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Preface

Mathematical analysis is central to mathematics curricula not only because
it is a stepping-stone to the study of advanced analysis, but also because of
its applications to other branches of mathematics, physics, and engineering at
both the undergraduate and graduate levels. Although there are many texts on
this subject under various titles such as “Analysis,” “Advanced Calculus,” and
“Real Analysis,” there seems to be a need for a text that explains fundamental
concepts with motivating examples and with a geometric flavor wherever it
is appropriate. It is hoped that this book will serve that need. This book
provides an introduction to mathematical analysis for students who have some
familiarity with the real number system. Many ideas are explained in more
than one way with accompanying figures in order to help students to think
about concepts and ideas in several ways. It is hoped that through this book,
both student and teacher will enjoy the beauty of some of the arguments that
are often used to prove key theorems—regardless of whether the proofs are
short or long.

The distinguishing features of the book are as follows. It gives a largely
self-contained and rigorous introduction to mathematical analysis that pre-
pares the student for more advanced courses by making the subject matter
interesting and meaningful. The exposition of standard material has been
done with extra care and abundant motivation. Unlike many standard texts,
the emphasis in the present book is on teaching these topics rather than
merely presenting the standard material. The book is developed through pa-
tient explanations, motivating examples, and pictorial illustrations conveying
geometric intuition in a pleasant and informal style to help the reader grasp
difficult concepts easily.

Each section ends with a carefully selected set of “Questions” and “Ex-
ercises.” The questions are intended to stimulate the reader to think, for
example, about the nature of a definition or the fate of a theorem without one
or more of its hypotheses. The exercises cover a broad spectrum of difficulty
and are intended not only for routine problem solving, but also to deepen
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VIII Preface

understanding of concepts and techniques of proof. As a whole, the questions
and exercises provide enough material for oral discussions and written assign-
ments, and working through them should lead to a mature knowledge of the
subject presented.

Some of the exercises are routine in nature, while others are interesting,
instructive, and challenging. Hints are provided for selected questions and
exercises. Students are strongly encouraged to work on these questions and
exercises and to discuss them with fellow students and teachers. They are also
urged to prepare short synopses of various proofs that they encounter.

Content and Organization: The book consists of eleven chapters, which are
further divided into sections that have a number of subsections. Each section
includes a careful selection of special topics covered in subsections that will
serve to illustrate the scope and power of various methods in real analysis.
Proofs of even the most elementary facts are detailed with a careful presenta-
tion. Some of the subsections may be ignored based on syllabus requirements,
although keen readers may certainly browse through them to broaden their
horizons and see how this material fits in the general scheme of things. The
main thrust of the book is on convergence of sequences and series, continu-
ity, differentiability, the Riemann integral, power series, uniform convergence
of sequences and series of functions, Fourier series, and various important
applications.

Chapter 1 provides a gentle introduction to the real number system, which
should be more or less familiar to the reader. Chapter 2 begins with the con-
cept of the limit of a sequence and examines various properties of convergent
sequences. We demonstrate the bounded monotone convergence theorem and
continue the discussion with Cauchy sequences. In Chapter 3, we define the
concept of the limit of a function through sequences. We then continue to
define continuity and differentiability of functions and establish properties of
these classes of functions, and briefly explain the uniformly continuity of func-
tions. In Chapter 4, we prove Rolle’s theorem and the mean value theorem
and apply continuity and differentiability in finding maxima and minima. In
Chapter 5, we establish a number of tests for determining whether a given
series is convergent or divergent. Here we introduce the base of the natu-
ral logarithm e and prove that it is irrational. We present Riemann’s rear-
rangement theorem for conditionally convergent series. We end this chapter
with applications of Dirichlet’s test and summability of series. There are two
well-known approaches to Riemann integration, namely Riemann’s approach
through the convergence of arbitrary Riemann sums, and Darboux’s approach
via upper and lower sums. In Chapter 6, we give both of these approaches and
show their equivalence, along with a number of motivating examples. After
presenting standard properties of Riemann integrals, we use them in evaluat-
ing the limits of certain sequences. In this chapter, we meet the fundamental
theorem of calculus, which “connects the integral of a function and its an-
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tiderivative.” In Chapter 7, we discuss the convergence and the divergence
of improper integrals and give interesting examples of improper integrals,
namely, the gamma function and the beta function. Our particular applica-
tion emphasizes the integral test, the convergence of harmonic p-series, and
the Abel–Pringsheim divergence test. We deal with a number of applications
of the Riemann integral, e.g., in finding areas of regions bounded by curves
and arc lengths of plane curves.

Chapter 8 begins with the theory of power series, their convergence prop-
erties, and Abel’s theorem and its relation to the Cauchy product. Finally,
we present some methods of computing the interval of convergence of a given
power series. Chapter 9 contains a systematic discussion of pointwise and uni-
form convergence of sequence of functions. Students generally find it difficult
to understand the difference between pointwise and uniform convergence. We
illustrate this difference with numerous examples. We examine the close re-
lationship between uniform convergence and integration—on the interchange
of the order of integration and summation in the limit process—followed by
a similar relationship between uniform convergence and differentiation. In
Chapter 10, we introduce Fourier series with their convergence properties. In
addition, we present a number of examples to demonstrate the use of Fourier
series, such as how a given function can be represented in terms of a series of
sine and cosine functions. The reader is encouraged to make use of computer
packages such as Mathematica� and MapleTM where appropriate. Finally, in
Chapter 11, we introduce a special class of functions, namely functions of
bounded variation, and give a careful exposition of the Riemann–Stieltjes in-
tegral.

Numbering: The various theorems, corollaries, lemmas, propositions, remarks,
examples, questions, and exercises are numbered consecutively within a chap-
ter, without regard to label, and always carry the number of the chapter in
which they reside. The end of the proof of a theorem, corollary, lemma, or
proposition is indicated by a solid square and the end of a worked-out ex-
ample or remark by a bullet •.
Acknowledgments: Special thanks are due to my friend G.P. Youvaraj, who
read the entire first draft of the manuscript with care and made many valu-
able suggestions. It is a great pleasure in offering my warmest thanks to Herb
Silverman, who read the final manuscript and assisted me with numerous
helpful suggestions. My Ph.D. students, especially, S.K. Sahoo, Allu Vasude-
varao, and P. Vasundhra, helped me with the preparation of the LATEX files on
different occasions. Figures were created mainly by S.K. Sahoo. I thank them
all for their help. I am grateful to my wife, Geetha, daughter, Abirami, and
son, Ashwin, for their support and encouragement; their constant reminders
helped me in completing this project on time.
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The Real Number System

This chapter consists of reference material with which the reader should be
familiar. We present it here both to refresh the reader’s memory and to have
them available for reference. In Section 1.1, we begin by recalling elementary
properties of sets, in particular the set of rational numbers and their deci-
mal representations. Then we proceed to introduce the irrational numbers. In
Section 1.2, we briefly discuss the notion of supremum and infimum and state
the completeness axiom for the set of real numbers. We introduce the concept
of one-to-one, onto, and bijective mappings, as well as that of equivalent sets.

1.1 Sets and Functions

1.1.1 Review of Sets

The notion of a set is one of the most basic concepts in all of mathemat-
ics. We begin our discussion with some set-theoretic terminology and a few
facts from the algebra of sets. A set is a collection of well-defined objects
(e.g., numbers, vectors, functions) and is usually designated by a capital let-
ter A,B,C, . . . , X, Y, Z. If A is a set, we write a ∈ A to express “a is an
element (or member) of A” or “a belongs to A.” Likewise, the expression
a /∈ A means “a is not an element of A” or “a does not belong to A.” For
instance, A = {a, b} means that A consists of a and b, while the set A = {a}
consists of a alone. We use the symbol “∅” to denote the empty set, that is,
the set with no elements.

If B is also a set and every element of B is also an element of A, then we
say that B is a subset of A or that B is contained in A, and we write B ⊂ A.
We also say that A contains B and write A ⊃ B. That is,1

A ⊃ B ⇐⇒ B ⊂ A ⇐⇒ a ∈ B implies that a ∈ A.

1 The symbol ⇐⇒ and the word “iff” both mean “if and only if.”

S. Ponnusamy, Foundations of Mathematical Analysis,
DOI 10.1007/978-0-8176-8292-7 1,
© Springer Science+Business Media, LLC 2012

1



2 1 The Real Number System

Clearly, every set is a subset of itself, and therefore to distinguish subsets that
do not coincide with the set in question, we say that A is a proper subset of
B if A ⊂ B and in addition, B also contains at least one element that does
not belong to A. We express this by the symbol A � B, a proper subset A of
B. Since A ⊂ A, it follows that for any two sets A and B, we have

A = B ⇐⇒ B ⊂ A and A ⊂ B.

In this case, we say that the two sets A and B are equal. Thus, in order to
prove that the sets A and B are equal, we may show that A ⊂ B and B ⊂ A.
When A is not a subset of B, then we indicate this by the notation

A �⊂ B,

meaning that there is at least one element a ∈ A such that a /∈ B. For every
A ⊂ X , the complement of A, relative to X , is the set of all x ∈ X such that
x /∈ A. We shall use the notation

Ac = X \A = {x : x ∈ X and x /∈ A}.
The complement Xc of X itself is the empty set ∅. Also, ∅c = X .

We often use the symbol := to mean that the symbol on the left is defined
by the expression on the right. For instance,

N := {1, 2, . . .}, the set of natural numbers.

A set can be defined by listing its elements or by specifying a property that
determines the elements in the set. For instance,

A = {2n : n ∈ N}.
That is, A = {x : P (x)} represents the set A of all elements x such that “the
property P (x) is true.” Also, B = {x ∈ A : Q(x)} represents the subset of A
for which the “property Q(x)” holds. For instance,

B = {1, 3} or A = {x : x ∈ N, 2x3 − 9x2 + 10x− 3 = 0}.
For a given set A, the power set of A, denoted by P(A), is defined to be

the set of all subsets of A:

P(A) = {B : B ⊂ A}.
If A and B are sets, then their union, denoted by A ∪ B, is the set of all
elements that are elements of either A or B:

A ∪B = {x : x ∈ A or x ∈ B}.
Clearly A ∪ B = B ∪ A. The intersection of the sets A and B, denoted by
A ∩B, is the set consisting of elements that belong to both A and B:

A ∩B = {x : x ∈ A and x ∈ B}.
Note that A \B is also used for A ∩ Bc. Two sets are said to be disjoint if
their intersection is the empty set. The notion of intersection and union can
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be extended to larger collections of sets. For instance, if Λ is an indexing set
such as N, then ⋃

i∈Λ

Ai = {x : x ∈ Ai for some i ∈ Λ}

and ⋂

i∈Λ

Ai = {x : x ∈ Ai for every i ∈ Λ}.

A collection of sets {Ai : i ∈ Λ} is said to be pairwise disjoint if

Ai ∩ Aj = ∅ for i, j ∈ Λ, i �= j.

We do not include here basic set-theoretic properties, since these should be
familiar from high-school mathematics.

We now list Giuseppe Peano’s (1858–1932) five axioms for N:

• 1 ∈ N.
• Each n ∈ N has a successor, namely n+ 1 (sometimes designated by n′).
• 1 is not the successor of any n ∈ N.
• If m and n in N have the same successor, then m = n, i.e., two distinct
elements in N cannot have the same successor.

• Suppose A ⊂ N. Then A = N if the following two conditions are satisfied:
(i) 1 ∈ A.
(ii) If n ∈ A, then n+ 1 ∈ A.

The last axiom is the basis for the principle of mathematical induction, and
so it is called the induction axiom.

The principle of mathematical induction reads as follows.

Theorem 1.1 (Principle of mathematical induction). Suppose that P (n)
is a statement concerning n ∈ N. If P (1) is true and if P (k+1) is true when-
ever P (k) is true, then P (n) is true for all n ≥ 1.

As an illustration of this theorem, the following can easily be proved:

(a)

n∑

k=1

k =
n(n+ 1)

2
for all n ≥ 1.

(b)

n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

(c)

n∑

k=1

k3 =
n2(n+ 1)2

4
.

(d) (n+ 2)! > 2n+1 for all n ≥ 1.

(e) (3 +
√
5)n + (3 −

√
5)n is an even integer for n ≥ 1 (use the identity

ak+1 + bk+1 = (ak + bk)(a+ b)− (ak−1 + bk−1)ab).

We shall now begin to introduce the set Q of rational numbers and the set
R of real numbers.
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1.1.2 The Rational Numbers

A quotient of integers m/n (n �= 0) is called a rational number. We assume
that readers are familiar with the properties of the following basic sets:

Z := {. . . ,−2,−1, 0, 1, 2, . . .} the set of integers,

Q :=
{m

n
: m ∈ Z, n ∈ N

}
the set of rational numbers.

Clearly, N � Z � Q. We remark that the representation of a rational number
as a ratio of integers is not unique; for instance,

1

2
=

2

4
=

3

6
= · · · .

However, in the form m/n, if we assume that m and n have no common factor
greater than 1, then the representation is unique. We frequently represent
positive rational numbers in their decimal expansions. By a (positive) decimal
fraction, we mean a number

0 ·a1a2a3 . . . ,
where each ak, k ≥ 1, is an integer with ak ∈ {0, 1, 2, . . . , 9}. Here the ten
integer values are called digits . When a decimal terminates, it means

0 ·a1a2a3 . . . an =

n∑

k=1

ak
10k

,

which is clearly a positive rational number. Thus, Q contains all terminating
decimals such as

−0.123 = − 123

1000
, 0.789 =

789

1000
, . . . .

More generally, a decimal is an expression of the form

c0 · a0a1 . . . ,
where c0 ∈ Z and ak ∈ {0, 1, 2, . . . , 9}, k = 1, 2, . . ..

Thus, there are two types of decimals, namely terminating (finite) and
nonterminating (infinite). For instance, applying long division to 1/3 and 3/7
gives

1

3
= 0.333 . . . and

3

7
= 0.428571428 . . . ,

respectively. These nonterminating decimals are repeating and so may be ab-
breviated as

0.333 . . . = 0.3 and 0.428571428 . . .= 0.428571,

respectively. Thus, we formulate the following definition (omitting some tech-
nical details).

Definition 1.2. A rational number is a number whose decimal expansion ei-
ther terminates after a finite number of places or repeats.
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1

1 x

y

O

(0,1)

(1,0) x

Fig. 1.1. The unit square.

x

y=x2− 2

(−2, 0)

x such that
x2=2x such that

x2=2

y

Fig. 1.2. Graph of y = x2 − 2.

1.1.3 The Irrational Numbers

Although the set Q of rational numbers is a nice algebraic system, it is not
adequate for describing many quantities such as lengths, areas, and volumes
that occur in geometry. For example, what is the length of the diagonal in a
square of unit length? (See Figure 1.1.)

What is the side length of a square with area 2? 3? 5? 7? In other words,
is there a rational number x such that

x2 = 2 or x2 = 3 or x2 = 5 or x2 = 7?

What is the area of the closed unit disk x2 + y2 ≤ 1?

Theorem 1.3. There is no rational number x such that x2 = 2.

Proof. Suppose for a contradiction that x = m/n, where m and n have no
common factors. Then

(m
n

)2

= 2, i.e., m2 = 2n2,

where m ∈ Z and n ∈ N have no common factors other than 1. This shows
that m2 is even, and so is m (if m were odd, then m2 would be odd). Hence,
there exists k ∈ Z such that m = 2k. This gives

(2k)2 = 2n2 or 2k2 = n2,

and therefore n is also even. The last statement contradicts our assumption
that m and n have no common factor other than 1.

It turns out, then, that the solution of x2−2 = 0 is not a rational number.
We denote it by

√
2 and call it an irrational number.

If we draw the graph of y = x2 − 2 (see Figure 1.2), the value of x at
which the graph crosses the y-axis is thus a “new type” of number x, which
satisfies the equation x2 − 2 = 0. It is called an irrational number (see
Questions 1.11(7)).
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1.1.4 Algebraic Numbers

A natural number is called a prime number (or a prime) if it is greater than
one and has no divisors other than 1 and itself. For example, 2, 3, 5, 7 are
prime numbers. On the other hand, 4, 6 are not prime (since 4 = 2 × 2 and
6 = 2 × 3). There are infinitely many primes, as demonstrated by Euclid
around 300 BC, and there are various methods to determine whether a given
number n is prime.

Definition 1.4. A number x is called algebraic if there exists an n ∈ N,
a0, a1, . . . , an ∈ Z such that

a0 + a1x+ · · ·+ anx
n = 0 (an �= 0).

For instance, it follows that

• Every rational is algebraic (x = m/n implies m− nx = 0).
• 71/3, 31/2, 21/2 all represent algebraic numbers, since they are the solutions
of

x3 − 7 = 0, x2 − 3 = 0, x2 − 2 = 0,

respectively.

Our next basic result shows that a rational number has a special relationship
to polynomial equations with integer coefficients.

Theorem 1.5 (Rational zeros theorem). Suppose that a rational number
r = p/q (in lowest term) solves the polynomial equation

a0 + a1x+ a2x
2 + · · ·+ anx

n = 0 (a0 �= 0, an �= 0),

where n ≥ 1 and ak ∈ Z for 0 ≤ k ≤ n. Then

(a) p divides a0, i.e., a0 = p · k for some integer k.
(b) q divides an, i.e., an = q ·m for some integer m.

Proof. By hypothesis,

a0 + a1

(
p

q

)
+ · · ·+ an

(
p

q

)n

= 0.

Multiplying by qn gives

a0q
n + a1pq

n−1 + · · ·+ an−1p
n−1q + anp

n = 0,

or
anp

n = −q[a0q
n−1 + a1pq

n−2 + · · ·+ an−1p
n−1].

It follows that q divides anp
n. But since p and q have no common factors, q

cannot divide pn, and so q must divide an. Similarly, solving the equation for
a0q

n shows that p must divide a0.
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Example 1.6. Consider x2−2 = 0. Then a0 = −2, a1 = 0, and a2 = 1. Thus,
the only possible rational solutions of x2 − 2 = 0 are ±1, ±2 (if x = p/q, then
integer values of p for which p divides 2 are ±1, ±2, and the natural number
q for which q divides 1 is 1). Substituting these possible solutions shows that√
2 cannot be rational. •

1.1.5 The Field of Real Numbers

We have the natural proper inclusions

N � Z � Q � R,

where the set R consists of rational numbers (terminating and repeating dec-
imals) and all irrational numbers (nonrepeating decimals) such as the alge-
braic number

√
2. The mathematical system on which we are going to base

our analysis is the set R of all real numbers (see Section 1.2).
A field is a set F that possesses two binary operations, namely addition

(+ ) and multiplication ( · ), such that F is closed with respect to these two
operations (meaning that a, b ∈ F implies a+b ∈ F and a ·b ∈ F ) and satisfies
the familiar rules of arithmetic:

• Addition is commutative, i.e., a+ b = b + a for each a, b ∈ F .
• Addition is associative, i.e., (a+ b) + c = a+ (b+ c) for each a, b, c ∈ F .
• There exists an element 0 ∈ F such that 0+a = a for all a ∈ F (0 is called
the additive identity).

• To every a ∈ F there corresponds an additive inverse −a ∈ F such that
a+ (−a) = 0.

• Multiplication is commutative, i.e., a · b = b · a for each a, b ∈ F .
• Multiplication is associative, i.e., (a · b) · c = a · (b · c) for each a, b, c ∈ F .
• There exists an element 1 ∈ F , 1 �= 0, such that 1 · a = a for all a ∈ F
(1 is called the multiplicative identity).

• To every 0 �= a ∈ F there corresponds a multiplicative inverse a−1 ∈ F
such that a · a−1 = 1.

• Multiplication is distributive over addition:

a · (b+ c) = a · b+ a · c for each a, b ∈ F .

We state the following elementary properties, and we leave their proofs as
simple exercises.

Theorem 1.7. In a field F , the following are consequences of the field axioms:

(a) The additive identity and the multiplicative identity are unique.
(b) The additive inverse of an element and the multiplicative inverse of a

nonzero element are unique.
(c) a · 0 = 0 for every a ∈ F .
(d) a · (−b) = (−a) · b = −(a · b) for every a, b ∈ F .
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(e) −(−a) = a for every a ∈ F .
(f) (−a)(−b) = ab for every a, b ∈ F .
(g) a+ c = b+ c implies a = b for each a, b, c ∈ F .
(h) ab = 0 implies either a = 0 or b = 0 for each a, b ∈ F .
(i) ac = bc and c �= 0 implies a = b.

1.1.6 An Ordered Field

Definition 1.8. A field F is said to be an ordered field if there is a nonempty
subset P of F , called positive, satisfying the following additional axioms:

(a) if a, b ∈ P , then a + b ∈ P and a · b ∈ P (closed under addition and
multiplication, respectively),

(b) for every a ∈ F , exactly one of the following holds:

a ∈ P, −a ∈ P, a = 0.

Thus, for elements a, b ∈ F , we say that

• a < b (or b > a) if b − a ∈ P ,
• a ≤ b if a < b or a = b,
• b ∈ P ⇐⇒ b > 0,
• −a ∈ P ⇐⇒ a < 0, i.e., a is called negative.

Property (a) in Definition 1.8 may be read as follows:

a, b ∈ P, i.e., a > 0 and b > 0 =⇒ a+ b > 0 and ab > 0.

Property (b) implies that for any pair of elements a, b ∈ F , exactly one of the
following holds:

a < b, a = b, a > b.

The most familiar examples of fields are the set Q of rational numbers and
the set R of real numbers.

We may now write down some familiar properties concerning the ordered
relation of R.

• If a, b ∈ R, then exactly one of the following holds:
a < b or a > b or a = b. [Law of trichotomy]

• If a, b, c ∈ R, then we have
(a) a < b and b < c implies a < c. [Law of transitivity]
(b) a < b implies a+ c < b+ c. [Law of compatibility w.r.t.

addition]
(c) a < b and c > 0 implies ac < bc.
(d) a < b and c < 0 implies bc < ac.

[Law of compatibility w.r.t. multiplication]
(e) a �= 0 implies a2 > 0.

• If a ∈ R, then there exists a positive integer n such that n > a.
[Archimedean property]
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The field axioms together with an ordered relation make both Q and R

what are called ordered fields. We do not include the details, since that would
defeat the purpose of this book. So, we accept the following.

Theorem 1.9. Q and R are ordered fields.

For a ∈ R, its modulus |a| is defined by

|a| =
{
a if a ≥ 0,
−a if a < 0.

We call |a| the absolute value of a. It is particularly useful in describing dis-
tances: we interpret |a| as the distance along the real line between 0 and a. In
the same way, for a, b ∈ R, we let |a − b| denote the distance between a and
b, which is same as the distance along the real line from 0 to a− b. Here is a
list of basic properties of the absolute value.

Theorem 1.10. For a, b, c ∈ R,

(a) |a| = 0, with equality iff a = 0.
(b) −|a| ≤ a ≤ |a|.
(c) For r > 0, |a| < r if and only −r < a < r.
(d) |ab| = |a| · |b|.
(e) |a+ b| ≤ |a|+ |b|.
(f) |a− b| ≥ | |a| − |b| |.
(g) |a− b| = |b− a|.
(h) |a− c| ≤ |a− b|+ |b− c|.

1.1.7 Questions and Exercises

Questions 1.11.

1. For what values of x does x2 ∈ N imply x ∈ Q?
2. For each a, b, c real, does there always exist a real x such that ax2 + bx+

c = 0?
3. If a set A has n elements, how many elements does the power set P(A)

have?
4. Why do we usually express a fraction in lowest terms (i.e., without

common factors)?
5. Is there a rational number x such that x3 − x− 7 = 0?
6. Is

√
3 +

√
2 rational or irrational?

7. If p > 1 is a prime number, can
√
p be a rational number?

8. If a and b are two irrational numbers, what can you say about a+ b, a− b,
and ab? How about αa, where α is a rational number?
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Exercises 1.12.

1. Show that if m,n ∈ N and xm = n has no integer solution, then m
√
n is

irrational.
2. Show that neither 3

√
6 nor

√
2 +

√
2 is a rational number.

3. Show that
√
n is irrational for every natural number n that is not a perfect

square.
4. Show that following numbers are irrational:

(a)
√
12. (b)

√
n+ 1 +

√
n− 1.

5. For a, b ∈ R, using the axioms of an ordered field, show that
(a) 0 < a < b iff 1/a > 1/b.
(b) a < b =⇒ ap < bp whenever 0 < a < b and p > 0.

6. Show that for all a1, a2, . . . , an ∈ R,

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an|.
7. Prove by the method of induction that

(a)
n∑

k=1

k3 =

(
n∑

k=1

k

)2

. (b)
n∑

k=1

k(k + 1) =
n(n+ 1)(n+ 2)

3
.

1.2 Supremum and Infimum

Definition 1.13. Suppose that A is a nonempty subset of R.

(a) If there exists an M such that x ≤ M for every x ∈ A, then we say that
M is an upper bound for A. In this case, we say that A is bounded above
by M . Geometrically, this means that no point of A lies to the right of M
on the real line.

(b) If there exists an m such that x ≥ m for every x ∈ A, then m is called
a lower bound for A. In this case, we say that A is bounded below by m.
Geometrically, this means that no point of A lies to the left of m on the
real line.

(c) The set A is said to be bounded if it is bounded above and bounded below.

We remark that a set A is bounded iff there exist real numbers m and M
such that A ⊂ [m,M ], or equivalently, if there exists a positive number a such
that A ⊂ [−a, a]. A set that is not bounded is said to be unbounded. Thus, a
set S is unbounded if for each R > 0 there is a point x ∈ S such that |x| > R.
For instance, the set A1 = {1/n : n ∈ N} is a bounded set, but A2 = (−∞, 2]
and A3 = {n : n ∈ N} are unbounded.

Any finite set of real numbers obviously has a greatest element and a
smallest element, but this property does not necessarily hold for infinite sets.
For instance, (0, 1] has a greatest element, namely 1, but neither the set N nor
the interval [0, 1) has a greatest element. On the other hand, [0, 1) is bounded
above by 1, and N is not bounded above by any real number.
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We have seen that not all sets are bounded above. However, if a nonempty
set of real numbers is bounded, it has a least upper bound. What does
this mean?

1.2.1 Least Upper Bounds and Greatest Lower Bounds

Definition 1.14 (Least upper bound). Let A be a nonempty subset of R.
Then a real number M is said to be the least upper bound (lub) of A in R if:

(a) A is bounded above by M .
(b) For any ε > 0, there exists a point y ∈ A such that y > M − ε. That is,

M is the smallest among all the upper bounds of A.

If A has a least upper bound M , we write M = lubA.

The condition (b) is equivalent to saying that α < M implies that α is not
an upper bound for A. Equivalently, it means that if M ′ is an upper bound
for A, then M ′ ≥ M . For instance, every M ′ ≥ 2 is an upper bound for the set
A = [0, 2), whereas 1.99999 is not. The set N is not bounded above, because
for each M , there is a positive integer n with n > M , by the archimedean
property of R.

Lemma 1.15. If the least upper bound of a set exists, then it is unique.

Proof. Let A ⊆ R, where A is bounded above. Suppose that α and α′ are
both least upper bounds for A. Then both α and α′ are upper bounds for A.
Since both α and α′ are least upper bounds, we must have

α′ ≤ α and α ≤ α′.

Thus, α = α′, as required.

Definition 1.16 (Greatest lower bound). A real number m is said to be
the greatest lower bound (glb) of a set A ⊂ R if:

(a) A is bounded below by m.
(b) For any ε > 0, there exists a point y ∈ A such that y < m+ ε. That is, m

is the largest among all the lower bounds of A.

If A has a glb m, we write m = glbA.

The condition (b) means that if m′ > m, then m′ is not a lower bound
for A.

Lemma 1.17. If a set has a greatest lower bound, then it is unique.

Proof. The proof follows from arguments similar to those of the proof of
Lemma 1.15, and so we omit the details.
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The completeness properties of the real numbers can be expressed in the
following forms.

Definition 1.18 (Least upper bound property). Every nonempty subset
A of real numbers that has an upper bound has a least upper bound, lubA.

Definition 1.19 (Greatest lower bound property). Every nonempty sub-
set A of real numbers that has a lower bound has a greatest lower bound glbA.

It is this property that distinguishes R from Q. For example, the algebraic
equation

x2 − 2 = 0

is solvable in R but not in Q. There are uncountably many numbers in R,
such as π, that are neither rational nor algebraic.

Both these facts are intuitively obvious. These two theorems—also called
the continuum properties—are fundamental results of analysis. In conclusion,
R is an ordered field that satisfies the continuum properties.

Now we extend the notions of lubA and glbA in a convenient form as
follows. For a nonempty subset A of real numbers, we define the supremum
of A (denoted by supA) and the infimum of A (denoted by inf A) by

supA =

{∞ if A has no upper bound,
lubA if A is bounded above,

and

inf A =

{−∞ if A has no lower bound,
glbA if A is bounded below,

respectively. We remark that the symbols supA and inf A always make sense
and that inf A ≤ supA.

For a ≤ b, important subsets of R are intervals:

• (a, b) = {x ∈ R : a < x < b}. [open interval]
• [a, b] = {x ∈ R : a ≤ x ≤ b}. [closed interval]
• (a, b] = {x ∈ R : a < x ≤ b}. [half-open interval]
• [a, b) = {x ∈ R : a ≤ x < b}. [half-open interval]

The two endpoints a and b are points in R. A set consisting of a single point
is sometimes called a degenerate interval. It is sometimes convenient to allow
the symbols a = −∞ and b = +∞, so that

(−∞, b) = {x ∈ R : x < b},
(−∞, b] = {x ∈ R : x ≤ b},
(a,∞) = {x ∈ R : x > a},
[a,∞) = {x ∈ R : x ≥ a},

(−∞,∞) = {x : x ∈ R} = the real line.
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More general subsets of R that we often use may be obtained by taking a finite
or infinite union of intervals or a finite or infinite intersection of intervals.
Finally, for δ > 0 and a ∈ R, we call

(a− δ, a+ δ) = {x ∈ R : |x− a| < δ}

a δ-neighborhood of a; it consists of all points x that are within distance δ of a.

Example 1.20. If A = [0, 1), then we see that supA = 1. Indeed, 1 is an
upper bound for A. To show that 1 is the least upper bound, it suffices to
prove that each M ′ < 1 is not an upper bound of A. In order to do this, we
must find an element x ∈ [0, 1) with x > M ′. But we know that for every
M ′ < 1, there exists an x, say x = (M ′ + 1)/2, with

M ′ < x < 1.

This inequality clearly implies that M ′ cannot be an upper bound for [0, 1),
i.e., M = 1 is the least upper bound. •

Using the same procedure as in the above example, we have the following:

(1) If A = {1, 2, 3}, then inf A = 1 and supA = 3.
(2) If A = {x : −1 ≤ x < 3}, then inf A = −1 and supA = 3.
(3) If A = {x : x > 3}, then A has no upper bound, so that supA = ∞. Also,

inf A = 3.
(4) If A = {x : x < 1}, then A has no lower bound, so that inf A = −∞.

Also, supA = 1.
(5) The sets Z and Q are neither bounded above nor bounded below. On the

other hand, the set N is bounded below but not bounded above. In fact,
1 is a lower bound for N and so is any number less than 1. Moreover,
inf N = 1.

Definition 1.21. Let A ⊂ R. If the least upper bound M of A belongs to A,
then we say that A has a largest element. The smallest element of A may be
defined similarly.

If a set A has a largest element M , then we call M the maximum element
of the set A, and we write M = maxA. Similarly, if A has a smallest element
m, we call m the minimum element of A and write m = minA. In this case,
we have inf A = minA and supA = maxA.

If a, b ∈ Q, then so is its average (a + b)/2, which lies between a and b.
Thus, between any two rational numbers there are infinitely many rational
numbers. This shows that given a rational number, we cannot talk about the
“next largest rational number.” This observation and the above discussion
imply that the rational number system has certain gaps. The real number
system fills those gaps. Moreover, a convenient way of representing rational
numbers is geometrically, as points on a number line (see Figure 1.3).



14 1 The Real Number System

−1

a<b
negative positive

1
2

1
3

−2 0 1 ba

Fig. 1.3. The number line.

This geometric representation of rational numbers shows that the set of
rational numbers has a natural order on the number line. If a lies to the left
of b, then we write

a < b or b > a,

and say that “a is less than b” or “b is greater than a.” For example,

1

2
<

2

3
< 1.

The completeness axioms help us to conclude that there are both rational and
irrational numbers between any two distinct real numbers (in fact, there are
infinitely many of each).

1.2.2 Functions

Let X and Y be two nonempty subsets of a universal set, for example, R. A
function or mapping2 f from X to Y is a rule, or formula, or assignment, or
relation of association that assigns to each x ∈ X a unique element y ∈ Y .
We write

f : X → Y (1.1)

to denote the mapping f from X to Y . To be more precise about the rule of
association, we say that a function from X to Y is a set f of ordered pairs
in X × Y such that for each x ∈ X there exists a unique element y ∈ Y such
that (x, y) ∈ f ; i.e., if (x, y) ∈ f and (x, y′) ∈ f , then y = y′.

The set X on which the function f is defined is called the domain of f , and
we write dom (f) for X . We call the set Y the codomain of f . When we define
a map by describing its effect on the individual elements, we use the symbol
�→; thus “the mapping x �→ y of X into Y ” means that f is a mapping of X
into Y taking each element x of X into a unique element y of Y . In practice,
we denote the unique y by f(x) and say that f(x) is the image of x under f ,
or the value of f at x. Thus, when we use the notation (x, y) ∈ f , we write
y = f(x). For instance, if X = {a, b, c, d} and Y = {1, 2, 3}, then the rule

a �→ 1, b �→ 1, c �→ 2, d �→ 1,

defines a function f : X → Y , because it assigns a unique element of Y to
each element of X .

2 The terms mapping, function, and transformation are frequently used synony-
mously.
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In this book we will be concerned mainly with functions for which X ⊂ R

and Y = R, i.e., f is a real-valued function of a real variable x. However, when
we discuss Fourier series, we will be dealing with complex-valued functions
defined on a real variable t, although we shall not pay much attention to
this. If a function is defined without its domain being indicated, then it is
understood to be the largest subset on which the function is well defined. For
example, if functions f, g, h are defined by

f(x) =
1

x
, g(x) =

1

1 + x2
, and h(x) =

√
1− x2,

then dom(f) = R \{0}, dom(g) = R, and dom (h) = [−1, 1]. If f is defined
on X and S ⊂ X , we can have f : S → Y , and we call this new function the
restriction of f in (1.1) to S and denote it by f |S. Moreover,

f(S) := {f(x) : x ∈ S} = {y ∈ Y : there exists an x ∈ S with f(x) = y}
is called the image of the set S under f . Clearly, f(S) is a subset of the
codomain Y , and f(S) may be a proper subset of Y even if X = S. The subset
f(X) is called the range of f . For instance, if X = {a, b, c}, Y = {1, 2, 3, 4},
and f : X → Y is a function defined by the rule

a �→ 1, b �→ 4, c �→ 1,

then dom(f) = X and f(X) = {1, 4} is the range of f , but f(X) �= Y .
Also, we remark that the notation f(p) has two possible meanings, depending
on whether p is an element of X or a subset of X . However, the standard
practice of using lowercase letters for members of X and uppercase letters for
sets makes the situation clear.

If Y1 ⊂ Y , then the inverse image of Y1 under f , denoted by f−1(Y1), is
the subset of X defined by

f−1(Y1) = {x ∈ X : f(x) ∈ Y1}.
Also,

f(x) ∈ Y1 ⇐⇒ x ∈ f−1(Y1).

Thus, f−1(Y1) ⊂ X for Y1 ⊂ Y . If Y1 = {y} ⊂ Y , then we write f−1(y)
instead of f−1({y}). The notation f−1 is used for two different purposes but
is universally accepted. However, the context of the usage of f−1 will always
be made clear, so there should be no confusion about it.

For two mappings f : X → Y and g : Y → Z for which f(X) ⊂ Y , we can
define the composite mapping g ◦ f : X → Z by

(g ◦ f)(x) = g(f(x)).

Composition is an associative operator, i.e.,

(g ◦ f) ◦ h = g ◦ (f ◦ h).
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In general, composition is not commutative. For example, consider f, g : R →
R by

f(x) = x2 − 2x and g(x) = x3 − 2.

Then

f(g(x)) = (x3 − 2)2 − 2(x3 − 2) and g(f(x)) = (x2 − 2x)3 − 2.

Clearly, g ◦ f �= f ◦ g, and so composition is not commutative.
The mapping f : X → Y is said to map X onto Y if the codomain and the

range are equal, i.e., f(X) = Y . Therefore, in order to prove that f is onto,
one must start with an arbitrary y ∈ Y and then show that there is at least
one x ∈ X such that f(x) = y.

The mapping f : X → Y is said to be 1-to-1 (one-to-one) if it maps distinct
elements into distinct elements, i.e., f(x1) �= f(x2) for all x1, x2 ∈ X with
x1 �= x2. More formally, f is one-to-one if for x1, x2 ∈ X ,

f(x1) = f(x2) =⇒ x1 = x2.

A mapping that is both one-to-one and onto is called bijective.3

Example 1.22. Consider X = {−2,−1, 0, 1, 2, 3, 4}, Y = {0, 1, 4, 9, 16}, and
the function f : X → Y given by f(x) = x2. Then f is onto, but is not
one-to-one because, for example, f(−1) = f(1). •

More generally, we have the following.

Example 1.23. Consider the mapping f : A → B, x �→ x2, where A and B
are subsets of R. Then

f(x1) = f(x2) =⇒ (x1 + x2)(x1 − x2) = 0 =⇒ x1 = x2 if x1 + x2 �= 0.

Therefore, we have the following results.

(a) Let A = R and B = R
+
0 , the set of all nonnegative real numbers. Since

there exist x1, x2 ∈ A such that x1 + x2 = 0, f is not one-to-one in this
case. Similarly, if A = B = Z, then f is not one-to-one, which can be
shown by similar reasoning.

(b) Let A = B = R
+, the set of all positive real numbers. Then for each

x1, x2 ∈ A, we have x1+x2 �= 0, and therefore f is one-to-one in this case.
Similarly, we see that if A = B = N, the set of natural numbers, then f
is one-to-one.

(c) If A = B = R, then f is not onto, because the set of all real numbers is
not the image of R under our mapping. Also, if A = B = N, then f is
not onto. However, if A = R and B = R

+
0 , then f is onto. In fact, when

A = B = R
+, f is bijective. •

3 The terms “one-to-one,” “onto,”, and “one-to-one correspondence” are sometimes
referred as “injective,” “surjective,” and “bijective” mappings, respectively.
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If f : X → Y is bijective, then we may define a function g = f−1 by the
rule

f−1(x) = y ⇐⇒ f(y) = x.

We call f−1 the inverse of the function f . Also, we have

f ◦ f−1(y) = y for all y ∈ Y and f−1 ◦ f(x) = x for all x ∈ X.

Example 1.24. Consider f(x) = x2 − 2x and g(x) = x3 − 2. The function f
is not one-to-one, because f(0) = f(2) = 0. On the other hand, g is bijective,
because for each y ∈ R, y = x3 − 2 has the unique solution x = (y + 2)1/3. •

If f : X → Y is a function, then the inverse relation f−1 defined above
is not, in general, a function. More about onto functions and related inverses
will be addressed in Chapter 4.

Definition 1.25. A function f : I → R is said to be

• bounded above if there exists an M ∈ R such that f(x) ≤ M for all x ∈ I,
• bounded below if there exists an m ∈ R such that f(x) ≥ m for all x ∈ I,
• bounded if it is bounded both below and above, that is, if there exists an
R > 0 such that |f(x)| ≤ R for all x ∈ I,

where I is some interval in R or some subset of R.

1.2.3 Equivalent and Countable Sets

Suppose that A and B are two sets. We say that A is equivalent to B, written
A ∼ B, if there is a bijective (i.e., one-to-one and onto) mapping from A to
B. If A ∼ B, then we say that A and B have a one-to-one correspondence
between them. The following theorem is easy to prove.

Theorem 1.26. Given three sets A, B, and C, we have

(a) A ∼ A,
(b) A ∼ B =⇒ B ∼ A, and
(c) A ∼ B, B ∼ C =⇒ A ∼ C.

In view of this theorem, we can now reformulate equivalents in the follow-
ing form.

Definition 1.27. Two sets A and B are said to be equivalent, written A ∼ B,
if there is a bijection from A to B. The sets A and B are then said to have
the same cardinality.

Example 1.28. Define f : [0, 1] → [a, b] (a < b) by f(x) = (1− x)a+ xb. We
see that f is bijective, and therefore [0, 1] and [a, b] are equivalent. •
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Definition 1.29. A set S is finite if either S = ∅ or S is equivalent to
{1, 2, . . . , n} for some n ∈ N. A set that is not finite is called infinite. A set
S is said to be countable or denumerable if either it is finite or S ∼ N, i.e.,
if there exists a one-to-one correspondence between N and the set S. A set is
said to be uncountable or nondenumerable if it is not countable.

Example 1.30. The set N is countable, since the bijection f(x) = x does the
job. In order to prove that the set Z is countable, we just need to notice that
elements of Z can be written as a list of

0,−1, 1,−2, 2,−3, 3, . . . .

This amounts to defining a bijection f : N → Z by

f(n) =

⎧
⎪⎨

⎪⎩

n− 1

2
if n = 1, 3, 5, . . .,

−n

2
if n = 2, 4, 6, . . ..

Therefore, Z is countable. Similarly, the set of all even positive integers is
countable. •

We may now state without proof the following.

Theorem 1.31. (a) Every subset of a countable set is countable.
(b) The set Q of rationals is countable.
(c) A countable union of countable sets is countable.
(d) The Cartesian product A×B of countable sets A and B is countable.
(e) The set R is uncountable.

Since R is uncountable, the set R \Q of all irrational numbers is uncount-
able. In particular, any interval that contains more than one point is uncount-
able. Indeed, the fact that there are uncountably many real numbers in (0, 1)
follows from constructing, for example, the set of all infinite sequences of 0’s
and 1’s, which can be shown to be uncountable. Therefore, we have a natural
question to look at: Are there other familiar sets that are uncountable? We
note that according to the definition, the counting convention is via bijections,
and the set of real numbers actually has in some sense many more numbers
than the set of rational numbers. In general, given a set X , does there exist a
method of constructing another set from X that will contain more elements
than X? If X is countable (finite or infinite), then the answer is trivial, be-
cause if X is finite, then one can obtain a new set simply by adding one more
element that does not belong to X . However, if X is countably infinite, then
a new set obtained by adding a finite number of elements or even a countably
infinite number of elements to X will again be countable. Hence, we have to
think of some other method. Indeed, a method of getting bigger and bigger
sets follows from the definition of power set. Thus, the notion of cardinality
of a set X will play an important role.
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If a set S is finite, then the number of elements of X is defined to be
the cardinality of S, denoted by |S| or cardS. Thus, two finite sets A and B
have the same size, i.e., cardA = cardB, if they contain the same number of
elements. An important question is how to carry the notion of equal size over
to infinite sets such as N and Z? We have the following definition. Given two
arbitrary sets A and B (finite or infinite), then we say that cardA = cardB
if there exists a bijection between them. In particular, the notion of equal size
is an equivalence relation, and we then associate a number called the cardinal
number to every class of equal-sized sets. At this point, it is important to
note that it is often difficult to find the cardinal number of a set, since the
definition requires a function that is both one-to-one and onto. We note that it
is usually easier to find one-to-one functions than onto functions. Therefore,
we may make use of the following theorem, due to Cantor and Bernstein,
which we state without proof.

Theorem 1.32 (Cantor–Bernstein). Let A and B be two sets. If there
exists a one-to-one function f : A → B and another one-to-one function
g : B → A, then cardA = cardB.

This theorem can be used to show, for example, that

card (R× R) = cardR.

Moreover, the fact that Q is countable can also be obtained by showing that
Q and Z× Z have the same cardinality.

1.2.4 Questions and Exercises

Questions 1.33.

1. Should a nonempty bounded set in R have a maximum? minimum?
2. Suppose that A is a nonempty set in R and −A = {−x : x ∈ A}. What

are the relations among inf A, supA, inf(−A), and sup(−A)?
3. What will happen if we divide an inequality by a negative real number?
4. Let A and B be two nonempty subsets of R such that A∩B is nonempty.

How are inf(A ∪ B), min{inf A, inf B}, sup(A ∪ B), max{supA, supB},
inf(A ∩B), and sup(A ∩B) related?

5. Let A and B be two nonempty bounded sets of positive real numbers and
C = {xy : x ∈ A and y ∈ B}. Must supC = (supA)(supB)? If so, what
if either A or B contains negative real numbers?

6. Does the completeness axiom hold for Q?
7. Does there exist a bijection from the interval (0, 1) to R?
8. Does there exist a bijection from the interval (0, 1) to [0, 1)?
9. Is the composition of one-to-one (respectively onto, bijective) mappings

one-to-one (onto, bijective)?
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10. Suppose that f and g are functions such that g ◦ f is onto. Must g be
onto? Should f be onto?

11. Suppose that f and g are functions such that g ◦ f is one-to-one. Must f
be one-to-one? Should g be one-to-one?

12. If f : A → B and g : B → C are such that f(A) = B and g(B) = C,
should (g ◦ f)(A) = C?

13. Which one of the following is not true?
(a) f(A ∪B) = f(A) ∪ f(B). (b) f−1(A ∪B) = f−1(A) ∪ f−1(B).
(c) f(A ∩B) = f(A) ∩ f(B). (d) f−1(A ∩B) = f−1(A) ∩ f−1(B).

14. Can a finite set be equivalent to a proper subset of itself?
15. Must a set be infinite if it is equivalent to a proper subset of itself?

Exercises 1.34.

1. Let A consist of all positive rational numbers x whose square is less than 2,
and let B consist of all positive rational numbers y such that y2 > 2. Show
that A contains no largest number and B contains no smallest number.

2. For x, y ∈ R, show that

max{x, y} =
x+ y + |x− y|

2
and min{x, y} =

x+ y − |x− y|
2

.

3. Let A and B be two nonempty subsets of R such that B ⊂ A is nonempty.
Prove that

inf A ≤ inf B ≤ supB ≤ supA.

4. Let A and B be two nonempty bounded sets of positive real numbers.
Set S1 = A ∪ B, S2 = A ∩ B, S3 = {x + y : x ∈ A and y ∈ B},
S4 = {x + a : x ∈ A} for some a > 0, and S5 = {xa : x ∈ A} for some
a > 0. Determine a relationship among
(a) supA, supB, and supS1. (b) supA, supB, and supS2.
(c) supA, supB, and supS3. (d) inf A, inf B, and inf S3.
(e) supA and supS4. (f) supA and supS5.

5. Using the completeness properties (see Definitions 1.18 and 1.19), prove
the following version of the archimedean property of R: If a and b are pos-
itive real numbers, then there exists a positive integer n such that na>b.

6. Suppose that x, y ∈ R are such that y > x. Use the previous exercise to
prove that there exist a rational number and an irrational number strictly
between x and y.

7. Determine the domain of each of the following functions:

(a) f(x) =
√
x(x2 − 1). (b) f(x) =

x

[x]
. (c) f(x) =

√
x− 1

x− 4
.

8. Prove that (−π/2, π/2) and R are equivalent.
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9. Explain why the mapping f : N → N, n �→ 2n − 1, is not a one-to-one
correspondence.

10. Consider the function

f(x) =
ax+ b

cx+ d
, x ∈ R \{−d/c}.

Determine conditions on a, b, c, d such that f is its own inverse.
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Sequences: Convergence and Divergence

In Section 2.1, we consider (infinite) sequences, limits of sequences, and
bounded and monotonic sequences of real numbers. In addition to certain
basic properties of convergent sequences, we also study divergent sequences
and in particular, sequences that tend to positive or negative infinity. We
present a number of methods to discuss convergent sequences together with
techniques for calculating their limits. Also, we prove the bounded monotone
convergence theorem (BMCT), which asserts that every bounded monotone
sequence is convergent. In Section 2.2, we define the limit superior and the
limit inferior. We continue the discussion with Cauchy sequences and give ex-
amples of sequences of rational numbers converging to irrational numbers. As
applications, a number of examples and exercises are presented.

2.1 Sequences and Their Limits

An infinite (real) sequence (more briefly, a sequence) is a nonterminating
collection of (real) numbers consisting of a first number, a second number,
a third number, and so on:

a1, a2, a3, . . . .

Specifically, if n is a positive integer, then an is called the nth term of the
sequence, and the sequence is denoted by

{a1, a2, . . . , an, . . .} or, more simply, {an} .
For example, the expression {2n} denotes the sequence 2, 4, 6, . . .. Thus, a
sequence of real numbers is a special kind of function, one whose domain is
the set of all positive integers or possibly a set of the form {n : n ≥ k} for
some fixed k ∈ Z, and the range is a subset of R. Let us now make this point
precise.

Definition 2.1. A real sequence {an} is a real-valued function f defined on
a set {k, k + 1, k + 2, . . .}. The functional values
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f(k), f(k + 1), f(k + 2), . . .

are called the terms of the sequence. It is customary to write f(n) = an for
n ≥ k, so that we can denote the sequence by listing its terms in order; thus
we write a sequence as

{an}n≥k or {an+k−1}∞n=1 or {an}∞n=k or {ak, ak+1, . . .}.

The number an is called the general term of the sequence {an} (nth term,
especially for k = 1). The set {an : n ≥ k} is called the range of the sequence
{an}n≥k. Sequences most often begin with n = 0 or n = 1, in which case
the sequence is a function whose domain is the set of nonnegative integers
(respectively positive integers). Simple examples of sequences are the se-
quences of positive integers, i.e., the sequence {an} for which an = n for
n ≥ 1, {1/n}, {(−1)n}, {(−1)n + 1/n}, and the constant sequences for which
an = c for all n. The Fibonacci sequence is given by

a0, a1 = 1, a2 = 2, an = an−1 + an−2 for n ≥ 3.

The terms of this Fibonacci sequence are called Fibonacci numbers , and the
first few terms are

1, 1, 2, 3, 5, 8, 13, 21.

2.1.1 Limits of Sequences of Real Numbers

A fundamental question about a sequence {an} concerns the behavior of its
nth term an as n gets larger and larger. For example, consider the sequence
whose general term is

an =
n+ 1

n
= 1 +

1

n
.

It appears that the terms of this sequence are getting closer and closer to the
number 1. In general, if the terms of a sequence can be made as close as we
please to a number a for n sufficiently large, then we say that the sequence
converges to a. Here is a precise definition that describes the behavior of a
sequence.

Definition 2.2 (Limit of a sequence). Let {an} be a sequence of real num-
bers. We say that the sequence {an} converges to the real number a, or tends
to a, and we write

a = lim
n→∞ an or simply a = lim an,

if for every ε > 0, there is an integer N such that

|an − a| < ε whenever n ≥ N.
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In this case, we call the number a a limit of the sequence {an}. We say that
the sequence {an} converges (or is convergent or has limit) if it converges to
some number a. A sequence diverges (or is divergent) if it does not converge
to any number.

For instance, in our example above we would expect

lim
n→∞

n+ 1

n
= 1.

The notions of convergence and limit of a sequence play a fundamental role
in analysis.

If a ∈ R, other notations for the convergence of {an} to a are

lim
n→∞(an − a) = 0 and an → a as n → ∞.

The notation a = lim an means that eventually the terms of the sequence {an}
can be made as close to a as may be desired by taking n sufficiently large.
Note also that

|an − a| < ε for n ≥ N ⇐⇒ an ∈ (a− ε, a+ ε) for n ≥ N.

That is, a sequence {an} converges to a if and only if every neighborhood of a
contains all but a finite number of terms of the sequence. Since N depends on
ε, sometimes it is important to emphasize this and write N(ε) instead of N .
Note also that the definition requires some N , but not necessarily the smallest
N that works. In fact, if convergence works for some N then any N1 > N also
works.

To motivate the definition, we again consider an = (n+1)/n. Given ε > 0,
we notice that

∣∣∣∣
n+ 1

n
− 1

∣∣∣∣ =
1

n
< ε whenever n >

1

ε
.

Thus, N should be some natural number larger than 1/ε. For example, if
ε = 1/99, then we may choose N to be any positive integer bigger than 99,
and we conclude that∣∣∣∣

n+ 1

n
− 1

∣∣∣∣ < ε =
1

99
whenever n ≥ N = 100.

Similarly, if ε = 2/999, then 1/ε = 499.5, so that
∣∣∣∣
n+ 1

n
− 1

∣∣∣∣ < ε =
2

999
whenever n ≥ N = 500.

Thus, N clearly depends on ε.
The definition of limit makes it clear that changing a finite number of terms

of a given sequence affects neither the convergence nor the divergence of the
sequence. Also, we remark that the number ε provides a quantitative measure
of “closeness,” and the number N a quantitative measure of “largeness.”

We now continue our discussion with a fundamental question: Is it possible
for a sequence to converge to more than one limit?
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Theorem 2.3 (Uniqueness of limits). The limit of a convergent sequence
is unique.

Proof. Suppose that a = lim an and a′ = lim an. Let ε > 0. Then there exist
two numbers N1 and N2 such that

|an − a| < ε for n ≥ N1 and |an − a′| < ε for n ≥ N2.

In particular, these two inequalities must hold for n ≥ N = max{N1, N2}. We
conclude that

|a− a′| = |a− an − (a′ − an)| ≤ |an − a|+ |an − a′| < 2ε for n ≥ N.

Since this inequality holds for every ε > 0, and |a− a′| is independent of ε, we
must have |a− a′| = 0, i.e., a = a′.

Also, as a direct consequence of the definition we obtain the following: If
an → a, then an+k → a for any fixed integer k. Indeed, if an → a as n → ∞,
then for a given ε > 0 there exists an N ∈ N such that |an − a| < ε for all
n ≥ N . That is,

|an+k − a| < ε for all n+ k ≥ N + k = N1 or |am − a| < ε for m ≥ N1,

which is same as saying that am → a as m → ∞.

Definition 2.4. A sequence {an} that converges to zero is called a null
sequence.

Examples 2.5. (i) The sequence {n} diverges because no matter what a and
ε we choose, the inequality

a− ε < n < a+ ε, i.e., |n− a| < ε,

can hold only for finitely many n. Similarly, the sequence {2n} diverges.
(ii) The sequence defined by {(−1)n} is {−1, 1,−1, 1, . . .}, and this sequence

diverges by oscillation because the nth term is always either 1 or −1. Thus
an cannot approach any one specific number a as n grows large. Also, we
note that if a is any real number, we can always choose a positive number
ε such that at least one of the inequalities

a− ε < −1 < a+ ε or a− ε < 1 < a+ ε

is false. For example, the choice ε = |1−a|/2 if a �= 1, and ε = |1+a|/2 if
a �= −1, will do. If a = 1 or −1, choose ε to be any positive real number
less than 1. Thus the inequality |(−1)n− a| < ε will be false for infinitely
many n. Hence {(−1)n} diverges.

(iii) The sequence {sin(nπ/2)}n≥1 diverges because the sequence is

{1, 0,−1, 0, 1, 0, . . .},
and hence it does not converge to any number, by the same reasoning as
above.

(iv) The sequence {(−1)n/n} converges to zero, and so it is a null
sequence. •
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Definition 2.6. A sequence {an} is bounded if there exists an R > 0 such
that |an| ≤ R for all n. A sequence is unbounded if it is not bounded.

Since a convergent sequence eventually clusters about its limit, it is fairly
evident that a sequence that is not bounded cannot converge, and hence the
next theorem is not too surprising; it will be used in the proof of Theorem
2.8.

Theorem 2.7. Every convergent sequence is bounded. The converse is not
true.

Proof. Let {an}n≥1 converge to a. Then there exists an N ∈ N such that
|an − a| < 1 = ε for n ≥ N . It follows that |an| < 1 + |a| for n ≥ N . Define
M = max{1 + |a|, |a1|, |a2|, . . . |aN−1|}. Then |an| < M for every n ∈ N.

To see that the converse is not true, it suffices to consider the sequence
{(−1)n}n≥1, which is bounded but not convergent, although the odd terms
and even terms both form convergent sequences with different limits.

2.1.2 Operations on Convergent Sequences

The sum of sequences {an} and {bn} is defined to be the sequence {an + bn}.
We have the following useful consequences of the definition of convergence
that show how limits team up with the basic algebraic operations.

Theorem 2.8 (Algebra of limits for convergent sequences). Suppose
that limn→∞ an = a and limn→∞ bn = b, where a, b ∈ R. Then

• limn→∞(ran + sbn) = ra+ sb, r, s ∈ R. [Linearity rule for sequences]
• limn→∞(anbn) = ab. [Product rule for sequences]
• limn→∞ an/bn = a/b, provided b �= 0. [Quotient rule for sequences]
• limn→∞ m

√
an = m

√
a, provided m

√
an is defined for all n and m

√
a exists.

Proof. The linearity rule for sequences is easy to prove. The quotient rule for
sequences is easy if we prove the product rule for sequences (see also Questions
2.44(33) and 2.44(34)). We provide a direct proof.

We write
anbn − ab = (an − a)bn + (bn − b)a.

Since every convergent sequence must be bounded, there exists an M > 0
such that |bn| ≤ M (say), for all n. Let ε > 0 be given. Again, since bn → b
as n → ∞, there exists an N2 such that

|bn − b| < ε

2(|a|+ 1)
for n ≥ N2.

(We remark that we could not use ε/2|a| instead of ε/[2(|a| + 1)] because a
could be zero.)
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Also by the hypothesis that an → a as n → ∞, there exists an N3 such
that

|an − a| < ε

2M
for n ≥ N3.

Finally, for n ≥ max{N2, N3} = N , we have

|anbn − ab| ≤ |an − a| |bn|+ |bn − b| |a|
<

ε

2M
M +

ε

2(|a|+ 1)
|a| < ε

2
+

ε

2
= ε.

The product rule clearly follows.
The proof of third part follows from Lemma 2.9. The proof of the final

part is left as a simple exercise (see Questions 2.44(16)).

Lemma 2.9 (Reciprocal rule). If limn→∞ bn = b and b �= 0, then the
reciprocal rule holds:

lim
n→∞

1

bn
=

1

b
.

Proof. The proof is easy, and so we leave it as a simple exercise.

Note that if an = (−1)n and bn = (−1)n−1, then {a2n} and {an+ bn} both
converge, although individual sequences {an} and {bn} diverge.

Example 2.10. Find the limit of each of these convergent sequences:

(a)

{
1

np

}
(p > 0). (b)

{
n2 − 2n+ 3

5n3

}
. (c)

{
n6 + 3n4 − 2

n6 + 2n+ 3

}
.

Solution. (a) As n grows arbitrarily large, 1/n (and hence 1/np) gets smaller
and smaller for p > 0. Thus, limn→∞ 1/np = 0. Also, we note that if ε > 0,
then |(1/np) − 0| < ε or n > 1/(ε1/p). Thus, if N is any integer greater than
1/(ε1/p), then

|(1/np)− 0| < ε for all n ≥ N.

Thus, for each p > 0, n−p → 0 as n → ∞. That is, {1/np} is a null sequence
for each p > 0.

(b) We cannot use the quotient rule of Theorem 2.8 because neither the
limit for the numerator nor that for the denominator exists. On the other
hand, we can divide the numerator and denominator by n3 and then use the
linearity rule and the product rule. We then have

n2 − 2n+ 3

5n3
=

1

5

(
1

n
− 2

n2
+

3

n3

)
→ 0 as n → ∞.

(c) Divide the numerator and denominator by n6, the highest power of n
that occurs in the expression, to obtain

lim
n→∞

n6 + 3n4 − 2

n6 + 2n+ 3
= lim

n→∞
1 + 3

n2 − 2
n6

1 + 2
n5 + 3

n6

= 1.
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In fact, if we set

an = 1 +
3

n2
− 2

n6
and bn = 1 +

2

n5
+

3

n6
,

then the linearity rule gives that an → 1 and bn → 1 as n → ∞. Finally, the
quotient rule gives the desired limit, namely,

lim
n→∞

an
bn

= 1. •
Suppose that {an} is a sequence of real numbers such that an > 0 for all

but a finite number of n. Then there exists an N such that an > 0 for all
n ≥ N . If the new sequence {1/an+N}n≥0 converges to zero, then we say that
{an} diverges to ∞ and write lim an = ∞. Equivalently, if lim an does not
exist because the numbers an > 0 become arbitrarily large as n → ∞, we
write limn→∞ an = ∞. We summarize the discussion as follows:

Definition 2.11 (Divergent sequence). For given sequences {an} and
{bn}, we have

(a) limn→∞ an = ∞ if and only if for each R > 0 there exists an N ∈ N such
that an > R for all n ≥ N .

(b) limn→∞ bn = −∞ if and only if for each R < 0 there exists an N ∈ N

such that bn < R for all n ≥ N .

We do not regard {an} as a convergent sequence unless lim an exists as a
finite number, as required by the definition. For instance,

lim
n→∞n3 = ∞, lim

n→∞(−n) = −∞, lim
n→∞ 3n = ∞, lim

n→∞(
√
n+ 5) = ∞.

We do not say that the sequence {n2} “converges to ∞” but rather that it
“diverges to ∞” or “tends to ∞.” To emphasize the distinction, we say that
{an} diverges to ∞ (respectively −∞) if lim an = ∞ (respectively −∞). We
note that lim(−1)nn is unbounded but it diverges neither to ∞ nor to −∞.

Definition 2.12 (Oscillatory sequence). A sequence that neither con-
verges to a finite number nor diverges to either ∞ or −∞ is said to oscillate or
diverge by oscillation. An oscillating sequence with finite amplitude is called
a finitely oscillating sequence. An oscillating sequence with infinite amplitude
is called an infinitely oscillating sequence.

For instance,

{(−1)n}, {1 + (−1)n}, {(−1)n(1 + 1/n)}
oscillate finitely. We remark that an unbounded sequence that does not diverge
to ∞ or −∞ oscillates infinitely. For example, the sequences

{(−1)nn}, {(−1)nn2}, {(−n)n}
are all unbounded and oscillate infinitely.
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Example 2.13. Consider an = (n2 + 2)/(n+ 1). Then

an = n

(
1 + 2

n2

1 + 1
n

)
.

From the algebra of limits we observe that

lim
n→∞

1 + 2
n2

1 + 1
n

= 1.

On other hand, limn→∞ an does not exist. Indeed, we can show that an → ∞
as n → ∞. According to the definition, we must show that for a given R > 0,
there exists an N such that an > R for all n ≥ N . Now we observe that

an > R ⇐⇒ n+ 1 +
3

n+ 1
> R + 2,

which helps to show that an > R if n ≥ R+ 2. So we can choose any positive
integer N such that N ≥ R + 2. We then conclude that an → ∞ as n → ∞.
Similarly, we easily have the following:

(1) As in Example 2.10(c), we write

lim
n→∞

n7 + 2n3 − 1

n6 + n2 + 3n+ 1
= lim

n→∞
1 + 2

n4 − 1
n7

1
n + 1

n5 + 3
n6 + 1

n7

.

The numerator tends to 1 as n → ∞, whereas the denominator approaches
0. Hence the quotient increases without bound, and the sequence must
diverge. We may rewrite in the present notation,

lim
n→∞

n7 + 2n3 − 1

n6 + n2 + 3n+ 1
= ∞.

(2) {n/3 + 1/n}, {n3 − n}, {(n2 + 1)/(n+ 1)}, and {(n3 + 1)/(n+ 1)} all
diverge to ∞.

(3)
{
(−1)nn2

}
diverges but neither to −∞ nor to ∞.

(4) an → ∞ =⇒ a2n → ∞.
(5) If an > 0 for all large values of n, then an → 0 =⇒ 1/an → ∞. Is the

converse true? •
Finally, we let an =

√
n2 + 5n − n and consider the problem of finding

lim an. It would not be correct to apply the linearity property for sequences

(because neither lim
√
n2 + 5n nor limn exists as a real number). At this place

it important to remember that the linearity rule in Theorem 2.8 cannot be
applied to {an}, since lim

√
n2 + 5n = ∞ and limn = ∞. It is also not correct

to use this as a reason to say that the limit does not exist. The supporting
argument is as follows. Rewriting an algebraically as
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an =
(√

n2 + 5n− n
)√n2 + 5n+ n√

n2 + 5n+ n
=

5n√
n2 + 5n+ n

=
5√

1 + 5
n + 1

,

we obtain limn→∞
(√

n2 + 5n− n
)
= 5/2.

Remark 2.14. We emphasize once again that Theorem 2.8 cannot be applied
to sequences that diverge to ∞ or −∞. For instance, if an = n + 1, bn = n,
and cn = n2 for n ≥ 1, then it is clear that the sequences {an}, {bn}, and
{cn} diverge to ∞, showing that the limits do not exist as real numbers. Also,
it is tempting to say that

an − bn → ∞−∞ = 0 and cn − bn → ∞−∞ = 0 as n → ∞.

Note that ∞ is not a real number, and so it cannot be treated like a usual
real number. In our example, we actually have an − bn = 1 for all n ≥ 1, and

cn − bn = n(n− 1) → ∞ as n → ∞. •

2.1.3 The Squeeze/Sandwich Rule

In the following squeeze rule, the sequence {bn} is “sandwiched” between the
two sequences {an} and {cn}.
Theorem 2.15 (Squeeze/Sandwich rule for sequences). Let {an}, {bn},
and {cn} be three sequences such that an ≤ bn ≤ cn for all n ≥ N and for
some N ∈ N. If

lim
n→∞ an = lim

n→∞ cn = L,

then limn→∞ bn = L. If bn → ∞, then cn → ∞. Also, if cn → −∞, then
bn → −∞.

Proof. Let ε > 0 be given. By the definition of convergence, there exist two
numbers N1 and N2 such that

|an − L| < ε for n ≥ N1 and |cn − L| < ε for n ≥ N2.

In particular, since an ≤ bn ≤ cn for all n ≥ N , we have

L− ε < an ≤ bn ≤ cn < L+ ε for n ≥ N3 = max{N,N1, N2},

showing that |bn − L| < ε for n ≥ N3, as required.
We leave the rest as a simple exercise.

Corollary 2.16. If {cn} is a null sequence of nonnegative real numbers, and
|bn| ≤ cn for all n ≥ N , then {bn} is a null sequence.
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For instance, since {1/√n} is null and 1/(1 +
√
n) < 1/

√
n for all n ≥ 1,

{1/(1 +√
n)} is also a null sequence. Similarly, comparing 1/3n with 1/n, it

follows easily that {1/3n} is a null sequence.

Corollary 2.17. If limn→∞ an = 0 and |bn − L| ≤ an for all n ≥ N , then
limn→∞ bn = L.

Proof. By the last corollary, it follows that {bn − L} is a null sequence, and
so the desired conclusion follows. Alternatively, it suffices to observe that

|bn − L| ≤ an ⇐⇒ L− an ≤ bn ≤ L+ an

and apply the squeeze rule.

For instance, using the squeeze rule, we easily have the following:

(a) limn→∞ cosn2/n = 0, because −(1/n) ≤ cosn2/n ≤ 1/n. With the same
reasoning, one has

lim
n→∞

sin(nπ/2)

n
= 0.

(b) limn→∞
{√

n+ 1−√
n
}

= 0 and limn→∞
√
n(
√
n+ 1 − √

n) = 1/2.
Moreover,

0 <
√
n+ 1−√

n =
1√

n+ 1 +
√
n
<

1

2
√
n
.

Note that the above inequality is useful in estimating
√
n. For n = 1, this

gives
√
2 < 1.5, and for n = 2, 4, we have

√
3 < 1.875 and

√
5 < 2.25.

Indeed, for n = 2, we have

√
3 <

√
2 +

√
2

4
=

5
√
2

4
<

5× 1.5

4
=

7.5

4
= 1.875.

(c) limn→∞ n/2n = 0. Indeed, using induction we easily see that 2n ≥ n2 for
n ≥ 4, so that

0 <
n

2n
≤ 1

n
.

(d) limn→∞ bn = 1 if bn = 1/(
√
n2 + 1) + 1/(

√
n2 + 2) + · · ·+ 1/(

√
n2 + n).

We note that

n√
n2 + n

< bn <
n√

n2 + 1
, i.e.,

1√
1 + 1/n

< bn <
1√

1 + 1/n2
.

(e) limn→∞ cn = ∞ if cn = 1/(
√
n+ 1) + 1/(

√
n+ 2) + · · · + 1/(

√
n+ n).

We note that

cn >
n√
n+ n

=

√
n√
2
= bn,

where bn → ∞ as n → ∞.
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Using the squeeze rule, Theorem 2.8, and a few standard examples allows
one to calculate limits of important sequences.

Example 2.18. Show that

(a) lim
n→∞ a1/n = 1 for a > 0. (b) lim

n→∞n1/n = 1. (c) lim
n→∞

n!

nn
= 0.

Solution. (a) We consider the cases a > 1 and a < 1, since there is nothing
to prove if a = 1. Suppose first that a > 1. Then a1/n ≥ 1, and so

a1/n = 1 + xn

for some sequence {xn} of positive real numbers. Then by the binomial
theorem,

a = (1 + xn)
n ≥ 1 + nxn for all n ≥ 1,

which is equivalent to

0 < a1/n − 1 ≤ a− 1

n
for all n ∈ N.

Thus, a1/n → 1 as n → ∞ if a > 1. For 0 < a < 1, we have (1/a)1/n → 1
as n → ∞, and therefore, by the reciprocal rule,

a1/n =
1

(1/a)1/n
→ 1

1
= 1 as n → ∞.

The sequence {a1/n} is referred to as the nth root sequence.
(b) Clearly (1 + 1)n ≥ 1 + n > n, so that n1/n − 1 < 1 for n ≥ 1. Also, for

n ≥ 1, we observe that n1/n ≥ 1, so that n1/n − 1 = xn with xn ≥ 0. In
particular, using the binomial theorem, we deduce that

n = (1 + xn)
n ≥ 1 + nxn +

n(n− 1)

2
x2
n ≥ 1 +

n(n− 1)

2
x2
n,

which implies that

0 ≤ xn = n1/n − 1 ≤
√

2

n
for n ≥ 1.

By the squeeze rule, xn → 0 as n → 0, since 1/
√
n → 0. We conclude

that n1/n → 1 as n → ∞, as desired.
(c) It follows that

0 <
n!

nn
≤ 1

n
.

The second inequality is true because

n! = n(n− 1) · · · 2 · 1 < n · n · · ·n · 1 = nn−1.

The squeeze rule (with an = 0, cn = 1/n) gives the desired conclusion. •
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Remark 2.19. We observe that case (a) of Example 2.18 may be obtained
as a special case of case (b). For instance, if a ≥ 1, then for n large enough
we have 1 ≤ a < n. Taking roots on both sides, we obtain

1 ≤ a1/n < n1/n for large n.

Again, by the squeeze rule, we see that limn→∞ a1/n = 1.
As a consequence of (a) and (b) of Example 2.18 and the product rule

for sequences, we can easily obtain that

lim
n→∞(2n)1/n = 1 and lim

n→∞(3
√
n)1/2n = 1. •

2.1.4 Bounded Monotone Sequences

Now we introduce some important terminology associated with sequences. A
sequence {an} is said to be

• bounded above if there exists an M ∈ R such that an ≤ M for all n,
• bounded below if there exists an m ∈ R such that an ≥ m for all n,
• bounded if it is bounded both below and above,
• monotonically increasing (or simply increasing) if an ≤ an+1 for all n (see
Figure 2.1),

• monotonically decreasing (or simply decreasing) if an ≥ an+1 for all n (see
Figure 2.2),

O x

y

Fig. 2.1. An increasing sequence.

xO

y

Fig. 2.2. A decreasing sequence.

• strictly increasing if an < an+1 for all n,
• strictly decreasing if an > an+1 for all n,
• monotonic if it is either increasing or decreasing,
• strictly monotonic if it is either strictly increasing or strictly decreasing,
• alternating if an changes sign alternately. In other words, an is of the form
an = (−1)n−1bn or an = (−1)nbn(bn ≥ 0) for all n. That is, anan+1 < 0
for all n.
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Constant sequences are treated as both increasing and decreasing! We now
demonstrate these definitions by giving several simple examples.

(1) {1/n}n≥1 is strictly decreasing and bounded.
(2) {n}n≥1 is strictly increasing and unbounded; however, it is bounded below

by 1.
(3) {(−1)n−1n}n≥1 is neither increasing nor decreasing. Also, it is unbounded.
(4) {(−1)n}n≥1 is neither increasing nor decreasing nor convergent but is

bounded.
(5) {(−1)n/n}n≥1 is convergent but is neither increasing nor decreasing.
(6) If an = 2 for 1 ≤ n ≤ 5 and an = n for n ≥ 6, then {an}n≥1 is increasing

but not strictly.
(7) {n1/n}n≥1 is not monotone, as can be seen by examining the first four

terms of the sequence.
(8) {n!/nn} is decreasing and bounded.
(9) {an}, an = 8n/n!, is neither increasing nor decreasing, because

an+1

an
=

8

n+ 1

{≥ 1 if n ≤ 7
≤ 1 if n ≥ 7.

On the other hand, if we ignore the first six terms, it follows that {an}n≥7

is decreasing. In such cases, we say that {an} is eventually decreasing.
Similarly, one can define eventually increasing sequences. Finally, we re-
mark that (3)–(5) are examples of sequences that are alternating.

2.1.5 Subsequences

We now present two simple criteria that involve the notion of a subsequence
for establishing that a sequence diverges. Let {an}n≥1 be a sequence and
{nk}k≥1 any strictly increasing sequence of positive integers; that is,

0 < n1 < n2 < n3 < · · · .
Then the sequence {ank

}k≥1, i.e., {bk}k≥1, where bk = ank
, is called a sub-

sequence of {an}n≥1. That is, a subsequence is obtained by choosing terms
from the original sequence, without altering the order of the terms, through
the map k �→ nk, which determines the indices used to pick out the subse-
quence. For instance, {a7k+1} corresponds to the sequence of positive integers
nk = 7k + 1, k = 1, 2, . . .. Observe that every increasing sequence {nk} of
positive integers must tend to infinity, because

nk ≥ k for k = 1, 2, . . ..

The sequences

{
1

k2

}

k≥1

,

{
1

2k

}

k≥1

,

{
1

2k + 1

}

k≥1

,

{
1

5k + 3

}

k≥1

,

{
1

2k

}

k≥1
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are some subsequences of the sequence {1/k}k≥1, formed by setting nk =
k2, 2k, 2k+1, 5k+3, 2k, respectively. Note that all the above subsequences
converge to the same limit, 0, which is also the limit of the original sequence
{1/k}k≥1. Can we conjecture that every subsequence of a convergent sequence
must converge and converge to the same limit? We have the following:

1. Every sequence is a subsequence of itself.
2. Let ak = 1+(−1)k, k ≥ 1. Then a2k = 2 and a2k−1 = 0, showing that the

even sequence {a2k} and the odd sequence {a2k−1} are two convergent
(constant) subsequences of {ak}. Thus, a sequence may not converge yet
have convergent subsequences with different limits.

3. Let ak = sin(kπ/2). Then a2k−1 = (−1)k−1 and a2k = 0 are two sub-
sequences of ak. Does the sequence {b2k}, where bk = (1 + (−1)k−1)/2,
converge? Is {bk} a subsequence of {ak}?

Definition 2.20 (Subsequential limits). Let {ak} be a sequence. A subse-
quential limit is any real number or symbol ∞ or −∞ that is the limit of some
subsequence {ank

}k≥1 of {ak}k≥1.

For example, we have the following:

(1) 0 and 2 are subsequential limits of {1 + (−1)k}.
(2) −∞ and ∞ are the only subsequential limits of {k(−1)k}.
(3) {−√

3/2, 0,
√
3/2} is the set of subsequential limits of {ak}, ak = sin(kπ/3).

Here {a3k}, {a3k+1}, and {a3k+2} are convergent subsequences with limits
0, −√

3/2, and
√
3/2, respectively.

(4) Every real number is a subsequential limit of some subsequence of the
sequence of all rational numbers. Indeed, R ∪ {−∞,∞} is the set of sub-
sequential limits of the sequence of all rational numbers.

The following result, which shows that certain properties of sequences are
inherited by their subsequences, is almost obvious.

Theorem 2.21 (Invariance property of subsequences). If {an} con-
verges, then every subsequence {ank

} of it converges to the same limit. Also,
if an → ∞, then {ank

} → ∞ as well.

Proof. Suppose that {ank
} is a subsequence of {an}. Note that nk ≥ k. Let

L = lim an and ε > 0 be given. Then there exists an N such that

|ak − L| < ε for k ≥ N.

Now k ≥ N implies nk ≥ N , which in turn implies that

|ank
− L| < ε for nk ≥ N.

Thus, ank
converges to L as k → ∞. The proof of the second part follows

similarly.
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Here is an immediate consequence of Theorem 2.21.

Corollary 2.22. The sequence {an} is divergent if it has two convergent sub-
sequences with different limits. Also, {an} is divergent if it has a subsequence
that tends to ∞ or a subsequence that tends to −∞.

In order to apply this corollary, it is necessary to identify convergent sub-
sequences with different limits or subsequences that tend to ∞ or −∞. Now
the question is whether the converse of Theorem 2.21 also holds.

We can prove the divergence of a sequence if we are able to somehow
prove that it is unbounded. For instance (see also Questions 2.44(8)), consider
an =

∑n
k=1 1/k. There are several ways one can see that the sequence diverges.

Clearly, an > 0 for all n ∈ N, {an} is increasing, and

a2n = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·+

(
1

2n−1 + 1
+ · · ·+ 1

2n

)

> 1 +
n

2
,

so that {an}n≥1 is increasing and not bounded above. Therefore, it cannot be
convergent, and so it must diverge (see also the bounded monotone conver-
gence theorem (BMCT), which is discussed later in this section). We remark
that we may group the terms in a number of ways and obtain that {an}n≥1

is unbounded, for example,

a10n−1 =

(
1 +

1

2
+ · · ·+ 1

9

)
+

(
1

10
+ · · ·+ 1

99

)

+ · · ·+
(

1

10n−1
+ · · ·+ 1

10n − 1

)

> 9

(
1

10

)
+

90

100
+ · · ·+ 9× 10n−1

10n
=

(
9

10

)
n.

We end this subsection with the following result, which is easy to prove.

Theorem 2.23. A sequence is convergent if and only if there exists a real
number L such that every subsequence of the sequence has a further subse-
quence that converges to L.

Corollary 2.24. If both odd and even subsequences of {an} converge to the
same limit l, then so does the original sequence.

Note that {(−1)n} diverges, because it has two subsequences {(−1)2n}
and {(−1)2n−1} converging to two different limits, namely 1 and −1.
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Fig. 2.3. Description for the bounded monotone convergence theorem.

2.1.6 Bounded Monotone Convergence Theorem

Until now, we have considered some basic techniques for finding the limit of a
convergent sequence. In general, it is difficult to tell whether a given sequence
converges. It is sometimes easy to show that a sequence is convergent even
if we do not know its limit. For example, the following theorem is a starting
point for our rigorous treatment of sequences and series, especially if we know
that the given sequence is monotonic. However, we shall soon show that every
bounded sequence has a convergent subsequence (see Theorem 2.42).

Theorem 2.25 (Monotone convergence theorem). Every increasing se-
quence that is bounded above converges. Also, every decreasing sequence that
is bounded below converges.

Proof. Let {an}n≥1 be an increasing sequence that is bounded above. Ac-
cording to the least upper bound property (Definition 1.18), since the range
A = {an : n ∈ N} is bounded above, A has a least upper bound; call it a. We
now prove that an → a as n → ∞.

Clearly an ≤ a for all n ∈ N, and by the definition of lub, given some ε > 0
there exists an integer N such that aN > a− ε. Since {an} is monotonically
increasing,

a− ε < aN ≤ an ≤ a < a+ ε for n ≥ N.

That is, |an − a| < ε for n ≥ N , and we conclude that {an} converges to its
least upper bound. That is, limn→∞ an = a = sup an.

The proof for the case of decreasing sequences is identical, using the great-
est lower bound instead of the least upper bound (see Figure 2.3).

Alternatively, it suffices to note that {bn}n≥1 is a decreasing sequence
that is bounded below if and only if the sequence {−bn}n≥1 is increasing and
bounded above.

Remark 2.26. The monotonicity condition on the sequence {an} in the above
results need not be satisfied for all n. If this is true for all n ≥ N , where N
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is some suitably selected positive integer, then the conclusion of the above
result is still true (see Figure 2.5). However, the tests in Theorem 2.25 tell
us nothing about the limit, but they are often useful when we suspect that a
sequence is convergent. •

For instance, we easily obtain the following simple examples:

(1) If an = 1 + 1/n, then {an} is clearly decreasing and bounded below (by
1, for example), and so it is convergent by Theorem 2.25. In this case, of
course, we know already that it converges to 1.

(2) If an = 1/
√
n, then {an} is clearly decreasing for n ≥ 1 and bounded by

1. Consequently, the sequence {1/√n} must converge.
(3) If an = (2n− 7)/(3n+ 2), then

an =
1

3n+ 2

(
2

3
(3n+ 2)− 7− 4

3

)
=

2

3
− 25

3(3n+ 2)
,

so that an ≤ 2/3 and {an} is increasing. By Theorem 2.25, the sequence
{an}n≥1 must converge. Indeed, an → 2/3 as n → ∞.

(4) Consider

an =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
.

Then 0 < an ≤ n/(n+1) for all n ≥ 1, since each term (except the first) in
the sum is strictly less than 1/(n+1), and so {an} is a bounded sequence.
Also, for n ≥ 1,

an+1 − an =
1

2n+ 1
+

1

2(n+ 1)
− 1

n+ 1

=
1

2n+ 1
− 1

2(n+ 1)

=
1

2(2n+ 1)(n+ 1)
> 0.

Thus, {an} is a bounded monotone sequence, and so it converges by
Theorem 2.25. What is the limit of the sequence {an}?
The following equivalent form of Theorem 2.25 is the key to many impor-

tant results in analysis. We shall soon see its usefulness in our subsequent
discussion.

Theorem 2.27 (BMCT: Bounded monotone convergence theorem).
Every bounded monotonic sequence of real numbers converges. Equivalently, a
monotonic sequence converges if and only if it is bounded.

Consider the sequence {an}n≥1, where an =
∑n

k=1 1/k. This is clearly an
increasing sequence. Does there exist an upper bound for this sequence? In
fact, we have already proved that {an}n≥1 is unbounded (see also Questions
2.44(8)). We also remark that a bounded sequence can converge without being
monotone. For example, consider {(−1/3)n}n≥1.
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Example 2.28. Show that limn→∞ rn = 0 if |r| < 1 (see also Theorem 2.34
and Example 2.43). Here {rn} is called a power sequence.

Solution. Observe that −|r|n ≤ rn ≤ |r|n, and so it suffices to deal with
0 < r < 1. In any case, define an = |r|n for n ≥ 1. If |r| < 1, then we have

an+1 = |r|an, i.e., 0 ≤ an+1 < an,

showing that {an} is decreasing and bounded below by 0. Therefore, {an}
converges, say to a. Allowing n → ∞ in the last equality, we see that

a = |r|a, i.e., (1− |r|)a = 0,

which gives a = 0, since |r| < 1.
Alternatively, we first notice that there is nothing to prove if r = 0. Thus

for 0 < |r| = c < 1, we can write |r| in the form c = 1/(1+ a) for some a > 0,
so that by the binomial theorem,

0 < cn =
1

(1 + a)n
≤ 1

1 + na
<

1

na
,

and the result follows if we use the squeeze rule. •
Because every monotone sequence converges, diverges to ∞, or diverges to

−∞, we have the following analogue of Theorem 2.25 for unbounded monotone
sequences.

Theorem 2.29. Every increasing sequence that is not bounded above must
diverge to ∞. Also, every decreasing sequence that is not bounded below must
diverge to −∞.

Proof. Let {an}n≥1 be an increasing sequence that is unbounded. Since the
set {an : n ∈ N} is unbounded and it is bounded below by a1, it must be
unbounded above. Thus, given R > 0 there exists an integer N such that
aN > R. Since {an} is monotonically increasing,

an ≥ aN > R for n ≥ N.

Since R > 0 is arbitrary, it follows that limn→∞ an = ∞.
The proof for decreasing sequences is identical and is left as an exercise.

We may combine Theorems 2.27 and 2.29 in an equivalent form as follows.

Theorem 2.30. Every monotone sequence converges, diverges to ∞, or di-
verges to −∞. In other words, we say that limn→∞ an is always meaningful
for monotone sequences.
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Example 2.31. Set an = (1 · 3 · 5 · · · (2n− 1))/(2 · 4 · 6 · · · (2n)). Then {an}
converges.

Solution. Note that an > 0 for all n ≥ 1 and

an+1 = an

(
2n+ 1

2n+ 2

)
< an.

Thus, {an} is decreasing and bounded below by 0. Applying Theorem 2.25,
we see that {an} converges. Note also that an < 1 for n ≥ 1. •

Often sequences are defined by formulas. There is still another way of
specifying a sequence, by defining its terms “inductively” or “recursively.”
In such cases, we normally specify the first term (or first several terms) of
the sequence and then give a formula that specifies how to obtain all succes-
sive terms. We begin with a simple example and later present a number of
additional examples (see Examples 2.39 and 2.58 and Exercises 2.45).

Example 2.32. Starting with a1 = 1, consider the sequence {an} with
an+1 =

√
2an for n ≥ 1. We observe that

a1 = 1, a2 =
√
2, a3 =

√
2
√
2, a4 =

√

2

√
2
√
2, . . . ,

which seems to suggest that the given sequence is positive and increasing.
Hence, the sequence must converge if it is bounded and increasing. It is not
clear how to find an upper bound. However, the following observation might
be useful. “If an increasing sequence converges, then the limit must be the
least upper bound of the sequence” (see the proof of Theorem 2.25). As a
consequence, if the given sequence converges to a, then the limit a must satisfy

a =
√
2a, i.e., a(a− 2) = 0,

so that a = 2, for a = 0 is not possible. By the method of induction, it is easy
to prove that 0 < an ≤ 2 for all n ≥ 1. Consequently,

an+1 =
√
2an = an(

√
2/an) ≥ an for all n ≥ 1,

showing that the sequence {an} is bounded and increasing. Thus, {an} con-
verges and in fact converges to 2. •

The BMCT is an extremely valuable theoretical tool, as we shall see by a
number of examples below.

Example 2.33 (The number e). Let an = (1+1/n)n, n ≥ 1. The sequence
{an} is called Euler’s sequence. Note that (1 + x)n ≥ 1 + nx for x ≥ 0 and
n ≥ 1, so that for x = 1/n, this gives

(
1 +

1

n

)n

≥ 2 for n ≥ 1.
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Fig. 2.4. Diagram for
an = (1 + 1/n)n.
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Fig. 2.5. an is eventually inside the strip.

If we plot the first few terms of this sequence on a sequence diagram, then it
seems that the sequence {an} increases and converges to a limit, which is less
than 3 (see Figure 2.4).

First we show that the sequence is increasing (see Figure 2.4). This is
an immediate consequence of the well-known arithmetic–geometric mean in-
equality (

k∏

i=1

xi

)1/k

≤ 1

k

k∑

i=1

xi

if we choose k = n+ 1, x1 = 1, and xi = 1 + 1/n for i = 2, . . . , n + 1. As an
alternative proof, we may use the binomial theorem and obtain

an = 1 +

n∑

k=1

(
n

k

)(
1

n

)k

= 1 +

n∑

k=1

n(n− 1) · · · (n− k + 2)(n− k + 1)

nk

1

k!

= 1 + 1 +

n∑

k=2

[
1 ·

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− k − 2

n

)(
1− k − 1

n

)]
1

k!

< 2 +

n∑

k=2

[(
1− 1

n+ 1

)(
1− 2

n+ 1

)
· · ·

(
1− k − 2

n+ 1

)(
1− k − 1

n+ 1

)]
1

k!

< 2 +
n+1∑

k=2

[(
1− 1

n+ 1

)(
1− 2

n+ 1

)
· · ·

(
1− k − 2

n+ 1

)(
1− k − 1

n+ 1

)]
1

k!

= an+1,
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and so {an} is increasing. Next, we show that the sequence is bounded. Since
k! = 1 · 2 · 3 · · · k ≥ 1 · 2 · 2 · · · 2 = 2k−1 for k ≥ 2, we have

2 < an < 1 +

n∑

k=1

1

k!
< 1 +

n∑

k=1

1

2k−1
= 1 +

1− (1/2)n

1− (1/2)
< 1 +

1

1− 1/2
= 3.

Thus, {an} is an increasing bounded sequence. By BMCT, it follows that the
sequence {an} converges to a real number that is at most 3. It is customary to
denote this limit by e, the base of the natural logarithm, a number that plays
a significant role in mathematics. The above discussion shows that 2 < e ≤ 3.
The foregoing discussion allows us to make the following definition:

e = lim
n→∞

(
1 +

1

n

)n

.

Moreover, by considering the binomial expansion of (1 + x/n)
n
, the above

discussion may be continued to make the following definition of ex for x > 0:

ex = lim
n→∞

(
1 +

x

n

)n

, x > 0.

Later, we shall show that this limit actually exists also for x < 0 (see Theorem
5.7). Thus, we easily have

lim
n→∞

(
1− 1

3n

)n+2

= lim
n→∞

[(
1− 1

3n

)3n
]1/3 (

1− 1

3n

)2

= e−1/3 · 1

and

lim
n→∞

(
1 +

5

n

)n

= lim
n→∞

(
1 +

5

5n

)5n

= lim
n→∞

[(
1 +

1

n

)n]5
= e5.

Can we replace 5 in each step of the last of these equalities by a positive
integer?

Moreover, by the product and the quotient rules for sequences, we have

lim
n→∞

(
1 +

1

n+ k

)n

= lim
n→∞

(
1 + 1

n+k

)n+k

(
1 + 1

n+k

)k
=

lim
n→∞

(
1 + 1

n+k

)n+k

lim
n→∞

(
1 + 1

n+k

)k
= e,

where k is a fixed positive integer. Could k be any fixed integer? Could k be
any positive real number? •
Theorem 2.34 (Convergence of a geometric sequence). If r is a fixed
number such that |r| < 1, then limn→∞ rn = 0. Further, {rn} diverges if |r| >
1. At r = 1, the sequence converges, whereas it diverges for r = −1.
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Proof. We have already proved the first part in Example 2.28 (see also
Example 2.43). If r = 1, the sequence reduces to a constant sequence and
so converges to 1. If r > 1, then rn → ∞ as n → ∞, so the sequence diverges.
Indeed, if r > 1, then 1/r < 1, and so

1

rn
=

(1
r

)n

→ 0 as n → ∞,

which implies that rn → ∞ as n → ∞.
For r = −1, the sequence {(−1)n} diverges, and if r < −1, then {rn}

diverges, since |r|n → ∞ as n → ∞.

Example 2.35. For p > 0, we easily have

lim
n→∞

rn

np
=

⎧
⎨

⎩

0 if |r| ≤ 1,
∞ if r > 1,
does not exist if r < −1.

Indeed, for |r| < 1, let an = rn and bn = 1/np. Then {an} and {bn} are null
sequences, and so is their product. For r = 1,−1, there is nothing to prove.

For r > 1, we write r = 1+ x with x > 0. Let k be a positive integer such
that k > p. Then for n > 2k,

(1 + x)n >

(
n

k

)
xk =

n(n− 1) · · · (n− k + 1)

k!
xk >

(n
2

)k xk

k!
,

since n− k + 1 > n/2 for each k. Hence, since k − p > 0, it follows that

(1 + x)n

np
>

xk

2kk!
nk−p → ∞ as n → ∞. •

Example 2.36. Find limn→∞ rn/(1 + r2n) for various values of r.

Solution. Set an = rn/(1+r2n). We need to find limn→∞ an for various values
of r. For r = 1, we have an = 1/2, showing that limn→∞ an = 1/2. For r = −1,
we have an = (−1)n/2, so that {an} diverges. On the other hand, for |r| < 1,
let cn = 1 + r2n. By Theorem 2.34, limn→∞ cn = 1 and limn→∞ rn = 0.
Therefore, by the quotient rule,

lim
n→∞

rn

1 + r2n
=

limn→∞ rn

limn→∞(1 + r2n)
=

0

1
= 0.

Similarly for |r| > 1, we have 1/|r| < 1, and so using the above argument, we
see that

lim
n→∞

rn

1 + r2n
= lim

n→∞
1/rn

1 + 1/r2n
=

0

1
= 0.

We conclude that {an}n≥1 converges for all r �= −1. •
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Theorem 2.37. Let {an} and {bn} be two convergent sequences such that
an → L and bn → M as n → ∞. We have

(a) |an| → |L| as n → ∞;
(b) if an ≤ bn for all n ≥ N0, then L ≤ M .

Here (b) is often referred to as the limit inequality rule.

Proof. We prove case (b) by contradiction. Suppose that an → L, bn → M ,
and L > M . Then with ε = (L−M)/2, there exists an N such that

L− ε < an < L+ ε and M − ε < bn < M + ε for all n ≥ N.

In particular,

bn < M + ε =
L+M

2
= L− ε < an for all n ≥ N,

which is a contradiction to the hypothesis that an ≤ bn for all n ≥ N0.
Therefore, our assumption is wrong, and hence we must have L ≤ M .

The proof of case (a) follows from the fact that
∣∣|an| − |L|∣∣ ≤ |an − L|.

Corollary 2.38. Let {bn} be a convergent sequence such that bn → M as
n → ∞, and bn ≥ 0 for all sufficiently large n. Then M ≥ 0.

Proof. Set an = 0 for all n in Theorem 2.37.

Example 2.39. Consider the following sequences {an}n≥1:

(a) an = 1/n2 + 1/(n+ 1)2 + · · ·+ 1/(2n)2;
(b) a1 = 1, an+1 =

√
2 + an for n ≥ 1;

(c) a1 = 2, an+1 = (1/2)(an + 2/an) for n ≥ 2;
(d) a1 = α and an+1 = (an+β/an)/2 for n ≥ 1, where α > 0 is arbitrary and

β is a fixed positive number.

In each case, determine whether the sequence converges.

Solution. (a) Clearly 0 < an < (n + 1)/n2 for all n ≥ 1, since each term
(except the first) in the sum is strictly less than 1/n2, and so {an} is a bounded
sequence. Also, for n ≥ 1,

an+1 − an =
1

(2n+ 1)2
+

1

(2n+ 2)2
− 1

n2
<

1

4n2
+

1

4n2
− 1

n2
= − 1

2n2
< 0,

that is, an+1 < an for all n ≥ 1. Thus, {an} is a bounded monotone sequence
and so converges by Theorem 2.27.

Alternatively, we observe that for all n ≥ 1,

n+ 1

(2n)2
≤ an ≤ n+ 1

n2
,

and so by the squeeze rule, we see that limn→∞ an = 0.
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(b) Clearly an > 0 for all n ≥ 1. Since a1 < 2, by induction we obtain
that an+1 =

√
2 + an <

√
2 + 2 = 2 for all n ≥ 1. Since

an+1 − an =
√
2 + an − an ≥ 0 ⇐⇒ (2− an)(1 + an) ≥ 0,

and since an ≤ 2, it follows that the sequence {an} is monotonically increasing
and bounded; hence it is convergent. We see that

a = lim
n→∞ an+1 = lim

n→∞
√
2 + an =

√
2 + a,

which gives (a− 2)(a+ 1) = 0, or a = 2.
(c) First we observe that if the given sequence were convergent, then we

would obtain its limit by allowing n → ∞ in the given recurrence relation:

a =
1

2

(
a+

2

a

)
, i.e., a2 = 2 or a =

√
2.

Now we show that the given sequence indeed converges to
√
2. We have a1 =

2 >
√
2, an > 0, and for n ≥ 1,

an+1 −
√
2 =

(an −√
2)2

2an
≥ 0.

(We remind the reader that it does not matter what positive value is assigned
to a1.) Thus, an ≥ √

2 for all n ≥ 2, and therefore,

an+1

an
=

1

2

(
1 +

2

a2n

)
≤ 1

2
(1 + 1) = 1, i.e., an+1 ≤ an for n ≥ 2,

showing that {an} is monotonically decreasing and bounded below by 0; hence
it is convergent.

(d) Since α and β are positive and a1 > 0 (arbitrary), the principle of
induction shows that an > 0 for all n ≥ 2. Next for n ≥ 1, we have

a2n+1 − β =
1

4

(
an +

β

an

)2

− β =
(a2n − β)2

4a2n
≥ 0,

so that a2n+1 ≥ β for all n ≥ 1. Also, for n ≥ 2,

an − an+1 = an − 1

2

(
an +

β

an

)
=

a2n − β

2an
≥ 0,

showing that {an}n≥2 is decreasing and bounded below (since all terms are
positive). By Theorem 2.25, we are assured that the sequence converges; call
the limit L. Since a2n+1 ≥ β and an > 0, we must have an+1 ≥ √

β for n ≥ 1
and hence L ≥ √

β (see Theorem 2.37). Since an → L as n → ∞, an+1 → L
as n → ∞. Thus, by the linearity rule,

L = lim
n→∞ an+1 = lim

n→∞
1

2

(
an +

β

an

)
=

1

2

(
L+

β

L

)
, i.e., L =

√
β. •
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Remark 2.40. Example 2.39(c) (also 2.39(d) with β = 2 and Exercise
2.68(10)) provides a proof that there is a sequence of rational numbers that
converges to the irrational number

√
2. Moreover, using the an from Example

2.39(c), we note that

a1 = 2, a2 =
3

2
, a3 =

1

2

(
3

2
+

4

5

)
=

17

12
and a4 =

1

2

(
17

12
+

24

17

)
=

577

408
,

so that a24 is approximately 2.0006. Thus, the sequence {an} defined in Exam-
ple 2.39(c) provides a practical way of computing a rational approximation
to

√
2. •

2.1.7 The Bolzano–Weierstrass Theorem

It is useful to have necessary and sufficient conditions for the convergence of
sequences. For monotone sequences, BMCT (see Theorem 2.27) shows that
boundedness is such a condition. On the other hand, for general sequences,
boundedness is necessary but not sufficient for convergence. Indeed, we have
seen examples of bounded sequences that do not converge yet have convergent
subsequences. To show that this is true in general, we need to prove a lemma.
It is convenient first to introduce a definition. We say that n ∈ N is a peak
point of {an} if

an ≥ ak for all k ≥ n.

Lemma 2.41. Every sequence of real numbers contains a monotonic subse-
quence.

Proof. Let {an}n≥1 be a sequence of real numbers. We need to construct a
monotone subsequence. Then either the sequence {an} has infinitely many
peak points or it has only finitely many peak points.

Assume that there are infinitely many peak points n. Let n1 be the first
such n with this property (i.e., the smallest peak point) and n2 the second
(i.e., the smallest peak point with n2 > n1), etc. Thus,

(i) an1 ≥ ak for all k ∈ N with k ≥ n1;
(ii) an2 ≥ ak for all k ∈ N with k ≥ n2 (> n1).

From (i) and (ii), it follows that

an1 ≥ an2 .

We now introduce nk+1 inductively as the smallest peak point such that
nk+1 > nk. Consequently,

ank
≥ ank+1

,

and so {ank
}k≥1 is a monotonically decreasing subsequence of {an}.



48 2 Sequences: Convergence and Divergence

On the other hand, if there are only finitely many n such that

an ≥ ak for all k ∈ N with k ≥ n,

then we can choose an integer m1 greater than all peak points, so that no
terms of the sequence

{am1 , am1+1, am1+2, . . . }

have this property. Because m1 itself is not a peak point, there exists an m2

with m2 > m1 for which
am1 < am2 .

Again, m2 is not a peak point bigger than all peak points, and so there exists
an m3 with m3 > m2 and

am3 > am2 .

Continuing the process, we obtain a sequence {amk
}k≥1 that is a monotoni-

cally increasing subsequence of {an}. This completes the proof.

We see that if a sequence is bounded, then even though it may diverge, it
cannot behave “too badly.” This fact follows from Lemma 2.41 together with
BMCT.

Theorem 2.42 (Bolzano–Weierstrass). Every bounded sequence of real
numbers has a convergent subsequence (a subsequence with a limit in R). That
is, if {an} is a sequence such that |an| ≤ M for all n ≥ N , then there exist
a number l in the interval [−M,M ] and a subsequence {ank

} such that {ank
}

converges to l.

Proof. Let {an} be a bounded sequence of real numbers. By Lemma 2.41, it
has a monotonic subsequence, say {ank

}. Because {an} is bounded, so is every
subsequence of {an}. Hence by BMCT, {ank

} converges.

Next we remark that {sinn} is a bounded sequence. What is the behavior
of sinn as n → ∞? According to Theorem 2.42, there must exist at least one
number l in [−1, 1] such that some subsequences {sinnk} will converge to l.
A discussion of this surprising fact is beyond the scope of this book. However,
we can prove that every number l in [−1, 1] has this property.

We note that the Bolzano–Weierstrass theorem says nothing about unique-
ness, for if an = (−1)n, then a2n → 1 and a2n−1 → −1 as n → ∞.

Example 2.43. Fix r such that 0 < r < 1, and consider the sequence
{an}n≥1, where an = rn. Then an > 0 for all n ≥ 1, and the sequence is
decreasing, because

an − an+1 = (1− r)rn > 0.
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Thus, {an}, being a decreasing sequence that is bounded below by zero, con-
verges; call the limit a. Also, since

a2n = (rn)(rn),

{a2n} converges to a2. On the other hand, {a2n} is a subsequence of {an},
and hence by the uniqueness of the limit, we have a2 = a, i.e., a = 0 or 1.
Clearly a �= 1, since {rn} is decreasing and r < 1. Hence {rn} converges to 0
whenever 0 < r < 1 (see also Theorem 2.34).

By the squeeze rule, the inequalities

−|r|n ≤ rn ≤ |r|n

show that limn→∞ rn = 0 for −1 < r < 0 also.
The same idea may be used to show that limn→∞ a1/n = 1 for 0 < a < 1

(see also Example 2.18(a)). •
2.1.8 Questions and Exercises

Questions 2.44.

1. If an → a as n → ∞, must the set {n : an �∈ (a− ε, a+ ε)}, where ε > 0,
be finite?

2. Is it true that a sequence {an} is null iff {|an|} is null?
3. Is every convergent sequence null? How about the converse?
4. Is the sum of two null sequences always null?
5. Does an alternating sequence always converge? Does it always diverge?
6. Is every convergent sequence monotone? Is every monotone sequence con-

vergent?
7. Can a bounded sequence be convergent without being monotone?
8. Does every divergent increasing sequence diverge to ∞? How about a

divergent decreasing sequence?
9. Can we say that {a5, a4, a1, a2, a3, a6, a7, . . .} is a subsequence of {an}n≥1?
10. Does every sequence have at most a countable number of subsequences?

Does there exist a sequence with an uncountable number of subsequences?
11. Suppose that {an} and {bn} are two sequences such that one converges to

0 while the other is bounded. Does {anbn} converge? If so, to what limit?
12. Suppose that {an} is bounded and α ∈ (0, 1) is fixed. Does {αnan} con-

verge? If so, does it converge to 0?
13. Suppose that {an} is a bounded convergent sequence such that |an| ≤ M

and the sequence has limit a. Must |a| ≤ M?
14. Suppose that {an} is increasing and bounded above by M . Must we have

an → L for some L? Must L ≤ M?
15. Suppose that {an} is decreasing and bounded below by m. Must we have

an → l for some l? Must l ≥ m?
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16. Let {an} be a sequence of nonnegative real numbers, p ∈ N, and a ∈
[0,∞). Is it true that {an} converges to a if and only if {a1/pn } converges
to a1/p?

17. Let {an} be a null sequence of nonnegative real numbers, and p ∈ R. Must
{apn} be a null sequence? Is {1/np} a null sequence?

18. Let {an} be a sequence of positive real numbers. Is it true that {an}
diverges to ∞ if and only if {1/an} converges to 0?

19. If {an} is a sequence of real numbers such that {an/n} converges to l for
some l �= 0, must {an} be unbounded?

20. If {an} converges to 0, must {(−1)nan} converge to 0?
21. If {an} converges to a nonzero real number a, must {(−1)nan} oscillate?
22. If {an} diverges to ∞, must {(−1)nan} oscillate?
23. If {|an|} converges to |a|, must {an} be convergent either to a or to −a?

How about when a = 0? Does the sequence {(−1)n} address your concern
for this question?

24. If {an} converges and {bn} diverges, must {anbn} be divergent? Must
{an + bn} be divergent?

25. If {an} and {bn} are divergent, must {anbn} be divergent? Must {an+bn}
be divergent?

26. Suppose that {an} is an unbounded sequence of nonzero real numbers.
Does {an} diverge to ∞ or −∞? Must {|an|} be divergent to ∞? Must
{1/an} be bounded?

27. Suppose that {an} is bounded. Must {1/an} be bounded? Must {an/n}
be convergent?

28. If {an} and {anbn} are both bounded, must {bn} be bounded?
29. If a1 = 1 and an+1 = an + (1/an) for n ≥ 1, must {an} be bounded?
30. If {an} and {bn} are both increasing, must {anbn} be increasing?
31. Suppose that {an} and {bn} are two sequences of real numbers such that

|an − bn| < 1/n for large n, and an → a as n → ∞. Does bn → a as
n → ∞?

32. If {an} is a sequence such that {(an−1)/(an+1)} converges to zero, does
{an} converge?

33. If {an} converges to a, must {a2n} converge to a2? Does {apn} converge to
ap if p ∈ N?

34. Suppose that bn → b as n → ∞ and b �= 0. Must there exist an R > 0 and
a positive integer N such that |bn| ≥ R for all n ≥ N?

35. If {a2n} converges, must {an} be convergent?
36. Suppose that {a2n} converges and an > 0. Can {an} be convergent? Can

{an} be convergent?
37. If {a2n} converges to a, must {|an|} converge to

√
a?

38. If {a3n} converges to a3, must {an} converge to a?
39. Can there exist a divergent sequence that is monotone?
40. Can there exist a divergent sequence {sn} such that sn+1 − sn → 0 as

n → ∞?
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41. If {an} is an increasing sequence of real numbers that is bounded above
and L = limn→∞ an, must we have an ≤ L for all n?

42. If {an} is a decreasing sequence of real numbers that is bounded below
and L = limn→∞ an, must we have an ≥ L for all n?

43. If 0 < a < 1, does it follow that limn→∞ a1/2
n

= 1? Does it follow that
limn→∞ a1/3

n

= 1?
44. Let an = (1 + 1/n)n and bn = (1 + 1/n)n+k, where k is a fixed integer.

Do we have limn→∞ an = limn→∞ bn = e?

Exercises 2.45.

1. Show that

lim
n→∞

n

2n+ 3
=

1

2
, lim

n→∞
3n+ 1

2n+ 1
=

3

2
, and lim

n→∞
n3 − 3

n4
= 0.

If ε = 0.001 is chosen, find N in each case such that for n ≥ N we have

∣∣∣∣
n

2n+ 3
− 1

2

∣∣∣∣ < 0.001,

∣∣∣∣
3n+ 1

2n+ 1
− 3

2

∣∣∣∣ < 0.001, and

∣∣∣∣
n3 − 3

n4

∣∣∣∣ < 0.001.

2. Construct three sequences such that an ≤ bn ≤ cn for all n ≥ N ,
limn→∞ an = L and limn→∞ cn = M for some real numbers L,M , but
limn→∞ bn does not exist.

3. Suppose that {an}n≥1 and {bn}n≥1 are two sequences of real numbers
such that limn→∞ an = ∞ and limn→∞ bn = L, where 0 < L ≤ ∞. Show
that limn→∞ anbn = ∞. Using this, show that

lim
n→∞

n3 − 3

n+ 2
= ∞ and lim

n→∞
3n

n2 + (−1)n
= ∞.

4. Which of the following sequences are monotone? bounded? convergent?

{
(−1)n(n+ 2)

n

}
,
{
2(−1)n

}
,
{ n

2n

}
, {log(n+ 1)− logn} ,

{
3n− 5

2n

}
.

5. For p > 0 and |c| < 1, prove that {cn}, {npcn}, and {np/n!} are all null
sequences.

6. Using BMCT, show that a1/n → 0 as n → ∞, where 0 < a < 1. Is it
possible to use BMCT to show that n1/n → 1 as n → ∞?

7. Which is larger in each of the following:

(i) 10001000 or 1001999? (ii)
(
1 + 1

100000

)100000

or 2?

8. Define an recursively by a1 =
√
2 and an+1 =

√
2 +

√
an for all n ≥ 1.

Show that the sequence {an}n≥1 is convergent. Find its limit.
9. Define an recursively by a1 =

√
2 and an+1 =

√
2 + an for all n ≥ 1. Show

that the sequence {an}n≥1 converges to 2.
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10. For each of the following sequences, show that there is a number L such
that an → L. Find also the value of L.
(a) {an}, where a1 = 1 and an+1 = 1 +

√
an for n ≥ 1.

(b) {an}, where a1 = 3 and an+1 = 3 +
√
an for n ≥ 1.

(c) {an}, where a1 = L (L > 1) and an+1 =
√
an for n ≥ 1.

(d) {an}, where a1 > 0, a2 > 0, and an+2 =
√
an +

√
an+1 for n ≥ 1.

(e) {an}, where a1 = 1 and an+1 = 1
4 (2an + 3) for n ≥ 1.

(f) {an}, where a1 = 1 and an+1 = an/(1 + an) for n ≥ 1.
(g) {an}, where a1 = α > 0 and an+1 =

√
(αβ2 + a2n)/(α+ 1) (β > α).

11. Suppose that a sequence {an} of real numbers satisfies 7an+1 = a3n + 6
for n ≥ 1. If a1 = 1

2 , prove that the sequence increases and find its limit.
What happens if a1 = 3

2 or a1 = 5
2?

12. Test each of the sequences given below for convergence. Find its limit if
it converges.
(a) a1 = 1 and an+1 =

√
5an. (b) a1 = 1 and an+1 =

√
5 an.

(c) a1 = 1 and an+1 =
√
5 + an.

13. Show that if a1 > b1 > 0, an+1 =
√
anbn, and bn+1 = (an + bn)/2, then

{an} and {bn} both converge to a common limit.
14. Let {an} be a sequence of positive real numbers such that an+1 ≤ ran for

some r ∈ (0, 1) and for all n. Prove that {an} converges to 0.
15. In the following problems, state whether the given sequence {an} is con-

vergent or divergent. If it is convergent, then determine its limit. Here an
equals

(a) 2 + (−1)n. (b) n(2 + (−1)n) (c) n cos
(nπ

2

)
.

(d) 22008/n. (e)
3n2 − logn

n2 + 3n3/2
. (f)

√
n+ 3

√
n−√

n.

(g) n2008/n. (h) n1/(n+2008). (i) (n+ 1)1/(log(1+n)).

(j)
5n + 6n

1 + 7n
. (k) (log n)1/n. (l)

√
n(n+ 1)− n.

(m)
(n!)1/n

n
. (n) logn− log(n+ 1). (o)

1

n
sin

(nπ
6

)
+

5n+ 1

7n+ 6
.

(p) (an+ 7)1/n. (q)
an − a−n

an + a−n
. (r) (n+ 2008)1/n.

(s)
an + n

an − n
. (t)

an

n!
(a ∈ R). (u) n(a1/n − 1).
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2.2 Limit Inferior, Limit Superior, and Cauchy
Sequences

Consider a sequence of real numbers {an}n≥1. Then for each fixed k ∈ N, let

Mk = sup{ak, ak+1, . . .} := sup{an : n ≥ k}
if the sequence is bounded above, and Mk = ∞ if it is not bounded above.
Clearly, Mk ≥ Mk+1 for every k. Similarly, let

mk = inf{ak, ak+1, . . .} := inf{an : n ≥ k}
if the sequence is bounded below, and mk = −∞ if it is not bounded below.
Clearly, mk ≤ mk+1 for every k. Consequently,

m1 ≤ m2 ≤ · · · ≤ mk ≤ mk+1 ≤ · · · ≤ Mk+1 ≤ Mk ≤ · · · ≤ M2 ≤ M1.

Since every monotone sequence has a limit (see Theorem 2.30 if we also allow
±∞), the limits

M = lim
k→∞

Mk and m = lim
k→∞

mk

both exist. So m ≤ M . We call M and m the limit superior and the limit
inferior, respectively, of {an}. We denote these limits by

M = lim sup
n→∞

an and lim
n→∞ an, and m = lim inf

n→∞ an or limn→∞an,

respectively. Thus,

lim sup
n→∞

an = lim
k→∞

sup
n≥k

an and lim inf
n→∞ an = lim

k→∞
inf
n≥k

an.

The right-hand sides of these are always meaningful, provided it is understood
that the values of ∞ and −∞ are allowed. Note that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M = ∞ if {an} is not bounded above,
m = −∞ if {an} is not bounded below,
M = −∞ if lim

n→∞ an = −∞,

m = ∞ if lim
n→∞ an = ∞.

For instance:

(a) For the sequence {an}n≥1, where an = 1/n, we have

m1 = inf{1, 1/2, 1/3, . . .} = 0, m2 = inf{1/2, 1/3, 1/4, . . .} = 0,

and mk = 0 for each k ≥ 1. Therefore, it is clear that

m = limmk = 0, i.e., lim inf an = 0.
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Similarly, we see that

M1 = sup{1, 1/2, 1/3, . . .} = 1, M2 = sup{1/2, 1/3, 1/4, . . .} =
1

2
,

and Mk = 1/k for each k ≥ 1. Therefore,

M = limMk = 0, i.e., lim sup an = 0.

(b) lim supn→∞(−1)n = 1 and lim infn→∞(−1)n = −1.
(c) limn→∞ n2 = ∞, and so lim supn→∞ n2 = lim infn→∞ n2 = ∞.
(d) lim supn→∞(−n) = −∞ and lim supn→∞ n = ∞.
(e)

lim sup
n→∞

rn =

⎧
⎨

⎩

∞ if |r| > 1,
1 if |r| = 1,
0 if |r| < 1,

and lim inf
n→∞ rn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞ if r > 1,
1 if r = 1,
0 if |r| < 1,
−1 if r = −1,
−∞ if r < −1.

(f) If an = (−1)n(1 + 1/n), then lim supn→∞ an = 1 and lim infn→∞ an =
−1. Also, we note that a2n → 1, a2n−1 → −1 as n → ∞, and the sequence
{an} has no subsequences that can converge to a limit other than 1 or
−1. Note also that

sup{an : n ≥ 1} =
3

2
and inf{an : n ≥ 1} = −2.

The reader is warned not to confuse the supremum of a set with the limit
superior of a sequence, and similarly the infimum of a set with the limit
inferior of a sequence.

(g) lim supn→∞ (−1)n/n = 0 = lim infn→∞ (−1)n/n, because for k ≥ 1,

Mk = sup

{
(−1)k

k
,
−(−1)k

k + 1
,
(−1)k

k + 2
, . . .

}
=

⎧
⎪⎨

⎪⎩

1

k + 1
if k is odd,

1

k
if k is even,

and

mk =

⎧
⎪⎨

⎪⎩

− 1

k
if k is odd,

− 1

k + 1
if k is even,

so that Mk → 0 and mk → 0 as k → ∞.
(h) For the sequence {(−1)nn}n≥1 = {. . . ,−5,−3,−1, 2, 4, 6, . . .}, we have

inf{(−1)nn : n ∈ N} = −∞ and lim inf(−1)nn = −∞
and

sup{(−1)nn : n ∈ N} = ∞ and lim sup(−1)nn = ∞.
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Lemma 2.46. Suppose that {an} is a sequence of real numbers with

L = lim sup
n→∞

an and � = lim inf
n→∞ an.

Then for every ε > 0 there exist integers N1 and N2 such that
{
an − L < ε for all n ≥ N1,
an − L > −ε for infinitely many n ≥ N1,

and {
an − � > −ε for all n ≥ N2,
an − � < ε for infinitely many n ≥ N2,

respectively.

Proof. By the definition of the limit superior, since L = limk→∞ Mk, there
exists an integer N1 such that

| sup{ak, ak+1, . . .} − L| = |Mk − L| < ε for all k ≥ N1,

so that
ak ≤ sup{ak, ak+1, . . .} < L+ ε for all k ≥ N1.

That is,
ak < L+ ε for all k ≥ N1.

Again, since Mk ≥ Mk+1 for every k ≥ 1, we have

L ≤ sup
k≥1

Mk. (2.1)

In particular, this gives

L ≤ M1 = sup{a1, a2, a3, . . .}.
Thus, by the definition of supremum, there exists an n1 such that an1 > M1−ε,
so that

an1 > L− ε.

Now taking k = n1 in (2.1), we obtain that

L ≤ Mn1 = sup{an1 , an1+1, . . .},
and so there exists an n2 such that

an2 > Mn1 − ε > L− ε.

Proceeding indefinitely, we obtain integers n1 < n2 < · · · < nk < · · · such
that

ank
> L− ε for all k ∈ N,

which proves the second inequality for the case of limit superior.
Similarly, since � = limk→∞ mk, there exists an integer N2 such that

ak ≥ inf{ak, ak+1, . . .} > L− ε for all k ≥ N2.
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Theorem 2.47. For any sequence of real numbers {an}, we have

lim
n→∞ an = L if any only if lim sup

n→∞
an = lim inf

n→∞ an = L.

Proof. If L = ±∞, then the equivalence is a consequence of the definitions of
limit superior and limit inferior. Therefore, we assume that lim an = L, where
L is finite.

⇒: Given ε > 0, there exists an N ∈ N such that

|an − L| < ε, i.e., L− ε < an < L+ ε for all n ≥ N,

and so
L− ε < MN = sup{aN , aN+1, . . .} ≤ L+ ε.

Thus, {Mk}k≥N is a bounded monotone sequence and hence converges.
That is,

L− ε ≤ lim
N→∞

MN = lim sup
n→∞

an ≤ L+ ε.

Since ε is arbitrary, lim supn→∞ an = L. A similar argument gives
lim infn→∞ an = L.

⇐: Conversely, suppose that L = lim supn→∞ an = lim infn→∞ an = �.
Since � = L, by Lemma 2.46 we conclude that there exists N = max{N1, N2}
such that

L− ε < ak < L+ ε for all k ≥ N.

This proves that limk→∞ ak = L, as desired.

For any bounded sequence {an}, we see that {Mk − mk} is increasing
and converges to M − m. Thus, using Theorem 2.47, we may formulate the
definition of convergence of a sequence as follows.

Theorem 2.48. A sequence {an} of real numbers is convergent if and only if
it is bounded and {Mk −mk} converges to zero, where Mk = sup{an : n ≥ k}
and mk = inf{an : n ≥ k}.

Alternatively, Theorem 2.42 can be seen (without using Lemma 2.41) as
an immediate consequence of the following result, which in particular, shows
that there are subsequences converging to m and M . Moreover, m and M
are, respectively, the smallest and the largest possible limits for convergent
subsequences.

Theorem 2.49. Let {an} be a bounded sequence of real numbers and let

S = {x ∈ R : ank
→ x for some subsequence ank

}.

If m = lim inf an and M = lim sup an, then {m,M} ⊂ S ⊂ [m,M ].
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Proof. First we prove that M ∈ S. For this, we need to show that there exists
a subsequence {ank

}k≥1 such that for each given ε > 0, there exists an integer
N such that

|ank
−M | < ε for all k ≥ N .

By Lemma 2.46, there exists an integer N1 such that

ak < M + ε for all k ≥ N1 (2.2)

and n1 < n2 < · · · < nk < · · · such that

ank
> M − ε for all k ∈ N. (2.3)

Combining (2.2) and (2.3), we infer that

M − ε < ank
< M + ε, i.e., |ank

−M | < ε for all nk ≥ N ,

and so M is the limit of a subsequence of {an}. The assertion about m has a
similar proof. Thus, {m,M} ⊂ S.

Next we prove that S ⊂ [m,M ]. We assume that ank
→ x as k → ∞. We

shall show that x ∈ [m,M ]. Equation (2.2) shows that

an < M + ε for sufficiently large n,

and so
ank

< M + ε for sufficiently large k.

The limit inequality rule gives that

x ≤ M + ε,

and since ε > 0 is arbitrary, it follows that x ≤ M . The proof for m ≤ x is
similar.

Corollary 2.50. A sequence {an} of real numbers converges if and only if S
is a singleton set. That is, lim an exists.

In view of Theorem 2.49, we have the following equivalent definition: If
{an} is a bounded sequence of real numbers, then M and m, the limit supe-
rior and the limit inferior of {an}, are respectively the greatest and the least
subsequential limits of {an}.
Theorem 2.51. Suppose that {an}n≥1 and {bn}n≥1 are two bounded se-
quences of real numbers. Then we have the following:

(a) lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn.
(b) lim infn→∞(an + bn) ≥ lim infn→∞ an + lim infn→∞ bn.
(c) lim supn→∞ an ≤ lim supn→∞ bn and lim infn→∞ an ≤ lim supn→∞ bn if

an ≤ bn for all n ≥ 1.
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(d) lim supn→∞(anbn) ≤
(
lim supn→∞ an

)(
lim supn→∞ bn

)
if an > 0,

bn > 0.

(e) lim infn→∞(anbn) ≥
(
lim infn→∞ an

)(
lim infn→∞ bn

)
if an > 0, bn > 0.

Proof. (a) and (b):

Method 1: As usual, for each fixed k ∈ N, let

Mk = sup{ak, ak+1, . . .} and Pk = sup{bk, bk+1, . . .}.

Then
an ≤ Mk and bn ≤ Pk for all n ≥ k,

and therefore
an + bn ≤ Mk + Pk for all n ≥ k,

which shows that Mk + Pk is an upper bound for

{ak + bk, ak+1 + bk+1, . . .}.

Consequently,

sup{ak + bk, ak+1 + bk+1, . . .} ≤ Mk + Pk,

and thus

lim sup
k→∞

{ak + bk, ak+1 + bk+1, . . .} ≤ lim
k→∞

(Mk + Pk) = lim
k→∞

Mk + lim
k→∞

Pk,

which, by the definition, is equivalent to (a). The proof of (b) is similar and
so will be omitted.

Method 2: Since {an+bn}n≥1 is a bounded sequence (by hypothesis), Lemma
2.46 shows that there exist integers N1, N2, N3, and N4 such that

ak < La + ε/2 for all k ≥ N1 and ak > �a − ε/2 for all k ≥ N2

and

bk < Lb + ε/2 for all k ≥ N3 and bk > �b − ε/2 for all k ≥ N4,

respectively. Here

La = lim sup an, �a = lim inf an, Lb = lim sup bn, and �b = lim inf bn.

Thus,
ak + bk < La + Lb + ε for all k ≥ max{N1, N3}

and

ak + bk > �a + �b − ε for all k ≥ max{N2, N4}.
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Since ε > 0 is arbitrary, (a) and (b) follow.
(c) Since an ≤ bn for all n ≥ 1, it follows that

Mk ≤ Pk and mk ≤ pk,

where mk = inf{ak, ak+1, . . .} and pk = inf{bk, bk+1, . . .}. Taking the limit as
k → ∞ yields the desired conclusion.

Observe that if an = (−1)n and bn = (−1)n+1, then we have

an + bn = 0 for all n ≥ 0, lim sup an = 1 = lim sup bn.

We may also consider

an =

{
0 if n = 2k,
(−1)k+1 if n = 2k − 1,

and bn =

{
(−1)k if n = 2k,
0 if n = 2k − 1,

so that

an + bn =

{
(−1)k if n = 2k,
(−1)k+1 if n = 2k − 1.

In either case, the equalities in (a) and (b) of Theorem 2.51 do not always
hold.

If

an =

{
1 if n is odd,
2 if n is even,

and bn =

{
2 if n is odd,
1 if n is even,

we see that equality in each of (d) and (e) of Theorem 2.51 does not hold.

2.2.1 Cauchy Sequences

If a sequence {an} of real numbers converges to a number a, then the terms an
of the sequence are close to a for large n, and hence the terms of the sequence
themselves are close to each other “near a.” This intuition led to the concept of
Cauchy1 sequence, which helps us in deducing the convergence of a sequence
without necessarily knowing its limit. Moreover, unlike theorems (such as
BMCT) that deal only with monotone sequences, we have theorems on Cauchy
sequences that deal with sequences that are not necessarily monotone.

Definition 2.52 (Cauchy sequence). A sequence {an} ⊂ R is called a
Cauchy sequence if for each ε > 0 there is a positive integer N such that
m,n ≥ N implies |an − am| < ε. Equivalently, we say that a sequence {an} is
Cauchy if for each ε > 0 there is a positive integer N such that

|an+p − an| < ε for all n ≥ N and for all p ∈ N.

1 Augustin-Louis Cauchy (1789–1857) is one of the important mathematicians who
placed analysis on a rigorous footing.
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For example, if an = (−1)n−1/n, then {an} is Cauchy; for

|an − am| =
∣∣∣∣
(−1)n−1

n
− (−1)m−1

m

∣∣∣∣ ≤
1

n
+

1

m
<

2

n
if m > n.

Our first result is algebraic.

Theorem 2.53. Every convergent sequence is a Cauchy sequence.

Proof. Suppose that an → a as n → ∞, and let ε > 0 be given. Then there
exists an N such that

|an − a| < ε

2
for all n ≥ N.

Therefore, for m,n ≥ N , we must have

|an − am| = |(an − a)− (am − a)| ≤ |an − a|+ |am − a| < ε

2
+

ε

2
= ε,

and hence {an} is a Cauchy sequence.

Theorem 2.53 gives a necessary condition for convergence. Equivalently,
if a sequence is not Cauchy, then it cannot be convergent. Thus, Theorem
2.53 can be used to show the divergence of several nontrivial sequences. For
example, we have the following:

(a) Neither {n}n≥1 nor {1 + (−1)n}n≥1 is Cauchy.
(b) If sn =

∑n
k=1 1/k, then {sn}n≥1 is not Cauchy, because for any n ∈ N

(with m = 2n),

s2n − sn =

2n∑

k=1

1

k
−

n∑

k=1

1

k
=

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
> n

( 1

2n

)
=

1

2
.

Thus, the sequence {sn} is not convergent.
(c) Similarly, if sn =

∑n
k=1 1/(2k − 1), then {sn}n≥1 is not Cauchy (and

hence is not convergent), because for any n ∈ N,

s2n − sn =
2n∑

k=1

1

2k − 1
−

n∑

k=1

1

2k − 1

=
1

2n+ 1
+

1

2n+ 3
+ · · ·+ 1

2n+ 2n− 1

> n
( 1

4n− 1

)
> n

( 1

4n

)
=

1

4
.

(d) Finally, consider the sequence {xn} given by

x0 = 0 and xn+1 =
10xn + 6

5
for n ≥ 0.
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Then {xn} does not converge, because it is not Cauchy. Indeed,

xn > 0 for all n ≥ 1 and xn+1 − xn = xn +
6

5
>

6

5
,

showing that {xn} is not Cauchy.

We also remark that a sequence {sn} that satisfies the condition

sn+1 − sn → 0 as n → ∞
is not necessarily a Cauchy sequence (e.g., sn as above or sn = logn).

Theorem 2.54. Cauchy sequences are bounded.

Proof. The proof is similar to that of the corresponding result for convergent
sequences (see Theorem 2.7). For the sake of completeness we include a proof
here. Consider a Cauchy sequence {an}n≥1. Then by definition, there exists
a positive integer N ∈ N such that

|am − an| < ε = 1 for all n > m ≥ N .

That is, with m = N , we have |an| < 1 + |aN | for all n > N . We conclude
that {an}n≥1 is bounded.

An interesting fact which that Cauchy sequences important is that the
converse of Theorem 2.53 is also true. Our next task is to prove this result,
which is also called the general principle of convergence.

Theorem 2.55 (Completeness criterion for sequences). A sequence is
convergent if and only if it is a Cauchy sequence.

Proof. The first half of the theorem has already been proved. Thus, we have
to show that every Cauchy sequence of real numbers converges. To do this,
we begin with a Cauchy sequence {an}. Then {an} is bounded by Theorem
2.54. Let ε > 0. Then there exists an N = N(ε) such that

|an − am| < ε

2
whenever n > m ≥ N. (2.4)

Method 1: In particular, taking m = N in (2.4), it follows that

|an − aN | < ε

2
, i.e., − ε

2
+ aN < an <

ε

2
+ aN for all n > N.

This shows that aN − (ε/2) and aN + (ε/2) are, respectively, lower and upper
bounds for the set

Xn = {an, an+1, . . .} if n > N.
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Note that Xn ⊇ Xn+1 ⊇ · · · and if Mn = supXn, then Mn ≥ Mn+1 ≥ · · · .
Thus, for n > N ,

aN − ε

2
≤ inf{an, an+1, . . .}

︸ ︷︷ ︸
≤ sup{an, an+1, . . .} ≤ aN +

ε

2
,

which gives

sup{an, an+1, . . .} ≤ aN +
ε

2
≤ inf{an, an+1, . . .}+ ε

2
+

ε

2︸ ︷︷ ︸
,

so that for n > N ,

sup{an, an+1, . . .} ≤ inf{an, an+1, . . .}+ ε.

Thus, by definition,

lim sup an ≤ sup{an, an+1, . . .} ≤ inf{an, an+1, . . .}+ ε ≤ lim inf an + ε.

Since this holds for every ε > 0, we have

lim sup
n→∞

an ≤ lim inf
n→∞ an.

The reverse inequality always holds, so that

lim sup
n→∞

an = lim inf
n→∞ an.

Hence {an} converges by Theorem 2.47.

Method 2: Assume that {an} is a Cauchy sequence. Then by the Bolzano–
Weierstrass theorem (Theorem 2.42), {an} has a convergent subsequence, say
{ank

}. Let a = limk→∞ ank
. Then there exists an N1 such that

|ank
− a| < ε

2
whenever k > N1.

We need to show that a = limn→∞ an. Choose k large enough that nk > N
and k > N1. Then because {an} is Cauchy, (2.4) is also satisfied with m = nk.
Thus, {an} converges, because

|an − a| ≤ |an − ank
|+ |ank

− a| < ε

2
+

ε

2
= ε whenever n > N.

Definition 2.56 (Contractive sequence). A sequence {an}n≥1 is said to
be contractive if there exists a constant λ ∈ (0, 1) such that |an+1 − an| ≤
λ|an − an−1| for all n ≥ 2.

Theorem 2.57. Every contractive sequence is Cauchy (and hence convergent
by Theorem 2.55). What happens if one allows λ = 1?
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Proof. Assume that {an}n≥1 is a contractive sequence. We find that a1 �= a2;
otherwise, {an} reduces to a zero sequence, which converges trivially. We see
that

|an+1 − an| ≤ λn−1|a2 − a1|,
and so for m > n ≥ N , we have

|am − an| = |(am − am−1) + (am−1 − am−2) + · · ·+ (an+1 − an)|
= [λm−2 + λm−3 + · · ·+ λn−1]|a2 − a1|
=

λn−1(1− λm−n)

1− λ
|a2 − a1|

<
λn−1

1− λ
|a2 − a1| ≤ λN−1

1 − λ
|a2 − a1|.

Since λ ∈ (0, 1), given ε > 0, we can choose N = N(ε) such that

λN−1

1− λ
|a2 − a1| < ε,

showing that |am − an| < ε for all m > n ≥ N . Thus {an} is a Cauchy
sequence and hence converges.

Note that if an =
√
n, then

an+1 − an =
√
n+ 1−√

n =
1√

n+ 1 +
√
n
<

1√
n+

√
n− 1

= an − an−1,

but {√n} is not a Cauchy sequence.

Example 2.58. Define an inductively by

an+1 = 1
2 (an + an−1) for n ≥ 2,

where a1 and a2 are fixed real numbers. Does the sequence {an} converge? If
it converges, what is its limit?

Solution. For definiteness, we may assume that a1 < a2. For n ≥ 2, we have

an+1 − an = −1

2
(an − an−1) = · · · =

(
− 1

2

)n−1

(a2 − a1). (2.5)

Method 1: If n is even, then the factor on the right, namely (−1/2)n−1(a2−
a1), is negative, and so an+1 − an < 0, and if n is odd, this factor is positive,
and so the reverse inequality holds. Thus {a2n} is decreasing, whereas {a2n+1}
is increasing. Observe that {an} is not a monotone sequence but is bounded.
By BMCT, both {a2n+1} and {a2n} converge. In order to show that {an}



64 2 Sequences: Convergence and Divergence

converges, it suffices to prove that these odd and even sequences converge to
the same limit. We now begin by observing that (2.5) gives

a2n+1 = a2n +
(
− 1

2

)2n−1

(a2 − a1),

showing that limn→∞ a2n+1 = limn→∞ a2n. Therefore, {an} converges to a
limit l, say. To obtain the limit, it suffices to note from the definition that

an+1 +
an
2

= an +
an−1

2
= · · · = a2 +

a1
2
.

Now allow n → ∞ and get that

l +
l

2
= a2 +

a1
2
, i.e., l =

2a2 + a1
3

.

Method 2: One could directly prove the convergence of {an} by showing that
it is Cauchy. Indeed, using (2.5), it follows that for m > n ≥ 2,

|am − an| ≤ |am − am−1|+ · · ·+ |an+1 − an|
= (a2 − a1)

[
1

2m−2
+

1

2m−1
+ · · ·+ 1

2n−1

]

=
a2 − a1
2n−1

[
1 +

1

2
+

1

2m−n−1

]

=
a2 − a1
2n−1

[
1− (1/2)m−n

1− (1/2)

]
<

a2 − a1
2n−2

.

Now let ε > 0 be given. Choose N large enough that

a2 − a1
2N−2

< ε.

Thus for all m > n ≥ N , we have

|am − an| < ε,

showing that {an} is a Cauchy sequence and therefore converges. To get the
limit value, by (2.5), we may write an+1 as

an+1 = a1 + (a2 − a1) + (a3 − a2) + · · ·+ (an+1 − an)

= a1 + (a2 − a1)

[
1− 1

2
+ · · ·+

(
− 1

2

)n−1
]

→ a1 + (a2 − a1)
( 1

1 + 1/2

)
=

2a2 + a1
3

as n → ∞,

so that {an} converges to (2a2 + a1)/3, as desired. •
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Lemma 2.59. Let {an} be a sequence of positive numbers. Then we have

lim inf
n→∞

an+1

an
≤ lim inf

n→∞ a1/nn ≤ α := lim sup
n→∞

a1/nn ≤ L := lim sup
n→∞

an+1

an
.

Proof. We need to prove that α ≤ L. This is obvious if L = ∞, and so we
assume that 0 ≤ L < ∞. To prove α ≤ L, it suffices to show that

α ≤ λ for any λ with L < λ. (2.6)

So we let L < λ. Then since

L = lim sup
an+1

an
= lim

k→∞

[
sup

{an+1

an
: n ≥ k

}]
< λ,

there exists a natural number N such that

sup
{an+1

an
: n ≥ N

}
< λ,

which gives
an+1

an
< λ for all n ≥ N,

so that for n ≥ N ,

an = aN

(aN+1

aN

)(aN+2

aN+1

)
· · ·

( an
an−1

)
< λn−NaN .

Therefore,

a1/nn < λ1−N/na
1/n
N for n ≥ N,

where λ and aN are fixed. Since limn→∞ a1/n = 1 for a > 0 (see Example
2.18(a)), it follows that

α = lim sup a1/nn ≤ λ.

Consequently, (2.6) holds. The proof for the first inequality in the statement
is similar, whereas the middle inequality in Lemma 2.59 is trivial.

Corollary 2.60. Let {an} be a sequence of positive numbers. If L = lim
n→∞

an+1

an
,

then lim
n→∞ a

1/n
n = L.

Example 2.61. Consider an defined by

an =
nn

(n+ 1)(n+ 2) · · · (n+ n)
.
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Suppose we wish to compute lim a
1/n
n (see also Example 7.16(a)). It is easier

to apply Corollary 2.60. Now we have (by Example 2.33)

an+1

an
=

(n+ 1)n(n+ 1)2

nn(2n+ 1)(2n+ 2)
=

(1 + 1/n)n(1 + 1/n)2

(2 + 1/n)(2 + 2/n)
→ e

4
as n → ∞,

and so lim a
1/n
n = e/4. Similarly, it is easy to see that

lim
n→∞

(n!)1/n

n
=

1

e
. •

We shall provide a direct proof of Corollary 2.60 later, in Section 8.1.

However, it is natural to ask the following: if an > 0 for all n and limn→∞ a
1/n
n

exists, does limn→∞ an+1/an exist? Clearly not. For example, set

an = 3−n+(−1)n .

Then an > 0 and a
1/n
n = 3cn/n = e(cn/n) log 3, where

cn
n

=
−n+ (−1)n

n
= −1 +

(−1)n

n
→ −1 as n → ∞,

which shows that a
1/n
n → e− log 3 = 1/3. On the other hand,

an+1

an
=

3cn+1

3cn
= 3cn+1−cn = 3−1−2(−1)n =

{
3 if n is odd,
3−3 if n is even.

This shows that

1

27
= lim inf

n→∞
an+1

an
< 1 < lim sup

n→∞
an+1

an
= 3,

and limn→∞ an+1/an does not exist. The above construction helps to generate
many more examples. For instance, consider an = 2−n+(−1)n .

2.2.2 Summability of Sequences

Our aim here is to attach “in some sense” a limit to divergent sequences, while
realizing at the same time that any “new limit” we define must agree with
the limit in the ordinary sense when it is applied to a convergent sequence.
More precisely, if {sn} possibly diverges, we introduce “another method of
summation” by replacing limn→∞ sn by

lim
n→∞ σn, where σn =

1

n

n∑

k=1

sk.

Here the {σn} are called Cesàro means2 (of order 1). Note that {σn} is pre-
cisely the average of the first n terms of the sequence {sn}, and hence {σn}
is also called a sequence of averages.

2 Ernesto Cesàro (1859–1906) was an Italian mathematician who worked on this
problem in early stage of his career.
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Definition 2.62. If {sn}n≥1 is a sequence of real numbers, then we say that
{sn}n≥1 is (C, 1) summable to L if the new sequence {σn}n≥1 converges to L,
where

σn =
1

n

n∑

k=1

sk.

In this case, we write

sn → L (C, 1) or sn → L (Cesàro) or lim
n→∞ sn = L (C, 1).

Next, consider a sequence {sn} of real numbers such that σn → 0 as
n → ∞ but {sn} is not convergent.

Example 2.63. Suppose that sn = (−1)n−1 for n ≥ 1. Then

σn =

⎧
⎨

⎩

0 if n is even

1

n
if n is odd

, n ∈ N,

and so σn → 0 as n → ∞. Thus, {(−1)n−1}n≥1 is (C, 1) summable to 0, and
we write

lim
n→∞(−1)n−1 = 0 (C, 1). •

All convergent sequences are (C, 1) summable to their limits. More pre-
cisely, we have the following result.

Theorem 2.64. If sn → x, then sn → x (C, 1).

Proof. Suppose that sn → x as n → ∞. We need to prove that

σn =
1

n

n∑

k=1

sk → x as n → ∞.

Clearly, it suffices to prove the theorem for the case x = 0. So we assume that
sn → 0. Then given ε > 0, there exists an N ∈ N such that |sn| < ε/2 for all
n > N . Now for n > N ,

|σn| =
∣∣∣∣∣
1

n

n∑

k=1

sk

∣∣∣∣∣ ≤
1

n

[
N∑

k=1

|sk|+
n∑

k=N+1

|sk|
]

=
1

n

(
N∑

k=1

|sk|
)

+
1

n
(n−N)

ε

2
<

M

n
+

ε

2
, M =

N∑

k=1

|sk|.

Note that M is independent of n and 1/n → 0 as n → ∞. Consequently, given
ε > 0, there exists an N1 such that

∣∣∣∣∣
1

n

n∑

k=1

sk

∣∣∣∣∣ <
ε

2
+

ε

2
= ε for all n ≥ N1,

and so σn → 0 whenever sn → 0.
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As a consequence of Theorem 2.64, we easily have

(a) limn→∞(1/n)
∑n

k=1 k
1/k = 1;

(b) limn→∞(1/n)
∑n

k=1 n/(
√
n2 + k) = 1;

(c) limn→∞(1/n)
∑n

k=1 1/(2k − 1) = 0.

Theorem 2.64 can also be obtained as a consequence of the following result.

Theorem 2.65. Let {sn} be a sequence of real numbers and {σn} its Cesàro
means of order 1. Then we have

lim inf
n→∞ sn ≤ lim inf

n→∞ σn ≤ α := lim sup
n→∞

σn ≤ L := lim sup
n→∞

sn. (2.7)

In particular, Theorem 2.64 holds.

Proof. We need to prove that α ≤ L. This is obvious if L = ∞, and so we
assume that L < ∞. In order to prove α ≤ L, it suffices to show that

α ≤ λ for any λ with L < λ.

So we let L < λ. By the definition of L, it follows that there exists an N such
that sn < λ for all n > N . Now for n ≥ N ,

σn =
1

n

[
N∑

k=1

sk +

n∑

k=N+1

sk

]
<

M

n
+

1

n
(n−N)λ, M =

N∑

k=1

sk.

Fix N , and allow n → ∞, and take limit superior on each side to obtain

α ≤ λ for any λ with L < λ.

It follows that α ≤ L. The proof for the first inequality in (2.7) is similar,
whereas the middle inequality in (2.7) is trivial.

In particular, if limn→∞ sn exists, then so does limn→∞ σn, and they are
equal, proving the second assertion.

Now we ask whether a sequence {sn} that diverges to ∞ can be (C, 1)
summable.

Example 2.66 (Not all divergent sequences are (C, 1) summable). For
instance, consider an = 1 for all n ≥ 1. Then

sn =

n∑

k=1

ak = n and σn =
1

n

n∑

k=1

sk =
1

n

n∑

k=1

k =
n+ 1

2
.

Note that {sn} is a divergent sequence. Since {σn} is not convergent, it follows
that {sn} is not (C, 1) summable. •

We have seen examples of divergent series that are not (C, 1) summable,
but repeating the process of following arithmetic means may lead to a con-
vergent sequence. This idea leads to (C, 2) summable sequences, and further
extension leads to (C, k) summable sequences. We shall discuss this briefly in
Chapter 9.
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2.2.3 Questions and Exercises

Questions 2.67.

1. Is every convergent sequence bounded? Is every bounded sequence con-
vergent?

2. Do sequences always have a convergent subsequence?
3. Must a scalar multiple of a Cauchy sequence be Cauchy? Must a sum of

two Cauchy sequences always be Cauchy?
4. If {a3n−2}, {a3n−1}, and {a3n} converge to the same limit a, must {an}

converge to a?
5. Can an unbounded sequence have a convergent subsequence? Can it have

many convergent subsequences?
6. Let {an} be a Cauchy sequence that has a subsequence {ank

} converging
to a. Must we have an → a?

7. Suppose that we are given a sequence of rational numbers that converges
to an irrational number r. Is it possible to obtain many such sequences
each converging to the same limit r?

8. Suppose that β > 0 is given. Is it possible to construct a sequence of
rational numbers converging to

√
β?

9. Does there exist an example of a bounded sequence having four subse-
quences converging to different limits?

10. Let an = (−1)n. For each fixed N , do we have |an − aN | = 0 for infinitely
many values of n? Does {an} satisfy the Cauchy criterion for convergence?

11. Let an =
√
n and p ∈ N be fixed. Then

an+p − an =
√
n+ p−√

n =
p√

n+ p+
√
n
→ 0 as n → ∞.

Does {an} satisfy the Cauchy criterion for convergence?
12. Is every bounded monotone sequence Cauchy? Is every Cauchy sequence

monotone?
13. Is the sequence {an}, an = 1 + 1

22 + 1
32 + · · ·+ 1

n2 , Cauchy?
14. If an+1 − an → 0 as n → ∞, must {an} be convergent?
15. Does limn→∞(1/n)

∑n
k=1(1/k) exist? If so, what is this limit? If not, must

it be ∞?
16. Does limn→∞(1/

√
n)

∑n
k=1(1/

√
k) exist? If so, what is this limit?

17. Must a constant sequence be (C, 1) summable?

Exercises 2.68.

1. Suppose that p is an integer. Show that if |r| < 1, then the sequence
{nprn}n≥1 converges to zero. In particular, rn → 0 as n → ∞ if |r| < 1.

2. Construct three divergent sequences each having a convergent subse-
quence.

3. If the subsequences {a2n} and {a2n+1} converge to a, prove that {an} also
converges to a.
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4. Suppose that {an} is a sequence of real numbers and limn→∞ an = a,
a �= 0. For any sequence {bn}, show that
(a) lim supn→∞(an + bn) = limn→∞ an + lim supn→∞ bn.
(b) lim infn→∞(an + bn) = limn→∞ an + lim infn→∞ bn.
(c) lim supn→∞ anbn = limn→∞ an lim supn→∞ bn.
(d) lim infn→∞ anbn = limn→∞ an lim infn→∞ bn.

5. If {a2n} and {a2n+1} are both Cauchy, then show that {an} need not be
Cauchy. How about if {a2n} and {a2n+1} both converge to the same limit?

6. Show that the following sequences are Cauchy:

(a) an =

n−1∑

k=0

(−1)k

k!
. (b) an =

n∑

k=0

1

k!
. (c) an =

n∑

k=1

(−1)k−1

2k − 1
.

7. Define an = sin(nπ/2). Extract subsequences of {an} each having the
stated property below:
(a) converging to 1. (b) converging to −1.
(c) converging to 0. (d) divergent.

8. Suppose that {an} is a sequence such that

|an+2 − an+1| ≤ 3

n
|an+1 − an| for n ≥ 1.

Show that {an} is Cauchy.
9. If |an| < 1/2 and |an+1 − an+2| ≤ (1/8)|a2n+1 − a2n| for all n ∈ N, prove

that the sequence {an} converges.
10. Let a1 = 1 and an+1 = 1 + 1/(1 + an) for all n ≥ 1. Is {an} a Cauchy

sequence? If so, find its limit.
11. Define a1 = 1 and an+1 = 1/(3+an) for n ≥ 1. Show that {an} converges.

Also, find the limit of the sequence.
12. If {xn} is a sequence of real numbers such that xn+1−xn → x, show that

xn/n → x.
13. Show that

(a) lim
n→∞

1

n

n∏

k=1

(2n+ k)1/n =
27

4e
. (b) lim

n→∞
1

n

n∏

k=1

(a+ k)1/n =
1

e
.

14. Show that if {sn} and {tn} are (C, 1) summable to S and T , respectively,
then {sn ± tn} is (C, 1) summable to S ± T .
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Limits, Continuity, and Differentiability

The key underlying ideas of this chapter are the notion of continuity and the
principles of differentiability. These are two important concepts in analysis.
In Section 3.1, we include an explicit similarity between the definition of limit
of a sequence and limit of a function (see Theorem 3.4). Section 3.1 gives
some basic results relating to limits. In Section 3.2, we study properties of
continuous and uniformly continuous functions. We define continuity in terms
of sequences and then show that our definition is equivalent to the classical
ε-δ definition. In addition to continuous functions, differentiable functions are
important in calculus. We discuss differentiability in Section 3.3 and deal with
the derivative of functions, and establish some of the algebraic rules of calcu-
lus, such as how to differentiate sums, products, quotients, and compositions
of functions. The limit concept enables us to study derivatives, and hence
maxima and minima, asymptotes, improper integrals, and many other math-
ematical concepts. Many applications of differentiable functions are presented
in the following chapter.

3.1 Limit of a Function

This section introduces the concepts of neighborhood and limit; neighborhoods
are important in understanding limits, and limits are in turn needed to un-
derstand continuity and differentiability.

3.1.1 Limit Point of a Set

We begin by formulating the concept of the neighborhood of a point in R.

Definition 3.1 (Neighborhood). A neighborhood of a point x0 ∈ R is an
open interval containing x0. For ε > 0, an ε-neighborhood of a point x0 is the
interval (x0 − ε, x0 + ε); it is denoted by B(x0; ε). Then the set B(x0; ε)\{x0}
defined by

S. Ponnusamy, Foundations of Mathematical Analysis,
DOI 10.1007/978-0-8176-8292-7 3,
© Springer Science+Business Media, LLC 2012
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B(x0; ε)\{x0} = {x : |x− x0| < ε}\{x0} := {x : 0 < |x− x0| < ε}
is called a deleted ε-neighborhood of x0.

Let A ⊂ R. A point x0 ∈ A is called an interior point of A if there exists
a δ-neighborhood B(x0; δ) contained in A. A point x0 ∈ R is a limit point of
A if every ε-neighborhood B(x0; ε) of x0 contains a point of A other than x0.
The point x0 itself may or may not belong to the set A. For example,

(a) x0 = 0 is a limit point of

A =

{
1,

1

2
,
1

3
, . . . ,

1

n
, . . .

}
,

but 0 = x0 �∈ A.
(b) Each point x such that |x| ≤ 1 is a limit point of A = {x : |x| < 1}, but

the boundary points −1 and 1 do not belong to the set A.
(c) The limit points of a closed interval I = [a, b] are precisely the points

of I.
(d) Every real number is a limit point of Q.

Note also that a finite set has no limit points.

Theorem 3.2. Let A ⊂ R. A point x0 ∈ R is a limit point of A if and only
if there exists a sequence {xn} in A with xn �= x0 for all n ∈ N such that
xn → x0 as n → ∞.

Proof. Choose xn ∈ {B(x0; 1/n)\B(x0; 1/(n+ 1))} ∩A.

The concept of a limit of a function as x → x0 also involves the idea
of closeness. In terms of the limit of sequences, we can now state a precise
definition of the limit of a function at a point.

3.1.2 Sequential Characterization of Limits

Definition 3.3. Let A ⊂ R and let x0 ∈ R be a limit point of A. Suppose that
f is a function defined on A except possibly at x0. Then f is said to have limit
� as x → x0, and we write

lim
x→x0

f(x) = � or f(x) → � as x → x0

if f(xn) → � for each sequence {xn}n≥1 in A with xn �= x0 for all n ∈ N and
xn → x0 as n → ∞.

It is straightforward to state

lim
x→x0

f(x) = � ⇐⇒ lim
x→x0

|f(x)− �| = 0.

Less precisely stated, this means that if x gets close to x0 but x �= x0, then
f(x) gets close to �. More precisely, this geometric intuition can be stated in
the following form, which is often used as a definition of the limit of a function.
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Theorem 3.4. Let A ⊂ R and let x0 ∈ R be a limit point of A, and f : A → R.
Then the following are equivalent:

(a) limx→x0 f(x) = �.
(b) For every ε > 0, there exists a δ = δ(ε, x0) > 0 such that

|f(x)− �| < ε whenever x ∈ A and 0 < |x− x0| < δ.

Proof. (a) =⇒ (b) : Assume that limx→x0 f(x) = �. We will now use a proof
by contradiction. We suppose that (b) is not true. Then there must exist some
ε > 0 such that for every δ > 0 there corresponds a point x such that

0 < |x− x0| < δ and |f(x)− f(x0)| ≥ ε.

Fix such an ε. Then for each n ∈ N there exists an x ∈ A∩B(x0; 1/n), denoted
by xn, such that

0 < |xn − x0| < 1

n
and |f(xn)− f(x0)| ≥ ε.

So xn → x0 but f(xn) �→ f(x0) as n → ∞. Because of the contradiction
stemming from the assumption, the assumption must be false, and so the
desired conclusion holds.

(a) ⇐= (b) : Assume that (b) holds. Consider a sequence {xn} in A such
that xn �= x0 and xn → x0 as n → ∞. Let ε > 0 be given. Then by (b), there
exists a δ > 0 such that

|f(x)− �| < ε whenever x ∈ A and 0 < |x− x0| < δ.

Now choose N such that

0 < |xn − x0| < δ for all n > N.

It follows from (b) that

|f(xn)− f(x0)| < ε for all n > N,

from which it follows that f(xn) → f(x0), as desired.

First, it should be noted that the function need not be defined at x0 in
order to have a limit at x0, and so limx→x0 f(x) = � does not depend on
f(x0) even if f is defined at x0. Second, it is only a deleted neighborhood
B(x0; δ) \{x0} of x0 that is involved. So x0 need not be in A. Third, even if
the condition x0 ∈ A holds, we may have f(x0) �= �. Also, we note that a
point x → x0 can approach x0 in the following ways:

(a) x approaches x0 with x < x0 (from the left).
(b) x approaches x0 with x > x0 (from the right).
(c) x can approach x0 in an oscillating manner (from both left and right).
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If f(x) has a limit � as x → x0, then we also say that f(x) approaches � as x
approaches x0.

As x approaches x0, the values of f(x) may not get close to any particular
number. In that case, we say that limx→x0 f(x) does not exist. For instance,
we shall see that f : R \{0} → R defined by f(x) = |x|/x illustrates a case
in which a limit does not exist as x → 0 (see Example 3.12). Moreover, if the
limit exists, then it must be unique. Suppose that

lim
x→x0

f(x) = �1 and lim
x→x0

f(x) = �2.

Then for a given ε > 0, there exist δ1, δ2 > 0 such that

|f(x)− �j | < ε/2 whenever x ∈ A and 0 < |x− x0| < δj for j = 1, 2.

Therefore, whenever x ∈ A and 0 < |x− x0| < δ = min{δ1, δ2},
|�1−�2| = |(f(x)−�2)−(f(x)−�1)| ≤ |f(x)−�2|+|f(x)−�1| < (ε/2)+(ε/2) = ε.

Both the left and right sides of the above inequality are independent of δ.
Since ε is arbitrary, the inequality holds if and only if �1 = �2.

Theorem 3.5 (Divergence criteria). Let A ⊂ R, let x0 ∈ R be a limit
point of A, and suppose f : A → R. Let � ∈ R be given. Then f(x) �→ � as
x → x0 iff there exists a sequence {xn} in A with xn �= x0 for all n ∈ N such
that xn → x0 as n → ∞, but f(xn) �→ � as n → ∞.

We may now formulate

Definition 3.6 (ε-δ definition of limit). Let f be defined in some neigh-
borhood of x0 ∈ R, except possibly at x0. We say that limx→x0 f(x) exists if
there exists a real number � satisfying the following condition: for every given
ε > 0 there exists δ = δ(ε, x0) > 0 such that

|f(x)− �| < ε whenever 0 < |x− x0| < δ.

According to the ε-δ definition of limit, in order to show that f(x) �→ � as
x → x0, it suffices to find an ε > 0 for which there is no δ > 0 such that

|f(x)− �| < ε whenever 0 < |x− x0| < δ.

In other words, f(x) �→ � as x → x0 if there exists an ε > 0 such that for every
δ > 0, there exists an xδ ∈ A such that 0 < |xδ − x0| < δ but |f(xδ)− �| ≥ ε.

Finally, we remark that Definition 3.3 and the statement of Theorem 3.5
are equivalent because of Theorem 3.4.

Examples 3.7. Using the ε-δ definition, show that:

(a) lim
x→0

sin(1/x) does not exist. (b) lim
x→3

x2 = 9. (c) lim
x→a

x2 = a2.
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Solution. (a) Suppose to the contrary that limx→0 sin(1/x) exists; call the
limit �. Then for each ε > 0, there exists a δ > 0 such that

|sin(1/x)− �| < ε for all x satisfying 0 < |x− 0| < δ. (3.1)

Now we choose

xn =
1

nπ
and yn =

1(
n+ 1

2

)
π
, n ∈ N.

Then for large n, we have 0 < |xn| < δ and 0 < |yn| < δ. Moreover, f(xn) = 0
and f(yn) = (−1)n for all n. Consequently, for each ε > 0,

|f(xn)− �| < ε and |f(yn)− �| < ε for large n,

so that
|f(xn)− f(yn)| ≤ |f(xn)− �|+ |f(yn)− �| < 2ε.

That is, 1 < 2ε, which is obviously a contradiction, because this inequality
cannot be true for every ε > 0. For example, ε = 1/4 does not satisfy the
inequality. It follows that no such � and δ exist satisfying the inequality (3.1),
and the desired conclusion follows (see Figure 3.1).

−1 −0.5 0.5 1

−1

1

x

y

y=sin 1
x

Fig. 3.1. Graph of f(x) = sin(1/x) on [−1, 1].

(b) Let ε > 0 be given. We must prove that there exists a δ > 0 such that

|x2 − 9| = |x− 3| |x+ 3| < ε for all x with |x− 3| < δ.

With δ ≤ 1, |x− 3| < δ ≤ 1 gives x ∈ (2, 4), and so x+ 3 ∈ (5, 7). This gives

|x2 − 9| < 7|x− 3|.
Thus, if we choose δ = min{1, ε/7}, then for any given ε > 0,

|x− 3| < δ implies that |x3 − 9| < ε.

Note that (b) is a particular case of (c). Perhaps we can imitate the method
used in (b) to prove (c).
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(c) Again with δ ≤ 1, |x−a| = |x+a−2a| < δ ≤ 1 gives |x+a| < 1+2|a|,
and so

|x2 − a2| = |x− a| |x+ a| < (1 + 2|a|)|x− a|.
Thus, for a given ε > 0 there exists δ = min{1, ε/(1 + 2|a|)} such that

|x2 − a2| < ε whenever |x− a| < δ.

Note that δ depends on ε and a. •
3.1.3 Properties of Limits of Functions

In order to carry out computations with limits, it will be helpful to have
some elementary rules and properties for limits. Suppose that f and g are two
functions defined on I ⊂ R. Then f + g is the function defined on I by

(f + g)(x) = f(x) + g(x), x ∈ I.

Similarly, we define (fg)(x) = f(x)g(x) for x ∈ I, and when g(x) �= 0 in I, we
have (

f

g

)
(x) =

f(x)

g(x)
, x ∈ I.

Theorem 3.8 (Combination rule). Let A ⊂ R and let x0 ∈ R be a limit
point of A. Suppose that f and g are defined on A with

lim
x→x0

f(x) = � and lim
x→x0

g(x) = �′.

Then we have the following:

(a) limx→x0 [f(x) + g(x)] = �+ �′;
(b) limx→x0 [f(x)g(x)] = ��′;
(c) limx→x0 [f(x)/g(x)] = �/�′ if �′ �= 0.

In particular, for a, b real constants, limx→x0(ax+ b) = ax0 + b.

Proof. The result follows at once from corresponding experience with the
algebra of limits for convergent sequences and some standard arguments (see
Theorem 2.8).

Note that in (c), it follows by definition that limx→x0 g(x) �= 0 ensures
that g(x) �= 0 in some deleted neighborhood of x0 (see Corollary 3.9).

Corollary 3.9 (Sign-preserving property). Let limx→x0 f(x) = � �= 0.
Then there exists a deleted neighborhood B(x0; δ) \{x0} on which f(x) �= 0.
Moreover, f(x) has the same sign as � on B(x0; δ) \{x0}.
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Proof. For ε = |�|/2, there exists a δ > 0 such that

|f(x)− �| < ε =
|�|
2

whenever 0 < |x− x0| < δ,

or equivalently,

�− |�|
2

< f(x) < �+
|�|
2

for all x ∈ (x0 − δ, x0 + δ) \{x0}. (3.2)

Suppose first that � > 0. Then the left-hand inequality in (3.2) shows that
f(x) > 0 for 0 < |x− x0| < δ.

Suppose next that � < 0. Then the right-hand inequality in (3.2) implies
that f(x) < 0 for 0 < |x− x0| < δ. In either case, f(x) �= 0.

To prove that a specific function has a limit, we can avail ourselves of the
above results. For instance, it follows from parts (a) and (b) of Theorem 3.8
that if p(x) is a polynomial, then limx→x0 p(x) = p(x0). The quotient of two
polynomials is called a rational function, which we may write thus:

r(x) =
a0 + a1x+ · · · + anx

n

b0 + b1x+ · · · + bmxm
(bm �= 0).

The domain of r is the set of points where the denominator is nonzero. Thus,
if r(x) is a rational function (i.e., the quotient p/q of two polynomials p(x)
and q(x)), then

lim
x→x0

r(x) = r(x0),

for all x0 at which the rational function is defined.

Theorem 3.10 (Squeeze/Sandwich rule for functions). Let f , g, and
h be defined in a deleted neighborhood of x0 such that

(a) g(x) ≤ f(x) ≤ h(x) for all x in a neighborhood of x0, x �= x0;
(b) limx→x0 g(x) = limx→x0 h(x) = �.

Then limx→x0 f(x) = �.

Proof. The theorem follows as an application of the sandwich theorem for
sequences (see Theorem 2.15). Indeed, the condition (a) implies that

g(x)− � ≤ f(x)− � ≤ h(x)− �, (3.3)

for all x in a neighborhood of x0, x �= x0. The condition (b) shows that given
ε > 0, there exists a δ > 0 such that

0 < |x− x0| < δ implies |g(x)− �| < ε and |h(x)− �| < ε.

So if we allow x → x0 in (3.3) and use the last relation, we get that given
ε > 0, there exists a δ > 0 such that

0 < |x− x0| < δ implies − ε < f(x)− � < ε,

as required.
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An equivalent formulation of this theorem follows.

Theorem 3.11. Suppose that f , g, and h are functions defined on I ⊂ R with

g(x) ≤ f(x) ≤ h(x) for all x ∈ I.

If x0 is a limit point of I and limx→x0 g(x) = � = limx→x0 h(x), then
limx→x0 f(x) = �.

3.1.4 One-Sided Limits

Let f be defined on A = (x0, x0 + δ) for some δ > 0. We say that f(x)
approaches the limit � as x approaches x0 from the right, and write

lim
x→x0+

f(x) = �,

if for each sequence {xn}n≥1 in A such that xn → x0 one has f(xn) → �. We
also write f(x) → � as x → x0+, and the right-hand limit � is often denoted
by f(x0+).

Similarly, if f is defined on A = (x0 − δ, x0) for some δ > 0, then we say
that f(x) approaches the limit � as x approaches x0 from the left, and write

lim
x→x0−

f(x) = �,

if for each sequence {xn}n≥1 in A such that xn → x0, one has f(xn) → �. We
also write

f(x) → � as x → x0−,

and the left-hand limit � is often denoted by f(x0−).

Example 3.12. Consider f(x) = |x|/x for x �= 0. Suppose that {xn} is a
sequence in (0, 1/2) such that xn → 0 as n → ∞ and {yn} is a sequence
(−1/2, 0) such that yn → 0 as n → ∞. Then f(xn) = 1, f(yn) = −1, so that

f(xn) → 1 and f(yn) → −1 as n → ∞. •
The following result is easy to prove.

Theorem 3.13. Let f be defined in a deleted neighborhood of x0. Then

lim
x→x0

f(x)=�⇐⇒ lim
x→x0+

f(x) and lim
x→x0−

f(x) both exist and are equal to �.

A function f : [a, b] → R is said to have a “simple jump discontinuity” at
a point x0 ∈ (a, b) if both

f(x0+) := lim
h→0
h>0

f(x0 + h) and f(x0−) := lim
h→0
h<0

f(x0 + h) = lim
k→0
k>0

f(x0 − k)

exist but are unequal. Recall that the limit values f(x0+) and f(x0−) are
called the right-hand limit of f at x0 and the left-hand limit of f at x0,
respectively.
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Fig. 3.2. The limit of the quotient (sin θ)/θ when θ is small and positive.

Example 3.14. Show that limn→∞ n sin(1/n) = 1 by finding an estimate for
sin θ when θ is small and positive. Conclude that

lim
θ→0

f(θ) = 1, f(θ) =
sin θ

θ
.

Solution. Since f(θ) = f(−θ), it suffices to show that limθ→0+ f(θ) = 1. Let
θ be an arbitrarily small angle such that 0 < θ < π/2. Consider a sector of
the unit circle with angle θ as in Figure 3.2 and B a point on the circle.

Extend the segment OB from the origin to the point B, and form a right
triangle ΔOAB′. Clearly, the sectorial area is larger than the area of ΔOA′B
and is smaller than the area of ΔOAB′. Since the length of the line seg-
ment A′B is sin θ and that of AB′ is tan θ, we have the inequalities (see also
Example 4.24)

sin θ

2
<

θ

2
<

tan θ

2
, i.e., cos θ <

sin θ

θ
< 1.

Since cos θ = OA′/OB, which approaches 1 as θ → 0+, we have

lim
θ→0+

f(θ) = 1.

Since f(θ) = f(−θ) for all θ, we can conclude that

lim
θ→0−

f(θ) = lim
θ→0+

f(−θ) = lim
θ→0+

f(θ) = 1,

showing that limθ→0 sin θ/θ = 1. •
3.1.5 Infinite Limits

Let A ⊂ R and let x0 ∈ R be a limit point of A, and suppose f : A → R.
Then it may happen that f is not bounded on B(x0; δ) ∩ A for some δ > 0,
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and so it is possible that limx→x0 f(x) does not exist. On the other hand, we
write limx→x0 f(x) = ∞ if for every positive R > 0 there exists a δ > 0 such
that

f(x) > R for all x ∈ (B(x0; δ)\{x0}) ∩ A.

In this case, we say that f(x) tends to ∞ as x → x0. Note that if f(x) → ∞
as x → x0, it follows that

1

f(x)
→ 0 as x → x0.

Similarly, we say that f(x) tends to −∞ as x → x0 if for every R > 0
there exists a δ such that

f(x) < −R for all x ∈ (B(x0; δ)\{x0}) ∩ A.

In this case, we write limx→x0 f(x) = −∞. An equivalent sequential version
of this definition may now be formulated.

Definition 3.15. Let A ⊂ R, and let x0 ∈ R be a limit point of A, and
suppose f : A → R. Then limx→x0 f(x) = ∞ if and only if for every sequence
{xn} in A\{x0} with xn → x0, the sequence {f(xn)} diverges to ∞.

Similarly, one can define

lim
x→x0

f(x) = −∞, lim
x→x0+

f(x) = ∞, lim
x→x0+

f(x) = −∞, . . . .

As with sequences, we have the following theorem.

Theorem 3.16 (Reciprocal rule). Suppose that f(x) > 0 in some deleted
neighborhood of x0 such that f(x) → 0 as x → x0. Then

1

f(x)
→ ∞ as x → x0.

Examples 3.17. Now we can easily see the following:

(a) limx→0(1/x
2) = ∞.

(b) limx→0+(1/x) = ∞ and limx→0−(1/x) = −∞.
(c) limx→(π/2)+ tanx = −∞ and limx→(π/2)− tanx = ∞. •
3.1.6 Limits at Infinity

Let f : (a,∞) → R for some a ∈ R. We say that f approaches � as x → ∞ if
for a given ε > 0 there exists an R > a such that

|f(x)− �| < ε whenever x > R.

In this case we write limx→∞ f(x) = �.
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Similarly, suppose that f : (−∞, a) → R for some a ∈ R. We say that f
approaches � as x → −∞ if for a given ε > 0 there exists an M < a such that

|f(x)− �| < ε whenever x < M.

In this case, we write limx→−∞ f(x) = �.

Example 3.18. For instance, limx→∞ sinx does not exist. This also follows
from the fact that limx→0+ sin(1/x) does not exist (see Example 3.7). Simi-
larly, limx→∞ cosx does not exist. •

As before, sequential definitions for these two cases may be formulated.

Examples 3.19. (a) limx→∞ x sinx does not exist, as the sequences xn = nπ
and yn = ((4n± 1)/2)π suggest.

(b) limx→∞ 1/x = 0. •
The proof of the following corollary (see Theorem 3.11) is easy, and so we

invite the reader to prove it.

Corollary 3.20. Let f , g, and h be defined on (a,∞) for some a ∈ R such
that

(a) g(x) ≤ f(x) ≤ h(x) for all x with x > R (> a);
(b) limx→∞ g(x) = limx→∞ h(x) = �.

Then limx→∞ f(x) = �.

Theorem 3.21. Suppose that f(x) ≥ 0 for x near x0 (respectively for x near
∞) and limx→x0 f(x) = � (respectively limx→∞ f(x) = �). Then � ≥ 0.

Proof. Suppose that � < 0. Then for all x in a deleted neighborhood of x0

(respectively for all x with x > R for some R > 0),

|f(x)− �| ≥ |�| > 0.

But then f(x) �→ � as x → x0 (respectively x → ∞), which is a contradiction.
Consequently, � ≥ 0.

Corollary 3.22. Let h and g be defined in a deleted neighborhood of x0 such
that

(i) h(x) ≤ g(x) for all x near x0, x �= x0;
(ii) limx→x0 h(x) = � and limx→x0 g(x) = �′.

Then � ≤ �′. (Similar statements can be made when f and g are defined on
(−∞, a) or (b,∞) for some a, b ∈ R.)

Proof. Given f(x) = g(x) − h(x) ≥ 0 for x near x0 (x �= x0) such that
limx→x0 f(x) = �′ − �, by Theorem 3.21, �′ − � ≥ 0, as required.
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x

B

AO

•

x=length of arc BA

y sin x=length of BA

xπ−π

y= |x| y=
|x|

y

O

y= |sin x|

A

a b

x

Fig. 3.3. Depiction of | sin x| ≤ |x| for x ∈ R.

Example 3.23. We have the sine inequality | sinx| ≤ |x| for x ∈ R. In par-
ticular,

lim
x→a

sinx = sin a.

Solution. There is nothing to prove if x = 0. For 0 < x ≤ π/2, consider the
part of the unit circle in the first quadrant. From Figure 3.3, it is clear that
(see also Examples 3.14 and 4.24)

0 < sinx ≤ x for 0 < x ≤ π/2.

For −π/2 ≤ x < 0, the desired inequality follows from the fact that
sin(−x) = − sinx. For |x| > π/2, the inequality is trivial because

| sinx| ≤ 1 < π/2 < |x|.
The desired first inequality follows. Finally,

| sinx− sin a| = 2

∣∣∣∣sin
(
x− a

2

)∣∣∣∣

∣∣∣∣cos
(
x+ a

2

)∣∣∣∣ ≤ 2

∣∣∣∣sin
(
x− a

2

)∣∣∣∣ ≤ |x− a|,

and the second part follows. •
As in the last example, we see that limx→0 cosx = 1, because

| cosx− 1| = |2 sin2(x/2)| ≤ 2|x/2|2 = x2/2.

3.1.7 Questions and Exercises

Questions 3.24.

1. Is the intersection of a finite number of neighborhoods of a point c a
neighborhood of c?

2. Is the intersection of an infinite number of neighborhoods of a point c a
neighborhood of c?
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3. Can a finite set have a limit point? Does N have a limit point?
4. If A ⊆ R, is every interior point of A a limit point of A?
5. Suppose that f is a continuous function such that

S1 = {x ∈ R : f(x) > 0}, S2 = {x ∈ R : f(x) < 0},
S3 = {x ∈ R : f(x) = 0}, S4 = {x ∈ R : f(x) �= 0}.

Is either of these sets open in R?
6. Is it true that if limx→x0 f(x) does not exist and limx→x0 g(x) does not

exist, then limx→x0(f + g)(x) does not exist? How about the existence of
limx→x0 f(x)g(x)?

7. When we deal with a quotient f/g of functions, what is the domain of
f/g?

8. Is it true that f(x) → 0 as x → x0 if and only if |f(x)| → 0 as x → x0?
9. Suppose that limx→x0 f(x) exists but limx→x0 g(x) does not exist. Can

limx→x0(f + g)(x) exist?
10. If f(x) < g(x) in a deleted neighborhood of x0, do we have limx→x0 f(x) <

limx→x0 g(x)?
11. Suppose that f(x) is a function defined on R such that limx→x0 |f(x)|

exists for each x0 ∈ R. Must limx→x0 f(x) exist?
12. Does limx→0

√
x exist? Does limx→0+

√
x exist?

13. If limx→a f(x) = � > 0, do we have limx→a

√
f(x) =

√
�?

14. Let f be defined on (a,∞) for some a ∈ R and � ∈ R. Must

lim
x→∞ f(x) = � ⇐⇒ lim

x→0+
f

(
1

x

)
= �?

15. Let f be defined on (−∞, a) for some a ∈ R and � ∈ R. Must

lim
x→−∞ f(x) = � ⇐⇒ lim

x→0−
f

(
1

x

)
= �?

16. Suppose that f and g are defined on (c,∞) for some c ∈ R such that
limx→∞ f(x) = � for some real � and limx→∞ g(x) = ∞. Does the limit
limx→∞(f ◦ g)(x) exist? If so, what is the limit?

17. Suppose that f and g are defined in a deleted neighborhood of a such that
limx→a f(x) = � for some nonnegative real number � ≥ 0 and limx→a g(x).
Must limx→a f(x)g(x)) = ∞ if � > 0? What can you say about the limit
limx→a f(x)g(x) if � = 0?

18. Suppose that limx→0 f(x) = 0 and limx→0 g(x) = ∞. Does either
limx→0 f(x)g(x) = 0 or limx→0 f(x)g(x) = ∞ hold?

19. Suppose that limx→0 f(x) = ∞ = limx→0 g(x). Must limx→0(f(x) −
g(x)) = ∞?

20. For what values of α does limx→∞(sinx/|x|α) exist? When does it not?
21. Does the sequence {sinn}n≥1 converge? Does it have a convergent subse-

quence?
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22. For what values of t ∈ R does {sin(nt)} converge?
23. For what values of t ∈ R does {cos(nt)} converge?
24. Does {cos(nπ)} converge?
25. Does {sin(nπ/2)} converge? Does {(1/n) sin(nπ/2)} converge? How about

the sequences {(1/n) sin(nπ/4)} and {(1/n) sin(nπ/5)}?
26. What can be said about the convergence of the sequences {(1/n) sinn}

and {(1/n) cosn}?
27. What is meant by a limit point of a sequence? How does a limit point

differ from a limit of sequence?

Exercises 3.25.

1. For each of the following sets determine the set of all limit points: N, Z,
Q, R, ∅, R\Q.

2. Show that limx→0 3
1/x does not exist.

3. Define f(x) = (1/x) sin(1/x) for x �= 0. Determine limx→0 f(x) if it exists.
If not, explain why the limit does not exist.

4. Suppose that f is bounded and monotone on (a, b) and c ∈ (a, b). Show
that limx→c+ f(x) and limx→c− f(x) both exist.

5. Draw the graph of

f(x) =

⎧
⎨

⎩
|x|+ x

|x| for x �= 0,

0 for x = 0,

for x ∈ R. Determine limx→0 f(x) if it exists. If not, explain why it does
not exist.

6. State and prove the squeeze rule for functions f , g, and h defined on (a,∞)
(respectively (−∞, a)).

7. Compute the following limits if they exist:

(a) lim
x→∞

x+ sinx

x
. (b) lim

x→2

1

(1− x)2
. (c) lim

x→0

sin 3x− 3x

x3
.

(d) lim
x→0

cos(|x|) − 1

x
. (e) lim

x→0

1

|x| . (f) lim
x→0

1

x
.

(g) lim
x→0

xe1/x

1 + e1/x
. (h) lim

x→0

sinx

|x| . (i) lim
x→0

e1/x − e−1/x

e1/x + e−1/x
.

In the cases in which the limit does not exist, determine the left- and
right-hand limits if they exist.
Note: Those who are not familiar with the exponential function can wait
until we introduce expx.

8. Draw the graph of

f(x) =
1

1 + e1/x

and determine the following limits:
(a) lim

x→0−
f(x). (b) lim

x→0+
f(x).
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9. Let f be defined in a deleted neighborhood B′ of x0. Prove or disprove
the following: limx→x0 f(x) exists if and only if given ε > 0, there exists a
δ > 0 such that |f(x) − f(y)| < ε for every pair of points x, y in B′ such
that |x− y| < δ.

3.2 Continuity

Definition 3.26. Let I be an open interval containing x0, and let f : I → R.
Then f is said to be continuous at x0 ∈ I if limx→x0 f(x) = f(x0).

In the case of the boundary points a and b of I = (a, b), we can talk only
about right and left continuity, respectively. If f is continuous at each point of
I, then f is said to be continuous on I. The function f is said to be continuous
if it is continuous on the domain of f .

Intuitively, our definition implies that the values f(xn) are close to f(x0)
when the values of xn are close to x0. Then the following theorem shows that
the sequential definition is equivalent to the ε-δ definition of continuity of f
given in many calculus texts.

Theorem 3.27. Let f be a real-valued function defined on an interval I that
contains x0 as an interior point of I. Then the following are equivalent:

(a) f is continuous at x0.
(b) For a given ε > 0, there exists a δ = δ(x0, ε) > 0 such that

|f(x)− f(x0)| < ε whenever x ∈ I and |x− x0| < δ. (3.4)

(c) The following three conditions hold:

f(x0) is defined, lim
x→x0

f(x) exists, and lim
x→x0

f(x) = f(x0).

O

y= f(x)

x

y

x0
)

x0− δ

f(x0)+
f(x0)

x0+ δ
(

f(x0)−

Fig. 3.4. Depiction of the continuity of f at x0.

Proof. The proof is clear and is simply a reformulation of Theorem 3.4 with
� = f(x0) (see Figure 3.4).
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Equivalently, if f is continuous, then the graph of f is an unbroken curve;
that is, the graph of f could be traced by a particle in motion or by a moving
pencil point without being lifted from the paper.

Examples 3.28. (a) If f(x) = c for all x ∈ R, then f is continuous on R,
because for each x0 ∈ R,

|f(x)− f(x0)| = 0 < ε for |x− x0| < δ

holds for any given ε > 0.
(b) If f(x) = x for x ∈ R, then limx→x0 f(x) = x0 for each x0 ∈ R. In

particular, f is continuous on R.
(c) The function f(x) = xk is continuous for every natural number k. This

follows from the fact that xn → x0 implies that xk
n → xk

0 as n → ∞ and
since f(x) = x is continuous at each x0 ∈ R. For a direct approach, we
refer to Example 3.7.

(d) The functions sinx and cosx are continuous on R; see Example 3.23. •
Corollary 3.9 implies the following:

Corollary 3.29 (Sign-preserving property for continuous functions).
Let f be continuous at x0 and f(x0) �= 0. Then there exists a neighborhood
B(x0; δ) of x0 on which |f(x)| > |f(x0)|/2, and f(x) has the same sign as
f(x0).

This corollary says that if a continuous function f does not vanish at a
point x0, then there is an interval containing x0 in which f does not vanish.

3.2.1 Basic Properties of Continuous Functions

As a result of translating the properties of limits (see Theorem 3.8) into terms
of continuity, we obtain the following result, which is often useful in proving
that certain specific functions are continuous.

Theorem 3.30 (Algebra of continuous functions). Suppose that f and
g are defined on an interval I. If f, g are continuous at x0 ∈ I, then their sum
f + g, product fg, quotient f/g where g(x0) �= 0, and |f | are also continuous
at x0. In particular, every polynomial a0 + a1x + · · · + anx

n is continuous
on R.

Composition is another basic operation that can be performed on func-
tions. If f maps I to J and g maps J to R, then the composition of f with g,
denoted by g ◦ f , maps I to R by sending x �→ g(f(x)); see Figure 3.5. Thus
g ◦ f is defined by

(g ◦ f)(x) = g(f(x)), x ∈ I.

It follows that composition is not commutative.
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xx0− δ x0+ δ

g(y0)− g(y0)+g(f(x))f(x)
∗

y0= f(x0) y0+ δg g(y0)y0− δg

f

g

x0

g◦ f

Fig. 3.5. Composition of continuous functions at x0.

Theorem 3.31 (Composition rule). If limx→x0 f(x) = y0 and g is a func-
tion that is continuous at the point y0, then limx→x0(g ◦ f)(x) = g(y0).

Proof. Let ε > 0 be given. Then the continuity of g at y0 implies that there
exists a δg > 0 such that

|g(y)− g(y0)| < ε whenever |y − y0| < δg. (3.5)

Further, since limx→x0 f(x) = y0, for this δg > 0, there exists a δ > 0 such
that

|f(x)− y0| < δg whenever x ∈ B(x0; δ) \{x0}.
Now if we let y = f(x) in (3.5), we see that for all x ∈ B(x0; δ) \{x0},

|(g ◦ f)(x) − g(y0)| = |g(f(x)) − g(y0)| < ε,

from which we obtain the required conclusion.

Corollary 3.32. If f : I → J is continuous at x0 ∈ I and if g : J → R

is continuous at y0 = f(x0), then g ◦ f defined by (g ◦ f)(x) = g(f(x)) is
continuous at x0. That is, the composition of two continuous functions is
continuous.

Proof. The proof is a consequence of Theorem 3.31; see Figure 3.5.

Example 3.33. Suppose that f : R → R is continuous on R and satisfies
f(x+ y) = f(x) + f(y) for all x, y ∈ R. Show that f(x) = f(1)x.

Solution. Setting x = y = 0 gives f(0) = 0. Setting y = −x gives

f(x) = −f(−x). (3.6)

If x = n ∈ N, then

f(x) = f(1 + · · ·+ 1) = nf(1) = xf(1).
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Similarly, if −x = n ∈ N, then by (3.6),

f(x) = f(−1− · · · − 1) = nf(−1) = −nf(1) = xf(1).

Thus, f(x) = xf(1) when x ∈ Z.
Next, let x be a rational number p/q (in lowest terms), p ∈ Z, q ∈ N. Then

p = qx, and thus

f(p) = f(qx) = f(x+ · · ·+ x) = qf(x),

and from the discussion, we have

f(p) = pf(1).

Combining the last two equalities, we obtain

qf(x) = pf(1), i.e., f(p/q) =
p

q
f(1), i.e., f(x) = xf(1) when x ∈ Q.

Finally, let x = α be an irrational number, and {xn} a sequence of rational
numbers converging to α. Since f is continuous at α, f(xn) → f(α). But

lim
n→∞ f(xn) = lim

n→∞xnf(1) = f(1)α.

Consequently, f(α) = f(1)α. In conclusion, f(x) = xf(1) for all x ∈ R. •
3.2.2 Squeeze Rule and Examples of Continuous Functions

Corollary 3.34 (Squeeze rule for continuous functions). Let f , g, and
h be defined in a neighborhood of x0 such that

(i) g(x) ≤ f(x) ≤ h(x) for all x in a neighborhood of x0;
(ii) g and h are continuous at a and g(x0) = f(x0) = h(x0).

Then f is continuous at x0.

Proof. The proof of the corollary is a consequence of Theorem 3.10 (see
Figure 3.6).

A function f : I → R is discontinuous (or has a discontinuity) at a point
x0 if f is not continuous at x0.

Example 3.35 (Dirichlet’s function on R). Define f : R → R by

f(x) =

{
1 for x ∈ Q,
0 for x ∈ R \Q.

Then f is discontinuous at each point of R. In order to prove this, suppose
that a ∈ R and limx→a f(x) = �. Then for a given ε > 0 there exist a δ > 0
and points xn ∈ Q and yn ∈ R \Q such that xn → a and yn → a,
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x

y

O
(

y=h(x)

y= f(x)

y= g(x)

)
x0 x0+x0−

Fig. 3.6. Squeeze rule for continuous functions.

|f(xn)− �| < ε

2
when 0 < |xn − a| < δ,

and

|f(yn)− �| < ε

2
when 0 < |yn − a| < δ.

Hence, there exists N ∈ N such that for n > N ,

1 = |f(xn)− f(yn)| ≤ |f(xn − �|+ |f(yn)− �| < ε

2
+

ε

2
= ε,

because f(xn) = 1 and f(yn) = 0. This is a contradiction to our assumption
(especially when ε < 1). Thus, f(x) does not approach a limit as x → a
whether a is rational or irrational. It follows that f is discontinuous at each
point of R. •
Example 3.36 (Riemann function on R). Define f : R → R by

f(x) =

⎧
⎨

⎩

1

q
for x =

p

q
∈ Q \{0} in its lowest terms, with q > 0,

0 for x ∈ R \Q, x = 0.

Show that f is continuous at each irrational point of R and is discontinuous
at each rational point of R.

Solution. For a rough sketch (because of we cannot accurately graph this
function) of this function on [0, 1], see Figure 3.7. It is not clear from the
rough sketch of the graph of f whether f is continuous at any point of R. Let
a = p/q be an arbitrary nonzero rational number, q > 0, such that

f(a) =
p

q
.
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Fig. 3.7. The Riemann function.

Accordingly, every neighborhood of p/q (e.g., 0 < |x − a| < 1/n) contains
irrational numbers yn such that

0 = f(yn) �= f(a) =
1

q
.

Thus, yn → a but f(yn) �→ f(a). Alternatively, since

|f(yn)− f(a)| = |0− 1/q| = 1/q,

for ε < 1/q there cannot exist a neighborhood B(a; δ) of p/q such that for
every y ∈ B(a; δ) ∩ (R \Q),

|f(y)− f(a)| = 1

q
< ε.

By either argument, f is discontinuous at a = p/q.
Next, let a be any irrational number or 0. Then f(a) = 0, and we must

show that, given ε > 0, there exists a δ > 0 such that

f(x) = |f(x)− f(a)| < ε for all x satisfying 0 < |x− a| < δ.

Note that f(x) ≥ 0 on R, by the definition of f .
Now given ε > 0, let N be a positive number such that N > 1/ε. Since

a is irrational, there exists a δ1 > 0 such that the interval (a − δ1, a + δ1)
contains no integers. Likewise, there exists a δ2 > 0 such that the interval
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(a− δ2, a+ δ2) contains no rational number of the form p/2 in lowest terms.
Continue the process, and introduce

δ = δ(ε) = min{δ1, . . . , δN}.
Then δ > 0. Then the interval (a − δ, a+ δ) contains no rational numbers of
the form p/q in lowest terms, 0 < q ≤ N . It follows that if |x − a| < δ, then
either x is irrational, so that f(x) = 0 (< ε), or else x is rational, so that
x = p/q with q > N , and

f(x) =
1

q
<

1

N
< ε.

In either case, f(x) < ε and f is continuous at a. •
3.2.3 Uniform Continuity

We say that f is uniformly continuous on I if for a given ε > 0, there exists
a δ = δ(ε) depending only on ε such that

|f(x)− f(y)| < ε whenever x, y ∈ I and |x− y| < δ.

Examples of functions that are uniformly continuous:

• Every linear function f(x) = ax+ b is uniformly continuous on R.
• f(x) = sinx is uniformly continuous on R because for every x, y ∈ R,
| sinx− sin y| ≤ |x− y| (see Example 3.23).

• f(x) = x2 is uniformly continuous on [0, b], because |x2 − y2| ≤ 2b|x− y|.
• f(x) = 1/x is uniformly continuous on [b,∞) (b > 0), because

∣∣∣∣
1

x
− 1

y

∣∣∣∣ =
|x− y|
|xy| ≤ |x− y|

b2
.

Uniform continuity is a property involving a function f and a set I on
which it is defined. It makes no sense to speak of f being uniformly continuous
at a point of I (except perhaps when I consists of a single point!). Clearly,
every uniformly continuous function on I is continuous on I, but the converse
is not true in general.

Examples 3.37 (Continuous functions that are not uniformly contin-
uous). Define f(x) = cos(1/x) for x > 0. Clearly, f is continuous on (0,∞).
We show that f fails to be uniformly continuous on any interval (0, b), where
b > 0 is fixed. In order to show this, we proceed as follows. We shall show
that for ε = 1, there exists no δ > 0 such that x and y in (0, b) such that

|x− y| < δ implies that |f(x)− f(y)| < 1.

Let δ > 0 be arbitrary. We now wish to find two points x and y in (0, b)
such that |x − y| < δ and |f(x) − f(y)| = 2. To do this, we choose xn and
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yn such that xn → 0 and yn → 0 as n → ∞ but |f(xn) − f(yn)| = 2 for all
n ∈ N. For example, if xn and yn are such that

1

xn
= 2nπ and

1

yn
= (2n+ 1)π,

then for all n ∈ N,

|f(xn)− f(yn)| = | cos 2nπ − cos(2n+ 1)π| = 2

and

xn − yn =
1

2nπ
− 1

(2n+ 1)π
=

1

2n(2n+ 1)π
.

Now we can choose a natural number N to ensure that

1

2n(2n+ 1)π
< δ for all n > N.

This observation shows that for ε = 1 > 0, there exists no positive number δ
(independent of x, y) such that

|f(x)− f(y)| < ε

whenever |x − y| < δ. So f is not uniformly continuous on (0, b). Note that
f is bounded and oscillates, and the trouble occurs near the origin. However,
a function can be uniformly continuous on an unbounded set. For example,
f(x) = cosx is uniformly continuous on R.

Next we present another example. Define f(x) = x2 for x ∈ R. Clearly,
f , being a power function, is continuous on R. In order to show that f is not
uniformly continuous on R, for any δ > 0, we write

|f(x)− f(y)| = |x2 − y2| = (|x + y|) (|x− y|) = 2 = 6

(
1

δ

)(
δ

3

)

by choosing x and y such that

x+ y =
1

δ
and x− y =

δ

3
.

Solving the last two equations, we get

x =
1

2

(
1

δ
+

δ

3

)
and y =

1

2

(
1

δ
− δ

3

)
.

Thus, for any positive real number δ, we have found two numbers x and y
such that

|x− y| < δ/3 < δ and |f(x)− f(y)| = 2 > 1.
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In other words, no δ “works” for every pair of real numbers x and y such that

|f(x)− f(y)| < ε = 1 whenever |x− y| < δ.

So f is not uniformly continuous on R. Observe that f grows too quickly.
Similarly, it can be easily seen that f : (0, 1) → R defined by f(x) = 1/x

is not uniformly continuous. In fact, given any δ > 0, choose x such that
0 < x < min{1, δ} and y = x/2. Then |x− y| = x/2 < δ but

∣∣∣∣
1

y
− 1

x

∣∣∣∣ =
2

x
− 1

x
=

1

x
> 1,

which clearly shows that f is not uniformly continuous on (0, 1). •
The following result is one of the most important results in analysis.

Theorem 3.38. Every continuous function f on a bounded closed interval
[a, b] is uniformly continuous therein.

Proof. Assume that f is continuous on [a, b]. Suppose on the contrary that f
is not uniformly continuous on [a, b]. Then there exists an ε > 0 such that for
each δ > 0 there are two points x, y ∈ [a, b] such that

|f(x)− f(y)| ≥ ε and |x− y| < δ.

In particular, for each n ∈ N, we can define two sequences {xn} and {yn} in
[a, b] such that for every n ≥ 1,

|xn − yn| < 1

n
and |f(xn)− f(yn)| ≥ ε.

Since {xn} is bounded, by the Bolzano–Weierstrass theorem, it contains a
convergent subsequence xnk

that converges to some point c ∈ [a, b] as k → ∞.
Now,

|ynk
− c| ≤ |ynk

− xnk
|+ |xnk

− c| → 0 as k → ∞,

so that the sequence {ynk
} converges to c as k → ∞. Since f is continuous at

c, we must have

f(xnk
)− f(ynk

) → f(c)− f(c) = 0 as k → ∞.

This contradicts the fact that |f(xnk
) − f(ynk

)| ≥ ε for all n ∈ N. This
contradiction shows that f must be uniformly continuous on [a, b].

3.2.4 Piecewise Continuous Functions

A function f : [a, b] → R is said to be piecewise continuous if it has at most a
finite number of discontinuities on [a, b] and the one-sided limits exist at each
point of discontinuity. Here we allow the possibility that the function may not
be defined at the points of discontinuity. Every point at which the one-sided
limits are not equal is called a jump point or removable discontinuity of f . At
points x0 where f(x) is continuous, each of the one-sided limits is of course
equal to f(x0). Thus, we have the following definition.
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Definition 3.39 (Piecewise continuous function). A function f : [a, b] →
R is said to be piecewise continuous if there exists a partition P = {x0, x1,
. . . , xn} of [a, b] such that

• f is continuous on each subinterval (xk−1, xk), 1 ≤ k ≤ n;
• f(xk+) for 0 ≤ k ≤ n− 1 and f(xk−) for 1 ≤ k ≤ n exist.

In particular, every continuous function on [a, b] is piecewise continuous.
Graphs of some piecewise continuous functions are given in Figures 3.8 and 3.9.

O x

y

a

removable
discontinuity

b

•
◦

Fig. 3.8. Examples of piecewise continuous functions.

O

asymptote

vertical asymptote
x

y

Fig. 3.9. Piecewise continuous functions may not have vertical asymptotes.

3.2.5 Questions and Exercises

Questions 3.40.

1. Can every continuous function be accurately graphed?
2. Suppose that f is continuous at a point a. Does this imply that

lim
h→0

(f(a+ h)− f(a− h)) = 0?

How about the converse?
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3. Suppose that f is a continuous function in a neighborhood B(0; δ) of the
origin and f(x) = f(x2) on B(0; δ). What can be said about f?

4. If f is continuous on R, must f(x+ a) be continuous?
5. Suppose that f is a nonnegative continuous function in dom (f), the

domain of f . Must
√
f(x) be continuous on dom (f)?

6. Must every continuous function on a bounded interval [a, b] be bounded?
7. Let f be a real-valued function that is continuous at x0 ∈ R. Must |f |

defined by |f |(x) = |f(x)| be continuous at x0?
8. Suppose f and g are continuous at x0 ∈ R. Must φ = max{f, g}, where

φ(x) = max{f(x), g(x)}, be continuous at x0? How about the continuity
of min{f, g}?

9. Suppose f is continuous on [a,∞) for some a ∈ R, and lim
x→∞ f(x) = � for

some � ∈ R. Must f be bounded on [a,∞)?
10. Suppose that f is continuous on (−∞, a] and limx→−∞ f(x) is finite. Must

f be bounded on (−∞, a]?
11. Suppose that f is continuous on R such that f(x) = 1 for x ∈ Q. What

can be said about f on R?
12. Is [x] piecewise continuous on [0, 3]? Is [x] one-to-one on R?
13. If f(x) = [x]− [x/3] on [−1, 4], is f continuous at x = 3?
14. Suppose f : I → R is a function such that |f | is continuous on I. Must f

be continuous on I?
15. Suppose that f and g are discontinuous on R. Can the composition g ◦ f

be continuous on R? Can the sum f + g and product fg be continuous on
R?

16. Can there exist a function that is discontinuous only at 1/n, n ∈ N, and
nowhere else?

17. Suppose that f : [0, 1] → Q is continuous such that f(1/3) = 1/3. Must
f(x) = 1/3 on [0, 1]?

18. Does the sequence {sin(π/n)}n≥1 converge to zero?
19. Are the sum and product of two uniformly continuous functions uniformly

continuous?
20. Suppose that f : [a, b] → R is uniformly continuous. Must f be bounded?

How about if [a, b] is replaced by a bounded subset of R?
21. Can a product of two functions that are not uniformly continuous be

uniformly continuous?
22. Can there exist an unbounded function that is uniformly continuous?

Exercises 3.41.

1. Let f : R → R by

f(x) =

⎧
⎨

⎩

1

x
sin

(
1

x2

)
for x �= 0,

0 for x = 0.

Prove that f is not continuous at the origin.



96 3 Limits, Continuity, and Differentiability

2. Using the ε-δ definition, show that f(x) =
√
x+ 2 is continuous at x = 2.

3. Give an example of a function that is continuous on [0, 2) and (2, 3], but
not on any open interval containing 2.

4. Prove that the following functions are continuous at the indicated points
by finding δ for a given ε > 0:

(a) f(x) =
√
x at x = 4. (b) f(x) =

√
x2 − 9 at x = 3.

(c) f(x) =
1

x
at x = a �= 0. (d) f(x) =

1√
x

at x = a > 0.

5. For x > 0 or −1 < x < 0, prove the Bernoulli inequality

(1 + x)n > 1 + nx for n ≥ 2.

Using this, prove that {rn} converges if and only if −1 < r ≤ 1 (see also
Theorem 2.34).

6. For what values of a does limx→a[x] exist? Determine the domain where
[x] is continuous.

7. If f(x) =
√
x− [x] on (0, 2), determine limx→0+ f(x) and limx→0− f(x).

Determine whether f is continuous at x = 1.
8. Define

f(x) =
(1 + sinπx)n − 1

(1 + sinπx)n + 1
, x ∈ R.

Determine points where f is discontinuous.
9. Determine the constants a and b such that f defined by

f(x) =

⎧
⎨

⎩

ax+ 3 for x > 4,
7 for x = 4,
x2 + bx+ 3 for x < 4,

is continuous on R.
10. Suppose that f is uniformly continuous on a set E and {xn} is a Cauchy

sequence in E. Show that {f(xn)} is a Cauchy sequence. Using this, show
that f(x) = 1/x2 is not uniformly continuous on (0, 1).

11. Consider f : R → R by f(x) = 3|x|. Let ε > 0 be given. Find δ(ε) > 0
such that |x− y| < δ(ε) implies |f(x)− f(y)| < ε for all x, y ∈ R.

12. Suppose that f is continuous on [0,∞) such that limx→∞ f(x) = � for
some � ∈ R. Prove that f is uniformly continuous.

13. Suppose that f is continuous on R and

lim
x→∞ f(x) = 0 = lim

x→−∞ f(x).

Prove that f is uniformly continuous on R.
14. Define

f(x) =

{
x sin(1/x) for x �= 0,
0 for x = 0,

and g(x) =

{
sin(1/x) for x �= 0,
0 for x = 0.

Prove or disprove the following: f is uniformly continuous on R, but g is
not.
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3.3 Differentiability

Though the concepts and results in Sections 3.1 and 3.2 help us to understand
functions somewhat, the concept of the derivative of a function is needed in
order to understand its rate of change, maxima, minima, and other important
features.

Let I be an open interval in R and a ∈ I. Since I is open, for all h such
that |h| is small (h �= 0), the point a+h also lies in I. Suppose that f : I → R.
We define the slope of the graph of f at (a, f(a)) to be the limit as x → a of
the slope of the chord through the points (a, f(a)) and (x, f(x)). The slope of
the chord is “the difference quotient for f at a” and is given by

f(x) − f(a)

x− a
,

and so the slope of the graph of f at (a, f(a)) is

lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
, (3.7)

provided the limit exists and is finite. This limit is denoted by f ′(a) and is
called the derivative of f at a. If f has a derivative at a, then the function f is
said to be differentiable at a. This is same as saying that the graph y = f(x)
has a tangent at the point (a, f(a)) with slope f ′(a) (see Figure 3.10). If f is

x

y

aO

(a, f(a))

(x, f(x))

x O x

y

a x

tangent line
y= f(a)+ f (a)(x−a)

(a, f(a))

f(x)−f(a)
x−aSlope=

Slope of the secant line through
points (a, f (a)) and (x, f (x))

Secant lines tend to tangent line
when x → a

Fig. 3.10. Depiction of differentiability of f at a.

differentiable at every point of I (i.e., f ′(x) exists on I), then f is said to be
differentiable on I, and the function f ′ : x �→ f ′(x) is called the differentiable
function. The operation of obtaining f ′(x) from f(x) is called differentiation.
We remark that any one of the following notations may also be used instead
of f ′(x) for the derivative of y = f(x):
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Df(x),
dy

dx
, y′, f (1)(x).

It is important to remark that the symbol dy/dx is purely a notation and
does not mean some quantity dy “divided by” another quantity dx. Clearly,
by (3.7), many results obtained for limits and continuity can be used to prove
analogous results for derivatives.

Suppose that f is defined on [a, b). Then as in the case of one-sided con-
tinuity, the right derivative of f at a is defined to be the limit

lim
x→a+

f(x)− f(a)

x− a
= lim

h→0+

f(a+ h)− f(a)

h
(h = x− a > 0),

provided the limit exists. It is customary to denote this limit by f ′
+(a).

If f is defined on (a, b], then the left derivative of f at b, denoted by f ′−(b),
is defined to be

f ′
−(b) := lim

x→b−
f(x) − f(b)

x− b
= lim

h→0−
f(b+ h)− f(b)

h
(h = x− b < 0),

provided the limit exists. The left and right derivatives are called one-sided
derivatives (see Figure 3.11).

x

y= f(x)

slope
f−(c)

cxO

y

x

y= f(x)

cO

y

x

slope
f+(c)

Fig. 3.11. Left and right derivatives.

The following result, which provides the connection between the definitions
of derivative and one-sided derivatives, is rather obvious.

Theorem 3.42. Suppose that f is defined on (a, b) and c ∈ (a, b). Then f is
differentiable at c if and only if both f ′

+(c) and f ′
−(c) exist and f ′

+(c) = f ′
−(c).

As in the case of continuous functions, we have the following definition.

Definition 3.43. We say that f : [a, b] → R is differentiable (on [a, b]) if
f ′(x) exists on (a, b) and both f ′

+(a) and f ′−(b) exist.
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3.3.1 Basic Properties of Differentiable Functions

The first of the following basic theorems relates differentiability and continuity.

Theorem 3.44. Let f be defined on an open interval (a, b), and x ∈ (a, b). If
f is differentiable at x, then f is continuous at x.

Proof. For h �= 0, we consider the identity

f(x+ h)− f(x) =

(
f(x+ h)− f(x)

h

)
h (h �= 0).

By the sum and product rules for limits,

lim
h→0

(f(x+ h)− f(x)) = lim
h→0

(
f(x+ h)− f(z)

h

)
h = f ′(x) · 0 = 0,

so that limh→0 f(x+ h) = f(x). Thus, f is continuous at x.

The continuity of f does not necessarily imply differentiability of f , so
differentiability is stronger than continuity. Here is a simple example to
demonstrates this.

Example 3.45. Consider f(x) = |x| on (−1, 1). If h �= 0, then

f(h)− f(0)

h− 0
=

|h|
h

=

{
1 for h > 0,
−1 for h < 0.

Thus, f(x) = |x| is not differentiable at x = 0 but is continuous at 0. Is f
differentiable at other points in R? Note that the graph of f on (−1, 1) does
not have a tangent at the origin; no line through (0, 0) is a tangent to the
graph of y = f(x) = |x| at x = 0.

One could also use the sequential version of the definition. Clearly,
{(−1)n/n} converges to zero. Set

x2n =
1

2n
and x2n−1 = − 1

2n− 1
.

Then xn → 0 as n → ∞, and

T (xn) =
f(xn)− f(0)

xn − 0
=

{
1 for n even,
−1 for n odd,

showing that {T (xn} does not converge. It follows that |x| is not differentiable
at the origin. •

Theorem 3.44 may be used as a test for nondifferentiability. For example,
if f(x) = [x] denotes the integer part of x, then the function is not continuous
at integer points, and hence it is not differentiable at integer points.
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The function f(x) = x2 is everywhere differentiable, because

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)2 − x2

h
= lim

h→0

2xh+ h2

h
= 2x.

More generally, if f(x) = xn, n ∈ N, then f ′(x) = nxn−1. In fact, for each
fixed x0 ∈ R and n ≥ 2, we have

f(x)− f(x0) = xn − xn
0 = (x − x0)(x

n−1 + xn−2x0 + · · · + xn−1
0 ),

so that

lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0

[xn−1 + xn−2x0 + · · · + xn−1
0 ] = nxn−1

0 .

Since x0 is an arbitrary point of R, we can write this in the form

f ′(x) =
d

dx
(xn) = nxn−1, x ∈ R,

for n = 1, 2, . . . .

Example 3.46. Consider

f(x) =

{
1 + x2 for −1 ≤ x ≤ 0,
cosx for 0 ≤ x ≤ 2π.

Determine whether f is differentiable at the origin and whether f has right
and left derivatives at the endpoints −1 and 2π, respectively.

Solution. At c = −1, for 0 < h < 1, we easily have

f(−1 + h)− f(−1)

h
= h− 2 → −2 as h → 0+,

showing that f ′
+(−1) exists and equals −2. Also for −1 < h < 0, we have

f(h)− f(0)

h
= h → 0 as h → 0−,

showing that f ′
−(0) = 0. Similarly, for 0 < h < π/2,

f(h)− f(0)

h
=

cosh− 1

h
= −2 sin2(h/2)

(h/2)2

(
h

2

)
,

which approaches zero as h → 0+. That is, f ′
+(0) = 0. Since the left and right

derivatives at 0 are equal, it follows that f is differentiable at 0 and f ′(0) = 0.
Finally, for −(π/2) < h < 0, we have (see Example 3.23)

f(2π + h)− f(2π)

h
=

cosh− 1

h
,

which approaches zero as h → 0−. Consequently, f is differentiable from the
left at 2π and f ′−(2π) = 0. •
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Example 3.47. Consider f(x) = sinx and arbitrary x0 ∈ R. Then, using the
addition formula sin(x0 + h) = sinx0 cosh+ cosx0 sinh, we have

f(x0 + h)− f(x0)

h
= sinx0

(
cosh− 1

h

)
+ cosx0

(
sinh

h

)
,

so that (see Examples 3.23 and 4.24)

lim
h→0

f(x0 + h)− f(x0)

h
= sinx0 lim

h→0

cosh− 1

h
+ cosx0 lim

h→0

sinh

h
= sinx0 · 0 + cosx0 · 1.

It follows that f is differentiable at x0, and f ′(x0) = cosx0. Since x0 is
arbitrary, f ′(x) = cosx on R. •

By the definition of differentiability and theorems on limit and continuity,
we have the following analogous results for derivatives.

Theorem 3.48. If f and g are differentiable at x0, then their sum f + g,
difference f − g, product fg, quotient f/g (where g(x0) �= 0), and the scalar
multiplication cf are also differentiable at x0, and

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′,
(
f

g

)′
=

f ′g − fg′

g2
, (cf)′ = cf ′,

where c is a real constant.
More generally, finite linear combinations (of the form α1f1+α2f2+ · · ·+

αnfn, αj ∈ R, j = 1, 2, . . . , n) and finite products of functions differentiable
at x0 are also differentiable at x0.

Proof. For x �= x0, consider the following:

(f + g)(x) − (f + g)(x0)

x− x0
=

{
f(x)− f(x0)

x− x0

}
+

{
g(x)− g(x0)

x− x0

}
,

(fg)(x)− (fg)(x0)

x− x0
= f(x)

{
g(x)− g(x0)

x− x0

}
+ g(x0)

{
f(x)− f(x0)

x− x0

}
,

and for g(x0) �= 0,

(
f

g

)
(x)−

(
f

g

)
(x0)

x− x0
=

g(x0)

(
f(x)− f(z0)

x− x0

)
− f(x0)

(
g(x)− g(x0)

x− x0

)

g(x)g(x0)
.

The assertions then follow from the above equalities and the properties of the
limit by letting x → x0 and noting that if f, g are differentiable at x0, they are
continuous at x0, so that f(x) → f(x0), g(x) → g(x0) as x → x0. A similar
argument takes care of the general result.
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Corollary 3.49. Every polynomial p(x) defined by

p(x) = a0 + a1x+ · · ·+ anx
n,

where a0, . . . , an ∈ R, is differentiable on R, and its derivative is given by

p′(x) = a1 + 2a2x+ · · ·+ nanx
n−1, x ∈ R.

As a consequence of Theorem 3.48, we see that every rational function
r(x) is differentiable on the domain of r(x).

Suppose that f is differentiable at x0. Then in terms of ε-δ notation, given
any ε > 0, there exists a δ = δ(ε, x0) > 0 such that

∣∣∣∣
f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ < ε whenever 0 < |x− x0| < δ.

In view of the limit limx→x0 f(x) = f(x0), we may let

η(x) =

⎧
⎨

⎩

f(x)− f(x0)

x− x0
− f ′(x0) for 0 < |x− x0| < δ,

0 for x = x0,

and observe that limx→x0 η(x) = 0 = η(x0). Therefore η is continuous at x0,
and we get an explicit expression for f(x) in the form

f(x) = f(x0) + f ′(x0)(x− x0) + (x− x0)η(x) (3.8)

for |x− x0| < δ. In conclusion, we have the following result.

Proposition 3.50. Suppose that f is differentiable at x0. Then there exists
a function η that is continuous at x0 and satisfies (3.8) for all x in some
neighborhood B(x0; δ). Equivalently, f is differentiable at x0 if and only if

f(x) = f(x0) + f ′(x0)(x − x0) + E(x), (3.9)

where E is a function defined in a neighborhood of x0 such that

lim
x→x0

E(x)

x− x0
= 0.

By (3.9), we obtain a linear function

L(x) = f(x0) + f ′(x0)(x − x0)

that approximates f(x) up to an “error” term E(x), which is small in absolute
value in comparison with |x− x0| for x close to x0 (see Figure 3.12).

Here is the rule for differentiating a composite function. The proof requires
substantial understanding of the abstract ε-δ formulation of the limit.
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Fig. 3.12. Tangent approximation to f(x) at x0.

Theorem 3.51 (Chain rule). Let f : I → R and g : J → R be such
that f(I) ⊆ J , where I and J are some open intervals containing x0 and
y0 = f(x0), respectively. If f is differentiable at x0 and g is differentiable at
f(x0), then the composition (g ◦ f)(x) = g(f(x)) is differentiable at x0 and

(g ◦ f)′(x0) = g′(y0)f ′(x0) = (g′ ◦ f)(x0)f
′(x0). (3.10)

Further, if f is differentiable on I and g is differentiable on J , then g ◦ f is
differentiable on I and (3.10) holds for each x0 ∈ I.

Proof. We remind the reader that the hypothesis that f is differentiable at
x0 implies that x0 is a limit point of I. Similarly, y0 is a limit point of J .

Let y = f(x), x ∈ I. Since f is differentiable at x0, by (3.8), there exists
a δ1 > 0 such that

f(x)− f(x0) = (x− x0)ηf (x) for x ∈ B(x0; δ1) ⊂ I,

where ηf (≡ f ′(x0) + η(x) in (3.8)) is continuous in B(x0; δ1) with

lim
x→x0

ηf (x) = f ′(x0).

Further, since g is differentiable at y0, there exists a δ2 > 0 such that

g(y)− g(y0) = (y − y0)ηg(y) for y ∈ B(y0; δ2) ⊂ J,

where ηg is continuous in B(y0; δ2) with limy→y0 ηg(y) = g′(y0). Now choose
δ > 0 such that δ < δ1 and

|x− x0| < δ1 implies |f(x)− f(x0)| < δ2.
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Then for x ∈ B(x0; δ), we have by substitution

g(f(x))− g(f(x0)) = (f(x)− f(x0))ηg(f(x)) = (x− x0)ηf (x) · ηg(f(x)),

so that
g(f(x)) − g(f(x0))

x− x0
= ηf (x) · ηg(f(x)),

where ηf (x) · ηg(f(x)) is continuous at x0 and approaches f ′(x0) · g′(y0) as
x → x0. The assertion now follows.

3.3.2 Smooth and Piecewise Smooth Functions

Suppose that f is differentiable on an interval I. Then we obtain a new func-
tion f ′ (whose domain may be a subset of I). Even if f ′(x) exists on I, the
derived function f ′ need not be continuous on I (see Example 3.54).

Definition 3.52. We say that f is of class C1 on I, denoted by f ∈ C1(I),
if f is differentiable on I and f ′ is continuous on I. If f ∈ C1(I), then we
often say that f is continuously differentiable on I.

In particular, we say that f is continuously differentiable on [a, b] if f is
differentiable on [a, b], f ′ is continuous on (a, b), and

f ′
+(a) = lim

x→a+
f ′(x) =: f ′(a+) and f ′

−(b) = lim
x→b−

f ′(x) =: f ′(b−).

Definition 3.53 (Piecewise smooth function). A function f : [a, b] → R

is said to be piecewise smooth if there exists a partition P = {x0, x1, . . . , xn} of
[a, b] such that f is continuously differentiable on each subinterval (xk−1, xk),
1 ≤ k ≤ n, where x0 = a and xn = b.

In particular, every f ∈ C1([a, b]) (i.e., every continuously differentiable
function) is piecewise smooth. We remark that functions in C1([a, b]) are called
smooth functions..

Suppose that f is differentiable on an open interval I and a ∈ I. Then it
is natural ask whether f ′ differentiable at a. If so, we denote the derivative
of f ′ at a by f ′′(a). This is called the second derivative of f at a, and is
also denoted by f (2)(a). The higher-order derivatives f (n)(a) may be defined
similarly.

Example 3.54. Define f, g, φ : R → R by

f(x) =

{
sin(1/x) for x �= 0,
0 for x = 0,

g(x) = xf(x), and φ(x) = x2f(x). Then we have the following:

(a) f is not continuous on R.
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Fig. 3.13. Graph of f(x) = x sin(1/x) on [−0.2, 0.2].
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Fig. 3.14. Graph of f(x) = x2 sin(1/x) on [−0.07, 0.07].
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Fig. 3.15. Graph of f(x) = x4 sin(1/x) on [−0.04, 0.04].
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(b) g is continuous on R but not differentiable at 0.
(c) φ is differentiable on R but not continuously differentiable on R.

The graphs of f , g, φ, and x4f(x) are pictured in Figures 3.1 and 3.13–3.15.
First we notice that it is a routine matter to show that each of f , g, and φ

is differentiable on R \{0}. At the end, we shall see that φ is also differentiable
at the origin. In order to prove that f is not continuous at x = 0, it suffices to
observe that limx→0 sin(1/x) does not exist (see Example 3.7). Alternatively,
consider

|f(x)− f(0)| = | sin(1/x)|, x �= 0.

In any interval (−δ, δ), no matter how small δ > 0 is, there are points at which

| sin(1/x)| = 1,

showing that f is not continuous at 0. In fact, we observe that every interval
(−δ, δ) contains points x of the form x = 1/nπ for large n. Indeed, if

xn =
1

(2n+ 1/2)π
and yn =

1

(2n+ 3/2)π
,

then f(xn) = 1 and f(yn) = −1, showing that f does not tend to a limit as
x → 0. To prove the continuity of g at 0, let ε > 0. Then

|g(x)− g(0)| = |g(x)| ≤ |x| for all x.

Since we want this to be less than ε, we let δ = ε. Then

|g(x)− g(0)| < ε for all |x− 0| < δ,

and so according to the ε-δ property, g is continuous at 0. A similar argument
with δ =

√
ε shows that φ is continuous at x = 0.

To check the differentiability of g at 0, we compute

lim
h→0

g(h)− g(0)

h
= lim

h→0
sin(1/h),

showing that g is not differentiable at 0.
Further, since |h sin(1/h)| ≤ |h| for all h �= 0, it follows that

lim
h→0

φ(h)− φ(0)

h
= lim

h→0
h sin(1/h) = 0,

and therefore we have

φ′(x) =
{
2x sin(1/x)− cos(1/x) for x �= 0,
0 for x = 0.

Thus, φ is differentiable for all x. For x �= 0, the first term in the last expression
has limit 0 as x → 0, whereas the second term takes values between −1 and
+1 in every neighborhood of x = 0. Thus limh→0 φ

′(h) does not exist, even
though φ′(0) = 0. Hence, φ′(x) is not continuous at x = 0. •
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3.3.3 L’Hôpital’s Rule

In Theorem 3.8, we proved that

lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
,

provided both limx→a f(x) and limx→a g(x) exist, and limx→a g(x) �= 0. How-
ever, in curve sketching and other applications, one encounters evaluation of
a limit of the form

lim
x→a

f(x)

g(x)
,

where limx→a f(x) and limx→a g(x) are either both zero or both infinite. Such
limits are called 0/0 or ∞/∞ indeterminate forms, respectively. The rule to
evaluate such limits if they exist is known as l’Hôpital’s rule. The numera-
tor and denominator may have limits, but the quotient need not. We also
meet other indeterminate forms such as ∞ − ∞, 1∞, ∞0, 00, and ∞ · 0. In
this subsection we state another important consequence of differentiability
for computing limits of the indeterminate form 0/0, and the corresponding
rule for the remaining cases may be reformulated from the result for the form
0/0. Again, we emphasize that there are several versions of the rule. However,
one can make appropriate modifications to state a more general result of the
following form for differentiable functions as in Exercise 3.59(13).

Theorem 3.55 (L’Hôpital’s rule). Let f(x) and g(x) be differentiable at
x0, with f(x0) = g(x0) = 0. If g′(x0) �= 0, then

lim
x→x0

f(x)

g(x)
=

f ′(x0)

g′(x0)
.

Proof. Since g′(x0) �= 0, by Corollary 3.29, there is an open interval containing
x0 such that g′(x) �= 0 for all x in this interval. Consequently, g(x)−g(x0) �= 0
for all x in an open interval containing x0. Finally, the result is a consequence
of the definition of derivative and the algebra of limits, for

f ′(x0)

g′(x0)
=

limx→x0

f(x)− f(x0)

x− x0

limx→x0

g(x)− g(x0)

x− x0

= lim
x→x0

f(x)− f(x0)

x− x0

g(x)− g(x0)

x− x0

= lim
x→x0

f(x)

g(x)
.

Examples 3.56. (a) Let f(x) = x3 − x2 and g(x) = x. Then

lim
x→0

f(x)

g(x)
=

f ′(0)
g′(0)

=
0

1
= 0.

Note that for x �= 0, f(x)/g(x) equals x2 − x.



108 3 Limits, Continuity, and Differentiability

(b) Let f(x) = x8 − 1 and g(x) = x2 − 1. Then

lim
x→1

f(x)

g(x)
= lim

x→1

8x7

2x
= 4.

(c) For f(x) = sinx, we have

lim
x→0

f(ax)

f(x)
= lim

x→0

sin ax

sinx
= a

cos 0

cos 0
= a,

where a is any real number.
(d) Let f(x) = 1− cosx and g(x) = sin2 x. Then g(nπ) = 0, f(2nπ) = 0,

f ′(x) = sinx and g′(x) = 2 sinx cosx,

so that f ′(nπ) = 0 and g′(nπ) = 0. So Theorem 3.55 is not applicable in
the present form to compute limx→2nπ f(x)/g(x). Since g′(2nπ) = 0 for
each n ∈ Z, Theorem 3.55 is not applicable. But using the fact that

sin2 x = 1− cos2 x = (1− cosx)(1 + cosx),

we have for each n ∈ Z,

lim
x→2nπ

1− cosx

sin2 x
= lim

x→2nπ

1− cosx

1− cos2 x
= lim

x→2nπ

1

1 + cosx
=

1

2
. •

3.3.4 Limit of a Sequence from a Continuous Function

The graph of a sequence consists of a succession of isolated points. For ex-
ample, the graph of y =

√
x2 + 5x − x, x ≥ 1, is clearly a continuous curve.

The only difference between limn→∞ an = a and limx→a f(x) = a is that n is
required to be an integer with f(n) = an. We already know quite a bit about
the limit of a sequence and the limit of a function. We are now confronted
with a situation that is very similar. So our knowledge of functions and the
theory of limits developed earlier carry over immediately to some sequences
and their limits.

Theorem 3.57 (Limit of a Sequence from the limit of a continuous
function). Given the sequence {an}, let f be a continuous function such that
an = f(n) for large n. If limx→∞ f(x) = L, where L is in the extended limits,
then limn→∞ an = L.

Proof. Let ε > 0 and L ∈ (−∞,∞). Because limx→∞ f(x) = L, there exists a
number N > 0 such that

|f(x)− L| < ε whenever x ≥ N .

In particular, we may choose N large enough that if n ≥ N , then

|f(n)− L| = |an − L| < ε,

and so {an} converges.
We leave the proof for the cases L = ±∞ as exercises.
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We note that Theorem 3.57 does not say that if limn→∞ an = L, then one
has limx→∞ f(x) = L. We present some simple examples.

(1) Consider an = n3/(1 + en). If we let f(x) = x3/(1+ ex), then f is contin-
uous for all x, and f(n) = an for n = 1, 2, . . .. Theorem 3.57 tells us that
limn→∞ an is the same as limx→∞ f(x), provided the latter limit exists.
According to l’Hôpital’s rule,

lim
x→∞ f(x) = lim

x→∞
x3

1 + ex
= lim

x→∞
3x2

ex
= lim

x→∞
6

ex
= 0.

Thus by Theorem 3.57, limn→∞ an = limx→∞ f(x) = 0.
(2) Consider an = n sin(1/n). If we set f(x) = (1/x) sinx, then an = f(1/n),

and we observe that (for instance by l’Hôpital’s rule)

f(x) → 1 as x → 0+.

Theorem 3.57 then shows that an → 1.

3.3.5 Questions and Exercises

Questions 3.58.

1. Are there nonconstant functions f for which f ′(x) = 0 for all x ∈ dom (f)?
2. Suppose that f is differentiable on (a, c) and [c, b). Must f be differentiable

at c?
3. Suppose that |f | is differentiable at a point c. Must f be differentiable at

c?
4. Suppose f ′

+(a) and f ′−(a) both exist. Must f be continuous at a?
5. If f is continuous at the origin, must g(x) = xf(x) be differentiable at the

origin?
6. Is f(x) = |x| sinx differentiable at 0?
7. Suppose that f(x) = x1/3 − x4/3 on [0, 1]. Is f continuous on [0, 1]? Is

f differentiable on (0, 1)? Does there exist a point c ∈ (0, 1) such that
f ′(c) = 0? If so, at which c does this hold?

8. Must the derivative of an odd function be even?
9. Suppose that f and g are differentiable on (a, b) such that f(c) = g(c) for

some c ∈ (a, b) and f(x) ≥ g(x) on (a, b). Must f ′(c) = g′(c)?
10. Suppose that f : R → R such that |f(x) − f(y)| ≤ (x − y)2 for all

x, y ∈ R. What can be said about the function f? For example, can it be
differentiable on R? If so, what is its derivative?

11. Suppose that f : [a, b] → [a, b] is such that |f(x) − f(y)| < |x − y| for all
x, y ∈ [a, b], x �= y. Must there exist a number M < 1 such that

|f(x)− f(y)| < M |x− y| for all x, y ∈ [a, b]?
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12. If f : (a, b) → R is differentiable, must the derivative f ′(c) at each c ∈
(a, b) be given by

lim
h→0

f(c+ h)− f(c− h)

2h
?

Does the limit exist if f(x) = |x|?
13. Suppose that f is differentiable at c, and α, β are two nonzero real

numbers. Must the limit

lim
h→0

f(c+ αh)− f(c+ βh)

h

exist?
14. Suppose that f is differentiable at a such that f(a) = 0. Let g(x) = |f(x)|.

Is it true that g is differentiable at a if and only if f ′(a) = 0?
15. If f is differentiable at x = c, what can be said about xf(c)− cf(x)?
16. Suppose that f is differentiable on R such that f(x + y) = f(x)f(y) for

all x and y in R. If f(a) and f ′(1 − a) are given for some a ∈ R, what is
the value of f ′(0)? If f(1) = 3 and f ′(2) = 1, do we have f ′(3) = 3?

Exercises 3.59.

1. Show that f(x) = cosx is differentiable on R.
2. Show that f(x) = x1/3 is not differentiable at the origin.
3. If f : (a, b) → R is twice differentiable at c ∈ (a, b), then show that

f ′′(c) = lim
h→0

f(c+ h) + f(c− h)− 2f(c)

h2
.

If f(x) = x|x| for x ∈ R, then show that the limit on the right exists for
c = 0, but f ′′(0) does not exist.

4. If f : (a, b) → R is thrice differentiable at c ∈ (a, b), then show that

f ′′′(c)
3

= lim
h→0

[
f(c+ h)− f(c− h)− 2hf ′(c)

h3

]
.

Find an example of a function f for which the limit on the right exists,
but f ′′′(c) does not.

5. Define f : R → [−1, 1] by f(x) =
√
1 + cosx. Determine f ′

+(x) and f ′
−(x).

Also, determine points where f fails to be differentiable.
6. Suppose that f is differentiable on (a, b) and continuous on [a, b]. Do f ′

+(a)
and f ′

−(b) exist?
7. If f(x) = |x(x−1)|, determine the left and right derivatives of f at x = 0, 1.
8. Show that f(x) = |x|x is differentiable on R, but its derived function is not

differentiable at 0. How about f(x) = |x|xn? (see Figures 3.16 and 3.17).
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Fig. 3.16. Graph of fn(x) = |x|xn when x �= 0 and 0 when x = 0, for n = 1, 2.
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Fig. 3.17. Graph of fn(x) = |x|xn when x �= 0 and 0 when x = 0, for n = 3, 4.

9. Define f(x) = x − [x] on [0, 4] and g(x) = |2f(x)− 1| on [0, 4]. Draw the
graphs of f and g. Prove the following:
(a) f is piecewise continuous on [0, 4].
(b) g is piecewise differentiable on [0, 4].

10. Define

f(x) =

{
x2 sin(1/x) for x < 0,
x3 for x ≥ 0.

Verify whether f is differentiable at the origin by computing f ′
+(0) and

f ′
−(0) if they exist. Also determine f ′(0+) if it exists.

11. Define f : R → R by

f(x) =

{
sinx for x ∈ Q,
x for x ∈ R \Q.

Show that f is differentiable at the origin.
12. Suppose that f is differentiable at a such that f(a) �= 0. Show that g

defined by g(x) = |f(x)| is differentiable at a. Also, determine g′(a).
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13. If f(x0) = g(x0) = 0, f ′(x0), and g′(x0) exist with g′(x0) �= 0, do we have

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)
g′(x)

?

More generally, if f , g, and their (n− 1)st derivatives are zero at x0 and
g(n)(x0) �= 0, does it follow that

lim
x→x0

f(x)

g(x)
=

f (n)(x0)

g(n)(x0)
?

Note: Yes. This is called a general l’Hôpital’s rule.
14. Using the chain rule, determine the derivative of

(a) f(x) =

√
x+

√
x+

√
x on [0,∞).

(b) h(x) = sin2(x) sin(1/ sinx) on (0, π).
15. If f and g have derivatives of all orders at a point a ∈ R, determine the

derivative formula for h(n)(a), where h = fg.
16. Suppose that

f(x) =

{
x for x ∈ Q,
sinx for x ∈ R \Q.

Show that f is differentiable at the origin. Also, determine f ′(0).
17. Draw the graph of

f(x) =

{
x3 for x > 0,
x2 for x ≤ 0,

and g(x) =

{
x3 for x < 1,
3x− 2 for x ≥ 1.

Does f ′(x) exist on R? If so, is f ′ differentiable at the origin? Does g′(x)
exist on R? If so, is g′ differentiable at the origin?

18. Find the set of points where the following functions are not differentiable:
(a) sin(|x|). (b) |x|+ |x− 1|. (c) |x|+ |x− 1|+ |x− 2|.
(d) |x2 − 9|. (e) |x3 − 27|.

19. Consider

f(x) =

{
x4 for x < 1,
ax+ b for x ≥ 1.

For what values of a and b is f continuous at the point x = 1? Is it
differentiable at the point x = 1? If yes, what is f ′(1)? If not, determine
the left and right derivatives at x = 1.

20. Find the following limits if they exist:

(a) lim
x→0

e3x − cos 2x

x
. (b) lim

x→0

√
2 + x−√

2− x

x
.

(c) lim
x→0

x3

sinx− x
. (d) lim

x→0

x4

1− cos 3x− 9x2
.

(e) lim
x→0

x(ex − 1)

x− ex + 1
. (f) lim

x→−2

x+ 2

x2 + x− 2
.
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21. Draw the graph of f defined by

f(x) =

⎧
⎨

⎩

1 for x < 0,
cosx for 0 ≤ x ≤ π,
−1 for x > π.

Is f continuous on R? Is f differentiable on R? If so, determine whether
f ′(x) is continuous on R. If not, explain at what points f is not differen-
tiable.
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Applications of Differentiability

In Section 4.1, we introduce standard properties associated with functions and
define inverse functions. In this section, we will learn the importance of the
inversion process. In Section 4.2, we begin the discussion with local and global
extrema and then continue to derive sufficient conditions for the existence
of local extrema. In this section, we also prove two important theorems in
calculus, namely Rolle’s theorem and the mean value theorem.

4.1 Basic Concepts of Injectivity and Inverses

To begin with, let us introduce some important terminology associated with
functions. Let I be an interval and f : I → R a given function. We say that f is

• monotonically increasing (or increasing) on I if f(x) ≤ f(y) for all x, y ∈ I
with x < y;

• monotonically decreasing (or decreasing) on I if f(x) ≥ f(y) for all x, y ∈ I
with x < y;

• strictly increasing if f(x) < f(y) for all x, y ∈ I with x < y;
• strictly decreasing on I if f(x) > f(y) for all x, y ∈ I with x < y;
• monotone if it is either increasing or decreasing on I;
• strictly monotone if it is either strictly increasing or strictly decreasing
on I.

We have already encountered functions f : R → R for which there is no
inverse function g : R → R because f is not one-to-one, that is, that some
y0 ∈ R is the image of two different numbers x1, x2 ∈ R, namely f(x1) =
f(x2) = y0, with x1 �= x2. Even if f is one-to-one, if it is not also onto, that
is, if there is at least one number y0 that is the image of no real number x,
then f will have no inverse function whose domain is all of R.

In such cases we may require to restrict the domain and the codomain so
that the modified function has one or more inverses. This leads to a discussion
on “local inverses”.

S. Ponnusamy, Foundations of Mathematical Analysis,
DOI 10.1007/978-0-8176-8292-7 4,
© Springer Science+Business Media, LLC 2012
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For the definitions of one-to-one and onto functions, we refer to
Section 1.2.2.

Example 4.1. Suppose that I and I ′ are subsets of R. Then the graph of
f : I → I ′ helps to determine whether f is one-to-one: a function f is one-to-
one iff every line y = c intersects the graph in at most one point ; see Figures
4.1 and 4.3.

For instance, consider the graph of y = f(x) = x2 for all x in some
neighborhood I of the origin, say I = (−2, 2). Then we observe that for y = 1
we have x2 = 1, which has the two solutions x = ±1. That is, we cannot define
f−1(1) uniquely. Thus, f(x) = x2 on (−2, 2) fails to have an inverse function,
because it is not one-to-one. For instance, for y = −1, we have x2 = −1,
which has no real solution. In particular, f : R → R defined by f(x) = x2 has
no inverse. However, it is a simple exercise to see that g : [0,∞) → [0,∞)
defined by g(x) = xn, n ∈ N, is one-to-one, and hence it does have an inverse
function g−1 : [0,∞) → [0,∞) defined by

g−1(y) = y1/n for every y ∈ [0,∞).

In other words, if x ≥ 0 and y ≥ 0, then for each fixed n ∈ N,

y = xn ⇐⇒ x = y1/n.

How about fn : R → R defined by fn(x) = x2n+1? (See Figures 4.3 and 4.4.)•
Example 4.2. The graph of y = sinx shows that it is one-to-one on the
interval (

−π

2
+ kπ,

π

2
+ kπ

)

for each fixed k ∈ Z (Figures 4.1 and 4.2). Similarly, by drawing the graph of
g(x) = cosx, it can be easily seen that g is one-to-one on each interval

(kπ, (k + 1)π) , k ∈ Z,

and hence it has an inverse function cos−1(y) defined from (−1, 1) onto
(kπ, (k + 1)π); see Examples 4.7. •

Unfortunately, it is in general not possible to solve the equation y = f(x)
for x in terms of y. However, in order to prove that f has an inverse, the
following simple result is useful. We invite the reader to prove this result.

Proposition 4.3. Let f : (a, b) → R, a < b, be continuous. Then the following
statements are equivalent:

(a) f is one-to-one on (a, b).
(b) f(I) is an open interval whenever I is an open interval in (a, b).
(c) f is strictly monotone on (a, b).
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Fig. 4.1. Graphs of y = sin x on [−π/2, π/2] and y = sin−1 x on [−1, 1].
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Fig. 4.2. Graphs of y = cosx on [0, π] and y = cos−1 x on [−1, 1].

For instance if f(x) = x7 + 2x + 1 (x ∈ R), then for x1 < x2, we have
x7
1 < x7

2 and

x7
1 + 2x1 + 1 < x7

2 + 2x2 + 1,

so that f is strictly increasing. Therefore, f is one-to-one on R.
At this point, we emphasize that by Proposition 4.3, every strictly mono-

tone continuous function f : (a, b) → R has an inverse function f−1 with
domain J = f((a, b)). Moreover, f−1 is also continuous and strictly mono-
tone. For example, f(x) = tanx for x ∈ (−π/2, π/2) has a strictly increasing
continuous inverse function with domain f(−π/2, π/2) = R, denoted by tan−1

(see Figure 4.5).
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Fig. 4.3. Graphs of y = x, y = x2 on [−1, 1], and y = x1/2 on [0, 1].
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Fig. 4.4. Graphs of y = x3 and y = x1/3 on [−1, 1].
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Fig. 4.5. Graphs of y = tanx on (−π/2, π/2) and its inverse.

4.1.1 Basic Issues about Inverses on R

Suppose that Ω and Ω′ are two subsets of R, and g : Ω′ → Ω is an inverse of
f : Ω → Ω′. Then we can express this by writing

g ◦ f = IΩ , i.e., (g ◦ f)(x) = g(f(x)) = x for all x ∈ Ω,

and
f ◦ g = IΩ′ , i.e., (f ◦ g)(y) = f(g(y)) = y for all y ∈ Ω′.
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Here IΩ : Ω → Ω and IΩ′ : Ω′ → Ω′ are the identity mappings on Ω and Ω′,
respectively; that is, for all x ∈ Ω and y ∈ Ω′, one has

IΩ(x) = x and IΩ′ (y) = y.

Remark 4.4. (a) The inverse of f is often denoted by f−1 (which should not
be confused with 1/f).

(b) Further, the notion of inverse f−1 of f : Ω → Ω′ should not be confused
with the inverse image set f−1(B) for B ⊂ Ω′. The latter is a set that
exists for every function f , while the former is a function that exists only
when f is bijective; see Proposition 4.5. •
To summarize, given a function f : Ω → Ω′, if there exists a function

g : Ω′ → Ω such that y = f(x) ⇐⇒ x = g(y), then the function g is called
the inverse function of f .

Clearly, g is the inverse of f iff f is the inverse of g. It is in fact an easy
exercise to prove the following result.

Proposition 4.5. Let Ω and Ω′ be two subsets of R. Then the function f :
Ω → Ω′ has an inverse iff f is bijective.

Proof. (⇒): Suppose that f has an inverse, say g : Ω′ → Ω. Let x1, x2 ∈ Ω
be such that f(x1) = f(x2). Then by the definition of inverse,

x1 = g(f(x1)) = g(f(x2)) = x2, i.e., f is one-to-one.

To show that f is onto, choose an arbitrary point y in Ω′. Then g(y) ∈ Ω
because f(g(y)) = y.

(⇐): Conversely, let f be bijective. Because f is onto, for each y ∈ Ω′

there is an x ∈ Ω such that y = f(x). We denote the element x by setting
x = g(y). Moreover, because f is one-to-one, there will be exactly one element
of Ω that f maps to a given element y ∈ Ω′. Now,

f(g(y)) = f(x) = y.

Also, for each x ∈ Ω, g(f(x)) is an element of Ω such that

f(g(f(x))) = f(x),

and because f is one-to-one, the last equation gives

g(f(x)) = x.

Thus, g : Ω′ → Ω can be defined by g(y) = x whenever f(x) = y.

4.1.2 Further Understanding of Inverse Mappings

Suppose that I is an open interval and f : I ⊂ R → R belongs to C1(I) such
that f ′(a) �= 0 for some point a ∈ I. If f ′(a) > 0, then from the continuity of
f ′ it follows that there is an open interval I1 containing a such that f ′(x) > 0
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on I1. A similar statement holds when f ′(a) < 0. Thus, f is strictly monotone
on I1, and by Proposition 4.3, f is one-to-one on I1 with an inverse function
g = f−1 defined on some open interval J1 containing f(a). Moreover,

g(y) = x with y = f(x) for x ∈ I1, y ∈ J1. (4.1)

Example 4.6. We illustrate Proposition 4.3 with a simple function. Define
f : R → R

+ by f(x) = (x− 3)2 + 1. Then

f(R) = [1,∞), f((1, 4)) = [1, 5) and f((3, 4)) = (1, 2),

from which one can obtain that f is not one-to-one on the whole of R. On the
other hand,

f ′(x) = 2(x− 3)

{
> 0 for x > 3,
< 0 for x < 3,

showing that f is one-to-one on each of (−∞, 3) and (3,∞). Note that f ′(3) =
0, and f is strictly decreasing on the interval (−∞, 3) and strictly increasing on
(3,∞). Therefore, f cannot be one-to-one on any open interval that contains
the point 3. •
Examples 4.7. Some familiar examples of functions and their inverses are as
follows:

(a) Consider (see also Figure 4.3)

{
f1(x) = x2 for x ∈ Ω = {x : x ≥ 0},
g1(y) =

√
y for y ∈ Ω.

Note that
(g1 ◦ f1)(x) = g1(f1(x)) =

√
x2 = x

and
(f1 ◦ g1)(y) = f1(g1(y)) = f1(

√
y) = y.

The inverse function g1(= f−1
1 ) in this case is called the positive square

root function of f1.
(b) If f2(x) = x2 for x ∈ Ω = {x : x ≤ 0}, then g2 defined by

g2(y) = −√
y, y ∈ Ω′ = {x : x ≥ 0},

is the inverse of f2 and is called the negative square root function of f2.
However, h : R → R

+ defined by h(x) = x2 has no inverse, since h(−x) =
h(x). That is, h is not one-to-one.

(c) Our next example of a function f and its inverse function g is given by
{
f(x) = ex for x ∈ Ω = R,
g(y) = log y for y ∈ Ω′ = {y : y > 0}.

Note that f is increasing and one-to-one on R. Also, f(R) = (0,∞) and
f((0, a)) = (1, ea) for a > 0.
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(d) Finally, we consider (see also Figure 4.1)

f(x) = sinx, x ∈ Ω = [−π/2, π/2].

Then f ′(x) = cosx > 0 for x ∈ (−π/2, π/2). So the inverse g = f−1 exists
with domain [−1, 1]. Further,

g′(y) =
1

f ′(x)
=

1

cosx
=

1√
1− sin2 x

=
1√

1− f2(x)
=

1√
1− y2

.

Here g is called the inverse sine function. In other words, f(x) = sinx on
[−π/2, π/2] has a strictly increasing continuous inverse function, denoted
by

f−1 = sin−1 := Arcsin,

with domain Ω′ = [−1, 1] and

d

dy
(Arcsin y) =

1√
1− y2

.

Note that the function sinx is of course not one-to-one on R, since
sinnπ = 0 for all n ∈ Z (compare with Proposition 4.3). Other trigono-
metric functions can be handled in a similar fashion.

(e) If f(x) = cosx for x ∈ [0, π], then f ′(x) = − sinx for x ∈ [0, π], so that f
is one-to-one on [0, π], and hence it has an inverse (see also Figure 4.2).
Thus, f(x) = cosx on [0, π] has a strictly decreasing continuous inverse
function, denoted by

f−1 = cos−1 := Arccos,

with domain Ω′ = [−1, 1] and

d

dy
(Arccos y) = − 1√

1− y2
.

(f) Similarly, the function f(x) = tanx is one-to-one on (−π/2, π/2), and the
inverse tangent function, denoted by Arctan y or tan−1y, is given by

x = f−1(y) = Arctan y,

with domain R. Again f−1 is a strictly increasing continuous function
on R. •
Having seen a number of examples of one-to-one and inverse functions, we

now ask the following question, which has not been considered so far.

Problem 4.8. If a differentiable function f has an inverse g, is the inverse
function necessarily differentiable? If so, is it possible to obtain g′(y) from
f ′(x), where y = f(x)?

Suppose that

g(y) = x with y = f(x) for x ∈ I, y ∈ J,
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where I and J are some open intervals. If g is differentiable, then by differen-
tiating it with respect to x, we see that

g′(y)f ′(x) = 1,

so that (
f−1

)′
(y) =

1

f ′ (f−1(y))
for y ∈ J.

Equivalently,

(f−1)′(f(x))f ′(x) = 1 for x ∈ I or g′(y) = [f ′(x)]−1,

so that the derivative of an inverse function g = f−1 is the reciprocal of the
derivative of the original function f . Finally, we invite the reader to show that
g is actually differentiable on J (see Exercise 4.10(11)).

4.1.3 Questions and Exercises

Questions 4.9.

1. Is the composition (respectively product, sum) of two decreasing functions
monotone?

2. Is the product of two strictly increasing functions necessarily increasing?
3. Must every continuous function on [a, b] be monotone on [a, b]?
4. Must every monotone function on [a, b] be continuous on [a, b]?
5. Suppose that f and g are two positive increasing functions defined on an

interval [a, b]. Must the product fg be increasing on [a, b]?
6. How are one-to-one and monotone properties of a function related?
7. Suppose that f : R → R is continuous and one-to-one. Must f be mono-

tone?
8. Suppose that f : [0, 2] → [0, 1] is monotone and bijective. Must f and f−1

both be continuous?
9. Suppose that f is monotone on (a, b) and we have c ∈ (a, b). Must

limx→c+ f(x) and limx→c− f(x) both exist?
10. Suppose that f and g are monotone on (a, b), h = f − g, and c ∈ (a, b).

Must limx→c+ h(x) and limx→c− h(x) both exist?
11. Let f be increasing and bounded above on (a,∞) for some a ∈ R. Must

limx→∞ f(x) exist?
12. Suppose that f : (a, b) → R is continuous. Must f(a, b) be an open interval

in R? If not, when is this possible?

Exercises 4.10.

1. Let f : (−∞, a) → (−∞, 0) be defined by f(x) = 1/(x− a). Prove that f
has an inverse function f−1 given by f−1(y) = a+ (1/y).

2. Show that f : R → R defined by f(x) = x/(1 + |x|) is one-to-one but not
onto.
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3. Give an example of a discontinuous function that is one-to-one.
4. Give an example of a continuous function that is neither one-to-one nor

onto.
5. Determine whether the following functions are one-to-one on (0,∞):

(a) f(x) = x4 − (1/x2). (b) x4 + 3x+ 1. (c) xn (n ∈ Z).
6. Set f(x) = (1 + 1/x)

x
for x > 0. Show that f is increasing on (0,∞). In

particular, f(n+ 1) > f(n) for all n ≥ 1 (see Example 2.33).
7. Let f : I → J be one-to-one and have an inverse g : J → I. If g is

differentiable at y0 = f(x0), x0 ∈ I, where f is continuous at x0 and
g′(y0) �= 0, then show that f ′(x0) exists, and

f ′(x0) =
1

g′(y0)
.

8. Show that x/ sinx is increasing on (0, π/2).
9. Consider f : (0,∞) → R by f(x) = x(3+ sin(log x2)). Determine whether

f is a monotone function.
10. Suppose that f is monotone on the open interval (a, b).

(a) If f is bounded above on (a, b), then show that limx→b− f(x) exists.
(b) If f is bounded below on (a, b), then show that limx→a+ f(x) exists.
Note: This is an analogue of the bounded monotone convergence theorem
for sequences.

11. Suppose that f is one-to-one and continuous on (a, b) and c ∈ (a, b). If f
is differentiable at c and f ′(c) �= 0, then show that f−1 is differentiable at
f(c) and (f−1)′(f(c)) = 1/f ′(c). This is referred to as the inverse function
theorem.

4.2 Differentiability from the Geometric View Point

In this section, we discuss a few fundamental results from the theory of func-
tions of a single variable that are motivated by the geometric consideration of
differentiability in terms of tangents.

4.2.1 Local Extremum Theorem

Definition 4.11. Let f be defined on an interval I.

• A point x0 ∈ I is called a point of local minimum of f , or equivalently, we
say that f has a local minimum f(x0) at x0, if there exists a neighborhood
B of x0 such that

f(x) ≥ f(x0) for all x ∈ B ∩ I.
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• A point x0 ∈ I is a local maximum of f , or equivalently, f has a local
maximum f(x0) at x0, if there exists a neighborhood B of x0 such that

f(x) ≤ f(x0) for all x ∈ B ∩ I.

We say that f has a local extremum at x0 if x0 is a point of local minimum
or a point of local maximum.

• We say that f has a minimum (or global minimum) at x0 if f(x) ≥ f(x0)
for all x ∈ I. The notion of global maximum is defined similarly.

• A point x0 is called a critical point of f if either f is not differentiable at
x0 or if it is, f ′(x0) = 0.

• A critical point that is not a local extremum is called a saddle point.

O

y

a xM xm x0 b x

y = f(x)

Fig. 4.6. Nondifferentiable function with local extrema.

In Figure 4.6, for instance, y = f(x) has an absolute minimum at x = a
and a local maximum at xM . Also, it has a local minimum at xm and an
absolute maximum x0. In Figure 4.7, we present graphs of functions that
have no extrema.

We now establish a necessary condition for the existence of local extrema
for differentiable functions (see Figure 4.8).

Theorem 4.12 (Local extremum theorem). Let f : I → R, where I is a
neighborhood of c, e.g., I = [a, b] with c ∈ (a, b). If f has a local extremum at
c and f ′(c) exists, then f ′(c) = 0.

Proof. Suppose that f has a local maximum (the proof for a local minimum
is similar). Then there exists a δ > 0 such that

f(x) ≤ f(c) for all x ∈ {x : |x− c| < δ} ⊂ I.
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O x

f (x) > 0

y = x1/3

y = −x1/3

f (x)>0

y

O x

y

f (x) < 0

f (x) < 0

Fig. 4.7. No extrema.

O x

y

local maximum

local minimum

( )
x1 b

y= f(x)

N

)(
N

a x0

Fig. 4.8. Existence of local extrema.

First, considering the points to the left of c, we have (see Figure 4.9)

f(x)− f(c)

x− c
≥ 0 for c− δ < x < c,

so that

f ′
−(c) = lim

x→c−
f(x)− f(c)

x− c
≥ 0.

Next, considering points to the right of c, we have

f(x)− f(c)

x− c
≤ 0 for c < x < c+ δ,

so that (see Figure 4.9)

f ′
+(c) = lim

x→c+

f(x)− f(c)

x− c
≤ 0.

Since f ′(c) exists, the left and the right derivatives at c exist and are equal.
Consequently, f ′(c) = 0.
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c

)

horizontal tangent
at (c,f(c))

y= f(x)
∗

(

slo
pe

 ≥ 0slope ≤ 0

c− δ c+ δ

∗

xO

y

Fig. 4.9. Left and right hand derivatives.

y

y = f(x)

c − δ c

slope > 0

O xc + δ

slope < 0

Fig. 4.10. f is not differentiable at x = c.

xO 1

y

(1, 2)

y=f(x)

Fig. 4.11. Graph of f given by (4.2).

For instance, the function f(x) = x + 1/x (x �= 0) has a local minimum
at 1, since

x+
1

x
≥ 2 for all x near 1.

For x < 0, this inequality is no longer valid. Clearly, the function f(x) =
x+ 1/x has no global minimum and no global maximum.

Remark 4.13. (a) The function f(x) = |x| has a local minimum at 0 al-
though f is not differentiable at the origin. This demonstrates that a
function may have a local extremum at a point without the function be-
ing differentiable at that point.

(b) The function f(x) = x3, x ∈ [−1, 1], does not have a local extremum at
the origin although f ′(0) = 0. We see that Theorem 4.12 does not assert
that a point c where f ′(c) = 0 is necessarily a local extremum. That is,
the converse of Theorem 4.12 is false. •
Figure 4.10 shows that f is not differentiable at c, since f ′

−(c) and f ′
+(c)

are not equal.
Now, we consider the function (see Figure 4.11)
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a xc

y= f(x)

f(b)

f(a)

f(a)<f(b)
bO

y0

y

xO

y

a c b

y0
y= f(x)

f(b)

f(a)

f(a)>f(b)

Fig. 4.12. Sketch for the intermediate value theorem.

f(x) =

{
x2 + 1 for x < 1,
2 for x ≥ 1.

(4.2)

Then f is continuous on R and differentiable everywhere except at x = 1. We
see that

f ′(x) =
{
2x for x < 1,
0 for x > 1,

whereas

f ′
−(1) = lim

h→0−
f(1 + h)− f(1)

h
= lim

h→0−
(1 + h)2 + 1− 2

h
= 2

and

f ′
+(1) = lim

h→0+

f(1 + h)− f(1)

h
= lim

h→0+

0

h
= 0.

Does it have a local extremum at 1?

4.2.2 Rolle’s Theorem and the Mean Value Theorem

First we recall the intermediate value theorem (see Figure 4.12), which is one
of the most important theoretical tools used to prove a number of results in
calculus. We omit its proof, since it depends on the completeness property of
the real numbers. However, a geometric proof suggests the truth of it.

Theorem 4.14 (Darboux/Intermediate value property). Let a < b and
and let f : [a, b] → R be continuous. Suppose that y0 is a point that lies in
the open interval with endpoints f(a) and f(b). Then there exists at least one
point c ∈ (a, b) such that f(c) = y0.

For example, by Theorem 4.14, for each α > 1 the equation ex = α has
a solution (it suffices to observe that e0 = 1 < α = y0 < eα and f(x) = ex).
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Theorem 4.14 explains why the graphs of differentiable functions possess cer-
tain geometric properties.

The mean value theorem plays an important role in the differential and
integral calculus of a single variable. We state both Rolle’s theorem and the
mean value theorem.

Theorem 4.15 (Rolle’s theorem). Suppose f : [a, b] → R is continuous on
the (closed, bounded) interval [a, b] and differentiable on (a, b). If f(a) = f(b),
then there exists at least one point c ∈ (a, b) with f ′(c) = 0.

Proof. The proof of this theorem is simple. Consider (see Figure 4.15)

F (x) = f(x)− f(a).

Then F is continuous on [a, b], differentiable on (a, b), and F (a) = F (b) = 0.
If F (x) = 0 on (a, b), then F ′(x) = f ′(x) = 0 for all x ∈ (a, b), so that the
result is trivial, and in this case, we may choose c to be any point in (a, b).

Suppose F (x) �= 0 for some x ∈ (a, b). Then F , being continuous on
a closed and bounded interval [a, b], assumes its maximum and minimum,
say at x1 and x2, respectively. Since F (x) is not identically zero on [a, b],
and F (a) = F (b) = 0, at least one of x1 and x2 must belong to (a, b), say
x1 ∈ (a, b). The local extremum theorem applied to the point x1 shows that
F ′(x1) = f ′(x1) = 0, as desired.

Remark 4.16. We observe the following:

• Rolle’s theorem guarantees that the point c exists somewhere, although it
gives no indication of how to find such a point. Figure 4.15 makes this point
geometrically: if in the graph of f , the line segment connecting (a, f(a))
and (b, f(b)) is parallel to the horizontal line, then so is the tangent to the
graph of f at some point on the interval (a, b).

• If f(x) is a polynomial such that f(a) = f(b) = 0, then f ′(x) = 0 has a
root in (a, b).

• In the statement of Rolle’s theorem, the differentiability of f on (a, b) is
essential (see Figure 4.13). For instance, if

f(x) = 1− |x| for x ∈ [−1, 1],

then f is continuous on [−1, 1] and differentiable everywhere on (−1, 1)
except at the interior point x = 0. However, there exists no point x such
that f ′(x) = 0.

• In the statement of Rolle’s theorem, the continuity of f on the closed inter-
val [a, b] is essential. In particular, continuity at the endpoints is necessary
(see Figure 4.14). •
For example, if we apply Rolle’s theorem to f(x) = (x− 1)ex−x on [0, 1],

it follows that the equation xex − 1 = 0 has exactly one root in the interval
(0, 1).
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b xO

y

f is continuous on [a, b]

f is not differentiable on (a,b)

no c exists such that f (c)=0

f(a)= f(b)

a

no tangent line with f (c)=0

Fig. 4.13. Differentiability on (a, b) is necessary in Rolle’s theorem.

xO

y

a

f(a)= f(b)

f is differentiable on (a, b)

f is not continuous on [a, b]

no c exists such that f (c)=0

b

Fig. 4.14. Continuity on [a, b] is necessary in Rolle’s theorem.

O x
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a c1 c2

y= f (x)same slope

aO x

f (a)

same slope
y

f (a)= f (b)

y= f (x)

bb

f (b)

Fig. 4.15. Sketch for Rolle’s theorem and the mean value theorem.
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O x

y

ba x

y= f(x)

f(a)

f(x)

f(b)

b−a

f(b)− f(a)
f(a)+m(x−a)

ϕ(x)

Fig. 4.16. Sketch for the proof of the mean value theorem.

Theorem 4.17 (Mean value theorem). If f : [a, b] → R (a < b) is differ-
entiable on (a, b) and continuous on the closed interval [a, b], then there exists
at least one point c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c). (4.3)

Proof. To apply Rolle’s theorem, we just need a linear function that maps the
line through the points (a, f(a)) and (b, f(b)) to the points (a, 0) and (b, 0),
respectively. The required function is given by

y = f(a) +m(x− a), m =
f(b)− f(a)

b− a
,

which is indeed the equation of the chord joining the points (a, f(a)) and
(b, f(b)). The numberm is the slope of this chord. Now define (see Figures 4.15
and 4.16)

φ(x) = f(x)− [f(a) +m(x− a)].

Then φ is continuous on [a, b] and differentiable on (a, b) with φ(a) = φ(b) = 0.
By Rolle’s theorem, φ′(c) = 0 for some c ∈ (a, b). This condition gives the
desired result.

Example 4.18. Consider f(x) = |x| + |x − 1| for x ∈ [−2, 2]. Then (see
Figure 4.17) we may simplify it as

f(x) =

⎧
⎨

⎩

1− 2x for − 2 ≤ x ≤ 0,
1 for 0 ≤ x ≤ 1,
2x− 1 for 1 ≤ x ≤ 2.
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−2 −1 1 2 x

y

1

(2, f(2))

O

3
(−1, f(−1))

Fig. 4.17. The graph of f(x) = |x|+ |x− 1| for x ∈ [−2, 2].

Clearly, f is continuous on [−2, 2] but is differentiable on (−2, 2) except
at 0 and 1. Note that

f(2)− f(−2)

2− (−2)
= −1

2
, f ′(x) =

⎧
⎨

⎩

−2 for − 2 < x < 0,
0 for 0 < x < 1,
2 for 1 < x < 2.

There exists no c ∈ (−2, 2) satisfying (4.3). On the other hand,

f(2) = f(−1) = 3 and f ′(x) = 0 on (0, 1),

showing that f ′(x) = 0 for points on (−1, 2) without satisfying all the required
conditions of Rolle’s theorem for f on [−1, 2]. •

Theorem 4.17 involves a single function, namely f , and is due to Lagrange
(1736–1813). There is another result (see Theorem 4.26) that involves two
functions and is due to Cauchy (1789–1857). Consider the expression (4.3).
The term on the left-hand side of (4.3), namely f ′(c), is the slope of the tangent
line at (c, f(c)), where c is some point in (a, b), whereas the expression on the
right-hand side, namely the number (f(b) − f(a))/(b − a), is the slope of
the secant line that passes through the endpoints (a, f(a)) and (b, f(b)). This
equation says that the slopes are the same. That is, the secant line (chord)
between the endpoints (a, f(a)) and (b, f(b)) and the tangent line at (c, f(c))
are parallel; see Figure 4.15. Note that we are given no indication how to find
the point c.

Remark 4.19. Consider an equation of motion

s = f(t), t ∈ [a, b],
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so that f(t) represents the position of a moving point at time t. Then Δs =
f(b)−f(a) represents the change in s corresponding to Δt = b−a, the change
in time from t = a to t = b, so that

Δs

Δt
=

f(b)− f(a)

b− a
,

which is the average velocity over the time interval [a, b]. The mean value
theorem then asserts that there is an instant t = c between a and b at which
the instantaneous velocity f ′(c) at c equals the average velocity. For example,
by the mean value theorem, we see that if a motorist makes a trip with
average velocity 30 kilometers per hour, then at least once during the trip, his
speedometer must have registered precisely 30 kilometers per hour. •

Also, we observe the following important points:

• There may be more than one value of c satisfying the conclusion of the
mean value theorem (as in Figure 4.18).

y= f(x)

(c 1, 
f(c 1)

)

(c 2, 
f(c 2)

)

ba c1 c2O

f(a)

f(b)

secant line

x

y

Fig. 4.18. The existence of more than one c in the mean value theorem.

• The conclusion may be wrong if not all the hypotheses are met. For exam-
ple, the graph of f described in Figure 4.19 is not continuous at a, and no
tangent line can be parallel to the secant line. In Figure 4.20, the graph
of f is not continuous at b, and there exists no tangent line parallel to the
secant line. In Figure 4.21, the secant line is parallel to the x-axis, whereas
there exists no horizontal tangent. So the mean value theorem fails if f is
not continuous at all points of [a, b]. In Figure 4.22, f is not differentiable
at 0, whereas the secant line is horizontal, but at no point does there exist
a horizontal tangent.

• If c ∈ (a, b), then c− a ∈ (0, b− a), and therefore
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y

a b

f(a)= f(b)
(a, f(a))

(b, f(b))

there exists no c in (a, b)
such that f (c)=0

f(b)− f(a)
b−a

= 0, i.e. secant

line is parallel to x-axis

slope of the secant line is

Fig. 4.19. Necessity of the continuity of f at the endpoints.
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f (x) is constant on (a, b)
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b−a
depends on

the choice of f(b) which
may be at our disposal

Fig. 4.20. Necessity of the continuity of f at the endpoints.

O a

(a, f(a))
(b, f(b))

y

xb

Fig. 4.21. Continuity of f inside [a, b] is essential.

c− a = θ(b − a) or c = a+ θ(b − a),

where θ is some real number in the interval (0, 1). But then the conclusion
of the mean value theorem may be written as

f(b)− f(a)

b− a
= f ′(a+ θ(b − a)) for some θ ∈ (0, 1).
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(d, f(d))
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b

f(b)
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Oa b x
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y= |x|

a b

Fig. 4.22. Differentiability of f on (a, b) is essential.

Example 4.20. Consider f(x) = 1/x on [−1, 1]\{0}. Then
f(b)− f(a)

b− a
=

f(1)− f(−1)

1− (−1)
= 1 and f ′(c) = − 1

c2
.

On the other hand, there exists no c in (−1, 1)\{0} such that −1/c2 = 1.
Thus (4.3) has no solution. Does this contradict the mean value theorem by
chance? If not, what does this convey? •
Corollary 4.21. If f is differentiable on (a, b) such that f ′(x) = 0 on (a, b),
then f is constant on (a, b).

Proof. Let x1 and x2 be any two points in (a, b) such that

a < x1 < x2 < b.

Then f is differentiable on (x1, x2) and continuous on [x1, x2], and so by the
mean value theorem,

f(x2)− f(x1) = (x2 − x1)f
′(c) (4.4)

for some c ∈ (x1, x2). This relationship, because f ′(c) = 0, gives

f(x2) = f(x1),

which is true for arbitrary points x1 and x2 in (a, b). Thus, f is constant on
(a, b).

Example 4.22. Suppose that f : R → R is differentiable on R and satisfies
f(x+ y) = f(x) + f(y) for all x, y ∈ R. Show that f(x) = f ′(0) · x on R.
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Solution. Consider f(x + y) = f(x) + f(y). If we take x = 0 = y, we have
f(0) = 2f(0), i.e., f(0) = 0. Next,

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f(x) + f(h)− f(x)

h
= lim

h→0

f(h)− f(0)

h
= f ′(0),

so that f ′(x) = f ′(0). This gives f(x) = f ′(0)x. •
From Corollary 4.21, we can conclude that if f ′(x) exists for each x ∈ [a, b]

and if f ′(x) �= 0 for all x ∈ [a, b], then f is one-to-one on [a, b]. There are other
consequences of the mean value theorem.

Corollary 4.23 (First derivative test). Suppose that f is differentiable on
(a, b). Then we have the following:

(a) If f ′(x) > 0 on (a, b), then f is strictly increasing on (a, b).
(b) If f ′(x) < 0 on (a, b), then f is strictly decreasing on (a, b).
(c) If f ′(x) ≥ 0 on (a, b), then f is increasing on (a, b).
(d) If f ′(x) ≤ 0 on (a, b), then f is decreasing on (a, b).

Proof. Apply (4.4).

Using this corollary, we see that sinx ≤ x for all x ≥ 0. We now include a
few more examples to appreciate Rolle’s theorem and the mean value theorem
geometrically.

Example 4.24. For x ∈ (0, π/2), we have (see also Example 3.14)

cosx <
sinx

x
< 1.

In particular, by the squeeze rule,

lim
x→0+

sinx

x
= 1 and lim

x→0−
sinx

x
= 1.

Solution. Consider f(x) = sinx − x on [0, π/2]. Then f is continuous on
[0, π/2] and differentiable on (0, π/2) with

f ′(x) = cosx− 1 < 0 on (0, π/2),

so that f is decreasing on (0, π/2). Thus,

f(x) < f(0), i.e.,
sinx

x
< 1 on (0, π/2).

Similarly, if g(x) = tanx − x for x ∈ [0, π/2), then g′(x) = sec2 x − 1 > 0 on
(0, π/2), so that

g(x) > g(0) = 0, i.e., tanx > x or
sinx

x
> cosx on (0, π/2).

The inequality also holds on (−π/2, 0) because cosx and (sinx)/x are even
functions. •
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Example 4.25. Consider f(x) = x3 on [−1, 1]. Then

m =
f(b)− f(a)

b− a
=

f(1)− f(−1)

1− (−1)
= 1 and f ′(c) = 3c2.

The mean value theorem shows the existence of c ∈ (−1, 1) satisfying the
condition (4.3), i.e., f ′(c) = m. This gives 3c2 = 1, i.e., c = ±1/

√
3. It follows

that there are two values of c, namely c1 = 1/
√
3 and c2 = −1/

√
3, satisfying

the condition

f(1)− f(−1)

1− (−1)
= f ′(c).

Note that the tangent to the graph of f at (c1, f(c1)) and (c2, f(c2)) is parallel
to the chord joining (−1, f(−1)) and (1, f(1)); see Figure 4.23. •

–1
x1

y

y=x3

c1
c2

Fig. 4.23. The graph of f(x) = x3 on [−1, 1].

Rolle’s theorem and the Langrange mean value theorem together with the
following generalization of the mean value theorem are all logically equivalent
statements:

Theorem 4.26 (Generalized mean value theorem). If f, g : [a, b] → R

(a < b) are differentiable on (a, b) and continuous at a and b, then there exists
a point c ∈ (a, b) such that

f ′(c) · (g(b)− g(a)) = g′(c) · (f(b)− f(a)).

Proof. The proof follows from an application of Rolle’s theorem to

h(x) = f(x)(g(b)− g(a))− g(x)(f(b)− f(a)).
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Theorem 4.26 is also called Cauchy mean value theorem. It is worth noting
that the Lagrange mean value theorem is a special case of the Cauchy mean
value theorem for g(x) = x. In particular, if g′(x) �= 0 for x ∈ (a, b), then the
mean value theorem shows that g(b) − g(a) �= 0, and therefore the Cauchy
mean value theorem can be written in the form

f(b)− f(a)

g(b)− g(a)
=

f ′(c)
g′(c)

,

since the quotients make sense in this case. Among the important and im-
mediate consequences of these theorems are the following. The reader should
have no trouble in providing a detailed proof.

• Choosing g(x) = x in Theorem 4.26 recovers the classical mean value
theorem.

• If f ′(x) = g′(x) on an open interval, then f and g must differ by a constant
value on that interval.

At this point it would be appropriate to pose the following problems.

Problem 4.27. Are there any other applications of the mean value theorem?

Theorem 4.28. Suppose that f is differentiable on R such that |f ′(x)| ≤ λ <
1 for all x ∈ R. Then f(x) = x has a unique solution.

Proof. Suppose that there exist x and x′ such that f(x) = x and f(x′) = x′,
so that by the mean value theorem,

x− x′ = f ′(c)(x − x′)

for some c between x and x′. Since |f ′(c)| < 1, we must have x = x′. Thus,
the solution is unique.

To prove the existence of the solution, we begin with an arbitrary x0 and
consider xn = f(xn−1) for n ≥ 1. The mean value theorem then gives

xn+1 − xn = f(xn)− f(xn−1) = f ′(cn)(xn − xn−1),

so that
|xn+1 − xn| ≤ λ|xn − xn−1|.

By Theorem 2.57, {xn} converges to x, say. The continuity of f implies that
x = f(x).

4.2.3 L’Hôpital’s Rule: Another Form

Theorem 4.29 (L’Hôpital’s rule of 0/0 form). Let f and g be differen-
tiable on (a, δ] such that g′(x) �= 0 on (a, δ], and

lim
x→a+

f(x) = 0 = lim
x→a+

g(x). (4.5)
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Then

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)
g′(x)

,

provided the limit on the right exists.

Proof. We assume that

lim
x→a+

f ′(x)
g′(x)

= � for some � ∈ R.

By (4.5), both f and g will be continuous at a if we define f(a) = 0 = g(a).
It follows from the generalized mean value theorem that there exists a point
c ∈ (a, x) such that

f ′(c)
g′(c)

=
f(x)− f(a)

g(x)− g(a)
=

f(x)

g(x)
,

where x ∈ (a, δ), and c of course depends on x.
Now let x → a+. Since a < c < x, it follows that c → a+ too. Conse-

quently,

lim
x→a+

f(x)

g(x)

exists and has the value �. The theorem follows.

It is easy to formulate another variant of l’Hôpital’s rule (see
Theorem 3.55).

Theorem 4.30 (L’Hôpital’s rule of 0/0 form). Let f and g be differen-
tiable on (a, b) such that g′(x) �= 0 on (a, b), and

lim
x→b−

f(x) = 0 = lim
x→b−

g(x).

Then

lim
x→b−

f(x)

g(x)
= lim

x→b−
f ′(x)
g′(x)

,

provided the limit on the right exists.

Remark 4.31. (a) In the hypothesis of Theorem 4.29, a may be −∞, and in
the hypothesis of Theorem 4.30, b may be ∞.

(b) In the conclusion of Theorem 4.29, the limit � = limx→a+(f
′(x)/g′(x))

need not be finite. A similar observation holds for limx→b−(f ′(x)/g′(x))
in Theorem 4.30.

(c) There are many other forms of l’Hôpital’s rule. However, the forms stated
here are sufficient for most applications. •
Also, it is easy to derive the following form.
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Theorem 4.32 (L’Hôpital’s rule of ∞/∞ form). Let f and g be differ-
entiable on (a, b) such that g′(x) �= 0 on (a, b), and

lim
x→a+

f(x) = ∞ = lim
x→a+

g(x).

Then

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)
g′(x)

,

provided the limit on the right exists.

Proof. We leave the proof as a simple exercise.

Example 4.33. For x > 0, let f(x) = x1/x = exp((1/x) log x). Then f is
continuous on (0,∞). By l’Hôpital’s rule, we obtain

lim
x→∞

log x

x
= lim

x→∞
1/x

1
= 0,

and since the exponential function is continuous, we conclude that

lim
x→∞ f(x) = e0 = 1.

Thus,
lim
n→∞ f(n) = lim

n→∞n1/n = 1. •
4.2.4 Second-Derivative Test and Concavity

The second-derivative test introduced below can be used to determine whether
a value of c such that f ′(c) = 0 provides a local minimum or a local maximum
for f(x).

Theorem 4.34 (Second-derivative test for relative extrema). Let f be
a function defined in an open interval containing c such that f ′(c) = 0. Then
we have the following:

• If f ′′(c) > 0, then f(c) is a local minimum for f ,
• If f ′′(c) < 0, then f(c) is a local maximum for f ,
• If f ′′(c) = 0, then the test is inconclusive (a maximum or a minimum or
neither may occur).

Proof. Suppose that f is defined in a neighborhood of c such that

f ′(c) = 0 and f ′′(c) > 0.

Because (f ′)′(c) > 0, there exists a punctured neighborhood N of c (say
N = (c− δ, c) ∪ (c, c+ δ)) such that
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f ′(x)
x− c

=
f ′(x)− f ′(c)

x− c
> 0 for all x ∈ N.

That is ⎧
⎨

⎩

f ′(x) < 0 for c− δ < x < c,
f ′(x) = 0 for x = c,
f ′(x) > 0 for c < x < c+ δ.

It follows that f has a local minimum at c (see Figure 4.24).

xO

y

f (c)=0

c

f (x)< 0

f (x)< 0
f (x)> 0

f (x)> 0

xO

y

c

f (c) does not exist

Fig. 4.24. A relative minimum.

A similar argument (or apply the above arguments for −f) shows that if
f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c (see Figure 4.25).

O O

f (c)=0

a

y

b

f (x)< 0 f (x)< 0f (x)> 0

f 
(x

)>
0

y

f (c) does not exist

•

c x a bc x

Fig. 4.25. A relative maximum.

Definition 4.35 (Concavity and inflection point). We consider a curve
y = f(x). If the curve y = f(x) faces up on (a, b) (i.e., if all points of the
curve lie above any tangent to it on the interval), then we say that the curve
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is concave up (or equivalently convex downward). Similarly, we say that the
curve y = f(x) is concave down (or equivalently convex upward) on (a, b) if all
points of the curve lie below any tangent to it on the interval (see Figure 4.26).

A point on the graph of y = f(x) at which the concavity changes is a point
of inflection.

O xba

y

yT

x0

(x0, f(x0))

y= f(x)

y= f(x)

O x

y

a bx0

tangent line at
(x0, f(x0))

Fig. 4.26. Point of inflection at x0.

Example 4.36. Consider f(x) = 2x3 + 3x2 + 1. Then

f ′(x) = 6x(x+ 1), f ′′(x) = 6(2x+ 1),

so that x = 0 and x = −1 are the critical values of f . Since f(0) = 1 and
f(−1) = 2, (0, 1) and (−1, 2) are the critical points of f . Observe that

f ′′(0) = 6 > 0, f ′′(−1) = −6 < 0,

and so by the second-derivative test, (0, 1) is a point of local minimum and
(−1, 2) is a point of local maximum. Moreover,

{
f ′(x) > 0 for x ∈ (−∞,−1) ∪ (0,∞),
f ′(x) < 0 for x ∈ (−1, 0).

Finally, f ′′(x) > 0 for x > −1/2 and f ′′(x) < 0 for x < −1/2, and
f ′′(1/2) = 0. Note that the inflection points occur where the sign of f ′′(x)
changes. Thus, there is a point of inflection on the curve at x = −1/2, with
coordinates (−1/2, f(−1/2)) (see Figure 4.27). •

For instance, if f(x) = x2, then f ′′(x) = 2 > 0 on (−∞,∞), and so the
curve y = f(x) is concave up on (−∞,∞).

Theorem 4.37 (Second-derivative test for concavity). The graph of a
twice differentiable function y = f(x) is

(a) concave up on an interval I if f ′′(x) > 0 on I;
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Fig. 4.27. Local extremum behavior of f(x) = 2x3 + 3x2 + 1 at (−1, 2) and (0, 1).

(b) convex down on an interval I if f ′′(x) < 0 on I.

Proof. Assume that f ′′(x) > 0 on I = (a, b) and x0 ∈ (a, b) is an arbitrary
point. The equation of the tangent to the curve y = f(x) at (x0, f(x0)) is
given by

yT = f(x0) + f ′(x0)(x− x0),

so that
y − yT = f(x)− f(x0)− f ′(x0)(x− x0).

By the mean value theorem, the last equation takes the form

y − yT = (f ′(c)− f ′(x0))(x− x0),

where c is a point between x0 and x. Applying the mean value theorem for f ′

on the interval with endpoints c and x0 yields that

y − yT = f ′′(c1) (c− x0)(x − x0)︸ ︷︷ ︸,

where c1 is a point lying between c and x0. In either case (as shown in Fig-
ure 4.28), we see that the factor (c−x0)(x−x0) is positive. Consequently (see
Figure 4.26), {

y − yT > 0 ⇐⇒ f ′′(c1) > 0,
y − yT < 0 ⇐⇒ f ′′(c1) < 0,

and the result follows.

x0<c1<c<x x<c<c1<x0

x0 c1 c x x c c1 x0

Fig. 4.28. Sign of (c− x0)(x− x0).
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Theorem 4.38. Suppose that the graph of a continuous function y = f(x)
is such that f ′′(a) = 0 or f ′′(a) does not exist, and the derivative f ′′(x)
changes sign when passing through x = a. Then the point (a, f(a)) is a point
of inflection.

Proof. Obvious from the hypothesis.

For instance, we have the following:

(a) If f(x) = x1/3, then for x �= 0,

f ′(x) =
1

3
x−2/3 and f ′′(x) = −2

9
x−5/3 =

{
> 0 for x < 0,
< 0 for x > 0,

so that f ′′(x) does not exist at x = 0 and therefore y = x1/3 has a point
of inflection at x = 0.

(b) For the function f(x) = x4, x = 0 is not an inflection point although
f ′′(0) = 0. We observe that f ′′(x) = 12x2 does not change sign.

4.2.5 Questions and Exercises

Questions 4.39.

1. Does every continuous function on a closed and bounded interval [a, b]
attain global extrema?

2. Assume that f, g : [a, b] → R are continuous functions such that f(a) <
g(a) and f(b) > g(b). Does there exist a point c ∈ (a, b) such that f(c) =
g(c)?

3. Suppose that x = a is a point of discontinuity of a function f(x). Can
both f(a+) and f(a−) exist? If both limits exist, can f(a+) = f(a−) be
true?

4. Suppose that f ′ does not change sign. Can a maximum or a minimum
occur?

5. If f ′ changes its sign from positive to negative, can there be a maximum?
6. If f ′ changes its sign from negative to positive, can f have a minimum?
7. Suppose that f : (a, b) → R is continuous and has no local extrema on

(a, b). Must f be strictly monotone on (a, b)?
8. Suppose that f : [a, b] → [a, b] is continuous. Can there exist a point c in

[a, b] such that f(c) = c?
9. Must there exist real polynomials p and q such that

q(1) �= q(0) and
p(1)− p(0)

q(1)− q(0)
=

p′(c)
q′(c)

for every c ∈ (0, 1)?
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10. Suppose that f and g are C1 functions on (0, 1) such that limx→0 f(x) =
limx→0 g(x) = 0. Also, assume that g and g′ are nonvanishing on (0, 1)
such that limx→0(f(x)/g(x)) exists. What can be said about the existence
of the limit limx→0(f

′(x)/g′(x))?
11. Suppose that f : R → R is continuous and periodic (i.e., f(x+ ω) = f(x)

for some ω ∈ R� {0}). Does f attain both a maximum and a minimum?
12. In the intermediate value property (see Theorem 4.14), is the continuity

of f at each point of [a, b] essential?
13. Is there a number c between 0 and x such that

(1 + x)n = 1 + nx(1 + c)n−1 (n ∈ N)?

If so, does it imply

lim
x→0

(1 + x)n − 1

x
= 1?

14. Suppose that f(x) = xn+1 and g(x) = xn (n ∈ N) on [a, b] in the gener-
alized mean value theorem (see Theorem 4.26). What can be said about
the quotient

n(bn+1 − an+1)

(n+ 1)(bn − an)
?

15. Suppose p(x) = a0 + a1x+ · · ·+ anx
n (an �= 0) such that

a0 +
a1
2

+ · · ·+ an
n+ 1

= 0.

Does there exist a point c ∈ (0, 1) such that p(c) = 0?
16. Let f : R → R be infinitely differentiable such that f(1) = 0, and

f (k)(0) = 0 for k = 0, 1, . . . , n. Must f (n+1)(c) = 0 for some c in (0, 1)?
17. Suppose that f ′′(x) ≥ 0 on [a, b]. Must

f

(
x+ y

2

)
≤ f(x) + f(y)

2
for all x, y ∈ [a, b]?

18. Suppose that f is differentiable on R such that f ′(x) = cf(x) for all x ∈ R

and for some real constant c. What can be said about f?
19. Suppose that f is differentiable for each x > 0 and limx→∞ f ′(x) = 0.

Must limx→∞(f(x+ 1)− f(x)) = 0?
20. Suppose that f is twice differentiable on [a, b] such that there exists a

point c ∈ (a, b) with f(a) = f(b) = f(c). Can there exist a point ζ ∈ (a, b)
such that f ′′(ζ) = 0?

21. Suppose that f : [0, 1] → R is a function such that f (n)(x) exists on [0, 1]
for n = 1, 2, 3 and f(0) = f ′(1) = f(1) = f ′(1) = 0. Can f ′′(x) have a
zero in (a, b)?
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Exercises 4.40.

1. Let f(x) = x5 − 5x, x ∈ R. Determine the points of local maximum and
local minimum. Does the function have a global maximum or minimum?

2. Draw the graphs of f(x) = |x + 1| and g(x) = |x − 1| on [−3, 3]. Also,
determine the critical values of f and g.

3. Prove that among all rectangles of a given perimeter, the square has the
greatest area.

4. Suppose that

f(x) =

⎧
⎨

⎩

1

x
for 0 < |x| ≤ 1,

0 for x = 0.

Then f(−1) = 1 and f(1) = 1. Is there a number c in (−1, 1) such that
f ′(c) = 1/3? If so, prove it. If not, explain why it does not contradict the
intermediate value property.

5. Consider the following functions:
(a) f(x) = x3 − 3x+ 1 for x ∈ [−1, 1].
(b) f(x) = 1− 1/x for 1 ≤ x ≤ 9/4.
Verify in each case whether the mean value theorem is applicable. If yes,
determine c in (−1, 1) such that the tangent to the graph of f is parallel
to the chord joining (−1, f(−1)) and (1, f(1)).

6. Suppose that g(x) = f(x) + f(1 − x) and f ′′(x) > 0 on [0, 1]. Show that
g is decreasing on (0, 1/2) and increasing on (1/2, 1).

7. Suppose that f(x) = (x − 1)(x − 3) on [1, 3]. Find a suitable point c for
Rolle’s theorem, i.e., such that f ′(c) = 0.

8. Suppose that f and g are differentiable on (α, β) such that [a, b] ⊂ (α, β),
a < b, and f(a) = f(b) = 0. Show that there exists a point c ∈ (a, b) such
that f ′(c) + f(c)g′(c) = 0.

9. Consider f(x) =
√
x on [100, 102]. Using the mean value theorem, show

that
111

11
<

√
102 <

101

10
.

Apply the same principle to the interval [100, 105] and compute an esti-
mate for

√
105.

10. Suppose that f is differentiable on (−1, 3) and f(0) = 0, f(1) = 2 = f(2).
Show that there exists a point c ∈ (0, 2) such that f ′(c) = 1, and c′ ∈ (0, 1)
such that f ′(c′) = 2.

11. Use the mean value theorem to prove that
(a) | cosx− cos y| ≤ |x− y| for all x, y ∈ R.
(b) | sinx− sin y| ≤ |x− y| for all x, y ∈ R.

12. Suppose that f is differentiable on R such that f ′(x) ∈ [1, 2] for all x ∈ R

and f(0) = 0. Must f(x) ∈ [x, 2x] for all x ≥ 0?
13. Show that sinx = x3−x has at least one solution in the interval (π/4, π/2).
14. Using Rolle’s theorem with f(x) = (x−1) sinx on [0, 1], show that tanx+

x− 1 = 0 has at least one solution x ∈ (0, 1).
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15. Prove or disprove the following:
(a) For any λ ∈ R, the equation x3 − 3x2 + λ = 0 has two distinct zeros

on [0, 1].
(b) For any λ ∈ R, the equation x3 +2x+λ = 0 has exactly one real root

in R.
(c) The equation 3x3 + sinx− 1 = 0 has a root in the interval [−1, 1].
(d) The equation 2 sin2 x− 2x− 1 = 0 has a root in R.
(e) The equation cotx = x has a solution in the interval (0, π/2).

16. Use the mean value theorem to prove l’Hôpital’s rule (see Theorem 3.55).
17. Examine the critical values, inflection points, and local extrema of f(x) =

3x5 − 5x3 + 1.
18. Suppose that f is differentiable on [a, b] such that f ′(a) �= f ′(b) and λ is

a real number between f ′(a) and f ′(b). Prove that there exists a point
c ∈ (a, b) such that f ′(c) = λ?



5

Series: Convergence and Divergence

The main goal of this chapter is to examine the theory and applications of
infinite sums, which are known as infinite series. In Section 5.1, we introduce
the concept of convergent infinite series, and discuss geometric series, which
are among the simplest infinite series. We also discuss general properties of
convergent infinite series and applications of geometric series. In Section 5.2,
we examine various tests for convergence so that we can determine whether
a given series converges or diverges without evaluating the limit of its par-
tial sums. Our particular emphasis will be on divergence tests, and series of
nonnegative numbers, and harmonic p-series. In Section 5.3, we deal with se-
ries that contain both positive and negative terms and discuss the problem
of determining when such a series is convergent. In addition, we look at what
can happen if we rearrange the terms of such a convergent series. We ask,
Does the new series obtained by rearrangement still converge? A remarkable
result of Riemann on conditionally convergent series answers this question in
a more general form. Finally, we also deal with Dirichlet’s test and a number
of consequences of it.

5.1 Infinite Series of Real Numbers

We know how to add finitely many numbers. Now we are concerned with
examining the existence and meaning of the value of the sum of the terms of
an infinite sequence of real numbers, {an}n≥1. The formal expression

a1 + a2 + a3 + a4 + · · · ,
denoted by

∞∑

k=1

ak,

is called an infinite series (or simply a series), with ak the kth term of the
series. We shall be able to “add” infinitely many numbers, not by usual ad-
dition, but rather by a method of finding a limit. Thus, we need to give a
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precise meaning to the notion of infinite sum. For instance, if ak = 1/3k for
k ≥ 0, then it is not hard to see that the sum of the first n terms is given by

Sn = 1 +
1

3
+

1

32
+ · · ·+ 1

3n−1
=

1− (1/3)n

1− 1/3
=

3

2

(
1− 1

3n

)
.

Since 1/3n → 0 as n → ∞, we have Sn → 3/2 as n → ∞, and it seems
reasonable and sensible to write

1 +
1

3
+

1

32
+ · · ·+ 1

3n−1
+ · · · = 3

2
.

We use this approach to define a convergent infinite series. Thus, to study the
properties of an infinite series, it is natural to examine the convergence of the
sequence of “partial sums” {Sn}n≥1 defined by

Sn =

n∑

k=1

ak, n = 1, 2, 3, . . . .

Here the finite sum Sn is called the nth partial sum of the series
∑∞

k=1 ak.
Motivated by the above example, we ask, Is it possible to associate a numerical
value to the infinite sum

∑∞
k=1 ak? If so, we would expect the sequence of the

partial sums {Sn}n≥1 to approach that value. It is customary to make this
idea precise in the following form, which defines the behavior of an infinite
series in terms of its sequence of partial sums.

Definition 5.1 (Infinite series). The series
∑∞

k=1 ak is said to be conver-
gent, or to converge to S, if the sequence of partial sums {Sn}n≥1, Sn =∑n

k=1 ak, converges to S. In this case, we say that the series converges to S,
and we write ∞∑

k=1

ak = lim
n→∞Sn = S.

Here S is referred to as the sum of the series
∑∞

k=1 ak. If the sequence {Sn}
does not converge, then we say that the series

∑∞
k=1 ak diverges and has no

sum. In particular, if limn→∞ Sn = ∞ or −∞, we say that the series diverges
to ∞ or −∞, and write

∞∑

k=1

ak = ∞ or

∞∑

k=1

ak = −∞.

A divergent series that does not diverge to ±∞ is said to oscillate or be oscil-
latory.

As an example of the latter case, the series
∑∞

k=1 k diverges, because

Sn = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
→ ∞ as n → ∞.



5.1 Infinite Series of Real Numbers 149

Remark 5.2. 1. Suppose that we are given a series
∑∞

k=1 ak with ak = 0
for k ≥ N + 1. Then Sk = SN for all k ≥ N , and so {Sn}∞n=1 converges

to SN =
∑N

k=1 ak. In this case, the infinite series is actually a finite sum.
Thus, an infinite series can be viewed as a generalization of a finite sum.

2. We remark that the statement “
∑∞

k=1 ak converges” refers to the behav-
ior of the sequence of its partial sums {Sn}n≥1 and does not directly say
anything about the sequence {an}n≥1 .

3. We will use the symbol
∑∞

k=1 ak regardless of whether this series converges
or diverges. However, if the sequence of partial sums {Sn} converges, then
the symbol

∑∞
k=1 ak plays a dual role: it represents both the series and its

sum. If the series neither converges to a finite value nor diverges to ∞ or
−∞, then the symbol

∑∞
k=1 ak continues to represent the infinite series,

but it does not represent an (extended) real number.
4. The convergence or divergence of a series is independent of whether the

summation index begins with k = 1 or with k = m, for some integer m.
Thus, altering a finite number of terms of a series in any fashion whatso-
ever has no effect on the convergence of the original series, though it will
generally affect the sum if the series converges.

5. If a series is given in the form
∑∞

k=m ak, then the sequence {Sn}∞n=m of
partial sums is defined by

Sn =

n∑

k=1

am+k−1 or sometimes even by Sn =

n∑

k=m

ak.

We note that in the latter form, we have not used the first m − 1 terms
of the series to denote Sn. In either case, the limits of these two sequences
will be the same if the series converges.

6. We see that to each series there corresponds a sequence, whose limit, if it
exists, is the sum of the series. However, for a given sequence {Sn}n≥1 with
Sn → S we can associate a series

∑∞
k=1 ak with sum exactly S. For a proof,

we simply set a1 = S1 and an = Sn − Sn−1, so that Sn =
∑n

k=1 ak. Thus,
the sequences {an} and {Sn} determine each other uniquely. •
In Chapter 2, we considered some sequences that were indeed sequences of

partial sums of important series. However, a general problem in the study of
series is to determine whether a given series is convergent and in some cases to
evaluate the sum of the series. We begin our discussion with geometric series.

5.1.1 Geometric Series

A geometric series is an infinite series in which the ratio of successive terms
in the series is constant. If this constant ratio is r, then the series has the form

∞∑

k=0

ark = a+ ar + ar2 + ar3 + · · ·+ arn + · · · .
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We note that the convergence is obvious if a = 0. So throughout the discussion
we assume that a �= 0. For instance, ordinary division leads to

1

3
= 0.3333 . . . =

3

10
+

3

102
+

3

103
+ · · · ,

which is an example of a geometric series with a = 3/10 and r = 1/10.
Geometric series occur in many applications, most interestingly in relation
to series of functions (e.g., power series, Fourier series, orthogonal series).
Geometric series also arise when one wishes to compute the total distance
vertically traveled by a ball that is dropped from a height of a feet, assuming
that each time the ball strikes the ground after falling a distance a it rebounds
a distance ar. The total up-and-down distance the ball travels is

a+ 2ar + 2ar2 + 2ar3 + · · ·
(see Figure 5.1).

a

ar

ar2

ar3

O x

y

Fig. 5.1. Example of a geometric series.

In the following theorem we discuss this problem for geometric series,
which are perhaps the most important type of convergent series.

Theorem 5.3 (Geometric series). The geometric series
∑∞

k=0 ar
k with

a �= 0 converges if |r| < 1, with sum

∞∑

k=0

ark =
a

1− r
, (5.1)

and diverges if |r| ≥ 1.

Proof. Suppose r �= 1. Then the nth partial sum Sn is given by

Sn = a[1 + r + r2 + · · ·+ rn−1],

so that
rSn = a[r + r2 + r3 + · · ·+ rn].
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By subtracting rSn from Sn, we find that

(1− r)Sn = a(1− rn), i.e., Sn =
a(1− rn)

1− r
(r �= 1).

Now we take the limit as n → ∞. If |r| < 1, Theorem 2.34 tells us that rn → 0
as n → ∞, and so we have

lim
n→∞Sn =

a

1− r
,

which establishes the formula (5.1).
The divergence part can be deduced immediately from a divergence test

(see Corollary 5.19) that appears in Section 5.2. However, it is appropriate to
present an independent direct proof here.

If r = 1, the divergence of the geometric series is clear, because for r = 1,
we have Sn = an. If r = −1, we note that the nth partial sum is

Sn =

{
a if n is odd,
0 if n is even.

Because the sequence {Sn} has no limit, the series
∑

a(−1)k must diverge.
In this case, {Sn} oscillates finitely between a and 0.

Finally, if |r| > 1, then |r|n, and so {Sn} has no limit. It follows that the
series diverges if |r| > 1. Moreover,

∞∑

k=0

ark =

{∞ if a > 0 and r > 1,
−∞ if a < 0 and r > 1.

For r < −1,
∑

ark oscillates infinitely and {Sn} alternates in sign.

Some applications of Theorem 5.3 follow:

1.

∞∑

k=0

(−1)k3krk =
1

1 + 3r
for all r with −1/3 < r < 1/3, because the series

is exactly (5.1) but with −3r in place of r, and with a = 1. Similarly, we
see that

∞∑

k=0

5k(r − 1)k =
1

1− 5(r − 1)
=

1

6− 5r
(|r − 1| < 1/5).

2. The series
∑∞

k=2

(− 1
5

)k
converges with sum

S =
a

1− r
=

1/25

1− (−1/5)
=

1

30

(since a = 1/25 and r = −1/5).
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1

1 20

1 / 2

1 / 22

1 / 23

1 / 24
1 / 25

Fig. 5.2. Geometric proof for
∑∞

k=0
1
2k

= 2 via length.

0 1

1

23
2

7
4

15
8

1
2

1
22

1
23

Fig. 5.3. Geometric proof for
∑∞

k=0
1
2k

= 2 via area.

3. Set a = 1 and r = 1/2, so that Sn = 2(1− 1/2n) → 2 = S as n → ∞. We
conclude that the series

∑∞
k=0

1
2k

converges and
∑∞

k=0
1
2k

= 2. This fact
can be seen geometrically; see Figure 5.2.

4. The series
∑∞

k=0 (3/2)
k
clearly diverges.

Geometric proof of Theorem 5.3. It suffices to prove the theorem for a = 1.
We begin with a = 1, and r = 1/2 to show geometrically that

1 +
1

2
+

1

22
+

1

23
+ · · · = 2.

See Figures 5.2 and 5.3, which is self-explanatory. Note that in Figure 5.3,
the distance from 0 to 2 can be split into infinite sequences of lengths
1, 1/2, 1/22, . . ., and so it is reasonable to write as above at the first instance
itself. For 0 < x < 1, we refer to Figure 5.4, and the proof is clear. We remark
that for this geometric proof one is not really required to know the sum in
advance.

5.1.2 Decimal Representation of Real Numbers

By a (positive) infinite decimal, we mean

0.a1a2a3 . . . = lim
n→∞

n∑

k=1

ak
10k

,

provided the limit exists, where each ak (k ≥ 1) is an integer such that
0 ≤ ak ≤ 9. Actually, we shall see in a moment that the limit always exists.
Geometric series provide another interpretation of the decimal representation
of rational numbers. For example, consider
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1

0 1/(1−x)1
x / (1−x)

1−xx

x2

x1

x3

x2/ (1−x)

x(1−x)

Fig. 5.4. Geometric proof for
∑∞

k=0 x
k = 1/(1− x).

1

3
= 0.3333 · · · := 0.3̄.

Note that another way of interpreting the symbol 0.333 . . . is by the infinite
series

3

10
+

3

102
+

3

103
+ · · · ,

which is a geometric series with the first term a = 3/10 and common ratio
r = 1/10. From our earlier discussion, we see that this series converges to

3/10

1− 1/10
=

1

3
.

We shall now show that every real number has at least one decimal expansion,
and conversely, every decimal represents a real number. For our discussion,
we consider the series

a0 +

∞∑

k=1

ak
10k

, (5.2)

where a0 ∈ Z and each ak (k ≥ 1) is an integer with 0 ≤ ak ≤ 9. We need
first to show that the series converges. To do this, we introduce

Sn = a0 +
n∑

k=1

ak
10k

.

Then {Sn} is clearly an increasing sequence of real numbers. Further, since

n∑

k=1

ak
10k

≤ 9

n∑

k=1

1

10k
< 9

∞∑

k=1

1

10k
= 9

(
1/10

1− 1/10

)
= 1,

it follows that {Sn} is bounded above by a0 + 1. Consequently, {Sn}, and
hence the series (5.2) converges to a real number x with a0 ≤ x ≤ 1 + a0.
Thus, we have the following theorem.
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Theorem 5.4. If {an}n≥1 is a sequence of integers with 0 ≤ an ≤ 9 for all
n ≥ 1, then

∑∞
k=0 ak10

−k converges to a real number x with a0 ≤ x ≤ a0 +1.

The series (5.2) may be denoted by

a = a0.a1a2a3 . . . ,

and we call the series as a decimal expansion of the number a. Here an is often
called the nth digit of the decimal expansion. Note that some numbers have
more than one decimal expansion. For example 0.999 . . . represents

lim
n→∞Sn, where Sn =

9

10
+

9

102
+ · · ·+ 9

10n
→ 1.

Consequently, 0.9999 . . . (all 9’s) and 1.000 . . . (all 0’s) are two different dec-
imal expansions that represent the same real number 1. Similarly, 0.5000 . . .
and 0.49999 . . . are two different decimal expansions of 1/2.

The converse of Theorem 5.4 also holds. Recall that for every x ∈ R there
exists an integer a such that a ≤ x ≤ a+ 1. Consequently, it suffices to prove
the following.

Theorem 5.5. For each x with 0 ≤ x ≤ 1, there is a decimal expansion
converging to x. That is, there is a sequence {an}n≥1 of integers such that
0 ≤ an ≤ 9 for all n and

∑∞
k=1 ak10

−k converges to x.

Proof. Suppose that x ∈ [0, 1]. Divide [0, 1] into ten equal subintervals. Then
x lies in a subinterval [a1

10
,
a1 + 1

10

]

for some integer a1 in {0, 1, 2, . . . , 9}, and so 0 ≤ (x− a1/10)10 = y ≤ 1.
Again if we subdivide [0, 1] into ten subintervals, we see that

a2
10

≤ y =
(
x− a1

10

)
10 ≤ a2 + 1

10
, i.e.,

a1
10

+
a2
102

≤ x ≤ a1
10

+
a2 + 1

102
,

for some a2 in {0, 1, 2, . . . , 9}. Continuing the above process, we see that

a1
10

+
a2
102

+ · · ·+ an
10n

≤ x ≤ a1
10

+
a2
102

+ · · ·+ an
10n

+
1

10n

for some integers a1, a2, . . . , an in {0, 1, 2, . . . , 9}. The last inequality is
equivalent to

x− 1

10n
≤ Sn ≤ x, Sn =

n∑

k=1

ak
10k

.

Thus, by the squeeze/sandwich rule, it follows that limn→∞ Sn = x.
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Remark 5.6. 1. If x ≥ 1 and a ∈ N is such that a ≤ x < a+ 1, then x − a
belongs to [0, 1), and so

x− a = 0.a1a2 . . . an, or x = a.a1a2a3 . . . ,

where the decimal expansion of x− a is as in Theorem 5.5. We may treat
negative numbers similarly.

2. If x =
∑∞

k=1
ak

10k , where the ak are given by Theorem 5.5, then it is a
simple exercise to see that an = 0 for all n whenever x = 0, and an = 9
for all n whenever x = 1. •

5.1.3 The Irrationality of e

We defined e in Example 2.33 as the limit of
(
1 + 1

n

)n

. Now we have the

following theorem.

Theorem 5.7. e =
∞∑

k=0

1

k!
.

Proof. Set Sn =
∑n

k=0
1
k! . We have shown in Example 2.33 that

2 < an :=
(
1 +

1

n

)n

< Sn < 3,

and {Sn}, being an increasing bounded sequence, converges. Thus, we have

lim
n→∞ an ≤ lim

n→∞Sn, i.e., e ≤ lim
n→∞Sn. (5.3)

Moreover, for n ≥ m,

an ≥ 1 +

m∑

k=1

(
n

k

)
1

nk

= 1 + 1 +
1

2!

(
1− 1

n

)
+ · · ·+ 1

m!

(
1− 1

n

)
· · ·

(
1− m− 1

n

)
.

Now letting n → ∞, keeping m fixed, we obtain e ≥ Sm. Now again, allowing
m → ∞ in this inequality, we finally get

e ≥ lim
m→∞Sm. (5.4)

The desired conclusion follows from (5.3) and (5.4).
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Corollary 5.8. e is irrational.

Proof. Suppose, for a contradiction, that e is rational. Then e = p/q, where
p and q are positive integers. Choose n such that n > max{q, 3}. With Sn as
above, we see that n!e and n!Sn are clearly integers, and so n!(e−Sn) is again
a positive integer. Now

e− Sn =
1

(n+ 1)!
+

1

(n+ 2)!
+ · · · ,

so that

n!(e− Sn) =
1

n+ 1

[
1 +

1

n+ 2
+

1

(n+ 2)(n+ 3)
+ · · ·

]

<
1

n+ 1

[
1 +

1

n+ 1
+

1

(n+ 1)2
+ · · ·

]

=
1

n+ 1

[ 1

1− (1/(n+ 1))

]
=

1

n
,

and thus by the last inequality, it follows that

0 < n!(e− Sn) < 1/n,

implying the existence of an integer in the interval (0, 1), a contradiction.

5.1.4 Telescoping Series

Geometric series (as in the above examples) are easy to deal with because we
can find a closed-form expression for the nth partial sum Sn of the given series
and hence are able to find its sum. Often it is difficult or even impossible to
find a simple formula for Sn. In normal circumstances, on the other hand,
it is not hard to determine whether a given series converges. Consequently,
there is a need to develop efficient techniques for determining whether a given
series is convergent. Before we proceed to develop them, it might be good
motivation to mention another series for which we can find a formula for Sn

explicitly.
A series is called a telescoping series if there is internal cancellation in the

partial sums. For instance, for a sequence of real numbers {an}, the series

∞∑

k=1

(ak+1 − ak)

is a telescoping series. We now illustrate this concept by the following simple
examples:

1. Consider the series
∑∞

k=1 log(1 + 1/k). The nth partial sum of the given
series can be represented as
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Sn =

n∑

k=1

(log(k + 1)− log k)

= (log 2− log 1) + (log 3− log 2) + · · ·+ (log(n+ 1)− logn)

= log(n+ 1).

Thus, the sequence of partial sums {log(n+ 1)}n≥1 is unbounded, and
hence the given series is not convergent. Note that the kth term ak =
log((k + 1)/k) converges to log 1 = 0 as k → ∞.

2. Consider the series ∞∑

k=1

1

k2 + k
.

We can easily see that the series converges with sum 1. Indeed, we find
that

1

k2 + k
=

1

k
− 1

k + 1
and Sn = 1− 1

n+ 1
.

Thus, {Sn} converges to 1 as n → ∞, and hence the given series converges
with sum S = 1. Again, we note that the kth term of the series converges
to 0 as k → ∞. Also, we have

1

k
− 1

k + 1
=

1

k(k + 1)
<

1

k2
<

2

k(k + 1)
= 2

(1

k
− 1

k + 1

)
,

and so

1− 1

n+ 1
≤

n∑

k=1

1

k2
≤ 2

(
1− 1

n+ 1

)
,

showing that
∑∞

k=1(1/k
2) converges and

1 ≤
∞∑

k=1

1

k2
≤ 2.

The method of proof discussed here may be used to show that

2 <

∞∑

k=0

1

k!
< 3. (5.5)

Indeed, for k ≥ 1, we have

k

(k + 1)!
=

k + 1− 1

(k + 1)!
=

1

k!
− 1

(k + 1)!
,

so that

Tn =

n∑

k=1

k

(k + 1)!
= 1− 1

(n+ 1)!
→ 1 as n → ∞, i.e.,

∞∑

k=1

k

(k + 1)!
= 1.
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We also note that for k ≥ 1,

k + 1

(k + 1)!
=

1

k!
>

k

(k + 1)!
; i.e.,

∞∑

k=1

1

k!
>

∞∑

k=1

k

(k + 1)!
= 1.

Also,

∞∑

k=1

1

k!
= 1 +

∞∑

k=2

1

k!
< 1 +

∞∑

k=2

k − 1

k!
= 1 +

∞∑

k=1

k

(k + 1)!
= 2,

and therefore, by combining the last two inequalities, we obtain (5.5). Con-
sequently, the value of the irrational number e lies between 2 and 3.

3. Finally, consider the series

∞∑

k=1

3

(k + a)(k + a+ 3)
,

3

(k + a)(k + a+ 3)
=

1

k + a
− 1

k + a+ 3
,

where a > −1 is a fixed real number. It is then a simple exercise to see
that

Sn =
n∑

k=1

3

(k + a)(k + a+ 3)

=
1

1 + a
+

1

2 + a
+

1

3 + a
− 1

n+ a+ 1
− 1

n+ a+ 2
− 1

n+ a+ 3
,

which clearly shows that {Sn} converges with sum

∞∑

k=1

3

(k + a)(k + a+ 3)
=

1

1 + a
+

1

2 + a
+

1

3 + a
.

In particular, for a = 0, this gives

∞∑

k=1

1

k2 + 3k
=

1

3

(
1 +

1

2
+

1

3

)
=

11

18
.

The last three examples above fall under the following general category (see
also Exercise 5.17(2)).

Theorem 5.9 (Telescoping series). Suppose that {ak}k≥1 is a convergent
sequence with limit A. Then we have

(a)
∑∞

k=1(ak − ak+1) converges with sum a1 −A.
(b)

∑∞
k=1(ak − ak+2) = a1 + a2 − 2A.

Proof. The proof follows from observing that

n∑

k=1

(ak − ak+1) = a1 − an+1 and
n∑

k=1

(ak − ak+2) = a1 + a2 − an+1 − an+2

and then using the definitions of convergence of series and sequence,
respectively.
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5.1.5 Operations and Convergence Criteria in Series

Often we will be concerned with general properties of a series rather than its
sum. Therefore, whenever the starting term of a series is not important, we
may simply write

∑
ak rather than

∑∞
k=m ak. Most basic statements about

series can be reinterpreted as statements about sequences, by considering se-
ries in terms of the corresponding sequences of partial sums. For example, by
the uniqueness property and the linearity rule for sequences in Theorem 2.8,
we easily obtain the basic properties of series that convergent series can be
added, subtracted, and multiplied by constants.

Theorem 5.10 (Uniqueness of sum and linearity of infinite series).
The sum of a convergent series is unique. Moreover, if

∑
ak and

∑
bk are

two convergent series with sums A and B, respectively, then for any pair of
constants α and β, the series

∑
(αak+βbk) also converges with sum αA+βB;

that is, ∑
(αak + βbk) = α

∑
ak + β

∑
bk = αA+ βB.

For example, by Theorem 5.10, we now conclude that

∞∑

k=1

[ 3

k2 + 3k
− 5

3k+1

]
= 3

∞∑

k=1

1

k2 + 3k
− 5

3

∞∑

k=1

1

3k
= 3

(11
18

)
− 5

3

(1
2

)
= 1.

Remark 5.11. Suppose that ak = k and bk = −k. Then
∑

ak and
∑

bk both
diverge. But

∑
(ak + bk) converges to 0. •

On the other hand, Theorem 5.10 also provides a useful result about a
series of the form

∑
(αak + βbk).

Theorem 5.12. If either
∑

ak or
∑

bk diverges and the other converges, then
the series

∑
(ak + bk) must diverge.

Proof. Assume that
∑

ak diverges and
∑

bk converges. Suppose to the con-
trary that the series

∑
(ak + bk) converges. Then by the linearity property,

the series ∑
[(ak + bk)− bk] =

∑
ak

must converge, contradicting the hypothesis that
∑

ak diverges. It follows
that the series

∑
(ak + bk) diverges.

For example, by Theorem 5.12, each of the series

∞∑

k=1

[ 1

k2 + 3k
+ (−1)k

]
,

∞∑

k=1

[ 1

k2 + k
− (−1)k

]
and

∞∑

k=1

[ 1

k2 + k
− 1

k

]

diverges, because
∑∞

k=1(−1)k and
∑∞

k=1
1
k diverge.



160 5 Series: Convergence and Divergence

We recall that a sequence is a succession of terms, whereas a series is a
sum of such terms, and so these two concepts have very different properties.
For example, a sequence of terms may converge, but the series of the same
terms may diverge:

• Both {1− 1/n} and {1 + 1/3n} converge to 1.
• Both

∑∞
k=1(1− 1/k) and

∑∞
k=1

(
1 + 1/3k

)
diverge.

How about the converse? That is, if a series converges, must the sequence of
terms of the series converge?

The following test for convergence is an immediate consequence of Cauchy’s
convergence criterion for sequences (see Theorem 2.55).

Theorem 5.13 (Cauchy’s convergence criterion for series). A series∑∞
k=1 ak is convergent if and only if the sequence of partial sums is a Cauchy

sequence, i.e., given ε > 0 there exists an integer N such that

|Sm − Sn| =
∣∣∣∣∣

m∑

k=1

ak −
n∑

k=1

ak

∣∣∣∣∣ = |an+1 + · · ·+ am| < ε if m > n ≥ N ,

or equivalently,

|Sn+p − Sn| =
∣∣∣an+1 + an+2 + · · ·+ an+p

∣∣∣ < ε if n ≥ N and p > 0.

In particular, from Theorem 5.13, we conclude the following: if a series∑∞
k=1 ak is convergent, then

S2n − Sn = an+1 + an+2 + · · ·+ a2n → 0 as n → ∞.

In order to apply the last situation, we consider the harmonic series

∞∑

k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+ · · · ,

which arises in connection with overtones produced by a vibrating string. The
fact that the harmonic series is divergent can be seen in a number of ways (see
also Remark 5.25), for example, by proving that the sequence of partial sums
{Sn} is either unbounded or is not Cauchy. Indeed, with Sn =

∑n
k=1(1/k),

we have

S2n − Sn =
n∑

k=1

1

n+ k
> n

( 1

n+ n

)
=

1

2
,

showing that {Sn} is not Cauchy (a fact that was verified in Section 2.1) and
hence is not convergent.
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5.1.6 Absolutely and Conditionally Convergent Series

Given a series
∑

ak, we may form a new series
∑ |ak|. If this new series is

convergent, then we say that the original series
∑

ak is absolutely convergent.
If a series is convergent but not absolutely convergent, then it is said to be
conditionally convergent. Now, because

|an+1 + an+2 + · · ·+ an+p| ≤ |an+1|+|an+2|+· · ·+|an+p| if n ≥ N and p > 0,

the Cauchy convergence criterion (Theorem 5.13) gives the following theorem,
which explains the importance of absolutely convergent series.

Theorem 5.14 (The absolute convergence test). An absolutely conver-
gent series is convergent.

For an alternative proof of Theorem 5.14, we refer to Exercise 5.43(1).
Thus, one way to determine whether a general series converges is to determine
whether the corresponding series of absolute values is convergent. But then
the problem of whether a series converges absolutely is simply the problem of
whether a series of nonnegative terms converges. Convergence of such series
will be discussed in detail in Section 5.2.

Example 5.15. The converse of Theorem 5.14 is not true, as we see below
from the alternating harmonic series

∞∑

k=1

(−1)k−1

k
.

This is an example of a conditionally convergent series. First, we note that
the given series of absolute values is the harmonic series, which is divergent.
Next, we let

Sn =
n∑

k=1

(−1)k−1

k
,

the nth partial sum of the alternating harmonic series.

Method 1:We calculate the first few terms of Sn and plot them on a sequence
diagram:

S1 = 1, S3 =
1

2
+

1

3
=

5

6
, S5 =

7

12
+

1

5
=

47

60
, . . .

and

S2 =
1

2
, S4 =

5

6
− 1

4
=

7

12
, S6 =

47

60
− 1

6
=

37

60
, . . . .

Note that S2n−1 appears to be decreasing with all terms positive, and also
S2n appears to be increasing with all terms positive; see Figure 5.5. Thus, it
appears that Sn converges. To prove this fact, we write the even partial sums
{S2n} in two different ways:
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S

S2n for large n S2n−1 for large n

S2 = 1
2

37
60

S6 = S1 = 17
12

S4 = S3 =
5
6

S5 =
47
60

S7 = 319
420

n

1

Sn

O

1
2

1 2 3 4 5 6 7 8 9

S= ln 2

Fig. 5.5. Convergence of the alternating harmonic series.

S2n =
(
1− 1

2

)
+

(1
3
− 1

4

)
+ · · ·+

( 1

2n− 1
− 1

2n

)

= 1−
(1
2
− 1

3

)
−

(1
4
− 1

5

)
− · · · −

( 1

2n− 2
− 1

2n− 1

)
− 1

2n
.

This shows that {S2n} is increasing and bounded above by 1. Hence {S2n} is
convergent to a limit, by BMCT. Further, because

S2n = S2n−1 − 1

2n
,

it follows that {S2n−1} is also convergent to the same limit. Consequently,
{Sn} is convergent. Later we shall use the same method to prove the alter-
nating series test (Theorem 5.44).

Method 2: We shall now use Cauchy’s convergence criterion. To apply this,
we compute

Sn+p − Sn = (−1)n
[ 1

n+ 1
− 1

n+ 2
+ · · ·+ (−1)p−1

n+ p

]
=: (−1)nTn,p.

We shall first show that

0 < Tn,p <
1

n+ 1
. (5.6)

Indeed, if p is even, then Tn,p may be written in two different ways:

Tn,p =
( 1

n+ 1
− 1

n+ 2

)
+

( 1

n+ 3
− 1

n+ 4

)
+ · · ·+

( 1

n+ p− 1
− 1

n+ p

)

=
1

n+ 1
−

( 1

n+ 2
− 1

n+ 3

)
− · · · −

( 1

n+ p− 2
− 1

n+ p− 1

)
− 1

n+ p
.

Similarly, if p is odd, then we may write
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Tn,p =
( 1

n+ 1
− 1

n+ 2

)
+ · · ·+

( 1

n+ p− 2
− 1

n+ p− 1

)
+

1

n+ p

=
1

n+ 1
−

( 1

n+ 2
− 1

n+ 3

)
− · · · −

( 1

n+ p− 1
− 1

n+ p

)
.

Since each term in the expressions in parentheses is positive, it follows that
(5.6) holds for all arbitrary positive integers n and p. Therefore,

|Sn+p − Sn| < 1

n+ 1
for all n ≥ 1 and p ≥ 1.

Since 1/(n + 1) → 0 as n → ∞, the alternating harmonic series satisfies
Cauchy’s convergence criterion and hence converges.

Method 3: Using elementary arguments (as earlier) it is possible to obtain
that the sum of the alternating harmonic series is log 2. Recall that

1

1 + r
= 1− r + r2 − r3 + · · ·+ (−1)n−1rn−1 + (−1)n

rn

1 + r
,

which, by integration from 0 to x, gives,

log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)n−1x

n

n
+Rn,

where

|Rn| =
∣∣∣∣(−1)n

∫ x

0

rn

1 + r
dr

∣∣∣∣ =
∫ x

0

rn

1 + r
dr <

∫ x

0

rn dr =
xn+1

n+ 1
,

which approaches zero as n → ∞ if −1 < x ≤ 1. Here we assume that the
reader is familiar with integration theory, although we discuss it in detail only
in a later chapter. Hence

log(1 + x) =

∞∑

k=1

(−1)k−1

k
xk for − 1 < x ≤ 1.

In particular,

log 2 =

∞∑

k=1

(−1)k−1

k
.

The previous equation can also be written in the equivalent form

− log(1− x) =

∞∑

k=1

xk

k
for − 1 ≤ x < 1.

If we let x = 1− 1/m (m > 1) on the right-hand side, then

∞∑

k=1

1

k
≥

∞∑

k=1

1

k

(
1− 1

m

)k

= − log(1/m) = logm for each m > 1.
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Hence, since the sequence of partial sums of the harmonic series is increasing
and unbounded above, the last inequality yields another proof for

∞∑

k=1

1

k
= ∞.

Method 4: It turns out that the alternating harmonic series converges by
the alternating series test (see Section 5.3). •
5.1.7 Questions and Exercises

Questions 5.16.

1. What are the main differences between sequences and series?
2. What is a geometric series? Where does the name come from?
3. Must the sequence of partial sums of a convergent series be bounded?
4. Suppose that

∑
ak and

∑
bk are both divergent series. Must

∑
(ak + bk)

be divergent? Must
∑

(ak − bk) be divergent?
5. Suppose that

∑
(ak+bk) converges.What can be said about the individual

series
∑

ak and
∑

bk?
6. Suppose that

∑
(ak + bk) diverges. Must one of the series be convergent?

Must one of the series be divergent? Must both series be divergent?
7. If the series

∑∞
k=1(a2k−1 + a2k) converges, what can be said about the

series
∑∞

k=1 ak?
8. If

∑∞
k=1 ak converges, what can be said about

∑∞
k=1(a2k−1 + a2k)?

9. Suppose that the series
∑

ak is absolutely convergent. Must every sub-
series

∑
ank

also be absolutely convergent?
10. Suppose that ak �= 0 for all k ≥ 1 such that {ak+1/ak}k≥1 is a constant

sequence. Must
∑∞

k=1 ak be a geometric series?
11. Suppose that ak ≥ 0 for all k ≥ 1 and

∑∞
k=1 ak converges. If p > 1, must∑∞

k=1 a
p
k be convergent? Must

∑∞
k=1 akak+1 be convergent?

12. Suppose that m > 1 is a fixed positive integer. Is
∑∞

k=1 ak convergent
(respectively divergent) if and only if

∑∞
k=m ak is convergent (respectively

divergent)?
13. Can there exist a divergent series

∑
ak such that

∑ |ak| is convergent?
14. Suppose that

∑ |ak| diverges. Must
∑

ak be divergent?
15. Suppose that

∑
ak and

∑
bk both converge. Must

∑
akbk be convergent?

16. Is it possible that
∑∞

k=0 a
2
k =

∑∞
k=0 b

2
k = 4 and

∑∞
k=0 akbk = 5?

17. Suppose that
∑∞

k=1 ak converges with sum A. Must
∑∞

k=1(ak + ak+1) be
convergent? If so, what is its sum?

18. Suppose that {an}n≥1 is defined by

an =
1

n2
+

1

(n+ 1)2
+ · · ·+ 1

(2n)2
.

Does it converge to 0?
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19. Is the absolute convergence of
∑

ak equivalent to saying that
∑ |ak| < ∞?

20. If 0 < a < 1, must
∑∞

k=1 a
k! be convergent?

21. Can different decimal expansions represent the same real number?

Exercises 5.17.

1. Explain the fallacy in the following arguments:
(a) Set S = 1+2+4+8+ 16+ 32+ · · · . If we multiply through by 2, we

obtain
2S = 2 + 4 + 8 + 16 + 32 + · · · = S − 1,

which we can rewrite in the form 2S = S − 1. This gives S = −1.
(b) Set

S1 = 1 +
1

3
+

1

5
+

1

7
+ · · · and S2 =

1

2
+

1

4
+

1

6
+

1

8
+ · · · .

Then

2S2 = 1 +
1

2
+

1

3
+

1

4
+ · · · ,

which can be rewritten as S1 + S2 = 2S2, so that S2 = S1. How-
ever, each term of S1 is greater than the corresponding term of S2, so
S1 > S2.

2. Suppose that limk→∞ ak = A, where A is finite. Is it possible to find the
sum

∑∞
k=1(ak − ak+3) in terms of a1, a2, a3, and A? If so, find the sum;

if not, explain why it is impossible.
3. Using Theorem 5.9 or otherwise, evaluate the series

(a)

∞∑

k=0

1

(a+ k)(a+ k + 1)
(−a �∈ N0). (b)

∞∑

k=2

1

k2 − 1
.

(c)
∞∑

k=0

1

(a+ k)(a+ k + 2)
(−a �∈ N0). (d)

∞∑

k=1

[
k1/k − (k + 2)1/(k+2)

]
.

4. Determine whether each of the following is a geometric series. If so, deter-
mine whether the series converges or diverges. Find also the sum of each
convergent series.

(a)

∞∑

k=1

2k

3k+5
. (b)

∞∑

k=2

(−5)k−3

7k+2
. (c)

∞∑

k=5

e−0.5k.

5. For each of the following, determine whether the given series is convergent.

(a)
1

5
− 1

52
+

1

53
− 1

54
+ · · ·.

(b) 1 + e + e2 + e3 + · · · .
(c)

1

7
+

(1
7

)4

+
(1
7

)7

+
(1
7

)10

+ · · · .

(d)
3

4
−

(3
4

)3

+
(3
4

)5

−
(3
4

)7

+ · · · .

(e) 2 +
√
2 + 1 +

1√
2
+

1

2
+ · · · .
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(f) 3−
√
3 + 1− 1√

3
+

1

3
− · · · .

(g) (
√
2 + 1) + 1 + (

√
2− 1) + (3− 2

√
2) + · · · .

6. In each of the given telescoping series, determine whether the series con-
verges or diverges by examining the limit of the nth partial sums. Find
also the sum of the series if the series is convergent.

(a)

∞∑

k=1

k − 1

2k+1
. (b)

∞∑

k=1

√
k + 1−√

k√
k2 + k

. (c)

∞∑

k=1

log
(
kk+1/(k + 1)k

)

k(k + 1)
.

(d)

∞∑

k=1

4k − 1

5k+1
. (e)

∞∑

k=1

3k + 1

k2(2k + 1)2
. (f)

∞∑

k=1

[
1

kα
− 1

(k + 1)α

]
.

7. Find

∞∑

k=0

(3ak + 3−k) given that

∞∑

k=0

ak = 1.

8. Evaluate

(a)

∞∑

k=1

sin
1

3n
cos

2

3n
. (b)

∞∑

k=0

(
1

3k
+

1

5k

)2

.

9. Suppose that {an} is a sequence such that nan → 0 as n → ∞. Then show
that

∑∞
k=1 ak is convergent if and only if

∑∞
k=1 k(ak−ak+1) is convergent.

Will the two series have the same sum?
10. Let T be an equilateral triangle with sides of length 1 unit. Remove the

middle triangle formed by joining the midpoints of the sides of T (see
Figure 5.6(a)). This leaves three equal triangular regions (Figure 5.6(b)),
and the next step is to remove the middle triangle from each of these
(Figure 5.6(c)). If one continues the process indefinitely, what remains
is called the Sierpiński triangle (Figure 5.6(d)). Show that the Sierpiński
triangle has area 0.

11. Consider a square ABCD having sides of unit length. Form a square
EFGH by connecting the midpoints of the sides of the first square, as
shown in the first diagram in Figure 5.7.

Fig. 5.6. Sierpinski gasket.
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Assume that the pattern of shaded regions in the square is continued
indefinitely. Find the total area of the shaded regions at the nth stage
and in the infinite limit.

D

FH

A E

G C

B

Fig. 5.7. Shaded regions at the nth stage, n = 1, 2, 3, 4.

12. Evaluate

∞∑

k=1

20k

(5k − 4k)(5k+1 − 4k+1)
.

13. Interpret 0.12 as an infinite series, and find the value of 0.12 as a fraction.

5.2 Convergence and Divergence Tests for Series

In investigating the series
∑

ak, the most important problem is to find tests
for convergence. In general, it is not possible to obtain a convenient formula
for the nth partial sum of a given infinite series. On the other hand, in a
series, the sequence {ak} of the terms of the series is generally more accessible
than the sequence of partial sums {Sn}, and so it would be convenient if the
question of convergence of {Sn} could be settled by investigating the limiting
behavior of the general term ak. This is illustrated in the following test.

5.2.1 Basic Divergence Tests

Theorem 5.18. A necessary, but not a sufficient, condition for a series
∑

ak
to converge is that ak → 0 as k → ∞.

Proof. The proof follows if we let m = n+ 1 (or p = 1) in Theorem 5.13.
For a direct proof, let

∑
ak be convergent. Suppose that the sequence of

partial sums {Sn} converges to the limit L. Then

Sn − Sn−1 = an (n ≥ 2).

It follows that

lim an = lim(Sn − Sn−1) = limSn − limSn−1 = L− L = 0.

Thus, for the convergent series
∑

ak, we must have lim ak = 0, as desired.

For instance, for p ≤ 0, the series
∑∞

k=1
(−1)k−1

kp is divergent, because the
general term does not approach zero.

An equivalent formulation of Theorem 5.18 gives a particular test that
enables us to test the divergence of a variety of series.
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Corollary 5.19 (The divergence test). If lim ak does not exist, or exists
but is not equal to zero, then the series

∑
ak must diverge.

We remind the reader that this test cannot be used to show convergence
of a series. That is, the converse of Theorem 5.18 is false. There are sequences
for which ak → 0 as k → ∞ but

∑
ak diverges. For instance, the harmonic

series
∑∞

k=1(1/k) is known to be divergent even though the general term 1/k
tends to 0 as k → ∞.

There are a number of ways to show that the sequence {ak} does not tend
to zero. For example, if

• either {ak} has a convergent subsequence with nonzero limit
• or {ak} has a subsequence that tends to ∞ or a subsequence that tends to
−∞,

then
∑

ak is divergent, by the divergence test.
In Example 7.27, we shall use the integral test to show that the harmonic

series diverges. Also,
∑∞

k=1
1

2k−1 diverges even though the general term of the
series approaches zero as k → ∞. However, using the above divergence test,
we present below some simple examples:

1. the series

∞∑

k=1

k

2k + 1
diverges because lim

k→∞
k

2k + 1
=

1

2
.

2. the series √
1

8
+

√
2

10
+

√
3

12
+ · · ·+

√
k

2(k + 3)
+ · · ·

diverges because the general term approaches 1/
√
2 as k → ∞.

3. the series
∑∞

k=1 cos(1/k) is divergent because cos(1/k) → cos 0 = 1 as
k → ∞.

4. the geometric series
∑∞

k=0 ar
k with a �= 0 and |r| ≥ 1 diverges because the

general term ak = ark does not converge to zero as k → ∞. Equivalently,
we say that the geometric sequence {ark}k≥1 for |r| ≥ 1 is not summable
unless a = 0.

5. the series
∑∞

k=1 k
1/k is not convergent because k1/k → 1 �= 0 as k → ∞.

6. The series
∑∞

k=1
kk

k! diverges, because

kk

k!
=

(k
1

)(k
2

)(k
3

)
· · ·

(k
k

)
≥ 1 for all k ≥ 1,

so that the general term does not approach zero.

5.2.2 Tests for Series of Nonnegative Terms

Series whose terms are all nonnegative numbers play a crucial role in the
general discussion of series and in applications. In a series

∑
k≥1 ak with ak ≥ 0

for all k ≥ 1, we have
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Sn = Sn−1 + an,

and so the sequence of partial sums {Sn} is increasing, and therefore the
bounded monotone convergence theorem (see Theorem 2.25) immediately al-
lows us to formulate the following convergence criterion for series with non-
negative terms.

Theorem 5.20. Suppose that ak ≥ 0 for all k ≥ 1. Then the series
∑

ak
either converges or diverges to ∞. In particular, if the sequence of partial
sums {Sn} is bounded above, then

∑
ak converges, and in this case

∑
ak =

sup{Sn : n ≥ 1}.
An immediate consequence of Theorem 5.20 is the following.

Corollary 5.21. Suppose that ak ≥ 0 for all k. Then the series
∑

ak con-
verges if and only if the sequence of partial sums is bounded.

If ak ≥ 0 for all k, then we write
∑

ak < ∞ if the series converges and∑
ak = ∞ if it diverges.
Note that if ak ≤ 0 for all k, we can still apply the above results after mak-

ing a sign change. On the other hand, it is harder to determine the behavior
of a series with both positive and negative terms, because the sequence {Sn}
of partial sums is not monotone. However, the above results can be used if
{ak} contains only finitely many negative terms.

Next, we note that Theorem 5.20 may fail if the ak are not nonnegative
for all k. For example, if ak = (−1)k−1, then the sequence of partial sums
{Sn} of

∑
ak is either 0 or 1. Here, even though {Sn} is bounded above by

1, {Sn} is not convergent.
Note also that if ak = 1+(−1)k−1, then ak ≥ 0 for all k, and the sequence

of partial sums {Sn} of
∑∞

k=1 ak diverges to ∞.

Example 5.22. Prove that the series
∑∞

k=1(k/(k + 3))xk converges for each
x in [0, 1).

Solution. Fix x ∈ [0, 1) and set ak(x) = kxk/(k + 3). Then ak(x) ≥ 0 for all
fixed x ≥ 0, and for each fixed x, consider

∑∞
k=1 ak(x) as a numerical series.

Further, since k/(k + 3) < 1 for all k ≥ 1,

ak(x) ≤ xk for x ≥ 0.

Thus, for x ∈ [0, 1),

0 ≤ Sn =

n∑

k=1

ak(x) ≤
n∑

k=1

xk =
x(1 − xn)

1− x
≤ x

1− x
,

so the sequence of partial sums is increasing and bounded by x/(1 − x) for
each x ∈ [0, 1). By Theorem 5.20, the series converges. We shall soon see that
the series also converges for −1 < x < 0, showing that the given series is
actually convergent for x ∈ (−1, 1). •
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5.2.3 Abel–Pringsheim Divergence Test

We can strengthen Theorem 5.18 in the following way.

Theorem 5.23 (Abel–Pringsheim test). Suppose that {ak} is a decreasing
sequence of positive real numbers. Then a necessary condition for the series∑

ak to converge is that kak → 0 as k → ∞.

Proof. Let
∑∞

k=1 ak be convergent, where ak ≥ 0 and ak ≥ ak+1 for all k.
Then the sequence of partial sums {Sn} is convergent, and hence it is Cauchy.
Because it is Cauchy, given ε > 0 there exists an N such that

m∑

k=n+1

ak = |Sm − Sn| < ε (m > n ≥ N).

Since {ak} is a decreasing sequence of positive real numbers, it follows that
for n ≥ N (choose m = 2n),

na2n ≤ an+1 + an+2 + · · ·+ a2n < ε (n ≥ N),

which implies that
lim
n→∞ 2na2n = 0.

Again, because {ak} is decreasing,

(2n+ 1)a2n+1 ≤ (2n+ 1)a2n ≤ (2n+ n)a2n = 3na2n,

which implies that
lim
n→∞(2n+ 1)a2n+1 = 0.

Thus, we must have lim kak = 0, as desired.

In Theorem 5.23, the condition kak → 0 as k → ∞ is not sufficient for the
convergence of the series

∑
ak. For example, consider ak = 1/(k log k). Then

limk→∞ kak = 0, but
∑∞

k=2 ak diverges (see Example 7.29(c) with p = 1).
The assumption that {ak} is decreasing is essential (see Question 5.42(3)).

That is, there are convergent positive series
∑

ak such that kak �→ 0 as
k → ∞. Theorem 5.23 gives another useful result for testing the divergence
of a variety of series.

Corollary 5.24 (The divergence test). If {ak} is a decreasing sequence of
positive real numbers and lim kak does not exist or exists but is not equal to
zero, then the series

∑
ak must diverge.

Remark 5.25. Corollary 5.24 shows immediately that the harmonic series∑
ak (ak = 1/k) diverges, since {ak} is a decreasing positive sequence and

kak = 1 does not approach zero. •
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Example 5.26. Set a1 = 1 and an+1 = 2n−1
2n an for all n ≥ 1. Show that∑∞

k=1 ak diverges.

Solution. Clearly, {an} is decreasing. Also, we see that (as a1 = 1)

an+1 =
2n− 1

2n
· 2n− 3

2(n− 1)
· · · 3

4
· 1
2

=
1

2n

(2n− 1

2n− 2

)(2n− 3

2n− 4

)
· · · 5

4
· 3
2
· 1

≥ 1

2n
for each n ≥ 2.

Therefore, (n+1)an+1 does not converge to zero. By Corollary 5.24, the series∑
ak diverges. Also, the comparison test below gives the desired conclusion.
Alternatively, we may note that

an+1 =

(
1− 1

2n

)
an < an,

showing that {an} is decreasing. Moreover, by induction it is easy to show
that

an+1 ≥ 1

n+ 1
for all n ≥ 1.

Indeed, if a1 = 1, a2 = 1/2 and if an ≥ 1/n, then

an+1 ≥
(2n− 1

2n

) 1

n
,

which is obviously greater than 1/(n + 1), and the claim is true. Therefore,
(n + 1)an+1 ≥ 1, so that (n + 1)an+1 does not approach 0 as n → ∞. By
Corollary 5.24,

∑∞
k=1 ak diverges. •

5.2.4 Direct Comparison Test

There are many tests for series of nonnegative terms. We discuss here two
fundamental convergence criteria called the direct comparison test and the
limit comparison test. They are in fact an important consequence of Theorem
5.20. A few other tests will be given in the subsequent sections.

Theorem 5.27 (Direct comparison test). Suppose there exist numbers
N ∈ N and M > 0 such that 0 ≤ ak ≤ Mck for all k ≥ N . Then we have

• if
∑

ck converges, then
∑

ak also converges and
∑

k≥N ak ≤ M
∑

k≥N ck;

• if
∑

ak diverges, then
∑

ck also diverges.
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Proof. Assume that the series
∑∞

k=1 ck is convergent. Then
∑∞

k=N ck also

converges; let the sum be S. Then Sn =
∑N−1

k=1 ak + Tn, where

Tn :=

n∑

k=N

ak ≤ M

n∑

k=N

ck ≤ M

∞∑

k=N

ck = MS (say),

and so the sequence of partial sums {Tn} of the series
∑∞

k=N ak is increasing
(because ak ≥ 0 for all k ≥ N) and bounded above by MS. Thus, by BMCT
(Theorem 2.25), the series

∑∞
k=N ak converges, and hence

∑∞
k=1 ak converges.

To prove the second part, assume that the series
∑

ak diverges. Then,
since ak ≥ 0, it follows that

∞∑

k=N

ak = ∞.

Thus,
∞∑

k=N

ck ≥ 1

M

∞∑

k=N

ak,

and so
∑

ck must diverge to ∞.

By Theorem 5.27, we conclude that
∑

(k/(k2 + 4)) diverges, because

k

k2 + 4
≥ 1

2k
for k ≥ 2

and the harmonic series diverges.

Example 5.28. We have already shown by a direct method that the harmonic
p-series

∑∞
k=1

1
kp converges for p = 2 and diverges for p = 1. Using these two

facts, one can easily provide an independent proof (e.g., without using the
integral test) that the p-harmonic series converges if p > 1 and diverges if
p ≤ 1. In order to achieve this, we observe that

1

kp

⎧
⎪⎨

⎪⎩

≥ 1

k
for p ≤ 1,

≤ 1

k2
for p ≥ 2.

The direct comparison test gives the conclusion except when 1 < p < 2. The
following argument works for p > 1, although in view of this observation, it
suffices to deal with the case 1 < p < 2. Now,

S2n−1 = 1 +

(
1

2p
+

1

3p

)
+

(
1

4p
+

1

5p
+

1

6p
+

1

7p

)

+ · · ·+
(

1

(2n−1)p
+ · · ·+ 1

(2n − 1)p

)
.
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There are 2n − 2n−1 = 2n−1 terms in the last bracketed term of the above
expression on the right, each less than 1/2(n−1)p. Thus, we have

S2n−1 < 1 +
2

2p
+

4

4p
+ · · ·+ 2n−1

2(n−1)p

= 1 +
1

2p−1
+

( 1

2p−1

)2

+ · · ·+
( 1

2p−1

)n−1

.

Since p > 1, we have 1/2p−1 < 1, and so

S2n−1 <
1

1− 1/2p−1
= M, say.

Moreover, for each fixed N ≥ 1, there exists an n such that 2n > N . Therefore,

SN ≤ S2n−1 < M,

so that {SN} is an increasing sequence of partial sums bounded above by M .
Hence, by BMCT (see Theorem 2.27), {SN}N≥1 is convergent. •

Assuming only the divergence of the harmonic series and the convergence
part of the geometric series, we now discuss some simple examples.

Example 5.29. Test each of the following series for convergence:

(a)

∞∑

k=1

1

5k + 1
. (b)

∞∑

k=2

2

2
√
k − 3

. (c)

∞∑

k=1

1

k!
. (d)

∞∑

k=1

1√
k3 + 1

.

Solution. We apply the direct comparison test with M = 1. First we see that

1

5k + 1
<

1

5k
,

2

2
√
k − 3

>
1√
k
,

1

k!
≤ 1

2k−1
,

1√
k3 + 1

<
1√
k3

for all k > 3, and note that k! ≥ 2k−1.

(a) The first series is convergent because it is dominated by the convergent

geometric series
∑ 1

5k
.

(b) We know that
∑∞

k=1
1

k1/2 diverges. The direct comparison test tells us
that the given series must diverge.

(c) The given series is dominated by the convergent geometric series
∑

1
2k−1 .

Therefore, the given series must also converge.
(d) Because of the last inequality in the above list of inequalities, the given

series converges. •
The direct comparison test (see Theorem 5.27) suggests the following.

Problem 5.30. Can we replace the existence of the constant M > 0 in The-
orem 5.27 by a bounded sequence {bk} and conclude something about the be-
havior of the product sequence

∑
akbk?
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Theorem 5.31. Suppose that the series
∑

ak converges absolutely and the
sequence {bk} is bounded. Then

∑
akbk converges absolutely.

Proof. Suppose that M is bounded for the sequence {bk}. Then since |akbk| ≤
M |ak|, the conclusion follows from the comparison test.

The conclusion of Theorem 5.31 fails in general if {bn} is not bounded.
For instance, if bk = k and ak = 1/kp+1 (0 < p ≤ 1), then

∑
ak converges

absolutely, whereas
∑

akbk =
∑

(1/kp) diverges for 0 < p ≤ 1.
Also, Theorem 5.31 fails in general if we replace the assumption that

∑
ak

converges absolutely by the assumption that
∑

ak converges. This may be seen
by choosing

bk = (−1)k−1 and ak =
(−1)k−1

kp
(0 < p ≤ 1).

Corollary 5.32. If
∑

ak is a convergent series of nonnegative terms and
{bk} is a sequence of nonnegative real numbers with an upper bound, then the
series

∑
akbk is convergent.

Applying Theorem 5.31 with ak = 1/kp (p > 1) and

bk = (−1)k−1, k1/k, (k + 1/k)k, (1 + 1/k)2k, sin kx (x ∈ R),

it follows that each of the following series converges:

∞∑

k=1

(−1)k−1

kp
,

∞∑

k=1

k1/k

kp
,

∞∑

k=1

(1 + 1/k)k

kp
,

∞∑

k=1

(1 + 1/k)2k

kp
,

∞∑

k=1

sin kx

kp
.

5.2.5 Limit Comparison Test

It is not always easy or even possible to make a suitable direct comparison
between two similar series. This is clearly a disadvantage of the comparison
test, since it demands a “known” series in order to apply the comparison
test. However, it might still be possible to guess the series’ behavior by ex-
amining the “order of magnitude” of the general term as given in the limit
comparison test below. For example, it is natural to expect that the series∑

1/(3k − 5) converges by comparing the kth term of the convergent geomet-
ric series

∑
1/3k. We first note that k ≥ 2,

0 ≤ 1

3k
<

1

3k − 5
.
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Although
∑

1/3k is convergent, the comparison test with M = 1 cannot be
used to determine the convergence of

∑
1/(3k − 5) by directly comparing it

with
∑

1/3k. On the other hand, if k ≥ 3, we have

0 <
1

3k − 5
≤ 2

3k
,

and so by a comparison with the convergent series 2
∑

1/3k, the given series∑
1/(3k − 5) converges. So we need to pin down the underlying idea from the

direct comparison test. Here is a simple reformulation of the comparison test
that is often useful in practice.

Theorem 5.33 (Limit comparison test). Suppose ak > 0 and bk > 0 for
all k ≥ N0 such that

lim
k→∞

ak
bk

= L.

Then we have the following:

(a) If 0 < L < ∞, then the two series
∑

ak and
∑

bk either both converge or
both diverge.

(b) If L = 0, then the series
∑

ak converges whenever
∑

bk converges.
(c) If L = ∞, then the series

∑
ak diverges whenever

∑
bk diverges.

Proof. Since ak and bk are positive for k ≥ N0, we observe that L ≥ 0 or
L = ∞.

(a) Let 0 < L < ∞. Then since lim(ak/bk) = L, given ε = L/2 > 0 there
exists a positive integer N such that for all k ≥ N (≥ N0) we have

L− ak
bkak

bk
− L

⎫
⎬

⎭ ≤
∣∣∣∣
ak
bk

− L

∣∣∣∣ <
L

2
, i.e.,

L

2
≤ ak

bk
<

3L

2
.

This amounts to

0 <
L

2
bk ≤ ak <

3L

2
bk for k ≥ N.

Now the comparison test yields the desired conclusion.
(b) Let L = 0. Then there exists an N such that

ak
bk

< 1, i.e., 0 < ak < bk, for all k ≥ N (≥ N0).

The direct comparison test gives the conclusion.
(c) Let L = ∞. Then there exists an N such that

ak
bk

> 1, i.e., ak > bk, for all k ≥ N (≥ N0).

Again the conclusion follows from the direct comparison test.
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Corollary 5.34. Suppose that {ak} and {bk} are two sequences of real num-
bers such that

lim
k→∞

∣∣∣∣
ak
bk

∣∣∣∣ = L

exists and 0 < L < ∞. Then the series
∑

ak converges absolutely if and only
if

∑
bk converges absolutely.

Remark 5.35. When L = 0 and L = ∞ in Theorem 5.33, then nothing more
can be concluded. We illustrate this fact by some simple examples.

1. Set ak = 1/kp (p > 1) and bk = 1/k for k ≥ 1. Then

lim
k→∞

ak
bk

= lim
k→∞

1

kp−1
= 0 and lim

k→∞
bk
ak

= lim
k→∞

kp−1 = ∞,

where
∑

ak converges but
∑

bk diverges.
2. Set ak = 1/kp and bk = 1/kq, where 0 < p < q < 1 . Then

lim
k→∞

ak
bk

= lim
k→∞

kq−p = ∞ and lim
k→∞

bk
ak

= lim
k→∞

1

kq−p
= 0,

where both
∑

ak and
∑

bk diverge.
3. Set ak = 1/kp and bk = 1/kq, where p > q > 1. Then

lim
k→∞

ak
bk

= lim
k→∞

1

kp−q
= 0 and lim

k→∞
bk
ak

= lim
k→∞

kp−q = ∞,

where both
∑

ak and
∑

bk converge. •
According to the limit comparison test, it is possible to try to determine

whether ak is comparable with the kth term of some familiar series whose
convergence (or divergence) is known.

Example 5.36. Investigate the convergence of the series
∑∞

k=1 ak, where ak
equals

(a)

√
1 + 5k

1 + 7k
. (b)

7k2 + 4√
k(k2 − 15)

. (c)
2k + 700

ek/7 − 90
. (d) sin(1/k).

Solution. (a) Set bk =
√
5k/7k. We compute the limit

L = lim
k→∞

ak
bk

= lim
k→∞

√
1 + 5k

1 + 7k
× 7k

5k
= lim

k→∞

√
(1/5k) + 1

(1/7k) + 1
= 1.

So the limit comparison test tells us that the given series converges be-
cause

∑∞
k=1 bk converges.
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(b) Set

ak =
7k2 + 4√
k(k2 − 15)

and bk =
k2√
k(k2)

=
1√
k

and compute the limit

lim
k→∞

ak
bk

= lim
k→∞

7k2 + 4

k2 − 15
= 7.

Since
∑

bk diverges, by the limit comparison test, we conclude that the
given series diverges.

(c) If we let

ak =
2k + 700

ek/7 − 90
and bk =

k

ek/7
,

then we find that limk→∞ ak/bk = 2. In Example 7.29, we shall show that
the series

∑
ke−k/7 converges. We see that by the limit comparison test,

the given series also converges.
(d) Set ak = sin(1/k) and bk = 1/k. Then ak > 0 and

L = lim
k→∞

ak
bk

= lim
k→∞

sin(1/k)

1/k
= lim

x→0

sinx

x
= 1,

showing that
∑

sin(1/k) is divergent, because
∑

bk is divergent. •
Example 5.37. We show that the p-log series defined by

∑∞
k=2(log k)/k

p

converges if p > 1, and diverges if p ≤ 1.
First we suppose that p > 1. Then there exists a number q such that 1 <

q < p. Indeed, q = (1 + p)/2 satisfies the condition. Next, set ak = (log k)/kp

and bk = 1/kq. Then, using l’Hôpital’s rule for ∞/∞ form, we compute

lim
k→∞

ak
bk

= lim
k→∞

log k

kp−q
= lim

k→∞
1/k

(p− q)kp−q−1
= lim

k→∞
1

(p− q)kp−q
= 0

as p− q > 0. Because the harmonic q-series
∑

1/kq converges for q > 1, the
given series converges by the limit comparison test for all p > 1.

Next we suppose that p ≤ 1. Set Bk = 1/kp. Then ak ≥ Bk for all k ≥ 3
and

lim
k→∞

ak
Bk

= lim
k→∞

log k = ∞.

Again, because
∑

Bk =
∑

1
kp diverges for p ≤ 1, it follows from the compar-

ison test that the given series diverges when p ≤ 1. •
Example 5.38. Discuss the convergence of

∑∞
k=1 ak when ak equals

(a) log
(
1 +

1

k

)
− 1

k
. (b) k1/k − 1. (c) a1/k − 1 for a > 0.
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Solution. (a) Set ak = 1
k − log(1 + 1/k) and bk = 1/k2. Then

lim
k→∞

ak
bk

= lim
x→0

x− log(1 + x)

x2
= lim

x→0

1− 1/(1 + x)

2x
= lim

x→0

1

2(1 + x)
=

1

2
,

and so
∑∞

k=1 ak converges, since
∑∞

k=1 bk converges.
(b) Set ak = k1/k−1 and bk = 1/k. Then ak → 0 as k → ∞. Since ex ≥ 1+x

for x ≥ 0, it follows that x ≥ log(1 + x) for x ≥ 0. Consequently, with
x = ak, the last inequality gives

log k

k
= log(k1/k) ≤ k1/k − 1, i.e., ak ≥ log k

k
>

1

k
for k > 3,

which implies that
∑∞

k=1 ak diverges.
(c) Set ak = a1/k − 1 and bk = 1/k. Then for a > 1, we have

lim
k→∞

ak
bk

= lim
x→0

ax − 1

x
= lim

x→0

ex log a − 1

x
= lim

x→0

(log a)ex log a

1
= log a.

If 0 < a < 1, then set b = 1/a > 1 and observe that

lim
k→∞

ak
−bk

= lim
k→∞

b−1/k − 1

−1/k
= lim

y→0−

by − 1

y
= log b = log(1/a).

Consequently,
∑∞

k=1 ak diverges to ∞ if a > 1 and diverges to −∞ if
0 < a < 1. •

5.2.6 Cauchy’s Condensation Test

Our next result is useful for testing the convergence of certain series painlessly.

Theorem 5.39 (Cauchy’s condensation test). Suppose {an}n≥1 is a
decreasing sequence of nonnegative terms. Then the series

∑∞
k=1 ak and∑∞

k=1 2
ka2k are either both convergent or both divergent.

Proof. Denote by Sn and Tn the nth partial sums of the series
∑∞

k=1 ak and∑∞
k=1 2

ka2k , respectively. That is, Sn =
∑n

k=1 ak and Tn =
∑n

k=1 2
ka2k . The

proof depends on the following two inequalities: for n ≥ 4, we have

1

2

n∑

k=1

2ka2k = a2 + 2a4 + 4a8 + · · ·+ 2n−1a2n

< a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + · · ·
+(a2n−1+1 + a2n−1+2 + · · ·+ a2n).

Also, for each fixed N , choose n such that 2n > N . Then
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2n+1−1∑

k=1

ak = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + · · ·

+(a2n + a2n+1 + · · ·+ a2n+1−1)

≤ a1 + 2a2 + 22a4 + · · ·+ 2na2n = a1 + Tn.

We have thus obtained

Tn < 2S2n and S2n+1−1 ≤ a1 + Tn,

and both {Sn} and {Tn} are increasing sequences, by hypothesis. Moreover,
{Sn} is bounded if and only if {Tn} is bounded. By BMCT,

∑∞
k=1 ak converges

if and only if
∑∞

k=0 2
ka2k converges.

Consider {an} as follows:

an =

{
0 if n �= 2m,
1/2n if n = 2m,

for some nonnegative integer m. Then a1 = 1, a2 = 1/2, a3 = 0, a4 = 1/22,
a5 = 0, showing that the sequence {an} is not decreasing. However,

∞∑

k=1

ak = 1 +
1

2
+

1

22
+ · · · ,

which is a convergent geometric series, whereas

∞∑

k=1

2ka2k =
∞∑

k=1

2k
( 1

2k

)
=

∞∑

k=1

1,

which is divergent. This observation shows that the hypothesis that {an} is
decreasing cannot be dropped from Theorem 5.39.

We remark that Cauchy’s condensation test is useful because it allows us
to investigate the convergence of series just by considering small subsets of
the terms of the given series.

Example 5.40. 1. Using the Cauchy condensation test it is easy to see that
the harmonic p-series

∑∞
k=1 k

−p converges if and only if p > 1 (see also
Example 5.28). Indeed, for p > 0, kp < (k + 1)p, and therefore {1/kp} is
a decreasing sequence of positive terms. If ak = 1/kp, then

∞∑

k=0

2ka2k =

∞∑

k=0

2k
( 1

2kp

)
=

∞∑

k=0

(21−p)k,

which is a convergent geometric series if and only if 21−p < 1, i.e., p > 1.
Recall that k−p → ∞ for p < 0, and k−p = 1 �= 0 if p = 0. Consequently,∑∞

k=1 k
−p converges if and only if p > 1.
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2. If ak = 1/[k(log k)p] for k ≥ 2, then

2ka2k = 2k
1

2k(log 2k)p
=

1

(log 2)p

( 1

kp

)
,

and so
∑∞

k=2 ak converges if and only if p > 1. •
The following general result holds.

Theorem 5.41. Suppose that {an}n≥1 is a decreasing sequence of nonnega-
tive terms and r ∈ N � {1}. Then the series

∑∞
k=1 ak and

∑∞
k=1 r

kark are
either both convergent or both divergent.

Proof. We observe that

r − 1

r

n∑

k=1

rkark = (r− 1)ar +(r− 1)rar2 +(r− 1)r2ar3 + · · ·+(r− 1)rn−1arn ,

and we leave the rest of the argument as a simple exercise.

5.2.7 Questions and Exercises

Questions 5.42.

1. For a series
∑

an with positive terms, is it true that
∑

an < ∞ if and
only if the corresponding sequence of partial sums {Sn} is bounded?

2. If
∑∞

k=1 ak converges, must limn→∞(an+an+1+ · · ·+an+p) = 0 for every
p > 0? How about the converse?

3. Suppose that
∑∞

k=1 ak is a convergent series of positive terms. Is it nec-
essary that nan → 0 as n → ∞?

4. Suppose ak > 0 for all k ≥ 1 and that
∑∞

k=1 ak converges. Must∑∞
k=1(1/ak) be divergent?

5. Suppose that 0 < ak < 1 for all k, and that
∑

ak converges. Must
∑

a2k
be convergent?

6. Suppose that 0 < ak < 1 for all k ≥ 1, and that
∑∞

k=1 ak diverges. Can∑∞
k=1 a

2
k be convergent?

7. If
∑∞

k=1 a
2
k and

∑∞
k=1 b

2
k both are convergent, must

∑∞
k=1 akbk be conver-

gent? If p > 1/2, what can be said about the convergence of
∑∞

k=1(ak/k
p)?

8. What is a harmonic p-series? What is an alternating harmonic p-series?
9. Suppose that ak > 0 and bk > 0 for all k ≥ 1 such that

∑∞
k=1 ak is

convergent and {bk}k≥1 is bounded. Must
∑∞

k=1 akbk be divergent?
10. Suppose that

∑∞
k=1 ak is a convergent series of positive terms and

∑∞
k=1 bk

diverges such that bk → 0 as k → ∞. Must
∑∞

k=1 akbk be divergent? How
about the series

∑∞
k=1 k

1/kak?
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11. We know that limn→∞ n1/n = 1,
∑

(1/n) diverges, and limn→∞ n1/n

n = 0.

Must
∑∞

n=1 n
−1−1/n be divergent? Must

∑∞
n=1 n

−2−1/n be convergent?
12. Suppose that

∑
ak is a convergent series of positive terms and bk → b �= 0

as k → ∞. Must
∑

bk and
∑

akbk converge or diverge together?
13. Suppose that

∑∞
k=1 ak converges and

∑∞
k=1 bk diverges such that bk → 0

as k → ∞. What can be said about the convergence of
∑∞

k=1 akbk?
14. Suppose that lim ak = 0 = lim bk and both

∑
ak and

∑
bk diverge. Must∑

akbk be divergent? How about the series
∑ 1√

k 2k
and

∑ 1√
k 3k

? How

about the series
∑

akbk with ak = bk = 1/
√
k?

15. Suppose that 0 ≤ ak ≤ A for some number A and bk ≥ k2. Must
∑

(ak/bk)
be convergent?

16. Suppose that ak → 0 as k → ∞. Can there exist an N ∈ N such that
kak < 1 for all k ≥ N?

17. Suppose that {an} is a sequence of positive terms such that the limit
limk→∞ kpak exists. Must

∑
ak be convergent if p > 1? How about p ≤ 1?

18. Must a positive-term series (i.e., a series all of whose terms are positive)
either converge or else diverge to ∞?

19. Must a negative-term series (i.e., a series all of whose terms are negative)
either converge or else diverge to −∞?

20. Suppose that {an} is a sequence of positive terms such that
∑∞

k=1 ak
converges. Does

∑∞
k=1

√
akak+1 converge? Does there exist a sequence

of positive terms {cn} such that cn → ∞ as n → ∞, and
∑∞

k=1 akck
converges?

Exercises 5.43.

1. Using the direct convergence test, prove Theorem 5.14.
2. For what values of the real number a does the series

∞∑

k=1

√
k + 1−√

k

ka

converge?
3. Let ak > 0 for all k ≥ 1, and suppose

∑∞
k=1 ak converges. If rn =

∑∞
k=n ak,

show that

(a)

∞∑

k=1

ak
rk

diverges. (b)

∞∑

k=1

ak√
rk

converges.

4. Show that if ak > 0 for all k ≥ 1 and bk = ak/(1 + ak), then
∑∞

k=1 ak
converges if and only if

∑∞
k=1 bk converges.

5. Suppose that ak ≥ 0 for all k ≥ 1 and α is a positive real number. Prove
or disprove that

∑∞
k=1 ak converges if and only if

∑∞
k=1(ak/(1 + αak))

converges.
6. Suppose that ak ≥ 0 for all k ≥ 1. Show that if

∑∞
k=1 ak converges, then∑∞

k=1((k + 1)/k)a2k converges.
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7. Suppose that {an} and {bn} are two sequences of positive numbers such
that limn→∞ bn = B �= 0. Show that

∑
ak converges if and only if

∑
akbk

converges.

8. Show that the series
∞∑

k=1

1

(log k)qkp
converges if and only if either p > 1

with any real q, or p = 1 with q > 1.
9. Examine the convergence of the following series:

(a)
1

1 · 2 · 3 +
3

2 · 3 · 4 +
5

3 · 4 · 5 +
7

4 · 5 · 6 + · · · .

(b) 1− 1

3 · 22 +
1

5 · 32 − 1

7 · 42 + · · · .

(c)
1√
1 · 2 +

1√
2 · 3 +

1√
3 · 4 + · · · .

(d) 1 +
1

42/3
+

1

92/3
+

1

162/3
+ · · · .

(e)
1√

1 +
√
2
+

1√
2 +

√
3
+ · · · .

(f)

√
2− 1

33 − 1
+

√
3− 1

43 − 1
+

√
4− 1

53 − 1
+ · · · .

10. Suppose that {an}n≥1 and {bn}n≥1 are two sequences of positive numbers

such that an+1

an
≤ bn+1

bn
for all n ≥ 1. Show that if

∑∞
k=1 bk converges,

then
∑∞

k=1 ak converges. Also, conclude that
∑∞

k=1 bk diverges whenever∑∞
k=1 ak diverges.

11. Suppose an > 0 and bn > 0 for all n ≥ N0 such that

lim sup
n→∞

an
bn

= L and lim inf
n→∞

an
bn

= l.

Then prove or disprove the following (see Theorem 5.33):
(a) If 0 ≤ L < ∞, then the series

∑
ak converges whenever

∑
bk con-

verges.
(b) If 0 < l ≤ ∞, then the series

∑
ak diverges whenever

∑
bk diverges.

12. In the following problems either use the divergence test to show that the
given series diverges or show that the divergence test does not apply.

(a)

∞∑

k=1

k

k + 1
. (b)

∞∑

k=1

(
1 +

1

k

)−k

. (c)

∞∑

k=2

k√
k2 − 1

.

(d)

∞∑

k=1

1

k1/22k
. (e)

∞∑

k=0

1

ek + e−k
. (f)

∞∑

k=0

sink(π/6).

13. Examine the convergence of the series
∑

ak, where ak equals
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(a)
1

kp + 2 cos(kπ)
(p > 0). (b)

√
k2 + 2k + 3−√

k2 − 2k + 3

k
.

(c) k(2−3k)/k. (d)
1√

k +
√
k + 1 +

√
k + 2

.

(e)
k + 3

(2k2 + 1)p(log k)20
. (f)

p
√
kp + 1− k (p > 0).

(g)
1

kp+1/k
. (h)

(k + 1)q

kp
(p, q ∈ R).

(i)
1√

k + 5
4
√
k − 1

. (j)
k2 − 3k + 5

5k5 − 2k
.

(k)
cos2(2k)

k3
. (l)

1

kp +
√
k
(p > 1).

(m)
1

(1 + k2 + k4 + k6)1/4
. (n)

2k + k

3k − 2k
.

5.3 Alternating Series and Conditional Convergence

We next consider a special type of series called alternating series. These are
series whose successive terms alternate in sign. Such series will be of the form

∑
(−1)

k−1
ak with ak ≥ 0 for all k.

Consider the alternating harmonic series defined by

∞∑

k=1

(−1)k−1

k
= 1− 1

2
+

1

3
− · · · . (5.7)

We have already shown that the series is convergent but is not absolutely
convergent. For an alternative proof, we observe the following:

• The sequence of partial sums is no longer monotone, in contrast to the
harmonic series.

• Although the sequence of partial sums can be shown to be bounded, it is
not possible to use BMCT (the bounded monotone convergence theorem)
to obtain convergence for a nonmonotone sequence.

• If we let

ak =
1

k
and Sn =

n∑

k=1

(−1)k−1

k
,

then the sequence {ak} has the following properties:

lim
k→∞

ak = 0, {ak} is decreasing, and ak > 0 for all k. (5.8)
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We have already verified that S2n is increasing, while S2n−1 is decreasing. In
fact,

1

2
= S2 < S4 < S6 < · · · < S5 < S3 < S1 = 1.

Now we prove that the series (5.7) converges, and later we use exactly the
same idea to show that

∑∞
k=1(−1)k−1ak converges under the condition (5.8)

for a general ak, rather than ak = 1/k. To present our geometric proof of
the convergence of the alternating harmonic series (5.7), we group the partial
sums as

S2n = 1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2n− 1
− 1

2n

=
(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

2n− 1
+

1

2n

)
− 2

(1
2
+

1

4
+ · · ·+ 1

2n

)

=
(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

2n

)
−

(
1 +

1

2
+ · · ·+ 1

n

)
,

so that

S2n =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n
.

Also, we have

S2n−1 = S2n +
1

2n
. (5.9)

The linearity rule (for sequences) applied to (5.9) shows that

lim
n→∞S2n−1 = lim

n→∞S2n + lim
n→∞

1

2n
= log 2.

We conclude that limSn exists and equals log 2.
Alternatively, we may rewrite S2n as

S2n =
1

n

n∑

k=1

1

1 + k/n
,

which by item 5 in Remark 7.26, gives limS2n = log 2. As will be seen in Chap-
ter 6, the sequence S2n can be recognized as a lower Riemann sum associated
with the continuous function

f(x) =
1

1 + x
on [0, 1]

(
or g(x) =

1

x
on [1, 2]

)
,

and therefore limS2n exists and

lim
n→∞S2n =

∫ 1

0

dx

1 + x
= log 2.

By (5.9), {S2n−1} also converges to log 2. Thus {Sn} converges to log 2.
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5.3.1 Alternating Series Test

In general, although the condition lim ak = 0 is necessary for the convergence
of the series

∑
ak, this condition tells us very little about the convergence

of the series
∑

ak. However, as in the above example, it turns out that an
alternating series must converge if the absolute value of its terms decreases
monotonically toward zero. Now we extend this idea and prove the following
result, established by Leibniz in the seventeenth century. This test is some-
times called the Leibniz test.

Theorem 5.44 (Alternating series test). An alternating series

∞∑

k=1

(−1)k−1ak,

where ak ≥ 0 for all k ≥ 1, converges if the following two conditions are
satisfied:

(1) lim an = 0;
(2) {an}n≥1 is a decreasing sequence; that is, an+1 ≤ an for all n ≥ 1.

Proof. Let Sn = a1 − a2 + a3 − a4 + · · ·+ (−1)n−1an. We need to prove that
{Sn} converges. Our strategy is to follow the same method of proof used to
prove that the alternating harmonic series converges. First, we note that for
n > 1,

S2n = (a1 − a2) + (a3 − a4) + · · ·+ (a2n−1 − a2n) ≥ S2(n−1),

because each pair of quantities in parentheses is nonnegative (since {ak} is a
decreasing). It follows that {S2n} is increasing. Moreover,

S2n = a1 − (a2 − a3)− · · · − (a2n−2 − a2n−1)− a2n ≤ a1,

showing that {S2n} is bounded above by a1. Consequently, by BMCT (see
Theorem 2.27), {S2n} converges to some number, say to S. Further, since

S2n−1 = S2n + a2n and lim
n→∞ an = 0,

we see that

lim
n→∞S2n−1 = lim

n→∞S2n + lim
n→∞ a2n = S − 0 = S.

Thus, the odd and even subsequences of {Sn} both converge to the same limit
S, and so {Sn} itself converges to S. Hence,

∑∞
k=1(−1)k−1ak is convergent,

with sum S. Note also that

S2n+1 = S2n + a2n+1

= a1 − (a2 − a3)− · · · − (a2n−2 − a2n−1)− (a2n − a2n+1)

≤ S2n−1,

showing that {S2n−1} is decreasing; see Figure 5.8.
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a5

a3

−a2

−a6

a1

−a4

0 S2
a1−a2

S4 S6 S5 S3
a2−a3

S1=a1 SS2 S5 S3 S10 S4

Fig. 5.8. Description for the partial sums in
∞∑

k=1

(−1)k−1ak.

Remark 5.45. 1. In the case ak > 0, k ≥ N , it is often easier to check that
{ak}k≥N is decreasing by verifying that { 1

ak
}k≥N is increasing.

2. Observe that in the alternating series
∑∞

k=1(−1)k−1ak, where ak > 0 for
all k ≥ 1, the partial sums {Sn} are reminiscent of a swinging (simple)
pendulum that is slowly coming to rest at a fixed position that is equiva-
lent to the sum of the series; see Figure 5.8 for the behavior of the partial
sums of an alternating convergent series.

3. Note that for each n ≥ 1,

S2 ≤ S4 ≤ · · · ≤ S2n = S2n−1 − a2n ≤ S2n−1 ≤ · · · ≤ S5 ≤ S3 ≤ S1 = a1.

Since {S2n} is increasing to S and {S2n−1} is decreasing to S, it follows
that

S2n ≤ S ≤ S2n−1 for n = 1, 2, 3, . . .,

so that the sum S lies between two consecutive partial sums. •
We easily have the following:

1.
∑∞

k=1
(−1)k−1 sin

√
k

kp converges absolutely for all p > 1, since

∣∣∣∣∣(−1)k−1 sin
√
k

kp

∣∣∣∣∣ ≤
1

kp
.

2.
∑∞

k=1(−1)k−1 k
k2+p (p > 0) is conditionally convergent. Indeed, it is not

absolutely convergent, because

∣∣∣∣(−1)k−1 k

k2 + p

∣∣∣∣ =
k

k2 + p
>

p

k(p+ 1)

for all k > p2 and
∑

1
k diverges. Moreover, it is convergent because ak =

k/(k2 + p) is positive, ak → 0 as k → ∞, and {ak} is decreasing for all
k ≥ √

p, and so the alternating series test is applicable.
3.

∑∞
k=1(−1)k−1 1

k+p2 (p ∈ R) is conditionally convergent.
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Corollary 5.46 (The error estimate for an alternating series). Sup-
pose an alternating series

∑∞
k=1(−1)k−1ak satisfies conditions (1) and (2) of

Theorem 5.44. If the series has the sum S, then

|S − Sn| ≤ an+1,

where Sn is the nth partial sum of the series.

Proof. Let Sn =
∑n

k=1(−1)k−1ak. Then, as in the discussion of Example 5.15,
we easily get

Sn+p − Sn = (−1)nTn,p with 0 ≤ Tn,p ≤ an+1,

so that
|Sn+p − Sn| ≤ an+1.

Thus {Sn} is Cauchy and hence converges to S (say). Finally, fixing n and
allowing p → ∞ gives |S − Sn| ≤ an+1, and the proof is complete.

From the last corollary, we conclude that if an alternating series satisfies
the conditions of the alternating series test, we can approximate the sum of
the series with the nth partial sum, and the error will have absolute value no
greater than the first term omitted (namely, an+1).

5.3.2 Rearrangement of Terms in a Series

The algebraic manipulation of terms in a series has to be done with more care
than in finite sums. For instance, it is meaningful to write

1 + 2 + (3 + 5) + 6 = (1 + 2 + 3) + (5 + 6) = (1 + 2) + (3 + 5 + 6) = · · · ,
so that the terms of a finite sum can be grouped by inserting parentheses
arbitrarily. On the other hand, there are obvious problems in trying to do
the same with series of real numbers. To begin with, we consider the series∑∞

k=1(−1)k−1. It is tempting to pair the terms of this series as

(1− 1) + (1− 1) + · · · = 0 + 0 + · · · = 0,

and equally tempting to pair the terms of the same series as

1− (1− 1)− (1− 1)− · · · = 1− 0− 0− · · · = 1.

We see that inserting parentheses in two different ways results in two con-
vergent series with different limits. But we know that the original series is
divergent. What is wrong? A natural question is whether a series can be
grouped by inserting parentheses arbitrarily with

(a) divergent series that are divergent to ±∞;
(b) divergent series that are not divergent to ±∞;
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(c) absolutely convergent series;
(d) conditionally convergent series.

Definition 5.47 (Rearrangement of series). Suppose that
∑∞

k=1 ak is a
given series. Let {nk} be a sequence of positive integers such that each positive
integer occurs exactly once in the sequence. That is, there exists a bijective map
f : N → N with f(k) = nk, k ∈ N, so that each term in the series

∑∞
k=1 bk

(bk = ank
) is also a term in

∑∞
k=1 ak, but occurs in different order. The series∑∞

k=1 bk is called a rearrangement of
∑∞

k=1 ak.

Suppose that
∑∞

k=1 bk is a rearrangement of
∑∞

k=1 ak. Then by definition,
since bk = ank

= af(k), we have ak = bf−1(k), and thus
∑∞

k=1 ak is also a
rearrangement of

∑∞
k=1 bk.

Example 5.48. Consider

an =

⎧
⎨

⎩
1 if n is odd,
−(2n−1 − 1)

2n−1
if n is even,

for n ∈ N. Then a2n−1 → 1 and a2n → −1 as n → ∞, so that lim an does
not exist, showing that

∑∞
k=1 ak diverges, and indeed is an oscillatory series.

However, if we introduce parentheses,

∞∑

k=1

ak = (a1 + a2) + (a3 + a4) + · · ·

=
(
1− 1

2

)
+

(
1− 3

4

)
+

(
1− 7

8

)
+ · · ·

=
1

2
+

1

22
+

1

23
+ · · · ,

the result is a convergent series. •
Next we consider the alternating harmonic series (conditionally conver-

gent) (5.7). We have already shown that the series converges to S = log 2.
Suppose we rearrange this series as

(
1− 1

2

)
− 1

4
+

(1
3
− 1

6

)
− 1

8
+

(1
5
− 1

10

)
− 1

12
+ · · · .

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · ·

=
1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)

=
1

2
log 2

We now have a rearranged series of the alternating harmonic series converging
to (1/2) log 2.
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In general, it can be shown that if
∑

ak converges conditionally, there is
a rearrangement of the terms of

∑
ak such that the sum of the series is equal

to any specified real number.
Let us now rearrange the terms of the series (5.7) so that the sum is

(3/2) log 2. For this, because (5.7) is convergent, we have

1

2
log 2 =

∞∑

k=1

(−1)k−1

2k
=

1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · · . (5.10)

Next, we introduce

ak =

⎧
⎨

⎩

0 if k is odd,

(−1)(k−2)/2

k
if k is even,

and consider the series

∞∑

k=1

ak = 0 +
1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ · · · , (5.11)

which is obtained by inserting 0 into (5.10) between pairs of terms. Also,
we observe that if Sn and Tn are the nth partial sums of (5.10) and (5.11),
respectively, then we have

T1 = 0, T2n = Sn = T2n+1 for n ≥ 1,

showing that limTn = (1/2) log 2 = limSn. Thus, adding (5.7) and (5.11)
gives a new convergent series with sum (3/2) log 2. That is,

3

2
log 2 =

∞∑

k=1

( (−1)k−1

k
+ ak

)
= 1 + 0 +

1

3
− 1

2
+

1

5
+ 0 +

1

7
− 1

4
+ · · · .

If we delete 0 from the series on the right-hand side, the resulting series
is actually a rearrangement of (5.7) that is convergent to (3/2) log 2. More
generally, we have the following.

Example 5.49. Consider the alternating harmonic series
∑∞

k=1
(−1)k−1

k . Show
that if the first p positive terms are followed by the first q negative terms, the
next p positive terms followed by the next q negative terms, and so on, then
the resulting rearranged series will converge to log(2

√
p/q).

Solution. Recall from Remark 7.26(4) that if γn =
∑n

k=1
1
k − logn, then we

have 0 < γn < 1 and γn → γ, where γ is the Euler constant. These facts
about γn can be verified directly, without the using integration theory. We
may write

γn = γ +Rn, or Hn :=

n∑

k=1

1

k
= logn+ γ +Rn, (5.12)
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where Rn → 0 as n → ∞ and Hn is the nth partial sum of the harmonic series∑∞
k=1

1
k . If we consider the first p positive terms in the given alternating series

and use (5.12), then we find that

1 +
1

3
+

1

5
+ · · ·+ 1

2p− 1
=

2p∑

k=1

1

k
−

p∑

k=1

1

2k

= log 2p− 1

2
log p+

γ

2
+R2p − Rp

2
. (5.13)

Similarly, if we sum the first q negative terms of the given series, we have

−
[
1

2
+

1

4
+

1

6
+ · · ·+ 1

2q

]
= −1

2
Hq = −1

2
(log q + γ +Rq). (5.14)

Adding (5.13) and (5.14) yields

p∑

k=1

1

2k − 1
−

q∑

k=1

1

2k
= log

( 2p√
pq

)
+R2p − Rp

2
− Rq

2

= log
(
2

√
p

q

)
+R(p, q),

where R(p, q) → 0 as p, q → ∞. The result follows. •
We have the following from the last example.

Example 5.50. (1) For p = q = 1, we get

∞∑

k=1

(−1)k−1

k
= 1− 1

2
+

1

3
− · · · = log 2.

(2) For p = 1, q = 2, we get the series

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ · · · = 1

2
log 2.

(3) For p = 1 and q = 4, we get the series

1− 1

2
− 1

4
− 1

6
− 1

8
+

1

3
− 1

10
− 1

12
− 1

14
− 1

16
+

1

5
− · · · ,

whose sum is log
(
2
√

1
4

)
= 0.

(4) For p = 2 and q = 1, we get

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · · = log(2

√
2) =

3

2
log 2.
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(5) For p = 3, q = 2, we get a series with sum log
(
2
√

3
2

)
= 1

2 log 6.

(6) For p = 3 = q, we see that

1 +
1

3
+

1

5
− 1

2
− 1

4
− 1

6
+ + + · · · = log 2.

For a direct proof of case (4), we may proceed as follows. Consider

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · ·

and let its partial sum be denoted by Sn. Then

S3n = 1 +
1

3
− 1

2
+ · · ·+ 1

4n− 3
+

1

4n− 1
− 1

2n

=
(
1 +

1

3
+

1

5
+ · · ·+ 1

4n− 3
+

1

4n− 1

)
−

(1
2
+

1

4
+ · · ·+ 1

2n

)

=
(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

4n− 1
+

1

4n

)
− 1

2

(
1 +

1

2
+ · · ·+ 1

2n

)
− 1

2
Hn

= H4n − 1

2
H2n − 1

2
Hn.

As noticed earlier,

T2n =

2n∑

k=1

(−1)k−1 1

k
=

2n∑

k=1

1

k
− 2

n∑

k=1

1

2k
= H2n −Hn.

Consequently,

S3n = (H4n −H2n) +
1

2
(H2n −Hn),

so that

S3n = T4n +
1

2
T2n.

Also,

S3n−1 = S3n +
1

2n
and S3n−2 = S3n +

1

2n
− 1

4n− 1
.

We know that Tn → log 2 as n → ∞, and so T2n → log 2 and T4n → log 2
as n → ∞. The last three relations for the subsequences {S3n}, {S3n−1}, and
{S3n−2} show that {Sn} converges to 3

2 log 2. •
The following results show that the sum of an absolutely convergent series

is independent of the order of the terms, but in the case of conditionally
convergent series, the situation can be entirely different, and the order of the
terms is crucial.
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Theorem 5.51 (Rearrangement of absolutely convergent series).
If

∑∞
k=1 ak converges absolutely with sum S, then every series

∑∞
k=1 bk ob-

tained by rearranging its terms also converges absolutely to the same sum S.

Proof. Let Sn and Tn denote the nth partial sums of
∑

ak and
∑

bk, respec-
tively. Suppose that

∑ |ak| = A. Then, since each term of
∑

bk is a term of∑
ak, we have

Bn :=

n∑

k=1

|bk| ≤
∞∑

k=1

|ak| = A for each n ≥ 1,

so that A is an upper bound for the increasing sequence of partial sums {Bn}.
Therefore, by BMCT,

∑
bk is absolutely convergent.

Next we must show that
∑∞

k=1 bk = S. Since
∑

ak is convergent to the
sum S and is also absolutely convergent, it follows that for a given ε > 0 there
exists an N such that

(i) |S − Sn| < ε/2 for n ≥ N .
(ii) A−∑n

k=1 |ak| < ε/2 for n ≥ N . In particular, for n = N this gives

∞∑

k=N+1

|ak| < ε

2
.

Further, since each term of
∑

ak is a term of
∑

bk, there exists an inte-
ger N1 such that terms in {a1, a2, . . . , aN} are included among the terms
in {b1, b2, . . . , bN1}. If n ≥ N1, since Sn and Tn both include the terms
a1, a2, . . . , aN in their finite sum, we write

n∑

k=1

bk =

N∑

k=1

ak + E,

where E is a finite sum of terms of
∑

ak each of which occurs after aN . Now
we observe that from (ii), |E| < ε/2, and from (i), we have

∣∣∣∣∣S −
n∑

k=1

bk

∣∣∣∣∣ ≤
∣∣∣∣∣S −

N∑

k=1

ak

∣∣∣∣∣+ |E| < ε

2
+

ε

2
= ε for n ≥ N1.

Thus
∑

bk converges to the sum S.

5.3.3 Riemann’s Theorem on Conditionally Convergent Series

We present an important theorem due to Georg Friedrich Bernhard Riemann
(1826–1866) that shows that every conditionally convergent series can be rear-
ranged so that the resulting series has as its sum any preassigned real number.
This remarkable result is a consequence of our next result. Also, every con-
ditionally convergent series can be made to be divergent to ∞ or −∞, or
oscillatory (finite or infinite).
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Theorem 5.52 (Riemann’s rearrangement theorem). Assume that the
series

∑∞
k=1 ak is conditionally convergent, with nth partial sum sn. Let α and

β be given such that −∞ ≤ α ≤ β ≤ ∞. Then there exists a rearrangement∑∞
k=1 dk of

∑∞
k=1 ak such that

lim inf
n→∞ tn = α and lim sup

n→∞
tn = β, (5.15)

where tn =
∑n

k=1 dk. In particular, we have the following:

(a) There is a rearranged series diverging to ∞.
(b) There is a rearranged series diverging to −∞.
(c) For any given real number S, there is a rearranged series converging to

S.

Moreover, there is a rearranged series such that its partial sums oscillate
finitely or infinitely.

Proof. Without loss of generality we assume that ak �= 0 for all k ≥ 1, since
the terms of the series that are zero do not affect its convergence or divergence.
Let bn and −cn denote the nth positive term and the nth negative term of∑

ak, respectively. Then both
∑

bk and
∑

ck become positive-term series,
and because

∑
ak is conditionally convergent, we have

∑
|ak| =

∑
bk +

∑
ck = ∞,

which implies that either
∑

bk or
∑

ck diverges.

Claim: Both
∑

bk and
∑

ck are divergent.
Suppose this is not the case. Then one of these two series is convergent.

Without loss of generality, we assume that
∑

ck converges to C (C > 0) and∑
bk = ∞. Since

∑
bk is a divergent series of positive terms, given R > 0,

there exists an N1 such that

N1∑

k=1

bk > R+ C.

Choose N2 large enough that the first N2 terms of {an} contain the first N1

terms of {bn}. Then for all n ≥ N2,

sn =
n∑

k=1

ak ≥
N1∑

k=1

bk −
∞∑

k=1

ck > R+ C − C = R,

showing that the sequence {sn} of partial sums is unbounded, and hence
∑

ak
diverges, a contradiction. Thus both

∑
bk and

∑
ck must be divergent. The

claim is proved, and it follows that
∑

bk = ∞ and
∑

ck = ∞.
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Further, because
∑

ak is convergent, an → 0, and so

lim
n→∞ bn = 0 = lim

n→∞ cn.

We now introduce

Bn =

n∑

k=1

bk and Cn =

n∑

k=1

ck

and describe a method that tells us when to take positive terms and when to
take negative terms.

(a) Since
∑

bk diverges to ∞, the sequence of its partial sums is therefore
unbounded. Thus, there exists an m1 such that

Bm1 > 1 + c1.

Again, choose m2 large enough that

Bm2 − (1 + c1) > 1 + c2, i.e., Bm2 − (c1 + c2) > 2.

If we continue the process in this way, we obtain a sequence {mp} of
positive integers such that

Bmp − Cp =

mp∑

k=1

bk −
p∑

k=1

ck > p,

and hence we obtain a rearrangement of
∑

ak diverging to ∞.
(b) A very similar argument with the roles of bn and cn reversed allows us

to build a rearrangement for which there is a sequence of partial sums
diverging to −∞.

(c) Now we fix α and β with α ≤ β. Note that we do not exclude the following
possibilities:

(i) α = β = ∞; (ii) α = β = −∞; (iii) α = −∞, β = ∞.
We have already taken care of the cases in which α = β = S, with
S = ±∞. Thus, the rearranged series diverges to ∞ or to −∞ depending
on whether α = β = ∞ or α = β = −∞, respectively. Clearly, (i) and
(ii) follow from the proof of (iii), but just for the sake of clarity and for
getting used to the idea of specifying a rearrangement by a qualitative
process, we have included the proof for (i). Finally, if α = β = S, a
finite real number, then our procedure shows that the rearranged series
converges to S.

Now we present our argument for the general case (5.15), and it is very much
the same. Let {xn} and {yn} be two sequences of real numbers such that

lim
n→∞ xn = α, lim

n→∞ yn = β, with xn < yn and y1 > 0.
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Choose just enough (say m1) positive terms so that

T1 = Bm1 > y1.

Again, choose just enough (say n1) negative terms so that

S1 = Bm1 − Cn1 < x1.

Next, we continue the process and choose just enough further positive terms
and negative terms so that

T2 = Bm2 − Cn1 > y2 and S2 = Bm2 − Cn2 < x2.

If we continue the process, we obtain the following rearrangements of
∑

ak:

b1 + · · ·+ bm1︸ ︷︷ ︸−c1 − · · · − cn1 + bm1+1 + · · ·+ bm2

︸ ︷︷ ︸
−cn1+1 − · · · − cn2 + · · ·

and

b1 + · · ·+ bm1 − c1 − · · · − cn1︸ ︷︷ ︸+bm1+1 + · · ·+ bm2 − cn1+1 − · · · − cn2

︸ ︷︷ ︸
+ · · · .

Also, we observe that

Tk = Bmk
− Cnk−1

> yk, and Sk = Bmk
− Cnk

< xk,

where mk and nk are increasing sequences that are the least positive inte-
gers greater than mk−1 and nk−1, respectively. Here Cn0 = 0. The last two
inequalities may be combined as

Sk < xk < yk < Tk.

(See Figure 5.9.)
Also note that

Tk = Bmk
− Cnk−1

= Sk + (cnk−1+1 + · · ·+ cnk
)

= Sk−1 + (Bmk
−Bmk−1

)

= Sk−1 + (bmk−1+1 + · · ·+ bmk
).

• • •
Sk

•
x

k
yk Tk

Fig. 5.9. Positions of Sk, xk, yk and Tk’s.
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Thus, Tk and Sk are respectively the kth partial sums of the two rearranged
series of

∑
ak with last terms bmk

and −cnk
. We leave the rest of the argument

as a simple exercise.

5.3.4 Dirichlet Test

Definition 5.53 (Bounded variation for a sequence). A sequence
{an}n≥0 of real numbers is said to be of bounded variation if the series∑∞

k=1 |ak − ak−1| converges.
It is easy to see that the following statements are true:

• Every sequence of bounded variation is convergent.
• Not every convergent sequence is of bounded variation.
• Every bounded monotone sequence is of bounded variation, for

n∑

k=1

|ak − ak−1| = |a0 − an| → |a0 − lim
n→∞ an|.

• A linear combination of two sequences of bounded variation is of bounded
variation.

Theorem 5.54 (Generalized Dirichlet test). Let {an}n≥1 and {bn}n≥1

be sequences of real numbers such that

(i) |sn| ≤ M for n ≥ 1, sn =
∑n

k=1 ak; i.e., {an} has bounded partial sums;
(ii) bn → 0 and

∑∞
k=1 |bk − bk+1| < ∞; i.e., {bn} is of bounded variation

converging to 0.

Then
∑∞

k=1 akbk converges.

Proof. We have a1 = s1, and ak = sk − sk−1 for k ≥ 2. Also we see that

n∑

k=1

akbk = a1b1 +

n∑

k=2

(sk − sk−1)bk

= s1b1 +

n∑

k=2

skbk −
n∑

k=1

skbk+1 + snbn+1

=

n∑

k=1

sk(bk − bk+1) + snbn+1,

which is often called a formula for summation by parts.
Assume the hypotheses that {sn} is bounded and {bn} is of bounded

variation such that bn → 0 as n → ∞. Consequently:

• snbn+1 → 0 as n → ∞.
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• Because
∑∞

k=1(bk − bk+1) is absolutely convergent and {sn} is bounded, it
follows that

n∑

k=1

|sk(bk − bk+1)| ≤ M

n∑

k=1

|bk − bk+1| ≤ M

∞∑

k=1

|bk − bk+1|,

and so
∑∞

k=1 sk(bk−bk+1) is absolutely convergent. In particular, the series∑∞
k=1 sk(bk − bk+1) converges.

Thus the formula for summation by parts gives the desired conclusion.

Corollary 5.55 (Dirichlet’s test). Suppose that {an}n≥1 is a sequence of
real numbers with bounded partial sums, and {bn}n≥1 is a decreasing sequence
of nonnegative real numbers with limit zero. Then

∑∞
k=1 akbk converges.

Proof. Since every bounded monotone sequence is of bounded variation, the
hypothesis implies that {bn} is of bounded variation. The result follows from
Theorem 5.54.

For instance, we have the following:

• The choice ak = (−1)k−1 gives the Leibniz alternating series test (see
Theorem 5.44) as a special case. Thus, Dirichlet’s test generalizes the
Leibniz test.

• The choice ak = (−1)k−1 gives that sn is either 1 or 0, and so bk =
1
kp (p > 0) in Dirichlet’s test shows that the alternating harmonic p-series
∑∞

k=1
(−1)k−1

kp converges for p > 0.

Example 5.56. Decide whether the series
∑

k≥2
sin k
log k converges but not ab-

solutely.

Solution. Let an = sinn and bn = 1/ logn for n ≥ 2. Then {bn} is a decreasing
sequence converging to zero and

Sn =
n∑

k=1

ak =
1

2 sin(12 )

n∑

k=1

[
cos

(
k − 1

2

)
− cos

(
k +

1

2

)]

=
1

2 sin(12 )

[
cos

(1
2

)
− cos

(
n+

1

2

)]
,

so that |Sn| ≤ 1/ sin(1/2). Thus, Dirichlet’s test is applicable. To prove that
the series is conditionally convergent, it suffices to show that

∑ |akbk| behaves
like

∑
1

log k . Since | sinx| + | sin(x + 1)| > 0 for x ∈ N, there exists a number

m > 0 such that m = infx∈N(| sinx|+ | sin(x+ 1)|). Consequently,
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∞∑

k=2

| sin k|
log k

=

∞∑

k=2

( | sin(2k − 1)|
log(2k − 1)

+
| sin(2k − 2)|
log(2k − 2)

)

>

∞∑

k=2

1

log(2k − 1)
(| sin(2k − 1)|+ | sin(2k − 2)|)

= m

∞∑

k=2

1

log(2k − 1)
,

and so the given series does not converge absolutely. •
Corollary 5.57. If

∑∞
k=1 ak is convergent and if {bn} is of bounded variation,

then
∑∞

k=1 akbk is convergent.

Proof. Set sn =
∑n

k=1 ak. Then by hypothesis, {sn} is convergent (and there-
fore bounded). Since {bn} is of bounded variation,

∑∞
k=1 |bk − bk−1| is con-

vergent, so that the series
∑∞

k=1(bk − bk+1) is convergent. This gives that
the sequence of its partial sums is {b1 − bn+1}, which is clearly convergent.
Thus, the series

∑∞
k=1 sk(bk − bk+1) and the sequence {bn} are convergent.

The result follows from Abel’s formula for summation by parts.

Since every monotone bounded sequence is of bounded variation, we also
have the following corollary, which is referred to as Abel’s test (compare with
Theorem 5.31 and Corollary 5.32).

Corollary 5.58 (Abel’s test). If
∑

ak is convergent and {bn} is monotone
and bounded, then

∑
akbk is convergent.

Neither of the two hypotheses in Corollary 5.57 can be dropped. For in-
stance, consider the following pairs of choices:

(a) an = (−1)n−1, bn = (−1)n/n;
(b) an = (−1)n/

√
n, bn = (−1)n/

√
n;

(c) an = (−1)n, bn = 1 + (1/n);
(d) an = 1, bn = 1/n.

For each pair of choices,
∑∞

k=1 akbk diverges.

Corollary 5.59. Let {bn}n≥1 be a monotone sequence such that bn → 0 as
n → ∞. Then:

(i)
∑∞

k=1 bk sinkx converges for each x ∈ R.
(ii)

∑∞
k=1 bk cos kx converges for each x ∈ R with x �= 2mπ, m ∈ Z.

Proof. (i) Fix x and let an = sinnx for n ≥ 1. Then (as in Example 5.56)

Sn =

n∑

k=1

ak =
1

2 sin(x2 )

[
cos

(x
2

)
− cos

(2k + 1

2

)
x

]
.
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Note that if x = 2mπ for some m ∈ Z, then an = 0 for each n ≥ 1, and
so Sn = 0 for each n ≥ 1. Consequently, for sin(x/2) �= 0, it follows that

|Sn| ≤ 1

| sin(x/2)| for each n ≥ 1.

Thus {Sn} is bounded. The result follows from Dirichlet’s test.
(ii) Let an = cosnx for x with x �= 2mπ for any m ∈ Z. We see that

Sn(x) =
1

2 sin(x/2)

n∑

k=1

2 sin(x/2) cos(kx)

=
1

2 sin(x/2)

n∑

k=1

[sin(k + 1/2)x− sin(k − 1/2)x]

=
1

2 sin(x/2)
[sin(n+ 1/2)x− sin(x/2)].

Since sin(x/2) �= 0, the result follows from (i).

Again we remark that the Leibniz test is a special case Corollary 5.59
(choose x = π).

Example 5.60. If x = π and bk = 1√
k
, 1

log(k+1) , Corollary 5.59 gives that

both ∞∑

k=1

(−1)k−1

√
k

and

∞∑

k=1

(−1)k−1

log(k + 1)

are convergent. •
We next state the following theorem, the proof of which follows directly

from the definition and the hypothesis.

Theorem 5.61. If the sequence of partial sums of
∑∞

k=1 ak is bounded and
{bn} is a decreasing null sequence of positive numbers, then

∑
k≥1 akbk con-

verges.

Proof. By hypothesis, there exists an M > 0 such that |sn| ≤ M for n ≥ 1,
where sn =

∑n
k=1 ak. Since {bn} is a null sequence of positive numbers, given

any ε > 0, there exists an N such that

bn <
ε

2M
for all n ≥ N .

The formula for summation by parts (see the proof of Theorem 5.54) gives

m∑

k=n+1

akbk =
m∑

k=n+1

sk(bk − bk+1) + smbm+1 − snbn+1,
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so that
∣∣∣∣∣

m∑

k=n+1

akbk

∣∣∣∣∣ ≤ M

[
m∑

k=n+1

(bk − bk+1) + (bn+1 + bm+1)

]

≤ 2Mbn+1 < ε for all n ≥ N.

Thus {∑n
k=1 akbk} is a Cauchy sequence, and the result follows by Cauchy’s

criterion.

5.3.5 Cauchy Product

If we formally consider the product of two power series
∑

k≥0 akx
k and∑

k≥0 bkx
k and organize the resulting series in powers of x, then we end up

with

(∑

k≥0

akx
k
)(∑

k≥0

bkx
k
)
=

∑

n≥0

cnx
n, cn =

n∑

k=0

akbn−k, n = 0, 1, 2, . . . .

A motivation for the introduction of the Cauchy product may be seen by
substituting x = 1 in the above identity and making the following definition:
The Cauchy product of two convergent infinite series

∑
k≥0 ak,

∑
k≥0 bk is the

series ∑

n≥0

cn.

The result one might hope for is that
∑

n≥0 cn converges. It turns out that
this is false. We then ask, under what conditions does the series

∑
n≥0 cn

converge?

Theorem 5.62 (Mertens test). If A =
∑

k≥0 ak and B =
∑

k≥0 bk are two
convergent series, then AB =

∑
n≥0 cn (meaning that the series converges),

provided that at least one of the series is absolutely convergent.

Proof. Let
∑

ak be absolutely convergent. Define

An =
n∑

k=0

ak, Bn =
n∑

k=0

bk, Cn =
n∑

k=0

ck and a =
∑

k≥0

|ak|.

Then we note that

Cn = c0 + c1 + · · · + cn

= a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · · + (a0bn + · · ·+ anb0)

= a0Bn + a1Bn−1 + · · · + anB0

= [a0B + a1B + · · · + anB]− [a0(B −Bn) + · · · + an(B −B0)]

= AnB −Dn,
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where
Dn = a0(B −Bn) + a1(B −Bn−1) + · · · + an(B −B0).

Note that
AnB −→ AB as n → ∞. (5.16)

Since
∑

k≥0 |ak| is convergent, given ε > 0, there exists an N1 such that

∑

k≥N1

|ak| < ε for n ≥ N1.

As Bn −B → 0, for a given ε > 0, there exists an N2 such that

|Bn −B| < ε for n ≥ N2.

Therefore, for n > max{N1, N2} = N and dn = B −Bn,

|Dn| ≤ (|a0|+ · · · + |an−N |)ε+ (|an−N+1|+ · · · + |an|) sup
n∈N∪{0}

{|dn|}

≤
(
a+ sup

n∈N∪{0}
{|dn|}

)
ε with a =

∑

n≥0

|an|,

which approaches 0 as n → ∞, since dn → 0, and so supn∈N∪{0}{|dn|} < ∞.
Hence by (5.16), Cn → AB. This completes the proof.

Remark 5.63. In Theorem 5.62, it is essential that one of the two series be
absolutely convergent. For instance, if we consider

ak = bk =
(−1)k+1

√
k + 1

, k ≥ 0,

then each of
∑

k≥0 ak and
∑

k≥0 bk converges (by the alternating series test)
but not absolutely. On the other hand, we see that

|cn| =
∣∣∣∣∣(−1)n

n∑

k=0

1√
k + 1

√
n− k + 1

∣∣∣∣∣

=
1√

1
√
n+ 1

+
1√
2
√
n
+ · · ·+ 1√

n+ 1
√
1

≥
n∑

k=0

1√
n+ 1

√
n+ 1

=
n+ 1

n+ 1
= 1.

Since the general term in the Cauchy product
∑

n≥0 cn does not approach 0,
the Cauchy product of the two chosen series does not converge. This example
demonstrates that the Cauchy product of two conditionally convergent series
may fail to be convergent.
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The same conclusion can also be drawn if we choose

ak = bk =
(−1)k

log(k + 2)
, k ≥ 0.

In this choice, we see that

|cn| ≥ n

(log(n+ 2))2
→ ∞ as n → ∞. •

In view of Remark 5.63, it is natural to ask whether the series
∑

cn, if
convergent, must have the sum AB. The answer is affirmative, see Theorem
9.54.

5.3.6 (C, 1) Summability of Series

There are instances in which divergent series may be viewed as convergent
series. The theory of summability methods for series primarily concerns itself
with the question whether in some sense, a “sum” may be assigned to a series∑

ak even when it is divergent. At the same time, any “new sum” we define
must agree with the sum in the ordinary sense, namely

lim
n→∞ sn =

∞∑

k=1

ak

when the series is convergent.

Definition 5.64 ((C, 1) summable series). If {sn}n≥1 is the sequence of
partial sums of the series

∑∞
k=1 ak, then we say that the series

∑∞
k=1 ak is

(C, 1) summable to L, or (C, 1) summable with sum L, if sn → L (C, 1). In
this case, we write (see Definition 2.62)

∞∑

k=1

ak = L (C, 1) or
∞∑

k=1

ak = L (Cesàro).

Example 5.65. Set an = (−1)n−1 for n ≥ 1. Then

sn =

{
0 if n is even,
1 if n is odd,

which gives

σ2n =
n

2n
=

1

2
and σ2n−1 =

n

2n− 1
, where σn =

1

n

n∑

k=1

sk,

and so σn → 1/2 as n → ∞. Thus,

∞∑

n=1

(−1)n−1 =
1

2
(C, 1). •
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Now we ask whether every divergent series can be (C, 1) summable.

Example 5.66 (Not all divergent series are (C, 1) summable). Show
that the harmonic series

∑∞
k=1(1/k) is not (C, 1) summable.

Solution. We have ak = 1/k and

σn =
1

n

(
s1 + s2 + · · ·+ sn

)
, sk = 1 +

1

2
+ · · ·+ 1

k

=
1

n

[
n · 1 + (n− 1) · 1

2
+ (n− 2) · 1

3
+ · · ·+ 2 · 1

n− 1
+

1

n

]

= 1 +

(
1− 1

n

)
1

2
+

(
1− 2

n

)
1

3
+ · · ·+

(
1− n− 1

n

)
1

n

= sn − 1

n

(
1

2
+

2

3
+

3

4
+ · · ·+ n− 1

n

)

=: sn − bn, say,

where

0 < bn <
1

n

[
(n− 1)

(n− 1

n

)]
< 1 for all n > 1.

Since {sn} is divergent, it follows that {σn} is a divergent sequence of positive
numbers. Consequently, the harmonic series is not (C, 1) summable. •

If an = c for some nonzero constant and for all n ≥ 1, then sn = cn, so
that σn = c(n+1)/2, and so the series whose terms are some nonzero constant
is not (C, 1) summable.

In our next theorem, we present a simple condition that makes (C, 1)
summable series become convergent. An analogue of this theorem for Abel
summable series is given in Theorem 9.57.

Theorem 5.67. Suppose that
∑∞

k=0 ak is (C, 1) summable to A, and nan → 0
as n → ∞. Then

∑∞
k=0 ak is convergent with sum A.

Proof. Set sn =
∑n

k=1 an, so that nσn =
∑n

k=1 sn and σn → A as n → ∞.
Further, since nan → 0 as n → ∞, Theorem 2.64 shows that

Tn =
1

n

n∑

k=1

kak → 0 as n → ∞.
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We need to show that {sn} converges to A. For this, we write

nTn =

n∑

k=1

k(sk − sk−1) (s0 = 0)

=

n∑

k=1

(ksk − (k − 1)sk−1)−
n∑

k=1

sk−1

= nsn −
(

n∑

k=1

sk − sn

)
,

and therefore

nTn = (n+ 1)sn − nσn or sn =
n

n+ 1
σn +

n

n+ 1
Tn.

Since σn → A and Tn → 0, it follows that sn → A as n → ∞, and the proof
is complete.

5.3.7 Questions and Exercises

Questions 5.68.

1. Does a sum of a convergent and a divergent series converge? Does
∞∑

k=1

( 1√
k
+

(−1)k−1

k

)
diverge?

2. Must an alternating series whose general term approaches zero be conver-

gent? Does
∞∑

k=1

(−1)k−1
(
1− 31/k

)
converge?

3. Does a sum of two alternating convergent series converge?

4. Does the series

∞∑

k=1

(−1)k−1
( 1√

k
+

(−1)k−1

k

)
converge?

5. What (if anything) is wrong with the following computation?

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

= 1 +
(1
2
− 1

)
+

1

3
+

(1
4
− 1

2

)
+

1

5
+

(1
6
− 1

3

)
+ · · ·

=
(
1 +

1

2
+

1

3
+

1

4
+ · · ·

)
− 1− 1

2
− 1

3
− 1

4
− · · ·

=
(
1 +

1

2
+

1

3
+ · · ·

)
−

(
1 +

1

2
+

1

3
+ · · ·

)
= 0.

6. Suppose that
∑

a2k is convergent. Must
∑

ak be divergent? Must
∑

ak
be convergent?

7. Suppose that
∑

ak is convergent. Must
∑

a2k be divergent? Can
∑

a2k be
convergent?
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8. Does there exist a divergent alternating series
∑

(−1)k−1ak such that
lim
k→∞

ak = 0, but {ak} is not decreasing?

9. Suppose that
∑∞

k=1 ak is absolutely convergent. Can

∞∑

k=1

ak =

∞∑

k=1

a2k−1 +

∞∑

k=1

a2k?

10. Suppose that
∑∞

k=1 ak is conditionally convergent. Must
∑∞

k=1 ak =∑∞
k=1 a2k−1 +

∑∞
k=1 a2k?

11. Must a product of two sequences of bounded variation be of bounded
variation?

12. Can we drop the condition bn → 0 in Theorem 5.54(2)?
13. If

∑∞
k=1 ak is absolutely convergent, must {an}n≥1 be of bounded varia-

tion? How about if “absolutely convergent” is replaced by “convergent”?
14. If {bn} is a decreasing sequence of bounded variation, i.e.,

∑∞
k=1 |bk −

bk+1| < ∞, must it be convergent?
15. Must every monotone bounded sequence be of bounded variation?

16. Is the series
∞∑

k=1

k(−1)k−1 Cesàro summable?

Exercises 5.69.

1. Let {an} be a decreasing sequence of nonnegative real numbers with an →
0. Set

bn =
1

n

n∑

k=1

ak, cn =
1

n

n∑

k=1

a2k−1 and dn =
1

2n− 1

n∑

k=1

a2k−1.

Show that if An is either bn or cn or dn, then

∞∑

k=1

(−1)k−1Ak is convergent.

2. Test the series
∑∞

k=1 ak for convergence, where ak equals

√
2
sin(kπ/2− π/4)

k
.

3. Using the alternating series test or otherwise, test
∑∞

k=1(−1)k−1ak for
convergence, where ak is given by

(a)
1

k1/3 + k1/2
. (b)

1

(k + 1) log(k + 1)
. (c)

k + 2k

3k + 5
.

(d)
k

k + 2
. (e)

1 · 3 · · · · (2k − 1)

2 · 4 · · · · 2k . (f)
1

k + a2
.

4. At least howmany terms are to be considered from the series
∑∞

k=1
(−1)k−1

2k−1
so that the error does not exceed 0.0001?
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5. Show that the series

1 +
1

2
+

1

3
− 1

4
− 1

5
− 1

6
+

1

7
+

1

8
+

1

9
− − − + + + · · ·

converges and find its sum.
6. Does the series

1− 1 +
1

2
− 1

2
+

1

3
− 1

3
+

1

4
− 1

4
+ · · ·

converge? If so, does it have a divergent rearrangement? How about the
rearrangement of the series

1− 1 +
1

2
− 1

2
+

1

3
+

1

4
− 1

3
+

1

5
+

1

6
+

1

7
+

1

8
− 1

4
+ · · ·?

7. Using the fact that

1

3n− 2
+

1

3n− 1
− 1

3n
>

1

3n
for n = 1, 2, . . . ,

deduce that the series

1 +
1

2
− 1

3
+

1

4
+

1

5
− 1

6
+ · · ·

is divergent.
8. Show that the series

(
1− 1

2

)
+

(
1− 3

4

)
+

(
1− 7

8

)
+ · · ·

is convergent. Show also that when the parentheses are removed, it oscil-
lates.

9. Show that

(i)
π

8
=

1

1 · 3 +
1

5 · 7 +
1

9 · 11 + · · · .

(ii) log 2 =
1

1 · 2 +
1

3 · 4 +
1

5 · 6 + · · · .

10. Suppose that
∑

ak is convergent (e.g., ak = (−1)k−1/k). Using Abel’s
test (Corollary 5.58) or otherwise, test the convergence of

∑
akbk when

bk equals

(a) k1/k. (b)
1

log k
. (c)

(
1 +

1

k

)k

. (d) k−p (p > 0).

11. Test the convergence of the series
∑∞

k=1 ak(x) whose kth terms are given
below:

(a)
cos kx

log(k + 1)
. (b)

sin kx

(log k)α
. (c)

cos kx

kα
.
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12. Consider the following series:

(a)

∞∑

k=1

sin(π/k). (b)

∞∑

k=1

(−1)k−1 cos(π/k).

Verify whether each of these converges or diverges.

13. If an = (−1)n

n+1 , n ≥ 0, determine the Cauchy product of
∑∞

k=0 ak with
itself. Verify whether the Cauchy product series converges.

14. Give an example such that
(a) {bn} is bounded but is not of bounded variation.
(b) {bn} is convergent but is not of bounded variation.
(c) {bn} is of bounded variation but is not monotone.

15. Show that
∑∞

k=1 sin(kπ/2) is (C, 1) summable to 1/2.
16. Show that a divergent series of positive numbers cannot be Cesàro

summable.
17. Suppose that the series

∑∞
k=1 ak is (C, 1) summable. Show that

(a) the sequence {an}n≥1 is (C, 1) summable.
(b) the sequence {sn/n}n≥1 converges to 0.
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Definite and Indefinite Integrals

In Section 6.1, we define the definite integral, called the Riemann integral,
using Riemann sums. Then we study the properties of the Riemann integral.
The fundamental result that we prove in this section states that every bounded
function on an interval [a, b] is integrable if it is either monotone on [a, b]
(see Theorem 6.20) or continuous on [a, b] (see Theorem 6.21). In Section

6.1, we show that the definite integral
∫ b

a
f(x) dx exists if f(x) is a piecewise

continuous function defined on a bounded interval [a, b].
In Section 6.2, we meet the fundamental theorem of calculus, which con-

nects the integral of a function and its antiderivative. Later, we will move
on to the Riemann–Stieltjes integral. Basic linearity properties of definite and
indefinite integrals are presented. In Section 6.2, we present an important the-
orem in integral calculus, namely the mean value theorem for integrals, and
as a consequence, we define the average value of a function. In addition, using
the fundamental theorem of integral calculus, we introduce the logarithmic
and exponential functions and develop their principal properties.

In a later chapter (see Section 9.2), we examine a close relationship be-
tween uniform convergence and integration, and then later between uniform
convergence and differentiation.

6.1 Definition and Basic Properties of Riemann Integrals

We begin our discussion with an arbitrary bounded function f(x) defined on
a closed interval [a, b]. A partition P = {x0, x1, . . . , xn} of an interval [a, b] is
a finite set of points arranged in such a way that

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

The partition P defines n closed subintervals

[x0, x1], [x1, x2], . . . , [xk−1, xk], . . . , [xn−1, xn]

S. Ponnusamy, Foundations of Mathematical Analysis,
DOI 10.1007/978-0-8176-8292-7 6,
© Springer Science+Business Media, LLC 2012

209
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of [a, b]. The typical closed subinterval [xk−1, xk] is called the kth subinterval
representative of the partition P . The length of the kth subinterval is

Δxk = xk − xk−1, k = 1, 2, . . . , n.

The largest of the lengths of these subintervals is called the norm (sometimes
called the mesh or width) of the partition P and is denoted by ‖P‖; that is,

‖P‖ = max
k=1,2,...,n

Δxk := max
k=1,2,...,n

(xk − xk−1).

A standard partition or equally spaced partition is a partition all of whose
subintervals are of equal length. For an arbitrary interval [a, b], the standard
partition is given by

P = {x0, x1, . . . , xn}, where xk = a+
k(b− a)

n
for k = 0, 1, 2, . . . , n.

The family of all partitions of [a, b] will be denoted by P [a, b] or simply by
P when the interval under discussion is clear. For each k = 1, 2, . . . , n, choose
an arbitrary point x∗

k ∈ [xk−1, xk] (Figure 6.1). On each subinterval, we form
the product

x0=a x1 x2 xk
∗

xk−1≤xk
∗≤xk

xk−1 xk xn−1 xn= b

Fig. 6.1. Partition of [a, b].

Ak = f(x∗
k)Δxk

and the sum

Sn =
n∑

k=1

Ak.

This sum, which depends on the partition P and the choice of the points
x∗
1, x

∗
2, . . . , x

∗
n, is called the integral sum (also called Riemann sum) of f over

the interval [a, b] with respect to P and points x∗
k ∈ [xk−1, xk], k = 1, 2, . . . , n.

Also, if we let (see Figure 6.2)

mk = inf
x∈[xk−1,xk]

f(x), Mk = sup
x∈[xk−1,xk]

f(x),

then each partition determines two sums that correspond to overestimates
and underestimates of the possible area:

Sn :=

n∑

k=1

MkΔxk and sn :=

n∑

k=1

mkΔxk. (6.1)
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xk−1 xk−1 xk

y= f(x)

OO xx

mk

y

xk

y

y= f(x)Mk

Fig. 6.2. Description for mk and Mk.

O x

y

x0 x1 x2 x3 x4 x5 x6 · · · xn−1 xn

Fig. 6.3. Upper Riemann sum.

O x

y

x0 x1 x2 x3 x4 x5 x6 · · · xn−1 xn

Fig. 6.4. Lower Riemann sum.

Here Sn and sn are referred to as an upper sum and a lower sum of f on [a, b],
respectively (Figures 6.3 and 6.4). We observe that as n becomes larger, the
subdivision of [a, b] corresponding to the partition P becomes finer.

For the purpose of visualizing the notion of area of the region R bounded
by the x-axis and the curve

y = f(x), and the lines x = a, x = b,
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it is worthwhile for the moment to consider the special case in which f is
continuous on [a, b] and f(x) ≥ 0 on [a, b]. Then Ak defined above is the
area of the kth rectangle, and the area in question must lie between Sn and
sn, showing that the upper sum overestimates the area, while the lower sum
underestimates it. If the number of partition points is increased such that
‖P‖ is sufficiently small, then the upper sum decreases, while the lower sum
increases. In other words, as ‖P‖ → 0, both Sn and sn should converge to
the area under the curve. Thus, by the squeeze/sandwich rule, we express the
area under the curve y = f(x) (f(x) ≥ 0, x = a, x = b, and the x-axis) as

A = lim
‖P‖→0

Sn,

provided the limit exists.

6.1.1 Darboux Integral

Definition 6.1. Suppose that f : [a, b] → R is bounded and P = {x0, x1,
. . . , xn} is a partition and x∗

k ∈ [xk−1, xk] (k = 1, 2, . . . , n) is arbitrary. Then
the quantities Sn, sn, and Sn are called the upper sum (or upper Darboux sum
or upper integral sum), the lower sum (or lower Darboux sum or lower integral
sum), and the Riemann sum, respectively, of the function f associated with
the partition P . These are usually denoted by

Sn := U(P, f), sn := L(P, f), and Sn := σ(P, f, x∗).

For a bounded function f on [a, b], we define

m = inf
x∈[a,b]

f(x) and M = sup
x∈[a,b]

f(x),

and so
m ≤ mk ≤ f(x∗

k) ≤ Mk ≤ M.

If we multiply the inequalities above by xk−xk−1 and sum over k = 1, 2, . . . , n,
then we obtain

m(b− a) ≤ sn ≤ Sn ≤ Sn︸ ︷︷ ︸
≤ M(b− a);

that is,

m(b− a) ≤ L(P, f) ≤ σ(P, f, x∗) ≤ U(P, f)︸ ︷︷ ︸ ≤ M(b− a)

holds for every partition P and for every choice of the points x∗
k ∈ [xk−1, xk],

k = 1, 2, . . . , n (Figure 6.5). In other words,

{U(P, f) : P ∈ P [a, b]} and {L(P, f) : P ∈ P [a, b]}
form bounded sets. The above discussion leads to the following definition.
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m(b−a)
m

M

a b

y

xO

m

M

a b

y

xO

m

M

a b

y

xO

M(b−a)
b

a
f(x) dx

Fig. 6.5. Inequalities for integrals.

Definition 6.2 (Darboux integral). The upper (Darboux) integral of f on
[a, b] is defined by

U(f) :=

∫ b

a

f(x) dx = inf{U(P, f) : P ∈ P [a, b]},

and the lower (Darboux) integral of f on [a, b] is defined by

L(f) :=

∫ b

a

f(x) dx = sup{L(P, f) : P ∈ P [a, b]}

(as a finite number). A bounded function f defined on [a, b] is said to be
(Darboux) integrable on [a, b] if the upper and the lower (Darboux) integrals
are equal, i.e., if U(f) = L(f). The common value is called the integral of f
on [a, b] or the definite integral of f from a to b and is denoted by

∫ b

a

f(x) dx.

In this case, we say that f is Darboux integrable. If U(f) > L(f), then we say
that f is not Darboux integrable.

Note that if
∫ b

a
f(x) dx exists, then

L(P, f) ≤
∫ b

a

f(x) dx ≤ U(Q, f) for every P,Q ∈ P [a, b].

Recall that in defining the quantities U(f) and L(f), we have assumed the
completeness property of the real numbers (see Definitions 1.18 and 1.19).
We follow the convention that whenever an interval [a, b] is employed, we

assume that a < b and therefore
∫ b

a f(x) dx for a < b only. If a = b, we set∫ b

a
f(x) dx = 0.
Nonspecialists actually call the lower Darboux integral and upper Darboux

integral the lower Riemann integral and the upper Riemann integral, respec-

tively. Also,
∫ b

a f(x) dx is often referred to as the Riemann integral of f on
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[a, b]. This is because Riemann’s definition of integrability is slightly different
(see Definition 6.14). However, this will be clear once we prove that these two
definitions are actually equivalent.

The function f that is being integrated is called the integrand, the inter-
val [a, b] is the interval of integration, and the endpoints a and b are called,
respectively, the lower and upper limits of integration.

Example 6.3. A partition of [0, 1] is

P =
{
0,

3

7
,
1

2
,
3

4
, 1

}
,

so that

Δx1 =
3

7
, Δx2 =

1

14
, Δx3 =

1

4
, Δx4 =

1

4
,

and the norm of the partition P is

‖P‖ = max
{3

7
,
1

14
,
1

4
,
1

4

}
=

3

7
.

Note that P is not a standard partition of [a, b], because its subintervals are
not all of equal length. •

While forming the integral sum, f must be assumed to be bounded, since
every integrable function is necessarily bounded; see, for example, Remark 6.5.

Example 6.4 (Not every bounded function is integrable). Consider
the Dirichlet function f defined over the interval [0, 1]:

f(x) =

{
0 if x is irrational
1 if x is rational

, x ∈ [0, 1].

Let P = {x0, x1, . . . , xn} be any partition of [0, 1]. Since every interval
[xk−1, xk] contains both rational and irrational points, we have (see Figure
6.6)

mk = inf
xk−1≤x≤xk

f(x) = 0 and Mk = sup
xk−1≤x≤xk

f(x) = 1.

We compute the upper and lower integral sums

U(P, f) =
n∑

k=1

1.(xk − xk−1) = xn − x0 = 1 and L(P, f) = 0.

Therefore, since the above is true for any P ∈ P [a, b], we have

∫ 1

0

f(x) dx = 1 and

∫ 1

0

f(x) dx = 0,

and hence the Dirichlet function f is not integrable on [0, 1]. This example
shows that not every bounded function is integrable. •
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y

x

y=1, x∈

y=0, x   

xk−1 xk 1

1

O

Fig. 6.6. Each [xk−1, xk] contains both rational and irrational points.

Remark 6.5 (Unbounded functions). We encounter some difficulties if we
try to apply the definition for unbounded functions. For example, consider

f(x) =

⎧
⎨

⎩

1

x
for x ∈ (0, 1]

0 for x = 0
and g(x) =

⎧
⎨

⎩

1√
x

for x ∈ (0, 1],

0 for x = 0.

Then both f and g are unbounded on [0, 1] with

lim
x→0+

f(x) = ∞ = lim
x→0+

g(x).

Let P = {x0, x1, . . . , xn} be a partition. If in the sum Sn =
∑n

k=1 f(x
∗
k)Δxk,

we have x∗
1 = 0, then f(x∗

1) = 0, and so

Sn := σ(P, f, x∗) =
n∑

k=2

f(x∗
k)Δxk.

But if x∗
1 > 0, then because supx∈[0,x∗

1]
f(x) = ∞, no matter how small the

first subinterval length Δx1 = x1 − x0 = x1, we can make f(x∗
1) as large

as possible by choosing x∗
1 sufficiently close to zero. Thus, U(P, f) does not

exist, and this observation forces us to avoid unbounded functions on any
closed interval when considering integrability. •

We remark that the upper and lower sums depend on the choice of parti-
tions, while the upper and lower integrals are independent of the partitions.

Example 6.6 (Integrability of a constant function). We begin our
discussion with f(x) = c (constant) for all x ∈ [a, b]. Then every Riemann
sum of f over any partition P becomes

σ(P, f, x∗) =
n∑

k=1

f(x∗
k)Δxk = c

n∑

k=1

(xk − xk−1) = c(xn − x0) = c(b− a),

which is a constant. In particular,

c(b− a) = L(P, f) ≤ L(f) ≤ U(f) ≤ U(P, f) = c(b− a),

so that L(f) = U(f), showing the integrability of f , and
∫ b

a
c dx = c(b− a).•
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6.1.2 Basic Properties of Upper and Lower Sums

We wish to establish some basic properties of the Riemann integral and ob-
tain different types of classes of functions that are Riemann integrable. In
particular, we need to address the following fundamental questions:

• Is every monotone function on [a, b] Riemann integrable?
• Is every continuous function on [a, b] Riemann integrable?
• Is every bounded function that has a finite number of discontinuities in
[a, b] Riemann integrable?

• Is every bounded function that has an infinite number of discontinuities in
[a, b] Riemann integrable?

• Is every monotone function that has an infinite number of discontinuities
in [a, b] Riemann integrable?

In order to answer these questions and to build our presentation in under-
standing Riemann’s approach to integration, we need some preparations.

If P1 and P2 are two partitions of [a, b] such that every division point of
P1 is also a division point of P2, then we say that P2 is a refinement of P1

(or that P2 refines P1 or P2 is finer than P1), and write P1 ⊆ P2 or P2 ⊇ P1.
Thus if

P1 = {x0, x1, x2, . . . , xn} and P2 = {y0, y1, y2, . . . , ym},

where a = x0 = y0 and b = xn = ym, then P1 ⊆ P2 means that m ≥ n and

{x0, x1, x2, . . . , xn} ⊆ {y0, y1, y2, . . . , ym}.

Note that if P1 ⊆ P2, then ||P1|| ≥ ||P2||. In other words, refinement of
a partition decreases its norm, but the converse does not necessarily hold.
Further, a partition R of [a, b] is called a common refinement of two partitions
P1 and P2 if P1 ∪ P2 ⊆ R. Here the partition P1 ∪ P2 is obtained by taking
into account of all the partition points of P1 and P2.

For instance, if

P1 =
{
0,

1

2
,
3

5
,
3

4
,
4

5
, 1

}
and P =

{
0,

1

2
,
3

5
,
4

5
, 1

}

are two partitions of [0, 1], then P1 is a refinement of P , since P1 ⊇ P .
Similarly if

P2 =
{
0,

1

4
,
1

3
,
1

2
,
3

5
,
3

4
,
4

5
, 1

}
,

then P2 is a refinement of both P1 and P . However, the partition

Q =
{
0,

1

5
,
1

2
, 1

}
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of [0, 1] is not a refinement of P , because the partition points of Q do not
include all partition points of P . Also, the common refinement R1 of P and
P1 is

R1 =
{
0,

1

2
,
3

5
,
3

4
,
4

5
, 1

}
,

and the common refinement of P and P3 =
{
0, 13 ,

5
6 ,

6
7 , 1

}
is

R2 =
{
0,

1

3
,
1

2
,
3

5
,
4

5
,
5

6
,
6

7
, 1

}
.

Note that P3 is not a refinement of P .
Finally, we remark that for any bounded function f on an interval I, the

definitions of supremum and infimum give that

sup
x∈I

f(x) ≥ sup
x∈J

f(x) and inf
x∈I

f(x) ≤ inf
x∈J

f(x) whenever J ⊆ I.

The following is useful in understanding lower sums and upper sums.

Lemma 6.7. Let f be a bounded function on [a, b], and let P and Q be two
partitions of [a, b]. Then we have the following:

(a) L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f) if P ⊆ Q.
(b) L(P, f) ≤ U(Q, f) for any P and Q.
(c) L(f) ≤ U(f).

Proof. (a) The middle inequality is obvious and has been discussed earlier.
The first inequality says that a refinement can only increase (or leave fixed)
the lower sum, and the third inequality conveys that a refinement can only
decrease (or leave fixed) the upper sum. We shall prove the first inequality.
There is nothing to prove if P = Q.

First we observe that if Q has r (r ≥ 1) points not in P , we can start at
P and arrive at Q after r steps by adjoining extra points, say c1, c2, . . . , cr.
So we start with the partition P = {x0, x1, . . . , xn} of [a, b]. Let P1 be a new
partition formed by adding one extra point, say c = c1 ∈ (xk−1, xk), so that

P1 = {x0, x1, . . . , xk−1, c, xk,︸ ︷︷ ︸xk+1, . . . , xn}.

Clearly, the only contribution to the lower and the upper sums that may
differ for P and P1 is from the interval [xk−1, xk]. Since f is bounded, we have
|f(x)| ≤ K, i.e., supx∈[a,b] |f(x)| < K, for some K > 0. Also, we define

m′
k = inf

x∈[xk−1,c]
f(x) and m′′

k = inf
x∈[c,xk]

f(x).
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Clearly, m′
k ≥ mk, m

′′
k ≥ mk, and

L(P1, f) =

n∑

j=1, j �=k

mjΔxj +m′
k(c− xk−1) +m′′

k(xk − c)︸ ︷︷ ︸

≥
n∑

j=1, j �=k

mjΔxj +mk(c− xk−1) +mk(xk − c)︸ ︷︷ ︸

=

n∑

j=1

mjΔxj = L(P, f).

Similar arguments prove that

U(P1, f) ≤ U(P, f),

with the obvious notation M ′
k ≤ Mk and M ′′

k ≤ Mk. By applying this fact a
finite number of times (or by the method of induction), we obtain the desired
inequalities (a).

Also, we observe that

L(P1, f)− L(P, f) = m′
k(c− xk−1) +m′′

k(xk − c)︸ ︷︷ ︸−mk(xk − xk−1)

≤ K(c− xk−1) +K(xk − c)︸ ︷︷ ︸+K(xk − xk−1)

= 2K(xk − xk−1),

so that
L(P1, f)− L(P, f) ≤ 2K‖P‖. (6.2)

More generally, if P ′ is obtained by adjoining r points that are not in P , an
induction argument clearly shows that

L(P ′, f)− L(P, f) ≤ 2rK‖P‖.

Similarly, we can obtain U(P ′, f)− U(P, f) ≥ −2rK‖P‖.
(b) Consider P ∪ Q, which is a partition of [a, b]. Then P ⊆ P ∪ Q and

Q ⊆ P ∪Q. Note that P ∪Q is obtained by lumping together all of the points
of P and Q. By (a),

L(P, f) ≤ L(P ∪Q, f) ≤ U(P ∪Q, f) ≤ U(Q, f)

for any two arbitrary partitions P and Q.
(c) Finally, we show that for any partition P ∈ P [a, b], we have

L(P, f) ≤ L(f) =

∫ b

a

f(x) dx ≤ U(f) =

∫ b

a

f(x) dx ≤ U(P, f).
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Since
m(b − a) ≤ L(P, f) ≤ U(P, f) ≤ M(b− a),

the existence of L(f) and U(f) is obvious. Indeed, L(P, f) is a lower bound
for the set {U(P, f) : P ∈ P [a, b]}, and therefore

L(P, f) ≤ inf{U(P, f) : P ∈ P [a, b]} = U(f),

showing that U(f) serves as an upper bound for the set {L(P, f) : P ∈
P [a, b]}. Hence supP L(P, f) exists and

U(f) =

∫ b

a

f(x) dx ≥ L(f) =

∫ b

a

f(x) dx.

The assertion follows.

6.1.3 Criteria for Integrability

Our first major criterion for integrability says nothing about the value of the
integral but uses only the difference between the upper and lower sums.

Theorem 6.8 (Riemann’s criterion for integrability). If f is a bounded
function on [a, b], then f is integrable on [a, b] if and only if for each ε > 0
there is a partition P of [a, b] such that (see Figure 6.7)

U(P, f)− L(P, f) < ε. (6.3)

y= f(x)

a b xO

y
U(P, f)−L(P, f) = area

Fig. 6.7. U(P, f)− L(P, f) = area ≥ 0.

Proof. (Necessity =⇒): Assume first that f is integrable on [a, b], i.e., U(f)
=L(f). Denote the common value of these two quantities by α. Let ε > 0 be



220 6 Definite and Indefinite Integrals

given. Since U(f) is the infimum of all upper sums, and L(f) is the supremum
of all lower sums, there exist two partitions P1 and P2 of [a, b] for which

U(P1, f) < U(f) +
ε

2
and L(P2, f) > L(f)− ε

2
.

Set P = P1 ∪ P2. By Lemma 6.7(a), we obtain

L(f)− ε

2
< L(P2, f) ≤ L(P, f) ≤ U(P, f) ≤ U(P1, f) < U(f) +

ε

2
,

so that
α− ε

2
< L(P, f) ≤ U(P, f) < α+

ε

2
,

and the assertion (6.3) holds (see Figure 6.8).

U(P, f)

U(P, f)−L(P, f)

L(P, f) α+ 2
α− 2

Fig. 6.8. Sketch for the quantity U(P, f)− L(P, f).

(Sufficiency ⇐=): Suppose that for each ε > 0, the inequality (6.3) holds
for some partitions P of [a, b]. Note that by the definitions of L(f) and U(f),

U(f)− L(f) ≤ U(P, f)− L(P, f) < ε,

and so
0 ≤ U(f)− L(f) < ε for every ε > 0.

Since ε > 0 is arbitrary, we must have U(f) = L(f), and so f is integrable on
[a, b], as required.

The next theorem gives another criterion for integrability.

Theorem 6.9. If f is a bounded function on [a, b], then f is integrable if and
only if for each ε > 0 there exists a δ > 0 such that

U(P, f)− L(P, f) < ε (6.4)

for all partitions P of [a, b] for which ‖P‖ < δ.

Proof. (Sufficiency ⇐=): The sufficiency follows from Theorem 6.8.
(Necessity =⇒): Let f be integrable on [a, b] and let ε > 0. By Theorem

6.8, there exists a partition Q = {y0, y1, . . . , yr} of [a, b] such that

U(Q, f)− L(Q, f) < ε/2,
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where r is the number of subintervals in Q. Since f is bounded, there exists
a constant K > 0 such that |f(x)| ≤ K for all x ∈ [a, b]. Set δ = ε/(8rK).
To verify (6.4), we consider a partition P = {x0, x1, . . . , xn} with ‖P‖ < δ.
Define P ′ = P ∪ Q to be a common refinement of P and Q, and note that
P ′ has at most r points that are not in P . As in the proof of Lemma 6.7 (see
(6.2)),

L(P ′, f)− L(P, f) ≤ 2rK‖P‖ < 2rKδ =
ε

4
.

Further, since Q ⊂ P ′, we also have (by Lemma 6.7(a))

L(Q, f) ≤ L(P ′, f) < L(P, f) +
ε

4
,

which implies that

L(Q, f)− L(P, f) <
ε

4
.

Similarly,

U(P, f)− U(Q, f) <
ε

4
.

Adding the last two inequalities gives

U(P, f)− L(P, f) < U(Q, f)− L(Q, f) +
ε

2
<

ε

2
+

ε

2
= ε,

and (6.4) is valid.

Example 6.10 (Integrable functions that are not continuous). Con-
sider the functions

f(x) =

{
1 if x ∈ [0, 1]� {1/2},
0 if x = 1/2,

and g(x) =

{
0 if 0 ≤ x ≤ 1/2,
1 if 1/2 < x ≤ 1.

Note that both f and g are bounded with a single jump discontinuity on [0, 1],
and in addition, g is piecewise constant on [0, 1]. It is easy to show that f and
g are integrable on [0, 1].

Note that f is discontinuous at x = 1
2 . If P = {x0, x1, . . . , xn} is a partition

of [0, 1], then 1/2 must belong to [xk−1, xk] for some k, 1 ≤ k ≤ n, and
therefore {

mj = Mj = 1 for j �= k,
mj = 0, Mj = 1 for j = k,

j = 1, 2, . . . , n. Now

U(P, f)− L(P, f) =
n∑

j=1

(Mj −mj)Δxj = Δxk,
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showing that f is integrable on [0, 1], by Theorem 6.9. To determine
∫ 1

0
f(x) dx,

it is enough to consider either

U(P, f) =

n∑

j=1

Mj Δxj =

n∑

j=1

1 ·Δxj = xn − x0 = 1− 0 = 1

or

L(P, f) =

n∑

j=1

mj Δxj =

n∑

j=1, j �=k

1 ·Δxj = xn − x0 −Δxk = 1−Δxk.

In either case, it follows that
∫ b

a
f(x) dx = 1, and thus f is integrable. We

leave the proof of the integrability of g as an exercise. •
Our last criterion for integrability may be phrased in terms of a sequence

of partitions.

Theorem 6.11 (Sequential version of integrability). Suppose that f is
a bounded function on [a, b]. We have the following:

(i) If f is integrable on [a, b], then there exists a sequence {Qn} of partitions
in [a, b] such that

lim
n→∞U(Qn, f) = α = lim

n→∞L(Qn, f), α =

∫ b

a

f(x) dx.

(ii) If there exists a sequence {Qn} of partitions on [a, b] such that

lim
n→∞U(Qn, f) = lim

n→∞L(Qn, f),

then f is integrable on [a, b], and the common value of these two limits
is α.

Proof. (i) Assume first that f is integrable on [a, b]. Then corresponding to
each integer n ≥ 1, there exist two partitions Pn and P ′

n of [a, b] such that

U(Pn, f) < U(f) +
1

n
and L(P ′

n, f) > L(f)− 1

n
.

Set Qn = Pn ∪ P ′
n. As in the proof of Theorem 6.8, it follows that

α− 1

n
< L(Qn, f) ≤ U(Qn, f) < α+

1

n
.

The squeeze rule for sequences yields the desired conclusion.
(ii) Assume the hypothesis. Then we have

lim
n→∞ (U(Qn, f)− L(Qn, f)) = 0
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for some sequence {Qn} of partitions on [a, b] mentioned in the hypothesis.
Then, for ε > 0, there exists an N = N(ε) such that

0 ≤ U(Qn, f)− L(Qn, f) < ε for all n ≥ N,

and the integrability of f follows from Theorem 6.8. Next, because f is inte-
grable, by definition, we have

L(Qn, f) ≤
∫ b

a

f(x) dx ≤ U(Qn, f) for all n.

The desired result follows if we allow n → ∞ and observe that the common
value of the two limits is

∫ b

a f(x) dx.

Example 6.12. Define f on [0, 1] by

f(x) =

{
0 if x is irrational,
1/q if x = p/q is rational expressed with no common factors.

Show that f is integrable on [0, 1] and
∫ 1

0
f(x) dx = 0.

Solution. Let ε > 0 be given. For any partition Q of [0, 1], we always have
mk = 0, so that L(Q, f) = 0. Therefore, to complete the proof, it suffices to
find a partition P of [0, 1] such that U(P, f) < ε. To do this, for each n ≥ 2,
we consider the partition Pn = { p

q ∈ [0, 1] : p ≤ q ≤ n}. For instance, for
n = 4, we have

P4 =
{
0,

1

4
,
1

3
,
1

2
,
2

3
,
3

4
, 1

}
.

On the other hand, with respect to the partition Pn, we have

Mk = sup
xk−1≤x≤xk

f(x) <
1

n

and ||Pn|| → 0 as n → ∞. Also,

U(Pn, f)− L(Pn, f) <

n∑

k=1

1

n
(xk − xk−1)− 0 =

1

n
.

Thus f is integrable on [0, 1]. Note that this function is continuous at 0 and
at every irrational point in [0, 1] and discontinuous at every nonzero rational
point on [0, 1]. •

In Example 6.12 we observe that although f is nonnegative and takes

positive values at every rational point in [0, 1], we have
∫ 1

0
f(x) dx = 0.

The following result is often useful in practice.
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Theorem 6.13. Suppose that f is integrable on [a, b] and {Pn} is a sequence
of partitions of [a, b] such that ‖Pn‖ → 0 as n → ∞. Then we have

lim
n→∞U(Pn, f) = α = lim

n→∞L(Qn, f) =

∫ b

a

f(x) dx.

Proof. This is a consequence of Theorem 6.9. We need only to observe the
following fact: since ‖Pn‖ → 0 as n → ∞, given δ > 0, there exists an N such
that ‖Pn‖ < δ for all n ≥ N . This means that

U(f) ≤ U(Pn, f) < U(f)+ε and L(f) ≥ L(Pn, f) > L(f)−ε for all n ≥ N,

and the desired conclusion follows from this if we allow n → ∞.

The definition of Riemann integrability may now be framed as follows:

Definition 6.14 (Riemann integrability). A bounded function f defined
on [a, b] is said to be Riemann integrable on [a, b] if there exists a number I
with the following property: For every ε > 0 there exists a δ > 0 such that

|σ(P, f, x∗)− I| < ε

for every Riemann sum σ(P, f, x∗
k) of f associated with a partition P of [a, b]

for which ‖P‖ < δ. In this case, we write

lim
‖P‖→0

σ(P, f, x∗) = I.

Formally, the quantity I is the definite integral of f on [a, b].

xk−1 xkxk
∗ xk−1 xkxk

∗ xk−1 xkxk
∗ xk−1 xkxk

∗

Fig. 6.9. Actual area, and areas corresponding to lower, arbitrary, and upper
rectangles.

It is important to emphasize that I is independent of the particular way in
which the partitions of [a, b] and the subinterval representatives x∗

k are chosen
(see Figure 6.9). In Theorem 6.15, we actually show that the number I is the

definite integral of f on [a, b], and so I =
∫ b

a
f(x) dx.

Our next result establishes the equivalence of Riemann’s and Darboux’s
definitions of integrability.
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Theorem 6.15 (Equivalence of the definitions of Riemann and
Darboux). If f is a bounded function on [a, b], then f is Riemann inte-
grable (in the sense of Definition 6.14) if and only if f is Darboux integrable
(in the sense of Definition 6.2).

Proof. (Sufficiency ⇐=): Let f be (Darboux) integrable on [a, b] in the sense

of Definition 6.2, i.e., α :=
∫ b

a f(x) dx exists and U(f) = L(f) = α. Let ε > 0
be given. Then there exists a δ > 0 such that

U(P, f)− L(P, f) < ε (6.5)

for every partition P with ‖P‖ < δ. We need to show that

|σ(P, f, x∗)− α| < ε, (6.6)

where

σ(P, f, x∗) =
n∑

k=1

f(x∗
k)(xk − xk−1),

for every partition P with ‖P‖ < δ. As noted at the outset, we have

L(P, f) ≤ σ(P, f, x∗) ≤ U(P, f). (6.7)

Because of (6.5) and the definition of L(f), we also have

U(P, f) < L(P, f) + ε ≤ L(f) + ε = α+ ε,

so that (6.7) implies that

σ(P, f, x∗) ≤ U(P, f) < α+ ε.

Similarly, the other inequality of (6.7) gives, by (6.6),

σ(P, f, x∗) ≥ L(P, f) > U(P, f)− ε ≥ U(f)− ε = α− ε.

The last two inequalities imply that

α− ε < σ(P, f, x∗) < α+ ε for ‖P‖ < δ,

and hence (6.6) holds.
(Necessity =⇒): Conversely, suppose that f is Riemann integrable. Then

lim
‖P‖→0

σ(P, f, x∗) = I.

We need to show that I = α. Fix ε > 0. Then by the definition of Riemann
integrability, there exists a δ > 0 such that if ‖P‖ < δ, then

I − ε < σ(P, f, x∗) < I + ε.
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Now choose a partition P of [a, b] with ‖P‖ < δ and x∗
k ∈ [xk−1, xk], so that

f(x∗
k) < mk + ε, i.e.,

n∑

k=1

f(x∗
k)Δxk <

n∑

k=1

mkΔxk + ε

n∑

k=1

Δxk = L(P, f) + ε(b− a).

Then the Riemann sum, say L1(P, f), associated with this choice of x∗
k satisfies

L1(P, f) ≤ L(P, f) + ε(b− a),

and by assumption,

|L1(P, f)− I| < ε, i.e., I − ε < L1(P, f) < I + ε.

It follows that

L(f) ≥ L(P, f) ≥ L1(P, f)− ε(b− a) > I − ε− ε(b− a).

Since ε > 0 is arbitrary, L(f) ≥ I. Similarly, we can show that U(f) ≤ I. But
U(f) ≥ L(f), and so

I ≥ U(f) ≥ L(f) ≥ I,

showing that U(f) = L(f) = I, which means that f is Darboux integrable on

[a, b] with I =
∫ b

a
f(x) dx.

6.1.4 Basic Examples of Integrable Functions

Example 6.16 (General approach). Consider now the function f(x) = x
on [a, b]. Then the Riemann sum takes the form

Sn := σ(P, f, x∗) =
n∑

k=1

x∗
k(xk − xk−1),

where f(x∗
k) = x∗

k and x∗
k ∈ [xk−1, xk] is arbitrary. Note that x∗

k is either the
midpoint of the interval [xk−1, xk] or to the left of it or to the right of it.
Consequently, we write x∗

k conveniently as

x∗
k =

xk−1 + xk

2
+ δk,

where

|δk| ≤ xk − xk−1

2
≤ ‖P‖

2
for k = 1, 2, . . . , n.
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In view of the representation of x∗
k, we write the Riemann sum in the form

Sn =

n∑

k=1

xk−1 + xk

2
(xk − xk−1) +

n∑

k=1

δk(xk − xk−1)

=
1

2

n∑

k=1

(x2
k − x2

k−1) + En

=
b2 − a2

2
+ En,

where En =
∑n

k=1 δk(xk − xk−1). We have

|En| ≤
n∑

k=1

|δk|(xk − xk−1) ≤ ‖P‖
2

n∑

k=1

(xk − xk−1) ≤ ‖P‖
2

(b− a) → 0

as ‖P‖ → 0. Hence,
∫ b

a xdx = (b2 − a2)/2.
Note also that

x∗
k = xk ⇐⇒ δk =

xk − xk−1

2
and x∗

k = xk−1 ⇐⇒ δk = −xk − xk−1

2
,

so that these choices correspond to the upper and the lower sums, respectively.
In particular, if a > 0, then the area in question is that of a trapezoid,

agreeing with the results of elementary geometry. •
Example 6.17 (Using Theorem 6.8 or Theorem 6.9). Consider the func-
tion f(x) = x2 on [0, b]. Let ε > 0 be given. Let P = {x0, x1, . . . , xn} be any
partition of [0, b] such that ‖P‖ < ε/2b2. Then we have

x2
k − x2

k−1 = (xk + xk−1)(xk − xk−1) ≤ 2b‖P‖ <
ε

b
.

Further, since f(x) is increasing and continuous on [0, b],

Mk = f(xk) = x2
k and mk = f(xk−1) = x2

k−1,

so that

U(P, f) =

n∑

k=1

x2
k(xk − xk−1) and L(P, f) =

n∑

k=1

x2
k−1(xk − xk−1).

Therefore (with x0 = 0, xn = b),

U(P, f)− L(P, f) =

n∑

k=1

(x2
k − x2

k−1)(xk − xk−1)

<
ε

b

n∑

k=1

(xk − xk−1)

=
ε

b
(xn − x0) = ε,
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showing that f is integrable, by Theorem 6.9, although we have no information

yet as to the value of
∫ b

0 x2 dx.
Alternatively, we can consider a convenient partition P and apply Theorem

6.8 to obtain the integrability of f as well as the value of
∫ b

0 x2 dx. To do this,
we choose xk = k(b/n). Then Δxk = b/n, and so ‖P‖ → 0 if n → ∞. Further,

x2
k(xk − xk−1) =

(
b

n

)3

k2 and x2
k−1(xk − xk−1) =

(
b

n

)3

(k − 1)2,

so that

U(P, f) =
b3

n3

n∑

k=1

k2 =
b3

n3

n(n+ 1)(2n+ 1)

6
=

b3

6

(
1 +

1

n

)(
2 +

1

n

)
,

and similarly

L(P, f) =
b3

n3

n∑

k=1

(k − 1)2 =
b3

6

(
1− 1

n

)(
2− 1

n

)
.

This gives

U(P, f)− L(P, f) =
b3

n
,

and one can apply either Theorem 6.8 or Theorem 6.9 by choosing large n. It
follows that f is integrable. Further, since

L(P, f) ≤ L(f) =

∫ b

0

x2 dx = U(f) ≤ U(P, f)

and

U(P, f) = Sn → b3

3
and L(P, f) = sn → b3

3
as n → ∞,

we conclude that
∫ b

0

x2 dx =
b3

3
. •

Our next example gives us a method of evaluating the definite integral of
an integrable function as the limit of a sequence. Because of its independent
interest, we present a solution to this example that is key to solving a number
of exercises, especially when the given function is continuous on [a, b]; see, for
instance, Examples 6.24 and Exercises 6.32(10).

Example 6.18. Suppose that f is integrable on [a, b]. Then

∫ b

a

f(x) dx = lim
n→∞Sn, Sn =

b− a

n

n∑

k=1

f
(
a+

k(b − a)

n

)
.
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In particular, if f is integrable on [0, 1], then we have

∫ 1

0

f(x) dx = lim
n→∞

1

n

n∑

k=1

f
(k

n

)
,

or more generally, with x∗
k ∈ [(k − 1)/n, k/n], one has

∫ 1

0

f(x) dx = lim
n→∞

1

n

n∑

k=1

f(x∗
k).

Solution. Suppose that f is integrable on [a, b]. Then we have L(f) = U(f) =∫ b

a f(x) dx =: α. Choose the standard partition P = {x0, x1, . . . , xn} and let
h = (b−a)/n. Consider xk = a+kh, for k = 0, 1, 2, . . . , n, as points of division
of [a, b] into n equal parts of length Δxk = Δx = h. Note that these points of
division form an arithmetic progression. By the definitions of L(P, f), U(P, f),
L(f), U(f), and σ(P, f, x∗), it follows that

L(P, f) ≤ σ(P, f, x∗) ≤ U(P, f) and L(P, f) ≤ α ≤ U(P, f),

which, in particular, implies that (see Figure 6.10)

|Sn − α| ≤ U(P, f)− L(P, f).

Since f is integrable, by Theorem 6.8, for a given ε > 0 there exists a δ > 0

α Sn U(P, f)L(P, f) αSn U(P, f)L(P, f)

Fig. 6.10. Bounds for Sn − α.

such that

U(Q, f)− L(Q, f) < ε for all partitions Q of [a, b] for which ‖Q‖ < δ.

Note that for our partition, for any δ > 0, there exists an N such that ‖P‖ =
h = (b− a)/n < δ for all n ≥ N . Consequently, given ε > 0, there exists an N
such that for all n ≥ N ,

|Sn − α| ≤ U(P, f)− L(P, f) < ε,

showing that Sn → α as n → ∞. •
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Theorems 6.8, 6.9, and 6.15 may be reformulated as follows.

Theorem 6.19. If f is a bounded function on [a, b], then the following are
equivalent:

(a) f is integrable.
(b) For every ε > 0 there is a partition P of [a, b] such that

U(P, f)− L(P, f) < ε.

(c) For every ε > 0 there is a δ > 0 such that every partition P of [a, b] with
‖P‖ < δ satisfies U(P, f)− L(P, f) < ε.

(d) For every ε > 0 there exists a δ > 0 such that

∣∣∣∣∣σ(P, f, x
∗)−

∫ b

a

f(x) dx

∣∣∣∣∣ < ε

for every Riemann sum σ(P, f, x∗) of f associated with a partition P for
which ‖P‖ < δ.

6.1.5 Integrability of Monotone/Continuous Functions

Now we are in a position to attempt the remaining questions that we raised
at the beginning of this subsection. Our next two results provide us with two
different classes of integrable functions.

Theorem 6.20 (Integrability of monotone functions). Every monotone
function on [a, b] is integrable on [a, b]. The converse is false.

Proof. If the monotone function f is constant on [a, b], it is certainly integrable
on [a, b]. So we shall assume that f is nonconstant, and in particular, we
have f(a) �= f(b). It suffices to consider the case in which f is monotonically
increasing on [a, b], so that f(a) < f(b). A similar argument works if f is
monotonically decreasing.

Since f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b], f is clearly bounded on [a, b].
Let ε > 0 be given. In order to apply Theorem 6.19, we consider an arbitrary
partition P = {x0, x1, . . . , xn} of [a, b] with

‖P‖ < δ =
ε

f(b)− f(a)
.

Since xk−1 < xk and f is increasing, we have for each k ∈ {1, 2, . . . , n},

Mk = sup
x∈[xk−1,xk]

f(x) = f(xk) and mk = inf
x∈[xk−1,xk]

f(x) = f(xk−1).
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Thus, with the usual notation for lower and upper sums,

U(P, f)− L(P, f) =

n∑

k=1

(Mk −mk)Δxk

=

n∑

k=1

(f(xk)− f(xk−1)) (xk − xk−1)

< δ

n∑

k=1

(f(xk)− f(xk−1))

= δ (f(b)− f(a)) = ε,

which proves the existence of a partition P with U(P, f)−L(P, f) < ε. Thus,
by Theorem 6.21, it follows that f is integrable.

We see that f(x) = cosx is integrable on [0, 2π], but is not monotone on
[0, 2π] (see Example 6.22(d)).

For instance, define f on [0, 1] by

f(0) = 0 and f(x) =
1

2k−1
for

1

2k
< x ≤ 1

2k−1
, k = 1, 2, . . ..

Then f is increasing and bounded on [0, 1]. Therefore, f is integrable. Is f
continuous on [0, 1]? How about the function g(x) = [x] over any interval
[a, b]? Is g integrable on [a, b]?

We have constructed examples of functions that are discontinuous at a
point on [a, b] but may or may not be integrable on [a, b]. Next, to enlarge the
class of integrable functions, we deal with continuous functions as well.

Theorem 6.21 (Integrability of continuous functions). Every continu-
ous function f on [a, b] is integrable. The converse is false.

Proof. Let ε > 0 be given. Since f is continuous on the closed interval [a, b], it
is uniformly continuous on [a, b]. Therefore, for ε > 0 there is a δ > 0 such that

|f(x) − f(y)| < ε

b− a
whenever |x− y| < δ and x, y ∈ [a, b].

Consider any partition P = {x0, x1, . . . , xn} of [a, b] with norm ‖P‖ < δ. Now,
if x, y ∈ [xk−1, xk], then

|x− y| ≤ xk − xk−1 = Δxk ≤ ‖P‖ < δ,

and so we have |f(x) − f(y)| < ε/(b − a). Since f assumes a maximum and
minimum on each subinterval [xk−1, xk], we have

0 ≤ Mk −mk = max
x∈[xk−1,xk]

f(x)− min
x∈[xk−1,xk]

f(x) <
ε

b− a
for each k,
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and using this inequality, we get

U(P, f)− L(P, f) =

n∑

k=1

(Mk −mk)Δxk <
ε

b− a

n∑

k=1

(xk − xk−1) = ε,

which shows that f is integrable, by Theorem 6.21.
For the converse, see Example 6.10.

We remark that Theorem 6.21 does not say anything about the actual value
of the definite integral. The hypothesis clearly implies that f is bounded on
[a, b], since every continuous function f on a compact set [a, b] is bounded.

Examples 6.22 (The integral as a limit of Riemann sums). Using the
summation formula, evaluate

(a)

∫ b

a

xdx; (b)

∫ b

a

x2 dx; (c)

∫ b

a

ex dx; (d)

∫ b

a

cosxdx.

Solution. Parts (a) and (b) have already been considered, but for the sake of
looking at the problem from a different viewpoint, we present their solutions
here.

By Theorem 6.21, the integral exists because the integrand in each case is
continuous on [a, b] (see Figure 6.11). Because the integral can be computed

O a b

y=xy

x

corresponds to lower sum L(P, f)

corresponds to Sn

corresponds to upper sum U(P, f)

area corresponds to f(xk
∗)(xk−xk−1)

xk−1

xk−1

xk

xk

xk
∗

xk
∗

Fig. 6.11. Riemann sums associated with f(x) = x.

by any partition whose norm approaches 0, as in Example 6.18, we may use
the standard partition. Using the standard partition, we set

x∗
k = xk = a+ kΔx = a+ k

(b− a

n

)
, k = 1, 2, . . . , n,

and observe that ‖P‖ = (b − a)/n → 0 as n → ∞. We note that x∗
k here

corresponds to the upper sum U(P, f).
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(a) A Riemann sum for f(x) = x on [a, b] is

n∑

k=1

f(x∗
k)Δx =

n∑

k=1

[
a+

k(b− a)

n

]b− a

n

=
a(b− a)

n

n∑

k=1

1 +
(b − a)2

n2

n∑

k=1

k

= a(b− a) +
(b− a)2

2

(
1 +

1

n

)
.

Equivalently, we may set

x∗
k = xk−1 = a+ (k − 1)

(b − a

n

)
,

and with this choice, we obtain that

n∑

k=1

f(x∗
k)
b− a

n
= a(b− a) +

(b − a)2

2

(
1− 1

n

)
,

which is actually the lower sum L(P, f). In either case, we have

∫ b

a

xdx = lim
n→∞

n∑

k=1

f(x∗
k)Δx = a(b− a) +

(b− a)2

2
=

b2 − a2

2
.

(b) The integral in question is equal to the area under the parabola y = x2

on [a, b]. A Riemann sum for the function f(x) = x2 on [a, b] is

Sn =

n∑

k=1

f(x∗
k)Δx,

which simplifies to

Sn =

n∑

k=1

[
a+

k(b − a)

n

]2 b− a

n

=
b− a

n

[ n∑

k=1

a2 +
2a(b− a)

n

n∑

k=1

k +
(b− a)2

n2

n∑

k=1

k2
]

=
b− a

n

[
a2n+

2a(b− a)

n

n(n+ 1)

2
+

(b − a)2

n2

n(n+ 1)(2n+ 1)

6

]
.

Allowing n → ∞, we conclude that

∫ b

a

x2 dx = (b − a)
[
a2 + a(b− a) +

(b− a)2

3

]
=

b3 − a3

3
.
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(c) In the case of the continuous function f(x) = ex, the upper sum is

Sn =
n∑

k=1

ea+kΔxΔx

= eaΔx

n∑

k=1

(
eΔx

)k
= eaΔx

eΔx(1− enΔx)

1− eΔx

= ea(1− eb−a)
( Δx

1− eΔx

)
eΔx.

Note that ‖P‖ = (b− a)/n = Δx → 0 iff n → ∞. By l’Hôpital’s rule, we see
that

lim
n→∞Sn = −ea(1 − eb−a) = eb − ea.

We leave (d) as a simple exercise. •
Example 6.23. Consider f(x) = xp on [a, b], where p �= −1 and 0 < a < b.
Let P = {a = x0, x1, . . . , xn = b} be a partition of [a, b] with

x∗
k = xk = ahk with h = (b/a)1/n.

Then a Riemann sum Sn is given by

Sn =

n−1∑

k=0

(ahk)p(ahk+1 − ahk)

= ap+1(h− 1)
n−1∑

k=0

hk(p+1)

= ap+1(h− 1)
(h(p+1)n − 1

hp+1 − 1

)

= ap+1

[( b

a

)p+1

− 1

] [ h− 1

hp+1 − 1

]
.

Note that (b/a)
1/n → 1 as n → ∞ is equivalent to h → 1. Consequently,

lim
n→∞Sn = (bp+1 − ap+1) lim

h→1

h− 1

hp+1 − 1

= (bp+1 − ap+1) lim
h→1

1

(p+ 1)hp

=
bp+1 − ap+1

p+ 1
,
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which is equivalent to

∫ b

a

xp dx =
bp+1 − ap+1

p+ 1
. •

Examples 6.24. Using the definition of the definite integral as the limit of
Riemann (integral) sums, evaluate the following:

(a) lim
n→∞

n∑

k=1

1

n+ ck
for c > 0. (b) lim

n→∞
1

n3/2

n∑

k=1

(n+ k)1/2.

(c) lim
n→∞

n∑

k=1

ka

na+1
for a > −1. (d) lim

n→∞

n∑

k=1

n

n2 + k2
.

(e) lim
n→∞

1

n

n∑

k=1

cos
(2k − 1

2n

)
. (f) lim

n→∞

n∑

k=1

cos(log(k + n)− log(n))

n+ k
.

Solution. In all these cases, we consider the standard partition

P =
{
0,

1

n
,
2

n
, . . . , 1

}

of [0, 1] with x∗
k = k/n, and so Δxk = 1/n. So we may skip the further

details, since we just need to recognize each of the given quantities/sequences
as a Riemann sum associated with a suitable function f . We have, as n → ∞,
the following:

(a) Sn =
1

n

n∑

k=1

1

1 + c(k/n)
→ S =

∫ 1

0

dx

1 + cx
=

1

c
log(1 + c).

(b) Sn =
1

n

n∑

k=1

(
1 +

k

n

)1/2

→ S =

∫ 1

0

(1 + x)1/2 dx = (2/3)[23/2 − 1].

(c) Sn =
1

n

n∑

k=1

(k
n

)a

→ S =

∫ 1

0

xa dx =
1

1 + a
.

(d) Sn =
1

n

n∑

k=1

1

1 + (k2/n2)
→ S =

∫ 1

0

dx

1 + x2
= tan−1 x

∣∣∣
1

0
=

π

4
.

(e) Using the cosine summation formula, the given Riemann sum may be
written as

1

n

n∑

k=1

cos
(2k − 1

2n

)
= cos

( 1

2n

) 1

n

n∑

k=1

cos
(k
n

)
+ sin

( 1

2n

) 1

n

n∑

k=1

sin
(k

n

)
,

which clearly converges to

S =

∫ 1

0

cosxdx+ 0.

∫ 1

0

sinxdx = sin 1.
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(f) Again, rewriting the given Riemann sum, we get

1

n

n∑

k=1

cos(log(1 + k/n))

1 + k/n
→ S =

∫ 1

0

cos(log(1 + x))

1 + x
dx,

from which we obtain S = sin(log 2). •
6.1.6 Basic Properties of Definite Integrals

Given a bounded function f on [a, b], we can consider |f | as the composition
h◦ f with h(x) = |x| for all x, and f2 as the composition h◦ f with h(x) = x2

for all x. In both cases, h will be uniformly continuous on the range of f(x).
It would be interesting to know whether h ◦ f is integrable on [a, b] whenever
f is. The following elementary properties of the integral are useful in the
computation. Since the integral is the limit of Riemann sums, each of these
properties can be obtained using the algebraic properties of sequences and
their limits. Of course, there are also other ways of proving them.

Theorem 6.25 (General properties of the definite integrals). Suppose
that f and g are integrable on [a, b]. We have the following:

(a) c1f + c2g is integrable for constants c1 and c2 and

∫ b

a

[c1f(x) + c2g(x)] dx = c1

∫ b

a

f(x) dx+ c2

∫ b

a

g(x) dx.

This is called the linearity rule for integrals.
(b) If f(x) ≤ g(x) on [a, b], then

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

This is called the dominance rule for integrals.
(c) If m ≤ f(x) ≤ M for x ∈ [a, b] and h is continuous on [m,M ], then φ

defined by φ(x) = h(f(x)) is integrable on [a, b]. In particular,

m(b− a) ≤
∫ b

a

f(x) dx ≤ M(b− a).

Proof. Each of these properties is easy to establish using the linearity property
of sums or limits with the definition of the definite integral.

(a) Using standard notation, we note that any Riemann sum of c1f + c2g
can be expressed as

n∑

k=1

[c1f(x
∗
k) + c2g(x

∗
k)]Δxk = c1

n∑

k=1

f(x∗
k)Δxk + c2

n∑

k=1

g(x∗
k)Δxk,



6.1 Definition and Basic Properties of Riemann Integrals 237

and the desired linearity property follows by taking the limit on each side of
this equation as the norm of the partition tends to 0.

Alternatively, we may just consider the case of c1 = c2 = 1 but with a
different method of proof. For a partition P = {x0, x1, . . . , xn} of [a, b], we
have

inf
x∈[xk−1,xk]

(f + g)(x) ≥ inf
x∈[xk−1,xk]

f(x) + inf
x∈[xk−1,xk]

g(x)

and

sup
x∈[xk−1,xk]

(f + g)(x) ≤ sup
x∈[xk−1,xk]

f(x) + sup
x∈[xk−1,xk]

g(x).

Therefore, as usual, we easily see that

L(P, f) + L(P, g) ≤ L(P, f + g) ≤ U(P, f + g) ≤ U(P, f) + U(P, g),

so that

U(P, f + g)− L(P, f + g) ≤ (U(P, f)− L(P, f)) + (U(P, g)− L(P, g)),

which holds for any partition P of [a, b].
Now we assume that f and g are integrable on [a, b], and so the above

inequalities help to prove that f + g is integrable on [a, b]. By Theorem 6.8,
for each ε > 0, there are partitions P1 and P2 of [a, b] such that

U(P1, f)− L(P1, f) <
ε

2
and U(P2, g)− L(P2, g) <

ε

2
,

respectively. Set Q = P1 ∪ P2. Adding the last two inequalities gives

U(Q, f + g)− L(Q, f + g) < ε,

showing that f + g is integrable on [a, b], by Riemann’s criterion.
Moreover, the integrability of f and g shows that there exist two partitions

P1 and P2 of [a, b] such that

U(P1, f) <

∫ b

a

f(x) dx+
ε

2
and U(P2, g) <

∫ b

a

g(x) dx+
ε

2
.

Since Q = P1 ∪ P2 is a refinement of both P1 and P2, we have

U(Q, f) ≤ U(P1, f) and U(Q, g) ≤ U(P2, g),

and therefore, since U(Q, f + g) ≤ U(Q, f) + U(Q, g), we have

U(Q, f + g) ≤ U(P1, f) + U(P2, g) ≤
∫ b

a

f(x) dx+

∫ b

a

g(x) dx + ε.
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Similarly,

L(Q, f + g) ≥ L(P1, f) + L(P2, g) ≥
∫ b

a

f(x) dx+

∫ b

a

g(x) dx− ε.

Since ε > 0 is arbitrary, the above inequalities yield the desired result.
(b) Since g(x)− f(x) ≥ 0 on [a, b], every lower sum of g − f with respect

to any partition of [a, b] is nonnegative. Thus, L(g − f) ≥ 0 and g − f is
integrable by (a). Therefore, by the linearity property,

∫ b

a

g(x) dx−
∫ b

a

f(x) dx =

∫ b

a

(g − f)(x) dx = L(g − f) ≥ 0,

which yields the desired dominance rule.
(c) We leave the proof of the last case as a simple exercise.

A standard induction argument enables us to expand the linearity property
to a finite linear combination of integrable functions. It is not obvious that
the integrability of f on [a, b] implies that f is integrable on [a, c] and on [c, b],
if c ∈ (a, b). The next result establishes this fact.

Theorem 6.26 (Subinterval property for the integral). Assume that f
is bounded on [a, b] and c ∈ (a, b). We have the following:

(a) If f is integrable on [a, b], then f is integrable on [a, c] and on [c, b]. More-
over, ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx. (6.8)

(b) Conversely, if f is integrable on [a, c] and on [c, b], then f is integrable on
[a, b] and (6.8) holds.

Proof. (a) We use standard notation. Let Pn be a sequence of partitions of
[a, b] such that c is a partition point of each Pn with ‖Pn‖ → 0 as n → ∞.

Let Qn consist of the partition points of Pn that lie in [a, c] and let Q′
n

consist of the partition points of Pn that lie in [c, b] (see Figure 6.12). Thus,

b

Qn

Pn

a c

Qn

Fig. 6.12. Partition of [a, b].
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we have two partitions, Qn of [a, c] and Q′
n of [c, b], such that ‖Qn‖ → 0 and

‖Q′
n‖ → 0 as n → ∞. By the definition of Riemann sums,

U(Qn, f)− L(Qn, f) ≤ U(Pn, f)− L(Pn, f) → 0 as n → ∞,

showing that f is integrable on [a, c]. Here we have used the fact that
U(Qn, f)− L(Qn, f) represents the sum of those terms in the sum

n∑

k=1

(Mk −mk)Δxk

that correspond to the subintervals that lie in [a, c]. A similar argument shows
that f is integrable on [c, b]. Using the sequential version of the integrability
theorem (see Theorem 6.11), we obtain that

L(Qn, f) →
∫ c

a

f(x) dx and L(Q′
n, f) →

∫ b

c

f(x) dx,

and so letting n → ∞ in the obvious identity

L(Pn, f) = L(Qn, f) + L(Q′
n, f),

it follows that ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

(b) For the converse part, assume that f is integrable on [a, c] and on
[c, b]. Then by Theorem 6.8, given ε > 0, there exist two partitions, Q of [a, c]
and Q′ of [c, b], such that

U(Q, f)− L(Q, f) <
ε

2
and U(Q′, f)− L(Q′, f) <

ε

2
.

Then P = Q ∪Q′ is a partition of [a, b], and we have the identity

L(P, f) = L(Q, f) + L(Q′, f) and U(P, f) = U(Q, f) + U(Q′, f).

It turns out that

U(P, f)− L(P, f) = (U(Q, f)− L(Q, f)) + (U(Q′, f)− L(Q′, f))

<
ε

2
+

ε

2
= ε,

and so f is integrable on [a, b] by Theorem 6.8. We now complete the proof
by establishing (6.8). We have

∫ b

a

f(x) dx ≤ U(P, f) = U(Q, f) + U(Q′, f)

<
(
L(Q, f) +

ε

2

)
+

(
L(Q′, f) +

ε

2

)

≤
∫ c

a

f(x) dx+

∫ b

c

f(x) dx + ε.
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Similarly, we see that

∫ b

a

f(x) dx >

∫ c

a

f(x) dx+

∫ b

c

f(x) dx− ε.

Since ε > 0 is arbitrary, the last two inequalities yield (6.8).

Again, a standard induction argument implies that Theorem 6.26 holds
for a decomposition of the interval [a, b] into a finite union of nonoverlapping
intervals. The next result guarantees the existence of the integral for a very
large class of functions.

Corollary 6.27 (Product and modulus properties for the integral).
Let f, g be integrable on [a, b]. Then the product fg and the modulus function
|f | are integrable on [a, b]. Also,

∣∣∣∣∣

∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx.

In particular, if in addition, |f(x)| ≤ K on [a, b], we have

∣∣∣∣∣

∫ b

a

f(x) dx

∣∣∣∣∣ ≤ K(b− a).

(This also follows from Theorem 6.25(c)).

Proof. Define h(x) = x2. Then h is continuous on R, and so

h(f + g) = (f + g)2 and h(f − g) = (f − g)2

are integrable by Theorem 6.25(c). Therefore,

fg =
[
(f + g)2 − (f − g)2

]
/4

is also integrable on [a, b]. Finally, we note that h(x) = |x| is continuous on R.
Therefore, h(f(x)) = |f(x)| is integrable on [a, b]. Also, since

f(x)
−f(x)

}
≤ |f(x)| = |f |(x) for all x ∈ [a, b],

it follows that ∫ b

a

f(x) dx

−
∫ b

a

f(x) dx

⎫
⎪⎪⎬

⎪⎪⎭
≤

∫ b

a

|f(x)| dx,

which gives the desired inequality.



6.1 Definition and Basic Properties of Riemann Integrals 241

Theorem 6.28. Let f and g be bounded on [a, b] and suppose that f(x) = g(x)
except possibly for a finite number of points on [a, b]. Then

L(f) = L(g) and U(f) = U(g).

In particular, f is integrable on [a, b] if and only if g is integrable on [a, b].

Proof. We will prove only L(f) = L(g), since the equality for the upper inte-
gral follows analogously. By hypothesis, |f(x)| ≤ K and |g(x)| ≤ K for some
K > 0.

Let r be the number of points in [a, b] at which f and g differ. Consider a
sequence of partitions Pn such that ‖Pn‖ → 0 as n → ∞. Then there are at
most 2r subintervals on which

Mk = sup
x∈[xk−1,xk]

f(x) �= M ′
k = sup

x∈[xk−1,xk]

g(x).

On [xk−1, xk], we have |Mk −M ′
k| ≤ |Mk|+ |M ′

k| ≤ 2K, and so

|L(Pn, f)− L(Pn, g)| ≤ 2rK‖Pn‖.
Now

|L(f)− L(g)| ≤ |L(f)− L(Pn, f)|+ |L(Pn, f)− L(Pn, g)|+ |L(g)− L(Pn, g)|
≤ |L(f)− L(Pn, f)|+ 2rK‖Pn‖+ |L(g)− L(Pn, g)|.

Allowing n → ∞ yields that L(f) = L(g), and we have completed the
proof.

The following result is a simple consequence of the previous result.

Corollary 6.29. If f is a bounded function on [a, b] and is continuous on
[a, b] except for a finite number of points on [a, b], then f is integrable on
[a, b]. In particular, every piecewise continuous function is integrable.

We end the section with the following remark.

Remark 6.30. Usually, we find area by evaluating a definite integral, but if
it is possible to recognize the integral as the area of some known geometric
figure, then we can use the known formula instead of the definite integral.
For instance, to evaluate

I =

∫ a

−a

√
a2 − x2 dx, a > 0,

we may set f(x) =
√
a2 − x2 and observe that the curve y =

√
a2 − x2 is

a semicircle centered at the origin of radius a. Thus, the given integral can
be interpreted as the area under the semicircle on the interval [−a, a]. From
geometry, we know that the area of the semicircle is a2π/2, which is in fact
the value of the given integral. •

Throughout the exercises below, integrable means Riemann (Darboux)
integrable.
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6.1.7 Questions and Exercises

Questions 6.31.

1. In the definition of mk and Mk, why do we use inf and sup instead of min
and max, respectively?

2. When is a function Riemann integrable?
3. How is the Riemann sum Sn connected with the Darboux integral?
4. Why is the norm of a partition so important in the theory of Riemann

integration?
5. Suppose that P and Q are two partitions of [a, b]. Must P ∪Q always be

a refinement of both P and Q?
6. Let P and Q be two partitions of [a, b].

(a) If Q is a refinement of P , how are the norms ‖P‖ and ‖Q‖ related? Is
‖Q‖ ≤ ‖P‖?

(b) If ‖Q‖ ≤ ‖P‖, must Q be a refinement of P?
7. Suppose that f is bounded on [a, b], P is a partition of [a, b], and P ′ is

a refinement of P . Must the addition of just one point to P increase the
lower integral sum and decrease the upper integral sum? That is, must we
have L(P, f) ≤ L(P ′, f)? Must we have U(P ′, f) ≤ U(P, f)?

8. What is the relationship between finding an area and evaluating a definite
integral?

9. Suppose that f is bounded on [a, b] and continuous on (a, b). Must f be
integrable on [a, b]?

10. Suppose that f is bounded on [a, b] and continuous on (a, b) except at
c ∈ (a, b). Must f be integrable on [a, b]?

11. Suppose that f is bounded on [a, b] and has an infinite number of points
on [a, b] at which f is discontinuous. Can f still be integrable on [a, b]?

12. Must every integrable function on [a, b] be bounded?
13. Are there integrable functions on [a, b] that are neither continuous nor

monotone on [a, b]?
14. Suppose that f is bounded on [a, b] and c ∈ R is fixed. When do we have

L(cf) = c U(f) and U(cf) = c L(f)? When do we have L(cf) = c L(f)
and U(cf) = c U(f)?

15. Does
∫ b

a cf(x) dx always represent the area of a region?
16. Suppose that f is a nonnegative integrable function on [a, b], and α > 0.

Must fα be integrable on [a, b]? Is it true tha

∫ b

a

f(x) dx = 0 if and only if

∫ b

a

fα(x) dx = 0?

17. Must the composition of integrable functions be integrable?
18. Can a monotone function f have an infinite number of discontinuities on

a bounded interval [a, b]? If yes, can it be integrable?
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19. Suppose that f(x) = x on [a, b]. Can there exist a partition P = {x0, x1,
. . . , xn} such that the corresponding Riemann sum has the constant value

Sn = (b2 − a2)/2? Does this mean that
∫ b

a xdx = (b2 − a2)/2?
20. Suppose that f(x) = x2 on [a, b] and P = {x0, x1, . . . , xn} is a partition

such that x∗
k =

√
(x2

k−1 + xk−1xk + x2
k)/3. Must the corresponding Rie-

mann sum have the constant value Sn = (b3−a3)/3? Does this show that∫ b

a
x2 dx = (b3 − a3)/3?

21. Suppose that f : [a, b] → R is defined by

f(x) =

{
2 if x is rational in [a, b],
3 if x is irrational in [a, b].

Does there exist a partition P of [a, b] such that U(P, f) = L(P, f)? If not,
must 2U(P, f) = 3L(P, f) always be true?

22. Assume that f is continuous on R. Is it true that f is even on R if and
only if ∫ x

−x

f(t) dt = 2

∫ x

0

f(t) dt on R?

Exercises 6.32.

1. Let P = {0, 1/2, 3/4, 1} and Q = {0, 1/2, 3/4, 7/8, 1} be two partitions of
[0, 1], and f(x) = x2. Find the lower and upper sums corresponding to
the partitions P and Q of [0, 1]. Verify that

L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f).

2. Consider

f(x) =

⎧
⎨

⎩

2x if x ∈ [0, 1)� {1/2},
0 if x = 1/2,
1 if x = 1,

and g(x) = 2x− 1 on [0, 1].

Sketch the graph of f(x) on [0, 1] and g(x) on [0, 1]. Evaluate L(P, f),
U(P, f), L(Q, g), and U(Q, g) corresponding to the partitions

(a) P =
{
0,

1

3
,
3

4
, 1

}
. (b) Q =

{
0,

1

4
,
1

3
,
2

3
, 1

}
.

3. Let f, g : [a, b] → R be defined by

f(x) =

{
3 if x is rational,
1 if x is irratioanl,

and g(x) =

{
0 if x ∈ [a, b]�

{
a+b
2

}
,

1 if x = a+b
2 ,

and let P be an arbitrary partition of [a, b]. Verify that

(a) U(P, f) = 3L(P, f) for a > 0. (b) U(P, g) = L(P, g) = 0.
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4. For n ≥ 3, consider f(x) = xn on 0 < a < b. Show directly that f is
Riemann integrable on [a, b]. Also, show that

∫ b

a

xn dx =
bn+1 − an+1

n+ 1
.

5. Suppose that f is integrable on [a, b], 0 < a < b, and h = (b/a)1/n. Then
show that

∫ b

a

f(x) dx = lim
n→∞Sn, Sn =

n∑

k=1

af(ahk−1)
(
hk − hk−1

)
.

6. Let f : [a, b] → R be integrable, and let P be a partition of [a, b] given by

P = {x0, x1, . . . , xn}, xk = a+ k
(b− a

n

)
for k = 1, 2, . . . , n.

Define the trapezoidal rule by

Tn(P, f) =
b− a

n

∞∑

k=1

(f(xk−1) + f(xk)

2

)
.

Show that limn→∞ Tn(P, f) =
∫ b

a f(x)dx.
7. Find the exact area under the graph of f(x) = 3x+ 1 between x = 0 and

x = 2. Repeat the question with f(x) = x2 + 3.
8. Corresponding to ε = 0.01, find a partition P of [0, 1] such that

U(P, f)− L(P, f) < ε

when f(x) equals

(1) x2. (2) sinx. (3) 2x+ 3.

9. Let f(x) = sinx on [0, π/2], and let P be the standard partition of [0, π/2]
given by

P = {x0, x1, . . . , xn}, xk = k
( π

2n

)
for k = 1, 2, . . . , n.

Compute U(P, f) and prove that limn→∞ U(P, f) = 1.
10. Using the limit process described in Example 6.18, calculate limn→∞ an

in each of the following cases by expressing it as a definite integral of some
continuous function and then using the fundamental theorem of calculus:

(a) an =
[(n+ 1)(n+ 2) · · · (n+ n)]1/n

n
.

(b) an =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n
.

(c) an =
1

n
+

n2

(n+ 1)3
+

n2

(n+ 2)3
+ · · ·+ 1

8n
.
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(d) an =

[
n∏

k=1

(
1 +

k2

n2

)]1/n

.

(e) an =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

pn
, where p ∈ N � {1} is fixed.

(f) an =
n∑

k=1

1√
2nk − k2

.

(g) an =

n∑

k=1

k2

n3 + k3
.

(h) an =

n∏

k=1

(
1 +

k

n

)1/k

.

(i) an =

n−1∑

k=1

n2

(n2 + k2)3/2
.

(j) an =

n∑

k=1

n+ k

n2 + k2
.

(k) an =
3

n

[
1 +

√
n

n+ 3
+

√
n

n+ 6
+ · · ·+

√
n

n+ 3(n− 1)

]
.

(l) an =
π

n

n∑

k=1

sin

(
kπ

n

)
.

(m) an =
π

2n

n−1∑

k=0

cos

(
kπ

2n

)
.

(n) an =
1

n

n∑

k=1

eak/n (a ∈ R).

(o) an =
π

2n

n∑

k=1

sin2p
(
kπ

2n

)
, p ∈ N is fixed.

(p) an =
1

n2

n∑

k=1

k cos2
(
k2

n2

)
.

(q) an =
n−1∑

k=0

1√
n2 − k2

.

11. Identify the definite integral for which the lower Riemann sum is given by

sn =
n−1∑

r=0

1√
4n2 − r2

.

Find also the upper Riemann sum Sn and then determine lim
n→∞Sn.
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12. Define f : [0, 1] → R by

f(x) =

{
x if x �= 0 and 1/x is an integer,
0 otherwise.

Show that f is not continuous at 1/n, n ∈ N. Is f integrable on [0, 1]?
13. In each part below, give an example of a function satisfying the following:

(a) bounded monotone but not continuous.
(b) discontinuities at a finite number of points.
(c) infinitely many discontinuities.

14. Show that the function f : [0, 1] → R defined by

f(x) =

{√
1− x2 if x ∈ Q ∩ [0, 1],

1− x if x ∈ Q
c ∩ [0, 1],

is not integrable. Also, show that each of the functions fj : [0, 1] → R (j =
1, 2) defined by

f1(x) =

{
x2 if x ∈ Q ∩ [0, 1],
1 + x2 if x ∈ Q

c ∩ [0, 1],
and f2(x) =

{
x if x ∈ Q ∩ [0, 1],
x2 if x ∈ Q

c ∩ [0, 1],

is not integrable.
15. Prove that

f(x) =

{
x if x ∈ Q ∩ [−1, 1],
−x if x ∈ Q

c ∩ [−1, 1],
and g(x) =

{
x2 if x ∈ Q ∩ [−1, 1],
0 if x ∈ Q

c ∩ [−1, 1],

are not integrable over [−1, 1].
16. Show that f : [0, π/4] → R defined by

f(x) =

{
sinx if x ∈ Q ∩ [0, π/4],
cosx if x ∈ Q

c ∩ [0, π/4],

is not integrable.
17. Determine for each of the following functions whether it is integrable.

Justify your answers.
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(a) f(x) =

{
0 if x ∈ Q ∩ [0, 1],
1 if x ∈ Q

c ∩ [0, 1].
(b) f(x) =

{ 1

3x− 1
if x ∈ [0, 1]\{ 1

3},
0 if x = 1/3.

(c) f(x) =
ex − 1

x3 − x
on (−1, 1). (d) f(x) =

{
sin 1

x if x ∈ Q
c ∩ [0, 1],

0 if x ∈ Q.

(e) f(x) =

{
x if x ∈ [−1, 14 ],
1

x
if x ∈ [ 14 , 1].

(f) f(x) =

{
x if x ∈ Q ∩ [0, 1],
0 if x ∈ Q

c ∩ [0, 1].

(g) f(x) = cos(1/x) on (0, 1]. (h) f(x) =

{ 1

1− x2
if x ∈ (−1, 1),

0 if x = ±1.

(i) f(x) = sin(1/x) on (0, 1]. (j) f(x) =

⎧
⎨

⎩

3x if x ∈ [0, 1/3],
1− x if x ∈ (1/3, 1/2],
1 + x if x ∈ (1/2, 1].

18. Is f : [0, 1] → R defined by

f(x) =

{
(−1)k−1 for

1

k + 1
< x ≤ 1

k
, k ∈ N,

1 for x = 0,

integrable on [0, 1]?
19. Suppose that f is a nonconstant bounded function on [a, b] that satisfies

one of the following:
(a) f is integrable on [c, b] for every c ∈ (a, b).
(b) f is integrable on [a, d] for every d ∈ (a, b).
(c) f is integrable on [c, d] for every [c, d] ⊂ (a, b).
Show that f is (Riemann) integrable on [a, b].

20. Assume that f is integrable on [0, b].
(a) Show that if f is an even function, then f is integrable on [−b, b] and

∫ b

−b

f(t) dt = 2

∫ b

0

f(t) dt.

(b) Show that if f is an odd function, then f is integrable on [−b, b] and

∫ b

−b

f(t) dt = 0.

6.2 Fundamental Theorems

In this section, we discuss the first fundamental theorem of calculus (integral
of a derivative) and, the second fundamental theorem of calculus (differen-
tiation of an indefinite integral). These two theorems are known together as
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the fundamental theorem of calculus, although we make a distinction by call-
ing them the first and the second fundamental theorems. This result provides
a method of computing certain integrals and reveals the close relationship
between integration and differentiation.

Definition 6.33. Let f be a function defined on I. If there exists a differen-
tiable function F such that F ′(x) = f(x) on I, then F is called an antideriva-
tive or a primitive of f on I.

If F is an antiderivative of f on I, then so is F plus a constant.

Example 6.34. Set

f(x) =

{
− 2

x
cos(1/x2) + 2x sin(1/x2) for x ∈ [−1, 1]� {0},

0 for x = 0.

Clearly f is continuous except at the origin. On the other hand, f admits a
primitive F given by

F (x) =

{
x2 sin(1/x2) for x ∈ [−1, 1]� {0},
0 for x = 0.

Note that f is not bounded (why?) on [−1, 1] and hence is not integrable.
This example illustrates the existence of a nonintegrable function having
primitives. •
6.2.1 The Fundamental Theorems of Calculus

The following result is also known as Newton–Leibniz formula, not in the exact
sense but because Newton and Leibniz were the first to establish a relationship
between integration and differentiation.

Theorem 6.35 (The first fundamental theorem of calculus). If f is
integrable on [a, b] and F is an antiderivative of f on [a, b], then

∫ b

a

f(x) dx = F (b)− F (a).

Proof. Let P = {a = x0, x1, x2, . . . , xn = b} be a partition of the interval
[a, b]. Note that F satisfies the hypotheses of the classical mean value theorem
for differentiable functions on each subinterval [xk−1, xk], k = 1, 2, . . . , n.
Thus, the mean value theorem tells us that there is a point x∗

k in each open
subinterval (xk−1, xk) for which

F (xk)− F (xk−1) = F ′(x∗
k)(xk − xk−1) = f(x∗

k)Δxk, k = 1, 2, . . . , n.
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This relation gives

n∑

k=1

f(x∗
k)Δxk =

n∑

k=1

[F (xk)− F (xk−1)] = F (xn)− F (x0) = F (b)− F (a).

Finally, we take the limit of the left side as ‖P‖ → 0 as n → ∞. Because f is

integrable, Theorem 6.19 implies that the left-hand side becomes
∫ b

a f(x) dx
in the limit, whereas the right-hand side remains F (b) − F (a), which is a
constant. Hence we have

lim
n→∞

n∑

k=1

f(x∗
k)Δxk =

∫ b

a

f(x) dx = F (b)− F (a),

as required.

In particular, the definite integral of any continuous function f on [a, b]
can be computed without calculating the Riemann sums and often without
much effort, simply by finding an antiderivative F and evaluating it at the
limits of integration a and b. We have then two fundamental questions. Un-
der what conditions on f does it has an antiderivative? How do we find an
antiderivative? The existence of an antiderivative is asserted by the second
fundamental theorem of calculus, which will be discussed soon.

Theorem 6.35 provides a convenient practical method of evaluating definite
integrals when the antiderivative of the integrand is easy to find. For instance,
suppose we want to evaluate a definite integral

∫ 3

2

xp dx (p > −1).

We note that F (x) = xp+1/(p+1) is an antiderivative of f(x) = xp. Thus, by
Theorem 6.35,

∫ 3

2

xp dx = F (3)− F (2) =
3p+1 − 2p+1

p+ 1
.

Note that if we choose a different antiderivative, say G(x) = F (x) + c, then
G(3)−G(2) = F (3)−F (2) as well. In Example 6.23, this integral was evaluated
using the definition of the Riemann sum.

Suppose f is a continuous function on [a, b]. Then f is integrable on [a, b].
In particular, for any c between a and b, f is integrable on [a, c], and the value
of the integral

∫ c

a f(t) dt varies as c varies. To emphasize that the upper limit
of integration is a variable instead of a constant, we might use the letter x
and consider

F (x) =

∫ x

a

f(t) dt,

which is clearly a function of the variable x, x ∈ [a, b], because every value of
x gives a single value. Thus, from the notation itself it is clear that integration
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can be regarded as a process of switching from one function to another. Ob-
serve that F (a) = 0. Note that it is less confusing to write F (x) in the above
form rather than F (x) =

∫ x

a f(x) dx. Moreover, if f is a nonnegative continu-
ous function and x lies to the right of a, then f(x) is the area under the graph
of y = f(x) from a to x.

The conditions under which an antiderivative exists is provided in the next
theorem.

Theorem 6.36 (The second fundamental theorem of calculus). Let f
be integrable on [a, b] and define

G(x) =

∫ x

a

f(t) dt for a ≤ x ≤ b. (6.9)

Then we have the following:

(a) G is continuous on [a, b].
(b) If f is continuous at c ∈ [a, b], then G is differentiable at c and G′(c) =

f(c). If f is continuous from the right at a, then G′
+(a) = f(a). If f is

continuous from the left at b, then G′−(b) = f(b).

Proof. (a) We will first prove that G is continuous on [a, b]. Because f is
bounded on [a, b], there exists a K > 0 such that |f(x)| ≤ K on [a, b]. If x, y ∈
[a, b] and x < y, then it follows from the basic properties of the integral that

G(y)−G(x) =

∫ y

a

f(t) dt−
∫ x

a

f(t) dt =

∫ y

a

f(t) dt+

∫ a

x

f(t) dt =

∫ y

x

f(t) dt,

so that |G(y)−G(x)| ≤ K|y − x|, and the continuity of G follows.
(b) We will next prove that G is differentiable at c and G′(c) = f(c) in

the case that c ∈ (a, b). The cases c = a and c = b are similar, with the
appropriate one-sided derivatives being used. To discuss the derivative of G
at c, we choose c ∈ (a, b) and fix it. We form the difference quotient (see
Figure 6.13 when f(x) ≥ 0 on [a, b]):

y= f(x)
y= f(x)

O Oa ab bc x x

y

c

G(c) =
a
f(t) dt

c+h

y

c

G(c+h)−G(c)

=
c

f(t) dt
c+h

Fig. 6.13. Sketch for the second fundamental theorem of calculus.
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G(c+ h)−G(c)

h
=

1

h

∫ c+h

c

f(t) dt,

where it is understood that h is always selected small enough that c + h is
also in (a, b) and h may be positive or negative. Since f is continuous at c, it
is continuous on J , where J denotes the closed interval with endpoints c and
c+ h. Define

m = m(c) = min
t∈J

f(t) and M = M(c) = max
t∈J

f(t).

Clearly, we have that m ≤ f(t) ≤ M for t ∈ J , so that by the dominance rule
of the Riemann integral, we obtain

m =
1

h

∫ c+h

c

m dt ≤ 1

h

∫ c+h

c

f(t) dt ≤ 1

h

∫ c+h

c

M dt = M.

But since f is continuous at c, we know that m = M = f(c) as h → 0.
Therefore,

G′(c) = lim
h→0

G(c+ h)−G(c)

h
= f(c),

which proves the assertion.

Theorem 6.36(b) may be stated in the following form.

Corollary 6.37. Suppose that f is continuous on [a, b]. Then G defined by
(6.9) is an antiderivative of f on [a, b].

We remark that for f and G satisfying the last corollary, G necessarily has
the form

G(x) = G(a) +

∫ x

a

f(t) dt.

Thus the primitiveG for which G(a) = 0 is referred to as the indefinite integral
of f . Also, we have the following:

• If f : [a, b] → R has a primitive in [a, b], then
∫ b

a f(t) dt is independent of
the choice of the primitive.

• A function that has a primitive need not be continuous; see, for instance,
Examples 6.34 and 6.38, and Exercise 6.57(1).

Example 6.38 (The indefinite integral of an integrable function is
not necessarily differentiable). Define f : [−2, 2] → R by

f(x) =

{
1 for −2 ≤ x ≤ 0,
0 for 0 < x ≤ 2.
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Clearly f is integrable on [−2, 2] (why?). If we define F : [−2, 2] → R by

F (x) =

∫ x

−2

f(t) dt,

then we see that F is continuous on [−2, 2]. We can now compute F explicitly.
For −2 ≤ x ≤ 0,

F (x) =

∫ x

−2

f(t) dt =

∫ x

−2

dt = x+ 2,

and for 0 < x ≤ 2, we have

F (x) =

∫ x

−2

f(t) dt =

∫ 0

−2

f(t) dt+

∫ x

0

f(t) dt =

∫ 0

−2

dt = 2.

Thus

F (x) =

{
x+ 2 for −2 ≤ x ≤ 0,
2 for 0 < x ≤ 2,

which is clearly continuous on [−2, 2]. Note that F is differentiable everywhere
except at x = 0 (where f is not continuous). •
Example 6.39 (sign(x) is integrable). The signum function is defined by

sign(x) :=

⎧
⎨

⎩

−1 if x < 0,
0 if x = 0,
1 if x > 0.

The function sign(x) is monotone on R and hence integrable over any interval
[a, b]. It is now easy to see that, for instance, for a < 0,

F (x) =

∫ x

a

sign(t) dt =

{
a− x if x ≤ 0,
a+ x if x > 0,

and so F (x) = a+ |x|, which is continuous on R. •
The second fundamental theorem of calculus not only establishes the close

relationship between the integration and differentiation, but also offers a use-
ful method of evaluating integrals. Also, Theorem 6.36 implies that every
continuous function f has an antiderivative. Moreover, an antiderivative is
given by the integral

∫ x

a
f(t) dt, which is called the indefinite integral of f on

[a, b]. Some discontinuous functions have antiderivatives, and others do not.
For example, consider

f(x) =

{
sin(1/x) for x ∈ [−1, 1]� {0},
0 for x = 0,

and

g(x) =

{
1 for x ∈ [−1, 1]� {0},
0 for x = 0.
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It is easy to see that f has an antiderivative but g does not. Note that f is not
monotonic on [−1, 1] but is continuous everywhere except at 0. It has been
shown that f is integrable on [−1, 1].

Additional examples for Theorem 6.36 follow:

(a)
d

dx

(∫ x

7

(at+ b) dt

)
= ax+ b.

(b) To evaluate
d

dx

(∫ x2

7

(t2 + t) dt

)
, we proceed with

d

dx2

(∫ x2

7

(t2 + t) dt

)
d(x2)

dx
=

(
(x2)2 + x2

)
(2x) = 2x5 + 2x3.

(c) Under the hypotheses of Theorem 6.36, we obtain

d

dx

(∫ a

x

f(t) dt

)
= −f(x).

For instance, we have

d

dx

(∫ 5

x

sinu

u
du

)
= − d

dx

(∫ x

5

sinu

u
du

)
= − sinx

x
.

(d) If φ = φ(x) is a differentiable function, then under the hypotheses of
Theorem 6.36, one has

d

dx

(∫ φ(x)

a

f(t) dt

)
=

d

dφ

(∫ φ

a

f(t) dt

)
dφ(x)

dx
= f(φ(x))φ′(x).

For instance, in order to evaluate

(i)
d

dx

(∫ x2

x3

dt
3
√
1 + t2

)
, x ∈ [0, 1], (ii)

d

dx

(∫ x3

x2

dt

(1 + t2)3

)
,

x ∈ [1,∞),

we may just rewrite the two integrals as

∫ x2

x3

dt
3
√
1 + t2

= −
∫ x3

0

dt
3
√
1 + t2

+

∫ x2

0

dt
3
√
1 + t2

and
∫ x3

x2

dt

(1 + t2)3
= −

∫ x2

1

dt

(1 + t2)3
+

∫ x3

1

dt

(1 + t2)3
,

and then proceed to use the general formula stated above.

Corollary 6.40. The first fundamental theorem of calculus for continuous
functions follows from Theorem 6.36.
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Proof. Assume that f is continuous on [a, b]. Then Theorem 6.36 shows that

G(x) =

∫ x

a

f(t) dt

is a differentiable function with G′(x) = f(x) on [a, b]. If F is any an-
tiderivative of f , then F ′(x) = f(x), so that (G − F )′(x) = 0, and therefore
G(x) = F (x) + c for some constant c and for all x on the interval [a, b]. In
particular, when x = a, we have

0 = G(a) = F (a) + c, i.e., c = −F (a).

Consequently,
∫ x

a f(t) dt = F (x) − F (a). Finally, by letting x = b, we obtain

∫ b

a

f(t) dt = F (b)− F (a),

as claimed by the first fundamental theorem of calculus.

As a consequence of the first fundamental theorem of calculus, we have
the following.

Corollary 6.41. If f ∈ C1[a, b] (i.e., f ′(x) not only exists on [a, b] but is also
continuous on [a, b]), then

∫ b

a

f ′(x) dx = f(b)− f(a).

Using Theorems 6.35 and 6.36, we may now formulate the following useful
version.

Theorem 6.42 (Fundamental theorem of calculus—combined form).
Let G and f be two continuous functions on [a, b] such that G(a) = 0. Then
we have

G′(x) = f(x) on [a, b] if and only if G(x) =

∫ x

a

f(t) dt on [a, b].

(At the endpoints, G′(a) and G′(b) refer to one-sided derivatives.)

We next use the fundamental theorem of calculus to prove formulas for
integration by substitution and integration by parts.

Corollary 6.43 (Change of variables for integrals). Suppose that f :
[a, b] → R is continuous and g : [c, d] → [a, b] is differentiable with continuous
derivative. Then we have

∫ g(d)

g(c)

f(t) dt =

∫ d

c

f(g(s))g′(s) ds.
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Proof. Set F (x) =
∫ x

a f(t) dt. Now

∫ g(d)

g(c)

f(t) dt = F (g(d))− F (g(c))

=

∫ d

c

(F ◦ g)′(s) ds

=

∫ d

c

F ′(g(s))g′(s) ds (by the chain rule)

=

∫ d

c

f(g(s))g′(s) ds,

which completes the proof.

Corollary 6.44 (Integration by parts). Suppose that f : [a, b] → R has a
continuous derivative and g : [a, b] → R is continuous. Let G : [a, b] → R be
an indefinite integral of g, i.e., G′(x) = g(x). Then we have

∫ b

a

f(x)g(x) dx = f(x)G(x)
∣∣∣
b

a
−

∫ b

a

f ′(x)G(x) dx.

Proof. The proof of this result is left as an exercise.

As an application of integration by parts, one can obtain another version
of Talyor’s formula (see Theorem 8.43) with a remainder term in the form of
an integral. We refer to Exercise 8.51(20).

6.2.2 The Mean Value Theorem for Integrals

The mean value theorem for derivatives implies that under certain conditions
on f , there is at least one number c in the interval (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

Our next result, which is in some sense analogous to the mean value theorem
for derivatives, is especially useful in obtaining estimates for certain definite
integrals rather than an exact value. It is one of the several forms of mean
value theorems for integrals.

Theorem 6.45 (Mean value theorem for integrals). If f is continuous
on the interval [a, b], then there is at least one number c on this interval such
that ∫ b

a

f(x) dx = f(c)(b − a). (6.10)
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Proof. Since f is continuous on the interval [a, b], there exist M and m such
that

m = min
t∈[a,b]

f(t) ≤ f(x) ≤ M = max
t∈[a,b]

f(t) when a ≤ x ≤ b,

and so (by the dominance rule)

m(b − a) =

∫ b

a

m dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

M dx = M(b− a).

Dividing by the positive number b − a does not change the inequalities, and
so we see that there is a real number μ such that

m ≤ μ ≤ M, μ =
1

b− a

∫ b

a

f(x) dx.

Now, f is continuous on the closed interval [a, b], and the number μ lies be-
tween m and M . The intermediate value theorem for continuous functions
implies that f must assume every value between m and M . Consequently,
there exists a number c between a and b for which f(c) = μ. Therefore, (6.10)
holds.

Example 6.46. Find a value of c guaranteed by the mean value theorem for
integrals for the following functions:

(a) f(x) = sinx on [0, π]. (b) f(x) = x3 on [−1, 1].
(c) f(x) = x2 on [−1, 1].

Solution. (a) We know that (see Figure 6.14)

∫ π

0

sinxdx = − cosx|π0 = 2.

πc1 c2

0.5

1 (c1, f(c1)) (c2, f(c2))

x

π

0 sin x dx=2

O

y
f(x)= sin x

Fig. 6.14. Illustration for the mean value theorem for integrals with f(x) = sin x
on [0, π].
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According to the mean value theorem, there exists a number c on [0, π]
such that

f(c)(b− a) = 2, i.e., sin c = 2/π.

We see that c ≈ c1 = 0.690107 or c2 = 2.451486. Because both c1 and c2
lie between 0 and π, we have found these two (approximate) values of c.

(b) For f(x) = x3, we have
∫ 1

−1 x
3 dx = 0. The mean value theorem for

integrals asserts the existence of a point c ∈ [−1, 1] such that

0 = f(c)[1− (−1)] = 2f(c), i.e., f(c) = 0.

It is obvious in this case that c = 0.
(c) Finally, for f(x) = x2, we have

∫ 1

−1 x
2 dx = 2/3, and so there exists a

point c such that
2/3 = 2f(c), i.e., c2 = 1/3.

Clearly, c = ±1/
√
3 do the job. Each of these points lies in the interval

[−1, 1] and satisfies the condition of Theorem 6.45. •
Remark 6.47. 1. If f ′(x) exists and is continuous on [a, b], then with f ′(x)

in place of f(x), we see that the mean value theorem for derivatives follows
from the mean value theorem for integrals.

2. The mean value theorem for integrals has a geometric interpretation, es-
pecially when f(x) ≥ 0. For example (see Figure 6.15), the theorem says
that it is possible to find at least one number c on the interval (a, b) such
that the area of the rectangle with height f(c) and base (b−a) has exactly
the same area as the region under the curve y = f(x) on [a, b].

3. As in the case of the mean value theorem for derivatives, the mean value
theorem for integrals gives no indication how to determine c. •

x

y

c1 c2 c3 c4 c5 c6 ba

f(ck)

O

f(ck)(b−a)y= f(x)

Fig. 6.15. Geometric interpretation of the mean value theorem for integrals.

Corollary 6.48 (Generalized mean value theorem for integrals). Sup-
pose that f and g are continuous on [a, b] and g(x) ≥ 0 on [a, b]. Then

∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx (6.11)

for some c in (a, b).



258 6 Definite and Indefinite Integrals

Proof. Using the notation of Theorem 6.45, we have m ≤ f(x) ≤ M for
x ∈ [a, b], and since g(x) ≥ 0 on [a, b], we have

mg(x) ≤ f(x)g(x) ≤ Mg(x) for x ∈ [a, b].

Equation (6.11) clearly holds for any c in (a, b) if
∫ b

a g(x) dx = 0. Therefore,

we assume that
∫ b

a
g(x) dx �= 0, and so we have

∫ b

a
g(x) dx > 0, since g(x) is a

nonnegative function on [a, b]. The above inequalities then give

m ≤ μ =

∫ b

a
f(x)g(x) dx
∫ b

a g(x) dx
≤ M,

and the desired conclusion follows from the intermediate mean value
theorem.

Example 6.49. Show that if f is continuous on [0, 1], then

lim
n→∞

∫ 1

0

nf(x)

1 + n2x2
dx =

π

2
f(0).

Solution. Using the generalized mean value theorem for integrals, we obtain
that for each n > 1 there exists a cn ∈ (0, 1/

√
n) such that

In :=

∫ 1/
√
n

0

nf(x)

1 + n2x2
dx = f(cn)

∫ 1/
√
n

0

n dx

1 + (nx)2

= f(cn) arctan(nx)
∣∣∣
1/

√
n

0

= f(cn) arctan(
√
n)

→ f(0)
π

2
as n → ∞,

and similarly, there exists a dn ∈ (1/
√
n, 1) such that

Jn :=

∫ 1

1/
√
n

nf(x)

1 + n2x2
dx = f(dn)

∫ 1

1/
√
n

n

1 + n2x2
dx,

so that

|Jn| = |f(dn)|
∫ 1

1/
√
n

n

1 + n2x2
dx

= |f(dn)|(arctan(n)− arctan(
√
n))

→ 0 as n → ∞ (because f is bounded on [0, 1]).

Therefore,

∫ 1

0

nf(x)

1 + n2x2
dx = In + Jn → π

2
f(0) as n → ∞. •



6.2 Fundamental Theorems 259

What else can one learn from the mean value theorem for integrals? For

instance, suppose that f is continuous on [a, b] such that
∫ b

a f(x) dx = 0. Then
according to Theorem 6.45, there exists a point c in [a, b] such that f(c) = 0. In
other words, the graph of f must touch the x-axis at least once, i.e., f(x) = 0
has a solution in [a, b]. Secondly we ask, Is continuity of f in the mean value
theorem for integrals important? Indeed it is. To see this, consider f defined
on [0, 2] such that

f(x) =

{
0 for x ∈ [0, 1],
5 for x ∈ (1, 2].

Clearly, f is discontinuous at x = 1, and

1

b− a

∫ b

a

f(x) dx =
1

2− 0

∫ 2

0

f(x) dx =
1

2

[∫ 1

0

0 dx+

∫ 2

1

5 dx

]
=

5

2
.

It follows that there exists no c such that f(c) = 5/2.

Corollary 6.50. The second fundamental theorem of calculus follows from
the mean value theorem for integrals.

Proof. Let f(t) be continuous on [a, b] and define

G(x) =

∫ x

a

f(t) dt.

We first fix x ∈ (a, b). For Δx such that x+Δx ∈ [a, b], we write

G(x+Δx) −G(x) =

∫ x+Δx

x

f(t) dt.

Applying the mean value theorem for integrals to the integral on the right,
we obtain that

G(x +Δx)−G(x) = (x+Δx − x)f(c), i.e.,
G(x+Δx) −G(x)

Δx
= f(c),

where c lies between x and x + Δx. But since c → x as Δx → 0, we allow
Δx → 0 and obtain G′(x) = f(x) on (a, b), since x is arbitrary.

6.2.3 Average Value of a Function

We are now interested in defining what is called an average value of a con-
tinuous function on an interval. Recall that the average value of n numbers
x1, x2, . . . , xn is defined by

1

n

n∑

k=1

xk.

The question before us is this: How do we define the notion of “average” if
there are infinitely many numbers? In particular, what is the average value of
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a continuous function f(x) on [a, b]? The procedure to define this is as follows.
Divide the interval [a, b] into n equal subintervals

[xk−1, xk] = [a+ (k − 1)Δx, a+ kΔx] (k = 1, 2, . . . , n),

each of width Δx = (b− a)/n. For k = 1, 2, . . . , n, let x∗
k be a number chosen

arbitrarily from the kth subinterval. Then the average value of an arbitrary
continuous function f on [a, b] is estimated by the average Sn of the n sampled
values:

Sn =
f(x∗

1) + f(x∗
2) + · · ·+ f(x∗

n)

n
=

1

n

n∑

k=1

f(x∗
k) =

1

b− a

n∑

k=1

f(x∗
k)Δx.

The sum on the right is indeed a Riemann sum for f on [a, b] with norm
‖P‖ = (b − a)/n. Thus it is natural to define the average/mean value of a
continuous function f(x) defined on the interval [a, b] by

lim
n→∞

1

b− a

n∑

k=1

f(x∗
k)Δx =

1

b− a

∫ b

a

f(x) dx.

Also, we remark that the value of f(c) in the mean value theorem for integrals
is in some sense the average, or mean, height of f(x) on [a, b].

6.2.4 The Logarithmic and Exponential Functions

In earlier chapters we have used the logarithmic and exponential functions,
which are undoubtedly familiar to the reader from precalculus mathematics.
It may seem strange at first that we introduce the logarithmic function as a
definite integral, but later we will see that our definition obeys the laws of
the logarithmic and exponential functions considered in precalculus courses.
We recall that the fundamental theorem of calculus concerns the function F
defined by

F (x) =

∫ x

a

f(t) dt

under suitable conditions on f . If f(t) = tα, then

∫ x

a

tα dt =
1

α+ 1

(
xα+1 − aα+1

)
for α ∈ R� {−1}.

Clearly α = −1 cannot be used. That is, we are unable to determine an
antiderivative of f(t) = 1/t. Our next result will remedy this situation.

Note that since f(t) = 1/t is continuous on R�{0}, f is integrable on any
interval [a, b] not containing 0. This observation helps to define a continuous
function L : (0,∞) → R by
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L(x) =

∫ x

1

dt

t
for x > 0. (6.12)

The expression L(x) is called the natural logarithm of x, denoted by log x,
which we shall soon clarify. Here the restriction x > 0 is necessary, because
the integrand 1/t has an indefinite discontinuity when it is considered on the
interval (x, 1) with x < 0, and hence

∫ x

1 (1/t) dt does not exist.
For x = 1, L(1) = 0. For x > 1, this integral represents the area of the

region bounded by the curve y = 1/t from t = 1 to t = x. Thus, L(x) > 0 for
x > 1. If 0 < x < 1, then

L(x) = −
∫ 1

x

dt

t
,

which is the negative of the area of the region under the curve y = 1/t from
t = x to t = 1. Thus, L(x) < 0 for 0 < x < 1. Consequently, (6.12) defines
a computable function of x on (0,∞). Further, by the second fundamental
theorem of calculus (see Theorem 6.36),

L′(x) =
1

x
,

so that L is increasing on (0,∞), and thus L is one-to-one on (0,∞). Also,
L′′(x) < 0 on (0,∞), so that the graph of the curve y = L(x) is concave
downward on (0,∞); see Figure 6.16. We summarize the above discussion

2 3

y=1/t y=1/t

1

1

2

3

O t

y

x 2 31

1

2

3

O t

y

x

x

1
dt
t =ln x

1
x

dt
t

=−ln x

Fig. 6.16. The natural logarithm function.

together with a few additional properties.

Theorem 6.51 (Properties of the natural logarithm function). The
following statements hold:

(a) L(x) > 0 for x > 1.



262 6 Definite and Indefinite Integrals

(b) L(x) = 0 for x = 1.
(c) L(x) < 0 for 0 < x < 1.

(d)
x− 1

x
≤ L(x) < x− 1 for x > 0.

(e) L(xy) = L(x) + L(y) for x, y ∈ (0,∞).
(f) L(x/y) = L(x)− L(y) for x, y ∈ (0,∞).
(g) L(1/x) = −L(x).
(h) L(xa) = aL(x) for x > 0 and for every a ∈ R.
(i) L is bijective on (0,∞) with the range of L is all of R.
(j) L(x) → ∞ as x → ∞.
(k) L(x) → −∞ as x → 0+.

Proof. (d) To prove (d) above, it suffices to observe that

⎧
⎪⎨

⎪⎩

1 ≤ t ≤ x ⇐⇒ 1

x
≤ 1

t
≤ 1 for x > 1,

x ≤ t ≤ 1 ⇐⇒ 1 ≤ 1

t
≤ 1

x
for 0 < x < 1.

(e) Fix a > 0 and consider f(x) = L(ax). Then

f ′(x) = aL′(ax) =
1

x
= L′(x), i.e., (f − L)′(x) = 0,

so that f − L is constant. In particular,

f(b)− L(b) = f(1)− L(1) = L(a),

and so L(ab) = L(a) + L(b). Alternatively,

L(ab) =

∫ a

1

dt

t
+

∫ ab

a

dt

t

=

∫ a

1

dt

t
+

∫ b

1

du

u
(by the change of variable t = au)

= L(a) + L(b).

(f) We have

L(x/y) = L(x) + L(1/y) (by (e))

= L(x) +

∫ 1/y

1

dt

t
(by definition)

= L(x)−
∫ y

1

dv

v
(by the change of variable t = 1/v)

= L(x)− L(y).

(g) Follows if we apply (f) with x = 1.
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(h) Case 1: If a = n ∈ N, use (e) and the method of induction.
Case 2: If a = −n, then by (g) and Case 1, one has

L(xa) = L(x−n) = L
( 1

xn

)
= −L(xn) = −nL(x) = aL(x).

Case 3: If a > 0 and a ∈ Q, then a can be written as a = m/n for some
positive integers m and n, n > 1, and so by Case 1, we get

L(xa) = L((x1/n)m) =
m

n
[nL(x1/n)] =

m

n
L((x1/n)n) = aL(x).

Case 4: If a = −m/n, then

L(xa) = L
( 1

x−a

)
= −L(x−a) = −(−a)L(x) = aL(x).

Case 5: If a is an irrational number, then we consider a sequence {αn} of
rational numbers converging to a and obtain that

L(xαn) = αnL(x).

Since L is continuous, we may allow n → ∞, and statement (h) follows.
(i) The function L is known to be one-to-one because L′(x) = 1/x > 0 on

(0,∞). By the intermediate value theorem, it follows that L maps (0,∞)
onto R.

(j) We observe that L(3) > 0 and that L(3n) = nL(3) (by (h)). Thus,
limn→∞ L(3n) = ∞, and since L is increasing, (j) follows.

(k) Since L(1/3) = −L(3) < 0 and L(1/3n) = nL(1/3) = −nL(3), (k)
follows similarly. •

Remark 6.52. By Property (a) above, it follows that there is a unique real
number x such that L(x) = 1. Suppose we denote such an x by e. Then
L(e) = 1, and the reason for denoting it by e is justified as follows. Now, since
L′(x) = 1/x, it follows that

L′(1) = 1, i.e., lim
h→0

L(1 + h)− L(1)

h
= lim

h→0

L(1 + h)

h
= 1.

With h = 1/n, this reduces to

1 = lim
n→∞nL

(
1 +

1

n

)
= lim

n→∞L

((
1 +

1

n

)n
)

= L

(
lim
n→∞

(
1 +

1

n

)n
)
,

so that because L is one-to-one,

lim
n→∞

(
1 +

1

n

)n

= e,

as defined earlier. •
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Since L is bijective with range (−∞,∞), it follows that L has an inverse,
which we denote by E. Thus,

E(L(x)) = x for x ∈ (0,∞) and L(E(y)) = y for y ∈ R.

The function E will be called the exponential function and will be denoted by
exp; this definition is equivalent to the earlier definition of ex.

Since L(1) = 0, we obtain E(0) = 1. Also, we see that the basic properties
of L are also reflected in its inverse.

Theorem 6.53 (Properties of the exponential function). The following
statements hold:

(a) 0 < E(x) < 1 ⇐⇒ x < 0.
(b) E(x) = 1 ⇐⇒ x = 0.
(c) E(x) > 1 ⇐⇒ x > 0.
(d) E(x+ y) = E(x)E(y) for x, y ∈ R.

(e) E(−x) =
1

E(x)
for x ∈ R.

(f) E(ax) = (E(x))a for x ∈ R and a ∈ Q.

(g) lim
y→0

L(y + 1)

y
= 1.

(h) lim
x→0

E(x)− 1

x
= 1.

(i) E′(x) = E(x) for x ∈ R.
(j) E(x) → ∞ as x → ∞.
(k) E(x) → 0 as x → −∞.

Proof. (d) Since L(E(x)) = x for all x ∈ R,

E(x+ y) = E(L(E(x)) + L(E(y)))

= E(L(E(x)E(y))), by Theorem 6.51(e)

= E(x)E(y), by the definition of inverse.

(e) This follows if we set y = −x in (d).
(f) Case (i): Let a ∈ N0. There is nothing to prove if a = 0, 1. If a = 2, then

E(2x) = E(x+ x) = E(x)E(x) = (E(x))2,

and so by the induction argument, one has

E(ax) = (E(x))a for a = n ∈ N.

Case (ii) For a = −n, n ∈ N, by (e), we get

E(−nx) =
1

E(nx)
=

1

(E(x))n
= (E(x))−n,

and so (f) holds for a = −n.
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Case (iii) If a = m/n, where m,n ∈ N, then by Case (i),

(
E
(m
n
x
))n

= E
(
n
m

n
x
)
= E(mx) = (E(x))m,

and because E(x) > 0 for all x ∈ R, this gives

E
(m
n
x
)
= (E(x))m/n.

Similarly, if a = −m/n, then we easily have

E
(
− m

n
x
)
= (E(x))−m/n.

This completes the proof for (f).
(g) From Theorem 6.51(d), we obtain that

1

y + 1
≤ L(y + 1)

y
< 1 for y > −1.

Note that since L(1) = 0, the quotient L(y + 1)/y in question is in in-
determinate form at y = 0 and lies between 1/(y + 1) and 1. If we allow
y → 0, then the squeeze rule gives the result.

(h) Set y = E(x) − 1. Then E(x) = y + 1 or x = L(y + 1). Because E(x)
is continuous on R and E(0) = 1, we have y → 0 whenever x → 0.
Consequently, by (g),

lim
x→0

E(x)− 1

x
= lim

y→0

y

L(y + 1)
= 1.

(i) Let x ∈ R be arbitrary. For h �= 0, (d) gives

E(x+ h)− E(x)

h
=

E(x)E(h) − E(x)

h
= E(x)

(
E(h)− 1

h

)
,

which by (h), gives the result as h → 0. Thus, E′(x) = E(x) on R. •
An expression such as ax (a > 0) for x rational can be defined by ele-

mentary means. For instance, if x = m/n, where m,n ∈ N, then ax may be
written as

ax = (am)1/n.

On the other hand, expressions such as

2
√
3, (

√
3)π

cannot be given in such an elementary way. Thus we need a suitable definition
to deal with such cases.
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Definition 6.54. If a > 0, then we define

ax = E(xL(a)) for x ∈ R. (6.13)

Thus, we have (because L = e−1)

L(ax) = xL(a) for all a > 0 and x ∈ R.

If we differentiate (6.13), we obtain by Theorem 6.53(i),

(ax)′ = E′(xL(a)). L(a) = E(xL(a))L(a) = axL(a).

Similarly, we may define

xa = E(aL(x)) for a ∈ R and x > 0,

and if we differentiate this, we obtain

(xa)′ = E′(aL(x))
a

x
= E(aL(x))

a

x
= xa

(a
x

)
= axa−1. (6.14)

The well-known integration formula for xa follows from (6.14) if a �= −1.

Example 6.55. Prove the following:

(a) lim
x→∞x−aL(x) = 0 for all a > 0. (b) lim

x→∞
xa

E(x)
= 0 for all real a.

Solution. (a) To prove (a), choose b such that 0 < b < a and x > 1. Then
since tb > 1 for t > 1, we have

x−aL(x) = x−a

∫ x

1

dt

t
< x−a

∫ x

1

tb−1 dt = x−a

(
xb − 1

b

)
<

xb−a

b
,

and the proof of (a) follows.
Since L(x) → ∞ as x → ∞, and xa → ∞ as x → ∞ (a > 0), from (a) we
observe that L(x) approaches ∞ “more slowly” than any positive power
of x as x → ∞.

(b) Set y = L(x) for x > 0. Then y → ∞ as x → ∞, by Theorem 6.51(j).
Also, x = E(y) for y ∈ R, and so for a > 0, this observation together
with (a) gives

0 = lim
x→∞

L(x)

xa
= lim

y→∞
y

(E(y))a
=

1

a
lim
y→∞

ay

E(ay)
,

and hence (b) follows if a > 0. If a < 0, set a = −α, and obtain a proof
for (b). There is nothing to prove if a = 0, since E(x) → ∞ as x → ∞.•
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6.2.5 Questions and Exercises

Questions 6.56.

1. What is the difference between definite and indefinite integrals?
2. Suppose that f is integrable on [a, b]. Must f have a primitive on [a, b]?

How about if f is continuous on [a, b]?

3. If f is continuous and nonnegative on [a, b] such that
∫ b

a f(x) dx = 0, must
f(x) = 0 on [a, b]?

4. If f is continuous on [a, b] such that
∫ b

a f(x)g(x) dx = 0 for every contin-
uous function g on [a, b], must f(x) = 0 on [a, b]?

5. If f and g are two continuous functions on [a, b] such that
∫ b

a
f(x) dx =∫ b

a g(x) dx, must f(x) = g(x) have a solution in [a, b]?
6. Suppose that f is integrable on [a, b] such that f(x) ≥ 0 for all x except

for a finite number of points x ∈ [a, b], and f(c) > 0 for some c ∈ (a, b) at

which f is continuous. Must we have
∫ b

a f(x) dx > 0?

7. If f is continuous on [a, b] such that f(x) =
∫ x

a
f(t) dt, must we have

f(x) = 0 on [a, b]?

8. Suppose that f(x) = [x] on [0, 3]. Can
∫ 3

0 f(t) dt be evaluated using the
fundamental theorem of calculus?

9. If one uses the first fundamental theorem of calculus, then one writes

∫ 1

−1

dx

x4
=

[
− 3

x3

]∣∣∣∣
1

−1

= −3− 3 = −6

because f(x) = 1/x2 has a primitive F (x) = −3/x3 on [−1, 1]. On the
other hand, the function y = 1/x2 is always positive. What is wrong with
this “evaluation”?

10. Is the point c in the mean value theorem for integrals unique?
11. Does the generalized mean value theorem for integrals (i.e., Corollary 6.48)

hold in the case g(x) < 0 on [a, b]?
12. Must we have sinx > x− x3/6 for all x > 0?
13. Suppose that f is continuous on [0, 1] and n ∈ N. Is it true that∫ 1

0
xnf(x) dx → 0 as n → ∞?

14. Let f be continuous on [−1, 1]. Is it true that
∫ 2π

0
f(sinx) cosxdx = 0?

Must we have
∫ 2π

0 f(sinx) dx =
∫ π

π/2 f(sinx) dx?

15. Which is larger, π3 or 3π?

Exercises 6.57.

1. Define f : R → R by

f(x) =

{
2x sin(1/x)− cos(1/x) for x �= 0,
0 for x = 0.

Determine the antiderivative of f(x) and thereby evaluate
∫ 1

0 f(x) dx.
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2. Let f : R → R be a continuous function and let F : R → R be defined by

F (x) =

∫ ex

0

f(t) dt.

Show that F is differentiable on R. Compute F ′(x). Repeat the exercise
when ex is replaced by sinx.

3. If f(x) =

∫ x2

0

√
t− t6 dt (x > 0), find f ′(3).

4. Determine dG/dx, if G(x) equals:

(a)

∫ x

2

(2t+ 3) dt. (b)

∫ 4

x2

sec2(t) dt. (c)

∫ x

−x

cot t dt.

(d)

∫ 1

log x

cos t

t
dt. (e)

∫ 3
√
x

√
x

t2 dt. (f)

∫ x2

x

cos(t2) dt.

(g)

∫ x3

0

et
2

dt. (h)

∫ x2

x

√
1 + t5 dt. (i)

∫ cosx

sin x

e
√
t dt.

5. For c �= 0, define f(x) by f(0) = 0 and

f(x) = 3x2 cos(c/x2) + 2c sin(c/x2) for x �= 0.

Show that f is integrable on [−a, a] (a > 0). Compute
∫ a

−a f(t) dt.
6. Define f : [0, 3] → R by

f(x) =

⎧
⎨

⎩

1 if 0 ≤ x < 1,
2 if 1 ≤ x < 2,
3 if 2 ≤ x ≤ 3.

Show that f is integrable on [0, 3] and
∫ 3

0
f(x) dx = 6. Does f have a

primitive on [0, 3]?
7. Define f : [0, 2] → R by

f(x) =

{
2x if 0 ≤ x ≤ 1,
2(x− 1) if 1 ≤ x ≤ 2.

Show that f is integrable on [0, 2].
(a) Determine the function G(x) =

∫ x

0
f(t) dt on [0, 2].

(b) Sketch the graph of y = G(x) on [0, 2].
(c) Where is G(x) continuous?
(d) Where is G(x) differentiable?
(e) Determine G′ at the points of differentiability, in particular, G′

+(0),
G′

−(2), G′
+(1), and G′

−(1). Determine whether G′
+(1) = G′

−(1).
(For the definitions of left and right derivatives, we refer to Section
3.3.2).
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8. Consider

f(x) =

⎧
⎨

⎩

1 for x > 0,
0 for x = 0,
−1 for x < 0,

and set F (x) = |x| for x ∈ R. Then F ′(x) = f(x) for x �= 0, and F is not
differentiable at x = 0. Show that

∫ 0

−1

f(x) dx = F (0)− F (−1) and

∫ 1

0

f(x) dx = F (1)− F (0).

Explain why neither form of the fundamental theorems can be applied
directly to prove this.

9. State suitable conditions on a(x), b(x), and f(x) for being able to
determine

d

dx

(∫ b(x)

a(x)

f(t) dt

)
.

10. Prove that if f(x) is monotonic on [a, b], then there exists c ∈ [a, b] such
that ∫ b

a

f(x) dx = f(a)(c− a) + f(b)(b− c).

11. Show that there exists a real number c with 0 < c < 1 such that

lim
n→∞

(
1

n

n∑

k=1

e
√

k/n

)
= e

√
c.

12. Show that if 0 < a < b < ∞, then

∣∣∣∣∣

∫ b

a

sinx

x
dx

∣∣∣∣∣ ≤
2

a
.

13. Prove the following:

(a)
28

81
<

∫ 1/3

0

ex
2

dx <
3

8
. (b)

1

2
<

∫ 1

0

dx√
4− x2 + xα

<
π

6
(α > 2).

(c) lim
x→0

1

x2

∫ x2

0

e
√
1+t2 dt = e. (d)

π2

9
<

∫ π/2

π/6

x

sinx
dx <

2π2

9
.

14. Show that lim
x→0

∫ 2x

−2x
f(t) dt

∫ 3x

0 f(t+ 2) dt
=

f(0)

f(2)
if f is continuous on R.

15. Compute the value of

lim
x→0

1

x4

∫ x

0

t3

1 + t2
dt.
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16. Suppose that f is continuous on [0, 1]. Show that

∫ 1

0

x3f(x) dx =
1

4
f(c)

for some c ∈ [0, 1].
17. Prove that if f(x) is continuous and increasing on [a, b] and c = (a+ b)/2,

then

f(a) + f(c) ≤ 2

b− a

∫ b

a

f(x) dx ≤ f(c) + f(b).

18. Find c that satisfies the conclusion of the mean value theorem for integrals
for the functions defined below. If you cannot find such a value, explain
why the theorem does not apply. Find also the average/mean value of
these functions on the prescribed interval:

(a) f(x) = cosx on
[−π

2 ,
π
2

]
. (b) f(x) = tanx on [0, 2].

19. Using integration by parts, evaluate the following integrals:

(a)

∫ 3

1

x log xdx. (b)

∫ 5

0

x4ex
3

dx. (c)

∫ x

0

et cos t dt.

20. Evaluate the following definite integrals:

(a)

∫ 2

1

x3 + 1

x2
dx. (b)

∫ 2

1

x2 + x− 1√
x

dx. (c)

∫ 2

1

x3 − 1

x
dx.

(d)

∫ 1

0

dx√
4− x2

. (e)

∫ 2

0

(2x− |x− 1|) dx. (f)

∫ 1

−1

(x+ |x|) dx.

21. Using the integration by parts, evaluate the integral

∫ 4

1

log xdx.

22. Using the definition of L and E, show that e lies between 2 and 3.
23. Using Definition 6.54 and Theorem 6.51(d), can we conclude that

x− 1

x
≤ L(x) ≤ x− 1,

where L(x) = lim
n→∞

x1/n−1
1/n ?
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Improper Integrals and Applications

of Riemann Integrals

So far, our theory of integration has dealt with the definite integral

∫ b

a

f(x) dx,

where the integrand f(x) is bounded on a closed and bounded interval [a, b].
Thus, definite integrals have finite limits of integration, and f(x) has a finite
range. However, in many interesting applications (e.g., in physics, economics,
statistics, and other applied areas), we also encounter problems that fail to
satisfy one or both of these conditions. So we need to discuss a way to integrate
functions that are unbounded or are defined on an unbounded interval. Our
investigation along such lines leads to what are called improper integrals.
There are basically two types of improper integrals; others can be developed
from them. In Section 7.1, we consider functions f defined on [a, b) with b = ∞,
or (a, b] with a = −∞ or (−∞,∞) or functions f that are unbounded in a
neighborhood of a finite number of points on the interval of integration [a, b]
with a and b finite. The main aim of this section is to discuss the convergence

and divergence of the corresponding improper integrals
∫ b

a f(x) dx. At the
end, we consider the most important and interesting examples of improper
integrals, namely the gamma function and the beta function. These two func-
tions play important roles in analysis. Finally, we discuss certain important
integrals in connection with the convergence of series of nonnegative numbers.
Our particular emphasize will be on the integral test, the convergence of har-
monic p-series, and the Abel–Pringsheim divergence test. In Section 7.2, we
deal with a number of applications of the Riemann integral, such as in finding
areas of regions bounded by curves and the arc length of plane curves.

7.1 Improper Integrals

We consider integrals of the form
∫ b

a f(x) dx having one of the following forms:

S. Ponnusamy, Foundations of Mathematical Analysis,
DOI 10.1007/978-0-8176-8292-7 7,
© Springer Science+Business Media, LLC 2012

271
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xO 1 t

x= tx=1

y= 1
x

y
approaches infinite

area as t→∞

xO 1 t

x= tx=1

y

y= 1
x2

approaches finite
area as t→∞

Fig. 7.1. On the convergence of
∫ ∞
1

1/xp dx for p = 1, 2.

• a is finite but b = ∞, or a = −∞ but b is finite, or a = −∞ and b = ∞.
• f is unbounded near a finite number of points on the interval of integration
[a, b], where a and b are finite.

If one of the above cases occurs, then the integral in question is called an
improper integral. Our main investigation in this section is to give meaning to
such integrals and to evaluate them.

7.1.1 Improper Integrals over an Unbounded Interval

One of the central problems in analysis has to do with the definition of “infin-
ity.” A general question is how to deal with infinite quantities. To consider one
such problem, we introduce the concept of an integral that is defined on R,
or on a half-line of the form [a,∞) or (−∞, a]. If f(x) ≥ 0, then

∫∞
a

f(x) dx
can be thought of as the area under the curve y = f(x) on the unbounded
interval [a,∞).

Before dealing with the general case, let us try to discuss the evaluation
of the integral

∫∞
1 (1/x2) dx. To do so, we need to find a reasonable strategy

(see Figure 7.1).
Clearly, the region under the curve y = 1/x2 for x ≥ 1 is unbounded. Does

this mean that the area is also infinite? A natural approach is to begin by
computing the integral from 1 to t, where t is some “large” number and then
see what happens as t → ∞. We have

∫ t

1

dx

x2
= − 1

x

∣∣∣∣
t

1

= −1

t
+ 1,

and we then take the limit as t → ∞. This suggests that the region under
y = 1/x2 for x ≥ 1 actually has finite area approaching 1 as t gets larger and
larger. Analytically, it is reasonable to conclude that

∫ ∞

1

dx

x2
= lim

t→∞

∫ t

1

dx

x2
= lim

t→∞

[
−1

t
+ 1

]
= 1.
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xO

y

x=1 x= t

1 t

approaches infinite
area as t → ∞

approaches finite
area as t → ∞

y= 1
x

1
x2y=

Fig. 7.2. A finite and an infinite area.

O

y

1
y= ex

x

y= e−x

t

x= t

t→∞

Fig. 7.3. Area under y = e−x on [0, t) for large t.

Similarly, if we use the same procedure, then we see that

∫ ∞

1

dx

x
= lim

t→∞

∫ t

1

dx

x
= lim

t→∞ log x
∣∣∣
t

1
= lim

t→∞ [log t− log 1] = ∞

(see Figure 7.2). We also have (see Figure 7.3),

∫ ∞

0

e−x dx = lim
t→∞

∫ t

0

e−x dx = lim
t→∞

(− e−x
) ∣∣∣

t

0
= lim

t→∞
(
1− e−t

)
= 1.

On the other hand,
∫∞
0 ex dx = ∞. Now we give a definition using the idea

of these examples.

Definition 7.1 (Improper integrals—first type). Let a and b be fixed real
numbers.

(a) Let f be a function having the property that
∫ N

a
f(x) dx exists as a

Riemann integral for every N with N ≥ a. Then if limN→∞
∫ N

a
f(x) dx

exists, we define the improper integral

∫ ∞

a

f(x) dx := lim
N→∞

∫ N

a

f(x) dx. (7.1)

As with infinite series, the improper integral is said to converge if this
limit exists and is finite. If the limit in (7.1) does not exist, or if it exists
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but is infinite, then we say that the improper integral is divergent. The im-
proper integral

∫∞
a

f(x) dx is said to absolutely convergent if
∫∞
a

|f(x)| dx
is convergent. If an improper integral converges but fails to converge ab-
solutely, it is said to converge conditionally.

(b) If the interval of integration is (−∞, b], then (7.1) must be modified in an
obvious way: ∫ b

−∞
f(x) dx := lim

M→−∞

∫ b

M

f(x) dx,

provided f is a function having the property that
∫ b

M
f(x) dx exists for all

M with M < b. The improper integral
∫ b

−∞ f(x) dx is said to converge if
the limit on the right exists (as a finite value).

(c) If the interval of integration is (−∞,∞), then (7.1) is replaced by

∫ ∞

−∞
f(x) dx =

∫ a

−∞
f(x) dx +

∫ ∞

a

f(x) dx, (7.2)

provided both the integrals exist in the sense of the above two cases. Here
we agree that ∞+ L = ∞ if L �= −∞ and −∞+ L = −∞ if L �= ∞. It
is easy to see that every choice of a will give the same result.

The terms convergent, divergent, absolutely convergent, conditionally conver-
gent for the last two cases may be defined in a similar manner as in the first
case.

Remark 7.2. It might happen that neither of the integrals on the right of
(7.2) exists independently, but that the symmetric limit

lim
N→∞

∫ N

−N

f(x) dx (7.3)

exists. This limit exists, for example, for any odd function whatsoever. The
limit in (7.3), if it exists, is called the Cauchy principal value of

∫∞
−∞ f(x) dx,

and is denoted by P V
∫ ∞
−∞ f(x) dx. Note that if

∫∞
−∞ f(x) dx exists in the

sense of (7.2), then it also exists in the sense of (7.3), i.e., Cauchy’s principal
value of

∫ ∞
−∞ f(x) dx exists, and the two values are equal. However, the con-

verse is not true in general. For instance, by our first definition, the improper

integral
∫∞
−∞ xdx diverges because

∫ ∞
0 xdx and

∫ 0

−∞ xdx diverge. But since
∫ N

−N xdx = 0, the Cauchy principal value of
∫∞
−∞ xdx is zero. This explains

why we do not define

∫ ∞

−∞
f(x) dx = lim

N→∞

∫ N

−N

f(x) dx



7.1 Improper Integrals 275

as the general definition of the improper integral. The problem here is that∫ 0

−∞ xdx = −∞ and
∫ ∞
0 xdx = ∞, and the expression ∞−∞ is not defined.

Similarly, since ∫ b

0

sinxdx = 1− cos b for all b > 0

and the value of 1 − cos b oscillates between 0 and 2 as b → ∞, we see that

neither
∫∞
0 sinxdx nor

∫ 0

−∞ sinxdx exists. Consequently,
∫∞
−∞ sinxdx does

not converge. However, the limit

lim
N→∞

∫ N

−N

sinxdx

clearly exists and equals zero. Thus, 0 is the Cauchy principal value of∫∞
−∞ sinxdx. Note that for any odd function f , the Cauchy principal value of∫∞
−∞ f(x) dx is zero. •

We have already shown that the improper integral
∫ ∞
1

dx
x2 converges,

whereas
∫∞
1

dx
x2 diverges. Geometrically, this says that the area to the right

of x = 1 under the curve y = 1/x2 is finite, whereas the corresponding area
under the curve y = 1/x is infinite (see Figure 7.1).

Evaluation of improper integrals often uses L’Hôpital’s rule, change of
variable of integration, and integration by parts, as we shall see in a number
of cases below.

Example 7.3. As illustrated above, to discuss the convergence of the integral∫∞
a (1/xp) dx where a > 0, we first evaluate it from a to N and then let N go
to infinity. Indeed (see Figures 7.4 and 7.5),

∫ N

a

dx

xp
=

⎧
⎪⎨

⎪⎩

x−p+1

−p+ 1

∣∣∣∣
N

a

if p �= 1,

log x
∣∣N
a

if p = 1,

=

⎧
⎨

⎩

1

1− p

[
N1−p − a1−p

]
if p �= 1,

log(N/a) if p = 1.

If p > 1, then N1−p → 0 as N → ∞. If p < 1, then N1−p → ∞ as N → ∞.
Consequently, for a > 0, we have

∫ ∞

a

dx

xp
=

⎧
⎨

⎩

1

(p− 1)ap−1
if p > 1,

∞ if p ≤ 1.

Thus the improper integral diverges for p ≤ 1, and converges for p > 1. •
Example 7.4. Determine whether each of the following integrals converges
or diverges

(a)

∫ ∞

0

xe−4x dx. (b)

∫ ∞

−∞
xe−x2

dx. (c)

∫ ∞

1

log x

x2
dx.
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xO 1 t

x= tx=1

y

approaches finite
area as t→∞

y= 1
x3

xO 1 t

x= tx=1

y

approaches finite
area as t→∞

y= 1
x4

Fig. 7.4. Convergence of
∫∞
1

1/xp dx for p = 3, 4.

1 2

1

2

3

x

y

t

x= t

t→∞

y=1/x5

p=2
p=3
p=4

y=1/x

O

y=1/xp on [1, ∞)
for p=1, 2, 3, 4, 5

Fig. 7.5. Convergence of the integral
∫∞
1

(1/xp) dx, for p ∈ [1,∞).

Solution. (a) We evaluate

∫ ∞

0

xe−4x dx = lim
N→∞

∫ N

0

xd

(
e−4x

−4

)

= lim
N→∞

[(
−xe−4x

4

)∣∣∣∣
N

0

+

∫ N

0

1

4
e−4x dx

]

= lim
N→∞

[
−xe−4x

4
− e−4x

16

]∣∣∣∣
N

0

= − 1

16
lim

N→∞

(
4N + 1

e4N

)
+

1

16

= − 1

16
lim

N→∞

(
4

4e4N

)
+

1

16
=

1

16
(by l’Hôpital’s rule.)

(b) We see that
∫∞
−∞ xe−x2

dx = 0 because

∫ N

0

xe−x2

dx =
1− e−N2

2
and

∫ 0

−M

xe−x2

dx =
e−M2 − 1

2
.
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O x

y

N1

x=N
x=1

y=
ln x
x2

N→∞

Fig. 7.6. Area under y = (lnx)/x2 on [1, N) for large N .

(c) We see that (see Figure 7.6)

∫ N

1

log x

x2
dx =

∫ N

1

log xd

(
− 1

x

)
=

[
− log x

x
− 1

x

]∣∣∣∣
N

1

= 1− 1

N
− logN

N
,

which approaches 1 as n → ∞. Hence, the improper integral
∫∞
1 (log x/x2)

dx converges and has the value 1. •
In many cases it suffices to determine whether certain improper integrals of

a nonnegative function converge or diverge, and to estimate their values. The
following result is of course an analogue of the comparison tests for sequences
and series (see Theorems 5.27 and 5.33).

Theorem 7.5 (Direct comparison test). If f and g are two continuous
functions on [a,∞) such that

0 ≤ f(x) ≤ Mg(x) for all x ≥ a,

for some constant M > 0, then we have the following:

• ∫ ∞
a

f(x) dx converges if
∫ ∞
a

g(x) dx converges. In this case, we write∫ ∞
a

f(x) dx ≤ M
∫∞
a

g(x) dx.

• ∫ ∞
a

g(x) dx diverges if
∫ ∞
a

f(x) dx diverges. In other words,
∫ ∞
a

g(x) dx =

∞ if
∫∞
a f(x) dx = ∞.

Proof. Note that for b > a,

∫ b

a

f(x) dx ≤ M

∫ b

a

g(x) dx,

and therefore the conclusions follow by letting b → ∞.

Clearly, a similar statement holds for other types of improper integrals.
We omit the corresponding formulations.

Theorem 7.6. If the improper integral
∫∞
a |f(x)| dx converges where f is

bounded and integrable on [a,N ] for each N > a, then
∫∞
a

f(x) dx converges.
The converse is not true.
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Proof. Since 0 ≤ |f(x)| − f(x) ≤ 2|f(x)| and

0 ≤ SN =

∫ N

a

(|f(x)| − f(x)) dx ≤ 2

∫ N

a

|f(x)| dx ≤ 2

∫ ∞

a

|f(x)| dx

for all N ≥ a, by the direct comparison test, it is clear that absolute integra-
bility of f implies that |f(x)|−f(x) is integrable on [a,N ]. Note that because
{SN} is an increasing sequence bounded above, the sequence {SN} converges.
Therefore, the improper integral

∫ ∞
a f(x) dx converges. For the converse, we

refer to Example 7.8(c).

Example 7.7. Examine the absolute convergence of
∫∞
1

f(x) dx if

f(x) =
sinx√

(x− 1)3 + x− 1
.

Solution. Since |f(x)| ≤ 1√
(x− 1)3 + x− 1

= g(x) and
∫∞
1 g(x) dx is con-

vergent,
∫∞
1

f(x) dx is convergent (absolutely). •
Example 7.8. Prove that each of the following integrals converges:

(a)

∫ ∞

−∞
e−x2

dx. (b)

∫ ∞

−∞

dx

1 + x2
. (c)

∫ ∞

1

sinx

xp
dx for p > 0.

Show also that
∫∞
1

∣∣ sin x
xp

∣∣ dx converges for p > 1 and diverges for 0 < p ≤ 1.
This provides an example of a conditionally convergent improper integral.

Solution. (a) Since e−x2

is continuous on R,
∫ b

a e−x2

dx is integrable for all fi-

nite a and b. Therefore, it suffices to discuss the convergence of
∫ ∞
1

e−x2

dx

and
∫ −1

−∞ e−x2

dx. Again the change of variable t = −x shows that

∫ −1

−N

e−x2

dx =

∫ N

1

e−t2 dt,

and so we need to discuss only the integral
∫ ∞
1

e−x2

dx. Note that if x ≥ 1,

then x2 ≥ x, and so e−x2 ≤ e−x. Since

∫ ∞

1

e−x dx = lim
N→∞

e−x

−1

∣∣∣∣
N

1

= lim
N→∞

(e−1 − e−N ) =
1

e
,

it follows by the direct comparison test that
∫ ∞
1 e−x2

dx converges. Hence∫∞
−∞ e−x2

dx converges.
(b) We see that

∫ N

0

dx

1 + x2
= tan−1 x

∣∣∣
N

0
= tan−1 N − tan−1 0 → π

2
as N → ∞
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and similarly,

∫ 0

−M

dx

1 + x2
= tan−1 x

∣∣∣
0

−M
= 0− tan−1(−M) → π

2
as M → ∞.

Consequently,

∫ ∞

−∞

dx

1 + x2
= lim

M→∞

∫ 0

−M

dx

1 + x2
+ lim

N→∞

∫ N

0

dx

1 + x2
=

π

2
+

π

2
= π.

(c) For x > 0, we have ∣∣∣∣
sinx

xp

∣∣∣∣ ≤
1

xp
,

and the direct comparison test does not yield the desired result, since∫∞
1

dx
xp diverges for 0 < p ≤ 1. However, the comparison test im-

plies that
∫ ∞
1

|x−p sinx| dx is convergent for p > 1, which means that∫∞
1

x−p sinxdx is absolutely convergent (and hence convergent) for p > 1.

On the other hand, to show that
∫∞
1

sin x
xp dx converges for 0 < p ≤ 1, we

may use integration by parts and obtain

∫ N

1

sinx

xp
dx = − cosx

xp

∣∣∣
N

1
− p

∫ N

1

cosx

xp+1
dx

= −cosN

Np
+ cos 1− p

∫ N

1

cosx

xp+1
dx.

Since
∫∞
1

dx
xp+1 converges for p > 0 and

∣∣∣
cosx

xp+1

∣∣∣ ≤ 1

xp+1
,

it follows that
∫ ∞
0

cos x
xp+1 dx converges (absolutely) for p > 0, and therefore,

letting N → ∞, we see that

∫ ∞

1

sinx

xp
dx = cos 1− p

∫ ∞

1

cosx

xp+1
dx for p > 0,

and the result follows. Note that the latter approach proves the conver-
gence of

∫∞
1

sin x
xp dx for all p > 0.

To show that
∫∞
1

sin x
xp dx does not converge absolutely for 0 < p ≤ 1,

according to Theorem 7.5, it suffices to prove the result only for the case
p = 1. Let n ≥ 3. Then
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In =

∫ nπ

1

| sinx|
x

dx >

∫ nπ

π

| sinx|
x

dx =

n−1∑

k=1

∫ (k+1)π

kπ

| sinx|
x

dx

>

n−1∑

k=1

1

(k + 1)π

∫ (k+1)π

kπ

| sinx| dx

=
2

π

n−1∑

k=1

1

k + 1

→ ∞ as n → ∞.

Consequently,
∫∞
1

| sin x|
x dx diverges. Since 1

xp ≥ 1
x for p ≤ 1, by Theorem

7.5, we can now conclude that
∫ ∞
1

| sin x|
xp dx diverges for p ≤ 1. •

Remark 7.9. We notice that limx→0+
sin x
xp exists if 0 < p ≤ 1 (because

| sinx| ≤ |x| on R), and therefore
∫ a

0
sin x
xp dx converges for all a > 0 and

for 0 < p ≤ 1. Thus,

∫ ∞

0

sinx

xp
dx =

∫ 1

0

sinx

xp
dx+

∫ ∞

1

sinx

xp
dx

converges for 0 < p ≤ 1, because the second integral on the right converges
by Example 7.8(c). •
7.1.2 Improper Integrals of Unbounded Functions

We often encounter integrals in which the integrand has a singularity some-
where in the domain of integration. So we move on to a discussion of the
second type of improper integrals (with unbounded integrands). A function f
is unbounded at c if |f(x)| has arbitrarily large values near c. Geometrically,
this occurs when the graph of f has a vertical asymptote at x = c. For ex-
ample, if f is continuous on (a, b] but |f(x)| → ∞ as x → a+, the graph of
y = f(x) approaches the vertical line x = a, as shown in Figure 7.7.

If f is unbounded at c and a ≤ c ≤ b, then the Riemann integral
∫ b

a
f(x) dx

is not even defined (because boundedness of f is essential for the integrability

of f). However, it may still be possible to define
∫ b

a f(x) dx as an improper
integral in certain cases. For example, consider

f(x) = 1/
√
x for 0 < x ≤ 1.

Then f is unbounded at x = 0, and so
∫ 1

0
f(x) dx is not defined. However,

f(x) is continuous on every interval [t, 1] for t > 0, as shown in Figure 7.8.

So our basic strategy is to evaluate
∫ 1

t
dx√
x
and see what happens as t → 0+.

Thus, if t is a small positive real number, then we have

I(t) =

∫ 1

t

x−1/2 dx = 2
√
x
∣∣∣
1

t
= 2− 2

√
t.
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a bc xO

y

xO

y

a bc

Fig. 7.7. Two functions that are unbounded at c.

1

2

3

1 2 3O

x= t

t→ 0+

t x

y

y=1/x1/2 y=1/x1/3

3

1 2 3

1

2

O t

x= t

t→ 0+

x

y

Fig. 7.8. Convergence of
∫ 1

0
(1/x1/p) dx for p = 1/2, 1/3.

If we let t → 0+, we see that I(t) → 2. Hence it is natural to define

∫ 1

0

dx√
x
= lim

t→0+

∫ 1

t

dx√
x
= 2.

The same idea may be used if the integrand is unbounded at the right end-
point. A general case is considered in Example 7.15.

Also, we adopt a similar procedure when functions have a discontinuity
but not necessarily an infinite discontinuity. For example, consider

g(x) = x log x, 0 < x ≤ 1.

Then the function g(x) is not defined at x = 0, although

lim
x→0+

x log x = − lim
x→0+

log(1/x)

1/x
= − lim

x→0+

1/x

−1/x2
= 0.
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In this case, we define the integral of g(x) on [0, 1] by

∫ 1

0

x log xdx = lim
t→0+

∫ 1

t

log xd
(
x2/2

)
= lim

t→0+

x2 log x

2
− x2

4

∣∣∣∣
1

t

= −1

4
.

We remark that this does not fall in the improper integral category.
Here is the formal definition of improper integrals in cases in which the

integrand tends to ±∞ at some point in the interval of integration.

Definition 7.10 (Improper integrals—second type). Let a and b be
finite real numbers.

(a) If
∫ b

t f(x) dx exists for all t such that a < t ≤ b, and if f is unbounded at
a (i.e., |f(x)| → ∞ as x → a+), then we define

∫ b

a

f(x) dx = lim
t→a+

∫ b

t

f(x) dx := lim
ε→0+

∫ b

a+ε

f(x) dx,

provided the limit exists. If the limit exists (as a finite number), we say

that the improper integral
∫ b

a
f(x) dx converges; otherwise, the improper

integral diverges.
(b) If

∫ t

a f(x) dx exists for all t such that a ≤ t < b and f is unbounded at b
(i.e., |f(x)| → ∞ as x → b−), then

∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx := lim
ε→0+

∫ b−ε

a

f(x) dx,

provided the limit exists. If the limit exists (as a finite number), we say

that the improper integral
∫ b

a
f(x) dx converges; otherwise, the improper

integral diverges.
(c) If f is unbounded at an interior point c (i.e., f has a vertical asymptote

at c), where a < c < b, and if the integrals
∫ c−ε

a
f(x) dx and

∫ b

c+η
f(x) dx

exist for 0 < ε < c− a and 0 < η < b− c, then

∫ b

a

f(x) dx =:

∫ c

a

f(x) dx +

∫ b

c

f(x) dx

= lim
ε→0+

∫ c−ε

a

f(x) dx + lim
η→0+

∫ b

c+η

f(x) dx, (7.4)

provided the limits exist. If both limits on the right exist (as a finite num-

ber), then we say that the improper integral
∫ b

a f(x) dx converges; oth-
erwise, the improper integral diverges. That is, the integral on the left
diverges if either (or both) of the integrals on the right diverge. It is also
possible for an integral to be improper because of an infinite discontinuity
at a finite number of points in the interval [a, b]. In such cases, the same
strategy is followed.
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xO

y

1
4

x=3

y=
1

x−3

Fig. 7.9. Graph of y =
1

x− 3
on [1, 4].

The absolute and conditional convergence of improper integrals of the second
type may be defined similarly.

Remark 7.11. If f has a finite number of (infinite) discontinuities, say at
c1, c2, c3, . . . , cn (c1 < c2 < · · · < cn), then we write

∫ ∞

−∞
f(x) dx =

n∑

k=0

∫ ck+1

ck

f(x) dx (c0 = −∞, cn+1 = ∞)

and say that the improper integral
∫ ∞
−∞ f(x) dx is convergent, provided that

each
∫ ck+1

ck
f(x) dx is convergent for k = 0, 1, 2, . . . , n in the sense of Defini-

tions 7.1 and 7.10. A similar procedure is applicable for integrals of the type∫∞
a f(x) dx and

∫ b

−∞ f(x) dx when f(x) satisfies a similar condition on [a,∞)
and (−∞, b], respectively.

Remark 7.12. Sometimes we fail to notice an (infinite) discontinuity at an
interior point. Find the faults in the following analysis(see Figure 7.9):

∫ 4

1

dx

x− 3
= log |x− 3|

∣∣∣
4

1
= log 1− log 2 = − log 2.

Similarly, it is wrong to conclude that

∫ 4

1

dx

(x− 3)2
= − 1

x− 3

∣∣∣∣
4

1

= −
(
1

2
+ 1

)
= −3

2
,

which is clearly absurd, because f(x) = (x − 3)−2 is never negative. These
examples show that mistakes such as these lead to the conclusion that the
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corresponding improper integrals converge, and so an improper integral should
never be treated simply as an ordinary integral. Also, one must be cautious in
using computer software with improper integrals, because it may not detect
that the integral is improper. •
Remark 7.13. Consider an improper integral

∫ b

a
f(x) dx, where f is un-

bounded at c ∈ (a, b). It might happen that neither of the limits on the
right of (7.4) exists as ε → 0+ and η → 0+ independently, but that

lim
ε→0+

[∫ c−ε

a

f(x) dx+

∫ b

c+ε

f(x) dx

]
(7.5)

exists. Note that we do not define the improper integral of this kind by (7.5).
However, when the limit in (7.5) exists, it is called the Cauchy principal value

of
∫ b

a f(x) dx, and is denoted for brevity by P V
∫ b

a f(x) dx. For example,

P V
∫ 1

−1
(1/x) dx = 0, but

∫ 1

−1
(1/x) dx does not exist. We note that if the

limit exists in (7.4), then it also exists in the sense of (7.5), i.e., the Cauchy

principal value of
∫ b

a f(x) dx exists and the two limits are equal. However, the
converse is not true in general (see Example 7.14(c)). Also, for f(x) ≥ 0 on
[a, b], the converse holds. •
Example 7.14. Evaluate each of the following improper integrals if it exists.

(a)

∫ 1

0

dx

(x− 1)2/3
. (b)

∫ 2

1

dx

(2− x)2
. (c)

∫ 3

0

dx

x− 2
.

Solution. (a) The function f(x) = (x − 1)−2/3 is unbounded at the right
endpoint of the interval of integration (i.e., f has a vertical asymptote at
the right end of the interval) and is continuous on [0, ε] for every ε with
0 < ε < 1. We find that (see Figure 7.10)

lim
ε→1−

∫ ε

0

dx

(x− 1)2/3
= lim

ε→1−
[3(x− 1)1/3]

∣∣∣
ε

0
= 3 lim

ε→1−
[(ε−1)1/3−(−1)] = 3.

That is, the given improper integral converges and has the value 3.
(b) Next we have (see Figure 7.10)

∫ 2

1

dx

(2 − x)2
= lim

ε→0+

∫ 2−ε

1

dx

(2− x)2
= lim

ε→0+

1

2− x

∣∣∣∣
2−ε

1

= lim
ε→0+

(
1

ε
− 1

)
,

which is ∞, and so the given integral diverges.
(c) The given integral is improper because the integrand is unbounded at the

interior point x = 2. We write

∫ 3

0

dx

x− 2
=

∫ 2

0

dx

x− 2
+

∫ 3

2

dx

x− 2
= lim

ε→2−

∫ ε

0

dx

x− 2
+ lim

ε→2+

∫ 3

ε

dx

x− 2
.
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O 1 x

y
y=

1
(x−1)2/3
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O x

y

21
2−

y=
1

(2−x)2

Fig. 7.10. Graphs of y =
1

(x− 1)2/3
on [0, 1), and y =

1

(2− x)2
on [1, 2).

If either of these limits fails to exist, then the original integral diverges.
However, because

lim
ε→2−

∫ ε

0

dx

x− 2
= lim

ε→2−
log |x− 2|

∣∣∣
ε

0
= lim

ε→2−
[log |ε− 2| − log 2] = −∞,

we find that the original integral diverges. On the other hand, we note
that

lim
ε→0+

[∫ 2−ε

0

dx

x− 2
+

∫ 3

2+ε

dx

x− 2

]
= lim

ε→0+
[log ε− log | − 2|+ log 1− log ε] ,

so that the Cauchy principal value of the given improper integral exists:

P V

∫ 3

0

dx

x− 2
= − log 2. •

Example 7.15. For what values of p > 0 is the improper integral

∫ 1

0

dx

xp

convergent? To solve this, one can just use the change of variable t = 1/x and
apply Example 7.3. Alternatively, we simply compute

lim
ε→0+

∫ 1

ε

dx

xp
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lim
ε→0+

x−p+1

−p+ 1

∣∣∣∣
1

ε

if p �= 1,

lim
ε→0+

log x

∣∣∣∣
1

ε

if p = 1

=

⎧
⎪⎨

⎪⎩

lim
ε→0+

1

1− p

[
1− ε1−p

]
if p �= 1,

lim
ε→0+

(− log ε) if p = 1.
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O t

y=1/x1/5
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x= t

y

Fig. 7.11. Convergence of
∫ 1

0
(1/x1/p) dx for p = 1/4, 1/5.

1 2 3

1

2

3

tO

y

x

y=1/xp on (0, 1]
for p=1/2, 1/3, 1/4, 1/5

p=1/2

p=1/4 p=1/5

x= t

t→ 0+

p=1/3

Fig. 7.12. Convergence of
∫ 1

0
(1/x1/p) dx for p = 1/2, 1/3, 1/4, 1/5.

Consequently (see Figures 7.11 and 7.12),

∫ 1

0

dx

xp
= lim

ε→0+

∫ 1

ε

dx

xp
=

⎧
⎨

⎩

1

1− p
if 0 < p < 1,

∞ if p ≥ 1.

Thus, the improper integral diverges for p ≥ 1 and converges for 0 < p < 1.
Moreover, in view of the observation

∫ ∞

1

dy

yq
=

∫ 1

0

dx

xp
, p = 2− q,

the desired conclusion follows quickly from Example 7.3.
More generally, it is straightforward to see that each of the improper in-

tegrals
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∫ a

b

dx

(x− b)p
and

∫ a

b

dx

(a− x)p

converges if and only if p < 1. •
Example 7.16. Prove the following limits:

(a) lim
n→∞

n

(n!)1/n
=e. (b) lim

n→∞

[(
1 +

1

n

)(
1 +

2

n

)
· · ·

(
1 +

4n

n

)]1/n
=

55

e4
.

Solution. (a) Set Sn = (nn/n!)
1/n

. Then (see also Example 2.61)

logSn =
1

n
log

(
n

n
· n

(n− 1)
· n

(n− 2)
· · · n

1

)
= − 1

n

n∑

k=1

log

(
k

n

)
.

Treating logSn as a Riemann sum, we see that

lim
n→∞ logSn = −

∫ 1

0

log xdx := − lim
ε→0+

∫ 1

ε

log xdx,

which is an improper integral. Note that log x is unbounded on [0, 1]. Now
we evaluate

∫ 1

ε

log xdx = x log x|1ε −
∫ 1

ε

x · 1
x
dx = −ε log ε− (1− ε),

and so by l’Hôpital’s rule, we have

lim
ε→0+

∫ 1

ε

log xdx = −1 + lim
ε→0+

log(1/ε)

1/ε
= −1 + lim

ε→0+

−1/ε

−1/ε2
= −1.

That is, logSn → 1 as n → ∞, and hence Sn → e as n → ∞.

(b) Set Sn =
[(
1 + 1

n

) (
1 + 2

n

) (
1 + 3

n

) · · · (1 + 4n
n

)]1/n
. Then we see that

logSn =
1

n

4n∑

k=1

log

(
1 +

k

n

)
= 4

[
1

4n

4n∑

k=1

log

(
1 + 4

( k

4n

))]
,

and hence

lim
n→∞ logSn = 4

∫ 1

0

log(1 + 4x) dx =

∫ 4

0

log(1 + y) dy.

Integration by parts gives the desired value. •
Now we state another useful result, which may be proved easily using the

definition of continuity. However, in Section 5.2 (see Theorem 5.33), we have
presented a similar comparison test for series.
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Theorem 7.17 (Limit comparison test). Suppose that f and g are two
continuous functions on [a, b), a < b ≤ ∞, g(x) > 0, and f(x) ≥ 0 on some
subinterval [a1, b) (a ≤ a1), and that

lim
x→b−

f(x)

g(x)
= L. (7.6)

Then we have the following:

(a) If 0 < L < ∞, then
∫ b

a
f(x) dx and

∫ b

a
g(x) dx both converge or diverge

together.

(b) If L = ∞ and
∫ b

a g(x) dx = ∞, then
∫ b

a f(x) dx = ∞.

(c) If L = 0 and
∫ b

a
g(x) dx < ∞, then

∫ b

a
f(x) dx < ∞. In the last two cases,

the two integrals do not necessarily converge or diverge together.

Proof. (a) From the limit condition (7.6), there exists a point a2 ∈ [a1, b)
such that ∣∣∣∣

f(x)

g(x)
− L

∣∣∣∣ <
L

2
for x ∈ [a2, b).

This gives
L

2
g(x) < f(x) <

3L

2
g(x) for x ∈ [a2, b).

By the direct comparison test,
∫ b

a2
f(x) dx and

∫ b

a2
g(x) dx both converge or

diverge together, and in the latter case, they must diverge to∞, since the inte-
grands are nonnegative.We note that the integrals

∫ a2

a
f(x) dx and

∫ a2

a
g(x) dx

exist, since f and g are continuous on [a, a2]. The conclusion follows.
(b) If L = ∞, then by (7.6), there exists a point a′2 ∈ [a1, b) such that

f(x) ≥ g(x) for x ∈ [a′2, b).

Again the direct comparison test gives the desired conclusion.
(c) If L = 0, then there exists a point a′′2 ∈ [a1, b) such that

f(x) ≤ g(x) for x ∈ [a′′2 , b),

and the conclusion is a consequence of the direct comparison test.
If f(x) = 1/x, g(x) = 1/x2 with a = 1 and b = ∞, then

lim
x→∞

f(x)

g(x)
= ∞ and lim

x→∞
g(x)

f(x)
= 0.

Note that
∫ ∞
1

1
x dx = ∞, whereas

∫∞
1

1
x2 dx < ∞.

The limit comparison test as in Theorem 7.17 can be stated for improper
integrals of other types, namely, when f and g are two positive continuous
functions on (a, b], where −∞ ≤ a < b. We remark that the direct comparison
test (Theorem 7.5) is a special case of the limit comparison test (Theorem
7.17). However, because of their independent interest, we formulate some spe-
cial results that are often useful in solving our exercises.
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Corollary 7.18. Suppose that f and g are two positive continuous functions
on [a,N ] for all N > a such that

lim
x→∞

f(x)

g(x)
= L (0 < L < ∞).

Then
∫ ∞
a f(x) dx is convergent if and only if

∫∞
a g(x) dx is convergent.

Example 7.19. The improper integral
∫∞
−∞(1+x8)−1/4 dx is convergent. In-

deed, with f(x) = 1/(1 + x8)1/4 and g(x) = 1/(1 + x2), we have

lim
x→∞

f(x)

g(x)
=

1 + x2

(1 + x8)1/4
= 1.

Thus, by Corollary 7.18, the integral
∫∞
−∞(1 + x8)−1/4 dx converges, because

both
∫ 0

−∞ g(x) dx and
∫ ∞
0

g(x) dx converge. •
In particular, Corollary 7.18 gives the following simple result.

Corollary 7.20. Suppose that f(x) is a positive continuous function on
[a,∞) such that

lim
x→∞xpf(x) = L (0 < L < ∞).

Then the improper integral
∫ ∞
0 f(x) dx is convergent if and only if p > 1.

For example, to examine the convergence of I =
∫∞
1

dx
xp(1+xq) , it is natural

to compare f(x) = 1
xp(1+xq) with g(x) = 1

xp+q and observe that

lim
x→∞

f(x)

g(x)
= lim

x→∞
xp+q

xp(1 + xq)
= lim

x→∞
xq

1 + xq
= 1.

We also know that
∫ ∞
1

g(x) dx converges if and only if p+q > 1. Consequently,
the integral I converges if and only if p+ q > 1.

Corollary 7.21. Suppose that f and g are two positive continuous functions
on (a, b] (respectively [a, b)) such that

lim
x→a+

f(x)

g(x)
= L

(
lim

x→b−
f(x)

g(x)
= L, respectively

)
, 0 < L < ∞.

Then
∫ b

a f(x) dx is convergent if and only if
∫ b

a g(x) dx is convergent.

For example, a comparison with g(x) = (1−x)−1/2 shows that the integral∫ 1

0 (1 − x3)−1/2 dx is convergent. Indeed, it suffices to note that

lim
x→1−

f(x)

g(x)
= lim

x→1−
(1− x)1/2

(1 − x3)1/2
= lim

x→1−
1

(1 + x+ x2)1/2
=

1√
3
.
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Example 7.22. Let f(x) = x−p(1 + x)−q. To see whether the improper inte-
gral I =

∫∞
0

f(x) dx converges, we decompose I into two improper integrals

I =

∫ 1

0

f(x) dx +

∫ ∞

1

f(x) dx =: I1 + I2.

Since

lim
x→0+

f(x)

1/xp
= lim

x→0+

1

(1 + x)q
= 1

and
∫ 1

0
dx
xp converges for p < 1 and diverges for p ≥ 1, by Example 7.15, we

conclude that I1 =
∫ 1

0 f(x) dx converges for p < 1. Further, since

lim
x→∞

f(x)

1/xp+q
= lim

x→∞
xq

(1 + x)q
= 1

and
∫ ∞
1

dx
xp+q converges for p+q > 1 and diverges for p+q ≤ 1, by Example 7.3,

it follows that I2 =
∫ ∞
1

f(x) dx converges if and only if p+q > 1. Consequently,
we conclude that I converges if and only if p < 1 and p+ q > 1. •
Example 7.23. Investigate the following improper integrals for convergence.

(a)

∫ π/4

0

dx

sinx
. (b)

∫ ∞

1

1 + sin2 x

xp
dx. (c)

∫ 1

0

3 + sinπx

xp
dx.

(d)

∫ π/4

0

dx

sinx2
. (e)

∫ ∞

1

dx√
x2 − 1/2010

. (f)

∫ 1

0

( 1

1 + x
− 1

ex

)dx
x
.

(g)

∫ ∞

1

x−pdx

(1 + ex)
. (h)

∫ ∞

0

(1

x
− 1

sinhx

)dx
x
. (i)

∫ 1

0

( 1

1 + x+ x2

2

− 1

ex

)dx
x2

.

Solution. For (b) and (c), we observe that for x ≥ 1,

1

xp
≤ 1 + sin2 x

xp
≤ 2

xp
and

2

xp
≤ 3 + sinπx

xp
≤ 4

xp
.

Consequently, by Theorem 7.5 and Example 7.15, the improper integral∫ 1

0
3+sinπx

xp dx converges for p < 1 and diverges for p ≥ 1.

By Theorem 7.5 and Example 7.3, the improper integral
∫ ∞
1

1+sin2 x
xp dx

converges for p > 1 and diverges for p ≤ 1.
For (a) and (d), we compare the integrands with 1/x and 1/x2, respec-

tively. We observe that

lim
x→0+

1/x

1/ sinx
= 1 and lim

x→0+

1/x2

1/(sinx2)
= 1.

Since
∫ π/2

0
dx
x diverges and

∫ π/2

0
dx
x2 converges, it follows that the integral in

(a) diverges, while the integral in (d) converges.
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(f) Since

f(x) =

(
1

1 + x
− 1

ex

)
1

x
=

ex − (1 + x)

ex(1 + x)x
> 0

and

lim
x→0+

f(x)

1/x
= lim

x→0

(
1

(1 + x)ex

)(
ex − (1 + x)

x2

)
=

1

2!
,

it is natural to set g(x) = 1
x > 0 for x ∈ (0, 1]. We see that

∫ 1

0
f(x) dx diverges,

because
∫ 1

0 g(x) dx diverges. We leave the remaining integrals as exercises. •
Theorem 7.24. If f is continuous on [0,∞) such that

lim
x→0+

f(x) = f0 and lim
x→∞ f(x) = f1,

then for 0 < a < b < ∞, we have

∫ ∞

0

f(ax)− f(bx)

x
dx = (f0 − f1) log(b/a).

Proof. We have that

∫ N

ε

f(ax)− f(bx)

x
dx =

∫ N

ε

f(ax)

x
dx−

∫ N

ε

f(bx)

x
dx

=

∫ aN

aε

f(y)

y
dy −

∫ bN

bε

f(y)

y
dy (y = ax; y = bx)

=

∫ bε

aε

f(y)

y
dy −

∫ bε

aN

f(y)

y
dy

︸ ︷︷ ︸
−

∫ bN

bε

f(y)

y
dy

=

∫ bε

aε

f(y)

y
dy −

∫ bN

aN

f(y)

y
dy.

Applying the generalized mean value theorem for integrals to the integrals on
the right-hand side, we obtain that

∫ N

ε

f(ax)− f(bx)

x
dx = f(c)

∫ bε

aε

dy

y
− f(d)

∫ bN

aN

dy

y

= (f(c)− f(d)) log(b/a)

for some c ∈ (aε, bε) and d ∈ (aN, bN). The desired equality follows if we let
ε → 0 and N → ∞.

If we choose f(x) = arctanx and f(x) = e−x, it follows easily that

(a)

∫ ∞

0

arctan(ax)− arctan(bx)

x
dx = −π

2
log

( b

a

)
;

(b)

∫ ∞

0

e−ax − e−bx

x
dx = log

( b

a

)
;
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and by integration by parts, we easily have
∫ ∞

0

cos(ax) − cos(bx)

x2
dx =

π

2
(b− a),

where 0 < a < b < ∞.

7.1.3 The Gamma and Beta Functions

Next we consider the integral
∫ ∞

0

xα−1e−x dx (α > 0)

and show that the improper integral exists (meaning that it converges) for
α > 0. This integral is considered to be nonelementary because it cannot
be evaluated in closed form in terms of so-called elementary functions. This
integral, denoted by Γ (α), arises frequently in pure and applied mathematics
and is referred to as Euler’s gamma function defined on (0,∞). Also, we note
that if α < 1, then f(x) = xα−1e−x → ∞ as x → 0+. So to discuss its
convergence we need to decompose the integral as

∫ ∞

0

xα−1e−x dx =

∫ c

0

xα−1e−x dx+

∫ ∞

c

xα−1e−x dx =: I1 + I2,

where c > 0. The given integral converges if and only if each of the integrals
on the right converges. For convenience, we may choose c = 1. The integral I1
is proper if α ≥ 1, and is improper if 0 < α < 1, because the integrand has a
point of infinite discontinuity at x = 0. In any case, the integral I1 converges
for α > 0 because

0 < xα−1e−x < xα−1 for x > 0, and

∫ 1

0

xα−1 dx =
1

α
,

so that by the direct comparison test, we conclude that I1 =
∫ 1

0 xα−1e−x dx
converges. Note also that since

lim
x→0

xα−1e−x

xα−1
= 1

(by Theorem 7.17), the convergence of I1 follows from the fact that
∫ 1

0
xα−1 dx

converges if and only if α > 0. The second integral likewise converges. Indeed,
for each fixed α > 0, we know that

lim
x→∞

xα−1e−x

1/x2
= lim

x→∞xα+1e−x = 0.

Since
∫∞
c

dx
x2 is convergent, by the comparison test, I2 converges for α > 0.

Consequently, it follows that
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Γ (α) =

∫ ∞

0

xα−1e−x dx (α > 0)

is convergent. Although we cannot evaluate Γ (α) explicitly for most values of
α, there are many interesting properties that may be stated here:

1. Γ (1) =

∫ ∞

0

e−x dx = lim
b→∞

(−e−b + 1) = 1.

2. Integration by parts easily gives

Γ (n+1) =

∫ ∞

0

xne−x dx = − xne−x
∣∣∣
∞

0
+n

∫ ∞

0

xn−1e−x dx = 0+nΓ (n),

for n ∈ N, and more generally, Γ (α + 1) = αΓ (α) holds for α > 0 (prove
this). In particular,

Γ (n+ 1) = nΓ (n) = n(n− 1)Γ (n− 1) = · · · = n!Γ (1) = n!.

The gamma function thus gives us a way of extending the domain of the
factorial function from the set of positive integers to the set of positive
real numbers.

3. Also, Γ (1/2) =
√
π. Indeed, using the change of variable x = y2, we obtain

Γ (1/2) =

∫ ∞

0

x−1/2e−x dx = 2

∫ ∞

0

e−y2

dy,

and those who are familiar with double integrals can easily see that

(
Γ
(1
2

))2

= 4

∫ ∞

0

e−u2

du

∫ ∞

0

e−v2

dv

= 4

∫ ∞

0

∫ ∞

0

e−(u2+v2) du dv

= 4

∫ π/2

0

∫ ∞

0

e−r2r dr dθ (u = r cos θ, v = r sin θ)

= 4

(∫ π/2

0

dθ

)(
−1

2

∫ ∞

0

e−r2(−2r) dr

)

= 4
(π
2

)(
− 1

2

)(
e−r2

∣∣∣
∞

0

)
= π.

Hence Γ (1/2) =
√
π.

We are now prepared to consider another important function, the beta
function, which depends on two parameters a and b:

I =

∫ 1

0

xa−1(1− x)b−1 dx, a, b > 0.

This integral has been studied extensively. Clearly this integral is proper if
a ≥ 1 and b ≥ 1. However, it is improper if 0 < a < 1 or 0 < b < 1 or both.
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Indeed, the improper integral has points of infinite discontinuity at x = 0 if
a < 1, and at x = 1 if b < 1.

To discuss the case that I is improper, we decompose I into the sum of
two integrals I =: I1 + I2, where

I1 =

∫ 1/2

0

xa−1(1 − x)b−1 dx

and

I2 =

∫ 1

1/2

xa−1(1 − x)b−1 dx =

∫ 1/2

0

(1− y)a−1yb−1 dy.

Therefore, it suffices to discuss the integral I1. For any real b,

0 ≤ x ≤ 1/2 ⇐⇒ 1/2 ≤ 1− x ≤ 1 =⇒ 0 < (1 − x)b−1 ≤ M

for some constant M > 0. Using this observation, we find that

I1 = lim
ε→0+

∫ 1/2

ε

xa−1(1 − x)b−1dx ≤ M lim
ε→0+

∫ 1/2

ε

xa−1 dx = M
(1/2)a

a
.

Thus, I1 converges for a > 0. Alternatively, we see that f(x) = xa−1(1−x)b−1

and g(x) = xa−1 are two positive continuous functions on (0, 1/2] such that

lim
x→0+

f(x)

g(x)
= lim

x→0+

xa−1(1 − x)b−1

xa−1
= lim

x→0+
(1 − x)b−1 = 1.

Since
∫ 1/2

0
g(x) dx converges if and only if a > 0 (by Corollary 7.21), we

obtain that I1 =
∫ 1/2

0
f(x) dx also converges whenever a > 0 and for any b.

Interchanging the roles of a and b shows that I2 converges for b > 0 and for
any a.

The combination of the two situations shows that the integral I converges
for a > 0 and b > 0. The integral I is called the beta function and is usually
denoted by B(a, b). Thus,

B(a, b) =

∫ 1

0

xa−1(1 − x)b−1 dx (a, b > 0). (7.7)

The beta function has many interesting properties. For example, we have the
following:

(1) If we substitute 1− x = t, it follows that B(a, b) = B(b, a).
(2) Next, if we substitute x = t/(1 + t), then

1− x =
1

1 + t
, dx =

dt

(1 + t)2
, and 0 ≤ x < 1 ⇐⇒ 0 ≤ t < ∞,

so that (7.7) has an equivalent formulation
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B(a, b) =

∫ ∞

0

ta−1

(1 + t)a+b
dt.

The fact that B(a, b) = B(b, a) gives

2B(a, b) =

∫ ∞

0

ta−1 + tb−1

(1 + t)a+b
dt.

Also, by splitting this integral, we see that

2B(a, b) =

∫ 1

0

ta−1 + tb−1

(1 + t)a+b
dt+

∫ ∞

1

ta−1 + tb−1

(1 + t)a+b
dt

=

∫ 1

0

ta−1 + tb−1

(1 + t)a+b
dt+

∫ 1

0

xa−1 + xb−1

(1 + x)a+b
dx (t = 1/x),

so that B(a, b) has another equivalent form,

B(a, b) =

∫ 1

0

ta−1 + tb−1

(1 + t)a+b
dt.

Since B(a, b) = B(b, a), we have

∫ ∞

0

ta−1 − tb−1

(1 + t)a+b
dt = 0.

(3) Finally, we let x = sin2 θ, so that 1− x = cos2 θ, and dx = 2 sin θ cos θ dθ.
Thus, (7.7) becomes

B(a, b) = 2

∫ π/2

0

sin2a−1 θ cos2b−1 θ dθ (a > 0, b > 0),

or equivalently,

B

(
p+ 1

2
,
q + 1

2

)
= 2

∫ π/2

0

sinp θ cosq θ dθ (p > −1, q > −1).

For example, we easily see that

•
∫ π/2

0

√
tan θ dθ =

∫ π/2

0

sin1/2 θ cos−1/2 θ dθ =
1

2
B

(
3

2
,
1

2

)
,

•
∫ π/2

0

sinp θ dθ =

∫ π/2

0

cosp θ dθ =
1

2
B

(
p+ 1

2
,
1

2

)
, p > −1,

• B

(
1

2
,
1

2

)
= 2

∫ π/2

0

dθ = π.

(4) By the method of integration by parts, one can easily see that

B(a+ 1, b) =
a

a+ b
B(a, b) for a > 0, b > 0.
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(5) Another important property, which is beyond the scope of this book, is

B(a, b) =
Γ (a)Γ (b)

Γ (a+ b)
, for a > 0, b > 0.

(6) Setting b = a in case (5) gives

(Γ (a))2

Γ (2a)
= B(a, a) = 2

∫ π/2

0

sin2a−1 θ cos2a−1 θ dθ

=
2

22a−1

∫ π/2

0

sin2a−1(2θ) dθ

=
1

22a−1

∫ π

0

sin2a−1 φdφ

=
2

22a−1

∫ π/2

0

sin2a−1 φdφ

=
1

22a−1
B
(
a,

1

2

)
.

A simplification yields the Legendre duplication formula

√
πΓ (2a) = 22a−1Γ (a)Γ (a+ 1/2), a > 0,

or equivalently,

Γ (a) =
2a−1

√
π
Γ
(a
2

)
Γ
(a+ 1

2

)
for a > 0.

7.1.4 Wallis’s Formula

We begin by evaluating

In =

∫ π/2

0

sinn xdx,

where n is a positive integer. In order to do this, we use a different approach,
namely integration by parts and the method of induction. If n ≥ 2, we have

In = −
∫ π/2

0

sinn−1 xd(cosx)

= − sinn−1 x cosx
∣∣∣
π/2

0
+ (n− 1)

∫ π/2

0

sinn−2 x cos2 xdx

= (n− 1)

∫ π/2

0

sinn−2 x(1 − sin2 x) dx,

and so

In = (n− 1)In−2 − (n− 1)In, i.e., In =
n− 1

n
In−2.
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It is easy to see that I0 = π/2 and I1 = 1. Hence, for n = 2m,

I2m =
2m− 1

2m
I2(m−1) = · · · = 2m− 1

2m

2m− 3

2m− 1
· · · 3

4

1

2
I0

=
π

2

m∏

k=1

2k − 1

2k
,

and for n = 2m+ 1,

I2m+1 =
2m

2m+ 1
I2m−1 =

2m

2m+ 1

2m− 2

2m− 1
· · · 4

5

2

3
I1

=

m∏

k=1

2k

2k + 1
.

We are done. The above two formulas for I2m and I2m+1 have some interesting
consequences, for example Wallis’s formula, which expresses π in terms of an
infinite product. From the last equations, we obtain

π

2
=

I2m
I2m+1

m∏

k=1

(2k)2

(2k + 1)(2k − 1)
,

so that

π

2
=

I2m
I2m+1

[
m∏

k=1

(
2k

2k − 1

)2
]

1

2m+ 1
for each m ≥ 1. (7.8)

We shall first show that

lim
m→∞

I2m
I2m+1

= 1. (7.9)

In order to prove this, we recall that for 0 < x < π/2,

0 < sin2m+1 x ≤ sin2m x ≤ sin2m−1 x,

and therefore by integrating this inequality from 0 to π/2, we obtain

I2m+1 ≤ I2m ≤ I2m−1, or 1 ≤ I2m
I2m+1

= 1+
1

2m
.

Thus (7.9) holds, and passing to the limit in (7.8), we have Wallis’s product
formula

π

2
= lim

m→∞
1

2m+ 1

m∏

k=1

(
2k

2k − 1

)2

.

Since

1

2m+ 1
=

1

2m

(
2m

2m+ 1

)
and

2m

2m+ 1
→ 1 as m → ∞,
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this formula may be rewritten as

π

2
= lim

m→∞
1

2m

m∏

k=1

(
2k

2k − 1

)2

or

√
π

2
= lim

m→∞
1√
2m

m∏

k=1

2k

2k − 1
,

or equivalently as

√
π

2
= lim

m→∞
1√
2m

[
2 · 4 · 6 · · · 2(m− 1) · 2m

3 · 5 · 7 · · · (2m− 1)

]

= lim
m→∞

1√
2m

[
22 · 42 · · · (2(m− 1))2 · (2m)2

(2m)!

]

= lim
m→∞

1√
2m

[
2m · 2m · (m!)2

(2m)!

]
.

Finally, we set
√
π = lim

m→∞
22m(m!)2√
m(2m)!

.

7.1.5 The Integral Test

For series whose terms are nonnegative, Theorem 5.20 simplifies the problem of
investigating convergence. Further, to establish the divergence of such series,
it suffices to show that the sequence of partial sums has no upper bound.
However, this theorem is often difficult to apply, since one is required to
determine whether the sequence of partial sums has an upper bound. This
task, in general, is not easy. We shall now discuss the integral test, which avoids
this difficulty. For motivation, we begin our discussion with the harmonic series

∞∑

k=1

1

k
, Sn =

n∑

k=1

1

k
.

We have already proved that the harmonic series diverges, by showing that the
sequence of partial sums {Sn} is unbounded. There is another way to estimate
the partial sums. For instance, consider function f(x) = 1/x, which is clearly
decreasing, continuous, and positive on [1,∞), and note that f(k) = 1/k
(Figure 7.13). Geometrically, it is evident that

1

k + 1
≤

∫ k+1

k

dx

x
≤ 1

k
,
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O 1

1

k k+1
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1
x

• •
k+1 1

k+1

x

k, 1
k
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•

•

k k+1

k, 1
k

k+1, 1
k+1

y=
1
x

Fig. 7.13. Graph of f(x) =
1

x
on [1,∞).

O x

y

1

1

2 3 4

1
4 1

9

Sn=
n

k=1

1
n2 ≤ 1 +

n

1

dx
x2 = 1 + 1− 1

n
< 2

n

k=1

1
n2 =sum of the areas of the first

n rectangles of sides 1 and 1
n2

≤ 1+
n

1

dx

x2 =2− 1
n

y= 1
x2

n+1n

n+1,
1

(n+ 1)2

1
(n+1)2

Fig. 7.14. Demonstration for integral test with f(x) = 1/x2.

so that

Sn+1 − 1 =

n∑

k=1

1

k + 1
≤

n∑

k=1

∫ k+1

k

dx

x
=

∫ n+1

1

dx

x
≤

n∑

k=1

1

k
= Sn,

which simplifies to

Sn+
1

n+ 1
−1 ≤ log(n+1) ≤ Sn, i.e., log(n+1) ≤ Sn ≤ log(n+1)+

n

n+ 1
.

Hence {Sn} diverges roughly at the same rate as that of the logarithm
function.

The idea of the above example leads to what is called the integral test,
which demonstrates a close relationship between the convergence of certain
series and improper integrals. This test is extremely useful in determining the
convergence or divergence of certain series.

Theorem 7.25 (The integral test). Suppose that f is a nonnegative, con-
tinuous, and decreasing function of x for x ≥ 1. Then either both
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O

y Area=   r2φ1
2

r

r φ

x

Fig. 7.15. Sketch for the integral test with f(x) = 1/x2.

∞∑

k=1

f(k) and

∫ ∞

1

f(x) dx

converge or both diverge. Moreover, if the series converges, then

∫ ∞

1

f(x) dx ≤
∞∑

k=1

f(k) ≤ f(1) +

∫ ∞

1

f(x) dx, (7.10)

or equivalently,
∞∑

k=2

f(k) ≤
∫ ∞

1

f(x) dx ≤
∞∑

k=1

f(k).

Proof. Set ak = f(k) for k = 1, 2, . . . and Sn =
∑n

k=1 ak. Since f is nonnega-
tive, continuous, and decreasing, the area under the curve y = f(x) between
x = k and x = k + 1 lies between the areas of the rectangles of unit width
with height f(k) = ak and f(k + 1) = ak+1 respectively (see Figure 7.14 for
f(x) = 1/x2). In short,

ak+1 ≤
∫ k+1

k

f(x) dx ≤ ak,

so that

n∑

k=1

ak+1 ≤
n∑

k=1

∫ k+1

k

f(x) dx =

∫ n+1

1

f(x) dx ≤
n∑

k=1

ak. (7.11)

Now suppose that
∫ ∞
1

f(x) dx converges as an improper integral and has the
value I. Then by the left-hand side of (7.11), we have

Sn+1 ≤ a1 +

∫ n+1

1

f(x) dx ≤ a1 + I for each n.

Since ak ≥ 0, it follows that the sequence of partial sums {Sn} is increasing
and bounded above by a1 + I, and hence {Sn} converges by BMCT (see
Theorem 2.25). That is, the series

∑∞
k=1 ak is convergent.
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On the other hand, if the improper integral
∫ ∞
1 f(x) dx diverges, then it

must tend to infinity, because f(x) is nonnegative. Then the right-hand side
of (7.11) shows that {Sn} has no upper bound, and so the series must diverge
to infinity.

Finally, if the series converges and has the sum S, then (7.11) gives that

In+1 =

∫ n+1

1

f(x) dx ≤ Sn ≤ S.

Since f(x) ≥ 0 and In+1 ≥ 0 for all n ≥ 1, it follows that the sequence {In+1}
is increasing and bounded above by S, and hence {In+1} converges by BMCT;
that is, limn→∞ In+1 =

∫∞
1 f(x) dx exists as an improper integral. Thus, the

series and the improper integral either both converge or both diverge, as
claimed.

Remark 7.26. 1. From the proof of the integral test, it is clear that the
sum and the integral could begin with any integer N . In other words, if
f is a positive, continuous, and decreasing function of x for x ≥ N , then

∞∑

k=N

f(k) and

∫ ∞

N

f(x) dx

either both converge or both diverge. Thus, it is not necessary to begin
the series from k = 1 or the integral with the lower limit of integration
with 1.

2. It is important to note that the sum of the series is not necessarily equal
to the value of the integral. For instance, the series

∑∞
k=1

1
k2 is known to

be π2/6, which is definitely greater than 5/4, whereas
∫∞
1

dx
x2 = 1 (see also

Figure 7.14).
3. Note that limk→∞ sin(1/k) = sin 0 = 0. This does not mean that∑∞

k=1 sin(1/k) is convergent. On the other hand, it is easy to see that∫∞
1

sin(1/x) dx diverges (see Exercise 7.31(f)). Thus, by the integral test,∑∞
k=1 sin(1/k) is divergent (see also Example 5.36(d)).

4. As noted before (see also (7.11) and Figure 7.13),

n∑

k=1

1

k + 1
<

∫ n+1

1

dx

x
= log(n+ 1) <

n∑

k=1

1

k
=

n+1∑

k=1

1

k
− 1

n+ 1
,

or equivalently,

1

n+ 1
<

n+1∑

k=1

1

k
− log(n+ 1) < 1 for each n ≥ 1,

which may be rewritten as

1

n
< γn < 1, γn =

n∑

k=1

1

k
− logn for n > 1.
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We see that

γn+1 − γn =
1

n+ 1
−

∫ n+1

n

dx

x
,

and by the graph of y = 1/x on [n, n+ 1], it follows that γn+1 − γn ≤ 0,
showing that {γn}∞n=1 is a decreasing bounded sequence of positive real
numbers, and hence converges, say to γ. Thus, we have

γ := lim
n→∞

( n∑

k=1

1

k
− logn

)
.

Even though
∑∞

k=1
1
k = ∞ and limn→∞ logn = ∞, the limit γ exists

and is finite. The number γ is called Mascheroni’s constant or Euler’s
constant, after Leonhard Euler (1707–1783). Its value to six decimal places
is 0.577216. In contrast to other familiar constants e and π, no other simple
representation is known for Euler’s constant. It is still unknown whether
γ is rational or irrational.

5. Since
1

k + 1
≤

∫ k+1

k

dx

x
≤ 1

k
for k ≥ 1,

it follows that

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n
≤

(∫ n+1

n

+

∫ n+2

n+1

+ · · ·+
∫ 2n

2n−1

)
dx

x

≤ 1

n
+

1

n+ 1
+ · · ·+ 1

2n− 1
,

which gives

n∑

k=1

1

n+ k
≤

∫ 2n

n

dx

x
= log

(
2n

n

)
= log 2 ≤

(
1

n
− 1

2n

)
+

n∑

k=1

1

n+ k
,

or equivalently,

− 1

2n
+ log 2 ≤

n∑

k=1

1

n+ k
≤ log 2.

Thus, we obtain that

lim
n→∞

n∑

k=1

1

n+ k
= log 2,

a fact that has been verified by another method (see Example 6.24(a)).
Similarly, it is easy to see that

lim
n→∞

pn∑

k=1

1

n+ k
= log(p+ 1). •
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Example 7.27. There are many ways (see Examples 5.28 and 5.40(1), for
instance) to show that the harmonic p-series defined by

∞∑

k=1

1

kp
= 1 +

1

2p
+

1

3p
+ · · ·+ 1

kp
+ · · ·

converges if p > 1 and diverges if p ≤ 1.
We now illustrate the integral test by investigating the convergence of the

harmonic p-series. For p > 0, consider the function f(x) = 1/xp for x > 0.
Then f is positive, continuous, and decreasing for x > 0. Also, f(k) = 1/kp for
all positive integers k. So the integral test is applicable. Therefore,

∑∞
k=1

1
kp

is convergent if and only if the improper integral
∫∞
1

dx
xp converges. Since the

improper integral
∫∞
1

dx
xp converges to 1/(p − 1) if and only if p > 1, we

conclude that
∑∞

k=1
1
kp converges if p > 1 and diverges if p ≤ 1. •

The integral test can also be used to obtain lower and upper bounds for
the partial sum of the series as well as for the series itself.

Remark 7.28. 1. We have the estimate (apply Theorem 7.25 with f(x) =
1/xp, so that ak = 1/kp)

1

p− 1
≤

∞∑

k=1

1

kp
≤ 1 +

1

p− 1
for p > 1.

For instance, with p = 11/10, we see that

10 ≤
∞∑

k=1

1

k1+1/10
≤ 11,

whereas
∑∞

k=1(1/k) diverges although 1/k1.1 is close to 1/k. This clearly
demonstrates that

∑∞
k=1(1/k

1.1) grows very slowly. Also, from Theorem
7.25, we obtain for instance

10

110.1
=

∫ ∞

11

dx

x1.1
≤

∞∑

k=11

1

k1.1
≤

∫ ∞

11

dx

x1.1
+a11 =

1

111.1
+

10

110.1
= 7.939 . . . ,

so that
∑∞

k=11(1/k
1.1) lies between 10(11−0.1) = 7.867 . . . and 7.939 . . ..

Moreover, by computing the value of
∑10

k=1 k
−1.1 (≈ 2.690 . . .), it can be

seen that the value of

∞∑

k=1

1

k1.1
=

10∑

k=1

1

k1.1
+

∞∑

k=11

1

k1.1

lies between 10.548 . . . and 10.619 . . ..
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2. Although the graph of y = 1/xp (p > 0) is decreasing for x > 0, we obtain
that the series

∑
1
kp converges only for p > 1. Why is this so? If p > 1, the

curve y = 1/xp decreases fast enough to guarantee that the area under
the curve for p > 1 is finite, whereas in the case of p ≤ 1, the area under
the curve is infinite (see Figure 7.5).

3. Under the hypothesis of Theorem 7.25 and from its proof, (7.10) may be
rewritten as

Sn +

∫ ∞

n+1

f(x) dx ≤
∞∑

k=1

f(k) ≤ Sn+1 +

∫ ∞

n+1

f(x) dx,

where Sn =
∑n

k=1 f(k) and {Sn} converges. With f(x) = 1/x2, this gives

n∑

k=1

1

k2
+

∫ ∞

n+1

dx

x2
≤

∞∑

k=1

1

k2
≤

n+1∑

k=1

1

k2
+

∫ ∞

n+1

dx

x2
.

Because
∫∞
n+1

dx
x2 = 1

n+1 , the last inequality can be rewritten as

0 ≤
∞∑

k=n+1

1

k2
− 1

n+ 1
≤ 1

(n+ 1)2
.

In particular, this yields that if n > 99, then one has

∞∑

k=101

1

k2
<

1

100
+

1

10000
. •

Example 7.29. Test each of the following series for convergence.

(a)

∞∑

k=1

k

ek/7
. (b)

∞∑

k=1

( 1

ek
− 100

k

)
. (c)

∞∑

k=2

1

k(log k)p
.

(d)

∞∑

k=2

1

k log k[log(log k)]p
(p ∈ R).

Solution. (b) The function f(x) = xe−x/7 is positive and continuous for all
x > 0. We find that

f ′(x) = (1− x/7) e−x/7.

Since ex > 0 on R, we see that f ′(x) ≤ 0 for x ≥ 7, so it follows that f
is decreasing for x ≥ 7. Thus, by the integral test, the given series and
the improper integral

∫∞
7 xe−x/7 dx either both converge or both diverge.

It is a simple exercise to see that the improper integral
∫ ∞
7

xe−x/7 dx
converges. Consequently, the given series converges.

(b) We note that
∑∞

k=1
1
ek

converges, because it is a geometric series with

r = 1/e < 1. Also, the harmonic series
∑∞

k=1
1
k is known to be divergent.

Because one of the series in the difference converges and the other diverges,
the given series must diverge (see Theorem 5.12).
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(c) According to the integral test, it suffices to discuss the convergence of
the improper integral

∫ ∞
a

f(x) dx for sufficiently large a, where f(x) =
1

x(log x)p . Then

f ′(x) = − (logx)p + px(log x)p−1
(
1
x

)

[x(log x)p]2
= − (log x)p−1(log x+ p)

x2(log x)2p
≤ 0

for x > 1. Now

∫ N

a

dx

x(log x)p
=

∫ N

a

1

(log x)p
d(log x) =

⎧
⎪⎨

⎪⎩

(log x)1−p

1− p

∣∣∣∣
N

a

if p �= 1,

log(log x)|Na if p = 1,

which implies that

∫ ∞

a

dx

x(log x)p
= lim

N→∞

∫ N

a

dx

x(log x)p
=

⎧
⎨

⎩

∞ if p ≤ 1,
(log a)1−p

p− 1
if p > 1,

for any a > 1.
(d) We leave this as an exercise. •

7.1.6 Questions and Exercises

Questions 7.30.

1. What is an improper integral?
2. How many different types of improper integral are there?

3. Can we define the improper integral
∫ ∞
−∞ f(x) dx by limN→∞

∫ N

−N
f(x) dx?

4. Suppose that f is continuous on [1,∞) and limx→∞ xf(x) = ∞. Must∫∞
1 f(x) dx be divergent?

5. Suppose that f is continuous on [1,∞) such that limx→∞ xαf(x) = ∞ for
some α ∈ (1,∞). Must

∫∞
1 f(x) dx be divergent?

6. Suppose that f is continuous on [a, b) and that there exists an α ∈ (0, 1)

such that limx→b−(b−x)αf(x) exists as a finite number. Must
∫ b

a
f(x) dx

be convergent absolutely?

7. Suppose that f is continuous on [0,∞). Does
∫ N

0
f(x) dx converge for each

N with N > 0? Must
∫ ∞
0 f(x) dx be convergent?

8. Does
∫∞
0 sinx2 dx converge? Does

∫∞
0 sinx2 dx converge absolutely?

9. Does
∫∞
0

x−1 sinxdx converge? Does it converge absolutely?

10. Does
∫∞
0 sinxdx converge? Does

∫ 0

−∞ sinxdx converge? Does the Cauchy

principal value of
∫∞
−∞ sinxdx exist?

11. Does
∫ ∞
0 x sinxdx converge? Can

∫∞
0 xp sinxdx converge for each p > 0?

12. Does
∫∞
0

cosxdx converge?

13. Does
∫ 1

0 log xdx converge?
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14. Is there something wrong in the following calculation?

∫ 2

−2

dx

x2
= − 1

x

∣∣∣∣
2

−2

= −1.

15. Let α > 0, a > 0, and let Γ (α) denote the gamma function.

(a) Is it true that Γ (α) = 2

∫ ∞

0

t2α−1e−t2 dt?

(b) Does Γ (α) =

∫ 1

0

(log 1/t)
α−1

dt?

(c) Does Γ (α) = aα
∫ ∞

0

tα−1e−at dt?

16. Suppose that f is a nonnegative, continuous, and decreasing function of
x for x ≥ N . Set ak = f(k) for k ≥ N . Does the

∑∞
k=1 ak converge if and

only if
∫ ∞
N

f(x) dx exists?

Exercises 7.31.

1. Formulate the direct comparison test (see Theorem 7.5) for improper in-
tegrals of the second type.

2. Which of the following integrals are convergent? Which of them are di-
vergent? In cases that the integrand is a function of p, find the range of p
for which the corresponding integral converges.

(a)

∫ ∞

1

dx

x2 − 6x+ 8
. (b)

∫ ∞

1

dx√
1 + x3

. (c)

∫ ∞

1

x cosxdx.

(d)

∫ ∞

0

e−x3

dx. (e)

∫ ∞

−∞

dx

ex + e−x
. (f)

∫ 1

0

sin(1/x)

xp
dx.

(g)

∫ ∞

0

cosx

xp
dx. (h)

∫ ∞

1

dx

x (log x)p
. (i)

∫ 1

0

dx

xp log x
.

(j)

∫ ∞

1

x
1
2

(1 + x)2
dx. (k)

∫ 1

−1

dx√
1− x2

. (l)

∫ 3

0

dx√
x(2− x)2

.

(m)

∫ ∞

3

dx

(2x− 1)p
. (n)

∫ ∞

1

x2 dx

(x3 + 2)p
. (o)

∫ ∞

0

xp+3e−xp

dx.

3. Prove the following:

(a)

∫ ∞

0

x

(1 + x)3
dx =

1

2

∫ ∞

0

dx

(1 + x)2
.

(b)

∫ ∞

0

xe−x8

dx×
∫ ∞

0

x2e−x4

dx =
π

16
√
2
.

(c)

∫ π/2

0

√
sin θ dθ ×

∫ π/2

0

dθ√
sin θ

= π.

(d)

∫ π/2

0

sinp θ dθ ×
∫ π/2

0

sinp+1 θ dθ =
π

2(p+ 1)
(p > −1).
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(e)

∫ π/2

0

sinn θ dθ =

√
π

2

Γ (n+1
2 )

Γ (n+2
3 )

(n > −1).

(f)

∫ 1

0

dx√
1− xn

=

√
πΓ ( 1n )

nΓ ( 1n + 1
2 )

.

4. In the following integrals, either show that the improper integral converges
and find its value, or show that it diverges.

(a)

∫ ∞

0

x6e−2x dx. (b)

∫ 2

0

x2

√
2− x

dx. (c)

∫ ∞

0

dx

ex + e−x
.

(d)

∫ π/3

0

sec2 xdx

1− tanx
. (e)

∫ 6

0

xdx

x2 − 4
. (f)

∫ ∞

−∞

dx

(x − 4)3
.

(g)

∫ 6

0

xdx

(x2 − 4)2/3
. (h)

∫ π/2

0

sinxdx
3
√
1− 2 cosx

. (i)

∫ π/2

0

dθ√
sin 2θ

.

5. Find the area of the unbounded region between the x-axis and the curve
y = 1

(x−4)3 for x ≥ 8.

6. Complete Example 7.15, using Example 7.3 and the change of variable
x = 1/y with a = 1.

7. Discuss the following calculation: We have

(
−2

√
1− sinx

)′
=

√
1 + sinx,

and so

∫ M

0

√
1 + sinx dx = −2

√
1− sinx

∣∣∣
M

0
= 2

[
1−√

1− sinM
]
.

But as M → ∞, the area under the curve y =
√
1 + sinx between x = 0

and x = M approaches infinity. On the other hand, the right-hand side
of the last expression is never greater than 2. What is wrong, if anything,
with this discussion?

8. Find
∫ π

π/2
secxdx if it exists. If it does not, explain why the improver

integral diverges.
9. Let a �= 0. Find the value α such that

∫ ∞

0

(
1

(1 + a2x2)1/2
− α

x+ 1

)
dx

is convergent. Then evaluate that integral.
10. Show that the improper integral

∫ ∞

0

(
αx

1 + x2
− 1

1 + 2x

)
dx

is convergent if and only if α = 1/2.
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11. For what values of α > 0 is the improper integral

∫ ∞

0

xα−1

1 + x
dx conver-

gent?
12. Formulate a statement of the limit comparison test with a proof when the

functions involved satisfy the following conditions: Suppose that f and g
are two positive continuous functions on (a, b], g(x) > 0, and f(x) ≥ 0 on
some subinterval (a, b1] (b1 ≤ b), and such that

lim
x→a+

f(x)

g(x)
= L (0 ≤ L ≤ ∞),

where −∞ ≤ a < b.
13. Evaluate

∫ 1

0
xp(1 − xq)n dx (p > −1, q > 0, n > −1). More generally,

evaluate ∫ m

0

xp(mq − xq)n dx.

14. Evaluate

∫ ∞

0

xne−α2x2

dx (α > 0).

15. Give an example of a continuous nonmonotonic function f(x) on [1,∞)
such that

∑∞
k=1 f(k) converges but

∫ ∞
1 f(x) dx does not.

16. Using the integral test, examine whether each of the following series con-
verges or diverges.

(a)
∞∑

k=1

1

(1 + 5k)2
. (b)

∞∑

k=2

1

k
√
k2 − 1

. (c)
∞∑

k=1

(5 + 2k)−3/2.

(d)
∞∑

k=1

(tan−1 2k)3

1 + 4k2
. (e)

∞∑

k=1

1

k(k + 1)(k + 2)
. (f)

∞∑

k=2

1

k2 + k
.

17. Using the integral test, show that
∫∞
1

xα−1

1+x dx converges if and only if
α < 1.

7.2 Applications of the Riemann Integral

We know that the area of a circle of radius r is 2π(r2/2). Since the whole
circle involves an angle of 2π at the center, the area of a circular sector of
central angle φ in radian measure is 1

2r
2φ (see Figure 7.16). In this section,

we wish to find the area of a region bounded by arbitrary general curves that
have path coordinates (r, θ).

7.2.1 Area in Polar Coordinates

Let a curve be given in polar coordinates by

r = f(θ),

where f(θ) is a positive continuous function defined on [α, β], 0 ≤ α < β ≤ 2π.
Sometimes it is convenient to fix α and β such that −π ≤ α < β ≤ π, as we
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θ= θ∗
k

θ= θk
Ak= 1

2 (r∗
k)2Δθk
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Fig. 7.16. Area of a circular sector.
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θ=β

θ= θk
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θ= θ∗
k
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θ= θk−1

θ=α

Fig. 7.17. Determining arc length of a polar curve.

shall see in a number of examples in this section. Consider the area A of the
region (see POQ in Figure 7.16) bounded by the rays θ = α, θ = β, and the
curve r = f(θ), α ≤ θ ≤ β. Our experience with the Riemann integral suggests
that we should divide the region into small sectors using radial lines, and a
first guess is to approximate the sectorial area by the area of a circular arc.
One of the general procedures is to consider a partition P = {θ0, θ1, . . . , θn}
of [α, β] given by

α = θ0 < θ1 < θ2 < · · · < θn = β.

That is, we divide the ∠POQ into n parts. We draw the rays

θ = θk for k = 0, 1, 2, . . . , n.

These rays divide the area into n subregions Ak (k = 1, 2, . . . , n), as shown in
Figure 7.16. Thus, the area Ak of the kth subregion will be bounded by the
rays

θ = θk−1, θ = θk,

and the portion of the curve r = f(θ) for which θ ∈ [θk−1, θk]. We first
approximate the area Ak of the typical sector Qk−1OQk (see Figures 7.16
and 7.17).
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Pick an arbitrary ray θ = θ∗k, θk−1 ≤ θ∗k ≤ θk. Denote by r∗k = f(θ∗k),
the length of the radius vector corresponding to the angle θ∗k. Then the area
of the circular sector with radius r∗k and central angle of radian measure
Δθk = θk − θk−1 is

1

2
(r∗k)

2Δθk =
1

2
(f(θ∗k))

2
Δθk,

which is an approximation to the area Ak. If we sum these areas, we get

n∑

k=1

1

2
(f(θ∗k))

2Δθk,

which is the total area of the steplike circular sectors, and so the sum is a
good approximation to A, the total area bounded by the given polar curve:
r = f(θ), α ≤ θ ≤ β. Since f is a continuous function of θ for θ ∈ [α, β],
the above sum is clearly a Riemann sum of f on [α, β], and so we expect the
approximation to improve for ‖P‖ = max

1≤k≤n
Δθk → 0 as n → ∞. Consequently,

by the definition of the definite integral,

lim
‖P‖→0

n∑

k=1

1

2
(f(θ∗k))

2Δθk =

∫ β

α

1

2
(f(θ))2 dθ =

∫ β

α

1

2
r2 dθ =

∫ β

α

dA,

which is the required area A. Here

dA =
1

2
r2 dθ =

1

2
(f(θ))2 dθ

is called the differential element of area. The above discussion gives the fol-
lowing result.

Theorem 7.32 (Area in polar coordinates). Suppose that a polar curve
is given by

r = f(θ),

where f(θ) is a positive continuous function defined on [α, β] ( 0 ≤ α < β ≤ 2π
or −π ≤ α < β ≤ π ). If A is the area of the region bounded by the curve
r = f(θ) and the rays θ = α and θ = β, then the area A is given by

A =

∫ β

α

1

2
r2 dθ =

∫ β

α

1

2
(f(θ))2 dθ.

More generally, suppose we wish to find the area A of the region that
lies between two polar curves r2 = f2(θ), r1 = f1(θ) from θ = α to θ = β,
where f2(θ) ≥ f1(θ) ≥ 0 for α ≤ θ ≤ β. For example, for the region shown in
Figure 7.18, because

Area of (ABDCA) = Area of (OBAO) −Area of (ODCO),
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Fig. 7.18. Area between two polar curves.

we have the formula

A =

∫ β

α

1

2
(f2(θ))

2 dθ −
∫ β

α

1

2
(f1(θ))

2 dθ.

Sometimes, we may have to find the area A between two polar curves that
have different intervals of integration (as in Figure 7.18 and Example 7.36(a)):

r2 = f2(θ) (α ≤ θ ≤ β) and r1 = f1(θ) (α
′ ≤ θ ≤ β′),

where f2(θ) ≥ f1(θ) ≥ 0. In that case, the corresponding formula for the area
A is

A =

∫ β

α

1

2
(f2(θ))

2 dθ −
∫ β′

α′

1

2
(f1(θ))

2 dθ.

Just to indicate the outer and the inner curves in a convenient way to remem-
ber the formula, we may rewrite the above formula as

A =

∫ β

α

1

2
r2O dθ −

∫ β′

α′

1

2
r2I dθ,

where rO = f2(θ) and rI = f1(θ) represent the outer and inner curves, re-
spectively.

In a given problem, the most difficult part of the problem is frequently
to decide on the limits of integration. However, a decent sketch of the region
should help in such problems.

Example 7.33. Find the area of the region bounded by following curves:

(a) r = a(1 + cos θ), (b) r = a(1− cos θ),
(c) r = a(1 − sin θ), (d) r = a(1 + sin θ),

where a > 0. Each of these curves is called a cardioid, since it resembles a
heart.
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•
2a

•
2ax

y

x

y

Fig. 7.19. Area enclosed by the curves r = a(1 + cos θ) and r = a(1− cos θ).

Solution. (a) In this case we need to find the area of the entire region inside
the curve, so we must let θ go from 0 to 2π (see Figure 7.19). According to
the formula, the desired area A is given by

A =
1

2

∫ 2π

0

a2(1 + cos θ)2 dθ

=
a2

2

∫ 2π

0

(
1 + 2 cos θ +

1 + cos 2θ

2

)
dθ

=
a2

2

[
2π + 2 sin θ

∣∣∣
2π

0
+

1

2

[
2π +

sin 2θ

2

∣∣∣
2π

0

]]

=
3

2
a2π.

From Figures 7.19 and 7.20, it is clear that the areas of the regions bounded
by the curves given by (b)–(d) remain the same. •
Example 7.34. Find the area of the region that lies outside the cardioid
r = 2a(1 + cos θ) and inside the circle r = 6a cos θ, a > 0.

Solution. Recall that r = 6a cos θ implies that

r2 = 6a(r cos θ), i.e., x2 + y2 = 6ax or (x− 3a)2 + y2 = (3a)2,

which is a circle centered at (3a, 0) with radius 3a. Note that the full circle is
described when θ runs from −π/2 to π/2. The points of intersection between
the two curves are given by equating the two functions that represent these
curves:

2a(1 + cos θ) = 6a cos θ or cos θ =
1

2
, i.e., θ = ±π

3
.

Therefore, (3a, π/3) and (3a,−π/3) are the intersection points of the given
curves. The required area A corresponds to the region inside the circle and
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y
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2a
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y
2a

Fig. 7.20. Area enclosed by the curves r = a(1− sin θ) and r = a(1 + sin θ).

outside the cardioid, provided θ lies between −π/3 and π/3. Thus (see
Figure 7.21)

A =
1

2

∫ π/3

−π/3

{
(rO(θ))

2 − (rI(θ))
2
}
dθ

=
1

2

∫ π/3

−π/3

{
(6a cos θ)2 − (2a(1 + cos θ))2

}
dθ

= a2
∫ π/3

0

{
32 cos2 θ − 8 cos θ − 4

}
dθ

= a2
∫ π/3

0

{16(1 + cos 2θ)− 8 cos θ − 4}dθ

= a2
[
12

(π
3
− 0

)
+ 8 sin 2θ

∣∣∣
π/3

0
− 8 sin θ

∣∣∣
π/3

0

]

= a2 [4π + 8 sin (2π/3)− 8 sin (π/3)] ,

which by a simplification, gives A = 4πa2. •
Remark 7.35. We note that in Example 7.34, we miss the origin among
the points of intersection. Indeed, if we superimpose the two curves as in
Figure 7.21, we find that these two curves also intersect at the origin, because
(0, π) and (0, π/2) satisfy the cardioid and the circle, respectively. Such points
will be missed in general when we solve the given pair of equations. •
Example 7.36. In each case find the area inside the first curve and outside
the second one (a > 0):

(a) r = a(1 + cos θ), r = 2a cos θ. (b) r = 3a cos θ, r = a(1 + cos θ).
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y

θ=−π/ 3

θ=π/3

x
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outside of circle
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r=2a(1+cos θ)
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Fig. 7.21. Area outside r = 2a(1 + cos θ) and inside r = 6a cos θ.

(c) r = a sin θ, r = a(1 − cos θ). (d) r = a, r = a(1− cos θ).
(e) r = a cos θ, r = a(1− cos θ).

Solution. (a) Recall that r = 2a cos θ is the equation of a circle centered at
(a, 0) and of radius a. The point of intersection of the two curves is given by

2a cos θ = a(1 + cos θ), i.e., cos θ = 1 or θ = 0.

We note that the origin is also a point of intersection, because although the
coordinates (0, π) and (0, π/2) are different, both represent the origin, and
the curves pass through the origin. The required area outside the circle and
inside the cardioid is (see Figure 7.22)

A = 2

[∫ π

0

1

2
r2O dθ −

∫ π/2

0

1

2
r2I dθ

]

= 2

[∫ π

0

1

2
(a(1 + cos θ))2 dθ −

∫ π/2

0

1

2
(2a cos θ)2 dθ

]

= a2

[∫ π

0

(1 + cos θ)2 dθ − 4

∫ π/2

0

cos2 θ dθ

]
.

A computation shows that A = πa2/2.

(b) This has been done in Example 7.34 except with the factor 2.
(c) The equation r = a sin θ gives

r2 = a(r sin θ), i.e., x2 + y2 − ay = 0, or x2 + (y − a/2)2 = (a/2)2,



7.2 Applications of the Riemann Integral 315
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•
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Fig. 7.22. Area outside of r = 2a cos θ and inside of r = a(1 + cos θ).

x

(a, π / 2)•

y
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r=a sin θ

inner curve
r=a(1− cos θ)

Fig. 7.23. Area outside of r = a(1− cos θ) and inside of r = a sin θ.

which is a circle. In polar coordinates, this is centered at (a/2, π/2) and has
radius a/2. The points of intersection are given by

a sin θ = a(1− cos θ), i.e., sin θ + cos θ = 1,

which gives θ = 0, π/2. From the sketch (see Figure 7.23), the required
area is

A =

∫ π/2

0

1

2
r2O dθ −

∫ π/2

0

1

2
r2I dθ

=
1

2

∫ π/2

0

[
a2 sin2 θ − a2(1 − cos θ)2

]
dθ.

A computation gives A = a2(4− π)/4.
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y

Fig. 7.24. Area inside of the circle r = a and outside of the cardioid r = a(1−cos θ).

(d) From the sketch (see Figure 7.24), the desired area is

A = 2

[∫ π/2

0

1

2
r2O dθ −

∫ π/2

0

1

2
r2I dθ

]

= 2

[∫ π/2

0

(
1

2
a2 − 1

2
a2(1− cos θ)2

)
dθ

]
,

and a computation shows that A = a2(2− π/4).
(e) The curve r = a cos θ describes the circle centered at (a/2, 0) of radius

a/2. The points of intersection of r = a cos θ and r = a(1− cos θ) are given by

a cos θ = a(1− cos θ), i.e., cos θ =
1

2
or θ = ±π

3
,

and so the origin (0, 0) and (a,±π/3) are the points of intersection of the two
curves. From the sketch (see Figure 7.25), the desired area is

A = 2

[∫ π/3

0

1

2
r2O dθ −

∫ π/3

0

1

2
r2I dθ

]

= 2

[∫ π/3

0

1

2
a2 cos2 θ dθ −

∫ π/3

0

1

2
a2(1− cos θ)2] dθ

]

= a2
∫ π/3

0

(2 cos θ − 1) dθ,

and a computation gives that A = a2(
√
3− π/3). •

7.2.2 Arc Length of a Plane Curve

Physically speaking, the length of a curve (arc length) is quite a simple con-
cept, although mathematically it is nontrivial. Suppose that we are given an
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Fig. 7.25. Area outside of r = a(1− cos θ) and inside of r = a cos θ.
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Fig. 7.26. Arc length in Cartesian coordinates.

arc of a curve y = f(x) from A to B. The question is how to define the length

of the arc ÂB as a limit of Riemann sums, and hence as a definite integral.
The aim of this subsection is to present a solid mathematical definition for
arc length. Consider the equation

y = f(x), x ∈ [a, b],

which describes the curve from A to B, denoted by ÂB, as shown in
Figure 7.26. To find the length of the curve ÂB, we first try to approximate
the length by computing the length of suitable polygonal paths that lie close
to the curve. To do this, we consider a partition P = {x0, x1, . . . , xn} of [a, b].

For k = 1, 2, . . . , n, let Pk = Pk(xk, f(xk)) denote points on the curve ÂB, so
that

P0(x0, f(x0)) = P0(a, f(a)) = A(a, f(a)) and Pn(xn, f(xn)) = B(b, f(b)).

By joining points P0, P1, . . . , Pn, we obtain polygonal paths (i.e., chords)
whose lengths we shall denote by Δs1,Δs2, . . . ,Δsn. The length of the kth
chord is



318 7 Improper Integrals and Applications of Riemann Integrals

Δsk = |Pk−1Pk| =
√
Δx2

k +Δy2k =

√

1 +

(
Δyk
Δxk

)2

Δxk,

or equivalently,

Δsk =

√

1 +

(
f(xk)− f(xk−1)

xk − xk−1

)2

Δxk. (7.12)

The length of the polygonal path connecting the points P0, P1, . . . , Pn on the
graph of f is the sum

sn =
n∑

k=1

Δsk =
n∑

k=1

√

1 +

(
f(xk)− f(xk−1)

xk − xk−1

)2

Δxk,

which is an approximation to the length of the arc ÂB. When the number
of division points is increased infinitely while ‖P‖ = max1≤k≤n Δxk → 0,
we obtain the length s of the curve y = f(x) between x = a and x = b,
defined as

s = lim
n→∞ sn = lim

n→∞

n∑

k=1

√

1 +

(
f(xk)− f(xk−1)

xk − xk−1

)2

Δxk, (7.13)

provided the limit exists. First we note that the sum on the right-hand side of
(7.13) is not in standard form, but it can be put into such a form as follows:

Assume that f is continuously differentiable on [a, b]. Then the mean value
theorem is applicable to f on each subinterval [xk−1, xk]. This means that
there exists a point x∗

k in (xk−1, xk) such that

f(xk)− f(xk−1) = f ′(x∗
k)(xk − xk−1).

In view of this, the length of the kth chord (see (7.12)) is

Δsk =

√
1 + (f ′(x∗

k))
2
Δxk,

so that the arc length of the graph of y = f(x) on [a, b] may be approximated
by the Riemann sum

sn =

n∑

k=1

√
1 + (f ′(x∗

k))
2
Δxk.

Since f ′(x) is continuous on [a, b],
√
1 + (f ′(x))2 is also continuous on [a, b],

and so lim‖P‖→0 sn exists, which is in fact the definite integral

s =

∫ b

a

√
1 + (f ′(x))2 dx.

We have thus demonstrated the following theorem.



7.2 Applications of the Riemann Integral 319

Theorem 7.37 (Arc length in Cartesian coordinates). Let f(x) be
smooth (i.e., continuously differentiable) on [a, b]. Then the length s of the
curve of y = f(x) between x = a and y = b is given by

s =

∫ b

a

√
1 + (f ′(x))2 dx =

∫ x=b

x=a

√

1 +

(
dy

dx

)2

dx.

This formula is valid even if f is not a positive function. Interchanging the
roles of x and y, we can easily arrive at the following analogous result, which
will sometimes be useful.

Theorem 7.38. If g(y) is smooth on [c, d], then the length of the curve x =
g(y) between y = c and y = d is given by

s =

∫ d

c

√
1 + (g′(y))2 dy =

∫ y=d

y=c

√

1 +

(
dx

dy

)2

dy. (7.14)

Proof. In the above discussion, we simply transform Δsk =
√
Δx2

k +Δy2k into

Δsk =

√

1 +

(
Δxk

Δyk

)2

Δyk,

which gives the formula

s = lim
‖P‖→0

n∑

k=1

√
1 + (g′(y∗k))2Δyk =

∫ d

c

√
1 + (g′(y))2 dy.

The remaining details are easy to fill in, and so we omit them.

The arc-length formula in Theorem 7.37 is often written with differentials
instead of derivatives. If we use dy

dx for f ′(x), then we may formally write

√
1 + (f ′(x))2 dx =

√

1 +

(
dy

dx

)2

dx =
√
(dx)2 + (dy)2 = ds,

so that we end up with

s =

∫ β

α

√
(dx)2 + (dy)2. (7.15)

Is this not reminiscent of the Pythagorean theorem? If we think of dx and dy
as two sides of a small right triangle, then

ds =
√
(dx)2 + (dy)2

represents the “hypotenuse” which is referred to as a differential of the arc
length, while

s =

∫
ds

is the differential formula for arc length.
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Example 7.39. From basic calculus, we know that the circumference of the
circle x2 + y2 = a2 is 2πa. Let us verify this using our definition. The circum-
ference s of this circle is

s = 4

∫ a

0

√
1 + (f ′(x))2 dx,

where y = f(x) =
√
a2 − x2, x ∈ [0, a], is the quarter-circle of radius a lying

in the first quadrant. Note that

√
1 + (f ′(x))2 =

√

1 +

( −x√
a2 − x2

)2

=
a√

a2 − x2
,

so that we end up with an improper integral for s:

s = 4a

∫ a

0

dx√
a2 − x2

= 4a arcsin
(x
a

)∣∣∣
a

0
= 4a arcsin 1 = 2πa. •

The value of s in this example may also be obtained using the parametric
equation x = a cos t and y = a sin t for 0 ≤ t ≤ 2π. This formula is described
later, in (7.16).

Example 7.40. Find the length of the curve

(a) y = f(x) = log

(
ex − 1

ex + 1

)
for x ∈ [1, 2],

(b) y = f(x) = x2/3 for x ∈ [−1, 8].

Solution. (a) Clearly f(x) is continuously differentiable on [1, 2] with

f ′(x) =
ex

ex − 1
− ex

ex + 1
=

2ex

e2x − 1
=

2

ex − e−x
,

so that

1 + (f ′(x))2 = 1 +
4

(ex − e−x)2
=

(
ex + e−x

ex − e−x

)2

.

Thus

s =

∫ 2

1

√
1 + (f ′(x))2 dx =

∫ 2

1

ex + e−x

ex − e−x
dx = log(ex − e−x)

∣∣∣
2

1
,

which gives

s = log

(
e2 − e−2

e− e−1

)
= log(e + 1/e).

(b) Let f(x) = x2/3, x ∈ [−1, 8] (see Figure 7.27). Note that there is a vertical
tangent at x = 0, because

f ′(x) =
2

3

1

x1/3
→ ∞ as x → 0 + and f ′(x) → −∞ as x → 0− ,
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(−1, 1)

x

y

8−1

y=x2/3

(8, 4)

O

Fig. 7.27. The graph of y = x2/3 on [−1, 8].

and so the integrand in the arc-length formula in (7.13) approaches infinity
as x → 0. In this case, we may write

s =

∫ 0

−1

√
1 + (f ′(x))2 dx+

∫ 8

0

√
1 + (f ′(x))2 dx,

where both integrals on the right are improper. Thus,

s = lim
ε→0−

∫ ε

−1

√
1 +

4

9x2/3
dx+ lim

η→0+

∫ 8

η

√
1 +

4

9x2/3
dx,

and this can be computed. Alternatively, we may use the formula (7.14) to
find the length of the curve. We need to find dx/dy, where

y = f(x) = x2/3 on [−1, 8] ⇐⇒ x = ±y3/2 = g(y) on [0, 4].

Note that for [−1, 0], we have

x = −y3/2, y ∈ [0, 1],

and for x ∈ [0, 8], we have

x = y3/2, y ∈ [0, 4].

This observation leads to

s =

∫ 1

0

√
1 + (g′1(y))2 dy +

∫ 4

0

√
1 + (g′2(y))2 dy.

In either case, we have

√
1 + (g′(y))2 =

√
1 +

9

4
y,
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and so

s =

∫ 1

0

√
1 +

9

4
y dy +

∫ 4

0

√
1 +

9

4
y dy

=
4

9

[
(1 + 9y/4)3/2

3/2

∣∣∣∣
1

0

+
(1 + 9y/4)3/2

3/2

∣∣∣∣
4

0

]

=
1

27

[
13

√
13 + 80

√
10− 16

]
≈ 10.5.

Note that the sum of the lengths of the two inscribed chords is
√
2 +

√
64 + 16 =

√
2 + 4

√
5 ≈ 10.4. •

7.2.3 Arc Length for Parameterized Curves

Suppose that a smooth curve y = f(x), x ∈ [a, b], is given parametrically by

x = x(θ), y = y(θ) (α ≤ θ ≤ β),

where x(θ) and y(θ) are continuously differentiable functions of θ, θ ∈ [α, β],
with y′(θ) �= 0 on [α, β], and the curve y = f(x) does not intersect itself,
except possibly for θ = α and θ = β. Here the points that corresponds to α
and β are the endpoints of the curve. So we set a = x(α) and b = y(β), and
thus b = f(a). Then

y = f(x) ⇐⇒ y(θ) = f(x(θ)); and y′(θ) = f ′(x(θ))x′(θ),

so that

ds =
√
1 + (f ′(x))2 dx =

√

1 +

(
y′(θ)
x′(θ)

)2

x′(θ) dθ =
√
x′(θ)2 + y′(θ)2 dθ.

Then the Cartesian form of the arc length s takes the form

s =

∫ b

a

√
1 + (f ′(x))2 dx =

∫ β

α

√
x′(θ)2 + y′(θ)2 dθ,

and so the length s of the curve C (as described in (7.13)) becomes

s = lim
n∑

k=1

Δsk = lim
n∑

k=1

√
x′(θ∗k)2 + (y′(θ∗∗k ))2Δθk,

which is the definite integral

s =

∫ β

α

√
x′(θ)2 + y′(θ)2 dθ =

∫ β

α

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ. (7.16)

Now we shall consider examples for finding the arc length when the limits of
integration are given.
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O

(0, −a)

y

(0, a)

(a, 0)(−a, 0) x

Fig. 7.28. The astroid x2/3 + y2/3 = a2/3.

Example 7.41. Find the length of the curve parameterized by:

(a) x = a cos3 θ, y = a sin3 θ for 0 ≤ θ ≤ 2π. This curve is known as an
astroid.

(b) x = a cos3 θ, y = b sin3 θ for 0 ≤ θ ≤ 2π.
(c) x = eθ sin θ, y = eθ cos θ for 0 ≤ θ ≤ π.
(d) x = a cos θ, y = b sin θ for 0 ≤ θ ≤ 2π. The curve is the general equation

of an ellipse.

Solution. (a) Note that the Cartesian form of the given astroid is (Figure 7.28)

x2/3 + y2/3 = a2/3, or
(x
a

)2/3

+
(y
a

)2/3

= 1.

From the symmetry of the astroid, it is apparent that the arc length of
the curve in polar form is

s = 4

∫ π/2

0

√
x′(θ)2 + y′(θ)2 dθ,

where x(θ) = a cos3 θ and y(θ) = a sin3 θ. Since

x′(θ)2+y′(θ)2 = [3a cos2 θ(− sin θ)]2+[3a sin2 θ(cos θ)]2 = 9a2 cos2 θ sin2 θ,

we have

s = 4

∫ π/2

0

3a cos θ sin θ dθ = 12a

(
sin2 θ

2

)∣∣∣∣
π/2

0

= 6a.

(b) Proceeding exactly as in (a), we see that (see Figure 7.29)
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OO

a<b

y
b
y

a>b
a

b

x a x

Fig. 7.29. The astroids (x/a)2/3 + (y/b)2/3 = 1 for a > b and a < b respectively.

s = 6

∫ π/2

0

√
a2 + (b2 − a2) sin2 θ d(sin2 θ)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

6

(
[a2 + (b2 − a2) sin2 θ]3/2

3
2 (b

2 − a2)

)∣∣∣∣
π/2

0

if b �= a,

6a

∫ π/2

0

d(sin2 θ) if b = a,

which may be simplified to obtain

s =

⎧
⎨

⎩

4(b3 − a3)

b2 − a2
if b �= a,

6a if b = a.

(c) For the given curve, we easily see that (see Figure 7.30)

x′(θ)2 + y′(θ)2 = (eθ(cos θ + sin θ)2) + (eθ(cos θ − sin θ))2 = 2e2θ,

and so the desired arc length is

s =

∫ π

0

√
2eθ dθ =

√
2eθ

∣∣∣
π

0
=

√
2(eπ − 1).

(d) Without loss of generality, we assume that a > b > 0. In this case,

x′(θ)2 + y′(θ)2 = (a sin θ)2 + (−b sin θ)2 = a2
[
1−

(
1− b2

a2

)
cos2 θ

]
,

so that

s = 4

∫ π/2

0

a
√
1− k2 cos2 θ dθ, k =

√
a2 − b2

a
.

We remind the reader that it is not possible to express this result in a sim-
ple form using elementary functions, although estimates for this integral
are known. •
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O
x

y

Fig. 7.30. The curve x = eθ sin θ, y = eθ cos θ for 0 ≤ θ ≤ 2π.

7.2.4 Arc Length of Polar Curves

Now we turn our attention to finding the length of a curve C with polar
equation

r = f(θ) (α ≤ θ ≤ β),

where r, θ, and f(θ) are respectively the radial vector, the polar angle, and a
continuously differentiable function defined on [α, β] with f(θ) ≥ 0 on [α, β].
We have the following parametric representation of C:

x = r cos θ = f(θ) cos θ and y = r sin θ = f(θ) sin θ.

We may regard these equations as the parametric equations of the curve.
Again, by (7.14), the formula for computing the arc length of the polar curve
r = f(θ) from θ = α to θ = β is

s =

∫ β

α

ds =

∫ β

α

√
(x′(θ))2 + (y′(θ))2 dθ.

Using the trigonometric identity sin2 θ + cos2 θ = 1, we see that

(x′(θ))2 + (y′(θ))2 = (f ′(θ) cos θ − f(θ) sin θ)2 + (f ′(θ) sin θ + f(θ) cos θ)2

= (f(θ))2 + (f ′(θ))2 = r2 +

(
dr

dθ

)2

,
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y

r= f(θ)

θ=β

xO

θ=α•

•

Δθ

chord PQ

P(r, θ) P(r, θ)

Q(r+Δr, θ+Δθ) Q(r+Δr, θ+Δθ)

•

•
|PQ|

O

Fig. 7.31. Length of a polar curve.

and so we have the following formula for arc length s when the curve is
specified in terms of polar coordinates:

s =

∫ β

α

√
(f(θ))2 + (f ′(θ))2 dθ, i.e., s =

∫ β

α

√

r2 +

(
dr

dθ

)2

dθ.

We now formulate the above discussion into a theorem.

Theorem 7.42 (Length of an arc of a polar curve). Suppose that r =
f(θ) is continuously differentiable for α ≤ θ ≤ β, 0 ≤ β − α < 2π. Then the
length of the arc r = f(θ), α ≤ θ ≤ β, is

s =

∫ β

α

ds, ds =
√
r2 + (r′)2 dθ. (7.17)

Alternative proof of Theorem 7.42. Let P (r, θ) be an arbitrary point on the
polar curve

r = f(θ), α ≤ θ ≤ β.

Consider a neighboring point Q on the polar curve such that the angle between
the radial lines OP and OQ is Δθ. Let |PQ| denote the length of the chord
PQ (see Figure 7.31). By the law of cosines in trigonometry, it follows that

|PQ|2 = r2 + (r +Δr)2 − 2r(r +Δr) cosΔθ

= (2r2 + 2rΔr)(1 − cosΔθ) +Δr2

=

[
(2r2 + 2rΔr)

1 − cosΔθ

Δθ2
+

(
Δr

Δθ

)2
]
(Δθ)2,

so that the length of the chord PQ is

|PQ| =
⎡

⎣
√

(2r2 + 2rΔr)
1 − cosΔθ

Δθ2
+

(
Δr

Δθ

)2
⎤

⎦Δθ.
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Since f(θ) is continuously differentiable, allowing Δθ → 0, we see that

Δr = f(θ +Δθ)− f(θ) → 0 as Δθ → 0,

and so the term in parentheses approaches

√

r2 +

(
dr

dθ

)2

.

The remainder of the argument is left as an exercise.

Example 7.43. Find the length of each of the following curves:

(a) r = a(1 + cos θ). (b) r2 = a2 cos 2θ .
(c) r = a cos θ. (d) r = e−aθ, 0 ≤ θ < ∞, a > 0.

Show also that the upper half of the cardioid given by (a) is bisected by the
line θ = π/3.

Solution. (a) Set r = f(θ), where f(θ) = a(1 + cos θ). Using the arc-length
formula (7.17) and the symmetry of the cardioid about the polar axis, we
have (see Figure 7.32)

s = 2

∫ π

0

√
r2 + (r′)2 dθ

= 2

∫ π

0

√
a2(1 + cos θ)2 + (−a sin θ)2 dθ

= 2a

∫ π

0

√
2(1 + cos θ) dθ

= 2a

∫ π

0

2 cos(θ/2) dθ

= 4a

(
sin(θ/2)

1/2

)∣∣∣∣
π

0

= 8a.

To show that the upper half of the cardioid is bisected by the line θ = π/3,
we need to show that the length of the arc s1 of the cardioid between 0
and θ = π/3 is 2a. To see this, we compute

s1 =

∫ π/3

0

√
r2 + (r′)2 dθ = 2a

(
sin(θ/2)

1/2

)∣∣∣∣
π/3

0

= 2a.

(b) Note that the Cartesian form of the given lemniscate is (see Figure 7.33)

(x2 + y2)2 = a2(x2 − y2).

Set r = f(θ), where f(θ) =
√
a cos 2θ. The lemniscate is symmetric about

both lines θ = 0 and θ = π/2. Hence, the total length of the lemniscate
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a

y

x2a

Fig. 7.32. r = a(1 + cos θ) for a = 2.

xa

y

Fig. 7.33. Graph of r2 = a2 cos 2θ.

is four times the arc length of the part that lies in the first quadrant
between the rays θ = 0 and θ = π/4. That is,

s = 4

∫ π/4

0

√
r2 + (r′)2 dθ.

Now on [0, π/4), we have

f ′(θ)
f(θ)

= − tan 2θ, i.e., r′ = f ′(θ) = −r tan 2θ,

which gives r2 + (r′)2 = r2 + r2 tan2(2θ) = r2 sec2(2θ) = a2 sec 2θ. Thus

s = 4

∫ π/4

0

√
a2 sec(2θ) dθ

= 4a

∫ π/4

0

cos−
1
2 (2θ) dθ

= 2a

∫ π/2

0

cos−
1
2 (φ) dφ

= aB(1/2, 1/4), where B(a, b) =
Γ (a)Γ (b)

Γ (a+ b)
.

(c) Clearly, the given curve is a circle centered at a/2 with radius a/2. Since
the length of the circle is not going to be altered by a change of center
(since it depends only on the radius), the required length is π/a. In order
to apply our formula, we set r = f(θ), where f(θ) = a cos θ, |θ| ≤ π/2.
Using the formula and the symmetry of the circle about the polar axis,
we have

s = 2

∫ π/2

0

√
r2 + (r′)2 dθ = 2

∫ π/2

0

√
a2 cos2 θ + a2 sin2 θ dθ = πa.
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(d) Set r = f(θ), where f(θ) = e−aθ. Then r′ = −ae−aθ. We observe that as
θ increases, the spiral winds around the pole O in the counterclockwise
direction. The total length of the curve is given by the improper integral

s =

∫ ∞

0

√
r2 + (r′)2 dθ =

√
1 + a2

∫ ∞

0

e−aθ dθ =

√
1 + a2

a
,

since
∫ ∞
0 e−aθ dθ = 1

a . •
7.2.5 Questions and Exercises

Questions 7.44.

1. Let C be a smooth curve with parametric equations

x = x(θ), y = y(θ), α ≤ θ ≤ β,

where x′(θ) and y′(θ) are bounded on [α, β]. Must the length of C be
finite?

2. Are there continuous curves defined on a bounded interval [a, b] that have
finite length?

Exercises 7.45.

1. Find the area of the region common to the circles r = a cos θ and r =
a sin θ.

2. Find the area of the common region included between the cardioids

r = a(1 + cos θ) and r = a(1− cos θ).

3. Find the area of the common region included between the circle r = a
and the cardioid r = a(1− cos θ).

4. Find the area of the region common to the parabola 2a = r(1+cos θ) and
the cardioid r = 2a(1 + cos θ).

5. Find the area of the region within r = a(1− 2 sin θ).
6. Find the area of the region bounded by one petal of r = a cosnθ for

n = 2, 3, 4, 5.
7. Find the area of the region inside the circle r = a cos θ but outside r =

a sin 2θ.
8. Find the area of the region common to the circle r = a cos θ and the

cardioid r = a(1− cos θ).
9. Find the area of the region outside the circle r = a but inside the lemnis-

cate r2 = 2a2 cos 2θ.
10. Find the area inside the lemniscate r2 = 2a2 cos 2θ.
11. Compute the area enclosed by the loop of the folium of Descartes given

by x3 + y3 = 3axy.
12. Find the length of the arc of the cardioid r = a(1 + cos θ) between the

points whose vectorial angles are α and β.
13. Find the length of the cardioid r = a(1− cos θ) between the points whose

vectorial angles are α and β. Show that the arc of the upper half of the
curve r = a(1− cos θ) is bisected by θ = 2π/3.
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Power Series

In this chapter, we turn our attention to functional series of the form
∑

fk(x)
whose terms are functions of x rather than real numbers. In Section 8.1, we
present two fundamental tests: the ratio and root tests for the convergence
of numerical series. In Section 8.2, we shall begin our discussion with an
important particular case in which fk(x) = ak(x − a)k, and we shall be es-
pecially interested in deriving important properties of such series, which may
be thought of as polynomials of infinite degree, although some of their prop-
erties are quite different from those of polynomials. In this section, we also
discuss convergence of power series as well as term-by-term differentiation and
integration of power series. The uniqueness of power series may be used in a
number of ways. So whatever trick we use to find a convergent power series
representing a function, it must be the Taylor series. In particular, we present
some practical methods of computing the interval of convergence of a given
power series.

8.1 The Ratio Test and the Root Test

The ratio and the root tests for series whose terms are real numbers are easy
and useful consequences of the direct comparison test. Later, we shall obtain
their analogues when the terms of the series are functions of x.

8.1.1 The Ratio Test

Theorem 8.1 (Ratio test). Consider the series
∑

ak, where ak > 0 for all
k ≥ N0. Let

L = lim sup
k→∞

ak+1

ak
and � = lim inf

k→∞
ak+1

ak
.

Then the series
∑

ak converges if L < 1, and diverges if � > 1. This test
offers no conclusion concerning the convergence of the series if � ≤ 1 ≤ L.
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Proof. First we present a direct proof. The second proof is a simple conse-
quence of the root test and Lemma 2.59.

Let L < 1. Choose any r such that 0 ≤ L < r < 1, e.g., r = (1 + L)/2.
Then by the definition of limit superior, there exists an N > 0 such that

ak+1

ak
< r for all k ≥ N (≥ N0).

Thus,

aN+1 < aNr, aN+2 < aN+1r < aNr2, . . . , aN+k < aNrk for k ≥ 1.

Then by the comparison test, the series
∑

ak converges. Indeed, since 0 <
r < 1,

∞∑

k=0

aN+k < aN

∞∑

k=0

rk =
aN
1− r

,

which means that the series
∑∞

k=0 ak is dominated by a convergent series

N−1∑

k=0

ak + aN (1 + r + r2 + · · · ) =
N−1∑

k=0

ak +
aN
1− r

,

and so converges.
If � > 1, then we choose R, e.g., R = (� + 1)/2, such that � > R > 1.

Then there exists an N (≥ N0) > 0 such that aN+k > aNRk for all k ≥ 1.
But R > 1, and so for k ≥ 1,

aN+k > aNRk > aN ,

and hence the general term cannot tend to zero. Thus by the divergence test,
the series

∑
ak is divergent.

To prove that the ratio test is inconclusive if � ≤ 1 ≤ L, we consider the
harmonic p-series

∑∞
k=1 1/k

p (with p = 1, 2), for which � = L = 1.

Alternatively, one can quickly obtain a proof of the ratio test as a conse-
quence of the root test (as demonstrated later in Section 8.1.2). However, since
an absolutely convergent series is convergent, the ratio test is often stated in
the following equivalent form.

Theorem 8.2 (Ratio test). Given a series
∑

ak of nonzero terms, let

L = lim sup
k→∞

∣∣∣
ak+1

ak

∣∣∣ and � = lim inf
k→∞

∣∣∣
ak+1

ak

∣∣∣.

Then the series
∑

ak converges absolutely if L < 1 and diverges if � > 1. If
� ≤ 1 ≤ L, then the series may or may not converge.
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We recall that if limk→∞ |ak+1/ak| exists, then it is equal to both � and L,
and hence the ratio test gives information unless, of course, limk→∞ |ak+1/ak|
equals 1. Thus, in this case the ratio test takes the following simple form,
which is the familiar ratio test in calculus, especially when ak > 0 for all k.

Corollary 8.3 (Simple form of the ratio test). Given the series
∑

ak
of nonzero terms, let

L = lim
k→∞

∣∣∣
ak+1

ak

∣∣∣.

Then the series
∑

ak converges (absolutely) if L < 1 and diverges if L > 1.
If L = 1, then the series may or may not converge.

Proof. Again, we present a direct proof because of its independent interest. If
L < 1, choose r such that 0 ≤ L < r < 1. Then for ε = r−L > 0, there exists
an N such that

∣∣∣∣
ak+1

ak

∣∣∣∣− L ≤
∣∣∣∣

∣∣∣∣
ak+1

ak

∣∣∣∣− L

∣∣∣∣ < ε for all k ≥ N.

In particular, |ak+1| < (L+ ε)|ak| = |ak|r. Consequently,
|aN+k| < |aN |rk for all k ≥ 1,

and thus by the comparison test, the series
∑

ak converges absolutely.
The proof of the second part is similar. Indeed, we choose R such that

L > R > 1. Then for ε = L−R > 0, there exists an N such that

L−
∣∣∣∣
ak+1

ak

∣∣∣∣ ≤
∣∣∣∣

∣∣∣∣
ak+1

ak

∣∣∣∣− L

∣∣∣∣ < L−R for all k ≥ N,

which implies that |aN+k| > |aN |Rk for all k ≥ 1, and so certainly {an}
does not converge to zero. The test gives no information, since L = 1 for the
divergent series

∑
(1/k) and the convergent series

∑
(1/k2).

Here are some examples to illustrate the ratio test, namely Corollary 8.3.
Moreover, the ratio test is most useful with series involving factorials or ex-
ponentials.

Example 8.4. Test the series
∑∞

k=1 ak for convergence, where ak equals:

(a)
5k

k!
. (b)

kk

k!
. (c)

1

2k − 3
. (d)

k!

kk
. (e)

2kk!

kk
. (f)

3kk!

kk
.

Solution. (a) Let ak = 5k/k!. Then we note that

L = lim
k→∞

ak+1

ak
= lim

k→∞
5k+1k!

(k + 1)!5k
= lim

k→∞
5

k + 1
= 0.

Thus L < 1, and the ratio test tells us that the given series converges.
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(b) Let ak = kk/k!. Then the series
∑

ak diverges, because

L = lim
k→∞

ak+1

ak
= lim

k→∞
k!(k + 1)k+1

kk(k + 1)!
= lim

k→∞

(
1 +

1

k

)k

= e > 1.

Also note that ak �→ 0 as k → ∞.
(c) Let ak = 1/(2k − 3). Then ak > 0 for all k ≥ 2, and we find that

L = lim
k→∞

ak+1

ak
= lim

k→∞
2k − 3

2k − 1
= 1.

The ratio test is inconclusive.We can use the comparison test to determine
convergence. Indeed, for k ≥ 2,

ak =
1

2k − 3
>

1

2k
= ck and

∞∑

k=2

ck diverges.

Consequently, we conclude that the given series is divergent.
(d) From (b) we see that the corresponding limit value L in this case is

L = 1/e < 1, and so the series converges.
(e) Since

L = lim
k→∞

ak+1

ak
=

2

limk→∞
(
1 + 1

k

)k
=

2

e
< 1,

the series
∑∞

k=1 ak converges.
(f) In this case, we see that L = (3/e) > 1, and so

∑
ak diverges. •

8.1.2 The Root Test

On the one hand, it is easier to test the convergence of series such as∑∞
k=1(k!)

2/(2k!) by the ratio test. On the other hand, direct computation
using the root test might lead to an unpleasant situation, although the struc-
ture of the test is quite similar to that of the ratio test. However, whenever
the root test is applicable, it provides almost complete information, as demon-
strated in a number of examples, The root test is particularly useful with a
series involving a kth power in the kth term.

Theorem 8.5 (kth root test). Suppose that {ak} is a sequence of nonneg-
ative real numbers, and let

L = lim sup
k→∞

k
√
ak.

Then the series
∑

ak converges if L < 1, and diverges if L > 1. If L = 1,
the root test is inconclusive. That is, if L = 1, the series may or may not
converge.
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Proof. Suppose that L < 1 and ak ≥ 0 for all k. To show that the series
converges, it suffices to show that the sequence of partial sums is bounded
above. Note that L ≥ 0. Choose r such that 0 ≤ L < r < 1. Then by the
definition of limit superior, for ε = r − L > 0, there exists an N such that

0 ≤ k
√
ak < L+ ε = r, i.e., 0 ≤ ak < rk for all k ≥ N.

Since
∑∞

k=N rk = rN/(1− r), the direct comparison test shows that the series∑∞
k=N ak converges. Consequently, the series

∑
ak also converges.

Suppose that L > 1. Then a
1/k
k > 1 for infinitely many values of k. But

this implies that ak > 1 for infinitely many k and thus {ak} does not converge
to zero as k → ∞. Therefore, the series diverges.

For the divergent series
∑∞

k=1(1/k) and the convergent series
∑∞

k=1(1/k
2),

L turns out to equal 1, because

(
1

k

)1/k

=
1

k1/k
→ 1 and

(
1

k2

)1/k

=
1

k2/k
→ 1 as k → ∞.

Thus, the test is inconclusive if L = 1.

Example 8.6. Consider the series

1

3
+

1

4
+

1

32
+

1

42
+

1

33
+

1

43
+ · · · .

We may write the general term explicitly:

ak =

⎧
⎪⎨

⎪⎩

1

3(k+1)/2
if k is odd,

1
4k/2 if k is even.

Then

ak+1

ak
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
3

4

)(k+1)/2

if k is odd,

1

3

(
4

3

)k/2

if k is even,

so that
lim sup
k→∞

ak+1

ak
= ∞ and lim inf

k→∞
ak+1

ak
= 0.

The ratio test gives no information. On the other hand,

a
1/k
k =

⎧
⎪⎪⎨

⎪⎪⎩

1√
3

(
1

31/2k

)
if k is odd,

1

2
if k is even,

so that lim supk→∞ a
1/k
k = 1/

√
3 < 1. Hence the series

∑
ak converges. •



336 8 Power Series

Finally, if ak = k, then

lim
k→∞

a
1/k
k = 1 = lim

k→∞
ak+1

ak
,

and so both tests fail. However,
∑

k is divergent.
Since an absolutely convergent series is convergent, the root test is often

stated in the following equivalent form.

Theorem 8.7 (Root test). Suppose that {ak} is a sequence of real numbers,
and let L = lim supk→∞

k
√|ak|. Then the series

∑
ak converges (absolutely)

if L < 1, and diverges if L > 1. If L = 1 the series may or may not converge.

If limk→∞ k
√|ak| exists, then the root test gives information unless, of

course, limk→∞ k
√|ak| = 1. Because of its independent interest, we include

here a direct proof of it which is also referred to as a root test.

Corollary 8.8 (Simple form of the root test). Suppose that {ak} is a
sequence of real numbers, and let

L = lim
k→∞

k
√
|ak|.

Then the series
∑

ak converges (absolutely) if L < 1, and diverges if L > 1.
If L = 1, the series may or may not converge.

Proof. Suppose that L < 1. Then we note that L ≥ 0. Choose any r such that
0 ≤ L < r < 1. Then for ε = r − L > 0, there exists an N such that

k
√
|ak| − L ≤

∣∣∣ k
√
|ak| − L

∣∣∣ < ε for all k ≥ N.

This gives

k
√
|ak| < L+ ε = r or 0 ≤ |ak| < rk for all k ≥ N,

which means that the series
∑ |ak| is dominated by the convergent geomet-

ric series
∑

rk. Consequently, the series
∑

ak converges absolutely by the
comparison test.

Suppose that L > 1. Choose R such that L > R > 1. Then for ε = L −
R > 0, there exists an N such that

L− k
√
|ak| ≤

∣∣∣ k
√
|ak| − L

∣∣∣ < ε for all k ≥ N,

which gives k
√|ak| > R, or |ak| > Rk for all k ≥ N where R > 1. Thus, the

general term cannot tend to zero as k → ∞. Therefore, the series diverges.
As remarked in the proof of Theorem 8.5, for the series

∑∞
k=1(1/k) and∑∞

k=1(1/k
2), L turns out to be equal to 1, and therefore the test is inconclusive

if L = 1.
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Remark 8.9. In the ratio and the root tests, the case L > 1 includes the case
L = ∞. •

Finally we outline the proof of the ratio test as a consequence of the root
test.

Proof of Theorem 8.1. Let α = lim supn→∞ a
1/n
n , where L and � are defined

in Theorem 8.1. From Lemma 2.59, we obtain that � ≤ α ≤ L. If L < 1, then
the right-hand inequality give α < 1, and so the series

∑
ak converges by the

root test. Similarly, if � > 1, then α > 1, and so the series
∑

ak diverges. The
condition α = 1 is equivalent to � ≤ 1 ≤ L, and so the test is inconclusive.

Example 8.10. Test the series
∑∞

k=2 ak for convergence, where ak equals

(a)
1

(log k)ck
(c > 0), (b) (1 + 1/k)2k

2

, (c)
k!

1 · 4 · 7 · · · (3k + 1)
.

Solution. Because ak involves a power for cases (a) and (b), it is appropriate
to use the root test for those series.

(a) Let ak = 1/(log k)ck, c > 0. Then ak > 0 for all k ≥ 2, and so

L = lim
k→∞

k
√
ak = lim

k→∞
1

(log k)c
= 0.

Because L < 1, the root test tells us that the given series converges.
(b) We note that

L = lim
k→∞

[(
1 +

1

k

)2k2]1/k

= lim
k→∞

(
1 +

1

k

)2k

= e2 > 1.

Since L > 1, the series diverges.
(c) Because the corresponding ak involves k!, we may try the ratio test. Now

ak+1

ak
=

[1 · 4 · 7 · · · (3k + 1)] · (k + 1)!

k! · [1 · 4 · 7 · · · (3k + 4)]
=

k + 1

3k + 4
→ 1

3
as k → ∞.

Thus L = 1/3, and by the ratio test, the series converges. •
8.1.3 Questions and Exercises

Questions 8.11.

1. Which of the ratio and root tests is more appropriate on which occasions?
2. Which of the ratio and root tests implies the other? When do they produce

the same conclusion? When do they not?

3. Does
∑∞

k=1

(
3k/(4− (−1)k)k

)
converge?
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Exercises 8.12.

1. For what values of a ∈ R can we use the ratio test to prove that∑∞
k=1(a

kk!/kk) is a convergent series?

2. Test the convergence of
∑∞

k=1 ak, where

(a) a2k =
1

2k
, a2k−1 =

1

2k+1
. (b) a2k = 3k, a2k−1 = 3−k.

3. Discuss the convergence of the series
∑

ak by either the ratio test or the
root test, whichever is applicable.

(a) ak = 3(−1)k−k. (b) a2k = 2−k, a2k−1 = 3−k.

4. Sum the series
∑∞

k=1 k3
−k and

∑∞
k=1(k

2 + k)5−k. Justify your method.

5. Which of the following series converge?

(a)
∞∑

k=1

k5

5k
. (b)

∞∑

k=1

(
1 +

1√
k

)−k3/2

. (c)
∞∑

k=1

(
3k + 1

k + 7

)k

.

6. Sum the series
∑∞

k=1 ak, where ak equals

(a)
k

3k−1
. (b)

k2

3k−1
. (c)

k3

3k−1
. (d)

k2

k! 3k−1
.

7. Suppose that {an} is a sequence of nonnegative real numbers, and

L1 = lim sup
n→∞

an+1

an
and L2 = lim sup

n→∞
n
√
an.

Prove the following:
(a) If either 0 ≤ L1 < 1 or 0 ≤ L2 < 1, then an → 0 as n → ∞.
(b) If either L1 > 1 or L2 > 1, then an → ∞ as n → ∞.

8.2 Basic Issues around the Ratio and Root Tests

In analogy to numerical series whose terms are real numbers, we now consider
functional series, which are series of functions of the form

∞∑

k=0

fk(x),

where fk(x)’s (k ∈ N0) are functions defined on a subset of R. Since the
sequence {Sn(x)} of partial sums given by

Sn(x) =
n∑

k=0

fk(x)

is a function of x, we need to determine for what values of x the sequence
{Sn(x)} converges. The most interesting case is fk(x) = ak(x− a)k, where a
is a real constant. In this case, the functional series takes the form

∞∑

k=0

ak(x− a)k = a0 + a1(x− a) + a2(x− a)2 + · · · ,
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which we call a power series with center at x = a or a power series about
a, or a Taylor series about x = a. The numbers a0, a1, a2, . . . are called the
coefficients of the power series. If a = 0, then the series has the form

∞∑

k=0

akx
k = a0 + a1x+ a2x

2 + a3x
3 + · · ·

and is called a Maclaurin series . Clearly, a Maclaurin series is a Taylor series
with a = 0. Moreover, these power series have a meaning only for those values
of x for which the series converges. We also note that although each term of
the power series is defined for all real x, it is not expected that the series will
converge for all real x. The set of all values of x for which a given functional
series

∑
fk(x) (e.g., fk(x) = ak(x − a)k) converges is called the convergence

set or the region of convergence for
∑

fk(x).
As a motivation, we shall begin our discussion with a number of examples

by treating functional series as numerical series by fixing x and then applying
the ratio test or root test to determine whether the series converges for that
particular x. In addition, interesting conclusions will be drawn just by looking
at ak, the coefficients of the power series. We shall discuss this issue in detail
later.

Example 8.13. Find all real values of x for which the series
∑∞

k=0 k
5xk con-

verges.

Solution. Clearly, the series converges for x = 0. Keeping x fixed (that is, as
a constant) nonzero real number, we apply the ratio test:

L = lim
k→∞

∣∣∣∣
(k + 1)5xk+1

k5xk

∣∣∣∣ = lim
k→∞

(
k + 1

k

)5

|x| = |x|.

Thus, according to the ratio test, the series converges if |x| < 1 and diverges
if |x| > 1. The test fails if |x| = 1, i.e., if x = 1 or −1. When x = 1, the
series becomes

∑
k5, which diverges by the divergence test. When x = −1,

the series becomes
∑

(−1)kk5, which diverges, because the general term does
not tend to zero. Similarly, it is easy to see that the power series

∑∞
k=1 kx

k

converges for |x| < 1 and diverges for |x| ≥ 1. •
Example 8.14. Test the series

∑∞
k=1(3− cos kπ)xk for convergence.

Solution. Set ak(x) = (3 − cos kπ)xk. Then ak(x) �= 0 for all k ≥ 1 and for
each fixed x �= 0. In order to apply the root test, we need to compute

|ak(x)|1/k = (3 − cos kπ)1/k|x| =
{ |x|(21/k) if k is even,
|x|(22/k) if k is odd.

Since 21/k = exp((1/k) log 2) → e0 = 1 (also 22/k = (21/k)2 → 1) as k → ∞,
we have
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|ak(x)|1/k → |x| as k → ∞,

and the root test (see Theorem 8.7 and Corollary 8.8) tell us that the series∑
ak(x) converges absolutely for all x with |x| < 1, and diverges for |x| >

1. For |x| = 1, the series clearly diverges, since the general term does not
approach zero.

Notice that the ratio test as in Corollary 8.3 is not applicable, because

ak+1(x)

ak(x)
=

{
2|x| if k is even,

(1/2)|x| if k is odd,

showing that

lim sup
k→∞

∣∣∣∣
ak+1(x)

ak(x)

∣∣∣∣ = 2|x| and lim inf
k→∞

∣∣∣∣
ak+1(x)

ak(x)

∣∣∣∣ =
|x|
2
.

However, the ratio test as in Theorem 8.2 is applicable. According to this,∑
ak(x) converges absolutely for all x with |x| < 1/2 and diverges for all x

with |x| > 2. Note that this test does not give information when 1/2 ≤ |x| ≤ 2.
However, the root test gives full information for |x| < 1 and for |x| > 1. •
Example 8.15. Test the series

∑∞
k=0(3+sin(kπ/2))(x− 1)k for convergence.

Solution. Set ak = (3 + sin(kπ/2)). Then

ak = 3 + sin(kπ/2) =

{
3 + (−1)(k−1)/2 if k is odd,
3 if k is even,

so that {ak}k≥0 is

{3, 4, 3, 2, 3, 4, 3, 2, . . .}.
Therefore, if ak(x) = ak(x − 1)k, then ak(x) �= 0 for all k ≥ 0 and for each
fixed x �= 1, so that the quotient ak+1(x)/ak(x) assumes the values

{
4

3
(x− 1),

3

4
(x− 1),

2

3
(x− 1),

3

2
(x − 1)

}

infinitely often. Fixing x �= 1, we see that

lim sup
k→∞

∣∣∣∣
ak+1(x)

ak(x)

∣∣∣∣ =
3

2
|x− 1| and lim inf

k→∞

∣∣∣∣
ak+1(x)

ak(x)

∣∣∣∣ =
2

3
|x− 1|,

showing that (by Theorem 8.2) the series
∑

ak(x) converges absolutely for all
x with |x − 1| < 2/3 and diverges for all x with |x − 1| > 3/2. However, this
test does not give information when 2/3 ≤ |x− 1| ≤ 3/2.

On the other hand, |ak(x)|1/k assumes the values
{
31/k|x− 1|, 41/k|x− 1|, 21/k|x− 1|

}
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infinitely often. Thus, we have

lim
k→∞

|ak(x)|1/k = |x− 1|,

and the root test (see Theorem 8.7 and Corollary 8.8) imply that the series∑
ak(x) converges absolutely for all x with |x − 1| < 1, and diverges for

|x − 1| > 1. The root test does not tell us what happens when |x − 1| = 1,
but we by a direct verification that the series diverges (at x = 0, 2), since the
general term does not approach zero. •
8.2.1 Convergence of Power Series

Power series of the form
∑

ak(x − a)k occur as representations for certain
functions, such as

1

1− x
=

∞∑

k=0

xk (|x| < 1),

and in solutions of a large class of differential equations. Now we wish to
continue our discussion on the convergence of power series. More precisely, we
ask, for what values of x does a given power series converge? Theorem 8.17
answers this question for the case a = 0, and a corresponding theorem for a
power series about a is a consequence of this result (see Theorem 8.22). We
begin with a lemma.

Lemma 8.16. For a power series

∞∑

k=0

akx
k, (8.1)

we have the following:

(1) If the series converges at x = x0 (x0 �= 0), then it converges absolutely for
|x| < |x0|.

(2) If the series diverges at x1, then it diverges for |x| > |x1|.
Proof. Suppose that the series (8.1) converges at x = x0 (x0 �= 0). Then∑

akx
k
0 converges, and so akx

k
0 → 0 as k → ∞. In particular, since a conver-

gent sequence is bounded, |akxk
0 | ≤ M for all k ≥ 0. We claim that the series

(8.1) converges absolutely for |x| < |x0|. For each x with |x| < |x0|, we can
write

|akxk| = |akxk
0 |

∣∣∣∣
x

x0

∣∣∣∣
k

≤ Mrk for all k ≥ 0 (r = |x/x0| < 1),

showing that the series
∑ |akxk| is dominated by the convergent geometric

series M
∑

rk. So the given series (8.1) is absolutely convergent for |x| < |x0|,
and hence must converge for |x| < |x0| (see Figure 8.1).
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−x0 x0 x0 ⏐x0⏐0

converges at x0

converges on ⏐x⏐ < ⏐x0⏐ converges on ⏐x⏐ < ⏐x0⏐

converges at x0

0

Fig. 8.1. Sketch for the convergence of
∑

akx
k at x0.

0

diverges on ⏐x⏐> ⏐x1⏐ diverges on ⏐x⏐> ⏐x1⏐

diverges at x1 diverges at x1

−x1 x1 0 x1x1

Fig. 8.2. Sketch for the divergence of
∑

akx
k at x1.

Next suppose that the series
∑

akx
k
1 diverges. If x is such that |x| > |x1|

and
∑

akx
k converges, then by (1),

∑
akx

k
1 converges absolutely, contrary to

the assumption. Hence
∑

akx
k diverges for |x| > |x1| (see Figure 8.2).

Theorem 8.17 (Convergence of Maclaurin series). For a power series
defined by (8.1), exactly one of the following is true:

(1) The series converges only for x = 0.
(2) The series converges for all x.
(3) Neither (1) nor (2) holds, and there exists an R > 0 such that the series

converges absolutely for |x| < R and diverges for |x| > R.

Proof. The case (1) is self-explanatory, for the series (8.1) always converges
when x = 0. If it diverges for all other values of x, then we set R = 0 by
convention.

We can now suppose that the series
∑

akx
k converges at x = x0 (x0 �= 0).

By Lemma 8.16, the series
∑

akx
k must converge absolutely for all x with

|x| < |x0|.
Thus, if the series

∑
akx

k diverges for all x with |x| > |x0|, then |x0| is
the value of R mentioned in the statement of the theorem. Otherwise, there
exists a number x′

0 with |x′
0| > |x0| such that the series

∑
akx

k converges
(absolutely) for all x with |x| < |x′

0|. Now let

I =
{
r > 0 :

∑
|akxk| converges for |x| < r

}
.

If I has no upper bound, then the series
∑

akx
k converges for all x. That is,

it converges for |x| < R, R = ∞.
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If I is bounded, then we let R = sup I. We cannot say what happens at
the endpoints x = R,−R.

Examples 8.18. (a) By the alternating series test, the series
∑∞

k=1(x
k/k)

converges for x = −1, and so it must converge for all |x| < 1. Also, the
series for x = 1 is actually the harmonic series, which is divergent. Hence
the series must diverge for |x| > 1.

(b) The series
∑∞

k=1(x
k/k2) converges absolutely for |x| ≤ 1, because |x|k/k2 ≤

1/k2 and
∑

(1/k2) converges.

(c) The series
∑∞

k=1((−1)k−1/k)xk converges at x = 1 and diverges at x =
−1. Therefore, it must converge for |x| < 1 and diverge for |x| > 1. •
Note: When Case (3) in Theorem 8.17 occurs, then the series (8.1) could

converge absolutely, converge conditionally, or diverge for |x| = R, that is, at
the endpoints x = R and −R.

In the case of a finite radius of convergence (defined below), Examples
8.18 illustrate why Theorem 8.17 makes no assertion about the behavior of a
power series at the endpoints of the interval of convergence.

8.2.2 Radius of Convergence of Power Series

According to Theorem 8.17, the set of points at which the series
∑∞

k=0 akx
k

converges is an interval about the origin. We call this interval the interval
of convergence of the series; this interval is either {0}, the set of all real
numbers, or an interval of positive finite length centered at x = 0 that may
contain both, neither, or one of its endpoints; that is, the interval may be
open, half-open, or closed. If this interval has length 2R, then R is called the
radius of convergence of

∑∞
k=0 akx

k, as shown in Figure 8.3. We follow the
convention that if the series about the origin converges only for x = 0, then
we say that the series has radius of convergence R = 0, and if it converges for
all x, we say that R = ∞, so that R is treated as an interval of infinite radius.
Theorem 8.17 (with the above understanding in the extreme cases R = 0,∞)
may now be rephrased as follows:

Theorem 8.19. For each power series about the origin, there is an R in
[0,∞) ∪ {∞}, the radius of convergence of the series, such that the series
converges for |x| < R and diverges for |x| > R.

Note: If the radius of convergence R is a finite positive number, then as
demonstrated in a number of examples (see also examples below), the behavior
at the endpoints is unpredictable, and so the interval of convergence for the
series

∑∞
k=0 akx

k is one of the four intervals

(−R,R), [−R,R), (−R,R], [−R,R].

The following examples show that each of the three possibilities stated in
Theorem 8.17 occurs.
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Example 8.20. Find the interval of convergence of the power series
∑∞

k=1

akx
k, where ak equals

(a)
1

k!
; (b) k!; (c)

1√
k
; (d)

5k

k
; (e)

5k

k!
; (f)

(
k + 1

k

)2k2

.

Solution. For convenience, we let ak(x) = akx
k. If x = 0, then the series

trivially converges.

(a) For x �= 0, let ak(x) = xk/k!. Then ak(x) �= 0 for x �= 0, and we use the
ratio test to obtain

L = lim
k→∞

∣∣∣∣
ak+1(x)

ak(x)

∣∣∣∣ = lim
k→∞

∣∣∣∣
xk+1k!

(k + 1)!xk

∣∣∣∣ = |x| lim
k→∞

1

k + 1
= 0.

Because L = 0 and thus L < 1, the series converges (absolutely) for all
x. Thus R = ∞, and the interval of convergence is the entire real line.

(b) Let ak(x) = k!xk. Then for x �= 0, we use the ratio test to obtain

L = lim
k→∞

∣∣∣∣
ak+1(x)

ak(x)

∣∣∣∣ = lim
k→∞

∣∣∣∣
(k + 1)!xk+1

k!xk

∣∣∣∣ = |x| lim
k→∞

(k + 1).

For any x other than 0, we have L = ∞. Hence, the power series converges
only when x = 0. Thus the power series

∑
k!xk has radius of convergence

0.
(c) For each fixed x �= 0, let ak(x) = xk/

√
k. Then using the ratio test, we

find that

L = lim
k→∞

∣∣∣∣
ak+1(x)

ak(x)

∣∣∣∣ = |x| lim
k→∞

√
k√

k + 1
= |x| .

The power series converges absolutely if |x| < 1, and diverges if |x| > 1.
We must also check the convergence of the series at the endpoints of the
interval |x| < 1, namely at x = −1 and 1:
• At x = −1:

∞∑

k=1

(−1)k√
k

converges by the alternating series test

• At x = 1:

∞∑

k=1

1√
k

diverges (p-series with p = 1
2 < 1).

Thus, the power series
∑

(xk/
√
k) converges for −1 ≤ x < 1 and di-

verges otherwise. The interval of convergence is [−1, 1), and the radius
of convergence is R = 1.
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(d) For x �= 0, let ak(x) = 5kxk/k. Then we apply the ratio test to obtain

L = lim
k→∞

∣∣∣∣
ak+1(x)

ak(x)

∣∣∣∣ = lim
k→∞

5k

k + 1
|x| = 5 |x| .

Thus, the series converges absolutely for 5 |x| < 1; that is, for |x| < 1
5 .

The radius of convergence is R = 1
5 . At the endpoints, we have:

• At x = 1
5 ,

∞∑

k=1

5k

k

(
1

5

)k

=

∞∑

k=1

1

k
, which is divergent.

• At x = − 1
5 ,

∞∑

k=1

5k

k

(
−1

5

)k

=

∞∑

k=1

(−1)k

k
, which is convergent.

The interval of convergence is − 1
5 ≤ x < 1

5 .
(e) Set ak(x) = 5kxk/k!, for x �= 0. Applying the ratio test, we find that

L = 0. Thus, the power series converges absolutely for all x, and so the
radius of convergence is infinite, and interval of convergence is the entire
real line.

(f) Using the root test, we find that

L = lim
k→∞

|ak(x)|1/k = lim
k→∞

(
1 +

1

k

)2k

|x| = e2 |x| .

Thus, the power series converges absolutely for e2 |x| < 1, that is, for
|x| < e−2. It follows that the radius of convergence is R = e−2. How
about at the endpoints? •

Example 8.21. The series
∑∞

k=0 x
k converges absolutely to 1/(1 − x) for

|x| < 1. It follows from Theorem 5.62 that the Cauchy product

( ∞∑

k=0

xk

)2

=

∞∑

n=0

(
n∑

k=0

xkxn−k

)
=

∞∑

n=0

(n+ 1)xn

also converges absolutely and has sum 1/(1− x)2 for |x| < 1. •
In some applications, we will encounter series about x = a. The procedure

for determining the interval of convergence of such power series is exactly
the same, and for the sake of completeness, it is illustrated in the following
theorem and subsequent examples.

Theorem 8.22 (Convergence of a general Taylor series). For a power
series

∞∑

k=0

ak(x− a)k, (8.2)
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aa a−R a+R

aa−R a+R aa−R a+R aa−R a+R

R

Fig. 8.3. Interval of convergence for a Taylor series.

a−R a+Ra

no conclusion

converges on ⏐x−a⏐ <R

diverges on ⏐x−a⏐ >R

Fig. 8.4. Finite radius R of convergence of
∑

k≥1 ak(x− a)k.

exactly one of the following is true:

(1) The series converges only for x = a, i.e., R = 0.
(2) The series converges for all x, i.e., R = ∞.
(3) The series converges absolutely for |x− a| < R, i.e., for all x in the open

interval (a − R, a + R), and diverges for |x− a| > R, i.e., for all x in
(−∞, a−R)∪ (a+R,∞). It may converge absolutely, converge condition-
ally, or diverge at each of the endpoints of the interval, x = a + R and
x = a−R. Here R is called the radius of convergence of (8.2).

Proof. Use the transformation X = x − a and apply the proof of Theorem
8.17 to the power series in the new variable X .

Figure 8.3 illustrates the various types of interval of convergence of the
series (8.2). Figure 8.4 demonstrates the fact that no conclusion can be drawn
about the convergence of the series the endpoints of the interval of conver-
gence. A power series that converges for all x is called an everywhere con-
vergent power series. A power series that converges only at x = a is often
referred to as a nowhere convergent power series.

Example 8.23. Consider the power series

∞∑

k=0

(x + 1)k

3k
.

With the introduction of a new variable X = (x + 1)/3, the given series
becomes the geometric series

∑
Xk, which converges for |X | < 1 and diverges
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for |X | ≥ 1. Consequently, the given series converges absolutely for |x+ 1| < 3
and diverges for |x+ 1| ≥ 3. Therefore, the interval of convergence of the given
series is (−4, 2). •
8.2.3 Methods for Finding the Radius of Convergence

Applying the root test (Theorem 8.7), we have the following theorem.

Theorem 8.23 (Cauchy–Hadamard). The power series
∑∞

k=0 akx
k has

radius of convergence R, where

1

R
= lim sup

n→∞
|an|1/n.

Here we observe the conventions 1/0 = ∞ and 1/∞ = 0.

Proof. For a fixed x �= 0, we have

Lx = lim sup
n→∞

|anxn|1/n = |x| lim sup
n→∞

|an|1/n =
1

R
|x|.

Since Lx < 1 if and only if |x| < R, according to Theorem 8.7, the series∑∞
k=0 akx

k converges absolutely when |x| < R, and diverges when |x| > R.
In view of Theorem 8.19, the radius of convergence is R.

When R = ∞, the series converges everywhere; and when R = 0, the series
converges only at x = 0.

The following result generally suffices to explain the convergence of a
Maclaurin or Taylor series.

Corollary 8.24. The radius of convergence R of the power series
∑∞

k=0 akx
k

is determined by

(a)
1

R
= lim

n→∞ |an|1/n, (b)
1

R
= lim

n→∞

∣∣∣
an+1

an

∣∣∣,

provided these limits exist. Again, we follow the conventions 1/0 = ∞ and
1/∞ = 0.

From Corollary 2.60 we recall that if limn→∞
∣∣an+1/an

∣∣ exists (with the

same limit), then limn→∞ |an|1/n exists, but the converse is not true. This
observation gives the following corollary.

Corollary 8.25. Suppose that limn→∞ |an+1/an| exists. Then radius of con-
vergence R of the power series

∑∞
k=0 akx

k is determined by

1

R
= lim

n→∞ |an|1/n = lim
n→∞

∣∣∣
an+1

an

∣∣∣.
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Example 8.28. Consider the power series

∞∑

k=0

7−kx5k.

Note that in this power series the quotient an+1/an is undefined if n �= 5k,
k ∈ N0. Hence Corollary 8.24(b) is not applicable. However, we can either
apply directly the ratio test for numerical series (by fixing x and ignoring the
vanishing terms) or else introduce a change of variable. Thus, by the introduc-
tion of a new variable X = x5/7, the given series becomes a geometric series∑

Xk, which converges for |X | < 1 and diverges for |X | ≥ 1. Consequently,
the given series converges absolutely for |x| < 5

√
7 and diverges for |x| ≥ 5

√
7.

Therefore, the radius of convergence of the given series is R = 5
√
7. •

Example 8.29. Discuss the convergence of
∑∞

n=1(x
5n/n2n).

Solution. For x �= 0, let an = x5n/2nn. Then

∣∣∣∣
an+1

an

∣∣∣∣ =
∣∣∣∣

x5(n+1)

2n+1(n+ 1)
· 2

nn

x5n

∣∣∣∣ =
|x|5
2

(
n

n+ 1

)
→ |x|5

2
as n → ∞,

so that by the ratio test, the series converges for |x|5 < 2 (including the trivial
case x = 0) and diverges for |x|5 > 2. Let x = 21/5. Then an = 1/n, and the
series is

∑∞
n=1(1/n), which is divergent. If x = −21/5, then an = (−1)n/n,

which gives the convergent series
∑∞

n=1((−1)n/n). We conclude that the given
series converges for −21/5 ≤ x < 21/5 and diverges for all other values of x.
For each −21/5 ≤ x < 21/5, we readily obtain that (see, for instance, Examples
8.46)

∞∑

n=1

1

n

(
x5

2

)n

= − log(1− x5/2). •
We wish to know whether a convergent power series f(x) =

∑∞
k=0 akx

k

is differentiable. If term-by-term differentiation is allowed, then we get a new
series g(x) =

∑∞
k=1 kakx

k−1, which we call a derived series. It is natural to
ask whether these two series have the same radius of convergence. Also, we
ask whether f is differentiable, and if so, whether g(x) = f ′(x). We answer
these questions below. Later, as an alternative proof, we also obtain our result
as a special case of a more general result (see Corollary 9.44).

Lemma 8.30. Suppose that {an}n≥1 is a bounded sequence of real numbers.
Then we have

(a) {n1/nan} is bounded;
(b) lim supn→∞ an = lim supn→∞ n1/nan.

Proof. (a) In Example 2.18, we have shown that n1/n → 1, and so (a) follows
easily.
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(b) Let a = lim sup an, b = lim supn1/nan, and let {ank
} be a subsequence

of {an} converging to a. Using the properties of the limit superior, we
easily have

n
1/nk

k ank
→ a and a ≤ b.

Now we suppose that (see Theorem 2.49) {m1/mk

k amk
} converges to b.

This implies that {amk
} converges to b, because m

1/mk

k → 1 as k → ∞.
Consequently,

b ≤ lim sup an, i.e., b ≤ a.

We obtain a = b, as desired.

Lemma 8.31. The two power series
∑∞

k=0 akx
k and

∑∞
k=1 kakx

k have the
same radius of convergence.

Proof. By Lemma 8.30, we have

lim sup
n→∞

|nan|1/n = lim
n→∞n1/n lim sup

n→∞
|an|1/n = lim sup

n→∞
|an|1/n.

The result now follows from Theorem 8.23.

It might be of interest to have a direct proof of Lemma 8.31 without using
the definition of limit superior, which is needed in order to utilize Theorem
8.23 as well as the fact that limn1/n = 1. Let R and R′ be the radii of con-
vergence of

∑∞
k=0 akx

k and
∑∞

k=1 kakx
k−1, respectively. Fix an arbitrary x

with 0 < |x| < R. Choose x0 such that |x| < |x0| < R. Now,
∑∞

k=0 akx
k
0

and
∑∞

k=1 akx
k−1
0 both converge absolutely. Thus, {akxk−1

0 } is bounded. This

means that there exists an M such that |akxk−1
0 | ≤ M for all k ≥ 1. Conse-

quently,

∣∣kakxk−1
∣∣ = k

∣∣akxk−1
0

∣∣
∣∣∣∣
x

x0

∣∣∣∣
k−1

≤ Mkrk−1 for k ≥ 1 (r = |x/x0|).

Since 0 < r < 1, the ratio test shows that
∑∞

k=1 kr
k−1 converges. But then by

the comparison test,
∑∞

k=1 kakx
k−1 converges absolutely for |x| < |x0|. Since

x0 is arbitrary, we conclude that the derived series converges absolutely for
all |x| < R. Thus, R ≤ R′.

To obtain the reverse inequality, we fix x with |x| < R′ and observe that

|akxk−1| ≤ |kakxk−1| for all k ≥ 1,

so that if
∑ |kakxk| converges at x �= 0 (|x| < R′), then

∑ |akxk−1|, and hence∑ |akxk| converges at x. This shows that R ≥ R′. Consequently, R = R′, and
proof is complete.

Caution: Lemma 8.31 does not say that
∑∞

k=0 akx
k and

∑∞
k=1 kakx

k−1 have
the same interval of convergence (see Questions 8.50(8)), although they have
the same radius of convergence.

We can repeat the differentiation process and obtain the following theorem.
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Theorem 8.32. A power series
∑

k≥0 akx
k and the n-fold derived series de-

fined by
∑

k≥n k(k− 1) · · · (k−n+1)akx
k−n have the same radius of conver-

gence.

Next we present the following result.

Theorem 8.33 (Term-by-term differentiation in power series). If∑
k≥0 akx

k has radius of convergence R > 0, then f(x) =
∑

k≥0 akx
k is

differentiable in |x| < R and

f ′(x) =
∑

k≥1

kakx
k−1 (|x| < R). (8.3)

Moreover, f (n)(x) exists for every n ≥ 1 and every x with |x| < R, and

f (n)(x) =

∞∑

k=n

k(k − 1) · · · (k − n+ 1))akx
k−n (|x| < R). (8.4)

The coefficients an are uniquely determined, and an = f (n)(0)/n.

Proof. Let f(x) =
∑

k≥0 akx
k have radius of convergence R. We have to prove

the existence of f ′(x) in |x| < R and that f ′ is of the stated form. By Theorem
8.32 with k = 1, the derived series

∑
k≥1 kakx

k−1 converges for |x| < R and
defines a function, say g(x), in |x| < R. We show that

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= g(x) for all x ∈ (−R,R).

Let x ∈ (−R,R) be fixed. Then choose a positive r (< R) such that |x| < r,
e.g., r = (R+ |x|)/2. Also, let h ∈ R with 0 < |h| < (R− |x|)/2. We have

|x+ h| ≤ |x|+ |h| < |x|+ R− |x|
2

=
|x|+R

2
= r,

and for all nonzero h such that 0 < |h| < (R − |x|)/2, we consider

f(x+ h)− f(x)

h
− g(x) =

∑

k≥2

ak

(
(x+ h)k − xk

h
− kxk−1

)
, (8.5)

where x and x + h are now such that max{|x|, |x + h|} ≤ r < R. As an
application of Taylor’s theorem (which we prove for convenience at a later
stage) on the interval with endpoints x and x+ h, we get

(x+ h)k = xk + kxk−1h+
k(k − 1)

2
ck−2
k h2,

where ck is some number between x and x + h. (This may also be verified
directly.) Note also that |ck| ≤ r, and so
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∣∣∣∣
(x+ h)k − xk

h
− kxk−1

∣∣∣∣ ≤ |h| k(k − 1)

2
rk−2.

So we must show that as h → 0,

∣∣∣∣
f(x+ h)− f(x)

h
− g(x)

∣∣∣∣ =

∣∣∣∣∣∣

∑

k≥2

ak

(
(x+ h)k − xk

h
− kxk−1

)∣∣∣∣∣∣
→ 0.

Since the derived series
∑

k≥2 k(k−1)akx
k−2 of

∑
k≥1 kakx

k−1 is also conver-
gent for |x| < R, we conclude that it is absolutely convergent for |x| ≤ r (< R).
Using this and the triangle inequality, we see that as h → 0,

∣∣∣∣∣∣

∑

k≥2

ak

(
(x+ h)k − xk

h
− kxk−1

)∣∣∣∣∣∣
≤ |h|

2

∑

k≥2

|ak|k(k − 1)rk−2 → 0.

Consequently, by (8.5), it follows that f ′(x) exists and equals g(x). Since x is
arbitrary, this holds at any interior point in |x| < R.

A repeated application of this argument shows that all the derivatives
f ′, f ′′, . . . , f (n), . . . exist in |x| < R, and (8.3) holds. The substitution x = 0
in (8.4) yields that f (n)(0) = n!an, as required.

The theorem just proved shows that inside the interval of convergence
(not necessarily at the endpoints x = R,−R), every power series can be
differentiated term by term, and the resulting derived series will converge to
the derivative of the limit function of the original series.

For example, the geometric series (1 − x)−1 =
∑

k≥0 x
k, which converges

for |x| < 1, after n-fold differentiation yields

1

(1− x)n+1
=

∑

k≥n

(
k

n

)
xk−n =

∑

m≥0

(m+ n)!

n!m!
xm for |x| < 1.

In particular,

1

(1 − x)2
=

∑

k≥1

kxk−1 and
2

(1− x)3
=

∞∑

k=2

k(k − 1)xk−2 for |x| < 1.

Consequently, expressions such as the one above may be used to evaluate sums
such as ∞∑

k=1

(−1)k
k

3k
,

∞∑

k=1

k

3k
,

∞∑

k=2

k(k − 1)(−1)k

3k
.

Finally, we remark that the following corollary shows that there is one and
only one Taylor series for a function f , meaning that whatever method one
uses, one obtains the same Taylor coefficients.
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Corollary 8.34 (Uniqueness of the coefficients). Let R > 0 be the radius
of convergence of f(x) =

∑∞
k=0 akx

k and let g(x) =
∑∞

k=0 bkx
k be such that

∞∑

k=0

akx
k =

∞∑

k=0

bkx
k for |x| < R.

Then ak = bk for each k ≥ 0.

Proof. The proof follows easily from Theorem 8.33.

The conclusion of Corollary 8.34 can be deduced from a weaker hypothesis
(see Theorem 8.37), but a proof requires some preparation.

8.2.4 Uniqueness Theorem for Power Series

Suppose that f(x) =
∑∞

k=0 akx
k converges for |x| < R and that there exists

a sequence {xn}n≥1 of distinct points converging to zero and at each of these
points

f(xn) =

∞∑

k=0

akx
k
n = 0 for each n ≥ 1.

Then by the continuity of f(x) at the origin, a0 = f(0) = 0. Thus f takes the
form f(x) = xg(x), where

g(x) =

∞∑

k=1

akx
k−1,

which is also a convergent series in |x| < R. Because f(xn) = 0 for all n ≥ 1,
it follows that g(xn) = 0. Continuity of g at the origin implies that a1 = 0.
Continuing this process, we obtain the following.

Lemma 8.35. Suppose that the power series f(x) =
∑∞

k=0 akx
k converges for

|x| < R. If there exists a sequence {xn}n≥1 of distinct points converging to
zero such that f(xn) = 0 for all n ≥ 1, then ak = 0 for all k ≥ 0 and

f(x) =

∞∑

k=0

akx
k = 0 in |x| < R.

In particular, this lemma implies that if there exists a neighborhood D0

of zero in |x| < R for which

f(x) =

∞∑

k=0

akx
k = 0 in D0,

then ak = 0 for all k ≥ 0. It is natural to look for a similar result if the
sequence {xn} converges to a point other than the center (origin). In order to
solve this problem, we need to prove the following result.
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Lemma 8.36. Suppose that the series f(x) =
∑∞

k=0 akx
k converges for |x| <

R and a is a point such that |a| < R. Then the Taylor series expansion of f
about x = a is given by

f(x) =

∞∑

k=0

f (k)(a)

k!
(x− a)k,

which converges at least for |x− a| < R− |a|.
Proof. We write

xk = (x − a+ a)k =

k∑

m=0

(
k

m

)
ak−m(x− a)m,

so that

∞∑

k=0

akx
k =

∞∑

k=0

ak

k∑

m=0

(
k

m

)
ak−m(x− a)m

=
∞∑

m=0

( ∞∑

k=m

(
k

m

)
aka

k−m

)
(x− a)m.

This implies that

f(x) =

∞∑

m=0

f (m)(a)

m!
(x− a)m, (8.6)

as desired. We need justifications for two steps. The interchange of the order
of summation is justified, since

∞∑

k=0

|ak|
k∑

m=0

(
k

m

)
|a|k−m|x− a|m =

∞∑

k=0

|ak|(|a|+ |x− a|)k,

and by hypothesis
∑∞

k=0 akx
k converges absolutely for |x| < R, so

∞∑

k=0

|ak|(|x − a|+ |a|)k

converges at least for |x− a| < R− |a|. Also, by Theorem 8.33,

f (m)(x)

m!
=

∞∑

k=m

(
k

m

)
akx

k−m in |x| < R.

In particular,

f (m)(a)

m!
=

∞∑

k=m

(
k

m

)
aka

k−m,

which proves (8.6).
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Theorem 8.37 (Uniqueness/identity theorem for power series). Sup-
pose that the series f(x) =

∑∞
k=0 akx

k converges for |x| < R. Suppose that S,
the set of all x for which f(x) = 0, has a limit point in |x| < R. Then ak = 0
for all k ≥ 0.

Proof. Let I = {x : |x| < R} and S = {x ∈ I : f(x) = 0}. We spilt I into
two sets:

A = {x ∈ I : x is a limit point of S} and B = {x ∈ I : x �∈ A} = I\A.
Then I = A ∪B and A ∩ B = ∅. Clearly, B is open. Next we show that A is
open. Since a ∈ A by hypothesis, A is nonempty. Since |a| < R, by Lemma
8.36, f(x) can be expanded in a power series about a:

f(x) =

∞∑

k=0

ck(x− a)k for |x− a| < R− |a|.

We claim that ck = 0 for all k ≥ 0. Since a is a limit point of S, there exists a
sequence of points xn in S, xn �= a, xn → a, with f(xn) = 0 for all n so that

c0 = f(a) = lim
n→∞ f(xn) = 0

(by the continuity of f). Thus, it suffices to prove that ck = 0 for all k > 0.
Suppose not. Then there would be a smallest positive integer m such that
cm �= 0. Thus, f(x) has the form

f(x) = (x− a)mg(x), g(x) =
∞∑

k=m

ck(x− a)k−m for |x− a| < R− |a|.

The continuity of g at a and g(a) = cm �= 0 imply the existence of a δ > 0
such that

g(x) �= 0 for 0 < |x− a| < δ (< R− |a|).
We conclude that f(x) �= 0 in 0 < |x− a| < δ. This contradicts the fact that
a is a limit point of S. Consequently, ck = 0 for all k ≥ 0, so that f(x) = 0 in
a neighborhood of a. Hence, A is open.

Since A ∪ B = I is connected and nonempty, it cannot be written as a
union of two nonempty disjoint open sets. Hence we must have either A = ∅
or B = ∅. But by the hypothesis, a ∈ A, and therefore B = ∅. Thus A = I,
which gives that ak = 0 for all k ≥ 0 and f(x) =

∑∞
k=0 akx

k = 0 for all
|x| < R, as desired.

Corollary 8.38 (Identity/uniqueness theorem). Suppose that f(x) =∑∞
k=0 akx

k and g(x) =
∑∞

k=0 bkx
k converge for |x| < R. Set

S = {x : |x| < R with f(x) = g(x)}.
If S has a limit point in |x| < R, then an = bn for all n ≥ 0; i.e., f(x) = g(x)
for all |x| < R.

Proof. Apply Theorem 8.37 to h(x) = f(x) − g(x) =
∑∞

k=0(ak − bk)x
k in

|x| < R.
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8.2.5 Real Analytic Functions

Functions that are expressible as a convergent power series are of particular
interest. For instance, consider f(x) = 1/(1− x) on R� {1}. For each a �= 1,
f(x) has a power series about a:

f(x) =
1

1− a

(
1

1− (x− a)/(1− a)

)
=

∞∑

k=0

(x − a)k

(1 − a)k+1
for |x− a| < |1− a|.

This suggests the following definition of a real analytic function:

Definition 8.39. Let I ⊂ R be open, and f : I → R and a ∈ I. We say that
f is real analytic at a if f can be represented as a Taylor series about a valid
in a neighborhood of a. We say that f is real analytic on I if it is real analytic
at each a ∈ I. That is, for every a ∈ I, there exist a number δa > 0 and a
sequence {ak} of real numbers such that

f(x) =

∞∑

k=0

ak(x− a)k for every x ∈ I with |x− a| < δa.

In view of Theorem 8.33, ak in the above Taylor representation of f must
be f (k)(a)/k!. Thus, for f to be real analytic at x = a, it is necessary that
f (k)(a) exist for each k. However, the converse is not necessarily true. In
Example 8.48, we present an example of an infinitely differentiable function f
on R such that f (k)(0) exists for k ≥ 0, but the resulting Taylor series about
x = 0 does not converge to f in any neighborhood of the origin. Thus, the
function f in Example 8.48 is not real analytic.

Examples 8.40. 1. Every polynomial in x with real coefficients is real ana-
lytic in R.

2. The exponential function ex and the trigonometric functions sinx and
cosx are all real analytic on R.

3. The function 1/(1 + x2) is real analytic on R, whereas 1/(1 − x) is real
analytic only on R � {1}.

4. If f(x) =
∑∞

k=0 akx
k has radius of convergence R > 0, then f is real

analytic on |x| < R (by Lemma 8.36 and Theorem 8.33).
5. The function |x| is not real analytic at x = 0 because f ′(0) does not exist.
6. The function |x|3 is not real analytic at x = 0 because, although f ′(0)

and f ′′(0) exist, f ′′′(0) and other higher-order derivatives at the origin do
not exist. •
By Theorem 8.33, we have the following:

Theorem 8.41. Real analytic functions are infinitely differentiable.
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8.2.6 The Exponential Function

In Example 2.33, we defined

ex = lim
n→∞ Tn(x), Tn(x) =

(
1 +

x

n

)n

=

n∑

k=0

(
n

k

)(x
n

)k

, x > 0.

In Example 8.20, we showed that the series
∑∞

k=0(x
k/k!) converges for all

x ∈ R. We now show that

ex =

∞∑

k=0

xk

k!
for all x, (8.7)

using the former definition of ex. This can be easily done using the method of
proof of Theorem 5.7.

Theorem 8.42. For x ∈ R,

ex =

∞∑

k=0

xk

k!
= lim

n→∞

(
1 +

x

n

)n

.

Proof. Let us first supply a proof for x > 0. Let Sn(x) =
∑n

k=0(x
k/k!) and

Tn(x) be as above. The proof relies on the following simple observation:

(
n

k

)
xk

nk
=

n!

(n− k)!nk

xk

k!
=

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− k − 1

n

)xk

k!
≤ xk

k!
,

which gives

0 <
(
1 +

x

n

)n

≤ Sn(x).

Thus, we have

lim
n→∞

(
1 +

x

n

)n

≤ lim
n→∞Sn(x), i.e., ex ≤ lim

n→∞Sn(x). (8.8)

Moreover, for n ≥ m,

Tn(x) ≥ 1 + n
(x
n

)
+

n(n− 1)

2!

(x
n

)2

+ · · ·+ n(n− 1) · · · (n− (m− 1))

m!

(x
n

)m

= 1 + x+
(
1− 1

n

)x2

2!
+ · · ·+

(
1− 1

n

)
· · ·

(
1− m− 1

n

)xm

m!
.

Allow n → ∞, keeping m fixed, and obtain

lim
n→∞Tn(x) ≥ Sm(x).

Because {Sm(x)} is an increasing sequence for each fixed x > 0, allowing
m → ∞ in this inequality, we finally get
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lim
n→∞Tn(x) ≥ lim

m→∞Sm(x). (8.9)

Equations (8.8) and (8.9) show that the theorem holds for x > 0. To present
a proof for the case x < 0, we first claim that

( ∞∑

k=0

xk

k!

)( ∞∑

k=0

(−x)k

k!

)
= 1.

By the Cauchy product rule for series, we can write the left-hand side of the
last expression as

∑∞
k=0 cn, where c0 = 1 and

cn =

n∑

k=0

xk

k!

(−x)n−k

(n− k)!
=

1

n!

n∑

k=0

n!

k!(n− k)!
xk(−x)n−k =

(x − x)n

n!
= 0

for each n ≥ 1. The claim follows. Thus, for x < 0 (so that −x > 0), we have

∞∑

k=0

xk

k!
=

1
∑∞

k=0
(−x)k

k!

=
1

limn→∞ Tn(−x)
=

1

e−x
= ex.

The proof of the theorem is complete.

Let us now write down some basic properties of the exponential function.

(a) Because the series (8.7) that represents the exponential function ex con-
verges absolutely for all x, Theorem 5.62 on the Cauchy product is ap-
plicable with ak = xk/k! and bk = yk/k!. This gives

cn =
n∑

k=0

akbn−k =
n∑

k=0

xk

k!

yn−k

(n− k)!
=

1

n!

∞∑

k=0

(
n

k

)
xkyn−k =

(x+ y)n

n!
,

and so we obtain the fundamental property of the exponential function—
called the addition formula:

ex+y = exey for all x, y.

(b) By Theorem 8.33, a power series can be differentiated term by term, and
so we have

d

dx
ex = ex for all x.

In particular, the addition formula gives

exe−x = ex−x = e0 = 1,

and so ex �= 0 for all x.
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Fig. 8.5. Graphs of the exponential and logarithmic functions.

(c) By (8.7), ex > 0 for x ≥ 0, and the last relation in (b) shows that ex > 0
for all real x. Also, (8.7) gives ex > 1 + x for x > 0, so that

ex → ∞ as x → ∞ and e−x =
1

ex
→ 0 as x → ∞.

Again, (8.7) gives

0 < x < y ⇒ ex < ey ( ⇐⇒ e−y < e−x),

or we may use the fact that (ex)′ = ex > 0 for all x ∈ R. Thus ex is
a strictly increasing continuous function on the whole real axis, and the
image of R under ex is (0,∞):

exp(R) = (0,∞).

Thus, ex is a bijection of R onto (0,∞).

These facts help us to obtain the graph of ex, x ∈ R (see Figure 8.5).

8.2.7 Taylor’s Theorem

We state and prove the single-variable version of Taylor’s theorem for real-
valued functions. We see that this is a generalization of the first mean value
theorem. The several-variable version of Taylor’s theorem will be proved in
the author’s book [7].

Theorem 8.43 (Taylor’s theorem). Suppose that f : (α, β) ⊆ R → R is
such that

(i) f, f ′, . . . , f (n) are all continuous on [a, b] ⊂ (α, β),
(ii) f (n+1) exists on (a, b).
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Then there exists a point c in (a, b) such that

f(b) =

n∑

k=0

f (k)(a)

k!
(b− a)k +

f (n+1)(c)

(n+ 1)!
(b− a)n+1.

Proof. We want to show that

[
f(a) +

n∑

k=1

f (k)(a)

k!
(b− a)k +

f (n+1)(c)

(n+ 1)!
(b− a)n+1

]
− f(b) = 0.

Fix the interval [a, b] and introduce a new function φ by

φ(x) =

[
f(x) +

n∑

k=1

f (k)(x)

k!
(b − x)k +

M

(n+ 1)!
(b− x)n+1

]
− f(b), (8.10)

where M has been chosen in such a way that φ(a) = 0. Now

• φ is continuous on [a, b], by (i);
• φ is differentiable on (a, b), by (i) and (ii);
• φ(a) = 0 = φ(b).

By Rolle’s theorem, it follows that there exists a number c ∈ (a, b) such that
φ′(c) = 0. Since

φ′(x) = f ′(x) +
n∑

k=1

(
f (k+1)(x)

k!
(b− x)k − f (k)(x)

(k − 1)!
(b− x)k−1

)
− M

n!
(b− x)n

=
f (n+1)(x)

n!
(b− x)n − M

n!
(b − x)n,

φ′(c) = 0 implies that M = f (n+1)(c). When this value is substituted into
(8.10), the condition φ(a) = 0 yields the desired formula.

In particular, a small change in notation gives the following:

Theorem 8.44. If f is (n + 1)-times differentiable on an open interval con-
taining [a, x], then there exists some c between a and x such that

f(x) = Sn(x) +Rn(x),

where

Sn(x) =
n∑

k=0

f (k)(a)
(x− a)k

k!
and Rn(x) = f (n+1)(c)

(x − a)n+1

(n+ 1)!
.

We recall the convention that f (0)(x) = f(x).
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Here the polynomial Sn(x) is called the nth-degree Taylor polynomial (or
approximation) for f at a, while the remainder term Rn(x) is usually called
the Lagrange form of the remainder, or sometimes the error term. There are
several other forms of the remainder term, which have some advantages in
some situations, but the Lagrange form is the simplest. The integral form of
the remainder term is stated in Exercise 8.51(20).

We remark that if n = 1, then Taylor’s expansion is just the one-
dimensional mean value theorem. Note that Sn(x) → f(x) if and only if
Rn(x) → 0. Moreover, Theorem 8.44 gives the following.

Corollary 8.45 (Taylor series). If f has derivatives of all orders on an
open interval containing points a and x, and if Rn(x) → 0 as n → ∞, then
we have

f(x) =

∞∑

k=0

f (k)(a)

k!
(x− a)k.

Unfortunately, it is not always the case that Rn(x) → 0 as n → ∞ even
though f has derivatives of all orders (see Example 8.48). We call f the
sum function of the corresponding power series, namely, the Taylor series. As
remarked earlier, the series for the case a = 0 is often called a Maclaurin series.
In a later section, we shall prove the converse of this corollary, namely that
every convergent power series represents an infinitely differentiable function.

Examples 8.46. Using familiar differential properties, we can illustrate
Taylor’s theorem with some standard examples. Here is a list of a few well-
known Maclaurin series expansions:

1. Consider f(x) = sinx for x ∈ R. Then f ′(x) = cosx = sin(π/2 + x),

f ′′(x) = cos(π/2+x) = sin(π+x), f ′′′(x) = cos(π+x) = sin(3π/2+x).

More generally, f (n)(x) = sin(nπ/2 + x), and so

f (n)(0) = sin(nπ/2) =

{
0 if n is even,
(−1)k−1 if n is odd with n = 2k − 1.

Taylor’s theorem applied for |x| ≤ r gives

|Rn(x)| =
∣∣∣∣
sin((n+ 1)π/2 + c)

(n+ 1)!
xn+1

∣∣∣∣ ≤
|x|n+1

(n+ 1)!
≤ rn+1

(n+ 1)!
=: an+1

for each n and for every r > 0 with |x| ≤ r. Note that

an+1

an
=

r

n+ 1
→ 0 as n → ∞,

and so an → 0 as n → ∞. Thus, Rn(x) → 0 as n → ∞, and for each x
with |x| < r. This gives
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x

y

y=sin x
y=sin x

y=S1(x) y=S3(x)

x

y

Fig. 8.6. The graphs of y = sin x, y = S1(x); y = sin x, y = S3(x) near x = 0.

x

y

y=S5(x) y=S7(x)
y=sin x

y=sin x

x

y

Fig. 8.7. The graphs of y = sin x, y = S5(x); y = sin x, y = S7(x) near x = 0.

sinx =

∞∑

k=0

(−1)k
x2k+1

(2k + 1)!
for all x ∈ R.

Differentiating with respect to x, or directly, we see that

cosx =

∞∑

k=0

(−1)k
x2k

(2k)!
for all x ∈ R.

Finally, we remark that the Taylor polynomials for f(x) = sinx at 0 are

S1(x) = S2(x) = x, S3(x) = S4(x) = x−x3

3!
, S5(x) = S6(x) = x−x3

3!
+
x5

5!

and

S7(x) = S8(x) = x− x3

3!
+

x5

5!
− x7

7!
.

The graphs in Figures 8.6 and 8.7 illustrate how the approximation of
f(x) = sinx by Sn(x) gets better as n increases.

2. Consider f(x) = ex for x ∈ R. This function has the nice property that
f (n)(x) = ex for all n ∈ N0, so that f (n)(0) = 1 for all n ∈ N0. Then for
each x, |x| ≤ r, there exists cn between 0 and x such that

ex =
n∑

k=0

xk

k!
+

ecn

(n+ 1)!
xn+1 for all |x| ≤ r.

Since f is increasing on R, e−|x| ≤ ec ≤ e|x| for all c between 0 and x.
Thus, as in the previous case, it follows that for |x| ≤ r,
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O x

y=T3(x)
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y= ex
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Fig. 8.8. The approximation of ex.

|Rn(x)| =
∣∣∣∣

ecn

(n+ 1)!
xn+1

∣∣∣∣ ≤
errn+1

(n+ 1)!
→ 0 as n → ∞,

and since x was arbitrary, we obtain

ex =

∞∑

k=0

xk

k!
for all x ∈ R.

If one wishes to use Taylor’s formula to approximate e0.1 by a quadratic
polynomial with an error estimate, we need to consider

∣∣∣∣e
x −

(
1 + x+

x2

2!

)∣∣∣∣ <
e|c|

3!
|x|3 (|c| < 0.1),

so that for x = 0.1, this inequality gives

|e0.1 − (1.1 + 0.005)| < e0.1

6

(
1

103

)
, i.e., |e0.1 − 1.105| < 0.000184,

which gives a fairly decent approximation of e0.1. For large values of x, a
good approximation for ex requires a Taylor polynomial of degree n, where
n is a large number. The graphs in Figure 8.8 illustrate how the approx-
imation of f(x) = ex (for x near the origin) by the Taylor polynomials
Tn(x) gets better as n increases.
The last series expansion for ex also gives

e−x =

∞∑

k=0

(−1)k

k!
xk for all x ∈ R,

so that

sinhx =
ex − e−x

2
= x+

x3

3!
+

x5

5!
+

x7

7!
+ · · · for all x ∈ R
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and

coshx =
ex + e−x

2
= 1 +

x2

2!
+

x4

4!
+

x6

6!
+ · · · for all x ∈ R.

3. Consider f(x) = − log(1− x) for 1− x > 0. Then f(0) = 0,

f ′(x) =
1

1− x
, f (k)(x) =

(k − 1)!

(1− x)k
for k ≥ 1.

In particular, f (k)(0) = (k − 1)!. Thus, f has derivatives of all orders
for x < 1. In particular, by Taylor’s theorem applied to (−R, 1), for any
R > 0,

f(x) =

n∑

k=0

f (k)(0)

k!
xk +Rn(x) =

n∑

k=1

xk

k
+Rn(x),

where

Rn(x) =
f (n+1)(c)

(n+ 1)!
xn+1 =

1

n+ 1

xn+1

(1− c)n+1
=

1

n+ 1

(
x

1− c

)n+1

and c is a number in (−R, 1) for any R > 0. We observe that Rn(x) → 0
only when |x| < 1. Consequently,

− log(1− x) = x+
x2

2
+

x3

3
+

x4

4
+ · · · for all |x| < 1.

Finally, by considering log(1 + x)− log(1− x), we see that

1

2
log

(
1 + x

1− x

)
=

∞∑

k=1

x2k−1

2k − 1
if |x| < 1. •

Example 8.47. If we apply Taylor’s theorem with

f(x) = sinx for x ∈ [−3, 3],

then we have (for c ∈ (−3, 3))

∣∣∣∣sinx− x+
x3

3!

∣∣∣∣ =
∣∣∣∣sin(c)

x4

4!

∣∣∣∣ <
34

4!
for |x| < 3.

Similarly, we see that

∣∣∣∣e
x −

(
1 + x+

x2

2!
+

x3

3!

)∣∣∣∣ =
∣∣∣∣e

cx
4

4!

∣∣∣∣ <
34e3

4!
for |x| < 3. •
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Fig. 8.9. The graph of f(x) = exp(−1/x2), f(0) = 0.

Example 8.48 (Not all infinitely differentiable functions are ana-
lytic). Consider (see Figure 8.9)

f(x) =

{
e−1/x2

if x �= 0,
0 if x = 0.

Note that this function is clearly continuous for all x ∈ R. In fact,

lim
x→0

e−1/x2

= lim
u→+∞

1

eu2 = 0.

At this place, it might be important to remark that if g(x) = e−1/x, x �= 0,
then it would not have worked in this way, since as x → 0−, one would then
get

lim
x→0−

e−1/x = e+∞ = ∞.

Thus, in this case, one could perhaps modify g to φ in the following form:

φ(x) =

{
e−1/x if x > 0,
0 if x ≤ 0.

However, we proceed to show that f ∈ C∞(R), i.e., f is differentiable infinitely
often in (−∞,∞). Before we look at the properties of f(x), we observe that
for x �= 0, f ′(x) exists by the chain rule, so that

f ′(x) = 2x−3e−1/x2

for x �= 0.

Now,

lim
x→0

f(x)− f(0)

x
= lim

x→0

1/x

e1/x2 ,

so that, by l’Hôpital’s rule,

lim
x→0+

1/x

e1/x2 = lim
u→+∞

u

eu2 = lim
u→+∞

1

2ueu2 = 0
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and

lim
x→0−

1/x

e1/x2 = lim
u→−∞

u

eu2 = − lim
u→+∞

u

eu2 = 0.

Therefore, f ′(0) exists and equals zero. Next, we show that f ′(x) is continuous
on R. Obviously, f ′ is continuous for x �= 0, and so we need to check the
continuity only at 0. For this, we find that (again by l’Hôpital’s rule)

lim
x→0

f ′(x) = 2 lim
x→0

1/x3

e1/x2 = 2 lim
u→±∞

u3

eu2 = 0 = f ′(0).

Note that because of the square term in the denominator, we need to consider
u → +∞ and u → −∞ separately, and in both cases the limit value is seen
to be 0. Thus, f ∈ C1(R). Our next aim is to show that f ∈ C∞(R). For this,
we observe that for n = 0, 1, 2, . . .,

lim
x→0

e−1/x2

xn
= lim

u→±∞
un

eu2 , (8.11)

which is seen to be 0, by l’Hôpital’s rule. The case n = 0 shows that f
is continuous at 0, whereas the case n = 1 implies that f is continuously
differentiable on R. We have discussed these two cases above, and so we now
consider the case n ≥ 2. Note that the function f(x) has the form e−g(x),
where g(x) = 1/x2. Clearly, for x �= 0, the higher derivatives f (n)(x) are given
by

f (n)(x) =
pn(1/x)

e1/x2 ,

where pn is a polynomial of the form

pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

This fact can easily be proved by induction and the chain rule. By (8.11), we
now have

lim
x→0

f (n)(x) = lim
u→∞

pn(u)

eu2 = 0 for n ≥ 2,

since eu
2

goes to infinity faster than any polynomial (one can use l’Hôpital’s
rule). We have already shown that f ′(0) = 0, and thus by induction it can be
shown that f (n)(0) = 0 for all n. In fact, if f (k)(0) = 0 for all k = 1, 2, . . . , n,
then

f (n+1)(0) = lim
x→0

f (n)(x)− f (n)(0)

x

= lim
x→0

(1/x)pn(1/x)

e1/x2

= lim
x→0

pn+1(1/x)

e1/x2

= lim
x→0

f (n+1)(x) = 0,
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and hence f (n+1)(0) exists and is zero. Thus, f has derivatives of all orders at
0, and hence f ∈ C∞(R). Therefore, Taylor’s series certainly converges, but
not to f(x). •
Remark 8.49. From Example 8.48, we note that if f(x) = e−1/x2

had a
Taylor series expansion about the origin, then we would have f(x) = 0 in a
neighborhood of the origin, since f (k)(0) = 0 for all k. Since the exponential

function never vanishes, f(x) = e−1/x2

certainly cannot be identically zero
and so does not admit a Taylor series expansion about the origin.

Is it correct to say that f (n)(0) = 0 for all n implies f(x) = 0 for all x in
a neighborhood of 0? (Compare with Example 8.48.) What is your answer in
the case of a complex-valued function? Is it something to do with the unique-
ness theorem for complex-valued analytic functions in some domain?1 This is
beyond the scope of this book, but an interested reader can compare it. •
8.2.8 Questions and Exercises

Questions 8.50.

1. Suppose that the series
∑

akx
k converges at all positive integer values of

x. Must the series be convergent at all real values of x? What can be said
about the radius of convergence of the power series?

2. Can a power series of the form
∑∞

k=0 ak(x − 2)k be convergent at x = 0
and divergent at x = 3?

3. What can be said about the radius of convergence of the power series∑∞
k=0 ak(x− 2)k if it is convergent at x = 1 and divergent at x = 5?

4. Suppose that
∑∞

k=0 ak(x−2)k converges at x = 5 but diverges at x = −1.
What can be said about the radius of converges of the given series?

5. Suppose that f(x) =
∑∞

k=0 akx
k on (−R,R) (R > 0) such that f is odd

on (−R,R). What can be said about f?
6. What can be said about the radius of convergence of the power series∑∞

k=0 akx
k if there exists a real sequence {xk} converging to 0 and the

series is divergent at each xk?
7. If {bn} is a decreasing sequence converging to zero, must the functional

series
∑∞

k=1 bk cos kx be convergent on [0, 2π]?
8. Let I1, I2, and I3 denote the intervals of convergence of

∑∞
k=0 akx

k,∑∞
k=1 kakx

k−1, and
∑∞

k=2 k(k − 1)akx
k−2, respectively. Must we have

I1 = I2? Must we have I1 ⊆ I2? Must we have I2 ⊆ I1? Is there a
simple relationship between the sets I1, I2, and I3?

9. Suppose that f(x) =
∑

akx
k and g(x) =

∑
bkx

k have positive radii of
convergence R1 and R2, respectively.
(a) Does the Cauchy product of the two power series converge for x �= 0?

If so, does it converge to f(x)g(x) in |x| < min{R1, R2}?
1 Suppose that f is analytic in a domain D. If S, the set of zeros of f in D, has a
limit point z∗ in D, then f(z) ≡ 0 in D.
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(b) If |ak| ≤ |bk| for all large values k, must there be a relationship between
R1 and R2?

10. Are the sum and difference of two real analytic functions real analytic?
11. Is the product of two real analytic functions real analytic?
12. Is the reciprocal of a nowhere-vanishing real analytic function real ana-

lytic?
13. Are there infinitely differentiable functions that are not real analytic?
14. Suppose that f is real analytic on an open interval (a, b). Must f be

infinitely differentiable on (a, b)?
15. Suppose that g is real analytic on an open set I and J is an open set such

that g(I) ⊂ J and f is analytic on J . Must the composition f ◦ g be real
analytic on I?

16. Suppose that f is such that f(0) = 0 and f(x) = e−1/x2

for x �= 0. Must
f be real analytic on R � {0}? Can f be real analytic on R?

17. We have mentioned that f(x) = 1/(1 + x)2 is real analytic on R but the
power series expansion of f(x) about x = 0 converges only for |x| < 1.
Why does the power series not converge at all values of R?

18. Suppose that f is continuous on R and that both f2 and f3 are real
analytic. Must f be real analytic?

Exercises 8.51.

1. Let f(x) be as in Example 8.48, where we have shown that f (n)(0) = 0 for
all n ≥ 1. Conclude that the remainder term in Taylor’s theorem (with
a = 0) does not converge to zero as n → ∞ for x �= 0.

2. Show that the power series
∑∞

k=1((−1)k−1/(2k − 1))x2k−1 converges for
|x| ≤ 1.

3. If R is the radius of convergence of
∑∞

k=0 akx
k, determine the radius of

convergence of the following series:

(a)

∞∑

k=0

akx
pk, (b)

∞∑

k=0

apkx
k, (c)

∞∑

k=0

apkx
k,

where p is a positive integer.
4. Give an example of a power series that has:

(a) radius of convergence zero.
(b) radius of convergence ∞.
(c) finite radius of convergence.
(d) conditional convergence at both endpoints of the interval of conver-

gence.
(e) conditional convergence only at one of the endpoints.
(f) absolute convergence at both endpoints of the interval of convergence.

5. Give an example of a power series
∑∞

k=0 akx
k (if it exists) that:

(a) converges at x = −1 but diverges at x = 2.
(b) converges at x = 1 but diverges at x = −1.
(c) converges at x = 2 but diverges at x = −1, 1.
(d) converges at x = −1, 1 but diverges at x = 2.
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6. Determine the radius of convergence of each of the following power series∑∞
k=1 akx

k when ak equals:

(a) klog k. (b)
(3k)!

(k!)2
. (c) kk

2

. (d)

k∏

m=0

(a+m)(b+m)

(c+m)(1 +m)
(a, b, c > 0).

(e)
3k

k!
. (f) k

√
k. (g)

2k

k!
. (h) rk

2

(|r| < 1).

7. Determine the radius and the interval of convergence of each of the fol-
lowing power series:

(a)

∞∑

k=1

k!x3k+3. (b)

∞∑

k=2

k2 + 1

k2 − 1
xk. (c)

∞∑

k=0

k3

k!

x2k

2k
.

(d)

∞∑

k=1

xk3

. (e)

∞∑

k=1

xk2

(k!)k
. (f)

∞∑

k=1

(
1 +

2

k

)k

(x − 3)k.

(g)

∞∑

k=1

rk
3

(x+ 2)k. (h)

∞∑

k=1

2k

k
(x+ 1)k+1. (i)

∞∑

k=1

k(k − 1)

k2 + 5
(x+ 2)k.

8. Consider the power series
∑∞

k=0 akx
k, where

ak =

{ 1

5k
if k is odd,

3k if k is even,
k ∈ N0.

(a) Show that neither limk→∞ k
√|ak| nor limk→∞ |ak+1/ak| exists.

(b) Determine the radius of convergence of

∞∑

k=0

1

52k+1
x2k+1 and

∞∑

k=0

32kx2k.

(c) What is the radius of convergence of the original power series? Can
this be obtained from (b)?

(d) What is the interval of convergence of the original power series?

9. For each α ∈ R, show that

(1 + x)α = 1 +

∞∑

k=1

α(α − 1) · · · (α− k + 1)

k!
xk for |x| < 1.

10. Show that ∞∑

k=0

(k + 1)2xk =
1 + x

(1− x)3
for |x| < 1.

11. Suppose that 1960 ≤ |an| ≤ 2008 for all n ≥ 0. Discuss the radius of
convergence of the series

∑∞
k=0 ak(x− 2009)k, and justify your answer.
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12. Find the set of values of x for which the power series

∞∑

k=1

(1 + (−3)k−1)xk

converges.
13. For what values of x ∈ R does the functional series

∑∞
k=0((x − 1)/(x +

2))kxk converge absolutely.

14. Find all the values of x ∈ R for which the functional series
∑∞

k=0(1−x2)n

is absolutely convergent.
15. Suppose that

ak =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if k = 3m,
(−1)m

m
if k = 3m+ 1,

1

m2
if k = 3m+ 2,

and bk =

{
3m if k = 2m,
(−1)m

m
if k = 2m+ 1,

for m ≥ 0. Find the interval of convergence of
∑

akx
k and

∑
bkx

k, re-
spectively.

16. Using the Cauchy product rule and the power series expansion of ex and
1/(1− x), determine ak for k = 0, 1, 2, 3 in

ex

1− x
=

∞∑

k=0

akx
k.

17. Find the real solution greater than 1 of the equation

x =
∞∑

n=1

n(n+ 1)

xn
.

18. Suppose the series f(x) =
∑∞

k=0 akx
k and g(x) =

∑∞
k=0 bkx

k converge for
|x| < 1 and f(x) = g(x) for x = 1/(n+ 1), n ∈ N. Show that ak = bk for
all k ≥ 0.

19. Let f be infinitely differentiable on (−1, 1). Prove that f is real analytic
in some neighborhood of the origin if and only if there exist two positive
real numbers r and K such that

∣∣∣∣
f (n)(x)

n!

∣∣∣∣ ≤ K for all x ∈ (−1, 1) with |x| < r.

20. Let I be an open interval containing [a, b] and f ∈ Cn(I,R). Show that
the Taylor formula can be put into the following form:

f(b) =

n∑

k=0

f (k)(a)

k!
(b − a)k +Rn, Rn =

1

n!

∫ b

a

(b − t)nf (n+1)(t) dt,

where Rn is called the integral form of the remainder term.



9

Uniform Convergence of Sequences

of Functions

In this chapter we consider sequences and series of real-valued functions and
develop uniform convergence tests, which provide ways of determining quickly
whether certain sequences and infinite series have limit functions. Our partic-
ular emphasis in Section 9.1 is to present the definitions and simple examples
of pointwise and uniform convergence of sequences. In addition, we present
characterizations for interchanging limit and integration signs in sequences
of functions. In Section 9.2, we discuss a characterization for interchanging
limit and integration signs, and interchange of limit and differentiation signs
for uniform convergence of sequences and series of functions. At the end of
the section, we also include some foundations for the study of summability of
series, which is an attempt to attach a value to a series that may not converge,
thereby generalizing the concept of the sum of a convergent series. Finally,
we also discuss the Abel summability of series. At the end of Section 9.2, we
state and prove an important result due to Weierstrass, which in a simple form
states that “any continuous function on [a, b] can be uniformly approximated
by polynomials.”

9.1 Pointwise and Uniform Convergence of Sequences

In Chapter 2, we considered numerical sequences and numerical series, whereas
in Section 8.2 we discussed the convergence of power series. In this section,
we consider sequences and series of real-valued functions. Of course, we did
discuss some examples of this type in the earlier chapter. The theoretical im-
portance of uniform convergence and its use will be discussed using a number
of motivating examples.

S. Ponnusamy, Foundations of Mathematical Analysis,
DOI 10.1007/978-0-8176-8292-7 9,
© Springer Science+Business Media, LLC 2012
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9.1.1 Definitions and Examples

Let {fn} be sequence of real-valued functions defined on a set E ⊆ R. To each
x0 ∈ E, {fn} gives rise to the sequence {fn(x0)} of real numbers. Thus, we
have the notion of pointwise and uniform convergence on E.

Definition 9.1 (Pointwise convergence). We say that {fn} converges at
x ∈ E if the sequence {fn(x)} of real numbers is convergent. We say that {fn}
converges pointwise on E if for each x ∈ E the sequence {fn(x)} converges.
If the sequence {fn} converges pointwise on a set E, then we can define f :
E → R by

f(x) = lim
n→∞ fn(x) for each x ∈ E.

It is a common practice to call f the (pointwise) limit of the sequence {fn}.
We write fn → f pointwise on E or lim fn = f pointwise on E. Throughout
we simply use fn → f on E or lim fn = f on E to indicate the pointwise
convergence on E.

Thus, in terms of ε-N notation, {fn} converges to f on E iff for each x ∈ E
and for an arbitrary ε > 0, there exists an integer N = N(ε, x) such that

|fn(x) − f(x)| < ε whenever n > N.

The integer N in the definition of pointwise convergence may, in general,
depend on both ε > 0 and x ∈ E. If, however, one integer can be found that
works for all points in E, then the convergence is said to be uniform. That is,
a sequence of functions {fn} converges uniformly to f on a set E if for each
ε > 0, there exists an integer N = N(ε) such that

|fn(x)− f(x)| < ε whenever n > N(ε) and for all x ∈ E.

That is,

f(x)− ε < fn(x) < f(x) + ε for all x ∈ E and n > N(ε).

Often, we say that f is the uniform limit of the sequence {fn} on E and write
fn → f uniformly on E or lim fn = f uniformly on E. Geometrically, this
means that given ε > 0, there exists an integer N = N(ε) such that for n > N ,
the graph of y = fn(x) on E must lie between the graphs of y = f(x)− ε and
y = f(x) + ε on E. In Figure 9.1, the graphs of all functions y = fn(x) with
n > N would fit inside this band. This can happen if and only if

sup
x∈E

|fn(x) − f(x)| < ε for n > N.

We emphasize that uniform convergence on a set implies (pointwise) con-
vergence on that set. But the converse is not true, as we shall soon see in a
number of examples. Thus, uniform convergence is a stronger form of conver-
gence. Moreover, a formulation of the negation of uniform convergence will
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2

-tube
y= fn(x) for larger n

y= f(x)+

y= f2(x)

y= f(x)

y= f(x)−

Fig. 9.1. Graphs of a neighborhood of f and an fn.

be helpful for producing examples that show the converse to be false. Let
fn → f on a set E. Then the convergence of {fn} to f on E is not uniform if
there exists an ε > 0 such that to each integer N there corresponds an integer
n > N and a point xn ∈ E for which

|fn(xn)− f(xn)| ≥ ε.

Finally, we remark that it is apparent that if a sequence of functions converges
uniformly on a set E, then it converges on every compact subset of E.

We are now interested in knowing whether important properties of func-
tions in the sequence will be “transferred” to the limit as well. In particular,
the general theme of this section is to consider the following questions:

• Suppose that fn → f pointwise on E, where {fn} is a sequence of con-
tinuous functions on E. Can f be continuous on E? If not, under what
conditions can we assert that f is continuous on E?

• Suppose that fn → f pointwise on E, where {fn} is a sequence of inte-
grable functions on E. Can f be Riemann integrable on every interval of
finite length in E? In case f is Riemann integrable on [a, b] ⊂ E, is it true
that ∫ b

a

f(t) dt = lim
n→∞

∫ b

a

fn(t) dt,

or in other words, are we allowed to interchange the limit and the integral
sign? The answer is in general negative. Then under what conditions can
we make the interchange?

• Suppose that fn ∈ C1(E), i.e., continuously differentiable on E, and fn →
f pointwise on E. Can f be differentiable on E? If so, do we have f ′

n → f ′

pointwise on E? If not, under what conditions can we assert that f ′
n → f ′

pointwise on E?

We shall soon see that it will be more profitable to consider these questions
with uniform convergence instead of pointwise convergence. For instance, we
will show later that we may interchange the limit and the integral over [a, b]
if {fn} converges uniformly to some f on [a, b].

We now recall the distinction between continuity and uniform continuity.
A continuous function is uniformly continuous on a set if a single δ = δ(ε) can
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Fig. 9.2. fn(x) = 1/(n+ x) on [0,∞).
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Fig. 9.3. fn(x) = x/(x+ n) on [0,∞).
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Fig. 9.4. Graph of fn(x) = 1/nx on [−1, 1]� {0}.

be found that works for all points in the set. Earlier, the function f(x) = 1/x
was shown to be continuous, but not uniformly, on the set 0 < |x| < 1. The
following example is an analogue for convergence.

Example 9.2. For n ≥ 1, consider fn(x) = 1/(x+ n) on [0,∞) (see Fig-
ure 9.2). For ε > 0 we have

|fn(x) − 0| = 1

n+ x
≤ 1

n
< ε for n >

1

ε
,

showing that fn → 0 uniformly on [0,∞) (see also Figure 9.3). •
Example 9.3 (Pointwise but not uniform convergence to a continu-
ous function). Consider fn(x) = 1/(nx) on the set 0 < |x| < 1; see Fig-
ure 9.4. Then we observe that for a given ε > 0,

|fn(x)− 0| =
∣∣∣
1

nx

∣∣∣ < ε ⇐⇒ n >
1

ε|x| .



9.1 Pointwise and Uniform Convergence of Sequences 375

So the corresponding N = N(x; ε) is an integer greater than 1/(ε|x|). Note
that as |x| decreases, the corresponding N increases without bound. Thus,
the sequence {fn(x)} converges pointwise, but not uniformly, to the function
f(x) = 0 on the set 0 < |x| < 1.

Alternatively, we may argue as follow. If this convergence were uniform,
then there would exist an integer N for which the inequality |1/(Nx)| < ε =
0.1 would be valid for all x, 0 < |x| < 1. But the inequality does not hold for
x = 1/N . •

Note that in the above example, we have shown that the convergence is
not uniform because

∣∣∣∣fn
(
1

n

)
− f

(
1

n

)∣∣∣∣ = 1 for all n.

This observation suggests the following result, which is a precise formulation
of nonuniform convergence.

Theorem 9.4 (Sufficiency for nonuniform convergence). Suppose that
fn and f are functions defined on a set E. If there exists a sequence {xn} in
E and a number c �= 0 such that

fn(xn)− f(xn) → c as n → ∞,

then the sequence {fn} cannot converge uniformly to the function f on E.

Proof. If the convergence of {fn} were uniform, then for ε = |c|/2 there would
exist an integer N = N(ε) such that

|fn(x)− f(x)| < |c|/2 for all x ∈ E and n > N.

In particular, this would yield

|fn(xn)− f(xn)| < |c|/2 for all n > N,

which is clearly a contradiction to limn→∞ |fn(xn)− f(xn)| = |c|.
By Theorem 9.4, we can easily conclude that (by taking xn = π/n) {fn},

fn(x) = arctan(nx), does not converge uniformly on any interval containing
the origin (see Figure 9.5). However, {fn} does converge pointwise to f , where

f(x) =

⎧
⎨

⎩

0 if x = 0,
π/2 if x > 0,
−π/2 if x < 0.

Example 9.5 (Pointwise convergence to a discontinuous function).
For n ≥ 1, consider fn(x) = 1/(1 + nx2) on R; see Figure 9.6 and 9.7. Then
the sequence {fn} converges (pointwise) everywhere to the function
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Fig. 9.5. Graph of fn(x) = arctan(nx) on [−4, 4] for n = 1, 2, 6, 20.
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Fig. 9.6. fn(x) = 1/(1 + nx2) on
[−5,−1] ∪ [1, 5].
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Fig. 9.7. fn(x) = 1/(1 + nx2) on (−1, 1).

f(x) =

{
0 if x �= 0,
1 if x = 0.

If |x| ≥ c (c > 0), then

|fn(x)| = 1

1 + nx2
≤ 1

nx2
≤ 1

nc2
.

Therefore, |fn(x)| < ε whenever n > 1/(εc2), which proves uniform conver-
gence for |x| ≥ c for c > 0. Consequently, the sequence {fn} converges uni-
formly for |x| ≥ c, but does not converge uniformly on any interval containing
the origin.

Alternatively, we can apply Theorem 9.4 and obtain the nonuniform con-
vergence of the sequence. For instance, if the convergence were uniform
for |x| ≤ 1, then there would exist an integer N for which the inequality
|fN(x) − f(x)| < 1

2 would be valid for all x with |x| ≤ 1. But
∣∣∣∣fn

(
1√
n

)
− f

(
1√
n

)∣∣∣∣ =
∣∣∣∣

1

1 + n · (1/n) − 0

∣∣∣∣ =
1

2
for every n ≥ 1. •
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A reformulation of uniform convergence is the following:

Theorem 9.6 (Characterization of uniform convergence). A sequence
of functions {fn} defined on a set E ⊆ R converges uniformly to a function
f on E if and only if

δn = sup
x∈E

|fn(x) − f(x)| → 0 as n → ∞.

Proof. The proof is straightforward, and so we leave it as an exercise.

Since
|fn(x) − f(x)| ≤ sup

x∈E
|fn(x) − f(x)|,

we see that if {fn} converges uniformly on E to f , then {fn} converges point-
wise on E to f . The converse is not true, as shown, for instance, in Example
9.3. Thus, pointwise convergence is a necessary condition for uniform conver-
gence, but it is not a sufficient condition. In order to test the uniform conver-
gence of a sequence, our first step is to check whether it converges pointwise
by trying to determine the pointwise limit. If it converges pointwise, then our
second step is to check whether it also converges uniformly to the pointwise
limit. Later, in Theorem 9.12, we show that if the pointwise limit of continuous
functions is not continuous, then the convergence cannot be uniform.

Example 9.7. Consider fn(x) = xn(1 − x) on [0, 1]; see Figure 9.8. Then
fn(0) = 0 = fn(1) for each n ≥ 1, and it is clear that fn(x) → 0 for |x| < 1.
In particular, fn → 0 pointwise on [0, 1]. Next we compute, for n ≥ 1,

f ′
n(x) = xn−1[n− (n+ 1)x]

{≥ 0 for 0 ≤ x ≤ n
n+1 ,

≤ 0 for n
n+1 ≤ x ≤ 1.

Since fn assumes the value 0 at both endpoints of the interval [0, 1], it follows
that fn has a maximum at x = n/(n+ 1). Consequently,

δn = max
x∈[0,1]

|fn(x)− 0| = fn

( n

n+ 1

)
=

( n

n+ 1

)n 1

n+ 1
<

1

n+ 1
→ 0

as n → ∞. By Theorem 9.6, fn → 0 uniformly on [0, 1]. Do we have f ′
n(x) →

f ′(x) = 0 on [0, 1]?
One can consider fn(x) = n2xn(1− x) on [0, 1] and obtain that this time,

{fn} converges (but not uniformly) to a continuous function f(x) = 0 on [0, 1]
(see Figure 9.9). •
Example 9.8. Consider fn(x) = xn. Then from our earlier experience with
sequences, it follows that fn(x) does not converge at x = −1, nor does it
converge at any point x for which |x| > 1. Clearly if we consider fn on (−1, 1],
then we have

fn(x) → f(x) =

{
0 for x ∈ (−1, 1),
1 for x = 1.
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Fig. 9.8. fn(x) = xn(1− x) on [0, 1].
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Fig. 9.9. fn(x) = n2xn(1− x) on [0, 1].
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Fig. 9.10. fn(x) = xn on [0, 1].

Thus, the limit function f(x) is not continuous at x = 1 although each fn
is continuous everywhere on R. Also, the limit function does not exist on
R \(−1, 1]. Thus, {fn} converges pointwise to f on (−1, 1] and continuity is
not preserved under convergence. The graphs of

y1 = f1(x) = x, y2 = f2(x) = x2, . . . , yn = fn(x) = xn

do not approach the graph of y = f(x); see Figure 9.10. Pointwise convergence
may be proved directly. Let ε > 0 be given. Then for 0 < |x| < 1,

|xn| < ε ⇐⇒ n >
log ε

log |x| =
log(1/ε)

log(1/|x|) = N(ε, x).

Now for each fixed 0 < ε < 1, as |x| → 1−, N(ε, x) is increased without
bound because N(ε, x) → ∞. It follows that the convergence is not uniform
for |x| < 1, although there is pointwise convergence on (−1, 1].
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However, if r < 1 and |x| ≤ r, then log(1/|x|) ≥ log(1/r), and therefore
since rn → 0 as n → ∞, an integer N = N(ε) can be found for which rn < ε
(n > N > (log ε)/log r). But then

|xn| ≤ rn < ε (|x| ≤ r, n > N(ε)).

Hence {fn(x)} converges uniformly to zero in every closed interval |x| ≤ r,
r < 1. Recall that the choice of N with N > (log ε)/log r is possible for an
arbitrary ε > 0 and 0 < r < 1. In particular, {fn} converges uniformly on
[0, 2/3] to f(x) = 0. In this case, the choice of N is such that

N >
log(1/ε)

log(3/2)
.

Method 2: To see that fn(x) does not converge uniformly to f(x) on (−1, 1),
we may also proceed as follows (or we can apply Theorem 9.4 straightaway). If
the convergence of {xn} were uniform on the set (−1, 1), then for sufficiently
large n we would have

|xn| < ε for all x ∈ (−1, 1).

Choosing xn = (1− 1/n)1/n, we must then have

|fn(xn)− f(xn)| = |xn
n − 0| = 1− 1

n
< ε for large n.

This is not possible for large n if we have chosen ε < 1 and hence the conver-
gence cannot be uniform on |x| < 1.

We could instead choose cn with cn = 2−1/n so that for large n,

|fn(cn)− f(cn)| = cnn =
1

2
,

which is not possible if we have chosen ε < 1/2. Does Theorem 9.6 apply here?
Method 3: We also see that

sup
x∈[0,1]

|fn(x)− f(x)| ≥ sup
x∈[0,1]

|xn| = 1,

and by Theorem 9.6, {fn} does not converge uniformly on [0, 1]. •
We see that the sequence {gn(x)}, where

gn(x) =
xn

n
on [−1, 1],

converges uniformly to g(x) = 0 on [−1, 1].
By the Cauchy convergence criterion, we know that a sequence of real

numbers {an} converges if and only if it is a Cauchy sequence. We can now
formulate a similar criterion for uniform convergence of sequences of functions.
Since the proof is easy, we leave it as an exercise to the reader.
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Theorem 9.9 (Cauchy criterion for uniform convergence of a
sequence). A sequence of real-valued functions {fk}k≥1 defined on a set
E converges uniformly on E if and only if it is uniformly Cauchy on E; i.e.,
for an arbitrary ε > 0 there is a number N = N(ε) such that

|fm(x) − fn(x)| < ε whenever m > n > N(ε), and for all x ∈ E,

or equivalently,
sup
x∈E

|fm(x) − fn(x)| < ε.

In Example 9.8, we showed that xn → 0 uniformly on [−r, r] ⊆ (−1, 1),
0 < r < 1. This can be proved using the Cauchy criterion. For m > n,

sup
x∈[−r,r]

|xm − xn| ≤ 2rn.

Since rn → 0 (r < 1), an integer N = N(ε) can be found for which

2rn < ε for all n > N(ε).

Actually, any integer N greater than (log(ε/2))/(log r) will satisfy our require-
ment. Thus, for all m > n > N and all x ∈ [−r, r],

|xm − xn| ≤ 2rn < ε.

We conclude that xn → 0 uniformly on any interval [−r, r], 0 < r < 1. Here
we do not gain any computational advantage over the argument in Example
9.8. However, when we do not know the limit function, the Cauchy criterion
is more useful than the definition. Now many more examples follow.

Example 9.10. The sequence {nxn(1−xn)} does not converge uniformly on
[0, 1].

Solution. Set fn(x) = nxn(1− xn). Then fn(1) = 0 and observe that

∞∑

k=1

fk(x) =
∞∑

k=1

kxk −
∞∑

k=1

kx2k,

which converges for |x| < 1, and so the general term fn(x) approaches zero
as n → ∞. In particular, this shows that f(x) = 0, x ∈ [0, 1], is the pointwise
limit of {fn(x)} on [0, 1].

Next we compute, for n ≥ 1,

f ′
n(x) = n2xn−1(1 − 2xn)

{≥ 0 for 0 ≤ x ≤ 1/ n
√
2,

< 0 for 1/ n
√
2 < x ≤ 1.

Since fn assumes the value 0 at both endpoints of the interval [0, 1], and
x0 = 1/ n

√
2 is the only critical point in the interior,
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Fig. 9.11. fn(x) = 1 − nx for 0 ≤
x ≤ 1/n and 0 for 1/n < x ≤ 1.
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Fig. 9.12. fn(x) = nx/(1 + n2x2) on R.

δn = max
x∈[0,1]

|fn(x) − 0| = fn

(
1
n
√
2

)
= n

1

2

(
1− 1

2

)
=

n

4
→ ∞ as n → ∞.

Thus, by Theorem 9.4, {fn(x)} does not converge uniformly to f(x) = 0 on
[0, 1]. •
Examples 9.11. 1. For n ≥ 1, define fn : [0, 1] → R by (see Figure 9.11)

fn(x) =

{
1− nx if 0 ≤ x ≤ 1/n,
0 if 1/n < x ≤ 1.

Clearly, each fn(x) is continuous on [0, 1] and fn → f on [0, 1], where

f(x) =

{
1 if x = 0,
0 if 0 < x ≤ 1,

which is not continuous on [0, 1].
2. Consider {fn(x)}n≥1, where fn(x) = nx/(1 + n2x2) for x ∈ R. Clearly,

fn(0) → 0, as fn(0) = 0 for all n ≥ 1. Let x �= 0. For a given ε > 0, we see
that

|fn(x)− 0| =
∣∣∣∣

nx

1 + n2x2

∣∣∣∣ ≤
1

n|x| < ε whenever n >
1

ε|x| .

Note that supx∈R
1/(ε|x|) = ∞. Thus, given ε > 0, there exists an N

(with N ≥ 1/(ε|x|)) such that |fn(x) − 0| < ε for all n ≥ N . Therefore,
{fn(x)} converges everywhere to the function f(x) = 0 (see Figures 9.12–
9.14). Observe that N depends on both x and ε. To test for uniform
convergence, it is sufficient to note that for xn = 1/n, we have

|fn(xn)− f(xn)| = 1/2,

so that by Theorem 9.4, the sequence {fn} does not converge uniformly
on [0, 1]. Does it converge uniformly on |x| > c, c > 0? Why?
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Fig. 9.13. fn(x) = nx/(1 + n2x2)
on [−5,−1] ∪ [1, 5].
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Fig. 9.14. fn(x) = nx/(1 + n2x2) on (−1, 1).

3. Similarly, {x/n}n≥1 converges to f(x) = 0 on R but does not converge
uniformly on R. Does it converge on any finite closed interval in R? Does
it converge uniformly on every bounded subset of R? Does it converge
uniformly on [1,∞)?

4. Consider fn(x) = 1/(1 + nx) on [0, 1]. We see that

fn(x) → f(x) =

{
1 for x = 0,
0 for 0 < x ≤ 1,

because for 0 < x ≤ 1,

|fn(x)− 0| = 1

1 + nx
< ε whenever n >

1− ε

εx
.

That is, given ε > 0, there exists an N (with N > (1− ε)/(εx)) such that
|fn(x)| < ε for all n ≥ N . Again, we note that N depends on both x and
ε. Also, for 0 < ε < 1,

sup
x∈(0,1]

1− ε

εx
= ∞,

which shows that it is not possible to choose N independent of x ∈ (0, 1];
see Figure 9.15. Note also that for xn = 1/n, we have

|fn(xn)− f(xn)| = 1/2,

so that by Theorem 9.4, the sequence {1/(1 + nx)} does not converge
uniformly on [0, 1]. The conclusion can also be drawn from Theorem 9.12
(see also Remark 9.13). How about uniform convergence on x > c, c > 0?
(See Figure 9.16.) •

9.1.2 Uniform Convergence and Continuity

Suppose that {fn} is a sequence of continuous functions on a set E such that
fn → f on E. Must f be continuous on E? Continuity of f at a ∈ E demands
that
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Fig. 9.15. fn(x) = 1/(1 + nx) on [0, 1].
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Fig. 9.16. fn(x) = 1/(1 + nx) on [1,∞).

lim
x→a

f(x) = f(a),

that is,

lim
x→a

(
lim
n→∞ fn(x)

)
= lim

n→∞ fn(a) = lim
n→∞

(
lim
x→a

fn(x)
)
.

Thus, to verify the continuity of f at a, we need to be assured that the order
of passing to the limit is immaterial. Here the continuity at the endpoint refers
to the right or the left limit, whichever is the case.

As observed in a number of examples, pointwise convergence does not allow
the interchange of limit operations. For instance, for fn(x) = xn on (−1, 1],
we had

lim
x→1−

(
lim
n→∞xn

)
�= lim

n→∞

(
lim

x→1−
xn

)

(see also Examples 9.11(1) and 9.5).
On the other hand, an important consequence of uniform convergence is

that continuity is inherited by the limit function (Figure 9.17).

Theorem 9.12 (Necessary condition for the uniform convergence of
a sequence). The limit of a uniformly convergent sequence of continuous
functions on E is continuous on E. That is, for each a ∈ E,

lim
x→a

(
lim
n→∞ fn(x)

)
= lim

n→∞

(
lim
x→a

fn(x)
)
.

Proof. Let each fn be continuous on E and suppose that fn → f uniformly
on E. Let ε > 0 be given. The uniform convergence of {fn} implies that there
exists an integer N independent of x such that

|f(x)− fN (x)| < ε

3
(x ∈ E).
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Fig. 9.17. fn(x) = xn/n on [−1, 1].
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Fig. 9.18. fn(x) = xn/n on [0, 1].

Choose a point a ∈ E, and fix it. By the continuity of fN at a, there exists a
δ > 0 such that

|fN (x)− fN (a)| < ε

3
for all |x− a| < δ, x ∈ E.

Further, for all x such that |x−a| < δ and x ∈ E, the triangle inequality gives

|f(x) − f(a)| ≤ |f(x) − fN(x)| + |fN(x) − fN (a)|+ |fN(a)− f(a)| < ε.

Thus, f is continuous at a. Since a is arbitrary, the claim now follows.

Remark 9.13. The sequence {xn/n} on [0, 1] is a sequence of continuous
functions converging uniformly to a continuous function (see Figure 9.18).

Next, consider

fn(x) =

{−1/n if −1 ≤ x < 0,
1/n if 0 ≤ x ≤ 1.

Then none of the functions fn(x) is continuous at the origin, but the limit
function is f(x) = 0 on [−1, 1], which is continuous on [−1, 1]. Thus, Theorem
9.12 gives a necessary, but not sufficient, condition for uniform convergence
of a sequence of continuous functions.

Finally, from Example 9.8, we see that the sequence of continuous functions
{xn} on (−1, 1) converges to f(x) = 0 on (−1, 1) but not uniformly on (−1, 1).
In the same example, {xn} on (−1, 1] converges to a discontinuous function
on (−1, 1]. The discontinuity of the limit function at x = 1 rules out uniform
convergence for the sequence {xn} on (−1, 1] (see Figure 9.19). •
Examples 9.14. (a) For n ≥ 1, consider fn(x) = (1 − x2)n for x ∈ (−1, 1).

Then (see Figure 9.20) fn → f pointwise on (−1, 1), where

f(x) =

{
1 if x = 0,
0 if x ∈ (−1, 1)� {0}.
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Fig. 9.19. f ′
n(x) = xn−1 on (−1, 1).
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Fig. 9.20. fn(x) = (1− x2)n on [−1, 1].

In view of Theorem 9.12, {fn} does not converge uniformly on (−1, 1)
because the pointwise limit function f is not continuous on (−1, 1). This
fact can be also seen with the help of Theorem 9.4. If the sequence were
uniformly convergent on (−1, 1), then, for example for ε = 1/4, there
would exist an N such that

|fn(x)− f(x)| < 1

4
for all x ∈ (−1, 1) and n ≥ N.

But for x2
N = 1− 3−1/N , this would give

|fN (xN )− f(xN )| = 1

3
>

1

4
,

a contradiction. It follows that the sequence {fn} does not converge uni-
formly on (−1, 1).

(b) For n ≥ 1, define fn : [0, π/2] → R by

fn(x) =
4 cosn x

3 + cosn x
, x ∈ [0, π/2].

Then each fn is continuous. For x ∈ (0, π/2], cosn x → 0 as n → ∞, and
so the sequence {fn} converges pointwise on [0, π/2] to

f(x) =

{
1 for x = 0,
0 for x ∈ (0, π/2],

which is not continuous on [0, π/2]. By Theorem 9.12, the sequence {fn}
cannot converge uniformly to f(x) on [0, π/2]. How about if the number
3 in the definition of fn(x) is replaced by 3n? •

9.1.3 Interchange of Limit and Integration

We now examine some relationships between uniform convergence and inte-
gration. We begin with an example. For n ≥ 1, define gn : [0, 1] → R by
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Fig. 9.22. Graph of g3(x).
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Fig. 9.23. Graph of g4(x).

gn(x) =

⎧
⎨

⎩

0 if x = 0,
n if 0 < x ≤ 1/n,
0 if 1/n < x ≤ 1.

Then {gn(x)} converges pointwise to g(x) = 0 on [0, 1]. For instance, if x =
1/N (N ∈ N), then

gn

(
1

N

)
=

{
N if n ≤ N,
0 if n > N .

The sequence {gn(x)} cannot converge uniformly to g(x) = 0 on [0, 1], al-
though the limit function is continuous on [0, 1]. Each gn is Riemann integrable
on [0, 1]. For all n ∈ N, we have

sup
x∈[0,1]

|gn(x)− g(x)| = n ≥ 1,

showing that {gn} does not converge uniformly on [0, 1] to g. Further,

∫ 1

0

gn(x) dx =

(∫ 1/n

0

n dx+

∫ 1

1/n

0 dx

)
= 1 and

∫ 1

0

g(x) dx = 0.

The last fact is easy to verify pictorially (see Figures 9.21–9.23). Thus,

lim
n→∞

∫ 1

0

gn(x) dx �=
∫ 1

0

lim
n→∞ gn(x) dx,

so that the limit of a sequence of integrals of Riemann integrable functions on
a set is not necessarily equal to the integral of the limit. As another example,
consider fn(x) = nxe−nx2

on [0, 1], which is continuous on [0, 1] for each
n ≥ 1 (see Figures 9.24 and 9.25). We see that {fn(x)} converges pointwise
to f(x) = 0 on [0, 1]. As n increases, the hump moves closer to x = 0 and
becomes higher. So the convergence cannot be uniform, although the limit
function is continuous on [0, 1] (see Exercise 9.20(12)). We see that

∫ 1

0

fn(x) dx =
1

2
(1− e−n) → 1

2
as n → ∞ and

∫ 1

0

f(x) dx = 0.
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Fig. 9.24. Graphs of fn = nxe−nx2

for
n = 1, 4, 10, 15, 50.
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.

This observation, according to Theorem 9.15, helps to establish that {fn}
does not converge uniformly on [0, 1].

Moreover, the functions in Exercises 9.20(6) and 9.20(7) show that the
integral of the limit of continuous functions is not necessarily equal to the
limit of the integrals of those functions.

Theorem 9.15 (Interchange of limit and integration). Suppose that
{fn(x)} is a sequence of continuous functions on the interval [a, b] and that
{fn(x)} converges uniformly to f(x) on [a, b]. Then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n→∞ fn(x) dx =

∫ b

a

f(x) dx.

Also, for each t ∈ [a, b],

lim
n→∞

∫ t

a

fn(x) dx =

∫ t

a

f(x) dx,

and the convergence is uniform on [a, b].

Proof. Note that by Theorem 9.12, f is continuous on [a, b], so that
∫ b

a
f(x) dx

exists. Let ε > 0 be given. Then since fn → f uniformly on [a, b], there is an
integer N = N(ε) such that

|fn(x) − f(x)| < ε

b− a
for all n > N and all x on [a, b].

Again, since fn − f is continuous on [a, b], it follows, for n > N , that
∣∣∣∣∣

∫ b

a

fn(x) dx −
∫ b

a

f(x) dx

∣∣∣∣∣ =

∣∣∣∣∣

∫ b

a

(fn(x) − f(x)) dx

∣∣∣∣∣

≤
∫ b

a

|fn(x) − f(x)| dx

<
ε

b− a
(b − a) = ε.

Since ε is arbitrary, the proof is complete.



388 9 Uniform Convergence of Sequences of Functions

1 0.5 0.5 1

2

2

4

x

y
f1

f2

f2
f5

f10

f10

f5

Fig. 9.26. fn(x) = n(n+ 1)xn−1(1− x) on (−1, 1].

The hypothesis of Theorem 9.15 will be sufficient for our purposes, but
a stronger theorem holds (see Theorem 9.36). Theorem 9.15 may be used to
show the nonuniform convergence of the sequence {fn(x)} on [a, b]. Also, it is
important to point out that a direct analogue of Theorem 9.15 for derivatives
is not true, but we do have a result for derivatives (see Theorem 9.40).

Example 9.16. We remark that the uniform convergence {fn(x)} is a suffi-
cient condition, but not a necessary one, for the conclusion of Theorem 9.15.
For example, we may recall that on the interval [0, 1],

fn(x) = xn → f(x) =

{
0 for x ∈ [0, 1),
1 for x = 1,

and so we obtain

∫ 1

0

fn(x) dx =
1

n+ 1
→ 0 =

∫ 1

0

f(x) dx.

Similarly, although {fn}, fn(x) = 1/(1 + nx) on [0, 1], does not converge
uniformly on [0, 1] to f(x), we see that

∫ 1

0

fn(x) dx =
log(n+ 1)

n
→ 0 =

∫ 1

0

0 dx, f(x) =

{
0 for x ∈ (0, 1],
1 for x = 0.

These two examples show that the conclusion of Theorem 9.15 holds without
{fn} being convergent uniformly on [0, 1]. •

Next, we consider fn(x) = n(n + 1)xn−1(1 − x) for x ∈ (−1, 1] (see Fig-
ure 9.26). Clearly, fn(x) = 0 at x = 0, 1. For 0 < |x| < 1, we have

∣∣∣∣
fn+1(x)

fn(x)

∣∣∣∣ =
(
1 +

2

n

)
|x| → |x| as n → ∞,
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Fig. 9.27. fn(x) = sin(x/n) for
x ∈ R.
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Fig. 9.28. fn(x) = n(1− cos(x/n)) on [0, 11].

showing that
∑

fn(x) converges (whenever |x| < 1), and so fn(x) → f(x) = 0
pointwise for −1 < x ≤ 1. Also, we see that

∫ 1

0

fn(x) dx = 1 �→
∫ 1

0

f(x) dx = 0.

Thus, by Theorem 9.15, the sequence {fn} cannot converge uniformly on
(−1, 1].

Thus, we conclude that pointwise convergence does not preserve integrals.

Example 9.17. Consider fn(x) = sin (x/n) for x ∈ R (see Figure 9.27). Then
each fn is continuous on R, and since | sin t| ≤ |t| on R, it follows that fn → 0
pointwise on R, and fn → 0 uniformly on any finite interval [a, b] ⊆ R. For
instance, by Theorem 9.15, on [0, t],

∫ t

0

sin (x/n) dx = n− n cos (t/n) →
∫ t

0

0 · dx = 0,

and so the sequence {n(1− cos (x/n))} converges uniformly to 0 on [0, t] (see
Figure 9.28).

If we continue the process, it follows that

∫ t

0

n(1− cos (x/n)) dx = n(t− n sin (t/n))

converges uniformly to zero on any finite interval. •
We remark that in Theorem 9.15, it is important to use the definite integral

rather than the antiderivative, for an antiderivative of fn(x) = sin (x/n) is
−n cos (x/n), but {n cos (x/n)} does not converge for any x.
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Example 9.18. Does {∫ 3

1
e−nx2

dx} converge on [1, 3]? The convergence is
easy to see, since

0 <

∫ 3

1

e−nx2

dx ≤ e−n

∫ 3

1

dx = 2e−n → 0 as n → ∞.

Alternatively, set fn(x) = e−nx2

on [1, 3]. Then for n ≥ 1, we have

0 < fn(x) ≤ e−n,

from which we conclude that fn → 0 uniformly on [1, 3]. By Theorem 9.15,
we obtain

lim
n→∞

∫ 3

1

e−nx2

dx =

∫ 3

1

0 · dx = 0. •
9.1.4 Questions and Exercises

Questions 9.19.

1. What is the difference between the pointwise and the uniform convergence
of a sequence of functions?

2. Suppose that a sequence {fn} does not converge pointwise on [a, b]. Can
it converge uniformly to some f on [a, b]?

3. Suppose that {fn} converges uniformly on a set E. Does it converge uni-
formly on any subset of E?

4. If {fn} is pointwise convergent on R, must it be uniformly convergent on
every finite interval [a, b]?

5. Suppose that fn → f (pointwise) on E. Is it possible that fn → g uni-
formly on E with f(x) �= g(x) on E?

6. Suppose that fn → f uniformly on E1 as well as on E2. Must fn → f
uniformly on E1 ∪E2? Must fn → f uniformly on E1 ∩ E2?

7. Suppose that fn → f uniformly on each set of the infinite sequence
E1, E2, . . .. Must we have the convergence fn → f uniformly on E =
∪∞
k=1Ek? on E = ∩∞

k=1Ek?
8. Suppose that E is a finite set of numbers, say E = {x1, x2, . . . , xn}. Is it

true that fn → f uniformly on E if and only if fn → f pointwise on E?
9. Let f : R → R be continuous, and for each n ≥ 1, define fn : R → R by

fn(x) = f

(
x+

1

n

)
, x ∈ R.

Must {fn} converge uniformly on R?
10. Suppose that gn → 0 uniformly on E such that |fn(x)| ≤ gn(x) for n ≥ 1

and for x ∈ E. Must we have fn → 0 uniformly on E?
11. Suppose that fn → f uniformly on E, and g is uniformly continuous on

D, where D contains the range of fn and f . Show that g ◦ fn → g ◦ f
uniformly on E. Is the uniform continuity of g necessary?
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12. Suppose that {fn} and {gn} converge uniformly to f and g, respectively,
on a set E ⊆ R. Let α be a real constant. Must {fn + gn} be uniformly
convergent to f + g on E? Must {αfn} be uniformly convergent to αf on
E? Must fngn → fg be uniformly convergent on E if f and g are bounded
functions on E? Must {fngn} be uniformly convergent to fg on E?

13. Does there exist a pointwise convergent sequence of continuous (respec-
tively differentiable, Riemann integrable) functions whose limit function
is not continuous (respectively differentiable, Riemann integrable)?

14. Does there exist a pointwise convergent sequence of differentiable func-
tions whose limit is differentiable but the sequence of derivatives does not
converge?

15. Does there exist a pointwise convergent sequence of Riemann integrable
functions whose limit is Riemann integrable but

lim
n→∞

∫
fn(x) dx �=

∫
lim
n→∞ fn(x) dx?

16. Let {fn} be a sequence of continuous functions on [0, 1] converging point-
wise to a continuous function f on [0, 1]. If fn(x) ≤ fn+1(x) for all
x ∈ [0, 1], must {fn} be uniformly convergent to f?

17. Suppose that {fn} is a sequence of continuous functions on E and that
there exists a continuous function f on E such that fn → f on E. If
fn(xn) → f(x) for every sequence {xn} in E with xn → x, x ∈ E, must
fn → f uniformly on E?

18. Can the limit of a sequence of functions, each discontinuous at every point
in [0, 1], be uniformly convergent on [0, 1]?

Exercises 9.20.

1. Show by your own example that the limit of a sequence of continuous
functions need not be continuous unless the convergence is uniform.

2. Does {x/n} converge uniformly on R? How about on |x| < c, c > 0? How
about on |x| > d, d > 0?

3. Does {nxn} converge pointwise to f(x) = 0 on [0, 1)? Does it converge
uniformly on [0, 1)?

4. Does the sequence {fn}, fn(x) = nx/(n+x), converge uniformly on [0, 1]?
5. Does {arctan(nx)} converge uniformly on [0, b]? Does it converge uni-

formly to f(x) = π/2 on [a, b], a > 0? Does it converge uniformly on
[c, 0]? Does it converge uniformly to f(x) = −π/2 on [c, a], a < 0?

6. Is each fn(x) = |x|1+1/n differentiable on [−1, 1]? Does {fn(x)} converge
uniformly to f(x) = |x| on [−1, 1]? (See Figure A.12.)

7. For n ≥ 1, let fn(x) = nx/(1 + npx2) for x ∈ R, where p > 1. Show that
{fn} converges pointwise on R. Show also that {fn} converges uniformly
on R if and only if p > 2.

8. Show that {fn(x)}, fn(x) = 1/(x−n+xn), converges pointwise to f(x) = 0
on (0, 1), but not uniformly on (0, 1).
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9. Show that {xn(1− xn)}n≥1 does not converge uniformly on [0, 1].
10. Show that {fn(x)}, fn(x) = xn/(1 + xn), is not uniformly convergent on

[0, 3].

11. Does {nxe−nx2} converge pointwise on R? Must {nxe−nx2} be uniformly
convergent on [0, 1]? Does it converge uniformly on {x : |x| > r}, r > 0?

12. Let fn(x) = nxe−nx2

for 0 ≤ x ≤ 1 (see Figure 9.25). Show that fn → 0
on [0, 1] but not uniformly. Show also that

lim
n→∞

∫ 1

0

fn(x) dx �=
∫ 1

0

lim
n→∞ fn(x) dx.

13. Suppose that g is continuous on [0, 1]. Show that {g(x)xn} converges uni-
formly on [0, 1] if and only if g(1) = 0.

14. Define fn as below on the stated interval I:

(a)
n

x+ n
, x ≥ 0; and 0 ≤ x ≤ c. (b) (x− 1/n)2, x ∈ [0, 1].

(c) (1/n) arctan(nx), x ∈ R. (d)
1− (−1)nxn

1 + x
, x ∈ [0, 1].

(e) sinn x, x ∈ [0, π]. (f) n sin(x/n), x ∈ R.

(g) e−nx, x ≥ 0 and c ≤ x < ∞, c > 0. (h)
1

1 + nx
, 0 ≤ x ≤ c.

(i)
sinn x

3n+ sinn x
, x ∈

[
−π

2
,
π

2

]
. (j)

cosn x

2n− cosn x
, x ∈ [0, π].

(k)
xe−x2

n
, x ∈ (−∞,∞). (l) 1− xn

n
, x ∈ [0, 1].

Does the sequence {fn(x)} converge pointwise on I? If so, find the (point-
wise) limit function f(x) on I. Does it converge uniformly on I? Justify
your answer.

15. Show that {(1/n) sinnx}n≥1 converges pointwise to f(x) = 0 on R.
16. Show that {xke−nx}n≥1 (k ∈ N is fixed) converges pointwise to f(x) = 0

on [0,∞).
17. Show that {ex(n+1)/n}n≥1 converges uniformly to ex on [0, b], whereas

{e−nx}n≥1 does not converge uniformly on [0, b], b > 0.
18. If fn(x) = nx/(1 + n2x2) on [0, 1], show that

lim
n→∞

∫ 1

0

fn(x) dx =

∫ 1

0

f(x) dx.

Can we conclude that {fn} converges uniformly on [0, 1]? (Compare with
Theorem 9.15.)

19. For each of the sequences {fn}n≥1 given by the functions fn : [0, 1] → R

below, find the pointwise limit of {fn} and determine whether the se-
quence converges uniformly on [0, 1] to its pointwise limit.

(a)
n

x
sin

(x
n

)
. (b)

1

1 + x2n
. (c)

(
1 +

x

n

)n

. (d)
xn

1 + xn
.
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Fig. 9.29. fn(x) = (1 + x/n)n on
[0, 1].
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Fig. 9.30. fn(x) = nx(1− x)n on [0, 1].
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Fig. 9.31. Graph of fn(x) on [0, 1/n] for some n, for Exercise 9.20(21).

For case (a), assume that the function has the value 1 at x = 0. Verify
whether

lim
n→∞

∫ 1

0

fn(x) dx =

∫ 1

0

(
lim
n→∞ fn(x)

)
dx.

20. Find the convergence set of each of the following sequences {fn(x)} of
functions on [0, 1]. Also find sets on which these converge uniformly (see
Figures 9.9, 9.29, and 9.30 for (a), (b), and (c), respectively).

(a) n2xn(1 − x). (b)
(
1 +

x

n

)n

. (c) nx(1 − x)n.

21. For n ≥ 1, define {fn(x)} on [0, 1] (see Figure 9.31) by

fn(x) =

⎧
⎨

⎩

4n2x for 0 ≤ x ≤ 1/(2n),
−4n2(x− 1/n) for 1/(2n) ≤ x ≤ 1/n,
0 for 1/n ≤ x ≤ 1.

Show that fn → 0 pointwise on [0, 1] and
∫ 1

0
fn(x) dx = 1.

Note: See also Examples 9.11.
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22. Determine

(a) lim
n→∞

∫ b

a

sinn(x2)

x3 + n
dx, 0 < a < b. (b) lim

n→∞

∫ 1

0

n+ cosn(ex)

4n+ x4
dx.

9.2 Uniform Convergence of Series

Definition 9.1 suggests that we continue our discussion from sequences of real-
valued functions to series of real-valued functions. Consider a sequence of
functions {fn(x)} defined on a set E. Recall that the formal sum

∑∞
k=1 fk is

called a series of functions. Form a new sequence of partial sums of functions
{Sn(x)} defined by

Sn(x) =

n∑

k=1

fk(x), x ∈ E. (9.1)

If the sequence {Sn(x)} converges at a point x ∈ E, then we say that the
series of functions

∑∞
k=1 fk converges at x, and we write

lim
n→∞Sn(x) =

∞∑

k=1

fk(x).

If the sequence {Sn(x)} converges at all points of E, then we say that
∑∞

k=1 fk
converges (pointwise) on E and write the sum function as

f(x) := lim
n→∞Sn(x) =

∞∑

k=1

fk(x).

Definition 9.21. The series
∑∞

k=1 fk(x) is said to be uniformly convergent
to f(x) on E if {Sn(x)} converges uniformly to f(x) on E. That is, the series
converges uniformly to f(x) on E if to each ε > 0, there corresponds an integer
N = N(ε) such that

∣∣∣∣∣

n∑

k=1

fk(x)− f(x)

∣∣∣∣∣ < ε whenever n > N(ε) for all x ∈ E.

In order to appreciate the importance of questions about convergence, we
continue our investigation with a familiar sequence. Consider

Sn(x) = 1 + x+ x2 + · · ·+ xn−1 =
1− xn

1− x
for x �= 1.

We see that {Sn}∞n=1 converges pointwise on (−1, 1) to 1/(1 − x). Next, we
show that {Sn} converges uniformly on any closed subinterval of (−1, 1).
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To see this, we consider a subinterval [−1 + r, 1 − r], where r < 1 is an
arbitrary positive number. In this interval |x| < 1 − r, we have |1 − x| > r.
Consequently,

∣∣∣∣Sn(x) − 1

1− x

∣∣∣∣ =
∣∣∣∣

xn

1− x

∣∣∣∣ <
(1− r)n

r
< ε for all n ≥ N,

because

(1− r)n < εr, i.e., n log(1− r) < log(εr) or n >
log(εr)

log(1− r)
,

and soN may be chosen as any positive integer greater than log(εr)/log(1− r).
As for the entire interval (−1, 1), it contains points close to x = 1, and so

lim
x→1−

∣∣∣∣
−xn

1− x

∣∣∣∣ = ∞.

We may also note that supr∈(0,1) log(εr)/log(1 − r) = ∞ (with ε = 2, for
example) showing that {Sn} does not converge uniformly on (−1, 1). How
about the convergence of {Sn} on |x| ≥ 1?

We may now rewrite Theorem 9.12 about sequences to get a necessary, but
not sufficient, condition for the uniform convergence of series of functions.

Corollary 9.22 (Necessary condition for uniform convergence of se-
ries). If fn is continuous on E for each n ≥ 1 and if

∑
k≥1 fk(x) is uniformly

convergent to f(x) on E, then f must be continuous on E.

A series
∑∞

k=1 fk(x) is said to be absolutely convergent at x (respectively on
E) if

∑∞
k=1 |fk(x)| converges at x (respectively on E). Moreover, a necessary

condition for
∑∞

k=1 fk(x) to converge on E is that fk(x) → 0 for each x ∈ E.
This fact is evident if we write

fn = Sn − Sn−1

and allow n → ∞. Also, rewording the Cauchy criterion, we have the following
result, which may be used to test a series for uniform convergence without
guessing what the limit function might be.

Theorem 9.23 (Cauchy criterion for functional series). A series∑∞
k=1 fk(x) converges uniformly on a set E if and only if the sequence of

partial sums is uniformly Cauchy on E, i.e., to each ε > 0, there corresponds
an integer N = N(ε) such that

|Sm(x)−Sn(x)| =
∣∣∣∣∣

m∑

k=n+1

fk(x)

∣∣∣∣∣ < ε whenever m > n > N(ε) for all x ∈ E,

where {Sn} is the sequence of partial sums defined by (9.1).



396 9 Uniform Convergence of Sequences of Functions

Proof. Apply Theorem 9.9.

For instance, if Sn(x) = 1 + x + x2 + · · · + xn−1, then for m > n and all
|x| ≤ r, 0 < r < 1,

|Sm(x) − Sn(x)| =
∣∣∣∣
1− xm

1− x
− 1− xn

1− x

∣∣∣∣ =
∣∣∣∣
xm − xn

1− x

∣∣∣∣ ≤
2|xn|
1− |x| ≤

2rn

1− r
,

so that

sup
x∈[−r,r]

|Sm(x) − Sn(x)| ≤ 2rn

1− r
.

Since 2rn/(1 − r) → 0 (r < 1), an integer N = N(ε) can be found for which
2rn/(1 − r) < ε for all n > N(ε). But then for all m > n > N and all
x ∈ [−r, r],

|Sm(x) − Sn(x)| ≤ 2rn

1− r
< ε,

showing that the series
∑∞

k=0 x
k converges uniformly on any interval [−r, r],

0 < r < 1. Note that here we do not bother about the limit function.

9.2.1 Two Tests for Uniform Convergence of Series

Theorem 9.23 enables us to establish an analogue of the comparison test,
namely, a sufficient condition for the uniform convergence of a series.

Definition 9.24. Let {Mn}n≥1 be a sequence of nonnegative real numbers,
and {fn} a sequence of functions defined on a set E such that |fn(x)| ≤ Mn

for all x ∈ E and each n ∈ N. Then the series
∑∞

k=1 fk(x) is said to be a
dominated series on E if

∑∞
k=1 Mk converges.

Indeed, the following result is a simple and direct test for the uniform
convergence of series.

Theorem 9.25 (Weierstrass M-test/dominated convergence test). If∑∞
k=1 fk(x) is a dominated series on E, then it converges uniformly and

absolutely on the set E.

Proof. Suppose that
∑∞

k=1 fk(x) is dominated by a convergent series
∑∞

k=1Mk.
That the series

∑∞
k=1 |fk(x)| converges on E follows immediately from the

comparison test for real series. To verify the uniform convergence of
∑∞

k=1fk(x)
on E, we invoke the Cauchy criterion for the series

∑∞
k=1 Mk. Thus, given

ε > 0, there exists an integer N = N(ε) such that for m > n > N , we have

m∑

k=n+1

Mk < ε.
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But for all m > n > N , we also have

|Sm(x) − Sn(x)| =
∣∣∣∣∣

m∑

k=n+1

fk(x)

∣∣∣∣∣ ≤
m∑

k=n+1

|fk(x)| ≤
m∑

k=n+1

Mk < ε.

Therefore, by the Cauchy criterion (see Theorem 9.23), the series
∑∞

k=1 fk(x)
converges uniformly and absolutely on E.

As an illustration, consider the series
∑∞

k=0(x
k/k!). For |x| ≤ r (r ≥ 0),

∣∣∣∣
xk

k!

∣∣∣∣ ≤
rk

k!
=: Mk.

But the ratio test immediately implies that
∑∞

k=0 Mk converges. Conse-
quently, by the Weierstrass M -test, the series

∑∞
k=0(x

k/k!) converges uni-
formly for |x| ≤ r. We remark that the series does not converge uniformly on
R, but since it converges uniformly on every bounded interval, we conclude
that the limit is continuous on R (by Corollary 9.22). We may now formulate
the following remarkable result, which is basic for many applications of power
series in analysis.

Theorem 9.26. Let R > 0 be the radius of convergence of the power series∑∞
k=0 akx

k and let r be a positive number such that r < R. Then
∑∞

k=0 akx
k

converges uniformly for |x| ≤ r.

Proof. Assume that
∑∞

k=0 akx
k converges for |x| < R. As usual, choose t such

that r < t < R. Then there exists an M > 0 such that

|aktk| ≤ M for all k ≥ 0.

Also, for |x| ≤ r (< t < R), we have

|akxk| ≤ |ak|rk = |aktk|
(r
t

)k

≤ M
(r
t

)k

= Mk for all k ≥ 0.

We recall that
∑∞

k=0 Mk converges. Therefore, by the Weierstrass M -test, the
series

∑∞
k=0 akx

k converges uniformly for |x| ≤ r, for each r < R.

For instance, each of the series
∑∞

k=0 x
k and

∑∞
k=1(x

k/k) converges uni-
formly on every compact subset of (−1, 1), because the radius of convergence
of both series is 1.

Remark 9.27. Note that the Weierstrass M -test has a slight drawback, since
it applies only to series that are also absolutely convergent. Thus, one needs
to use a different method for testing the uniform convergence of nonabsolutely
convergent series. Below, we present a uniformly convergent series that is not
absolutely convergent. •
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Examples 9.28. We begin by illustrating the Weierstrass M -test by a num-
ber of examples.

• For the functional series
∑∞

k=1

(
1/(x2 + k2)

)
and

∑∞
k=1

(
(sin kx)/k2

)
, we

have {∣∣∣∣
1

x2 + k2

∣∣∣∣ ,
∣∣∣∣
sin kx

k2

∣∣∣∣

}
≤ 1

k2
for all x ∈ R and k ≥ 1,

where
∑∞

k=1(1/k
2) converges. Thus, both series converge uniformly on R.

By Corollary 9.22, each of the series represents a continuous function on R.
• For the functional series

∑∞
k=1 sin(x/k

p) (p > 1), for any x with |x| ≤ r,

∣∣∣sin
( x

np

)∣∣∣ ≤
∣∣∣
x

np

∣∣∣ ≤ r

np
= Mn,

where
∑

Mk converges for p > 1. Thus, the series converges uniformly (and
absolutely) on every closed and bounded interval [−r, r].

• As a consequence of the substitution y = x/(1 + x), the functional series∑∞
k=1 (x/(1 + x))k may be treated as a geometric series with the new vari-

able y, and hence it converges pointwise for

|x/(1 + x)| < 1, i.e., for x > −1/2,

and converges uniformly for

|x/(1 + x)| ≤ r (< 1), i.e., for x ∈ [ −r
1+r ,

r
1−r ], r < 1.

Thus, the series converges on any compact subset of (−1/2,∞).
• The functional series

∑∞
k=1((cos

k x)/k!) converges uniformly on R, because
for any real x, ∣∣∣∣

cosn x

n!

∣∣∣∣ ≤
1

n!
= Mn,

and
∑

Mk converges.
• The functional series

∑∞
k=1

(
xk/(1 + xk)

)
converges uniformly for |x| ≤ 1/2,

because for |x| ≤ 1/2,

|1 + x−n| ≥ 2n − 1 ≥ 2n−1, i.e.,

∣∣∣∣
xn

1 + xn

∣∣∣∣ ≤
1

2n−1
= Mn,

and
∑

Mk converges.
• The functional series

∑∞
k=1[(1− k cos(kx))/(kα−sin(kx))] (α > 3) converges

uniformly on [0, 2π], because for real x ∈ [0, 2π],

∣∣∣∣
1− n cos(nx)

nα−sin(nx)

∣∣∣∣ ≤
1 + n

nα−1
≤ 2n

nα−1
=

2

nα−2
= Mn,

and
∑

Mk converges.
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• Consider
∑∞

k=1(−1)k−1
(
x/(k + x2)

)
. Then for each fixed x > 0, we have

an(x) =
x

n+ x2
≥ x

n+ 1 + x2
= an+1(x)

and an(x) → 0 as n → ∞, and so by the alternating series test, the series
converges pointwise on (0,∞) (as well as (−∞, 0)) and hence on R. Let the
limit function be f(x). Using the error estimate for alternating series (see
Corollary 5.46), we see that the sequence of partial sums {Sn(x)} satisfies

|Sn(x)− f(x)| ≤ |an+1(x)| = |x|
1 + n+ x2

≤ |x|
2n1/2|x| =

1

2n1/2
,

showing that it converges uniformly on R. In particular, the given series
represents a continuous function on R. Is the Weierstrass M -test applicable
in this example? This result cannot be obtained from the WeierstrassM -test
because

∑∞
k=1(|x|/(k + x2)) diverges for all x �= 0.

• As in the last item, we conclude that the series
∑∞

k=1(−1)k−1(1/(k + x))
converges uniformly on [0,∞). •

Theorem 9.29 (Dirichlet’s test for uniform convergence). Suppose
that {bn} is a sequence of (nonnegative) functions on a set E such that bn(x) ≥
bn+1(x) and bn → 0 uniformly on E. If {an} is a sequence of functions such
that |sn(x)| ≤ M if n ≥ 1 and x ∈ E, where sn(x) =

∑n
k=1 ak(x), then∑∞

k=1 ak(x)bk(x) converges uniformly on E.

Proof. It follows from Dirichlet’s test (Corollary 5.55) that
∑∞

k=1 ak(x)bk(x)
converges on E. Let Sn(x) =

∑n
k=1 ak(x)bk(x). Then (see the proof of

Theorem 5.54) from Abel’s summation by parts, we have

m∑

k=n+1

akbk = smbm+1 − snbn+1 +

m∑

k=n+1

sk(bk − bk+1).

Since {bn(x)} is decreasing and {sn(x)} is bounded, it follows that for m > n,

∣∣∣∣∣

m∑

k=n+1

akbk

∣∣∣∣∣ ≤ Mbm+1 +Mbn+1 +M

m∑

k=n+1

(bk − bk+1)

= Mbm+1 +Mbn+1 +M(bn+1 − bm+1)

= 2Mbn+1,

and so we conclude that if m > n, then

|Sm(x)− Sn(x)| ≤ 2Mbn+1(x) for all x ∈ E.

This fact together with that fact that bn(x) → 0 uniformly on E implies that
{Sn(x)} converges uniformly on E.
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9.2.2 Interchange of Summation and Integration

Theorem 9.15 applied to a sequence of partial sums leads to the following
result for series.

Corollary 9.30 (Interchange of summation and integration). Sup-
pose that {fn(x)} is a sequence of continuous functions on [a, b] and that∑∞

k=0 fk(x) converges uniformly to a function f(x) on [a, b]. Then

∞∑

k=0

(∫ b

a

fk(x) dx

)
=

∫ b

a

f(x) dx.

Also, for each t ∈ [a, b],

∞∑

k=0

(∫ t

a

fk(x) dx

)
=

∫ t

a

f(x) dx.

Example 9.31. We know that
∑∞

k=1(1/k
p) cos kx converges uniformly to

some f(x) on R for p > 1 (by Weierstrass’s M -test). In particular, the se-
ries is integrable on any closed interval in R, and so

∫ π/2

0

f(x) dx =

∫ π/2

0

∞∑

k=1

cos kx

kp
dx =

∞∑

k=1

1

kp

∫ π/2

0

cos kxdx =

∞∑

k=1

sin(kπ/2)

kp+1
,

which gives ∫ π/2

0

f(x) dx =

∞∑

k=1

(−1)k−1

(2k − 1)p+1
, p > 1.

Similarly,
∑∞

k=1(1/k
p) sin kx converges uniformly to some g(x) on R for p > 1,

and therefore we easily see that

∫ π

0

g(x) dx =

∞∑

k=1

2

(2k − 1)p+1
.

Again, consider the series
∑∞

k=1(1/k
p) cos kx, where 0 < p ≤ 1. Set

ak(x) = cos kx and bk = 1/kp. Note that {bk} is convergent to 0. To evaluate
sn(x) =

∑n
k=1 ak(x), we may rewrite the partial sum (see Corollary 5.59(ii))

sn(x) =
1

2 sin(x/2)
[sin(n+ 1/2)x− sin(x/2)]

for x �= 2mπ (m ∈ Z), and so

|sn(x)| ≤ 1

sin(x/2)
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for any n and on any interval of the form [δ, 2π − δ], where δ > 0. Thus,
{sn(x)} is uniformly bounded on [δ, 2π − δ]. So Dirichlet’s test applies, and
the series

∑∞
k=1(1/k

p) cos kx (0 < p ≤ 1) converges uniformly on [δ, 2π − δ].
In particular,

∑∞
k=1(1/k

p) cos kx converges for 0 < x < 2π (and hence for all
x with x �= 2mπ, m ∈ Z) and 0 < p ≤ 1.

Similarly, it can be shown that the series
∑∞

k=1(1/k
p) sin kx is uniformly

convergent on [δ, 2π − δ] for 0 < p ≤ 1. •
Example 9.32. From the proof of Theorem 5.3 (or even directly), we see that

1

1 + r2
= 1− r2 + r4 − r6 + · · ·+ (−1)n−1r2(n−1) + (−1)n

r2n

1 + r2
,

which by integration from 0 to 1 gives,

tan−1 r
∣∣1
0
=

(
r − r3

3
+

r5

5
− r7

7
+ · · ·+ (−1)n−1 r2n−1

2n− 1

)∣∣∣∣
1

0

+Rn,

so that
π

4
= 1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n−1 1

2n− 1
+Rn,

where

|Rn| =
∣∣∣∣(−1)n

∫ 1

0

r2n

1 + r2
dr

∣∣∣∣ =
∫ 1

0

r2n

1 + r2
dr <

∫ 1

0

r2n dr =
1

2n+ 1
,

which approaches zero as n → ∞. Therefore, we have the Madhava-Leibniz-
Gregory series (see also Examples 9.52 and 10.16)1

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n−1 1

2n− 1
+ · · · .

This example shows that if a series can be recognized as a variant of the
geometric series (5.1), then it becomes easier to evaluate its limit. However,
this formula is of limited value, because the rate of convergence is so slow in
the representation of π. •
Example 9.33. From our earlier knowledge, we know that

∞∑

k=0

(−1)kx2k = lim
n→∞Sn(x) =

1

1 + x2
for |x| < 1,

where Sn(x) =
∑n−1

k=0 (−1)kx2k, and the convergence is uniform on [−r, r], for
each r < 1. By Corollary 9.30, for x ∈ [−r, r] (r < 1),

∫ x

0

Sn(t) dt =

n−1∑

k=0

(−1)k

2k + 1
x2k+1 →

∫ x

0

dt

1 + t2
= arctanx,

1 This formula was first deduced by the Indian Mathematician Madhava of
Sangramagrama (1350–1425) as a special case of the more general infinite series
for arctan x discovered by him. The latter was rediscovered by Gregory during
1638–1675.
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and the convergence is uniform on [−r, r]. Thus, we have a series expansion
for arctanx:

arctanx =

∞∑

k=0

(−1)k

2k + 1
x2k+1 for x ∈ [−r, r] (r < 1).

Observe that the radius of convergence of this series is 1. We remark that by
the alternating series test, the above series representation of arctanx converges
at both endpoints x = ±1, although we would not be able to conclude this
from Corollary 9.30. •
Remark 9.34. As an application to the last equation, we set x = 1/2 and
x = 1/3 and add the resulting equations to obtain

arctan
1

2
+ arctan

1

3
=

∞∑

k=0

(−1)k

2k + 1

( 1

22k+1
+

1

32k+1

)
.

The left-hand side is known to be π/4, because

arctan
1

2
+ arctan

1

3
= arctan

( 1
2 + 1

3

1− 1
2
1
3

)
= arctan 1 =

π

4
.

This gives

π = 4

[
arctan

1

2
+ arctan

1

3

]
,

so that

π = 4
∞∑

k=0

(−1)k

2k + 1

(
1

22k+1
+

1

32k+1

)
= 4

(
5

6
− 35

648
+ · · ·

)
, (9.2)

which is a series representation of π.
To get another expansion of π, we set x = 1/5 and arctan(1/5) = A, i.e.,

tanA = 1/5. From the formula

tan(2A) =
2 tanA

1− tan2 A
,

it follows that tan(2A) = 5/12. Again, using this formula once again, we get

tan(4A) =
2 tan(2A)

1− tan2(2A)
=

120

119
.

Using this value of tan(4A), choose B such that

1 = tan(4A−B) =
tan(4A)− tanB

1 + tan(4A) tanB
=

(120/119)− tanB

1 + (120/119) tanB
.
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A computation gives tanB = 1/239 and 4A−B = π/4. That is,

π = 4

[
4 arctan

1

5
− arctan

1

239

]
,

and therefore, in series form,

π = 4
∞∑

k=0

(−1)k

2k + 1

( 4

52k+1
− 1

2392k+1

)
. (9.3)

In order to compare the two expansions (9.2) and (9.3) of π, we consider the
partial sums of these two series:

An =
n∑

k=0

(−1)k

2k + 1

( 4

22k+1
+

4

32k+1

)
and Bn =

n∑

k=0

(−1)k

2k + 1

( 16

52k+1
− 4

2392k+1

)
.

A computation shows that the formula (9.3) can be used to approximate π
up to 100 decimal places, whereas in the formula (9.2), the convergence is
somewhat slow. For a comparison, we refer to Table 9.1. •

n An Bn

0 3.33333333 3.18326360
1 3.11728395 3.14059703
2 3.14557613 3.14162103
3 3.14085056 3.14159177
4 3.14174120 3.14159268
5 3.14156159 3.14159265

Table 9.1. Iterated values of π.

Here is one more example. We have learned that the geometric series∑∞
k=0 x

k converges to 1/(1 − x) on (−1, 1) and converges uniformly on any
closed interval [a, b] contained in (−1, 1) (see Example 9.28). Since each
fn(x) = xn is continuous on [a, b], by Corollary 9.30, term-by-term integration
is permissible. Thus, we have for −1 < t < 1,

∞∑

k=0

∫ t

0

xk dx =

∞∑

k=0

tk+1

k + 1
→

∫ t

0

dx

1− x
= − log (1− t) on [a, b].

That is,
∞∑

k=0

tk+1

k + 1
= − log (1 − t) on (−1, 1),
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and the convergence is uniform on any closed subinterval of (−1, 1). It turns
out that the new series also converges (by the alternating series test) at one
of the endpoints, t = −1.

The following result is almost obvious and is in fact a straightforward
application of Corollary 9.30.

Theorem 9.35 (Term-by-term integration in power series). Suppose
that f(x) =

∑∞
k=0 akx

k converges for |x| < R. Then for any closed interval
[c, x] contained in (−R,R), the integral

∫ x

c f(t) dt exists and can be obtained
by integrating the power series term by term. In particular, we have

∫ x

0

f(t) dt =

∞∑

k=0

ak
k + 1

xk+1 + constant for |x| < R,

and the convergence is uniform on any closed subinterval of (−R,R).

Theorem 9.35 tells us that inside the interval of convergence (not neces-
sarily at the endpoints), a power series can be integrated term by term. Next,
we see that term-by-term differentiation is also possible.

In Theorem 9.15, we needed for each fn to be continuous on [a, b]. Is it
possible to weaken the hypothesis to permit integrable functions rather than
just continuous functions? Recall that if f and g are two Riemann integrable
functions on [a, b], then

∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx,

whenever f(x) ≥ g(x) on [a, b].

Theorem 9.36 (Integration of sequences of integrable functions).
Suppose that {fn} is a sequence of Riemann integrable functions defined on
an interval [a, b]. If fn → f uniformly on [a, b], then f is Riemann integrable
on [a, b], and

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

Also, for each t ∈ [a, b],

∫ t

a

fn(x) dx →
∫ t

a

f(x) dx uniformly on [a, b].

Proof. Because of the argument in Theorem 9.15, we need only show that the
limit function f is integrable on [a, b]. We see that the following statements
hold:

• fn is bounded, because each fn is integrable on [a, b].
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• f is bounded, because

|f(x)| ≤ |fn(x) − f(x)|+ |fn(x)| ≤ δn + |fn(x)|,
where δn = supx∈[a,b] |fn(x)− f(x)| → 0 (by Theorem 9.6).

• Because fn → f uniformly on [a, b], given ε > 0, there exists an N such
that

|fn(x)− f(x)| < ε

3(b− a)
for all x ∈ [a, b] and all n ≥ N . (9.4)

• Since fN is integrable, there exists a partition P of [a, b] such that

U(P, fN )− L(P, fN ) <
ε

3
.

For each x ∈ [a, b], (9.4) with n = N implies that

fN (x) − ε

3(b− a)
< f(x) < fN(x) +

ε

3(b− a)
,

and therefore

L(P, fN)− ε

3
< L(P, f) ≤ U(P, f) < U(P, fN ) +

ε

3
.

Consequently,

U(P, f)− L(P, f) < U(P, fN )− L(P, fN ) +
2ε

3
<

ε

3
+

2ε

3
= ε,

showing that f is integrable on [a, b].
Finally, for n ≥ N and for each t ∈ [a, b], (9.4) implies that

∣∣∣∣
∫ t

a

fn(x) dx −
∫ t

a

f(x) dx

∣∣∣∣ ≤
∫ t

a

|fn(x) − f(x)| dx

≤ ε(t− a)

3(b− a)
≤ ε(b− a)

3(b− a)
=

ε

3
,

and the proof is complete.

The limit of a uniformly convergent series of integrable functions is inte-
grable, and so term-by-term integration is permissible for such a series. More
precisely, we have the following result concerning integration of a series of
integrable functions.

Corollary 9.37 (Interchange of summation and integration). Suppose
that {fn} is a sequence of integrable functions on [a, b]. If

∑
fk converges

uniformly to f on [a, b], then f is integrable on [a, b], and

∑∫ b

a

fk(x) dx =

∫ b

a

(∑
fk(x)

)
dx =

∫ b

a

f(x) dx.
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Fig. 9.32. Sn(x) = x(1 − e−nx)
on [0, 1] and S(x) = x.
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Fig. 9.33. fn(x) = x/(1 + nx2) on R.

For instance, if fn(x) = x/(n(1+nx2)) on [a, b] ⊂ R, Weierstrass’s M -test
shows that

∑∞
k=1 fk converges uniformly on [a, b]. Consequently, term-by-term

integration is permissible in this series.

Example 9.38. Evaluate
∑∞

k=1

∫ 1

0
x(ex − 1)e−kx dx.

Solution. To evaluate this integral, we set Sn(x) =
∑n

k=1 x(e
x − 1)e−kx. We

observe that Sn(0) = 0 and for x > 0,

Sn(x) = x(ex − 1)
e−x(1 − e−nx)

1− e−x
= x(1 − e−nx).

Thus, since xe−nx attains its maximum at x = 1/n, we have

δn = sup
x≥0

|Sn(x)− x| = sup
x≥0

|xe−nx| = 1

en
→ 0 as n → ∞,

so that {Sn(x)} converges uniformly to f(x) = x for x ≥ 0 (see Theorem
9.6 and Figure 9.32). Thus, Corollary 9.37 is applicable with fk(x) = x(ex −
1)e−kx, and we conclude that

∞∑

k=1

∫ 1

0

fk(x) dx =

∫ 1

0

f(x) dx =

∫ 1

0

xdx =
1

2
. •

Remark 9.39. Note that Tn(x) =
∑n

k=0 xe
−kx does not converge uniformly

to a continuous function on [0, 1]. •
9.2.3 Interchange of Limit and Differentiation

Consider fn(x) = x/(1 + nx2) on R. Then
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|fn(x)| =
∣∣∣∣

x

1 + nx2

∣∣∣∣ ≤
|x|

2
√
n|x| =

1

2
√
n
,

showing that fn(x) → f(x) = 0 uniformly on R. Now we compute

f ′
n(x) =

1− nx2

(1 + nx2)2
→

{
0 for x �= 0,
1 for x = 0,

and we see that f ′
n(0) = 1. But f ′(x) = 0 on R. Thus, we have a sequence of

differentiable functions {fn} on E such that (see Figure 9.33):

• fn → f uniformly on E;
• f is differentiable on E;
• there exists x ∈ E with f ′(x) �= limn→∞ f ′

n(x), because f
′
n(0) → 1 �= f ′(0).

(See also Questions 9.19(5) and Exercises 9.20(6), in which the limit function
is not differentiable although the convergence is uniform.) Thus, even if the
limit of a uniformly convergent sequence (respectively series) of differentiable
functions on E is differentiable on E, it may happen that the derivative of the
limit is not the limit of the sequence (respectively sequence of partial sums)
of derivatives of the differentiable functions.

Theorems 9.15 and 9.36 concern integration of sequences. In view of the
fundamental theorem of calculus, it seems reasonable to expect a result about
differentiation of sequences.

Theorem 9.40 (Differentiation of a sequence of functions). Suppose
that {fn} is a sequence of functions such that:

(a) fn ∈ C1[a, b];
(b) there exists a point x0 ∈ [a, b] such that {fn(x0)} converges;
(c) f ′

n → g uniformly on [a, b].

Then {fn} converges uniformly to some f on [a, b] such that f ′(x) = g(x) on
[a, b].

Proof. By (c), {f ′
n} is uniformly convergent to g on any closed interval con-

tained in [a, b], say in an interval with endpoints x0 and x, x ∈ [a, b]. Thus,
for all x ∈ [a, b], we have

∫ x

x0

g(t) dt = lim
n→∞

∫ x

x0

f ′
n(t) dt by Theorem 9.15,

= lim
n→∞(fn(x) − fn(x0)) by the fundamental theorem of calculus,

and the convergence is uniform on [a, b]. Since limn→∞ fn(x0) exists by (b),
we can add this term to both sides and obtain

lim
n→∞ fn(x) =

∫ x

x0

g(t) dt+ lim
n→∞ fn(x0) on [a, b],
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and the convergence is uniform on [a, b]. We may now set f(x) = limn→∞
fn(x), and the last equation then becomes

f(x) =

∫ x

x0

g(t) dt+ lim
n→∞ fn(x0).

Now, g, being the limit of a uniformly convergent sequence of continuous
functions on [a, b], is continuous on [a, b], and so by the second fundamental
theorem of calculus (Theorem 6.36), G(x) =

∫ x

x0
g(t) dt is differentiable and

G′(x) = g(x) on [a, b]. Therefore, the last inequality implies that

f ′(x) = g(x), i.e., f ′(x) = lim
n→∞ f ′

n(x) on [a, b].

We may now state a condition under which term-by-term differentiation
of an infinite series is permissible.

Corollary 9.41 (Interchange of summation and differentiation). Sup-
pose that

(a) fn ∈ C1[a, b];
(b) there exists a point x0 ∈ [a, b] such that

∑
fk(x0) converges;

(c)
∑

f ′
k(x) converges uniformly on [a, b].

Then
∑

fk converges uniformly on [a, b] to a differentiable function F ,

F ′(x) =
d

dx

(∑
fk(x)

)
=

∑ d

dx
(fk(x)) on (a, b),

and at the endpoints, we express the above equality as

F ′
+(a) =

∑
(fk)

′
+(a) and F ′

−(b) =
∑

(fk)
′
−(b).

Let us consider an easy example. Consider the series
∞∑

k=1

(−1)k−1

k
cos

(x
k

)
, (9.5)

which from the alternating series test converges at x0 = 0. Clearly, by Weier-
strass’s M -test, the derived functional series

∞∑

k=1

(−1)k

k2
sin

(x
k

)
(9.6)

converges uniformly on R. By Corollary 9.41, the given series (9.5) converges
uniformly on every finite interval, and so the series (9.5) represents a differ-
entiable function F (x) on R, and F ′(x) is the derived series given by (9.6).
Because (9.5) converges uniformly on every finite interval, it follows easily
that ∞∑

k=1

(−1)k−1 sin
(x
k

)

converges uniformly on any finite interval.
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Remark 9.42. The second condition in Corollary 9.41, namely the conver-
gence of the given series at some point, is not superfluous. For instance, con-
sider ∞∑

k=1

cos
(x
k

)
. (9.7)

Then the derived functional series

−
∞∑

k=1

1

k
sin

(x
k

)

is known to be uniformly convergent on [−r, r] for every r > 0, since

∣∣∣∣
1

k
sin

(x
k

)∣∣∣∣ ≤
|x|
k2

≤ r2

k2
for |x| ≤ r.

However, we cannot conclude that the given series (9.7) converges uniformly
on [−r, r]. Indeed, it can be shown that (9.7) diverges for every x. •
Example 9.43. The series

∞∑

k=1

(−1)k−1x
2 + k

k2

converges on R, by the alternating series test. The derived functional series
converges uniformly on each [−r, r], r > 0. By Corollary 9.41, the given series
converges uniformly on every finite closed interval [a, b], and it represents a
differentiable function on [a, b]. Clearly, since

∣∣∣∣(−1)k−1 x
2 + k

k2

∣∣∣∣ =
x2 + k

k2
>

k

k2
=

1

k
,

the given series does not converge absolutely. •
As a special case of Corollary 9.41, we have the following result, part of

which has been proved in Theorem 8.32.

Corollary 9.44 (Term-by-term differentiation of power series). Let
R > 0 be the radius of convergence of f(x) =

∑∞
k=0 akx

k. Then f is differen-
tiable on |x| < R,

f ′(x) =
∞∑

k=1

kakx
k−1 for |x| < R,

and the convergence is uniform on any closed subinterval of (−R,R).
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Proof. We have already shown that
∑∞

k=0 akx
k and

∑∞
k=1 kakx

k−1 have
the same radius of convergence. Weierstrass’s M -test (see Example 9.28)
guarantees that the derived series

∑∞
k=1 kakx

k−1 converges uniformly on
[−r, r] (r < R). Theorem 9.26 implies that

∑∞
k=0 akx

k converges uniformly to
f , where f is differentiable and

f ′(x) =
∞∑

k=1

kakx
k−1 for all x ∈ [−r, r].

For instance, consider the geometric series

1

1− x
=

∞∑

k=0

xk for |x| < 1. (9.8)

By Corollary 9.44, since the convergence in (9.8) is uniform on |x| ≤ r, 0 <
r < 1 (see also Example 9.28), we may differentiate term by term and obtain

1

(1− x)2
=

∞∑

k=1

kxk−1 for |x| < 1.

Theorem 9.40 (and hence Corollary 9.41) continues to hold under a weaker
hypothesis, namely by weakening the first assumption in Theorem 9.40. How-
ever, we cannot replace the third condition, namely, the uniform conver-
gence of the sequence {f ′

n}, with pointwise convergence, as the example
fn(x) = xn/n demonstrates. Now we state an improved version of Theorem
9.40 and leave its proof as an exercise (see Exercise 9.20(12)).

Theorem 9.45. Suppose that {fn(x)} is a sequence of functions such that

(a) each fn is differentiable on [a, b];
(b) there exists a point x0 ∈ [a, b] such that {fn(x0)} converges;
(c) f ′

n → g uniformly on [a, b].

Then {fn} converges uniformly to some f on [a, b] such that f ′(x) = g(x) on
[a, b].

Example 9.46. Consider fn(x) = (1/n) log(1 + n2x2), x ∈ [−a, a] (a > 0).
Then {fn} converges uniformly to f(x) = 0 on [−a, a]. Then (see Examples
9.11(2))

f ′
n(x) =

2nx

1 + n2x2
→ g(x) = 0 pointwise on [−a, a]

(see Figures 9.34 and 9.35). Observe that f ′(x) = g(x) on [−a, a]. •
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Fig. 9.34. fn(x) = (1/n) log(1 +
n2x2) on [−1, 1].
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Fig. 9.35. f ′
n(x) = 2nx/(1 + n2x2) on [−1, 1].

9.2.4 The Weierstrass Approximation Theorem

The proof of the Weierstrass approximation theorem is due to the Russian
mathematician S.N. Bernstein, who in 1912 constructed for every continuous
function f on [0, 1], an explicit formula for a sequence of polynomials Bn(f)
converging to f . These are called the Bernstein polynomials.

Definition 9.47. Let f be a function defined on the closed interval [0, 1]. The
polynomial (Bn(f))(x) defined by

(Bn(f))(x) := Bn(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k, x ∈ [0, 1],

is called the Bernstein polynomial (associated to f) of degree at most n. Here(
n
k

)
denotes the usual binomial coefficient, defined by

(
n

k

)
=

n!

k!(n− k)!
.

It is easy to see that

Bn(f + g) = Bn(f) +Bn(g) and Bn(λf) = λBn(f) (λ ∈ R).

Moreover, Bn(f) ≥ 0 whenever f ≥ 0, and therefore the map f �→ Bn(f) is
linear and positive.

We are now ready to state and prove the Weierstrass approximation the-
orem in the following form.

Theorem 9.48 (Weierstrass approximation theorem, 1885). Suppose
that f : [0, 1] → R is continuous. Then there exists a sequence of polynomials,
the Bernstein polynomials Bn(f), such that {Bn(f)} converges to f uniformly
on [0, 1].
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Before we present the proof of Theorem 9.48, it is essential to offer a
few remarks and illustrations. A direct extension of Theorem 9.48 is can be
stated thus: Every continuous function on a nonempty compact subset D of
the complex plane can be approximated by complex polynomials in z and z.
Moreover, various other extensions of Theorem 9.48 can be found in advanced
texts on this topic.

For a proof of the Weierstrass approximation theorem, we need to show
that for each continuous function f on [0, 1] there exists a sequence of poly-
nomials pn such that limn→∞

[
supx∈[0,1] |f(x) − pn(x)|

]
= 0. Also, we re-

mark that the underlying interval [0, 1] in Theorem 9.48 is of no consequence
here. The intervals [0, 1] and [−1, 1] are popular choices, but it hardly mat-
ters which interval we choose. In fact, given a continuous function F on [a, b]
(−∞ < a < b < ∞), the function f defined by

f(t) = F ((b− a)t+ a), t ∈ [0, 1],

is continuous on [0, 1]. By Theorem 9.48, given ε > 0 there exists a polynomial
p in [0, 1] such that

sup
t∈[0,1]

|f(t)− p(t)| < ε,

which is equivalent to

sup
t∈[a,b]

|F (t)− P (t)| < ε where P (t) = p((t− a)/(b− a)).

Note that the space P [a, b] of all real polynomials

P (x) = a0 + a1t+ · · ·+ ant
n, n = 0, 1, 2, . . . ,

on [a, b] is invariant under translation and is an infinite-dimensional subspace
of the space of continuous function F on [a, b]. Thus, by Theorem 9.48, we
can approximate a real-valued continuous function on [a, b] arbitrarily closely
in modulus by a real-valued polynomial in [a, b].

Next, we prove a lemma.

Lemma 9.49. For each x ∈ R and n ∈ N, we have

n∑

k=0

(
n

k

)
xk(1 − x)n−k = 1 (9.9)

and
n∑

k=0

[
k

n
− x

]2 (
n

k

)
xk(1− x)n−k ≤ 1

4n
. (9.10)

Proof. Let us start with the well-known binomial formula

(x + y)n =

n∑

k=0

(
n

k

)
xkyn−k.
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Define f0 = 1, f1 = x, f2 = x2. We first show that

Bnf0 = f0, Bnf1 = f1, Bnf2 − f2 =
f1 − f2

n
=

x(1 − x)

n
. (9.11)

The binomial formula for y = 1 − x gives (9.9), so that Bnf0 = f0. Differen-
tiating the binomial formula partially with respect to x and then multiplying
the resulting equation by x gives

n∑

k=0

k

(
n

k

)
xkyn−k = nx(x + y)n−1,

and a similar operation on this equation yields

n∑

k=0

k2
(
n

k

)
xkyn−k = n[(n− 1)x(x + y)n−2 + (x + y)n−1]x.

Substitution of y = 1− x in the last two identities and division by n and n2,
respectively, gives

n∑

k=0

[
k

n

](
n

k

)
xk(1− x)n−k = x, i.e., Bnf1 = f1, (9.12)

and
n∑

k=0

[
k

n

]2 (
n

k

)
xk(1− x)n−k =

(
1− 1

n

)
x2 +

1

n
x, (9.13)

so that

Bnf2 =

(
1− 1

n

)
f2 +

1

n
f1, i.e., Bnf2 − f2 =

1

n
(f1 − f2).

Thus, (9.11) follows. Finally, by (9.9), (9.12), and (9.13), it follows that

n∑

k=0

[
k

n
− x

]2 (
n

k

)
xk(1− x)n−k =

(
1− 1

n

)
x2 +

1

n
x− 2x2 + x2 =

x(1 − x)

n
.

Since x(1− x) has the maximum value 1/4 in [0, 1], this gives (9.10).

Now we are in a position to prove Theorem 9.48.

Proof. Let f be continuous on [0, 1] and M = supt∈[0,1] |f(t)|. Suppose that
ε > 0 is given. Since f is uniformly continuous on [0, 1], there exists a δ > 0
such that

|f(y)− f(x)| < ε whenever y, x ∈ [0, 1] and |y − x| < δ.
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Further, because of (9.9), we have

|Bn(f)− f(x)| =
∣∣∣∣∣

n∑

k=0

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k

∣∣∣∣∣

≤
n∑

k=0

∣∣∣∣f
(
k

n

)
− f(x)

∣∣∣∣

(
n

k

)
xk(1− x)n−k.

Next, we observe that

− ε− 2M

δ2

∣∣∣∣
k

n
− x

∣∣∣∣
2

≤ f

(
k

n

)
− f(x) ≤ ε+

2M

δ2

∣∣∣∣
k

n
− x

∣∣∣∣
2

(9.14)

holds for all x, k/n ∈ [0, 1]. Indeed, if |(k/n) − x| < δ, then (9.14) trivially
follows from

−ε ≤ f

(
k

n

)
− f(x) ≤ ε.

On the other hand, if |(k/n)−x| ≥ δ, then (9.14) follows from the inequalities

−2M

δ2

∣∣∣∣
k

n
− x

∣∣∣∣
2

≤ −2M ≤ f

(
k

n

)
− f(x) ≤ 2M ≤ 2M

δ2

∣∣∣∣
k

n
− x

∣∣∣∣
2

.

Thus, for a given ε > 0 and given x, we can split the sum into two parts:

(i) those k’s in the set K = {0, 1, 2, . . . , n} for which

|(k/n)− x| < δ;

we shall call the subset of K that satisfies the last inequality K1.
(ii) those k’s in K for which

|(k/n)− x| ≥ δ;

we shall call this subset K2.

Now K = K1 ∪K2, and we obtain

|Bn(f)(x) − f(x)| ≤
n∑

k=0

∣∣∣∣f
(
k

n

)
− f(x)

∣∣∣∣

(
n

k

)
xk(1 − x)n−k

≤ ε
∑

k∈K1

(
n

k

)
xk(1− x)n−k

+
2M

δ2

∑

k∈K2

[
k

n
− x

]2 (
n

k

)
xk(1 − x)n−k

< ε · 1 + 2M

δ2

(
1

4n

)
by (9.9) and (9.10)

= ε+
M

2nδ2
≤ 2ε whenever n ≥ M

2εδ2
.
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Thus, supt∈[0,1] |Bnf(t) − f(t)| < 2ε must hold for all sufficiently large n.
Hence,

lim
n→∞Bnf(t) = f(t)

uniformly in [0, 1], and the proof is complete.

There are several other proofs and extensions (in various forms) of this
theorem in the literature. We end the section with an example that illustrates
Theorem 9.48.

Example 9.50. Consider the function f : [0, 1] → R defined by

f(x) = |x− c|, c ∈ [0, 1].

We provide a direct method of getting a polynomial approximation for f on
[0, 1]. First we let c ∈ (0, 1/2] and write

|x− c| = {
c2 − [c2 − (x− c)2]

}1/2
= c(1− y)1/2 with y = 1− ((x − c)/c)2,

so that the resulting series expansion for |x− c| is given by the series

c

∞∑

k=0

(−1/2, k)

(1, k)
yk.

Here (a, 0) = 1 for a �= 0, and (a, k) is the ascending factorial notation defined
by

(a, k) = a(a+ 1) · · · (a+ k − 1).

Therefore, we can rewrite the series expansion as

c

[
1−

∞∑

k=1

cky
k

]
,

where c1 = 1/2, and for k ≥ 2,

−ck =
(−1/2, k)

(1, k)
= −1

2
· 1
4
· 3
6
· 2k − 3

2k
.

Note that ck > 0 for all k ≥ 1 and ck = ak−1 − ak, where a0 = 1 and

ak =
1 · 3 · 5 · · · (2k − 1)

2 · 4 · 6 · · · (2k) ,

so that
n∑

k=1

ck = a0 − an = 1− an < 1.
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Thus,
∑∞

k=1 ck < ∞, and therefore the series

1−
∞∑

k=1

cky
k

converges absolutely and uniformly for |y| ≤ 1. Equivalently, we say that the
series

c

[
1−

∞∑

k=1

ck
(
1− ((x − c)/c)2

)k
]

converges uniformly to |x− c| whenever
∣∣∣∣∣1−

(
x− c

c

)2
∣∣∣∣∣ ≤ 1,

and hence for |x − c| ≤ c, or equivalently, x ∈ [0, 2c]. Thus, the sequence
of polynomials of partial sums converges uniformly to |x − c| on the interval
[0, 2c], and a fortiori on [0, 1].

The conclusion for c ∈ (1/2, 1) is similar if we replace c2 by 1− c2. •
9.2.5 Abel’s Limit Theorem

Suppose that R is the finite positive radius of convergence of the series f(x) =∑∞
k=0 akx

k, and r is any positive number such that r < R. Then we know
that the series converges uniformly on [−r, r], and hence by Corollary 9.22,
the function f(x) is continuous on [−r, r]. Also, we have seen from examples
that the series may or may not converge at the endpoints ±R. Suppose that
the series converges at R. Does it follow that the limit function f(x) is (left)
continuous at R?

Concerning the behavior of the power series at the endpoints of the interval
of convergence, we have the following result, which answers the above question.

Theorem 9.51 (Abel’s continuity/limit theorem). Suppose that R is
the finite positive radius of convergence of the series f(x) =

∑∞
k=0 akx

k. If
the series converges at x0 = R, then f is (left) continuous at x0 = R (Also, if
it converges at x0 = −R, then f is (right) continuous at x0 = −R.) Moreover,
the series converges uniformly on the closed interval with endpoints 0 and x0.

Proof. By the transformation x �→ x0t, the point x0 = R is transformed
to t = 1, and |x| < R is transformed to |t| < 1. Therefore without loss of
generality, we may assume that x0 = 1 and R = 1 from the beginning. In
addition, we may assume that f(1) = 0; otherwise, replace a0 by a0 − f(1).
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Thus we assume that f(x) =
∑∞

k=0 akx
k converges for −1 < x ≤ 1 and

f(1) = 0. Now for convenience, we let

sn(x) =

n∑

k=0

akx
k, sn(1) = sn.

Since f(1) = 0, sn → 0 as n → ∞. We have s0 = a0 and sk − sk−1 = ak for
k ≥ 1. To prove that f is continuous at x = 1, we need to show that for any
ε > 0, there exists a δ > 0 such that

|f(x) − f(1)| = |f(x)| < ε if 1− δ < x < 1

(we remark that we do not consider x > 1 because the domain of f(x) is a
subset of [−1, 1]). Now for 0 < x < 1,

sn(x) = a0 +

n∑

k=1

(sk − sk−1)x
k

=

n−1∑

k=0

skx
k −

n−1∑

k=0

xskx
k + snx

n

= snx
n +

n−1∑

k=0

(1− x)skx
k.

Since limn→∞ snx
n =

(
limn→∞ sn

)(
limn→∞ xn

)
= 0 for 0 < x < 1, and

limn→∞ sn(x) = f(x), we can allow n → ∞ in the last equation, and we
obtain

f(x) = (1 − x)

∞∑

k=0

skx
k for 0 < x < 1. (9.15)

We now look at this identity more closely. Since sn → 0 as n → ∞, given
ε > 0, there exists an N such that |sn| < ε/2 for all n ≥ N . Set M =

max0≤k≤N−1 |sk| and FN (x) = M
∑N−1

k=0 (1− x)xk. From (9.15) we obtain

|f(x)| ≤
N−1∑

k=0

|sk|(1 − x)xk +

∞∑

k=N

|sk|(1− x)xk

≤ FN (x) +
∞∑

k=N

ε

2
(1 − x)xk

≤ FN (x) +
ε

2
for 0 < x < 1.

Since FN (x) is continuous and FN (1) = 0, there exists a δ > 0 such that

FN (x) <
ε

2
whenever 1− δ < x < 1.
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Thus, for 1− δ < x < 1, we have

|f(x)| ≤ ε

2
+

ε

2
= ε,

showing that f is (left) continuous at x = 1.

Example 9.52. We know that

log(1 + x) =
∞∑

k=1

(−1)k−1

k
xk, |x| < 1,

and the series converges at x = 1. Therefore, by Abel’s limit theorem,

∞∑

k=1

(−1)k−1

k
= lim

x→1−
log(1 + x) = log 2.

A similar conclusion may be obtained for the series (see Example 9.33)

arctanx =

∞∑

k=0

(−1)k

2k + 1
x2k+1 for |x| < 1.

Because the series converges at x = ±1 by the alternating series test, Theorem
9.51 shows that the series converges uniformly for |x| ≤ 1. Thus, allowing
x → 1− or x → −1+, we have

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · ,

which is again a series representation of π, and the series here is referred to
as Madhava-Leibniz-Gregory’s series (see also Examples 9.32 and 10.16). •

The most important case of Abel’s limit theorem occurs when R = 1.

Corollary 9.53. Suppose that the series
∑∞

k=0 ak is convergent with sum A.
Then A = limx→1−

∑∞
k=0 akx

k.

Proof. By assumption, the series
∑∞

k=0 akx
k converges for |x| < 1. If the limit

function is f(x), then by Theorem 9.51, f is continuous at x = 1 and

A = lim
x→1−

f(x).

Abel’s limit theorem has another interesting application.

Theorem 9.54 (Abel). If
∑∞

k=0 ak and
∑∞

k=0 bk are convergent with sum
A and B, respectively, and if the Cauchy product of these series is convergent,
then its sum must be AB.
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Proof. Because the power series
∑∞

k=0 akx
k and

∑∞
k=0 bkx

k converge at x = 1,
it follows from Lemma 8.16 that they converge absolutely for |x| < 1. We know
that if

∑∞
k=0 ck is the Cauchy product of

∑∞
k=0 ak and

∑∞
k=0 bk, then

∞∑

k=0

ckx
k =

( ∞∑

k=0

akx
k

)( ∞∑

k=0

bkx
k

)
for |x| < 1.

Thus, if
∑∞

k=0 ck converges, then by Abel’s limit theorem we obtain the desired
conclusion.

9.2.6 Abel’s Summability of Series and Tauber’s First Theorem

Definition 9.55. A series
∑∞

k=1 ak is said to be Abel summable to A if the
associated series

∑∞
k=0 akx

k converges for |x| < 1 to a function f(x) and

lim
x→1−

f(x) := lim
x→1−

∞∑

k=0

akx
k = A.

In this case, A is called the Abel sum of the series
∑∞

k=0 ak, and we write

∞∑

k=1

ak = A (Abel).

Corollary 9.53 shows that ordinary convergence of a series implies Abel
convergence. That is,

∞∑

k=1

ak = A implies

∞∑

k=1

ak = A (Abel).

Example 9.56 (There are divergent series that are Abel summable).

(a) Consider
∑∞

k=0(−1)k. Then the associated series is

∞∑

k=0

(−1)kxk,

which is convergent for |x| < 1 to the function f given by

f(x) =
1

1 + x
.

Since limx→1− f(x) = 1/2, we conclude that
∑∞

k=0(−1)k is Abel summable
to 1/2, but is not a convergent series. This example demonstrates that the
converse of Abel’s limit theorem is false in general.
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(b) Consider the divergent series
∑∞

k=1(−1)kk. Its associated series

∞∑

k=1

(−1)kkxk

is convergent for |x| < 1 to the function f given by

f(x) =
−x

(1 + x)2
.

Since limx→1− f(x) = −1/4, we conclude that
∑∞

k=1(−1)kk is Abel
summable to −1/4. •
It is natural to ask under what conditions on an one can be certain of the

convergence of the series
∑∞

k=0 ak. There are several results that deal with
this question. In the next theorem, we place certain conditions on an to obtain
a converse to Abel’s limit theorem. There are many results of this type, and
they are referred to as Tauberian theorems.

Theorem 9.57 (Tauber’s first theorem). Suppose that
∑∞

k=0 ak is Abel
summable to A, and nan → 0 as n → ∞. Then

∑∞
k=0 ak is convergent with

sum A.

Proof. Assume the hypotheses. Let ε > 0 be given. Then there exists a func-
tion f(x) such that

• ∑∞
k=0 akx

k = f(x) for |x| < 1,
• limx→1− f(x) = A; i.e., |f(1− 1/n)−A| < ε/3 for large n,
• nan → 0 as n → 0; i.e., n|an| < ε/3 for large n, and so by Theorem 2.64,
it follows that

1

n

n∑

k=1

k|ak| < ε

3
for large n.

We need to show that Sn → A, Sn =
∑n

k=0 ak. We write

Sn −A =

n∑

k=0

ak −A+ f(x)−
∞∑

k=0

akx
k

= f(x)−A+
n∑

k=1

ak(1− xk)−
∞∑

k=n+1

akx
k.

Since 1− xk = (1− x)(1 + x+ x2 + · · ·+ xk−1) ≤ k(1− x) for 0 < x < 1, and
n ≤ k for all k ≥ n+ 1, it follows that for x ∈ (0, 1),

|Sn −A| ≤ |f(x)−A|+
n∑

k=1

k|ak|(1− x) +
1

n

∞∑

k=1+n

k|ak|xk. (9.16)



9.2 Uniform Convergence of Series 421

The assumptions imply that for a given ε > 0, there exists an N such that

∣∣∣f
(
1− 1

n

)
−A

∣∣∣ <
ε

3
, n|an| < ε

3
, and

n∑

k=1

k|ak| < nε

3
for all n ≥ N.

Thus for n ≥ N and x = 1− 1/n, (9.16) becomes

|Sn −A| < ε

3
+

1

n

(nε
3

)
+

1

n

( ε

3

) ∞∑

k=1+n

xk = ε

(where in the last step, we have used the fact that
∑∞

k=n+1 x
k ≤ 1/(1− x) =

n). The conclusion follows.

A counterpart of Theorem 9.57 for Cesàro summable series has already
been discussed in Theorem 5.67.

9.2.7 (C,α) Summable Sequences

For α ≥ 1, we have

x

(1− x)α
=

∞∑

n=1

A(α)
n xn,

where

A(α)
n :=

α(α + 1) · · · (α+ n− 2)

(n− 1)!
for n ≥ 1,

which for α = m ∈ N, takes the form

A(m)
n =

(n+m− 2)!

(m− 1)!(n− 1)!
=

(
n+m− 2

n− 1

)
.

In particular, we have

A(1)
n = 1, A(2)

n = n, A(3)
n =

n(n+ 1)

2
, and so on.

Now we consider the identity

1

1− x
· x

(1− x)α
=

x

(1 − x)α+1
,

which may be rewritten in terms of power series (use the definition of Cauchy
product) as

∞∑

n=1

(
n∑

k=1

A
(α)
n+1−k

)
xn =

∞∑

n=1

A(α+1)
n xn.
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Comparing the coefficients of xn on both sides, we get

1

A
(α+1)
n

n∑

k=1

A
(α)
n+1−k = 1.

This basic property suggests that for a given sequence of real numbers
{sn}n≥1, we can consider the mean

σ(α)
n :=

1

A
(α+1)
n

n∑

k=1

A
(α)
n+1−ksk.

For α = m ∈ N, this formula takes the form

σ(m)
n =

1(
n+m− 1

n− 1

)
n∑

k=1

(
n+m− 1− k

n− k

)
sk.

The cases m = 1, 2 lead to

σ(1)
n := σn =

1

n

n∑

k=1

sk and σ(2)
n =

2

n(n+ 1)

n∑

k=1

(n+ 1− k)sk,

respectively. The above discussion helps to introduce the following.

Definition 9.58. If {sn}n≥1 is a sequence of real numbers, then we say that

{sn}n≥1 is (C,α) summable to L if the new sequence {σ(α)
n }n≥1 converges to

L. In this case, we write

sn → L (C,α) or lim
n→∞ sn = L (C,α).

We have shown that all convergent sequences are (C, 1) summable. Now we
show that all (C, 1) summable sequences are (C, 2) summable. More precisely,
we have the following.

Theorem 9.59. If sn → x (C, 1), then sn → x (C, 2).

Proof. First we observe that nσn =
∑n

k=1 sk, so that

sk = kσk − (k − 1)σk−1 (σ0 = 0). (9.17)

Next, we note that

n(n+ 1)

2
σ(2)
n = ns1 + (n− 1)s2 + (n− 2)s3 + · · ·+ sn

= s1 + (s1 + s2) + (s1 + s2 + s3) + · · ·+ (s1 + s2 + · · ·+ sn)

=

n∑

k=1

kσk
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and
n(n+ 1)

2
(σ(2)

n − x) =

n∑

k=1

k(σk − x).

The last relation clearly implies that it suffices to prove the theorem for the
case x = 0. So we let sn → 0 (C, 1). Then σn → 0 as n → ∞. Therefore, given
ε > 0, there exists an N ∈ N such that |σn| < ε/2 for all n > N . Now for
n > N ,

|σ(2)
n | =

∣∣∣∣∣
2

n(n+ 1)

n∑

k=1

kσk

∣∣∣∣∣

≤ 2

n(n+ 1)

[
N∑

k=1

k|σk|+
n∑

k=N+1

k|σk|
]

=
2

n(n+ 1)

[
M

N∑

k=1

k +
ε

2

n∑

k=N+1

k

]
, M = max

k=1,2,...,N
|σk|,

<
2

n(n+ 1)

MN(N + 1)

2
+

ε

2
.

Note that M and N are independent of n, and 1/n → 0 as n → ∞. Conse-
quently, given ε > 0, there exists an N1 (> N) such that

|σ(2)
n | < ε

2
+

ε

2
= ε for all n ≥ N1,

and so σ
(2)
n → 0 whenever σn → 0.

Equation (9.17) gives the following simple result.

Corollary 9.60. If {sn}n≥1 is a (C, 1) summable sequence of real numbers,
then {sn} converges to 0.

Using this corollary, it follows that 1,−1, 2,−2, 3,−3, . . . is not (C, 1)
summable, because

sn =

⎧
⎪⎨

⎪⎩

n+ 1

2
if n is odd,

−n

2
if n is even.

9.2.8 Questions and Exercises

Questions 9.61.

1. Must the (pointwise) limit of a convergent sequence of integrable functions
on E be integrable?
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Fig. 9.36. Graph of fn(x) =
(sinnx)/

√
n.
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Fig. 9.37. Graph of fn(x) = (sinnx)/n.

2. Must the limit of a uniformly convergent sequence of integrable functions
on [a, b] be integrable?

3. Can the limit of a sequence of continuous functions on a set E be un-
bounded on E?

4. Must the (pointwise) limit of a convergent sequence of differentiable func-
tions be continuous?

5. Does {xn/n} converge uniformly to f(x) = 0 on −1 ≤ x ≤ 1? Does
{xn−1} converge to f ′(x) = 0 on −1 < x < 1? Does {xn−1} converge
uniformly to f ′(x) = 0 on −1 < x < 1?

6. If fn(x) = (1/
√
n) sin(nx), do we have fn → 0 uniformly on R? What

is the limit of the sequence {f ′
n(0)} if it exists? What is the limit of the

sequence {f ′
n(π)} if it exists? What does this convey (see Figure 9.36)?

7. If fn(x) = (1/n) sin(nx), do we have fn → 0 uniformly on R? What is the
limit of the sequence {f ′

n(0)}? What is the limit of the sequence {f ′
n(π)}

(see Figure 9.37)?
8. Can a sequence of Riemann integrable functions converge pointwise to

a function that is not Riemann integrable? How about if the pointwise
convergence is replaced by uniform convergence?

9. If
∑∞

k=1 fk(x) converges uniformly on a set E, must the sequence {fk} be
convergent on E? Must the sequence {fk} be uniformly convergent on E?

10. Suppose that
∑∞

k=1 fk(x) converges to a function f(x) on an interval I
such that supx∈I |

∑n
k=1 fk(x) − f(x)| does not approach to 0 as n → ∞.

Must the series be uniformly convergent on I?
11. If

∑∞
k=1 ak converges absolutely, must

∑∞
k=1 ak cos kx and

∑∞
k=1 ak sin kx

be convergent on R?
12. Let {fk} be a sequence of constant functions. What does it mean in this

case to say that the sequence {fk} converges uniformly on [a, b]? What
does it mean in this case to say that the series

∑
fk converges uniformly

on [a, b]?
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13. Suppose that {fn} is a sequence of bounded functions converging
uniformly to f on E. Must f be bounded on E?

14. If
∑∞

k=1 |fk| converges uniformly on E, must
∑∞

k=1 fk be uniformly con-
vergent on E? How about its converse?

15. If
∑∞

k=0 ak is absolutely convergent, must we ahve

∫ 1

0

( ∞∑

k=0

akx
k

)
dx =

∞∑

k=0

ak
k + 1

?

16. Consider the series
∑∞

k=1(−1)k−1((x + k)/k2). Does it converge on R? If
not, does it converge pointwise on [0,∞)? Does it converge uniformly on
[0, R], R > 0? Does it converge absolutely for some x ∈ R?

17. Why can’t we apply Abel’s theorem (Theorem 9.51) for
∑∞

k=0 x
k at x = 1

or x = −1?

Exercises 9.62.

1. Let f be continuous on [0, 1] and gn(x) = f(xn) for n ≥ 1. Verify whether

{∫ 1

0 gn(x) dx}n≥1 converges to f(0).
2. Does the sequence {fn}, fn(x) = nx/(1 + n2x2), converge uniformly on

every interval I containing 0? If f is the pointwise limit of {fn} on I, is f
differentiable on I? If so, does f ′

n(x) → f ′(x) on E? Justify your answer.
3. For x ∈ [0, 1], consider

∑∞
k=1 fk(x), where

fn(x) =
x2n−1

2n− 1
− xn

2n
.

(a) Does the sequence {Sn(x)} of partial sums converge pointwise on
[0, 1]? If so, find its limit.

(b) Does the series converge uniformly on [0, 1]? Justify your answer.
4. Show that

∑∞
k=1(x

k/k) does not converge uniformly on (0, 1).
5. Investigate the pointwise and uniform convergence of

∑∞
k=1 fk(x) on [0, 1]

if fk(x) equals

(a)
xk(1− x)

k2
. (b)

xk(1− x)

k
. (c)

log(k + x)− log k

k
.

6. Repeat Exercise 9.62(5) but for all real x when fk(x) equals

(a)
1

k3 + k4x2
. (b)

x

k + k2x2
.

7. Show that the series

∞∑

k=1

x

(1 + (k − 1)x)(1 + kx)

converges uniformly on [r, R], for every finite r > 0 and R > r, but does
not converge uniformly on [0, R]. Does it converge pointwise on [0,∞)?
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8. If fk(x) = 1/(k3(1 + kx3)) on [0, 1], justify with a proof that

d

dx

(∑

k≥1

fk(x)
)
=

∑

k≥1

f ′
k(x) = −3x2

∑

k≥1

1

k2(1 + kx3)2
on [0, 1].

9. Examine the uniform convergence of the following series:

(i)

∞∑

n=1

x

n(1 + nx2)
, x ∈ R. (ii)

∞∑

n=1

1

n3 + n4x2
, x ≥ 0.

(iii)

∞∑

n=1

x

1 + n2x2
, 0 < c ≤ x < ∞. (iv)

∞∑

n=0

1

1 + n2 + n2x2
, x ≥ 0.

(v)

∞∑

n=1

1

nx
, c ≤ x < ∞, c > 1. (vi)

∞∑

n=1

1

(n+ x)2
, x ≥ 0.

(vii)
∞∑

n=1

sinnx

en
, −∞ < x < ∞. (viii)

∞∑

n=1

enx

5n
, −∞ < x ≤ 0.

(ix)

∞∑

n=1

(
log x

x

)n

, 1 ≤ x < ∞. (x)

∞∑

n=1

(x log x)
n
, 0 < x ≤ 1.

10. Find the interval of convergence of the following power series:

(i) x+
x2

3
+

x3

5
+

x4

7
+ · · · .

(ii) (x+ 1) + 4(x+ 1)2 + 9(x+ 1)3 + · · · .
(iii) − 1

x
+

1

2x2
− 1

3x3
+ · · · .

(iv)

∞∑

n=1

(−1)n3n

(4n− 1)xn
.

(v)
∞∑

n=1

n(x+ 5)n

(2n+ 1)3
.

(vi)

∞∑

n=1

2n(sinx)n

n2
.

11. Show that the series
∑∞

k=1(1/k
2) sin(kx) is uniformly convergent on R. If

f(x) is the sum of the series, then determine the value of
∫ π

0 f(x) dx.
12. Prove Theorem 9.45.
13. Integrate suitable series to evaluate the sum

(a)

∞∑

k=1

1

k(k + 1)(k + 2)
. (b)

∞∑

k=0

(−1)k

3k + 1
.

14. Differentiate suitable series to evaluate the sum

(a)

∞∑

k=0

(k + 2)2

k!
. (b)

∞∑

k=1

k(k + 1)(k + 2)

3k
. (c)

∞∑

k=1

k(k + 1)(k + 2)

k!
.

15. Evaluate the integrals

(a)

∫ 1

0

log(1 + x)

x
dx. (b)

∫ 1

0

log(1 − x) dx.
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16. If the power series
∑∞

k=0 akx
k converges to f(x) for |x| < 1, then show

that ∞∑

n=0

(
n∑

k=0

ak

)
xn =

f(x)

1− x
for |x| < 1.

Deduce that

log(1 + x)

1− x
= x+

(
1− 1

2

)
x2 +

(
1− 1

2
+

1

3

)
x3 + · · · .

17. Show that

(log(1 + x))
2
= 2

∞∑

k=2

(−1)k
sk−1

k
xk for |x| < 1,

where sn =
∑n

k=1(1/k).
18. Show that a divergent series of positive numbers cannot be Abel summable.
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Fourier Series and Applications

In a general course on functional analysis, one discusses a very general method
of “Fourier analysis” in Hilbert space settings. Originally, the methods origi-
nated with the classical setting of real- or complex-valued periodic functions
defined on the whole of R. In this chapter we focus our attention mainly on
describing the elementary theory of classical Fourier series (with the help of
specific kernels) which have become indispensable tools in the study of peri-
odic phenomena in physics and engineering. These kernels are mainly used to
prove the convergence of Fourier series, and the study of Fourier series has
led to many important problems and theories in the mathematical sciences.
As a result of the introduction of Fourier series, much of the development
of modern mathematics has been influenced by the theory of trigonometric
series. We ask a number of questions concerning the nature of Fourier series
and provide answers to these questions.

In Section 10.1 we shall discuss what a Fourier series is and present a
number of examples to demonstrate the use of Fourier series, such as how
a given function can be represented in terms of a series of sine and cosine
functions. In Section 10.2, we discuss half-range series, which, as the name
suggests, are defined over half of the normal range. Finally, we address the
basic questions concerning the convergence of Fourier series.

10.1 A Basic Issue in Fourier Series

One of the fundamental methods of solving many problems in engineering
fields such as mechanics, electronics, acoustics, and in most of the areas of
applied mathematics such as ordinary and partial differential equations is
to represent the behavior of a system by a combination of simple behaviors.
Mathematically, this is related to representing a function f(x) in the form of
a functional series

f(x) =

∞∑

k=1

ckφk(x).

S. Ponnusamy, Foundations of Mathematical Analysis,
DOI 10.1007/978-0-8176-8292-7 10,
© Springer Science+Business Media, LLC 2012
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Here the φk(x) are suitable elementary functions, also called the base set
of functions, and the ck are called the coefficients of the expansion. For in-
stance, suppose one wants to write a program for a pocket calculator that
has limited memory. Then, for example, for the function f(x) = cosx, the
calculator may just store n coefficients c1, c2, . . . , cn, and in this situation,
one also needs to specify the best-suited φk(x) for the purpose, for example
the Chebyshev polynomials. Other special functions such as Bessel functions,
Legendre polynomials, and Hermite polynomials correspond to different coef-
ficients c1, c2, . . . , cn. as another example, consider the familiar Taylor series
expansion of f(x) (e.g., ex, sinx, cosx, 1/(1− x)) of the form

f(x) =

∞∑

k=0

ckx
k, |x| < R.

Here the set {1, x, . . . , xn, . . .} is considered a base set (or set of building
blocks) for the Taylor series about the origin. If such an expansion is possible,
then f must be infinitely differentiable on |x| < R, and the coefficients ck are
given by f (k)(0)/k!, which shows that the Taylor series expansion can be used
in the representation of only a rather small class of functions. Our main inter-
est in this chapter is to discuss another type of expansion, the Fourier series
expansion. The Fourier series is named after Jean Baptiste Joseph Fourier
(1768–1830). Roughly speaking, a Fourier series expansion of a function is a
representation of the function as a linear combination of sines and cosines,
that is, the base set of the representation is {1, cosnx, sinnx}n≥1 instead of
{1, x, . . . , xn, . . .}. An important difference between Fourier series and Taylor
series is that Fourier series can be used to represent and approximate non-
continuous functions as well as continuous ones, whereas Taylor series are
applicable only to infinitely differentiable functions.

Further, Fourier series are widely used to represent functions including
solutions of partial differential equations, and also to approximate functions
defined on an arbitrary (but finite) interval [a, b]. Usually, but not exclusively,
we use Fourier series to represent periodic functions. We begin with some
preliminary results about periodic functions.

10.1.1 Periodic Functions

A function f : Ω ⊆ R → R is said to be periodic if there exists a nonzero real
number ω such that

f(x) = f(x+ ω) for all x ∈ Ω. (10.1)

The simplest examples of periodic functions from R into R include the well-
known sine and cosine functions, since for each k ∈ Z\{0},

cosx = cos(x + 2kπ) and sinx = sin(x+ 2kπ) for every x ∈ R.

Moreover, for each integer n, the functions cosnx and sinnx are also periodic.
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The complex-valued function f : R → C defined by f(x) = eix is a periodic
function, since

f(x) = f(x+ 2kπ) for each k ∈ Z\{0} and for every x ∈ R.

In these examples, ω = 2kπ for some k ∈ Z\{0}, and in all these cases, ω is a
real quantity satisfying (10.1). However, if f : C → C is defined by f(z) = ez,
then from a basic result in complex analysis it follows that

f(z) = f(z + 2kπi) for each k ∈ Z\{0} and for every x ∈ R,

showing that ω = 2kπi for some k ∈ Z\{0}, which is a complex number. In
such cases, one often says that the function has a complex period.

Observe that if ω = ω1 and ω = ω2 satisfy (10.1), then so does ω1±ω2, since

f(x+ (ω1 ± ω2)) = f((x+ ω1)± ω2) = f(x+ ω1) = f(x) for every x ∈ R.

In most cases of interest, there is a smallest positive value ω of a periodic
function f called the primitive period (or the basic period or the fundamental
period) of f(x). The reciprocal of the primitive period is called the frequency
of the periodic function. Henceforth, in speaking about the period of a func-
tion, we mean the primitive period, and we consider only functions that have
a real period. A periodic function f of period ω will be called an ω-periodic
function. For example, sinx and cosx are 2π-periodic functions. The graphs
of sinx and cosx are illustrated in Figure 10.1. The graphs of some nontrivial

y

π x−π 2π−2π xπ
2−π

2−3π
2

3π
2−5π

2
5π
2

y

Fig. 10.1. Graphs of the periodic functions sin x and cosx.

periodic functions are illustrated in Figures 10.2 and 10.3. We remark that

O

y y = sec x

xπ−π −π
2−3π

2
xπ

2
3π
2

y y = csc x

Fig. 10.2. Graphs of periodic functions y = secx and y = cscx.
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2− 3π

2
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y

Fig. 10.3. Graphs of periodic functions y = tan x and y = cot x.

if f(x) is a constant, then every ω > 0 satisfies (10.1) but has no smallest ω
satisfying (10.1). Thus, constant functions do not have a primitive period.

The following simple lemmas and remarks will be useful in the sequel.

Lemma 10.1. If f : R → R is a periodic function with period ω, then the
period of f(cx) is ω/c. If f(x) and g(x) are periodic with the same period ω,
then h(x) = af(x) + bg(x) is also is periodic with period ω. Here ω is not
necessarily a primitive period.

Proof. Let φ(x) = f(cx). Then

φ(x) = f(cx) = f(cx+ ω) = f(c(x+ ω/c)) = φ(x + ω/c) for every x ∈ R.

This shows that ω/c is a period. For the proof of the second part, we simply
note that

h(x+ ω) = af(x+ ω) + bg(x+ ω) = af(x) + bg(x) = h(x),

and thus h(x) also has the period ω.

For instance,

• sin(cx) and cos(cx) are periodic functions with period 2π/c.
• ∑∞

k=1(ak cos kx+bk sin kx) is a periodic function with period 2π, although
individual functions, e.g., cosx, cos 2x, cos 3x, . . ., have period 2π, π, 2π/3,
. . ., respectively.

Lemma 10.2. If f(x) is a periodic function with period ω, then

∫ c+ω

c

f(x) dx =

∫ ω

0

f(x) dx,

whenever f is integrable on [0, ω].
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Proof. Geometrically, the proof is obvious (see Figure 10.4). Using the property

y

b xc

c + ω b + ω

Fig. 10.4. Areas over one period are equal.

of the definite integral we obtain
∫ c+ω

c

f(x) dx =

∫ 0

c

f(x) dx +

∫ ω

0

f(x) dx+

∫ c+ω

ω

f(x) dx

= −
∫ c

0

f(x) dx +

∫ ω

0

f(x) dx+

∫ c

0

f(s) ds (x = s+ ω),

=

∫ ω

0

f(x) dx,

showing that the integral of a periodic function with period ω taken over an
arbitrary interval of length ω always has the same value.

Definition 10.3 (Periodic extension). Suppose that f is a function de-
fined on [a, a+ ω). Then the periodic extension of f over the infinite interval
(−∞,∞) is defined by the formula

f̃(x) =

{
f(x) for a ≤ x < a+ ω,
f(x− nω) for a+ nω ≤ x < a+ (n+ 1)ω,

where n is an integer.

Note that n in this definition is chosen such that x−nω lies in the interval
[a, a+ω). Examples of periodic extensions are shown in Figures 10.5 and 10.6.

−π πO 3π 5π

y

x

•
•

f(π) = f (−π)
f is continuous on [−π, π]

Fig. 10.5. Periodic extension of f from [−π, π] with f(π) = f(−π) to R.
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−π π 3π 5π x

y

Fig. 10.6. Periodic extension of f(x) = x on (−π, π).

10.1.2 Trigonometric Polynomials

By a real trigonometric polynomial, we mean a (periodic) function of the form

sn(x) =
a0
2

+

n∑

k=1

(
ak cos kx+ bk sinkx

)
for every x ∈ R, (10.2)

where ak and bk are some real constants. (There is a famous theorem due to
Stone and Weierstrass stating that the trigonometric polynomials are dense
in C[a, b] for any closed interval [a, b], provided that b− a < 2π.)

If the sequence {sn} given by (10.2) converges on a set E, then we may
define a function f : E → R by

f(x) = lim
n→∞ sn(x) =

a0
2

+
∞∑

n=1

(
an cosnx+ bn sinnx

)
(10.3)

for all x ∈ E. The series on the right is called a trigonometric series. The
constants a0, ak, bk (k ∈ N) are called coefficients of the trigonometric series.
We have taken the constant term in (10.3) as a0/2 rather than a0 so that we
can make a0/2 fit in a general formula later. We observe that if the series on
the right in (10.3) converges for all real t ∈ [0, 2π], then the sum f must satisfy

f(x) = f(x+ 2π) for all x ∈ R.

We ask a number of questions concerning the nature of f . For example, we
ask the converse of the sequence {sn(x)} (see Problem 10.6).

10.1.3 The Space E
Our main concern is to consider the space E of all F-valued piecewise continu-
ous functions f on the interval [−π, π], where F is either R or C (see Definition
3.39). For F = C, every f : [−π, π] → C in E can be written as f = u + iv,
where u and v are real-valued piecewise continuous functions on [−π, π]. The
restriction to this interval will be lifted later, but periodicity will always be
assumed in our later discussion.
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We assume that the reader is familiar with the notion of linear spaces and
inner product spaces (see [6]). We now state a basic result that enables every
function in E to be expressed as a Fourier series.

Lemma 10.4. The space E is a linear space over F. Moreover, E is an inner
product space with respect to the inner product

〈f, g〉 = 1

π

∫ π

−π

f(x)g(x) dx.

The set of functions (called a trigonometric system)

Φ =
{ 1√

2
, cos(nx), sin(nx) : n ∈ N

}
(10.4)

is an infinite orthonormal system in E with respect to the inner product defined
in Lemma 10.4.What is the analogous orthonormal system when the functions
involved are considered in the interval [−L,L]? The fact that E is linear is
easy to verify, and so we leave it as an exercise, but the proof of the second
part of Lemma 10.4 may be indicated quickly. We remark that it is possible
to have 〈f, f〉 = 0 without f being identically zero. For instance, if

f(t) =

{
0 for x �= 0,
1 for x = 0,

then
∫ π

−π

f(x) dx = 0 =

∫ π

−π

f2(x) dx,

but f is not identically zero. It turns out that this is not a great difficulty. We
merely regard two functions in E as being equivalent if they are equal at all
but a finite number of points.

We shall consider only trigonometric systems in this chapter. There are
many other orthogonal systems that are widely used, such as Legendre poly-
nomials, Bessel functions, Hermite polynomials, and Jacobi polynomials.

Definition 10.5. Let Φ = {φ1, φ2, . . .} be an orthonormal basis of an infinite-
dimensional inner product space X , and let f ∈ X . Then the infinite series

∞∑

k=1

〈f, φk〉φk(x) :=
∞∑

k=1

ckφk(x)

is called the Fourier series of f (relative to Φ), and the coefficients ck =
〈f, φk〉 are called the kth Fourier coefficients of f (relative to the orthonormal
system Φ).
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We could state a simpler form of Lemma 10.4 and Definition 10.5 (i.e.
for the space over the real field R). We retain the present form in order to
have a better understanding of how it works in a general setting, and the
modification to this effect is natural and easy. We introduce

‖f‖2 = 〈f, f〉 = 1

π

∫ π

−π

|f(x)|2 dx,

and if f is real-valued, then |f(x)|2 in this definition will be replaced by (f(x))2.

10.1.4 Basic Results on Fourier Series

Suppose that we are given a trigonometric series of the form (10.3). Clearly,
since each term of the series has period 2π, if it converges to a function
f(x), then f(x) must be a periodic function with period 2π. Thus, only 2π-
periodic functions are expected to have trigonometric series of the form (10.3).
Although this condition is essential, the existence of such an expression is a
very useful concept with a long history that has produced a rich theory for a
variety of classes of functions.

Problem 10.6. Suppose that f is a 2π-periodic function. Under what con-
ditions does the function have a representation of the form (10.3)? When it
does, what should be an, bn?

To answer these basic questions, it is convenient to assume for the moment
that the series in (10.3) converges uniformly on R and that its sum is f(t) (for
example, this is the case if

|a0|
2

+

∞∑

n=1

(|an|+ |bn|)

converges, so that the series (10.3) is dominated by a convergent series in
R. Then the series converges uniformly on R (in particular on the interval
[−π, π]), and so term-by-term integration is permissible (see Corollary 9.30).
Then we can find a formula for the coefficients a0, an, bn, n ∈ N. First, we
determine a0:

1

π

∫ π

−π

f(x) dx =
1

π

∫ π

−π

{
a0
2

+

∞∑

n=1

(
an cosnx+ bn sinnx

)
}
dx

=
a0
2

{
1

π

∫ π

−π

dx

}
+

∞∑

n=1

[
an
π

∫ π

−π

cosnxdx+
bn
π

∫ π

−π

sinnxdx

]

= a0 since

∫ π

−π

cosnxdx = 0 =

∫ π

−π

sinnxdx.
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Since f was assumed to be integrable on [−π, π], the same is true for
f(x) cos kx and f(x) sin kx. Also, it is a simple exercise to see that for n, k ∈ N,

1

π

∫ π

−π

cosnx cos kxdx = δnk=
1

π

∫ π

−π

sinnx sin kxdx,

∫ π

−π

cosnx sin kxdx=0.

For a proof of these identities, one may require the following well-known
identities:

cosA cosB = 1
2 [cos(A+B) + cos(A−B)],

sinA sinB = 1
2 [cos(A−B)− cos(A+B)],

sinA cosB = 1
2 [sin(A+B) + sin(A−B)].

Thus, if we multiply (10.3) by cos kt, then

f(x) cos kx =
a0
2

cos kx+

∞∑

n=1

(
an cosnx cos kx+ bn sinnx cos kx

)
,

and so since the series for f(x) cos kx can be integrated term by term for each
fixed k, we can determine ak and bk. Indeed,

1

π

∫ π

−π

f(x) cos kxdx =
a0
2π

∫ π

−π

cos kxdx+

∞∑

n=1

an

{
1

π

∫ π

−π

cos kx cosnxdx

}

+bn

{
1

π

∫ π

−π

cos kx sinnxdx

}

= ak for k ∈ N,

and similarly, by repeating the argument for f(x) sin kx, we get the formula

1

π

∫ π

−π

f(x) sin kxdx = bk for k ∈ N.

Since the integrability of f does not depend on the value of the function
f at a finite number of points in the interval of integration, f need not be
defined at x = ±π nor at a finite number of discontinuities on (−π, π). We
shall now give a definition of Fourier series and present some examples.

Definition 10.7. For any integrable function f on [−π, π), the numbers ak
and bk defined by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ak =
1

π

∫ π

−π

f(x) cos kxdx for k ≥ 0,

bk =
1

π

∫ π

−π

f(x) sin kxdx for k ≥ 1,

(10.5)
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are called the Fourier coefficients of f . The corresponding trigonometric series

a0
2

+

∞∑

k=1

(
ak cos kx+ bk sin kx

)
(10.6)

is called the Fourier series of f . We express this association by writing

f(x) ∼ a0
2

+

∞∑

k=1

(
ak cos kx+ bk sinkx

)
, (10.7)

to indicate that the Fourier series on the right may or may not converge to f
at some point t ∈ [−π, π].

We note that in the definition we use ∼ (or the symbol ∼= by some authors)
and not =, to indicate thereby an association independent of any question of
convergence of the Fourier series of f on the right. In fact, the reason for
this notation will be clear soon. Also, we shall see that most functions are
actually represented by their Fourier series. We remind the reader that if∫ π

−π f(x) dx exists, then a0, ak, and bk exist for all k ≥ 1. Moreover, from the
above discussion, we have the following result that justifies some of Fourier’s
original intuitions.

Theorem 10.8. If the trigonometric series of the form (10.6) converges uni-
formly on [−π, π], then it is the Fourier series of its sum. More precisely, if
the trigonometric series (10.6) converges uniformly to f on [−π, π], then the
ak and bk are given by (10.5).

Of course, we have no idea what happens if the series (10.6) does not
converge uniformly. However, since

|ak cos kx+ bk sin kx| ≤ |ak|+ |bk|,
Weierstrass’s M -test (see Theorem 9.25) shows that the trigonometric series
(10.6) converges absolutely and uniformly on every closed interval [a, b] when-
ever

∑∞
k=1(|ak|+ |bk|) is convergent. Similar comments also apply to complex

Fourier series, which will not be discussed in this book.
The complex Fourier series is much more convenient for theoretical pur-

poses. In any case, once we prove convergence, we will be able to derive a large
number of applications. To do this, we begin with a Fourier series of a given
function f even if we do not have any idea whether it will converge uniformly
to f or diverge.

There are special circumstances in which the calculation of the Fourier
coefficients becomes a bit simpler than usual. For example, in the case of
even and odd functions, certain coefficients are zero. The graph of an even
function is symmetric about the y-axis, whereas the graph of an odd function
is symmetric about the origin. Certain well-known even functions are |x|, x2,
cosx, and well-known odd functions are x, sinx, tanx. Even and odd functions
possess certain simple but useful properties:
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• The product of two even (or odd) functions is an even function.
• The sum of two even (or odd) functions is an even (or odd) function.
• The product of an even and an odd function is an odd function.
• For a Riemann integrable function f defined on [−c, c] (c > 0), from the
inspection of related figures with this assumption, it is evident that

∫ c

−c

f(x) dx =

⎧
⎨

⎩
2

∫ c

0

f(x) dx if f is even,

0 if f is odd.

For instance, ∫ c

−c

sin kxdx = 0 for each k.

Suppose that f(x) is a periodic function of period 2π. Let us further assume
that f is even on (−π, π), i.e., f(x) = f(−x) for all x ∈ (−π, π). Then the
product function f(x) sin kx is odd, which means that bk = 0 for all k ≥ 1,
and hence we have the Fourier cosine series

f(x) ∼ a0
2

+

∞∑

k=1

ak cos kx, ak =
2

π

∫ π

0

f(x) cos kxdx.

If f is odd on (−π, π), i.e., f(x) = −f(−x) for all x ∈ (−π, π), then the
product function f(x) cos kx is odd, which means that ak = 0 for all k ≥ 0,
and hence we have the Fourier sine series

f(x) ∼
∞∑

k=1

bk sinkx, bk =
2

π

∫ π

0

f(x) sin kxdx.

Example 10.9. Consider f(x) = |x| on [−π, π]. Then f is even and continu-
ous on [−π, π]. Also, f ′(x) exists on (−π, π) � {0}. Obviously, bn = 0 for all
n ≥ 1. Now because f is even and so is f(x) cosnx, we have

an =
2

π

∫ π

0

x cosnxdx.

The graph of f together with its periodic extension is shown in Figure 10.7.
The extended function is continuous and piecewise smooth. Indeed, the Fourier
series converges to f(x) = |x| on [−π, π]. Clearly, a0 = π. For n ≥ 1, integra-
tion by parts yields

an =
2

π

∫ π

0

xd
( sinnx

n

)
= − 2

nπ

∫ π

0

sinnxdx = − 2

nπ

(cosnx
−n

)∣∣∣∣
π

0

,

so that

an = −2(1− (−1)n)

n2π
=

⎧
⎨

⎩
− 4

π(2k + 1)2
if n = 2k + 1, k ≥ 0,

0 if n is even.
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−π π 3π 5π x

y

−3π

f (−π) = f (π)

O

Fig. 10.7. Periodic (even) extension of the periodic function f(x) = |x| on [−π, π].

We have, for x ∈ [−π, π],

|x| ∼ π

2
− 4

π

∞∑

k=0

cos(2k + 1)x

(2k + 1)2
.

Note that the Fourier series here converges uniformly to |x| on [−π, π] but not
on the whole interval (−∞,∞), and so outside the interval (−π, π), f(x) is
determined by the periodicity condition f(x) = f(x+ 2π). By Theorem 10.8,
in the above expression, the symbol ∼ indicates equality. Thus, we can make
use of this series to find the values of some numerical series. For instance,
x = 0 yields

π2

8
=

∞∑

k=1

1

(2k + 1)2
(10.8)

as a special case. The function to which the Fourier cosine series for f(x) = |x|,

O x

y

π

π−π

Fig. 10.8. Approximation of |x| with partial sums of
π

2
− 4

π

∞∑

k=0

cos(2k + 1)x

(2k + 1)2
.

converges is illustrated in Figure 10.8. •
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10.1.5 Questions and Exercises

Questions 10.10.

1. When we say p-periodic, are we referring to a function’s fundamental
period p?

2. What is the major advantage of Fourier series over Taylor series?
3. If f1, f2, . . . , fn are periodic functions of period p, must the sum

∑n
k=1 akfk

be a periodic function of period p?
4. Is cosx+ cosπx periodic? If so, what is its period?
5. If f and g are periodic with period p, must the periods of fg and f/g

(g �= 0) be p? What is the period of sin 2t = 2 sin t cos t?
6. If f and g are ω-periodic, must f + g be ω-periodic?
7. Suppose that f is ω-periodic. Must f ′ be ω-periodic? Must

∫ x

0
f(t) dt be

ω-periodic if and only if
∫ ω

0
f(t) dt = 0?

8. Does the integrability of
∫ π

−π f(x) dx suffice for the existence of the Fourier
series of f?

9. Suppose that the sequence of trigonometric polynomials {sn(x)}n≥0 con-
verges uniformly to f on [−π, π]. Must the sequences {sn(x) cos kx}n≥0

and {sn(x) sin kx}n≥0 be uniformly convergent to the functions f(x) cos kx
and f(x) sin kx, respectively, for each k ≥ 1, on [−π, π]? If so, does that
imply that term-by-term integration of the Fourier series of f is permis-
sible on [−π, π]?

10. Suppose that the Fourier series of f converges uniformly on [−π, π]. Must
it be the Fourier series of exactly one continuous function?

11. Suppose that f is continuous on [−π, π] such that f(−π) �= f(π). Must
the periodic extension of f to R have discontinuities at x = (2k − 1)π,
k ∈ Z?

Exercises 10.11.

1. Define
(a) f(x) = x2 on [−π, π); (b) g(x) = x2 on [0, 2π].
Draw the graphs of f and g together with their periodic extensions.

2. Determine the Fourier series of a sawtooth function f defined by

f(x) =

{
(π − x)/2 for 0 < x ≤ 2π,
f(x+ 2π) otherwise.

3. Expand f(x) = x2 on [−π, π] in a Fourier series. Show that the Fourier
series of f converges absolutely and uniformly to the periodic function
extension of f . Also, deduce that

π2

6
=

∞∑

n=1

1

n2
.
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4. Plot the graph of each of the following functions for L = 1, 2, π, 2π:

(a) f(x) =

{
cos

(π

L
x
)

if 0 ≤ x ≤ L/2,

0 if L/2 < x ≤ L.

(b) f(x) =

{
0 if 0 ≤ x ≤ L/2,

sin
(π

L
x
)

if L/2 < x ≤ L.

(c) f(x) =

{
x if 0 ≤ x ≤ L/2,

L− x if L/2 ≤ x ≤ L.

Also graph each function’s periodic extension onto the interval [−L, 0]
together with its period extension (with period 2L) onto R.

5. Find the Fourier series corresponding to the following function:

f(x) =

{
sinx if −π < x < 0,
cosx if 0 < x < π.

6. Consider g(x) = 1 − (|x|/π) on [−π, π] and extend it as a 2π-periodic
function defined on R. Show that the Fourier series of g is given by

g(x) =
1

2
+

4

π2

∞∑

k=1

cos(2k + 1)x

(2k + 1)2
.

7. Show that the Fourier series of the function f(x) = x2 on (0, 2π) is given by

4π2

6
+

∞∑

n=1

4

(
cosnx

n2
− π sinnx

n

)
.

Show that it converges uniformly on every closed interval [a, b] in (0, 2π),
and hence converges on (0, 2π).

8. Sketch the periodic function f(x) = 1−x2, x ∈ [−π, π], and determine its
Fourier sine and cosine coefficients. Do the same for the function f(x) =
π− x on [0, π]. Apply a convergence test to see whether the Fourier series
corresponding to these two functions converge uniformly for −π ≤ x ≤ π.

9. Verify whether each of the following is true:

(a) x2 =
π2

3
+ 4

∞∑

k=1

(−1)k cos kx

k2
, x ∈ [−π, π].

(b)
π

4
=

∞∑

n=1

sin(2n− 1)x

2n− 1
, x ∈ (0, π).

(c) x = 2

∞∑

k=1

(−1)k−1

k
sin kx, x ∈ (−π, π).

(d) x = π − 2

∞∑

k=1

sinkx

k
, x ∈ (0, 2π).

Does the identity (b) hold at the end points x = 0 or π? Give a valid rea-
son to support your answer. How about the equality case at the endpoints
in (c) and (d)?
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10.2 Convergence of Fourier Series

A Fourier series is simply a trigonometric series considered formally with no
claim of convergence, although the series is associated with a function f in
the sense that coefficients have been obtained from f . Some natural questions
arise:

(a) For what values of x does the Fourier series of f converge? Does it con-
verge for all x in [−π, π]? If it converges on [−π, π] but not to f , what
will be its sum?

(b) If the Fourier series of f converges at x, does it converge to f?
(c) If the Fourier series of f converges to f on [−π, π], does it converge

uniformly to f on [−π, π]?

Compare these questions with the analogous questions about the Taylor series
of a function.

The history of Fourier series is long and glorious and has been one of the
most fruitful concepts in mathematics since its inception. However, continuity
of f is not sufficient to guarantee convergence of the Fourier series of f on
[−π, π]. In 1876, Paul du Bois-Reymond constructed a continuous function
f : [−π, π] → R whose Fourier series failed to converge to f at each point in a
dense subset of [−π, π].1 Indeed, the following are true statements:

• There exists a continuous function whose Fourier series diverges at a point.
• There exists a continuous function whose Fourier series converges every-
where on [−π, π], but not uniformly.

• There exists a continuous function whose Fourier series diverges for points
in some set S and converges on (−π, π) \S.

For proofs of these statements, see standard texts such as Z. Zygmond.2

10.2.1 Statement of Dirichlet’s Theorem

It is important to establish simple criteria for determining when a Fourier
series converges. Define

E ′ =
{
f ∈ E : (i) lim

h→0+

f(x+ h)− f(x+)

h
exists for each x ∈ [−π, π)

(ii) lim
h→0−

f(x+ h)− f(x−)

h
exists for x ∈ (−π, π]

}
.

Recall that f : [a, b] → R is smooth if f and f ′ are continuous on [a, b].
For the definition of left- and right-hand limits, we refer to Section 3.1.4 and

1 A subset A ⊆ X is dense in X if A = X; for example, Q = R.
2 Z. Zygmond, Trigonometric Series, 3rd Edition, Vols. I and II, Cambridge
University Press, 2002.
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the discussion following Theorem 3.13. For one-sided derivatives, we refer to
Section 3.3.

Now we state two versions of the Dirichlet theorem, although the two
relatively easy versions given in Theorems 10.33 and 10.35 are sufficient for
our purposes.

Theorem 10.12 (Dirichlet’s theorem). Let f ∈ E ′. Then for each x ∈
(−π, π), the Fourier series of f(x) converges to the value

f(x−) + f(x+)

2
.

At the endpoints x = ±π, the series converges to

f(π−) + f((−π)+)

2
.

Remark 10.13. (i) If f ∈ E ′ is continuous at x, then f(x−) = f(x+) =
f(x), and so at such points,

f(x−) + f(x+)

2
= f(x).

Thus, the Fourier series of f converges to f(x) at the point x where it is
continuous.

(ii) At the point of discontinuity x, the Fourier series of f assumes the mean
of the one-sided limits of f . •

Corollary 10.14. If f : [−π, π] → R is continuous, and if f(−π) = f(π),
f ′(x) exists and is piecewise continuous on [−π, π], then the Fourier series of
f converges to f(x) at every point x ∈ [−π, π].

Theorem 10.15 (Dirichlet’s theorem). Suppose that f : [−π, π] → R is
piecewise continuous on [−π, π] and piecewise monotone, i.e., there exists a
partition P = {x0, x1, . . . , xn} of [−π, π] such that the restriction f |[xk−1,xk],
k = 1, 2 . . . , n, is either increasing or decreasing. Let f(x) be defined for other
values of x by the periodicity condition f(x) = f(x + 2π). Then the Fourier
series of f on [−π, π] converges to

(a) f(x) if f is continuous at x ∈ (−π, π);
(b) (f(x−) + f(x+))/2 if f is discontinuous at x;
(c) (f(π−) + f((−π)+))/2 at the endpoints x = ±π.

The conditions imposed on f(x) in Theorems 10.12 and 10.15 are called
Dirichlet’s conditions (see Figure 10.9).

Example 10.16. If f(x) = x on [−π, π) and f(π) = −π, graph the 2π-
periodic extension of f to R. Also, find the Fourier sine series of f .
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xO

y

∗

f (x−) = lim f (s)
s→x−

f (x+) = lim f (t)
t→x+

f (x−) + f (x+)
2

−π xs t π

Fig. 10.9. Illustration for the convergence of Fourier series.

x

y

−π π 3π 5π−3π

π

−π

Fig. 10.10. Graphs of f(x) = f(x+ 2π), f(x) = x on [−π, π) with f(π) = −π.

Solution. Note that f is odd on (−π, π) and f(−π) = f(π) (Figure 10.10).
The periodic extension of f to R may be given by

f(x+ 2π) = f(x) for x ∈ R.

Note that f((−π)+) = −π = −f(π+) and the 2π-periodic extension of f is
not continuous. We see that an = 0 for n ≥ 0 and

bn =
1

π

∫ π

−π

x sinnxdx =
2

π

∫ π

0

x sinnxdx =
2(−1)n−1

n
.

Consequently (see Figure 10.11),

x ∼ 2
∞∑

k=1

(−1)k−1

k
sinkx.

Note that the Fourier series does not necessarily agree with f(x) = x at
every point in [−π, π]. In the present example, the Fourier series vanishes
at both endpoints x = ±π, whereas the function does not vanish at either
endpoint. However, by Theorem 10.12, the series converges at every interior
point of (−π, π). For example, at x = π/2 the symbol ∼ can be replaced by
an equal sign (why?), and so

π

2
= 2

[
1− 0

2
+

(−1)

3
− 0

4
+

1

5
+ · · ·

]
,
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x

y

s1(f)
s2(f)

s40(f)
s7(f)

π−π

Fig. 10.11. The graphs of the nth partial sums of 2
∑∞

k=1((−1)k−1/k) sin(kx).

which gives the remarkable Madhava-Leibniz-Gregory formula (see also
Example 9.32)

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .

Finally, we remark that at the endpoints x = ±π, the series converges to

f(π−) + f((−π)+)

2
=

π + (−π)

2
= 0. •

In the above example, we could also consider f as follows: f(x) = x
on (−π, π) and f(−π) = f(π) = 0. The periodic extension is pictured in
Figure 10.12.

x

y

π

−π

−π π 3π 5π−3π

Fig. 10.12. Graphs of f(x) = f(x + 2π), f(x) = x on (−π, π) with f(π) = 0 =
f(−π).

Example 10.17. If f(x) = ex on [−π, π) and f(x + 2π) = f(x) for x ∈ R,
determine the Fourier series of f .

Solution. It is convenient and simpler to use the following standard notation:

1

a+ ib
=

a

a2 + b2
− i

b

a2 + b2
and eix = cosx+ i sinx,
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so that for n ≥ 0, we have einπ = (−1)n and
∫

einx dx =

∫
cosnxdx+ i

∫
sinnxdx.

According to this, the Fourier coefficients are easy to derive quickly by writing

an − ibn =
1

π

∫ π

−π

e−inxex dx

=
1

π

e(1−in)x

1− in

∣∣∣∣
π

−π

=
1

π

(
e(1−in)π − e−(1−in)π

1− in

)

=
(−1)n(eπ − e−π)

π(1 − in)
, since e±inπ = (−1)n,

=
2(−1)n sinhπ

π(1 + n2)
(1 + in),

and therefore, equating real and imaginary parts gives

an =
2(−1)n sinhπ

π(1 + n2)
and bn =

2(−1)n−1n sinhπ

π(1 + n2)
.

Thus, we have

ex ∼ sinhπ

π
+

2 sinhπ

π

∞∑

n=1

(−1)n

1 + n2
cosnx+

2 sinhπ

π

∞∑

n=1

(−1)n−1n

1 + n2
sinnx

(10.9)

for x ∈ (−π, π). In particular, at the point of continuity x = 0, it follows that

1 =
sinhπ

π
+

2 sinhπ

π

∞∑

n=1

(−1)n

1 + n2
,

which reduces to

π cscπ − 1

2
=

∞∑

n=1

(−1)n

1 + n2
.

According to Dirichlet’s theorem, at the endpoint x = π, the relation (10.9)
yields

eπ + e−π

2
=

sinhπ

π
+

2 sinhπ

π

∞∑

n=1

1

1 + n2
, i.e. π cothπ = 1 + 2

∞∑

n=1

1

1 + n2
,

which reduces to

π cothπ − 1

2
=

∞∑

n=1

1

1 + n2
. •
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10.2.2 Fourier Series of Functions with an Arbitrary Period

Having discussed periodic functions defined on [−π, π] of period 2π, we are
now ready for a discussion of a more general case, namely the development of
a function in a Fourier series valid on an arbitrary interval. In this process,
by letting the length of the interval increase indefinitely, we may obtain an
expression valid for all x.

Suppose that f is a 2L-periodic and Riemann integrable function. Then
by Lemma 10.1, the function f(at) has period 2L/a. In particular, f((L/π)t)
is 2π-periodic, and so the Fourier series expansion has the following in terms
of the variable t:

f

(
L

π
t

)
∼ a0

2
+

∞∑

k=1

ak cos kt+

∞∑

k=1

bk sin kt, t ∈ [−π, π], (10.10)

where

ak =
1

π

∫ π

−π

f

(
L

π
t

)
cos kt dt =

1

L

∫ L

−L

f(x) cos

(
kπ

L
x

)
dx,

and similarly,

bk =
1

L

∫ L

−L

f(x) sin

(
kπ

L
x

)
dx.

By Lemma 10.2, we remark that the interval of integration in the last two
formulas for the Fourier coefficients can be replaced with an arbitrary interval
[c, c + 2L], of length 2L. Changing the variable t, by setting t = (π/L)x, we
can reformulate (10.10), and the above discussion as follows.

Theorem 10.18. Let f be a periodic function with period 2L. Then the
Fourier expansion of f is given by

f(x) ∼ a0
2

+

∞∑

k=1

ak cos

(
kπ

L
x

)
+

∞∑

k=1

bk sin

(
kπ

L
x

)
, x ∈ [−L,L], (10.11)

where

ak =
1

L

∫ L

−L

f(x) cos

(
kπ

L
x

)
dx and bk =

1

L

∫ L

−L

f(x) sin

(
kπ

L
x

)
dx.

The interval of integration in the last formulas for the Fourier coefficients
can be replaced with the interval [c, c + 2L], where c is any real number; we
usually let c = −L. Most of the physically realizable periodic functions satisfy
this theorem. Note that

cos

(
kπ

L
(x+ 2L)

)
= cos

(
kπ

L
x

)
and sin

(
kπ

L
(x+ 2L)

)
= sin

(
kπ

L
x

)
.
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Thus, the Fourier series in (10.11) has period 2L, and therefore the sum should
have period 2L. That is, the sum cannot represent an arbitrary function on
R, but can represent a periodic function only. But a natural extension to R

may be obtained by letting L → ∞. This process actually leads to what is
called the Fourier transform, which is outside the scope of this book.

As an illustration of Theorem 10.18, we consider

f(x) =

{
0 for −2 ≤ x < 0,
1 for 0 ≤ x < 2.

Then with L = 2, we apply Theorem 10.18 and obtain

a0 =
1

2
, an = 0 for n ≥ 1 , and bn =

1 + (−1)n−1

nπ
for n ≥ 1.

Corollary 10.19. If f is a periodic function with period 2L, then

f(x) ∼
∞∑

k=0

dk cos

(
kπ

L
x+ φk

)
,

where the coefficients dk and the phases φk may be calculated from the coeffi-
cients ak and bk defined in Theorem 10.18.

Theorem 10.18 gives the following result, which is widely used in appli-
cations because many interesting functions that turn out to be even or odd
periodic functions.

Corollary 10.20. The Fourier series of an even function f with period 2L is
a Fourier cosine series

f(x) ∼ a0
2

+

∞∑

k=1

ak cos

(
kπ

L
x

)
with ak =

1

L

∫ c+2L

c

f(x) cos

(
kπ

L
x

)
dx,

and the Fourier series of an odd function f with period 2L is a Fourier sine
series

f(x) ∼
∞∑

k=1

bk sin

(
kπ

L
x

)
with bk =

1

L

∫ c+2L

c

f(x) sin

(
kπ

L
x

)
dx,

where c is any real number. In particular, ak and bk may be given with c = 0.

10.2.3 Change of Interval and Half-Range Series

Note that a given function is not necessarily even or odd (e.g., ex and x2ex).
Suppose that we wish to find the Fourier series of a function f defined only
in [0, π] instead of [−π, π]. We may define

F (x) =

{
g(x) for −π ≤ x < 0
f(x) for 0 ≤ x ≤ π,
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where g is an arbitrary function on [−π, 0). Since we are interested in f only
on [0, π], properties of the convergence of the series on [−π, 0) are irrelevant
(Figure 10.13). This means that we may set on [−π, 0),

g(x) = f(−x) or g(x) = −f(−x) or g(x) = 0.

Assume that F satisfies the Dirichlet conditions.

x

y

−π 2π O x

y

−2π −πO π π 2π 3π

Fig. 10.13. Illustration for even and odd extensions.

Case (i) In the first case, we obtain an even function F on [−π, π] (with
g(0) = 0), so that Fourier series of F (x) on [−π, π] contains only cosine terms,
and F (x) = f(x) on [0, π]. Consequently, the cosine series of the even function
F (x) := feven(x) = f(|x|) on [−π, π] gives the cosine series of f(x) on [0, π].
Thus, the Fourier cosine series of f on [0, π] is given by

f(x) ∼ a0
2

+

∞∑

k=1

ak cos kx, ak =
2

π

∫ π

0

f(x) cos kxdx.

This is called the half-range cosine series for f defined on [0, π]. Thus, ac-
cording to Theorem 10.15,

a0
2

+

∞∑

k=1

ak cos kx =

⎧
⎪⎨

⎪⎩

f(x) for x ∈ (0, π),
f(0) for x = 0,
f(−π) + f(π)

2
= f(π) for x = π,

where in the last step we have used the fact that f(π) = f(−π). We remark
that if f is defined only on [0, π), then we can define

feven(−π) = lim
x→π− f(x),

provided the later limit exists.

Case (ii) In the second case, we consider g(x) = −f(−x), and so F takes the
form

F (x) := fodd(x) =

⎧
⎨

⎩

f(x) for 0 < x < π,
−f(−x) for −π < x < 0,
0 for x = 0, x = ±π,



10.2 Convergence of Fourier Series 451

where in the last step we have set f(π−) = −f((−π)+) (provided limx→π− f(x)
exists), so that

f(π−) + f((−π)+)

2
= 0,

and F = fodd is an odd function defined on [−π, π] (Figure 10.14). Hence
the Fourier series of F contains only sine terms, and F (x) = f(x) on [0, π].
Consequently,

f(x) ∼
∞∑

k=1

bk sinkx, bk =
2

π

∫ π

0

f(x) sin kxdx,

which is referred to as the half-range sine series for f on [0, π].

O x

y

π
◦◦

−π

◦ ◦

O x

y

π−π

Fig. 10.14. Odd and even extensions of f(x) = cos x on (0, π).

Odd and even extensions of f defined on (0, L) may be defined similarly;
see Figures 10.15 and 10.16.

y

O 2 x x

y

2 4−2−4

2

−2

Fig. 10.15. Odd extension of f(x) = x for 0 < x < 2, period 4.

A change in scale can be made for the cosine and sine series, and we obtain
the following:

Definition 10.21. For an integrable function f : [0, L] → R, the Fourier
cosine expansion of f is given by

f(x) ∼ a0
2

+

∞∑

k=1

ak cos

(
kπx

L

)
, ak =

2

L

∫ L

0

f(x) cos

(
kπx

L

)
dx.
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y

O 2 x x

y

O 2 4−2

Fig. 10.16. Even extension of f(x) = x for 0 < x < 2, period 4.

The Fourier sine expansion of f on [0, L] is given by

f (x ) ∼
∞∑

k=1

bk sin

(
kπx

L

)
, bk =

2

L

∫ L

0

f(x) sin

(
kπx

L

)
dx.

Thus, given a function f defined on [0, L], it is possible to obtain both
cosine and sine series of f on [0, L].

Example 10.22. Consider f(x) = | sinx| (see also Example 10.24). The func-
tion is defined for all x. We remark that | sinx| is π-periodic and | sinx| = sinx
on [0, π] (see Figures 10.17 and 10.18). Clearly, f represents a continuous,
piecewise smooth, even function of period π, and therefore it is everywhere
equal to its Fourier series, consisting of cosine terms only. Now, for k ≥ 0,
Corollary 10.20 with c = 0 and L = π/2 yields that

ak =
2

π

∫ π

0

f(x) cos(2kx) dx

=
2

π

∫ π

0

sinx cos 2kxdx, since | sinx| = sinx on [0, π],

=
1

π

∫ π

0

[sin(1 + 2k)x− sin(2k − 1)x] dx

=
1

π

(
−cos(2k + 1)x

2k + 1
+

cos(2k − 1)x

2k − 1

)∣∣∣∣
π

0

= − 1

π

(
(−1)2k+1 − 1

2k + 1
− (−1)2k−1 − 1

2k − 1

)
,

y

π 2π 3πO

y = sin x

x

Fig. 10.17. Graph of y = sin x.

O

y

2π 3ππ

y = |sin x|

x

Fig. 10.18. Graph of y = | sin x|.
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which, after a simplification, shows that

ak = − 4

π(4k2 − 1)
, k ≥ 0.

In particular, a0 = 4/π. Thus, the Fourier series expansion of the given func-
tion is (see Figure 10.19)

| sinx| = 2

π
− 4

π

∞∑

k=1

cos 2kx

4k2 − 1
, x ∈ [−π, π].

Note that we have an equal sign rather than ∼, because the Fourier series
converges absolutely and uniformly on [−π, π], and hence on R. •

O x

y

−π π

s2(f) s1(f)

Fig. 10.19. The nth partial sums of | sin x| ∼ 2

π
− 4

π

∞∑

k=1

cos(2kx)

(4k2 − 1)
, for n = 1, 2, 4, 30.

Example 10.23. (a) Expand f(x) = cosx as a half-range sine series on [0, π].
(b) Does the series converge for each point in [−π, π]?
(c) Define g(x) =

∑∞
k=1 bk sin kx and sketch the graph of g on [−π, π], where

the bk are the Fourier coefficients of f .
(d) Determine when f(x) = g(x) on [−π, π].

Solution. We have

cosx ∼
∞∑

k=1

bk sinkx, bk =
2

π

∫ π

0

cosx sin kxdx.

Clearly, b1 = (1/π)
∫ π

0 sin(2x) dx = 0. For k > 1,

2

∫ π

0

cosx sin kxdx =

∫ π

0

(sin(k + 1)x+ sin(k − 1)x) dx

= −
[
cos(k + 1)x

k + 1
+

cos(k − 1)x

k − 1

]∣∣∣∣
π

0

= −
[
(−1)k+1 − 1

k + 1
+

(−1)k−1 − 1

k − 1

]

= −[(−1)k−1 − 1]
2k

k2 − 1

=

{
0 if k = 2n− 1, n > 1,

8n

4n2 − 1
if k = 2n, n ≥ 1.
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Thus (see Figure 10.20),

O xπ

s50(f)
s10(f)
s4(f)
s1(f)

y

π
2

Fig. 10.20. cosx ∼ 8

π

∞∑

n=1

n

(4n2 − 1)
sin(2nx) on (0, π).

cosx ∼ 8

π

∞∑

n=1

n

4n2 − 1
sin(2nx) on (0, π). •

Example 10.24. Find the Fourier cosine series of f(x) = sinx on [0, π).

Solution. Note that the even extension F (x) of f(x) = sinx is given by F (x) =
| sinx| on (−π, π), and hence F may be treated as a π-periodic function as in
Example 10.22. We could also use the above extension process of half-range
cosine series. According to this,

sinx ∼ a0
2

+

∞∑

k=1

ak cos kx, ak =
2

π

∫ π

0

sinx cos kxdx.

We see that a0 = 4/π and a1 = 0. For k > 1, we have

2

∫ π

0

sinx cos kxdx =

∫ π

0

[sin(k + 1)x− sin(k − 1)x] dx

= −[(−1)k−1 − 1]

[
1

k + 1
− 1

k − 1

]

= [(−1)k−1 − 1]
2

k2 − 1
.

Thus on (0, π),

sinx ∼ 2

π
+

2

π

∞∑

k=2

(−1)k−1 − 1

k2 − 1
cos kx =

2

π
− 4

π

∞∑

n=1

cos(2nx)

4n2 − 1
.
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Since the sum of the series on the right is even, it converges to | sinx| rather
than sinx when −π ≤ x ≤ 0. This implies, by periodicity, that the Fourier
series indeed converges to | sinx| for all real x. Thus (see also Example 10.22)

| sinx| = 2

π
− 4

π

∞∑

n=1

cos(2nx)

4n2 − 1
for all x ∈ R. •

Example 10.25. Consider f(x) = x|x| for −π ≤ x < π. Then f is an odd
function with L = π. Therefore, an = 0 for n ≥ 0. The periodic extension is
given by

f(x) = f(x+ 2π), f(π) = −π2 = f(−π).

Also, we observe that f(x) sinnx is even, and so for all n ≥ 1, we have

bn =
1

π

∫ π

−π

x|x| sinnxdx =
2

π

∫ π

0

x2 sinnxdx,

so that

bn =
2

π

[
−x2 cosnx

n

∣∣∣∣
π

0

+
2

n

∫ π

0

x cosnxdx

]

=
2

π

[
−π2(−1)n

n
+

2

n

{
x sinnx

n

∣∣∣∣
π

0

− 1

n

∫ π

0

sinnxdx

}]

=
2

π

[
π2(−1)n+1

n
+

2

n2

cosnx

n

∣∣∣∣
π

0

]

=
2

π

[
π2(−1)n+1

n
+

2[(−1)n − 1]

n3

]

=
2

π

[
(−1)n−1π2n2 + 2[(−1)n − 1]

n3

]

and a simplification gives

bn =

⎧
⎪⎨

⎪⎩

2(π2n2 − 4)

πn3
if n is odd,

−2π

n
if n is even, n ≥ 1.

The Fourier series of f(x) = x|x| for −π ≤ x < π follows. •
10.2.4 Issues Concerning Convergence

The following lemma, which is of central importance, tells us why Fourier
coefficients are so important. Of course for our presentation, it suffices to
consider Φ as in (10.4) (so that φk’s, ck’s and dk’s are all real).
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Lemma 10.26 (Best approximation). Let Φ = {φ1, . . . , φn} be an or-
thonormal set of functions in the inner product space E, and let ck be the
Fourier coefficients of f relative to φk:

ck =
1

π

∫ π

−π

f(x)φk(x) dx := 〈f, φk〉.

If Tn(x) is an arbitrary Fourier polynomial relative to φk, that is, Tn(x) =∑n
k=1 dkφk(x) for some constants d1, . . . , dn, then we have

∥∥∥∥∥f −
n∑

k=1

ckφk(x)

∥∥∥∥∥

2

≤ ‖f − Tn‖2,

with equality if and only if ck = dk for each k = 1, . . . , n. Moreover,

n∑

k=1

|ck|2 ≤ 1

π

∫ π

−π

|f(x)|2 dx. (10.12)

Proof. Set Sn(x) =
∑n

k=1 ckφk(x). Then we have

‖f − Tn‖2 =
1

π

∫ π

−π

|f(x)− Tn(x)|2 dx

=
1

π

∫ π

−π

|f(x)|2 dx− 2Re

n∑

k=1

dk
1

π

∫ π

−π

f(x)φk(x) dx

+
1

π

∫ π

−π

|Tn(x)|2 dx

=
1

π

∫ π

−π

|f(x)|2 dx− 2Re

n∑

k=1

ckdk +

n∑

k=1

|dk|2

=
1

π

∫ π

−π

|f(x)|2 dx−
n∑

k=1

|ck|2 +
n∑

k=1

|ck − dk|2

= ‖f − Sn‖2 +
n∑

k=1

|ck − dk|2, (10.13)

and therefore

‖f − Tn‖2 ≥ ‖f − Sn‖2,
with equality if and only if ck = dk for each k = 1, . . . , n. Note that f and φk

are fixed, while the dk are allowed to vary. In particular, setting dk = ck in
(10.13) shows that the minimum value of ‖f − Tn‖2 is given by

min
Tn

‖f − Tn‖2 =
1

π

∫ π

−π

|f(x)|2 dx−
n∑

k=1

|ck|2 = ‖f‖2 −
n∑

k=1

|ck|2,
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which has to be nonnegative. This gives
n∑

k=1

|ck|2 ≤ 1

π

∫ π

−π

|f(x)|2 dx for all n.

Upon letting n → ∞, because the sequence
{∑n

k=1 |ck|2
}
of partial sums

of the series
∑∞

k=1 |ck|2 is bounded above by ‖f‖2, we obtain the following
result as a consequence of the monotone convergence theorem.

Corollary 10.27. Suppose that {φk(x)}k≥1 is an orthonormal set in E and∑∞
k=1 ckφk(x) is the Fourier series of f ∈ E relative to {φk}k≥1. Then

(a)
∑∞

k=1 |ck|2 ≤ (1/π)
∫ π

−π |f(x)|2 dx, where ck = (1/π)
∫ π

−π f(x)φk(x) dx;
(b) ck → 0 as k → ∞.

The inequality (a) is called Bessel’s inequality. Part (b) of this corollary
follows easily from the fact that the general term of a convergent series must
approach zero.

Because the trigonometric system Φ defined by (10.4) forms an orthonor-
mal basis with {a0/

√
2, ak, bk} as the corresponding Fourier coefficients asso-

ciated with Φ, it follows that

a20
2

+

∞∑

k=1

(a2k + b2k) ≤
1

π

∫ π

−π

f2(x) dx, (10.14)

which is the form of Bessel’s inequality used for the basic trigonometric system
Φ. Here the ak and bk are defined by (10.5). Note that the series on the left-
hand side of this inequality is convergent whenever f is a square-integrable
function. Equality holds in the inequality (10.14), although the inequality is
sufficient for the convergence discussion. We may state (10.14) as the following
theorem.

Theorem 10.28. The sum of the squares of the Fourier coefficients of any
square-integrable function always converges.

Also, it is important to point out that there exists a function that is
integrable (but not square-integrable) whose Fourier series diverges, but we
shall not prove this fact in this book.

In particular, Bessel’s inequality (10.14) gives that a2k → 0 and b2k → 0 as
k → ∞ and therefore,

lim
k→∞

ak = 0 = lim
k→∞

bk.

By the formula (10.5), it follows that

lim
k→∞

∫ π

−π

f(t) cos kt dt = 0 = lim
k→∞

∫ π

−π

f(t) sin kt dt. (10.15)

Indeed, the following general result holds for an arbitrary interval [a, b], al-
though we do not include its proof here.
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Lemma 10.29 (Riemann–Lebesgue lemma). If f is piecewise continu-
ous on [a, b] and absolutely integrable on [a, b], then

lim
α→±∞

∫ b

a

f(t) cosαt dt = 0 = lim
α→±∞

∫ b

a

f(t) sinαt dt,

where α ∈ R.

10.2.5 Dirichlet’s Kernel and Its Properties

In order to establish sufficient condition for the convergence of a Fourier series
at a particular point, we pay some attention to representing the partial sums.
To do this, we need a simple formula for calculating the sum of the “simplest”
trigonometric polynomial

Dn(t) =
1

2
+

n∑

k=1

cos kt. (10.16)

We see that the formula for Dn(t) is useful in examining the behavior of the
partial sums of the Fourier series of a periodic function. First, we find that

Dn(t) =

⎧
⎪⎪⎨

⎪⎪⎩

sin (n+ 1
2 ) t

2 sin 1
2 t

if t/2π /∈ Z,

1

2
+ n if t/2π ∈ Z.

(10.17)

The function Dn(t) is called Dirichlet’s kernel, and it changes sign more
rapidly as n increases. Indeed, if t = 2mπ for some m ∈ Z, then from (10.16),
it follows that Dn(2mπ) equals 1

2 + n. If sin 1
2 t �= 0, then multiplying both

sides of the equality (10.16) by 2 sin 1
2 t, we have

2Dn(t) sin
1

2
t = sin

1

2
t+

n∑

k=1

2 cos kt sin
1

2
t

= sin
1

2
t+

n∑

k=1

{
sin

(
k +

1

2

)
t− sin

(
k − 1

2

)
t

}

= sin
(
n+

1

2

)
t,

and (10.17) follows.
We shall now formulate some preliminary properties of Dirichlet’s kernel

(see Figure 10.21 for the graph of Dn(t)). We observe that Dn is even. Recall
that if we substitute t = 2mπ in both sides of Dn(t) in (10.16), we see that

Dn(2mπ) = n+ 1
2 , m ∈ Z.
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From the first expression on the right of Dn(t) in (10.17), it follows that the
points t = 2mπ (m = 0,±1, . . .) where both the numerator and denominator
vanish are removable discontinuities:

lim
t→2mπ

Dn(t) = lim
t→2mπ

(n+ 1
2 ) cos (n+ 1

2 )t

2 · 1
2 cos

1
2 t

=
(n+ 1

2 )(−1)m

(−1)m
= n+

1

2
.

Thus, Dn(t) is continuous on R. Moreover, since Dn(t) is even,

1

π

∫ π

−π

Dn(t) dt =
2

π

∫ π

0

Dn(t) dt =
2

π

[
1

2

∫ π

0

dt+

n∑

k=1

∫ π

0

cos kt dt

]
= 1,

for any n whatsoever. By the triangle inequality, for all t ∈ R and each n ∈ N,
we have

|Dn(t)| ≤ 1

2
+

n∑

k=1

| cos kt| = 1

2
+ n.

Finally, in view of the well-known Jensen’s inequality, namely sin θ ≥ 2θ/π
for θ ∈ [0, π/2], we have

1

2 sin(t/2)
≤ π

2t
for t ∈ (0, π),

and therefore
|Dn(t)| ≤ π

|t| for 0 < |t| < π.

Thus the basic properties of Dn(t) may be summarized as follows.

5.5

x

y

O

D1

D2

D3

D5

π−π

Fig. 10.21. The graph of Dn(t) =
1
2
+

∑n
k=1 cos(kt) for certain values of n.
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Proposition 10.30. The Dirichlet kernel Dn(t) defined by (10.16) is even,
and |Dn(t)| ≤ 1

2 + n for each t ∈ R and each n ∈ N. Moreover,

1

π

∫ π

−π

Dn(t) dt =
2

π

∫ π

0

Dn(t) dt = 1 for each n. (10.18)

In addition, for 0 < |t| < π, |tDn(t)| ≤ π.

Next, we consider the partial sum sn(f) of the Fourier series of the 2π-
periodic function f on (−π, π) defined by

sn(f)(t) =
a0
2

+

n∑

k=1

(
ak cos kt+ bk sin kt

)
,

where ak and bk are the Fourier coefficients of f defined by (10.5). Note that
for each n ∈ N,

• sn(f)(t) is continuous;
• sn(f)(t) is 2π-periodic, and sn(f)(π) = sn(f)(−π).

Now we recall an important consequence of the uniform convergence theorem
(see Theorem 9.12): if the Fourier series of f converges uniformly to f on
[−π, π], then f must be continuous on [−π, π] with f(π) = f(−π).

The Dirichlet kernel plays a key role in our next calculation, since it pro-
vides a convenient way of representing the nth partial sums sn(f)(t) in a more
manageable form as an “integral transform” of f .

Proposition 10.31. Let f : R → R be a 2π-periodic function that is inte-
grable on [−π, π]. Then we have

sn(f)(x) =
1

π

∫ π

0

(f(x+ t) + f(x− t))Dn(t) dt. (10.19)

Proof. From the expression for the Fourier coefficients ak and bk in (10.5), we
can rewrite our formula for sn(f) as follows: for each x ∈ R,

sn(f)(x) =
a0
2

+

n∑

k=1

(
ak cos kx+ bk sin kx

)

=
1

π

∫ π

−π

f(t)

[
1

2
+

n∑

k=1

cos kt coskx+ sin kt sinkx

]
dt

=
1

π

∫ π

−π

f(t)

[
1

2
+

n∑

k=1

cos k(t− x)

]
dt

=
1

π

∫ π

−π

f(t)Dn(t− x) dt, by (10.16)/(10.17),

=
1

π

∫ π−x

−π−x

f(x+ u)Dn(u) du (t− x = u)

=
1

π

∫ π

−π

f(x+ t)Dn(t) dt.
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Here both f(t) and Dn(t) are periodic functions of period 2π, and therefore
the last equality is a consequence (see Lemma 10.1) of the fact that for every
2π-periodic function g and for each real a, we have

∫ π−a

−π−a

g(u) du =

∫ π

−π

g(u) du.

Since Dn(t) is even, we have

∫ π

−π

f(x+ t)Dn(t) dt =

∫ π

−π

f(x− t)Dn(t) dt,

and therefore the last representation for sn(f)(x) can be rewritten as

sn(f)(x) =
1

π

∫ π

−π

f(x+ t)Dn(t) dt =
1

π

∫ π

−π

f(x− t)Dn(t) dt, (10.20)

or equivalently

sn(f)(x) =
1

2π

∫ π

−π

(f(x+ t) + f(x− t))Dn(t) dt. (10.21)

Since the integrand in the integral in (10.21) is even (in t), the desired repre-
sentation (10.19) follows.

Multiplying both sides of (10.18) by f(x) gives

f(x) =
2

π

∫ π

0

f(x)Dn(t) dt =
1

π

∫ π

−π

f(x)Dn(t) dt. (10.22)

Subtracting this from (10.19) gives a fundamental relation

sn(f)(x)− f(x) =
2

π

∫ π

0

(
f(x+ t) + f(x− t)

2
− f(x)

)
Dn(t) dt.

Thus, we have the following result.

Proposition 10.32. Assume the hypotheses of Proposition 10.31. Then the
sequence sn(f)(x) converges to f(x) if and only if

lim
n→∞

2

π

∫ π

0

(
f(x+ t) + f(x− t)

2
− f(x)

)
Dn(t) dt = 0.

(Note that the integrand is even in t.)
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10.2.6 Two Versions of Dirichlet’s Theorem

First we show that the Fourier series of a piecewise continuous function con-
verges to the function at points where the function is differentiable.

Theorem 10.33. Let f ∈ E (i.e., piecewise continuous on [−π, π]) and 2π-
periodic on R. Suppose that f is differentiable at x0. Then

lim
n→∞ sn(f)(x0) = f(x0).

Proof. Let x be a point at which f is differentiable. We have to prove that

lim
n→∞ sn(f)(x) = f(x), i.e., Rn(x) = f(x)− sn(f)(x) → 0 as n → ∞.

By (10.20) and (10.22), this is equivalent to proving that Rn(x) → 0 as
n → ∞, where

Rn(x) =
1

π

∫ π

−π

(f(x)− f(x− t))Dn(t) dt

=
1

π

∫ π

−π

f(x)− f(x− t)

2 sin 1
2 t

sin

(
n+

1

2

)
t dt

=
1

π

∫ π

−π

p(t) cos
1

2
t sinnt dt+

1

π

∫ π

−π

f(x)− f(x− t)

2
cosnt dt,

with

p(t) =
f(x)− f(x− t)

2 sin 1
2 t

.

By the Riemann–Lebesgue lemma (see (10.15)), the second integral in the last
relation approaches zero as n → ∞. Therefore, it suffices to prove that the
first integral in the last integral relation approaches zero as n → ∞. Since
f ∈ E and sin(t/2) is continuous, the function p(t) is piecewise continuous in
t except possibly at t = 0. But since f is differentiable at x, it follows that

lim
t→0

p(t) = lim
t→0

f(x)− f(x− t)

t

t/2

sin 1
2 t

= f ′(x),

and therefore p(t) cos 1
2 t belongs to E . Again, by the Riemann–Lebesgue

lemma (see (10.15)), it follows that

lim
n→∞

1

π

∫ π

−π

p(t) cos
1

2
t sinnt dt = 0.

Thus, Rn(x) → 0 as n → ∞, i.e., sn(f)(x) → f(x) as n → ∞.



10.2 Convergence of Fourier Series 463

Corollary 10.34. If f is differentiable on [−π, π] and 2π-periodic on R, then
the Fourier series of f converges pointwise to f(x) at every point x ∈ [−π, π].

Next we shall present a sufficient condition for the convergence of a Fourier
series of a function at a point of discontinuity.

Theorem 10.35. Let f and f ′ be piecewise continuous on [−π, π], and 2π-
periodic on R. Then

lim
n→∞ sn(f)(x) =

f(x−) + f(x+)

2
.

Proof. We need to prove that

sn(f)(x) → f(x−) + f(x+)

2
as n → ∞.

By (10.19) and (10.22), this is equivalent to proving that

Rn(x) = sn(f)(x) − f(x−) + f(x+)

2
→ 0 as n → ∞,

where

Rn(x) =
2

π

∫ π

0

(
f(x+ t) + f(x− t)

2
− f(x−) + f(x+)

2

)
Dn(t) dt.

Using the expression for Dn(t), we can rewrite Rn(x) as

Rn(x) =
1

π

∫ π

0

p(t) sin

(
n+

1

2

)
t dt+

1

π

∫ π

0

q(t) sin

(
n+

1

2

)
t dt, (10.23)

where

p(t) =
f(x+ t)− f(x+)

2 sin 1
2 t

and q(t) =
f(x− t)− f(x−)

2 sin 1
2 t

.

We now show that the two integrals in (10.23) approach 0 as n → ∞. We shall
first deal with the first integral. Since f is a piecewise continuous function of t,

p(t) =
f(x+ t)− f(x+)

t

t/2

sin 1
2 t

is piecewise continuous on the half-open interval (0, π], and

lim
t→0

p(t) = lim
t→0

f(x+ t)− f(x+)

t
.

Since f ′ is piecewise continuous, the limit on the right (right-hand derivative)
exists. Thus, p(t) is piecewise continuous on [0, π]. Similarly, q(t) is piecewise
continuous on [0, π].
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Next, expanding sin (n+ 1
2 )t, the first integral in (10.23) becomes

1

π

∫ π

0

p(t) sin

(
n+

1

2

)
t dt =

1

π

∫ π

0

p(t) cos
1

2
t sinnt dt

+
1

π

∫ π

0

f(x+ t)− f(x+)

2
cosnt dt,

with each integral on the right approaching zero (by the Riemann–Lebesgue
lemma) as n → ∞. Thus,

1

π

∫ π

0

p(t) sin

(
n+

1

2

)
t dt → 0 as n → ∞.

Similarly, the second integral in (10.23) approaches zero. Therefore, we con-
clude that Rn(x) → 0 as n → ∞, and the proof is complete.

Corollary 10.36. Let f and f ′ be piecewise continuous on [−π, π] and 2π-
periodic on R. If f is continuous at x0, then the Fourier series of f converges
to f(x0).

10.2.7 Questions and Exercises

Questions 10.37.

1. If f is even (respectively odd) and integrable on [a, b], must F (x) =∫ x

0 f(t) dt be odd (respectively even) on [a, b]?
2. If f is even (respectively odd) and differentiable on [a, b], must F (x) =

f ′(x) be odd (respectively even) on [a, b]?
3. Suppose that f and g are either both even or both odd. Must fg be even?
4. If f is odd, must we have f(0) = 0?
5. Suppose that f and g are even and odd, respectively. Must both the

compositions f ◦ g and g ◦ f be even?
6. Suppose that f is a real-valued function defined on [−c, c]. Can f be

expressed as the sum of even and odd functions?
7. Does there exist a function f on [−π, π] such that its Fourier series is

sinx+ sin 2x+ sin 3x+ · · ·+ sinnx+ · · ·?

8. Suppose that f(x) = f(π−x) and that f is periodic with period 2π. What
can be said about the Fourier coefficients of f?

9. Suppose that f(x) = ax2 + bx+ c (−π < x < π) for some real constants.
What will be the graph of f(x)? Is the periodic extension of f a continuous
function? What are its discontinuities?

10. Does there exist a periodic function that is not Riemann integrable?
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Exercises 10.38.

1. Determine which of the following functions are even, which are odd, and
which are neither.

(a) x sinx. (b) x5 cosnx. (c) ex
2−x. (d) xf(x2). (e) log

(
1 + x

1− x

)
.

2. Suppose f ∈ C1([a, b]) and f(a) = f(b) = 0. Using the Fourier series
expansion of f , show that

∫ b

a

|f(x)|2 dt ≤
(
b− a

π

)2 ∫ b

a

|f ′(x)|2 dx.

3. Assume that f(x) = x2. Let

a0
2

+

∞∑

n=1

(an cosnx+ bn sinnx) and
A0

2
+

∞∑

n=1

(An cosnx+Bn sinnx)

be the Fourier series of f on [−π, π] and of f on [0, 2π], respectively. Define

h(x) =
a0 −A0

2
+

∞∑

n=1

[(an −An) cosnx+ (bn −Bn) sinnx].

Calculate h and give a careful sketch of the graph of h on [−π, 2π].
4. Assume that g(x) = x2 for x ∈ [−π, π] \{π/2} and g(π/2) = 0. How do

the Fourier coefficients of g compare with those in Exercise 10.38(3) for
f(x)? What can we conclude from these two problems?

5. Let f : R → R be a piecewise continuous function that is π-periodic. Let

a0
2

+
∞∑

n=1

[an cos 2nx+ bn sin 2nx] and
A0

2
+

∞∑

n=1

(An cosnx+Bn sinnx)

be the Fourier series of f on [0, π] and of f on [−π, π]. Express An and
Bn in terms of an and bn.

6. Define

f(x) =

{
A sin

(
2πLx

)
for 0 < x < L/2,

0 for (L/2) ≤ x < L.

Compute the Fourier series of f on the interval [0, L].
7. Define f(x) = x(π − x) for x ∈ [0, π].

(a) Find the sine and the cosine series of f .
(b) Using the corresponding Fourier series, prove the following:

(i)

∞∑

n=1

1

n6
=

π6

945
and

∞∑

n=1

1

n4
=

π4

90
.

(ii)
∞∑

n=1
n−odd

(−1)n−1

(2n− 1)3
=

π3

32
and

∞∑

n=1

(−1)n−1

n2
=

π2

12
.
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8. Find the Fourier series representation for

(a) f(x) =

⎧
⎨

⎩

−1 if x ∈ (−π,−π
2 ),

1 if x ∈ (−π
2 ,

π
2 ),−1 if x ∈ (π2 , π).

(b) f(x) =

⎧
⎨

⎩

−1 if x ∈ (−π,−π
2 ),

0 if x ∈ (−π
2 ,

π
2 ),

1 if x ∈ (π2 , π).

How do the Fourier coefficients of f in (a) compare with those in (b)?
What can we conclude from these two problems?

9. To obtain more practice with Fourier series, calculate the Fourier series
for the five functions given by |x|, sign (x), x, x2, and | sinx|. Discuss the
relationships among the Fourier series of these five functions.

10. Define f(x) = 1 − x/2 for x ∈ (−π, π). Graph the 2π-periodic extension
of f . Find the Fourier series expansion of f .

11. Define

f(x) =

{
1 + x for −1 < x < 0,
−1 for 0 < x < 1.

Compute the first five terms in the Fourier expansion of f . Plot f and
sn(f) on [−3/2, 3/2] on the same graph.

12. Does there exist a continuous function on [−π, π] that generates the
Fourier series

∞∑

n=1

(−1)n

n3
sinnx?

If not, justify your answer. If yes, can we use Parseval’s formula to
prove that

ζ(6) :=

∞∑

n=1

1

n6
=

π6

945
?

13. Determine the Fourier series of

f(x) = 3x+ 2 on [−π, π), f(π) = −3π + 2; f(x) = f(x+ 2π).

14. Show that

cos(αx) =
sin(πα)

πα
+

2α sin(πα)

π

∞∑

k=1

(−1)k−1 cos(kx)

k2 − α2
for x ∈ [−π, π],

where α �∈ Z. Deduce that

π cot(πα) =
1

α
−

∞∑

k=1

2α

k2 − α2
.

15. Expand the function f(x) defined by

f(x) =

{
x for 0 ≤ x ≤ L/2,
L− x for L/2 < x ≤ L,

in a sine series.
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16. Define

f(x) =

{
π for 0 < x < π/2,
0 for x ∈ (−π, 0] ∪ [π/2, π).

Find the Fourier series, Fourier cosine series, and Fourier sine series of f .
In each case, sketch the graph of the sum of the series for x in the interval
[−4π, 4π].

17. Let f be a periodic function defined by

f(x) =

{−π for −π < x < 0,
x for 0 < x < π,

and f(x) = f(x+ 2π).

Draw the graph of f(x) and determine the Fourier series of f .
18. Define f : [−π, π] → R by

f(x) =

{
1 for |x| ≤ π/2,
0 elsewhere.

(a) Draw the graph of f(x) and extend to R as a 2π-periodic function.
(b) Show that f is piecewise continuous, and determine the points of

discontinuity of the periodic extension of f .
(c) Show that f ′ is piecewise continuous.
(d) Verify whether Theorem 10.35 is applicable.
(e) Determine the Fourier series of f .
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Functions of Bounded Variation

and Riemann–Stieltjes Integrals

In Section 11.1, we introduce a special class of functions, namely, functions
of bounded variation. In Section 11.1, we shall also discuss several nice prop-
erties of functions in the class BV ([a, b]) of functions of bounded variation
on [a, b]. Monotone functions on [a, b] have nice properties. For example, they
are integrable on [a, b] and have only a countable number of jump disconti-
nuities. In this section, we shall also show that every monotone function is
a function of bounded variation, and hence the class BV ([a, b]) contains the
class of monotone functions on [a, b]. We shall show that increasing functions
are in some sense the only functions of bounded variation. More precisely (see
Theorem 11.19), every function of bounded variation is the difference of two
increasing functions. As an application of functions of bounded variation, in
Section 11.2 we shall consider important generalizations of the Darboux and
Riemann integrals called the Darboux–Stieltjes and Riemann–Stieltjes inte-
grals. The theory of Stieltjes integrals is almost identical to that of Riemann
integrals, except that the notion of length of an integral is replaced by a
more general concept of α-length. Stieltjes integrals are particularly useful in
probability theory.

11.1 Functions of Bounded Variation

Let f : [a, b] → R and let P = {x0, x1, . . . , xn} be a partition of [a, b]. Intro-
duce V (P, f) by

V (P, f) =

n∑

k=1

|Δfk|, Δfk := f(xk)− f(xk−1). (11.1)

Note that V (P, f) ≥ 0. We say that f is a function of bounded variation on
[a, b], or simply a BV function on [a, b], if there exists a constant M such

S. Ponnusamy, Foundations of Mathematical Analysis,
DOI 10.1007/978-0-8176-8292-7 11,
© Springer Science+Business Media, LLC 2012

469
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that V (P, f) ≤ M for each partition P of [a, b]. We shall say simply that f
is of bounded variation on [a, b]. The collection of all BV functions on [a, b] is
denoted by BV ([a, b]). If

Vf [a, b] := sup{V (P, f) : P ∈ P [a, b]},

then Vf [a, b] is called the total variation of f on [a, b]. In general, Vf [a, b]
could be infinite. It follows that Vf [a, b] = 0 if and only if f is a constant on
[a, b]. Also, it is clear that f is a function of bounded variation if and only if
Vf [a, b] < ∞.

Examples 11.1. (i) If f(x) = x on [a, b], then by (11.1), it follows that

V (P, f) =
n∑

k=1

|xk − xk−1| =
n∑

k=1

(xk − xk−1) = xn − x0 = b− a,

and so Vf [a, b] = b− a.
(ii) Recall that | sinx| ≤ |x| for x ∈ R and

| sinx− sin y| =
∣∣∣∣2 cos

(
x+ y

2

)
sin

(
x− y

2

)∣∣∣∣ ≤ 2

∣∣∣∣
x− y

2

∣∣∣∣ = |x− y|.

Alternatively, applying the mean value theorem on the interval [x, y], it
follows that

| sinx− sin y| = | cos c| |y − x| ≤ |x− y| for some c ∈ (x, y).

Thus if f(x) = sinx on [a, b], then by (11.1), we have

V (P, f) =

n∑

k=1

| sinxk − sinxk−1| ≤
n∑

k=1

|xk − xk−1| = b− a,

and so Vf [a, b] ≤ b− a. •
11.1.1 Sufficient Conditions for Functions of Bounded Variation

There are several different classes of functions that are of bounded variation.
For instance, we have these.

Theorem 11.2. Suppose that f : [a, b] → R satisfies any one of the following:

(a) f is monotone on [a, b];
(b) f is Lipschitz on [a, b], i.e., there exists an M > 0 such that

|f(x) − f(y)| ≤ M |x− y| for each x, y ∈ [a, b];

(c) f is differentiable on [a, b] such that f ′(x) is bounded on [a, b].
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Then f is of bounded variation on [a, b].

Proof. Suppose that P = {x0, x1, . . . , xn} is a partition of [a, b].

(a) Suppose that f is increasing on [a, b]. Then

V (P, f) =

n∑

k=1

|f(xk)− f(xk−1)| =
n∑

k=1

(f(xk)− f(xk−1)) = f(b)− f(a),

and if f is decreasing on [a, b], then we see that

V (P, f) = f(a)− f(b).

Thus, if f is monotone on [a, b], then Vf [a, b] = |f(a)− f(b)|.
(b) If f is Lipschitz on [a, b], then

V (P, f) =

n∑

k=1

|f(xk)− f(xk−1)| ≤ M

n∑

k=1

(xk − xk−1) = M(b− a).

(c) In this case, the hypotheses imply (by the mean value theorem) that
there exists a number c in (x, y) such that

f(x)− f(y) = f ′(c)(y − x) for [x, y] ⊆ [a, b],

and so because f ′ is bounded, there exists an M such that

|f(x)− f(y)| ≤ M |x− y|, i.e., f is Lipschitz on [a, b].

As in (b), it follows that V (P, f) ≤ M(b− a).

The conclusion of each case follows.

Example 11.3 (A continuous function need not be of bounded vari-
ation). Consider f : [0, 1] → R defined by

f(x) =

{
x sin

(
π
2x

)
for 0 < x ≤ 1,

0 for x = 0.

Clearly, f is continuous on [0, 1] and is bounded by 1. Since sinx = (−1)m if
and only if x = (m+ (1/2))π with m ∈ Z, we consider the partition

1/5 1/31/(2n−1)0 1
[ ]

Fig. 11.1. Partition of [0, 1].
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P =

{
0,

1

2n− 1
, . . . ,

1

5
,
1

3
, 1

}
, i.e. x0 = 0, xk =

1

2(n− k) + 1
(1 ≤ k ≤ n)

(see Figure 11.1), and find that

f(xk) =
1

2(n− k) + 1
sin

(π
2
(2(n− k) + 1)

)
=

(−1)n−k

2(n− k) + 1
.

Thus,

V (P, f) = |f(x1)− f(0)|+ |f(x2)− f(x1)|+ · · ·+ |f(1)− f(xn−1)|
=

1

2n− 1
+

1

2n− 3
+

1

2n− 1︸ ︷︷ ︸
+

1

2n− 5
+

1

2n− 3︸ ︷︷ ︸
+ · · ·+ 1 +

1

3︸ ︷︷ ︸

>

n∑

k=1

1

2k − 1
→ ∞ as n → ∞,

and therefore {V (P, f) : P ∈ P [0, 1]} is not bounded above. Consequently, f
is not a function of bounded variation on [0, 1]. This is also an example of a
uniformly continuous function that is not a function of bounded variation on
[0, 1]. •
Example 11.4. For α ∈ R, consider fα : [0, 1] → R defined by

fα(x) =

{
x2 sin

(
α
x

)
for 0 < x ≤ 1,

0 for x = 0.

Then condition (c) of Theorem 11.2 is satisfied, and therefore fα is a function
of bounded variation on [0, 1]. •
Examples 11.5. Consider f(x) =

√
x on [0, 1]. Here f is increasing on [0, 1],

and therefore f is a function of bounded variation on [0, 1]. However, f is not
Lipschitz, nor has it a bounded derivative on [0, 1].

Also, the function f(x) = x1/3 is monotone on [−1, 1], but f ′ is not
bounded on [−1, 1]. Thus, a function of bounded variation on [a, b] need not
have bounded derivative on (a, b). Note that f is not even differentiable at the
origin. •
Example 11.6. Consider f(x) = x3 on [−1, 1]. Then f is monotone, and
hence it is a function of bounded variation. Also, for x, y ∈ [−1, 1],

|f(x)− f(y)| = |x3 − y3| = |(x− y)(x2 + xy + y2)| ≤ 3|x− y|,

and hence f is also Lipschitz. •
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Fig. 11.2. The graph of y = sin(π/x) on (0, 1].

Examples 11.7 (A bounded function need not be of bounded varia-
tion).

(a) Define f on [0, 1] by

f(x) =

{
sin(π/x) for 0 < x ≤ 1,
0 for x = 0.

Then f is not continuous at 0. We now show that f �∈ BV ([0, 1]).
We observe that sin(π/x) = 0 for x = 1/n, n ∈ Z � {0}, and

sin(π/x) = (−1)n for x = 2/(2n+ 1), n ∈ Z;

see Figure 11.2 for the graph of y = sin(π/x). This suggests that we
choose a partition P = {0, 2/(2n+ 1), . . . , 2/5, 2/3, 1} of [0, 1]. We find
that f �∈ BV ([0, 1]), because

V (P, f) =

n∑

k=1

|f(xk)− f(xk−1)| = 2n → ∞ as n → ∞.

(b) Define f : [0, 1] → R by f(x) = 0 except at x = n/(n+ 1), where

f

(
n

n+ 1

)
= (−1)n, n ∈ N.

For the partition P = {0, 1/2, 2/3, . . . , n/(n+ 1), 1} of [0, 1], it follows
that

V (P, f) =
n∑

k=1

|f(xk)− f(xk−1)| = 2(n− 1) → ∞ as n → ∞,

and hence f is not of bounded variation on [0, 1]. Note that f is bounded
on [0, 1]. •
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11.1.2 Basic Properties of Functions of Bounded Variation

We see that f is of bounded variation on [a, b] if f does not oscillate too wildly,
and in particular, f must be bounded.

Theorem 11.8. Let f : [a, b] → R be a function of bounded variation on
[a, b]. Then we have the following:

(a) f is bounded on [a, b], but the converse is not necessarily true.
(b) |f | is a function of bounded variation on [a, b], but the converse is not

always true.
(c) 1/f is a function of bounded variation on [a, b] if f(x) ≥ m for some

m > 0 and for all x ∈ [a, b]. In particular, V1/f ≤ (1/m2)Vf .
(d) cf (c ∈ R) is a function of bounded variation on [a, b].

Proof. Let f be a function of bounded variation on [a, b].

(a) Let x ∈ [a, b] be arbitrary. Consider the partition P = {a, x, b} of [a, b].
For this partition P , there exists an M > 0 such that

V (P, f) = |f(x)− f(a)|+ |f(b)− f(x)| ≤ M,

which gives

|f(x)| ≤ M + |f(a)|+ |f(b)|
2

,

and so f is bounded on [a, b].
(b) For any partition P = {x0, x1, x2, . . . , xn} of [a, b], we have

V (P, |f |) =
n∑

k=1

∣∣ |f(xk)| − |f(xk−1)|
∣∣

≤
n∑

k=1

|f(xk)− f(xk−1)| = V (P, f),

and so |f | is a function of bounded variation on [a, b].
(c) Similarly, for any partition P = {x0, x1, x2, . . . , xn} of [a, b], we have

V (P, 1/f) =

n∑

k=1

∣∣∣∣
f(xk−1)− f(xk)

f(xk)f(xk−1)

∣∣∣∣

≤ 1

m2

n∑

k=1

|f(xk)− f(xk−1)| = 1

m2
V (P, f).

Since this is true for every partition P and (1/m2)Vf is an upper bound
for every V (P, 1/f), P ∈ P [a, b], this cannot be smaller than the least
upper bound. Therefore, it follows that

V1/f ≤ 1

m2
Vf .
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(d) This case is trivial.

Theorem 11.9. Let f and g be functions of bounded variation on [a, b]. Then
so are their sum, difference, and product. In particular,

Vf±g ≤ Vf + Vg and Vfg ≤ AVg +BVf ,

where
A = sup

x∈[a,b]

|f(x)| and B = sup
x∈[a,b]

|g(x)|

(note that by Theorem 11.8(a), f and g must be bounded).

Proof. Set F (x) = f(x) + g(x) and G(x) = f(x)g(x). Then for any partition
P = {x0, x1, . . . , xn} of [a, b], we have

|F (xk)− F (xk−1)| = |(f(xk)− f(xk−1)) + (g(xk)− g(xk−1))|
≤ |f(xk)− f(xk−1)|+ |g(xk)− g(xk−1)|,

and so
V (P, f + g) ≤ V (P, f) + V (P, g),

and therefore f + g is of bounded variation on [a, b]. The case for f − g is
similar. Similarly,

|G(xk)−G(xk−1)| = |f(xk)g(xk)− f(xk−1)g(xk)

+f(xk−1)g(xk)− f(xk−1)g(xk−1)|
≤ |g(xk)| |f(xk)− f(xk−1)|+ |f(xk−1)| |g(xk)− g(xk−1)|
≤ B |f(xk)− f(xk−1)|+A |g(xk)− g(xk−1)|,

and so
V (P, fg) ≤ BV (P, f) +AV (P, g),

and therefore fg is of bounded variation on [a, b]. It follows that Vfg ≤ AVg +
BVf , where A and B are as in the statement.

Theorems 11.2(a) and 11.9 give the following corollary.

Corollary 11.10. Every piecewise monotone function on [a, b] is of bounded
variation on [a, b].

If f and g are increasing on [a, b], then so is their sum f + g, but the
difference f − g need not be. But the next corollary shows that f − g is in the
wider class of functions BV ([a, b]).

Corollary 11.11. Let f and g be increasing on [a, b]. Then f−g is of bounded
variation on [a, b].

Proof. This follows from Corollary 11.10 and Theorem 11.9.
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This corollary has a converse that characterizes all functions in BV ([a, b]).
More precisely, we shall prove that every f ∈ BV ([a, b]) can be expressed as
the difference of two increasing functions on [a, b]. To accomplish this, we need
some preparation.

Lemma 11.12. Let f be a function of bounded variation on [a, b], and let P
and Q be two partitions of [a, b]. Then

V (P, f) ≤ V (Q, f) if P ⊆ Q, i.e. if Q is a refinement of P .

Proof. Let P = {x0, x1, x2, . . . , xn} be a partition of [a, b] and P1 a new
partition formed by adjoining one extra point, say c ∈ (xk−1, xk), so that

P1 = {x0, x1, x2, . . . , xk−1, c, xk, . . . , xn}.

Then since |f(xk) − f(xk−1)| ≤ |f(xk) − c| + |c − f(xk−1)|, it follows easily
that

V (P, f) ≤ V (P1, f).

Since Q is obtained by adjoining r (r ≥ 1) points not in P , after repeating
the above argument a finite number of times, we have

V (P, f) ≤ V (Q, f).

Theorem 11.13 (Additivity property of total variation). A function f
is of bounded variation on [a, b] if and only if f is of bounded variation on
[a, c] and on [c, b], c ∈ (a, b). In this case, we also have

Vf [a, b] = Vf [a, c] + Vf [c, b].

Proof. Assume that f ∈ BV ([a, b]) and c ∈ (a, b). Let P1 = {x0, x1, . . . , xp}
and P2 = {xp, xp+1, . . . , xn} be partitions of [a, c] and [c, b], respectively. Then

P = P1 ∪ P2 = {x0, x1, . . . , xp = c, xp+1, . . . , xn}

is a partition of [a, b], and

V (P1, f) + V (P2, f) =

p∑

k=1

|f(xk)− f(xk−1)|+
n∑

k=p+1

|f(xk)− f(xk−1)|

= V (P, f) ≤ Vf [a, b].

In particular,

V (P1, f) ≤ Vf [a, b] and V (P2, f) ≤ Vf [a, b],

and so f is of bounded variation on [a, c] and on [c, b]. Moreover, from the
basic properties of the supremum,
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Vf [a, c] + Vf [c, b] = sup
P1∈P [a,c]

V (P1, f) + sup
P2∈P [c,b]

V (P2, f)

= sup
P=P1∪P2

V (P, f)

≤ Vf [a, b] as P1 ∪ P2 ∈ P [a, b].

Next we prove the reverse inequality:

Vf [a, b] ≤ Vf [a, c] + Vf [c, b].

To do this, let P = {x0, x1, . . . , xn} be a partition of [a, b] and P0 = P ∪ {c}.
Then c ∈ [xk−1, xk] for some k, say k = p, and so P0 is a refinement of P if
c �∈ P and P0 = P if c ∈ P . Therefore, because

|f(xk)− f(xk−1)| ≤ |f(xk)− f(c)|+ |f(c)− f(xk−1)|,

we have
V (P, f) ≤ V (P0, f).

Next, we set

P1 = P0∩ [a, c] = {x0, . . . , xp−1, c} and P2 = P0∩ [c, b] = {c, xp+1, . . . , xn}.

Then P1 and P2 are partitions of [a, c] and [c, b], respectively. Also,

V (P, f) ≤ V (P0, f) = V (P1, f) + V (P2, f) ≤ Vf [a, c] + Vf [c, b],

which holds for all partitions P of [a, b]. This means that Vf [a, c] + Vf [c, b] is
an upper bound for every V (P, f), P ∈ P [a, b]. Thus,

Vf [a, b] ≤ Vf [a, c] + Vf [c, b],

and we have completed the proof.
We leave the converse as a simple exercise.

For instance, to compute the total variation of f(x) = |x| on [−3, 4], it
suffices to observe that it is decreasing on [−3, 0] and increasing on [0, 4].
Therefore, by Theorem 11.13,

Vf [−3, 4] = Vf [−3, 0] + Vf [0, 4] = |f(−3)− f(0)|+ |f(4)− f(0)| = 7.

Example 11.14. Consider f(x) = x+ [x] on [−1, 2]. Then

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x− 1 if −1 ≤ x < 0,
x if 0 ≤ x < 1,
x+ 1 if 1 ≤ x < 2,
4 if x = 2,
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Fig. 11.3. The graph of f(x) = x+ [x] on [−1, 2].

and we refer to Figure 11.3 for the graph of f(x) on [−1, 2]. Note that f is
piecewise monotone and bounded on [−1, 2], and therefore f ∈ BV ([−1, 2]).
Now,

Vf [−1, 0] = sup
x∈[−1,0)

[Vf [−1, x) + |f(0)− f(x)|]

= sup
x∈[−1,0)

[−f(−1) + f(x) + |f(0)− f(x)|]

= sup
x∈[−1,0)

[x+ 1 + |x− 1|] = 2.

Similarly, Vf [0, 1] = 1 and Vf [1, 2] = 4. •
Theorem 11.15. If f ∈ BV ([a, b]) and g is bounded on [a, b] such that f(x) �=
g(x) only at a finite number of points on [a, b], then g ∈ BV ([a, b]).

Proof. Let f be of bounded variation on [a, b]. Clearly, it suffices to prove
the theorem when f(x) = g(x) except at one point, say c ∈ [a, b]. Thus, if
f(x) �= g(x) at c ∈ [a, b], then we have

f(c) = g(c) + k

for some nonzero real constant k.

Case 1: If c = a, then we have (since f(x1) = g(x1))

|g(x1)− g(a)| = |f(x1)− (f(a)− k)| ≤ |f(x1)− f(a)|+ |k|.
Consequently, for any partition P = {x0, x1, . . . , xn} of [a, b] for which c = a,
we have
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V (P, g) ≤ V (P, f) + |k| ≤ Vf [a, b] + |k|,
and so g is of bounded variation on [a, b]. The proof is similar if c = b.

Case 2: If c ∈ (a, b), then (because f is of bounded variation on [a, b]) f is of
bounded variation on [a, c] and [c, b]. Thus, f and g differ on [a, c] (respectively,
on [c, b]) only at one endpoint, namely at c. Therefore, by Case 1, g is of
bounded variation on [a, c] and on [c, b]. Hence g is of bounded variation on
[a, b].

11.1.3 Characterization of Functions of Bounded Variation

Let f ∈ BV ([a, b]). For x ∈ [a, b], the total variation of f on [a, x] defined
by Vf [a, x] is a function of x. Then, Theorem 11.13 helps us to introduce a
function Vf on [a, b] as follows:

Vf (x) =

{
Vf [a, x] if x ∈ (a, b],
0 if x = a.

We call Vf , or simply V , the variation function of f on [a, b].

Example 11.16. Consider f(x) = 2x3−3x2−12x+6 on [0, 3]. Then f , being
a sum of monotone functions f1(x) = 2x3, f2(x) = −3x2, f3(x) = −12x, and
f4(x) = 6, is of bounded variation on [0, 3]. To determine the behavior of f(x),
we compute its derivative:

f ′(x) = 6(x2 − x− 2) = 6(x− 2)(x+ 1).

Since f ′(x) > 0 on (2, 3] and f ′(x) < 0 on [0, 2), f is increasing on [2, 3] and
decreasing on [0, 2]. Therefore,

Vf [0, 3] = Vf [0, 2] + Vf [2, 3] by Theorem 11.13,

= (f(0)− f(2)) + (f(3)− f(2)) by Theorem 11.2(a),

= (6 + 14) + (−3 + 14),

so that Vf [0, 3] = 31. •
Example 11.17. Let f(x) = 3x2 − x3 on [−2, 3]. On [−2, 3) compute the
following function (see Exercise 11.28(14)):

(a) total variation.
(b) positive variation.
(c) negative variation.

Solution. Clearly, f ∈ BV ([−2, 3]). To determine its behavior, we compute

f ′(x) = 3x(2− x),
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and observe that f ′(x) = 0 at x = 0, 2. Further, f ′(x) ≤ 0 on [−2, 0] ∪ [2, 3]
and f ′(x) ≥ 0 on [0, 2]. In particular, Theorem 11.2(a) gives

Vf [0, x] = f(x)− f(0) for 0 ≤ x ≤ 2

Vf [−2, x] = f(−2)− f(x) for −2 ≤ x ≤ 0, and

Vf [2, x] = f(2)− f(x) for 2 ≤ x ≤ 3.

A computation gives

Vf [−2, x] = x3 − 3x2 + 20 for −2 ≤ x ≤ 0.

In particular, Vf [−2, 0] = 20. Next, for 0 ≤ x ≤ 2,

Vf [−2, x] = Vf [−2, 0] + Vf [0, x] = 20 + (f(x)− f(0)) = −x3 + 3x2 + 20.

In particular, Vf [−2, 2] = 24. Finally, for 2 ≤ x ≤ 3,

Vf [−2, x] = Vf [−2, 2] + Vf [2, x] = 24 + f(2)− f(x) = x3 − 3x2 + 28.

Consequently, the total variation function V on [−2, 3] is defined to be

V (x) =

⎧
⎨

⎩

x3 − 3x2 + 20 for −2 ≤ x ≤ 0,
−x3 + 3x2 + 20 for 0 ≤ x ≤ 2,
x3 − 3x2 + 28 for 2 ≤ x ≤ 3.

The positive and negative variations can be obtained using the formulas in
Exercise 11.28(14). •

A restatement of the identity in Theorem 11.13 is given in the following
lemma.

Lemma 11.18. If x, y ∈ [a, b] such that a ≤ x < y ≤ b, then we have

Vf [x, y] = V (y)− V (x) ≥ |f(y)− f(x)| ≥ 0.

In particular, the function V is increasing on [a, b] and

V (y) = V (x) + Vf [x, y].

Proof. We see that with Vf [a, a] = 0, Theorem 11.13 gives

V (y)− V (x) = Vf [a, y]− Vf [a, x] = Vf [x, y] ≥ |f(y)− f(x)| ≥ 0,

and so V (y) ≥ V (x), i.e., V is increasing on [a, b].

Theorem 11.19 (Jordan decomposition of functions of bounded vari-
ation). Every f ∈ BV ([a, b]) can be written as f = V − D, where V and
D are increasing functions on [a, b]. Conversely, if f can be expressed as the
difference between two increasing functions on [a, b], then f ∈ BV ([a, b]).
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Proof. Let x, y ∈ [a, b] such that a ≤ x < y ≤ b and D(x) = V (x) − f(x).
Then

D(y)−D(x) = (V (y)− V (x)) − (f(y)− f(x)) = Vf [x, y]− (f(y)− f(x))≥ 0,

and thus D is increasing on [a, b]. The converse is trivial.

For instance, f(x) = [x] − x2 ∈ BV ([0, 3]), because both f1(x) = [x] and
f2(x) = x2 are increasing on [0, 3].

The decomposition of f ∈ BV ([a, b]) given in Theorem 11.19 is not unique.

Corollary 11.20. A function of bounded variation f on [a, b] has at most a
countable number of points of discontinuity on [a, b].

Proof. By Theorem 11.19, f = f1 − f2, where f1 and f2 are increasing on
[a, b]. Since monotone functions have at most a countable number of points of
discontinuity, the corollary follows.

Theorem 11.21. Suppose that f is of bounded variation on [a, b]. Then every
point of continuity of f is also a point of continuity of the variation function
V . The converse is also true.

Proof. We begin the proof when c ∈ (a, b).

∗
a x1 c + δc = x0 xn= b

∗
a c x b

Fig. 11.4. The partition P1.

⇒: Let f be continuous at c. Then for a given ε > 0, there exists a δ > 0
such that

|f(x)− f(c)| < ε

2
whenever 0 < |x− c| < δ.

For the same ε there exists a partition P1 = {c, x1, x2, . . . , b} of [c, b] such that

V (P1, f) > Vf [c, b]− ε

2
.

Since V (P1, f) increases on adjoining more points to the partition P1, we can
assume that 0 < x1 − c < δ (see Figure 11.4). That is,

|f(x1)− f(c)| < ε

2
whenever 0 < x1 − c < δ.

Thus, we have

Vf [c, b] <
ε

2
+ V (P1, f)

=
ε

2
+ |f(x1)− f(c)|+

n∑

k=2

|f(xk)− f(xk−1)|

<
ε

2
+

ε

2
+ Vf [x1, b],
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so that
Vf [c, b]− Vf [x1, b] < ε whenever 0 < x1 − c < δ.

Note that (see Lemma 11.18)

0 ≤ V (x1)− V (c) = Vf [c, x1] = Vf [c, b]− Vf [x1, b],

and so the last inequality becomes

0 ≤ V (x1)− V (c) < ε whenever 0 < x1 − c < δ,

showing that V is right continuous at c. A similar argument gives that V is
left continuous at c. Proof of the continuity of V at the endpoints follows from
a trivial modification of the proof.

⇐: Let V be continuous at c ∈ (a, b). Since V is monotone, the right-
hand and the left-hand limits V (c+) and V (c−) exist for each c ∈ (a, b). By
Theorem 11.19, the same is true for f(c+) and f(c−). If a < c < x ≤ b, then
Lemma 11.18 gives

0 ≤ |f(x)− f(c)| ≤ V (x) − V (c).

Letting x → c+, we find that

0 ≤ |f(c+)− f(c)| ≤ V (c+)− V (c),

and similarly,
0 ≤ |f(c)− f(c−)| ≤ V (c)− V (c−).

These two inequalities show that f is continuous at c whenever V is continuous
at c.

As a consequence of Theorems 11.19 and 11.21, we have the following
corollary.

Corollary 11.22. Let f be continuous on [a, b]. Then f ∈ BV ([a, b]) if and
only if f can be expressed as the difference of two increasing continuous func-
tions on [a, b].

Theorem 11.23. If f ∈ C1([a, b]), then f is of bounded variation and

Vf [a, b] =

∫ b

a

|f ′(t)| dt.

Proof. The first part is a consequence of Theorem 11.2(c). For the proof of the
second part, we apply the mean value theorem to f on each interval [xk−1, xk]
of the partition P = {x0, x1, . . . , xn} of [a, b]. According to this, there exists
a ck ∈ (xk−1, xk) for each k = 1, 2, . . . , n such that

V (P, f) =

n∑

k=1

|f(xk)− f(xk−1)| =
n∑

k=1

|f ′(ck)|(xk − xk−1).
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Thus, by the definition of the Riemann integral, because f ′(x) is continuous
on [a, b], given ε > 0, there exists a δ > 0 such that

∣∣∣∣∣V (P, f)−
∫ b

a

|f ′(t)| dt
∣∣∣∣∣ <

ε

2
(11.2)

for every partition P of [a, b] with ‖P‖ < δ. Moreover, by the definition of
bounded variation, it follows that for this ε > 0 there exists a partition P1 of
[a, b] such that

Vf [a, b] ≥ V (P1, f) > Vf [a, b]− ε/2.

Set Q = P ∪P1, the common refinement of P and P1 of [a, b]. Then ‖Q‖ < δ,
and so

Vf [a, b] ≥ V (Q, f) ≥ V (P1, f) > Vf [a, b]− ε/2.

Again, because ‖Q‖ < δ, (11.2) implies that

∣∣∣∣∣V (Q, f)−
∫ b

a

|f ′(t)| dt
∣∣∣∣∣ <

ε

2
.

The last inequality gives

∣∣∣∣∣Vf [a, b]−
∫ b

a

|f ′(t)| dt
∣∣∣∣∣ < ε.

Since ε > 0 is arbitrary, the conclusion follows.

11.1.4 Bounded Variation and Absolute Continuity

Definition 11.24. A real-valued function f defined on [a, b] is said to be ab-
solutely continuous on [a, b] if for every ε > 0 there exists a δ > 0 such that

n∑

k=1

|f(bk)− f(ak)| < ε

for every n disjoint open subintervals (ak, bk) of [a, b], k = 1, 2, . . . , n, with∑n
k=1(bk − ak) < δ.

Clearly, we have the following:

• Every Lipschitz function is absolutely continuous.
• By choosing n = 1, we see that every absolutely continuous function is
uniformly continuous (but the converse is not true), and hence continuous.
Thus,

Lipschitz ⇒ absolutely continuous ⇒ uniformly continuous ⇒ continuous.
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• There are continuous functions that are not Lipschitz.
• There are absolutely continuous functions that are not Lipschitz.
• Every function that has bounded derivative on [a, b] is absolutely continuous
on [a, b].

Theorem 11.25. Every absolutely continuous function on [a, b] is of bounded
variation.

Proof. Let f be an absolutely continuous function on [a, b]. Then for ε = 1,
there exists a δ > 0 such that

n∑

k=1

|f(bk)− f(ak)| < 1

for every collection of n finite disjoint open subintervals (ak, bk) of [a, b] sat-
isfying the condition

∑n
k=1(bk − ak) < δ.

Let N be a positive integer such that δ > (b − a)/N and let P1 =
{y1, y2, . . . , yN} be the partition of [a, b] with

yk = a+
k(b− a)

N
, k = 0, 1, 2, . . . , N.

Then yk − yk−1 = (b − a)/N < δ for each k = 1, 2, . . . , N . Let P2 =
{x0, x1, . . . , xn} be a refinement of P1. Then for each k, [yk−1, yk] contains one
or more subintervals [xj−1, xj ] of P2 the sum of whose lengths is yk−yk−1 < δ.
That is, if Qk is a partition of [yk−1, yk], then by the definition of absolute
continuity, ∑

Qk

|Δf | < 1 for each k.

For any partition P of [a, b], let P ′ be the refinement of P obtained by ad-
joining the points of P1. Then P ′ = ∪N

k=1Qk, and therefore

∑

P

|Δf | ≤
∑

P ′
|Δf | =

N∑

k=1

⎛

⎝
∑

Qk

|Δf |
⎞

⎠ < N.

This proves that f is of bounded variation.

The converse of Theorem 11.25 is not true. Indeed, every continuous func-
tion that is not of bounded variation (for instance, see Example 11.3 and
Exercise 11.28(3)) will serve as an example of a continuous function that is
not absolutely continuous.

In view of Theorems 11.19 and 11.25, it follows that every absolutely con-
tinuous function can be written as the difference of two increasing functions:

f(x) = V (x)− (V (x) − f(x)),

where V is the variation function defined by V (x) = Vf [a, x]. We now show
that V is also absolutely continuous, and hence Corollary 11.22 continues to
hold if continuity is replaced by absolute continuity.
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Theorem 11.26. Let f ∈ BV ([a, b]). Then f is absolutely continuous on
[a, b] if and only if the total variation function V , given by V (x) = Vf [a, x],
is absolutely continuous on [a, b].

Proof. Let f be absolutely continuous on [a, b]. Then corresponding to any
given ε > 0 there exists a δ > 0 such that

∑n
k=1 |f(bk)− f(ak)| < ε for every

finite system
S = {(ak, bk) : 1 ≤ k ≤ n}

of nonoverlapping subintervals (ak, bk) of [a, b] with
∑n

k=1(bk − ak) < δ. For
each k, let Pk = {ak = ak0 , ak1 , . . . , akmk

= bk} be a partition of [ak, bk]. Then

n∑

k=1

mk∑

j=1

(akj − akj − 1︸ ︷︷ ︸
) =

n∑

k=1

(bk − ak) < δ,

and therefore
n∑

k=1

mk∑

j=1

(f(akj )− f(akj−1 )) < ε.

Fixing the collection S and taking the supremum over all partitions Pk of
[ak, bk] for k = 1, 2, . . . , n, we obtain

n∑

k=1

Vf [ak, bk] =
n∑

k=1

(V (bk)− V (ak)) ≤ ε,

which shows that V is absolutely continuous. Since

|f(xk)− f(xk−1)| ≤ V (xk)− V (xk−1)

for a ≤ xk−1 < xk ≤ b, the converse is clear.

11.1.5 Questions and Exercises

Questions 11.27.

1. Is every bounded function of bounded variation?
2. Must a function of bounded variation be monotone?
3. Must a function of bounded variation be continuous?
4. Must a function of bounded variation be integrable?
5. Can there exist a nondifferentiable function that is of bounded variation?
6. If f is a function of bounded variation, must the reciprocal 1/f be of

bounded variation?
7. Suppose that f ∈ BV ([a, b]) and g ∈ BV ([c, d]), where f([a, b]) ⊂ [c, d],

so that g ◦ f is defined on [a, b]. Must g ◦ f ∈ BV ([a, b])?
8. Suppose that f is continuous and has a finite number of extrema on [a, b].

Must f be of bounded variation on [a, b]?
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9. Must every polynomial function in x over a bounded interval [a, b] be of
bounded variation on [a, b]?

10. Is it true that sinx ∈ BV ([a, b])? Is it true that cosx ∈ BV ([a, b])?
11. If f ∈ BV ([a, b]), must we have −f ∈ BV ([a, b])? Must Vf [a, b] =

V−f [a, b]?
12. If f ∈ BV ([a, b]), must we have f ∈ BV ([c, d]) when [c, d] ⊂ [a, b]?
13. Suppose that the interval [a, b] can be divided into a finite number of

subintervals on each of which f(x) is monotone. Must f be of bounded
variation on [a, b]?

14. Suppose that f is of bounded variation on [a, b] and V is the variation
function of f on [a, b]. Must V ± f be increasing on [a, b]?

15. Must the representation of a function of bounded variation as a difference
of two increasing functions be unique?

16. In the Jordan decomposition theorem, can we replace “increasing” by
“strictly increasing”?

17. Does the set of absolutely continuous functions on [a, b] form a vector
space over R?

Exercises 11.28.

1. Define f : [0, 1] → R by

f(x) =

{
0 for x rational in [0, 1],
1 for x irrational in [0, 1].

Choosing a partition P = {x0, x1, . . . , x2n} where x2k ∈ Q
c ∩ [0, 1] and

x2k+1 ∈ Q ∩ [0, 1] (k ≥ 0), show that f �∈ BV ([a, b]).
2. Define f : [0, 1] → R by

f(x) =

{−1 for x rational in [−1, 1]
1 for x irrational in [−1, 1].

Show that f is not a function of bounded variation. How about |f(x)| on
[−1, 1]?

3. Define f : [0, 1] → R by

f(x) =

{
x cos(π/2x) for 0 < x ≤ 1,
0 for x = 0.

By considering the partition P = {0, 1/2n, 1/(2n− 1), . . . , 1/3, 1/2, 1} of
[0, 1], show that f is not a function of bounded variation on [0, 1].

4. Show that f(x) = x4(cosx + x) on [0, π/2] is of bounded variation on
[0, π/2].

5. Show that BV ([a, b]) is a vector space over R.
(a) BV ([a, b]) is closed with respect to addition and scalar multiplication.
(b) 0 ∈ BV ([a, b]), −f ∈ BV ([a, b]) if f ∈ BV ([a, b]).
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Note: If ‖f‖ = |f(a)|+ Vf [a, b], f ∈ BV ([a, b]), then BV ([a, b]) becomes
a normed space.

6. Let f(x) = sinx on [0, 2π].
(a) Find the total variation of f on [0, 2π].
(b) Find a Jordan decomposition of f on [0, 2π].

7. Suppose that

f(x) =

{
x cos(π/x) for x ∈ (0, 1],
0 for x = 0.

If P = {0, 1/n, . . . , 1/3, 1/2, 1} is a partition of [0, 1], determine V (P, f).
Conclude that f �∈ BV ([0, 1]).

8. Define (see Figure 11.5)

xO

1
4
1
6

1
2

1
3

1
5

1

1
6

1
2

1

y

Fig. 11.5. Graph of f(x) on [0, 1].

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

2n
if x =

1

2n
,

0 if x =
1

2n− 1
,

0 if x = 0,
linear otherwise,

n ∈ N.

Show that f is continuous but not of bounded variation on [0, 1].
9. If f is integrable on [a, b] and F (x) =

∫ x

a
f(t) dt, then show that F is of

bounded variation on [a, b].
10. Determine all possible values of α and β for which the function f defined

on [0, 1] by

f(x) =

{
xα sin( 1

xβ ) for x ∈ (0, 1],
0 for x = 0,

is in BV ([0, 1]).
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11. Given f(x) = xne−x on [0, a], a > n > 0, find Vf [0, a].
12. Define f(x) = 2x3 − 9x2 + 12x on [0, 4], and g(x) = x − [x] on [1, 3].

Compute Vf [0, 4] and Vg[1, 3].
13. Suppose that f is continuous on [a, b], f ∈ BV ([a, b]), and {Pn} is a

sequence of partitions of [a, b] such that ‖Pn‖ → 0 as n → ∞. Show that

Vf [a, b] = lim
n→∞V (Pn, f).

14. For f ∈ BV ([a, b]) and a partition P = {x0, x1, . . . , xn} of [a, b], define

A(P ) = {k : f(xk)−f(xk−1) > 0} andN(P ) = {k : f(xk)−f(xk−1) < 0}.
Define the positive variation pf [a, b] and negative variation nf [a, b] of f
as follows:

pf [a, b] = sup

⎧
⎨

⎩
∑

k∈A(P )

(f(xk)− f(xk−1)) : P ∈ P [a, b]

⎫
⎬

⎭

and

nf [a, b] = inf

⎧
⎨

⎩
∑

k∈N(P )

(f(xk−1)− f(xk)) : P ∈ P [a, b]

⎫
⎬

⎭ .

For each x ∈ [a, b], let

p(x) = pf [a, x], n(x) = nf [a, x], V (x) = Vf [a, x]

and p(a) = n(a) = V (a) = 0. Show that
(a) 2p(x)− V (x) = f(x)− f(a) and 2n(x)− V (x) = f(a)− f(x).
(b) p(x)− n(x) = f(x)− f(a).
(c) V (x) = p(x) + n(x).
(d) p and n are increasing on [a, b].
(e) 0 ≤ p(x) ≤ V (x) and 0 ≤ n(x) ≤ V (x).
(f) If f is continuous at x = a, then so are p and n at x = a.

11.2 Stieltjes Integrals

We have already shown that the Darboux and Riemann integrals are the same,
and so we call them just the Riemann integral without distinguishing which
approach we use to examine the integrability and possibly to compute the
integral. In this section, we discuss Darboux–Stieltjes and Riemann–Stieltjes
integrals, which are important generalizations of the Darboux and Riemann
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integrals. Also, we state and prove theorems to indicate when these two inte-
grals are the same and when they are not. Since many results of this section
are straightforward generalizations of results in Chapter 6, the development
of these integrals requires only minor modifications to a more general setup,
and therefore it is appropriate to omit certain parts or the entirety of proofs
of some of the statements in this section.

As in the discussion of the Darboux integral in Section 6.1, we need to
begin the discussion with standard notation: Let P = {x0, x1, . . . , xn} be a
partition of [a, b] and x∗

k ∈ [xk−1, xk] (1 ≤ k ≤ n) arbitrary. To motivate
the definition of the Stieltjes integral, we consider the problem of finding the
moment with respect to the y-axis of a distribution of mass over [a, x]. If m(x)
is the amount of mass over [a, x], then the moment with respect to the y-axis
is approximated by the sum

n∑

k=1

x∗
kΔmk,

where Δmk = m(xk)−m(xk−1) is interpreted as the mass between xk−1 and
xk. In the same way, it is possible to approximate the moment of inertia of
the mass distribution by the sum

n∑

k=1

(x∗
k)

2Δmk.

Now we continue the discussion with a more general situation. For a real-
valued function f defined and bounded on [a, b] and for each k, 1 ≤ k ≤ n,
we use the following standard notation. Let

Mk = sup
x∈[xk−1,xk]

f(x), mk = inf
x∈[xk−1,xk]

f(x)

and similarly
M = sup

x∈[a,b]

f(x) and m = inf
x∈[a,b]

f(x),

so that
m ≤ mk ≤ f(x∗

k) ≤ Mk ≤ M.

For an increasing function α defined on [a, b], and for any partition P of [a, b],
define Δαk = α(xk)− α(xk−1) and the corresponding sums as follows:

U(P, f, α) =

n∑

k=1

MkΔαk, L(P, f, α) =

n∑

k=1

mkΔαk,

and

σ(P, f, α, x∗) =
n∑

k=1

f(x∗
k)Δαk.
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We call U(P, f, α), L(P, f, α), and σ(P, f, α, x∗) the upper (Darboux–Stieltjes),
the lower (Darboux–Stieltjes) and the Riemann (Stieltjes) sums of f with re-
spect to α on [a, b], respectively.

Since mk ≤ f(x∗
k) ≤ Mk and Δαk is nonnegative, we easily obtain many

key properties of these sums. For instance, for each partition P of [a, b],

L(P, f, α) ≤ σ(P, f, α, x∗) ≤ U(P, f, α), (11.3)

i.e., the lower sum is always less than or equal to the Riemann–Stieltjes sum,
which is in turn less than or equal to the upper sum. Moreover, two parts of
Lemma 6.7 take the following form.

Lemma 11.29. Let f be a bounded function on [a, b], and let P and Q be two
partitions of [a, b]. Then we have the following:

(a) L(P, f, α) ≤ L(Q, f, α) ≤ U(Q, f, α) ≤ U(P, f, α) if P ⊆ Q.
(b) m(α(b) − α(a)) ≤ L(P, f, α) ≤ U(Q, f, α) ≤ M(α(b) − α(a)) for any P

and Q.

Proof. The proof of this lemma follows if we imitate the proof of Lemma 6.7
by replacing Δxk by Δαk.

As with the Darboux integral, the case (a) of this lemma shows that the
upper sum is decreasing with respect to a refinement of the partition, while
the lower sum is increasing with respect to a refinement of the partition. In
particular, for any partitions P and Q of [a, b], we have

L(P, f, α) ≤ L(P ∪Q, f, α) ≤ U(P ∪Q, f, α) ≤ U(Q, f, α).

11.2.1 The Darboux–Stieltjes Integral

We now define the Darboux–Stieltjes integral.

Definition 11.30 (Darboux–Stieltjes integral). Let f be a bounded func-
tion defined on the closed interval [a, b] and let α be an increasing function on
[a, b]. The upper (Darboux–Stieltjes) integral of f with respect to α over [a, b]
is defined by

Uα(f) :=

∫ b

a

f(x) dα(x) =

∫ b

a

f dα = inf{U(P, f, α) : P ∈ P [a, b]},

and the lower (Darboux–Stieltjes) integral of f with respect to α over [a, b] is
defined by

Lα(f) :=

∫ b

a

f(x) dα(x) =

∫ b

a

f dα = sup{L(P, f, α) : P ∈ P [a, b]}.
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We say that f is Darboux–Stieltjes integrable with respect to α on [a, b], or
Stieltjes integrable with respect to α on [a, b] in the sense of Darboux, if the
upper and lower Darboux–Stieltjes integrals agree, i.e., if Uα(f) = Lα(f). In
this case, we denote their common value by

(DS)

∫ b

a

f(x) dα(x) or by (DS)

∫ b

a

f dα.

We call this integral the Darboux–Stieltjes integral of f with respect to α over
[a, b]. Here the function f is called the integrand, and the function α is called
the integrator. We let Dα[a, b] denote the set of all Darboux–Stieltjes integrable
functions with respect to α on the interval [a, b]. If Uα(f) �= Lα(f), then we
say that f is not Darboux–Stieltjes integrable.

Throughout the section, unless otherwise stated, “f is Darboux–Stieltjes
integrable” means that f is Darboux–Stieltjes integrable with respect to some
α on [a, b]. A similar convention will be followed when we define what it means
for a function to be Riemann–Stieltjes integrable with respect to some α on
[a, b].

Later, we simply denote the Darboux–Stieltjes integral by
∫ b

a

f dα

for cases in which the Darboux–Stieltjes and Riemann–Stieltjes integrals are
the same.

As with the Darboux integrals, the upper and lower (Darboux–Stieltjes)
sums depend on the particular choice of the partition, while the upper and
lower (Darboux–Stieltjes) integrals are independent of the partitions. Hence,
a natural question is the following: when do the two quantities, namely the
upper and lower (Darboux–Stieltjes) integrals, coincide?

If α(x) = x, then the Darboux–Stieltjes integral reduces to the Dar-
boux/Riemann integral of f over [a, b]. In this case, the upper and lower
Darboux–Stieltjes sums are called the upper and lower (Riemann) sums, re-
spectively.

Because many of the proofs of standard results are essentially the same as
those for the Riemann upper and lower integrals, we shall not include their
proofs. For example, the following corollary is a simple consequence of Lemma
11.29 and the definition of supremum and infimum.

Corollary 11.31. We have

m(α(b)− α(a)) ≤ Lα(f) =

∫ b

a

f dα ≤ Uα(f) =

∫ b

a

f dα ≤ M(α(b)− α(a)).

Furthermore, if f is Darboux–Stieltjes integrable on [a, b], then

m(α(b)− α(a)) ≤
∫ b

a

f dα ≤ M(α(b)− α(a)).
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Proof. The proof of the corollary follows along the lines of the proof of Lemma
6.7(c).

Examples 11.32. (a) Let α(x) = k for all x ∈ [a, b]. Then for any bounded
function f on [a, b], the corresponding upper and lower sums of f are zero.
Thus,

∫ b

a

f dα =

∫ b

a

f dα = 0, i.e.,

∫ b

a

f dα = 0,

and so f ∈ Dα[a, b].
(b) Set f(x) = k on [a, b]. Then for any increasing function α on [a, b] and for

each partition P of [a, b],

U(P, f, α) = k(α(b)− α(a)) = L(P, f, α),

and so

f ∈ Dα[a, b] and

∫ b

a

f dα = k(α(b)− α(a)).

(c) Let f(x) = x on [0, 1] and α be such that α(x) = 0 on [0, 1) and α(1) = 2.
Then for any partition P of [a, b],

U(P, f, α) = 2 and L(P, f, α) = 2xk−1,

which shows that
∫ 1

0 xdα(x) = 2.
(d) In the definition of Darboux–Stieltjes integral, α need not even be contin-

uous. As a demonstration, let f(x) = k on [a, b] and

α(x) =

{
0 for a ≤ x < c,
1 for c ≤ x ≤ b,

for some c ∈ (a, b).

Then for a partition P = {x0, x1, . . . , xn} of [a, b],

U(P, f, α) − L(P, f, α) = k

n∑

k=1

(α(xk)− α(xk−1)),

and the situations described in Figure 11.6 occur for P . We see that the
sum on the right is zero except for the subinterval that contains c, in
which the sum is 1. Consequently, f is Darboux–Stieltjes integrable with

x0= a
∗∗

c xn= b c xkx0 xk−1 xn x0 xk+1 xnxk−1
∗

c = xk

Fig. 11.6. The position of c in the partition P .

DS

∫ b

a

f dα = k.

A similar situation is discussed in Example 11.36. •
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As with the Riemann integral (i.e., α(x) = x), we seek a condition on f
for which the difference U(P, f, α)−L(P, f, α) can be made arbitrarily small.

Theorem 11.33 (Criterion for Darboux–Stieltjes integrability). Sup-
pose that f is a function that is bounded on [a, b] and α is an increasing func-

tion on [a, b]. Then (DS)
∫ b

a f dα exists if and only if for each ε > 0 there is
a partition P of [a, b] such that

U(P, f, α)− L(P, f, α) < ε. (11.4)

Proof. This follows by imitating the proof of Theorem 6.8.

Theorem 11.33 provides a condition for Darboux–Stieltjes integrability,
but it does not give any simple means for computing the integral. Recall that
we encountered the same situation in our discussion on sequences and series.

Example 11.34. Consider

f(x) =

{
5 for 0 ≤ x < 1,
7 for 1 ≤ x ≤ 2,

and α(x) =

{
0 for 0 ≤ x ≤ 1,
2 for 1 < x ≤ 2.

Let P = {x0, x1, . . . , xn} be any partition of [0, 2] that includes the number 1
(say xj = 1). Then

U(P, f, α) = Mj+1(α(xj+1)− α(xj)) = 7× 2 = 14

and
L(P, f, α) = mj+1(α(xj+1)− α(xj)) = 7× 2 = 14,

showing that U(P, f, α) − L(P, f, α) = 0, i.e., f ∈ Dα[a, b]. Moreover,

(DS)

∫ 2

0

f dα = 14.

On the other hand, if P ′ = {x0, x1, . . . , xn} is a partition of [0, 2] that does
not include 1 as a partition point, then xj−1 < 1 < xj for some j. Then

σ(P ′, f, α, x∗) = f(x∗
j )(α(xj)− α(xj−1)) = 2f(x∗

j ),

which in particular gives

σ(P ′, f, α, xj−1) = 10 and σ(P ′, f, α, xj) = 14.

Consequently the behavior of the upper and lower sums depends on the points
in the partition rather than the norm of the partition. This difficulty is due
to the fact that f and α have a common point of discontinuity. •

There are some important classes of functions that one might expect to
be Darboux–Stieltjes integrable. For example, the following theorem, which
gives us a nice class of Darboux–Stieltjes integrable functions is important.
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Theorem 11.35 (Darboux–Stieltjes integrability of continuous func-
tions). Let f be a function that is continuous on [a, b]. Then f is Darboux–
Stieltjes integrable on [a, b].

Proof. Let α be an increasing function on [a, b] and let f be continuous on
[a, b]. There is nothing to prove if α is a constant on [a, b] (see Example
11.32(a)), so we assume that α(a) < α(b) and apply Theorem 11.33. Suppose
that ε > 0 is given. Since f is uniformly continuous on [a, b], there is a δ > 0
such that

|f(x)− f(y)| < ε

α(b)− α(a)
whenever |x− y| < δ and x, y ∈ [a, b].

If we imitate the proof of Theorem 6.21, we see that

U(P, f, α) − L(P, f, α) =

n∑

k=1

(Mk −mk)Δαk <
ε

α(b)− α(a)

n∑

k=1

Δαk = ε.

Since ε > 0 was arbitrary, by the Darboux–Stieltjes integrability criterion
(Theorem 11.33), f is Darboux–Stieltjes integrable (with respect to any in-
creasing function α on [a, b]). That is, f ∈ Dα[a, b].

For instance, let f(x) = x and α(x) = x2 on [0, 1]. Then by Theorem

11.35, f ∈ Dα[0, 1]. How do we find the value of (DS)
∫ 1

0
f dα?

Example 11.36. Let f be a function that is bounded on [a, b] and continuous
at c ∈ (a, b). Define α on [a, b] by

O

1

2

c ba x

y

(
x1a bc x2

)

Fig. 11.7. Graph of α(x) on [a, b] and a partition of [a, b].

α(x) =

⎧
⎨

⎩

1 for a ≤ x < c,
1.5 for a ≤ x < c,
2 for c < x ≤ b.

The graph of α(x) is drawn in Figure 11.7. Then f ∈ Dα[a, b] and therefore,

we obtain DS
∫ b

a fdα = f(c). •
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Solution. Note that α(c) ∈ [1, 2] is immaterial. Since f is continuous at c,
given ε > 0, there is a δ > 0 such that

|f(x) − f(c)| < ε

2
whenever |x− c| < δ and x ∈ [a, b].

In particular, there exist x1 and x2 such that

− ε

2
+ f(c) < f(x) < f(c) +

ε

2
for x ∈ [x1, x2] ⊂ [a, b],

and therefore

− ε

2
+ f(c) ≤ m2 ≤ f(x) ≤ M2 ≤ f(c) +

ε

2
.

For the partition P = {a, x1, x2, b}, we see that

U(P, f, α) = M2(α(x2)− α(x1)) = M2(2− 1) = M2,

and similarly, L(P, f, α) = m2. We thereby obtain

U(P, f, α)− L(P, f, α) = M2 −m2 ≤ f(c) +
ε

2
−

(
f(c)− ε

2

)
= ε,

and so by Theorem 11.33, f ∈ Dα[a, b]. Also,

− ε

2
+ f(c) ≤ L(P, f, α) ≤

∫ b

a

f dα ≤ U(P, f, α) ≤ f(c) +
ε

2
.

Since ε is arbitrary, it follows that
∫ b

a
f dα = f(c). •

Our next result provides us with a new class of Darboux–Stieltjes inte-
grable functions.

Theorem 11.37 (Darboux–Stieltjes integrability of monotone func-
tions). Let f be a function that is monotone on [a, b] and let α be increasing
and continuous on [a, b]. Then f ∈ Dα[a, b].

Proof. If f is constant on [a, b], then it is certainly Darboux–Stieltjes inte-
grable on [a, b] (see Examples 11.32(b)). So we shall assume that f is noncon-
stant, i.e., that f(a) �= f(b) in particular. Next, we assume that f is increasing
on [a, b] with f(a) < f(b), since the proof for f decreasing is similar.

Let ε > 0 be given. Then there exists a K > 0 such that

K(f(b)− f(a)) < ε.

Since the function α is uniformly continuous on [a, b], we consider a partition
P = {x0, x1, . . . , xn} of [a, b] with

Δαk = α(xk)− α(xk−1) < K for each k ∈ {1, 2, . . . , n}.
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Also, since xk−1 < xk and f is increasing, we have for each k ∈ {1, 2, . . . , n}
that

Mk = sup
x∈[xk−1,xk]

f(x) = f(xk) and mk = inf
x∈[xk−1,xk]

f(x) = f(xk−1).

As in Theorem 6.20, it follows easily that

U(P, f)− L(P, f) =

n∑

k=1

(f(xk)− f(xk−1))Δαk < K(f(b)− f(a) < ε.

The integrability criterion (see Theorem 11.33) shows that f ∈ Dα[a, b].

Corollary 11.38. Suppose that f is bounded on [a, b] and has only finitely
many points of discontinuity on [a, b]. Let α be increasing and continuous at
each point of discontinuity of f . Then f ∈ Dα[a, b].

Proof. We leave the proof as a simple exercise.

Theorem 11.39 (General properties of Darboux–Stieltjes integrals).
Suppose that f, g ∈ Dα[a, b]. Then we have the following:

(a) c1f + c2g ∈ Dα[a, b] for constants c1 and c2. Also,

∫ b

a

[c1f + c2g] dα = c1

∫ b

a

f dα+ c2

∫ b

a

g dα.

This is called the linearity rule for Darboux–Stieltjes integrals.
(b) If f(x) ≤ g(x) on [a, b], then

∫ b

a

f dα ≤
∫ b

a

g dα.

This is called the dominance rule for Darboux–Stieltjes integrals.
(c) If m ≤ f(x) ≤ M for x ∈ [a, b] and h is continuous on [m,M ], then

h ◦ f ∈ Dα[a, b]. In particular,

m(α(b)− α(a)) ≤
∫ b

a

f dα ≤ M(α(b)− α(a)).

(d) If c ∈ (a, b), then f ∈ Dα[a, c] and f ∈ Dα[c, b]. Moreover,

∫ b

a

f dα =

∫ c

a

f dα+

∫ b

c

f dα.

(e) fg ∈ Dα[a, b].
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(f) |f | ∈ Dα[a, b] and ∣∣∣∣∣

∫ b

a

f dα

∣∣∣∣∣ ≤
∫ b

a

|f | dα.

In particular, if in addition we have |f(x)| ≤ K on [a, b], then

∣∣∣∣∣

∫ b

a

f dα

∣∣∣∣∣ ≤ K(α(b)− α(a)).

(g) If in addition to f ∈ Dα[a, b], β is increasing on [a, b] and f ∈ Dβ[a, b],
then f ∈ Dα+β [a, b] and f ∈ Dcα[a, b] for c ≥ 0. Also,

∫ b

a

f d(α+ β) =

∫ b

a

f dα+

∫ b

a

g dβ and

∫ b

a

f d(cα) = c

∫ b

a

f dα.

There are cases in which one can interpret a Darboux–Stieltjes integral as
a Riemann integral. In the following we show that if α is smooth, then the
Darboux–Stieltjes integral of f with respect to α can be calculated using the
ordinary Riemann integral. This result is useful for the computation of many
Darboux–Stieltjes integrals.

Theorem 11.40. Suppose f is Riemann integrable on [a, b] and α is an in-
creasing function that is differentiable on [a, b]. Then f ∈ Dα[a, b], and fα′ is
Riemann integrable on [a, b]. Moreover,

∫ b

a

f dα =

∫ b

a

f(x)α′(x) dx (11.5)

(the integral on the left is a Darboux–Stieltjes integral, whereas the integral on
the right is a Riemann integral).

Proof. Let ε > 0. By assumption, f and α′ are Riemann integrable. Thus we
have the following:

• fα′ is Riemann integrable on [a, b].
• α′ is bounded on [a, b] so that α′(x) ≤ K for some K > 0 and for all
x ∈ [a, b].

• There exists a partition P = {x0, x1, . . . , xn} of [a, b] such that

U(P, f)− L(P, f) < ε/K.

• By the mean value theorem, there exists a ck ∈ (a, b) such that

Δαk = α(xk)− α(xk−1) = α′(ck)(xk − xk−1) = α′(ck)Δxk < KΔxk.
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Using these observations, we deduce that

U(P, f, α) − L(P, f, α) =
n∑

k=1

(Mk −mk)Δαk

< K

n∑

k=1

(Mk −mk)Δxk

= K(U(P, f)− L(P, f)) < ε,

showing that f ∈ Dα[a, b], by Theorem 11.33.
Next we prove the equality in (11.5), since the integrals on the left and

the right exist. Call the integral on the right-hand side in (11.5) I.
Let ε > 0 be given. Then by the Riemann integrability theorem, there

exists a partition P = {x0, x1, . . . , xn} of [a, b] such that

I − ε < σ(P, fα′, x∗) :=
n∑

k=1

(fα′)(ξk)Δxk < I + ε

for any choice of ξk ∈ [xk−1, xk]. Now

U(P, f, α) =

n∑

k=1

Mk Δαk

=

n∑

k=1

Mkα
′(ck)Δxk

≥
n∑

k=1

f(ck)α
′(ck)Δxk (∴ α′(x) ≥ 0)

> I − ε,

so that ∫ b

a

f dα =

∫ b

a

f dα ≥ I. (11.6)

Similarly,

L(P, f, α) ≤
n∑

k=1

f(ck)α
′(ck)Δxk < I + ε,

so that ∫ b

a

f dα =

∫ b

a

f dα ≤ I. (11.7)

By (11.6) and (11.7), it follows that

∫ b

a

f dα = I,

and the theorem follows.
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Our next result is a generalization of the customary integration by parts
formula. This formula is useful especially in the computation of many Darboux–
Stieltjes integrals (and hence Riemann–Stieltjes integrals; see Theorem 11.44).

Theorem 11.41 (Integration by parts). Suppose that f and α are increas-
ing on [a, b]. If f ∈ Dα[a, b], then α ∈ Df [a, b] and

∫ b

a

f dα = f(b)α(b)− f(a)α(a) −
∫ b

a

α df.

Proof. Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Then because f is
increasing, we have Mk(f) = f(xk), and therefore

U(P, f, α) =

n∑

k=1

f(xk)Δαk

=

n∑

k=1

f(xk)α(xk)−
n∑

k=1

f(xk)α(xk−1)

= f(xn)α(xn)− f(x0)α(x0)−
n∑

k=1

α(xk−1)(f(xk)− f(xk−1)),

so that
U(P, f, α) = f(b)α(b)− f(a)α(a) − L(P, α, f), (11.8)

because mk(α) = α(xk−1), since α is increasing. Similarly, interchanging the
roles of α and f yields

U(P, α, f) = f(b)α(b)− f(a)α(a)− L(P, f, α). (11.9)

Hence, subtracting (11.9) from (11.8) gives

U(P, f, α)− L(P, f, α) = U(P, α, f)− L(P, α, f).

By Theorem 11.33, α ∈ Df [a, b] iff f ∈ Dα[a, b].
Now let ε > 0 be given and f ∈ Dα[a, b]. Then by the integrability criterion,

there exists a partition P of [a, b] such that

U(P, f, α) <

∫ b

a

f dα+ ε and L(P, f, α) >

∫ b

a

f dα− ε.

Thus,
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f(b)α(b)− f(a)α(a) −
∫ b

a

f dα− ε < f(b)α(b)− f(a)α(a)− U(P, f, α)

= L(P, α, f), by (11.8),

≤
∫ b

a

α df =

∫ b

a

α df =

∫ b

a

α df

≤ U(P, α, f)

= f(b)α(b)− f(a)α(a)− L(P, f, α)

(by (11.9))

< f(b)α(b)− f(a)α(a)−
∫ b

a

f dα+ ε.

Since ε > 0 is arbitrary, it follows that

∫ b

a

α df = f(b)α(b)− f(a)α(a) −
∫ b

a

f dα,

and the theorem follows.

For instance ∫ 1

0

x d(x2) = 1−
∫ 1

0

x2 dx =
2

3
.

11.2.2 The Riemann–Stieltjes Integral

In the following, we take a more liberal point of view and introduce the defini-
tion of the Riemann–Stieltjes integral even though there is an alternative (but
not equivalent) definition of the Riemann–Stieltjes integral. In the following
we assume that α is not necessarily increasing.

Definition 11.42 (The Riemann–Stieltjes integral). Let f be bounded
on [a, b]. We say that f is Riemann–Stieltjes integrable with respect to α on
[a, b], or Stieltjes integrable with respect to α on [a, b] in the sense of Riemann,
and write f ∈ Rα[a, b], if there exists a number I with the following property:
For every ε > 0, there corresponds a partition Pε of [a, b] such that for every
partition P finer than Pε we have

|σ(P, f, α, x∗)− I| < ε

for every Riemann–Stieltjes sum σ(P, f, α, x∗) of f associated with the func-
tion α and the partition P . The value I is called the Riemann–Stieltjes inte-
gral of f with respect to α on [a, b], and, in order to distinguish it from the
Darboux–Stieltjes integral, it is temporarily denoted by

(RS)

∫ b

a

f(x) dα(x), or by (RS)

∫ b

a

f dα.
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Definition 11.43 (Riemann’s condition). A bounded function f defined
on [a, b] is said to satisfy Riemann’s condition with respect to α on [a, b] if for
every ε > 0, there exists a partition Pε of [a, b] such that

U(P, f, α) − L(P, f, α) < ε whenever partition P is finer than Pε.

The equivalence of Definitions 11.30 and 11.42 is well known when α is
assumed to be increasing on [a, b], in which case the Darboux–Stieltjes integral
and the Riemann–Stieltjes integral of f are equal. Thus,

(DS)

∫ b

a

f dα = (RS)

∫ b

a

f dα,

and so we may write simply
∫ b

a
f dα.

Theorem 11.44. Suppose that f is a function that is bounded on [a, b] and
α is an increasing function on [a, b]. Then the following are equivalent:

(a) f ∈ Dα[a, b];
(b) f ∈ Rα[a, b];
(c) f satisfies Riemann’s condition.

Proof. (a) ⇒ (b): Suppose that f ∈ Dα[a, b], i.e., Uα(f) = Lα(f), and β =

(DS)
∫ b

a
f dα, their common value. By Theorem 11.33, for each ε > 0 there is

a partition P of [a, b] such that

U(P, f, α)− L(P, f, α) < ε,

and by definition,

L(P, f, α)≤L(Q, f, α)≤σ(Q, f, α, x∗)≤U(Q, f, α)≤U(P, f, α)<L(P, f, α)+ε

for all P ⊆ Q. Because f ∈ Dα[a, b], it follows that

L(Q, f, α) ≤ β ≤ U(Q, f, α),

and so the last inequality implies that

|σ(Q, f, α, x∗)− β| < ε,

showing that f ∈ Rα[a, b] with β as the Riemann–Stieltjes integral of f with
respect to α on [a, b].

(b) ⇒ (a): Suppose that f ∈ Rα[a, b] in the sense of Definition 11.42.
First we need to show that f ∈ Dα[a, b]. If α(b) = α(a), then α(x) is constant
on [a, b], and for every partition,

U(P, f, α) = L(P, f, α) = σ(P, f, α, x∗) = 0,
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and so there is nothing to prove. So we may assume that α(b)−α(a) > 0. By
assumption, for each ε > 0, there exists a partition Pε such that if Pε ⊆ Q,
then

|σ(Q, f, α, x∗)− I| < ε

for some I ∈ R. Then for ε > 0, there exists a partition P = {x0, x1, . . . , xn}
such that

|σ(P, f, α, x∗)− I| < ε/4,

regardless of the choice of x∗
k ∈ [xk−1, xk]. By the definition of Mk and mk,

we have

Mk − ε

4(α(b)− α(a))
< f(x∗

k) for some x∗
k ∈ [xk−1, xk],

mk +
ε

4(α(b)− α(a))
> f(y∗k) for some y∗k ∈ [xk−1, xk],

so that
Mk −mk < f(x∗

k)− f(y∗k) +
ε

2(α(b)− α(a))
.

Since
∑n

k=1 Δαk = α(b)− α(a), it follows that

U(P, f, α)− L(P, f, α) =

n∑

k=1

(Mk −mk)Δαk

<
n∑

k=1

f(x∗
k)Δαk −

n∑

k=1

f(y∗k)Δαk +
ε

2

= (σ(P, f, α, x∗)− I)− (σ(P, f, α, y∗)− I) +
ε

2

<
ε

4
+

ε

4
+

ε

2
= ε.

Thus f ∈ Dα[a, b], by Theorem 11.33.

It remains to show that I equals β = (DS)
∫ b

a f dα. Again, for a given
ε > 0, there exists a partition P1 of [a, b] such that for every partition Q finer
than P1 we have

|σ(Q, f, α, x∗)− I| < ε/3.

Since f ∈ Dα[a, b], there is a partition P2 of [a, b] such that

U(P2, f, α)− L(P2, f, α) < ε/3.

Now we let Q = P1 ∪ P2. Then

|I − β| ≤ |I − σ(Q, f, α, x∗)|+ |σ(Q, f, α, x∗)− L(Q, f, α)|+ |L(Q, f, α)− β|
< (ε/3) + (ε/3) + (ε/3) = ε,
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because

L(Q, f, α) ≤ σ(Q, f, α, x∗) ≤ U(Q, f, α) < L(Q, f, α) + ε/3

and
L(Q, f, α) ≤ β ≤ U(Q, f, α) < L(Q, f, α) + ε/3.

Since ε > 0 is arbitrary, it follows that I = β.
We leave the implications (b) ⇐⇒ (c) as an exercise.

Example 11.45. Compute the value of the integral

∫ 2

0

x d[x].

Solution. Set f(x) = x and α(x) = [x]. By Theorem 11.44, f is both Darboux–
Stieltjes and Riemann–Stieltjes integrable on [0, 2]. Also, we note that

α(x) =

⎧
⎨

⎩

0 for 0 ≤ x < 1,
1 for 1 ≤ x < 2,
2 for x = 2,

and Δαi =

⎧
⎪⎪⎨

⎪⎪⎩

0 for 0 ≤ i < k − 1,
1 for i = k,
0 for k + 1 ≤ i < n− 1,
1 for i = n.

Observe that f is continuous at 1, 2, while α is discontinuous at 1, 2. Let
P = {x0, x1, . . . , xn} be any partition of [0, 2] with xk = 1 for some k so that
1 ∈ P . With x∗

k ∈ [xk−1, xk] for k = 1, . . . , n, the Riemann–Stieltjes sum of f
with respect to α takes the form

σ(P, f, α, x∗) =
n∑

i=1

f(x∗
i )Δαi = f(x∗

k) + f(x∗
n) = x∗

k + x∗
n.

Now given ε > 0, choose a partition Pε such that xk − xk−1 < ε/2 for k =
1, . . . , n. Then for any refinement Q of Pε,

|σ(Q, f, α, x∗)− 3| ≤ |x∗
k − 1|+ |x∗

n − 2| < (ε/2) + (ε/2) = ε,

and therefore ∫ 2

0

x d[x] = 3. •
Since every function of bounded variation is the difference of two increasing

functions (see Theorem 11.19), by Theorem 11.44, it follows that the Darboux–
Stieltjes integral (and hence the Riemann–Stieltjes integral) exists when f is
continuous and α is of bounded variation.

Corollary 11.46. Suppose that f is continuous on [a, b] and α is of bounded
variation on [a, b]. Then f ∈ Rα[a, b], i.e., f is Riemann–Stieltjes integrable
on [a, b].
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11.2.3 Questions and Exercises

Questions 11.47.

1. Why are the upper and lower integrals finite?
2. Suppose that f is bounded and continuous on [1, n] and α(x) = [x]. What

is the value of
∫ n

1 f dα? What happens when f(x) = 1/x?
3. Suppose that f + g ∈ Dα[a, b]. Are f, g ∈ Dα[a, b]?
4. Suppose that f+g ∈ Dα[a, b] and g ∈ Dα[a, b]. Must we have f ∈ Dα[a, b]?
5. Is every Riemann–Stieltjes integrable function Darboux–Stieltjes inte-

grable?
6. Suppose that f is Darboux–Stieltjes integrable with respect to a continu-

ous function α. Is f Riemann–Stieltjes integrable with respect to α?
7. Suppose that f is bounded on [a, b] and α is discontinuous at a point

c ∈ (a, b). Is f always Riemann–Stieltjes integrable with respect to α?
8. Suppose that α is bounded and increasing on [a, b]. Does there always

exist a nonconstant function that is integrable with respect to α?

9. Suppose that f and α are increasing on [a, b]. Must
∫ b

a
f dα always exist?

How about if f(x) = α(x) = [x] on [0, 2]?
10. If f is integrable with respect to itself (in the sense of Darboux) on [a, b],

then what is the value of
∫ b

a
f dα? How about the value of the integral if

f is integrable with respect to itself (in the sense of Riemann)?
11. In the definition of the Riemann–Stieltjes integral of f , why do we assume

the boundedness of f? What will happen if we drop the boundedness
condition on f?

12. If α is of bounded variation on [a, b], what is the value of
∫ b

a dα?

Exercises 11.48.

1. Complete the proof of Theorem 11.33.
2. Complete the proof of Corollary 11.31.
3. Complete the proof of Corollary 11.38.
4. Consider

f(x) =

{
0 for 0 ≤ x < 1,
1 for 1 ≤ x ≤ 2,

and α(x) =

{
0 for 0 ≤ x < 1,
2 for 1 ≤ x ≤ 2.

Show that (DS)
∫ 2

0
f dα = 0.

5. Let f be continuous on [a, b] and

α(x) =

⎧
⎨

⎩

p for a ≤ x < c,
q for x = c,
r for c < x ≤ b.

Show that (DS)
∫ b

a f dα = f(c)(r − p).
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6. For a < c < d < b, we define

α(x) =

⎧
⎨

⎩

0 for x < c,
2 for c ≤ x ≤ d,
2 for x ≥ d.

Compute (DS)
∫ b

a x2 dα.
7. Let f(x) = x3 and

α(x) =

{
3x2 for 0 ≤ x ≤ 1/2,
3x2 + 5 for 1/2 < x ≤ 1.

Determine whether f is Darboux–Stieltjes integrable. If it is, determine

(DS)
∫ 1

0
f dα.

8. Let f be continuous on [0, 3] and

α(x) =

{
x2 for x ∈ [0, 3] \(1, 2),
1 for x ∈ (1, 2).

Compute (DS)
∫ 3

0
f dα if f is Darboux–Stieltjes integrable.

9. If f is continuous and α is of bounded variation on [a, b], then show that
f is Darboux–Stieltjes integrable with respect to α.

10. Compute each of the following integrals:

(a)

∫ 3

0

x d[x]. (b)

∫ n

0

x d[x]. (c)

∫ n/2

0

x d[x]. (d)

∫ π

0

x d(sinx).



References for Further Reading

1. T. Apostol: Mathematical Analysis, Addison-Wesley, Reading, Massachusetts,
1967.

2. R. G. Bartle and D. R. Sherbert: Introduction to Real Analysis, John Wiley
& Sons, 1982.

3. R. R. Goldberg: Methods of Real Analysis, 2nd ed., Wiley, 1976.
4. K. Plofker: Mathematics in India, Princeton University Press, 2008.
5. S. Ponnusamy: Foundations of Complex Analysis, Narosa Publishing House,

India, 1995 (2005, Revised version).
6. S. Ponnusamy: Foundations of Functional Analysis, Narosa Publishing House,

India, 2003.
7. S. Ponnusamy: Foundations of Multivariable Calculus, in preparation
8. S. Ponnusamy and H. Silverman: Complex Variables with Applications,
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Index of Notation

Symbol Meaning

∅ empty set

a ∈ S a is an element of the set S

a �∈ S a is not an element of S

{x : . . .} the set of all elements with the property . . .

X ∪ Y the set of all elements in X or Y ;
i.e., the union of the sets X and Y

X ∩ Y the set of all elements simultaneously in both X and Y ;
i.e., the intersection of the sets X and Y

X ⊂ Y the set X is contained in the set Y ;

i.e., X is a subset of Y

X � Y X ⊂ Y and X �= Y ;
i.e., the set X is a proper subset of Y

X × Y the Cartesian product of the sets X and Y , {(x, y) :
x ∈ X, y ∈ Y }

X \Y or X − Y the set of all elements in X but not in Y

Ac {x ∈ X : x /∈ A}, the complement of A ⊂ X

=⇒ implies

⇐⇒ if and only if, or “iff”

−→ or → converges to (approaches)

�−→ or �→ does not converge

�=⇒ does not imply

N the set of all natural numbers, {1, 2, . . .}
N0 N ∪ {0} = {0, 1, 2, . . .}
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Z the set of all integers (positive, negative, and zero)

Q the set of all rational numbers, {p/q : p, q ∈ Z, q �= 0}
R the set of all real numbers, the real line

R∞ R ∪ {−∞,∞}, the extended real line

C the set of all complex numbers, the complex plane

lim supxn the upper limit of the real sequence {xn}
lim inf xn the lower limit of the real sequence {xn}
limxn the limit of the real sequence {xn}
supS the least upper bound, or supremum, of the set S ⊂ R∞
inf S the greatest lower bound, or infimum, of the set S ⊂ R∞
infx∈S f(x) the infimum of f in S

maxS the the maximum of the set S ⊂ R;
the largest element in S

minS the minimum of the set S ⊂ R;
the smallest element in S

f : A → B f is a function from A into B

f
∣∣
A

the restriction of f to A, A ⊂ domain (f)

f−1 the inverse function of f

f(x) the value of the function at x

or the function of the variable x

f(A) the direct image of a set A under f , i.e., set of all
values f(x) with x ∈ A; i.e., y ∈ f(A) ⇐⇒ ∃ x ∈ A

such that f(x) = y

f−1(B) {x : f(x) ∈ B}, the inverse image of B under f

f−1(x) the preimage/inverse image of one element {x}
f ◦ g the composition mapping of f and g

dist (x,A) the distance from the point x to the set A
i.e., inf{|x− a| : a ∈ A}

dist (A,B) the distance between two sets A and B
i.e., inf{|a− b| : a ∈ A, b ∈ B}

[x1, x2] the closed line segment connecting x1 and x2;
{x = (1− t)x1 + tx2 : 0 ≤ t ≤ 1}

(x1, x2) the open line segment connecting x1 and x2;
{x = (1− t)x1 + tx2 : 0 < t < 1}
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ex or exp(x) lim
n→∞

(
1 +

x

n

)n

= lim
n→∞

(
1− x

n

)−n

=
∑

n≥0

xn

n!

the exponential function

f ′(a) the derivative of f evaluated at a

f ′′(a), . . . , f (n)(a) second, . . ., nth derivative of f at a

f(x) = O(g(x))
as x → a

}
there exists a constant K such that |f(x)| ≤ K|g(x)|
for all values of x near a

f(x) = o(g(x))
as x → a

}
lim
x→a

f(x)

g(x)
= 0

lim
n→∞xn = x,

or xn → x, or
d(xn, x) → 0

⎫
⎬

⎭ the sequence {zn} converges to z with a metric d



Appendix A: Hints for Selected Questions

and Exercises

Chapter 1: Questions 1.11

5. Since x3 − x− 7 = 0 is equivalent to

x(x− 1)(x+ 1) = 7,

this equation cannot be satisfied by any integer x, since the left-hand side
is an even integer, whereas the right-hand side is not. Again, the equation
cannot be satisfied by any rational number x = m/n, because for such an
x the last equation would imply that

m3

n
= mn2 + 7n2,

a contradiction.
6. If x =

√
3 +

√
2, then we see that

x4 − 6x2 + 7 = 0.

By Theorem 1.5, the only rational numbers that could possibly be solu-
tions of this polynomial equation are ±1,±7. Substituting them into the

equation shows that they are not solutions. Thus,
√
3 +

√
2 is irrational.

7. No. Suppose to the contrary that

√
p =

a

b
, i.e., pb2 = a2,

where a and b have no common factor greater than 1. Since the number a2

is a multiple of a prime, it follows from the unique factorization theorem
that a is a multiple of p. Thus, a has the form a = pk, and therefore

p2k2 = pb2, i.e., b2 = pk2,

which shows that b is multiple of p, a contradiction.

S. Ponnusamy, Foundations of Mathematical Analysis,
DOI 10.1007/978-0-8176-8292-7,
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In the case of p = 3, our computation is easy to understand, and so we give
the details here. Suppose to the contrary that there is a rational number
x = m/n such that x2 = 3. Then

(m
n

)2

= 3, i.e., m2 = 3n2,

where m ∈ Z and n ∈ N have no common factors other than 1. We observe
that if m is divided by 3, then the remainder r will be either 0 or 1 or 2,
and so we can write m = 3k + r, where r ∈ {0, 1, 2}. Thus,

m2 = 3(3k2 + 2kr) + r2 =

⎧
⎨

⎩

9k2 if r = 0,
3(3k2 + 2k) + 1 if r = 1,
3(3k2 + 4k + 1) + 1 if r = 2,

showing that m is a multiple of 3 iff m2 is a multiple of 3. Thus, since
m2 = 3n2, it follows that m is a multiple of 3, so that m = 3a for some
integer a. Substituting this in m2 = 3n2 implies that n is also a multiple
of 3, which is a contradiction. Therefore,

√
3 is irrational.

Exercises 1.12:

4. (b) Let n > 1 and

√
n+ 1 +

√
n− 1 =

p

q
, i.e., n− 1 =

p2

q2
+ n+ 1− 2p

√
n+ 1

q
.

Then a simplification gives

2p
√
n+ 1

q
= 2 +

p2

q2
, i.e., n =

p2 + 4q2

4p2q2
,

which is not an integer. This is a contradiction.

Questions 1.33:

1. No. Consider A = {−1/n : n ≥ 1}.
Exercises 1.34:

1. We need to show that for every x ∈ A, there is an a ∈ A with x < a. To
do this, let x > 0 and x2 < 2. Since 0 < h = 2− x2 < 2, we can associate
a number a:

a = x+
h

5
.

This gives

a2 = x2 +
2xh

5
+

h2

25
< x2 +

4

5
h+

2

25
h < x2 +

4

5
h+

1

5
h = x2 + h = 2,
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and so a ∈ A. A similar argument can be made for B. In fact, if x is such
that x2 > 2 and 0 < x < 2, then since 0 < h = x2 − 2 < 2, we can
associate a number b:

b = x− h

4
, i.e., x = b+

h

4
.

This gives

b2 = x2 − xh

2
+

h2

16
> x2 − h = 2,

showing that for each x ∈ B there exists a b ∈ B such that x > b. The
conclusion follows.

8. Consider f(x) = tanx.

Chapter 2: Questions 2.44

18. We recall that lim an = ∞ if and only if given ε = 1/R > 0, there exists
an N such that n ≥ N implies that an > R = 1/ε, which is equivalent to
saying that given ε > 0, we have

∣∣∣∣
1

an
− 0

∣∣∣∣ < ε whenever n ≥ N .

33. The proof follows from Theorem 2.8. Here is a direct proof. Let an → a as
n → ∞. Then, since every convergent sequence is bounded, there exists
an M > 0 such that |an + a| < M + |a| for all n. Again, for ε > 0 there
exists a positive integer N such that

|an − a| < ε

M + |a| for all n ≥ N .

It follows that a2n → a2, because

|a2n − a2| = |an + a| |an − a| < ε for all n ≥ N .

We remark that this proof also yields the product rule in Theorem 2.8 if
we use the identity

anbn = (1/4)[(an + bn)
2 − (an − bn)

2]

and the linearity rule.
34. Let ε = |b|/2. By the definition, there exists an N such that

|b| − |bn| ≤ |bn − b| < |b|/2 for n ≥ N.

39. Consider an = n. As another example, let sn =
∑n

k=1
1
k . Note that sn+1 >

sn, and we have already shown that {sn}n≥1 is unbounded. It is also easy
to show by induction that s2n > 1 + (n/2).

40. Consider sn =
∑n

k=1 1/k or sn = logn.
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43. Set an = a1/2
n

. Then an+1 = (a1/2)1/2
n

< a1/2
n

= an, showing that {an}
is a bounded decreasing sequence and hence converges, say to L. Thus,
we see that

L2 = lim
n→∞(a1/2

n

a1/2
n

) = lim
n→∞ a1/2

n−1

= L.

This gives either L = 0 or L = 1. But L �= 0, and so L = 1.
44. Write bn = (1+1/n)k(1+1/n)n and apply Example 2.33 and the conver-

gence property of the product of sequences.

Exercises 2.45:

3. Rewrite (n3 − 3)/(n+2) as (n2 − 3/n)/(1 + 2/n), and use the same trick
for the other case.

6. Set an = a1/n for n ≥ 1, and 0 < a < 1. Clearly, 0 < an < 1 for all n ≥ 1
and

an+1 − an = a
1

n+1

[
1− a

1
n(n+1)

]
> 0,

so that {an} is increasing and bounded, and hence {an} converges, say to
L. Thus,

a2n = a
1
2n → L1/2.

But {a2n}, being a subsequence of {an}, must converge to the same limit
L, and so

L = L1/2 or L(L− 1) = 0.

Since a > 0 and 0 < a1 < a2 · · · , we have L �= 0, and therefore L = 1.
7. Use the fact that

an−1 < an =

(
1 +

1

n

)n

<

(
1 +

1

n

)n (
1 +

1

n

)
.

8. First we observe that a1 < 2 and a2 =
√
2 +

√
a1 >

√
2 = a1. Next,

we show by induction that an < 2 and an+1 > an for all n ≥ 1. By the
monotone convergence theorem, the sequence {an} converges to L, L > 1.
It follows that

L =

√
2 +

√
L, i.e., (L2 − 2)2 = L or (L− 1)(L3 +L2 + 3L− 4) = 0.

Since L > 1, the limit must be a root of x3 + x2 + 3x − 4 = 0. Clearly,
there is a unique root in (1, 2).

9. First we observe that a1 < 2 and a2 =
√
2 +

√
2 >

√
2 = a1. Next, we

show by induction that an < 2 and an+1 > an for all n ≥ 1.
10. (a) Use mathematical induction to show that 0 < an < 3 and an+1 >

an for each n. The monotone convergence theorem tells us that {an}
converges, say to L. Then L > 1 and L = 1 +

√
L, which yields that L is

a solution of L2 − 3L+ 1 = 0. Thus, L = (3 +
√
5)/2.
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(c) By induction, show that 1 < an ≤ L and an+1 = an/
√
an < an.

Hence, {an} converges.
(g) If limn→∞ an = L, then we must have

L2 =
αβ2 + L2

α+ 1
, i.e., L = β,

because L = −β is not possible. Also,

an+1 = β

√
α+ a2n/β

2

α+ 1
,

so that 0 < an ≤ β implies that 0 < an+1 ≤ β. In view of this, since
a1 = α < β, by induction we obtain 0 < an ≤ β for all n ≥ 1. Moreover,

a2n+1 − a2n =
α(β2 − a2n)

α+ 1
> 0,

showing that {an} is a bounded increasing sequence. Consequently, it
converges to β.

14. Clearly, {an} is bounded and decreasing. By BMCT, it is convergent.
15. (e) We have

lim
n→∞

3− (logn)/n2

1 + 3(1/n1/2)
= 3, because lim

n→∞
logn

n2
= 0.

(t) There exists an N such that

|a|
n

<
1

2
for n ≥ N,

so that for n ≥ N ,

|a|n
n!

=
|a|N
N !

( |a|
N + 1

|a|
N + 2

· · · |a|
n

)
<

|a|N
N !

(1
2

)n−N

,

which tends to 0 as n → ∞.
(o) We have

lim
n→∞ an = lim

n→∞
1

n
sin

(nπ
6

)
+ lim

n→∞

(
5 + 1/n

7 + 6/n

)
= 0 +

5

7
.

Questions 2.67:

5. an = n(−1)n .
8. See Example 2.39(d).
9. an = 1 + 1/n, 2 + 1/n2, 3 + 2/n3, 4− 1/n4.
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13. It is easy to see that {an} is convergent. By Theorem 2.55, it is Cauchy.
We next provide a direct proof. For n > m, we have

|an − am| =
n∑

k=m+1

1

k2
<

n∑

k=m+1

1

(k − 1)k
=

n∑

k=m+1

[
1

k − 1
− 1

k

]

=
1

m
− 1

n

<
1

m
< ε if m >

1

ε
.

Thus, for any positive integer N greater than 1/ε, we have |an − am| < ε
for n > m > N . That is, {an} is Cauchy and hence {an} is convergent.

Exercises 2.68:

1. Use the fact that if limn→∞ |An+1/An| < 1, then An → 0. Alternatively,
we may use the ratio/root test (which will be proved later) and show that∑∞

k=1 k
prk converges for |r| < 1. Indeed, for An = nprn,

∣∣∣∣
An+1

An

∣∣∣∣ =
(
n+ 1

n

)p

|r| → |r|; |An|1/n =
(
n1/n

)p

|r| → |r|,

showing that the series converges, and hence the general term of the series
approaches zero.

2. For example,

an =

{
1 if n is odd,
1/n2 if n is even,

an =

⎧
⎨

⎩

1 if n = 3k − 1,
1/n if n = 3k,
1/n2 if n = 3k + 1,

and

an =

⎧
⎨

⎩

n if n is even,
(−1)(n+1)/2

n
if n is odd.

5. Consider an = (−1)n.
6. (a) Since k! ≥ 2k−1 for k ≥ 2, we have for n ≥ m ≥ 2,

|an − am| ≤
n−1∑

k=m

1

k!
≤

n−1∑

k=m

1

2k−1
<

2

2m−1
.

7. We remark that {a4n−3} and {a2n} are two subsequences converging to 1
and 0 respectively. Note that {a2n−1} is a divergent subsequence.

9. Apply Theorem 2.57, by noting that (since |an| < 1/2)

|an+1 − an+2| ≤ (1/8)|an+1 − an| |an+1 + an|
≤ (1/8)|an+1 − an| (|an+1|+ |an|)
≤ (1/8)|an+1 − an|.
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10. Note that the given sequence is

1, 1 +
1

2
, 1 +

1

2 + 1
2

, 1 +
1

2 +
1

2 + 1
2

, . . . .

Clearly, 1 ≤ an ≤ 2 for all n. For n ≥ 2,

|an+1−an| =
∣∣∣

1

1 + an
− 1

1 + an−1

∣∣∣ =
|an − an−1|

(1 + an)(1 + an−1)
≤ 1

22
|an−an−1|.

By Theorem 2.57, {an} is Cauchy and hence converges, say to a. Then a
must be given by

a = lim
n→∞ an+1 = lim

n→∞

(
1 +

1

1 + an

)
= 1 +

1

1 + a
, i.e., a =

√
2.

Again, we have a sequence of rational numbers converging to the irrational
number

√
2 (see Remark 2.40).

11. Use the idea of Theorem 2.57, for example.
12. Set an = xn+1 − xn. Then an → x and

∑n
k=1 ak = xn+1 − x1 for each n.

So by Theorem 2.64, we have

xn+1

n+ 1
=

x1

n+ 1
+

n

n+ 1

(
1

n

n∑

k=1

ak

)
→ x.

13. Apply the method of Example 2.61.

Chapter 3: Questions 3.24

9. No. Apply the algebra of limits for difference functions.
11. No.
22. t = kπ, k ∈ Z.
23. t = 2kπ, k ∈ Z.

Exercises 3.25:

2. Set xn = 1/n and yn = −1/n. Then xn → 0 and yn → 0, whereas

f(xn) = 3n → ∞ and f(yn) = 3−n → 0 as n → ∞.

By Theorem 3.4, the conclusion follows.
3. Apply the idea of Example 3.7(a) to show that f has no limit as x → 0;

see Figure A.1.
6. (a) If g(x) ≤ f(x) ≤ h(x) holds on (a,∞) and

lim
x→∞ g(x) = � = lim

x→∞h(x),

then limx→∞ f(x) = �.
(b) If f(x) ≥ g(x) on (a,∞) and g(x) → ∞ as x ∈ ∞, then f(x) → ∞ as
x → ∞.
The squeeze rule for functions defined on (−∞, a) may be stated similarly.
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x

y

y =
1
x

sin
1
x

Fig. A.1. Graph of 1
x
sin

(
1
x

)
near the origin.

9. Use the Cauchy convergence criterion for sequences.

Questions 3.40:

7. Observe that ∣∣|f(x)| − |f(x0)|
∣∣ ≤ |f(x)− f(x0)|.

8. Observe that

max{f(x), g(x)} = [(f(x) + g(x)) + |f(x)− g(x)|]/2
and

min{f(x), g(x)} = −max{−f(x),−g(x)} = [(f(x)+g(x))−|f(x)−g(x)|]/2.
11. Yes, f(x) = 1 on R.
17. Yes.
18. Yes, because sinx is continuous and π/n → 0.

Exercises 3.41:

1. Choose xn such that xn = 1/
√
(2n+ 1/2)π for n ≥ 1. Then f(xn) → ∞,

whereas xn → 0.
2. Observe that f is well defined for all x > −2. We must prove that given

ε > 0, there exists a δ > 0 such that

|x− 2| < δ implies that |f(x)− f(2)| < ε.

Now consider

|f(x) − f(2)| = |(√x+ 2− 2)(
√
x+ 2 + 2)|√

x+ 2 + 2
=

|x− 2|√
x+ 2 + 2

<
|x− 2|

2
.

The conclusion follows if we choose δ = 2ε.
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5. We have (1 + x)2 = 1+ 2x+ x2 > 1 + 2x, and so the inequality holds for
n = 2. Assume that the inequality is true for n = k. Then by the method
of induction (see also Example 2.18),

(1 + x)k+1 = (1 + x)k(1 + x)

> (1 + kx)(1 + x) = 1 + (k + 1)x+ kx2 > 1 + (k + 1)x,

which shows that the inequality holds for all n. Now we let an = rn and
0 < |r| < 1. We may set |r| = 1/(1 + h), where h > 0. Then for every
n ≥ 1,

0 < |an| = 1

(1 + h)n
≤ 1

1 + nh
<

1

nh
=

(
1− |r|
|r|

)
1

n
,

and so using the definition of convergence (or by the squeeze rule for
sequences), it follows that an → 0 as n → ∞.
Next, for r > 1, we may let r = 1 + h with h > 0. Then rn > 1 + nh for
every n ≥ 1. Again, by the squeeze rule, limn→∞ rn = ∞. For r = −1, we
obtain the sequence {(−1)n}, which is bounded but oscillates between −1
and 1, and hence diverges. Finally, for r < −1, let r = −t, so that t > 1,
and we have the oscillating sequence {(−1)ntn}, which has both large
positive and negative terms. It follows that the sequence is unbounded,
and hence {rn} diverges for r < −1.

8. Consider the three cases (a) x ∈ Z, (b) 2k < x < 2k + 1, k ∈ Z, (c)
2k − 1 < x < 2k, k ∈ Z.

10. Because f is uniformly continuous on E, it follows that for a given ε > 0,
there exists a δ > 0 such that

|f(x)− f(y)| < ε whenever |x− y| < δ.

Since {xn} is Cauchy, for this δ > 0 there exists an N such that

|xn − xm| < δ for all m,n > N.

In particular, this observation gives that

|f(xn)− f(xm)| < ε whenever n,m > N,

as desired. Set f(x) = 1/x2 on (0, 1). Now, {1/n} is a Cauchy sequence in
(0, 1), whereas {f(1/n)} = {n2} is not Cauchy. Thus, f(x) = 1/x2 cannot
be uniformly continuous on (0, 1).

12. Let ε > 0 be given. Then there exists an R > 0 such that

|f(x)− f(y)| ≤ |f(x)− �|+ |f(y)− �| < ε for all x, y ≥ R.
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The restriction of f to [0, R] is uniformly continuous. Thus, there exists a
δ > 0 such that

|f(x)− f(y)| < ε whenever x, y ∈ [0, R] and |x− y| < δ.

Finally, if x ≥ R and y < R with |x− y| < δ, we have

|f(x)− f(y)| ≤ |f(x) − f(R)|+ |f(y)− f(R)| < ε.

Thus, if x, y ≥ 0 satisfy |x − y| < δ, then we have |f(x) − f(y)| < ε, as
desired.

Questions 3.58:

10. We wish to show that f ′(x) = 0 for each x ∈ R. Now for h �= 0,
∣∣∣∣
f(x+ h)− f(x)

h

∣∣∣∣ ≤ |h|.

The squeeze rule shows that f ′(x) exists for each x ∈ R and f ′(x) = 0 on
R. Thus, f is a constant function.

11. No. Consider f(t) = sin t on [0, 1]. Then the mean value theorem applied
to f(t) on [x, y] ⊆ [0, 1] gives

|f(x) − f(y)| < |x− y| when x �= y.

If there exists an M < 1 such that

|f(x)− f(y)| < M |x− y| for all x, y ∈ [0, 1],

then with x = 0 we have

|f(x)− f(y)| = |f(y)− 0| < M |y − 0| for y �= 0.

Allowing y → 0, we see that |f ′(0)| ≤ M (< 1), which is a contradiction.
14. We see that

lim
x→a

g(x)− g(a)

x− a
= lim

x→a

|f(x)|
x− a

= lim
x→a

|f(x)|
f(x)

f(x) − f(a)

x− a
.

Exercises 3.59:

11. For x �= 0,

f(x)− f(0)

x− 0
=

f(x)

x
=

{
sinx

x
for x ∈ Q,

1 for x ∈ R \Q,

and so by Example 4.24,

cosx ≤ f(x)

x
≤ 1 for all x with 0 < x ≤ π/2,

showing that f ′(0) = 1.
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12. Without loss of generality, we may assume f(a) > 0. Then f(x) > 0 in a
neighborhood B(a; δ) of a. Therefore, for x ∈ B(a; δ),

lim
x→a

g(x)− g(a)

x− a
= lim

x→a

f(x)− f(a)

x− a
= f ′(a) if f(a) > 0.

Similarly, g′(a) = −f ′(a) if f(a) < 0.
14. (b) Set

φ(x) =

{
x2 sin(1/x) for x �= 0,
0 for x = 0,

and g(x) = sinx.

Then both φ and g are differentiable on R. In particular, h = φ ◦ g is
differentiable at points x where sinx �= 0. Note that sinx = 0 iff x = nπ,
n ∈ Z, and on (0, π),

h′(x) = φ′(g(x))g′(x).

Chapter 4: Questions 4.9

4. No. Here is an example. On [0, 1], consider

f(x) =
1

4
−

(
x− 1

2

)2

and g(x) =

{
x for x ∈ [0, 1),
3 for x = 1.

5. No. Consider f(x) = x and g(x) = x− 1 on [0, 1].

Exercises 4.10:

3. Consider f : R → R defined by

f(x) =

{
x for x > 0,
x− 1 for x ≤ 0.

We see that f is one-to-one but not onto. Also, it is not continuous at the
origin.

6. By the logarithmic differentiation, we have

f ′(x) = f(x)

[
log

(
1 +

1

x

)
+

x

1 + 1
x

(
− 1

x2

)]

= f(x)

(
log(1 + y)− y

1 + y

)
, y =

1

x

> 0 on (0,∞),

because φ(y) = log(1+ y)− y/(1+ y) is strictly increasing on (0,∞), and
so φ(y) > φ(0) = 0.

7. Continuity of f at x0 gives

f(x0 + h) = f(x0) + η(h) = y0 + η(h), where η(h) → 0 as h → 0,
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and because f is one-to-one on I, η(h) �= 0 for h �= 0. Since

g(y) = x, y = f(x) for x ∈ I and y ∈ J,

we see that

g(y0 + η(h)) − g′(y0) = g(f(x0 + h))− g′(y0) = (x0 + h)− x0 = h,

and so by the algebra of limits,

f(x0 + h)− f(x0)

h
=

η(h)

g(y0 + η(h))− g(y0)
→ 1

g′(y0)
as h → 0,

and the conclusion follows.

Questions 4.39:

2. Consider F (x) = f(x)− g(x). Then F is continuous on [a, b] and F (a) <
0 < F (b). Apply the intermediate value property.

4. No.
5. No.
6. No.
8. There is nothing to prove if f(a) = a or f(b) = b. So we assume that

f(a) �= a and f(b) �= b. Define g : [a, b] → R by

g(x) = f(x)− x, x ∈ [a, b].

Then g is continuous on [a, b], g(b) < 0 < g(a), since f(a) ∈ (a, b] and
f(b) ∈ [a, b). By the intermediate value theorem, it follows that there
exists a point c ∈ (0, 1) such that g(c) = 0, i.e., f(c) = c.

10. Consider f(x) = x2 sin(1/x) and g(x) = x.
16. Rolle’s theorem applied to f on [0, 1] shows that f ′(c1) = 0 for some

c1 ∈ (0, 1). Again, apply Rolle’s theorem to f ′ on [0, c1] and conclude that
f ′′(c2) = 0 for some c2 ∈ (0, c1). Repeating the arguments implies that
f (n+1)(c) = 0 for some c ∈ (0, 1).

17. Set x′ = (x + y)/2. Apply the mean value theorem on [x, x′] and [x′, y],
x < y.

18. Apply Corollary 4.21 to F (x) = f(x)e−cx. Then F ′(x) = 0, and obtain
f(x) = f(0)e−cx.

19. Given ε > 0, there exists an R > 0 such that |f ′(x)| < ε whenever x > R.
Apply the mean value theorem for f on [x, x+1], where x > R. This gives

f(x+ 1)− f(x) = f ′(c) for some c ∈ (x, x+ 1).

Because c > R, this gives that for any given ε > 0, there exists an R > 0
such that |f(x+ 1)− f(x)| < ε whenever x > R.
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Exercises 4.40:

5. (a) Here
f(1)− f(−1)

1− (−1)
= −2 and f ′(c) = 3c2 − 3,

so that f ′(c) = −2, which gives 3c2 = 1, i.e., c = ±1/
√
3.

(b) Here
f(9/4)− f(1)

(9/4)− 1
=

4

9
and f ′(c) =

1

c2
,

so that f ′(c) = 4/9, which gives 3c2 = 1, i.e., c = ±3/2.
8. Consider h(x) = f(x) exp(g(x)) and apply Rolle’s theorem.
13. Set f(x) = sinx− x3 + x on [π/4, π/2] and observe that

f(π/4) > 0 > f(π/2).

The desired conclusion follows from the intermediate value theorem.

Chapter 5: Questions 5.16

15. No. Choose ak = (−1)k/
√
k = bk.

16. What is
∑∞

k=0(ak − bk)
2?

17. Observe that Tn =
∑n

k=1(ak + ak+1) = 2
∑n

k=1 ak − a1 + an+1, showing
that the sequence of partial sums {Tn} converges to 2A− a1.

18. See Example 2.39(a). We have shown that
∑∞

k=1(1/k
2) converges. If Sn =∑n

k=1(1/k
2), then an = S2n − Sn−1 converges to 0.

Exercises 5.17:

1. One is allowed to perform arithmetic operations only with convergent
series.

2. Use the idea of the proof of Theorem 5.9.
6. (a) Write k − 1 = 2k − (k + 1), so that

ak =
k − 1

2k+1
=

k

2k
− k + 1

2k+1
.

(b) Note that

ak =

√
k + 1−√

k√
k
√
k + 1

=
1√
k
− 1√

k + 1
,

so that
n∑

k=1

ak = 1− 1√
n+ 1

→ 1 as n → ∞.

(c) Use the properties of logarithms: log(xy) = log(x) + log(y), x, y > 0.
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8. (a) Using the identity 2 sinx cos y = sin(x+ y) + sin(x− y), we have

∞∑

k=1

sin
1

3n
cos

2

3n
=

1

2
lim
n→∞

n∑

k=1

(
sin

1

3k−1
− sin

1

3k

)
=

1

2
sin 1.

9. If sn =
∑n

k=1 ak and Sn =
∑n

k=1 k(ak − ak+1), then

Sn =
n∑

k=1

(kak − (k + 1)ak+1) +
n∑

k=1

ak+1 = sn+1 − (n+ 1)an+1.

10. What is the sum of the areas of the regions removed?
12. It suffices to note that

5k × 4k

(5k − 4k)(5k+1 − 4k+1)
=

4k

5k − 4k
− 4k+1

5k+1 − 4k+1
.

13. Note: 0.12 = 0.12121212 . . ..

Questions 5.42:

1. Set Sn =
∑n

k=1 ak. Then the hypothesis implies that {Sn} is Cauchy.
2. The converse fails, as the harmonic series shows. Note that if ak = 1/k,

then

0 <
1

n
+

1

n+ 1
+ · · ·+ 1

n+ p
≤ p+ 1

n
.

3. No. For example, set

an =

⎧
⎪⎨

⎪⎩

1

n
if n ∈ S = {1, 22, 32, 42, . . .},

1

n2
otherwise.

Then (see Theorem 5.23),

∞∑

n∈S

an =
∞∑

n∈S

1

n2
,

which is convergent. Also,

∞∑

n/∈S

an =

∞∑

n�∈S

1

n2
≤

∞∑

n=1

1

n2
,

so that
∑∞

n/∈S an is convergent.
5. One may use the comparison test, because a2k < ak. Note that

∑
(1/k2)

converges although
∑

(1/k) does not.
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7. Since 2xy ≤ x2 + y2,

2|ak| |bk| ≤ a2k + b2k for all k,

showing that
∑∞

k=1 akbk converges absolutely.
10. Note that |akbk|

ak
= |bk| → 0 as k → ∞,

and so by the limit comparison test, it follows that
∑∞

k=1 akbk converges
absolutely.

11. Use the limit comparison test with bn = 1/n and bn = 1/n2.
16. Choose ak = 1/ log k for k > 1 and note that ak > 1/k for all k > 1.

Exercises 5.43:

1. Assume that
∑ |ak| converges, and recall that

0 ≤ ak + |ak| ≤ 2|ak| for all k, and ak = (ak + |ak|)− |ak| .

Because the series
∑ |ak| converges and both

∑
(ak + |ak|) and

∑ |ak|
are series of nonnegative terms, by the direct comparison test, we obtain
that

∑
(ak+ |ak|) also converges. By the linearity rule, the second relation

above implies that
∑

ak also converges, and the proof of Theorem 5.14 is
complete.

2. Since √
n+ 1−√

n

na
=

1

(
√
n+ 1 +

√
n)na

,

compare with 1/na+1 and apply the limit comparison test.
4. ⇒: Since bk < ak, the convergence of

∑∞
k=1 ak implies that

∑∞
k=1 bk con-

verges.
⇐: Suppose that

∑∞
k=1 bk converges. Note that 0 < bk < 1 and ak =

bk/(1 − bk). Convergence of
∑∞

k=1 bk implies that bk → 0 as k → ∞.
Thus, there exists an N such that

0 < bk < ε = 1/2, i.e., 1− bk > 1/2, for all k ≥ N,

and so ak < 2bk. Thus,
∑∞

k=1 ak converges by the comparison test.
6. Set S =

∑∞
k=1 ak and observe that

Sn =

n∑

k=1

((k + 1)/k)a2k ≤ 2

n∑

k=1

a2k ≤ 2

(
n∑

k=1

ak

)2

≤ 2S2.

Thus, {Sn} is an increasing sequence of nonnegative real numbers that is
bounded, and so it converges.

7. Use the convergence of {bn} and the limit comparison test.
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10. Since the given condition implies that the sequence {an/bn} is decreasing
and bounded above by a1/b1, we have

an ≤
(
a1
b1

)
bn for all n ≥ 1,

and the desired conclusion follows from the comparison test.

Questions 5.68:

12. Consider an = (−1)n and bn = 1 + (1/n).
13. For the first part, it suffices to observe that

n∑

k=1

|ak+1 − ak| ≤
n∑

k=1

(|ak+1|+ |ak|).

For the second part, just consider an = (−1)n−1(1/n) and observe that
{an} is not of bounded variation but

∑
ak is convergent.

14. Yes. Consider sn =
∑n

k=1(bk−bk+1) = 1−bn+1, and so {sn} is convergent
iff {bn} is convergent.

15. Yes. Since |bk − bk+1| = bk − bk+1 or bk+1 − bk,
∑n

k=1 |bk − bk+1| is either
b1 − bn+1 or bn+1 − b1. Now apply BMCT.

16. Set ak = k(−1)k−1 and note that

σn =
1

n

n∑

k=1

sn =

⎧
⎨

⎩

0 if n is even,
1

2

(
n+ 1

n

)
if n is odd,

showing that {σn} does not converge, and so the given series is not (C, 1)
summable.

Exercises 5.69:

2. The given series is

1 +
1

2
− 1

3
− 1

4
+

1

5
+

1

6
− 1

7
− 1

8
+ (−1)k

( 1

2k + 1
+

1

2k + 2

)
+ · · · ,

which is clearly not an alternating series. However, pairing the terms
suitably leads to an alternating series

3

2
− 7

12
+

11

30
− 15

56
+ · · ·+ (−1)k

4k + 3

(2k + 1)(2k + 2)
+ · · · ,

which satisfies the conditions of the alternating series test, and so the
rearranged series converges. Consequently, the given series converges
(since the general term of the original series tends to zero as k → ∞).

4. Let n be the required number. From our observation in Corollary 5.46,
we must have |S − Sn| ≤ an+1. If we let 1

2n+1 = an+1 ≤ 0.0001, then

n ≥ 10000−1
2 = 4999.5. Consequently, if we take the first 5000 terms or

more, the error will be less than 0.0001.
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8. When the parentheses are removed, compute the even sequence {S2n}
and the odd sequence {S2n−1}, and obtain that they converge to a
different limit. Note that

S2n+1 = S2n + 1.

9(ii). Recall that

tan−1 x = x− x3

3
+

x5

5
− · · · |x| ≤ 1,

so that
π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .

Group the terms as

(
1− 1

3

)
+

(1
5
− 1

7

)
+ · · ·

to obtain the series

2

1 · 3 +
2

5 · 7 +
2

9 · 11 + · · · .

The conclusion follows from Riemann’s rearrangement theorem.
The second part follows similarly.

11. Apply Corollary 5.59.
13. A computation gives

cn =

n∑

k=0

akan−k =
2(−1)n

n+ 2

n∑

k=0

1

k + 1
=: 2(−1)ndn.

Since (by Theorem 2.64)

dn =
2

n+ 2

n∑

k=0

1

k + 1
= 2

(
n+ 1

n+ 2

)(
1

n+ 1

n∑

k=0

1

k + 1

)
→ 2 · 0 = 0

as n → ∞ and

dn+1 − dn = 2
n∑

k=0

1

k + 1

[
1

n+ 3
− 1

n+ 2

]
+

2

(n+ 3)(n+ 1)

= − 2

(n+ 2)(n+ 3)

n∑

k=1

1

k + 1
< 0,

the alternating series test shows that
∑∞

n=0 cn =
∑∞

n=0(−1)ndn is con-
vergent.

14. (a) bn = (−1)n (b) bn =

{
1 if n is even,
n

n+1 if n is odd.
(c) bn =

(−1)n−1

n2
.
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16. Suppose that
∑∞

k=1 ak diverges, where ak > 0. Then the sequence {sn}
of the partial sums must be unbounded above. Thus, given any M > 0,
there exists an N such that

sn > M for all n > N.

Now for n > N , we have

σn =

(
1

n

N∑

k=1

sk

)
+

1

n

n∑

k=N+1

sk

>

(
1

n

N∑

k=1

sk

)
+

(n−N)M

n

=

(
1

n

N∑

k=1

sk

)
+M

(
1− N

n

)
,

so that for any M > 0, we see that lim supn→∞ σn ≥ M.
17. Compare with Theorem 5.18 concerning a necessary condition for con-

vergent series. See also Corollary 9.60.

Chapter 6: Questions 6.31

6. (a) Yes, the partition norm decreases under refinement. Indeed, since
Q has additional points beyond points in P , the maximal length of any
subinterval determined from Q is less than or equal to the maximal length
of any subinterval determined from P . Thus, ‖P‖ ≥ ‖Q‖.

14. The first half holds for c < 0, while the second half holds for c > 0, because
• L(P, cf) = c U(P, f) and U(P, cf) = c L(P, f) whenever c < 0;
• L(P, cf) = c L(P, f) and U(P, cf) = c U(P, f) whenever c > 0.

17. No. Let f be as in Example 6.12 and

g(x) =

{
1 for x = 0,
0 for x ∈ (0, 1].

Then g ◦ f defined by

g(f(x)) =

{
1 for x ∈ Q

c ∩ [0, 1],
0 for x ∈ Q ∩ [0, 1],

is not integrable.
19. Choose the partition P = {x0, x1, . . . , xn} such that x∗

k = (xk−1 + xk)/2.
Then the corresponding Riemann sum has the constant value Sn = (b2 −
a2)/2. The conclusion follows from Theorem 6.21 (see also Example 6.6).

20. Note that

f(x∗
k)Δxk = (x∗

k)
2Δxk =

x3
k − x3

k−1

3
.
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22. ⇐=: Assume that the identity holds. The left-hand-side integral can be
written as

∫ x

−x

f(t) dt =

∫ 0

−x

f(t) dt+

∫ x

0

f(t) dt =

∫ x

0

f(−t) dt+

∫ x

0

f(t) dt,

which equals the right-hand side if and only if

∫ x

0

f(t) dt =

∫ x

0

f(−t) dt. (A.1)

If we let G(x) =
∫ x

0
f(t) dt, then G is continuous on R and G′(x) = f(x)

on R. Because of (A.1), we also have G′(x) = f(−x) on R. That is,
f(x) = f(−x) on R. The converse is trivial (see Figures A.2 and A.3),
because if f is even on R, then we have

y = f (x)

−a −x0 x0 a

y

f (−x0) f (x0)

x

Fig. A.2. Graph of an even function.

−a
x0 a

f (x0)

y

x

y = f (x)

−x0

f (−x0)

Fig. A.3. Graph of an odd function.

∫ x

−x

f(t) dt =

∫ 0

−x

f(t) dt+

∫ x

0

f(t) dt =

∫ x

0

f(−t) dt+

∫ x

0

f(t) dt,

and the result follows.

Exercises 6.32:

4. Use Example 6.17 with ‖P‖ <
ε

nbn−1(b− a)
.

5. Set x∗
k = xk = ahk−1 for k ≥ 0. Then Δxk = a(h − 1)hk−1, and proceed

exactly as in Example 6.18. As a demonstration, we refer to Example 6.23.
6. Note that mk ≤ (f(xk−1) + f(xk)) /2 ≤ Mk, and so

L(P, f) ≤ Tn(P, f) ≤ U(P, f).

10. (a) Taking the logarithm, we have

log an =
1

n

n∑

k=1

log

(
1 +

k

n

)
→

∫ 1

0

log(1+x) dx = log 4−1 as n → ∞,
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because

∫ 1

0

log(1 + x) dx = x log(1 + x)
∣∣∣
1

0
−

∫ 1

0

xdx

1 + x

= log 2− (x− log(1 + x))
∣∣∣
1

0
= 2 log 2− 1.

Thus limn→∞ an = elog 4−1 = 4/e.
(b) The convergence of this has been discussed in Section 2.1 (see

also Remark 7.26(5)). But using the Riemann idea, we have (see
Figure A.4)

xO 1

1
2

y =
1

1 + x

1

x1 = 1
n

xk−1= k−1
n

xk = k
n

••

y

•

•

••

(xk, f (xk))

f(xk)

1
n

(xk−1, f (xk−1))

xk = k
nxk−1 = k−1

n

y =
1

1 + x

f (xk)
n

= 1
n+k

Fig. A.4. Riemann sum for

∫ 1

0

dx

1 + x
.

an =
1

n

n∑

k=1

1

1 + k/n
→

∫ 1

0

dx

1 + x
= log 2.

(c) We may rewrite

an =
1

n
+

1

n

n∑

k=1

n3

(n+ k)3
=

1

n
+

1

n

n∑

k=1

1

(1 + k/n)3
,

so that

an → 0 +

∫ 1

0

dx

(1 + x)3
=

3

8
.
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(d) Taking the logarithm, we have

log an =
1

n

n∑

k=1

log

(
1 +

k2

n2

)
→

∫ 1

0

log(1 + x2) dx as n → ∞,

which, by integration by parts, gives limn→∞ log an = log 2− 2+π/2.
Thus, limn→∞ an = 2e(π/2)−2.

(e) See also Remark 7.26(5). Indeed,

an =
1

p− 1

(p−1)n∑

k=1

1

(k/(p− 1)) + n/(p− 1)

=
1

n(p− 1)

(p−1)n∑

k=1

1

(k/(n(p− 1))) + 1/(p− 1)

=
1

N

N∑

k=1

1

(k/N) + 1/(p− 1)
, N = (p− 1)n,

→
∫ 1

0

dx

x+ 1/(p− 1)
= log p.

(f) We have an =
1

n

n∑

k=1

1√
2(k/n)− (k/n)2

→
∫ 1

0

dx√
2x− x2

as n → ∞.

(g) We have an =
1

n

n∑

k=1

(k/n)2

1 + (k/n)3
→

∫ 1

0

x2

1 + x3
dx as n → ∞.

(h) log ak =

n∑

k=1

1

k
log

(
1 +

k

n

)
=

1

n

n∑

k=1

n

k
log

(
1 +

k

n

)
→

∫ 1

0

log(1 + x)

x
dx.

For further details, we refer to Example 6.24(e).
13. (a) f(x) = [x], the greatest integer function, on x ∈ [0, 8]

(b) f(x) =

{
2 for −1 ≤ x < 0,
3 for 0 < x ≤ 1.

16. Consider the partition P = {x0, x1, . . . , xn}, where xk = kπ/(4n), k =
0, 1, 2, . . . , n. Then Δxk = π/(4n). Further, f is bounded, and for x ∈
[a, b] ⊂ [0, π/4], sinx is increasing on [a, b]. Consequently,

inf
x∈[a,b]

f(x) = sin a, sup
x∈[a,b]

f(x) = cos a,

and so
mk = inf

x∈[xk−1,xk]
f(x) = sin(k − 1)

π

4n

and
Mk = sup

x∈[xk−1,xk]

f(x) = cos(k − 1)
π

4n
.

Finally, it is easy to see that lim‖P‖→0 U(P, f) �= lim‖P‖→0 L(P, f).
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17. (d) Consider [2/π, 1] � (0, 1] and P a partition on [2/π, 1]. For x ∈
[2/π, 1], (1/x) ∈ [1, π/2], and so sin(1/x) ≥ sin 1 on [2/π, 1]. Consequently,
Mk ≥ sin 1 and mk = 0 for all k. This gives

U(P, f) ≥ (sin 1)(1− 2/π) and L(P, f) = 0.

Consequently, U(f) ≥ (sin 1)(1 − 2/π) and L(f) = 0. Thus, f is not
integrable.

xO

y

11
2

1
3

1
4

1

−1

Fig. A.5. Graph of f(x) on [0, 1].

18. Note that (see Figure A.5)

∫ 1/k

1/(k+1)

f(x) dx = (−1)k−1

(
1

k
− 1

k + 1

)

=
2(−1)k−1

k
+ (−1)k

(
1

k
+

1

k + 1

)
,

and so
∫ 1

1/(n+1)

f(x) dx =

n∑

k=1

∫ 1/k

1/(k+1)

f(x) dx = 2

n∑

k=1

(−1)k−1

k
− 1− (−1)n

n+ 1

→ 2 log 2− 1 as n → ∞.

Since −1 ≤ f(x) ≤ 1 on [0, 1] and since for f on [0, 1/(n+ 1)],

− 1

n+ 1
≤ L(f) ≤ U(f) ≤ 1

n+ 1
on [0, 1/(n+ 1)],
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it follows that
∫ 1/(n+1)

0 f(x) dx → 0 as n → ∞. Consequently,

∫ 1

0

f(x) dx = 2 log 2− 1.

19. (a) Set M = supx∈[a,b] f(x), m = infx∈[a,b] and c ∈ (a, b). Let {cn} be a
sequence of points in (a, b) such that cn → c. Then for every ε > 0, there
exists an N such that

|cn − c| < ε

2(M −m)
= δ for all n ≥ N .

By assumption 1, f is integrable on [cn, b] for all n ≥ 1. Consequently,
there exists a partition P of [cn, b] such that

U(P, f)− L(P, f) <
ε

2
.

Set P ′ = {a} ∪ P . Then since P ⊂ P ′, for all n ≥ N ,

U(P ′, f)− L(P ′, f) < (M −m)(b− cn) +U(P, f)−L(P, f) <
ε

2
+

ε

2
= ε,

which implies that f is integrable on [a, b], since c ∈ (a, b) is arbitrary.
(b). Follows similarly.
(c). Apply (a) and (b) to [c, (a+ b)/2] and [(a+ b)/2, d], respectively.

Questions 6.56:

2. For instance, f : [0, 1] → R defined by

f(x) =

{−1 for x ∈ [0, 1/2),
1 for x ∈ [1/2, 1],

is integrable but does not have a primitive on [0, 1].
3. If f(c) > 0 for some point c in (a, b), then by the continuity of f at c (with

ε = f(c)/2) we obtain f(x) > 0 for all x in some closed neighborhood of c,

namely [c−δ, c+δ] ⊂ [a, b]. Thus,
∫ b

a f(x) dx > 0, which is a contradiction.
Alternatively, we observe that for each x ∈ [a, b],

0 ≤ F (x) :=

∫ x

a

f(x) dx ≤
∫ b

a

f(x) dx = 0,

showing that F (x) = 0 and F ′(x) = f(x) = 0, and the proof is complete.
5. Observe that G(x) =

∫ x

a
(f(t) − g(t)) dt satisfies the hypothesis of Rolle’s

theorem. It follows that there exists a point c ∈ (a, b) such that f(c) =
g(c).
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6. Continuity of f at c implies that there exists a closed interval I =
[a1, b1] (a1 < b1) such that c ∈ I and I ⊆ [a, b] with f(x) ≥ m on I
for some m > 0. But then

∫ b

a

f(x) dx =

∫ a1

a

f(x) dx +

∫ b1

a1

f(x) dx +

∫ b

b1

f(x) dx

≥ 0 +

∫ b1

a1

f(x) dx + 0 ≥ m(b1 − a1) > 0.

7. Yes. By hypothesis, |f(x)| ≤ M on [a, b] for some M > 0. In particular,

|f(x)| =
∣∣∣∣
∫ x

a

f(t) dt

∣∣∣∣ ≤ M(x− a) for all x ∈ [a, b].

The process may be continued to obtain

|f(x)| ≤ M(x− a)n

n!
for all x ∈ [a, b] and each n ≥ 1.

Allow n → ∞ to get the result.
10. No; for instance, if f(x) = 1 on [a, b], then

1

b− a

∫ b

a

f(x) dx = 1 = f(c)

for all c ∈ [a, b]. We have already demonstrated the nonuniqueness of c in
Example 6.46.

12. Set f(x) = sinx − x + x3/6. Then f ′′(x) = 1 − cosx > 0 for x > 0, and
since

f(x) =

∫ x

0

f ′(t) dt, f ′(x) =
∫ x

0

f ′′(t) dt, f ′′(x) =
∫ x

0

f ′′′(t) dt,

it follows that f(x) > 0 for all x > 0.
13. Set g(x) = xn and apply the generalized mean value theorem (see Corol-

lary 6.48).
14. Use the change of variable t = π − x for the first part.
15. Consider f(x) = x33−x for x > 0. Then

f ′(x) = x23−x[3− x log 3] ≤ 0 for x ≥ 3
log 3 ,

so that f is decreasing on [3/ log 3,∞). In particular, since π > 3 >
3/ log 3, we have f(3) > f(π), which is equivalent to 1 > π33−π, i.e.,
3π > π3.
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Exercises 6.57:

1. Clearly, f is continuous on R except at x = 0. On the other hand, f(x)
admits an antiderivative F (x) given by

F (x) =

{
x2 sin(1/x) for x �= 0,
0 for x = 0.

Thus,
∫ 1

0
f(x) dx = F (1)− F (0) = sin 1.

5. Since f is continuous on [−a, a] except at the origin and is bounded on
[−a, a], f is integrable on [−a, a] for each a > 0. Clearly, f admits an
antiderivative F given by

F (x) =

{
x3 cos(c/x2) for x �= 0,
0 for x = 0.

Thus
∫ a

−a
f(t) dt = F (a)− F (−a) = 2a3 cos(c/a2).

7. As in Example 6.38, we compute

G(x) =

{
x2 if 0 ≤ x ≤ 1,
x2 − 2x+ 2 if 1 ≤ x ≤ 2,

which is continuous on [0, 2].
10. Note that f is integrable on [a, b]. Define

g(x) = f(a)(x − a) + f(b)(b− x).

Clearly, g is continuous, g(a) = f(b)(b − a), and g(b) = f(a)(b − a).

Because f is monotonic on [a, b], the number μ =
∫ b

a
f(x) dx lies between

g(a) and g(b). Moreover, because g is continuous, there exists a c such
that g(c) = μ, which gives the desired conclusion.

11. First we note that the bracketed term in the limit can be recognized as
a Riemann sum associated with the function f(x) = e

√
x. Thus, the limit

is
∫ 1

0
e
√
x dx. Now apply the mean value theorem for integrals to get the

desired result.
12. We see that

cos a− cos b

b
=

1

b

∫ b

a

sinxdx≤
∫ b

a

sinx

x
dx≤ 1

a

∫ b

a

sinxdx=
cos a− cos b

a
,

which gives

−2

a
≤ −2

b
≤ cos a− cos b

b
≤

∫ b

a

sinx

x
dx ≤ cos a− cos b

a
≤ 2

a
,

which proves the inequality.
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13. (a) Since 1 + x < ex < 1/(1− x) for x > 0, it follows that

∫ 1/3

0

(1 + x2) dx <

∫ 1/3

0

ex
2

dx <

∫ 1/3

0

dx

1− x2
,

and observe that on the interval [0, 1/3],

1 <
1

1− x2
<

9

8
.

This gives

1

3

(
1 +

1

27

)
<

∫ 1/3

0

ex
2

dx <
1

3

(
9

8

)
=

3

8
.

(b) Set g(x) =
√
4− x2 + xα. Then for x ∈ (0, 1), we have

√
4− x2 < g(x) <

√
4 = 2, i.e.,

1

2
<

1

g(x)
<

1√
4− x2

.

The result follows as in the previous case.

(c) Set G(x) =
∫ x2

0 e
√
1+t2 dt. Then G′(x) = 2xe

√
1+x4

. By l’Hôpital’s
rule,

lim
x→0

G(x)

x2
= lim

x→0

G′(x)
2x

= lim
x→0

e
√
1+x4

= e.

(d) Since sinx is strictly increasing on (0, π/2),

1

2
= sin

π

6
< sinx < sin

π

2
= 1, i.e., 1 <

1

sinx
< 2 for x ∈

(π
6
,
π

2

)
,

so that ∫ π/2

π/6

xdx <

∫ π/2

π/6

x

sinx
dx < 2

∫ π/2

π/6

xdx,

and a simplification gives the desired inequalities.
14. Apply l’Hôpital’s rule and the second fundamental theorem of calculus to

obtain

lim
x→0

∫ 2x

−2x
f(t) dt

∫ 3x

0 f(t+ 2) dt
= lim

x→0

d
dx

(
− ∫−2x

0 f(t) dt+
∫ 2x

0 f(t) dt
)

d
dx

(∫ 3x

0
f(t+ 2) dt

)

= lim
x→0

2f(−2x) + f(2x)

3f(3x+ 2)

=
f(0)

f(2)
.

16. Apply the generalized mean value theorem (Corollary 6.48) with g(x) = x3

on [0, 1].
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17. Decompose ∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

By the mean value theorem for integrals, there exists a λ ∈ [a, c] such that

1

c− a

∫ c

a

f(x) dx = f(λ).

Also, since f is monotonically increasing, f(a) ≤ f(λ) ≤ f(c), so that

f(a) ≤ 1

c− a

∫ c

a

f(x) dx ≤ f(c).

Similarly, applying the mean value theorem for the second integral yields

f(c) ≤ 1

b− c

∫ b

c

f(x) dx ≤ f(b).

Adding the last two inequalities yields the desired result.
22. It suffices to show that L(2) < 1 = L(0) and L(3) > L(e) = 1.

Chapter 7: Questions 7.30

8. By the change of variable t = x2, we have

∫ N

0

sinx2 dx =

∫ N2

0

t−1/2 sin t dt,

which converges conditionally, by Example 7.8.
10. The function f(x) = sinx is integrable an [0, N), and

lim
N→∞

∫ N

0

sinxdx = lim
N→∞

[− cosx]
∣∣∣
N

0
= 1− lim

N→∞
cosN.

Since cosnπ = (−1)n, cosN oscillates between −1 and 1 in a neighbor-
hood of ∞, and therefore the limit on the right does not exist. We might
even say that the integral

∫∞
0

sinxdx “diverges by oscillation.”
11. We have

∫ N

0

xd(− cosx) = (−x cosx+ sinx)|N0 = −N cosN + sinN,

and lim
N→∞

(−N cosN + sinN) does not exist, since it oscillates between

−∞ and ∞.
12. Indeed,

∫ N

0 cosxdx = sinN , and limN→∞ sinN does not exist. Note that
if xn = nπ and yn = 2nπ + π/2, then sinxn = 0 and sin yn = 1 for all
n ∈ Z.
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13. Clearly

∫ 1

ε

log xdx = x log x|1ε −
∫ 1

ε

dx = −ε log ε− (1 − ε),

so that

lim
ε→0+

∫ 1

ε

log xdx = −1 + lim
ε→0+

log(1/ε)

1/ε
= −1 + lim

ε→0+

( −1/ε

−1/ε2

)
= −1.

Exercises 7.31:

2. (f) Note that limx→0+ sin(1/x) does not exist. However, using the substi-
tution y = 1/t, we obtain

I(c) :=

∫ 1

c

sin(1/x)

xp
dx =

∫ 1/c

1

sin t

t2−p
dx (c > 0),

showing that (see Example 7.8(c)) limc→0+ I(c) exists for p < 2, and so∫ 1

0
sin(1/x)

xp dx converges for p < 2.

7. At x = 2nπ + π/2, the function f(x) = −2
√
1− sinx doesn’t have a

derivative.
8. Because secx is unbounded at the left endpoint π

2 of the interval of inte-
gration and is continuous on [t, π] for any t with π

2 < t ≤ π, we find that
the integral diverges, because

∫ π

π/2

secxdx = lim
t→(π/2)+

log |secx+ tanx|
∣∣∣
π

t
= −∞.

9. Consider

I(N) =

∫ N

0

(
1

a(a−2 + x2)1/2
− α

x+ 1

)
dx

=

[
1

a
log

(
x+

(
a−2 + x2

)1/2)− α log(x + 1)

]∣∣∣∣
N

0

= log

[[
N + (a−2 +N2)1/2

]1/a

(N + 1)α

]
− 1

a
log

(
1

a

)
.

We note that

lim
N→∞

[
N + (a−2 +N2)1/2

]1/a

(N + 1)α
= lim

N→∞
N (1/a)−α

(
1 + ( 1

a2N2 + 1)1/2
)1/a

(1 + 1/N)α
,

which exists and is zero if 1
a −α < 0, whereas the limit is 21/a if α = 1/a.

The limit fails to exist if 1
a − α > 0.

11. Use Example 7.22 with q = 1 and p = 1−α. Then, according to Example
7.22, the given improper integral converges if and only if 0 < α < 1.
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13. Set xq = t. Then qxq−1dx = dt, so that dx = 1
q t

1−q
q dt, and

∫ 1

0

xp(1− xq)n dx =
1

q

∫ 1

0

t
p
q +

1
q−1(1 − t)n dt =

1

q
B

(
p+ 1

q
, n+ 1

)
.

Next, we may rewrite the given integral as
∫ m

0

xp(mq − xq)n dx = mqn+p+1

∫ m

0

( x

m

)p (
1−

( x

m

)q)n

d
( q

m

)

=
mqn+p+1

q
B

(
p+ 1

q
, n+ 1

)
.

14. Set α2x2 = t. Then 2α2xdx = dt, dx = dt
2α

√
t
, so that for α > 0,

∫ ∞

0

xne−α2x2

dx =
1

2αn+1

∫ ∞

0

t
n
2 − 1

2 e−t dt =
1

2αn+1
Γ

(
n+ 1

2

)
.

16. (b) We observe that
∫ N

2

dx

x
√
x2 − 1

= sec−1 x
∣∣∣
N

2
→ π

2
− sec−1 2 as N → ∞.

17. Set f(x) = xα−1

1+x and observe that f is positive, continuous, and decreasing
on [1,∞), and

∞∑

k=1

f(k) =

∞∑

k=1

1

k1−α(1 + k)
,

which is convergent for 1− α > 0.

Questions 7.44:

1. By hypothesis, |x′(θ)| ≤ M1 and |y′(θ)| ≤ M2 for some constants M1 and
M2, and so

s =

∫ β

α

√
(x′(θ))2 + (y′(θ))2 dθ ≤

√
M2

1 +M2
2

∫ β

α

dθ ≤ M(β − α).

2. Define f : [−π/2, π/2] → R by

f(x) =

{
x sin(1/x) for x �= 0,
0 for x = 0,

x ∈ [−π/2, π/2].

Exercises 7.45:

1. The points of intersection of the given circles are the origin (i.e., at
(0, π/2), (0, 0)) and (a/

√
2, π/4) (i.e., on the radial line θ = π/4); see

Figure A.6. The required area is

A =

∫ π/4

0

1

2
(a sin θ)2 dθ +

∫ π/2

π/4

1

2
(a cos θ)2 dθ,

and a computation gives A = a2(π − 2)/8.
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O

•
y

•
x

θ = π/4

r = a cos θ

a

a

r = a sin θ

Fig. A.6. Area of the region common to r = a cos θ and r = a sin θ.

x

r = a(1 + cos θ)

r = a(1 − cos θ)
y

2a2a
••

Fig. A.7. Area of the region common to r = a(1 + cos θ) and r = a(1− cos θ).

2. The points of intersection are given by

a(1 + cos θ) = a(1− cos θ), i.e., cos θ = 0, i.e., θ = ±π

2
.

In view of the symmetry (see Figure A.7),

A = 4

[∫ π/2

0

1

2
a2(1 − cos θ)2 dθ

]
,

which gives A = (a2/2)(3π − 8).
3. The points of intersection are given by a = a(1 − cos θ), i.e., θ = ±π/2.

In view of the symmetry, the required area is

A = 2

[∫ π/2

0

1

2
a2(1 − cos θ)2 dθ +

∫ π

π/2

1

2
a2 dθ

]
= a2

(
5π − 8

4

)
.

4. Note that 2a = r(1 + cos θ) in Cartesian form is

2a =
√
x2 + y2 + x, or y2 = 4a(a− x).
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x

y

Fig. A.8. Loop of the folium of Descartes x3 + y3 = 3axy.

The intersection points of these two curves are θ = ±π/2, and both the
curves are symmetric about x = 0. The desired area is

A = 2

[∫ π/2

0

1

2

(
2a

1 + cos θ

)2

dθ +

∫ π

π/2

1

2
(2a(1 + cos θ))2 dθ

]
.

A computation gives A = a2(9π − 16)/3.
9. The required area A is given by

A = 4

[
a2

2

∫ π/6

0

(2 cos 2θ − 1)dθ

]
,

which gives A = a2(3
√
3− π)/3.

11. Here it is not possible to express y in terms of x explicitly, and the curve
has a loop at the origin. In order to evaluate the area within the loop, we
use polar coordinates. The polar form (see Figure A.8) of the given curve
is obtained by substituting x = r cos θ and y = r sin θ:

r =
3a cos θ sin θ

sin3 θ + cos3 θ
= f(θ).

The required area is

A =
1

2

∫ π/2

0

r2 dθ =
9a2

2

∫ π/2

0

sin2 θ cos2 θ

(sin3 θ + cos3 θ)2
dθ.

A computation gives A = 3
2a

2 (use the substitution t = tan θ).
12. Following Example 7.43(a), if r = f(θ), f(θ) = a(1 + cos θ), then the

required length is given by

s =

∫ β

α

√
r2 + (r′)2 dθ = 4a sin(θ/2)

∣∣∣
β

α
= 4a(sin(β/2)− sin(α/2)).
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13. See Exercise 7.45(12) and Example 7.43(a). Indeed, rotate the graph of
r = a(1 + cos θ) through an angle π to get the resulting answer.

Chapter 8: Questions 8.11

3. Let ak be the general term. Then we have

ak =

⎧
⎨

⎩

1 if k is even ,
3k

5k
if k is odd,

and a
1/k
k =

{
1 if k is even ,
3

5
if k is odd,

so that lim supk→∞ a
1/k
k = 1. So the root test is not applicable. Recall

that ak = 1 for all k even, and so {ak} does not converge to zero. Thus
the series diverges by the divergence test.

Exercises 8.12:

1. We have shown that for a = 2, the series converges, and for a = 3, the
series diverges.

3. (a) Since ak ≤ 31/(k−1) for all k, it is appropriate to apply the comparison
test. Alternatively, compute

ak =

⎧
⎪⎨

⎪⎩

3

3k
if k is even,

3−1

3k
if k is odd,

and a
1/k
k =

⎧
⎪⎪⎨

⎪⎪⎩

31/k

3
if k is even,

3−1/k

3
if k is odd,

and

ak+1

ak
=

{ 1

27
if k is even,

3 if k is odd.

It follows that

lim
k→∞

a
1/k
k =

1

3
and lim sup

k→∞

ak+1

ak
= 3 > 1 > lim inf

k→∞
ak+1

ak
=

1

27
.

Thus the series converges by the root test, whereas the ratio test gives no
conclusion.

Questions 8.50:

2. No. If it converge at x = 0, then it should converge for |x−2| < |0−2| = 2,
i.e., for 0 < x < 4. But x = 3 lies inside the interval (0, 4), so the series
would converge there.

4. R = 3.
7. Yes, on (0, 2π). But at the points 0 and 2π, the functional series reduces

to the numerical series
∑∞

k=1 bk, and so the convergence depends on the
choice of the bk’s, e.g., bk = 1/k, 1/k2.

8. Consider
∑ xk

k2
,
∑ xk

k
,
∑

xk.
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16. See Example 8.48.
18. Yes.

Exercises 8.51:

2. Set ak(x) = (−1)k−1x2k−1/(2k − 1) for x �= 0. Then, using the ratio test,
we find that

∣∣∣∣
ak+1(x)

ak(x)

∣∣∣∣ = |x|2
∣∣∣
2k − 1

2k + 1

∣∣∣ → |x|2 as k → ∞ ,

so that the power series converges absolutely if |x| < 1, and diverges if
|x| > 1. At the endpoints:

• At x = 1:

∞∑

k=1

(−1)k−1

2k − 1
converges by the alternating series test.

• At x = −1: −
∞∑

k=1

(−1)k−1

2k − 1
converges by the alternating series test.

3. We have

lim sup
n→∞

|anxpn|1/n = |x|p lim sup
n→∞

|an|1/n =
1

R
|x|p

and

lim sup
n→∞

|apnxn|1/n = |x| lim sup
n→∞

(
|apn|1/pn

)p

=
1

Rp
|x|,

so that the series in (a) and (b) have radii of convergence p
√
R and Rp,

respectively.
10. Apply Theorem 8.33 suitably to geometric series.
17. The series on the right converges for |x| > 1. Since

∞∑

n=0

xn+1 =
x

1− x
for |x| < 1,

we have

∞∑

n=1

(n+ 1)nxn = x

(
x

1− x

)′′
=

2x

(1− x)3
for |x| < 1,

so that

∞∑

n=1

(n+ 1)n

xn
=

2(1/x)

(1− 1/x)3
=

2x2

(x− 1)3
for |x| > 1.

Thus the given equation is equivalent (with |x| > 1) to

x =
2x2

(x− 1)3
or (x− 1)3 = 2x or x3 − 3x2 + x− 1 = 0.
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19. Assume that f is real analytic on (−δ, δ). Choose r such that 2r < δ, i.e.,
(−2r, 2r) ⊂ (−δ, δ). By assumption,

f(x) =
∞∑

k=0

f (k)(0)

k!
xk for |x| < δ,

and so it converges when x = 2r. In particular,

f (k)(0)

k!
(2r)k → 0 as k → ∞,

and so there exists an N ∈ N such that

∣∣∣∣
f (k)(0)

k!

∣∣∣∣ ≤
1

(2r)k
for all k ≥ N .

Moreover,

f (n)(x) = n!

∞∑

k=n

(
k

k − n

)
f (k)(0)

k!
xk−n for |x| < δ,

and thus for |x| < r, we get

|f (n)x| ≤ n!

∞∑

k=n

(
k

k − n

)
1

(2r)k
rk−n

=
n!

(2r)n

∞∑

k=n

(
k

k − n

)
1

2k−n

<
n!

(2r)n

[
1

(1− 1
2 )

n+1

]
< n!

(
2

rn

)
.

The result follows. We leave the converse as an exercise.
20. By integration by parts, we get

Rn =
1

n!

∫ b

a

(b− t)n d
(
f (n)(t)

)

=
1

n!

(
(b− t)nf (n)(t)

∣∣∣
b

a
+ n

∫ b

a

(b− t)n−1f (n)(t) dt

)

= − 1

n!
(b − a)nf (n)(a) +

1

(n− 1)!

∫ b

a

(b− t)n−1f (n)(t) dt.

The desired formula follows if we continue the integration by parts in this
way.
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Alternatively, one could also prove the desired form using the fundamental
theorem of calculus, which gives

f(b) = f(a) +

∫ b

a

f ′(t) dt.

According to this, one has

∫ b

a

f ′(t) dt =
∫ b−a

0

f ′(b− u) du (t = b− u)

= uf ′(b− u)|b−a
0 +

∫ b−a

0

uf ′′(b− u) du

= (b− a)f ′(a) +
∫ b−a

0

f ′′(b− u) d(u2/2)

= (b− a)f ′(a) +
(b− a)2

2
f ′′(a) +

1

2

∫ b−a

0

u2f ′′′(b− u) du

= (b− a)f ′(a) +
(b− a)2

2
f ′′(a) +

1

2

∫ b

0

(b − t)2f ′′′(t) dt.

More generally, we have

∫ b

a

f ′(t) dt = (b−a)f ′(a)+· · ·+(b− a)n

n!
f (n)(a)+

1

n!

∫ b

a

(b−t)nf (n+1)(t) dt,

and the desired formula follows.

Chapter 9: Questions 9.19

7. No.
11. Define fn(x) = x + 1

n , g(x) = x2 and hn(x) = g(fn(x)) for x ∈ R. Then
fn → x uniformly on R, and g is not uniformly continuous on R. Now
f(x) = x and g(f(x)) = x2,

g(fn(x)) =
(
x+

1

n

)2

→ x2 as n → ∞ on R.

Therefore,

g(fn(x))− g(f(x)) =
1

n2
+

2

n
x,

so that at x = n ∈ N, we have

|g(fn(x)) − g(f(x))| ≥ 1

n2
+ 2 > 2,

showing that g ◦ fn does not converge uniformly to g ◦ f on R.
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12. Yes, for the first two cases (use the definition). The third case can be
proved easily. The final case is false, and so uniform convergence does
not carry over to product functions. Our argument below works for any
unbounded function f(x) on E instead of f(x) = 1/x on E = (0, 1).
Consider

fn(x) =
1

x
+

1

n
and gn(x) = fn(x) on E = (0, 1).

Then fn(x) → f(x) = 1/x uniformly on (0, 1). Now

f2
n(x) − f2(x) =

( 1

x
+

1

n

)2

− 1

x2
=

1

n2
+

2

n
.
1

x
,

which for x0 = 1/n or 1/n2 in (0, 1) shows that

f2
n(x0)− f2(x0) ≥ 2 for all n ≥ 1.

Hence {f2
n} does not converge uniformly on (0, 1).

The reader may also try with different pairs of sequences. For instance
(see Figure 9.8),
(a) fn(x) = x and gn(x) = 1/n for x ∈ R.
(b) fn(x) = xn(1 − x) and gn(x) = 1/(1− x) for x ∈ (0, 1).

17. No. Consider fn(x) = x/(x+ n) for x ∈ (0,∞).
18. Yes. For n ≥ 1 define

fn(x) =

{
1/n if x is rational,
0 if x is irrational.

Exercises 9.20:

1. How about fn(x) = sinn x on [0, π]? (See Figure A.9.)
2. Note that {x/n} converges pointwise to f(x) = 0 on R. On the other

hand, for x �= 0,

1 2 3

0.2

0.6

1

x

f1
f2

y

O

f10

f15

f5

f50

Fig. A.9. fn(x) = sinn x on [0, π].

0.2 0.6 1

0.2

0.6

1

O x

f5

f7

f10

f3

f1

f20

y

Fig. A.10. fn(x) =
nx

n+ x
on [0, 1].



Hints for Selected Questions and Exercises 549

∣∣∣
x

n
− 0

∣∣∣ =
∣∣∣
x

n

∣∣∣ < ε if and only if n >
ε

|x| ,

and sup
x∈R{0}

ε/|x| = ∞. So the convergence is not uniform on R.

3. For x ∈ (0, 1), |nxn − 0| < ε if and only if xn < ε/n (≤ ε), which gives

n > log ε
log x = log(1/ε)

log(1/x) . Thus {nxn} converges to 0 pointwise on [0, 1). If

it were convergent uniformly on [0, 1), then there would exist an N such
that

|nxn − 0| = nxn < 1/2 = ε for all x ∈ [0, 1) and n ≥ N.

In particular, NxN < 1/2 for all x ∈ [0, 1). But then, for x = (1/N)1/N ,
this fails to satisfy. Thus, the convergence is not uniform. Note: Pointwise
convergence of {nxn} is easy to obtain, because it is the general term of
a convergent power series

∑
nxn for |x| < 1.

4. Clearly, {fn} converges pointwise to f(x) = x on [0, 1], see Figure A.10.
Now,

|fn(x)− x| = x2

n+ x
≤ 1

n+ 1
→ 0 as n → ∞,

and so the convergence is uniform on [0, 1].
5. See Figures A.11 and A.12.

0.2 0.6 1

0.5

1

1.5

O x

y

f100

f5

f1

f2

f10

Fig. A.11. fn(x) = arctan(nx) on
[0, 1].

1 0.5 0.5 1

0.3

0.6

0.9

x

f2

f5

y

f100 f100

f1

f2

f5

f1

O

Fig. A.12. fn(x) = |x|1+ 1
n on [−1, 1].

7. We note that fn(0) = 0, and for x �= 0,

fn(x) =
x

1
n + np−1x2

=
n1−px

n−p + x2
→ 0 as n → ∞

whenever p − 1 > 0. Thus, {fn} converges pointwise to f(x) = 0 on R.
Further,

|fn(x) − 0| = |x|
1
n + np−1x2

≤ |x|
2(1/

√
n)n(p−1)/2|x| =

1

2n(p/2)−1
,
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and so the convergence is uniform if p > 2. On the other hand, if 1 < p ≤ 2,
we have

|fn(1/n)− 0| = 1

1 + np−2
≥ 1

1 + 1
=

1

2
,

which means that the convergence is not uniform whenever 1 < p ≤ 2.
8. For x ∈ (0, 1), we have

sup
x∈(0,1)

|fn(x)− 0| = sup
x∈(0,1)

xn

1 + x2n
=

1

2
for all x ∈ (0, 1).

Using the definition of uniform convergence with ε = 1
4 for x near 1, we

conclude that the convergence is not uniform (see Figure A.13).

9. Use Theorem 9.15 (and see also Example 9.16 and Figure A.14).
10. Note that

fn(x) →
⎧
⎨

⎩

0 for 0 ≤ x < 1,
1
2 for x = 1,
1 for 1 < x ≤ 3.

11. We see that fn → 0 on R. Also
∣∣∣∣fn

(
1√
n

)
− 0

∣∣∣∣ =
√
n

e
→ ∞ as n → ∞.

0.2 0.6 1

0.2

0.6

1

x

y f100

f1

O

f20

f10

f5

f2

Fig. A.13. fn(x) =
xn

1 + x2n
on

(0, 1).

0.2 0.6 1

0.1

0.2

0.3

O x

y

f50

f1

f2

f6

f10

Fig. A.14. fn(x) = xn(1− xn) on [0, 1].

12. One may use l’Hôpital’s rule to show that fn → 0 on (0, 1]. Also,

max
x∈[0,1]

|fn(x) − f(x)| = max
x∈[0,1]

fn(x) = fn

(
1√
2n

)
=

√
n

2e
→ ∞,

and so the convergence is not uniform. We may also use Theorem 9.4 by
choosing xn = 1/

√
n. Finally, we see that

∫ 1

0

fn(x) dx =
1− e−n

2
→ 1

2
as n → ∞,

and hence by Theorem 9.15, the convergence cannot be uniform on [0, 1].
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13. Set fn(x) = g(x)xn. If fn → f uniformly on [0, 1], then f must be contin-
uous on [0, 1]. Since

f(x) = lim
n→∞ fn(x) =

{
0 for 0 ≤ x < 1,
g(1) for x = 1,

and f(1) = limx→1− f(x) = 0, by the continuity of f , f(1) = g(1) = 0.
Conversely, let g(1) = 0. Since g is continuous on [0, 1], g is bounded on
[0, 1]. Indeed, given ε > 0, there exists a δ > 0 such that

|g(x)− g(1)| = |g(x)| < ε whenever 1− δ < x ≤ 1

and |g(x)| ≤ M on [0, 1]. Consequently,

f(x) = lim
n→∞ fn(x) = lim

n→∞ g(x)xn = 0 on [0, 1],

and so

|fn(x)| = |g(x)xn| ≤
{
M(1− δ)n for 0 < x ≤ 1− δ,
ε for 1− δ < x ≤ 1.

Therefore, fn → 0 uniformly on [0, 1], since (1 − δ)n → 0 as n → ∞.
14. (a) First, fn → 1 for x ≥ 0. Next, for x ≥ 0,

|fn(x) − 1| = x

n+ x
< ε ⇐⇒ n ≥ x(1 − ε)

ε
,

where for 0 < ε < 1, supx∈[0,∞)
x(1−ε)

ε = ∞. Thus, the convergence is not
uniform for x ≥ 0. However, for 0 ≤ x ≤ c,

x

n+ x
≤ c

n+ x
≤ c

n
< ε for n > c

ε = N(ε),

and so the convergence is uniform on [0, c].
(i) Pointwise convergence to f(x) = 0 on [−π/2, π/2] is obvious, because

∣∣∣∣
sinn x

3n+ sinn x

∣∣∣∣ ≤
1

3n− 1
→ 0 as n → ∞.

Uniform convergence follows from Theorem 9.6 and

0 ≤ sup
x∈[−π/2,π/2]

∣∣∣∣
sinn x

3n+ sinn x
− 0

∣∣∣∣ =
1

3n− 1
→ 0 as n → ∞.

(j) Uniformly convergent to f(x) = 0 on [0, π].
(k) Uniformly convergent to f(x) = 0 on [−∞,∞].

15. Observe that

0 ≤
∣∣∣∣
sinnx

n

∣∣∣∣ ≤
1

n
.
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16. For x ≥ 0, we have enx > nkxk/k!, and so

0 ≤ xke−nx <
k!

nk
.

17. We observe that

sup
x∈[0,b]

|ex(n+1)/n−ex| = sup
x∈[0,b]

|ex(ex/n−1)| = eb(eb/n−1) → 0 as n → ∞

and

e−nx →
{
1 if x = 0,
0 if x ∈ (0, b].

20. (a) As in Example 9.7, if fn(x) = n2xn(1− x), then fn → 0 pointwise on
[0, 1]. On the other hand, as in Example 9.7, we have

δn = max
x∈[0,1]

|fn(x)− 0| = fn

( n

n+ 1

)
= n

( n

n+ 1

)n+1

∼ n

e
,

so that δn does not approach 0 as n → ∞. Thus, {fn} cannot converge
uniformly on [0, 1]. Also,

∫ 1

0

fn(x) dx =
n2

(n+ 1)(n+ 2)
→ 1 and

∫ 1

0

f(x) dx = 0.

Again, by Theorem 9.15, {fn} cannot converge uniformly to f(x) = 0 on
[0, 1].

22. (a) Denote the integrand by fn(x). Then each fn is continuous on [a, b],
and so the integral exists. Moreover,

|fn(x)| ≤ 1

a3 + n
→ 0 as n → ∞.

Also, since

lim
n→∞ sup

x∈[a,b]

|fn(x)| ≤ lim
n→∞

1

a3 + n
= 0,

it follows that {fn} converges uniformly to f(x) = 0 on [a, b], by Theorem
9.6. The desired limit is zero, by Theorem 9.15.
(b) Note that for x ∈ [0, 1],

fn(x) =
n+ cosn(ex)

4n+ x4
=

1 + 1
n cosn(ex)

4 + 1
nx

4
→ 1

4
as n → ∞,

so that

0 ≤
∣∣∣∣fn(x) −

1

4

∣∣∣∣ =
∣∣∣∣
cosn(ex)− x4

4n+ x4

∣∣∣∣ ≤
2

4n+ x4
≤ 1

2n
,

which implies that fn(x) → 1
4 uniformly on [0, 1]. Consequently, by The-

orem 9.15,

lim
n→∞

∫ 1

0

fn(x) dx =

∫ 1

0

1

4
dx =

1

4
.
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Questions 9.61:

3. Yes. For n ≥ 1 define (see Figure A.15)

fn(x) =

{
n2x for 0 ≤ x ≤ 1/n,
1/x for 1/n ≤ x ≤ 1.

Then, we see that fn → f pointwise on [0, 1], where

f(x) =

{
1/x for 0 < x ≤ 1,
0 for x = 0,

which is unbounded. Note also that each fn is continuous on [0, 1] and so
integrable on [0, 1]. But f is not integrable on [0, 1]. Also, for n ≥ 1,

∫ 1

0

fn(x) dx =

∫ 1/n

0

fn(x) dx+

∫ 1

1/n

fn(x) dx =
1

2
+logn → ∞ as n → ∞,

showing that the sequence of integrals
{∫ 1

0
fn(x) dx

}
is an unbounded

sequence.

x

y

f2

f6

f12

f20

1
2

1
6

y = 1/x

20

1
12

1
20

O

10

1

Fig. A.15. fn(x) = n2x for 0 ≤ x ≤ 1
n
, and 1

x
for 1

n
≤ x ≤ 1.

5. Set fn(x) = xn/n. Then the uniform convergence on [−1, 1] is clear (use
the method of Example 9.8), and

f ′
n(x) = xn−1 →

⎧
⎨

⎩

0 for −1 < x < 1,
1 for x = 1,
doesn’t exist for x = −1.

Observe that even if fn(x) is differentiable on E for all n and fn → f
uniformly on E, then {f ′

n} need not converge to f ′ on E. It is true that
f ′
n(x) is continuous on [−1, 1] for all n ≥ 1. Note that f ′

n(1) = 1 and
f ′(1) = 0, and so at x = 1,

f ′(x) �= lim
n→∞ f ′

n(x).
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7. We see that fn → 0 uniformly on R, but f ′
n(x) = cos(nx) converges only

at integer multiples of 2π.
8. Define fm(x) = limn→∞ (cos(m!πx))

2n
, for m ∈ N. Clearly

fm(x) =

{
1 if m!x is an integer,
0 otherwise.

If x is irrational, then fm(x) = 0 for every m ∈ N. For rational x, say
x = p/q, where p and q are integers, we see that m!x is an integer if
m ≥ q. Hence

f(x) = lim
m→∞ fm(x) =

{
0 if x irrational,
1 if x rational,

which is everywhere discontinuous and not Riemann integrable.
11. Apply Weierstrass’s M -test.
13. The definition of uniform convergence implies that there is an N such that

|fn(x)− f(x)| < ε = 1 for all x ∈ E and all n ≥ N .

Since {fn} is a bounded sequence, there is an M > 0 such that |fn(x)| ≤
M for all n and for all x ∈ E. In particular,

|f(x)| ≤ |f(x) − fN(x)| + |fN(x)| ≤ 1 +M.

14. For the sequence of partial sums {Sn(x)}, we have for all m > n > N ,

|Sm(x) − Sn(x)| =
∣∣∣∣∣

m∑

k=n+1

fk(x)

∣∣∣∣∣ ≤
m∑

k=n+1

|fk(x)|,

showing that the series
∑∞

k=1 fk(x) converges uniformly on E whenever∑∞
k=1 |fk| converges uniformly on E. The converse is not true in general.

15. Yes.

Exercises 9.62:

2. Note that fn(x) → 0 pointwise on R (see Example 9.11(2)). Clearly,
fn(0) = 0, but fn(1/n) = 1/2 for all n. On the other hand, it converges
uniformly on {x : |x| ≥ k}, k > 0, because

|fn(x)− 0| = n|x|
1 + n2x2

<
1

n|x| ≤
1

nk
< ε for n >

1

kε
.

Because fn(1/n) = 1/2, the sequence {fn(x)} cannot converge uniformly
to f(x) = 0 on any interval containing zero.
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3. For x = 1, our previous experience with series implies that
∑

fk(1) con-
verges with sum log 2. Also, for 0 ≤ x < 1,

Sn(x) → 1

2
log

(1 + x

1− x

)
+

1

2
log (1− x) =

1

2
log (1 + x).

Consequently,

Sn(x) → f(x) =

{
1
2 log (1 + x) if 0 ≤ x < 1,
log 2 if x = 1,

pointwise on [0, 1]. By Corollary 9.22, the series does not converge uni-
formly on [0, 1]. Note: We observe that f is integrable on [0, 1]. Does this
imply that the uniform convergence of the series

∑
fn to f on [a, b] in

Corollary 9.30 is sufficient but not necessary for the integrability of the
limit function f?

4. We present a direct proof. If this were true, then for ε > 0 there would
exist an N such that

|Sm(x)− Sn(x)| =
m∑

k=n+1

xk

k
< ε for all x ∈ (0, 1) and m > n ≥ N,

which in particular, holds for n = N . But then, for x close to 1, we have
xk > 1

2 for some k > N , so that

m∑

k=N+1

xk

k
>

1

2

[
1

N + 1
+

1

N + 2
+ · · ·+ 1

m

]
→ ∞ as m → ∞.

Therefore, the convergence cannot be uniform on (0, 1).
7. To prove the pointwise convergence on [0,∞), we may write the general

term of the series as

fk(x) =
1

1 + (k − 1)x
− 1

1 + kx
,

so that

sn(x) =

n∑

k=1

fk(x) = 1− 1

1 + nx
→ f(x) =

{
0 if x = 0,
1 if x > 0.

On the interval [r, R],

sup
x∈[r,R]

|sn(x) − s(x)| = sup
x∈[r,R]

1

1 + nx
=

1

1 + nr
→ 0 as n → ∞,

so that sn(x) → 1 uniformly on [r, R], but not on [0, R], because

sn

( 1

n

)
− s

( 1

n

)
=

1

2
for each n ≥ 1.

Observe that limn→∞
∫ R

0
sn(x) dx =

∫ R

0
limn→∞ sn(x) dx although {sn}

does not converge uniformly on [0, R].
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8. Apply Corollary 9.41 and the Weierstrass M -test.
9. Assume that Sn denotes the nth partial sum of the given series of func-

tions.

(a)

∣∣∣∣
x

n(1 + nx2)

∣∣∣∣ <
1

n1/3
(since 1 + nx2 > 2

√
nx).

(b)

∣∣∣∣
1

n3 + n4x2

∣∣∣∣ <
1

n3
for x ∈ R.

(d)

∣∣∣∣
1

1 + n2 + n2x2

∣∣∣∣ ≤
1

n2
for x ∈ R.

(e)
1

nx
<

1

nc
for c > 1.

(f)
1

(n+ x)2
≤ 1

n2
for x ≥ 0.

(g)

∣∣∣∣
sinnx

en

∣∣∣∣ ≤
(
1

e

)n

for x ∈ R.

(h)

∣∣∣∣
enx

5n

∣∣∣∣ ≤
(
1

5

)n

for x ≤ 0.

(i)

∣∣∣∣
log x

x

∣∣∣∣ < 1.

(j) |x log x| ≤ x2.

10. (a) −1 ≤ x < 1. (b) −2 < x < 0. (c) x < −1, x ≥ 1.
(d) x < −3, x ≥ 3. (e) −6 ≤ x ≤ −4. (f) −π

6 ≤ x ≤ π
6 .

11. The series converges uniformly byWeierstrass’sM -test. By Corollary 9.22,
f is continuous on [0, π] and
∫ π

0

f(x) dx =

∞∑

k=1

∫ π

0

sin(kx)

k2
=

∞∑

k=1

1

k3
(1− cos kπ) =

∞∑

k=1

2

(2k − 1)3
.

12. (See Theorem 9.40). By conditions (b) and (c) for Theorem 9.45, there
exists an N such that for all m,n ≥ N , we have

|fn(x0)−fm(x0)| < ε

2
and |f ′

n(t)−f ′
m(t)| < ε

2(b− a)
for all t ∈ [a, b].

Because h = fn − fm is differentiable on [a, b] (for each pair of integers m
and n), the mean value theorem implies that for u, v ∈ [a, b], u �= v,

h(u)− h(v) = h′(θ)(u − v), i.e., |h(u)− h(v)| ≤ ε

2
|u− v|,

for some θ lying in the open interval with end points u and v. In particular,
for any x ∈ [a, b], x �= x0, on the interval I∪∂I = [x0, x] (or on the interval
[x, x0] if x < x0), and for m,n ≥ N ,

|h(x)| ≤ |h(x)− h(x0)|+ |h(x0)|
≤ ε

2

|x− x0|
b− a

+
ε

2
≤ ε

2
+

ε

2
= ε.
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Since N depends only on ε, the assertion is true for all x ∈ [a, b]. Conse-
quently, by Cauchy’s convergence criterion, {fn} converges uniformly to
a continuous function f(x) on [a, b]. So we define f and F on [a, b], since

f(x) = lim
n→∞ fn(x) and F (y) =

⎧
⎨

⎩

f(x)− f(y)

x− y
for y ∈ [a, b]� {x},

g(x) for y = x.

Now for a fixed x, define Fn : [a, b] → R by

Fn(y) =

⎧
⎨

⎩

fn(x)− fn(y)

x− y
for y ∈ [a, b]� {x},

f ′
n(x) for y = x.

For each n, the differentiability of fn implies that Fn is continuous at x.
Moreover, for all m,n ≥ N ,

|Fn(y)− Fm(y)| =
∣∣∣∣
fn(x)− fn(y)− (fm(x)− fm(y))

x− y

∣∣∣∣

≤ 1

|x− y|
ε|x− y|

2
=

ε

2
for all y ∈ [a, b]� {x},

and for y = x,

|Fn(y)− Fm(y)| = |f ′
n(x)− f ′

m(x)| < ε

2
.

Consequently, {Fn} converges uniformly on [a, b], and clearly, {Fn} con-
verges to F .

15. We know that

φ(x) :=
log(1 + x)

x
=

∞∑

k=1

(−1)k−1

k
xk−1 for −1 < x < 1,

where φ(0) = 1. The series on the right converges at x = 1, whereas it
diverges at x = −1. By Abel’s limit theorem,

lim
x→1−

φ(x) = log 2,

and the series on the right is uniformly convergent on [0, 1]. Thus term-
by-term integration is permissible on [0, 1]. This gives

∫ 1

0

log(1 + x)

x
dx =

∞∑

k=1

(−1)k−1

k2
.

The same idea may be used to show that

∫ 1

0

(− log(1− x)) dx =

∞∑

k=1

1

k(k + 1)
= 1.
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16. What is the Cauchy product of
∑∞

k=0 akx
k and

∑∞
k=0 x

k? For the second
part, choose

f(x) =
log(1 + x)

x
=

∞∑

k=0

(−1)k

k + 1
xk.

Chapter 10: Questions 10.10

11. Yes. See Figure 10.6.

Exercises 10.11:

3. We have bn = 0 for n ≥ 1,

a0 =
2π2

3
, and an =

4(−1)n

n2
.

6. Example 10.9 and Exercise 10.11(6) may be obtained each from the other
using the linearity property, for if f(x) = |x|, then

1− |x|
π

= m|x|+ c

with c = 1, m = −1/π.

Questions 10.37:

2. f is even on (−c, c) if and only if 2f(x) = f(x) + f(−x).
6. On |x| < c, define

g(x) = (f(x) + f(−x))/2 and h(x) = (f(x) − f(−x))/2.

Then g and h are even and odd, respectively.
8. We see that ak = 0 for odd values of k, and bk = 0 for even values of k.

Also, for k ≥ 0,

a2k =
2

π

∫ π/2

−π/2

f(x) cos 2kxdx and b2k+1 =
2

π

∫ π/2

−π/2

f(x) sin(2k+1)xdx.

9. Continuity of the periodic extension will depend on the choices of a, b, c.
10. No. For example, the periodic extension of the characteristic function of

the set of all rational numbers between 0 and 1 is not Riemann integrable.

Exercises 10.38:

3. We have

x2 =
π2

3
+ 4

∞∑

n=1

(−1)n

n2
cosnx, x ∈ [−π, π],

and in particular, for x = 0, we have

π2

12
=

∞∑

n=1

(−1)n−1

n2
.
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Also,

x2 =
4π2

3
+ 4

∞∑

n=1

cosnx

n2
− 4π

∞∑

n=1

sinnx

n
, x ∈ (0, 2π),

and at x = 0, 2π, the series converges to the value 2π2.
13. It suffices to consider f(x) = x, so that by Example 10.15,

3x+ 2 ∼ 2 + 6

∞∑

k=1

(−1)k−1

k
sin kx, x ∈ [−π, π].

14. Use the method of Example 10.17.
15. Consider the odd extension of f to [−L, 0], and then the periodic extension

(for the period 2L) onto R; see Figure A.16.
17. See Figure A.17. It is a simple exercise to see that a0 = −π/2,

an =
(−1)n − 1

n2π
and bn =

1− 2(−1)n

n
.

x−L L 2L 3L

−L
2

L

2

y

L

2

Fig. A.16. Odd extension of f to [−L, 0], 2L-periodic extension to R.

−2π 2π
−π/2

−π
∗

∗
O x

π

y

Fig. A.17. Graph of the given function.
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By Dirichlet’s theorem, equality in (10.7) holds at all points of continuity,
since f has been defined to be periodic. At x = 0 and x = π, the Fourier
series with the above Fourier coefficients converge to

f(0+) + f(0−)

2
= −π

2
and

f((−π)+) + f(π−)

2
=

−π + π

2
= 0,

respectively. In either case, we can obtain (10.8) as a special case.

Chapter 11: Questions 11.27

1. No.
2. No; for instance, f(x) = sinx on [0, π] and f(x) = x2 on [−1, 1].
3. No; for instance, consider f(x) = [x] on [0, 2].
4. By Theorem 11.8, it is bounded.
6. No. Consider f(x) = x on [0, 1]. Indeed if f is a function such that f(x) →

0 as x → x0 for some x0 ∈ (a, b), then 1/f cannot be bounded on any
interval containing x0, and hence 1/f cannot be a function of bounded
variation on such an interval.

9. Yes.
13. Yes. Apply Theorem 11.13.
14. Yes. Set G± = V ± f . For a ≤ x < y ≤ b,

G±(y)−G±(x) = (V (y)− V (x)) ± (f(y)− f(x))

= Vf [x, y]± (f(y)− f(x)), by Lemma 11.18,

≥ 0, since Vf [x, y] ≥ |f(y)− f(x)|.
Thus, both V + f and V − f are increasing on [a, b]. Note that

f = (V + f)− V = V − (V − f) = (V + g)− (V − f + g)

for an arbitrary increasing function g on [a, b].
15. No. Suppose that f = f1 − f2, where f1 and f2 are increasing. Then for

any arbitrary increasing function g, we could write

f = (f1 + g)− (f2 + g) = F1 − F2,

where F1 and F2 are again increasing.
16. Yes. In the above hint choose g to be strictly increasing. Then Theorem

11.19 continues to hold if “increasing” is replaced by “strictly increasing.”
17. If f and g are absolutely continuous on [a, b], then

|(f + g)(bk)− (f + g)(ak)| ≤ |f(bk)− f(ak)|+ |g(bk)− g(ak)|,
and for α ∈ R,

|(αf)(bk)− (αf)(ak)| = |α| |f(bk)− f(ak)|,
showing that f + g and αf are absolutely continuous on [a, b].
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Exercises 11.28:

1. We see that V (P, f) = 1 + 2(n− 1) = 2n− 1.
3. V (P, f) =

∑n
k=1

1
k .

4. Both cosx and x are in BV ([0, π/2]), and so is their sum. Finally, apply
the product rule, since x4 is also in BV ([0, π/2]).

5. Follows Theorem 11.9.
7. Note that x0 = 0, f(0) = 0, xk = 1/(n+1−k) for k ≥ 1 and cos(π/xk) =

(−1)n+1−k. Thus, we find that

V (P, f) = |f(x)− f(0)|+
n∑

k=2

|f(xk)− f(xk−1)|

=
1

n
+

n∑

k=2

(
1

n+ 1− k
+

1

n+ 2− k

)

= 1 + 2

(
n∑

k=2

1

k

)
→ ∞ as n → ∞.

8. Consider the partition P = {0, 1
n , . . . ,

1
3 ,

1
2 , 1}. We observe that f is piece-

wise monotone and

n∑

k=1

|f(xk)− f(xk−1)| > 1 +
1

2
+

1

3
+ · · ·+ 1

n− 1
.

9. For a partition P = {x0, x1, x2, . . . , xn} of [a, b], we have

F (xk)− F (xk−1) =

∫ xk

a

f(t) dt+

∫ a

xk−1

f(t) dt =

∫ xk

xk−1

f(t) dt,

and |f(t)| is also integrable on [a, b]. Thus,

V (P, F ) =
n∑

k=1

∣∣∣∣∣

∫ xk

xk−1

f(t) dt

∣∣∣∣∣ ≤
n∑

k=1

∫ xk

xk−1

|f(t)| dt =
∫ b

a

|f(t)| dt < ∞.

10. We show that f ∈ BV ([0, 1]) if and only if α > β. The given function f
is clearly differentiable on (0, 1], and for α > 0, β > 0,

|f ′(x)| ≤ αxα−1 + βxα−β−1.

For the partition P = {x0, x1, . . . , xn} of [ε, 1], we have

|f(xk)− f(xk−1)| =
∣∣∣∣∣

∫ xk

xk−1

f ′(t) dt

∣∣∣∣∣ ≤
∫ xk

xk−1

|f ′(t)| dt,
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and so

n∑

k=1

|f(xk)− f(xk−1)| ≤
n∑

k=1

∫ xk

xk−1

|f ′(t)| dt =
∫ 1

ε

|f ′(t)| dt,

and
∫ 1

ε
|f ′(t)| dt exists for all ε > 0 and for α > 0 and α > β ≥ 0 and

∫ 1

0

|f ′(t)| dt = lim
ε→0

∫ 1

ε

|f ′(t)| dt = α

(
1

α

)
+

β

α− β
=

α

α− β
.

Thus, f ∈ BV ([0, 1]) if α > β > 0.
For α = 0, it is easy to see that f �∈ BV ([0, 1]).
For 0 < α ≤ β, by choosing a suitable partition, it can be shown that
f �∈ BV ([0, 1]). Because of the appearance of sin(1/xβ), we may choose
the partition points from those x for which

1

xβ
=

(2m− 1)π

2
, m ∈ Z,

so that sin(1/xβ) = (−1)m. Thus for β > 0, we consider the partition P
of [0, 1] as

P =

{
0,

( 2

π(2n− 1)

)1/β

,
( 2

π(2n− 3)

)1/β

,
( 2

3π

)1/β

,
( 2

π

)1/β

, 1

}
,

and obtain
V (P, f) → ∞ as n → ∞.

11. Use Theorem 11.23.
13. Let ε > 0 be given. Then for any partition P of [a, b], we have

V (P, f) > Vf [a, b]− ε

2
.

Since f is continuous, there exists a δ > 0 such that

|f(x)− f(y)| < ε

4n
whenever x, y ∈ [a, b], |x− y| < δ.

It can be easily shown that for every partition Q of [a, b] with ‖Q‖ < δ,
we have

V (Q, f) > V (P, f) − ε

2
.

This gives
Vf [a, b] > V (Q, f) > Vf [a, b]− ε,

and the result follows.



Hints for Selected Questions and Exercises 563

14. Let P be a partition of [a, x]. Then

V (P, f) =
∑

k∈A(P )

(f(xk)− f(xk−1))−
∑

k∈N(P )

(f(xk)− f(xk−1))

= S+(P ) + S−(P ), say.

Then S+(P )−S−(P ) = f(x)−f(a). Adding and subtracting the last two
equations gives

2S+(P ) = V (P, f)+ f(x)− f(a) and 2S−(P ) = V (P, f)− (f(x)− f(a)),

respectively. Taking the supremum as P varies over P [a, x] gives (a).
Adding and subtracting the two equations in (a) gives (b) and (c). The
proofs for (d) and (e) follow as a consequence of (c) and the fact that
p(x) ≥ 0 and n(x) ≥ 0. Finally, for a ≤ x < y ≤ b, (a) gives

2[p(y)− p(x)] = (V (y)− V (x)) + (f(y)− f(x))

= Vf [x, y] + (f(y)− f(x)) ≥ 0,

and similarly,

2[n(y)− n(x)] = Vf [x, y]− (f(y)− f(x)) ≥ 0.

Thus, (f) follows.

Questions 11.47:

10. By Theorem 11.41, the value of the integral is (f2(b)− f2(a))/2.

Exercises 11.48:

4. Let P = {x0, x1, . . . , xn} be any partition of [0, 2] with xj = 1. It follows
easily that

U(P, f, α) = 0 and L(P, f, α) = 0.

The conclusion follows from Theorem 11.33. On the other hand, if P ′ =
{x0, x1, . . . , xn} is a partition of [0, 2] that does not include 1 as a partition
point, then xj−1 < 1 < xj , and therefore we see that

U(P ′, f, α) = 1 and L(P ′, f, α) = 0,

no matter how small the norm of the partition.
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(C, 1), 67
(C, 1) summable, 67
(C, 1) summable series, 202
(C,α), 422
(C,α) summable, 422
A ∼ B, 17
BV ([a, b]), 470
P V , 284
V (P, f), 469
Vf [a, b], 470
C, 431
N, 2, 16
Q, 3, 4, 8
R, 3, 8
R

+, 16
R

+
0 , 16

Z, 4
δ-neighborhood, 13
kth root test, 334
nth root sequence, 33
p-log series, 177
p-harmonic series, 172, 303
Dα[a, b], 491
Rα[a, b], 500
(Darboux) integrable, 213
BV function, 469

Abel sum, 419
Abel summable, 419
Abel theorem, 418
Abel’s continuity theorem, 416
Abel’s limit theorem, 416
Abel’s test, 198

Abel–Pringsheim test, 170
absolute convergence test, 161
absolute value, 9
absolutely continuous, 483
absolutely convergent, 274
absolutely convergent series, 161
additive identity, 7
additive inverse, 7
algebraic number, 6
alternating sequence, 34
alternating series, 183
antiderivative, 248
average value, 259, 260

basic period, 431
Bernstein polynomial, 411
Bessel’s inequality, 457
beta function, 271, 294
bijective, 16
BMCT, 23, 41, 43, 47, 48, 173
Bolzano–Weierstrass theorem, 48
bounded sequence, 17, 27, 34
bounded set, 10
bounded variation, 196, 469

cardinal number, 19
cardinality, 17, 19
Cauchy principal value, 274, 284
Cauchy product, 200
Cauchy sequence, 59
Cauchy’s condensation test, 178
Cauchy’s convergence criterion, 160
Cauchy–Hadamard formula, 347
Cesàro means, 66
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chain rule, 103
codomain, 14
common refinement, 216
complement, 2
completeness criterion, 61
complex period, 431
concave down, 141
concave up, 141
conditionally convergent, 274
conditionally convergent series, 161
continuous

absolutely, 483
piecewise, 93, 94

continuous function
average value, 259

continuously differentiable, 104
continuum property, 12
contractive sequence, 62
convergence

geometric sequence, 43
pointwise, 372, 394
uniform, 372, 394

convergence set, 339
convergent sequence, 25
convergent series, 148
convex downward, 141
convex upward, 141
cosine series, 439
countable, 18
critical point, 124

Darboux integrable, 213
Darboux–Stieltjes integrable, 491
Darboux–Stieltjes integral, 491

dominance rule, 496
linearity rule, 496

decimal expansion, 154
decreasing function, 115
decreasing sequence, 34
definite integral, 213, 224
deleted neighborhood, 73
denumerable, 18
derived, 97
derived series, 350
differentiable, 97
differentiation

n-fold, 351
differentiation of series, 349
digits, 4

direct comparison test, 171
Dirichlet’s kernel, 458
Dirichlet’s test, 197
disjoint, 2
divergence test, 168, 170
divergent sequence, 25
divergent series, 148
domain, 14
dominated convergence test, 396
dominated series, 396

equivalent sets, 17
Euler’s constant, 302
Euler’s sequence, 41
exponential function, 264

Fibonacci numbers, 24
Fibonacci sequence, 24
field, 7

ordered, 8
finitely oscillating sequence, 29
formula

Cauchy–Hadamard, 347
Newton–Leibniz, 248

Fourier coefficients, 438
Fourier series, 438
function, 14

C1, 104
C1([a, b]), 104
bounded, 17
bounded above, 17
bounded below, 17
bounded variation, 469
continuous, 85
continuously differentiable, 104
derived, 97
differentiable, 97
discontinuous, 88
exponential, 264
increasing, 115
inverse, 17, 119
monotone, 115
monotonically decreasing, 115
monotonically increasing, 115
one-to-one, 16
onto, 16
periodic, 430
piecewise continuous, 94
piecewise smooth, 104
real analytic, 355
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real analytic at a, 355
signum, 252
smooth, 104
strictly decreasing, 115
strictly increasing, 115
strictly monotone, 115

function(s)
composite, 15
polynomial, 86

functional series, 338, 339
fundamental period, 431

gamma function, 271, 292
generalized Dirichlet test, 196
geometric sequence, 43
geometric series, 149
global maximum, 124
global minimum, 124
greatest lower bound (glb), 11
greatest lower bound property, 12
Gregory’s series, 418

harmonic p-series, 303
harmonic series, 160

identity theorem, 354
image of a set, 15
improper integral, 271, 272
increasing function, 115
increasing sequence, 34
indefinite integral, 251, 252
induction axiom, 3
inf, 12
infimum, 12
infinite series, 147
infinitely oscillating sequence, 29
inflection point, 141
injective, 16
integrability

Darboux–Stieltjes, 493
Darboux/Riemann, 219

integrable
Darboux, 213
Darboux–Stieltjes, 491
Riemann, 224
Riemann–Stieltjes, 500

integral
definite, 213, 224
dominance rule, 236

indefinite, 252
linearity rule, 236

integral sum, 210
integral test, 299
integrand, 491
integrator, 491
interior point, 72
intersection of sets, 2
inverse function, 119
inverse function theorem, 123
irrationality of e, 156

jump discontinuity, 78
jump point, 93

simple, 78

L’Hôpital’s rule, 107, 112
least upper bound, 11
least upper bound property, 12
left and right derivatives, 98
limit, 25, 72
limit comparison test, 175
limit point, 72
local extremum, 124
local inverses, 115
local maximum, 124
local minimum, 123
lower (Darboux) integrable, 213
lower (Darboux–Stieltjes) integrable,

490
lower bound, 10
lower Darboux sum, 212
lower integral sum, 212
lower sum, 211
lub, 11

Maclaurin series, 339, 360
mapping, 14

bijective, 16
injective, 16
one-to-one, 16
onto, 16
surjective, 16

Mascheroni’s constant, 302
mean value, 260
mean value theorem, 130

for integrals, 255
Mertens test, 200
modulus, 9
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monotone function, 115
monotonic sequence, 34
monotonically decreasing, 34, 115
monotonically increasing, 34, 115
multiplicative identity, 7
multiplicative inverse, 7

natural logarithm, 261
negative variation, 488
Newton–Leibniz formula, 248
nondenumerable, 18
null sequence, 26

one-sided derivatives, 98
one-to-one, 16
onto, 16
ordered field, 8
oscillatory sequence, 29
oscillatory series, 148

partition, 209
common refinement, 216
equally spaced, 210
finer, 216
mesh, 210
norm, 210
refinement, 216
standard, 210
width, 210

peak point, 47
periodic, 430
piecewise continuous, 93, 94
piecewise smooth, 104
point of inflection, 141
pointwise convergent, 372
pointwise convergent series, 394
positive variation, 488
power sequence, 40
power series, 339
power set, 2, 18
prime number, 6
primitive, 248
primitive period, 431
principle of convergence, 61
proper subset, 2

range, 15
ratio test, 331–333
rational, 4

real analytic, 355
real analytic at a, 355
rearrangement series, 188
Riemann (Stieltjes) sum, 490
Riemann integrable, 224
Riemann integral, 209
Riemann sum, 210, 212
Riemann’s condition, 501
Riemann–Lebesgue lemma, 458
Riemann–Stieltjes integrable, 500
Rolle’s theorem, 128
root test, 334, 336

saddle point, 124
sandwich rule, 31, 77
second fundamental theorem, 259
seqeunce

uniformly convergent, 372
sequence, 23

nth root, 33
alternating, 34
bounded, 27, 34
bounded above, 34
bounded below, 34
bounded variation, 196
completeness criterion, 61
contractive, 62
converges, 24
diverges, 25
Euler’s, 41
Fibonacci, 24
monotonic, 34
monotonically decreasing, 34
monotonically increasing, 34
null, 26
oscillating finitely, 29
oscillating infinitely, 29
oscillatory, 29
pointwise convergent, 372
power, 40
sandwich rule, 31
squeeze rule, 31
strictly decreasing, 34
strictly increasing, 34
strictly monotone, 34
unbounded, 27

series, 147
(C, 1) summable, 202
p-log, 177
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absolutely convergent, 161
alternating harmonic, 161
alternationg series test, 185
Cauchy’s convergence criterion, 160
conditionally convergent, 161
convergent, 148
derived, 350
diverges, 148
functional, 338, 339
geometric, 149
Gregory’s series, 418
harmonic, 160
harmonic p-, 172
linearity rule, 159
Maclaurin, 360
necessity for convergence, 167,

170
oscillating, 148
pointwise convergent, 394
rearrangement, 188, 192
summable, 419
Taylor, 360
telescoping, 156
uniformly convergent, 394

set
bounded, 10
cardinality, 17
complement, 2
countable, 18
denumerable, 18
disjoint, 2
equivalent, 17
intersection, 2
nondenumerable, 18
pairwise disjoint, 3
power, 2
unbounded, 10
uncountable, 18
union, 2

sine series, 439
squeeze rule, 31, 77
standard partition, 210
Stieltjes integrals, 488
strictly decreasing, 34, 115
strictly increasing, 34, 115
strictly monotone function, 115
strictly monotonic sequence, 34
subsequence, 35
subsequential limits, 36

summable
(C, 1), 67
(C,α), 422

sup, 12
supremum, 12
surjective, 16

Tauber’s theorem, 420
Taylor polynomial, 360
Taylor series, 360
Taylor’s theorem, 358
telescoping series, 156, 158
test

absolute convergence, 161
alternating series, 185
Cauchy’s condensation, 178
direct comparison, 171
limit comparison, 175

Theorem
uniqueness, 354
Abel, 418
Abel’s test, 198
Abel–Pringsheim, 170
alternating series test, 185
Bessel’s inequality, 457
BMCT, 39
Bolzano–Weierstrass, 48
Cantor–Bernstein, 19
Cauchy criterion, 380, 395
Cauchy mean value, 137
Cauchy’s condensation test, 178
Cauchy–Hadamard, 347
direct comparison test, 171
Dirichlet’s, 444
Dirichlet’s test, 197, 399
divergence test, 168, 170
generalized Dirichlet test, 196
geometric series, 150
identity, 354
integral test, 299
inverse function, 123
Jordan decomposition, 480
limit comparison test, 175
mean value, 130
ratio test, 331–333
rearrangement of series, 192
Riemann’s rearrangement, 193
Rolle’s, 128
root test, 334, 336



570 Index

Theorem (cont.)
Tauber’s, 420
Taylor’s, 358
telescoping series, 158
uniqueness, 354, 366
Weierstrass, 411
Weierstrass M -test, 396

total variation, 470
trigonometric series, 434

unbounded sequence, 27
unbounded set, 10
uncountable, 18
uniform convergence, 372

Cauchy criterion, 380, 395
characterization, 377
Dirichlet’s test, 399

uniformly Cauchy, 380, 395
uniformly continuous, 91

uniformly convergent series, 394
union of sets, 2
uniqueness theorem, 354, 366
upper (Darboux) integral, 213
upper (Darboux–Stieltjes) integral, 490
upper (Darboux–Stieltjes) sum, 490
upper bound, 10
upper Darboux sum, 212
upper integral sum, 212
upper sum, 211

variation
negative, 488
positive, 488
total, 470

variation function, 479

Weierstrass M -test, 396
Weierstrass theorem, 411
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