes of intervals, for
example, closed intervals, left-semiclosed intervals , right-semiclosed intervals, or
all intervals. It can be referred to the following two theorems.

Theorem 1.1. (Cohn [62]) The �-algebra B.R/ of Borel subsets of R is generated
by each of the following collections of sets:

(a) The collection of all closed subsets of R
(b) The collection of all closed subintervals of R of the form .�1; b�
(c) The collection of all subintervals of R of the form .a; b�

Theorem 1.2. (Cohn [62]) The �-algebra B.Rn/ of Borel subsets of Rn is gener-
ated by each of the following collection of sets:

(a) The collection of all closed subsets of Rn

(b) The collection of all closed half-spaces in Rn that have the form f.x1; x2; : : : ;

xn/jxi � bi ; i D 1; 2; : : : ; ng for some bi in R
(c) The collection of all rectangles in Rn that have the form f.x1; x2; : : : ; xn/jai <

xi � bi ; i D 1; 2; : : : ; ng for some ai ; bi

Let’s have a look at some examples generated by these sets.

Remark 1.3. For a set O � Rn, if for any x 2 O , there exists a small positive
number ı such that fy 2 Rnjjjy � xjj < ıg � O , it is said to be open. The set ˚
and Rn are open sets. Then each open set is a Borel set.

Remark 1.4. The complement of an open set is called a closed set. Each closed set
is a Borel set.

Remark 1.5. The set of rational numbers, the set of irrational numbers, and
countable set or real numbers are all Borel sets.

Next, we will introduce an important Borel set, that is, Cantor set.

Example 1.6. Make the interval Œ0; 1� divided into three equal open intervals from
which we throw off the middle open interval, i.e. .1

3
; 2

3
/. Then we go on dividing

each of the remaining two intervals into three equal open intervals, and throw the
middle open interval in each case, i.e. .1

9
; 2

9
/ and .7

9
; 8

9
/. We carry out this process

and obtain a set C . Define the set

D D
1[

iD1

2i�1[
j D1

Dij (1.5)

whereDij is a sequence of mutually disjoint open intervals andDi1 < Di2 < � � � <
Di;2i�1 for j D 1; 2; : : : ; 2j �1 and i D 1; 2; : : : ;1. Then C D Œ0; 1�d is called the
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Cantor set. In other words, x 2 C if and only if x can be expressed in ternary form
using only digits 0 and 2, i.e.,

x D
1X

iD1

ai

3i
(1.6)

where ai D 0 or 2 for i D 1; 2; : : : ;1. The Cantor set is closed, uncountable, and
a Borel set.

Theorem 1.3. (Cohn [62]) Let ˝ be a set, and let A be an algebra on˝ . Then A
is a �-algebra if either

(a) A is closed under the formation of unions of increasing sequences of sets, or
(b) A is closed under the formation of intersections of decreasing sequences of sets.

1.2 Measurable Set and Measure Space

In this section, the concept of measurable set and measure space will be introduced
and some properties will also be exhibited.

Definition 1.3. (Halmos [127]) Let ˝ be a nonempty set , and A a �-algebra
over ˝ . Then .˝;A / is called a measurable space, and the sets in A are called
measurable sets.

Definition 1.4. (Cohn [62]) Let ˝ be a nonempty set , and A a �-algebra over ˝ .
A function � whose domain is the �-algebra A and whose values belong to the
extended half-line Œ0;C1/ is said to be countably additive if it satisfies

�

 1[
iD1

Ai

!
D

1X
iD1

�.Ai / (1.7)

for each infinite sequence fAig of disjoint sets that belong to A .

Definition 1.5. (Cohn [62]) Let .˝;A / be a measurable space. A function � is a
measure if it satisfies

(a) �.˚/ D 0.
(b) � is countably additive.

Another related concept should be noted since it is sometimes of interest. Assume
that A is an algebra (not necessarily a �-algebra) on the set˝ . A function � whose
domain is A and whose values belong to Œ0;C1/ is finitely additive if it satisfies

�

 
n[

iD1

Ai

!
D

nX
iD1

�.Ai / (1.8)
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for each finite sequence A1; A2; : : : ; An of disjoint sets that belong to A . A finitely
additive measure on the algebra A is a function � W A ! Œ0;1/ that satisfies
�.˚/ D 0 and is finitely additive.

It seems that finitely additivity is a more natural property than countable
additivity. However countably additive measures on the one hand seem to be
sufficient for almost all applications, and on the other hand support a much more
powerful theory of integration than do finitely additive measures. We should empha-
size that a measure will always be a countably additive measure. The expression
“finitely additive measure” will always be written out in full.

Definition 1.6. (Cohn [62]) Let ˝ be a nonempty set, and A a �-algebra over ˝ .
If � is a measure on A , then the triple .˝;A ; �/ is called a measure space.

Usually, if .˝;A ; �/ is a measure space, � is said to be a measure on measurable
space .˝;A /, or if the �-algebra A is clear from context, a measure on ˝ . Let’s
turn to some examples.

Example 1.7. Let .˝;A ; �/ be a measure space, where � is defined as a function
� W A ! Œ0;C1/ by letting �.A/ be n if A is a finite set with n elements, and
letting �.A/ be C1 if A is an infinite set. Then � is a measure, it is often called
counting measure on .˝;A /.

Example 1.8. Let˝ be a nonempty set, A be a �-algebra on˝ and x be an member
of ˝ . Define a function ıx W A ! Œ0;C1/ as follows

ıx D
�
1; if x 2 A
0; if x 62 A

Then ıx is a measure, it is called a point mass concentrated at x.

Example 1.9. Consider the set R of all real numbers, and the �-algebra B.R/ of
Borel subsets of R. In the following part we shall construct a measure on B.R/
that assigns to each subinterval of R its length. This measure is known as Lebesgue
measure.

Next, an important result will be listed here with proof and interested readers can
also consult the original book related to measure theory such as Halmos [127, 128]
and so on.

Theorem 1.4. (Halmos [128]) There is a unique measure � on the Borel algebra
of R such that �f.a; b�g D b � a for any interval .a; b� of R.

Example 1.10. Let ˝ be the set of all positive integers, and let A be the collection
of all subsets A of ˝ such that either A or Ac is finite. Then A is an algebra, but
not a �-algebra (see Example 1.12). Define a function � W A ! Œ0;C1/ by

�.A/ D
�
1; if A is infinite
0; if A is finite



6 1 Random Set Theory

It is easy to check that � is a finitely additive measure, however, it is impossi-
ble to extend � to a countably additive measure on the �-algebra generated by A
(if Ak D k) for each k, then �.

S1
kD1/ D �.˝/ D 1, while

P1
iD1 �.Ak/ D 0.

Example 1.11. Let˝ be an arbitrary set, and let A be an arbitrary �-algebra on˝ .
Define a function � W A ! Œ0;C1/ by

�.A/ D
� C1; if A ¤ ˚
0; if A D ˚

Then � is a measure.

Example 1.12. Let ˝ be a set that has at least two members, and let A be an
�-algebra consisting of all subsets of ˝ . Define a function � W A ! Œ0;C1/ by

�.A/ D
�
1; if A ¤ ˚
0; if A D ˚

Then � is not a measure, nor even a finitely additive measure, for if A1 and A2 are
disjoint nonempty subsets of˝ , then �.A1

S
A2/ D 1, while �.A1/C�.A2/ D 2.

The monotone class theorem, Carathéodory extension theorem, and approxima-
tion theorem will be listed here without proof. The interested reader may consult
books related to measure theory such as Halmos [127, 128], Lang [185], Berberian
[21], Jacobs [147] and so on.

Theorem 1.5. (Monotone Class Theorem)(Srivastava [299]) Assume that A0 is an
algebra over˝ , and C is a monotone class of subsets of ˝ (if Ai 2 C and Ai " A
orAi # A, thenA 2 C ). If A0 � C and �.A0/ is the smallest �-algebra containing
A0, then �.A0/ � C .

Theorem 1.6. (Carathéodory Extension Theorem)(Kelley and Srinivasan [155])
A �-finite measure � on the algebra A0 has a unique extension to a measure on
the smallest �-algebra A containing A0.

Theorem 1.7. (Approximation Theorem)(Jacobs [147]) Let .˝;A ; �/ be a mea-
sure space, and let A0 be an algebra over ˝ such that A is the smallest �-algebra
containing A0. If � is �-finite and A 2 A has finite measure, then for any given
" > 0, there exists a set A0 2 A0 such that �fA=A0g < ".
Theorem 1.8. Let .˝;A ; �/ be a measure space, and let A and B be subsets of
˝ that belong to A such that A � B . Then �.A/ � �.B/. If �.A/ < C1, then
�.B/ D �.B � A/C �.A/.
Proof. Since B D A

S
B � A satisfying that A and B � A are disjoint. Since

A � B , it means �.B �A/ � 0. Thus it follows from the additivity of � that

�.B/ D �.B �A/C �.A/ (1.9)

ut
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Let � be a measure on a measurable space .˝;A /. If �.˝/ < C1, � is said to
be a finite measure. Further it is said to be a �-finite measure if ˝ is the union of a
sequence A1; A2; : : : of sets that belong to A and �.Ai / < C1 for each i . More
generally, a set in A is �-finite under � if it is the union of a sequence of sets that
belong to A and have finite measure under � . The measure space .˝;A ; �/ is also
called finite or �-finite if � is finite or �-finite. Most of the constructions and basic
properties that we shall consider are valid for all measures. For a few important
theorems, however, we shall need to assume that the measures involved are finite or
�-finite.

Theorem 1.9. (Halmos [128]) Let .˝;A ; �/ be a measure space. If fAkgCohn
[62] is an arbitrary sequence of sets that belong to A , then

�

 1[
kD1

Ak

!
�

1X
kD1

�.Ak/ (1.10)

Theorem 1.10. (Cohn [62]) Let .˝;A ; �/ be a measure space.

(a) If fAkg is an increasing sequence of sets that belong to A , then �.
S

k Ak/ D
limk �.Ak/.

(b) If fAkg is an decreasing sequence of sets that belong to A , and if �.An/ < C1
holds for some n, then �.\kAk/ D limk �.Ak/.

Theorem 1.11. (Cohn [62]) Let .˝;A / be a measurable space, and let � be a
finitely additive measure on .˝;A /. Then � is a measure if either

(a) limk �.Ak/ D �.
S

k Ak/ holds for each increasing sequence fAkg of sets that
belong to A .

(b) limk �.Ak/ D 0 holds for each decreasing sequence fAkg of sets that belong to
A and satisfy \kAk D ˚ .

The preceding theorem will give the continuity of the measure � .

Theorem 1.12. (Berberian [21]) Let .˝;A ; �/ be a measure space, and
A1; A2; : : : ;2 A .

(a) If fAi g is an increasing sequence, then

lim
i!1�fAi g D �

�
lim

i!1Ai

�
(1.11)

(b) If fAi g is a decreasing sequence, and �fA1g is finite, then

lim
i!1�fAi g D �

�
lim

i!1Ai

�
(1.12)

Example 1.13. If �fAig are not finite for any i , then the part (b) of Theorem 1.12
does not hold. For example, let Ai D Œi;C1/ for i D 1; 2; : : : ; and let � be the
length of intervals. ThenAi # ˚ as i !1. However,�fAig 	 C1 ¤ 0 D �f˚g.



8 1 Random Set Theory

Let ˝1;˝2; : : : ;˝n be any sets (not necessarily subsets of the same space). The
product ˝ D ˝1 
 ˝2 
 : : : 
 ˝n is the set of all ordered n-tuples of the form
.x1; x2; : : : ; xn/, where �i 2 ˝i for i D 1; 2; : : : ; n.

Definition 1.7. (Evans and Gariepy [95]) Let Ai be �-algebras over ˝i ; i D
1; 2; : : : ; n, respectively. Write ˝ D ˝1 
 ˝2 
 � � � 
 ˝n. A measurable rectan-
gle in ˝ is a set A D A1 
 A2 
 � � � 
 An, where Ai 2 Ai for i D 1; 2; : : : ; n. The
smallest �-algebra containing all measurable rectangles of ˝ is called the product
�-algebra, denoted by A D A1 
A2 
 � � � 
An.

Note that the product �-algebra A is the smallest �-algebra containing measur-
able rectangles, rather than the product of A1;A2; : : : ;An.

Remark 1.6. Let .˝i ;Ai ; �i /; i D 1; 2; : : : ; n be measure spaces. Assume that
�i ; i D 1; 2; : : : ; n are �-finite,˝ D ˝1
˝2
� � �
˝n, A D A1
A2
� � �
An.
Then there is a unique measure � on A such that

�fA1 
 A2 
 � � � 
 Ang D �1fA1g 
 �2fA2g 
 � � � 
 �nfAng (1.13)

for every measurable rectangle A1 
 A2 
 � � � 
 An. The measure � is called the
product of �1; �2; : : : ; �n, denoted by � D �1
�2
� � �
�n. The triplet .˝;A ; �/

is called the product measure space.

If the sequence .˝i ;Ai ; �i /; i D 1; 2; : : : ; is an finite measure spaces such that
�i .˝i / D 1 for i D 1; 2; : : :. The product˝ D ˝1
˝2
� � � is defined as the set of
all ordered tuples of the form .x1; x2; : : :/; where xi 2 ˝i for i D 1; 2; : : :. For this
case, we define a measurable rectangle as a set of the form A1 
 A2 
 � � � , where
Ai 2 Ai , where Ai 2 Ai for all i and Ai D ˝i for all but finitely many i . The
smallest �-algebra containing all measurable rectangles of ˝ is called the product
�-algebra, denoted by A1 
A2 
 � � � .
Remark 1.7. Assume that .˝i ;Ai ; �i / are measure spaces such that �i f˝ig D 1

for i D 1; 2; : : :. Let˝ D ˝1
˝2
 � � � and A1
A2
 � � � . Then there is a unique
measure � on A such that

�fA1 
 � � � 
 An 
˝nC1 
˝nC2 
 � � � g D �1fA1g 
 �2fA2g 
 � � � (1.14)

for any measurable rectangleA1
� � �
An
˝nC1
˝nC2
� � � and all n D 1; 2; : : :.
The measure � is called the infinite product, denoted by � D �1 
 �2 
 � � � . The
triplet .˝;A ; �/ is called the infinite product measure space.

1.3 Outer Measures

In this section we develop one of the standard techniques for constructing measures,
then we use it to construct Lebesgue measure on Rn.
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Definition 1.8. (Cohn [62]) Let ˝ be a set, and let P.˝/ be the collection of all
subsets of ˝ . An outer measure on ˝ is a function �� W P.˝/ ! Œ0;C1/ such
that

(a) ��.˚/ D 0
(b) if A � B � ˝ , then ��.A/ � ��.A/
(c) if fAng is an infinite sequence of subsets of ˝ , then

��.[nAn/ �
X

n

��.An/:

Thus an outer measure on ˝ is a monotone and countably subadditive function
from P.˝/ to Œ0;C1/ whose value at ˚ is 0.

Note that a measure can fail to be an outer measure, in fact, a measure on˝ is an
outer measure if and only if its domain is P.˝/ (see Theorem 1.8 and 1.9). On the
other hand, an outer measure generally fails to be countably additive, and so fails to
be a measure.

In Theorem 1.13 we shall prove that for each outer measure �� on ˝ there is
a relatively natural �-algebra ˘�� on ˝ for which the restriction of �� to ˘�� is
countably additive, and hence a measure. Many important measures can be derived
from outer measures in this way.

Let’s turn to some examples.

Example 1.14. Let ˝ be an arbitrary set, and define �� on P.˝/ by ��.A/ D 0 if
A D ˚ , and ��.A/ D 1 otherwise. Then �� is an outer measure.

Example 1.15. Let ˝ be an arbitrary set, and define �� on P.˝/ by ��.A/ D 0 if
A is countable, and ��.A/ D 1 if A is uncountable. Then �� is an outer measure.

Example 1.16. Let ˝ be an infinite set, and define �� on P.˝/ by ��.A/ D 0 if
A is finite, and ��.A/ D 1 ifA is infinite. Then �� fails to be countably subadditive,
and so is not an outer measure.

Example 1.17. Lebesgue outer measure on R, which we shall denote by ��,
is defined as follows. For each subset A of R let �A be the set of all infinite
sequences f.ai ; bi /g of bounded open intervals such that A � [1

iD1.ai ; bi /. Then
�� WP.R/! Œ0;C1/ is defined by letting ��.A/ be the infimum of the set

(X
i

.bi � ai /jf.ai ; bi /g 2 �A

)
:

Note that this set of sums is non-empty, and that the infimum of the set consisting
ofC1 alone isC1.

Lemma 1.1. (Cohn [62]) Lebesgue outer measure on R is an outer measure, and it
assigns to each subinterval of R its length.
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Example 1.18. Let us turn to Lebesgue outer measure on Rn, which we shall denote
by �� or, if necessary in order to avoid ambiguity, by ��

n. An n-dimensional interval
is a subset of Rn of the form I1 
 � � � 
 In, where I1; : : : ; In are subintervals of R
and I1 
 � � � 
 In is given by

I1 
 � � � 
 In D f.x1; : : : ; xn/jxi 2 Ii ; i D 1; 2; : : : ; ng:

Note that the intervals I1; : : : ; In, and hence the n-dimensional interval I1
� � �
In,
can be open, closed, or neither open nor closed. The volume of the lengths of the
intervals I1; : : : ; In, and will be denoted by vol.I1
 � � � 
 In/. For each subset A of
Rn let �A be the set of all sequences fRig of bounded and open n-dimensional inter-
vals for which A � [1

iD1Ri . Then ��.A/, the outer measure of A, is the infimum
of the set ( 1X

iD1

vol.Ri /jfRig 2 �A

)
:

We note the following analogue of Lemma 1.1.

Lemma 1.2. (Cohn [62]) Lebesgue outer measure on Rn is an outer measure, and
it assigns to each n-dimensional interval its volume.

Let˝ be a set, and let �� be an outer measure on˝ . A subsetB of˝ is ��-measure
(or measurable with respect to ��) if

��.A/ D ��.A \ B/C ��.A \ Bc/

holds for each subset A of˝ . Thus a ��-measurable subset of˝ is one that divides
each subset of˝ in such a way that the sizes (as measured by ��) of the pieces add
properly.

Definition 1.9. (Cohn [62]) A Lebesgue measurable subset of R or Rn is of course
one that is measurable with respect to Lebesgue outer measure.

Note that the subadditivity of the outer measure �� implies that

��.A/ � ��.A\ B/C ��.A\ Bc/

holds for all subsets A and B of ˝ . Thus to check that a subset B of ˝ is ��-
measurable we need only check that

��.A/ � ��.A\ B/C ��.A\ Bc/ (1.15)

holds for each subset A of ˝ . Note also that inequality (1.15) certainly holds if
��.A/ D C1. Thus the ��-measurability of B can be verified by checking that
(1.15) holds for each A that satisfies ��.A/ < C1.
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Lemma 1.3. (Cohn [62]) Let ˝ be a set, and let �� be an outer measure on ˝ .
Then each subset B of ˝ that satisfies ��.B/ D 0 or that satisfies ��.Bc/ D 0 is
��-measurable.

It follows that the sets ˚ and ˝ are measurable for every outer measure on ˝ .
The following theorem is very the fundamental fact about outer measures, it will

be the key to many of out constructions of measures, then we listed the theorem and
the proving process as follows. Interested readers can consult books related to the
measure.

Theorem 1.13. (Cohn [62]) Let ˝ be a set, and let �� be an outer measure on ˝ ,
and let ˘�� be the collection of all ��-measurable subsets of ˝ . Then

(a) ˘�� is a �-algebra.
(b) The restriction of �� to ˘�� is a measure on ˘�� .

Next, we first turn to some applications of Theorem 1.13, and then begin with
Lebesgue measure and deduce some properties of it on Rn.

Remark 1.8. Every Borel subset of R is Lebesgue measurable.

Remark 1.9. Every Borel subset of Rn is Lebesgue measurable.

Definition 1.10. (Cohn [62]) The restriction of Lebesgue outer measure on R (or on
Rn) to the collection˘�� of Lebesgue measurable subsets of R (or of Rn) is called
Lebesgue measure, and will be denoted by � or by �n.

Lemma 1.4. (Cohn [62]) Let A be a Lebesgue measurable subset of Rn. Then

(a) �.A/ D inff�.U /jU is open and A � U g.
(b) �.A/ D supf�.K/jK is compact and K � U g.
The following lemma will be needed for the proof of Theorem 1.4. In this lemma
we shall be dealing with a certain collection of half-open cubes, namely with those
that have the form

f.x1; : : : ; xn/jji2
�k � xi < .ji C 1/2�k; i D 1; 2; : : : ; ng (1.16)

for some integers j1; : : : ; jn and some positive integer k.

Lemma 1.5. (Cohn [62]) Each open subset of Rn is the union of a countable dis-
joint collection of half-open cubes, each of which is of the form given in expression
(1.16).

Since the following theorem is very important for us to know about the Lebesgue
measure, then we listed its original proof as follows.

Theorem 1.14. (Cohn [62]) Lebesgue measure is the only measure on .Rn;B.Rn//

that assigns to each n-dimensional interval, or even to each half-open cube of the
form given in expression (1.16), its volume.
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For each element x and subset A of Rn we shall denote by AC x the subset of
Rn defined by

AC x D fy 2 Rnjy D aC x for some a in Ag;

the setACx is called the translate ofA by x. We turn to the invariance of Lebesgue
measure under such translations.

1.4 Probability Space

The fundamental concepts of probability theory have rooted in measure theory. Like
any branch of mathematics, probability theory has its own terminology and its own
tools. The probability theory has been widely pushed forward by [11,26,91,97,167,
175, 184, 252, 288, 327] many scholars. In this section, we will introduce some of
this terminology and study some basic concepts of probability theory.

Let ˝ be a nonempty set, and A a �-algebra over˝ . If ˝ is countable, usually
A is the power set of ˝ . If ˝ is uncountable, for example ˝ D Œ0; 1�, usually A
is the Borel algebra of ˝ . Each element in A is called an event. In order to present
an axiomatic definition of probability, it is necessary to assign to each event A a
number P rfAg which indicates the probability that A will occur. In order to ensure
that the number P rfAg has certain mathematical properties which we intuitively
expect a probability to have, the following three axioms must be satisfied [26]:

Axiom 1. (Normality) P rf˝g D 1.
Axiom 2. (Nonnegativity) P rfAg � 0 for any A 2 A .
Axiom 3. (Countable Additivity) For every countable sequence of mutually disjoint

events fAig, we have

P r

( 1[
iD1

Ai

)
D

1X
iD1

P rfAi g (1.17)

Definition 1.11. (Billingsley [26]) The set function P r is called a probability mea-
sure if it satisfies the three axioms. And the triple .˝;A ; P r/ is called a probability
space.

We note that, if An 2 A ; n D 1; 2; : : : ; then Ac
n,

S1
nD1An,

T1
nD1An,

lim infn!C1An, lim supn!C1An and limn!C1An (if exists) are events. Also,
the probability measure P r is defined on A , and for all events A;An

P rfAg � 0; P r
� 1S

iD1

Ai

�
D

1P
nD1

P rfAng.An ’s disjoint/; P rf˝g D 1:
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It follows that

Prf˚g D 0; PrfAg � PrfBg for A � B; Pr

� 1S
nD1

An

�
�

1P
nD1

Pr.An/:

Moreover,

Pr
�

lim inf
n!1An

�
� lim inf

n!1 Pr.An/ � lim sup
n!1

Pr.An/ � Pr

�
lim sup

n!1
An

�
;

and if limn!1An exists, then

Pr
�

lim
n!1An

�
D lim

n!1 Pr.An/ (1.18)

The last result is known as the continuity property of probability measures.

Example 1.19. Let ˝ D f!j W j � 1g, and let A be the �-algebra of all subsets
of ˝ . Let fpj W j � 1g be any sequence of nonnegative real numbers satisfyingP1

j D1 pj D 1. Define P r on A by

PrfEg D
X
!2E

pj ; E 2 A (1.19)

Then Pr defines a probability measure on .˝;A /, and .˝;A ;Pr/ is a probability
space.

Example 1.20. Let ˝ D .0; 1� and A D B be the �-algebra of Borel sets on ˝ .
Let � be the Lebesgue measure on B. Then .˝;A ; �/ is a probability space.

Lemma 1.6. (Krickeberg [175]) Let ˝ be a nonempty set, A be a �-algebra over
˝ , and P r a probability measure. Then we have

(a) Prf˚g D 0.
(b) Pr is self-dual, i.e., PrfAg C PrfAcg D 1 for any A 2 A .
(c) Pr is increasing, i.e., PrfAg � PrfBg whenever A � B .
(d) 0 � PrfAg � 1 for any A 2 A .

The usual starting point in the construction of probability measure is that proba-
bilities are assigned to a restricted class of sets. The probability extension theorem
gives a method to construct probability measure.

Theorem 1.15. (Probability Extension Theorem)(Blackwell [27]) Let ˝ be a
nonempty set, A0 be an algebra over ˝ , and Pr a measure on A0 such that
P rf˝g D 1. Then P r has a unique extension to a probability measure on the
smallest �-algebra A containing A0.
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1.5 Product Probability Space

Let .˝i ;Ai ;Pri /; iD1; 2; : : : ; n be probability spaces, and ˝ D ˝1 
 ˝2 
 � � � 

˝n, A D A1 
 A2 
 � � � 
 An, Pr D Pr1 
 Pr2 
 � � �Prn. Note that the proba-
bility measures Pri ; i D 1; 2; : : : ; n are finite. It follows from the product measure
theorem that there is a unique measure Pr on A such that

PrfA1 
 A2 
 � � � 
 Ang D Pr1fA1g 
 Pr2fA2g 
 � � � 
 PrnfAng (1.20)

for any Ai 2 Ai ; i D 1; 2; : : : ; n. This conclusion is called the product probability
theorem. The measure Pr is also a probability measure since

Prf˝g D Pr1f˝1g 
 Pr2f˝2g 
 � � � 
 Prnf˝ng D 1 (1.21)

Such a probability measure is called the product probability measure, denoted by
Pr D Pr1 
 Pr2 
 � � � 
 Prn.

Definition 1.12. (Krickeberg [175]) Let .˝i ;Ai ;Pri /; i D 1; 2; : : : ; n be proba-
bility spaces, and ˝ D ˝1 
 ˝2 
 � � � 
 ˝n, A D A1 
 A2 
 � � � 
 An,
Pr D Pr1 
 Pr2 
 � � � 
 Prn. Then the triplet .˝;A ;Pr/ is called the product
probability space.

If .˝i ;Ai ;Pri /; i D 1; 2; : : : ; be an arbitrary sequence of probability spaces, and

˝ D ˝1 
˝2 
 � � � ; A D A1 
A2 
 � � � (1.22)

It follows from the infinite product measure theorem that there is a unique probabil-
ity measure Pr on A such that

PrfA1 
 � � � 
 An 
˝nC1 
˝nC2 
 � � � g D Pr1fA1g 
 � � � 
 PrnfAng (1.23)

for any measurable rectangleA1
� � �An
˝nC1
˝nC2
� � � and all n D 1; 2; : : :
The probability measure Pr is called the infinite product of Pri ; i D 1; 2; : : : and is
denoted by

Pr D Pr1 
 Pr2 
 � � � (1.24)

Definition 1.13. (Krickeberg [175]) Let .˝i ;Ai ; P ri /; i D 1; 2; : : : be probability
spaces, and ˝ D ˝1 
˝2 
 � � � , A D A1 
A2 
 � � � , P r D P r1 
 P r2 
 � � � .
Then the triplet .˝;A ; P r/ is called the infinite product probability space.
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1.6 Conditional Probability and Independence

Consider an experiment that consists of flipping a coin twice, nothing each time
whether the result was heads or tails. The sample space of this experiment can be
taken to be the following set of four outcomes:

˝ D f.H;H/; .H; T /; .T;H/; .T; T /g;

where .H; T /means, for example, that the first flip lands heads and the second tails.
Suppose now that each of the four possible outcomes is equally likely to occur and
thus has probability 1/4. Suppose further that we observe that the first flip lands on
heads. Then, given this information, what is the probability that both flips land on
heads? To calculate this probability we reason as follows: Given that the initial flip
lands heads, there can be at most two possible outcomes of our experiment, namely,
.H;H/ or .H; T /. In addition, as each of these outcomes originally had the same
probability of occurring, they should still have equal probabilities. That is, given
that the first flip lands heads, the (conditional) probability of each of the outcomes
.H;H/ and .H; T / is 1/2, whereas the (conditional) probability of the other two
outcomes is 0. Hence the desired probability is 1/2.

If we let A and B denote, respectively, the event that both flips land on heads
and the event that the first flip lands on heads, then the probability obtained above is
called the conditional probability of A given that B has occurred and is denoted by

P r.AjB/:

A general formula for Pr.AjB/ that is valid for all experiments and events A and
B can be obtained in the same manner as given previously. Namely, if the event B
occurs, then in order for A to occur it is necessary that the actual occurrence be a
point in both A and B , that is, it must be in AB . Now since we know that B has
occurred, it follows that B becomes our new sample space and hence the probability
that the eventAB occurs will equal the probability of AB relative to the probability
of B . That is,

Pr.AjB/ D Pr.AB/

Pr.B/
:

As indicated by the coin flip example, Pr.AjB/, the conditional probability of A,
given that B occurred, is not generally equal to Pr.A/, the unconditional probability
of A. In other words, know that B has occurred generally changes the probability
that A occurs (what if they were mutually exclusive?). In the special case where
Pr.AjB/ is equal Pr.A/, we say that A and B are independent. Since Pr.AjB/ D
Pr.AB/=Pr.B/, we see that A is independent of B if

Pr.AB/ D Pr.A/Pr.B/:
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Since this relation is symmetric in A and B , it follows that whenever A is
independent of B , B is independent of A.

1.7 Random Variable

Considering the above foundation, a random variable on the probability space is
defined as follows.

Definition 1.14. (Feller [97]) Let .˝;A ;Pr/ be a probability space. A real-valued
function � defined on ˝ is said to be a random variable if

��1.B/ D f! 2 ˝ W �.!/ 2 Bg 2 A ; for all B 2 B (1.25)

where B is the �-algebra of Borel sets in R D .�1;C1/, that is, a random
variable � is a measurable transform of .˝;A ;Pr/ into .R;B/. We note that it
suffices to require that ��1.I / 2 A for all intervals I in R, or for all semiclosed
intervals I D .a; b�, or for all intervals I D .�1; b�, and so on. We also note that a
random variable � defined on .R;B/ includes a measure P r� on B defined by the
relation

Pr�.B/ D Prf��1.B/g; B 2 B (1.26)

Clearly Pr� is a probability measure on B and is called the probability distribution
or, simply the distribution of �. (Fig. 1.1).

Example 1.21. Assume that the probability space .˝;A ;Pr/ is f!1; !2g and
Prf!1g D 0:2, Prf!2g D 0:8. The function � is defined by

�.!/ D
�
0; if ! D !1

1; if ! D !2
(1.27)

Then � is a random variable.

Fig. 1.1 Random variables

B
R1

Ω

x–1(B)
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Example 1.22. A deterministic number c may be regarded as a special random
variable. In fact, it is the constant function �.!/ 	 c on the probability space
.˝;A ;Pr/.

Example 1.23. In the model of two tosses of a coin with sample space ˝ D
fHH;HT , TH; T T g, define a random variable � D �.!/ by the following table

! HH HT TH T T

�.!/ 2 1 1 0

Here, from its very definition, �.!/ is nothing but the number of heads in the
outcome !.

Definition 1.15. (Krickeberg [175]) A random variable � is said to be

(a) Nonnegative if Prf� < 0g D 0
(b) Positive if P rf� � 0g D 0
(c) Simple if there exists a finite sequence fx1; x2; : : : ; xmg such that

Prf� ¤ x1; � ¤ x2; : : : ; � ¤ xmg D 0 (1.28)

(d) Discrete if there exists a countable sequence fx1; x2; : : :g such that

Prf� ¤ x1; � ¤ x2; : : :g D 0 (1.29)

Definition 1.16. (Krickeberg [175]) Let �1 and �2 be random variables defined on
the probability space .˝;A ;Pr/. Then �1 D �2 if �1.!/ D �2.!/ for almost all
! 2 ˝ .

1.8 Random Vector

Naturally, an idea extending the real space to n-dimensional real space to define a
random vector is considered.

Definition 1.17. (Krickeberg [175]) An n-dimensional random vector is a measur-
able function from a probability space .˝;A ;Pr/ to the set of n-dimensional real
vectors.

Since a random vector � is a function from ˝ to Rn, we can write �.!/ D
.�1.!/; �2.!/; : : : ; �n.!// for every ! 2 ˝ , where �1; �2; : : : ; �n are functions from
˝ to R. Are �1; �2; : : : ; �n random variables in the sense of Definition 1.14? Con-
versely, we assume that �1; �2; : : : ; �n are random variables. Is .�1; �2; : : : ; �n/ a
random vector in the sense of Definition 1.17? The answer is in the affirmative. In
fact, we have the following theorem and list the proving process since it used the
important measure theory and set theory.

Theorem 1.16. (Krickeberg [175]) The vector .�1; �2; : : : ; �n/ is a random vector
if and only if �1; �2; : : : ; �n are random variables.
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1.9 Probability Distribution

The probability distribution of a random variable is given as follows.

Definition 1.18. (Durrett [91]) For every x 2 R such that

F.x/ D Prf�1 � � � xg D Prf! 2 ˝j�.!/ � xg:

We call F.x/ the distribution function that the random variable � takes a value less
than or equal to x.

In the following we write f� � xg for the event f! 2 ˝j�.!/ � xg. We first
recall the following elementary property of a distribution function. In order to let
readers easily understand them, we listed all the proving process and interested
readers can consult the related books [26, 175, 206, 207, 288].

Theorem 1.17. (Krickeberg [175]) The distribution function F of random variable
� is nondecreasing, right-continuous function on R which satisfies

F.�1/ D lim
x!�1F.x/ D 0

and
F.C1/ D lim

x!C1F.x/ D 1:

Theorem 1.18. (Krickeberg [175]) A distribution function F is continuous at
x 2 R if and only if Prf! 2 ˝j�.!/ D xg D 0.

Remark 1.10. Let � be a random variable, and let g be a Borel-measurable function
defined on R. Then g.�/ also a random variable whose distribution is determined
by that of �:

We now show that a function F on R with the properties stated in Theorem 1.17
determines uniquely a probability measure P rF on B.

Theorem 1.19. (Krickeberg [175]) Let F be a nondecreasing, right-continuous
function defined on R and satisfying

F.�1/ D 0 and F.C1/ D 0:

Then there exists a probability measure Pr D PrF on B determined uniquely by the
relation

PrF .�1; x� D F.x/ for every x 2 R:

Remark 1.11. Let F be bounded nondecreasing, right-continuous function defined
on R satisfying F.�1/ D 0. Then it is the clear from the proof of Theorem
1.19 that there exists a finite measure � D �F on A determined uniquely by
�F .�1; x� D F.x/; x 2 R.
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Remark 1.12. Let F on R satisfy the conditions of Theorem 1.19. Then there exists
a random variable � on some probability space such that F is the distribution func-
tion of �. In fact, consider the probability space .R;A ; P r/, where P r is the
probability measure as constructed in Theorem 1.19. Let �.!/ D !, for ! 2 R.
It is easy to see that F is the distribution function of the random variable �.

Let F be a distribution function, and let x 2 R be a discontinuity point of F .
Then p.x/ D F.x/ � F.x � 0/ is called the jump of F at x. A point is said to be a
point of increase of F if, for every 
 > 0; F.x C 
/ � F.x � 
/ > 0.

1.10 Central Limit Theorem

Many of the fundamental results in probability theory are formulated as limit theo-
rems. Bernoulli’s law of large numbers was formulated as a limit theorem, so was the
De Moivre–Laplace theorem, which can fairly be called the origin of a genuine the-
ory of probability and, in particular, which led the way to numerous investigations
that clarified the conditions for the validity of the central limit theorem. Poisson’s
theorem on the approximation of the binomial distribution by the “Poisson” dis-
tribution in the case of rare events was formulated as a limit theorem. After the
example of these propositions, and of results on the rapidity of convergence in the
De Moivre–Laplace and Poisson theorems, it became clear that in probability it is
necessary to deal with various kinds of convergence of distributions, and to estab-
lish the rapidity of convergence connected with the introduction of various “natural”
measures of the distance between distributions. From then, many results about the
central limit theorem has been obtained, and readers can refer to the related litera-
tures [8, 31, 80, 89, 90, 148, 216, 266]. Let’s begin by recalling the statement of the
law of large numbers for the Bernoulli scheme.

Just as in analysis, in probability theory we need to use various kinds of conver-
gence of random variables. Four of these are particularly important: in probability,
with probability one, in mean of order p, in distribution.

First some definitions. Let �; �1; �2; : : : be random variables defined on a proba-
bility space .˝;A ;Pr/.

Definition 1.19. (Shiryaev [288]) The sequence �1; �2; : : : of random variables
converges in probability to the random variable � (notation: �n !Pr �) if for
every � > 0

Prfj�n � �j > "g ! 0; n!1 (1.30)

We have already encountered this convergence in connection with the law of
large numbers for a Bernoulli scheme, which stated that

Pr

�ˇ̌̌
ˇSn

n
� p

ˇ̌̌
ˇ > "

�
! 0; n!1 (1.31)

In analysis this is known as convergence in measure.
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Definition 1.20. (Shiryaev [288]) The sequence �1; �2; : : : of random variables
converges with probability one (almost surely, almost everywhere) to the random
variable � if

Prf! W �n 6! �g D 0 (1.32)

i.e. if the set of sample points ! for which �n.!/ does not converge to � has
probability zero.

This convergence is denoted by �n ! � (Pr-a.s.), or �n
a:s:��! � or �n

a:e:��! �.

Definition 1.21. (Shiryaev [288]) The sequence �1; �2; : : : of random variables
converges in mean of order p, 0 < p <1, to the random variable � if

EŒj�n � �jp�! 0; n!1 (1.33)

In analysis this is known as convergence in Lp, and denoted by �n
Lp

��! �.
In the special case p D 2 it is called mean square convergence and denoted by
� D l:i:m:�n (for “limit in the mean”).

Definition 1.22. (Shiryaev [288]) The sequence �1; �2; : : : of random variables

converges in distribution to the random variable � (notation: �n
d�! �) if

EŒf .�n/�! EŒf .�/�; n!1 (1.34)

for every bounded continuous function f D f .x/. The reason for the terminology
is that, according to what will be proved later condition (1.34) is equivalent to the
convergence of the distribution F�n

.x/ to F�.x/ at each point x of continuity of
F�.x/. This convergence is denoted by F�n

) F� .

We emphasize that the convergence of random variables in distribution is defined
only in terms of the convergence of their distribution functions. Therefore it makes
sense to discuss this mode of convergence even when the random variables are
defined on different probability spaces.

Lemma 1.7. (Shiryaev [288]) (a) A necessary and sufficient condition that �n !
�.Pr � a:s:/ is that

Pr

(
sup
k�n

j�k � �j � "
)
! 0; n!1 (1.35)

for every " > 0.
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(b) The sequence f�ngn�1 is the fundamental with probability 1 if and only if

Pr

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

sup
k � n
l � n

j�k � �l j � "

9>>>>>=
>>>>>;
! 0; n!1 (1.36)

for every " > 0; or equivalently

Pr

(
sup
k�n

j�nCk � �nj � "
)
! 0; n!1 (1.37)

Lemma 1.8. (Shiryaev [288]) We have the following implications:

�n
a:s:��! � ) �n

Pr�! �;

�n
Lp

��! � ) �n
Pr�! �;

�n
P r��! � ) �n

d�! �:

Definition 1.23. (Shiryaev [288]) Let �1; �2; : : : be a sequence of independent
identically distributed random variables with Pr.�i D 1/ D p, Pr.�i D 0/ D q,
p C q D 1. In terms of the concept of convergence in probability, Bernoulli’s law
of large numbers can be stated as follows:

Sn

n

P�! p; n!1 (1.38)

where Sn D �1 C �2 C � � � C �n.

We put

Fn.x/ D Pr

�
Sn

n
� x

�
(1.39)

F.x/ D
�
1; x � p
0; x � p (1.40)

where F.x/ is the distribution function of the degenerate random variable � 	 p.
Also let Prn and Pr be the probability measures on .R;B.R// corresponding to the
distributions Fn and F .

In accordance with Lemma 1.8, convergence in probability, Sn=n
Pr�! p, implies

convergence in distribution, Sn=n
d�! p, which means that

E

�
f

�
Sn

n

�	
! EŒf .p/�; n!1 (1.41)
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for every function f D f .x/ belonging to the class C .R/ of bounded continuous
functions on R. By the definition of expected value of random variables, (1.41) can
be rewritten in the formZ

R
f .x/dFn.x/!

Z
R
f .x/dF.x/; f 2 C .R/: (1.42)

In analysis, (1.42) is called weak convergence of Fn to F and denote it by Fn
w�! F .

Thus we may say that in a Bernoulli scheme

Sn

n

Pr�! p) Fn
w�! F (1.43)

It is also easy to see from (1.38) that, for the distribution functions defined in (1.39),

Fn.x/! F.x/; n!1 (1.44)

for all points x 2 R except for the single point x D p, where F.x/ has a dis-
continuity.

This shows that weak convergence Fn ! F does not imply pointwise conver-
gence for Fn.x/ to F.x/, n ! 1, for all points x 2 R. However, it turns out
that, both for Bernoulli schemes and for all arbitrary distribution functions, weak
convergence is equivalent to “convergence in general” in the sense of the following
definition.

Definition 1.24. (Shiryaev [288]) A sequence of distribution function fFn.x/g
defined on the real line, converges in general to the distribution function F.x/
(notation: Fn ) F ) if as n!1

Fn.x/! F.x/; x 2 PC .F /; (1.45)

where PC .F / is the set of points of continuity of F D F.x/.
For Bernoulli schemes, F D F.x/ is degenerate, and it is easy to see that

.Fn ) F /)
�
Sn

n

Pr�! p

�
:

Therefore,�
Sn

n

Pr�! p

�
)
�
Fn

w�! F
�
, .Fn ) F /)

�
Sn

n

Pr�! p

�
:

In this section we summarize, usually without proof, some important mathe-
matical facts about the characteristic function. For detailed development, one may
consult any of a number of advanced texts on probability theory or mathematical
statistics, such as [26, 175, 252, 288] and so on.
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1. In integral form, ��.�u/ D R
e�iutF�dt . This is the Fourier–Stieltjes trans-

form of F� . Thus, the characteristic function is determined by the distribution
function rather than the random variable. Two quite different random variables
may have the same distribution and hence the same characteristic function. If the
distribution has a density function p.t/, then

��.�u/ D
Z
e�iutp.t/dt;

which is the Fourier transform of p.x/. The Fourier and the Fourier–Stieltjes
transforms have been studied extensively, and the pertinent literature provides a
powerful body of theory. These transforms have been used widely in physics and
engineering, so there are important resources for application.

2. Since
ˇ̌
eiu�!

ˇ̌ D 1 for any ! for which �.!/ is finite, ��.u/ is defined for any
real u for any probability distribution function F� . This condition ensures a great
deal of regularity for the characteristic function. For example, it may be used to
show that �� is uniformly continuous on the entire real line.

3. There is a well known inversion integral for the Fourier integral. This shows that
every distribution function is determined by its characteristic function. The form
of the characteristic function often serves to establish the form of the distribution
function. We use this in establishing a special case of the central limit theorem in
the following part.

4. Since for a complex random variable EŒ�� D EŒ��, we must have ��.u/ D
��.�u/. The overbar indicates the complex conjugate. If the distribution of � is
symmetric with respect to the origin, so that � and�� have the same distribution,
then

��.u/ D ���.u/ D ��.�u/ D ��.u/;

which ensures that �� is real-valued and even.

Theorem 1.20. (Fundamental Convergence Theorem) (Shiryaev [288]) Consider a
sequence Fn.n � 1/ of probability distribution functions, with �n the characteristic
function for Fn for each n.

1. IfF is a distribution function such thatFn.t/! F.t/ at every point of continuity
for F and � is the characteristic function for F , then �n.u/! �.u/ for all u.

2. If �n.u/ ! �.u/ for all u and � is continuous at 0, then � is the characteristic
function for a distribution function F such that Fn.t/ ! F.t/ at each point of
continuity of F .

The central limit theorem (abbr. CLT) asserts that if random variables X is the
sum of a large number of independent random variables, each with reasonable dis-
tributions, then � is approximately normally distributed. This celebrated theorem
has been the object of prodigious research effort directed toward the discovery of
the most general conditions under which it is valid. On the other hand, this theorem
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serves as the basis of an extraordinary amount of applied work. In the statistics of
large samples, the sample average is a constant times the sum the random variables
in the sampling process. Thus, for large samples, the sample average is approxi-
mately normal-whether or not the population distribution is normal. In much of the
theory of errors of measurement, the observed error is the sum of a large number
of independent random quantities that contribute to the result. Similarly, in the the-
ory of noise, the noise signal is the sum of a large number of random components,
independently produced. In such situations, the assumption of a normal population
distribution may be quite appropriate.

We consider a form of the CLT under hypotheses that are reasonable assumptions
in many practical situations. The proof of this theorem, known as the Lindeberg–
Lévy theorem [25], uses characteristic functions. The proof is not difficult; it
illustrates the kind of argument used in more sophisticated proofs required for more
general cases of the CLT.

Suppose � is a standardized normal random variable. That is, � �N .0; 1/, with
distribution function ˚ . Consider an independent sequence f�n W 1 � ng of random
variables. Form the sequence fSn W 1 � ng of partial sums

Sn D
nX

iD1

�i ; for all n � 1:

Then, by properties of expectation and of variance,

EŒSn� D
nX

iD1

EŒ��; and V ŒSn� D
nX

iD1

V Œ��; for all n � 1:

Let S�
n be the standardized sum obtained by subtracting the mean and dividing

by the standard deviation for Sn. Let Fn be the distribution function for S�
n . The

CLT asserts that under appropriate conditions Fn.t/ ! ˚.t/ as n ! 1 for any
real t .

We list the simple case referred to earlier, using properties of characteristic func-
tions and a simple lemma from the theory of complex variables. Readers can also
consult the book related the probability theory.

Lemma 1.9. (Shiryaev [288]) If �n is independently and identically distributed
random variables, with

EŒ�n� D �; V Œ�n� D �2; and S�
n D

Sn � n�
�
p
n

then

Fn.t/! ˚.t/; as n!1 for all t:
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Example 1.24. Suppose 
i .i D 1; 2; : : :/ is independently and identically dis-
tributed random variables, with EŒ
i � D 0 and V Œ
i � D �2. For each n � 1, let

�n D
nX

iD1


i (1.46)

The sequence f�ng1nD1 forms a random walk. This designation comes from the fact
such a sequence may be used to model the following behavioral system. At discrete
time t D i , a particle moves a distance 
i along a line. The net distance moved after
the nth displacement is �n. Individual movements are independent, with the same
distribution, and the average movement is zero.

Show that as time increases, the probability of being within distance c of the
starting position goes to zero, no matter how large c is.

Apparently, for large n, ��
n D �n=�

p
n is approximately N .0; 1/. Thus,

Prfj�nj � cg D Pr

�
j��

n j �
c

�
p
n

�
� 2˚

�
c

�
p
n

�
� 1:

Since n ! 1; c=�pn ! 0 and ˚.c=�
p
n/ ! 0:5. Hence, Prfj�nj � cg ! 0

as n!1.

1.11 Monte Carlo Simulation

Monte Carlo simulation has been applied to numerous areas, and is defined as a
technique of performing sampling experiments on the models of stochastic sys-
tems. Although simulation is an imprecise technique which provides only statistical
estimates rather than exact results and is also a slow and costly way to study prob-
lems, it is indeed a powerful tool dealing with complex problems without analytic
techniques.

The basis of stochastic simulation is random number generation. Generally, let
x be a random variable with a probability distribution F.�/. Since F.�/ is a nonde-
creasing function, the inverse function F �1.�/ is defined on Œ0; 1�. Assume that u is
a uniformly distributed variable on the interval Œ0; 1�. Then we have

PrfF�1.u/ � yg D Prfu � F.y/g D F.y/ (1.47)

which proves that the variable x D F�1.u/ has the probability distribution F.�/.
In order to get a random variable x with probability distribution F.�/, we can pro-
duce a uniformly distributed variable u from the interval Œ0; 1�, and x is assigned to
be F �1.u/. The above process is called the inverse transform method. But for the
main known distributions, instead of using the inverse transform method, we have
direct generating processes. For detailed expositions, interested readers may consult
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Fishman [101, 102], Law and Kelton [188], Bratley et al. [30], Rubinstein [269],
Ross [267] and many other scholars [72, 77, 165, 194, 206, 226, 262, 263, 269, 279].
Here we give some generating methods for probability distributions frequently used
in this book. We also use the inverse transform method to generate a discrete ran-
dom variable. Suppose we want to generate the value of a discrete random variable
� having probability mass function

P f� D xj g D pj ; j D 0; 1; : : : ;
X

j

pj D 1:

To accomplish this, we generate a random number U -that is, U is uniformly
distributed over (0,1)-and set

� D

8̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂:

x0 if U < p0

x1 if p0 � U < p0 C p1

:::

xj if
j �1P
iD1

pi � U <
jP

iD1

pi

:::

Since, for 0 < a < b < 1, P fa � U < bg D b � a, we have that

P f� D xj g D p
(

j �1X
iD1

pi � U <

jX
iD1

pi

)
D pj

and so � has the desired distribution.

Remark 1.13. The preceding can be written algorithmically as

Generate a random number U
If U < p0; set � D x0 and stop
If U < p0 C p1; set � D x1 and stop
If U < p0 C p1 C p2; set � D x2 and stop
:::

Remark 1.14. If the xi , i � 0, are ordered so that x0 < x1 < x2 < � � � and if we let
F denote the distribution function of �, then F.xk/ D

Pk
iD0 pi and so

� will equal xj ; if F.xj �1 � U < F.xj //:

In other words, after generating a random numberU we determine the value of � by
finding the interval ŒF .xj �1/; F .xj // in which U lies (or, equivalently, by finding
the inverse of F.U /). It is for this reason that the above is called the discrete inverse
transform method for generating �.



1.11 Monte Carlo Simulation 27

The amount of time it takes to generate a discrete random variable by the above
method is proportional to the number of intervals one must search. For this reason it
is sometimes worthwhile to consider the possible values xj of � in decreasing order
of the pj .

Example 1.25. If we wanted to simulate a random variable � such that

p1 D 0:35; p2 D 0:25; p3 D 0:4; where pj D Prf� D j g;

then we could generate U and do the following:

Generate a random number U
If U < 0:30; set � D 1 and stop;
If U < 0:60; set � D 2 and stop;
Otherwise set � D 3:

However, a more efficient procedure is the following:

Generate a random number U
If U < 0:40; set � D 3 and stop;
If U < 0:65; set � D 2 and stop;
Otherwise set � D 1:

One case where it is not necessary to search for the appropriate interval in
which the random number lies is when the desired random variable is the dis-
crete uniform random variable. That is, suppose we want to generate the value
of � which is equally likely to taken on any of the values 1; : : : ; n. That is,
Prf� D j g D 1=n; j D 1; : : : ; n: Using the preceding results it follows that we
can accomplish this by generating U and then setting

� D j; if
j � 1
n
� U <

j

n

Therefore, � will equal j if j � 1 � nU < j ; or, in other words,

� D Int.nU /C 1;

where Int.x/-sometimes written as Œx�-is the integer part of x (i.e., the largest integer
less than or equal to x). Next, let’s discuss how to generate the two special discrete
random variables.

Binomial Distribution: Suppose we want to generate the value of a binomial
.n; p/ random variable �-that is, � is such that

Prf� D ig D nŠ

i Š.n � i/Šp
i .1 � p/n�i ; i D 0; 1; : : : ; n:
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To do so, we employ the inverse transform method by making use of recursive
identity

Prf� D i C 1g D n � i
i C 1

p

1 � pPrf� D ig (1.48)

With i denoting the value currently under consideration, Pr D Prf� D ig the prob-
ability that � is equal to i , and F D F.i/ the probability that � is less than or equal
to i , the algorithm can be expressed as follows:

Step 1. Generate a random number U .
Step 2. c D p=.1� p/, i D 0, Pr D .1 � p/n, F D Pr.
Step 3. If U < F , set � D i and stop.
Step 4. Pr D Œc.n � i/=.i C 1/�Pr, F D F C Pr, i D i C 1.
Step 5. Go to Step 3.

The preceding algorithm first checks whether � D 0, then whether � D 1, and so
on. Hence, the number of searches it makes is 1 more than the value of �. Therefore,
on average, it will take 1 C np searches to generate �. Since a binomial .n; p/
random variable represents the number of successes in n independent trials when
each is a success with probability p, it follows that such a random variable can
also be generated by subtracting from n the value of a binomial .n; 1 � p/ random
variable. Hence, when p > 1=2, we can generate a binomial .n; 1 � p/ random
variable by the above method and subtract its value from n to obtain the desired
generation.

Remark 1.15. Another way of generating a binomial .n; p/ random variable is by
utilizing its interpretation as the number of successes in n independent trials by
generating n random numbers U1; : : : ; Un and then setting � equal to the number
of the Ui that are less than or equal to p. By regarding the i th trial as a success
if U1 < p and noting that the probability of this event is equal to p, it is easy to
see that this results in a binomial .n; p/ random variable. However, this approach
requires n random numbers and makes n comparisons, whereas the inverse trans-
form algorithm only requires one random number and makes, on average, 1 C np
comparisons (along with an equal number of divisions).

Poisson Distribution: The random variable � is Poisson with mean � if

pi D Prf� D ig D e�� �
i

i Š
; i D 0; 1; : : :

The key to using the inverse transform method to generate such a random variable
is the following identity:

piC1 D �

i C 1pi ; i � 0 (1.49)
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Upon using the above recursion to compute the Poisson probabilities as they become
needed, the inverse transform algorithm for generating a Poisson random variable
with mean � can be expressed as follows. (The quantity i refers to the value
presently under consideration; p D pi is the probability that � equals i , and
F D F.i/ is the probability that � is less than or equal to i .)

Step 1. Generate a random number U .
Step 2. i D 0, p D e��, F D p.
Step 3. If U < F , set � D i and stop.
Step 4. p D �p=.i C 1/, F D F C p, i D i C 1.
Step 5. Go to Step 3.

(In the above it should be noted that when we write, for example, i D i C 1,
we do not mean that i is equal to i C 1 but rather that the value of i should be
increased by 1.) To see that the above algorithm does indeed generate a Poisson
random variable with mean �, note that it first generates a random number U and
then checks whether or not U < e�� D p0. If so, it sets � D 0. If not, then
it computes (in Step 4) p1 by using the recursion (1.49). It now checks whether
U < p0 C p1 (where the right-hand side is the new value of F ), and if so it sets
� D 1 and so on.

The above algorithm successively checks whether the Poisson value is 0, then
whether it is 1, then 2, and so on. Thus, the number of comparisons needed will
be 1 greater than the generated value of the Poisson. Hence, on average, the above
will improved upon when � is large. Indeed, since a Poisson random variable with
mean � is most likely to take on one of the two integral values, rather than starting
at 0 and working upward. For instance, let I D Int.�/ and use (1.49) to recursively
determine F.I /. Now generate a Poisson random variable � with mean � by gener-
ating a random number U , noting whether or not � � I by seeing whether or not
U � F.I /. Then search downward starting from I in the case where � � I and
upward starting from I C 1 otherwise.

The number of searches needed by this algorithm is roughly 1 more than the
absolute difference between the random variable � and its mean �. Since for � large
a Poisson is (by the central limit theorem) approximately normal with mean and
variance both equal to �, it follows that

Average number of searches ' 1C EŒj� � �j�

D 1Cp�E
� j� � �jp

�

	
D 1Cp�EŒjZj�
D 1C 0:798p�

where � � N .�; �/ and Z � N .0; 1/. That is, the average number of searches
grows with the square root of � rather than with � as � becomes larger and larger.

Consider a continuous random variable having distribution functionF . A general
method for generating such a random variable-called the inverse transformation
method-is based on the following lemma.
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Lemma 1.10. Let U be a uniform (0,1) random variable. For any continuous
distribution function F the random variable � defined by

� D F�1.U /

has distribution F . F�1.u/ is defined to be that value of x such that F.x/ D u:

Proof. Let F� denote the distribution function of � D F�1.U /. Then

F�.x/ D P rf� � xg
D P rfF�1.U / � xg (1.50)

Now since F is a distribution function it follows that F.x/ is a monotone increasing
function of x and so the inequality “a � b” is equivalent to the inequality “F.a/ �
F.b/”. Hence, from (1.50), we see that

F�.x/ D P rfF.F�1.U // � F.x/g
D P rfU � F.x/g
D F.x/

This completes the proof. ut
The above lemma thus shows that we can generate a random variable � from the
continuous distribution function F by generating a random number U and then
setting � D F �1.U /.

Example 1.26. Suppose we wanted to generate a random variable � having distri-
bution function

F.x/ D xn; 0 < x < 1:

If we let x D F�1.u/, then

u D F.x/ D xn or, equivalently; x D u1=n

Hence we can generate such a random variable � by generating a random numberU
and then setting � D U 1=n.

The inverse transform method yields a powerful approach to generating exponential
random variables, as is indicated in the next example.

Example 1.27. If � is an exponential random variable with rate 1, then its distribu-
tion function is given by

F.x/ D 1 � e�x
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If we let x D F�1.u/, then

u D F.x/ D 1 � e�x

or

1 � u D e�x

or, taking logarithms

x D �log.1� u/:

Hence we can generate an exponential with parameter 1 by generating a random
number U and then setting

� D F�1.U / D �log.1 � U /:

A small saving in time can be obtained by noting that 1�U is also uniform on (0,1)
and thus �log.1 � U / has the same distribution as �logU . That is, the negative
logarithm of a random number is exponentially distributed with rate 1.

In addition, note that if � is exponential with mean 1 then, for any positive
constant c, c� is exponential with mean c. Hence, an exponential random variable �
with rate � (mean 1=�) can be generated by generating a random number U and
setting

� D � 1
�

logU:

Remark 1.16. The above also provides us with another algorithm for generating
a Poisson random variable. To begin, recall that a Poisson process with rate �
results when the times between successive events are independent exponentials
with rate time 1 is Poisson distributed with mean �. For such a process N.1/, the
number of events by time 1 is Poisson distributed with mean �. However, if we
let �i ; i D 1; 2; : : : ; denote the successive interarrival times, then the nth event will
occur at time

Pn
iD1 �i , and so the number of events by time 1 can be expressed as

N.1/ D max

(
nj

nX
iD1

�i � 1
)
:

That is, the number of events by time 1 is equal to the largest n for which the
nth event has occurred by time 1. (For example, if the fourth event occurred by
time 1 but the fifth event did not, then clearly there would have been a total of
four events by time 1.) Hence, using the results of Example 1.27, we can generate
N D N.1/, a Poisson random variable with mean �, by generating random numbers
U1; : : : ; Un; : : : and setting
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N D max

�
nj

nP
iD1

� 1
�

logUi � 1
�

D max

�
nj

nP
iD1

logUi � ��
�

D max fnjlog.U1; : : : ; Un/ � ��g
D max

˚
njU1 : : : Un � e��



Hence, a Poisson random variableN with mean � can be generated by successively
generating random numbers until their product falls below e��, and then setting N
equal to 1 less than the number of random numbers required. That is,

N D min
n
njU1 : : : Un < e

��
o
� 1:

The results of Example 1.27 along with the relationship between the gamma and the
exponential distribution can be used to efficiently generate a gamma .n; �/ random
variable. Next, let’s introduce how to simulate the three special distributed random
variables.

Uniform Distribution: A random variable � has a uniform distribution if its
probability density function is defined by

f .x/ D
8<
:

1

b � a ; a � x � b
0; otherwise

(1.51)

denoted by U.a; b/, where a and b are given real numbers with a < b. The sub-
function of generating pseudorandom numbers has been provided by the C library
for any type of computer, defined as

include hstdlib.hi
int rand(void)

which produces a pseudorandom integer between 0 and RAND � MAX, where
RAND�MAX is defined in stdlib:h as 215�1. Thus a uniformly distributed variable
on an interval Œa; b� can be produced as follows:

Algorithm (Uniform Distribution)
Step 1. u D rand./;
Step 2. u u=RAND�MAX;
Step 3. Return aC u.b � a/.
Exponential Distribution W A random variable � has an exponential distribution

with expected value ˇ.ˇ > 0/ if its probability density function is defined by

f .x/ D
8<
:
1

ˇ
e�x=ˇ ; if 0 � x <1

0; otherwise
(1.52)
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denoted by exp.ˇ/. An exponentially distributed variable can be generated by the
following way:

Algorithm (Exponential Distribution)
Step 1. Generate u from U.0; 1/;
Step 2. Return �ˇln.u/.
Normal Distribution: A random variable � has a normal distribution if its

probability density function is defined as:

f .x/ D 1

�
p
2�

exp

�
� .x � �/

2

2�2

	
; �1 < x < C1 (1.53)

denoted by N .�; �2/, where � is the expected value and �2 is the variance.

Algorithm (Normal Distribution)
Step 1. Generate �1 and �2 from U.0; 1/;
Step 2. y D Œ�2ln.�1/�

1
2 sin.2��2/;

Step 3. Return �C �y.



Chapter 2
Random Multiple Objective Decision Making

Mathematical programming with multiple objective functions (also called vector
programming) is a recent development in mathematical programming, and emerged
from an attempt to tackle the problems raised by the present development of science,
engineering, industry, economics, etc. Due to the complexity of these problems,
several objectives had to be incorporated in the optimization process. Basically, the
problem consists of optimizing several objectives functions (some of which must be
maximized, some minimized) provided the variables satisfy the linear and nonlinear
constraints.

Nowadays, mathematical programming problems with uncertain parameters are
extremely important and many scholars have begun to pay attention to these. In this
section, we mainly discuss a random multiple objective decision making model.
Many mathematical programming problems are stochastic because some of the data
involved are random variables. This may be due to

1. Errors and variations in the problem parameters, which are often associated with
probabilities.

2. Risk and uncertainty, which may sometimes allow a significant numerical rep-
resentation of the utility function of the decision-maker (e.g. the von Neumann
axiomatic system).

3. The need for optimum decision rules connected with some statistical decision
functions, etc.

Hence, one has to study vector programming under the assumption that some of
the problem parameters are random variables.

2.1 Distribution Center Location Problem
with Random Phenomena

With the appearance of the importance of logistics in global economics. The impor-
tance of distribution location problems has emerged as being one of the most critical
issues for logistics managers reducing cost and improving service. Manufactorers,

J. Xu and L. Yao, Random-Like Multiple Objective Decision Making, Lecture Notes
in Economics and Mathematical Systems 647, DOI 10.1007/978-3-642-18000-2 2,
c� Springer-Verlag Berlin Heidelberg 2011
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customers and suppliers are important members of the supply chain. To some extent,
the success of an enterprise depends on its ability to link these members seamlessly.
Distribution centers (abbr. DC) have the competency to connect manufactorers with
their customers. The number, size and locations of distribution centers along with
the decision on which customers to serve from each center (i.e. the allocation of cus-
tomers to distribution centers) significantly affects the cost of the distribution system
and the level of customer service provided by the system. In real logistics systems,
the sources (factories, vendors, etc.) supply the distribution centers, which in turn
supply the demand locations or consumers. Thus, it is necessary for manufactorers
to evaluate and select suitable DC locations from a potential set.

In recent years, increasing production economies of scale and reducing transport
costs have focused attention on distribution centers and many methods for location
selection have been developed [17, 132, 164, 308, 320, 362]. An integer program-
ming model for the plant location was presented by Barahona and Jensen [17].
They considered not only the fixed costs and transport costs, but also inventory
costs, which had been solved by the Dantzig–Wolfe (D-W) decomposition method.
Tragantalerngsak et al. [320] considered a two-echelon facility location problem in
which the facilities in the first echelon are uncapacitated and the facilities in the sec-
ond echelon are capacitated. The goal is to determine the number and locations of
facilities in both echelons in order to satisfy customer demand for the product. Zhou
et al. [362] investigated the balanced allocation of customers to multiple distribu-
tion centers with a genetic algorithm approach. Syam [308] proposed a model and
methodologies for a location problem with logistical components. Harkness [132]
investigated a new type of facility location model: one in which production costs
per unit increase once a certain scale of output is reached. Klose and Drexl [164]
reviewed some of the contributions to the current state of facility location models
for distribution systems.

However, although the facility location problem has been studied widely, the
majority of these papers assume that the design parameters of the DC location
problem are deterministic. For real decision making, the situation is often not
deterministic, and some factors such as demand, and costs of transport are usu-
ally changing, hence we must consider the DC location problem under an uncertain
environment. In practice, many parameters for location models are subject to uncer-
tainty. For example, queuing location models are discussed by Berman and Larson
[22]. They give certain distribution functions for the customer arrival process,
waiting, and approximate service times. Waiting times are a function of demand
allocation and, hence, of facility location. Further stochastic location models are
proposed by Laporte et al. [186] and Listes and Dekker [202]. Laporte et al. [186]
considers customer demand as a stochastic variable and proposes the branch-and-cut
algorithm to solve location problems with stochastic parameters. Listes and Dekker
[202] use stochastic models with recourse for the purposes of locating facilities in
product recovery networks. More recently, since Zadeh’s pioneering work [356], a
lot of research on fuzzy parameters have been done [35, 197, 225, 238, 340, 345].
Many successful applications of fuzzy optimization theory in the area of facil-
ity the location can be found in literature. Chen [48] proposes a fuzzy multiple
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criteria group decision-making method to solve distribution center location selec-
tion problems. Yang [351] investigates the logistics distribution centers location
problem under a fuzzy environment and fuzzy chance-constrained programming is
constructed as a decision model for the problem.

This chapter mainly concentrates on discussing a class of distribution center loca-
tion problems with random parameters, i.e., customer demand, transportation costs
and so on are considered as random variables. In fact, in real-life world, this case
usually occurs. Let’s recall a simple example proposed by Mirchandani et al. [220]
(Fig. 2.1). They introduces a stochastic variant of the p-median problem. In partic-
ular, they consideres the demand and arc weights to be random variables. Under
certain assumptions a finite number of states i 2 I of the graph with known
probabilities can be enumerated. The model provided by them is as follows:

8̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂:

min
X
i2I

X
k2K

X
j 2J

�icikj zikj

s.t.

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

P
j 2J

zikj D 1 8i 2 I; j 2 J
zikj � yj � 0 8i 2 I; k 2 K; j 2 JP
j 2J

yj D p
zikj ; yj 2 B 8i 2 I; k 2 K; j 2 J

The symbol cikj denotes the demand weighted distance between nodes k 2 K and
j 2 J in state i 2 I . zikj are decision variables denoting demand allocation. yj

denotes location decisions. In this chapter, we will extend this model to be closer to
the realistic problems and use the expected value operator and chance operator to
resolve them. Readers can find these in the last section of this chapter.
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2.2 Two Kinds of Random Variables

In the first chapter, we have introduced some basic properties about random
variables. Here, we just research two special types of random variables which
frequently appear in some realistic problems. One is the discrete, and the other
is the continuous. Interested readers can refer to those related books such as
[11, 76, 151, 152, 184, 281].

2.2.1 Discrete Random Variable

In this part, we consider certain types of discrete random variables.

Definition 2.1. Let � be a random variable on the probability space .˝;A ; P r/. If
˝ D f!1; !2; : : :g is a set combined with finite or infinite discrete elements, where
Prf! D !i g D pi and

P1
iD1 pi D 1, then � is called the discrete random variable.

From the above definition, we know that a discrete random variable � is a
mapping from the discrete probability space ˝ to the real space R.

Example 2.1. Let˝ D f1; 2; 3; 4g be the probability space and Prf!i D ig D 0:25,
i D 1; : : : ; 4. If �.!i / D 1=!i , then � is a discrete random variable.

Intuitively, we want to know what is the distribution of a discrete random
variable. The following equation is usually used to describe the distribution,

�
�.!1/ �.!2/ � � � �.!n/

p1 p2 � � � pn

�

In the following part, three special discrete random variables will be introduced.
As we know, in the trial of tossing a coin, the probabilities of the front and the

back are all 0.5. Then we denote that !1 D ‘Front’ and !2 D ‘Back’ and let � be a
mapping from f!1; !2g to f0; 1g satisfying �.!1/ D 1 and �.!2/ D 0.

Definition 2.2. (Binomial random variable) Suppose that n independent trials, each
of which results in a “success” with probability p, are to be performed. If � repre-
sents the number of successes that occur in the n trials, then � is said to be a binomial
random variable with parameters .n; p/. Its probability mass function is given by

Prf� D ig D
�
n

i

�
pi .1 � p/n�i ; i D 0; 1; : : : ; n (2.1)

where �
n

i

�
D nŠ

i Š.n � i/Š
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is the binomial coefficient, equal to the number of different subsets of i elements
that can be chosen from a set of n elements. Obviously, in this example, ˝ has n
elements combined with the natural number i D 1; 2; : : : ; n.

Since we assume that all trials are independent with each other, then the prob-
ability of any particular sequence of outcomes results in i successes and n � i
failures. Furthermore, it can be seen that (2.1) is valid since there are

�
n

i

�
dif-

ferent sequences of the n outcomes that result in i successes and n � i failures,

which can be seen by noting that there are

�
n

i

�
different choices of the i trials that

result in successes.

Definition 2.3. A binomial random variable .1; p/ is called a Bernoulli random
variable.

Since a binomial .n; p/ random variable � represents the number of successes in
n independent trials, each of which results in a success with probability p, we can
represent it as follows:

� D
nX

iD1

�i (2.2)

where

�i D
�
1; if the i th trial is a success
0; otherwise

The following recursive formula expressing piC1 in terms of pi is useful when
computing the binomial probabilities:

piC1 D nŠ

.n � i � 1/Š.i C 1/Šp
iC1.1 � p/n�i�1

D nŠ.n � i/
.n � i/Ši Š.i C 1/p

i .1 � p/n�i
p

1 � p
D n � i
i C 1

p

1 � ppi :

Definition 2.4. (Poisson random variable) A random variable � that takes on one
of the values 0; 1; 2; : : : is said to be a Poisson random variable with parameter �,
� > 0, if its probability mass function is given by

pi D Prf� D ig D e���
i

i Š
; i D 1; 2; : : : (2.3)
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The symbol e, defined by e D lim
n!1.1C1=n/

n, is a famous constant in mathematics

that is roughly equal to 2.7183.
Poisson random variables have a wide range of applications. One reason for this

is that such random variables may be used to approximate the distribution of the
number of successes in a large number of trials (which are either independent or
at most “weakly dependent”) when each trial has a small probability of being a
success. To see why this is so, suppose that � is a binomial random variable with
parameters .n; p/, and so represents the number of successes in n independent trials
when each trial is a success with probability p, and let � D np. Then

Prf� D ig D nŠ

.n � i/Š � i Šp
i .1 � p/n�i

D nŠ

.n � i/Š � i Š
�
�

n

�i �
1 � �

n

�n�i

D n.n � 1/ � � � .n � i C 1/
ni

� �
i

i Š
� .1 � �=n/

n

.1 � �=n/i

Now for n large and p small,

lim
n!1

�
1 � �

n

�n

! e��;

lim
n!1

n.n � 1/ � � � .n � i C 1/
ni

! 1;

lim
n!1

�
1 � �

n

�i

! 1:

Hence, for n large and p small,

Prf� D ig � e���
i

i Š
:

To compute the Poisson probabilities we make use of the following recursive
formula:

piC1

pi

D
e���.iC1/

.iC1/Š

e���i

i Š

D �

i C 1

or equivalently,

piC1 D �

i C 1pi ; i � 0:
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Consider independent trials, each of which is a success with probability p. If �
represents the number of the first trial that is a success, then

Prf� D ng D p.1 � p/n�1 (2.4)

which is easily obtained by noting that in order for the first success to occur on the
nth trial, the first n � 1 must all be failures and the nth success. Equation (2.4) is
said to be a geometric random variable with parameter p.

If we let � denote the number of trials needed to amass a total of r successes
when each trial is independently a success with probability p, then � is said to
be a negative binomial, sometimes called a Pascal random variable with parameters
p and r . The probability mass function of such a random variable is given as follows,

Prf� D ng D
�
n � 1
r � 1

�
pr.1 � p/n�r ; n � r (2.5)

To see why (2.5) is valid note that in order for it to take exactly n trials to amass
r successes, the first n � 1 trials must result in exactly r � 1 successes, and the

probability of this is

�
n � 1
r � 1

�
pr .1�p/n�r , and then the nth trial must be a success,

and the probability of this is p.
Consider an urn containing N CM balls, of which N are light colored and M

are dark colored. If a sample of size n is randomly chosen (in the sense that each of

the

�
N CM
n

�
subsets of size n is equally likely to be chosen) then �, the number

of light colored balls selected, has probability mass function,

Prf� D ig D

�
N

i

��
M

n � i
�

�
N CM
n

� :

A random variable � whose probability mass function is given by the preceding
equation is called a hypergeometric random variable.

2.2.2 Continuous Random Variable

In this part, we consider certain types of continuous random variables.

Definition 2.5. (Uniform random variable) A random variable � is said to be uni-
formly distributed over the interval .a; b/, a < b, if its probability density function
is given by
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f .x/ D
8<
:

1

b � a ; if a < x < b;

0; otherwise.

In other words, � is uniformly distributed over .a; b/ if it puts all its mass on that
interval and it is equally likely to be “near” any point on that interval.

The distribution function of � is given, for a < x < b, by

F.x/ D Prf� � xg D
Z x

a

.b � a/�1dx D x � a
b � a :

Definition 2.6. (Normal random variable) A random variable � is said to be nor-
mally distributed with mean � and variance �2 if its probability density function is
given by

f .x/ D 1p
2��

e�.x��/2=2�2

; �1 < x <1:

The normal density is a bell-shaped curve that is symmetric about �.
An important fact about normal random variables is that if � is normal with

mean � and variance �2, then for any constants a and b, a� C b is normally dis-
tributed with mean a�Cb and variance a2�2. It follows from this that if � is normal
with mean � and variance �2, then


 D � � �
�

is normal with mean 0 and variance 1. Such a random variable 
 is said to have a
standard (or unit) normal distribution. Let ˚ denote the distribution function of a
standard normal random variable, that is

˚.x/ D 1p
2�

Z x

�1
e�x2=2dx; �1 < x <1:

The result that 
 D .� � �/=� has a standard normal distribution when � is
normal with mean � and variance �2 is quite useful because it allows us to evaluate
all probabilities concerning � in terms of ˚ . For example, the distribution function
of � can be expressed as

F.x/ D Prf� � xg

D Pr

�
� � �
�
� x � �

�

�

D Pr
n

 � x � �

�

o
D ˚

�x � �
�

�
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The value of ˚.x/ can be determined either by looking it up in a table or by
writing a computer program to approximate it. For a in the interval .0; 1/, let 
a be
such that

Prf
 > 
ag D 1 �˚.
a/ D a:

That is, a standard normal will exceed 
a with probability a. The value of 
a can be
obtained from a table of the values of ˚ . For example, since

˚.1:64/ D 0:95; ˚.1:96/ D 0:975; ˚.2:33/ D 0:99;

we see that


0:05 D 1:64; 
0:025 D 1:96; 
0:01 D 2:33:

The wide applicability of normal random variables results from one of the most
important theorems of probability theory – the central limit theorem, which asserts
that the sum of a large number of independent random variables has approximately
a normal distribution.

Definition 2.7. (Exponential random variable) A continuous random variable hav-
ing probability density function,

f .x/ D
�
�e��x; 0 � x <1;
0; otherwise.

for some � > 0 is said to be an exponential random variable with parameter �.

Its cumulative distribution is given by

F.x/ D
Z x

0

�e��xdx D 1 � e��x; 0 < x <1:

The key property of exponential random variables is that they possess the
“memoryless property”, where we say that the nonnegative random variable � is
memoryless if

Prf� > s C t j� > sg D Prf� > tg; for all s; t � 0: (2.6)

To understand why the above is called the memoryless property, imagine that �
represents the lifetime of some unit, and consider the probability that a unit of age
s will survive an additional time t . Since this will occur if the lifetime of the unit
exceeds t C s given that it is still alive at time s, we see that

Prfadditional life of an item of age s exceeds tg D Prf� > s C t j� > sg:



44 2 Random Multiple Objective Decision Making

Thus, (2.6) is a statement of fact that the distribution of the remaining life of an item
of age s does not depend on s. That is, it is not necessary to remember the age of
the unit to know its distribution of remaining life. Equation (2.6) is equivalent to

Prf� > s C tg D Prf� > sgPrf� > tg:
As the above equation is satisfied whenever � is an exponential random vari-

able – since, in this case, Prf� > xg D e��x – we see that exponential random
variables are memoryless (and indeed it is not difficult to show that they are the
only memoryless random variables).

Another useful property of exponential random variables is that they remain
exponential when multiplied by a positive constant. To see this suppose that � is
exponential with parameter �, and let c be a positive number. Then

Prfc� � xg D Pr
n
� � x

c

o
D 1 � e��x=c;

which shows that c� is exponential with parameter �=c.
Let �1; �2; : : : ; �n be independent exponential random variables with respective

rates �1; �2; : : : ; �n. A useful result is that minf�1; �2; : : : ; �ng is exponential with
rate

P
i �i and is independent of which one of the �i is the smallest. To verify this,

let M D minf�1; �2; : : : ; �ng. Then

Pr

�
�j D min

i
�i jM > t

�
D Prf�j � t D min

i
.�i � t/jM > tg

D Prf�j � t D min
i
.�i � t/j�i > t; i D 1; 2; : : : ; ng

D Prf�j D min
i
�i g:

The final equality follows because, by the lack of memory property of expo-
nential random variables, given that �i exceeds t , the amount by which it exceeds
it is exponential with rate �i . Consequently, the conditional distribution of �1 �
t; : : : ; �n�t given that all the �i exceed t is the same as the unconditional distribution
of �1; : : : ; �n. Thus,M is independent of which of the �i is the smallest.

The result that the distribution ofM is exponential with rate
P

i �i follows from

PrfM > tg D Prf�i > t; i D 1; 2; : : : ; ng D
nY

iD1

Prf�i > tg D e
�

nP
iD1

�i t

:

The probability that �j is the smallest is obtained from

Prf�j D M g D
Z

Prf�j D M j�j D tg�j e
��j t dt

D
Z

Prf�j > t; i 6¤ j j�j D tg�j e
��j t dt

D
Z

Prf�j > t; i 6¤ j g�j e
��j t dt
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D
Z 0
@Y

i 6¤j

e��i t

1
A e��j t dt

D �j

Z
e

�P
i

�i t

dt

D �jP
i �i

There are also other special random variables following other distribution, read-
ers can refer to the related literatures and we don’t introduce here.

2.3 Random EVM

The expectation of a random variable is a central concept in the study of probabil-
ity. It is the average of all possible values of a random variable, where a value is
weighted according to the probability that it will appear. The expectation is some-
times also called average. It is also called the expected value or the mean of the
random variable. These terms are all synonymous. The so-called expected value
model (EVM) means to optimize some expected objective functions subject to some
expected constraints, for example, minimizing expected cost, maximizing expected
profit, and so on.

2.3.1 General Model for Random EVM

Now let us recall the well-known newsboy problem [206] in which a boy operating
a news stall has to determine the number x of newspapers to order in advance from
the publisher at a cost of c per one newspaper every day. It is known that the selling
price is a per one newspaper. However, if the newspapers are not sold at the end
of the day, then the newspapers have a small value of b per one newspaper at the
recycling center. Assume that the demand for newspapers is denoted by � in a day,
then the number of newspapers at the end of the day is clearly x � � if x > � or 0 if
x < �. Thus the profit of the newsboy should be

f .x; �/ D
(
.a � c/x; if x � �
.b � c/x C .a � b/�; if x > �

(2.7)

In practice, the demand � for newspapers is usually a stochastic variable, so is
the profit function f .x; �/. Since we cannot predict how profitable the decision of
ordering x newspapers will actually be, a natural idea is to employ the expected
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profit, shown as follows,

EŒf .x; �/� D
Z x

0

Œ.b � c/x C .a � b/r�dF.r/C
Z C1

x

.a � c/xdF.r/ (2.8)

whereE denotes the expected value operator and F.�/ is the distribution function of
demand �. The newsboy problem is related to determining the optimal integer num-
ber x of newspapers such that the expected profit EŒf .x; �/� achieves the maximal
value, i.e.,

�
maxEŒf .x; �/�
s.t.x � 0; integers

(2.9)

This is a typical example of an expected value model.
Then we firstly should give the basic definition of the expected value. For the

discrete random variable, we can define its expected value as follows.

Definition 2.8. Let � be a discrete random variable on the probability .˝;A ; P r/

as follow,

�.!/ D
8<
:
x1 if ! D !1

x2 if ! D !2

� � � � � �
(2.10)

where the probability of ! D !i .i D 1; 2; : : :/ is pi . If the series
P

!2˝ �.!i /

Prf! D !ig is absolutely convergent, then we call it the expected value of �, denoted
by EŒ��.

For the continuous random variable, its expected value can be defined as follows.

Definition 2.9. (Durrett [91]) Let � be a random variable on the probability space
.˝;A ; P r/. Then the expected value of � is defined by

EŒ�� D
Z C1

0

Prf� � rgdr �
Z 0

�1
Prf� � rgdr (2.11)

There is another equivalent definition by the density function.

Definition 2.10. (Durrett [91]) The expected value of a random variable � with
probability density function f .x/ is

EŒ�� D
Z C1

�1
xf .x/dx (2.12)

Expected value, average and mean are the same thing, but median is entirely
different. The median is defined below, but only to make the distinction clear. After
this, we won’t make further use of the median.
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Definition 2.11. (Durrett [91]) The median of a random variable � is the unique
value r in the range of � such that Prf� < rg � 1=2 and Prf� > rg < 1=2.

For example, with an ordinary die, the median thrown value is 4, which not the
same as the mean 3.5. The median and the mean can be very far apart. For example,
consider a 2n-side die, with n 0s and 100s. The mean is 50, and the median is 100.

To deeply understand random variables, the variance of a random variable is
given as follows.

Definition 2.12. (Durrett [91]) The variance of a random variable � is defined by

V Œ�� D EŒ.� �EŒ��/2�:

The following properties about the expected value and variance of a random variable
are very useful to the decision making problems with random parameters [91].

Lemma 2.1. Let � and � be random variables with finite expected values. Then for
any numbers a and b, we have

EŒa� C b�� D aEŒ��C bEŒ�� (2.13)

Lemma 2.2. For two independent random variables � and �, we have

EŒ��� D EŒ��EŒ�� (2.14)

Lemma 2.3. For the random variable �, we have

V Œ�� D EŒ�2� � .EŒ��/2 (2.15)

and for a; b 2 R, we have
V Œa� C b� D a2V Œ�� (2.16)

Let’s consider the typical single objective with random parameters,

8<
:

maxf .x; �/

s.t.

�
gj .x; �/ � 0; j D 1; 2; : : : ; p
x 2 X

(2.17)

where f .x; �/ and gj .x; �/; j D 1; 2 : : : ; p are continuous functions in X and
� D .�1; �2; : : : ; �n/ is a random vector on the probability space .˝;A ; P r/. Then
it follows from the expected operator that,

8<
:

maxEŒf .x; �/�

s.t.

�
EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
x 2 X

(2.18)
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After being dealt with by expected value operator, the problem (2.17) has been con-
verted into a certain programming and then decision makers can easily obtain the
optimal solution. However, whether the problem (2.18) has optimal solutions is a
spot which decision makers pay more attention to, then its convexity is the focus we
will discuss in the following part.

Definition 2.13. x is said to be a feasible solution of problem (2.18) if and only if
EŒgj .x; �/� � 0 .j D 1; 2; : : : ; p/. For any feasible solution x, if EŒf .x�; �/� �
EŒf .x; �/�, then x� is an optimal solution of problem (2.18).

A mathematical programming model is called convex if both the objective func-
tion and the feasible set are convex. For the expected value model (2.18), we have
the following result on convexity.

Theorem 2.1. Assume that, for each �, the functions f .x; �/ and gj .x; �/, j D
1; 2; : : : ; p are convex in X . Then the expected value model (2.18) is a convex
programming.

Proof. For each �, since the function f .x; �/ is convex in X , we have

f .�x1 C .1 � �/x2; �/ � �f .x1; �/C .1 � �/f .x2; �/;

for any given solutions x1, x2 and any scalar � 2 Œ0; 1�. It follows from the expected
value operator that

EŒf .�x1 C .1 � �/x2; �/� � �EŒf .x1; �/�C .1 � �/EŒf .x2; �/�;

which proves the convexity of the objective functionEŒf .x; �/� in X .
Let us prove the convexity of the feasible set by verifying that �x1C.1��/x2 is

feasible for any feasible solutions x1, and x2 constrained by EŒgj .x; �/� � 0, j D
1; 2; : : : ; p and any scalar � 2 Œ0; 1�. By the convexity of the functions gj .x; �/,
j D 1; 2; : : : ; p, we know that

gj .�x1 C .1 � �/x2; �/ � �gj .x1; �/C .1� �/gj .x2; �/;

which yields that

EŒgj .�x1 C .1� �/x2; �/� � �EŒgj .x1; �/�C .1 � �/EŒgj .x2; �/�;

for j D 1; 2; : : : ; p. It follows that �x1 C .1 � �/x2 is a feasible solution. Hence
the feasible set is convex. This completes the proof. ut

In many cases, there are usually multiple objectives which decision makers must
consider. Thus we have to employ the following expected value model (EVM),

8<
:

maxŒEŒf1.x; �/�; EŒf2.x; �/�; : : : ; EŒfm.x; �/��

s.t.

�
EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
x 2 X

(2.19)
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where fi .x; �/ are return functions for i D 1; 2; : : : ; m: � D .�1; �2; : : : ; �n/ is a
random vector on probability space .˝;A ; P r/.

Definition 2.14. x� is the Pareto solution of problem (2.19), if there doesn’t exist
feasible solutions x such that

EŒfi .x; �/� � EŒfi .x
�; �/�; i D 1; 2; : : : ; m

and there exists at least one j.j D 1; 2; : : : ; m/ such that EŒfj .x; �/� >

EŒfj .x
�; �/�.

We can also formulate a stochastic decision system as an expected value goal
model (EVGM) according to the priority structure and target levels set by the
decision maker:8̂̂

ˆ̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂:

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8̂̂<
ˆ̂:
EŒfi .x; �/�C d�

i � dC
i D bi ; i D 1; 2; : : : ; m

EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
d�

i ; d
C
i � 0; i D 1; 2; : : : ; m

x 2 X

(2.20)

where Pj is the preemptive priority factor which expresses the relative importance
of various goals, Pj >> Pj C1, for all j , uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, vij is the weighting factor
corresponding to negative deviation for goal i with priority j assigned, dC

i is the
positive deviation from the target of goal i , defined as

dC
i D ŒEŒfi .x; �/� � bi � _ 0;

d�
i is the negative deviation from the target of goal i , defined as

d�
i D Œbi � EŒfi .x; �/�� _ 0;

fi is a function in goal constraints, gj is a function in real constraints, bi is the
target value according to goal i , l is the number of priorities, m is the number of
goal constraints, and p is the number of real constraints.

2.3.2 Linear Random EVM and the Weight Sum Method

Generally, many uncertain problems cannot be directly converted into crisp ones
unless they have favorable properties and their random parameters have crisp distri-
bution. For those which cannot be directly transformed, Monte Carlo simulation



50 2 Random Multiple Objective Decision Making

is a useful tool to deal with them. Next, we will exhibit some examples which
can be converted into crisp models. Let’s consider the following linear random
multi-objective programming (hereby, the linear relation is the relation among the
coefficients Nci or Ner , and the linearity and non-linearity in the following parts aims
at this relationship),

8̂<
:̂

max
� NcT

1 x; NcT
2 x; : : : ; NcT

mx
�

s.t.

� NeT
r x � Nbr ; r D 1; 2; : : : ; p

x � 0
(2.21)

where x 2 X � Rn, Nci D . Nci1; Nci2; : : : ; Ncin/
T , Ner D . Ner1; Ner2; : : : ; Nern/

T are
random vectors, and Nbr are random variables, i D 1; 2; : : : ; m, r D 1; 2; : : : ; p.

Because of the existence of some random parameters Nci , Ner and Nbr , we cannot
easily obtain its optimal solutions. Then we can obtain the following expected value
model of problem (2.21),

8̂<
:̂

max
�
EŒ NcT

1 x�; EŒ NcT
2 x�; : : : ; EŒ NcT

mx�
�

s.t.

�
EŒ NeT

r x� � EŒ Nbr �; r D 1; 2; : : : ; p
x � 0

(2.22)

2.3.2.1 Crisp Equivalent Model

One way to solve the expected value model is to convert it into crisp equivalent
model, and then deal with it by the multi-objective programming technique.

Theorem 2.2. Assume that random vectors Nci D . Nci1; Nci2; : : : ; Ncin/
T is normally

distributed with mean vectors �c
i D .�c

i1; �
c
i2; : : : ; �

c
in/

T and positive definite
covariance matrix V c

i , written as Nci � N .�c
i ; V

c
i /.i D 1; 2; : : : ; m/ and random

vectors Ner � N .�e
r ; V

e
i /,
Nbr � N .�b

r ; .�
b
r /

2/ .r D 1; 2; : : : ; p/. Assume that
for any i D 1; 2; : : : ; m, j D 1; 2; : : : ; n and r D 1; 2; : : : ; p, Ncij , Neij and Nbij are
independently random variables. Then problem (2.22) is equivalent to

8̂<
:̂

max
�
�cT

1 x; �cT
2 x; : : : ; �cT

m x
�

s.t.

�
�eT

r x � �b
r ; r D 1; 2; : : : ; p

x � 0
(2.23)

Proof. Since random vector Nci is normally distributed on .˝;A ; P r/ and Nci �
N .�c

i ; V
c

i /.i D 1; 2; : : : ; m/, then

NcT
i x D

nX
j D1

xj Ncij �N

0
@ nX

j D1

xj�
c
ij ;x

TV c
i x

1
A D N .�cT

i x;xT V c
i x/;
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so EŒ NcT
i x� D �cT

i x. Similarly, we obtain

EŒ NeT
r x� D �eT

r x; EŒ Nbr � D �b
r ; r D 1; 2; : : : ; p;

then it follows that problem (2.22) is equivalent to

8̂<
:̂

max
�
�cT

1 x; �cT
2 x; : : : ; �cT

m x
�

s.t.

�
�eT

r x � �b
r ; r D 1; 2; : : : ; p

x � 0

This completes the proof. ut
Theorem 2.3. Assume that random vector Nci D . Nci1; Nci2; : : : ; Ncin/

T is exponen-
tially distributed, written as Ncij � exp.�c

ij / .i D 1; 2; : : : ; m; j D 1; 2; : : : ; n/

and random variable Nerj � exp.�e
rj /,
Nbr � exp.�b

r / .r D 1; 2; : : : ; p; j D
1; 2; : : : ; n/. Then problem (2.22) is equivalent to

8̂̂̂
<
ˆ̂̂:

max
�
�cT

1 x; �cT
2 x; : : : ; �cT

m x
�

s.t.

8<
:�

eT
r x � 1

�b
r

; r D 1; 2; : : : ; p
x � 0

(2.24)

where �c
i D

�
1

�c
i1

; 1
�c

i2

; : : : ; 1
�c

in

�T

and �e
i D

�
1

�e
r1

; 1
�e

r2

; : : : ; 1
�e

rn

�T

.

Proof. Since random variables Ncij are exponentially distributed on the probability
space .˝;A ;Pr/ and Ncij � exp.�c

ij / .i D 1; 2; : : : ; m, j D 1; 2; : : : ; n/, then it
follows from Theorem 2.1 that

EŒ NcT
i x� D E

2
4 nX

j D1

xj Ncij

3
5 D nX

j D1

xjEŒ Ncij � D
nX

j D1

xj =�
c
ij D �cT

i x;

where �c
i D . 1

�c
i1

; 1
�c

i2

; : : : ; 1
�c

in

/T , i D 1; 2; : : : ; m. Similarly, we have

EŒ NeT
r x� D �eT

r x; EŒ Nbr � D 1

�b
r

where �e
r D . 1

�e
r1

; 1
�e

r2

; : : : ; 1
�e

rn
/T , r D 1; 2; : : : ; p. Then problem (2.22) is

equivalent to

8̂̂
<̂
ˆ̂̂:

max
�
�cT

1 x; �cT
2 x; : : : ; �cT

m x
�

s.t.

8<
:�

eT
r x � 1

�b
r

; r D 1; 2; : : : ; p
x � 0
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where �c
i D

�
1

�c
i1

; 1
�c

i2

; : : : ; 1
�c

in

�T

and �e
r D

�
1

�e
r1

; 1
�e

r2

; : : : ; 1
�e

rn

�T

. This completes

the proof. ut
We just take the normal distribution and the exponential distribution as examples,

and readers can get the similar results when random parameters are subject to other
distributions. If there are more than two different distributions in the same problem,
readers can also deal with it by the expected value operator and convert it into the
crisp one.

2.3.2.2 The Weight Sum Method

In this section, we will introduce the weight sum method to solve the multi-
objective problem (2.23) and (2.24). Take the problem (2.23) as an example. Let
Hi .x/ D �cT

1 x; i D 1; 2; : : : ; m and X D fxj�eT
r x � �b

r ;x � 0; r D
1; 2; : : : ; pg, then the problem (2.77) can be rewritten as,

�
max ŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t. x 2 X (2.25)

The weight sum method is one of the techniques which are broadly applied to solve
the multi-objective programming problem. Assume that the related weight of the
objective function Hi .x/ is wi such that

Pm
iD1 wi D 1 and wi � 0. Construct the

evaluation function as follows,

u.H .x// D
mX

iD1

wiHi .x/ D wT H .x/;

where wi expresses the importance of the object Hi .x/ for DM. Then we get the
following weight problem,

max
x2X

u.H .x// D max
x2X

mX
iD1

wiHi .x/ D max
x2X

wT H .x/ (2.26)

Let Nx be an optimal solution of the problem (2.26), we can easily deduce that if
w > 0, Nx is an efficient solution of the problem (2.25). By changing w, we can
obtain a set composed of the efficient solutions of the problem (2.25) by solving the
problem (2.26).

2.3.3 Nonlinear Random EVM and Random
Simulation-Based SA

For some complex problems, it is usually difficult to convert them into crisp
ones and obtain their expected values. For example, let’s consider the problem:
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maxx2X EŒ
p
.x1 � �1/2 C .x2 � �2/2�, where �1 is a uniformly distributed random

variable and �2 is a normally distributed random variable. As we know, it is almost
impossible to convert it into a crisp one. Thus, an intelligent algorithm should be
provided to solve it. The technique of stochastic simulation-based SA is a useful
and efficient tool when dealing with them. Let’s consider the following random
multi-objective problem,8̂<

:̂
maxŒEŒf1.x; �/�; EŒf2.x; �/�; : : : ; EŒfm.x; �/��

s.t.

�
EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
x 2 X

where fi .x; �/ or gj .x; �/ or both of them are nonlinear with respect to �, i D
1; 2; : : : ; m, j D 1; 2; : : : ; p. � D .�1; �2; : : : ; �n/ is a random vector on probability
space .˝;A ;Pr/. Because of the existence of the nonlinear functions, we cannot
usually convert it into the crisp one. Then we have to apply the technique of the
random simulation (Monte Carlo Simulation) to compute its expected value.

2.3.3.1 Random Simulation for EVM

Let � be an n-dimensional random vector defined on the probability space
.˝;A ;Pr/ (equivalently, it is characterized by a probability distribution F.�/),
and f W Rn ! R a measurable function. Then f .x; �/ is also a random variable.
In order to calculate the expected value EŒf .x; �/� for given fxg, we generate
!k from ˝ according to the probability measure P r , and write �k D �.!k/ for
k D 1; 2; : : : ; N , where !k D .!1

k
; : : : ; !n

k
/ is an n-dimensional vector and !j

k

is generated according to the random variable �k . Equivalently, we generate ran-
dom vectors �k , k D 1; 2; : : : ; N according to the probability distribution F.�/. It
follows from the strong law of large numbers that

NP
kD1

f .x; �k/

N
! EŒf .x; �/�;

as N ! 1. Therefore, the value EŒf .x; �/� can be estimated by 1
N

NP
kD1

f .x; �k/

provided that N is sufficiently large. Then the procedure simulating the expected
value of the function f .x; �/ can be summarized as follows:

Procedure Random simulation for EVM
Input: The decision vector x

Output: The expected value EŒf .x; �/�
Step 1. Set L D 0;
Step 2. Generate !k from˝ according to the probability measure Pr,
k D 1; 2; : : : ; N ;
Step 3. L LC f .x; �k/;
Step 4. Repeat the second and third steps N times;
Step 5. Return EŒf .x; �/� D L=N .
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Example 2.2. Let �1 be an exponentially distributed variable exp.1/, �2 a nor-
mally distributed variable N .3; 1/, and �3 a uniformly distributed variable U .0; 1/.

A run of stochastic simulation with 10000 cycles shows that EŒ
q
�2

1 C �2
2 C �2

3 � D
3:3566.

2.3.3.2 Simulated Annealing Algorithm

Simulated annealing algorithm (abbr. SA) are proposed by Kirkpatrick et al. [160,
161] for the problem of finding, numerically, a point of the global minimum of a
function defined on a subset of a n-dimensional Euclidean space. The name of the
algorithm derived from an analogy between the simulation of the annealing of solid
first proposed by Metropolis et al. [218] and the strategy of solving combinatorial
optimization problems. The motivation of the methods lies in the physical process
of annealing, in which a solid is heated to a liquid state and, when cooled suffi-
ciently slowly, takes up the configuration with minimal inner energy. Metropolis
et al. [218] described this process mathematically. Simulating annealing uses this
mathematical description for the minimization of other functions than the energy.
The first results have been published by C̆erný [39], Kirkpatrick et al. [160,161] and
Geman and Geman [107]. For a related earlier result, see Hasminskij [232]. Most
of the early considerations concern minimization of functions defined on a finite
set. Kushner [179] and Gelfand and Mitter [106] obtained results for functions with
infinite domains. Laarhoven and Aarts [183], and Laarhoven [182] are monographs
on simulated annealing. Steel [302], in a review of [182], calls simulated annealing
the most exciting algorithmic development of the decade.

Annealing, physically, refers to the process of heating up a solid to a high tem-
perature followed by slow cooling achieved by decreasing the temperature of the
environment in steps. At each step the temperature is maintained constant for a
period of time sufficient for the solid to reach thermal equilibrium. At equilibrium,
the solid could have many configurations, each corresponding to different spins of
the electrons and to specific energy level. Simulated annealing is a computational
stochastic technique for obtaining near global optimum solutions to combinatorial
and function optimization problems. The method is inspired from the thermody-
namic process of cooling (annealing) of molten metals to attain the lowest free
energy state. When molten metal is cooled slowly enough it tends to solidify in
a structure of minimum energy. This annealing process is mimicked by a search
strategy. The key principle of the method is to allow occasional worsening moves so
that these can eventually help locate the neighborhood to the true (global) minimum.
The associated mechanism is given by the Boltzmann probability, namely,

probability .p/ D exp

��4E
KBT

�
; (2.27)

where 4E is the change in the energy value from one point to the next, KB is the
Boltzmanns constant and T is the temperature (control parameter). For the purpose
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of optimization the energy term,4E refers to the value of the objective function and
the temperature, T , is a control parameter that regulates the process of annealing.
The consideration of such a probability distribution leads to the generation of a
Markov chain of points in the problem domain. The acceptance criterion given by
(2.27) is popularly referred to as the Metropolis criterion [218]. Another variant
of this acceptance criterion (for both improving and deteriorating moves) has been
proposed by Galuber [113] and can be written as

probability .p/ D exp.�4E=T /
1C exp.�4E=T / (2.28)

In simulated annealing search strategy: at the start any move is accepted. This allows
us to explore solution space. Then, gradually the temperature is reduced which
means that one becomes more and more selective in accepting new solution. By
the end, only the improving moves are accepted in practice. The temperature is sys-
tematically lowered using a problem-dependent schedule characterized by a set of
decreasing temperatures.

Next, we introduce the general framework for the simulated annealing algorithm.
The standard SA technique makes the analogy between the state of each molecule
that determines the energy function and the value of each parameter that affects the
objective functions. It then uses the statistical mechanics principle for energy min-
imization to minimize the objective function and optimize the parameter estimates.
Starting with a high temperature, it randomly perturbs the parameter values and cal-
culates the resulting objective function. The new state of objective function after
perturbation is then accepted by a probability determined by the Metropolis crite-
rion. The system temperature is then gradually reduced as the random perturbation
proceeds, until the objective function reaches its global or nearly global minimum.
A typical SA algorithm is described as follows (Fig. 2.2):

Step 1. Specify initial temperature Tk D T0 for k D 0; randomly initialize the
parameter set estimate �� D �0.

Step 2. Under kth temperature, if the inner loop break condition is met, go to
step 3; otherwise, for .j C 1/th perturbation, randomly produce a new parameter
set �j C1, compute the change in objective function 4f D f .��/ � f .�j C1/. If
4f � 0, accept �j C1.�

� D �j /; if not, follow the Metropolis criterion to accept
�j C1 with a probability of min.1; e�4f=Tk / and step 2 continues.

Step 3. Reduce Tk to TkC1 following a specified cooling schedule. If outer loop
break condition is met, computation stops and optimal parameter set is reached; if
not, return back to step 2.

The steps outlined above consist of one inner loop (step 2) and one outer loop
(step 3). The proceeding of SA is mainly controlled by (1) the choice of T0; (2) the
way a new perturbation is generated; (3) the inner loop break conditions; (4) the
choice of cooling schedule; and (5) the outer loop break conditions. The pseudo-
code can be seen in Table 2.1.

For the multiobjective optimization problem, many researchers have pro-
posed many kinds of SA algorithms to obtain the Pareto-optimal solutions.
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Fig. 2.2 The flow chart of
modified SA algorithm
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Check
min{1,exp[–Δf /Tk]}

≥ RND(0, 1)

Table 2.1 Simulated annealing algorithm in pseudo-code

Select an initial temperature T0 > 0;
Select an initial solution, S0, and make it the current solution, S , and the current best solution, S�;
repeat

set repetition counter n D 1;
repeat

generates solution Sn in the neighborhood of S ;
calculate � D f .Sn/� f .S/

if (� � 0/, then S D Sn
else S D Sn with probability of p D e��=T

if (f .Sn/ � f .S�//, then S� D Sn
n D n C 1;

until n > number of repetitions allowed at each temperature level (L);
reduce the temperature T;

until stop criterion is true.

Suppapitnarm et al. [307] has used the concept of archiving the Pareto-optimal
solutions coupled with return to base strategy to solve multiobjective problems with
simulated annealing. They use the objective function values but not the weight vec-
tor as an acceptance criterion after penalizing them and annealing temperature and
consider multiple annealing temperatures (usually one per objective). Therefore,
the key probability step can be given as:
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probability .p/ D min

 
1;

mY
iD1

exp

� �4si
Ti

�!
; (2.29)

where4si D fi .y/ � fi .x/, x is the current solution, y is the generated solution,
fi is the i th objective function, Ti is the i th annealing temperature and m is the
number of objective functions. On the other hand, the penalty function approach
can help us to convert the constrained problem to an unconstrained one.

Above all, the SA algorithm which is proposed to solve the multiobjective
programming problem(m objective functions and n decision variables) by Suppa-
pitnarm et al. [307] (abbr. SMOSA) can be summarized as follows:

Procedure The SMOSA algorithm

Input: The initial temperature T0

Output: The Pareto-solution x�
Step 1. Randomly generate a feasible x by random simulation and put x into a
Pareto set of solutions. Compute all objective values;
Step 2. Generate a new solution y in the neighborhood of x by the random
perturbation. Compute the objective values and apply the penalty function
approach to the corresponding objective functions, if necessary;
Step 3. Compare the generated solution with all solutions in the Pareto set and
update the Pareto set if necessary;
Step 4. Replace the current solution x with the generated solution y if y is
archived and go to Step 7;
Step 5. Accept the generated solution y as the current solution if it is not
archived with the probability:

probability .p/ D min

 
1;

mY
iD1

exp

� �4si
Ti

�!
;

where4si D fi .y/ � fi .x/. If the generated solution is accepted, replace x

with y and go to Step 7;
Step 6. If the generated solution as current solution vector by x D x and go to
Step 7;
Step 7. Periodically, restart with a randomly selected solution from the Pareto
set. While periodically restarting with the archived solutions, Suppapitnarm
et al. [307] have recommended biasing towards the extreme ends of the
trade-off surface;
Step 8. Periodically reduce the temperature using a problem-dependent
annealing schedule;
Step 9. Repeat steps 2–8, until a predefined number of iterations is carried out.

There are also many other SA algorithms designed to solve multiobjective
programming problems by many scholars. For example, Ulungu et al. [323, 324]
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proposed UMOSA to project the multidimensional objective space into a mono
dimensional space using weighed sum-scalarizing technique. Czyżak et al. [70]
and Czyżak and Jaszkiewicz [71] proposed the PSA algorithm which modified the
procedure Ulungu et al. [323] introduced by using the concept of interacting effi-
cient solutions which are obtained by combining unicriterion simulated annealing
and genetic algorithm. Suman [304, 305] proposed the WMOSA algorithm to han-
dle constraints with its main algorithm by using weight vector in the acceptance
criterion. Suman [306] also proposed the PDMOSA algorithm which uses the
fitness value in the acceptance criteria to handle the multiobjective optimization
problems. We consider only the random simulation-based SMOSA in this book
and readers can find more detail about the multiobjective optimization problem
solved by SA in [306].

2.3.4 Numerical Examples

Example 2.3. Let’s consider the following programming problem,

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

max f1.x; �/ D 3�1x1 � 2�2x2 C 1:3�3x3

max f2.x; �/ D �2:5�1x1 C 3�2x2 C 5�3x3

s.t.

8<
:
x1 C x2 C x3 � 10
3x1 C 5x2 C 3x3 � 4
x1; x2; x3 � 0

(2.30)

where �1 is a random variable with 0–1 distribution, Prf�1 D 1g D 0:8, �2 �
B.20; 0:6/ is a binomially distributed random variable and �3 � P.5/ is a poisson
distributed random variable. Since there are uncertain variables in objective func-
tions, we usually aims at the expected values of objective functions, then problem
(2.30) can be rewritten as8̂̂̂

ˆ̂<
ˆ̂̂̂̂:

max EŒf1.x; �/� D EŒ3�1x1 � 2�2x2 C 1:3�3x3�

max EŒf2.x; �/� D EŒ�2:5�1x1 C 3�2x2 C 5�3x3�

s.t.

8<
:
x1 C x2 C x3 � 10
3x1 C 5x2 C 3x3 � 4
x1; x2; x3 � 0

(2.31)

Then we have

EŒ�1� D 0:8; EŒ�2� D 12; EŒ�3� D 5

It follows from the linearity of expected value operator that, (2.31) can be
rewritten as
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Table 2.2 The optimal solution of expected value model

w1 w2 x1 x2 x3 H1.x
�/ H2.x

�/

0.1 0.9 0 10 0 �240 360
0.2 0.8 0 10 0 �240 360
0.3 0.7 0 0 10 65 250
0.4 0.6 0 0 10 65 250
0.5 0.6 0 0 10 65 250

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

maxH1.x/ D 2:4x1 � 24x2 C 6:5x3

maxH2.x/ D �2x1 C 36x2 C 25x3

s.t.

8<
:
x1 C x2 C x3 � 10
3x1 C 5x2 C 3x3 � 4
x1; x2; x3 � 0

(2.32)

Let’s firstly obtain the weight by solving H 0
i D maxx2X Hi .x/ and wi D H 0

i =

.H 0
1 CH 0

2 /. Then we get

H 0
1 D 65:00; H 0

2 D 360:00
w1 D 0:153; w2 D 0:847

Then we obtain the optimal solution x� D .0; 10:00; 0/T and H1.x
�/ D �240 and

H2.x
�/ D 360.

By changing the weight, we can get different solutions under different weights
as shown in Table 2.2.

Example 2.4. Consider the following programming problem,

8̂̂<
ˆ̂:

maxf1.x; �/ D
p
.�1 � x1/2 C .�2 � x2/2

maxf2.x; �/ D
p
.�1 C x1/2 C .�2 C x2/2

s.t.

�
x1 C x2 � 5
x1 � 0; x2 � 0

(2.33)

where �1 � N .2; 0:5/ is a normally distributed random variable and �2 � U .1; 2/

is also a normally distributed random variable. Then by the expected value operator,
we have 8̂̂̂

ˆ̂<
ˆ̂̂̂̂:

maxH1.x; �/ D E
hp
.�1 � x1/2 C .�2 � x2/2

i
maxH2.x; �/ D E

hp
.�1 C x1/2 C .�2 C x2/2

i
s.t.

�
x1 C x2 � 5
x1 � 0; x2 � 0

(2.34)

Next, we will use the random simulation-based SA to solve the above problem.
Set the initial temperature T0 D 500, the last temperature be 0 and the cooling
method be 1 decrement once. The neighborhood can be constructed as follows,
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x1
1 D x0

1 C rh; x1
2 D x0

2 C rh;

where r is a random number in (0,1) and h is the step length (here h D 2:0). After
the simulation with many cycles, we get the optimal solution under different weights
as shown in Table 2.3. Figure 2.3 shows the cooling process when the weight is 0.5.
The real line expresses the weight sum of two objective functions, and it shows that
it gradually converges from TD 360. Figure 2.4 shows the changes of two objective
values when the temperature decreases.

Table 2.3 The optimal solution by random simulation-based SA

w1 w2 x1 x2 H1.x/ H2.x/ H.x/ T0

0.1 0.9 2.2448 2.7160 1.4333 6.1385 5.6680 500
0.2 0.8 2.2823 0.0925 1.7342 6.4436 5.5017 500
0.3 0.7 0.1658 2.8159 2.5864 6.3471 5.2189 500
0.4 0.6 1.0663 1.1634 1.3053 6.1609 4.2187 500
0.5 0.5 0.0307 0.7439 1.3862 5.9708 3.6785 500

Fig. 2.3 The simulation
process of random
simulation-based SA 0 50 100 150 200 250 300 350 400 450 500
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Fig. 2.4 Two objective
values by random
simulation-based SA
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2.4 Random CCM

In 1959, Charnes and Cooper [45] developed another technique to deal with random
programming problems, that is chance-constrained model (CCM). It is a powerful
tool to help decision makers to make the decision in stochastic decision systems
with assumption that the random constrains will hold at least ˛ level value, where
˛ is referred to as the confidence level provided as an appropriate safety margin by
the decision maker.

This section will introduce some basic theories of chance-constrained model
including chance-constrained operator, basic model, chance-constrained multi-
objective model, and crisp equivalent model. Finally, the random simulation for
CCM and some numerical examples will be provided.

2.4.1 General Model for Random CCM

In practice, the goal of decision makers is to maximize the objective value on the
condition of probability ˛, where ˛ is predetermined confidence level. Next, we
will introduce the concept of the chance measure of random variables. The chance
measure of a random event is considered as the probability of the event f .x; �/� Nf .
Then the chance constraint is considered as Prff .x; �/ � Nf g � ˛, where ˛ is the
predetermined confidence level, and Nf is called the critical value. A natural idea is
to provide a confidence level ˛ at which it is desired that random constrains hold.
Let’s still consider the following model,

8<
:

maxf .x; �/

s.t.

�
gj .x; �/ � 0; j D 1; 2; : : : ; p
x 2 X

where f .x; �/ and gj .x; �/, j D 1; 2 : : : ; p are continuous functions in X and
� D .�1; �2; : : : ; �n/ is a random vector on probability space .˝;A ; P r/. Based on
the chance-constraint operator, the random chance-constrained model (CCM):

8̂̂
<
ˆ̂:

max Nf

s.t.

8<
:

Prff .x; �/ � Nf g � ˇ
Prfgj .x; �/ � 0g � ˛j ; j D 1; 2; : : : ; p
x 2 X

(2.35)

where ˇ and ˛j are the predetermined confidence levels, Nf is the critical value
which needs to determine.

Definition 2.15. A solution x 2 X is said to be the feasible solution of problem
(2.35) if and only if Prff .x; �/ � Nf g � ˇ and Prfgj .x; �/ � 0g � ˛j hold for
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all j . For any feasible x, if there is a solution x� such Nf � > Nf , then x� is called
the optimal solution.

If the objective is to be minimized (for example, the objective is a cost function),
the CCM should be as follows,

8̂̂
<
ˆ̂:

min Nf

s.t.

8<
:

Prff .x; �/ � Nf g � ˇ
Prfgj .x; �/ � 0g � ˛j ; j D 1; 2; : : : ; p
x 2 X

(2.36)

where ˇ and ˛j are the predetermined confidence levels. Similarly, we have the
following definition.

Definition 2.16. A solution x 2 X is called the feasible solution of problem (2.36)
if and only if Prff .x; �/ � Nf g � ˇ and Prfgj .x; �/ � 0g � ˛j holds for all j .
For any feasible x, if there is a solution x� such Nf � < Nf , then x� is called the
optimal solution.

In practice, the real-life problems are more complex, and there usually exist mul-
tiple objectives which need decision makers to decide. Thus we have to employ the
following multi-objective CCM:

8̂̂
<
ˆ̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8<
:

Prffi .x; �/ � Nfi g � ˇi ; i D 1; 2; : : : ; m
Prfgj .x; �/ � 0g � ˛j ; j D 1; 2; : : : ; p
x 2 X

(2.37)

where ˇi and ˛j are the predetermined confidence levels, Nfi are critical values
which need to be determined.

Definition 2.17. x 2 X is called the Pareto solution of problem (2.37) if there
doesn’t exist a feasible x such that

Nfi � Nf �
i ; i D 1; 2; : : : ; m (2.38)

and there at least exists one j.j D 1; 2; : : : ; m/ such that Nfj > Nf �
j .

Sometimes, we may formulate a stochastic decision system as a chance-
constrained goal model (CCGM) according to the priority structure and target
levels set by the decision-maker:

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8̂̂
<
ˆ̂:

Prffi .x; �/ � bi � dC
i g � ˇC

i ; i D 1; 2; : : : ; m
Prfbi � fi .x; �/ � d�

i g � ˇ�
i ; i D 1; 2; : : : ; m

Prfgj .x; �/ � 0g � ˛j ; j D 1; 2; : : : ; p
d�

i ; d
�
i � 0; i D 1; 2; : : : ; m

(2.39)
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where Pj is the preemptive priority factor which express the relative importance
of various goals, Pj >> Pj C1, for all j , uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, vij is the weighting factor
corresponding to negative deviation for goal i with priority j assigned, dC

i is the
ˇC

i -optimistic positive deviation from the target of goal i , defined as

minfd _ 0jPrffi .x; �/� bi � dC
i g � ˇC

i g (2.40)

d�
i is the ˇ�

i -optimistic positive deviation from the target of goal i , defined as

minfd _ 0jPrfbi � fi .x; �/ � d�
i g � ˇ�

i g (2.41)

fi is a function in goal constraints, gj is a function in system constraints, bi is the
target value according to goal i , l is the number of priorities, m is the number of
goal constraints,and p is the number of system constraints.

Remark 2.1. If the random vector � degenerates to the deterministic case, then the
two probabilities Prffi .x; �/ � bi � dC

i g and Prfbi � fi .x; �/ � d�
i g should be

always 1 provided that ˇC
i ; ˇ

�
i > 0, and

Prffi .x; �/� bi � dC
i g � ˇC

i ; d
C
i � 0;

Prfbi � fi .x; �/ � d�
i g � ˇ�

i ; d
�
i � 0

imply that

dC
i D Œfi .x; �/ � bi � _ 0; d�

i D Œbi � fi .x; �/� _ 0:

This coincides with the deterministic goal programming.

2.4.2 Linear Random CCM and the Lexicographic Method

As we know, traditional solution methods need the conversion of the chance con-
straints to their respective deterministic equivalents. However, this process is usually
hard to perform and only successful for some special cases. Many scholars has
developed it a lot and made great achievements.

Theorem 2.4. Assume that the random vector � degenerates to a random vari-
able � with distribution function˚ , and the function g.x; �/ has the form g.x; �/ D
h.x/ � �. Then Prfg.x; �/ � 0g � ˛ if and only if h.x/ � K˛, where K˛ D
supfKjK D ˚�1.1 � ˛/g.
Proof. The assumption implies that Prfg.x; �/ � 0g � ˛ can be written in the
following form,
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Prfh.x/ � �g � ˛ (2.42)

It is clear that, for each given confidence level ˛.0 < ˛ < 1/, there exists a number
K˛ (may be multiple or1) such that

PrfK˛ � �g D ˛ (2.43)

and the probability Prf˛ � �g will increase ifK˛ is replaced with a smaller number.
Hence Prfh.x/ � �g � ˛ if and only if h.x/ � K˛.

Notice that the equation Prf˛ � �g D 1 � ˚.K˛/ always holds, and we have,
by (2.43),

K˛ D ˚�1.1 � ˛/;

where ˚�1 is the inverse function of ˚ . Sometimes, the solution of (2.43) is not
unique. Equivalently, the function ˚�1 is multi-valued. For this case, we should
choose it as the largest one, i.e.,

K˛ D supfKjK D ˚�1.1 � ˛/g:

Thus the deterministic equivalent is h.x/ � K˛. The theorem is proved. ut
Theorem 2.5. Assume that the random vector � D .a1; a2; : : : ; an; b/ and the
function g.x; �/ has the form g.x; �/ D a1x1 C a2x2 C � � � C anxn � b. If
ai and b are assumed to be independently normally distributed variables, then
Prfg.x; �/ � 0g � ˛ if and only if

nX
iD1

EŒai �xi C ˚�1.˛/

vuut nX
iD1

V Œai �x
2
i C V Œb� � EŒb� (2.44)

where ˚ is the standardized normal distribution.

Proof. The chance constraint Prfg.x; �/ � 0g � ˛ can be written in the following
form,

Pr

(
nX

iD1

aixi � b
)
� ˛ (2.45)

Since ai and b are assumed to be independently normally distributed variables, the
function

y.x/ D
nX

iD1

aixi � b
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is also normally distributed with the following expected value and variance,

EŒy.x/� D
nX

iD1

EŒai �xi � EŒb�;

V Œy.x/� D
nX

iD1

V Œai �x
2
i C V Œb�:

We note that

nP
iD1

aixi � b � .
nP

iD1

EŒai �xi � EŒb�/s
nP

iD1

nP
iD1

V Œai �x
2
i C V Œb�

must be standardized normally distributed. Since the inequality
nP

iD1

aixi � b is

equivalent to

nP
iD1

aixi � b �
�

nP
iD1

EŒai �xi �EŒb�
�

s
nP

iD1

nP
iD1

V Œai �x
2
i C V Œb�

� �

nP
iD1

EŒai �xi �EŒb�s
nP

iD1

nP
iD1

V Œai �x
2
i C V Œb�

:

The chance constraint (2.45) is equivalent to

Pr

8̂̂
ˆ̂<
ˆ̂̂̂:
� � �

nP
iD1

EŒai �xi �EŒb�s
nP

iD1

nP
iD1

V Œai �x
2
i C V Œb�

9>>>>=
>>>>;
� ˛ (2.46)

where � is the standardized normally distributed variable. Then the chance con-
straint (2.46) holds if and only if

˚�1.˛/ � �

nP
iD1

EŒai �xi �EŒb�s
nP

iD1

nP
iD1

V Œai �x
2
i C V Œb�

˛

That is, the deterministic equivalent of chance constraint is (2.44). The theorem is
proved. ut



66 2 Random Multiple Objective Decision Making

2.4.2.1 Crisp Equivalent Model

Then let’s still consider a class of multi-objective linear models as follows,

8<
:

max
� NcT

1 x; NcT
2 x; : : : ; NcT

mx
�

s.t.

� NeT
r x � Nbr ; r D 1; 2; : : : ; p

x � 0
(2.47)

where x 2 X , Nci D . Nci1; Nci2; : : : ; Ncin/
T , Ner D . Ner1; Ner2; : : : ; Nern/

T are random
vectors, and Nbr are random variables, i D 1; 2; : : : ; m, r D 1; 2; : : : ; p.

Based on the chance-constrained operator, the CCM of problem (2.47) can be
defined as

8̂̂<
ˆ̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8<
:

Prf NcT
i x � Nfi g � ˇi ; i D 1; 2; : : : ; m

Prf NeT
r x � Nbrg � ˛i ; r D 1; 2; : : : ; p

x � 0; 0 � ˛r ; ˇi � 1
(2.48)

where ˛i and ˇi are predetermined confidence levels decision makers gave.

Theorem 2.6. Assume that random vector Nci D . Nci1; Nci2; : : : ; Ncin/
T is normally

distributed with mean vector �c
i D .�c

i1; �
c
i2; : : : ; �

c
in/

T and positive definite
covariance matrix V c

i , written as Nci � N .�c
i ; V

c
i /.iD1; 2; : : : ; m/ and random

vector Ner � N .�e
r ; V

e
r /, Nbr � N .�b

r ; .�
b
r /

2/ .r D 1; 2; : : : ; p/. Assume that for
any i D 1; 2; : : : ; m, j D 1; 2; : : : ; n and r D 1; 2; : : : ; p, Ncij , Neij and Nbij are
independently random variables. Then problem (2.48) is equivalent to

8<
:

maxŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t.

�
gr .x/ � 0; r D 1; 2; : : : ; p
x � 0; 0 � ˛r ; ˇi � 1

where Hi .x/ D ˚�1.1 � ˇi /
q

xT V c
i x C �cT

i x, gr .x/ D ˚�1.˛r /p
xT V e

r x C .�b
r /

2 C �eT
r x � �b

r and ˚ is the standardized normal distribution.

Proof. Since random vector Nci is normally distributed with mean vector �c
i and

positive definite covariance matrix V c
i , then we have that

NcT
i x D

nX
j D1

xj Ncij �N .

nX
j D1

xj�
c
ij ;x

T V c
i x/ D N .�cT

i x;xT V c
i x/:

It follows that

NcT
i x � �cT

i xq
xT V c

i x
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must be standardized normally distributed. For any i.i D 1; 2; : : : ; m/, we have

Prf NcT
i x � Nfi g � ˇi , ˇi � Pr

8̂<
:̂
NcT
i x � �cT

i xq
xT V c

i x
�
Nfi � �cT

i xq
xT V c

i x

9>=
>;

, ˇi � 1 � Pr

8̂<
:̂
NcT
i x � �cT

i xq
xT V c

i x
�
Nfi � �cT

i xq
xT V c

i x

9>=
>;

, ˇi � 1 � ˚

0
B@ Nfi � �cT

i xq
xT V c

i x

1
CA

, Nfi � ˚�1.1 � ˇi /

q
xT V c

i x C �cT
i x

where ˚ is the standardized normal distribution. Similarly, we know that

NeT
r x � N .�eT

r x;xT V e
r x/:

Since Nbr � N .�b
r ; .�

b
r /

2/, it follows from, Neij and Nbij are independently random
variables for any r; j , that

EŒ NeT
r x � Nbr � D EŒ NeT

r x� �EŒ Nbr � D �eT
r x � �b

r ;

V Œ NeT
r x � Nbr � D V Œ NeT

r x�C V Œ Nbr � D xT V e
r x C .�b

r /
2;

then NeT
r x � Nbr is also normally distributed with

NeT
r x � Nbr � N .�eT

r x � �b
r ;x

TV e
r x C .�b

r /
2/:

For any r.r D 1; 2; : : : ; p/, we have

Prf NeT
r x � Nbrg � ˛r , ˛r � Pr

(
NeT
r x � Nbr � .�eT

r x � �b
r /p

xT V e
r x C .�b

r /
2

� � �eT
r x � �b

rp
xT V e

r x C .�b
r /

2

)

, ˛r � ˚
 
� �eT

r x � �b
rp

xT V e
r x C .�b

r /
2

!

, ˚�1.˛r /

q
xT V e

r x C .�b
r /

2 C �eT
r x � �b

r � 0
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where ˚ is the standardized normal distribution. Then we have (2.48) is equiva-
lent to

8̂̂̂
<
ˆ̂̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8̂<
:̂
Nfi � ˚�1.1 � ˇi /

q
xT V c

i x C �cT
i x; i D 1; 2; : : : ; m

˚�1.˛r /
p

xTV e
r x C .�b

r /
2 C �eT

r x � �b
r � 0; r D 1; 2; : : : ; p

x � 0; 0 � ˛r ; ˇi � 1

(2.49)

Let Hi .x/ D ˚�1.1 � ˇi /
q

xT V c
i x C �cT

i x and gr .x/ D ˚�1.˛r /p
xT V e

r x C .�b
r /

2 C �eT
r x � �b

r . In view of the purpose of maximizing Nfi in
problem (2.49), it also can be converted into

8<
:

maxŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t.

�
gr .x/ � 0; r D 1; 2; : : : ; p
x � 0; 0 � ˛r ; ˇi � 1

(2.50)

This completes the proof. ut
For the crisp multi-objective programming problem (2.50), whether there are

some optimal solutions is the spot we pay more attention to. Sometimes, the con-
vexity of the multi-objective problem provides an useful rule researchers consult.
Next, let’s introduce the definition of the convexity of the multi-objective problem.

Definition 2.18. For the following multi-objective programming problem,

�
minf .x/ D .f1.x/; f2.x/; : : : ; fm.x//

s:t: gr .x/ � 0; r D 1; 2; : : : ; p (2.51)

If fi .x/ are convex functions for all i , and gr .x/ are concave functions for all r ,
then (2.51) is a convex programming.

Then let’s discuss the convexity of the problem (2.50).

Theorem 2.7. Let X Dfx 2 Rnj˚�1.˛r /
p

xT V e
r x C .�b

r /
2C�eT

r x � �b
r � 0;

r D 1; 2; : : : ; pIx � 0g. If ˛r and ˇi are more than 0.5, Ncij , Nerj and Nbr are respec-
tively independent, i D 1; 2; : : : ; m; j D 1; 2; : : : ; n; r D 1; 2; : : : ; p, then the
problem (2.50) is convex.

Proof. Since Ncij are independent random variable with each other, the covariance
matrix has the following form,

V c
i D

0
B@
.�c

i1/
2 0 � � � 0

::: � � � :::

0 0 � � � .�c
in/

2

1
CA:
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It’s obvious that V c
i is a positive definite matrix. Then according to [301],

q
xTV c

i x

is a convex function. In addition, since ˛r � 0:5 and ˇi � 0:5, it follows that
˚�1.˛r / � 0 and ˚�1.1 � ˇi / � 0, we know Hi .x/ are concave functions, i D
1; 2; : : : ; m. Really, let x1 and x2 be any two points in feasible set, and � 2 Œ0; 1�,
we have that

Hi Œ�x1 C .1 � �/x2� � �Hi .x1/C .1 � ˛/Hi .x2/:

Next, we prove that X is convex. Since

XDfx 2 Rnj˚�1.˛r /

q
xT V e

r x C .�b
r /

2C�eT
r x��b

r � 0; rD1; 2; : : : ; pIx�0g;

and ˚�1.˛r / � 0, it follows that gr .x/ D ˚�1.˛r /
p

xT V e
r x C .�b

r /
2 C �eT

r x �
�b

r � 0 are convex functions, r D 1; 2; : : : ; p. Really, let x1 and x2 be two feasible
solutions, then

gr .x1/ � 0; gr .x2/ � 0;
according to gr ’s convexity, we have

gr Œ�x1 C .1 � �/x2� � �gr.x1/C .1 � �/gr.x2/ � 0;

where 0 � � � 1, r D 1; 2; : : : ; p. This means that �x1 C .1 � �/x2 is also a
feasible solution. So X is a convex set. Above all, we can conclude from Definition
2.18 that problem (2.50) is a convex programming and its global optimal solution
can be obtained easily. ut

2.4.2.2 Lexicographic Method

The basic idea of lexicographic method is to rank the objective function by its impor-
tance to decision makers and then resolve the next objective function after resolving
the above one. We take the solution of the last programming problem as the final
solution.

Consider the following multi-objective programming problem,

�
minŒf1.x/; f2.x/; : : : ; fm.x/�

s.t. x 2 X: (2.52)

Without loss of generality, assume the rank as f1.x/; f2.x/; : : : ; fm.x/ according
to different importance. Solve the following single objective problem in turn,
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min
x2X

f1.x/ (2.53)8<
:

minfi .x/

s.t.

�
fk.x/ D fk.x

k/; k D 1; 2; : : : ; i � 1
x 2 X

(2.54)

where i D 1; 2; : : : ; m,X is the feasible area and denote the feasible area of problem
(2.54) as X i .

Theorem 2.8. Let X � Rn, f W X ! Rm. If xm be the optimal solution by the
lexicographic method, then xm is an efficient solution of problem (2.52).

Proof. If xm is not an efficient solution of problem (2.52), there exists Nx 2 X such
that f . Nx/ � f .xm/. Since f1.x

m/ D f �
1 D f1.x

1/, f1. Nx/ < f1.x
m/ cannot

hold. It necessarily follows that f1. Nx/ D f1.x
m/.

If we have proved fk. Nx/ D fk.x
m/ .k D 1; 2; : : : ; i � 1/, but fi . Nx/ < fi .x

m/.
It follows that Nx is a feasible solution of problem (2.54). Since fi . Nx/ < fi .x

m/ D
fi .x

i /, this results in the conflict with that xi the optimal solution of problem (2.54).
Thus, fk. Nx/ D fk.x

m/.k D 1; 2; : : : ; i / necessarily holds. Then we can prove
fk. Nx/ D fk.x

m/.k D 1; 2; : : : ; m/ by the mathematical induction. This conflicts
with f . Nx/ � f .xm/. This completes the proof. ut

2.4.3 Nonlinear Random CCM and Random
Simulation-Based ASA

Let’s return to the nonlinear multi-objective programming problem,

8̂̂
<
ˆ̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8<
:

Prffi .x; �/ � Nfi g � ˇi ; i D 1; 2; : : : ; m
Prfgr .x; �/ � brg � ˛r ; r D 1; 2; : : : ; p
x � 0; 0 � ˛r ; ˇi � 1

(2.55)

where fi .x; �/ or gr .x; �/ or both of them are nonlinear functions with respect
� is a random vector, i D 1; 2; : : : ; m, r D 1; 2; : : : ; p. If their distributions are all
crisp, we can convert it into a crisp programming problem. For the class of problems
which cannot be converted into crisp ones, the random simulation is a useful tool to
compute the probability of a random variable.

2.4.3.1 Random Simulation for CCM

Suppose that � is an n-dimensional random vector defined on the probability space
.˝;A ; P r/, and f W Rn ! R is a measurable function. The problem is to
determine the maximal value Nf for given x such that

Prff .x; �/ � Nf g � ˛ (2.56)
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where ˛ is a predetermined confidence level with 0 < ˛ < 1. We generate !k

from ˝ according to the probability measure P r , and write �k D �.!k/ for
k D 1; 2; : : : ; N , where !k D .!1

k
; : : : ; !n

k
/ is an n-dimensional vector and !j

k

is generated according to the random variable �k . Now we define

h.x; �k/ D
�
1; if f .x; �k/ � Nf
0; otherwise

(2.57)

for k D 1; 2; : : : ; N , which are a sequence of random variables, and EŒh.x; �k/� D
˛ for all k. By the strong law of large numbers, we obtain

NP
kD1

h.x; �k/

N
! ˛;

as N ! 1. Note that the sum
PN

kD1 h.x; �k/ is just the number of �k satisfy-
ing f .x; �k/ � Nf for k D 1; 2; : : : ; N . Thus the value Nf can be taken as the
N

0

th largest element in the sequence ff .x; �1/; f .x; �2/; : : : ; f .x; �N /g, where
N

0

is the integer part of ˛N . Then the procedure simulating the critical value Nf of
Prff .x; �/ � Nfi g can be summarized as follows:

Procedure Random simulation for CCM
Input: The decision vector x

Output: The critical value Nf
Step 1. Set L D 0;
Step 2. Generate !1; !2; : : : ; !N from˝ according to the probability measure
P r ;
Step 3. Return the N

0

th largest element in
ff .x; �1/; f .x; �2/; : : : ; f .x; �N /g.

Example 2.5. Let us employ the random simulation to search for the maximal Nf
such that

Pr

�q
�2

1 C �2
2 C �2

3 � Nf
�
� 0:8;

where �1 � exp.1/ is an exponentially distributed variable, �2 � N .3; 1/ is a
normally distributed variable, and �3 � U .0; 1/ is a uniformly distributed variable.
A run of stochastic simulation with 10000 cycles shows that Nf D 2:0910.

2.4.3.2 Adaptive Simulated Algorithm

Too often the management of complex systems is ill-served by not utilizing the best
tools available. For example, requirements set by decision-makers often are not for-
mulated in the same language as constructs formulated by powerful mathematical
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formalisms, and so the products of analyses are not properly or maximally utilized,
even if and when they come close to faithfully representing the powerful intuitions
they are supposed to model. In turn, even powerful mathematical constructs are
ill-served, especially when dealing with approximations to satisfy constraints of
numerical algorithms familiar to particular analysts, but which tend to destroy the
power of the intuitive constructs developed by decision-makers. In order to deal with
fitting parameters or exploring sensitivities of variables, as models of systems have
become more sophisticated in describing complex behavior, it has become increas-
ingly important to retain and respect the nonlinearities inherent in these models,
as they are indeed present in the complex systems they model. The adaptive sim-
ulated algorithm (abbr. ASA) can help to handle these fits of nonlinear models of
real-world data.

ASA, also known as the very fast simulated reannealing, is a very efficient ver-
sion of SA. ASA is a global optimization technique with certain advantages. It is
versatile and needs very few parameters to tune. The distinct feature of this method
is the temperature change mechanism, which is an important part of the transition
probability equation. The conventional can allows a higher chance of transition to
a worse solution when beginning with a high temperature. By doing so, the search
can move out of the local optimization. However, as the search process develops,
the continuously declining temperature will result in a reduced chance of uphill
transition. Such an approach could be useful if the local optimization is near the
start point, but may not lead to a near optimal solution if some local optimization is
encountered at a relatively low temperature toward the end of the search. Therefore,
a improved method should be considered to alleviated this difficulty. In conventional
method, the cooling schedule is usually monotonically nonincreasing. In ASA, an
adaptive cooling schedule based on the profile of the search path to dynamically
adjust the temperature. Such adjustments could be in any direction including the
possibility of reheating. Some scholars have proposed the idea of reversing the
temperature before. Dowsland [83] considered two functions together to control
temperature in the application to packing problem. The first function is a function
that reduces the temperature, whereas the second function is used as a heating up
function that gradually increases the temperature if needed. In ASA, a single func-
tion is proposed to maintain the temperature above a minimum level. If there is
any upward move, the heating process gradually takes place, but the cooling pro-
cess may suddenly take place by the first downhill move. Azizi [12] proposed the
following temperature control function,

Ti D Tmin C �ln.1C ri /; (2.58)

where Tmin is the minimum value that the temperature can take, � is a coefficient
that controls the rate of temperature rise, and ri is the number of consecutive upward
moves at iteration i . The initial value of ri is zero, thus the initial temperature
T0 D Tmin. The purpose of the minimum temperature, Tmin, is two-fold. Firstly, it
prevents the probability function from becoming invalid when ri is zero. Secondly,
it determines the initial value of the temperature. Tmin can take any value greater
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than zero. The parameter � controls the rate of temperature rise. The greater value
of �, the faster the temperature rises. The search spends less time looking for good
solutions in its current neighborhood when a large value is assigned to �. Similarly,
by assigning a small value to the parameter �, the search spends more time looking
for better solutions in the neighborhood. Choosing a value for the parameter � could
be linked to computation time, which also depends on the size and complexity of
the problem. We don’t clarify other parts about ASA, readers can find more detailed
analysis of the algorithm in [12, 52, 141–143].

Consider the following general optimization problem,

min
x2X

f .x/ (2.59)

where x D Œx1; : : : ; xn�
T is the n-dimensional decision vector to be optimized,

X is the feasible set of x. The cost function f .x/ can be multi-modal and non-
smooth. The ASA is a global optimization scheme for solving this kind of con-
strained optimization problems. Next, let’s introduce how to use ASA to solve the
above problem.

Although there are many possible realizations of the ASA, an implementation is
illustrated in Fig. 2.5, and this algorithm is detailed as follows:

Step 1. An initial x 2 X is randomly generated, the initial temperature of the
acceptance probability function, Taccept.0/, is set to f .x/, and the initial tempera-
tures of the parameter generating probability functions,Ti;gen.0/; 1 � i � n, are set

Fig. 2.5 Flow chart of ASA
algorithm

Generate a new w
Accept or reject w

Initialization

≥Naccept

Reannealing

≥Ngen

Temperature
annealing

Stop

End

N

N

N

Y
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to 1.0. A user-defined control parameter c in annealing is given, and the annealing
times, ki for 1 � i � n and ka, are all set to 0.

Step 2. The algorithm generates a new point in the parameter space with

xnew
i D xold

i C qiMi ; 1 � i � n (2.60)

where Mi is a positive number determined by the difference between the upper and
lower boundary of xi and

xnew 2 X (2.61)

where qi is calculated as

qi D sgn.�i � 1
2
/Ti;gen.ki / 


 �
1C 1

Ti;gen.ki /

�j2�i �1j
� 1

!
(2.62)

and �i a uniformly distributed random variable in [0,1]. Notice that if a generated
xnew is not inX , it is simply discarded and a new point is tried again until xnew 2 X .

The value of the cost function f .xnew/ is then evaluated and the acceptance
probability function of xnew is given by

Paccept D 1

1C exp..f .xnew/� f .xold//=Taccept.Ka//
(2.63)

A uniform random variable Punif is generated in [0,1]. If Punif � Paccept, xnew is
accepted; otherwise it is rejected.

Step 3. After every Naccept acceptance points, reannealing takes place by first
calculating the sensitivies

si D
ˇ̌̌
ˇf .xbest C eiı/ � f .xbest/

ı

ˇ̌̌
ˇ ; 1 � i � n (2.64)

where xbest is the best point found so far, ı is a small step size, the n-dimensional
vector ei has unit i th element and the rest of elements of ei are all zeros. Let smax D
maxfsi ; 1 � i � ng. Each parameter generating temperature Ti;gen is scaled by a
factor smax=si and the annealing time ki is reset,

Ti; gen.ki / D smax

si
Ti;gen.ki /; ki D

�
�1
c

log

�
Ti; gen.ki /

Ti; gen.0/

��n

:

Similarly, Taccept.0/ is reset to the value of the last accepted cost function, Taccept.ka/

is reset to f .xbest/ and the annealing time ka is rescaled accordingly,

ka D
�
�1
c
log

�
Ti; gen.ka/

Ti; gen.0/

��n

(2.65)
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Step 4. After every Ngen generated points, annealing takes place with

ki D ki C 1; Ti; gen.ki / D Ti; gen.0/exp.�ck1=n
i /I

and
ka D ka C 1; Taccept.ka/ D Taccept.0/exp.�ck1=n

a /I
otherwise, go to step 2.

Step 5. The algorithm is terminated if the parameters have remained unchanged
for a few successive reannealing or a preset maximum number of cost function
evaluations has been reached; otherwise, go to step 2.

As in a standard SA algorithm, this ASA contains two loops. The inner loop
ensures that the parameter space is searched sufficiently at a given temperature,
which is necessary to guarantee that the algorithm finds a global optimum. The
ASA also uses only the value of the cost function in the optimization process and is
very simple to program.

Last, we discuss about the algorithm parameter tuning. For the above ASA algo-
rithm, most of the algorithm parameters are automatically set and “tuneda”, and
the user only needs to assign a control parameter c and set two values Naccept and
Ngenera. Obviously, the optimal values of Naccept and Ngenera are problem dependent,
but our experience suggests that an adequate choice forNaccept is in the range of tens
to hundreds and an appropriate value for Ngen is in the range of hundreds to thou-
sands. The annealing rate control parameter c can be determined form the chosen
initial temperature, final temperature and predetermined number of annealing steps.
We have found out that a choice of c in the range 1.0–10.0 is often adequate.

It should be emphasized that, as the ASA has excellent self adaptation ability,
the performance of the algorithm is not critically influenced by the specific chosen
values of c, Naccept and Ngen.

2.4.4 Numerical Examples

Example 2.6. Let’s still consider the following problem,8̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂:

maxf1.x; �/ D �1x1 C �2x2 C �3x3 C �4x4 C �5x5

maxf2.x; �/ D c1�6x1 C c2�7x2 C c3�8x3 C c4�9x4 C c5�10x5

s.t.

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(2.66)

where c D .c1; c2; c3; c4; c5/ D .1:2; 0:5; 1:3; 0:8; 0:9/,
�1 � N .113; 1/; �2 � N .241; 4/; �3 � N .87; 1/; �4 � N .56; 2/;

�5 � N .92; 1/; �6 � N .628; 1/; �7 � N .143; 2/; �8 � N .476; 2/;

�9 � N .324; 2/; �10 � N .539; 2/:
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and �i .i D 1; 2; : : : ; 9/ are independently random variables. We set ˇ1 D ˇ2 D 0:9,
from (2.48) we have the following chance-constrained model,

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

maxŒ Nf1; Nf2�

s.t.

8̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂:

Prf�1x1 C �2x2 C �3x3 C �4x4 C �5x5 � Nf1g � ˇ1

Prfc1�6x1 C c2�7x2 C c3�8x3 C c4�9x4 C c5�10x5 � Nf2g � ˇ2

x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(2.67)

Since ˚�1.1�ˇi/ D �1:28; i D 1; 2, from Theorem 2.6, problem (2.67) is equiva-
lent to

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
:̂

maxH1.x/ D 113x1 C 241x2 C 87x3 C 56x4 C 92x5

�1:28
q
x2

1 C 4x2
2 C x2

3 C 2x2
4 C x2

5

maxH2.x/ D 753:6x1 C 71:5x2 C 618:8x3 C 259:2x4 C 485:1x5

�1:28
q
x2

1 C 2x2
2 C 2x2

3 C 2x2
4 C 2x2

5

s.t.

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(2.68)

Then we use the lexicographic method to resolve the above programming problem.
Assume that the objective function H1.x/ is more important than H2.x/ to DM.
Let’s firstly solve the following problem,

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:̂

maxH1.x/ D 113x1 C 241x2 C 87x3 C 56x4 C 92x5

�1:28
q
x2

1 C 4x2
2 C x2

3 C 2x2
4 C x2

5

s.t.

8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(2.69)
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Then we get the optimal solution x� D .218:18; 59:10; 22:73; 20:00; 20:00/ and the
objective valueH2.x

�/ D 197290:30.
Secondly, construct the following programming problem,

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:̂

maxH2.x/ D 753:6x1 C 71:5x2 C 618:8x3 C 259:2x4 C 485:1x5

�1:28
q
x2

1 C 2x2
2 C 2x2

3 C 2x2
4 C 2x2

5

s.t.

8̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
:

113x1 C 241x2 C 87x3 C 56x4 C 92x5

� 1:28
q
x2

1 C 4x2
2 C x2

3 C 2x2
4 C x2

5 D 43510:72
x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(2.70)

Then we get the final optimal solution x� D .218:18; 59:10; 22:73; 20:00; 20:00/

and the objective valueH1.x
�/ D 43510:72.

Example 2.7. Consider the following multi-objective programming problem with
random parameters,

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

maxŒ Nf1; Nf2�

s.t.

8̂̂
<
ˆ̂:

Prfp.x1 � �1/2 C .x2 � �2/2 � Nf1g � ˇ1

Prfp.x1 C �1/2 C .x2 C �2/2 � Nf2g � ˇ2

x1 C x2 � 5
x1 � 0; x2 � 0

(2.71)

where �1 � N .2; 0:5/ ia normally distributed random variable and �2 � U .1; 2/

is also a normally distributed random variable.
Next we will use the random simulation-based ASA to solve the above problem.

Set the initial temperature T0, the last temperature be 1 and the cooling method be
0:05% decrement once. The neighborhood can be constructed as follows,

x1
1 D x0

1 C rh; x1
2 D x0

2 C rh;

where r is a random number in (0,1) and h is the step length (here h D 2:0). After
the simulation with many cycles, we get the optimal solution under different weights
as shown in Table 2.4. Figure 2.6 shows the cooling process when the weight is 0.5.
The real line expresses the weight sum of two objective functions, and it shows that
it gradually converges from T D 25. The second figure shows the changes of two
objective values when the temperature decreases.
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Table 2.4 The optimal solution by random simulation-based ASA

w1 w2 x1 x2 Nf1 Nf2 Nf T0

0.1 0.9 2.2823 0.0925 1.1123 6.0069 5.5175 1000
0.2 0.8 1.1542 2.7342 1.4170 5.8217 4.9407 1000
0.3 0.7 0.2140 1.9297 1.5559 5.8935 4.5922 1000
0.4 0.6 1.5625 0.2912 0.9358 5.8060 3.8579 1000
0.5 0.5 2.6555 1.1940 0.8505 5.7968 3.3236 1000
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Fig. 2.6 The cooling process of random simulation-based ASA

2.5 Random DCM

In practice, there usually exist multiple events in a complex random decision system.
Sometimes, the decision-maker wishes to maximize the chance functions of these
events (i.e. the probabilities of satisfying the events). In order to model this type of
random decision system, Schneider [280] developed another technique, called prob-
ability maximization model (also called dependent-chance model (abbr. DCM) by
some scholars, we will use this name in this book), in which the underlying philoso-
phy is based on selecting the decision with maximal chance to meet the event. Then
[150] discussed some coverage probability maximization problems. From then on,
it was widely used in many fields to solve some realistic problems [133, 146, 272].

DCM theory breaks the concept of feasible set and replaces it with uncertain envi-
ronment. Roughly speaking, DCM involves maximizing chance functions of events
in an uncertain environment. In deterministic model, expected value model (EVM),
and chance-constrained programming (CCM), the feasible set is essentially assumed
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to be deterministic after the real problem is modeled. That is, an optimal solution
is given regardless of whether it can be performed in practice. However, the given
solution may be impossible to perform if the realization of uncertain parameter is
unfavorable. Thus DCM theory never assumes that the feasible set is deterministic.
In fact, DCM is constructed in an uncertain environment. This special feature of
DCM is very different from the other existing types of random programming.

In this section, we introduce the concept of chance function and discuss the
DCM models. We also give some crisp equivalent models. Finally, some numerical
examples are exhibited.

2.5.1 General Model for Random DCM

Let’s consider the following typical DCM model,

8<
:

max Prff .x; �/ � f g
s.t.

�
gj .x; �/ � 0; j D 1; 2; : : : ; p
x � 0

(2.72)

Since a complex decision system usually undertakes multiple events, there undoubt-
edly exist multiple potential objectives (some of them are chance functions) in a
decision process. A typical formulation of dependent-chance multi-objective pro-
gramming model (DCM) is represented as maximizing multiple chance functions
subject to an uncertain environment,

8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

max

2
664

Prfh1.x; �/ � 0g
Prfh2.x; �/ � 0g
� � �
Prfhm.x; �/ � 0g

3
775

s.t. gj .x; �/ � 0; j D 1; 2; : : : ; p

(2.73)

where hi .x; �/ � 0 are represent events "i for i D 1; 2; : : : ; m, respectively.
It follows from the principle of uncertainty that we can construct a relationship

between decision vectors and chance function, thus calculating the chance functions
by stochastic simulations or traditional methods. Then we can solve DCM by utility
theory if complete information of the preference function is given by the decision-
maker or search for all of the efficient solutions if no information is available. In
practice, the decision maker can provide only partial information. In this case, we
have to employ the interactive methods.

Sometimes, the objective function may minimize the deviations, positive, nega-
tive, or both, with a certain priority structure set by the decision maker. Then we
may formulate the stochastic decision system as the following model,
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ˆ̂<
ˆ̂̂̂̂:

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8<
:

Pr
˚
hi .x; �/ � 0


C d�
i � dC

i D bi ; i D 1; 2; : : : ; m
gj .x; �/ � 0; j D 1; 2; : : : ; p
d�

i ; d
C
i � 0; i D 1; 2; : : : ; m

(2.74)

where Pj is the preemptive priority factor which express the relative importance
of various goals, Pj >> Pj C1, for all j , uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, vij is the weighting factor
corresponding to negative deviation for goal i with priority j assigned, dC

i is the
positive deviation from the target value according to goal i , d�

i is the negative devi-
ation from the target of goal i , bi is the target value according to goal i , l is the
number of priorities, andm is the number of goal constraints.

2.5.2 Linear Random DCM and the Fuzzy
Programming Method

As we know, traditional solution methods need conversion of the chance constraints
to their respective deterministic equivalents. However, this process is usually hard
to perform and only successful for some special cases. Next, let’s consider a special
case in which the model is linear and parameters are subject to normal distribution
(see the following linear model)

8<
:

max
� NcT

1 x; NcT
2 x; : : : ; NcT

mx
�

s.t.

� NeT
r x � Nbr ; r D 1; 2; : : : ; p

x � 0
(2.75)

where Nci D .ci1.!/; ci2.!/; : : : ; cin.!//, Ner D .er1.!/; er2.!/; : : : ; ern.!// and
Nbr are independently random vectors on the probability space .˝;A ; P r/, fi is the
predetermined objective value. By the definition of chance function, we can get the
following model,

8<
:

max
�
Prf NcT

1 x � f1g;Prf NcT
2 x � f2g; : : : ;Prf NcT

mx � fmg
�

s.t.

�
Prf NeT

r x � Nbrg � ˇr ; r D 1; 2; : : : ; p
x � 0

(2.76)

where fi is predetermined objective value and ˇr is the predetermined level value.

2.5.2.1 Crisp Equivalent Model

By the equivalent transformation, we get the following theorem.

Theorem 2.9. Assume that random vector NciD. Nci1; Nci2; : : : ; Ncin/
T is normally

distributed with mean vector �c
iD.�c

i1; �
c
i2; : : : ; �

c
in/

T and positive definite
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covariance matrix V c
i , written as Nci � N .�c

i ; V
c

i /.i D 1; 2; : : : ; m/ and ran-
dom vector Ner � N .�e

r ; V
e

i /,
Nbr � N .�b

r ; .�
b
r /

2/ .r D 1; 2; : : : ; p/. Assume that
for any i D 1; 2; : : : ; m, j D 1; 2; : : : ; n and r D 1; 2; : : : ; p, Ncij , Nerj and Nbr are
independent with each other, respectively. Then problem (2.76) is equivalent to

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

max

2
641 �˚

0
B@fi � �cT

i xq
xTV c

i x

1
CA ; i D 1; 2; : : : ; m

3
75

s.t.

�
˚�1.ˇr /

p
xTV e

r x C .�b
r /

2 C �eT
r x � �b

r � 0
x � 0; r D 1; 2; : : : ; p

Proof. Since the random vector Nci is normally distributed with mean vector �c
i and

positive definite covariance matrix V c
i , then we have that

NcT
i x D

nX
j D1

xj Ncij .!/ �N

0
@ nX

j D1

xj�
c
ij ;x

TV c
i x

1
A D N .�cT

i x;xT V c
i x/:

It follows that
NcT
i x � �cT

i xq
xT V c

i x

must be standardized normally distributed. Then

PrfcT
i x � fi g D Pr

8̂<
:̂
NcT
i x � �cT

i xq
xTV c

i x

� fi � �cT
i xq

xT V c
i x

9>=
>;

D 1 � Pr

8̂<
:̂
NcT
i x � �cT

i xq
xT V c

i x

� fi � �cT
i xq

xTV c
i x

9>=
>;

D 1 �˚

0
B@fi � �cT

i xq
xTV c

i x

1
CA

where ˚ is the standardized normally distributed function. Similarly, we know that

NeT
r x � N .�eT

r x;xT V e
r x/:

Since Nbr � N .�b
r ; .�

b
r /

2/, it follows from, Nerj .!/ and Nbrj .!/ are independently
random variables for any r; j , that
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EŒ NeT
r x � Nbr � D EŒ NeT

r x� �EŒ Nbr � D �eT
r x � �b

r ;

V Œ NeT
r x � Nbr � D V Œ NeT

r x�C V Œ Nbr � D xT V e
r x C .�b

r /
2;

then NeT
r x � Nbr is also normally distributed with

NeT
r x � Nbr � N .�eT

r x � �b
r ;x

TV e
r x C .�b

r /
2/:

For any r.r D 1; 2; : : : ; p/, we have

Prf NeT
r x � Nbrg � ˇr , ˇr � Pr

(
NeT
r x � Nbr � .�eT

r x � �b
r /p

xTV e
r x C .�b

r /
2

� � �eT
r x � �b

rp
xT V e

r x C .�b
r /

2

)

, ˇr � ˚
 
� �eT

r x � �b
rp

xTV e
r x C .�b

r /
2

!

, ˚�1.ˇr /

q
xTV e

r x C .�b
r /

2 C �eT
r x � �b

r � 0

where ˚ is the standardized normal distribution. Then we have that problem (2.76)
is equivalent to8̂̂

ˆ̂̂<
ˆ̂̂̂̂:

max

2
641 �˚

0
B@fi � �cT

i xq
xTV c

i x

1
CA ; i D 1; 2; : : : ; m

3
75

s.t.

�
˚�1.ˇr /

p
xTV e

r x C .�b
r /

2 C �eT
r x � �b

r � 0
x � 0; r D 1; 2; : : : ; p

(2.77)

This completes the proof. ut

2.5.2.2 Fuzzy Programming Method

The fuzzy programming method for multi-objective programming problems was
proposed by Zimmermann [364] and has been advanced by Sakawa and col-
leagues [271]. An interactive fuzzy satisficing method for multiobjective linear
programming problems and the interactive fuzzy decision making for multiobjec-
tive nonlinear programming using augmented minimax problems have been also
introduced [212, 270, 282]. The fuzzy programming method in which fuzziness in
the decision making process is represented by using the fuzzy concept has also
been studied extensively and many results have been published [265, 317]. This
method can be applied to not only the linear multi-objective but also the nonlinear
multi-objective programming.
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Take the problem (2.77) as an example. Let Hi .x/ D 1 � ˚
�

fi ��cT
i

xp
xT V c

i
x

�
, and

X D fxj˚�1.ˇr /
p

xTV e
r x C .�b

r /
2 C �eT

r x � �b
r � 0; r D 1; 2; : : : ; pIx � 0g,

then problem (2.77) is equivalent to

�
maxŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t. x 2 X (2.78)

Considering the imprecise nature of the decision maker’s judgements for each objec-
tive function of problem (2.78), a new fuzzy objective goal such as “make Hi .x/

approximately larger than a certain value” is introduced. Then problem (2.78) is
converted into �

maxŒ�1.H1.x//; �2.H2.x//; : : : ; �m.Hm.x//�

s.t. x 2 X (2.79)

where the random goal is characterized by the following linear membership func-
tion,

�i .Hi .x// D

8̂̂<
ˆ̂:
1; Hi .x/ > H

1
i

Hi .x/ �H 0
i

H 1
i �H 0

i

; H 0
i � Hi .x/ � H 1

i

0; Hi .x/ < H
0
i

where H 1
i and H 0

i respectively denote the maximal and minimal values of the
objective functionsHi .x/ as follows,

H 0
i D min

x2X
Hi .x/; H

1
i D max

x2X
Hi .x/; i D 1; 2; : : : ; m:

For each objective function �i .Hi .x//, assume that the DM can specify the so-
called reference probability function value N�i which reflects the probability function
value of �i .Hi .x//. The corresponding Pareto optimal solution, which is nearest to
the requirements in the minimax sense or better than that if the reference probability
function value is attainable, is obtained by solving the following minimax problem,

(
min max

iD1;2;:::;m
f N�i � �i .Hi .x//g

s.t. x 2 X
(2.80)

By introducing auxiliary variable �, problem (2.80) is equivalent to

8̂̂
<
ˆ̂:

min�

s.t.

8<
:
N�i � �i .Hi .x// � �; i D 1; 2; : : : ; m
0 � � � 1
x 2 X

(2.81)
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or equivalently

8̂̂<
ˆ̂:

min�

s.t.

8<
:
�cT

i x � H 0
i C . N�i � �/.H 1

i �H 0
i /; i D 1; 2; : : : ; m

0 � � � 1
x 2 X

(2.82)

Obviously, it follows that (2.82) is a convex programming problem of which the
global optimal solution is easily obtained.

The relationship between the optimal solution of problem (2.81) and the Pareto
optimal solution of problem (2.78) can be characterized by the following theorem.

Theorem 2.10. 1. If x� 2 X is a unique optimal solution to problem (2.81) for
some N�i ; i D 1; 2; : : : ; m, then x� is a Pareto optimal solution to problem (2.78).

2. If x� is a Pareto optimal solution to problem (2.78) with 0 < �i .Hi .x
�// < 1

holding for all i , then there exist "i such that x� is an optimal solution to problem
(2.81).

Proof. 1. For some N�k , if a unique optimal solution x� to problem (2.81) is not
the Pareto optimal solution of problem (2.78), then there exists x 2 X such that
Hk.x/ > Hk.x

�/, where Hk.x
�/ D maxfH1.x

�/;H2.x
�/; : : : ;Hm.x

�/g. Then,

Hk.x/�H 0
k

H 1
k
�H 0

k

>
Hk.x

�/�H 0
k

H 1
k
�H 0

k

, �.Hk.x// > �.Hk.x
�//

, N�k � �.Hk.x// < N�k � �.Hk.x
�//

This means that there exits a �, satisfying � < ��. It follows that x� is not the
optimal solution of problem (2.81), which contradicts the assumption that x� is a
unique optimal solution to problem (2.81).

2. If x� is not an optimal solution to problem (2.81), then there exists x
0 2 X

such that N�i � �.Hi .x
0

// < N�i � �.Hi .x
�//; i D 1; 2; : : : ; m, because of 0 <

�i .Hi .x
�// < 1, then

�.Hi .x
0

// > �.Hi .x
�//

, Hi .x
0

/�H 0
i

H 1
i �H 0

i

>
Hi .x

�/�H 0
i

H 1
i �H 0

i

, Hi .x
0

/ > Hi .x
�/

This means that there exists x
0

such that Hi .x
0

/ > Hi .x
�/, then x� is not the

Pareto optimal solution to problem (2.78), which contradicts the assumption that x�
is a Pareto optimal solution to problem (2.78). This completes the proof. ut

If x�, an optimal solution to problem (2.81), is not unique, then the Pareto
optimality test for x� can be performed by solving the following problem
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ˆ̂:

max
mP

iD1

"i

s.t.

�
�i .Hi .x

�//C "i D N�i ; i D 1; 2; : : : ; m
x 2 X; "i � 0

From Theorem 2.10, we know that the optimal solution x� of problem (2.81)
is a Pareto optimal solution to problem (2.78). Then the interactive random satis-
fying method, which is similar to the interactive fuzzy satisfying method, can be
constructed to obtain a satisfactory solution of problem (2.78),

Step 1. The DM is required to present reference probability values N�i , i D
1; 2; : : : ; m.

Step 2. The optimal solution of problem (2.80), which is also a Pareto optimal
solution of problem (2.78), is considered as a satisfactory solution to problem (2.78).

Step 3. If the obtained �i .Hi .x
�// are satisfying, the process stops and x� is

selected as satisfactory solution to problem (2.78); Or else, the DM should update
his or her reference random probability values N�i and return to Step 2.

2.5.3 Nonlinear Random DCM and Random
Simulation-Based PSA

Similarly to the EVM and CCM, for the problems which are easily converted into
crisp ones, we deal with them by the chance measure, and the random simulation
is used to deal with those which cannot be converted into crisp ones. Next, let’s
introduce the process of the random simulation dealing with the dependent chance
models. Consider the nonlinear multi-objective programming problem as follows,

8̂<
:̂

maxŒPrff1.x; �/ � Nf1g; : : : ;Prffm.x; �/ � Nfmg�

s.t.

�
Prfgr .x; �/ � brg � ˛i ; r D 1; 2; : : : ; p
x � 0; 0 � ˛r � 1

(2.83)

where fi .x; �/ and gr .x; �/ are nonlinear functions with respect to �, i D
1; 2; : : : ; m, r D 1; 2; : : : ; p, Nfi are predetermined confidence levels, and � is a
random vector.

2.5.3.1 Random Simulation for DCM

Let � be an n-dimensional random vector defined on the probability space
.˝;A ; P r/, and f W Rn ! R a measurable function. In order to obtain the
probability for given x,

L D Prff .x; �/ � Nf g;
we generate !k from ˝ according to the probability measure P r , and write �k D
�.!k/ for k D 1; 2; : : : ; N , where !k D .!1

k
; : : : ; !n

k
/ is an n-dimensional vector
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and !j

k
is generated according to the random variable �k . LetN

0

denote the number
of occasions on which f .x; �k/ � Nf for k D 1; 2; : : : ; N (i.e., the number of
random vectors satisfying the system of inequalities). Let us define

h.x; �k/ D
�
1; if f .x; �k/ � Nf
0; otherwise

Then we have EŒh.x; �k/� D L for all k, and N
0 D PN

kD1 h.x; �k/. It follows
from the strong law of large numbers that

N
0

N
D

NP
kD1

h.x; �k/

N

converges a.s. toL. Thus the probabilityL can be estimated byN
0

=N provided that
N is sufficiently large. Then the procedure simulating the probability of the event
f .x; �/ � Nf can be summarized as follows:

Procedure Random simulation for DCM
Input: The decision vector x

Output: The probability Prff .x; �/ � Nf g
Step 1. Set N

0 D 0;
Step 2. Generate ! from˝ according to the probability measure Pr;
Step 3. If f .x; �k/ � Nf , then N

0 CC;
Step 4. Repeat the second and third steps N times;
Step 5. Return L D N 0

=N .

Example 2.8. Let �1 � exp.2/ be an exponentially distributed variable, �2 �
N .4; 1/ a normally distributed variable, and �3 � U .0; 2/ a uniformly distributed
variable. A run of random simulation with 10000 cycles shows that

Pr

�q
�2

1 C �2
2 C �2

3 � 8
�
D 0:9642:

2.5.3.2 The Parallel SA Algorithm

The parallel SA algorithm, which is usually shorten as PSA, is a more efficient tool
to deal with complex problems. Parallel processing appears to be the only viable
way to substantially speed up the method and thus expand its applicability. For fast
tailored SAs, parallel implementations may also reduce the loss of robustness. In an
effort to increase convergence speed, parallel SA optimization algorithms have been
implemented with mixed results in various scientific fields [50]. Czech and Czarnas
[69] presented a parallel simulated annealing for the vehicle routing problem. Many
scholars [16, 16, 41, 69, 121, 235, 268, 336] introduced the PSA with the feature that
multiple processing elements follow a single search path (Markov chain) (to be



2.5 Random DCM 87

referred to as SMC PSA), but Aarts and Korst [1] described the idea of the multiple
Markov chains PSA (to be referred to as MMC PSA), namely the divison algorithm
and Lee and Lee [190] proposed the MMC PSA and applied it to graph partition and
Li, Cha and Lu [195] applied it for 3D engineering layout design.

Although optimization performance can be greatly improved through paralleliza-
tion of SA [78, 163], there has few applications of this techniques in multiobjective
programming problems. Since the “annealing community” has so far not achieved
a common agreement with regards to a general approach for the serial SA, the best
parallel scheme is still the object of current research. Bevilacqua [23] claimed that
Many scholars has done many attempts of classifying methods: that is, if parallelism
is used to generated a move or to run independent moves on different processors,
if these methods depend on the problem or not, if they are synchronous or not, and
others.

In any case, a key issue in developing a PSA is to ensure that it maintains the same
convergence property as the sequential version, for which a formal proof to converge
to a global minimum exists. For this purpose, it is easy to show that it is not neces-
sary for a parallel implementation to generate exactly the same sequence of solutions
as the sequential version. Frequently, it is enough to keep the same ratio between the
number of accepted moves and the number of attempted moves (acceptance rate),
averaged over a given temperature, as the correspondent sequential version.

Next, let’s discuss the detailed algorithm about PSA. This section mainly refers
to [23,195,217,352], and readers can also consult the related literatures. Let’s firstly
introduce the parallel Markov chain in [217]. LetX be a finite set and U W X ! RC
be a non-constant function to be minimized. We denote by Xmin the set of global
minima of U . Suppose that we have p > 1 processors. The optimization algorithm
which is the center of our interest is described as follows. Choose any starting point
x0 2 X and let each processor individually run a Metropolis Markov chain of fixed
length L > 1 at inverse temperature ˇ.0/ starting in x0. After L transitions the sim-
ulation is stopped and only one state x1 is selected from the p states according to a
selection strategy. Again each processor individually simulates a Metropolis Markov
chain of lengthL at an updated inverse temperature ˇ.1/ starting in x1. Again at the
end of the simulation a state x2 is selected from the p states and the next simula-
tion starts from x2, etc. Fig. 2.7. This, algorithm is closely related to the so-called
parallel chain algorithm. However, the main difference is that the number of paral-
lel chains and the length of the Markov chains L is kept fixed in our model. In the
parallel chain algorithm the length L is usually increased and the number of parallel
Markov chains is decreased during the run of the algorithm so that the parallel chain

X0

X3X2X1

Y1 Y2(L+1)−1YL YL+2 Y2(L+1)+1 Y3(L+1)−1

Fig. 2.7 Illustration of the algorithm’s working method
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algorithm asymptotically behaves like the so-called one-chain algorithm. Secondly,
let’s introduce the process of PSA. PSA starts with a high temperature. After gen-
erating an initial solution, it attempts to move randomly from the current solution
to one of its neighborhood solutions. The changes in the objective function values
�f are computed(we usually consider a weighted sum of all objective functions
in a multiobjective programming problem). If the new solution results in a better
objective value, it is accepted. However, if the new solution yields a worse value,
it can still be accepted according to the acceptance probability function, P.Tj /.
The PSA algorithm repeats this Metropolis algorithm L times at each temperature
to reach thermal equilibrium, where L is a control parameter, usually called the
Markov Chain Length. After some temperature annealing, solutions migrate from
the neighboring processors at each interval with migration probability,Pm. Parame-
ter Tj is gradually decreased by a cooling function as parallel SA proceeds until the

MasterProcess

Start

Synchronization

Synchronization
condition?

Terminalcondition
of outer loop?

Terminal condition
of inner loop?

Start local computing

Move

Geometrical andknowledge
interferencedetection

Interference?

Evaluate anddecide
update S

Start

Synchronization

Synchronization
condition?

Terminal condition
of outer loop?

Terminal condition
of inner loop?

Start local computing

Move

Geometrical andknowledge
interferencedetection

Interference?

Evaluate and decide
update S

SlaveProcess

Annealing Annealing

Collect current result of
slaves and choose

thebest one

SentCurrent
result tomaster

Synchronization Synchronization

Yes Yes

Yes Yes

Yes Yes

No No

No No

Send message
inlcudingS

End End

Yes Yes

No No

Yes Yes

No No

Initialization
Set T = T0, S = S0

Initialization
Set T = T0, S = S0

Sendmessage
inlcudingT, S and annealing schedule

Fig. 2.8 Flow chart of the PSA
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terminating condition is met. Readers can refer to Fig. 2.8 to know the work flow of
PSA. The parallel SA algorithms proposed can be summarized as follows:

Procedure The PSA algorithm

Input: The initial parameters: T0, Tf , Pm, Mi

Output: The Pareto-solution x�
Step 1. Initialize PSA parameters: starting temperature T0, final temperature
Tf , Markov chain length L, migration rate Pm, and migration intervalMi ;
Step 2. Randomly generate an initial feasible x and assign to;
Step 3. Repeat the following L times: (a) Generate a neighborhood solution
xnew

j through a random number generator; (b) Compute

�f D f .xnew
j / � f .xold

j /; (c) If �f � 0(when we minimize the objective

function), set xold
j D xnew

j ; (d) If �f > 0, generate a random number X in

(0,1), and compute P.Tj /. If P.Tj / > X , set xold
j D xnew

j ;
Step 4. the migration interval .Mi / is reached, then solutions migrate from the
neighboring processors with migration rate Pm;
Step 5. If the terminating condition is met, stop; otherwise, let Tj decrease by
the cooling schedule and go to Step 3.

2.5.4 Numerical Examples

Example 2.9. Let’s consider the following problem,

8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂:

maxf1.x; �/ D �1x1 C �2x2 C �3x3 C �4x4 C �5x5

maxf2.x; �/ D c1�6x1 C c2�7x2 C c3�8x3 C c4�9x4 C c5�10x5

s.t.

8̂̂<
ˆ̂:
x1 C x2 C x3 C x4 C x5 � 10
x1 C x2 C x3 � x4 � x5 � 0
x1 C 4x2 C 2x3 � x4 C 5x5 � 20
xi � 0; i D 1; 2; : : : ; 5

(2.84)

where c D .c1; c2; c3; c4; c5/ D .1:2;�0:5; 1:3;�0:1; 2/, and �i .i D 1; 2; : : : ; 9/

are independently random variables as follows,

�1 � N .2; 1/; �2 � N .3; 0:5/; �3 � N .1; 0:2/; �4 � N .5; 1/;

�5 � N .2; 0:1/; �6 � N .7; 0:5/; �7 � N .3; 0:2/; �8 � N .4; 1/;

�9 � N .5; 1/; �10 � N .1; 0:1/:

If DM predetermines two level values Nf1 and Nf2, and aim at obtaining the maximum
probability based on the predetermined level value Nf1 and Nf2. Set Nf1 D 14 and
Nf2 D 22, then we get the following dependent-chance model,
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ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

maxg1.x; �/ D Prf�1x1 C �2x2 C �3x3 C �4x4 C �5x5 � 14g
maxg2.x; �/ D Prfc1�6x1 C c2�7x2 C c3�8x3 C c4�9x4 C c5�10x5 � 22g

s.t.

8̂̂<
ˆ̂:
x1 C x2 C x3 C x4 C x5 � 10
x1 C x2 C x3 � x4 � x5 � 0
x1 C 4x2 C 2x3 � x4 C 5x5 � 20
xi � 0; i D 1; 2; : : : ; 5

(2.85)

It follows from Theorem 2.9 that, (2.85) is equivalent to

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂:

maxH1.x/ D 1 �˚

0
B@ 14� .2x1 C 3x2 C x3 C 5x4 C 2x5/q

x2
1 C 0:5x2

2 C 0:2x2
3 C x2

4 C 0:1x2
5

1
CA

maxH2.x/ D 1�˚

0
B@22 � .8:4x1 � 1:5x2C5:2x3�0:5x4C2x5/q

0:5x2
1 C 0:2x2

2 C x2
3 C x2

4 C 0:1x2
5

1
CA

s.t.

8̂̂
<
ˆ̂:
x1 C x2 C x3 C x4 C x5 � 10
x1 C x2 C x3 � x4 � x5 � 0
x1 C 4x2 C 2x3 � x4 C 5x5 � 20
xi � 0; i D 1; 2; : : : ; 5

(2.86)

Next, we will use the fuzzy programming method to solve the above problem.
Then we have that

H 1
1 D 43944:64; H 0

1 D 30220:00; H 1
2 D 225444:00; H 0

2 D 158178:70

By the fuzzy programming method, we have the satisfactory solutions to problem
(2.86) as shown in Table 2.5.

Example 2.10. Consider the following multi-objective programming problem with
random parameters,

Table 2.5 Interactive process of expected value model

N�1 N�2 H1 H2 �1.H1/ �2.H2/ x1 x2 x3 x4 x5 �

1 1 41649.56 214197.2 0.8328 0.8328 216.08 39.62 54.30 20.00 20.00 0.1672
1 0.95 42033.36 212717.6 0.8607 0.8108 215.56 42.20 52.24 20.00 20.00 0.1392
0.95 1 41265.50 215675.4 0.8048 0.8548 216.59 37.04 56.37 20.00 20.00 0.1452
1 0.90 42418.70 211232.6 0.8888 0.7887 215.04 44.79 50.17 20.00 20.00 0.1112
1 1 41649.56 21419.72 0.8328 0.8328 216.08 39.62 54.30 20.00 20.00 0.1672
0.90 1 40881.7 217154.9 0.7768 0.8768 217.11 34.46 58.43 20.00 20.00 0.1232
1 0.85 42796.17 209722.0 0.9163 0.7663 214.57 47.36 48.00 20.00 20.00 0.0837
0.85 1 38756.36 206263.9 0.6220 0.7149 217.63 31.87 60.50 20.00 20.00 0.1012
1 0.8 42999.18 207354.5 0.9311 0.7311 215.28 49.66 43.04 20.00 20.00 0.0689
0.8 1 40112.30 220118.1 0.7208 0.9208 218.14 29.29 62.57 20.00 20.00 0.0792



2.5 Random DCM 918̂̂
<
ˆ̂:

maxH1.x; �/ D Prfp.x1 � �1/2 C .x2 � �2/2 � 1:75g
maxH2.x; �/ D Prfp.x1 C �1/2 C .x2 C �2/2 � 6:2g
s.t.

�
x1 C x2 � 5
x1 � 0; x2 � 0

(2.87)

where �1 � N .2; 0:5/ ia normally distributed random variable and �2 � U .1; 2/

is also a normally distributed random variable.
Next we will use the random simulation-based PSA algorithm to solve the above

problem. Set the initial temperature T0, the last temperature be 1 and the cooling
method be 1 decrement once. The neighborhood can be constructed as follows,

x1
1 D x0

1 C rh; x1
2 D x0

2 C rh;

where r is a random number in (0,1) and h is the step length (here h D 2:0). After
the simulation with many cycles, we get the optimal solution under different weights
as shown in Table 2.6. Figure 2.9 shows the cooling process when the weight is 0.5.
The real line expresses the weight sum of two objective functions, and it shows
that it gradually converges from T D 440. Figure 2.10 shows the changes of two
objective values when the temperature decreases.

Table 2.6 The optimal solution by random simulation-based PSA

w1 w2 x1 x2 Nf1 Nf2 Nf T0

0.1 0.9 0.7407 0.7124 0.0400 0.6500 0.5890 500
0.2 0.8 1.0209 1.8018 0.1800 0.5500 0.4760 500
0.3 0.7 0.5342 0.5561 0.0200 0.6000 0.4260 500
0.4 0.6 3.5738 1.4076 0.4400 0.8500 0.6860 500
0.5 0.5 0.2657 2.0287 0.7400 0.6000 0.6700 500

Fig. 2.9 The cooling process
of random simulation-based
PSA
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Fig. 2.10 Two objective
values by random
simulation-based PSA
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2.6 Application to Chinese Fruit Beverage

2.6.1 Background Statement

As we know, the DC location problem involves how to select locations of dis-
tribution centers from a potential set and how to transport products from the
manufactorers to each selected distribution center and also from the selected dis-
tribution center to each customer so that the total relevant cost is minimized and
customer satisfaction is maximized. However, in practice, it is hard to describe the
problem parameters as known due to the complexity of the social and economic
environment as well as unpredictable factors such as weather. For instance, since
the changing gasoline price often results in a scarcity of precise data, the trans-
port cost from one facility to one DC (or from one DC to a customer) is usually
a normal distributed variable with an expected value �. For some seasonal prod-
ucts, their sales also vary along with the changing season, and usually follow a
normal stochastic distribution. Therefore, there does exist a situation where shipping
costs and the customer demand where may be random variables. In this situation,
we can use random variables to deal with these uncertain parameters. Consider-
ing company managers’ objectives, we minimize the total relevant costs (including
transport costs and fixed costs) of logistic distribution centers, and maximize cus-
tomer satisfaction in terms of an acceptable delivery time. Hence, we formulate a
single-product, multi-objective logistic distribution centers location problem with
consumers’ random demands and transport costs, and the following assumptions
are considered:

1. The number of customers and suppliers are known.
2. The number of potential DCs and their maximum capacities are known.
3. Customers are supplied products from a single DC.
4. The amount of demand on the products and the transport costs are regarded as

random variables.
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5. Since the manager of this company wants to reduce costs and find an optimal
network strategy, inventory is considered as zero in this example.

For understanding this problem easily, we can consult Fig. 2.1.

2.6.2 Notations

The mathematic notation and formulations are as follows:
1. Indices
Suppose that there are I plants, J DCs and K customers. The task is to trans-

fer the products from the plants to the DCs and from DCs to customers to satisfy
customer demand.
i 2 f1; 2; : : : ; I g is the index for plants;
j 2 f1; 2; : : : ; J g is the index for DCs;
k 2 f1; 2; : : : ; Kg is the index for customers.
2. Parametersebk which is a random variable denoting the demand of customer k;fpd ij which is a random variable denoting the transport cost of a unit product

transported from plant i to distribution center j ;fdcjk which is a random variable denoting the transport cost of a unit product
transported from distribution center j to customer k;
tjk denotes the transport time from j to k;
ai is the capacity of plant i ;
fj denotes the fixed cost of opening distribution center j
mj denotes the capacity of distribution center j ;
3. Decision variables
xij denotes the quantity transported from plant i to distribution center j .
yjk denotes the quantity transported from distribution center j to customer k.

2.6.3 Modelling and Analysis

For this problem, we need to select the distribution centers from the potential set J .
We use the binary zj to denote whether the distribution center j is selected or not:

zj D
(
1; if distribution center j is open

0; otherwise

And in this section, we assume that customers are supplied products from a single
DC, and we use �jk to denote whether DC j serves customer k.

�jk D
(
1; if distribution center j servers customer k

0; otherwise
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3. Objective functions.
The objective F1 is to minimize the total costs comprised of the fixed costs of

DCs
P

j 2J fj zj , the transport costs from plants to DCs
P

i2I

P
j 2J

fpd ijxij and

from DCs to customers
P

j 2J

P
k2K

fdcjkyjk . Further more, the objective F2 is to
maximize customer satisfaction. To measure customer satisfaction, we employ the
membership function of fuzzy due time 
jk.tjk/ to specify it, which is described as
follows,


jk.tjk/ D

8̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂:

0 tjk � ETk

.tjk � ETk/

.ET d
k
� ETk/

ETk < tjk < ET
d
k

1 ET d
k
� tjk � LT d

k

LTk � tjk

LTk � LT d
k

LT d
k
< tjk < LTk

0 tjk � LTk

(2.88)

where (ETk; LTk): the max time range for customer k to tolerant; (ET d
k
; LT d

k
):

the expected time range of customer k. Figure 2.11 presents the description of this
function.

Thus, we can develop mathematical formulations of objectives as follows,

minF1 D P
j 2J

fj zj C P
i2I

P
j 2J

fpd ijxij C P
j 2J

P
k2K

fdcjkyjk ;

maxF2 D P
j 2J

P
k2K


jk.tjk/�jk :

Customer satisfaction

0
ETk LTk

time
ETk

d LTk
d

1

Fig. 2.11 The membership function of 
jk.tjk /
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5. Constraints
Since one customer can be serviced by only one DC, thus we employ the

constraint X
j 2J

�jk D 1; 8k (2.89)

With a similar process of dealing with binary variables, we can obtain

zj 2 f0; 1g; 8k (2.90)

�jk 2 f0; 1g; 8j; k (2.91)

And, the number of opened DCs must be not larger than the maximum numberM
for the DCs. Thus, the constraint X

j 2J

zj �M (2.92)

In addition, products transported from the plant i can not exceed its supply
capacity ai , thus we employ the following constraint

X
j 2J

xij � ai ; 8i (2.93)

to specify it. Since there is an assumption of no inventory, the quantity of input is
equal to the output at the DC and the quantity of products transported from the DC
to the customer is equal to the number of products customers demand. Thus

X
i2I

xij D
X
k2K

yjk ; 8j (2.94)

yjk Debk�jk; 8j (2.95)

Capacity constraints for opened DCs are that the quantity of customers demand
on products must be not larger than the quantity of annual throughput of the opened
DCs and the quantity of products transported from plants to DCs should be not
larger than the DCs’ capacity constraint.

X
k2K

ebk�jk � mj zj ; 8j (2.96)

X
i2I

xij � mj zj ; 8j (2.97)
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From the above discussion, by integration of (2.89)–(2.97), we can formulate a
random multi-objective programming model as follows:

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

minF1 D P
j 2J

fj zj C P
i2I

P
j 2J

fpd ijxij C P
j 2J

P
k2K

fdcjkyjk

maxF2 D P
j 2J

P
k2K


jk.tjk/�jk

s.t.

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

P
j 2J

�jk D 1; 8kP
j 2J

zj �MP
j 2J

xij � ai ; 8iP
i2I

xij D P
k2K

yjk ; 8j
yjk Debk�jk; 8jP
k2K

ebk�jk � mj zj ; 8jP
i2I

xij � mj zj ; 8j
zj D f0; 1g; 8k
�jk D f0; 1g; 8j; k
xij � 0; 8i; j
yjk � 0; 8j; k

(2.98)

Then using the proposed technique in the above sections, let’s consider the fol-
lowing real-life problem. Luzhou Xin orchards Co., Ltd. is one of the producers of
Chinese fruit beverages in China. Now, the task for a decision-maker is to establish
a distribution network at four DC locations which are Shanghai, Beijing, Chengdu
and Guangzhou. The objectives, as given in the mathematical model, are the min-
imization of overall transport costs and the maximization of customer satisfaction.
At the beginning of this task, the decision-maker needs to obtain basic data, such as
demand quantity, and the per unit transport cost. In fact, since the transport plan is
made in advance, we generally cannot exact data. In this condition, the usual way
is to obtain random data by means of an experienced evaluation or expert advice. In
this example, the notationsebk , fpd ij and fdcjk are employed to denote the demand
quantity, transport cost from plant i to DC j and from DC j to the customer respec-
tively. Since it will take more space, we can not give all customers and we give an
example of a small sized problem of 5 customers to specify the efficiency of the
random simulation-based SA. The information regarding the capacity of the plants
and DCs, fixed cost of DCs is given in Table 2.7, and corresponding random data
are listed from Tables 2.8 to 2.10.

Transport time from DC j to customer k is in list Table 2.11, the maximum
time range for customer tolerance, and the expected time range for the customer
can not be directly gained. We assume transport time tk required by the customer k
are independent random variables with a normal distribution: N .�k; �

2
k
/, the max
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Table 2.7 Capacities and fixed costs for plants and distribution centers

Plants Capacity(ton/year) DCs Capacity (ton/year) Fixed cost (ten thousand yuan/year)

Jiangy 10,000 Shangh 7,604 48
Longm 10,000 Beij 8,751 44
Luxian 20,000 Chengd 17,600 49

Wuh 15,800 51

Table 2.8 Shipping cost from plants to DCs (yuan/ton)

Plants Shipping cost DCs �i
Beij Shangh Chengd Wuh

Jiangy �d1j 550 650 200 350 3
Longm �d2j 550 550 200 350 4
Luxian �d1j 500 500 200 300 3.5

Shipping cost from plants to DCs fpdij � N .�dij ; �
2
i /

Table 2.9 Shipping cost value from DCs to customers (yuan/ton)

DCs Shipping cost Customers �i
1 2 3 4 5

Shangh �c1j 450 550 200 500 550 4
Beij �c2j 200 400 600 200 550 5
Chengd �c3j 500 200 600 500 400 4
Wuh �c4j 500 310 300 500 550 3

Shipping cost value from DCs to customers edcjk � N .�cij ; �
2
i /

Table 2.10 Customer demand (ton/year)

Customer demand Customers �j
1 2 3 4 5

�1k 5,950 5,860 5,288 5,520 7,310 15
�2k 6,000 6,280 7,094 7,760 7,755 20
�3k 6,050 6,700 8,900 10,000 8,200 16

Customer demandebk � N .�jk; �
2
j /

Table 2.11 Transport time from DCs to customers (h)

Customers DCs Shangh Beij Chengd Wuh

1 23 32 29 28
2 24 30 27.5 27
3 24.5 30.5 32 30
4 24 33 28.5 30
5 26.5 27 25.5 31.5

time range for customer tolerance is Œ�k � �k; �k C �k� and the expected time
range of the customer is Œ�k � 0:5�k; �k C 0:5�k�, where �k is deemed equal to
tk in practice and �k is random from range [1, 5]. Then through (2.88), we have
customer satisfaction shown in Table 2.12.
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Table 2.12 Customer satisfaction
Customers DCs �k �k .ETjk ; LTjk/ .ET djk; LT

d
jk/ Shangh Beij Chengd Wuh

1 28 1.5 [26.5, 29.5] [27.3, 28.8] 0 0 0.71 1
2 30 4.0 [26.0, 34.0] [28.0, 32.0] 0 1 0.75 0.5
3 32 1.2 [30.8, 33.2] [31.4, 32.6] 0 0 1 0
4 28 3.2 [24.8, 31.2] [26.4, 29.6] 0 0 1 0.75
5 30 4.4 [25.6, 34.4] [27.8, 32.2] 0.41 0.64 0 1

It is usually difficult for decision makers to justify where to set a distribution and
how many products to provide under the condition that there are many uncertain
coefficients due to the randomness. So we must apply the methods introduce in
the above sections to deal with the uncertainty, i.e., expected value model, chance
constraint model and dependent chance model.

Firstly, taking all the random coefficients into the model (2.98), we have the
equivalent model by Theorem 2.2 as follows,

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:̂

minF1 D
4P

j D1

fj zj C
3P

iD1

4P
j D1

�d
ijxij C

4P
j D1

5P
kD1

�c
jk
yjk

maxF2 D
4P

j D1

5P
kD1

1

4
.ETjk CLTjk C ET d

jk
CLT d

jk
/�jk

s.t.

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂:

4P
j D1

�jk D 1; 8k
4P

j D1

zj �M
4P

j D1

xij � ai ; 8i
3P

iD1

xij D
5P

kD1

yjk ; 8j
yjk D �jk�jk ; 8j

5P
kD1

�jk�jk � mj zj ; 8j
3P

iD1

xij � mj zj ; 8j
zj D f0; 1g; 8k
�jk D f0; 1g; 8j; k
xij � 0; 8i; j
yjk � 0; 8j; k

(2.99)

If the system requires the number of distribution centers cannot be more than 3, i.e.,
M D 3. Then we have the optimal solution as follows: z� D .1; 1; 0; 1/T .

Secondly, if decision makers want to control the cost budget and satisfaction
levels to a certain extent, for example, under probability ˛ D 0:9 and with credibility
ˇ D 0:95, we can apply the chance constraint operator to deal with it. Taking all the
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(5288, 7094, 8900)

(5520, 7760, 10000)

(7310, 7755, 8200)

Fig. 2.12 Illustration of the optimal transportation plan

numbers into the model (2.98), the chance constraint model is as follows,

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:

minŒ Nf1;� Nf2�

s.t.

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

Pr

(
4P

j D1

fj zj C
3P

iD1

4P
j D1

fpd ijxij C
4P

j D1

5P
kD1

fdcjkyjk � Nf1

)
� 0:9

4P
j D1

�jk D 1; 8k
4P

j D1

zj �M
4P

j D1

xij � ai ; 8i
3P

iD1

xij D
5P

kD1

yjk ; 8j
yjk D �jk�jk ; 8j

5P
kD1

�jk�jk � mj zj ; 8j
3P

iD1

xij � mj zj ; 8j
zj D f0; 1g; 8k
�jk D f0; 1g; 8j; k
xij � 0; 8i; j
yjk � 0; 8j; k

(2.100)

Then by Theorem 2.6, we can get the equivalent of (2.100) and by the proposed
method in the above section we get the optimal transport plan as shown in Fig. 2.12.



Chapter 3
Bi-Random Multiple Objective Decision Making

Random variables have been applied in many fields. The two-fold uncertain variable
has also been presented by many scholars. Since the novel concept of birandom
variable (abbr. Ra-Ra variable) was proposed by Peng and Liu [251], it has been
widely extended to many fields. Xu and Zhou [348] discussed a class of flow shop
scheduling problems with Ra-Ra parameters and made use of the expected value
operator to deal with it and get the optimal solution. Xu and Ding [338] considered
a class of vendors selection problems under the Ra-Ra environment and gave a linear
multiobjective programming model with Ra-Ra coefficients.

This chapter mainly introduces multi-objective decision making problems with
Ra-Ra parameters. We further propose two kinds of Ra-Ra variables, i.e., dis-
crete Ra-Ra variables and continuous Ra-Ra variables. After introducing the basic
concepts and properties, four parts are presented respectively.

1. Ra-Ra expected value model (abbr. Ra-Ra EVM). Usually, decision makers are
difficult to make the decision when they encounter the uncertain parameter.
A clear criteria must be brought award to help the decision. The expected value
operator of Ra-Ra variables is introduced and the crisp equivalent model is
deduced when the distribution is clear.

2. Ra-Ra chance-constraint model (abbr. Ra-Ra CCM). Sometimes, decision mak-
ers don’t strictly require the objective value to be maximal benefit but only obtain
maximum benefit under predetermined confidence levels. Then the chance con-
strained model is proposed and the crisp equivalent model is deduced when the
distribution is clear.

3. Ra-Ra dependent-chance model (abbr. Ra-Ra DCM). When decision makers
predetermine an objective value and require the maximal probability that the
objective values exceed the predetermined one.

Finally, an application to a flow shop scheduling problem are detailed presented
to show the effectiveness of the above models. Readers can refer to the following
content to know more details.

J. Xu and L. Yao, Random-Like Multiple Objective Decision Making, Lecture Notes
in Economics and Mathematical Systems 647, DOI 10.1007/978-3-642-18000-2 3,
c� Springer-Verlag Berlin Heidelberg 2011
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3.1 Flow Shop Scheduling Problem with Ra-Ra Phenomena

Recently, flow shop production has been widely used in many industrial areas.
For this reason, the flow shop scheduling has been attentively studied over the
last 50 years [122]. A flow shop scheduling problem addresses determination of
sequencing N jobs needed to be processed on M machines so as to optimize per-
formance measures such as the makespan, tardiness, work in process, number of
tardy jobs, idle time, etc. The first research concerned with the flow shop scheduling
problem was done by Johnson [149], where he described an exact algorithm to min-
imize the makespan for a n-jobs and two-machines flow shop scheduling problem
(see Fig. 3.1). The flow shop scheduling problem includes many jobs and machines.
Hence it is classified as a combinatorial optimization problem.

In the flow shop scheduling literature, there are numerous papers that have
investigated these problems [228]. Most research is dedicated to single-criterion
problems. For example, Pan et al. [243] consider a two-machine flow shop schedul-
ing problem with minimizing total tardiness as the objective. Bulfin and Hallah [33]
propose an exact algorithm to solve the two-machine flow shop scheduling problem
with the objective of a weighted number of tardy jobs. Choi et al. [54] investigate
a proportionate flow shop scheduling problem where only one machine is different
and job processing times are inversely proportional to machine speeds. The objec-
tive is to reduce as much as possible the maximum completion time. Grabowski and
Pempera [118] address the no-wait flow shop problem with a makespan criterion,
then develop and compare various local search algorithms for solving this prob-
lem. Wang et al. [330] deal with a two-machine flow shop scheduling problem with
deteriorating jobs, minimizing total completion time. We can also find that several
objectives are considered to establish the best sequence in flow shop production. For
example, Gangadhran and Rajendran [105] apply a simulated annealing technique
to a heuristic that minimizes the makespan and the total flow time. Kondakci et al.
[169] utilize the shortest processing time and the earliest due date rules to minimize
the total flow time and the maximum tardiness penalties. Tavakkoli-Moghaddam
et al. [316] proposes a multi-objective model for a flow shop scheduling problem

O11 O21 On–1, 1

On–1, 2

On1

On2

...

...O12

...

O1m O2m Onm...

Processing time

Machine

M1

M2

...

Mm

Fig. 3.1 Flow shop scheduling problem withm machines and n jobs
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that minimizes both the weighted mean completion time and weighted mean tar-
diness. We notice that other algorithms have also been developed to deal with the
multi-objective scheduling problem, for example, De et al. [73] and Loukil et al.
[211] have adapted a multi-objective simulated annealing metaheuristic to solve
multi-objective flow shop scheduling problems.

Above all, we notice that the objectives of flow shop scheduling problems mostly
focus on minimizing the total completion time, and the makespan. Additionally,
objectives such as total flow time, tardiness, and idle time are also considered. But
there is little literature which considers that earliness time. In fact the decision maker
(DM) often wants to minimize completion time and earliness, and often the objec-
tives conflict with another. Each of these objectives is valid from a general point of
view. In this chapter, we focus on this flow shop scheduling problem by considering
both completion time and earliness.

Further more, for realistic flow shop scheduling problems we may face uncer-
tainty. In fact, uncertainty exists everywhere in the real world. In order to deal with
that, many scholars utilize uncertain variables to describe the uncertainty, like ran-
dom variables, fuzzy variables, and rough variables. Sometimes people have also
used hybrid uncertain variables to be more precise, like the random fuzzy variable,
the random rough variable, the fuzzy random variable, and so on.

Because a lot of information is uncertain, the deterministic mathematical model
is not suitable to the practical problems, so the uncertain mathematical model is
widely used. Scholars introduce uncertain variables into the mathematical model
to set up uncertain models and many kinds of uncertain models are proposed, like
[24, 57, 152, 192, 251].

3.2 Ra-Ra Variable

Ra-Ra variables are initialize by Peng and Liu [251] in 2007. It is a useful tool to
deal with some uncertain real-life problems. There do exist many scenes of such
bi-random phenomena in our real world. As a general mathematical description for
this kind of stochastic phenomenon with incomplete statistical information, Ra-Ra
variables is defined as a mapping with some kind of measurability from a probability
space to a collection of random variables. In this section, we firstly recall some basic
definitions and properties of Ra-Ra variables and give some deeper deduction.

Roughly speaking, a Ra-Ra variable is a “random variable” taking random vari-
able values. In other words, a Ra-Ra variable is a mapping from a probability space
to a collection of random variables. In this section, we will define the new concept
which is more universal.

Definition 3.1. A Ra-Ra variable � is a random variable with a random parameter.

For each given Borel subset B of the real R, the function Prf�.!/ 2 Bg is a
random variable defined on the probability space .˝;A ;Pr/.
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Example 3.1. Let ˝ D f!1; !2; : : : ; !ng, and Prf!ig D pi , where
Pn

iD1 pi D 1.
Then .˝;A ;Pr/ is a probability space on which we define a function as

�.!/ D

8̂̂
<
ˆ̂:
�1; if ! D !1

�2; if ! D !2

� � �
�n; if ! D !n

where �i is a normally distributed random variable. Then the function � is a Ra-Ra
variable.

3.2.1 Discrete Ra-Ra Variable

Having recalled these basic definitions and properties, we will respectively define
two kinds of Ra-Ra variables, i.e. discrete Ra-Ra variables and continuous variables,
and then six special Ra-Ra variables are presented and their basic properties are
respectively exhibited. Based on Definition 3.1, we know that they can be divided
into two kinds.

Definition 3.2. Let ˝ D f!1; !2; : : : ; !ng, and Prf!ig D pi ; i D 1; 2; : : : ; n

and
Pn

iDn Prf!i g D 1, then .˝;A ;Pr/ is a probability space. A discrete Ra-Ra
variable is defined as a function on .˝;A ;Pr/ as follows,

�.!/ D

8̂̂
<̂
ˆ̂̂:
�1; if ! D !1

�2; if ! D !2

:::

�n; if ! D !n

where �i .i D 1; 2; : : : ; n/ are random variables defined on the probability space
.˝i ;Ai ;Pri /, respectively.

Obviously, � is a mapping from a probability space to a set combined with
random variables. The set can be combined with discrete random variables or
continuous random variables or both of them defined on the probability space
.˝i ;Ai ;Pri /, respectively. If the probability space .˝;A ;Pr/ is infinite dimension,
then we get the following definition.

Definition 3.3. Let ˝ D f!1; !2; : : :g, and Prf!i g D pi ; and
P1

iD1 Prf!ig D 1,
then .˝;A ;Pr/ is an infinite dimensional probability space. An infinite dimen-
sional discrete Ra-Ra variable is defined as a function on .˝;A ;Pr/ as follows,

�.!/ D

8̂<
:̂
�1; if ! D !1

�2; if ! D !2

:::
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where �i are random variables defined on the probability space .˝i ;Ai ;Pri /,
respectively, i D 1; 2; : : : :

In general, the following formula is used to describe the distribution of discrete
Ra-Ra variables,

�
�1; �2; : : : ; �n; : : :

p1; p2; : : : ; pn; : : :

�
(3.1)

then (3.1) is called distribution sequence of Ra-Ra variable �.

Example 3.2. Let ˝ D f!1; !2g, and Prf!1g D 0:6, Prf!2g D 0:4. Then
.˝;A ;Pr/ is a probability space on which we define a function as

�.!/ D
�
�1; if ! D !1

�2; if ! D !2

where �1 is a uniformly distributed random variable on Œ0; 1�, and �2 is a normally
distributed random variable. Then the function � is a Ra-Ra variable.

Example 3.3. Let ˝ D f!1; !2; : : :g, and Prf!i g D �i�1

.i�1/Š
e��. Then .˝;A ;Pr/ is

a probability space on which we define a function as

�.!/ D �i ; if ! D !i

where �i .i D 1; 2; : : :/ is a binomially distributed random variable defined on
the probability space .˝i ;Ai ;Pri /, respectively. Then the function � is an infinite
Ra-Ra variable.

Next, we will introduce some special Ra-Ra variables and induce their properties.
In many problems, our interest is usually gathered on whether the event occurs in
one trial. For example, when we sample to examine products, whether the product
is good or bad greatly attracts us. When throwing the coin, we usually pay more
attention on that its front side or back side is above. However, in some trials, the
probability that the event occurs is not clear and we only know some historical data,
then Ra-Ra event is used to describe them.

Definition 3.4. (Bi-random 0–1 distribution) Let ˝ D f0; 1g and Prf! D 1g D Np,
Prf! D 0g D 1� Np, where Np is a random variable defined on the probability space
.˝�;A �;Pr�/ such that 0 � Np.!�/ � 1 for !� 2 ˝�. Then .˝;A ;Pr/ is a
probability space on which we define a Ra-Ra variable subject to 0–1 distribution
as follows

�.!/ D
� Np if ! D 1
Nq if ! D 0 (3.2)

where Nq D 1 � Np is also a random variable. Then � is a Ra-Ra variable subject to
0–1 distribution on the probability space .˝;A ;Pr/, denoted by � � B.0; 1/.
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Obviously, Bi-random 0–1 distribution is a special discrete Ra-Ra variables, and
its distribution sequence is as follows,

�
0; 1

Nq; Np
�

(3.3)

where Nq D 1� Np and Np is a random variable on the probability space .˝�;A �;Pr�/.
In (3.3), if Np is a fixed number, then Prf! D 1g.0 < Prf! D kg < 1/ is also a
fixed number and � degenerates a random variable subject 0–1 distribution from
.˝;A ;Pr/ to R.

Example 3.4. Let Np � N .�; �2/ on the probability space .˝�;A �;Pr�/, then
Nq is a normally distributed random variable with the mean value 1 � � and the
variance �2 on the probability space .˝�;A �;Pr�/. Then the function � defined as
Definition 3.4 from .˝;A ;Pr/ to .˝�;A �;Pr�/ is a Ra-Ra variable subject to 0–1
distribution.

As shown in the probability theory, when we do the Bernoulli experimentn times,
how much is the probability that the event A occurs k times? Then the binomial
distribution of random variable is brought forward. Similarly, in this section we will
introduce the binomial distribution of Ra-Ra variable.

In the Bernoulli trial, if the probability Np that the event A occurs is stochastic,
then the event that Bernoulli experiment done n times is subject to Ra-Ra binomial
distribution. Now let’s give the definition of Ra-Ra binomial distribution.

Definition 3.5. (Bi-random binomial distribution) Let ˝ D f0; 1; : : : ; ng and

Prf! D kg D
�
n

k

�
Npk Nqn�k , k D 0; 1; : : : ; n, where Np is a random variable

defined on the probability space .˝�;A �;Pr�/ such that 0 � Np.!�/ � 1 for
!� 2 ˝�. Then .˝;A ;Pr/ is a probability space on which we define a Ra-Ra
variable subject to 0–1 distribution as follows

�.!/ D
�
n

k

�
Npk Nqn�k ; if ! D k (3.4)

where Nq D 1 � Np is also a random variable. Then � is a Ra-Ra variable sub-
ject to binomial distribution on the probability space .˝;A ;Pr/, denoted by � �
B.k; n; Np/.

Obviously, Np and Nq are two mappings from the probability space .˝�;A �;Pr�/
to R. Then for any !� 2 ˝�, Np.!�/ and Nq.!�/ become two certain probability
value. It follows that

nX
iD1

�
n

k

�
Npk.!�/ Nqn�k.!�/ D . Np.!�/C Nq.!�//n D 1
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Table 3.1 The numerical result of � � B.k; 20; N�/
k b.k; 20; Np/ k b.k; 20; Np/

Np.!1/ D 0:1 Np.!2/ D 0:3 Np.!3/ D 0:5 Np.!1/ D 0:1 Np.!2/ D 0:3 Np.!3/ D 0:5

0 0.1216 0.0008 – 11 – 0.0120 0.1602
1 0.2702 0.0068 – 12 – 0.0039 0.1201
2 0.2852 0.278 0.0002 13 – 0.0010 0.0739
3 0.1901 0.0716 0.0011 14 – 0.0002 0.0370
4 0.898 0.1304 0.0046 15 – – 0.0148
5 0.0319 0.1789 0.0148 16 – – 0.0046
6 0.0089 0.1916 0.0370 17 – – 0.0011
7 0.0020 0.1643 0.0739 18 – – 0.0002
8 0.0004 0.1144 0.1201 19 – – –
9 0.0001 0.0654 0.1602 20 – – –
10 – 0.0308 0.1762

0
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Fig. 3.2 Bi-random binomial distribution

then Definition 3.5 is well defined. In (3.4), if Np is a fixed number, then Prf! D
kg.0 < Prf! D kg < 1/ is also a fixed number and � degenerates a random
variable subject binomial distribution from .˝;A ;Pr/ to R.

Example 3.5. In Definition 3.5, assume that Np has a uniform distribution in
Œ0:1; 0:5�, i.e. Np � U .0:1; 0:5/ and n D 20, then we can get the numerical
result as shown in Table 3.1.

In order to help readers understand easily, we give the intuitive figure of the data
of Table 3.1 and Fig. 3.2.

For many real-life problems, we usually encounter many Bernoulli experiments,
but n is great and EŒ Np� is small. In this case, it is difficult to deal with it by the
Ra-Ra binomial distribution. Then Ra-Ra poisson distribution is proposed to deal
with some real problems.

Theorem 3.1. On the probability space .˝;A ;Pr/ there is a Ra-Ra variable �
such that � � B.n; k; Np/, where Np is a random variable defined on the probability
space .˝�;A �;Pr�/. Assume that N� is also a random variable on the probability
space .˝�;A �;Pr�/ such that N�.!�/ > 0 for !� 2 ˝� and satisfies

lim
n!1n Npn !d N� (3.5)
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then for any nonnegative integer number k,

lim
n!1

�
n

k

�
Npk
n Nqn�k

n !d e�N� N�k

kŠ
(3.6)

Proof. Since Npn and N� are both random variables on .˝�;A �;Pr�/, and satisfy
that

lim
n!1n Npn !d N�:

This means that n Np is convergent in distribution, and for any !� the following
formula holds,

lim
n!1n Npn.!

�/ D N�.!�/:

Denote N�n D n Npn. It follows that, for any !� 2 ˝�,

B.k; n; Npn.!
�// D

�
n

k

�
Npk
n.!

�/ Nqn�k
n .!�/

D .n/.n � 1/ � � � .n � k C 1/
kŠ

�
�.!�/
n

�k �
1 � �.!

�/
n

�n�k

D �k.!�/
kŠ

�
1 � 1

n

��
1 � 2

n

�
� � �
�
1 � k � 1

n

��
1 � �.!

�/
n

�n�k

For the fixed k, we have

lim
n!1�k

n.!
�/ D �k.!�/; lim

n!1

�
1 � k � 1

n

��
1 � �.!

�/
n

�n�k

D e��.!�/

and

lim
n!1

�
1 � 1

n

��
1 � 2

n

�
� � �
�
1 � k � 1

n

�
D 1

thus,

lim
n!1B.k; n; Npn.!

�// D �k.!�/
kŠ

e��.!�/ (3.7)

Because (3.7) holds for any !� 2 ˝�, B.k; n; Npn/ is convergent to �k

kŠ
e�� in

distribution, i.e.,

lim
n!1

�
n

k

�
Npk
n Nqn�k

n !d e�N� N�k

kŠ

The theorem is proved. ut
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Table 3.2 The numerical result of � � B.k; 4N�/
N� � exp.4/; � � P.k; 4N�/; e D 2:718

k P.k; 4/ P.k; 3/ P.k; 2/ P.k; 1/ P.k; 0:8/ P.k; 0:5/ P.k; 0:2/

0 0.018 0.049 0.135 0.368 0.449 0.607 0.819
1 0.073 0.015 0.271 0.368 0.359 0.304 0.164
2 0.147 0.224 0.271 0.184 0.144 0.076 0.016
3 0.195 0.224 0.180 0.061 0.038 0.013 0.001
4 0.195 0.168 0.090 0.113 0.008 0.002 –
5 0.156 0.101 0.036 0.003 0.001 – –

Obviously,P.k; N�.!�// > 0,
P1

kD0 P.k;
N�.!�// D e�N�.!�/,

P1
kD0

N�k.!�/
kŠ
D 1.

Definition 3.6. (Bi-random poisson distribution) Let P.k; N�/ D e�N� N�k

kŠ
, k D

0; 1; 2; : : : ; where N� is a random variable on .˝�;A �;Pr�/. Let Prf� D !kg D
P.k; N�/where!k 2 f!0; !1; !2; : : :g. Then � is called the Ra-Ra variable subject to
poisson distribution on the probability space .˝;A ;Pr/, denoted by � � P.k; N�/.
Example 3.6. In the above definition, let N� � N .1; 4/, then � � B.k; 3:5 N�/ is a
Ra-Ra variable with normally distributed parameter.

As we know, the random variable with poisson distribution is widely applied to
many fields, such as the times how many the accident occurs in a period or the
number how many radioactive materials produce particles and so on. However, the
historical data may present uncertainty, thus, Ra-Ra variable is an useful to deal with
it and help decision makers make the decision. Assume the � � exp.4/, Table 3.2
shows some results of the Ra-Ra variable � � B.k; 4 N�/.

3.2.2 Continuous Ra-Ra Variable

There is another kind of Ra-Ra variables other than discrete variables, that is,
continuous Ra-Ra variables. They are also mappings from the probability space
.˝;A ;Pr/ to the set combined with random variables on one or many probability
spaces, but it is different from the set ˝ when � is a discrete Ra-Ra variable. ˝
is a continuous set combined with all intervals of the form .�1; a�; .a; b�; .b;1/
and Rn. Then let’s give the definition of continuous variables.

Definition 3.7. Let ˝ is a continuous set combined with the interval of the form
.�1; a�, .a; b�, .b;1/ and Rn. Prf�1 < � � xg D NF .x/, where NF .x/ is a
continuous random function with the random density function Np.x/, i.e.,

NF .x/ D
Z x

�1
Np.y/dy (3.8)

where Np.y/ is a random variable on another probability space .˝�;A �;Pr�/. Then
we call � a continuous random variable.
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By the property of the distribution function, we have that, for any !� 2 ˝�,

Np.x/.!�/ � 0 (3.9)

and Z C1

�1
Np.x/.!�/dx D 1 (3.10)

Conversely, for any random function Np.x/ on .˝�;A �;Pr�/, they all satisfy
(3.9) and (3.10), then the random function NF .x/ defined by (3.8) could be a
distribution function when !� 2 ˝�.

Similarly, for any fixed !, by random function NF .x/ satisfies that for a; b 2 R,

Prfa � �.!/ � bg D NF b.!�/� NF a.!�/ D
Z b

a

Np.!�/.x/dx (3.11)

Similarly with random variables, for any fixed !, we have

Prf�.!/ D cg D 0 (3.12)

Example 3.7. Assume that Na and Nb are two random variables defined on
.˝�;A �;Pr�/ and for any !� 2 ˝�, Nb.!�/ � Na.!�/ holds. Define the following
density function,

Np.!�/.x/ D
8<
:

1

Nb.!�/� Na.!�/
; if Na.!�/ � x � Nb.!�/

0; others
(3.13)

Then � is a continuous Ra-Ra variable.

Example 3.8. Let � be a Ra-Ra variable defined on the probability space .˝;A ;Pr/
satisfying � � N . N�; �2/, where N� is also a normally distributed random variable
on .˝�;A �;Pr�/ with the mean � and variance ��2. Then � is a continuous Ra-Ra
variable.

Next, let’s discuss some special continuous Ra-Ra variables and their proper-
ties. In Examples 3.7 and 3.8, we have simply introduced the uniformly distributed
Ra-Ra variables. In this section, we will give its detailed definition.

Definition 3.8. (Bi-random uniform distribution) Le � be a Ra-Ra variable on
the probability space .˝;A ;Pr/, where Pr D NF .x/ with the following density
function,

Np.x/ D
8<
:

1

Nb � Na ; if Na.!�/ � x � Nb.!�/

0; others
(3.14)
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where Na and Nb are both random variables on .˝�;A �;Pr�/ such that Nb.!�/ >
Na.!�/ for any !� 2 ˝�. Then � is a uniformly distributed Ra-Ra variable, denoted
by � � U . Na; Nb/.

As we know, a Ra-Ra variable is a mapping from a probability space to a set
combined with random variables or random functions, so does the uniform Ra-Ra
variable. From Definition 3.8, we know that �.!/ D NF .x/.! 2 ˝/ is a random
function. It holds that

Prf�1 < �.!�/ < C1g D
Z C1

�1
Np.!�/.x/dx

D
Z Nb.!�/

Na.!�/

1

Nb.!�/ � Na.!�/
dx D 1 (3.15)

Example 3.9. Let˝ D ˝� D R, Na � U .1; 4/ and Nb � U .5; 6/. For !� 2 ˝�, we
have

F b.!�/ D

8̂̂<
ˆ̂:
0; if !� � 1
!� � 1
3

; if 1 < !� � 4
1; if !� > 4

and

F a.!�/ D
8<
:
0; if !� � 5
!� � 5; if 5 < !� � 6
1; if !� > 6

Obviously, for any !� 2 ˝�, Nb.!�/ � Na.!�/ holds. Define the density function as
Definition 3.8, then � is a uniformly distributed Ra-Ra variable.

Example 3.10. Let N� be a random variable on .˝�;A �;Pr�/, then ��U . N� C 2;
N� C 4/ is a uniformly distributed Ra-Ra variable.

Similarly, we can also define the normally distributed Ra-Ra variable.

Definition 3.9. (Bi-random normal distribution) If � is a Ra-Ra variable on
.˝;A ;Pr/, where Pr D NF .x/ with the following density function,

Np.x/ D 1p
2� N� e

� .x� N�/2

2 N�2 ;�1 < x < C1 (3.16)

where N� or N� or both of them are random variables on .˝�;A �;Pr�/. Then � is a
normally distributed Ra-Ra variable, denoted by � �N . N�; N�2/.

This definition is well defined and still satisfies the condition of density function
and distribution function. Take � � N . N�; �2/ as an example. For any !� 2 ˝�,
we have
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Np.!�/.x/ D 1p
2��

e
� .x� N�.!�//2

2�2 � 0 (3.17)

and

Z C1

�1
Np.!�/.x/dx D 1p

2��

Z C1

�1
e

� .x� N�.!�//2

2�2 dx D 1 (3.18)

Its distribution function can be got as follows,

NF .x/ D
Z x

�1
1p
2� N� e

� .y� N�/2

2 N�2 dy (3.19)

Obviously, NF .x/ is a random function. If N� and N� degenerates to be a certain
number, � degenerates to be a random variable following the normal distribution.

Example 3.11. Let N� � U .0; 1/ be a uniformly distributed random variable on
.˝�;A �;Pr�/. Then � � N . N�; 1/ is a normally distributed Ra-Ra variable.

In order to help readers understand it easily, we list the numerical table as shown
in Table 3.3.

Example 3.12. Let N� � exp.4/ be an exponentially distributed random variable on
.˝�;A �;Pr�/. Then � � N .2; N�2/ is a normally distributed Ra-Ra variable.

The Ra-Ra exponential distribution can be defined as follows.

Table 3.3 The numerical result of � � N . N�; N�2/
x � � N . N�; 1/, N� � U .0; 1/ x � � N .0; N�2/, N� � exp.2/

N� D 0 N� D 0:5 N� D 1 N� D 0:5 N� D 5 N� D 20

0 0.5000 0.3085 0.1578 0 0.5000 0.5000 0.5000
0.2 0.5793 0.3821 0.2119 0.2 0.9773 0.5398 0.4602
0.4 0.6554 0.4602 0.2743 0.4 0.9999 0.9773 0.6179
0.6 0.7257 0.5398 0.3446 0.6 0.9999 0.9987 0.8849
0.8 0.7881 0.6179 0.4207 0.8 0.9999 0.9999 0.9452
1.0 0.8413 0.6915 0.5000 1.0 0.9999 0.9999 0.9773
1.2 0.8849 0.7580 0.5793 1.2 0.9999 0.9999 0.9918
1.4 0.9192 0.8159 0.6554 1.4 0.9999 0.9999 0.9974
1.6 0.9452 0.8643 0.7257 1.6 0.9999 0.9999 0.9993
1.8 0.9641 0.9032 0.7881 1.2 0.9999 0.9999 0.9998
2.0 0.9773 0.9332 0.8413 2.0 0.9999 0.9999 0.9999
2.2 0.9861 0.9554 0.8849 2.2 0.9999 0.9999 0.9999
2.4 0.9918 0.9713 0.9192 2.4 0.9999 0.9999 0.9999
2.6 0.9953 0.9821 0.9452 2.6 0.9999 0.9999 0.9999
2.8 0.9974 0.9893 0.9641 2.8 0.9999 0.9999 0.9999
3.0 0.9987 0.9938 0.9773 3.0 0.9999 0.9999 0.9999
3.2 0.9993 0.9965 0.9861 3.2 0.9999 0.9999 0.9999
3.4 0.9997 0.9981 0.9918 3.4 0.9999 0.9999 0.9999
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Definition 3.10. (Bi-random exponential distribution) If � is a Ra-Ra variable on
.˝;A ;Pr/, where Pr D NF .x/ with the following density function,

Np.x/ D
( N�e�N�x; x � 0
0; x < 0

(3.20)

where N� is a random variable on .˝�;A �;Pr�/ and N�.!�/ > 0 for any !� 2 ˝�.
Then � is an exponentially distributed Ra-Ra variable, denoted by � � exp. N�/.

For any !� 2 ˝�, N�.!�/ is a fixed number, then we have

Np.!�/.x/ � 0

and

Z C1

�1
Np.!�/.x/dx D

Z C1

0

N�.!�/e�N�.!�/x D 1:

Its distribution function can be got as follows,

NF .x/ D
(
1 � e�N�x; x � 0
0; x < 0

(3.21)

It’s obvious that NF .x/ is a random function about the random parameter N�. If N�
degenerates to be a certain number, � degenerates to be a random variable.

Example 3.13. Let N� � U .2; 4/ is a random variable on .˝�;A �;Pr�/. Then � �
exp. N�/ is an exponentially distributed Ra-Ra variable.

Example 3.14. Let N� is a random variable on .˝�;A �;Pr�/ with the following
distribution,

N� �
�
4 5

0:4 0:6

�
(3.22)

Then � � exp. N�/ is an exponentially distributed Ra-Ra variable. Its numerical
result is listed in Table 3.4.

3.3 Ra-Ra EVM

Because of the existence of random parameters, we usually cannot find the pre-
cise decision for a complicated real-life problem. Hence, an efficient tool should
be provided to convert the random parameter into a crisp one. The expected value
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Table 3.4 The numerical result of � � exp.N�/
� � exp.N�/

x N� D 4 N� D 5 x N� D 4 N� D 5

0 0 0 0.8 0.9592 0.9817
0.1 0.3297 0.3934 1.0 0.9817 0.9933
0.2 0.5506 0.6321 1.5 0.9975 0.9994
0.3 0.6988 0.7768 2.0 0.9997 0.9999
0.4 0.7981 0.8646 2.5 0.9999 0.9999
0.5 0.8646 0.9179 3.0 0.9999 0.9999
0.6 0.9093 0.9502 3.5 0.9999 0.9999
0.7 0.9392 0.9698 4.0 0.9999 0.9999

of uncertain variable serves as a powerful tool for a wide variety of applications.
It is naturally desirable to introduce the concept of the expected value of a Ra-Ra
variable.

3.3.1 General Model for Ra-Ra EVM

First of all, let us recall that the expected value of a random variable � on .˝;A ;Pr/
can be defined as follows,

EŒ�� D
Z C1

0

Prf� � tgdt �
Z 0

�1
Prf� � tgdt:

As we can see in the following part, the expected value of a Ra-Ra variable
is somewhat similar to this expression in form. The expected value operator and
variance of the Ra-Ra variable are defined as follows,

Definition 3.11. Let � be a Ra-Ra variable defined on the probability space
.˝;A ;Pr/. Then the expected value of Ra-Ra variable � is defined as

EŒ�� D
Z 1

0

Prf! 2 ˝jEŒ�.!/� � tgdt �
Z 0

�1
Prf! 2 ˝jEŒ�.!/� � tgdt

provided that at least one of the above two integrals is finite.

Similarly to the variance of random variables, the variance of the Ra-Ra variable
is given as follows.

Definition 3.12. Let � be a Ra-Ra variable with finite expected value EŒ��. Then
the variance of Ra-Ra variable � is defined as

V Œ�� D EŒ.� �EŒ��/2� (3.23)

The following lemmas gives the related properties of the expected value and
variance of Ra-Ra variable, and readers can refer to [251] to find the detail.
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Lemma 3.1. Let � be a Ra-Ra variable on the probability space .˝;A ;Pr/. If the
expected value EŒ�.!/� of random variable �.!/ is finite for each !, then EŒ�.!/�
is a random variable on .˝;A;Pr/.

Lemma 3.2. Assume that n and g are Ra-Ra variables with finite expected values.
Then for any real numbers a and b, we have

EŒa� C b�� D aEŒ��C bEŒ��:

Lemma 3.3. Assume that � is a Ra-Ra variable, a and b are real numbers. Then
we have

V Œ�� D EŒ�2� � .EŒ��/2
V Œa� C b� D a2V Œ��

Lemma 3.4. Assume that � is a Ra-Ra variable whose expected value exists. Then
we have

V ŒEŒ�.!/�� � V Œ�� (3.24)

Remark 3.1. We can note that there is the expected value operator E in both sides
of the above definition ofEŒ��. In fact, the symbolE represents different meanings.
That is to say, the overloading allows us to use the same symbol E for different
expected value operators, because we can deduce the meaning from the type of
argument.

By the definition of expected value operator of Ra-Ra variables, we can compute
the expected value of some Ra-Ra variables with special distribution. Next, let’s
define the expected value of discrete Ra-Ra variables in another way.

Definition 3.13. (Expected value of discrete Ra-Ra variables) Let � be a discrete
Ra-Ra variable on .˝;A ;Pr/, its expected value can be defined as follows,

EŒ�� D
X

!i 2˝

Prf! D !i gEŒ�i � (3.25)

where �i .i D 1; 2; : : :/ are random variables on the probability space .˝i ;Ai ;Pri /.

By the above definition, we know that if �i degenerates to be a certain number
or a certain function, then � degenerates to be a random variable on .˝;A ;Pr/.
Next, let’s restrict our attention to three kinds of special discrete Ra-Ra variables
and discuss their expected value.

Theorem 3.2. Let � be a 0–1 distributed Ra-Ra variable and Np � U .a; b/, where
0 < a < b < 1. Then we have

EŒ�� D aC b
2

(3.26)
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Proof. Since Np � U .a; b/, then 1� Np D Nq � U .1� b; 1� a/. Then by Definition
3.4 and Definition 3.13, we have

EŒ�� D 1 �EŒ Np�C 0 �EŒ Nq� D EŒ Np� D aC b
2

ut

Theorem 3.3. Let � be a 0–1 distributed Ra-Ra variable and Np holds that

�
a1 a2 : : : am

p1 p2 : : : pm

�
(3.27)

where 0 < ai < 1 and
mP

iD1

pi D 1. Then we have

EŒ�� D
mX

iD1

aipi (3.28)

Proof. By Definition 3.13, we have

EŒ�� D 1 �EŒ Np�C 0 �EŒ Nq� D EŒ Np� D
mP

iD1

aipi ut

From Theorem 3.2 and 3.3, we know that the probability Np of Prf! D 1g and
only varies between 0 and 1. Then 0 < EŒ�� < 1 must hold. The following theorem
will present the variance of a 0–1 distributed Ra-Ra variable.

Theorem 3.4. Let � be a 0–1 distributed Ra-Ra variable defined in Theorem 3.2.
Then we have

V Œ�� D aC b
2
�
�
aC b
2

�2

(3.29)

Proof. Since � �
�
0 1

Nq Np
�

, then

�2 �
�

0 1

1 � Np2 Np2

�

By Theorem 3.2, we have EŒ�2� D Np2. It follows that

V Œ�� D EŒ�2� � .EŒ��/2 D aC b
2
�
�
aC b
2

�2

ut
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Theorem 3.5. Let � be a 0–1 distributed Ra-Ra variable defined in Theorem 3.3.
Then we have

V Œ�� D
mX

iD1

a2
i pi �

 
mX

iD1

aipi

!2

(3.30)

Proof. It is the similar proved process with Theorem 3.4. ut
Of course, the probability Np may have many other distributions, readers could

deduce the expected value and variance similarly. Next, we introduce the expected
value of binomially distributed Ra-Ra variables.

Theorem 3.6. Let � � B.n; k; Np/ be a binomially distributed Ra-Ra variable and
Np � U .a; b/, where 0 < a < b < 1. Then we have

EŒ�� D n.aC b/
2

(3.31)

V Œ�� D .aC b/n
2

C .b � a/2n2

12
� .b

2 C ab C a2/n

3
(3.32)

Proof. By the definition of the expected value operator of Ra-Ra variables, we have

EŒ�� D
nP

kD0

kEŒ Npk� D E
�

nP
kD0

k Npk

	

D E
h nP

kD1

k

�
n

k

�
Npk Nqn�k

i
D E

�
n Np

nP
kD1

�
n � 1
k � 1

�
Npk�1 Nq.n�1/�.k�1/

	

D EŒn Np. Np C Nq/n�1� D n.aC b/
2

Furthermore, we have �2 � B.n; k2; Np/. Then

EŒ�2� D
nX

kD0

k2EŒ Npk � D E
"

nX
kD0

k2 Npk

#

D E
� nX

kD1

k2

�
n

k

�
Npk Nqn�k

	
D EŒn Np Nq C n2 Np2�

D nEŒ Np�C .n2 � n/EŒ Np2�

Since Np � U .a; b/, then

EŒ Np2� D
Z b

a

x2

b � adx D
b2 C ab C a2

3



118 3 Bi-Random Multiple Objective Decision Making

It follows that

V Œ�� D EŒ�2� � .EŒ��/2

D .aC b/n
2

C .b2 C ab C a2/.n2 � n/
3

�
�
.aC b/n

2

	2

D .aC b/n
2

C .b � a/2n2

12
� .b

2 C ab C a2/n

3

The proof is completed. ut
Theorem 3.7. Let � be a binomially distributed Ra-Ra variable and Np holds that

�
a1 a2 : : : am

p1 p2 : : : pm

�
(3.33)

where 0 < ai < 1 and
mP

iD1

pi D 1. Then we have

EŒ�� D n
mX

iD1

aipi (3.34)

V Œ�� D n
mX

iD1

aipi C .n2 � n/
mX

iD1

a2
i pi � n2

 
mX

iD1

aipi

!2

(3.35)

Proof. We can prove it as the proved process of Theorem 3.6.

EŒ�� D nEŒ Np� D n
mX

iD1

aipi

and

EŒ�2� D nEŒ Np�C .n2 � n/EŒ Np2� D n
mX

iD1

aipi C .n2 � n/
mX

iD1

a2
i pi :

Then

V Œ�� D EŒ�2� � .EŒ��/2 D n
mX

iD1

aipi C .n2 � n/
mX

iD1

a2
i pi � n2

 
mX

iD1

aipi

!2

:

This completes the proof. ut
For the poisson distributed Ra-Ra variables, we also obtain the following results.
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Theorem 3.8. Let � � B.k; N�/ be a Ra-Ra variable with N� � U .a; b/, where
b > a > 0. Then we have

EŒ�� D aC b
2

(3.36)

V Œ�� D EŒ�2� � .EŒ��/2 D aC b
2
C .b � a/2

12
(3.37)

Proof. By the definition of the expected value of discrete Ra-Ra variables, we have

EŒ�� D
1X

kD0

kEŒpk� D E
" 1X

kD0

k �
N�k

kŠ
e�N�

#

D E
"
N�e�N�

1X
kD1

N�k�1

.k � 1/Š

#

D EŒ N�� D aC b
2

Since � � B.k; N�/, then �2 � B.k2; N�/. It follows that

EŒ�2� D
1X

kD0

k2EŒpk� D E
" 1X

kD0

k2 �
N�k

kŠ
e�N�

#

D E
" 1X

kD1

k �
N�k

.k � 1/Še
�N�
#
D E

"
N�

1X
kD0

.k C 1/
N�k

kŠ
e�N�

#

D EŒ N�2 C N�� D EŒ N�2�C EŒ N��

D b2 C ab C a2

3
C aC b

2

Then

V Œ�� D EŒ�2� � .EŒ��/2 D aC b
2
C .b � a/2

12
:

This completes the proof. ut

Theorem 3.9. Let � be a Poisson distributed Ra-Ra variable and N� holds that

�
a1 a2 � � � am

p1 p2 � � � pm

�
(3.38)

where 0 < ai < 1 and
mP

iD1

pi D 1. Then we have

EŒ�� D
mX

iD1

aipi (3.39)
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V Œ�� D
mX

iD1

a2
i pi C

mX
iD1

aipi �
 

mX
iD1

aipi

!2

(3.40)

Proof. The proof is similar with Theorem 3.7, we have

EŒ�� D EŒ N�� D
mX

iD1

aipi

and

EŒ�2� D EŒ N�2�C EŒ N�� D
mX

iD1

a2
i pi C

mX
iD1

aipi

Then

V Œ�� D EŒ�2� � .EŒ��/2 D
mX

iD1

a2
i pi C

mX
iD1

aipi �
 

mX
iD1

aipi

!2

This completes the proof. ut
For the continuous Ra-Ra variable, we have the following definition which is
different from Definition 3.11 in form.

Definition 3.14. (Expected value of continuous Ra-Ra variables) Let � be a contin-
uous Ra-Ra variable on .˝;A ;Pr/with the density function Np.x/, then its expected
value can be defined as follows,

EŒ�� D
Z 1

0

Pr

�Z
x2˝�

x Np.x/dx � r
�

dr�
Z 0

�1
Pr

�Z
x2˝�

x Np.x/dx � r
�
dr

(3.41)

where Np.x/ is a random function defined on .˝�;A �;Pr�/.
If � degenerates to be a random variable, the definition is identical with the

expected value of random variables in Definition 2.9. Next, let’s restrict to three
special continuous Ra-Ra variables.

Theorem 3.10. Assume that � � U . Na; Nb/ is a uniformly distributed Ra-Ra vari-
able, where Na � U .a1; a2/ and Nb � U .b1; b2/.b1 > a2/ are both random
variables defined on R. Then we have

EŒ�� D a2 C b2 C a1 C b1

4

V Œ�� D a2
1 C a1a2 C a2

2

9
C b2

1 C b1b2 C b2
2

9

C .a1 C a2/.b1 C b2/

12
� .a2 C b2 C a1 C b1/

2

16
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Proof. For any ! 2 ˝ , we have

EŒ�.!/� D
Z C1

�1
x Np.!/.x/dx D

Z Nb

Na
x

Nb � Nadx D
Nb C Na
2

Obviously,EŒ�.!/� is a random variable. Since Na � U .a1; a2/ and Nb � U .b1; b2/

.b1>a2/, then
NbC Na

2
is also a random variable with the distribution U .a1Cb1

2
; a2Cb2

2
/.

Then we have

Pr

( Nb C Na
2
� t

)
D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

1; if t � a1 C b1

2
a2 C b2 � 2x

a2 C b2 � .a1 C b1/
; if

a1 C b1

2
< t � a2 C b2

2

0; if t >
a2 C b2

2

and

Pr

( Nb C Na
2
� t

)
D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

0; if t � a1 C b1

2
2x � .a1 C b1/

a2 C b2 � .a1 C b1/
; if

a1 C b1

2
< t � a2 C b2

2

1; if t >
a2 C b2

2

According to the definition of continuous Ra-Ra variables, the following formula
can be obtained,

EŒ�� D
Z 1

0

Prf! 2 ˝jEŒ�.!/� � tgdt �
Z 0

�1
Prf! 2 ˝jEŒ�.!/� � tgdt

D
Z 1

0

Pr

(
! 2 ˝j

Nb C Na
2
� t

)
dt �

Z 0

�1
Pr

(
! 2 ˝j

Nb C Na
2
� t

)
dt

Then it will be divided into the following three cases.

1. If a2Cb2

2
� 0, then

EŒ��D �
Z 0

a2Cb2
2

1dt �
Z a2Cb2

2

a1Cb1
2

2t � .a1 C b1/

a2 C b2 � .a1 C b1/
dt D a2C b2C a1C b1

4

2. If a1Cb1

2
� 0 < a2Cb2

2
, then

EŒ�� D
Z a2Cb2

2

0

.a2 C b2/ � 2t
a2 C b2 � .a1 C b1/

dt �
Z 0

a1Cb1
2

2t � .a1 C b1/

a2 C b2 � .a1 C b1/
dt

D a2 C b2 C a1 C b1

4
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3. If a1Cb1

2
> 0, then

EŒ��D
Z a1Cb1

2

0

1dt C
Z a2Cb2

2

a1Cb1
2

2t � .a1 C b1/

a2 C b2 � .a1 C b1/
dt D a2 C b2 C a1 C b1

4

Above all, the expected value of � is .a2 C b2 C a1 C b1/=4. Similarly, we have

EŒ�2.!/� D
Z C1

�1
x2 Np.!/.x/dx D

Z Nb

Na
x2

Nb � Nadx D
Na2 C Na Nb C Nb2

3

Then we have

EŒ�2� D EŒEŒ�2.!/�� D E
"
Na2 C Na Nb C Nb2

3

#
D 1

3
.EŒ Na2�C EŒ Na Nb�C EŒ Nb2�/

Since Na � U .a1; a2/ and Nb � U .b1; b2/.b1 > a2/ are independently random
variables, it follows that

EŒ Na2� D
Z a2

a1

x2

a2 � a1

dx D a2
1 C a1a2 C a2

2

3

EŒ Nb2� D
Z b2

b1

x2

b2 � b1

dx D b2
1 C b1b2 C b2

2

3

EŒ Na Nb� D EŒ Na�EŒ Nb� D .a1 C a2/.b1 C b2/

4

Then

V Œ�� D a2
1 C a1a2 C a2

2

9
C b2

1 C b1b2 C b2
2

9
C .a1 C a2/.b1 C b2/

12

� .a2 C b2 C a1 C b1/
2

16

This completes the proof. ut
By the definition of uniformly distributed Ra-Ra variables, random variables can

have many other distributions only satisfying Nb.!�/ > Na.!�/ for any !�2˝�.
Readers can similarly deduce their expected values and variances. Next, let’s intro-
duce the expected value and variance of normally distributed Ra-Ra variables.

Theorem 3.11. Let � be a Ra-Ra variable, which is subject to the normal distribu-
tion N . N�; �2/ with N� � U .a; b/. Then
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EŒ�� D aC b
2

Proof. Since � � N. N�; �2/, it is obvious that EŒ�.!/� D N�, then we have

EŒ�� D
Z 1

0

Prf� � tgdt �
Z 0

�1
Prf� � tgdt (3.42)

Since N� � U .a; b/, then

Prf N� � tg D

8̂̂
<
ˆ̂:
1; if t � a
b � t
b � a ; if a � x � b;
0; if t > b

Prf N� � tg D

8̂<
:̂
0; if x � a;
x � a
b � a ; if a � x < b;
1; if x � b:

Then we have the following three cases.

1. If a > 0. Obviously,
R 0

�1 Prf� � tgdt D 0, then

EŒ�� D
Z a

0

1dt C
Z b

a

b � t
b � adt D

aC b
2

2. If a � 0 < b, we have

EŒ�� D
Z b

0

b � t
b � adt �

Z 0

a

t � a
b � adt D

aC b
2

3. If b � 0, then

EŒ�� D �
Z b

a

t � a
b � adt �

Z 0

b

1dt D aC b
2

Above all, the expected value of � is .aC b/=2. ut
Similarly, readers can compute the expected value if N� follows other distributions

or the variance N� is also a random variable on .˝�;A �;Pr�/. Then the expected
value and variance of exponentially distributed Ra-Ra variables are introduced in
the following part. For the exponential distribution, the parameter N� must be more
than or equal to 0, then we can assume that ˝� D Œ0;C1/.
Theorem 3.12. Let � � exp. N�/ be a Ra-Ra variable, where N� � U .a; b/

.b > a > 0/ defined on .˝�;A �;Pr�/.˝� D Œ0;C1//. Then

EŒ�� D ln b � ln a

b � a (3.43)

V Œ�� D 1

ab
�
�

ln b � ln a

b � a
�2

(3.44)
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Proof. For any ! 2 ˝ , we have

EŒ�.!/� D
Z C1

�1
x � N�e�N�xdx D 1

N� (3.45)

Obviously, EŒ�.!/� D 1
N� is a random variable on .˝�;A �;Pr�/. Then

R 0

�1
1
N� �

tdt D 0 and Z 1

0

1

N� � tdt D
Z 1

b

0

1dt C
Z 1

a

1
b

1
t
� a

b � a dt D
lnb � lna
b � a

It follows from Definition 3.14 that

EŒ�� D
Z C1

0

PrfEŒ�.!/� � tgdt �
Z 0

�1
PrfEŒ�.!/� � tgdt D lnb � lna

b � a

From � � exp. N�/, we also have

EŒ�2.!/� D
Z C1

�1
x2 � N�e� N�xdx D 2

N�2
:

Obviously, EŒ�2.!/� D 1
N�2

is also a random variable on .˝�;A �;Pr�/. ThenR 0

�1.
1
N�2
� t/dt D 0 and for t > 0

Pr

�
1

�2
� t

�
D Pr

�
� 1p

t
� � � 1p

t

�

D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

0; if t � 1

a2
1p

t
� a

b � a ; if
1

b2
� t � 1

a2

1; if t � 1

b2

It follows that

EŒ�2� D
Z C1

0

PrfEŒ�2.!/� � tgdt �
Z 0

�1
PrfEŒ�2.!/� � tgdt

D
Z 1

b2

0

1dt C
Z 1

a2

1

b2

1p
t
� a

b � a dt D
1

ab

Thus,

V Œ�� D EŒ�2� � .EŒ��/2 D 1

ab
�
�
lnb � lna
b � a

�2
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This completes the proof. ut
By the definition of exponentially distributed Ra-Ra variables, we know that the

parameter N� can be a random variable with different distribution, but it must satisfy
that N�.!�/ > 0 for any !� 2 ˝�. Then readers can deduce the expected value and
variance when N� follows other distributions.

Let’s consider the typical single objective with Ra-Ra parameters,

8̂<
:̂

maxf .x; �/

s.t.

�
gj .x; �/ � 0; j D 1; 2; : : : ; p
x 2 X

(3.46)

where f .x; �/ and gj .x; �/, j D 1; 2; : : : ; p are continuous functions in X and
� D .�1; �2; : : : ; �n/ is a Ra-Ra vector on the probability space .˝;A ;Pr/. Then it
follows from the expected operator that

8̂<
:̂

maxEŒf .x; �/�

s.t.

�
EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
x 2 X

(3.47)

After being dealt with by expected value operator, the problem (3.46) has been con-
verted into a certain programming and then decision makers can easily obtain the
optimal solution.

Definition 3.15. x is said to be a feasible solution of problem (3.47) if and only if
EŒgj .x; �/� � 0 .j D 1; 2; : : : ; p/. For any feasible solution x, if EŒf .x�; �/� �
EŒf .x; �/�, then x� is the optimal solution of problem (3.47).

In many cases, there are usually multiple objectives decision makers must con-
sider. Thus we have to employ the following expected value model,

8̂<
:̂

max ŒEŒf1.x; �/�; EŒf2.x; �/�; : : : ; EŒfm.x; �/��

s.t.

�
EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
x 2 X

(3.48)

where fi .x; �/ are return functions for i D 1; 2; : : : ; m: � D .�1; �2; : : : ; �n/ is a
Ra-Ra vector.

Definition 3.16. x� is said to be the Pareto solution of problem (3.48), if there
doesn’t exist feasible solutions x such that

EŒfi .x; �/� � EŒfi .x
�; �/�; i D 1; 2; : : : ; m

and there is at least one j.j D 1; 2; : : : ; m/ such that EŒfi .x; �/� > EŒfi .x
�; �/�.
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We can also formulate a random decision system as an expected value goal model
(EVGM) according to the priority structure and target levels set by the decision-
maker:

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8̂̂<
ˆ̂:
EŒfi .x; �/�C d�

i � dC
i D bi ; i D 1; 2; : : : ; m

EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
d�

i ; d
C
i � 0; i D 1; 2; : : : ; m

x 2 X

(3.49)

where Pj is the preemptive priority factor which expresses the relative importance
of various goals, Pj 
 Pj C1, for all j , uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, vij is the weighting factor
corresponding to negative deviation for goal i with priority j assigned, dC

i is the
positive deviation from the target of goal i , defined as

dC
i D ŒEŒfi .x; �/� � bi � _ 0;

d�
i is the negative deviation from the target of goal i , defined as

d�
i D Œbi � EŒfi .x; �/�� _ 0;

fi is a function in goal constraints, gj is a function in real constraints, bi is the
target value according to goal i , l is the number of priorities, m is the number of
goal constraints, and p is the number of real constraints.

3.3.2 Linear Ra-Ra EVM and the Step Method

Generally, many uncertain problems cannot be directly converted into crisp ones
unless they have favorable properties and their Ra-Ra parameters have crisp distri-
bution. For those which cannot be transformed, Ra-Ra simulation is an useful tool
to deal with them. Next, we will exhibit some examples which can be converted into
crisp models. Let’s consider the following linear multi-objective programming with
Ra-Ra parameters,

8̂<
:̂

max
� QNcT

1 x; QNcT
2 x; : : : ; QNcT

mx
�

s.t.

(
QNeT
r x � QNbr ; r D 1; 2; : : : ; p

x � 0
(3.50)

where x 2 X � Rn, QNci D . QNci1; QNci2; : : : ; QNcin/
T , QNer D . QNer1; QNer2; : : : ; QNern/

T are Ra-Ra

vectors, and QNbr are Ra-Ra variables, i D 1; 2; : : : ; m, r D 1; 2; : : : ; p. This is
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a typical linear Ra-Ra multi-objective problem. Because of the existence of Ra-Ra

parameters QNci , QNer and QNbr , we cannot easily obtain its optimal solutions. By Definition
3.13 and 3.14, we can obtain the following expected value model of problem (3.50),

8̂<
:̂

max
�
EŒ QNcT

1 x�; EŒ QNcT
2 x�; : : : ; EŒ QNcT

mx�
�

s.t.

(
EŒ QNeT

r x� � EŒ QNbr �; r D 1; 2; : : : ; p
x � 0

(3.51)

3.3.2.1 Crisp Equivalent Model

In the above model, if these Ra-Ra parameters have crisp distribution, we can get
the equivalent model and easily solve them. Let’s consider the following theorem in
which the special distribution function is added to the Ra-Ra parameters.

Theorem 3.13. Assume that Ra-Ra vector QNci D . QNci1; QNci2; : : : ; QNcin/
T is normally

distributed with mean vector N�c
i D . N�c

i1; N�c
i2; : : : ; N�c

in/
T and positive definite

covariance matrix V c
i , written as QNci � N . N�c

i ; V
c

i /.i D 1; 2; : : : ; m/ and Ra-Ra

vectors QNer � N . N�e
r ; V

e
r /,
QNbr � N . N�b

r ; .�
b
r /

2/ .r D 1; 2; : : : ; p/, where N�c
i , N�e

r

and N�b
r are normally distributed random vectors respectively with mean vectors

.�c
i /n�1, .�e

r /n�1, .�b
r /n�1 and covariance matrix �c

i , �e
r , �b

r . Assume that for

any i D 1; 2; : : : ; m, j D 1; 2; : : : ; n and r D 1; 2; : : : ; p, QNcij , QNeij and QNbij are
independent with each other. Then problem (3.51) is equivalent to

8<
:

max ŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t.

�
Gr .x/ � Kr ; r D 1; 2; : : : ; p
x � 0

(3.52)

where

Hi .x/ D �
q

xT�c
i x

�
F

�
�cT

i xq
xT�c

i x

�
C F

�
� �cT

i xq
xT�c

i x

�
� 2F.�1/

�
;

Gr.x/ D �
p

xT�e
r x

�
F

�
�eT

r xp
xT�e

r x

�
C F

�
� �eT

r xp
xT�e

r x

�
� 2F.�1/

�
;

Kr D �
p
�b

r

�
F

�
�b

r

�b
r

�
C F

�
� �b

r

�b
r

�
� 2F.�1/

�
:

Proof. Since Ra-Ra variables QNcij are normally distributed and QNcij � N . N�c
ij ; V

c
ij /

.i D 1; 2; : : : ; m; j D 1; 2; : : : ; n/, then it follows that

EŒ QNcT
i x� D E

� nX
j D1

xj
QNcij

	
D

nX
j D1

xj N�c
ij D N�cT

i x
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Obviously,EŒ QNcT
i x� D N�cT

i x is also a random variable. Since N�c
i � N .�c

ij ; �
c
i /, it

follows that N�cT
i x � N .�cT

i x;xT�c
i x/. By Definition 3.11, we have that

E
� QNcT

i x
� D Z C1

0

Pr
n
E
� QNcT

i x
� � todt � Z 0

�1
Pr
n
E
� QNcT

i x
� � todt

D
Z C1

0

Pr

8̂<
:̂
E
� QNcT

i x
� � �cT

i xq
xT�c

i x

� t � �cT
i xq

xT�c
i x

9>=
>; dt

�
Z 0

�1
Pr

8̂<
:̂
E
� QNcT

i x
� � �cT

i xq
xT�c

i x

� t � �cT
i xq

xT�c
i x

9>=
>; dt

D
Z C1

0

0
B@1 �˚

0
B@ t � �cT

i xq
xT�c

i x

1
CA
1
CA dt � Z 0

�1
˚

0
B@ t � �cT

i xq
xT�c

i x

1
CAdt

where˚.x/ is the standard normally distributed function. Since˚.�x/ D 1�˚.x/,
and let

t��cT
i

xp
xT 	c

i
x
D y, then it follows that

E
� QNcT

i x
� D Z C1

0

0
B@1 �˚

0
B@ t � �cT

i xq
xT�c

i x

1
CA
1
CAdt � Z 0

�1
˚

0
B@ t � �cT

i xq
xT�c

i xx

1
CA dt

D �
q

xT�c
i x

Z �cT
i

xp
xT �c

i
x

�1
˚.y/dy �

q
xT�c

i x

Z � �cT
i

xp
xT �c

i
x

�1
˚.y/dy

D �
q

xT�c
i x

0
B@F

0
B@ �cT

i xq
xT�c

i x

1
CAC F

0
B@� �cT

i xq
xT�c

i x

1
CA � 2F.�1/

1
CA

where F.x/ is a convergent continuous function and dF .x/
dx
D ˚.x/. Similarly,

E
� QNeT

r x
� D �qxT�e

r x

 
F

 
�eT

r xp
xT�e

r x

!
C F

 
� �eT

r xp
xT�e

r x

!
� 2F.�1/

!

E
� QNbr

� D �q�b
r

�
F

�
�b

r

�b
r

�
C F

�
� �b

r

�b
r

�
� 2F.�1/

�

Let

Hi .x/ D �
q

xT�c
i x

0
B@F

0
B@ �cT

i xq
xT�c

i x

1
CAC F

0
B@ �cT

i xq
xT�c

i x

1
CA � 2F.�1/

1
CA ;
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Gr .x/ D �
q

xT�e
r x

 
F

 
�eT

r xp
xT�e

r x

!
C F

 
� �eT

r xp
xT�e

r x

!
� 2F.�1/

!
;

Kr D �
q
�b

r

�
F

�
�b

r

�b
r

�
C F

�
� �b

r

�b
r

�
� 2F.�1/

�
:

Then (3.51) is equivalent to the following formula,

8̂<
:̂

max ŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t.

�
Gr .x/ � Kr ; r D 1; 2; : : : ; p
x � 0

The proof is completed. ut
Of course, in the real-life problems, Ra-Ra parameters in the linear multiobjec-

tive programming problem could follow many different distributed forms, we just
only take the normal distribution as an example. Readers can obtain the similar
result by the expected value operator.

3.3.2.2 The Step Method

In this section, we use the step method, which is also called STEM method and is
the interactive programming method to deal with the multi-objective programming
problem [20], to resolve the problem (3.52).

The STEM method is based on the norm ideal point method and its resolving
process includes the analysis and decision stage. In the analysis stage, analyzer
resolves the problem by the norm ideal point method and provides the decision
makers with the solutions and the related objective values and the ideal objective
values. In the decision stage, DM gives the tolerance level of the satisfied object to
the dissatisfied object to make its objective value better after comparing the objec-
tive values obtained in the analysis stage with the ideal point, then provides the
analyzer with the information to go on resolving. Do it repeatedly and DM will get
the final satisfied solution.

Shimizu once extent the STEM method to deal with the general nonlinear
multi-objective programming problem. Interested readers can refer to literatures
[277, 287] and others [55, 237, 298] about its further development.

Consider the following multi-objective programming problem,

�
min f .x/ D .f1.x/; f2.x/; : : : ; fm.x//

s.t. x 2 X (3.53)

where x D .x1; x2; : : : ; xn/ and X D fx 2 RnjAx D b;x � 0g. Let xi be the
optimal solution of the problem minx2X fi .x/ and compute each objective function
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Table 3.5 Payoff table

f x1 	 	 	 xi 	 	 	 xm max

f1 f11 D f �

1 	 	 	 f1i 	 	 	 f1m f max
1

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

fi fi1 	 	 	 fii D f �

i 	 	 	 fim f max
i

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

fm fm1 	 	 	 fmi 	 	 	 fmm D f �

m f max
m

fi .x/ at xk , then we get m2 objective function value,

fik D fi .x
k/; i; k D 1; 2; : : : ; m:

Denote f �
i D fi i D fi .x

i /, f � D .f �
1 ; f

�
2 ; : : : ; f

�
m/

T and f �
i is a ideal point of

the problem (3.53). Compute the maximum value of the objective function fi .x/ at
every minimum point xk

f max
i D max

1�k�m
fik; i D 1; 2; : : : ; m:

To make it more clearly, we list it in Table 3.5.
According to Table 3.5, we only look for the solution x such that the distance

between f .x/ and f � is minimum, that is, the solution such that each objective is
close to the ideal point. Consider the following problem,

min
x2X

max
1�i�m

wi jfi .x/� f �
i j D min

x2X
max

1�i�m
wi j

nX
j D1

cijxj � f �
i j (3.54)

where w D .w1;w2; : : : ;wm/
T is the weight vector and wi is the i th weight which

can be decided as follows,

˛i D

8̂<
:̂

f max
i

�f �

i

f max
i

1

jjci jj ; f
max

i > 0

f �

i
�f max

i

f max
i

1

jjci jj ; f
max

i � 0
; i D 1; 2; : : : ; m (3.55)

wi D ˛i=

mX
iD1

˛i ; i D 1; 2; : : : ; m; (3.56)

where jjci jj D
qPn

j D1 c
2
ij . Then the problem (3.53) is equivalent to
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<
ˆ̂̂:

min�

s.t.

8̂<
:̂

wi

 
nP

j D1

cijxj � f �
i

!
� �; i D 1; 2; : : : ; m

� � 0;x 2 X
(3.57)

Assume that the optimal solution of the problem (3.57) is . Qx; Q�/T . It is obvious
that . Qx; Q�/T is a weak efficient solution of the problem (3.5). In order to check
if Qx is satisfied, DM needs to compare fi . Qx/ with the ideal objective value f �

i ,
i D 1; 2; : : : ; m. If DM has been satisfied with fs. Qx/, but dissatisfied with ft . Qx/,
we add the following constraint in the next step in order to improve the objective
value ft ,

ft .x/ � ft . Qx/:

For the satisfied object fs , we add one tolerance level ıs,

fs.x/ � fs. Qx/C ıs :

Thus, in the problem (3.57), we replace X with the following constraint set,

X1 D fx 2 X jfs.x/ � fs. Qx/C ıs ; ft .x/ � ft . Qx/g;

and delete the objective fs (do it by letting ws D 0), then resolve the new problem
to get better solutions.

In a word, the STEM method can be summarized as follows:
Step 1. Compute every single objective programming problem,

fi .x
i / D min

x2X
fi .x/; i D 1; 2; : : : ; m:

If x1 D � � � D xm, we obtain the optimal solution x� D x1 D � � � D xm and stop.
Step 2. Compute the objective value of fi .x/ at every minimum point xk , then

get m2 objective values fik D fi .x
k/.i; k D 1; 2; : : : ; m/. List Table 3.5 and we

have

f �
i D fi i ; f

max
i D max

1�k�m
fik; i D 1; 2; : : : ; m:

Step 3. Give the initial constraint set and let X1 D X .
Step 4. Compute the weight coefficients w1;w2; : : : ;wm by (3.55) and (3.56).
Step 5. Solve the auxiliary problem,
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<
ˆ̂̂:

min�

s.t.

8̂<
:̂

wi

 
nP

j D1

cijxj � f �
i

!
� �; i D 1; 2; : : : ; m

� � 0;x 2 Xk

(3.58)

Let the optimal of problem (3.58) be .xk; �k/T .
Step 6. DM compare the reference value fi .x

k/.i D 1; 2; : : : ; m/ with the ideal
objective value f �

i . (1) If DM is satisfied with all objective values, output Qx D xk .
(2) If DM is dissatisfied with all objective values, there doesn’t exists any satisfied
solutions and stop the process. (3) If DM is satisfied with the object fsk

.1�sk � m;
k < m/, turn to Step 7.

Step 7. DM gives the tolerance level ısk
> 0 to the object fsk

and construct the
new constraint set as follows,

XkC1 D fx 2 Xk jfsk
.x/ � fsk

.xk/C ısk
; fi .x/ � fi .x

k/; i 6D skg:

Let ısk
D 0, k D k C 1 and turn to Step 4.

3.3.3 Nonlinear Ra-Ra EVM and Ra-Ra Simulation-Based PSO

Let’s introduce the process of the Ra-Ra simulation based PSO to deal with the
expected value models. Consider the following multi-objective expected value
model with Ra-Ra coefficients,8̂<

:̂
max ŒEŒf1.x; �/�; EŒf2.x; �/�; : : : ; EŒfm.x; �/��

s.t.

�
EŒgr .x; �/� � 0; r D 1; 2; : : : ; p
x 2 X

where fi .x; �/, or gr .x; �/ or both of them are nonlinear functions with respect
to �, i D 1; 2; : : : ; m; r D 1; 2; : : : ; p; � D .�1; �2; : : : ; �n/ is a Ra-Ra vector.

3.3.3.1 Ra-Ra Simulation for EVM

Assume that � is an n-dimensional Ra-Ra vector on the probability space
.˝;A ;Pr/, and f W Rn ! R is a measurable function. One problem is to
calculate the expected value EŒf .x; �/� for the given x. Note that, for each ! 2 ˝ ,
we may calculate the expected value EŒf .x; �.!//� by random simulation. Since
EŒf .x; �/� is essentially the expected value of random variable EŒf .x; �.!//�, we
may produce a Ra-Ra simulation by the following process.

Firstly, we sample !1; !2; : : : ; !N from ˝ according to Pr, where !k is
an n-dimensional vector. For each !i .i D 1; 2; : : : ; N /, �.!i / are all random
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variables. Then we can apply stochastic simulation to get their expected
values, respectively. Randomly generate !1

i ; !
2
i ; : : : ; !

M
i from ˝ according

to the probability measure Pr for each �.!i /.i D 1; 2; : : : ; N /. Compute
f .x; �.!1

i //; f .x; �.!
2
i //; : : : ; f .x; �.!

M
i //. Then

EŒf .x; �.!i //� D

MP
j D1

f .x; �.!
j
i //

M
:

Next, we can get the expected value of f .x; �/ as follows,

EŒf .x; �/� D

NP
iD1

EŒf .x; �.!i //�

N
:

Then the procedure simulating the expected value of the function f .x; �/ can be
summarized as follows:

Procedure Ra-Ra simulation for EVM
Input: The decision vector x

Output: The expected value EŒf .x; �/�
Step 1. Set e D l D 0;
Step 2. Generate ! from˝ according to the probability measure Pr;
Step 3. For the !, generate !i according to the probability measure Pr;
Step 4. Repeat the third step M times;
Step 5. l  l C f .x; �.!i //;
Step 6. Repeat the second to fifth step N times;
Step 7. e  e C l ;
Step 8. Return e=MN.

Example 3.15. We employ the Ra-Ra simulation to calculate the expected value ofq QN�2
1 C QN�2

2 C QN�2
3 , where QN�1, QN�2 and QN�3 are Ra-Ra variables defined as

QN�1 D U . Q�1; Q�1 C 2/; with Q�1 � N .0; 1/;
QN�2 D N . Q�2; 1/; with Q�2 � U .3; 5/;
QN�3 D exp. Q�3/; with Q�3 � U .1; 2/:

A run of Ra-Ra simulation with 1000 cycles shows that E

�q QN�2
1 C QN�2

2 C QN�2
3

	
D

4:6928.
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3.3.3.2 Particle Swarm Optimization Algorithm

Population based stochastic local search techniques are a relatively new paradigm
in the field of optimization. There are several nature inspired techniques belonging
to this family that use metaphors as guides in solving problems. The most famous
members are genetic algorithms that use the metaphor of genetic and evolutionary
principles of fitness selection for reproduction to search solution spaces. In a sim-
ilar fashion the collective behavior of insect colonies, bird flocks, fish schools and
other animal societies are the motivation for Swarm Intelligence that is any attempt
to design algorithms or distributed problem-solving devices inspired by the collec-
tive behavior of social insect colonies and other animal societies [29]. The Particle
Swarm Optimization (abbr. PSO) method is a relatively new member of the Swarm
Intelligence field for solving optimization problems.

PSO was proposed by Kennedy and Eberhard [158] and is one of the latest evo-
lutionary optimization techniques for optimizing continuous nonlinear functions.
PSO incorporates swarming behaviors observed in flocks of birds, schools of fish,
or swarms of bees, and even human social behavior, from which the idea is emerged
[60,93,159,248]. Its biological inspiration is based on the metaphor of social inter-
action and communication in a flock of birds or school of fishes. In these groups,
there is a leader who guides the movement of the whole swarm. The movement of
every individual is based on the leader and on his own knowledge. Since PSO is
population-based and evolutionary in nature, the individuals (i.e. particles) in a PSO
algorithm tend to follow the leader of the group, i.e. the one with the best perfor-
mance. In general, it can be said that the model that PSO is inspired, assumes that
the behavior of every particle is a compromise between its individual memory and
a collective memory. PSO is a population-based optimization tool, which could be
implemented and applied easily to solve various function optimization problems,
or the problems that can be transformed to function optimization problems. As an
algorithm, the main strength of PSO is its fast convergence, which compares favor-
ably with many global optimization algorithms like Genetic Algorithms (GA) [116],
Simulated Annealing (SA) [241,321] and other global optimization algorithms. For
applying PSO successfully, one of the key issues is finding how to map the problem
solution into the PSO particle, which directly affects its feasibility and performance.

Basic form of PSO. In the PSO algorithm, a solution of a specific problem is
represented by an n-dimensional position of a particle. A swarm of fixed number
of particles is generated and each particle is initialized with a random position in
a multidimensional search space. Each particle files through the multidimensional
search space with a velocity. In each step of the iteration the velocity of each particle
is adjusted based on three components. The first component is the current velocity
of the particle which represents the inertia term or momentum of the particle, i.e.
the tendency to continue to move in the same direction. The second component is
based on the position corresponds to the best solution is usually referred to as the
personal best. The third component is based on the position corresponds to the best
solution achieved so far by all the particles, i.e. the global best. Once the veloc-
ity of each particle is updated, the particle are then moved to the new positions.
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The cycle repeats until the stopping criterion is met. The specific expressions used
int he original particle swarm optimization algorithm will be discussed as follows.
The PSO algorithm is consisted of a population of particle initialized with random
position and velocity. This population of particle is usually called a swarm. In ont
iteration step, each particle is first evaluated to find individual objective function
value. For each particle, if a position is reached which has a better objective func-
tion than the previous best solution, the personal best position is updated. Also, if
an objective function is found that is better than the previous best objective function
of the swarm the global best position is updated. The velocity is then updated on
the particle’s personal best position and the global best position found so far by the
swarm. Every particle is then moved from the current position to the new position
based on its velocity. The precess repeats until the stopping criterion is met.

In PSO, a swarm of L particles served as searching agent for a specific problem
solution. A particle’s position .�l /, which consists ofH dimensions, is representing
(directly of indirectly) a solution of the problem. The ability of particle to search for
solution is represented by its velocity vector (˝), which drives the movement of
particle. In each PSO iteration, every particle moves from one position to the next
based on its velocity. By moving from one position to the next, a particle is reaching
different prospective solution of the problem. The basic particle movement equation
if presented below:

�lh.t C 1/ D �lh.t/C !lh.t C 1/ (3.59)

where, �lh.t C 1/ expresses position of the l th particle at the hth dimension in the
.t C 1/th iteration, �lh.t/ is the position of the l th particle at the hth dimension in
the t th iteration, !lh.t C 1/ is the velocity of the l th particle at the hth dimension in
the .t C 1/th iteration.

PSO also imitated swarm’s cognitive and social behavior as local and global
search abilities. In the basic version of PSO, the particle’s personal best position
.�l/ and the global best position .�g/ are always updated and maintained. The
personal best position of a particle, which expresses the cognitive or self-learning
behavior, is defined as the position that gives the best objective function among the
positions that have been visited by that particle. Once a particle reaches a position
that has a better objective function than the previous best objective function for this
particle, i.e., Z.�l / < Z.�l /, the personal best position is updated, The global
best position, which expresses the social behavior, is the position that gives the best
objective function among the positions that have been visited by all particles in the
swarm. Once a particle reaches a position that has a better objective function than
the previous best objective function for whole swarm, i.e., Z.�l / < Z.�g/, the
global best position is also updated.

The personal best and global best position are used as the basis to update velocity
of particle. In each iteration step, the velocity ˝ is updated based on three terms:
inertia, cognitive learning and social learning terms.

The inertia term forces particle to move in the same direction as in previous
iteration. This term is calculated as a product of current velocity with an inertia
weight (w).
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The cognitive term forces particle to go back to its personal best position. This
term is calculated as a product of a random number (u), personal best accelera-
tion constant (cp), and the difference between personal best position �l and current
position�l .

The social term forces particle to move toward the global best position. This term
is calculated as a product of random number (u), global best acceleration constant
(cg ), and the difference between global best position �g and current position �l .
Specifically, the equation for velocity updated is expressed as follow:

!lh.t C 1/ D w!lh.t/C cpu. lh � �lh.t//C cgu. gh � �lh.t// (3.60)

where,!lh.tC1/: velocity of the l th particle at the hth dimension in the t th iteration,
 lh: personal best position of the l th particle at the hth dimension in the t th iteration,
 gh: global best position at the hth dimension in the t th iteration.

In the velocity-updating formula, random numbers is incorporated in order to
randomize particle movement. Hence, two different particles may move to different
position in the subsequent iteration even though they have similar position, personal
best, and the global best.

The notation used in the algorithm is given as follows:

Notation Meaning
t : Iteration index, t D 1 : : : T .
l : Particle index, l D 1 : : : L.
h: Dimension index, h D 1 : : :H .
u: Uniform random number in the interval Œ0; 1�.
w.t/: Inertia weight in the t th iteration.
!lh.t C 1/: Velocity of the l th particle at the hth dimension in the

t th iteration.
�lh.t/: Position of the l th particle at the hth dimension in the

t th iteration.
 lh: Personal best position of the l th particle at the hth

dimension in the t th iteration.
 gh: Global best position at the hth dimension in the t th

iteration.
cp : Personal best position acceleration constant.
cg : Global best position acceleration constant.
�max: Maximum position value.
�min: Minimum position value.
�i : Vector position of the l th particle, Œ�l1; �l2; : : : ; �lH �.
˝l : Vector velocity of the l th particle,

Œ!l1; !l2; : : : ; !lH �.
�l : Vector personal best position of the l th particle,

Œ l1;  l2; : : : ;  lH �.
�g : Vector global best position, Œ l1;  l2; : : : ;  lH �.
Rl : The l th set of solution.
Z.�l /: Fitness value of �l .
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The basic procedure of PSO algorithm can be summarized as follows (Fig. 3.3):

Procedure The general PSO algorithm

Step 1. Initialize L particle as a swarm: generate the l th particle with random
position�l in the range Œ�min; �max�, velocity˝l D 0 and personal best
�l D ˝l for l D 1 : : : L. Set iteration t D 1;
Step 2. Decode particles into solutions: for l D 1 : : : L, decode�l.t/ to a
solution Rl . (This step is only needed if the particles are not directly
representing the solutions.);
Step 3. Evaluate the particles: for l D 1 : : : L, compute the performance
measurement of Rl , and set this as the fitness value of�l , represent by Z.�l /;
Step 4. Update pbest: (1) for l D 1 : : : L, update �l D �l , if Z.�l / < Z.�l /;
(2) update �g D �l , if Z.�l / < Z.�g /;
Step 5. Update the velocity and the position of each l th particle:

w.t/ D w.T /C t � T
1 � T Œw.1/ � w.T /� (3.61)

!lh.t C 1/ D w!lh.t/C cpu. lh � �lh.t//C cgu. gh � �lh.t// (3.62)

�lh.t C 1/ D �lh.t/C !lh.t C 1/ (3.63)

If �lh.t C 1/ > �max, then

�lh.t C 1/ D �max (3.64)

!lh.t C 1/ D 0 (3.65)

If �lh.t C 1/ < �max, then

�lh.t C 1/ D �min (3.66)

!lh.t C 1/ D 0 (3.67)

where the value �max and �min in (3.64) and (3.66) are the upper and lower
bounds on the position of particles;
Step 6. If the stopping criteria is met, i.e., tDT, stop; otherwise, t D t C 1 and
return to step 2.

Key parameters of PSO. Let’s discuss possible qualifications and effects of each
parameter on the performance of PSO. The parameters consist of the population
size (L), two acceleration constants (cp and cg ), and the inertia weight (w).

Population size (L): This parameter represents the number of particles in the
system. It is one important parameter of PSO, because it affects the fitness value
and computation time. Furthermore, increasing size of population always increases
computation time, but might not improve the fitness value. Generally speaking, too
small a population size can lead to poor convergence while too large a population
size can yield good convergence at the expense of long running time.
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Fig. 3.3 Flow chart of PSO

Acceleration constants (cp and cg ): The constants cp and cg are the acceleration
constants of the personal best position and the global best position, respectively.
Each acceleration constant controls the maximum distance that a particle is allowed
to move from the current position to each best position. The new velocity can be
viewed as a vector which combines the current velocity, and the vectors of the best
positions. Each best positions’s vector consists of the direction which is pointed
from the particle’s current position to the best position, and the magnitude of the
movement can be between 0 to the acceleration constant of the best position times
the distance between the best position and the current position.

Inertia weight (w): The new velocity is produced from the combination of vec-
tors. One of these vectors is the current velocity. Inertia weight is a weight to control
the magnitude of the current velocity on updating the new velocity. For w D c,
it means that this vector has the same direction of the current velocity, and the
parameters to control the search behavior if the swarm.

Velocity boundary (Vmax) and position boundary (�max): Some PSO algorithms
are implemented with bound on velocity. For each dimension, the magnitude of a
velocity cannot be greater than Vmax. This parameter is one of parameters to control
the search behavior of the swarm. The smaller value of this parameter makes the
particles in the population less aggressive in the search.

In the PSO particle movement mechanism, it is also common to limit the search
space of particle location, i.e., the position value of particle dimension is bounded
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in the interval Œ�min; �max�. The use of position boundary �max is to force each par-
ticle to move within the feasible region to avoid solution divergence. Hence, the
position value of certain particle dimension is being set at the minimum or max-
imum value whenever it moves beyond the boundary. In addition, the velocity of
the corresponding dimension is reset to zero to avoid further movement beyond the
boundary.

PSO for multi-objective decision-making model. Multi-objective optimization
(MO) problems represent an important class of real-world problems. Typically such
problems involve trade-offs. For example, a car manufacturer may wish to maximize
its profit, but meanwhile also to minimize its production cost. These objectives are
typically conflicting to each other. For example, a higher profit could increase the
production cost. Generally, there is no single optimal solution. Often the manufac-
turer needs to consider many possible “trade-off” solutions before choosing the one
that suits its need. The curve or surface (for more than two objectives) describing the
optimal trade-off solutions between objectives is known as the Pareto front. A multi-
objective optimization algorithm is required to find solutions as close as possible to
the Pareto front, while maintaining a good solution diversity along the Pareto front.

To apply PSO to multi-objective optimization problems, several issues have to
be taken into consideration:

1. How to choose pg (i.e., a leader) for each particle? The PSO needs to favor
non-dominated particles over dominated ones, and drive the population towards
different parts of the Pareto front, not just towards a single point. This requires
that particles be allocated to different leaders.

2. How to identify non-dominated particles with respect to all particles current posi-
tions and personal best positions? And how to retain these solutions during the
search process? One strategy is to combine all particles personal best positions
and current positions, and then extract the non-dominated solutions from the
combined population.

3. How to maintain particle diversity so that a set of well-distributed solutions can
be found along the Pareto front? Some classic niching methods (e.g., crowding
or sharing) can be adopted for this purpose.

The first PSO for solving multi-objective optimization was proposed by Moore
and Chapman [224] in 1999. The main difference between single objective PSO
and MOPSO is how to choose the global best. An lbest PSO was used, and pg

was chosen from a local neighborhood using a ring topology. All personal best
positions were kept in an archive. At each particle update, the current position is
compared with solutions in this archive to see if the current position represents a
non-dominated solution. The archive is updated at each iteration to ensure it contains
only non-dominated solutions.

Interestingly it was not until 2002 that the next publication on PSO for multi-
objective optimization appeared. The diversity of solutions is maintained by keeping
only one solution within each hypercube which is predefined by a user in the objec-
tive space. Parsopoulos and Vrahatis [247] adopted a more traditional weighted-sum
approach. However, by using gradually changing weights, their approach was able
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to find a diverse set of solutions along the Pareto front. Fieldsend and Singh [100]
proposed a PSO using a dominated tree structure to store non-dominated solutions
found. The selection of leaders was also based on this structure. To maintain a better
diversity, a turbulence operator was adopted to function as a “mutation” operator in
order to perturb the velocity value of a particle.

With the aim of increasing the efficiency of extracting non-dominated solu-
tions from a swarm, Li [200] proposed NSPSO (Non-dominated Sorting PSO),
which follows the principal idea of the well-known NSGA II algorithm [75]. In
NSPSO, instead of comparing solely a particles personal best with its potential
offspring, all particles personal best positions and offspring are first combined to
form a temporary population. After this, domination comparisons for all individu-
als in this temporary population are carried out. This approach will ensure more
non-dominated solutions can be discovered through the domination comparison
operations than the above-mentioned multi-objective PSO algorithms.

Many more multi-objective PSO variants have been proposed in recent years.
A survey conducted by Reyes–Sierra and Coello [259] in 2006 shows that there
are currently 25 different PSO algorithms for handling multi-objective optimization
problems. Interested readers should refer to for more information on these different
approaches.

The principles that govern PSO algorithm can be stated as follows:
Step 1. Every particle k, a potential solution generated by the Ra-Ra simulation,

in the swarm begins with a randomized position and randomized velocity. The posi-
tion and velocity for particle k in the n-dimensional search space are represented by
the vectors Xk D .xk1; xk2; : : : ; xkn/ and Vk D .vk1; vk2; : : : ; vkn/, respectively,
where xkd .d D 1; : : : ; n/ represents the location and vkd .d D 1; : : : ; n/ represents
the flying velocity of particle k in the d th dimension of the search space.

Step 2. Every particle k knows its position and the value of the objective function
for that position. It also remembers at which position P t

k
D .P t

k1
; P t

k2
; : : : ; P t

kn
/it

has achieved its highest performance.
Step 3. Every particle can generate a neighborhood from every position. Hence, it

is also a member of some neighborhood of particles, and remembers which particle
(given by the index g) has achieved the best overall position in that neighborhood.
This neighborhood can either be a subset of the particles (local neighborhood), or
all the particles (global neighborhood).

Step 4. In each iteration t the behavior of particle is a compromise among
three possible alternatives: following its current pattern of exploration; going back
towards its best previous position; going back towards the best historic value of all
particles.

This compromise is executed by the following equations at the current iteration
of the algorithm:

vtC1
kd
D wvt

kd
C c1r1.p

t
kd
� xt

kd
/C c2r2.p

t
gd
� pt

gd
/

xtC1
kd
D xt

kd
C vtC1

kd
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where w, called the inertia weight, is a constant value chosen by the user to control
the impact of the previous velocities on the current velocity. c1 is the weight given to
the attraction to the previous best location of the current particle and c2 is the weight
given to the attraction to the previous best location of the particle neighborhood. r1
and r2 are uniformly distributed random variables in [0,1].

The original PSO algorithm can only optimize problems in which the elements of
the solution are continuous real numbers. Because it is not possible to continuously
“fly” particles through a discrete-valued space, a modification of the PSO algorithm
for solving problems with binary-valued solution elements is developed by the ini-
tiators of PSO [157]. Another approach for tackling discrete optimization problems
by PSO also has been proposed by Laskari, Parsopoulos, and Vrahatis [187] which
is based on the truncation of the real values to their nearest integer. In recent years
a considerable amount of efforts has been put on solving sequencing problems by
PSO algorithm. One of the basic approaches in solving sequencing problems by
PSO lies on representing a sequence of n jobs with an array of n real numbers [315].
The decoding process then is done based on some rules. For example the position
of the smallest value in the array determines the job placed first in the permutation.
Then the position of the second smallest value in the array determines the job placed
second in the permutation and so on. Another approach to tackle discrete optimiza-
tion with PSO is done by generating equations similar to the original PSO equations
for updating the particles position and velocity vectors [201,244]. However in these
cases the proposed equations are not completely similar to the original ones.

3.3.4 Numerical Examples

Example 3.16. In order to illustrate the proposed model and method, let’s consider
the following multi-objective programming problem with Ra-Ra coefficients.

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

max f1.x; �/ D 3 QN�2
1x1 � 2 QN�2x2 C 1:3 QN�3x3

max f2.x; �/ D �2:5 QN�4x1 C 3 QN�2
5x2 C 5 QN�2

6x3

s.t.

8<
:
x1 C x2 C x3 � 10
3x1 C 5x2 C 3x3 � 4
x1; x2; x3 � 0

(3.68)

where QN�i .i D 1; : : : ; 6/ are all independently Ra-Ra variables as follows,

QN�1 � B.20; k; Np1/; with Np1 � U .0:4; 0:6/;
QN�2 � B.k; N�2/; with N�2 � U .4; 6/;

QN�3 � U .3; Nb3/; with Nb3 � U .4; 6/; QN�4 � exp. N�4/; with N�4 � U .2; 4/;
QN�5 � U . Na5; 7/; with Na � U .1; 3/; QN�6 � N .Nu6; 1/; with Nu6 � N .4; 2/:
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Table 3.6 Payoff table of Example 3.16

H x1 x2 min

H1 3188.1 52 Hmin
1 D 52

H2 �8.576 1050 Hmin
2 D �8:756

By the expected value operator of Ra-Ra variables, we have the following expected
value model of problem (3.68),

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

maxH1.x/ D 3EŒ QN�2
1 �x1 � 2EŒ QN�2�x2 C 1:3EŒ QN�3�x3

maxH2.x/ D �2:5EŒ QN�4�x1 C 3EŒ QN�2
5 �x2 C 5EŒ QN�2

6 �x3

s.t.

8<
:
x1 C x2 C x3 � 10
3x1 C 5x2 C 3x3 � 4
x1; x2; x3 � 0

(3.69)

Since,

EŒ
QN�2
1 � D 106:27; EŒ

QN�2� D 5; EŒ
QN�3� D 4;

EŒ QN�4� D 0:347; EŒ QN�2
5 � D 22:44; EŒ QN�2

6 � D 21:

Then we have 8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

maxH1.x/ D 318:81x1 � 10x2 C 5:2x3

maxH2.x/ D �0:8675x1 C 67:32x2 C 105x3

s.t.

8<
:
x1 C x2 C x3 � 10
3x1 C 5x2 C 3x3 � 4
x1; x2; x3 � 0

(3.70)

Then we use the step method to solve the above problem. Firstly, compute the
optimal solution and value of each objective function as follows,

H�
1 D 3188:1; x1 D .10:00; 0; 0/T ;

H�
2 D 1050; x2 D .0; 0; 10:00/T : (3.71)

By the step method, we get the payoff table as shown in Table 3.6.
Secondly, compute the weight coefficient by the follow method,

˛1 D H�
1 �Hmin

1

Hmin
1

1p
318:812 C 102 C 5:22

D 0:1891;

˛2 D Hmin
2 �H�

2

Hmin
2

1p
0:86752 C 67:322C 1052

D 0:9694:
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Then we get w1 D ˛1=.˛1 C ˛2/ D 0:1632 and w2 D ˛2=.˛1 C ˛2/ D 0:8368.
The problem (3.70) can be rewritten as,8̂̂

ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂:

max�

s.t.

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

0:1632.3188:1� .318:81x1 � 10x2 C 5:2x3// � �
0:8368.1050� .�0:8675x1 C 67:32x2 C 105x3// � �
x1 C x2 C x3 � 10
3x1 C 5x2 C 3x3 � 4
x1; x2; x3 � 0
� � 0

(3.72)

By solving the above problem, we get the optimal solution x� D .9:839; 0; 0/T .

Example 3.17. Let’s consider the following problem,

8̂̂
<
ˆ̂:

maxf1.x; �/ D
p
.x1 � �1/2 C .x2 � �2/2

maxf2.x; �/ D
p
.x1 C �1/2 C .x2 C �2/2

s.t.

�
x1 C x2 � 5
x1 � 0; x2 � 0

(3.73)

where �1 � N . N�1; 1/ and �1 � N . N�2; 1/ are independently Ra-Ra variables.
N�1 D N .3; 1/ and N�1 D N .2; 0:5/ are normally distributed random variables.
According to the expected value operator of random fuzzy variables, we get the
following expected value model,

8̂̂̂
<̂
ˆ̂̂̂:

maxH1.x; �/ D E
hp
.x1 � �1/2 C .x2 � �2/2

i
maxH2.x; �/ D E

hp
.x1 C �1/2 C .x2 C �2/2

i
s.t.

�
x1 C x2 � 5
x1 � 0; x2 � 0

(3.74)

Next we will use Ra-Ra simulation-based PSO to solve the above problem.
The process of generating a new position for a selected individual in the swarm
is depicted in the following equation:

vi
tC1 D wvi

t C c1 � rand./ � .P i
t � xi

t /C c2 � rand./ � .G t � xi
t /;

where vi
t and xi

t are the i th particle current velocity and position, P i
t and G t are the

kth particle best position and the global best position visited so far, w D 0:7298 is
the inertia weight, c1 D c2 D 1:4962 are learning factors and rand./ is a random
number in [0,1]. After the simulation with many cycles, we get the optimal solution
under different weights as shown in Table 3.7. Figure 3.4 shows the search process
when the weight is 0.5. The read line expresses the weight sum of two objective
functions, and it shows that it gradually converges from Gen D 40. Figure 3.5
shows the changes of two objective values when the generation increases.
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Table 3.7 The optimal solution by Ra-Ra simulation-based PSO

w1 w2 x1 x2 Nf1 Nf2 Nf Gen

0.1 0.9 4.6731 0.3269 2.8234 8.1190 7.7906 500
0.2 0.8 4.4346 0.5654 2.3532 7.9339 7.1589 500
0.3 0.7 0.3303 4.6697 4.0580 7.6538 6.7975 500
0.4 0.6 3.5738 1.0343 3.9657 7.3728 5.8378 500
0.5 0.5 4.3234 0.6766 2.3304 8.0034 5.2275 500

Fig. 3.4 Search process of
Ra-Ra simulation-based PSO
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3.4 Ra-Ra CCM

The chance measure of Ra-Ra variables is an extension of the chance of random
variables introduced by Charnes and Cooper [45] and the purpose of introducing
quantitative measures of the chance of a Ra-Ra event is manifold. First of all, it
allows us to compare the chances of occurrence of two Ra-Ra events. Moreover,
it is applicable to the further mathematical analysis. In the following part, we use
CCM to substitute the chance constrained model.
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3.4.1 General Model for Ra-Ra CCM

Assume that � D .�1; �2; : : : �n/ is a Ra-Ra vector defined on the probability space
.˝;A ;Pr/, and gr W Rn ! R are Borel measurable functions for r D 1; 2; : : : ; p.
By Ra-Ra event we mean the system of inequalities

gr .�/ � 0; r D 1; 2; : : : ; p (3.75)

In the literature, the first attempt to develop the definition the chance of a Ra-Ra
event is primitive chance, which is a function from [0,1] to [0,1]. Let’s recall the
basic definition and property of the chance of Ra-Ra events.

Definition 3.17. (Peng and Liu [251]) Let � be a Ra-Ra variable, and B a Borel
set of R. Then the chance of Ra-Ra event � 2 B is a function from .0; 1� to Œ0; 1�,
defined as

Chf� 2 Bg.˛/ D sup
PrfAg�˛

inf
!2A

Prf�.!/ 2 Bg (3.76)

where ˛ is a prescribed probability level. The value of primitive chance at ˛ is called
˛-chance.

We all note that the symbol Pr appears twice in the right side of equality (3.76).
In fact, they represent different meanings. In other words, the overloading allows
us to use the same symbol Pr for different probability measures, because we can
deduce the exact meaning in the context.

Based on Definition 3.17, a natural idea is to provide a confidence level ˛
at which it is desired that the stochastic constrains hold. Let’s still consider the
following model,

8<
:

maxf .x; �/

s.t.

�
gr .x; �/ � 0; r D 1; 2; : : : ; p
x 2 X

(3.77)

where f .x; �/ and gr .x; �/, r D 1; 2 : : : ; p are continuous functions in X and � D
.�1; �2; : : : ; �n/ is a Ra-Ra vector on the probability space .˝;A ;Pr/. Based on the
chance-constraint operator, the maximax Ra-Ra chance-constrained programming
model (CCM) was proposed:

8̂̂<
ˆ̂:

max Nf

s.t.

8<
:
Chff .x; �/ � Nf g.˛/ � ˇ
Chfgr.x; �/ � 0g.�r/ � �r ; r D 1; 2; : : : ; p
x 2 X

(3.78)

where ˛; ˇ; �r ; �r are the predetermined confidence levels.
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Definition 3.18. A solution x 2 X is said to be the feasible solution of problem
(3.78) if and only if Chff .x; �/ � Nf g � ˇ and Chfgr.x; �/ � 0g � ˛r for all r .
For any feasible x, if there is a solution x� such Nf � > Nf , then x� is called the
optimal solution.

If the objective is to be minimized (for example, the objective is a cost function),
the CCP model should be as follows,

8̂̂<
ˆ̂:

min Nf

s.t.

8<
:
Chff .x; �/ � Nf g.˛/ � ˇ
Chfgr.x; �/ � 0g.�r/ � �r ; r D 1; 2; : : : ; p
x 2 X

(3.79)

where ˛; ˇ; �r ; �r are the predetermined confidence levels. Similarly, we have the
following definition,

Definition 3.19. A solution x 2 X is said to be the feasible solution of problem
(3.79) if and only if Chff .x; �/ � Nf g � ˇ and Chfgr.x; �/ � 0g � ˛r for all
r . For any feasible x, if there is a solution x� such Nf � < Nf , then x� is called the
optimal solution.

According to the above definition, we know that

Chfgr .x; �/ � 0g.�r / � �r , Prf!jPrfgr .x; �/ � 0g � �r g � �r ; r D 1; 2; : : : ; p:

For given confidence levels �r ; �r , using the primitive chance measure we have the
chance constraints as follows,

Prf!jPrfgr .x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p:

Thus a point x.� 0/ is called feasible for problem (3.79) if and only if the prob-
ability measures of the random events f!jPrfgr .x; �/ � 0g � �rg are at least
�r ; r D 1; 2; : : : ; p. Since

Chff .x; �/ � Nf g.˛/ � ˇ, Prf!jPrff .x; �/ � Nf g � ˇg � ˛;

then problem (3.79) can be rewritten as

8̂̂
<
ˆ̂:

min Nf

s.t.

8<
:

Prf!jPrff .x; �/ � Nf g � ˇg � ˛
Prf!jPrfgr .x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p
x 2 X

(3.80)

where ˛; ˇ; �r ; �r are the predetermined confidence levels, r D 1; 2; : : : ; p. Simi-
larly, if decision makers want to maximize the objective value, then problem (3.78)
can be rewritten as
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ˆ̂:

max Nf

s.t.

8<
:

Prf!jPrff .x; �/ � Nf g � ˇg � ˛
Prf!jPrfgr .x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p
x 2 X

(3.81)

where ˛; ˇ; �r ; �r are the predetermined confidence levels, r D 1; 2; : : : ; p.

Definition 3.20. A solution x 2 X is said to be the feasible solution of problem
(3.79) if and only if Prf!jPrff .x; �/ � Nf g � ˇg � ˛ and Prf!jPrfgr .x; �/ �
0g � �rg � �r for all r . For any feasible x, if there is a solution x� such that
Nf � < Nf , then x� is called the optimal solution.

Remark 3.2. If the Ra-Ra vector � degenerates to a random vector N�, then
Prff .x; N�/ � Nf g � ˇ is a random event. For fixed ! 2 ˝ , Prff .x; N�/ � Nf g � ˇ
implies f .x; N�/ � Nf . Then,

Prf!jPrff .x; �/ � Nf g � ˇg � ˛

is equivalent to Prff .x; �/ � Nf g � ˛: Similarly, the constraint

Prf!jPrfgr .x; �/ � 0g � �rg � �r

is equivalent to Prfgr.x; �/ � 0g � �r , r D 1; 2; : : : ; p: Then, problem (3.80) is
equivalent to

8̂̂
<
ˆ̂:

min Nf

s.t.

8<
:

Prff .x; �/ � Nf g � ˛
Prfgr .x; �/ � 0g � �r ; r D 1; 2; : : : ; p
x 2 X

(3.82)

which is identical with the chance constrained programming model in the stochastic
environment.

Consider the following multiobjective programming problem with Ra-Ra coeffi-
cients,

8<
:

maxŒf1.x; �/; f2.x; �/; : : : ; fm.x; �/�

s.t.

�
gr .x; �/ � 0; r D 1; 2; : : : ; p
x 2 X

(3.83)

where x D .x1; x2; : : : ; xn/
T is an n-dimensional decision vector, � D

.�1; �2; : : : ; �n/ is a Ra-Ra vector, fi .x; �/ are objective functions, i D 1; 2; : : : ; m,
gr .x; �/ � 0 are Ra-Ra constraints, r D 1; 2; : : : ; p. For a fixed decision vector x,
it is meaningless to maximize the objectives fi .x; �/, i D 1; 2; : : : ; m. Before
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we know the exact value of the Ra-Ra vector �, just as we can not maximize a
random function in stochastic programming. Also, we can not judge whether or not
a decision x is feasible before we know the value of �. Hence, both the objectives
and constraints in problem (3.83) are ill-defined. For presenting a mathematically
meaningful Ra-Ra programming, we build a new class of Ra-Ra programming to
model Ra-Ra decision problems via chance measure which was proposed above.
We present the chance-constrained multiobjective programming as follows,

8̂̂
<
ˆ̂:

max ff1; f2; : : : ; fmg

s.t.

8<
:
Chffi .x; �/ � fi g.˛i / � ˇi ; i D 1; 2; : : : ; m
Chfgr .x; �/ � 0g.�r/ � �r ; r D 1; 2; : : : ; p
x 2 X

(3.84)

where ˛i , ˇi , �r and �r are predetermined confidence levels, i D 1; 2; : : : ; m, r D
1; 2; : : : ; p: By Definition 3.19, problem (3.84) can be rewritten as

8̂̂
<
ˆ̂:

max Œf1; f2; : : : ; fm�

s.t.

8<
:

Prf! 2 ˝jPrffi .x; �/ � fig � ˇig � ˛i ; i D 1; 2; : : : ; m
Prf! 2 ˝jPrfgr .x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p
x 2 X

(3.85)

where ˛i , ˇi , �r and �r are predetermined confidence levels, i D 1; 2; : : : ; m, r D
1; 2; : : : ; p. If the objectives is to minimize the cost, then problem (3.85) should be
formulated as follows,

8̂̂
<
ˆ̂:

min Œf1; f2; : : : ; fm�

s.t.

8<
:

Prf! 2 ˝jPrffi .x; �/ � fig � ˇig � ˛i ; i D 1; 2; : : : ; m
Prf! 2 ˝jPrfgr .x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p
x 2 X

(3.86)

Definition 3.21. Suppose a feasible solution x� of problem (3.85) satisfies

Prf!jPrffi .x
�; �/ � fi .x

�/g � ˇi g � ˛i ; i D 1; 2; : : : ; m;

where confidence levels ˛i ; ˇi 2 Œ0; 1�. x� is a Ra-Ra efficient solution to problem
(3.85) if and only if there exists no other feasible solution x such that

Prf!jPrffi .x; �/ � fi .x/g � ˇi g � ˛i ; i D 1; 2; : : : ; m;

fi .x/ � fi .x
�/ for all i and fi0.x/ > fi0.x

�/ for at least one i0 2 f1; 2; : : : ; mg.
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Sometimes, we may formulate a random decision system as a chance-constrained
goal model (CCGM) proposed according to the priority structure and target levels
set by the decision-maker,

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8̂̂
<
ˆ̂:

Prf!jPrffi .x; �/� bi � dC
i g � ˇC

i g � ˛C
i ; i D 1; 2; : : : ; m

Prf!jPrfbi � fi .x; �/ � d�
i g � ˇ�

i g � ˛�
i ; i D 1; 2; : : : ; m

Prf!jPrfgr .x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p
d�

i ; d
�
i � 0; i D 1; 2; : : : ; m

(3.87)

where Pj is the preemptive priority factor which express the relative importance
of various goals, Pj >> Pj C1, for all j , uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, vij is the weighting factor
corresponding to negative deviation for goal i with priority j assigned, dC

i is the
˛C

i ; ˇ
C
i -optimistic positive deviation from the target of goal i , defined as

minfd _ 0jPrf!jPrffi .x; �/� bi � dC
i g � ˇC

i g � ˛C
i g (3.88)

d�
i is the ˛�

i ; ˇ
�
i -optimistic positive deviation from the target of goal i , defined as

minfd _ 0jPrf!jPrfbi � fi .x; �/ � d�
i g � ˇ�

i g � ˛�
i g (3.89)

fi is a function in goal constraints, gr is a function in system constraints, bi is the
target value according to goal i , l is the number of priorities, m is the number of
goal constraints, and p is the number of system constraints.

Remark 3.3. If the Ra-Ra vector � degenerates to the random variable, then the two
random events Prf!jPrffi .x; �/ � bi � dC

i g � ˇC
i and Prf!jPrfbi � fi .x; �/ �

d�
i g � ˇ�

i should be always 1 for any ! 2 ˝ provided that ˇC
i ; ˇ

�
i > 0, then

Prf!jP ryffi .x; �/ � bi � dC
i g � ˇC

i g � ˛C
i

is equivalent to Prffi .x; �/� bi � dC
i g � ˛C

i , and

Prf!jPrfbi � fi .x; �/ � d�
i g � ˇ�

i g � ˛�
i

is equivalent to Prfbi � fi .x; �/ � d�
i g � ˛�

i . Similarly, the constraint

Prf!jPrfgr .x; �/ � 0g � �rg � �r

is equivalent to Prfgr .x; �/ � 0g � �r , then problem (3.87) is rewritten as
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ˆ̂̂̂̂
<
ˆ̂̂̂̂̂
:̂

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8̂̂
<
ˆ̂:

Prffi .x; �/� bi � dC
i g � ˛C

i ; i D 1; 2; : : : ; m
Prfbi � fi .x; �/ � d�

i g � ˛�
i ; i D 1; 2; : : : ; m

Prfgr .x; �/ � 0g � �r ; r D 1; 2; : : : ; p
d�

i ; d
�
i � 0; i D 1; 2; : : : ; m

(3.90)

This is identical with the goal programming in the random environment.

3.4.2 Linear Ra-Ra CCM and the Surrogate Worth
Trade-Off Method

In this section, we concentrate on the multiobjective linear programming problem
with Ra-Ra coefficients8̂<

:̂
max

� QNcT
1 x; QNcT

2 x; : : : ; QNcT
mx
�

s.t.

(
QNeT
r x � QNbr ; r D 1; 2; : : : ; p

x � 0
(3.91)

where QNci D . QNci1; QNci2; : : : ; QNcin/
T ; QNer D . QNer1; QNer2; : : : ; QNern/

T and QNbr are Ra-Ra vectors,
i D 1; 2; : : : ; m; r D 1; 2; : : : ; p: Then by the definition of chance measure of
Ra-Ra variables, we have the following chance-constrained model of (3.91),

8̂̂̂
<
ˆ̂̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8̂<
:̂
Chf QNcT

i x � Nfi g˛i � ˇi ; i D 1; 2; : : : ; m
Chf QNeT

r x � QNbrg.�r/ � �r ; r D 1; 2; : : : ; p
x � 0;

(3.92)

For given confidence levels ˛i , ˇi , �r and �r , we have

Chf QNcT
i x � fi g.˛i / � ˇi ” Prf!jPrf QNcT

i x � fi g � ˇi g � ˛i ;

Chf QNeT
r x � QNbrg.�r / � �r ” Prf!jPrf QNeT

r x � QNbrg � �rg � �r ;

where i D 1; 2; : : : ; m and r D 1; 2; : : : ; p. Then the programming problem (3.92)
can be rewritten as8̂̂

<̂
ˆ̂̂:

maxŒf1; f2; : : : ; fm�

s.t.

8̂<
:̂

Prf!jPrf QNcT
i x � fig � ˇig � ˛i ; i D 1; 2; : : : ; m

Prf!jPrf QNeT
r x � QNbrg � �rg � �r ; r D 1; 2; : : : ; p

x � 0
(3.93)

where ˛i , ˇi , �r and �r are predetermined confidence levels, i D 1; 2; : : : ; m; r D
1; 2; : : : ; p.
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3.4.2.1 Crisp Equivalent Model

One way of solving a pr–pr constrained multiobjective programming model is to
convert the constraints of (3.93) into their respective crisp equivalents. However,
this process is usually quite difficult in many cases. Next, we will consider a special
case and present the result in this section.

Theorem 3.14. (Xu and Ding [338]) Assume that Ra-Ra vector QNci is character-
ized by QNci � N . Nci .!/; V

c
i /, where Nci .!/ D . Nci1.!/; Nci2.!/; : : : ; cin.!//

T is a
random vector and V c

i is a positive definite covariance matrix. Then, we have
Prf!jPrf QNcT

i x � fi g � ˇi g � ˛i if and only if

fi � RC �i C �i˚
�1.1 � ˛i / (3.94)

where R D ˚�1.1 � ˇi /
q

xT V c
i x and ˚ is the standardized normal distribution

and ˇi ; ˛i 2 Œ0; 1� are predetermined confidence levels.

Proof. From the above assumption we know that Ncij .!/ is a random variable and
Nci .!/ D . Nci1.!/; Nci2.!/; : : : ; Ncin.!//

T is the random vector. We set

Ncij .!/ � N .�ij ; �
2
ij /

Since xi � 0 for any i , it follows that xj Ncij .!/ � N .xj�ij ; x
2
j�

2
ij /,

Nci .!/
T x D

nX
j D1

Ncij .!/xj � N

� nX
j D1

�ijxj ;

nX
j D1

�2
ijx

2
j

�

So Nci .!/
T x is also a random variable. Now we set

�i D
nX

j D1

�ijxj ; �
2
i D

nX
j D1

�2
ijx

2
j :

then Nci .!/
T x � N .�i ; �

2
i /. In addition, QNci is a Ra-Ra vector which is distributed

with mean vector Nci .!/ and positive definite covariance matrix V c
i , written as QNci �

N . Nci .!/; V
c

i /. It follows that QNcT
i x � N . Nci .!/

T x;xTV c
i x/: Then, we have that

Pr
˚ QNcT

ij x � fi


 � ˇi

, Pr

( QNcT
i x � Nci .!/

T xq
xTV c

i x

� fi � Nci .!/
T xq

xTV c
i x

)
� ˇi

, Nci .!/
T x C ˚�1.1 � ˇi /

q
xT V c

i x � fi
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It follows that, for given confidence levels ˇi ; ˛i 2 Œ0; 1�,

Pr
˚
!jPr

˚ QNcT
ij x � fi


 � ˇi


 � ˛i

, Pr

�
!j Nci .!/

T x C ˚�1.1 � ˇi /

q
xT V c

i x � fi

�
� ˛i

, Pr

� Nci .!/
T x � �i

�i

� fi � R � �i

�i

�
� ˛i

, fi � RC �i C �i˚
�1.1 � ˛i /

where R D ˚�1.1 � ˇi /
q

xTV c
i x. This completes the proof. ut

Similarly, the constraints

Prf!jPrf QNeT
r x � QNbrg � �rg � �r ; r D 1; 2; : : : ; p

can be converted into crisp equivalent constraints.

Theorem 3.15. (Xu and Ding [338]) Suppose that Ra-Ra vector QNer are charac-
terized by QNer � N . Ner .!/; V

e
r /, where Ner.!/ are the mean vector and V e

r are

the positive definite covariance; Ra-Ra variable QNbr are characterized by QNbr �
N . Nbr .!/; .�

b
r /

2/, where Nbr.!/ are random variables and .�b
r /

2 are the variances,
r D 1; 2; : : : ; p. Assume that Nerj .!/ and Nbr.!/ .r D 1; 2; : : : ; pI j D 1; 2; : : : ; n/

are random variables, then Ner.!/
T x� Nbr is a random variable. Let �r be the mean

and �2
r be the variance, then we have that Prf!jPrf QNeT

r x � QNbr.!/g � �rg � �r if
and only if

˚�1.�r /

q
xTV e

r x C .�b
r /

2 C �r C �r˚
�1.�r / � 0 (3.95)

Proof. From the assumption QNer � N . Ner.!/; V
e

r /,
QNbr � N . Nbr.!/; .�

b
r /

2/, it fol-

lows that QNeT
r x �N . Ner .!/

T x. Then, QNeT
r x� QNbr � N . Ner.!/

T x� Nbr .!/;x
T V e

r xC
.�b

r /
2/, we have that

Pr
˚ QNer.!/

T x � QNbr.!/

 � �r

, Pr

� QNeT
r x � QNbr � . Ner .!/

T x � Nbr .!//p
xT V e

r x C .�b
r /

2
�
Nbr .!/� Ner.!/

T xp
xTV e

r x C .�b
r /

2

�
� � r

, Ner.!/
T x � Nbr .!/ � �˚�1.�r /

q
xTV e

r x C .�b
r /

2
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Since Ner.!/
T x � Nbr.!/ � N .�r ; �

2
r /, for given confidence levels �r ; �r 2 Œ0; 1�,

we have that,

Prf!jPrf QNeT
r x � QNbrg � �rg � �r

, Prf!j Ner.!/
T x � Nbr.!/ �M g � �r

, Pr

�
!jer.!/

T x � br.!/ � �r

�r

� M � �r

�r

�
� �r

,M � �r C �r˚
�1.�r /

, ˚�1.�r /
p

xTV e
r x C .�b

r /
2 C �r C �r˚

�1.�r / � 0

where M D �˚�1.�r /
p

xTV e
r x C .�b

r /
2. This completes the proof. ut

Here we consider the special cases of Ra-Ra programming problem formulated
in Theorems 3.14 and 3.15 and discuss its convexity. From Theorems 3.14 and
3.15, we have that problem (3.93) is equivalent to the following multiobjective
programming problem

8̂<
:̂

max Œf1; f2; : : : ; fm�

s.t.

�
fi � RC �i C �i˚

�1.1 � ˛i /; i D 1; 2; : : : ; m
x 2 X

(3.96)

or equivalently �
max ŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t.x 2 X (3.97)

where R D ˚�1.1 � ˇi /
q

xTV c
i x, Hi .x/ D R C �i C �i˚

�1.1 � ˛i /, i D
1; 2; : : : ; m, and X WD fx 2 Rnj˚�1.�r /

p
xTV e

r xC .�b
r /

2 C �r C �r˚
�1.�r / �

0; r D 1; 2; : : : ; pIx � 0g.
Suppose H.x/ D Pm

iD1 �iHi .x/, where the weight coefficient �i 2 Œ0; 1�

expresses the importance of Hi .x/ to the decision-maker satisfying
Pm

iD1 �i D 1.
Then problem (3.97) can be converted into the following problem

�
maxH.x/
s.t.x 2 X (3.98)

Theorem 3.16. (Xu and Ding [338]) The efficient solution of problem (3.97) is the
optimal solution of problem (3.98) and the optimal solution of problem (3.98) is the
efficient solution of problem (3.97).

Proof. To be proven, the efficient solution of problem (3.97) is the optimal solution
of problem (3.98). Let’s consider if the optimal solution of problem (3.98) is the
efficient solution of problem (3.97).
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Suppose x� is an optimal solution of problem (3.98). If x� is not an efficient
solution of problem (3.97), then there exists x0 such that Hi .x

0/ � Hi .x
�/.i D

1; 2; : : : ; m/, and there at least exists a k such that Hk.x
0/ > Hk.x

�/. Then

mX
iD1

�iHi .x
0/ >

mX
iD1

�iHi .x
�/ (3.99)

That is

H.x0/ > H.x
�/ (3.100)

This conflicts that x� is an optimal solution of problem (3.98). This completes the
proof. ut

From the above theorem, we know that problem (3.98) is equivalent to prob-
lem (3.97). To know about the existence of solution to (3.97), here we discuss the
convexity of problem (3.98).

Theorem 3.17. (Xu and Ding [338]) Let H.x/ D Pm
iD1 �iHi .x/, �i 2 Œ0; 1�,

Hi .x/ D ˚�1.1 � ıi /
q

xTV c
i x C �i C �i˚

�1.1 � 	i /, and X D fx 2
RnjPrf!jPrf QNeT

r x � QNbrg � �rg � �r ; r D 1; 2; : : : ; pIx � 0g. If 	i � 0:5,
ıi � 0:5, �i � 0:5 and �i � 0:5, problem (3.98) is convex.

Proof. According to [301],
q

xT V c
i x is a convex function. In addition, since 	i �

0:5 and ıi � 0:5, it follows that ˚�1.1 � 	i / � 0 and ˚�1.1 � ıi / � 0, we know
Hi .x/ are concave functions, i D 1; 2; : : : ; m. So let x1 and x2 be any two points
in feasible set, and ˛ 2 Œ0; 1�, we have that

Hi Œ˛x1 C .1 � ˛/xx2� � ˛Hi .x
1/C .1� ˛/Hi .x

2/

for �i 2 Œ0; 1�,

�iHi Œ˛x1 C .1 � ˛/x2� � ˛�iHi .x
1/C .1 � ˛/�iHi .x

2/

moreover,

mX
iD1

�iHi Œ˛xx1 C .1 � ˛/x2� � ˛
mX

iD1

�iHi .x
1/C .1 � ˛/

mX
iD1

�iHi .x
2/

that is

HŒ˛x1 C .1 � ˛/x2� � ˛H.x1/C .1 � ˛/H.x2/
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So the objective functionH.x/ is concave. Next, we prove that X is convex. From
Theorem 3.15, we know that

Prf!jPrf QNeT
r x � QNbrg � �rg � �r

, ˚�1.�r /
p

xTV e
r x C .�b

r /
2 C �r C �r˚

�1.�r / � 0

Let gr .x/ D ˚�1.�r/
p

xT V e
r x C .�b

r /
2 C �r C �r˚

�1.�r /. Then X D fx 2
Rnjgr .x/ � 0; r D 1; 2; : : : ; pIx � 0g. Since �r � 0:5 and �r � 0:5, it follows that
˚�1.�r/ � 0 and ˚�1.�r / � 0, and gr .x/ are convex functions, r D 1; 2; : : : ; p.
Let x1 and x2 be two feasible solutions, then

gr .x
1/ � 0; gr .x

2/ � 0 (3.101)

according to gr ’s convexity, we have

gr Œ˛x1 C .1 � ˛/x2� � ˛gr .x
1/C .1 � ˛/gr .x

2/ � 0 (3.102)

where 0 � ˛ � 1, r D 1; 2; : : : ; p. This means that ˛x12 C .1 � ˛/x2 is also a
feasible solution. So X is a convex set. Above all, we can conclude that problem
maxx2X H.x/ is a convex programming. ut

3.4.2.2 The Surrogate Worth Trade-Off Method

The surrogate worth trade-off method, which is called SWT method for short, was
proposed by Haimes et al. [124] in 1974 to solve the multi-objective program-
ming problem. It can be applied to continuous variables, objective functions and
constraints which can be differentiated twice.

In its original version, SWT is, in principle, noninteractive and assumes continu-
ous variables and twice differentiable objective functions and constraints. It consists
of four steps: (1) generate a representative subset of efficient solutions, (2) obtain
relevant trade-off information for each generated solution, (3) interact with DM t
obtain information about preference expressed in terms of worth, and (4) retrieve
the best-compromise solution from the information obtained.

Take the problem (3.97) as an example and list the detailed steps according to the
book [44] as follows:

Step 1: Generation of a Representative Subset of Efficient Solutions. The
"-constraint method is recommended to obtain the representative subset of effi-
cient solutions. Without loss of generality, we choose a reference objective H1 and
formulate the "-constraint problem:

8<
:

maxH1.x/

s.t.

�
Hi .x/ � "i ; i D 2; 3; : : : ; m
x 2 X

(3.103)
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Although there is no rule to specify which objective should be chosen as a reference,
the most important objective is recommended. To guarantee that the "-constraint
problem has feasible solution, a reasonable "i should be selected, usually, in the
range Œai ; bi �, where ai D minx2X Hi .x/ and bi D maxx2X Hi .x/.

Step 2: Obtaining Trade-off Information. In the process of solving the prob-
lem (3.103), the trade-off information can easily be obtained merely by observ-
ing the optimal Kuhn-Tucker multipliers corresponding to the "-constraints. Let
these multipliers be denoted by �1i .x."//. If �1k.x."// > 0.k D 1; 2; : : : ; m/,
then the efficient surface in the objective function space around the neighbor-
hood of H " D .H1.x."//;H2.x."//; : : : ;Hm.x."///

T can be represented by
H 1 D .H1;H2; : : : ;Hm/ and

�1k.x."// D � @H 1

@Hk

ˇ̌̌
ˇ
H

D H "; k D 2; 3; : : : ; m (3.104)

Thus each �1k.x."// represents the efficient partial trade-off rate between H1 and
Hk at H " when all other objective are held fixed at their respective values at
x."/. The adjective “efficient” is used to signify that after the trade-off is made the
resulting point remains on the efficient surface. The detail can be referred to [44].

Step 3: Interacting with the Decision Maker to Elicit Preference. DM is sup-
plied with trade-off information from Step 2 and the levels of all criteria. He then
expresses his ordinal preference on whether or not (and by how much) he would
like to make such a trade at that level. Haimes et al. [44] constructed the following
surrogate worth function: DM is asked “How much would you like to improve H1

by �1k.x."// units per one-unit degradation of Hk while all other objective remain
fixed at Hl.x."//, l 6D 1; k?” Indicate your preference on a scale of �10 to 10,
where the values have the following meaning:

1. C10 means you have the greatest desire to improveH1 by �1k.x."// units per
one-unit degradation of Hk .

2. 0 means you are indifferent about the trade.
3. �10 means you have the greatest desire to degrade improve H1 by �1k.x."//

units per one-unit improvement in Hk .

Values between �10 and 0, and 0 and 10 show proportional desire to make the
trade.

DM’s response is recorded as w1k.x."//, called the surrogate worth of the trade-
off between H1 and Hk at the efficient solution x."/. At a particular efficient
solution, there will be m � 1 questions to obtain w1k.x."//; k D 2; 3; : : : ; m.

Step 4: Retrieving the Best-Compromise Solution. If there exists an efficient
solution x."0/ such that

w1k.x."0// D 0; k D 2; 3; : : : ; m (3.105)

the DM has obtained a best-compromise solution. Thus (3.105) is the best-
compromise condition of x."0/. If there is such x."0/ in the representative set,
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then stop and output x."0/. Otherwise we use multiple regression to construct the
surrogate worth function as follows,

w1k D w1k.H1;H2; : : : ;Hm/; k D 2; 3; : : : ; m:

Then the system of equations

w1k.H1;H2; : : : ;Hm/ D 0; k D 2; 3; : : : ; m;

is solved to determine .H�
2 ; : : : ;H

�
m/. Let "0k D H�

k
.k D 2; : : : ; m/, "0 D

."02; : : : ; "0m/
T . The best-compromise solution x."0/ is then found by solving the

problem (3.103).

3.4.3 Nonlinear Ra-Ra CCM and Ra-Ra
Simulation-Based APSO

Let’s introduce the process of the particle swarm optimization based on the Ra-Ra
simulation to deal with the chance constraint models with Ra-Ra parameters. Con-
sider the following multiobjective programming problem with Ra-Ra coefficients,

8̂̂̂
<
ˆ̂̂:

maxŒf1; f2; : : : ; fm�

s.t.

8<
:

Prf!jPrffi .x; �/ � fi g � ˇi g � ˛i ; i D 1; 2; : : : ; m
Prf!jPrfgr.x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p
x � 0

where ˛i , ˇi , �r and �r are predetermined confidence levels, i D 1; : : : ; m,
r D 1; : : : ; p; x D .x1; x2; : : : ; xn/

T is an n-dimensional decision vector; � D
.�1; �2; : : : ; �n/ is a Ra-Ra vector; fi .x; �/ or gr .x; �/ or both them are nonlinear
objective functions, i D 1; 2; : : : ; m, r D 1; 2; : : : ; p.

3.4.3.1 Ra-Ra Simulation for CCM

Let � be an n-dimensional Ra-Ra vector on the probability space .˝;A ;Pr/, and
f W Rn ! R be a measurable function. For any given confidence levels ˛ and ˇ,
we find the maximal value Nf such that

Chff .x; �/ � Nf g.˛/ � ˇ

holds. That is, we should compute the maximal value Nf such that

Prf! 2 ˝jPrff .x; �.!// � Nf g � ˇg � ˛
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holds. We sample !1; !2; : : : ; !N from ˝ according to the probability measure
Pr, where !k is an n-dimensional vector, and estimate Nfk D supffkjPrff .x;
�.!k//g � ˇg for k D 1; 2; : : : ; N by the stochastic simulation. Let N 0 be the
integer part of ˛N . Then Nf can be taken as theN 0th largest element in the sequence
f Nf1; Nf2; : : : ; NfN g.

Then the procedure simulating the critical value Nf of the function Prf! 2
˝jPrff .x; �.!// � Nf g � ˇg � ˛ can be summarized as follows:

Procedure Ra-Ra simulation for CCM
Input: The decision vector x

Output: The critical value Nf
Step 1. Generate !1; !2; : : : ; !N from˝ according to the probability measure
Pr;
Step 2. Find Nfk D supffkjPrff .x; �.!k// � fkg � ˇg for k D 1; 2; : : : ; N
by random simulation;
Step 3. Set N

0

as the integer part of ˛N ;
Step 4. Return the N

0

th largest element in f Nf1; Nf2; : : : ; NfN g.

Example 3.18. Find the maximal value Nf such that Ch

�q QN�2
1 C QN�2

2 C QN�2
3 � Nf

�
.0:9/ � 0:9, where QN�1, QN�2 and QN�3 are Ra-Ra variables defined as

QN�1 D U . Q�1; Q�1 C 2/; with Q�1 � N .0; 1/;
QN�2 D N . Q�2; 1/; with Q�2 � U .3; 5/;
QN�3 D exp. Q�3/; with Q�3 � U .1; 2/:

A run of Ra-Ra simulation with 1000 cycles shows that Nf D 3:3623.

3.4.3.2 Adaptive Particle Swarm Optimization

Since the particle swarm optimization algorithm (PSO) is proposed by Kennedy and
Eberhard [158], it has been one of the newest techniques within the family of evolu-
tionary optimization algorithms for optimizing continuous nonlinear functions. The
algorithm is based on an analogy with the choreography of flight of a flock of birds.
The performance of particle swarm optimization using an inertia weight in com-
parison with the performance using a constriction factor is also explained. Devel-
opments and resources in the particle swarm algorithm are reviewed in [191, 196].
Although PSO has shown some important advances by providing high speed of
convergence in specific problems, it does exhibit some shortages. It found that PSO
has a poor ability to search at a fine grain because it lacks velocity control mech-
anism [7]. Some improvements in the PSO algorithm are proposed in [134]. Many
approaches are attempted to improve the performance of PSO by variable inertia
weight. The inertia weight is critical for the performance of PSO, which balances
global exploration and local exploitation abilities of the swarm. A big inertia weight
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facilitates exploration, but it makes the particle long time to converge. Similar to
other evolutionary algorithms, the particle swarm optimization method conducts its
search using a population of particles, corresponding to individuals. Each particle
in the swarm represents a candidate solution to the problem. It starts with a random
initialization of a population of individuals in the search space and works on the
social behavior of the particles in the swarm, like birds flocking, fish schooling and
the swarm theory. Therefore, it finds the global optimum by simply adjusting the tra-
jectory of each individual towards its own best location and towards the best particle
of the swarm at each generation of evolution. However, the trajectory of each indi-
vidual in the search space is adjusted by dynamically altering the velocity of each
particle, according to the flying experience of its own and the other particles in the
search space. This population based robust algorithm always ensures convergence
to the global optimum solution as compared to a GA.

Many scholars [222, 245, 329, 353, 354] proposed the adaptive particle swarm
optimization algorithm to dynamically adjust the velocity of each particle to accel-
erate the convergence. This section mainly introduces the APSO algorithm proposed
by Panigrahi, Pandi and Das [245] and interested readers could refer to the related
literatures. In the simple PSO method, the inertia weight is made constant for all
the particles in a single generation, but the most important parameter that moves
the current position towards the optimum position is the inertia weight !. In order
to increase the search ability, the algorithm should be redefined in the manner that
the movement of the swarm should be controlled by the objective function. In the
proposed adaptive PSO, the particle position is adjusted such that the highly fitted
particle (best particle) moves slowly when compared to the lowly fitted particle.
This can be achieved by selecting different ! values for each particle according to
their rank, between !min and !max as in the following form:

!i D !min C
.!max � !min/ � Ranki

Total population
(3.106)

Hence, it follows from (3.106) that the best particle takes the first rank, and the
inertia weight for that particle is set to the minimum value while that for the lowest
fitted particle takes the maximum inertia weight, which makes that particle move
with a high velocity. The velocity of each particle is updated using (3.107), and if
any updated velocity goes beyond Vmax, it is limited to Vmax using (3.108),

vij .t C 1/ D !i vij .t/C c1r1.pij .t/ � xij .t//C c2r2.pgj .t/ � xgj .t//

(3.107)

vij .t C 1/ D sign.vij .t C 1// �min.vij .t C 1/; Vjmax/ (3.108)

where j D 1; 2; : : : ; d and i D 1; 2; : : : ; n. The new particle position is obtained
by using (3.109), and if any particle position goes beyond the range specified, it is
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adjusted to its boundary using (3.110),

xij .t C 1/ D xij .t/C vij .t C 1/ (3.109)

xij .t C 1/ D min.xij .t/; rangejmax; (3.110)

xij .t C 1/ D max.xij .t/; rangejmin/

where j D 1; 2; : : : ; d and i D 1; 2; : : : ; n. The concept of re-initialization is
introduced to the proposed APSO algorithm after a specific number of generations
if there is no improvement in the convergence of the algorithm. The population
of the proposed APSO at the end of the above mentioned specific generation is
re-initialized with new randomly generated individuals. The number of these new
individuals is selected from the k least fit individuals of the original population,
where ‘k’ is the percentage of the total population to be changed. This effect of pop-
ulation re-initialization is, in a sense, similar to the mutation operator in a GA [174].
This effect is favorable when the algorithm prematurely converges to a local opti-
mum and further improvement is not noticeable. This re-initialization of population
is performed after checking the changes in the ‘Fbest’ value in each and every spe-
cific number of generations. The procedure of APSO algorithm can be summarized
as follows:

Procedure The procedure of APSO

Step 1. Get the input parameters like range [min max] for each of the
variables, c1, c2, iteration counter D 0, Vmax, !max and !min;
Step 2. Initialize n number of population of particles of dimension d with
random positions and velocities;
Step 3. Increment iteration counter by one;
Step 4. Evaluate the fitness function of all particles in the population, find
particles best position Pbest of each particle and update its objective value.
Similarly, find the global best position (Gbest) among all the particles and
update its objective value;
Step 5. If stopping criterion is met go to step (11). Otherwise continue;
Step 6. Evaluate the inertia factor according to (3.106), so that each particles
movement is directly controlled by its fitness value;
Step 7. Update the velocity using (3.107) and correct it using (3.108);
Step 8. Update the position of each particle according to (3.109), and if the
new position goes out of range, set it to the boundary value using (3.110);
Step 9. The elites are inserted in the first position of the new population in
order to maintain the best particle found so far;
Step 10. For every 5 generations, this FBest,new value (at the end of these 5
generations) is compared with the FBest,old value (at the beginning of these 5
generations, if there is no noticeable change, then re-initialize k% of the
population. Go to step (3);
Step 11. Output the Gbest particle and its objective value.
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3.4.4 Numerical Examples

Example 3.19. Let’s consider the following problem,

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

maxf1.x; �/ D QN�1x1 C QN�2x2 C QN�3x3 C QN�4x4 C QN�5x5

maxf2.x; �/ D QN�6x1 C QN�7x2 C QN�8x3 C QN�9x4 C QN�10x5

s.t.

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(3.111)

where QN�i .i D 1; : : : ; 10/ are Ra-Ra variables as follows,

QN�1 � N .Nu1; 1/; with Nu1 � N .113; 2/; QN�2 � N .Nu2; 4/; with Nu2 � N .241; 2/;

QN�3 � N .Nu3; 1/; with Nu3 � N .87; 3/;
QN�4 � N .Nu4; 2/; with Nu4 � N .56; 1/;

QN�5 � N .Nu5; 1/; with Nu5 � N .92; 1/; QN�6 � N .Nu6; 1/; with Nu6 � N .628; 2/;

QN�7 � N .Nu7; 2/; with Nu7 � N .143; 1/; QN�8 � N .Nu8; 2/; with Nu8 � N .476; 1/;

QN�9 � N .Nu9; 2/; with Nu9 � N .324; 2/; QN�10 � N .Nu10; 2/; with Nu10�N .539; 1/:

and Nui .i D 1; 2; : : : ; 10/ are independently random variables. Set ˛i D ˇi D 0:9

.i D 1; 2/, we can get the following chance-constrained model,

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

maxf Nf1; Nf2g

s.t.

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

Prf!jPrf QN�1x1 C QN�2x2 C QN�3x3 C QN�4x4 C QN�5x5 � Nf1g � ˇ1g � ˛1

Prf!jPrf QN�6x1 C QN�7x2 C QN�8x3 C QN�9x4 C QN�10x5 � Nf2g � ˇ2g � ˛2

x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(3.112)

It follows from Theorem 3.14 and 3.15 that, problem (3.112) is equivalent to
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ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂:

maxH1.x/ D 113x1 C 241x2 C 87x3 C 56x4 C 92x5

� 1:28
q
x2

1 C 4x2
2 C x2

3 C 2x2
4 C x2

5

� 1:28
q
2x2

1 C 2x2
2 C 3x2

3 C x2
4 C x2

5

maxH2.x/ D 628x1 C 143x2 C 476x3 C 324x4 C 539x5

� 1:28
q
x2

1 C 2x2
2 C 2x2

3 C 2x2
4 C 2x2

5

� 1:28
q
2x2

1 C x2
2 C x2

3 C 2x2
4 C x2

5

s.t.

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(3.113)

Next, we use the SWT method to solve the above problem. Firstly, let H1.x/

be the reference objective and compute a2 D minx2X H2.x/ D 141354:3 and
b2 D maxx2X H2.x/ D 192528:7. Take " D 160;000 in Œa2; b2� and construct the
following "-constraint problem,

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂:

maxH1.x/ D 113x1 C 241x2 C 87x3 C 56x4 C 92x5

� 1:28
q
x2

1 C 4x2
2 C x2

3 C 2x2
4 C x2

5

� 1:28
q
2x2

1 C 2x2
2 C 3x2

3 C x2
4 C x2

5

s.t.

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

628x1 C 143x2 C 476x3 C 324x4 C 539x5

�1:28
q
x2

1 C 2x2
2 C 2x2

3 C 2x2
4 C 2x2

5

�1:28
q
2x2

1 C x2
2 C x2

3 C 2x2
4 C x2

5 � 160000
x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(3.114)

Secondly, we get the optimal solution x."/ D .198:28; 65:43; 20:00; 20:00; 20:00/T
and Kuhn-Tucker multiplier �12.x."// D 0:176 of the constraint H2.x/ �
160;000.

Thirdly, to interact with the decision maker, we prepare Table 3.8, listing a few
representative noninferior solutions. We can now go to the decision maker to elicit
W12 for each noninferior point in Table 3.8.
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Table 3.8 Data generated for Example 3.19

H2 H1 x1 x2 x3 x4 x5 �12 w12
141354.3 40583.37 166.67 73.33 20.00 20.00 20.00 0.1808 �10
146471.7 41023.49 175.34 71.16 20.00 20.00 20.00 0.1808 �8
151589.2 41462.95 184.02 68.99 20.00 20.00 20.00 0.1808 �6
156706.6 41901.77 192.70 66.83 20.00 20.00 20.00 0.1808 �4
161824.1 42340.01 201.38 64.66 20.00 20.00 20.00 0.1808 �2
166941.5 42777.71 210.06 62.49 20.00 20.00 20.00 0.1808 0
166941.5 43206.53 218.57 60.36 20.00 20.00 20.00 0.1808 C2
177176.4 43206.53 218.57 60.36 20.00 20.00 20.00 0.1807 C4
182293.8 43206.53 218.57 60.36 20.00 20.00 20.00 0.1807 C6
182293.8 43206.53 218.57 60.36 20.00 20.00 20.00 0.1807 C8
187411.3 43206.53 218.57 60.36 20.00 20.00 20.00 0.1807 C10

Example 3.20. Let’s consider the following problem,

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

maxŒ Nf1; Nf2�

s.t.

8̂̂
ˆ̂<
ˆ̂̂̂:

Pr
n
!jPr

np
.x1 � �1/2 C .x2 � �2/2 � Nf1

o
� 0:8

o
� 0:8

Pr
n
!jPr

np
.x1 C �1/2 C .x2 C �2/2 � Nf2

o
� 0:8

o
� 0:8

x1 C x2 � 5
x1 � 0; x2 � 0

(3.115)

where �1 � N . N�1; 1/ and �1 � N . N�2; 1/ are independently Ra-Ra variables.
N�1 D N .3; 1/ and N�1 D N .2; 0:5/ are normally distributed random variables.
Next we will use Ra-Ra simulation-based APSO to solve the above problem. The
process of generating a new position for a selected individual in the swarm is
depicted in the following equation:

vi
tC1 D wvi

t C c1 � rand./ � .P i
t � xi

t /C c2 � rand./ � .G t � xi
t /;

where vi
t and xi

t are the i th particle current velocity and position, P i
t and G t are the

kth particle best position and the global best position visited so far, w D 0:7298 is
the inertia weight, c1 D c2 D 1:4962 are learning factors and rand./ is a random
number in [0,1]. After the simulation with many cycles, we get the optimal solution
under different weights as shown in Table 3.9. Figure 3.6 shows the search process
when the weight is 0.5. The read line expresses the weight sum of two objective
functions, and it shows that it gradually converges from Gen D 40. Figure 3.7
shows the changes of two objective values when the generation increases.
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Table 3.9 The optimal solution by Ra-Ra simulation-based APSO

w1 w2 x1 x2 Nf1 Nf2 Nf Gen

0.1 0.9 3.5162 1.4838 0.2582 3.1564 4.8016 500
0.2 0.8 2.1930 2.8070 0.3677 4.7229 3.9686 500
0.3 0.7 0.3120 4.6880 1.2843 4.8389 4.3708 500
0.4 0.6 4.5370 0.4630 0.2726 5.5330 3.4103 500
0.5 0.5 4.0007 0.9993 0.2020 4.7898 2.8924 500

Fig. 3.6 Search process of
Ra-Ra simulation-based
APSO

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8
Searching process

Fitness value
Best so far

Fig. 3.7 Two objective
values by Ra-Ra
simulation-based APSO
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3.5 Ra-Ra DCM

Uncertain environment, event, and the chance function are key elements in DCM.
Let us redefine them in Ra-Ra decision systems, and introduce the principle of
uncertainty. By uncertain environment (in this case the Ra-Ra environment) we
mean the Ra-Ra constraints represented by

gj .x; �/ � 0; j D 1; 2; : : : ; p (3.116)
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where x is a decision vector, and � is a Ra-Ra vector. By the event we mean the
system of inequalities

hk.x; �/ � 0; k D 1; 2; : : : ; q (3.117)

The chance function of an event " characterized by (3.117) is defined as the chance
measure of the event ", i.e.,

f .x/ D Chfhk.x; �/ � 0; k D 1; 2; : : : ; qg (3.118)

subject to the uncertain environment (3.116).
For each decision x and realization �, an event " is said to be consistent in the

uncertain environment if the following two conditions hold: (a) hk.x; �/ � 0; k D
1; 2; : : : ; qI and (b) gj .x; �/ � 0; j 2 J , where J is the index set of all dependent
constraints.

Assume that there are m events "i characterized by hik.x; �/ � 0; k D
1; 2; : : : ; qi for i D 1; 2; : : : ; m in the uncertain environment gj .x; �/ � 0; j D
1; 2; : : : ; p. The principle of uncertainty implies that the chance function of the i th
event "i in the uncertain environment is

fi .x/ D Ch
�
hik.x; �/ � 0; k D 1; 2; : : : ; q
gj .x; �/ � 0; j 2 Ji

�
(3.119)

where Ji are defined by

Ji D fj 2 f1; 2; : : : ; pgjgj .x; �/ � 0 is a dependent constraint of "ig

for i D 1; 2; : : : ; m:

3.5.1 General Model for Ra-Ra DCM

When ˛-chance measure is used, we may formulate a Ra-Ra DCM as follows:

�
maxChff .x; �/ � 0g.˛/
s.t. gj .x; �/ � 0; j D 1; 2; : : : ; p (3.120)

where x is an n-dimensional decision vector, � is a Ra-Ra vector, the event " is
characterized by f .x; �/ � 0, ˛ is a given probability level, and the uncertain
environment is described by the Ra-Ra constraints gj .x; �/ � 0, j D 1; 2; : : : ; p.

Remark 3.4. If the Ra-Ra vector � degenerates to a random vector, then for any
given ˛ > 0,

Chff .x; �/ � 0g.˛/ 	 Prfh.x; �/ � 0g:
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Thus the model (3.120) becomes

�
max Prff .x; �/ � 0g
s.t. gj .x; �/ � 0; j D 1; 2; : : : ; p (3.121)

which is a standard random DCM.

If there are multiple events in the uncertain environment, then we have the
following Ra-Ra dependent-chance multiobjective decision making model,

8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

max

2
664
Chff1.x; �/ � 0g.˛1/

Chff2.x; �/ � 0g.˛2/

� � �
Chffm.x; �/ � 0g.˛m/

3
775

s.t. gj .x; �/ � 0; j D 1; 2; : : : ; p

(3.122)

where the events "i are characterized by fi .x; �/ � 0 and ˛i are given probability
levels, i D 1; 2; : : : ; m, respectively.

The Ra-Ra dependent-chance goal model (DCGM) to formulate bi-random
decision systems according to the priority structure and target levels set by the
decision-maker is given as follows,

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8<
:
Ch

˚
fi .x; �/ � 0



.˛i /C d�

i � dC
i D bi

gj .x; �/ � 0; j D 1; 2; : : : ; p
d�

i ; d
C
i � 0; i D 1; 2; : : : ; m

(3.123)

where Pj is the preemptive priority factor which express the relative importance of
various goals, P � j >> Pj C1, for all j , uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, uij is the weighting factor
corresponding to negative deviation for goal i with priority j assigned, dC

i is the
positive deviation from the target of goal i , d�

i is the negative deviation from the
target of goal i , ˛i is the given probability level, gj is a function in system con-
straints, bi is the target value according to goal i , l is the number of priorities, m is
the number of goal constraints, and p is the number of system constraints.

3.5.2 Linear Ra-Ra DCM and the Satisfying
Trade-Off Method

In this section, we restrict our attention on the linear multiobjective programming
with Ra-Ra parameters. Let’s consider the following model,
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:̂

max
� QNcT

1 x; QNcT
2 x; : : : ; QNcT

mx
�

s.t.

(
QNeT
r x � QNbr ; r D 1; 2; : : : ; p

x � 0
(3.124)

where QNci D . QNci1; QNci2; : : : ; QNcin/
T , QNer D . QNer1; QNer2; : : : ; QNern/

T are Ra-Ra vectors and
QNbr are Ra-Ra variables, i D 1; 2; : : : ; m, r D 1; 2; : : : ; p. Then by the definition
of chance measure of Ra-Ra variables, we have the following chance-constrained
model of (3.124),

8̂<
:̂

max
�
Chf QNcT

i x � Nfi g.˛i /; i D 1; 2; : : : ; m
�

s.t.

(
Chf QNeT

r x � QNbrg.�r/ � �r ; r D 1; 2; : : : ; p
x � 0

(3.125)

where ˛i ; �r ; �r are given confidence levels, fi are predetermined objective value,
i D 1; 2; : : : ; m; r D 1; 2; : : : ; p. Then the problem (3.125) can be rewritten as

8̂<
:̂

max
�
supfˇi jPrf!jPrf QNcT

i x � Nfi g � ˇi g � ˛i g; i D 1; 2; : : : ; m
�

s.t.

(
Prf!jPrf QNeT

r x � QNbrg � �rg � �r ; r D 1; 2; : : : ; p
x � 0

(3.126)

3.5.2.1 Crisp Equivalent Model

One way of solving the dependent-chance multiobjective programming model is to
convert the objectives and constraints of problem (3.126) into their respective crisp
equivalents. As we know, this process is usually a hard work and only successful for
some special cases. Next, we will consider a special case and present the result in
this section.

Theorem 3.18. Assume that the Ra-Ra vector . QNci D . QNci1; QNci2; : : : ; QNcin/
T is normally

distributed with mean vector Nd c
i .!/ D . Nd c

i1.!/;
Nd c
i2.!/; : : : ;

Nd c
in.!//

T and positive
definite covariance matrix V c

i , written as . QNcij � N . Nd c
i .!/; V

c
i /, where Qd c

ij .!/ is a

random variable characterized by Qd c
ij .!/ � N .d c

ij ; �
2
ij /. Then we have that

supfˇi jPrfPrf QNcT
i x � Nfi g � ˇi g � ˛i g

D ˚

0
BBBB@
˚�1.1 � ˛i /

s
nP

j D1

x2
ij�

2
ij C d cT

i x � Nfi

q
xTV c

i x

1
CCCCA :
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Proof. From the assumption and Theorem 3.14, we have that

Prf!jPrf QNcT
i x � Nfi g � ˇi g � ˛i

, Nfi � ˚�1.1 � ˇi /

q
xTV c

i x C ˚�1.1 � ˛i /

vuut nX
j D1

x2
ij�

2
ij C d cT

i x

Then it follows that

ˇi � 1 �˚

0
BBBB@
Nfi � .˚�1.1 � ˛i /

s
nP

j D1

x2
ij �

2
ij C d cT

i x/

q
xTV c

i x

1
CCCCA :

Since ˚.�x/ D 1 �˚.x/, then we have

ˇi � ˚

0
BBBB@
˚�1.1 � ˛i /

s
nP

j D1

x2
ij�

2
ij C d cT

i x � Nfi

q
xTV c

i x

1
CCCCA

Thus

supfˇi jPrfPrf QNcT
i x � Nfig � ˇig � ˛i g

D ˚

0
BBBB@
˚�1.1� ˛i /

s
nP

j D1

x2
ij�

2
ij C d cT

i x � Nfi

q
xT V c

i x

1
CCCCA

This completes the proof. ut

Similarly, we have that Prf!jPrf QNeT
r x � QNbrg � �rg � �r is equivalent to

˚�1.�r/

q
xT V e

r xC .�b
r /

2� .d b
r � d e

r x/� ˚�1.�r/

vuut.ıb
r /

2 C
nX

j D1

x2
ij .ı

e
r /

2� 0:

Then problem (3.126) can be rewritten as
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ˆ̂̂̂<
ˆ̂̂̂̂̂
:

max

2
66664˚

0
BBBB@
˚�1.1 � ˛i /

s
nP

j D1

x2
ij �

2
ij C d cT

i x � Nfi

q
xT V c

i x

1
CCCCA ; i D 1; 2; : : : ; m

3
77775

s.t. x 2 X
(3.127)

where X D fxj˚�1.�r /
p

xTV e
r x C .�b

r /
2 � ˚�1.�r /

s
.ıb

r /
2 C

nP
j D1

x2
ij .ı

e
r /

2 �

.d b
r � d e

r x/ � 0;x � 0g.

3.5.2.2 The Satisfying Trade-Off Method

The satisfying trade-off method for multi-objective programming problems was pro-
posed by Nakayama [233,277]. It is an interactive method combining the satisfying
level method with the ideal point method. This method can be applied to not only
the linear multi-objective but also the nonlinear multi-objective programming.

Take the problem (3.127) as an example. LetHi .x/D˚
�

R�1.˛i /
c
ij

Cd cT
i

x� Nfip
xT V c

i
x

�
,

and X D fxj˚�1.�r/
p

xT V e
r x C .�b

r /
2 � .d b

r � d e
r x/ � R�1.�r /.	

b
r C

ıe
r x/�0;x � 0g, then problem (3.127) is equivalent to

�
maxŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t. x 2 X (3.128)

In the begin, let’s briefly introduce the simple satisfying level method which in
mainly referred in [234]. In some real decision making problems, DM usually pro-
vides a reference objective values NH D . NH1; NH2; : : : ; NHm/

T . If the solution satisfies
the reference value, take it. The simple satisfying level method can be summarized
as follows:

Step 1. DM gives the reference objective values NH .
Step 2. Solve the following programming problem,

8̂̂<
ˆ̂:

max
mP

iD1

Hi .x/

s.t.

�
Hi .x/ � NHi ; i D 1; 2; : : : ; m
x 2 X

(3.129)

Step 3. If the problem (3.129) doesn’t have the feasible solution, turn to Step 4.
If the problem (3.129) has the optimal solution Nx, output Nx.

Step 4. DM re-gives the reference objective values NH and turn to Step 2.
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The satisfying trade-off method can be summarized as follows:
Step 1. Take the ideal point H � D .H�

1 ;H
�
2 ; : : : ;H

�
m/

T such that H�
i >

maxx2X fi .x/ .i D 1; 2; : : : ; m/.
Step 2. DM gives the objective level NH k D . NH k

1 ;
NH k

2 ; : : : ;
NH k

m/
T and NH k

i <
NH�

i .i D 1; 2; : : : ; m/. Let k D 1.
Step 3. Compute the weight and solve the following problem to get the efficient

solution.

wk
i D

1

H�
i � NH k

i

; i D 1; 2; : : : ; m (3.130)

min
x2X

max
1�i�m

wk
i jH�

i �Hi .x/j (3.131)

or the equivalent problem,

8<
:

min�

s.t.

�
wk

i .H
�
i �Hi .x// � �; i D 1; 2; : : : ; m

x 2 X
(3.132)

Suppose that the optimal solution is xk .
Step 4. According to the objective value H .xk/ D .H1.x

k/;H2.x
k/; : : : ;

Hm.x
k//T , DM divide them into three classes: (1) which needs to improve, denote

the related subscript set I k
I , (2) which is permitted to release, denote the related sub-

script set I k
R, (3) which is accepted, denote the related subscript set I k

A . If I k
I D ˚ ,

stop the iteration and output xk . Otherwise, DM gives the new reference objective
values QH k

i , i 2 I k
I [ I k

R and let QH k
i D Hi .x

k/, i 2 I k
A .

Step 5. Let ui .i D 1; 2; : : : ; m/ be the optimal Kuhn-Tucker operator of the first
constraints. If there exists a minimal nonnegative number " such that

mX
iD1

ui w
k
i .
QH k

i �Hi .x
k// � �";

then we deem that QH k
i passes the check for feasibility. Let QHiC1 D QH k

i .i D
1; 2; : : : ; m/, turn to Step 3. Otherwise, QH k

i isn’t feasible. The detail can be referred
in [277]. DM should re-give QH k

i , i 2 I k
I [ I k

R and recheck it.

3.5.3 Nonlinear Ra-Ra DCM and Ra-Ra Simulation-Based
Tribe-PSO

Consider the Ra-Ra DCM as follows,

�
max ŒChffk.x; �/ � fkg.˛k/; k D 1; 2; : : : ; q�
s.t. Chfgr .x; �/ � 0g.�r/ � �r ; r D 1; 2; : : : ; p (3.133)
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where x is an n-dimensional decision vector, � is a Ra-Ra vector, the event " is
characterized by fk.x; �/ � fk , fk is the predetermined value, fk.x; �/ is non-
linear functions with respect to �, ˛k , �r and �r are the given probability levels,
and the uncertain environment is described by the Ra-Ra constraints gr .x; �/ � 0,
k D 1; 2; : : : ; q, r D 1; 2; : : : ; p.

3.5.3.1 Ra-Ra Simulation for DCM

Since the existence of nonlinear functions fk.x; �/, it is difficult to convert the
objective functions into the crisp ones. Then the Ra-Ra simulation technique is used
to obtain the approximative chance measure. Suppose that � is an n-dimensional
Ra-Ra vector defined on the probability space .˝;A ;Pr/, and f W Rn ! R is a
measurable function. For any real number ˛ 2 .0; 1�, we design a Ra-Ra simula-
tion to compute the ˛-chance Chff .x; �/ � f g.˛/. That is, we should find the
supremum Ň such that

Prf! 2 ˝jPrff .x; �.!// � f g � Ňg � ˛:

First, we sample !1; !2; : : : ; !N from ˝ according to the probability measure
Pr, and estimate ˇk D Prff .x; �.!k// � f g for k D 1; 2; : : : ; N by random
simulation. Let N

0

be the integer part of ˛N . Then the value Ň can be taken as the
N 0th largest element in the sequence fˇ1; ˇ2; : : : ; ˇN g.

Then the procedure simulating the ˛-chance Chff .x; �/ � f g.˛/ can be
summarized as follows:

Procedure Ra-Ra simulation for DCM
Input: The decision vector x

Output: ˛-chance Chff .x; �/ � f g.˛/
Step 1. Generate !1; !2; !N from ˝ according to the probability measure Pr;
Step 2. Compute the probability ˇk D Prff .x; �.!k// � f g for
k D 1; 2; : : : ; N by random simulation;
Step 3. Set N 0 as the integer part of ˛N ;
Step 4. Return the N 0th largest element in fˇ1; ˇ2; : : : ; ˇN g.

Example 3.21. Consider the following Ra-Ra variables,

QN�1 D U . Q�1; Q�1 C 2/; with Q�1 � N .0; 1/;
QN�2 D N . Q�2; 1/; with Q�2 � U .3; 5/;
QN�3 D exp. Q�3/; with Q�3 � U .1; 2/:

A run of Ra-Ra simulation with 1000 cycles shows that

Ch

�q
QN�2
1 C QN�2

2 C QN�2
3 � 6

�
.0:8/ D 0:5150:
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3.5.3.2 Tribe Particle Swarm Optimization

Since the particle swarm optimization (PSO) algorithm was proposed by Kennedy
and Eberhard [158], many improvements have bee made by some scholars. Tribe-
PSO is one of them, which is proposed by Chen, Li and Cao [51]. In classical PSO,
a parameter that the user must specify is the sociometry (topology, type and quantity
of social relationships) of the swarm. In order to create a more robust PSO vari-
ant, Clerc [58, 59] proposed a parameter-free PSO method called Tribes, in which
details of the topology, including the size of the population, evolve over time in
response to performance feedback. TRIBES has attracted attention from researchers
in different application areas such as the optimization of milling operations [239],
flow shop scheduling [240], particle swarm optimization [51, 82] and the Loney’s
Solenoid [82]. Tribe-PSO is inspired from the concept of hierarchical fair compe-
tition (HFC) developed by Goodman [136]. The main principles in HFC are that
the competition is allowed only among individuals with comparable fitness and it
should be organized into hierarchical levels. Such principles help the algorithms
to prevent the optimization procedure from too early loss of diversity and help the
population to escape from the prematurity. Goodman et al. [136] have successfully
introduced these principles into genetic algorithm and other EAs and developed the
AHFC model. Keeping diversity in the population is very important for complex
optimization problems, such as flexible docking. Thus, Chen, Li and Cao [51] pro-
posed Tribe-PSO (Tribe Particle Swarm Optimization), a hybrid PSO model based
on HFC principles. In this model, particles are divided into two layers and the whole
procedure of convergence is divided into three phases. Particles on different layers or
in different phases are strictly controlled in order to preserve population diversities.

A tribe is a sub-swarm formed by particles which have the property that all
particles inform all others belonging to the tribe (a symmetrical clique in graph
theoretical language). The concept is therefore related to the “cultural vicinity”
(information neighborhood) and not on “spatial vicinity” (parameter-space neigh-
borhood). It should be noted that, due to the above definition, the set of informers
of a particle (its so-called i -group) contains the whole of its tribe but is not limited
to it. This is shown in Fig. 3.8 where the i -group of particle B1 contains all particles
of its tribe (black) and particle W1 belonging to the white tribe.

Fig. 3.8 Tribal relationships

Intra-tribal

Inter-tribal

W1

B1

Param. 1

Param. 2
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In general PSO algorithm, Chen, Li and Cao [51] found that the part of
.pBest � p/ and especially the part of .pBestgBest � p/ still dominates the
whole velocity function although these two vectors have random factors before
each item. It results that the current position p is located in the neighborhood of
pBest while it is much far away from the position of pBestgBest and furthermore
the norm of the vector towards pBestgBest is much larger than that of the vector
towards pBest . In this way, particles with worse fitness but promising diversities
are strongly attracted by the best particle of the swarm and get entrapped in the
neighborhood of gBest and lose their diversities. They also found that this kind of
competition is inadequate and does harm to the healthy procedure of optimization.
In order to prevent the prematurity, we introduce the principle of HFC and propose
the Tribe-PSO model.

In the following part, we will introduce the detail of Tribe-PSO model proposed
by Chen, Li and Cao [51]. Tribe-PSO has two important concepts: layer and phase.
In a word, particles in the swarm are divided into two layers and the procedure
of optimization is divided into three phases. Assume that there are totally l 
m
particles in the swarm. In the initiation step of Tribe-PSO, the swarm is divided into
l sub-populations, called as tribes. Each tribe has the same structure of the basic PSO
model: it has m particles and the best particle from them is called tBest . Tribes form
the basic layer while the best particles from the l tribes form the upper layer in the
two-layered structure of Tribe-PSO, which is shown in Fig. 3.9. The convergence
procedure of Tribe-PSO consists of three phases: isolated phase, communing phase
and united phase. Each phase occupies a portion of iterations. In the first phase,
the tribes are isolated and work as l independent PSO models. No information is
exchanged between each pair of tribes. The isolated phase ensures the tribes having
enough time to develop before the possible premature convergence. In the second
phase, Tribe-PSO works in the standard two-layered model: tribe members p form
the basic layer (the tribes) and the best particles from each tribe tBest form the

Trible 1
tBest 1

tBest 2
Trible 2

Basic layer

P1, 3P1, 2

P2, 2 P2, 1
P2, 3

P1, 1

U
pp

er
 l
ay

er

gBest

Fig. 3.9 Two-layer structure of Tribe-PSO
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upper layer. Information about searching experience is exchanged among certain
basic tribe and among the upper layer as well. The particle tBest , i.e. the best
particle from tribe in the basic layer, serves as the information-exchanging agency
between the tribe members p and the best particle of the whole swarm gBest . The
communing phase leads the procedure to convergence in a more moderate way than
basic PSO. Therefore the diversity of most particles is well preserved. In the last
phase, all the tribes are united into one group. The model becomes a basic PSO
model. The concept of tBest does not exist any longer. The united phase helps
the swarm to converge as quickly as possible. In the Tribe-PSO model, particles in
different layers or in different phases have different velocity functions. The velocity
functions for a specific layer and phase are defined as follows.

Phase I (Isolated phase). There is no upper layer or gBest in this phase. All the
tBest and p from different tribes have the same velocity function as (3.134).

v D v 
 wC 2 
 rand./ 
 .pBest � p/C 2 
 rand./

.pBesttBest � p/ (3.134)

Phase II (Communing phase). For tribe members, the velocity function is the
same as they have in the first phase (3.134). For tBest and gBest particles, their
velocity function is described as (3.135). In this equation, gBest is regarded as the
leader in the upper layer.

v D v 
 wC 2 
 rand./ 
 .pBest � p/C 2 
 rand./

.pBestgBest � p/ (3.135)

Phase III (United phase). Theres no tBest in this phase. All the tribes are united
into one swarm. Thus, the velocity function for all the particles becomes the orig-
inal one in the basic PSO (3.135). Compared with basic PSO, Tribe-PSO has two
more parameters. One is the ratio of tribe number l to tribe size m. The other is
the partition of three phases. These two parameters have considerable effects on the
global search ability and performance of Tribe-PSO model. The discussion on the
influence of the two parameters can be found in [51].

3.5.4 Numerical Examples

Example 3.22. Let’s consider the following problem,

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

maxf1.x; �/ D Chf QN�1x1 C QN�2x2 C QN�3x3 � f1g.˛/
maxf2.x; �/ D Chfc1

QN�4x1 C c2
QN�5x2 C c3

QN�6x3 � f2g.ˇ/

s.t.

8̂̂
<
ˆ̂:
x1 C x2 C x3 � 15
x1 C x2 C x3 � 10
x1 C 4x2 C 2x3 � 30
2 � x1; x2; x3 � 6

(3.136)
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where c D .c1; c2; c3/ D .1:2; 0:8; 1:5/ and QN�i .i D 1; : : : ; 10/ are Ra-Ra variables
as follows,

QN�1 � N .Nu1; 1/; with Nu1 �N .11; 2/; QN�2 � N .Nu2; 4/; with Nu2 � N .12; 2/;
QN�3 � N .Nu3; 1/; with Nu3 �N .8; 1/; QN�4 � N .Nu4; 2/; with Nu4 � N .6; 1/;
QN�5 � N .Nu5; 1/; with Nu5 �N .9; 1/; QN�6 � N .Nu6; 1/; with Nu6 � N .8; 2/;

and Nui .i D 1; 2; : : : ; 6/ are independently random variables. Set ˛ D ˇ D 0:9,
f1 D 65 and f2 D 73, then we get the following equivalent model by Theorem
3.18 and (3.127),

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:

maxH1.x/ D ˚

0
B@11x1 C 12x2 C 8x3 � 1:28

q
2x2

1 C 2x2
2 C x2

3 � 65q
x2

1 C 4x2
2 C x2

3

1
CA

maxH2.x/ D ˚

0
B@6x1 C 9x2 C 8x3 � 1:28

q
x2

1 C x2
2 C 2x2

3 � 73q
2x2

1 C x2
2 C x2

3

1
CA

s.t.

8̂̂<
ˆ̂:
x1 C x2 C x3 � 15
x1 C x2 C x3 � 10
x1 C 4x2 C 2x3 � 30
2 � x1; x2; x3 � 6

(3.137)

Since ˚.x/ is a monotone function, the problem (3.137) can be rewritten as

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:

maxH1.x/ D
11x1 C 12x2 C 8x3 � 1:28

q
2x2

1 C 2x2
2 C x2

3 � 65q
x2

1 C 4x2
2 C x2

3

maxH2.x/ D
6x1 C 9x2 C 8x3 � 1:28

q
x2

1 C x2
2 C 2x2

3 � 73q
2x2

1 C x2
2 C x2

3

s.t.

8̂̂<
ˆ̂:
x1 C x2 C x3 � 15
x1 C x2 C x3 � 10
x1 C 4x2 C 2x3 � 30
2 � x1; x2; x3 � 6

(3.138)

Next, we use the satisfying trade-off method to solve the above problem.
Firstly, calculate the problem maxx2X Hi .x/ and we get H 1

1 D 6:80 and H 1
2 D

2:23. Then we set the ideal point H � D .H�
1 ;H

�
2 /

T D .7:00; 2:50/T .

Secondly, let DM give the objective level NH k D . NH k
1 ;
NH k

2 / D .6:90; 2:40/T

.k D 1/.
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Thirdly, compute the weight coefficients by the following equation,

wk
i D

1

H�
i � NH k

i

; i D 1; 2;

and we get w1
1 D 10 and w1

2 D 10. Solve the following problem,

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

min�

s.t.

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

10.7:00�
11x1 C 12x2 C 8x3 � 1:28

q
2x2

1 C 2x2
2 C x2

3 � 65q
x2

1 C 4x2
2 C x2

3

/ � �

10.2:50�
6x1 C 9x2 C 8x3 � 1:28

q
x2

1 C x2
2 C 2x2

3 � 73q
2x2

1 C x2
2 C x2

3

/ � �

x1 C x2 C x3 � 15
x1 C x2 C x3 � 10
x1 C 4x2 C 2x3 � 30
2 � x1; x2; x3 � 6

(3.139)

and we get x1 D .6:00; 3:00; 6:00/T .
Fourthly, compute each objective value and we get H1.x

1/ D 6:80 and
H2.x

1/ D 2:23. If DM figures that the two objective values needn’t be changed,
output x� D x1.

Example 3.23. Let’s consider the following problem,

8̂̂̂
<̂
ˆ̂̂̂:

maxH1.x; �/ D Ch
np

.x1 � �1/2 C .x2 � �2/2 � 2:34
o
.0:8/

maxH2.x; �/ D Ch
np

.x1 C �1/2 C .x2 C �2/2 � 6:20
o
.0:8/

s.t.

�
x1 C x2 � 5
x1 � 0; x2 � 0

(3.140)

where �1 � N . N�1; 1/ and �1 � N . N�2; 1/ are independently Ra-Ra variables.
N�1 D N .3; 1/ and N�1 D N .2; 0:5/ are normally distributed random variables.
Next we will use Ra-Ra simulation-based Tribe-PSO to solve the above problem.
The process of generating a new position for a selected individual in the swarm is
depicted in the following equation:

vi
tC1 D wvi

t C c1 � rand./ � .P i
t � xi

t /C c2 � rand./ � .G t � xi
t /;

where vi
t and xi

t are the i th particle current velocity and position, P i
t and G t are the

kth particle best position and the global best position visited so far, w D 0:7298 is
the inertia weight, c1 D c2 D 1:4962 are learning factors and rand./ is a random
number in [0,1]. After the simulation with many cycles, we get the optimal solution
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Table 3.10 The optimal solution obtained by Ra-Ra simulation-based Tribe-PSO

w1 w2 x1 x2 Nf1 Nf2 Nf Gen

0.1 0.9 4.8498 0.1502 0.5506 0.4500 0.5236 500
0.2 0.8 0.9169 4.0831 0.7681 0.4500 0.6967 500
0.3 0.7 1.1836 3.8164 0.5575 0.3500 0.6612 500
0.4 0.6 4.6811 0.3189 0.5199 0.2000 0.6231 500
0.5 0.5 0.8084 4.1916 0.8189 0.5000 0.8815 500

Fig. 3.10 Search process of
Ra-Ra simulation-based
Tribe-PSO
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Fig. 3.11 Two objective
values by Ra-Ra
simulation-based Tribe-PSO
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under different weights as shown in Table 3.10. Figure 3.10 shows the search process
when the weight is 0.5. The read line expresses the weight sum of two objective
functions, and it shows that it gradually converges from Gen D 40. Figure 3.11
shows the changes of two objective values when the generation increases.
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3.6 Application to GEELY Haoqing Automotive Holdings
Group Limited Company

In this section, we discuss a flow shop scheduling problem under a Ra-Ra environ-
ment and its application to the FSSP of GEELY Haoqing Automotive Holdings
Group Limited Company. We first introduce the basic model of the flow shop
scheduling problem.

3.6.1 Background Introduction

GEELY Haoqing Automotive Holdings Group Limited Company is a famous auto-
motive manufacturing company in China. Built in 1986, its main products are
economy cars. The company also produces automotive fittings, such as car seats,
stamping pieces, rubber pieces, redirectors, electrical products and so on. GEELY
has contributed significantly a lot to the development of the automotive industry in
China. In this study, we consider the scheduling system of the engine machining
workshop in Zhe Jiang Linhai. The engine is a combination of two major compo-
nents and five systems. There are several components some of which are produced
by GEELY, and for various reasons, there are many workpieces (pistons, screws and
so on) that are manufactured by other companies. In this section we only consider
the following six components: the connecting rod, cylinder, cylinder head, left tank
of the gearbox, right tank of the gearbox and the fuel pump sub-oil block. The work
procedures of these workpieces are approximately the same, and are produced on
the same machines. There are three milling machines, three grinders and two lathes
in the Linhai city GEELY Haoqing engine workshop.

The working procedures and machines used for each component are as follows:
Connecting rod:

1. Rough mill the small and the large side faces, on milling machine no. 1
2. Precision mill the small and the large side faces, on milling machine no. 2
3. Cut the connecting rod and it’s cover, on milling machine no. 3
4. Rough lathe the hole on the small side, on lathe no. 1
5. Precision lathe the hole on the small side, on lathe no. 2
6. Half rough lathe the hole on the large side, on lathe no. 3
7. Grind the small location side, on grinder no. 1
8. Grind the hole of the large side, on grinder no. 2.

Cylinder:

1. Rough mill the upper side face, on milling machine no. 1
2. Rough mill the lower side face, on milling machine no. 2
3. Precision mill the upper side face, on milling machine no. 3
4. Rough lathe the hole on the main axes, on lathe no. 1
5. Half precision lathe the hole on the main axes, on lathe no. 2
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6. Precision lathe the hole on the main axes, on lathe no. 3
7. Grind the lower side, on grinder no. 1
8. Grind the front and back sides, on grinder no. 2.

Cover of cylinder:

1. Rough mill the upper side face, on milling machine no. 1
2. Rough mill the lower side face, on milling machine no. 2
3. Precision mill the upper side face, on milling machine no. 3
4. Rough lathe the hole on the valve seat, on lathe no. 1
5. Precision lathe the hole on the valve seat, on lathe no. 2
6. Rough lathe the hole on the camshaft, on lathe no. 3
7. Grind the upper side, on grinder no. 1
8. Grind the input exhaust side, on grinder no. 2

Left tank of the gear box:

1. Rough mill the combining surface, on milling machine no. 1
2. Rough and precision mill the right convex surface, on milling machine no. 2
3. Precision mill the combining surface, on milling machine no. 3
4. Rough lathe the hole on the input axes, on lathe no. 1
5. Rough lathe the hole on the output axes, on lathe no. 2
6. Precision lathe the hole on the input and output axes, on lathe no. 3
7. Rough grind the support plane, on grinder no. 1
8. Precision grind the support plane, on grinder no. 2

Right tank of the gear box:

1. Rough mill the combining surface, on milling machine no. 1
2. Rough and precision mill the left convex surface, on milling machine no. 2
3. Precision mill the combining surface, on milling machine no. 3
4. Rough lathe the hole on the input axes, on lathe no. 1
5. Rough lathe the hole on the output axes, on lathe no. 2
6. Precision lathe the hole on the input and output axes, on lathe no. 3
7. Rough grind the support plane, on grinder no. 1
8. Precision grind the support plane, on grinder no. 2

Fuel pump sub-oil block:

1. Rough mill the small side surface, on milling machine no. 1
2. Rough mill the combining surface, on milling machine no. 2
3. Precision mill the combining surface, on milling machine no. 3
4. Rough lathe the side surface and ladder excircle, on lathe no. 1
5. Precision lathe the side surface and ladder excircle, on lathe no. 2
6. Rough lathe the ' 27 hole, on lathe no. 3
7. Grind the combining surface , on grinder no. 1
8. Precision grind the ' 27 hole, on grinder no. 2
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For convenience, we denote each workpiece as follows:

connecting rod: J1; cylinder: J2; cylinder head: J3;

left tank: J4; right tank: J5; fuel pump sub-oil block: J6I

We also denote each machine as follows:

milling machine no.1, no.2, no.3:M1;M2;M3;

grinder no.1, no.2, no.3:M4;M5;M6;

lathe no.1, no.2: M7;M8:

It’s natural to follow the philosophy of multi-objective expected value mod-
elling, which optimizes some expected objective functions, subject to some expected
constraints, to model a Ra-Ra flow shop scheduling problem as a multi-objective
expected value model. Then we can reasonably provide the multi-objective expected
value model for a Ra-Ra flow shop scheduling problem.

3.6.2 Problem Description and Notation

The flow shop scheduling problem is generally described as follows: a solution to a
permutation flow shop problem consists of sequencing N jobs (J1; J2; : : : ; JN ) on
M machines (M1;M2; : : : ;MM ). A job Ji (for i D 1; : : : ; N ) has at mostM opera-
tions (Oi;1; Oi;2; : : : ; Oi;M ). The operationOk;i must be processed on machineMk

without interruption in a Pk;j unit of time. These times are fixed and nonnegative,
some of which are set to zero if not processed on a machine. Two operations of the
same job cannot be executed simultaneously. Every machine can process at most
one job at a time and every job has to be processed at most once on each machine
following the same sequence 1; 2; : : : ;M . The flow shop scheduling problem is
shown in Fig. 3.12.

O11

O12 O22 O32 O42

O43O33O23O13

O14 O24 O34 O44

O21 O31 O41

Processing time

Machine

M4

M3

M2

M1

Fig. 3.12 Flow shop scheduling problem with 4 machines and 4 jobs
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Based on the above considerations of the flow shop scheduling problem, a
mathematical model is developed based on the following assumptions:

1. The job sequence is the same on each machine
2. A machine can only process one job at a time
3. Only one job can be processed on one machine at one time
4. The processing times are Ra-Ra variables, and accordingly the completion time

and the earliness time are also Ra-Ra variables

The following notations are used to describe the flow shop scheduling problem.
Parameters:
N : the number of jobs to be processed.
M : the number of machines.
NPk;j : the processing time of job j on machine k.
NCk;j : the completion time of the job at the j th position in the job sequence on

machine k.
NEk;j : the earliness time of the job at the j th position in the job sequence on

machine k.
NTk;j : the tardiness time of the job at the j th position in the job sequence on

machine k.
Uj : denotes whether the job at the j th position is tardy .Uj D 1/ or not .Uj D 0/.NIk: denotes the idleness time on machine k.
wj : the importance factor related to job j .
Dj : the due date of job j .

Decision variables:

Zi;j D
�
1; if job i is in the sequence j
0; otherwise

3.6.3 Modelling and Analysis

In the proposed model, the objective is to seek a schedule to both minimize the
weighted mean completion time and the weighted mean earliness of the manufac-
turing system.

Weighted mean completion time:

min F1 D 1

NP
j D1

wj

NX
j D1

MX
kD1

wj
NCk;j (3.141)

Weighted mean earliness time:

min F2 D 1

NP
j D1

wj

NX
j D1

MX
kD1

wj
NEk;j (3.142)
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In the real-world of flow shop scheduling in the decision making process of
solving problems, environmental coefficients and operation parameters are typically
uncertain because some information is incomplete or unobtainable in a reasonable
time period. Accordingly, (3.141) and (3.142) are Ra-Ra and these conflicting goals
are required to be simultaneously optimized.

The objectives are subjected to the following constraints.

NX
j D1

Zi;j D 1; i D 1; 2; : : : ; N (3.143)

Constraints (3.143) ensure that each job is assigned to one position in the
sequence.

NX
iD1

Zi;j D 1; j D 1; 2; : : : ; N (3.144)

Constraints (3.144) specify that each position is assigned to one and only one
job.

NCk;j C
NX

j D1

NPk;iZi;j C1 D NCk;j C1; k D 1; 2; : : : ;M I j D 1; 2; : : : ; N � 1

(3.145)

Constraints (3.145) ensure that the completion time of the job in position j C 1
on machine k is equal to the sum of the completion time of the job in the position
j on machine k and the processing time of the job in position j C 1 on machine k.
No machine idle time is allowed after running until the last job is processed.

NCk;j C
NX

j D1

NPkC1;iZi;j � NCk;j C1; k D 1; 2; : : : ;M � 1I j D 1; 2; : : : ; N � 1

(3.146)

Constraints (3.146) show that the completion time of the job in position j on
machine k C 1 is at least equal to the sum of the completion time of the job in
position j of machine k and the processing time of the job in position j on machine
k C 1; a job can wait between two machines.

NX
iD1

NP1;iZi;1 D NC11 (3.147)
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Constraints (3.147) specify that the completion time of the first job on the first
machine is equal to its processing time on the machine.

NEk;j D maxf0;
NX

iD1

Œ.Dj � NCk;j /Zi;j �g k D 1; 2; : : : ;M I j D 1; 2; : : : ; N � 1

(3.148)

Constraint (3.148) specifies the earliness of each job on each machine.

Zi;j 2 Œ0; 1� 8i; j (3.149)
NEk;j ; NCk;j ;Dj � 0 8k; j (3.150)

Constraint (3.149) and (3.150) are logical constraints.
Above all, the Ra-Ra decision-making model for the presented flow shop

scheduling problem is as follows:8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂:

minF1 D 1
NP
jD1

wj

PN
jD1

MP
kD1

wj NCk;j

minF2 D 1
NP
jD1

wj

PN
jD1

PM
kD1 wj NEk;j

s.t.

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

NP
jD1

Zi;j D 1; i D 1; 2; : : : ; N

NP
iD1

Zi;j D 1; j D 1; 2; : : : ; N

Ck;j C NP
jD1

NPk;iZi;jC1 D NCk;jC1; k D 1; 2; : : : ;M I j D 1; 2; : : : ; N � 1

Ck;j C NP
jD1

NPkC1;iZi;j � NCk;jC1; k D 1; 2; : : : ;M � 1I j D 1; 2; : : : ; N � 1

NP
iD1

NP1;iZi;1 D NC11
NEk;j D maxf0;

NP
iD1

Œ.Dj � NCk;j /Zi;j �g; k D 1; 2; : : : ;M I j D 1; 2; : : : ; N � 1

Zi;j 2 Œ0; 1�; i D 1; 2; : : : ; N I j D 1; 2; : : : ; N
NEk;j ; NCk;j ;Dj � 0; k D 1; 2; : : : ;M I j D 1; 2; : : : ; N

(3.151)

Then we transform the above model to a linear model by substituting the
following constraints (3.152)–(3.154) for constraint (3.148).

NEC
k;j
D

NX
iD1

Œ.Dj � NCk;j /Zi;j � (3.152)

NE�
k;j D

NX
iD1

Œ. NCk;j �Dj /Zi;j � (3.153)

NEC
k;j
; NE�

k;j � 0 (3.154)
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So we obtain a linear multi-objective expected value model (3.155).
8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

minF1 D 1
NP
jD1

wj

PN
jD1

PM
kD1 wj NCk;j

minF2 D 1
NP
jD1

wj

PN
jD1

PM
kD1 wj . NEC

k;j C NE�

k;j /

s.t.

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

NP
jD1

Zi;j D 1; i D 1; 2; : : : ; N

NP
iD1

Zi;j D 1; j D 1; 2; : : : ; N

Ck;j C NP
jD1

NPk;iZi;jC1 D NCk;jC1; k D 1; 2; : : : ;M I j D 1; 2; : : : ; N � 1

Ck;j C
NP
jD1

NPkC1;iZi;j � NCk;jC1; k D 1; 2; : : : ;M � 1I j D 1; 2; : : : ; N � 1

NP
iD1

NP1;iZi;1 D NC11
NEC

k;j D PN
iD1Œ.Dj � NCk;j /Zi;j �; k D 1; 2; : : : ;M I j D 1; 2; : : : ; N � 1

NE�

k;j D NP
iD1

Œ. NCk;j �Dj /Zi;j �; k D 1; 2; : : : ;M I j D 1; 2; : : : ; N � 1

Zi;j 2 Œ0; 1�; i D 1; 2; : : : ; N I j D 1; 2; : : : ; N
NEC

k;j ;
NE�

k;j ;
NCk;j ;Dj � 0; k D 1; 2; : : : ;M I j D 1; 2; : : : ; N:

(3.155)

After statistical analysis, we have summarized the processing time in Table 3.11;
the due time and importance weight are shown in Table 3.12.

The particle swarm optimization algorithm has the following important aspects:

1. Coding: we use an order-based coding method and use sequence to code a parti-
cles, if there are eight jobs, the processing sequence is J1, J3, J4, J5, J6, J8, J2,
J7, so the particle is f1; 3; 4; 5; 6; 8; 2; 7g:

2. Initialization: first we randomly generate some particles, then we choose the best
particle from them, then we repeat this progress until we obtain the predeter-
mined population.

3. Acceleration for this particle, several different genes are chosen partially mapped
crossover (PMX) and ordered crossover (OX) are adopted to generate the off-
springs as shown in Fig. 3.13, then we regard the offsprings as new parents and
use OX to obtain the new offsprings, as shown in Figs. 3.14 and 3.15.

We implemented the APSO using Visual CCC language and ran it on Pentium 4
processor, 2.40 GHz clock pulse with 1024 MB memory, and tested the performance
of this method with actual data from the workshop of GEELY Haoqing company in
Linhai, China. A run of the Ra-Ra simulation-based PSO (2000 cycles in Ra-Ra
simulation, 300 generations in PSO) shows that the result of the optimal schedule is

J6 ! J3 ! J5 ! J2 ! J1 ! J4:
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Table 3.11 Processing time of every workpiece on each machine

Workpieces Processing time (minute)
M1 M2 M3 M4

J1 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.3:9; 4:1/ � � U.3:95; 4:05/ � � U.2:9; 3:1/ � � U.2:9; 3:1/

J2 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.2:45; 2:55/ � � U.2:45; 2:55/ � � U.2:9; 3:1/ � � U.3:9; 4:1/

J3 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.2:45; 2:55/ � � U.2:45; 2:55/ � � U.2:9; 3:1/ � � U.3:9; 4:1/

J4 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.2:45; 2:55/ � � U.1:45; 1:55/ � � U.2:9; 3:1/ � � U.1:95; 2:05/

J5 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.2:45; 2:55/ � � U.1:45; 1:55/ � � U.2:9; 3:1/ � � U.1:95; 2:05/

J6 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.1:45; 1:55/ � � U.1:95; 2:05/ � � U.1:95; 2:05/ � � U.1:95; 2:05/

Workpieces Processing time (minute)
M5 M6 M7 M8

J1 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.3:9; 4:1/ � � U.3:9; 4:1/ � � U.2:95; 3:05/ � � U.3:9; 4:1/

J2 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.3:9; 4:1/ � � U.5:9; 6:1/ � � U.3:9; 4:1/ � � U.3:9; 4:1/

J3 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.3:9; 4:1/ � � U.2:95; 3:05/ � � U.2:9; 3:1/ � � U.4:9; 5:1/

J4 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.1:95; 2:05/ � � U.2:45; 2:55/ � � U.1:95; 2:05/ � � U.1:95; 2:05/

J5 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.1:95; 2:05/ � � U.2:45; 2:55/ � � U.1:95; 2:05/ � � U.1:95; 2:05/

J6 N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with N.�; 0:1/, with
� � U.2:45; 2:55/ � � U.1:95; 2:05/ � � U.1:45; 1:55/ � � U.2:9; 3:1/

Table 3.12 Due time and the importance factor of the six jobs

Jobs J1 J2 J3 J4 J5 J6

Due time 40 40 30 40 30 20
Importance 1

6
1
6

1
6

1
6

1
6

1
6

We then obtain the optimal sequence of the makespan Cmax D 43:5min, the
weighted completion time C D 33min and the weighted earliness time E D
1:25min. And we drew a Gantt Chart as in Fig. 3.16 according to the results.

In the GEELY Linhai workshop, the scheduling of the six selected workpieces
with the same working procedures are: fuel pump sub-oil block, cylinder head, right
tank, cylinder, connecting rod, and right tank; it will take 33 min to complete all of
these workpieces which results in the decision maker being satisfied.

To check the efficiency and the effectiveness of the APSO, we also present,
under deterministic conditions, the APSO and Tribe-PSO by using the same pro-
gram language with the same PSO paraments. In this paper, 10 problems that were
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Parent 1           1,  2,  3,  4,  5,  6,  7,  8

Parent 2           1,  3,  4,  5,  8,  3,  7,  6

Mapping relations:

4 5 6

5 8 2

4 5 8

6 2

Offsrpings generated by PMX

Offsprings 1        1,  6,  3,   5,   8,  2,  7,  4

Offsprings 2        1,  3,  8,   4,   5,  6,  7,  2

Fig. 3.13 Illustration of partially mapped crossover

Fig. 3.14 Illustration of
generating offspring 1 by OX

Parent 1           1,   6,   3,   5,   8,   2,   7,  4

Offspring 1           *,   *,   3,   5,   8,   *,   *,  *

Parent 2           1,   3,   8,   4,   5,   6,   7,   2

Offspring 1           1,    4,   3,   5,   8,  6,   7,   2

Fig. 3.15 Illustration of
generating offspring 2 by OX

Parent 2         1,   3,   8,   4,   5,   6,   7,  2

Offspring  2         *,   *,   8,   4,   5,   *,   *,   *

Parent 1         1,   6,   3,   5,   8,   2,   7,   4

Offspring 2          1,   6,   8,   4,  5,   3,    2,    7
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Fig. 3.16 Gantt chart

Table 3.13 Statistical results of 2 testing algorithm

No. Problem N;M Cmax APSO Tribe-PSO
BRE ARE WRE BRE ARE

1 Car1 11,5 7038 0 0 0 0 0.28
2 Car2 13,4 7170 0 0 0 0 4.03
3 Car4 14,4 8003 0 0 0 0 2.31
4 Car5 10,6 7724 0 0 0 0 1.45
5 Car7 7,7 6590 0 0 0 0 1.57
6 Rec1 20,5 1245 0 0.05 0.18 2.81 6.96
7 Rec13 20,15 1942 0.26 1.08 1.66 3.68 5.94
8 Rec21 30,10 2019 1.44 1.64 3.17 3.42 6.08
9 Rec27 30,15 2373 0.96 2.09 3.58 4.92 6.85
10 Rec41 75,20 4961 2.30 3.43 4.69 7.44 8.92
BRE: the relative error of the best result obtained to Cmax

ARE: the relative error of the average result obtained to Cmax

WRE: the relative error of the worst result obtained to Cmax

contributed to the OR-Library by Mattfeld and Vaessens are selected. The first five
problems were called car1, car2, car4, car5, car7, respectively by Carlier [36]. The
other five problems were called rec01, rec13, rec21, rec27, rec41, respectively by
Reeves [257], who used them to compare the performances of APSO and Tribe-
PSO. All these problems can be downloaded from http://mscmga.ms.ic.ac.uk. Thus
far these problems have been used as benchmarks with different methods by many
researchers.

Based on the implementation discussed in the above section, ten testing problems
are carried out for the Tribe-PSO and APSO, the statistical results are summarized
in Table 3.13.

From Table 3.13, it can obviously be concluded that the APSO provides better
optimization performance for flow shop scheduling problems. The results obtained
by the APSO are close to being the best results available. Compared with the

http://mscmga.ms.ic.ac.uk
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Tribe-PSO, not only can the APSO achieve much better results, but its performance
is also very stable as its BRE is always very close to the corresponding WRE. Espe-
cially when solving larger scale problems, the average performance of the APSO
can be better than the Tribe-PSO. Thus, it can be concluded that the APSO is supe-
rior to the Tribe-PSO with respect to optimization quality and stability. It can also
be concluded that the APSO can achieve the same performance as a traditional PSO
with a much reduced computational effort.

The effectiveness of the APSO can be attributed to the order-based coding, the
initialization process, the hybrid acceleration operator which combines PMX and
OX, the INV mutation operators, and the self-learning evolution mechanism of PSO.



Chapter 4
Random Fuzzy Multiple Objective
Decision Making

Since the fuzzy set was initialized by Zadeh [356], it has been applied to many
fields. Later, many scholars proposed the concept of two-fold uncertain variables,
combined fuzzy variables, and random variables. Two different definitions from dif-
ferent perspectives have been proposed. The first comes from Kwakernaak [180],
who coined the term “fuzzy random variable” and who regarded that a fuzzy random
variable is a random variable whose value is not real, but fuzzy number. Since Kruse
and Meyer [176] worked on an expanded version of a similar model, they are often
mentioned with as Kwakernaak. The second comes from Puri and Ralescu [256]
who regarded fuzzy random variables as random fuzzy sets. Once again, because of
Klement et al. [162], and other collaborations, these three authors often are jointly
credited with the second definition. In this chapter, we mainly take Kwakernaak’s
point and regard it as a random fuzzy variable (Abbr. Ra-Fu variable) which has
been renamed by some scholars [32, 209, 236, 341] in order to avoid the confusion.
It has been widely extended to many fields. Xu and Liu [341] discussed a class
of supply chain networks optimal problems with random fuzzy shipping costs and
customer demand, and proposed a random fuzzy multi-objective mixed-integer non-
linear programming model to gain an optimal strategy. Xu and He [339] provided
an auxiliary programming model of the random fuzzy programming, converted it to
a deterministic mixed 0–1 integer programming model, of which the solutions are
proved to exist and showed its efficiency by application to a supply chain problem.
Zhou and Xu [363] discussed a class of integrated logistics network models under
random fuzzy environments and applied them to a Chinese beer company.

This chapter mainly considers some multi-objective programming problems
under a random fuzzy environment. We first propose two kinds of random fuzzy
variables, i.e., discrete random fuzzy variables and continuous random fuzzy vari-
ables, and introduce some special examples. After introducing those basic concepts
and properties, three parts are presented respectively from different viewpoints:

1. Random fuzzy expected value model (abbr. Ra-Fu EVM). Usually, decision
makers find it is difficult to make a decision when they encounter uncertain
parameter. A clear criteria must be brought forward to assist in the decision.
The expected value operator of random fuzzy variables is introduced and the
crisp equivalent model is deduced when the distribution is clear.

J. Xu and L. Yao, Random-Like Multiple Objective Decision Making, Lecture Notes
in Economics and Mathematical Systems 647, DOI 10.1007/978-3-642-18000-2 4,
c� Springer-Verlag Berlin Heidelberg 2011
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2. Random fuzzy chance-constraint model (abbr. Ra-Fu CCM). Sometimes, deci-
sion makers don’t strictly require the objective value to be the maximal benefit
but only want to obtain the maximum benefit under a predetermined confidence
level. Then the chance constrained model is proposed and the crisp equivalent
model is deduced when the distribution is clear.

3. Random fuzzy dependent-chance model (abbr. Ra-Fu DCM). When decision
makers predetermine an objective value and require the maximal probability
that objective values exceed the predetermined one.

Finally, an application to the supply chain network problem is presented to show
the effectiveness of the above three models. Readers can refer to the following more
details.

4.1 Supply Chain Network Design with Ra-Fu Phenomena

In recent years, the supply chain network (abbr. SCN) design problem has been
gaining importance due to increasing competitiveness introduced by market global-
ization. A supply chain, beginning with the production of raw material by a supplier
and ending with the consumption of a product by the customer, is a set of sup-
pliers, facilities, products, customers and of controlling inventory, purchasing, and
distribution. Traditionally, marketing, distribution, planning, manufacturing, and
purchasing organizations along the supply chain operate independently. These orga-
nizations have their own objectives and these objectives are often conflicting. But,
there is a need for a mechanism through which these different functions can be
integrated [5]. Supply chain management (SCM) (see Fig. 4.1), which appeared
in the early 1990s and involved planning and managing production/manufacturing,

Raw materials
supply source

Raw materials
supply source

Raw materials
supply source

Raw materials
supply source

Manufacturing
plant

Manufacturing
plant

Manufacturing
plant

Warehouse

Warehouse

Warehouse

Retailer

Wholesaler

Retailer

Retailer

Wholesaler

Retailer

Retailer

Wholesaler

Retailer

Retailer
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Fig. 4.1 Supply chain network
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transportation and distribution, offers a strategy through which such integration can
be achieved and a way to improve industrial environments [283].

SCN design problems cover a wide range of formulations ranging from simple
single product types to complex multi-product types, and from linear deterministic
models to complex non-linear uncertain models. The network design problem is one
of the most comprehensive strategic decision problems that needs to be optimized
for the long-term efficient operation of the whole supply chain. It determines the
number, location, capacity and type of plants, warehouses, and distribution centers
(DCs) to be used. It also establishes distribution channels, and the amount of materi-
als and items to be consumed, produced, and shiped from suppliers to customers. In
the literature, different studies tackle the design problems of supply networks and
these studies have been surveyed in Vidal and Goetschalckx [326], Beamon [19],
Erenguc et al. [94], Shen et al. [286], Ko et al. [166] and Romeijn et al. [264]. How-
ever, the majority of this research assumes that the operational characteristics and
design parameters of the supply chain are deterministic. Unfortunately, real-world
situations are often not deterministic, and some factors such as demand, allocation,
cost of shipments, even location of customers and facilities are usually changing,
hence we need to consider the supply chain network design problem under an uncer-
tain environment. A number of research papers on stochastic parameters involving
distribution of raw materials and products and the facility location of the supply
chain have been done at the strategic and tactical levels [81,355]. Beginning with the
seminal work of Geoffrion and Graves [112] on multi-commodity distribution sys-
tem design, a large number of optimization-based approaches have been proposed
for the design of supply chain networks [9, 53]. While reviewing the literatures,
we find that there are three methods of solving supply chain design network uncer-
tain problems: Benders decomposition algorithm, branch-and-fix heuristic, and the
hybrid approach. MirHassani et al. [221], Tsiakis et al. [322], Choudhary et al.
[56] and Santoso et al. [276] proposed the Benders decomposition algorithm (or
modification of the Benders decomposition algorithm) which is commonly used
for deterministic network design problems to generate robust designs, and they
created network configurations that are good (nearly optimal) for a variety of sce-
narios of the design parameters. Alonso–Ayuso and Escudero et al. [4] proposed an
approach of branch-and-fix heuristic for solving two-stage stochastic supply chain
Computational results on networks involving 6 plants, 12 products, 24 markets, and
23 scenarios were presented. Chan, et al. [42], Chan and Chung [43], and Chen and
Lee [49] developed a hybrid approach based on genetic algorithm and Analytic Hier-
archy Process (AHP) (or two-phase fuzzy decision-making method) for production
and distribution problems in multi-factory, multi-product, multi-stage, and multi-
period scheduling SCN with uncertain market demands and product prices. As to
the fuzziness, since Zadeh’s pioneering work [356], the fuzzy sets theory has been
applied to different management problems. Many successful applications of the the-
ory in the area of fuzzy optimization can be found in the literature. Zimmermann
[364, 365], Chen and Lee [49], Amid et al. [6], Kulak et al. [178] and Wang [331]
proposed different methods for solving fuzzy multi-objective linear programming
problems.
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Unfortunately, the SCN design problem is subject to many sources of uncertainty
besides random uncertainty and fuzzy uncertainty [137]. In a practical decision-
making process, we often face a hybrid of uncertain environments. To deal with this
twofold uncertainty, fuzzy random variable was proposed by Kwakernaak [180,181]
to depict the phenomena in which fuzziness and randomness appear simultaneously
[96, 256, 325]. Several research works have been published in recent years [210,
318]. However, we consider the amount of demand on the products as a normally
distributed variable N .�; �2/ from the view point of probability theory, and the
values of � as a triangular fuzzy variable .a; b; c/ because of the lack of data to
analyze. Therefore, probability SCN with fuzzy parameters appears. In this case,
the Ra-Fu variable which was presented by Buckley [32] can be used to deal with
this kind of combined uncertainty of randomness and fuzziness. How to model and
solve the problem of SCN design in random fuzzy environment is a new area of
research interest. To the best of the authors knowledge, so far, there is little research
in this area. In this chapter, we focus on these conflicts and discuss the random fuzzy
multiobjective decision making and its application to the supply chain network.

4.2 Random Fuzzy Variable

Before introducing the concept of Ra-Fu variables, let’s recall some definitions and
properties of the fuzzy set and fuzzy variable.

4.2.1 Fuzzy Variable

Fuzzy set theory is developed for solving problems in which descriptions of activ-
ities and observations are imprecise, vague, and uncertain. The term “fuzzy” refers
to the situation in which there are no well defined boundaries of the set of activities
or observations to which the descriptions apply. For example, one can easily assign
a person seven feet tall to the “class of tall men”. But it would be difficult to justify
the inclusion or exclusion of a 173 cm tall person to that class, because the term
“tall” does not constitute a well defined boundary. This notion of fuzziness exists
almost everywhere in our daily life, such as the “class of red flowers,” the “class of
good shooters,” the “class of comfortable speeds for traveling, the “numbers close
to 10,” etc. These classes of objects cannot be well represented by classical set the-
ory. In classical set theory, an object is either in a set or not in a set. An object cannot
partially belong to a set.

To cope with this difficulty, Zadeh [356] proposed the fuzzy set theory in 1965.
A fuzzy set is a class of objects with a continuum of membership grades. A mem-
bership function, which assigns to each object a grade of membership, is associated
with each fuzzy set. Usually, the membership grade are in [0, 1]. When the grade of
membership for an object in a set is one, this object is absolutely in that set; when the
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grade of membership is zero, the object is absolutely not in that set. Borderline cases
are assigned numbers between zero and one. Precise membership grades do not
convey any absolute significance. They are context-dependent can be subjectively
assessed.

Let U be the universe which is a classical set of object, and the generic ele-
ments are denoted by x. The membership in a crisp subset of A is often viewed as
characteristic function �A from U to f0; 1g such that:

�A.x/ D
�
1 iff x 2 A
0 otherwise

(4.1)

where f0; 1g is called a valuation set.
If the valuation set is allowed to be the real interval Œ0; 1�, A is called a fuzzy

set. �A.x/ is the degree of membership of x in fuzzy set A. The closer the value of
�A.x/ is to 1, the more x belongs to A. Therefore, A is characterized by the set of
ordered pairs:

A D f.x; �A.x//jx 2 U g (4.2)

Sometimes, we might only need objects of a fuzzy set instead of its characteristic
function, that is, to transfer a fuzzy set into a crisp set. In order to do so, we need
two concepts, support and ˛-cut.

It is often necessary to consider those elements in a fuzzy set which have non-
zero membership grades. These element are the support of that fuzzy set.

Definition 4.1. (Zadeh [357]) Given a fuzzy set A, its support S.A/ is an ordinary
crisp subset on U defined as

S.A/ D fxj�A.x/ > 0 and x 2 U g (4.3)

Definition 4.2. (Zadeh [357]) Given a fuzzy set A, its ˛-cut A˛ defined as

A˛ D fxj�A.x/ � ˛ and x 2 U g (4.4)

where, ˛ is the confidence level.

It is obviously that the ˛-cut of a fuzzy set A is an ordinary crisp subset whose
elements belongs to fuzzy set A – at least to the degree of ˛. That is, for fuzzy set
A its ˛-cut is defining as (4.4). The ˛-cut is a more general case of the support of a
fuzzy set, when ˛ D 0;A˛ D supp.A/.

The term fuzzy number is used to handle imprecise numerical quantities, such as
“close to 10,” “about 60,” “several,” etc. A general definition of a fuzzy number is
given by Dubois and Prade [84, 85]: any fuzzy subset M D f.x; �.x//g where x
takes its number on the real line R and �M .x/ 2 Œ0; 1�.
Definition 4.3. (Dubois and Prade [84]) Let A be a fuzzy set, its membership
function is �A W R! Œ0; 1�, if

i. A is upper semi-continuous, i.e., ˛-cut A˛ is close set, for 0 < ˛ � 1.
ii. A is normal, i.e., A1 ¤ ;.
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iii. A is convex, i.e., A˛ is a convex subset of R, for 0 < ˛ � 1.
iv. The closed convex hull of A A0 D clŒcofx 2 R;�A.x/ > 0g� is cored.

then A is a fuzzy number.

By Definition 4.3, the ˛-cutA˛ of the fuzzy numberA is actually a close interval
of the real number field, that is,

A˛ D fx 2 Rj�A.x/ � ˛g D ŒAL
˛ ; A

R
˛�; ˛ 2 Œ0; 1�;

where AL
˛ and AR

˛ are the left and the right extreme points of the close interval.

Example 4.1. Given fuzzy number A with membership function

�eA.x/ D
8̂̂<
ˆ̂:
L
�a � x

l

�
; if a � l � x < a; l > 0

1 if x D a
R
�x � a

r

�
; if a < x � aC r; r > 0

and the basis functions L.x/, R.x/ are continuous un-increasing functions, and
L;R W Œ0; 1� ! Œ0; 1�, L.0/ D R.0/ D 1, L.1/ D R.1/ D 0, then eA is LR fuzzy

number, denoted by eA D .a; l; r/LR, where a is the central value of eA, l; r > 0 is
the left and the right spread. ˛-cut A˛ of the LR fuzzy numbereA is

A˛ D ŒAL
˛ ; A

R
˛ � D Œa � L�1.˛/l; aCR�1.˛/r�; ˛ 2 Œ0; 1�:

After that, the concept of fuzzy variable was proposed. Let’s introduce the basic
knowledge about fuzzy variable, which including the measure, the definition and the
properties of fuzzy random variables. We give some basic knowledge about fuzzy
variable. Since its introduction in 1965 by Zadeh [356], fuzzy set theory has been
well developed and applied in a wide variety of real problems. The term fuzzy vari-
able was first introduced by Kaufmann [154], then it appeared in Zadeh [358, 359]
and Nahmias [231]. Possibility theory was proposed by Zadeh [358], and developed
by many researchers such as Dubois and Prade [84].

In order to provide an axiomatic theory to describe fuzziness, Nahmias [231]
suggested a theoretical framework. Let us give the definition of possibility space
(also called pattern space by Nahmias).

Definition 4.4. (Dubois and Prade [84]) Let� be a nonempty set, and P.�/ be the
power set of �. For each A � P.�/, there is a nonnegative number PosfAg, called
its possibility, such that

i. Posf;g D 0;
ii. Posf�g D 1;

iii. PosfSk Akg D supk PosfAkg for any arbitrary collection fAkg in P.�/.

The triplet .�;P.�/; Pos/ is called a possibility space, and the function Pos is
referred to as a possibility measure.
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It is easy to obtain the following properties of Pos from the axioms above.

Property 4.1. The properties of Pos measure:

(i) 0 � PosfAg � 1;8A 2 P.�/;
(ii) PosfAg � PosfBg, if A � B

Several researchers have defined fuzzy variable in different ways, such as Kauf-
man [154], Zadah [358, 359] and Nahmias [231]. In this book we use the following
definition of fuzzy variable.

Definition 4.5. (Nahmias [231]) A fuzzy variable is defined as a function from the
possibility space .�;P.�/; Pos/ to the real line R.

Definition 4.6. (Dubois and Prade [84]) Let � be a fuzzy variable on the possibility
space .�;P.�/; Pos/. Then its membership function � W R 7! Œ0; 1� is derived
from the possibility measure Pos by

�.x/ D Posf� 2 �j�.�/ D xg (4.5)

In order to measure the chances of occurrence of fuzzy events, the possibility and
necessity of a fuzzy event is given as follows.

Definition 4.7. [87] Let Qa1; Qa2; : : : ; Qan be fuzzy variables, and f W Rn ! R
be continuous functions. Then the possibility of the fuzzy event characterized by
f . Qa1; Qa2; : : : ; Qan/ � 0 is

Posff . Qa1; Qa2; : : : ; Qan/ � 0g
D sup

x1;x2;:::;xn2R

�
min

1�i�n
�Qai

.xi /jf .x1; x2; : : : ; xn/ � 0
�

(4.6)

The necessity measure of a set A is defined as the impossibility of the opposite
set Ac .

Definition 4.8. (Dubois [87]) Let .�;P.�/; Pos/ be a possibility space, and A be
a set in P.�/. Then the necessity measure of A is

NecfAg D 1 � PosfAcg:

Thus the necessity measure is the dual of possibility measure, that is, PosfAg C
NecfAcg D 1 for any A 2 P.�/.

In order to measure the mean of a fuzzy variable, several researchers defined an
expected value for fuzzy variables with different ways, such as Dubois and Prade
[86], Campos and Verdegay [34], González [117] and Yager [349, 350]. Readers
could refer to them to know the detail, and we don’t introduce it here. Next, we will
introduce the definition of random fuzzy variable.
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4.2.2 Ra-Fu Variable

Consider the following question. A client’s retirement savings plan has approxi-
mately 100 participants. Several of their portfolios have too much risk. What is the
probability that a participant chosen at random is maintaining a portfolio that has
too much risk? If the descriptive variables, namely “approximately”, “several” and
“too much”, were crisp numbers, the answer to the question would be a numerical
probability. However, since these terms are fuzzy, rather than crisp values, the solu-
tion, like the data upon which it is based, is a fuzzy number. Situations of this sort,
which involve a function from a possibility space to the set of random variables,
give rise to the notion of a Ra-Fu variable. In this section, we mainly refer to these
literatures [32, 162, 176, 180, 181, 256].

Definition 4.9. (Buckley [32]) A Ra-Fu variable is a random variable with a fuzzy
parameter.

A random variable is a mapping from the probability space ˝ to the real space. In
fact, the random fuzzy variable is defined as a mapping � W F .B/ ! ˝ such that
for any � 2 F .B/, �.�/ is a random variable, where F .B/ is combined by some
fuzzy numbers. For example, if � � N .�; �2/ is a normally distributed random
variable, where � is a fuzzy variable, then � is a random fuzzy variable as shown
in Fig. 4.2. Hence, it is available to take those like its independence, distribution,
expected value, variance, and so on into account.

Example 4.2. Let �1; �2; : : : ; �m be random variables and u1; u2; : : : ; um be real
numbers in [0,1]. Then

� D

8̂̂<
ˆ̂:
�1; with possibility u1

�2; with possibility u2

� � �
�m; with possibility um

is clearly a Ra-Fu variable. Is it a function from a possibility space .�;P.�/; Pos/

to a collection of random variables R? Yes. For example, we define � D

Fig. 4.2 Representation of a
Ra-Fu variable x ∈R

O

Pr{x(qi) = x}

qi ∈Θ
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f1; 2; : : : ; mg, Posfig D ui ; i D 1; 2; : : : ; m, R D f�1; �2; : : : ; �mg, and the
function is �.i/ D �i ; i D 1; 2; : : : ; m.

Example 4.3. If � is a random variable, and Qa is a fuzzy variable defined on the
possibility space .�;P.�/; Pos/, then � D � C Qa is a fuzzy random variable. In
fact, � is also a Ra-Fu variable, defined by

�.�/ D �C Qa.�/;8� 2 �

Example 4.4. In many statistics problems, the probability distribution is completely
known except for the values of one or more parameters. For example, it might be
known that the lifetime � of a modern engine is an exponentially distributed variable
with an unknown mean � ,

�.x/ D
8<
:
1

�
e�x=� ; if 0 � x <1

0; otherwise

Usually, there is some relevant information in practice. It is thus possible to specify
an interval in which the value of � is likely to lie, or to give an approximate estimate
of the value of � . It is typically not possible to determine the value of � exactly.
If the value of � is provided as a fuzzy variable defined on the possibility space
.�;P.�/; Pos/, then � is a Ra-Fu variable defined as

�.�/ � exp.�/; � 2 �:

Example 4.5. Let � � N .�; 1/, where � is a fuzzy variable with membership func-
tion��.x/ D Œ1�jx�2j�_0. Then � is a Ra-Fu variable taking “normally distributed
variable N .�; 1/” values.

Remark 4.1. Roughly speaking, if � consists of a single element, then the Ra-Fu
variable degenerates to a random variable. If R is a collection of real numbers
(rather than random variables), then the Ra-Fu variable degenerates to a fuzzy
variable.

4.2.2.1 Discrete Ra-Fu Variable

From the definition of Ra-Fu variable, we know that Ra-Fu variables can be divided
into two kinds, one is the discrete Ra-Fu variable, and the other is continuous Ra-Fu
variable. There exists a class of special Ra-Fu variables, which are functions from
the possibility space .�;P.�/; Pos/ to the collection of discrete random variables
or a discrete random variable. Next, let’s discuss the detail.

Definition 4.10. (Discrete Ra-Fu variable) Let � be a Ra-Fu variable on the possi-
bility space .�;P.�/; Pos/. If �.�/ is a discrete random variable for any � 2 �,
then � is said to be a discrete Ra-Fu variable.
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Example 4.6. Let � be a 0–1 distributed random variable with the probability p of
success. Now we assume that p is not known exactly and is to be estimated from a
fuzzy space �. We substitute a fuzzy number Qp for p, then � is obviously a Ra-Fu
variable.

Example 4.7. Let � be a Ra-Fu variable on .�;P.�/; Pos/, where � D f�1; �2g,
Posf� D �1g D Posf� D �2g D 0:5, and � is defined as follows

�.�/ D
�
�1; with the possibility 0.5
�2; with the possibility 0.5

where �1 is a binomially distributed random variable and �2 is a poisson distributed
random variable. Obviously, � is a discrete Ra-Fu variable on .�;P.�/; Pos/.

Then, let’s discuss some special Ra-Fu variables in the following part.
The crisp binomial probability function, usually written b.n; p/ where n is the

number of independent experiments and p is the probability of a “success” in each
experiment, has one parameter p. In these experiments let us assume that p is not
known precisely and it needs to be estimated, or obtained from expert opinion. So
the p value is uncertain and we substitute a fuzzy number Qp for p to get the Ra-Fu
binomial distribution.

Definition 4.11. (Ra-Fu binomial distribution) Let � be a discrete Ra-Fu variable
on .�;P.�/; Pos/, then �.�/ is a random variable for � 2 �. Assume that �.�/
has the binomial distribution with the following probability,

Prf�.�/ D kg D
�
n

k

�
Qpk Qqn�k ; k D 0; 1; : : : ; n (4.7)

where Qp is a fuzzy variable from .�;P.�/; Pos/ to (0,1) and Qq D 1 � Qp. Then �
is said to be a binomially distributed Ra-Fu variable, denoted by b.n; Qp/.

Since Qp is a fuzzy variable, then Prf�.�/ D kg is a function about the fuzzy

parameter Qp. By the fuzzy arithmetic, we know

�
n

k

�
Qpk Qqn�k is a fuzzy variable

defined on the product space. Obviously, Qp and Qq are two mappings from the pos-
sibility space .�;P.�/; Pos/ to .0; 1/. Then for any �� 2 ��, Qp.��/ and Qq.��/
become two certain probability values. It follows that

nX
iD1

�
n

k

�
Qpk.��/ Qqn�k.��/ D . Qp.��/C Qq.��//n D 1

then Definition 4.11 is well defined. In (4.7), if Qp is a fixed number, then Prf�.�/ D
kg.0 < Prf�.�/ D kg < 1/ is also a fixed number and � degenerates to a random
variable subject to binomial distribution from .˝;A ; P r/ to R.
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x

1.0

0.5

0

p(x)

1 11

Fig. 4.3 The membership function of fuzzy variable Qp

Table 4.1 The numerical result of � � b.20; Qp/
k b.20; Qp/ k b.20; Qp/

�1 � 1 �2 D 11 �1 � 1 �2 D 11

0 – – 11 – 0.1602
1 – – 12 – 0.1201
2 – 0.0002 13 – 0.0739
3 – 0.0011 14 – 0.0370
4 – 0.0046 15 – 0.0148
5 – 0.0148 16 – 0.0046
6 – 0.0370 17 – 0.0011
7 – 0.0739 18 – 0.0002
8 – 0.1201 19 – –
9 – 0.1602 20 – –
10 – 0.1762

Example 4.8. Let � � b.n; Qp/ be a Ra-Fu variable, where Qp is a fuzzy variable on
.�;P.�/; Pos/ with the following membership function (Fig. 4.3),

� Qp.x/ D
8<
:
0; x � 1�
1C 100

.x � 1/2
��1

; x > 1;
(4.8)

where � D .�1;1/. Then we get the distribution of �, see Table 4.1.

In the part of random poisson, we have known that when n is a large number and
p is a small number, the random binomial distribution becomes toward a Poisson
distribution. So is the random fuzzy variable.

Definition 4.12. (Ra-Fu Poisson distribution) Let � be a random variable having
the Poisson probability function. If Prf� D kg stands for the probability that � D k,
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then

Prf� D kg D �ke��

kŠ
;

for k D 0; 1; 2; 3; : : : ; and parameter � > 0. Now substitute fuzzy number Q� for �
to produce the random fuzzy Poisson probability function, denoted by � � P. Q�/.

From the definition, we know that Prf�.�/ D kg is a fuzzy function about Q�,
where Q� is a fuzzy variable from the possibility space .�;P.�/; Pos/ to .0;C1/.
For any �� 2 �, Q�.��/ is a real number in .0;C1/, then

1X
kD0

Q�.��/k

kŠ
e�Q�.��/ D e Q�.��/ � e�Q�.��/ D 1:

So Definition 4.12 is well defined. If . Q�/ degenerates to a fixed number, then �
degenerates to a random variable with Poisson distribution.

Example 4.9. � � P. Q�/ be a Poisson distributed Ra-Fu variable, where Q� is an L-R
fuzzy variable with the following membership function,

�Q� D

8̂̂
<
ˆ̂:
L

�
� � x
˛

�
; x � �; ˛ > 0

R

�
x � �
ˇ

�
; x > �; ˇ > 0

where � is the “mean” of Q�, ˛, ˇ are the left and right spread of �, respectively.
Especially, if L.x/ and R.x/ are linear functions, then Q� is a triangular fuzzy
variable.

4.2.2.2 Continuous Ra-Fu Variable

Similarly to the discrete Ra-Fu variable, there exists another Ra-Fu variables, that
is, the continuous Ra-Fu variable. It can be defined as follows.

Definition 4.13. (Continuous Ra-Fu variable) Let � be a Ra-Fu variable on the pos-
sibility space .�;P.�/; Pos/. If �.�/ is a continuous random variable for any
� 2 �, then � is said to be a continuous Ra-Fu variable.

Example 4.10. Let � be a Ra-Fu variable on .�;P.�/; Pos/ with the following
density function,

�.x/ D
8<
:
1

Q�e
�x=Q�; if 0 � x <1

0; otherwise
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where Q� is a triangular fuzzy variable on .�;P.�/; Pos/. Then � is a continuous
Ra-Fu variable.

Definition 4.14. (Ra-Fu uniform distribution) Let � be a Ra-Fu variable on
.�;P.�/; Pos/ with the following density function,

Np.x/ D
8<
:

1

Qb � Qa ; if Qa � x � Qb
0; otherwise

where Qa and Qb are fuzzy variables on .�;P.�/; Pos/ and Qa < Qb. Then � is said to
be an uniformly distributed Ra-Fu variable, denoted by � � U . Qa; Qb/.

Since we must guarantee that Qb� Qa 6D 0, Qa and Qb needs to be two fuzzy variables,
for which one must be bigger than the other. Then it is obvious that Posf Qa < Qbg D 1
holds. It follows that

Posf Qa < Qbg D 1, sup
x;y2R

f�Qa.x/ ^ � Qb.y/jx � yg D 1 (4.9)

where�Qa.x/ and� Qb.y/ are the membership functions of Qa and Qb, respectively. Then
let’s consider the following example.

Example 4.11. Let � � U . Qa; Qb/ be a Ra-Fu variable, Qa and Qb are fuzzy variables
with the following membership,

�Qa.x/ D 10 � x
10

;

� Qb.x/ D
1

1C .x � 7/2 :

Really,

�Qa.x/ ^ � Qb.x/ D

8̂̂̂
<
ˆ̂̂:

1

1C .x � 7/2 ; 0 � x < 5:815
10 � x
10

; 5:815 � x � 10
0; x > 10

Then we have supx;y2Rf�Qa.x/ ^ � Qb.y/jx � yg D 0:42, see Fig. 4.4. Then �
cannot be considered as a Ra-Fu variable, for there exists the possibility such that
Qb � Qa D 0.

Definition 4.15. (Ra-Fu normal distribution) Let � � N .�; �2/ be a random fuzzy
variable on .�;P.�/; Pos/. We substitute the fuzzy variable Q� for the mean value
� or the fuzzy variable Q� for the variance � , or both. Then � is said to be a normally
distributed Ra-Fu variable, denoted by � �N . Q�; �2/ or � � N .�; Q�2/.
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Fig. 4.4 The membership
function of Qa < Qb

1075.812

0.42

1.00

x

In fact, there are many cases about Ra-Fu normal distribution in our real-life world.
For example, by the statistical data, the sold amount of some seasonal products are
subject to the normal distribution, however, the average sold amount of each year,
i.e. “mean”, varies from year to year, and it can be described as a fuzzy number
by the historical data. Thus, this is an example of normally distributed Ra-Fu vari-
ables. It is useful to evaluate the sold amount in the next year. Next, let’s discuss a
numerical example.

Example 4.12. Let � �N . Q�; 1/ be a normally distributed Ra-Fu variable, where Q�
is a fuzzy variable with the following membership function,

� Q�.x/ D
8<
:
x � 2; 2 � x < 3
�x
2
C 5

2
; 3 � x � 5

By the definition of ˛-cut set, we know that Q�.�/ 2 Œ˛ C 2;�2˛ C 5�, then for any
� 2 �, �.�/ � N . Q�.�/; 1/ is a normally distributed random variable, where Q�.�/
varies between ˛ C 2 and �2˛ C 5.

Definition 4.16. (Ra-Fu exponential distribution) Let � be an exponentially dis-
tributed random variable with the parameter �. If we substitute a fuzzy variable Q�
for �, � becomes a exponentially distributed Ra-Fu variable, denoted by � � exp. Q�/.
Really, there are still a lot of real-life cases about Ra-Fu exponential distribution.

Example 4.13. In many statistics problems, the probability distribution is com-
pletely known except for the values of one or more parameters. For example, it
might be known that the lifetime � of a modern engine is an exponentially distributed
variable with an unknown mean Q�,

�.x/ D
8<
:
1

Q�e
�x=Q�; if 0 � x <1

0; otherwise
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Usually, there is some relevant information in practice. It is thus possible to specify
an interval in which the value of Q� is likely to lie, or to give an approximate estimate
of the value of Q�. It is typically not possible to determine the value of Q� exactly.
If the value of Q� is provided as a fuzzy variable defined on the possibility space
.�;P.�/; Pos/, then � is a Ra-Fu variable defined as

� � exp. Q�/;

where Q� is a fuzzy variable on .�;P.�/; Pos/.

There are still many Ra-Fu variables following other distributions except the
above two discrete Ra-Fu variables and three continuous Ra-Fu variables. Here we
don’t introduce them one by one, interesting readers can define them and deduce
them by imitating the above definitions. In the following part we will introduce
their expected values and variances.

First of all, let us recall that the expected value of a fuzzy variable � on
.�;P.�/; Pos/ can be defined as follows,

EŒ�� D
Z C1

0

Crf� j�.�/ � tgdt �
Z 0

�1
Crf� j�.�/ � tgdt (4.10)

As we can see in the following part, the expected value of a random fuzzy variable
that we defined is somewhat similar to this expression in form. The expected value
operator of a Ra-Fu variable can be defined as follows.

Definition 4.17. (Liu and Liu [209]) Let � be a Ra-Fu variable defined on the
possibility space .�;P.�/; Pos/. Then the expected value of � is defined as

EŒ�� D
Z 1

0

Crf� 2 �jEŒ�.�/� � rgdr �
Z 0

�1
Crf� 2 �jEŒ�.�/� � rgdr

provided that at least one of the above two integrals is finite.

Remark 4.2. If the Ra-Fu variable � degenerates to a random variable, then the
expected value operator becomes

EŒ�� D
Z 1

0

Prf� � rgdr �
Z 0

1
Prf� � rgdr

which is just the conventional mathematical expectation of the random variable �.

Remark 4.3. If the Ra-Fu variable � degenerates to a fuzzy variable, then the
expected value operator becomes

EŒ�� D
Z 1

0

Crf� � rgdr �
Z 0

1
Crf� � rgdr

which is just the expected value of the fuzzy variable �.
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Remark 4.4. Let � be a Ra-Fu variable on the possibility space .�;P.�/; Pos/. If
the expected value EŒ�.�/� of random variable �.�/ is finite for each � 2 �, then
EŒ�.�/� is a fuzzy variable on .�;P.�/; Pos/.

Example 4.14. Suppose that � is a Ra-Fu variable defined as

� � U . Q�; Q�C 2/; with Q� D .0; 1; 2/:

Without loss of generality, we assume that Q� is defined on the possibility space
.�;P.�/; Pos/. Then for each � 2 �, �.�/ is a random variable and EŒ�.�/� D
Q�.�/C 1. Thus the expected value of � is EŒ�� D EŒ Q��C 1 D 2.

By the definition of expected value operator of Ra-Fu variables, we can compute
the expected value of some Ra-Fu variables with special distribution. Next, let’s
introduce their expected value and variance.

Definition 4.18. (Expected value of discrete Ra-Fu variable) Let � be a discrete
Ra-Fu variable on .�;P.�/; Pos/, its expected value can be defined as follows,

EŒ�� D
1X

iD1

piEŒQui .�/� (4.11)

where Qui .�/.i D 1; 2; : : :/ are fuzzy variables on the possibility space .�i ;P.�i /i ;

Posi /, pi is the probability of � D Qui .�/. Sometimes, the probability pi may be a
fuzzy variable, then (4.11) can be rewritten as

EŒ�� D
1X

iD1

Qpi ui (4.12)

where � D ui with the probability Qpi .

In the above definition, � may be a finite or an infinite random fuzzy vari-
able, such as the binomially distributed Ra-Fu variable and the Poisson distributed
Ra-Fu variable. At the same time, for the fuzzy variable �i .�/ may be in the same
possibility space or in different possibility spaces.

By the above definition, we know that if �i .�/ degenerates to be a certain number
or a certain function, then � degenerates to be a random variable on .�;P.�/; Pos/

and Definition 4.11 is equivalent to Definition 2.8. Next, let’s restrict our attention
to two kinds of special discrete Ra-Fu variables and discuss their expected values.

Theorem 4.1. Let � be a binomially distributed Ra-Fu variable and Qp be a fuzzy
variable with the following membership,

� Qp.t/ D

8̂̂
<
ˆ̂:
L

�
p � t
˛

�
; t � p; 0 < ˛ < 1

R

�
t � p
ˇ

�
; t � p; 0 < ˇ < 1
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where p.0 < p < 1/ is the “mean” value of Qp, ˛, ˇ are positive numbers expressing
the left and right spreads of Qp such that p � ˛ > 0 and p C ˇ < 1, and reference
functions L;R W Œ0; 1�! Œ0; 1� with L.1/ D R.1/ D 0 and L.0/ D R.0/ D 1 are
non-increasing, continuous functions. Then we have

EŒ�� D nEŒ Qp.�/� D nK (4.13)

where K D p C � .0/ � � .˛
2
/C �.ˇ

2
/ � �.0/.

Proof. For each trial, �i is 0–1 distributed Ra-Fu variable, respectively, i D
1; 2; : : : ; n. Since �i .�/ is a random variable, then

EŒ�i .�/� D 0 � Qq.�/C 1 � Qp.�/ D Qp.�/;

where Qq D 1� Qp is the probability of “failure”. It follows that the expected value of
the random variable �.�/ is as follows,

EŒ�.�/� D E
"

nX
iD1

�i .�/

#
D n Qp.�/:

Then

EŒ�� D EŒEŒ�.�/�� D nEŒ Qp.�/�:

Since Qp is an L-R fuzzy variable with the following membership function,

� Qp.t/ D

8̂̂<
ˆ̂:
L

�
p � t
˛

�
; t � p; 0 < ˛ < 1

R

�
t � p
ˇ

�
; t � p; 0 < ˇ < 1

then we have

Crf� j�.�/ � tg D

8̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂:

1; t � p � ˛

1 � 1
2
L

�
p � t
˛

�
; p � ˛ � t < p

1

2
R

�
t � p
ˇ

�
; p � t � p C ˇ

0; t > p C ˇ
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Crf� j�.�/ � tg D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

0; t � p � ˛
1

2
L

�
p � t
˛

�
; p � ˛ � t < p

1 � 1
2
R

�
t � p
ˇ

�
; p � t � p C ˇ

1; t > p C ˇ

It follows from (4.10) that

Z 0

�1
Crf� j�.�/ � tgdt D 0

and

EŒ Qp.�/� D
Z C1

0

Crf� j�.�/ � tgdt �
Z 0

�1
Crf� j�.�/ � tgdt

D
Z p�˛

0

1dt C
Z p

p�˛

�
1 � 1

2
L

�
p � t
˛

�	
dt C

Z pCˇ

p

1

2
R

�
t � p
ˇ

�
dt

D p C ˛

2
.� .0/� � .1//C ˇ

2
.�.1/ � �.0//

where � .x/ is a continuous function on Œ0; 1� and @� .x/
@x

D L.x/, �.x/ is a

continuous function on Œ0; 1� and @
.x/
@x
D R.x/. Then

EŒ�� D nEŒ Qp.�/� D n
�
p C ˛

2
.� .0/� � .1//C ˇ

2
.�.1/ � �.0//

	
:

This completes the proof. ut
Especially, when Qp is a triangular fuzzy number .a; b; c/, 0 < a < b < c < 1,

then EŒ�� D n
4
.a C 2b C c/. If Qp is a trapezoidal fuzzy variable .a; b; c; d /, then

EŒ�� D n
4
.a C b C c C d/. For the poisson distributed Ra-Fu variables, we also

obtain the following results.

Theorem 4.2. Let � � P.k; Q�/ be a Poisson distributed Ra-Fu variable and Q� is a
fuzzy variable with the following membership function,

�Q�.t/ D

8̂̂<
ˆ̂:
L

�
� � t
˛

�
; t � �; ˛ > 0

R

�
t � �
ˇ

�
; t � �; ˇ > 0

where �.� > 0/ is the “mean” value of Q�, ˛, ˇ are positive numbers expressing
the left and right spreads of Q� such that � � ˛ > 0, and reference functions L;R W
Œ0; 1� ! Œ0; 1� with L.1/ D R.1/ D 0 and L.0/ D R.0/ D 1 are non-increasing,
continuous functions. Then we have,
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EŒ�� D �C ˛

2
.� .0/� � .1//C ˇ

2
.�.1/� �.0//:

Proof. By the definition of the expected value of discrete Ra-Fu variables, we have

EŒ�� D
1P

kD0

kEŒpk� D E
"

1P
kD0

k �
Q�k

kŠ
e�Q�

#

D E
"
Q�e�Q� 1P

kD1

Q�k�1

.k � 1/Š

#
D EŒ Q��

By the proving process of Theorem 4.1, we have that

EŒ�� D EŒ Q�� D �C ˛

2
.� .0/� � .1//C ˇ

2
.�.1/ � �.0//:

This completes the proof. ut
For the continuous Ra-Fu variable, we have the following definition.

Definition 4.19. (Expected value of continuous Ra-Fu variable) Let � be a contin-
uous Ra-Fu variable on .�;P.�/; Pos/ with the density function Qp.x/, then its
expected value can be defined as follows,

EŒ�� D
Z 1

0

Cr

�Z
x2�

x Qp.x/dx � r
�
dr �

Z 0

�1
Cr

�Z
x2�

x Qp.x/dx � r
�
dr

(4.14)

where Qp.x/ is a density function with fuzzy parameters defined on .�;P.�/; Pos/.

If � degenerates to be a random variable, the definition is identical with the
expected value of random variables in Definition 2.8. Next, let’s restrict to three
special continuous Ra-Fu variables.

Theorem 4.3. Assume that � � U . Qa; Qb/ is a uniformly distributed Ra-Fu vari-
able, where Qa and Qb are both fuzzy variables defined on .�;P.�/; Pos/ with the
following membership functions, respectively,

�Qa.t/ D

8̂̂<
ˆ̂:
L

�
a � t
˛

�
; t � a; ˛ > 0

R

�
t � a
ˇ

�
; t � a; ˇ > 0

and

� Qb.t/ D

8̂̂
<
ˆ̂:
L

�
b � t
ı

�
; t � b; ı > 0

R

�
t � b
	

�
; t � b; 	 > 0
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where a, b are the “mean” values of Qa and Qb, respectively, ˛ and ˇ are the left and
right spreads of Qa, ı and 	 are the left and right spreads of Qb such that b � ı >
a C ˇ. Reference functions L;R W Œ0; 1� ! Œ0; 1� with L.1/ D R.1/ D 0 and
L.0/ D R.0/ D 1 are non-increasing, continuous functions. Then we have

EŒ�� D 1

2
.aC b/C 1

4
.˛ C ı/.� .0/� � .1//C 1

4
.ˇ C 	/.�.1/� �.0// (4.15)

Proof. For any � 2 �, we have

EŒ�.�/� D
Z C1

�1
x Qp.�/.x/dx D

Z Qb

Qa
x

Qb � Qadx D
Qb C Qa
2

Obviously, EŒ�.�/� is a fuzzy variable since Qa and Qb are both fuzzy variables. In
fact, assume that w 2 Œ0; 1�, let L.a�x

˛
/ D w D L. b�y

ı
/, then

x D a � ˛L�1.w/; y D b � ıL�1.w/:

It follows that

z D x C y
2
D aC b

2
� 1
2
.˛ C ı/L�1.w/:

Thus, we haveL

�
1
2

.aCb/�z
1
2

.˛Cı/

�
D w. Similarly, we can prove thatR

�
z� 1

2
.aCb/

1
2

.ˇC
/

�
Dw.

Then we know that
QbCQa

2
is also a fuzzy variable with the following membership,

�
QbC Qa

2

.t/ D

8̂̂
ˆ̂<
ˆ̂̂̂:
L

 
1
2
.aC b/� t
1
2
.˛ C ı/

!
; t � 1

2
.aC b/

R

 
t � 1

2
.aC b/

1
2
.ˇ C 	/

!
; t � 1

2
.aC b/

By the proving process of Theorem 4.1, we have

EŒ�� D EŒEŒ�.�/�� D E
" Qb C Qa

2

#

D 1

2
.aC b/C 1

4
.˛ C ı/.� .0/� � .1//C 1

4
.ˇ C 	/.�.1/ � �.0//:

This completes the proof. ut
By the definition of uniformly distributed Ra-Fu variables, fuzzy variables can

have many other membership functions only satisfying Posf Qb.�/ > Qa.�/g D 1
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for any � 2 �. Readers can similarly deduce their expected values and variances.
Next, let’s introduce the expected value and variance of normally distributed Ra-Fu
variables.

Theorem 4.4. Let � � N . Q�; �2/ be a normally distributed Ra-Fu variable, where
Q� is a fuzzy variable on .�;P.�/; Pos/ with the following membership function,

� Q�.t/ D

8̂̂<
ˆ̂:
L

�
� � t
˛

�
; t � �; ˛ > 0

R

�
t � �
ˇ

�
; t � �; ˇ > 0

where � is the “mean” value of Q� , ˛ and ˇ are the left and right spreads of Q�,
respectively. Reference functions L;R W Œ0; 1�! Œ0; 1� with L.1/ D R.1/ D 0 and
L.0/ D R.0/ D 1 are non-increasing, continuous functions. Then we have

EŒ�� D �C ˛

2
.� .0/� � .1//C ˇ

2
.�.1/ � �.0// (4.16)

Proof. By Definition 4.19, we know

EŒ�� D
Z 1

0

Prf� 2 �jEŒ�.�/� � tgdt �
Z 0

�1
Prf� 2 �jEŒ�.�/� � tgdt

Since � � N. Q�; �2/, and obviously we know thatEŒ�.�/� D Q�, then by the proving
process of Theorem 4.1, we have

EŒ�� D EŒ�.�/� D EŒ Q�� D �C ˛

2
.� .0/� � .1//C ˇ

2
.�.1/� �.0//:

This completes the proof. ut
Similarly, readers can compute the expected value if Q� follows other distributions

or the variance Q� is also a random variable on .�;P.�/; Pos/. Then the expected
value and variance of exponentially distributed random fuzzy variables are intro-
duced in the following part. For the exponential distribution, the parameter Q� must
be more than or equal to 0, then we can assume that � D .0;C1/.
Theorem 4.5. Let � � exp. Q�/ be an exponentially distributed Ra-Fu variable,
where Q� is a fuzzy variable on .�;P.�/; Pos/ with the following membership
function,

�Q�.t/ D

8̂̂<
ˆ̂:
L

�
� � t
˛

�
; t � �; ˛ > 0

R

�
t � �
ˇ

�
; t � �; ˇ > 0
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where � is the “mean” value of Q� , ˛ and ˇ are the left and right spreads of Q�
such that � � ˛ > 0, respectively. Reference functions L;R W Œ0; 1� ! Œ0; 1� with
L.1/ D R.1/ D 0 and L.0/ D R.0/ D 1 are non-increasing, continuous functions.
Then we have

EŒ�� D � 1

2�
�K � T

where K D R 1

0
R0.x/
�Cxˇ

dx and T D R 1

0
L0.x/
��x˛

dx.

Proof. For any � 2 �, we have

EŒ�.�/� D
Z C1

�1
x � Q�e�Q�xdx D 1

Q� (4.17)

Obviously, EŒ�.�/� D 1
Q� is a fuzzy variable on .�;P.�/; Pos/. In fact, assume

that w 2 Œ0; 1�, let L.��t
˛
/ D w, then

t D � � ˛L�1.w/:

It follows from that

z D 1

t
D 1

� � ˛L�1.w/
:

Thus, we have L

�
�� 1

z
˛

�
D w. Similarly, we can prove that R

�
1
z ��

ˇ

�
D w. Then

we know that 1
Q� is also a fuzzy variable with the following membership,

� 1
Q�

.t/ D

8̂̂
ˆ̂<
ˆ̂̂̂:
L

 
� � 1

t

˛

!
;
1

t
� �

R

 
1
t
� �
ˇ

!
;
1

t
� �

(4.18)

It follows from the definition of the credibility of fuzzy variables that

Cr

�
1

Q� � t
�
D

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:

1; t � 1

�C ˇ
1 � 1

2
R

 
1
t
� �
ˇ

!
;

1

�C ˇ < t �
1

�

1

2
L

 
� � 1

t

˛

!
;

1

�
< t � 1

� � ˛
0; t >

1

� � ˛
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Since � D .0;C1/ and � � ˛ > 0, then
R 0

�1 Cr
n

1
Q� � t

o
dt D 0 and

Z 1

0

Cr

�
1

Q� � t
�
dt D

Z 1
�Cˇ

0

1dt C
Z 1

�

1
�Cˇ

 
1 � 1

2
R

 
1
t
� �
ˇ

!!
dt

C
Z 1

��˛

1
�

1

2
L

 
� � 1

t

˛

!
dt

D � 1

2�
�K � T

where K D R 1

0
R0.x/
�Cxˇ

dx and T D R 1

0
L0.x/
��x˛

dx. Then

EŒ�� D
Z C1

0

PrfEŒ�.�/� � tgdt �
Z 0

�1
PrfEŒ�.�/� � tgdt D � 1

2�
�K � T

This completes the proof. ut
By the definition of exponentially distributed Ra-Fu variables, we know that the

parameter N� can be a random variable with different distribution, but it must satisfy
that N�.��/ > 0 for any �� 2 ��. Then readers can deduce the expected value and
variance when N� follows other distribution.

4.3 Ra-Fu EVM

For the complicated real-life uncertain problems, we should convert them into crisp
models which can be easily solved. Usually, we can apply the expected value oper-
ator to compute the objective function, then get the deterministic expected value
model. Before introducing the expected value model, we must propose the defini-
tion of the expected value operator of Ra-Fu variables. And the expected value of
uncertain variables serves as a powerful tool for a wide variety of applications.

4.3.1 General Model for Ra-Fu EVM

Let’s consider the typical single objective with Ra-Fu parameters,

8<
:

maxf .x; �/

s.t.

�
gj .x; �/ � 0; j D 1; 2; : : : ; p
x 2 X

(4.19)

where f .x; �/ and gj .x; �/; j D 1; 2 : : : ; p are continuous functions in X and
� D .�1; �2; : : : ; �n/ is a Ra-Fu vector on possibility space .�;P.�/; Pos/. Then
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it follows from the expected operator that,

8<
:

maxEŒf .x; �/�

s.t.

�
EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
x 2 X

(4.20)

After being dealt with by expected value operator, the problem (4.19) has been con-
verted into a certain programming and then decision makers can easily obtain the
optimal solution.

Definition 4.20. x is said to be called a feasible solution of problem (4.20) if
and only if EŒgj .x; �/� � 0.j D 1; 2; : : : ; p/. For any feasible solution x, if
EŒf .x�; �/� � EŒf .x; �/�, then x� is the optimal solution of problem (4.20).

In many cases, there are usually multiple objectives decision makers must con-
sider. Thus we have the following expected value multiobjective model (EVM),

8<
:

max ŒEŒf1.x; �/�; EŒf2.x; �/�; : : : ; EŒfm.x; �/��

s.t.

�
EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
x 2 X

(4.21)

where fi .x; �/ are return functions for i D 1; 2; : : : ; m: � D .�1; �2; : : : ; �n/ is a
Ra-Fu vector on possibility space .�;P.�/; Pos/.

Definition 4.21. x� is said to be the Pareto solution of problem (4.21), if there
doesn’t exist feasible solutions x such that

EŒfi .x; �/� � EŒfi .x
�; �/�; i D 1; 2; : : : ; m

and there is at least one j.j D 1; 2; : : : ; m/ such that EŒfi .x; �/� > EŒfi .x
�; �/�.

We can also formulate a Ra-Fu decision system as an expected value goal model
(EVGM) according to the priority structure and target levels set by the decision-
maker,

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8̂̂
<
ˆ̂:
EŒfi .x; �/�C d�

i � dC
i D bi ; i D 1; 2; : : : ; m

EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
d�

i ; d
C
i � 0; i D 1; 2; : : : ; m

x 2 X

where Pj is the preemptive priority factor which expresses the relative importance
of various goals, Pj >> Pj C1, for all j , uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, vij is the weighting factor
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corresponding to negative deviation for goal i with priority j assigned, dC
i is the

positive deviation from the target of goal i , defined as

dC
i D ŒEŒfi .x; �/� � bi � _ 0;

d�
i is the negative deviation from the target of goal i , defined as

d�
i D Œbi � EŒfi .x; �/�� _ 0;

fi is a function in goal constraints, gj is a function in real constraints, bi is the
target value according to goal i , l is the number of priorities, m is the number of
goal constraints, and p is the number of real constraints.

4.3.2 Linear Ra-Fu EVM and the Maximin Point Method

Generally, many uncertain problems cannot be directly converted into crisp ones
unless they have favorable properties and their random fuzzy parameters have crisp
distribution. For those which cannot be transformed, Ra-Fu simulation is an useful
tool to deal with them. Next, we will exhibit some examples which can be converted
into crisp models. Let’s consider the following linear multi-objective programming
with Ra-Fu parameters,

8̂<
:̂

max
� QNcT

1 x; QNcT
2 x; : : : ; QNcT

mx
�

s.t.

(
QNeT
r x � QNbr ; r D 1; 2; : : : ; p

x � 0
(4.22)

where x 2 X � Rn, QNci D . QNci1; QNci2; : : : ; QNcin/
T , QNer D . QNer1; QNer2; : : : ; QNern/

T are Ra-Fu

vectors, and QNbr are random fuzzy variables, i D 1; 2; : : : ; m, r D 1; 2; : : : ; p.

4.3.2.1 Crisp Equivalent Model

Because of the uncertainty of Ra-Fu parameters QNci , QNer and QNbr in the problem (4.22),
we cannot easily obtain its optimal solutions. By Definition 4.18 and 4.19, we can
obtain the following expected value model,

8̂<
:̂

max
�
EŒ QNcT

1 x�; EŒ QNcT
2 x�; : : : ; EŒ QNcT

mx�
�

s.t.

(
EŒ QNeT

r x� � EŒ QNbr �; r D 1; 2; : : : ; p
x � 0

(4.23)

Theorem 4.6. Assume that random vector QNci D . QNci1; QNci2; : : : ; QNcin/
T is normally

distributed with mean vector Q�c
i D . Q�c

i1.�/; Q�c
i2.�/; : : : ; Q�c

in.�//
T and positive
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definite covariance matrix V c
i on the probability space .�;A ; P r/, written as QNci �

N . Q�c
i .�/; V

c
i /.i D 1; 2; : : : ; m/ and random fuzzy vectors QNer � N . Q�e

r .�/; V
e

r /,QNbr � N . Q�b
r .�/; .�

b
r /

2/.r D 1; 2; : : : ; p/, where Q�c
i .�/, Q�e

r .�/ are fuzzy vectors
and Q�b

r .�/ are fuzzy variables defined on .�;P.�/; Pos/ respectively character-
ized by the following membership functions,

� Q�c
ij

.�/.t/ D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

L

 
�c

ij � t
ıc

ij

!
t � �c

ij ; ı
c
ij > 0

R

 
t � �c

ij

	c
ij

!
t � �c

ij ; 	
c
ij > 0

� 2 � (4.24)

and

� Q�e
rj

.�/.t/ D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

L

 
�e

rj � t
ıe

rj

!
t � �e

rj ; ı
e
rj > 0

R

 
t � �e

rj

	e
rj

!
t � �e

rj ; 	
e
rj > 0

� 2 � (4.25)

and

� Q�b
r .�/.t/ D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

L

 
�b

r � t
ıb

r

!
t � �b

r ; ı
b
r > 0

R

 
t � �b

r

	b
r

!
t � �b

r ; 	
b
r > 0

� 2 � (4.26)

where ıc
ij ; 	

c
ij are positive numbers expressing the left and right spreads of Qd c

ij .�/,
i D 1; 2; : : : ; m, j D 1; 2; : : : ; n, ıe

rj ; 	
e
rj are positive numbers expressing the left

and right spreads of Q�e
rj .�/, r D 1; 2; : : : ; p, j D 1; 2; : : : ; n, ıb

r ; 	
b
r are positive

numbers expressing the left and right spreads of Q�b
r .�/, r D 1; 2; : : : ; p and refer-

ence functions L;R W Œ0; 1�! Œ0; 1� with L.1/ D R.1/ D 0 and L.0/ D R.0/ D 1
are non-increasing, continuous functions. Assume that for any i D 1; 2; : : : ; m,

j D 1; 2; : : : ; n and r D 1; 2; : : : ; p, QNcij .�/, QNeij .�/ and QNbij .�/ are independently
random variables. Then problem (4.23) is equivalent to

8<
:

maxŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t.

�
Kr .x/ � B; r D 1; 2; : : : ; p
x � 0

(4.27)
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where

Hi .x/ D 1

2
ıc

i x
�
F.�c

i x/�F.�c
i x � ıc

i x/
�C 1

2
	c

i x
�
G.�c

i x C 	c
i x/�G.�c

i x/
�
;

Kr.x/ D 1

2
ıe

r x
�
F.�e

rx/�F.�e
rx � ıe

r x/
�C 1

2
	e

r x
�
G.�e

rx C 	e
r x/�G.�e

rx/
�
;

B D 1

2
ıb

r

h
F.�b

r / � F.�b
r � ıb

r /
i
C 1

2
	b

r

h
G.�b

r C 	b
r / �G.�b

r /
i
:

Proof. Since Ra-Fu variables QNcij are normally distributed on the probability space
.�;A ; P r/ and QNcij � N . Q�c

ij .�/; V
c

ij /.i D 1; 2; : : : ; m; j D 1; 2; : : : ; n/, then it
follows from the linearity of Ra-Fu variables that

EŒ QNcT
i x� D E

2
4 nX

j D1

xj
QNcij

3
5 D nX

j D1

xjEŒ Q�c
ij .�/� D EŒ Q�cT

i .�/x�:

Since Q�c
i .�/ D . Q�c

i1.�/; Q�c
i2.�/; : : : ; Q�c

in.�//
T is a fuzzy vector. It follows that, for

xij > 0, Q�cT
i .�/x is a fuzzy variable characterized by the following membership

function,

� Q�c
i

.�/x.t/ D

8̂̂̂
<̂
ˆ̂̂̂:

L

�
�c

i x � t
ıc

i x

�
t � �c

i x; ıc
i x > 0

R

�
t � �c

i x

	c
i x

�
t � �c

i x; 	c
i x > 0

� 2 �;

then we have,

Crf Q�c
i .�/x � tg D

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

1; if t � �c
i x � ıc

i x

1� 1
2
L

�
�c

i x � t
ıc

i x

�
; if �c

i x � ıc
i x � t � �c

i x

1

2
R

�
t � �c

i x

	c
i x

�
; if �c

i x � t � �c
i x C 	c

i x

0; if t > �c
i x C 	c

i x

It follows from the expected value of fuzzy variables that,

EŒ Q�c
i .�/x� D

Z C1

0

Crf Q�c
i .�/x � tgdt �

Z 0

�1
Crf Q�c

i .�/x � tgdt

D 1

2
ıc

i x
�
F.�c

i x/�F.�c
i x � ıc

i x/
�

C 1
2
	c

i x
�
G.�c

i x C 	c
i x/�G.�c

i x/
�
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where F.x/ and G.x/ are respectively continuous functions on Œ�c
i x � ıc

i x; �c
i x�

and Œ�c
i x; �c

i x C 	c
i x� such that

@F.x/

@x
D L.x/; for x 2 Œ�c

i x � ıc
i x; �c

i x�;

@G.x/

@x
D R.x/; for x 2 Œ�c

i x; �c
i x C 	c

i x�:

Similarly,

EŒ QNeTr x� D 1

2
ıerx

�
F.�erx/ � F.�erx � ıerx/

�C 1

2
	er x

h
G.�erx C 	erjx/ �G.�erjx/

i
;

EŒ QNbr � D 1

2
ıbr
�
F.�br / � F.�br � ıbr /

�C 1

2
	br
�
G.�br C 	br / �G.�br /

�
:

Denote

Hi .x/ D 1

2
ıc

i x
�
F.�c

i x/�F.�c
i x � ıc

i x/
�C 1

2
	c

i x
�
G.�c

i x C 	c
i x/�G.�c

i x/
�
;

Kr.x/ D 1

2
ıe

r x
�
F.�e

rx/�F.�e
rx � ıe

r x/
�C 1

2
	e

r x
�
G.�e

rx C 	e
r x/�G.�e

rx/
�
;

B D 1

2
ıb

r

h
F.�b

r / � F.�b
r � ıb

r /
i
C 1

2
	b

r

h
G.�b

r C 	b
r / �G.�b

r /
i
:

Then (4.23) is equivalent to the following formula,

8<
:

maxŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t.

�
Kr .x/ � B; r D 1; 2; : : : ; p
x � 0

The proof is completed. ut
Of course, in the real-life problems, Ra-Fu parameters in the linear multiobjective

programming problem could follows many different distributed forms, we just only
take the normal distribution as an example. Readers can obtain the similar result by
the expected value operator.

4.3.2.2 The Maximin Point Method

In this section, we use the maximin point method proposed in [340] to deal
with the crisp multiobjective problem (4.27). To maximize the objectives, the
maximin point method firstly constructing an evaluation function by seeking the
minimal objective value after respectively computing all objective functions, that is,
u.H.x// D min1�i�mHi .x/, where H.x/ D .H1.x/;H2.x/; : : : ;Hm.x//

T . Then
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the objective function of problem (4.27) is came down to solve the maximization
problem as follows,

max
x2X 0

u.H.x// D max
x2X 0

min
1�i�m

Hi .x/ (4.28)

Sometimes, decision makers need considering the relative importance of various
goals, then the weight can be combined into the evaluation function as follows,

max
x2X 0

u.H.x// D max
x2X 0

min
1�i�m

f!iHi .x/g (4.29)

where the weight
Pm

iD1 !i D 1.!i > 0/ and is predetermined by decision makers.

Theorem 4.7. The optimal solution x� of problem (4.29) is the weak efficient
solution of problem (4.27).

Proof. Assume that x� 2 X 0 is the optimal solution of the problem (4.29). If there
exists an x such that Hi .x/ � Hi .x

�/.i D 1; 2; : : : ; m/, we have

min
1�i�m

f!iHi .x
�/g � !iHi .x

�/ � !iHi .x/; 0 < !i < 1

Denote ı D min1�i�mf!iHi .x/g, then ı � min1�i�mf!iHi .x
�/g. This means that

x� isn’t the optimal solution of the problem (4.29). This conflict with the condition.
Thus, there doesn’t exist x 2 X 0 such that Hi .x/ � Hi .x

�/, namely, x� is a weak
efficient solution of the problem (4.27). ut

By introducing an auxiliary variable, the maximin problem (4.29) can be con-
verted into a single objective problem. Let

� D min
1�i�m

f!iHi .x/g;

then the problem (4.29) is converted into

8<
:

max�

s.t.

�
!iHi .x/ � �; i D 1; 2; : : : ; m
x 2 X 0

(4.30)

Theorem 4.8. The problem (4.29) is equivalent to the problem (4.30).

Proof. Assume that x� 2 X 0 is the optimal solution of the problem (4.29) and let
�� D min1�i�mf!iHi .x

�/g, then it is apparent that Hi .x
�/ � ��. This means

that .x�; ��/ is a feasible solution of the problem (4.30). Assume that .x; �/ is
any feasible solution of the problem (4.30). Since x� is the optimal solution of the
problem (4.29), we have
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�� D min
1�i�m

f!iHi .x
�/g � min

1�i�m
f!iHi .x/g � �;

namely, .x�; ��/ is the optimal solution of the problem (4.30).
On the contrary, assume that .x�; ��/ is an optimal solution of the problem

(4.30). Then !iHi .x
�/ � �� holds for any i , this means min1�i�mf!iHi .x

�/g �
��. It follows that for any feasible x 2 X 0,

min
1�i�m

f!iHi .x/g D � � �� � min
1�i�m

f!iHi .x
�/g

holds, namely, x� is the optimal solution of the problem (4.29). ut
In a word, the maximin point method can be summarized as follows:
Step 1. Compute the weight for each objective function by solving the two

problems, maxx2X 0 Hi .x/ and !i D Hi .x
�/=

Pm
iD1Hi .x

�/.
Step 2. Construct the auxiliary problem as follows,

8<
:

max�

s.t.

�
!iHi .x/ � �; i D 1; 2; : : : ; m
x 2 X 0

Step 3. Solve the above problem to obtain the optimal solution.

4.3.3 Nonlinear Ra-Fu EVM and Ra-Fu Simulation-Based
aw-GA

For many decision-making problems, they are usually complicated with nonlinear
objectives or constraints or even both of them so that we can not apply the technique
proposed above to convert them into crisp ones. For example, let’s consider the
following problem,

8<
:

max ŒEŒf1.x; �/�; EŒf2.x; �/�; : : : ; EŒfm.x; �/��

s.t.

�
EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
x 2 X

(4.31)

where fi .x; �/ are return functions with respect to � for i D 1; 2; : : : ; m. � D
.�1; �2; : : : ; �n/ is a Ra-Fu vector on possibility space .�;P.�/; Pos/. If m is
a great large number, and fi are nonlinear functions, the traditional methods are
difficult to deal with it. Then we will introduce another method in the following
part which is aimed at the large scale decision making problems with nonlinear
objectives or constraints.
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4.3.3.1 Ra-Fu Simulation for EVM

The Ra-Fu simulation is used to deal with those which cannot be converted into
crisp ones. Next, let’s introduce the process of the Ra-Fu simulation dealing with
the expected value models.

Assume that � is an n-dimensional Ra-Fu vector defined on the possibility space
.�;P.�/; Pos/, and f W Rn ! R is a measurable function. One problem is
to calculate the expected value EŒf .x; �/� for given x. Then f .x; �/ is a Ra-Fu
variable whose expected value EŒf .x; �/� is

Z C1

0

Crf� 2 �jEŒf .x; �.�//� � rgdr�
Z 0

�1
Crf� 2 �jEŒf .x; �.�//� � rgdr:

A Ra-Fu simulation will be introduced to compute the expected value EŒf .x; �/�.
We randomly sample �k from � such that Posf�kg � ", and denote vk D Posf�kg
for k D 1; 2; : : : ; N , where " is a sufficiently small number. Then for any number
r � 0, the credibility Crf� 2 �jEŒf .x; �.�//� � rg can be estimated by

1

2

�
max

1�k�N
fvkjEŒf .x; �.�k//� � rg C min

1�k�N
f1� vkjEŒf .x; �.�k//� < rg

�

and for any number r < 0, the credibility Crf� 2 �jEŒf .x; �.�//� � rg can be
estimated by

1

2

�
max

1�k�N
fvkjEŒf .x; �.�k//� � rg C min

1�k�N
f1� vkjEŒf .x; �.�k//� > rg

�

provided that N is sufficiently large, where EŒf .x; �.�k//�; k D 1; 2; : : : ; N may
be estimated by the stochastic simulation.

Then the procedure simulating the expected value of the function f .x; �/ can be
summarized as follows:

Procedure Ra-Fu simulation for EVM
Input: The decision vector x

Output: The expected value EŒf .x; �/�
Step 1. Set e D 0;
Step 2. Randomly sample �k from� such that Posf�kg � " for
k D 1; 2; : : : ; N , where " is a sufficiently small number;
Step 3. Let a D min1�k�N EŒf .x; �.�k//� and
b D max1�k�N EŒf .x; �.�k//�;
Step 4. Randomly generate r from Œa; b�;
Step 5. If r � 0, then e  e C Crf� 2 �jEŒf .x; �.�k//� � rg;
Step 6. If r < 0, then e  e � Crf� 2 �jEŒf .x; �.�k//� � rg;
Step 7. Repeat the fourth to sixth steps for N times;
Step 8. EŒf .x; �/� D a _ 0C b ^ 0C e � .b � a/=N .
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Example 4.15. We employ the Ra-Fu simulation to calculate the expected value ofq QN�2
1 C QN�2

2 C QN�2
3 , where QN�1, QN�2 and QN�3 are random fuzzy variables defined as

QN�1 � N . Q�1; 1/; with Q�1 D .1; 2; 3/;QN�2 � U . Q�2; 2/; with Q�2 D .2; 5; 6/;QN�3 � U . Q�3; 1/; with Q�3 D .2; 3; 4/:

where Q�i are all triangular fuzzy numbers. We perform the Ra-Fu simulation with

1000 cycles and obtain that E

�q QN�2
1 C QN�2

2 C QN�2
3

	
D 6:0246.

4.3.3.2 The Adaptive Weight Genetic Algorithm

Since evolutionary computation was proposed, ingrowing researchers has been
interested in simulating evolution to solve complex optimization problems. Among
them, the genetic algorithm introduced by Holland [135] is paid more and more
attention to. As a kind of meta-heuristics, it could search the optimal solution
without regard to the specific inner connections of the problem. Especially, the
application of GA to multiobjective optimization problems has caused a theoreti-
cal and practical challenge to the mathematical community. In the past two decades,
there are many approaches on GA developed by the scholars in all kinds of field.
Globerg [116] firstly suggested the Pareto ranking based fitness assignment method
to find the next set of nondominated individuals. Then the multiobjective genetic
algorithm in which the rank of individual corresponds to the number of current par-
ent population was proposed by Fonseca and Fleming [103]. There are still two
weighted sum genetic algorithms to solve multiobjective optimization problems.
One is the random-weight genetic algorithm proposed by Ishibuchi et al.[144], the
other is adaptive-weight genetic algorithm proposed by Gen and Chen [109]. Xu,
Liu and Wang [341] applied spanning tree based on genetic algorithm to solve a
class multiobjective programming problems with Ra-Fu coefficients.

Genetic algorithms (GAs) are a stochastic search method for optimization prob-
lems based on the mechanics of natural selection and natural genetics-survival of
the fittest. GAs have demonstrated considerable success in providing good solutions
to many complex optimization problems and received more and more attentions
during the past three decades. When the objective functions to be optimized in the
optimization problems are multi-modal or the search spaces are particularly irreg-
ular, algorithms need to be highly robust in order to avoid getting stuck at a local
optimal solution. The advantage of GAs is just able to obtain the global optimal
solution fairly. In addition, GAs do not require the specific mathematical analysis of
optimization problems, which makes GAs easily coded by users who are not neces-
sarily good at mathematical and algorithms. GAs have been applied to a wide variety
of problems, such as optimal control problem, transportation problem, traveling
salesman problem, scheduling, facility layout problem and network optimization
and so on.
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One of the important technical terms in GAs is chromosome, which is usually
a string of symbols or numbers. A chromosome is a coding of a solution of an
optimization problem, not necessarily the solution itself. GAs start with an initial
set of random-generated chromosomes called population size. All chromosomes are
evaluated by the so-called evaluation function, which is some measure of fitness.
A new population will be formed by a selection process using some sampling mech-
anism based on the fitness values. The cycle from one population to the next one is
called a generation. In each new generation, all chromosomes will be updated by the
crossover and mutation operations. The revised chromosomes are also called off-
spring. The selection process enters a new generation. After performing the genetic
system a given number of cycles, we decode the best chromosome into a solution
which is regarded as the optimal solution of the optimization problem.

1. Coding. How to encode a solution of the problem into a chromosome is a
key issue when using GAs. The issue has been investigated from many aspects,
such as mapping characters from genotype space to phenotype space when individ-
uals are decoded into solutions, and metamorphosis properties when individuals are
manipulated by genetic operators.

During the last 15 years, various encoding methods have been created for partic-
ular problems to provide effective implementation of GAs. According to what kind
of symbol is used as the alleles of a gene, the encoding methods can be classified as
follows:

(a) Binary encoding
(b) Real-number encoding
(c) Integer or literal permutation encoding
(d) General data structure encoding.

Genetic algorithm work on two types of spaces alternatively: coding space and
solution space, or in other words, genotype space and phenotype space. Genetic
operators work on genotype space, and evaluation and selection work on the pheno-
type space. Natural selection is the link between chromosomes and the performance
of decoded solutions. The mapping from genotype space to phenotype space has a
considerable influence on the performance of genetic algorithms. One outstanding
problem associated with mapping is that some individuals correspond to infeasible
solutions to a given problem. This problem may become very severe for constrained
optimization problems and combinatorial optimization problems.

2. Genetic operators. Search is one of the more universal problem-solving meth-
ods for problems in which one cannot determine a priori the sequence of steps
leading to a solution. Typically, there are two types of search behaviors: random
search and local search. Random search explores the entire solution and is capable
of achieving escape from a local optimum. Local search exploits the best solution
and is capable of climbing upward toward a local search optimum. The two types of
search abilities from the mutual complementary components of a search. An ideal
search should possess both types simultaneously. It is nearly impossible to design
such a search method with conventional techniques. Genetic algorithms are a class
of general-purpose search methods combining elements of directed and stochastic
searches which can make a good balance between exploration and exploitation of
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the search space. In genetic algorithms, accumulated information is exploited by the
selection mechanism, while mew regions of the search space are explored by means
of genetic operators.

In conventional genetic algorithms, the crossover operator is used as the princi-
ple operator and the performance of a genetic system is heavily dependent on it. The
mutation operator which produces spontaneous random changes in various chromo-
somes, is used as a background operator. In essence, genetic operators perform a
random search and cannot guarantee to yield improved offspring. It has been dis-
covered that the speed of convergence problems. There are many empirical studies
on a comparison between crossover and mutation. It is confirmed that mutation can
sometimes play a more important role than crossover.

How we conceptualize the genetic search will affect how we design genetic oper-
ators. From the point of view of search abilities, it is expected that a search provided
by a method can possess the abilities of random search and directed search simul-
taneously. Cheng and Gen [108, 109] suggest the following approach for designing
genetic operators. For the two genetic operators, crossover and mutation, one is used
to perform a random search to try to explore the area beyond a local optimum, and
the other is used to perform a local search to try to find an improved solution, The
genetic search then possesses two types of the search abilities. With this approach,
the mutation operator will play the same important role as that of the crossover
operator in a genetic search.

3. Selection. The principle behind genetic algorithms is essentially Darwinian
natural selection. Selection provides the driving force in a genetic algorithm. With
woo much force, genetic search will terminate prematurely; with too little force,
evolutionary progress will be slower than necessary. Typically, a lower selection
pressure is indicated at the start of a genetic search in favor of a wide exploration
of the search space, while a higher selection pressure is recommended at the end to
narrow the search space. The selection directs the genetic search toward promising
regions in the search space. During the past two decades, many selection methods
have been proposed, examined, and compared. There are the following types.

(a) Roulette wheel selection: Proposed by Holland [135], is the best known selec-
tion type. The basis idea is to determine selection probability or survival
probability for each chromosome proportional to the fitness value. Then a model
roulette wheel can be made displaying these probabilities. The selection process
is based on spinning the wheel the number of times equal to population size,
each time selecting a dingle chromosome for the new population, The wheel
features the selection method as a stochastic sampling method that uses a single
wheel spin. The wheel is constructed in the same way as is a standard roulette
wheel, with a number of equally spaced markers equal to the population size.
The basic strategy underlying this approach is to keep the expected number of
copies of each chromosome in the next generation.

(b) (�C�)-selection: In contrast with proportional selection, (�C�)-selection and
(�; �)-selection as proposed by B Rack are deterministic procedures that select the
best chromosomes from parents and offspring. Note that both methods prohibit
selection of duplicate chromosome from the population, so many researcher
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prefer to use this method to deal with combinational optimization problems.
Truncation selection and block selection are also deterministic procedures that
rank all individuals according to their fitness and select the best as parents.

(c) Tournament selection: This type of selection contains random and deterministic
features simultaneously. A special example is the tournament selection of Gold-
berg [116]. This method randomly chooses a set of chromosomes and picks out
the best chromosome for reproduction. The number of chromosomes in the set
is called the tournament size. A common tournament size is 2; this is called a
binary tournament. Stochastic tournament selection was suggested by Wetzel
[335]. In this method, selection probabilities are calculated normally and suc-
cessive pairs of chromosome are drawn using roulette wheel selection. After
drawing a pair, the chromosome with higher fitness is inserted in the new pop-
ulation. The process continues until the population is full. Reminder stochastic
sampling, proposed by Brindle, is a modified version of his deterministic sam-
pling. In this method, each chromosome is allocated samples according to the
fractional parts of the number expected.

(d) Steady-state reproduction: Generational replacement, replacing an entire set of
parents by their offspring, can be viewed as another version of the determin-
istic approach. The steady-state reproduction of Whitely and Syswerdra [310]
belongs to this class, in which the nworst parents are replaced by offspring (n is
the number of offspring).

(e) Ranking and scaling: The ranking and scaling mechanisms are proposed to
mitigate these problems. The scaling method maps raw objective function val-
ues to positive real values, and the survival probability for each chromosome
is determined according to these values. Fitness scaling has a twofold inten-
sion: to maintain a reasonable differential between relative fitness ratings of
chromosomes, and to prevent too-rapid takeover by some superchromosomes to
meet the requirement to limit competition early but to stimulate it later. Since
De Jong’s work [74], use of scaling objective functions has become widely
accepted, and several scaling mechanisms have been proposed. According to
the type of function used to transform the raw fitness into scaled fitness, scaling
methods can be classified as linear scaling, sigma truncation, power law scal-
ing, logarithmic scaling, an so on. If the transformation relation between scaled
fitness and raw fitness is constant, it is called a static scaling method; if the trans-
formation is variable with respect to some factors, it is called a dynamic scaling
method. The windowing technique introduces a moving baseline into fitness
proposition selection to maintain more constant selection pressure. The normal-
izing technique is also one type of dynamic scaling proposed by Cheng and
Gen [109]. For most scaling methods, scaling parameters are problem depen-
dent. Fitness ranking has an effect similar to that of fitness scaling but avoids
the need for extra scaling parameters. Baker introduced the notion of ranking
selection with genetic algorithm to overcome the scaling problems of the direct
fitness-based approach. The ranking method ignores the actual object function
values; instead, it uses a ranking of chromosome to determine survival proba-
bility. The idea is straightforward: Sort the population according to the ranking
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but not its raw fitness, Two methods are in common use: linear ranking and
exponential ranking.

(f) Sharing: The sharing techniques, introduced by Goldberg and Richardson [116]
for multi-model function optimization, are used to maintain the diversity of
population. A sharing function is a way of determining the degradation of an
individual’s fitness due to a neighbor at some distance. With the degradation,
the reproduction probability of individuals in a crowd peak is restrained while
other individuals are encouraged to give offspring.

Next, we will introduce the adaptive weight-based GA which used in this section.
This section attempts to apply Ra-Fu simulation to compute the expected value and
convert the uncertain multi-objective problem into deterministic one and make use
of adaptive weight genetic algorithm to solve this multi-objective problem. For the
following model,

�
max ŒEŒf1.x; �/�; EŒf2.x; �/�; : : : ; EŒfm.x; �/��

s.t. EŒgr .x; �/� � 0; r D 1; 2; : : : ; p: (4.32)

No matter that the random variable is discrete or continuous, we can simulate its
expected value by stochastic simulation and apply the genetic algorithm to solve the
multi-objective programming problem.

Adaptive weight approach

The adaptive weight approach proposed by Gen and Cheng [109] makes use of the
useful information from current generation to readjust the weights of every objec-
tives, then obtains a search pressure towards to positive ideal points. Let P denote
the set of the current population, we can define the maximal and minimal values as
follows for each objective in problem (4.32), respectively.

zmax
k
D maxfEŒfk.x; �/�jx 2 P g; k D 1; 2; : : : ; m:

zmin
k
D minfEŒfk.x; �/�jx 2 P g; k D 1; 2; : : : ; m:

Then the adaptive weight for objective k is calculated by the following equation:

wk D 1

zmax
k
� zmin

k

; k D 1; 2; : : : ; m:

For a given individual x, the weighted-sum objective function is given by the
following equation:

z.x/ D
mX

kD1

EŒfk.x; �/� � zmin
k

zmax
k
� zmin

k

:
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Comprise approach

The purpose of the comprise approach is to construct fitness function and select the
better chromosomes in current generation. For each feasible solution x, the regret
function is defined by the following weighted Lp-norm,

r.x; p/ D
 

mX
kD1

wp

k
jEŒfk.x; �/� � z�

k jp
!p

where wk is the adaptive weight generated by the above section, z�
k

is the ideal value
of the decision maker for each objective k. Sometimes, it is difficult for DM to
obtain the ideal point for many complex problems. Gen and Cheng [109] proposed
the concept of a proxy ideal point z� D .zmax

1 ; zmax
2 ; : : : ; zmax

m / to replace the ideal
point. In problem (4.32), DM wants to obtain the maximal objective values, then
it is necessary to convert the regret value to the fitness value in order to ensure
that the excellent chromosome has larger fitness value. The fitness function of each
chromosome x can be computed by

eval.x/ D rmax � r.x; p/C 	
rmax � rmin C 	 ;

where 	 is the real number in (0,1), rmax and rmin denote the maximal and minimal
regret value in the current generation, respectively.

Genetic operators. When GA proceeds, some important factors should be con-
sidered, such as, the search direction to optimal solution and the search speed and so
on. In general, the exploitation of the accumulated information resulting from GA
search is done by the selection mechanism, while the exploitation to new regions of
the search space is accounted by genetic operators. Readers could to refer to Fig. 4.5
to get the intuitive understanding.

X1 X2 Xi Xj
Xt XNpop−size

YNpop−size

Crossover operator

Parent

Offspring 1

Offspring 2

Mutation
operator

Y1 YtYjYi

Zi
Z2Z1

Zj Zt

Fig. 4.5 Genetic operators
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1. Selection process. Selection provides the driving force in a GA. With too
much force, genetic search will be slower than necessary. The selection directs the
genetic search toward promising regions in the search space. Roulette wheel selec-
tion, proposed by Holland [135] is the best known selection type. The basic idea is
to determine selection probability or survival probability for each chromosome pro-
portional to the fitness value. We can apply the roulette wheel method to develop the
selection process. Each time a single chromosome for a new population is selected
in the following way: Compute the total probability q,

q D
Npop�sizeX

j D1

eval.xj /:

Then compute the probability of the i th chromosome qi , qi D eval.xi /
q

: Generate a
random number r in Œ0; 1� and select the i th chromosome xi such that qi�1 < r �
qi ; 1 � i � Npop�size. Repeat the above process Npop�size times and we obtain
Npop�size copies of chromosomes. The selection probability can be computed by
the following function,

pi D eval.xi /� eval.x/min

pop�sizeP
j D1

eval.xi / � eval.x/min

where eval.x/min is the minimum fitness value of current population.
2. Crossover operation. Crossover is the main genetic operator. It operates on two

chromosomes at a time and generates offspring by combing both chromosomes’
features. The crossover probability (denoted by Pc) is defined as the probability
of the number of offspring produced in each generation to the population size. This
probability controls the expected numberPc �Npop�size of chromosomes to undergo
the crossover operation. The detailed step is as follows. Generate a random number c
from the open interval (0, 1) and the chromosome xi is selected as a parent provided
that c < Pc , where parameter Pc is the probability of crossover operation. Repeat
this process Npop�size times and Pc � Npop�size chromosomes are expected to be
selected to undergo the crossover operation. The crossover operator on x1 and x2

will produce two children y1 and y2 as follows:

y1 D cx1 C .1 � c/x2; y2 D cx2 C .1 � c/x1:

If both children are feasible, then we replace the parents with them, or else we keep
the feasible one if it exists. Repeat the above operation until two feasible children
are obtained or a given number of cycles is finished.

3. Mutation operation. Mutation is a background operator which produces spon-
taneous random changes in various chromosomes. In GA, mutation serves the
crucial role of either replacing the genes lost from the population during the



4.3 Ra-Fu EVM 227

selection process so that they can be tried in a new context, or providing the genes
that were not present in the initial population. The mutation probability (denoted
with Pm) is defined as the percentage of the total number genes in the population.
The mutation probability controls the probability at which new genes are intro-
duced into the population for trial. The detailed process is as follows. Similar to
the crossover process, the chromosome xi is selected as a parent to undergo the
mutation operation provided that random number m < Pm, where parameter Pm

as the probability of mutation operation. Pm �Npop�size are expected to be selected
after repeating the process Npop�size times. Suppose that x is chosen as a parent.
Choose a mutation direction d 2 Rn randomly. Replace x with xCM �d if xCM �d
is feasible, otherwise we set M as a random between 0 and M until it is feasible or
a given number of cycle is finished. Here,M is a sufficiently large positive number.

Procedure for GA

We illustrate the Ra-Fu simulation-based genetic algorithm procedure as follows
(see Fig. 4.6):

Procedure The procedure for GA
Input: The parametersNpop�size; Pc and Pm

Output: The optimal chromosomes
Step 1. Initialize Npop�size chromosomes whose feasibility may be checked
by Ra-Fu simulation;
Step 2. Update the chromosomes by crossover and mutation operations and
Ra-Fu simulation is used to check the feasibility of offspring. Compute the
fitness of each chromosome based on weight-sum objective;
Step 3. Select the chromosomes by spinning the roulette wheel;
Step 4. Make the crossover operation;
Step 5. Make the mutation operation for the chromosomes generated by
crossover operation;
Step 6. Repeat the second to fourth steps for a given number of cycles;
Step 7. Report the best chromosome as the optimal solution.

4.3.4 Numerical Examples

Example 4.16. In order to illustrate the proposed model and method, let’s consider
the following multi-objective programming problem with Ra-Fu coefficients.
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Fig. 4.6 Flow chart of GA

8̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂:

maxf1.x; �/ D QN�1x1 C QN�2x2 C QN�3x3 C QN�4x4 C QN�5x5

maxf2.x; �/ D c1
QN�6x1 C c2

QN�7x2 C c3
QN�8x3 C c4

QN�9x4 C c5
QN�10x5

s.t.

8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(4.33)

where c D .c1; c2; c3; c4; c5/ D .1:2; 0:5; 1:3; 0:8; 0:9/,
QN�1 �N .Qu1; 1/; with Qu1 � .113; 4; 4/LR; QN�2 �N .Qu2; 4/; with Qu2 � .241; 7; 7/LR;QN�3 �N .Qu3; 1/; with Qu3 � .87; 2; 2/LR; QN�4 �N .Qu4; 2/; with Qu4 � .56; 2; 2/LR;QN�5 �N .Qu5; 1/; with Qu5 � .92; 3; 3/LR; QN�6 �N .Qu6; 1/; with Qu6 � .628; 8; 8/LR;
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QN�7 �N .Qu7; 2/; with Qu7 � .143; 4; 4/LR; QN�8 �N .Qu8; 2/; with Qu8 � .476; 5; 5/LR;QN�9 �N .Qu9; 2/; with Qu9 � .324; 4; 4/LR; QN�10 �N .Qu10; 2/; with Qu10 � .539; 7; 7/LR:
and Qui .i D 1; 2; : : : ; 10/ are all assumed as triangular fuzzy variables which are a
class of L-R fuzzy variables. Because of the uncertainty of Ra-Fu variables, DM
usually wants to get the maximum expected value, then we have the following
expected value model,

8̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂:

maxH1.x/ D EŒ QN�1�x1 CEŒ QN�2�x2 CEŒ QN�3�x3 CEŒ QN�4�x4 CEŒ QN�5�x5
maxH2.x/ D c1EŒ QN�6�x1 C c2EŒ QN�7�x2 C c3EŒ QN�8�x3 C c4EŒ QN�9�x4 C c5EŒ QN�10�x5

s.t.

8̂̂̂
<̂
ˆ̂̂̂:

x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(4.34)

It follows from Theorem 4.6 that, (4.34) is equivalent to

8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂:

maxH1.x/ D 113x1 C 241x2 C 87x3 C 56x4 C 92x5

maxH2.x/ D 753:6x1 C 71:5x2 C 618:8x3 C 259:2x4 C 485:1x5

s.t.

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(4.35)

Next, we use the maximin method to compute the optimal solution.
Step 1. We can compute the weights of two objective functions by solving

maxx2X Hi .x/ and !i D Hi .x
�/=.H1.x

�/CH2.x
�// as follows,

H1.x
�/ D 43944:64; H2.x

�/ D 225424;
!1 D 0:163; !2 D 0:837:

Step 2. Construct the auxiliary problem as follows,

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:

max�

s.t.

8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂:

0:163 � .113x1 C 241x2 C 87x3 C 56x4 C 92x5/ � �
0:837 � .753:6x1 C 71:5x2 C 618:8x3 C 259:2x4 C 485:1x5/ � �
x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20
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Step 3. Resolve the above problem, and we get the weak efficient solution of the
problem (4.35): x� D .218:57; 60:36; 20:00; 20:00; 20:00/T .

Example 4.17. Let’s consider the another multi-objective programming problem
with Ra-Fu coefficients as follows, and we will apply the Ra-Fu simulation-based
GA to resolve it.8̂̂̂

ˆ̂<
ˆ̂̂̂̂
:

max f1.x; �/ D 3 QN�2
1x1 � 2 QN�1

QN�2x2 C 1:3 QN�2
2x3

max f2.x; �/ D 2:5 QN�2
3x1 C 3 QN�3

QN�4x2 C 5 QN�2
4x3

s.t.

8<
:
x1 C x2 C x3 � 10
3x1 C 5x2 C 3x3 � 4
x1; x2; x3 � 0

(4.36)

where �i .i D 1; : : : ; 6/ are all independently Ra-Fu variables as follows,

QN�1 � N . Q�1; 2/; with Q�1 D .5; 6; 7/; QN�2 � N . Q�2; 1/; with Q�2 D .6:5; 8; 10/;QN�3 � N . Q�3; 1:5/; with Q�3 D .4; 5; 6/; QN�4 � N . Q�4; 2/; with Q�4 D .5; 7; 8/:

where Q�i are all triangular fuzzy numbers, i D 1; : : : ; 4. By the expected value
operator of Ra-Fu variables, we have the following expected model of problem
(4.36),

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

maxH1.x/ D 3EŒ QN�2
1 �x1 � 2EŒ QN�1

QN�2�x2 C 1:3EŒ QN�2
2 �x3

maxH2.x/ D 2:5EŒ QN�2
3 �x1 C 3EŒ QN�3

QN�4�x2 C 5EŒ QN�2
4 �x3

s.t.

8<
:
x1 C x2 C x3 � 10
3x1 C 5x2 C 3x3 � 4
x1; x2; x3 � 0

(4.37)

Let the probability Pc of crossover process be 0.6 and the probability Pm of the
mutation process be 0.3, perform the Ra-Fu simulation-based GA with 5000 cycles
and we obtain the optimal solutions under different weights as shown in Table 4.2,
and Figs. 4.7 and 4.8.

4.4 Ra-Fu CCM

In practice, the goal of the decision-maker is to minimize the total cost or maximize
the total profit on the condition of possibility ˇ at probability ˛, where ˛ and ˇ are
the predetermined confidence levels. Then Charnes and Cooper [45] proposed the
chance constraint model to deal with this kind of problems. Similar to the definition,
some scholars [205] initialized the concept of the chance measure of Ra-Fu variables
which is also considered in the multi-objective problems with Ra-Fu coefficients.
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Table 4.2 Optimal solutions under different weights by GA

w1 w2 H x1 x2 x3 Gen

0.1 0.9 2288.20 0.002 0 0.998 2000
0.2 0.8 2126.40 0.012 0 0.987 2000
0.3 0.7 1964.60 0.001 0 0.999 2000
0.4 0.6 1802.80 0.002 0 0.998 2000
0.5 0.5 1641.00 0.014 0 0.986 2000
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Fig. 4.7 Search process of Ra-Fu simulation-based GA
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Next, let’s briefly introduce the definition and property of the chance measure of
Ra-Fu variables.

4.4.1 General Model for Ra-Fu CCM

The primitive chance measure of Ra-Fu event is defined as a function rather than a
number.

Definition 4.22. (Liu [205]) Let � D .�1; �2; : : : ; �n/ be a Ra-Fu vector on the
possibility space .�;P.�/; Pos/, and f W Rn ! R be continuous functions. Then
the primitive chance of Ra-Fu event characterized by f .x; �/ � 0 is a function from
[0,1] to [0,1], defined as

Chff .x; �/ � 0g.˛/ D sup fˇ jPos f� 2 � jPr ff .x; �.�// � 0g � ˇg � ˛ g :

From Definition 4.22, we know that

Ch ff .x; �/ � 0g .˛/ � ˇ, Pos fPr ff .x; �/ � 0g � ˇg � ˛ (4.38)

Remark 4.5. The primitive chance represents “the Ra-Fu event holds with probabil-
ity Chff .x; �/ � 0g.˛/ at possibility ˛”.

Remark 4.6. It is obvious that Chff .x; �/ � 0g.˛/ is a decreasing function of ˛.

Remark 4.7. If the Ra-Fu vector � becomes a random vector, then the chance
Chff .x; �/ � 0g.˛/ (with ˛ > 0) is exactly the probability of the event. That is,

Chff .x; �/ � 0g.˛/ 	 Prff .x; �/ � 0g

Remark 4.8. If the Ra-Fu vector � becomes a fuzzy vector, then the chance
Chff .�/ � 0g.˛/ (with ˛ > 0) takes the values either 0 or 1. That is,

Chff .x; �/ � 0g.˛/ D
�
1; if Posff .x; �/ � 0g � ˛
0; otherwise

Assume that x is a decision vector, � is a Ra-Fu vector, f .x; �/ is a return func-
tion, and gj .x; �/ � 0; j D 1; 2; : : : ; p do not define a deterministic feasible set,
it is naturally desired that the Ra-Fu constraints hold with probability ˇ at possi-
bility ˛, where ˛ and ˇ are specified confidence levels. Then we have the chance
constraints as follows,

Chfgj .x; �/ � 0g.˛j / � ˇj ; j D 1; 2; : : : ; p (4.39)

Remark 4.9. If the Ra-Fu vector � degenerates to a random vector, and ˛j > 0,
then the chance constraint (4.39) degenerates to
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Prfgj .x; �/ � 0g � ˇj ; j D 1; 2; : : : ; p

which are standard stochastic chance constraints.

Remark 4.10. If the Ra-Fu vector � degenerates to a fuzzy vector, and ˇj > 0, then
the chance constraint (4.39) degenerates to

Posfgj .x; �/ � 0g � ˛j ; j D 1; 2; : : : ; p

which are standard fuzzy chance constraints.

Consider the following multiobjective programming problem with Ra-Fu coeffi-
cients,

8<
:

max Œf1.x; �/; f2.x; �/; : : : ; fm.x; �/�

s.t.

�
gr .x; �/ � 0; ; r D 1; 2; : : : ; p
x 2 X

(4.40)

where x D .x1; x2; : : : ; xn/
T is an n-dimensional decision vector; � D

.�1; �2; : : : ; �n/ is a Ra-Fu vector; fi .x; �/ are objective functions, i D 1; 2; : : : ; m;
gr .x; �/ � 0 are Ra-Fu constraints, r D 1; 2; : : : ; p. For a fixed decision vector x,
it is meaningless to maximize the objectives fi .x; �/; i D 1; 2; : : : ; m, before we
know the exact value of the Ra-Fu vector �, just as we can not maximize a ran-
dom function in stochastic programming. Also, we can not judge weather or not a
decision x is feasible before we know the value of �. Hence, both the objectives
and constraints in problem (4.40) are ill-defined. For presenting a mathematically
meaningful Ra-Fu programming, we build a new class of Ra-Fu programming to
model Ra-Fu decision problems via chance measure which was proposed above.
We present the chance-constrained multi-objective programming as follows,

8̂̂
ˆ̂<
ˆ̂̂̂:

max Œ Nf1; Nf2; : : : ; Nfm�

s.t.

8̂<
:̂

Chffi .x; �/ � Nfi g.˛i / � ˇi ; i D 1; 2; : : : ; m
Chfgr.x; �/ � 0g.�r/ � �r ; r D 1; 2; : : : ; p
x 2 X

(4.41)

where ˛i , ˇi , �r and �r are predetermined confidence levels, i D 1; 2; : : : ; m; r D
1; 2; : : : ; p. By (4.38), problem (4.41) can be rewritten as

8̂̂̂
<̂
ˆ̂̂̂:

max Œ Nf1; Nf2; : : : ; Nfm�

s.t.

8̂<
:̂

Posf� jPrffi .x; �/ � Nfig � ˇi g � ˛i ; i D 1; 2; : : : ; m
Posf� jPrfgr .x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p
x 2 X

(4.42)
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where ˛i , ˇi , �r and �r are predetermined confidence levels, i D 1; 2; : : : ; m; r D
1; 2; : : : ; p. If the objectives is to minimize the cost, then problem (4.41) should be
formulated as follows,

8̂̂<
ˆ̂:

min Œ Nf1; Nf2; : : : ; Nfm�

s.t.

8<
:

Posf� jPrffi .x; �/ � Nfig � ˇi g � ˛i ; i D 1; 2; : : : ; m
Posf� jPrfgr .x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p
x 2 X

(4.43)

Definition 4.23. Suppose a feasible solution x� of problem (4.42) satisfies

Posf� jPrffi .x
�; �/ � Nfi .x

�/g � ˇi g � ˛i ; i D 1; 2; : : : ; m;

where confidence levels ˛i ; ˇi 2 Œ0; 1�. x� is said to be an efficient solution to
problem (4.42) if and only if there exists no other feasible solution x such that

Posf� jPrffi .x; �/ � Nfi .x/g � ˇig � ˛i ; i D 1; 2; : : : ; m;

fi .x/ � fi .x
�/ for all i and fi0.x/ > fi0.x

�/ for at least one i0 2 f1; 2; : : : ; mg.
Sometimes, we may formulate a Ra-Fu decision system as a chance-constrained

goal model (CCGM) according to the priority structure and target levels set by the
decision-maker:8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8̂̂<
ˆ̂:

Posf� jPrffi .x; �/ � bi � dC
i g � ˇC

i g � ˛C
i ; i D 1; 2; : : : ; m

Posf� jPrfbi � fi .x; �/ � d�
i g � ˇ�

i g � ˛�
i ; i D 1; 2; : : : ; m

Posf� jPrfgr.x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p
d�

i ; d
�
i � 0; i D 1; 2; : : : ; m

(4.44)

where Pj is the preemptive priority factor which express the relative importance of
various goals, Pj >> Pj C1, for all j , uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, vij is the weighting factor
corresponding to negative deviation for goal i with priority j assigned, dC

i is the
˛C

i ; ˇ
C
i -optimistic positive deviation from the target of goal i , defined as

minfd _ 0jPosf� jPrffi .x; �/� bi � dC
i g � ˇC

i g � ˛C
i g (4.45)

d�
i is the ˛�

i ; ˇ
�
i -optimistic positive deviation from the target of goal i , defined as

minfd _ 0jPosf� jPrfbi � fi .x; �/ � d�
i g � ˇ�

i g � ˛�
i g (4.46)
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fi is a function in goal constraints, gr is a function in system constraints, bi is the
target value according to goal i , l is the number of priorities, m is the number of
goal constraints, and p is the number of system constraints.

Remark 4.11. If the Ra-Fu vector � degenerates to the random variable, then the
two events Posf� jPrffi .x; �/ � bi � dC

i g � ˇC
i g and Posf� jPrfbi � fi .x; �/ �

d�
i g � ˇ�

i g should be always stochastic at possibility 1 for any � 2 � provided that
ˇC

i ; ˇ
�
i > 0, then

Posf� jPrffi .x; �/� bi � dC
i g � ˇC

i g � ˛C
i

is equivalent to Prffi .x; �/� bi � dC
i g � ˇC

i , and

Posf� jPrfbi � fi .x; �/ � d�
i g � ˇ�

i g � ˛�
i

is equivalent to Prfbi � fi .x; �/ � d�
i g � ˇ�

i . Similarly, the constraint

Posf� jPrfgr .x; �/ � 0g � �rg � �r

is equivalent to Prfgr .x; �/ � 0g � �r , then problem (4.44) is rewritten as

8̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂:

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8̂̂
ˆ̂<
ˆ̂̂̂:

Prffi .x; �/� bi � dC
i g � ˇC

i ; i D 1; 2; : : : ; m
Prfbi � fi .x; �/ � d�

i g � ˇ�
i ; i D 1; 2; : : : ; m

Prfgr .x; �/ � 0g � �r ; r D 1; 2; : : : ; p
d�

i ; d
�
i � 0; i D 1; 2; : : : ; m

(4.47)

This is identical with the goal programming in the stochastic environment.

Remark 4.12. If the Ra-Fu vector � degenerates to the fuzzy variable, then
Prffi .x; �/ � bi � dC

i g and Prfbi � fi .x; �/ � d�
i g should be always 1 provided

that ˇC
i ; ˇ

�
i > 0, then

Posf� jPrffi .x; �/� bi � dC
i g � ˇC

i g � ˛C
i

is equivalent to Posf� jfi .x; �/� bi � dC
i g � ˛C

i , and

Posf� jPrfbi � fi .x; �/ � d�
i g � ˇ�

i g � ˛�
i

is equivalent to Posf� jbi � fi .x; �/ � d�
i g � ˛�

i . Similarly, the constraint

Posf� jPrfgr .x; �/ � 0g � �rg � �r
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is equivalent to Posf� jgr.x; �/ � 0g � �r , then problem (4.44) is rewritten as

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8̂̂
<
ˆ̂:

Posf� jfi .x; �/� bi � dC
i g � ˛C

i ; i D 1; 2; : : : ; m
Posf� jbi � fi .x; �/ � d�

i g � ˛�
i ; i D 1; 2; : : : ; m

Posf� jgr.x; �/ � 0g � �r ; r D 1; 2; : : : ; p
d�

i ; d
�
i � 0; i D 1; 2; : : : ; m

(4.48)

This is identical with the goal programming in the fuzzy environment.

4.4.2 Linear Ra-Fu CCM and "-Constraint Method

In this section, let’s restrict our attention on the linear multiobjective programming
with Ra-Fu parameters. Firstly, we use some mathematical technique to transform
the Ra-Fu CCM with special parameters into a crisp one. Secondly, the "-constraint
method is used to solve the crisp multiobjective programming problem.

4.4.2.1 Crisp Equivalent Model

Let’s consider the following model,

8̂<
:̂

max
� QNcT

1 x; QNcT
2 x; : : : ; QNcT

mx
�

s.t.

(
QNeT
r x � QNbr ; r D 1; 2; : : : ; p

x � 0
(4.49)

where x 2 X � Rn, QNci D . QNci1; QNci2; : : : ; QNcin/
T , QNer D . QNer1; QNer2; : : : ; QNern/

T and QNbr are
Ra-Fu vectors, i D 1; 2; : : : ; m, r D 1; 2; : : : ; p:

Then by the definition of chance measure of Ra-Fu variables and the formula
(4.38), we have the following chance-constrained model of (4.49),

8̂̂̂
<
ˆ̂̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8̂<
:̂

Posf� 2 �jPrf QNcT
i x � Nfi g � ˇi g � ˛i ; i D 1; 2; : : : ; m

Posf� 2 �jPrf QNeT
r x � QNbrg � �rg � �r ; r D 1; 2; : : : ; p

x � 0
(4.50)

To deal with the uncertain programming problem (4.50), we usually divide them
into two kinds, one is the problems with clearly distributed Ra-Fu parameters and
the other is the problems with unclearly distributed random fuzzy parameters. For
the former, we can transform them into the crisp ones by the chance-constrained
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operator, but for the latter, it is difficult to convert them into crisp ones, we must
employ the technique of simulation to simulate them and obtain the certain value.

Theorem 4.9. Assume that the Ra-Fu vector QNci D . QNci1; QNci2; : : : ; QNcin/
T is normally

distributed with mean vector Qd c
i .�/ D . Qd c

i1.�/;
Qd c
i2.�/; : : : ;

Qd c
in.�//

T and positive
definite covariance matrix V c

i , written as QNci � N .d c
i .�/; V

c
i /, where Qd c

ij .�/ is a
fuzzy variable characterized by the following membership function,

� Qd c
ij

.�/
.t/ D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

L

 
d c

ij � t
ıc

ij

!
; t � d c

ij ; ı
c
ij > 0

R

 
t � d c

ij

	c
ij

!
; t � d c

ij ; 	
c
ij > 0

� 2 � (4.51)

where ıc
ij , 	c

ij are positive numbers expressing the left and right spreads of Qdij .�/,
i D 1; 2; : : : ; m, j D 1; 2; : : : ; n, and reference functions L;R W Œ0; 1� ! Œ0; 1�

with L.1/ D R.1/ D 0 and L.0/ D R.0/ D 1 are non-increasing, continuous
functions. Then, we have Posf� 2 �jPrf QNcT

i x � Nfi g � ˇi g � ˛i if and only if

Nfi � ˚�1.1 � ˇi /

q
xTV c

i x CR�1.˛i /	
c
ij C d cT

i x

Proof. From the assumption we know that QNci is a normally distributed Ra-Fu vector
with mean vector Qd c

i .�/ and positive definite covariance matrix V c
i , written as QNcij �

N . Qd c
i .�/; V

c
i /, it follows that QNcT

i x � N . Qd c
i .�/

T x;xTV c
i x/, then we have

Prf QNcT
i x � Nfig � ˇi

, Pr

8̂<
:̂
QNcT
i x � Qd c

i .�/
T xq

xT V c
i x

�
Nfi � Qd c

i .�/
T xq

xTV c
i x

9>=
>; � ˇi

, 1 � ˚

0
B@ Nfi � Qd c

i .�/
T xq

xTV c
i x

1
CA � ˇi

, Qd c
i .�/

T x � Nfi �˚�1.1 � ˇi /

q
xT V c

i x

Since Qd c
ij .�/ D .d c

ij ; ı
c
ij ; 	

c
ij / is an L-R fuzzy variable, it follows from the fuzzy

arithmetic that, for xij � 0, Qd c
i .�/

T x is still an L-R fuzzy variable characterized by
the following membership function,
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� Qd c
ij

.�/x
.t/ D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

L

 
d cT

i x � t
ıcT

i x

!
t � d cT

i x; ıcT
i x > 0

R

 
t � d cT

i x

	cT
i x

!
t � d cT

i x; 	cT
i x > 0

� 2 �

where Qd cT
i D .di1; di2; : : : ; din/

T , ıcT
i D .ıi1; ıi2; : : : ; ıin/

T and 	cT
i D

.	i1; 	i2; : : : ; 	in/
T . Denote K.x/ D Nfi � ˚�1.1 � ˇi /

q
xTV c

i x, then it follows
that

Pos
n
� j Qd cT

i x � K.x/
o
� ˛i

, ˛i �

8̂̂
<̂
ˆ̂̂:
1; if K.x/ � d cT

i x

R

 
K.x/� d cT

i x

	cT
i x

!
; if d cT

i x < K.x/ � d cT
i x C 	c

ij x

0; if K.x/ > d cT
i x C 	c

ij x

For ˛i 2 .0; 1/, we have

K.x/ � R�1.˛i /	
c
ijx C d cT

i x

That is

Nfi � ˚�1.1 � ˇi /

q
xTV c

i x CR�1.˛i /	
c
ij x C d cT

i x

This completes the proof. ut

Similar, the constraints Posf� jPrf QNeT
r x � QNbrg � �rg � �r , r D 1; 2; : : : ; p can

be converted into crisp equivalent constraints.

Theorem 4.10. Suppose that QNer D . QNer1; QNer2; : : : ; QNern/
T is a normally distributed

Ra-Fu vector with the fuzzy mean vector Qd e
r .�/ D . Qd e

r1.�/;
Qd e
r2.�/; : : : ;

Qd e
nr.�//

T

and covariance matrix V e
r , written as QNer � N . Qd e

r .�/; V
e

r /,
QNbr is a Ra-Fu vari-

able with the fuzzy mean variable Qd b
r .�/ and the variance .�b

r /
2, written as QNbr �

N . Qd b
r .�/; .�

b
r /

2/, where Qd e
rj .�/ and Qd b

r .�/ are fuzzy variables characterized by the
following membership functions, respectively,

� Qd e
rj

.�/
.t/ D

8̂̂
ˆ̂<
ˆ̂̂̂:
L

 
d e

rj � t
ıe

rj

!
; t � d e

rj ; ı
e
rj > 0

R

 
t � d e

rj

	e
rj

!
; t � d e

rj ; 	
e
rj > 0

� 2 � (4.52)
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and

� Qd b
r .�/

.t/ D

8̂̂
ˆ̂<
ˆ̂̂̂:
L

 
d b

r � t
ıb

r

!
; t � d b

r ; ı
b
r > 0

R

 
t � d b

r

	b
r

!
; t � d b

r ; 	
b
r > 0

� 2 � (4.53)

where ıe
rj ; 	

e
rj are positive numbers expressing the left and right spreads of Qd e

rj .�/,

ıb
r ; 	

b
r are the left and right spreads of Qd b

r .�/, r D 1; 2; : : : ; p, j D 1; 2; : : : ; n,
and reference functions L;R W Œ0; 1� ! Œ0; 1� with L.1/ D R.1/ D 0 and L.0/ D
R.0/ D 1 are non-increasing, continuous functions. Assume that for any � 2 �,
QNerj .�/,

QNbr.�/ are independent random variables, r D 1; 2; � � �p, j D 1; 2; : : : ; n.

Then, we have Posf� 2 �jPrf QNeT
r x � QNbrg � �rg � �r if and only if

˚�1.�r/

q
xT V e

r x C .�b
r /

2 � .d b
r � d e

r x/ �R�1.�r /.	
b
r C ıe

r x/ � 0

Proof. From the assumption, we know that for any � 2 �, . QNerj .�//n�1 �
N . Qd e

r .�/; V
e

r / and QNdr .�/ � N . Qd b
r .�/; .�

b
r /

2/ are independent random variables,
it follows that

QNer.�/
T x � QNbr.�/ � N . Qd e

r .�/x � Qd b
r .�/;x

T V e
r x C .�b

r /
2/

is also a normally distributed random variable for any � 2 �. Then we have

Prf QNeT
r x � QNbrg � �r

, Pr

(
. QNeT

r x � QNbr /� . Qd e
r .�/x � Qd b

r .�//p
xT V e

r x C .�b
r /

2
� �.

Qd e
r .�/x � Qd b

r .�//p
xT V e

r x C .�b
r /

2

)
� �r

, ˚

 
�. Qd e

r .�/x � Qd b
r .�//p

xT V e
r x C .�b

r /
2

!
� �r

, Qd b
r .�/ � Qd e

r .�/x � ˚�1.�r/
p

xT V e
r x C .�b

r /
2

Since Qd e
rj .�/ D .d e

rj ; ı
e
rj ; 	

e
rj / and Qd b

r .�/ D .d b
r ; ı

b
r ; 	

b
r / are respectively L-R fuzzy

variables, then it follows from the fuzzy arithmetic that for xij > 0, Qd b
r .�/ �Qd e

r .�/x D .d b
r � d e

r x; ıb
r C 	e

r x; 	b
r C ıe

r x/ is also an L-R fuzzy variable
characterized by the following membership function,
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� Qd b
r .�/� Qd e

r .�/x
.t/ D

8̂̂
ˆ̂<
ˆ̂̂̂:
L

 
d b

r � d e
r x � t

ıb
r C 	e

r x

!
t � d b

r � d e
r x; ıb

r C 	e
r x > 0

R

 
t � .d b

r � d e
r x/

	b
r C ıe

r x

!
t � d b

r � d e
r x; 	b

r C ıe
r x > 0

Denote G.x/ D ˚�1.�r/
p

xT V e
r x C .�b

r /
2, then it follows that

Posf� j Qdbr .�/ � Qder .�/x � G.x/g � �r

, �r �

8̂̂̂
<
ˆ̂̂:

1; if G.x/ � dbr � der x

R

�
G.x/ � .dbr � der x/

	br C ıerx
�
; if dbr � der x < G.x/ � dbr � der x C 	br C ıerx

0; if G.x/ > dbr � der x C 	br C ıerx

For �r 2 .0; 1/, the above formula is equivalent to

G.x/ � .d b
r � d e

r x/ �R�1.�r /.	
b
r C ıe

r x/ � 0

That is,

˚�1.�r/

q
xT V e

r x C .�b
r /

2 � .d b
r � d e

r x/ �R�1.�r /.	
b
r C ıe

r x/ � 0

This completes the proof. ut
DenoteX D fx 2 Rnj˚�1.�r/

p
xT V e

r x C .�b
r /

2�.d b
r �d e

r x/�R�1.�r /.	
b
r C

ıe
r x/ � 0I xj � 0; j D 1; 2; : : : ; ng, then from Theorems 4.9 and 4.10, we have that

(4.50) is equivalent to the following multiobjective programming problem,

8̂<
:̂

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

( Nfi � ˚�1.1 � ˇi /
q

xT V c
i x CR�1.˛i /	

c
ij x C d cT

i x

x 2 X
(4.54)

or equivalently

�
maxŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t. x 2 X (4.55)

where Hi .x/ D ˚�1.1 � ˇi /
q

xTV c
i x CR�1.˛i /	

c
ij x C d cT

i x, i D 1; 2; : : : ; m.
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4.4.2.2 "-Constraint Method

"-constraint method was proposed by Haimes [124, 125] in 1971. The idea of this
method is that we choose a main referenced objective fi0, put the other objective
functions into the constraints. Let’s consider the following multi-objective model,

�
min Œf1.x/; f2.x/; : : : ; fm.x/�

s.t. x 2 X (4.56)

So we use the "-constraint method, we can get the single objective model,

8<
:

min fi0.x/

s.t.

�
fi .x/ � "i ; i D 1; 2; : : : ; m; i ¤ i0
x 2 X

(4.57)

where the parameter "i is predetermined by the decision maker, it denote the thresh-
old value that the decision maker will accept, we denote the feasible domain of
model (4.57) as X1.

Theorem 4.11. If Nx is the optimal solution of model (4.57), then Nx is a weak
efficient solution of model (4.56).

Proof. Let Nx be the optimal solution of model (4.57), but it is not a weak efficient
solution of model (4.56), then there exists x0 2 X , such that for8 i 2 f1; 2; : : : ; mg,
fi .x

0/ < fi . Nx/ holds. Since Nx 2 X1, fi . Nx/ � "i .i D 1; 2; : : : ; m; i ¤ i0/, we
have

fi .x
0/ < fi . Nx/ � "i ; i D 1; 2; : : : ; m; i ¤ i0: (4.58)

We can obtain from (4.58) that x0 2 X1, and fi0.x
0/ < fi0. Nx/. This conflicts with

that Nx is the optimal solution. ut
Theorem 4.12. Let Nx be an efficient solution of model (4.56), then there exists a
parameter "i .i D 1; 2; : : : ; m; i ¤ i0/, such that Nx is the optimal solution of model
(4.57).

Proof. Take "i D fi . Nx/, .i D 1; 2; : : : ; m; i ¤ i0/, by the definition of the efficient
solution, Nx is an optimal solution of model (4.57). ut

So the advantages of the "-constraint method are as follows:

1. Every efficient solution of model (4.56) can be got by properly choosing
parameter "i .i D 1; 2; : : : ; m; i ¤ i0/.

2. The i0th objective is mainly guaranteed, and the other objectives are considered
meanwhile.

It is worth for us noticing that the parameter "i is important, we should carefully
choose it. If the value of every "i is too small, then it is possible that the model (4.57)
will have no solutions; otherwise, the value of "i is too large, then besides the main
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objective, the other objective will lose more with higher possibility. Commonly,
we can offer the decision maker f 0

i D minx2X fi .x/ .i D 1; 2; : : : ; m/ and the
objective value .f1.x/; f2.x/; : : : ; fm.x//

T of a certain feasible solution x. And
then the decision maker can decide "i .

4.4.3 Nonlinear Ra-Fu CCM and Ra-Fu Simulation-Based st-GA

Consider the following model,

8̂̂<
ˆ̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8<
:

Posf� jPrffi .x; �/ � Nfig � ˇi g � ˛i ; i D 1; 2; : : : ; m
Posf� jPrfgr .x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p
x 2 X

where ˛i , ˇi , �r and �r are predetermined confidence levels, i D 1; 2; : : : ; m; r D
1; 2; : : : ; p. If fi , or gr or even both of them are nonlinear functions with respect
to �, we cannot directly convert it into crisp model, then another method is intro-
duced to solve it.

4.4.3.1 Ra-Fu Simulation for CCM

Assume that � is an n-dimensional Ra-Fu vector defined on the possibility space
.�;P.�/; Pos/, and f W Rn ! R is a measurable function. For any given con-
fidence level ˛ and ˇ, we need to design the Ra-Fu simulation to find the maximal
value Nf such that

Chff .x; �/ � Nf g.˛/ � ˇ

holds. That is, we must find the maximal value Nf such that

Posf� jPrff .x; �.�// � Nf g � ˇg � ˛:

We randomly generate �k from � such that Posf�kg � ", and write vk D
Posf�kg; k D 1; 2; : : : ; N , respectively, where " is a sufficiently small number. For
any number �k , we search for the maximal value Nf .�k/ such that Prff .x; �.�k// �Nf .�k/g � ˇ by stochastic simulation. For any number r , we have

H.r/ D 1

2

�
max

1�k�N
fvkj Nf .�k/ � rg C min

1�k�N
f1� vkj Nf .�k/ < rg

�

If follows from monotonicity that we may employ bisection search to find the max-
imal value r such that H.r/ � ˛. This value is an estimation of Nf . Then the
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procedure simulating the critical value of Posf� jPrff .x; �.�// � Nf g � ˇg � ˛

can be summarized as follows:

Procedure Ra-Fu simulation for CCM
Input: The decision vector x

Output: The critical value Nf of Posf� jPrff .x; �.�// � Nf g � ˇg � ˛
Step 1. Generate �k from� such that Posf�kg � " for k D 1; 2; : : : ; N , where
" is a sufficiently small number;
Step 2. Find the maximal value r such that H.r/ � ˛ holds;
Step 3. Return r .

Example 4.18. In order to find the maximal value Nf such that

Ch

�q
QN�2
1 C QN�2

2 C QN�2
3 � Nf

�
.0:8/ � 0:8;

where QN�1, QN�2 and QN�3 are Ra-Fu variables defined as

QN�1 � N . Q�1; 1/; with Q�1 D .1; 2; 3/;
QN�2 � N . Q�2; 2/; with Q�2 D .2; 3; 4/;
QN�3 � N . Q�3; 1/; with Q�3 D .3; 4; 5/:

where Q�i .i D 1; 2; 3/ are triangular fuzzy numbers. We perform the Ra-Fu simula-
tion with 1000 cycles and obtain that Nf D 2:5604.

4.4.3.2 Spanning Tree-Based Genetic Algorithm

Spanning tree-based genetic algorithms (abbr. st-GA) paly an important role within
many fields. It generally arises in one of two ways, directly or indirectly. In some
direct applications, we wish to connect a set of points using the least cost or least
length collection of arcs. Frequently, the points represent physical entities such as
components of a computer chip, or users of a system who need to be connected
to each other or to a central service such as central processor in a computer sys-
tem [2]. In indirect applications, we either (1) wish to connect some set of points
using a measure of performance that on the surface bears little resemblance to the
minimum spanning tree objective (sum of arc costs), or (2) the problem itself bears
little resemblance to an “optimal tree” problem – in these instances, we often need
to be creative in modelling the problem so that it becomes a minimum spanning tree
problem. Next, we introduce the steps of spanning tree-based genetic algorithm in
detail, and interested readers can refer to related literatures [5, 108, 109, 309, 341].
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Representation and initialization. The genetic representation is a kind of data
structure which represents the candidate solutions of the problem in coding space.
Usually, different problems have different data structures or genetic representations.
Here, we employ the sub-tree I �J and the sub-tree J �k to represent the transport
pattern from plants to DCs, and from DCs to customers respectively. Each chro-
mosome in this problem consists of three parts. The first part is J binary digits to
represent the opened/closed DCs. The last two parts are two Prüfer numbers rep-
resenting the distribution pattern from plants to DCs, and from DCs to customers,
respectively.

In 1889, Cayley proved that there are pp�2 distinct labeled trees for a complete
graph with p nodes. Prüfer presented the simplest proof of Cayley’s formula by
establishing a one-to-one correspondence between the set of spanning tree and a set
of p � 2 digit with an integer between 1 and p inclusive [109]. For the sub-tree
I � J , denote the plants 1; 2; : : : ; I as the component of set I D f1; 2; : : : ; I g and
define DCs 1; 2; : : : ; J as the component of the setD D fI C1; I C2; : : : ; I CJ g.
Obviously, this distribution graph has I C J nodes, which means that we need
I CJ �2 digit Prüfer numbers in the range Œ1; I CJ � to uniquely represent the sub-
tree I � J . By using the similar ways, we produce another J CK � 2 digit Prüfer
numbers representing sub-trees J � K . An illustration of a feasible chromosome
representation is given in Fig. 4.9. The first sub-string is 4 binary digits, representing
opened/closed DCs. The last two sub-strings are Prüfer numbers consist of 5 and 7
digits to represent distribution patterns.

Then we take the third sub-string for example to explain the encoding, feasibility
check and decoding algorithm.

Encoding. The transport tree illustrated in Fig. 4.10, converted into the corre-
sponding Prüfer number, is shown in Fig. 4.11.

0 1 4 2 2 7 3 6 2 3 7 2 5 4

0-1 variable Prüfer number 1 Prüfer number 2

11

Fig. 4.9 An illustration of chromosome

1 2

3

456

7 98

Fig. 4.10 Spanning tree
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Fig. 4.11 Encoding procedure

The encoding procedure is as follows.

Procedure Encoding a tree to a Prüfer number

Input: tree data set
Output: A Prüfer number P.T /
Step 1. Let j be the lowest-numbered leaf node in the tree. Let k be the node
that is the incident to node j . Then k becomes the leftmost digit of the number
P.T /. P.T / is built up by appending digits to the right; thus P.T / is built and
read from left to right;
Step 2. Remove j and edge .j; k/ from further consideration. Thus, j is no
longer considered at all and if j is the only successor of k, then j becomes a
leaf node;
Step 3. If only two nodes remain to be considered, P.T / has been formed
with J CK � 2 digits between 1 and J CK inclusive, so stop; otherwise,
return to step 1.

Feasibility check for Prüfer number. The process of initializing a chromosome
(a Prüfer number) is by choosing J C K � 2 digits from the range Œ1; J C K� at
random. Thus it is possible to generate some infeasible chromosomes that cannot
be adapted into the transport network graph. Due to this reason, feasibility should
be checked before decoding the Prüfer number into the spanning tree. As we know,
Prüfer number encoding, explicitly contains information of a node degree that any
node with degree d will appear exactly d � 1 times in the encoding. Thus, when
a node appears d times in Prüfer number, the node has exactly d C 1 connections
with other nodes.

Then we create the handling for the feasibility of the chromosome with following
criterion: Denote that Lj

J and Lk
K are the number of appearance of nodes j and k
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which are included in the set J and K respectively from P.T /. And we denote

that Lj
J and Lk

K are the number of appearances of nodes j and k in P .T /which

are included in set J and K respectively. If
P

j 2J .L
j
J C 1/ C P

j 2J L
j
J DP

k2K.L
k
K C 1/ CP

k2K L
k
K , then P.T / is feasible; otherwise, P.T / is infea-

sible. Here,we design the feasibility check and repairing procedure for the Prüfer
number to be decoded into spanning tree as follows:

Produce: feasibility check by using the Ra-Fu simulation and repairing proce-
dure for the Prüfer number. Repeat the following steps, until

P
j 2J .L

j
J C 1/ CP

j 2J L
j
J D

P
k2K.L

k
K C 1/C

P
k2K L

k
K .

Step 1. Determine Lj
J and Lk

K from P.T /, Lj
J and Lk

K from P .T /.

Step 2. If
P

j 2J .L
j
J C 1/C

P
j 2J L

j
J >

P
k2K.L

k
K C 1/C

P
k2K L

k
K , then

select one digit in P.T / which contains node j.j 2 J / and replace it with the
number k.k 2 K/. Otherwise, select one digit in P.T / which contains node k.k 2
K/ and replace it with the number j.j 2 J /.

Decoding. After checking the feasibility of the chromosome, the chromosome of
this problem can be decoded into spanning trees in order to determine the transport
pattern. Considering that the total capacity of DCs which will be opened has to sat-
isfy the total demanded by customers, the chromosome is decoded in the backward
direction. Firstly, the transport tree between opened DCs and customers is obtained
by changing the capacity of the closed DCs to be zero and decoding of the last seg-
ment of chromosome. After that, the total amount required for a product on each
DC is determined. Lastly, the transport tree between suppliers and opened DCs is
obtained by decoding the second segment of chromosome.

The decoding procedure of the second Prüfer number shown in Fig. 4.9 and
its trace table are given in Fig. 4.12 and Table 4.3, respectively. And we also
give the step-by-step procedure for decoding the second Prüfer number as follow:
Firstly, Let P.T / D Œ 6 2 3 7 2 5 4 � be the original Prüfer number, and we have
P .T / D Œ 1 8 9 � as being the set of all nodes that are not part of P.T / and are
designed as eligible for consideration. Node 1 is the lowest-numbered eligible node
in P.T / and node 6 is the leftmost digit of P.T /. However, since these two nodes
are not in the same set, we add an edge (1, 6) to the tree, remove node 1 from
P .T / and node 6 from P.T / leaving P.T / D Œ 2 3 7 2 5 4 �, and since node 6 no
longer appears in the remaining part of P.T /, add it to P .T /, so P.T / D Œ 6 8 9 �.
Assign the available amount of units to x16 = min fm1; b6g = 4,900 which sat-
isfies the defined constraints. Update availability m1 D m1 � x16 D 3851 and
b6 D b6 � x16 D 0. Secondly, node 6 lowest-numbered eligible node in P .T /
and node 2 is the leftmost digit of P.T /, and these two nodes are not in the same
set, so we add (2, 6) to the tree, remove node 6 from P .T / and node 2 from P.T /

leaving P.T / D Œ 3 7 2 5 4 � and P.T / D Œ 8 9 �. Assign x26 = min fm2; b6g D 0.
Update m2 D m2 � x26 D 0 and b6 D b6 � x26 D 0. Repeat this process
until finally, P.T / is empty and are left with only node 4 and 9 in P .T /. Since
there is still an available source in node 4 and demand in node 9, we add the edge
(4, 9) to the tree. The decoding procedures of the first Prüfer number is similar.
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Fig. 4.12 Decoding procedure

Procedure Decoding a Prüfer number to a spanning tree

Input: A Prüfer number P.T /
Output: Tree data set
Step 1. Let P.T / be the original Prüfer number and NP.T / be the set of all
nodes that are not part of P.T / and are designed as eligible for consideration;
Step 2. Repeat the following substep (2.1)–(2.5) until no digit left in P.T /:
(2.1) Let i be the lowest numbered eligible node in NP .T / and j be the
leftmost digit of P.T /. (2.2) If i and j are not in the same set S or D, add the
edge .i; j / to tree T . Otherwise, select the next digit k from P.T / that not
included in the same set with i , exchange j with k, add the edge .j; k/ to the
tree T . (2.3) Remove j (or k) from P.T / and i from NP .T /. If j (or k) does
not occur anywhere in the remaining part of P.T /, put it into. Designate i as
no longer eligible. (2.4) Assign the available amount of units to
xij D minfai ; bj g (or xik D minfai ; bkg) to edge .i; j / [or .j; k/], where
i 2 S and j; k 2 D. (2.5) Update availability ai D ai � xij and bi D bi � xij ;
Step 3. If no digits remain in P.T / then there are exactly two nodes, i and j ,
still eligible in NP .T / for consideration. Add edge .i; j / to tree T and form a
tree with mC n � 1 edges;
Step 4. Repeat this process until P.T / is empty

Genetic operators. The genetic operators mimic the process of hereditary of
genes to create new offspring in each generation. The operators are used to alter the
genetic composition of individuals during representation. There are two common
genetic operators: crossover and mutation.

Crossover is the main genetic operator which is done to explore a new solu-
tion space. It operates on two chromosomes at a time and generates offspring by
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Table 4.3 Trace of decoding procedure

mj dk j k yjk

(8751, 0, 17600, 15800) (6200, 4900, 5340, 7900, 7815) 1 6 4900
(3851, 0, 17600, 15800) (6200, 0, 5340, 7900, 7815) 2 6 0
(3851, 0, 17600, 15800) (6200, 0, 5340, 7900, 7815) 3 8 7900
(3851, 0, 9700, 15800) (6200, 0, 5340, 0, 7815) 3 7 5340
(3851, 0, 4360, 15800) (6200, 0, 0, 0, 7815) 2 7 0
(3851, 0, 4360, 15800) (6200, 0, 0, 0, 7815) 2 5 0
(3851, 0, 4360, 15800) (6200, 0, 0, 0, 7815) 4 5 6200
(3851, 0, 4360, 9600) (0, 0, 0, 0, 7815) 4 9 7815
(3851, 0, 4360, 1785) (0, 0, 0, 0, 0) – – –

cut point cut point

Parent 1  [6  2  3  7  2  5  4] Parent 2  [6  3  2  3  4  7  5]

Offspring 1  [6  2  3  3  4  7  5] Offspring 2  [6  3  3  7  2  5  4]

Fig. 4.13 One-point crossover process

Fig. 4.14 Inversion mutation
process

Choose substring at random

Invert the substring

Parent [6  2  3  7  2  5  4]

Child [6  2  3  4  5  2  7]

combining both chromosomes’ features. As a simple way to achieve crossover, a
one-cut point crossover operation is used to choose a random cut-point and to gen-
erate the offspring by combining the segment of one parent to the left of the cut-point
with the segment of the other parent to the right of the cut-point shown as Fig. 4.13.

Mutation is a background operator which produces spontaneous random changes
in various chromosomes to explore a new solution space. A simple way to achieve
mutation would be to alter one or more genes. In this paper, we adopt inversion
mutation by selecting two positions within a chromosome at random and then invert
the substring between these two positions illustrated in Fig. 4.14. The Prüfer num-
bers resulting by this mutation operation are always feasible in the sense that they
can be decoded into a corresponding transport tree due to the feasibility criteria
Ls CLs D LD C LD are unchanged after these operations.

Fitness evaluation and selection. The fitness evaluation is to check the solution
value of the objective function subjected to the problem constraints. The single-
objective problem can be easily manipulated by calculating the fitness value of each
chromosome according to the objective function. However, with the multi-objective
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problem, we can only calculate each objective value and cannot simply evaluate its
fitness value when in practice the objective functions conflict with each other. In
other words, we cannot obtain the absolute optimal solution, but can only get the
Pareto optimal solution.

As to the fitness function for evaluating chromosomes, we employ the weighted
sums method to contract the fitness function. Then we use the following evalua-
tion to combine the multi-objective functions into one overall fitness function and
evaluate each chromosome.

Step 1. Calculate the objective values .Fi , i D 1; 2/.
Step 2. Chose the solution points which contain the maximum F1 ( or the min-

imum F2) corresponding to each objective function value, and then compare them
with the stored solution points in the previous generation and select the best points
to save again.

F
max.t/
i D max

k

n
F

max.t�1/
i ; F

.t/
i .Xk/jk D 1; 2; : : : ; isize

o
F

min.t/
i D min

k

n
F

min.t�1/
i ; F

.t/
i .Xk/jk D 1; 2; : : : ; isize

o (4.59)

where Fmax.t/
i , Fmin.t/

i are the maximum and minimum values of the i th objective

function at generation t , respectively, F .t/
i .Xk/) is the i th objective function value

of the kth chromosome at generation t , and isize is equal to the popsize plus the
offsprings generated after genetic operations.

Step 3. Solve the following equation to get weight for the fitness function:

"i D Fmax.t/
i � Fmin.t/

i ; !i D "i

2P
iD1

"i

; i D 1; 2 (4.60)

Step 4. Fitness function is obtained by combining the objective functions as
follows:

eval.Xk/ D
2X

iD1

!iFi .Xk/; k D 1; 2; : : : ; isize (4.61)

Selection provides the driving force in a GA. The selection directs the genetic
search toward promising regions in the search space. During the past two decades,
many selection methods have been proposed, examined and compared. Roulette
wheel selection, proposed by Holland, is the best known selection type. The basic
idea is to determine selection probability or survival probability for each chromo-
some proportional to the fitness value. Then a model roulette wheel can be made
displaying these probabilities. The selection process is based on spinning the wheel
the number of times equal to population size, each selecting a single chromosome
for the new procedure.
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Procedure Procedure for the roulette wheel selection
Input: isize chromosomes
Output: Selected parament chromosomes
Step 1. Calculate a cumulative probability qk for each chromosome Pk , (kD1,
2, : : : ; isize);
Step 2. Generate a random real number r 2 Œ0; 1�;
Step 3. If r � q1, then select the first chromosome P1; otherwise select the
kth chromosome Pk(2 � k � isize) such that qk�1 < r � qk;
Step 4. Repeat steps 2 and 3 for isize times and obtain isize copies of
chromosomes;
Step 5. If the best chromosome is not selected in the next generation, replace
one from the new population randomly by the best one;

Using this selection process, we can keep the best chromosome from the current
generation for the next generation.

Overall procedure of the proposed method. The steps of our algorithm for solving
the problem are outlined as follows.

Procedure Spanning tree-based GA
Input: initial data and GA parameters
Output: minimum total cost
begin

t  1;
initialization P.T / by spanning tree-based encoding;
fitness eval.P /;
while (not termination condition) do

crossover P.T / to yield C.T / by one point crossover;
mutation P.T / to yield C.T / by inversion mutation;
check the feasibility of the offspring and repair the infeasible off
spring;
fitness eval.C /;
select P.T j1/ from P.T / and C.T / by roullete wheel selection;
t  t C 1;

end
end

4.4.4 Numerical Examples

Example 4.19. Consider the following linear multi-objective problem with Ra-Fu
coefficients and use the " constraint method to resolve it.
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ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂:

maxf1.x; �/ D QN�1x1 � QN�2x2 C QN�3x3 � QN�4x4 C QN�5x5

maxf2.x; �/ D c1
QN�6x1 � c2

QN�7x2 C c3
QN�8x3 � c4

QN�9x4 C c5
QN�10x5

s.t.

8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

x1 C x2 C x3 C x4 C x5 � 450
x1 � x2 C x3 � x4 C x5 � 110
4x1 � 2x2 C 1:5x3 � x4 C 2x5 � 800
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 460
x1 � 10; x2 � 10; x3 � 10; x4 � 10; x5 � 10

(4.62)

where c D .c1; c2; c3; c4; c5/ D .1:2; 0:5; 1:3; 0:8; 0:9/,
QN�1 � N . Qd1; 1/; with Qd1 D .101; 113; 116/; QN�2 � N . Qd2; 4/; with Qd2 D .238; 241; 246/;
QN�3 � N . Qd3; 1/; with Qd3 D .84; 87; 90/; QN�4 � N . Qd4; 2/; with Qd4 D .55; 56; 58/;
QN�5 � N . Qd5; 1/; with Qd5 D .90; 92; 93/; QN�6 � N . Qd6; 1/; with Qd6 D .152; 156; 158/;
QN�7 D N . Qd7; 2/; with Qd7 D .140; 143; 144/; QN�8 � N . Qd8; 2/; with Qd8 D .210; 214; 216/;
QN�9 � N . Qd9; 2/; with Qd9 D .153; 157; 159/; QN�10 D N . Qd10; 2/; with Qd10 D .168; 172; 178/:

and Qdi .i D 1; 2; : : : ; 10/ are triangular fuzzy variables. Then we get the chance
constraint model as follows,

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
:̂

max
� Nf1; Nf2

�

s.t.

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

Posf� jPrfQN�1x1 � QN�2x2 C QN�3x3 � QN�4x4 C QN�5x5 � Nf1g � ˇ1g � ˛1

Posf� jPrf1:2QN�6x1 � 1:5QN�7x2 C 0:3QN�8x3 � 0:8QN�9x4 C 0:9QN�10x5 � Nf2g � ˇ2g � ˛2

x1 C x2 C x3 C x4 C x5 � 450

x1 � x2 C x3 � x4 C x5 � 110

4x1 � 2x2 C 1:5x3 � x4 C 2x5 � 800

x1 C 4x2 C 2x3 C 5x4 C 3x5 � 460

x1 � 10; x2 � 10; x3 � 10; x4 � 10; x5 � 10

(4.63)

Take ˛1 D ˇ1 D ˛2 D ˇ2 D 0:9, and it follows from Theorem 4.6 that problem
(4.63) is equivalent to

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂:

maxH1.x/ D 113:3x1 � 241:5x2 C 87:3x3 � 56:2x4 C 92:1x5

C˚�1.0:1/

q
x2

1 C 4x2
2 C x2

3 C 2x2
4 C x2

5

maxH2.x/ D 156:2x1 � 143:1x2 C 214:2x3 � 157:2x4 C 172:6x5

C˚�1.0:1/

q
x2

1 C 2x2
2 C 2x2

3 C 2x2
4 C 2x2

5

s.t.

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

x1 C x2 C x3 C x4 C x5 � 450
x1 � x2 C x3 � x4 C x5 � 110
4x1 � 2x2 C 1:5x3 � x4 C 2x5 � 800
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 460
x1 � 10; x2 � 10; x3 � 10; x4 � 10; x5 � 10

(4.64)
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where ˚�1.x/ is the standard normally distributed function. Next, we use the "
constraint method to resolve the crisp problem (4.64).

Step 1. Let H1.x/ be the reference constraint and H2.x/ be the objective
function. Then compute maxx2X H1.x/ and we have "0 D 24432:79.

Step 2. Let H2.x/ be the objective function and construct the following single
objective problem,8̂̂

ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

maxH2.x/ D 156:2x1 � 143:1x2 C 214:2x3 � 157:2x4 C 172:6x5

C˚�1.0:1/

q
x2

1 C 2x2
2 C 2x2

3 C 2x2
4 C 2x2

5

s.t.

8̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂:

113:3x1 � 241:5x2 C 87:3x3 � 56:2x4 C 92:1x5

C˚�1.0:1/

q
x2

1 C 4x2
2 C x2

3 C 2x2
4 C x2

5 � 24432:79
x1 C x2 C x3 C x4 C x5 � 450
x1 � x2 C x3 � x4 C x5 � 110
4x1 � 2x2 C 1:5x3 � x4 C 2x5 � 800
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 460
x1 � 10; x2 � 10; x3 � 10; x4 � 10; x5 � 10

(4.65)

Then we obtain the optimal solution x D .170:77; 10:00; 84:62; 10:00; 10:00/T .

Example 4.20. Consider the following nonlinear multi-objective problem with
Ra-Fu coefficients and use the Ra-Fu simulation-based genetic algorithm to
resolve it.8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

max Œ Nf1; Nf2�

s.t.

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

Posf� jPrf3 QN�2
1x

2
1 � 2 QN�1

QN�2x1x2 C 1:3 QN�2
2x

2
2 � Nf1g � 0:9g � 0:9

Posf� jPrf2:5 QN�2
3x

2
1 C 3 QN�3

QN�4x1x2 C 5 QN�2
4x

2
2 � Nf2g � 0:9g � 0:9

x1 C x2 � 10
5x1 � 2x2 � 2
x1; x2 � 0

(4.66)

where �i .i D 1; : : : ; 4/ are all independently Ra-Fu variables as follows

QN�1 � N . Q�1; 2/; with Q�1 D .5; 6; 7/; QN�2 � N . Q�2; 1/; with Q�2 D .6:5; 8; 10/;QN�3 � N . Q�3; 1:5/; with Q�3 D .4; 5; 6/; QN�4 � N . Q�4; 2/; with Q�4 D .5; 7; 8/:
where Q�i are all triangular fuzzy numbers, i D 1; : : : ; 4.

Let the probability of crossover be 0.4 and the probability of mutation be 0.2, and
after running 2200 times, you can find optimal results in Table 4.4 and Fig. 4.15.

4.5 Ra-Fu DCM

Uncertain environment, event, and the chance function are key elements in DCM.
Let us redefine them in Ra-Fu decision systems, and introduce the principle of
uncertainty. By uncertain environment (in this case the Ra-Fu environment) we
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f

Fig. 4.15 The process of Ra-Fu simulation-based st-GA

Table 4.4 The optimal solution by Ra-Fu simulation-based st-GA

w1 w2 x1 x2 Nf1 Nf2 Nf Gen

0.1 0.9 2.2823 0.0925 1.1123 6.0069 5.5175 2200
0.2 0.8 1.1542 2.7342 1.4170 5.8217 4.9407 2200
0.3 0.7 0.2140 1.9297 1.5559 5.8935 4.5922 2200
0.4 0.6 1.5625 0.2912 0.9358 5.8060 3.8579 2200
0.5 0.5 2.6555 1.1940 0.8505 5.7968 3.3236 2200

mean the Ra-Fu constraints represented by

gj .x; �/ � 0; j D 1; 2; : : : ; p (4.67)

where x is a decision vector, and � is a Ra-Fu vector. By the event we mean the
system of inequalities

hk.x; �/ � 0; k D 1; 2; : : : ; q (4.68)

The chance function of an event " characterized by (4.68) is defined as the chance
measure of the event ", i.e.,

f .x/ D Chfhk.x; �/ � 0; k D 1; 2; : : : ; qg (4.69)

subject to the uncertain environment (4.67).
For each decision x and realization �, an event " is said to be consistent in

the uncertain environment if the following two conditions hold: (a) hk.x; �/ � 0;



254 4 Random Fuzzy Multiple Objective Decision Making

k D 1; 2; : : : ; qI and (b) gj .x; �/ � 0; j 2 J , where J is the index set of all
dependent constraints.

Assume that there are m events "i characterized by hik.x; �/ � 0; k D
1; 2; : : : ; qi for i D 1; 2; : : : ; m in the uncertain environment gj .x; �/ � 0; j D
1; 2; : : : ; p. The principle of uncertainty implies that the chance function of the i th
event "i in the uncertain environment is

fi .x/ D Ch
�
hik.x; �/ � 0; k D 1; 2; : : : ; q
gj .x; �/ � 0; j 2 Ji

�
(4.70)

where Ji are defined by

Ji D fj 2 f1; 2; : : : ; pgjgj .x; �/ � 0 is a dependent constraint of "ig

for i D 1; 2; : : : ; m:

4.5.1 General Model for Ra-Fu DCM

When ˛-chance measure is used, we may formulate a random fuzzy DCM as
follows: �

max Chfhk.x; �/ � 0; k D 1; 2; : : : ; qg.˛/
s.t. gj .x; �/ � 0; j D 1; 2; : : : ; p (4.71)

where x is an n-dimensional decision vector, � is a random fuzzy vector, the event
" is characterized by hk.x; �/ � 0; k D 1; 2; : : : ; q, ˛ is a given possibility
level, and the uncertain environment is described by the random fuzzy constraints
gj .x; �/ � 0, j D 1; 2; : : : ; p.

Remark 4.13. If the Ra-Fu vector � degenerates to a random vector, then for any
given ˛ > 0,

Chfhk.x; �/ � 0; k D 1; 2; : : : ; qg.˛/ 	 Prfhk.x; �/ � 0; k D 1; 2; : : : ; qg:

Thus the model (4.71) becomes

�
max Prfhk.x; �/ � 0; k D 1; 2; : : : ; qg
s.t. gj .x; �/ � 0; j D 1; 2; : : : ; p (4.72)

which is a standard stochastic DCM.

Remark 4.14. If the Ra-Fu vector � degenerates to a fuzzy vector, then for any given
˛ > 0,

Chfhk.x; �/ � 0; k D 1; 2; : : : ; qg.˛/ D 1
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if Posfhk.x; �/ � 0; k D 1; 2; : : : ; qg � ˛, and 0 otherwise. Roughly speaking,
maximizing the chance Chfhk.x; �/ � 0; k D 1; 2; : : : ; qg.˛/ implies maximizing
the possibility Posfhk.x; �/ � 0; k D 1; 2; : : : ; qg. Thus the model (4.71) becomes

�
max Posfhk.x; �/ � 0; k D 1; 2; : : : ; qg
s.t. gj .x; �/ � 0; j D 1; 2; : : : ; p (4.73)

which is a standard fuzzy DCM.

If there are multiple events in the uncertain environment, then we have the
following Ra-Fu dependent-chance multiobjective decision making model,

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

max

2
664

Chff1.x; �/ � 0g.˛1/

Chff2.x; �/ � 0g.˛2/

� � �
Chffm.x; �/ � 0g.˛m/

3
775

s.t. gj .x; �/ � 0; j D 1; 2; : : : ; p

(4.74)

where the events "i are characterized by fi .x; �/ � 0 and ˛i are given possibility
levels, i D 1; 2; : : : ; m, respectively.

Ra-Fu dependent-chance goal programming is employed to formulate Ra-Fu
decision systems according to the priority structure and target levels set by the
decision-maker,8̂̂

ˆ̂̂<
ˆ̂̂̂̂:

min
lP

j D1

Pj

mP
iD1

.uijd
C
i C vijd

�
i /

s.t.

8<
:
Ch

˚
fi .x; �/ � 0



.˛i /C d�

i � dC
i D bi ; i D 1; 2; : : : ; m

gj .x; �/ � 0; j D 1; 2; : : : ; p
d�

i ; d
C
i � 0; i D 1; 2; : : : ; m

(4.75)

where Pj is the preemptive priority factor which express the relative importance of
various goals, Pj >> Pj C1, for all j , uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, uij is the weighting factor
corresponding to negative deviation for goal i with priority j assigned, dC

i is the
positive deviation from the target of goal i , d�

i is the negative deviation from the
target of goal i , ˛i is the given possibility level, gj is a function in system con-
straints, bi is the target value according to goal i , l is the number of priorities, m is
the number of goal constraints, and p is the number of system constraints.

4.5.2 Linear Ra-Fu DCM and Goal Programming Method

In this section, we restrict our attention on the linear multiobjective programming
problem with Ra-Fu parameters. We firstly introduce a class of Ra-Fu DCMs
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which can be directly transformed into crisp ones and secondly apply the goal
programming method to solve them.

4.5.2.1 Crisp Equivalent Model

Consider the following model,

8̂<
:̂

max
� QNcT

1 x; QNcT
2 x; : : : ; QNcT

mx
�

s.t.

(
QNeT
r x � QNbr ; r D 1; 2; : : : ; p

x � 0
(4.76)

where x 2 X � Rn, QNci D . QNci1; QNci2; : : : ; QNcin/
T ; QNer D . QNer1; QNer2; : : : ; QNern/

T are Ra-Fu

vectors, i D 1; 2; : : : ; m, and QNbr are fuzzy variables, r D 1; 2; : : : ; p: Then by the
definition of chance measure of Ra-Fu variables, we have the following dependent-
chance model of (4.76),

8̂<
:̂

max
�
Chf QNcT

i x � Nfig.˛i /; i D 1; 2; : : : ; m
�

s.t.

(
Chf QNeT

r x � QNbrg.�r / � �r ; r D 1; 2; : : : ; p
x � 0

(4.77)

where ˛i ; �r ; �r are given confidence levels, fi are predetermined objective value,
i D 1; 2; : : : ; m; r D 1; 2; : : : ; p. Then by (4.22), problem (4.77) can be rewritten as

8̂<
:̂

max
�
supfˇi jPosf� jPrf QNcT

i x � Nfig � ˇig � ˛i g; i D 1; 2; : : : ; m
�

s.t.

(
Posf� jPrf QNeT

r x � QNbrg � �rg � �r ; r D 1; 2; : : : ; p
x � 0

(4.78)

One way of solving the dependent-chance multiobjective programming model is
to convert the objectives and constraints of problem (4.78) into their respective crisp
equivalents. As we know, this process is usually a hard work and only successful for
some special cases. Next, we will consider a special case and present the result in
this section.

Theorem 4.13. Assume that the Ra-Fu vector QNci D . QNci1; QNci2; : : : ; QNcin/
T is normally

distributed with mean vector Qd c
i .�/ D . Qd c

i1.�/;
Qd c
i2.�/; : : : ;

Qd c
in.�//

T and positive
definite covariance matrix V c

i , written as QNci � N .d c
i .�/; V

c
i /, where Qd c

ij .�/ is a
fuzzy variable characterized by the following membership function,

� Qd c
ij

.�/
.t/ D

8̂̂
ˆ̂<
ˆ̂̂̂:
L

 
d c

ij � t
ıc

ij

!
; t � d c

ij ; ı
c
ij > 0

R

 
t � d c

ij

	c
ij

!
; t � d c

ij ; 	
c
ij > 0

� 2 � (4.79)
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where ıc
ij ; 	

c
ij are positive numbers expressing the left and right spreads of Qdij .�/,

i D 1; 2; : : : ; m, j D 1; 2; : : : ; n, and reference functions L;R W Œ0; 1� ! Œ0; 1�

with L.1/ D R.1/ D 0 and L.0/ D R.0/ D 1 are non-increasing, continuous
functions. Then we have that

supfˇi jPosf� jPrf QNc.!/Ti x � Nfi g � ˇi g � ˛i gD˚

0
B@R�1.˛i /	

c
ij C d cT

i x � Nfiq
xTV c

i x

1
CA:

Proof. From Theorem 4.9, we have that

Posf� jPrf QNc.�/Ti x � Nfi g � ˇi g � ˛i

, Nfi � ˚�1.1 � ˇi /
q

xT V c
i x CR�1.˛i /	

c
i x C d cT

i x

Then it follows that ˇi � 1 � ˚
� Nfi �.R�1.˛i /
c

i
xCd cT

i
x/p

xT V c
i

x

�
. Since ˚.�x/ D 1 �

˚.x/, then we have

ˇi � ˚

0
B@R�1.˛i /	

c
i x C d cT

i x � Nfiq
xTV c

i x

1
CA:

Thus

supfˇi jPosf� jPrf QNc.�/Ti x � Nfi g � ˇi g � ˛i gD˚

0
B@R�1.˛i /	

c
i x C d cT

i x � Nfiq
xTV c

i x

1
CA:

This completes the proof. ut

By Theorem 4.10, we have that Posf� jPrf QNeT
r x � QNbrg � �rg � �r is equivalent

to

˚�1.�r /

q
xTV e

r x C .�b
r /

2 � .d b
r � d e

r x/� R�1.�r/.	
b
r C ıe

r x/ � 0;

then (4.78) can be rewritten as

8̂̂̂
<
ˆ̂̂:

max

2
64˚

0
B@R�1.˛i /	

c
i x C d cT

i x � Nfiq
xT V c

i x

1
CA; i D 1; 2; : : : ; m

3
75

s.t. x 2 X
(4.80)
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where X D fx 2 Rnj˚�1.�r/
p

xT V e
r x C .�b

r /
2 � .d b

r � d e
r x/ � R�1.�r/.	

b
r C

ıe
r x/ � 0;x � 0g. Then (4.80) is a typical nonlinear multi-objective programming

problem without uncertain parameters, which can be easily solved by traditional
method.

4.5.2.2 Goal Programming Method

The goal programming method is initialized by Charnes and Cooper [46] in 1961.
After that, Ijiri [140], Lee [189], Kendall and Lee [156], and Ignizio [139] deeply
researched and widely developed it. When dealing with many multi-objective deci-
sion making problems, it is widely applied since it could provide with a technique
which is accepted by many decision makers, that is, it could point out the preference
information and harmoniously inosculate it into the model.

The basic idea of goal programming method is that, for the objective function
f .x/ D .f1.x/; f2.x/; : : : ; fm.x//

T , decision makers give a goal value f o D
.f o

1 ; f
o

2 ; : : : ; f
o

m/
T such that every objective function fi .x/ approximates the goal

value f o
i as closely as possible. Let dp.f .x/;f

o/ 2 Rm be the deviation between
f .x/ and f o, then consider the following problem,

min
x2X

dp.f .x/;f
o/ (4.81)

where the goal value f o and the weight vector w is predetermined by the decision
maker. The weight wi expresses the importance factor that the objective function
fi .x/ .i D 1; 2; : : : ; m/ approximates the goal value f o

i , 1 � p � 1.
When p D 1, it is recalled the simple goal programming method which is most

widely used. Then we have,

dp.f .x/;f
o/ D

mX
iD1

wi jf .x/ � f oj:

Since there is the notation j � j in dp.f .x/;f
o/, it isn’t a differentiable function any

more. Therefore, denote that

dC
i D

1

2
.jfi .x/ � f o

i j C .fi .x/� f o
i //;

d�
i D

1

2
.jfi .x/ � f o

i j � .fi .x/� f o
i //:

where dC
i expresses the quantity that fi .x/ exceeds f o

i and d�
i expresses the

quantity that fi .x/ is less than f o
i . It is easy to prove that, for any i D 1; 2; : : : ; m,

dC
i C d�

i D jfi .x/� f o
i j

dC
i � d�

i D fi .x/� f o
i

dC
i d

�
i D 0; dC

i ; d
�
i � 0

(4.82)
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When p D 1, problem (4.81) can be rewritten as,

8̂̂̂
<̂
ˆ̂̂̂:

min
mP

iD1

wi .d
C
i C d�

i /

s.t.

8<
:
fi .x/C dC

i � d�
i D f o

i ; i D 1; 2; : : : ; m
dC

i d
�
i D 0; dC

i ; d
�
i � 0; i D 1; 2; : : : ; m

x 2 X

(4.83)

In order to easily solve the problem (4.83), abandon the constraint dC
i d

�
i D 0

.i D 1; 2; : : : ; m/ and we have

8̂̂̂
<̂
ˆ̂̂̂:

min
mP

iD1

wi .d
C
i C d�

i /

s.t.

8<
:
fi .x/C dC

i � d�
i D f o

i ; i D 1; 2; : : : ; m
dC

i ; d
�
i � 0; i D 1; 2; : : : ; m

x 2 X

(4.84)

Theorem 4.14. If .x; NdC
; Nd�

/ is the optimal solution of problem (4.84), Nx is

doubtlessly the optimal solution of problem (4.81), where NdC D . NdC
1 ;
NdC
2 ; : : : ;

NdC
m /

and Nd� D . Nd�
1 ;
Nd�
2 ; : : : ;

Nd�
m/

Proof. Since .x; NdC
; Nd�

/ is the optimal solution of problem (4.84), we have x 2 X ,
NdC � 0, Nd� � 0 and

fi .x/C NdC
i � Nd�

i D f o
i ; i D 1; 2; : : : ; m: (4.85)

1. If NdC
i D Nd�

i D 0, we have fi .x/ D f o
i , which means x is the optimal solution

problem (4.81).
2. If there exists i0 2 f1; 2; : : : ; mg such that fi .x/ 6D f o

i , NdC
i
Nd�
i D 0

doubtlessly holds. If not, we have NdC
i > 0 and Nd�

i > 0. We respectively discuss
them as follows.

i. If NdC
i � Nd�

i > 0, for i 2 f1; 2; : : : ; mg, let

QdC
i D

� NdC
i � Nd�

i ; i D i0NdC
i ; i 6D i0

Qd�
i D

�
0; i D i0Nd�

i ; i 6D i0
(4.86)

Thus, QdC
i0
< NdC

i0
and Qd�

i0
< Nd�

i0
both hold. It follows from (4.85) and (4.86) that,

fi .x/C QdC
i � Qd�

i D
�
fi .x/C 0 � . NdC

i � Nd�
i / D f o

i ; i D i0
fi .x/C NdC

i � Nd�
i D f o

i ; i 6D i0
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We also know x 2 X , QdC
i � 0 and Qd�

i � 0. Denote QdC D . QdC
1 ;
QdC
2 ; : : : ;

QdC
m /

and Qd� D . Qd�
1 ;
Qd�
2 ; : : : ;

Qd�
m/, then we have .x; QdC

; Qd�
/ is a feasible solution of

problem (4.84). If follows from QdC
i0
< NdC

i0
and Qd�

i0
< Nd�

i0
that,

mX
iD1

. QdC
i0
C Qdi0/ <

mX
iD1

. NdC
i0
C Ndi0/ (4.87)

this conflict with the assumption that .x; NdC
; Nd�

/ is the optimal solution of problem
(4.84).

(ii) If NdC
i � Nd�

i < 0, for i 2 f1; 2; : : : ; mg, let

QdC
i D

�
0; i D i0NdC

i ; i 6D i0
Qd�
i D

� �. NdC
i � Nd�

i /; i D i0Nd�
i ; i 6D i0 (4.88)

We can similarly prove that it conflicts with the assumption that .x; NdC
; Nd�

/ is the
optimal solution of problem (4.84).

So far, we have proved that .x; NdC
; Nd�

/ is the optimal solution of problem
(4.83). Since the feasible region of problem (4.83) is included in the one of problem

(4.84), .x; NdC
; Nd�

/ is the optimal solution of problem (4.84). Next, we will prove

that .x; NdC
; Nd�

/ is the optimal solution of problem (4.81). For any feasible solution
.x;dC;d�/, it follows from (4.82) that,

jfi .x/� f o
i j D dC

i C d�
i ; jfi . Nx/ � f o

i j D NdC
i C Nd�

i ; i D 1; 2; : : : ; m:

For any x 2 X , since

mX
iD1

jfi . Nx/ � f o
i j D

mX
iD1

. NdC
i C Nd�

i / �
mX

iD1

.dC
i C d�

i / D
mX

iD1

jfi .x/� f o
i j;

this means that Nx is the optimal solution of problem (4.81). ut

4.5.3 Nonlinear Ra-Fu DCM and Ra-Fu Simulation-Based
rw-GA

Consider the following model,

8̂̂
<
ˆ̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8<
:

Posf� jPrffi .x; �/ � Nfig � ˇi g � ˛i ; i D 1; 2; : : : ; m
Posf� jPrfgr .x; �/ � 0g � �rg � �r ; r D 1; 2; : : : ; p
x 2 X
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where ˛i , ˇi , �r and �r are predetermined confidence levels, i D 1; 2; : : : ; m; r D
1; 2; : : : ; p. If fi .x; �/ or gr .x; �/ or both of them are all nonlinear functions with
respect to �, we cannot directly convert it into crisp model, then another method is
introduced to solve it.

4.5.3.1 Ra-Fu Simulation for DCM

Assume that � is an n-dimensional Ra-Fu vector defined on the possibility space
.�;P.�/; Pos/, and f W Rn ! R is a measurable function. For any confidence
level ˛, we design a Ra-Fu simulation to compute the ˛-chance Chff .x; �/ �
Nf g.˛/. Equivalently, we should find the supremum Ň such that

Posf� jPrff .x; �.�// � Nf g � Ňg � ˛:

We randomly generate �k from � such that Posf�kg � ", and write vk D
Posf�kg; k D 1; 2; : : : ; N , respectively, where " is a sufficiently small number.
For any number �k , by using stochastic simulation, we can estimate the probability
g.�k/ D Prff .x; �.�k// � Nf g. For any number r , we set

L.r/ D 1

2

�
max

1�k�N
fvkjg.�k/ � rg C min

1�k�N
f1 � vkjg.�k/ < rg

�

If follows from monotonicity that we may employ bisection search to find the max-
imal value r such that L.r/ � ˛. This value is an estimation of L. We summarize
this process as follows.

Then the procedure simulating the ˛-chance Chff .x; �/ � Nf g.˛/ can be
summarized as follows:

Procedure Ra-Fu simulation for DCM
Input: The decision vector x

Output: The ˛-chance Chff .x; �/ � Nf g.˛/
Step 1. Randomly sample �k from� such that Posf�kg � " for
k D 1; 2; : : : ; N , where " is a sufficiently small number;
Step 2. Find the maximal value r such that L.r/ � ˛ holds;
Step 3. Return r .

Example 4.21. We employ the Ra-Fu simulation to calculate the chance measure

Ch

�q QN�2
1 C QN�2

2 C QN�2
3 � 3

�
.0:9/, where QN�1, QN�2 and QN�3 are Ra-Fu variables defined as

QN�1 � N . Q�1; 1/; with Q�1 D .1; 2; 3/;QN�2 � N . Q�2; 2/; with Q�2 D .2; 3; 4/;QN�3 � N . Q�3; 1/; with Q�3 D .3; 4; 5/:
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A run of Ra-Fu simulation with 1000 cycles shows that

Ch

�q
QN�2
1 C QN�2

2 C QN�2
3 � 3:2

�
.0:9/ D 0:9870:

4.5.3.2 Random Weight-Based GA

Ishibuchi et al. [144] proposed a weight-sum based fitness assignment method,
called random-wight Genetic Algorithm (rw-GA) to obtain a variable search direc-
tion toward the Pareto frontier. Weighted-sum approach can be viewed as an
extension of methods used in the conventional approach for the multiobjective
optimizations to the GA. It assigns weights to each objective function and com-
bines the weighted objectives into a single objective function. Typically, there are
two types of search behavior in the objective space: fixed-direction search and
multiple-direction search, as demonstrated in Figs. 4.16 and 4.17. The random-
weight approach gives the genetic algorithms a tendency to demonstrate a variable
search direction, therefore, able to sample the area uniformly over the entire frontier.

Fig. 4.16 Search in a fixed
direction in criterion space

f2

f1

fixed search
direction

Pareto frontier

Fig. 4.17 Search in multiple
directions in criterion space f1

f2

Pareto frontier

multiple search
direction
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Suppose that we are going to maximize q objective functions. The weighted-sum
objective is given as follows:

z D
qX

kD1

wkfk.x/ (4.89)

The random weights wk are calculated by the equation

wk D rkPq
j D1 rj

; k D 1; 2; : : : ; q (4.90)

where ri are nonnegative random numbers.
Before selecting a pair of parents for crossover operation, a new set of random

weights is specified by (4.90), and the fitness values for each individual are calcu-
lated by (4.89). The selection probability pi for individual i is then defined by the
following linear scaling function:

pi D zi � zminPpop�size
j D1 .zi � zmin/

(4.91)

where zmin is the worst fitness value in the current population.
A tentative set of Pareto solutions is stored and updated at each generation. For a

problem with q objectives, there are q extreme points int he Pareto solutions, each
of which maximizes one objective. An elite preserving strategy is suggested for
putting the n extreme points plus some randomly selected Pareto solutions into the
next population. LetNpop denote the population size andNelite denote the number of
elite solutions to preserve. The overall structure of their implementation of genetic
algorithms is given as follows:

Step 1. Initialization. Randomly generate an initial population containing Npop

individuals.
Step 2. Evaluation. Calculation the values of q objective functions for each

individual. Update a tentative set of Pareto solutions.
Step 3. Selection. Repeat the following steps to select .Npop � Nelite/ pairs of

parent: Specify random weighted by (4.90), calculate fitness function by (4.89),
calculate selection probability by (4.91), and select a pair of parent individuals for a
crossover operation.

Step 4. Crossover. For each pair selected, apply a crossover operation to generate
offspring.

Step 5. Mutation. Apply a mutation operation to each offspring generated by the
crossover operation.

Step 6. Elitist strategy. Randomly select Npop individuals from the tentative set
of Pareto solutions. Add the selected solutions Nelite to .Npop � Nelite/ individuals
generated in the foregoing steps to construct a population of Npop of individuals.

Step 7. Termination test. If a pre-specified stopping condition is satisfied, stop
the run; otherwise return stop 1.
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The procedure is given as follow:

Procedure Random weight-based genetic algorithm(rw-GA)

Input: the objective fi .x/ of each chromosome xi , i D 1; 2; : : : ; q,
8i 2 popSize

Output: fitness value eval.xi /, 8i 2 popSize
begin

rj  random[0,1]; j D 1; 2; : : : ; q;//non-negative random number;

wk  rk=
qP

iD1

ri , k D 1; 2; : : : ; q;

eval.xi / 
qP

iD1

wk.fi .x
i / � zmin

k
/, 8i ;

Output: eval.xi /, 8i
end

4.5.4 Numerical Examples

Example 4.22. Consider the following linear dependent chance multi-objective
model with Ra-Fu coefficients,

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂:

max f1.x; �/ D Ch
n QN�1x1 C QN�2x2 C QN�3x3 C QN�4x4 C QN�5x5 � Nf1o .0:9/

max f2.x; �/ D Ch
n
c1
QN�6x1 C c2 QN�7x2 C c3 QN�8x3 C c4 QN�9x4 C c5 QN�10x5 � Nf2

o
.0:9/

s.t.

8̂̂̂
<̂
ˆ̂̂̂:

x1 C x2 C x3 C x4 C x5 � 350
x1 C x2 C x3 C x4 C x5 � 300
4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085
x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660
x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

(4.92)

where c D .c1; c2; c3; c4; c5/ D .1:2; 0:5; 1:3; 0:8; 0:9/, and

QN�1 �N .Qu1; 1/; with Qu1 � .113; 4; 4/LR; QN�2 �N .Qu2; 4/; with Qu2 � .241; 7; 7/LR;QN�3 �N .Qu3; 1/; with Qu3 � .87; 2; 2/LR; QN�4 �N .Qu4; 2/; with Qu4 � .56; 2; 2/LR;QN�5 �N .Qu5; 1/; with Qu5 � .92; 3; 3/LR; QN�6 �N .Qu6; 1/; with Qu6 � .628; 8; 8/LR;QN�7 �N .Qu7; 2/; with Qu7 � .143; 4; 4/LR; QN�8 �N .Qu8; 2/; with Qu8 � .476; 5; 5/LR;QN�9 �N .Qu9; 2/; with Qu9 � .324; 4; 4/LR; QN�10 �N .Qu10; 2/; with Qu10 � .539; 7; 7/LR:

and Qui .i D 1; 2; : : : ; 10/ are all assumed as triangular fuzzy variables which are a
class of L-R fuzzy variables. Wherein, the risk tolerance given by decision maker is
Nf1 D 35;000, Nf2 D 170;000.
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Denote the feasible region of model (4.92) is X . According to Theorem 4.9 and
(4.80), problem (4.92) is equivalent to the following model,

max
x2X

ŒH1.x/;H2.x/� (4.93)

where

H1.x/ D ˚

0
B@113:4x1 C 241:7x2 C 87:2x3 C 56:2x4 C 92:3x5 � 35000q

x2
1 C 4x2

2 C x2
3 C 2x2

4 C x2
5

1
CA;

H2.x/ D ˚

0
B@628:8x1 C 143:4x2 C 476:5x3 C 324:4x4 C 539:7x5 � 170000q

x2
1 C 2x2

2 C 2x2
3 C 2x2

4 C 2x2
5

1
CA:

Next, we use the goal programming method to solve the problem (4.93). Let
H 0

1 D 0:90 and H 0
2 D 0:99 be the decision maker’s reference value. According to

(4.84), we get the following single objective problem,

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

min
2P

iD1

wi .d
C

i C d�

i /

s.t.

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

˚

0
B@113:4x1 C 241:7x2 C 87:2x3 C 56:2x4 C 92:3x5 � 35000q

x21 C 4x22 C x23 C 2x24 C x25

1
CAC d

C

1 � d�

1 D 0:90

˚

0
B@628:8x1 C 143:4x2 C 476:5x3 C 324:4x4 C 539:7x5 � 170000q

x21 C 2x22 C 2x23 C 2x24 C 2x25

1
CAC d

C

2 � d�

2 D 0:99

x1 C x2 C x3 C x4 C x5 � 350

x1 C x2 C x3 C x4 C x5 � 300

4x1 C 2x2 C 1:5x3 C x4 C 2x5 � 1085

x1 C 4x2 C 2x3 C 5x4 C 3x5 � 660

x1 � 20; x2 � 20; x3 � 20; x4 � 20; x5 � 20

d
C

1 ; d
�

1 ; d
C

2 ; d
�

2 � 0

(4.94)

Take w1 D w2 D 0:5 and we get the efficient solution,

x D .223:21; 21:80; 20:00; 20:00; 20:00/T

and H1.x/ D 0:90,H2.x/ D 0:99.
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Example 4.23. Let’s consider the following problem,

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

maxf1.x; �/ D Ch
n
3 QN�2

1x
2
1 � 2 QN�1

QN�2x1x2 C 1:3 QN�2
2x

2
2 � 5

o
.0:9/

maxf2.x; �/ D Ch
n
2:5 QN�2

3x
2
1 C 3 QN�3

QN�4x1x2 C 5 QN�2
4x

2
2 � 12

o
.0:9/

s.t.

8<
:
x1 C x2 � 10
5x1 � 2x2 � 2
x1; x2 � 0

(4.95)

where �i .i D 1; : : : ; 4/ are all independently Ra-Fu variables as follows,

QN�1 � N . Q�1; 2/; with Q�1 D .5; 6; 7/; QN�2 � N . Q�2; 1/; with Q�2 D .6:5; 8; 10/;QN�3 � N . Q�3; 1:5/; with Q�3 D .4; 5; 6/; QN�4 � N . Q�4; 2/; with Q�4 D .5; 7; 8/:

where Q�i are all triangular fuzzy numbers, i D 1; : : : ; 4. It follows that

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

maxH1.x/ D supfˇ1jPosfP rf3 QN�2
1x

2
1 � 2 QN�1

QN�2x1x2 C 1:3 QN�2
2x

2
2 � 5g � 0:9gg

maxH2.x/ D supfˇ1jPosfP rf2:5 QN�2
3x

2
1 C 3 QN�3

QN�4x1x2 C 5 QN�2
4x

2
2 � 12g � 0:9gg

s.t.

8<
:
x1 C x2 � 10
5x1 � 2x2 � 2
x1; x2 � 0

(4.96)

The satisfactory solutions to problem (4.96) is listed in Table 4.5 and shown in
Figs. 4.18 and 4.19.

4.6 Application to Chinese Liquor

The problem considered in this section comes from Luzhou Co., Ltd which is one of
the producers of Chinese liquor in China and its product is typical of Chinese strong
aromatic spirits. At present, the company is planning to produce fruit beverages. The
company wishes to design a SCN for the product to determine not only the subset of
plants and DCs to be opened, but also the distribution strategy that will satisfy the
demand imposed by customers in a cost-effective and timely manner under an all

Table 4.5 The optimal solution by Ra-Fu simulation-based rw-GA

w1 w2 x1 x2 H1 H2 H Gen

0.1 0.9 9.988 0.012 0.8812 0.5673 0.5987 2000
0.2 0.8 9.973 0.027 0.8967 0.5534 0.6221 2000
0.3 0.7 9.992 0.008 0.9135 0.5327 0.6469 2000
0.4 0.6 9.982 0.018 0.9356 0.5219 0.6874 2000
0.5 0.5 9.997 0.003 0.9621 0.5174 0.7398 2000
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Fig. 4.18 The search process of Ra-Fu simulation-based rw-GA
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Fig. 4.19 Two objective values by Ra-Fu simulation-based rw-GA

capacities constraint. However, in the supply chain network design problem of this
company, it is hard to describe these problem parameters as known variables because
there are not sufficient enough data to analyze. For instance, since the changing
gasoline price often results in scarcity of precise data, the shipping cost from one
supplier to one plant (or from one DC to a customer)is usually a normal distributed
variable with an unknown expected value �. Furthermore, the time from one sup-
plier to one plant (or from one DC to a customer) is fuzzy because of the uncertainty
of country/urban traffic in China, hence expected value � can be “between 150 and
250 yuan”. And the amount of demand imposed by customers is a normal distributed
variable with an unknown expected value� due to seasonal effect. Meanwhile, since
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Fig. 4.20 Three-stage supply chain network of Luzhou Co., Ltd

the customers’ expected price for the product is fuzzy, the expected value � can
be “around 20 ton”. Therefore, a situation exists whereby shipping costs and the
demand imposed by customers may be random variables taking fuzzy parameters.
In this situation, we can use Ra-Fu variables to deal with these uncertain parame-
ters of combining randomness and fuzziness. Considering the company managers’
objectives, we minimize the total cost of the supply chain, and maximize customer
service levels in terms of acceptable delivery times (coverage). Hence, we formu-
late a single-product, multi-stage, multi-objective SCN design problem with Ra-Fu
market demands and shipment costs. Figure 4.20 presents a three-stage supply chain
network of Luzhou Co., Ltd.

In mixed random and fuzzy environments, to model the single-product, multi-
stage, multi-objective SCN design problem of the company, the following assump-
tions are made:

1. Shipping costs and customer demand are regarded as random fuzzy variables.
2. The number of customers and suppliers and capacities are known.
3. The number of potential plants and DCs and their maximum capacities are

known.
4. Since the manager of this company wants to reduce cost and find an optimal

network strategy, and a most demand can be satisfied in one day according to
the current distribution capacity of this company, inventory is considered as zero
based on market conditions and product nature.

5. Customers are supplied products from a single DC.

Based the assumptions above, we propose a Ra-Fu multi-objective mixed-integer
non-linear programming model for the problem. In the model, the objectives of min-
imization of total costs are comprised of the fixed costs of vehicles, variable costs,
waiting costs, and penalty costs, and maximization of customer services can be
specified by the percent of rendering to all customers of acceptable delivery times.
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4.6.1 Notations

The mathematical notation and formulations are as follows:
Indices: i is an index for DCs (i 2 I ), j is an index for customers (j 2 J ), k is

an index for suppliers (k 2 K), s is an index for manufacturing plants (s 2 S ).
Model variables: bks is the quantity of raw material shipped from supplier k to

plant s. fsi is the quantity of the product shipped from plant s to DC i . qij is the
quantity of the product shipped from DC i to customer j .

zi D
�
1; if DC i is open
0; otherwise:

ps D
�
1; if plant s is open
0; otherwise:

yij D
�
1; if DC i servers customer j
0; otherwise:

Model parameters: Ds is the capacity of plant s. wi is the annual throughput
at DC i . supk is the capacity of supplier k for raw material. Qdj , which is a Ra-Fu
variable, is the demand for the product at customer j .Wi is the maximum number of
DC i . P is the maximum number of plants. vi is the annual fixed cost for operating
a DC i . gs is the annual fixed cost for operating a plant s. Qcij , which is a Ra-Fu
variable, is the unit transportation cost for the product from DC i to customer j . Qasi ,
which is a Ra-Fu variable, is the unit transportation cost for the product from plant s
to DC i . Qtks , which is a Ra-Fu variable, is the unit transportation and purchasing cost
for raw material from supplier k to plant s. r is the utilization rate of raw material
per unit of the product. hij is delivery time (in hours) from DC i to customer j . � is
the maximum allowable delivery time (hours) from DC i to customers j . Ci is the
set of customers that can be reached from DC i in � hours, or C.i/ D fi jhij � �g.
� is the set of opened DCs, R is the set of opened plants. ˇ is the penalty if DCs
can not reach customers in � time.

4.6.2 Modelling

Based on the requirement of the SCN design problem of this company, we pro-
pose a three-stage Ra-Fu programming model to tackle it. The first-stage consists
of deciding the plant decisions ps and the amount of raw material from suppli-
ers to plants based on the uncertain shipping cost Qtks , the second-stage consists
of the DCs decisions zi and the amount of transporting products from plants
to DCs in an optimal manner based upon the DCs and the uncertain shipping
cost Qasi , and third-stage includes server decisions yij and the amount of deliv-
ered products from DCs to customers in an optimal schedule based upon the
uncertain shipping cost Qcij . In addition, for the sake of improving the supply
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chain’s responsiveness to demand, we consider the penalty cost arising from DCs
being unable to service customers in � time into total cost, where hij can be
calculated by the distance from DC i to j and past experience in the transporta-
tion Chinese liquor in this paper. The objective f1 is to minimize total costs
comprised by fixed costs of facilities

P
s2S gsps C P

i2I vi zi , the transport-
ing costs

P
s2S

P
k2K
Qtksbks C

P
s2S

P
i2I Qasifsi CPj 2J

P
i2I Qcij qij and the

penalty cost
P

j 2J

P
i2I ˇ.hij � �/C. Furthermore, the objective f2 is to max-

imize the customer service level. To measure the customer service level of a
SCN, we employ the products rendered to customers from DCs within the stip-
ulated access time � , which can be denoted by .

P
i2@

P
j 2R qij /=.

P
j 2J
Qdj /.

From the discussion above, we develop the mathematical formulations of objectives
as follow:

minf1 D P
s2S

gsps C P
i2I

vi zi C P
s2S

P
k2K

Qtksbks C
P
s2S

P
i2I

Qasifsi

C P
j 2J

P
i2I

Qcij qij C P
j 2J

P
i2I

ˇ.hij � �/C

maxf2 D
�P

i2@
P

j 2R qij

�
=

 P
j 2J

Qdj

!

The constraints for the Ra-Fu multi-objective programming model are divided
into technique constraints and capacity constraints. Since one customer can be
serviced by only one DC, thus we employ the constraint

X
i2I

yij D 1; 8i (4.97)

to represent such an assignment. Only if the delivery time hij from DC i to customer
j is more than the stipulated access time � , will the penalty cost occur. Therefore,
we use the constraint

.hij � �/C D f0; 1g; 8i; j (4.98)

to specify it. With a similar process of dealing with the binary variable, we can
obtain

zi D f0; 1g; 8i (4.99)

ps D f0; 1g; 8s (4.100)

yij D f0; 1g; 8i; j (4.101)
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In addition, the annual throughput wi at DC i in unit time (1 year) must be not
larger than the maximum numberWi for the DC. Thus, the constraint

X
i2I

zi � Wi (4.102)

is employed. Similarly, we also obtain the constraints

P
s2S

ps � PP
s2S

bks � supk; 8 s:

Since the assumption of no inventory, it means that the quantity of inbound is
equal to the number of output at DC i , and equal to the quantity of outbound. Then
the quantity of customers product demand must be not larger than the quantity of
annual throughput of the opened DC. Thus,

X
s2S

fsi D
X
j 2J

qij ; 8i (4.103)

qij D Qdjyij ; 8i; j (4.104)X
j 2J

Qdjyij � wi zi ; 8i (4.105)

For suppliers capacity constraints and plant production capacity constraints we
can use two equations

r
X
i2I

fsi �Pk bks ; 8s (4.106)

r
X
i2I

fsi � Dsps; 8s (4.107)

From the discussions above, by integration of the (4.97)–(4.107), we can formu-
late a random fuzzy multi-objective mixed-integer non-linear programming model
as follows:
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(4.108)

Generally, in order to solve the model above, we have to transform these Ra-Fu
variables into deterministic parameters using the above proposed technique. Consid-
ering the decision maker’s objective, the model (4.108) can be solved by minimizing
the expected value of total costs and maximizing the expected value of customer
service under .˛; ˇ/ chance constraints.

Here, we will restrict application to the problem described in the first section,
and use the proposed model and technique to solve it. Based on the data and related
material investigated by Xu and Liu [341], we will discuss the expected value model,
the chance-constrained model and the dependent-chance model of the supply chain
network of Luzhou Co. Ltd. This company is one of the producers of Chinese liquor
and is planning to take advantage of the local orange growing to extend produc-
tion into fruit berverages. Market research shows that the company can capture a
portion of the national fruit beverage market by using their famous brand name.
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The raw material to produce fruit beverages can be supplied easily from Naxi, Yub,
Neij, and Panzh. The company intends to establish new plants at five potential loca-
tions. These locations were selected based on some specific considerations. The
Longmt, is considered as a plant because of the richness in raw material and the rel-
atively convenient traffic, is the fist location. The second location is Jiangyq where
all other facilities of the company are located. Hechuan is consider as the third loca-
tion because of the cheap land. The fourth is Luxian because of the richness of raw
materials. The last is Xuyong where the cost of land to establish a plant is the lowest.

The company is planning to open at most six DCs. The location of DCs was deter-
mined according to demand densities of 150 customer zones to be served and access
time from DCs to customer zones. The locations of DCs are Beij, Shangh, Wuhan,
Guanz, Xian, and Chengd. The company intends to establish a supply chain net-
work that will satisfy company objectives for the product. The company objectives,
as given in mathematical models, are the minimization of overall supply chain cost,
and the maximization of customer service, i.e. the percentage of customer demand
that can be delivered within the stipulated access time � and the maximization of
capacity utilization balance for DCs (i.e. equity on utilization ratios).

Table 4.6 gives information about the capacities of suppliers, plants, and DCs,
and the fixed costs of these facilities. As seen in Table 4.6, capacity and fixed costs
in these facilities are different from each other because of the different conditions
in each potential location. Tables 4.7 and 4.8 show transportation costs of from sup-
plies to plants and from plants to DCs. Where r1, r2, and r3 is the expected shipping
costs. At first, we begin with small size problem of 6 customers. The demand and
shipping cost is presented by Tables 4.9 and 4.10, respectively. Where d1; d2; d3 is
expected customer demand, � D 100. Fig. 4.21 shows the best distribution pattern
for this problem by a spanning tree-based GA.

Under probability ˛ D 0:9 and credibility ˇ D 0:95, and when the utilization
rate of raw material per unit of the product is r D 0:8, we use a spanning tree-based
genetic algorithm to solve this problem. We partly show the transportation plans of
this company at the first stage and the second stage (Tables 4.11 and 4.12). We can
not give the allocation of 150 customers to DCs, since it will consume more space.
From those results, it can be seen that the optimal solution is reached by opening

Table 4.6 Capacities and fixed costs for suppliers, plants, and distribution centers

Suppliers Capacity Plants Capacity Fixed cost DCs Capacity Fixed cost
(ton/year) (ton/year) (thousand (ton/year) (thousand

yuan/year) yuan/year)

Naxi 14640 Longmt 8751 4093 Beij 7140 441
Yub 8731 Jiangyq 6280 2641 Shangh 7604 467
Neij 4405 Hechuan 7094 2553 Wuhan 9528 534
Panzh 14447 Luxian 7760 3519 Guanz 6904 309

Xuyong 7755 3560 Xian 8949 505
Chengd 9111 518
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Table 4.7 Shipping cost value for 1st stage (unit ton/thousand yuan)

Suppliers Transportation cost Plants
Longmt Jiangyq Hechuan Luxian Xuyong

Naxi r1 0.10 0.10 0.15 0.15 0.20
r2 0.15 0.15 0.20 0.20 0.25
r3 0.20 0.20 0.25 0.25 0.30

Yub r1 0.20 0.20 0.15 0.20 0.20
r2 0.25 0.25 0.20 0.25 0.25
r3 0.30 0.30 0.25 0.30 0.30

Neij r1 0.10 0.10 0.15 0.10 0.20
r2 0.15 0.15 0.20 0.15 0.25
r3 0.20 0.20 0.25 0.20 0.30

Panzh r1 0.15 0.15 0.15 0.15 0.20
r1 0.20 0.20 0.20 0.20 0.25
r1 0.25 0.25 0.25 0.25 0.30

Table 4.8 Shipping cost value for 2nd stage (unit ton/thousand yuan)

Plants Shipping cost DCs
Beij Shangh Wuhan Guanz Xian Chengd

Longmt r1 0.20 0.20 0.10 0.15 0.15 0.10
r2 0.25 0.25 0.15 0.20 0.20 0.15
r3 0.30 0.30 0.20 0.25 0.25 0.20

Jiangyq r1 0.20 0.20 0.10 0.15 0.15 0.10
r2 0.25 0.25 0.15 0.20 0.20 0.15
r3 0.30 0.30 0.20 0.25 0.25 0.20

Hechuan r1 0.20 0.20 0.10 0.15 0.15 0.10
r2 0.25 0.25 0.15 0.20 0.20 0.15
r3 0.30 0.30 0.20 0.25 0.25 0.20

Luxian r1 0.20 0.20 0.10 0.15 0.15 0.10
r2 0.25 0.25 0.15 0.20 0.20 0.15
r3 0.30 0.30 0.20 0.25 0.25 0.20

Xuyong r1 0.20 0.20 0.10 0.15 0.15 0.10
r2 0.25 0.25 0.15 0.20 0.20 0.15
r3 0.30 0.30 0.20 0.25 0.25 0.20

only 4 plants (Longmt, Jiangyq, Hechuan, Luxian) and 3 DCs (Wuhan, Xian, and
Chengd).

The company is planning to satisfy customer demand from DCs within one day,
i.e., 24 h. The scatter diagram of the annual customer demand versus access time
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Table 4.9 Customer demand (ton/year)

Customers demand Customers
1 2 3 4 5 6

d1 3800 4800 4800 2800 2300 4300
d2 4000 5000 5000 3000 2500 4500
d3 4200 5200 5200 3200 2700 4700

Table 4.10 Shipping cost value from DCs to customer (unit ton/thousand yuan)

DCs Shipping cost Customers
1 2 3 4 5 6

Beij r1 0.20 0.20 0.20 0.25 0.10 0.10
r2 0.25 0.25 0.25 0.30 0.15 0.15
r3 0.30 0.30 0.30 0.35 0.20 0.20

Shangh r1 0.20 0.20 0.20 0.15 0.10 0.10
r2 0.25 0.25 0.25 0.30 0.20 0.15
r3 0.30 0.30 0.30 0.35 0.25 0.20

Wuhan r1 0.10 0.10 0.10 0.15 0.10 0.10
r2 0.15 0.15 0.15 0.20 0.15 0.15
r3 0.20 0.20 0.20 0.25 0.20 0.20

Guanz r1 0.20 0.20 0.10 0.15 0.10 0.10
r2 0.25 0.25 0.15 0.20 0.15 0.15
r3 0.30 0.30 0.20 0.25 0.20 0.20

Xian r1 0.10 0.15 0.10 0.15 0.10 0.10
r2 0.15 0.20 0.15 0.20 0.15 0.15
r3 0.20 0.25 0.20 0.25 0.20 0.20

Chengd r1 0.20 0.10 0.10 0.15 0.10 0.10
r2 0.25 0.25 0.15 0.20 0.15 0.15
r3 0.30 0.30 0.20 0.25 0.20 0.20

from the closest DCs is plotted to obtain information about how large customer
demand is, and how far away they are located from DCs. When Fig. 4.22, which is
the service level of the distribution center Chengd is examined, it is seen that 83.3%
of customers have demands smaller than 600 tons per year. Also, when the capac-
ities of DCs are not taken in the consideration, it is possible to reach the 93.3%
of customers within 24 h. Actually, as to the stipulated access time � , it is an effi-
cient tool for the evaluation of the SCN designed. If the stipulated access time � , is
not considered SCN’s response to customers demand will decrease, and the perfor-
mance of SCN will also decrease. In addition, how to determine the access time of
all customer depend on not only a SCN’s overall performance in the minimization
of total cost and maximization of customers service level in all solutions for this
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Fig. 4.21 Illustration of the optimal distribution pattern

Table 4.11 Shipping strategy for 1st stage (ton)

Suppliers Plants
Longmt Jiangyq Hechuan Luxian Xuyong

Naxi 6790 7850 – – –
Yub – – 1195 – –
Neij 1480 – – 2925 –
Panzh – – 7672 6775 –

Table 4.12 Shipping strategy for 2nd stage (ton)

Plants DCs
Beij Shangh Wuhan Guanz Xian Chengd

Longmt – – 3248 – 3206 –
Jiangyq – – 6280 – – –
Hechuan – – – – – 7094
Luxian – – – – 5743 2017
Xuyong – – – – – –

problem, but also on the distance from a DC to a customer. In the problem, if only
the access time for a given customer is smaller than the stipulated access time � in
operation, we consider that the customer can be effectively serviced by the DC.

If we consider a given budget, with regard to the number of DCs opened, we make
the following observations. First, when the location cost factor increases, i.e., the DC
location costs increase relative to other costs, the number of opened DCs decreases.
Second, when the transportation costs between facilities increases, the number of
opened DCs also decreases. However, since the total cost and customer service lev-
els are often conflicting, how to handle multi-objective programming depends on
the decision-maker’s objectives. Generally, the solution to this problem is often a
balance of multiple objectives.
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Fig. 4.22 Access time-demand distribution

Table 4.13 The size of tested problems

Problem Number of Number Number Number Number Number
suppliers, of plants, of DCs, of customers, maximum maximum
S K I L opened plants, opened DCs,

P W

1 3 5 5 4 4 4
2 10 10 10 21 6 6
3 20 15 12 50 9 7
4 10 6 8 100 4 5

By expected value and chance constraint programming techniques, the Ra-Fu
multi-objective mixed-integer non-linear programming model of this company’s
SCN design problem has been reduced to a deterministic model, and a genetic algo-
rithm is proposed to solve the model. Till now, no one has formulated or attacked an
SCN design problem in the above manner. Here, the techniques illustrated can easily
be applied to other SCN problems. Therefore, these techniques are the appropriate
tools to tackle other supply chain network problems in realistic environments.

4.6.3 Comparison of st-GA and m-GA

To see the efficiency and effectiveness of the st-GA in the Ra-Fu environment, we
also present, under deterministic conditions, the st-GA and matrix-based genetic
algorithm (m-GA) based on Michalewicz’s approach [219] by using the same pro-
gram language. Both st-GA and m-GA were run on Pentium 4 PC with the same
GA paraments pc D 0:4 and pm D 0:2. To get more information about these algo-
rithms, we divided each test problem into three numerical experiments by giving
different sizes of pop�size andmax�gen. Each of numerical experiment is run for
10 times (See Table 4.14).
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Table 4.14 Computation time and memory used by m-GA and st-GA (ACT, average computation
time in second; memory, required unit memory space to represent the chromosome)

Problem pop
�

size max
�

gen m-GA (dc)st-GA (rf)st-GA
ACT Memory ACT Memory ACT Memory

1 25 750 1:7 61 1:6 22 1:6 22

50 1500 5:9 61 5:8 22 5:8 22

2 200 2000 75:9 410 68:6 76 68:6 76

300 3000 216:4 410 168:3 76 168:3 76

3 200 3000 468:9 1081 260:4 119 260:4 119

300 6000 948:6 1081 547:4 119 547:4 119

4 200 4000 607:8 909 385:3 133 385:3 133

300 10000 2897:5 909 1469:4 133 1469:4 133

The performance of the st-GA is tested by using four different sized test prob-
lems, and the results from these are in Table 4.13 and [309]. Where (dc)st-GA
denotes the spanning tree-based genetic algorithm under deterministic condition,
(rf)st-GA denotes the spanning tree-based genetic algorithm in a random fuzzy envi-
ronment. It is shown in Table 4.14 that, for a small size problem, st-GA method in a
Ra-Fu environment and with deterministic conditions has equal computational time
and memory but has a better result than that of m-GA. However, since the search
space for this kind of problem is so large, it is very important to set the experiment
with a reasonable population size and maximum generation to ensure a good result.



Chapter 5
Random Rough Multiple Objective Decision
Making

Since the rough set was initialized by Pawlak[295], it has been applied to many
fields. Later, many scholars proposed the concept of two-fold uncertain variables
combined rough variables with fuzzy and random variables. The concept of ran-
dom rough variables (abbr. Ra-Ro variable) has proposed by many scholars [207,
344, 345], and it has been widely extended to many fields. Xu and Yao [344–
347] discussed the basic definition and properties of the Ra-Ro variables, and
introduced the expected value model, chance constrained model, dependent chance
model and bi-level model, respectively. Some crisp equivalent models are given,
and relative algorithms are proposed. Finally, these models and algorithms are
applied to some realistic problems, such as, queuing problems, inventory problems,
production-inventory systems and so on.

This chapter mainly introduces random multi-objective decision making prob-
lems under rough approximation. We further propose two kinds of Ra-Ro variables,
i.e., discrete Ra-Ro variables and continuous Ra-Ro variables, and introduces some
special examples. After introducing those basic concepts and properties, three parts
are presented respectively from different viewpoints:

1. Ra-Ro expected value model (Ra-Ro EVM). Usually, decision makers find it
difficult to make a decision when they encounter an uncertain parameter. A clear
criteria must be introduced to assist the decision. The expected value operator of
random rough variables is introduced and the crisp equivalent model is deduced
when the distribution is clear.

2. Ra-Ro chance-constraint model (Ra-Ro CCM). Sometimes, decision makers
don’t strictly require the objective value to be maximal benefit, but only need
to obtain the maximum benefit under a predetermined confidence level. Then the
chance constrained model is proposed and the crisp equivalent model is deduced
when the distribution is clear.

3. Ra-Ro dependent-chance model (Ra-Ro DCM). When decision makers predeter-
mine an objective value and require the maximal probability that objective values
exceed the predetermined one.

Finally, the application to an inventory problem is presented to show the effec-
tiveness of the above three models. Readers can refer to the following content to
know more details.

J. Xu and L. Yao, Random-Like Multiple Objective Decision Making, Lecture Notes
in Economics and Mathematical Systems 647, DOI 10.1007/978-3-642-18000-2 5,
c� Springer-Verlag Berlin Heidelberg 2011
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5.1 Inventory Problem with Ra-Ro Phenomena

The inventory problem, known as a classical and complex problem, has been paid
considerable attention. Nevertheless, most quantitative analysis on the inventory
problem is mainly concerned on single item and deterministic parameters, such
as crisp yield, crisp demand , crisp cost and so on. Riezebos and Gaalman [261]
discussed a class of single-item inventory problems for expected inventory order
crossovers and showed that the improved policy was still heuristic in nature. In
[14, 15, 260], researchers respectively introduce an inventory model with determin-
istic order or demand. Classical multi-item inventory models are well studied in well
known books [123,193,229,291] and others. Different programming methods have
been applied to solve multi-item inventory problems by many scholars like Prem
and Vart [255], Worell and Hall [337] and others.

The uncertain inventory problem is also difficult and deserves to be researched
(Fig. 5.1). Some scholars have well researched some inventory problems with crisp
and vague parameters. Order, or demand, or the planning horizon have been con-
sidered as fuzzy or random variables in some literatures [153, 213]. In [213], the
stochastic planning horizon had been considered in a two storage inventory model
and the region reducing genetic algorithm (RRGA) was proposed to solve the model.
In [153], Kao and Hsu considered the demand in the inventory system as a fuzzy
number and then converted it into a deterministic one. Recently, demand has been
considered as a fuzzy variable by some scholars [153, 198]. Ishii and Konno [145]
considered shortage cost as a fuzzy number and demand as a random variable in the
classical newsbody problem. Then a single-period inventory problem with fuzzi-
ness and randomness simultaneously was researched by Dutta, Chakraborty and
Roy [92].

However, there has been no attempt to research another mixed environment,
where randomness and roughness both appear simultaneously. For some seasonal
items (Ice cream, Christmas trees, woolen materials), the demand may vary year
to year. According to historical data or abundance of information, we can know
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Fig. 5.1 Inventory system
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Computer
costs

Demand Realization
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Fig. 5.2 Sequence of events in a period

demand in one year is subject to the stochastic distribution. However, the expected
value of stochastic distribution is vague and varies year to year. Thus, it is difficult
for decision makers to achieve a better decision. Hence, we have to consider it as
an uncertain variable. Rough variable can be applied to depict it well if the average
sold amount is clear from the statistical data of each year. Thus, demand for some
seasonal items can be described as a Ra-Ro variable to help the decision develop
better strategies (Fig. 5.2).

For example, the newsboy problem is a classical inventory problem which has
been well studied. In this problem a boy operating a news stall has to determine
the number x of newspapers to order in advance from the publisher at a cost of
$c per one newspaper every day. The selling price $a per one newspaper is also
known. If the newspaper is not sold at the end of the day, then the newspapers have
a small value of $b per one newspaper at the recycling center. However, the demand
D is imprecise and is forecasted only by previous selling amounts. The newsboy
problem with considering shortage cost c as a fuzzy number and demand D as
a random variable has been redefined [145]. Some fuzzy multi-product constraints
were considered in the newsboy problem by Shao and Ji [284]. Recently, the demand
D has been considered by some scholars [92] as a fuzzy random variable which is a
two-fold uncertain variable. There is still a case which is ignored by many scholars.
In the last 100 days, the demand D doesn’t follows the random distribution, but it
follows the normal distribution every 10 days when we cut the 100 days into 10,
denoted by D � N .�i ; �

2/. However �i is still an uncertain variable and we can
describe it with the rough variable. Then the demandD is a Ra-Ro variable and we
can use it to compute the order number next day. Similarly, other parameters such as
shortage costs can be dealt with by the Ra-Ro variable in order to precisely compute
the order number. Thus the newsboy’s profit should be

f .x/ D
(
.a � c/x; if x � QND
.b � c/x C .a � b/ QND; if x � QND

where QND is a Ra-Ro variable. Then we can apply the expected value operator and
chance operator to compute the maximal profit according to the newsboy’s different
aims.
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In realistic decision making situations, there are cases in which a decision must
be made on the basis of uncertain data. For dealing with such decision making
problems including uncertainty, the probabilistic approach and the rough-theoretic
approach are typical. Stochastic theory and rough set theory have been well devel-
oped and applied in a wide variety of uncertainty surrounding real problems since
their introduction, such as, Lempel and Moran introduced SALSA (Stochastic
Approach for Link-Structure Analysis) algorithm [192] in 2000 and Slowinski [294]
applied the method of rough sets to the medical domain. Different types of stochas-
tic programming and rough programming models have been introduced to suit the
different purposes of management, such as the expectation model [206], chance con-
strained programming [45,206], dependent-chance programming [204,207], etc. In
these models, randomness and roughness are considered as separate aspects. How-
ever, in a decision-making process, we may face a hybrid uncertain environment
where randomness and roughness coexist. In such cases, the concept of the Ra-Ro
variable is a useful tool in dealing with the two types of uncertainty simultaneously.

5.2 Random Rough Variable

Before introducing the concept of Ra-Ro variables, let’s recall some definitions and
properties of rough sets.

5.2.1 Rough Set

The rough sets theory introduced by Pawlak [295, 295] has often proved to be
an excellent mathematical tool for the analysis of a vague description of objects
(called actions in decision problems). The adjective vague, referring to the quality
of information, means inconsistency or ambiguity which follows from informa-
tion granulation. The rough sets philosophy is based on the assumption that with
every object of the universe there is associated a certain amount of information
(data, knowledge), expressed by means of some attributes used for object descrip-
tion. Objects having the same description are indiscernible (similar) with respect
to the available information. The indiscernibility relation thus generated consti-
tutes a mathematical basis of the rough sets theory; it induces a partition of the
universe into blocks of indiscernible objects, called elementary sets, that can be
used to build knowledge about a real or abstract world. The use of the indiscerni-
bility relation results in information granulation. The rough sets theory, dealing
with representation and processing of vague information, presents a series of inter-
sections and complements with respect to many other theories and mathematical
techniques handling imperfect information, like probability theory, evidence the-
ory of DempsterShafer, fuzzy sets theory, discriminant analysis and mereology
[88, 177, 249, 250, 253, 292, 293, 296].

For algorithmic reasons, the information regarding the objects is supplied in the
form of a data table, whose separate rows refer to distinct objects (actions), and
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whose columns refer to di.erent attributes considered. Each cell of this table indi-
cates an evaluation (quantitative or qualitative) of the object placed in that row by
means of the attribute in the corresponding column.

Formally, a data table is the 4-tuple S D .U;Q; V; f /, where U is a finite set of
objects (universe), Q D q1; q2; : : : ; qnis a finite set of attributes, Vq is the domain
of the attribute, V D S

q2Q Vq and f W U 
Q ! V is a total function such that
f .x; q/ 2 Vq for each x 2 U; q 2 Q, called information function.

Therefore, each object x of U is described by a vector (string) DesQ.x/ D
.f .x; q1/; f .x; q2/; : : : ; f .x; qm/, called description of x in terms of the evalua-
tions of the attributes fromQ; it represents the available information about x.

To every (non-empty) subset of attributes P is associated an indiscernibility
relation on U , denoted by IP :

Ip D f.x; y/j 2 U 
 U W f .x; q/ D f .y; q/8qg

If .x; y/ 2 Ip, it is said that the objects x and y are P-indiscernible. Clearly, the
indiscernibility relation thus de.ned is an equivalence relation (reflexive, symmetric
and transitive). The family of all the equivalence classes of the relation IP is denoted
by U jIP and the equivalence class containing an element x 2 U by Ip.x/. The
equivalence classes of the relation IP are called P-elementary sets. If P D Q, the
Q-elementary sets are called atoms.

Let S be a data table, X a non-empty subset of U and ˚ ¤ P � Q. The
P-lower approximation and the P-upper approximation of X in S are defined,
respectively, by:

P .X/ D fx 2 U W Ip.x/ � Xg
NP .X/ D

[
x2X

IP .X/

The elements of P .X/ are all and only those objects x 2 U which belong to the
equivalence classes generated by the indiscernibility relation IP , contained in X ;
the elements of NP .X/ are all and only those objects x 2 U which belong to the
equivalence classes generated by the indiscernibility relation IP , containing at least
one object x belonging to X . In other words, PX is the largest union of the
P-elementary sets included in X , while NP .X/ is the smallest union of the
P-elementary sets containingX .

1. The P-boundary of X in S, denoted by BnP .X/, is BnP .X/ D NP.X/ � P .X/.
2. The following relation holds: P .X/ � X � NP .X/.

Therefore, if an object x belongs to P .X/, it is certainly also an element of X ,
while if x belongs to NP.X/, it may belong to the set X . BnP .X/ constitutes the
“doubtful region” of X : nothing can be said with certainty about the belonging of
its elements to the set X .

The following relation, called complementarity property, is satisfied: P .X/ D
U � NP .U � X/.
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If the P-boundary of X is empty, BnP .X/ D ˚ , then the set X is an ordinary
(exact) set with respect to P , that is, it may be expressed as the union of a cer-
tain number of P-elementary sets; otherwise, if BnP .X/ ¤ ˚ , the set X is an
approximate (rough) set with respect to P and may be characterized by means of
the approximations P .X/ and NP .X/. The family of all the sets X � U having the
same P-lower and P-upper approximations is called a rough set.

The following ratio defines an accuracy of the approximation of X , X ¤ ˚ by
means of the attributes from P:

˛P .X/ D jP.X/jj NP.X/j
where jY j indicates the cardinality of a (finite) set Y. Obviously, 0 � ˛P .X/ � 1;
if ˛P .X/ D 1, X is an ordinary (exact) set with respect to P ; if ˛P .X/ D 1, X is a
rough (vague) set with respect to P.

Another ratio defines a quality of the approximation of X by means of the
attributes from P :

	P .X/ D jP.X/jjX j
The quality 	P .X/ represents the relative frequency of the objects correctly classi-
fied by means of the attributes from P . Moreover, 0 � ˛P .X/ � 	P .X/ � 1, and
	P .X/ D 0 iff ˛P .X/ D 0, while 	P .X/ D 1 iff ˛P .X/ D 1.

The definition of approximations of a subset X � U can be extended to
a classi.cation, i.e. a partition Y D fY1; Y2; : : : ; Yng of U . Subsets Yi ; i D
1; 2; : : : ; n are disjunctive classes of Y . By P-lower (P-upper) approximation
of Y in S, we mean sets P .Y / D fP.Y1/; P .Y2/; : : : ; P .Yn/g and NP .Y / D
f NP.Y1/; NP .Y2/; : : : ; NP.Yn/g, respectively. The coefficient

	P .X/ D

ˇ̌̌
ˇ nP
1D1

P .X/

ˇ̌̌
ˇ

jU j
is called quality of the approximation of classication Y by set of attributes P, or
in short, quality of classification. It expresses the ratio of all P-correctly classified
objects to all objects in the system.

The main preoccupation of the rough sets theory is approximation of subsets or
partitions of U, representing a knowledge aboutU , with other sets or partitions built
up using available information about U . From the viewpoint of a particular object
x 2 U , it may be interesting, however, to use the available information to assess the
degree of its membership to a subset X of U . The subset X can be identified with
a concept of knowledge to be approximated. Using the rough set approach one can
calculate the membership function �P

X .x/ (rough membership function) as

�P
X .x/ D

X \ Ip.x/

Ip.x/
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The value of �P
X .x/ may be interpreted analogously to conditional probability

and may be understood as the degree of certainty (credibility) to which x belongs to
X . Observe that the value of the membership function is calculated from the avail-
able data, and not subjectively assumed, as it is the case of membership functions of
fuzzy sets.

Between the rough membership function and the approximations of X the fol-
lowing relationships hold (Pawlak [295]):

P .X/ D fx 2 U W �P
X .x/ D 1g; NP.X/ D fx 2 U W �P

X .x/ > 0g
BnP .X/ D fx 2 U W 0 < �P

X .x/ < 1g; P .U �X/ D fx 2 U W �P
X .x/ D 0g

In the rough sets theory there is, therefore, a close link between vagueness (gran-
ularity) connected with rough approximation of sets and uncertainty connected with
rough membership of objects to sets.

After the rough set was initialized by Pawlak [295], it has been applied to many
fields to deal with vague description of objectives. He asserted that any vague infor-
mation can be approximated by other crisp information. In this section, we will
recall these fundamental concepts and introduce its application to the statistical field
and programming problem.

Definition 5.1. (Slowinski and Vanderpooten [297]) Let U be a universe, and X a
set representing a concept. Then its lower approximation is defined by

X D fx 2 U jR�1.x/ � Xg; (5.1)

and the upper approximation is defined by

X D
[
x2X

R.x/; (5.2)

where R is the similarity relationship on U . Obviously, we have X � X � X .

Definition 5.2. (Pawlak [295]) The collection of all sets having the same lower
and upper approximations is called a rough set, denoted by .X;X/. Its boundary
is defined as follows,

BnR.X/ D X � X: (5.3)

In order to know the degree of the upper and lower approximation describing the
set X , the concept of the accuracy of approximation is proposed by Greco et al.
[119],

˛R.X/ D jX jjX j (5.4)

where X ¤ ˚ , jX j expresses the cardinal number of the set X when X is a finite
set, otherwise it expresses the Lebesgue measure.
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Another ratio defines a quality of the approximation of X by means of the
attributes from R according to Greco et al. [119],

	R.X/ D jX jjX j (5.5)

The quality 	R.X/ represents the relative frequency of the objects correctly classi-
fied by means of the attributes from R.

Remark 5.1. For any set A we can represents its frequency of the objects correctly
approximated by .X;X/ as follows,

ˇR.A/ D jX \AjjX \Aj :

If X � A � X , namely, A has the upper approximation X and the lower
approximation X , we have that ˇR.A/ degenerates to the quality 	R.A/ of the
approximation.

As we know, the quality 	R.A/ of the approximation describes the frequency
of A, and when 	R.A/ D 1, we only have jAj D jX j, namely, the set A is well
approximated by the lower approximation. If we want to make A be a definable set,
there must be 	R.A/ D 1 and ˛R.X/ D 1 both holds. Then we could make use the
following definition to combine them into together.

Definition 5.3. Let .X;X/ be a rough set under the similarity relationship R and
A be any set satisfying X � A � X . Then we define the approximation function
as follows expressing the relative frequency of the objects of A correctly classified
into .X;X/,

ApprR.A/ D 1 � �
�
1 � jAjjX j

�
(5.6)

where � is a predetermined by the decision maker’s preference.

From Definition 5.3, we know that jAj
jX j which keeps accord with 	R.A/ describes

the relative frequency of the objects correctly classified by R from the view of the
upper approximationX . Obviously, ApprR.A/ is a number between 0 and 1, and is
increasing along with the increase of jAj. The extreme case ApprR.A/ D 1 means
that jAj D jX j, namely, A is completely described by X .

Lemma 5.1. Let .X;X/ be a rough set under the similarity relationship R and A
be any set satisfying X � A � X . Then we have

ApprR.A/ D
�˛R.A/C .1 � �/	R.A/

	R.A/
:
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Proof. Since X � A � X , it means that A has the lower approximationX and the
upper approximationX , and it follows from Greco et al. [119] that

˛R.A/ D jX jjX j ; 	R.A/ D jX jjAj :

Thus,
jAj
jX j D

˛R.A/

	R.A/
:

It follows that

ApprR.A/ D 1 � �
�
1 � jAjjX j

�

D 1 � �
�
1 � ˛R.A/

	R.A/

�

D �˛R.A/C .1 � �/	R.A/

	R.A/

This completes the proof. ut
Lemma 5.2. Let .X;X/ be a rough set on the finite universe under the equiva-
lence relationship R, A be any set satisfying X � A � X and � 2 .0; 1/. Then
ApprR.A/ D 1 holds if and only if X D A D X .

Proof. If X D A D X holds, it is obvious that ApprR.A/ D 1 according to
Definition 5.4. Let’s proved the necessity of the condition.

If ApprR.A/ D 1 holds for any A satisfying X � A � X , it follows from
Lemma 5.1 that, for 0 < � � 1,

�˛R.A/C .1 � �/	R.A/

	R.A/
D 1) ˛R.A/ D 	R.A/) jX j D jAj:

Since A � X and the universe is finite, we have that A D X . Because A is
any set satisfying X � A � X , let A D X , then we have X D X . It follows
from the property proposed by Pawlak [295] that X D X D X . Thus, we have
X D A D X . ut

Lemma 5.1 shows that the approximation function Appr inherits the accuracy
and quality of the approximation, and extends it to the relationship between any
set A and the rough set .X;X/. Lemma 5.2 shows that the approximation func-
tion is complete and well describes the property in traditional rough set theory, and
describe the property only by one index.

Lemma 5.3. Let .X;X/ be a rough set on the infinite universe under the similarity
relationship R, A be any set satisfying X � A � X and � 2 .0; 1/. If ApprR.A/ D
1 holds, then there exist the similarity relationship R� such that jX j D jAj D jX j,
where j � j expresses the Lebesgue measure.
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Proof. According to Lemma 5.2, we know that jAj D jX j must hold. Let X D
X=@X under the similarity relationship R�, where @X is composed by all the ele-
ments such that j@X j D 0, namely, the measure of @X is 0. Next, we will prove that
X=@X � A.

1. If jX j D 0, then X=@X D ˚ . Thus, jX j D jAj D jX j D 0.
2. If jX j ¤ 0, we only need to prove that for any x0 2 X=@X , x0 2 A. In fact,

when x0 2 X=@X , then x0 2 int.X/ holds, where int.X/ is the internal part ofX .
It follows that there exists r > 0 such that N.x0; r/ � int.X/ and jN.x0; r/j > 0.
There exist four cases describing the relationship between A and N.x0; r/.

Case 1. A \ N.x0; r/ D ˚ (see Fig. 5.3) . Since N.x0; r/ � int.X/ � X and
A � X , we have that

jX j � jN.x0; r/ [Aj D jN.x0; r/j C jAj:

This conflicts with jAj D jX j.
Case 2. A \ N.x0; r/ D P , where the set P includes countable points

(see Fig. 5.4). Obviously, we have jP j D 0, thus jN.x0; r/=P j D jN.x0; r/j > 0.
Then we have

jX j � jN.x0; r/[ Aj D jN.x0; r/=P j C jAj:

This also conflicts with jAj D jX j.
Case 3. A\N.x0; r/ D P 0, where P 0 � N.x0; r/=fx0g. As Fig. 5.5 shows, we

can divide it into three parts, namely, .N.x0; r/=P / D P 0 [ fx0g[ T , where P 0, T
and fx0g don’t have the same element with each other. Then jT j > 0, it follows that

jX j � jN.x0; r/ [ Aj D jT j C jAj:

This also conflicts with jAj D jX j.
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Fig. 5.6 Inclusion
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Case 4. A � .N.x0; r/=x0/ (see Fig. 5.6). This means that for any x0 2 int.A/,
x0 62 A. It follows that A \ int.A/ D ˚ , then we have

jX j � jint.A/ [Aj D jint.A/j C jAj:
This also conflicts with jAj D jX j. In above, we can get X=@X � A. Thus, there
exists the lower approximation X D X=@X such that X � A � X under the
similarity relationship R�. ut
Remark 5.2. In fact, we can extend Definition 5.3 to more general set. when X �
A � X , we have the following equivalent formula,

ApprR.A/ D 1 � �
�
1 � jAjjX j

�

D jA\X jjX j
�
1 � �

�
1 � jA\ X jjX j

��

D jA\X jjX j C �
� jA\X j
jX j � jA\ X jjX j

�

Furthermore, we get the definition of the approximation function for any set A.

Definition 5.4. Let .X;X/ be the rough set generated by X under the similarity
relationship R, for any set A, the approximation function of event A by .X;X/ is
defined as follows

ApprR.A/ D
jA\ X j
jX j C �

 
jA\ X j
jX j � jA \X jjX j

!
;

where � is a given parameter predetermined by the decision maker’s preference.

From Definition 5.4, we know that ApprR.A/ expresses the relationship between
the set A and the set .X;X/ generated by X , that is, the frequency of A correctly
classified into .X;X/ according to the similarity relationship R. It has the internal
link with the accuracy ˛R of the approximation and the quality 	R of the approxima-
tion in some extent. ˛R expresses the degree of the upper and lower approximation
describing the set X . 	R.X/ represents the relative frequency of the objects cor-
rectly classified by means of the attributes from R. Then ApprR combines both of
them together and considers the level which A has the attributes correctly classified
by .X;X/ for any A.
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Lemma 5.4. Let .X;X/ be a rough set, for any set A, we have the following
conclusion,

ApprR D

8̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂:

1; if A � X
1 � �
1 � ˛R.A/

	R.A/

�
; if X � A � X

1 � �.1 � ˛R.A//

	R.A/
; if A � X

0; if A\ X D ˚
jA\X j
jX j

�
ˇR.A/

˛R.A/
C �
1 � ˇR.A/

˛R.A/

��
; otherwise

(5.7)

Proof. 1. If A � X , we have that A\X D X and A\X D X . Then ApprR D 1.
2. If X � A � X , we have that A \ X D X and A \ X D A. It follows that

ApprR D 1 � �.1 � jAj
jX j /.

3. If A � X , we have that A \ X D A and A \ X D A. It follows that ApprR D
1��.1�˛R.A//


R.A/
.

4. If A \ X D ˚ , we have that A \ X D ˚ and A \ X D ˚ . It follows that
ApprR D 0.

5. For the others, we have

ApprR.A/ D
jA\ X j
jX j C �

� jA\ X j
jX j � jA\ X jjX j

�

D jA\ X jjX j
� jA \X j
jX j � jX jjA\ X j C �

�
1 � jA \X jjX j � jX jjA\ X j

��

D jA\ X jjX j
�
ˇR.A/

˛R.A/
C �

�
1 � ˇR.A/

˛R.A/

��

This completes the proof. ut
For the different purposes, we can respectively discuss the extreme case as

follows.

Remark 5.3. When � D 1, we have ApprR.A/ D jAT
X j

jX j . It means that the decision
maker only consider the level that A includes the frequency of A correctly classified
into X according to the similarity relationship R.

Remark 5.4. When � D 0, we have ApprR.A/ D jAT
X j

jX j . It means that the decision

maker only consider the level that A includes the frequency of A correctly classified
into X according to the similarity relationship R.

In fact, the rough set theory is increasingly developed by many scholars and
applied to many fields, for example, data mining, decision reduction, system analy-
sis and so on. Figure 5.7 shows that the rough approximation. The curves including
the internal points is X . The two thick curves including their internal points are the
upper and lower approximation.
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Fig. 5.7 Rough
approximation
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5.2.2 Ra-Ro Variable

Let’s focus on the continuous set in the one dimension real space R. There are still
some vague sets which cannot be directly fixed and need to be described by the
rough approximation. For example, set R be the universe, a similarity relation '
is defined as a ' b if and only if ja � bj � 10. We have that for the set Œ20; 50�,
its lower approximation Œ20; 50� D Œ30; 40� and its upper approximation Œ20; 50� D
Œ10; 60�. Then the upper and lower approximation of the set [20, 50] make up a
rough set ([30, 40],[10, 60]) which is the collection of all sets having the same
lower approximation [30, 40] and upper approximation [10, 60].

Especially, when we consider a random event with uncertain parameter such as
the probability, expected value and variance, the rough approximation can be applied
to find the more accurate distribution. Let’s firstly consider the following example.
There are 10,000 spare parts which are divided into 100 groups. After carefully
examination, we found that the lifetime � of all the spare parts in each group follows
the exponential distribution as follows,

� �
(

1
�i
e�x=�i ; if 0 � x < C1

0; otherwise
(5.8)

where �i .i D 1; 2; : : : ; 10/ is the expected value expressing the average lifetime of
the spare parts in each group. As we know, they are usually different. Let’s assume
that the minimal and maximal values are 105 and 90, respectively. Then we can
denote �i 2 Œ90; 105�. Now, for the new 100 ones, decision makers require the
random error doesn’t exceed 5. Thus, the similarity relationship is fixed, that is,
jx � yj � 5, then the rough set ([95,100], [85,110]) can well describe the average
lifetime in every group. Then we define the concept of the Ra-Ro variable as follows.

Definition 5.5. A Ra-Ro variable � is a random variable with uncertain parameter
Q� 2 X , where X is approximated by .X;X/ according to the similarity relation R,
namely, X � X � X .

For convenience, we usually denote Q� ` .X;X/R expressing that Q� is in some set
A which is approximated by .X;X/ according to the similarity relation R, namely,
X � A � X .
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Example 5.1. Let’s consider the normally distributed random variable � with the
following density function,

�.x/ D 1p
2�
e� .x� Q�/2

2 ;�1 < x < C1 (5.9)

where Q� ` .Œ1; 2�; Œ0; 3�/R. Then � is a random rough variable.

Example 5.2. If � � U .1C Q�; 3C Q�/ is an uniformly distributed random variable,
where Q� ` .Œ2; 3�; Œ1; 4�/R, then � is a Ra-Ro variable.

5.2.2.1 Discrete Ra-Ro Variable

Random variables are usually divided into two kinds. One is the discrete random
variable, the other is the continuous random variable. By the definition of random
rough variable, we know a Ra-Ro variable is essentially a random variable taking
rough value. Hence, Ra-Ro variables also can be divided into the discrete Ra-Ro
variable and the continuous one. Interested readers can also consult in the paper
wrote by Xu and Yao [347].

Definition 5.6. (Xu and Yao [347])(Discrete Ra-Ro variables) A discrete Ra-Ro
variable is a function � from a rough space .�;�;A ; �/ to a collection ˝ of
discrete random variables such that for any element �, �.�/ is a discrete random
variable, that is,

�.�/.!/ D

8̂̂
<
ˆ̂:
f1.�!1/ if ! D !1

f2.�!2/ if ! D !2

: : :

fn.�!n/ if ! D !n

(5.10)

where fi is any continuous function, � ` .Œa; b�; Œc; d �/R , .c � a < b � d/ andPn
iD1 P rf! D !i g D 1.

Obviously, � is a discrete random variables with the uncertain parameter � 2 X
which is approximated by the rough set .Œa; b�; Œc; d �/ under the similarity relation-
ship R. �.�/ itself is a discrete Ra-Ro variable, and it can be combined by different
discrete random variables defined on the probability space˝ . Now, let’s look at two
intuitive example of discrete Ra-Ro variables.

Example 5.3. Assume .Œa; b�; Œc; d �/ be a rough set under the similarity relationship
R, where c � a < b � d . Let ˝ D f!1; !2; !3g be the probability space with the
probability 0.5 of !1, probability 0.2 of !2, and probability 0.3 of !3. For each
� ` .Œa; b�; Œc; d �/R , let the value of �.�/ be a random variable defined˝ by

�.�/.!/ D
8<
:
2�!1 ; if ! D !1

2�!2 ; if ! D !2

2�!3 ; if ! D !3

(5.11)

Then � is a Ra-Ro variable, and in fact a discrete random rough variable.
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Example 5.4. Let .Œa; b�; Œc; d �/ be a rough set provided in Example 5.3, �.�/ is
defined by the following function,

�.�/.!/ D
�
��1; if c � � � a
��2; if b � � � d (5.12)

where �i ; i D 1; 2 is respectively a discrete random variable defined on the
probability space ˝ . Apparently, � is a discrete Ra-Ro variable.

The expected value and variance of Ra-Ro variable is another important property
we must pay attention to. Then the basic definition of discrete Ra-Ro variable is
shown as follows.

The expected value and variance of Ra-Ro variable is another important property
we must pay attention to. Then the basic definition of discrete Ra-Ro variable is
shown as follows.

Definition 5.7. (Xu and Yao [347]) Let � be an Ra-Ro variable with the uncertain
parameter �, where � ` .X;X/R, then its expected value is defined by

EŒ�� D
Z 1

0

ApprfEŒ�.�/� � rgdr �
Z 0

�1
ApprfEŒ�.�/� � rgdr (5.13)

Definition 5.8. Let � be a Ra-Ro variable defined in Definition 5.6, and the proba-
bility of ! D !i .i D 1; 2; : : :/ be pi , where

P1
iD1 pi D 1. if the series

1X
iD1

!ifi .�!i / (5.14)

is absolutely convergent, then we call (5.14) as the expected value of discrete
random variable �.�/, denoted by EŒ�.�/�.

Definition 5.9. Let � be a Ra-Ro variable defined in Definition 5.6, and the proba-
bility of ! D !i .i D 1; 2; : : :/ be pi , where

P1
iD1 pi D 1. If the following equation

exists,

V Œ�� D EŒ� �EŒ���2 (5.15)

we call V Œ�� as the variance of �.

Lemma 5.5. (Xu and Yao [347]) Suppose � be a Ra-Ro variable defined on
.�;�;A ; �/. Then

V Œ�� D EŒ�2� � .EŒ��/2 (5.16)
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Proof. For any � 2 �, �.�/ is a random rough variable, we have

V Œ�� D E.�2/ � ŒE.�/�2

D
Z 1

0

ApprfEŒ�.�/ �E.�.�//�2 � rgdr

�
Z 0

�1
ApprfEŒ�.�/ � E.�.�//�2 � rgdr

D
Z 1

0

ApprfE.�2.�// � ŒE.�.�//�2 � rgdr

�
Z 0

�1
ApprfE.�2.�// � ŒE.�.�//�2 � rgdr

D
Z 1

0

ApprfE.�2.�// � rgdr �
Z 1

0

ApprfŒE.�.�//�2 � rgdr

�
�Z 0

�1
ApprfE.�2.�// � rgdr �

Z 0

�1
ApprfŒE.�.�//�2 � rgdr

�

D EŒ�2� � .EŒ��/2

This completes the proof. ut
Lemma 5.6. (Xu and Yao [347]) If � is a Ra-Ro variable whose variance exists, a
and b are real numbers, then V Œa� C b� D a2V Œ��.

Proof. It follows from the definition of variance that

V Œa� C b� D EŒ.a� C b � aEŒ�� � b/2� D a2EŒ.� �EŒ��/2� D a2V Œ�� (5.17)

ut

Next, let’s restrict our attention to three kinds of special discrete Ra-Ro variables
and induce their properties.

In the traditional experiment, we all consider the probability of success or failure
of one event as a certain value. However, not all the probability are crisp, we always
find that it is a uncertain value as the statistical data increase. In the following sec-
tion, we fasten on a kind of 0–1 distribution whose probability of success is a rough
variable.

Definition 5.10. (Xu and Yao [347])(Ra-Ro 0-1 distribution) In an experiment, we
assume that Qp ` .X;X/R expresses the probability of success of the event �
such that,

X D f�j0 � � � 1gI X D f�ja � � � bg

where 0 � a < b � 1: We call the event � is subject to Ra-Ro 0–1 distribution.
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Obviously, the probability of failure Qq of the event � is defined on the rough set
.X 0; X 0/ as follows,

X 0 D f�j0 � � � 1gI X 0 D f�j1� b � � � 1 � ag (5.18)

By Definition 5.6 and Lemma 5.5, the expected value and variance of � can be
obtained as follows.

Theorem 5.1. (Xu and Yao [347]) Let � follow Ra-Ro 0–1 distribution, and Qp `
.X;X/R express the probability of success of the event � such that,

X D f�j0 � � � 1gI X D f�ja � � � bg;

where 0 � a < b � 1: Then

EŒ�� D 1��
2
.aC b/C �

2
;

V Œ�� D Œ1��
2
.a2 C b2/C �

2
� � Œ1��

2
.aC b/C �

2
�2:

Proof. Since �.�/ is a random variable subject to 0–1 distribution as follows,

�.�/ �
�
0 1

Qq Qp
	

then

EŒ�.�/� D 0 � Qq C 1 � Qp D Qp

Namely, EŒ�.�/� is an uncertain parameter approximated by the rough set .X;X/.
It follows that,

ApprfEŒ�.�/� � rg D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

0 if r � 1
�.1 � r/ if b � r � 1
�.1 � r/C .1 � �/ b � r

b � a if a � r � b
1 � �r if 0 � r � a
1 if r � 0

Then

EŒ�� D
Z C1

0

ApprfEŒ�.�/� � rgdr �
Z 0

�1
ApprfEŒ�.�/� � rgdr

D
Z a

0

.1 � �r/dr C
Z b

a

1

2

�
�.1 � r/C .1 � �/ b � r

b � a
�
dr C

Z 1

b

�.1 � r/dr

D 1 � �
2

.aC b/C �

2
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Next, we will compute the variance of �. Obviously, �2.�/ is a random variable
subject to 0–1 distribution as follows,

�2.�/ �
�

0 1

1 � Qp2 Qp2

	

Then

EŒ�2.�/� D 0 � .1 � Qp2/C 1 � Qp2 D Qp2

Obviously, Qp2 ` .X 0; X 0/R is defined as follows,

X 0 D f�j0 � � � 1gI X 0 D f�ja2 � � � b2g:
Then we have

EŒ�2� D 1 � �
2

.a2 C b2/C �

2

It follows from the property of random variables that

V Œ�� D EŒ�2� � .EŒ��/2 D
�
1 � �
2

.a2 C b2/C �

2

	
�
�
1 � �
2

.aC b/C �

2

	2

:

The proof is complete. ut
As we know, in an experiment, if the probability of success is p, the probability

P.r/ of r successes inm independent trials of the experiment is subject to binomial
distribution. However, in some cases the probability p of success is not precise,
which needs to be estimated or obtain from expert opinion. How can we deal with
this kind of events? There is a technique of Ra-Ro binomial to solve this problem.

Definition 5.11. (Xu and Yao [347]) (Ra-Ro binomial distribution) Assume that
Qp ` .X;X/R expresses the probability of success of the event � such that,

X D f�j0 � � � 1gI X D f�ja � � � bg

where 0 � a < b � 1:We call the probability QP .r/ of r successes inm independent
trials of the experiment as random rough binomial.

With the rough arithmetic, we obtain

QP .r/ D
�
m

r

�
Qpr Qqm�r (5.19)

where Qq ` .X 0; X 0/ is the probability of the failed events, and

X 0 D f�j0 � � � 1gI X 0 D f�j1 � b � � � 1 � ag:
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Theorem 5.2. (Xu and Yao [347]) Let a Ra-Ro variable be subject to the binomial
distribution. Assume that Qp ` .X;X/R expresses the probability of the success in
m independent trials of the experiment, where X D f�j0 � � � 1g; X D f�ja �
� � bg.0 � a < b � 1/: Then

EŒ�� D 1 � �
2

.b � a/mC �m

2
;

V Œ�� D m
 �
1� �
2

.a2 C b2/C �

2

	
�
�
1 � �
2

.aC b/C �

2

	2
!
:

Proof. Because every trial is independent of each other, we can only compute the
expected value of one trial in the experiment. Obviously, for the i th trial �i , it is a
Ra-Ro variable subject to the 0–1 distribution, that is,

�i .�/ �
�
0 1

Qq Qp
	

where Qq ` .X 0; X 0/. Thus,

EŒ�i .�/� D 0 � Qq C 1 � Qp D Qp

Since � is independent with each other, it follows that,

EŒ�.�/� D
mX

iD1

EŒ�i .�/� D m Qp:

Since Qp is an uncertain probability of the success in m independent trials of the
experiment defined on the rough set .X;X/, EŒ�.�/� D m Qp is an uncertain
parameter defined on the rough set .X�; X�

/ as follows

X
� D f�j0 � � � mgI X� D f�jam � � � bmg

By the definition of trust measure and Definition 5.7, we have

ApprfEŒ�.�/� � rg D

8̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂:

0 if r � m
�.m � r/

m
if bm � r � m

�
m � r
m
C .1 � �/ bm � r

.b � a/m if am � r � bm
�
m � r
m
C 1 � � if 0 � r � am

1 if r � 0
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It follows that

EŒ�� D
Z C1

0

ApprfEŒ�.�/� � rgdr �
Z 0

�1
ApprfEŒ�.�/� � rgdr

D
Z am

0

�
�
m � r
m
C 1 � �

�
dr C

Z bm

am

�
�
m � r
m
C .1 � �/ bm � r

.b � a/m
�
dr

C
Z m

bm

�.m� r/
m

dr D 1 � �
2

.b � a/mC �m

2

It follows from the proof of Theorem 5.1 that

EŒ�2
i � D

1 � �
2

.a2 C b2/C �

2

Then

V Œ�i � D EŒ�i � EŒ�i ��
2 D EŒ�2

i � � .EŒ�i �/
2

D
�
1 � �
2

.a2 C b2/C �

2

	
�
�
1 � �
2

.aC b/C �

2

	2

It follows that

V Œ�� D
mX

iD1

V Œ�i � D m
 �
1 � �
2

.a2 C b2/C �

2

	
�
�
1 � �
2

.aC b/C �

2

	2
!
:

This completes the proof. ut
In real-life problems, there are a lot of examples about poisson distribution. How-

ever, not all the parameters � are certain. Some of them need to be estimated or
obtain from expert opinion, so we apply the technique that we substitute a rough
variable for � to solve this problem. Before giving the definition of random rough
poisson, we introduce the following lemmas.

Lemma 5.7. (Xu and Yao [344]) Let 
 be an uncertain parameter defined on the
rough set .X;X/, where X D f�jc � � � d g; X D f�ja � � � bg.0 < c � a <
b � d/: It follows that


k ` .Œak ; bk�; Œck ; dk�/R

e� ` .Œea; eb�; Œec ; ed �/R

where k is any positive integer.

Proof. According to the concept of interval number defined by Alefeld and
Herzberger [3], a rough variable � could be considered as a kind of interval number.
Since 
 ` .Œa; b�; Œc; d �/R , it follows from the interval arithmetic defined by Alefeld
and Herzberger [3] and Hansen [129, 130] that, for 0 < c � a < b � d ,
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.Œa; b�; Œc; d �/ 
 .Œa; b�; Œc; d �/ 
 � � � 
 .Œa; b�; Œc; d �/ D .Œak ; bk�; Œck ; dk�/

Similarly,

1X
kD0

.Œak ; bk�; Œck ; dk�/

kŠ
D
 " 1X

kD0

ak

kŠ
;

1X
kD0

bk

kŠ

#
;

" 1X
kD0

ck

kŠ
;

1X
kD0

dk

kŠ

#!

D .Œea; eb�; Œec ; ed �/

Then we have


k ` .Œak ; bk�; Œck ; dk�/R
e� ` .Œea; eb�; Œec ; ed �/R

This completes the proof. ut
Lemma 5.8. (Xu and Yao [347]) Let � D m Qp, where Qp is an uncertain probability
of the success defined on the rough set .Œa; b�; Œ0; 1�/, m D 1; 2; : : :. Then for any
nonnegative integer r , we have

lim
m!1

�
m

r

�
Qpr Qqm�r D �re��

rŠ

Proof. Obviously, � is also an uncertain parameter defined on .Œ�1; �2�; Œ�3; �4�/,
Qp ` .Œa; b�; Œ0; 1�/, and Qq ` .Œ1 � b; 1 � a�; Œ0; 1�/. Then a D �1

m
; b D �2

m
; �3 D

0; �4 D m. By Lemma 5.7, we have

Qpr Qqm�r D m.m � 1/ � � � .m � r C 1/
rŠ

.Œa; b�; Œ0; 1�/r .Œ1 � b; 1� a�; Œ0; 1�/m�r

D m.m� 1/ � � � .m � r C 1/
rŠ

� .Œar ; br �; Œ0; 1�/ � .Œ.1 � b/r ; .1 � a/r �; Œ0; 1�/

D m.m� 1/ � � � .m � r C 1/
rŠ

�
�h��1

m

�r

;
��2

m

�ri
;
h
0;
��4

m

�ri�
�
�h
.1 � �2

m

�m�r

;
�
1 � �1

m

�m�ri
; Œ0; 1�

�
D 1

rŠ
� .Œ�r

1 ; �
r
2 �; Œ0; �

r
4 �/ �

�h�
1 � �2

m

�m�r

;
�
1 � �1

m

�m�ri
; Œ0; 1�

�
�
h
1 �
�
1 � 1

m

�
� � �
�
1 � r � 1

m

�i

For every fixed r , when m!1,

lim
m!1

�
1 � �2

m

�m�r D e��2 ; lim
m!1

�
1 � �1

m

�m�r D e��1 ;

lim
m!1

h
1 �
�
1 � 1

m

�
� � �
�
1 � r � 1

m

�i
D 1:
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Since �4 D m, lim
m!1 e��4 D 0. Then

lim
m!1

�
m

r

�
Qpr Qqm�r D 1

rŠ
� .Œ�r

1 ; �
r
2 �; Œ0; �

r
4 �/ � .Œe��2 ; e��1 �; Œ0; 1�/ D Q�r e� Q�

rŠ

This completes this proof. ut
Definition 5.12. (Xu and Yao [347]) (Ra-Ro poisson distribution) Suppose the
probability that random variable �.�/ takes the value 0; 1; 2; : : : is as follows

P rf�.�/ D rg D Q�
re�Q�

rŠ
(5.20)

where � is an uncertain parameter defined on the rough set .X;X/.X D f�j0 �
� � 1g; X D f�j�1 � � � �2g; 0 � �1 < �2 � 1/, then we can say that � is a
Poisson distributed Ra-Ro variable.

Theorem 5.3. (Xu and Yao [347]) (The expected value of Ra-Ro poisson) Assume
that � follows Ra-Ro poisson distribution. The probability Pr of �.�/ D r is
�r

rŠ
e�� .k D 0; 1; 2; : : : ;1/, � ` .Œa; b�; Œc; d �/R is an uncertain parameter, 0 <

c � a < b � d . Then

EŒ�� D 1 � �
2

.aC b/C �

2
.c C d/;

V Œ�� D
�
1 � �
2

.aC b C a2 C b2/C �

2
.c C d C c2 C d 2/

	

�
�
1 � �
2

.aC b/C �

2
.c C d/

	2

:

Proof. According to the definition of discrete Ra-Ro variable, we can get that �.�/
is a random variable. We must compute the expected value of random event �.�/
by Definition 5.7. Because random event �.�/ satisfies poisson distribution, from
Lemmas 5.7 and 5.8, it follows that

EŒ�.�/� D
1X

rD0

r � Pr D
1X

rD0

r � �
r

rŠ
e�� D �

Obviously, EŒ�.�/� is uncertain because the uncertainty of � . By the definition of
expected value of Ra-Ro variable, we can calculate the expected value of �.

EŒ�� D
Z C1

0

ApprfEŒ�.�/� � rgdr �
Z 0

�1
ApprfEŒ�.�/� � rgdr

D 1 � �
2

.aC b/C �

2
.c C d/

Then
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EŒ�2.�/� D
1X

rD0

r2 � pr D
1X

rD0

r2 � �
r

rŠ
e�� D

1X
rD1

.r � 1C 1/ � �r

.r � 1/Še
��

D �2

1X
rD2

�r�2

.r � 2/Še
�� C �

1X
rD1

�r�1

.r � 1/Še
��

D �2 C �

It follows that EŒ�2.�/� ` .XC; XC
/R, where X

C D f�jc2 C c���d 2Cd g;
XC D f�ja2 C a � � � b2 C bg. Thus,

EŒ�2� D
Z C1

0

ApprfEŒ�2.�/� � rgdr �
Z 0

�1
ApprfEŒ�2.�/� � rgdr

D 1 � �
2

.aC b C a2 C b2/C �

2
.c C d C c2 C d 2/

We have

V Œ�� D EŒ�2� � ŒE.�/�2
D
�
1 � �
2

.aC b C a2 C b2/C �

2
.c C d C c2 C d 2/

	

�
�
1 � �
2

.aC b/C �

2
.c C d/

	2

:

This completes the proof. ut

5.2.2.2 Continuous Ra-Ro Variable

As random variable has continuous distribution function, we can define the contin-
uous Ra-Ro variable.

Definition 5.13. (Xu and Yao [344]) (Continuous Ra-Ro variable) For a Ra-Ro
variable �, if �.�/ is a random variable with a continuous distributive function with
a parameter approximated by the rough set .X;X/. Then we call � a continuous
Ra-Ro variable.

Example 5.5. The lifetime � of a modern engine is an exponentially distributed vari-
able with an unknown expected value � , and has the following form of probability
density function,

�.x/ D
�

1
�
e�x=� ; if 0 � x <1
0; otherwise

(5.21)

where � ` .Œa; b�; Œc; d �/R and .Œa; b�; Œc; d �/ is a rough set under the similarity
relationshipR. Then �.�/ is a continuous random variable for each � . Hence, � is a
continuous Ra-Ro variable.
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Definition 5.14. (Xu and Yao [344]) (The differentiation of Ra-Ro variable) If there
exists differentiation for a function F.�; f .x// with Ra-Ro coefficients, we can
define it as following

@F.�; f .x//

@x
D F

�
�;
@f .x/

@x

�
(5.22)

Definition 5.15. (Xu and Yao [344]) Suppose � is a Ra-Ro variable, then �.�/ is a
random variable. If the density function of �.�/ is f .x; �/, and

EŒ�.�/� D
Z

x2˝

xf .x/dx D .Œa; b�; Œc; d �/ (5.23)

where a; b; c; d are finite real numbers. Then we call f .x; �/ as density function of
Ra-Ro variable �.

Definition 5.16. (Xu and Yao [344]) For the continuous Ra-Ro variable �, if its
density function is f .x/, then we can define the expected value of � as follows

EŒ�� D
Z 1

0

Appr

�Z
x2˝

xf .x/dx � r
�
dr �

Z 0

�1
Appr

�Z
x2˝

xf .x/dx � r
�
dr

Let’s pay more attention to three special kinds of continuous Ra-Ro variables and
research their properties.

Assume a random variable follows the uniform distribution and has the distribu-
tion function U.a; b/. However, in some real problems, all the parameters a and b
are both uncertain, and need to be estimated through experience and historical data.
Here, we assume that they are both approximated by different rough sets .X;X/
and .X 0; X 0

/, respectively.

Definition 5.17. (Xu and Yao [347]) (Ra-Ro uniform distribution) Let � be a ran-
dom variable which follows uniform distribution and has the following density
function,

f .�/.x/ D
8<
:

1

Qb � Qa if Qa � x � Qb
0 otherwise

where Qa ` .X;X/ and Qb ` .X 0; X 0
/ are two uncertain parameters, and

X D f�js1 � � � s4g; X D f�js2 � � � s3g
X

0 D f�jt1 � � � t4g; X 0 D f�jt2 � � � t3g (5.24)

then � is subject to Ra-Ro uniform distribution, denoted as � � U. Qa; Qb/.
According to the definition of the expected value and variance of continuous

Ra-Ro, we can get the following theorem.
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Theorem 5.4. (Xu and Yao [347]) (The expected value of Ra-Ro uniform)
Assume that � � U. Qa; Qb/ is an uniformly distributed Ra-Ro variable, where
Qa ` .Œs2; s3�; Œs1; s4�/R .0 < s1 < s2 < s3 < s4/ and Qb ` .Œt2; t3�; Œt1; t4�/

.0 < t1 < t2 < t3 < t4; si < ti /. Then we have

EŒ�� D 1 � �
4

.s2 C t2 C s3 C t3/C �

4
.s1 C t1 C s4 C t4/;

V Œ�� D
�
1 � �
12

.t22 C s2t2 C s2
2 C t23 C s3t3 C s2

3/

C �

12
.t21 C s1t1 C s2

1 C t24 C s4t4 C s2
4/

	

�
�
1 � �
4

.s2 C t2 C s3 C t3/C �

4
.s1 C t1 C s4 C t4/

	2

:

Proof. According to Definition 5.16, we have

EŒ�� D
Z C1

0

Appr

�Z
˝

xf .�/.x/dx � r
�

dr

�
Z 0

�1
Appr

�Z
˝

xf .�/.x/dx � r
�

dr

D
Z C1

0

Appr

�Z C1

0

x
1

Qb � Qadx � r
�

dr

�
Z 0

�1
Appr

�Z C1

0

x
1

Qb � Qadx � r
�

dr

D
Z C1

0

Appr

(
QaC Qb
2
� r

)
dr�

Z 0

�1
Appr

(
QaC Qb
2
� r

)
dr

According to rough arithmetic operators, it follows that,

QaC Qb
2
`
��
s2 C t2
2

;
s3 C t3
2

	
;

�
s1 C t1
2

;
s4 C t4
2

	�
R

Then we have

EŒ�� D 1 � �
4

.s2 C t2 C s3 C t3/C �

4
.s1 C t1 C s4 C t4/:

Similarly, we can compute the expected value of �2 as follows

EŒ�2� D 1 � �
12

.t22 C s2t2 C s2
2 C t23 C s3t3 C s2

3/

C �

12
.t21 C s1t1 C s2

1 C t24 C s4t4 C s2
4/

Then we can get its variance by V Œ�� D EŒ� � EŒ���2. The proof is completed. ut
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Fig. 5.8 Ra-Ro normal
distribution
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The normal distribution of random variables is often found in many real-life
problems, for example, errors of some equipments are subject to normal distribution.
However, not all means or variances are precise, they usually need to be estimated by
historical data or experience. Therefore, we propose the Ra-Ro normal distribution
to describe the uncertain mean or variance.

Definition 5.18. (Xu and Yao [347]) (Ra-Ro normal distribution) Suppose � is a
Ra-Ro variable. If the random variable �.�/ follows normal distribution with uncer-
tain expected value Q� ` .X;X/R or variance Q�2 ` .X;X/R or both of them, then
� is subject to Ra-Ro normal distribution, denoted as � � N . Q�; Q�2/ (see Fig. 5.8).

By the definition, we know that there are two kinds of basic random rough vari-
ables which are subject to normal distribution. One is a random variable which is
subject to normal distribution and whose expected value is an uncertain variable
approximated by the rough set .X;X/. The other is a random variable with nor-
mal distribution whose variance an uncertain variable approximated by the rough
set .X;X/. Next, let’s discuss the expected value and variance of the two kinds of
Ra-Ro normal variables, respectively. See Examples 5.6 and 5.7.

Example 5.6. Suppose � � N . Q�; �2/ is a random rough variable, where Q� `
.Œa; b�; Œc; d �/R . Then � is Ra-Ro variable subject to normal distribution.

Example 5.7. Suppose � � N .�; Q�2/ is a random rough variable, where Q� is
approximated by the rough set .X 0; NX 0/ defined as follows,

X 0 D fxja0 � x � b0g; NX 0 D fxjc0 � x � d 0g (5.25)

Then � is Ra-Ro variable subject to normal distribution.

Next, let’s discuss the expected value and variance of the two kinds of Ra-Ro
normal variables.

Theorem 5.5. (Xu and Yao [347]) Suppose � � N . Q�; �2/ is a normally dis-
tributed Ra-Ro variable, where Q� ` .X;X/R and X D f�jc � � � d g; X D
f�ja � � � bg; 0 < c � a < b � d . Then
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EŒ�� D 1 � �
2

.aC b/C �

2
.c C d/;

V Œ�� D
�
1 � �
2

.a2Cb2/C �

2
.c2 C d 2/C �2

	
�
�
1 � �
2

.aC b/C �

2
.c C d/

	2

:

Proof. Since � � N . Q�; �2/, we have

EŒ�.�/� D Q�:

It follows that

EŒ�� D
Z C1

0

Apprf� 2 �jEŒ�.�/� � rgdr �
Z 0

�1
Apprf� 2 �jEŒ�.�/� � rgdr

D 1 � �
2

.aC b/C �

2
.c C d/

Since

EŒ�2.�/� D
Z C1

�1
x2 � 1p

2��
e

� .x� Q�/2

2�2 dx D �2 C Q�2

It follows from expected value operator that

EŒ�2� D 1 � �
2

.a2 C b2/C �

2
.c2 C d 2/C �2:

Then we have

V Œ�� D EŒ�2� � .EŒ��/2

D
�
1 � �
2

.a2 C b2/C �

2
.c2 C d 2/C �2

	
�
�
1 � �
2

.aC b/C �

2
.c C d/

	2

:

The theorem is proved. ut
Theorem 5.6. (Xu and Yao [347]) Suppose � � N .�; Q�2/ is a normally dis-
tributed Ra-Ro variable, where Q� ` .X 0; X 0

/R and X
0 D f�jc0 � � � d 0g; X 0 D

f�ja0 � � � b0g; 0 < c0 � a0 < b0 � d 0. Then

EŒ�� D �; V Œ�� D 1 � �
2

.a
02 C b02/C �

2
.c

02 C d 02/

Proof. Since �.�/ � N.�; Q�2/, we have

EŒ�� D �:

Next, we compute the variance of �.



306 5 Random Rough Multiple Objective Decision Making

EŒ�2.�/� D
Z C1

�1
x2 � 1p

2� Q� e
� .x��/2

2 Q�2 dx D Q�2 C �2

It follow from the expected value operator of the rough variable that

EŒ�2� D �2 C 1 � �
2

.a
02 C b02/C �

2
.c

02 C d 02/

It can be easily obtained as follows

V Œ�� D EŒ�2�� .EŒ��/2 D 1 � �
2

.a
02 C b02/C �

2
.c

02 C d 02/:

The theorem is proved. ut
Similarly, we only consider the continuous Ra-Ro variable following exponential

distribution which is the most universal in the realistic world. The Ra-Ro exponen-
tial variable can be applied in describing many uncertain events and solving these
uncertain problems.

Definition 5.19. (Xu and Yao [347]) (Ra-Ro exponential distribution) If � is a ran-
dom variable subject to exponential distribution with uncertain parameter approxi-
mated by the rough set .X;X/ under the similarity relationship R. Then � follows
Ra-Ro exponential distribution, denoted as � � exp.�/ (see Fig. 5.9).

The same with Ra-Ro normal distribution, we can also define its density function as
follows,

p.x/ D
� Q�e�Q�x; x � 0
0; x < 0
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Fig. 5.9 Ra-Ro exponential distribution
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where Q� is approximated by the rough set .X;X/ under the similarity relationship
R. Then it is easy to obtain the following theorem.

Theorem 5.7. (Xu and Yao [347]) Assume that the density function of Ra-Ro
variable � is p.x/, which is characterized as follows,

p.x/ D
� Q�e�Q�x; x � 0
0; x < 0

where Q� ` .X;X/R is an uncertain parameter and X D f�jc � � � d g; X D
f�ja � � � bg; 0 < c � a < b � d . Then

EŒ�� D 1 � �
2

�
1

a
C 1

b

�
C �

2

�
1

c
C 1

d

�
;

V Œ�� D
�
1 � �
2

�
1

a2
C 1

b2

�
C �

2

�
1

c2
C 1

d 2

�	

�
�
1 � �
2

�
1

a
C 1

b

�
C �

2

�
1

c
C 1

d

�	2

:

Proof. According to Definition 5.16, we have

EŒ�� D
Z C1

0

Appr

�Z
˝

xp.x/dx � r
�
dr �

Z 0

�1
Appr

�Z
˝

xp.x/dx � r
�
dr

D
Z C1

0

Appr

�
1

Q� � r
�
dr �

Z 0

�1
Appr

�
1

Q� � r
�
dr

Since Q� ` .Œa; b�; Œc; d �/.0 < c � a < b � d/, it follows from the interval number
operator that

1

Q� `
��
1

b
;
1

a

	
;

�
1

d
;
1

c

	�
R

Then we have

EŒ�� D 1 � �
2

�
1

a
C 1

b

�
C �

2

�
1

c
C 1

d

�
:

Since

EŒ�2.�/� D 1

Q�2
;

we have

EŒ�2� D 1 � �
2

�
1

a2
C 1

b2

�
C �

2

�
1

c2
C 1

d 2

�
:
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Thus,

V Œ�� D
�
1 � �
2

�
1

a2
C 1

b2

�
C �

2

�
1

c2
C 1

d 2

�	

�
�
1 � �
2

�
1

a
C 1

b

�
C �

2

�
1

c
C 1

d

�	2

This completes the proof. ut

5.3 Ra-Ro EVM

Optimization is usually to seek solution over a set of possible by certain criteria. If
the decision maker takes only one criterion into consideration, it is a single objec-
tive optimization problem, which have been well studied for the past 50 years. If DM
considers more than one criterion simultaneously, the multi-objective optimization
problems are presented and widely researched. Recently, many scholars are study-
ing this kind of problem which arises in many areas of real world. For example,
Bhatia [24] introduced the higher order strong convexity to multi-objective opti-
mization problem and found the equivalence of mixed saddle points. Zhang [361]
designed a new multi-objective optimization technique, multi-objective optimiza-
tion immune algorithm to get the Pareto optimal solution. However, in the real-life
optimization and decision making problems, the multi-objective programming prob-
lems are very complex and there must be many uncertain factors to be considered.
Dietz et al. [79] considered demands as fuzzy variables in the problem of opti-
mal design of batch plants. Slowinski [294] applied the method of rough sets to
solve the uncertain problem in the medical domain. Greco, Matarazzo and Slowin-
ski [120] then applied rough sets method to sort data according multiple attributes
and criteria. Sakawa et al [273] applied the interactive fuzzy satisfying method to
solve a class of multi-objective linear programming problems with random variable
coefficients. Recently, many scholars pay their attention to the programming with
two-fold uncertain parameters such as fuzzy random programming and birandom
programming. Xu and Yao [344] introduced the expected value multi-objective pro-
gramming problems with Ra-Ro coefficients. In this section, we will recall its basic
properties and extend them. Consider the following multi-objective programming
problem with Ra-Ro coefficients

�
maxŒf1.x; �/; f2.x; �/; : : : ; fm.x; �/�

s.t. gj .x; �/ � 0; j D 1; 2; : : : ; p (5.26)

where x 2 X � R is a n-dimensional decision vector, � D .�1; �2; : : : ; �n/ is
a Ra-Ro vector, fi .x; �/ are objective functions, i D 1; 2; : : : ; p: Because of the
existence of Ra-Ro vector �, problem (5.26) is not well-defined. That is, the meaning
of maximizing fi .x; �/; i D 1; 2; : : : ; m is not clear and constraints gr .x; �/� 0;
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r D 1; 2; : : : ; p do not define a deterministic feasible set. To deal with the Ra-
Ro events �, the expected value programming, chance-constraint programming, and
dependent-chance programming are brought forward.

We can also formulate a Ra-Ro decision system as a random rough goal pro-
gramming model according to the priority structure and target levels set by the
decision-maker,8̂̂

<̂
ˆ̂̂:

min
lP

j D1

Pj

mP
j D1

.uijd
C
i C vijd

�
i /

s.t.

�
fi .x; �/C d�

i � dC
i D bi i D 1; 2; : : : ; m

gj .x; �/ � 0; j D 1; 2; : : : ; p

where Pj is the preemptive priority factor which expresses the relative importance
of various goals, Pj 
 Pj C1, for all j , uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, vij is the weighting factor
corresponding to negative deviation for goal i with priority j assigned, dC

i is the
positive deviation from the target of goal i , defined as

dC
i D Œfi .x; �/ � bi � _ 0;

d�
i is the negative deviation from the target of goal i , defined as

d�
i D Œbi � fi .x; �/� _ 0;

fi is a function in goal constraints, gj is a function in real constraints, bi is the
target value according to goal i , l is the number of priorities, m is the number of
goal constraints, and p is the number of real constraints.

5.3.1 General Model for Ra-Ro EVM

Based on the definition of the expected value of random rough events fj and gj ,
the maximum expected value multi-objective model (EVM) is proposed as follows,

�
maxŒEŒf1.x; �/�; EŒf2.x; �/�; : : : ; EŒfm.x; �/��

s.t. EŒgj .x; �/� � 0; j D 1; 2; : : : ; p (5.27)

Definition 5.20. (Xu and Yao [344]) If x� is an efficient solution of problem (5.27),
we call it as a Ra-Ro expected efficient solution.

Clearly, the problem (5.27) is a multi-objective with crisp parameters. Then we
can convert it into a single-objective programming by traditional method of weight
sum,
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ˆ̂:

max
mP

iD1

!iEŒfi .x; �/�

s.t.

�
EŒgj .x; �/� � 0; j D 1; 2; : : : ; p
!1 C !2 C � � � C !m D 1

(5.28)

Theorem 5.8. (Xu and Yao [344]) Problem (5.28) is equivalent to problem (5.27),
i.e., the efficient solution of problem (5.27) is the optimal solution of problem (5.28)
and the optimal solution of problem (5.28) is the efficient solution of problem (5.27).

Proof. Apparently, the efficient solution of problem (5.27) is the optimal solution
of problem (5.28). Let ’s consider wether the optimal solution of problem (5.28) is
the efficient solution of problem (5.27).

Suppose x� is an optimal solution of problem (5.26). If x� is not an effi-
cient solution of problem (5.27), then there exists x0 such that EŒfi .x

0; �/� �
EŒfi .x

�; �/�.i D 1; 2; : : : ; m/, and there at least exists a k such thatEŒfk.x
0; �/� >

EŒfk.x
�; �/�. Then,

mX
iD1

!iEŒfi .x
0; �/� >

mX
iD1

!iEŒfi .x
�; �/�:

This conflicts with the assumption that x� is an optimal solution of problem (5.28).
This completes the proof. ut
Theorem 5.9. (Xu and Yao [344]) Let � D .�1; �2; : : : ; �n/ be a random rough
vector on the rough space.�;�;A ; �/, and fi and gj W A n ! A be convex
continuous functions with respect to x, i D 1; 2; : : : ; mI j D 1; 2; : : : ; p. Then the
expected value programming problem (5.28) is a convex programming.

Proof. Let x1 and x2 be two feasible solutions. Because gj .x; �/ is a convex
continuous function with respect to x, then

gj .�x1 C .1 � �/x2; �/ � �gj .x
1; �/C .1 � �/gj .x

2; �/;

where 0 � � � 1, j D 1; 2; : : : ; p. We can have

EŒgj .�x1 C .1 � �/x2; �/� � EŒ�gj .x
1; �/C .1 � �/gj .x

2; �/�:

Because for any � 2 �, �.�/ is a random vector. Then by the linearity of expected
value of random variable, we have

EŒgj .x
1; �.�//C .1� �/gj .x

2; �.�//� D �EŒgj .x
1; �.�//�C .1 � �/EŒgj .x

2; �.�//�

Following the linearity of expected value operator of rough variable, we can obtain
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EŒ�gj .x
1; �/C .1 � �/gj .x

2; �/�

D EŒ�EŒgj .x
1; �.�//�C .1 � �/EŒgj .x

2; �.�/��

D �EŒEŒgj .x
1; �.�//��C 1 � �/EŒEŒgj .x

2; �.�//��

D EŒgj .x
1; �/�C .1 � �/EŒgj .x

2; �/�:

Then EŒgj .�x1 C .1� �/x2; �/� � �EŒgj .x
1; �/�C .1� �/EŒgj .x

2; �/� � 0:
This means that �x1 C .1 � �/x2 is also a feasible solution. Then X.x 2 X/ is a
convex feasible set.

For every i , fi .x; �/ is a convex continuous function with respect to x, it follows
that

fi .�x1 C .1 � �/x2; �/ � �fi .x
1; �/C .1 � �/fi .x

2; �/;

then

EŒfi .�x1 C .1 � �/x2; �/� � �EŒfi .x
1; �/�C .1 � �/EŒfi .x

2; �/�;

then

mX
iD1

!iEŒfi .�x1 C .1 � �/x2; �/� � �
mX

iD1

!iEŒfj .x
1; �/�

C.1 � �/
rX

iD1

!iEŒfj .x
2; �/�:

This means function
mP

iD1

!iEŒfi .x; �/� is convex. Above all, we can conclude that

the expected value programming problem (5.28) is a convex programming. ut
We can also obtain the Ra-Ro expected value goal programming as follows,

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

min

�
mP

iD1

Pi .uid
C
i C vid

�
i /C

mP
rD1

Pj .ujd
C
j C vjd

�
j /

�

s.t.

8̂̂̂
<
ˆ̂̂:
EŒfi .x; �/�C d�

i � dC
i D qi ; i D 1; 2; : : : ; m

EŒgj .x; �/�C d�
j � dC

j D 0; j D 1; 2; : : : ; p
d�

i ; d
C
i ; d

�
j ; d

C
j � 0

ui ; vi ; uj ; vj D 0 or 1

(5.29)

where Pi ; Pj are the priority coefficients that express the importance of goals.
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5.3.2 Linear Ra-Ro EVM and the Ideal Point Method

Since there are two kinds of Ra-Ro variables, one is discrete Ra-Ro variable, the
other is continuous Ra-Ro variable, we will propose two kinds of crisp equivalent
models with respectively discrete or continuous Ra-Ro coefficients. Consider the
following model,

8̂<
:̂

max
� QNcT

1 x; QNcT
2 x; : : : ; QNcT

mx
�

s.t.

(
QNeT
r x � QNbr ; r D 1; 2; : : : ; p

x � 0
(5.30)

where QNci D . QNci1; QNci2; : : : ; QNcin/
T , QNer D . QNer1; QNer2; : : : ; QNern/

T are random rough vec-

tors and QNbr are Ra-Ro variables, i D 1; 2; : : : ; m; r D 1; 2; : : : ; p: By expected
value operator we can get the programming problem as follows,

8̂<
:̂

max
�
EŒ QNcT

1 x�; EŒ QNcT
2 x�; : : : ; EŒ QNcT

mx�
�

s.t.

(
EŒ QNeT

r x� � EŒ QNbr �; r D 1; 2; : : : ; p
x � 0

(5.31)

5.3.2.1 Crisp Equivalent Model

For the expected value programming with discrete and some continuous Ra-Ro vari-
ables, we can obtain the crisp equivalent models by Theorems 5.1, 5.2, 5.3, 5.4, 5.5,
5.6 and 5.7. For the important case, we will give it by the following theorem.

Theorem 5.10. (Xu and Yao [347]) Assume that Ra-Ro vector QNci is charac-
terized by QNci � N . Nci .�/; V

c
i /, where Nci .�/ D . Nci1.�/; Nci2.�/; : : : ; Ncin.�//

T /

is a rough vector such Ncij .�/ is approximated by a rough set and V c
i is

a positive definite covariance matrix. The random rough vector QNer and Ra-

Ro variable QNbr are respectively characterized by QNer � N . Ner .�/; V
e

r / and
QNbr � N . Nbr .�/; V

b
r /, where Ner.�/ D . Ner1.�/; Ner2.�/; : : : ; Nern.�//

T / and Ner.�/

are variables approximated by some rough sets. Let Ncij .�/ ` .Œac
ij ; b

c
ij �; Œc

c
ij ; d

c
ij �/R,

Nerj .�/ ` .Œae
rj ; b

e
rj �; Œc

e
rj ; d

e
rj �/R and Nbr.�/ ` .Œab

r ; b
b
r �; Œc

b
r ; d

b
r �/R (where

0 < cc
ij � ac

ij < bc
ij � d c

ij , 0 < ce
rj � ae

rj < be
rj � d e

rj and

0 < cb
rj � ab

rj < bb
rj � d b

rj ). Then, we have the following equivalent model
of problem (5.31),

8<
:

maxŒ� c
1 x; � c

2 x; : : : ; � c
mx�

s:t:

�
� e

r x � � b
r ; r D 1; 2; : : : ; p

x � 0
(5.32)
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where � c
i D 1��

2
.ac

ijCbc
ij /C �

2
.cc

ijCd c
ij /; �

e
i D 1��

2
.ae

i Cbe
i /C �

2
.ce

i Cd e
i /; �

b
i D

1��
2
.ab

i C bb
i /C �

2
.cb

i C d b
i /, �

	
i .� D a; b; c; d;� D e; b/ respectively denote the

vectors.

Proof. Firstly, let’s analyze the objective function and obtain the equivalent func-
tion. Since QNci � N . Nci .�/; V

c
i /, it follows from Theorem 5.5 that

EŒ QNcij � D 1 � �
2

.ac
ij C bc

ij /C
�

2
.cc

ij C d c
ij /

Then

EŒ QNcT
i x� D E

� nX
j D1

QNcijxj

	
D

nX
j D1

EŒ QNcij �xj D
�
1 � �
2

.ac
ij C bc

ij /C
�

2
.cc

ij C d c
ij /

	T

x

where ac
i ; b

c
i ; c

c
i ; d

c
i ; i D 1; 2; : : : ; m: respectively express their vectors. Denote

� c
i D 1��

2
.ac

ij C bc
ij /C �

2
.cc

ij C d c
ij /. Then the objective function can be converted

into

maxf� c
1x; �

c
2 ; : : : ; �

c
mg

Similarly to deal with the constraints, we have

� e
r x � � b

r

where � e
i D 1��

2
.ae

i C be
i / C �

2
.ce

i C d e
i /; �

b
i D 1��

2
.ab

i C bb
i / C �

2
.cb

i C d b
i /.

Then problem (5.31) has been transformed into

8<
:

maxf� c
1 x; � c

2 x; : : : ; � c
mxg

s:t:

�
� e

r x � � b
r ; r D 1; 2; : : : ; p

x � 0

This completes the proof. ut

5.3.2.2 The Ideal Point Method

In this section, we make use of the ideal point method proposed in [115, 311, 340]
to resolve the multiobjective problem (5.32) with crisp parameters. If the decision
maker can firstly propose an estimated value NFi for each objective function � c

i x

such that

NFi � max
x2X 0

� c
1 x; i D 1; 2; : : : ; m (5.33)
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where X 0 D fx 2 X j� e
r x � � b

r ; r D 1; 2; : : : ; p;x � 0g, then NFi D
. NF1; NF2; : : : ; NFm/

T is called the ideal point, especially, if NFi � maxx2X 0 � c
1 x for

all i , we call NF the most ideal point.
The basic theory of the ideal point method is to take a especial norm in the objec-

tive space Rm and obtain the feasible solution x that the objective value approaches
the ideal point NF D . NF1; NF2; : : : ; NFm/

T under the norm distance, that is, to seek the
feasible solution x satisfying

min
x2X 0

u.� c.x// D min
x2X 0

jj� c.x/ � NF jj:

Usually, the following norm functions are used to describe the distance:

1. p-mode function

dp.�
c.x/; NF I!/ D

"
mX

iD1

!i j� c
i x � NFi jp

# 1
p

; 1 � p < C1 (5.34)

2. The maximal deviation function

dC1.� c.x/; NF I!/ D max
1�i�m

!i j� c
i x � NFi j (5.35)

3. Geometric mean function

d.� c.x/; NF / D
"

mY
iD1

j� c
i x � NFi jp

# 1
m

: (5.36)

The weight parameter vector ! D .!1; !2; : : : ; !m/
T > 0 needs to be predeter-

mined.

Theorem 5.11. Assume that NFi > maxx2X 0 � c
1 x.i D 1; 2; : : : ; m/. If x� is the

optimal solution of the following problem

min
x2X 0

dp.�
c.x/; NF I!/ D

"
mX

iD1

!i j� c
i x � NFi jp

# 1
p

(5.37)

then x� is an efficient solution of problem (5.32). On the contrary, if x� is an efficient
solution of problem (5.32), then there exists a weight vector ! such that x� is the
optimal solution of problem (5.37).

Proof. This result can be easily obtained, and we hereby don’t prove it. ut
Next, we take the p-mode function to describe the procedure of solving the

problem (5.32).
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Step 1. Find the ideal point. If the decision maker can give the ideal objective
value satisfying the condition (5.33), the value will be considered as the ideal point.
However, decision makers themselves don’t know how to give the objective value,
then we can get the ideal point by solving the following programming problem,

8<
:

max� c
i x

s.t.

�
� e

r x � � b
r ; r D 1; 2; : : : ; p

x 2 X
(5.38)

Then the ideal point NF D . NF1; NF2; : : : ; NFm/
T can be fixed by NFi D � c

i x�, where
x� is the optimal solution of problem (5.38).

Step 2. Fix the weight. The method of selecting the weight can be referred to
many literatures, interested readers can consult them. We usually use the following
function to fix the weight,

!i D
NFi

mP
iD1

NFi

:

Step 3. Construct the minimal distance problem. Solve the following single
objective programming problem to obtain the efficient solution of problem (5.32),

8̂̂̂
<
ˆ̂̂:

min

�
mP

iD1

!i j� c
i x � NFi jt

	 1
t

s.t.

�
� e

r x � � b
r ; r D 1; 2; : : : ; p

x 2 X
(5.39)

Usually, we take t D 2 to compute it.

5.3.3 Non-Linear Ra-Ro EVM and Ra-Ro Simulation-Based
ECTS

Let’s consider the following Ra-Ro EVM,

�
max ŒEŒf1.x; �/�; EŒf2.x; �/�; : : : ; EŒfm.x; �/��

s.t. EŒgj .x; �/� � 0; j D 1; 2; : : : ; p (5.40)

where fi .x; �/, or gr .x; �/ or both of them are nonlinear functions with respect
to the Ra-Ro vector �. For the problem (5.40), we cannot usually convert it into
the crisp one because of the existence of the nonlinear function. Thus, an efficient
intelligent algorithm needs to be applied to find its approximate solution. In this
section, the Ra-Ro simulation-base TS will be proposed to solve the problem (5.40).
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5.3.3.1 Ra-Ro Simulation for EVM

Let’s consider the objective function f .x; �/ and introduce how to compute
its expected value for given x by Ra-Ro simulation. We uniformly sample
�1; �2; : : : ; �N from the lower approximation X and N�1; N�2; : : :, N�N from the
upper approximationX . For each �i and N�i .i D 1; 2; : : : ; N /, �.�i / and �. N�i / are
both random vectors. Then we can apply random simulation to get their expected
values. Randomly generate !1

i ; !
2
i ; : : : ; !

M
i from ˝ according to the probability

measure P r for each �i .i D 1; 2; : : : ; N /. Then

EŒf .x; �.�i //� D

MP
j D1

f .x; �.�i /.!
j
i //

M
:

Similarly, randomly generate �1
i ; �

2
i ; : : : ; �

M
i from ˝ according to the probability

measure Pr for each N�i .i D 1; 2; : : : ; N /. Then

EŒf .x; �. N�i //� D

MP
j D1

f .x; �. N�i /.�
j
i //

M
:

In the end, we can get the expected value of fj .x; �/ as follows

EŒfj .x; �/� D

MP
iD1

.�EŒfj .x; �. N�i //�C .1 � �/EŒfj .x; �.�i //�/

M
:

Then the procedure simulating the expected value of the function f .x; �/ can be
summarized as follows:

Procedure Ra-Ro simulation for EVM
Input: The decision vector x

Output: The expected value EŒf .x; �/�
Step 1. Set r D s D t D 0;
Step 2. Uniformly sample �1; �2; : : : ; �N from the lower approximationX
and N�1; N�2; : : : ; N�N from the upper approximationX ;
Step 3. Randomly generate !i and �i .i D 1/ from˝ according to the
probability measure Pr for each N�i and �i ;
Step 4. Compute f .x; �.�i /.!

j
i // and f .x; �. N�i /.�

j
i //, j D 1; 2; : : : ;M ;

Step 5. r  r C f .x; �.�i /.!
j
i // and s  s C f .x; �. N�i /.�

j
i //;

Step 6. Repeat the third to fifth steps for N times;
Step 7. t  t C �r C .1 � �/s and i CC;
Step 8. If i > M , return t

MN
.
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Example 5.8. Let QN�1, QN�2 and QN�3 are three Ra-Ro variables as follows,

QN�1 � U . Q�1; Q�1 C 2/; with Q�1 D .Œ1; 2�; Œ1; 3�/;QN�2 � N . Q�2; 1/; with Q�2 D .Œ0; 1�; Œ0; 3�/;QN�3 � exp. Q�3/; with Q�3 D .Œ1; 2�; Œ0; 3�/;

A run of Ra-Ro simulation with 1000 cycles shows that

E

�q
QN�2
1 C QN�2

2 C QN�2
3

	
D 3:2279:

5.3.3.2 Enhanced Continuous Tabu Search (ECTS)

Local search employs the idea that a given solution x may be improved by making
small changes. Those solutions obtained by modifying solution x are called neigh-
bors of x. The local search algorithm starts with some initial solution and moves
from neighbor to neighbor as long as possible while decreasing the objective func-
tion value. The main problem with this strategy is to escape from local minima
where the search cannot find any further neighborhood solution that decreases the
objective function value. Different strategies have been proposed to solve this prob-
lem. One of the most efficient strategies is tabu search. Tabu search allows the search
to explore solutions that do not decrease the objective function value only in those
cases where these solutions are not forbidden. This is usually obtained by keeping
track of the last solutions in term of the action used to transform one solution to the
next. When an action is performed it is considered tabu for the next T iterations,
where T is the tabu status length. A solution is forbidden if it is obtained by apply-
ing a tabu action to the current solution. The Tabu Search metaheuristic has been
defined by Glover[114]. The basic ideas of TS have also been sketched by Hansen
[131]. After that, TS has achieved widespread success in solving practical optimiza-
tion problems in different domains(such as resource management, process design,
logistic and telecommunications).

A tabu list is a set of solutions determined by historical information from the
last t iterations of the algorithm, where t is fixed or is a variable that depends on
the state of the search, or a particular problem. At each iteration, given the current
solution x and its corresponding neighborhood N.x/, the procedure moves to the
solution in the neighborhoodN.x/ that most improves the objective function. How-
ever, moves that lead to solutions on the tabu list are forbidden, or are tabu. If there
are no improving moves, TS chooses the move which least changes the objective
function value. The tabu list avoids returning to the local optimum from which the
procedure has recently escaped. A basic element of tabu search is the aspiration
criterion, which determines when a move is admissible despite being on the tabu
list. One termination criterion for the tabu procedure is a limit in the number of
consecutive moves for which no improvement occurs. Given an objective function
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f .x/ over a feasible domain D, a generic tabu search for finding an approximation
of the global minimum of f .x/ is given as follows:

Procedure Layout of Tabu Search
Input: A problem instance
Output: A (sub-optimal) solution
Step 1. Initialization: (a) Generate an initial solution .x/ and set x� D x, (b)
Initialize the tabu list T D ˚ , (c) Set iteration counters k D 0 and l D 0;
Step 2. While .N.x/ T 6D ˚/, do (a) k D kC 1, l D l C 1, (b) Select x as the
best solution from the set N.x/ T , (c) If f .x/ < f .x�/, then update x� D x

and set l D 0, (d) If k D Nk or if l D Nl go to step 3;
Step 3. Output the best solution found x�.

In the following part, we will introduce the detail steps about how to apply the
an special TS algorithm–Enhanced Continuous Tabu Search(ECTS) proposed by
Chelouah and Siarry [47] based on the Ra-Ro simulation to solve a multi-objective
expected value model with Ra-Ro parameters.

Setting of parameters. Two of parameters must be set before any execution of
ECTS:

1. Initialization
2. Control parameters

For each of these categories, some parameter values must be chosen by the user
and some parameter values must be calculated. These four subsets of parameters are
listed in Table 5.1.

Initialization. In this stage, we will list the representation of the solution. We have
resumed and adapted the method described in detail in [289]. Randomly generate a
solution x and check its feasibility by the Ra-Ro simulation such thatEŒgr .x; �/� �
0.r D 1; 2; : : : ; p/. Then generate its neighborhood by the concept of ‘ball’ defined
in [289]. A ball B.x; r/ is centered on x with radius r , which contains all points
x0 such that jjx0 � xjj � 4 (the symbol jj � jj denotes the Euclidean norm). To
obtain a homogeneous exploration of the space, we consider a set of balls centered
on the current solution x, with h0; h1; : : : ; h� . Hence the space is partitioned into
concentric ‘crowns’ Ci .x; hi�1; hi /, such that

Ci .x; hi�1; hi / D fx0jhi�1 � jjx0 � xjj � hi g:

The � neighbors of s are obtained by random selection of one point inside each
crown Ci , for i varying from 1 to �. Finally, we select the best neighbor of x among
these � neighbors, even if it is worse than x. In ECTS, we replace the balls by hyper-
rectangles for the partition of the current solution neighborhood (see Fig. 5.10), and
we generate neighbors in the same way. The reason for using a hyperrectangular
neighborhood instead of crown ‘balls’ is the following: it is mathematically much
easier to select a point inside a specified hyperrectangular zone than to select a
point inside a specified crown ball. Therefore in the first case, we only have to
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Table 5.1 Listing of the ECTS parameters
A. Initialization parameters chosen by the user
Search domain of each function variable
Starting point
Content of the tabu list
Content of the promising list

B. Initialization parameters calculated
Length ı of the smallest edge of the initial hyperrectangular search domain
Initial threshold for the acceptance of a promising area
Initial best point
Number � of neighbors of the current solution investigated at each iteration
Maximum number of successive iterations without any detection of a promising area
Maximum number of successive iterations without any improvement of the objective
function value
Maximum number of successive reductions of the hyperrectangular neighborhood and of the
radius of tabu balls with out any improvement
Maximum number of iterations

C. Control parameters chosen by the user
Length Nt of the tabu list
Length Np of the promising list
Parameter �t allowing to calculate the initial radius of tabu balls
Parameter �neigh allowing to calculate the initial size of the hyperrectangular neighborhood

D. Control parameters calculated
Initial radius "t of tabu balls
Initial radius "p of promising balls
Initial size of the hyperrectangular neighborhood

Fig. 5.10 Partition of current
solution neighborhood x*0

x*3

x*2
x*1

x*1x′2 x′1 x′3

compare the coordinates of the randomly selected point with the bounds that define
the hyperrectangular zone at hand.

Next, we will describe the initialization of some parameters and the tuning of the
control parameters. In other words, we give the ‘definition’ of all the parameters of
ECTS. The parameters in part A of Table 5.1 are automatically built by using the
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parameters fixed at the beginning. The parameters in part B of Table 5.1 are valued
in the following way:

1. The search domain of analytical test functions is set as prescribed in the litera-
ture, the initial solution x� is randomly chosen and checked if it is feasible by
the Ra-Ro simulation.

2. The tabu list is initially empty.
3. To complete the promising list, the algorithm randomly draw a point. This point

is accepted as the center of an initial promising ball, if it does not belong to an
already generated ball. In this way the algorithm generates Np sample points
which are uniformly dispersed in the whole space solution S .

4. The initial threshold for the acceptance of a promising area is taken equal to the
average of the objective function values over the previousNp sample points.

5. The best point found is taken equal to the best point among the previousNp.
6. The number � of neighbors of the current solution investigated at each iteration

is set to twice the number of variables, if this number is equal or smaller than
five, otherwise � is set to 10.

7. The maximum number of successive iterations without any detection of a new
promising area is equal to twice the number of variables.

8. The maximum number of successive iterations without any improvement of the
objective function value is equal to five times the number of variables.

9. The maximum number of successive reductions of the hyperrectangular neigh-
borhood and of the radius of tabu balls without any improvement of the objective
function value is set to twice the number of variables.

10. The maximum number of iterations is equal to 50 times the number of variables.

There exist two types of control parameters. Some parameters are chosen by the
user. Other ones are deduced from the chosen parameters. The fixed parameters are
the length of the tabu list (set to 7, which is the usual tuning advocated by Glover),
the length of the promising list (set to 10, like in [68]) and the parameters �t , �p and
�neigh (set to 100, 50, and 5, respectively). The expressions of "t and "p are ı=�t

and ı=�p respectively, and the initial size of the hyperrectangular neighborhood of
the current solution (the more external hyperrectangle) is obtained by dividing ı by
the factor �neigh.

Diversification. At this stage, the process starts with the initial solution, used
as the current one. ECTS generates a specified number of neighbors: one point is
selected inside each hyperrectangular zone around the current solution. Each neigh-
bor is accepted only if it does not belong to the tabu list. The best of these neighbors
becomes the new current solution, even if it is worse than the previous one. A new
promising solution is detected and generated according to the procedure described
above. This promising solution defines a new promising area if it does not already
belong to a promising ball. If a new promising area is accepted, the worst area of
the promising list is replaced by the newly accepted promising area. The use of
the promising and tabu lists stimulates the search for solutions far from the start-
ing one and the identified promising areas. The diversification process stops after
a given number of successive iterations without any detection of a new promising
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Fig. 5.11 A standard “backtracking” (depth first) branch-and-bound approach

area. Then the algorithm determines the most promising area among those present
in the promising list (Fig. 5.11).

Search for the most promising area. In order to determine the most promising
area, we proceed in three steps. First, we calculate the average value of the objective
function over all the solutions present in the promising list. Secondly, we elimi-
nate all the solutions for which the function value is higher than this average value.
Thirdly, we deal with the thus reduced list in the following way. We halve the radius
of the tabu balls and the size of the hyperrectangular neighborhood. For each remain-
ing promising solution, we perform the generation of the neighbors and selection of
the best. We replace the promising solution by the best neighbor located, yet only if
this neighbor is better than that solution. After having scanned the whole promising
list, the algorithm removes the least promising solution. This process is reiterated
after halving again the above two parameters. It stops when just one promising area
remains.

Intensification. The first step of the intensification stages is the resetting of
the tabu list. The remaining promising area allows the definition of a new search
domain. The center of this area is taken as the current point, and the tabu search
starts again: generation of neighbors not belong to the tabu list, selection of the
best, and insertion of the best solution into the tabu list. This selected neighbor
becomes the new current solution, even if it is worse than the previous one. After
a predetermined number of successive iterations without any improvement of the
objective function value (e.g. quadratic error between two successive solutions less
than 10�3), the size of the hyperrectangular neighborhood and the radius of the
tabu balls are halved, tabu list is reset, and we restart the procedure from the best
point found until now. To stop the algorithm, we use two criteria: a specified num-
ber of successive reductions of the two parameters above without any significant
improvement of the objective function value and a specified maximum number of
iterations.
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5.3.4 Numerical Examples

Example 5.9. Let us consider a multi-objective programming with Ra-Ro coeffi-
cients which are subject to binomial distribution.

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

maxF1.x; �/ D 2�1x
2
1 C 3�2x2 � �3x3

maxF2.x; �/ D 5�4x2 � 2�5x1 C 2�6x3

s.t.

8̂̂<
ˆ̂:
5x1 � 3x2

2 C 6
p
x3 � 50

4
p
x1 C 6x2 � 4:5x3 � 20

x1 C x2 C x3 � 15
x1; x2; x3 � 0

(5.41)

where �i .i D 1; 2; : : : ; 6/ are discrete Ra-Ro variables subject to binomial distribu-
tion and their probabilities are respectively as follows,

Qp1 ` .Œ0:2; 0:5�; Œ0; 1�/; Qp2 ` .Œ0:6; 0:8�; Œ0; 1�/;
Qp3 ` .Œ0:45; 0:95�; Œ0; 1�/; Qp4 ` .Œ0:4; 0:5�; Œ0; 1�/;
Qp5 ` .Œ0:36; 0:64�; Œ0; 1�/; Qp6 ` .Œ0:55; 0:65�; Œ0; 1�/:

�j .j D 1; 2; : : : ; 12/ are continuous Ra-Ro variables subject to the following
distribution,

�7 � exp.�7/; �7 ` .Œ1; 2�; Œ0; 4�/
�10 � exp.�10/; �10 ` .Œ3; 4�; Œ2; 8�/
�8 �N .�8; 1/; �10 ` .Œ2; 3�; Œ1; 5�/
�11 �N .�11; 1/; �11 ` .Œ1; 3�; Œ0; 4�/
�9 � U . Qa9; Qb9/; �12 � U . Qa12; Qb12/

Qa9 ` .Œ1; 2�; Œ0; 2�/; Qb9 ` .Œ6; 8�; Œ2; 10�/
Qa12 ` .Œ1; 2�; Œ1; 3�/; Qb12 ` .Œ2; 4�; Œ2; 8�/

From the mathematical view, the problem (5.41) is not well defined because
of the uncertain parameters. Then we apply the expected value technique to deal
with this uncertain programming. Assume that the total number of trials is 20. By
Theorem 5.2, we have and

EŒ�1� D 1
4
.0:2C 0:5C 1/ � 20 D 8:5; EŒ�2� D 1

4
.0:6C 0:8C 1/ � 20 D 12;

EŒ�3� D 1
4
.0:45C 0:95C 1/ � 20 D 12; EŒ�4� D 1

4
.0:4C 0:5C 1/ � 20 D 9:5;

EŒ�5� D 1
4
.0:36C 0:64C 1/ � 20 D 10; EŒ�6� D 1

4
.0:55C 0:65C 1/ � 20 D 11;

Then the problem (5.41) can be converted into
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ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

maxf1.x/ D 17x2
1 C 36x2 � 12x3

maxf2.x/ D 47:5x2 � 20x1 C 22x3

s.t.

8̂̂<
ˆ̂:
5x1 � 3x2

2 C 6
p
x3 � 50

4
p
x1 C 6x2 � 4:5x3 � 20

x1 C x2 C x3 � 15
x1; x2; x3 � 0

(5.42)

Then we apply the ideal method to get the optimal solution of problem (5.42).
Firstly, we get the ideal point f � D .f �

1 ; f
�

2 /
T D .2263:03; 542:50/T by solving

the following problem,

8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

maxfi .x/

s.t.

8̂̂
<
ˆ̂:
5x1 � 3x2

2 C 6
p
x3 � 50

4
p
x1 C 6x2 � 4:5x3 � 20

x1 C x2 C x3 � 15
x1; x2; x3 � 0

(5.43)

Secondly, we fix the weight by the following method,

w1 D f1

f1 C f 2 D 0:807;w2 D f2

f1 C f 2 D 0:193:

Thirdly, construct the new objective function,

f .x/ D
p
0:807jf1.x/� 2263:03j2C 0:197jf2.x/� 542:50j2;

then we get the following single objective programming problem,

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

minf .x/ Dp0:807jf1.x/ � 2263:03j2C 0:197jf2.x/� 542:50j2

s.t.

8̂̂<
ˆ̂:
5x1 � 3x2

2 C 6
p
x3 � 50

4
p
x1 C 6x2 � 4:5x3 � 20

x1 C x2 C x3 � 15
x1; x2; x3 � 0

(5.44)

Finally, we get the optimal solution x� D .11:32; 2:20; 1:48/T .

Example 5.10. Let us consider a multi-objective programming with Ra-Ro coeffi-
cients, 8̂̂

ˆ̂̂<
ˆ̂̂̂̂
:

maxF1.x; �/ D x2
1 C x2

2

maxF2.x; �/ D 3x1 � 2x2 C x1x2

s.t.

8<
:
p
.x1 � �/2 C .x2 � �/2 � 7

x1 C x2 � 5
x1; x2 � 0

(5.45)



324 5 Random Rough Multiple Objective Decision Making

Table 5.2 The result by Ra-Ro simulation-based by ECTS

w1 w2 x1 x2 F1.x/ F2.x/ f .x/ Gen

0.3 0.7 4.9537 0.0349 24.5395 14.8626 17.7657 1000
0.4 0.6 4.9688 0.0239 24.5621 14.9810 19.7716 1000
0.5 0.5 4.9511 0.0331 24.5149 14.9841 19.7495 1000

where � is a normally distributed Ra-Ro variable, written as � � N . Q�; 1/, where
Q� ` .Œ1; 2�; Œ0; 3�/ is a rough variable.

Next, we apply the tabu search algorithm based on the Ra-Ro simulation to solve
the above problem.

Step 1. Set the move step h D 0:5 and the h neighbor N.x; h/ for the present
point x is defined as follows,

N.x; h/ D
n
yj
p
.x1 � y1/2 C .x2 � y2/2 � h

o
:

The random move of point x to point y in its h neighbor along direction s is given by

ys D xs C rh;

where r is a random number that belongs to [0,1], s D 1; 2; 3:
Step 2. Denote X D f.x1; x2; x3/j

p
.x1 � �/2 C .x2 � �/2 � 7I x1 C x2 �

5I xi � 0; i D 1; 2g. Give the step set H D fh1; h2; : : : ; hrg and randomly generate
a feasible point x0 2 X by Ra-Ro simulation. One should empty the Tabu list T
(the list of inactive steps) at the beginning.

Step 3. For each active neighbor N.x; h/ of the present point x, where h 2
H �T , a feasible random move that satisfies all the constraints in problem (5.45) is
to be generated.

Step 4. Construct the single objective function as follows,

f .x; �/ D w1F1.x; �/C w2F2.x; �/;

where w1 C w2 D 1. Compare the f .x; �/ of the feasible moves with that of the
current solution by the Ra-Ro simulation. If an augmenter in new objective function
of the feasible moves exists, one should save this feasible move as the updated cur-
rent one by adding the corresponding step to the Tabu list T and go to the next step;
otherwise, go to the next step directly.

Step 5. Stop if the termination criteria are satisfied; other wise, empty T if it
is full; then go to Step 3. Here, we set the computation is determined if the better
solution doesn’t change again.

Some results can be found in Table 5.2 and Figs. 5.12 and 5.13.
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Fig. 5.12 The result computed by ECTS when w1 D 0:6 and w2 D 0:4
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Fig. 5.13 The result computed by ECTS when w1 D 0:5 and w2 D 0:5

5.4 Ra-Ro CCM

Similarly, the chance measure of Ra-Ro variable is also used to be an efficient tool
to deal with the multiobjective decision making problems with Ra-Ro parameters.
In this section, we will introduce its basic definition and property and present the
general Ra-Ro CCM. Then a class of linear Ra-Ro CCMs will be deal with by some
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mathematical technique. For those which cannot be directly transformed into crisp
one, we apply the Ra-Ro simulation-based tabu search algorithm to deal with it.

5.4.1 General Model

The following part will introduce some basic definitions and properties of the chance
measure of the Ra-Ro variable.

Definition 5.21. Let � D .�1; �2; : : : ; �n/ be a Ra-Ro vector with �i `
.X i ; X i /.i D 1; 2; : : : ; n/, and fj W A n ! A be continuous functions,
j D 1; 2; : : : ; m. Then the primitive chance of Ra-Ro event characterized by
fj .�/ � 0; j D 1; 2; : : : ; m is a function from [0,1] to [0,1], defined as

Chffj .�/ � 0; j D 1; 2; : : : ; mg.˛/

D sup
(
ˇjAppr

(
�jP r

(
fj .�.�// � 0;
j D 1; 2; : : : ; m

)
� ˇ

)
� ˛

)
(5.46)

If we want to maximize the optimistic value to the return function subject to some
chance constraints, then we have the following Ra-Ro CCM,8̂̂

<
ˆ̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8<
:
Chffi .x; �/ � Nfi g.	i/ � ıi i D 1; 2; : : : ; m
Chfgj .x; �/ � 0g.˛j / � ˇj ; j D 1; 2; : : : ; p
x � 0

(5.47)

where ˛j and ˇj are specified confidence levels for j D 1; 2; : : : ; p, and max Nfi is
the .	i ; ıi /-optimistic value to the return function fi .x; �/ with respect to primitive
chance Ch.

If the priority structure and target levels are set by the decision maker, then we
may formulate a Ra-Ro decision system as a chance-constraint goal programming
model, 8̂̂

ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂:

min
lP

j D1

Pj

mP
j D1

.uijd
C
i C vijd

�
i /

s.t.

8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

Chffi .x; �/ � bi � dC
i g.	C

i / � ıC
i i D 1; 2; : : : ; m

Chffi .x; �/ � bi � d�
i g.	�

i / � ı�
i i D 1; 2; : : : ; m

Chfgj .x; �/ � 0g.˛j / � ˇj ; j D 1; 2; : : : ; p
d�

i ; d
C
i ; d

�
j ; d

C
j � 0

ui ; vi ; uj ; vj D 0 or 1

(5.48)

where Pj is the preemptive priority factor which expresses the relative importance
of various goals, Pj 
 Pj C1, for all j , uij is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, vij is the weighting factor
corresponding to negative deviation for goal i with priority j assigned, dC

i is the
.	C

i ; ı
C
i /-optimistic positive deviation from the target of goal i , defined as
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minfd _ 0jChffi .x; �/� bi � d g.	C
i / � ıC

i g

d�
i is the .	�

i ; ı
�
i /-optimistic negative deviation from the target of goal i , defined as

minfd _ 0jChffi.x; �/ � bi � d g.	�
i / � ı�

i g:

From Definition 5.21, we know that

Chffi .x; �/ � Nfi g.	i/ � ıi

” Apprf�jP rffi .x; �/ � Nfi g � ıig � 	i ; i D 1; 2; : : : ; m;
and

Chfgj .x; �/ � 0g.˛j / � ˇj

” Apprf�jP rfgj .x; �/ � 0g � ˇj g � ˛j ; j D 1; 2; : : : ; p:
Then problem (5.47) can be written as

8̂̂<
ˆ̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8<
:

Apprf�jP rffi .x; �/ � Nfi g � ıig � 	i ; i D 1; 2; : : : ; m
Apprf�jP rfgj .x; �/ � 0g � ˇj g � ˛j ; j D 1; 2; : : : ; p
x � 0

(5.49)

where ıi ; 	i ; ˛j ; ˇj are predetermined confidence levels, i D 1; 2; : : : ; mI j D
1; 2; : : : ; p. Apprf�g denotes the approximation level of the event in f�g, and P rf�g
denotes the probability of the event in f�g.

5.4.2 Linear Ra-Ro CCM and Two-Stage Method

Let’s still consider the following linear multi-objective programming model,8̂<
:̂

max
� QNcT

1 x; QNcT
2 x; : : : ; QNcT

mx
�

s.t.

(
QNeT
r x � QNbr ; r D 1; 2; : : : ; p

x � 0

where QNci D . QNci1; QNci2; : : : ; QNcin/
T , QNer D . QNer1; QNer2; : : : ; QNern/

T are random rough vec-

tors and QNbr are random variables, i D 1; 2; : : : ; m; r D 1; 2; : : : ; p: The chance
constrained multi-objective programming model is as follows,

8̂̂̂
<
ˆ̂̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8̂<
:̂

Apprf�jP rf QNcT
i x � Nfi g � ıi g � 	i ; i D 1; 2; : : : ; m

Apprf�jP rf QNeT
r x � QNbrg � ˛j ; r D 1; 2; : : : ; p

x � 0
(5.50)
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where ıi ; 	i ; ˛j ; ˇj are predetermined confidence levels, i D 1; 2; : : : ; mI j D
1; 2; : : : ; p. We can usually compute their chance measure by the definition for some
discrete and Ra-Ro variables and obtain the crisp equivalent.

5.4.2.1 Crisp Equivalent Model

Next, we will introduce a special multiobjective programming with Ra-Ro normal
parameters and its equivalent model.

Theorem 5.12. (Xu and Yao [345]) Assume that Ra-Ro vector QNci is characterized
by QNci � N . Nci .�/; V

c
i /, where Nci D . Nci1.�/; Nci2.�/; : : : ; Ncin.�//

T / is a vector by the
rough set and V c

i is a positive definite covariance matrix. Assume that Nci .�/
T x `

.Œa; b�; Œc; d �/ (where 0 < c � a � b � d ) is characterized by the following
approximation function,

Apprf Nci .�/
T x � tg D

8̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
:

0 if d � t
d � t
2.d � c/ if b � t � d
1

2

�
d � t
d � c C

b � t
b � a

�
if a � t � b

1

2

�
d � t
d � c C 1

�
if c � t � a

1 if t � c

Then, we have Apprf�jP rf QNcT
i x � Nfi g � ıig � 	i if and only if

8̂̂̂
<̂
ˆ̂̂̂:

b CR � Nfi � d � 2	i .d � c/CR if b �M � d
aCR � Nfi � d.b � a/C b.d � c/� 2	i .d�c/.b�a/

d � c C b � a CR if a �M � b
c CR � Nfi � d � .d � c/.2	i � 1/CR if c �M � a
Nfi � c CR if M � c

whereM D Nfi�˚�1.1�ıi /
q

xTV c
i x andR D ˚�1.1�ıi /

q
xTV c

i x and˚ is the

standardized normal distribution and ıi ; 	i 2 Œ0; 1� are predetermined confidence
levels.

Proof. Let’s formulate why Nci .�/
T x is a rough variable. From the assumption we

know that Ncij .�/ is a rough variable and Nci .�/ D . Nci1.�/; Nci2.�/; : : : ; Ncin.�//
T .

We set

Ncij .�/ ` .Œaij ; bij �; Œcij ; dij �/;

x D .x1; x2; : : : ; xn/
T :

It follows that xj Ncij .�/ D .Œxj aij ; xj bij �; Œxj cij ; xjdij �/,
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Nci .�/
T x D

nX
j D1

cij .�/xj `
nX

j D1

.Œxj aij ; xj bij �; Œxj cij ; xjdij �/

D
�� nX

j D1

aijxj ;

nX
j D1

aij xj

	
;

� nX
j D1

cijxj ;

nX
j D1

dijxj

	�

So Nci .�/
T x is also a rough variable. Now we set

a D
nX

j D1

aij xj ; b D
nX

j D1

aij xj ;

c D
nX

j D1

cijxj ; d D
nX

j D1

dijxj :

then Nci .�/
T x ` .Œa; b�; Œc; d �/. In addition, QNci is a Ra-Ro vector which is distributed

with mean vector Nci .�/ and positive definite covariance matrix V c
i , written as QNci �

N . Nci .�/; V
c

i /. It follows that QNcT
i x � N . Nci .�/

T x;xT V c
i x/: Then, we have that

P rf QNcT
i x � Nfi g � ıi

, P r

( QNcT
i x � Nci .�/

T xq
xT V c

i x

�
Nfi � Nci .�/

T xq
xT V c

i x

)
� ıi

, Nci .�/
T x C ˚�1.1 � ıi /

q
xT V c

i x � Nfi :

It follows that, for given confidence levels ıi ; 	i 2 Œ0; 1�,

Apprf�jP rf QNcT
i x � Nfi g � ıig � 	i

, Appr
n
�j Nci .�/

T x C ˚�1.1 � ıi /
q

xTV c
i x � Nfi

o
� 	i

, 	i �

8̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂:

d �M
2.d � c/ if b �M � d
1

2

�
d �M
d � c C

b �M
b � a

�
if a �M � b

1

2

�
d �M
d � c C 1

�
if c �M � a

1 if M � c

,

8̂̂̂
<̂
ˆ̂̂̂:

b CR � Nfi � d � 2	i .d � c/CR if b �M � d
aCR� Nfi�d.b�a/C b.d�c/�2	i.d�c/.b�a/

d � c C b � a CR if a �M � b
c CR � Nfi � d � .d � c/.2	i � 1/CR if c �M � a
Nfi � c CR if M � c

whereM D Nfi�˚�1.1�ıi /
q

xTV c
i x,R D ˚�1.1�ıi /

q
xTV c

i x. This completes

the proof. ut
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Theorem 5.13. (Xu and Yao [345]) Suppose that Ra-Ro vectors QNer are charac-

terized by QNer � N . Ner.�/; V
e

r /, and the Ra-Ro variables QNbr are characterized by
QNbr � N . Nbr.�/; .�

b
r /

2/; where Nerj .�/, Nbr.�/ are rough variables, and V e
r , .�b

r /
2

are positive definite covariances. By Theorem 5.12, we have Ner.�/
T x, Nbr .�/ are

rough variables , then Ner.�/
T x� Nbr .�/ D Œ.a; b/; .c; d /�(c � a � b � d ) is also a

rough variable. We assume that it is characterized by the following approximation
function,

Apprf Ner.�/
T x � Nbr .�/ � tg D

8̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂:

0 if t � c
t � c

2.d � c/ if c � t � a
1

2

�
t � c
d � c C

t � a
b � a

�
if a � t � b

1

2

�
t � c
d � c C 1

�
if b � t � d

1 if d � t

where Ner D . Ner1.�/; Ner2.�/; : : : ; Nern.�//
T . Then, we have that Apprf�jP rf QNeT

r x �
QNbrg � �rg � Q�r if and only if

8̂̂̂
<̂
ˆ̂̂̂:

a �M � c C 2.d � c/ Q�r if c �M � a
b �M � 2 Q�r .d � c/.b � a/C c.b � a/C a.d � c/

d � c C b � a if a �M � b
d �M � .2 Q�r � 1/.d � c/C c if b �M � d
M � d if M � d

where M D �˚�1.�r /
p
xT V e

r x C .�b
r /

2.

Proof. From the assumption, QNer � N . Ner .�/; V
e

r /,
QNbr � N . Nbr.�/; .�

b
r /

2/, it fol-

lows that QNeT
r x � N . Ner.�/

T x;xTV e
r x/;

QNbr � N . Nbr.�/; .�
b
r /

2/: Then, QNeT
r x�QNbr �

N . Ner.�/
T x � br ;x

T V e
r x C .�b

r /
2/, we have that

P rf QNeT
r x � QNbrg � �r

, P r

( QNeT
r x � QNbr � . Ner .�/

T x � Nbr.�//p
xT V e

r x C .�b
r /

2
�
Nbr.�/ � Ner.�/

T xp
xT V e

r x C .�b
r /

2

)
� � r

, Ner.�/
T x � Nbr.�/ � �˚�1.�r/

q
xTV e

r x C .�b
r /

2

Since QNeT
r x � QNbr D Œ.a; b/; .c; d /�, for given confidence levels �r ; Q�r 2 Œ0; 1�, we

have that,

Apprf�jP rf QNeT
r x � QNbrg � �rg � Q�r

, Apprf�j NeT
r x � br �M g � �r
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, �r �

8̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂:

M � c
2.d � c/ if c �M � a:
1

2

�
M � c
d � c C

M � a
b � a

�
if a �M � b

1

2

�
M � c
d � c C 1

�
if b �M � d

1 if M � d

,

8̂̂̂
<̂
ˆ̂̂̂:

a �M � c C 2.d � c/�r if c �M � a
b �M � 2�r.d � c/.b � a/C c.b � a/C a.d � c/

d � c C b � a if a �M � b
d �M � .2�r � 1/.d � c/C c if b �M � d
M � d if M � d

where M D �˚�1.�r /
p

xTV e
r x C .�b

r /
2. This completes the proof. ut

By Theorems 5.12 and 5.13, we have the following equivalent model of chance
constraint programming with Ra-Ro coefficients,

8̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂:

maxŒ Nf1; Nf2; : : : ; Nfm�

s.t.

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

b CR � Nfi � d � 2	i.d � c/CR if b �M � d
aCR� Nfi�d.b�a/Cb.d�c/�2	i .d�c/.b�a/

d � c C b � a CR if a�M�b
c CR � Nfi � d � .d � c/.2	i � 1/CR if c �M � a
Nfi � c CR if M � c

x � 0
(5.51)

where M D Nfi � ˚�1.1 � ıi /
q

xTV c
i x and R D ˚�1.1 � ıi /

q
xT V c

i x. In fact,
the above model could be rewritten as�

maxŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t. x 2 X 0 (5.52)

where Hi .x/ D d � 2	i .d � c/ C R, M D Nfi � ˚�1.1 � ıi /
q

xT V c
i x, R D

˚�1.1 � ıi /
q

xTV c
i x and X 0 D fx 2 X jM � d g.

Theorem 5.14. Let H.x/ D Pm
iD1 �iHi .x/, �i 2 Œ0; 1�, Hi .x/ D ˚�1.1 �

ıi /
q

xT V c
i x C �i C �i˚

�1.1 � 	i /; i D 1; 2; : : : ; m, and X D fx 2
RnjApprf�jP rf QNeT

r x � QNbrg � �rg � �r ; r D 1; 2; : : : ; pIx � 0g. If 	i � 0:5,
ıi � 0:5, �i � 0:5 and �i � 0:5, problem (5.52) is convex.
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Proof. According to [301],
q

xT V c
i x is a convex function. In addition, since 	i �

0:5 and ıi � 0:5, it follows that ˚�1.1 � 	i / � 0 and ˚�1.1 � ıi / � 0, we know
Hi .x/ are concave functions, i D 1; 2; : : : ; m. So let x1 and x2 be any two points
in feasible set, and ˛ 2 Œ0; 1�, we have that

Hi Œ˛x1 C .1 � ˛/x2� � ˛Hi .x1/C .1 � ˛/Hi .x2/

for �i 2 Œ0; 1�,

�iHi Œ˛x1 C .1 � ˛/x2� � ˛�iHi .x1/C .1 � ˛/�iHi .x2/

moreover

mX
iD1

�iHi Œ˛x1 C .1� ˛/x2� � ˛
mX

iD1

�iHi .x1/C .1 � ˛/
mX

iD1

�iHi .x2/

that is

HŒ˛x1 C .1 � ˛/x2� � ˛H.x1/C .1 � ˛/H.x2/

So the objective functionH.x/ is concave. Next, we prove that X is convex. From
Theorem 5.13, we know that

Apprf�jP rf QNeT
r x � QNbrg � �rg � �r

, ˚�1.�r/

q
xT V e

r x C .�b
r /

2 C �r C �r˚
�1.�r/ � 0

Let gr .x/ D ˚�1.�r/
p

xT V e
r x C .�b

r /
2 C �r C �r˚

�1.�r /. Then X D fx 2
Rnjgr .x/ � 0; r D 1; 2; : : : ; pIx � 0g. Since �r � 0:5 and �r � 0:5, it
follows that ˚�1.�r/ � 0 and ˚�1.�r / � 0, and gr .x/ are convex functions,
r D 1; 2; : : : ; p. Let x1 and x2 be two feasible solutions, then

gr .x1/ � 0; gr .x2/ � 0

according to gr ’s convexity, we have

gr Œ˛x1 C .1 � ˛/x2� � ˛gr .x1/C .1 � ˛/gr .x2/ � 0

where 0 � ˛ � 1, r D 1; 2; : : : ; p. This means that ˛x1 C .1 � ˛/x2 is also
a feasible solution. So X is a convex set. Above all, we can conclude that prob-
lem maxx2X H.x/ is a convex programming and its global optimal solution can be
obtained easily. ut
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5.4.2.2 Two-Stage Method

In this section, we will use the two-stage method to seek the efficient solution of
the crisp multi-objective programming problem (5.52). The two-stage method is
proposed by Li and Lee [199] on the basis of the maximin method proposed by
Zimmermann [365].

The first stage: apply Zimmermann’s minimum operator to obtain the maximal
satisfying degree ˛0 of the objective set and the related feasible solution x0, i.e.,8̂̂̂

<
ˆ̂̂:

max˛

s.t.

8̂<
:̂
�k.x/ D

Hk.x/�H 0

k

H�
k
�H 0

k

� ˛; k D 1; 2; : : : ; m
x 2 X

(5.53)

Assume that the optimal solution of problem (5.53) is .x0; ˛0/, where ˛0 is the opti-
mal satisfying degree of the whole objective sets. If the optimal solution of problem
(5.53) is unique, x0 is the efficient of the problem (5.52). However, we cannot usu-
ally know if the optimal solution of problem (5.53) is unique, then the efficiency of
x0 must be checked by the following stage.

The second stage: check the efficiency of efficiency of x0 or seek the new
efficient solution x1. Construct a new model whose objective function is to max-
imize the average satisfying degree of all objects subject to the additional constraint
˛k � ˛0.k D 1; 2; : : : ; m/. Since the compensatory of the arithmetic mean oper-
ator, the solution obtained in the second stage is efficient. The existence of the
constraint ˛k � ˛0.k D 1; 2; : : : ; m/ guarantees the mutual equilibrium of every
objective functions.8̂̂<

ˆ̂:
max 1

m

mP
kD1

˛k

s.t.

�
˛0 � ˛k � �k.x/; k D 1; 2; : : : ; ; m
0 � ˛k � 1; x 2 X

(5.54)

Assume that the optimal solution of problem (5.54) is x1. It’s easy to prove that
x1 is also the solution of problem (5.53), thus we have x1 D x0 if the solution of
problem (5.53) is unique. But if the solution of problem (5.53) is not unique, x0 may
be efficient solution or not and we can guarantee x1 is definitely efficient. Thus in
any case, the two-stage method can provide an efficient solution in the second stage.

5.4.3 Nonlinear Ra-Ro CCM and Ra-Ro Simulation-Based PTS

Let’s still consider the following nonlinear multi-objective programming problem,
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ˆ̂:

max Œ Nf1; Nf2; : : : ; Nfm�

s.t.

8<
:

Apprf�jP rffi .x; �/ � Nfi g � ıig � 	i ; i D 1; 2; : : : ; m
Apprf�jP rfgj .x; �/ � 0g � ˇj g � ˛j ; j D 1; 2; : : : ; p
x � 0;

where fi .x; �/, or gj .x; �/ or both of them are nonlinear functions with respect
to �, ıi ; 	i ; ˛j ; ˇj are predetermined confidence levels, i D 1; 2; : : : ; mI j D
1; 2; : : : ; p. Apprf�g denotes the approximation level of the event in f�g, and P rf�g
denotes the probability of the event in f�g. If their distribution is unclear and it is dif-
ficult to convert it into a deterministic one, we have to apply the parallel tabu search
algorithm based on the Ra-Ro simulation for CCM to obtain its optimal solution.
Next, we will introduce the Ra-Ro simulation-based parallel tabu search algorithm
for chance constrained model.

5.4.3.1 Ra-Ro Simulation for CCM

Let’s consider to simulate the critical value Nf of Apprf�jP rff .x; �/ � Nf g � ˇg �
˛ by Ra-Ro simulation. Generate �1; �2; : : : ; �N from the lower approximation X
and N�1; N�2; : : :, N�N from the upper approximationX according to the approximation
function Appr. For each �i and N�i .i D 1; 2; : : : ; N /, �.�i / and �. N�i / are both
random vectors. For any number t , let N.t/ denote the number of �k satisfying
P rff .x; �.�k// � tg � ˇ for k D 1; 2; : : : ; N and NN.t/ denote the number of N�k

satisfying P rff .x; �. N�k// � tg � ˇ for k D 1; 2; : : : ; N , where P rf�g may be
estimated by random simulation. Then we may find the maximal value t such that

N.t/C NN.t/
2N

� ˛

This value is an estimation of Nf . Then the procedure simulating the critical value Nf
of Apprf�jP rff .x; �/ � Nf g � ˇg � ˛ can be summarized as follows:

Procedure Ra-Ro simulation for CCM
Input: The decision vector x

Output: The critical value Nf of Apprf�jP rff .x; �/ � Nf g � ˇg � ˛
Step 1. Generate �1; �2; : : : ; �N from the lower approximationX according
to the approximation function Appr;
Step 2. Generate N�1; N�2; : : :, N�N from the upper approximationX according to
the approximation function Appr;

Step 3. Find the maximal value t such that N .t/C NN.t/
2N

� ˛ holds;
Step 4. Return t .

Example 5.11. In order to compute Ch

�q QN�2
1 C QN�2

2 C QN�2
3 � Nf

�
.0:9/ � 0:9, where

QN�1, QN�2 and QN�3 are three Ra-Ro variables as follows,
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QN�1 � U . Q�1; Q�1 C 2/; with Q�1 D .Œ1; 2�; Œ1; 3�/;QN�2 � N . Q�2; 1/; with Q�2 D .Œ0; 1�; Œ0; 3�/;QN�3 � exp. Q�3/; with Q�3 D .Œ1; 2�; Œ0; 3�/;

A run of Ra-Ro simulation with 1000 cycles shows that Nf D 2:1.

5.4.3.2 Parallel Tabu Search Algorithm

In this section, we will combine the Ra-Ro simulation with the parallel tabu
search(abbr. PTS) algorithm to solve the multiobjective problem. TS is an efficient
tool to solve the multiobjective problems. However, as the problem size gets larger,
TS has some drawbacks:

(a) TS needs to compute the objective function for solution candidates in the
neighborhood around a solution at each iteration. The calculation is very time
consuming in large-scale problems. The large size problem often gives large
neighborhood even though the neighborhood is defined as a set of solution
candidate with the Hamming distance equal to 1.

(b) The complicated non-linear optimal problem has many local minima in large
scale problems. That implies that one-point search does not give satisfactory
solutions due to the huge search space. Complicated optimal problems require
the solution diversity.

In this section, the decomposition of the neighborhood accommodates drawback.
The neighborhood is decomposed into several sub-neighborhoods. A processor may
be assigned to each sub-neighborhood so that the best solution candidate is selected
independently in each sub-neighborhood. After selecting the best solution in each
sub-neighborhood, the best solution is eventually selected from the best solutions in
the sub-neighborhood. Also, the multiple Tabu lengths is proposed to deal with the
multiobjective problem with Ra-Ro parameters. TS itself has only one Tabu length.
Moreover, it is important to find out better solutions from different directions rather
than from only one direction for a longer period. Namely it is effective to make the
solution search process more diverse.

Many classifications of PTS algorithms have been proposed [13, 40, 66, 67, 99,
110,111,227,258,328]. They are based on many criteria: number of initial solutions,
identical or different parameter settings, control and communications strategies. In
this section, we mainly introduce the parallel adaptive tabu search algorithm intro-
duced by Talbi, Hafidi and Geib [314] and readers can refer to the related literature.
They have identified two main categories (Fig. 5.14).

Domain decomposition: Parallelism in this class of algorithms relies exclu-
sively on:

(a) The decomposition of the search space: the main problem is decomposed into
a number of smaller subproblems, each subproblem being solved by a different
TS algorithm [313].
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Parallel TS algorithms

Domain decomposition Multiple TS tasks

Decomposition of the
search space

Decomposition of the
neighborhood

Independent Cooperative

same or different parameter setting
(initial solution, tabu list size, ...)

Fig. 5.14 Hierarchical classification of PTS strategies

Table 5.3 Another taxonomy dimension for PTS algorithm

Tasks or Data
Number Location

Non-adaptive Static Static
Semi-adaptive Static Dynamic
Adaptive Dynamic Dynamic

(b) The decomposition of the neighborhood: the search for the best neighbor at each
iteration is performed in parallel, and each task evaluates a different subset of
the partitioned neighborhood [40, 312].

A high degree of synchronisation is required to implement this class of algo-
rithms.

Multiple tabu search tasks: This class of algorithms consists in executing multi-
ple TS algorithms in parallel. The di.erent TS tasks start with the same or different
parameter values (initial solution, tabu list size, maximum number of iterations,
etc.). Tabu tasks may be independent (without communication) [214,258] or cooper-
ative. A cooperative algorithm has been proposed in [66], where each task performs
a given number of iterations, then broadcasts the best solution. The best of all
solutions becomes the initial solution for the next phase.

Parallelizing the exploration of the search space or the neighborhood is problem-
dependent. This assumption is strong and is met only for few problems. The second
class of algorithms is less restrictive and then more general. A parallel algorithm that
combines the two approaches (two-level parallel organization) has been proposed
in [13].

We can extend this classification by introducing a new taxonomy dimension:
the way scheduling of tasks over processors is done. PTS algorithms fall into three
categories depending on whether the number and/or the location of work (tasks,
data) depend or not on the load state of the parallel machine (Table 5.3):

Non-adaptive: This category represents PTS in which both the number of tasks
of the application and the location of work (tasks or data) are generated at compile
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time (static scheduling). The allocation of processors to tasks (or data) remains
unchanged during the execution of the application regardless of the current state
of the parallel machine. Most of the proposed algorithms belong to this class.

An example of such an approach is presented in [254]. The neighborhood is
partitioned in equal size partitions depending on the number of workers, which is
equal to the number of processors of the parallel machine. In [40], the number of
tasks generated depends on the size of the problem and is equal to n2, where n is
the problem size.

When there are noticeable load or power differences between processors, the
search time of the non-adaptive approach presented is derived by the maximum
execution time over all processors (highly loaded processor or the least powerful
processor). A significant number of tasks are often idle waiting for other tasks to
complete their work.

Semi-adaptive: To improve the performance of the parallel non adaptive TS algo-
rithms, dynamic load balancing must be introduced [13, 254]. This class represents
applications for which the number of tasks is fixed at compile-time, but the loca-
tions of work (tasks, data) are determined and/or changed at run-time (as seen in
Table 5.3). Load balancing requirements are met in [254] by a dynamic redistribu-
tion of work between processors. During the search, each time a task finishes its
work, it proceeds to a work-demand. Dynamic load balancing through partition of
the neighborhood is done by migrating data.

However, the parallelism degree in this class of algorithms is not related to load
variation in the parallel system: when the number of tasks exceeds the number of
idle nodes, multiple tasks are assigned to the same node. Moreover, when there are
more idle nodes than tasks, some of them will not be used.

Adaptive: A parallel adaptive program refers to a parallel computation with a
dynamically changing set of tasks. Tasks may be created or killed function of
the load state of the parallel machine. Different types of load state dessimina-
tion schemes may be used [37]. A task is created automatically when a processor
becomes idle. When a processor becomes busy, the task is killed. Next, let’s intro-
duce the design about the parallel adaptive TS introduced by Talbi, Hafidi and
GeibTalbi [314].

The programming style used is the master/workers paradigm. The master task
generates work to be processed by the workers. Each worker task receives a work
from the master, computes a result and sends it back to the master. The master/
workers paradigm works well in adaptive dynamic environments because:

(a) When a new node becomes available, a worker task can be started there.
(b) When a node becomes busy, the master task gets back the pending work which

was being computed on this node, to be computed on the next available node.

The master implements a central memory through which passes all communica-
tion, and that captures the global knowledge acquired during the search. The number
of workers created initially by the master is equal to the number of idle nodes in the
parallel platform. Each worker implements a sequential TS task. The initial solution
is generated randomly and the tabu list is empty. The parallel adaptive TS algorithm
reacts to two events (Fig. 5.15):
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Worker task 1
Worker task i Transition of the load state:

Idle to Busy

Fold

Master

Central memory

Best global solution
Intermediate solutions
(Short and long term
memory + iterations)

Central memory

Intermediate solution

Short-term and long-term memory + number of iterations

Best local solution

Worker task j

Local memory

Initial solution (randomly generated or intermediate solution)

Eventually (Short-term and long-term memory + number of iterations)

Best global solution

Unfold

Transition of the load
state: Busy to Idle

Local memory

Best local solution
Short and long memories

Number + Iterations

Flow of information

Event (load state transition)

Fig. 5.15 Architecture of the parallel adaptive TS

Transition of the load state of a node from idle to busy: If a node hosting a
worker becomes loaded, the master folds up the application by withdrawing the
worker. The concerned worker puts back all pending work to the master and dies.
The pending work is composed of the current solution, the best local solution found,
the short-term memory, the long-term memory and the number of iterations done
without improving the best solution. The master updates the best global solution if
it’s worst than the best local solution received.

Transition of the load state of a node from busy to idle: When a node becomes
available, the master unfolds the application by staring a new worker on it. Before
starting a sequential TS, the worker task gets the values of the different parameters
from the master: the best global solution and an initial solution which may be an
intermediate solution found by a folded TS task, which constitute a “good” initial
solution. In this case, the worker receives also the state of the short-term memory,
the long-term memory and the number of iterations done without improving the best
solution.

The local memory of each TS task which defines the pending work is com-
posed of (Fig. 5.15): the best solution found by the task, the number of iterations
applied, the intermediate solution and the adaptive memory of the search (short-term
and long-term memories). The central memory in the master is then composed of
(Fig. 5.15): the best global solution found by all TS tasks, the different intermediate
solutions with the associated number of iterations and adaptive memory.
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5.4.4 Numerical Examples

Example 5.12. Let’ consider the following CCM problem,

8̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂:

maxŒf1; f2�

s.t.

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

Apprf�jP rf QN�1x1 C QN�2x2 C QN�3x3 � f1g � ı1g � 	1;

Apprf�jP rfc1
QN�4x1 C c2

QN�5x2 C c3
QN�6x3 � f2g � ı2g � 	2;

x1 C x2 C x3 � 15;
x1 C x2 C x3 � 10;
x1 C 4x2 C 2x3 � 30;
2 � x1; x2; x3 � 6;

(5.55)

where c D .c1; c2; c3/ D .1:2; 0:8; 1:5/,
QN�1 � N .�1; 1/; with �1 ` .Œ1; 2�; Œ0; 3�/; QN�2 � N .�2; 4/; with �2 ` .Œ2; 3�; Œ1; 4�/;QN�3 � N .�3; 1/; with �3 ` .Œ3; 4�; Œ2; 5�/; QN�4 � N .�4; 2/; with �4 ` .Œ0; 1�; Œ0; 3�/;QN�5 � N .�5; 1/; with �5 ` .Œ1; 2�; Œ0; 3�/; QN�6 � N .�6; 1/; with �6 ` .Œ2; 3�; Œ0; 3�/;

and �i .i D 1; 2; : : : ; 6/ are rough variables. We set ıi D 	i D 0:9, then ˚�1.1 �
ıi / D �1:28; i D 1; 2: It follows that problem (5.55) is equivalent to

8̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂:

maxH1.x/ D �.2:4x1 C 1:4x2 C 2:2x3 C 1:28
q
x2

1 C 4x2
2 C x2

3/

maxH2.x/ D �.2:88x1 C 1:92x2 C 3:6x3 C 1:28
q
2x2

1 C x2
2 C x2

3/

s.t.

8̂̂
<
ˆ̂:
x1 C x2 C x3 � 15
x1 C x2 C x3 � 10
x1 C 4x2 C 2x3 � 30
2 � x1; x2; x3 � 6

(5.56)

Then we use the two-stage method to solve the above problem. Construct the
membership function as follows,

�i D Hi .x/ �H 0
i

H 1
i �H 0

i

; i D 1; 2;

where H 1
i D maxx2X Hi .x/ and H 0

i D minx2X Hi .x/. Then we get

H 1
1 D �30:00; H 0

1 D �45:10; H 1
2 D �33:35; H 0

2 D �58:49:

According to the stage method, the problem (5.56) can be written as,
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ˆ̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

max˛

s.t.

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
:̂

2:4x1 C 1:4x2 C 2:2x3 C 1:28
q
x2

1 C 4x2
2 C x2

3 � 30:00
14:9

� ˛
2:88x1C1:92x2C3:6x3 C 1:28

q
2x2

1Cx2
2Cx2

3 � 33:35
25:14

� ˛
x1 C x2 C x3 � 15
x1 C x2 C x3 � 10
x1 C 4x2 C 2x3 � 30
2 � x1; x2; x3 � 6

(5.57)

Then we obtained the optimal solution of problem x� D .6:00; 3:00; 6:00/T and
˛ D 0:9998. At the second stage, construct the following programming to check the
efficiency of x�,

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
:

max 1
2
.˛1 C ˛2/

s.t.

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

2:4x1 C 1:4x2 C 2:2x3 C 1:28
q
x2

1 C 4x2
2 C x2

3 � 30:00
14:9

� ˛1

2:88x1C1:92x2C3:6x3C1:28
q
2x2

1 C x2
2 C x2

3 � 33:35
25:14

� ˛2

x1 C x2 C x3 � 15
x1 C x2 C x3 � 10
x1 C 4x2 C 2x3 � 30
2 � x1; x2; x3 � 6
0:9998 � ˛1; ˛2 � 1

(5.58)

Resolve it and we get x
0� D x� D .6:00; 3:00; 6:00/T . This means the optimal

solution of problem (5.56) is unique.

Example 5.13. Let us consider a multi-objective programming with Ra-Ro coeffi-
cients, 8̂̂̂

ˆ̂<
ˆ̂̂̂̂
:

maxŒf1; f2�

s.t.

8̂̂
<
ˆ̂:

Apprf�jP rfp.x1 � �/2 C .x2 � �/2 � f1g � 0:8g � 0:8
Apprf�jP rfp.x1 C �/2 C .x2 C �/2 � f2g � 0:8g � 0:8
x1 C x2 � 5
x1; x2 � 0

(5.59)

where � is a normally distributed Ra-Ro variable, written as � � N . Q�; 1/, where
Q� ` .Œ1; 2�; Œ0; 3�/ is a rough variable.

Next, we apply the parallel tabu search algorithm based on the Ra-Ro simulation
to solve the nonlinear programming problem (5.59) with the Ra-Ro parameters.
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Step 1. Set the move step h D 0:5 and the h neighbor N.x; h/ for the present
point x is defined as follows,

N.x; h/ D
n
yj
p
.x1 � y1/2 C .x2 � y2/2 � h

o
:

The random move of point x to point y in its h neighbor along direction s is given by

ys D xs C rh;

where r is a random number that belongs to [0,1], s D 1; 2:
Step 2. Give the step setH D fh1; h2; : : : ; hrg and randomly generate a feasible

point x0 checked by the random rough simulation. One should empty the Tabu list
T (the list of inactive steps) at the beginning.

Step 3. For each active neighbor N.x; h/ of the present point x, where h 2
H �T , a feasible random move that satisfies all the constraints in problem (5.59) is
to be generated.

Step 4. Construct the single objective function as follows,

f .x/ D w1f1 C w2f2

where w1 C w2 D 1 and wi .i D 1; 2/ is predetermined by the decision maker.
Compare the f .x/ of the feasible moves with that of the current solution by the
Ra-Ro simulation. If an augmenter in new objective function of the feasible moves
exists, one should save this feasible move as the updated current one by adding the
corresponding step to the Tabu list T and go to the next step; otherwise, go to the
next step directly.

Step 5. Stop if the termination criteria are satisfied; other wise, empty T if it
is full; then go to Step 3. Here, we set the computation is determined if the better
solution doesn’t change again.

We can solve the programming problem (5.59) by the parallel tabu search algo-
rithm and genetic algorithm, respectively. Table 5.4 shows the result computed by
parallel TS algorithm setting the Tabu length is 5 and the candidate number is 3.

Table 5.4 The result computed by PTS algorithm at different weights

w1 w2 x1 x2 x3 H Gen

0.1 0.9 90.68 25.19 84.13 �2304.55 270
0.2 0.8 90.25 25.08 84.66 �2287.08 240
0.3 0.7 89.82 24.99 85.19 �2269.57 256
0.4 0.6 89.39 24.89 85.72 �2252.01 269
0.5 0.5 88.99 24.79 86.25 �2234.40 294
0.6 0.4 88.53 24.70 86.78 �2216.74 291
0.7 0.3 88.10 24.60 87.30 �2199.03 268
0.8 0.2 87.67 24.50 87.83 �2181.29 281
0.9 0.1 87.24 24.40 88.36 �2163.48 276
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Table 5.5 The result computed by GA at different weights

w1 w2 x1 x2 x3 H Gen

0.1 0.9 88.98 25.97 85.06 �2304.84 5000
0.2 0.8 91.64 25.29 83.07 �2287.3 5000
0.3 0.7 91.53 24.67 83.77 �2269.82 5000
0.4 0.6 91.1 24.54 84.36 �2252.26 5000
0.5 0.5 87.78 24.99 87.23 �2234.52 5000
0.6 0.4 88.61 24.77 86.62 �2216.42 5000
0.7 0.3 87.00 25.08 87.92 �2199.16 5000
0.8 0.2 87.06 24.53 88.41 �2181.31 5000
0.9 0.1 86.23 24.44 89.33 �2163.57 5000
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–330,000
–340,000
–350,000
–360,000

0

A

1 2 3 4 5 6 7 8 9 10 11

–2,234.397
–2,234.397
–2,234.397
–2,234.397
–2,234.397
–2,234.397
–2,234.397
–2,234.397
–2,234.397
–2,234.397
–2,234.397

–2,234.4
–363,310.987

Fig. 5.16 The iteration process by PTS at w1 D 0:5 and w2 D 0:5

Table 5.5 shows the result computed by GA setting the chromosome population
number is 20, the crossover probability is 0.85 and the mutation probability is 0.01.
Figures 5.16 and 5.17 show the computing process by the two algorithm at w1 D 0:5
and w2 D 0:5, respectively.

5.5 Ra-Ro DCM

In 1959, Charnes and Cooper [45] proposed the probability maximization model
(P-model) for the random programming problems, then Liu [207] introduced the
dependent-chance programming according to the definition of the chance measure
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Fig. 5.17 The iteration
process by GA at w1 D 0:5

and w2 D 0:5

–2,240
–2,260
–2,280
–2,300
–2,320
–2,340
–2,360
–2,380
–2,400
–2,420
–2,440
–2,460
–2,480
–2,500
–2,520
–2,540
–2,560
–2,580
–2,600
–2,620
–2,640
–2,660
–2,680
–2,700
–2,720
–2,740
–2,760
–2,780

0 1 2 3 4 5 6 7 8 9 10

–2,234.451
–2,234.479
–2,234.479
–2,234.573
–2,234.837
–2,235.802
–2,236.896
–2,236.905
–2,237.784
–2,240.177
–2,786.53

on the basis of the P-model. Its meaning lies in arriving at the maximal probability
which decision makers anticipate.

5.5.1 General Model

Let’s consider the following model

8<
:

maxŒChffi .x; �/ � fi g.˛i /; i D 1; 2; : : : ; m�
s.t.

�
gr .x/ � 0; r D 1; 2; : : : ; p
x 2 X

(5.60)

where x is a n-dimensional decision vector, � D .�1; �2; : : : ; �n/ is a Ra-Ro vec-
tor, and ˛i is the given confidence level. Here, the constraints are all certain. For
uncertain constraints, we can deal with them by the technique of chance-constrained
programming. When the Ra-Ro variable degenerates to the single uncertain variable,
we obtain the following results.

Remark 5.5. If the Ra-Ro vector � degenerates to a random vector, for any given ˛i ,

Chffi .x; �/ � fi g.˛i / D P rffi .x; �/ � fi g.˛i /; i D 1; 2; : : : ; n:

Thus, the problem (5.60) is equivalent to

8<
:

max ŒP rffi .x; �/ � fi g.˛i /; i D 1; 2; : : : ; n�
s.t.

�
gr .x; �/ � 0; r D 1; 2; : : : ; p
x 2 X

(5.61)

where � is a random vector, and this model is a standard stochastic DCM.

Remark 5.6. When the Ra-Ro variable � degenerates to a rough vector, for any
given ˛i , P rffi .x; �/ � fi g D 1. This means
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Chffi .x; �/ � fi g.˛i / D Apprffi .x; �/ � fi g.˛i /; i D 1; 2; : : : ; n:

Thus, the problem (5.60) is converted into

8<
:

max ŒApprffi .x; �/ � fi g.˛i /; i D 1; 2; : : : ; n�
s.t.

�
gr .x; �/ � 0; r D 1; 2; : : : ; p
x 2 X

(5.62)

where �i is a rough variable, and this model is identical with the dependent-chance
programming model in rough environment.

Remark 5.7. Because there are many priority factors which need to be considered
in real life, the goal programming problem is applied to formulate DM’s goal level.
Then the goal programming problem of (5.60) can be got as follows,

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂
ˆ̂:

max
lP

j D1

Pj

nP
iD1

.uijd
�
i C vijd

C
i /

s.t.

8̂̂<
ˆ̂:
Chffi .x; �/ � fi g.˛i /C d�

i � dC
i D ˇi

d�
i ; d

C
i � 0; i D 1; 2; : : : ; n

gr .x; �/ � 0; r D 1; 2; : : : ; p
x 2 X

(5.63)

where Pj is the preemptive priority factor which DM considers the relative impor-
tance of item i . For all j , uij ; vij are respectively the weighting factor corresponding
to negative or positive deviation for goal i with priority j assigned. l is the number
of priorities. ˛i is the given level value, ˇi is the goal value according to goal i .

5.5.2 Linear Ra-Ro DCM and the Fuzzy Goal Method

Let’s still consider the following linear multi-objective model,

8<
:

max
� QNcT

1 x; QNcT
2 x; : : : ; QNcT

mx
�

s.t.

�
eT

r x � br ; r D 1; 2; : : : ; p
x 2 X

where QNci D . QNci1; QNci2; : : : ; QNcin/ is the random rough vector, i D 1; 2; : : : ; m: Its
dependent-chance multi-objective model is as follows,

8̂̂
<
ˆ̂:

maxŒˇ1; ˇ2; : : : ; ˇm�

s.t.

8<
:

Apprf�jP rf QNcT
i x � fi g � ˇi g � ˛i ; i D 1; 2; : : : ; m

eT
r x � br ; r D 1; 2; : : : ; p

x 2 X
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where QNci D . QNci1; QNci2; : : : ; QNcin/ is a Ra-Ro vector, ˛i is the given confidence level
and fi is the predetermined value.

5.5.2.1 Crisp Equivalent Model

Similarly, when the random rough parameters are subject to normal distribution, we
still have the following results.

Theorem 5.15. (Xu and Yao [347]) Assume that Ra-Ro vector QNci is characterized
by QNci � N . Nci .�/; V

c
i /, where ci D .ci1.�/; ci2.�/; : : : ; cin.�//

T / is a vector
approximated by rough sets and V c

i is a positive definite covariance matrix. Let
Nci .�/

T x ` .Œa; b�; Œc; d �/R (where 0 � c � a < b � d ), then we have the following
four equivalent models

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

maxŒˇ1; ˇ2; : : : ; ˇm�

s.t.

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

˚

0
B@ fi � aq

xTV c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

˚

0
B@fi � c � 2˛i .d � c/q

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

eT
r x � br ; r D 1; 2; : : : ; p

x 2 X

and

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

maxŒˇ1; ˇ2; : : : ; ˇm�

s.t.

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂:

˚

0
B@ fi � bq

xTV c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

˚

0
B@ fi � lq

xTV c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m;

eT
r x � br ; r D 1; 2; : : : ; p

x 2 X

where l D maxfa; c.b�a/Ca.d�c/�2˛i .d�c/.b�a/
b�aCd�c

g, and
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ˆ̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂:

maxŒˇ1; ˇ2; : : : ; ˇm�

s.t.

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

˚

0
B@ fi � dq

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

˚

0
B@ fi � tq

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

eT
r x � br ; r D 1; 2; : : : ; p

x 2 X

where t D maxfb; .2˛i � 1/.d � c/C cg, and

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

maxŒˇ1; ˇ2; : : : ; ˇm�

s.t.

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:
˚

0
B@ fi � dq

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

eT
r x � br ; r D 1; 2; : : : ; p

x 2 X:

Proof. Since QNci � N . Nci .�/; V
c

i / is a Ra-Ro vector, it follows that QNcT
i x �

N . NcT
i .�/x;x

T V c
i x/. Then we have

P rf QNcT
ij x � fig � ˇi

, P r

( QNci .�/
T x � Nci .�/

T xq
xTV c

i x

� fi � Nci .�/
T xq

xT V c
i x

)
� ˇi

, ˇi � ˚
 
fi � Nci .�/

T xq
xTV c

i x

!

, Nci .�/
T x � fi � ˚�1.ˇi /

q
xT V c

i x

Let’s formulate why Nci .�/
T x is a rough variable. From the assumption we know

that Ncij .�/ is a rough variable and Nci .�/ D . Nci1.�/; Nci2.�/; : : : ; Ncin.�//
T . We set

Ncij .�/ ` .Œaij ; bij �; Œcij ; dij �/;

x D .x1; x2; : : : ; xn/
T :

It follows that xj Ncij .�/ ` .Œxj aij ; xj bij �; Œxj cij ; xjdij �/,
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Nci .�/
T x D

nX
j D1

Ncij .�/xj `
nX

j D1

.Œxj aij ; xj bij �; Œxj cij ; xjdij �/

D
�� nX

j D1

aijxj ;

nX
j D1

aij xj

	
;

� nX
j D1

cijxj ;

nX
j D1

dijxj

	�

So Nci .�/
T x is also a rough variable. Now we set

a D
nX

j D1

aij xj ; b D
nX

j D1

aij xj ;

c D
nX

j D1

cijxj ; d D
nX

j D1

dijxj ;

then Nci .�/
T x D .Œa; b�; Œc; d �/. It follows that, for given confidence level ˛i and

predetermined value fi ,

Apprf�jP rf QNcT
i x � fig � ˇig � ˛i

, Appr
n
�j Nci .�/

T x � fi � ˚�1.ˇi /
q

xT V c
i x
o
� ˛i

, ˛i �

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:̂

0; if L � c
L � c
2.d � c/ if c � L � a
1

2

�
L � c
d � c C

L� a
b � a

�
if a � L � b

1

2

�
L � c
d � c C 1

�
if b � L � d

1 if L � d

whereL D fi�˚�1.ˇi /
q

xTV c
i x. Because ˛i is a given confidence level between

0 and 1, there is no optimal solution for L � c. We can only discuss the following
four cases.

(Case 1) c � L � a. We have

˛i � L � c
2.d � c/ ,

di �Hi

2.di � ci /
� ˛i , 2˛i .d � c/C c � L:

Clearly, 2˛i .d � c/C c � c, thus, the constraint is converted into

2˛i .d � c/C c � L � a, ˚

 
fi � aq
xTV c

i x

!
� ˇi � ˚

 
fi � c � 2˛i .d � c/q

xT V c
i x

!
:
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Then the problem (5.50) can be changed into

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂:

maxŒˇ1; ˇ2; : : : ; ˇm�

s.t.

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
:̂

˚

0
B@ fi � aq

xTV c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

˚

0
B@fi � c � 2˛i .d � c/q

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

eT
r x � br ; r D 1; 2; : : : ; p

x 2 X

(5.64)

(Case 2) a � L � b. We have

˛i � 1

2

�
L� c
d � c C

L � a
b � a

�
, L � c.b � a/C a.d � c/ � 2˛i .d � c/.b � a/

b � aC d � c

Let l D max
n
a; c.b�a/Ca.d�c/�2˛i .d�c/.b�a/

b�aCd�c

o
, then the constraint can be convert

into

l � L � b, ˚

 
fi � bq
xT V c

i x

!
� ˇi � ˚

 
fi � lq
xT V c

i x

!
:

Then problem (5.50) can be changed into

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂:

maxŒˇ1; ˇ2; : : : ; ˇm�

s.t.

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

˚

0
B@ fi � bq

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

˚

0
B@ fi � lq

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

eT
r x � br ; r D 1; 2; : : : ; p

x 2 X

(5.65)

where l D max
n
a; c.b�a/Ca.d�c/�2˛i .d�c/.b�a/

b�aCd�c

o
.

(Case 3) b � L � d . We have

˛i � 1

2

�
L � c
d � c C 1

�
, L � .2˛i � 1/.d � c/C c:



5.5 Ra-Ro DCM 349

Let t D maxfb; .2˛i � 1/.d � c/C c, then the constraint can be convert into

t � L � d , ˚

 
fi � dq
xT V c

i x

!
� ˇi � ˚

 
fi � tq
xTV c

i x

!
:

Then problem (5.50) can be changed into

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂:

maxŒˇ1; ˇ2; : : : ; ˇm�

s.t.

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

˚

0
B@ fi � dq

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

˚

0
B@ fi � tq

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

eT
r x � br ; r D 1; 2; : : : ; p

x 2 X

(5.66)

where t D maxfb; .2˛i � 1/.d � c/C cg.
(Case 4) d � L. It’s obviously correct that ˛i � 1 for ˛i 2 Œ0; 1�. Thus, the

constraint is only as follows

d � L, ˇi � ˚
 

fi � dq
xTV c

i x

!
:

Then problem (5.50) can be changed into

8̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂:

maxŒˇ1; ˇ2; : : : ; ˇm�

s.t.

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

˚

0
B@ fi � dq

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

eT
r x � br ; r D 1; 2; : : : ; p

x 2 X

(5.67)

This completes the proof. ut

5.5.2.2 The Fuzzy Goal Method

In this section, we take the problem (5.67) as an example to introduce how to use the
fuzzy goal method to solve the multi-objective programming problems. As we know,
the standard distribution function ˚.x/ is a nonlinear function, so it is difficult to
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solve it by usual technique. Hereby we mainly introduce the fuzzy goal method pro-
posed by Sakawa [270] to solve this kind of nonlinear multi-objective programming
problems.

Let Hi .x/ D ˚
�

fi �dp
xT V c

i
x

�
, then the problem (5.67) can be rewritten as,

8<
:

maxŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t.

�
eT

r x � br ; r D 1; 2; : : : ; p
x 2 X

(5.68)

Assume that DM (decision maker) have fixed the membership function �k.Hk.x//

and given the goal membership function value N�k .k D 1; 2; : : : ; m/. Let’s consider
the following programming problem,

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

max
mP

kD1

d�
k

s.t.

8̂̂
<
ˆ̂:
�k.Hk.x//C d�

k
� dC

k
D N�k ; k D 1; 2; : : : ; m

eT
r x � br ; r D 1; 2; : : : ; p
dC

k
d�

k
D 0; dC

k
; d�

k
� 0; k D 1; 2; : : : ; m

x 2 X

(5.69)

where dC
k
; d�

k
is the positive and negative deviation. Then we have the following

result between the optimal solution of the problem (5.69) and the efficient solution
of the problem (5.68).

Theorem 5.16. (Sakawa [270]) 1. If x� is the optimal solution of the problem
(5.69), and 0 < �k.Hk.x

�// < 1, dC
k
D 0.k D 1; 2; : : : ; m/ holds, then x� is

an efficient solution of the problem (5.68).
2. If x� is an efficient solution of the problem (5.68), and 0 < �k.Hk.x

�// <
1.k D 1; 2; : : : ; m/, then x� is an efficient solution of the problem (5.69) and dC

k
D

0.k D 1; 2; : : : ; m/ holds.

Proof. The proof process can be found in [270], and we don’t introduce it here. ut

5.5.3 Nonlinear Ra-Ro DCM and Ra-Ro Simulation-Based RTS

Consider the following nonlinear multi-objective dependent chance model,

8̂̂
<
ˆ̂:

maxŒˇ1; ˇ2; : : : ; ˇm�

s.t.

8<
:

Apprf�jP rffi .x; �/ � fi g � ˇi g � ˛i ; i D 1; 2; : : : ; m
eT

r x � br ; r D 1; 2; : : : ; p
x 2 X



5.5 Ra-Ro DCM 351

where fi .x; �/ are nonlinear functions with respect to �, � is a Ra-Ro vector, ˛i

is the given confidence level and fi is the predetermined value. We cannot usually
convert it into a crisp one because of the existence of the nonlinear function fi .x; �/,
so the parametric TS based on the Ra-Ro simulation can be used to deal with the
dependent chance model to obtain optimal solution. Next, let’s firstly introduce the
Ra-Ro simulation for DCM.

5.5.3.1 Ra-Ro Simulation for DCM

Suppose that � is an n-dimensional Ra-Ro vector defined on the rough set .X; NX/
under the similarity relationship, and f W Rn ! R is a measurable function. For
any real number ˛ 2 .0; 1�, we design a Ra-Ro simulation to compute the ˛-chance
Chff .x; �/ � f g.˛/ for given x. That is, we should find the supremum Ň such
that

Apprf�jP rff .x; �/ � f g � Ňg � ˛ (5.70)

Generate �1; �2; : : : ; �N from the lower approximationX and N�1; N�2; : : :, N�N from
the upper approximation X according to the approximation function Appr. For
any number t , let N.t/ denote the number of �k satisfying P rff .x; �.�k// �
f g � t for k D 1; 2; : : : ; N , and NN.t/ denote the number of N�k satisfying
P rff .x; �. N�k// � f g � t for k D 1; 2; : : : ; N , where P rf�g may be estimated by
random simulation. Then we may find the maximal value v such that

N.t/C NN.t/
2N

� ˛ (5.71)

This value is an estimation of Ň. Then the procedure simulating the critical value Nf
of Apprf�jP rff .x; �/ � Nf g � ˇg � ˛ can be summarized as follows:

Procedure Ra-Ro simulation for DCM
Input: The decision vector x

Output: ˛-chance Chff .x; �/ � f g.˛/
Step 1. Generate �1; �2; : : : ; �N from the lower approximationX according
to the approximation function Appr;
Step 2. Generate N�1; N�2; : : :, N�N from the upper approximationX according to
the approximation function Appr;

Step 3. Find the maximal value t such that N .t/C NN.t/

2N
� ˛ holds;

Step 4. Return t .

Example 5.14. Let QN�1, QN�2 and QN�3 are three Ra-Ro variables as follows,

QN�1 � U . Q�1; Q�1 C 2/; with Q�1 D .Œ1; 2�; Œ1; 3�/;QN�2 � N . Q�2; 1/; with Q�2 D .Œ0; 1�; Œ0; 3�/;QN�3 � exp. Q�3/; with Q�3 D .Œ1; 2�; Œ0; 3�/;
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A run of Ra-Ro simulation with 5000 cycles shows that

Ch

�q
QN�2
1 C QN�2

2 C QN�2
3 � 2:6

�
.0:9/ D 0:5:

5.5.3.2 Reactive Tabu Search Algorithm

The reactive tabu search (abbr. RTS) is an improved version of TS. It was first pro-
posed by Battiti and Tecchiolli [18]. The tabu list length of RTS can be self-adapted
to balance intensification and diversification. Furthermore, an escape mechanism is
introduced to avoid recycling. The RTS method has been successfully applied in
many fields [28, 38, 290].

The reactive tabu search (RTS) algorithm, goes further in the direction of robust-
ness by proposing a simple mechanism for adapting the list size to the properties
of the optimization problem. The configurations visited during the search and the
corresponding iteration numbers are stored in memory so that, after the last move-
ment is chosen, one can check for the repetition of configurations and calculate the
interval between two visits. The basic fast reaction mechanism increases the list size
when configurations are repeated. This is accompanied by a slower reduction mech-
anism so that the size is reduced in regions of the search space that do not need large
sizes.

The reactive tabu search algorithm uses the reactive mechanism to adjust the
length of the tabu list as well as balance the centralized strengthening search
strategy and decentralized diversification search strategy. The RTS involves in the
increasing adjustment coefficient (NIN > 1) and decreasing adjustment coefficient
(0 < NDE < 1). In the searching process, all the solutions visited are stored. As
operating a step of move, current solution is checked if it has been visited. If it has
been visited, which shows that entering a cycle, then the length of tabu list become
NIN times of the original length. If there are not repeated solutions after several
iterations, then the length of tabu list becomeNDE times of the original length.

In order to cycle, RST presents the escape mechanism. In the searching pro-
cess, when repeated times of a large number of repeated solutions exceed the given
times REP , the escape mechanism is activated. The escape strategy is based on the
execution of a series of random exchanges. Their number is random. To avoid an
immediate return into the old region of the search space, all random steps executed
are made tabu.

Tabu search algorithm uses historical memory optimization, search optimization
with tabu list that, combined with the level of desire, the system achieved through
an intensive search and distributed search for the balance of diversification. The
RTS use active feedback strategies and use the escape mechanism to strengthen the
balance. Thus, in theory, tabu search algorithm active than the general tabu search
algorithm better, search for higher quality.

The key idea of RTS is feedback strategies and escape mechanism. In the
real application, there are many ways to achieve feedback strategies and escape
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t = t × NDE
n_dec = 0

Fig. 5.18 Flowchart of RTS algorithm

mechanism. For example, then length of tabu list become the original list num dec

times if there is no repeated solutions in numdec iteration. Escape mechanism is
implemented if the times of repetition achieve num esc.

The basic procedures of RTS are summarized as follows and the flowchart is
shown by Fig. 5.18.

Step 1. Initialize two counters: num dec D num esc D 0.
Step 2. Initialize other parameters, present the initial solution.
Step 3. Propose candidate solutions set according to current solution.
Step 4. According to the tabu list situation and desired level, select a solution as

the initial solution for next iteration update record list (including the tabu list, and
all the normal solutions visited).
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Step 5. If the selected solution occurred before, then the length of the tabu list
t D tNIN ; n esc D n esc C 1; n dec D 0; otherwise n dec D n dec C 1.

Step 6. If n dec D num dec, then t D tNDE ; n dec D 0.
Step 7. if n esc D num esc, then implement escape mechanism, n escD0;

n dec D 0.
Step 8. If the termination criterion is satisfied, stop; otherwise turn to Step 3.

5.5.4 Numerical Examples

Example 5.15. Consider the following multiobjective programming problem

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

maxf1.x; �/ D Chf QN�1x1 C QN�2x2 C QN�3x3 � f1g.˛/
maxf2.x; �/ D Chfc1

QN�4x1 C c2
QN�5x2 C c3

QN�6x3 � f2g.ˇ/

s.t.

8̂̂
<
ˆ̂:
x1 C x2 C x3 � 15
x1 C x2 C x3 � 10
x1 C 4x2 C 2x3 � 30
2 � x1; x2; x3 � 6

(5.72)

where c D .c1; c2; c3/ D .1:2; 0:8; 1:5/,
QN�1 � N .�1; 1/; with �1 ` .Œ1; 2�; Œ0; 3�/; QN�2 � N .�2; 4/; with �2 ` .Œ2; 3�; Œ1; 4�/;QN�3 � N .�3; 1/; with �3 ` .Œ3; 4�; Œ2; 5�/; QN�4 � N .�4; 2/; with �4 ` .Œ0; 1�; Œ0; 3�/;QN�5 � N .�5; 1/; with �5 ` .Œ1; 2�; Œ0; 3�/; QN�6 � N .�6; 1/; with �6 ` .Œ2; 3�; Œ0; 3�/;

and �i .i D 1; 2; : : : ; 6/ are rough variables. We set ˛ D ˇ D 0:9, f1 D 15, and
f2 D 13. Then we have the following equivalent model,

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

maxŒ˛0; ˇ0�

s.t.

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:

˚

0
B@15� .5:4x1 C 6:4x2 C 7:4x3/q

x2
1 C 4x2

2 C x2
3

1
CA � ˛0

˚

0
B@13� 1:8.3:6x1 C 2:4x2 C 4:5x3/q

2x2
1 C x2

2 C x2
3

1
CA � ˇ0

x1 C x2 C x3 � 15
x1 C x2 C x3 � 10
x1 C 4x2 C 2x3 � 30
2 � x1; x2; x3 � 6

(5.73)
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In fact, since the function ˚.x/ is monotonously increasing, we can get the optimal
solution of problem (5.73) by solving the equivalent problem as follows,

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

maxH1.x/ D 15� .5:4x1 C 6:4x2 C 7:4x3/q
x2

1 C 4x2
2 C x2

3

maxH2.x/ D 13� 1:8.3:6x1 C 2:4x2 C 4:5x3/q
2x2

1 C x2
2 C x2

3

s.t.

8̂̂
<
ˆ̂:
x1 C x2 C x3 � 15
x1 C x2 C x3 � 10
x1 C 4x2 C 2x3 � 30
2 � x1; x2; x3 � 6

(5.74)

Then we use the fuzzy goal programming method to solve the above problem.
Firstly, construct the fuzzy membership function by the following equation,

�k.x/ D
Hk.x/�H 0

k

H 1
k
�H 0

k

; k D 1; 2;

where H 1
k

and H 0
k

can respectively obtained by H 1
k
D maxx2X Hk.x/ and H 0

k
D

minx2X Hk.x/ as follows,

H 1
1 D �3:974; H 0

1 D �7:952; H 1
2 D �6:074; H 0

2 D �8:636:
Secondly, let N�1 D N� D 0:9, then the fuzzy goal programming problem can be got
as follows,

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:

max.d�
1 C d�

2 /

s.t.

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

15 � .5:4x1 C 6:4x2 C 7:4x3/q
x2

1 C 4x2
2 C x2

3

C 7:952

7:952� 3:974 C d�
1 � dC

1 D 0:9
13 � 1:8.3:6x1 C 2:4x2 C 4:5x3/q

2x2
1 C x2

2 C x2
3

C 8:636

8:636� 6:074 C d�
2 � dC

2 D 0:9
x1 C x2 C x3 � 15
x1 C x2 C x3 � 10
x1 C 4x2 C 2x3 � 30
2 � x1; x2; x3 � 6
dC

1 ; d
�
1 ; d

C
2 ; d

�
2 � 0

(5.75)

We obtain the optimal solution x� D .2:00; 6:00; 2:00/T . Thus, the optimal objec-
tive value .˛�

0 ; ˇ
�
0 / D .0:9673; 0:7692/.
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Example 5.16. Consider the following problem,

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

maxf1.x/ D Chf QN�1x1 C QN�2x2 C QN�3x3 � f1g.˛/
maxf2.x/ D Chfc1

QN�4x1 C c2
QN�5x2 C c3

QN�6x3 � f2g.ˇ/

s.t.

8̂̂
<
ˆ̂:
x1 C x2 C x3 � 250;
x1 C x2 C x3 � 200;
x1 C 4x2 C 2x3 � 600;
x1 � 20; x2 � 20; x3 � 20;

(5.76)

where c D .c1; c2; c3/ D .1:2; 0:8; 1:5/,
QN�1 � N .�1; 1/; with �1 ` .Œ1; 2�; Œ0; 3�/; QN�2 � N .�2; 4/; with �2 ` .Œ2; 3�; Œ1; 4�/;QN�3 � N .�3; 1/; with �3 ` .Œ3; 4�; Œ2; 5�/; QN�4 � N .�4; 2/; with �4 ` .Œ0; 1�; Œ0; 3�/;QN�5 � N .�5; 1/; with �5 ` .Œ1; 2�; Œ0; 3�/; QN�6 � N .�6; 1/; with �6 ` .Œ2; 3�; Œ0; 3�/;

and �i .i D 1; 2; : : : ; 6/ are rough variables. We set ˛ D ˇ D 0:9, f1 D 1500, and
f2 D 1300.

Next, we apply the tabu search algorithm based on the Ra-Ro simulation to solve
the nonlinear programming problem (5.41) with the Ra-Ro parameters.

Step 1. Set the move step h D 0:5 and the h neighbor N.x; h/ for the present
point x is defined as follows,

N.x; h/ D
n
yj
p
.x1 � y1/2 C .x2 � y2/2 C .x3 � y3/2 � h

o
:

The random move of point x to point y in its h neighbor along direction s is given
by

ys D xs C rh;

where r is a random number that belongs to [0,1], s D 1; 2; 3:
Step 2. Give the step setH D fh1; h2; : : : ; hrg and randomly generate a feasible

point x0 2 X . One should empty the Tabu list T (the list of inactive steps) at the
beginning.

Step 3. For each active neighbor N.x; h/ of the present point x, where h 2
H �T , a feasible random move that satisfies all the constraints in problem (5.41) is
to be generated.

Step 4. Construct the single objective function as follows,

f .x; �/ D w1Chf QN�1x1 C QN�2x2 C QN�3x3 � f1g.˛/
Cw2Chfc1

QN�4x1 C c2
QN�5x2 C c3

QN�6x3 � f2g.ˇ/
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Table 5.6 The result computed by RTS algorithm

!1 !2 x1 x2 x3 f1.x/ f2.x/

0.1 0.9 20.00 45.36 184.64 0.632 0.714
0.2 0.8 20.00 39.72 190.28 0.668 0.702
0.3 0.7 20.00 34.39 195.71 0.691 0.688
0.4 0.6 20.00 31.06 198.94 0.711 0.672
0.5 0.5 20.00 26.14 203.86 0.736 0.669

where w1 C w2 D 1. Compare the f .x; �/ of the feasible moves with that of the
current solution by the Ra-Ro simulation. If an augmenter in new objective function
of the feasible moves exists, one should save this feasible move as the updated cur-
rent one by adding the corresponding step to the Tabu list T and go to the next step;
otherwise, go to the next step directly.

Step 5. Stop if the termination criteria are satisfied; other wise, empty T if it
is full; then go to Step 3. Here, we set the computation is determined if the better
solution doesn’t change again (Table 5.16).

5.6 The Inventory System of Wal–Mart Supermarket

Classical inventory models generally deal with a single-item. But in real word sit-
uations, a single-item inventory seldom occurs. It is a common experience that the
presence of a second item in an inventory favors the demand of the first and vice-
versa; the effect may be different in the two cases. This is why companies and
retailers deal with several items and stock them in their showrooms/warehouses.
This leads to the idea of a multi-item inventory.

Many well-known books [123,230] that introduce multi-item classical inventory
models under resource constraints are available. In a multi-item inventory system,
companies and retailers are required to maximize/minimize two or more objectives
simultaneously over a given set of decision variables. This leads to the idea of a
multi-objective mathematical programming problem. Toroslu and Arslanoglu [319]
research a genetic algorithm for the personnel assignment problem with multiple
objectives. The inventory system of supermarkets is a typical example of the multi-
item inventory system. A supermarket contains many different goods and needs to
determine how many of each should be ordered.

Generally, in classical inventory models, many parameters are assumed to be
crisp, such as holding and set-up costs, demand, rate of replenishment/production
and shortage costs and so on. However, in real-life situations, there are many uncer-
tain factors leading to some imprecise parameters in inventory problems. Recently
demand has been considered a fuzzy variable by some scholars [153,198]. Ishii and
Konno [145] considered shortage cost as a fuzzy number and demand as a random



358 5 Random Rough Multiple Objective Decision Making
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variable in the classical newsbody problem. Then a single-period inventory prob-
lem with fuzziness and randomness simultaneously has been researched by Dutta,
Chakraborty and Roy [92]. However, there has been no attempt to research another
mixed environment, where randomness and roughness both appear simultaneously.
For some seasonal items (Ice cream, Christmas trees, woolen materials), the demand
may vary year to year. According to historical data or abundance of information,
we can know demand in one year is subject to stochastic distribution. However, the
expected value of stochastic distribution is vague and varies from year to year. Thus,
it is difficult for decision makers to achieve a better decision. Hence, we have to con-
sider it an uncertain variable. A rough variable can be applied to depict it well if the
average sold amount is clear by the statistical data of each year. Thus, the demand of
some seasonal items can be described as a Ra-Ro variable to help decision makers
develop better strategies.

5.6.1 Background

In this section, an example from Wal-Mart supermarket inventory system is intro-
duced. Sam’s Gamble is a global Company with more than 1.8 million associates
worldwide and nearly 6,500 stores and wholesale clubs across 15 countries. By
August 31, 2006, the company had 1,135 Wal–Mart stores 2,121 Super-centers,
567 SAM’S CLUBS and 108 Neighborhood Markets in the United States. Inter-
nationally, the Company operated units in Argentina (12), Brazil (294), Canada
(278), China (63), Costa Rica (133), Germany (85), Guatemala (122), Honduras
(37), Japan (391), Mexico (828),Nicaragua (36),Puerto Rico (54), El Salvador (59),
South Korea(16) and the United Kingdom (323). The most admired retailer accord-
ing to FORTUNE magazine has just completed one of the best years in its history:
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Wal–Mart generated more than 312.4 billion in global revenue in the fiscal year
ended January 31, 2006.

To maintain and increase the percentage of sales, Wal–Mart stores sell products
with their private-label to balance the pressure from global competitors. Now, the
company plans to earn a handsome profit along with sufficiently large sales pro-
ceeds. Here, we suppose that the managers of the company are interested in eight
new commodities, reading lamp, chocolate, drink, hair drier, suitcase, cosmetic and
washer, and want these new products to be on sale in their supermarkets with the
channel-firm label manufactured by other producers. Even though the eight new
products are produced by eight different manufacturing companies and the purchas-
ing (cost) price of each product is fixed. But the managers still need to determine
order quantities and how to set a selling (retail) price for the eight new products,
because they are all new products and have never been marketed. Due to many
uncertain factors, the total average profit (PF ), the total average cost (TC ), the total
wastage cost (WC ), the selling or purchasing price and holding or set-up cost per
product (not yet been finalized but) are expected to be Ra-Ro variables. For example,
the demand for the reading lamp is a random variable following the normal distri-
bution denoted by N .165; 102/. We assume that the demand for the new reading
lamp should also be a normally distributed variable, denoted by N . Q�; 52/ based on
the demand of the other congeneric commodities, where Q� D .Œ100; 146�; Œ80; 165�/
is a rough variable. Thus the demand for the new reading lamp is a Ra-Ro variable.
That is the same for the other new productions. Here, based on the statistical data
of similar commodities, we can know all the distribution of every commodity. Then
we can deal with the eight new commodity inventory problem.

5.6.2 Assumptions

The complexity arises in modelling a realistic decision-making inventory situa-
tion is mainly due to the presence of some non-deterministic information, in the
sense that they are not just capable of being encoded with the precision and cer-
tainty of classical mathematical reasoning. Actually, a realistic situation is no longer
realistic when imprecise and uncertain information is neglected for the sake of
mathematical model building. During the last three decades, considerable devel-
opments in the field of operations research has enabled theories of probabilistic and
fuzzy sets to open ways for constructing metaphors that represents many aspects
of uncertainty and impreciseness. These theories have been extensively applied
to model decision-making situations in their respective environments. Generally,
‘imprecision’ and ‘uncertainty’ are modelled by fuzzy and stochastic approaches,
respectively. Now, the existence of a mixed environment or the coexistence of impre-
cision and uncertainty in an inventory model is again a realistic phenomenon and
the mathematical realization of this fact is an interesting field. Here, the exten-
sion of chance constrained programming to a random rough environment has been
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investigated through an inventory model. We have developed an inventory model
in a mixed environment where some constraints are imprecisely defined, and others
probabilistically.

Realistically, a retailer/owner of a factory starts the business/production
with a fixed amount of cash in hand to purchase the items/materials and a
wherehouse of finite area to store the items/products. But, in the course of busi-
ness/production, the retailer augments the said capital by some amount in the
interest of the business, if the situation demands. Similarly, to avail of a cer-
tain transport facility/concession or to capitalize on some production situation,
the items may be replenished/produced more than the capacity of the available
warehouse and in that case, the owner manages to find some additional stor-
age space, if it is required and situation is so called for. Hence, for real-life
inventory problems, both budgetary amounts and storage space are not defined
with certainty i.e. may be uncertain in a stochastic or non-stochastic (imprecise)
sense.

5.6.3 Mathematical Model

To develop the proposed model, we adopt the following notations:

n Number of items

A Available floor/storage space

B Available total budgetary cost

Qi Order level (decision variable)

si Selling price of each product

pi Purchase price of each product

hi Holding cost per unit item per unit time

ui Set up cost per cycle

ai Constant rate of deterioration,0 < ai < 1

Ai Required storage area per unit quantity

Ti Time period for each cycle

qi .t/ Inventory level at time t

Zi .Qi / Average profit of the i th item

Di .qi / Quantity of demand at timet , Di .qi / D bi C ciqi .t/(where bi

and ci being constant, 0 < ci < 1)

TCi .Qi / Total average cost of the i th item

PF.Qi / Total average profitPF.Qi / DPn
iD1Zi .Qi /

WC.Qi / Total cost of the i th item
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Here,D D .D1;D2; : : : ;Dn/
T ,Q D .Q1;Q2; : : : ;Qn/

T . If qi .t/ is the inventory
level at time t of the i th, then dqi

dt
D �Di � aiqi . Thus, the length of the cycle of

the i th item is

Ti D
Z Qi

0

dqi

Di C aiqi

D
Z Qi

0

dqi

bi C .ai C ci /qi

D 1

ai C ci

ln

�
bi C .ai C ci /Qi

bi

�
:

The holding cost in each cycle for the i th item is higi .Qi /, where

gi .Qi / D qiTi D
Z Qi

0

qidqi

bi C .ci C ai /qi

D Qi

ai C ci

� Di

.ai C ci /2
ln

�
bi C .ai C ci /Qi

bi

�
:

When the demand is Di .qi / for the i th item, the real amount of sold items is

minfDi ;Qig D
(
Di ; if Di < Qi

Qi ; if Di � Qi

The total number of deteriorating units of i th item is �i .Qi / D aigi .Qi /. The net
revenue of the i th item is N.Qi/ D .si � pi /Qi � si�i .Qi /. Hence, total average
profit of the i th item is

PF.Qi / D
nX

iD1

ŒN.Qi /� higi .Qi / � ui �=Ti :

The total cost WC.Qi /.i D 1; 2; : : : ; n/ of every item can be calculated by the
following formula,

WC.Qi / D
nX

iD1

�i .Qi /pi=Ti

Total average cost of the i th item is

TCi .Qi / D ŒpiQi C higi .Qi /C ui �=Ti :

Usually, the demand is not a certain number, and it will vary according to the
season or the country policy. When they are random rough variables, we assume
that they are Ra-Ro variables, they have a log-normal distribution and its probability
density function (see Fig. 5.20) is



362 5 Random Rough Multiple Objective Decision Making

jr (x)

j (x) =
2ps0x

2s2
0

1.0

0 x

s

rs
L rs

Rr0

1 e–
(lnx –m0)

2

Fig. 5.20 The probability density function of the random variable �

�.x/ D 1p
2��0x

e
� .ln x� Q�0/2

2�2
0

where Q�0 is a rough variable. If the decision maker wants to maximize the total
average profit and minimize the total average cost, the problem can be formulated
by the following model:

8̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂:

maxPF.Qi / D
nP

iD1

Œ QNN.Qi /� QNhigi .Qi / � QNui �=Ti

minWC.Qi / DPn
iD1 �i .Qi /pi=Ti

s.t.

8̂̂
ˆ̂<
ˆ̂̂̂:

nP
iD1

QNTCi .Qi / � B
nP

iD1

AiQi � A
Qi � 0

(5.77)

where QNN.Qi/ D .QNsi � QNpi /Qi � QNsi�i .Qi /,
QNTCi .Qi / D Œ QNpiQi C QNhigi .Qi /C QNui �=Ti .

Next, we consider the inventory model of Wal–Mart. Assume the wholesaler
provides five kinds of ice cream wholesale and needs to develop an ordering strat-
egy. According to last decade’s statistics, the demand for every kind of ice cream is
subject to exponential distribution, but the average demand every year is different.
We can apply the rough variable to describe the expected value of demand. Take
the maximum and minimum average demand in the last decade respectively as the
upper and lower bounds of the rough variable. The two middle demand amounts can
be taken as values of the rough variable. The total budgetary cost of order and avail-
able storage space are B D 30;000;K D 300. The other parameters can be seen in
Table 5.8. How should the wholesaler make the order plan to get maximum proba-
bility that the total budgetary cost of the i th ice cream is less than the predetermined
fee fi ? (Table 5.7).
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According to the theory proposed before, we have the following crisp model,

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
:

maxf1.x/ D ˚.705:75� 65:25x1/

maxf2.x/ D ˚.990:80� 66:22x2/

maxf3.x/ D ˚.1680:69� 44:12x3/

maxf4.x/ D ˚.914:55� 64:97x4/

maxf5.x/ D ˚.336:25� 66:77x5/

maxf6.x/ D ˚.1191:11� 27:18x6/

maxf7.x/ D ˚.494:33� 66:00x7/

maxf8.x/ D ˚.1780:50� 32:48x8/

maxf9.x/ D ˚.3201:91� 21:38x9/

maxf10.x/ D ˚.1983:30� 26:70x10/

maxf11.x/ D ˚.1982:76� 27:73x11/

maxf12.x/ D ˚.1635:50� 46:28x12/

maxf10.x/ D ˚.2308:21� 21:33x13/

maxf14.x/ D ˚.999:69� 32:19x14/

maxf15.x/ D ˚.210:70� 48:09x15/

maxf16.x/ D ˚.235:42� 20:97x16/

maxf17.x/ D ˚.1528:53� 23:85x17/

maxf18.x/ D ˚.690:25� 34:75x18/

maxf19.x/ D ˚.315:75� 48:62x19/

maxf20.x/ D ˚.615:46� 32:31x20/

maxf21.x/ D ˚.497:45� 31:36x21/

s:t:

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

0:5x1 C 0:5x2 C 0:5x3 � 29
0:3x4 C 0:3x5 C 0:3x6 � 25:5
0:1x7 C 0:1x8 C 0:1x9 � 19
0:1x10 C 0:1x11 C 0:1x12 � 17:5
0:5x13 C 0:5x14 C 0:5x15 � 67
0:2x16 C 0:2x17 C 0:2x18 � 36
0:5x19 C 0:5x20 C 0:5x21 � 20P21

iD1 hixi � 1200P21
iD1 xi � 2500

xi � 0; i D 1; 2; : : : ; 21

(5.78)

We apply the TS algorithm to solve the above problem. The detail is as follows.
After running 2000 cycles by TS, the corresponding satisfactory solutions are listed
in Table 5.9. In real life, DM can increase or reduce the weight of different items.
If DM hopes that the probability that the cost of item i is less than the budget
is more than others, he or she can increase the corresponding weight. Then the
ordering amount will reduce. DM can accurately compute the weight coefficients
according to historical data. In this problem, we can be clear on the distribution of
the demand and describe it as a crisp Ra-Ro variable according to historical data.
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Table 5.9 The satisfactory solutions by TS

w1 D 0:4 w2 D 0:4 w3 D 0:4 w4 D 0:4 w5 D 0:4 w6 D 0:4 w7 D 0:4

x1 6:79 6:54 6:23 6:40 6:66 6:71 6:72

f1 0:94 0:86 0:84 0:87 0:84 0:86 0:88

x2 15:17 16:63 14:20 16:11 15:12 15:64 14:86

f2 0:93 0:83 0:82 0:86 0:80 0:82 0:84

x3 38:03 38:45 39:20 37:89 38:21 38:15 38:07

f3 0:96 0:91 0:90 0:90 0:91 0:92 0:89

x4 14:05 13:54 14:23 16:40 14:66 13:71 15:72

f4 0:74 0:85 0:74 0:72 0:76 0:73 0:74

x5 5:02 5:54 6:23 5:40 4:66 4:71 5:72

f5 0:82 0:90 0:74 0:72 0:76 0:73 0:74

x6 43:76 6:54 6:23 6:40 6:66 6:71 6:72

f6 0:88 0:90 0:74 0:72 0:76 0:73 0:74

x7 7:47 6:54 6:23 6:40 6:66 6:71 6:72

f7 0:81 0:90 0:74 0:72 0:76 0:73 0:74

x8 54:74 6:54 6:23 6:40 6:66 6:71 6:72

f8 0:96 0:90 0:74 0:72 0:76 0:73 0:74

x9 149:63 6:54 6:23 6:40 6:66 6:71 6:72

f9 0:94 0:90 0:74 0:72 0:76 0:73 0:74

x10 74:19 6:54 6:23 6:40 6:66 6:71 6:72

f10 0:83 0:90 0:74 0:72 0:76 0:73 0:74

x11 71:42 6:54 6:23 6:40 6:66 6:71 6:72

f11 0:81 0:90 0:74 0:72 0:76 0:73 0:74

x12 35:29 6:54 6:23 6:40 6:66 6:71 6:72

f12 0:90 0:90 0:74 0:72 0:76 0:73 0:74

x13 108:08 6:54 6:23 6:40 6:66 6:71 6:72

f13 0:76 0:90 0:74 0:72 0:76 0:73 0:74

x14 31:00 6:54 6:23 6:40 6:66 6:71 6:72

f14 0:92 0:90 0:74 0:72 0:76 0:73 0:74

x15 4:36 6:54 6:23 6:40 6:66 6:71 6:72

f15 0:67 0:90 0:74 0:72 0:76 0:73 0:74

x16 11:19 6:54 6:23 6:40 6:66 6:71 6:72

f16 0:74 0:90 0:74 0:72 0:76 0:73 0:74

x17 64:01 6:54 6:23 6:40 6:66 6:71 6:72

f17 0:88 0:90 0:74 0:72 0:76 0:73 0:74

x18 19:84 6:54 6:23 6:40 6:66 6:71 6:72

f18 0:82 0:90 0:74 0:72 0:76 0:73 0:74

x19 6:48 6:54 6:23 6:40 6:66 6:71 6:72

f19 0:72 0:90 0:74 0:72 0:76 0:73 0:74

x20 19:02 6:54 6:23 6:40 6:66 6:71 6:72

f20 0:84 0:90 0:74 0:72 0:76 0:73 0:74

x21 15:81 6:54 6:23 6:40 6:66 6:71 6:72

f21 0:86 0:90 0:74 0:72 0:76 0:73 0:74
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Fig. 5.21 The search process when w1 D 0:4 and wi D 0:1; .i ¤ 1/

However, it is difficult to determine the distribution and we have to apply a Ra-Ro
simulation to convert it into the crisp model and solve it by the fuzzy programming
technique or TS.

Figure 5.21 shows the changes of the maximal chance measure when w1 D 0:4

and wi D 0:1; .i ¤ 1/. It shows that the chance measure is gradually increasing for
each generation.

5.6.4 Sensitivity Analysis

To illustrate the above problem, we give the results of the eight products corre-
sponding discrete � , ˛1 values. For example, Table 5.10 shows the influence due to
different � , ˛1 values of the first commodity when the � , ˛1 of the other commodi-
ties are all 0.5. For the first commodity, Table 5.10 shows the most superior total
profits (PF), total costs (TC), total wastage costs (WC) and order quantities (Qi )
for the selling price QNsi corresponding discrete � , ˛1 values from Table 5.10 when
� QNpi
D ˛

1 QNpi
D 0:5, � QNhi

D ˛
1

QNhi

D 0:5,�QNui
D ˛

1QNui
D 0:5. Here, 0 � ˛1 � 0:6616.

In Table 5.10, if possibility value ˛1 is 0.4 and probability value � is 0.6, we obtain
the most superior total profits (PF) is 7,822.42$, total costs (TC) are 32,219.71$,
total wastage costs (WC) is 315.40$ and order quantities (Qi ) are 429 (428.71), 37
(37.28), 70 (69.90), 29 (28.64), 97 (96.71), 26 (26.19), 49 (49.30), 98 (98.35) units
respectively. Thus, managers can devise stocking plans based on the most superior
results. From Table 5.10, we can find that the influence of the results by the purchas-
ing and selling prices is greater than that by the holding and set-up costs. The other
parameters can be analyzed similarly.

As is shown in Fig. 5.22 and Table 5.10, when we fix one variable confidence
level (˛, ˇ), the value of F2 becomes bigger as other variables increase. Since DM
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Table 5.10 The satisfactory solutions at different confidence levels

PF WC TC Q1 Q2 Q3 Q4 Q5 Q6 Q7 ˇ8

� ˛1 D 0:2

0.20 7833.55 313.29 32080.60 449.14 38.67 64.81 29.26 89:56 27.15 51.22 93:26

0.40 7835.28 312.94 32059.03 451.82 38.88 64.11 29.35 88:56 27.30 51.53 92:44

0.60 7836.64 312.67 32042.04 453.88 39.05 63.58 29.43 87:79 27.42 51.77 91:79

0.80 7838.01 312.40 32024.89 455.90 39.23 63.05 29.50 87:04 27.54 52.02 91:12

1.00 7840.72 311.86 31990.97 459.81 39.57 62.03 29.64 85:58 27.78 52.51 89:78

� ˛1 D 0:4

0.20 7816.31 309.16 32296.12 371.68 36.05 71.12 27.89 102:29 25.38 48.76 104:70

0.40 7819.70 312.48 32253.74 402.15 36.72 70.45 28.30 99:15 25.83 49.07 101:28

0.60 7822.42 315.40 32219.71 428.71 37.28 69.90 28.64 96:71 26.19 49.30 98:35

0.80 7825.20 314.96 32185.06 434.51 37.63 68.60 28.81 94:83 26.43 49.76 97:09

1.00 7830.67 313.87 32116.59 443.88 38.31 66.14 29.12 91:36 26.90 50.69 94:63

� ˛1 D 0:6

0.20 7800.20 297.86 32497.54 261.65 33.19 74.32 26.06 118:68 23.49 46.97 117:50

0.40 7804.94 300.29 32438.30 287.46 33.96 73.39 26.56 113:70 24.01 47.52 114:40

0.60 7808.73 302.68 32390.89 311.25 34.62 72.64 26.98 109:83 24.44 47.95 111:57

0.80 7812.62 305.56 32342.21 338.91 35.32 71.88 27.43 105:99 24.91 48.38 108:32

1.00 7820.57 312.89 32242.87 406.61 36.87 70.31 28.39 98:55 25.92 49.15 100:62

� ˛1 D 0:6616

0.20 7795.42 295.66 32550.49 238.21 32.51 75.20 25.61 123:63 23.03 46.45 120:13

0.40 7800.58 297.95 32492.79 262.95 33.25 74.25 26.09 118:33 23.53 47.01 117:31

0.60 7804.70 300.06 32441.30 285.33 33.92 73.44 26.53 114:00 23.98 47.49 114:61

0.80 7808.92 302.69 32388.51 311.67 34.64 72.62 27.00 109:70 24.46 47.97 111:48

1.00 7817.53 309.70 32280.93 377.69 36.25 70.92 28.01 101:39 25.52 48.87 103:82
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Fig. 5.22 Objectives F2 with different confidence levels (˛; ˇ)
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Table 5.11 The highest results corresponding discrete 	 , ı

ı F1 F2 F1 F2 F1 F2 F1 F2
ı D 0:1 ı D 0:2 ı D 0:3 ı D 0:4

0.1 4.21 24069500 4.21 24069500 4.21 24069500 4.21 24069500
0.15 4.25 24078650 4.25 24078650 4.25 24078650 4.25 24078650
0.2 4.21 24099670 4.21 24099670 4.21 24099670 4.21 24099670
0.25 4.75 24155900 4.75 24155900 4.75 24155900 4.75 24155900
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Fig. 5.23 Objectives with different confidence levels (	; ı)

wants to set the confidence level so that the total cost doesn’t exceed the prede-
termined value, the objective of minimizing total cost becomes hard to achieve. It
satisfies the real-life situation. However, if the optimal solution doesn’t vary, then
the satisfying level of DM also doesn’t.

When ˛ D ˇ D 0:9, the highest results corresponding discrete 	 , ı values
are from the Table 5.11. Here, other parameters do not alter. The results listed
in Fig. 5.23 show that the solutions can be affected by the different 	 , since ı
just makes small changes that only marginally affect the objectives. The total cost
increases when 	 becomes larger the same as the situation when ˛ becomes larger.



Chapter 6
Methodological System for RLMODM

Random-like multiple objective decision making (RLMODM) considers multiple
objective decision making with random-like phenomena. In this book, we focus on
random-like uncertainty, and develop a series of multiple objective decision making:

– Multiple objective decision making with random phenomena
– Multiple objective decision making with bi-random phenomena
– Multiple objective decision making with random fuzzy phenomena
– Multiple objective decision making with random rough phenomena

In RLMODM, we use the following random-like variables to describe the coef-
ficients, and consider the random-like phenomena:

– Random variable
– Ra-Ra variable
– Ra-Fu variable
– Ra-Ro variable

For the general MODM models with random-like coefficients, the meaning is not
clear, so we have to adopt some philosophy to deal with them, and the following six
kinds of random-like models are proposed:

– Expected value model (EVM): M .xjE.#/;E.#//
– Chance constrained model (CCM): M .xjC.#/; C.#//
– Dependent chance model (DCM): M .xjD.#/; C.#//
– Expectation model with chance constraint (ECM): M .xjE.#/; C.#//
– Chance constrained model with expectation constraint (CEM): M .xjC.#/;
E.#//

– Dependent chance model with expectation constraint

(DEM): M .xjD.#/;E.#//, where # 2 U D fRa;Ra�Ra;Ra�F u; Ra�Rog
expresses random-like uncertain coefficients. For the above random-like models,
some of them can be directly converted into crisp equivalent models. However, many
cannot be solved only by the mathematical transformation, so then we have to design
a hybrid intelligent algorithm to get the approximate solutions.

J. Xu and L. Yao, Random-Like Multiple Objective Decision Making, Lecture Notes
in Economics and Mathematical Systems 647, DOI 10.1007/978-3-642-18000-2 6,
c� Springer-Verlag Berlin Heidelberg 2011
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RLMODM has also been applied to optimization problems with random-like
parameters, for example, vendor selection problems [338], supply chain manage-
ment problems [339,341], inventory problems [344,346], facility location-allocation
problems [208], transportation problems [342, 343] and so on.

6.1 Motivation of Researching RLMODM

Why should we research RLMODM? Let us recall the two foundations: multiple
objective decision making (MODM) and probability theory, see Fig. 6.1.

Optimization is a procedure for finding and comparing feasible solutions until
no better solution can be found. Solutions are termed good or bad in terms of an
objective, which is often the cost of fabrication, amount of harmful gases, effi-
ciency of a process, product reliability or other factors. A significant portion of
research and application in the field of optimization considers a single objective,
although most real-world problems involve more than one objective. The presence
of multiple conflicting objectives (such as simultaneously minimizing the cost of
fabrication and maximizing product reliability) is natural in many problems and
makes the optimization problem interesting to solve. Since no one solution can be
termed as an optimum solution to multiple conflicting objectives, the resulting mul-
tiobjective optimization problems resorts to a number of trade-off optimal solutions.
Classical optimization methods can at best find one solution in one simulation run,
thereby making those methods inconvenient for solving multiobjective optimization
problems.

Multiple objective decision making (abbr. MODM) is a part of mathematical pro-
gramming dealing with decision problems characterized by multiple and conflicting
objective functions that are to be optimized over a feasible set of decisions. Such
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problems, referred to as multiobjective programming, are commonly encountered
in many areas of human activity including engineering, management, and others.
The research of the certain MODM can be traced back in the eighteenth century.
Franklin introduced how to coordinate multiple objective problems in 1772. Then
Cournot proposed the multiple objective model from an economic point of view
in 1836. Pareto [246] firstly introduced multiple objective decision making models
from the mathematical point of view in 1896. The seeds of what is a strong branch
of operations research can be traced to the early work of Kunh and Tucker [64]
and Koopmans [170] in 1951. Later, Arrow [10] proposed the concept of efficient
points in 1953. MODM has gradually been widespread concerned and developed.
MODM was not really considered a separate speciality, however, until a 1972 con-
ference in South Carolina [61]. From then, it has become an area that attracted an
enormous amount of attention because it is so useful for real-world decision mak-
ing [360]. The monographs of Chankong and Hamies [44], Cohon [63], Hwang
and Masud [138], Osyczka [242], Sawaragi et al. [278], Steuer [303] provide an
extensive overview of the area of multiobjective optimization. Theory and meth-
ods for multiobjective optimization have been developed chiefly during the last
century. Here we do not go into the history as the orgin and the achievements
are widely treated in [300]. A brief summary of the development is also given
in [104]. A great deal of theoretical, methodological and applied studies and related
algorithms [6, 79, 103, 115, 124, 197, 199, 270, 271, 273–275, 282, 366] have been
undertaken in the area of multiobjective programming.

Generally speaking, there are five elements in a MODM problem:

1. Decision variable: x D .x1; x2; : : : ; xn/
T 2 Rn.

2. Objective function: f .x/ D .f1.x/; f2.x/; : : : ; fm.x//, m � 2.
3. Feasible solution set:X D fx 2 Rnjgi .x/ � 0; hr .x/ D 0; i D 1; 2; : : : ; p; r D
1; 2; : : : ; qg.

4. Preference relation: In the image set f .X/ D ff .x/jx 2 Xg, there is a certain
binary relation which could reflect the preference of the decision maker.

5. Definition of the solution. Define the optimal solution of f in X based on the
known preference relation.

Thus, an MODM problem can be described as follows:

�
min f .x/ D Œf1.x/; f2.x/; : : : ; fm.x/�

s.t. x 2 X

The start of probability theory is tracked to a gambling problem regarding how
to derive exact probabilities. People were broadly attracted to pay close attention to
uncertain events (especially random events) around them and further studied ran-
dom events. Afterwards, probability theory has been widely applied to many social
problems and technology problems, such as, vital statistics, premium theory, astro
observation, theory of errors, quality control and so on. From the seventeenth to
nineteenth century. Many distinguished scholars such as, Bernoulli, De-Moivre,
Laplace, Gauss, Poisson, Tchebychev, Markov have made contributions to the
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development of probability theory. During this time, the development of probabil-
ity theory fascinated everyone. However, as probability theory is applied to more
and more real-life problems in many fields, the basic definition has been proved to
be limiting, even proved that it cannot be used to deal with usual random events.
Great progress was achieved when Von Mises [327] initialized the concept of sam-
ple space, filling the gaps between probability theory and measure theory in 1931.
The strict theoretical principle didn’t exist until 1933, when the outstanding mathe-
matician Kolmogorov [168] from former Soviet Union published the famous paper
‘The basic concept of probability theory’, in which he put forward the axiomati-
zation structure which is considered as the milestone, and the foundation of the
development of probability theory. A general random MODM model can be written
as follows:

8̂̂<
ˆ̂:

min f .x; Qa/ D Œf1.x; Qa/; f2.x; Qa/; : : : ; fm.x; Qa/�

s.t.

8<
:
gi .x; Qb/ � 0; i D 1; 2; : : : ; p
hr.x; Qc/ D 0; r D 1; 2; : : : ; q
x � 0

where Qa, Qb, Qc are the vectors of random coefficients. It should be noted that “�”
denotes “basically less than or equal to”, “D” denotes “basically equal to”, and
“min” denote “minimize the value of the objective functions as much as possible”.

Actually, in order to make a satisfactory decision in practice, an important prob-
lem is to determine the type and accuracy of information. If complete information is
required in the decision making process, it will mean the expenditure of extra time
and money. If incomplete information is used to make a decision quickly, then it
is possible to take non-optimal action. In fact, we cannot have complete accuracy
in both information and decision because the total cost is the sum of the cost of
running the target system and the cost of getting decision information. Since we
have to balance the advantage of making better decisions against the disadvantages
of getting more accurate information, incomplete information will almost surely be
used in a real-life decision process, and uncertain programming is an important tool
in dealing with the decision making with imperfect information. Among all of the
uncertain programming, random programming approach [186, 203, 220] is useful
and efficient in handling a programming problem with uncertainty.

As we know, the fuzzy random variable was proposed by Kwakernaak [180] who
regarded it as “random variables whose values are not real, but fuzzy numbers”.
Kruse and Meyer [176] applied the fuzzy random variable to asymptotic statistics
with vague data. From another view, Puri and Ralescu [256] and Klement et al. [162]
regarded a fuzzy random variable as a random fuzzy set. The two views regarded it
as a random variable and a fuzzy set in essence, respectively. They described two
different kinds of uncertain environments and solved two different problems. Haldar
and Reddy [126] considered both the randomness in some of the design parameters
and the fuzzy imprecision in some other parameters representing the in-place condi-
tion of aged structures to estimate the reliability of existing structures. They used a
hybrid approach in the random-fuzzy domain to evaluate reliability using an ˛-level
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concept. Körner [171] inherited Kwakernaak’s view and went down to rename the
first as a random fuzzy variable in order to distinguish them, and he regarded it
as a random variable with fuzzy parameters. From then on, several research works
[65,98,172,173,206,215,236,285,332] about the random fuzzy variable have been
published in recent years. We usually use the expected value operator or the prob-
ability operator to deal with programming problems with random coefficients and
use the possibility or credibility operator to deal with problems of fuzzy coefficients.
Similarly, the expected value operator and chance operator can be used to convert
the programming problem with random fuzzy parameters into a crisp one.

If the value of a random variable � is also a random variable, then � is called
the Ra-Ra variable. Similarly, if the value of a random variable � is a fuzzy/rough
variable, then � is called the Ra-Fu/Ra-Ro variable. In realistic problems, the infor-
mation may be described as a Ra-Ra variable, a Ra-Fu variable or a Ra-Ro variable.
For example, we already know information is random variables, fuzzy variables
and rough variables, and when we want to integrate the experiences and the knowl-
edge of human beings, a good method is to add a tolerance interval to the former
random variable, fuzzy variable or rough variable, and thus a Ra-Ra variable, a
Ra-Fu variable or a Ra-Ro variable will exist. So how to deal with MODM with
those random-like coefficients? It is very necessary and important for us to research
random-like multiple objective decision making.

6.2 Physics-Based Model System

Random-like multiple objective decision making deals with multiple objective deci-
sion making problems with random-like phenomena. In other words, when some
parameters or coefficients for a multiple objective decision making problem are
some random-like coefficients, then this multiple objective decision making prob-
lem is called a random-like multiple objective decision making problem, which
includes those problems with Ra-Ra, Ra-Fu, and Ra-Ro phenomena. In this book,
we use three typical problems-transportation problems, network design problems
and inventory problems to illustrate the Ra-Ra, Ra-Fu and Ra-Ro multiple objective
decision making, respectively. Among all kinds of typical problems, we choose the
flow shop scheduling problem, supply chain network design problem, and single-
period inventory problem to clarify corresponding random-like multiple objective
decision making in detail, see Fig. 6.2.

In the flow shop scheduling problem, we notice that the objective of flow shop
scheduling problems mostly focus on minimizing total completion time, makespan.
Additionally, objectives such as total flow time, tardiness, and idle time are also
considered. But there are few which considered earliness time. In fact, the decision
maker (DM) often wants to minimize the completion time and earliness, but the
objectives conflict with one another. Each of these objectives is valid from a general
point of view. Sometimes people have also used hybrid uncertain variables to be
more precise, such as the bi-random variable. For example, according to historical
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Fig. 6.2 Problem with random-like phenomena

data or abundance of information, we know the demand in one year is subject to
stochastic distribution. However, the expected value of stochastic distribution is
vague and varies from year to year. This results in the decision maker being unable
to achieve a better decision. Sometimes, it could be considered as a random variable.
Hence, we have to make a multiobjective decision in this situation.

The supply chain network (SCN) design problem has been gaining importance
due to increasing competitiveness introduced by market globalization. A supply
chain, beginning with the production of raw material by a supplier and ending
with the consumption of a product by the customer, is a set of suppliers, facilities,
products, customers, and inventory control, purchasing, and distribution. Tradition-
ally, marketing, distribution, planning, manufacturing, and purchasing organizations
along the supply chain are operated independently. Unfortunately, the SCN design
problem is subject to many sources of uncertainty besides random uncertainty and
fuzzy uncertainty [137]. In a practical decision-making process, we often face a
hybrid uncertain environment. We consider the amount of demand on the products
as normally distributed variable N .�; �2/ from the view point of probability the-
ory, and the values of � as a triangular fuzzy variable .a; b; c/ because of the lack
of analytical data. Therefore, probability SCN with fuzzy parameters appears. In
this case, the Ra-Fu variable can be used to deal with this kind of combined uncer-
tainty of randomness and fuzziness. Hence, it is necessary to consider random fuzzy
multiobjective decision making in this situation.

The inventory problem, known as a classical and complex problem, has been paid
considerable attention. Nevertheless, most quantitative analysis on the inventory
problem is mainly concerned with a single item and the deterministic parameters,
such as crisp yield, crisp demand, crisp cost and so on. The uncertain inventory
problem is also difficult and deserves to be researched. Some scholars have well
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researched some inventory problems with crisp and vague parameters. Order, or
demand, or planning horizons have been considered as fuzzy or random variables
in some literatures [153, 213]. However, there is no attempt to research other mixed
environments, where randomness and roughness both appear simultaneously. For
some seasonal items (Ice cream, Christmas trees, woolen materials), the demand
may vary from year to year. According to historical data or abundance of informa-
tion, we know the demand in one year is subject to stochastic distribution. However,
the expected value of the stochastic distribution is vague and varies year to year.
Hence, we have to consider it as an uncertain variable. Rough variables can be
applied to depict it well if the average sold amount is clear by the statistical data of
each year. Thus, the demand of some seasonal items can be described as a random
rough variable to help decision makers develop better strategies. Thus the Ra-Ro
multiple objective model should be built for the inventory decision making problem
under a Ra-Ro environment.

It is noted that the problems introduced in this book are just some example
problems, and readers can obviously extend the application areas.

6.3 Mathematical Model System

The initial random-like multiple objective decision making model is as follows:

8<
:

max Œf1.x; �/; f2.x; �/; : : : ; fm.x; �/�

s.t.

�
gr .x; �/ � 0; r D 1; 2; : : : ; p
x 2 X

or 8<
:

min Œf1.x; �/; f2.x; �/; : : : ; fm.x; �/�

s.t.

�
gr .x; �/ � 0; r D 1; 2; : : : ; p
x 2 X

where � is a random-like vector, that is, the Ra-Ra vector, Ra-Fu vector and Ra-Ro
vector and x 2 X � Rn is the decision vector.

It is necessary for us to know that the above models are conceptual models rather
than mathematical models, because we cannot maximize an uncertain quantity.
There does not exist a natural order relation in an uncertain world. Since there exists
random-like variables, the above models have an ambiguous explanation. The mean-
ing of maximizing/minimizing f1.x; �/; f2.x; �/; : : : ; fm.x; �/ is unclear, and the
constraints gr .x; �/ � 0 .r D 1; 2; : : : ; p/ do not define a deterministic feasible set.

Because of the existence of random-like uncertainty, we have to adopt some
philosophies to deal with and make the above model solvable. In this book, three
techniques including the expected value operator, the chance operator, the indepen-
dent chance operator are introduced to deal with objective functions and constraints.
Hence, philosophy 1–5 will be used to deal with decision making models with
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Fig. 6.3 Total space structure
of model system
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random-like phenomena. Generally, there are 3 techniques including philosophy
1–3 to deal with objective functions and 2 techniques including philosophy 4–5 to
deal with the constraints. Meanwhile, random-like uncertainty includes randomness,
bi-randomness, random fuzziness, and random roughness.

Total Space Structure. A space structure of all RLMODM models can be sum-
marized and their relationship can be found in Fig. 6.3.

M .xj˛.#/; ˇ.#//

where x is the decision variable, # 2 U D fRa;Ra � Ra;Ra � F u; Ra � Rog
expresses random-like uncertain coefficients, ˛ 2 r D fE;C;Dg expresses the
technique dealing with the objective function, and ˇ 2 4 D fE;C g expresses the
technique dealing with the constraints. This structure can express all the RLMODM
model. For example, M .xjE.Ra�Ra/;E.Ra�Ra// expresses a multiobjective
programming model with Ra-Ra coefficients dealt by the expected objective and
expected constraint. This is a typical model which is called EVM in Chap. 3. For
the four random-like uncertainty and three techniques dealing with the objectives
and constraints, there are total 24 basic models in total as follows:

M .xjE.Ra/;E.Ra//; M .xjE.Ra/; C.Ra//;
M .xjC.Ra/;E.Ra//; M .xjC.Ra/; C.Ra//;
M .xjD.Ra/;E.Ra//; M .xjE.Ra/; C.Ra//;

M .xjE.Ra �Ra/;E.Ra �Ra//; M .xjE.Ra �Ra/; C.Ra � Ra//;
M .xjC.Ra � Ra/;E.Ra �Ra//; M .xjC.Ra �Ra/; C.Ra �Ra//;
M .xjD.Ra � Ra/;E.Ra �Ra//; M .xjE.Ra �Ra/; C.Ra � Ra//;
M .xjE.Ra � F u/; E.Ra � F u//; M .xjE.Ra � F u/; C.Ra � F u//;
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M .xjC.Ra � F u/; E.Ra � F u//; M .xjC.Ra � F u/; C.Ra � F u//;
M .xjD.Ra � F u/; E.Ra � F u//; M .xjE.Ra � F u/; C.Ra � F u//;
M .xjE.Ra � Ro/;E.Ra � Ro//; M .xjE.Ra �Ro/; C.Ra � Ro//;
M .xjC.Ra � Ro/;E.Ra � Ro//; M .xjC.Ra �Ro/; C.Ra � Ro//;
M .xjD.Ra � Ro/;E.Ra � Ro//; M .xjE.Ra �Ro/; C.Ra � Ro//:

For the detail about these 5 philosophies, we will introduce them as follows.
Firstly, let us consider the objective functions

max Œf1.x; �/; f2.x; �/; : : : ; fm.x; �/�;

where � is the random-like variables.
There are three types of philosophy to handle objectives.

Philosophy 1: Making the decision by optimizing the expected value of the objec-
tives. That is, maximizing the expected values of the objective functions for the Max
problem, or minimizing the expected values of the objective functions for the Min
problem.

max ŒEŒf1.x; �/�; EŒf2.x; �/�; : : : ; EŒfm.x; �/��;

or

min ŒEŒf1.x; �/�; EŒf2.x; �/�; : : : ; EŒfm.x; �/��:

Philosophy 2: Making a decision which provides the best optimal objective values
with a given confidence level. That is, maximizing the referenced objective values Nfi

subjects to fi .x; �/ � Nfi with a confidence level ˛i , or minimizing the referenced
objective values Nfi subjects to fi .x; �/ � Nfi with a confidence level ˛i .

max Œ Nf1; Nf2; : : : ; Nfm�

s.t. Chffi .x; �/ � Nfi g � ˛i ; i D 1; 2; : : : ; m;
or

min Œ Nf1; Nf2; : : : ; Nfm�

s.t. Chffi .x; �/ � Nfi g � ˛i ; i D 1; 2; : : : ; m;
where ˛i should be predetermined, Nf1; Nf2; : : : ; Nfn are called critical values.
Philosophy 3: Making a decision by maximizing the chance of the events. That is,
maximizing the chance of the events fi .x; �/ � Nfi or fi .x; �/ � Nfi .

max

2
664

Chff1.x; �/ � Nf1g;
Chff2.x; �/ � Nf2g;
� � �
Chffm.x; �/ � Nfmg;

3
775
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or

max

2
664
Chff1.x; �/ � Nf1g;
Chff2.x; �/ � Nf2g;
� � �
Chffm.x; �/ � Nfmg;

3
775

where Nfi should be predetermined.
Secondly, let us consider the constraints

s.t.

�
gr .x; �/ � 0; r D 1; 2; : : : ; p
x 2 X

where � is the random-like variables.
There are two types of philosophy to handle the constraints.

Philosophy 4: Making the optimal decision subject to the expected constraints. That
is,

EŒgr .x; �/ � 0�; r D 1; 2; : : : ; p;
Philosophy 5: Making the optimal decision with chance constraints.

Chfgr.x; �/ � 0g � ˇr ; r D 1; 2; : : : ; p:

where ˇr is predetermined.
By combining the 3 philosophies for the objective functions and 2 philosophies

for the constraints, we can get six types of models which can deal with the ini-
tial random-like multiple objective decision making models: M .xjE.�/; E.�//,
M .xjC.�/; C.�//, M .xjD.�/; C.�//, M .xjE.�/; C.�//, M .xjC.�/; E.�// and
M .xjD.�/; E.�//, see Fig. 6.4.

Philosophy 1 Philosophy 3Philosophy 2

Objective

P
hi
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so
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y 

5
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M(x|E(J),C(J))

M(x|E(J),E(J)) M(x|C(J),E(J)) M(x|D(J),E(J))

M(x|C(J),C(J)) M(x|D(J),C(J))

Fig. 6.4 Random-like model system
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.M .xjE.�/; E.�///
8<
:

max EŒf1.x; �/; f2.x; �/; : : : ; fm.x; �/�

s.t.

�
EŒgr .x; �/� � 0; r D 1; 2; : : : ; p
x 2 X

.M .xjC.�/; C.�///

8̂̂
<
ˆ̂:

max
� Nf1; Nf2; : : : ; Nfm

�
s.t.

8<
:
Chffi .x; �/ � Nfi g � ˛i ; i D 1; 2; : : : ; m
Chfgr.x; �/ � 0g � ˇr ; r D 1; 2; : : : ; p
x 2 X

where ˛i .i D 1; 2; : : : ; m/; ˇr .r D 1; 2; : : : ; p/ are the predetermined confidence
levels.

.M .xjD.�/; C.�///

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

max

2
664
Chff1.x; �/ � Nf1g;
Chff2.x; �/ � Nf2g;
� � �
Chffm.x; �/ � Nfmg;

3
775

s.t.

�
Chfgr.x; �/ � 0g � ˇr ; r D 1; 2; : : : ; p
x 2 X

where Nfi .i D 1; 2; : : : ; m/; ˇr.r D 1; 2; : : : ; p/ are the predetermined referenced
objective values and confidence levels.

.M .xjE.�/; C.�///
8<
:

max EŒf1.x; �/; f2.x; �/; : : : ; fm.x; �/�

s.t.

�
Chfgr.x; �/ � 0g � ˇr ; r D 1; 2; : : : ; p
x 2 X

where ˇr.r D 1; 2; : : : ; p/ are the predetermined confidence levels.

.M .xjC.�/; E.�///

8̂̂
<
ˆ̂:

max
� Nf1; Nf2; : : : ; Nfn

�
s.t.

8<
:
Chffi .x; �/ � Nfi g � ˛i ; i D 1; 2; : : : ; m
EŒgr .x; �/� � 0; r D 1; 2; : : : ; p
x 2 X

where ˛i .i D 1; 2; : : : ; m/ are the predetermined confidence levels.

.M .xjD.�/; E.�///

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

max

2
664
Chff1.x; �/ � Nf1g;
Chff2.x; �/ � Nf2g;
� � �
Chffm.x; �/ � Nfmg;

3
775

s.t.

�
EŒgr .x; �/� � 0; r D 1; 2; : : : ; p
x 2 X
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where Nfi .i D 1; 2; : : : ; m/ are the predetermined referenced objective values and
confidence levels.

In this book, we mainly discuss the first three models, the techniques are all
incorporated when we deal with EVM, CCM and DCM, that is, M .xjE.�/; E.�//,
M .xjC.�/; C.�// and M .xjD.�/; C.�//. And the rest of the models ECM, CEM
and DEM (M .xjE.�/; C.�//, M .xjC.�/; E.�// and M .xjD.�/; E.�//) can be
handled in the same way. The reader can use the model when they use different
philosophies, and it is possible to use every model.

6.4 Model Analysis System

For the linear random-like multiple objective decision making model,

8̂<
:̂

max
� QNc1x; : : : ; QNcmx

�
s.t.

(
QNerx � QNbr ; r D 1; 2; : : : ; p
x 2 X

where QNci ; QNer ;
QNbr ; .i D 1; 2; : : : ; mI r D 1; 2; : : : ; p/ are special random-like coef-

ficients, that is, the Ra-Ra variables, Ra-Fu variables and Ra-Ro variables. We
introduced how to transform the 3 types of objective functions and the 2 types of
constraints into their crisp equivalent formulas in detail. In this book, we introduced
the equivalent models for EVM, CCM and DCM in detail, we simplify them as
EEVM, ECCM and EDCM. See Fig. 6.5.

For the Ra-Ra linear multi-objective models, there are 4 basic theorems for han-
dling the objective functions and the constraints: Theorems 2.2, 2.3, 2.6, and 2.9.
And according to these 4 theorems, we can get the crisp equivalent models for
random EVM, CCM and DCM.

The EVM with random coefficients can be converted into

.M .xjE.Ra/;E.Ra//1/
8<
:

max
�
�cT

1 x; �cT
2 x; : : : ; �cT

m x
�

s.t.

�
�eT

r x � �b
r ; r D 1; 2; : : : ; p

x � 0

where the random variable follows normal distribution. When it follows exponential
distribution, the EVM with random coefficients can be converted into

.M .xjE.Ra/;E.Ra//2/

8̂̂
<
ˆ̂:

max
�
�cT

1 x; �cT
2 x; : : : ; �cT

m x
�

s.t.

8<
:�

eT
r x � 1

�b
r

; r D 1; 2; : : : ; p
x � 0

where �c
i D

�
1

�c
i1

;
1

�c
i2

; : : : ;
1

�c
in

�T

and �e
i D

�
1

�e
r1

;
1

�e
r2

; : : : ;
1

�e
rn

�T

.
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Random phenomena Ra-Ra phenomena Ra-Fu phenomena Ra-Ro phenomena

Initial
model

Basic
technique

Equivalent
theorems

Random MODM Ra-Ra MODM Ra-Fu MODM Ra-Ro MODM

REVM  RCCM RDCM
RECM  RDEM RDEM

Ra-RaEVM Ra-RaCCM Ra-RaDCM
Ra-RaECM Ra-RaDEM Ra-RaDEM

Ra-FuEVM Ra-FuCCM Ra-FuDCM
Ra-FuECM Ra-FuDEM Ra-FuDEM

Ra-RoEVM Ra-RoCCM Ra-RoDCM
Ra-RoECM Ra-RoDEM Ra-RoDEM

Theorem 3.13, 3.14
Theorem 3.15, 3.18

Theorem 4.6,   4.9
Theorem 4.10, 4.13

Theorem 5.10,  5.12
Theorem 5.13,  5.15

Crisp
equivalent

models

Theorem 2.2, 2.3
Theorem 2.6, 2.9

M(x|E(Ra – Ra), E(Ra – Ra))

M(x|E(Ra – Ra), C(Ra – Ra))

M(x|C(Ra – Ra), E(Ra – Ra))

M(x|C(Ra – Ra), C(Ra – Ra))

M(x|D(Ra – Ra), E(Ra – Ra))

M(x|D(Ra – Ra), C(Ra – Ra))

M(x|E(Ra), E(Ra))

M(x|E(Ra), C(Ra))

M(x|C(Ra ), E(Ra))

M(x|C(Ra), C(Ra))

M(x|D(Ra), E(Ra))

M(x|D(Ra), C(Ra))

M(x|E(Ra – Fu), E(Ra – Fu))

M(x|E(Ra – Fu), C(Ra – Fu))

M(x|C(Ra – Fu), E(Ra – Fu))

M(x|C(Ra – Fu), C(Ra – Fu))

M(x|D(Ra – Fu), E(Ra – Fu))

M(x|D(Ra – Fu), C(Ra – Fu))

M(x|E(Ra – Ro), E(Ra – Ro))

M(x|E(Ra – Ro), C(Ra – Ro))

M(x|C(Ra – Ro), E(Ra – Ro))

M(x|C(Ra – Ro), C(Ra – Ro))

M(x|D(Ra – Ro), E(Ra – Ro))

M(x|D(Ra – Ro), C(Ra – Ro))

Fig. 6.5 Transformation to crisp equivalent models

The CCM with random coefficients can be converted into

.M .xjC.Ra/; C.Ra///

8̂̂
<
ˆ̂:

max ŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t.

�
gr .x/ � 0; r D 1; 2; : : : ; p
x � 0; 0 � ˛r ; ˇi � 1

where Hi .x/ D ˚�1.1 � ˇi /
q

xTV c
i x C �cT

i x, gr .x/ D ˚�1.˛r /p
xT V e

r x C .�b
r /

2 C �eT
r x � �b

r and ˚ is the standardized normal distribution
function.

The DCM with random coefficients can be converted into

.M .xjD.Ra/; C.Ra///

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

max

2
641 �˚

0
B@fi � �cT

i xq
xTV c

i x

1
CA ; i D 1; 2; : : : ; m

3
75

s.t.

�
˚�1.ˇr/

p
xTV e

r x C .�b
r /

2C�eT
r x � �b

r � 0
x � 0; r D 1; 2; : : : ; p

For the Ra-Ra linear multi-objective models, there are 4 basic theorems for han-
dling the objective functions and the constraints: Theorems 3.13, 3.14, 3.15, and
3.18. According to these 4 theorems, we can get the crisp equivalent models for
Ra-Ra EVM, CCM and DCM.
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The EVM with Ra-Ra coefficients can be converted into

.M .xjE.Ra � Ra/;E.Ra � Ra///
8<
:

max ŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t.

�
Gr .x/ � Kr ; r D 1; 2; : : : ; p
x � 0

where

Hi .x/ D �
q

xT�c
i x

0
B@F

0
B@ �cT

i xq
xT�c

i x

1
CAC F

0
B@ �cT

i xq
xT�c

i x

1
CA � 2F.�1/

1
CA ;

Gr.x/ D �
q

xT�e
r x

 
F

 
�eT

r xp
xT�e

r x

!
C F

 
� �eT

r xp
xT�e

r x

!
� 2F.�1/

!
;

Kr D �
q
�b

r

 
F

 
�b

r

�b
r

!
C F

 
��

b
r

�b
r

!
� 2F.�1/

!
:

The CCM with Ra-Ra coefficients can be converted into

.M .xjC.Ra � Ra/; C.Ra � Ra///
�

max ŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t. x 2 X

where R D ˚�1.1 � ˇi /
q

xT V c
i x, Hi .x/ D R C �i C �i˚

�1.1 � ˛i /,

i D 1; 2; : : : ; m, and X WD fx 2 RnjPrf!jPrf QNeT
r x � QNbrg � �rg � �r ; r D

1; 2; : : : ; pIx � 0g.
The DCM with Ra-Ra coefficients can be converted into

.M .xjD.Ra � Ra/; C.Ra �Ra///8̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂:

max

2
6666664
˚

0
BBBB@
˚�1.1 � ˛i /

s
nP

j D1

x2
ij �

2
ij C d cT

i x � Nfi

q
xT V c

i x

1
CCCCA ;

i D 1; 2; : : : ; m

3
7777775

s.t. x 2 X;

where X D fxj˚�1.�r /
p

xTV e
r x C .�b

r /
2 � ˚�1.�r /

s
.ıb

r /
2 C

nP
j D1

x2
ij .ı

e
r /

2 �

.d b
r � d e

r x/ � 0;x � 0g.
For the Ra-Fu linear multi-objective models, there are 4 important theorems for

handling the objective functions and the constraints: Theorems 4.6, 4.9, 4.10 and
4.13. According to these 4 theorems, we get the crisp equivalent models for Ra-Fu
EVM, CCM and DCM.
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The EVM with Ra-Fu coefficients can be converted into

.M .xjE.Ra � F u/; E.Ra � F u///

8<
:

max ŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t.

�
Kr.x/ � B; r D 1; 2; : : : ; p
x � 0

where

Hi .x/ D 1

2
ıc

i x
�
F.�c

i x/�F.�c
i x � ıc

i x/
�C 1

2
	c

i x
�
G.�c

i x C 	c
i x/�G.�c

i x/
�
;

Kr .x/ D 1

2
ıe

r x
�
F.�e

rx/�F.�e
rx � ıe

r x/
�C 1

2
	e

r x
�
G.�e

rx C 	e
r x/ �G.�e

rx/
�
;

B D 1

2
ıb

r

�
F.�b

r / � F.�b
r � ıb

r /
�C 1

2
	b

r

�
G.�b

r C 	b
r / �G.�b

r /
�
:

The CCM with Ra-Fu coefficients can be converted into

.M .xjC.Ra � F u/; C.Ra � F u///

�
max ŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t. x 2 X

where Hi .x/ D ˚�1.1 � ˇi /
q

xTV c
i x CR�1.˛i /	

c
ij x C d cT

i x, i D 1; 2; : : : ; m.
The DCM with Ra-Fu coefficients can be converted into

.M .xjD.Ra � F u/; C.Ra � F u///8̂̂̂
<
ˆ̂̂:

max

2
64˚

0
B@R�1.˛i /	

c
i x C d cT

i x � Nfiq
xTV c

i x

1
CA ; i D 1; 2; : : : ; m

3
75

s.t. x 2 X

where X D fx 2 Rnj˚�1.�r/
p

xT V e
r x C .�b

r /
2 � .d b

r � d e
r x/ � R�1.�r/.	

b
r C

ıe
r x/ � 0;x � 0g.

For the Ra-Ro linear multi-objective models, there are 4 important theorems for
handling the objective functions and the constraints: Theorems 5.10, 5.12, 5.13 and
5.15. And according to these 4 theorems, we can get the crisp equivalent models for
Ra-Ro EVM, CCM and DCM.

The EVM with Ra-Ro coefficients can be converted into

.M .xjE.Ra � Ro/;E.Ra � Ro///
8<
:

max Œ� c
1 x; � c

2 x; : : : ; � c
mx�

s:t:

�
� e

r x � � b
r ; r D 1; 2; : : : ; p

x � 0
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where � c
i D

1 � �
2

.ac
ij C bc

ij /C
�

2
.cc

ij C d c
ij /; �

e
i D

1 � �
2

.ae
i C be

i /C
�

2
.ce

i Cd e
i /;

� b
i D

1 � �
2

.ab
i C bb

i /C
�

2
.cb

i C d b
i /, �

	
i .� D a; b; c; d;� D e; b/ respectively

denote the vectors.
The CCM with Ra-Ro coefficients can be converted into

.M .xjC.Ra � Ro/; C.Ra � Ro///
�

max ŒH1.x/;H2.x/; : : : ;Hm.x/�

s.t. x 2 X 0

where Hi .x/ D d � 2	i.d � c/ C R, M D Nfi � ˚�1.1 � ıi /
q

xTV c
i x,

R D ˚�1.1 � ıi /
q

xTV c
i x and X 0 D fx 2 X jM � d g.

The DCM with Ra-Ro coefficients can be converted into

.M .xjD.Ra �Ro/; C.Ra �Ro//1/8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

max Œˇ1; ˇ2; : : : ; ˇm�

s.t.

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:̂

˚

0
B@ fi � aq

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

˚

0
B@fi � c � 2˛i .d � c/q

xTV c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

eT
r x � br ; r D 1; 2; : : : ; p

x 2 X

.M .xjD.Ra �Ro/; C.Ra �Ro//2/8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

max Œˇ1; ˇ2; : : : ; ˇm�

s.t.

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
:̂

˚

0
B@ fi � bq

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

˚

0
B@ fi � lq

xT V c
i x

1
CA � ˇi ; i D 1; 2; : : : ; m

eT
r x � br ; r D 1; 2; : : : ; p

x 2 X

where l D max

�
a;
c.b � a/C a.d � c/ � 2˛i .d � c/.b � a/

b � aC d � c
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6.5 Algorithm System

For the RLMODM, two kinds of algorithms are discussed. One aims at those deci-
sion making problem which are directly converted into crisp equivalent models.
12 tradition solution methods solving multiobjective programming problem are
introduced. The other aims at those decision making problems which can not be
converted into crisp equivalent models. A hybrid intelligent algorithm is introduced
to obtain an approximate solution. The total flow chart of the two algorithms can
found in Fig. 6.6.

After we get the crisp equivalent models, we can employ basic solution methods
to solve those multiobjective programming problems. There are 12 solution methods
detailed in the book, which includes:

– Two-stage method
– Goal programming method
– Ideal point method
– Fuzzy satisfied method
– Surrogate worth trade-off method
– Satisfying trade-off method
– Step method
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Crisp equivalent
 model

RLMODM

Traditional
solution method

Random-like simulation-based
hybrid intelligent algorithm

Yes No

Optimal
solution

 Random
simulation

Ra-Ra
simulation

Ra-Ro
simulation

Ra-Fu
simulation

SA

PSO

GA

TS

Fig. 6.6 Total flow chart of algorithm

– Lexicographic method
– Weight sum method
– Maximin point method
– Fuzzy goal method
– "-constraint method

The above 12 solution methods are the most popular methods for multiple objec-
tive decision making. The decision maker can choose different method when they
face different requests or under different conditions.

For the nonlinear random-like multiple objective decision making models, it
is very difficult to transform the 3 types of objective functions and 2 types of
constraints into their crisp equivalences. So we proposed several random-like simu-
lations to simulate the objective functions and constraints. There are three kinds of
simulations for each kind of random-like uncertainty. In Sects. 3.3.3.1, 3.4.3.1 and
3.5.3.1, we propose Ra-Ra simulation for EVM, Ra-Ra simulation for CCM and
Ra-Ra simulation for DCM, respectively. In Sects. 4.3.3.1, 4.4.3.1, and 4.5.3.1, we
propose Ra-Fu simulation for EVM, Ra-Fu simulation for CCM, and Ra-Fu simula-
tion for DCM, respectively. In Sects. 5.3.3.1, 5.4.3.1, and 5.5.3.1, we propose Ra-Ro
simulation for EVM, Ra-Ro simulation for CCM, and Ra-Ro simulation for DCM.
By combining the random-like simulations and intelligent algorithms, we obtain
some hybrid algorithms. Then for the six kinds of models: EVM, CCM, DCM,
ECM, CEM, DEM, we can obtain several kinds of random-like hybrid algorithms
to deal with, see Fig. 6.7.
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Fig. 6.7 Random-like hybrid algorithm system

These random-like simulations will embed into 4 types of basic intelligent
algorithms, which includes

– Particle swarm optimization algorithm (PSO)
– Genetic algorithm (GA)
– Simulated annealing algorithm (SA)
– Tabu search algorithm (TS)

So for the general random-like MODM, we present the following ideas for
designing the algorithm. For the linear random-like multiple decision making model
with some particular random-like variables, we can transform them into some crisp
equivalent models and use the above 12 traditional solution methods to solve them
directly. For the normal random-like multiple decision making model, especially
the nonlinear model, we embed the corresponding random-like simulations into the
intelligent algorithm to find the solutions.

Application domains for each intelligent algorithm is as follows [333].
Some example areas for the application of PSO are:


 Machine Learning

 Function Optimization

 Geometry and Physics

 Operations Research
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 Chemistry, Chemical Engineering

 Electrical Engineering and Circuit Design

Some example areas for the application of GA are:


 Scheduling

 Chemistry, Chemical Engineering

 Medicine

 Data Mining and Data Analysis

 Geometry and Physics

 Economics and Finance

 Networking and Communication

 Electrical Engineering and Circuit Design

 Image Processing

 Combinatorial Optimization

Some example areas for the application of Simulated Annealing are:


 Combinatorial Optimization

 Function Optimization

 Chemistry, Chemical Engineering

 Image Processing

 Economics and Finance

 Electrical Engineering and Circuit Design

 Machine Learning

 Geometry and Physics

 Networking and Communication.

Some example areas for the application of TS are:


 Combinatorial Optimization

 Machine Learning

 Biochemistry

 Operations Research

 Networking and Communication

Although we used these 4 algorithms in the book, there are some other excellent
intelligent algorithms, such as the ant colony optimization algorithm (ACO), arti-
ficial neural network (ANN), immune algorithms (IA) and so on. We expect more
advanced intelligent algorithms and we are willing to use them if it is appropriate in
future research.

6.6 Research Ideas and Paradigm: 5MRP

RLMODM solves a class of real-life problems which seems to be uncertain (espe-
cially with random-like phenomena), for example, random demand in DCs location
problem, bi-random transportation cost in the flow shop scheduling, random fuzzy
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demand in the supply chain problem, random rough yield in the inventory problem,
and so on. Why should we apply RLMODM to solve these problems? How should
we construct a physical model to express these real-life problems? How should we
deal with uncertainty in RLMODM? How can we describe this problem through
scientific language? How can we design an efficient algorithm to solve a practiced
problem? Finally how can be apply this integrated method to the engineering fields?
All these questions must be answered under a new paradigm following a certain
methodology. This new paradigm will enable researchers to draw scientific results
and conclusions under the guidance of science, and will play a significant guiding
role in conducting scientific research.

The research ideal of 5MRP expresses the initial relationship among Research,
Model and Problem. R stands for a research system that includes research specifics,
research background, research base, research reality, research framework, and
applied research; M refers to a model system that includes concept models, physical
models, physical and mathematical models, mathematical and physical models,
designed models for algorithms, and describing the specific models. P represents
a problem system that includes a particular problem, a class of problems, abstract
problems, problem restoration, problem solutions, and problem settlements. Next,
we take RLMODM as an example to present how to use 5MPR to start research.

Total ideal route. Let us summarize the research ideas and the framework of
the research work, see Fig. 6.8. When research is started, we usually proceed to
study a particular problem, which has research value and can be described as a
concept model. This is the introduction of the research. After studying a particular
problem and a problem with the same essence of the particular problem, then we can
obtain the typical problem which has universality and can be abstracted to a physical
model. This is the background to research. Then we generalize the typical problem
ulteriorly to a class of problems which can be abstracted to common mathematical
problems, then we can propose the mathematical model. This is the foundation of

Research
topic

(RLMODM)

Problem-oriented
Literature-oriented

(Random-like
phenomena)
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with random-like
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Basic research
for random-like

models

Algorithm research
based on random-like
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Physical model
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Random-like
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analysis

(Random-like equivalent
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solution)
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Practical
application

(Modelling and design
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Compare with
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Algorithm analysis
(Choice of random-like
simulations-based intell-

igent algorithm)
(Choice of solution

methods)

Fig. 6.8 Ideal route
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the research. Then we design the algorithm and obtain the model for the procedure
of the algorithm. This is the framework of the research. Finally we should apply the
above models to a practical problem and establish a numerical model for the specific
problem, and employ an algorithm to get the solution to illustrate the efficiency and
validity. This is the application of the research.

Then we use Figs. 6.9–6.11 to describe the relationship between problem system,
model system and research system.

Particular problem
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 (Concept model, Introduction research)

  (Physical model, Background research)
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Fig. 6.9 Problem system
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Fig. 6.10 Model system
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Fig. 6.11 Research system

Problem-driven. Figure 6.9 emphasizes the problem system, and presents the
train of thought of dealing with the problem. In the real-life world, we usually face
many problems which make can confuse us as we don’t know how to deal with them,
for example, the random demand in DCs location problem, the bi-random trans-
portation cost in the flow shop scheduling, the random fuzzy demand in the supply
chain problem, the random rough yield in the inventory problem, and so on. We
don’t know how to make a decision to control total cost and maximize total profit.
This confusion drives us to start new research. Then a typical problem with random-
like phenomena is formed in the brain, and we generalize it to be a class-problem
with random-like phenomena, that is, it represents all the features of a class of prob-
lems with random-like phenomena. How can we solve it? This question reminds
us that we should convert it to a solvable problem with random-like parameters.
Finally, a numerical problem can be presented to confirm that these problems can
be solved. Conversely, a numerical problem just checks if the solvable problem can
be solved using the proposed model and algorithm. If so, it can be popularized to a
class of problems and used to solve some typical problems. Finally, the particular
problem we at first faced can be easily dealt with using the proposed technique.

Model system. Figure 6.10 emphasizes the model system, and presents a series
of models which are used to deal with the corresponding problems. When we face
those particular problems which confuse us, a concept with random-like coeffi-
cients is formed in our brain. Aiming at the typical problem, a physical model
with random-like coefficients can be constructed to present the real-life structure
of those problems. To help decision makers, a mathematical model with random
coefficients can be constructed to quantifiably analyze those problems. Naturally,
after constructing a mathematical model, we can design an algorithm model to solve
it. Hence, this is called the algorithm design model with random-like coefficients.
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Finally, a specific model with random-like coefficients according to a particular
problem can be constructed to show the rationality of the proposed model and the
efficiency of the proposed algorithm design model. Conversely, a specific model can
be used to examine the efficiency and convergence of the designed algorithm model.
If so, the algorithm can be applied to optimize the mathematical model. We can fur-
ther deoxidize the mathematical model to a physical model to describe a realistic
problem and solve a particular problem.

Research method. Figure 6.11 emphasizes the research system, and presents
the technological process when we face a problem and conduct our research. The
research process is also rooted in the problem and model. Firstly, a basic research
introduction can be done when we face a particular problem with random-like phe-
nomena. It means that we can give a basic description and construct a concept model
about the particular problem. Secondly, the research background can be clarified
when it is abstracted as a typical problem with random-like phenomena. In this pro-
cess, the essence that the problem occurs can be investigated and then a physical
model is given. Thirdly, we can prepare the basic research foundation when the
physical model with random-like coefficients is abstracted to a mathematical model
with random-like coefficients. The research foundation basically includes the fol-
lowing parts: (a) Which class of problems should these typical problems divide into?
(b) What research has been done on this class of problems? (c) What literature is
useful for our research about problems, models, algorithms? Fourthly, a research
framework should be given to assist us in doing research. Finally, a research appli-
cation is given to assist us in doing research. show the whole research process.
Conversely, the application should include the whole research framework and reflect
the research method. The research framework can also trace the research foundation
and further connect the research background. In the end, the research goes back to
the research introduction of the particular problem and obtains the optimal strategy.

Figure 6.12 presents how we use the 5MPR research ideal to do our research:
random, bi-random, random fuzzy and random rough multiple objective decision
making. Above all, 5MRP is an effective paradigm that can be widely used in var-
ious fields of scientific research and can contribute to research in all areas in a
standardized and efficient manner. In the area of decision making, 5MRP is well
reflected because of its rigorous logical and effective applicability, and it will have
significant guiding role in the practice side of research.

6.7 Future Research

In the past 50 years, RLMODM has been a growing subject, whose theory and
research methods are being rapidly developed and whose application has also
become enlarged. Therefore, the summative conclusion is obtained about the future
research of RLMODM: (1) a great surmounter in theory and method; (2) an impor-
tant connection with realistic problems. The importance of the development of
theory and method can only be measured by applying them to realistic problems. On
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the other hand, only a reliable theory can guarantee the correctness of those methods
dealing with realistic problems. Here we provide some details about further research
appearing in this area.

From the theoretical aspect, although it is basically perfect in the current sys-
tem, readers can also use the new method to deal with RLMODM problems. In the
current system, the authors only considered three techniques (EVM, CCM, DCM)
to deal with uncertainty in the multiobjective programming model with random-
like coefficients, then some other methods such as minimizing the variance can be
hunted to deal with the uncertainty. In addition, some crisp equivalent conditions
for some special distributions of the random-like variables in the linear RLMODM
models are discussed, but the equivalency for other distributions could be further
researched. For some special nonlinear models, their equivalent models maybe be
obtained using the mathematical technique. This is also an interesting and worthy
topic. For mathematical properties, we should consider sensitivity analysis, dual
theorems, optimality conditions, and so on.

Form the viewpoint of the solutions method, some effective and powerful algo-
rithms are designed in the current book. For example, twelve traditional methods
are presented to solve those crisp multiobjective programming problems which
are obtained by transforming the linear RLMODM model with special distribu-
tions. Four random-like simulations, and four intelligent algorithms including the
genetic algorithm, the simulated annealing algorithm, the particle swarm optimiza-
tion algorithm and the tabu search algorithm are proposed to solve those nonlinear
RLMODM problems. Of course, there are many other solution methods for solv-
ing the multiobjective programming problems with crisp parameters. Hence, how to
select an effective and appropriate method deserves more research. In addition, some
new random-like simulation-based evolutionary algorithms can also be applied to
the nonlinear RLMODM model. The convergence and the convergent speed are
also future research focus.

In the perspective of the applications, RLMODM may be applied to four decision
making problems with random-like phenomena in this book, for example, the DCs
location problem, the flow shop scheduling problem, the supply chain network prob-
lem and the inventory problem. In fact, in the real-life world, we usually face many
complicated problems. Hence, those applications in other fields such as finance,
manufacturing, engineering management and so on should be also considered. In
these realistic problems, mixed uncertainty may occur, for example, a supply chain
system with random demand and random fuzzy cost. This is an important focus in
our future research. In addition, how to select an approximate model is also a key
factor when we face these realistic problems.

Above all, systematic research about RLMODM has been provided by this book
and a scientific research area can be also found for future research from these
aspects: theory, algorithm and applications.



Appendix A
Some Mathematical Aids

A.1 Series


 Geometric series: From .1 � r/.1C r C r2 C � � � C rn/ D 1 � rnC1, we obtain

nX
kD0

rk D 1 � rnC1

1 � r ; for r ¤ 1:

For jr j < 1, these sums converge to the geometric series
P1

kD0 r
k D 1=.1� r/.

Differentiation yields the following two useful series:

1X
kD1

krk�1 D 1

.1 � r/2 ; for jr j < 1

and

1X
kD2

k.k � 1/rk�2 D 2

.1 � r/3 ; for jr j < 1:

For the finite sum, differentiation and algebraic manipulation yields

nX
kD0

krk�1 D 1 � rn.1C n.1 � r//
.1 � r/2 ;

which converges to

1

.1 � r/2 ; for jr j < 1:
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 Exponential series: ex D P1
iD0

xk

kŠ
and e�x D P1

iD0.�1/k xk

kŠ
for any x. Sim-

ple algebraic manipulation yields the following equalities useful for the Poisson
distribution:

1X
kDn

k
xk

kŠ
D x

1X
kDn�1

xk

kŠ

and

1X
kDn

k.k � 1/x
k

kŠ
D x2

1X
kDn�2

xk

kŠ

A.2 Some Useful Integrals


 The gamma function: � .r/ D R1
0
tr�1e�tdt for r > 0.

Integration by parts shows � .r/ D .r � 1/� .r � 1/ for r > 1.
By induction � .r/ D .r � 1/.r � 2/ � � � .r � k/� .r � k/ for r > k.
For a positive integer n, � .n/ D .n � 1/Š with � .1/ D 0Š D 1.


 By a change of variable in the gamma integral, we obtain

Z 1

0

tre��tdt D � .r C 1/
�rC1

; r > �1; � > 0:


 A well-known indefinite integral gives

Z 1

a

te��tdt D 1

�2
e��a.1C �a/

and Z 1

a

t2e��atdt D 1

�3
e��a.1C �aC .�a/2=2/:

For any positive integerm,

Z 1

a

tme��tdt D mŠ

�mC1
e��a

�
1C �aC .�a/2

2Š
C � � � C .�a/m

mŠ

�
:


 The following integrals are important for the Beta distribution

Z 1

0

ur.1 � u/sdu D � .r C 1/� .s C 1/
� .r C s C 2/ ; r > �1; s > �1
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For nonnegative integersm, n,Z 1

0

um.1 � u/ndu D mŠnŠ

.mC nC 1/Š :

A.3 Chebyshev’s Inequality

Let .˝;A ;Pr/ be a probability space and � D �.!/ a nonnegative random variable.
Then

Prfj� �EŒ��j � "g � DŒ��="2 (A.1)

for all " > 0.

Proof. Let F.x/ be the distribution function of �, then it is apparent that

Prfj� � EŒ��j � "g D
Z

j��EŒ��j�"

dF.x/

�
Z

j��EŒ��j�"

.x �EŒ��/2
"2

dF.x/

� 1

"2

Z 1

�1
.x �EŒ��/2dF.x/

D DŒ��

"2

This completes the proof. ut
Sometimes, (A.1) can be rewritten as

Prfj� � EŒ��j < "g � 1 � DŒ��
"2

or equivalently,

Pr

(
j� � EŒ��p

DŒ��
j � ı

)
� 1

ı2

A.4 Cauchy’s Equation


 Let f be a real-valued function defined on .0;1/, such that

(a) f .t C u/ D f .t/C f .u/ for t; u > 0.
(b) There is an open interval I on which f is bounded above (or is bounded

below).

Then f .t/ D f .1/t for t > 0.
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 Let f be a real-valued function defined on .0;1/ such that
(a) f .t C u/ D f .t/f .u/ for t; u > 0.
(b) There is an interval on which f is bounded above.
Then, either f .t D 0/ for t > 0, or there is a constant a such that f .t/ D eat for
t > 0.

A.5 Some Useful Lemmas

Lemma A.1. ln.1C z/ D zCR.z/, where jR.z/j < jzj2 for jzj < 1=2.

Proof.

ln.1C z/ D zC z2

2
C z3

3
C � � � D zCR.z/; for jzj < 1

where

R.z/ D z2

2

�
1C 2

3
zC 2

4
z2 C � � �

�
:

For jzj < 1=2,

jR.z/j < jzj
2

2

1X
kD0

1

2k
D jzj2:

ut
Lemma A.2. Let zi , wi , 1 � i � m, be complex numbers with jzi j � 1, jwi j � 1,
1 � i � m. Then ˇ̌̌

ˇ̌ mY
iD1

zi �
mY

iD1

wi

ˇ̌̌
ˇ̌ � mX

iD1

jzi � wi j:

Proof. Consider

kC1Y
iD1

zi �
kC1Y
iD1

wi D .zkC1 � wkC1/

kY
iD1

zi C wkC1

"
kY

iD1

zi �
kY

iD1

wi

#
:

By hypothesis,

ˇ̌̌
ˇ̌ kY
iD1

zi

ˇ̌̌
ˇ̌ D kY

iD1

jzi j � 1; and jwkC1j � 1:
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From elementary properties of absolute value, we have

ˇ̌̌
ˇ̌kC1Y

iD1

zi �
kC1Y
iD1

wi

ˇ̌̌
ˇ̌ � jzkC1 � wkC1j � jzkC1 � wkC1j C

ˇ̌̌
ˇ̌ kY
iD1

zi �
kY

iD1

wi

ˇ̌̌
ˇ̌ :

Since the theorem is trivially true for m D 1, the last inequality provides the basis
for a proof by mathematical induction. This completes the proof. ut

As a corollary, we have that, if jzj � 1 and jwj � 1, then jzn � wnj � njz � wj.
The Little-o Notation:


 Suppose g.x/ 6¤ 0 for all x in some deleted neighborhood of a. We say

f .x/ D o.g.x// as x ! a iff lim
x!a

f .x/

g.x/
D 0:

The expression f .x/ D o.g.x// is read “f is little- of g at a” or “f is of smaller
order than g at a”.


 A number of properties of the little-o symbol are worth nothing.

(a) If f1 and f2 are little-o of g at a, then so is f1 ˙ f2.
(b) If c 6¤ 0 and f is little-o of g at a, then so is cf .
(c) If h is bounded and nonzero in deleted neighborhood of a and f is little-o of

g at a, then so is hf .
(d) If h is little-o of f at a and f is little-o of g at a, then h is little-o of g at a.
(e) If g.x/! 0 as x ! a, then 1=.1C g.x// D 1 � g.x/C o.g.x//.
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Some Procedures

B.1 The Procedure of Random Simulation-Based SA

clc;
clear all;
clf;
figure(1);
initial_temperature=500;
finish_temperature=0;
cooling_tem=2;
B=1;
N_ycss=10;
h=2.0;
Max=0;
Max_1=0;
Max_2=0;
tic j=0;
w1=0.5;
w2=0.5;
while(j<1)

x0=unifrnd(0,5);
y0=unifrnd(0,5);
t=constraint_check(x0,y0);
if(t==1)

j=j+1;
end

end
z0=w1*Ob1(x0,y0)+w2*Ob2(x0,y0);
T=initial_temperature;
x_best=[];

while T>=finish_temperature
n=1;

J. Xu and L. Yao, Random-Like Multiple Objective Decision Making, Lecture Notes
in Economics and Mathematical Systems 647, DOI 10.1007/978-3-642-18000-2 8,
c� Springer-Verlag Berlin Heidelberg 2011

403



404 B Some Procedures

while n<N_ycss
x_best=[];
x_best=[x_best,[x0,y0]’];
r=unifrnd(-1,1);
x1=x0+r*h;
y1=y0+r*h;
if(constraint_check(x1,y1)==0)

continue;
end
t1=Ob1(x1,y1);
t2=Ob2(x1,y1);
z1=w1*t1+w2*t2;
diff=z0-z1;
if diff<0

z0=z1;
if Max<z0

Max=z0;
Max_1=t1;
Max_2=t2;

end
continue;

else
if (diff==0)

x_best=[x_best,[x1,y1]’];
end
if exp(-diff/T)>unifrnd(0,1)

z0=z1;
end

end
n=n+1;
plot(T,z0,’--b.’);
axis([0 500 0 6]);
title(’Cooling process’);
legend(’Start value at current temperature’,

’Best value so far’);
hold on;
pause(0.005);
grid on;

end
plot(T,Max,’-r.’);
axis([0 500 0 6]);
title(’Cooling process’);
legend(’Start value at current temperature’,

’Best value so far’);
hold on;
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pause(0.005);
grid on;
plot(T,Max_1,’-r.’);
plot(T,Max_2,’--b.’)
axis([0 500 0 8]);
title(’Cooling process’);
legend(’f2’,’f1’);
hold on;
pause(0.005);
grid on;
n=n+1;
T=T-1;

end
z0
Max
Max_1
Max_2
x_best
toc

function [t] = constraint_check(x1,x2)
t=0;
rrs=0;
if((x1>=0)&(x2>=0))

if(x1+x2<=5)
t=1;

end
end

function Ob1=Ob1(x1,x2)
N=20;
EXP=0;
for i=1:N

t1=normrnd(2,0.5);
t2=unifrnd(1,2);
EXP=EXP+sqrt((t1-x1)ˆ2+(t2-x2)ˆ2);

end Ob1=EXP/N;

function Ob2=Ob2(x1,x2)
N=50;
EXP=0;
for i=1:N

t1=normrnd(2,0.5);
t2=unifrnd(1,2);
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EXP=EXP+sqrt((t1+x1)ˆ2+(t2+x2)ˆ2);
end Ob2=EXP/N;

B.2 The Procedure of Ra-Ra Simulation-Based PSO

clc;
clear all;
clf;
figure(1);
c1=1.4962;
c2=1.4962;
w=0.7298;
MaxDT=100;
N=10;
P=[];
v=[];
pbest=[];
Gmax=0;
p=[];
con=0;

tic
j=1;
while(j<=N)

x0=unifrnd(0,5);
y0=unifrnd(0,5);
t=constraint_check(x0,y0);
if(t==1)

P=[P,[x0,y0]’];
u=unifrnd(0,5);
v=[v,u];
j=j+1;

end
end
for Gen=1:MaxDT

pbest=P;
for i=1:N

g=fitness(P(1,i),P(2,i));
p=[p,g];
if(p(i)>=Gmax)

Gmax=p(i);
gbest_1=P(1,i);
gbest_2=P(2,i);
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end
v(i)=w*v(i)+c1*unifrnd(0,1)*sqrt((pbest
(1,i)-P(1,i))ˆ2+(pbest(2,i)-P(2,i))ˆ2)+c2*
unifrnd(0,1)*sqrt((gbest_1-P(1,i))ˆ2+(gbest_2
-P(2,i))ˆ2);
t1=P(1,i)+v(i);
t2=P(2,i)+v(i);
con=constraint_check(t1,t2);
if(con==0)

continue;
end
P(1,i)=t1;
P(2,i)=t2;
t=fitness(P(1,i),P(2,i));
if (t>p(i))

pbest(1,i)=P(1,i);
pbest(2,i)=P(2,i);
p(i)=t;

end
if (t>Gmax)

Gmax=t;
gbest_1=P(1,i);
gbest_2=P(2,i);
T_1=Ob1(gbest_1,gbest_2);
T_2=Ob2(gbest_1,gbest_2);

end
plot(Gen,t,’--b.’);
axis([0 MaxDT 0 8]);
title(’Searching process’);
legend(’Best so far’);
hold on;
pause(0.005);
grid on;
end
plot(Gen,Gmax,’--r.’);
axis([0 MaxDT 0 8]);
title(’Searching process’);
legend(’Fitness value’,’Best so far’);
hold on;
pause(0.005);
grid on;
plot(Gen,T_1,’-b.’);
plot(Gen,T_2,’--r.’);
axis([0 MaxDT 0 10]);
title(’Searching process’);
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legend(’H2’,’H1’);
hold on;
pause(0.005);
grid on;

end
gbest_1
gbest_2
T_1
T_2
Gmax
toc

function [t] = constraint_check(x1,x2)
t=0;
rrs=0;
if((x1>=0) &
(x2>=0))

if(x1+x2<=5)
t=1;

end
end

function fitness=fitness(x1,x2)
w1=0.5;
w2=0.5;
fitness=w1*Ob1(x1,x2)+w2*Ob2(x1,x2);

function Ob1=Ob1(x1,x2)
N=50;
M=50;
EXP=0;
for i=1:N

T=0;
t1=normrnd(3,1);
t2=normrnd(2,0.5);
for i=1:M

T=T+sqrt((normrnd(t1,1)-x1)ˆ2
+(normrnd(t2,1)-x2)ˆ2);

end
EXP=EXP+T/M;

end
Ob1=EXP/N;

function Ob2=Ob2(x1,x2)
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N=20;
M=20;
EXP=0;
for i=1:N

T=0;
t1=normrnd(3,1);
t2=normrnd(2,0.5);
for i=1:M

T=T+sqrt((normrnd(t1,1)+x1)ˆ2
+(normrnd(t2,1)+x2)ˆ2);

end
EXP=EXP+T/M;

end
Ob2=EXP/N;

B.3 The Procedure of Ra-Fu Simulation-Based GA

clc;
clear all;
clf;
figure(1);
N=3;
GEN=100;
POP_SIZE=10;
P_MUTATION=0.2;
P_CROSSOVER=0.3;
Chr=[];
Obj=[];
Ob1=[];
Ob2=[];
w_1=0.5;
w_2=0.5;

tic
j=1;
while(j<=POP_SIZE)

x0=unifrnd(0,10);
y0=unifrnd(0,10);
z0=unifrnd(0,10);
t=constraint_check(x0,y0,z0);
if(t==1)

Chr=[Chr,[x0,y0,z0]’];
j=j+1;



410 B Some Procedures

end
end
for gen=1:GEN

INDX=[];
z1Max=0;
z2Max=0;
rTemp=[];
eval=[];
for j=1:POP_SIZE

t1=Obfunction1(Chr(1,j),Chr(2,j),Chr(3,j));
if(t1>z1Max)

z1Max=t1;
end
t2=Obfunction2(Chr(1,j),Chr(2,j),Chr(3,j));
if(t2>z2Max)

z2Max=t2;
end
u=w_1*t1+w_2*t2;
Obj=[Obj,u];
Ob1=[Ob1,t1];
Ob2=[Ob2,t2];

end
[Obj,INDX]=sort(Obj);
for i=1:POP_SIZE

t=sqrt(w_1ˆ2*(Ob1(j)-z1Max)ˆ2+w_2ˆ2

*(Ob2(j)-z2Max)ˆ2);
rTemp=[rTemp,t];

end
rMax=max(rTemp);
rMin=min(rTemp);
rr=unifrnd(0,1);
for i=1:POP_SIZE

r_x(i)=sqrt(w_1ˆ2*(Obfunction1(Chr(1,j),
Chr(2,j),Chr(3,j))
-z1Max)ˆ2+w_2ˆ2*(Obfunction2(Chr(1,j),
Chr(2,j),Chr(3,j))-z2Max)ˆ2);
t=(rMax-r_x(i)+rr)/(rMax-rMin+rr);
eval=[eval,t];

end
temp=[];
qTemp=[];
qTemp=[qTemp,0];
q(1)=eval(1);
qTemp=[qTemp,q(1)];
for i=2:POP_SIZE
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q(i)=q(i-1)+eval(i);
qTemp=[qTemp,q(i)];

end
for i=1:POP_SIZE

r=unifrnd(0,q(POP_SIZE));
for j=1:POP_SIZE

if(r>=qTemp(j)&& r<qTemp(j+1))
temp=[temp,[Chr(1,j),Chr(2,j),
Chr(3,j)]’];

break;
end

end
end

for i=1:POP_SIZE
for k=1:N

Chr(k,i)=temp(k,i)
end

end
pop=POP_SIZE/2;
for i=1:pop

if (unifrnd(0,1)>P_CROSSOVER) continue;
end
j=floor(unifrnd(1,POP_SIZE));
jj=floor(unifrnd(1,POP_SIZE));
r=unifrnd(0,1);
for k=1:N

x(k)=r*Chr(k,j)+(1-r)*Chr(k,jj);
y(k)=r*Chr(k,jj)+(1-r)*Chr(k,j);

end
if(constraint_check(x(1),x(2),x(3))==1)

for k=1:N
Chr(k,j)=x(k)

end
end
if(constraint_check(y(1),y(2),y(3))==1)

for k=1:N
Chr(k,jj)=y(k)

end
end

end
INFTY=10;
precision=0.0001;
for i=1:POP_SIZE

if (unifrnd(0,1)>P_MUTATION) continue;
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end
for k=1:N

x(k)=Chr(k,i);
end
for k=1:N

if(unifrnd(0,1)<0.5)
direction(k)=unifrnd(-1,1);
else direction(k)=0;
end

end
infty=unifrnd(0,INFTY);
while(infty>precision)

for j=1:N
y(j)=x(j)+infty*direction(j)

end
if(constraint_check(y(1),y(2),y(3))==1)

for k=1:N
Chr(k,i)=y(k);

end
break;

end
infty=unifrnd(0,infty);

end
end

scatter(Obj(POP_SIZE),gen,8,’r*’);
axis([0 GEN 0 50]);
title(’Search
process’);
legend(’Best so far’);
hold on;
pause(0.005);
hold off;
toc
end

function [t] = constraint_check(x1,x2,x3)
t=0;
rfs=0;
if((x1>=0) &
(x2>=0) & (x3>=0))

if((x1+x2+x3<=10) & (3*x1+5*x2+3*x3>=4))
t=1;

end
end
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function [Obfunction1] = Obfunction1(X,Y,Z)
N=20;
M=20;
Obfunction1=0;
v=[];
E=[];
for i=1:N

T=0;
x1=unifrnd(5,7);

if 5<x1&&x1<6
mu1=x1-5;

end
if 6<=x1&&x1<7

mu1=7-x1;
end

x2=unifrnd(6.5,10);
if 6.5<=x2&&x2<8

mu2=2*(x2-6.5)/3;
end
if 8<=x2&&x2<=10

mu2=0.5*(10-x2);
end
for j=1:M

k1=normrnd(x1,2);
k2=normrnd(x2,1);
T=T+(3*k1ˆ2*X-2*k1*k2*Y+1.3*k2ˆ2*Z);

end
E=[E,T/M];
v=[v,min(mu1,mu2)];

end MIN=min(E); MAX=max(E); for k=1:N
r=unifrnd(MIN,MAX);
b1=0;
b2=0;
if r>=0

for i=1:N
if E(i)>=r&&b1<=v(i)

b1=v(i);
end
if E(i)<r&&b2<=v(i)

b2=v(i);
end

end
Obfunction1=Obfunction1+(b1+1-b2)/2;

else
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for i=1:N
if E(i)<=r&&b1<v(i)

b1=v(i);
end
if E(i)>r&&b2<v(i)

b2=v(i);
end

end
Obfunction1= Obfunction1-(b1+1-b2)/2;

end
end if MIN<=0

a=0;
else

a=MIN;
end if MAX>=0

b=0;
else

b=MAX;
end Obfunction1=Obfunction1*(MAX-MIN)/N+a+b;

function [Obfunction2] = Obfunction2(t1,t2,t3)
N=20;
M=20;
Obfunction2=0;
v=[];
E=[];
for i=1:N

T=0;
x3=unifrnd(4,6);
if 4<=x3&&x3<5

mu3=x3-4;
end
if 5<=x3&&x3<=6

mu3=6-x3;
end

x4=unifrnd(5,8);
if 5<=x4&&x4<7

mu4=0.5*(x4-5);
end
if 7<=x4&&x4<=8

mu4=8-x4;
end
for j=1:M
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T=T+2.5*(normrnd(x3,1.5))ˆ2*t1+
3*normrnd(x3,1.5)*normrnd(x4,2)*t2
+5*(normrnd(x4,2))ˆ2*t3;

end
E=[E,T/M];
v=[v,min(mu3,mu4)];

end
MIN=min(E);
MAX=max(E);
for k=1:N

r=unifrnd(MIN,MAX);
b1=0;
b2=0;
if r>=0

for i=1:N
if E(i)>=r&&b1<=v(i)

b1=v(i);
end
if E(i)<r&&b2<=v(i)

b2=v(i);
end

end
Obfunction2=Obfunction2+(b1+1-b2)/2;

else
for i=1:N

if E(i)<=r&&b1<v(i)
b1=v(i);

end
if E(i)>r&&b2<v(i)

b2=v(i);
end

end
Obfunction2= Obfunction2-(b1+1-b2)/2;

end
end if MIN<=0

a=0;
else

a=MIN;
end if MAX>=0

b=0;
else

b=MAX;
end
Obfunction2=Obfunction2*(MAX-MIN)/N+a+b;
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B.4 The Procedure of Ra-Ro Simulation-Based TS

clc;
clear all;
clf;
figure(1);
N_jinji=1000;
N_ycss=1000;
j=0;
while(j<1)

x0=unifrnd(0,5);
y0=unifrnd(0,5);
t=constraint_check(x0,y0);
if(t==1)

j=j+1;
end

end

Tlist_x=[x0];
Tlist_y=[y0];
tic
for i=1:N_jinji

j=0;
h=5;
z0=0;
z1=0;
z_ciyou=0;
x_ciyou=0;
y_ciyou=0;

z0=x0ˆ2+y0ˆ2;
for i=1:N_ycss

r=unifrnd(-1,1);
R=unifrnd(-1,1);
x1=x0+r*h;
if(x1<0)

continue
end
y1=y0+R*h;
if(y1<0)

continue
end
if(x1+y1>5)

continue



B.4 The Procedure of Ra-Ro Simulation-Based TS 417

end
if(x1==find(Tlist_x) & y1==find(Tlist_y))
%judge if it is in the tabu list

continue;
end
z1=x1ˆ2+y1ˆ2;
if(z1<z0)

if(z1>z_ciyou)
z_ciyou=z1;
x_ciyou=x1;

y_ciyou=y1;
end
continue

elseif(z1==z0)
Tlist_x=[Tlist_x,x1];
Tlist_y=[Tlist_x,y1];
continue

else
j=j+1;
break;

end
end
if(j==0)

t=constraint_check(x_ciyou,y_ciyou);
if(t==1)

x0=x_ciyou;
y0=y_ciyou;

end
end
if(j==1)

t=constraint_check(x1,y1);
if(t==1)

x0=x1;
y0=y1;
z0=z1;
Tlist_x=[x0];
Tlist_y=[y0];

end
end
scatter(x_ciyou,y_ciyou,8,’bo’)
scatter(Tlist_x,Tlist_y,8,’r*’);
axis([0 5 0 5]);
title(’Search process’);
legend(’Best so far’, ’Sub-optimal so far’);
hold on;
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pause(0.005);
end hold off; toc Tlist_x Tlist_y z=x0ˆ2+y0ˆ2

function [t] = constraint_check(x1,x2)
t=0; rrs=0; if((x1>=0) &
(x2>=0))

if(x1+x2<=5)
rrs=rrsimulation(x1,x2);
if(rrs<=7)

t=1;
end

end
end

function [rrsimulation]=rrsimulation(x1,x2)
Mcount=100;
Racount=100;
E_1=0;
E_2=0;
lambda_1=0;
lambda_2=0;
rrsimulation=0;

for i=1:Mcount
a=0;
b=0;
lambda_1=unifrnd(1,2);
for i=1:Racount

a=a+((x1-normrnd(lambda_1,1))ˆ2
+(x2-normrnd(lambda_1,1))ˆ2)ˆ0.5;

end
E_1=E_1+a/Racount;

lambda_2=unifrnd(0,3);
for i=1:Racount

b=b+((x1-normrnd(lambda_2,1))ˆ2
+(x2-normrnd(lambda_2,1))ˆ2)ˆ0.5;

end
E_2=E_2+b/Racount;

end rrsimulation=(E_1+E_2)/(2*Mcount);
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