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Preface

This book is intended to be an advanced look at the basic theory of groups,
suitable for a graduate class in group theory, part of a graduate class in abstract
algebra or for independent study. It can also be read by advanced
undergraduates. Indeed, I assume no specific background in group theory, but
do assume some level of mathematical sophistication on the part of the reader.

A look at the table of contents will reveal that the overall topic selection is more
or less standard for a book on this subject. Let me at least mention a few of the
perhaps less standard topics covered in the book:

1) An historical look at how Galois viewed groups.
2  The problem of whether the commutator subgroup of a group is the same as)

the  of commutators of the group, including an example of when this isset
not the case.

3) A discussion of xY-groups, in particular,
 a) groups in which all subgroups have a complement
 b) groups in which all normal subgroups have a complement
 c) groups in which all subgroups are direct summands
 d) groups in which all normal subgroups are direct summands.
4  The subnormal join property, that is, the property that the join of two)

subnormal subgroups is subnormal.
5) Cancellation in direct sums: A group  is  ifK cancellable in direct sums

E K ¸ F Lß K ¸ L Ê E ¸ F{ {

(The symbol  represents the external direct sum.) We include a proof{
that any finite group is cancellable in direct sums.

6) A complete proof of the theorem of Baer that a nonabelian group  has theK
property that all of its subgroups are normal if and only if

K œ U  E  F

where  is a quaternion group,  is an elementary abelian group ofU E
exponent  and  is an abelian group all of whose elements have odd order.# F

vii



viii Preface

7  A somewhat more in-depth discussion of the structure of -groups,) :
including the nature of conjugates in a -group, a proof that a -group with: :
a unique subgroup of any order must be either cyclic (for ) or else:  #
cyclic or generalized quaternion (for ) and the nature of groups of: œ #
order  that have elements of order .: :8 8"

8  A discussion of the Sylow subgroups of the symmetric group (in terms of)
wreath products).

9) An introduction to the techniques used to characterize finite simple groups.
10  Birkhoff's theorem on equational classes and relative freeness.)

Here are a few other remarks concerning the nature of this book.

1) I have tried to emphasize universality when discussing the isomorphism
theorems, quotient groups and free groups.

2) I have introduced certain concepts, such as subnormality and chain
conditions perhaps a bit earlier than in some other texts at this level, in the
hopes that the reader would acclimate to these concepts earlier.

3  I have also introduced group actions early in the text (Chapter 4), before)
giving a more thorough discussion in Chapter 7.

4) I have emphasized the role of applying certain operations, namely
intersection, lifting, quotient and unquotient to a “group extension” .L Ÿ K

A couple of random notes: Unless otherwise indicated, any theorem not proved
in the text is an invitation to the reader to supply a proof. Also, sections marked
with an asterisk are optional, meaning that they can be skipped without missing
information that will be required later.

Let me conclude by thanking my graduate students of the past five years, who
not only put up with this material in manuscript form but also put up with the
many last-minute changes that I made to the manuscript during those years. In
any case, if the reader should find any errors, I would appreciate a heads-up. I
can be contacted through my web site www.romanpress.com.

Steven Roman

http://www.romanpress.com
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Chapter 1
Preliminaries

In this chapter, we gather together some basic facts that will be useful in the
text. Much of this material may already be familiar to the reader, so a light skim
to set the notation may be all that is required. The chapter then can be used as a
reference.

Multisets
The following simple concept is much more useful than its infrequent
appearance would indicate.

Definition Let  be a nonempty set. A   with   is aW Q Wmultiset underlying set
set of ordered pairs

Q œ ÖÐ= ß 8 Ñ ± = − Wß 8 − ß = Á = 3 Á 4×3 3 3 3 3 4
™  for 

where . The positive integer  is referred to as the ™
3œ Ö"ß #ßá× 8 multiplicity

of the element  in . A multiset is  if the underlying set is finite. The = Q3 finite size
of a finite multiset  is the sum of the multiplicities of its elements. Q

For example,  is a multiset with underlying setQ œ ÖÐ+ß #Ñß Ð,ß $Ñß Ð-ß "Ñ×
W œ Ö+ß ,ß -× + #. The element  has multiplicity . One often writes out the
elements of a multiset according to their multiplicities, as in

Q œ Ö+ß +ß ,ß ,ß ,ß -×

Two multisets are equal if their underlying sets are equal and if the multiplicities
of each element in the multisets are equal.

Words
We will have considerable use for the following concept.

Definition Let  be a nonempty set. A finite sequence  of\ œ ÐB ßá ß B Ñ= " 8

elements of  is called a  or  over  and is usually written in the\ \word string
form

DOI 10.1007/978-0-8176-8301-6_1, © Springer Science+Business Media, LLC 2012
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2 Fundamentals of Group Theory

= œ B âB" 8

The number of elements in  is the  of , denoted by . There is aA A ÐAÑlength len
unique word of length , called the  and denoted by . The set of all! empty word %
words over  is denoted by  and  is called the  for . A\ \ \ \‡ ‡alphabet
subword substring or  of a word  is a subsequence of  consisting of= =
consecutive elements of . The empty word is considered a subword of all=
words.

The set  of words over  has an algebraic structure. In particular, the\ \‡

operation of juxtaposition (also called concatenation) is associative and has
identity . Any nonempty set with an associative operation that has an identity is%
called a . Thus,  is a monoid under juxtaposition.monoid \‡

It is customary to allow the use of exponents other than  when writing words,"
where

B œ BâB8

8

î
 factors

for . Note, however, that this is merely a shorthand notation. Also, it does8  !
not affect the length of a word; for example, the length of  is .B C D '# $

Partially Ordered Sets
We will need some basic facts about partially ordered sets.

Definition A  is a pair  where  is a nonempty setpartially ordered set ÐT ß Ÿ Ñ T
and is a binary relation called a , read “less than or equal to,”Ÿ partial order
with the following properties:
1   For all ,) ( )Reflexivity + − T

+ Ÿ +

2   For all ,) ( )Antisymmetry +ß , − T

+ Ÿ ,ß , Ÿ + Ê + œ ,

3   For all ,) ( )Transitivity +ß ,ß - − T

+ Ÿ ,ß , Ÿ - Ê + Ÿ -

Partially ordered sets are also called . posets

Sometimes partially ordered sets are more easily defined using strict order
relations.

Definition A   on a nonempty set  is a binary relation thatstrict order  T
satisfies the following properties:



Preliminaries 3

1   For all ,) ( )Asymmetry +ß , − T

+  , Ê , y +

2   For all ,) ( )Transitivity +ß ,ß - − T

+  ,ß ,  - Ê +  -

Theorem 1.1 If  is a partially ordered set, then the relationÐT ß Ÿ Ñ

+  , + Ÿ ,ß + Á ,if

is a strict order on . Conversely, if  is a strict order on , then the relationT  T

+ Ÿ , +  , + œ ,if  or 

is a partial order on .T

It is customary to use a phrase such as “Let  be a partially ordered set” whenT
the partial order is understood. Also, it is very convenient to extend the notation
a bit and define  for any subset  of  to mean that  for all .W Ÿ + W T = Ÿ + = − W
Similarly,  means that  for all  and  means that  for+ Ÿ W + Ÿ = = − W W Ÿ X = Ÿ >
all  and .= − W > − X

Note that in a partially ordered set, it is possible that not all elements are
comparable. In other words, it is possible to have  with the propertyBß C − T
that  and .B Ÿ± C C Ÿ± B

Here are some special kinds of partially ordered sets.

Definition Let  be a partially ordered set.ÐT ß Ÿ Ñ
1  The order  is called a  or  if every two elements) Ÿ total order linear order

of  are comparable. In this case,  is called a T ÐT ß Ÿ Ñ totally ordered set
or .linearly ordered set

2  A nonempty subset of  that is totally ordered is called a  in . The) T Tchain
family of chains of  is ordered by set inclusion.T

3  A nonempty subset of  for which no two elements are comparable is) T
called an  in .antichain T

4  A nonempty subset  of a partially ordered set  is  if every two) H T directed
elements of  have an upper bound in .H H

Definition Let  be a poset and let .ÐT ß Ÿ Ñ +ß , − T
1  The   is defined by) closed interval Ò+ß ,Ó

Ò+ß ,Ó œ Ö: − T ± + Ÿ : Ÿ ,×

2  The   is defined by) open interval Ð+ß ,Ñ

Ð+ß ,Ñ œ Ö: − T ± +  :  ,×
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3  The  are defined by) half open intervals

Ð+ß ,Ó œ Ö: − T ± +  : Ÿ ,× Ò+ß ,Ñ œ Ö: − T ± + Ÿ :  ,×and

Here are some key terms related to partially ordered sets.

Definition Covering  Let  be a partially ordered set. If , then( ) ÐT ß Ÿ Ñ +ß , − T
, + + ¡ , + Ÿ , T +  , written , if  and if there are no elements of  between covers
and , that is, if,

+ Ÿ B Ÿ , Ê B œ + B œ , or 

Definition Maximum and minimum elements  Let  be a partially( ) ÐT ß Ÿ Ñ
ordered set.
1  A  is an element  with the property that there is no) maximal element 7 − T

larger element in , that isT

: − T ß7 Ÿ : Ê 7 œ :

A  or   is an element for whichmaximum largest top( ) element 7 − T

T Ÿ 7

2  A  is an element  with the property that there is no) minimal element 8 − T
smaller element in , that isT

: − T ß : Ÿ 8 Ê : œ 8

A  or   in  is an element for whichminimum smallest bottom( ) element 8 T

8 Ÿ T

Definition Upper and lower bounds  Let  be a partially ordered set.( ) ÐT ß Ÿ Ñ
Let  be a subset of .W T
1  An element  is an  for  if) ? − T Wupper bound

W Ÿ ?

The smallest upper bound  for , if it exists, is called the ? W least upper
bound join or  of  and is denoted by  or . Thus,  has theW ÐWÑ W ?lub 1
property that  and if  then . The join of a finite setW Ÿ ? W Ÿ B ? Ÿ B
W œ Ö+ ßá ß = × Ö+ ßá ß + × + ”â” +" 8 " 8 " 8 is also denoted by  or .lub

2  An element  is a  for  if) j − T Wlower bound

j Ÿ W

The largest lower bound  for , if it exists, is called the j W greatest lower
bound meet or  of  and is denoted by  or . Thus,  has theW ÐWÑ W jglb 3
property that  and if  then . The meet of a finite setj Ÿ W B Ÿ W B Ÿ j
W œ Ö+ ßá ß + × Ö+ ßá ß + × + •â• +" 8 " 8 " 8 is also denoted by  or .glb
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Note that the join of the empty set  is, by definition, the least upper bound ofg
the elements of . But every element of  is an upper bound for the elements ofg T
g T and so the least upper bound is the minimum element of , if it exists.
Otherwise  has no join. Similarly, the meet of the empty set is the greatestg
lower bound of  and since all elements of  are lower bounds for , the meetg T g
of  is the maximum element of , if it exists.g T

Now we can state Zorn's lemma, which gives a condition under which a
partially ordered set has a maximal element.

Theorem 1.2  If  is a partially ordered set in which every( )Zorn's lemma T
chain has an upper bound, then  has a maximal element.T

Zorn's lemma is equivalent to the axiom of choice. As such, it is not subject to
proof from the axioms of ZF set theory. Also, Zorn's lemma is equivalent to the
well-ordering principle. A  on a nonempty set  is a total orderwell ordering \
on  with the property that every nonempty subset of  has a least element.\ \

Theorem 1.3  Every nonempty set has a well( )Well-ordering principle
ordering.

Order-Preserving and Order-Reversing Maps
A function  between partially ordered sets is  (also0 À T Ä U order preserving
called  or ) ifmonotone isotone

B Ÿ C Ê 0B Ÿ 0C

and an  iforder embedding

B Ÿ C Í 0B Ÿ 0C

Note that an order embedding is injective, since  implies both 0B œ 0C 0B Ÿ 0C
and , which implies that  and , that is, . A surjective0C Ÿ 0B B Ÿ C C Ÿ B B œ C
order-embedding is called an .order isomorphism

Similarly, a function  is  (also called ) if0 À T Ä U order reversing antitone

B Ÿ C Ê 0B   0C

and an  iforder anti-embedding

B Ÿ C Í 0B   0C

An order anti-embedding is injective and if it is surjective, then it is called an
order anti-isomorphism.

Chain Conditions and Finiteness
The chain conditions are a form of finiteness condition on a poset.
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Definition Let  be a poset.T
1   has the   if it has no infinite strictly) ( )T ascending chain condition ACC

ascending sequences, that is, for any ascending sequence

: Ÿ : Ÿ : Ÿ â" # $

there is an index  such that  for all .8 : œ : 5   !85 8

2   has the   if it has no infinite strictly) ( )T descending chain condition DCC
descending sequences, that is, for any descending sequence

:   :   :   â" # $

there is an index  such that  for all .8 : œ : 5   !85 8

3   has   if  has the ACC and the DCC.) ( )T Tboth chain conditions BCC

The following characterizations of ACC and DCC are very useful.

Definition Let  be a poset.T
1   has the  if every nonempty subset of  has a maximal) T Tmaximal condition

element.
2   has the  if every nonempty subset of  has a minimal) T Tminimal condition

element.

Theorem 1.4 Let  be a poset.T
1   has the ACC if and only if it has the maximal condition.) T
2   has the DCC if and only if it has the minimal condition.) T
Proof. Suppose  has the ACC and let  be nonempty. Let . If  isT W © T = − W =" "

maximal we are done. If not, then we can pick  such that .= − W =  =# # "

Continuing in this way, we either arrive at a maximal element in  or we get aW
strictly increasing ascending chain that does not become constant, which
contradicts the ACC. Hence,  has the maximal condition. Conversely, if  hasT T
the maximal condition then any ascending sequence in  has a maximalT
element, at which point the sequence becomes constant. The proof of part 2) is
similar.

A poset can express “infinitness” by spreading vertically, via an infinite chain or
by spreading horizontally, via an infinite antichain. The next theorem shows that
these are the only two ways that a poset can express infiniteness. It also says
that if a poset has an infinite chain, then it has either an infinite ascending chain
or an infinite descending chain. This theorem will prove very useful to us as we
explore chain conditions on subgroups of a group.

Theorem 1.5 Let  be a poset.T
1  The following are equivalent:)
 a   has no infinite chains.) T
 b   has both chain conditions.) T
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 If these conditions hold, then for any  in , there is a maximal finite+  , T
chain from  to .+ ,

2  The following are equivalent:)
 a   has no infinite chains and no infinite antichains.) T
 b   is finite.) T
Proof. It is clear that 1a) implies 1b). For the converse, suppose that  has BCCT
and let  be an infinite chain. The ACC implies that  has a maximal elementV V
B Ï ÖB ×" ", which must be maximum in  since  is totally ordered. Then  is anV V V
infinite chain and we may select its maximum element . Continuing inB  B# "

this way gives an infinite strictly descending chain, a contradiction to the DCC.
Hence, 1a) and 1b) are equivalent.

If 1a) and 1b) hold, then since  is nonempty, it has a minimal member ,Ð+ß ,Ó +"

whence  is a maximal chain from  to . If , then  has a+ ¡ + + + +  , Ð+ ß ,Ó" " " "

minimal member  and so  is a maximal chain from  to . This+ + ¡ + ¡ + + +# " # #

cannot continue forever and so must produce a maximal finite chain from  to .+ ,

For part 2), assume that  has no infinite chains or infinite antichains but that T T
is infinite. Using the ACC, we will create an infinite descending chain, in
contradiction to the DCC. Since  has the maximal condition, it has a maximalT
element. Let

` œ Ö7 ± 3 − M×3

be the set of all maximal elements of . Denote by  the set of all elements ofT ÆB
T B B that are less than or equal to . (This is read:  .) Since  is adown `
nonempty antichain, it must be finite. Moreover, the ACC implies that

T œ ÐÆ7 Ñ. 3

and so one of the sets, say , must be infinite. The infinite posetÆ73"

T œ ÐÆ7 Ñ Ï Ö7 ×" 3 3" "

also has no infinite antichains and no infinite chains. Thus, we may repeat the
above process and select an element  such that7 − T3 "#

T œ ÐÆ7 Ñ Ï Ö7 ×# 3 3# #

is infinite. Note that . Continuing in this way, we get an infinite7  73 3" #

strictly descending chain.

The presence of a chain condition on a poset  has consequences for meets andT
joins.

Theorem 1.6
1  Let  be a poset in which every nonempty finite subset has a meet. If  has) T T

the DCC, then every nonempty subset of  has a meet.T
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2  Let  be a poset in which every nonempty finite subset has a join. If  has) T T
the ACC, then every nonempty subset of  has a join.T

Proof. For part 1), let  be nonempty. The family of all meets of finiteW © T
subsets of  has a minimal member  in  and the minimality of  impliesW 7 T 7
that  for all , that is,  for all . Hence,7• + œ 7 + − T 7 Ÿ + + − T

4
+−W

+ œ 7 − T

We leave proof of part 2) to the reader.

Lattices
Many of the partially ordered sets that we will encounter have a bit more
structure.

Definition
1  A partially ordered set  is a  if every two elements of  have) ÐT ß Ÿ Ñ Tlattice

a meet and a join.
2  A partially ordered set  is a  if every subset of ) ÐT ß Ÿ Ñ Tcomplete lattice

has a meet and a join.

Thus, a complete lattice has a maximum element (the join of ) and a minimumT
element (the meet of ).T

Note that if  is an order isomorphism of the lattices  and , then 0 À T Ä U T U 0
preserves meets and joins, that is,

0 : œ 0: 0 : œ 0:Š ‹ Š ‹4 4 2 23 3 3 3and

However, an order  need not preserve these operations.embedding

We will often encounter partially ordered sets  for which every subset ofT
elements has a meet. In this case, joins also exist and  is a complete lattice.T

Theorem 1.7 Suppose that  is a partially ordered set for which everyÐT ß Ÿ Ñ
subset of  has a meet. Then  is a complete lattice, where the join of aT ÐT ß Ÿ Ñ
subset  of  is the meet of all upper bounds for .W T W
Proof. First, note that the meet of the empty set is the maximum element of T
and the meet of  is the minimum element of  and so  is bounded. InT T T
particular, the join of  exists.g

Let  be a nonempty subset of . The family  of upper bounds for  isW T Y W
nonempty, since it contains the maximum element. We need only show that the
meet  is the join of . Since  for any , that is, any  is7 œ Y W = Ÿ Y = − W = − W3
a lower bound for , it follows that , that is, . Moreover, if Y = Ÿ 7 7   W 8   W
then  and so . Hence,  is the least upper bound of .8 − Y 7 Ÿ 8 7 W
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The previous theorem is very useful in many algebraic contexts. In particular,
suppose that  is a nonempty set and that  is a family of subsets of  that\ \Y
contains both  and  and is closed under intersection. (Examples are theg \
subspaces of a vector space, the subgroups of a group, the ideals in a ring, the
subfields of a field, the sublattices of a latttice and so on.) Then  is a completeY
lattice where the join of any subfamily  of  is the intersection of all membersZ Y
of  containing the members of . Note that this join need not be the union ofY Z
Z Y Z, since the union may not be a member of . However, if the union of  is a
member of , then it will be the join of .Y Z

Example 1.8
1) The set  of real numbers, with the usual binary relation , is a partially‘ Ÿ

ordered set. It is also a totally ordered set. It has no maximal elements.
2) The set  of natural numbers, together with the binary œ Ö!ß "ßá×

relation of divides, is a partially ordered set. It is customary to write 8 ± 7
to indicate that  divides . The subset  of  consisting of all powers of 8 7 W #
is a totally ordered subset of , that is, it is a chain in . The set 
T œ Ö#ß %ß )ß $ß *ß #(× ± is a partially ordered set under . It has two maximal
elements, namely  and . The subset  is a partially) #( U œ Ö#ß $ß &ß (ß ""×
ordered set in which every element is both maximal and minimal. The
partially ordered set  is a complete lattice but the set of all positive
integers under division is a lattice that is not complete.

3) Let  be any set and let  be the power set of , that is, the set of allW ÐWÑ Wc
subsets of . Then , together with the subset relation , is aW ÐWÑ ©c
complete lattice.

Sublattices
The subject of sublattices requires a bit of care, since a nonempty subset  of aW
lattice  inherits the order of  but not necessarily the meets and joins of .P P P
That is, the meet of a subset  of  may be different when  is viewed as aX W X
subset of  than when  is viewed as a subset of .W X P

For example, let  under division and let . ThenP œ Ö"ß #ß $ß 'ß "#× W œ P Ï Ö'×
P W P and  are both lattices under the same partial order. However, in  we have
# ” $ œ ' W # ” $ œ "# P and in  we have . Let us use the term -meet to refer to
the meet in , and similarly for join.P

Definition Let  be a lattice and let  be a nonempty subset of .P Q © P P
1   is a  of  if the -meet of any finite nonempty subset ) Q P Q W © Qsublattice

exists and is the same as the -meet of , and similarly for join, that is, ifP W

4 4 2 2
Q P Q P
W œ W W œ Wand

2  If  is a complete lattice, then  is a  of  if the -) P Q P Qcomplete sublattice
meet of any subset  exists and is the same as the -meet of , andW © Q P W
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similarly for join, that is, if

4 4 2 2
Q P Q P
W œ W W œ Wand

Theorem 1.9
1  A nonempty subset  of a lattice  is a sublattice of  if and only if the -) T P P P

meet and the -join of any finite nonempty subset  are in .P E © T T
2  A nonempty subset  of a complete lattice  is a complete sublattice of  if) T P P

and only if the -meet and the -join of any subset  are in .P P E © T T

Equivalence Relations
The concept of an equivalence relation plays a major role in mathematics.

Definition Let  be a nonempty set. A binary relation on  is called anW µ W
equivalence relation on  if it satisfies the following conditions:W
1   For all ,) ( )Reflexivity + − W

+ µ +

2   For all ,) ( )Symmetry +ß , − W

+ µ , Ê , µ +

3   For all ,) ( )Transitivity +ß ,ß - − W

+ µ ,ß , µ - Ê + µ -

Definition Let be an equivalence relation on . For , the set of allµ W + − W
elements equivalent to  is denoted by+

Ò+Ó œ Ö, − W ± , µ +×

and is called the  of .equivalence class +

Theorem 1.10 Let be an equivalence relation on . Thenµ W
1  ) , − Ò+Ó Í + − Ò,Ó Í Ò+Ó œ Ò,Ó
2  For any , we have either  or .) +ß , − W Ò+Ó œ Ò,Ó Ò+Ó ∩ Ò,Ó œ g

Definition A  of a nonempty set  is a collection  ofpartition W œ ÖE ± 3 − M×c 3

nonempty subsets of , called the  of the partition, for whichW blocks
1   for all ) E ∩ E œ g 3 Á 43 4

2  ) W œ E-
3−M 3

A , abbreviated , for a partition  is asystem of distinct representatives SDR c
set consisting of exactly one element from each block of . In various contexts,c
a system of distinct representatives is also called a  for  or a set oftransversal c
canonical forms for .c

The following theorem sheds considerable light on the concept of an
equivalence relation.
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Theorem 1.11
1  Let  be an equivalence relation on a nonempty set . Then the set of) µ W

distinct equivalence classes with respect to are the blocks of a partitionµ
of .W

2  Conversely, if  is a partition of , the binary relation defined by) c W µ

+ µ , + , if  and  lie in the same block of c

is an equivalence relation on , whose equivalence classes are the blocksW
of .c

This establishes a one-to-one correspondence between equivalence relations on
W W and partitions of .

The most important problem related to equivalence relations is that of finding an
efficient way to determine when two elements are equivalent. Unfortunately, in
most cases, the definition does not provide an efficient test for equivalence and
so we are led to the following concepts.

Definition Let  be an equivalence relation on a nonempty set . A functionµ W
0À W Ä X X, where  is any set, is called an  of the equivalence relationinvariant
if it is constant on the equivalence classes, that is, if

+ µ , Ê 0Ð+Ñ œ 0Ð,Ñ

A function  is called a  if it is constant and distinct0 À W Ä X complete invariant
on the equivalence classes, that is, if

+ µ , Í 0Ð+Ñ œ 0Ð,Ñ

A collection  of invariants is called a Ö0 ßá ß 0 ×" 8 complete system of
invariants if

+ µ , Í 0 Ð+Ñ œ 0 Ð,Ñ 3 œ "ßá ß 83 3  for all 

Definition Let  be an equivalence relation on a nonempty set . A subsetµ W
G © W G is said to be a set of  for the equivalence relation if  iscanonical forms
a system of distinct representatives for the partition consisting of the
equivalence classes, that is, if for every , there is exactly one  such= − W - − G
that .- µ =

A set of canonical forms determines equivalence since  are equivalent if+ß , − W
and only if their corresponding canonical forms are equal. Of course, this will
be a  solution to the problem of equivalence only if there is a practicalpractical
way to identify the canonical form associated with each element of . Often,W
canonical forms provide more of a theoretical tool than a practical one.
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Cardinality
Two sets  and  have the same , writtenW X cardinality

k k k kW œ X

if there is a bijective function (a one-to-one correspondence) between the sets. If
W X W Ÿ X W is in one-to-one correspondence with a  of , we write . If subset k k k k
is in one-to-one correspondence with a  subset of  but not with  itself,proper X X
then we write . The second condition is necessary, since, for instance,k k k kW  X
 ™  is in one-to-one correspondence with a proper subset of  and yet  is also in
one-to-one correspondence with  itself. Hence, .™  ™k k k kœ

This is not the place to enter into a detailed discussion of cardinal numbers. The
intention here is that the cardinality of a set, whatever that is, represents the
“size” of the set. It is actually easier to talk about two sets having the same, or
different, cardinality than it is to define explicitly the cardinality of a given set
(a cardinal number is a special kind of ordinal number).

For us, it is sufficient simply to associate with each set  a special kind of setW
known as a , denoted by  or , that is intended tocardinal number k kW ÐWÑcard
measure the size of the set. In the case of finite sets, the cardinality is the integer
that equals the number of elements in the set.

Definition
1  A set is  if it can be put in one-to-one correspondence with a set of the) finite

form , for some nonnegative integer . A set that is™8 œ Ö!ß "ßá ß 8  "× 8
not finite is .infinite

2  The cardinal number of the set  of natural numbers is  read “aleph) ( i!

nought” , where  is the first letter of the Hebrew alphabet. Hence,) i

k k k k k k ™ œ œ œ i!

3  Any set with cardinality  is called a  set and any finite) i! countably infinite
or countably infinite set is called a  set. An infinite set that is notcountable
countable is said to be . uncountable

Theorem 1.12
1  –  For any sets  and ,) ( )Schroder Bernstein Theorem¨ W X

k k k k k k k k k k k kW Ÿ X X Ÿ W Ê W œ X and 

2   If  denotes the power set of  then) ( )Cantor's theorem cÐWÑ W

k k k kW  ÐWÑc
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3  If  denotes the set of all finite subsets of  and if  is an infinite set,) c!ÐWÑ W W
then

k k k kW œ ÐWÑc!

Cardinal Arithmetic
If  and  are sets, the   is the set of all ordered pairsW X W ‚ Xcartesian product

W ‚ X œ ÖÐ=ß >Ñ ± = − Wß > − X×

If two sets  and  are disjoint, their union is called a disjoint union and is\ ]
denoted by

\ “ ]

More generally, the  of two arbitrary sets  and  is the setdisjoint union W X

W “ X œ ÖÐ=ß !Ñ ± = − W× ∪ ÖÐ>ß "Ñ ± > − X×

This is just a scheme for taking the union of  and  while at the same timeW X
assuring that there is no “collapse” due to the fact that the intersection of  andW
X  may not be empty.

Definition Let  and  denote cardinal numbers. Let  and  be sets for which, - W Xk k k kW œ X œ, - and .
1) The   is the cardinal number of the disjoint union .sum , - W “ X
2) The   is the cardinal number of .product ,- W ‚ X
3) The   is the cardinal number of the set of all functions from  topower ,- X

W .

We will not go into the details of why these definitions make sense. (For
instance, they seem to depend on the sets  and , but in fact they do not.) ItW X
can be shown, using these definitions, that cardinal addition and multiplication
are associative and commutative and that multiplication distributes over
addition.

Theorem 1.13 Let ,  and  be cardinal numbers. Then the following, - .
properties hold:
1  ) ( )Associativity

, - . , - . , -. ,- . Ð  Ñ œ Ð  Ñ  Ð Ñ œ Ð Ñ and 

2  ) ( )Commutativity

, - - , ,- -, œ  œ and 

3  ) ( )Distributivity

, - . ,- ,.Ð  Ñ œ 
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4  ) ( )Properties of Exponents
 a  ) , , ,- . - . œ
 b  ) Ð Ñ œ, ,- . -.

 c  ) Ð Ñ œ,- , -. . .

On the other hand, the arithmetic of cardinal numbers can seem a bit strange, as
the next theorem shows.

Theorem 1.14 Let  and  be cardinal numbers, at least one of which is, -
infinite. Then

, - ,- , - œ œ Ö ß ×max

It is not hard to see that there is a one-to-one correspondence between the power
set  of a set  and the set of all functions from  to . This leads tocÐWÑ W W Ö!ß "×
the following theorem.

Theorem 1.15 For any cardinal ,
1) If  then k k k kW œ ÐWÑ œ #, c ,

2) ,  #,

We have already observed that . It can be shown that  is the smallestk k œ i i! !

infinite cardinal, that is,

, , i Ê0  is a natural number

It can also be shown that the set  of real numbers is in one-to-one‘
correspondence with the power set  of the natural numbers. Therefore,c Ð Ñ

k k‘ œ #i!

The set of all points on the real line is sometimes called the  and socontinuum
# -i!  is sometimes called the  and denoted by .power of the continuum

The previous theorem shows that cardinal addition and multiplication have a
kind of “absorption” quality, which makes it hard to produce larger cardinals
from smaller ones. The next theorem demonstrates this more dramatically.

Theorem 1.16
1  Addition applied a positive countable number of times or multiplication)

applied a finite number of times to the cardinal number  yields .i i! !

Specifically, for any nonzero , we have8 − 

i † i œ i i œ i! ! ! !!
8and
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2  Addition and multiplication applied a positive countable number of times to)
the cardinal number  yields . Specifically,# #i i! !

i † # œ # Ð# Ñ œ #!
i i i i i! ! ! ! !and

Using this theorem, we can establish other relationships, such as

# Ÿ Ði Ñ Ÿ Ð# Ñ œ #i i i i i
!

! ! ! ! !

which, by the Schröder–Bernstein theorem, implies that

Ði Ñ œ #!
i i! !  

We mention that the problem of evaluating  in general is a very difficult one,-

and would take us far beyond the scope of this book.

We conclude with the following reasonable-sounding result, whose proof is
omitted.

Theorem 1.17 Let  be a collection of sets with an index set ofÖE ± 5 − O×5

cardinality . If  for all , thenk k k kO œ E Ÿ 5 − O, -5

» ».
5−O

5 E Ÿ -,

Miscellanea
The following section need not be read until it is referenced much later in the
book. If  is prime, then we will have occasion to write an integer  satisfying: α

α ´ " :mod

in the form  where . However, the case where  andα œ "  ,: : ± , : œ #y>

α œ "  #. . with  odd is exceptional. In this case, we will need to write
α œ "  ,# , >   # >   #>, where  is odd and . This will ensure that  when
: œ #. Accordingly, it will be useful to introduce the following terminology.

Definition Let .α ´ " :mod
1  If  and  where  is odd, that is, if , then the ) : œ # œ "  #. . ´ $ %α α mod :-

standard form of  isα

α œ "  ,: ß : ± , >   #y>  and 

2  In all other cases, the  of  is) :-standard form α

α œ "  ,: ß : ± ,y>

Theorem 1.18 Let  be a prime and let . Let  denote the largest: .   " 9 Ð8Ñ:

exponent  for which  divides ./ : 8/
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1  For ,) " Ÿ 5 Ÿ :.

9 œ .  9 Ð5Ñ
:

5
: :

.” •Œ 7
In particular,

:
:

5
.5"

.º Œ 7
and if  and  or if  and , then:  # 5   # : œ # 5   $

:
:

5
.5#

.º Œ 7
2  If the -standard form of  is) : α

α œ /  ,:>

then for any ,.   !

α: : .>. .

œ /  A:

where .: ± Ay
Proof. For part 1), write

Œ 7: : Ð:  "Ñ Ð:  ?Ñ :  Ð5  "Ñ

5 5 " ? 5  "
œ â â

. . . . .

where . Now, if , then  if and only if " Ÿ ? Ÿ 5  " " Ÿ 3 Ÿ . : ± ? : ± :  ?3 3 .

and so

: Í 8 Ÿ .  9 Ð5Ñ
:

5
8

.

:¹ Œ 7
The rest follows from the fact that  implies  and if  and: ± 5 @ Ÿ 5  " :  #@

5   # : œ # 5   $ : ± 5 @ Ÿ 5  # or if  and , then  implies .@

For part 2), if the -standard form for  is , then: œ /  ,:α α >

α: > : : : " .> : 5 5 >5

5œ#

: .
. . . . .

.

œ Ð/  ,: Ñ œ /  / ,:  / , :
:

5
� Œ 7

where the terms in the final sum are  if . If , then part 1) implies! . œ ! :  #
that the th term in the final sum is divisible by  to the power5 :

.  5  #  >5 œ .  >  "  Ò"  >Ð5  "Ñ  5Ó   .  >  "

If , then  and so the th term in the final sum is divisible by  to the: œ # >   # 5 :
power
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.  5  "  >5 œ .  >  "  Ò>Ð5  "Ñ  5Ó   .  >  "

Hence, in both cases, the final sum is divisible by  and so:.>"

α: : : " .> .>" : .> : ". . . . .

œ /  / ,:  @: œ /  : Ð/ ,  @:Ñ

where .: ± Ð/ ,  @:Ñy : ".



Chapter 2
Groups and Subgroups

Operations on Sets
We begin with some preliminary definitions before defining our principal object
of study. For a nonemtpy set , the -fold cartesian product is denoted by\ 8

\ œ \ ‚â‚\8

8

ðóóóñóóóò
 factors

Definition Let  be a nonempty set and let  be a natural number.\ 8
1  For , an  on  is a function) 8   " \8-ary operation

0 À\ Ä \8

2  A -ary operation  is called a  on .) " 0 À\ Ä \ \unary operation
3  A -ary operation  is called a  on .) # 0 À\ ‚\ Ä \ \binary operation
4  A  on  is an element of .) nullary operation \ \
An -ary operation, for any natural number , is referred to as a 8 8 finitary
operation.

It is often the case that the result of applying a binary operation is denoted by
juxtaposition, writing  in place of .+, 0Ð+ß ,Ñ

Definition If  is an -ary operation on  and if  is a nonempty0 À\ Ä \ 8 \ ]8

subset of , then the restriction of  to  is a map . We say that\ 0 ] 0l À ] Ä \8 8
] 8

] 0 0 l ] ] is  under the operation  if  maps  into . For a nullaryclosed ]
8

8

operation , this means that .B − \ B − ]

Groups
We are now ready to define our principal object of study.

Definition A  is a nonempty set , called the  of thegroup underlying setK
group, together with a binary operation on , generally denoted byK
juxtaposition, with the following properties:

DOI 10.1007/978-0-8176-8301-6_2, © Springer Science+Business Media, LLC 2012
,S. Roman, Fundamentals of Group Theory: An Advanced Approach 19
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1   For all , , ,) ( )Associativity + , - − K

Ð+,Ñ- œ +Ð,-Ñ

2   There exists an element , called the  element of the) ( )Identity identity" − K
group, for which

"+ œ +" œ +

for all .+ − K
3   For each , there is an element , called the ) ( )Inverses inverse+ − K + − K"

of , for which+

++ œ + + œ " " "

Two elements   if+ß , − K commute

+, œ ,+

A group is , or , if every pair of elements commute. Aabelian commutative
group is  if the underlying set  is a finite set; otherwise, it is . Thefinite infiniteK
order of a group is the cardinality of the underlying set , denoted by  orK 9ÐKÑk kK .

It is customary to use the phrase “  is a group” where  is the underlying setK K
when the group operation under consideration is understood.

We leave it to the reader to show that the identity element in a group  isK
unique, as is the inverse of each element. Moreover, for ,+ß , − K

Ð+ Ñ œ + Ð+,Ñ œ , +" " " " "and

In a group , exponentiation is defined for integral exponents as follows:K

+ œ

" 8 œ !
+â+ 8  !

Ð+ Ñ 8  !

8

8
8 "

ÚÝÝÛÝÝÜ
î if 

if 

if 
 factors

When  is abelian, the group operation is often (but not always) denoted by K 
and is called , the identity is denoted by  and called the  elementaddition zero!
of the group and the inverse of an element  is denoted by  and is called+ − K +
the  of . In this case, exponents are replaced by multiples:negative +

8+ œ

! 8 œ !
+ â + 8  !

Ð8+Ñ 8  !

ÚÝÝÛÝÝÜ
ðóóñóóò if 

if 

if 
8 terms
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The Order of an Element
Definition Let  be a group.K
1  If , then any integer  for which) + − K 8

+ œ "8

is called an  of .exponent +
2  The smallest positive exponent of , if it exists, is called the  of ) + − K +order

and is denoted by . If  has no exponents, then  is said to have 9Ð+Ñ + + infinite
order periodic torsion. An element of finite order is said to be  or .

3  An element of order  is called an .) # involution

Theorem 2.1 Let  be a group. If  has finite order , then theK + − K 9Ð+Ñ
exponents of  are precisely the integral multiples of .+ 9Ð+Ñ
Proof. Let . Any integral multiple of  is clearly an exponent of .8 œ 9Ð+Ñ 8 +
Conversely, if , then  where . Hence,+ œ " 7 œ ;8  < ! Ÿ <  87

" œ + œ + œ + + œ +7 ;8< ;8 < <

and so the minimality of  implies that , whence  is an integral8 < œ ! 7 œ ;8
multiple of .8

Involutions arise often in the theory of groups. Proof of the following result is
left as an exercise.

Theorem 2.2 A group in which every nonidentity element is an involution is
abelian.

As we will see in a moment, a group may have elements of finite order and
elements of infinite order.

Definition A group  is said to be  or  if every element of  isK Kperiodic torsion
periodic. A group that has no periodic elements other than the identity is said to
be  or .aperiodic torsion free

It is not hard to see that every finite group is periodic. On the other hand, as we
will see, there are infinite periodic groups, that is, an infinite group need not
have any elements of infinite order.

Examples
Here are some examples of groups.

Example 2.3 The simplest group is the  , which containstrivial group K œ Ö"×
only the identity element. All other groups are said to be .nontrivial



22

Example 2.4 The integers  form an abelian group under addition. The identity™
is . The rational numbers  form an abelian group under addition and the! 
nonzero rational numbers  form an abelian group under multiplication. A‡

similar statement holds for the real numbers  and the complex numbers  (and‘ ‚
indeed for any field ).J

Example 2.5 Cyclic groups ( ) If  is a formal symbol, we can define a group + K
to be the set of all integral powers of :+

G Ð+Ñ œ Ö+ ± 3 − ×∞
3 ™

where the product is defined by the formal rules of exponents:

+ + œ +3 4 34

This group is also denoted by  or  and is called the G Ø+Ù∞ cyclic group
generated by . The identity of  is .+ Ø+Ù " œ +!

We can also create a finite group  of positive order  by settingG Ð+Ñ 88

G Ð+Ñ œ Ö" œ + ß +ß + ßá ß + ×8
! # 8"

where the product is defined by addition of exponents, followed by reduction
modulo :8

+ + œ +3 4 Ð34Ñ 8mod

This defines a group of order , called a  . The inverse8 8cyclic group of order
of  is . The group  is also denoted by  or . Note that for+ + G Ð+Ñ G Ø+Ù5 Ð5Ñ 8

8 8
mod

any integer , the symbol  refers to the element of  obtained by5 + G Ð+Ñ5
8

multiplying together  copies of . Hence,5 +

+ œ +5 5 8mod

and so for any integers  and ,5 4

+ + œ + + œ + œ + œ +5 4 5 8 4 8 5 84 8 Ð54Ñ 8 54mod mod mod mod mod

Thus, we can feel free to represent the elements of  using all integralG Ð+Ñ8

powers of  and the rules of exponents will hold, although we must remember+
that a single element of  has many representations as powers of . TheG Ð+Ñ +8

groups  or  are called .G Ð+Ñ G Ð+Ñ8 ∞ cyclic groups

Example 2.6 The set

™8 œ Ö!ßá ß 8  "×

of integers modulo a positive integer  is a cyclic group of order  under8 8
addition modulo , generated by the element , since  is the sum of 8 " 5 − 5™8

ones. The notation  is preferred by some mathematicians since when  is a™ ™Î8 :

Fundamentals of Group Theory
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prime, the notation  is also used for the -adic integers. However, we will not™: :
use it in this way.

If  is a prime, then the set:

™:
‡ œ Ö"ßá ß :  "×

of nonzero elements of  is an abelian group under multiplication modulo .™: :
Indeed, by definition, the set  of nonzero elements of any field  is a groupJ J‡

under multiplication. It is possible to prove (and we leave it as an exercise) that
J J‡ is cyclic if and only if  is a  field.finite

More generally, the set  of units of a commutative ring  with identity is aV V‡

multiplicative group. In the case of the ring , this group is™8

™ ™8
‡

8œ Ö+ − ± Ð+ß 8Ñ œ "×

To see directly that this is a group, note that for each , there exists+ − ™8
‡

integers  and  such that . Hence, , that is,  isB C B+  C8 œ " B+ ´ " 8 B −mod ™8
‡

the inverse of  in . The group  is abelian and it is possible to prove+ ™ ™8 8
‡ ‡

(although with some work; see Theorem 4.43) that  is cyclic if and only if™8
‡

8 œ #ß %ß : #: :/ / or , where  is an odd prime.

Example 2.7 Matrix groups ( ) The set  of all  matrices over a`7ß8ÐJ Ñ 8 ‚7
field  is an abelian group under addition of matrices. The set  of allJ KPÐ8ß J Ñ
nonsingular  matrices over  is a nonabelian (for ) group under8 ‚ 8 J 8  "
multiplication, known as the . The set  of allgeneral linear group WPÐ8ß J Ñ
8 ‚ 8 J " matrices over  with determinant equal to  is a group under
multiplication, called the .special linear group

Example 2.8 Functions ( ) Let  be a group and let  be a nonempty set. TheK \
set  of all functions from  to  is a group under product of functions,K \ K\

defined by

Ð01ÑÐBÑ œ 0ÐBÑ1ÐBÑ

for all . The identity in  is the function that sends all elements of  toB − \ K \\

the identity element . This map is often referred to as the . (We" − K zero map
cannot call it the identity map!) Also, the set  of all  functions on  isY bijective K
a group under composition.

Example 2.9 The set

K œ ÖÐ/ / ßá Ñ ± / − ×"ß # 3 #™

of all infinite binary sequences, with componentwise addition modulo , is an#
infinite abelian group that is periodic, since
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#Ð/ / ßá Ñ œ Ð!ß !ßá Ñ"ß #

and so every nonidentity element has order .#

The External Direct Product of Groups
One important method for creating a new group from existing groups is as
follows. If  are groups, then the cartesian productK ßá ßK" 8

T œ K ‚â‚K" 8

is a group under  defined bycomponentwise product

Ð+ ßá ß + ÑÐ, ßá ß , Ñ œ Ð+ , ßá ß + , Ñ" 8 " 8 " " 8 8

where . The group  is called the  of the+ ß , − K T3 3 3 external direct product
groups . Although the notation  is often used for the externalK ßá ßK ‚" 8

direct product of groups, we will use the notation

K â K" 8} }

to distinguish it from the cartesian product .as a set

As an example, the direct product

Z œ G Ð+Ñ G Ð,Ñ œ ÖÐ"ß "Ñß Ð+ß "Ñß Ð"ß ,Ñß Ð+ß ,Ñ×# #}

of two cyclic groups of order  is called the ( )  (and was called# Klein  -group%
the  by Felix Klein in 1884). We will generalize the directVierergruppe
product construction to arbitrary (finite or infinite) families of groups in a later
chapter.

Symmetric Groups
Let  be a nonempty set. A bijective function from  to itself is called a\ \
permutation of . The set  of all permutations of  is a group under\ W \\

composition, with order  when  is finite. Also,  is nonabelian fork k\ x \ W\k k\   $ W. The group  is called the  or \ symmetric group permutation group
on the set . The group of permutations of the set  is denoted\ M œ Ö"ßá ß8×8

by  and has order .W 8x8

We will study permutation groups in detail in a later chapter, but we want to
make a few remarks here for use in subsequent examples. (Proofs will be given
later.) If  are distinct elements of , the expression+ ßá ß + \" 5

Ð+ â+ Ñ" 5

denotes the permutation that sends  to  for  and sends the+ + 3 œ "ßá ß 5  "3 3"

last element  to the first element . All other elements of  are held fixed.+ + \5 "

This permutation is called a -  in . For example, in  the5 W Wcycle \ Ö"ß#ß$ß%×

permutation  sends  to ,  to ,  to  and  to itself. A -cycle  isÐ" $ %Ñ " $ $ % % " # # Ð+ ,Ñ

Fundamentals of Group Theory
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called a , since it simply transposes  and , leaving all othertransposition + ,
elements of  fixed. We can now see why a permutation group with at least\
three elements ,  and  is nonabelian, since for example+ , -

Ð+ ,ÑÐ+ -Ñ Á Ð+ -ÑÐ+ ,Ñ

(Composition is generally denoted by juxtaposition as above.)

The  of a permutation  is the set of elements of  that aresupport 5 − W \\

moved by , that is,5

suppÐ Ñ œ ÖB − \ ± B Á B×5 5

Two permutations  are  if their supports are disjoint. In5 7ß − W\ disjoint
particular, two cycles  and  are disjoint if the underlying setsÐ+ â+ Ñ Ð, â, Ñ" 5 " 7

Ö+ ßá ß + × Ö, ßá ß , ×" 5 " 7 and  are disjoint. It is not hard to see that disjoint
permutations commute, that is, if  and  are disjoint, then .5 7 57 75œ

It is also not hard to see that every permutation  is a product (composition) of5
pairwise disjoint cycles, the product being unique except for the order of factors
and the inclusion of -cycles. In fact, this is a direct result of the fact that the"
relation

B ´ C B œ C 5 −if  for some 5 ™5

is an equivalence relation and thereby induces a partition on . (The reader isM8
invited to write a complete proof at this time or to refer to Theorem 6.1.) This
factorization is called the  of . The  of  iscycle decomposition cycle structure5 5
the number of cycles of each length in the cycle decomposition of . For5
example, the permutation

5 œ Ð" # $ÑÐ% & 'ÑÐ( )ÑÐ*Ñ

has cycle structure consisting of two cycles of length , one cycle of length $ #
and one cycle of length ."

It is easy to see that for , any cycle in  is a product of transpositions,k k\   # W\

since

Ð+ â+ Ñ œ Ð+ + ÑÐ+ + ÑâÐ+ + ÑÐ+ + Ñ" 8 " 8 " 8" " $ " #

and

Ð+Ñ œ Ð+ ,ÑÐ+ ,Ñ

Hence, the cycle decomposition implies that every permutation is a product of
(not necessarily disjoint) transpositions. Although such a factorization is far
from unique, we will show that the  of the number of transpositions in theparity
factorization is unique. In other words, if a permutation can be written as a
product of an even number of transpositions, then all factorizations into a
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product of transpositions have an even number of transpositions. Such a
permutation is called an . For example, sinceeven permutation

Ð" $ %Ñ œ Ð" %ÑÐ" $Ñ

the permutation  is even. Similarly, a permutation is if it can beÐ" $ %Ñ odd 
written as a product of an odd number of transpositions. For example, the
equation above for  shows that a cycle of odd length is an evenÐ+ â+ Ñ" 8

permutation and a cycle of even length is an odd permutation.

One of the most remarkable facts about the permutation groups is that every
group has a “copy” that sits inside (is isomorphic to a subgroup of) some
permutation group. For example, the Klein -group sits inside  as follows:% W%

Z œ Ö ß Ð" #ÑÐ$ %Ñß Ð" $ÑÐ# %Ñß Ð" %ÑÐ# $Ñ×+

This is the content of , which we will discuss later. Thus, if weCayley's theorem
knew “everything” about permutation groups, we would know “everything”
about all groups!

The Order of a Product
One must be very careful not to jump to false conclusions about the order of the
product of elements in a group. For example, consider the general linear group
KPÐ#ß Ñ # ‚ #‚  of all nonsingular  matrices over the complex numbers. Let

E œ F œ
! " ! "
" ! " "Œ 7 Œ 7and

We leave it to the reader to show that  and  have finite order but that theirE F
product  has infinite order. On the other extreme, we have EF 9Ð++ Ñ œ ""

regardless of the value of . Thus, the order of a product of two nonidentity9Ð+Ñ
elements can be as small as  or as large as infinity."

On the other hand, the following key theorem relates the order of a   ofpower +5

an element  to the order of . It also tells us something quite specific+ − K +
about the order of the product of  elements.commuting

Theorem 2.10 Let  be a group and .K +ß , − K
1  If , then for ,) 9Ð+Ñ œ 8 " Ÿ 5  8

9Ð+ Ñ œ
8

Ð8ß 5Ñ
5

gcd

In particular,

Ø+Ù œ Ø+ Ù Í Ð9Ð+Ñß 5Ñ œ "5 gcd
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2  If  and , then) 9Ð+Ñ œ 8 . ± 8

9Ð+ Ñ œ . Í 5 œ < Ð<ß .Ñ œ "
8

.
5 , where gcd

3  If  and  commute, then) + ,

lcm
lcm

Ð9Ð+Ñß 9Ð,ÑÑ

Ð9Ð+Ñß 9Ð,ÑÑ
9Ð+,Ñ Ð9Ð+Ñß 9Ð,ÑÑ

gcd
¹ ¹

In particular,

gcdÐ9Ð+Ñß 9Ð,ÑÑ œ " Ê 9Ð+,Ñ œ 9Ð+Ñ9Ð,Ñ

Proof. For part 1), Theorem 2.1 implies that  if and only if .Ð+ Ñ œ " 8 ± 575 7

But

8 ± 57 Í Í 7
8 57 8

Ð8ß 5Ñ Ð8ß 5Ñ Ð8ß 5Ñgcd gcd gcd
¹ ¹

and so the smallest positive exponent  of  is . For part 2),7 + 8Î Ð8ß 5Ñ5 gcd
according to part 1), the equation  is equivalent to9Ð+ Ñ œ .5

8

Ð8ß 5Ñ
œ .

gcd

which is equivalent to , orgcdÐ8ß 5Ñ œ 8Î.

gcdÐ. ß 5Ñ œ
8 8

. .

But this holds if and only if  with .5 œ <Ð8Î.Ñ Ð.ß <Ñ œ "gcd

For part 3), let  and . Then  has order9Ð+Ñ œ 9Ð,Ñ œ Ð+,Ñ œ +α " " "

9ÐÐ+,Ñ Ñ œ 9Ð+ Ñ œ
Ð ß Ñ

" " α

α "gcd

But  divides  and so9ÐÐ+,Ñ Ñ 9Ð+,Ñ"

α

α "gcdÐ ß Ñ
9Ð+,Ñ¹

A symmetric argument shows that

"

α "gcdÐ ß Ñ
9Ð+,Ñ¹

and since these divisors are relatively prime, we have
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α"

α "gcdÐ ß Ñ
9Ð+,Ñ

#
¹

But .α" α " α " α "ÎÐ ß Ñ œ Ð ß ÑÎ Ð ß Ñ# lcm gcd

Corollary 2.11 Let  be a group and let . If , where ,K + − K 9Ð+Ñ œ ?@ Ð?ß @Ñ œ "
then

+ œ + +" #

where  and  and .+ ß + − Ø+Ù 9Ð+ Ñ œ ? 9Ð+ Ñ œ @" # " #

Proof. Since , there exist integers  and  for which .Ð?ß @Ñ œ " = > =?  >@ œ "
Hence,

+ œ + œ + +=?>@ =? >@

Then  implies that  and similarly, .Ð=?ß @Ñ œ " 9Ð+ Ñ œ @ 9Ð+ Ñ œ ?=? >@

Orders and Exponents
Let  be a group. We have defined an exponent of  to be any integer K + − K 5
for which . Here is the corresponding concept for subsets of a group.+ œ "5

Definition If  is nonempty, then an integer  for which  for allW © K 5 = œ "5

= − W W W W is called an  of . If  has an exponent, we say that  has exponent finite
exponent.

Note that many authors reserve the term exponent for the  such positivesmallest
integer . As with individual elements, if the subset  has an exponent, then all5 W
exponents of  are multiples of the smallest positive exponent of .W W

Theorem 2.12 Let  be a group. If a nonempty set  of  has finite exponent,K W K
then the set of all exponents of  is the set of all integer multiples of the smallestW
positive exponent of .W

For a finite group , the smallest exponent minexp  is equal to the leastK ÐKÑ
common multiple  of the orders of the elements of . Thus, iflcmordersÐKÑ K
maxorder  denotes the maximum order among the elements of , thenÐKÑ K

maxorder minexpÐKÑ ± ÐKÑ

and there are simple examples to show that equality may or may not hold. (The
reader is invited to find such examples.) However, in a finite  group,abelian
equality does hold.
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Theorem 2.13 
1  If  is a finite group, then) K

maxorder minexp lcmordersÐKÑ ± ÐKÑ œ ÐKÑ

2  If  is a finite abelian group, then all orders divide the maximum order and) K
so

maxorder minexp lcmordersÐKÑ œ ÐKÑ œ ÐKÑ

and  is cyclic if and only if .K ÐKÑ œ 9ÐKÑminexp
Proof. For the proof of part 2), let  have maximum order . Suppose to+ − K 7
the contrary that there is a  for which . We will find an element of, − K 9Ð,Ñ ± 7y
K 7 9Ð,Ñ ± 7y of order greater than , which is a contradiction. Since , there is a
prime  for which:

9Ð+Ñ œ 7 œ : @ 9Ð,Ñ œ : ?4 3and

where ,  and . Then: ± ? : ± @ 3  4y y

9Ð+ Ñ œ 9Ð, Ñ œ :
7

:
: ? 3

4

4

and

Since  is abelian and these orders are relatively prime, we haveK

9Ð+ , Ñ œ 7:  7: ? 344

as promised. The last statement of the theorem follows from the fact that a finite
group  is cyclic if and only if it has an element of order .K 9ÐKÑ

Conjugation
Let  be a group. If , then the elementK +ß , − K

, œ +,++ "

is called the  of  by . The  relation is the binary relationconjugate conjugacy, +
on  defined byK

+ ´ , , œ + B − Kif  for some B

and if , we say that  and  are . Conjugacy is an equivalence+ ´ , + , conjugate
relation on , since an element is conjugate to itself and if  then K + œ , , œ +B B"

and finally, if  and , then, œ + - œ ,B C

- œ , œ +C BC

Note that some authors define the conjugate of  by  as , so care must be, + + ,+"

taken when reading other literature.

The function  defined by#+ÀK Ä K

#+
+B œ B
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is called  . Conjugation is very well-behaved: It is a bijectionconjugation by +
and preserves the group operation, in the sense that

# # #+ + +ÐBCÑ œ Ð BÑÐ CÑ

Thus, in the language of a later chapter,  is a . The maps#+ group automorphism
#+ are called  and the set of inner automorphisms isinner automorphisms
denoted by . We will have more to say about  in later chapters.Inn InnÐKÑ ÐKÑ

Theorem 2.14 Let  be a group and let . ThenK +ß ,ß B − K
1  Conjugation is a bijection that preserves the group operation, that is,)

ÐB Ñ œ ÐB Ñ ÐBCÑ œ B C+ " " + + + +and

for all .Bß C − K
2  The conjugation map satisfies)

ÐB Ñ œ B, + +,

for all .B − K
3  Conjugacy is an equivalence relation on . The equivalence classes under) K

conjugacy are called .conjugacy classes

We can also apply conjugation to subsets of . If  and , we writeK W © K + − K

#+
+ +W œ W œ Ö= ± = − W×

The previous rules generalize to conjugation of sets. In fact, for any Wß X © K
and , we have+ß , − K

ÐW Ñ œ W W œ X Í W œ X+ , ,+ + +and

Conjugation in the Symmetric Group
In general, it is not always easy to tell when two elements of a group are
conjugate. However, in the symmetric group, it is surprisingly easy.

Theorem 2.15 Let  be the symmetric group.W8

1  Let . For any -cycle , we have) 5 − W 5 Ð+ â+ Ñ8 " 5

Ð+ â+ Ñ œ Ð + â + Ñ" 5 " 5
5 5 5

Hence, if  is a cycle decomposition of , then7 7œ - â-" 5

75 5 5œ - â-" 5

is a cycle decomposition of .75

2  Two permutations are conjugate if and only if they have the same cycle)
structure.
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Proof. For part 1), we have

Ð+ â+ Ñ Ð + Ñ œ
+ 3  5
+ 3 œ 5" 5 3
3"

"

5 5
5
5œ

Also, if  for any , then  and so, Á + 3 , Á +5 53 3
"

Ð+ â+ Ñ , œ Ð+ â+ ÑÐ ,Ñ œ Ð ,Ñ œ ," 5 " 5
" "5 5 5 5 5

Hence,  is the cycle . For part 2), if  is a cycleÐ+ â+ Ñ Ð + â + Ñ œ - â-" 5 " 5 " 7
5 5 5 7

decomposition of , then7

75 5 5œ - â-" 7

and since  is a cycle of the same length as , the cycle structure of  is the- -3 3
5 57

same as that of .7

For the converse, suppose that  and  have the same cycle structure. If  and 5 7 5 7
are cycles, say

5 7œ Ð+ â+ Ñ œ Ð, â, Ñ" 8 " 8and

then any permutation  that sends  to  satisfies . More generally, if- 5 7+ , œ3 3
-

5 7œ - â- œ . â." 7 " 7and

are the cycle decompositions of  and , ordered so that  has the same length5 7 -5
as  for all , we can define a permutation  that sends the element in the th. 5 35 -
position of  to the element in the th position of . Then .- 3 . œ5 5 5 7-

The Set Product
It is convenient to extend the group operation on a group  from elements of K K
to subsets of . In particular, if  and  are subsets of , then the K W X K set product
WX  (also called the , since subsets of a group are calledcomplex product
complexes in some contexts) is defined by

WX œ Ö=> ± = − Wß > − X×

As a special case, we write  as , that is,Ö+×W +W

+W œ Ö+= ± = − W×

The set product is associative and distributes over union, but not over
intersection. Specifically, for ,Wß X ß Y © K

WÐXYÑ œ ÐWX ÑY

WÐX ∪ YÑ œ WX ∪ WY ÐX ∪ YÑW œ XW ∪ YW

WÐX ∩ YÑ © WX ∩ WY ÐX ∩ YÑW © XW ∩ YW

and
and

Also,
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+W œ +X Í W œ X

Of course, we may generalize the set product to any nonempty finite collection
W ßá ßW K" 8 of subsets of  by setting

W âW œ Ö= â= ± = − W ×" 8 " 8 3 3

On the other hand, if  is a positive integer, then it is customary to let5

W œ Ö= ± = − W×5 5

Thus, in general,  is a  subset of the set product .W WW# proper

Subgroups
The substructures of a group are defined as follows.

Definition A nonempty subset  of a group  is a  of , denoted byL K Ksubgroup
L Ÿ K L K L Ÿ K, if  is a group under the restricted product on . If  and
L Á K L  K L K, we write  and say that  is a  of . Ifproper subgroup
L ßá ßL K L ßá ßL Ÿ K" 8 " 8 are subgroups of , we write .

For example, , since  is an abelian group under addition. However, ™  ™ ™Ÿ :

is not a subgroup of , although it is a subset of  and it is a group as well: The™ ™
issue is that  is not a group under ordinary addition of integers.™:

However, if  is a subgroup under the first definition above, then  satisfiesL L
the second definition. To see this, multiplying the equation  by the" " œ "L L L

inverse of  in  gives . Thus, for all , we have " K " œ " 2 − L 22 œL L K
"
L

" œ 22 2 œ 2" " "
K KL and so .

There is another criterion for subgroups that involves checking only closure.
Proof is left to the reader.

Theorem 2.16
1  A nonempty subset  of a group  is a subgroup of  if and only if  is) \ K K \

closed under the operations of taking inverses and products, that is, if and
only if

B − \ Ê B − \"

and

Bß C − \ Ê BC − \

2  A nonempty  subset  of a group  is a subgroup of  if and only if it) finite \ K K
is closed under the taking of products.
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Theorem 2.17 The intersection of any nonempty family of subgroups of a group
K K is a subgroup of .

Example 2.18 The set  of all even permutations in  is a subgroup of .E W W8 8 8

To see that  is closed under the product, if  and  are even, then they canE8 5 7
each be written as a product of an even number of transpositions. Hence,  is57
also a product of an even number of transpositions and so is in . TheE8

subgroup  is called the  of .E W8 8alternating subgroup

For , the alternating subgroup  has order , that is,  is exactly8   # E 8xÎ# E8 8

half the size of . To see this, note that  is odd if and only if  isW − W Ð" #Ñ8 85 5
even and  is even if and only if  is odd. Hence, the map  is a7 7 5 5Ð" #Ñ È Ð" #Ñ
self-inverse bijection between  and the set of odd permutations.E8

A group has many important subgroups. One of the most important is the
following.

Definition The   of a group  is the set of all elements of  thatcenter ^ÐKÑ K K
commute with all elements of , that is,K

^ÐKÑ œ Ö+ − K ± +, œ ,+ , − K× for all 

A group  is  if . A subgroup  of  is  if  isK ^ÐKÑ œ Ö"× L K Lcenterless central
contained in the center of .K

Two subgroups of a group  can never be disjoint as sets, since each containsK
the identity of . However, it will be very convenient to introduce the followingK
terminology and notation.

Definition Two subgroups  and  of a group  are  ifL O K essentially disjoint

L ∩O œ Ö"×

We introduce the notation

L ìO

to denote the set product of two essentially disjoint subgroups and refer to this
as the  of  and .essentially disjoint product L O

Note that if  and , then9ÐLÑ œ 8 9ÐOÑ œ 7

9ÐL ì OÑ œ 87

The Dedekind Law
The following formula involving the intersection and set product is very handy
and we will use it often. The simple proof is left to the reader.
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Theorem 2.19 Let  be a group and let K EßFßG Ÿ K E Ÿ F with .
1   ) ( )Dedekind law

EÐF ∩ GÑ œ F ∩ EG

2) 

E ∩ G œ F ∩ G EG œ FG Ê E œ F and 

Proof. We leave proof of the Dedekind law to the reader. For part 2),

E œ EÐE ∩ GÑ œ EÐF ∩ GÑ œ F ∩ EG œ F ∩FG œ F

We leave it to the reader to find an example to show that the condition that
E Ÿ F EÐF ∩ GÑ is necessary in Dedekind's law, that is,  is not necessarily
equal to  unless .EF ∩ EG E Ÿ F

Subgroup Generated by a Subset
If  is a group and , then the  generated by  is theK + − K +cyclic subgroup
subgroup

Ø+Ù œ Ö+ ± 5 − ×5 ™

If , then  and so9Ð+Ñ œ 8  ∞ + œ +5 5 8mod

Ø+Ù œ Ö"ß +ßá ß + ×8"

Note that  is the smallest subgroup of  containing , since any subgroup ofØ+Ù K +
K + + containing  must contain all powers of .

More generally, if  is a nonempty subset of , then the \ K subgroup generated
by , denoted by , is defined to be the smallest subgroup of  containing\ Ø\Ù K
\ \ Ø\Ù and  is called a  for . Such a subgroup must exist; in fact,generating set
Theorem 2.17 implies that  is the intersection of all subgroups of Ø\Ù K
containing . The following theorem gives a very useful look at the elements of\
Ø\Ù.

Theorem 2.20 Let  be a nonempty subset of a group  and let \ K \ œ"

ÖB ± B − \×" . Let

[ œ Ð\ ∪\ Ñ" ‡

be the set of all words over the alphabet .\ ∪\"

1  If we interpret juxtaposition in  as the group product in  and the empty) [ K
word as the identity in , then  and soK Ø\Ù œ [

Ø\Ù œ ÖB âB ± B − \ß / − ß 8  !× ∪ Ö"×"
/

8
/

3 3
" 8 ™
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2  If  is abelian, then we can collect like factors and so) K

Ø\Ù œ ÖB âB ± B − \ß B Á B 3 Á 4ß / − ß 8  !× ∪ Ö"×"
/

8
/

3 3 4 3
" 8  for ™

Proof. It is clear that . It is also clear that  is closed under product.[ © Ø\Ù [
As to inverses, if  then . Hence,A œ B âB − [ A œ B âB − [" "

/ /
8 8
/ " /" "8 8

[ Ÿ Ø\Ù \ © [ Ø\Ù Ÿ [. However, since , it follows that  and so
[ œ Ø\Ù.

Although the previous description of  is very useful, it does have oneØ\Ù
drawback: Distinct formal words in the set  may be the same element of the[
group , when juxtaposition in  is interpreted as the group product. ForØ\Ù [
instance, the distinct words  and  are the same group element of . WeB B B Ø\Ù# "

will discuss this issue in detail when we discuss free groups later in the book:
The matter need not concern us further until then.

Finitely-Generated Groups
A group  is  if  for some finite set . If  has aK K œ Ø\Ù \ Kfinitely generated
generating set of size , then  is said to be  or to be an 8 K 8 8-generated -
generator group.

The Burnside Problem
There is a fascinating set of problems revolving around the following question.
A finite group  is obviously finitely generated and periodic. In 1902, BurnsideK
[39] asked about the converse: Is a finitely-generated periodic group finite? This
is the .general Burnside problem

A negative answer to the general Burnside problem took 62 years, when Golod
[40] showed in 1964 that there are infinite groups that are -generated and$
whose elements each have order a power of a fixed prime  (the power:
depending upon the element). However, this still leaves open some refinements
of the general Burnside problem. For example, the Golod groups have elements
of arbitrarily large order , that is, they do not have finite exponent, as do finite:8

groups.

The  is the problem of deciding, for finite integers  and ,Burnside problem 8 7
whether every -generated group of exponent  is finite. This problem has8 7
been the subject of a great deal of research since Burnside first formulated it in
1902. For example, it has been shown that there are infinite, finitely-generated
groups of every odd exponent  (Adjan [38], 1979) and of every7  ''&
exponent of the form , where  (Ivanov [42], 1992).# 7 5   %)5

The , formulated in the 1930's, asks whether orrestricted Burnside problem
not, for integers  and , there are a finite number (up to isomorphism) of finite8 7
8 7-generated groups of exponent . In 1994, Zelmanov answered this question
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in the affirmative. For more on the Burnside problem, we refer the reader to the
references located at the back of the book.

Subgroups of Finitely-Generated Groups
A far simpler question related to finitely-generated groups is whether every
subgroup of a finitely-generated group is finitely generated. We will show when
we discuss free groups that for arbitrary groups this is false: There are finitely-
generated groups with subgroups that are not finitely generated. However, in the
abelian case, this cannot happen.

Theorem 2.21 Any subgroup of an -generated abelian group  is also -8 E 8
generated. In particular, a subgroup of a cyclic group is cyclic.
Proof. Let . The proof is by induction on . If , then  isL Ÿ E 8 8 œ " E œ Ø+Ù
cyclic. Let  be the smallest positive exponent for which . Then5 + − L5

Ø+ Ù Ÿ L + − L 7 œ ;5  < ! Ÿ <  55 7. However, if , then  where  and so

+ œ + œ + Ð+ Ñ − L< 7;5 7 5 ;

which can only happen if , whence . Thus,  is< œ ! + œ Ð+ Ñ − Ø+ Ù L œ Ø+ Ù7 5 ; 5 5

also cyclic and so the result holds for .8 œ "

Assume the result is true for any group generated by fewer than  elements.8   #
Let  and let . By assumption, everyE œ ØB ßá ß B Ù E œ ØB ßá ß B Ù" 8 8" " 8"

subgroup of  is -generated, in particular, there exist  forE Ð8  "Ñ 2 − L8" 3

which

L ∩E œ Ø2 ßá ß 2 Ù8" " 8"

Now, every  has the form  where  and . If 2 − L 2 œ +B + − E / − / œ !8
/

8" ™
for all , then  and the inductive hypothesis implies that  is at2 − L L Ÿ E L8"

most -generated. So let us assume that  for some  and let Ð8  "Ñ / Á ! 2 − L =
be the smallest positive integer for which  and .2 œ ,B − L , − E8 8"8

=

For an arbitrary , where , write  where2 œ +B − L + − E / œ ;=  <8
/

8"

! Ÿ <  =. Then

2 2 œ Ð,B Ñ Ð+B Ñ œ +, B œ +, B8 8 8 8 8
; = ; / ; /;= ; <

Since  and , the minimality of  implies that  and2 2 − L +, − E = < œ !8
; ;

8"

so , that is, . Hence,2 2 − E 2 − ØE ß 2 Ù8
;

8" 8" 8

L © ØE ß 2 Ù œ Ø2 ßá ß 2 ß 2 Ù © L8" 8 " 8" 8

and so

L œ Ø2 ßá ß 2 ß 2 Ù" 8" 8

is -generated.8
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The Lattice of Subgroups of a Group
Let  be a group. The collection  of all subgroups of  is ordered by setK ÐKÑ Ksub
inclusion. Moreover,  is closed under arbitrary intersection and hassubÐKÑ
maximum element . Hence, Theorem 1.7 implies that  is a completeK ÐKÑsub
lattice, where the meet of a family  is the intersectionY œ ÖL ± 3 − M×3

4 4 ,Y œ L œ L
3−M 3−M

3 3

and the join of  is the smallest subgroup of  that contains all of theY K
subgroups in , that is,Y

2 2 ,Y œ L œ ÖW Ÿ K ± L Ÿ W 3×
3−M

3 3  for all 

It is also clear that the join of  is the subgroup generated by the union of theY
L L œ L3 33

"'s. Specifically, since , it follows that the subgroup generated by Y
is the set of all words over the union :-L3

2 .8 9
3−M 3−M

3 3 3 3 3 3

‡

L œ L œ Ö+ â+ ± + − L ß 8   !×
" 8 5 5

The join of  is also denoted by  and .Y YØ Ù ØL ± 3 − MÙ3

Note that, in general, the union of subgroups is not a subgroup. (The reader may
find an example in the group of integers.) However, if

L Ÿ L Ÿ â" #

is an increasing sequence of subgroups of  (generally referred to as anK
ascending chain of subgroups), then it is easy to see that the union  is a-L3

subgroup of . More generally, the union of any directed family of subgroups isK
a subgroup. (A family  of subgroups of  is  if for every ,W WK EßF −directed
there is a  for which  and .)G − E Ÿ G F Ÿ GW

Theorem 2.22 Let  be a group. Then  is a complete lattice, where meetK ÐKÑsub
is intersection and join is given by

2 .¢ £
3−M 3−M

3 3L œ L

Also,  is closed under directed unions.subÐKÑ

Hasse Diagrams
For a finite group of small order, we can sometimes describe the subgroup
lattice structure using a , which is a diagram of a partiallyHasse diagram
ordered set that shows the covering relation.



38

Example 2.23 The Hasse diagrams for the subgroup lattices of the group
G œ Ö"ß +ß + ß + × % Z œ Ö"ß +ß ,ß +,×%

# $  and the -group  are shown in Figure
2.1.

S(C4)

{1}

{1,a2}

C4

{1}

{1,a}

V

{1,b} {1,ab}

S(V)

Figure 2.1

Maximal and Minimal Subgroups of a Group
The maximal and minimal subgroups of a group play an important role in the
theory. At this point, we simply give the definitions.

Definition Let  be a group and let .K L Ÿ K
1   is  if it is minimal in the partially ordered set of all nontrivial) L minimal

subgroups of  under set inclusion .K ( )
2   is  if it is maximal in the partially ordered set of all proper) L maximal

subgroups of  under set inclusion .K ( )

We emphasize that the term maximal subgroup means maximal proper
subgroup. Without the restriction to proper subgroups,  would be the onlyK
“maximal” subgroup of . A similar statement can be made for minimalK
subgroups.

Subgroups and Conjugation
Since the conjugate of a subgroup is also a subgroup, conjugation sends subÐKÑ
to . In fact, it is an order isomorphism of .sub subÐKÑ ÐKÑ

Theorem 2.24 Let  be a group and let . The conjugation mapK + − K
# #+ +

+À ÐKÑ Ä ÐKÑ L œ Lsub sub  defined by  is an order isomorphism on
subÐKÑ. Hence,  preserves meet and join, that is,#+

’ “, ,L œ L3

+

3
+

and

’ “2 2L œ L3

+

3
+
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Proof. It is clear that

E Ÿ F Í E Ÿ F+ +

and so  is an order embedding of  into itself. But any subgroup  of  has#+ K E K
the form  and so  is also surjective.E œ Ð EÑ# # #+ ++"

The Set Product of Subgroups
If  and  are subgroups of a group , then the set product  is notL O K LO
necessarily a subgroup of , as the next example shows.K

Example 2.25 In the symmetric group , letW$

L œ Ö ß Ð" #Ñ× O œ Ö ß Ð" $Ñ×+ +and

Then

LO œ Ö ß Ð" #Ñß Ð" $Ñß Ð" $ #Ñ×+

However,  is not in  and so  is not a subgroup of .Ð" $ #Ñ œ Ð" # $Ñ LO LO W#
$

If  is a subgroup of , then since  contains both  and , we haveLO K LO L O
OL © LO OL © LO LO Ÿ K. Conversely, if , then , since

Ð25Ñ œ 5 2 − OL © LO" " "

and

Ð2 5 ÑÐ2 5 Ñ œ 2 Ð5 2 Ñ5 œ 2 Ð2 5 Ñ5 − LO" " # # " " # # " $ $ #

where  and . Thus,2 − L 5 − O3 3

LO Ÿ K Í OL © LO

Moreover, if , then equality must hold, since every  has theOL © LO B − LO
form

B œ Ð25Ñ œ 5 2 © OL" " "

for some  and . Thus .2 − L 5 − O LO œ OL

Theorem 2.26 If , then the following are equivalent:LßO Ÿ K
1  ) LO Ÿ K
2  ) OL © LO
3  , that is,  and  .) OL œ LO L O permute
In this case,  is the join of  and  in .LO œ L ”O L O ÐKÑsub

The Size of LO

There is a very handy formula for the size of the set product  of twoLO
subgroups of a group , which holds even if  is not a subgroup of .K LO K
Consider the surjective map  defined by0 ÀL ‚O Ä LO
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0Ð2ß 5Ñ œ 25

The inverse map  induces a partition  on  whose blocks are the sets0 L ‚O" c
0 ÐBÑ B − LO LO"  for . Hence, there are  blocks.k k
To detemine the size of these blocks, let . Then any element of B œ 25 L ‚O
can be written in the form  for  and  andÐ2.ß /5Ñ . − L / − O

0Ð2.ß /5Ñ œ B Í 2./5 œ 25 Í ./ œ " Í / œ ."

and so

0 ÐBÑ œ ÖÐ2.ß . 5Ñ ± . − L ∩O×" "

Hence,

¸ ¸ k k0 ÐBÑ œ L ∩O"

and so

k kk k k k k kk kL O œ L ‚O œ LO L ∩O

as cardinal numbers.

Theorem 2.27 If  is a group and  thenK LßO Ÿ K

k kk k k kk kL O œ LO L ∩O

as cardinal numbers. If  and  are finite subgroups, thenL O

k k k kk kk kLO œ
L O

L ∩O

The largest proper subgroups of a finite group  are the subgroups of orderK
9ÐKÑÎ#. The formula in Theorem 2.26 tells us something about how these large
subgroups interact with other subgroups of .K

Theorem 2.28 Let  be a finite group and let  have order . ThenK L Ÿ K 9ÐKÑÎ#
any subgroup  of  is either a subgroup of  or elseW K L

k k k kW ∩L œ W Î#

In words,  lies either completely in  or half-in and half-out of . Also, ifW L L
+ − W Ï L , then

W œ ÐW ∩ LÑ “ +ÐW ∩ LÑ

Proof. If  is not contained in , then there is an  and soW L + − W Ï L

WL ª L “ +L

But the latter has size  and so . Then9ÐKÑ WL œ K
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k kk k k kk kL W œ K L ∩ W

implies that . The rest follows easily.k k k kW œ # L ∩ W

Cosets and Lagrange's Theorem
Let . For , the set  is called a  of  in . Similarly,L Ÿ K + − K +L L Kleft coset
the set  is called a  of  in . The set of all left cosets of  in L+ L K L Kright coset
is denoted by  and the set of all right cosets is denoted . We will referKÎL LÏK
to left cosets simply as cosets, using the adjectives “left” and “right” only to
avoid ambiguity.

The map  defined by  is easily seen to be a0 ÀKÎL Ä LÏK 0Ð+LÑ œ L+"

bijection and so

k k k kKÎL œ LÏK

Since the multiplication map  defined by  is a bijection,. .+ +ÀL Ä +L 2 œ +2
all cosets of a subgroup  have the same cardinality:L

k k k k+L œ L

To see that the distinct left cosets of  form a partition of , we define anL K
equivalence relation on  byK

+ ´ , +L œ ,Lif

Now,  implies that . Conversely, if , then  for+L œ ,L , − +L , − +L , œ +2
some  and so . Hence,2 − L ,L œ +2L œ +L

+ ´ , Í +L œ ,L Í , − +L

and so the equivalence class containing  is precisely the coset . Thus, the+ +L
distinct cosets  form a partition of . In particular,KÎL K

k k k k k kK œ L † KÎL

as cardinal numbers. When  is finite, this is the content of K Lagrange's
theorem.

Theorem 2.29 Let  be a group and let .K L Ÿ K
1  The set  of distinct left cosets of  in  forms a partition of , with) KÎL L K K

associated equivalence relation satisfying

+ ´ , Í +L œ ,L Í , − +L

This equivalence relation is called   and is denotedequivalence modulo L
by

+ ´ , Lmod
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or just  when the subgroup is clear. Each element  is called a+ ´ , , − +L
coset representative for the coset , since .+L ,L œ +L

2  All cosets have the same cardinality and)

k k k k k kK œ L † KÎL

as cardinal numbers.
3   If   is finite, then) ( )Lagrange's theorem K

k k k kk kKÎL œ
K

L

and so

9ÐLÑ ± 9ÐKÑ

In particular, the order of an element  divides the order of .+ − K K

The converse of Lagrange's theorem fails: We will show later in the book that
the alternating group  has order  but has no subgroup of order .E "# '%

Note also that

+ ´ , L Í , + − Lmod "

and so, in particular,

+ ´ , L + ´ , O Ê + ´ , ÐL ∩OÑmod mod modand

Lagrange's Theorem and the Order of a Product
Lagrange's theorem tells us something about the order of certain products  in25
a group even when  and  do not commute.2 5

Theorem 2.30 Let  be a group and let  and  be finite subgroups of ,K L O K
with .LO Ÿ K
1  If  and , then) 2 − L 5 − O

9Ð25Ñ ± 9ÐLÑ9ÐOÑ

In particular, if  is finite, thenØ2ÙØ5Ù Ÿ K

9Ð25Ñ ± 9Ð2Ñ9Ð5Ñ

2  If  and  is relatively prime to both  and , then) R Ÿ K 9ÐRÑ 9ÐLÑ 9ÐOÑ

LR œ OR Ê L œ O

Proof. For part 1), Lagrange's theorem implies that

9Ð25Ñ ± 9ÐLOÑ ± 9ÐLÑ9ÐOÑ
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For part 2), if  then  where  and . Hence2 − L 2 œ 5+ 5 − O + − R
5 2 œ + − R 9Ð+Ñ ± 9ÐOÑ9ÐLÑ 9Ð+Ñ ± 9ÐRÑ + œ ""  and so  and , whence , that
is, . Hence,  and a symmetric argument shows that2 œ 5 − O L Ÿ O
L œ O.

Euler's Formula
The   is defined, for positive integers , by letting  beEuler phi function 9 98 Ð8Ñ
the number of positive integers less than  and relatively prime to . The Euler8 8
phi function is important in group theory since the cyclic group  of order G 88

has exactly  generators.9Ð8Ñ

Theorem 2.31 Properties of Euler's phi function ( )
1  The Euler phi function is , that is, if  and  are relatively) multiplicative 7 8

prime, then

9 9 9Ð78Ñ œ Ð7Ñ Ð8Ñ

2  If  is a prime and , then) : 8   "

9Ð: Ñ œ : Ð:  "Ñ8 8"

These two properties completely determine .9
Proof. For part 1), consider the  matrix7‚ 8

E œ

" 7 " #7 " â Ð8  "Ñ7  "
# 7  # #7 # â Ð8  "Ñ7  #

ã
< 7  < #7  < â Ð8  "Ñ7  <

ã
7 #7 $7 â 78

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

Note that the entries in the th row of  are relatively prime to  if and only if< E 7
Ð<ß7Ñ œ " 8. Thus, in looking for the entries that are relatively prime to both 
and , we need consider only the  rows in which . Note also7 Ð7Ñ Ð<ß7Ñ œ "9
that the difference of any two distinct entries in the same row has the form

Ð57  <Ñ  Ð47  <Ñ œ Ð5  4Ñ7

which is not divisible by . Hence, the entries in any row form a complete set of8
distinct representatives for the residue classes modulo . Hence, modulo , the8 8
elements of the row are , of which exactly  are relatively!ß "ßá ß 8  " Ð8Ñ9
prime to . In other words, each of the  rows contains  elements that8 Ð7Ñ Ð8Ñ9 9
are relatively prime to .78

For part 2),  is the number of positive integers less than or equal to  that9Ð: Ñ :8 8

are not divisible by . The positive integers less than or equal to  that are: :8

divisible by  are:
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Ö: † "ß : † #ßá ß : † : ×8"

which is a set of size . Hence, .: Ð: Ñ œ :  :8" 8 8 8"9

Some simple group theory yields two famous old theorems from number theory.

Theorem 2.32  Let  be a positive integer. If  is an integer( )Euler's theorem 8 +
relatively prime to , then8

+ ´ " 89Ð8Ñ  mod

This formula is called .Euler's formula
Proof. Since  is a multiplicative group of order , Lagrange's theorem™ 98

‡ Ð8Ñ
implies that Euler's formula holds for  and since+ − ™8

‡

Ð+  58Ñ ´ + ´ " 89 9Ð8Ñ Ð8Ñ  mod

Euler's formula holds for all integers that are relatively prime to .8

Corollary 2.33  If  is a prime and , then( )Fermat's little theorem : Ð+ß :Ñ œ "

+ ´ + ::  mod

Cyclic Groups
Let us gather some facts about cyclic groups.

Theorem 2.34 Properties of cyclic groups ( )
1   Every group of prime order is cyclic.) ( )Prime order implies cyclic
2   A finite abelian group  is cyclic if and only) ( )Smallest positive exponent K

if .minexpÐKÑ œ 9ÐKÑ
3   Every subgroup of a cyclic group is cyclic.) ( )Subgroups
 a   If  is infinite, then each power) ( )Lattice of subgroups: infinite case Ø+Ù

+ 5   ! Ø+ Ù5 5 with  generates a distinct subgroup  and this accounts for
all subgroups of .Ø+Ù

 b   If  then for each , the) ( )Lattice of subgroups: finite case 9Ð+Ñ œ 8 . ± 8
group  has exactly one subgroup  of order  and exactlyØ+Ù W œ Ø+ Ù .8Î.

9Ð.Ñ . W elements of order , all of which lie in . This accounts for all
subgroups of . It follows that for any positive integer ,Ø+Ù 8

8 œ Ð.Ñ�
.±8

9

4   If a finite group  of order  has the) ( )Characterization by subgroups K 8
property that it has at most one subgroup of each order , then  is. ± 8 K
cyclic and therefore has exactly one subgroup of each order .( ). ± 8
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5   A direct product) ( )Direct products

K œ K â K" 7} }

of finite order is cyclic if and only if each  is cyclic and the orders of theK3

factors  are pairwise relatively prime. Moreover, if  areK . ßá ß .3 " 8

pairwise relatively prime positive integers, then the following hold:
 a   If  is cyclic of order , then) ( )Composition Ø+ Ù .3 3

Ø+ Ù â Ø+ Ù œ ØÐ+ ßá ß + ÑÙ" 8 " 8} }

 b   If  has order , then) ( )Decomposition K œ Ø+Ù . œ . â." 8

Ø+Ù œ Ø+ ÙâØ+ Ù" 8

where  and9Ð+ Ñ œ .3 3

Ø+ Ù ∩ Ø+ Ù œ Ö"×3 4

4Á3

$
for all .3

Proof. Part 2) follows from Theorem 2.12. For part 3b), the generators of the
cyclic groups of order  are the elements of order . However, Theorem 2.9. .
implies that the elements of  of order  areK .

Ö+ ± Ð<ß .Ñ œ "×<Ð8Î.Ñ

and these all lie in the one cyclic subgroup  of order . Hence, there canØ+ Ù .8Î.

be no other cyclic subgroups of order . For the final statement, the sum . �
.±8

9Ð.Ñ K simply counts the elements of  by their order.

To prove 4), let  be the set of all orders of elements of . If  has orderH K + − K
9Ð+Ñ œ . Ø+Ù K ., then  is the unique subgroup in  of order  and so all elements of
order  must be in . It follows that there are exactly  elements in  of. Ø+Ù Ð.Ñ K9
order . Hence,. − H

8 œ Ð.Ñ Ÿ Ð.Ñ œ 8� �
.−H .±8

9 9

and so equality holds, whence  is the set of all divisors of . In particular,H 8
8 − H K and so  is cyclic.

For part 5), if each  is cyclic of order , where the 's are pairwiseK œ Ø+ Ù . .3 3 3 3

relatively prime, then

9ÐÐ+ ßá ß + ÑÑ œ Ð. ßá ß . Ñ œ . œ 9ÐKÑ" 8 " 8 3lcm $
and so  is cyclic. (This also proves part 5a).) Conversely,K œ ØÐ+ ßá ß + ÑÙ" 8

suppose that  is cyclic and for each , letK + − K3 3
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+ œ Ð"ßá ß "ß + ß "ßá ß "Ñs3 3

where  is in the th position. The subgroups+ 33

K œ Ö"× â Ö"× K Ö"× â Ö"×Ð3Ñ
3} } } } } }

where  is in the th position are cyclic and if  has order , thenK 3 K œ Ø+ Ù .s3 3 3
Ð3Ñ

K œ Ø+ Ù .3 3 3 is also cyclic of order . Moreover,

$. œ 9ÐKÑ œ ÐKÑ œ Ð. ßá ß . Ñ3 " 8minexp lcm

and so the orders  are pairwise relatively prime..3

For part 5b), since  is abelian, the product  is aK œ Ø+Ù T œ Ø+ ÙâØ+ Ù" 8

subgroup of  and since  has orderK + â+ − T" 8

9Ð+ â+ Ñ œ Ð. ßá ß . Ñ œ . œ 9ÐØ+ÙÑ" 8 " 8lcm

it follows that . Finally, ifT œ K

α − Ø+ Ù ∩ Ø+ Ù3 4

4Á3

$
then  divides  as well as the product , which are relatively prime9Ð Ñ . .α 3 44Á3

#
and so .α œ "

Homomorphisms of Groups
We will discuss the structure-preserving maps between groups in detail in a later
chapter, but we wish to introduce a few definitions here for immediate use.

Definition Let  and  be groups. A function  is called a K L ÀK Ä L5 group
homomorphism homomorphism or just  if( )

5 5 5Ð+,Ñ œ Ð +ÑÐ ,Ñ

for all . A bijective homomorphism is an . When+ß , − K isomorphism
5 5À K Ä L ÀK ¸ L K ¸ L is an isomorphism, we write  or simply  and say
that  and  are .K L isomorphic

A property of a group is  if whenever a group  has thisisomorphism invariant K
property, then so do all groups isomorphic to . For example, the properties ofK
being finite, abelian and cyclic are isomorphism invariant.

More Groups
Let us look at a few classes of groups. As we have seen, some groups are given
names, for example, the cyclic groups, the symmetric groups, the quaternion
group and the dihedral groups (to be defined below). Actually, these are really
isomorphism classes of groups. For instance, if , then we mightK ¸ W8
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reasonably refer to  as a symmetric group as well. After all, it is the algebraicK
structure that is important and not the labeling of the elements of the underlying
set.

Cyclic Groups
Theorem 2.33 describes the subgroup lattice structure of a cyclic group. Let us
take a somewhat closer look at this structure.

Let  be cyclic of finite order  and let  be the lattice (under division) ofG Ð+Ñ 8 H8 8

positive integers less than or equal to  that divide . Then the map8 8
5 5ÀH Ä ÐG Ð+ÑÑ . œ G œ Ø+ Ù8 8 .

8Î.sub  defined by  is an order isomorphism
from  to , since  is surjective andH ÐG Ð+ÑÑ8 8sub 5

. ± . Í Ð8Î. Ñ ± Ð8Î. Ñ Í G Ÿ G" # # " . ." #

Thus,  is order isomorphic to . For example, Figure 2.2 shows thesubÐG Ð+ÑÑ H8 8

lattices  and .H ÐG Ð+ÑÑ#% #%sub

1
2

4

8

3

6

12

24

{1}
C2

C4

C8

C3

C6

C12

G

Figure 2.2

For the infinite case, we must settle for an order anti-isomorphism. Let  be™

the lattice of nonnegative integers under division. If  is an infinite cyclicK œ Ø+Ù
group, then the map  defined by  is an order anti-5 ™ 5À Ä ÐKÑ 5 œ Ø+ Ù 5sub
isomorphism, since  is surjective and5

5 ± 8 Í Ø+ Ù Ÿ Ø+ Ù8 5

Thus,  is order anti-isomorphic to .subÐKÑ ™

The Quaternion Group
Let  be the general linear group of all nonsingular  matrices overKPÐ#ß Ñ # ‚ #‚
the complex numbers. Let

M œ ßE œ ßF œ ßG œ
" ! 3 ! ! " ! 3
! " ! 3 " ! 3 !Œ 7 Œ 7 Œ 7 Œ 7

Then it is easy to see that

E œ F œ G œ EFG œ M# # #
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and

ÐMÑ\ œ \ÐMÑ œ \

for  or . These equations are sufficient to determine all products in\ œ EßF G
the set

W œ Ö „ Mß „ Eß „ Fß „ G×

In particular,

EF œ Gß FG œ Eß EG œ EEF œ F

and

FE œ FFG œ G

GF œ EFF œ E

GE œ EFFG œ EG œ F

Thus,  is a subgroup of  of order . Any group isomorphic to  isW KPÐ#ß Ñ ) W‚
called a .quaternion group

Note that we have defined the quaternion group in such a way that it is clearly a
group, since we have defined it as a subgroup  of the  .W KPÐ#ß Ñknown group ‚
However, the quaternion group is often defined without mention of matrices. In
this case, it becomes necessary to verify that the definition does indeed
constitute a group.

On the other hand, we can leverage our knowledge of existing groups (in
particular ) by the following simple device: A bijection  from aW 0ÀK Ä \
group  to a set  can be used to transfer the group product from  to  byK \ K \
setting

0Ð+Ñ0Ð,Ñ œ 0Ð-Ñ +, œ -if

This makes  a group and  an isomorphism from  to .\ 0 K \

Now, the quaternion group is often defined as the set

U œ Ö"ß 3ß 4ß 5ß"ß3ß4ß5×

with multiplication defined so that  is the identity and"

3 œ 4 œ 5 œ 345 œ "

Ð"ÑB œ BÐ"Ñ œ B

# # # (2.35)

for . As with the set  defined above, these rules are sufficient toB œ 3ß 4ß 5 W
define all products of elements of . Rather than show directly that this forms aU
group, that is, rather than verifying directly the associative, identity and inverse
properties, we can simply observe that the map  defined by0 À W Ä U
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0ÐMÑ œ "ß 0ÐMÑ œ "

0ÐEÑ œ 3ß 0ÐEÑ œ 3

0ÐFÑ œ 4ß 0ÐFÑ œ 4

0ÐGÑ œ 5ß 0ÐGÑ œ 5

is a bijection and that

0Ð\Ñ0Ð] Ñ œ 0Ð^Ñ Í \] œ ^

for all . Hence, the product in  is the image of the product in \ß] ß^ − W U W
and so  is a group because  is a group. Note that the main savings here is inU W
the fact that we do not need to verify that the product in  is associative. OfU
course, someone had to verify that matrix multiplication is associative, and we
do appreciate that effort very much.

Equations (2.35) are equivalent to

3 œ 4 œ 5 œ "

34 œ 5ß 45 œ 3ß 53 œ 4

Ð"ÑB œ BÐ"Ñ œ B

# # #

for  and many authors use these equations to define the quaternionB œ 3ß 4ß 5
group.

In order to describe the quaternion group, it is not necessary to mention
explicitly all four elements , ,  and , since  and . In fact, " 3 4 5 " œ 3 5 œ 34 U#

can also be defined as the group satisfying the following conditions:

U œ Ø3ß 4Ùß 9ÐUÑ œ )ß 3 œ "ß 3 œ 4 ß 43 œ 3 4% # # $

To see this, if

" ³ 3 5 ³ 34 B ³ Ð"ÑB#, and

for , thenB œ "ß 3ß 4ß 5

U œ Ö"ß 3ß 3 ß 3 ß 4ß 34ß 3 4ß 3 4×

œ Ö"ß 3ß "ß3ß 4ß 5ß4ß5×

# $ # $

Moreover, since , it follows that43 œ 3 4$

5 œ 3434 œ 33 44 œ "# $

and

345 œ 3434 œ 33 44 œ 4 œ "$ #

Note that the conditions
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U œ Ø3ß 4Ùß 3 Á 4ß 9Ð3Ñ œ %ß 3 œ 4 ß 343 œ 4# #

imply that  and so they provide perhaps the most succinct definition of9ÐKÑ œ )
the quaternion group.

Subgroups of the Quaternion Group
The quaternion group has a simple subgroup lattice. We leave it as an exercise
to verify that the Hasse diagram for  is given by Figure 2.3. ThesubÐUÑ
subgroup  has order  and the other nontrivial proper subgroups have orderØ"Ù #
%.

<-1>

<i>

Q

<j> <k>

{1}

Figure 2.3

The Dihedral Groups
Many groups come from geometry. Here is one of the most famous. First, we
need a bit of terminology. A  of the plane is a bijective distance-rigid motion
preserving map of the plane. If  is a nonempty subset of the plane, then aT
symmetry of  is a rigid motion of the plane that sends  onto itself.T T

Now, for , let  be a regular -gon in the plane, whose center passes8   # T 8
through the origin. Figure 2.4 shows the cases  and .8 œ % 8 œ &

1

2

34

5

1

2

3

4

Figure 2.4

(For ,  is a line segment.) Label the vertices  in clockwise order,8 œ # T "ßá ß8
with vertex  on the positive vertical axis. Let  be the set of vertices of ." Z T
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The   of  consists of all symmetries of . It is possible tosymmetry group K T T8

prove that the symmetries of  are the same as the symmetries of the vertex setT
Z K Z and so we may regard  as the set of all symmetries of .8

In fact, each symmetry of  is a permutation of  and is uniquely determinedZ Z
by that permutation. Indeed, it is customary to think of the elements of  asK8

permutations of the labeling set , that is, as elements of . HereM œ Ö"ßá ß 8× W8 8

are a few simple facts concerning , for .K 8   #8

1  Since any  preserves adjacency, if  then  or) $ $ $− K B œ C ÐB  "Ñ œ C  "8

$ÐB  "Ñ œ C  ". We denote this by writing

$À ÐBß B  "Ñ È ÐCß C  "Ñ

or

$À ÐBß B  "Ñ È ÐCß C  "Ñ

In the former case, we say that   in the pair$ preserves orientation
ÐBß B  "Ñ and in the latter case,  . Note that addition$ reverses orientation
and subtraction are performed modulo , but then  is replaced by .8 ! 8
Hence, for example,  and so  and  are adjacent."  " œ 8 " 8

2  Any  is uniquely determined by its value on two adjacent elements) $ − K8

ÐBß B  "Ñ M 8   $ of . To see this, we may assume that . If  preserves8 $
orientation on , that is, ifÐBß B  "Ñ

$À ÐBß B  "Ñ È ÐCß C  "Ñ

then since  is adjacent to , we have $ $ $ÐB  #Ñ ÐB  "Ñ œ C  " ÐB  #Ñ œ C
or . But  and so$ $ $ÐB  #Ñ œ C  # ÐB  #Ñ Á B œ C

$À ÐB  "ß B  #Ñ È ÐC  "ß C  #Ñ

Repeating this argument gives

$À ÐB  5ß B  5  "Ñ È ÐC  5ß C  5  "Ñ

for all . A similar argument holds if  reverses orientation, showing that5 $

$À ÐB  5ß B  5  "Ñ È ÐC  5ß C  5  "Ñ

Note also that if  preserves orientation for one adjacent pair, then it$
preserves orientation for all adjacent pairs and so we can simply say that $
either preserves orientation or reverses orientation.

The group  contains both the -cycleK 88

3 œ Ð" #â8Ñ

which represents a clockwise  through  degrees, and therotation $'!Î8
permutation  that represents a  across the vertical axis. If  is even,5 reflection 8
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then

5 œ Ð#8ÑÐ$ 8  "Ñâ  #
8 8

# #
Š ‹

and if  is odd then8

5 œ Ð#8ÑÐ$ 8  "Ñâ  "
8  " 8  "

# #
Œ 7

To see that  is generated by the rotation  and the reflection , let . IfK − K8 83 5 $
$ preserves orientation, then

$À Ð8ß "Ñ È Ð5ß 5  "Ñ

and so . On the other hand, if  reverses orientation, then$ 3 3 5 $œ − Ø ß Ù5

$À Ð8ß "Ñ È Ð5ß 5  "Ñ

and so the following hold:

$5

$5

$5

À Ð#ß "Ñ È Ð5ß 5  "Ñ

À Ð"ß #Ñ È Ð5  "ß 5Ñ

À Ð8ß "Ñ È Ð5  #ß 5  "Ñ

Hence,  and so . Thus .$5 3 $ 3 5 3 5 5 3œ œ − Ø ß Ù K œ Ø ß Ù5" 5"
8

To examine the group structure of , we haveK8

9Ð Ñ œ 8 9Ð Ñ œ #3 5and

Also,

5353À Ð"ß 8Ñ È Ð"ß 8Ñ

and so  is an involution, which gives the 53 commutativity rule

35 53 53œ œ" 8"

and so every element of  can be written in the form . Thus,  can beK K8 8
/ 55 3

described succinctly by

K œ Ø ß Ùß 9Ð Ñ œ 8ß 9Ð Ñ œ 9Ð Ñ œ #8 5 3 3 5 53

It is easy to see that the  elements#8

Ö ß ßá ß ß ß ßá ß ×+ 3 3 5 53 538" 8"

are distinct and so .9ÐK Ñ œ #88

Another description of  can be gleaned from the fact that K Ø ß Ù œ Ø ß Ù8 5 3 5 53
and so  is generated by a pair of involutions whose product has finite order,K8

that is, if , then1 53œ
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K œ Ø ß Ùß 9Ð Ñ œ 9Ð Ñ œ #ß 9Ð Ñ œ 88 5 1 5 1 51

Without reference to geometry, a finite group  is a  if  isK Kdihedral group
isomorphic to the symmetry group , for some . Thus, a group  is aK 8   # K8

dihedral group if any of the following equivalent descriptions hold (here  and3
5 are just symbols):

1  (Common description))

K œ Ö" œ ß ßá ß ß ß ßá ß ×3 3 3 5 53 53! 8" 8"

has order  and#8

3 5 35 538 # 8"œ "ß œ " œand

2  (Succinct description 1))

K œ Ø ß Ùß 9Ð Ñ œ 8   # 9Ð Ñ œ 9Ð Ñ œ #5 3 3 5 53and

3  (Succinct description 2))

K œ Ø ß Ùß 9Ð Ñ œ 9Ð Ñ œ #ß 9Ð Ñ œ 8   #5 1 5 1 51

Note that

Ð ÑÐ Ñ œ œ "53 53 553 35 5 5 5

and so all elements of the form  are involutions.535

Unfortunately, the dihedral group  of order  is denoted by  by someK #8 H8

authors (reflecting the fact that  consists of symmetries of  vertices) and byK 8
H K #8#8 by other authors (reflecting the fact that  is a group of order ). We will
use the notation . Also, in view of the development of , we will oftenH H#8 #8

refer to  as a rotation and  as a reflection, even if  and  are not actually3 5 3 5
maps.

For , the reflection  is the identity and the rotation  is the transposition8 œ " 5 3
Ð" #Ñ H œ Ö ß Ð" #Ñ× G 8 œ # and so  is the cyclic group . For , the dihedral# #+
group  is . For , we have proved that the dihedral groups exist,H G G 8   $% # #}
namely, as certain subgroups of . Note that  is nonabelian for .W H 8   $8 #8

Ubiquity of the Dihedral Group
Succinct description 2 of the dihedral group shows that dihedral groups occurs
quite often and reinforces the idea that a dihedral group need not consist
specifically of symmetries of the plane.

Theorem 2.36 Let  be a group. If  are distinct involutions for whichK +ß , − K
9Ð+,Ñ œ 8  ∞ Ø+ß ,Ù #8, then the subgroup  is dihedral of order .
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Subgroups of the Dihedral Groups
Let us determine the subgroups of . If , then Theorem 2.28 impliesH W Ÿ H#8 #8

that there are two possibilities. If , then  for some .W Ÿ Ø Ù W œ Ø Ù . ± 83 38Î.

Otherwise,  for some  and if  is the smallest positiveW ∩ Ø Ù œ Ø Ù . ± 8 53 38Î.

integer for which , then535 − W

W œ ÐW ∩ Ø ÙÑ “ ÐW ∩ Ø ÙÑ

œ Ø Ù “ Ø Ù

œ Ø ß Ù

3 53 3

3 53 3

53 3

5

8Î. 5 8Î.

5 8Î.

Note that since  and  are involutions and , it53 53 3 53 35 5 8Î. 58Î. 8Î.œ 9Ð Ñ œ .
follows that  is dihedral of order , generated by the “reflection”  and theW #. 535

“rotation” . Thus, the subgroups of  fall into two categories: subgroups38Î. #8H
of , which are cyclic and the rest, which are dihedral.Ø Ù3

Also, for distinct values of  in the range , the sets5 ! Ÿ 5  8Î.

W œ Ø Ù “ Ø Ù œ Ø ß Ù.ß5
5 8Î. 8Î. 5 8Î.53 3 3 53 3

are distinct subgroups of  and this accounts for all of the dihedral subgroupsH#8

of . We can now summarize.H#8

Theorem 2.37 The subgroups of the dihedral group  are of two types. ForH#8

each , we have. ± 8
1  the cyclic subgroup  of order  and) Ø Ù .38Î.

2  for each , the dihedral subgroup) ! Ÿ 5  8Î.

W œ Ø ß Ù œ Ø Ù “ Ø Ù.ß5
5 8Î. 5 8Î. 8Î.53 3 53 3 3

of order .#.

The Symmetric Groups
The lattice of subgroups of the symmetric group  is rather complicated.W8

Indeed, a famous theorem of Arthur Cayley [7] from 1854 (to be discussed in
detail later), says that for  group , the symmetric group  contains aany K WK

subgroup that is an “exact copy” of . Thus, a complete description of theK
subgroup lattice of the symmetric groups would constitute a complete
description of all groups, which does not yet exist!

The Additive Rationals
Let us examine the subgroup lattice of the additive group  of rational numbers.
Let  denote the set of positive integers. We say that  is  if ™  +Î, − +reduced
and  are relatively prime and . Let  be nontrivial. Let  be the set, ,  ! L Ÿ M
of integers in , let  be the set of numerators of the reduced elements of L R L
and let  be the set of  denominators of the reduced elements of .H Lpositive
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If , then  for some integer  and so . Thus, .+ − R +Î, − L , + − M M œ R
Moreover, if  is the smallest positive integer in , then every  is an3 M + − M
integral multiple of , for if  where , then 3 + œ ;3  < ! Ÿ <  3 < œ +  ;3 − M
and the minimality of  implies that . Thus, .3 < œ ! R œ M œ 3™

If  is reduced, then there exist integers  and  for which ,+3Î, − L ? @ ?+  @, œ "
whence

3 Ð?+  @,Ñ3 ?+3

, , ,
œ œ  @3 − L

Thus,

+3 3

, ,
− L Í − L

for , . Thus,+ß , − ,  !™

L œ + − ß , − H
+3

,
œ G¹ ™

It follows that  is closed under products, since if  and  in  are reduced,H 3Î, 3Î- L
then  is also reduced and in . Also, if  and , then . Thus,3 Î,- L . − H / ± . / − H#

H H is closed under factors as well. It follows that we can describe  by
describing which prime powers lie in .H

If  is prime, let  be the set of all powers of  that lie in . Then  has one: H : H H: :

of three forms.

1  If , then  since if  then  is an integer,) : ± 3 H œ Ö"× : − H 3Î: − L:

contradicting the fact that  is the smallest positive integer in .3 L
2  If  and there is a largest integer  for which , then) : ± 3 7Ð:Ñ : − Hy 7Ð:Ñ

H œ Ö"ßá ß : ×:
7Ð:Ñ

3  If  and there is no largest integer  for which , then) : ± 3 7Ð:Ñ : − Hy 7Ð:Ñ

H œ Ö"ß :ß : ßá×:
#

In case 1) we set  and in case 3) we set  and so  is7Ð:Ñ œ ! 7Ð:Ñ œ ∞ 7Ð:Ñ
defined for all primes. Let  be the sequence of all primes and let: ß : ßá" #

7ÐLÑ œ Ð7Ð: Ñß7Ð: Ñßá Ñ" #

For convenience, we say that a sequence  where  is a nonnegativeÐ+ ß + ßá Ñ +" # 3

integer or  is  for  if  implies that . Thus, + œ ∞ 3 : ± 3 + œ ! 7ÐLÑ3 5 5acceptable
is acceptable for .3
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Let us adopt the notation  to mean that  for allÐ+ ß + ßá Ñ Ÿ Ð, ß , ßá Ñ + Ÿ ," # " # 5 5

5 , − H. If , we may write

, œ : : â" #
/ /" #

with the understanding that all but a finite number of exponents  are zero. Let/5

/Ð,Ñ œ Ð/ ß / ßá Ñ" #

Then for any positive integer ,,

, − H Í /Ð,Ñ Ÿ 7ÐLÑ

and so the pair  completely determines  sinceÐ3ß7ÐLÑÑ L

L œ + − ß , − ß /Ð,Ñ Ÿ 7ÐLÑ
+3

,
œ Gº ™ ™

On the other hand, let  and let3 − ™

= œ Ð7 ß7 ßáÑ" #

be acceptable for . Then the set3

L œ + − ß , − ß /Ð,Ñ Ÿ =
+3

,
Ð3ß=Ñ

œ Gº ™ ™

is a nontrivial subgroup of  for which . It is clear that  is closed 7ÐLÑ œ = L
under negatives. Also, if  and  are reduced, then+3Î, − L -3Î. − L

+3 -3 ?3

, . Ð,ß .Ñ
 œ − L

lcm

is reduced and since

/Ð Ð,ß .ÑÑ Ÿ =lcm

it follows that  is closed under addition. Thus, the subgroups  of L LÐ3ß=Ñ 

correspond bijectively to the pairs , where  and whereÐ3ß =Ñ 3 − ™

= œ Ð7 ß7 ßáÑ" #

is acceptable for .3

*An Historical Perspective: Galois-Style Groups
Let us conclude this chapter with a brief historical look at groups. Evariste
Galois (1811–1832) was the first to develop the concept of a group, in
connection with his research into the solutions of polynomial equations.
However, Galois' version of a group is quite different from the modern version
we see today. Here is a brief look at groups as Galois saw them (using a bit
more modern terminology than Galois used).
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Consider a table in which each row contains an ordered arrangement of a set \
of distinct symbols (such as the roots of a polynomial), for example

+ , - . /
- + , . /
, - + . /
+ , - / .
- + , / .
, - + / .

where . Then each pair of rows defines a permutation of ,\ œ Ö+ß ,ß -ß .ß /× \
that is, a bijective function on . Galois considered tables of ordered\
arrangements with the property that the set  of permutations that transform aE3

given row  into the other rows (or into itself) is the same for all rows , that< <3 3

is,  for all . Let us refer to this type of table, or list of orderedE œ E 3ß 43 4

arrangements, as a .Galois-style group

In modern terms, it is not hard to show that a list of ordered arrangements is a
Galois-style group if and only if the corresponding set  ( ) ofE œ E3

permutations is a subgroup of the symmetric group . To see this, let theW\

permutation that transforms row  to row  be . Then Galois' assumption is< <3 4 3ß41
that the sets

E œ Ö ßá ß ×3 3ß" 3ß81 1

are the same for all . This implies that for each  and , there is a  for which3 3ß ? 4 @
1 13ß? 4ß@œ . Hence,

1 1 1 1 13ß? 3ß4 4ß@ 3ß4 3ß@ 3œ œ − E

and so  is closed under composition and is therefore a group.E3

Conversely, if  is a permutation group, then sinceE"

1 1 1 1 13ß4 "ß4 3ß" "ß4 "ß3 "
"œ œ Ð Ñ − E

it follows that  for all  and so the ordered arrangement that correspondsE œ E 33 "

to  is a Galois-style group.E"

Galois appears not to be entirely clear about a precise meaning of the term
group, but for the most part, he uses the term for what we are calling a Galois-
style group. Galois also worked with subgroups and recognized the importance
of what we now call normal subgroups (defined in the next chapter), although
his definition is quite different from what we would see today.

When Galois' work was finally published in 1846, fourteen years after he met
his untimely death in a duel at the age of 21, the theory of finite permutation
groups had already been formalized by Augustin Louis Cauchy (1789–1857),
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who likewise required only closure under product, but who clearly recognized
the importance of the other axioms by introducing notations for the identity and
for inverses.

Arthur Cayley (1821–1895) was the first to consider, in 1854, the possibility of
more abstract groups and the need to axiomatize associativity. He also
axiomatized the identity property, but still assumed that each group was a finite
set and so had no need to axiomatize inverses (only the validity of cancellation).
It was not until 1883 that Walther Franz Anton von Dyck (1856–1934), in
studying the relationship between groups and geometry, made explicit mention
of inverses.

It is also interesting to note that Cayley's famous theorem (to be discussed in
Chapter 4), to the effect that every group is isomorphic to a permutation group,
completes a full circle back to Galois (at least for finite groups)!

Exercises
1. Let  be a group.K
 a) Prove that  has exactly one identity.K
 b) Prove that each element has exactly one inverse.
2. Prove that any group  in which every nonidentity element has order  isK #

abelian.
3. Let  and let  have order . Show that if  for L Ÿ K 1 − K 8 1 − L Ð5ß 8Ñ œ "5

then .1 − L
4. Show that a finite subset  of a group  is a subgroup if and only if it isW K

closed under products.
5. Show that if  then .+ß , − K 9Ð+,Ñ œ 9Ð,+Ñ
6. Let  be a group with center . Prove that if every element of  thatK ^  K K

is not in  has finite order, then  is periodic.^ K
7. Show that the center of  is equal to .U Ö"ß"×
8. Show that in a group of even order, there is an element of order . (Do # not

use Cauchy's theorem, if you know it.) : such an element is equal to itsHint
own inverse.

9. Find an example of a group  and three distinct primes  and  for whichK :ß ; <
K + , 9Ð+Ñ œ : 9Ð,Ñ œ ; 9Ð+,Ñ œ < has elements  and  satisfying ,  and .

10. Prove that a group with only finitely many subgroups must be finite.
11. Let  be a finite group of order  and let . Show that everyK 7 Ð8ß7Ñ œ "

element  of  has a unique th root , where .1 K 8 2 2 œ 18

12. Prove that the group  of rational number has no minimal subgroups.
13. a) Find a group  and subgroups  and  for which  is not aK L O LO

subgroup of .K
 b) If  where  and  are subgroups of , does it followK œ LOP LßO P K

that  and  commute (under set product)?LßO P
14. Let  be a field and let  be the multiplicative group of nonzero elementsJ J‡

of .J
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 a) If  is a finite field, show that  is cyclic. : Use the fact that aJ J‡ Hint
polynomial equation of degree  has at most  distinct solutions in .8 8 J

 b) Prove that if  is an infinite field, then  is not cyclic. : What areJ J‡ Hint
the orders of the nonidentity elements?

15. Let  be a nonempty set that has an associative binary operation, denotedW
by juxtaposition. Show that  is a group if and only ifW

+W œ W œ W+

for all .+ − W
16. Let  be a nonempty set with an associative binary operation. Assume thatK

there is a  identity , that is,  for all  and that eachleft " " + œ + + − KP P

element  has a  inverse , that is, . Prove that  is a group+ + + + œ " Kleft P P P

under this operation and that  and ." œ " + œ +P P
"

17. Let  be a finite abelian group of order . Show that the product of all ofK 8
the elements of  is equal to the product of all involutions in  (or  if K K " K
has no involutions). Apply this to the multiplicative group  where  is™:

‡ :

prime to deduce that

Ð:  "Ñx ´ " :mod

which is known as .Wilson's theorem
18. Draw a Hasse diagram of the subgroup lattice of
 a) the symmetric group W$

 b) the dihedral group .H)

19. ( ) Show that  is the same as counterclockwise rotationDihedral group 535
3".

20. ( ) Let  be a regular -gon. Show that we get the sameDihedral group T #8
dihedral group if we use an axis of symmetry that goes through two vertices
or through the midpoint of opposite sides of .T

21. ( ) Find the center of the dihedral group .Dihedral group H#8

22. Let  be a group and suppose that  satisfy  and .K +ß , − K + œ " +, + œ ,# # $

Prove that ., œ "&

23. Let  be the additive group of rational numbers. Let  describe Ð3ß Ð8 ÑÑ5

L Ÿ Ð4ß Ð7 ÑÑ O Ÿ  and let  describe .5

 a  Under what conditions is ?) O Ÿ L
 b  Under what conditions is  cyclic?) L
24. Let  be a finite group and  and  be subsets of . Prove that eitherK W X Kk k k k k kW  X Ÿ K K œ WX or .
25. A group  is  if every finitely-generated subgroup is finite.K locally finite
 a) Prove that a locally finite group is periodic.
 b) Prove that if  is abelian and periodic, then it is locally finite.K
26. A group  is said to be K locally cyclic if every finitely-generated subgroup

of  is cyclic.K
 a) Prove that  is locally cyclic if and only if every pair of elements of K K

generates a cyclic subgroup.
 b) Prove that a locally cyclic group is abelian.
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 c) Prove that any subgroup of a locally cyclic group is locally cyclic.
 d) Prove that a finitely-generated locally cyclic group is cyclic.
 e) Find an example of a finitely-generated group that is not locally cyclic.
 f) Show that the subgroup  of the nonzero complex numbers (underK

multiplication) defined by

K œ / ± 8ß 5 −š ›# 38Î:1 5

™

where  is a fixed prime is locally cyclic but not cyclic.:
 g) Prove that if  is locally cyclic, then all nonidentity elements haveK

infinite order or else all elements have finite order.
 h) Prove that the additive group of rational numbers is locally cyclic.
 i)  Show that any locally cyclic group whose nonidentity elements have

infinite order is isomorphic to a subgroup of the additive group .
 j) The distributive laws are

E ” ÐF ∩ GÑ œ ÐE ” FÑ ∩ ÐE ” GÑ

E ∩ ÐF ” GÑ œ ÐE ∩ FÑ ” ÐE ∩ GÑ

for . Prove that each distributive law implies the other. AEßFßG Ÿ K
lattice that satisfies the distributive laws is said to be a distributive
lattice. (It is possible to prove that  is a distributive lattice if andsubÐKÑ
only if  is locally cyclic. This is difficult. A complete solution can beK
found in Marshall Hall's book  [16].)The Theory of Groups

Ascending Chain Condition
A group  satisfies the   ifK ascending chain condition ACC ( ) on subgroups
every ascending sequence

L Ÿ L Ÿ â" #

of subgroups must eventually be constant, that is, if there is an  such that8  !
L œ L 5  !85 8 for all .

27. A group  satisfies the  if everyK maximal condition on subgroups
nonempty collection of subgroups has a maximal member. Prove that a
group  satisfies the maximal condition on subgroups if and only if itK
satisfies the ascending chain condition on subgroups.

28. A group  satisfies the ACC on subgroups if and only if every subgroup ofK
K is finitely generated.
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Chapter 3
Cosets, Index and Normal Subgroups

We begin this chapter with a more careful look at subgroups, cosets and indices.

Cosets and Index
The number of cosets of a subgroup plays an important role in group theory.

Definition Let  be a group. The  of , denoted by , is theK L Ÿ K ÐK À LÑindex
cardinality of the set  of all distinct left cosets of  in , that is,KÎL L K

ÐK À LÑ œ KÎLk k
Recall that  and so the index is also the cardinality of the set ofk k k kLÏK œ KÎL
right cosets of  in .L K

It is convenient to extend the quotient and index notation as follows: If L Ÿ K
and if  is any nonempty subset of , then we write\ K

\ÎL œ ÖBL ± B − \×

and denote the cardinality of  by . This is not entirely standard\ÎL Ð\ À LÑ
notation, but it is useful. For example, if  is a subgroup of , but  is not aO K LO
subgroup, we may still want to consider the set  and the indexLÎO œ LOÎO
ÐLO À OÑ. We will also have use for the following concept.

Definition Let .L Ÿ K
1  A set consisting of exactly one element from each coset in  is called a) KÎL

left  for  in  or for .transversal L K KÎL( )
2  A set consisting of exactly one element from each right coset in  is) LÏK

called a  for  in  or for .right transversal L K LÏK( )

Now we can give some important properties of the index.
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Theorem 3.1 Let  be a group.K
1  If , then) L Ÿ K

ÐK À LÑ œ " Í K œ L

2  If  is a union of cosets of , then) \ © K O Ÿ K

k k k k\ œ O † Ð\ À OÑ

Hence, if , thenLßO Ÿ K

k k k kLO œ O † ÐLO À OÑ

In particular,

k k k kK œ O † ÐK À OÑ

and so if  is finite, thenK

ÐK À OÑ œ
K

O

k kk k
3   If  then) ( )Multiplicativity L Ÿ O Ÿ K

ÐK À LÑ œ ÐK À OÑÐO À LÑ

as cardinal numbers. Hence,

L Ÿ O ÐK À LÑ œ ÐK À OÑ  ∞ Ê L œ Oand

4  Let . If  is finite or if , then) LßO Ÿ K K LO Ÿ K

ÐK À OÑ œ ÐLO À OÑ  ∞ Ê K œ LO

5  If , then) LßO Ÿ K

ÐLO À OÑ œ ÐL À L ∩OÑ

6   Let  and  for all  and) ( )Poincaré's theorem L ßá ßL Ÿ K ÐK À L Ñ  ∞ 3" 8 3

let . Then  holds:M œ L ∩â∩L5 " 5 Poincaré's inequality

ÐK À L ∩â∩L Ñ Ÿ ÐK À L ÑâÐK À L Ñ" 8 " 8

and so, in particular,  is also finite.ÐK À L ∩â∩L Ñ" 8

 a  The inequality above can be replaced by division if)

M L Ÿ K5 5" ( )3.2

for all .5 œ "ßá ß8  "
 b  Equality holds in Poincaré's inequality if and only if)

ÐM L À L Ñ œ ÐK À L Ñ5 5" 5" 5"

for all . Hence, if  is finite or if 3.2  holds for all ,5 œ "ßá ß8  " K 5( )
then equality holds in Poincaré's inequality if and only if
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M L œ K5 5"  

for all .5 œ "ßá ß8  "
7  If a finite group  has subgroups  and  for which  and) K L O ÐK À LÑ

ÐK À OÑ K œ LO are relatively prime, then  and equality holds in
Poincaré's inequality, that is,

ÐK À L ∩OÑ œ ÐK À LÑÐK À OÑ

Proof. We leave proof of part 1) and part 2) to the reader. For part 3), let  be aM
left transversal for  and let  be a left transversal for . If , thenKÎO N OÎL + − K
+ œ 35 5 − O 5 œ 42 4 − N for some  and  for some , whence

+L œ 35L œ 342L œ 34L

Moreover,

34L œ 3 4 L Ê 3O ∩ 3 O Á g Ê 3 œ 3w w w w

and so , whence . Thus, the set  is a left4L œ 4 L 4 œ 4 Ö34 ± 3 − Mß 4 − N×w w

transversal for . We leave proof of part 4) for the reader.KÎL

For part 5), let  and consider the function M œ L ∩O 0ÀLÎM Ä LOÎO
defined by . This map is well defined and injective since if0Ð2MÑ œ 2O
2 ß 2 − L 2 2 − L" # "#

", then  implies that

2 M œ 2 M Í 2 2 − M Í 2 2 − O Í 2 O œ 2 O" # " " " ## #
" "

Also,  is surjective since for any  and ,0 2 − L 5 − O

0Ð2MÑ œ 2O œ 25O

Hence, .ÐL À L ∩OÑ œ ÐLO À OÑ

For part 6), we proceed by induction on . For , we have8 8 œ #

ÐK À L ∩L Ñ œ ÐK À L ÑÐL À L ∩L Ñ

œ ÐK À L ÑÐL L À L Ñ

Ÿ ÐK À L ÑÐK À L Ñ

" # " " " #

" " # #

" #

and the last inequality can be replaced by division if . Moreover,L L Ÿ K" #

equality holds if and only if . Assume the result is trueÐL L À L Ñ œ ÐK À L Ñ" # # #

for  and let . ThenL ßá ßL M œ L ∩â∩L" 8" 8" " 8"

ÐK À M ∩ L Ñ œ ÐK À M ÑÐM À M ∩ L Ñ

Ÿ ÐK À L ÑâÐK À L ÑÐM À M ∩ L Ñ

œ ÐK À L ÑâÐK À L ÑÐM L À L Ñ

Ÿ ÐK À L ÑâÐK À L Ñ

8" 8 8" 8" 8" 8

" 8" 8" 8" 8

" 8" 8" 8 8

" 8

and both inequalities can be replaced with division signs if



M L Ÿ K5 5"

for all . Moreover, equality holds if and only if5 œ "ßá ß8  "

ÐM L À L Ñ œ ÐK À L Ñ5" 5 5 5

for all .5

For part 7), since each of  and  divides  and sinceÐK À LÑ ÐK À OÑ ÐK À L ∩OÑ
these factors are relatively prime, we have

ÐK À LÑÐK À OÑ ± ÐK À L ∩OÑ

Hence, Poincaré's inequality is an equality:

ÐK À L ∩OÑ œ ÐK À LÑÐK À OÑ

and so the finiteness of  implies that .K K œ LO

We have seen (Theorem 2.21) that any subgroup of a finitely-generated abelian
group is finitely generated. We can now prove that if  is a finitely-generatedK
group, then any subgroup of finite index is also finitely generated.

Theorem 3.3 Let  be a finitely-generated group. If  is a subgroup of  ofK L K
finite index, then  is also finitely generated.L
Proof. Let  be a left transversal for , with . LetX œ Ö> ßá ß > × KÎL > œ "" 7 "

ÖB ßá ß B × K" 8  be a generating set for  and let

[ œ ÖB ßá ß B × ∪ ÖB ßá ß B ×" 8 " 8
" "

Thus, if , then+ − K

+ œ A âA: "

for some . But  for some  and  and soA − [ A œ >= > − X = − L3 " " "

+ œ A âA >=: # "

We are now prompted to consider how the 's and 's commute. For each > A > − X
and , there exist unique  and  for whichA − [ > − X 2 − Lw

A> œ > 2w

Let  be the finite set of all such 's, as  varies over  and  varies overW © L 2 A [ >
X = − W A > œ A œ >=. Note that  since . By continually moving the element" " " " "

belonging to  forward in the product expression for , we getX +

+ œ > = â= − > ØWÙw w
: "

for some  and . But if , then  implies that> − X = − W + − L + − > ØWÙ © > Lw w w
3

> œ " L Ÿ ØWÙ W © L L œ ØWÙw . Hence,  and since , we have .
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Quotient Groups and Normal Subgroups
Let  be a group and let . We have seen that the equivalence relationK L Ÿ K
corresponding to the partition  is equivalence modulo :KÎL L

+ ´ , L +L œ ,Lmod if

Now, there seems to be a natural way to “raise” the group operation from  toK
KÎL  by defining

+L ‡ ,L œ +,L (3.4)

Of course, for this operation to make sense, it must be well defined, that is, we
must have for all ,+ß + ß ,ß , − K" "

+ + − L , , − L Ê Ð+ , Ñ Ð+,Ñ − L" "
" " "

" "and

Taking  and  gives the necessary condition+ œ " , œ ," "

+ − L Ê , +, − L" (3.5)

However, this condition is also sufficient, since if it holds, then

, + +, œ Ð, + , ÑÐ, +, ÑÐ, ,Ñ − L" " " " " "
" " " " " "

" "

Note that (3.5) is equivalent to each of the following conditions:

1   for all ) +L+ © L + − K"

2   for all ) +L+ œ L + − K"

3   for all .) +L œ L+ + − K

Definition A subgroup  of  is  in , written , ifL K K L Knormal ü

+L œ L+

for all . If  and , we write . The family of all normal+ − K L K L Á K L – Kü
subgroups of a group  is denoted by .K ÐKÑnor

Thus, the product (3.4) is well defined if and only if . Moreover, ifL Kü
L K +ß , − Kü , then for any ,

+,L œ +,LL œ +L,L

that is,

+L ‡ ,L œ +L,L

In particular, the set product of two cosets of  is a coset of . Moreover, if theL L
set product of cosets is a coset, that is, if

+L,L œ -L

for some , then  and so , that is,- − K +, − -L -L œ +,L



+L,L œ +,L

Let us refer to this as the . Finally, if the coset product rulecoset product rule
holds, then , sinceL Kü

+L+ © +L+ L œ L" "

for all . Thus, the following are equivalent:+ − K

1  The binary operation)

+L ‡ ,L œ +,L

is well defined on .KÎL
2  .) L Kü
3  The set product of cosets is a coset.)
4  The coset product rule holds.)

Moreover, if these conditions hold, then  is actually a group under the setKÎL
product, for it is easy to verify that the set product is associative,  hasKÎL
identity element  and that the inverse of  is . Thus, we can add a fifthL +L + L"

equivalent condition to the list above:

5   is a group under set product.) KÎL

Before summarizing, let us note that the following are equivalent:

L K

+L © L+ + − K

, − +L Ê , − L+ +ß , − K

, − +L Ê , − + L +ß , − K

+ ´ , L Ê + ´ , L +ß , − K

ü

 for all 
 for all 

 for all 
 for all 

" "

" "mod mod

Also, the following are equivalent:

The coset product rule holds
 for all 

 for all 
+L,L © +,L +ß , − K

+ − +Lß , − ,L Ê + , − +,L +ß , − L

+ ´ + Lß , ´ , L Ê + , ´ +, L

w w w w

w w w wmod mod mod

Now we can summarize.

Theorem 3.6 Let . The following are equivalent:L Ÿ K
1  The set product on  is a well-defined binary operation on .) KÎL KÎL
2  The coset product rule)

+L,L œ +,L

holds for all .+ß , − L
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3   is a normal subgroup of .) L K
4   is a group under set product, called the  or ) KÎL quotient group factor

group of  by .K L
5  The inverse preserves equivalence modulo , that is,) L

+ ´ , L Ê + ´ , Lmod mod" "

for all .+ß , − K
6  The product preserves equivalence modulo , that is,) L

+ ´ + Lß , ´ , L Ê + , ´ +, Lw w w wmod mod mod

for all .+ß + ß ,ß , − Kw w

When we use a phrase such as “the group ” it is the with the tacitKÎL
understanding that  is normal in . Note finally that statements 5) and 6) sayL K
that equivalence modulo  is a  on . A L Kcongruence relation congruence
relation  on an algebraic structure, such as a group, is an equivalence relation)
that preserves the (nonnullary) algebraic operations. Thus, a congruence relation
) on a group  must satisfy the conditionsK

+ , Ê + ,) )" "

and

+ ,ß - . Ê Ð+-Ñ Ð,.Ñ) ) )

Theorem 3.6 shows that these two conditions are actually equivalent for groups.

More on Normal Subgroups
There are several slight variations on the definition of normality that are often
useful. We leave proof of the following to the reader.

Theorem 3.7 Let . The following are equivalent:L Ÿ K
1  ) L Kü
2   for all ) L © L + − K+

3   for all ) L ª L + − K+

4  Every right coset of  is a left coset, that is, for all there is a ) L + − Kß , − K
such that L+ œ ,L

5  Every left coset is a right coset.)
6  For all ,) +ß , − K

+, − L Ê ,+ − L

7  If  and , then  for some .) + − K 2 − L +2 œ 2 + 2 − Lw w

Theorem 3.7 implies that a normal subgroup permutes with all subgroups of .K
Hence, the normality of either factor guarantees that the set product  is aLO
subgroup.



Theorem 3.8 Let .LßO Ÿ K
1  If either  or  is normal in , then  and  permute and) L O K L O

LO œ L ”O

In this case, we refer to  as the  of  and .LO L Oseminormal join
2  If both  and  are normal in , then  is also normal in  and we) L O K LO K

refer to  as the  of  and .LO L Onormal join
3  The fact that  does not imply that either subgroup need be) LO Kü

normal.
Proof. For part 3), let . LetK œ W%

L œ Ö Ð"#ÑÐ$%Ñß Ð"$ÑÐ#%Ñ Ð"%ÑÐ#$Ñß Ð#%Ñß Ð"$Ñß Ð"#$%Ñß Ð"%$#Ñ×+, , 

and

O œ W œ Ö ß Ð"#Ñß Ð"$Ñß Ð#$Ñß Ð"#$Ñß Ð"$#Ñ×$ +

Then  has size  and so ,L ∩O œ Ö ß Ð"$Ñ× # LO œ Ð) ‚ 'ÑÎ# œ #% œ W+ k k k k%
which implies that . But neither subgroup is normal:  is not normalLO œ W L%

since  and  is not normal since Ð"%ÑÐ"$ÑÐ"%Ñ œ Ð%$Ñ Â L O Ð"%ÑÐ"#ÑÐ"%Ñ œ
Ð%#Ñ Â W$.

Example 3.9 The normal subgroups of  ( ) We have seen that for , theH#8 . ± 8
subgroups of the dihedral group  areH#8

1  the cyclic subgroup  of order ,) Ø Ù .38Î.

2  for each , the dihedral subgroup) ! Ÿ 5  8Î.

W œ Ø Ù “ Ø Ù œ Ø ß Ù53 3 3 53 35 8Î. 8Î. 5 8Î.

of order .#.

Subgroups of type 1) are normal, since conjugation gives

53 3 3 5 3 33 <8Î. 3 <8Î. 8Î.Ð Ñ œ − Ø Ù

Let

W œ Ø ß Ù53 35 8Î.

be a subgroup of type 2). Then since , it follows that  is normal ifØ Ù W W3 ü8Î.

and only if the conjugates of the other generator  are in . Conjugation by 53 35 W
gives

3 53 3 53Ð Ñ œ5 " #5

which is in  if and only if  for some integer , that is, if andW œ 73 3#5 578Î.

only if
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# ´ 7 8
8

.
mod

Multiplying both sides of this by  gives , that is,  and. #. ´ ! 8 8 ± #.mod
since , we must have  or . Conversely, if  or ,. ± 8 8 œ . 8 œ #. 8 œ . 8 œ #.
then the congruence holds and  is closed under conjugation by .W 3

If , then . If , then  and  or . If8 œ . W œ H 8 œ #. 9ÐWÑ œ 8 5 œ ! 5 œ "#8

5 œ ! W œ Ø ß Ù 5 œ " W œ Ø ß Ù, then  and if , then . Moreover, since5 3 53 3# #

ÐH À WÑ œ ##8 , both subgroups are normal, as we will prove in Theorem 3.17.
Thus, the proper normal subgroups of  are the subgroups of  and, for H Ø Ù 8#8 3
even, the two subgroups  and  of order .Ø ß Ù Ø ß Ù 85 3 53 3# #

Special Classes of Normal Subgroups
There are two very important special classes of normal subgroups. Note that
L K L Kü # if and only if  is invariant under all inner automorphisms  of .+

Definition Let  be a group.K
1  A subgroup  of  is  in  if it is invariant under all) L K Kcharacteristic

automorphisms of . If  is characteristic in , we write . This isK L K L « K (
not a standard notation, there being none.  We also write  if ) L K L « Kö
and .L Á K

2  A subgroup  of  is  in  if it is invariant under all) L K Kfully invariant
endomorphisms of .K

Some of the most important subgroups of a group are characteristic. For
example, the center  of a group  is characteristic in .^ÐKÑ K K

The Lattice of Normal Subgroups of a Group
If  is a group, then  is a subfamily of  and is partially ordered byK ÐKÑ ÐKÑnor sub
set inclusion as well. Moreover, the intersection of any family  of normalY
subgroups of  is normal in  and so the meet of  in  is the same asK K ÐKÑY nor
the meet of  in .Y subÐKÑ

As to join, if  is a nonempty family of normal subgroups of ,Y œ ÖR ± 3 − M× K3

then the join of  in the lattice  is the subgroupY subÐKÑ

2
3−M 3 3 3 3 3R œ Ö+ â+ ± + − R ß 8   !×

" 8 5 5

Actually, Theorem 3.7 implies that we can collect factors from the same
subgroup  and soR3

2
3−M 3 3 3 3 3 5 4R œ Ö+ â+ ± + − R ß 3 Á 3 5 Á 4ß 8   !×

" 8 5 5
 for 

In particular, if  is a finite family, then the join takes theY œ ÖR ßá ßR ×" 7

particularly simple form



2Y œ Ö+ â+ ± + − R ×" 7 3 3

Now, if , then+ − K

Š ‹2 2 2
3−M 3−M 3−M3 3

+

3
+R œ R œ R

and so the join of  in  is normal in . It follows that the join of  inY YsubÐKÑ K
sub norÐKÑ ÐKÑ is equal to the join of  in . Thus,Y

, , 2 2
nor sub nor subÐKÑ ÐKÑ ÐKÑ ÐKÑ

Y Y Y Yœ œand

which holds also when  is the empty family. Hence,  is a completeY norÐKÑ
sublattice of .subÐKÑ

Theorem 3.10 Let  be a group.K
1  The subgroups  and  are normal in .) Ö"× K K
2  If  is a family of normal subgroups of , then) ÖR ± 3 − M× K3

, 2
3−M 3−M3 3R Rand

are normal subgroups of . Hence,  is a complete sublattice ofK ÐKÑnor
subÐKÑ.

The maximal and minimal normal subgroups of a group play an important role
in the theory. We state the definitions here for future use.

Definition Let  be a group and let .K L Kü
1   is  if it is minimal in the partially ordered set of all) L minimal normal

nontrivial normal subgroups of  under set inclusion .K ( )
2   is  if it is maximal in the partially ordered set of all) L maximal normal

proper normal subgroups of  under set inclusion .K ( )

The Quasicyclic Groups
For each prime , we can now describe an infinite abelian group , called: Ð: Ñ™ ∞

the  that has a very interesting subgroup lattice.:-quasicyclic group
Specifically, the lattice of proper subgroups of  consists entirely of a™Ð: Ñ∞

single ascending chain of  cyclic subgroupsfinite

Ö"×  Ø+ Ù  Ø+ Ù  â" #

We begin by looking at the quotient group



™
™ ™œ 7ß8 − ß ! Ÿ 7  8ß Ð7ß 8Ñ œ "

7

8
š ›¹

The set
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W œ 7ß8 − ß ! Ÿ 7  8ß Ð7ß 8Ñ œ "
7

8
š ›¹ ™

is a left transversal for  and so we can simply identify  with , under ™  ™Î Î W
addition modulo . Note that the order of  is ." 7Î8 − W 8

Let  be a prime and let  be the subgroup of  consisting of those: Ð: Ñ W™ ∞

elements of order a power of , that is,:

™ ™Ð: Ñ œ 7ß 5 − ß ! Ÿ 7  : ß : ± 7
7

:
y∞ 5

5œ G¹
If  and  for , then there are integers  and  forL  Ð: Ñ 7Î: − L 7  ! + ,™ ∞ 5

which  and so in ,+7  ,: œ " Ð: Ñ5 ∞™

" +7  ,: +7

: : :
œ œ − L

5 5 5

5

Hence,

! Á 7Î: − L Í "Î: − L Í "Î: − L 4 Ÿ 55 5 4  for all 

Thus, since  is proper, there must be a largest integer  for which .L 8 "Î: − L8

Then

"Î: − L Í 5 Ÿ 8 Í "Î: − Ø"Î: Ù5 5 8

and so  is cyclic of order . Hence, the proper subgroups of L œ Ø"Î: Ù : Ð: Ñ8 8 ∞™
are the subgroups

Ö!×  Ø"Î:Ù  Ø"Î: Ù  â#

In a later chapter, we will ask the reader to prove that the quasicyclic groups
™Ð: Ñ∞  are the only infinite groups (up to isomorphism) with the property that
their proper subgroups consist entirely of a single ascending chain

Ö!×  W  W  â" #

The Normal Closure of a Set
If  is a subset of a group , then the smallest normal subgroup of  that\ K K
contains  is the intersection of all normal subgroups of  that contain . This\ K \
subgroup is called the  of  in  and we will find it useful tonormal closure \ K
use the following notations for this subgroup:

\ ß Ø\Ù Ð\ßKÑK
nor and nc

The normal closure has a simple characterization as follows.



Theorem 3.11 If  is a nonempty subset of a group , then the normal closure\ K
of  is the subgroup\

ncÐ\ßKÑ œ ØB ± B − \ß + − KÙ+

generated by the conjugates of  in .\ K

We can extend the notation and define for any ,\ß] © K

\ œ ØB ± B − \ß C − ] Ù] C

This allows us to describe the join of two subgroups as a set product.

Theorem 3.12 If , thenLßO Ÿ K

ØLßOÙ œ L OO

Proof. Since  and  permute, it follows that . Since L O L O Ÿ K L Ÿ L OO O O

and , it follows that . The reverse inclusion isO Ÿ L O ØLßOÙ Ÿ L OO O

clear.

Internal Direct Products

Strong Disjointness of a Family of Normal Subgroups
If  is a nonempty family of normal subgroups of a group ,Y œ ÖL ± 3 − M× K3

we write

L ³ ÖL ± 3 − Mß 4 Á 3×Ð3Ñ 42
for the join of all members of   . The members of such a family Y Yexcept L3

can enjoy two levels of disjointness. The members of  can be Y pairwise
essentially disjoint, that is,

L ∩L œ Ö"×3 4

for all . Note that  is pairwise essentially disjoint if and only if 3 Á 4 2 2 œ "Y 3 4

for  and  with  imply that . Also, the members2 − L 2 − L 3 Á 4 2 œ 2 œ "3 3 4 4 3 4

of a pairwise essentially disjoint family  , that is,Y commute elementwise
2 2 œ 2 2 2 − L 2 − L 3 Á 43 4 4 3 3 3 4 4 for all  and , where .

A stronger level of disjointness comes when each  is essentially disjoint fromL3

the  of the other members of the family. The following useful definition isjoin
not standard in the literature.

Definition We will say that a nonempty family  of normalY œ ÖL ± 3 − M×3

subgroups of a group  is  ifK strongly disjoint
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L ∩L œ Ö"×3 Ð3Ñ

for all .3 − M

The property of being strongly disjoint can be characterized as follows.

Theorem 3.13 Let  be a nonempty family of normal subgroupsY œ ÖL ± 3 − M×3

of a group . Then the following are equivalent:K
1   is strongly disjoint) Y
2  If)

2 â2 œ "3 3" 8

where  and  for , then  for all .2 − L 3 Á 3 4 Á 5 2 œ " 43 3 4 5 34 4 4

3  Every nonidentity  can be written, in a unique way except for the) + − 1Y
order of the factors, as a product

+ œ 2 â23 3" 8

where  and  for . The element  is called the th" Á 2 − L 3 Á 3 4 Á 5 2 33 3 4 5 3 44 4 4

component of . For , the th component of  is .+ 3 − M Ï Ö3 ßá ß 3 × 3 + "" 8

Proof. If  is strongly disjoint and , where the factors are fromY 2 â2 œ "3 3" 8

different subgroups and , then8   #

2 œ Ð2 â2 Ñ − L ∩L œ Ö"×3 3 3 3
"

Ð3 Ñ" # 8 " "

and so . Repeating this argument gives  for all  and so 1) implies2 œ " 2 œ " 43 3" 4

2).

If 2) holds, then the 's commute elementwise. To see that 3) holds, it is clearL3

that every nonidentity  has such a product representation. Moreover, if+ − 1Y
+ has two such product representations, then we may include additional factors
equal to  so that"

+ œ 2 â2 œ 5 â53 3 3 3" 8 " 8

where  and  for  and at least one factor on each side is2 ß 5 − L 3 Á 3 4 Á 53 3 3 4 54 4 4

not equal to the identity. Then

Ð5 2 ÑâÐ5 2 Ñ œ "3 3
" "

3 3" 8" 8

and so 2) implies that  for all . Hence 2) implies 3). Finally if 3) holds2 œ 5 43 34 4

and

+ − L ∩L3 Ð3Ñ

for some , then the uniqueness condition implies that .3 + œ "



The next theorem says that strong disjointness is a finitary condition and that if
Y Y is strongly disjoint, then it is relatively easy to check that  is also“ ÖO×
strongly disjoint.

Theorem 3.14 Let  be a nonempty family of normal subgroupsY œ ÖL ± 3 − M×3

of a group .K
1   is strongly disjoint if and only if every nonempty finite subset of  is) Y Y

strongly disjoint.
2  Let . If  is strongly disjoint, then  is strongly) norO − ÐKÑ Ï “ ÖO×Y Y Y

disjoint if and only if

Š ‹2Y ∩O œ Ö"×

The following result can be quite useful.

Theorem 3.15 Let  be a nonempty family of normal subgroupsY œ ÖL ± 3 − M×3

of a group . For any , there is a  that is maximal with respect toK O K N © Mü
the property that the family

YN 4œ ÖL ± 4 − N× ∪ ÖO×

is strongly disjoint.
Proof. Write

\ Yœ ÖN © M ± ×N  is strongly disjoint

Then  is nonempty and the union of any chain in  is in . Hence, Zorn's\ \ \
lemma implies that  has a maximal member.\

Internal Direct Products
We have already discussed the external direct product  of two groups K L K}
and . The internal direct product is defined as follows.L

Definition internal A group  is the   of two normal subgroupsK ( ) direct product
L O K œ L ìO K œ L  O and  if . We use the notation  to denote the
internal direct product.

The internal direct product  is a decomposition of  into anK œ L  O K
essentially disjoint product of  subgroups. Since the factors  and normal L O
commute elementwise, the product in  takes the formK

Ð2 5 ÑÐ2 5 Ñ œ Ð2 2 ÑÐ5 5 Ñ" " # # " # " #

where  and . Thus, the groups  and  have the same level of2 − L 5 − O L O3 3

independence as the factors in an external direct product. Indeed, the map

25 È Ð2ß 5Ñ

is an isomorphism from  to .L  O L O{
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Definition A nontrivial group  is said to be  if  cannot beK Kindecomposable
written as an internal direct product of two proper subgroups, that is,

K œ L  O Ê L œ K O œ K or 

The internal direct product can easily be generalized to arbitrary nonempty
families of normal subgroups.

Definition internal internal A group  is the  or K ( ) ( ) direct sum  direct product
of a family  of normal subgroups if  is strongly disjoint andY Yœ ÖL ± 3 − M×3

K œ 1Y Y. We denote the internal direct product of  by

L 3 or Y

or when  is a finite family,Y œ ÖL ßá ßL ×" 8

L  â  L" 8

Each factor  is called a  or  of . We denoteL K3 direct summand direct factor
the family of all direct summands of .K ,C ÐKÑWf

Theorem 3.13 implies the following.

Theorem 3.16 Let  be a nonempty family of normal subgroupsY œ ÖL ± 3 − M×3

of a group . Then the following are equivalent:K
1  ) K œ  Y
2  Every nonidentity  can be written, in a unique way except for the) + − K

order of the factors, as a product

+ œ 2 â23 3" 8

where  and  for ." Á 2 − L 3 Á 3 4 Á 53 3 4 54 4

A note on terminology is also in order. If  is a family ofY œ ÖL ± 3 − M×3

normal subgroups of a group , to say that the join   in  or to sayK L K1 3 is direct
that the direct sum   in  is the same as saying that  is stronglyL K3 exists Y
disjoint and that the join is the direct sum.

Projection Maps
Associated with an internal direct product

K œ ÖL ± 3 − M×3

is a family of projection maps. Specifically, the th  3 À K Ä Lprojection map 33 3

is defined by setting  to be the th component of . In this case,  can be3 33 3Ð+Ñ 3 +
thought of as an endomorphism of  and then the following hold:K

1) Ð Ñl œ3 +3 L L3 3



2)  if , where  is the zero map3 33 4 œ ! 3 Á 4 !
3)  is , that is, .3 3 33 33

#idempotent œ

Note also that if , then the images  and  commute3 Á 4 L œ Ð Ñ L œ Ð Ñ3 3 4 4im im3 3
elementwise.

We will have much more to say about the direct product in a later chapter.

Chain Conditions and Subnormality

Sequences of Subgroups and the Chain Conditions
Ordered sequences of subgroups play a key role in group theory. For infinite
ascending and descending sequences of subgroups, the issue centers around the
chain conditions. Generally speaking, chain conditions are considered a form of
finiteness condition on a group and we will study the consequences of the chain
conditions on various families of subgroups, such as the family of all subgroups,
all normal subgroups or all subnormal subgroups throughout the book. For the
record, here is the definition, which will be repeated later.

Definition Let  be a group and let  be a family of subgroups of .K Kf
1  A group  satisfies the    if every) ( )K ascending chain condition ACC on f

ascending sequence

L Ÿ L Ÿ â" #

of subgroups in  must eventually be constant, that is, if there is an f 8  !
such that  for all . In this case, we also say that  has theL œ L 5   !85 8 f
ACC.

2  A group  satisfies the   if every) ( )K descending chain condition DCC on f
descending sequence

L   L   â" #

of subgroups in  must eventually be constant, that is, if there is an f 8  !
such that  for all . In this case, we also say that  has theL œ L 5   !85 8 f
DCC.

3  A group  satisfies   if  has the ACC) ( )K Kboth chain conditions BCC on f
and the DCC on . In this case, we also say that  has BCC.f f

Finite Series and Subnormality
Finite ordered sequences of subgroups of a group are just as important as
infinite sequences, but rather than conveying any finiteness condition about a
group, they convey  about the group and are used tostructural information
classify groups via this structure. For example, a group  that has a finiteK
sequence

Ö"× œ L L â L œ K! " 8ü ü ü
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of subgroups for which each quotient  is abelian is called a L ÎL5" 5 solvable
group. Solvable groups play a key role in the Galois theory of fields and we will
study them in detail later in the book.

Unfortunately, the terminology surrounding finite ordered sequences of
subgroups is not at all standardized. For example, consider the following types
of finite sequences of subgroups of a group :K

1) An arbitrary nondecreasing sequence of subgroups of :K

K Ÿ K Ÿ â Ÿ K! " 8

2) A sequence of subgroups of  of the formK

K K â K! " 8ü ü ü

in which each subgroup is normal in its immediate successor.
3) A sequence of subgroups of  of the formK

K Ÿ K Ÿ â Ÿ K! " 8

in which each subgroup is normal in the parent group .K

Some authors refer to 1) as a series, 2) as a subnormal series and 3) as a normal
series. Some authors refer to 2) as a series and 3) as a normal series. Some
authors refer to 2) as a normal series and 3) as an invariant series.

Since arbitrary finite nondecreasing sequences of subgroups are a bit too general
to be really useful, it seems reasonable not to give them a special name and
simply refer to them as sequences, thus reserving the term series for more useful
types of sequences. Accordingly, we choose the following terminology.

Definition Let  be a group and let . A  in  from  to K K ßK Ÿ K K K K! 8 ! 8series
is a sequence of subgroups of  of the formK

K K â K! " 8ü ü ü

where  is normal in  for each . Each group  is a  in the series;K K 5 K5 5" 5 term
K K! 8 is the lower  of the series and  is the upper endpoint. Eachendpoint
extension  is a  in the series. A series is  if each inclusionK K5 5"ü step proper
is proper. The  of a series is the number of proper inclusions.length
1  A  in  is a series in  in which each term is normal in the) normal series K K

parent group .K
2  A  in  is a series in  in which each term is) characteristic series K K

characteristic in the parent group .K
3  A  in  is a series in  in which each term is fully) fully-invariant series K K

invariant in the parent group .K



The following generalization of normality is extremely important and we shall
have much to say about it in this book.

Definition A subgroup  is  in , written , if there isL Ÿ K K L Ksubnormal üü
a series

L L â L œ Kü ü ü" 8

from  to . If  and , we write . The family ofL K L K L  K L –– Küü
subnormal subgroups of  is denoted by .K ÐKÑsubn

Thus,  if there is a sequence of “normal steps” from  to .L K L Küü

Subgroups of Index #
The largest proper subgroups of a group are the subgroups of index . We can#
now improve upon Theorem 2.28.

Theorem 3.17 Let  be a subgroup of  of index .L K #
1  .) L Kü
2  If , then .) + − K + − L#

3  If  is finite, then any subgroup  of  is either a subgroup of  or else) K W K L

k k k kW ∩L œ W Î#

In words,  lies completely in  or else  lies half-in and half-out of .W L W L
Also, if , then+ − W Ï L

W œ ÐW ∩ LÑ “ +ÐW ∩ LÑ

where  is the disjoint union.“
Proof. For part 1), if , then  and  are both partitions of+ Â L ÖLß +L× ÖLßL+×
K +L œ L+ + − K L K + Â L and so  for all . Hence, . For part 2), if  thenü
+L Á L # KÎL + L œ Ð+LÑ œ L has order  in  and so , which implies that# #

+ − L W L L# . For part 3), if  is not contained in , the normality of  implies that
WL œ K and so

ÐW À L ∩ WÑ œ ÐLW À LÑ œ ÐK À LÑ œ #

Example 3.18 For , the alternating group  has index  in the symmetric8   # E #8

group  and so .W E W8 8 8ü

We can now show that the converse of Lagrange's theorem fails.

Example 3.19 The alternating group  has order , but has noE %xÎ# œ "#%

subgroups of order . For if  has order , then  has index  and so' L Ÿ E ' L #%

5 5 5#
% %− L − E $ E for all . But there are eight -cycles  in  and each one is a

square:
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5 5 5œ œ Ð Ñ − L% # #

Since these  elements cannot fit into a subgroup of size , there can be no such) '
subgroup.

Cauchy's Theorem
We have seen that the converse of Lagrange's theorem fails to hold. However,
there are some  converses to Lagrange's theorem. For example, there arepartial
certain classes of groups for which the converse of Lagrange's theorem does
hold. In particular, we will see later in the book that if  is a finite abelianK
group or if  where  is prime, then the converse of Lagrange's9ÐKÑ œ : :8

theorem holds, that is,  has a subgroup of any order  that divides .K 5 9ÐKÑ

On the other hand, it is true that if a   divides , then  has anprime : 9ÐKÑ K
element of order  and hence a subgroup of order . This key theorem is called: :
Cauchy's theorem.

Cauchy's theorem has a very colorful history, beginning with its discovery by
Cauchy in 1845 as the main conclusion of a 101-page paper ([6]). Here is a
quotation from the abstract of an article on the history of Cauchy's theorem by
M. Meo [24]:

The initial proof by Cauchy, however, was unprecedented in its
complex computations involving permutational group theory and
contained an egregious error. A direct inspiration to Sylow’s
theorem, Cauchy’s theorem was reworked by R. Dedekind, G. F.
Frobenius, C. Jordan, and J. H. McKay in ever more natural,
concise terms.

The proof we give below is essentially the proof of J. H. McKay [23], which
first appeared in 1959 and reminds us that we should never stop looking for
“better” proofs of even the most basic results.

Theorem 3.20  Let  be a finite group. If  is a prime( )Cauchy's theorem K :
dividing , then  has an element of order .9ÐKÑ K :
Proof. The key to the proof is to examine the set

\ œ ÖÐ+ ßá ß + Ñ ± + − Kß + â+ œ "×" : 3 " :

which is nonempty, since . In fact, the size of  is easilyÐ"ßá ß "Ñ − \ \
computed by observing that the first  coordinates any  can be:  " B − \
assigned arbitrarily and this uniquely determines the final coordinate. Hence,

k k k k\ œ K :"

which is divisible by .:



Now, if we can find a constant -tuple  in  where , then : Ð+ßá ß +Ñ \ + Á " + œ ":

and so , which proves the theorem. Note that a -tuple 9Ð+Ñ œ : : B œ Ð+ ßá ß + Ñ" :

is constant if and only if rotation one position to the right (with wrap around)
has no effect, that is, if and only if

Ð+ ß + ßá ß + Ñ œ Ð+ ßá ß + Ñ: " :" " :

We can put this in group-theoretic language as follows. Let each  act on5 − W:

\ : Ð" #â:Ñ by permuting the coordinates. Thus, if  is the -cycle , then5

5Ð+ ßá ß + Ñ œ Ð+ ß + ßá ß + Ñ" : : " :"

and so  is constant if and only if , that is, if and only if   .B B œ B B5 5 fixes

Let us consider how the powers of  act on an element . The -tuple 5 5B − \ : B5

comes from  by a -fold rotation. The  of  is the collectionB 5 B − \orbit

b 5 5ÐBÑ œ ÖBß Bßá ß B×:"

of the various rotated versions of . Now, the primeness of  implies that theB :
elements of  are either all distinct or all the same. For if  forb 5 5ÐBÑ B œ B3 4

3  4 B œ B !  3  4  : 5 œ 3  4 Ð5ß :Ñ œ ", then  where . If , then 534

implies that  for some  and so?5  @: œ " ?ß @ − ™

5 5 5 5 5B œ B œ B œ Ð Ñ B œ B?5@: ?5 ?: 5 ?

whence  for all . Thus,  has size  or  for all .5 b3B œ B 3 ÐBÑ " : B − \

Now, the orbits  are the equivalence classes of the equivalence relation onbÐBÑ
\ defined by

B ´ C C œ B 5 −if  for some 5 ™5

and so the distinct orbits form a  of . If  is the number of blocks ofpartition \ ,
size  and  is the number of blocks of size , then" - :

k k\ œ ,  -:

where , since  is a block of size . Hence,  divides ,   " ÖÐ"ßá ß "Ñ× " : \k k
implies that  and so, in particular, , which implies that there are at: ± , ,   :
least  constant -tuples  with .:  " : Ð+ßá ß +Ñ + Á "

Application to -Groups:

The following types of groups play a key role in the study of the structure of
finite groups.

Definition Let  be a nontrivial group and let  be a prime.K :
1  An element  is called a  if  for some .) + − K 9Ð+Ñ œ : 5   !:-element 5
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2   is a  if every element of  is a -element.) K K ::-group
3  A nontrivial subgroup  of  is called a  of  if  is a -) W K K W ::-subgroup

group.

Lagrange's theorem and Cauchy's theorem combine to describe finite -groups:
quite succinctly.

Theorem 3.21 A finite group  is a -group if and only if the order of  is aK : K
power of .:
Proof. If , then Lagrange's theorem implies that every element of 9ÐKÑ œ : K5

is a -element and so  is a -group. Conversely, if  is a finite -group but: K : K :
; ± 9ÐKÑ ; Á : K where  is prime, then Cauchy's theorem implies that  has an
element of order , which is false. Hence,  for some .; 9ÐKÑ œ : 5   "5

The Center of a Group; Centralizers
We briefly mentioned the following concept earlier.

Definition The   of a group  is the set of all elements of  thatcenter ^ÐKÑ K K
commute with all elements of , that is,K

^ÐKÑ œ Ö+ − K ± +, œ ,+ , − K× for all 

A group  is  if . A subgroup  of  is  if  isK ^ÐKÑ œ Ö"× L K Lcenterless central
contained in the center of .K

It is easy to see that the center of  is a normal subgroup of .K K

Example 3.22
a) The center of the quaternion group  is .U ^ÐUÑ œ Ö"ß"×
b) For  odd, the dihedral group  is centerless and for  even,8   $ H 8   $#8

^ÐH Ñ œ Ö ß ×#8
8Î#+ 3

c) For , the symmetric group  is rather large and it should come as no8   $ W8

surprise that  is centerless. To see this, suppose that  is not theW − W8 85
identity. If the cycle decomposition of  contains a -cycle with , that5 5 5   $
is, if

5 œ âÐ+ , -âÑâ

then  and so . On the other hand, if the cycle5 5 5 5Ð+ ,Ñ Á Ð+ ,Ñ Á Ð+ ,Ñ
decomposition of  is a product of disjoint transpositions:5

5 œ Ð+ ,Ñâ

then  and so  for . In either case,5 5 5 5Ð, -Ñ Á Ð, -Ñ Á Ð, -Ñ - Â Ö+ß ,×
5 Â ^ÐW Ñ W8 8 and so  is centerless.



d) We will prove in a later chapter that for , the alternating group  is8 Á % E8

simple, that is,  has no nontrivial proper normal subgroups. Hence,  isE E8 8

centerless for .8   %

The Number of Conjugates of an Element
Definition Let  be a group. The  of an element  is the set ofK , − Kcentralizer
all elements of  that commute with :K ,

G Ð,Ñ œ Ö+ − K ± +, œ ,+×K

The  of a subgroup  is the setcentralizer L Ÿ K

G ÐLÑ œ G Ð+ÑK K+−L
,

of all elements of  that commute with every element of .K L

It is easy to see that centralizers are subgroups of the parent group.

Let  be a group and let . ThenK + − K

+ œ + Í + œ + Í C B − G Ð+Ñ Í BG Ð+Ñ œ CG Ð+ÑB C C B "
K K K

"

and so the element  has precisely  distinct conjugates. This+ ÐK À G Ð+ÑÑK

formula is of considerable importance in the study of finite groups.

Theorem 3.23 Let  be a group and let . Let  denote the set ofK + − K Ð+ÑconjK
conjugates of  in . Then+ K

k kconjK KÐ+Ñ œ ÐK À G Ð+ÑÑ

which divides  when  is finite. The set  is called a 9ÐKÑ K Ð+ÑconjK conjugacy
class in .K

The Normalizer of a Subgroup
Suppose that . Then of course  is normal in itself. But it may also beL Ÿ K L
normal in a larger subgroup of .K

Definition Let  be a group and let . The largest subgroup  of K L Ÿ K R ÐLÑ KK

for which  is called the  of  in . A subset  isL R ÐLÑ L K \ © Kü K normalizer
said to   if .normalize L \ © R ÐLÑK

Theorem 3.24 Let  be a group. The normalizer of  isK L Ÿ K

R ÐLÑ œ Ö+ − K ± L œ L×K
+

Will see in the chapter on free groups (Theorem 12.21) that it is possible to have
L § L + Â R ÐLÑ+

K, in which case . However, since
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L œ L Í L © L L © L+ + +and
"

if a subset  is closed under inverses and has the property that  forW © K L © L=

all , then . In particular, since= − W W © R ÐLÑK

W œ Ö+ − K ± L © L×+

is closed under products, if  is finite then  is a subgroup of  and so  isW W K W
closed under inverses, whence . In particular, if  is finite, thenW œ R ÐLÑ KK

W œ R ÐLÑK .

The normalizer of  should not be confused with the  of ,L Lnormal closure
which is the smallest normal subgroup of  that contains . Note that ifK L
O Ÿ K L Ÿ K LO K normalizes , then  is also a subgroup of .

Theorem 3.25 If  is a group and , thenK L Ÿ K

G ÐLÑ R ÐLÑK Kü

Elementwise Commutativity
It is clear that  and  commute elementwise if and only ifL O

L Ÿ G ÐOÑ O Ÿ G ÐLÑK Kand

For essentially disjoint subgroups, we need only check that each subgroup is
contained in the  of the other. Proof of the following is left to thenormalizer
reader.

Theorem 3.26 Let  and  be essentially disjoint subgroups of a group .L O K
1  Then  and  commute elementwise if and only if each subgroup is) L O

contained in the normalizer of the other, that is,

L Ÿ R ÐOÑ O Ÿ R ÐLÑK K and 

In particular, if , then  and  commute elementwise.LßO K L Oü
2  If , then  and  commute elementwise if and only if) K œ L ìO L O

LßO Kü .

The Number of Conjugates of a Subgroup
Let  be a group and let . ThenK L Ÿ K

L œ L Í L œ L Í C B − R ÐLÑ Í BR ÐLÑ œ CR ÐLÑB C C B "
K K K

"

Thus, we obtain a count of the number of conjugates of a subgroup (the analog
of Theorem 3.23).

Theorem 3.27 Let  be a group and let . Let  denote the set ofK L Ÿ K ÐLÑconjK
conjugates of  in . ThenL K



k kconjK KÐLÑ œ ÐK À R ÐLÑÑ

which divides  when  is finite. The set  is called a 9ÐKÑ K ÐLÑconjK conjugacy
class in .subÐKÑ

Simple Groups
Nontrivial groups with no nontrivial proper normal subgroups are, in some
sense, simple.

Definition A nontrivial group  is  if it has no normal subgroups otherK simple
than  and .Ö"× K

Of course, if  is an abelian group, then all of its subgroups are normal and soK
an abelian group is simple if and only if its only subgroups are  and . ThisÖ"× K
is not easy for a group.

Theorem 3.28 An abelian group  is simple if and only if it is a cyclic group ofK
prime order.
Proof. If  is cyclic of prime order, then Lagrange's theorem implies that  hasK K
no subgroups of order different from  and  and so  is simple." 9ÐKÑ K
Conversely, if  is simple, then every nonidentity element  of  must generateK 1 K
K K œ Ø1Ù K Ø1 Ù, that is,  is cyclic. However, if  is infinite, then  is a nontrivial#

proper subgroup of , a contradiction. Hence,  is finite and cyclic. But ifK K
: ± 9ÐKÑ : K where  is prime, then Cauchy's theorem implies that  has a subgroup
W : K œ W of order  and so  has prime order.

We will show later in the book that the alternating group  is simple for allE8

8 Á %. Also, a famous result of  (1963, [11]), whose proof runsFeit–Thompson
255 pages, says that every  finite simple group has even order. Thus:nonabelian

1) The  simple groups are the cyclic groups of prime order.abelian
2) All  finite simple groups have even order.nonabelian

Commutators of Elements
The elements of a group of the form  play a special role.+,+ ," "

Definition Let  be a group. The  of  is the elementK +ß , − Kcommutator

Ò+ß ,Ó œ +,+ ," "

We denote the  of commutators of  by . The  by allset K ÐKÑV subgroup generated
commutators of  is usually denoted unfortunately  by  and is called theK K( ) w

commutator subgroup derived subgroup perfect, or  of . A group  is  ifK K
K œ Kw.
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We should note that authors who define the conjugate of two elements by
+ œ , +, Ò+ß ,Ó œ + , +,, " " " also define the commutator by .

It is easy to see that  is fully invariant in ; in particular, . Also, weK K K « Kw w

leave it as an exercise to prove that if , thenR Kü

Œ 7K K R

R R
œ

w w

Commutators have some very nice algebraic properties. Here are the most basic
of these properties.

Theorem 3.29 Let  be a group and let .K +ß ,ß - − K
1) Ò+ß ,Ó œ " Í +, œ ,+
2) Ò+ß ,Ó œ Ò,ß +Ó"

3) Ò+ß ,Ó œ Ò+ ß , Ó- - -

4  If , then in ,) L K KÎLü

Ò+Lß ,LÓ œ Ò+ß ,ÓL

5  If  commute with  and vice versa, then) +ß , − K -ß . − K

Ò+ß ,ÓÒ-ß .Ó œ Ò-+ß .,Ó

Note that since , every element of  is a product ofÒ+ß ,Ó œ Ò,ß +Ó K" w

commutators. The following characterization of commutator subgroups explains
why these subgroups are so important.

Theorem 3.30 R. , c. 1880  Let  be a group. Then for any( )Dedekind K
subgroup ,L Ÿ K

L K KÎL Í K Ÿ Lü  and  is abelian w

In particular,  is the smallest normal subgroup of  whose quotient isK Kw

abelian.
Proof. If  and  is abelian, then in , we haveL K KÎL KÎLü

Ò+ß ,ÓL œ Ò+Lß ,LÓ œ L

and so , whence . Conversely, if , then  is normal inÒ+ß ,Ó − L K Ÿ L K Ÿ L Lw w

K 2 − L + − K, since for any  and ,

2 œ Ò+ß 2Ó2 − L+

Also,  is abelian sinceKÎL

Ò+Lß ,LÓ œ Ò+ß ,ÓL œ L

Example 3.31 We leave it to the reader to show that the commutator subgroup
of the quaternion group  is , which is also the  ofU U œ Ö"ß"×w set



commutators, that is,

U œ ÐUÑw V

Similarly, the commutator subgroup of the dihedral group  is H H œ Ø Ù#8 #8
w #3

and so again the commutator subgroup of  is also the  of commutators:H#8 set

H œ ÐH Ñ#8
w

#8V

Example 3.32 For the symmetric group  on  symbols, we haveW 8   $8

W œ E œ ÐW Ñ8
w

8 8V

Since all commutators are even permutations, we have .W Ÿ E8
w

8

Now we make a few observations. First the product of any finite number of
disjoint commutators is a commutator, since if  and  are disjoint, thenα " α "3 3 4 4

Ò ß ÓÒ ß Ó œ Ò ß Óα " α " α α " "3 3 4 4 4 3 4 3

Second, if , then5 .ß − W8

5 5 . 5. " œ Ò ß Ó

and so if  and  have the same cycle structure, then the product  is a5 7 75
commutator.

Hence, we need only show that any  can be written as a product of5 − E8

disjoint permutations, each of which is a product  where  and  have theα " α "3 3 3 3

same cycle structure.

But since a cycle of odd length is even and a cycle of even length is odd, the
cycle decomposition of  must have an even number of cycles of even length. In5
other words, the cycle decomposition of  is a product of odd cycles and 5 pairs
of even cycles.

Now, every odd cycle  can be written as a product of two5 œ Ð+ â+ Ñ" #7"

equal-length cycles as follows:

5 œ Ð+ â+ Ñ œ Ð+ â+ ÑÐ+ â+ Ñ" #7" " 7" 7" #7"

Similarly, every pair of disjoint even cycles can be written as a product of two
equal-length cycles as follows (where ):5   7

5 œ Ð+ â+ ÑÐ, â, Ñ œ Ð+ â+ , â, ÑÐ+ , â, Ñ" #7 " #5 " #7 " 57" #7 57" #5

Hence,  can be written in the form5

5 α " α "œ Ð ÑâÐ Ñ" " 7 7
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where  and  are equal-length cycles for each  and  and  are disjointα " α " α "3 3 3 3 4 43
for . Hence, .3 Á 4 − ÐW Ñ5 V 8

When is ?VÐKÑ œ Kw

We have seen that for the quaternion, dihedral and symmetric groups,

K œ ÐKÑw V

Despite these examples, however, this is not always true. In fact, the question of
precisely when  is an active area of current research. We give anK œ ÐKÑw V
example of a group for which  and then discuss a few results in thisK Á ÐKÑw V
area. Readers interested in more details may wish to consult the survey article of
Kappe and Morse [19].

Example 3.33 (  [5]) Let  be the set of all matrices of the formCassidy K

7Ð0ß 1ß 2Ñ ³
" 0ÐBÑ 2ÐBß CÑ
! " 1ÐCÑ
! ! "

Ô ×
Õ Ø

where ,  and  are polynomials with rational coefficients. A0ÐBÑ 1ÐBÑ 2ÐBß CÑ
straightforward calculation shows that

7Ð0 ß 1 ß 2 Ñ7Ð0 ß 1 ß 2 Ñ œ 7Ð0  0 ß 1  1 ß 2  2  0 1 Ñ" " " # # # " # " # " # " #

and

7Ð0ß 1ß 2Ñ œ 7Ð0ß1ß2  01Ñ"

from which it follows that  is a group. Another computation shows that theK
commutators are given by

Ò7Ð0 ß 1 ß 2 Ñß7Ð0 ß 1 ß 2 ÑÓ œ 7Ð!ß !ß 0 1  0 1 Ñ" " " # # # " # # "

Thus, the commutator subgroup  is contained in the subgroup of all matricesKw

in  of the form  where . Moreover, any such matrix is aK 7Ð!ß !ß 2Ñ 2 − ÒBß CÓ
product of commutators, since

7 !ß !ß + B C œ 7Ð+ B ß !ß !Ñß7Ð!ß C ß !Ñ8 9� $: ‘
3ß4 3ß4

3ß4 3ß4
3 4 3 4

which shows that

K œ Ö7Ð!ß !ß 2Ñ ± 2 − ÒBß CÓ×w 

Thus, the matrix

E œ 7Ð!ß !ß "  BC  B C Ñ# #

is in . However, it is not a commutator, for ifKw



"  BC  B C œ 0 ÐBÑ1 ÐCÑ  0 ÐBÑ1 ÐCÑ# #
" # # "

for some  and , then equating coefficients of  shows0 ß 0 − ÒBÓ 1 ß 1 − ÒCÓ B" # " #
3 

that

C œ 0 1 ÐCÑ  0 1 ÐCÑ3
"ß3 # #ß3 "

for  and , where  is the coefficient of  in . But this implies3 œ !ß " # 0 B 0 ÐBÑ?ß3 ?
3

that the two-dimensional vector subspace of  spanned by  and ÒCÓ 1 ÐCÑ 1 ÐCÑ" #

contains the three independent vectors ,  and , which is not possible. Hence," C C#

not all members of  are commutators.Kw

Here is a small sampling of known results concerning the issue of when
K œ ÐKÑw V . Many more results are contained in Kappe and Morse [19].

Theorem 3.34  [31], 1976  If a group  contains a normal abelian( )Speigel K
subgroup  whose quotient  is cyclic, then .E KÎE K œ ÐKÑw V
Proof. If we can find a normal subgroup  for which  and F K F © ÐKÑ KÎFü V
is abelian, then

K Ÿ F © ÐKÑ © Kw wV

whence . To this end, let  and letK œ ÐKÑ KÎE œ ØBEÙw V

F œ ÖÒBß +Ó ± + − E× œ Ö+ + ± + − E× © ÐKÑB " V

To see that , we haveF Kü

Ð+ + ÑÐ, , Ñ œ + , + , œ Ð+,Ñ Ð+,Ñ − FB " B " B B " " B "

and

Ð+ + Ñ œ Ð+ Ñ + − FB " " " B

and for normality,

Ð+ + Ñ œ Ð+ + Ñ œ Ð+ Ñ Ð+ Ñ − FB " B + B " B B B B "3 3 3 3

To see that  is abelian, we haveKÎF

ÒBFß +FÓ œ ÒBß +ÓF œ F

and so  and  commute for all , which implies that  and BF +F + − E B +F B ,F3 4

commute for all .+ß , − E

For small groups, we also have .K œ ÐKÑw V

Theorem 3.35 Let  be a group. The following conditions imply thatK
K œ ÐKÑw V .
1  ) ( )Guralnick [15], 1980
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 a   is abelian and either  or .) K 9ÐKÑ  "#) 9ÐK Ñ  "'w w

 b   is nonabelian and either  or .) K 9ÐKÑ  *' 9ÐK Ñ  #%w w

2  ) ( )Kappe Morse and  [20], 2005
 a  , where  is an odd prime and .) 9ÐKÑ œ : : 8 Ÿ &8

 b  , where .) 9ÐKÑ œ # 8 Ÿ '8

On the other hand, if the center of  is large compared to the size of , thenK Kw

there will be elements of  that are not commutators.Kw

Theorem 3.36  [22], 1986  Let  be a group with . If( )MacDonald K ^ œ ^ÐKÑ

ÐKÀ^Ñ  9ÐK Ñ# w

then .K Á ÐKÑw V
Proof. Since  implies thatDß A − ^

Ò+Dß ,AÓ œ Ò+ß ,Ó

it follows that the number of distinct commutators is at most the number of
commutators of  and that is certainly at most .KÎ^ ÐKÀ^Ñ#

Additional Properties of Commutators
Here are some additional properties of commutators. The reader may wish
simply to read the statement of the theorem and move on, referring to the
theorem as needed at later times. (The proof is not particularly enlightening.)

Theorem 3.37 Let  be a group and let .K +ß ,ß - − K
1  ) 

Ò,ß +Ó œ Ò+ ß ,Ó œ Ò+ß , Ó

Ò+ß ,Ó œ Ò+ ß , Ó

" + " ,

" " ,+

2) 

Ò+ß ,-Ó œ Ò+ß ,ÓÒ+ß -Ó

Ò+,ß -Ó œ Ò,ß -Ó Ò+ß -Ó

,

+

3  Let . Then) + ßá ß + ß , ßá ß , − K" 8 " 7

Ò+ â+ ß , â, Ó œ Ò+ ß , Ó" 8 " 7 3 4

3œ" 4œ"

8 7$$ α3ß4

where . Also, the order of the factors on theα3ß4 " 8 " 7− Ø+ ßá ß + ß , ßá ß , Ù
right can be chosen arbitrarily, although the exponents depend on that
order. In particular, if  and  are positive integers, then7 8



Ò+ ß , Ó œ Ò+ß ,Ó8 7

3œ" 4œ"

8 7$$ α3ß4

where .α3ß4 − Ø+ß ,Ù
4  If  commutes with both  and , then for any integers  and ,) Ò+ß ,Ó + , 7 8
 a  ) Ò+ ß , Ó œ Ò+ß ,Ó7 8 78

 b  ) Ð+,Ñ œ + , Ò,ß +Ó7 7 7 � �7
#

 Hence, if  divides , then9ÐÒ+ß ,ÓÑ ˆ ‰7
#

Ð+,Ñ œ + ,7 7 7

Proof. The proofs of part 1) and part 2) are straightforward calculations. Part 3)
is proved by a double induction. For , we induct on . If , then the7 œ " 8 8 œ "
result is clear. If the result holds for , then part 2) implies that8  "

Ò+ â+ ß , Ó œ Ò+ ß , Ó Ò+ â+ ß , Ó" 8 " 8 " " 8" "
+ â+" 8"

and the inductive hypothesis completes the proof for . Assume the result7 œ "
is true for  and let . Then7 " + œ + â+" 8

Ò+ß , â, Ó œ Ò+ß , â, ÓÒ+ß , Ó" 7 " 7" 8
, â," 7"

and the inductive hypothesis completes the proof. As to the statement about the
order, we can rearrange the factors using the identity .BC œ C BB

Part 4a) follows from part 3) when . The result then follows for7ß8   !
negative exponents using part 1). For part 4b), note first that  also- œ Ò,ß +Ó
commutes with  and  and that+ ,

,+ œ -+, œ +,-

Now,

Ð+,Ñ œ Ð+,ÑâÐ+,ÑÐ+,Ñ7

7

ðóóóóóñóóóóóò
 factors

and if we move the rightmost  all the way to the left, the result is+

Ð+,Ñ œ + Ð+,ÑâÐ+,Ñ ,-7 7"

7"

ðóóñóóò
 factors

Repeating this process gives

Ð+,Ñ œ + Ð+,ÑâÐ+,Ñ , - -7 # 7# 7"

7#

ðóóñóóò
 factors

2

Continuing until all of the s are on the left gives+

Ð+,Ñ œ + Ð+,Ñ, - œ + , -7 7" 7" "#âÐ7"Ñ 7 7 � �7
#
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which proves the result for . For  we have, using part 4b) for7   ! 7  !
positive exponents along with part 4a) and part 1),

Ð+,Ñ œ Ð, + Ñ

œ , + Ò+ ß , Ó

œ + , Ò, ß + ÓÒ+ ß , Ó

œ + , Ò,ß +Ó Ò+ ß , Ó

œ + , Ò,ß +Ó Ò+ß ,Ó

œ + , Ò,ß +Ó Ò

7 " " 7

7 7 " "

7 7 7 7 " "

7 7 7 " "

7 7 7

7 7 7

� �
� �

� �
� �

7
#

7
#

# 7
#

# 7
#

#

,ß +Ó

œ + , Ò,ß +Ó



7 7

� �
� �

7
#

7
#

Here is one application of Theorem 3.37 that will be useful later in the book.

Theorem 3.38 If  is a nonabelian group with the property that all cyclicK
subgroups are normal, then
1   is periodic) K
2  Any nonabelian subgroup of  contains a quaternion subgroup) K
3  If  and , then .) +ß , − K 9Ð+Ñ  9Ð,Ñ  ) +, œ ,+
Proof. To see that  is periodic, we first show that any  has finiteK B Â ^ÐKÑ
order. Let  satisfyC − K

- ³ ÒBß CÓ Á "

Then the normality of  and  imply that  and soØBÙ ØCÙ - − ØBÙ ∩ ØCÙ

- œ B œ C8 7

for some . Thus,  commutes with  and  and so8ß7 Á ! - B C

" œ Ò-ß -Ó œ ÒB ß C Ó œ ÒBß CÓ œ -8 7 87 87

Hence,  has finite order and therefore so does . Now let . If- B B − ^ÐKÑ
C Â ^ÐKÑ BC Â ^ÐKÑ BC B, then  and so  has finite order and therefore so does .
Hence,  is periodic.K

Now suppose that  is a nonabelian subgroup of . Let  be chosen soH K Bß C − H
that  is minimal among all pairs of  elements in .9ÐBÑ  9ÐCÑ Hnoncommuting
We will show that  is a quaternion subgroup of . To see that  andU œ ØBß CÙ H B
C % : 9ÐBÑ have order , let  be a prime dividing  and let

- œ ÒBß CÓ œ B œ C8 7

as shown above. Since , it follows that  and  commute and so9ÐB Ñ  9ÐBÑ B C: :

Theorem 3.37 implies that

" œ ÒB ß CÓ œ ÒBß CÓ: :

whence . Hence,  is the only prime dividing  and similarly 9Ð-Ñ œ : : 9ÐBÑ 9ÐCÑ



and so

9ÐBÑ œ : 9ÐCÑ œ :3" 4"and

for some . Moreover,3ß 4   !

: œ 9Ð-Ñ œ 9ÐB Ñ œ
:

Ð: ß 8Ñ
8

3"

3"

which shows that  where . A similar argument for  gives8 œ : ? : ± ? Cy3

B œ - œ C: ? : @3 4

where  and .: ± ? : ± @y y

To eliminate  and  from the equation above, if  and? @ œ ? :α " mod
" α"œ @ :" mod , then taking the  power gives

B œ - œ C: :3 4" α" α

and so

ÐB Ñ œ ÒB ß C Ó œ ÐC Ñ" " α α: :3 4

where  and . Thus, replacing  by  and   by 9ÐB Ñ œ : 9ÐC Ñ œ : B B C C" α " α3" 4"

gives

B œ - œ C: :3 4

(3.39)

where  and" Á - œ ÒBß CÓ

9ÐBÑ œ : ß 9ÐCÑ œ : 9Ð-Ñ œ :3" 4" and

We may also assume that , for if , then , which is3   4   " 4 œ ! C œ - œ ÒBß CÓ
false.

The next step is to show that  and that . The key observation: œ # 3 œ 4 œ "
here is that for any integer , the elements  and  do not commute and so5 B C B5

9ÐB CÑ   9ÐCÑ œ : : : œ # 4  "5 4". But, if  is odd or if  and , then

9Ð-Ñ œ :
:

#
¹ Œ 74

and so Theorem 3.37 implies that

" Á ÐB CÑ œ B C œ B -5 : 5: : 5:4 4 4 4

and taking  gives . Hence,  and . Thus,5 œ : " Á " : œ # 3 œ 4 œ "34

9ÐBÑ œ 9ÐCÑ œ %ß 9Ð-Ñ œ # B œ - œ Cand # #
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where  commutes with  and  and since- B C

BCÐBCÑ œ -CBÐBCÑ œ -

it follows that  is quaternion.U œ ØBß CÙ

Commutators of Subgroups
Commutators can be defined for subsets as well as for elements.

Definition The   of two subsets  is the subgroupcommutator Ò\ß ] Ó \ß ] © K
generated by the commutators:

Ò\ß ] Ó œ ØÒBß CÓ ± B − \ß C − ] Ù

Note that, by definition,

K œ ÒKßKÓw

for any group . Here are some of the basic properties of these commutators.K

Theorem 3.40 Let .LßO Ÿ K
1  )

ÒLßOÓ œ ÒOßLÓ

2  and  commute elementwise if and only if , in particular,  ) L O ÒLßOÓ œ Ö"×

L Ÿ ^ÐKÑ Í ÒLßKÓ œ Ö"×

3  )

L K Í ÒLßKÓ Ÿ Lü

4  If , then) LßO Kü

ÒLßOÓ Ÿ L ∩O ÒLßOÓ Kand ü

Also,

LßO « K Ê ÒLßOÓ « K

5   normalizes  and so  ) L ÒLßOÓ

ÒLßOÓ ØLßOÙü

6  )

LÒLßOÓ œ L L O œ ØLßOÙO Oü

In particular,

ncÐLßKÑ œ LÒLßKÓ



Proof. We prove only part 5). Theorem 3.37 implies that if , then2 − L"

Ò2ß 5Ó œ Ò2 2ß 5ÓÒ2 ß 5Ó − ÒLßOÓ2 "
" "

"

Hence,  normalizes . Similarly,  normalizes  and so L ÒLßOÓ O ÒLßOÓ ØLßOÙ
also normalizes .ÒLßOÓ

Here are some additional properties of commutators of subgroups.

Theorem 3.41 Let .EßLßO Ÿ K
1  )

ÒEßLOÓ œ ÒEßLÓÒEßOÓL

where

ÒEßOÓ œ ØÒ+ß 5Ó ± + − Eß 5 − Oß 2 − LÙL 2

2  If  and if  is a family of normal subgroups of ,) E K œ ÖL ± 3 − M× Kü Y 3

then

ÒEß L Ó œ ÒEßL Ó2 23 3

This equation still holds even if one member of  is not normal. InY
particular, if  and , thenEßL K O Ÿ Kü

ÒEßLOÓ œ ÒEßLÓÒEßOÓ

3  If , then) R Kü

ÒLRßORÓ Ÿ ÒLßOÓR

and so

ÒLRßORÓR œ ÒLßOÓR

4  If , then) R Kü

” •LR OR ÒLßOÓR

R R R
ß œ

Proof. For part 1), if ,  and , then+ − E 2 − L 5 − O

Ò+ß 25Ó œ Ò+ß 2ÓÒ+ß 5Ó − ÒEßLÓÒEßOÓ2 L

and so . For the reverse inclusion, we haveÒEßLOÓ Ÿ ÒEßLÓÒEßOÓL

ÒEßLÓ Ÿ ÒEßLOÓ and since

Ò+ß 5Ó œ Ò+ß 2Ó Ò+ß 25Ó − ÒEßLOÓ2 "

we also have .ÒEßOÓ Ÿ ÒEßLOÓL
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For part 2), note that part 1) and the fact that  imply thatÒEßLÓ Kü

ÒEßLOÓ Ÿ ÒEßLÓÒEßOÓ

and the reverse inclusion is evident. For the general case, since
ÒEßL Ó Ÿ ÒEß L Ó 55 31  for all , it follows that

2 2ÒEßL Ó Ÿ ÒEß L Ó5 3

For the reverse inclusion, each generator of  belongs to a commutatorÒEß L Ó1 3

subgroup of the form , which is equal to , which in turnÒEßL âL Ó ÒEßL Ó3 3 3" 8 4
1

is contained in  and so1ÒEßL Ó3

ÒEß L Ó Ÿ ÒEßL Ó2 23 3

Part 3) follows from the fact that

ÒLRßORÓ œ ÒLRßOÓÒLRßRÓ

œ ÒOßLÓÒOßRÓ ÒLRßRÓ

Ÿ ÒOßLÓR

O

L O

Part 4) follows from part 3).

*Multivariable Commutators
We can extend the definition of commutators as follows. If , then+ß ,ß - − K

Ò+ß ,ß -Ó œ Ò+ß Ò,ß -ÓÓ

and in general, if , then+ ßá ß + − K" 8

Ò+ ßá ß + Ó œ Ò+ ß Ò+ ßá ß + ÓÓ" 8 " # 8

with . Note that some authors define  to be  and, inÒ+Ó ³ + Ò+ß ,ß -Ó ÒÒ+ß ,Óß -Ó
general, these are not the same.

Theorem 3.42 Let  be a group. The following are equivalent:K
1   For all ,) ( )Associativity +ß ,ß - − K

ÒÒ+ß ,Óß -Ó œ Ò+ß Ò,ß -ÓÓ

2   For all ,) ( )Distributivity +ß ,ß - − K

Ò+ß ,-Ó œ Ò+ß ,ÓÒ+ß -Ó

3   ) ( )Commutator subgroup is central

K Ÿ ^ÐKÑw



Proof. Since

Ò+ß ,-Ó œ Ò+ß ,ÓÒ+ß -Ó,

it follows that 2) holds if and only if  for all , whichÒ+ß -Ó œ Ò+ß -Ó +ß ,ß - − K,

holds if and only if  for all , that is, if and only ifÒ+ß -Ó − ^ÐKÑ +ß - − K
K Ÿ ^ÐKÑw . Hence, 2) and 3) are equivalent.

It is clear that 3) implies 1). Conversely, 1) is

Ò+ß ,Ó-Ò+ß ,Ó - œ +Ò,ß -Ó+ Ò,ß -Ó" " " "

which is equivalent to

Ò+ß ,Ó-Ò,ß +Ó- œ +Ò,ß -Ó+ Ò,ß -Ó" " "

Now, as to the last factor , note that 1) with  implies thatÒ,ß -Ó , œ -"

ÒÒ+ß ,Óß ,Ó œ "

for all . Hence,+ß , − K

Ò,ß -Ó œ Ò-ß ,Ó œ ,Ò, ß -Ó, œ Ò, ß -Ó" " " "

and so 1) is equivalent to

Ò+ß ,Ó-Ò,ß +Ó- œ +Ò,ß -Ó+ Ò, ß -Ó" " "

Expanding the commutators gives

+,+ , -,+, + - œ +,-, - + , -,-" " " " " " " " " "

and cancelling gives

+ , -,+, + œ -, - + , -," " " " " " " "

Moving the first factor on the right side to the left side and the last factor on the
left side to the right side gives

- + , -,+, œ , - + , -,+" " " " " " " "

which is equivalent to

Ò- ß + , Ó, œ , Ò- ß + , Ó" " " " " " " "

which shows that  commutes with , but  and Ò- ß + , Ó , - ß + , ," " " " " " " "

represent arbitrary elements of  and so  commutes with  for allK ÒBß CÓ D
Bß Cß D − K K Ÿ ^ÐKÑ, that is, .w

Theorem 3.43  Let . Then( )Hall–Witt Identity +ß ,ß - − K

Ò+ß , ß -Ó Ò,ß - ß +Ó Ò-ß + ß ,Ó œ "" , " - " +
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Proof. For the first factor we have

Ò+ß , ß -Ó œ ,Ò+ß Ò, ß -ÓÓ,

œ ,+Ò, ß -Ó+ Ò, ß -Ó ,

œ ,+, -,- + -, - ,,

œ ,+, -,- + -, -

œ + , + Ð, Ñ

" , " "

" " " " "

" " " " " "

" " " " "

, - " " -

By cycling ,  and , we get+ , -

Ò,ß - ß +Ó œ , - , Ð- Ñ" - - + " " +

and

Ò-ß + ß ,Ó œ - + - Ð+ Ñ" + + , " " ,

The product is easily seen to self-destruct.

If  and  are subgroups of , then we defineLßO P K

ÒLßOßPÓ œ ÒLß ÒOßPÓÓ

and more generally, if , thenL ßá ßL Ÿ K" 8

ÒL ßá ßL Ó œ ÒL ß ÒL ßá ßL ÓÓ" 8 " # 8

with .ÒLÓ ³ L

The subgroup  is generated by elements of the form ,ÒLß ÒOßPÓÓ Ò2ß - â- Ó" 8

where  and  for  and . Hence, Theorem 3.372 − L - œ Ò5 ß j Ó 5 − O j − P3 3 3 3 3

implies that

Ò2ß - â- Ó œ Ò2ß - Ó" 8 3$ α3

where .α3 " 8− Ø2ß - ßá ß - Ù Ÿ ØLßOßPÙ

Corollary 3.44  Let  be a group. Let ,  and ( )Three subgroups lemma K L O P
be subgroups of . Then if any two of the commutators ,  orK ÒLßOßPÓ ÒPßLßOÓ
ÒOßPßLÓ R K are contained in a normal subgroup  of , then so is the third
commutator.
Proof. We assume that  and  and use the Hall–ÒLßOßPÓ Ÿ R ÒPßLßOÓ Ÿ R
Witt Identity. Since  and  forÒ2ß 5 ß jÓ − ÒLßOßPÓ Òjß 2 ß 5Ó − ÒPßLßOÓ" "

2 − L 5 − O j − P,  and , it follows from the Hall-Witt identity that

Ò5ß j ß 2Ó œ ÐÒ2ß 5 ß jÓ Òjß 2 ß 5Ó Ñ − R" j " 5 " 2 "

and since  is normal in , we deduce that . Hence,R K Ò5ß j ß 2Ó − R"

ÒOßPßLÓ Ÿ R .



Exercises
1. Let  be a group and let . Prove that if  and  are centerless,K L K L KÎLü

then  is centerless.K
2. Let . Show that  has two subgroups  and  of order  thatK œ W G K L O '$ #}

are centerless but that  is not centerless. Thus, the set product ofK œ LO
centerless subgroups may be a group that is not centerless. What about the
direct product of centerless groups?

3. If a group  has the property that all of its subgroups are normal, must K K
be abelian?

4. Let  be a finite group and let  be normal subgroups of .K R ßá ßR K" 7

Show that  divides .k k k k k kR âR R â R" 7 " 7

5. A subgroup  of a group  is  if  for allL K LO œ OLpermutable
subgroups  of . Prove that a maximal subgroup that is permutable isO K
normal.

6. Show that if a normal subgroup  of a group  contains no nonidentityL K
commutators, then  is central in .L K

7. Use the Feit–Thompson Theorem to prove that a nontrivial group  of oddK
order is not perfect, that is, .K  Kw

8. Suppose that  is a finite group and that . Prove that  has aK K  K Kw

normal subgroup  of prime index.O
9. Show that the set product of subnormal subgroups need not be a subgroup.

Hint: Check the dihedral group .H)

10. Let  be a finite group and let  be a subgroup for which  isK L ÐK À LÑ
prime. Show that if there is at least one left coset  of  other than +L L L
itself that is also equal to some right coset , then .L, L Kü

11. a) Prove that the commutator subgroup of the quaternion group is
Ö"ß"×.

 b) Prove that the commutator subgroup of the dihedral group  isH#8

H œ Ø Ù#8
w #3 .

12. For which values of  is it true that the dihedral group  has a pair of8 H#8

proper normal subgroups  and  for whichL O

H œ LO L ∩O œ Ö"×#8 and

13. Let  be a group and let . Prove that .K L Ÿ K G ÐLÑ R ÐLÑK Kü
14. Prove that  for  in the following manner. Use the fact that W œ E 8   % E8

w
8 8

is simple for all . Show that . Deduce that8 Á % W ∩ E E8
w

8 8ü
W ∩ E œ Ö × W ∩ E œ E W ∩ E œ Ö ×8 8 8

w w w
8 8 8 8+ + or . Show that  is impossible.

15. Prove that if , thenR Kü

Œ 7K K R

R R
œ

w w

16. a) Find an infinite group that is periodic. : Look at the quotientHint
groups of the additive group of rationals.

 b) Prove that if  and  and  are periodic, then so is .L K L KÎL Kü
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17. Let , the center of . Show that  and that if  isR Ÿ ^ÐKÑ K R K KÎRü
cyclic, then  is abelian.K

18. Prove that a maximal subgroup  of a group  is normal if and only ifQ K
K Ÿ Qw .

19. Let  have prime index. Let  have the property thatL – K B − L
G ÐBÑ  G ÐBÑ C − L B KL K . Prove that an element  is conjugate to  in  if and
only if it is conjugate to  in .B L

20. Let  be a nonempty set of primes. A  is a group1 œ Ö: ßá ß : ×" 7 1-group
whose order  has the property that all primes dividing  lie in the set .8 8 1
For example, a group of order  is a -group. Let  be a# † & † ( Ö#ß &ß (× K$ #

finite group and let  be normal subgroups such that  is aL ßá ßL KÎL" 7 3

1 1-group for all . Prove that  is also a -group.3 KÎ L+ 3

21. A subgroup  of a group  is  ifL K abnormal

+ − ØLßL Ù+

for all . Prove that  is abnormal if and only if it satisfies the+ − K L
following conditions:

 a) If , then .L Ÿ O Ÿ K R ÐOÑ œ OK

 b)  is not contained in distinct conjugate subgroups, that is, if L O Ÿ K
and , then .O Á O L ©y O ∩O+ +

22. Let .LßO Ÿ K
 a  Prove that)

L œ LÒLßOÓ ØLßOÙ œ L OO Oü

 b) If  for some subset  of , show thatK œ Ø\Ù \ K

K œ ØÒBß CÓ ± Bß C − \Ùw
nor

23. Let  be a nonempty subset of a group  and let . Show thatW K LßO Ÿ K

W œ ÐW ÑLO O L

24  Let .  Prove that  Þ EßLßO Ÿ K

ÒELßEOÓ œ ÒELßEÓÒELßOÓ

25. Let .LßOßP Ÿ K
 a) Show that if  and , thenÒLßOßPÓ œ Ö"× ÒPßLßOÓ œ Ö"×

ÒOßPßLÓ œ Ö"×.
 b) Show that if ,  and  are normal in , thenL O P K

ÒLßOßPÓ Ÿ ÒPßLßOÓÒOßPßLÓ

26. Let  be a group and let  be a normal subgroup. Let  andK R Bß C − K
suppose that  and . Prove thatB C − R CBC B − R8 7 >+7 "+8

CBC B − R> " .
27. Let  be a group and let . Prove that if  has finite index in , thenK L Ÿ K L K

ÐK À LÑ œ ÐK À L Ñ B − KB  for any .



28. Let  be a nonabelian group. Show that  is a  subgroup of anyK ^ÐKÑ proper
centralizer .G Ð1ÑK

29. Let . Prove that L Ÿ K G ÐLÑ R ÐLÑÞK Kü
30. Let  be a group and let .K L Ÿ K
 a) Prove that  is normal in  if and only if all subsets of R Ÿ K K K

normalize .R
 b) Prove that if  normalizes the subgroups  and  of , then W L O K W

normalizes their join , that is,L ”O

R ÐLÑ ∩ R ÐOÑ Ÿ R ÐL ”OÑK K K

 c) Prove that if  and  normalize , then the set product  normalizesW X L WX
L .

 d) Prove that a subgroup  normalizes all supergroups of itself.L Ÿ K
31. Prove that if , then . In particular, L Ÿ K R ÐL Ñ œ R ÐLÑ G Ð2Ñ œK K K

+ + +

G Ð2 ÑK
+ .

32. Let  be a group and let  with . Prove thatK L Ÿ O Ÿ K L Kü

R œ
L R ÐLÑ

O O
K

KŒ 7
33. a) Show that the subgroup  ofL œ Ö ß Ð" #ÑÐ$ %Ñß Ð" $ÑÐ# %Ñß Ð" %ÑÐ# $Ñ×+

W% is normal. : Show that the conjugate of any transposition isHint
another transposition, in fact, .Ð+ ,Ñ œ Ð + ,Ñ5 5 5

 b) Show that the subgroup  is normal in  but notO œ Ö3ß Ð" #ÑÐ$ %Ñ× L
normal in .W%

 c) Conclude that normality is not transitive.
34. Let  be a group.K
 a) Let  be the intersection of all subgroups of  that have finite indexQ K

in . Show that  is normal in .K Q K
 b) Let  with finite index. Show that there is a normal subgroupL Ÿ K

R K R Ÿ L Ÿ K R Kü  for which  where  also has finite index in .
35. Let  be a group generated by two involutions  and . Show that  has aK B C K

normal subgroup of index .#
36. Let  be a finite group of odd order. Show that the product of all of theK

elements of , taken in any order, is in the commutator subgroup .K Kw

37. (P. Hall) Let . Show that if , then  is anEßF Ÿ K ÒEßEßFÓ œ Ö"× ÒEßFÓ
abelian group. : One possible proof is as follows: Show that Hint E
commutes with  and with  and that  commutes with . ThenÒEßFÓ ÒFßEÓ F Ew

use a direct computation to show that  whereÒ+ß ,ÓÒBß CÓ œ ÒCß B ÓÒ+ß ,Ó"

+ß B − E ,ß C − F and . Finally, use Theorem 3.37.
38. Let  be prime and consider the group: Á #

K œ Ð: Ñ™ { ™∞
#

where  is the -quasicyclic group. Show that  has a unique™Ð: Ñ : K∞
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maximal subgroup , but that  is not maximum in the lattice of allQ Q
proper subgroups of .K

39. A group  is said to be  if its commutator subgroup  isK Kmetabelian w

abelian. (Some authors define a group  to be  if  is central inK Kmetabelian w

K, which is stronger than our definition.)
 a) Prove that  is metabelian if and only if  has a normal abelianK K

subgroup  for which  is also abelian.E KÎE
 b) Prove that the dihedral group  is metabelian.H#8

 c) Let  be a finite field, such as  where  is prime. Let  whereJ : +ß , − J™:

+ Á ! À J Ä J. The map  defined by5+ß,

5+ß,À B È +B  ,

is called an  of . Show that the set  of allaffine transformation J ÐJÑaff
affine transformations of  is a subgroup of . Show that  isJ J ÐJÑJ aff
metabelian.

 d) Prove that if  where  and  are abelian, then  isK œ EF E F K
metabelian. : Show that  for  andHint Ò+ß ,Ó œ Ò+ß ,Ó +ß + − E, + + ,

"
" " " "

,ß , − F EF œ FE" . Use the fact that .
40. Let  be a group of order , where  is prime. Suppose that for eachK : :8

+ − K G œ G Ð+Ñ " :, the centralizer  has index  or .+ K

 a) Prove that . : Assume . LetG K ÐK À G Ñ œ :+ +ü Hint

M œ G Ÿ G,
1−K

+
1

+

Show that  is normal in . Then show that the elements of  areM K KÎM
actually permutations of , where . Show thatKÎG 1MÐBG Ñ œ 1BG+ + +

KÎM W is a subgroup of .KÎL

 b) Prove that .K Ÿ ^ÐKÑw

41. We have seen that the family  of all subgroups of  is a completesubÐKÑ K
lattice. Let  be the family of normal subgroups of .norÐKÑ K

 a) Show that the join of two normal subgroups  and  is the set productE F
EF.

 b) Show that  is a complete sublattice of .nor subÐKÑ ÐKÑ
 c) Prove that the distributive laws

E ” ÐF ∩ GÑ œ ÐE ” FÑ ∩ ÐE ” GÑ

E ∩ ÐF ” GÑ œ ÐE ∩ FÑ ” ÐE ∩ GÑ

for  imply the : For  withEßFßG Ÿ K EßFßG Ÿ Kmodular law
E Ÿ F,

E ” ÐF ∩ GÑ œ F ∩ ÐE ” GÑ

A lattice that satisfies the modular law is said to be a modular lattice.
 d) Prove that  is a modular lattice.norÐKÑ



 e) Is  necessarily distributive, that is, do the distributive lawsnorÐKÑ
necessarily hold? : Consider the -group .Hint % Z œ Ö"ß +ß ,ß +,×

 f) Prove that  need not be modular : Consider the alternatingsubÐKÑ . Hint
group  of order . Let E "# E œ ØÐ" #ÑÐ$ %ÑÙß F œ ØÐ" #ÑÐ$ %Ñß Ð" $ÑÐ#%

%ÑÙ G œ ØÐ" # $ÑÙ and .
 g) Prove the Dedekind law: For  with ,EßFßG Ÿ K E Ÿ F

EÐF ∩ GÑ œ F ∩ ÐEGÑ

Find an example to show that for arbitrary subgroups  of ,EßFßG K
EÐF ∩ GÑ EF ∩ EG is not necessarily equal to  and so the condition
that  is necessary.E Ÿ F

 h) Let  and  be subgroups of  with . Prove that ifEßF G K E Ÿ F

E ∩ G œ F ∩ G and EG œ FG

then .E œ F
42. Let  be a group with subgroups  and  and suppose that .K R L RL Ÿ K

Prove that if  and  are finite and relatively prime, then .ÐK À LÑ R R Ÿ Lk k
 43. Let  be a group and .K L Ÿ K
 a) Let . Show that the relation  if  is anL © \ © K B ´ C B C − L"

equivalence relation on . What do the equivalence classes of this\
relation look like? Let  be the cardinality of the set ofÐ\ À LÑ
equivalence classes.

 b) If , where . Show that if L © \ © ] © K \L © \ Ð\ À LÑ œ
Ð] À LÑ  ∞ \ œ ], then .

44. Prove that  and  both have the ACC on subgroups if and onlyR K KÎRü
if  has the ACC on subgroups.K

45. Sometimes it is useful to relate the commutator subgroup  ofÒLßOÓ
subgroups  and  to the commutator subgroup  of generating setsL O Ò\ß ] Ó
for  and . Let  and  be nonempty subsets of a group .L O \ ] K

 a  Show that)

Ò\ß Ø] ÙÓ œ Ò\ß Ø] ÙÓ œ Ò\ß ] ÓØ] Ù Ø] Ù

 b Show that  ) 

ÒØ\Ùß Ø] ÙÓ œ Ò\ß ] Ó œ Ò\ß ] ÓØ\ÙØ] Ù Ø] ÙØ\Ù

Complex Groups
Let  be a group. Let  be a nonempty family of subsets of  that forms aK KZ
group under set product. Such a group has been called a  basedcomplex group
on  (see Allen [1]). Let  be the union of the subsets in . We denote theK -Z Z
identity of  by . Also, we denote the inverse of  by . In theZ ZI E − E"

following exercises, let  be an arbitrary complex group based on the group .Z K
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46. Let . Show that  is a complex group in which the membersR K KÎRü
form a partition of . Thus, quotient groups are complex groups.K

47. Show that if  is the multiplicative group of all positive rational numbers

and if

d ‘œ ÖÐ<ß∞Ñ ± < − ×

then  is a complex group. Do the members of  form a partition of ?d d 

What is the identity of ? Does it contain the identity ? Compared " − 

the sizes of  and . Could  be a quotient group of ? d d  

48. Let  be the additive group of integers and let  be a positive integer. Show™ 5
that the set

m ™5 œ ÖÖ8× ∪ Ò8  5ß∞Ñ ± 8 − ×

is a complex group. What is the identity of ? What is the negative of them5

element ? Is this the set of negatives in  of theE œ Ö"× ∪ Ò"  5ß∞Ñ ™
elements of ?E

49. Show that all members of  have the same cardinality.Z
50. Show that for ,EßF − Z

E © F Ê F © E" "

51. Show that for ,EßF − Z

I Ÿ KßEF œ I Ê E ∪F © I ÐE ∪ FÑ ∩ I œ gor

52. Show that for ,EßF − Z

/ − EF ∩ FE Ê E œ F" "

and

EF ∪FE © I Ê E œ F" "

53. Suppose that the members of  form a partition of . Prove that  is aZ ZK
quotient group of , that is,  is the set of cosets of some normal subgroupK Z
of . : Show that  and that .K " − I I KHint ü

54. Prove that  is a quotient group of  if and only if . : Prove thatZ K I Ÿ K Hint
I Ÿ K Ÿ K if and only if the members of  are pairwise disjoint and .Z Z-

55. Prove that

E Á F − Ê E ∩F œ g E ∩ FZ or  is infinite



Chapter 4
Homomorphisms, Chain Conditions and
Subnormality

Homomorphisms
The structure-preserving functions between two groups are referred to as
homomorphisms. Before giving a formal definition, let us make a few remarks
about functions.

We denote the action of a function  on  by either  or ,0 À W Ä X = − W 0= 0Ð=Ñ
depending on readability. If  denotes the power set, then the k induced map
0 À kÐWÑ Ä kÐX Ñ is defined by

0ÐY Ñ œ Ö0Ð?Ñ ± ? − Y×

and the   is defined byinduced inverse map 0 À kÐX Ñ Ä kÐWÑ"

0 ÐZ Ñ œ Ö= − W ± 0Ð=Ñ − Z ×"

If , then a subset  is  , or , if0 À W Ä W E © W 0invariant under -invariant0
0ÐEÑ © E W W E © W. If  is a family of functions from  to , then a subset  is -Y Y
invariant if  is -invariant for all .E 0 0 − Y

Now we can define homomorphisms.

Definition Let  and  be groups. A function  is called a K L ÀK Ä L5 group
homomorphism homomorphism or just  if( )

5 5 5Ð+,Ñ œ Ð +ÑÐ ,Ñ

The set of all homomorphisms from  to  is denoted by . TheK L ÐKßLÑhom
following terminology is employed:
1  A surjective homomorphism is an , which we denote by) epimorphism

5À K Lq» .
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2  An injective homomorphism is a  or , which we) monomorphism embedding
denote by . If there is an embedding from  to , we say that 5 äÀ K L K L K
can be  in  and write .embedded L K Lä

3  A bijective homomorphism is an , which we denote by) isomorphism
5À K ¸ L K L K L. If there is an isomorphism from  to , we say that  and 
are  and write .isomorphic K ¸ L

4  A homomorphism of  into itself is an . The set of all) K endomorphism
endomorphisms of  is denoted by .K ÐKÑEnd

5  An isomorphism of  onto itself is an . The set of all) K automorphism
automorphisms of  is denoted by .K ÐKÑAut

If  is a homomorphism, then it is easy to see that5À K Ä L

5 5 5" œ " Ð+ Ñ œ Ð +Ñand " "

for any . Also, if , then the inverse map  is an+ − K ÀK ¸ L ÀL ¸ K5 5"

isomorphism from  to . The map that sends every element of  to theL K K
identity  is called the . (We cannot call it the identity map!)" − L zero map

In general, induced inverse maps are more well behaved than induced direct
maps. Here is an example.

Theorem 4.1 Let  be a group homomorphism.5À K Ä L
1  a  ) ) ( )Image preserves subgroups

W Ÿ K Ê W Ÿ L5

 b   If  is surjective, then) ( )Surjective image preserves normality 5

W K Ê W Lü 5 ü

2  ) ( )Inverse image preserves subgroups and normality

X Ÿ L Ê X Ÿ K5"

and

X L Ê X Kü 5 ü"

While it is true that isomorphic groups have essentially the same group–
theoretic structure, one must be careful in applying this notion to the subgroup
structure of a group. For example, in the group  of integers, the subgroups™
# œ Ö#8 ± 8 − × $ œ Ö$8 ± 8 − ×™ ™ ™ ™ and  are isomorphic but the quotients
™ ™ ™ ™Î# Î$ and  have different sizes. Thus, isomorphic subgroups need not
have the same index.

Example 4.2 Let  be the dihedral group, where  andH œ Ø ß Ù 9Ð Ñ œ $' 3 5 3
9Ð Ñ œ # W ' 0ÀH Ä W5 . Let  be the symmetric group of order . The map $ ' $

defined by
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0Ð Ñ œ Ð# $Ñ Ð" # $Ñ5 33 5 3 5

is an isomorphism and so . This tells us that the group of symmetries ofH ¸ W' $

the triangle is the group of permutations of the vertices.

Definition Let  be a group and let  be an endomorphism of .K ÀK Ä K K5
1   is  if) 5 nilpotent

58 œ !

for some , where  is the zero map.8  ! !
2   is  if) 5 idempotent

5 5# œ

We leave it as an exercise to show that the zero map is the only endomorphism
that is both nilpotent and idempotent.

Sums of Homomorphisms
If  are homomorphisms, then the map  defined by5 7 5 7ß À K Ä L  ÀK Ä L

Ð  ÑÐ+Ñ œ Ð +ÑÐ +Ñ5 7 5 7

is a homomorphism if and only if the images  and  commuteim imÐ Ñ Ð Ñ5 7
elementwise.

Definition Let  and  be groups. The  of a family  ofK L ßá ß ÀK Ä Lsum 5 5" 8

homomorphisms is the function defined by

Ð â ÑÐ+Ñ œ Ð +ÑâÐ +Ñ5 5 5 5" 8 " 8

for all .+ − K

If the images  commute elementwise, then the sum  is aimÐ Ñ â5 5 53 " 8

homomorphism and in this case, the sum itself is commutative, that is,
5 5 5 5" 8 " 8â œ â1 1

for any . Moreover, composition distributes over addition,1 − W8

5 5 5 55 55Ð â Ñ œ â" 8 " 8

and

Ð â Ñ œ â5 5 5 5 5 5 5" 8 " 8

Hence, if the images  commute elementwise, then the binomial formulaimÐ Ñ53

holds,



Ð â Ñ œ â
7

4 ßá ß 4
5 5 5 5" 8

7 4

4 â4 œ7 " 8
"
4

8� Œ 7
" 8

" 8

for any .7  !

Theorem 4.3 Let  have the property that the images 5 5 5" 8 3ßá ß − ÐKÑ Ð ÑEnd im
commute elementwise. If each  is nilpotent, then so is the sum53

7 5 5œ â" 8

Proof. For any ,7  !

7 5 587 4

4 â4 œ87 " 8
"
4

8œ â
87

4 ßá ß 4
� Œ 7

" 8

" 8

But if each  is nilpotent, then there is a positive integer  for which 5 53 3
77 œ !

for all  and so each term in the sum above is the zero map, since one of the3
exponents  is greater than or equal to .4 73

Kernels and the Natural Projection
The  of a homomorphism  is the subgroupkernel 5À K Ä L

kerÐ Ñ œ Ö+ − K ± + œ "×5 5

consisting of all elements of  that are sent to the identity of . This is easilyK L
seen to be a  subgroup of . Conversely, any normal subgroup is anormal K
kernel.

Theorem 4.4 Let . The map  defined byR K ÀK Ä KÎRü 1R

1RÐ+Ñ œ +R

is an epimorphism with kernel  and is called the  orR natural projection
canonical projection modulo .R

It is possible to tell whether a homomorphism is injective from its kernel.

Theorem 4.5 A group homomorphism  is injective if and only if5À K Ä L
kerÐ Ñ œ Ö"×5 .

Groups of Small Order
One of the most important outstanding problems of group theory is the problem
of classifying various types of groups up to isomorphism. This problem is called
the  and is, in general, very difficult. The classificationclassification problem
problem for all groups is unsolved. The classification problem for finitely-
generated abelian groups is solved (see Theorem 13.4). The classification
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problem for finite simple groups  to have been solved, and we discuss thisseems
in more detail in a later chapter.

Groups of relatively small order have been fully classified up to isomorphism.
For example, one can find such a classification of groups of order  or less in&!
Weinstein [36]. Of course, Lagrange's theorem gives a simple solution to the
classification problem for groups of prime order, since all such groups are
cyclic.

A bit later in the book, we will solve the classification problem for groups of
order  or less. For now, we can solve the classification problem for groups of"&
order  or less, which are easily analyzed by looking at the possible orders of)
the elements. In fact, since groups of prime order are cyclic, we need only look
at groups of order ,  and .% ' )

Groups of Order %

Let  be a group of order . If  has an element of order , then  is cyclic andK % K % K
K ¸ G # K%. Otherwise, all nonidentity elements have order , which implies that 
is abelian. In this case, if  are distinct nonidentity elements, then+ß , − K
K œ Ö"ß +ß ,ß +,× % % is the Klein -group. Thus, the groups of order  are (up to
isomorphism):

1) , the cyclic groupG%

2) , the Klein 4-group.Z ¸ G G# #}

Groups of Order '

If , then Cauchy's theorem implies that there exist  with9ÐKÑ œ ' +ß , − K
9Ð+Ñ œ $ 9Ð,Ñ œ # Ø+Ù # K and . Since  has index , it is normal in  and since
conjugation preserves order, we have

+ œ + + œ +, , #or

If , then  is abelian. In this case, since  and  are relatively+ œ + K 9Ð+Ñ 9Ð,Ñ,

prime,

9Ð+,Ñ œ 9Ð+Ñ9Ð,Ñ œ '

and so  is cyclic. If , thenK + œ + œ +, # "

K œ Ø+ß ,Ùß 9Ð+Ñ œ $ß 9Ð,Ñ œ #ß ,+ œ + ,"

and so  is the dihedral group . Also, since , the group  is also aK H H ¸ W K' ' $

symmetric group. Thus, the groups of order  are (up to isomorphism):'

1) , the cyclic groupG'

2) , the nonabelian dihedral (and symmetric) group.H ¸ W' $



Groups of Order )

Let . If  has an element of order , it is cyclic and . If every9ÐKÑ œ ) K ) K ¸ G)

nonidentity element of  has order , then  is abelian. In this case, let  andK # K +ß ,
- K - Á +, be distinct elements of  with . It is easy to see that

K œ Ö"ß +ß ,ß -ß +,ß +-ß ,-ß +,-×

and that .K ¸ G G G# # #} }

Now suppose that  has an element  of order  but no elements of order .K + % )
Then . For any , we have  and since  hasØ+Ù K , Â Ø+Ù K œ Ø+ß ,Ù + − Ø+Ùü ,

order , we must have%

,+, œ + ,+, œ +" " $or

If , then  is abelian. Moveover,  has an element  of order  that is,+, œ + K K - #"

not in . To see this, note that if  and , then  has orderØ+Ù , Â Ø+Ù 9Ð,Ñ œ % , − Ø+Ù#

# , œ + Ð+,Ñ œ + , œ + œ " - œ +, and so . Hence,  and so . Thus,# # # # # %

K œ Ø+Ù ì Ø-Ù ¸ G G% #}

On the other hand, suppose that . If there is a involution,+, œ + œ +" $ "

, Â Ø+Ù +, Ø,ß +,Ù, then  is also an involution and so Theorem 2.36 implies that  is
dihedral of order , that is, .#9Ð+Ñ œ ) K œ Ø,ß +,Ù ¸ H)

Finally, if all elements  have order , then  and so, Â Ø+Ù % , − Ø+Ù#

K œ Ø+ß ,Ùß + Á ,ß 9Ð+Ñ œ %ß , œ + ß ,+, œ +# # " $

which is the quaternion group. Thus, the groups of order  are (up to)
isomorphism):

1) , the cyclic groupG)

2) , abelian but not cyclicG G% #}
3) , abelian but not cyclicG G G# # #} }
4) , the (nonabelian) dihedral groupH)

5) , the (nonabelian) quaternion group.U

A Universal Property and the Isomorphism Theorems
The following property is key to many other properties of group
homomorphisms.

Definition Let  be a group and let . Let  be the family of allK O K ÐKàOÑü Y
pairs , where  is a group homomorphism andÐLß ÀK Ä LÑ ÀK Ä L5 5
O © Ð Ñker 5 .
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G S

H

∃!τ
σ

u

Figure 4.1

Referring to Figure 4.1, a pair  is  inÐWß ?ÀK Ä WÑ − ÐKàOÑY universal
Y 5 YÐKàOÑ ÐLß ÀK Ä LÑ − ÐKàOÑ if for any pair , there is a unique group
homomorphism  for which the diagram in Figure 4.1 , that7 À W Ä L commutes
is, for which

7 5‰ ? œ

The map  is called the  for  and we say that  can be7 5 5mediating morphism
factored uniquely lifted through  or that  can be  uniquely to .? W5

Existence and uniqueness (up to isomorphism) of universal pairs is given by the
following theorem.

Theorem 4.6 Universal pairs  Let  be a group and let .( ) K O Kü
1   The pair) ( )Existence

ÐKÎOß ÀK Ä KÎOÑ1O

where  is the canonical projection modulo  is universal in .1 YO O ÐKàOÑ
The mediating morphism for  is the map  defined5 7À K Ä L ÀKÎO Ä L
by

7 5Ð1OÑ œ 1

Also,

im imÐ Ñ œ Ð Ñ Ð Ñ œ Ð ÑÎO7 5 7 5and ker ker

2   Referring to Figure 4.2) ( )Uniqueness

G G/K

S

∃!τ

πK

u
∃!σ

Figure 4.2



 if  is also universal in , then the mediatingÐWß ?ÀK Ä WÑ ÐKàOÑY
morphisms  and  are inverse isomorphisms, whence .5 7 W ¸ KÎO

Proof. For part 1), a mediating morphism for , if it exists, must5À K Ä L
satisfy

7 5Ð1OÑ œ 1

for all  and so must be unique. But the condition  implies that1 − K O © Ð Ñker 5
7  is a well defined map and it is easy to see that it is a homomorphism. Finally,

im imÐ Ñ œ ÐKÎOÑ œ ‰ ÐKÑ œ ÐKÑ œ Ð Ñ7 7 7 1 5 5O

and

7 7 1 5 5Ð+OÑ œ ! Í ‰ Ð+Ñ œ ! Í + œ ! Í + − Ð ÑO ker

and so .ker kerÐ Ñ œ Ð ÑÎO7 5

For part 2), since  and  are both universal,  can beÐKÎOß Ñ ÐWß ?ÀK Ä WÑ ?1O

factored uniquely through , that is,1O

7 1‰ œ ?O

and  can be factored uniquely through , that is,1O ?

5 1‰ ? œ O

Hence,

Ð ‰ Ñ ‰ ? œ ?7 5

But  can be factored  through itself and since , it follows that? ‰ ? œ ?uniquely +
7 5 + 5 7 + 5 7‰ œ ‰ œ.  Similarly,   and so  and  are inverse isomorphisms.

The following well-known results are direct consequences of the universal
property of the pair .ÐKÎLß Ñ1L

Theorem 4.7 The   Let  be a group.( )isomorphism theorems K
1   Every group homomorphism ) ( )First isomorphism theorem 5À K Ä L

induces an embedding  of  defined by5 5 ä 5À KÎ Ð Ñ L KÎ Ð Ñker ker

5 5 5Ð1 Ð ÑÑ œ 1ker

and so

K

Ð Ñ
¸ Ð Ñ

ker 5
5im
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2   If  with , then) ( )Second isomorphism theorem LßO Ÿ K O Kü
L ∩O Lü  and

LO L

O L ∩O
¸

3   If  with , then) ( )Third isomorphism theorem L Ÿ O Ÿ K LßO Kü
OÎL KÎLü  and

K O K

L L O
¸„

Hence

ÐK À OÑ œ ÐKÎL À OÎLÑ

Proof. For part 1), since  is universal, there is a uniqueÐKÎOß Ñ1O

homomorphism  for which . The rest follows from7 5 7 1 5À KÎO Ä Ð Ñ ‰ œim O

the fact that  and .im imÐ Ñ œ Ð Ñ Ð Ñ œ Ð ÑÎO œ Ö"×7 5 7 5ker ker

For part 2), the map  defined by  is clearly an5 5ÀL Ä LOÎO Ð2Ñ œ 2O
epimorphism with kernel  and the first isomorphism theorem completesL ∩O
the proof. Proof of part 3) is left to the reader.

Theorem 4.8 Let  and  be groups and let  for . ThenK K L K 3 œ "ß #" # 3 3ü

K K K K

L L L L
¸

" # " #

" # " #

}

}
}

Proof. Let  be defined by7 } }À K K Ä ÐK ÎL Ñ ÐK ÎL Ñ" # " " # #

7Ð+ ß + Ñ œ Ð+ L ß + L Ñ" # " " # #

We leave it to the reader to show that  is an epimorphism with kernel7
L L" #} . The first isomorphism theorem then completes the proof.

The Correspondence Theorem
The following correspondence theorem has a great many uses. We use the
notation  to denote the lattice of all subgroups of  that contain .subÐRàKÑ K R

Theorem 4.9  Let  be a group, let  and let( )Correspondence theorem K R Kü
1À K Ä KÎR  be the natural projection. Referring to Figure 4.3,
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Figure 4.3

let  be the map defined by1À ÐRàKÑ Ä ÐKÎRÑsub sub

1ÐLÑ œ LÎR

1   is an order isomorphism, that is,  is a bijection for which) 1 1

L Ÿ O Í LÎR Ÿ OÎR

for all . In particular, every subgroup of  has theLßO − ÐRàKÑ KÎRsub
form  for a unique .LÎR L − ÐRàKÑsub

2  Normality is preserved in both directions, that is,)

L O Í LÎR OÎRü ü

for all . Moreover, the corresponding factor groups areLßO − ÐRàKÑsub
isomorphic, that is,

O O L

L R R
¸ „

and so  also preserves index:1

ÐO À LÑ œ ÐOÎR À LÎRÑ

It follows that subnormality is also preserved in both directions:

L O Í LÎR OÎRüü üü

3  If , then the property of being characteristic is preserved in only one) R « K
direction, specifically,

L K

R R
« Ê L « K

for any , but the converse fails.L − ÐRàKÑsub
Proof. For the surjectivity of , any subgroup of  has the form1 KÎR

W œ ÖBR ± B − \×
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for some index set . The set  is a subgroup of  since \ L œ ÐBRÑ K Bß C − L-
implies that  and so  and  are in , whenceBRß CR − W B R BCR W"

B ß BC − L" . Also,

1L œ LÎR œ ÖBR ± B − L× œ W

and so  is surjective.1

For part 3), if , then  is an epimorphism with5 1 5− ÐKÑ ‰ ÀK Ä KÎRAut R

kernel . Hence, the map  defined by5 7"R œ R ÀKÎR Ä KÎR
7 5 7Ð+RÑ œ Ð +ÑR KÎR ÐLÎRÑ Ÿ LÎR is an automorphism of  and so  . Thus,
for ,2 − L

Ð 2ÑR œ Ð2RÑ − LÎR5 7

and so , which shows that . As to the converse, let 52 − L L « K K œ O œ
H L œ Ø Ù R œ ^ÐKÑ œ Ø Ù L R H) )

#,  and . Then  and  are characteristic in 3 3
but  is not characteristic in . The rest of theLÎ^ÐKÑ ¸ G H Î^ÐKÑ ¸ G G# ) # #}
proof is left to the reader.

Group Extensions
It will be convenient to make the following definition.

Definition Let  be a group. We refer to subgroups  and  of  for whichK L O K
L Ÿ O L K as an . We also refer to  as a . Theextension normal extensionü
index of an extension  is .L Ÿ O ÐO À LÑ

This use of the term  is consistent with its use in field theory, where ifextension
J © O O J are fields, then  is referred to as an extension of . The term
extension has another meaning in group theory, which we will encounter later in
the book: An  of a pair  of groups is a group  that has aextension ÐRßUÑ K
normal subgroup  isomorphic to  and for which . However,R R KÎR ¸ Uw w

since   an extension whereas   an extension, there should beL Ÿ K ÐRßUÑis has
no ambiguity in adopting the current definition.

Various operations can be performed on a group extension to yield another
extension.

Definition Let  be a group. Let  and .K E Ÿ F Ÿ K G Ÿ K
1  The  of  with  is) intersection E Ÿ F G

E ∩ G Ÿ F ∩ G

2  If , the  of  by  is) G K E Ÿ F Gü normal lifting

EG Ÿ FG



3  If  with , then the  of  by  is) R Ÿ E Ÿ F R F E Ÿ F Rü quotient

E F

R R
Ÿ

and for want of a better term  the  of  is( ) unquotient EÎR Ÿ FÎR
E Ÿ F.

Inheritance of Group Properties
Let  be a property of groups, such as being cyclic, being finite or beingc
abelian. (Technically,  can be thought of as a subclass of the class of allc
groups.) We write  to denote the fact that the group  has property . AK − Kc c
group property  is  ifc isomorphism invariant

K − ß L ¸ K Ê L −c c

We will say that a normal extension  has property  if the quotient E F FÎEü c
has property . For example, to say that  is cyclic is to say that  isc üE F FÎE
cyclic. A property  of groups is  by subgroups ifc inherited

K − ß L Ÿ K Ê L −c c

and  is inherited by quotients ifc

K − ß L K Ê KÎL −c ü c

Preservation of Group Properties
The second isomorphism theorem implies that intersection preserves normality,
that is,

E Fß G Ÿ K Ê E ∩ G F ∩ Gü ü

and that the quotient satisfies

F ∩ G F ∩ G EÐF ∩ GÑ F

E ∩ G E ∩ ÐF ∩ GÑ E E
œ ¸ Ÿ

Hence, any isomorphism-invariant property of  that is inherited byE Fü
subgroups, such as being finite, abelian or cyclic, is inherited by intersections.
For example, if  is cyclic, then so is . Similar statementsE F E ∩ G F ∩ Gü ü
can be made about normal liftings, quotients and unquotients, as follows.

Theorem 4.10 Let  be a group with . Let  be an isomorphism-K E Ÿ F Ÿ K c
invariant property of groups.
1   Normality is preserved by intersection, that is, for ,) ( )Intersection G Ÿ K

E F Ê E ∩ G F ∩ Gü ü

Also, if  is inherited by subgroups, then  is preserved by intersection.c c
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2   Normality is preserved by normal lifting, that is, for) ( )Normal lifting
R Kü ,

E F Ê ER FRü ü

Also, if  is inherited by quotients, then  is preserved by normal lifting.c c
3   Normality is preserved by quotient and) ( )Quotient and unquotient

unquotient, that is, for  and ,R F R Ÿ E Ÿ Fü

E F Í EÎR FÎRü ü

Also,  is preserved by quotient and unquotient.c
Proof. For part 2), to see that , note that  normalizes both  and ER FR F E Rü
and so  normalizes . Also,  implies that  normalizes  andF ER R Ÿ ER R ER
so  normalizes , that is, . Since , itFR ER ER FR FR œ EFR œ ERFü
follows that

FR ERF F F F EÐF ∩RÑ

ER ER F ∩ER EÐF ∩RÑ E E
œ ¸ œ ¸ ‚

Centrality
Another very important property of extensions  in a group  thatE Ÿ F K
involves more than just the quotient  alone is .FÎE centrality

Definition Let . The extension  in  is   ifE K E F K Kü ü central in

F K

E E
Ÿ ^Œ 7

Note that centrality is not a property of  alone, since it depends on  asFÎE KÎE
well, which is why we use the phrase . Theorem 3.40 implies that ancentral in K
extension  is central in  if and only ifE F Kü

ÒFßKÓ Ÿ E

Thus, for  and ,R K R Ÿ Eü

E F K Í
E F K

R R R
ü ü central in  central in 

and so centrality is preserved by quotient and unquotient. Also, for any ,L Ÿ K

ÒF ∩LßLÓ Ÿ E ∩L

and so

E F K Ê E ∩L Ÿ F ∩L Lü  central in  central in 

Finally, for any ,R Kü



ÒFRßKÓ œ ÒFßKÓÒRßKÓ Ÿ ER

and so

E F K Ê ER Ÿ FR Kü  central in  central in 

Thus, centrality is preserved by intersection and normal lifting as well.

Theorem 4.11 Let  be a group. The property of an extension being central inK
K is preserved by intersection, normal lifting, quotient and unquotient.

Projections and the Zassenhaus Lemma
Combining intersection with lifting allows us to  one normal extension inproject
K E F L O into another. Specifically to project  into , we first intersectü ü
E F Oü  with  to get

ÐE ∩OÑ ÐF ∩OÑü

and then lift by  to getL

LÐE ∩OÑ LÐF ∩OÑü

This extension is the  of  into  and is denoted byprojection E F L Oü ü

ÐE FÑ Ä ÐL OÑü ü

We leave it to the reader to show that the same extension is obtained by first
lifting  by  and then intersecting with .E F L Oü

As to the factor group of the projection, the isomorphism theorems give

LÐF ∩OÑ LÐE ∩OÑÐF ∩OÑ

LÐE ∩OÑ LÐE ∩OÑ
œ

¸
F ∩O

ÐF ∩OÑ ∩ LÐE ∩OÑ

œ
F ∩O

ÐE ∩OÑÒÐF ∩OÑ ∩ LÓ

œ
F ∩O

ÐE ∩OÑÐF ∩LÑ

But the last quotient remains unchanged if we reverse the roles of the two
extensions  and . Hence, the E Ÿ F L Ÿ O reverse projection

ÐL OÑ Ä ÐE FÑü ü

has an isomorphic quotient, that is,

LÐF ∩OÑ EÐO ∩ FÑ

LÐE ∩OÑ EÐL ∩ FÑ
¸
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This result was proved by Zassenhaus in 1934 and was given the name
butterfly lemma by Serge Lang because of the shape of a certain figure
associated with an alternate proof.

Theorem 4.12  [37], 1934  Let  be a group and let( )Zassenhaus lemma K

E F L Oü üand

be normal extensions in . Then the reverse projectionsK

ÐE FÑ Ä ÐL OÑ ÐL OÑ Ä ÐE FÑü ü ü üand

have isomorphic factor groups, that is,

LÐF ∩OÑ EÐO ∩ FÑ

LÐE ∩OÑ EÐL ∩ FÑ
¸

Let us make a few very simple observations about projections:

1) If , then the projections of the contiguous extensions E F G E Fü ü ü
and  into  are also contiguous, that is,F G L Oü ü

LÐE ∩OÑ LÐF ∩OÑ LÐG ∩OÑü ü

2) If  is projected into  where , then the projection hasE F L O F   Oü ü
top group subgroup .O

3) If  is projected into  where , then the projection hasE F L O E Ÿ Lü ü
bottom subgroup .L

Thus, we can project a series

E E â E" # 8ü ü ü

in  into an extension  to get a new seriesK L Oü

LÐE ∩OÑ LÐE ∩OÑ â LÐE ∩OÑ" # 8ü ü ü

In particular, if  and , then the series runs from  to .E Ÿ L O Ÿ E L O" 8

Inner Automorphisms
If  is a group, then the map  defined byK ÀK Ä ÐKÑ# Aut

# #+ œ +

is a group homomorphism, since . The kernel of  is  and the# # # #+ , +,œ ^ÐKÑ
image of  is , which is normal in  since for any  and# 5Inn Aut AutÐKÑ ÐKÑ − ÐKÑ
1 − K,

Ð Ñ1 œ Ò+Ð 1Ñ+ Ó œ Ð +Ñ1Ð +Ñ œ 15# 5 5 5 5 5 #+ +
" " " "

5

and so



# #+ +
5

5œ

An automorphism of  that is not an inner automorphism is called an K outer
automorphism outer of  and the factor group  is called the K ÐKÑÎ ÐKÑAut Inn
automorphism group of , even though its elements are  automorphisms.K not

Theorem 4.13 Let  be a group.K
1  The map  defined by) Aut#À K Ä ÐKÑ

# #+ œ +

is a group homomorphism with image  and kernel .Inn AutÐKÑ ÐKÑ ^ÐKÑü
Hence,

InnÐKÑ ¸
K

^ÐKÑ

In particular, if  is centerless, then .K K ¸ ÐKÑInn
2  If , then) L Ÿ K

+ − R ÐLÑ Í − ÐLÑK +# Aut

Moreover, the restricted map  has kernel  and#À R ÐLÑ Ä ÐLÑ G ÐLÑK KAut
so  andG ÐLÑ R ÐLÑK Kü

R ÐLÑ

G ÐLÑ
ÐLÑ

K

K
ä Aut

In particular, if , then  andL K G ÐLÑ Kü üK

K

G ÐLÑ
ÐLÑ

K
ä Aut

Characteristic Subgroups
Normality is not transitive: If , then the normal subgroups of  are notR K Rü
necessarily normal in . Examples can be found in the symmetric group .K W%

However, the property of being characteristic is transitive. Here are some of the
basic properties associated with characteristic subgroups.

Theorem 4.14 Let  be a group.K
1   if and only if  for all .) AutL « K L œ L − ÐKÑ5 5
2  ) ( )Transitivity

E « F « G Ê E « G

and

E « F G Ê E Gü ü
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3  Any subgroup of a cyclic group is characteristic and so)

L Ÿ Ø+Ù K Ê L Kü ü

4   For any ,) ( )Extension property R Ÿ L Ÿ K

R « Kß « Ê L « K
L K

R R

Proof. For part 3), a finite cyclic group  has only one subgroup of each sizeK
and so it must be invariant under any automorphism of . On the other hand, ifK
K œ Ø+Ù − ÐKÑ + K is infinite cyclic and , then  must be a generator of 5 5Aut
and so  or . Hence,  is either the identity map or the map that5 5 5+ œ + + œ +"

sends any element to its inverse. In either case, any subgroup of  is -K 5
invariant.

Definition A nontrivial group  is  if it has noK characteristically simple
nontrivial proper characteristic subgroups.

As an example, the -group  is characteristically simple but not% Z œ Ö"ß +ß ,ß +,×
simple.

Elementary Abelian Groups
The simplest type of abelian group is a cyclic group of prime order. Perhaps the
next simplest type of abelian group is an external direct product of cyclic groups
of the same prime order.

Definition An   is an abelian group in which everyelementary abelian group K
nonidentity element has the same finite order.

Theorem 4.15 Let  be an elementary abelian group.K
1  Every nonidentity element of  has prime order .) K :
2  Writing the group product additively,  is a vector space over ,where if) K ™:

α ™ α α− + − K + + K: and , then  is the sum of  copies of . The subgroups of 
are the same as the subspaces of  and the group endomorphisms of  areK K
the same as linear operators on .K

3  If  is finite, then) K

K ¸ â™ } } ™: :

(This also holds when  is infinite, but we have not yet defined infiniteK
direct products.)

Proof. We use additive notation for . For part 1), if  where ,K 9Ð+Ñ œ 78 7  "
then  and so , that is, . Thus,  is prime for all9Ð8+Ñ œ 7 78 œ 7 8 œ " 9Ð+Ñ œ :
nonidentity . For part 2), let  and  denote addition and multiplication+ − K Š 
in , respectively. If  is nonnegative, let  be the sum of  copies of™ ™: 8 − 8 ‡ + 8
+ ß − 8. Then for , there exists an integer  for whichα " ™:



α " α "Š œ Ð  Ñ  8:

and so

Ð Š Ñ+ œ ÒÐ  Ñ  8:Ó ‡ + œ Ð  Ñ ‡ + œ +  ,α " α " α " α "

Similarily,

Ð  Ñ+ œ Ò  8:Ó ‡ + œ Ð Ñ ‡ + œ Ð +Ñα " α" α" α "

The other requirements of scalar multiplication are also met, namely, "+ œ +
and

α α αÐ+  ,Ñ œ +  ,

We leave proof of the remaining part of part 2) to the reader. For part 3),  isK
vector-space isomorphic to a direct sum of a certain number of one-dimensional
subspaces of , that is, subspaces of the form  for . TheseK + œ Ø+Ù + − K™:

subspaces are cyclic subgroups of  and the vector space isomorphism is also aK
group isomorphism.

Theorem 4.16 The following are equivalent for an abelian group :K
1   is elementary abelian) K
2   is characteristically simple and has at least one nonidentity torsion) K

element.
Proof. If  is an elementary abelian group, then the automorphisms of  areK K
the linear automorphisms of . It follows that if  is nontrivial and proper,K W Ÿ K
then for any nonzero  and nonzero , there is an automorphism+ − W B − K Ï W
sending  to  and so  is not characteristic in . Hence,  is characteristically+ B W K K
simple. Of course,  has a nonidentity torsion element.K

For the converse, assume that  is characteristically simple and let  be a primeK :
dividing the order of some element . Then (using additive notation)+ − E

E œ Ö+ − E ± :+ œ !×:

is nontrivial and characteristic in , whence  is an elementary abelianE E œ E:

group.

Note that the -quasicyclic group , which has proper subgroup lattice: Ð: Ñ™ ∞

Ö!×  Ø"Î:Ù  Ø"Î: Ù  â#

is characteristically simple, since there is at most one subgroup of any given
size. However, it is not an elementary abelian group since it has no nonzero
torsion elements.
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Multiplication as a Permutation
If  is a group, then multiplication by  is a permutation of ; specifically,K + − K K
the multiplication map  defined by.+ÀK Ä K

.+B œ +B

is bijective. In this context, multiplication is also referred to as ( )left
translation.

The map  that sends  to  provides a  of the. .À K Ä W +K + representation
elements of the group  as permutations of the set . Moreover, theK K
representation  is a group homomorphism, since.

. . .+, + ,œ

This is not the only way to represent the elements of a group as permutations of
some set. For example, if , then the elements of  can also beL Ÿ K K
represented as permutations of a quotient set  via the multiplication mapKÎL
5+ÀK Ä KÎL  defined by

5+Ð1LÑ œ +1L

It is clear that  is a permutation of  and that the map 5 5+ KÎLKÎL ÀK Ä W

sending  to  is a group homomorphism.+ 5+

The representation map  is described by saying that .À K Ä WK K acts on itself
by translation ( )left  and the representation map  is described by5À K Ä KÎL
saying that left  . Both of these representationsK KÎL acts on  by translation( )
fit the pattern of the following definition.

Definition An  of a group  on a nonempty set  is a groupaction K \
homomorphism , called the  for the action.-À K Ä W\ representation map
Thus,

- + - - - - -Ð"Ñ œ ß Ð+ Ñ œ Ð +Ñ Ð+,Ñ œ Ð+Ñ Ð,Ñ" " and

for all . When  is a group action, we say that   on  by . The+ß , − K K \- -acts
permutation  is usually denoted by , or simply by  itself.- -+ ++

We should mention that translation is not the only important action of a group
on a set. We will see in a later chapter that conjugation is also an important
group action.

Since a representation map is assumed only to be a homomorphism, it is
possible for two distinct elements of  to have the same representation in .K W\

Although it may seem at first that this is not a particularly desirable quality, we
will see that such representations can yield important results. An injective
representation, that is, an embedding  is said to be . In this- äÀ K W\ faithful



case,  is isomorphic to a subgroup of . The action of  on itself byK W K\

translation is faithful but the action of  on  by translation need not beK KÎL
faithful.

Here is one interesting application of left translation.

Theorem 4.17 Let  be a proper subgroup of a group . Then there areL K
distinct group homomorphisms  into some group  that agree on5 7ß À K Ä O O
L .
Proof. For , we construct two distinct group actions of  on the setB Â KÎL K

\ œ KÎL ∪ ÖB×

that agree on . Let  be left translation on  that also leaves L ÀK Ä W KÎL B5 \

fixed, that is, for any ,+ − K

5 5+ +Ð,LÑ œ +,L B œ Band

and let  be defined by7 À K Ä W\

7 5+ +œ ÐL BÑ ÐL BÑ

If , then  fixes both  and  and so  and  are disjoint2 − L L B ÐL BÑ5 52 2

permutations, whence  for all . On the other hand,  and  are5 7 7 52 2œ 2 − L
distinct since if , then+ Â L

7 5+ +L œ L L Á Lbut

The Left Regular Representation: Cayley's Theorem
The action  of  on itself by left translation is called the .À K Ä W KK left regular
representation of . Since the left regular representation is faithful, it followsK
that  group is isomorphic to a subgroup of some symmetric group!every

Theorem 4.18 [7], 1854   Every group  is isomorphic to a( )Cayley's theorem K
subgroup of the symmetric group , via the action of  on itself by leftW KK

translation.

Multiplication by  on ; the Normal InteriorK KÎL

If  has finite index, the action  of  on  by leftL  K ÀK Ä W K KÎL5 KÎL

translation yields a variety of remarkable consequences, mainly due to the
nature of the kernel of this action, which is the intersection of all conjugates of
L :
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kerÐ Ñ œ ÖB − K ± œ ×

œ ÖB − K ± B+L œ +L + − K×

œ ÖB − K ± B+ − +L + − K×

œ ÖB − K ± B − + L+ + − K×

œ L

5 5 +B

"

+−K

+

 for all 
 for all 

 for all ,
Thus,

O ³ L,
+−K

+

is both normal in  and contained in . Moreover, if  is any normal subgroupK L R
of  that is contained in , thenK L

R œ R Ÿ L+ +

for all  and so . In other words,  is the  subgroup of + − K R Ÿ O O Llargest
that is normal in .K

Theorem 4.19 Let . The largest subgroup of  that is normal in  isL Ÿ K L K
called the  or  of , which we denote by . The core ofnormal interior core L L‰

L  is the kernel

L œ L‰ +

+−K

,
of the action of  on  by left translation.K KÎL

Thus, left translation  induces an embedding5À K Ä WKÎL

K

L
W

‰ KÎLä

of  into  and soKÎL W‰
KÎL

ÐK À L Ñ ± ÐK À LÑx‰

In particular, if  is simple, then  is trivial and soK L‰

9ÐKÑ ± ÐK À LÑx

These facts have some rather interesting consequences relating to the existence
of normal subgroups and subgroups of small index of a group.

Theorem 4.20 Let  be a group and let  have finite index. ThenK L Ÿ K

KÎL W‰
KÎLä

and so



ÐK À L Ñ ± ÐK À LÑx‰

In particular,  is also finite andÐK À L Ñ‰

ÐL À L Ñ ± ÐÐK À LÑ  "Ñx‰

1  Any of the following imply that :) L Kü
 a   is periodic and  is equal to the smallest order among) L ÐK À LÑ œ :

the nonidentity elements of .L
 b   is finite and  and  are relatively prime, that is,) K 9ÐLÑ ÐÐK À LÑ  "Ñx

for all primes ,:

: ± 9ÐLÑ Ê :   ÐK À LÑ

which happens, in particular, if  is equal to the smallest primeÐK À LÑ
dividing .9ÐKÑ

2  If  is finitely generated, then  has at most a finite number of subgroups) K K
of any finite index .7

3  If  is simple, then) K

9ÐKÑ ± ÐK À LÑx

 a  If  is infinite, then  has no proper subgroups of finite index.) K K
 b  If  is finite and  for some integer , then  has no) K 9ÐKÑ ± 7x 7 Ky

subgroups of index  or less.7
Proof. For part 1), first note that  is a prime. If  is a prime dividing ,: ; ÐL À L Ñ‰

then Cauchy's theorem implies that there is an  for which2 − L
; œ 9Ð2L Ñ ± 9Ð2Ñ ;   :‰ , whence , a contradiction to the fact that

; ± ÐL À L Ñ ± Ð:  "Ñx‰

Hence,  and .ÐL À L Ñ œ " L œ L K‰ ‰ ü

For part 2),  divides both  and  and so must equalÐL À L Ñ ÐÐK À LÑ  "Ñx 9ÐLÑ‰

"

ÐL À L Ñ ± Ð7  "Ñx‰

But  also divides , which is relatively prime to  and soÐL À L Ñ 9ÐLÑ Ð:  "Ñx‰

ÐL À L Ñ œ "‰ .

For part 3), suppose that the result is true for all normal subgroups. Then there
are only finitely many possibilities for normal interiors of subgroups of index
7 7x, since such a normal interior must have index dividing . But each normal
subgroup  of finite index can be the normal interior for only finitely manyR
subgroups, since there are only finitely many subgroups containing .R

Now, normal subgroups correspond to kernels of homomorphisms. In particular,
if , then the homomorphismÐK À RÑ œ 5
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5 1 ä‰ ÀK Ä KÎR WR 5

where  is the left regular representation of  in , has kernel . Thus,5 KÎR W R5

distinct normal subgroups  of index  yield distinct homomorphisms from R 5 K
into . However, since  is finitely generated, there are only a finite number ofW K5

such homomorphisms and so there are only a finite number of normal subgroups
of  of index .K 5

Example 4.21 If  with  prime and , then we will prove in a9ÐKÑ œ : ? : :  ?8

later chapter that  has a subgroup  of order  (a Sylow -subgroup of ).K L : : K8

Since  and  are relatively prime, it follows that .: Ð?  "Ñx L K8 ü

The Frattini Subgroup of a Group
The following subgroup of a group is most interesting.

Definition The   of a finite group  is the intersectionFrattini subgroup FÐKÑ K
of the maximal subgroups of .K

Definition Let  be a group. An element  is called a  of K + − K Knongenerator
if whenever the subset  generates , then so does the set . Thus, aW © K K W Ï Ö+×
nongenerator is an element that is not needed in any generating set.

Here are the basic properties of the Frattini subgroup of a finite group. But first
a definition.

Definition Let  be a group and let . A subgroup  of  is called aK O Ÿ K L K
supplement of  if .O K œ LO

Theorem 4.22 Let  be a finite group.K
1   is the set of all nongenerators of .) FÐKÑ K
2  .) FÐKÑ « K
3  The following are equivalent:)
 a  Every maximal subgroup of  is normal.) K
 b   is abelian.) KÎ ÐKÑF
4  If , then  if and only if  has no proper supplements.) O – K O Ÿ ÐKÑ OF
Proof. For part 1), if  does not generate , then  is contained in aW © K K W
maximal subgroup , which also contains  and so  doesQ ÐKÑ W ∪ ÐKÑ © QF F
not generate . Hence, the elements of  are nongenerators. Conversely, ifK ÐKÑF
B K B Â Q Q is a nongenerator of  and  for some maximal subgroup , then
Q ∪ ÖB× K Q K generates  and so  generates , which is false. Thus, all
nongenerators of  are in .K ÐKÑF

For part 2), if , then the induced map is a bijection on the family 5 `− ÐKÑAut
of maximal subgroups of  and soK



5 F 5 ` 5` ` FÐ ÐKÑÑ œ œ œ œ ÐKÑŠ ‹, , ,
For part 3), assume that every maximal subgroup  of  is normal. ThenQ K
KÎQ K Ÿ Q has no proper nontrivial subgroups and so is abelian. Hence,  andw

so . Conversely, if  and  is a maximal subgroup of ,K Ÿ ÐKÑ K Ÿ ÐKÑ Q Kw wF F
then  and so .K Ÿ Q Q Kw ü

For part 4), assume first that . If , then  for someO Ÿ ÐKÑ L  K L Ÿ QF
maximal subgroup  of  and so . Conversely, if  has noQ K LO Ÿ Q  K O
proper supplements, then every maximal subgroup  satisfies Q Q Ÿ QO  K
and so , whence  and so .Q œ QO O Ÿ Q O Ÿ ÐKÑF

Subnormal Subgroups
We wish now to take a closer look at the concept of subnormality. As to the
existence of subnormal subgroups, we have the following examples to show that
all possibilities may occur, and that a subnormal subgroup need not be normal.

Example 4.23
1  A simple group has no nontrivial proper subnormal subgroups.)
2  In the dihedral group , we have) H œ Ø ß Ù) 5 3

Ø Ù – Ø ß Ù – H5 5 3# )

and so  is subnormal in  but not normal in . In fact, all subgroupsØ Ù H H5 ) )

of  are subnormal.H)

3  In the symmetric group , the subgroup  is maximal and so the) W L œ ØÐ" #ÑÙ$

only sequence of subgroups from  to  is . Since  is notL W L Ÿ W L$ $

normal in , it follows that  is not subnormal in . Of course, W L W ØÐ" # $ÑÙ$ $

is subnormal in , being normal in .W W$ $

The following theorem outlines the simplest properties of subnormality and is a
direct consequence of Theorem 4.10.

Theorem 4.24 Let  be a group. Let .K LßO Ÿ K
1  ) ( )Transitivity

L O O K Ê L Küü üü üüand

2   If , then) ( )Intersection P Ÿ K

L O Ê L ∩ P O ∩ Püü üü

In particular,

L Ÿ O Ÿ Kß L K Ê L Oüü üü
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and

L Kß O K Ê L ∩O Küü üü üü

3   If , then) ( )Normal lifting R Kü

L O Ê LR ORüü üü

4   If  and , then) ( )Quotient/unquotient R Ÿ L R Oü

L O Í LÎR OÎRüü üü

Intersections and Subnormality
While the intersection of two, and hence any finite number, of subnormal
subgroups is subnormal, this is not the case for an arbitrary family of subnormal
subgroups.

Example 4.25 Let  be the ,K infinite dihedral group

K œ Ö ß ± 3 − ×3 53 ™3 3

where ,  and . If9Ð Ñ œ # 9Ð Ñ œ ∞ œ5 3 35 53"

L œ Ø ß Ù3
#5 3
3

then  and so . But,  is self-normalizing (equalL L L K L œ Ø Ù3" 3 3 3ü üü 5+
to its own normalizer) and so is not subnormal in .K

However, since the family  is closed under finite intersection, TheoremsubnÐKÑ
1.6 does imply the following.

Theorem 4.26 If a group  has the DCC on , then the intersection ofK ÐKÑsubn
any family of subnormal subgroups is subnormal.

The Sequence of Normal Closures of a Subgroup
If , then the first step down in a series for  is an extension .L K L L Küü ü"

Moreover, since , the largest possible first step down in a seriesncÐLßKÑ Ÿ L"

from  to  isL K

ncÐLßKÑ Kü

By repeatedly taking normal closures of , we get a series from  to  thatL L K
descends more rapidly than any other series from  to .L K

Definition Let  be a group and let . The K L Ÿ K sequence of normal closures
of  in  is defined byL K



L œ KßL œ ÐLßL Ñ L œ ÐLßL ÑÐ!Ñ Ð"Ñ Ð!Ñ Ð3"Ñ Ð3Ñnc ncand

for .3   !

To see that the sequence of normal closures descends more rapidly than any
other proper series

L œ L – L –â –L œ K< <" !

it is clear that  and if , thenL Ÿ L L Ÿ LÐ!Ñ Ð3Ñ! 3

L œ ÐLßL Ñ Ÿ ÐLßL Ñ Ÿ LÐ3"Ñ Ð3Ñ 3 3"nc nc

Hence,  for all .L Ÿ L 3Ð3Ñ 3

Theorem 4.27 A subgroup  of  is subnormal in  if and only if theL K K
sequence of normal closures of  in  reaches , in which case this sequenceL K L
is a series of shortest length from  to . If , then the length of theL K L Küü
sequence of normal closures is called the  of  in , whichsubnormal index L K
we denote by .=ÐLßKÑ

We gather a few facts about subnormal indices.

Theorem 4.28 Let  be a group and let  have sequence of normalK L Küü
closures

L œ L – L –â –L œ KÐ=Ñ Ð="Ñ Ð!Ñ

1  ) ( )Triangle inequality

L O K Ê =ÐLßKÑ Ÿ =ÐLßOÑ  =ÐOßKÑüü üü

2  If , then) Aut5 − ÐKÑ

5 5ÐL Ñ œ Ð LÑÐ3Ñ Ð3Ñ

for all .3   !
 a  If , then  for all . In particular,) 5 5L œ L L œ L 3Ð3Ñ Ð3Ñ

R ÐLÑ © R ÐL ÑK K

3œ!

=

Ð3Ñ,
and so if  normalizes , then  normalizes every .O Ÿ K L O LÐ3Ñ

 b  The sequence of normal closures for  in  is) 5L K

5 5 5 5L œ ÐL Ñ – ÐL Ñ –â – ÐL Ñ œ KÐ=Ñ Ð="Ñ Ð!Ñ

and so .=ÐLßKÑ œ =Ð LßKÑ5
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Proof. For part 2), we have  and if , then5 5 5 5ÐL Ñ œ Ð LÑ ÐL Ñ œ Ð LÑÐ!Ñ Ð!Ñ Ð3Ñ Ð3Ñ

5 5 5 5 5 5ÐL Ñ œ Ð Lß ÐL ÑÑ œ Ð Lß Ð LÑ Ñ œ Ð LÑÐ3"Ñ Ð3Ñ Ð3Ñ Ð3"Ñnc nc

*Joins and Subnormality
The question of whether the  of subnormal subgroups is subnormal is muchjoin
more involved than the same question for intersection. Of course, if  isO
subnormal in  and if  is  in , then we may lift the sequence ofK L Knormal
normal closures of  in O K

O œ O –O –â –O œ KÐ>Ñ Ð>"Ñ Ð!Ñ (4.29)

by  to get a series for the join . Thus,L LO

L Kß O K Ê LO Kü üü üü

Actually, the process of lifting by  is the same as projecting the sequenceL
(4.29) into the extension .L Kü

If neither factor  or  is normal, we are tempted to project (4.29) into eachL O
extension  and concatenate the resulting series. This almost works,L – LÐ3Ñ Ð3"Ñ

the problem being that it produces a series from

L ÐO ∩L Ñ œ LO ∩LÐ=Ñ Ð>Ñ Ð="Ñ Ð="Ñ

to , rather than from  to . So a slight modification is in order. Note thatK LO K
the unwanted  comes from the  of the extensionLÐ="Ñ upper endpoint
L – LÐ=Ñ Ð="Ñ.

Thus, if we assume that  normalizes , then  normalizes  for all  andO L O L 3Ð3Ñ

so  is a subgroup of  and . If we now project (4.29) intoL O K L L OÐ3Ñ Ð3Ñ Ð3"Ñü

the extension , the result is a series  with lower endpointL L OÐ3Ñ Ð3"Ñ 3ü [

L ÐO ∩L OÑ œ L OÐ3Ñ Ð>Ñ Ð3"Ñ Ð3Ñ

and upper endpoint , that is,L OÐ3"Ñ

[ ü ü3 Ð3Ñ Ð3"ÑÀL O â L O

Moreover, since  and  are contiguous, the concatenation[ [Ð3"Ñ Ð3Ñ

[ [ [Ð=Ñ Ð="Ñ Ð"Ñâ

is a series from  to  and so .LO K LO Küü

Note also that each of the series  has length at most  and so[3 >

=ÐLOßKÑ Ÿ =ÐLßKÑ=ÐOßKÑ



Theorem 4.30 If  and if  normalizes , thenLßO K O Lüü

LO œ ØLßOÙ Küü

and

=ÐØLßOÙßKÑ Ÿ =ÐLßKÑ=ÐOßKÑ

*The Subnormal Join Property
Theorem 4.30 implies the following useful characterization of the join question.

Theorem 4.31 Let  be a group and let . The following areK LßO Küü
equivalent:
1  ) ØLßOÙ Küü
2  ) L KO üü
3  .) ÒLßOÓ Küü
Proof. Recall from Theorem 3.40 that 

ÒLßOÓ LÒLßOÓ œ L L O œ ØLßOÙü üO O

Thus, 1) 2) 3). On the other hand, if 3) holds, then since  andÊ Ê L Küü
ÒLßOÓ K L ÒLßOÓüü  and  normalizes , Theorem 4.30 implies that

L œ LÒLßOÓ KO üü

and so 2) holds. If 2) holds, then 1) holds since  normalizes .O LO

Definition If a group  has the property that the join of any two subnormalK
subgroups is subnormal, then  is said to have the ,K subnormal join property
or .SJP

Theorem 4.31 gives us one simple criterion for the SJP. If the commutator
subgroup  of  has the property that all of its subgroups are subnormal, thenK Kw

ÒLßOÓ K K LßO Ÿ K is subnormal in  and therefore also in , for all  and sow

Theorem 4.31 implies that  has the SJP. In particular, this occurs when  isK Kw

abelian, that is, when  is .K metabelian

Theorem 4.32 If the commutator subgroup  of  has the property that all ofK Kw

its subgroups are subnormal, in particular, if  is metabelian, then  has theK K
subnormal join property.

On a different line, if  has the ACC on subnormal subgroups (a finitenessKw

condition), then  has the subnormal join property.K

Theorem 4.33  Let  be a group for which  has the ACC on( )Robinson K Kw

subnormal subgroups. Then  has the subnormal join property.K
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Proof. Let  and  be subnormal in . The proof is by induction onL O K
= œ =ÐLßKÑ = Ÿ " =   # + − K. If , the result is clear, so assume that . If  then

L œ ÐL ßKÑ œ ÐLßKÑ œ LÐ"Ñ
+ +

Ð"Ñnc nc

and so  and  are subnormal subgroups of . But  also has theL L L L+
Ð"Ñ Ð"Ñ

property that its commutator subgroup has the ACC on subnormal subgroups.
To see this, note that  implies that  and so L « L K L K ÐL ÑÐ"Ñ Ð"Ñ Ð"Ñ

w w w
Ð"Ñ ü ü subn

is contained in . Thus, since , the inductivesubnÐK Ñ =ÐLßL Ñ œ =  "w
Ð"Ñ

hypothesis implies that  and so .ØLßL Ù L ØLßL Ù K+ +
Ð"Ñüü üü

Moreover, this can be extended to more than one conjugate of . For example,L
if , then  and so the join of  and , − K ØLßL Ù œ ØL ßL Ù ØLßL Ù ØLßL Ù+ , , ,+ + + ,

is the subnormal subgroup . Note also that we can replace  byØLßL ßL Ù L+ ,

any conjugate of  and soL

ØLßL ßá ßL Ù K+ +" 8 üü

for all .+ ßá ß + − K" 8

Next, we show that

ØÒLß + Óßá ß ÒLß + ÓÙ K" 8 üü

for all . First, note that+ ßá ß + − K" 8

ØLß ÒLß +ÓÙ œ ØLßL Ù+

and so

ØLß ÒLß + Óßá ß ÒLß + ÓÙ œ ØLßL ßá ßL Ù K" <
+ +" < üü

But Theorem 3.37 implies that  normalizes each  and soL ÒLß + Ó3

ØÒLß + Óßá ß ÒLß + ÓÙ ØLß ÒLß + Óßá ß ÒLß + ÓÙ K" < " <ü üü

Now we can complete the proof. The ACC on  implies that there is asubnÐK Ñw

finite subset  for whichM œ Ö+ ßá ß + × © O" 8

ÒLßOÓ œ Q ³ ØÒLß + Óßá ß ÒLß + ÓÙM " 8

for if not, then there is a strictly increasing sequence

Q  Q  âM M" #

of subnormal subgroups of . Hence, .K ÒLßOÓ Kw üü

We refer the reader to Robinson [26], page 389, for an example of a group that
does not have the SJP.



*The Generalized Subnormal Join Property
It is not necessarily the case that a group with the SJP also has the property that
the join of  family of subnormal subgroups of  is subnormal. This is calledany K
the  or .generalized subnormal join property GSJP

Theorem 4.34  [35], 1939  Let  be a group.( )Wielandt K
1  If  has the ACC on , then  has the GSJP.) subnK ÐKÑ K
2  If  has BCC on , in particular, if  is finite, then  is a) subn subnK ÐKÑ K ÐKÑ

complete sublattice of .subÐKÑ
Proof. For part 1), since  also has the ACC on subnormal subgroups,  hasK Kw

the SJP. Hence,  is closed under finite join and so Theorem 1.6 impliessubnÐKÑ
that  has the GSJP.K

Robinson has provided the following characterization of the GSJP, whose proof
uses ordinal numbers.

Theorem 4.35  A group  has the generalized subnormal join( )Robinson K
property if and only if the union of every chain of subnormal subgroups is
subnormal.
Proof. If  has the GSJP, then the union of a chain of subnormal subgroups isK
the join of that chain and so is subnormal. For the converse, we first show that
K has the SJP by induction on the smaller of the two subnormal indices. Let
LßO Küü  and let

= œ Ö=ÐLßKÑß =ÐOßKÑ×min

If , then . Assume that  and that the result holds when= Ÿ " ØLßOÙ K =   #üü
the subnormal index is less than .=

Well order the set  so thatO

O œ Ö5 ±  ×α α $

where  is an ordinal number and . Let$ 5 œ "!

P œ ØL ±  Ù"
5α α "

be the join of the first  conjugates of  by elements of . Then" L O

P Ÿ L P œ L œ LÒLßOÓ" $Ð"Ñ
Oand

To show that  is subnormal in , we use transfinite induction on .P K$ "

If , then . For successor ordinals, if , then " üü üüœ ! P œ L K P K P" " "

and  are contained in  and . Also,  has theL L =ÐL ßL Ñ œ =  " L5 5
Ð"Ñ Ð"Ñ Ð"Ñ

" "

property that the union of any chain of subnormal subgroups is subnormal.
Hence, the induction hypothesis implies that
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P œ ØP ßL Ù L K" ""
5

Ð"Ñ
" ü ü ü

Finally, if  is a limit ordinal, then-

P œ ÖP ±  ×- α. α -

is the union of a chain of subnormal subgroups, which is subnormal in  byK
hypothesis. Hence, the transfinite induction is complete and , whenceP K$ ü ü
ØLßOÙ K Küü  by Theorem 4.31. Thus,  has the SJP.

Now, let . The join is not affected by including in  the join off f© ÐKÑsubn
every finite subset of , so we may assume that  is closed under finite joins.f f
For convenience, we refer to a family  as  if  contains  andc c f© ÐKÑsubn good
is closed under finite joins and chain joins. Then  is good and thesubnÐKÑ
intersection  of all good families is the smallest good family containing . Letf fw

N œ N œ2 2f fand w w

Then . But if , then there is an  for which  and so ifN © N N § N W − W ©y Nw w w w wf

g fœ ÖW − ± W © N×w

it follows that . But  is also good and so the minimality of f g f g f© § w w

implies that . Finally, since  is closed under chain join, Zorn's lemmaN œ N w wf
implies that  has a maximal member . If , then there is an f fw w wQ Q § N R −
for which  and so , which contradicts the maximality of ,R ©y Q Q ”R − Qfw

whence  andQ œ N w

2 2f f fœ œ Q − © ÐKÑw w subn

Thus,  has the GSJP.K

When All Subgroups Are Subnormal
There are a variety of ways to characterize finite groups in which all subgroups
are subnormal. (We will characterize groups in which all subgroups are normal
in Theorem 5.20.) To explore this further, we need some additional terminology.

By definition, the normalizer  of a subgroup  of  is the largestR ÐLÑ L KK

subgroup of  in which  is normal. Thus, a subgroup that is equal to its ownK L
normalizer is as “unnormal” as possible, since it is normal  in itself.only

Definition Let  be a group.K
1  A subgroup  is  if .) L Ÿ K L œ R ÐLÑself-normalizing K

2  A group  has the  if  has no proper self-) K Knormalizer condition
normalizing subgroups, that is, if

L  K Ê L  R ÐLÑK



Note that the term  is a bit misleading, since every subgroupself-normalizing
normalizes itself. (We would prefer the term .)unnormal

A proper subnormal subgroup  cannot be self-normalizing, since the first stepL
in a series shows that  is normal in some subgroup larger than itself. Hence, ifL
all subgroups of  are subnormal, then  has the normalizer condition. TheK K
converse is also true if  is finite (or more generally, if  has the ACC onK K
subgroups), since the proper series of normalizers

L – R ÐLÑ – R ÐR ÐLÑÑ –âK K K

must eventually reach .K

Theorem 4.36 The following are equivalent for a finite group :K
1  Every subgroup of  is subnormal) K
2   has the normalizer condition.) K

If  has the normalizer condition, then any maximal subgroup  must beK Q
normal in , for we have  and the maximality of  implies thatK Q  R ÐQÑ QK

R ÐQÑ œ KK . Thus, with respect to the following conditions on a finite group
K:

1) Every subgroup of  is subnormalK
2)  has the normalizer conditionK
3) Every maximal subgroup of  is normalK
4)  is abelianKÎ ÐKÑF

we have proved (see Theorem 4.22) that

1) 2) 3) 4)Í Ê Í

For finite groups, it is our eventual goal to prove not only that these four
conditions are equivalent, but that they are equivalent to several other
conditions, one of which is that  satisfy a strong converse of Lagrange'sK
theorem, namely, if , then  has a  subgroup of order .8 ± 9ÐKÑ K 8normal

Chain Conditions
Let us take a closer look at chain conditions for groups, beginning with the
definition.

Definition Let  be a group and let  be a family of subgroups of .K Kf
1  A group  satisfies the    if every) ( )K ascending chain condition ACC on f

ascending sequence

L Ÿ L Ÿ â" #

of subgroups in  must eventually be constant, that is, if there is an f 8  !
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such that  for all . In this case, we also say that  has theL œ L 5   !85 8 f
ACC.

2  A group  satisfies the   if every) ( )K descending chain condition DCC on f
descending sequence

L   L   â" #

of subgroups in  must eventually be constant, that is, if there is an f 8  !
such that  for all . In this case, we also say that  has theL œ L 5   !85 8 f
DCC.

3  A group  satisfies   if  has the ACC) ( )K Kboth chain condition BCC on f
and the DCC on . In this case, we also say that  has the BCC.f f

Theorem 1.5 implies that  has the BCC on  if and only if  has no infiniteK f f
chains.

Our main interest will center on the case where  is a group,  and  isK R Kü f
one of the following families:

sub nor subnÐRàKÑß ÐRàKÑß ÐRàKÑ

of all subgroups, normal subgroups and subnormal subgroups, respectively, of
K R that contain .

The ACC and DCC are, in general, independent of each other, that is, all four
combinations are possible. For example, a finite group has both chain conditions
on subgroups. An infinite cyclic group (such as the integers) has the ACC on
subgroups but not the DCC on subgroups. The -quasicyclic group  has: Ð: Ñ™ ∞

the DCC on subgroups but not the ACC. Finally, the group of rational numbers
 has neither chain condition on subgroups.

The chain conditions can be characterized as follows.

Definition Let  be a group and let .K © ÐKÑf sub
1   has the  on  if every nonempty subfamily of ) K maximal condition f f

contains a maximal element.
2   has the  on  if every nonempty subfamily of ) K minimal condition f f

contains a minimal element.

Theorem 4.37 Let  be a group and let .K © ÐKÑf sub
1   has the maximal condition on  if and only if  has the ACC on .) K Kf f
2   has the minimal condition on  if and only if  has the DCC on .) K Kf f
Proof. Suppose  satisfies the maximal condition on  and thatK f

L Ÿ L Ÿ â" #

is an ascending sequence of members of . Then the subgroups  have af L5

maximal member , which implies that  for all . Conversely,L L Ÿ L 5   !8 85 8



suppose  satisfies the ACC on  and let  be a nonempty subfamily of . IfK f ` f
L − L − L  L L" # " # #` ` is not maximal, then there is an  for which . If  is
not maximal, then there is an  for which . This must stop afterL L  L  L$ " # $

a finite number of steps and so  must have a maximal member. The proof of`
part 2) is analogous.

In certain cases, the ACC can be characterized in another important way. If
f © ÐKÑ \ Ksub  is closed under arbitrary intersections, then every subset  of  is
contained in a  element of , called the -  of , which issmallest f f closure \

Ø\Ù œ ÖL − ± \ © L×f , f

Note that the set on the right is nonempty, since the assumption that  is closedf
under arbitrary intersections implies that  contains the empty intersection,f
which is  itself. We say that  is  by  and if  is a finiteK Ø\Ù \ \f f-generated
set, we say that  is  by .Ø\Ù \f finitely -generatedf

Theorem 4.38 Let  be a group and let  be closed under arbitraryK © ÐKÑf sub
intersections and closed under unions of ascending sequences. Then  has theK
ACC on  if and only if every  is finitely -generated.f f fL −
Proof. Suppose  satisfies the ACC on  and let . If  is not finitely -K L − Lf f f
generated, then for any , we have2 − L"

Ø2 Ù  L" f

Hence, there is an  for which2 − L Ï Ø2 Ù# " f

Ø2 Ù  Ø2 ß 2 Ù  L" " #f f

We can continue to choose elements to produce an infinite strictly ascending
sequence, in contradiction to the ACC on . Hence,  is finitely -generated.f fL

Conversely, suppose every element of  is finitely -generated and letf f

L Ÿ L Ÿ â" #

be an ascending sequence of subgroups in . Then  and sof fL œ L −- 5

L œ Ø\Ù \ 7f  for some finite set . Hence, there is an index  for which
\ © L L œ L L œ L 5   !7 7 75 and so . But then  for all .

Note that in the preceeding theorem,  can be , , the family of allf sub norÐKÑ ÐKÑ
characteristic subgroups of  or the family of all fully-invariant subgroups ofK
K.

We next describe how the chain conditions are inherited.

Theorem 4.39 Let  be a group and let . Let  be one of theK R K ÐRàKÑü Y
following families of subgroups of :K
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sub nor subnÐRàKÑß ÐRàKÑß ÐRàKÑ

and let . Write  to denote the fact that  has theY Y Y YÐKÑ œ ÐÖ"×ßKÑ − ACC
ACC DCC, and similarly for the .
1  ) ( )Quotients

Y YÐRàKÑ − Í ÐKÎRÑ −ACC ACC

2  ) ( )Extension

Y Y YÐRÑß ÐKÎRÑ − Ê ÐKÑ −ACC ACC

3  ) ( )Direct products

Y Y Y }ÐK Ñß ÐK Ñ − Í ÐK K Ñ −" # " #ACC ACC

Similar statements hold for the  in place of the .DCC ACC
Proof. Part 1) follows from the correspondence theorem. For part 2), let

K Ÿ K Ÿ â" #

be an ascending chain in . The sequencesYÐKÑ

K ∩ R Ÿ K ∩R Ÿ â" #

and

K R Ÿ K R Ÿ â" #

are ascending chains in  and , respectively. Since part 1) impliesY YÐRÑ ÐRàKÑ
that  has the ACC, each sequence is eventually constant and so there isYÐRàKÑ
an index  for which7

K ∩R œ K ∩R K R œ K R73 7 73 7and

for all . Hence, Theorem 2.18 implies that  for all  and so3   ! K œ K 3   !73 7

YÐKÑ − ACC. A similar argument holds for the DCC.

For part 3), let , ACC and letY YÐK Ñ ÐK Ñ −" #

T œ K K ß R œ K Ö"×ß R œ Ö"× K" # " " # #} } {

Then ACC implies that ACC for . Also, Y YÐK Ñ − ÐR Ñ − 3 œ "ß # TÎR ¸ R3 3 " #

and so ACC. Hence, ACC by the extension property.Y YÐTÎR Ñ − ÐTÑ −"

Conversely, if ACC, then  implies that ACCY Y Y YÐT Ñ − ÐR Ñ © ÐTÑ ÐR Ñ −3 3

and so ACC for .YÐK Ñ − 3 œ "ß #3

Chain Conditions and Homomorphisms
The presence of a chain condition can have a significant impact on
homomorphisms. For example, if  has the ACC on normal subgroups, thenK
any surjective endomomorphism  is also injective. To see this,5À K Ä K
consider the  of :kernel sequence 5



ker ker kerÐ Ñ Ÿ Ð Ñ Ÿ Ð Ñ Ÿ â5 5 5# $

Since this must eventually be constant, we have  for allker kerÐ Ñ œ Ð Ñ5 58 85

5   ! + − Ð Ñ + œ , , − K. Now, if , then  for some  and soker 5 58

" œ + œ ,5 58"

and so , whence . Thus,  is trivial., − Ð Ñ œ Ð Ñ + œ , œ " Ð Ñker ker ker5 5 5 58" 8 8

Let us refer to the subgroups

Ö Kß Kß Ká×5 5 5# $

as the  of  and the sequencehigher images K

K   K   K   â5 5#

as the  of . If  has the DCC on  subgroups, then anyimage sequence 5 K all
injective endomomorphism  is also surjective, since the image5À K Ä K
sequence of  must eventually be constant and so  for some .5 5 58 8"K œ K 8
Hence, the injectivity of  implies that , whence  is surjective. Of5 5 5K œ K
course, if  has the DCC on  subgroups only, then we can draw the sameK normal
conclusion provided that  has normal higher images.5

Theorem 4.40 Let  be a group and let .K − ÐKÑ5 End
1  If  has the ACC on normal subgroups, then) K

5 5 surjective  injectiveÊ

2  If  has the DCC on all subgroups or if  has the DCC on normal) K K
subgroups and  has normal higher images, then5

5 5 injective  surjectiveÊ

Note that  has normal higher images if  preserves normality in general.5 5

Definition Let  be a group. A homomorphism  is K ÀK Ä L5 normality
preserving if

R K Ê R Lü 5 ü

The composition of two normality-preserving homomorphisms is normality
preserving. For endomorphisms, a stronger condition than that of preserving
normality is the following.

Definition An endomorphism  of a group  is  if  commutes5 5À K Ä K K normal
with all inner automorphisms  of , that is, for any ,#1 K + − K

5 5Ð+ Ñ œ Ð +Ñ1 1

for all .1 − K
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Of course, the composition of normal maps is normal. Also, it is easy to see that
a normal endomorphism is normality preserving. One of the advantages of
normal maps over other normality-preserving maps is that if  is5À K Ä K
normal and if  is -invariant, then  is also normal.L K l ÀL Ä Lü 5 5 L

Fitting's Lemma
If  has  chain conditions on normal subgroups and if  hasK − ÐKÑboth 5 End
normal higher images, then both the kernel and image sequences of  must5
eventually be constant and so there is an  for which7  !

O œ Ð Ñ œ Ð Ñ L œ K œ Kker ker5 5 5 57 73 7 73and

for all . There is much that can be said about the subgroups  and .3   ! L O

First,  and  and so  and  are -invariant. Also, if5 5 5L œ L O Ÿ O L O
+ − L ∩O + œ , + œ " , œ ", then  and . Hence,  and so5 5 57 7 #7

, − Ð Ñ œ Ð Ñ + œ " L ∩O œ Ö"×ker ker5 5#7 7 , whence . Thus, . To show that
K œ L  O + − K , − K + œ ,, if , then there is a  for which  and so5 57 #7

+Ð Ð, ÑÑ − Ð Ñ5 57 " 7ker , whence

+ œ Ò+ Ð, ÑÓ Ð,Ñ − LO5 57 " 7

Thus,

K œ Ð Ñ  Ð Ñim 5 57 7ker

Finally, since , the map  is nilpotent and since , the5 5 57
OÐOÑ œ Ö"× l ÐLÑ œ L

map  is surjective. We have just proved the important Fitting's lemma,5lL
which we can make a bit more general than the previous argument.

Theorem 4.41 , 1934  Let  be a group with the BCC on( )Fitting's lemma K
normal subgroups and let  have normal higher images.5 − ÐKÑEnd
1  There is an  for which) 7  !

K œ Ð Ñ  Ð Ñim 5 57 7ker

where
 a   and  are -invariant) imL œ Ð Ñ O œ Ð Ñ5 5 57 7ker
 b   is surjective and  is nilpotent.) 5 5l lL O

2  In particular, if  is indecomposable, then  is either nilpotent or an) K 5
automorphism of .K

Automorphisms of Cyclic Groups
Let us examine the automorphism group of the cyclic groups. It is clear that an
automorphism of a cyclic group is completely determined by its value on a
generator and that this value also generates the group.



The only generators of an infinite cyclic group  are  and  and soG Ð+Ñ + +∞
"

AutÐG Ñ œ Ö ß ×∞ + 7

where  for all . Now suppose that  is cyclic of order7B œ B B − G G œ Ø+Ù"
∞ 8

8 − ÐG Ñ. If , then7 Aut 8

7+ œ +5

for some . But  and so we must have . Moreover," Ÿ 5  8 9Ð+Ñ œ 9Ð+ Ñ 5 −5 ‡
8™

this condition uniquely determines an automorphism  defined by75

75
3 53Ð+ Ñ œ +

for . Hence, there is precisely one automorphism  for each .! Ÿ 3  8 5 −7 ™5 8
‡

Moreover, the map  defined by  is an isomorphism,5 ™ 5 7À Ä ÐG Ñ 5 œ8
‡

8 5Aut
since it is clear that  is bijective and if  and  with ,5 ™ ™4ß 5 − 45 œ ;8  < < −8 8

‡ ‡

then

7 7 7 7< 5 5 4
3 3< 345 34 3Ð+ Ñ œ + œ + œ Ð+ Ñ œ Ð+ Ñ

Thus, .AutÐG Ñ ¸8 8
‡™

Theorem 4.42 For the cyclic groups, we have

AutÐG Ð+ÑÑ œ Ö ß À + È + ×∞
"+ 7

and

AutÐG Ð+ÑÑ œ Ö ± 5 − × ¸8 5 8 8
‡ ‡7 ™ ™

where  is defined by . In particular, the automorphism group of a7 75 5
5Ð+Ñ œ +

cyclic group is abelian.

A Closer Look at ™8
‡

The previous theorem prompts us to take a closer look at the groups .™8
‡

Theorem 4.43 If  where the  are distinct primes and , then8 œ : â: : /   ""
/

7
/

3 3
" 7

™ ™ } } ™8
‡ ‡ ‡

: :
¸ â

"
/ /"

5
5

Moreover,  is cyclic if and only if  or  where  is an odd™8
‡ / /8 œ #ß %ß : #: :

prime.
Proof. Let . For the direct product decomposition, consider the map< œ :3 3

/3

5 ™ } ™À Ä8 <
‡ ‡

3
 defined by

5Ð?Ñ œ Ð? < ßá ß ? < Ñ  mod mod" 7

This map is a group homomorphism and if , then  ,5? œ Ð"ßá ß "Ñ ? ´ " <mod 3

that is,  for all . Since the 's are pairwise relatively prime, it< ± Ð?  "Ñ 3 <3 3
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follows that , that is,  in . Thus,  is a monomorphism and8 ± Ð?  "Ñ ? œ " ™ 58
‡

since the domain and the range of  have the same size (see Theorem 2.30),  is5 5
an isomorphism.

Now, Theorem 2.33 implies that  is cyclic if and only if each factor  is™ ™8
‡ ‡

:3
/3

cyclic and the orders

9Ð Ñ œ : Ð:  "Ñ™:
‡

3
/ "

3
3
/3

3

are relatively prime. So let us take a look at  for  prime.™:
‡
/ :

Let . To see that  is cyclic, first note that if , then  is cyclic:  # / œ "™ ™: :
‡ ‡
/

since  is a field. Assume that . It is sufficient to find elements in  of™ ™: :
‡/  " /

the relatively prime orders  and .:  " :/"

To find an element of order , let  have order , where:  " + − : 7™:
‡ 5
/

7 ± :  ". Then

+ œ " : Ð:  "Ñ: 7 /"5

mod

and  implies that/  "

+ œ " :: 75 mod

But if  is chosen so that , then Fermat's little theorem implies that+ Ð+ß :Ñ œ "

+ ´ + : + ´ " : 7 œ :  ": 75 mod mod and so , whence . Thus,
9Ð+Ñ œ : Ð:  "Ñ 9Ð+ Ñ œ :  "5 : and so , as desired.5

Moreover, since , the expression  is in -standard form and so:  # œ "  : :"
Theorem 1.18 implies that

Ð"  :Ñ œ "  A:: //"

where . Hence,  has order  in .: ± A "  : :y /" ‡
:™ /

Now consider the case . It is easy to see that  and  are cyclic. For: œ # ™ ™#
‡ ‡

%

/   $ "  #+ −, the elements of  are odd integers. For , it is easy to see™ ™# #
‡ ‡
/ /

by induction that

Ð"  #+Ñ œ "  # B# 5#
5

5

In particular,

Ð"  #+Ñ œ "  # B ´ " ## / /
/#

/#

mod

which implies that  has exponent  and so cannot be cyclic.™#
‡ /#
/ #



In summary, we can say that  is cyclic if and only if  or  or™:
‡ /
/ :  # : œ #

: œ %Þ/ ‡
8 We can now piece together our facts. As mentioned earlier,  is cyclic™

if and only if each factor  is cyclic and the orders™
:
‡

3
/3

9Ð Ñ œ : Ð:  "Ñ™:
‡

3
/ "

3
3
/3

3

are relatively prime. Since  is even unless  and , there: Ð:  "Ñ : œ # / œ "3
/ "

3 3 3
3

can be at most one factor involving an odd prime or . Thus,  is cyclic if and™ ™%
‡ ‡

8

only if  or  where  is prime.8 œ #ß %ß : #: :  #/ /

Exercises
1. Let  be a group homomorphism.5À K Ä L
 a  Prove that if , then .) W Ÿ K W Ÿ L5
 b  Prove that  if  is surjective and , then .) 5 ü 5 üW K W L
 c Prove that if , then .) X Ÿ L X Ÿ K5"

 d  Prove that  if , then .) X L X Kü 5 ü"

2. Let  and  be groups and let Show that it is not always possibleK O L Ÿ KÞ
to extend a homomorphism  to .5ÀL Ä O K

3. Show that the -quasicyclic group  is isomorphic to the subgroup of: Ð: Ñ™ ∞

all complex th roots of unity.:8

4. Show that if  has a  maximal subgroup , then  is cyclic ofK Q KÎQunique
prime order.

5. Let  be a finite group with normal subgroups  and . If ,K L O KÎL ¸ KÎO
does it follow that ?L ¸ O

6. a  Find a property of groups that is inherited by quotient groups but not)
by subgroups.

 b  Find a property of groups that is inherited by subgroups but not by)
quotient groups.

7. Show that a group  is abelian if and only if the map  is anK + È +"

automorphism of .K
8. Let  be a group.K
 a) Determine all homomorphisms .5À G Ð+Ñ Ä K7

 b) Determine all homomorphisms .5À G Ð+Ñ Ä K∞

9. Are all normality-preserving homomorphisms normal? : Use the factHint
that  is simple.W$

10. Let  be a group and let  be a normal cyclic subgroup of . Prove thatK R K
K Ÿ G ÐRÑw

K .
11. Let  be a group. Prove that  is central if and only if  is abelian.K K ÐKÑw Inn
12  An endomorphism  is  ifÞ − ÐKÑ5 End central

+ + − ^ÐKÑ"5

for all . This is equivalent to , that is,  acts like+ − K +^ÐKÑ œ +^ÐKÑ5 5
the identity on . Prove thatKÎ^ÐKÑ

 a  A normal surjective endomorphism is central.)
 b  A central endomorphism is normal.)
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13. An abelian group  (written additively) is  if for any  andE + − Edivisible
any positive integer , there is a  for which . Prove that a8 , − E 8, œ +
characteristically simple abelian group  is divisible.E

14. Let  be a group and let . Is the map  defined byK + − K ÀK Ä K5
5 5, œ Ò,ß +Ó K K an endomorphism of ? If not, under what conditions on  is 
an endomorphism?

15. Let  be a group of order  where  is a prime.K : :#

 a) Prove that if  is abelian, then  is either cyclic or isomorphic to theK K
direct product of two cyclic groups of order .:

 b) Show that the distinct sets  of conjugates of elements in  form aÖ+ × KK

partition of . Show that . Show that  must be abelian.K ^ÐKÑ Á Ö"× K
16. Prove that , where  is the symmetric group of order  and  isW ¸ H W ' H$ ' $ '

the dihedral group of order .'
17. Prove that if  has a periodic subgroup  of finite index, then  isK L K

periodic. (In loose terms, if “most” of the elements of  have finite order,K
then all elements of  have finite order.)K

18. Let  be a finite group. Let . A subgroup  of  is called aK O K L Kü
supplement of  if . Let  be a minimal supplement of .O K œ LO L O
Prove that .L ∩O Ÿ ÐLÑF

19. Let  be a family of groups with the following properties:Y
 1) If  and , then .K − L ¸ K L −Y Y
 2) If  and , then .K − R K KÎR −Y ü Y
 3) If  and if  and , then .R K R − KÎR − K −ü Y Y Y
 Prove that if  and  are subgroups of  with , thenR − O − K O KY Y ü

RO − Y .
20. If  is a finite group and  is an automorphism of  that fixes only theK K5

identity element, that is,  implies , show that1 Á " 1 Á 15

K œ Ö1 1 ± 1 − K×"5

21. Prove that if  and , then it does not necessarily followL K O Küü üü
that the set product  is a subgroup of . : Look at the dihedralLO K Hint
group .H)

22. Let  be a finite group. Suppose that  is minimal among all normalK E Kü
subgroups of  and that  is abelian. Prove that  is an elementary abelianK E E
group.

23. Show that a subgroup  of a group  is characteristic if and only ifL K
5 5L œ L − ÐKÑ for all automorphisms .Aut

24. Find an example of a normal subgroup  of a group  for which  is notL K L
characteristic in .K

25. Let  be a group. Prove the following:K
 a  The property of being characteristic is transitive: If  and ,) E « F F « G

then .E « G
 b  If  and , then .) E « F F G E Gü ü
26. Show that .^ÐKÑ « K



27. Let  be a finite group and let . Show that if ,K L K Ð L ß ÐK À LÑÑ œ "ü k k
then .L « K

28. Let  be a group and let . Prove that  implies .K L Ÿ K L « K ÒLßKÓ « K
29. Let  be a finitely-generated group and let  with .K L Ÿ K ÐK À LÑ  ∞

Show that there is a subgroup  that is characteristic in  and hasO Ÿ L K
finite index in .K

30. Let  be a group and let . Let . Show that  impliesK R – K L  K R Ÿ ÐLÑF
R Ÿ ÐKÑF .

31. Let  be a group. Let  be the commutator subgroup of . Let  be theK K K Kw ww

commutator subgroup of . In general, we can continue to takeKw

commutator subgroups and  is called the K œ ÐK ÑÐ8Ñ Ð8"Ñ w 8th commutator
subgroup of . Prove that .K K « KÐ8Ñ

32. Let  be a group. Prove that if  is cyclic, then  is abelian.K ÐKÑ KInn
33. a) Show that the commutator subgroup of a group is fully invariant.
 b) Show that the center of a group need not be fully invariant. :Hint

consider .G Ð+Ñ W# $}
34. Let  be a finite abelian group of order  where the 's areK 8 œ : â: :"

/
7
/

3
" 7

distinct primes. For each prime , let:3

K œ Ö+ − K ± + : ×Ð: Ñ 33
 is a -element

 a) Show that .K « KÐ: Ñ3

 b) Show that

K œ K K ∩ K œ Ö"×2 2Ð: Ñ Ð: Ñ Ð: Ñ4Á33 3 3
and

35. ( ) Let  be pairwise relativelyChinese remainder theorem 7 ßá ß7" 5

prime integers greater than . Let  be integers. Prove that the" 0 ßá ß 0" 8

system of congruences

B ´ 0 7

ã

B ´ 0 7

" "

8 5

mod

mod

has a unique solution modulo the product . : : Use .7 â7" 5 7Hint ™
3

36. Let  be a group of order  where  is a prime. Show that a subgroup K : : L8

of index  must be normal in . : Consider the map ,: K ÀK Ä WHint - KÎL

where  is the symmetric group on , defined byW KÎLKÎL

-Ð1ÑÐ+LÑ œ 1+L .
37. Find the subgroup lattice of . Which subgroups are normal? Is  abelian?U U

What is the center of ? What is ?U Uw

38. Prove that the quasicyclic groups  are the only infinite groups with™Ð: Ñ∞

the property that their proper subgroups consist entirely of a single
ascending chain

Ö"×  W  W  â" #
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39. Let  be a group and let  be an integer.K 8  "
 a) When is the th power map  defined by  a8 0 ÀK Ä K 0 Ð+Ñ œ +8 8

8

homomorphism? Must  be abelian?K
 b) When is the th power map a homomorphism for all ?8 8
 c) Let  and let . Show thatK œ Ö+ ± + − K× K œ Ö+ − K ± + œ "×8 8 Ð8Ñ 8

both of these sets are normal subgroups of . What is the relationshipK
between these subgroups?

40. Find the automorphism group  of the 4-group .AutÐZ Ñ Z
41. Let »  be an epimorphism. Show that if , then5 üüÀ K q O L K

5 üü 5L O =Ð LßOÑ Ÿ =ÐLßKÑ and .
42. Prove that the subgroup  of the dihedral groupØ Ù5

H œ Ø ß ± œ " œ Ù#
# #

8"

8

5 3 5 3

has subnormal index .8
43. If  is a family of subnormal subgroups of a group  and ifY œ ÖL ± 3 − M× K3

there is an integer  for which  for all , show that  is= =ÐL ßKÑ Ÿ = 3 − M3 +Y
subnormal in .K

44. Prove that any finitely-generated metabelian group has the generalized SJP.
45. A group  is  if  is not isomorphic to any proper quotient groupK KHopfian

of itself. A group  is  if  is not isomorphic to any properK Kco-Hopfian
subgroup of itself.

 a  Prove that  is Hopfian if and only if every endomorphism of  is an) K K
automorphism of .K

 b  Prove that  is co-Hopfian if and only if every monomorphism of  is) K K
an automorphism.

 c  Show that  is both Hopfian and co-Hopfian. : To show that  is)  Hint
Hopfian, show that  is not torsion free unless . To showÎL L œ Ö"×
that  is co-Hopfian, show that any proper subgroup  of  is not L
divisible. An abelian group  is  if  and  implyK + − K 8 −divisible ™
that there is a  for which ., − K + œ 8,

 d  Show that  is Hopfian but not co-Hopfian.) ™
 e  Show that the quasicyclic group  is co-Hopfian but not Hopfian.) ™Ð: Ñ∞

 f  Show that the additive group of all polynomials in infinitely many)
variables is neither Hopfian nor co-Hopfian.

46. Find two nonisomorphic groups with isomorphic automorphism groups.
47. Prove that the multiplicative group  of positive rational numbers is

isomorphic to the additive group  of polynomials over the integers.™ÒBÓ
Hint: Use the fundamental theorem of arithmetic.

48. Let  be a group. Show that if  is centerless, thenK K

G Ð ÐKÑÑ œ Ö ×AutÐKÑ Inn +

49. Show that .Aut InnÐW Ñ œ ÐW Ñ ¸ W$ $ $

50. Prove that if  is a group in which every nonidentity element is anK
involution, then  has a nontrivial automorphism.K



51. Consider a series for K

Ö"× œ K K K â K œ K! " # 8ü ü ü ü

for which each factor group  is abelian. Show that if  is aK ÎK L3" 3

subgroup of , then there is a series of subgroupsK

Ö"× œ L L L â L œ L! " # 7ü ü ü ü

of  whose factor groups are also abelian.L
52.  Let  and suppose that  has the GSJP and  has the( )Robinson R K R KÎRü

ACC on subnormal subgroups. Show that  also has the GSJP. : ApplyK Hint
Theorem 4.35. Let  be an arbitrary chain in  andV œ ÖL ± 3 − M× ÐKÑ3 subn
let . To show that , consider the chainsY œ Y K-V ü ü

VR œ ÖL R ± 3 − M×3

and

VRÎR œ ÖL RÎR ± 3 − M×3

in  and , respectively. Let  be a maximal member ofK KÎR L RÎR"

VRÎR Y œ L ÐY ∩ RÑ. Show that ."
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Chapter 5
Direct and Semidirect Products

In this chapter, we will explore the issue of the decomposition of groups into
“products” of subgroups. To say simply that a group  can be decomposed intoK
a set product of two proper subgroups

K œ LO

leaves something to be desired. The first problem is that the representation of an
element of  as a product  for  and  need not be unique. TheK 25 2 − L 5 − O
second problem is that, in general, we have no information about how the
elements of  and  interact, for example, what is  as a member of ?L O 52 LO
The first problem is easily addressed. The second is not as simple.

Complements and Essentially Disjoint Products
Uniqueness in a set product decomposition is easily characterized.

Theorem 5.1 Let .LßO Ÿ K
1  Every element  has a  representation as a product ) + − LO + œ 25unique

for  and  if and only if  and  are essentially disjoint.2 − L 5 − O L O
2  Every element  can be  represented as an element of  if) + − K LOuniquely

and only if , that is, if and only ifK œ L ìO

K œ LO L ∩O œ Ö"×and

In this case,  is said to be a  of  in . A subgroup  of O L K L Kcomplement
is  if it has a complement in .complemented K

Note that since  implies , the concept of complement isK œ LO K œ OL
symmetric in  and . Also, if , thenL O K œ L ìO

k k k k k kk kK œ L ìO œ L O

as cardinal numbers.
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We pause for a small clarification of terminology. In the more specialized
literature of group theory, devoted to the study of the subgroup lattice  ofsubÐKÑ
a group , such as appears in the book , byK Subgroup Lattices of Groups
Schmidt [30], the term  of  refers to a subgroup  forcomplement L − ÐKÑ Osub
which

K œ L ”O L ∩O œ Ö"×and

This terminology is consistent with the terminology of lattice theory. Indeed,
Schmidt uses the term  for the concept given in ourpermutable complement
definition. However, our definition follows the trend in general treatments of
group theory (including most textbooks).

Even for normal subgroups, complements need not exist. For example, no
nontrivial proper subgroup of  has a complement. Moreover, when™
complements do exist, they need not be unique; for example, in  everyW$

subgroup of order  is a complement of the alternating subgroup  and so, for# E$

example,

W œ E ì ØÐ" #ÑÙ œ E ì ØÐ" $ÑÙ$ $ $

are two essentially disjoint product representations of .W$

On the other hand, any complement  of a  subgroup  is isomorphic toO Rnormal
the quotient , for we haveKÎR

K R ì O O O

R R R ∩O Ö"×
œ ¸ œ ¸ O

Theorem 5.2 Let  be a group. If a normal subgroup  of  is complemented,K R K
then all complements of  are isomorphic to  and hence to each other.R KÎR

Complements and Transversals
Another way to characterize complements is through the notion of a transversal.
Let us recall the following definition.

Definition Let .L Ÿ K
1  A set consisting of exactly one element from each left coset in  is) KÎL

called a   for  in  or for .left transversal L K KÎL( )
2  A set consisting of exactly one element from each right coset in  is) LÏK

called a  for  in  or for .right transversal L K LÏK( )

It is of interest to know which  of  are left transversals for . Thesubgroups K L
simple answer is that these are precisely the complements of .L

Theorem 5.3 Let . The following are equivalent for a subgroup .L Ÿ K O Ÿ K
1   is a complement of  in .) O L K
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2   is a left transversal for  in .) O L K
3   is a right transversal for  in .) O L K
Proof. Suppose that  is a complement of  in . If , thenO L K 5 L œ 5 L" #

5 5 − O ∩L œ Ö"× 5 œ 5 K œ OL + − K#
"

" " # and so . Also, since , every  has
the form  for some . Thus, the cosets  for  form a+ œ 52 − 5L 5 − O 5L 5 − O
left transversal for  in . Conversely, suppose that  is a left transversalL K O Ÿ K
for . Since  contains a single member of , it follows thatKÎL L O
L ∩O œ Ö"× KÎL K + − K. Also, since the cosets  partition , any  has the form
+ œ 52 5 − O 2 − L K œ OL O, for some  and  and so . Thus,  is a
complement of  in . A similar argument can be made for the right cosets.L K

Product Decompositions
If , then every element of  has a  representation as aK œ L ìO K unique
product  with  and . The problem, however, is that we have no25 2 − L 5 − O
information about how the elements of  and  interact. Without aL O
commutativity rule that expresses a product  in the form , where52 2 5w w

2ß 2 − L 5ß 5 − Ow w and , we have no way to simply a product of the form

Ð2 5 ÑÐ2 5 Ñ" " # #

The simplest commutativity rule, that is, elementwise commutativity 25 œ 52
holds if and only if both factors  and  are normal in  and this essentiallyL O K
reflects the fact that there is  between  and . Weaker forms ofno interaction L O
decomposition come by weakening the requirement that both factors be normal.
Here are the relevant definitions in one place for comparison purposes.

Definition Let  be a group and let .K LßO Ÿ K
1  If)

K œ L ìO

then  is called the  of  and . In this case,K L Oessentially disjoint product
L O K is called a  of  in .complement

2  If)

K œ L ìOß L Kü

then  is called the  of  with . In this case,  isK L O Lsemidirect product
called a  of  in . The semidirect product is denotednormal complement O K
by

K œ L Oz

3  If)

K œ L ìOß L KßO Kü ü

then  is called the  of  and . In this case,  is called aK L O Ldirect product
direct complement of  in  and vice versa . The direct product isO K ( )



denoted by

K œ L  O

Any of these products is  if both factors are proper.nontrivial

The direct product decomposition of a group is a very strong form of
decomposition and so is rather specialized. However, the semidirect product is
one of the most useful constructions in group theory. For example, for
8 Á # % Hmod , the dihedral groups  have no direct product decompositions,#8

but they do have a semidirect product decomposition

H œ Ø Ù Ø Ù#8 3 z 5

Nevertheless, all three types of product decompositions are special. To illustrate
the point, an infinite cyclic group has no nontrivial essentially disjoint product
decompositions at all.

Direct Sums and Direct Products

External Direct Sums and Products
We have already defined the external direct product of a finite number of
groups. The generalization of this product to arbitrary families of groups leads
to two important variations. Intuitively speaking, if  is an arbitrary (finite or,
infinite) cardinal number, we can consider the set of all ordered “ -tuples” as,
well as the set of all ordered -tuples that have only a finite number of nonzero,
coordinates. The notion of an ordered -tuple is generally described by a,
function.

Definition Let  be a family of groups.Y œ ÖK ± 3 − M×3

1  The  of the family  is the group) external direct product Y

}Y }œ K œ 0À M Ä K 0Ð3Ñ − K3 3 3š ›. ¹
of all functions  from the   to the union of  for which the th0 M 3index set Y
coordinate  of  belongs to  for all . The group operation is0Ð3Ñ 0 K 33

componentwise product:

Ð01ÑÐ3Ñ œ 0Ð3Ñ1Ð3Ñ

The  of  is the setsupport 0 − K} 3

suppÐ0Ñ œ Ö3 − M ± 0Ð3Ñ Á "×

2  The  of the family  is the group) external direct sum Y

{Y { }Yœ K œ 0 − ± 03 e f has finite support

also under componentwise product.
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Of course, when  is a finite family, the direct product and direct sum coincide.Y
Note that authors vary on their use of the terms  and .direct sum direct product
For example, some authors reserve the term  for abelian groups and somesum
authors use the term  for direct product.cartesian product

Internal Direct Products
For convenience, we repeat the definition of the internal direct product.

Definition internal internal A group  is the  or K ( ) ( ) direct sum  direct product
of a family  of normal subgroups if  is strongly disjoint andY Yœ ÖL ± 3 − M×3

K œ 1Y Y. We denote the internal direct product of  by

L 3 or Y

or when  is a finite family,Y œ ÖL ßá ßL ×" 8

L  â  L" 8

Each factor  is called a  or  of . We denoteL K3 direct summand direct factor
the family of all direct summands of .K ,C ÐKÑWf

We should mention that the notation for direct sums and products varies
considerably among authors. For example, some authors use the notation
K œ L ‚O for both the internal and external direct sum (as well as the
cartesian product), justifying this on the grounds that the two types of direct
sums are isomorphic. While this may be reasonable, in an effort to avoid any
ambiguity, we have adopted the following notations:

1) Set product

LO

2) Essentially disjoint set product

L ìO

3) Cartesian product of sets

L ‚O

4) External direct product

L O L} }and 3

5) External direct sum

L O L{ {and 3

6) Internal direct product (sum)

L  O Land 3



7) Semidirect product

L Oz

Note that our notation for the internal direct product emphasizes the fact that the
two subgroups are normal (a juxtaposition of the symbols  and  used to— –
indicate normality) and is similar to the established notation  for thez
semidirect product.

To see that internal and external direct sums are isomorphic, suppose that
K œ K 5{ 3. For each , let

L œ Ö0 − K ± 0Ð3Ñ œ " 3 Á 5×5 3{  for 

We leave it as an exercise to show that  and that . On theL K K œ L5 5ü
other hand, if , then the map  defined byK œ K À K Ä K3 3 35 {

50 œ Ö0Ð3Ñ ± 3 − Mß 0Ð3Ñ Á "×$
is an isomorphism. For this reason, many authors drop the adjectives “internal”
and “external” when discussing direct sums.

The Universal Property of Direct Products and Direct Sums
Direct products and direct sums can each be characterized by a universal
property.

Projection and Injection Maps
If

K œ ÖL ± 3 − M× K œ ÖL ± 3 − M×} {3 3or

is an external direct product or external direct sum, we define the th 3 projection
map  by33 3À K Ä L

33Ð0Ñ œ 0Ð3Ñ

Note that  is an epimorphism and that an element  is uniquely33 0 − K
determined by the values , which can be specified arbitrarily, as long as33Ð0Ñ
33 3Ð0Ñ − L 3 for all .

The th   is defined by3 ÀL Ä Kinjection map ,3 3

,3Ð2ÑÐ4Ñ œ
2 4 œ 3
"œ if 

otherwise

for all . These maps are injective. Note also that2 − L3

3 ,
+

4 3‰ œ
3 œ 4

!œ if 
otherwise

For an internal direct sum
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K œ ÖL ± 3 − M×3

we have already defined the projection  by setting  to be the th3 33 3 3À K Ä L Ð+Ñ 3
component of . For the internal direct sum, the injection maps  are+ ÀL Ä K,3 3

just the inclusion maps, defined by  for all .,3 3Ð2Ñ œ 2 2 − L

Universality of Direct Products
Let  be a family of groups and letÖL ± 3 − M×3

T œ ÖL ×}
3−M

3

with projection maps . Then the ordered pair33

c 3œ Tß Ö ×� �3 3−M

has a universal property that characterizes the direct product up to isomorphism.

fi

Hi Hj

G

∃!τ

ui uj
U

fj

Figure 5.1

Definition Referring to Figure 5.1, let  be the family of all ordered pairsY

Z œ Kß Ö0 ÀK Ä L ×� �3 3 3−M

where  is a group and  is a family of homomorphisms. WeK Ö0 ÀK Ä L ×3 3 3−M

refer to  as the  of the pair . A pairK vertex Z

h œ Yß Ö? À Y Ä L ×� �3 3 3−M

in  is  for  if for any pair , there is a unique homomorphismY Y Z Yuniversal −
7 ZÀ K Ä Y  between the vertices, called the  for , formediating morphism
which

? ‰ œ 03 37

for all .3 − M

Theorem 5.4 Let  be a family of groups.ÖL ± 3 − M×3

1  The pair)

c 3œ Tß Ö À T Ä L ×� �3 3 3−M



where  is the direct product of the family  and  is the th projectionT ÖL × 33 33
map, is universal for .Y

2  If the pair  is also universal for , then the mediating) ÐKß Ö0 × Ñ3 3−M Y
morphism  is an isomorphism and so .7 À K Ä T K ¸ T

Proof. For part 1), for any pair , there must exist a unique mediatingZ Y−
morphism  satisfying7 À K Ä T

3 73 3‰ œ 0

But this is equivalent to

3 73 3Ð +Ñ œ 0 Ð+Ñ

for all  and this does uniquely define a homomorphism . The proof of+ − K 7
part 2) is also to the proof of Theorem 4.5 and we leave the details to the
reader.

Universality of Direct Sums
Let  be a family of groups and letÖL ± 3 − M×3

W œ ÖL ± 3 − M×{ 3

with injections . The ordered pair,3

f ,œ ÐWß Ö × Ñ3 3−M

also has a universal property that characterizes the direct sum up to
isomorphism.

fi

Hi Hj

G

U

fj∃!τ

ui uj

Figure 5.2

Definition Referring to Figure 5.2, let  be the family of all ordered pairsY

Z œ Kß Ö0 ÀL Ä K×� �3 3 3−M

where  is a group and  is a family of homomorphisms. WeK Ö0 ÀL Ä K×3 3 3−M

refer to  as the  of the pair. A pairK vertex

h Yœ Yß Ö? ÀL Ä Y× −� �3 3 3−M

is  for  if for any pair , there is a unique homomorphismuniversal Y Z Y−
7 ZÀ Y Ä K between the vertices, called the  for , formediating morphism
which
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7 ‰ ? œ 03 3

for all .3 − M

Theorem 5.5 Let  be a family of groups.ÖL ± 3 − M×3

1  The pair)

f ,œ Wß Ö ÀL Ä W×� �3 3 3−M

where  is the direct sum of the family  and  is the th injection map,W ÖL × 33 3,
is universal for . That is, for any pairY

Z œ Kß Ö0 ÀL Ä K×� �3 3 3−M

where  is a group and  is a family of homomorphisms,K Ö0 ÀL Ä K×3 3 3−M

there is a unique homomorphism  for which7 À W Ä K

7 ,‰ œ 03 3

for all , or equivalently,3 − M

7 l œ 0L 33

for all . In other words, a homomorphism  is uniquely3 − M À W Ä O7
determined by its restrictions  to the factors , which may be any7 l LL 33

homomorphisms from  to .L K3

2  If the pair  is also universal for , then the mediating) ÐKß Ö0 × Ñ3 3−M Y
morphism  is an isomorphism and so .7 À W Ä K K ¸ W

Proof. For part 1), for any pair  in , there must be aÐOß Ö5 ÀL Ä O× Ñ3 3 3−M Y
unique mediating morphism  satisfying7 À W Ä K

7 ,‰ œ 03 3

But this specifies how  is defined on any element of  that has support of size7 W
" W W and therefore on any element of  that has finite support, that is, on all of .
We leave the details of this and the proof of part 2) to the reader.

Cancellation in Direct Sums
A group  is  (or  for short) ifK cancellable in direct sums cancellable

E  K ¸ F  Lß K ¸ L Ê E ¸ F

We follow a line similar to Hirshon [18] to prove that any finite group is
cancellable in direct sums. On the other hand, Hirshon shows that even infinite
cyclic groups are not cancellable in direct sums.

Theorem 5.6 Any finite group  is cancellable in direct sums.K
Proof. It is sufficient to show that

E  K œ F  Lß K ¸ L Ê E ¸ F



and we prove this by induction on . If , the result is clear.9ÐKÑ 9ÐKÑ œ "
Assume that any group of order less than  is cancellable and let9ÐKÑ

[ œ E  K œ F  Lß K ¸ L

First, we observe that if , then , for we haveF ∩K œ Ö"× [ œ F  K

F  K [

F F
¸ K ¸ L ¸

and since these groups are finite, they have the same size and so they are equal,
whence . It follows that  and  are both direct complements of F  K œ [ E F K
in  and so are isomorphic. A similar argument holds if .[ E ∩L œ Ö"×

Thus, we may assume that  and  are nontrivial. ThenF ∩K E ∩L

E  K L  F

ÐE ∩LÑ  ÐF ∩ KÑ ÐE ∩LÑ  ÐF ∩ KÑ
œ

and Theorem 5.19 implies that

E K L F

E ∩L F ∩K E ∩L F ∩K
¸} }

Since , we haveL ¸ K

L E K K L F

Ö"× E ∩L F ∩K Ö"× E ∩L F ∩K
¸} } } }

and Theorem 4.8 implies that

L E K L K F

Ö"× ÐE ∩LÑ ÐF ∩ KÑ Ö"× ÐE ∩ LÑ ÐF ∩ KÑ
¸

} } } }

} } } }

Splitting this in a different way gives

E L K F L K

Ö"× E ∩L F ∩K Ö"× E ∩L F ∩K
¸} } } }

Since , the induction hypothesis implies that 9ÐKÎÐF ∩ KÑÑ  9ÐKÑ KÎÐF ∩ KÑ
is cancellable. Similarly,  is cancellable and so .LÎÐE ∩LÑ E ¸ F

The Classification of Finite Abelian Groups
We are now in a position to solve the classification problem for finite abelian
groups, that is, we can identify a system of distinct representatives for the
isomorphism classes of finite abelian groups.

Theorem 5.7 Let  be a finite abelian group. If  has maximum orderE ? − E
among all elements of , then  has a direct complement, that is, thereE Q œ Ø?Ù
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is a subgroup  for whichZ

E œ Q Z

Proof. The proof is by induction on the order of . If , the result isE 9ÐEÑ œ "
clear. Assume the result holds for all abelian groups of order less than that of .E
We may also assume that . If we find a subgroup  for whichQ  E \ Ÿ E
\ ∩Q œ Ö!× 9Ð?  \Ñ œ 9Ð?Ñ, since then , the inductive hypothesis applied to
the quotient  givesKÎ\

E Q \ Z Q  Z

\ \ \ \
œ œ

for some . Hence,  and since , it followsZ Ÿ E E œ Q  Z ÐQ \Ñ ∩ Z œ \
that , whence .Q ∩ Z © Q ∩\ œ Ö!× E œ Q Z

To this end, let  be a minimal subgroup of  that is not contained in . If\ E Q
B − \ ØBÙ Q \ œ ØBÙ 9ÐBÑ œ +, +, then  is not contained in  and so . If  with  and
, " Ø+BÙ  ØBÙ Ø+BÙ Ÿ Q relatively prime and greater than , then  and so .
Similarly,  and so , a contradiction. Hence,Ø,BÙ Ÿ Q B − Ø+BÙ  Ø,BÙ Ÿ Q
9ÐBÑ œ : \ ∩Q œ Ö!× is prime and so .

Thus, if  is a finite abelian group and if  has maximum order in , thenE ? E"

E œ Ø? Ù Z" "

for some . If  and  has maximum order in , thenZ Ÿ E Z Á Ö!× ? Z" " # "

E œ Ø? Ù Ø? Ù Z" # # 

where . Since  is finite, this process must eventually result in a9Ð? Ñ ± 9Ð? Ñ E# "

cyclic decomposition

E œ Ø? Ù â Ø? Ù" 8 

of , where if , thenE œ 9Ð? Ñα5 5

α α α8 8" "± ± â ±

Moreover, if  has the prime factorizationα"

α" "
/ /

7œ : â:"ß" "ß7

then  implies thatα α5 "±

α5 "
/ /

7œ : â:5ß" 5ß7

where  for all . Then Theorem 2.33 implies that/ Ÿ / 3 œ "ßá ß75ß3 5"ß3

Ø? Ù œ Ø@ Ù â Ø@ Ù5 5ß" 5ß7 
5

where  for all . A subgroup of order a power of a prime  is called9Ð@ Ñ œ : 3 :5ß3 3
/5ß3



a  (or just ) subgroup. It is customary when writing  as a:-primary primary E
direct sum of primary cyclic subgroups to collect the terms associated with each
prime.

Theorem 5.8 The cyclic decomposition of a finite abelian group  Let  be a( ) E
finite abelian group.
1    is the direct sum of a finite number of) ( )Invariant factor decomposition E

nontrivial cyclic subgroups

E œ Ø? Ù â Ø? Ù" 8 

where if , thenα5 5œ 9Ð? Ñ

α α α8 8" "± ± â ±

The orders  are called the  of .α3 invariant factors E
2   If) ( )Primary cyclic decomposition

α5 "
/ /

7œ : â:5ß" 5ß7

where  for all , then  is the direct sum of primary/ Ÿ / 3 œ "ßá ß7 E5ß3 5"ß3

cyclic subgroups:

E œ ÒØ? Ù â Ø? ÙÓ â ÒØ? Ù â Ø? ÙÓ"ß" "ß5 7ß" 7ß5     
" 7

where . The numbers  are called the 9Ð? Ñ œ : :3ß4 3 3
/ /3ß4 3ß4 elementary divisors

of .E

We note the following:

1  The product of the invariant factors is equal to the product of the)
elementary divisors and is the order of the group.

2  The invariant factor  is equal to the maximum order of the elements of) α5

the group

Ø? Ù â Ø? Ù" 5 

In particular, the largest invariant factor  is equal to the maximum orderα"

of the elements of .E
3  The  of invariant factors of  uniquely determine the  of) multiset multisetE

elementary divisors of  and vice versa. In particular, the elementaryE
divisors are determined by factoring the invariant factors and the invariant
factors are determined by multiplying together appropriate elementary
divisors.

Uniqueness
Although the invariant factor decomposition and the primary cyclic
decomposition are  unique, the multiset of invariant factors and the multisetnot
of elementary divisors are uniquely determined by . Actually, the proof isE
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quite easy if we use the cancellation property of Theorem 5.6. Suppose that

E œ Ø? Ù â Ø? Ù" 8 

where  andα5 5œ 9Ð? Ñ

α α α8 8" "± ± â ±

and that

E œ Ø@ Ù â Ø@ Ù" 7 

where  and"5 5œ 9Ð@ Ñ

" " "7 7" "± ± â ±

Then  and  are both equal to the maximum order of the elements of  andα "" " E
so . Hence  and Theorem 5.6 implies thatα "" " " "œ Ø? Ù ¸ Ø@ Ù

Ø? Ù â Ø? Ù ¸ Ø@ Ù â Ø@ Ù# 8 # 7   

Now,  and  are equal to the maximum orders in the two isomorphic groupsα "# #

above and so  and we may cancel again. Hence,  and  forα " α "# # 5 5œ 7 œ 8 œ
all .5

Theorem 5.9 Uniqueness  Let  be a finite abelian group. The multiset of( ) E
invariant factors and elementary divisors  for  is uniquely determined by( ) E
E.

Properties of Direct Summands
Let us explore some of the properties of direct summands. The following simple
facts are worth explicit mention:

1  The direct summand property is transitive:)

L − ÐOÑß O − ÐKÑ Ê L − ÐKÑWf Wf Wf

2  The property of being a direct summand in inherited by subgroups:)

L − ÐKÑß L Ÿ O Ÿ K Ê L − ÐOÑWf Wf

In fact,

K œ L  N ß L Ÿ O Ÿ K Ê O œ L  ÐN ∩OÑ

3  Normal subgroups of direct summands are normal in the group:)

R Lß L − ÐKÑ Ê R Kü Wf ü



4  The property of being characteristic is preserved by intersection with a)
direct summand:

R « Kß L − ÐKÑ Ê R ∩L « LWf

Good Order
Let  be a group and suppose thatK

K œ E  E œ F  Fw w

If , then it does not necessarily follow that , as is easily seen inE © F E ª Fw w

the Klein -group, for example. For convenience, let us say that an equation of%
the form

K œ E  E œ F  F ß E © Fw w

is in  if .good order E ª Fw w

Theorem 5.10 Let  be a group. IfK

K œ E  E œ F  F ß E © Fw w

then we can replace either  or  by another subgroup to get an equation inE Fw w

good order. Specifically, the following are in good order:

K œ E  ÒF  ÐE ∩ FÑÓ œ F  Fw w w

and

K œ E  E œ F  ÐE ∩ EF Ñw w w

Proof. The first equation follows directly from Dedekind's law. For the second
equation,

F ∩ ÐE ∩ EF Ñ œ E ∩ ÐF ∩ EF Ñ

œ E ∩ EÐF ∩ F Ñ

œ E ∩ E

œ Ö"×

w w w w

w w

w w

and

FÐE ∩ EF Ñ œ FEÐE ∩ EF Ñ œ FÐEE ∩ EF Ñ œ FEF œ Kw w w w w w w

Chain Conditions on Direct Summands and Remak Decompositions
Direct summands are also special with respect to chain conditions. We have
seen that for the families  and , the two chain conditions (ACCsub norÐKÑ ÐKÑ
and DCC) are independent. However, for the family  of WfÐKÑ direct summands
of , the two chain conditions are equivalent.K
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Theorem 5.11 A group  has the ACC on  if and only if it has the DCCK ÐKÑWf
on .WfÐKÑ
Proof. Suppose that  has the DCC on direct summands and letK

H Ÿ H Ÿ â" #

be an ascending sequence in . Theorem 5.10 implies that there is aWfÐKÑ
descending sequence

I   I   â" #

where  for all . This descending sequence must eventuallyK œ H  I 33 3

become constant, at which time so does the original sequence of 's.H3

A group with the the BCC on direct summands can be decomposed into a finite
direct sum of indecomposable factors.

Definition If  is a group, then any decompositionK

K œ V  â  V" 8

where each  is indecomposible is called a  of .V K5 Remak decomposition

A  is a minimal member of the family minimal direct summand WfÐKÑ Ï Ö"×
of all nontrivial direct summands of . A direct summand is minimal if andK
only if it is indecomposable.

Theorem 5.12 If a group  has either and therefore both  chain( ) ( )Remak K
condition on direct summands, then  has a Remak decompositionK

K œ V  â  V" 8

Proof. Let  be a minimal direct summand of . If , then  isV K V œ K K" "

indecomposable and we are done. Otherwise,

K œ V  I" "

where  also has BCC on direct summands. Let  be a minimal directI Á Ö"× V" #

summand of , which is also a minimal direct summand of . If , weI K V œ I" # "

are done. If not, then

K œ V  V  I" # #

Since the sequence

V  V  V  â" " #

is a strictly increasing sequence of direct summands of , it must becomeK
constant and so this construction must terminate after a finite number of steps,
resulting in a decomposition of  into a finite direct sum of minimal directK
summands.



A Maximality Property
We paraphrase Theorem 3.15.

Theorem 5.13 Let  be a nonempty family of normal subgroupsY œ ÖL ± 3 − M×3

of a group . For any , there is a  that is maximal with respect toK O K N © Mü
the property that the direct sum

O   LŒ 7
4−N

4

exists.

One consequence of Theorem 5.13 is the following.

Theorem 5.14 Suppose that  is the join of a family  ofK œ ÖL ± 3 − M×Y 3

minimal normal subgroups. For any , there is a  for whichO K N © Mü

K œ O   LŒ 7
4−N

4

and so

norÐKÑ œ ÐKÑWf

Proof. Let  be maximal with respect to the fact that the direct sumN © M

Q œ O   RN 4
4−N

Œ 7
exists. If , then  implies that  or .3 Â N Q ∩R K Q ∩R œ Ö"× R Ÿ QN 3 N 3 3 Nü
But if , then the direct sum  exists, contradicting theQ ∩R œ Ö"× QN 3 N∪Ö3×

maximality of . Hence,  for all  and so .N R Ÿ Q 3 − M K œ Q3 N N

xY-Groups
It is natural to ask the following types of questions. Let  be a class ofk ÐKÑ
subgroups of a group , such as the class of all subgroups, all normalK
subgroups or all characteristic subgroups.

1  For which groups  is it true that all subgroups in  are) K ÐKÑk
complemented?

2  For which groups  is it true that all subgroups in  have normal) K ÐKÑk
complements?

3  For which groups  is it true that all subgroups in  are direct) K ÐKÑk
summands?

There has been much research done on these and related questions and it has
become customary to make the following types of definitions in this regard.
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Definition
1  An  is a group in which all subgroups are complemented.) aC-group
2  An  is a group in which all normal subgroups are complemented.) nC-group
3  An  is a group in which all subgroups are direct summands.) aD-group
4  An  is a group in which all normal subgroups are direct) nD-group

summands.
5  An  is a group in which all subgroups have normal) aNC-group

complements.

Note that an nNC-group is the same as an nD-group. We will characterize aD-
groups, nD-groups and aNC-groups. We will also describe (without proof) the
characterization of aC-groups. The theory of the least restrictive of these
conditions—the nC-groups—appears to be much more complicated and we refer
the reader to Christensen [8] and [9] for more details.

aD-Groups
Groups in which all subgroups are direct summands were characterized by
Kertész in 1952. This is the strongest of the xY-conditions and is indeed very
restrictive.

Theorem 5.15 aD-groups  [21], 1952 A group  is an aD-group if( : )Kertész K
and only if it is the direct product of cyclic groups of prime order.
Proof. If  is a direct sum of cyclic subgroups  of prime order, then sinceK G3

each  is minimal normal, Theorem 5.14 implies thatG3

sub norÐKÑ œ ÐKÑ œ ÐKÑWf

and so  is an aD-group.K

For the converse, suppose that  is an aD-group. Then any subgroup of  isK K
also an aD-group. However, the only cyclic aD-groups  are those of square-Ø+Ù
free order (that is, order a product of  primes). For it is clear that distinct Ø+Ù
cannot have infinite order and if  for any prime , then  has an: ± 9Ð+Ñ : Ø+Ù#

element  of order  and soB :

Ø+Ù œ ØBÙ  O

where . Hence,  has an element of order  as well, which is too many: ± 9ÐOÑ O :
elements of order  for a cyclic group. Hence, every element of  has square-: K
free order.

Now, consider the family  of all cyclic subgroups of prime order in . IfY K
+ − K 9Ð+Ñ œ : â: has order , where the factors are distinct primes, then" 7

Theorem 2.33 implies that there are subgroups  of order  for whichØ+ Ù :3 3

Ø+Ù œ Ø+ Ù  â  Ø+ Ù" 7



and so . But since each member of  is minimal normal, Theorem 5.14K œ 1Y Y
implies that  is the direct sum of a subfamily of .K Y

nD-Groups
The nD-condition is not as strong as the aD-condition, but is still very
restrictive. One reason is that normality is a finitary condition, involving
individual elements and so the condition  imparts finitaryWfÐKÑ œ ÐKÑnor
properties to the otherwise global condition of being a direct summand.

In particular, the union of any ascending sequence of normal subgroups is
normal and so in an nD-group, the union of any ascending sequence of direct
summands is a direct summand. This condition implies a certain measure of
finiteness for nD-groups. Specifically, if  is a nontrivial nD-group andK

H Ÿ H Ÿ â" #

is an ascending chain of direct summands in , thenR

K œ H  I œ ÐH  IÑŠ ‹. .3 3

for some . Hence, if  is the normal closure of a finiteI Ÿ K K œ ÐWßKÑnc
subset , then  for some  and so , whichW © K W © H  I 8   " K œ H  I8 8

implies that  for all . Thus,  has the ACC on direct summandsH œ H 3   ! K83 8

and so  has a Remak decomposition.K

Note also that any normal subgroup (direct summand)  of an nD-group  isH K
an nD-group, since

Wf WfÐHÑ œ ÐKÑ ∩ ÐHÑ œ ÐKÑ ∩ ÐHÑ œ ÐHÑsub nor sub nor

It follows that any nontrivial nD-group contains an indecomposable direct
summand.

We can now characterize nD-groups. Suppose that  is a nontrivial nD-groupK
and consider the family  of all indecomposable directY œ ÖW ± 3 − M×3

summands of , along with the trivial subgroup. Theorem 5.13 implies thatK
there is a subset  that is maximal with respect to the fact that the directN © M
sum

W œ  W
4−N

4

exists in  and so the nD-condition implies thatK

K œ W  L

for some . But if  is not trivial, then it contains an indecomposableL Ÿ K L
direct summand of , which contradicts the maximality of . Hence,  isK N L
trivial and
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K œ  W
4−N

4

is a direct sum of indecomposable subgroups. In particular, each  is minimalW3

normal in  and so  is the direct sum of minimal normal subgroups.K K

Conversely, if  is the direct sum of minimal normal subgroups, then TheoremK
5.14 implies that , that is,  is an nD-group.norÐKÑ œ ÐKÑ KWf

Theorem 5.16 The following are equivalent for a group :K
1   is an nD-group) K
2   is the direct sum of minimal normal subgroups) K
3   is the direct sum of simple subgroups.) K

aNC-Groups
We next show that aNC-groups are the same as aD-groups, by showing that an
aNC-group is abelian.

Theorem 5.17 aNC-groups  [34], 1960   A group is an aNC-group if( : )Weigold
and only if it is an aD-group, that is, if and only if it is a direct sum of cyclic
subgroups of prime order.
Proof. An aD-group is an aNC-group. For the converse, we show that an aNC-
group  has trivial commutator subgroup and so is abelian. If  is abelian,K E Ÿ K
then  for some  and soK œ R E R Kz ü

K œ ÒREßREÓ Ÿ Rw

Hence,  is in the normal complement of any abelian subgroup of , includingK Kw

all cyclic subgroups  of . Hence,  is trivial.Ø+Ù K Kw

aC-Groups
Finally, we state without proof the following theorem on aC-groups.

Theorem 5.18 aC-groups ( )
1    A finite group  is an) ( )Hall, P. Schmidt[17], 1937; see also   [30], p. 122 K

aC-group if and only if  is a direct sum of groups of square-free order.K
2   A group  is an aC-group if and only if) ( )See Schmidt [30], p. 123 K

K œ   LŠ ‹ Œ 7
3−M

3
−

N z
j J j

where each  and each  is cyclic of prime order and  for all .R L R K 33 4 3 ü

Behavior Under Direct Sum
The following theorem describes how some basic constructions behave with
respect to direct sums and emphasizes the fact that the summands in a direct
sum have a great deal of independence.



Theorem 5.19 Let

K œ  L
3−M

3

Then the following hold:
1  ) ( )Center of K

^ÐKÑ œ  ^ÐL Ñ
3−M

3

2  ) ( )Commutator of K

K œ  Lw w

3−M
3

3  If  for all , then) R L 33 3ü

 L

 R R
¸

L3−M
3

3−M
3 33−M

3
{

4  If , then) L « K3

Aut AutÐKÑ ¸ ÐL Ñ}
3−M

3

Proof. For part 1), since the 's commute elementwise, it is clear thatL3

^ÐL Ñ Ÿ ^ÐKÑ D − ^ÐKÑ D œ 2 â2 23 " 8 3. But if , then let  with each  in a
different factor . Then  and  for  and soL D − ^ÐL Ñ 2 − ^ÐL Ñ 5 Á 34 3 5 33

2 − ^ÐL Ñ D − ^ÐL Ñ3 3 3, whence .

For part 2), Theorem 3.41 implies that

K œ ÒL ß L Ó œ  ÒL ßL Ó œ ÒL ßL Ó œ Lw w

3 4 3ß4 3 3
3 4 3 4 3 3 3

For part 3), the function

5 {À  L Ä
L

R3−M
3

3−M

3

3

defined by

5 , 1 ,Ð+ÑÐ5Ñ œ Ð+ÑR œ ‰ Ð+Ñ5 5 R 55

where  is the canonical projection map and  is the th injection map is an1 ,R 55
5

epimorphism. Moreover,  if and only if  for all  and so5 ,+ œ " Ð+Ñ − R 55 5

kerÐ Ñ œ R5 3.

As to part 4), since , if , then  and so we canL « K − ÐKÑ l − ÐL Ñ3 L 35 5Aut Aut
3

define a map  by0 À ÐKÑ Ä ÐL ÑAut Aut} 3−M 3
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0Ð ÑÐ3Ñ œ l5 5 L3

This is a group homomorphism since

0Ð ÑÐ3Ñ œ Ð ‰ Ñl œ Ð l Ñ ‰ Ð l Ñ œ 0Ð ÑÐ3Ñ ‰ 0Ð ÑÐ3Ñ œ Ò0Ð Ñ0Ð ÑÓÐ3Ñ57 5 7 5 7 5 7 5 7L L L3 3 3

for all  and so . Furthermore,  is injective since3 − M 0Ð ‰ Ñ œ 0Ð Ñ0Ð Ñ 05 7 5 7
5 + 5 +l œ 3 œL3

 for all  implies .

To see that  is surjective, if , then the universality of the0 − ÐL Ñ7 } 3−M 3Aut
direct sum implies that there is a unique homomorphism  satisfying5À K Ä K
5 7 7 7l œ 3L 3 33

, the th coordinate of . But the bijectivity of each  implies that
5 5 7− ÐKÑ 0Ð Ñ œAut  and so .

When All Subgroups Are Normal
All subgroups of an abelian group are normal, but all subgroups of the
quaternion group  are normal and yet  is not abelian. A U U Hamiltonian group
is a  group all of whose subgroups are normal. In 1933, Baer [3]nonabelian
published a characterization of Hamiltonian groups. Baer's theorem says that the
Hamiltonian groups are actually a special type of abelian group with an
additional quaternion direct summand.

Theorem 5.20  [3], 1933  A group  is Hamiltonian if and only if( )Baer K

K œ U  E  F

where  is a quaternion group,  is an elementary abelian group of exponent U E #
and  is an abelian group all of whose elements have odd order.F
Proof. First suppose that  and let . If , thenK œ U  E  F L Ÿ K L Ÿ E  F
L K " − L K œ Ö„"× Ÿ L L Kü ü. Note that if , then  and so . Everyw

2 − L  has the form

2 œ ;+,

where ,  and  has odd order, then; − U + − E , − F

2 œ ; œ ;#9Ð,Ñ #9Ð,Ñ #

and so . If  for some , then  and so . On; − L 9Ð;Ñ œ % 2 − L " − L L K# ü
the other hand, if  for all , then 9Ð;Ñ Ÿ # 2 − L L Ÿ Ö„"×  E  F œ ^ÐKÑ
and so . Thus,  is Hamiltonian.L K Kü

For the converse, let  be Hamiltonian. Theorem 3.38 shows that  is periodicK K
and that any nonabelian subgroup of  contains a quaternion subgroup.K

If  is the set of odd-order elements of  and  is the set of elements of orderF K Q
a power of , then . Moreover, for any , the normality of# F ∩Q œ Ö"× Bß C − K
ØBÙ ØCÙ ØBß CÙ œ ØBÙØCÙ 9ÐBCÑ ± 9ÐBÑ9ÐCÑ and  imply that  and so . It follows that



F Q K + − K and  are (normal) subgroups of . Finally, every  has order
9Ð+Ñ œ # 7 7 + œ ,75  where  is odd and so Corollary 2.11 implies that  for
some  and . Thus,, − F 7 − Q

K œ F  Q

Since  does not contain a quaternion subgroup, it must be abelian and since F Q
is therefore nonabelian (since  is nonabelian),  contains a quaternionK Q
subgroup .U œ ØBß CÙ

We are left with showing that , where  is an elementary abelianQ œ U  E E
group of exponent . The centralizer#

G œ G ÐUÑQ

of  in  has exponent . To see this, note that if  has order ,U œ ØBß CÙ Q # D − G %
then  has order  and soØDBÙ Q %ü

DB œ ÐDBÑ œ DB DB œ ÐDBÑ œ D B$ C $ C $ $or

and since the former is false, we have . Thus,  is an elementary abelianD œ " G#

group of exponent . Moreover, since  is a vector space over , every# G ™#

subgroup (i.e., subspace) has a direct complement and so

G œ ØB Ù  E#

where  is also an elementary abelian group of exponent .E #

Consider the quotient , which contains the four distinct cosets , , QÎG G BG CG
and . Poincaré's theorem givesBCG

ÐQ À GÑ œ ÐQ À G ÐBÑ ∩ G ÐCÑÑ

Ÿ ÐQ À G ÐBÑÑÐQ À G ÐCÑÑ

œ B C

œ %

Q Q

Q Q

Q Q¸ ¸¸ ¸
and so

QÎG œ ÖGß BGß CGß BCG×

which implies that

Q œ UG œ UÐØB Ù  EÑ œ UE#

But the only involution in  is , which is not in  and so . Thus,U B E U ∩ E œ Ö"×#

Q œ U  E and

K œ Q  F œ U  E  F
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Semidirect Products
We now turn to semidirect products.

Definition Let  be a group. IfK

K œ R ì L R K, ü

then  is called a  of  in  and  is called theR L K Knormal complement
semidirect product of  by , denoted byR L

K œ R Lz

A semidirect product is  if both factors are proper.nontrivial

Example 5.21 The dihedral group  is a nontrivial semidirect product:H#8

H œ Ø Ù Ø Ù#8 3 z 5

The symmetric group is also a nontrivial semidirect product:

W œ E ØÐ" #ÑÙ8 8 z

On the other hand, the quaternion group is  a nontrivial semidirect product,not
since the orders of the factors must be  and  but the only subgroup of  of# % U
order  is contained in every subgroup of order .# %

For an arbitrary semidirect product , the  isK œ R Lz commutativity rule

28 œ Ð282 Ñ2 œ 8 2" 2

for  and  and this yields the 2 − L 8 − R multiplication rule

Ð8 2 ÑÐ8 2 Ñ œ 8 8 2 2" " # # " " ##
2"

for  and . Thus, for the semidirect product, the multiplication rule2 − L 8 − R3 3

shows that “cross products” are involved, in the form of conjugates . This8"
2"

has some perhaps unexpected consequences.

For example, if  and , then . On the otherE ¸ E F ¸ F E  F ¸ E  F" # " # " " # #

hand, if  is cyclic of order , thenØ+Ù '

Ø+Ù œ Ø+ Ù Ø+ Ù œ Ö"ß + ß + ×  Ö"ß + ×# $ # % $z

But we also have

W œ ØÐ" # $ÙÙ ØÐ" #ÑÙ œ Ö ß Ð" # $Ñß Ð" $ #Ñ× Ö ß Ð" #Ñ×$ z + z +

and so the nonisomorphic groups  and  can be written as a semidirectØ+Ù W$

product, where corresponding factors are isomorphic! The reason that this is not
a contradiction is that the values of the conjugates are different in each group.
For instance,



Ð+ Ñ œ +# + #$

but

Ð" # $Ñ œ Ð# " $Ñ Á Ð" # $ÑÐ" #Ñ

Semidirect Products and Extensions of Epimorphisms
Let  and  be groups with  and let »  be an epimorphism.K K L Ÿ K ÀL q K" "5
The key to describing the possible extensions of  to  is to consider the5 K
possible kernels for such an extension.

Suppose that  is a group and that  contain a normal subgroupK LßO Ÿ K
N K LÎN OÎN KÎNü . Then  and  are complements in  if and only if

L ∩O œ N K œ LOand

It will be convenient to make the following nonstandard definition.

Definition Let  be a group and let . If  satisfyK N K LßO Ÿ Kü

L ∩O œ N K œ LOand

we will say that  and  are  . If  is a normalL O N Ocomplements modulo
complement of  modulo , we will writeL N

K œ O L Ò N Óz mod

Now, if »  is an extension of » , then5 5À K q K ÀL q K" "

L ∩ Ð ÑkerÐ Ñ œ5 ker 5

To see that K œ LkerÐ Ñ + − K5 5, since  is surjective, for any , there is an
2 − L + œ 2 œ 2 2 + − Ð Ñ for which  and so , whence5 5 5 5" ker

+ œ 2Ð2 +Ñ − L Ð Ñ" ker 5

and so  is a normal complement of  modulo :ker kerÐ Ñ L Ð Ñ5 5

K œ Ð Ñker 5 z 5L Ò Ð ÑÓmod ker (5.22)

It follows that every extension  of  is uniquely determined by its kernel5 5
kerÐ Ñ5 .

On the other hand, suppose that

K œ O L Ò Ð ÑÓz 5mod ker

Then the   defined byignore-  mapO 5À K Ä K"

5 5Ð25Ñ œ Ð2Ñ
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for  and  is well defined since if  for  and2 − L 5 − O 25 œ 2 5 2 − L" " "

5 − O" , then

2 2 œ 5 5 − L ∩O œ Ð Ñ"
" "

" ker 5

and so , that is, . The normality of  implies that  is a5 5 5 5Ð2 2Ñ œ " 2 œ 2 O"
"

"

group homomorphism, since

5 5 5 5 5 5 5Ð525 2 Ñ œ Ð55 22 Ñ œ Ð22 Ñ œ Ð2Ñ Ð2 Ñ œ Ð52Ñ Ð5 2 Ñ" " " " " " ""
2

The kernel of  is5

ker kerÐ Ñ œ Ö25 ± 2 œ !× œ Ð ÑO œ O5 5 5

and so  is the unique extension of  with kernel .5 5 O

Theorem 5.23 Let  and  be groups, let  and let  be anK K L Ÿ K ÀL K" "5 q»
epimorphism.
1  Given any normal complement  of  modulo ,) O L Ð Ñker 5

K œ O L Ò Ð ÑÓz 5mod ker

the ignore-  map  defined byO ÀK Ä K5O "

5 5Ð25Ñ œ 2

for all  and  is the unique extension of  with kernel .2 − L 5 − O O5
Moreover, every extension  of  is an ignore-  map, where .5 5 5O O œ Ð Ñker

2  If , then  has a unique extension  for which) K œ O L ÀK Ä Kz 5 5 "

ker kerÐ Ñ œ O Ð Ñ5 5

Proof. For part 2), the Dedekind law implies that

L ∩O Ð Ñker 5 œ Ð ÑÐL ∩OÑ œ Ð Ñker ker5 5

and so  is a normal complement of  modulo .O Ð Ñ L Ð Ñker ker5 5

Semidirect Products and One-Sided Invertibility
Semidirect products are related to one-sided invertibility.

Definition Let  be a group homomorphism.5À K Ä L
1  A  of  is a homomorphism  for which . If) left inverse 5 5 5 5 +P PÀL Ä K ‰ œ

5 5 has a left inverse, then  is said to be .left invertible
2  A  of  is a homomorphism  for which .) right inverse 5 5 5 5 +V VÀK Ä L ‰ œ

If  has a right inverse, then  is said to be .5 5 right invertible

Unlike the two-sided inverse, one-sided inverses need not be unique. A left-
invertible homomorphism  is injective, since5



5 5 5 5 5 5+ œ , Ê ‰ + œ ‰ , Ê + œ ,P P

and a right-invertible homomorphism  is surjective, since if , then5 , − L

, œ Ð ,Ñ − Ð Ñ5 5 5V im

For  functions, the converses of these statements hold:  is left-invertible ifset 5
and only if it is injective and  is right-invertible if and only if it is surjective.5
However, this is not the case for group homomorphisms.

Let  be injective. Referring to Figure 5.3,5 äÀ K K"

G G1

im(σ)

K

(σ|im(σ))-1

σ|im(σ)

Figure 5.3

the map  obtained from  by restricting its range to  is5 5 5 5l À K ¸ Ð Ñ Ð ÑimÐ Ñ5 im im
an isomorphism and the left inverses of  are precisely the extensions of5
5 5 5P "

Ð Ñ "œ Ð l Ñ À Ð Ñ ¸ K Kim 5 im  to . Hence, Theorem 5.23 implies that there is
one left inverse  for  for each normal complement  of  and5 5 5P O Ð Ñim
kerÐ Ñ œ O5 5 5P . Moreover, this accounts for all left inverses of . In particular, 
is left-invertible if and only if  has a normal complement.imÐ Ñ5

Now let »  be surjective. Referring to Figure 5.4,5À K q K"

G G1

ker(σ)

H σ|H

σR=(σ|H)-1

Figure 5.4

If  for some , then  and  is a rightK œ Ð Ñ L L Ÿ K l ÀL ¸ K Ð l Ñker 5 z 5 5L " L
"

inverse of , with image . Conversely, if  is a right inverse of ,5 5 ä 5L ÀK KV "

then

K œ Ð Ñ Ð Ñker 5 z 5im V

For if , then  and , whence  and so+ − Ð Ñ ∩ Ð Ñ + œ , + œ " , œ "ker 5 5 5 5im V V
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+ œ " + − K. Also, for any , we have

+ œ +ÒÐ ‰ Ñ+Ó Ð ‰ Ñ+ − Ð Ñ Ð Ñˆ ‰� �5 5 5 5 5 z 5V V V
" ker im

Theorem 5.24 Let  be a group homomorphism.5À K Ä K"

1  If  is injective, then  has a unique left inverse  with kernel  for each) 5 5 5P O
normal complement  of . Hence,O Ð Ñim 5

K œ Ð Ñ Ð Ñ" Pker 5 z 5im

This accounts for all left inverses of .5
2  If  is surjective, then  has a unique right inverse ) 5 5 5 5V L "

"œ Ð l Ñ ÀK Ä K
for each complement  of . Hence,  andL Ð Ñ L œ Ð Ñker 5 5im V

K œ Ð Ñ Ð Ñker 5 z 5im V

This accounts for all of the right inverses of .5

Here is a nice application of this theorem.

Theorem 5.25 Let  and  be indecomposable groups. Let  andL O ÀO Ä Lα
" α" " üÀL Ä O − ÐLÑ Ð Ñ O be homomorphisms for which  and . ThenAut im
α " and  are isomorphisms.
Proof. The map

" α" αP
"œ Ð Ñ ‰ ÀO Ä L

is a left inverse of  and so  is injective and" "

L œ Ð Ñ  Ð Ñker " "P im

But since  is not the zero map,  must be surjective as well. Hence,  and" " "P

therefore also  are isomorphisms.α

The External Semidirect Product
To see how to externalize the semidirect product, let us review the internal
version. If we write the multiplication rule for the semidirect product  inR Lz
the form

Ð8 2 ÑÐ8 2 Ñ œ 8 Ò Ð8 ÑÓ2 2" " # # " 2 # " ##
"

where  is conjugation by , then  is completely described by the# z2 2 R L
subgroups  and , along with the family  of innerR L œ Ö ± 2 − L×\ #2
automorphisms. Moreover, since the map  is a homomorphism,  is a# # #À 2 È 2

representation of  in .L ÐRÑAut

In the spirit of externalization, we separate the components by writing  as25
Ð2ß 5Ñ to get



Ð8 ß 2 ÑÐ8 ß 2 Ñ œ Ð8 Ð8 Ñß 2 2 Ñ" " # # " 2 # " ##
"

But if the factors  and  are to be arbitrary groups, then the innerR L
automorphisms  make no sense. However,  representation of#2 any
)ÀL Ä ÐRÑ L ÐRÑAut Aut of  in  can play the role of conjugation and define a
group, as we now show.

Theorem 5.26 Let  and  be groups and let  be aR L ÀL Ä ÐRÑ) Aut
homomorphism. We denote  by . Let  be the cartesian product) ) zÐ2Ñ R L2 )

R ‚L  together with the binary operation defined by

Ð+ß BÑÐ,ß CÑ œ Ð+ Ð,Ñß BCÑ)B

Then  is a group; in fact, it is a semidirect productK œ R Lz)

R L œ R ‚ Ö"× Ö"× ‚ Lz z) � � � �
Also,

Ð+ß BÑ œ Ð+ß "ÑÐ"ß BÑ

and

Ð+ß "Ñ œ Ð Ð+Ñß "ÑÐ"ßBÑ
B)

which shows that  does define the inner automorphisms of elements of)
R ‚ Ö"× Ö"× ‚ L R L by elements of . The group  is called the z) external
semidirect product of  by   .R L defined by )
Proof. To see that multiplication is associative, we have

ÒÐ+ß BÑÐ,ß CÑÓÐ-ß DÑ œ Ð+ Ð,Ñß BCÑÐ-ß DÑ

œ Ð+ Ð,Ñ Ð-Ñß BCDÑ

)

) )
B

B BC

and

Ð+ß BÑÒÐ,ß CÑÐ-ß DÑÓ œ Ð+ß BÑÐ, Ð-Ñß CDÑ

œ Ð+ Ð, Ð-ÑÑß BCDÑ

œ Ð+ Ð,Ñ Ð-ÑÑß BCDÑ

)

) )

) )

C

B C

B BC

It is easy to check that  is the identity andÐ"ß "Ñ

Ð+ß BÑ œ Ð Ð+ Ñß B Ñ" " "
B) "

Thus,  is a group. For the rest, routine calculation givesR Lz)

Ð+ß "ÑÐ,ß "Ñ œ Ð+,ß "Ñ Ð+ß "Ñ œ Ð+ ß "Ñand " "

and

Ð"ß BÑÐ"ß CÑ œ Ð"ß BCÑ Ð"ß BÑ œ Ð"ß B Ñand " "
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and so  and  are subgroups of . To see that  isR ‚ Ö"× Ö"× ‚ L R L R ‚ Ö"×z)

normal, since

Ð+ß BÑ œ Ð+ß "ÑÐ"ß BÑ

we need only check that

Ð+ß "Ñ œ Ð"ß BÑÐ+ß "ÑÐ"ß B Ñ œ Ð"ß BÑÐ+ß B Ñ œ Ð Ð+Ñß "Ñ − R ‚ Ö"×Ð"ßBÑ " "
B)

and

Ð+ß "Ñ œ Ð,ß "ÑÐ+ß "ÑÐ, ß "Ñ œ Ð,+, ß "Ñ − R ‚ Ö"×Ð,ß"Ñ " "

Clearly,  and so  is the (internal)ÐR ‚ Ö"×Ñ ∩ ÐÖ"× ‚ LÑ œ ÖÐ"ß "Ñ× R Lz)

semidirect product of  by .R ‚ Ö"× Ö"× ‚ L

Note that the zero representation  defined by  defines) ) +ÀL Ä ÐKÑ Ð2Ñ œAut K

the external  product .direct K L}

It is common to write the external version of the semidirect product using the
notation of the internal version. Thus, if  and  are groups, we can specify aK L
semidirect product  by taking the set of  productsW œ K Lz) formal

W œ Ö12 ± 1 − Kß 2 − L×

in place of ordered pairs and specifying the commutativity rule

21 œ Ð1Ñ2)2

where  is a homomorphism.)ÀL Ä ÐKÑAut

Example 5.27 Given a group , there is one rather obvious way to create anK
external semidirect product , namely, by taking  andK L L œ ÐKÑz) Aut
)ÀL Ä L  to be the identity. The group product in this case is

Ð+ ÑÐ, Ñ œ + Ð,Ñ5 7 5 57

The group  is called the  of .K ÐKÑ Kz)Aut holomorph

We may generalize this by taking  to be any subgroup of  and  to beL ÐKÑAut )
the inclusion map from  to . The group  is called the L ÐKÑ K LAut z) relative
holomorph of  with respect to .K L

Finally, if , then the relative holomorph  is called the5 z 5− ÐKÑ K Ø ÙAut )

extension of  by . The group product in this case isK 5

Ð+ ÑÐ, Ñ œ + Ð,Ñ5 5 5 53 4 3 34

As an example, let  be cyclic of order , where . IfK œ G Ð+Ñ # 8   $#
8

8

7 œ # + œ + K8" 7", then the power map defined by  is an automorphism of .



of order , since  is relatively prime to  and# 7  " #8

Ð7  "Ñ œ Ð#  "Ñ#  " ´ " ## 8# 8 8mod

Thus, the extension of  by  is just  and has groupK WH œ G Ð+Ñ G ÐBÑ. z8 # #8 )

product

Ð+ ß "ÑÐ+ ß "Ñ œ Ð+ ß "Ñ

Ð+ ß BÑÐ+ ß "Ñ œ Ð+ ß BÑ

Ð+ ß "ÑÐ+ ß BÑ œ Ð+ ß BÑ

Ð+ ß BÑÐ+ ß BÑ œ Ð+ ß "Ñ

3 4 34

3 4 3Ð7"Ñ4

3 4 34

3 4 3Ð7"Ñ4

for all . Since , setting  and! Ÿ 3ß 4 Ÿ #  " Ð+ ß B Ñ œ Ð+ß "Ñ Ð"ß BÑ œ Ð+ß "Ñ8 3 4 3 4 α
0 œ Ð"ß BÑ gives

WH œ Ø ß Ùß 9Ð Ñ œ # ß 9Ð Ñ œ #ß œ8
8 # "α 0 α 0 0α α 0

8"

The group  is called the  of order .WH #8
8"semidihedral group

Example 5.28 Recall that if  is an infinite cyclic group, then G ÐGÑ œ Ö ß ×Aut + 7
where  and if  is cyclic of order , then . Let 7 ™À + È + G 8 ÐGÑ ¸ G Ð+Ñ" ‡

8 ∞Aut
and  be infinite cyclic groups. Then a homomorphismG Ð,Ñ∞

) + 7À G Ð,Ñ Ä ÐG Ð+ÑÑ œ Ö ß ×∞ ∞Aut

is completely determined by the value , which can be either  or . If ,) + 7 ) +, , œ
then  is the zero map and  is direct. If , then the) z ) 7G Ð+Ñ G Ð,Ñ œ∞ ∞ ,)

commutativity rule in the group  isG Ð+Ñ G Ð,Ñ∞ ∞z)

,+ œ Ð+Ñ, œ + ,7 "

The automorphisms of a finite cyclic group  are the th powerG Ð+Ñ 58

homomorphisms  defined by55

55
5Ð+Ñ œ +

where . Thus, the representations  are the5 − ÀG Ð,Ñ Ä ÐG Ð+ÑÑ™ )8
‡

5 ∞ 8Aut
homomorphisms defined by  and so the possible semidirect products) 55 5Ð,Ñ œ
are

G Ð+Ñ G Ð,Ñ œ Ö+ , ± ! Ÿ 3 Ÿ 8  "ß 4 − ß ,+ œ + ,×8 ∞
3 4 5z ™)5

where .5 − ™8
‡

Example 5.29 To define a semidirect product , we must specifyG Ð+Ñ G Ð,Ñ$ %z)

a homomorphism

) + 5À G Ð,Ñ Ä ÐG Ñ œ Ö ß ×% $ #Aut

where . The zero homomorphism defines the direct product5#
#Ð+Ñ œ +
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G Ð+Ñ G Ð,Ñ œ X œ G Ð+Ñ G Ð,Ñ$ % , # $ %} ) 5 z. If , then the semidirect product )

defined by  is)

X œ Ø+ß ,Ùß 9Ð+Ñ œ $ß 9Ð,Ñ œ %ß ,+ œ + ,#

We have not yet encountered this group of order . In particular,  since"# X ¸ Ey %

9Ð+, Ñ œ ' X ¸ H 9Ð,Ñ œ % E H Xy#
"# % "# and  since . We will show later that ,  and 

are the only nonabelian groups of order  (up to isomorphism)."#

Example 5.30 Let us examine the possibilities for an external semidirect
product of the form

G Ð+Ñ G Ð,Ñ: :7 8z)

where  is prime. The automorphisms of  are the th power maps: G Ð+Ñ 5:7

5 ™ )5 : :
5 ‡

7À + È + 5 − ÀG Ð,Ñ Ä ÐG Ð+ÑÑ for . The function  satisfying8 7Aut
) 5 5, 5 5œ 9Ð Ñ ± 9Ð,Ñ defines a homomorphism if and only if , that is, if and only
if , or5 +5

:8 œ

+ œ +5Ð: Ñ8

or finally

5 ´ " :Ð: Ñ 78

mod (5.31)

As an example, for , Fermat's theorem implies that (5.31) is equivalent to7 œ "

5 ´ " :mod

and since , it follows that . Hence, the only semidirect product" Ÿ 5  : 5 œ "
of the form

G Ð+Ñ G Ð,Ñ: :z) 8

is the direct product.

If , then (5.31) is equivalent to8 œ "

5 ´ " :: 7mod

Any  of the form  where  satisfies this congruence, since5 5 œ "  ?: ?  :7"

5 œ Ð"  ?: Ñ œ "  A:: 7" : 7

Thus, for each , there is a semidirect product?  :

G Ð+Ñ G Ð,Ñ: :7 z)

where

,+ œ + ,"?:7"



Example 5.32 Let  be a group and let . Then eachH K œ H ³ H H H$ } }
permutation  defines an automorphism  of  by permuting the5 )− W K$ 5

coordinates in . For example,K

)Ð" $ÑÐBß Cß DÑ œ ÐDß Cß BÑ

Moreover, the map  sending  to  is a homomorphism, since) 5 )À W Ä ÐKÑ$ Aut 5

) ) )5 7 57œ . Thus, the semidirect product

K W œ H Wz z) )$ $
$

exists. To illustrate the product, if , then5 œ Ð" $Ñ

� �� � � �� �� �
Ð+ß ,ß -Ñß Ñ ÐBß Cß DÑß Ñ œ Ð+ß ,ß -Ñ ÐBß Cß DÑß

œ Ð+ß ,ß -ÑÐDß Cß BÑß

œ Ð+Dß ,Cß -BÑß

5 7 ) 57

57

57

5

We will generalize this example in the next section.

*The Wreath Product
To generalize Example 5.32, let  be a group, let  be a nonempty set and letH H

K œ H}
= H−

be the external direct product of  copies of , indexed by . Eachk kH HH
permutation  of  defines an automorphism  of  by permuting the5 H )5 K
coordinate positions of any . Specifically, the th coordinate of 0 − K 0=
becomes the -th coordinate of , that is, , orÐ Ñ Ð0Ñ Ð0ÑÐ Ñ œ 0Ð Ñ5= ) ) 5= =5 5

equivalently,

Ð 0ÑÐ Ñ œ 0Ð Ñ) = 5 =5
"

Thus,

) 55Ð0Ñ œ 0 ‰ "

The map  is easily seen to be an automorphism of , since it is)5À K Ä K K
clearly bijective and

) 5 5 5 ) )5 5 5Ð01Ñ œ Ð01Ñ ‰ œ Ð0 ‰ ÑÐ1 ‰ Ñ œ Ð0Ñ Ð1Ñ" " "

Moreover, if , then the map  defined by  is aU Ÿ W ÀU Ä ÐKÑ œH 5) )5 )Aut
homomorphism, since

) 57 7 5 ) 5 ) )57 7 5 70 œ 0 ‰ Ð Ñ œ 0 ‰ Ð ‰ Ñ œ Ð0Ñ ‰ œ Ð0Ñ" " " "

Hence, the semidirect product  exists. It is easy to describe theK Uz)

commutativity rule in words: To place the factors in the product  in the50
reverse order, simply permute the coordinate positions of  using .0 5
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Note that it is not essential that the second coordinates in the ordered pairs
Ð0 ß Ñ − K U5 z H)  be actual permutations of  as long as they  likeact
permutations, that is, as long as there is a homomorphism . As is-À U Ä WH
customary, we denote the permutation  of  by  itself.- H; ;

Thus, if   , then for each , the map  defined byU ; − U ÀK Ä Kacts on H );

);
"0 œ 0 ‰ ;

is an automorphism of  and the map  defined by  is aK ÀU Ä ÐKÑ ; œ) ) )Aut ;

homomorphism.

The semidirect product  of  by  defined by  is one version of theK U K Uz ))

wreath product of  by . The other version comes by replacing the externalK U
direct product  by the external direct sum .K œ H K œ H} {

Definition Let  be a group, let  be a nonempty set and let  be a groupH UH
acting on . We denote the action of  on  by .H = H =; − U − ;
1  Let)

K œ H}
= H−

Define a homomorphism  by  where) ) )À U Ä ÐKÑ ; œAut ;

);
"0 œ 0 ‰ ;

Then the semidirect product  is called the K Uz) complete wreath
product index set base of  by  with   and  .H U KH

2  If we replace  by the external direct sum) K

K œ H{
= H−

the resulting semidirect product  is called the K Uz) restricted wreath
product index set base of  by  with   and  .K U KH

A common notation for the wreath product is . To emphasize the index set,H › U
we will write . There does not seem to be a standard notion to distinguishH › UH
the two wreath products, so we use  for the restricted wreath product andH › U
H ›› U for the complete wreath product.

Note that if  and  are finite groups and  is a finite set, thenH U H

k k k k k k k k¸ ¸ ¸ ¸H ›› U œ H U œ H U œ H UH
H H Hz k k

Example 5.33 Regular wreath product ( ) Let  and  be groups and letH U

K œ H}
;−U



be the direct product of  indexed by the group . Let  act on itself by leftH U U
translation, that is, , that is, the action of  is the left regular);< œ ;< U
representation. In this case, the complete wreath product  is called aH ›› U
regular wreath product, which we denote by . Thus, the product has theH ›› U<
form

Ð0 ß ;ÑÐ1ß <Ñ œ Ð0Ð1 ‰ ; Ñß ;<Ñ"

Wreath Products as Permutations
Under certain reasonable conditions, the elements of a wreath product can be
thought of as permutations. Specifically, let

[ œ H ›› UH

Let  and assume that  acts faithfully on .K œ H U} H= H−

Now suppose that the group  acts faithfully on a nonempty set . Then theH A
elements of  act on the set . In particular, for  define[ ‚ Ð0ß ;Ñ − [A H

Ð0 ß ;Ñ À ‚ Ä ‚‡ A H A H 

by

Ð0 ß ;Ñ Ð ß Ñ œ Ð0Ð; Ñ ß ; Ñ‡ - = = - =

The map  is injective since  implies thatÐ0 ß ;Ñ Ð0 ß ;Ñ Ð ß Ñ œ Ð0 ß ;Ñ Ð ß Ñ‡ ‡ ‡ w w- = - =

Ð0Ð; Ñ ß ; Ñ œ Ð0Ð; Ñ ß ; Ñ= - = = - =w w w

and so  and . Also,  is surjective since for any= = - -w w ‡œ œ Ð0ß ;Ñ
Ð ß Ñ − ‚- = A H, we have

Ð0 ß ;Ñ Ð0Ð Ñ ß ; Ñ œ Ð ß Ñ‡ " "= - = - =

Hence,  is a permutation of .Ð0 ß ;Ñ ‚‡ A H

Moreover, the map  defined by  is a5 5À[ Ä W Ð0ß ;Ñ œ Ð0 ß ;ÑA H‚
‡

homomorphism, since

ÒÐ0 ß ;ÑÐ1ß <ÑÓ Ð ß Ñ œ Ð0Ð1 ‰ ; Ñß ;<Ñ Ð ß Ñ

œ ÐÒ0Ð1 ‰ ; ÑÐ;< ÑÓ ß ;< Ñ

œ ÐÒ0Ð;< ÑÐ1 ‰ ; ÑÐ;< ÑÓ ß ;< Ñ

œ Ð0Ð;< Ñ1Ð< Ñ ß ;< Ñ

œ Ð0 ß ;Ñ Ð1Ð< Ñ ß < Ñ

œ Ð

‡ " ‡

"

"

‡

- = - =

= - =

= = - =

= = - =

= - =

0 ß ;Ñ Ð1ß <Ñ Ð ß Ñ‡ ‡ - =

As to the kernel of , if , then5 +Ð0 ß ;Ñ œ‡
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Ð0Ð; Ñ ß ; Ñ œ Ð ß Ñ= - = - =

for all  and . Since the actions of  on  and  on  are faithful,- = H H A− H − U H
we deduce that  and  for all . Thus,  is an; œ " 0Ð Ñ œ " À[ W= = 5 ä A H‚

embedding of  into .[ WA H‚

When  is the restricted wreath product, we can describe the image[ œ H › UH
of the embedding explicitly. For each  and , let  be defined. − H − . − Kα H α

by

. Ð Ñ œ
. œ
" Áα =

= α
= αœ if 

if 

Let  be the subgroup of  generated by the permutations  and\ W Ð. ß "ÑA H α‚
‡

Ð"ß ;Ñ‡, that is,

\ œ ØÐ. ß "Ñ ß Ð"ß ;Ñ ± . − Hß − ß ; − UÙα
‡ ‡ α H

Certainly, .\ © Ð Ñim 5

To see that the reverse inclusion holds, we observe that

Ð0 ß ;Ñ œ ÒÐ0 ß "ÑÐ"ß ;ÑÓ œ Ð0 ß "Ñ Ð"ß ;Ñ‡ ‡ ‡ ‡

and so it is sufficient to show that  for all . SinceÐ0 ß "Ñ − \ 0 − K

Ð01ß "Ñ œ ÒÐ0 ß "ÑÐ1ß "ÑÓ œ Ð0 ß "Ñ Ð1ß "Ñ‡ ‡ ‡ ‡

we have

Ð0 â0 ß ;Ñ œ Ð0 ß "Ñ âÐ0 ß "Ñ Ð"ß ;Ñ" 8 " 8
‡ ‡ ‡ ‡

Now, any  has finite support  and so0 − K Ð0Ñ œ Ö ßá ß ×supp = =" 8

0 œ 0Ð Ñ â0Ð Ñ= =" 8= =" 8

Hence,

Ð0 ß "Ñ œ Ð0Ð Ñ â0Ð Ñ ß "Ñ œ Ð0Ð Ñ ß "Ñ âÐ0Ð Ñ ß "Ñ − \‡ ‡ ‡ ‡
" 8 " 8= = = == = = =" 8 " 8

Thus, .imÐ Ñ œ \5

Theorem 5.34 Let  be a wreath product and suppose that  acts[ œ H ›› U UH

faithfully on . Suppose also that  acts faithfully on . Then the mapH AH
5À[ Ä WA H‚  defined by

5Ð0 ß ;Ñ œ Ð0 ß ;Ñ‡

where   is defined byÐ0 ß ;Ñ À ‚ Ä ‚‡ A H A H

Ð0 ß ;Ñ Ð ß Ñ œ Ð0Ð; Ñ ß ; Ñ‡ - = = - =



is an embedding of  into . When  is the restricted wreath[ W [ œ H › UA H H‚

product, the image of  is5

imÐ Ñ œ ØÐ. ß "Ñ ß Ð"ß ;Ñ ± . − Hß − ß ; − UÙ5 α Hα
‡ ‡

It is convenient to drop the  notation and to think of elements of a wreath‡
product  as permutations of .H ›› U ‚A H

Example 5.35 A   is an  matrix with entries frompermutation matrix T 8 ‚ 8
the set  with the property that each row contains exactly one  and eachÖ!ß "× "
column contains exactly one . Multiplication of a matrix  on the left by a" E
permutation matrix  permutes the rows of . Similarly, multiplication on theT E
right by  permutes the columns of . Let  be the multiplicative group of allT E c8

8 ‚ 8 permutation matrices.

For , let  denote the th row of  and let  denote the th column.T − T 3 T T 4c8 3
Ð4Ñ

The rows of  also define a permutation  of , in particular,T œ Ö"ßá ß8×1 HT

1T 3 8Ð3Ñ " T T is the column number of the  in row . In this way,  is isomorphic to
the symmetric group . Clearly, the map  is bijective. If ,W 0À T È U −8 T 81 c
then  if and only if the column number  of the  in  isÐUTÑ œ U T œ " 5 " U3ß4 3 3

Ð4Ñ

the same as the row number  of the  in column , that is, if and only if5 " T Ð4Ñ

5 œ Ð3Ñ Ð5Ñ œ 4 Ð3Ñ œ 41 1 1U T UT implies that . Hence,  implies that
1 1 1 1 1 cT U UT T U 8Ð Ð3ÑÑ œ 4 œ 0, that is, . Hence,  is an anti-isomorphism from 
to . Since the transpose map  is an anti-automorphism of , itW À Ä8 8 8 87 c c c
follows that the composite map  is an isomorphism from  to .0 ‰ W7 c8 8

We can generalize the notion of a permutation matrix as follows. If  is anL
abelian multiplicative group, define  to be the set of  matrices withc8ÐLÑ 8 ‚ 8
the property that each row and each column has exactly one entry from , allL
other entries being . Matrix multiplication is defined using the product in ! L
along with  and  for . This makes! † ! œ ! † + œ ! !  + œ +  ! œ + + − L
c c c8 8 8ÐLÑ ÐLÑ L a group. Note that  is a subgroup of , with the identity of 
playing the role of ."

We can describe  in terms of wreath products as follows. Let  act onc8 8ÐLÑ W
H c H 1œ Ö"ßá ß8× TÐ5Ñ œ Ð5Ñ by the usual evaluation and let  act on  by .8 T

Let  be the set of all diagonal matrices in . Then every matrix in W c c8 8ÐLÑ ÐLÑ
is a product  where  and . Also,  is a normal subgroup ofHT H − T −W c W8

c c W z c8 8 8ÐLÑ ÐLÑ œ. Hence, .

Now, any  can be identified with the ordered -tuple of diagonalH − 8W
elements of  and, in fact,  is isomorphic to , since matrix multiplication inH LW 8

W is elementwise product in . Hence,L8

c z c c8 8 8 8
8ÐLÑ ¸ L œ L › ¸ L › WH H
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When  is the group of th roots of unity in , the group  is called aL 7 ÐLÑ‚ c8

generalized symmetric group monomial group or .

Exercises
1. Prove that the external direct product is commutative and associative, up to

isomorphism, that is,

L O ¸ O L} }

and

ÐL OÑ P ¸ L ÐO PÑ} } } }

Is there an identity for the external direct product?
2. a) Suppose that . For each , letK œ K 5{ 3

L œ Ö0 − K ± 0Ð3Ñ œ " 3 Á 5×5 3{  for 

Show that  and that .L K K œ  L5 5ü
 b) If , show that .K œ  K K ¸ K3 3{
3. Let ,  and  be groups and letL L O3

L œ L â L" =} }

Suppose that . For each , let5ÀL ¸ O 3

L œ Ö"× â Ö"× L Ö"× â Ö"×3 3} } } } } }

where  is in the th component. Prove thatL 33

O œ L  â  L5 5" =

4. Let  be a finite group, where  and K œ L âL L K Ð9ÐL Ñß 9ÐL ÑÑ œ "" 8 3 3 4ü
for . Prove that the join  is a direct product, that is,3 Á 4 L1 3

K œ L  â  L" 8.
5. Suppose that  and that . Prove that if K œ L  O R K R ∩L œ Ö"× œü

R ∩O R Ÿ ^ÐKÑ, then .
6. Let  where  and  are relatively prime. Let  with9ÐKÑ œ 78 7 8 L Ÿ K

9ÐLÑ œ 7 O Ÿ K L. Show that a subgroup  is a complement of  if and
only if .9ÐOÑ œ 8

7. Prove that all nonabelian groups of order ,  prime are indecomposable.: :$

You may assume that all groups of order  are abelian (which is true).:#

8. Prove that the group  of rational numbers is indecomposible.
9. Prove that  is indecomposable if and only if .H 8 ý # %#8 mod
10. Let  be a cyclic group.K œ Ø+Ù
 a) If  is infinite, show that  implies that  orK K œ L ìO L œ Ö"×

O œ Ö"×.
 b) If , describe precisely the conditions under which a nontrivial9ÐKÑ œ 8

essentially disjoint product representation  exists.K œ L ìO
11. Let  and let .K œ  L O Ÿ K3−M 3



 a) Show that it is not necessarily true that

O œ  ÐL ∩OÑ
?

3−M
3

even if .O Kü
 b) Recall that a group that is equal to its own commutator subgroup is

called . Prove that if  is normal and perfect, thenperfect O

O œ  ÐL ∩OÑ
3−M

3

 c) Prove that if  is periodic and if for allK

B −  L
4Á3

4

and , the orders  and  are relatively prime, thenC − L 9ÐBÑ 9ÐCÑ3

O œ  ÐL ∩OÑ
3−M

3

This holds in particular for finite families if the factors  haveL3

relatively prime exponents.
12. Let  be a group and let  be a simple subgroup of  with index . WhatK L K #

can you say about any other nontrivial proper normal subgroup of ? MustK
such a subgroup exist? (For the latter, you may assume that the alternating
group  is simple and that  is centerless for .)E W 8   $& 8

13. (  for groups) Let  be a group and letChinese remainder theorem K
L ßá ßL ÀK Ä KÎL" 8 3 be normal subgroups. Consider the map 5 }
defined by

5+ œ Ð+L ßá ß +L Ñ" 8

 a) Show that  is a homomorphism with .5 5kerÐ Ñ œ L ∩â∩L" 8

 b) Show that if the indices  are finite and pairwise relativelyÐK À L Ñ3
prime, then  is surjective and so for any , there is a5 + ßá ß + − K" 8

1 − K 1 − + L for which . This can also be written+ 3 3

1 ´ + L

ã

1 ´ + L

" "

8 8

mod

mod

 c) Discuss the uniqueness of the solution  in part b).1
14. Let  be a group and let  be minimal normal in .K R K
 a  Prove that if  is characteristically simple, then there is a ) AutK E © ÐKÑ

such that

K œ R   RŒ 7
5−E

5

Fundamentals of Group Theory186



Direct and Semidirect Products 187

Also,  is simple, as is every term in the sum above and so  is theR K
direct sum of isomorphic simple subgroups.

 b  Prove that if  has the DCC on normal subgroups, then  is the direct) K R
sum of isomorphic simple groups.

15. To see that infinite groups are not, in general, cancellable in direct products,
prove that , where  is the abelian group of™ } ™} ™ ™ } ™ ™ÒBÓ ¸ ÒBÓ ÒBÓ
polynomials over  but .™ ™ } ™ ™y̧

16. Let , where  is simple for all . Prove that the center  isK œ W W 3 ^ÐKÑ3 3

the direct sum of those factors  that are abelian. Hence,  is centerless ifW K3

and only if all of the factors  are nonabelian.W3

17. Let

K œ  W
3−M

3

be centerless, where each  is simple. Prove that the only minimal normalW3

subgroups of  are the summands .K W3

18. Let

K œ  W
3−M

3

be centerless, where each  is simple. Prove that the normal subgroups ofW3

K W M are precisely the direct sums of the 's taken over the subsets of .3

19. Let  where  are simple subgroups and  for allK œ  L L L ¸ L3−M 3 3 3 4

3ß 4 − M K. Prove that  is characteristically simple. : Consider the centersHint
of the .L3

Minimal Normal Subgroups
20. Let  be a group. Show that if  and  are distinct minimal normalK L O

subgroups of , then  and  commute elementwse.K L O
21. Let  be an abelian minimal normal subgroup of a group . Show that ifE K

K œ EL L  K E ∩L œ Ö"× where , then .
22. Let  be minimal normal subgroups of , let  andR ßá ßR K Q œ R âR" 8 " 8

let . Prove that there is a subset of , say after reindexingO K R ßá ßRü " 8

R ßá ßR" 7, such that

OQ œ O  R  â  R" 7

23. Let  and assume that  is a minimal normal subgroup of  andE Ÿ F Ÿ K E F
F K is a minimal normal subgroup of . Assume further that the set
Ö ×E œ Ö1E1 ± 1 − K× E E"  of conjugates of  is finite. Show that  is simple
and that  is the direct product of conjugates of .F E

24. Prove that the epimorphic image of a minimal normal subgroup is either
trivial or minimal normal.

Semidirect Products
25. Let . Show that if , then .K œ L O 9ÐLÑ œ # K œ L  Oz
26. Let . Show that if  is simple, then .K œ L O O 9ÐOÑ ± 9Ð ÐLÑÑz) Aut



27. Show that for every positive integer of the form  there is a8 œ #Ð#5  "Ñ
centerless group of order .8

28. Prove that if , then  for any . Hence, if K œ L O K œ L O + − K Oz z +

is a complement of a normal subgroup, then so is any conjugate of .O
29. Show that it is not always possible to extend a homomorphism 5ÀL Ä Kw

from a subgroup  to .L Ÿ K K
30. Show that if  is an internal semidirect product, then  isK œ L O Kz

isomorphic to an external semidirect product  for someK ¸ L Oz)

)ÀO Ä ÐLÑAut .
31. Prove that

™ z z' $œ E F W œ G Hand

where  and , but clearly .E ¸ ¸ G F ¸ ¸ H ¸ Wy™ ™ ™$ # ' $

32. Prove that .W œ E Ö ß Ð" #Ñ×8 8 z +
33. a) Prove that , where  and .H ¸ E F E ¸ F ¸) " % " #z ™ ™
 b) Prove that , where  and .H ¸ G F G ¸ Z F ¸) # # #z ™
 What does this say about semidirect product decompositions?
34. Prove that , where  and .H ¸ E F E ¸ F ¸#8 8 #z ™ ™
35. What is wrong, if anything, with the following argument? Let .K œ L Oz

Then the projection maps  and  defined by3 3E OÀK Ä L ÀK Ä O
3 3L OÐ25Ñ œ 2 Ð25Ñ œ 5 O L and  have kernel  and , respectively, whence
both  and  are normal subgroups of  and so .L O K K œ L  O

36. Recall that  is the general linear group of all invertibleK œ KPÐ8ß J Ñ
8 ‚ 8 J W œ WPÐ8ßOÑ matrices over the field  and  is the subgroup of
matrices with determinant equal to ."

 a) Prove that .WPÐ8ßOÑ KPÐ8ß J Ñü
 b) Find a complement of  in . : How does one getWPÐ8ß J Ñ KPÐ8ß J Ñ Hint

a special matrix from a general one?
37. Let  be a group. For any , denote left translation by  by . Thus,K + − K + j+

j ÀK Ä K j ÐBÑ œ +B œ Öj ± + − K×+ + + is defined by . Let . Let_
T _ Tœ ÐKÑ L œ Ø ß ÙAut . Finally, let  be the subgroup of the symmetric
group  generated by  and .WK _ T

 a) Prove that .L œ _ zT
 b) Prove that , the subgroup of all right translationsG Ð Ñ œL _ e

< À B È B<+ .
38. In this exercise, we describe all groups of order  where  are primes.:; :  ;

We will assume a fact to be proved later in the book: If  is a finite groupK
and if  is the smallest prime dividing , then any subgroup of index : 9ÐKÑ :
is normal in .K

 a) Describe the automorphism group , where  is cyclicAutÐG Ñ G œ Ø+Ù: :

of order a prime .:
 b) Show that any group of order  is a semidirect product of a group of:;

order  by a group of order .; :
 c) Describe the possible external direct products of  by , where G G :; :

and  are distinct primes.;
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 d) “Internalize” the external semidirect products in the previous part to
show that up to isomorphism, the groups of order  are the direct:;
product  and for each  satisfying , a groupG  G 7 Á " 7 ´ " ;; :

: mod
described by

K œ Ø ß Ùß 9Ð Ñ œ :ß 9Ð Ñ œ ;ß œα " α " α" " α7

39. Let  be the additive subgroup of  and let E œ Ö7# ± 7ß 8 − × F œ B8 ™  ™
be an additive infinite cyclic group. Prove that the group ,K œ E Fz)

where , has the ACC on normal subgroups but that the normal)BÐ+Ñ œ #+
subgroup  of  does not have the ACC on normal subgroups.E K

Wreath Products
40. One must be cautious in working with the action of  on the product5 − W8

H H8 8. Recall that  permutes the  of an element of . Suppose5 coordinates
that . ThenÐ. ßá ß . Ñ − H" 8

8

5Ð. ßá ß . Ñ œ Ð. ßá ß . Ñ" 8 " 85 5

For , compute . Are you sure?7 75− W Ð ÑÐ. ßá ß . Ñ8 " 8

41. In this exercise, we take a combinatorial look at the wreath product
[ œ W › W# &, with the help of Figure 5.5.

1

2

3
4

5

a1 b1

a2

b2

a3

b3
a4

b4

a5

b5

0

Figure 5.5

 Informally speaking, a  is a set of  (or ) together with agraph vertices nodes
set of  connecting pairs of vertices. Figure 5.6 is an example of aedges
graph . Two vertices are said to be  if there is an edge betweenZ adjacent
them. A bijection of the vertices of a graph that preserves adjacency is
called an . Show that the automorphisms of  are isomorphicisomorphism Z
to the wreath product .[ œ W › W# &

42. Show that the wreath product is associative. Specifically, let  act on , K L?
act on  and  act on , all actions being faithful. Show thatH AO
ÐK ›› LÑ ›› O ¸ K ›› ÐL ›› OÑH HA A .

43. Show that the regular wreath product is not associative. Specifically, if ,K
L O ÐK › LÑ › O and  are nontrivial finite groups, explain why  cannot< <

possibly be isomorphic to .K › ÐL › OÑ< <



44. Show that the restricted wreath product  is isomorphic to theG › G# #

dihedral group .H)

45. Let  be a nonempty set of size  and let  be a\ 85 œ ÖF ßá ßF ×c " 8

partition of  into equal-sized blocks of size . Call a permutation \ 5 − W5 \

nice if it also permutes the blocks, that is, for all , there is a  such that3 4
5F œ F R3 4. Show that the set  of nice permutations is a group isomorphic
to .W › W5 8

46. Referring to Example 5.35, let  be the multiplicative group ofL œ Ö„"×
square roots of unity. The group  is called the c8ÐLÑ hyperoctahedral
group. Show that  is isomorphic to the subgroup  of allc8 #8ÐLÑ K Ÿ W
permutations of  with the property that\ œ Ö8ßá ß"ß "ßá ß 8×
1 1Ð5Ñ œ  Ð5Ñ.

47. Let  be a wreath product where  act faithfully on .[ œ H ›› U HH A
Suppose that both actions are , that is, for any  there is atransitive = = Hß −w

; − U ; œ for which  and similarly for the other action. Prove that the= =w

permutation representation of  is also transitive, that is, for any pair[
Ð ß Ñß Ð ß Ñ − ‚ Ð0ß ;Ñ − [- = - = A Hw w  there is an  for which

Ð0 ß ;Ñ Ð ß Ñ œ Ð ß Ñ‡ w w- = - =
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Chapter 6
Permutation Groups

Permutations are fundamental to many branches of mathematics. In this chapter,
we examine permutations from a group-theoretic perspective.

The Definition and Cycle Representation
A  of a nonempty set  is a bijective function on . The set of allpermutation \ \
permutations of  is denoted by . As is customary, when\ W\

\ œ M ³ Ö"ßá ß8×8

we write  as . As we have seen, the set  of permutations of a nonemptyW W W\ 8 \

set  forms a group under composition of functions. For the record, we have:\

Definition Let  be a nonempty set. The   on the set  is\ W \symmetric group \

the group of all permutations of , under composition of functions.\

There are various notations for permutations. The notation

5 œ
+ + â +
+ + â +Œ 7" # 8

3 3 3" # 8

is sometimes used to denote the permutation that sends  in the top row to  in+ +4 34

the bottom row. This notation is a bit combersome and we prefer the cycle
notation described in an earlier chapter. In particular, if  for ,+ Á + − \ 3 Á 43 4

then

5 œ Ð+ â+ Ñ" 5

denotes the permutation  defined, for , by5 − W ! Ÿ 3 Ÿ 8\

5+ œ
+ " Ÿ 3 Ÿ 5  "
+ 3 œ 53
3"

"
œ for 

for 

and sending all other elements of  to themselves. Such a permutation  is\ 5
called a -  in . A -cycle5 W #cycle \

DOI 10.1007/978-0-8176-8301-6_6, © Springer Science+Business Media, LLC 2012
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5 œ Ð+ ,Ñ

is called a . Two cycles  and  are  iftransposition disjointÐ+ â+ Ñ Ð, â, Ñ" 5 " 7

+ Á , 3ß 43 4 for all .

When  is an infinite set containing the elements , then we can\ Ö+ ± 3 − ×3 ™
define the infinite cycle

5 œ Ðá ß + ß + ß + ßá Ñ" ! "

where  for  as the permutation  sending  to  for all + Á + 3 Á 4 + + 5 −3 4 5 5"5 ™
and leaving all other elements of  fixed.\

Theorem 6.1 For a permutation group , the following hold.W\

1  Disjoint cycles in  commute.) W\

2  Every permutation in  is a product of disjoint cycles, the product being) W\

unique except for the order of factors. A representation of  as a product of5
disjoint cycles with or without -cycles  is called a ( )" cycle representation
or  of . The  of a permutation  is thecycle decomposition cycle structure5 5
sequence of cycle lengths in a cycle decomposition of , or equivalently, the5
number of cycles of each length in a cycle decomposition of .5

Proof. Part 1) we leave to the reader. For part 2), let  and define an5 − W\

equivalence relation on  by  if  for some integer . For ,\ B ´ C C œ B 5 B − \55

the equivalence class containing  isB

ÒBÓ œ Ö B ± 3 − ×5 ™3

Note that the restriction  is a permutation of . In fact, if the elements 5 5l ÒBÓ BÒBÓ
3

are distinct for all , then  is the infinite cycle3 − l™ 5 ÒBÓ

5 5 5 5 5l œ Ðá ß Bß Bß Bß Bß Bßá ÑÒBÓ
# " #

On the other hand, if  for , then  and if  is the5 5 53 4 43B œ B 3  4 B œ B 7
smallest positive integer for which , then  is the -cycle5 57

ÒBÓB œ B l 7

5 5 5 5l œ ÐBß Bß Bßá ß BÑÒBÓ
# 7"

The distinct equivalence classes form a partition of  and  is a product of the\ 5
disjoint cycles  as  varies over these equivalence classes.5l FF

A cycle of length  has order  in . Thus, a transposition is an involution, as5 5 W\

is any product of disjoint transpositions. A power of a cycle need not be a cycle;
for example

Ð" # $ %Ñ œ Ð" $ÑÐ# %Ñ#

Since disjoint cycles commute, if  is a cycle representation of ,5 5œ - â-" 7

then for any integer ,5
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55 5 5
" 7œ - â-

Moreover,  if and only if  for each .5 + +5 5
3œ - œ 3

Theorem 6.2 The order of  is the least common multiple of the lengths5 − W\

( )orders  of the disjoint cycles in a cycle decomposition of .5

The group properties of  do not depend upon the nature of the set , but onlyW \\

upon its cardinality. More formally put, if , then the groups  andk k k k\ œ ] W\

W]  are isomorphic. Accordingly, we will feel free to state theorems in terms of
either  or  (when  is finite).W W \\ 8

A Fundamental Formula Involving Conjugation
When a permutation  is written as a product of disjoint cycles, it is very7 − W\

easy to describe the conjugates  of . It is also remarkably easy to tell when7 75

two permutations are conjugate.

Theorem 6.3
1  Let . For any -cycle ,) 5 − W 5 Ð+ â+ Ñ8 " 5

Ð+ â+ Ñ œ Ð + â + Ñ" 5 " 5
5 5 5

Hence, if  is a cycle decomposition of , then7 7œ - â-" 5

75 5 5œ - â-" 5

is a cycle decomposition of .75

2  Two permutations are conjugate if and only if they have the same cycle)
structure.

Proof. For part 1), we have

Ð+ â+ Ñ Ð + Ñ œ
+ 3  5
+ 3 œ 5" 5 3
3"

"

5 5
5
5œ

Also, if  for any , then  and so, Á + 3 , Á +5 53 3
"

Ð+ â+ Ñ , œ Ð+ â+ ÑÐ ,Ñ œ Ð ,Ñ œ ," 5 " 5
" "5 5 5 5 5

Hence,  is the cycle . For part 2), if  is a cycleÐ+ â+ Ñ Ð + â + Ñ œ - â-" 5 " 5 " 7
5 5 5 7

decomposition of , then7

75 5 5œ - â-" 7

and since  is a cycle of the same length as , the cycle structure of  is the- -3 3
5 57

same as that of .7

For the converse, suppose that  and  have the same cycle structure. If  and 5 7 5 7
are cycles, say



5 7œ Ð+ â+ Ñ œ Ð, â, Ñ" 8 " 8and

then any permutation  that sends  to  satisfies . More generally, if- 5 7+ , œ3 3
-

5 7œ - â- œ . â." 7 " 7and

are the cycle decompositions of  and , ordered so that  has the same length5 7 -5
as , then we can define a permutation  that sends the element in the th. 35 -
position of  to the element in the th position of . Then .- 3 . œ5 5 5 7-

The previous theorem implies that it is easy to tell when a subgroup  of theL
symmetric group  is normal.W\

Theorem 6.4 A subgroup  is normal if and only if whenever ,L Ÿ W − L\ 5
then so are all permutations in  with the same cycle structure as .W\ 5

Parity
Every cycle is a product of transpositions, to wit

Ð+ + â+ Ñ œ Ð+ + ÑÐ+ + ÑâÐ+ + ÑÐ+ + Ñ" # 7 " 7 " 7" " $ " #

and so every permutation is a product of transpositions. While this
representation is far from unique, the  of the number of transpositions isparity
unique.

Theorem 6.5 Let .5 − W8

1  Exactly one of the following holds:)
 a)  can be written as a product of an even number of transpositions, in5

which case we say that  is  or has .5 even even parity( )
 b)  can be written as a product of an odd number of transpositions, in5

which case we say that  is  or has .5 odd  odd parity( )
2  The symbol  or , called the  or  of , is equal to  if) sgÐ"Ñ Ð Ñ "5 5 5sign signum

5 5 is even and  if  is odd. We have"

Ð"Ñ œ Ð"Ñ5 85

where  is the number of cycles in the cycle decomposition of  including5 5 (
"-cycles .)

Proof. For part 1), if  can be written as a product of an even number of5
transpositions and an odd number of transpositions, say

5 3 3 7 7œ â œ â" #@ " #?"

then the identity can be written as a product of an odd number of transpositions
+ 7 7 3 3œ â â" #?" #@ "

To show that this is not possible, we choose a representation of  as a product of+
an odd number of transpositions as follows:
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1) Find the smallest odd integer  for which  is the product of 7  " 7+
transpositions.

2) Choose an integer  that appears in at least one such representation of .5 +
3) Among all representations of  as a product of  transpositions that contain+ 7

5 5, let  be the one whose rightmost appearence of  is as far to the left as7
possible, say

7 ) ) ) )œ â ÐB 5Ñ â" >" >" 7

where  does not involve .) )>" 7â 5

Note that , since otherwise the only appearance of  is in  and so .>   # 5 Á) 7 +"

However, we can easily move this rightmost occurrence of  one transposition5
to the left by using the following substitutions. Suppose that  . Note)>" œ Ð+ ,Ñ
that  since otherwise the two transpositions would cancel,Ð+ ,Ñ Á ÐB 5Ñ
contradicting the definition of .7

1) If  and  are disjoint, then they commuteÐ+ ,Ñ ÐB 5Ñ

Ð+ ,ÑÐB 5Ñ œ ÐB 5ÑÐ+ ,Ñ

2) If  for , thenÐ+ ,Ñ œ ÐB ,Ñ , Á 5

ÐB ,ÑÐB 5Ñ œ ÐB 5 ,Ñ œ Ð, B 5Ñ œ Ð, 5ÑÐ, BÑ

3) If  where , then writeÐ+ ,Ñ œ Ð5 ,Ñ + Á 5

Ð5 ,ÑÐB 5Ñ œ Ð5 B ,Ñ œ ÐB , 5Ñ œ ÐB 5ÑÐB ,Ñ  

Thus, we can move the rightmost occurrence of  to the left, contradicting the5
construction of  and proving part 1).7

For part 2), a cycle of length  can be written as a product of 7   # 7 "
transpositions as above. Now suppose that the cycle decomposition of  is5

5 œ - â- . â." < " =

where  and . Then  can be written as a product oflen lenÐ- Ñ œ 7   # Ð. Ñ œ "3 3 3 5
the following number of transpositions:

�
3œ"

<

3Ð7  "Ñ œ Ð8  =Ñ  < œ 8  5

Generating Sets for  and W E8 8

There are a variety of useful generating sets for the symmetric group . ForW8

example, we have seen that the set of transpositions generates .W8



Theorem 6.6 The following sets generate .W8

1  The set of transpositions.)
2  The “transpositions of ”) "

Ð" #Ñß Ð" $Ñßá ß Ð" 8Ñ

3  The “adjacent transpositions”)

Ð" #Ñß Ð# $Ñß Ð$ %Ñßá ß Ð8  "8Ñ

4  The -cycle  and the transposition .) 8 Ð"â8Ñ Ð" #Ñ
5  The cycle  and a single transposition  for .) Ð#â8Ñ Ð" 5Ñ # Ÿ 5 Ÿ 8
Proof. For part 2) we have

Ð+ ,Ñ œ Ð" ,ÑÐ" +Ñ

and so the subgroup generated by the transpositions of  contains all"
transpositions. For part 3), if  is the subgroup generated by the adjacentE
transpositions, then  and if , then so isÐ" #Ñ − E Ð" 5Ñ − E

Ð" 5  "Ñ œ Ð" 5ÑÐ5 5"Ñ

Hence, part 2) implies that . For part 4), if , thenE œ W T œ ØÐ#â8Ñß Ð" #ÑÙ8

Ð" #Ñ − T Ð5  " 5Ñ − T and if , then so is

Ð5ß 5  "Ñ œ Ð5  " 5Ñ5

for all . Hence, . For part 5), if , then5 Ÿ 8  " T œ W œ Ð#â8Ñ8 5

Ð" 5Ñ œ Ð" 5  "Ñ

Ð" 5  "Ñ œ Ð" 5  #Ñ

ã

Ð" 8  "Ñ œ Ð" 8Ñ

5

5

5

and since ,. 5œ œ Ð8â#Ñ"

Ð" 5Ñ œ Ð" 5  "Ñ

Ð" 5  "Ñ œ Ð" 5  #Ñ

ã

Ð" $Ñ œ Ð" #Ñ

.

.

.

and so we get all transpositions of ."

As to the alternating group, we have the following.

Theorem 6.7 For ,  is generated by the -cycles.8   $ E $8

Proof. Any even permutation is a product of pairs of distinct transpositions. For
“overlapping” transpositions, we have
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Ð+ ,ÑÐ+ -Ñ œ Ð+ - ,Ñ

and for disjoint transpositions, we can arrange for overlaps as follows:

Ð+ ,ÑÐ- .Ñ œ Ð+ ,ÑÐ, -ÑÐ, -ÑÐ- .Ñ œ Ð, - +ÑÐ- . ,Ñ

Hence,  is generated by -cycles.E $8

Subgroups of  and W E8 8

The alternating group  sits very comfortably inside .E W8 8

Theorem 6.8 
1  The signum map  is a group homomorphism from  onto the) 9 5À È Ð"Ñ W5

8

multiplicative group , with kernel . Hence,  has index .Ö"ß "× E E W #8 8 8ü
2   is the only subgroup of  of index .) E W #8 8

3   If , then either  or  contains an equal) ( )Subgroups of W8 L Ÿ W L Ÿ E L8 8

number of even and odd permutations and so has even order.
4   For ,  has no subgroup of index .) ( )Subgroups of E8 8   $ E #8

Proof. For part 2), let  be a subgroup of  of index . Theorem 3.17 impliesL W #8

that  for any  and so the squares of all -cycles are in . But any5 5#
8− L − W $ L

$ $-cycle is the square of another -cycle:

Ð+ , -Ñ œ Ð+ - ,Ñ#

and so  contains all -cycles, which generate , whence . Part 3)L $ E L œ E8 8

also follows from Theorem 3.17. For part 4), if , then  forÐE À LÑ œ # − L8
#5

all  and so  contains all -cycles, a contradiction.5 − E L $8

The Alternating Group Is Simple
We wish to show that the alternating group  is simple for , but not forE 8 Á %8

8 œ % 8 Ÿ %. We will leave proof of the cases  to the reader and assume that
8   &.

Suppose that  is nontrivial. We have seen that any two -cycles areR W $ü 8

conjugate in . However, it is also true that any two -cycles are conjugate inW $8

E 8   & œ Ð+ + + Ñ œ Ð, , , Ñ $8 " # $ " # $, for . To see this let  and  be distinct -α "
cycles with  for all . If+ Á , 3" 3

5 œ Ð+ , ÑÐ+ , ÑÐ+ , Ñ" " # # $ $

where  is the identity when , then . Finally, if  is not even,Ð+ , Ñ + œ , œ3 3 3 3 α " 55

then we can take , in which case .B Â Ö+ ß , ß , ß , × œ" " # $
Ð+ BÑα "" 5

Thus, since  is generated by -cycles, we can prove that  is simple byE $ E8 8

showing that any nontrivial normal subgroup of  contains at least one -E $8

cycle.



E& is Simple
To see that  is simple, note that the possible cycle representations of elementsE&

of , excluding -cycles, areE "&

Ð † † † † † Ñß Ð † † † Ñ Ð † † ÑÐ † † Ñand

If  contains a -cycle, we may assume that . To shortenR & œ Ð" # $ % &Ñ − R5
the -cycle to a -cycle, we reverse the effects of  on  and  by taking the& $ " $5
product

7 œ Ð# " % $ &ÑÐ" # $ % &Ñ œ Ð# & %Ñ

and since

Ð# " % $ &Ñ œ Ð" # $ % &Ñ − RÐ" #ÑÐ$ %Ñ

we deduce that  contains the -cycle .R $ 7

If  contains the product of two disjoint transpositions, we may assume thatR

Ð" #ÑÐ$ %Ñ − R

To get a -cycle, recall that the product of two distinct $ nondisjoint
transpositions is a -cycle. Thus,$

Ð" #ÑÐ$ %ÑÐ" #ÑÐ% &Ñ œ Ð$ %ÑÐ% &Ñ œ Ð% & $Ñ

and since

Ð" #ÑÐ% &Ñ œ ÒÐ" #ÑÐ$ %ÑÓ − RÐ$ % &Ñ

we see that  contains a -cycle in this case as well.R $

E 8   &8 is Simple for 

We now examine the general case . Let  and let .8   & R E − Rü 58

Case 1
Suppose that the cycle decomposition of  contains a cycle of length , say5 5   %

5 1œ Ð+ â+ B C DÑ" 7

where . If7   "

- œ ÐB D C + â+ Ñ7 "

then  and  are disjoint and- 1

7 -1 5³ œ ÐB D C + â+ ÑÐ+ â+ B C DÑ œ ÐB + DÑ"
7 " " 7 7

is a -cycle. Moreover,$
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1- 1 1 5" ÐB C DÑ ÐB C DÑ
" 7 " 7œ Ð+ â+ C D BÑ œ Ò Ð+ â+ B C DÑÓ œ − R

and so , which implies that the -cycle  is in .-1 7" − R $ R

Case 2
Suppose that the cycle decomposition of  contains two or more -cycles, say5 $

5 1œ Ð+ , -ÑÐB C DÑ

Then  contains the permutationR

7 5 1³ œ ÐC , -ÑÐB D +ÑÐ+ C DÑ

and therefore also the -cycle&

57" œ Ð+ , -ÑÐB C DÑÐ+ D BÑÐ- , CÑ œ Ð+ B , D CÑ

Hence, case 1) completes the proof.

Case 3
If the cycle decomposition of  consists of a single -cycle, with possibly some5 $
additional transpositions,

5 1 1œ Ð+ , -Ñ â" 7

then  contains the -cycleR $

5# #œ Ð+ , -Ñ œ Ð+ - ,Ñ

Case 4
If the cycle decomposition of  is a product of at least three disjoint5
transpositions,

5 1 1œ Ð+ ,ÑÐB CÑÐD AÑ â" 7

then  also containsR

7 5 1 1³ œ Ð+BÑÐ, DÑÐC AÑ âÐ, BÑÐC DÑ
" 7

and therefore also

57 œ Ð+ ,ÑÐB CÑÐD AÑÐ+ BÑÐ, DÑÐC AÑ œ Ð+ C DÑÐ, ABÑ

and so case 2) completes the proof.

Case 5
Suppose that the cycle decomposition of  has the form5

5 œ Ð+ ,ÑÐ- .Ñ

If , then  containsB Â Ö+ß ,ß -ß .× R



7 5³ œ Ð, BÑÐ- .ÑÐ+ , BÑ

and therefore also the -cycle$

57 œ Ð+ ,ÑÐ- .ÑÐ, BÑÐ- .Ñ œ Ð+ ,ÑÐ, BÑ œ Ð, B +Ñ

Thus, in all cases  contains a -cycle and so .R $ R œ E8

Theorem 6.9 The alternating group  is simple if and only if .E 8 Á %8

As to the normal subgroups of , we have the following.W8

Theorem 6.10 If , then  has no normal subgroups other than 8 Á % W Ö"×ßE8 8

and .W8

Proof. This is easily checked for  so assume that . If , then8 Ÿ # 8   $ R Wü 8

R ∩ E E R ∩ E œ Ö × R ∩ E œ E R ∩E œ Ö ×8 8 8 8 8 8ü + +. Hence,  or . But if ,
then  where  is an odd involution and so has cycle decompositionR œ Ö ß ×+ 5 5

5 œ Ð+ , ÑâÐ+ , Ñ" " 5 5

where the transpositions  are disjoint. Since  is normal, it must containÐ+ , Ñ R3 3

all permutations with the same cycle structure as , which is not the case if5
8   $ E Ÿ R R œ E R œ W. Hence,  and so  or .8 8 8

Example 6.11 (An ) Using the fact that  is simple forinfinite simple group E8

8 Á % \, we can construct an example of an infinite simple group. Let  be an
infinite set and let  be the symmetric group on . Thus,  is aW \ l\ Ð Ñ5 supp 5

permutation of  with no fixed points and  is the identity onsuppÐ Ñ5 5
\ Ï Ð Ñ W W Wsupp 5 . Let  be the subgroup of  consisting of all elements of Ð\Ñ \ \

that have finite support. Let  be the subgroup of  consisting of thoseE WÐ\Ñ Ð\Ñ

permutations  for which  is an even permutation. We leave it as5 5− W lÐ\Ñ Ð Ñsupp 5

an exercise to show that  is an infinite simple group. Moreover,  is theE EÐ\Ñ Ð\Ñ

smallest nontrivial normal subgroup in .W\

Some Counting
It is sometimes useful to know how many permutations there are with a
particular cycle structure.

Theorem 6.12
1  The number of cycles of length  in  is) 5 W8

Š ‹8 8x

5 5Ð8  5Ñx
Ð5  "Ñx œ

In particular, the number of -cycles in  is .8 W Ð8  "Ñx8
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2  The number of permutations in  whose cycle structure consists of ) W <8 3

cycles of length , for  is5 3 œ "ßá ß73

8x

< xâ< x5 â5" 7 "
<

7
<" 7

3  Let  be the number of permutations in  whose cycle structure has) =Ð8ß 5Ñ W8

exactly  cycles including -cycles . Then5 "( )

=Ð8ß "Ñ œ Ð8  "Ñx

and for 5   #

=Ð8ß 5Ñ œ =Ð8  "ß 5  "Ñ  Ð8  "Ñ=Ð8  "ß 5Ñ

Also,

�
5œ"

8
5 Ð8Ñ=Ð8ß 5ÑB œ B ³ BÐB  "ÑâÐB  8  "Ñ

The numbers  are known as the .=Ð8ß 5Ñ Stirling numbers of the first kind
The expression  is known as the th .B 8Ð8Ñ upper factorial

Proof. We leave proof of part 1) to the reader. For part 2), we write down a
template consisting of  cycles of length , with dots in place of the elements< 53 3

of . For example, if the cycle lengths are , then theM œ Ö"ßá ß 8× $ß $ß #ß "8

template is

Ð † † † ÑÐ † † † ÑÐ † † ÑÐ † Ñ

Now, the dots can be replaced by the elements of  in  different ways.M 8x8

However, there are two ways in which the number  is an overcount of the8x
desired number. First, for each of the  cycle templates of length , a cycle can< 53 3

start at any of its  elements, so we must divide by  by , giving5 8x 53 3
<3

8x

5 â5"
<

7
<" 7

Second, for each cycle length , the  arrangements of the  cycles of length5 < x <3 3 3

53 are counted separately in the number above, but give the same permutation,
so we must also divide by .< xâ< x" 7

For part 3), it is easy to see that

=Ð8ß "Ñ œ Ð8  "Ñx

In general, we group the permutations in  with exactly  cycles into twoW 58

groups, depending on whether the permutation contains the -cycle . There" Ð8Ñ
are  permutations containing the -cycle . The other=Ð8  "ß 5  "Ñ " Ð8Ñ
permutations are formed by inserting  after any of the  elements in the8 8  "
=Ð8  "ß 5Ñ 8  " 5 5   # permutations of  elements into  cycles. Thus, for 



=Ð8ß 5Ñ œ =Ð8  "ß 5  "Ñ  Ð8  "Ñ=Ð8  "ß 5Ñ

Now we can verify the formula for  by induction. It is easy to see that the=Ð8ß 5Ñ
formula holds for . Assume the formula is true for  where .8 œ " =Ð7ß 5Ñ 7  8
Then

�
� �

�
– —�

5œ"

8
5

5œ# 5œ#

8 8
5 5

5œ"

8"
5

5œ"

8
5

=Ð8ß 5ÑB

œ Ð8  "ÑxB  =Ð8  "ß 5  "ÑB  Ð8  "Ñ =Ð8  "ß 5ÑB

œ Ð8  "ÑxB  B =Ð8  "ß 5ÑB

 Ð8  "Ñ =Ð8  "ß 5ÑB  Ð8  #ÑxB

œ Ð8  "ÑxB  BÐBÑ  Ð8  "ÑÒB  Ð8  #ÑxBÓ

œ ÐB  8  "ÑB

œ B

Ð8"Ñ Ð8"Ñ

Ð8"Ñ

Ð8Ñ

as desired.

Exercises
1. Let

5 œ Ð" # $ÑÐ% &ÑÐ'Ñ

and

7 œ Ð% & 'ÑÐ" $ÑÐ#Ñ

be elements of . Find a permutation  for which . Is W − W œ' '3 5 7 33

unique?
2. Find the smallest normal subgroup of  containing . Is thisW œ Ð" #ÑÐ$ %Ñ% 5

the smallest subgroup of  containing ?W% 5
3. Let  have prime order . Prove that  is a product of disjoint -5 5− W : :8

cycles. If  moves all elements of , show that .5 M : ± 88

4. Show that two even permutations may be conjugate in  but not in .W E& &

5. Prove that  has no subgroup of index  without using the fact that  isE # E8 8

simple for . How does this relate to Lagrange's theorem?8 Á %
6. a) Find all subgroups of .E%

 b) Find all normal subgroups of . Is  the join of all of its properE E% %

normal subgroups?
7. Prove that the -cycles  generate .$ Ð"#$Ñß Ð"#%Ñßá ß Ð"#8Ñ E8

8. Let  and . Prove that  is generated by the cycles of length8   $ 5   " E8

#5  ".
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9. Prove that for ,  is generated by the set of all products of pairs of8   & E8

disjoint transpositions. Does this hold for ?8  &
10. Let . Prove that the only proper subgroup  of  with 8   & L W ÐW À LÑ  88 8

is .E8

11. Prove that  is centerless for . Prove that  is centerless. WhatW 8   $ E8 %

about  in general?E8

12. A subgroup  of  is  if for any , there is a  forL W 4ß 5 − M − L8 transitive 8 5
which . Prove that the order of a transitive subgroup  of  is54 œ 5 L W8

divisible by .8
13. A subgroup  of  is -  if for any distinct L W 5 3 ßá ß 3 − M8 " 5 8ply transitive

and distinct  there is a permutation  for which4 ßá ß 4 − M − L" 5 8 5
53 œ 4 E Ð8  #Ñ Ð8  "Ñ 8? ? 8. Prove that  is -ply transitive. Is it -ply or -ply
transitive?

14. Let  be an infinite set. Define the   is defined to be\ Ealternating group \

the set of all permutations in  that can be written as the product of anW8

even number of transpositions. Let  be the set of all permutations in L W\ \

that fix all but a finite number of elements of .\
 a) What is the relationship between ,  and  (including normalityE L W\ \ \

and index)?
 b) Prove that  is simple.E\

15. In , for each , letW 5 œ $ßá ß88

55

3œ"

œ Ð3 5  3Ñ$¨ ©5
#

for example,

5

5

5

5

5

5

$

%

&

'

(

)

œ Ð" #Ñ

œ Ð" $Ñ

œ Ð" %ÑÐ# $Ñ

œ Ð" &ÑÐ# %Ñ

œ Ð" 'ÑÐ# &ÑÐ$ %Ñ

œ Ð" (ÑÐ# 'ÑÐ$ &Ñ

Show that the permutations  generate .5 5" 8 8"ßá ß W
16. What is the largest order of the elements of ?W"!

17. (Determining the parity of a permutation) Let . Let  be\ œ ÖB ßá ß B × T" 8

the set of all polynomials in the 's with rational coefficients. Then we canB3

apply a  to the elements of  by applying  to the variables5 5− W T8

individually. For example, if

: œ B B  B
"

#
" $ #

$



then

5 5 5 5: œ ÐB Ñ ÐB Ñ  ÐB Ñ − T
"

#
" $ #

$

 a) Show that for ,:ß ; − T

5 5 5 5 5 5Ð:  ;Ñ œ Ð:Ñ  Ð;Ñß Ð:;Ñ œ Ð:Ñ Ð;Ñ

and for ,5 7ß − W\

5 7 57Ð :Ñ œ Ð Ñ:

 b) Consider the polynomial

: œ :ÐB ßá ß B Ñ œ − T
B  B

3  4
" 8

34

3 4$
Show that if  is a transposition, then5 œ ÐB B Ñ" +

5
5 5

: œ œ :
ÐB Ñ  ÐB Ñ

3  4
$
34

3 4

 c) Show that for any ,5 − W8

5: œ Ð"Ñ :5

Hence, if , then since , we have5 − W :Ð"ß #ßá ß 8Ñ œ "8

5
5 5

:Ð"ß #ßá ß 8Ñ œ œ Ð"Ñ
Ð3Ñ  Ð4Ñ

3  4
$
34

5

 d) Let . An  in  is a pair  of indices with5 5− W Ð4ß 3Ñ8 inversion
" Ÿ 3ß 4 Ÿ 8 4  3 Ð4Ñ  Ð3Ñ satisfying  but . Prove that the sign of 5 5 5
is the parity of the number of inversions in .5

 e) Determine whether the permutation  is even or odd, where5 − W*

5 œ Ð( # % * $ ) ' & "Ñ

18. For each , we may associate the conjugation map  defined7 -− W − W\ \7

by .- 5 57
7Ð Ñ œ

 a) Show that the map  defined by  is a- - 7 -À K Ä W Ð Ñ œ\ 7

homomorphism.
 b) Find the kernel of .-
 c) Suppose that  is  under conjugation, that is,g Á E © \ invariant

+ − E + − E implies that . Then we can restrict  to a permutation of5
5-

E ÀH Ä W. Find the kernel of the map .-w
E

19. Let  be any normal subgroup of  (such as  or itself).K W E W8 8 8
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 a) Show that if , then5 7 3ß ß − K

5 5 7 3 57 3œ Í − G Ð ÑK

 b) Find a one-to-one correspondence between the set  of conjugates of5K

5 5 5 and the set of cosets of  in . The set  is referred to as theG Ð Ñ KK
K

conjugacy class orbit of  or the  of  under conjugation. The5 5
centralizer  is also referred to as the  of  underG Ð ÑK 5 5stabilizer
conjugation.

 c) Prove the  for conjugation in : For anyorbit-stabilizer relationship K
5 − K,

¸ ¸ k kk k5 5
5

K
K

K
œ ÐK À G Ð ÑÑ œ

K

G Ð Ñ

 d) Let  be an -cycle. Prove that . Put another way, aα α α− W 8 G Ð Ñ œ Ø Ù8 W8

permutation  commutes with  if and only if it is a power of .5 α α− W8

20. If  are conjugate in , it does not necessarily follow that  and 5 7 5 7ß − E W8 8

are conjugate in . Suppose that  commutes with an E − E8 85 odd
permutation - − W8

 a) Prove that if  and  are conjugate in , then they are also conjugate5 7 W8

in .E8

 b) Prove that the centralizers of  are related as follows:5

G Ð Ñ œ G Ð Ñ ∪ G Ð ÑW E E8 8 8
5 5 - 5

and, in particular,

k k k kG Ð Ñ œ # G Ð ÑW E8 8
5 5

 : It is not hard to find permutations  that commute with an oddNote 5 − E8

permutation. For instance, if  does not move either  or , then 5 5− E + ,8

commutes with the transposition . Thus, for instance, an -cycleÐ+ ,Ñ Ð8  #Ñ
in  commutes with a transposition. As another example, if E − E8 85
interchanges  and , then  where  and  fix  and . It+ , œ Ð+ ,Ñ + ,5 . . . .w w

follows that  commutes with .5 Ð+ ,Ñ
21. Let  be a nonempty set. Define the  of a permutation  to\ − Wsupport 5 \

be the set of elements of  that are moved by :\ 5

suppÐ Ñ œ ÖB − \ ± B Á B×5 5

Let  be the set of all permutations in  with finite support, that is, forW WÐ\Ñ \

which  is a finite set. This set is called the suppÐ Ñ5 restricted symmetric
group on the set  and is used in defining the determinant of an infinite\
matrix.

 a) Show that .supp suppÐ Ñ œ Ð Ñ5 5"

 b) Show that .supp supp suppÐ Ñ © Ð Ñ ∪ Ð Ñ57 5 7
 c) Show that .supp suppÐ Ñ œ Ð Ð ÑÑ757 7 5"

 d) Show that  implies that .supp suppÐ Ñ ∩ Ð Ñ œ g œ5 7 57 75



 e) Show that  and that  if and only if  is finite.W W W œ W \Ð\Ñ Ð\Ñ\ \ü

 f) Show that if  is infinite, then  is an infinite group in which every\ WÐ\Ñ

element has finite order and that  is infinite.W ÎW\ Ð\Ñ

 g) Let  be infinite and let  be the subgroup of  consisting of\ E WÐ\Ñ Ð\Ñ

those permutations  for which  is an even permutation.5 5− W lÐ\Ñ Ð Ñsupp 5

Show that  is an infinite simple group. Moreover,  is theE EÐ\Ñ Ð\Ñ

smallest normal subgroup in .W\

22. For the Stirling numbers  of the first kind, show that=Ð8ß 5Ñ

�
5œ"

8

=Ð8ß 5Ñ œ 8x

23. (Stirling numbers of the second kind) For the curious, we present a brief
discussion of the “other” Stirling numbers. We have seen that the Stirling
numbers  of the first kind count the number of ways to partition a set=Ð8ß 5Ñ
of size  into  disjoint nonempty “cycles.” The 8 5 Stirling numbers of the
second kind, denoted by , count the number of ways to partition aWÐ8ß 5Ñ
set of size  into  nonempty disjoint subsets. It is clear that8 5

WÐ8ß "Ñ œ "

 a) Find .WÐ8ß #Ñ
 b) Show that for ,8  !

WÐ8ß 5Ñ œ 5WÐ8  "ß 5Ñ  WÐ8  "ß 5  "Ñ

 c) Show that

B œ WÐ8ß 5ÑB8 Ð5Ñ

5œ"

8�
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Chapter 7
Group Actions; The Structure of -Groups:

Group Actions
We have had a few occasions to use group actions  in the past and-À K Ä W\

we now wish to make a more systematic study of group actions, beginning with
the definition.

Definition An  of a group  on a nonempty set  is a groupaction K \
homomorphism , called the  for the action. The-À K Ä W\ representation map
permutation  is often denoted by , or simply by  itself when no confusion- -+ ++

can arise. Thus,

"B œ B Ð+,ÑB œ +Ð,BÑand

for all . When  is a group action, we say that   on  by  or thatB − \ K \- -acts
\ is a  under . An action is  if it is an embedding.K-set faithful-
1  An element  is said to   if  and   if .) + − K B − \ +B œ B B +B Á Bfix move
2  An element  is  if every element of  fixes . We will denote) B − \ K Bstable

the set of all stable elements by  or just .Fix Fix\ÐKÑ ÐKÑ

Let  denote the set of all functions from  to . If  is a finite set, then any\ \ \ \\

function  that satisfies  and  is an action of  on- - + - - -À K Ä \ œ œ K\
" +, + ,

\, since

- - - - - -

- -

- -

+ + + ++ +

+ + + +

" "

B œ C Ê B œ C

Ê B œ C

Ê B œ C

Ê B œ C

" "

" "

and so  is injective and therefore a permutation of . Thus, for  sets, we-+ \ finite
do not need to check  that  is a permutation of .explicitly -+ \
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Orbits and Stabilizers
Two elements  are  if there is an  for whichBß C − \ + − KK-equivalent
+B œ C K. Since  is a homomorphism, -equivalence is an equivalence relation-
on . The equivalence classes\

KB œ Ö+B ± + − K×

are called the  of the action. We will use the notations ,  andorbits KB ÐBÑorb
orbKÐBÑ B K for the orbit of  under . The distinct orbits form a partition of the set
\.

On the group side of an action, we can associate to each element  the setB − \
of all element of  that fix :K B

stab stabÐBÑ œ ÐBÑ œ Ö+ − K ± +B œ B×K

This subgroup of  is called the  of .K Bstabilizer

Definition Let  be a group and  a nonempty set.K \
1  An action of  on  is  if every pair of elements of  are -) K \ \ Ktransitive

equivalent, that is, if there is only one orbit in . In this case, we also say\
that  is  on .K \transitive

2  An action of  on  is  if it is transitive and if the stabilizer ) stabK \ ÐBÑregular
is trivial for every . In this case, we also say that  is  onB − \ K regular
\.

The Kernel of the Representation Map
The kernel of the representation map  is-À K Ä W\

kerÐ Ñ œ Ö+ − K ± œ ×- - ++

As we have remarked, the action  is  if  is trivial.- -faithful kerÐ Ñ

Theorem 7.1 The kernel of an action   is the intersection of the-À K Ä W\

stabilizers of all elements of ,\

kerÐ Ñ œ ÐBÑ- ,
B−\

stab

The importance of the kernel  of the representation map O œ Ð Ñ ÀK Ä Wker - - \

stems from two facts:  is a normal subgroup of  and there is an embeddingO K
of  into the symmetric group . In particular, if  is finite, thenKÎO W \ œ 8\ k k
ÐK À OÑ ± 8x 9ÐKÑ ± 8x and if  is faithful, then .-

The Key Relationships
A set consisting of precisely one element from each orbit of  in  is a K \ system
of distinct representatives SDR, or  for the orbits in .\
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For a given SDR, we will have occasion to separate the representatives of the -"
element orbits from the representatives of the orbits of size greater than ."
Accordingly, we denote a system of distinct representatives for the orbits of size
greater than  by SDR ." "

Our immediate goal is to establish some key facts concerning group actions.
First, as the various elements of a group  act on an element , the orbit ofK B − \
B K is described. Of course, different elements of  may have the same effect on
B. In fact,

+B œ ,B Í , + − ÐBÑ Í + ÐBÑ œ , ÐBÑ" stab stab stab

Thus,  if and only if  and  are in the same coset of  in  and+B œ ,B + , ÐBÑ Kstab
so we can think of the cosets themselves as acting on the elements ,B − \
describing each element of the orbit of  , that is, distinctB with no duplications
cosets send  to distinct elements of .B − \ \

Put another way, there is a bijection between  and . This gives theKÎ ÐBÑ KBstab
orbit-stabilizer relationship

k kKB œ ÐK À ÐBÑÑstab

It follows that

k k k k� �\ œ KB œ ÐK À ÐBÑÑ
B− B−SDR SDR

stab

We will refer to this equation as the  for the action of  on .class equation K \
(Actually, this term is traditionally reserved for a specific case of this equation,
arising from the specific action of  on itself by conjugation. We will encounterK
this specific case a bit later in the chapter.)

Another key property of a group action is the following. If  are -Bß C − \ K
equivalent, say  for , then the stabilizers of  and  are related asC œ +B + − K B C
follows:

stab

stab
stab

Ð+BÑ œ Ö, − K ± ,+B œ +B×

œ Ö, − K ± + ,+B œ B×

œ Ö, − K ± + ,+ − ÐBÑ×

œ ÐBÑ

"

"

+

Finally, suppose that  acts on  and that the restriction of this action to aK \
subgroup  is transitive on . Then the action of  is duplicated by theL Ÿ K \ K
action of , that is, for any  and , there exists an  for whichL 1 − K B − \ 2 − L
2B œ 1B 1 − 2 ÐBÑ or, equivalently, . Hence,stabK

K œ L ÐBÑstabK

Moreover, if  is regular on , thenL \



L ∩ ÐBÑ œ ÐBÑ œ Ö"×stab stabK L

and so

K œ L ì ÐBÑstabK

Now we summarize.

Theorem 7.2  Let the group  act on the set .K \
1   For any ,) ( )Orbit-stabilizer relationship B − \

k kKB œ ÐK À ÐBÑÑstab

Thus, for a finite group ,K

k k k kk kKB œ
K

ÐBÑstab

and  divides .k k k kKB K
2  ) ( )The class equation

k k �\ œ ÐK À ÐBÑÑ
B−SDR

stab

where the sum is taken over a system of distinct representatives  for theSDR
orbits in . We can also write this as\

k k k k �\ œ ÐKÑ  ÐK À ÐBÑÑFix stab\

B−SDR"

3   For any  and ,) ( )The stabilizer relationship B − \ + − K

stab stabÐ+BÑ œ ÐBÑ+

Thus stabilizers of an orbit in  form a conjugacy class of  and therefore\ K
the stabilizers of -equivalent elements have the same cardinality.K

4   If the action of  is transitive on , then) ( )The Frattini argument L Ÿ K \

K œ L ÐBÑstabK

and if  is regular on , thenL \

K œ L ì ÐBÑstabK

and so  is a complement of  in .stabKÐBÑ L K

When the group action is transitive, the class equation and orbit-stabilizer
relationship become quite simple.

Theorem 7.3 If a group  acts transitively on a set , then all stabilizers areK \
conjugate and the orbit-stabilizer relationship and the class equation  is simply( )
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k k\ œ ÐK À ÐBÑÑstab

for any . Hence, if  is finite, then  divides .B − \ K \ Kk k k k
Congruence Relations on a -SetK

If  acts on the elements of a set , then there is a natural way in which  alsoK \ K
acts on the power set  of , namely,kÐ\Ñ \

+W œ Ö+= ± = − W×

for all  and . Let us refer to this action as the  of W © \ + − K Kinduced action
on .kÐ\Ñ

Now, a -set is a set  with some structure, namely, the group action of  onK \ K
\ ´ \ and an equivalence relation  on  is compatible with this action if it
satisfies the following definition.

Definition An equivalence relation  on a -set  is called a ´ K \ K-congruence
relation on  if it preserves the group action, that is, if\

B ´ C Ê +B ´ +C + − Kfor all 

We denote the set of all congruence classes under  by  and the´ \Î ´
congruence class containing  by .B − \ ÒBÓ

Thus, if  is a -congruence relation on , then the induced action is an´ K \
action on the partition  and\Î ´

+ÒBÓ œ Ò+BÓ

for all . Conversely, suppose that the induced action of  on  is anB − \ K kÐ\Ñ
action on a partition  of , that is,  for all  andc cœ ÖF ± 3 − M× \ +F − + − K3 3

F − ´ K3 c c. Then the equivalence relation  associated to  is a -congruence
relation on .\

In other words, the partitions of  that correspond to the -congruence\ K
relations are the partitions  that are closed under the inducedc œ ÖF ± 3 − M×3

action of  on .K kÐ\Ñ

Moreover, if  acts transitively on  and if  is a -congruence relation onK \ ´ K
\ K \Î ´, then  also acts transitively on  and so

\

´
œ KW ³ Ö+W ± + − K×

is the orbit of any given conjugacy class . Hence, the partitions of W − \Î ´ \
that correspond to the -congruence relations of a transitive group  are theK K
partitions of the form , where  is nonempty.KW W © \



But if  is a partition of , then  or  for all .KW \ +W œ W +W ∩ W œ g + − K
Conversely, if  or  for all , then the distinct members+W œ W +W ∩ W œ g + − K
of  form a partition of . To see this, suppose that . ThenKW \ B − +W ∩ ,W
+ B − W ∩ + ,W + ,W œ W ,W œ +W" " " and so , whence . Moreover, the
transitivity of  implies that .K KW œ \

Hence, if  is nonempty, then  is a partition of  if and only ifW © \ KW \

+W œ W +W ∩ W œ gor

for all .+ − K

Theorem 7.4 Let a group  act on a nonempty set .K \
1  The partitions of  that correspond to the -congruence relations on ) \ K \

are the partitions of  that are closed under the induced action of  on\ K
kÐ\Ñ.

2  Suppose that  acts transitively on .) K \
 a  The partitions of  that correspond to the -congruence relations are) \ K

the partitions of the form

KW œ Ö+W ± + − K×

where  is nonempty.W © \
 b  A nonempty subset  of  is a congruence class under some -) W \ K

congruence if and only if  has the property thatW

+W œ W +W ∩ W œ gor

for all . Such a subset  of  is called a  of .+ − K W \ Kblock

Thus,  is a block of  if and only if  is a partition of . It followsW © \ K KW \
that if  is a block of , then so is  for all .W K +W + − K

Now that we have established the basic properties of group actions, we can
examine a few of the most important examples of group actions. Then we will
use group actions to explore the structure of -groups. In the next chapter, we:
will use group actions to explore the structure of finite groups and to prove the
famous Sylow theorems.

Translation by K
Earlier in the book, we discussed two fruitful examples of the action of
translation by elements of a group , namely, on the elements of  and on theK K
elements of a quotient set . The action of  on itself is the KÎL K left regular
representation of  as a subgroup of the symmetric group , as described byK WK

Cayley's theorem.

Fundamentals of Group Theory212



Group Actions; The Structure of -Groups 213:

Let us review the action of translation by  on :K KÎL

-1Ð+LÑ œ 1+L

This action is transitive and so all stabilizers are conjugate. Since

stab stabÐ+LÑ œ ÐLÑ œ L+ +

the kernel of the action is the normal closure of ,L

kerÐ Ñ œ L œ L- ,
+−K

+ ‰

which is the largest normal subgroup of  contained in . If ,K L ÐK À LÑ œ 7
then the embedding

K

L
W ¸ W

‰ ÐKÀLÑ 7ä

implies that

ÐK À L Ñ ± ÐK À LÑx‰

The consequences of this action were recorded earlier in Theorem 4.20, but we
repeat them here for easy reference.

Theorem 7.5 Let  be a group and let  have finite index. ThenK L  K

KÎL W‰
KÎLä

and so

ÐK À L Ñ ± ÐK À LÑx‰

In particular,  is also finite andÐK À L Ñ‰

ÐL À L Ñ ± ÐÐK À LÑ  "Ñx‰

1  Any of the following imply that :) L Kü
 a   is periodic and  is equal to the smallest order among) L ÐK À LÑ œ :

the nonidentity elements of .L
 b   is finite and  and  are relatively prime, that is,) K 9ÐLÑ ÐÐK À LÑ  "Ñx

for all primes ,:

: ± 9ÐLÑ Ê :   ÐK À LÑ

This happens, in particular, if  is the smallest prime dividingÐK À LÑ
9ÐKÑ.

2  If  is finitely generated, then  has at most a finite number of subgroups) K K
of any finite index .7



3  If  is simple, then) K

9ÐKÑ ± ÐK À LÑx

 a  If  is infinite, then  has no proper subgroups of finite index.) K K
 b  If  is finite and  for some integer , then  has no) K 9ÐKÑ ± 7x 7 Ky

subgroups of index  or less.7

Conjugation by  on the Conjugates of a SubgroupK

The elements of  act by conjugation on ,K ÐKÑsub

-+
+ÐLÑ œ L

for all . The orbit of a subgroup  is the conjugacy class  andL Ÿ K L ÐLÑconjK
the stable elements are

FixÐKÑ œ ÐKÑnor

The stabilizer of a subgroup  is its normalizer and soL

R ÐL Ñ œ R ÐLÑK K
+ +

Also, the orbit-stabilizer relationship is

k kconjK KÐLÑ œ ÐK À R ÐLÑÑ

which we discussed earlier in the book (Theorem 3.27).

Conjugation by  on a Normal SubgroupK

Let  and let  act on the elements of  by conjugation:R K K Rü

-1
1Ð+Ñ œ +

for all . The orbits of this action+ − R

K+ œ + ³ Ö+ ± B − K×K B

are called the  of   . The stabilizer of  is itsconjugacy classes R K + − Runder
centralizer  and the kernel of the representation  isG Ð+ÑK -

kerÐ Ñ œ G Ð+Ñ œ G ÐRÑ- ,
+−R

K K

The orbit-stabilizer relationship is

¸ ¸+ œ ÐK À G Ð+ÑÑK
K

as we saw in Theorem 3.23.

The stable elements of  are the elements of  that commute with everyR R
element of  and soK
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FixRÐKÑ œ ^ÐKÑ ∩ R

Hence, the class equation is

k k k k �R œ ^ÐKÑ ∩ R  ÐK À G Ð+ÑÑ
+−

K

SDR"

When  acts on itself by conjugation, that is, when , the class equationK R œ K
is

k k k k �K œ ^ÐKÑ  ÐK À G Ð+ÑÑ
+−

K

SDR"

This is the equation to which the name  is traditionally appliedclass equation
and is one of the most useful tools in finite group theory.

The Structure of Finite -Groups:

We now wish to study the structure of a very special type of finite group.

Definition Let  be a nontrivial group and let  be a prime.K :
1  An element  is called a  if  for some .) + − K 9Ð+Ñ œ : 5   !:-element 5

2   is a  if every element of  is a -element.) K K ::-group
3  A nontrivial subgroup  of  is called a  of  if  is a -) W K K W ::-subgroup

group.

As we saw earlier in the book, Lagrange's theorem and Cauchy's theorem
conspire to give the following result.

Theorem 7.6 A finite group  is a -group if and only if the order of  is aK : K
power of .:

When a -group  acts on a set , the class equation has the property that all of: K \
the terms  that are greater than  are divisible by . This gives theÐK À ÐBÑÑ " :stab
following simple but useful result.

Theorem 7.7 If a -group  acts on a set , then: K \

k k k k\ ´ ÐKÑ :Fix\ mod

We now turn to the key properties of finite -groups.:

The Center-Intersection Property
It will be convenient to make the following nonstandard definition.

Definition A group  has the  if every nontrivialK center-intersection property
normal subgroup of  intersects the center of  nontrivially.K K



Note that a finite group  has the center-intersection property if and only ifK
every nontrivial normal subgroup of  contains a central subgroup of primeK
order. Any finite -group  has the center-intersection property, for if : K R Kü
is nontrivial, then  acts on the elements of  by conjugation and Theorem 7.7K R
implies that

k k k kR ´ ^ÐKÑ ∩ R :mod

which shows that .k k^ÐKÑ ∩ R  "

Theorem 7.8 A finite -group  has the center-intersection property.: K
1   is nontrivial.) ^ÐKÑ
2   is simple if and only if .) K 9ÐKÑ œ :

The fact that the center of a -group is nontrivial tells us something very:
significant about groups of order .:#

Corollary 7.9 If , then  is abelian. In fact,  is either cyclic or is9ÐKÑ œ : K K#

the direct product of two cyclic subgroups of order .:
Proof. We must have  or . But if , then  isk k k k^ÐKÑ œ : : ^ÐKÑ œ : KÎ^ÐKÑ#

cyclic and so  is abelian, which is a contradiction. Hence,  and K ^ÐKÑ œ : Kk k #

is abelian. If  is not cyclic, then  is elementary abelian of exponent  and soK K :
is the direct product of two cyclic subgroups of order .:

:-Series and Nilpotence
We next show that -groups have normal subgroups of all possible orders. But:
first a couple of definitions.

Definition Central Series and -Series  Let  be a group.( ): K
1  A normal series)

L L â L! " 8ü ü ü

in  is  in  if each factor group  is central in , thatK K L ÎL KÎLcentral 5" 5 5

is,

L ÎL Ÿ ^ÐKÎL Ñ5" 5 5

A group is  if it has a central series starting at the trivialnilpotent
subgroup  and ending at .Ö"× K

2  If  is a prime, then a  from  to  is a series) : L K:-series

L œ L – L –â –L œ K! " 8

whose steps  have index .L  L :5 5"

Definition Let  be a prime. If  is an extension in  of index , we refer: L  O K :
to  as a  of .  is a cover of  in the lattice .O L O L ÐKÑ:-cover ( sub )
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Theorem 7.5 implies that if  is a -cover of , then .O : L L – O

Theorem 7.10 Let  be a finite -group. Then every  has a -cover K : L  K : O
and if , then  can be chosen so that  is central in .L – K O L –O K
1  There is a -series from  to .) : L K
2  If , then there is a central -series from  to . In particular, ) L K : L K Kü

has a normal subgroup containing  of every order between  andL 9ÐLÑ
9ÐKÑ under division .( )

3   is nilpotent.) K
Proof. The proof is by induction on . The theorem is true if .9ÐKÑ 9ÐKÑ œ :
Assume  and that the theorem is true for all groups smaller than . Let9ÐKÑ  : K
L  K R K : L œ Ö"× R : and let  be central in  of order . If , then  is a -cover of
L L – R K L Á Ö"× and  is central in . Assume that . We may also assume that
R Ÿ L L – K R Ÿ L R ∩L œ Ö"× if . In any case,  or .

If , then  is a -cover of  and if , then the inductionR ∩L œ Ö"× RL : L R Ÿ L
hypothesis implies that  has a -cover  and so  is a -cover of .LÎR : OÎR O : L
Also, if , the inductive hypothesis implies that  is central inL – K LÎR – OÎR
KÎR O Ÿ K L –O for some  and so Theorem 4.11 implies that  is central in
K.

The Normalizer Condition
Theorem 7.10 implies that a -group has the normalizer condition, that is,:

L  K Ê L  R ÐLÑK

and therefore several other nice properties (see the discussion following
Theorem 4.35).

Corollary 7.11 The following hold in a finite -group :: K
1   has the normalizer condition) K
2  Every subgroup of  is subnormal) K
3  Every maximal subgroup of  is normal) K
4   is abelian.) KÎ ÐKÑF

Maximal and Minimal Subgroups
Maximal and minimal subgroups play a key role in the study of finite -groups.:
For a finite -group , Cauchy's theorem implies that a subgroup  is minimal: K L
if and only if  and the center-intersection property implies that  is9ÐLÑ œ : L
minimal normal if and only if it is central of order .:

As to the maximal subgroups of , Theorem 7.10 implies that a subgroup  isK L
maximal in  if and only  has index  and that  is maximal normal in  ifK L : L K
and only if  has index .L :



Theorem 7.12 Maximal and minimal subgroups  Let  be a finite -group( ) K :
and let .L Ÿ K
1   is minimal if and only if it has order .) L :
2   is minimal normal if and only if it is central of order .) L :
3  The following are equivalent:)
 a   is maximal) L
 b   is maximal normal) L
 c  .) ÐK À LÑ œ :

The Frattini Subgroup of a -Group; The Burnside Basis Theorem:

The fact that any maximal subgroup  of a -group  is normal and has indexQ : K
: + − K implies that if , then

Ð+QÑ œ Q:

and so . Thus, , the Frattini subgroup of . It follows that+ − Q K © ÐKÑ K: : F
KÎ ÐKÑ :F  is an elementary abelian group of exponent .

Conversely, if  is elementary abelian, then it is characteristically simpleKÎO
and so . Hence,FÐKÎOÑ œ ÖO×

FÐKÑ Ÿ Q Ÿ O,
OŸQK
Q maximal

We have shown that  is the smallest normal subgroup  of  for whichFÐKÑ O K
the quotient  is elementary abelian.KÎO

Theorem 7.13 Let  be a prime. Let  be a group of order , with Frattini: K :8

subgroup  of order .FÐKÑ :7

1   is the smallest normal subgroup of  for which  is an) F FÐKÑ K KÎ ÐKÑ
elementary abelian group. Moreover,  has exponent  and so is aKÎ ÐKÑ :F
vector space over , of dimension .™: 8 7

2  ) FÐKÑ œ K Kw :

3   Any generating set for  contains a) ( )The Burnside Basis Theorem K
generating set of size .8 7

Proof. Part 1) has been proved. For part 2), since  is a subgroupÖK + ± + − K×w :

of , it follows that  is a normal subgroup of . In fact,  isKÎK K K K KÎK Kw w : w :

elementary abelian of exponent  and so part 1) implies that : ÐKÑ Ÿ K K ŸF w :

F FÐKÑ ÐKÑ œ K K. Hence, .w :

For part 3), write . We show thatF Fœ ÐKÑ

K œ Ø1 ßá ß 1 Ù Í KÎ œ Ø1 ßá ß 1 Ù" 5 " 5F F F

One direction is clear and since  is the set of nongenerators of , we haveF K

KÎ œ Ø1 ßá ß 1 Ù Ê K œ ØÖ1 ßá ß 1 × ∪ Ù œ Ø1 ßá ß 1 ÙF F F F" 5 " 5 " 5
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Thus, since  is a -space of dimension , any generating set for KÎ 8 7 KÎF ™ F:

contains a generating set of size . Hence, the same holds true for .8 7 K

Number of Subgroups of a -Group:

We now wish to inquire about the number of subgroups of a given size  in a:.

: K : ÐKÑ ÐKÑ-group  of order . Let  and  denote the families of8
. .sub nor

subgroups and normal subgroups, respectively, of  of size . Then  acts byK : K.

conjugation on  and the stable set is , whencesub nor. .ÐKÑ ÐKÑ

k k k ksub nor. .ÐKÑ ´ ÐKÑ :mod

Our plan is to show that .k knor.ÐKÑ ´ " :mod

Theorem 7.14 Let  be a nontrivial -group of order .K : :8

1  The number of maximal subgroups of  is) K

k k k ksub nor8" 8"

87

ÐKÑ œ ÐKÑ œ ´ " :
:  "

:  "
mod

2  For any ,) ! Ÿ . Ÿ 8

k k k ksub nor. .ÐKÑ ´ ÐKÑ ´ " :mod

Proof. For part 1), if , then Theorem 7.13 implies that9Ð ÐKÑÑ œ :F 7

E œ KÎ ÐKÑ 8 7 ZF ™ is a vector space over  of dimension . In general, if  is:

a vector space over  of dimension , then the number of subspaces of  of™: 5 Z
dimension  is.

Z Ð5ß .Ñ œ
Ð:  "ÑÐ:  :ÑâÐ:  : Ñ

Ð:  "ÑÐ:  :ÑâÐ:  : Ñ

5 5 5 ."

. . . ."

(We ask the reader to supply a proof in the exercises.) Hence, the number of
subgroups (subspaces) of  of order  isZ :5"

Z Ð5ß 5  "Ñ œ œ
Ð:  "ÑÐ:  :ÑâÐ:  : Ñ :  "

Ð:  "ÑÐ:  :ÑâÐ:  : Ñ :  "

5 5 5 5# 5

5" 5" 5" 5#

In particular, the number of maximal subgroups of  isKÎ ÐKÑF

Z Ð8 7ß8 7 "Ñ œ
:  "

:  "

87

and this is also the number of maximal subgroups of .K

For part 2), let  and let  stand for congruence modulo .? ÐKÑ œ ÐKÑ ´ :. .k knor
Then part 1) implies that . We show that  by induction? ÐKÑ ´ " ? ÐKÑ ´ "?" .

on . If , the result is clear. Assume it is true for -groups smaller9ÐKÑ 9ÐKÑ œ : :
than .K



If , then  acts on  by conjugation. The stable set isQ − ÐKÑ K ÐQÑnor sub8" .

nor sub. .ÐKÑ ∩ ÐQÑ and so the inductive hypothesis implies that

k k k knor sub sub. . .ÐKÑ ∩ ÐQÑ ´ ÐQÑ ´ "

Hence, the set

f œ ÖÐRßQÑ ± R  QßR − ÐKÑßQ − ÐKÑ×nor nor. 8"

has size .k kf ´ ? ÐKÑ ´ "8"

On the other hand, for each , there is one R − ÐKÑ Q − ÐKÑnor nor. 8"

containing  for each maximal subgroup of  and sinceR KÎR
? ÐKÎRÑ ´ " ´ ? ÐKÑ ? ÐKÑ ´ "8." . ., we have . Thus, .k kf
*Conjugates in a -Group:

In the study of finite -groups, it can be useful to examine the conjugates of an:
element  by the powers of another element .+ ,

Theorem 7.15 Let  be a finite -group and let  have order .K : + − K 9Ð+Ñ œ :7

Let  and suppose that, − K

+ œ +, α

for some integer . Let  be the set of conjugates of  by theα ý " : + +mod 7 Ø,Ù

elements of . ThenØ,Ù

¸ ¸+ œ :Ø,Ù .

where  and  is the smallest power of  for which  commutes with ..   " : : , +. :.

1  If  or if , then) :  # ý $ %α mod

+ œ Ö+ ± 5 œ "ßá ß : ×Ø,Ù "5: .7.

where  and .7 .   " + Â +" Ø,Ù

2  If  and , then one of the following holds:) : œ # ´ $ %α mod
 a  If , then  ) .   "

+ œ Ö+ ± 5 œ "ßá ß : ×Ø,Ù / 5: .5
7.

where ,  and half of the 's are  and half are7 .   " + Â + / "" Ø,Ù
5

".
 b  If , then  ) . œ !

+ œ Ö+ß + × + œ Ö+ß + ×Ø,Ù "# Ø,Ù "7"

or

3  a  If , then no element of  of order  can be conjugate to one of its) ) :  # K :
own powers other than the first power.
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 b  If , then no element  of order  can be conjugate to one of) : œ # + − K #
its own powers other than  or .+ +"

Proof. The conjugates of  by  are+ Ø,Ù

, +, œ +5 5 α5

for , where . In fact,  is the smallest positive integer for5 œ "ßá ß < < œ + <¸ ¸Ø,Ù

which  commutes with . Also,  is the orbit of  under conjugation by , + + + Ø,Ù< Ø,Ù

and so  for some .< œ : .   ".

Note that  is also the smallest positive integer for which , that is, the< + œ +α<

smallest positive integer for which   and soα< 7´ " :mod

3  ) : ±  "7 :α
.

4  ) : ±  "y7 :α
."

Furthermore, since , Fermat's little theorem implies thatα:. ´ " :mod
α α´ " : œ /  -: :mod . Thus, if  is in -standard form, then Lemma 1.18>

implies that for any ,?   !

α: : ?>? ?

œ /  A:

where . In particular,: ± Ay

5  ) : ±  /.>" : :α
." ."

6  ) : ±  / œ  "y.>" : : :α α
. . .

From 3) and 6), we see that .7 Ÿ .  >

Now, if  then 4) and 5) imply that  and so . This/ œ " .  > Ÿ 7 7 œ >  .:."

implies that . Also,7 . œ >   "

α œ /  -:7.

and so for ," Ÿ 5 Ÿ :.

α5 7. 5 5 7.
5œ Ð/  -: Ñ œ /  : A

Hence,

+ œ +α5 5 7.
5/ : A

where no two distinct 's are congruent modulo , since otherwise we wouldA :5
.

not get  distinct conjugates. Thus, we can assume that  ranges over the set: A.
5

Ö"ßá ß : ×.  and so

+ œ Ö+ ± 5 œ "ßá ß : ×Ø,Ù / 5: .5
7.

Now, if  or , then  and so  for all . If  and:  # ý $ % / œ " / œ " 5 : œ #α mod 5



α ´ $ % .  " / œ " / œ " 5mod  but , then we still have  but since , as  ranges:.

from  to , the term  alternates between  and  and so half of the terms" : / " ". 5

/ " "5 are  and half are .

Also, as  ranges from  to , the exponents  range from  to5 " : /  5: „"  :. 7.
5

„"  : +7. But  is conjugate to itself and so one of these exponents must be
conjugate to  modulo . Therefore, the last exponent is  and since no" : "  :7 7

other exponent is conjugate to  modulo , it follows that ." : + Â +7 " Ø,Ù

The case  occurs precisely when ,  and , in/ œ " : œ # ´ $ % . œ ":."

α mod
which case  has exactly two conjugates and  with  odd and+ œ "  -# -α >

>   #.

If , then  and so . If , then>   7 + œ + œ + + œ Ö+ß + × >  7α "-# " Ø,Ù ">

7 Ÿ "  > > œ 7 " œ "  -# - implies that  and so  where  is odd, thatα 7"

is, . Hence, the two conjugates of  are  itself and- œ " + +

+ œ +α "#7"

Note finally that the case  does occur in the dihedral group+ œ Ö+ß + ×Ø,Ù "

H œ Ø ß Ù 9Ð Ñ œ # 9Ð Ñ œ # œ#
7 "

7" 3 5 3 5 3 3 where  and  and . Also, the case5

+ œ Ö+ß + ×Ø,Ù "#7"

occurs in the semidihedral group

WH œ Ø ß Ùß 9Ð Ñ œ # ß 9Ð Ñ œ #ß œ7
7 # "α 0 α 0 0α α 0

7"

For part 3), if , then the number of conjugates of  is both a power of 9Ð+Ñ œ : + :
and at most , whence it must equal .:  " "

*Unique Subgroups in a -Group:

A cyclic -group has a unique subgroup of order . If , then the converse: : :  #
of this is true: A -group that has a unique subgroup of order  is cyclic. We: :
begin with a definition.

Definition A  of order ,  is a group generalized quaternion group # 8   # U8
8

with the following properties:

U œ Ø+ß ,Ùß 9Ð+Ñ œ # ß 9Ð,Ñ œ %ß , œ + ß ,+, œ +8
8" # # " "8#

If , then  is a quaternion group.8 œ $ U8

We will show later in the book that such a group exists: It is a special case of the
dicyclic group. We leave it as an exercise to show that  is the only subgroupØ, Ù#

of order  in  but that for any , the group  has at least two# U #  #  # U7 8
= 8

subgroups of order . Also, any  has the form , where# B − U Ï Ø+Ù B œ + ,= 5
8
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Ð+ ,Ñ œ + Ð,+ Ñ, œ , œ +5 # 5 5 # #7"

and so . Thus, any element of  has order . It follows that if9Ð+ ,Ñ œ % U Ï Ø+Ù %5
8

8   % Ø+Ù U #, then  is the unique cyclic subgroup of  of order  and so8
8"

Ø+Ù « U8.

We will prove that if a -group  has a unique subgroup of order , then  is: K : K
cyclic if  and  is either cyclic or generalized quaternion if . First,:  # K : œ #
let us show that if  has a unique subgroup  of  order , whereK L :=

=any
: Ÿ :  9ÐKÑ K := , then  must have a unique subgroup of order .

Since a -group has subgroups of all orders dividing the order of the group, we:
have for any subgroup ,O Ÿ K

9ÐL Ñ Ÿ 9ÐOÑ Ê L Ÿ O= =

Also, since any subgroup  of order less than  is contained in someO Ÿ K :=

subgroup of order , we have:=

9ÐOÑ Ÿ 9ÐL Ñ Ê O Ÿ L= =

Thus, all subgroups of  either contain  or are contained in . In this sense,K L L= =

L K L= = forms a  in the lattice of subgroups of . It follows that  isbottleneck
cyclic, for if , then  and so , whence  is cyclic.+ Â L Ø+Ù Ÿy L L Ÿ Ø+Ù L= = = =

Since  is cyclic, the subgroup lattice of  has the form shown in Figure 7.1L K=

and so  contains exactly one subgroup of each order  with . InK : ! Ÿ . Ÿ =.

particular,  has a unique subgroup of order . Thus, we have shown that  hasK : K
a unique subgroup of some order , where  if and only if  has: : Ÿ :  9ÐKÑ K= =

a unique subgroup of order .:

Hs

G

{1}

... ...

Figure 7.1



Let  be a  group of order . To show that  has more than oneK :  " Knoncyclic 8

subgroup of order , it suffices to show  contains a nontrivial subgroup  as: K E
well as an element of order  that is  in . We first consider the case .: E :  #not

Theorem 7.16 Let  be prime and let .:  # 9ÐKÑ œ :  "8

1  If  is noncyclic and if  is an element of maximum order, then  has) K + − K K
an element of order  that is not contained in .: Ø+Ù

2  If  has a unique subgroup of order  for some , then  is) K : " Ÿ =  8 K=

cyclic.
Proof. We have already seen that part 2) follows from part 1). To prove part 1),
assume that  is noncyclic. Let , where  has maximum order .K E œ Ø+Ù + − K :7

If , then all nonidentity elements of  have order  and so we may7 œ " K :
assume that .# Ÿ 7  8

Let  where . If , then  and so  forE – F 9ÐFÑ œ : , − F Ï E , − E , œ +7" : : >

some . If , then  and we are done, so let us assume that>   ! > œ ! 9Ð,Ñ œ :
>  ! + œ , K : ± >. Since  does not have maximum order in , it follows that > :

and so

, œ +: ?:

for some .!  ?  :7"

Now, if  commutes with , then  has order . Assume now that no, + ,+ Â E :?

, − F Ï E + B commutes with . We wish to show that there is still an integer  for
which . If , then to get a formula for , we need a9Ð,+ Ñ œ : , − F Ï E Ð,+ ÑB B :

commutativity rule for  and . But since , there is an  for which+ , E – F Á "α

+ œ +, α

and since  commutes with , Theorem 7.15 implies that, +:

+ œ Ö+ ± 5 œ "ßá ß :×Ø,Ù "5:7"

Moreover,  implies that  for all  and so we may, Â E , − F Ï E " Ÿ 3  :3

replace  by an appropriate power of  so that ., , œ "  :α 7"

Now,  and so,+ œ + ,α

,+ œ + ,B Bα

Then an easy induction shows that for ,5   "

Ð,+ Ñ œ + ,B 5 BÐ  â Ñ 5α α α# 5

and so

Ð,+ Ñ œ + , œ +B : BÐ  â Ñ : ?:BÐ  â Ñα α α α α α# : # :

Hence, we want an integer  for whichB
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B ´ ?: Ð : Ñ
" 

" 
α

α

α

:
7mod

Since , Theorem 1.18 implies thatα œ "  :7"

α: 7" : 7œ Ð"  : Ñ œ "  A:

where  and so: ± Ay

B œ BÐ"  : ÑA: ´ BA: Ð : Ñ
" 

" 
α

α

α

:
7" 7mod

Hence, we want an integer  for whichB

BA ´ ? Ð : Ñmod 7"

But  is invertible in  and so we may take .A B œ ?A™:
‡ "
7"

Now we turn to the case . (The reader may wish to skip the proof upon: œ #
first reading.)

Theorem 7.17 Let  be a nontrivial group of order .K #8

1   has a unique subgroup of order  if and only if  is cyclic or a) K # K
generalized quaternion group.

2  If  has a unique subgroup of order  for some , then  is) K # "  =  8 K=

cyclic.
Proof. We have already seen that part 2) follows from part 1). Let  be aK
noncyclic group of order  with a unique involution. We will show that  is a# K8

generalized quaternion group. Let  be an element of maximum order + − K #7

and let . Clearly, we may assume that .E œ Ø+Ù 7   #

In one case we will need to be a bit more specific about the choice of the cyclic
subgroup . Namely, if , then since the unique subgroup of order  isE 7 œ # #
normal in , it has a -cover  of order , which is cyclic since the -group hasK # R % %
two involutions. In this case, we let  and so . Thus, if , weE œ R E K 7 œ #ü
may assume that .E – K

If  is a -cover of , then  and so , which impliesF œ Ø,ßEÙ # E 9ÐFÎEÑ œ # , − E#

that  for some . But  and so ,, œ + 5  ! 9Ð+ Ñ œ 9Ð, Ñ  9Ð,Ñ Ÿ 9Ð+Ñ # ± 5# 5 5 #

that is,

, œ +# # ?>

for  and  odd. Since , we can rename  to  to get>   " ? Ø+ Ù œ E + +? ?

, œ +# #>

for . Since , we also have>   " 9Ð, Ñ œ 9Ð+ Ñ œ ## # 7>>



9Ð,Ñ œ #7>"

where  since .> Ÿ 7 " 9Ð,Ñ  #

If  commutes with , then  is an involution, contrary to assumption., + ,+ Â E#>"

Thus,  does not commute with ; in fact,  is not properly contained in any, + E
abelian subgroup of .K

However, since  and , Theorem 7.15 implies that  E – F , − E#

+ œ Ö+ß + × + œ Ö+ß + ×Ø,Ù "# Ø,Ù "7"

or

and so for any -cover  of , there is an  for which# F œ Ø,ßEÙ E + − E

,+, œ + , œ +" # #α and
>

where either  or .α αœ "  # œ "7"

Conjugating the second equation by  and using the first equation gives,

, œ ,+ , œ + œ +# # " # #> > >α

and so , that is, . Hence, , which implies that+ œ + + œ " # ± ## # # 7 >"> > >+1

7 Ÿ >  " Ÿ 7 > œ 7 ", that is, .

Now, if for any -cover , we have , then# F œ Ø,ßEÙ œ "  #α 7"

α œ "  #> and so

,+, œ + œ , +" "# # ">

which implies that  is an involution, a contradiction. Hence, for all -+, Â E #"

covers  of , we have  andF œ Ø,ßEÙ E œ "α

,+, œ + , œ +" " # #and
7"

It follows that  and so  can be described as follows:9Ð,Ñ œ % F

F œ Ø+ß ,Ùß 9Ð+Ñ œ # ß 9Ð,Ñ œ %ß , œ + ß ,+, œ +7 # # " "7"

that is,  is generalized quaternion and so every element of  hasF œ U F Ï E7"

order  and if , then .% 7   $ E « F

We want to show that . If not, then  has a -cover , that is,F œ K F # G

E – F – G Ÿ K

where . Recall that if , then we have chosen  so that9ÐGÑ œ : 7 œ # E72

E K 7   $ E « F E – Gü  and if , then  and so in either case, .
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The quotient group  is either  or . In the latterGÎE G Ð-EÑ G Ð-EÑ  G Ð.EÑ% # #

case, the subgroups  and  are -covers of  and soØ-ß EÙ Ø.ßEÙ # E

+ œ + œ +- " .

Hence,

+ œ +-.

which implies that  is abelian, a contradiction. Hence,E  ØEß -.Ù
GÎE œ G Ð-EÑ Ø- ßEÙ # E%

#. But then  is a -cover of  and so

+ œ +- "#

However, since  is not properly contained in an abelian subgroup of , theE K
smallest power of  that commutes with  is  and so Theorem 7.0 (where- + - − E%

. œ # + Â +) implies that , a contradiction." Ø-Ù

Thus  is generalized quaternion of order .K œ F œ U #7"
7

*Groups of Order  With an Element of Order : :8 8"

We can use the previous result to take a close look at nonabelian groups  ofK
order  that have an element of order . We will restrict attention to the: :8 8"

case .:  #

Let  and . Theorem 7.16 implies that there is a 9Ð+Ñ œ : E œ Ø+Ù , − K Ï E8"

with . Then9Ð,Ñ œ :

K œ Ø+Ù Ø,Ùz

and it remains to see how  and  interact. Since , we have + , E Kü , +, œ +" 5

for some  and Theorem 7.15 implies that the conjugates of  by  are5  " + Ø,Ù

+ œ Ö+ ± 5 œ "ßá ß :×Ø,Ù "5:8#

Since any nonidentity element of  generates , we can take  and writeØ,Ù Ø,Ù 5 œ "

,+, œ +" ":8#

Theorem 7.18 Let  be a prime. Let  be a nonabelian group of order :  # K :8

with an element  of order . Then+ :8"

K œ Ø+Ù Ø,Ùz

where  and9Ð,Ñ œ :

,+, œ +" ":8#

To see that such a group exists, recall from Example 5.30 that there is a
semidirect product



G Ð+Ñ G Ð,Ñ: :8" z)

where

),
":Ð+Ñ œ +

8#

*Groups of Order :$

We have seen that groups of order  are cyclic and that groups of order  are: :#

either cyclic or the direct product of two cyclic subgroups of order  (Corollary:
7.9). Theorem 7.18 gives us insight into groups of order .:$

If , we have seen that, up to isomorphism, the groups of order  are: œ # : œ )$

1) G)

2) G G% #}
3) G G G# # #} }
4) , the (nonabelian) quaternion groupU
5) , the (nonabelian) dihedral groupH)

More generally, we will show that for any prime , the groups of order  are: :$

(up to isomorphism):

1) G:$

2) G G: :# }

3) G G G: : :} }
4) , the unitriangular matrix group (described below)YXÐ$ß Ñ™:

5) The group  whereK œ Ø+ß ,Ù

K œ Ø+ß ,Ùß 9Ð+Ñ œ : ß 9Ð,Ñ œ :ß ,+, œ +# " ":

Thus, there are only two nonabelian groups of order  (up to isomorphism).:$

We will leave analysis of the abelian groups of order  to a later chapter, where:$

we will prove that any finite abelian group is the direct product of cyclic groups.

So let  be prime and let  be a nonabelian group of order . If  has an:  # K : K$

element  of order , then Theorem 7.18 implies that+ :#

K œ Ø+Ù Ø,Ùz

where  and9Ð,Ñ œ :

, +, œ +" ":

It remains to consider the case where  has exponent . The center K : ^ œ ^ÐKÑ
is nontrivial but cannot have order , since then  is cyclic and so  is: KÎ^ K#

abelian. Hence,  and so . Hence,  is abelian with9Ð^Ñ œ : 9ÐKÎ^Ñ œ : KÎ^#

exponent  and so:
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KÎ^ œ Ø+^Ù  Ø,^Ù

Moreover, since , we have . Hence,D ³ Ò,ß +Ó − ^ ^ œ ØDÙ

K œ Ø+ß ,ß DÙß 9Ð+Ñ œ 9Ð,Ñ œ 9ÐDÑ œ "ß D − ^ÐKÑß ,+ œ D+,

To see that this does describe a group, we have the following.

Definition Let  be a commutative ring with identity. A matrix V Q − KPÐ8ßVÑ
is  if it is upper triangular has 's below the main diagonal  andunitriangular ( )!
has 's on the main diagonal. We denote the set of all unitriangular matrices by"
YXÐ8ßVÑ.

We will leave it as an exercise to show that

k kYXÐ8ß Ñ œ :™:
Ð8 8ÑÎ##

and that for , the group  has order  and exponent . Also,:  # YXÐ$ß Ñ : :™:
$

YX Ð$ß Ñ ¸ U™# .

Exercises
1. A  of  on  is sometimes defined as a map from the cartesianleft action K \

product  to , sending  to an element , satisfyingK ‚\ \ Ð+ß BÑ +B − \
 a   for all ) "B œ B B − \
 b   for all , , .) Ð+,ÑB œ +Ð,BÑ B − \ + , − K
 A  of  on  is a map from the cartesian product  to ,right action K \ \ ‚K \

sending  to an element , satisfyingÐBß +Ñ B+ − \
 c   for all ) B" œ B B − \
 d   for all , , . Given a left action, show that) BÐ+,Ñ œ ÐB+Ñ, B − \ + , − K

the map  is a right action. What about ?ÐBß 1Ñ œ 1 B ÐBß 1Ñ œ 1B"

2. Let  be an action of  on .-À K Ä W K \\

 a) Prove that  is regular if and only if it is transitive and - stabÐBÑ œ Ö"×
for some .B − \

 b) Prove that  is regular if and only if it is transitive and for all distinct-
1ß 2 − K 1B Á 2B B − \, we have  for all .

 c) Prove that if  is faithful and transitive and if  is abelian, then the- K
action is regular.

3. Let  be a finite group and let  be the smallest prime dividing . ProveK : 9ÐKÑ
that any normal subgroup of order  is central.:

4. Let  be an infinite group. Use normal interiors (not Poincaré's theorem) toK
prove that if  and  have finite index in , then so does .L O K L ∩O

5. Show that the condition that  be finitely generated cannot be removedK
from the hypotheses of Theorem 7.5.

6. Let  be a finite simple group and let  have prime indexK L Ÿ K
ÐK À LÑ œ : : 9ÐKÑ. Prove that  must be the largest prime dividing  and that
: 9ÐKÑ# does not divide .



7. Let  be a finite group. Prove that a transitive action of  on  is regularK K \
if and only if .k k k kK œ \

8. Let  where  is odd. Let  have order . Show that9ÐKÑ œ #8 8   " + − K #
under the left regular representation of  on itself, the element K +
corresponds to an odd permutation. Show that  is not simple.K

9. a) Prove that if  is a finitely generated infinite group and  is aK L
subgroup of finite index in , then  has a characteristic subgroup K K O
of finite index for which .O Ÿ L

 b) Show that the condition that  be finitely generated is necessary.K
10. The action of a group  on a set  is  if for any pairsK \ #-transitive

ÐBß CÑß Ð?ß @Ñ − \ ‚\ B Á C ? Á @ + − K where  and , there is an  for which
+B œ ? +C œ @ # and . Prove that for a -transitive action, the stabilizer
stabÐBÑ K B − \ is a maximal subgroup of  for all .

Equivalence of Actions
Two group actions  and  are  if there is a pair- .À K Ä W ÀL Ä W\ ] equivalent
Ð ß 0Ñ ÀK Ä L 0À\ Ä ]α α where  is a group isomorphism and  is a bijection
satisfying the condition

0Ð1BÑ œ Ð 1ÑÐ0BÑα

In this case, we refer to  as an  from  to .Ð ß 0Ñα - .equivalence

11. a) Show that the inverse of an equivalence is an equivalence.
 b) Show that the (coordinatewise) composition of two “compatible”

equivalences is an equivalence.
12. Let  be a transitive action and let . Show that  is- -À K Ä W B − \\

equivalent to the action of left-translation by  on .K KÎ ÐBÑstab
13. Suppose that  and  are equivalent transitive actions,- .À K Ä W ÀL Ä W\ ]

under the equivalence . Prove that  for any ,Ð ß 0Ñ ÐBÑ ¸ L B − \α stab C

where .C œ 0B

Conjugacy

14. Let  be a group and let . Show that  is a normal subgroup of .K 1 − K Ø1 Ù KK

15. Let  be a finite group and let . Show that  whereK 1 − K G Ð1Ñ   KÎKk k k kK
w

K Kw is the commutator subgroup of .
16. Let  be a finite group and let  with . Suppose thatK L Ÿ K ÒK À LÓ œ #

G Ð2Ñ Ÿ L 2 − L K Ï L KK  for all . Prove that  is a conjugacy class of .
17. Let  be a -group and let  be a nonnormal subgroup of  and letK : L Ÿ K K

+ − K L. Show that the number of conjugates of  that are fixed by every
element of  is positive and divisible by .L :+

18. a) Let  be a finite group and let . Show thatK L Kü

5ÐKÎLÑ œ 5ÐKÑ  5 ÐLÑ  "K

where  is the number of -conjugacy classes of .5 ÐLÑ K LK
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 b) Let  be a finite nonabelian group such that  is abelian. ShowK KÎ^ÐKÑ
that

5ÐKÑ   KÎ^ÐKÑ  ^ÐKÑ  "k k k k
19. a) Find all finite groups (up to isomorphism) that have exactly one

conjugacy class.
 b) Find all finite groups (up to isomorphism) that have exactly two

conjugacy classes.
 c) Find all finite groups (up to isomorphism) that have exactly three

conjugacy classes.
20. a) If  and , show that there are only finitely many solutions; − 8  !

5 ßá ß 5" 8 in positive integers to the equation

; œ â
" "

5 5" 8

Hint: Use induction on . Look at the smallest denominator first.8
 b) Show that for any integer , there are only finitely many finite8  !

groups (up to isomorphism) that have exactly  conjugacy classes.8
Hint: Use the class equation.

21. a) Let  be a proper subgroup of a finite group . Show that the setL K

W œ L.
1−K

1

is a proper subset of .K
 b) If  is a proper subgroup of a group  and , then the setL K ÐK À LÑ  ∞

W œ L.
1−K

1

is a proper subset of .K
22. Let  be a conjugacy class of  and let .\ K \ œ ÖB ± B − \×" "

 a) Show that  is also a conjugacy class of .\ K"

 b) Show that if  has odd order, then  is the only conjugacyK \ œ Ö"×
class for which .\ œ \"

 c) Show that if  has even order, then there is a conjugacy class  otherK \
than  for which .Ö"× \ œ \"

 d) Show that if  is finite and  is even, then  is even. Show byK 5ÐKÑ 9ÐKÑ
example that the converse does not hold.

23. Let  be a group of order . Suppose that  has a conjugacy class of sizeK #7 K
7 7 K. Prove that  is odd, and that  has an abelian normal subgroup of size
7.

24. Let  be normal in  and suppose that  is a prime. Let L K ÐK À LÑ œ : B − L
have the property that there is a  such that .1 − K Ï L 1B œ B1

 a) Show that .k k k kG ÐBÑ œ : G ÐBÑK L

 b) Show that .B œ BL K



: :-Groups and -Subgroups
25. a) Let  be a group homomorphism. If  is a -group, under0 ÀK Ä L K :

what conditions, if any, is  a -group?L :
 b) Let  be a group homomorphism. If  is a -group, under0 ÀK Ä L L :

what conditions, if any, is  a -group?L :
 c) Let . If  and  are both -groups, under what conditions,L K L KÎL :ü

if any, is  a -group?K :
26. Let  be a finite -group.K :
 a) Prove that any cover of  has index .L  K :
 b) Prove that a cover of the center  is abelian.^ÐKÑ
27. Let . Prove that  is a -group if and only if  and  are -L Ÿ K K : L KÎL :

groups.
28. Let  be a finite simple nonabelian group. Show that  is divisible by atK 9ÐKÑ

least two distinct prime numbers.
29. Prove that the derived group  of a -group  is a proper subgroup of .K : K Kw

30. Let  be a -group. Show that if  and , then K : L Ÿ K ÐK À LÑ  ∞ ÐK À LÑ
is a power of .:

31. Let  be a direct product of -subgroups for distinct primes .K œ K : ::

Show that if , then . What if the primes are notL Ÿ K L œ ÐL ∩K Ñ:
distinct?

32. Show that the generalized quaternion group

U œ Ø+ß ,Ùß 9Ð+Ñ œ # ß 9Ð,Ñ œ %ß , œ + ß ,+, œ +7
7" # # " "7#

has only is single involution.
33. Prove that a finite -group has the normalizer condition using the action of:

R ÐLÑ ÐLÑ LK K on the conjugates  of  by conjugation.conj
34. Let  be a nonabelian group of order , where  is a prime. Determine theK : :$

number  of conjugacy classes of .5ÐKÑ K

Additional Problems
35. Let  be a prime.:
 a) Show that

k kKPÐ8ß Ñ œ Ð:  "ÑÐ:  :ÑâÐ:  : Ñ™:
8 8 8 8"

 b) Show that  is a -group, in fact,YXÐ8ß Ñ :™:

k kYXÐ8ß Ñ œ :™:
Ð8 8ÑÎ##

 c) Show that  is a Sylow -subgroup of .YXÐ8ß Ñ : KPÐ8ß Ñ™ ™: :

 d) For  or , show that  has exponent .8 œ # 8  " Ÿ : YXÐ8ß Ñ :™:

 e) Show that .YXÐ$ß Ñ ¸ U™#

36. Let  be a finite field of size  and let  be an -dimensional vector spaceJ ; Z 8
over . Show that the number of subspaces of  of dimension  isJ Z 5
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Š ‹8 Ð;  "ÑÐ;  ;ÑâÐ;  ; Ñ

5 Ð;  "ÑÐ;  ;ÑâÐ;  ; Ñ
³

;

8 8 8 5"

5 5 5 5"

The expressions  are called . : Show that theÐ Ñ8
5 ; Gaussian coefficients Hint

number of -tuples of linearly independent vectors in  is5 Z

Ð;  "ÑÐ;  ;ÑâÐ;  ; Ñ8 8 8 5"  

37. Let .LßO Ÿ K
 a) Show that the distinct  , where , form adouble cosets E1F + − K

partition of .K
 b) Show that .k kE1F œ ÐE À F ∩ EÑ1



Chapter 8
Sylow Theory

In 1872, the Norwegian mathematician Peter Ludwig Mejdell Sylow [32]
published a set of theorems which are now known as the . TheseSylow theorems
important theorems describe the nature of maximal -subgroups of a finite:
group, which are now called . (For convenience, we willSylow -subgroups:
collect the Sylow theorems into a single theorem.)

Sylow Subgroups
We begin with the definition of a Sylow subgroup.

Definition Let  be a group and let  be a prime. A  of  isK : KSylow -subgroup:
a maximal -subgroup of  under set inclusion . The set of all Sylow -: K :( )
subgroups of  is denoted by . The number of Sylow -subgroups of aK ÐKÑ :Syl:
group  is denoted by , or just  when the context is clear.K 8 ÐKÑ 8: :

Of course, if a prime  divides , then  contains a Sylow -subgroup; in: 9ÐKÑ K :
fact, every -subgroup of  is contained in a Sylow -subgroup. Also, if  is: K : K
an infinite group and if  is a -subgroup of , then an appeal to Zorn's lemmaL : K
shows that  has a Sylow -subgroup containing .K : L

Since conjugation is an order isomorphism and also preserves the group order of
elements, it follows that if  is a Sylow -subgroup of , then so is everyW : K
conjugate  of .W W+

Note also that if  is finite and  where , then anyK 9ÐKÑ œ : 7 Ð:ß7Ñ œ "8

subgroup of order  is a Sylow -subgroup. We will prove the converse of this: :8

a bit later: Any Sylow subgroup of  has order .K :8

The Normalizer of a Sylow Subgroup
Let  be a finite group. If a Sylow -subgroup  of  happens to be normal inK : W K
K KÎW : : ± ÐK À WÑ Wy, then  has no nonidentity -elements. Hence,  and so  is the
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set of all -elements of . It also follows that , since automorphisms: K W « K
preserve order.

Of course,  is always normal in its normalizer .W R ÐWÑK

Theorem 8.1 Let  be a finite group and let .K W − ÐKÑSyl:
1   is the set of all -elements of .) W : R ÐWÑK

2  Any -element  moves  by conjugation, that is, .) : + − K Ï W W W Á W+

3   is the only Sylow -subgroup of .) W : R ÐWÑK

4  .) : ± ÐR ÐWÑ À WÑy K

5  .) W « R ÐWÑK

If , thenW − ÐKÑSyl:

W Ÿ R ÐWÑ+ +
K

for any . Hence, if  normalizes , then+ − K + R ÐWÑK

W Ÿ R ÐWÑ+
K

and since  is also a Sylow -subgroup of , Theorem 8.1 implies thatW : R ÐWÑ+
K

W œ W + R ÐWÑ + W+
K. In other words, if  normalizes , then  also normalizes  and

so

R ÐR ÐWÑÑ œ R ÐWÑK K K

Theorem 8.2 The normalizer  of a Sylow subgroup of  is self-R ÐWÑ KK

normalizing, that is,

R ÐR ÐWÑÑ œ R ÐWÑK K K

Soon we will be able to prove that not only is  self-normalizing, but so isR ÐWÑK

any subgroup of   .K R ÐWÑcontaining K

The Sylow Theorems
Let  be a finite group and let . The fact that any -element K W − ÐKÑ : + Â WSyl:
moves  by conjugation prompts us to look at the action of a -subgroup  ofW : O
K by conjugation on the set

conjK +ÐWÑ œ ÖW ± + − K×

of conjugates of  in . As to the stabilizer of , we haveW K W+

stabÐW Ñ œ R ÐW Ñ ∩ O œ W ∩O+ + +
K

and so

k korbOÐW Ñ œ ÐO À W ∩ OÑ+ +

which is divisible by  unless , in which case the orbit has size .: O Ÿ W "+
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Hence,

FixconjKÐWÑ
+ +ÐOÑ œ ÖW ± O Ÿ W ×

and so

k k k kconjK + +ÐWÑ ´ ÖW ± O Ÿ W × :mod

Now if  is a Sylow -subgroup of , then  if and only if  andO : K O Ÿ W O œ W+ +

so

k k œconj conj
conjK

K

K
ÐWÑ ´

" : O − ÐWÑ
! : O Â ÐWÑ

mod
mod

if 
if 

It follows that  is impossible and so  is aO Â ÐWÑ ÐKÑ œ ÐWÑconj Syl conjK K:

conjugacy class and

8 ´ " :: mod

Note also that

8 œ ÐWÑ œ ÐK À R ÐWÑÑ ± 9ÐKÑ: K Kk kconj

Finally, we can determine the order of a Sylow -subgroup , since: W

ÐK À WÑ œ ÐK À R ÐWÑÑÐR ÐWÑ À WÑK K

and neither of the factors on the right is divisible by . Hence, the order of  is: W
the  power of  dividing . We have proved the .largest Sylow theorems: 9ÐKÑ

Theorem 8.3 The  [32], 1872  Let  be a finite group and let( )Sylow theorems K
9ÐKÑ œ : 7 : : ± 7y8 , where  is a prime and .
1  The Sylow -subgroups of  are the subgroups of  of order .) : K K :8

2   is a conjugacy class in .) Syl sub:ÐKÑ ÐKÑ
3  The number  of Sylow -subgroups satisfies) 8 ::

8 ´ " : 8 œ ÐK À R ÐWÑÑ ± 9ÐKÑ: : Kmod and

where .W − ÐKÑSyl:
4  Let .) SylW − ÐKÑ:

 a   is normal if and only if .) W 8 œ ":

 b   is self-normalizing if and only if , in which case) W 8 œ ÐK À WÑ œ 7:

all Sylow -subgroups of  are self-normalizing.: K
5  If  is a -subgroup of , then) O : K

k kÖW − ÐKÑ ± O Ÿ W× ´ " :Syl: mod

We will prove later in the chapter that every  Sylow -subgroup of anormal :
finite group is complemented. This is implied by the famous Schur–Zassenhaus
theorem. However, we also have the following simple consequence of Theorem
3.1 concerning supplements of Sylow subgroups.



Theorem 8.4 Let  be a finite group. Then any Sylow -subgroup of  and anyK : K
subgroup whose index is a power of  are supplements.:

Sylow Subgroups of Subgroups
Let  be a finite group and let . We wish to explore the relationshipK L Ÿ K
between  and . On the one hand, every  isSyl Syl Syl: : :ÐKÑ ÐLÑ W − ÐLÑ
contained in a  and so the setX − ÐKÑSyl:

Syl Syl: :ÐWàKÑ œ ÖX − ÐKÑ ± W Ÿ X×

is nonempty. Moreover, since  implies that  is a -E − ÐWàKÑ E ∩L :Syl:
subgroup of  containing , we haveL W

E − ÐWàKÑ Ê E ∩L œ WSyl:

In particular, the families  are disjoint, that is,Syl:ÐWàKÑ

W Á X − ÐLÑ Ê ÐWàKÑ ∩ ÐX àKÑ œ gSyl Syl Syl: : :

and so

8 ÐLÑ Ÿ 8 ÐKÑ: :

On the other hand, if , then the intersection  need not be aW − ÐKÑ W ∩ LSyl:
Sylow -subgroup of , as can be seen by taking  and  to be distinct Sylow: L L W
: K LW K 9ÐWÑ ± 9ÐLWÑ-subgroups of . However, if  is a subgroup of , then  and
so

k k k kk kk kL ∩ W œ L
LW

W

where  is not divisible by . Hence,  and  are divisible byk k k k k k k kLW Î W : L ∩ W L
the same powers of  and so .: L ∩ W − ÐLÑSyl:

Theorem 8.5 Let  be a finite group and let .K L Ÿ K
1  If , then  ) SylW − ÐLÑ:

E − ÐWàKÑ Ê E ∩L œ WSyl:

and

W Á X − ÐLÑ Ê ÐWàKÑ ∩ ÐX àKÑ œ gSyl Syl Syl: : :

and so

8 ÐLÑ Ÿ 8 ÐKÑ: :
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2  If  and , then) SylW − ÐKÑ LW Ÿ K:

W ∩ L − ÐLÑSyl:

Some Consequences of the Sylow Theorems
Let us consider some of the more-or-less direct consequences of the Sylow
theorems.

A Partial Converse of Lagrange's Theorem
A Sylow -subgroup  of a group  has subgroups of all orders dividing .: W K 9ÐWÑ
This gives a partial converse to Lagrange's theorem.

Theorem 8.6 Let  be a finite group and let  be a prime. If , then K : : ± 9ÐKÑ K5

has a subgroup of order .:5

More on the Normalizer of a Sylow Subgroup
Recall that the normalizer  of a Sylow subgroup  of  is self-R ÐWÑ W KK

normalizing. Now we can say more.

Theorem 8.7 Let  be a finite group and let . IfK W − ÐKÑSyl:

W Ÿ R ÐWÑ Ÿ L Ÿ KK

then  is self-normalizing. In particular, if , then  is not normal in .L L  K L K
Proof. Conjugating by any  gives+ − R ÐLÑK

W Ÿ R ÐWÑ Ÿ L Ÿ K+ +
K

and so both  and  are Sylow -subgroups of . It follows that  and  areW W : L W W+ +

conjugate  . Hence, there is an  for which , that is,in L 2 − L W œ W2+

2+ − R ÐWÑ Ÿ L + − L R ÐLÑ œ LK K. Thus,  and so .

The normalizer of a Sylow -subgroup has a somewhat stronger property than is:
expressed in Theorem 8.7. In the exercises, we ask the reader to prove that
R ÐWÑK  is abnormal.

Counting Subgroups in a Finite Group
In an earlier chapter, we proved that if  is a -group and , then theK : : ± 9ÐKÑ5

number  of subgroups of  of order  satisfies8 ÐKÑ K ::ß5
5

8 ÐKÑ ´ " ::ß5 mod (8.8)

We have just proved that for  finite group  for which ,any K : ± 9ÐKÑ

8 ÐKÑ ´ " :: mod

To see that (8.8) holds for all finite groups, we count the size of the set



Y5
5œ ÖÐLß WÑ ± L Ÿ Wß W − ÐKÑß 9ÐLÑ œ : ×Syl:

modulo . On the one hand, for each , there are : W − ÐKÑ 8 ÐWÑ ´ "Syl: :ß5

subgroups of  of order  and soW :5

k kY5 :´ 8 ÐKÑ † " ´ "

On the other hand, for each  of order , Theorem 8.3 implies thatL Ÿ K :5

k kÖW − ÐKÑ ± L Ÿ W× ´ "Syl:

and so

k kY5 :ß5 :ß5´ 8 ÐKÑ † " ´ 8 ÐKÑ

Hence,  and we have proved an important theorem of Frobenius.8 ÐKÑ ´ ":ß5

Theorem 8.9  [13], 1895  Let  be a group with ( )Frobenius K 9ÐKÑ œ : 78

where . Then for each , the number  of subgroupsÐ7ß :Ñ œ " " Ÿ 5 Ÿ 8 8 ÐKÑ:ß5

of  of order  satisfiesK :5

8 ÐKÑ ´ " ::ß5 mod

When All Sylow Subgroups Are Normal
Several good things happen when all of the Sylow subgroups of a group  areK
normal. In particular, let  be a finite group. In an earlier chapter (see TheoremK
4.22 and Theorem 4.35), we showed that among the conditions:

1) Every subgroup of  is subnormalK
2)  has the normalizer conditionK
3) Every maximal subgroup of  is normalK
4)  is abelianKÎ ÐKÑF

the following implications hold:

1) 2) 3) 4)Í Ê Í

We also promised to show that these four conditions are equivalent, which we
can do now, adding several additional equivalent conditions into the bargin.

First, let us speak about arbitrary (possibly infinite) groups. If  is a group, letK
K K Ktor denote the set of all torsion (periodic) elements of . If  is abelian, then
K Ktor is a subgroup of . However, in the nonabelian general linear group
KPÐ#ß Ñ‚ , the elements

E œ F œ
! " ! "
" ! " "Œ 7 Œ 7and
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are torsion but their product is not. Hence,  is not always a subgroup of .K Ktor
Note that when  is a subgroup of , then  since automorphismsK K K « Ktor tor
preserve order.

Theorem 8.10 Let  be a group in which every Sylow subgroup is normal. LetK
the Sylow subgroups of  be . ThenK Ö] ± : − ×: c

K œ  ]tor
:−

:
c

and so . Thus, the product of two elements of finite order has finiteK Ÿ Ktor
order.
Proof. Since the Sylow -subgroups are normal and pairwise essentially:
disjoint, they commute elementwise. In particular, if  come from+ ßá ß +" 8

distinct Sylow subgroups, then

9Ð+ â+ Ñ œ 9Ð+ Ñâ9Ð+ Ñ" 8 " 8

and so the family of Sylow subgroups is strongly disjoint and

] ³  ] © K
:−

:
c

tor

For the reverse inclusion, if  has order  where the primes+ − K 8 œ : â:tor "
/

7
/" 7

: + œ + â+ 9Ð+ Ñ œ :3 " 7 5 5
/ are distinct, then Corollary 2.11 implies that , where 5

and so , whence .+ − ] + − ]5 :5

Now we turn to finite groups in which all Sylow subgroups are normal.

Theorem 8.11 Let  be a finite group, with Sylow subgroups .K Ö] ± : − ×: c
The following are equivalent:
1  Every Sylow subgroup of  is normal.) K
2   is the direct product of its Sylow -subgroups) K :

K œ  ]
:−

:
c

3  If , then) L Ÿ K

L œ  ÐL ∩ ] Ñ
:−

:
c

4   is the direct product of -subgroups.) K :
5   If , then  has a) ( )Strong converse of Lagrange's theorem 8 ± 9ÐKÑ K

normal subgroup of order .8
6  Every subgroup of  is subnormal.) K
7   has the normalizer condition.) K
8  Every maximal subgroup of  is normal.) K
9   is abelian.) KÎ ÐKÑF
If these conditions hold, then  has the center-intersection property. InK
particular,  is nontrivial.^ÐKÑ



Proof. Theorem 8.10 shows that 1) implies 2) and the converse is clear. If 1)
holds, then  and so the Sylow -subgroups of  areL] Ÿ K : L:

ÖL ∩ ] ± : − × L ∩ ] L L: :c ü. Moreover, since , it follows that  is the direct
product of its Sylow -subgroups and so 3) holds. It is clear that 3) implies 2):
and so 1)–3) are equivalent. Also, it is clear that 2) 4). If 4) holds and  is aÊ :
prime dividing , then we can isolate the factors in the direct product of 9ÐKÑ K
that have exponent , say:

K œ T  U

where  is a direct product of -subgroups and  is a direct product of -T : U ;
subgroups for various primes . Then  is the set of all -elements of ; Á : T : K
and so  a Sylow -subgroup of . But  and so 1) holds. Thus, 1)–4) areT : K T Kü
equivalent.

It is clear that 5) 1). To see that 2) 5), any divisor  of  is a productÊ Ê 8 9ÐKÑ
8 œ . . ± 9Ð] Ñ ] .# : : : : : where  and since  has a normal subgroup of order , the
direct product of these subgroups is a normal subgroup of  of order . Thus,K 8
1)–5) are equivalent and we have already remarked that

6) 7) 8) 9)Í Ê Í

To see that 3) 6), if , then one of the factors  is proper in Ê L  K L ∩ ] ]: :

and so there is a subgroup  for whichR:

L ∩ ] – R Ÿ ]: : :

Hence,

L –  ÐL ∩ ] Ñ  R
;Á:

; :

Since  is an arbitrary proper subgroup of , it follows that all subgroup of L K K
are subnormal. To see that 6) 1), if  is not normal in , then sinceÊ ] K:

R Ð] Ñ  K LK : : is subnormal, there is a subgroup  for which
R Ð] Ñ – L Ÿ K R Ð] ÑK : : K :. But this contradicts the fact that  is self-normalizing.
Hence, . Thus, 1)–7) are equivalent and imply 8).] – K:

Similarly, if 8) holds but  is not normal in , then there is a maximal] K:

subgroup  for whichQ Ÿ K

] Ÿ R Ð] Ñ Ÿ Q – K: K :

which contradicts Theorem 8.7. Hence,  and 1) holds.] K: ü

Finally, if 3) holds and  is nontrivial, then  is nontrivial forR Ÿ K R ∩ ] ]; ;ü
some  and; − c

R ∩ ^ÐKÑ œ  ÐR ∩ ^ÐKÑ ∩ ] Ñ
:−

:
c
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But  is nontrivial and therefore so isR ∩ ^ÐKÑ ∩ ] œ R ∩ ^Ð] Ñ; ;

R ∩ ^ÐKÑ.

The hypotheses of the previous theorems hold for all abelian groups.

Corollary 8.12 Let  be an abelian group.K
1   Then  is the direct product of its Sylow -) ( )Primary decomposition K :tor

subgroups.
2   If  is finite and , then  has) ( )Converse of Lagrange's theorem K 8 ± 9ÐKÑ K

a subgroup of order .8

We will add one additional characterization (nilpotence) to Theorem 8.11 in a
later chapter (see Theorem 11.8).

When a Subgroup Acts Transitively; The Frattini Argument
The Frattini argument (Theorem 7.2) shows that if a group  acts on aK
nonempty set  and if  is transitive on , then\ L Ÿ K \

K œ L ÐBÑstabK

and if  is regular on , thenL \

K œ L ì ÐBÑstabK

and so  is a complement of  in . To apply this idea, let  be a finitestabKÐBÑ L K K
group and let

W Ÿ L Kü

where . Let  act on  by conjugation. SinceW − ÐLÑ K ÐWÑSyl conj: K

W − ÐLÑ + − K L ÐWÑ+
KSyl conj:  for any , it follows that  acts transitively on .

Hence,

K œ L ÐWÑ œ LR ÐWÑstabK K

This specific argument is also referred to as the .Frattini argument

Theorem 8.13 Let  be a finite group and let . If , thenK L Ÿ K W − ÐLÑSyl:

K œ LR ÐWÑK

and if the action of  by conjugation on  is regular, thenL ÐWÑconjK

K œ L ì R ÐWÑK

This theorem can be used to show that the Frattini subgroup of a finite group K
has the property that all of its Sylow subgroups are normal in .K



Theorem 8.14  [12], 1885  If  is a finite group, then the Frattini( )Frattini K
subgroup  has the property that all of its Sylow subgroups are normal inFÐKÑ
K.
Proof. If , then  and the Frattini argument shows thatW − Ð Ñ W Ÿ KSyl: F F ü

K œ R ÐWÑF K

But if , then there is a maximal subgroup  of  for whichR ÐWÑ  K Q KK

R ÐWÑ Ÿ Q K Ÿ Q R ÐWÑ œ KK K and so , a contradiction. Hence,  and
W Kü .

The Search for Simplicity
The Sylow theorems, along with group actions and counting arguments, provide
powerful tools for the analysis of finite groups. A key issue with respect to finite
groups is the question of simplicity. As we will discuss in a later chapter, the
issue of which finite groups (up to isomorphism) are simple appears to be
resolved, but the resolution is so complex that some mathematicians may still
have questions regarding its completeness and its accuracy.

We have seen that a group of prime-power order  has a normal subgroup of:8

each order . Accordingly, we will do no further direct analysis of -: ± : :5 8

groups in this chapter.

Throughout our discussion,  will denote a prime,  will denote an arbitrary: ]:

Sylow -subgroup and, as always,  denotes the number of Sylow -subgroups: 8 ::

of . Recall thatK

1)  for some integer .8 œ "  5: 5   !:

2) .8 œ ÐK À R Ð] ÑÑ ± 9ÐKÑ: K :

Note that if , where , then  if and only if .9ÐKÑ œ : 7 : ± 7 8 ± 9ÐKÑ 8 ± 7y8
: :

The following facts (among others) are useful in showing that a group is not
simple:

3)  is normal if and only if .] 8 œ ": :

4) If  is equal to the smallest prime dividing , then .ÐK À LÑ 9ÐKÑ L – K
5) The kernel of any action  is a normal subgroup of .-À K Ä W K\

6) If , then . Hence, if , then  isL  K ÐK À L Ñ ± ÐK À LÑx 9ÐKÑ ± ÐK À LÑx Ly‰ ‰

a nontrivial proper normal subgroup of .K

We will also have use for the fact that if  is prime and , then  is the: " Ÿ /  : /:
smallest integer for which .: ± Ð/:Ñx/
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The -Argument8:

It happens quite often that for some odd prime , the integers  do: ± 9ÐKÑ "  5:
not divide  unless , in which case  and . Let us refer to9ÐKÑ 5 œ ! 8 œ " ] K: : ü
the argument

8 œ "  5: ± 9ÐKÑ Ê 5 œ !:

as the . Note that the -argument does not hold if , unless8:-argument 8 : œ #:

9ÐKÑ # "  #5 ± 9ÐKÑ 5  " is a power of , since  for some .

Example 8.15 If , then routine calculation shows9ÐKÑ œ **)# œ # † ( † #$ † $"
that the  argument holds:8(

"  (5 ± 9ÐKÑ Ê 5 œ !

and so  and  is not simple.] – K K(

Example 8.16 If  for ,  and , then9ÐKÑ œ : 7 8   " 7  " : ± 7y8

8 œ Ð"  5:Ñ ± 7 7  : 5 œ ! ] – K: : and so if , then , whence . Thus, groups
of order

: ß #: ßá ß Ð:  "Ñ:8 8 8

for  prime and  have  and so are not simple.: 8   " ] – K:

A little programming shows that among the orders up to  (not including"!!!!
prime powers) there are only  orders (less than %) that are  succeptible&'* ' not
to the -argument for some . Thus, the vast majority of orders up to  are8 : "!!!!:

either prime powers or have the property that groups of that order have a normal
Sylow -subgroup.:

Counting Elements of Prime Order
If  is a prime and  but , then each of the  distinct Sylow -: : ± 9ÐKÑ : ± 9ÐKÑ 8 :y#

:

subgroups of  has order  and so the subgroups are pairwise essentiallyK :
disjoint. Hence,  contains exactly  distinct elements of order .K 8 † Ð:  "Ñ ::

Sometimes this simple counting of elements (for different primes ) is enough:
to show than one of the Sylow subgroups is normal.

Example 8.17 Let . Then based on the fact that9ÐKÑ œ $! œ # † $ † &
8 œ "  5: ± 9ÐKÑ 8 − Ö"ß "!× 8 − Ö"ß '×: $ &, we can conclude only that  and .
However, if  and , then  contains at least 8 œ "! 8 œ ' K 8 † Ð$  "Ñ œ #!$ & $

elements of order  and  elements of order , totalling  elements. Hence,$ #% & %%
one of  or  must be normal in .] ] K$ &



Index Equal to Smallest Prime Divisor
If  where  are primes, then , because  is the9ÐKÑ œ :; :  ; ] – K ÐK À ] Ñ œ :5

; ;

smallest prime dividing . Moreover, it is clear that9ÐKÑ

K œ ] ]; :z

Example 8.18 If , then  and9ÐKÑ œ $ † & œ (& ] – K#
&

K œ ] ]$ &z

Also,  holds only for  or  and so  or . Note"  $5 ± #& 5 œ ! 5 œ ) 8 œ " 8 œ #&$ $

that if , then  is abelian.8 œ " K œ ]  ]$ $ &

When , we can give a fairly complete analysis as follows.9ÐKÑ œ :;

Theorem 8.19 Let , with  primes. Then9ÐKÑ œ :; :  ;

K œ G Ð,Ñ G Ð+Ñ; :z

where

, œ ,+ 5

for some  and . Moreover,  is cyclic if and only if" Ÿ 5  ; 5 ´ " ; K: mod
: ± ;  "y .
Proof. We have seen that

K œ ] ] œ G Ð,Ñ G Ð+Ñ; : ; :z z

Thus,  for some  and repeated conjugation by  gives+,+ œ , " Ÿ 5  ; +" 5

, œ + ,+ œ ,: : 5:

which implies that . Moreover,  and so  or .5 ´ " ; 8 ± ; 8 œ " 8 œ ;:
: : :mod

But  if and only if , that is, if and only if  is cyclic and  if8 œ " ] K K 8 œ ;: : :ü
and only if , that is, if and only if ."  5: œ ; : ± ;  "y

Example 8.20 Let us return to the case . We saw in9ÐKÑ œ $! œ # † $ † &
Example 8.17 that one of  or  must be normal in . It follows that] ] K$ &

] ] K "& ] ß ] « ] ] K$ & $ & $ &ü ü has order  and so is cyclic. Hence,  and so both
] ] K$ & and  are normal in .

Using the Kernel of an Action
The kernel of an action  is normal in  and this can be a useful-À K Ä W K\

technique for finding normal subgroups, although they need not be Sylow
subgroups.

For example, if  acts on  by conjugation, then the representation mapK ÐKÑSyl:
-À K Ä W5:" has kernel
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O œ R Ð] Ñ,
] − ÐKÑ

K

Syl:

which is a normal subgroup of . The problem is that it may be either trivial orK
equal to .K

Let  and , where  and . Also, let9ÐKÑ œ : ? 9ÐOÑ œ : @ 7   "ß ?  " : ± ?y7 =

8 œ 5:  " O œ K 8 œ ": :. It is clear that  is equivalent to  and implies that
= œ 7 = œ 7 O : W K. Conversely, if , then  contains a Sylow -subgroup  of . But
the only Sylow -subgroup of  in  is  itself and so  and: K R Ð] Ñ ] 8 œ "K :

O œ K. Thus,

O œ K Í ] – K Í = œ 7:

As to the nontriviality of , the induced embedding of  into  impliesO KÎO W5:"

that

: Ð5:  "Ñx
?

@
7= ¹

and so . Hence, if , then . It follows that if ,: ± Ð5:Ñx 5  : 7  5 Ÿ = 5  77=

then  and  is nontrivial. Thus,=  ! O

5  Ö7ß :× Ê O Á Ö"×min

We note finally that  has a somewhat simpler form if , since then eachO 8 œ ?:

]: is self-normalizing and

O œ ],
] − ÐKÑSyl:

Theorem 8.21 Let  where  is prime, ,  and . Let9ÐKÑ œ : ? : 7   " ?  " : ± ?y7

8 œ "  5:: .
1  If , then .) 5 œ ! ] – K:

2  If , then) !  5  Ö7ß :×min

O œ R Ð] Ñ,
] − ÐKÑ

K

Syl:

is a nontrivial proper normal subgroup of  of order , whereK : @=

7  5 Ÿ = Ÿ 7 " @ ± ? 5 œ Ð?  "ÑÎ: and . In addition, if , then

O œ ],
] − ÐKÑSyl:

has order .:=

Example 8.22 If , then  and so  or .9ÐKÑ œ "!) œ $ † % "  $5 ± % 5 œ ! 5 œ "$

Thus, this case is not amenable to the -argument. However, if  then8 5 œ ":



Theorem 8.21 implies that

O œ ],
] − ÐKÑSyl$

is a nontrivial proper normal subgroup of  of order . Thus,  is not simple.K * K

If , then  and so  or . If , then9ÐKÑ œ ")* œ $ † ( "  $5 ± ( 5 œ ! 5 œ # 5 œ #$

Theorem 8.21 implies that

O œ ],
] − ÐKÑSyl$

is a nontrivial proper normal subgroup of  of order  or .K $ *

If , then  and so  or  (and9ÐKÑ œ $!! œ # † $ † & 8 œ "  &5 ± "# 5 œ ! 5 œ "# #
&

8 œ ' 5 œ " K& ). But if , then Theorem 8.21 implies that  is not simple.

Even when  is trivial and the previous theorem does not apply, we learn thatO
K Wä 5:", which can sometimes be useful.

Example 8.23 If , where  is prime. Then  or9ÐKÑ œ :Ð:  "Ñ : 8 œ ":

8 œ :  " 8 œ :  ": :. While the previous theorem does not apply, if , then

O œ ] œ Ö"×,
] − ÐKÑSyl:

Hence, . As an example, if , then either  orK W 9ÐKÑ œ "# œ $ † % ] – Kä :" $

K W 9ÐKÑ œ 9ÐE Ñ K ¸ E K ¸ Eyä % % % %. But  and so in the latter case, . Thus, if 
then . We will use this fact later to determine all groups of order .] – K "#$

The Normal Interior
If , we have seen thatL  K

ÐK À L Ñ ± ÐK À LÑx‰

and so if , then  is a nontrivial proper normal subgroup of .9ÐKÑ ± ÐK À LÑx L Ky ‰

Hence, if

9ÐKÑ œ : â:"
/

7
/" 7

where  are primes and , then for any ,:  â  : 7   # 5" 7

/  : ß ÐK À LÑ  / : Ê : ± ÐK À LÑx Ê 9ÐKÑ ± ÐK À LÑxy y5 5 5 5 5
/5

and so  is nontrivial.L – K‰

Theorem 8.24 Let  where  are primes and9ÐKÑ œ : â: :  â  :"
/

7
/

" 7
" 7

7   # /  : " Ÿ 5 Ÿ 7. Suppose that  for some .5 5
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1  If  has index , then  is a nontrivial proper normal) L  K ÐK À LÑ  / : L5 5
‰

subgroup of .K
2  In particular, if , then  is a nontrivial proper) "  8  / : R Ð] Ñ: 5 5 K :

‰
3 3

normal subgroup of .K

Example 8.25 Let . Then ,9ÐKÑ œ '#!" œ $ † "$ † &$ 8 œ "  $5 ± "$ † &$#
$

which implies that . If , then . If , then8 − Ö"ß "$× 8 œ " ] – K 8 œ "$  &$$ $ $ $

Theorem 8.24 implies that  is a nontrivial proper normal subgroup ofR Ð] ÑK $
‰

K K. Thus  is not simple.

Using the Normalizer of a Sylow Subgroup
Let  be primes dividing  and let . Under the assumption: Á ; 9ÐKÑ ] − ÐKÑ; Syl;
that  and so , suppose that , that is,  and8  " R Ð] Ñ  K : ± 8 : ± 9ÐR Ð] ÑÑy; K ; ; K ;

that . There are various things we can say about .T − ÐR Ð] ÑÑ 9ÐR ÐTÑÑSyl: K ; K

First, if , then  and soT – R Ð] Ñ R Ð] Ñ Ÿ R ÐTÑK ; K ; K

9ÐR Ð] ÑÑ ± 9ÐR ÐTÑÑK ; K

On the other hand, even if  is not normal in , the fact thatT R Ð] ÑK ;

] R Ð] Ñ T] K T]; K ; ; ;ü  implies that  is a subgroup of . Hence, if  is abelian,
then  and so] Ÿ R ÐTÑ; K

9Ð] Ñ ± 9ÐR ÐTÑÑ; K

In either case, if  is  a Sylow -subgroup of  but , thenT : K T – T − ÐKÑnot ‡ Syl:
T Ÿ R ÐTÑ‡

K , whence

9ÐT Ñ ± 9ÐR ÐTÑÑ‡
K

These conditions tend to make  large.R ÐTÑK

Example 8.26 If , then it is easy to see that9ÐKÑ œ $'(& œ $ † & † (# #

8 − Ö"ß "&× 8 œ "& 9ÐR Ð] ÑÑ œ & † ( T &( ( K (
#. If , then . Let  be a Sylow -

subgroup of . The number of such subgroups is  and soR Ð] Ñ "  &5 ± (K (
#

T – R Ð] ÑK ( . Hence,

& † ( ± 9ÐR ÐTÑÑ#
K

Also,  has index  in  and so , whenceT & T − ÐKÑ T – T‡ ‡Syl&

& ± 9ÐR ÐTÑÑ#
K

and so

& † ( ± 9ÐR ÐTÑÑ# #
K

Hence, either , in which case  or else  has index  inR ÐTÑ œ K T – K R ÐTÑ $K K

K K and so is normal in .



Suppose that , where  are primes that do not divide . If9ÐKÑ œ :;? : Á ; ?
: ± 8 : ± 9ÐRÐ] ÑÑ ] Ÿ RÐ] Ñ ] ] Ÿ K :;y ; ; : ; : ;, that is, if , then  and so  has order .
Hence, if , then  is abelian (cyclic) and so . Thus,: ± Ð;  "Ñ ] ] ] Ÿ RÐ] Ñy : ; ; :

; ± 9ÐRÐ] ÑÑ 8 ± 9ÐKÑÎ:;: : and so .

Theorem 8.27 If , where  are primes that do not divide ,9ÐKÑ œ :;? :  ; ?
then

: ± Ð;  "Ñ : ± 8 Ê 8y y
9ÐKÑ

:;
and ; : ¹

Example 8.28 If , then a routine calculation gives9ÐKÑ œ "()& œ $ † & † ( † "(

8 − Ö"ß (ß )&ß &*&× 8 − Ö"ß $&×$ "(and

But

$  "(ß $ ± Ð"(  "Ñß $ ± 8 Ê 8 œ $&y y
9ÐKÑ

$ † "(
"( $ ¹

and so  or . Hence, Theorem 8.24 now implies that one of  or8 œ " 8 œ ( ]$ $ $

RÐ] Ñ K$
‰ is a proper nontrivial normal subgroup of .

Groups of Small Order
We have already examined the groups of order ,  and . Let us now look at all% ' )
groups of order  or less. Of course, all groups of prime order are cyclic. We"&
will again denote an arbitrary Sylow -subgroup of  by .: K ]:

Groups of Order %

The groups of order  are (up to isomorphism):%

1) , the cyclic groupG%

2) , the Klein 4-group.Z ¸ G G# #}

Groups of Order '

The groups of order  are (up to isomorphism):'

1) , the cyclic groupG'

2) , the nonabelian dihedral (and symmetric) group.H ¸ W' $

Groups of Order )

The groups of order  are (up to isomorphism):)

1) , the cyclic groupG)

2) , abelian but not cyclicG G% #}
3) , abelian but not cyclicG G G# # #} }
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4) , the (nonabelian) dihedral groupH)

5) , the (nonabelian) quaternion group.U

Groups of Order *

Theorem 7.9 implies that the groups of order  are (up to isomorphism):*

1) , the cyclic groupG*

2) , abelian but not cyclic.G G$ $}

Groups of Order "!

If , then Theorem 8.19 implies that9ÐKÑ œ "! œ # † &

K œ Ø+ß ,Ùß 9Ð+Ñ œ #ß 9Ð,Ñ œ &ß +,+ œ ," 5

where , that is,  or . In the former case,  and  commute5 ´ " & 5 œ " % + ,# mod
and  is cyclic. In the latter case, . Thus, the groups of order  areK K œ H "!"!

(up to isomorphism):

1) , the cyclic groupG ¸ G G"! & #}
2) , the nonabelian dihedral group.H"!

Groups of Order "#

We have accounted for three nonabelian groups of order : the alternating"#
group , the dihedral group  and the semidirect productE H% "#

X œ G Ð+Ñ G Ð,Ñ$ %z , where

,+, œ +" #

We wish to show that this completes the list of nonabelian groups of order ."#

Assume that . Then Example 8.23 shows that  and soK ¸ E ] œ G Ð+Ñ Ky % $ $ ü
K œ G Ð+Ñ ] ] œ G Ð,Ñ ] œ G ÐBÑ  G ÐCÑ$ # # % # # #z , where  or .

If , thenK œ G Ð+Ñ G Ð,Ñ$ %z

,+, œ + ,+, œ +" " #or

In the former case  is abelian and in the latter case . IfK K œ X

K œ G Ð+Ñ ÐG ÐBÑ  G ÐCÑÑ$ # #z

then

+ œ + + + œ + +B # C # or and  or 

We consider three cases. If  and , then  is abelian. If  and+ œ + + œ + K + œ +B C B

+ œ + 9Ð+BÑ œ 9Ð+Ñ9ÐBÑ œ 'C #, then  and

Ð+BCÑ œ +BC+BC œ +CÐB+BÑC œ +C+C œ + œ "# $



Hence,  is generated by two distinct involutions whose product hasØ+BCß CÙ
order  and so Theorem 2.36 implies that . Finally, if ,' K œ H + œ + œ +"#

B # C

then  and  and so Ð+BÑ œ +B+B œ + œ " + œ Ð+ Ñ œ + œ + 9Ð+BCÑ œ# $ BC # C %

9Ð+Ñ9ÐBCÑ œ ' Ø+Bß CÙ K œ H. Thus,  is dihedral and ."#

Thus, the groups of order  are (up to isomorphism)"#

1) , the cyclic groupG ¸ G G"# % $}
2) , abelian but not cyclicG G G# # $} }
3) , the nonabelian alternating groupE%

4) , the nonabelian dihedral groupH"#

5) , the nonabelian group described above.X

Groups of Order "%

If , then Theorem 8.19 implies that9ÐKÑ œ "% œ # † (

K œ Ø+ß ,Ùß 9Ð+Ñ œ # 9Ð,Ñ œ (ß +,+ œ ,, " 5

where , that is,  or . In the former case,  is cyclic. In the5 ´ " ( 5 œ " ' K# mod
latter case,  is dihedral. Thus, the groups of order  are (up to isomorphism):K "%

1) , the cyclic groupG ¸ G G"% ( #}
2) , the nonabelian dihedral group.H"%

Groups of Order "&

Theorem 8.19 implies that all groups of order  are cyclic."&

On the Existence of Complements: The Schur–Zassenhaus
Theorem
In this section, we use group actions to prove the Schur–Zassenhaus Theorem,
which gives a simple sufficient (but not necessary) condition under which a
normal subgroup  of a group  has a complement , thus giving a semidirectL K O
decomposition .K œ L Oz

Definition Let  be a finite group. A   of  is a subgroup withK L KHall subgroup
the property that its order  and index  are relatively prime.9ÐLÑ ÐK À LÑ

The Schur–Zassenhaus Theorem states that a  Hall subgroup  has anormal L
complement. The tool that we will use in proving the Schur–Zassenhaus
Theorem is the Frattini argument (Theorem 7.2). In particular, we consider the
action of left translation by  on the set  of all right transversals of  andK Le
show that this action is regular, whence

K œ L ÐVÑz stabK

for any . So let us take a closer look at transversals and their actions.V − e

252 Fundamentals of Group Theory



Sylow Theory 253

Transversals and Their Actions
Let  be a finite group and let  be a normal Hall subgroup of , with rightK L K
cosets

LÏK œ ÖL œ L ßá ßL ×" 7

Let  be the set of all right transversals of . If  wheree eL V œ Ö< ßá ß < × −" 7

< − L 3 + − K3 3 for all  and if , then

L+< œ +L<3 3

and so the cosets  are distinct. Hence,L+<3

+V œ Ö+< ßá ß +< × −" 7 e

and it is clear that  acts on  by left translation.K e

Although  need not act transitively on , we can raise the action of  to anL Ke
action on the congruence classes of an appropriate -congruence on  so thatK e
L K does act transitively. The -congruence condition is

V ´ W Ê +V ´ +W

for all , that is,+ − K

Ö< ßá ß < × ´ Ö= ßá ß = × Ê Ö+< ßá ß +< × ´ Ö+= ßá ß += ×" 7 " 7 " 7 " 7

This leads us to try the following. Assuming that  and  are indexed so that V W <3
and  are in the same right coset , define a binary relation  by= L ´3 3

V ´ W < = œ "if $
3œ"

7

3 3
"

Letting

VlW œ < =$
3œ"

7

3 3
"

the definition becomes

V ´ W VlW œ "if

This relation is clearly reflexive. Also, since  for all , if  is ,< = − L 3 L3 3
" abelian

then for any ,VßWß X − e

ÐVlWÑ œ WlV ÐVlWÑÐWlX Ñ œ VlX" and

and so  is an equivalence relation on . Let  denote the set of´ Î ´e e
equivalence classes of  and let  denote the equivalence class containing .e ÒVÓ V



Note that if , then  implies that2 − L < = − L3 3
"

Ð2VÑlW œ 2< = œ 2 ÐVlWÑ$
3œ"

7

3 3
" 7

Moreover, since  and  are in the same right coset of , so are  and < = L +< +=3 3 3 3

and so for any ,+ − K

+Vl+W œ Ð+< ÑÐ+= Ñ œ + < = + œ ÐVlWÑ$ $8 9
3œ" 3œ"

7 7

3 3 3
" " " +

3

Hence,  if and only if . Thus,  is a -congruence on  and+V ´ +W V ´ W ´ K e
the induced action is

+ÒVÓ œ Ò+VÓ

Now,  acts transitively if and only if for all , there is an  forL VßW − 2 − Le
which , that is, for whichÒ2VÓ œ ÒWÓ

" œ Ð2VÑlW œ 2 ÐVlWÑ7

or equivalently,

2 œ VlW7

But this equation always has a solution in  since  and  areL 7 œ ÐK À LÑ 9ÐLÑ
relatively prime.

The action of  on  is also regular, since  if and only ifL Î ´ Ò2VÓ œ ÒVÓe

" œ Ð2VÑlV œ 2 ÐVlVÑ œ 27 7

which implies that . Hence, if  is a normal abelian subgroup of , the2 œ " L K
Frattini argument implies that

K œ L ÐÒVÓÑz stabK

for any .V − e

As to the conjugacy statement, any conjugate of a complement of  is also aL
complement of . On the other hand, ifL

K œ L Oz

then Theorem 5.3 implies that  and soO − e

L O œ K œ L ÐÒOÓÑz z stabK

But  and soO Ÿ ÐÒOÓÑstabK

O œ ÐÒOÓÑstabK
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Thus, the set of complements of  in  is precisely the setL K

Ö ÐÒVÓÑ ± V − ×stabK e

Also, since  acts transitively on , all stabilizers are conjugate and so allK Î ´e
complements of  are conjugate. We have proved the abelian version of theL
Schur–Zassenhaus Theorem.

Theorem 8.29  If  is a finite( )Schur–Zassenhaus Theorem—abelian version K
group, then any normal abelian Hall subgroup  of  has a complement in .L K K
Moreover, the complements of  in  form a conjugacy class of .L K ÐKÑsub

The Schur–Zassenhaus Theorem
The condition of abelianness can be removed from the Schur–Zassenhaus
Theorem. The proof of the general Schur–Zassenhaus theorem uses the Frattini
argument as well, but also uses the Feit–Thompson theorem to establish the
conjugacy portion of the theorem. Let us isolate the portion that uses the Feit–
Thompson Theorem.

Theorem 8.30 Let  be a nontrivial group of odd order.K
1  ) K  Kw

2   has a normal subgroup  of prime index.) K O
Proof. Part 1) can be proved by induction on . If , then  is9ÐKÑ 9ÐKÑ œ $ K
abelian and . Assume the result holds for groups of odd orderK œ Ö"×  Kw

less than  and let  be odd. Then the Feit–Thompson theorem implies9ÐKÑ 9ÐKÑ
that  is either abelian or nonsimple. If  is abelian, then . If K K K œ Ö"×  K Kw

is nonsimple, then there is a  and so  has odd order less thanÖ"× – O – K KÎO
9ÐKÑ ÐKÎOÑ  KÎO. Hence, the inductive hypothesis implies that , whichw

implies that . For part 2), since , it follows that  has a maximalK  K K  K Kw w

normal subgroup  containing . Then  is simple and abelian and so hasO K KÎOw

prime order.

Theorem 8.31  Any normal Hall subgroup  of( )Schur–Zassenhaus theorem L
finite group  has a complement in . Moreover, the complements of  in K K L K
form a conjugacy class in . In particular, any normal Sylow subgroup of  isK K
complemented.
Proof. We may assume that  is nontrivial and proper. The proof of theL
existence of a complement is by induction on . The result is true if9ÐKÑ
9ÐKÑ œ " 9ÐKÑ L K. Assume it is true for all orders less than . Let  denoteü Hall
the fact that  is a normal Hall subgroup of .L K

If  has a proper supplement , that is, ifL O

K œ LO

for some , then  and so the inductive hypothesisO  K M œ L ∩O Oü Hall
implies that , whenceO œ M Nz



K œ LO œ LÐM N Ñ œ L Nz z

and so  is complemented.L

But since  is a Hall subgroup, if  is a prime dividing , then anyL : 9ÐLÑ
W − ÐLÑ : KSyl:  is also a Sylow -subgroup of  and the Frattini argument implies
that

K œ LR

where . Thus, if , then  is complemented. On the otherR œ R ÐWÑ R  K LK

hand, if , then  is a normal Sylow -subgroup of  and so ,R œ K W : K W Kö
whence . Since , the inductive hypothesis^ ³ ^ÐWÑ K LÎ^ KÎ^ö ü Hall
implies that

K L O

^ ^ ^
œ z

for some  and so  is a supplement of . But if , then  isO Ÿ K O L O  K L
complemented and if , then  is abelian and so  isO œ K L œ ^ L
complemented in this case as well.

We now turn to the statement about conjugacy. Since any conjugate of a
complement of  is also a complement of , we are left with showing that anyL L
two complements  and  of  are conjugate. The proof is by induction onO O L" #

9ÐKÑ 9ÐKÑ œ ". Of course, the result is true if . Assume the result is true for
groups of order less than .9ÐKÑ

If  contains a nontrivial proper subgroup  that is normal in , then L R K O RÎR3

is a complement of  in  for each  and so by the inductive hypothesis,LÎR KÎR 3

O R O R O R

R R R
œ œ

# "
+R

"
+Œ 7

for some . Hence,+ − K

R O œ R Oz z# "
+

and so the inductive hypothesis applied to the group  implies thatR O  Kz #

O O O O# # ""
+ and  are conjugates, whence so are  and .

If  does not contain a nontrivial proper subgroup that is normal in , then weL K
can easily dispatch the case  odd with the help of Theorem 8.30, which9ÐLÑ
implies that  and so , whence , that is,  isL L – K L – K L œ Ö"× Lw w wö
abelian. Then the abelian version of the Schur–Zassenhaus Theorem completes
the proof. So we may assume that  is even, which implies that  is9ÐLÑ 9ÐKÎLÑ
odd.
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Then Theorem 8.30 implies that  has a normal subgroup  for whichK E
L Ÿ E – K ÐK À EÑ œ : and  is prime. Hence,

E œ L ÐO ∩ EÑ E œ L ÐO ∩ EÑz z" #and

and the inductive hypothesis implies that

O ∩E œ ÐO ∩ EÑ# "
+

for some . But+ − E

ÐO À O ∩ EÑ œ ÐO E À EÑ œ ÐK À EÑ œ :3 3 3

and so  is a supplement of any , that is,O ∩E ] − ÐO Ñ3 3 3Syl:

O œ ÐO ∩ EÑ]3 3 3

Conjugating this for  by  gives3 œ " +

O œ ÐO ∩ EÑ]" "
+ +

#

and so it is clear that we need to relate  to . But  implies that] ] O ∩ E O"
+

# " "ü

] Ÿ O Ÿ R ÐO ∩ EÑ" " K "

and so

] Ÿ R ÐO ∩ EÑ œ R ÐO ∩ EÑ"
+ +

K " K #

Hence,  and  are Sylow -subgroups of , whence ] ] : R ÐO ∩ EÑ ] œ ]# K # #" "
+ ,+

for some . Conjugating by  gives, − R ÐO ∩ EÑ ,K #

O œ ÐO ∩ EÑ] œ ÐO ∩ EÑ] œ O" "
,+ ,+

# # # #

as desired.

The Schur–Zassenhaus Theorem leads to the following important corollary.

Corollary 8.32 Let  where . If  has a normal Hall9ÐKÑ œ 87 Ð8ß7Ñ œ " K ( )
subgroup  of order , then any subgroup  of  that has order  dividingR 8 L K 7w

7 R is contained in some complement of .
Proof. The Schur–Zassenhaus Theorem implies that there is a  for whichO Ÿ K
K œ R O RL ∩O œ 7z . Then  andk k w

R L œ R ÐRL ∩OÑz z

Hence, the Schur–Zassenhaus Theorem implies that there exists  for+ − K
which

L œ ÐRL ∩OÑ Ÿ O+ +

But  is also a complement of  in .O R K+



*Sylow Subgroups of W8

In this section, we determine the Sylow subgroups of the symmetric group  inW8

terms of wreath products. First, we need to compute the order of a Sylow -:
subgroup of .W8

Theorem 8.33 Let  be a prime dividing  and let: 8x

8 œ +  + : â + :! " 7
7

be the base-  representation of , that is, . The largest exponent  of: 8 ! Ÿ +  : /5

: : ± 8x for which  is/

PÐ7Ñ œ + QÐ5Ñ�
5œ"

7

5

where

QÐ5Ñ œ :  : â " œ
:  "

:  "
5 5"

5

and so the order of a Sylow -subgroup of  is: W8

: œ :PÐ7Ñ + QÐ5Ñ

5œ"

7$ 5

In particular, the order of a Sylow -subgroup of  is: W:5

:QÐ5Ñ

Proof. The number of factors in  that are multiples of  is 8x œ " † #â8 : 8Î:g h
where  is the floor of . Among these  factors, there are  factorsg h g h g hB B 8Î: 8Î:#

that are multiples of . Thus,:

PÐ7Ñ œ 8Î:  8Î: â 8Î:g h g h¨ ©# 7

Using the base-  expansion of , we can write this as: 8

PÐ7Ñ œ Ð+  + : â + : Ñ  Ð+  + : â + : Ñ â +

œ +  + Ð:  "Ñ â + Ð: â "Ñ

œ + QÐ"Ñ  + QÐ#Ñ â + QÐ7Ñ

" # 7 # $ 7 7
7" 7#

" # 7
7"

" # 7

Let us first determine the Sylow -subgroups of the symmetric groups .: W:8

Since the order of such a Sylow -subgroup is , all we need to do is find a: :QÐ5Ñ

subgroup of  of sizeW:5

: œ :QÐ5Ñ : : â"5 5"

Since
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QÐ5  "Ñ œ :QÐ5Ñ  "

it follows that

: œ : † :QÐ5"Ñ QÐ5Ñ :ˆ ‰
and this puts us in mind of the wreath product, since if  is a finite group andHk k k kU œ œ :H , then

k k k kH ›› U œ H † :H
:

Now, the cyclic group  acts faithfully on itself by left translation and soG:

[ ³ G W ¸ W" : G :ä
:

and since the Sylow -subgroups of  have order , they are isomorphic to .: W : G: :

Since  acts faithfully on itself by left translation, the regular wreath productG:

[ œ G ›› G# : < :

acts faithfully on , that is,G ‚ G œ G: : :
#

[ W ¸ W# G :ä
:
# #

and since

9Ð[ Ñ œ : † : œ : œ :#
: :" QÐ#Ñ

it follows that the Sylow -subgroups of  are  isomorphic to .: W [: ##

Now,  acts faithfully on  and  acts faithfully on itself and so[ G G# ::
#

[ œ ÐG ›› G Ñ ›› G$ : < : < :

acts faithfully on , that is,G:
$

[ W ¸ W$ G :ä
:
$ $

and since

9Ð[ Ñ œ Ð: Ñ † : œ : œ :$
:" : : :" QÐ$Ñ#

it follows that the Sylow -subgroups of  are  isomorphic to .: W [: $$

In general, if  acts faithfully on , then the -fold regular wreath[ G 88" :
8"

product

[ œ [ ›› G œ ÐÐG ›› G Ñ ›› G Ñâ ›› G8 8" < : : < : < : < :

acts faithfully on  and so . Moreover, sinceG [ W:
8

8 :ä 8



9Ð[ Ñ œ [ † : œ : œ :8 8"
: QÐ8"Ñ:" QÐ8Ñk k

it follows that the Sylow -subgroups of  are isomorphic to .: W [: 88

To determine the nature of the -Sylow subgroups of , note that if: W8

c œ ÖF ßá ßF ×" 7

is a partition of  and if  is a permutation of , then the mapM œ Ö"ßá ß 8× F8 3 35

5 5 5œ ‚â‚" 7

defined by  if , is a permutation of . It follows that if5 5Ð5Ñ œ Ð5Ñ 5 − F M4 4 8k kF œ 85 5, then

X œ W â W8 8" 7
} }

is isomorphic to a subgroup of .W8

We would like to find a partition  of  whose block sizes arec M œ Ö"ßá ß 8×8

powers of . We can do this from the base-  representation of :: : 8

8 œ +  + : â + :! " 7
7

by letting

c œ ÖF ± 4 œ "ßá ß + ×5ß4 5

be any partition of  consisting of  blocks of size . Each symmetric groupM + :8 5
5

W W − WF 8 F5ß4 5ß4
 is isomorphic to a subgroup of  where we simply let  be the5

identity on . If  is a Sylow -subgroup of , then the directM Ï F ] : W8 5ß4 5ß4 F5ß4

product

] œ ]}
5ß4

5ß4

is isomorphic to a subgroup of  of orderW8

$
5œ"

7
+ QÐ5Ñ: 5

and since  has the correct order, it is isomorphic to a Sylow -subgroup of .] : W8

Theorem 8.34 Let  be a prime dividing  and let: 8x

8 œ +  + : â + :! " 7
7

be the base-  representation of , that is, .: 8 ! Ÿ +  :5
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1  The Sylow -subgroups of  are isomorphic to the -fold regular wreath) : W 8:8

product

[ œ ÐÐG ›› G Ñ ›› G Ñâ ›› G8 : < : < : < :

2  The Sylow -subgroups of  are isomorphic to a direct product) : W8

] œ Ð] Ñ Ð] Ñ â Ð] Ñ" : :
+ + +! " 7

7} } }

where  is a Sylow -subgroup of .] : W: :5 5

Exercises
1. Prove that if  is a normal -subgroup of a finite group , then  isL : K L

contained in every Sylow -subgroup of .: K
2. Let the order of  be a product  of three distinct primes, withK :;<

:  ;  < 8 8 " K. Show that if one of  or  is equal to , then  has a normal; <

subgroup of order .;<
3. Find all Sylow subgroups of . What are  and ?W 8 8$ # $

4. Find all Sylow subgroups of . What are  and ?E 8 8% # $

5. Show that  has no subgroup of index .E %&

6. Show that no group of order  is simple.&'
7. Let  for . Show that  or  or9ÐKÑ œ : Ð%:  "Ñ 7   " 8 œ " 8 œ %:  "7

: :

else  and .: œ # 8 œ $:

8. Show that there are no simple groups of order , where  and  are: ; : ;#

primes.
9. Let  with . Show that if , then there is no8 œ : 7 Ð7ß :Ñ œ " : ± Ð7  "Ñxy5 5

simple group of order . This holds if  is “sufficiently large” relative to8 5
9ÐKÑÎ:5.

10. Show that there is no simple group of order .)&)
11. Show that there is no simple group of order .$#%
12. Show that there is no simple group of order .$$*$
13. Show that there is no simple group of order .%!*&
14. Show that any group of order  is abelian.&'"
15. Let . Prove that if , then  is simple. : Use the fact9ÐKÑ œ '! 8  " K& Hint

that groups of order ,  and  have a normal subgroup of order ."& #! $! &
16. Let  be an odd integer. Show that every Sylow -subgroup of the5   $ :

dihedral group  is cyclic.H#5

17. How many Sylow -subgroups does  contain?# E&

18. Let  and suppose that  is a normal Sylow -subgroup of .R K W R : Rü ü
Prove that  is normal in .W K

19. Let  be a finite group. Prove that  is the group generated by all of itsK K
Sylow subgroups.

20. Let  be a finite group and let . Let  be a Sylow -subgroup of K R K W : Kü
not contained in . Show that  is a Sylow -subgroup of .R WRÎR : KÎR

21. Let  be a -subgroup of a finite group . Let  be a -element. IsL : K + Â L :
ØLß +Ù : K L K necessarily a -subgroup of ? Does it help to assume that ?ü



22. A subgroup  of a group  is  ifL K abnormal

+ − ØLßL Ù+

for all . Prove that if  and , then  is+ − K O K W − ÐOÑ R ÐWÑü Syl: K

abnormal in . In particular, the normalizer of a Sylow -subgroup of  isK : K
abnormal.

23. Let  be a finite group and let .K LßO Ÿ K
 a) Suppose that  and . Show that if  is a Sylow -L K O K W :ü ü

subgroup of , then .K W œ ÐW ∩ LÑÐW ∩ OÑ
 b) Show that if we drop the condition that both subgroups be normal, then

the conclusion of the previous part may fail.
 c) Assume that . Show that for each prime , there is someL K : ± 9ÐKÑü

Sylow -subgroup  for which  is a Sylow -subgroup of ,: W W ∩ L : L
W ∩O : O W ∩L ∩O : is a Sylow -subgroup of  and  is a Sylow -
subgroup of .L ∩O

 d) Assume that . Show that for each prime , there is someL K : ± 9ÐKÑü
Sylow -subgroup  for which .: W W œ ÐW ∩ LÑÐW ∩ OÑ

24. (S. Abhyankar) Let  be a finite group and let  be a prime dividing .K : 9ÐKÑ
Let  be the subgroup of  generated by the union of the Sylow -:ÐKÑ K :
subgroups of . Show that . A finite group  is a K :ÐKÑ K Kü quasi -group:
if . Prove that the following are equivalent::ÐKÑ œ K

 a)  is a quasi -group.K :
 b)  is generated by all of its -elements.K :
 c)  has no nontrivial quotient group whose order is relatively prime to .K :
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Chapter 9
The Classification Problem for Groups

The Classification Problem for Groups
One of the most important outstanding problems of group theory is the problem
of classifying all groups up to isomorphism. This is the classification problem
for groups. More precisely, isomorphism of groups is an equivalence relation.
Therefore, a set of canonical forms or a complete invariant constitutes a
theoretical solution to the classification problem for groups. Of course, it may
not be a  solution unless some form of “algorithm” is available forpractical
determining the canonical form or invariant of any group.

The classification problem for groups is unsolved and seems to be exceedingly
difficult. It is even beyond present day ability to classify all finite groups. All
finite  groups have been classified. Indeed, we shall see in a later chapterabelian
that a finite group is abelian if and only if it is the direct sum of cyclic groups of
prime power orders. Moreover, the multiset of prime powers (which need not be
distinct) is a complete invariant for isomorphism. All finite simple groups seem
to have been classified. We will elaborate on this in more detail below.

The Classification Problem for Finite Simple Groups
The classification problem for finite simple groups is generally believed by
experts in the field to have been solved. The classification theorem is the
following:

Up to isomorphism, a finite simple group is one of the following:
1) A cyclic group  of prime order.G:

2) An alternating group  for .E 8   &8

3) A classical linear group.
4) An exceptional or twisted group of Lie type.
5) A sporadic simple group (these include Mathieu groups, Janko groups,

Conway groups, Fischer groups, Monster groups and more).
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The effort to solve this problem spanned the years from roughly 1950 to 1980
and involves something on the order of 15,000 pages of mathematics produced
by a variety of researchers, some of which is as yet unpublished. As a result, a
second effort, led by three group theorists: Daniel Gorenstein, Richard Lyons,
and Ron Solomon has been underway to collect this massive effort into a single
source, which now spans five volumes and will, when finished, treat most (but
not all) of the overall project.

The shear massiveness of this work has prompted some to believe that it is too
soon to say categorically that the classification theorem as it is currently
formulated is indeed a theorem. This viewpoint is further supported by the fact
that, in the ensuing years since 1980 several gaps, some of which were quite
serious, have appeared. Fortunately, all of the known gaps have since been
filled.

As an example, Michael Aschbacher [2] writes in his 2004 article The Status of
the Classification of Finite Simple Groups as follows:

I have described the Classification as a theorem, and at this time I
believe that to be true. Twenty years ago I would also have
described the Classification as a theorem. On the other hand, ten
years ago, while I often referred to the Classification as a theorem, I
knew formally that that was not the case, since experts had by then
become aware that a significant part of the proof had not been
completely worked out and written down. More precisely, the so-
called “quasithin groups” were not dealt with adequately in the
original proof. Steve Smith and I worked for seven years,
eventually classifying the quasithin groups and closing this gap in
the proof of the Classification Theorem. We completed the write-up
of our theorem last year; it will be published (probably in 2004) by
the AMS.

Let us take a  broad look at the approach taken to solve the classificationvery
problem for finite simple groups. The abelian case is easily settled, so we will
concentrate our remarks on finite nonabelian simple groups.

We have already mentioned the famous result of Feit–Thompson (whose proof
runs about 255 pages itself) that says that every nonabelian finite simple group
has even order. This implies that any nonabelian finite simple group  containsK
an involution . Moreover, the centralizer  is a nontrivial  subgroup, GÐ,Ñ proper
of , since the center of  is trivial.K K

Thus, every nonabelian finite simple group has a nontrivial proper involution
centralizer . At least this gives us a starting point for an investigation:GÐ,Ñ
Perhaps one can relate the structure of the whole group  to that of .K GÐ,Ñ
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Indeed, we will show that if  is a nonabelian finite simple group withK
involution centralizer , thenGÐ,Ñ

9ÐKÑ x
GÐ,Ñ  "

#
¹ Œ 7k k

The significance of this result is that , and therefore the right-hand sidek kGÐ,Ñ
above, does not depend on the structure of  nor on the nature of  beyondK GÐ,Ñ
its size. Thus, for a given even number , there are only a finite number of;
possible orders of groups that have an involution centralizer of size . But for;
each finite order, there are only finitely many isomorphism classes of groups of
that order, because there are only finitely many multiplication tables of that size.
It follows that there are only finitely many isomorphism classes of nonabelian
finite simple groups that have an involution centralizer of size .;

Thus, the size of an involution centralizer does at least restrict the number of
possible isomorphism classes of its parent groups. This raises the question of
whether more details about the structure of an involution centralizer (and related
substructures) might do more than just restrict the number of isomorphism
classes for its parent.

Indeed, in 1954, Richard Brauer proposed that for a finite nonabelian simple
group  with involution centralizer , the possible isomorphism classes ofK GÐ,Ñ
K GÐ,Ñ are determined by the isomorphism class of . Moreover, during the
period of 1950–1965, Brauer and others developed methods for determining the
isomorphism classes of all finite simple groups that have an involution
centralizer isomorphic to a given group . However, involution centralizersL
alone prove not to be sufficient to solve the classification problem for
nonabelian finite simple groups.

Note that an involution centralizer  is also the normalizer  of the -GÐ,Ñ R ÐØ,ÙÑ #K

subgroup . More generally, the normalizer  of a -subgroup  of aØ,Ù R ÐLÑ : LK

group  is called a  of . Thus, an involution centralizer is aK K:-local subgroup
special type of -local subgroup of . The search for nonisomorphic nonabelian# K
finite simple groups involves looking at the entire -local structure of a group:
and can be roughly described as follows:

1) If the current list of nonisomorphic nonabelian finite simple groups is not
complete, let  be a minimal counterexample. Thus, any proper subgroupK
of  is on the list.K

2) Show that the -local structure of  resembles that of a simple group  that: K W
is already on the list.

3) Use this resemblance to show that  is isomorphic to . If not, thenK W
perhaps  must be added to the list.K

So let us proceed to the promised theorem.



Involutions
Let  be an even-order group whose set  of involutions has size  and letK 8   "\

\ \w œ ∪ Ö"×

If  is an involution, then for any involution , we have= >

> œ =Ð=>Ñ œ =B

where  has the property thatB œ =>

B œ B= "

This property of  is very important.B

Definition Let  be a group.K
1  An element  is  by  if) B − K + − Kreal

B œ B+ "

Also,  is  if it is real by some element . Let  be the set of realB +real e
elements of .K

2  An element  is  by  if) B − K =strongly real

B œ B= "

where  is an involution. Also,  is  if it is strongly real by= B strongly real
some involution . Let  denote the set of strongly real elements of .= Kf

Thus, every pair of involutions is related by a strongly real element. It is not
hard to see that ,  and  are each closed under conjugation and so each set is\ f e
a union of conjugacy classes. Associated with the equation

B œ B+ "

are some important sets.

Definition Let  be a group.K
1  For , let) B − K

G ÐBÑ œ Ö+ − K ± B œ B ×w + "

be the set of all elements by which  is real. The  ofB extended centralizer
B − K is

G ÐBÑ œ GÐBÑ ∪ G ÐBÑ‡ w

where  is the centralizer of .GÐBÑ B
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2 a  For , let) B − f

EÐBÑ œ Ö= − ± B œ B ×\ = "

be the set of involutions by which  is strongly real.B
 b  For , let) = − \

fÐ=Ñ œ ÖB − K ± B œ B ×= "

be the set of strongly real elements by the involution .=

Let us take a look at these sets. Note first that  is real if and only if B − K G ÐBÑw

is nonempty and  is strongly real if and only if  is nonempty.B − K EÐBÑ

G ÐBÑ‡

If  and , thenB − +ß , − G ÐBÑe w

B œ B œ B+ " ,

and so . Thus,  is a coset of ,+ , − GÐBÑ G ÐBÑ GÐBÑ" w

G ÐBÑ œ +GÐBÑw

and so

k k k kG ÐBÑ œ GÐBÑw

Thus, for  and ,B − + − G ÐBÑe w

G ÐBÑ œ GÐBÑ ∪ +GÐBÑ œ
GÐBÑ B −
GÐBÑ “ +GÐBÑ B − Ï

‡
w

wœ if 
if 

\
e \

where if , thenB − Ïe \ w

ÐG ÐBÑ À GÐBÑÑ œ #‡

EÐBÑ

If , then  and soB − EÐBÑ © G ÐBÑf w

k k k kEÐBÑ Ÿ GÐBÑ

But we can do a bit better in some cases. Since , we haveEÐ"Ñ œ \

k kEÐ"Ñ œ 8

and if , then  and soB − EÐBÑ © GÐBÑ Ï Ö"×\

k k k kEÐBÑ Ÿ GÐBÑ  "

Also, for any , it is easy to see that1 − K

EÐB Ñ œ EÐBÑ1 1



and so

k k k kEÐB Ñ œ EÐBÑ1

that is,  is constant on conjugacy classes of .k kEÐBÑ K

WÐ=Ñ

If , then we have seen that= − \

\ fw © = Ð=Ñ

Conversely, if  for , thenB − Ð=Ñ = −f \

Ð=BÑ œ =B=B œ B B œ "# "

and so . Hence,> œ =B − \ w

\ fw œ = Ð=Ñ

and so

k k k kf fÐ=Ñ œ = Ð=Ñ œ 8  "

The Fundamental Relation
Now we can count the size of the set

Y œ ÖÐ=ß BÑ − ‚ ± B œ B ×\ f = "

in two ways. From the point of view of an ,= − \

k k k k�Y œ Ð=Ñ œ 8Ð8  "Ñ
=−\

f

From the point of view of an ,B − f

k k k k�Y œ EÐBÑ
B−f

Thus,

8  8 œ EÐBÑ#

B−

� k k
f

(9.1)

To split up the sum on the right, we choose a system of distinct representatives
(SDR)

Q œ ÖB ß B ßá ß B ×! " >

for the conjugacy classes of , whereK

1) ÖB œ "×!

2)  is an SDR for the conjugacy classes in ÖB ßá ß B ×" ? \
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3)  is an SDR for the conjugacy classes in ÖB ßá ß B × Ï?" @
wf \

Then since  is constant on conjugacy classes and sincek kEÐBÑ¸ ¸B œ ÐK À GÐBÑÑK , equation (9.1) can be written

8  8 œ EÐB Ñ ÐK À GÐB ÑÑ#

3œ!

@

3 3� k k
Splitting this sum further gives

8  8 œ 8  EÐB Ñ ÐK À GÐB ÑÑ  EÐB Ñ ÐK À GÐB ÑÑ

Ÿ 8  Ð GÐB Ñ  "ÑÐK À GÐB ÑÑ  GÐB Ñ ÐK À GÐB ÑÑ

Ÿ 8  ? K  ÐK À GÐB ÑÑ  Ð

#

3œ" 3œ?"

? @

3 3 3 3

3œ" 3œ?"

? @

3 3 3 3

3œ"

?

3

� �k k k k
� �k k k k

k k � @  ?Ñ K

œ 8  @ K  B

œ @ K

k k
k k � ¸ ¸

k k 3œ"

?

3
K

and so

8  8 Ÿ @ K# k k (9.2)

To get further estimates, note that

8 œ œ ÐK À GÐB ÑÑk k �\
3œ"

?

3 (9.3)

Now, if we assume that the center  of  has odd order, then it contains no^ÐKÑ K
involutions and so  for . Hence, if  is the smallest indexGÐB Ñ  K B − 73 3 \
among all  subgroups of , we haveproper K

8 œ   7?k k\ (9.4)

We can make a similar estimate for

k k �f œ "  8  ÐK À GÐB ÑÑ
3œ?"

@

3

and since , the terms in the final sum satisfyB − Ï3
wf \

ÐK À GÐB ÑÑ œ ÐK À G ÐB ÑÑÐG ÐB Ñ À GÐB ÑÑ œ #ÐK À G ÐB ÑÑ3 3 3 3 3
‡ ‡ ‡

Therefore, if we assume that  is also proper in , thenG ÐB Ñ K‡
3



ÐK À GÐB ÑÑ   #73

and so

k kf   "  8  #7Ð@  ?Ñ (9.5)

The condition that  is proper in  is a bit awkward, but is satisfied if weG ÐB Ñ K‡
3

assume that  has no subgroups of index .K #

The inequalities (9.4) and (9.5) together imply that

@ Ÿ
 "  8

#7

k kf
and so (9.2) implies that

8  8 Ÿ K
 "  8

#7
# k k k kf

Some elementary algebra, using the fact that , givesk k k kf Ÿ K

7 Ÿ  " œ
" K K K Î8  "

# 8 8 #
Œ 7Œ 7 Œ 7k k k k k k

We have proved a key theorem.

Theorem 9.6 R.  and K. A.  [4], 1955  Let  be a group of( )Brauer Fowler K
even order with exactly  involutions. Assume that  has odd order.8   " ^ÐKÑ
Then either  has a subgroup of index  which must be normal  or  has aK # K( )
proper subgroup  withL

ÐK À LÑ Ÿ
K Î8  "

#
Œ 7k k

Equation (9.3) implies that for any involution , which we can assume is , we, B"

have

8 " "

K GÐB Ñ GÐ,Ñ
œ  k k k k k k�

3œ"

?

3

that is,

k k k kK

8
Ÿ GÐ,Ñ

Hence, if  fails to have a (normal) subgroup of index , then it has a subgroupK #
L  for which
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ÐK À LÑ Ÿ
GÐ,Ñ  "

#
Œ 7k k

Since  is a proper subgroup of , it follows that the normal interior  is aL K L‰

proper  subgroup with . In particular, if  is simple,normal ÐK À L Ñ ± ÐK À LÑx K‰

then  and so9ÐKÑ ± ÐK À LÑx

9ÐKÑ x
GÐ,Ñ  "

#
º Œ 7k k

Thus, we arrive at our final goal.

Theorem 9.7 Let  be a finite nonabelian simple group and let  be anK , − K
involution. Then the centralizer  is a  subgroup of  andGÐ,Ñ Kproper

9ÐKÑ x
GÐ,Ñ  "

#
º Œ 7k k

This is the result that we promised at the beginning of this section and is as far
as we propose to take our discussion of the classification problem for
nonabelian finite simple groups.

Exercises
1. Let  be a group.K
 a) Under what conditions does the set  of elements of  ofW œ ∪ Ö"× K\

exponent  form a subgroup of ?# K
 b) Under what conditions does the set  form a normal subgroup of ?W K
 c) If  is a subgroup of , what can you say about the strongly realW K

elements of the group?
2. Prove that  is closed under conjugation.f
3. Prove that if a finite group  has a nontrivial real element, then  has evenK K

order.
4. Find the real elements in the symmetric group . Find the strongly realW8

elements.
5. In the alternating group , show that any permutation that is a product ofE8

disjoint cycles of length congruent to  modulo  is real." %
6. Find the real elements of the dihedral group . Find the strongly realH#8

elements.
7. Find the real elements of the quaternion group . Find the strongly realU

elements.



Chapter 10
Finiteness Conditions

There are many forms of finiteness that a group can possess, the most obvious
of which is being a finite set. However, as we have observed, chain conditions
are also a form of finiteness condition. Another type of finiteness condition on a
group  is the condition that  has a finite direct sum decompositionK K

K œ H  â  H" 8

that cannot be further refined by decomposing any of the factors  into a directH3

sum; that is, for which each  is . In this chapter, we exploreH3 indecomposable
these finiteness conditions. First, however, we generalize the notion of a group.

Groups with Operators
As we have seen, a group  has several important families of subgroups, inK
particular, the families of all subgroups, all normal subgroups, all characteristic
subgroups and all fully-invariant subgroups. Each of these families can be
characterized as being the family of all subgroups that are  under ainvariant
certain subset of . In particular, a subgroup  of  isEndÐKÑ L K

1) normal if and only if it is invariant under ,InnÐKÑ
2) characteristic if and only if it is invariant under ,AutÐKÑ
3) fully invariant if and only if it is invariant under .EndÐKÑ

We can also say that the subgroups of  are invariant under the empty subset ofK
EndÐKÑ.

This point of view leads us to define the concept of ,groups with operators
which will include all of these special cases. Intuitively speaking, a group with
operators is a group  with a distinguished family  of endomorphisms of .K KX
Rather than associate a subgroup of  with  directly, we use a functionEndÐKÑ K
0À Ä ÐKÑ ÐKÑH HEnd End from a set  into . Here is the formal definition.
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Definition Let  be a set. An  is a pairH H-group

ÐKß 0 À Ä ÐKÑÑH End

where  is a group and  is a function. It is customary to denoteK 0À Ä ÐKÑH End
the endomorphism  simply by  and thus write  as  some authors0Ð Ñ 0Ð Ñ+ += = = = (
write . An -group is called a  and  is called the+=) H Hgroup with operators
operator domain. Let  be an -group.K H
1  An   of  is an -invariant subgroup  of . We use the) H-subgroup L K L KH

notations  and  to denote an -subgroup and a normal -L Ÿ K L KH Hü H H
subgroup of , respectively. We also use the notationsK

H H- and -sub norÐKÑ ÐKÑ

to denote the set of all -subgroups of  and the set of all normal -H HK
subgroups of , respectively.K

2  If  and  are -groups, an  from  to  is a) K L K LH H-homomorphism
homomorphism  that is compatible with the group operators,5À K Ä L
that is,

5 = = 5Ð +Ñ œ Ð +Ñ

for all . A bijective -homomorphism is an , and+ − K H H-isomorphism
similarly for the other types of homomorphisms. We write  to5À K ¸ LH

denote an -isomorphism from  to . The existence of an -isomorphismH HK L
from  to  is denoted by .K L K ¸ LH

3  If - , then the  or  is the) nor ( )L − ÐKÑH H H-quotient group -factor group
quotient group  with operators  defined byKÎL −= H

= =Ð+LÑ œ Ð +ÑL

for all , that is, defined so that the canonical projection  is an -+ − K 1 HL

homomorphism.

Let  be an -group. Then a subgroup  is an -ÐKß 0 À Ä ÐKÑÑ L Ÿ KH H HEnd
subgroup of  if and only if the restricted operatorsK

H = = Hl œ Ö0Ð Ñl ± − ×L L

are operators on , that is, if and only if  is an -group. We will alwaysL L lH L

think of an -subgroup  of  as an -group, although we will use notationH HL K lL
such as  in place of . Thus, -subgroupness is transitive,O Ÿ L O Ÿ LH HlL H

that is,

L Ÿ Kß O Ÿ L Ê O Ÿ KH H H

Note that an -subgroup  of  may be an operator group in other relatedH L K
ways. To illustrate, if , then  is an -group as well as anH Hœ ÐKÑ L lInn L

operator group under its own family  of inner automorphisms. But inInnÐLÑ
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general,  is a  subset of , since conjugation byInn InnÐLÑ ÐKÑlproper L

+ − K Ï L L need not be an inner automorphism of .

If  is the empty set, then an -group is nothing more than an ordinary groupH H
and it is customary to drop the prefix “ -”. Also, in the most important cases, H H
is a subset of  and  is the inclusion map, in which case End EndÐKÑ 0 À Ä ÐKÑ 0H
is suppressed. This applies to the cases ,  andH Hœ ÐKÑ œ ÐKÑInn Aut
H œ ÐKÑEnd .

Example 10.1 Let  be a vector space over a field . Each  defines anZ J − Jα
endomorphism of the abelian group  by scalar multiplication. Thus, a vectorZ
space over  is a group with operators . An -subgroup is a subspace and anJ J J
J -homomorphism is a linear transformation.

The Lattice of -Subgroups of an -GroupH H

Let  be an -group. Then the intersection and the join of any familyK H
Y H Hœ ÖL ± 3 − M× K K3  of -subgroups of  is also an -subgroup of . Hence, the
meet and join in  is the same as the meet and join in . In otherH-sub subÐKÑ ÐKÑ
words, -  is a complete sublattice of .H sub subÐKÑ ÐKÑ

We leave it to the reader to show that the -subgroup  generated by aH Ø\ÙH
nonempty subset  of  is\ K

Ø\Ù œ Ø B ± B − \ß − ÙH = = H

An -subgroup  of an -group  is if  forH HL K L œ Ø\Ùfinitely -generated H H

some finite set . This generalizes the normal closure of a subset  of .\ \ K

The -Isomorphism and -Correspondence TheoremsH H

The concept of universality given in Theorem 4.5 and the consequent
isomorphism theorems have direct generalizations to groups with operators. Let
K O Ÿ K ÐKàOÑ be a -group and let . Let  be the family of all pairsH YH H

ÐLß ÀK Ä LÑ ÀK Ä L O © Ð Ñ5 5 H 5, where  is an -homomorphism and .ker
Then the pair

ÐKÎOß ÀK Ä KÎOÑ1O

is universal in , in the sense that for any pair  inY 5HÐKàOÑ ÐLß ÀK Ä LÑ
Y H 7HÐKàOÑ À W Ä L, there is a unique mediating -homomorphism  for which

7 1 5‰ œO

To see this, note that Theorem 4.5 guarantees the existence of a mediating
homomorphism . But if  and  are -homomorphisms, then for any 7 1 5 H = HO −
and ,+ − K

7 = 7 = 5 = = 5 =7Ð Ð+OÑÑ œ ÐÐ +ÑOÑ œ Ð +Ñ œ Ð +Ñ œ Ð+OÑ

and so  is also an -homomorphism. Also, -universality enjoys the same7 H H

Finiteness Conditions



uniqueness up to isomorphism as ordinary universality ( ). The -H Hœ g
isomorphism theorems now follow in the same manner as before.

Theorem 10.2 The   Let  be an -group.( )H-isomorphism theorems K H
1   Every -homomorphism ) ( )First -isomorphism theoremH H 5À K Ä L

induces an -embedding  defined byH 5 5 äÀ KÎ Ð Ñ Lker

5 5 5Ð1 Ð ÑÑ œ Ð1Ñker

and so

K

Ð Ñ
¸ Ð Ñ

ker 5
5H im

2   If -  with ,) ( ) subSecond -isomorphism theoremH LßO − ÐKÑ O KH ü
then -  andL ∩O − ÐLÑH nor

LO L

O L ∩O
¸H

3   If  with - ,) ( ) norThird -isomorphism theoremH L Ÿ O Ÿ K LßO − ÐKÑH
then -  andOÎL − ÐKÎLÑH nor

K O K

L L O
¸„ H

4   Let . If -) ( ) -nor subThe -correspondence theoremH R − ÐKÑ ÐRàKÑH H
denotes the lattice of all -subgroups of  that contain , then the mapH K R
1À ÐRàKÑ Ä ÐKÎRÑsub sub  defined by

1ÐLÑ œ LÎR

preserves -invariance in both directions and so maps -H H subÐRàKÑ
bijectively onto - .H subÐKÎRÑ

H H-Series and -Subnormality
We can now generalize the notion of series and subnormality to groups with
operators. This will provide considerable time savings in our later work.

Definition Let  be an -group.K H
1  An  in  is a series) H-series K

Z ü ü üÀ K K â K! " 8

in which every term is an -subgroup of .H K
2  A  of an -series  is an -series  obtained from  by) refinement H Z H [ Z

including zero or more additional -subgroups between the endpoints. AH
proper refinement is a refinement that includes at least one new
subgroup.
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We review the usual suspects in the context of -series:H
a  If , an -series is just a series.) H Hœ g
b  If , an -series is a normal series.) InnH Hœ ÐKÑ
c  If , an -series is a characteristic series.) AutH Hœ ÐKÑ
d  If , an -series is a fully invariant series.) EndH Hœ ÐKÑ

Of course, if  is a nonproper -series for , we can  the series byÖK × K3 H dedup
removing any duplicate subgroups to obtain a proper series.

Definition Let  be an -group. Two equal-length -seriesK H H

Z ü ü ü üÀ K K â K K! " 8" 8

and

[ ü ü ü üÀL L â L L! " 8" 8

in  with common endpoints  and  are  alsoK K œ L K œ L! ! 8 8 H-isomorphic (
called  if there is a bijection  of the index set  forH-equivalent) 0 Ö!ßá ß 8  "×
which

K ÎK ¸ L ÎL3" 3 0Ð3Ñ" 0Ð3ÑH

As usual, when , we use the term . Thus, for example, theH œ g isomorphic
series

Ö"× – G – ÐG  G Ñ: : ;

and

Ö"× – G – ÐG  G Ñ; : ;

are isomorphic.

H-Subnormality
H-subnormality of a subgroup  requires not just that  be subnormalL Ÿ K LH

and -invariant, but that the  that witnesses subnormality be an -H Hentire series
series.

Definition Let  be an -group. An -subgroup  of  is  in ,K L K KH H H-subnormal
denoted by , if there is an -series from  to . We use theL K L Küü HH

notations

subn subnH HÐKÑ ÐRàKÑand

to denote the family of all -subnormal subgroups of  and the family of all -H HK
subnormal subgroups of  that contain , respectively.K R

We can now generalize Theorem 4.24.
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Theorem 10.3 Let  be an -group and let .K LßO − ÐKÑH H-sub
1  ) ( )Transitivity

L O O K Ê L Küü üü üüH H Hand

2   If , then) ( ) -subIntersection P − ÐKÑH

L O Ê L ∩ P O ∩ Püü üüH H

In particular,

L Ÿ O Ÿ Kß L K Ê L Oüü üüH H

and

L Kß O K Ê L ∩O Küü üü üüH H H

3   If , then) ( ) -norNormal lifting R − ÐKÑH

L O Ê LR ORüü üüH H

4   If  and , then) ( ) -norQuotient/unquotient R − ÐOÑ R Ÿ L Ÿ OH

L O Í LÎR OÎRüü üüH H

Composition Series
If , then refinement is a partial order on the set of all  -K ßK Ÿ K! 8 H proper H
series from  to  (assuming that this set is nonempty). Maximal proper -K K! 8 H
series are particularly important.

Definition Let  be an -group and let . An K K ßK Ÿ KH ! 8 H H-composition
series from  to  is a proper -seriesK K! 8 H

K – K –â – K! " 8

that is maximal in the family of all proper -series from  to , underH K K! 8

refinement. If there is an -composition series from  to , we will writeH K K! 8

b ÐK àK Ñ b ÐK Ñ K œ Ö"×CompSer CompSerH H! 8 8 !or  when 

The factor groups of an -composition series are called H H-composition
factors.
1  A maximal series  is simply called a  and the) ( )H œ g composition series

factor groups are called .composition factors
2  A maximal normal series  in  is called a  or) ( Inn )H œ ÐKÑ K chief series

principal series chief factors principal and the factor groups are called  or 
factors.

When the endpoints of a series are clear from the description of the series, we
will drop the “from-to” terminology. To characterize maximal series, we use the
following concept.
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Definition A nontrivial -group  is  if  has no nontrivial properH K KH-simple
normal -subgroups.H

The -correspondence theorem implies the following.H

Theorem 10.4 A proper -series is an -composition series if and only if itsH H
factor groups are -simple.H

Thus, a series

ZÀ K – K –â – K! " 8

in  is a composition series if and only if its factor groups  are simpleK K ÎK5" 5

and  is a chief series if and only if each factor group  is a Z K ÎK5" 5 minimal
normal subgroup of .KÎK5

It is clear from Theorem 10.4 that any -series that is -isomorphic to an -H H H
composition series is also an -composition series. Also, if we remove anH
endpoint from an -composition series, the result is also an -compositionH H
series (with different endpoints, of course). Finally, if

K –â – K K –â – K! 5 5 8and

are -composition series in , then so is their concatenationH K

K –â – K! 8

The Extension Problem
An  of a pair  of groups is a group  that has a normalextension ÐRßUÑ K
subgroup  isomorphic to  and for which  is isomorphic to . TheR R KÎR Uw w

extension problem for the pair  is the problem of determining (up toÐRßUÑ
isomorphism) all possible extensions of . Note that any externalÐRßUÑ
semidirect product  is an extension of . However,K œ R U ÐRßUÑz)

semidirect products alone do not solve the extension problem. For example,  is™
an extension of  but  is not a semidirect of any of its nontrivial properÐ# ß Ñ™ ™ ™#

subgroups.

The importance of the extension problem can be clearly seen in the light of
composition series. Suppose that we can solve the extension problem and that
we can determine (up to isomorphism) all simple groups. The simple groups are
precisely the groups that have a composition series of length :"

Ö"× œ K – K! "

Next, for each , we solve the extension problem for all pairs of the formK"

ÐK ßL Ñ L K" " " #, where  ranges over the simple groups. The solutions  are
precisely the groups that have composition series of length :#
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K – K – K! " #

where . Continuing to extend by all possible simple groupsK ÎK ¸ L# " "

produces all possible groups that have composition series, and this includes all
finite groups. Thus, in particular, if we can solve the extension problem and if
we can determine all finite simple groups, we can determine all finite groups.
Unfortunately, a practical solution to the extension problem does not exist at this
time.

The Zassenhaus Lemma and the Schreier Refinement Theorem
Let  be an -group. Our next goal is to show that any two -series in  withK KH H
the same endpoints have refinements that are -isomorphic. This result is calledH
the  and has two extremely importantSchreier refinement theorem
consequences, as we will see.

First, let us recall that the projection

ÐE FÑ Ä ÐL OÑü ü

of  into  is the extensionE F L Oü ü

LÐE ∩OÑ LÐF ∩OÑü

Moreover, when , ,  and  are -subgroups, then so are  andE F L O LÐE ∩OÑH
LÐF ∩OÑ and the Zassenhaus lemma (Theorem 4.12) generalizes directly to
H-subgroups.

Theorem 10.5  [37], 1934  Let  be an -group and let( )Zassenhaus lemma K H

E F L Oü üand

where - . Then the reverse projectionsEßFßLßO − ÐKÑH sub

ÐE FÑ Ä ÐL OÑ ÐL OÑ Ä ÐE FÑü ü ü üand

have -isomorphic factor groups, that is,H

LÐF ∩OÑ EÐO ∩ FÑ

LÐE ∩OÑ EÐL ∩ FÑ
¸H

Now we can prove the Schreier refinement theorem. Let  be -L Ÿ O H
subgroups of an -group  and consider a pair of -series from  to :H HK L O

Z ü ü üÀL œ K K â K œ O! " 8

and

[ ü ü üÀL œ L L â L œ O! " 7

Projecting each of the  steps of  into each of the  steps of  creates a new7 8[ Z
H-series with  steps, some of which may be trivial. In view of the preceeding78
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remarks, the new -series is a refinement of . Similarly, projecting each of theH Z
8 K 7 78 steps of  into each of the  steps of  creates a new -series with [ H
steps. Moreover, since the two sets of projections consist of inverse pairs, the
Zassenhaus lemma implies that the resulting series are -isomorphic.H

Theorem 10.6  [29], 1928 ,  Let  be( )Schreier refinement theorem Schreier K
an -group. Then any two -series in  with the same endpoints have -H H HK
isomorphic refinements.

Consequences of the Schreier Refinement Theorem
The Schreier refinement theorem has two very important consequences. First,
suppose that there is an -composition series  in  from  to . Then anyH V K L O
proper -seriesH

[ÀL – L – â – L! " 8

with -subnormal endpoints between  and  can be refined to an -H HL O
composition series. To see this, note that since  and  are -subnormal, theL L! 8 H
series  can be expanded to an -series  from  to  and the Schreier[ H ^ L O
refinement theorem implies that  and  have -isomorphic refinements toV ^ H
proper series  and , respectively. But  is an -composition series andV ^ V V Hw w w œ
therefore so is , which contains a refinement of .^ [w

The second consequence of the Schreier refinement theorem is that any two -H
composition series with the same endpoints are -isomorphic.H

Theorem 10.7 Let  be an -group and let  be -subgroups of .K L Ÿ O KH H
1  Suppose that there is an -composition series from  to  of length . If) H L O 8

L Ÿ L K L O! 8 are -subnormal subgroups of  between  and , then any -H H
series from  to  can be refined to an -composition series and so hasL L! 8 H
length at most .8

2   Every two -composition series from ) ( )The Jordan–Hölder Theorem H L
to  are -isomorphic. In particular, they have the same length.O H

The Jordan–Hölder Theorem allows us to make the following definition.

Definition Let  be an -group and let  and  be -subgroups of . IfK L O KH H
b ÐLàOÑ .ÐLßOÑ L OCompSerH , then the   from  to  isH-composition distance
the length of any -composition series from  to . The distanceH L O
.ÐOÑ œ .ÐÖ"×ßOÑ O is called the  of . For chief series,H-composition length
the terms  and  are also employed.chief distance chief length

Of course, the composition distance is  (when it is defined), thatpositive definite
is, if , then  andb ÐL OÑ .ÐLßOÑ   !CompSerH à

.ÐLßOÑ œ ! Í L œ O
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The Existence of -Composition SeriesH

Any finite group has an -composition series. For  groups, compositionH abelian
series and chief series coincide and an abelian group has a composition series if
and only if it is finite, since each factor group must have prime order. Thus, not
all groups have composition or chief series.

The existence of an -composition series between -subnormal subgroups H H L
and  of an -group  can be characterized in terms of chain conditions on -O KH H
subnormal subgroups. If , then any -series from  to b ÐLàOÑ L OCompSerH H
has length at most . Hence, Theorem 1.5 gives the following..ÐLßOÑ

Theorem 10.8 Let  be an -group and let . ThenK LßO − ÐKÑH subnH

b ÐLàOÑ Í ÐLàOÑCompSer subnH H  has BCC

Proof of the following is left to the reader.

Theorem 10.9 Let  be an -group.K H
1   If  and , then) ( ) subnSubgroup O − ÐKÑ L Ÿ OH

b ÐL KÑ Ê b ÐLàOÑ b ÐOàKÑCompSer CompSer CompSerH H Hà  and 

and

.ÐLßKÑ œ .ÐLßOÑ  .ÐOßKÑ

2   If , then) ( ) -norQuotients R − ÐKÑH

b ÐR KÑ Í b ÐKÎRÑCompSer CompSerH Hà

and

.ÐRßKÑ œ .ÐKÎRÑ

3   If , then) ( ) -norExtensions R − ÐKÑH

b ÐRÑß b ÐKÎRÑ Ê b ÐKÑCompSer CompSer CompSerH H H

4   If  and  are -groups, then) ( )Direct products K L H

b ÐKÑ b ÐLÑ Í b ÐK LÑCompSer CompSer CompSerH H H and }

and

.ÐK LÑ œ .ÐKÑ  .ÐLÑ{

The Remak Decomposition
Let us recall Theorem 5.12.
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Theorem 10.10 If a group  has either and therefore both  chain( ) ( )Remak K
condition on direct summands, then  has a Remak decompositionK

K œ V  â  V" 8

that is, each  is indecomposible.V5

The question of uniqueness of a Remak decomposition is rather more
complicated than the question of existence. Recall that if

K œ L  â  L" 8

then the th projection map  is defined by5 ÀK Ä L3L 55

3L L5 5
Ð+Ñ œ Ò+Ó

where  is the th coordinate of . Moreover,  is idempotent and normalÒ+Ó 5 +L L5 3
3

as an endomorphism of . Note also that the sum  is projectionK â3 3L L3 3" 5

onto  and so is an endomorphism of .L  â  L K3 3" 54

The Krull–Remak–Schmidt Theorem
Suppose now that

K œ L  â  L" 8 (10.11)

with projection maps  and1 1L L" 8
ßá ß

K œ O  â  O" 7 (10.12)

with projection maps , where the factors  and  are, ,O O 5 5" 7
ßá ß L O

indecomposable and .8 Ÿ 7

In searching for possible isomorphisms between the -factors and the -L O
factors, we recall Theorem 5.25 as it applies to the restricted projection maps

1 ,L O 4 3 O L 3 43 4 4 3
l ÀO Ä L l ÀL Ä Oand

Namely, if Aut  and im , then  andÐ l ÑÐ l Ñ − ÐL Ñ Ð l Ñ O l1 , , ü 1L O O L 3 O L 4 L O3 4 4 3 4 3 3 4

,O L4 3
l  are isomorphisms.

Note however that , since if  and , thenimÐ l Ñ O 2 − L 5 − O, üO L 4 3 44 3

5Ò l Ð2ÑÓ5 œ Ð5Ñ Ð2Ñ Ð5Ñ œ Ð525 Ñ − Ð l Ñ, , , , , ,O L O O O O O L
" " "

4 3 4 4 4 4 4 3
im

Thus, we have the following.

Theorem 10.13 Let

K œ L  â  L œ O  â  O" 8 " 7

where the factors  and  are indecomposable. If the compositionL O5 5
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α 1 ,3ß4 L O O L 3 3œ Ð l Ñ ‰ Ð l ÑÀL Ä L
3 4 4 3

of the restricted projection maps is an automorphism of , then the mapsL3

1 ,L O 4 3 O L 3 43 4 4 3
l ÀO ¸ L l ÀL ¸ Oand

are isomorphisms.

In attempting to show that a composition is an automorphism, we are reminded
of Fitting's lemma. We have assumed that  is indecomposable. Also, since theL3

restriction and composition of normal maps is normal,  is normal and so hasα3ß4

normal higher images. Thus, if we assume that  has BCC on normalK
subgroups, then Fitting's lemma implies that  is either nilpotent or anα3ß4

automorphism for all .3ß 4

To see that for each , not all of the maps  can be nilpotent, note that for3 α3ß4

4 Á 5,

α α 1 , 1 , 1 , ,3ß4 3ß5 L O L O L L O O L œ Ð  Ñl œ Ð  Ñl
3 4 3 5 3 3 4 5 3

which is an endomorphism of  and so the images  and L Ð Ñ Ð Ñ3 3ß4 3ß5im imα α
commute elementwise. Also,

1 , 1 , 1 , , 1L O L O L O O L3 " 3 7 3 " 7 3
â œ Ð â Ñ œ

and so

α α 1 +3ß" 3ß7 L L Lâ œ l œ
3 3 3

which is not nilpotent. Hence, Theorem 4.3 implies that  is not nilpotent forα3ß4

some . It follows from Fitting's lemma that for each , there is a  for which4 3 4
α3ß4 3− ÐL ÑAut  and so

1 ,L O 4 3 O L 3 43 4 4 3
l ÀO ¸ L l ÀL ¸ Oand

Now, we can make a significant improvement to this by noticing that if
O œ L 5 Á 34 5 for some , then

α 1 , 1 ,3ß4 L O O L L L L Lœ Ð l ÑÐ l Ñ œ Ð l ÑÐ l Ñ œ !
3 4 4 3 3 5 5 3

and so if we delete from the sum  all terms indexed by a  for which�
4 3ß4α 4

O − ÖL ßá ßL × Ï ÖL ×4 " 8 3 , the sum remains unchanged and so is not nilpotent.
Hence,

1 ,L O 4 3 O L 3 43 4 4 3
l ÀO ¸ L l ÀL ¸ Oand

for some  for which .4 O Â ÖL ßá ßL × Ï ÖL ×4 " 8 3

Now suppose that after possible reindexing of the 's, there is a  forO 5   "
which
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K œ O  â  O  L  â  L" 5" 5 8 (10.14)

with projections , where. ." 8ßá ß

- ,3 O L 3 3³ l ÀL ¸ O
3 3

for all . We may also assume that  for all  or else" Ÿ 3 Ÿ 5  " L Á O 4   55 4

we can replace  by  (reindexed to . This certainly holds for .L O O Ñ 5 œ "5 4 5

Then there is a  and we may assume that , for which4   5 4 œ 5

1 - ,L O 5 5 5 O L 5 55 5 5 5
l ÀO ¸ L ³ l ÀL ¸ Oand

Moreover, since  maps  isomorphically onto  and maps the1L 5 55
O L

complement

L œ L  â  L  L  â  LÐ5Ñ " 5" 5" 8

to , it follows thatÖ"×

L ∩O œ Ö"×Ð5Ñ 5

Thus, if we replace  by  in (10.14), the result is a direct sumL O5 5

K œ O  â  O  L  â  L" " 5 5" 8

and our goal is to show that . To this end, ifK œ K"

. . . . .Ð5Ñ " 5" 5" 8œ â  â

then  and the map. . +5 KÐ5Ñ œ

) , . .œ O 5 Ð5Ñ5

is a normal endomorphism of  with . To show that  isK Ð Ñ © O Lim ) )5 Ð5Ñ

surjective and so , it is sufficient to show that  is injective.K œ O L5 Ð5Ñ )

Now, any  has the form  for  and . But for any+ − K + œ B2 B − L 2 − LÐ5Ñ 5

B − LÐ5Ñ,

) , . .ÐBÑ œ ÐBÑ ÐBÑ œ BO 5 Ð5Ñ5

and any ,2 − L5

) , . . ,Ð2Ñ œ Ð2Ñ Ð2Ñ œ Ð2ÑO 5 OÐ5Ñ5 5

and so

) ,ÐB2Ñ œ B Ð2ÑO5

and since , it follows that  implies  andL ∩O œ Ö"× ÐB2Ñ B œ "Ð5Ñ 5 )

, , )O O L 5 55 5 5
Ð2Ñ œ " l ÀL ¸ O 2 œ "Þ. But  and so  Thus,  is injective.
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It follows that

K œ O  â  O  L  â  L" 5 5" 8

for all  and  and so this holds for all" Ÿ 5 Ÿ 8 œ l ÀL ¸ O- ,5 O L 5 55 5

5 œ "ßá ß8 8 œ 7. In particular, .

Note also that since , the map,O 3 33
ÐL Ñ œ O

- - 1 - 1 , 1 , 1œ â œ â" L 8 L O L O L" 8 " " 8 8

is a surjective normal endomorphism of  and so . Moreover,K − ÐKÑ- Aut

-ÐL Ñ œ O5 5

We can now summarize.

Theorem 10.15 The   Let  be a group that( )Krull–Remak–Schmidt Theorem K
has BCC on normal subgroups. Suppose that

K œ L  â  L œ O  â  O" 8 " 7

where all factors  and  are indecomposable. Then  and there is aL O 8 œ 73 4

reindexing of the 's and a normal automorphism  of  for whichO K3 -

-ÀL ¸ O3 3

for all  and for each ,3 œ "ßá ß 8 " Ÿ 5 Ÿ 8

K œ O  â  O  L  â  L" 5 5" 8

True Uniqueness
The Krull–Remak–Schmidt Theorem gives uniqueness of the terms of a Remak
decomposition up to isomorphism. Let us now consider the question of when a
group  has an  Remak decomposition, that is, a RemakK essentially unique
decomposition that is unique up to the order of the factors. First suppose that

K œ L  â  L œ O  â  O" 8 " 8

are Remak decompositions of  (where ). Then the Krull–Remak–K 8  "
Schmidt Theorem implies that there is a normal automorphism  for-À K Ä K
which  (after reindexing). Hence, if  is invariant under every-L œ O L5 5 5

normal automorphism of , then  and so  for all K O œ L Ÿ L O œ L 55 5 5 5 5-
and  has an essentially unique Remak decomposition.K

By way of converse, suppose that  has an essentially unique RemakK
decomposition

K œ L  â  L" 8

with projections , but that there is a normal   of Ö ßá ß × K1 1 -" 8 endomorphism
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for which . Then there is a  for which  on , that is,- 1 -L Ÿy L 5  " Á ! L" " 5 "

there is an  for which .B − L " Á ÐBÑ − L" 5 51 -

The set

O œ Ö2 † Ð2Ñ ± 2 − L ×" 5 "1 -

is easily seen to be a normal subgroup of  and , sinceK O Á L" "

B † ÐBÑ − O Ï L1 -5 " "

But it is easy to see that

K œ O  L  â  L" # 8

Moreover, if  is decomposable, then there would be a Remak decompositionO"

of  consisting of more than  terms, which is false. Hence, this is a RemakK 8
decomposition of  that is distinct from the previous decomposition. We haveK
proved the following.

Theorem 10.16 Let  have BCC on normal subgroups and letK

K œ L  â  L" 8

be a Remak decomposition of . The following are equivalent:K
1  This Remak decomposition of  is essentially unique .) K
2   is invariant under all normal endomorphisms of .) L K5

3   is invariant under all normal automorphisms of .) L K5

If  is a nonzero homomorphism, then we can build a normalαÀL Ä ^ÐKÑ3

endomorphism  by specifying that-À K Ä K

-
α

l œ
5 œ 3

! 5 Á 3L5 œ if 
if 

The map  is normal since for any , ,  where ,- + − K 2 − L 2 − L 5 Á 33 3 5 5

- - - - -Ð2 Ñ œ 2 œ Ð 2 Ñ Ð2 Ñ œ " œ Ð 2 Ñ3 5
+ + + +

3 3 5and

Thus, if  is not -invariant, then Theorem 10.16 implies that the RemakL3 -
decomposition of  is not unique.K

Conversely, suppose that the Remak decomposition of  is not unique and soK
there is a normal endomorphism  of  for which  for some .- 1 -K l Á ! 4 Á 34 L3

Then for  and ,2 − L 2 − L3 3 4 4

Ò Ð2 ÑÓ œ Ð2 Ñ œ Ð2 Ñ- - -3 3
2

3
2

4 4

which shows that . Hence,  is a nonzero- 1 -l ÀL Ä ^ÐKÑ l ÀL Ä ^ÐL ÑL 3 4 L 3 43 3

homomorphism.
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Theorem 10.17 Let  have BCC on normal subgroups and letK

K œ L  â  L" 8

be a Remak decomposition of .K
1  The following are equivalent:)
 a  This Remak decomposition of  is essentially unique.) K
 b  Every homomorphism  satisfies .) α αÀL Ä ^ÐKÑ ÀL Ä ^ÐL Ñ3 3 3

 c  There are no nonzero homomorphisms  for .) -ÀL Ä ^ÐL Ñ 3 Á 43 4

2  If  is either perfect or centerless, then  has an essentially unique Remak) K K
decomposition.

Proof. For part 2), if , then  for all  and so if K œ K L œ L 3 ÀL Ä ^ÐL Ñw w
3 3 43 -

for , then for ,4 Á 3 +ß , − L3

- - -ÐÒ+ß ,ÓÑ œ Ò +ß ,Ó œ "

and so . If  is centerless, the result is immediate.-l œ ! KL3

Exercises
1. Give an example of an infinite group with a composition series.
2. Find isomorphic refinements of the two series

Ö!× – : –™ ™

and

Ö!× – ; –™ ™

where  and  are distinct primes.: ;
3. Prove that if  and  are groups and ifK L

ZÀ Ö"× œ K – K –â – K œ K! " 8

and

[À Ö"× œ L – L –â – L œ L! " 7

are composition series for  and , respectively, then the seriesK L

ÐÖ"× Ö"×Ñ – ÐK Ö"×Ñ –â

– ÐK Ö"×Ñ – ÐK L Ñ –â – ÐK L Ñ

{ {

{ { {
"

8 8 " 8 7

is a composition series for .K L{
4. How many composition series does a cyclic group of order  have?:8

5. Prove that the multiset of composition factors of a group is an invariant
under isomorphism, but not a complete invariant.

6. Prove the uniqueness part of the fundamental theorem of arithmetic using
the Jordan–Hölder Theorem.

7. Let  be the direct product of  cyclic groups of prime order . HowK œ G 8 ::
8

many compositions series does  have? :  is a vector space.K KHint
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8. Prove that a subgroup of a group with a composition series need not have a
composition series as follows. Let  and let  be theM œ Ö"ß #ßá× K œ WÐMÑ

restricted symmetric group on . (Recall from an earlier exercise that this isM
the set of all permutations of  that have finite support.) For each , letM 8   "

K œ Ö − K ± B œ B B  8×8 5 5  for 

and let

L œ Ö − K ± l ×8 8 Ö"ßáß8×5 5  is even

 a) Show that .K œ K-
8" 8

 b) Show that  has index  in  and so .L œ L # K L K-
8" 8 ü

 c) Show that  is simple.L
 d) Show that  contains an infinite abelian subgroup .L E
 e) Show that  has no composition series but that  does.E L
9. Let  be an isomorphic-invariant property of finite groups. Let  be ac K

group that has  and for which if , then  has . Prove that thec ü cR K KÎR
following are equivalent:

 a)  has a normal seriesK

Ö"× œ K K â K œ K! " 8ü ü ü

whose factor groups have .c
 b)  has the property that any nontrivial quotient group of  has aK K

nontrivial normal subgroup that has .c
 Such a group  is said to be .K hyper-c
10. Prove the following facts:
 a) For any ,+ß , − K

Ò+,Ó œ Ò+Ó Ò,ÓL L L3 3 3

and so the projection map  is a homomorphism (and an35 5ÀK Ä L
endomorphism of ).K

 b) For any ,+ − K

+ œ Ò+Ó âÒ+ÓL L" =

 c) The projection map commutes with any inner automorphism  of #1 K
and therefore preserves normality.

11. Let  have BCC on normal subgroups and suppose that  is a group forK L
which . Show that .K K ¸ L L K ¸ L} }

Finiteness Conditions



Chapter 11
Solvable and Nilpotent Groups

Classes of Groups
By a   of groups, we mean a subclass of the class of all groups with theclass ^
following two properties:

1   contains a trivial group) ^
2   is closed under isomorphism, that is,) ^

K − L ¸ K Ê L −^ ^and

For example, the abelian groups form a class of groups. A group of class  is^
called a  and -group  that is a subgroup of a group  is called a ^ ^-group -^ L K
subgroup trivial class of . A class  is a  if it contains only one-elementK ^
groups.

Closure Properties
We will be interested in the following closure properties for a class  of groups:^

1  ) ( )Subgroup

K − ß L Ÿ K Ê L −^ ^

2)  For ,( )Intersection and Cointersection LßO Ÿ K

LßO − Ê L ∩O −

K K K

L O L ∩O
ß − Ê −

^ ^

^ ^

3   For ,) ( )Quotient and Extension R Kü

K − Ê KÎR −

RßKÎR − Ê K −

^ ^

^ ^
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4   For ,) ( )Seminormal Join, Normal Join and Cojoin LßO Ÿ K

LßO − ß K Ê LO −

LßO − ß K Ê LO −

K K K

L O LO
ß − Ê −

^ ^

^ ^

^ ^

one normal in 
both normal in 

5) ( )Direct product

LßO − Ê L O −^ } ^

These properties are not independent.

Theorem 11.1 The following implications hold for a class  of groups:^
1  subgroup intersection) Ê
2  quotient cojoin) Ê
3  seminormal join normal join direct product) Ê Ê
4  subgroup and direct product cointersection) Ê
Thus, a class that is closed under

subgroup, quotient, seminormal join, extension

is closed under all nine properties above.
Proof. Part 1) is clear. For part 2), we have

K K LO

LO L L
¸ −‚ ^

For part 3), the direct product  is the seminormal join of  andL O L Ö"×{ {
Ö"× O LßO − KÎLßKÎO −{ ^ ^ ^, each of which is in  if . For part 4), if ,
then

K K K

L ∩O L O
−ä } ^

via the map .5À 1ÐL ∩OÑ È Ð1Lß 1OÑ

The following definition will prove very convenient.

Definition Let  be a class of groups.^
1  A  is a series whose factor groups belong to the class .) ^ ^-series
2  A  is a group that has a -series and a  is a group that) ^ ^ ^= 8-group -group

has a normal -series.^
3  The  is the class of all -groups and the  is the class of) ^ ^= 8-class -class^=

all -groups.^8

Our main interest is in the  and  classes in which  is either the class of^ ^ ^= 8

cyclic groups or the class of abelian groups. However, we are also interested in
a class of groups that is not a  or  class, namely, the nilpotent groups.^ ^= 8
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Definition
1  a  A  is a series that has cyclic factor groups.) ) cyclic series
 b  An  is a series that has abelian factor groups.) abelian series
 c  A  for a group  is a normal series) central series K

Ö"× œ K K â K œ K! " 8ü ü ü

for which

K ÎK Ÿ ^ÐKÎK Ñ5" 5 5

for all .5
2  As shown in the table below, we have the following definitions.)

Series Normal Series
Abelian
Cyclic

Central

Solvable Solvable
Polycyclic Supersolvable

Nilpotent

œ

 a  A group is  if it has an abelian series.) solvable
 b  A group is  if it has a cyclic series.) polycyclic
 c  A group is  if it has a normal cyclic series.) supersolvable
 d  A group  is  if it has a central series.) K nilpotent

Note that in previous chapters (see Theorem 7.10), we have found it convenient
to use the term  even when the series does not start at the trivialcentral series
group, which requires that we distinguish carefully between series   andin K
series  .for K

As the title of this chapter suggests, our primary interest is in nilpotent and
solvable groups. It is clear that nilpotent groups are solvable. Also, all abelian
groups are nilpotent and Theorem 7.10 shows that all finite -groups are:
nilpotent:

finite -group
or

abelian
nilpotent solvable

:
Ê ÊG

Note, however, that  is solvable but not nilpotent. Also, the symmetric groupsW$

W 8  & 8   & W8 8 are solvable if and only if . In fact, if , then  has only one
nontrivial proper normal subgroup , which is not abelian.E8

Operations on Series
In order to study the closure properties of series-based classes of groups and of
the nilpotent class, we must consider various operations on series. Indeed, the
operations of intersection, normal lifting, quotient and unquotient as defined in



Theorem 4.10 can be applied to each step in a series. Specifically, we have the
following operations on series. Let

Z ü üÀ K â K! 8

be a series in .K

1) The  of  with  isintersection Z L Ÿ K

Z ü ü∩L À K ∩L â K ∩L œ L! 8

2) The  of  by  isnormal lifting Z üR K

Z ü üR À K R â K R! 8

3) The  of  by  isquotient Z üR K

Z
ü ü

R K R K R

R R R
À â

! 8

4) The  of the seriesunquotient

Z ü üÀ â
K K

R R
! 8

where  isR Ÿ K!

Z ü üÅ R À K â K! 8

5) For , the  of the seriesL Ÿ K3 concatenation

[ ü üÀ L â L! 7

and

^ ü üÀ L â L7 78

is the series

[ ^ ü ü ü ü‡ À L â L â L! 7 78

6  For the series)

[ ü üÀL â L! 8

and

Z ü üÀ K â K! 7

in , the   is formed as follows. First, ifK µinterleaved series [ Z
= œ Ö8ß7×max , then we extend whichever series is shorter by repeating
the upper endpoint (  or ) an appropriate number of times to make theL K8 7
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resulting series of equal length . Then=

[ Z { ü { ü { ü

{ ü { ü ü {

µ À ÐL K Ñ ÐL K Ñ ÐL K Ñ

ÐL K Ñ ÐL K Ñ â ÐL K Ñ
! ! " ! " "

# " # # = =

Note that the intersection, normal lifting, quotient, unquotient and interleave of
normal series is normal. However, the concatenation of two normal series need
not be normal.

These operations are used as follows.

Theorem 11.2 Let  be a group and let  and . LetK L Ÿ K R Kü
a   be a series for ) Z K
b   be a series for ) [ L
c   be a series for ) a R
d   be a series for .) d KÎR
Then
1    is a series for ) ( )Subgroup Z ∩L L
2    is a series for ) ( )Seminormal join a [‡ R LR
3    is a series for ) ( )Quotient ZRÎR KÎR
4    is a series for ) ( )Extension a d‡ Ð Å RÑ K
5   If  is a series for  for , then  is a) ( )Direct product Z Z Z3 3 " #K 3 œ "ß # µ

series for .K K" #{

Closure Properties of Groups Defined by Series
Theorem 4.10 and the previous theorems provide the following facts about
closure of -classes and -classes.^ ^= 8

Theorem 11.3 Let  be a class of groups.^
1   If  is closed under subgroup, then the  and  classes are) ( )Subgroup ^ ^ ^= 8

closed under subgroup.
2   If  is closed under quotient, then the -class is) ( )Seminormal join ^ ^=

closed under seminormal join.
3   If  is closed under quotient, then the  and  classes are) ( )Quotient ^ ^ ^= 8

closed under quotient.
4   The -class is closed under extension.) ( )Extension ^=

5   The  and  classes are closed under direct product.) ( )Direct product ^ ^= 8

In particular, if  is closed under subgroup and quotient, then the -class is^ ^=

closed under the following eight operations:
6  subgroup)
7  quotient)
8  intersection)
9  cointersection)
10  cojoin)
11  direct product)



12  seminormal join)
13  extension)
and the -class is closed under all of these operations except seminormal join^8

and extension.
Proof. For 1), if  is closed under subgroup, then (normal) -series are closed^ ^
under intersection and so the  and  classes are closed under subgroup. For^ ^= 8

2) and 3), if  is closed under quotient, then -series are closed under normal^ ^
lifting. Hence,  are -class isa [ ^‡ R  and -series. It follows that the Z ^RÎR =

closed under seminormal join and the  and  classes are closed under^ ^= 8

quotient. For 5), if  is a (normal) -series for , then  is a (normal)Z ^ Z Z3 3 " #K µ
^ {-series for .K K" #

Thus, since the classes of cyclic groups and abelian groups are closed under
subgroup and quotient, we have the following.

Theorem 11.4 The polycyclic, solvable and supersolvable classes are closed
under the following eight operations except where noted :( )
1  subgroup)
2  quotient)
3  intersection)
4  cointersection)
5  cojoin)
6  direct product)
7  seminormal join  except for supersolvable) ( )
8  extension except for supersolvable .) ( )

Let us now turn to the closure properties of nilpotent groups.

Theorem 11.5
1  Central series are closed under intersection, normal lifting, quotient and)

unquotient.
2  The class of nilpotent groups has the following seven closure properties:)
 a  subgroup)
 b  quotient)
 c  normal join this is Fitting's theorem, to be proved a bit later) ( )
 d  direct product)
 e  intersection)
 f  cointersection)
 g  cojoin)
 but not extension.
Proof. Part 1) follows from Theorem 4.10 and Theorem 4.11. The statement
about extensions in part 3) can be verified by looking at .W$
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Nilpotent Groups
We now undertake a closer look at nilpotent groups. We will prove that a finite
group  is nilpotent if and only if it is the direct product of -groups and soK :
Theorem 8.11 shows that finite nilpotent groups have many other interesting
characterizations.

Higher Centers
An extension  in  is central in  if and only ifL O K Kü

O K

L L
Ÿ ^Œ 7

and so the largest subgroup  of  for which  is central in  is theO K L O Kü
subgroup  for whichO

O K

L L
œ ^Œ 7

With this in mind, we define a function  on  by' 'œ ÐKÑK nor

^ œ
K ÐRÑ

R R
Œ 7 'K

for . Note also thatR Kü

'KÐRÑ K K

R R R
œ ^ «Œ 7

and so .'KÐRÑ « K

Writing  as , the proper series' '5 5ÐÖ"×Ñ Ð"Ñ

' ö ' ö ' ö! " #Ð"Ñ Ð"Ñ Ð"Ñ â

is called the  for  and each  is called a upper central series higherK Ð"Ñ'5

center of . The first higher center is the center  of .K ^ÐKÑ K

To see that the upper central series ascends more rapidly than any other central
series of the form

Ö"× œ K K K â! " #ü ü ü

we have  for all  and it is clear that'ÐK Ñ   K 55 5"

K Ÿ Ð"Ñ5
5'

holds for . If this holds for a particular value of , then the monotonicity5 œ ! 5
of  implies that'



K Ÿ ÐK Ñ Ÿ Ð Ð"ÑÑ œ Ð"Ñ5" 5
5 5"' ' ' '

Hence,  for all .K Ÿ Ð"Ñ 55
5'

Theorem 11.6 Let  be a nilpotent group. The upper central seriesK

' ö ' ö ' ö! " #Ð"Ñ Ð"Ñ Ð"Ñ â

for  is characteristic and ascends more rapidly than any other central seriesK
for , that is, ifK

Ö"× œ K K K â! " #ü ü ü

is central in , thenK

K Ÿ Ð"Ñ5
5'

for all .5   !
1   is nilpotent if and only if the upper central series reaches .) K K
2  If  is nilpotent, then all central series for  have length greater than or) K K

equal to the length of the upper central series for .K

The higher centers have some important applications.

Theorem 11.7 Let  be nilpotent, with higher centers .K Ð"Ñ'5

1  If , then) L Ÿ K

L Ð"Ñ L Ð"Ñ' ü '5 5"

2  If , then) R Kü

R ∩ Ð"Ñ œ Ö"× Ê R ∩ Ð"Ñ Ÿ ^ÐKÑ' '5 5"

As a consequence,
3   has the property that every subgroup is subnormal) K
4   has the center-intersection property) K
5  Every chief series for  is central.) K
Proof. For part 1), since , Theorem 3.41 implies thatÒKß Ð"ÑÓ Ÿ Ð"Ñ' '5" 5

ÒL Ð"ÑßL Ð"ÑÓ œ ÒL Ð"ÑßLÓÒL Ð"Ñß Ð"ÑÓ' ' ' ' '5 5" 5 5 5" L

But each factor on the right is contained in  and so .L Ð"Ñ L Ð"Ñ L Ð"Ñ' ' ü '5 5 5"

Part 3) follows from part 1), since we may lift the upper central series for  byK
L L K L K to get a series from  to , whence  is subnormal in .

For part 2), since  and , it follows thatÒ Ð"ÑßKÓ Ÿ Ð"Ñ ÒRßKÓ Ÿ R' '5" 5

ÒR ∩ Ð"ÑßKÓ Ÿ R ∩ Ð"Ñ œ Ö"×' '5" 5

and so . For part 4), there is a largest  for whichR ∩ Ð"Ñ Ÿ ^ÐKÑ 5'5"
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R ∩ Ð"Ñ œ Ö"× R ∩ Ð"Ñ ^ÐKÑ' '5 5" and so  is a nontrivial subgroup of . For
part 5), the factor group  of a chief series  for  is a minimal normalK ÎK K5" 5 Z
subgroup of the nilpotent group  and so the center-intersection propertyKÎK5

implies that  is central. Thus,  is central.K ÎK5" 5 Z

We can now augment Theorem 8.11 by adding the nilpotent condition.

Theorem 11.8 The following are equivalent for a finite group :K
1   is nilpotent.) K
2  Every Sylow subgroup of  is normal.) K
3   is the direct product of its Sylow -subgroups) K :

K œ  ]
:−

:
c

4  If , then) L Ÿ K

L œ  ÐL ∩ ] Ñ
:−

:
c

5   If , then  has a) ( )Strong converse of Lagrange's theorem 8 ± 9ÐKÑ K
normal subgroup of order .8

6   is the direct product of -subgroups.) K :
7  Every subgroup of  is subnormal.) K
8   has the normalizer condition.) K
9  Every maximal subgroup of  is normal.) K
10   is abelian.) KÎ ÐKÑF
Proof. Theorem 8.11 states that 2)–10) are equivalent. Moreover, Theorem 7.10
implies that a finite -group is nilpotent and therefore so is any direct product of:
finite -groups. Hence, 6) implies 1). Theorem 11.7 shows that 1) implies 7).:

Lower Centers
In terms of commutators, an extension  in  is central in  if and only ifL O K Kü

ÒOßKÓ Ÿ L

and so  is the smallest subgroup  of  for which  isL œ ÒOßKÓ O K L Oü
central in ; in fact, . Thus, if we define the “commutator with ”K ÒOßKÓ « O K
function  on  by> >œ ÐKÑK sub

>KÐOÑ œ ÒOßKÓ

then  is the smallest subgroup of  for which  is central in> >K KÐOÑ K ÐOÑ Ÿ O
K. The (possibly infinite) descending central series

â ÐKÑ ÐKÑ ÐKÑ œ Kö > ö > ö ># " !

is called the  for  and each  is called a lower central series lower centerK ÐKÑ>5

of . The first lower center is the commutator subgroup .K ÐKÑ œ K> w



An induction argument shows that the lower central series descends more
rapidly than any other central series, in the sense that if

â K K K œ Kü ü ü# " !

is central in , thenK

>5
5ÐKÑ Ÿ K

for all . For if , then the monotonicity of  implies that5   ! ÐKÑ Ÿ K> >5
5

> > > >5" 5
5 5"ÐKÑ œ Ð KÑ Ÿ ÐK Ñ Ÿ K

Theorem 11.9 Let  be a group. The lower central seriesK

â ÐKÑ ÐKÑ ÐKÑ œ Kö > ö > ö ># " !

for  is characteristic and descends more rapidly than any central series for ,K K
that is, if

â K K K œ Kü ü ü# " !

is central in , thenK

>5
5ÐKÑ Ÿ K

for all .5   !
1   is nilpotent if and only if the lower central series reaches .) K Ö"×
2  If  is nilpotent, then all central series for  have length greater than or) K K

equal to the length of the lower central series for .K

The commutator function  has some simple but useful properties that are>K

consequences of Theorems 3.40 and .3.41

Theorem 11.10 Let  be a group and let K L O Pß ß Kü .
1  ) > üLÐOÑ K
2  ) > >L OÐOÑ œ ÐLÑ
3   and ) > > > > > >L L L LO L OÐOPÑ œ ÐOÑ ÐPÑ ÐPÑ œ ÐPÑ ÐPÑ
4   is deflationary, that is,) >L

>LÐOÑ Ÿ L

In fact,

>LÐOÑ Ÿ L ∩O

Hence, for all ,5   "

> >L
5 5

KÐLÑ Ÿ ÐKÑ
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5  If  and , then for any ,) R K R Ÿ L ∩O 5   "ü

>
>5

OÎR

5
OŒ 7L

R R
œ

ÐLÑR

6  For ) 5   ",

>5
LOÐLOÑ œ â ÐFÑ$

E ßáßE ßF−ÖLßO×

E E

" 5

" 5
> >

Proof. Part 5) holds for  since5 œ "

>
>

OÎR
OŒ 7 ” •L L O ÒLßOÓR ÐLÑR

R R R R R
œ ß œ œ

and if it holds for a particular value of , then5

> >

>

>

>

OÎR
5" 5

OÎR

O
5

O
5

O
5"

Œ 7 ” •Œ 7
” •

L L O

R R R
œ ß

œ ß
ÐLÑR

R R

O

œ
Ò ÐLÑßOÓR

R

œ
ÐLÑR

R

and so this holds for all .5   "

For part 6), we have

>LOÐLOÑ œ ÐLÑ ÐLÑ ÐOÑ ÐOÑ œ ÐFÑ> > > > >L O L O

EßF−ÖLßO×

E$
and an easy induction proves the general formula.

Nilpotency Class
Theorem 11.9 and Theorem 11.6 imply that for a nilpotent group, the upper and
lower central series have the same length.

Definition Let  be a nilpotent group. The common length of the upper andK
lower central series is called the  of , which we denote bynilpotency class K
nilclassÐKÑ.

Moreover, if  is nilpotent andK

Z À Ö"× œ K –â – K œ K! 7

is a central series for  of length , thenK 7



> 'K K
75 5

5ÐKÑ Ÿ K Ÿ Ð"Ñ

for all , where  and  if .5 œ !ßá ß7 ÐKÑ œ Ö"× Ð"Ñ œ K 3   ÐKÑ> '3 3 nilclass

The nilpotent groups of class  are the trivial groups and the nilpotent groups of!
class  have  or equivalently,  and so are the nontrivial" ^ÐKÑ œ K K œ Ö"×w

abelian groups. A group  has nilpotency class  if and only if either of theK #
following conditions holds:

1   and , or equivalently,) Ö"×  K  K ÒK ßKÓ œ Ö"×w w

Ö"×  K Ÿ ^ÐKÑ  Kw

2   and) Ö"×  ^ÐKÑ  K

^ œ
K K

^ÐKÑ ^ÐKÑ
Œ 7

or equivalently,  is not abelian but  is abelian.K KÎ^ÐKÑ

Theorem 3.42 implies that  if and only ifK Ÿ ^ÐKÑw

ÒÒ+ß ,Óß -Ó œ Ò+ß Ò,ß -ÓÓ

for all . Hence, for nonabelian groups, this condition is equivalent to+ß ,ß - − K
being nilpotent of class .#

Theorem 11.11 Let  be nilpotent.K
1  If , then) L Ÿ K

nilclass nilclassÐLÑ Ÿ ÐKÑ

2  If , then) R Kü

nilclass nilclassÐKÎRÑ Ÿ ÐKÑ

3   The join of two normal nilpotent subgroups of a group) ( )Fitting's theorem
K LßO K is nilpotent. In fact, if , thenü

nilclass nilclass nilclassÐLOÑ Ÿ ÐLÑ  ÐOÑ

Proof. The first two parts follow from Theorem 11.10. For part 3), Theorem
11.10 implies that

>5
LOÐLOÑ œ â ÐFÑ$

E ßáßE ßF−ÖLßO×

E E

" 5

" 5
> >

for all . Now, suppose that 5   " nilclass nilclassÐLÑ œ - ÐOÑ œ . and  and let
5 œ -  .. Then each factor on the right above has the form
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P œ â ÐFÑ> >E E" -.

Among the subgroups , suppose there are  's and  's,E ßá ßE ßF 2 L 5 O" -.

where . Then either  or  and we may2  5 œ -  .  " 2   -  " 5   .  "
assume without loss of generality that . Since  is deflationary,2   -  " >O

removing all 's from the expression for  results in a possibly larger>O P
subgroup

Q œ
ÐOÑ F œ O

ÐLÑ F œ L
œ>

>

2
L
2"
L

if 
if 

However, in the former case,

> > > > > >2 2" 2" 2"
L L L LL OÐOÑ œ ÐOÑ œ ÐLÑ Ÿ ÐLÑ

and so

P Ÿ Q Ÿ ÐLÑ Ÿ ÐLÑ œ Ö"×> >2" -
L L

Hence,

>-.
LOÐLOÑ œ Ö"×

which implies that  is nilpotent of class at most .LO -  .

An Example
We now describe a family of groups showing that for any , there are-   !
nilpotent groups of nilpotency class . Let  be the family of all - ÐVÑ 8 ‚ 8`8

matrices over a commutative ring  with identity and let  be theV Y œ YXÐ8ßVÑ
unitriangular matrices over . (Recall that a matrix is  if it isV unitriangular
upper triangular, with 's on the main diagonal.) Denote the th entry in " Ð3ß 4Ñ Q
by . For , the th   of a matrix  are theQ 5   ! 5 QÐ5Ñ Q3ß4 superdiagonal
elements of the form .Q3ß35

For , let  be the set of all  matrices over  with 's on or! Ÿ 5 Ÿ 8  " R 8 ‚ 8 V !5

below the th superdiagonal, that is, for ,5 E − ÐVÑ`8

E − R Í E œ ! 4 Ÿ 3  55 3ß4  for all 

It is routine to confirm that

R R © R5 7 57"

In particular,

R R © R5 5 5

For , let5   !

Y œ ÖM×  R œ ÖM  E ± E − R ×5 5 5



To see that  is a subgroup of , we haveY Y5

Y Y œ ÐÖM×  R ÑÐÖM×  R Ñ © ÖM×  R R R R © Y5 5 5 5 5 5 5 5 5

and if , then since  for some , it follows thatE − R E œ ! ?   !5
?

ÐM  EÑ œ M  E E â„E − Y" # ?"
5

As to commutators, if  and , thenE − R F − R5 7

ÒM  Eß M  FÓ œ ÐM  EÑÐM  FÑÐÐM  FÑÐM  EÑÑ

œ ÐM  E F EFÑÐM  F E FEÑ

œ ÐM  \ÑÐM  ] Ñ

œ M  Ð\  ] ÑÐM  ] Ñ

"

"

"

"

where

\ œ EF EF ] œ F E FEand

Moreover,

\  ] œ EF FE − R57"

implies that  and soÒM  Eß M  FÓ − Y57"

ÒY ß Y Ó Ÿ Y5 7 57"

Taking  gives7 œ !

ÒY ßY Ó Ÿ Y Ÿ Y5 5" 5

which shows both that  is normal in  and that  is central in .Y Y Y – Y Y5 5" 5

Thus, the series

ÖM× œ Y –â – Y – Y œ Y8" " !

is central and so  is nilpotent of class at most .Y 8  "

On the other hand, let  denote the matrix with all s except for a  in theI ! "3ß4

Ð3ß 4Ñ 3 Á 4  "the position. Then for , an easy calculation shows that

ÒM  I ß M  I Ó œ M  I3ß4 4ß4" 3ß4"

In particular, if , then8   $

ÒM  I ß M  I Ó œ M  I"ß# #ß$ "ß$

and so . Also, if , then>ÐKÑ œ ÒKßKÓ Á ÖM× 8   %

ÒM  I ß M  I Ó œ M  I"ß$ $ß% "ß%

and so . More generally,> >#ÐKÑ œ Ò ÐKÑßKÓ Á ÖM×
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ÒM  I ß M  I Ó œ M  I Á M"ß8" 8"ß8 "ß8

and so , which shows that  is nilpotent of class .>8#ÐKÑ Á ÖM× Y 8  "

Solvability
We now turn to a discussion of solvable groups.

Perspective on Solvability
Solvable groups have played an extremely important role in the study of the
location of the roots of polynomials over a field . Let us pause to describe thisJ
role in general terms. For more details, we refer to reader to Roman, Field
Theory [27].

If  is a subfield of a field , we say that  is a .J I J Ÿ I field extension
Associated to each field extension  is a group , called the J Ÿ I K ÐIÑJ Galois
group of the extension and defined as the group of all (ring) automorphisms 5
of  that fix the elements of , that is, for which  for all . It turnsI J + œ + + − J5
out that the properties of the “simpler” Galois group can often shed considerable
light on properties of the “more complex” field extension.

To illustrate, one of the principal motivations for the development of abstract
algebra since, oh say 3000 B.C., has been the desire (expressed in one form or
another) to find the roots of a polynomial  with coefficients from a given:ÐBÑ
base field .J

In fact, we now know that for any nonconstant polynomial  of degree ,:ÐBÑ .
there is an extension  of , called an  of , that contains aJ J Jalgebraic closure
full set of  roots for . Moreover, lying between the fields  and  is the. :ÐBÑ J J
smallest field  containing these roots of , called a  for .I :ÐBÑ :ÐBÑsplitting field
The desire to express the roots of  by arithmetic formula (similar to the:ÐBÑ
quadratic formula) or to show that this could not be done is what motivated
Galois to first define some version of what we now know as a group.

The idea of expressing the roots of a polynomial   means that,:ÐBÑ by formula
starting with the elements of the base field , we can “capture” all of the rootsJ
of  through a finite number of special types of extensions of . In:ÐBÑ J
particular, for each extension, we are allowed to include an th root of an8
existing element and only whatever else is required in order to make a field.

Specifically, for the first extension, we may choose any  and any root? − J!

< œ ? B  ? 8   "! ! ! !
8È8! ! of the polynomial  where . Then the first extension is

J Ÿ JÐ ? ÑÈ8! !

where  is the smallest subfield of  containing  and . RepeatedJÐ ? Ñ J J <È8! ! !



extensions produce a tower of fields of the form

J Ÿ JÐ ? Ñ Ÿ JÐ ? ß ? Ñ Ÿ â Ÿ JÐ ? ßá ß ? ÑÈ È ÈÈ È8 8 8! ! !8" 58
! ! " ! 5

where each  is an element of the immediately preceeding field. This type of?3

tower of fields is called a . If all of the roots of a polynomial radical series :ÐBÑ
lie within a radical series over , then we say that the polynomial equationJ
:ÐBÑ œ ! J is . (For simplicity, we assume that  hassolvable by radicals
characteristic .)!

It is not hard to show that a polynomial equation  is solvable by:ÐBÑ œ !
radicals if and only if the roots of  can be captured within a finite tower of:ÐBÑ
fields

J Ÿ JÐ Ñ Ÿ JÐ ß Ñ Ÿ â Ÿ JÐ ßá ß Ñα α α α α" " # " 7

where each field has  degree over the previous field, that is, the dimensionprime
of each field as a vector space over the previous field is a prime number.

Now let  be the splittting field for  in . If the radical series above doesI :ÐBÑ J
capture the roots of , that is, if , then taking Galois:ÐBÑ I Ÿ JÐ ßá ß Ñα α" 7

groups (which reverses inclusion) gives the descending sequence

ZÀ K ÐIÑ   K ÐIÑ   â   K ÐIÑJ JÐ Ñ JÐ ßáß Ñα α α" " 7

But

K ÐIÑ  K ÐIÑ œ Ö ×JÐ ßáß Ñ Iα α" 7
+

and so the sequence  reaches the trivial group. Galois showed that (in modernZ
terminology)  is an abelian series and so  is solvable. Thus, GaloisZ K ÐIÑJ

proved that if  is solvable by radicals, then its Galois group  is:ÐBÑ œ ! K ÐIÑJ

solvable. He also proved the converse.

Now, an element  of the Galois group fixes the coefficients of ,5 − K ÐIÑ :ÐBÑJ

since they lie in . Hence,  must send a root  of  in  to another root ofJ < :ÐBÑ I5
:ÐBÑ I K ÐIÑ in , that is, the elements of  are  of the set of roots ofJ permutations
:ÐBÑ I I − K ÐIÑ in . Moreover, since  is generated by these roots, each  is5 J

uniquely determined by its behavior on these roots. Thus, one often thinks of
K ÐIÑ WJ 8 simply as a subgroup of the permutation group , where
8 œ Ð:ÐBÑÑdeg .

In fact, there are many cases in which , thought of as a subgroup of , isK ÐIÑ WJ 8

actually  itself. For example, it can be shown for any prime , the GaloisW :8

group of the splitting field of any irreducible polynomial  of degree0ÐBÑ − ÒBÓ
: W with exactly two nonreal roots is .:
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However,  is not solvable for , since  is simple and so the onlyW 8   & E8 8

nontrivial series for  is , which is not abelian. Thus, the roots ofW Ö × – E – W8 8 8+
the polynomials described above cannot be captured within a radical series, that
is, these polynomials are not solvable by radicals.

Note that this shows that there are  that are not solvableindividual polynomials
by radicals. Thus, not only is there no , similar to the quadratic,general formula
cubic and quartic formulas, for the solutions of arbitrary quintic equations, but
there are even individual quintic equations whose solutions are not obtainable
by formula!

Galois used his remarkable theory in his paper Memoir on the Conditions for
Solvability of Equations by Radicals of 1831 (but not published until 1846!), to
show that the general equation of degree  or larger is not solvable by radicals.&
(Proofs that the th degree equation is not solvable by radicals were offered&
earlier: An incomplete proof by Ruffini in 1799 and a complete proof by Abel in
1826.)

Thus, the notion of solvability arose through the desire to settle the question of
whether we could solve all polynomial equations by simple formula. Of course,
solvable groups are important for other reasons. In fact, we will see that the
class of solvable groups has a sort of super-Sylow theorem, to wit, if  isK
solvable  of order  where , then  has a Hall  subgroup of order78 Ð7ß 8Ñ œ " K ( )
7 7 and all subgroups of order  are conjugate.

The Derived Series
For any solvable group, there is an abelian series that descends more rapidly
than any other abelian series. Moreover, this series is also characteristic in . AK
series

Ö"× œ K K â K œ K! " 7ü ü ü

is abelian if and only if

K Ÿ K5"
w

5

for all , where the prime denotes commutator subgroup.5 œ !ßá ß7  "

Definition Let  be a group. The subgroups defined byK

K œ K K œ KÐ!Ñ Ð"Ñ w,  

and, in general for ,8   "

K œ ÐK ÑÐ8Ñ Ð8"Ñ w

are called the  of . The group  is called the thhigher commutators K K 8Ð8Ñ

commutator subgroup of . The series of higher commutators:K



â K K K Kö ö ö öÐ$Ñ Ð#Ñ Ð"Ñ

is called the  for .derived series K

The monotonicity of the commutator operation implies that the derived series
descends from  more rapidly than any other abelian series. Moreover, sinceK
K « KÐ5"Ñ Ð5Ñ, the derived series is characteristic.

Theorem 11.12 Let  be a group.K
1  The derived series)

â K K K Kö ö ö öÐ$Ñ Ð#Ñ Ð"Ñ

is the abelian series of steepest descent, in the sense that if the series

âK K K K œ K$ # " !ü ü ü

is abelian, then

K Ÿ KÐ5Ñ
5

for all .5
2   is solvable if and only if its derived series reaches the trivial group, that) K

is, if and only if there is a  for which . The smallest integer5   " K œ Ö"×Ð5Ñ

8 K œ Ö"× K for which  is called the  of , which we denoteÐ8Ñ derived length
by .derlenÐKÑ

3  A group  is solvable if and only if it has a normal abelian series.) K
4  The length of any abelian series for  is greater than or equal to the) K

derived length of .K

We will have use for the following fact about higher commutators of quotient
groups.

Theorem 11.13 Let  be a group and let . ThenK R Kü

Œ 7K K R

R R
œ

Ð8Ñ Ð8Ñ

for all .8   !
Proof. For any , we haveR Ÿ L Kü

Œ 7 ” •L L L ÒLßLÓR L R

R R R R R
œ ß œ œ

w w

In particular, for , we haveL œ K

Œ 7 ” •K K K ÒKßKÓR K R

R R R R R
œ ß œ œ

w w
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and so the result holds for . Assuming that the result holds for an arbitrary8 œ "
5 L œ K R, we have with ,Ð8Ñ

Œ 7 Œ 7– — 8 9K K K R ÐK RÑ R

R R R R
œ œ œ

Ð8"Ñ Ð8Ñ w w
Ð8Ñ Ð8Ñ w

Finally, Theorem 3.41 implies that

ÐK RÑ R œ ÒK RßK RÓR œ ÒK ßK ÓR œ K RÐ8Ñ w Ð8Ñ Ð8Ñ Ð8Ñ Ð8Ñ Ð8"Ñ

and so the result follows.

Theorem 11.14 If  is solvable,  and , thenK EßFßL Ÿ K RßO Kü
1  ) derlen derlenÐLÑ Ÿ ÐKÑ
2  ) derlen derlenÐKÎRÑ Ÿ ÐKÑ
3  ) derlen derlen derlenÐKÑ Ÿ ÐRÑ  ÐKÎRÑ
4  .) derlen derlen derlenÐE  FÑ Ÿ Ö ÐEÑß ÐFÑ×max
Proof. For part 1), since  for all , if  thenL Ÿ K 5   ! 8 œ ÐKÑÐ5Ñ Ð5Ñ derlen
L Ÿ K œ Ö"× ÐLÑ Ÿ 8Ð8Ñ Ð8Ñ . Thus, . For part 2), Theorem 11.13 impliesderlen
that if , then . For part 3), if  has derivedK œ Ö"× ÐKÎRÑ œ ÖR× KÎRÐ8Ñ Ð8Ñ

length , then  and so . If the derived length of  is. K RÎR œ ÖR× K Ÿ R RÐ.Ñ Ð.Ñ

/, then

K Ÿ R œ Ö"×Ð./Ñ Ð/Ñ

and so the derived length of  is at most . Part 4) follows from the factK .  /
that .ÐE  FÑ œ E  Fw w w

Properties of Solvable Groups
If  is a minimal normal subgroup of a group  and ifR K

Z ü üÀ Ö"× œ K â K œ K. !

is any normal series in , then  or else  for all  and soK R Ÿ K R ∩K œ Ö"× 33 3

there is an index  for which5

R Ÿ K R ∩K œ Ö"×5 5"and

Therefore, if  is solvable and if  is the derived series for , thenK KZ

R Ÿ K R ∩K œ Ö"×Ð5Ñ Ð5"Ñand

and so , whence  is abelian.R Ÿ R ∩K œ Ö"× Rw Ð5"Ñ

Theorem 11.15 Let  be solvable. Any minimal normal subgroup  of  isK R K
abelian. Moreover, if  contains a nontrivial element of finite order, then  isR R
elementary abelian.



Proof. For the final statement,  has an element of prime order  and sinceR :

R ³ ÖB − R ± B œ "× R:
: ü

it follows that  is an elementary abelian group.R œ R:

If  is solvable and has a composition series, then the factor groups of theK
composition series are both simple and solvable and therefore cyclic of prime
order.

Theorem 11.16 The following are equivalent for a group  that has aK
composition series.
1   is solvable.) K
2  Every composition series for  has prime order factor groups.) K
3   has a cyclic series in which each factor group has prime order.) K
4   has a cyclic series, that is,  is polycyclic.) K K
5  Every chief series for  has factor groups that are elementary abelian.) K
Proof. We have seen that 1) implies 2) and it is clear that 2) implies 3), that 3)
implies 4) and that 4) implies 1). Thus, 1)–4) are equivalent.

It is clear that 5) implies 1). If  is solvable, the factor groups  of aK K ÎK5" 5

chief series are minimal normal in the solvable group  and so areKÎK5

elementary abelian by Theorem 11.15.

The following theorem contains some sufficient (but not necessary) conditions
for solvability. The proof of the Feit–Thompson Theorem is quite involved,
running almost 300 pages. For a proof of the Burnside result, we refer the reader
to Robinson [26].

Theorem 11.17
1   Any group of odd order is solvable;) ( )Feit Thompson Theorem–

equivalently, every finite nonabelian simple group has even order.
2   Every group of order  where  and  are) ( )Burnside  Theorem:; : ; : ;7 8

primes, is solvable.
Proof. The equivalence in part 1) is left as an exercise.

Hall's Theorem on Solvable Groups
Let  be a finite group. Recall that a   of  is a subgroup withK L KHall subgroup
the property that its order  and index  are relatively prime. The9ÐLÑ ÐK À LÑ
Schur–Zassenhaus Theorem tells us that every  Hall subgroup has anormal
complement and that all such complements are conjugate.

As to the existence of Hall subgroups, the Sylow theorems tell us that if
9ÐKÑ œ : 7 : Ð: ß7Ñ œ " K5 5 with  prime and , then  has a Hall (Sylow)
subgroup of order  and that all such subgroups are conjugate. In 1928, Philip:5
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Hall showed that for a finite  group, this result applies not just to primesolvable
power factors.

Theorem 11.18 , 1928  Let  be a finite solvable group with( )Hall's theorem K
9ÐKÑ œ +, Ð+ß ,Ñ œ " K +, where . Then  has a Hall subgroup of order  and all
subgroups of order  are conjugate.+
Proof. We may assume that . The proof is by induction on . If+ß ,  " 9ÐKÑ
9ÐKÑ œ ", the result holds trivially. Assume that it holds for all groups of order
less than . If  does not have a minimal normal subgroup, then  is simple9ÐKÑ K K
and solvable and therefore cyclic of prime order and so  is false. Thus,+ß ,  "
K R has a minimal normal subgroup , which as we have seen, is an elementary
abelian group of prime power order . There are cases to consider, based on:7

whether  or .: ± + : ± ,7 7

Case 1: 9ÐRÑ œ : œ ,7

In this case,  is a normal Hall subgroup of . Hence, the Schur–ZassenhausR K
Theorem implies that  has a complement and all such complements areR
conjugate. But the complements of  are precisely the subgroups of order .R +

Case 2:  and 9ÐRÑ œ : ± , :  ,7 7

If  but , then  and so the inductive: ± , : Á , 9ÐKÎRÑ œ +Ð,Î: Ñ  +,7 7 7

hypothesis implies that  has a subgroup  of order . Hence,KÎR OÎR +
9ÐOÑ œ +:  +, O O7  and the inductive hypothesis applied to  shows that 
(and hence ) has a subgroup  of order .K L +

As to conjugation, if , then  and so9ÐL Ñ œ 9ÐL Ñ œ + L ∩R œ Ö"×" # 3

9ÐL RÎRÑ œ +3 . Hence, the inductive hypothesis implies that

Œ 7L R L R

R R
œ

# "
BR

for some  and soB − K

L R œ L R#
B

"

But  and  and  are Hall subgroups of  of order .9ÐL RÑ œ 9ÐKÑ L L L R +" " "#
B

Hence, the induction hypothesis implies that  and  are conjugate in ,L L L R" "#
B

whence in .K

Case 3: 9ÐRÑ œ : ± +7

If , then  and the inductive hypothesis9ÐRÑ œ : ± + 9ÐKÎRÑ œ Ð+Î: Ñ,  +,7 7

implies that  has a subgroup  of order , whence .KÎR OÎR +Î: 9ÐOÑ œ +7

As to conjugacy, if , then , for if not, then9ÐLÑ œ + R Ÿ L

9ÐLRÑ ± 9ÐLÑ9ÐRÑ œ +:7

and so  is a subgroup of  of order greater than  but relatively prime to ,RL K + ,



which contradicts Lagrange's theorem. Therefore, if , then9ÐL Ñ œ 9ÐL Ñ œ +" #

L ÎR L ÎR KÎR +Î: L ÎR" # "
7 and  are Hall subgroups of  of order  and so  and

L ÎR KÎR L L K# " # are conjugate in , whence  and  are conjugate in .

A sort of converse of the previous theorem also holds. The proof uses the
Burnside  theorem (Theorem 11.16).:;

Definition Let  be a finite group and let  be a prime for which ,K : 8 œ : 75

where  and . Then a  of  is a subgroup Ð7ß :Ñ œ " 5   " K LHall -subgroup:w

of order .7

Theorem 11.19 If a finite group  has a Hall -subgroup for every prime K : :w

dividing , then  is solvable.9ÐKÑ K
Proof. Assume that the theorem is false and let  be a counterexample ofK
smallest order. If  is not simple, then let  be a nontrivial proper normalK R
subgroup of . We leave it as an exercise to show that  is a Hall -K R ∩L :w

subgroup of  and  is a Hall -subgroup of . Hence,  and R LRÎR : KÎR R KÎRw

are solvable and therefore so is , a contradiction. Hence,  is simple.K K

Now suppose that , where the 's are distinct primes and9ÐKÑ œ : â: :"
/

8
/

3
" 8

/   " :; 5   $ K :3 3 3
w. The Burnside  theorem implies that . If  is a Hall -subgroup

of , then  and the Poincaré theorem and the fact that theK 9ÐK Ñ œ 9ÐKÑÎ:3 3
/3

indices  are pairwise relatively prime imply that for any  of the groupsÐK À K Ñ 53

K3,

ÐK À K ∩â∩K Ñ œ :3 3 4 3

/

" 5 4

34$
and so

k k #K ∩â∩K œ
9ÐKÑ

:
3 3

4 3

/" 5

4

34

Also, for any ,3

¹ ¹ ¹ ¹, ,k k #K ì K œ K K œ œ 9ÐKÑ
9ÐKÑ 9ÐKÑ

: :
3 4 3 44Á3 4Á3

3
/

4Á3 4
/3 4

and so

K ì K œ K3 44Á3
,

If , then , which is solvable by the BurnsideL œ K ∩â∩K 9ÐLÑ œ : :$ 8 " #
/ /" #

:; L L L theorem. If  is simple, then  is abelian and so  is cyclic of prime order,
which is false. Hence, let  be a minimal normal subgroup of . Then  isR L R
elementary abelian of exponent, say  and so is contained in any Sylow -: :" "

subgroup of . But  has order  and so . Now,L K ∩L : R K ∩L# #"
/" ü
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R Ÿ RK ∩L"  and so

R Ÿ R Ÿ R Ÿ KK K ÐK ∩LÑ K
#

# " #

and so the normal closure  is a proper nontrivial normal subgroup of , aR KK

contradiction.

Exercises
1. Show that the classes of cyclic groups, abelian groups and nilpotent groups

do not have the extension property.
2. Show that if  is abelian or cyclic, then any refinementE – F

E L Fü ü

is also abelian or cyclic.

Nilpotent Groups
3. Can a nontrivial centerless group be nilpotent?
4. a) Prove that any finite nilpotent group is supersolvable.
 b) Find an example to show that not every finite supersolvable group is

nilpotent.
5. Let  be a finite group. Prove that  is nilpotent if and only if everyK K

nontrivial quotient group of  has a nontrivial center.K
6. Let  be nilpotent but not abelian. Let  be maximal with respect toK E Ÿ K

being normal in  and abelian. Prove that . : Show thatK E œ G ÐEÑK Hint
GÎE KÎE G ÐEÑÎE ∩ ^ÐKÎEÑ Á Ö"×ü  and that .K

7. For any even positive integer , prove that every group of order  is8 8
nilpotent if and only if  is a power of .8 #

8. Prove that a nilpotent group is supersolvable if and only if it satisfies the
ascending chain condition on subgroups.

9. If  is nilpotent of class  and  is nilpotent of class , prove that L - O . L O}
is nilpotent of class .maxÐ-ß .Ñ

Solvable Groups
10. Prove that  is solvable but not supersolvable.W%

11. Prove that  is solvable for .W 8 Ÿ %8

12. Assuming that  is the smallest nonabelian simple group (which it is),E&

prove that every group of order less than  is solvable.'!
13. Let  be a nontrivial proper normal subgroup of a group . Let  be aR K :

prime and . Let  be a Hall -subgroup of . Prove that : ± 9ÐRÑ L : K R ∩Lw

and  are Hall -subgroups of  and , respectively.RLÎR : R KÎRw

14. Prove that the following are equivalent for a finite group :K
 a)  is solvable.K
 b) Every nontrivial normal subgroup of  has a nontrivial abelianK

quotient group.
 c) Every nontrivial quotient group of  has a nontrivial abelian normalK

subgroup.



15. Let  be a finite group of order . Prove that  is solvable ifK 8 œ : â: K"
/

7
/" 7

and only if the composition length of  is .K - œ /� 3

16. Prove that a solvable group with a composition series must be finite.
17. Let  be a nontrivial finite solvable group.K
 a) Prove that  is nontrivial for some prime , that is,  has ab:ÐKÑ : K

nontrivial normal -subgroup.:
 b) Prove that  is nontrivial for some prime , that is,  has ab;ÐKÑ ; K

normal subgroup  for which  is a nontrivial -group.L KÎL ;
18. Let  be a finite group. Prove directly that an abelian series can always beK

refined into a cyclic series with prime order factor groups.
19. Prove that the following are equivalent:
 a) Any finite group of odd order is solvable.
 b) Any finite nonabelian simple group has even order.
20. a) Prove that a finite group  is solvable if and only if  for allK W Á Ww

subgroups  of .W Á Ö"× K
 b) Prove that if  contains a nonabelian simple subgroup , then  is notK W K

solvable.
 c) Show that  for all subgroups of the dihedral group ,W Á W Hw

#8

showing that  is solvable. : Find an abelian subgroup  ofH R#8 Hint
index . How do subgroups interact with ?# R

21. A subgroup  of a group  is  ifL K abnormal

+ − ØLßL Ù+

for all . Prove that the normalizer of a Hall subgroup of a solvable+ − K
group is abnormal.

Polycyclic Groups
22. a) Let  be a polycyclic group with a cyclic series of length . Prove thatK 8

K 8 is -generated.
 b) Let  be an -generated abelian group for . Prove that  isE 8 8   " E

polycyclic.
23. Prove that the following are equivalent:
 a)  is polycyclic.K
 b) Every subgroup of  is finitely generated and solvable.K
 c) Every normal subgroup of  is finitely generated and solvable.K
24. Prove that a group  is polycyclic if and only if it is solvable and satisfiesK

the maximal condition on subgroups, that is, if and only if every nonempty
collection of subgroups of  as a maximal member.K

25. a) Let  have an infinite cyclic factor group. LetE  F

E œ L  L  â  L œ F! " 7

be a proper refinement of . Describe the factor groups of thisE  F
refinement.
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 b) Let  be polycyclic. Prove that the number of steps whose factor groupK
is infinite is the same for all cyclic series for . : Any two cyclicK Hint
series have isomorphic refinements.

Supersolvable Groups
26. Prove that any supersolvable group is countable.
27. Prove that if  is supersolvable and  is cyclic, then  isKÎR R K

supersolvable.
28. Prove that a group is supersolvable if and only if it has a series in which

each factor group is cyclic of prime order or cyclic of infinite order. :Hint
Recall that  and  implies .E « F F K E Kü ü

29. Let  be supersolvable. Prove that if  is a maximal subgroup of , thenK L K
ÐK À LÑ L – K KÎL is prime. : First assume that  and look at . ThenHint
assume that  is not normal in  and factor by the normal interior .L K L‰

Conclude that it is sufficient to consider . Consider the subgroupL œ Ö"×‰

E Ö"×  E in the first step  in a normal cyclic series and how it interacts
with .L

30. Prove that if  is supersolvable, then  is nilpotent. : LetK Kw Hint

Ö"× œ K  â  K œ K! 8

be a normal cyclic series for  and consider the seriesK

Ö"× œ K ∩K  â  K ∩K œ K! 8
w w w

which is normal and cyclic as well. Let  and . To showF œ K E œ K5" 5

that the series is central, it is sufficient to show that

\ EÐF ∩ K Ñ EK

E E E
³ Ÿ ^

w wŒ 7
But  is cyclic and normal in . What can be said about ?\ÎE KÎE ÐKÎEÑw

Radicals and Residues
Definition Let  be a class of groups. Let  be a group.^ K
1  If the partially ordered set)

^ ü ^ÐKÑ œ ÖL K ± L − ×

has a top element, it is called the  for  and is denoted by^-radical K
b^ÐKÑ.

2  If the partially ordered set)

KÎ œ ÖL K ± KÎL − ×^ ü ^

has a bottom element, it is called the  for  and is denoted by^-residue K
b^ÐKÑ.



31. Show that the -radical  and the -residue  are characteristic^ b ^ b^
^ÐKÑ ÐKÑ

subgroups of  if they exist .K ( )
32. Let  be a class of groups closed under subgroup, quotient and join if at^

least one factor is normal. Let  be a group and let . Assume that allK L Kü
mentioned radicals and residues exist. Prove the following:

 a  If , then) L Ÿ ÐKÑb^

b
b

^
^

ÐKÑ K

L L
Ÿ Œ 7

and the inclusion may be proper.
 b  If , then) L Ÿ ÐKÑb^

b
b^
^Œ 7K ÐKÑ

L L
œ

33. Let  be a class with the extension property:  implies^ ^R − ßKÎR − O
K − K^. Prove that the following hold for any group :

 a) The -radical of  is trivial, that is,^ bKÎ ÐKÑ^

b b
b

^ ^
^

Œ 7K

ÐKÑ
œ Ö ÐKÑ×

 b  The -residue of  is , that is,) ^ b b^ ^ÐKÑ ÐKÑ

b b b^ ^ ^Ð ÐKÑÑ œ ÐKÑ

34. Let  be the class of finite groups.^
 a) Show that there are groups with no -radical.^
 b) Show that there are groups with no -residue.^
35. Let  be a nontrivial finite group. Prove that the following are equivalent:K
 a)  is solvable.K
 b) For every proper normal subgroup , the factor group  has aO – K KÎO

nontrivial -radical  for some prime , that is,  has a: ÐKÎOÑ : KÎOb:

nontrivial normal -subgroup.:
 c) For every nontrivial characteristic subgroup  of , the -residueO K ;

b;ÐOÑ O O ; of  is proper in  for some prime , that is, there is a proper
normal subgroup  of  such that  is a nontrivial a -group.E O OÎE ;

Additional Problems
36. Let  be a group. Let .K œ> >K

 a) Prove that .K Ÿ ÐKÑÐ5Ñ 5
K>

 b) Prove that .derlen nilclassÐKÑ Ÿ ÐKÑ
37. Let  be a group. Let . Prove the following:K œ> >K

 a)  : Use induction. Use the threeÒ ÐKÑß ÐKÑÓ Ÿ ÐKÑ> > >5 4 54" Hint
subgroups lemma on .Ò ÐKÑß ÐKÑÓ œ ÒÒ ÐKÑßKÓß ÐKÑÓ> > > >5" 4" 5 4"

 b)  for .> >>4ÐKÑ
5 54"ÐKÑ Ÿ ÐKÑ 5ß 4   "
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 c)  for .Ò ÐKÑß ÐKÑÓ Ÿ ÐKÑ 4   5  "> ' '5 4 45"

 d) , where . Hence,  is less than orK Ÿ ÐKÑ j œ #  " ÐKÑÐ5Ñ j 5
5> 5 derlen

equal to the smallest integer  for which  and so5 j   - ³ ÐKÑ5 nilclass

derlenÐKÑ Ÿ Ð-  "Ñi jlog#



Chapter 12
Free Groups and Presentations

Throughout this chapter,  denotes a nonempty set of formal symbols and \ \"

denotes the set of formal symbols . Further, we assume that ÖB ± B − \× \"

and  are disjoint and write .\ \ œ \ “\" w "

Free Groups
The idea of a free group  on a nonempty set  is that  should be theJ \ J\ \

“most general” possible group containing , that is, the elements of  should\ \
generate  but have no relationships within . In this case,  is referred toJ J \\ \

as a set of  or a  for the free group .free generators basis J\

To draw an analogy, if  is a vector space, then a subset  of  is a basis for Z Z ZU
if and only if for any vector space  and any assignment of vectors in  to the[ [
vectors in , there is a unique linear transformation from  to  that extendsU Z [
this assignment. This property and the analogous property that defines free
groups are best described using univerality.

Definition Let  be a nonempty set. A pair  where  is a group\ ÐJ ß À\ Ä JÑ J,
has the  for  or is  for  if, asuniversal mapping property universal\ \( )
pictured in Figure 12.1, for any function  from  to a group , there0 À\ Ä K \ K
is a unique group homomorphism  for which70 À J Ä K

7 ,0 ‰ œ 0

The map  is called the  for . In this case, we say that 70 mediating morphism 0 0
can be   or that  can be  to . The group  is called afactored through lifted, 0 J J
free group free generators basis on  and  is called a set of  or a  for . The\ \ J
map  is called the  for the pair . We use the notation , ,universal map ÐJ ß Ñ J\

to denote a free group on .\
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Figure 12.1

It is clear that the universal map  is injective. Moreover,  generates , for, ,\ J\

if , then Theorem 4.17 implies that there are distinct groupØ \Ù  J, \

homomorphisms  into some group  that agree on .5 7 ,ß À J Ä K K Ø \Ù\

Therefore, if , then the uniqueness condition of mediating0 œ l œ l5 7\ \

morphisms is violated. Hence,  generates . For these reasons, it is common,\ J
to suppress the map  and think of  as a subset of ., \ J\

The following theorem says that the universal property characterizes groups up
to isomorphism.

Theorem 12.1 Let  be a nonempty set. If  and  are universal for\ ÐJ ß Ñ ÐKß Ñ, -
\ ÀJ ¸ K, then there is an isomorphism  connecting the universal maps, that5
is, for which

5 , -‰ œ

Proof. There are unique mediating morphisms  and  for7 7- ,À J Ä K ÀK Ä J
which

7 , - 7 - ,- ,‰ œ ‰ œand

and so

7 7 - - 7 7 , ,- , , -‰ ‰ œ ‰ ‰ œand

But the identity maps  and  are the  mediating morphisms for which+ +K J unique

+ - - + , ,K J‰ œ ‰ œand

and so

7 7 + 7 7 +- , , -‰ œ ‰ œK Jand

which shows that the maps  and  are inverse isomorphisms.7 7- ,

Definition Let  be a nonempty set. A word  over  or the\ AÐB ßá ß B Ñ \" 8
w (

equation  is a  of groups ifAÐB ßá ß B Ñ œ "" 8 ) law

AÐ+ ßá ß + Ñ œ "" 8

for all groups  and all .K + − K3

320 Fundamentals of Group Theory



Free Groups and Presentations 321

The following theorem says that what's true in a free group is true in all groups.

Theorem 12.2 Let  be a nonempty set and let  be a word over\ AÐB ßá ß B Ñ" 8

\ ÐO ß Ñ \w
\. If  is universal on , then the following are equivalent:,

1   in ) AÐ B ßá ß B Ñ œ " J, ," 8 \

2   is a law of groups.) AÐB ßá ß B Ñ" 8

Proof. Let  be a group and let  for . The function sendingK + − K 3 œ "ßá ß83

B + À J Ä K3 3 \ to  can be lifted to a unique homomorphism  for which5
5,B œ +3 3 and so

AÐ+ ßá ß + Ñ œ AÐ B ßá ß B Ñ œ " œ "" 8 " 85 , , 5

Cauchy's theorem says that any group is isomorphic to a  of asubgroup
symmetric group. There is an analog for  of free groups, but first wequotients
require a definition.

Definition Let  be a family of groups. A subgroup  of theY œ ÖK ± 3 − M× O3

direct product  is called a  of the family  if the}Y Ysubdirect product
restricted projection maps  are surjective for all .33 O 3l ÀO Ä K 3 − M

If  is a group, then the identity map  can be lifted to an epimorphismK ÀK Ä K+
5À J q K K JK K»  and so  is isomorphic to a quotient of the free group . More
generally, if  is a set for which , then any surjection\ Ð\Ñ   ÐKÑcard card
0 À\ q K ÀJ q K»  can be lifted to an epimorphism »  and the induced map5 \

5À J ÎO ¸ K K\  shows that  is isomorphic to a quotient group of the free group
J ÐBOÑ B − \\ . Moreover, we have freedom to choose the values of  for 7
arbitrarily, but  depends on that choice.O

More generally, if  is a nonempty family of groups and if  isY œ ÖK ± 3 − M× \3

a set for which  for all , then there are isomorphismscard cardÐ\Ñ   ÐK Ñ 3 − M3

7 73 \ 3 3 3 3 3À J ÎO ¸ K 3 − M ÐBO Ñ O for all , where  can be specified arbitrarily, but 
depends on that choice. Now, the “Chinese” map

5 }À J Ä J ÎO\ \ 3
3−M

defined by  for  has kernel . Hence, if  is the5 5ÐAÑÐ3Ñ œ AO A − J M œ O3 \ 3+
induced embedding, then the composition

}7 5 ä }3 \ 3−M 3‰ À J ÎM K

shows that  is isomorphic to a subdirect product of the family .J ÎM\ Y
Moreover, we can specify that the element  be sent to any element of ,BM K} 3

for all  (again at the expense of ).B − \ O3

Theorem 12.3 Let  be a group, let  be a nonempty family ofK œ ÖK ± 3 − M×Y 3

groups and let  be a set.\



1  If , then there is an isomorphism  where) card cardÐ\Ñ   ÐKÑ À J ÎR ¸ K7 \

we can choose the elements  for  arbitrarily, but  depends on7B B − \ R
that choice.

2  Suppose that  and that we have specified isomorphisms) card cardÐ\Ñ   ÐK Ñ3
73 3 \ 3 3 \ÀK ¸ J ÎO 3 − M M œ O J ÎM for all . Let . Then  is isomorphic to a+
subdirect product of the family  and the isomorphisms  can be used toY 73
specify the elements  for  arbitrarily in , but  depends onBM B − \ K M} 3

that choice.

Construction of the Free Group
The notion of a free group can be defined constructively, without appeal to the
universal mapping property. When a constructive approach is taken, one usually
hastens to verify the universal mapping property, since this is arguably the most
useful property of free groups. On the other hand, since we have chosen to
define free groups via universality, we should hasten to give a construction for
free groups.

Let  be the set of all words over the alphabet . As a shorthand, we[ œ Ð\ Ñ \w ‡ w

allow the use of exponents, writing

B œ B âB 8  !

BâB 8  !

8 œ !

8
8

" "

8

ÚÝÝÝÛ ðóñóòÝÝÝÜ

î
 factors

 factors

if 

if 

if %

where  is the empty word. It is important to keep in mind that this is only a%
shorthand . Thus, for example,  and  are both shorthand fornotation B B B% # '

BBBBBB B B œ B B B BBBBB B and so . However,  is shorthand for  but% # ' % # " "

B BB B B Á B# % # # is shorthand for  and so .

Since the operation of juxtaposition on  is associative and since the empty[
word  is the identity, the set  is a monoid under juxatpostion. In an effort to% [
form a group, we also want to require that  for all .BB œ œ B B B − \" "%
More specifically, consider the following rules that can be applied to members
of :[

1) : For  and ,Removal rules = .ß − [ B − \

= . =.

= . =.

%

%

BB Ä

B B Ä

BB Ä

B B Ä

"

"

"

"

where one of  or  may be missing.= .
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2) : For  and ,Insertion rules = .ß − [ B − \

=. = .

=. = .

%

%

Ä BB

Ä B B

Ä BB

Ä B B

"

"

"

"

where one of  or  may be missing.= .

Let us refer to a finite sequence  of applications of these rules as a= ßá ß =" 5

reduction length of  to  of   (even though  may have greater length than ).? @ 5 @ ?
The  is an application of no rules and so  is obtained fromtrivial reduction ?
itself by the trivial reduction. Since the removal and insertion rules come in
inverse pairs, reduction defines an equivalence relation  on . Let ´ [ [Î ´
denote the set of equivalence classes of , with  denoting the equivalence[ ÒAÓ
class containing .A

Since equivalent words must represent the same group element, it is really the
equivalence classes that are the candidates for the elements of the free group J\

on . Moreover, since\

? ´ <ß @ ´ = Ê ?@ ´ <=

the equivalence relation  is a monoid  on  and so we´ [congruence relation
may raise the operation of juxtaposition from  to , that is, the[ [Î ´
operation

Ò?ÓÒ@Ó œ Ò?@Ó

is well-defined on  and makes  into a group, with identity  and[Î ´ [Î ´ Ò Ó%
for which

ÒB âB Ó œ ÒB âB Ó" "
/ /

5 5
/ /"" "5 5

However, since it is easier to work with elements of  rather than equivalence[
classes, we prefer to use a system of distinct representatives for . A[Î ´
desirable choice would be the set consisting of the  word of shortestunique
length from each equivalence class, and so we must prove that such words exist.

Let us say that a word  is  if it is not congruent to a word of shorterA reduced
length. It is clear that a removal rule can be applied to a word  if andA − [
only if  contains a subword of the form  or  for . Further, aA BB B B B − \" "

reduced word  has no such subword and so no removal rules can be applied toA
A A. We want to prove that the converse also holds, that is, a word  is reduced if
and only if no removal rules can be applied to . Then we can show that the setA
of reduced words form a system of distinct representatives for .[Î ´



Theorem 12.4 Let  be a word that does not contain a subword of the< − [
form  or  for . If , then there is a reduction from  to BB B B B − \ A ´ < A <" "

that involves only removal rules.
1  A word is reduced if and only if it does not contain a subword of the form)

BB B B B − \" " or  for .
2  A word is reduced if and only if it can be written in the form  with) B âB"

/
8
/" 8

B Á B / Á ! 33 3" 3 and  for all .
3  The set of reduced words is a system of distinct representatives for .) [Î ´
Proof. Among all reductions from  to , select a reduction with the fewestA <
number of steps and suppose that there is at least one insertion step. Denote the
steps by  and suppose that step  results in the word . Let  be= ß = ßá ß = = ? =" # 7 5 5 5

the last insertion step, say

? œ

? œ ÐBB Ñ

5"

5
"

α"

α "

where we have marked  with an overbar to distinguish it from any otherB
occurrences of the symbol . (A similar argument will work for the insertion ofB
B B" .)

Since there are no further insertion steps, the pair  is never separatedBB"

during the remaining steps, but must be altered at some point by a subsequent
removal rule. Suppose that  is unaltered until step  and so theBB ="

54

intermediate steps are

? œ

? œ ÐBB Ñ

? œ ÐBB Ñ

ã

? œ ÐBB Ñ

5"

5
"

5 " "
"

54" 4" 4"
"

α"

α "

α "

α "

+1

  

There are three possibilities for step . First, if  is removed, that is, if= BB54
"

? œ54 4" 4"α "

then the insertion (and subsequent deletion) of  could have been omittedBB"

from the reduction process, in which case steps  and  do nothing can be= =5 54

removed from the reduction, resulting in a shorter reduction, which is a
contradiction.

The other possibilities involve an interaction of  with either  or .BB"
4" 4"α "

One possibility is that  andα α4" 4"
w "œ B

? œ B ÐBB Ñ

? œ ÐB Ñ

54" 4"4"
w " "

54 4"4"
w "

α "

α "

But since , step  can be replaced by the removal of ,? œ = BB54 4 4 54
"α "
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resulting in the same reduction as in the first case. Similarly, if " "4"
w
4"œ B

and

? œ ÐBB ÑB

? œ ÐBÑ

54" 4"
" w

4"

54 4"
w
4"

α "

α "

then since , again we can replace this reduction by the first? œ54 4" 4"α "
reduction. Hence, a shortest reduction of  to  cannot have any insertion steps.A <

For part 1), suppose that no removal rules can be applied to  and that< − [
A ´ < A <. Then there is a reduction from  to  that involves only removal steps
and so . Hence,  is reduced. The converse is clear.len lenÐ<Ñ Ÿ ÐAÑ <

For part 2), if  is reduced but  where  and  haveA œ B âB B œ B / /"
/

8
/

3 3" 3 3"
" 8

opposite signs, then we can apply a removal rule to  to produce a shorterA
equivalent word, which is not possible. Thus, if , we may add theB œ B3 3"

corresponding exponents. Conversely, if  is a word for whichA œ B âB"
/

8
/" 8

B Á B / Á ! A3 3" 3 and , then no removal rule can be applied to  and so part 1)
implies that  is reduced.A

For part 3), any  can be reduced using only removal rules to a word  forA − [ <
which no removal rules apply and so  is reduced. Thus, every word is<
congruent to a reduced word. Moreover, if  are congruent reduced words,? Á @
then there must be a reduction consisting of zero or more removal steps that
brings  to , but no removal steps can be applied to  and so .? @ ? ? œ @

Thus, each word  is equivalent to a  reduced word  and we mayA − [ unique =<

use the bijection  to transfer the group structure from  to the setÒAÓ Ç A [Î ´<

J ?ß @ − J\ \ of reduced words, specifically, if , then

?@ œ Ð?@Ñ<

It will be convenient to refer to the set  of reduced words on  by theV \\
w

following name (which is not standard terminology).

Definition Let  be a nonempty set. The   on  is the\ V \concrete free group \

set

V œ Ö × ∪ ÖB âB ± B Á B − \ß / Á !×\ 3 3" 3"
/

8
/% " 8

of all reduced words over the alphabet , under the operation of juxtaposition\w

followed by reduction. The   of  is the cardinality of .rank rkÐV Ñ V \\ \

Note that the use of the term “concrete” is not standard. Most authors would
refer to  simply as the free group on , which is justified by the following.V \\



Theorem 12.5 Let  be the concrete free group on a set  and let J \ 4À\ Ä J\ \

be the inclusion map. Then the pair  is universal for  and so  is aÐJ ß 4Ñ \ J\ \

free group on .\
Proof. Let . If  is defined by  and0 À\ Ä K ÀJ Ä K œ "7 7%\

7ÐB âB Ñ œ 0ÐB Ñ â0ÐB Ñ"
/

8
/ / /

" 8
" 8 " 8

for , then  on . Also, it is clear that reduction can takeB âB − J ‰ 4 œ 0 \"
/

8
/

\
" 8 7

place before or after application of  without affecting the final result. However,7
reduction has no effect in  and so if  denotes the operation of , thenK ? ‡ @ J\

7 7 7 7 7 7Ð? ‡ @Ñ œ ÐÐ?@Ñ Ñ œ Ò Ð?@ÑÓ œ Ð?@Ñ œ Ð?Ñ Ð@Ñ< <

which shows that  is a mediating morphism for . As to uniqueness, if7 0
7 7 7 7 7 7w w w

\‰ 4 œ ‰ 4 \ J œ, then and  agree on , which generates  and so .

Relatively Free Groups
Freedom can also come in the context of some restrictions. For example, the
free  group on a set  is the most “universal” abelian group generatedabelian \
by . More generally, if  is any class of groups, we can ask if there is a most\ ^
universal -group generated by a nonempty set . If so, such a group is^ \
referred to as a  or a . For the class  offree -group relatively free group^ ^
abelian groups, free -groups do exist, but this is not the case for all classes of^
groups, as we will see.

The definition of a free group generalizes that of a free group.^-

Definition Let  be a class of groups and let  be a nonempty set. A pair^ \
ÐO ß À\ Ä O Ñ O \\ \ \, ^ , where  is a -group generated by , has the ^-
universal property mapping -universalfor  or is  for  if for any\ \( )^
function  from  to a -group , there is a unique group0 À\ Ä K \ K^
homomorphism  for which70 \ÀO Ä K

70 ‰ 4 œ 0

The map  is called the  for . The group  is called a70 \mediating morphism 0 O
free -group free generators basis^  on  with  or   and  is called the -\ \ , ^
universal map for the pair .ÐO ß Ñ\ ,

Note that if  is -universal, then the -universal map  is injective. ForÐO ß Ñ\ , ^ ^ ,
this reason, one often thinks of  as a subset of . Proof of the following\ O\

theorems is left to the reader.

Theorem 12.6 Let  be a nonempty set. If  and  are -universal\ ÐOß Ñ ÐKß Ñ, - ^
for , then there is an isomorphism  for which\ ÀO ¸ K5

5 , -‰ œ
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Definition Let  be a class of groups and let  be a nonempty set. A word^ \
AÐB ßá ß B Ñ \ AÐB ßá ß B Ñ œ "" 8 " 8

w over  or the equation  is a  of -( ) law ^
groups if

AÐ+ ßá ß + Ñ œ "" 8

for all -groups  and all . If , then we denote the set^ O + − O ÖB ß B ßá× © \3 " #

of all laws of -groups in  by  or .^ _ ^ _ ^J Ð Ñ Ð Ñ\ \

Theorem 12.7 Let  be a class of groups and let  be an infinite set. Then^ \
_ ^\ \Ð Ñ J is a fully invariant subgroup of the free group .
Proof. It is clear that the product of two laws of -groups is a law of -groups,^ ^
as is the inverse of a law of -groups. Also, if , then for any^ 5 − ÐJ ÑEnd \

AÐB ßá ß B Ñ − Ð Ñ" 8 _ ^ ,

5 5 5 _ ^AÐB ßá ß B Ñ œ AÐ B ßá ß B Ñ − Ð Ñ" 8 " 8

and so  is fully invariant in ._ ^Ð Ñ J\

Theorem 12.8 Let  be a nonempty set and let  be a word over\ AÐB ßá ß B Ñ" 8

\ ÐO ß Ñ \w
\. If  is -universal on , then the following are equivalent:, ^

1   in ) AÐ B ßá ß B Ñ œ " O, ," 8 \

2   is a law of -groups.) AÐB ßá ß B Ñ" 8 ^

We have said that there are classes of groups for which relatively free groups do
not exist. For example, the class of all finite groups is such a class, as we will
see later. There is one very important type of class for which relatively free
groups do exist, however.

Definition Let  be a nonempty set and let  be a subset of the\ œ ÖA ± 3 − M×_ 3

concrete free group . The  or  with   is theJ\ equational class variety laws( ) _
class  of all groups  for which each  is identically  on .X _ _Ð Ñ K A − " K3

Note that an equational class is closed under subgroup, quotient and direct
product. For equational classes, we can construct relatively free groups using
our construction of the concrete free group.

Theorem 12.9 Let  be an equational class of groups with laws .^ X _ _œ Ð Ñ
1  For any group , the ) K verbal subgroup

_ _ÐKÑ œ ØAÐ+ ßá ß + Ñ ± A − ß + − KÙ" 8 3

is fully invariant in .K
2  If  is the concrete free group on , then the pair) J \\

ÐO œ J Î ÐJ Ñß œ ‰ 4Ñ\ \ \_ , 1



where  is projection modulo  and  is inclusion, is -1 _ ^ÐJ Ñ 4À\ Ä J\ \

universal for . We refer to  as the .\ ^\ concrete -free group^
Proof. Write . For part 1), if , then for any ,J œ J − ÐKÑ + − K\ 35 End

5 5 5 _AÐ+ ßá ß + Ñ œ AÐ + ßá ß + Ñ − ÐKÑ" 8 " 8

and so  is fully invariant in . For part 2), to see that  is a -_ ^ÐKÑ K O œ O\

group, if , then for any ,AÐB ßá ß B Ñ − + − J" 8 3_

AÐ+ ÐJÑßá ß + ÐJÑÑ œ AÐ+ ßá ß + Ñ ÐJ Ñ œ ÐJÑ" 8 " 8_ _ _ _

and so  satisfies the laws in .O\ _

To see that  is -universal, referring to Figure 12.2, let ,Ð ß ‰ 4Ñ 0 À\ Ä L^ 1 ^\

where  is a -group.L ^

FX

f

H

τ

π

σ

X
j KX=F/L(F)

Figure 12.2

Then  can be lifted uniquely to a homomorphism  satisfying0 À J Ä L5
5 _‰ 4 œ 0 AÐB ßá ß B Ñ − ? − J. But if  and , then" 8 3 \

5 5 5AÐ? ßá ß ? Ñ œ AÐ ? ßá ß ? Ñ œ "" 8 " 8

Hence,  and so . Thus, the universality ofAÐ? ßá ß ? Ñ − Ð Ñ ÐJ Ñ Ÿ Ð Ñ" 8 ker ker5 _ 5
quotients implies that  can be lifted uniquely to a homomorphism5
7 _ 7 1 5À JÎ ÐJ Ñ Ä L ‰ œ for which  and so

7 1 5‰ ‰ 4 œ ‰ 4 œ 0

As to uniqueness, if

7 1 7 1w ww‰ ‰ 4 œ ‰ ‰ 4 œ 0

then the uniqueness of  implies that  and the uniqueness of 5 7 1 7 1 7w ww‰ œ ‰
implies that .7 7w wwœ

More on Equational Classes
If  is a class of groups, then the equational class  is the class of all^ X _ ^Ð Ð ÑÑ
groups that satisfy the laws of -groups. Of course, a -group satisfies the laws^ ^
of -groups and so . The interesting issue is that of equality, that^ ^ X _ ^© Ð Ð ÑÑ
is, for which classes  is it true that the laws of -groups hold  for -^ ^ ^only
groups? The answer is that this happens if and only if  is an equational class.^
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For if  is the equational class for a set  of laws over , then^ X ` `œ Ð Ñ \w

` _ ^© Ð Ñ and so

X _ ^ X ` ^ X _ ^Ð Ð ÑÑ © Ð Ñ œ © Ð Ð ÑÑ

whence .X _ ^ ^Ð Ð ÑÑ œ

Theorem 12.10 A class  of groups satisfies^

^ X _ ^œ Ð Ð ÑÑ

that is, the laws of -groups hold only for -groups, if and only if  is an^ ^ ^
equational class.

Example 12.11 Let  be the class of all finitely-generated groups. If^
AÐB ßá ß B Ñ AÐB ßá ß B Ñ œ "" 8 " 8 is a law of , then  in all finitely-generated^
groups and therefore in all groups. Hence,  is the class of all groups andX _ ^Ð Ð ÑÑ
so  is not an equational class.^

The following theorem makes it relatively easy to tell when a class  is an^
equational class.

Theorem 12.12  The following are equivalent for a class  of( )Birkhoff ^
groups:
1   is an equational class) ^
2   is closed under subgroup, quotient and direct product) ^
3   is closed under quotient and subdirect product.) ^
Proof. It is clear that 1) implies 2), which implies 3). To show that 3) implies 1),
we show that . Let , that is,  satisfies the laws ofX _ ^ ^ X _ ^Ð Ð ÑÑ © K − Ð Ð ÑÑ K
^-groups. For the proof, we work with quotients of free groups.

Now, if , there is an  for which  and socard cardÐ] Ñ   ÐKÑ R K K ¸ J ÎRü ]

J ÎR AÐC ßá ß C Ñ − Ð Ñ] " 8 ] satisfies the laws of -groups. Hence, if , then^ _ ^
AÐC ßá ß C Ñ − R Ð Ñ Ÿ R" 8 ] and so . Hence,_ ^

K ¸ ¸
J J R

R Ð Ñ Ð Ñ
] ]

] ]_ ^ _ ^
‚

and the proof would be complete if we knew that  was a -group. InJ Î Ð Ñ] ]_ ^ ^
fact, the same argument works for any , since then  and soM Ÿ Ð Ñ M Ÿ R_ ^]

K ¸ ¸
J J R

R M M
] ] ‚

Thus, we only need to find an  for which  is a -group.M Ÿ Ð Ñ J ÎM_ ^ ^] ]

Now, if  is  a law of -groups, then there is a -group  thatA − J O] Anot ^ ^
violates , that is, for whichA



AÐ5 ßá ß 5 Ñ Á "Aß" Aß8A

for some . Moreover, if , then there is an5 − O Ð] Ñ   ÐO ÑAß3 A Acard card
isomorphism  for which  for all . Hence,7 7A ] A A A 3 A Aß3À J ÎR ¸ O ÐC R Ñ œ 5 3
J ÎR A] A also violates  in the sense that

AÐC ßá ß C Ñ Â R" 8 AA

and so

M ³ R Ÿ Ð Ñ,
AÂ Ð Ñ

A ]

_ ^

_ ^

But Theorem 12.3 implies that the quotient  is isomorphic to a subdirectJ ÎM]

product of  and is therefore a -group.Y ^

We can now relate equational classes and existence of relatively free groups.

Theorem 12.13  The following are equivalent for a nontrivial class( )Birkhoff
^ of groups:
1   is an equational class, that is, ) ^ X _ ^ ^Ð Ð ÑÑ œ
2   is closed under quotient and for every nonempty set , there is a -) ^ ^\

universal pair .ÐO ß Ñ\ ,
Proof. We have seen that 1) implies 2). For the converse, we show that 2)
implies . Let .X _ ^ ^ X _ ^Ð Ð ÑÑ © K − Ð Ð ÑÑ

FG

j

KG

G

τ
λ

G σ

κ

Figure 12.3

Referring to Figure 12.3, let  be the inclusion map into the concrete4ÀK Ä JK

free group . We lift two maps. The -universal map  can be lifted to aJK ^ ,
unique homomorphism  for which . Moreover,  is- - , -À J Ä O 4 œK K

surjective since  generates . Also, the identity map  can be, +K O ÀK Ä KK

lifted to a unique epimorphism »  for which .5 5 +À J q K 4 œK

To see that , if  is a word over  and ifker kerÐ Ñ Ÿ Ð Ñ AÐB ßá ß B Ñ \- 5 " 8
w

AÐ4+ ßá ß 4+ Ñ − Ð Ñ + − K" 8 3ker -  for , then

AÐ + ßá ß + Ñ œ AÐ4+ ßá ß 4+ Ñ œ ", , -" 8 " 8

in  and so Theorem 12.8 implies that . Hence in ,O AÐB ßá ß B Ñ − Ð Ñ KK " 8 _ ^
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5 5 5AÐ4+ ßá ß 4+ Ñ œ AÐ 4+ ßá ß 4+ Ñ œ AÐ+ ßá ß + Ñ œ "" 8 " 8 " 8

and so , whence .AÐ4+ ßá ß 4+ Ñ − Ð Ñ Ð Ñ Ÿ Ð Ñ" 8 ker ker ker5 - 5

Hence,  induces an epimorphism »  defined for each  by5 7 ÀO q K 5 − OK K

7 5- 7 ^5 œ Ð5Ñ K ¸ O Î Ð Ñ"
K and so  and since the latter is a -group, so isker

K.

Free Abelian Groups
The class of abelian groups is an equational class, with law . Thus,ÒBß CÓ œ "
free abelian groups exist. In fact, if  is a group, then the verbal subgroup isK

_ÐKÑ œ ØÒ+ß ,Ó ± +ß , − KÙ

which is just the commutator subgroup  of . Hence, Theorem 12.9 impliesK Kw

that if  is the concrete free group on , then the groupJ \\

E œ J ÎJ\ \
w
\

is free abelian.

Definition Let  be a nonempty set. If  is the concrete free abelian group on\ J\

\ E œ J ÎJ \, then  is the  on . It is\ \
w
\ concrete free abelian group

customary to think of  as the group  with the additonal condition that theE J\ \

elements of  commute.\

Theorem 12.14 If  is a nonempty set, then the free abelian group  satisfies\ E\

E ¸ ØBÙ ¸\
B−\ B−\
{ { ™

Proof. The function  defined by0 À\ Ä ØBÙ{

0ÐBÑÐCÑ œ
B C œ B
" C Á Bœ if 

if 

for all  can be lifted uniquely to a homomorphism  forC − \ ÀE Ä ØBÙ7 {\

which

7ÐB âB Ñ œ 0ÐB Ñ â0ÐB Ñ"
/

8
/ / /

" 8
" 8 " 8

and so

7ÐB âB ÑÐCÑ œ
B C œ B

" C Â ÖB ßá ß B ×"
/

8
/ 5

/
5

" 8

" 8

5œ if 
if 

Now,  is surjective, since if  has support  and7 α {− ØBÙ ÖB ßá ß B ×" 8

α α 7 7ÐB Ñ œ B œ ÐB âB Ñ5 5
/

"
/

8
/5 " 8, then . Also,  is injective, since if

7 7ÐB âB Ñ œ ! B œ " 5 / œ ! 5"
/

8
/

5
/

5
" 8 5, then  for all  and so  for all . Thus,  is an

isomorphism.



The following theorem explains the term  used for the set  in the freebasis \
abelian group .E\

Definition A subset  of the free abelian group  is  in  ifW E E\ \independent

= − Wß = â= œ ß = Á = Ê / œ ! 33 3 4 3"
/

8
/" 8 %  for all 

Theorem 12.15 Let  be a nonempty subset of an abelian group A. The\
following are equivalent:
1   is a free abelian group with basis ) E \
2   is independent in  and generates ) \ E E
3  Except for the order of the factors, every nonidentity element  has a) + − E

unique expression of the form

+ œ B âB B Á B ß / Á !ß 8   ""
/

8
/

3 4 5
" 8  for 

Proof. If 1) holds, we have seen that  generates  and if\ E

A œ B âB œ"
/

8
/" 8 %

for , then  for all , since otherwise  would be a reduced wordB Á B / œ ! 3 A3 4 3

equivalent to the shorter word . Hence, 2) holds. If 2) holds, then every element%
of  has at least one such expression. But if  has two distinct expressions:E + − E

+ œ B âB œ C âC" "
/

8 7
/ 00" 8 7"

where we may assume that  (or we can cancel), thenB Á C8 7

B âB C âC œ" "
/

8 7
/ 0 0" 8 7 " %

violates independence. Hence, 3) holds.

Finally, to see that 3) implies 1), suppose that , where  is an abelian0 À\ Ä K K
group. If a mediating morphism  does exist, then  for all 7 7ÐBÑ œ 0ÐBÑ B − \
and so  is unique, since  generates . Define a map  by7 7\ E ÀE Ä K

7ÐB âB Ñ œ 0ÐB Ñ â0ÐB Ñ"
/

8
/ / /

" 8
" 8 " 8

which is well defined since the expressions  are unique up to order butB âB"
/

8
/" 8

K is abelian. The map  is easily seen to be a homomorphism.7

The next theorem says that, up to isomorphism, there is only one free (or free
abelian) group of each cardinal rank.

Theorem 12.16 Let  and  be nonempty sets.\ ]
1  a  ) ) E ¸ E Í \ œ ]\ ] k k k k
 b  If  generates , then ) W E W   \\ k k k k
2  a  ) ) J ¸ J Í \ œ ]\ ] k k k k
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 b  If  generates , then ) W J W   \\ k k k k
Proof. Suppose first that  and let  be a bijection. Extend thek k k k\ œ ] 0À\ Ä ]
range of  so that  (or ). Then there is a unique0 0 À\ Ä J 0À\ Ä E] ]

mediating morphism  (or ) for which7 7À J Ä J ÀE Ä E\ ] \ ]

7ÐBÑ œ 0ÐBÑ

for all . To see that  is injective, if  and , thenB − \ A œ B âB 0ÐB Ñ œ C7 "
/

8
/

3 3
" 8

7 7ÐAÑ œ ÐB âB Ñ œ 0ÐB Ñ â0ÐB Ñ œ C âC" "
/ /

8 8
/ / / /

" 8
" "8 " 8 8

Hence,  implies  for all  and so . Also,  is surjective7 % % 7ÐAÑ œ / œ ! 3 A œ3

since  is surjective. Hence,  (and ).0 À\ Ä ] J ¸ J E ¸ E\ ] \ ]

For the converse of part 1), let  represent either  or . We use additiveE E E\ ]

notation. The quotient  is elementary abelian of exponent  and isEÎ#E #
therefore a vector space over . Moreover, if  generates the group , then™# W E

WÎ#E œ Ö=  #E ± = − W×

generates the vector space  over  and if  is independent in , thenEÎ#E W E™#

WÎ#E EÎ#E is linearly independent in , since an equation of the form

Ð=  #EÑ â Ð=  #EÑ œ #E" 8

for  and  in  implies that8  ! = Á = W3 4

= â = œ #Ð/ > â / > Ñ" 8 " " 7 7

for  and , which is not possible.> − W / −3 3 ™

It follows that  is a basis for  and so\Î#E E Î#E\ \ \

dimÐE Î#E Ñ œ \\ \ k k
and similarly for Thus, since  implies , we] Þ E ¸ E E Î#E ¸ E Î#E\ ] \ \ ] ]

have

k k k k\ œ ÐE Î#E Ñ œ ÐE Î#E Ñ œ ]dim dim\ \ ] ]

and if  generates , thenW E\

k k k k k kW   WÎ#E   \\

This completes the proof of part 1).

For part 2), if , thenJ ¸ J\ ]

E ¸ J ÎJ ¸ J ÎJ ¸ E\ \ ] ]\ ]
w w

and so part 1) implies that . Finally, if  generates , thenk k k k\ œ ] W J\



WÎJ œ Ö=J ± = − W× E œ J ÎJw w w
\ \ \\ \ generates  and so

k k k k k k k kW   WÎJ   \ÎJ œ \w w
\ \

Theorem 12.17 Let  be free abelian on . Then all independent sets haveE \\

cardinality at most .k k\
Proof. It is sufficient to prove the result for  where  for allE œ œ{ ™ ™ ™B−\ B B

B Z œ. The set  is a vector space over the rational field  and it is{  B−\ B

easy to see that a subset

U œ Ö@ ± 3 − M× © E3

is dependent in  if and only if  is linearly dependent over . But in the vectorE U 
space , all sets of cardinality greater than  are linearly dependent over Z \k k 
and therefore also over .™

The Nielsen–Schreier Theorem says that every subgroup of a free group is free
and so the subgroups of free groups are very restricted. (Nielsen proved this
result for finitely-generated groups in 1921 and Schreier generalized it to all
groups in 1927.)

Theorem 12.18
1  Any subgroup of a free group is free.)
2  Any subgroup  of a free abelian group  is free abelian and) W E\

rk rkÐWÑ Ÿ ÐEÑ.
Proof. We omit the difficult proof of part 1) and refer the interested reader to
Robinson [26]. For part 2), we may assume that  and that  isE œ ØBÙ \\ B−\{
well ordered. Since the elements of  have finite support, for , we can letW 0 − W
3Ð0Ñ B 0ÐBÑ Á " be the largest index  for which .

For each , consider the setB − \

M œ Ö0ÐBÑ ± 0 − Wß 3Ð0Ñ Ÿ B×B

Then  and so  for some . We show that  is freeM Ÿ ØBÙ M œ Ø0 ÐBÑÙ 0 − W WB B B B B

on the set

U œ Ö0 ± B − \ß 0 ÐBÑ Á "×B B

If  does not span , among those elements of  not in the span of , choose anU UW W
element  for which  is the smallest possible. Since1 C œ 3Ð1Ñ
1ÐCÑ − M œ Ø0 ÐCÑÙ 1ÐCÑ œ 0 ÐCÑ 5 −C C C

5, it follows that  for some nonzero .™
Then

Ð10 ÑÐBÑ œ 1ÐBÑ0 ÐBÑ œ " B   CC C
5 5  for all 

and so , which implies that  is in the span of . But then3Ð10 Ñ  C 10C C
5 5 U
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1 œ Ð10 Ñ0C C
5 5

is also in the span of , a contradiction. Thus,  spans .U U W

Also,  is independent, since ifU

0 â0 œ "B B
/ /
" 8

" 8

where  for , then applying this to  givesB  B 3  4 B3 4 8

0 ÐB Ñ œ "B
/

88

8

and so . Similarly,  for all  and so  is independent. Hence,/ œ ! / œ ! 38 3 U
Theorem 12.15 implies that  is free over . Also, it is clear that  andW Ÿ \U Uk k k k
so .rk rkÐWÑ Ÿ ÐEÑ

Applications of Free Groups
Sometimes free groups can help produce complements.

Theorem 12.19 If  is an epimorphism, where  is free on , then5À K J J \q» \ \

O œ Ð Ñ Kker 5  is complemented in .
Proof. Define a function  by letting  be a fixed member of .7 7 5À\ Ä K B ÐBÑ"

Since  is free on , there is a unique homomorphism  thatJ \ ÀJ Ä K\ \7
extends  on . Since for any ,7 \ B − \

5 7‰ ÐBÑ œ B

it follows that . In other words,  is a right inverse of  and so5 7 + 7 5‰ œ
Theorem 5.23 implies that  is complemented in .kerÐ Ñ K5

With the help of free groups, we can provide an example of a finitely-generated
nonabelian group with a subgroup that is not finitely generated. We have
already proved (Theorem 2.21) that if  is an -generated  group, thenK 8 abelian
every subgroup of  can be generated by  or fewer elements.K 8

Theorem 12.20 Let  and let  be the -generated free group on\ œ ÖBß C× J #\

\ K œ ØWÙ. Let , where

W œ ÖC BC ± 5  !×5 5

Then  is isomorphic to the free group  on a countably infinite setK J^

^ œ ÖD ß D ßá×" #  and so is not finitely generated.
Proof. Consider the function  defined by . Then there0 À ^ Ä K 0ÐD Ñ œ C BC5

5 5

is a unique mediating morphism  for which . It is7 7À J Ä K ÐD Ñ œ C BC^ 5
5 5

clear that  is surjective.7



In addition, if

7 %ÐD âD Ñ œ3 3

/ /

" 7

3" 37

where ,  and , then3 Á 3 / Á ! 7   "5 5" 35

C B C B C B âB C B C œ3 / 3 3 / 3 3 / / 3 3 / 3" 3 " # 3 # $ 3 3 7" 7 3 7" # $ 7" 7 %

in . Since the left-hand side can be reduced to  using only removalK Ÿ J\ %
steps, it follows that  for all  and so  and3 œ 3 5 7 œ "5 5"

C B C œ3 / 3" 3 "" %

But the left-hand side of this equation reduces to  by removal steps if and only%
if , which is false. Hence,  is injective and therefore an isomorphism./ œ !" 7

We can also provide an example of a group  with a subgroup  forK L Ÿ K
which .+L+  L"

Theorem 12.21 Let  be the free group on . Then  has aJ \ œ ÖBß C× J\ \

subgroup  for which .L BLB  L"

Proof. Let  consist of the empty word  and the set of all words of the formL %

A œ B C B C âB C B8 5 8 5 8 5 8" " # # < < <"

with , ,  for  and . Note<   " 5 Á !ß 8   !ß 8 Ÿ ! 8 Á ! # Ÿ 3 Ÿ < 8 œ !3 " <" 3 3�
that . We leave it to the reader to show that  is a subgroup of . It isC − L L J\

clear that

BAB œ B C B C âB C B − L" 8 " 5 8 5 8 5 8 "" " # # < < <"

and so . However,  for all  since if , thenBLB Ÿ L BAB Á C A − L A Á" " %
BAB $ BLB  L" " has length at least . Hence, .

Presentations of a Group
One way to define a group is to list all of the elements of the group and then
give the group's , which shows explicitly how to multiply allmultiplication table
pairs of elements of the group. Then it is necessary to verify the defining axioms
of a group: associativity, identity and inverses. For example, the cyclic group
G Ð+Ñ$  is

G œ Ö"ß +ß + ×$
#

with multiplication table
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" + +

" " + +

+ + + "

+ + " +

#

#

#

# #

Of course, we generally abbreviate this description by writing

G œ Ö+ ± ! Ÿ 3 Ÿ #×ß + + œ +$
3 3 4 Ð34 $) mod

It is routine in this case to check the group axioms.

On the other hand, it is tempting to define a group by giving a set of generators
for the group along with some properties satisfied by these generators. The issue
then becomes one of deciding whether there is a group that has these generators
with these properties.

To illustrate, consider the following description of a group :K

K œ Ø+ß ,Ùß + œ "ß , œ "ß +,+, œ "# %

This description gives a nonempty set  of generators for  and\ œ Ö+ß ,× K
certain  on , that is, equations of the form  where  is a wordrelations K A œ " A
over the generators and their inverses. Note that there is nothing in the
description above that precludes the possibility that .+ œ ,

In order to guarantee that such a group exists, we require that all relations must
have the form . The left-hand side  is referred to as a .A œ " A relator
Expressions such as  are not permitted. However, it is customary to takeA Á "
the liberty of writing a relation in the form  as a more intuitive version ofA œ @
A@ œ "" . For example, the last relation above can be written

,+ œ + , ,+ œ +," " $or

In view of the precise nature of relations, given any nonempty generating set \
and any set  of relations, there is always one group that is generated by  ande \
satisfies the relations : It is the trivial group, where each generator is taken toe
be the identity.

On the other hand, the best hope for getting a  group generated by nontrivial \
and satisfying the relations  is to start with the concrete free group  ande J\

factor out by the  normal subgroup  required in order to satisfy thesmallest R
given relations, that is, the normal closure of the relators of .e



With respect to the example above, the quotient group

K œ
J

ØB ß C ß BCBCÙ
"

ÖBßC×

# % nor

has generators  and , where  that satisfy+ œ BR , œ CR R œ ØB ß C ß BCBCÙ# %
nor

the relations given for a group .K

Thus, we are lead to the concept of a free presentation of a group, given in the
next definition.

Definition Let  be free on . An epimorphism  is called a J \ ÀJ K\ \5 q» free
presentation generators of . The set  is called a set of  for the presentationK \
and if  so thatkerÐ Ñ œ Ø Ù5 e nor

K ¸
J

Ø Ù
\

e nor

the set  is called a set of  of the presentation. In this case, we writee relators

K ¸ Ø\ ± Ùe

If  is a relator, then the equation  is called a .< − < œ "e relation

We will often refer to a free presentation of  simply as a presentation of . ItK K
is common to say that the group  itself has presentation  whenK Ø\ ± Ùe

K ¸
J

Ø Ù
\

e nor

and that  is . Note, however, that it is theK defined by generators and relations
set  that actually generates . A presentation  is  if  is a5 e e\ K Ø\ ± Ù \ ∪finite
finite set. Finally, we will often blur the distinction between a relator and the
corresponding relation, using whichever is more convenient at the time.

We can form a more concrete version of the group defined by generators  and\
relations  as follows. If  and if  is the concrete free group on ,e K œ Ø\Ù J \\

then a word over  has two contexts: as an element of  and as an element of\ Jw
\

K ÀJ K. Moreover, there is a unique epimorphism  defined by specifying5 \ q»
that  for all . This map can be thought of simply as a 5B œ B B − \ change of
context and it is convenient to give it this name officially.

Definition Let  and let  be the concrete free group on .K œ Ø\Ù J \\

1  We call the unique epimorphism  defined by  for all) »5 5À J K B œ B\ q
B − \ K \ the  associated to  and .change of context map

2  If the change of context map  has kernel , so that) »5 eÀ J K R œ Ø Ù\ q nor
the induced map  defined by7 À J ÎR Ä K\
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7ÐBRÑ œ B

is an isomorphism, we say that  has   andK Ø\ ± Ùconcrete presentation e
write .K œ Ø\ ± Ùe

It is clear that if  with  and if  is a wordK œ Ø\ ± Ù R œ Ø Ù AÐB ßá ß B Ñe e nor " 8

over , then\w

AÐB ßá ß B Ñ œ " K Í AÐB Rßá ß B RÑ œ R J ÎR

Í AÐB ßá ß B Ñ − R J
" 8 " 8 \

" 8 \

 in  in 
 in 

Every Group Has a Presentation
The change of context map »  shows that every group has a concrete5À J q KK

presentation. Moreover, the kernel of this presentation is essentially the
multiplication table for . To be more specific, if  and , thenK +ß ,ß - − K - œ +,
+,- œ " K +,- J" "

K in  and so  must be factored out of . So let

R œ Ø+,- ± +ß ,ß - − Kß - œ +, KÙ Ÿ J"
K in 

It is easy to see that  is a fully invariant subgroup of  and that .R J R Ÿ Ð ÑK ker 5
For the reverse inclusion, if , then  inAÐ+ ßá ß + Ñ − Ð Ñ AÐ+ ßá ß + Ñ œ "" 8 " 8ker 5
K AÐ+ ßá ß + Ñ − R R œ Ð Ñ K œ ØK ± Ù and so . Thus,  and so , where" 8 ker 5 e

e œ Ö+,- ± +ß ,ß - − Kß - œ +, K×"  in 

Note also that if  is finite, then so is .K e

Theorem 12.22 Every group  has concrete presentation , whereK ØK ± Ùe

e œ Ö+,- ± +ß ,ß - − Kß - œ +, K×"  in 

Moreover, if  is finite, then  is a finite presentation of .K ØK ± Ù Ke

The concrete presentation  is rather large and we can improve upon it inØK ± Ùe
general.

Theorem 12.23 If , then , where  andK ¸ Ø\ ± Ù K œ Ø] ± Ù ] Ÿ \e f k k k kk k k ke fŸ K. In particular,  has a finite presentation if and only if it has a finite
concrete presentation.
Proof. Let  be a free presentation of  with kernel .. eÀ J K K R œ Ø Ù\ q» nor
Then the set  generates . Let »  be the change of context] œ \ K ÀJ q K. 5 ]

map. If  is the set of relators in  obtained from  by replacing eachf e]



occurrence of  by , then the following are equivalent:B − \ B.

AÐ B ßá ß B Ñ − Ð Ñ

AÐ B ßá ß B Ñ œ " K

AÐB ßá ß B Ñ − Ø Ù

AÐ B ßá ß B Ñ − Ø Ù

. . 5

. .

e

. . f

" 8

" 8

" 8

" 8

ker
 in 

nor

nor

and so  and .kerÐ Ñ œ Ø Ù K œ Ø] ± Ù5 f fnor

Finitely Presented Groups
A group is  if it has a finite presentation.finitely presented

Theorem 12.24 If  has a finite presentation and if  is a generating set for ,K \ K
then  has a finite presentation of the formK

ØB ßá ß B ± < ßá ß < Ù" 8 " 7

where .B − \3

Proof. Let  be a finite concrete presentation of , withØ] ± Ù Kf

] œ ÖC ßá ß C × œ Ö= ÐC ßá ß C Ñ ± 3 œ "ßá ß @×" ? 3 " ?and f

Then there is a finite subset  for which  and\ œ ÖB ßá ß B × © \ ] © Ø\ Ù! " 8 !

so  generates  and we can write\ K!

B œ ÐC ßá ß C Ñà 3 œ "ßá ß 83 3 " ?0

and

C œ ÐB ßá ß B Ñà 4 œ "ßá ß ?4 4 " 8-

Let

L œ ØB ßá ß B ± Ù" 8 e

where  is the set of relators formed from the relationse

= Ð ÐB ßá ß B Ñßá ß ÐB ßá ß B ÑÑ œ "à 3 œ "ßá ß @3 " " 8 ? " 8- -

and

B œ Ð ÐB ßá ß B Ñßá ß ÐB ßá ß B ÑÑà 4 œ "ßá ß 84 4 " " 8 ? " 80 - -

Since each of these relations holds in , the subgroup  is contained in theK Ø Ùe nor
kernel of the change of context epimorphism »  and so  induces an5 5À J q K\!

epimorphism »  defined by .5 5w w
3 3À L q K ÐB Ñ œ B

To see that  is injective, if5w

5w
" 8ÐAÐB ßá ß B ÑÑ œ "

then
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AÐB ßá ß B Ñ œ "" 8

in , whenceK

AÐ ÐC ßá ß C Ñßá ß ÐC ßá ß C ÑÑ œ "0 0" " ? 8 " ?

in  and soK

AÐ ÐC ßá ß C Ñßá ß ÐC ßá ß C ÑÑ − Ø Ù0 0 f" " ? 8 " ? nor

in . Replacing each  by  implies thatJ C ÐB ßá ß B Ñ] 4 4 " 8-

AÐB ßá ß B Ñ − Ø Ù" 8 e nor

in , that is,  in . Hence,  is an isomorphism and so L AÐB ßá ß B Ñ œ " L K" 8
w5

has presentation .ØB ßá ß B ± Ù" 8 e

Theorem 12.25 Let  be a group and let . If  and  are finitelyK R K R KÎRü
presented, then so is .K
Proof. Let

R œ ØB ßá ß B ± < ßá ß < Ù" 8 " ?

and let

KÎR œ ØC Rßá ß C R ± = ßá ß = Ù" 7 " @

If  and  and , then  is\ œ ÖB ßá ß B × ] œ ÖC ßá ß C × E œ \ ∪ ] K" 8 " 7

generated by . As to relators, we haveE

= ÐC Rßá ß C RÑ œ " Í = ÐC ßá ß C Ñ œ A ÐB ßá ß B Ñ3 " 8 3 " 8 3 " 8

where  is a word in the 's and 's. Also,  is normal if andA ÐB ßá ß B Ñ B B R3 " 8 3 3
"

only if

C B C œ @ ÐB ßá ß B Ñ C B C œ D ÐB ßá ß B Ñ4 3 3ß4 " 8 3 4 3ß4 " 84 4
" "and

for words  and . The following set  of relations captures the relations @ D <3ß4 3ß4 3e
and  as well as the fact that := R K4 ü

< ÐB ßá ß B Ñ œ " 3 œ "ßá ß ?

= ÐC ßá ß C Ñ œ A ÐB ßá ß B Ñ 3 œ "ßá ß @

C B C œ @ ÐB ßá ß B Ñ 3 œ "ßá ß 8à 4 œ "ßá ß7

C B C œ D ÐB ßá ß B Ñ

3 " 8

3 " 8 3 " 8

4 3 3ß4 " 84
"

4
"

3 4 3ß4 " 8

 for 
 for 
 for 
 for 3 œ "ßá ß 8à 4 œ "ßá ß7

Let ,  and  and let\ œ ÖB ßá ß B × ] œ ÖC ßá ß C × E œ \ ∪ ]w w w w w w w w w
" 8 " 7

L œ ØE ± Ùw w
EÄEe w

If , then the relators in  show that .R œ ØB ßá ß B Ù Ÿ L R Lw w w w w
" 8 e ü



Let  be the unique epimorphism for which  and .0 À J Ä K 0B œ B 0C œ CE
w w
3 43 4w

Since , there is a unique epimorphism »  for whichØ Ù Ÿ Ð0Ñ 1ÀL q Kew
nor ker

1B œ 0B œ B 1C œ 0C œ Cw w w w
3 3 3 33 3and

Moreover, the restriction »  is an isomorphism, since if1ÀR q Rw

1ÐAÐB ßá ß B ÑÑ œ "w w
" 8

then

AÐB ßá ß B Ñ œ "" 8

in  and so  in . It follows thatR AÐB ßá ß B Ñ − Ø Ù J" 8 \
we nor

AÐB ßá ß B Ñ − Ø Ùw w w
" 8 EÄEe w nor

in  and so  in . Hence, if , thenJ AÐB ßá ß B Ñ œ " R O œ Ð1ÑE
w w w
" 8w ker

O ∩R œ Ö"×w

Our goal is to show that .O œ Ö"×

Since , the epimorphism »  induces an epimorphism1ÐR Ñ œ R 1ÀL q Kw

1 ÀLÎR q KÎRw w »  for which

1 ÐC R Ñ œ 1ÐC ÑR œ C Rw w w w
4 4 4

for all . Moreover,  is an isomorphism, since if4 1w

1 ÐAÐC R ßá ß C R ÑÑÑ œ AÐC Rßá ß C RÑÑ œ Rw w w w w
" 7 " 7

in , thenKÎR

AÐC Rßá ß C RÑÑ − Ø= ÐC Rßá ß C RÑßá ß = ÐC Rßá ß C RÑÙ" 7 " " 7 ? " 7 nor

in the free group on . Hence,ÖC Rßá ß C R×" 7

AÐC R ßá ß C R ÑÑ − Ø= ÐC R ßá ß C R Ñßá ß = ÐC R ßá ß C R ÑÙw w w w w w w w w w w w
" 7 " 7 " 7" ? nor

in the free group on , which implies thatÖC R ßá ß C R ×w w w w
" 7

AÐC ßá ß C Ñ − Rw w w
" 7

that is,

AÐC R ßá ß C R ÑÑ œ Rw w w w w
" 7

in . Thus,  is an isomorphism. Finally, if , then  andLÎR 1 " Á 5 − O 5 Â Rw w w

so , whence5R Á Rw w

R œ 1Ð5ÑR œ 1 Ð5R Ñ Á Rw w
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It follows that , that is,  is an isomorphism and so  isO œ Ö"× 1ÀL ¸ K K
finitely presented.

Combinatorial Group Theory
Before looking at other examples, let us return briefly to the question of whether
a given presentation  defines a nontrivial group. From one point ofØ\ ± Ùe
view, this question has a rather surprising answer. It can be shown that no
algorithm can ever exist that determines whether or not an arbitrary set of
generators and relations defines a nontrivial group! Nor is there any algorithm
that determines whether the group defined by an arbitrary finite presentation is
finite or infinite.

Definition A  is a problem that has a yes or no answer, suchdecision problem
as whether or not a given word in  is the identity in a group .J K\

1  A decision problem is  or  if there is an algorithm, called) decidable solvable
a , that stops after a finite number of steps and returnsdecision procedure
“yes” when the answer is yes and “no” when the answer is no. A decision
problem is  or  if it is not decidable.undecidable unsolvable

2  A decision problem is  or  if there is an) semidecidable semisolvable
algorithm that stops after a finite number of steps and returns “yes” when
the answer is yes. However, the algorithm need not stop if the answer is
no.

The  for a group  with presentation , first formulated inword problem K Ø\ ± Ùe
1911 by Max Dehn, is the problem of deciding whether or not an arbitrary word
over  is the identity element of  (or, equivalently, whether or not two\ Kw

arbitrary words over  are the same element of ). It has been shown that\ Kw

there exist individual groups  with finite presentations for which the wordK
problem is unsolvable.

On the other hand, there are large classes of groups for which the word problem
is solvable. For example, the word problem is solvable for all free groups (in
view of Theorem 12.4), for all finite groups and for all finitely-generated
abelian groups. In fact, it is an active area of current research in group theory to
study classes of groups for which the word problem can be solved.

On the other hand, the word problem for finitely-presented groups is
semidecidable. For if  is a finite presentation of a group  and ifØ\ ± Ù Ke
A − K, then since  is a finite set, there is an algorithm that checks all of thee
elements of  one-by-one looking for . If  in , then this algorithmØ Ù A A œ " Ke nor
will eventually encounter . The problem is that the algorithm will notA
terminate if  and so this is not a decision procedure. One way to mitigateA Á "
this problem is to intermix the steps of this algorithm with the steps of another
algorithm that stops if , assuming that such an algorithm exists.A Á "



For example, the following defines a class of group for which such an algorithm
does exist.

Definition A group  is  if for any , there is aK " Á + − Kresidually finite
normal subgroup  for which  and  is finite.R K + Â R KÎRü

Theorem 12.26 The word problem is solvable for the class of all finitely-
presented residually finite groups.
Proof. Let  be a finite presentation of a residually finite group K œ Ø\ ± Ù Ke
and let . It is possible to enumerate all finite groups by constructingA − K
multiplication tables. Also, for a given finite group , there are only a finiteJ
number of group homomorphisms from  to , since all such homomorphismsK J
are uniquely determined by the functions . Consider the following0 À\ Ä J
algorithm:

1  Compute the next finite group .) J
2  For each group homomorphism , stop the algorithm if .) 5 5À K Ä J A Á "

Now, if  in , then since  is residually finite, there is an  forA Á " K K R Kü
which  and  is finite. Hence, the canonical projection ,A Â R KÎR ÀK Ä KÎR1
which is encountered in step 2) above, satisfies  and so the algorithm1A Á "
will stop if . Thus, we can intermix this algorithm with theA Á "
aforementioned algorithm to get a decision procedure for the word problem for
K.

The issues discussed above fall under the auspicies of an area of algebra known
as .combinatorial group theory

On the Order of a Presented Group
Since a relation cannot be a , there is no way to specify the  ofnonequality order
an element or subgroup of a group by relations. Thus, for example, among the
following descriptions of a group, only the first description is a presentation:

1) K œ Ø+ß , ± + œ "ß , œ "ß +,+, œ "Ù"
# %

2) , K œ Ø+ß ,Ù 9ÐK Ñ œ )ß + œ "ß , œ "ß +,+, œ "# #
# %

3) K œ Ø+ß ,Ùß 9Ð+Ñ œ #ß 9Ð,Ñ œ %ß +,+, œ "$

Since the relation  is equivalent to the commutativity relation+,+, œ "

,+ œ +,$

each of the groups above has underlying set

W œ Ö+ , ± ! Ÿ 3 Ÿ "ß ! Ÿ 4 Ÿ $×3 4
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and so  for . Moreover, since  implies 9ÐK Ñ Ÿ ) 5 œ "ß #ß $ 9ÐK Ñ œ ) 9Ð+Ñ œ #5 #

and , any group satisfying 2) also satisfies 3). Conversely, 9Ð,Ñ œ % 9ÐK Ñ œ %$

or , but if , then  and , which does not satisfy) 9ÐK Ñ œ % K œ Ø,Ù + œ ,$ $
#

+,+, œ " 9ÐK Ñ œ ). Hence,  and so 2) and 3) describe the same group.$

Thus, if we show that a group  fitting description 2) or 3) exists, then  hasK K
order  and  the relations  given by 1). Hence,  is contained in the) satisfies e e
kernel of the change of context map  and so5À J Ä KÖ+ß,×

)   ÐJ À Ø Ù Ñ   ÐJ À Ð ÑÑ œ K œ )Ö+ß,× Ö+ß,×e 5nor ker k k
It follows that  and so  has presentation .kerÐ Ñ œ Ø Ù K Ø\ ± Ù5 e enor

Theorem 12.27 Suppose that a group with presentation  has order atØ\ ± Ùe
most . Then any group  of order  generated by  and satisfying the8  ∞ K 8 \
relations in  has presentation .e eØ\ ± Ù
Proof. Let »  be the change of context epimorphism. Since5À J q K\

Ø Ù Ÿ Ð Ñe 5nor ker , we have

8   ÐJ À Ø Ù Ñ   ÐJ À Ð ÑÑ œ K œ 8\ \e 5nor ker k k
from which it follows that  and sokerÐ Ñ œ Ø Ù5 e nor

K ¸
J

Ø Ù
\

e nor

Referring to our previous example, since the dihedral group  fits descriptionH)

2) and has order , we have)

H ¸ Ø+ß , ± + œ "ß , œ "ß +,+, œ "Ù)
# %

More generally, one of the simplest presentations with two generators is

L œ ØBß C ± B œ "ß C œ "ß CB œ BC Ù8 7 >

for some . The commutativity relation shows that!  >  7

L œ ÖB C ± ! Ÿ 3  8 ! Ÿ 4  7×3 4  and 

and so . Moreover, one can prove by induction that for 9ÐLÑ Ÿ 78 ! Ÿ 5  7
and ,! Ÿ 4  8

C B œ B C5 4 4 5>4

and so

ÐB C ÑÐB C Ñ œ B C3 5 4 j 34 5> j4

(12.28)

However, we can define a group  whose underlying set consists of the K 78
distinct formal symbols



K œ ÖB C ± ! Ÿ 3  8 ! Ÿ 4  7×3 4  and 

with product defined by (12.28). This product is associative, since

ÒÐB C ÑÐB C ÑÓÐB C Ñ œ ÐB C ÑÐB C Ñ œ B C3 5 4 j ? @ 34 5> j ? @ 34? Ð5> jÑ> @4 4 ?

and

ÐB C ÑÒÐB C ÑÐB C ÑÓ œ B C ÐB C Ñ œ B C3 5 4 j ? @ 3 5 4? j> @ 34? 5> j> @? 4? ?

and inverses exist, since

ÐB C Ñ œ B C3 5 " 83 75>83

Hence,  is a group of size  that satisfies  and so  has presentationK 87 Ke
Ø\ ± Ù 9ÐLÑ œ 78e  and .

Theorem 12.29
1  The presentation)

Ø\ ± Ù œ Ø+ß , ± + œ "ß , œ "ß ,+ œ +, Ùe 8 7 >

where  defines the group!  >  7

K œ Ö+ , ± ! Ÿ 3  8 ! Ÿ 4  7×3 4  and 

where , ,  and9ÐKÑ œ 78 9Ð+Ñ œ 8 9Ð,Ñ œ 7

Ð+ , ÑÐ+ , Ñ œ + ,3 5 4 j 34 5> j4

Moreover, any group of order  that is generated by  and satisfies the78 \
relations  has presentation .e eØ\ ± Ù

2  The presentation)

Ø] ± Ù œ Ø-ß . ± - œ "ß . œ "ß .- œ - .Ùf 8 7 =

defines the group

L œ Ö- . ± ! Ÿ 3  8 ! Ÿ 4  7×3 4  and 

where , ,  and9ÐLÑ œ 78 9Ð-Ñ œ 8 9Ð.Ñ œ 7

Ð- . ÑÐ- . Ñ œ - .3 5 4 j 34= 5j5

Moreover, any group of order  that is generated by  and satisfies the78 ]
relations  is defined by .f fØ] ± Ù

Let us now consider some examples of presentations.
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Dihedral Groups
Since the dihedral group  of order  satisfies the relationsH œ Ø ß Ù #8#8 5 3

e 5 3 35 53œ Ö œ "ß œ "ß œ ×# 8 8"

Theorem 12.29 implies that  has presentation  andH ØÖ ß × ± Ù#8 5 3 e
multiplication table

Ð ÑÐ Ñ œ5 3 5 3 5 33 5 4 j 34 5Ð8"Ñ j4

We leave it as an exercise to show that  is also presented byH#8

Ø] ± Ù œ ØBß C ± B œ "ß C œ "ß ÐBCÑ œ "Ùf # # 8

Thus, two rather different looking presentations can be , that is, canequivalent
present the same group.

Quaternion Group
To find a presentation for the quaternion group, note that  satisfies theU œ Ø3ß 4Ù
relations

e œ Ö3 œ "ß 3 œ 4 ß 43 œ 3 4×% # # $

and so we need only show that any group presented by  has order atØ\ ± Ùe
most . If  has presentation) K

Ø\ ± Ù œ ØBß C ± B œ "ß C œ B ß CB œ B CÙe % # # $

then

K œ ÖB C ± ! Ÿ =ß > Ÿ $×= >

However, since , we see thatC œ B# #

K œ ÖB C ± ! Ÿ = Ÿ $ß ! Ÿ > Ÿ "×= >

and so . Thus, .9ÐKÑ Ÿ ) U ¸ Ø\ ± Ùe

Dicyclic Groups
Consider the presentation

Ø\ ± Ù œ ØBß C ± B œ "ß C œ B ß CB œ B CÙe #8 # 8 "

If

L œ Ø\ ± Ùe

then using the fact that , we haveC œ B# 8



L œ ÖB C ± ! Ÿ 3 Ÿ #8  "ß ! Ÿ 4 Ÿ "×3 4

and so .9ÐLÑ Ÿ %8

A double induction shows that for  and ,! Ÿ 5  % ! Ÿ 4  #8

C B œ B C œ
B C 5

B C 5
5 4 Ð"Ñ 4 5

4 5

#84 5

5 œ  even
 odd

and so

ÐB C ÑÐB C Ñ œ B C3 5 4 j 3Ð"Ñ 4 5j5

(12.30)

However, we can define a group  by choosing two distinct symbols  and K B C
and setting

K œ ÖB C ± ! Ÿ 3  #8ß 4 œ !ß "×3 4

with product defined by (12.30). This product is associative:

ÒÐB C ÑÐB C ÑÓÐB C Ñ œ ÐB C ÑÐB C Ñ œ B C3 5 4 j ? @ 3Ð"Ñ 4 5j ? @ 3Ð"Ñ 4Ð"Ñ ? 5j@5 5 5j

and

ÐB C ÑÒÐB C ÑÐB C ÑÓ œ B C ÐB C Ñ œ B C3 5 4 j ? @ 3 5 4Ð"Ñ ? j@ 3Ð"Ñ Ð4Ð"Ñ ?Ñ 5j@j 5 j

and inverses exist:

ÐB C Ñ œ B C3 5 " Ð"Ñ Ð#83Ñ %55

Hence,  is a group of size  that satisfies the relations  and soK %8 e
K ¸ Ø\ ± Ù 9ÐLÑ œ %8 Ø\ ± Ùe e and . Any group with presentation  is called a
dicyclic group of order .%8

A special case of the dicyclic group is when  has the form , in which case#8 #8"

the presentation is

Ø\ ± Ù œ ØBß C ± B œ "ß C œ B ß CB œ B CÙe # # # "8" 8#

A group with this presentation is called a . Whengeneralized quaternion group
8 œ $, this is

Ø\ ± Ù œ ØBß C ± B œ "ß C œ B ß CB œ B CÙe % # # "

which is the presentation for the quaternion group .U

The Symmetric Group
Recall from Theorem 6.5 that the symmetric group  is generated by the W 8  "8

adjacent transpositions  for . Note also that the> œ Ð5 5  "Ñ 5 œ "ßá ß8  "5

>5 's satisfy the relations
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> œ "ß > œ > ß > > œ > > 4  5 Á „"5
#

5 5"
> >

5 4 4 5
5" 5  for 

Now let

\ œ ÖB ßá ß B ×" 8"

and let  be the relationse

B œ "ß B B B œ B B B ß B B œ B B 4  5 Á „"5
#

5" 5 5" 5 5" 5 5 4 4 5  for 

Let . Since  is generated by the elements  andK œ Ø\ ± Ù W > œ Ð5 5  "Ñe 8 5

satisfies the relations  with  replaced by , Theorem 12.27 implies that ife B >5 5

9ÐKÑ Ÿ 8x W ¸ Ø\ ± Ù 8, then . We prove the former by induction on .8 e

If , then  where  and so  has order . Assume8 œ # K œ ØB Ù B œ " K œ Ö"ß B × #" ""
#

that the result holds for the subgroup  with relations . WeL œ ØB ßá ß B Ù" 8# e
show that every  can be written in the form+ Â L

+ œ B B âB A5 5" 8"

for , where . Let us refer to a substring  as" Ÿ 5 Ÿ 8  " A − L B B âB3 3" 8"

being in . Thenproper order

+ œ ?ÐB B âB Ñ@3 3" 8"

for some , where . If  is the empty string, then we are done.3 Ÿ 8  " @ − L ?
Otherwise, let .  Here are the possibilities:? œ ? Bw 4

1  If , then  commutes with all factors to its right and so) 4 Ÿ 3  # B4

+ œ ? ÐB B âB ÑB @w
3 3" 8" 4

where .B @ − L4

2  If , then) 4 œ 3  "

+ œ ? ÐB B B âB Ñ@w
3" 3 3" 8"

3  If , then) 4 œ 3

+ œ ? B ÐB B âB Ñ@ œ ? ÐB âB Ñ@w w
3 3 3" 8" 3" 8"

4  If , then) 4   3  "

+ œ ? B ÐB B âB Ñ@

œ ? ÐB âB B B âB Ñ@

œ ? ÐB âB B B âB Ñ@

œ ? ÐB âB B âB ÑB @

w
4 3 3" 8"

w
3 4 4" 4 8"

w
3 4" 4 4" 8"

w
3 4" 4 8" 4"

where .B @ − L4"



Thus, in all cases, we can reduce the length of the substring appearing to the left
of the substring in proper order by one symbol. Repeated application brings  to+
the desired form

+ œ B B âB A5 5" 8"

It follows that .9ÐKÑ œ 8 † 9ÐLÑ Ÿ 8x

Theorem 12.31 The symmetric group  has presentation , whereW Ø\ ± Ù8 e

\ œ ÖB ßá ß B ×" 8"

and let  consist of the relationse

B œ "ß B B B œ B B B ß B B œ B B 4  5 Á „"5
#

5" 5 5" 5 5" 5 5 4 4 5  for 

We close by noting that the relations above are equivalent to

B œ "ß ÐB B Ñ œ "ß ÐB B Ñ œ " 4 Ÿ 5  #5
# $ #

5" 5 5 4  for 

Exercises
1. An equational class  is  if all members of the class are abelian^ abelian

groups. Characterize abelian equational classes.
2. Let  be the dicyclic group of order , , with presentationK %8 8  "

Ø\ ± Ù œ ØBß C ± B œ "ß C œ B ß CB œ B C œ B CÙe #8 # 8 #8" "

 a)  has exactly one involution .K D
 b) ^ÐKÑ œ ØDÙ
 c) KÎ^ÐKÑ ¸ H#8

3. Let  be a nonempty set and let  be universal for . Let\ ÐJ ß Ñ \\ ,
AÐB ßá ß B Ñ \ 0À ÖB ßá ß B × Ä ÖC ßá ß C ×" 8 " 8 " 8

w be a word over  and let  be
an injection, where . Prove thatC − \3

AÐ B ßá ß B Ñ œ " Í AÐ C ßá ß C Ñ œ ", , , ," 8 " 8

4. Let  be the free group on the set . Show that  has aJ \ œ ÖB ßá ß B × J" 8

subgroup of index  for all .7 " Ÿ 7 Ÿ 8
5. Let  be the free group on  and let  be the directJ \ œ ÖBß C× K œ Ø+Ù Ø,Ù}

product of two infinite cyclic groups. The function  defined by0 À\ Ä K
0B œ Ð+ß "Ñß 0C œ Ð"ß ,Ñ À J Ä K induces a unique mediating morphism .7
What is the kernel of ?7

6. Let  be the free group on . Prove the following:J \\

 a  If  is nonempty, then .) ] © \ J Ÿ J] \

 b  If  is nonempty, then . In particular, if) ] © \ J ∩ J œ Ö"×] \Ï]

B − \ Ï ] B Â J, then .]

7. Characterize the abelian groups that are free groups.
8. Let  be a free group and let  have finite index. Show that J L Ÿ J L

intersects every nontrivial subgroup of  nontrivially.J
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9. Let  be free on the disjoint union  of nonempty sets. Prove thatJ \ ∪ ]
JÎØ] Ù \nor is free on .

10. Show that if  and  is free, then  for some .R K KÎR K œ R L L Ÿ Kü z
11. Prove that if , then the free group  is centerless.k k\  " J\

12. Let  be a free group. Suppose that »  is an epimorphism and thatJ ÀEq F5
7 -À J Ä F ÀJ Ä E is a homomorphism. Prove that there is a  for which
5 - 7‰ œ . This is called the  of free groups.projective property

13. If  is a class of groups, then a group  is  or a ^ K residually residually -^ ^
group if for any , there is a normal subgroup  for which" Á + − K R K+ ü
+ Â R KÎR+ + and  is a -group.^

 a  Prove that a group  is residually  if and only if it is isomorphic to a) K ^
subdirect product of -groups.^

 b  Prove that if  is a family of normal subgroups of a) a œ ÖR ± 3 − M×3

group  and if  is a -group for all , then  isK KÎR 3 − M KÎ R3 3^ +
residually .^

14. Prove that the presentation

Ø] ± Ù œ Ø-ß . ± - œ "ß . œ "ß .- œ - .Ùf 8 7 =

defines the group

L œ Ö- . ± ! Ÿ 3  8 ! Ÿ 4  7×3 4  and 

where , ,  and9ÐLÑ œ 78 9Ð-Ñ œ 8 9Ð.Ñ œ 7

Ð- . ÑÐ- . Ñ œ - .3 5 4 j 34= 5j5

15. Show that  is presented byH#8

Ø] ± Ù œ ØBß C ± B œ "ß C œ "ß ÐBCÑ œ "Ùf # # 8

16. Let  and  be distinct symbols. Let5 3

H œ Ö ß ± 3 − ×3 53 ™3 3

with product defined by the properties . Thus,5 35 53# "œ "ß œ

3 5 533 3œ

 a) Show that  is a group and that  is presented byH H

T œ ØBß C ± B œ "ß CB œ BC Ù"
# "

 b) Show that  is also presented byH

T œ ØBß C ± B œ "ß C œ "Ù#
# #

 Any group presented by  or  is called an .T T" # infinite dihedral group
17. Let  be a finite presentation of , where K œ Ø\ ± Ù K \ œ ÖB ßá ß B ×e " 8

and  and . Show that  is an infinite group asew
" 7œ Ö< ßá ß < × 7  8 K

follows.



 a  Reduce the problem to the abelian case as follows. Let  be the free) E\

abelian group on . Show that there is an epimorphism from\
J ÎØ Ù E ÎØ Ù\ \

w we enor to .
 b  Show that  is infinite.) E ÎØ Ù\

we
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Chapter 13
Abelian Groups

In this chapter, we study abelian groups. We will write abelian groups using
additive notation. One of our main goals is to provide a complete solution to the
classification problem for finitely-generated abelian groups. That is, we will
describe all finitely-generated abelian groups up to isomorphism.

Perhaps the most natural place to begin is to observe that the elements of finite
order in an abelian group  form a subgroup of , sinceE E

9Ð+,Ñ œ Ð9Ð+Ñß 9Ð,ÑÑlcm

Let us remind the reader that this is not the case in a general group. For
example, in , letKPÐ#ß Ñ‚

E œ F œ
! " ! "
" ! " "Œ 7 Œ 7and

Then  and  have finite order but  has infinite order.E F EF

Definition Let  be an abelian group. An element  that has finite order isE + − E
called a . The subgroup  of all torsion elements in  istorsion element E Etor
called the  of . A group that has no nonzero torsion elementstorsion subgroup E
is said to be  and a group all of whose elements are torsiontorsion free
elements is said to be .torsion

Of course, a finite group is a torsion group, but the converse is not true:
Consider the direct product  of an infinite number of copies of .™ ™#

i
#

!

The quotient  is easily seen to be torsion free and it would be nice if EÎE Etor tor
was always a direct summand of , that is, ifE

E œ E Ftor 

for some , since then  would be torsion free and we wouldFßE F ¸ EÎEtor
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have a nice decomposition of any abelian group. Unfortunately, this is not the
case. To show this, we require a definition.

Definition Let  be an abelian group. An element  is  by anE + − E divisible
integer  if there is an element  for which . A group  is 8 , − E + œ 8, E divisible
if every element is divisible by every nonzero integer.

Theorem 13.1 The torsion subgroup of an abelian group need not be
complemented.
Proof. Let  be the external direct product of the abelian groups ,E œ } ™ ™: :

taken over all primes . For , we use the notation  in place of . The: + − E + +Ð:Ñ:

torsion subgroup  is the subgroup of all elements with finite support. IfEtor
E œ E F F ¸ EÎEtor tor , then , so this prompts us to look for an
isomorphism-invariant property that holds in  but not in . This propertyEÎE Ftor
is divisibility.

Specifically, we will show the following:

1) No nonzero element of  (and hence ) is divisible by all primes .E F :
2) There are nonzero elements of  that are divisible by all primes .EÎE :tor

Since the only element of  that is divisible by  is , if  is divisible by™: : ! + − E
: + œ ! + + œ !, then . Hence, if  is divisible by all primes, it follows that .:

Now let  be the element for which  for all . For a given prime , to+ − E + œ " : ::

say that  for some  is to say that  for all primes . But if+ œ :, , − E :, œ " ;;

; Á : : < , , œ <, then  has an inverse  in the field . Hence, if  is defined by : ; : :™
and , then, œ !:

Ð+  :,Ñ œ +  :, œ ": : :

and for all ,; Á :

Ð+  :,Ñ œ +  :, œ !; ; ;

and so .+  :, − Etor

Despite the negative nature of the previous result, we will show that if  is aE
finitely-generated abelian group, then  is complemented. This is a key to theEtor
structure theorem for finitely-generated abelian groups.
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An Abelian Group as a -Module™

An abelian group  has a natural scalar multiplication defined upon it, namely,E
multiplication by the integers: If  and , we setα ™− + − E

α

α
α

α α

+ œ

! œ !
+ â +  !

Ð Ñ+  !

ÚÝÝÛÝÝÜ
ðóóñóóò if 

if 

if 

(13.2)
α terms

Under this operation, an abelian group  is a -module, as defined below.E ™

Definition Let  be a commutative ring with identity. An  or aV V-module (
module over V Q) is an abelian group , together with a scalar multiplication,
denoted by juxtaposition, that assigns to each pair , an elementÐ<ß ?Ñ − V ‚Q
<@ − Q <ß = − V. Furthermore, the following properties must hold for all  and
?ß @ − Q :

<Ð?  @Ñ œ <?  <@

Ð<  =Ñ? œ <?  =?

Ð<=Ñ? œ <Ð=?Ñ

"? œ ?

The ring  is called the  of  and the elements of  are calledV Q Vbase ring
scalars.

Note that an abelian group  is a -module and, conversely, a -module isE ™ ™
nothing more than an abelian group, since the scalar multiplication of a -™
module  must be the operation defined in (13.2). Moreover, the subgroups ofQ
the abelian group  are the submodules of the module  and the groupQ Q
homomorphisms between the abelian groups  to  are the linear (module)Q R
maps between the -modules  and .™ Q R

The Classification of Finitely-Generated Abelian Groups
We solved the classification problem for finite abelian groups in Theorem 5.7.
Also, Theorem 12.14 solves the classification problem for free abelian groups.
Using these theorems, we can now solve the classification problem for finitely-
generated abelian groups. The first step is to note the following.

Theorem 13.3 A finitely-generated abelian group  is torsion free if and only ifE
it is free.
Proof. We leave proof that if  is free, then it is torsion free as an exercise. ForE
the converse, let  be a generating set for the torsion-freeW œ Ö@ ßá ß @ ×" 8

abelian group . The proof is based on the fact that since  is torsion free, it isE E
a torsion-free -module. Moreover, for any , the multiplication map™ + − E
. . ™+ +À E Ä E B œ +B E defined by  is a -module automorphism of .



Let  be a maximal linearly independent subset of . Of course, ifÖ? ßá ß ? × W" 5

5 œ 8 W E E, then  is a basis for  and so  is free. Assume otherwise and let

W œ Ö? ßá ß ? ß @ ßá ß @ ×" 5 " 85

For each , the set  is linearly dependent and so there exist@ Ö? ßá ß ? ß @ ×3 " 5 3

+ −3 ™ for which

+ @ − Ø? ßá ß ? Ù3 3 " 5

If , then+ œ âα α" 85

.+ " 5 " 85 " 5E œ +Ø? ßá ß ? ß @ ßá ß @ Ù © Ø? ßá ß ? Ù

and since the latter is a free abelian group, Theorem 12.18 implies that  is.+E
also free and therefore so is .E

If  is a finitely-generated abelian group , then  is a subgroup of  andE E E Etor
the quotient  is torsion-free and finitely generated and so is free. SinceEÎEtor
the canonical projection map  is an epimorphism, Theorem 12.191À E Ä EÎEtor
implies that  has a complement:Etor

E œ J E tor

where  is free and finitely-generated. Moreover, Theorem 12.16J ¸ EÎEtor
implies that  has finite rank and since  is finitely generated (TheoremJ Etor
2.21), torsion and abelian, it is finite.

As to uniqueness of this decomposition, if

E œ J Xw 

where  is free and  is torsion, then clearly, . But if  andJ X X Ÿ E + − Ew
tor tor

+ œ >  0 > − X 0 − J 0 œ +  > 0 œ ! where  and  and so  is torsion, whence w

and . Thus, . It follows that  and  are both complements of+ − X X œ E J Jtor
w

Etor and hence are isomorphic.

We can now state the fundamental theorem of finitely-generated abelian groups.

Theorem 13.4 (The fundamental theorem of finitely-generated abelian
groups) Let  be a finitely-generated abelian group, with torsion subgroupE
Etor.
1  Then)

E œ J E tor

where  is free of finite rank  and  is finite. As to uniqueness, ifJ < Etor

E œ J Xw 

Fundamentals of Group Theory356



Abelian Groups 357

where  is free and  is torsion, then  and . TheJ X X œ E ÐJÑ œ ÐJ Ñw w
tor rk rk

number  is called the  of .< œ ÐJÑ Erk free rank
2    is the direct sum of a finite number of) ( )Invariant factor decomposition E

cyclic subgroups

E œ ØB Ù â ØB Ù Ø? Ù â Ø? Ù" < " 8    

where  and  and9ÐB Ñ œ ∞ 9Ð? Ñ œ   #3 3 3α

α α α8 8" "± ± â ±

The orders  are called the  of .α3 invariant factors E
3   If) ( )Primary cyclic decomposition

α5 "
/ /

7œ : â:5ß" 5ß7

then

E œ ØB Ù â ØB Ù

ÒØ? Ù â Ø? ÙÓ â ÒØ? Ù â Ø? ÙÓ
" <

"ß" "ß5 7ß" 7ß5

 

      
" 7

where  and  and9ÐB Ñ œ ∞ 9Ð? Ñ œ :3 3ß4 3
/3ß4

/   /   â   /   "3ß" 3ß# 3ß53

The numbers  are called the  of .: E3
/3ß4 elementary divisors

3  The multiset  of invariant factors and the multiset  of elementary) Ö × Ö: ×α3 3
/3ß4

divisors are uniquely determined by the group .E

Projectivity and the Right-Inverse Property
A diagram of the form

E F GÒ Ò
5 7

where ,  and  are groups and  and  are group homomorphisms is  ifE F G 5 7 exact

imÐ Ñ œ Ð Ñ5 7ker

It is customary to regard the figure

E F !Ò Ò
5

as exact and to omit the second homomorphism, since it must be the zero map.
Thus, this figure says precisely that  is surjective. Similarly, the figure5

! E FÒ Ò
5

says precisely that  is injective.5

According to Theorem 5.23, a group homomorphism  has a right5À K Ä Kw

inverse  if and only if it is surjective and  is complemented:5 5V kerÐ Ñ



K œ Ð Ñ Oker 5 z

for some  and in this case,O Ÿ K

K œ Ð Ñ Ð Ñker 5 z 5im V

Let us say that an abelian group  has the  if everyT right-inverse property
epimorphism » , where  is abelian, has a right inverse. This is5À Eq T E
illustrated in Figure 13.1.

PA

ι

σ

σR

0

P

Figure 13.1

An apparently stronger property is given in the following definition.

BA

τ

σ
0

P
λ

Figure 13.2

Definition An abelian group  is  if, referring to Figure 13.2, forT projective
any epimorphism  of abelian groups and any homomorphism5À E Fq»
7 -À T Ä F ÀT Ä E, there is a homomorphism  for which

5 - 7‰ œ

In this case, we say that  can be  to .7 -range-lifted

While the projective property appears to be stronger than the right-inverse
property, the two properties are actually equivalent. The following theorem is
the main result on projective abelian groups.

Theorem 13.5 Let  be an abelian group. The following are equivalent:K
1   is a free abelian group.) K
2   is projective.) K
3   has the right-inverse property, that is, any surjection , where ) K ÀE Ä K E7

is abelian, has a right inverse.
4  If , where  is abelian, then  is a direct summand of .) »5 5À E K E Ð Ñ Eq ker
Proof. We have seen that 3) and 4) are equivalent. Assume that 1) holds and let
K œ J \ ÀE Ä F ÀJ Ä F\ \ be free on . Let  be surjective and let . Then for5 7
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each , there is an  for which . Define a functionB − \ + − E + œ BB B5 7
0 À\ Ä E 0ÐBÑ œ + J by . Since  is free, there is a unique homomorphismB \

- -À J Ä E B œ +\ B for which . Then

5 - 5 7‰ ÐBÑ œ + œ BB

and so  on  and therefore on . Hence,  is projective and5 - 7‰ œ \ J K œ J\ \

2) holds. It is clear that 2) implies 3).

Finally, suppose that 3) holds. The identity map  can be lifted to a+À K Ä K
homomorphism  where  is the free abelian group with basis . Of5À J Ä K J KK K

course,  is surjective and so 3) implies that  has a right inverse .5 5 5V KÀK Ä J
Hence,  is complemented, that is,kerÐ Ñ5

J œ Ð Ñ WK ker 5 

But  is an isomorphism and so  is isomorphic to a direct summand5À W Ä K K
of a free abelian group and is therefore free abelian by Theorem 12.18. Hence,
1) holds.

Injectivity and the Left-Inverse Property
We have seen that a monomorphism  has a left-inverse  if and only5 ä 5À E F P

if  has a complement  in , in which case . Dual to theimÐ Ñ O F O ¸ Ð Ñ5 5ker P

right-inverse property is the : An abelian group  has theleft-inverse property I
left-inverse property if every monomorphism  to an abelian group 5 äÀ I F F
has a left inverse.

Dual to the projective property is the injective property.

Definition An abelian group  is  if, referring to Figure 13.3, for anyI injective
embedding  and any homomorphism  there is a5 ä 7À E F ÀE Ä I
homomorphism  for which-À E Ä I

- 5 7‰ œ

In this case, we say that  can be  to  by7 -À E Ä I ÀF Ä Idomain-lifted
5À E Ä F.

B0

E

σ

τ
λ

A

Figure 13.3

Baer [3] proved that if this condition holds in the special case where  isF œ ™
the group of integers and  and  is the inclusion map, then theE Ÿ ÀE Ä™ 5 ™
condition holds in general and  is injective.I



Theorem 13.6 An abelian group  is injective if and only if it satisfies I Baer's
criterion: Any homomorphism , where  is a subgroup of the integers7 À M Ä I M
™ - ™ ™ can be extended to a homomorphism  on .À Ä I
Proof. We wish to show that any homomorphism  can be domain-7 À E Ä I
lifted to  by any monomorphism . Note that  can be- 5 ä 7À F Ä I ÀE F
domain-lifted by  to , since  is an isomorphism.5 7 5 5 5 5‰ À E Ä I ÀE Ä E"

This is shown in Figure 13.4.

τσ−1

X

E

0 A σ

τ

σ(A) B

λ

Figure 13.4

Suppose we have domain-lifted  by  to , where , that7 5 - 5À\ Ä F E Ÿ \ Ÿ F
is,

7 - 5œ ‰

If , then for any , we can lift  by  to a map on  as\  F + − \ Ï F \  Ø+Ù- 5
follows. We need only define  on . But  is already defined on- ™ -Ø+Ù œ +
™ -+ ∩ \ œ M+ M Ÿ ^ À M Ä I for some . So if  is defined by"

- α - α"Ð Ñ œ Ð +Ñ

then Baer's criterion implies that  can be extended to . Then the- - ™" #À Ä I
map  defined by-À\  Ø+Ù Ä I

- - -ÐB  <+Ñ œ ÐBÑ  Ð<Ñ+#

for any  is well defined since if , then < − B  <+ œ C  =+ B  C œ Ð=  <Ñ+™
and so , which implies that=  < − M

- - -"Ð=  <Ñ œ ÐÐ=  <Ñ+Ñ œ ÐB  CÑ

and so

- - - - - -ÐB  <+Ñ œ ÐBÑ  Ð<Ñ+ œ ÐCÑ  Ð=Ñ+ œ ÐC  =+Ñ# #

Moreover, since  and , it follows that .- 5 7 5 - - 5 7‰ œ Ð Ñ Ÿ Ð Ñ ‰ œim dom

This discussion prompts us to apply Zorn's lemma. Let  be the collection of allf
pairs , where  and  is a lifting of  by  to a map on .Ð\ß Ñ ÐEÑ © \ © F \- 5 - 7 5
Then  is nonempty since we may take . Order  by settingf 5 f\ œ E
Ð\ß Ñ Ÿ Ð] ß Ñ \ © ] l œ. - - . if  and .]
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If  is a chain in , let . If , then one of V . f .œ ÖÐ\ ß Ñ× Y œ \ B − \ ∩\3 3 3 3 4 3-
and  is an extension of the other and so . Hence, we may define . . . .4 3 4B œ B
by  for any  satisfying . Then  is an upper bound for . . . VB œ B 3 B − \ ÐY ß Ñ3 3

and so Zorn's lemma implies that  has a maximal element . But iff -ÐQß Ñ
Q  F, then there is a further lifting of , which contradicts the maximality of-
ÐQß Ñ Q œ F-  and so .

We can now present our main theorem on injective groups.

Theorem 13.7 Let  be an abelian group. The following are equivalent:K
1   is injective.) K
2   is divisible.) K
3   has the left-inverse property, that is, every monomorphism  to) K ÀK F5 ä

an abelian group  has a left inverse.F
4  If , where  is abelian, then  is a direct summand of .) im5 ä 5À K E E Ð Ñ E
Proof. We know that 3) and 4) are equivalent. Assume first that  is injective.K
For  and  we seek  for which . The map 1 − K 8 − 2 − K 1 œ 82 À Ø8Ù Ä I™ 7
defined by  for all  can be domain-lifted by the inclusion map7 ™Ð<8Ñ œ <1 < −
4À Ø8Ù Ä ™, that is,

- 7‰ 4 œ

Hence,

1 œ Ð8Ñ œ ‰ 4Ð8Ñ œ Ð8Ñ œ 8 Ð"Ñ7 - - -

and so . Thus,  is divisible and 1) implies 2).2 œ Ð"Ñ K-

To see that 2) implies 1), we show that 2) implies the Baer criterion. Let
7 ™ 7 ™À Ø5Ù Ä K Ø5Ù Ÿ where . To show that  can be extended to , define
- ™ - - 7 - 7+ + + +À Ä K Ð8Ñ œ 8+ + − K Ð5Ñ œ Ð5Ñ by , for . Then  extends  if , that
is, if . But since  is divisible, there is an  for which this holds.7Ð5Ñ œ 5+ K + − K
Hence, 2) implies 1).

It is clear that 1) implies 3). Finally, suppose that  has the left-inverseI
property. We wish to show that  is injective. The story of the proof is shownI
in Figure 13.5.



κG

BA0

G

τ κB

πS

S

µG

µB

σ

λ

úûG B
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Figure 13.5

We seek the map  for which . A first attempt might be to- - 5 7À F Ä K ‰ œ
consider the direct sum , with canonical injections  and . SinceK  F , ,K F

, ,K K PÀK Ä K  F Ð Ñ is an injection, it has a left inverse  and we can take
- , , - 5 7œ Ð Ñ ‰ ‰ œK P F . However, it may not be the case that .

On the other hand, perhaps we can factor the direct sum  by a subgroupK  F
W , with projection map  in such a way that the compositions1W

. 1 ,F W Fœ ‰ ÀF Ä ÐK  FÑÎW

and

. 1 ,K W Kœ ‰ ÀK Ä ÐK  FÑÎW

satisfy
. 5 . 7F K‰ œ ‰

where  is left-invertible. In this case, if , then. - . .K K P Fœ Ð Ñ ‰ ÀF Ä K

- , . . 5 . . 7 7‰ œ Ð Ñ ‰ ‰ œ Ð Ñ ‰ ‰ œK P F K P K

as desired. But the condition  is. 5 . 7F K‰ œ ‰

1 , 5 1 , 7W F W K‰ ‰ œ ‰ ‰

that is,

Ð!ß +Ñ  W œ Ð +ß !Ñ  W5 7

for all  and so if+ − E

W œ ÖÐ +ß +Ñ ± + − E×7 5

then this equation holds. Also,  is injective since  implies that. .K K1 − Ð Ñker
Ð1ß !Ñ − W Ð1ß !Ñ œ Ð +ß +Ñ + œ ! + œ ! and so . Hence,  and so , whence7 5 5
1 œ !.
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Exercises
1. Let  be a torsion-free abelian group. Prove that if  is divisible byE + − E

8 − , − E™, then the “quotient”  is unique.
2. Prove that a subset  of an abelian group  is a basis if and only if forU E

every , there are  elements  and  scalars+ − E , ßá ß , −unique unique" 8 U
α α ™" 8ßá ß −  for which

+ œ , â ,α α" " 8 8

3. Let  be a free abelian group. Show that it is not necessarily true that anyE
linearly independent set of size  is a basis for .rkÐEÑ E

4. Let  be a free abelian group of finite rank and let . Prove thatE E œ F G
rk rk rkÐEÑ œ ÐFÑ  ÐGÑ.

5. Prove that any abelian group  is isomorphic to a quotient of a free abelianE
group.

6. A subgroup  of an additive abelian group  is  if for anyL Ÿ K K pure
2 − L 7 − and ,™

2 œ 71 1 − K Ê 2 œ 72 2 − L for  for some w w

 a) Prove that if  is an abelian group, then the set of periodic elements ofK
K is pure.

 b) Prove that any direct summand of an abelian group is pure.
 c) Find a nonpure subgroup of the cyclic group .™8#

7. Prove that an abelian group  is finitely generated if and only if it isE
isomorphic to a quotient of a free abelian group of finite rank.

8. Let  be a free abelian group of finite rank . Let  be aE 8 W œ Ö= ßá ß = ×" 8

generating set for . Prove that  is a basis for . : LetE W E Hint
\ œ ÖB ßá ß B × E ÀE Ä E" 8  be a basis for  and define the map  by7
7ÐB Ñ œ =3 3 and extending to a surjective homomorphism. What about
kerÐ Ñ7 ?

9. Let  be a free abelian group of rank . Let  be a subgroup of  of rankJ 8 L J
5  8 KÎL. Prove that  contains an element of infinite order.

10. Show that, in general, a basis for a subgroup of a free abelian group cannot
be extended to a basis for the entire group.

11. Prove that any free abelian group is torsion free.
12. Let  be a torsion-free abelian group. Suppose that  has a subgroup K K J

that is free and has finite index. Prove that  is free abelian.K
13. Let  be a finite abelian group.E
 a) Prove that if , then  is a vector space over the field:E œ Ö!× E

™ ™ ™: œ Î: .
 b  Prove that for any subgroup  of  the set) W E

W œ Ö@ − W ± :@ œ !×Ð:Ñ



is also a subgroup of  and if , thenE E œ W X

E œ W XÐ:Ñ Ð:Ñ Ð:Ñ

14. Let  be a free abelian group of rank . Show that  is isomorphic toJ 8 ÐJÑAut
the group of all  matrices with determinant equal to .8 ‚ 8 „"

15. Let  be the multiplicative group of positive rational numbers.

 a) Show that  is isomorphic to the additive group  of polynomials ™ ÒBÓ
over the integers. : Use the fundamental theorem of arithmetic.Hint

 b) Show that the multiplicative group  of positive rationals is a free

abelian group of countably infinite rank.
16. Prove that the quasicyclic group  is divisible.™Ð: Ñ∞

17. Prove that a free abelian group is not divisible.
18. a) Show that the rational numbers  are not finitely generated as an

abelian group under addition.
 b) Show that  is divisible and therefore not free by an earlier exercise.
 c) Show that  is torsion free.
 Thus, a torsion-free abelian group need not be free.
19. Prove that if , where  and  are abelian groups, then  isE œ E E E E} 3 3

injective if and only if  is injective for all .E 33

20. Let  be an abelian group. Show that the set  of all divisible elements isE Ediv
a subgroup of . Show that  is a direct summand of .E E Ediv

21. Let  be a divisible group. Prove that  is divisible.H Htor
22. Let  be a finitely generated abelian group. For any subgroup  of  letE W E

E œ Ö+ − E ± + : ×Ð:Ñ  is a -element

Show that . Describe the order of  in terms of the elementaryE « E EÐ:Ñ Ð:Ñ

divisors of .E
23. How can one tell from the elementary divisors of a finite abelian group

when that group is cyclic?
24. Use one of the decomposition theorems to prove that a finite abelian group

E 5 5 ± 9ÐEÑ has a subgroup of order  for every .
25. Find, up to isomorphism, all finite abelian groups of order . Which are"!!!

cyclic?
 26. Prove that every abelian group of order 426 is cyclic.
27. Let  be a prime. Let:

E œ Ø? Ù â Ø? Ù" 7 

where  and let9Ð? Ñ œ :3
03

F œ Ø@ Ù â Ø@ Ù" 8 

where . Assume that .9Ð@ Ñ œ : E Ÿ F3
/3

 a) Prove that .7 Ÿ 8
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 b) Prove that

0 Ÿ / ß 0 Ÿ / ßá ß 0 Ÿ /7 8 7" 8" " 87"
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Ÿ : subgroup
¡ + ¡ , , +:  means that  covers 
³ the item on the left is defined by the item on the right
œÀ the item on the right is defined by the item on the left
“ : disjoint union of sets
‚ : cartesian product
 Š: internal direct sum; in the abelian case
}: external direct product
{: external direct sum
z : semidirect product
O L N O KßK œ LOßL ∩O œ Nz ümod : 
« L « K L K:  means that  is characteristic in 
ö ö:  means that  is characteristic and proper in L K L K
ä : denotes an embedding (injective map)
Ò?Ó ?: the equivalence class containing 
Ð5ß 8Ñ 5 8 Ð5ß 8Ñ: If  and  are integers, this is gcd
ACC: ascending chain condition
BCC: both chain conditions
DCC: descending chain condition
WfÐKÑ K: the set of direct summands in 
G Ð+Ñ Ø+Ù 88 : the cyclic group  of order 
ncÐ\ßKÑ \ K: the normal closure of  in 
+: identity map
M œ Ö"ßá ß 8×8

]: for Sylows so we do not conflict with symmetric group.
FÐKÑ K: the Frattini subgroup of 
ÐK À LÑ L K: index of  in 
gcdÐ+ß ,Ñ + ,: greatest common divisor of  and 
lcmÐ+ß ,Ñ + ,: least common multiple of  and 
ÒLßOÓ L O: the commutator subgroup of  and 
L L‰: the normal interior of 
L ìO LO L O: The set product  where  and  are essentially disjoint.
L À ÖL ± 4 Á 3×Ð3Ñ 41
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L À L Ÿ KÐ5Ñ a term in the sequence of normal closures of 
+ œ Ö+ ± 7 − Q×Q 7

conjKÐLÑ L K: the set of conjugates of  by 
Fix : the set of elements of  fixed by the action of \ÐKÑ \ K
L L KK: the normal closure of  in 
>KÐLÑ œ ÒLßKÓ
'KÐLÑ œ \ \ÎL œ ^ÐKÎLÑ where 
VÒKÓ K: the set of commutators of 
^ ^ÐKÑ K: the set of all normal subgroups of  that belong to class 
KÎ R K KÎR^: the set of all normal subgroups  of  for which  belongs to class

^
_ ^ ^Ð ÑÀThe set of laws of  groups
subÐKÑ K: the lattice of subgroups of a group 
sub.

.ÐKÑ : K :: the subgroups of a finite -group  of order 
H H- : the lattice of -subgroups of a group subÐKÑ K
norÐKÑ K: the lattice of normal subgroups of a group 
nor. .ÐKÑ : K :: the normal subgroups of a finite -group  of order 
H H- : the lattice of normal -subgroups of a group norÐKÑ K
subÐRàKÑÀ K Rthe family of all subgroup of  containing 
subnHÐLàKÑ K: the family of all -subnormal subgroups of an -group  thatH H

contain L
subnHÐKÑ K: the family of all -subnormal subgroups of an -group H H
Syl:ÐKÑ : K: the Sylow -subgroups of 
Syl:ÐWàKÑ : K W: the Sylow -subgroups of  that contain 
supp : the support of Ð0Ñ 0
=ÐLßKÑÀ L Kthe length of the sequence of normal closures of  in 
f.

.ÐKÑ : K :: for a -group , the set of subgroups of order 
a.

.ÐKÑ : K :: for a -group , the set of normal subgroups of order 
kÐWÑ À Wthe power set of a set 
b ÐKÑ KCompSerH :  has an -composition seriesH
b ÐLàOÑ K L OCompSerH :  has a composition series from  to 
™ ™8

‡
8: Ö+ − ± Ð+ß 8Ñ œ "×

SDR: system of distinct representatives
homÐKßLÑ K L: The set of all homomorphisms from  to 
› : the restricted wreath product
›› : the complete wreath product
›› <: the regular wreath product
ü : normal
– : normal and proper
üü : subnormal
–– : subnormal and proper
\ œ \ “\ \w ", where  is a nonempty set
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#-transitive, 230
%-group, 24

abelian series, 293
abelian, 20
abnormal, 99, 262, 314
ACC, 6, 60, 76, 136
acceptable, 55
aC-group, 165
action, 123, 207
acts, 123, 207
addition, 20
aD-group, 165
adjacent, 189
affine transformation, 101
algebraic closure, 305
alphabet, 2
alternating group, 33, 203
aNC-group, 165
antichain, 3
antisymmetry, 2
antitone, 5
aperiodic, 21
8:-argument, 245
ascending chain condition, see
ACC
associativity, 13, 20
asymmetry, 3
automorphism, 106

Baer, 169
Baer's criterion, 360
base field, 305
base ring, 355

base, 181
basis, 319, 326
BCC, 6, 76, 137
Bernstein Theorem, 12
binary operation, 19
Birkhoff, 329, 330
block, 10, 212
both chain condition, see BCC
bottom, 4
Brauer, 270
Burnside  Theorem, 310
Burnside Basis Theorem, 218
Burnside problem, 35
butterfly lemma, 119

cancellable 7, 157
canonical forms, 10, 11
canonical projection, 108
Cantor's theorem, 12
cardinal number, 12
cardinality, 12
cartesian product, 13
Cassidy, 87
Cauchy's theorem, 79, 124
center, 33, 81
center-intersection property, 215
centerless, 33, 81
central in, 117
central series, 293
central, 33, 81, 144, 216
centralizer, 82
chain, 3
change of context map, 338
characteristic series, 77
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classification problem, 108, 263
closed interval, 3
closed, 19
closure, 138
co-Hopfian, 147
cointersection, 291
cojoin, 292
combinatorial group theory, 343,
344
commutative, 20
commutativity rule, 151
commutativity, 13
commutator subgroup, 84, 146, 307
commutator, 84, 93
commute elementwise, 72
commute, 20, 111
complement, 149, 151
complemented, 149
complements modulo, 172
complete invariant, 11
complete lattice, 8
complete sublattice, 9
complete system of invariants, 11
complete wreath product, 181
complex group, 102
complex product, 31
complexes, 31
component, 73
componentwise product, 24
H-composition distance, 281
composition factors, 278
H-composition factors, 278
H-composition length, 281
composition series, 278

continuum, 14
coordinate, 152
core, 125
correspondence theorem, 113
H-correspondence theorem, 276
coset product rule, 66
coset representative, 42
countable, 12
countably infinite, 12
:-cover, 216
covers, 4
cycle decomposition, 25, 192
cycle representation, 192
cycle structure, 25, 192
cycle, 24, 191
cyclic group, 22
cyclic series, 293
cyclic subgroup, 34

DCC, 6, 76, 137
decidable, 343
decision problem, 343
decision procedure, 343
Dedekind law, 34
Dedekind, 85
defined by generators and relations,
338
derived length, 308
derived series, 308
derived subgroup, 84
descending chain condition, see
DCC
dicyclic group, 53, 348, 351
direct complement, 151
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characteristic, 69
characteristically simple, 121
chief distance, 281
chief factors, 278
chief length, 281
chief series, 278
Chinese remainder theorem, 146,
186
class equation, 209, 210
class, 291
^=-class, 292
^8-class, 292

H-composition series, 278
concatenation, 294
concrete free abelian group, 331
concrete free group, 325
concrete -free group, 328
concrete presentation, 339
K-congruence relation, 211
congruence relation, 67
conjugacy class, 30, 82, 84, 205,
214
conjugate, 29
conjugation by, 30
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double cosets, 233

edges, 189
:-element, 80, 215
elementary abelian group, 121
elementary divisors, 160, 357
embedded, 106
embedding, 106
empty word, 2
endomorphism, 106
endpoint, 77
epimorphism, 105
equational class, 327
equivalence class, 10
equivalence modulo, 41
equivalence relation, 10
equivalence, 230
K-equivalent, 208
H-equivalent, 277
equivalent, 230, 347
essentially disjoint, 33
essentially disjoint product, 33, 151
essentially unique, 286
Euler phi function, 43
Euler's formula, 44
Euler's theorem, 44
even parity, 194
even permutation, 26
even, 194
exact, 357
exponent, 21, 28
extended centralizer, 266
extension problem, 279
extension, 115, 177, 279, 291

field extension, 305
finitary operation, 19
finite exponent, 28
finite, 1, 12, 20, 338
finitely -generated, 138f
finitely -generated, 275H
finitely generated, 35
finitely presented, 340
first isomorphism theorem, 112
first -isomorphism theorem, 276H
Fitting's Lemma, 141
Fitting's Theorem, 302
fix, 207
Fowler, 270
Frattini argument, 210
Frattini subgroup, 127
Frattini, 244
free generators, 319, 326
free group, 319
free -group, 326^
free presentation, 338
free rank, 357
Frobenius, 240
fully invariant, 69
fully-invariant series, 77
fundamental theorem of finitely-
generated abelian
 groups, 356

K-congruence relation, 211
K-equivalent, 208
K-set, 207
Galois group, 305
Galois-style group, 57

direct factor, 75, 153
direct product, 74, 75, 151, 153
direct sum, 75, 153
direct summand, 75, 153
directed, 3, 37
disjoint union, 13
disjoint, 25, 192
distributive lattice, 60
distributive laws, 60
distributivity, 13
divisible, 145, 147, 354
domain-lifted, 359

external direct product, 24, 152
external direct sum, 152
external semidirect product, 176

H-factor group, 274
factor group, 67
factored through, 319
factored uniquely, 111
faithful, 123, 207, 208
Feit, 310
Feit–Thompson, 84
Fermat's little theorem, 44



generators, 338
good order, 162
graph, 189
greatest lower bound, 4
group homomorphism, 46, 105
group with operators, 274
group, 19
^-group, 291
^=-class, 292
^8-group, 292
H-group, 274
1-group, 99
:-group, 81, 215
%-group, 24
GSJP, 134
Guralnick, 88

half open intervals, 4
Hall subgroup, 252, 310
Hall -subgroup, 312:w

Hall, P., 167
Hall–Witt Identity, 96
Hall's theorem, 311
Hamiltonian group, 169
Hasse diagram, 37
higher center, 297
higher commutators, 307
higher images, 140
holomorph, 177
homomorphism, 46, 105
H-homomorphism, 274
Hopfian, 147
hyper- , 289c
hyperoctahedral group, 190

infinite cycle, 192
infinite dihedral group, 129
infinite order, 21
infinite, 12, 20
inherited, 116
injection map, 154
injective, 359
inner automorphisms, 30
insertion rules, 323
interleaved series, 294
intersection, 115, 294
invariant factor decomposition,
160, 357
invariant factors, 160
invariant factors, 357
invariant, 11, 105, 204
inverse, 20
inversion, 204
involution, 21
is direct, 75
isomorphic, 46, 106
H-isomorphic, 277
isomorphism invariant, 46, 116
isomorphism theorems, 112
H-isomorphism theorems, 276
isomorphism, 46, 106, 189
H-isomorphism, 274
isotone, 5

join, 4
Jordan–H lder Theorem, 281ö

^-group, 291
^-radical, 315
^-residue, 315
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Gaussian coefficients, 233
general Burnside problem, 35
general linear group, 23
generalized quaternion group, 222,
348
generalized subnormal join
property, 134
generalized symmetric group, 185
8-generated, 35
f-generated, 138
generating set, 34
8-generator group, 35

idempotent, 76, 107
identity, 20
ignore-  map, 172^
image sequence, 140
indecomposable, 75
independent, 332
index set, 152, 181
index, 61, 115
induced action, 211
induced inverse map, 105
induced map, 105
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Kertész, 165
Klein, 24
Krull–Remak–Schmidt Theorem,
286

Lagrange's theorem, 42
largest, 4
lattice, 8
law, 320, 327
least upper bound, 4
left action, 229
left coset, 41
left inverse, 173
left invertible, 173
left regular representation, 124, 212
left-inverse property, 359
length, 2, 77, 323
lifted, 111, 319
linear order, 3
linearly ordered set, 3
:-local subgroup, 265
locally cyclic, 59
locally finite, 59
lower bound, 4
lower center, 299
lower central series, 299

MacDonald, 89
maximal condition on subgroups,
60
maximal condition, 6, 137
maximal element, 4
maximal normal, 70
maximal, 38
maximum, 4

modular law, 101
module, 355
V-module, 355
monoid, 2
monomial group, 185
monomorphism, 106
monotone, 5
Morse, 89
move, 207
multiplicative, 43
multiplicity, 1
multiset, 1

8-ary operation, 19
8:-argument, 245
8-generated, 35
8-generator group, 35
natural projection, 108
nC-group, 165
nD-group, 165
negative, 20
nilpotency class, 301
nilpotent, 107, 216, 293
nodes, 189
nongenerator, 127
nontrivial, 21
normal closure, 71
normal complement, 151, 171
normal extension, 115
normal interior, 125
normal join, 68
normal lifting, 115, 294
normal series, 77
normal, 65, 140
normality preserving, 140

^-subgroup, 291
^-series, 292
^-universal property mapping, 326
^-universal, 326
^8-class, 292
^8-group, 292
^=-class, 292
^=-class, 292
Kappe, 89
kernel sequence, 139
kernel, 108

mediating morphism, 111, 155,
156, 319, 326
meet, 4
metabelian, 101, 132
minimal condition, 6, 137
minimal direct summand, 163
minimal element, 4
minimal normal, 70
minimal, 38
minimum, 4
modular lattice, 101



H-factor group, 274
H-group, 274
H-homomorphism, 274
H-isomorphic, 277
H-isomorphism theorems, 276
H-isomorphism, 274
H-quotient group, 274
H-series, 276
H-simple, 279
H-subgroup, 274
H-subnormal, 277
odd parity, 194
odd, 26, 194
open interval, 3
operator domain, 274
orbit, 80, 205, 208
orbit-stabilizer relationship, 205,
209, 210
order anti-embedding, 5
order anti-isomorphism, 5
order embedding, 5
order isomorphism, 5
order preserving, 5
order reversing, 5
order, 20, 21
outer automorphism group, 120
outer automorphism, 120

1-group, 99
:-cover, 216
:-element, 80, 215
:-group, 81, 215
:-local subgroup, 265
:-quasicyclic group, 70
:-series, 216

permutation matrix, 184
permutation, 24, 191
permute, 39
ply transitive, 203
Poincaré's inequality, 62
Poincaré's theorem, 62
polycyclic, 293
posets, 2
positive, 54
power of the continuum, 14
power, 13
preserves orientation, 51
primary cyclic decomposition, 160,
357
primary decomposition, 243
primary, 160
:-primary, 160
principal factors, 278
principal series, 278
product, 13
projection map, 75, 154
projection, 118
projective property, 351
projective, 358
proper refinement, 276
proper subgroup, 32
proper, 77
pure, 363

quasi -group, 262
:-quasicyclic group, 70
quaternion group, 48
H-quotient group, 274
quotient group, 67
quotient, 116, 294

3 87

normalize, 82
normalizer condition, 135
normalizer, 82
nullary operation, 19

H-composition distance, 281
H-composition factors, 278
H-composition length, 281
H-composition series, 278
H-correspondence theorem, 276
H-equivalent, 277

:-standard form, 15
:-subgroup, 81, 215
pairwise essentially disjoint, 72
partial order, 2
partially ordered set, 2
partition, 10
perfect, 84, 186
periodic, 21
permutable complement, 150
permutable, 98
permutation group, 24
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regular wreath product, 182
regular, 208
relation, 338
relative holomorph, 177
relators, 338
Remak decomposition, 163
Remak, 163, 283
removal rules, 322
representation map, 123, 207
residually finite, 344
residually -group, 351
residually, 351
^-residue, 315
restricted Burnside problem, 35
restricted symmetric group, 205
restricted wreath product, 181
reverse projection, 118
reverses orientation, 51
right action, 229
right coset, 41
right inverse, 173
right invertible, 173
right-inverse property, 358
rigid motion, 50
Robinson, 132, 134, 148

f-generated, 138
scalars, 355
Schmidt, 167
Schreier refinement theorem, 281
Schreier, 281
Schröder–Bernstein, 12
Schur–Zassenhaus theorem, 255
SDR, 10, 208
second isomorphism theorem, 113
second -isomorphism theorem,H 276

^-series, 292
series, 77
set product, 31
K-set, 207
sign, 194
signum, 194
H-simple, 279
simple, 84
size, 1
SJP, 132
smallest, 4
solvable by radicals, 306
solvable, 77, 293, 343
special linear group, 23
Speigel, 88
splitting field, 305
stabilizer relationship, 210
stabilizer, 205, 208
stable, 207
:-standard form, 15
step, 77
Stirling numbers of the first kind,
201
Stirling numbers of the second
kind, 206
strict order, 2
string, 1
strongly disjoint, 72
strongly real, 266
subdirect product, 321
subgroup generated by, 34
^-subgroup, 291
:-subgroup, 81, 215
H-subgroup, 274
subgroup, 32
sublattice, 9
subnormal index, 130

V-module, 355
radical series, 306
^-radical, 315
range-lifted, 358
rank, 325
real, 266
reduced, 54, 323
reduction, 323
refinement, 276
reflexivity, 2, 10

self-normalizing, 135
semidecidable, 343
semidihedral group, 178
semidirect product, 151, 171
seminormal join, 68
semisolvable, 343
sequence of normal closures, 129
:-series, 216
H-series, 276



support, 25, 152, 205
Sylow -subgroup, 235:
Sylow theorems, 237
symmetric group, 24, 191
symmetry group, 51
symmetry, 10, 50
system of distinct representatives,
10, 208

term, 77
third isomorphism theorem, 113,
276
Thompson Theorem, 310
Three subgroups lemma, 97
top, 4
torsion element, 353
torsion free, 21
torsion free, 353
torsion subgroup, 353
torsion, 21, 353
total order, 3
totally ordered set, 3
transitive, 203, 208, 230
#-transitive, 230
transitivity, 2, 3, 10
translation, 123
transposition, 25, 192
transversal, 10, 61, 150
triangle inequality, 130
trivial class, 291
trivial group, 21
trivial reduction, 323

unary operation, 19
uncountable, 12
undecidable, 343
underlying set, 1, 19

upper central series, 297
upper factorial, 201

variety, 327
verbal subgroup, 327
vertex, 155, 156
vertices, 189
Vierergruppe, 24

Weigold, 167
well ordering, 5
well-ordering principle, 5
Wielandt, 134
Wilson's theorem, 59
word problem, 343
word, 1

Zassenhaus lemma, 119, 280
zero map, 23, 106
zero, 20
Zorn's lemma, 5
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subnormal join property, 132
H-subnormal, 277
subnormal, 78
substring, 2
subword, 2
sum, 13, 107
superdiagonal, 303
supersolvable, 293
supplement, 127, 145

unitriangular, 229, 303
universal map, 319, 326
universal mapping property, 319
^-universal property mapping, 326
universal, 111, 155, 156, 319
^-universal, 326
unquotient, 116, 294
unsolvable, 343
upper bound, 4

Index


	Fundamentals of Group Theory
	Preface
	Contents
	Chapter 1Preliminaries
	Chapter 2Groups and Subgroups
	Chapter 3Cosets, Index and Normal Subgroups
	Chapter 4Homomorphisms, Chain Conditions and Subnormality
	Chapter 5Direct and Semidirect Products
	Chapter 6Permutation Groups
	Chapter 7Group Actions; The Structure of p-Groups 
	Chapter 8Sylow Theory
	Chapter 9The Classification Problem for Groups
	Chapter 10Finiteness Conditions
	Chapter 11Solvable and Nilpotent Groups
	Chapter 12Free Groups and Presentations
	Chapter 13 Abelian Groups
	References
	List of Symbols
	Index



