

Lecture Notes in Computer Science 4624
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Till Mossakowski Ugo Montanari
Magne Haveraaen (Eds.)

Algebra and Coalgebra
in Computer Science

Second International Conference, CALCO 2007
Bergen, Norway, August 20-24, 2007
Proceedings

13

Volume Editors

Till Mossakowski
Deutsches Forschungszentrum für künstliche Intelligenz (DFKI)
Safe & Secure Cognitive Systems
28359 Bremen, Germany
E-mail: Till.Mossakowski@dfki.de

Ugo Montanari
Università di Pisa
Dipartimento di Informatica
56127 Pisa, Italy
E-mail: ugo@di.unipi.it

Magne Haveraaen
Universitetet i Bergen
Institutt for Informatikk
Postboks 7800, 5020 Bergen, Norway
E-mail: Magne.Haveraaen@ii.uib.no

Library of Congress Control Number: 2007931881

CR Subject Classification (1998): F.3.1, F.4, D.2.1, I.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-73857-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73857-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12094387 06/3180 5 4 3 2 1 0

Preface

CALCO, the Conference on Algebra and Coalgebra in Computer Science, is a
high-level, bi-annual conference formed by joining the forces and reputations
of CMCS (the International Workshop on Coalgebraic Methods in Computer
Science), and WADT (the Workshop on Algebraic Development Techniques).
CALCO brings together researchers and practitioners to exchange new results
related to foundational aspects and both traditional and emerging uses of al-
gebras and coalgebras in computer science. The study of algebra and coalgebra
relates to the data, process, and structural aspects of software systems.

The first, and very successful, CALCO conference took place in 2005 in
Swansea, Wales. The second CALCO took place in 2007 in Bergen, Norway,
and was organized by Magne Haveraaen (Chair), Yngve Lamo, Michal Walicki,
and Uwe Wolter.

The CALCO Steering Committee consists of Jǐŕı Adámek, Michel Bidoit, Co-
rina Cirstea, José Fiadeiro (Co-chair), H.Peter Gumm, Magne Haveraaen, Bart
Jacobs, Hans-Jörg Kreowski, Alexander Kurz, Ugo Montanari, Larry Moss, Till
Mossakowski, Peter Mosses, Fernando Orejas, Francesco Parisi-Presicce, John
Power, Horst Reichel, Markus Roggenbach, Jan Rutten (Co-chair), and Andrzej
Tarlecki.

CALCO 2007 received 57 submissions (including four tool papers), out of
which 26 (including two tool papers) were selected for presentation at the con-
ference. Each submission received three or four reviews of high quality. We want
to thank the Program Committee and the additional reviewers, who brought in
their competence and expertise. They are listed at the end of this preface. The
discussion and decision-making took place in March 2007. As for CALCO 2005,
all submissions by PC members were accepted only in the case of unanimous
agreement, and the decisions were reached without the PC members involved
being aware that their papers were under discussion.

The revised papers can be found in this volume, which also includes the
papers contributed by the invited speakers: Stephen L. Bloom, Lúıs Caires, Bar-
bara König, and Glynn Winskel. We wish to express our warmest thanks to all
of them.

The technical program of CALCO 2007 was preceded by the CALCO Young
Researchers Workshop, CALCO-jnr, dedicated to presentations by PhD stu-
dents and by those who completed their doctoral studies within the past few
years. CALCO-jnr was organized by Magne Haveraaen, John Power, and Monika
Seisenberger.

The successful application of algebraic and coalgebraic techniques in practice
depends on the availability of good tools. The CALCO-tools workshop, organized
by Narciso Marti-Oliet and Grigore Roşu, provided presentations of such tools.

VI Preface

During the presentations, extra time for demonstrations of the running systems
was allotted.

The organizers would like to thank Rolf Rosé Jensen for designing the poster,
Karl Trygve Kalleberg for designing and creating the CALCO Web pages, and
Adrian Rutle for creating and administrating the registration system. Support
from IFIP WG1.3 on Foundations of System Specification, Research Council
of Norway, Bergen University College, Norway and Department of Informatics,
University of Bergen, Norway is gratefully acknowledged.

At Springer, Alfred Hofmann and his team supported the publishing process.
The activity of the PC was supported by the Conference Online Service from
Dortmund University; and Martin Karusseit patiently answered our numerous
questions and problems. Our deepest thanks go to all of them and, last but not
least, to all the authors for providing the high-quality contributions that made
CALCO 2007 such a successful event.

June 2007 Till Mossakowski
Ugo Montanari

Magne Haveraaen

Organization

Program Committee

Jǐŕı Adámek, University of Braunschweig, Germany
José Fiadeiro, University of Leicester, UK
H.Peter Gumm, Philipps University, Marburg, Germany
Bartek Klin, University of Warsaw, Poland
Bart Jacobs, University of Nijmegen, The Netherlands
Marina Lenisa, University of Udine, Italy
Ugo Montanari, University of Pisa, Italy (Co-chair)
Larry Moss, Indiana University, Bloomington, USA
Till Mossakowski, DFKI Lab Bremen, Germany (Co-chair)
Peter Mosses, University of Wales Swansea, UK
Fernando Orejas, Polytechnical University Catalonia, Barcelona, Spain
Prakash Panangaden, McGill University, Canada
Dirk Pattinson, University of Leicester, UK
Dusko Pavlovic, Kestrel Institute, USA
Jean-Eric Pin, CNRS-LIAFA Paris, France
John Power, University of Edinburgh, UK
Horst Reichel, Technical University of Dresden, Germany
Grigore Roşu, University of Illinois, Urbana, USA
Jan Rutten, CWI and Free University, Amsterdam, The Netherlands
Davide Sangiorgi, University of Bologna, Italy
Andrzej Tarlecki, Warsaw University, Poland
Martin Wirsing, Ludwig Maximilian University, Munich, Germany
Uwe Wolter, University of Bergen, Norway

Additional Reviewers

Fabio Alessi
Alexandru Baltag
Marek A. Bednarczyk
Mikolaj Bojanczyk
Marcello Bonsangue
Artur Boronat
Andrzej Borzyszkowski
Tomasz Borzyszkowski
Maria Grazia Buscemi
Lúıs Caires
Maura Cerioli
Bob Coecke
Giovanna D’Agostino

Rocco De Nicola
Fer-Jan de Vries
Pietro Di Gianantonio
Gilles Dowek
Francisco Durán
Zoltán Ésik
Fabio Gadducci
Marie-Claude Gaudel
Giorgio Ghelli
Yuri Gurevich
Ichiro Hasuo
Daniel Hausmann
Chris Heunen

Mark Hills
Adis Hodzic
Jiho Kim
Jürgen Koslowski
Clemens Kupke
Alexander Kurz
José Labra
Alberto Lluch Lafuente
Christoph Lüth
Bas Luttik
Paulo Mateus
Marino Miculan
Michael Mislove

VIII Organization

Faron Moller
Peter Padawitz
Ricardo Peña
Carla Piazza
Andrei Popescu
Ulrike Prange
M. A. Reniers
Mehrnoosh Sadrzadeh
Ivan Scagnetto

Alan Schmitt
Lutz Schröder
Traian-Florin Serbanuta
Olha Shkaravska
Doug Smith
Pawe�l Sobociński
Ana Sokolova
Sam Staton
Hendrik Tews

Alwen Tiu
Emilio Tuosto
Tarmo Uustalu
Birna van Riemsdijk
Walter Vogler
Dennis Walter
Herbert Wiklicky
Marek Zawadowski

Table of Contents

Invited Talks

Regular and Algebraic Words and Ordinals . 1
Stephen L. Bloom and Zoltán Ésik

Logical Semantics of Types for Concurrency . 16
Lúıs Caires

Deriving Bisimulation Congruences with Borrowed Contexts 36
Barbara König

Symmetry and Concurrency . 40
Glynn Winskel

Contributed Papers

Ready to Preorder: Get Your BCCSP Axiomatization for Free! 65
Luca Aceto, Wan Fokkink, and Anna Ingólfsdóttir

Impossibility Results for the Equational Theory of Timed CCS 80
Luca Aceto, Anna Ingólfsdóttir, and MohammadReza Mousavi

Conceptual Data Modeling with Constraints in Maude 96
Scott Alexander

Datatypes in Memory . 111
David Aspinall and Piotr Hoffman

Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri
Nets . 126

Paolo Baldan, Andrea Corradini, Hartmut Ehrig, Reiko Heckel, and
Barbara König

Free Modal Algebras: A Coalgebraic Perspective . 143
Nick Bezhanishvili and Alexander Kurz

Coalgebraic Epistemic Update Without Change of Model 158
Corina Cı̂rstea and Mehrnoosh Sadrzadeh

The Maude Formal Tool Environment . 173
Manuel Clavel, Francisco Durán, Joe Hendrix, Salvador Lucas,
José Meseguer, and Peter Ölveczky

Bifinite Chu Spaces . 179
Manfred Droste and Guo-Qiang Zhang

X Table of Contents

Structured Co-spans: An Algebra of Interaction Protocols 194
José Luiz Fiadeiro and Vincent Schmitt

Graphical Encoding of a Spatial Logic for the π-Calculus 209
Fabio Gadducci and Alberto Lluch Lafuente

Higher Dimensional Trees, Algebraically . 226
Neil Ghani and Alexander Kurz

A Semantic Characterization of Unbounded-Nondeterministic Abstract
State Machines . 242

Andreas Glausch and Wolfgang Reisig

Parametric (Co)Iteration vs. Primitive Direcursion 257
Johan Glimming

Bisimulation for Neighbourhood Structures . 279
Helle Hvid Hansen, Clemens Kupke, and Eric Pacuit

Algebraic Models of Simultaneous Multithreaded and Multi-core
Processors . 294

Neal A. Harman

Quasitoposes, Quasiadhesive Categories and Artin Glueing 312
Peter T. Johnstone, Stephen Lack, and Pawe�l Sobociński

Applications of Metric Coinduction . 327
Dexter Kozen and Nicholas Ruozzi

The Goldblatt-Thomason Theorem for Coalgebras 342
Alexander Kurz and Jǐŕı Rosický

Specification-Based Testing for CoCasl’s Modal Specifications 356
Delphine Longuet and Marc Aiguier

CIRC: A Circular Coinductive Prover . 372
Dorel Lucanu and Grigore Roşu

Observing Distributed Computation. A Dynamic-Epistemic
Approach . 379

Radu Mardare

Nabla Algebras and Chu Spaces . 394
Alessandra Palmigiano and Yde Venema

An Institutional Version of Gödel’s Completeness Theorem 409
Marius Petria

Coalgebraic Foundations of Linear Systems . 425
J.J.M.M. Rutten

Table of Contents XI

Bootstrapping Types and Cotypes in HasCasl . 447
Lutz Schröder

Author Index . 463

Regular and Algebraic Words and Ordinals

S.L. Bloom1 and Z. Ésik2,�

1 Dept. of Computer Science
Stevens Institute of Technology

Hoboken, NJ. USA
2 Dept. of Computer Science

University of Szeged
Szeged, Hungary

GRLMC
Rovira i Virgili University

Tarragona, Spain

Abstract. We solve fixed point equations over finite and infinite words
by initiality. By considering equations without and with parameters, two
families of words arise, the regular and the algebraic words. Regular
words were introduced by Courcelle in the late 1970’s. We provide a
summary of results on regular words, some of which have been obtained
very recently, and include some new results for algebraic words.

Some notation. For an integer n, we denote the set {1, . . . , n} by [n]. In any
category, we will write composition of morphisms f : a → b and g : b → c as
g ◦ f . Horizontal composition of natural transformations is also denoted by ◦.
The identity natural transformation of a functor f is denoted also by f .

1 Introduction

There are two common approaches in computer science to solve fixed point
equations in algebraic or categorical structures. One uses structures enriched
with a complete partial order or a complete metric, or some related structure,
that ensures that fixed point equations possess an extremal solution, cf. e.g.
[Scott76, Ni75, ADJ77]. The other approach is to impose axioms on the exis-
tence and properties of fixed points. Elgot considered what we call here regular
recursion schemes, or systems of fixed point equations, and required that the
nontrivial ones possess a unique solution. In the framework of Lawvere algebraic
theories, this led to the notion of iterative theories, cf. [Elg75]. In contrast, the
definition of iteration theories [BEW1, BEW2, Es80] imposes equational axioms
on the fixed point operation. It has been shown that the theories of Elgot as
well as the ordered, metric and categorical models are all examples of iteration
theories, cf. [BE93, BE97, EsLab98].

� Supported in part by the AUTOMATHA ESF project.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 S.L. Bloom and Z. Ésik

In this paper, we will be concerned with solving fixed point equations in
certain algebras enriched with a categorical structure. The continuous categor-
ical algebras defined below extend the notion of continuous (ordered) algebras
[ADJ77, Bl76].

In this paper, two classes of these algebras play a central role: trees and words.

2 Continuous Categorical Algebras Defined

Suppose that Σ is a ranked set. A categorical Σ-algebra, or cΣa, is a small
category A equipped with a functor σA : An → A for each σ ∈ Σn, n ≥ 0.
A morphism between cΣa’s A and B is a functor h : A → B such that for
each σ ∈ Σn the functors h ◦ σA and σB ◦ hn are naturally isomorphic. Here, hn

denotes the functor An → Bn sending each object and morphism (x1, . . . , xn)
of An to (h(x1), . . . , h(xn)). A morphism h is strict if the functors h ◦ σA and
σB ◦ hn are the same, for all σ ∈ Σ.

Let A be a cΣa. We call A continuous, or a ccΣa, if A has an initial object
(denoted ⊥A) and colimits of all ω-diagrams (fk : ak → ak+1)k≥0. Moreover,
each functor σA is continuous, i.e., preserves colimits of ω-diagrams. A mor-
phism between ccΣa’s is a cΣa morphism which preserves the initial object
and colimits of all ω-diagrams.

The concept of a Σ-term over a set X = {x1, x2, . . .} is defined as usual, (see
[Gr79], for example). For each n, we let TΣ(Xn) denote the set of all Σ-terms in
the variables Xn = {x1, . . . , xn}. When A is a cΣa and t ∈ TΣ(Xn), t induces a
functor tA : An → A. The definition is by induction on the structure of t. When
t = xi, for some variable xi ∈ Xn, then tA is the ith projection functor An → A.
Suppose that t = σ(t1, . . . , tm), where σ ∈ Σm and t1, . . . , tm ∈ TΣ(Xn). Then
tA = σA ◦ 〈tA1 , . . . , tAm〉, where 〈tA1 , . . . , tAm〉 : An → Am is the target tupling of
the functors tAi , i ∈ [m]. When A is continuous, so is tA. For n ≥ 0, we let

[An → A]

denote the category whose objects are all continuous functors An → A; mor-
phisms are natural transformations.

2.1 Some Facts

If A, B are ccΣa’s, so is A × B, where the Σ-functors are defined pointwise,
and so is [A → B], the collection of continuous functors A → B, where the
Σ-functors are defined in the expected way. Say for example that σ ∈ Σ2, and
f, g : A → B are continuous functors: then so is

σ[A→B](f, g) : A → B,

defined on objects and morphisms x in A by:

σ[A→B](f, g)(x) := σB(f(x), g(x)),

Regular and Algebraic Words and Ordinals 3

i.e., σ[A→B] = σA ◦〈f, g〉. Thus, in particular, when A is a ccΣa, so is [Am → A],
and any finite product of these categories.

If A is a ccΣa, and F : A → A is a continuous endofunctor, then it is well-
known that F has an initial fixed point F †, i.e., there is an isomorphism

ι : F (F †) → F †,

and if α : F (a) → a is any morphism in A, then there is a unique morphism
h : F † → a such that

F (F †)
F (h)→ F (a) α→ a = F (F †) ι→ F † h→ a.

F † is “the” colimit of the usual diagram

⊥A α0→ F (⊥A) α1→ . . .

where α0 the unique map, and, for n ≥ 0, αn+1 = F (αn).

2.2 Examples

We give two examples of ccΣa’s. In both examples, we fix a finite alphabet A
and let Σ = Σ(A) be the ranked alphabet with Σ2 = {·} and Σ0 = A. When
n 	= 0, 2, Σn = ∅.

Example I: Words

A word over A is a countable linear order w = (W, <w) equipped with a labeling
function λw : W → A. (In order to have only a small set of words we require
that the underlying set W of a word w is a subset of a fixed set.) A morphism
between words v = (V, <v, λv) and w = (W, <w, λw) is a function h : V → W
which preserves the order (and is thus injective) and the labeling. A word w is
finite if the underlying set is finite. The category WA of words over A has as
initial object the empty word ε, where Lε = ∅. Moreover, WA has colimits of all
ω-diagrams. We turn WA into a ccΣa by interpreting the binary symbol · as the
concatenation functor W 2

A → WA, and each letter a as a singleton word labeled a.
When A is an alphabet equipped with a linear order <A, there are three

important orderings on the finite words on A. The prefix order is denoted <p;
u <p v holds when there is a nonempty word w with v = uw; the strict order,
denoted u < v, holds when

u = u1au2

v = u1bv2

and a <A b in the alphabet A. Last, the lexicographic order is defined as
follows. If u 	= v,

u <� v ⇐⇒ u <p v or u < v.

4 S.L. Bloom and Z. Ésik

While both <p and < are partial orderings on A∗, <� is a linear order on all
words. Proposition 2.1 below recalls a universal property of <� on {0, 1}∗.

Suppose that A and B are alphabets such that B is linearly ordered. Suppose
that for each a ∈ A we are given a language La ⊆ B∗ such that La ∩ La′ = ∅,
for all a, a′ ∈ A with a 	= a′. Then the word w(La : a ∈ A) over A is defined as
the word

w(La : a ∈ A) = (
⋃

a∈A

La, <�, λ)

where λ(u) = a if u ∈ La, a ∈ A.
Given a collection of languages L, such as the regular languages, we say that

a word w is determined by the languages in L if there exists an alphabet B
and (pairwise disjoint) languages La ⊆ B∗ in L, a ∈ A such that w is isomorphic
to w(La : a ∈ A). We let WL denote the class of all words determined by the
languages in L. We will use this definition for the cases that L = Reg, the regular
languages, L = DCFL, the deterministic context-free languages, L = CFL, the
context-free languages L = Rec, the recursive languages.

We call a word w ∈ WA recursive if it is finite or there is a recursive linear
order <r on N, the set of nonnegative integers such that w is isomorphic to a
word (N, <r, λ) such that each set λ−1(a) is recursive, i.e., λ is a computable
function N → A.

Proposition 2.1. Each word over an alphabet A is isomorphic to a word w(La :
a ∈ A) where each La is a language over the alphabet {0, 1}. Moreover, a word
over A is recursive iff it is determined by a family of recursive languages, i.e.,
when it is isomorphic to a word w(La : a ∈ A) where each La ⊆ {0, 1}∗ is
recursive. Thus WRec is the set of recursive words.

In fact, we have

Proposition 2.2. Any word w(La : a ∈ A), where each La is a language over
{0, 1} is isomorphic to a word w(Ka : a ∈ A) where K =

⋃
a∈A Ka is a prefix

code over {0, 1}, i.e., if u, uv ∈ Ka, then v is the empty word. When each La is
regular or (deterministic) context-free, or recursive, then so is each Ka.

Example II: Trees

The second class of ccΣa algebras involves trees.
The ordered algebra

T ω
Σ

consists of all (finite and infinite) Σ(A)-trees. A tree t in T ω
Σ is a partial function

t : {0, 1}∗ → Σ(A) whose domain is prefix closed and such that if t(w) ∈ A, then
u is a maximal element of the domain of t with respect to the prefix order, i.e.,
u is a leaf. A tree t is finite if its domain is finite and complete if whenever
t(u) = · then the words u0, u1 are in dom(t).

Regular and Algebraic Words and Ordinals 5

Trees are equipped with the following partial order �: Given t, t′ ∈ T ω
Σ such

that t 	= t′, we define t � t′ iff for all words u, if t(u) is defined, then t(u) = t′(u).
We consider T ω

Σ as a category in the usual way: there is a morphism t → t′ when
t � t′. Since T ω

Σ has as least element the totally undefined tree ⊥, the category
T ω

Σ has an initial object, and sups of all ω-chains, i.e., colimits of all ω-diagrams.
We turn T ω

Σ into a ccΣ(A)a. The value of the functor ·T ω
Σ (t0, t1) on trees t0, t1

is the the tree t with

t(ε) = ·
t(iu) = ti(u),

for i = 0, 1 and u ∈ {0, 1}∗. Since the operation ·T ω
Σ is monotonic, it determines a

continuous functor T ω
Σ × T ω

Σ → T ω
Σ . We interpret each letter a ∈ A as the trivial

tree that maps the empty word ε to a and is undefined on nonempty words.
The yield of a tree t ∈ T ω

Σ is defined as the word

yield(t) = (W, <, λt),

where W is the set {u ∈ {0, 1}∗ : t(u) ∈ A}, linearly ordered by the strict order
< on finite words. The labeling is defined by λt(u) = t(u) for all u ∈ W . In
particular, yield(⊥) = ε. When t � t′ in the partial order of trees, then we define
yield(t � t′) as the embedding of W = yield(t) into W ′ = yield(t′). (Note that
W ⊆ W ′.)

Proposition 2.3. The functor yield : T ω
Σ → WA is a ccΣa-morphism.

Remark 2.4. It is known that T ω
Σ is the initial in the category of ccΣa’s and

continuous morphisms. Thus yield is, up to isomorphism, the unique ccΣa mor-
phism T ω

Σ → WA.

3 Regularity and Algebraicity

In this section we will consider regular and algebraic objects (or elements) in a
ccΣa A as initial solutions of finite systems of fixed point equations. The main
fact established in this section is a Mezei-Wright theorem: Any morphic image
of a regular or algebraic element is also regular, or algebraic.

For the origins of the term “Mezei-Wright theorem” see [MeWr67] and [ADJ77].
Let F = {F1, . . . , Fn} be a ranked alphabet disjoint from Σ, and suppose that

the rank of Fi is ki, for i ∈ [n]. Define

Aρ(F) = ([Ak1 → A] × · · · × [Akn → A])

Then Aρ(F) is a ccΣa, as noted in Section 2.1 above.
Given any ccΣa A, each term t ∈ TΣ∪F (Xm) induces a continuous functor

tA : Aρ(F) → [Am → A],

6 S.L. Bloom and Z. Ésik

as follows. When fi : Aki → A, i ∈ [n] is continuous, we may define a cc(Σ ∪F)a
structure on A by interpreting each Fi as the functor fi. We define tA(f1, . . . , fn)
as the functor induced by t in this cc(Σ ∪F)a. If gi : Aki → A is also continuous,
and

αi : fi → gi

is a natural transformation, for each i ∈ [n], then we define

tA(α1, . . . , αn)

to be the natural transformation

tA(f1, . . . , fn) → tA(g1, . . . , gn)

defined inductively as follows.

• When t is a variable xj , where j ∈ [m], then tA(α1, . . . , αn) is the identity
natural transformation from the jth projection function Am → A to itself.

• If t is of the form σ(t1, . . . , tp), then tA(α1, . . . , αn) is σA◦〈u1, . . . , up〉, where
uj = tAj (α1, . . . , αn) for each j.

• Finally, when t = Fi(t1, . . . , tki), i ∈ [n], then tA(α1, . . . , αn) is αi ◦ 〈u1, . . . ,
um〉, where each uj is tAj (α1, . . . , αn).

Now we define recursion schemes.
A recursion scheme over Σ is a sequence E of equations

F1(x1, . . . , xki) = t1
... (1)

Fn(x1, . . . , xkn) = tn

where ti is a term in TΣ∪F (Xki), for i ∈ [n].
The recursion scheme E in (1) determines a continuous functor

EA : Aρ(F) → Aρ(F),

which therefore has an initial fixed point. When k1 = 0, the first component of
this initial fixed point is an object in A.

Definition 3.1. Let A be a ccΣa. An object a in A is algebraic if there is a
recursion scheme E as above with k1 = 0 such that a is isomorphic to the first
component of the initial fixed point of EA.

A recursion scheme E is regular if each Fi has rank 0, 1 ≤ i ≤ n.

Definition 3.2. An object a in A is regular if there is a regular recursion
scheme E such that a is isomorphic to the first component of the initial fixed
point of EA.

Regular and Algebraic Words and Ordinals 7

Thus, any regular object is algebraic. In particular, when A is the algebra WA,
a regular (algebraic, resp.) object is called a regular (algebraic, resp.) word. And
when A is T ω

Σ , a regular object is called a regular tree (see e.g. [BE93]), and an
algebraic object an algebraic tree (cf. [Cour78b]).

Theorem 3.1 (“Mezei-Wright”). Suppose that E is a recursion scheme as
above such that k1 is 0. Let A and B be ccΣa’s, and h : A → B a ccΣa-
morphism. Then the first component of the initial fixed point of EB is isomorphic
to the image under h of the first component of the initial fixed point of EA.

Corollary 3.3. Let A and B be ccΣa’s and h : A → B a ccΣa-morphism. Then
an object b ∈ B is regular or algebraic iff there is some a ∈ A which is regular
or algebraic such that h(a) is isomorphic to b.

4 Application to Words

In this section, we apply the Mezei-Wright Theorem to obtain a characterization
of algebraic and regular words. For regular words, the following fact was proved
by Courcelle [Cour78b].

Corollary 4.1. A word w in WA is regular (resp. algebraic) iff there is a regular
(resp. algebraic) tree in T ω

Σ such that w is isomorphic to the yield of t.

Proof. This follows from the Mezei-Wright Theorem and the fact that yield is a
ccΣa-morphism. �

Following Courcelle [Cour78b], for each a ∈ A we define the branch language
La(t) of a tree t ∈ TΣ as the set

La(t) = {u : t(u) = a}.

We let K(t) =
⋃

a∈A La. Note that the language K(t) is a prefix code.
If Δ is any ranked alphabet, we call a tree t in T ω

Δ locally finite if for each
u ∈ dom(t) there is some v with t(uv) ∈ Δ0.

The following fact is a special case of results proved in [Cour78b].

Theorem 4.1. Let La, a ∈ A, be a family of pairwise disjoint languages over
{0, 1}. There is a locally finite complete algebraic tree t ∈ T ω

Σ(A) with La(t) = La

for all a ∈ A iff each La is a dcfl and L =
⋃

a∈A La is a complete prefix code.

Corollary 4.2. A complete locally finite tree t ∈ T ω
Σ(A) is algebraic iff each La(t)

is a dcfl.

We may use the above result to prove:

Theorem 4.2. Let La, a ∈ A be a family of pairwise disjoint languages over
{0, 1}. There is an algebraic tree t ∈ T ω

Σ(A) with La(t) = La for all a ∈ A iff
each La is a dcfl and L =

⋃
a∈A La is a prefix code.

8 S.L. Bloom and Z. Ésik

Further results follow.

Corollary 4.3. A tree t ∈ T ω
Σ(A) is algebraic iff each La(t) is a dcfl.

From this we have:

Corollary 4.4. A word in WA is algebraic iff it is in WDCFL.

Corollary 4.5 ([BE03]). A word in WA is regular iff it is in WReg.

5 More About Regular Words

Several results on regular words have been obtained by Courcelle [Cour78a,
Cour78b], Heilbrunner [Heil80], Thomas [Th86], and the authors [BE03, BE03a,
BE05]. Heilbrunner showed that all nonempty regular words on the set A can be
generated from single letters by means of the “regular operations”, namely con-
catenation, omega and omega-op power, together with (infinitely many) “shuffle”
operations. Terms formed from letters in A and these operations are called “reg-
ular terms on A”. Heilbrunner gave an algorithm which, given a finite system
of fixed point equations of the form (1), in which the rank of Fi is zero, for
each i ∈ [n], produces a regular term denoting the first component of the initial
solution (if the first component is not the empty word). Thomas gave an algo-
rithm to determine when two terms denote isomorphic words. His algorithm is
based on Rabin’s theorem on automata for infinite trees. There is an extensive
literature on automata (and logics) on words, here we mention only [Bu65] and
the more recent [BeCa06, BruyCar].

Heilbrunner discussed several identities involving the terms with both Cour-
celle’s operations, as well as the shuffle operations, but did not obtain a com-
pleteness result. In [BE05], we gave a set of axioms for these operations and
proved them complete. This result implies that

– for any alphabet A, the algebra of regular words on an alphabet A is freely
generated by A in the variety defined by these equations;

– the equational theory of this variety is decidable in polynomial time, and is
not finitely based.

We give some more details below. For a fixed finite alphabet A, the regular opera-
tions are concatenation, the omega, omega-op operations, and shuffle operations,
written

u · v, uω, uωop

, [[u1, . . . , un]]η.

We will define each of these operations using generalized sums.

Definition 5.1 (generalized sum). Suppose that (L, <) is a linear order, and
for each x ∈ L, let (Kx, <x) be a linear order. The ordering

∑

x∈L

Kx

Regular and Algebraic Words and Ordinals 9

obtained by substitution of Kx for x ∈ L, is defined as follows: the underlying
set of

∑
x∈L Kx is the set of pairs (k, x) with x ∈ L and k ∈ Kx ordered by:

(k, x) < (k′, x′) ⇐⇒ x < x′ or (x = x′ and k <x k′).

For any word u, alph(u) is the set of letters occurring in u.

Definition 5.2. Let u = (Lu, <u, λu) be a word with alph(u) ⊆ {a1, . . . , an},
and let vai = (Lvai

, <vai
, λvai

) be a word on the set B, for each i ∈ [n]. The
sets A, B need not be the same. We define w = u(a1/va1 , . . . , an/van), the word
obtained by substituting vai for each occurrence of ai in u, as follows.
The underlying order of w is the linear order

∑
x∈Lu

Lλu(x), defined just above,
labeled as follows:

λw(k, x) := λvλu(x)(k), x ∈ Lu, k ∈ Lvλu(x) .

We note that the collection of regular words is closed under substitution.

Proposition 5.3. Suppose that u ∈ WA is regular, and for each letter ai ∈ A,
vi is a regular word. Then w = u(a1/v1, . . . , an/vn) is also regular.

Indeed, we obtain a regular recursion scheme for w by adjoining to the scheme
E for u, the schemes for each vi, and replacing the letters ai in E by the initial
variable in the scheme for vi. �

Define the following words on the countable set a1, a2, . . . ,.

– c := a1a2,
the word ([2], ≤, u) with u(i) = ai.

– pω := a1a1 . . .,
the word whose underlying linear order is ω, each point of which is labeled
a1.

– rωop := . . . a1a1,
the word whose underlying linear order is ωop, each point of which is labeled
a1.

– For 1 ≤ n < ω, ρn is the word whose underlying linear order is Q, the
rational numbers, every point labeled by some ai, i ∈ [n], and between any
two points q < q′ in Q, for each j ∈ [n] there is a point labeled aj . There is
a unique such word, up to isomorphism (see [Ro82], pp 116.)

Definition 5.4 (regular operations). For any words u, v, u1, . . . , un on A:

u · v := c(a1/u, a2/v)
uω := pω(a1/u)

uωop

:= rωop(a1/u)
[[u1, . . . , un]]η := ρn(a1/u1, . . . , an/un).

Note that there is one shuffle operation for each positive integer n.

10 S.L. Bloom and Z. Ésik

Theorem 5.1 ([Heil80]). A nonempty word in WA is regular iff it is in the
least collection of words containing the single letter words which is closed under
the regular operations.

Recall that a countable linear order (L, ≤) is called scattered if there is no
injective order-preserving function Q → L, where Q is ordered as usual. A word
w = (W, <w, λw) is scattered if (W, <w) is scattered.

Corollary 5.5. A nonempty regular word u has a scattered underlying linear
order iff u is in the least class of words containing the single letter words which
is closed under concatenation, the omega and omega-op operations.

Indeed, any word of the form [[u1, . . . , un]]η is not scattered.
Recall that a regular language is monotone (or R-trivial, cf. [Pi86]) if it is

determined by a DFA with the property that its states can be linearly ordered
so that for any state q and letter a, if δ(q, a) = q′, then q ≤ q′.

The following facts about scattered regular words are from [BE03].

Theorem 5.2. For a word w = (Lw, ≤w, λw) on the alphabet A, the following
are equivalent.

1. w belongs to the least class of words containing the single letters a ∈ A,
closed under product and both ω-operations.

2. w is regular and Lw is a scattered (regular) linear order.
3. w is isomorphic to a regular word u, where Lu is a monotone, (complete)

prefix code.
4. w is isomorphic to a regular word u, where Lu is scattered and a regular

(complete) prefix code.
5. w is isomorphic to a word w(La : a ∈ A)), where the sets La are regular,

pairwise disjoint, and
⋃

a∈A La is a monotone (complete) prefix code.
�

We list our axioms for the regular operations.

Definition 5.6 (scattered axioms)

(x · y) · z = x · (y · z) (2)
(x · y)ω = x · (y · x)ω (3)

(x · y)ωop

= (y · x)ωop · y (4)
(xn)ω = xω , n ≥ 2 (5)

(xn)ωop

= xωop

, n ≥ 2. (6)

The scattered axioms were proved complete for the operations of concatenation,
omega and omega-op powers in [BE03a].

Definition 5.7 (logical axioms)

[[xf(1), . . . , xf(n)]]
η = [[x1, . . . , xp]]

η
,

where f : [n] → [p] is any set-theoretic surjection.

Regular and Algebraic Words and Ordinals 11

The logical axioms say that the shuffle operation [[u1, . . . , un]]η is a function whose
value is determined by the set {u1, . . . , un}, not the sequence (u1, . . . , un); for
example, using these axioms one may derive the facts that [[a, a, b]]η = [[b, b, a]]η =
[[a, b]]η = [[b, a]]η.

Definition 5.8 (concatenation/shuffle axioms)

[[x1, . . . , xp]]
η · [[x1, . . . , xp]]

η = [[x1, . . . , xp]]
η (7)

[[x1, . . . , xp]]
η · xi · [[x1, . . . , xp]]

η = [[x1, . . . , xp]]
η
, i ∈ [p]. (8)

Definition 5.9 (omega/shuffle axioms)

([[x1, . . . , xp]]
η)ω = [[x1, . . . , xp]]

η (9)
([[x1, . . . , xp]]

η · xi)ω = [[x1, . . . , xp]]
η
, i ∈ [p]. (10)

Definition 5.10 (omega-op/shuffle axioms)

([[x1, . . . , xp]]
η)ωop

= [[x1, . . . , xp]]
η (11)

(xi · [[x1, . . . , xp]]
η)ωop

= [[x1, . . . , xp]]
η
, i ∈ [p]. (12)

Definition 5.11 (shuffle/shuffle axioms)

[[u1, . . . , uk, v1, . . . , vs]]
η = [[x1, . . . , xp]]

η
, k ≥ 0, s > 0, (13)

where in (13), the terms ui are letters in the set {x1, . . . , xp}, and each term vj

is one of the following:

[[x1, . . . , xp]]
η, xi[[x1, . . . , xp]]

η, [[x1, . . . , xp]]
ηxj , or xi[[x1, . . . , xp]]

ηxj .

Note that a special case of the shuffle/shuffle axioms is the identity

([[x1, . . . , xp]]
η)η = [[x1, . . . , xp]]

η.

Theorem 5.3 ([BE05]). Two terms s, t denote isomorphic regular words iff
the identity s = t is provable from the above axioms. No finite set of the axioms
is complete. There is is a polynomial time algorithm to decide when s = t is
provable.

In fact, it was proved in [BE05] that there is an O(n5) algorithm to decide if two
terms denote isomorphic words, where n is the total length of the terms s, t.

6 Ordinal Words

Let w = (Lw, <�, λw) be a word over A such that Lw is a subset of {0, 1}∗.
We call w an ordinal word if Lw is well-ordered by <�. A regular, context-free,
or deterministic context-free ordinal word is an ordinal word which is a regular,

12 S.L. Bloom and Z. Ésik

context-free, or deterministic context-free word, respectively. In particular, when
A is a singleton, we may forget the labeling and call a regular (context-free,
deterministic context-free) ordinal word a regular (context-free, deterministic
context-free) ordinal.

An ordinal α is regular, (resp., context-free) if there is some regular (resp.
context-free) ordinal word w such that α = o(Lw, <�), the order-type of the
linear order (Lw, <�).

It is clear that each regular ordinal is deterministic context-free and each
deterministic context-free ordinal is a context-free ordinal.

What are the context-free ordinals? Or the deterministic context-free ordinals?
What is an order-theoretic characterization of the (deterministic) context-free
ordinals? In this section we give a partial answer to these questions.

Proposition 6.1 ([BC01]). An ordinal α is regular iff α < ωω.

Conjecture. An ordinal α is context-free iff α < ωωω

.
While we do not have a proof of the conjecture, we seem to be close.
One direction is known.

Theorem 6.1. Any ordinal < ωωω

is deterministic context-free.

Proof. Below, for each n ≥ 0, we will specify a deterministic, context-free
grammar Gn such that

o(L(Gn), <�) = ωωn

.

This will prove the theorem. Indeed, if α is an ordinal less than ωωω

, then
α < ωωn

, for some n. But, for any word u ∈ {0, 1}∗, the set of words

pr(u) = {v ∈ {0, 1}∗ : v <� u}

is regular, it follows that α < ωωn

is deterministic, context-free, since α =
o(L(Gn) ∩ pr(u)), for some word u ∈ L(Gn). �

The proof of that the grammars are correct makes use of several lemmas con-
cerning prefix codes X ⊆ {0, 1}∗ such that o(X, <�) is an ordinal.

Recall that if (Li, ≤i) are well ordered sets, with order types αi, i = 1, 2, then
the ordinal α1 × α2 is the order type of L1 × L2, ordered by “last difference”

(x1, x2) < (y1, y2) ⇐⇒ x2 < y2, or (x2 = y2 & x1 < y1).

Lemma 6.2. Suppose that Xi ⊆ {0, 1}∗ is a prefix code, for i = 1, 2. Then
X1 · X2 = {uv : u ∈ X1, v ∈ X2} is also a prefix code and

o(X1 · X2, <�) = o(X2) × o(X1). �

Corollary 6.3. If α, β are (deterministic) context-free ordinals, so is α × β.

Regular and Algebraic Words and Ordinals 13

Lemma 6.4. Suppose that An ⊆ {0, 1}∗ and αn = o(An, <�), for all n ≥ 1.
Then

∑

n<ω

αn = o(
⋃

n

1n0An, <�). �

Corollary 6.5. Suppose that A ⊆ {0, 1}∗ is a prefix code and α = o(A, <�).
Then

αω = o(
⋃

n

1n0An, <�),

so that if α is (deterministic) context-free, so is αω.

Now, by induction on n, we define a context-free grammar Gn.

1. The grammar G0 has the following productions.

S0 → 0, 1S0

L(S0) = 1∗0, so that o(L(G0), <�) = ω.
2. The grammar G1 has start symbol S1, the rules of G0 and the rules

S1 → 0, 1S1S0. (14)

L(G1) =
⋃

n 1n0L(G0)n, so that o(G1) = ωω, by Corollary 6.5.
3. The grammar Gn+1 has all rules of Gn, the start symbol Sn+1, and in addi-

tion, the rules

Sn+1 → 0, 1Sn+1Sn.

Then L(Gn+1) =
⋃

k 1k0L(Gn)k, so that, by induction and Corollary 6.5,

o(L(Gn+1) = (ωωn

)ω

= ωωn+1
.

Each of the grammars Gn above is an example of a “prefix grammar”. In addi-
tion, of course, L(Gn) is well-ordered by <�.

Definition 6.6. A context-free grammar G is a prefix grammar if, for each
nonterminal X, the set of terminal words derivable from X is a prefix code. An
ordinal grammar is a prefix grammar G such that L(G) is well-ordered by <�.

We have part of a converse to Theorem 6.1.

Theorem 6.2. If G is an ordinal grammar, then

o(L(G), <�) < ωωω

.

Thus, if either of the following statements is true, the conjecture will follow.

• If G is a context-free grammar such that L(G) is a prefix language, then
there is a prefix grammar G′ such that o(L(G), <�) = o(L(G′), <�).

• If G is a context-free grammar such that L(G) is well-ordered by <�, then
there is an ordinal grammar G′ such that o(L(G), <�) = o(L(G′), <�).

14 S.L. Bloom and Z. Ésik

7 Summary

We have presented a new Mezei-Wright theorem on ccΣa’s, and applied it to
the case of trees and words. We have discussed some known and new results
on regular words, and introduced the problem of characterizing the algebraic
ordinals. Last, we stated a characterization of those ordinals having an ordinal
grammar. Detailed proofs will appear elsewhere.

References

[ADJ77] Goguen, J., Thatcher, J., Wagner, E., Wright, J.: Initial algebra semantics
and continuous algebras. J. ACM 24, 68–95 (1977)

[BeCa06] Bès, A., Carton, O.: A Kleene theorem for languages of words indexed by
linear orderings. Int. J. Foundations Computer Science 17, 519–542 (2006)

[Bl76] Bloom, S.L.: Varieties of ordered algebras. J. Computers and Sys. Sci. 45,
200–212 (1976)

[BC01] Bloom, S.L., Choffrut, C.: Long words: the theory of concatenation and
ω-power. Theoretical Computer Science 259, 533–548 (2001)

[BEW1] Bloom, S.L., Elgot, C.C., Wright, J.B.: Solutions of the iteration equation
and extensions of the scalar iteration operation. Siam J. Computing 9,
26–45 (1980)

[BEW2] Bloom, S.L., Elgot, C.C., Wright, J.B.: Vector iteration in pointed iterative
theories. Siam J. Computing 9, 525–540 (1980)

[BE93] Bloom, S.L., Ésik, Z.: Iteration Theories. Springer, Heidelberg (1993)
[BE97] Bloom, S.L., Ésik, Z.: The equational logic of fixed points. Theoretical

Computer Science 179, 1–2 (1997)
[BE03] Bloom, S.L., Ésik, Z.: Deciding whether the frontier of a regular tree is

scattered. Fundamenta Informatica 55, 1–21 (2003)
[BE03a] Bloom, S.L., Ésik, Z.: Axiomatizing omega and omega-op powers on words.

Theoretical Informatics and Applications 38, 3–17 (2004)
[BE05] Bloom, S.L., Ésik, Z.: The equational theory of regular words. Information

and Computation 197(1-2), 55–89 (2005)
[BruyCar] Bruyère, V., Carton, O.: Automata on linear orderings. J. Computer Sys-

tem Sciences 73, 1–24 (2007)
[Bu65] Bc̈hi, J.R.: Transfinite automata recursions and weak second order theory

of ordinals. In: Logic, Methodology and Philosophy of Science Proc. 1964
Internatational Congress North-Holland, Amsterdam, pp. 3–23 (1965)

[Cour78a] Courcelle, B.: A representation of trees by languages, 1 and II, Theoretical
Computer Science, 6, 155-279, 7, 25–55 (1978)

[Cour78b] Courcelle, B.: Frontiers of infinite trees. RAIRO Informatique
théorique/Theoretical Computer Science 12, 319–337 (1978)

[Elg75] Elgot, C.: Monadic computation and iterative algebraic theories. In: Shep-
herdson, J.C. (ed.) Logic Colloquium 1973, Studies in Logic, vol. 80, North
Holland, Amsterdam (1975)

[Es80] Ésik, Z.: Identities in Iterative and rational theories. Computational Lin-
guistics and Computer Languages 14, 183–207 (1980)

[EsLab98] Ésik, Z., Labella, A.: Equational properties of iteration in algebraically
complete categories. In: Selected papers from the 21st symposium on Math-
ematical foundations of computer science MFCS ’96. Theoretical Computer
Science, vol. 195, pp. 61–89 (1998)

Regular and Algebraic Words and Ordinals 15

[Gr79] Grätzer, G.: Universal Algebra, 2nd edn. Springer, Heidelberg (1979)
[Heil80] Heilbrunner, S.: An algorithm for the solution of fixed-point equations for

infinite words. Theoretical Informatics and Applications 14, 131–141 (1980)
[MeWr67] Mezei, J., Wright, J.B.: Algebraic automata and context-free sets. Infor-

mation and Control 11, 3–29 (1967)
[Ni75] Nivat, M.: On the interpretation of recursive polyadic program schemes.

Symposia Mathematica 15, 255–281 (1975)
[Pi86] Pin, J.-E.: Varieties of Formal Languages. Plenum Publishing Corp. New

York (1986)
[Ro82] Rosenstein, J.B.: Linear Orderings. Academic Press, New York (1982)
[Scott76] Scott, D.: Data types as lattices. SIAM J. Computing 5, 522–587 (1976)
[Th86] Thomas, W.: On frontiers of regular trees. Theoretical Informatics and

Applications 20, 371–381 (1986)

Logical Semantics of Types for Concurrency

Lúıs Caires

CITI / Departamento de Informática, Universidade Nova de Lisboa,
Portugal

Abstract. We motivate and present a logical semantic approach to
types for concurrency and to soundness of related systems. The ap-
proach is illustrated by the development of a generic type system for
the π-calculus, which may be instantiated for specific notions of typ-
ing by extension with adequate subtyping principles. Soundness of our
type system is established using a logical predicate technique, based on
a compositional spatial logic interpretation of types.

1 Introduction

The aim of this paper is to present a semantic approach to types for concur-
rency and soundness of related systems, based on spatial logic interpretations.
Types are definitely one of the most successful applications of logical methods in
concrete programming languages and tools. A type system for a programming
language or programming calculus should really be seen as a specialized logic,
usually decidable, and presented by a syntax-directed proof system. A classical
example is the familiar type system for assigning simple functional types to the
λ-calculus. In this case, the properties of interest are absence of errors due to
undefined function applications, and (last but not the least) strong normaliza-
tion. In this case, termination is obtained as a consequence of the soundness of
the simple type system with respect to a logical predicate interpretation [22].

As programming languages and calculi evolved, so to include increasingly so-
phisticated features such as state, exceptions, polymorphism, and concurrency, it
has become clearer that classical semantic approaches to prove soundness of type
systems did not scale or generalize very well, due to the independent difficulty
of finding suitable semantic domains. Fortunately, if one is essentially interested
in properties of programs such as absence of certain types of runtime errors, and
not really in higher (logical) complexity properties such as termination, more
convenient, purely syntactic, proof techniques may frequently be used. As Curry
and Feys have put in [9] if one makes sure that “subject reduction preserves the
predicate”, and the “predicate” implies absence of immediate errors, then any
“subject” program that satisfies the predicate is safe. Motivated by this remark,
the (now standard) technique of “subject-reduction” (SR) was first proposed by
Felleisen and Wright [23], by letting the “predicate” be identified with formal
provability of typing judgments in a system of typing rules.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 16–35, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Logical Semantics of Types for Concurrency 17

The SR soundness proof method has certainly been very successful, and re-
vealed to be applicable to various kinds of languages and calculi, in particular,
to types for concurrency. In fact, most modern type theoretic analyses of concur-
rent, distributed, and mobile calculi have been developed in such a framework.

Nevertheless, the purely syntactic SR method is not without its weaknesses,
and sometimes appears to have contributed to widespread a too syntactic under-
standing of types and typing, far from the original semantic view of types as ex-
plicit properties or predicates. Usually, SR soundness proofs are quite monolithic,
and each intermediate result proceeds by tedious inductions on type derivations.
Adding a new construct to the programming language or a new typing rule to
the system forces a cross-cutting modification on several auxiliary proofs. This
lack of modularity is also caused by the usual absence of any independently de-
fined compositional (algebraic, co-algebraic, or logical) semantics for the type
structure. Although one may be careful enough to define such a semantics, un-
fortunately the SR method does not require such a semantics to be formally
defined. Thus, usually we just find some useful but informal intuitions about
what the typing rules or the types are intended to mean. It also seems that the
SR methods does not by itself improve the degree of reuse foreseen in [23], given
the particularities of each operational model.

On the other hand, a semantic proof of soundness builds on an explicitly
defined compositional interpretation of types, that potentially provides deeper
intuitions, and focuses the proof developments on behavioral aspects of the com-
putational domain, rather than on details of the syntactic presentation of a
calculus or of their types as syntactic annotations. In principle, the semantic
technique is also more powerful, inducing in general some form of composi-
tionality of typing, and being potentially applicable to properties that are not
provable by the SR method (such as termination).

In the original spirit of semantic soundness proofs, we develop in this paper a
feasible approach to types for concurrency that combines the advantages of the
semantic approach with the technical simplicity of syntactic approaches, such as
the SR method. More precisely, we show how the semantics of a general type
structure for processes modeled in the π-calculus may be compositionally defined
by resorting to a logical interpretation, reminiscent of the logical predicate (or
relations) method, and considering as underlying semantic model the standard
labeled transition system and associated operational techniques. As in purely
semantic approaches, we proceed by defining a compositional semantics of the
type language, by induction on the type structure. A formal type system then
assigns types to processes by induction on the structure of processes. We illus-
trate the approach by developing a generic type system T for the π-calculus,
and prove its soundness by showing that typing preserves the validity of typing
assertions with respect to an interpretation of types as process predicates.

The generic type system T may be instantiated to check for various specific
properties, just by extending it with appropriate (sound) subtyping principles.
In fact, a remarkable advantage of the approach is due to the way the several
properties of interest may be factored out. For example, subtyping may be dealt

18 L. Caires

with as a completely orthogonal aspect, so that our soundness proof does not
depend on the syntactic presentation of subtyping, but only on its semantic
properties. So, we can pick for subtyping any sound axiomatization of seman-
tic entailment in the underlying logic; soundness of each instance of T is then
immediately granted as a consequence of this modular approach.

Typically, most interesting process properties of the kinds considered by type
systems (e.g., channel arity mismatch) are not invariant under standard behav-
ioral equivalences of processes, for instance, bisimilarity. Therefore, to character-
ize such kind of properties, the traditional behavioral logics (cf. Hennessy-Milner
logics [11]) are not adequate. It turns out that spatial logics for concurrency offer
the appropriate expressiveness, as already argued elsewhere [4,5,1,7].

Spatial logics have been proposed with the aim of specifying distributed be-
havior and other essential aspects of distributed computing systems. An impor-
tant feature of spatial logics, shared by some other sub-structural logics such
as separation logics [20,18], is that its operators are able to separate and count
resources; this sometimes seems to add an “intensional” character to these logics
(although not always [6]). It is precisely such intensional character that seems
necessary for the logical characterization of many type-like properties [4,1]. So,
our type language combines behavioral operators, that observe process actions,
with spatial logic operators, namely the composition A | B, and its adjunct
A � B. Then, a judgment in the type system T, of the form P :: A � B,
expresses a rely guarantee property and is interpreted by the A � B operation.

The structure of the paper is as follows. In Section 2, we present an overview
of the syntax and semantics of the fragment of the π-calculus we will base our
study on. The main intent of Section 3 is to motivate the semantic approach to
typing, by providing an alternative proof of soundness for a standard simple type
system for the π-calculus. In Section 4, we develop and present the generic type
system T, and prove its soundness with respect to a logical predicate semantics.
We will also consider several incremental extensions to T. In Section 5, we will
show how T may be instantiated so to capture some familiar notions of typing,
namely the simple types, I/O types, and some kind of session types. We will
close the paper with some conclusions and remarks.

2 The Process Model

In this section, we briefly introduce the syntax and semantics of our intended
process model, a fragment of the monadic π-calculus.

Definition 2.1 (Processes). Given infinite sets Λ of names (m, n, p), and χ
of process variables (X , Y) the set P of processes (P, Q, R) is given by

P, Q ::= 0 | m(n).P | m〈n〉.P | P | Q | (νn)P | X | rec X .P

In restriction (νn)P and input m(n).P the distinguished occurrence of name n is
binding, with scope the process P . We denote by ≡α the relation of α-equivalence
on processes: we will implicitly consider processes up to α-equivalence, with care.

Logical Semantics of Types for Concurrency 19

For any process P , we assume defined as usual the set fn(P) of free names of P .
By {m/n} (resp. {X/Q}) we denote the safe substitution of m by n (resp. of X
by Q), and by {m↔n} the safe transposition of m and n. Structural congruence
expresses basic identities on the spatial structure of processes:

Definition 2.2 (Structural congruence). Structural congruence ≡ is the least
congruence relation on processes such that

P | 0 ≡ P (Struct Par Void)
P | Q ≡ Q | P (Struct Par Comm)
P | (Q | R) ≡ (P | Q) | R (Struct Par Assoc)
n �∈ fn(P) ⇒ P | (νn)Q ≡ (νn)(P | Q) (Struct Res Par)
(νn)0 ≡ 0 (Struct Res Void)
(νn)(νm)P ≡ (νm)(νn)P (Struct Res Comm)
rec X .P ≡ P{X/rec X .P} (Struct Unfold)

The behavior of processes is defined by a relation of reduction that captures the
computations that a process may perform by itself.

Definition 2.3 (Reduction). Reduction (P → Q) is defined as follows:

m〈n〉.Q | m(p).P → Q | P{p/n} (Red React)
Q → Q′ ⇒ P | Q → P | Q′ (Red Par)
P → Q ⇒ (νn)P → (νn)Q (Red Res)
P ≡ P ′, P ′ → Q′, Q′ ≡ Q ⇒ P → Q (Red Struct)

We denote by ⇒ the reflexive-transitive closure of →. We say that P �→ Q if P →
Q results from a communication on a restricted channel name of P . By �⇒ we
denote the reflexive-transitive closure of �→. To observe the interaction between a
process and its environment one introduces a labeled transition semantics, in this
case, the standard (late) labeled transition system [21]. For that we introduce

Definition 2.4 (Labels). Labels L (α, β) are define by

L ::= (νn)α | m〈n〉 | m(n) | τ

Name restriction on labels is used to express bound output [21]. We assume
defined the standard fn(α) (free names) and bn(α) (bound names) of label α.

Definition 2.5 (Labeled Transition System). The relation of labeled tran-
sition (P α→ Q) is defined by the rules:

a(n).P
a(n)→ P (In) m〈n〉.P m〈n〉→ P (Out)

P
α→ Q

P | R
α→ Q | R

(Par)
P

α→ Q n �∈ fn(α)

(νn)P α→ (νn)Q
(Res)

P{X/rec X .P} α→ Q

rec X .P
α→ Q

(Rec)

P
(νs)n〈m〉→ P ′ Q

n(p)→ Q′

P | Q
τ→ (νs)(P ′ | Q′{p/m})

(Com)
P

m〈n〉→ Q

(νn)P
(νn)m〈n〉→ Q

(Open)

20 L. Caires

The following provisos apply: rule (Par) subject to fn(Q)#bn(α), rule (Com)
subject to s#Q, rule (Open) subject to p �= m.

Reduction → coincides with silent transition τ→, and does not increase the free
names of processes. We write P

n→ Q when P
α→ Q and either α = (νs)n〈m〉

or α = n(m), and abbreviate a label (νs)α by α when the identity of s is not
important. Strong late bisimilarity over the labeled transition system defined
above is taken as our reference behavioral semantic equivalence of processes.

Definition 2.6. A strong late bisimulation R is a symmetric binary relation
over processes such that for all P, Q

– If P R Q and P
α→ P ′ for some P ′ then exists Q′ st. Q

α→ Q′ and P ′ R Q′.

– If P R Q and P
n(p)→ P ′ for some P ′ then exists Q′ st. Q

n(p)→ Q′ and for all
m P ′{p/m} R Q′{p/m}.

Strong late bisimilarity ∼ is the greatest strong late bisimulation.

There are well known characterizations of bisimilarities using modal logics. These
are mostly variants of Hennessy-Milner logics [11]. For the strong late bisimilar-
ity case, we may consider the logic LM [16]: essentially Hennessy-Milner logic
augmented with a modality 〈x(y)〉EA, such that

P |= 〈x(y)〉E
A iff All Q.P �⇒x(y)→ Q implies All m. Q{y/m} |= A

Two processes P and Q are defined to be logically equivalent (P =L Q) for
a logic L if they satisfy exactly the same formulas of L. For LM, one have
that P =LM Q if and only if P ∼ Q [16]. In general, purely behavioral logics
such as LM do not distinguish between bisimilar processes. As we shall see in
the next section, the kind of properties captured by the simplest type systems
for concurrency are not invariant under bisimilarity, and therefore cannot be
expressed by logics that just rely on observing process actions.

3 Simple Types

The simplest type systems for concurrent systems modeled in the π-calculus,
originating in Milner’s system of sorts [15] for the polyadic π-calculus, are in-
tended to enforce communication safety. If a process tries to communicate on
a shared channel, but the sender issues a tuple of length different from the one
expected by the receiver, an error occurs (undefined synchronization). In our
simpler monadic setting, we introduce a slightly different, but in some sense
equivalent, notion of error. We partition the set of names Λ into disjoint subsets
of channel names Λc (x, a, b) and basic names Λv (v, u). Then, while channel
names may be used to send and receive values, a basic name (cf., an integer
value) cannot. More precisely, a process is wrong, when it attempts writing to
or reading from something that does not refer to a communication channel.

Wrong(P) � (P ≡ (νm)(a(n).Q | R) or P ≡ (νm)(a〈n〉.Q | R)) and a ∈ Λv

Logical Semantics of Types for Concurrency 21

N.B. This may be seen as a special case of arity mismatch: names in Λv cannot
be used at any arity, and names in Λc may be used at all arities (since there is
a single arity). We say a process is safe if not wrong: Safe(P) � ¬Wrong(P).

Notice that being wrong is not a purely behavioral property, because a wrong
process may be bisimilar to a safe process. A type system for arity matching is
usually based on formal judgments of the form Γ � P , where P is the process to
be typed, and Γ a typing environment, more precisely, an assignment of a type
T to every free name of P . We consider channel types (T) and a base type nil.

Definition 3.1. The set of ST of simple types is given by T, U, V ::= nil | (T).

Given a finite set of names N , a typing environment of domain N is a mapping Γ
assigning each name n ∈ D a type Γ (n) ∈ T such that n ∈ Λv implies T = nil.
We denote by C the set of all typing environments. We denote by D(Γ) the
domain N of Γ . As usual, the typing environment Γ of domain {n1, . . . , nm}
that maps ni to Ti may be written n1 : T1, n2 : T2, . . . , nm : Tm. Usually, types
such as the simple types given above are seen as formal annotations, and type
safety for the type system proven by resorting to a subject reduction result.
In order to motivate our approach, we will instead develop a semantic proof of
soundness. For that purpose, we need to define a compositional interpretation of
typing environments as properties (sets of) of processes. We say that a mapping
J�−� : C → ℘(P) is conjunctive if J�Γ, Δ� = J�Γ � ∩ J�Δ�.

Definition 3.2. A typing interpretation J�−� : C → ℘(P) is a conjunctive
mapping assigning to each typing environment a set of processes such that:

If P ∈ J�n : T � then Safe(P)
If P ∈ J�n : T � and P

α→ Q then Q ∈ J�n : T �

If P ∈ J�n : (U)� and P
(νs)n〈m〉→ Q then Q ∈ J�m : U�

If P ∈ J�n : (U)� and P
n(m)→ Q then Q ∈ J�m : U�

If P ∈ J�n : nil� and P
n→ Q then False

Notice that J�Γ �Γ∈C is a (typing environment)-indexed family of sets of processes;
inductively defined on types, co-inductively defined on transitions. This definition
is parametric on the safety predicate Safe(−), and on standard behavioral obser-
vations on processes, expressed by transitions on a labeled transition system. In-
deed, if Safe(−) were closed under bisimilarity (e.g., if P ∼ Q and Safe(P) implies
Safe(Q)), then we might check that the corresponding typing interpretation would
also be closed under bisimilarity, in the sense that if P ∈ J�Γ � and P ∼ Q then
also Q ∈ J�Γ �. However, as remarked above, the safety properties of interest cap-
tured by type systems are seldom purely behavioral, so that usually any correct
(sound) logical interpretation of types is bound to be “intensional” (finer than
usual extensional behavioral types). We can check that typing interpretations are
closed under arbitrary unions.

22 L. Caires

Lemma 3.3. Let J be a family of typing interpretations. Then
⋃

J∈J J (defined
pointwise as Γ �→

⋃
J∈J J�Γ �) is also a typing interpretation.

We may then define our interpretation of typing environments.

Definition 3.4. We define typing, noted T �−�, by letting, for all Γ ∈ C,

T �Γ � �
⋃

{J�Γ � : J is a typing interpretation}

By definition, T �−� is the largest (with relation to the inclusion partial ordering)
typing interpretation. It is immediate that if P ∈ T �Γ � and P ∈ T �Δ� then P ∈
T �Γ, Δ� and conversely. We can already verify the key properties of our typing
interpretation T �−�: these properties hold whenever the type covers all free
names of the process. It is typical of predicates of terms defined via realizability
or logical relations techniques to characterize the intended properties just when
all free variables/names of the subject are covered. We then define

P |=s Γ � P ∈ T �Γ � and fn(P) ∈ D(Γ)

Lemma 3.5. The following closure properties of T �−� hold:

1. 0 |=s Γ .
2. If P |=s Γ ∧ n : T ∧ m : T then P{n/m} |=s Γ ∧ m : T .
3. If P |= Γ and n �∈ D(Γ) then P |=s Γ ∧ n : T .
4. If P |=s Γ and Q |=s Γ then P | Q |=s Γ .
5. If P |=s Γ ∧ n : T and n �∈ D(Γ) then (νn)P |=s Γ .
6. If P |=s Γ and Γ (n) = (U) and Γ (m) = U then n〈m〉.P |=s Γ .
7. If P |=s Γ ∧ x : U and Γ (n) = (U) then n(x).P |=s Γ .

Proof. The proof of most cases is by coinduction, given the definition of T �−�. It
is instructive to look at a few cases (full proofs of this and other results in [2]).

1. We have 0 ∈ T �n : T � for any n and T , since 0 � α→. Hence 0 |=s Γ for any Γ .
2. We show that S(Γ ∧ m : T) � {P{n/m} | P |=s Γ ∧ n : T ∧ m : T } is a

typing interpretation. Pick R ∈ S(Γ ∧ m : T). Then R = P{n/m} where
P |=s Γ ∧ n : T ∧ m : T . Let R

α→ R′.
(a) If α = τ then R′ |=s Γ ∧ n : T ∧ m : T , and so R′{n/m} ∈ S(Γ ∧ m : T).

(b) if α = a(v) then P
b(v)→ Q where a = b{n/m}. We have Q |=s Γ ∧n : T ∧m :

T ∧ v : V and Γm,n(b) = (V). If b �= n then R′ ∈ S(Γ ∧ m : T ∧ v : V). If
b = n then α = m(v) and T = (V). Then R′ ∈ S(Γ ∧ m : T ∧ v : V).

(c) if α = (νs)a〈v〉 then P
(νs)b〈q〉→ Q where a = b{n/m} and v = q{n/m}.

We have P
(νs)b〈q〉→ Q, where Q |=s Γ ∧ n : T ∧ m : T ∧ q : V and

Γm,n(b) = (V). If b �= n then R′ ∈ S(Γ ∧ m : T ∧ q : V). If b = n then
α = (νs)m〈v〉 and T = (V). Then R′ ∈ S(Γ ∧ m : T ∧ q : V).

We conclude that S is a typing interpretation. Then P |=s Γ ∧ n : T ∧ m : T
implies P{n/m} ∈ S(Γ ∧ m : T) ⊆ T �Γ ∧ m : T �. So P{n/m} |=s Γ ∧ m : T .

Logical Semantics of Types for Concurrency 23

(ST-Void)
Γ � 0

(ST-Par)
Γ � P Γ � Q

Γ � P | Q

(ST-Res)
Γ ∧ m : U � P

Γ � (νn)P

(ST-Inp)

Γ ∧ m : U � P Γ (n) = (U)

Γ � n(m).P

(ST-Out)

Γ � P Γ (n) = (U) Γ (m) = U

Γ � n〈m〉.P

Fig. 1. Simple type system

Given the previous Lemma 3.5, it is immediate that the (standard) proof system
ST depicted in Figure 1 is sound for simple types, in the following sense.

Proposition 3.6. If Γ � P and fn(P) ∈ D(Γ) then P |=s Γ .

It is interesting to compare the structure of our semantic proof of consistency
with a subject reduction style proof. Obviously, both proofs build on the same
operational model, and need to go through the verification of essentially the same
properties of the processes. The main advantages of the semantic approach result
from a fairly different underlying proof structure. The semantic proof is modular
(on the structure of the calculus operations), while the subject reduction proof
is not. The subject reduction proof proceeds by induction on reduction and
typing derivations, while the semantic proof deals with each inference principle
in isolation. Thus, to check the soundness of an extended system, one just needs
to check the added rules, while a subject reduction proof would have to be mostly
redone (or at least, add a new induction case to all existing auxiliary results).
Other potential advantages, in particular the smooth incorporation of subtyping
principles, were already discussed in the Introduction. Type safety properties are
obtained “for free”, as an internal consequence of the meaning of each property
denoted by a type. For example, we directly conclude the semantic counterparts
of the familiar type safety and subject reduction statements:

Proposition 37 (Type Safety)

1. If P |=s Γ then Safe(P), and if P |=s Γ and P → Q then Q |=s Γ .
2. If Γ � P and P ⇒ Q then Safe(Q).

Proof. (1) By definition of T �−�. (2) By (1) and Proposition 3.6.

In the case of simple types just discussed, a standard SR proof would have
been perhaps more concise. However, the advantages of the semantic approach
start to become clearer when more complex type systems are considered. In the
next section, we develop a general type system T for the π-calculus, based on
a behavioral-spatial logic, and prove its soundness using the semantic approach
illustrated above. As we shall show later in the paper, the logical primitives of
this type system provide a suitable “meta-language” in which the (type-like,
intensional) properties captured by many different type systems may be ex-
pressed as idioms. Although it would be straightforward to extend T with new
inference rules, we will show that many interesting instances may be obtained by
merely adding new subtyping axioms and rules. The soundness of such subtyping

24 L. Caires

principles may be proven modularly and incrementally, resorting to the semantic
approach. The soundness of each (conservative) extension of the type system T
considered will then be obtained in fairly automatic way.

4 The Generic Type System T

In this section, we present a general type system for the π-calculus, motivated by
a logical semantic of types as properties (sets of processes), and prove soundness
of typing (Theorem 4.5) and subtyping (Theorem 4.6). Our presentation is close
to a presentation of a logic. This is not unexpected, any type system should be
seen as a compositional, decidable, and (usually incomplete) proof system for a
specialized logic. We start by defining the syntax of types.

Definition 4.1 (Types). Types of T are given by the following abstract syntax:

α ::= x.!(T) � | x.?(T) � | x.!(T); | x.?(T);
A, B, C ::= ∅ | F | A ∧ B | A |B | A � B | Hn.A | αA | [α]A | �A

| rec X.A | X

N.B.: We write T (n) (also n : T) for a type A with a single name n occurring.
Then, we refer by T the name-abstracted type T (−).

Name abstracted types, such as T above, appear as arguments to behavioral
operators α, to type channels parameters. E.g., if T (−) = −.!(); − .?();∅, then
T (n) = n : T = n.!();n.?();∅, replacing the hole − with n in T ; likewise n : ∅ = ∅.

For each type A we define the set fn(A) of free names as usual, considering n
bound in Hn.A. In any type A � B we require fn(A)#fn(B).

At least superficially, the type language of T is not far from the spatial logics
for concurrency, as presented in [4,5,1]. In fact, we may construct an embedding
of T in the spatial logic of [4,5]. However, we are here interested in a more
refined and specific semantics, reflecting the intended safety properties of types.
The semantics of types as logical predicates on processes is given by the relation
of satisfaction P |= A defined between processes P and formulas A.
Definition 4.2 (Satisfaction). Semantics of types is inductively defined as
shown in Figure 2. N.B. We define P |=n A as P |= A and fn(P) ⊆ fn(A).
Spatial composition A | B is interpreted in the standard way, while enforcing free
name containment. In the hidden name quantifier Hn.A the name n is bound;
this construct is a generic mechanism allowing us to define types with bound
names, even if most of such names will be elided away by subtyping. Behavioral
modalities are classified along two dimensions: input/output, and spatial/sharing
(depending on whether the argument is handled via the spatial (|) or sharing
(∧) conjunction). � is useful to express invariants. We omit a full treatment of re-
cursive types, interpreted as greatest fixed point, that will not bring unexpected
difficulties. We define the abbreviations:

P⇓safe � All R. P �⇒ R implies Safe(R)
P �⇒safeQ � P⇓safeand P �⇒ R

We can now state some fundamental properties of the satisfaction relation.

Logical Semantics of Types for Concurrency 25

P |= F iff False

P |= ∅ iff P⇓safe

P |= A | B iff P ≡ R | Q and R |=n A and Q |=n B

P |= A � B iff All R. R |=n A implies (νfn(A))(R | P)
safe
�⇒ |= B

P |= A ∧ B iff P |= A and P |= B

P |= Hn.A iff P |= A and n#fn(P, Hn.A)

P |= �A iff Safe(P)and All α. if P
α→ Q then Q |= A

P |= x.!(T)�A iff P⇓safeand if P �⇒ R
α→ Q then α = (ν)x〈n〉, Q |= A | n : Tand n#A

P |= x.?(T)�A iff P⇓safeand if P �⇒ R
α→ Q then α = x(n), Q |= n : T � A

P |= x.!(T);A iff P⇓safeand if P �⇒ R
α→ Q then α = (ν)x〈n〉, Q |= A ∧ n : Tand n#A

P |= x.?(T);A iff P⇓safeand if P �⇒ R
α→ Q then α = x(n), Q |= n : T ∧ A

P |= [x.!(T)�]A iff P⇓safeand All n. if P �⇒ R
(ν)x〈n〉→ Q then Q |= A | n : T and n#A

P |= [x.?(T)�]A iff P⇓safeand All n. if P �⇒ R
x(n)→ Q then Q |= n : T � A

P |= [x.!(T);]A iff P⇓safeand All n. if P �⇒ R
(ν)x〈n〉→ Q then Q |= A ∧ n : T and n#A

P |= [x.?(T);]A iff P⇓safeand All n. if P �⇒ R
x(n)→ Q then Q |= A ∧ n : T

Fig. 2. Logical semantics of types

Lemma 4.3. Properties of satisfaction.

1. Let P |= A. If P ≡ Q then Q |= A.
2. Let P |= A. If P �⇒ Q, then Q |= A.
3. Let P |= A. Then P⇓safe .
4. Let P |= A. Then P{m↔n} |= A{m↔n}.
5. Let P |= A. If n �∈ A, then (νn)P |= A.

Proof. Induction on the structure of type A.

4.1 Type System

The typing rules of our generic type system T is based on formal judgments of
two forms: typing judgments and subtyping judgments.

A <: B (Subtyping Judgment) P :: A � B (Typing Judgement)

Some formation rules apply. Intuitively, a typing judgment expresses a rely guar-
antee property, interpreted by the composition adjunct operator of the underly-
ing logic. Thus, we require in any such judgment that fn(A)#fn(B). Moreover,
we require the antecedent to be separated, in the sense that for all composition
types C | D occurring in the A, we must have fn(C)#fn(D). On the other hand,
the right-hand side B is not subject to any special proviso. These constraints
will be preserved by all inference axioms and rules, via adequate provisos.

26 L. Caires

(Void)

0 :: ∅ � ∅
(Out-Left)

(y nfc.)
P :: A | C | y : T � B

x(y).P :: x :!(T) � A | C � B

(In-Right)

(y nfc.)
P :: A | y : T � B

x(y).P :: A � x :?(T) � B

(In-Left)

P :: A | C � B

x〈n〉.P :: x :?(T) � A | n : T | C � B

(Out-Right)
P :: A � B

x〈n〉.P :: A | n : T � x :!(T) � B

(Par)

P :: A � B Q :: C � D

(P | Q) :: A | C � B | D

(Rec)

(P :: A � α) P :: A � B

P :: A � rec α.B

(Sub)

A <: A′ P :: A′ � B′ B′ <: B

P :: A � B
(Seq)

(fn(B) nfc.)
P :: A � A′ | B Q :: B | B′ � C

(νB)(P | Q) :: A | B′ � A′ | C

(Res)

(n nfc.)
P :: A � B

(νn)P :: A � Hn.B

Fig. 3. The Generic Type System T

Judgments express certain assertions about types and processes. The meaning
of such assertions is given by the notion of validity.

Definition 4.4 (Validity). Validity of judgments is defined as follows.

valid(P :: A � B) � P |=n A � B

valid(A <: B) � All P. if P |=n A then P |=n B

A proof system for subtyping is sound if whenever it derives A <: B, then
valid(A <: B). Likewise, a proof system for typing is sound if whenever it derives
P :: A � B then valid (P :: A � B). An immediate consequence of soundness of
typability is that if P :: ∅ � ∅ is derivable, then, by Lemma 4.3(2,3), we conclude
that for all Q such that P ⇒ Q we have Safe(Q).

In Figure 3, we present the rules of the generic type system T. A proviso of all
rules is that only well-formed judgments may be concluded, and x ∈ Λc. Notice
that typing depends on subtyping just in the (Sub) rule. As in any type system,
the rules are directed by the syntax of processes (even if we may have more than
one rule for each construct). A main result of this paper is then:

Theorem 4.5 (Soundness of Type System T). Let A <: B be any sound
subtyping relation. If P :: A � B is derivable in T, then valid(P :: A � B).

Proof. We show that each rule preserves validity. We start by showing the fol-
lowing fact (induction on A): if A is separated, and R |= A then R ⇒ Q implies
R �⇒ Q. We consider each rule in turn; it is interesting to look at a few cases.

Logical Semantics of Types for Concurrency 27

– (Case of (Void)) Pick P |=n ∅. Then P | 0 ≡ P , by closure of satisfaction
under structural congruence, and we conclude P | 0 |= ∅. Thus 0 |=n ∅ � ∅.

– (Case of (Par)) Pick R such that R |=n A | C. Then R ≡ R1 | R2 where
R1 |=n A and R2 |=n B. By the premises, (νA)(R1 | P)�⇒safe |=n B and
(νC)(R2 | Q)�⇒safe |=n D. We have B#C and A#D and A#C. Hence
(νAC)(R | P | Q)�⇒safe |=n B | D, and so (P | Q) |=n A | C � B | D.

– (Case of (Seq)) Pick any R such that R |=n A | B′. So R ≡ R1 | R2 where
R1 |=n A and R2 |=n B′. We know that A#C and A′#B′.
By left premise, (νA)(R1 | P)�⇒safeT |=n A′ | B. Then T = T1 | T2 where
T1 |=n A′ and T2 |=n B. Thus T2 | R2 |=n B | B′. By right premise, we get
(νBB′)(T2 | R2 | Q)�⇒safe |=n C, and so T1 | (νBB′)(T2 | R2 | Q)�⇒safe |=n

A′ | C. Then

(νBB′)(T1 | T2 | R2 | Q)�⇒safe |=n A′ | C
(νBB′)(T | R2 | Q)�⇒safe |=n A′ | C
(νBB′)(νA)(R | P | Q)�⇒safe |=n A′ | C

by Lemma 4.3(1). Since R is arbitrary, (νB)(P | Q) |=n A | B′ � A′ | C.
– (Case of (In-Right)) From P :: A | y : T � B we get x(y).P :: A � x.?(T)�B.

Pick R such that R |=n A. Let S � (νA)(R | x(y).P). Since x �∈ A, we have
x �∈ fn(R). If S �⇒ α→ S′ with a visible (�= τ) action α, then S′ ≡ (νA)(R′ | P)
where R �⇒safeR′ and α = x(y) for some y#A, R. By validity of the premise,
we have P |=n (A | y : T) � B. By Lemma 4.3(2), R′ |=n A. Pick any
Q |=n y : T . Then (νy)(Q | S′)�⇒safe |=n B. So S′ |=n y : T � B. Hence
(νA)(R | x(y).P) |=n x.?(T) � B. We conclude x(y).P |=n A � x.?(T) � B.

4.2 Subtyping

We have deliberately left open the definition of any concrete subtyping relation,
in order to given a general soundness result for the core system T, indepen-
dently of any such subtyping relation. However, one expects any interesting sub-
typing relation to contain at least the deductive closure of the proof system in
Figure 4. These principles essentially state the commutative monoidal structure
of spatial composition − | − with unit ∅, congruence principles, and (logical) scope
extrusion rules for the hidden name quantifier (see [4]). We may then show

Theorem 4.6 (Soundness of Subtyping). Let A <: B be derivable in T <: .
Then valid(A <: B).

Proof. We show that each rule preserves validity of <: judgments. The proof is
straightforward for most axioms, using Lemma 4.3(2). For (HidWeak), we show
(induction on B) that P |=n B and Safe(Q) implies P | Q |= B.

4.3 Sharing

The typing rules of the core type system T presented above do not make special
use of conjunctive types. In fact, only “linear” usages of channel names seem

28 L. Caires

A <:> A | ∅ (ParVoid) A | B <:> B | A (ParCom)
A | (B | C) <:> (A | B) | C (ParAssoc) A <: B ⇒ A | C <: B | C (ParCong)
H|A|.(A | B) <: B (HidWeak) H|A|.∅ <: ∅ (HidVoid)
A | Hn.B <: Hn.(A | B) (HidExt) A <: B ⇒ Hn.A <: Hn.B (HidCong)
A <:> A ∧ A (ConjAdd) A <:> A ∧ ∅ (ConjVoid)
A ∧ B <:> B ∧ A (ConjCom) (A ∧ B) ∧ C <:> A ∧ (B ∧ C) (ConjAssoc)
A <: B ⇒ A ∧ C <: B ∧ C (ConjCong) A <: B ⇒ αA <: αB (ActCong)
F <: A (Bot) A <: B ⇒ [α]A <: [α]B (ActCong)
∅ <: αA (ActVoid) ∅ <: [α]A (ActVoid)

Fig. 4. Basic Subtyping Axioms and Rules T <:

to be allowed. We will now show how conjunctive types may be used to type
general forms of sharing, and express common properties of type systems, as the
ones described in Section 3. We start by defining

Definition 4.7. A family F of types is sharing if its is closed under conjunc-
tion, and satisfies the following contraction conditions relative to the spatial and
sharing conjunctions, for any types A, m : T , and n : T in F :

1. A | A |=n A.
2. If P |=n A ∧ n : T ∧ m : T then P{n/m} |=n A ∧ m : T .

For example, the simple types of Section 3 are sharing, in face of Lemma 3.5(2,4).
Notice that as far as behavioral type constructors are concerned, the αA types

express fairly strong safety properties, while [α]A types are close to the Hennessy-
Milner logic operators. For that reason, we will call classical those types with no
occurrences of spatial (A | B, A � B) or αA operators. We also call invariant
any type A such that A |= �A.

We then prove the following (perhaps surprising) result, that shows that spa-
tial and shared properties may be composed for the important class of classical
(purely behavioral) types.

Lemma 4.8 (Spatial/Sharing Cut). Let C by a classical invariant and R |=
A ∧ C and P |= A � B, with fn(A)#fn(C). Then (νA)(P | R) |= B ∧ C.

Proof. Since R |= A, we have (νA)(P | R) |= B. We have R |= C. By induction
on the type C, we show that (νA)(P | R) |= C.

Conjunctive typing rules are depicted in Figure 5, all (In-S-) and (Out-S-) rules
are subject to the proviso that the types in the right-hand-side of the premises
(e.g, B ∧y : T), belong to an invariant sharing type family. Essentially, we define
a left and right rule for input and output processes, and the “sharing cut” (cf.
the (Seq) typing rule) motivated by Lemma 4.8. As before, we can state:

Proposition 4.9. The sharing typing rules S are sound.

Proof. We show that each rule preserves validity. We show here a few cases.

1. (Case of (Sharing-Cut)) By Lemma 4.8(1).

Logical Semantics of Types for Concurrency 29

(In-S-Right)
P :: A � B ∧ y : T

x(y).P :: A � x :?(T);B
(y nfc.)

(In-S-Left)
P :: A � B ∧ y : T

x(y).P :: x :!(T);A � B
(y nfc.)

(Out-S-Left)

P :: A � B ∧ n : T (n#B)

x〈n〉.P :: x :?(T);A � B ∧ n : T

(Out-S-Right)

P :: A � B ∧ n : T (n#B)

x〈n〉.P :: A � x :!(T);B ∧ n : T

(Sharing-Cut)

B#C C classical invariant
P :: A � B ∧ C Q :: B � D

(νB)(P | Q) :: A � D ∧ C

Fig. 5. Sharing typing rules S

(Out-P-Right)

P :: A � B | n : T

(νn)x〈n〉.P :: A � x :!(T) � B

(Out-P-Left)

P :: A � B | n : T

(νn)x〈n〉.P :: x :?(T) � ∅ | A � B

Fig. 6. Bound output typing rules P

2. (Case of (In-S-Left)) We have x(y).P :: x.!(T);A � B derived from P ::
A � y : T ∧ B, where x#A. Pick R such that R |= x.!(T);A. Let S �
(νAx)(R | x(y).P). Consider any reduction from S: it has the form S ⇒ S′

with S′ ≡ (νAxs)(R′ | P{y/n}) where R �⇒safe
α→ R′ and α = (νs)x〈n〉 and

R′ |= A∧n : T with n#A. By Lemma 4.8(1), (νA)(R′ | P) |= n : T∧B∧y : T .
Since B ∧ y : T is sharing, (νA)(R′ | P{y/n}) |= n : T ∧ B. We conclude
x(y).P :: x.!(T);A � B.

3. (Case of (Out-S-Right)) We have x〈n〉.P :: A � x.!(T);B ∧ n : T concluded
from P :: A � B ∧ n : T . Pick R |= A, and let S � (νA)(R | x〈n〉.P).
Since n, x#A, if S �⇒ α→ S′ with a visible action α, then S′ ≡ (νA)(R′ | P),
R �⇒safeR

′, and α = x〈n〉. Then R′ |=n A. By the premise, we have P |=n

A � B ∧ n : T , and thus S′ |= B ∧ n : T with n#B. Since R is arbitrary, we
have x〈n〉.P |= A � x :!(T);B. Then x〈n〉.P |=n A � x.!(T);B ∧ n : T .

4.4 Additional Typing Rules

We may still consider additional typing and subtyping rules. For example, rea-
soning by symmetry, it would seem sensible to consider a variation of the output
rules (Out-Right) and (Out-Left) of T, where the source of the output is obtained
from the continuation of the output process, rather than from the parallel spatial
context. It is interesting to notice that this pattern of resource hand-over seems
associated to bound output. We illustrate this development by introducing the
post output P rules depicted in Figure 6. These rules do not seem derivable from
the ones already presented. In any case, we are not concerned here with finding
a minimal (in some well defined sense) set of rules, but rather to illustrate the
modularity and flexibility of the approach. We have

Proposition 4.10. The bound output typing rules P are sound.

30 L. Caires

5 Some Instances of Typing and Subtyping

In previous sections, we have motivated and developed the generic type system T ,
and prove its soundness using a semantic technique based on a logical interpreta-
tion of types. In this section, we discuss the expressiveness of our framework, by
showing how some type systems of well-known kind, namely, simple types, I/O
types, and a form of session types, may be embedded in a fairly direct way in the
type system T, just by choosing suitable (sound) additional subtyping axioms.

5.1 Simple Types

It is instructive to elaborate a representation of the simple type system of Sec-
tion 3 in the general type system T. Essentially, we need to express typing
interpretations (Definition 3.2) using our type primitives. We set

�nil�(n) � rec X.∅ ∧ [n.!(∅);]F ∧ [n.?(∅);]F ∧ �X

�(T)�(n) � rec X.∅ ∧ [n.!(�T �);]X ∧ [n.?(�T �);]X ∧ �X

� � � ∅
�n : T, Γ � � �T �(n) ∧ �Γ �

Notice that the translation of a typing context Γ essentially just spells out, fairly
directly, the coinductive definition of �Γ � of Definition 3.2. It is then not difficult
to check that P |=n �Γ � if and only if P |=s Γ . We will then deliberately mix
(the syntax of) simple types (U, V, T) with general types, with the assumption
that the former are seen as the abbreviations defined above. We may then show:

Proposition 5.1. The subtyping judgments ST <: , listed below, are valid:

∅ <: Γ (Weaken)
n.?(T);(Γ ∧ n : (T)) <: Γ ∧ n : (T) (ContrInp)
n.!(T);(Γ ∧ n : (T)) <: Γ ∧ n : (T) (ContrOut)
Γ | Γ <: Γ (ContrPar)
Hn.(Γ ∧ n : T) <: Γ (ContrRes)

Proof. Verification is direct for (Weaken). We show (ContrOut) this in detail,
for (ContrInp) is similar. Let P |=n n.!(T);(Γ ∧ n : (T)), and P

α→ Q. By the
assumption, either α = τ and Q |= n.!(T);(Γ ∧ n : (T)), or α = (νs)n〈m〉
and R |= Γ ∧ n : (T) ∧ m : T with m#Γ, n. By coinduction, we conclude
P |= Γ ∧ n : (T). (ContrPar) and (ContrRes) are valid by Lemma 3.5(4,5).

The laws presented in Proposition 5.1 express weakening and contraction princi-
ples that confirm the “exponential” (sharing) character of simple types. Notice
that these principles are justified by semantics entailments, independently of any
proof theoretic considerations. We can also verify that simple types are classical,
and sharing (Definition 4.7), as a consequence of Lemma 3.5(4,5). If one con-
siders these contraction principles in (the subtyping relation of) the general type

Logical Semantics of Types for Concurrency 31

system T, obtaining the system T + ST <: , then we may show that each rule
of the Simple type system (in Figure 1) becomes admissible.

Proposition 5.2. The Simple type system is admissible in T + ST <: .

Proof. Each judgment Γ � P is represented by P :: ∅ � �Γ � in T. Then (ST-Void)
is admissible by (Void) and subtyping by (Weakening). (ST-Par) is admissible
by (Par) and subtyping by (ContrPar). (ST-Res) is admissible by (Res) and
subtyping by (ContrRes). (ST-Inp) is represented as follows:

1. Γ, n : U, m : (U) � P P :: ∅ � �Γ � ∧ �n : U� ∧ �m : (U)�
2. P :: ∅ � �Γ � ∧ �U�(n) ∧ �m : (U)�
3. m〈n〉.P :: ∅ � m.!(�U�);(�Γ � ∧ �m : (U)�) ∧ �U�(n)
4. Γ, m : (U) � m(n).P m(n).P :: ∅ � �Γ � ∧ �m : (U)� ∧ �n : U�

(2,3) by (Out-S-Right) and (3,4) (Sub) (by (ContrOut)). (ST-In) is similar.

5.2 I/O Types

We show how I/O types, along the lines of [19], may be represented in the type
system T. I/O types are similar to simple types, but now channel types are
tagged with a mode μ ∈ {+, −, ±}. Standard channel types (U), now written
(U)±, are refined into input only (U)− and output only (U)+ channel types. A
logical semantics of I/O types may be given as follows.

�(T)±�(n) � rec X.∅ ∧ [n.!(�T �◦);]X ∧ [n.?(�T �);]X ∧ �X

�(T)+�(n) � rec X.∅ ∧ [n.!(�T �◦);]X ∧ [n.?(∅);]F ∧ �X

�(T)−�(n) � rec X.∅ ∧ [n.!(∅);]F ∧ [n, ?(�T �);]X ∧ �X
�(T)±�◦(n) = rec X.∅ ∧ [n.!(�T �◦);]X ∧ [n.?(�T �◦);]X ∧ �X

�(T)+�◦(n) = �(T)−�◦(n) � �(T)±�(n)

Again, we notice that the translation above offers a fairly direct specification
of the semantics of I/O types, and that these are introduced as an orthogonal
(conservative) extension of simple types. Indeed, we can check that if T is a type
containing just the (−)± type constructor, and U is the simple type “erasure”
of T then �T � = �U�. We may also verify that all the subtyping principles stated
in Proposition 5.1 remain valid for I/O types. Moreover, we have

Proposition 5.3. The subtyping rules IO <: are valid for any I/O types U, T :

n : (T)+ <: n : (T)± (InpIO)
n : (T)− <: n : (T)± (OutIO)
U <: T ⇒ n.?(U);(Γ ∧ n : (T)μ) <: Γ ∧ n : (T)μ (− ∈ μ) (ContrIOInp)
T <: U ⇒ n.!(U);(Γ ∧ n : (T)μ) <: Γ ∧ n : (T)μ (+ ∈ μ) (ContrIOOut)

(SubInp)
n : T <: n : U

n : (T)− <: n : (U)−

(SubOut)
n : U <: n : T

n : (T)+ <: n : (U)+

(SubIO)
n : U <:> n : T

n : (T)± <: n : (U)±

32 L. Caires

P :: ∅ � a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)± ∧ c : (T)−

a(c).P :: ∅ � a.?((T)−);(a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)±)
Ps :: ∅ � a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)± by (ContrIOInp)

Ci :: ∅ � a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)+ ∧ c : (T)+

b(c).Ci :: ∅ � b.?((T)+);(a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)±)
Si :: ∅ � a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)± by (ContrIOInp)

0 :: ∅ � a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)±

b〈p〉 :: ∅ � b.!((T)±);(a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)±)
b〈p〉 :: ∅ � a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)± by (ContrIOOut)
b〈p〉.b〈p〉 :: ∅ � a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)± Identical
a〈p〉.b〈p〉.b〈p〉 :: ∅ � a.!((T)±);(a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)±)
a〈p〉.b〈p〉.b〈p〉 :: ∅ � a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)± by (ContrIOOut)
(Ps | S1 | S2 | I) :: ∅ � a : ((T)−)± ∧ b : ((T)+)± ∧ p : (T)±

Sys :: ∅ � a : ((T)−)± ∧ b : ((T)+)±

Fig. 7. Sample derivation of I/O types

Proof. Immediate for (InpIO), (OutIO) and (ContrIOInp), and (SubInp). For
the remaining ones we first show that (a) �T � |= �T �◦, and (b) U <: V implies
�V �◦ |= �U�◦. (ContrIOOut) follows from (a) and (b), and (SubOut) from (b).

Interestingly, the subtyping relation induced by the logical semantics satisfy
the syntactically defined relation ≤ in [19] (reading ≥ as <: , and apart from
recursive types, for which one should add a coinduction rule). All of its typing
rules may be shown admissible in the extension of T + IO <: : we just need to
verify that I/O types are classical and invariant (by inspection), sharing, and
therefore that all the sharing typing rules S rules are applicable to them.

For an illustration, we borrow an example from [19]. A system composed by a
printer P and two clients C1 and C2 is set up so that the printer is only allowed
to read from the clients, while clients are only allowed to write to the printer.
For readability, we tag bound names with their intended types.

Sys � (νp : (T)±)(Ps | S1 | S2 | I) I � a〈p〉.b〈p〉.b〈p〉
Ps � a(c : (T)−).P Si � b(c : (T)+).Ci

We can then derive Sys :: ∅ � a : ((T)−)± ∧ b : ((T)+)±, as presented in the
Figure 7. Interpreting the types as the intended logical predicates, by soundness,
we conclude, for instance, that P |= rec X.[n.!(∅);]F∧�X . This means that the
printer will never attempt to write on channel c.

5.3 Behavioral and Session Types

Various behavioral type disciplines for π-calculi have been proposed (e.g.,
[13,14,10]), the intention being to discipline the sequence of interactions be-
tween processes, so that certain liveness and safety properties may be obtained.
Particularly interesting are session types [12], that may be used to discipline

Logical Semantics of Types for Concurrency 33

Session(x) � x.!(Op) � x.!(Int) � x.!(Int) � x.?(Int) � ∅
0 :: ∅ � ∅
x(u).0 :: ∅ � x.!(Int) � ∅
x〈1〉.x〈2〉.x(u).0 :: ∅ � x.!(Int) � x.!(Int) � x.?(Int) � ∅
ClientBody(x) :: ∅ � Session(x)
(νx)(a〈x〉.ClientBody(x)) :: a.?(Session) � ∅ � ∅ by (Out-P-Left)

0 :: ∅ � ∅
y〈v1 + v2〉.0 :: op : Op | v1 : Int | v2 : Int | y.?(Int) � ∅ � ∅
y(v1).y(v2).y〈v1 + v2〉.0 :: op : Op | y.!(Int) � y.!(Int) � y.?(Int) � ∅ � ∅
ServerBody(y) :: Session(y) � ∅
a(y).ServerBody(y) :: ∅ � a :?(Session) � ∅ by (In-Right)

Sys :: ∅ � ∅ by (Seq)

Fig. 8. Sample derivation of session types

dialogue-like interactions between exactly two parties. At least certain forms of
session types may be embedded in the generic type system T in a rather straight-
forward way, by combining generic types with simple types. The basic idea is to
use judgments of the form P :: Si � So∧Γ where Si represents the (session) types
of incoming (from the process environment) sessions, So the (session) types of
outgoing (to the process environment) sessions, and Γ , a sharing type, declares
the types of shared channels. Usually, one would expect Γ to be a conjunction
of sharing types, for instance, simple types, or I/O types. On the other hand,
the types Si and So may be quite arbitrary, as far as one ensures fn(Γ)#fn(So)
(need to combine processes using (Shared-Cut)). We illustrate with a simple
example [10]: a server that offers a integer addition service, and its client.

Sys � (νa)(Client | Server)
ClientBody(x) � x〈plus〉.x〈1〉.x〈2〉.x(u).0
ServerBody(x) � x(op).x(v1).x(v2).x〈v1 + v2〉.0
Client � (νx)(a〈x〉.ClientBody (x))
Server � a(y).ServerBody(y)

A possible typing for the system Sys in T + ST <: is shown in Figure 8, where
we assume the extension of the system with some pure value types (Int, Op),
along predictable lines (cf. nil). Notice that no sharing types have been used,
and channel a is used just once. However, channel a may be shared, even if
it moves around “session” partners as resources, using the spatial modalities
a.?(Session)� and a.!(Session)�. However, we may set a : (Session)�, where

�(T)��(n) � rec X.∅ ∧ [n.!(�T �)�]X ∧ [n.?(�T �)�]X ∧ �X

The intention is to let (T)� be a “ownership-transfer” version of the simple type
(T). We may check that the types (T)� are classical, invariant, and sharing. We
denote by OT the expected subtyping axioms for “ownership-transfer” simple
types. Using just the axioms and rules of T+ST <: +OT <: we may then show
an alternative typing for the system Client | Server , where the name a is free.

34 L. Caires

Client | Server :: ∅ � a : (Session)�

Again, soundness of the obtained type system is obtained for “free”, after one
proves certain abstract properties (e.g., sharing) of new type constructions.

6 Concluding Remarks

The original understanding of types as predicates has not always been a guid-
ing principle in the design of types for process calculi, where a syntactical view
seems to be dominant (an exception is [8], where a notion of semantic subtyping
for names was developed). In this paper, we have developed a formal semantic
approach to types in concurrency, based on an interpretation of types as spatial
logic definable properties. The feasibility of the approach was demonstrated by
the proposal of a generic type system, where many interesting notions of typing
for mobile processes may be embedded just by introducing suitable subtyping re-
lations, while modularly preserving soundness (Theorems 4.5 and 4.6). Thus, our
approach seems to generalize other existing proposals to generic typing [13], that
rely on more standard techniques. Some of the logical characterizations we have
introduced allowed us to understand notions such as sharing and linearity [14]
in types for concurrency in a rather abstract setting; it would be interesting to
compare ours with other interpretations of sharing [17].

The framework proposed here may be generalized along several directions.
Our development is not dependent on the structure of the underlying basic safety
predicate, it would then be interesting to consider different basic properties (e.g.,
security). Different notions of sharing might also be accommodated, if replication
replaces recursion in the process calculus.

We believe that spatial logics provide a suitable metalanguage in which many
type-like properties of interest may be formally expressed at an adequate level of
abstraction, and that soundness proofs developed along the lines we have shown
here are more modular and more intuitive than purely syntactic subject reduc-
tion style proofs. The representation of a type is essentially a process predicate
that explicitly affirms of the subject the safety properties of interest. Our results
suggest that these techniques may be used with some advantage over purely
syntactic approaches to the semantics of typing, at least in some situations, in
particular when traditional subject reduction techniques do not scale so to com-
fortably handle an increased complexity in global proof invariants, for example,
due to the introduction of rich subtyping relations [3].

References

1. Caires, L.: Behavioral and Spatial Properties in a Logic for the Pi-Calculus. In:
Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, Springer, Heidelberg (2004)

2. Caires, L.: Logical Semantics of Types for Concurrency. Technical Report 2/07,
Departamento de Informatica FCT/UNL (2007)

Logical Semantics of Types for Concurrency 35

3. Caires, L.: Spatial-Behavioral Types, Distributed Services, and Resources. In: Mon-
tanari, U., Sanella, D. (eds.) TGC 2006 2nd Intl. Symp. on Trustworthy Global
Computing. LNCS, Springer, Heidelberg (2007)

4. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part I). Information and
Computation 186(2), 194–235 (2003)

5. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part II). Theoretical
Computer Science 3(322), 517–565 (2004)

6. Caires, L., Vieira, H.: Extensionality of Spatial Observations in Distributed Sys-
tems. Electronic Notes in Theoretical Computer Science (2007)

7. Cardelli, L., Gordon, A.D.: Anytime, Anywhere. Modal Logics for Mobile Ambi-
ents. In: 27th ACM Symp. on Principles of Programming Languages, pp. 365–377.
ACM Press, New York (2000)

8. Castagna, G., De Nicola, R., Varacca, D.: Semantic Subtyping for the π-Calculus.
In: 20th IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 92–101.
IEEE Computer Society Press, Los Alamitos (2005)

9. Curry, H.B., Feys, R.: Combinatory Logic. North-Holland, Amsterdam (1958)
10. Gay, S.J., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta Infor-

matica 42(2-3), 191–225 (2005)
11. Hennessy, M., Milner, R.: Algebraic Laws for Nondeterminism and Concurrency.

JACM 32(1), 137–161 (1985)
12. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline

for Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP
1998 and ETAPS 1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

13. Igarashi, A., Kobayashi, N.: A Generic Type System for the Pi-Calculus. In: POPL
2001: 28th ACM Symp. on Principles of Programming Languages, ACM Press, New
York (2001)

14. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the Pi-Calculus. ACM
Trans. Program. Lang. Syst. 21(5), 914–947 (1999)

15. Milner, R.: The Polyadic π-Calculus: A Tutorial. Technical Report 180, University
of Edinburgh LFCS (1991)

16. Milner, R., Parrow, J., Walker, D.: Modal Logics for Mobile Processes. Theoretical
Computer Science 114, 149–171 (1993)

17. O’Hearn, P., Pym, D.: The Logic of Bunched Implications. The Bulletin of Symbolic
Logic 5(2), 215–243 (1999)

18. O’Hearn, P.W.: Resources, Concurrency and Local Reasoning. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer, Heidel-
berg (2004)

19. Pierce, B.C., Sangiorgi, D.: Typing and Subtyping for Mobile Processes. Mathe-
matical Structures in Computer Science 6(5), 409–453 (1996)

20. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
Third Annual Symposium on Logic in Computer Science, Copenhagen, Denmark,
IEEE Computer Society Press, Los Alamitos (2002)

21. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

22. Tait, W.: Intensional Interpretations of Functionals of Finite Type. J. Symbolic
Logic 32(2), 198–212 (1967)

23. Wright, A.K., Felleisen, M.: A Syntactic Approach to Type Soundness. Inf. Com-
put. 115(1), 38–94 (1994)

Deriving Bisimulation Congruences with

Borrowed Contexts�

(Abstract)

Barbara König

Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany

barbara koenig@uni-due.de

In the last few years the problem of deriving labelled transitions and bisimula-
tion congruences from unlabelled reaction or rewriting rules has received great
attention. This line of research was motivated by the theory of bisimulation con-
gruences for process calculi, such as the π-calculus [19,14]. A bisimilarity defined
on unlabelled reduction rules is usually not a congruence, that is, it is not closed
under the operators of the process calculus. Congruence is a desirable property
since it allows one to replace a subsystem with an equivalent one without chang-
ing the behaviour of the overall system and futhermore helps to make bisimilarity
proofs modular.

Previous solutions have been to either require that two processes are related if
and only if they are bisimilar under all possible contexts [15] or to derive a labelled
transition system manually. Since the first solution needs quantification over all
possible contexts, proofs of bisimilarity can be very complicated. In the second
solution, proofs tend to be much easier, but it is necessary to show that the labelled
variant of the transition system is equivalent to the unlabelled variant.

So the idea which was formulated in the papers of Leifer/Milner [12,13], Sewell
[22] and Sassone/Sobociński [20] is to automatically derive a labelled transition
system such that the resulting bisimilarity is a congruence. A central concept
of this approach is to formalize the notion of minimal context which enables a
process to reduce. Consider, for example, the CCS process a.P . It reduces when
put into the contexts | ā.Q and | ā.Q | b.R, but one is interested only in the
first context, since it is in some sense smaller than the second one. This yields
the labelled transition

a.P
|ā.Q→ P | Q,

saying that a.P put into this contexts reacts and reduces to P | Q. Using all
possible contexts as labels would also result in a (coarser) bisimulation congru-
ence, but we do not gain anything compared to quantification over all contexts
(for a more detailed study of this congruence see [3]).

In [12,13] the notion of “minimal context” is formalized as the categorical con-
cept of relative pushout (RPO) respectively idem pushout (IPO). This notion has

� Research partially supported by the DFG project SANDS and CRUI/DAAD Vigoni
“Models based on Graph Transformation Systems: Analysis and Verification”.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 36–39, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Deriving Bisimulation Congruences with Borrowed Contexts 37

also been applied to bigraphs [9]. However, the theory is complicated by the fact
that one can not work with isomorphism classes of graphs, since in this case the
category under consideration would not possess all necessary relative pushouts.
Thus one is forced to give unique names to all edges and nodes in a graph, i.e.,
to add support to a category, and to either work in a precategory or to construct
a suitable category starting from such a precategory. A different approach, pre-
sented by Sassone and Sobociński [20,21], that does not require the notion of sup-
port, is to construct relative pushouts (so-called GRPOs) in a 2-categorical
setting. This work is based on the notion of adhesive categories [11].

We will also use adhesive categories and work with adhesive rewriting systems,
which can be seen as a generalization of graph rewriting systems [18], a frame-
work which allows to model dynamic and concurrent systems consisting of inter-
connected components in a natural and intuitive way. Many process calculi such
as the π-calculus [8,16,10] and the ambient calculus [7] can be translated into
this framework. We are specifically interested in the double-pushout (DPO) ap-
proach to rewriting [4,5]. Adding support, as explained earlier, would be possible
in theory, but contradicts the philosophy behind graph rewriting where graphs
(or more generally objects) are considered only up to isomorphism. Compared
to other approaches, in which the derivation of labels is a somewhat complex
task, our approach is rather straightforward and simple.

The approach presented here [6] is motivated by the work of Leifer and Milner
and other contributions to this area, but does not directly rely on their theory.
Instead we present an uncomplicated way of deriving minimal contexts—we call
them borrowed contexts—which smoothly extends the DPO approach and which
has a very constructive nature. The only categorical concepts that are needed
are pushouts and pullbacks. The main difference to previous approaches is that
in our case graphs (more generally: the structures which are being rewritten) are
objects and not arrows of the category under consideration. Our arrows instead
are (graph) morphisms which provide the necessary tracking information for
nodes and edges which, in the case of graphs as arrows, can—as it turned out—
only be provided by either adding support to a category or by working in a
2-categorical framework.

Our main result states that bisimilarity defined on labelled transitions with
borrowed contexts is indeed a congruence relation. Furthermore we introduce
an up-to-context proof technique and discuss the mechanization of bisimulation
proofs (see also [17]).

We will compare with related work and present an application of our approach
to the derivation of bisimulation congruences for CCS [2]. Finally, we give an
outlook to future plans where we are working towards an inductive definition,
in sos style, of the labelled transition system associated to the reduction rules
(see also [1]).

Acknowledgements. This is joint work with Hartmut Ehrig, Paolo Baldan, Filippo
Bonchi, Fabio Gadducci, Guilherme Rangel and Ugo Montanari. I want to thank
my coauthors for many interesting and stimulating discussions on the topic.

38 B. König

References

1. Baldan, P., Ehrig, H., König, B.: Composition and decomposition of DPO trans-
formations with borrowed context. In: Corradini, A., Ehrig, H., Montanari, U.,
Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 153–167.
Springer, Heidelberg (2006)

2. Bonchi, F., Gadducci, F., König, B.: Process bisimulation via a graphical encoding.
In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 168–183. Springer, Heidelberg (2006)

3. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In:
Proc. of LICS ’06, IEEE Computer Society Press, Los Alamitos (2006)

4. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation—part I: Basic concepts and double pushout
approach. In: Rozenberg, G., (ed.) Handbook of Graph Grammars and Computing
by Graph Transformation, vol. 1: Foundations, ch. 3. World Scientific (1997)

5. Ehrig, H., Pfender, M., Schneider, H.: Graph grammars: An algebraic approach. In:
Proc. 14th IEEE Symp. on Switching and Automata Theory, pp. 167–180. IEEE
Computer Society Press, Los Alamitos (1973)

6. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting with borrowed contexts. Mathematical Structures in Computer
Science 16(6), 1133–1163 (2006)

7. Gadducci, F., Montanari, U.: A concurrent graph semantics for mobile ambients.
In: Brookes, S., Mislove, M. (eds.) Proceedings of the 17th MFPS. Electronic Notes
in Computer Science, vol. 45, Elsevier Science, Amsterdam (2001)

8. Gadducci, F., Montanari, U.: Comparing logics for rewriting: Rewriting logic, ac-
tion calculi and tile logic. Theoretical Computer Science 285(2), 319–358 (2002)

9. Jensen, O.H., Milner, R.: Bigraphs and transitions. In: Proc. of POPL 2003, pp.
38–49. ACM Press, New York (2003)

10. König, B.: A graph rewriting semantics for the polyadic π-calculus. In: Proc. of GT-
VMT ’00 (Workshop on Graph Transformation and Visual Modeling Techniques),
pp. 451–458. Carleton Scientific (2000)

11. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO – Theo-
retical Informatics and Applications 39(3) (2005)

12. Leifer, J.J.: Operational congruences for reactive systems. PhD thesis, University
of Cambridge Computer Laboratory (September 2001)

13. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, Springer, Heidelberg
(2000)

14. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

15. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) Automata,
Languages and Programming. LNCS, vol. 623, Springer, Heidelberg (1992)

16. Montanari, U., Pistore, M.: Concurrent semantics for the π-calculus. Electronic
Notes in Theoretical Computer Science 1 (1995)

17. Rangel, G., König, B., Ehrig, H.: Bisimulation verification for the DPO approach
with borrowed contexts. In: Proc. of GT-VMT ’07 (Workshop on Graph Trans-
formation and Visual Modeling Techniques), Electronic Communications of the
EASST (to appear)

Deriving Bisimulation Congruences with Borrowed Contexts 39

18. Rozenberg, G.(ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, Foundations, vol. 1 World Scientific (1997)

19. Sangiorgi, D., Walker, D.: The π-calculus—A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

20. Sassone, V., Sobociński, P.: Deriving bisimulation congruences: 2-categories vs
precategories. In: Gordon, A.D. (ed.) ETAPS 2003 and FOSSACS 2003. LNCS,
vol. 2620, pp. 409–424. Springer, Heidelberg (2003)

21. Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Proc. of LICS ’05,
pp. 311–320. IEEE Computer Society Press, Los Alamitos (2005)

22. Sewell, P.: From rewrite rules to bisimulation congruences. Theoretical Computer
Science 274(1–2), 183–230 (2002)

Symmetry and Concurrency

(Extended Abstract)

Glynn Winskel

University of Cambridge Computer Laboratory, England
Glynn.Winskel@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/gw104

Abstract. A category of event structures with symmetry is introduced
and its categorical properties investigated. Applications to the event-
structure semantics of higher order processes, nondeterministic dataflow
and the unfolding of higher-dimensional automata and Petri nets with
multiple tokens are indicated.

Keywords: Event structures, symmetry, pseudo monads, spans, higher
order processes, nondeterministic dataflow, unfolding, Petri nets, higher
dimensional automata.

1 Introduction

In the paper introducing event structures [15] a ‘curious mismatch’ was noted.
There event structures represent domains, so types. But they also represent
processes which belong to a type. How are we to reconcile these two views?

One answer has arisen in recent work under the banner of ‘domain theory
for concurrency’ (see [17] for a summary). This slogan stands for an attempt
to push the methodology of domain theory and denotational semantics into the
areas of interactive/concurrent/distributed computation, where presently more
syntactic, operational or more informal methodologies prevail. Certain general-
ized relations (profunctors [4]) play a strong unifying role and it was discovered
that in several contexts that they could be represented in a more informative
operational way by spans of event structures [16,28,19].

A span of event structures is typically of the form

E
in

����
��

��
�

out

��
��

��
��

�

A B

where in and out are maps of event structures—the maps are not necessarily of
the same kind. The event structure E represents a process computing from an
input type, represented by the event structure A, to output type represented by
B. A span with no input amounts to just a single map E

out−→B which we can read

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 40–64, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Glynn.Winskel@cl.cam.ac.uk
http://www.cl.cam.ac.uk/users/gw104

Symmetry and Concurrency 41

as expressing that the process E has type B. So spans are a way to reconcile the
double role that event structures can take, as processes and as types.

Of course spans should compose. So one would like systematic ways to vary
the in and out maps of spans which ensure they do. One way is to derive the
maps by a Kleisli construction from monads on a fundamental category of event
structures. With respect to suitable monads S and T satisfying a suitable dis-
tributivity law, one can form a bicategory of more general spans

E

����
��

��
��

����������

S(A) T (B) .

It becomes important that event structures are able to support a reasonable
repertoire of monads, including monads which produce multiple, essentially sim-
ilar, copies of an event structure. For this the introduction of symmetry seems
essential.1

In fact, there are several reasons for introducing symmetry to event structures
and related models:

– It’s there—at least informally. Symmetry often plays a role in the analysis
of distributed algorithms. In particular, symmetry has always been present
at least informally in the model of strand spaces, and has recently been ex-
ploited in exploring their behaviour [8], and was used to understand their
expressivity [6]. Strand spaces are forms of event structures used in the analy-
sis of security protocols. They comprise a collection of strands of input and
output events, possibly with the generation of fresh values. Most often there
are collections of strands which are essentially indistinguishable and can be
permuted one for another without changing the strand space’s behaviour.

– To obtain categorical characterizations of unfoldings of higher-dimensional
automata [7], and more specifically Petri nets in which places may hold with
multiplicity greater than one. There are well-known ways to unfold such
general nets; for example by distinguishing the tokens through ‘colours,’
splitting the places and events accordingly and reducing the problem to the
unfolding in [15]. But the folding maps are not unique (w.r.t. an obvious
cofreeness property). They are however unique ‘up to symmetry.’

– Event structures are sometimes criticized for not being abstract enough.
One precise way in which this manifests itself is that the category of event
structures does not support monads and comonads of the kind discovered
for more general presheaf models [4]. The computation paths of an event
structure, its configurations, are ordered by inclusion. In contrast the paths
of presheaf models can be related more generally by maps. Some (co)monads
used for presheaf models allow the explicit copying of processes and produce
a proper category of paths even when starting with a partial order of paths—
this arises because of the similarity of one copy of a process with another.

1 Symmetry was introduced into game semantics specifically to support a ‘copying’
comonad [1].

42 G. Winskel

The last point is especially pertinent to the versatility of spans of event struc-
tures. This paper presents a definition of a symmetry on an event structure.
Roughly a symmetry will express the similarity of finite behaviours of an event
structure. The introduction of symmetries to event structures will, in effect, put
the structure of a category on their finite configurations, and so broaden the
structure of computation paths event structures can represent. The ensuing cat-
egory of event structures with symmetries will support a much richer class of
(pseudo) monads, from which we can then obtain more general kinds of span.
The category of event structures with symmetry with rigid maps emerges as
fundamental; other maps on event structures can be obtained by a Kleisli con-
struction or as instances of general spans starting from rigid maps.

Several applications, to be developed in future work, are outlined in Section 6:

– Event types: One reason why so-called ‘interleaving’ models for concurrency
have gained prevalence is that they support definitions by cases on the ini-
tial actions processes can do; another is that they readily support higher-
order processes. Analogous facilities are lacking, at least in any reasonable
generality, in ‘true-concurrency’ models—models like Petri nets and event
structures, in which causal dependence and independence are represented
explicitly. It is sketched how processes can be associated with ‘event types’
which specify the kinds of events they can do, and how event types can
support definitions by cases on events. There are difficulties and much more
needs to be done. But the examples do demonstrate the key role that sym-
metry and the copying of processes could play in obtaining flexible event
types and event-based definitions.

– Nondeterministic dataflow and affine-HOPLA: ‘Stable’ spans of event struc-
tures, a direct generalisation of Berry’s stable functions [2], have been used
to give semantics to nondeterministic dataflow [19] and the higher-order
process language affine-HOPLA [16]. Stable spans can be obtained as in-
stances of general spans. The realization of the ‘demand’ maps used there
as a Kleisli construction on rigid maps provides a striking example of the
power of symmetry.

– Unfoldings: One obvious application is to the unfolding of a general Petri
net to an event structure with symmetry; the symmetry reflects that present
in the original net through the interchangeability of tokens. Another related
issue is the unfolding of higher-dimensional automata, where identifications
of edges are reflected in the symmetry of the events to which they unfold.

This presentation concentrates on the model of (prime) event structures. But
the same techniques apply to many other models, including more algorithmically-
amenable models such as Petri nets or versions of transition systems. The model
of stable families [23] plays a significant, if hidden role, in the proofs—they
deserve a more forthright treatment in future. The work reported is based on
an extended article which appears in the Gordon Plotkin Festschrift [29], where
further details may be found. As well as streamlining the presentation, I have
taken the opportunity here to make corrections (chiefly in the unfinished work
on ‘Event types’, Section 6.2), additions (on ‘Event types’, Section 6.2 and on

Symmetry and Concurrency 43

‘Unfoldings,’ Section 6.4), and replaced the condition of countability on event
structures by the weaker condition of ‘consistent-countable,’ which suffices for
the proofs in [29] and allows extra results, e.g. in Sections 6.2 and 6.4.

2 Event Structures

Event structures [15,22,25,26] are a model of computational processes. They
represent a process as a set of event occurrences with relations to express how
events causally depend on others, or exclude other events from occurring. In
one of their simpler forms they consist of a set of events on which there is a
consistency relation expressing when events can occur together in a history and
a partial order of causal dependency—writing e′ ≤ e if the occurrence of e
depends on the previous occurrence of e′.

An event structure comprises (E, Con, ≤), consisting of a set E, of events
which are partially ordered by ≤, the causal dependency relation, and a consis-
tency relation Con consisting of finite subsets of E, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆ X ∈ Con ⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

Here we insist that an event structure is consistent-countable,2 i.e. that there is
a function χ from its events to the natural numbers ω such that {e1, e2} ∈ Con
and χ(e1) = χ(e2) implies e1 = e2.

The events are to be thought of as event occurrences; in any history an event
is to appear at most once. A configuration is a set of events which have occurred
by some stage in a process. According to our understanding of the consistency
predicate and causal dependency relations a configuration should be consistent
and such that if an event appears in a configuration then so do all the events on
which it causally depends. Here we restrict attention to finite configurations.

The (finite) configurations, Co(E), of an event structure E consist of those
finite subsets x ⊆ E which are

Consistent: x ∈ Con and
Down-closed: ∀e, e′. e′ ≤ e ∈ x ⇒ e′ ∈ x.

The configurations of an event structure are ordered by inclusion, where x ⊆ x′,
i.e. x is a sub-configuration of x′, means that x is a sub-history of x′. Note that
an individual configuration inherits an order of causal dependency on its events
from the event structure so that the history of a process is captured through a
partial order of events. For an event e the set {e′ ∈ E | e′ ≤ e} is a configuration
describing the whole causal history of the event e.
2 The condition of consistent-countability replaces the stronger condition of countabil-

ity of event structures in [29]. Proofs there still go through with the weaker condition,
while the extra generality makes new results possible—see Sections 6.2, 6.4.

44 G. Winskel

When the consistency relation is determined by the pairwise consistency of
events we can replace it by a binary relation or, as is more usual, by a complemen-
tary binary conflict relation on events. It can be awkward to describe operations
such as certain parallel compositions directly on the simple event structures here,
because an event determines its whole causal history. One closely related and
more versatile model is that of stable families, described in Appendix B.

Let E and E′ be event structures. A partial map of event structures f : E ⇀ E′

is a partial function on events f : E ⇀ E′ such that for all configurations x of
E its direct image fx is a configuration of E′ for which

if e1, e2 ∈ x and f(e1) = f(e2) ∈ E′, then e1 = e2.

The map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E′ whenever it is defined. The partial function f
respects the instantaneous nature of events: two distinct event occurrences which
are consistent with each other cannot both coincide with the occurrence of a com-
mon event in the image. Maps of event structures compose as partial functions.

We will say the map is total iff the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration x of the domain the restriction of f to a function from
x is injective; the restriction of f to a function from x to fx is thus bijective.

We say the map f is rigid iff it is total and for all x ∈ Co(E) and y ∈ Co(E′)

y ⊆ f(x) ⇒ ∃z ∈ Co(E). z ⊆ x and fz = y .

(The configuration z is necessarily unique.)
A rigid map of event structures preserves the causal dependency relation

“rigidly,” so that the causal dependency relation on the image fx is a copy
of that on a configuration x of E; this is not so for general maps where x may
be augmented with extra causal dependency over that on fx. (Special forms of
rigid maps appeared as rigid embeddings in Kahn and Plotkin’s work on concrete
domains [12].)

Here we concentrate on the category of event structures with total maps.

Definition 1. Write E for the category of event structures with total maps. (In fu-
ture, unless further specified, by amap of event structureswewill mean a total map.)

.Proposition 1. The category E of event structures with total maps of event
structures has (binary) products and pullbacks (though no terminal object).

In defining symmetries on event structures we will make use of open maps
w.r.t. finite elementary event structures (i.e. finite event structures in which
all subsets of events are consistent) as the particular choice of paths [11].

Say a map h : A → B, between event structures A and B, is open iff for
all maps j : p → q between finite elementary event structures, any commuting
square

Symmetry and Concurrency 45

p x ��

j

��

A

h

��
q

y
�� B

can be split into two commuting triangles

p x ��

j

��

A

h

��
q

y
��

z

���������
B.

That the square commutes means that the path h ◦ x in B can be extended via
j to a path y in B. That the two triangles commute means that the path x can
be extended via j to a path z in A which matches y.

Open maps are a generalisation of functional bisimulations, known from tran-
sition systems.

Proposition 2. A map h : A → B of event structures is open iff h is rigid and
satisfies: ∀x ∈ Co(A), y′ ∈ Co(B). hx ⊆ y′ ⇒ ∃x′ ∈ Co(E). x ⊆ x′ & hx′ = y′ .

3 Event Structures with Symmetry

We shall present a general definition of symmetry, concentrating on the category
E of event structures with total maps. This category has (binary) products and
pullbacks (though no terminal object) and supports a notion of open map. For
the definition of symmetry we are about to give this is all we require.

A symmetry on an event structure should specify which events are similar in
such a way that similar events have similar pasts and futures. This is captured,
somewhat abstractly, by the following definition.

Definition 2. An event structure with symmetry (E, l, r) comprises an event
structure E together with open maps l : S → E and r : S → E from a common
event structure S such that the map 〈l, r〉 : S → E ×E is an equivalence relation
(i.e., the map 〈l, r〉 is monic—equivalently, l, r are jointly monic—and satisfies
the standard diagramatic properties of reflexivity, symmetry and transitivity [10].
See Appendix A).

A bisimulation is given by a span of open maps [11], in the case of the above
definition by the pair of open maps l and r. So the definition expresses a sym-
metry on an event structure as a bisimulation equivalence. The definition has
the advantage of being abstract in that it readily makes sense for any category
with binary products and pullbacks for which there is a sensible choice of paths
in order to define open maps. It is sensible for the categories of event struc-
tures with rigid and partial maps, for stable families, transition systems, trace

46 G. Winskel

languages and Petri nets [21], because these categories also have products, pull-
backs and open maps; both categories of event structures with rigid and partial
maps would have the same class of open maps and so lead to precisely the same
event structures with symmetry as objects. We shall mainly concentrate on the
category with total maps to connect directly with the particular examples we
shall treat here.3

For the specific model of event structures there is an alternative way to present
a symmetry. We can express a symmetry l, r : S → E on an event structure E
equivalently as a relation of similarity between its finite configurations. More
precisely, two finite configurations x, y of E are related by a bijection θz =def
{(l(s), r(s)) | s ∈ z} if they arise as images x = l z and y = r z of a common
finite configuration z of S; because l and r are locally injective θz is a bijection
between x and y. Because l and r are rigid the bijection is an order isomorphism
between x and y with the order of causal dependency inherited from E. In
this way a symmetry on E will determine an isomorphism family expressing
when and how two finite configurations are similar, or symmetric, in the sense
that one can replace the other. As expected, such similarity forms an equivalence
relation, and if two configurations are similar then so are their pasts (restrictions
to subconfigurations) and futures (extensions to larger configurations).

Definition 3. An isomorphism family of an event structure E consists of a
family S of bijections

θ : x ∼= y

between pairs of finite configurations of E such that:
(i) the identities idx : x ∼= x are in S for all x ∈ Co(E); if θ : x ∼= y is in S, then
so is the inverse θ−1 : y ∼= x; and if θ : x ∼= y and ϕ : y ∼= z are in S, then so is
their composition ϕ ◦ θ : x ∼= z.
(ii) for θ : x ∼= y in S whenever x′ ⊆ x with x′ ∈ Co(E), then there is a
(necessarily unique) y′ ∈ Co(E) with y′ ⊆ y such that the restriction of θ to
θ′ : x′ ∼= y′ is in S.
(iii) for θ : x ∼= y in S whenever x ⊆ x′ for x′ ∈ Co(E), then there is an extension
of θ to θ′ : x′ ∼= y′ in S for some (not necessarily unique) y′ ∈ Co(E) with y ⊆ y′.
[Note that (i) implies that the converse forms of (ii) and (iii) also hold. Note
too that (ii) implies that the bijections in the family S respect the partial or-
der of causal dependency on configurations inherited from E; the bijections in
an isomorphism family are isomorphisms between the configurations regarded as
elementary event structures.]

Theorem 1. Let E be an event structure.
(i) A symmetry l, r : S → E determines an isomorphism family S: defining
θz = {(l(s), r(s)) | s ∈ z} for z a finite configuration of S, yields a bijection
θz : l z ∼= r z; the family S consisting of all bijections θz : l z ∼= r z, for z a finite
configuration of S.
3 There is a strong case for regarding rigid maps as the fundamental maps of event

structures, in that other maps on event structures can then ultimately be obtained
as Kleisli maps w.r.t. suitable pseudo monads once we have introduced symmetry.

Symmetry and Concurrency 47

(ii) An isomorphism family S of E determines a symmetry l, r : S → E: the
family S forms a stable family; the event structure S is obtained as Pr(S) for
which the events are primes [(e1, e2)]θ for θ in S and (e1, e2) ∈ θ; the maps l and
r send a prime [(e1, e2)]θ to e1 and e2 respectively.

The operations of (i) and (ii) are mutually inverse (regarding relations as
subobjects).

Through the addition of symmetry event structures can represent a much richer
class of ‘path categories’ [4] than mere partial orders. The finite configurations
of an event structure with symmetry can be extended by inclusion or rearranged
bijectively under an isomorphism allowed by the symmetry. In this way an event
structure with symmetry determines, in general, a category of finite configura-
tions with maps obtained by repeatedly composing the inclusions and allowed
isomorphisms. By property (ii) in Definition 3 any such map factors uniquely
as an isomorphism of the symmetry followed by an inclusion. While by prop-
erty (iii) any such map factors (not necessarily uniquely) as an inclusion followed
by an isomorphism of the symmetry.

Example 1. Any event structure E can be identified with the event structure
with the identity symmetry (E, idE , idE). Its isomorphism family consists of all
identities idx : x ∼= x on finite configurations x ∈ Co(E).

Example 2. Identify the natural numbers ω with the event structure with events
ω, trivial causal dependency given by the identity relation and in which all finite
subsets of events are in the consistency relation. Define S to be the product of
event structures ω ×ω in E ; the product comprises events all pairs (i, j) ∈ ω ×ω
with trivlal causal dependency, and consistency relation consisting of all finite
subsets of ω × ω which are bijective (so we take two distinct pairs (i, j) and
(i′, j′) to be in conflict iff i = i′ or j = j′.) Define l and r to be the projections
l : S → E and r : S → E. Then � =def (ω, l, r) forms an event structure with
symmetry. The corresponding isomorphism family in this case coincides with
all finite bijections between finite subsets of ω. Any finite subset of events of
� is similar to any other. Of course, an analogous construction works for any
countable, possibly finite, set.

Example 3. Let E = (E, l : S → E, r : S → E) be an event structure with
symmetry. Define an event structure with symmetry !E = (E!, l! : S! → E!, r! :
S! → E!) comprising ω similar copies of E as follows. The event structure E! has
the set of events ω × E with causal dependency

(i, e) ≤! (i′, e′) iff i = i′ & e ≤E e′

and consistency relation

C ∈ Con! iff C is finite & ∀i ∈ ω. {e | (i, e) ∈ C} ∈ ConE .

The symmetry S! has events ω × ω × S with causal dependency

(i, j, s) ≤S! (i′, j′, s′) iff i = i′ & j = j′ & s ≤S s′ .

48 G. Winskel

A finite subset C ⊆ S! is in the consistency relation ConS! iff

{(i, j) | ∃s. (i, j, s) ∈ C} is bijective & ∀i, j ∈ ω. {s | (i, j, s) ∈ C} ∈ ConS .

Define l!(i, j, s) = (i, l(s)) and r!(i, j, s) = (j, r(s)) for i, j ∈ ω, s ∈ S.
The finite configurations of E! correspond to tuples (or indexed families)

〈xi〉i∈I of configurations xi ∈ Co(E) indexed by i ∈ I, where I is a finite sub-
set of ω. With this view of the configurations of E!, the isomorphism family
corresponding to S! specifies isomorphisms between tuples

(σ, 〈θi〉i∈I) : 〈xi〉i∈I
∼= 〈yj〉j∈J

consisting of a bijection between indices σ : I ∼= J together with θi : xi
∼=

yσ(i) from the isomorphism family of S, for all i ∈ I.
The event structure with symmetry � reappears as the special case !1, where

1 is the event structure with a single event.

We conclude this section with a general method for constructing symmetries.
Just as there is a least symmetry on an event structure, viz. the identity sym-
metry, so is there a greatest. Moreover any bisimulation on an event structure
generates a symmetry on it. We take a bisimulation on an event structure A to
be a pair of open maps l, r : R → A from an event structure R for which 〈l, r〉 is
monic. (In general we might specify a bisimulation on an event structure just by
a pair of open maps from a common event structure, and not insist that the pair
is monic. But here, no real generality is lost as such a pair of open maps on event
structures will always factor through its image, a bisimulation with monicity.) In
fact, the proof proceeds most easily by first establishing an analogous property
for isomorphism families, a property which depends on the notion of a bisimu-
lation family, defined to be a family of bijections between finite configurations
of A which satisfy (ii) and (iii) in Definition 3.

Proposition 3. Let A be an event structure.
(i) For any bisimulation family R on A there is a least isomorphism family S

for which R ⊆ S.
(ii) For any bisimulation 〈l0, r0〉 : R → A there is a least symmetry 〈l, r〉 : S → A
(understood as a subobject) for which R is a subobject of S. There is a greatest
symmetry on A (which coincides with the greatest bisimulation on A).

4 Maps Preserving Symmetry

Maps between event structures with symmetry are defined as maps between
event structures which preserve symmetry. Let (A, lA, rA) and (B, lB, rB) be
event structures with symmetry. A map f : (A, lA, rA) → (B, lB, rB) is a map
of event structures f : A → B such that there is a (necessarily unique) map of
event structures h : SA → SB ensuring

〈lB, rB〉 ◦ h = (f × f) ◦ 〈lA, rA〉 .

Symmetry and Concurrency 49

Maps between event structures with symmetry compose as maps of event
structures and share the same identity maps.

Definition 4. We define SE to be category of event structures with symmetry.

We can characterize when maps of event structures preserve symmetry in terms
of isomorphism families. A map preserving symmetry should behave as a functor
both w.r.t. the inclusion between finite configurations and the isomorphisms of
the symmetry.

Proposition 4. A map of event structures f : A → B is a map f : (A, lA, rA) →
(B, lB, rB) of event structures with symmetry iff whenever θ : x ∼= y is in the
isomorphism family of A then fθ : f x ∼= f y is in the isomorphism family of B,
where fθ =def {(f(e1), f(e2)) | (e1, e2) ∈ θ}.

We explore properties of the category SE . It is more fully described as a category
enriched in the category of equivalence relations and so, because equivalence re-
lations are a degenerate form of category, as a 2-category in which the 2-cells are
instances of the equivalence ∼. This view informs the constructions in SE which are
often very simple examples of the (pseudo- and bi-) constructions of 2-categories.

Definition 5. Let f, g : (A, lA, rA) → (B, lB, rB) be maps of event structures
with symmetry between (A, lA, rA) and (B, lB , rB). Define f ∼ g iff there is a
(necessarily unique) map of event structures h : A → SB such that

〈f, g〉 = 〈lB, rB〉 ◦ h .

Straightforward diagrammatic proofs show:

Proposition 5. The relation ∼ is an equivalence relation on maps SE(A, B)
between event structures with symmetry A and B. The relation ∼ respects com-
position in the sense that if f ∼ g then h ◦ f ◦ k ∼ h ◦ g ◦ k, for composable maps
h and k.

The category SE is enriched in the category of equivalence relations (compris-
ing equivalence relations with functions which preserve the equivalence).

We can characterize the equivalence of maps between event structures with sym-
metry in terms of isomorphism families which makes apparent how ∼ is an in-
stance of natural isomorphism between functors.

Proposition 6. Let f, g : (A, lA, rA) → (B, lB, rB) be maps of event structures
with symmetry. Then, f ∼ g iff θx : f x ∼= g x is in the isomorphism family of
(B, lB, rB) for all x ∈ Co(A), where θx =def {(f(a), g(a)) | a ∈ x}.

Equivalence on maps yields an equivalence on objects:

Definition 6. Let A and B be event structures with symmetry. An equivalence
from A to B is a pair of maps f : A → B and g : B → A such that f ◦ g ∼ idB

and g ◦ f ∼ idA; then we say A and B are equivalent and write A � B.

The category SE has products.

50 G. Winskel

Theorem 2. Let (A, lA, rA) and (B, lB, rB) be event structures with symmetry.
Their product in SE is given by (A × B, lA × lB, rA × rB), based on the product
A×B of their underlying event structures in E, and sharing the same projections,
π1 : A × B → A and π2 : A × B → B.

The isomorphism family of the product consists of all order isomorphisms
θ : x ∼= x′ between finite configurations x, x′ of A × B, with order inherited from
the product, for which θA = {(π1(p), π1(p′)) | (p, p′) ∈ θ} is in the isomorphism
family of A and θB = {(π2(p), π2(p′)) | (p, p′) ∈ θ} is in the isomorphism family
of B.

Let f, f ′ : C → A and g, g′ : C → B in SE . If f ∼ f ′ and g ∼ g′, then
〈f, g〉 ∼ 〈f ′, g′〉.

The category SE does not have a terminal object. However, the event structure
with symmetry � defined in Example 2 satisfies an appropriately weakened
property (it is a simple instance of a biterminal object):

Proposition 7. For any event structure with symmetry A there is a map f :
A → � in SE and moreover for any two maps f, g : A → � we have f ∼ g.

The category SE does not have pullbacks and equalizers in general. However:

Theorem 3.
(i) Let f, g : A → B be two maps between event structures with symmetry.
They have a pseudo equalizer, i.e. an event structure with symmetry E and map
e : E → A such that f ◦ e ∼ g ◦ e which satisfies the further property that for any
event structure with symmetry E′ and map e′ : E′ → A such that f ◦ e′ ∼ g ◦ e′,
there is a unique map h : E′ → E such that e′ = e ◦ h.
(ii) Let f : A → C and g : B → C be two maps between event structures with
symmetry. They have a pseudo pullback, i.e. an event structure with symmetry
D and maps p : D → A and q : D → B such that f ◦ p ∼ g ◦ q which satisfies
the further property that for any event structure with symmetry D′ and maps
p′ : D′ → A and q′ : D′ → B such that f ◦ p′ ∼ g ◦ q′, there is a unique map
h : D′ → D such that p′ = p ◦ h and q′ = q ◦ h.

There are obvious weakenings of the conditions of (i) and (ii) in which the unique-
ness is replaced by uniqueness up to ∼ and equality by ∼—these are simple spe-
cial cases of bilimits called biequalizers and bipullbacks when we regard SE as a
2-category. As in Theorem 3, we follow tradition and call the stricter construction
described in (ii) a pseudo pullback. In Theorem 2, that pairing of maps preserves ∼
means that the products described are 2-products in SE regarded as a 2-category.
For an accessible introduction to limits in 2-categories see [18].

5 Functors and Pseudo Monads

Certain functors on E , the category of event structures, straightforwardly induce
functors on SE , the enriched category of event structures with symmetry. Say
a functor F : A → B has monic mediators for products when for all products

Symmetry and Concurrency 51

A × A, π1, π2 in A and F (A) × F (A), p1, p2 in B the unique mediating map h in
the commuting diagram

F (A × A)
F (π2)

		����������
F (π1)

����������
h

��
	
	
	

F (A) F (A) × F (A)p1
��

p2
�� F (A)

is monic. A functor on several, even infinitely many, arguments F : E × · · · ×
E × · · · → E which preserves pullbacks, open maps and has monic mediatiors for
products will induce a functor on event structures with symmetry respecting ∼
on homsets. (A map in a product of categories, such as E × · · ·×E × · · ·, is taken
to be open iff it is open in each component.) We consider some examples.

5.1 Operations

Simple Parallel Composition. For example, consider the functor ‖: E×E → E
which given two event structures puts them in parallel. Let (A, ConA, ≤A) and
(B, ConB, ≤B) be event structures. The events of A ‖ B are ({0}×A)∪({1}×B);
with (0, a) ≤ (0, a′) iff a ≤A a′ and (1, b) ≤ (1, b′) iff b ≤B b′; and with a subset of
events C consistent in A ‖ B iff {a | (0, a) ∈ C} ∈ ConA and {b | (1, b) ∈ C} ∈
ConB . The operation extends to a functor—put the two maps in parallel. It
is not hard to check that the functor ‖ preserves pullbacks and open maps,
and that the mediating maps (A × A) ‖ (B × B) → (A ‖ B) × (A ‖ B) are
monic. Consequently it induces a functor ‖: SE ×SE → SE which preserves ∼ on
homsets. On the same lines the functor giving the parallel composition ‖i∈I Ai

of countably-indexed event structures Ai, i ∈ I, extends to a functor on event
structures with symmetry.

Sum. Similarly, the coproduct or sum of two event structures extends to the
sum of event structures with symmetry. Let (A, ConA, ≤A) and (B, ConB, ≤B)
be event structures. The events of the sum A + B are ({0} × A) ∪ ({1} × B);
with (0, a) ≤ (0, a′) iff a ≤A a′ and (1, b) ≤ (1, b′) iff b ≤B b′; but now a
subset of events C is consistent in A + B iff there is C0 ∈ ConA such that
C = {(0, a) | a ∈ C0} or there is C1 ∈ ConB such that C = {(1, a) | a ∈ C1}.
We can also form a sum Σi∈IAi of event structures Ai indexed by a set I. Again
this extends to a functor on event structures with symmetry.

5.2 Pseudo Monads

That SE is enriched over equivalence relations ensures that it supports the de-
finitions pseudo functors and pseudo natural transformations, which here par-
allel those of functor and natural transformation, but with equality replaced
by ∼. In the same spirit a pseudo monad on SE satisfies variants of the usual
monad laws but expressed in terms of ∼ rather than equality (we can ignore
the extra coherence conditions [5] as they trivialize in the simple situation here).

52 G. Winskel

As examples we consider two particular pseudo monads which we can apply to
the semantics of higher-order nondeterministic processes.

The Copying Pseudo Monad. The copying operation ! of Example 3 extends
to a functor on SE . Let f : A → B be a map of event structures with symmetry.
Define !f :!A →!B by taking !f(i, a) = (i, f(a)) for all events a of A. The functor
! preserves ∼ on homsets. (It is not induced by a functor on E .)

The component of the unit η!
E : E →!E acts so η!

E(e) = (0, e) for all events
e ∈ E—it takes an event structure with symmetry E into its zeroth copy in !E.

The multiplication map relies on a subsidiary pairing function on natural
numbers [,] : ω × ω → ω which we assume is injective. The component of the
multiplication μ!

E :!!E →!E acts so μ!
E(i, j, e) = ([i, j], e).

It can be checked that the unit and the multiplication are natural transfor-
mations and that the usual monad laws, while they do not hold up to equality,
do hold up to ∼. The somewhat arbitrary choice of the zeroth copy in the def-
inition of the unit and pairing function on natural numbers in the definition of
the multiplication don’t really matter in the sense that other choices would lead
to components ∼-equivalent to those chosen. (Different choices lead to natural
transformations related by modifications with ∼ at all components.)

The Partiality Pseudo Monad. Let E be an event structure with symmetry.
Define E∗ =def E ‖ �, i.e. it consists of E and � put in parallel.

The component of the unit η∗
E : E → E∗ acts so η∗

E(e) = (0, e) for all events
e ∈ E—so taking E to its copy in E ‖ �.

The component of the multiplication μ∗
E : (E∗)∗ → E∗ acts so μ∗

E(0, (0, e)) =
(0, e) and μ∗

E(0, (1, j)) = [0, j] and μ∗
E(1, k) = [1, k], where we use the pairing

function on natural numbers above to map the two disjoint copies of ω injectively
into ω.

Both η∗ and μ∗ are natural transformations and the usual monad laws hold up
to ∼ making a pseudo monad. Again, the definition of multiplication is robust; if
we used some alternative way to inject ω + ω into ω the resulting multiplication
would be ∼-related at each component to the one we have defined.

The category of event structures with partial maps has played a central role in
the event structure semantics of synchronizing processes [23]. It readily generalizes
to accommodate symmetry and reappears as the Kleisli bicategory of ()∗.

Definition 7. Let (A, lA, rA) and (B, lB, rB) be event structure with symmetry.
A partial map of event structures with symmetry f : (A, lA, rA) ⇀ (B, lB, rB)
consists of a partial map of event structures f : A ⇀ B for which there is a
(necessarily unique) partial map of event structures h : SA ⇀ SB ensuring

〈lB, rB〉 ◦ h = (f × f) ◦ 〈lA, rA〉 .

Partial maps of event structures with symmetry form a category; they compose as
partial maps of event structures and share the same identity maps. We can define
an equivalence relation ∼ on partial maps of event structures with symmetry by
the obvious analogue of Definition 5. The category is enriched over equivalence

Symmetry and Concurrency 53

relations. (The full subcategory of event structures with identity symmetry is
isomorphic to the category of event structures with partial maps.)

Proposition 8. The Kleisli bicategory of the pseudo monad (−)∗ and the cat-
egory of event structures with symmetry and partial maps (regarded as a 2 cat-
egory) are biequivalent; the biequivalence is the identity on objects and takes
maps f : A → B∗ in the Kleisli bicategory to partial maps f̄ : A ⇀ B, undefined
precisely when the image is in �.

Equivalences. We have enough operations to derive some useful equivalences.
Below we use 1 to denote the single-event event structure with symmetry and ⊗
for the product of event structures with symmetry with partial maps.

Proposition 9. For event structures with symmetry:

(i) !A ‖!B �!(A + B) and ‖k∈K !Ak �!Σk∈KAk where K is a countable set.
(ii) � �!1 and A × � � A.
(iii) A∗ � A ‖ �, (!A)∗ �!(A + 1) and (A ⊗ B)∗ � A∗ × B∗.

The equivalence !A ‖!B �!(A + B), and its infinite version in (i), express the
sense in which copying obviates choice. More importantly, they and the other the
equivalences enable definitions by case analysis on events, also in the presence
of asynchrony.

6 Applications

Here we present some unfinished applications, the subject of current work.

6.1 Spans

Because SE has pseudo pullbacks—Theorem 3, we can imitate the standard
construction of the bicategory of spans (see [14]) to produce a bicategory SpanSE .
Its objects are event structures with symmetry. Its maps SpanSE(A, B), from A
to B, are spans

E

����
��

��
�

��
��

��
��

�

A B

composed using the pseudo pullbacks of of Theorem 3 (ii). SpanSE has a tensor
and function space given by the product of SE .

An individual span can be thought of as a process computing from input
of type A to output of type B. But given the nature of maps in SE such a
process is rather restricted; from a computational view the process is unnaturally
symmetric and ‘ultra-linear’ because any output event is synchronized with an
event of input.

54 G. Winskel

We wish to modify the maps of a span to allow for different regimes of input
and output. A systematic way to do this is through the use of pseudo monads
on SE and build more general spans

E

����
��

��
��

��

S(A) T (B)

for pseudo monads S and T . For example a span in which S = ()∗ and T =!()
would permit output while ignoring input and allow the output of arbitrarily
many similar events of type B. But for such general spans to compose, we require
that S and T satisfy several conditions, which we can only indicate here:

– in order to lift to pseudo comonads and monads on spans, S and T should
be ‘cartesian’ pseudo monads, now w.r.t. pseudo/bipullbacks (adapting [3]);

– in order to obtain a comonad-monad distributive law for the liftings of S
and T to spans it suffices to have a ‘cartesian’ distributive law for S and
T , with commutativity up to ∼, with extra pseudo/bipullback conditions on
two of the four diagrams (adapting [13]).

The two pseudo monads S = ()∗ and T =!() do satisfy these requirements with
a distributive law with components λE : (!E)∗ →!(E∗) such that λE(0, (j, e)) =
(j, (0, e)) and λE(1, k) = (0, (1, k)).

The paper has concentrated on the categories of event structures E and SE
with total maps. In particular, general spans have been described for maps in
SE . Analogous definitions and results hold for rigid maps, and for spans in SEr—
event structures with symmetry and rigid maps. Total maps on event structures
with symmetry can be obtained as Kleisli maps w.r.t. a monad Saug on SEr—
see [29]. It appears that we can ground all the maps and spans of event structures
of interest in SEr. The category SEr is emerging as the fundamental category of
event structures.

6.2 Event Types

The particular bicategory of spans

E

����
��

��
��

��
��

��
��

��

A∗ !B

is already quite an interesting framework for the semantics of higher-order
processes. It supports types including:

- Prefix types •!T : in which a single event • prefixes !T for an event structure
with symmetry T .

Symmetry and Concurrency 55

- Sum types Σα∈ATα: the sum of a collection Tα, for α ∈ A, of event structures
with symmetry—the sum functor is described in Section 5.1. Sum types may
also be written a1T1 + · · ·+ anTn when the indexing set is finite. The empty
sum type is the empty event structure ∅.

- Tensor types T1 ⊗ T2: the product in SEp.
- Function types T1 � T2: a form of function space, defined as the product

(T1)∗×!T2 in SE .4

- Recursively defined types: treated for example as in [23,25].

The types describe the events and basic causalities of a process, and in this
sense are examples of event types, or causal types, of a process. (One can imagine
other kinds of spans and variations in the nature of event types.)

As an example, the type of a process only able to do actions within a1, · · · , ak

could be written
a1 • !∅ + · · · + ak • !∅ ,

which we condense to a1+· · ·+ak, as it comprises the event structure with events
a1, · · · , ak made in pairwise-conflict, with the identity relation of causal depen-
dency. The judgement that a closed process, represented by an event structure
with symmetry E, has this type would be associated with a degenerate span
from the biterminal ∅∗ to !(a1 + · · · + ak), so essentially with a map

l : E →!(a1 + · · · + ak)

inSE , ‘labelling’ events by their actions.ByProposition9(i), there is an equivalence

!a1 ‖ · · · ‖!ak � !(a1 + · · · + ak) ,

and a process of this type can only do actions a1, · · · , ak, though with no bound
on how many times any action can be done.

The type of CCS, with channels A, can be written as

Act = τ • !∅ + Σā∈Ā • !∅ + Σa∈A • !∅ .

We can describe the parallel composition of CCS by a partial function from
the events Act ⊗ Act to the events !Act , expressing how events combine to form
synchronization events (the second line), or can occur asynchronously (the first):

(α, ∗) �→ μ!
Act(0, η!

Act(α)) , (∗, α) �→ μ!
Act(1, η!

Act(α)) ,

(a, ā), (ā, a) �→ η!
Act (τ), and undefined otherwise.

This partial function is also a partial map of event structures from Act ⊗ Act
to !Act—it would have violated local injectivity and not been a map of event
structures, had we chosen simply η!

Act (α) as the resulting events in the first two
clauses. The partial function is readily interpreted as a span from Act ⊗ Act to
4 Although this function space seems hard to avoid for this choice of span and tensor,

we don’t quite have ⊗ B a left biadjoint to B � .

56 G. Winskel

!Act—its vertex is essentially the domain of definition of the partial function.
Post-composing its left ‘leg’ with η∗

Act⊗Act we obtain a span from (Act ⊗Act)∗ to
!Act which denotes the parallel composition of CCS. Given two CCS processes
represented by degenerate spans, we can combine them to a process with event
type Act⊗Act , denoting a degenerate span ending in !(Act⊗Act). Its composition
with the span for parallel composition can be shown to give the traditional event-
structure semantics of parallel composition in CCS [23,25,26,21].

In fact there is a general way to define spans from partial functions on events
which respect symmetry. There is a functor from event structures with symme-
try SE to equivalence relations; it takes an event structure with symmetry A to
the equivalence relation |A| induced by the symmetry on the set of events. The
functor is enriched in equivalence relations and has a right biadjoint $ which
takes an equivalence relation (L, R ⊆ L × L) to the event structure with sym-
metry !(L, l, r : R → L), where we understand L as an event structure with
events in pairwise conflict with trivial causal dependency, R similarly, and with
symmetry maps given as the obvious projections from R to L. (The biadjunction
between event structures with symmetry and equivalence relations relies on the
event structures being consistent-countable.) For event structures with symme-
try A and B, a partial function respecting equivalence relations from |A| to |B|
can be regarded as a span

D� �

����
��

��
�

��
��

��
��

��

|A| |B|

in the category of equivalence relations—the equivalence relation D being where
the partial function is defined. The unit of the biadjunction with equivalence
relations has components A → $|A| and B → $|B|, so by applying $ to the span
above and taking successive pseudo pullbacks we obtain a span from A to B:

.

�����
���

���
�

.

����
��

��
��

�

����
��

��
��

� .

����
��

��
��

�

����
��

��
��

�

A

���
��

��
��

� $D

����
��

��
��

��

 B

����
��

��
��

$|A| $|B|

A partial function between on events may not be so simple to define directly
by case analysis on events. This is because the events that arise in products
of event structures can be quite complicated; the events of a product A ⊗ B
of event structures A and B are perhaps best seen as prime configurations of
a product of stable families—see Appendix B. Their complexity contrasts with

Symmetry and Concurrency 57

the simplicity of the events arising in constructions on stable families; the events
of the corresponding product of stable families are simple pairs (a, ∗), (∗, b) and
(a, b), where a and b are events of the components. For this reason it can be
easiest to define a partial map on event structures (so a partial function on their
events) via a partial map between their representations as stable families. This is
so below, in a putative ‘true concurrency’ definition of a version of higher-order
CCS and its parallel composition.

A form of higher-order CCS could reasonably be associated with the recursive
type

T = τ • !T + Σā∈Ā • !(T ⊗ T) + Σa∈A • !(T � T) ,

specifying that an event of a higher-order CCS process is either a ‘process’ event
following a τ -event, a ‘concretion’ event following an output synchronization
ā ∈ Ā, or an ‘abstraction’ event following an input synchronization a ∈ A. Why
is the first component in the type T of the form τ • !T and not just τ • !∅ ? With-
out the present choice I cannot see how to ensure that in the parallel composition
an interaction between a concretion and abstraction event always follows a cor-
responding synchronization at their channels.

Parallel composition in higher-order CCS would be associated with a typing
judgment x : T, y : T � (x | y) : T . The typing judgment should denote a span
from (T ⊗ T)∗ to !T . As above, we can define a tentative parallel composition
via a partial function from |T ⊗ T | to |!T |. The partial function should describe
when and how events of T combine. Because events of the product T ⊗ T are
quite complicated we must face the difficulties outlined above. However, first we
need a makeshift syntax for events in T . Events of higher-order CCS are either
internal events τ , subsequent process events τ.(i, t), output synchronizations ā,
subsequent concretion events ā.(i, c), input synchronizations a, or subsequent
abstraction events a.(j, f)—the natural numbers i, j index the copies in !-types.
In the notation for events of the product T ⊗ T we exploit the way it is built
from a product of stable families; in the product of stable families out of which
T ⊗ T is constructed events have the simple form of pairs (t, ∗), (∗, t) or (t, t′),
where t and t′ are events of T . We can define a partial map from this stable
family to the stable family of !T by case analysis on events:

t | ∗ = μ!
T (0, η!

T (t)) , ∗ | t = μ!
T (1, η!

T (t)) ,

a | ā = ā | a = η!
T (τ) ,

a.(i, f) | ā.(j, c) = ā.(i, c) | a.(j, f) = η!
T (τ.μ!

T ([i, j], (f | c)))
provided (f | c) is defined,

τ.(i, t) | τ.(j, t′) = μ!
T ([i, j], (t | t′)) provided (t | t′) is defined,

τ.(i, t) | α = μ!
T (i, (t | α)) , α | τ.(j, t) = μ!

T (j, (α | t))
provided α is not of the form τ.(k, t′′), and undefined otherwise.

We have combined indices i, j using an injective pairing [i, j] of natural numbers.
The definition above relies on our simultaneously defining not just how process

58 G. Winskel

events combine, but also how ‘abstraction’ events f in type T � T and ‘con-
cretion’ events c in type T ⊗ T combine to form a process event (f | c) in type
!T . We postpone the full definition. Although provisional, I hope the example
helps illustrate the aims and present difficulties—there may be difficulties that
I’m not aware of.

Clearly the syntax of operations to accompany the types is unfinished and
really needed. But I believe the examples indicate the potential of a more thor-
ough study of event types and give a flavour of the style of definition they might
support, a method of definition which breaks away from traditional ‘interleaving’
approaches to concurrency.

6.3 Nondeterministic Dataflow and Affine-HOPLA

‘Stable’ spans of event structures have been used to give semantics to nondeter-
ministic dataflow [19] and the higher-order process language affine-HOPLA [16].
They are generalisations of Berry’s stable functions [2]: deterministic stable spans
correspond to stable functions—see [19]. A stable span

E
dem

����
��

��
�

out

��
��

��
��

�

A B

consists of a ‘demand’ map dem : E → A and a rigid map out : E → B. That
dem is a demand map means that it is a function from Co(A) to Co(B) which
preserves unions of configurations when they exist. An equivalent way to view the
demand map dem is as a function from the events of E to finite configurations
of A such that if e ≤ e′ then dem(e) ⊆ dem(e′), and if X ∈ Con then demX ↑,
i.e., the demands are compatible. The intuition is that dem(e) is the minimum
input required for the event e to occur; when it does out(e) is observed in the
output. (The stable span is deterministic when demX ↑ implies X ∈ Con, for X
a finite subset of events in E.)

On the face of it demand maps are radically different from rigid maps of
event structures. They can however be recovered as Kleisli maps associated with
a pseudo monad H on event structures with symmetry and rigid maps.

Roughly the pseudo monad H adjusts the nature of events so that they record
the demand history on the input. This enables stable spans to be realized as spans

E

in

����
��

��
�� out

��
��

��
��

��

H(A) B

of rigid maps in SEr. Such spans are a special case of the general spans of
Section 6.1, with the identity monad on the right-hand-side. Because of ‘Seely
conditions’ H(E ‖ F) � H(E) × H(F) and H(∅) � � relating parallel composi-
tion ‖ and its unit, the empty event structure ∅, to product × and the biterminal

Symmetry and Concurrency 59

object � in SEr, we obtain a description of the function space, w.r.t. parallel
composition A ‖ B, as A � B = H(A) × B. A very different route to the defin-
ition of function space using stable families is described in the PhD thesis [16].
The pseudo monad H and the biadjunction which induces it are described in [29].

6.4 Unfoldings

Another application of symmetry is to the unfolding of Petri nets with multiple
tokens, and the unfolding of higher-dimensional automata (hda’s) [7]. Unfoldings
of 1-safe Petri nets to occurrence nets and event structures were introduced
in [15], and have since been applied in a variety of areas from model checking
to self-timed circuits and the fault diagnosis of communication networks. The
unfoldings were given a universal characterisation a little later in [24] (or see [21])
and this had the useful consequence of providing a direct proof that unfolding
preserved products and so many parallel compositions. There is an obstacle
to an analogous universal characterisation of the unfolding of nets in which
places/conditions hold with multiplicities: the symmetry between the multiple
occurrences in the original net is lost in unfoldings to standard occurrence nets or
event structures, and this spoils universality through non-uniqueness. However
through the introduction of symmetry uniqueness up to symmetry obtains, and
a universal characterisation can be regained [9].

We can illustrate the role symmetry plays in the unfolding of nets and hda’s
through a recent result relating event structures with symmetry to certain
presheaves.5 Let P be the category of finite elementary event structures (so
essentially finite partial orders) with rigid maps. Form the presheaf category P̂

which by definition is the functor category [Pop,Set]. From [27] we obtain that
event structures with rigid maps (called ’strong’ in [27]) embed fully and faith-
fully in P̂ and are equivalent to those presheaves which are separated w.r.t. the
Grothendieck topology with basis collections of jointly surjective maps in P, and
satisfy a further mono condition. Presheaves over P̂ are thus a kind of generalised
event structure.

There is clearly an inclusion functor I : P ↪→ SEr of finite elementary event
structures into event structures with symmetry and rigid maps. Thus there is
a functor F : SEr → P̂ taking an event structure with symmetry E to the
presheaf SEr(I(), E)/∼. Event structures with symmetry yield more than just
separated presheaves, and quite which presheaves they give rise to is not yet un-
derstood. But by restricting to event structures with symmetry (E, l, r : S → E)
for which the symmetry is strong, in the sense that the mono 〈l, r〉 : S →
E×E reflects consistency, we will always obtain nonempty separated presheaves.
Let SSEr be the category of event structures with strong symmetry and rigid
maps. Let Sep(P) be the full subcategory of non-empty separated presheaves.
So restricted, we obtain a functor F : SSEr → P̂ taking an event structure
with strong symmetry E to the nonempty separated presheaf SSEr(J(), E)/∼.

5 The result is inspired by joint work with the Sydney Concurrency Group: Richard
Buckland, Jon Cohen, Rob van Glabbeek and Mike Johnstone.

60 G. Winskel

The functor F can be shown to have a right biadjoint, a functor G, producing an
event structure with strong symmetry from a nonempty separated presheaf. The
right biadjoint G is full and faithful (once account is taken of the the equivalence
∼ on maps). (The existence of G relies on the event structures being consistent-
countable.) It shows how separated presheaves embed via a reflection fully and
faithfully in event structures with symmetry:

SSEr

F

⊥
��
Sep(P) .

G

�� (1)

The proof of the biadjunction has only been carried out for rigid maps, the
reason why we have insisted that the maps of event structures in this section be
rigid. (One could hope for a similar biadjunction without restricting F to strong
symmetries.)

Higher-dimensional automata [7] are most concisely described as cubical sets,
i.e. as presheaves over C, a category of cube shapes of all dimensions with maps
including e.g. ‘face’ maps, specifying how one cube may be viewed as a (higher-
dimensional) face of another. We can identify the category of hda’s with the
presheaf category Ĉ. There are some variations in the choice of maps in C,
according to whether the cubes are oriented and whether degeneracy maps are
allowed. For simplicity we assume here that the cubes are not oriented and have
no degeneracy maps, so the maps are purely face maps. Roughly, then the maps
of P and C only differ in that maps in P fix the initial empty configuration
whereas face maps in C are not so constrained. By modifying the maps of P to
allow the initial configuration to shift under maps, we obtain a category A into
which both P and C include:

P
� � J �� A C� �K��

Now we can construct a functor from H : P → Ĉ; it takes p in P to the presheaf
A(K(), J(p)). Taking its left Kan extension over the Yoneda embedding of P in
P̂ we obtain a functor

H! : P̂ → Ĉ .

For general reasons [4], the functor H! has a right adjoint H∗ taking an hda Y

in Ĉ to the presheaf Ĉ(H(), Y) in P̂:

P̂

H!

⊥ ��
Ĉ .

H∗

�� (2)

We cannot quite compose the biadjunctions (1) and the adjunction (2) because
(1) is only for separated presheaves. However restricting to hda’s which are
separated, now w.r.t. a basis of jointly surjective maps in C,6 will ensure that
6 For a separated hda, cubes which share the same 1-dimensional edges must be equal

(so ‘no ravioli’).

Symmetry and Concurrency 61

they are sent to separated presheaves over P and so to event structures with
symmetry. General Petri nets give rise to separated hda’s (for example, with the
‘self-concurrent individual token interpretation’ of [7]). So we obtain a rather
abstract construction of an unfolding of general nets to event structures with
symmetry. Again, much more needs to be done, both mathematically in seeking
a generalisation of the biadjunction (1) to all event structures with symmetry,
and in understanding unfoldings concretely so that they can be made amenable
algorithmically.

Acknowledgments. I’m grateful to Marcelo Fiore, Martin Hyland, Gordon
Plotkin, Lucy Saunders-Evans, Pawel Sobocinski, Sam Staton, Dominic Verity
and the Sydney Concurrency Group for discussions and encouragement. I ac-
knowledge the partial support of EPSRC grant GR/T22049/01.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full Abstraction for PCF. Informa-
tion and Computation 163, 409–470 (2000)

2. Berry, G.: Modèles completement adéquats et stables des λ-calculs typés. Thèse de
Doctorat d’Etat, Université de Paris VII (1979)

3. Burroni, A.: T-catégories. Cahiers de topologie et géométrie différentielle, XII(3)
(1971)

4. Cattani, G.L., Winskel, G.: Profunctors, open maps and bisimulation. In: MSCS
(2005)

5. Cheng, E., Hyland, J.M.E., Power, A.J.: Pseudo-distributive laws. ENTCS 83
(2004)

6. Crazzolara, F., Winskel, G.: Composing Strand Spaces. In: Agrawal, M., Seth,
A.K. (eds.) FST TCS 2002: Foundations of Software Technology and Theoretical
Computer Science. LNCS, vol. 2556, Springer, Heidelberg (2002)

7. van Glabbeek, R.J.: On the expressiveness of higher dimensional automata. EX-
PRESS 2004. ENTCS 128(2) (2005)

8. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: TACAS’07 (2007)

9. Hayman, J., Winskel, G.: The unfolding of general Petri nets. Forthcoming.
10. Johnstone, P.: Sketches of an elephant, a topos theory compendium, vol.1. OUP

(2002)
11. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. LICS ’93 special

issue of Information and Computation 127(2), 164–185 (1996) Available as BRICS
report, RS-94-7

12. Kahn, G., Plotkin, G.D.: Concrete domains. TCS 121(1& 2), 187–277 (1993)
13. Koslowski, J.: A monadic approach to polycategories. Theory and Applications of

Categories 14(7), 125–156 (2005)
14. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg

(1971)
15. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains.

TCS 13(1), 85–108 (1981)
16. Nygaard, M.: Domain theory for concurrency. PhD Thesis, University of Aarhus

(2003)

62 G. Winskel

17. Nygaard, M., Winskel, G.: Domain theory for concurrency. TCS 316, 153–190
(2004)

18. Power, A.J.: 2-Categories. BRICS Lecture Notes, Aarhus University (March 1998)

19. Saunders-Evans, L., Winskel, G.: Event structure spans for non-deterministic
dataflow. In: Proc. Express’06, ENTCS (2006)

20. Saunders-Evans, L.: Events with persistence. Forthcoming PhD thesis, University
of Cambridge Computer Laboratory (2007)

21. Winskel, G., Nielsen, M.: Models for Concurrency. Handbook of Logic and the
Foundations of Computer Science 4, 1–148 OUP (1995)

22. Winskel, G.: Events in Computation. PhD thesis, Univ. of Edinburgh (1980) Avail-
able from http://www.cl.cam.ac.uk/users/gw104

23. Winskel, G.: Event structure semantics of CCS and related languages. In:
Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages, and Programming. LNCS,
vol. 140, Springer, Heidelberg (1982), http://www.cl.cam.ac.uk/users/gw104

24. Winskel, G.: A new definition of morphism on Petri Nets. In: STACS’84: pp. 140–
150 (1984)

25. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Advances in Petri Nets 1986. Proceedings of an Advanced Course, Bad Honnef,
8.-19. September 1986. LNCS, vol. 255, Springer, Heidelberg (1987)

26. Winskel, G.: An introduction to event structures. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency. LNCS, vol. 354, Springer, Heidelberg (1989)

27. Winskel, G.: Event structures as presheaves—two representation theorems. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, Springer, Hei-
delberg (1999)

28. Winskel, G.: Relations in concurrency. In: Invited talk, LICS’05 (2005)

29. Winskel, G.: Event structures with symmetry. In: the Plotkin Festschrift. ENTCS
172 (2007), See http://www.cl.cam.ac.uk/users/gw104 for corrections

A Appendix: Equivalence Relations [10]

Assume a category with pullbacks. Let E be an object of the category. A relation
on E is a pair of maps l, r : S → E for which l, r are jointly monic, i.e. for
all maps x, y : D → S, if lx = ly and rx = ry, then x = y. Equivalently, if the
category has binary products, a relation on E is a pair of maps l, r : S → E
for which the mediating map 〈l, r〉 : S → E × E is monic. The relation is an
equivalence relation in the category iff it is:
Reflexive: there is a (necessarily unique) map ρ such that

E
idE

����
��

��
�

idE

��
��

��
��

�
ρ

��

E S
l

��
r

�� E

commutes;

http://www.cl.cam.ac.uk/users/gw104
http://www.cl.cam.ac.uk/users/gw104
http://www.cl.cam.ac.uk/users/gw104

Symmetry and Concurrency 63

Symmetric: there is a (necessarily unique) map σ such that

S
r

����
��

��
�

l

��
��

��
��

�

σ

��

E S
l

��
r

�� E

commutes;
Transitive: there is a (necessarily unique) map τ such that

P
f

����
��

��
�

g

��
��

��
��

�

τ

��

S
l

����
��

��
�

r
���

�

��
���

�

S

l�������

��������� r
�������

���������

S

l
���

�

�����
�

r

��
��

��
��

�

E E E

commutes, where P , f , g is a pullback of r, l.

B Appendix: Stable Families

So event structures can be obtained from finitary prime algebraic domains. One
convenient way to construct finitary prime algebraic domains is from stable fam-
ilies [23]. The use of stable families facilitates constructions such as products and
pullbacks of event structures.

The use of stable families facilitates definitions on event structures.

Definition. A stable family comprises F , a family of finite subsets, called con-
figurations, satisfying:
Completeness: Z ⊆ F & Z ↑ ⇒

⋃
Z ∈ F ;

Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e �= e′,

(∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ /∈ y)) ;

Stability: ∀Z ⊆ F . Z �= ∅ & Z ↑ ⇒
⋂

Z ∈ F .

For Z ⊆ F , we write Z ↑ to mean compatibility, i.e.

∃x ∈ F∀z ∈ Z. z ⊆ x .

Configurations of stable families each have their own local order of causal depen-
dency, so their own prime sub-configurations generated by their events. We can
build an event structure by taking the events of the event structure to comprise
the set of all prime sub-configurations of the stable family.

64 G. Winskel

Definitions and Proposition. Let x be a configuration of a stable family F .
For e, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y ⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x =
⋂

{y ∈ F | y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x | e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Definition and Proposition. Let F be a stable family. Then, Pr(F) =def
(P, Con, ≤) is an event structure where:

P = {[e]x | e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P &
⋃

Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

This proposition furnishes a way to construct an event structure with events the
prime configurations of a stable family. In fact we can equip the class of stable
families with maps (the definitions are the same as those for event structures).
The configurations of an event structure form a stable family, so in this sense
event structures are included in stable families. With respect to any of the maps
(rigid, total or partial), the “inclusion” functor from the category of event struc-
tures to the category of stable families has a right adjoint, which on objects is
the construction we have just given, producing an event structure from a stable
family. The products w.r.t. total and partial maps are hard to define directly on
the event structures of this article. It is however straightforward to define the
products of stable families [23,29]. Right adjoints preserve limits, and so prod-
ucts in particular. Consequently we obtain products of event structures by first
regarding them as stable families, and then producing the event structure from
the product of the stable families. Pullbacks of event structures are obtained by
restricting products to the appropriate equalizing set. See [29] for more details.

Ready to Preorder:

Get Your BCCSP Axiomatization for Free!�

Luca Aceto1, Wan Fokkink2,3, and Anna Ingólfsdóttir1

1 Reykjav́ık University, School of Science and Engineering
Ofanleiti 2, 103 Reykjav́ık, Iceland

2 Vrije Universiteit, Section Theoretical Computer Science
Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

3 CWI, Embedded Systems Group
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

luca@ru.is, wanf@cs.vu.nl, annai@ru.is

Abstract. This paper contributes to the study of the equational theory
of the semantics in van Glabbeek’s linear time - branching time spectrum
over the language BCCSP, a basic process algebra for the description of fi-
nite synchronization trees. It offers an algorithm for producing a complete
(respectively, ground-complete) equational axiomatization of any behav-
ioral congruence lying between ready simulation equivalence and partial
traces equivalence from a complete (respectively, ground-complete) in-
equational axiomatization of its underlying precongruence—that is, of
the precongruence whose kernel is the equivalence. The algorithm pre-
serves finiteness of the axiomatization when the set of actions is finite.

1 Introduction

The lack of consensus on what constitutes an appropriate notion of observable
behaviour for reactive systems has led to a large number of proposals for behav-
ioural equivalences and preorders for concurrent processes. In his by now classic
paper [13], van Glabbeek presented the linear time - branching time spectrum of
behavioural preorders and equivalences for finitely branching, concrete, sequen-
tial processes. The semantics in this spectrum are based on simulation notions
and on decorated traces.

Van Glabbeek [13] studied the semantics in his spectrum in the setting of
the process algebra BCCSP, which contains only the basic process algebraic
operators from CCS [18] and CSP [17], but is sufficiently powerful to express
all finite synchronization trees. In the aforementioned reference, van Glabbeek
gave, amongst a wealth of other results, (in)equational axiomatizations for the
preorders and equivalences in the spectrum, such that two closed BCCSP terms
can be equated by the axioms if, and only if, they are related by the preorder or
� The first and third author were partly supported by the project “The Equational

Logic of Parallel Processes” (nr. 060013021) of The Icelandic Research Fund.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 65–79, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

66 L. Aceto, W. Fokkink, and A. Ingólfsdóttir

equivalence in question. Groote [14] obtained ω-completeness results for most of
the axiomatizations, in case the alphabet of actions is infinite. (An axiomatiza-
tion E is ω-complete when an equation can be derived from E if, and only if, all
of its closed instantiations can be derived from E.) The papers [2,6,8,9,10] offer
positive and negative results on the existence of finite (in)equational axiomati-
zations for several behavioural equivalences and preorders in the spectrum over
the language BCCSP, both in the setting of finite and infinite sets of actions.

The work we present in this paper stems from the observation that all of the
extant axiomatization results presented in the aforementioned studies are based
on separate, and often rather similar, developments for preorders and equiv-
alences. For the semantics in the spectrum lying between 2-nested simulation
semantics and partial traces semantics, the equivalences are the kernels of the
preorders—meaning that two processes are considered equivalent if, and only
if, each is a refinement of the other with respect to the preorder—, which are
therefore more basic than the equivalences. Since the equivalences are defined in
terms of the preorders in a canonical fashion, it would be very satisfying, in order
to achieve a higher degree of generality and to highlight the commonalities in the
technical developments pertaining to axiomatization results for the semantics in
the spectrum, to develop a general strategy for obtaining complete axiomatiza-
tions of the equivalences in the spectrum from complete axiomatizations of the
preorders. This is the aim of this paper.

Our Contribution. We offer an algorithm for producing an ω-complete (respec-
tively, ground-complete) equational axiomatization of any behavioral congruence
lying between ready simulation equivalence and partial traces equivalence from
an ω-complete (respectively, ground-complete) inequational axiomatization of
its underlying precongruence—that is, of the precongruence whose kernel is the
equivalence. The algorithm we give in this paper preserves finiteness of the ax-
iomatization when the set of actions is finite. It follows that each equivalence
in the spectrum whose discriminating power lies in between that of ready simu-
lation and partial traces equivalence is finitely axiomatizable over the language
BCCSP if so is its defining preorder.

Our algorithm may be seen as isolating and axiomatizing the ingredients that
all of the extant proofs of completeness results for the class of behavioural equiv-
alences we study have in common. It also eliminates the need to reprove, essen-
tially from scratch, completeness results for a large fragment of behavioural
equivalences in the spectrum once a completeness result has been obtained for
their underlying preorders. The axiomatizations that are automatically gener-
ated by our algorithm are very similar, when not identical, to those presented
in the literature. (See, for instance, the two specific examples of applications of
our algorithm that are provided in Section 6.)

Our algorithm takes as input a sound and ω-complete (respectively, ground-
complete) inequational axiomatization E for BCCSP modulo a preorder in the
linear time - branching time spectrum that includes the ready simulation preorder.
Without loss of generality, we assume that the four classic equations from [16] that

Ready to Preorder: Get Your BCCSP Axiomatization for Free! 67

completely axiomatize bisimulation equivalence [18] are contained in E, and that
so do the defining inequational axioms for ready simulation for each action a:

ax � ax + ay .

The axiomatization A(E) generated by our algorithm from E contains the ax-
ioms for bisimulation equivalence together with the following equations, for each
inequational axiom t � u in E:

– t + u ≈ u; and
– b(t + x) + b(u + x) ≈ b(u + x) (for each action b, and some variable x that

does not occur in t + u).

The main technical result in the paper is a theorem to the effect that the axiom-
atization A(E) is ω-complete (respectively, ground-complete) for the equivalence
if E is ω-complete (respectively, ground-complete) for the preorder (Theorem 1).
The proof of this statement is non-trivial, and relies on a careful analysis of the
so-called cover equations [10] for the semantics in the linear time - branching
time spectrum we consider in this study. Cover equations give us an explicit de-
scription of the equational theory for a particular semantics in terms of equations
having a rather simple, and canonical, form.

Roadmap of the Paper. The paper is organized as follows. Section 2 reviews the
syntax and the operational semantics for the language BCCSP, introduces the lin-
ear time time - branching time spectrum, and discusses the very basic notions of
(in)equational logic used in this study. We present our algorithm in Section 3,
where we also state the main theorem in the paper (Theorem 1) to the effect
that the algorithm is guaranteed to produce an ω-complete (respectively, ground-
complete) equational axiomatization of any behavioral congruence lying between
ready simulation equivalence and partial traces equivalence from an ω-complete
(respectively, ground-complete) inequational axiomatization of its underlying pre-
congruence. The bulk of the rest of the paper (Sections 4–5) is devoted to a proof
of our main result. Section 6 presents applications of our algorithm in the setting
of simulation and failures semantics. We end the paper with some concluding re-
marks, and a detailed comparison with related work (Section 7).

2 Preliminaries

Syntax of BCCSP BCCSP(A) is a basic process algebra for expressing finite
process behaviour. Its syntax consists of closed (process) terms p, q that are con-
structed from a constant 0, a binary operator + called alternative composition,
and unary prefix operators a , where a ranges over some nonempty set A of ac-
tions (with typical elements a, b, c, d). (We write |A| for the cardinality of the set
A.) Open terms p, q, r, s, t, u can moreover contain occurrences of variables from
a countably infinite set V (with typical elements w, x, y, z).

A (closed) substitution maps variables in V to (closed) terms. For every term
t and (closed) substitution σ, the (closed) term σ(t) is obtained by replacing
every occurrence of a variable x in t by σ(x). We often write tσ in lieu of σ(t).

68 L. Aceto, W. Fokkink, and A. Ingólfsdóttir

A context C[] is a BCCSP(A) term with exactly one occurrence of a hole [] in
it. For every context C[] and term p, we write C[p] for the term that results by
placing p in the hole in C[].

Transition Rules. Intuitively, closed BCCSP(A) terms represent finite process
behaviours, where 0 does not exhibit any behaviour, p+q is the nondeterministic
choice between the behaviours of p and q, and ap executes action a to transform
into p. This intuition is captured, in the style of Plotkin, by the transition rules
below, which give rise to A-labelled transitions between closed terms.

ax
a→ x

x
a→ x′

x + y
a→ x′

y
a→ y′

x + y
a→ y′

The operational semantics is extended to open terms by assuming that variables
do not exhibit any behaviour.

Linear Time - Branching Time Spectrum. Van Glabbeek [13] presented the
linear time - branching time spectrum of behavioural preorders and equivalences;
see Figure 1. The semantics in this spectrum are based on simulation notions
and on decorated traces. In what follows, we use � to denote a preorder in this
spectrum, and � to denote the corresponding equivalence (i.e., � ∩ �−1). The
equivalence induced by a preorder is also known as its kernel. When we want
to refer to a specific preorder in the spectrum, we shall subscribe the symbol
� with the initials of the intended semantics. For instance, we shall use �RS to
denote the ready simulation preorder, �S for the simulation preorder, �F for
the failures preorder, �CT for the completed traces preorder, and �PT for the
partial traces preorder. A similar notational convention applies to the kernels of
the preorders.

Each preorder in the linear time - branching time spectrum is a precongruence
over the algebra of closed BCCSP(A) terms. That is, p1 � q1 and p2 � q2 imply
ap1 � aq1, for each a ∈ A, and p1 + p2 � q1 + q2. Likewise, the equivalences in
the spectrum constitute a congruence over closed BCCSP(A) terms.

Given a preorder � over closed terms, for open terms t and u, we define t � u
if ρ(t) � ρ(u) for each closed substitution ρ; the corresponding equivalence � is
lifted to open terms likewise.

Equations and Inequations. An (in)equational axiomatization (often abbreviated
to axiomatization) E is a collection of either inequations t � u or equations t ≈ u,
where t and u are BCCSP(A) terms. We write E � t � u or E � t ≈ u if this
(in)equation can be derived from the (in)equations in E using the standard rules
of (in)equational logic, where the rule for symmetry can be applied for equational
derivations but not for inequational ones. An axiomatization E is sound modulo
� (or �) if, for all open terms t, u, from E � t � u (or E � t ≈ u) it follows that
t � u (or t � u). An axiomatization E is ground-complete modulo � (or �) if
p � q (or p � q) implies E � p � q (or E � p ≈ q), for all closed terms p and q.
We say that E is ω-complete if for all open terms t, u with E � ρ(t) � ρ(u) (or
E � ρ(t) ≈ ρ(u)) for all closed substitutions ρ, we have E � t � u (or E � t ≈ u).

Ready to Preorder: Get Your BCCSP Axiomatization for Free! 69

ready simulation

2-nested simulation

bisimulation

readies

completed simulation

simulation

possible futures

possible worlds

failure traces

traces

completed traces

failures

ready traces

Fig. 1. The linear time - branching time spectrum

The core axioms A1–4 for BCCSP(A) given below are ω-complete [19], and
sound and ground-complete [16,18] modulo bisimulation equivalence, which is
the finest semantics in the linear time - branching time spectrum.

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

In the remainder of this paper, process terms are considered modulo A1–4. A
term x or at is a summand of each term x + u or at + u, respectively. We use
summation

∑n
i=1 ti (with n ≥ 0) to denote t1 + · · · + tn, where the empty sum

denotes 0. As binding convention, alternative composition and summation bind
more weakly than prefixing. Modulo the equations A1–4 each BCCSP(A) term
t can be written in the form

∑n
i=1 ti, where each ti is either a variable or is of

the form at′ for some action a and term t′.
In his paper [13], van Glabbeek offered, amongst a host of other results,

(in)equational axiomatizations for the preorders and equivalences in the spec-
trum. The proofs of the completeness results in that reference mostly employ the
method of graph transformations. Groote [14] obtained ω-completeness results
for most of the axiomatizations, in case the alphabet of actions is infinite.

In the remainder of this paper, in case of an infinite alphabet, occurrences of
action names in axioms should be interpreted as action variables.

70 L. Aceto, W. Fokkink, and A. Ingólfsdóttir

3 Producing an Axiomatization

Consider a preorder � in the linear time - branching time spectrum that includes
the ready simulation preorder. Let E be a sound and ground-complete inequa-
tional axiomatization for BCCSP(A) modulo �. We give an algorithm to produce
an axiomatization A(E) that is sound and ground-complete for BCCSP(A) mod-
ulo �, namely the kernel of the preorder �. Moreover, if E is ω-complete, then
so is A(E).

Without loss of generality, we assume that the axioms A1–4 are present in E,
together with the defining inequational axioms for ready simulation equivalence
for each a ∈ A:

ax � ax + ay .

The axiomatization A(E) is constructed as follows. The axioms A1–4 are by
default included in A(E). Furthermore, for each inequational axiom t � u in E,
we add to A(E):

A. t + u ≈ u; and
B. b(t + x) + b(u + x) ≈ b(u + x) (for all b ∈ A, and some x that does not occur

in t + u).

Note that A(E) is finite whenever A and E are finite. Moreover, using an action
variable in step B in lieu of a concrete action b ∈ A, the axiomatization A(E)
contains only finitely many axiom schemas when E does, even in the presence
of an infinite collection of actions.

Remark 1. Since ax � ax + ay is assumed to be present in E for each a ∈ A, by
step B of the algorithm, the defining axioms for ready simulation from [6], namely

b(ax + z) + b(ax + ay + z) ≈ b(ax + ay + z) ,

are present in A(E), for all a, b ∈ A.

We are now ready to present the main result of the paper to the effect that the
algorithm defined above delivers axiomatizations for the kernels of the preorders
that are sound, and ground- or ω-complete.

Theorem 1. Let � be a preorder in the linear time - branching time spectrum
with �RS ⊆ �. Let E be a sound and ground-complete inequational axiomati-
zation for BCCSP(A) modulo �. Then the equational axiomatization A(E) is
sound and ground-complete for BCCSP(A) modulo �. Moreover, if E is ω-
complete, then so is A(E).

Since the algorithm presented above preserves finiteness of the axiomatization
when the set of actions A is finite, it follows that each equivalence in the spectrum
whose discriminating power lies in between that of ready simulation and partial
traces equivalence is finitely axiomatizable over the language BCCSP(A) if so is
its defining preorder.

The remainder of the paper will be essentially devoted to a proof of the
above theorem. Our proof of Theorem 1 relies on the isolation of a collection of

Ready to Preorder: Get Your BCCSP Axiomatization for Free! 71

equations, the so-called cover equations, that have a simple form and completely
characterize the equational theory of BCCSP(A) modulo any of the behavioural
equivalences whose discriminating power lies in between that of ready simulation
and partial traces equivalence. Restricting ourselves to cover equations will help
us overcome the technical complications in the proof-theoretic argument we shall
use in Section 5 to complete the proof of Theorem 1.

In light of the key role cover equations play in the proof of Theorem 1, we
now proceed to introduce them and to analyze the properties that make them a
crucial ingredient in our proof of that result.

4 Cover Equations

For bisimulation semantics, and thus for all process semantics in the linear time
- branching time spectrum, axiom A3 is sound. So if an equation t ≈ u is sound,
then u + t ≈ t and t + u ≈ u are sound too; and from the last two equations
one can derive t ≈ u. Furthermore, for all process semantics in the linear time -
branching time spectrum, if t1+t2+u ≈ u is sound, then t1+u ≈ u and t2+u ≈ u
are sound; and from the last two equations one can derive t1 + t2 +u ≈ u. Hence,
from the point of view of provability, it suffices only to consider sound equations
of the form at + u ≈ u and x + u ≈ u. We call these the cover equations. We
present three lemmas that limit the form that cover equations can have for the
semantics in the spectrum we study in this paper. (In the statements of the
lemmas below, t and u range over the collection of open BCCSP(A) terms.)

Lemma 1. If t + x � u, and either � ⊆ �CT, or � ⊆ �PT and |A| > 1, then x
is a summand of u.

If |A| = 1, then the partial traces preorder and the simulation preorder coincide—
see, e.g., [3]. For this special case, Lemma 1 fails. Namely, let A = {a}. Then
x � ax is sound for the partial traces (and simulation) preorder.

Lemma 2. Let � be an equivalence in the linear time - branching time spectrum.
If at + u + bv � u + bv with a
= b, then at + u � u.

This lemma is trivial to check for each of the equivalences in the linear time
- branching time spectrum. The key idea is that since a
= b, the non-empty
(decorated) traces of at and bu are disjoint, and bu cannot (ready/completed)
simulate at.

The following lemma states a kind of cancellation result for the preorders in
the spectrum.

Lemma 3. Let � be a preorder in the linear time - branching time spectrum. If
t + x � u + x, and x is not a summand of t + u, then t � u.

The condition in Lemma 3 that x is not a summand of t + u is essential. For
instance, x + x �PT 0 + x, but x
�PT 0. And 0 + x �CT x + x, but 0
�CT x.

72 L. Aceto, W. Fokkink, and A. Ingólfsdóttir

Lemma 3 needs to be proved separately for each preorder in the linear time
- branching time spectrum. Despite the naturalness of its statement, which ap-
pears obvious, these proofs are not trivial, and quite technical. Fokkink and
Nain [10] proved such a lemma for failures semantics, with the aim to obtain an
ω-completeness result for this semantics, and their proof is rather delicate. The
details of the proof of Lemma 3 can be found in the full version of this paper [4].

From the three lemmas above, one can conclude that in order to prove ω-
completeness (or ground-completeness) of an equational axiomatization, it suf-
fices to derive all sound equations (or all sound closed equations) of the form

at +
n∑

i=1

aui ≈
n∑

i=1

aui (n ≥ 1)

and, only for the case of partial traces semantics with |A| = 1, all sound equations
of the form

x + u ≈ u .

In our proof of Theorem 1, we shall therefore focus on showing that the equa-
tional axiomatization A(E) generated by our algorithm is powerful enough to
prove all of the sound equations of the above two forms.

5 Proof of Theorem 1

Proof. Let � be a preorder in the linear time - branching time spectrum, with
�RS⊆�. Let E be a sound and ground-complete inequational axiomatization for
BCCSP(A) modulo �.

It is not hard, albeit tedious, to see that the equational axiomatization A(E)
is sound for BCCSP(A) modulo �. We prove that ω-completeness of E implies
ω-completeness of A(E). The proof that A(E) is ground-complete is identical,
but assumes that all terms that occur in the proof below are closed. (It is well
known that if an axiomatization proves a closed (in)equation, then there is a
closed proof for that (in)equation.)

We note that, for each of the preorders in the linear time - branching time
spectrum, ar + as + t � u if, and only if, both ar + t � u and as + t � u.
This, together with the presence of the axiom A3, implies that the inequational
axiomatization E that we start with can be pre-processed so that there are no
multiple a-summands on the left-hand sides of the inequational axioms in E.

Moreover, in view of Lemmas 1 and 3, if � ⊆ �CT or |A| > 1, then variable
summands on the left-hand sides of inequational axioms can be omitted. Con-
cluding, in this case we can assume that the inequational axiomatization E that
we start with only contains inequational axioms of the form ap �

∑n
i=1 aqi (with

n ≥ 1) or 0 � q.
For the case of partial traces semantics with |A| = 1, Lemma 1 does not apply.

Note, however, that r + s �PT u if, and only if, both r �PT u and s �PT u.
Hence, for this special case it suffices to allow also for inequational axioms of the
form x � q.

Ready to Preorder: Get Your BCCSP Axiomatization for Free! 73

We start with showing that all cover equations of the form at + u ≈ u can be
derived from A(E). (Cover equations of the form x + u ≈ u will be considered
later.) In view of Lemmas 2 and 3, it suffices to only consider those equations
where u is of the form

∑n
i=1 aui with n ≥ 1. Let

at +
n∑

i=1

aui �
n∑

i=1

aui .

We show that the corresponding cover equation can be derived from A(E). It
is not hard to see that, for the semantics in the linear time - branching time
spectrum, the above equivalence implies

at �
n∑

i=1

aui .

So by ω-completeness of E,

E � at �
n∑

i=1

aui .

We prove, using induction on the length of such a derivation, not counting ap-
plications of axioms A1–4, that

A(E) � at +
n∑

i=1

aui ≈
n∑

i=1

aui .

Base case: t = ui for some i. Trivial using A1–3.

Inductive case: We distinguish two cases, which deal with instantiations of in-
equational axioms in context.

Case 1: The first step of the derivation is

E � aC[pσ] � aC[qσ] .

That is, t = C[pσ] for some context C[], substitution σ, and inequational axiom
p � q. Then clearly aC[pσ] is of the form D[b(pσ + r)] and aC[qσ] is of the form
D[b(qσ + r)] for some context D[], action b, and term r.

Since E � aC[qσ] �
∑n

i=1 aui by a shorter derivation, by induction,

A(E) � aC[qσ] +
n∑

i=1

aui ≈
n∑

i=1

aui .

Furthermore,
A(E) � aC[pσ] + aC[qσ] ≈ aC[qσ] .

This equation can indeed be derived from the axiom b(p+x)+b(q+x) ≈ b(q+x),
which is present in A(E) for each b ∈ A according to step B in the algorithm,
together with the defining axiom for ready simulation, b(cx + z) + b(cx + cy +
z) ≈ b(cx + cy + z), which by assumption is present in A(E) for all b, c ∈ A

74 L. Aceto, W. Fokkink, and A. Ingólfsdóttir

(see Remark 1). The derivation of the above equation is by induction on the
depth of the occurrence of the context symbol [] within C[].

– Let [] occur at depth zero in C[], i.e., C[] = [] + r for some term r. Let the
substitution ρ coincide with σ on variables in p and q, and let ρ(x) = r.
(Recall that an assumption in step B of the algorithm was that x does not
occur in p + q.) The derivation simply consists of applying the substitution
ρ to the axiom a(p + x) + a(q + x) ≈ a(q + x).

– Let C[] = dC′[] + s. By induction on the depth of the occurrence of [],
A(E) � dC′[pσ] + dC′[qσ] ≈ dC′[qσ]. So

A(E) � aC[pσ] + aC[qσ] = a(dC′[pσ] + s) + a(dC′[qσ] + s)
≈ a(dC′[pσ] + s) + a(dC′[pσ] + dC′[qσ] + s)
≈ a(dC′[pσ] + dC′[qσ] + s)
≈ a(dC′[qσ] + s) = aC[qσ] .

Hence,

A(E) � aC[pσ] +
n∑

i=1

aui ≈ aC[pσ] + aC[qσ] +
n∑

i=1

aui

≈ aC[qσ] +
n∑

i=1

aui ≈
n∑

i=1

aui ,

which was to be shown.
Case 2: The first step of the derivation is

E � apσ �
m∑

j=1

aqσ
j (m ≥ 1) .

That is, t = pσ for some substitution σ and inequational axiom ap �
∑m

j=1 aqj .
By the soundness of E, clearly aqσ

j �
∑n

i=1 aui for j = 1, . . . , m. So by ω-
completeness, E � aqσ

j �
∑n

i=1 aui for j = 1, . . . , m. By one of our assumptions,
the inequational axioms in E do not contain multiple occurrences of a-summands
on their left-hand sides. This implies that each of these derivations is not longer
than the derivation of E �

∑m
j=1 aqσ

j �
∑n

i=1 aui. So by induction,

A(E) � aqσ
j +

n∑

i=1

aui ≈
n∑

i=1

aui

for j = 1, . . . , m. Furthermore, according to step A of the algorithm, the axiom
p +

∑m
j=1 aqj ≈

∑m
j=1 aqj is present in A(E). Hence,

A(E) � apσ +
n∑

i=1

aui ≈ apσ +
m∑

j=1

aqσ
j +

n∑

i=1

aui

≈
m∑

j=1

aqσ
j +

n∑

i=1

aui ≈
n∑

i=1

aui .

Ready to Preorder: Get Your BCCSP Axiomatization for Free! 75

This completes the proof for the case of cover equations of the form at +∑n
i=1 aui �

∑n
i=1 aui.

It remains to prove that cover equations of the form x+u ≈ u can be derived
from A(E). If � ⊆ �CT or |A| > 1, then in view of Lemma 1, such cover equations
can be derived using A3. So we are left to consider the special case that �=�PT
and |A| = 1. Let

x + u �PT u .

Clearly, this implies
x �PT u .

So, by ω-completeness of E,
E � x � u .

We prove, using induction on the length of such a derivation, not counting ap-
plications of A1–4, that

A(E) � x + u ≈ u .

Base case: x is a summand of u. Trivial.

Inductive case: The first step of the derivation is

E � yσ � qσ .

That is, σ(y) = x for some substitution σ and inequational axiom y � q in E.
By the soundness of E, clearly r �PT u for each summand r of qσ. So by

ω-completeness, E � r � u. By assumption, the inequational axioms in E are
all of the form as �

∑n
i=1 asi (with n ≥ 1) or 0 � s or z � s, for some variable

z. This implies that each of these derivations is not longer than the derivation
of E � qσ � u. So by induction and A3,

A(E) � qσ + u ≈ u .

Furthermore, according to step A of the algorithm, the axiom y+q ≈ q is present
in A(E). Hence,

A(E) � yσ + u ≈ yσ + qσ + u ≈ qσ + u ≈ u .

The proof of the theorem is now complete. �

6 Examples

We show how our algorithm produces equational axiomatizations for two equiv-
alences in the linear time - branching time spectrum—namely simulation and
failures—from the inequational axiomatizations for the corresponding preorders.
For the simulation preorder, we leave out the pre-supposed inequational axiom
ax � ax + ay, since it can be derived from the defining inequational axioms for
that preorder.

76 L. Aceto, W. Fokkink, and A. Ingólfsdóttir

6.1 Simulation

Let |A| > 1. Then A1–4 plus one inequational axiom

0 � x

is a sound and ground-complete axiomatization for BCCSP(A) modulo the sim-
ulation preorder [13].

Step A of the algorithm produces the already present axiom A4:

0 + x ≈ x .

Step B of the algorithm produces the defining axioms for simulation equivalence
for each b ∈ B:

b(0 + y) + b(x + y) ≈ b(x + y) .

6.2 Failures

Let |A| ≥ 1. The axiomatization consisting of A1–4 plus one inequational axiom

a(x + y) � ax + a(y + z)

for each a ∈ A is sound and ground-complete for BCCSP(A) modulo the failures
preorder [13].

Step A of the algorithm produces, for all a ∈ A:

a(x + y) + ax + a(y + z) ≈ ax + a(y + z) .

This axiom is one of the two defining axioms for failures equivalence. (The second
defining axiom for failures equivalence is the ready simulation axiom, which is
assumed to be present from the start.)

Step B of the algorithm produces, for all a, b ∈ A:

b(a(x + y) + w) + b(ax + a(y + z) + w) ≈ b(ax + a(y + z) + w) .

This axiom is redundant; it can be derived from the other axioms as follows.
(The subterm to which an axiom is applied is underlined.)

b(ax + a(y + z) + w)

≈ b(a(x + y) + ax + a(y + z) + w)

≈ b(a(x + y) + a(y + z) + w) + b(a(x + y) + ax + a(y + z) + w)

≈ b(a(x + y) + w) + b(a(x + y) + a(y + z) + w) + b(a(x + y) + ax + a(y + z) + w)

≈ b(a(x + y) + w) + b(a(x + y) + ax + a(y + z) + w)

≈ b(a(x + y) + w) + b(ax + a(y + z) + w)

Ready to Preorder: Get Your BCCSP Axiomatization for Free! 77

7 Conclusions and Comparison with Related Work

In this paper, we have offered an algorithm for generating a ground-complete
(respectively, ω-complete) axiomatization for behavioural equivalences in the
linear time - branching time spectrum starting from a ground-complete (respec-
tively, ω-complete) axiomatization for their underlying preorders—that is, of the
preorders that have the equivalences as their kernels. Our algorithm applies to
all of the process semantics in the spectrum whose discriminating power lies
in between that of ready simulation semantics and of partial traces semantics.
Moreover, in the presence of a finite set of actions, our procedure preserves finite-
ness of axiomatizations, and thus can be used to obtain automatically finite basis
results for behavioural equivalences in the spectrum from similar results for their
underlying preorders. In fact, our results apply to any behavioural precongru-
ence whose discriminating power lies in between that of the ready simulation
preorder and of the partial traces preorder, provided that Lemmas 1–3 hold for
the precongruence in question.

Our algorithm may thus be considered as isolating and axiomatizing the in-
gredients that all of the extant proofs of completeness results for the class of
behavioural equivalences we study have in common. (See, for example, the ref-
erences [5,6,8,9,10,13,14] for a sample of such results.) It also eliminates the
need to reprove, essentially from scratch, completeness results for a large frag-
ment of behavioural equivalences in the spectrum once a completeness result
has been obtained for their underlying preorders. As witnessed by the examples
we provided in Section 6, the axiomatizations that are automatically generated
by our algorithm are very similar, when not identical, to those presented in the
literature. In this respect, this study may be seen as a companion to [1]. That
paper offered an algorithm that generates a finite, ground-complete axiomatiza-
tion for bisimulation equivalence from an operational specification of a language
in GSOS format [7]. That procedure relies on the axiomatization of bisimulation
equivalence over the language BCCSP. Here we have focused on the algorithmic
generation of complete axiomatizations for other equivalences in the spectrum
over the language BCCSP.

The spirit of our study is also very similar to the one in [12]. In that reference,
independent of our work and building on their previous paper [11], de Frutos-
Escrig and Gregorio-Rodŕıguez show, amongst other things, how to generate
an inequational axiomatization for preorders in the spectrum from equational
axiomatizations for the corresponding equivalence. They generate this inequa-
tional axiomatization by simply adding the defining inequational axioms for the
ready simulation preorder to the axiomatization for the equivalence—see Theo-
rem 5.1 in [12]. That result applies to behavioural equivalences in the linear time
- branching time spectrum that (1) include ready simulation equivalence, and (2)
whose underlying preorders only equate processes having the same set of initial
actions. That second condition is not met by completed simulation, simulation,
completed traces and partial traces semantics. Furthermore, the result from [12]
only applies to ground-complete axiomatizations.

78 L. Aceto, W. Fokkink, and A. Ingólfsdóttir

There are some interesting general connections between the technical devel-
opments in this paper and those in [12]. For instance, Lemma 3.11 in [12] gives
a soundness proof for the equations generated by step A in our algorithm for
the preorders in the spectrum that satisfy condition 2 above. However, the equa-
tions generated by step A are sound also for completed simulation, simulation,
completed traces and partial traces semantics. So Lemma 3.11 in [12] is not as
general as it could be.

It would also be interesting to investigate the possible relation between the
cover equations approach, used in this paper to reduce the class of equations to be
considered in the proof of completeness, and the condition of action factorization
mentioned in the statement of Theorem 2.6 of [12]. (Action factorization means
that if p � q, then, for each action a, the sum of the a-summands of p is also
dominated by the sum of the a-summands of q with respect to �.)

In summary, our work differs from [12] in the following fundamental ways.

– We show how to produce an equational axiomatization for an equivalence
from an inequational axiomatization of its underlying preorder. Since the
equivalences in the linear time - branching time spectrum that include ready
simulation equivalence are the kernels of their underlying preorders, to our
mind, the preorders are a more basic notion to build on in this setting.

– Unlike Theorem 5.1 of [12], our main result applies to all of the semantics
in the spectrum whose discriminating power lies in between that of ready
simulation semantics and partial traces semantics.

– Unlike Theorem 5.1 of [12], our results apply to ω-complete as well as to
ground-complete axiomatizations.

It would be interesting to extend our algorithm so that it applies also to
nested simulation semantics [15] and to possible futures semantics [20]. However,
as shown in [2], unlike the semantics we have considered in this study, nested
simulation and possible futures semantics afford no finite ground-complete ax-
iomatization over BCCSP even in the presence of a single action. This indicates
that such a generalization of our results will not be easy to achieve without re-
course to conditional equations. We leave such generalizations of our results and
proof techniques as a topic for future investigations.

References

1. Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Infor-
mation and Computation 111(1), 1–52 (1994)

2. Aceto, L., Fokkink, W., van Glabbeek, R.J., Ingolfsdottir, A.: Nested semantics
over finite trees are equationally hard. Information and Computation 191(2), 203–
232 (2004)

3. Aceto, L., Fokkink, W., Ingolfsdottir, A.: A menagerie of non-finitely based process
semantics over BPA*—from ready simulation to completed traces. Mathematical
Structures in Computer Science 8(3), 193–230 (1998)

4. Aceto, L., Fokkink, W., Ingolfsdottir, A.: Ready to preorder: Get your BCCSP
axiomatization for free! Report RS-07-3, BRICS Research Series (2007)

Ready to Preorder: Get Your BCCSP Axiomatization for Free! 79

5. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Finite equational bases in
process algebra: Results and open questions. In: Middeldorp, A., van Oostrom, V.,
van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the
Road to Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)

6. Blom, S., Fokkink, W., Nain, S.: On the axiomatizability of ready traces, ready
simulation and failure traces. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeg-
inger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 109–118. Springer, Heidelberg
(2003)

7. Bloom, B., Istrail, S., Meyer, A.: Bisimulation can’t be traced. Journal of the
ACM 42, 232–268 (1995)

8. Chen, T., Fokkink, W.: On finite alphabets and infinite bases III: Simulation. In:
Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 421–434.
Springer, Heidelberg (2006)

9. Chen, T., Fokkink, W., Nain, S.: On finite alphabets and infinite bases II: Com-
pleted and ready simulation. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006
and ETAPS 2006. LNCS, vol. 3921, pp. 1–15. Springer, Heidelberg (2006)

10. Fokkink, W., Nain, S.: A finite basis for failure semantics. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 755–765. Springer, Heidelberg (2005)

11. de Frutos-Escrig, D., Gregorio-Rodŕıguez, C.: Bisimulations up-to for the linear
time branching time spectrum. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 278–292. Springer, Heidelberg (2005)

12. de Frutos-Escrig, D., Gregorio-Rodŕıguez, C.: Simulations up-to and canonical pre-
orders (extended abstract). In: Proc. SOS’07, ENTCS, Elsevier (to appear)

13. van Glabbeek, R.J.: The linear time – branching time spectrum I. The semantics
of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.)
Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)

14. Groote, J.F.: A new strategy for proving ω-completeness with applications in
process algebra. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS,
vol. 458, pp. 314–331. Springer, Heidelberg (1990)

15. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation
as a congruence. Information and Computation 100, 202–260 (1992)

16. Hennessy, M.C.B., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32(1), 137–161 (1985)

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

18. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

19. Moller, F.: Axioms for Concurrency. PhD thesis, Department of Computer Science,
University of Edinburgh (July 1989)

20. Rounds, W., Brookes, S.: Possible futures, acceptances, refusals and communicating
processes. In: Proc. FOCS’81, pp. 140–149. IEEE Computer Society Press, Los
Alamitos (1981)

Impossibility Results for the Equational Theory

of Timed CCS�

Luca Aceto1, Anna Ingólfsdóttir1, and MohammadReza Mousavi1,2

1 Department of Computer Science, Reykjav́ık University, Kringlan 1, IS-103,
Reykjav́ık, Iceland

2 Department of Computer Science, Eindhoven University of Technology,
NL-5600MB Eindhoven, The Netherlands

Abstract. We study the equational theory of Timed CCS as proposed
by Wang Yi in CONCUR’90. Common to Wang Yi’s paper, we particu-
larly focus on a class of linearly-ordered time domains exemplified by the
positive real or rational numbers. We show that, even when the set of
basic actions is a singleton, there are parallel Timed CCS processes that
do not have any sequential equivalent and thus improve on the Gap The-
orem for Timed CCS presented by Godskesen and Larsen in FSTTCS’92.
Furthermore, we show that timed bisimilarity is not finitely based both
for single-sorted and two-sorted presentations of Timed CCS. We fur-
ther strengthen this result by showing that, unlike in some other process
algebras, adding the untimed or the timed left-merge operator to the
syntax and semantics of Timed CCS does not solve the axiomatizability
problem.

1 Introduction

In [12], Wang Yi proposed Timed CCS (TCCS) as a possible timed extension
of Milner’s CCS [7]. (See [10] for another timed extension of CCS.) There, he
gave syntax and operational semantics of the calculus as well as a number of
equational laws, including a form of expansion law that allows one to resolve
parallelism and transform parallel processes into a nondeterministic composition
of sequential processes.

However, it turned out that the expansion law of [12] is not sound with re-
spect to timed bisimilarity [5,13]. In [13], Wang Yi put forward an alternative
correct version of the expansion law of [12]. However, the correction involved
the introduction of the so-called time variables and a substantially more compli-
cated calculus. A natural question was then whether there is a sound expansion
theorem for the simple calculus of [12] and whether the calculus of [12] affords
a finite complete (respectively, ω-complete) axiomatization.

The former question was answered negatively in [5] by showing that for all
n > 0 there are expressions with n + 1 parallel components for which there are

� The work of the authors has been partially supported by the project “The Equational
Logic of Parallel Processes” (nr. 060013021) of The Icelandic Research Fund.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 80–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Impossibility Results for the Equational Theory of Timed CCS 81

no bisimilar terms with n parallel components or less (Gap Theorem). In other
words, parallel composition cannot in general be eliminated from TCCS terms.

The latter question has been addressed partially in [14] and [1], which present
complete axiomatizations for the finite [14] and regular [1] fragments of TCCS,
respectively. However, it has remained an open question whether the full calculus,
including parallel composition, affords a finite (ω-)complete axiomatization or
not.

The aim of this paper is to re-visit this question. We show that different
presentations of TCCS cannot be finitely axiomatized modulo timed bisimilarity.
We further strengthen this result by showing that, unlike in some other process
algebras, adding the left-merge operator (timed or un-timed) to the theory of
TCCS does not solve the axiomatizability problem. We also present an improved
version of the gap theorem and show that even in the presence of a single action,
parallel composition cannot be resolved in TCCS.

The rest of this paper is organized as follows. In Section 2, we present the basic
definitions concerning TCCS, timed bisimilarity and equational logic. Section 3
is devoted to the single-sorted presentation of TCCS and shows that it cannot be
finitely axiomatized modulo timed bisimilarity. In Section 4, we study the two-
sorted presentation of TCCS and show, first of all, that, even in the presence
of just one action, parallelism cannot be resolved in TCCS (Gap Theorem). We
also prove that the theory of the two-sorted presentation of TCCS cannot be
finitely axiomatized either. Section 5 studies the addition of the untimed as well
as the timed lef-merge operator to TCCS and shows that adding neither of these
operators solves the axiomatizability problem. Section 6 concludes the paper and
presents directions of ongoing and future research.

2 Preliminaries

2.1 TCCS: Syntax and Semantics

Following [6], we define a monoid (X, +, 0) to be:

– left-cancellative iff (x + y = x + z) ⇒ (y = z), and
– anti-symmetric iff (x + y = 0) ⇒ (x = y = 0).

We define a partial order on X as x ≤ y iff x + z = y for some z ∈ X . A
time domain is a left-cancellative anti-symmetric monoid (D, +, 0) such that ≤
is a total order. If d0 ≤ d1, then we write d1 − d0 for the unique d such that
d1 = d0 + d. A time domain is non-trivial if D contains at least two elements.
Note that every non-trivial time domain does not have a largest element. A time
domain has 0 as cluster point iff for each d ∈ D such that d �= 0 there is a d′ ∈ D
such that 0 < d′ < d. In the remainder of the paper, we assume that our time
domain, denoted henceforth by D, is non-trivial and has 0 as a cluster point.

The syntax of TCCS processes (closed terms) is given by the following gram-
mar.

t ::= 0 | μ.t | ε(d).t | s + t | s || t

82 L. Aceto, A. Ingólfsdóttir, and M.R. Mousavi

In the grammar given above, 0 stands for the deadlocking process (not to be
confused with 0 in the time domain), μ. represents action-prefix operators for
μ ∈ A where A is the set of (delayable) actions. Given a time domain D, ε(d). is
an operator for each d ∈ D, and represents a time delay of length at least d before
proceeding with the remaining process. For the sake of simplicity, we assume that
all delays are non-zero; ε(0).t can be interpreted as a syntactic sugar for t, but we
avoid zero delays altogether throughout the rest of this paper. Nondeterministic
choice is denoted by + and parallel composition is denoted by ||.

We write μ for μ.0 and μ(d) for ε(d).μ. Our proofs, in the remainder of this
paper, remain sound even when the set A of actions is a singleton {a}. We write
an to stand for 0 if n = 0, and a.an−1, otherwise.

TCCS (open) terms are constructed inductively using the operators of the
syntax and a countably infinite set of variables V , with typical members x, x0, y,
y0, The size of a term is its length in symbols. The set of variables appearing
in term t is denoted by vars(t). A substitution σ is a function from variables to
TCCS terms. The range of a closing substitution is the set of TCCS processes.
The domain of a substitution is lifted naturally from variables to terms.

We take two different approaches to formalizing the syntax of TCCS in a term
algebra.

1. The first approach is to use a single-sorted algebra with the only available
sort representing processes. Then, both a. and ε(d). are sets of unary op-
erators for each a ∈ A and d ∈ D.

2. The other approach is to take two different sorts, one for time and one for
processes, denoted by T and P, respectively. Then, ε() is a single function
symbol with arity T × P → P. When using this approach, we use d, d′, d0,
. . . as variables of sort T and closing substitutions map variables of sort T

to elements of the time domain D.

The Plotkin-style rules defining the operational semantics of TCCS are given
below.

0
ε(d)→ 0 μ.x

μ→ x μ.x
ε(d)→ μ.x

ε(d).x
ε(d)→ x ε(d + e).x

ε(d)→ ε(e).x

x
ε(e)→ y

ε(d).x
ε(d+e)→ y

x0
μ→ y

x0 + x1
μ→ y

x1
μ→ y

x0 + x1
μ→ y

x0
ε(d)→ y0 x1

ε(d)→ y1

x0 + x1
ε(d)→ y0 + y1

x0
μ→ y0

x0 || x1
μ→ y0 || x1

x1
μ→ y1

x0 || x1
μ→ x0 || y1

x0
ε(d)→ y0 x1

ε(d)→ y1

x0 || x1
ε(d)→ y0 || y1

The rules above, define two types of transition relations: a→ , where a ∈ A, for

action transitions and
ε(d)→ , where d ∈ D, for time-delay transitions. We use an

→ to
denote n consecutive a-transitions (whose intermediate processes are irrelevant).
The following lemma lists some interesting properties of the semantics of TCCS.

Impossibility Results for the Equational Theory of Timed CCS 83

Lemma 1. The following statements hold for each process p and time delay d.

1. There exists a unique process pd such that p
ε(d)→ pd.

2. If p does not contain parallel composition and p
a→ p′, then pd

a→ p′, where pd

is defined above.

The notion of equivalence over TCCS that we are interested in is the following
notion of timed bisimilarity.

Definition 2. A symmetric relation R on TCCS processes is a timed bisimula-
tion relation when for all (p, q) ∈ R,

1. for all actions a and processes p′, if p
a→ p′ then there exists a process q′ such

that q
a→ q′ and (p′, q′) ∈ R;

2. for all time delays d and processes p′, if p
ε(d)→ p′ then there exists a process

q′ such that q
ε(d)→ q′ and (p′, q′) ∈ R.

Two processes p and q are timed bisimilar, or just bisimilar, denoted by p ↔ q
when there exists a timed bisimulation relation R such that (p, q) ∈ R.

The notion of bisimilarity generalizes naturally to open terms: s and t are
bisimilar, when σ(s) ↔ σ(t) for each closing substitution σ.

It is well-known that timed bisimilarity is a congruence over TCCS [12].
We define the following notion of time insensitive processes and show that a

TCCS process is time insensitive if and only it is bisimilar to a CCS process.

Definition 3. A TCCS process p is initially time insensitive when for all d, if

p
ε(d)→ pd, then pd ↔ p.
The set of time insensitive processes is the largest set PTI of TCCS processes

such that, whenever p ∈ PTI , (i) p is initially time-insensitive, and (ii) if p
a→ pa

then pa ∈ PTI is time insensitive for each a ∈ A and each process pa.

For example, a(d) is not (initially) time insensitive, a.a(d) is initially time in-
sensitive but not time insensitive, and a.ε(d).0 is (initially) time insensitive.

Theorem 4. A TCCS process p is time insensitive if and only if there exists a
process q such that p ↔ q and q does not contain time-delay prefixing operators,
i.e., q is a CCS process.

2.2 Equational Theory

Given a signature Σ, a set E of equations t = t′, where t and t′ are terms (of
the same sort), is called an axiom system.

We write E � t = t′ when t = t′ is derivable from E by the following set
of deduction rules. Deduction rule is a rule schema for each operator f in the
signature.

84 L. Aceto, A. Ingólfsdóttir, and M.R. Mousavi

E � t = t

E � t = t′

E � t′ = t

E � t0 = t1 E � t1 = t2

E � t0 = t2

E � t0 = t′0 . . . E � tn = t′n
E � f(t0, . . . , tn) = f(t′0, . . . , t

′
n)

t = t′ ∈ E

E � σ(t) = σ(t′)

Without loss of generality, we assume that E is closed under symmetry, i.e.,
t = t′ ∈ E if and only if t′ = t ∈ E, so that need not be considered in proofs. It
is well-known that if an equation relating two closed terms can be proven from
an axiom system E, then there is a closed proof for it.

An equation t = t′ is sound (modulo timed bisimilarity) if the terms t and t′

are timed bisimilar. An axiom system is sound if each of its equations is sound.
An example of a collection of equations from [12] that are sound with respect to
timed bisimilarity is given below. The axioms A4, M1 and D1 (used from left to
right) are enough to establish that each TCCS term that is bisimilar to 0 is also
provably equal to 0. Thus, in the technical developments from Section 4 onwards,
we shall assume, without loss of generality, that each axiom system we consider
includes the equations given below. This assumption means, in particular, that
our axiom systems allows us to identify each term that is bisimilar to 0 with 0.

A1 x + y = y + x A2 (x + y) + z = x + (y + z)
A3 x + x = x A4 x + 0 = x
M1 0 ||x = 0 M2 x || 0 = x
D1 ε(d).0 = 0 D2 ε(d).(x + y) = ε(d).x + ε(d).y
D3 ε(d).(x || y) = ε(d).x || ε(d).y D4 ε(d).ε(d′).x = ε(d + d′).x
P a.x = a.x + ε(d).a.x

Henceforth, process terms are considered modulo associativity and commutativ-
ity of + and ||. We use a summation and a product, denoted by

∑
i∈{1,...,k} si

and
∏

j∈{1,...,k′} tj , to stand for s1 + · · ·+sk and t1 || · · · || tk′ , respectively, where
the empty sum and product represent 0. We say that a term t has a 0 factor if
it contains a subterm of the form

∏
j∈{1,...,k′} tj , where some tj is bisimilar to

0. It is easy to see that, modulo the equations given above, every TCCS term s
can be written as

∑
i∈I si, for some finite index set I, and terms si (i ∈ I) that

are not 0 and do not have themselves the form s′ + s′′, for some terms s′ and
s′′. The terms si (i ∈ I) will be referred to as the summands of t. Again modulo
the equations given above, each si can be assumed to have no 0 factors.

3 Single-Sorted TCCS

In this section, as a warm up for the more complex results to follow, we show
that single-sorted TCCS has no finite basis provided that the time domain is
infinite. (Note that each time domain D that we consider in this paper does not
have a largest element and is therefore infinite.)

Theorem 5. If time domain D is infinite, then bisimilarity over single-sorted
TCCS has no finite basis.

Impossibility Results for the Equational Theory of Timed CCS 85

We start with proving the following lemma which implies the above theorem.

Lemma 6. Assume that E is a finite axiom system that is sound modulo bisim-
ilarity. Let d be greater than the maximal delay prefixing mentioned in terms in
E. For all provable equations t = u such that either t or u contain ε(d), then
both t and u contain ε(d).

Proof. To prove Lemma 6, we proceed by an induction on the derivation struc-
ture for E � t = u and make a case distinction based on the last deduction rule
applied to derive E � t = u. The cases for , and are either trivial or follow
immediately from the induction hypothesis. The most involved case is when the
last deduction rule is .

For a TCCS process p, we define the action depth of p, denoted by adepth(p),
as the length of the maximal action trace that p affords (by omitting the time-
delay transitions in between). It then follows that, for any two TCCS terms s
and t, if s ↔ t then adepth(σ(s)) = adepth(σ(t)) for all closing substitutions σ.

Lemma 7. Let t, u be bisimilar TCCS terms. Then vars(t) = vars(u).

Proof. Assume x ∈ vars(t) \ vars(u). Construct a substitution σ that maps x
to an, for some n larger than the sizes of both t and u, and all other variables to
0. Then, adepth(σ(t)) ≥ n > adepth(σ(u)) and hence t and u are not bisimilar.

We are now ready to complete the proof of Lemma 6. Assume that t′ = u′ ∈ E,
t = σ(t′), u = σ(u′) and ε(d) occurs in t. Since d is greater than the largest
constant appearing in E, neither t′ nor u′ contain occurrences of ε(d). Thus,
there exists a variable x ∈ vars(t′) such that σ(x) has an occurrence of ε(d).
By Lemma 7 and the soundness of the equation t′ = u′ modulo bisimilarity,
x ∈ vars(u′). Thus, σ(u′) also contains σ(x) as a subterm, which in turn has an
occurrence of ε(d). �
Proof of Theorem 5. Assume that single-sorted TCCS affords a finite complete
axiomatization E and d is greater than the largest delay appearing in E. (If no
element of D appears in terms in E then let d be an arbitrary element of D.)
Axiom D1 is sound. However, it follows from Lemma 6 that the instance of D1
for d ∈ D is not derivable from E and thus Theorem 5 follows. �
The lesson to be drawn from the above result is that, in the presence of an infinite
time domain, when studying the equational theory of TCCS, it is much more
natural to consider a two-sorted presentation of the calculus. For this reason, the
rest of this paper is devoted to the study of the equational theory of two-sorted
TCCS.

4 Two-Sorted TCCS

4.1 Gap Theorem

In this section, we present and prove the so-called gap theorem for TCCS, origi-
nally offered in [5], which shows that parallel composition cannot be eliminated

86 L. Aceto, A. Ingólfsdóttir, and M.R. Mousavi

in general from TCCS terms. Our presentation and the proof of this theorem
improves on that of [5] in two ways; first, our version of the gap theorem holds
even in the presence of a single action while the gap theorem of [5] requires
the presence of countably many different actions. Secondly, our proof is purely
process algebraic in nature while the proof of [5] goes through a translation of
TCCS to timed automata [2] and the argument is based on the number of clocks
in the translated timed automata.

Theorem 8. Define p as a(d0) ||
∏

i∈{1,...,n} a.a(di), for some action a ∈ A,
positive integer n and delays d0, d1, . . . , dn ∈ D. There exists no q such that
p ↔ q and q =

∑
j∈J

∏
i∈{1,...,nj} qij where nj ≤ n and qij does not contain

parallel composition.

Informally, the above theorem states that for all n > 0, there are TCCS processes
with n+1 parallel components which do not have any bisimilar counterpart with
(summands comprising) n or fewer parallel components. Proof. Assume, towards
a contradiction, that p ↔ q and q ≡

∑
j∈J

∏
i∈{1,...,nj} qij . By the definition of

p, we have that p
an

→ p′ ≡
∏

i∈{0,...,n} a(di). Hence there should exist a j ∈ J

such that qj ≡
∏

i∈{1,...,nj} qij
an

→ q′ for some q′ such that q′ ↔
∏

i∈{0,...,n} a(di).
Then, either all parallel components of qj contribute exactly one action to the
trace an or there exists a component in qj that contributes more than one action
to an. Next, we analyze these two possibilities and show that both lead to a
contradiction.

1. Assume that all parallel components of qj contribute exactly one action to
the trace an, i.e., nj = n, q′ =

∏
i∈{1,...n} q′ij , for some q′ij such that for all

i ≤ n, qij
a→ q′ij , and

∏
i∈{0,...n} a(di) ↔

∏
i∈{1,...,n} q′ij .

Since D has 0 as a cluster point, there is a d′ ∈ D such that 0 < d′ < d0.

It follows from Lemma 1.(2) that qij
ε(d′)→ q′′ij

a→ q′ij ; thus, q
ε(d′)→ q′′ an

→ q′. Fur-

thermore, p
ε(d′)→ p′′ ≡ a(d0 − d′) ||

∏
i∈{1,...n} a.a(di) and it should hold that

p′′ ↔ q′′. However, p′′ an

→ a(d0 − d′) ||
∏

i∈{1,...n} a(di) (as d′ < d0, this is the
only an-derivative of p′′), which is clearly not bisimilar to

∏
i∈{0,...n} a(di),

and hence, not bisimilar to q′.
2. Assume that there is a component in qj that contributes more than one

action to an, i.e., there exists an l ∈ {1, . . . , nj} such that qlj
ak−2

→ qak−2lj
a→ qak−1lj

a→ qaklj for some k > 1 and for some qak−2lj , qak−1lj and qaklj . For
notational convenience, we assume that k = 2 but the proof technique can

easily be adapted for k > 2. Note that by Lemma 1.(2) qlj
a→ qalj

ε(d′)→ qad′lj
a→ qad′alj ≡ qa2lj for an arbitrary d′.
It follows from the semantics of parallel composition and nondeterminis-

tic choice that q
an−1

→ qan−1 ≡ qalj ||
∏

i∈{1,...,nj}\{l} q′ij and qan−1↔ a.a(dm)
||

∏
i∈{0,...,n}\{m} a(di) for some 0 < m ≤ n. From the above bisim-

ilarity, we have that, for any d′ such that d′ > di, for each i ≤ n,

Impossibility Results for the Equational Theory of Timed CCS 87

qan−1
ε(d′)→ qan−1d′ for some qan−1d′ ≡ qad′lj ||

∏
i∈{1,...,nj}\{l} q′d′ij such that

qan−1d′ ↔ a.a(dm) ||
∏

i∈{0,...,n−1} a. Furthermore, qan−1d′ can make one fur-
ther a-transition, due to qad′lj resulting in some qand′ such that qand′ ↔
a(dm) ||

∏
i∈{0,...,n−1} a or qand′ ↔ a.a(dm) ||

∏
i∈{0,...,n−2} a. It follows from

the aforementioned bisimilarities that qand′
an

→ q′ ↔ a(dm).
Either all a-transitions in the latter an-trace are due to qd′ij with i �= l, or
some of them are performed by qad′alj ≡ qa2lj .

In the former case, then qan−2 ≡ qlj ||
∏

i∈{1,...,nj}\{l} q′ij
ε(d′)→ an+2

→ q for
some q ↔ a(dm) since, first,

∏
i∈{1,...,nj}\{l} q′d′ij can make n consecutive a-

transitions, and qd′lj can make two a-transition afterwards. However, p can-

not mimic this behavior, i.e., an−1

→ ε(d′)→ an+2

→ , for it has only n+1 a-transitions
enabled after an initial an−2 trace and a time delay of d′, which results in
some process bisimilar to a(dm) || a(d′m), for some m′ �= m ∈ {1, . . . n}.
In the latter case, i.e., qad′alj ≡ qa2lj contributes to some of the a-transitions,

in an, say some u a-transitions such that u > 0, then qlj
a2

→ qa2lj
au

→ q′ for

some q′ and hence q
an+u

→ q′′ for some q′′. But p can initially make at most n
consecutive a-transitions, hence a contradiction follows. �

As a corollary to the above theorem, one can conclude that TCCS affords no
expansion theorem, i.e., parallel composition cannot be resolved in TCCS.

Corollary 9. Two-sorted dense-time TCCS has no expansion theorem.

4.2 Axiomatizability

Our next milestone in this section is to prove a theorem witnessing that TCCS,
does not have a finite basis modulo timed bisimilarity. The problem underscored
by the proof of this result is the inability of any finite and sound axiom system
E to “expand” the initial behavior of terms of the form p || q when either p or
q have sufficiently many summands (namely, larger than the size of terms in
the equations in E). All of the impossibility results presented henceforth also
hold for conditional equations of the form P ⇒ t = u where P is an arbitrary
predicate over the time domain.

Theorem 10. Timed bisimilarity over two-sorted dense-time TCCS has no fi-
nite basis.

The above result dates back to [11] (for the case of CCS without time) and
our proof follows the same structure as that of [11]; namely, we prove that for
each finite and sound set of axioms E for TCCS modulo bisimilarity and for
sufficiently large n, with respect to the size of the largest term appearing in E,
the following sound equation is not provable

E � a || Φn = a.Φn +
∑

i∈{1,...,n}
a.(a || φi) ,

where Φn =
∑

i∈{1,...,n} a.φi and φn =
∑

i∈{1,...,n} ai.

88 L. Aceto, A. Ingólfsdóttir, and M.R. Mousavi

As we show in the next section, unlike in the setting of Milner’s CCS, even
adding two variations on the left-merge operator does not improve the situation
with respect to axiomatizability.

5 Two-Sorted TCCS with Left-Merge

Classical Left-Merge. Bergstra and Klop suggested to add an auxiliary left-
merge operator, denoted by ‖ , which would allow for a finite axiomatization
of parallel composition in CCS. The semantics of the left-merge operator is
captured by the following deduction rule.

x0
a→ y0

x0‖ x1
a→ y0 || x1

However, adding the left-merge operator with the above semantics does not
result in a finitely axiomatizable theory.

Theorem 11. Timed bisimilarity over two-sorted dense-time TCCS extended
with the untimed left-merge operator has no finite basis.

Timed Left-Merge. Following the tradition of Bergstra and Klop, the left-
merge operator was given a timed semantics as follows [4].

x0
a→ y0

x0‖ x1
a→ y0 || x1

x0
ε(d)→ y0 x1

ε(d)→ y1

x0‖ x1
ε(d)→ y0‖ y1

This operator enjoys most of the axioms for the classic left-merge operator that
lead to a finite axiomatization of bisimilarity [3]. The following lemma lists the
most important properties that this timed left-merge operator possesses. Note
that Lemma 1 also remains valid over TCCS extended with the above left-merge
operator.

Lemma 12. For the left-merge operator with the semantics given above, the
following axioms are sound:

x || y = (x‖ y) + (y‖ x) 0‖ x = 0
(x + y)‖ z = (x‖ z) + (y‖ z) x‖ 0 = x.

Thanks to axioms and , one can show that terms bisimilar to 0 can be removed
as arguments of the left-merge. Henceforth, when we write p does not contain
0-factors, we mean that it does not contain a parallel composition or a left-merge
with an argument bisimilar to 0.

However, the new left-merge operator does not help in giving TCCS a finite
basis either, as we prove in the remainder of this section. The reason is that the
axiom (a.x)‖ y = a.(x || y), which is a sound axiom in the untimed setting, is in
general unsound over TCCS. For example, consider the process a‖ ε(d).a; after

Impossibility Results for the Equational Theory of Timed CCS 89

making a time delay of length d, it results in a‖ a, which is capable of perform-
ing two consecutive a-transitions. However, a.(0 || ε(d).a) after a time delay of
length d remains the same process and can only perform one a-transition since
the second a-transition still has to wait for some time, i.e., d, before becoming
enabled.

However, axiom is sound for the class of TCCS processes that are initially

time insensitive; see Definition 3. Indeed if q is a process such that q
ε(d)→ qd

implies q ↔ qd for each delay d, then it holds that (a.p) ‖ q ↔ a.(p || q). For
instance, a‖ Φn↔ a.Φn for each n ≥ 0, where the process Φn is defined as in
Section 4.2. Unfortunately, the class of initially time insensitive processes cannot
be characterized by a finite (head-)normal form and this constitutes the key idea
in our non-finite axiomatizability proof, given below.

Theorem 13. Two-sorted TCCS extended with the timed left-merge operator
affords no finite axiomatization modulo timed bisimilarity.

Proof. Towards a contradiction, we assume that TCCS with left-merge does
have a finite axiomatization E. We prove the theorem by showing that the fol-
lowing lemma holds. (In the remainder of this proof, we assume that all terms
appearing in equations do not contain parallel composition since, by axiom ,
parallel composition is a derived operator.)

Lemma 14. Consider the equality a ‖ Φn = a.Φn. Let n0 be the size of the
biggest term t or u, appearing in equations (t = u) ∈ E. The above equation is
not derivable from E for n > max(n0, 2).

Once the above lemma is proven the theorem follows since the above equality is
sound yet not derivable from E for n > max(n0, 2). Lemma 14 is a consequence
of the following result that establishes a property of equations that are derivable
from E but that is not afforded by the equation a‖ Φn = a.Φn for suitably large
values of n.

Lemma 15. If E � p = q,

1. p and q do not contain 0 summands or factors,
2. p ↔ a‖ Φn for n > max(n0, 2), and
3. p has a summand of the form p0‖ p1 where p0 ↔ a and p1 ↔ Φn,

then q has a summand of the form q0‖ q1 where q0 ↔ a and q1 ↔ Φn.

If we prove the above lemma then it follows that a‖ Φn = a.Φn for n > max(2, n0)
is not provable from E because the left-hand side satisfies the requirements of
the statement but the right-hand side does not contain any summand of the
form q0‖ q1.

In the proof of Lemma 15, we shall have some use for the following definition
and the subsequent lemma [8,11].

Definition 16. Process p is irreducible when for all p0 and p1, if p ↔ p0 || p1
then p0 ↔ 0 or p1 ↔ 0. We say that p is prime when it is irreducible and is not
bisimilar to 0.

90 L. Aceto, A. Ingólfsdóttir, and M.R. Mousavi

Lemma 17. The following processes are prime:

1. φi, for an arbitrary i ≥ 1;
2. Φi, for all i > 1;
3. a.Φi, for all i > 1.

The proof of the above lemma is standard and is omitted for brevity. Note that
neither item 2 nor item 3 in the above lemma hold for i = 1 since Φ1 ≡ a.φ1 ≡
a.a ↔ a || a.

To prove Lemma 15, we use an induction on the derivation structure for p = q
and distinguish the following cases based on the last deduction rule applied in
the derivation. (Since p and q have neither 0 summands nor factors, reasoning
as in [9], we may assume that none of the terms mentioned in the proof of p = q
has 0 summands or factors.) The statement is trivial if E � p = q is due to .
If E � p = q is due to , then there exists a term r such that E � p = r and
E � r = q and the lemma follows by applying the induction hypothesis first on
E � p = r and then on E � r = q. If the last applied deduction rule is , then we
distinguish the following cases based on the head operator of p and q.

1. p ≡ a.p′ and q ≡ a.q′; this case is vacuous since p should contain at least one
summand which is of the form p1‖ p2;

2. p ≡ ε(d).p′ and q ≡ ε(d).q′; impossible, see above.
3. p ≡ p0 + p1, q ≡ q0 + q1, E � p0 = q0 and E � p1 = q1; without loss of

generality, we assume that p0 contains a summand of the form p′0‖ p′1 where
p′0 ↔a and p′1 ↔Φn. It is not hard to see that p0 ↔a‖ Φn because p↔a‖ Φn.
It follows from the induction hypothesis that q0 contains a summand that is
of the form q′0‖ q′1 such that q′0 ↔ a, q′1 ↔ Φn and hence, so does q.

4. p ≡ p0‖ p1, q ≡ q0 ‖ q1, E � p0 = q0 and E � p1 = q1; it follows from the
hypothesis of the lemma that p0 ↔ a and p1 ↔ Φn. By the soundness of E,
we have that p0 ↔ q0 ↔ a and p1 ↔ q1 ↔ Φn and thus the lemma follows.

It remains to consider the case where the last deduction rule applied is a closed
instantiation of an axiom (t = u) ∈ E. In this case, there exists a substitution
σ such that σ(t) = p and σ(u) = q. Assume that t ≡

∑
i∈I ti and u ≡

∑
j∈J uj

such that the ti’s and uj’s are not bisimilar to 0 and do not have + as their head
operator. Let ti be a summand of t such that σ(ti) has a summand of the form
p0 ‖ p1 and p0 ↔ a and p1 ↔ Φn. We analyze the following cases based on the
structure of ti.

ti ≡ x It is not difficult to prove that, since t = u is sound modulo bisimi-
larity, there exists j ∈ J such that uj ≡ x. Then the lemma follows
since σ(x), and hence σ(u), contains a summand of the form p0‖ p1
and p0 ↔ a and p1 ↔ Φn.

ti ≡ a.t′i Impossible since σ(ti) must have a summand of the form p0‖ p1.
ti ≡ ε(d).t′i Impossible since σ(ti) must have a summand of the form p0‖ p1.
ti ≡ t′i‖ t′′i Then, it is not hard to see that σ(t′i)↔a and σ(t′′i)↔Φn. Write t′′i =∑

k∈K vk where no vk is bisimilar to 0 or has + as head operator.
Since Φn

a→ φi, for each 0 < i ≤ n, the term σ(t′′i) should mimic these

Impossibility Results for the Equational Theory of Timed CCS 91

transitions, and because 2|K| < n, there exists a k ∈ K such that
σ(vk) a→ p′i ↔ φi for at least three different i’s. By a case distinction
on the structure of vk, we argue that vk can only be a variable:

(a) vk ≡ a.v′k: This leads to a contradiction. Indeed, then σ(v′k) ↔ φi ↔ φj

for different i and j.
(b) vk ≡ ε(d).v′k: Then σ(vk) cannot make an a-transition, which is a con-

tradiction.
(c) vk ≡ v′k ‖ v′′k : Recall that σ(vk) can make an a-transition to φi and

φj for some i �= j. Hence σ(vk) ≡ σ(v′k)‖ σ(v′′k) a→ pi || σ(v′′k) ↔ φi for
some pi. Since φi is prime (Lemma 17) pi ↔ 0 and σ(v′′k)↔ φi. Similarly,
σ(vk) ≡ σ(v′k)‖ σ(v′′k) a→ pj || σ(v′′k) ↔ φj for some pj and thus, σ(v′′k)↔φj .
Concluding, φi ↔ σ(v′′k) ↔ φj for i �= j, which is a contradiction.

Therefore vk ≡ x for some variable x and σ(x) can make a-
transitions to φi, φj and φk for different i, j and k. Then, x is
not a summand of t, for this would contradict our assumption that
p ↔ a‖ Φn. Indeed, the action depth of σ(x) after an a-transition is
at most n (the action depth of φn) while the action depth of a‖ Φn

after an a-transition is n+1 (the action depth of Φn). Furthermore,
x /∈ vars(t′i) or otherwise it would not hold that σ(t′i)↔a since σ(t′i)
would have an action depth larger than 1. Also, x can only appear in
the summands of t′′i that are of the form x or ε(d).x. Indeed, if x oc-
curred in summands that have any form other than x or ε(d).x, then
σ(t′′i) ↔ Φn would not be sound since σ(t′′i) could then make two or
more a-transitions (possibly interleaved with time delays) resulting
in φi for some i > 1, which cannot be mimicked by Φn. Hence, we
conclude that t′′i = x + t′′ +

∑
i′∈I′ ε(di′).x for some term t′′ such

that x /∈ vars(t′′).
Consider the new substitution σ′ defined to map x to ε(d).a.Φn,

where d is smaller than each delay occurring in p or q, and to agree
with σ on all other variables. (Such d exists since D has 0 as a cluster
point.)

We have that σ′(ti)
ε(d)→ p′d ≡ σ(t′i)d‖ (a.Φn+σ(t′′)d+

∑
i′∈I′ ε(di′ −

d).σ′(x)) where σ(t′i)
ε(d)→ σ(t′i)d and σ(t′′)

ε(d)→ σ(t′′)d. Furthermore, as
σ(t′i) ↔ a and axiom P is sound, p′d

a→ p′da ↔ a.Φn + σ(t′′)d. Observe
that the action depth of σ(t′′)d can at most be n+1. It follows from
(t = u) ∈ E and the soundness of E that σ′(t) ↔ σ′(u) and hence

σ′(u)
ε(d)→ σ′(u)d

a→ q′da ↔ p′da for some q′da. Thus, there exists a

summand uj of u (for some j ∈ J) such that σ′(uj)
ε(d)→ q′d

a→ q′da.
It holds that x ∈ vars(u′

j) since otherwise, σ(uj) ≡ σ′(uj) and q′da

would have action depth of at most n + 1 (since σ(u) ↔ a‖ Φn). We
distinguish the following cases based on the structure of uj.

uj ≡ x Impossible since then q′da ≡ Φn which is not bisimilar to a.Φn +
σ(t′′)d ↔ p′da.

92 L. Aceto, A. Ingólfsdóttir, and M.R. Mousavi

uj ≡ ε(e).u′
j Impossible since d is smaller than each delay in p and q, which

means that d < e and thus, σ(uj) cannot perform an action after
a time delay of length d.

uj ≡ a.u′
j We argue that this case leads to a contradiction. To this end, ob-

serve that, first of all, variable x can appear only in summands of
u′

j which are of the form x or ε(d′).x. Otherwise, if u′
j has an ac-

tion prefixing or left-merge operator with an argument containing
x among its variables, the action depth of σ′(u′

j) would be at least
n+3, which is larger than the action depth of p′da↔ a.Φn + σ(t′′)d.
Hence, u′

j ↔ x + u′′ +
∑

j′∈J′ ε(dj′).x for some term u′′ such that
x /∈ vars(u′′). Thus, q′d ↔ a. (ε(d).a.Φn + σ′(u′′) +

∑
j′∈J′ ε((dj′ +

d)).σ′(x)) and q′ad ≡ ε(d).a.Φn + σ′(u′′) +
∑

j′∈J′ ε(dj′ + d).σ′(x).
It should hold that q′ad ↔ a.Φn + σ(t′′)d; but a.Φn + σ(t′′)d

a→
Φn and a matching a-transition of q′ad can only be due to σ′(u′′),
which does not contain x and thus is the same as σ(u′′). It holds
that adepth(σ(u′′)) < adepth(σ(uj)) ≤ adepth(σ(u)) ≤ n + 2 =
adepth(a.Φn + σ(t′′)d). Therefore, any a-derivative of q′da will have
action depth of at most n. Hence, it cannot hold that q′da ↔a.Φn +
σ(t′′)d, contradicting our assumption.

uj ≡ u′
j ‖ u′′

j By one of our assumptions σ(u′
j) and σ(u′′

j) are not bisimilar to 0.
Therefore, σ′(u′

j) and σ′(u′′
j) are not bisimilar to 0, either. By our

assumption, σ′(u′
j)‖ σ′(u′′

j)
ε(d)→ a→ σ′(u′

j)da || σ′(u′′
j)d ↔ p′da. Recall

that p′da↔a.Φn+σ(t′′)d where σ(t′′) d→ σ(t′′)d and σ(t′′)+Φn ↔Φn.
It follows from the latter bisimilarity that σ(t′′)d + Φn ↔ Φn. We
claim that a.Φn + σ(t′′)d is prime and hence, σ′(u′

j)da ↔ 0 and
σ′(u′′

j) ↔ p′da.
To prove the above claim assume towards a contradiction that
r || s ↔ a.Φn + σ(t′′)d for r and s not bisimilar to 0. We distin-
guish the following cases based on the behavior of σ(t′′)d.

i. Assume that σ(t′′)d ↔ 0. It follows that r || s ↔ a.Φn. However, this
is impossible since a.Φn is prime (Lemma 17, item 3).

ii. Assume that σ(t′′)d
ε(e)→ σ(t′′)d+e

a→ σ(t′′)(d+e)a ↔ φi for some i ≤
n. Then, without loss of generality, r || s ε(e)→ re || se

a→ r′ || se ↔ φi

for some r′ such that r
ε(e)→ re

a→ r′. It follows from primality of φi

that r′ ↔ 0 and se ↔ φi. It also holds that a.Φn + σ(t′′)d
a→ Φn.

Thus, r || s should be able to mimic this transition; the transition
cannot be due to r because then s ↔ Φn (since Φn is also prime),
which contradicts se ↔φi. Hence, r || s a→ r || s′ ↔Φn. It follows from
primality of Φn that r ↔ Φn and re ↔ Φn. Thus, using congruence of
↔ with respect to ||, we have that re || se ↔Φn || φi. Since the action
depth of a.Φn + σ(t′′)d+e is n + 2, we infer that φi ↔ a and i = 1.
But even then, re || se

a→ v ↔ φn || a, which cannot be mimicked by

Impossibility Results for the Equational Theory of Timed CCS 93

a.Φn + σ(t′′)d+e (since σ(t′′)d+e does not have the sufficient action
depth and the only a-transition afforded by a.Φn results in Φn).

Thus, we conclude that a.Φn+σ(t′′)d is prime and hence, σ′(u′
j)da↔

0 and σ′(u′′
j)↔a.Φn +σ(t′′)d. We claim that since d is smaller than

all delays mentioned in p and q and σ′(u′
j)

ε(d)→ a→ σ′(u′
j)da ↔0, then

σ(u′
j)

a→ σ(u′
j)a for some σ(u′

j) ↔ 0. From this claim (whose proof
is given next), it follows that σ(uj) ≡ σ(u′

j) ‖ σ(u′′
j) a→ σ(u′

j)a ||
σ(u′′

j) ↔ σ(u′′
j). On the other hand, q ≡ σ(u) ↔ a‖ Φn and thus,

σ(u′′
j) ↔ Φn. Hence, the action depth of σ(u′

j) is 1 and therefore
σ(u′

j)↔a. To summarize, we have proved then that σ(uj) ≡ σ(u′
j)‖

σ(u′′
j), σ(u′

j) ↔ a and σ(u′′
j) ↔ Φn, which was to be shown. Thus,

it only remains to prove the following lemma.

Lemma 18. Assume that d is smaller than each delay in σ(u) and let
r be a process that is not bisimilar to 0. Define σ′ to map x to ε(d).a.r

and all other variables y to σ(y). Assume that σ′(u)
ε(d)→ σ′(u)d

a→ σ′(u)da

↔ 0. Then, σ(u) a→ σ(u)a for some σ(u)a ↔ 0.

Proof. By an induction on the structure of u. For brevity, we only
give the proof for the case u ≡ y; the proofs for other cases are
similar.
Assume that u ≡ y. First of all observe that y cannot be the same as

x. Indeed σ(x) ≡ ε(d).a.r
ε(d)→ a.r

a→ r and it does not hold that r↔0

by one of the provisos in the lemma. Thus, σ′(y) ≡ σ(y)
ε(d)→ a→ q′

and q′ ↔ 0. We proceed with an induction on the structure of
σ′(y) ≡ σ(y).

σ(y) ≡ a.q′ Then the lemma follows since σ(y) a→ q′.
σ(y) ≡ ε(e).q′ Impossible since then σ(y) would not afford an a-transition after

a time delay of length d because d < e.

σ(y) ≡ q0 + q1 Assume without loss of generality that q0
ε(d)→ a→ q′. Time delay d

is smaller than the delays mentioned in σ(y) and, hence, in q0.
It follows from the induction hypothesis that q0

a→ q′′ for some
q′′ ↔ 0 and therefore σ(y) ≡ q0 + q1

a→ q′′ ↔ 0.

σ(y) ≡ q0‖ q1 Then, q0
ε(d)→ a→ q′0 ↔ 0 and q′ ≡ q′0 || q1d ↔ 0 where q1

ε(d)→ q1d;
hence, q1d ↔q1 ↔0. It follows from the induction hypothesis that
q0

a→ q′′0 for some q′′0 ↔ 0 and thus, σ(y) ≡ q0‖ q1
a→ q′′0 || q1 ↔ 0.

6 Conclusions

In this paper, we studied the equational theory of TCCS as proposed by Wang
Yi in [12]. We improved upon the Gap Theorem of [5] and proved that, even
in the presence of a single basic action, parallelism in TCCS cannot be resolved

94 L. Aceto, A. Ingólfsdóttir, and M.R. Mousavi

in general. Furthermore we showed that TCCS, in its single- and two-sorted
presentations, as well as its extensions with the untimed or the timed left-merge
operator, does not afford a finite axiomatization.

It is an open question whether there exists a binary operator that, when
added to TCCS, can give timed bisimilarity a finite basis. (A similar question
is still open for untimed process algebras, i.e., whether there exists a single
binary operator that can axiomatize communication and concurrency; the answer
in both cases is expected to be negative.) Towards achieving this goal, in the
extended version of this paper, we prove that adding two different variants of
the timed left-merge operator ‖ 0 and ‖ 1 with the following semantics does not
lead to a finite axiomatization for bisimilarity. (The leftmost rule below applies
to both ‖ 0 and ‖ 1.)

x0
a→ y0

x0‖ 0,1 x1
a→ y0 || x1

x0
ε(d)→ y0

x0‖ 0 x1
ε(d)→ y0 || x1

x0
ε(d)→ y0 x1

ε(d)→ y1

x0‖ 1 x1
ε(d)→ y0 || y1

In the case of two-sorted TCCS, our proofs make use of the fact that the time
domain has 0 as a cluster point. It remains open whether discrete-time TCCS
(or its extension with (timed) left-merge) is finitely axiomatizable modulo bisim-
ilarity.

References

1. Aceto, L., Jeffrey, A.: A complete axiomatization of timed bisimulation for a class
of timed regular behaviours. TCS 152(2), 251–268 (1995)

2. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson,
M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443, pp. 322–335.
Springer, Heidelberg (1990)

3. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication.
I&C 60(1-3), 109–137 (1984)

4. Baeten, J.C.M., Middelburg, C.A.: Process algebra with timing. Springer, Heidel-
berg (2002)

5. Godskesen, J.C., Larsen, K.G.: Real-time calculi and expansion theorems. In: Shya-
masundar, R.K. (ed.) Foundations of Software Technology and Theoretical Com-
puter Science. LNCS, vol. 652, pp. 302–315. Springer, Heidelberg (1992)

6. Jeffrey, A., Schneider, S., Vaandrager, F.W.: A comparison of additivity axioms in
timed transition systems. Report CS-R9366, CWI, Amsterdam (1993)

7. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

8. Milner, R., Moller, F.: Unique decomposition of processes. TCS 107(2), 357–363
(1993)

9. Moller, F.: Axioms for Concurrency. Ph.D. Thesis, University of Edinburgh (1989)

10. Moller, F., Tofts, C.M.N.: A temporal calculus of communicating systems. In:
Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415.
Springer, Heidelberg (1990)

Impossibility Results for the Equational Theory of Timed CCS 95

11. Moller, F.: The importance of the left merge operator in process algebras. In:
Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443, pp.
752–764. Springer, Heidelberg (1990)

12. Yi, W.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop,
J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 502–520. Springer, Heidelberg
(1990)

13. Yi, W.: CCS + time = an interleaving model for real time systems. In: Leach
Albert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) Automata, Languages and
Programming. LNCS, vol. 510, pp. 217–228. Springer, Heidelberg (1991)

14. Yi, W.: A calculus of real time systems. PhD thesis, Chalmers University of Tech-
nology (1991)

Conceptual Data Modeling

with Constraints in Maude

Scott Alexander

scottxyz@usa.com

Abstract. Conceptual data modeling (CDM) for relational databases
can declare constraints on both computed and stored relations, and ab-
stracts from entity-relationship (E/R) modeling by not distinguishing
between entities and attributes. To provide a formal semantics, better
interoperability, and arbitrary constraints, we can map CDM to a wide-
spectrum algebraic specification language such as Maude. A case study
is presented using a functional module to represent a conceptual data
model and its constraints, and a system module to obtain a constraint-
enforcing interpreter allowing concurrent edits to the database state.

1 Motivation

Relational databases allow declarative constraints (such as unique indexes and
non-null fields) only for (stored) tables but not for (computed) views (“queries”),
requiring instead procedural constructs such as triggers for constraints on queries.
This has led to a proliferation of relational database modeling languages (many
lacking a formal semantics), described by some as a “methodological jungle” [1].
Entity-relationship (E/R) modeling (e.g., [2]) may allow declaring constraints on
both tables and queries equally, but may still be too concrete and non-modular
(in the “extensibility” sense [3]) for earlier, more “conceptual” modeling stages,
as it forces premature distinctions between entities and attributes.

Conceptual data modeling (CDM) methods such as ORM, PSM, NIAM, and
FCO-IM [4,5,6,7,8,9] map either an entity or an attribute to an (object) type,
and capture the notion of “an attribute in an entity” as a (fact) type having
a sequence of two role arrows, one to the (“attribute”) object type and one to
the (“entity”) object type. CDM diagrams are more modularly extensible than
E/R diagrams, because to extend an E/R diagram an attribute may have to be
changed to an entity, a distinction lacking in CDM. (Figure 1 shows an example.)
A “relational mapping” procedure (e.g., Rmap [5,6]) maps a CDM model to an
E/R model, essentially mapping CDM arrows sharing a common target (resp.
source) type and belonging to several “mandatory” constraints (resp. to one
“uniqueness” constraint) to attributes of a single entity — which is mapped to
E/R from the arrows’ shared target (resp. source) CDM type.

CDM diagrams cannot easily depict more-complex constraints, often lack a
formal semantics, and must interoperate with other systems, so mapping CDM
with constraints to a wide-spectrum multiparadigm executable algebraic spec-
ification language would be useful. Adapting techniques used for UML+OCL

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 96–110, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Conceptual Data Modeling with Constraints in Maude 97

D
Director

M
Movie

D
Director

M
Movie

Movie

Movie
Director

[1] directed [2]

dD d dM

[1] directed [2]

dD d dM

[1] was born on [2]

bD b bY Y
Date

CDM

E/R

CDM

E/R Movie

Movie
Director

Director

Director
BirthDate

(pk)
(fk req)

(pk)
(req)

(pk)
(req)

epi:bD
epi:dM

mon:bD
Note: Labels here in italics are not commonly used in CDM,
but are useful in a category theory approach and in Maude.

Fig. 1. Adding the Director’s BirthDate in the E/R diagrams (upper row) requires
changing Director from an entity to an attribute, but in the CDM diagrams (lower
row) no existing diagram elements need to be changed

diagrams [10] and RM-ODP specifications [11,12], we can use Maude [13] to rep-
resent a conceptual data model or type graph, and populations or instances of
its type model (i.e., database states), using a multiset configuration defined in a
property specification expressed as a functional module which provides operators
to check constraints — and then use Maude’s rewriting semantics [14] to obtain
an interpreter defined in a system specification expressed as a system module
which enforces the constraints while allowing concurrent edits to the database
state. “Big-step” [3] rewrites will group several rewrite steps (possibly invalid
individually) into a single (collectively valid) rewrite step (simulating Rmap).

2 Conceptual Data Modeling with Constraints

Any CDM type can also be a subtype of one or more other types, depicted
in diagrams as a heavy arrow from (sub)type to (super)type. Multiple inher-
itance is allowed. Subtype arrows (labeled (spec) here) which specialize their
target (super)type(s) are distinguished from subtype arrows (labeled (gen) here,
and depicted using dotted heavy arrows here) which generalize their source
(sub)type(s). CDM can also define a multiset (collection, bag) type using a
power (pow) role and an associated element (elt) role.

A CDM constraint can be declared on one or more role or subtype arrows,
or object or fact types. Figure 1 declares two mandatory (total) constraints:
• epi:dM (resp. • epi:bD) requiring that arrow dM (resp. bD) must be epic, or
surjective, i.e., there must be at least one dM (resp. bD) arrow instance for every
M (resp. D) object instance. It also declares a uniqueness constraint ↔ mon:bD
requiring that arrow bD must be monic, or injective, i.e., there may be at most
one bD arrow instance for every D object instance. In general, a CDM manda-
tory (resp. uniqueness) constraint can apply to a set or cotuple (resp. a sequence
or tuple) of arrows having a common target (resp. source) — or else “extensi-
ble to” one by traversing the type graph composing “forward” along pushouts

98 S. Alexander

such as subtype inclusions (resp. “backward” along pullbacks such as joins), in
which case the • (resp. a U or P) is circled and connected by dotted lines to
the arrows defining the constraint. For an example, see the external (primary)
uniqueness constraint mon:o*i@oC=iC in Fig. 2. A disjoint constraint on a set
of subtype arrows (depicted by a ⊗ symbol connected with a dotted line to each
arrow) requires that their pullback must be empty, i.e., their source types must
not share any instances. A set-comparison constraint between compatible role
sequences, i.e., where corresponding roles have the same target (depicted using
either (i) a circled ⊆ or (ii) a ⊗ symbol on top of a a dotted-line arrow going
from the first sequence to the second — or (iii) just a double-headed dotted-line
arrow between the sequences), requires that the first role sequence population
must be either (i) a subset of, (ii) mutually exclusive with, or (iii) equal to the
second. A ring constraint on two role arrows having the same target requires
that the role sequence population (viewed as a binary relation) must be e.g. an-
tisymmetric, asymmetric, acyclic, irreflexive, intransitive, or symmetric, and is
depicted using a small superscripted circle followed by the abbreviated property
name, e.g., ◦acyc or ◦irr. A cardinality constraint on a role (sequence), general-
izing mandatory and uniqueness constraints and recorded using inequalities or a
range N..M, requires that each target instance (product) must have from N to M
corresponding arrow instances. A value constraint on an object (recorded using
inequalities, sets, and ranges) limits the object’s allowable instance values. Cer-
tain more-complex constraints, difficult to depict graphically, must be recorded
textually (“off-diagram”), and some CDM tools may omit mapping them to E/R.

3 Rewriting Logic and Maude

Maude [13] is a high-level language and a high-performance interpreter and com-
piler in the OBJ [15] algebraic specification family that supports membership
equational logic [16] and rewriting logic [17] specification and programming.

Membership equational logic (MEL) is a Horn logic whose atomic sentences
are equalities t = t ′, and membership assertions of the form t : S stating that
a term t has sort S. Such a logic extends order-sorted equational logic, and
supports sorts, subsort relations, subsort polymorphic overloading of operators,
and the definition of partial functions with equationally defined domains.

Rewriting logic (RWL) is a logic of change that can naturally deal with state
and with highly nondeterministic concurrent computations. In rewriting logic,
the state space of a distributed system is specified as an algebraic data type in
terms of an equational specification (Σ,E), where Σ is a signature of sorts (types)
and operations, and E is a set of (conditional) equational axioms. The dynamics
of a system in rewriting logic is then specified by a set R of labeled rewrite rules
of the form t → t ′, where t and t ′ are Σ-terms. These rules describe the local,
concurrent transitions possible in the system; i.e., when a part of the system state
fits the pattern t then it can change to a new local state fitting pattern t ′. Rules
may be conditional, in which case the guards act as blocking pre-conditions, in
the sense that a conditional rule can only be fired if the condition is satisfied.

Conceptual Data Modeling with Constraints in Maude 99

4 Expressing a Conceptual Data Model in Maude

4.1 Fact and Object Types and Instances, and Constraint Satisfaction

CDM fact types can be modeled as multirelations [18] — or, more abstractly, as
spans [19,20] with labeled legs, avoiding the need to order a fact type’s roles. In
a categorical approach [1], a conceptual data model is a type graph where a node
is a fact type or an object type, an edge is a subtype inclusion or a role arrow,
and the subtype subgraph is cycle-free and commutes. A type model (capturing
the notion of a population or state) is a graph homomorphism from a type graph
to an instance category with finite sums and products and disjoint sums.

Using the more-concrete multirelations approach [19,1], we can represent a
type graph and its type model in Maude using a multiset configuration (of sort
PreCdm) built from terms representing object and fact instances:

fmod PRECDM is
sorts Obj Fact PreCdm .
subsorts Obj Fact < PreCdm .
op nil : -> PreCdm .
op _;_ : PreCdm PreCdm -> PreCdm
[assoc comm id: nil prec 121 format(d s ni d)] .

endfm

CDM object and fact types will declared to be subsorts of Obj and Fact.
Functional module CDM, which imports PRECDM, provides an extensible mecha-
nism for checking constraints, using MEL to define a “partial coercion” operator
{_} returning a term of sort Cdm (resp. of kind [Cdm]) if its argument satisfies
(resp. does not satisfy) arbitrary conditions which we can specify later:

fmod CDM is extending PRECDM .
sorts Cdm MTruth .
ops tt ff : -> MTruth .
op {_} : [PreCdm] -> [Cdm] [format(d n+++i s--- d)] .

endfm

We can later define constraints using partial operators taking a term of kind
[PreCdm] and expressing satisfaction by returning a term of kind [MTruth] or
returning the term tt of sort MTruth. Value constraints can be defined using just
constants or membership axioms. A term of sort PreCdm will be a valid instance
or population of the conceptual data model iff it reduces to a term of sort Cdm
using partial operator {_} (i.e., iff all constraints are satisfied).

Using pattern-matching and term-rewriting, Maude functional modules can
define and check arbitrary constraints (i.e., those expressible in MEL). These
clearly include all graphical (i.e., finite-set-theoretic) as well as textual (e.g.,
order-sorted algebraic) constraints expressible in CDM.

4.2 Case Study: Expressing a CDM Diagram with Constraints in
Maude

CDM diagram UNI in Fig. 2 models a university, including various types of
persons plus departments, courses, prerequisites, dates, quarters, and grades.

100 S. Alexander

X
Person
(String)

P
Professor

A
Admin

S
Student

S
Student

S*T
Student-
Teacher

K
Work
(String)

T+A
Teacher-
OrAdmin

Y
Date
(Date)

[1] reviewed [2]
[1] audits [2]

An up-arrow () is used
for an object type that
appears more than
once in the diagram,
to “point” to the existence
of another occurrence.

A fact type’s role boxes
are numbered left-to-right
(or top-to-bottom).

aT1 aT2

m

°irr

<=2

irr:a

mon:aT2

[1] reports
to [2]

uA1 uA2
u

°acyc
acyc:u

mon:uA1

D
Dept

(String)

[1] heads [2]

hD

hP

[1] majors
in [2]

[1] works
for [2]

wT+A

wD

h

w

a

epi:hD

card:mS<=2

mon:hDmon:hP

mon:wT+A

epi:wT+A

h<w

[1] is contracted till [2]

cP

cY

[1] published [2]
pP

mD

mS

pK

[1] is tenured
zP

rP rK

c

p

r

z

pxr

zPxcP

epi:zP+cP

A<T+A

T<T+A

P<T
S*T<S

S*T<T

A<X

S<X
T<X

epi:A<X+T<X+S<X
TxA

T
Teacher

UI

epi:aT2(spec)
(spec)

(spec)
(gen)

(gen)

(spec)

(spec)

(spec)

D
Dept
(String)

T
Teacher

S
Student

C*
Courses
(String)

Q
Quarter
(Quarter)

G
Grade
(Char)

T+A
Teacher-
OrAdmin

[2] has name [1]

[1] is on leave during [2]

tT

tQ

[1] gets grade [2]

gCS gG

vQ

vT+A

T<T+A

[1] has prereqs [2]qC

qC*

[1] is elt of [2]

bC

bC*

[1] is listed
during [2]

lQ

lC

(elt)

(pow)

kT kC

 [1]
offers [2]

oC

oD

tC

sS

sQ

sC

[1] is enrolled
during [2]eQ

eS

CS CourseStudied

[1] has id [2]

nC

nCN

iCI

values “A”..“D”,“F”

P

UI

UI

iC

mon:qC

mon:gCS

sS*sQ<eS*eQ

C
Course

CN
CourseName

(String)

CI
CourseId

(Nat)

v

e

s

k

l

b
q

n

i

t

o

g

tC*tQ<lC*lQ

sC*sQ<lC*lQ

vT+A*vQxtT*tQ

(objectified fact type)

UI

epi:iCepi:oC
epi:nC

“Off-Diagram”
Constraints

e=>s-ok
s=>q-ok

mon:o*i@oC=iC

(gen)

UI

tT*tC<kT*kC

[1] can teach [2]

[1] teaches [3]
 during [2]

[2] studies [1]
during [3]

Fig. 2. Case study: conceptual data model UNI, modeling a university

Conceptual Data Modeling with Constraints in Maude 101

Constraints (in italics) on role arrows require that: every TeacherOrAdmin
must work for at least (epi:wT+A) and at most (mon:wT+A) one Dept, every Dept
must be headed by exactly one (epi:hD, mon:hD) Professor, and a Professor
may head at most one (mon:hP) Dept — in which case they must also work for
that Dept (h<w). A Student may major in up to two Depts (card:mS<=2). A
Professormust be either (epi:zP+cP) tenured, or contracted till a Date, but not
both (zPxcP). Every Teachermust be audited by exactly one (epi:aT2,mon:aT2)
other (irr:a) Teacher. An Admin may report to at most one (mon:uA1) Admin,
and the reporting relation must be acyclic (acyc:u). The same Professor is not
allowed to have both reviewed and published the same Work (pxr). Subtype arrows
and constraints require that: every Person must be either a Student, a Teacher
or an Admin (epi:A<X+T<X+S<X) and no Person may be both a Teacher and an
Admin (TxA). Every StudentTeacher is both a Student and a Teacher (multiple
inheritance), and every TeacherOrAdmin is either a Teacher or an Admin (gener-
alization).

A Teacher may teach a Course during a Quarter only if: the Course is listed
for that Quarter (tC*tQ<lC*lQ), they are not on leave during that Quarter
(vT+A*vQxtT*tQ), and they “can teach” that Course (tT*tC<kT*kC). A Student
may study a Course during a Quarter only if: the Course is listed for that
Quarter (sC*sQ<lC*lQ), they are enrolled during that Quarter (sS*sQ<eS*eQ),
and they have studied (and gotten Grade "A".."D" in) all the prerequisites for
that Course (s=>q-ok, off-diagram). Every Course must have a CourseName
(epi:nC). For every Course instance, the combination of the Dept (that offers it)
and its CourseId must exist (epi:oC, epi:iC) and be unique (mon:o*i@oC=iC).
A Course may have as prerequisites at most one (mon:qC) set of Courses (built
using (pow) arrow bC* and (elt) arrow bC). Every CourseStudied may get at
most one Grade (mon:gCS). Also, if a Student is enrolled during a Quarter, they
must take one to four Courses during that Quarter (e=>s-ok, off-diagram).

In Maude functional module fmod UNI we map the CDM object types and
fact types to sorts (all subsorts of Obj or Fact) and appropriate constructors;
the subtype subgraph to additional subsorts; and the value constraint for Grade
to a membership axiom.

fmod UNI is pr PRECDM . pr STRING .
sorts Dept Person Admin Professor Student Teacher StudentTeacher
TeacherOrAdmin Date Quarter Work Course Courses .

subsorts Course Dept Person Quarter Courses Work Date < Obj .
subsorts Admin Teacher Student < Person .
subsorts Professor < Teacher .
subsorts StudentTeacher < Student Teacher .
subsorts Teacher Admin < TeacherOrAdmin .
op person : String -> Person [ctor] .
op dept : String -> Dept [ctor] .
op work : String -> Work [ctor] .
op date : NzNat NzNat NzNat ~> Date [ctor] .
op course : Dept Nat -> Course [ctor] .
op quarter : NzNat NzNat ~> Quarter [ctor] .
op courseSet : String -> Courses [ctor] .

102 S. Alexander

vars Y M D Q : NzNat . var G : Char .
cmb date(Y , M , D) : Date if Y >= 1600 /\ M <= 12
/\ M == 9 or M == 4 or M == 6 or M == 11 implies D <= 30
/\ M =/= 9 and M =/= 4 and M =/= 6 and M =/= 11 and M =/= 2

implies D <= 31
/\ M == 2 and (Y rem 4 == 0) implies D <= 29
/\ M == 2 and (Y rem 4 > 0 or Y rem 100 == 0 and Y rem 400 > 0)

implies D <= 28 . --- 1900, 1800, 1700 are not leap years
cmb quarter(Y , Q) : Quarter if Y >= 1600 /\ Q <= 4 .

sorts a b c e g h i k l m n o p q r s t u v w z .
subsorts a b c e g h i k l m n o p q r s t u v w z < Fact .
op _audits_ : Teacher Teacher -> a [ctor] .
op _is‘elt‘of_ : Course Courses -> b [ctor] .
op _is‘contracted‘till_ : Professor Date -> c [ctor] .
op _is‘enrolled‘during_ : Student Quarter -> e [ctor] .
op _gets‘grade_ : s Char ~> g [ctor] . --- s is "objectified"

cmb s1:s gets grade G : g if "A" <= G and G <= "D" or G == "F" .
op _heads_ : Professor Dept -> h [ctor] .
op _has‘id_ : Course Nat -> i [ctor] .
op _can‘teach_ : Teacher Course -> k [ctor] .
op _is‘listed‘during_ : Course Quarter -> l [ctor] .
op _majors‘in_ : Student Dept -> m [ctor] .
op _has‘name_ : Course String -> n [ctor] .
op _offers_ : Dept Course -> o [ctor] .
op _published_ : Professor Work -> p [ctor] .
op _has‘prereqs_ : Course Courses -> q [ctor] .
op _reviewed_ : Professor Work -> r [ctor] .
op _studies_during_ : Student Course Quarter -> s [ctor] .
op _teaches_during_ : Teacher Course Quarter -> t [ctor] .
op _reports‘to_ : Admin Admin -> u [ctor] .
op _is‘on‘leave‘during_ : TeacherOrAdmin Quarter -> v [ctor] .
op _works‘for_ : TeacherOrAdmin Dept -> w [ctor] .
op _is‘tenured : Professor -> z [ctor] .

endfm

Maude’s sort hierarchy checking ensures that the subtype subgraph is cycle-
free and commutes. Maude sorts mapped from CDM types at the source of a
(spec) subtype arrow or at the target of a (gen) subtype arrow do not need
constructors, as such types use the reference scheme [4,5] of the type at the other
end of the arrow; instead, terms which are (proper) subsorts of Person arise via
membership axioms, and a term of sort TeacherOrAdmin arises whenever a term
of sort Teacher or Admin is created. Objectified (or “nested”) [4,5] CDM fact
type CourseStudied does not need its own sort or constructor in Maude; we
simply enclose the Student studies Course during Quarter fact instance (of sort
s) inside parentheses in any term constructed from op _gets‘grade_.

Maude’s mixfix syntax for object and fact instances echoes natural language,
a central goal of CDM methods (with names like NIAM, “natural language in-
formation analysis method,” or FCO-IM, “fully communication-oriented infor-
mation modeling”), recognizing that communication with domain experts about
the universe of discourse in a natural, precise language is essential for successful
data modeling. “Syntactic sugar” enables alternate fact type readings [5], e.g.:

Conceptual Data Modeling with Constraints in Maude 103

op _is‘offered‘by_ : Course Dept -> o . --- no [ctor] attrib
eq C:Course is offered by D:Dept = D:Dept offers C:Course .

In fmod UNI.CDM we declare all (explicit) constraints shown in Fig. 2 and de-
fine the equation(s) for a sample mandatory, uniqueness, and subset constraint,
and for the three mutual-exclusion set-comparison constraints, the uniqueness
constraint on a join, the (maximum) cardinality constraint, the mandatory con-
straint on two arrows, and the irreflexive constraint. We use a refutational style
exploiting MEL, pattern-matching and Maude’s otherwise (owise) attribute
(which allows its equation to be applied only if all other equations for the same
top term having more-specific left-hand sides fail to match) to define “negative
predicates” which attempt to find a counterexample, i.e., a violation of the con-
straint. Only if such a counterexample is found does the term reduce to a “true”
value (tt) of sort MTruth. If no counterexample is found, a value (other than
tt) of kind [MTruth] results, meaning the negative predicate is false (i.e., the
constraint is satisfied). Negative predicates are prefixed with a ∼ symbol as a
reminder. Iff none of the negative predicates (all tested in membership axiom
cmb { M? } : Cdm) equals tt, then the PreCdm(-term) is a valid Cdm(-term).

fmod UNI.CDM is protecting UNI . extending CDM .
ops _~epi:wT+A _~mon:wT+A _~h<w _~zPxcP _~e=>s-ok

_~epi:hD _~mon:hD _~tC*tQ<lC*lQ _~pxr _~s=>q-ok
_~epi:aT2 _~mon:aT2 _~tT*tC<kT*kC _~vT+A*vQxtT*tQ _~def:D
_~epi:oC _~mon:gCS _~sC*sQ<lC*lQ _~mon:o*i@oC=iC --- ...
_~epi:iC _~mon:hP _~sS*sQ<eS*eQ _~epi:zP+cP _~irr:a
_~epi:nC _~mon:qC _~mon:uA1 _~card:mS<=2 _~acyc:u

: [PreCdm] -> [MTruth] .

var M? : PreCdm . var X : Person . var Q Q1 Q2 : Quarter .
var N N1 N2 : Nat . var S : Student . var C C1 C2 : Course .
var D D1 D2 : Dept . var T : Teacher . var C* C*’ : Courses .
var Y : Date . var A A1 A2 : Admin .
var K : Work . var P P1 P2 : Professor .
var G : Char . var T+A : TeacherOrAdmin .

eq F:Fact ; F:Fact ; M? = F:Fact ; M? . --- remove dupe facts
eq O:Obj ; O:Obj ; M? = O:Obj ; M? . --- remove dupe objects

eq (T+A ; T+A works for D ; M?) ~epi:wT+A = M? ~epi:wT+A .
eq (T+A ; M?) ~epi:wT+A = tt [owise] .
--- similar equation-pairs for all other mandatory constraints:
--- ops _~epi:hD _~epi:aT2 _~epi:oC _~epi:iC _~epi:nC
eq (T+A works for D1 ; T+A works for D2 ; M?) ~mon:wT+A = tt .
--- similar equations for all other uniqueness constraints:
--- ops _~mon:hD _~mon:aT2 _~mon:gCS _~mon:hP _~mon:qC _~mon:uA1
eq (P heads D ; P works for D ; M?) ~h<w = M? ~h<w .
eq (P heads D ; M?) ~h<w = tt [owise] .
--- similar equation-pairs for all other subset constraints:
--- ops _~tC*tQ<lC*lQ _~tT*tC<kT*kC _~sC*sQ<lC*lQ _~sS*sQ<eS*eQ

eq (P ; P is tenured ; P is contracted till Y ; M?) ~zPxcP = tt .
eq (P published K ; P reviewed K ; M?) ~pxr = tt .

104 S. Alexander

eq (T is on leave during Q ; T teaches C during Q ; M?)
~vT+A*vQxtT*tQ = tt .

eq (S majors in D ; S majors in D1 ; S majors in D2 ;
M? ; S) ~card:mS<=2 == tt .

eq (D1 offers C ; C has id N1 ;
D2 offers C ; C has id N2 ; M?) ~mon:o*i@oC=iC = tt .

eq (P ; P is tenured ; M?) ~epi:zP+cP = M? ~epi:zP+cP .
eq (P ; P is contracted till Y ; M?) ~epi:zP+cP = M? ~epi:zP+cP .
eq (P ; M?) ~epi:zP+cP = tt [owise] .
eq (T audits T ; M?) ~irr:a = tt .

cmb { M? } : Cdm if M? ~def:D =/= tt --- ...
/\ M? ~epi:wT+A =/= tt --- ...
/\ M? ~mon:wT+A =/= tt --- ...
/\ M? ~h<w --- ...
/\ M? ~zPxcP =/= tt /\ M? ~card:mS<=2 =/= tt
/\ M? ~pxr =/= tt /\ M? ~mon:o*i@oC=iC =/= tt
/\ M? ~vT+A*vQxtT*tQ =/= tt /\ M? ~epi:zP+cP =/= tt
/\ M? ~irr:a =/= tt /\ M? ~e=>s-ok =/= tt
/\ M? ~acyc:u =/= tt /\ M? ~s=>q-ok =/= tt .
endfm

(Acyclic) ring constraint acyc:u uses auxiliary operators _$occurs1:u_ and
$occurs2:u to check whether an Admin instance occurs as the first or second
argument in an Admin reports to Admin fact instance. The three equations for
_~acyc:u use structural induction on facts of sort u, removing any which aren’t
“linked” at both ends into the binary relation (and so can’t be part of a cycle):

ops _$occurs1:u_ _$occurs2:u_ : [Admin] [PreCdm] -> [MTruth] .
eq A1 $occurs1:u (A1 reports to A2 ; M?) = tt .
eq A2 $occurs2:u (A1 reports to A2 ; M?) = tt .

ceq (M? ; A1 reports to A2) ~acyc:u = M? ~acyc:u
if (A2 $occurs1:u M? =/= tt or A1 $occurs2:u M? =/= tt)
/\ A1 =/= A2 .
eq (M? ; U:u) ~acyc:u = tt [owise] .
eq M? ~acyc:u = ff [owise] .

“Off-diagram” constraint s=>q-ok (requiring that a Student may study a
Course during a Quarter only if they have gotten a non-failing Grade for each
of that Course’s prerequisite Courses) can be efficiently refuted using just two
equations with the [owise] attribute, using structural induction on b-terms:

ceq (M? ; C2 has prereqs C* ; C1 is elt of C* ;
((S studies C1 during Q1) gets graded G) ;

S studies C2 during Q2) ~s=>q-ok
= (M? ; C2 has prereqs C* ;

((S studies C1 during Q1) gets graded G) ;
S studies C2 during Q2) ~s=>q-ok if G =/= "F" .

eq (M? ; C2 has prereqs C* ; C1 is elt of C* ;
S studies C2 during Q) ~s=>q-ok = tt [owise] .

To refute “off-diagram” constraint e=>s-ok we first define an auxiliary pred-
icate >maxCourses (resp. <minCourses) which returns tt iff a given Student

Conceptual Data Modeling with Constraints in Maude 105

studies more (resp. fewer) than a given number of Courses during a given
Quarter, and then use structural induction on e-terms:

ops >maxCourses <minCourses :
[PreCdm] [Student] [Quarter] [Nat] -> [MTruth] .

eq >maxCourses((M? ; S studies C during Q) , S , Q , (s N))
= >maxCourses(M? , S , Q , N) .
eq >maxCourses((M? ; S studies C during Q) , S , Q , 0) = tt .
eq <minCourses((M? ; S studies C during Q) , S , Q , (s N))
= <minCourses(M? , S , Q , N) .
eq <minCourses(M? , S , Q , (s N)) = tt [owise] .

ceq (M? ; S is enrolled during Q) ~e=>s-ok = tt
if >maxCourses(M? , S , Q , 4) == tt
or <minCourses(M? , S , Q , 1) == tt or M? ~e=>s-ok == tt .

For each sort (e.g., Dept), we also need a negative predicate (e.g., _~def:D)
with two equations for each fact type constructor that uses it (e.g., _heads_,
works‘for, _offers_, _majors‘in_), reducing to tt iff the fact constructor
is ever called on an undefined object instance:

eq (D ; P heads D ; M?) ~def:D = (D ; M?) ~def:D .
eq (P heads D ; M?) ~def:D = tt [owise] .

Most CDM diagrams assume a uniqueness constraint on each fact type span-
ning all its roles, handled by the first equation in UNI.CDM, removing dupes.

5 Getting a Constraint-Enforcing Interpreter “for free”
Using Maude’s Rewriting Semantics

Maude functional modules of the form fmod (Σ,E) endfm specify equational the-
ories and provide a functional style of programming, using (conditional) equa-
tions oriented from left to right as simplification rules to reach a fully reduced or
canonical form (assuming the equations are terminating and confluent). Maude
system modules on the other hand are of the form mod (Σ,E,R) endm where
(Σ,E) is a membership equational theory, and R is a set of labeled (conditional)
rewrite rules of the form r : t → t′ specifying a rewrite theory, which may be non-
confluent, nonterminating, and nondeterministic. System modules can naturally
model many types of concurrent systems [14].

By exploiting the rewriting semantics of Maude system modules, we can write
a system specification which imports the (functional) property specification of
a conceptual data model and its constraints and specifies a system allowing
concurrent edits to the data model’s state while enforcing its constraints. In this
way Maude’s rewriting semantics yields an interpreter “for free” for the specific
CDM “language” defined in the property specification.

Using code from [3], we represent requested edits plus the model’s state as a
pair or configuration whose first component is a program (containing unprocessed
“messages” requesting to insert or delete objects or facts) and whose second
component is a record (containing the “actual” objects and facts in the state):

106 S. Alexander

fmod CONF is pr PROGRAM . pr RECORD .
sort Conf .
op <_,_> : Program Record -> Conf [ctor format(n d n s++ n d)] .

endfm

The sort Program (resp. Record) has a “record” structure composed of one or
more fields each constructed using an index paired with a component, specified
by the modules below, imported by CONF. Record inheritance makes Programs
and Records modular (extensible by adding more fields). A Program or Record
with more fields is a special case of one having a subset of those fields.

fmod PROGRAM is
sorts PIndex PComponent PField PreProgram Program PTruth .
subsorts PField < PreProgram .
op null : -> PreProgram [ctor] .
op _,_ : PreProgram PreProgram -> PreProgram
[ctor assoc comm id: null] .

op {_} : [PreProgram] -> [Program] [ctor format(s s++ --s s)] .
op _:_ : [PIndex] [PComponent] -> [PField] [ctor] .
op tt : -> PTruth .
op duplicated : [PreProgram] -> [PTruth] .
var I : PIndex . var C C’ : PComponent . var P? : PreProgram .
eq duplicated((I : C) , (I : C’) , P?) = tt .
cmb { P? } : Program if duplicated(P?) =/= tt .

endfm

fmod RECORD is pr PROGRAM
* (sort PIndex to RIndex ,

sort PComponent to RComponent ,
sort PField to RField ,
sort PreProgram to PreRecord ,
sort Program to Record ,
sort PTruth to RTruth) .

endfm

We will use the same syntax for actual objects and facts, as well as messages
requesting to insert or delete objects and facts. Objects and facts in the ins
(resp. del) field of the Program component of a configuration will be interpreted
as insert (resp. delete) messages, and in the db field in the Record component
as actual objects and facts in the current database state. This is done by making
sort PreCdm a subsort of program component sort PComponent, and sort Cdm a
subsort of record component sort RComponent:

fmod CDM.PROGRAM is pr PROGRAM . pr PRECDM .
subsort PreCdm < PComponent .
ops ins del : -> PIndex .
var M : PreCdm . mb (ins : M) : PField . mb (del : M) : PField .

endfm

fmod CDM.RECORD is pr RECORD . pr CDM .
subsort Cdm < RComponent .
op db : -> RIndex [format (d s)] .
var M : Cdm . mb (db : M) : RField .

endfm

Conceptual Data Modeling with Constraints in Maude 107

An insert or delete message should result in the insertion or deletion of an
actual object or fact only if allowed by the constraints. Because they may contain
constraint-violating messages, the components in the ins and del fields contain
terms of sort PreCdm rather than sort Cdm. Messages which would violate the
constraints are not rewritten. Only the db field contains a term of sort Cdm
representing the actual objects and facts in the current, valid database state.

More subtly, there may be messages in the ins and del fields which, if exe-
cuted individually (in isolation from other messages), would violate the model’s
constraints, but which would satisfy them if executed collectively — i.e., simul-
taneously with other messages. For example, to execute a message inserting a
Dept, we also need exactly one Professor to head it. The Professor heads Dept
fact exists iff the Dept object exists, so the messages inserting the Dept object
and the Professor heads Dept fact must execute simultaneously (or not at all).

Maude system modules provide concurrent or simultaneous rewriting seman-
tics, so several concurrent state transitions can be performed simultaneously. To
allow concurrent insertion and deletion of valid sets of objects and facts while
enforcing the model’s constraints, we extend system module RCONF [3]:

mod RCONF is extending CONF .
op {_,_} : [Program] [Record] -> [Conf] [ctor] .
op [_,_] : [Program] [Record] -> [Conf] [ctor] .
vars P P’ : Program . vars R R’ : Record .
crl [step] : < P , R > => < P’ , R’ >
if { P , R } => [P’ , R’] .

endm

by adding two rules labeled [ins] and [del] in system module CDM.RCONF:

mod CDM.RCONF is inc RCONF . ex CDM.PROGRAM . ex CDM.RECORD .
var PM PM’ RM : PreCdm .
var P : PreProgram . var R : PreRecord .
crl [ins] :

{ {(ins : (PM ; PM’)) , P} , {(db : { RM }) , R} }
=> [{(ins : PM’) , P} , {(db : { PM ; RM }) , R}]
if { PM ; RM } : Cdm /\ PM =/= nil .

crl [del] :
{ {(del : (PM ; PM’)) , P} , {(db : { PM ; RM }) , R} }

=> [{(del : PM’) , P} , {(db : { RM }) , R}]
if { RM } : Cdm /\ PM =/= nil .

endm

While Maude functional module CDM provided the basis for a property spec-
ification describing what a given conceptual data model is (including any con-
straints that must hold), Maude system module CDM.RCONF exploits Maude’s
rewriting semantics to provide a system specification [14] describing what a con-
ceptual data model does (i.e., it allows concurrent edits to the database state
while enforcing its constraints). This rewriting logic interpreter for conceptual
data models with constraints is an example of a formal analysis and simulation
tool obtained “for free” using Maude’s rewriting semantics.

108 S. Alexander

We now define a test population in fmod UNI-TEST, then define an interpreter
in mod UNI.RCONF which just imports UNI.CDM and CDM.RCONF, and test it using
system module mod UNI.RCONF-TEST which imports UNI.RCONF and UNI-TEST:

fmod UNI-TEST is pr UNI.CDM .
mb person("Alice") : Teacher . mb person("Bob") : Professor .
op uni1 : -> PreCdm .
eq uni1 =
person("Alice") ; person("Bob") ; dept("Math") ;
person("Alice") works for dept("Math") ;
person("Bob") works for dept("Math") ;
person("Bob") heads dept("Math") ;
person("Bob") is tenured ;
person("Alice") audits person("Bob") ;
person("Bob") audits person("Alice") ;
dept("Math") offers course(dept("Math") , 101) ;
course(dept("Math") , 101) has name "Calculus" .

endfm

mod UNI.RCONF is pr UNI.CDM . pr CDM.RCONF . endm
mod UNI.RCONF-TEST is pr UNI.RCONF . pr UNI-TEST . endm

The instances in uni1, interpreted as insert messages, are valid if collectively
inserted into e.g. an empty database, so the first rewrite below should terminate
with all instances “transferred” from the ins field to the db field in the fully
rewritten term, leaving an empty ins field. The second rewrite should also ter-
minate, but the dept("English") insert message should remain “unconsumed”
in the ins field, because rewriting this message would violate the constraints.

rewrite < { ins : uni1 } , { db : {nil} } > .
rewrite < { ins : (uni1 ; dept("English")) } , { db : {nil} } > .

6 Discussion and Related Work

This work attempts to contribute to ongoing efforts to provide formal seman-
tics and tool support for current programming practice, and is similar to work
done using Maude to provide an algebraic semantics for UML+OCL class and
object diagrams [10] and to specify the ODP information and enterprise view-
points [11,12]. CDM diagrams (without constraints) can be regarded as a subset
of UML class diagrams or of the ODP information viewpoint. The UML+OCL
Maude effort has resulted in a formal tool, the ITP/OCL inductive theorem
prover, which can be used to provide automatic generation and validation of
object diagrams with respect to OCL constraints [10]. Unlike the approach in
the current paper which represents a conceptual data model using a multiset
configuration at Maude’s level 0, the UML+OCL Maude effort uses an FModule
at Maude’s metalevel (level 1) to represent a UML diagram.

Tools using CDM or “extended” E/R methods to model relational databases
include: VisioModeler [4] (commercial, formerly produced by InfoModelers, now
part of Microsoft’s Visio); Infagon [21] (open-source, uses FCO-IM); ERW [22]

Conceptual Data Modeling with Constraints in Maude 109

(freeware, based on a bicategorical definition of multirelations); LISA-D [7,23]
(developed at Nijmegen, based on category theory [1]); and the ontology editor
ICOM [24] (freeware, Java/CORBA, EER, uses description logic to provide a
provably complete inference mechanism for constraint consistency checking).

7 Conclusions and Further Work

This work has presented a method using Maude functional modules to represent
a conceptual data model and its constraints, and using Maude system modules
to obtain an interpreter providing operational semantics allowing constraint-
enforcing concurrent edits to a conceptual data model’s state.

It should be fairly straightforward to provide support for update messages in
addition to insert and delete messages, as well as CDM derived fact types [4,5].
Since Rmap [5,6] is deterministic, it could be implemented functionally, instead
of relying on Maude’s rewriting semantics to search for collectively valid sets of
insert and delete messages. This would provide a denotational semantics trans-
lating a conceptual data model to an entity-relationship model, in addition to
the operational semantics currently provided. The resulting E/R model could
be represented using an object-oriented module in (Full) Maude.

Other important tasks include schema transformation and optimization [25]
and constraint consistency checking, which could be approached using reflec-
tion at Maude’s metalevel (level 1). Level 1 could also be used to generate the
repetitive (level 0) equations for commonly used constraint classes.

References

1. Lippe, E., ter Hofstede, A.: A Category Theory Approach to Conceptual Data
Modeling. In: RAIRO Theoretical Informatics and Applications. Faculty of Math-
ematics and Informatics, vol. 30, pp. 31–79. University of Nijmegen, Nijmegen, The
Netherlands (1996)

2. Chen, P.: The Entity-Relationship Model: Toward a Unified View of Data. ACM
Trans DB Sys. 1(1), 9–36 (1976)

3. Meseguer, J., Braga, C.: Modular Rewriting Semantics of Programming Languages.
In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
pp. 364–378. Springer, Heidelberg (2004)

4. Halpin, T.: Object-Role Modeling (ORM/NIAM). In: Bernus, P., Mertins, K.,
Schmidt, G. (eds.) Handbook on Architectures of Information Systems, ch. 4,
Springer, Berlin (1998)

5. Halpin, T.: Conceptual Schema and Relational Database Design, 2nd edn. Prentice-
Hall, Sydney, Australia (1995)

6. Paulussen, G.: AIS1: Halpin hfdst 10. Relational Mapping: Implementing a Con-
ceptual Schema. From FORML-Guide ch. 6 t/m BLZ 104 (2003),
http://www.cs.ru.nl/G.Paulussen/AIS1/Sheets/SheetsWeek05Dinsdag.pdf

7. ter Hofstede, A., Proper, H., van der Weide, T.: Formal definition of a conceptual
language for the description and manipulation of information models. Information
Systems 18, 489–523 (1993)

http://www.cs.ru.nl/G.Paulussen/AIS1/Sheets/SheetsWeek05Dinsdag.pdf

110 S. Alexander

8. Bakema, G., Zwart, J., van der Lek, H.: Fully Communication-Oriented NIAM.
In: Nijssen, G., Sharp, J. (eds.) NIAM-ISDM 1994 Conf. Working Papers, Albu-
querque, NM, USA, pp. L1–35 (1994)

9. Nijssen, G., Halpin, T.: Conceptual Schema and Relational Database Design: A
Fact-Oriented Approach. Prentice-Hall, Sydney, Australia (1989)

10. Clavel, M., Egea, M.: An Algebraic Semantics for UML+OCL Class Diagrams.
Universidad Complutense de Madrid, Spain, (2006) Available on the web at
http://maude.sip.ucm.es/∼marina/pubs/fase06.pdf

11. Durán, F., Vallecillo, A.: Writing ODP Information Specifications in Maude. Tech-
nical Report ITI-2001-10, Dpto. de Lenguajes y Ciencias de la Computación, Uni-
versidad de Málaga, Málaga, Spain (2001) Available at
http://www.lcc.uma.es/∼av/Publicaciones/01/ITI-2001-10.pdf

12. Durán, F., Vallecillo, A.: Writing ODP Enterprise Specifications in Maude. In:
Cordeiro, J., Kilov, H., (eds.) Proc. of WOODPECKER’01, Setubal, Portugal, pp.
55–68 (2001) An extended version is available as technical report at
http://www.lcc.uma.es/∼av/Publicaciones/01/ITI-2001-8.pdf

13. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual (Version 2.2). SRI International, Menlo Park, CA, USA (2005)

14. Meseguer, J.: Software Specification and Verification in Rewriting Logic. In: Mod-
els, Algebras, and Logic of Engineering Software, NATO Advanced Study Institute,
pp. 133–193. IOS Press, Amsterdam (2003)

15. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.: Introducing
OBJ. In: Goguen, J., Malcolm, G. (eds.) Software Engineering with OBJ: Algebraic
Specification in Action, Kluwer Academic Publishers, Dordrecht (2000)

16. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

17. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Comput. Sci. 96, 73–155 (1992)

18. Vigna, S.: Multirelational semantics for extended entity-relationship schemata with
applications. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002.
LNCS, vol. 2503, pp. 35–49. Springer, Heidelberg (2002)

19. Bruni, R., Gaducci, F.: Some algebraic laws for spans (and their connections with
multi-relations). In: Kahl, W., Parnas, D., Schmidt, G. (eds.) Relational Methods
in Software. Electronic Notes in Theoretical Computer Science, vol. 44(3), Elsevier,
Amsterdam (2001)

20. Barbosa, L.: A Brief Introduction to Bicategories. Technical Report DI-PURe-
03:12:10, Departamento de Informática da Universidade do Minho, Campus de
Gualtar, Braga, Portugal (2003)

21. Mattic Software (Infagon 5.0) available on the web at http://www.infagon.com
22. Vigna, S.: ERW: Entities and relationships on the web. In: Poster Proc. of 11th

International World Wide Web Conference, Honolulu, USA (2002)
23. van der Weide, T.: Domain Modeling: The systematic construction of an ontology.

In: The DaVinci Series of Lecture Notes: The Art & Craft of Information Systems
Engineering, Radboud University Nijmegen, Nijmegen, The Netherlands (2005)

24. Franconi, E., Ng, G.: ICOM Intelligent Conceptual Modelling Tool, Version 1.1
Manual (Draft) http://www.cs.man.ac.uk/∼franconi/icom/

25. Halpin, T., Proper, H.: Database Schema Transformation & Optimization. In: Pa-
pazoglou, M.M.P. (ed.) ER 1995 and OOER 1995. LNCS, vol. 1021, Springer,
Heidelberg (1995)

http://maude.sip.ucm.es/~marina/pubs/fase06.pdf
http://www.lcc.uma.es/~av/Publicaciones/01/ITI-2001-10.pdf
http://www.lcc.uma.es/~av/Publicaciones/01/ITI-2001-8.pdf
http://www.infagon.com
http://www.cs.man.ac.uk/~franconi/icom/

Datatypes in Memory

David Aspinall1 and Piotr Hoffman2

1 LFCS, School of Informatics, University of Edinburgh, U.K.
2 Institute of Informatics, Warsaw University, Poland

Abstract. Besides functional correctness, specifications must describe
other properties of permissible implementations. We want to use sim-
ple algebraic techniques to specify resource usage alongside functional
behaviour. In this paper we examine the space behaviour of datatypes,
which depends on the representation of values in memory. In particu-
lar, it varies according to how much values are allowed to overlap, and
how much they must be kept apart to ensure correctness for destructive
space-reusing operations.

We introduce a mechanism for specifying datatypes represented in a
memory, with operations that may be destructive to varying degrees.
We start from an abstract model notion for data-in-memory and then
show how to specify the observable behaviour of models. The method
is demonstrated by specifications of lists-in-memory and pointers; with
a suitable definition of implementation, we show that lists-in-memory
may be implemented by pointers. We then present a method for proving
implementations correct and show that it is sound and, under certain
assumptions, complete.

1 Introduction

This paper is part of an investigation into using simple algebraic techniques
to write specifications of resource usage alongside functional correctness, where
resources are quantitative measures such as time, space, power, and the like.
Resource usage is of course a relative notion, and depends on the computation
mechanism of an underlying machine as well as the representation of data on
that machine. We would like to write specifications which are as abstract as
possible with respect to these low-level details, but which nonetheless are able
to distinguish usefully between different algorithms and representations which
are not distinguished by classical algebraic specifications.

We start off here by considering memory as the prototypical resource, and con-
sider the behaviour of datatype operations which are implemented in memory.
Many standard algorithms make use of shared mutable data structures; these al-
gorithms have quite different resource usage behaviour compared with functional
versions that copy data instead. For mutating algorithms to work correctly, the
layout in memory of the data structures must satisfy certain conditions; for ex-
ample, some parts of these structures may occupy the same memory cells, some
may not. We provide a mechanism to specify layout constraints, which enable

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 111–125, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

112 D. Aspinall and P. Hoffman

or prevent mutating algorithms, and so restrict the class of models of our speci-
fications to ones which have certain resource behaviours.

We specify layout constraints by using preservation and disjointness predi-
cates which restrict the use of sharing in implementations. Intuitively, a memory-
altering operation preserves some data object in memory if after executing it the
object is still available in the new memory. Otherwise, the object is destroyed
and the operation considered destructive. If two objects are disjoint (separate)
in the memory, then destructive operations on the first object cannot affect the
second. Motivating examples follow in the body of the paper.

A key insight is that we need only be concerned by the behavioural, or observ-
able, consequences of a given data layout, not by the layout itself in a concrete
model. Both preservation and disjointness have behavioural characterisations,
and it turns out that for standard heap models these abstract characterisations
coincide with the natural, naive notions. We get sensible results for other mem-
ory models as well, which allow comparison between functional and imperative
implementations within the same logical framework, for example.

As well as mechanisms for specifying data structures, we define a notion of
implementation. Using a simple form of program, we show how to implement one
data structure in terms of another. We then give some basic ideas for proving
implementations correct by a form of equational reasoning. We show that this
method is sound, and, with restrictions, complete.

Contributions and related work. As far as we are aware, this is the first explicit
attempt to study an approach to datatype space usage using algebraic specifi-
cation methods. There has been a wealth of recent activity in program logics
for pointer implementations datatypes in concrete memory models and type
theories or analyses for shape and layout description (to mention only a few,
e.g. [1,2,3,4,5]). Notably, Bunched Implications, BI, provides an abstract model
theory for resources, as well as a substructural logic for describing models [6].
Although we also aim at an abstract approach, we intentionally work from first
principles within the algebraic framework, rather than try to recast lines of work
based on different semantic foundations. More comments on related work are in
the conclusions.

Outline. The structure of the rest of this paper is as follows. In Sect. 2 we intro-
duce the abstract algebraic framework and two canonical example algebras. In
Sect. 3 we define the central behavioural equivalence relation which we use as a
basis for both specification and reasoning. The relation can express preservation
of data at the same time as behaviour of operations. We apply this to a specifica-
tion of lists in Sect. 4, which we write in a specially defined behavioural version
of conditional equational logic. Sect. 5 then shows how to use the behavioural
approach to define a natural disjointness relation which is also useful in specifi-
cations. Sect. 6 gives a specification for pointers and in Sect. 7 we define a notion
of implementation and show how pointers may be used to implement lists; we
sketch how this may be proved formally and prove that our approach is sound
and, in certain cases, complete. Sect. 8 concludes and gives some comparison
with the related work.

Datatypes in Memory 113

2 Memory Signatures and Algebras

Definition 1. A memory signature consists of the following components:

– disjoint sets of abstract sorts and memory sorts,
– a set of abstract operations of the form f : s1 × · · · × sn → t1 × · · · × tk

where n, k ≥ 0 and s1, . . . , sn, t1, . . . , tk are abstract sorts,
– a set of memory operations of the form f : μ × (s1 × · · · × sn) → μ × (t1 ×

· · · × tk) where μ is a special symbol representing the memory and where
n, k ≥ 0 and s1, . . . , sn, t1, . . . , tk are arbitrary sorts.

The idea here is that objects of abstract sorts are directly observable, whereas
objects of memory sorts can only be interpreted in the context of a memory via
the memory operations. Abstract operations have a purely auxiliary function and
are used in specifications. A memory operation is a form of “machine instruc-
tion”, representing the actual steps of computation of the considered machine.
The machine is modelled by a memory algebra over the signature.

Definition 2. A memory algebra A consists of the following components:
– a non-empty set A[μ] of memories,
– for any sort s, a set A[s] of objects of type s,
– for any operation f , a partial function A[f] of appropriate type,
– for any memory sort s, a validity predicate AV [s] ⊆ A[μ] × A[s].

If (m, o) ∈ AV [s] we say o is valid in m and write o ∈ m. Validity in a memory
is extended pointwise to tuples of objects of arbitrary sort, considering objects
of abstract sort to be valid in any memory. A memory algebra must ensure that
memory operations preserve validity, i.e., whenever α ∈ m and A[f](m, α) is
defined and equal to (m′, β), then β ∈ m′.

The partiality of memory operations is intended to represent errors or non-
termination, but not out-of-memory exceptions. Although our approach is de-
signed to deal with out-of-memory conditions, in this paper we assume that they
do not occur. Out-of-memory exceptions can be included at the cost of some ex-
tra complexity, by adding another form of undefinedness so that non-termination
and lack of memory can be distinguished.

Validity allows us to model the destruction of data. Any memory operation
f(m, α) must produce a memory m′ and output β valid in m′, but we do not re-
quire the input α to remain valid in the new memory m′. Destructive operations,
such as disposing a pointer, can destroy their own arguments.

We illustrate these definitions with concrete examples. Consider the memory
signature with abstract sort bool and operations t, f : bool and with memory
sort list and the following memory operations:

nil : μ → μ × list isnil : μ × list → μ × bool
cons : μ × bool × list → μ × list hd : μ × list → μ × bool
tl : μ × list → μ × list delete : μ × list → μ

114 D. Aspinall and P. Hoffman

Define a memory algebra A over the above signature as follows. Let the abstract,
boolean components be defined as usual, and let the memories all be sequences
of pairs of natural numbers, which we treat as addresses: A[μ] ⊆ N → N

2. In
other words, a memory is an infinite address space with two addresses, the first
representing a boolean, stored at any location. If a is an address and m is a
memory, then the a-sequence in m is the sequence {ai}i∈N defined by a0 = a
and ai+1 = π2(m(ai)). Now define A[μ] to contain all m ∈ N → N

2 such that
the 0-sequence in m does not contain any repetitions. The 0-sequence is called
the free list. Addresses in this sequence are called free addresses. Note that 0 is
always free. Finally, let A[list] = N and define a list a to be valid in a memory
m if in the a-sequence in m a free address occurs somewhere, and if the first
such address is 0.

Now the memory operations are defined as follows on valid arguments:

– nil(m) = (m, 0), and isnil(m, a) is true if a = 0 and false otherwise;
– cons(m, b, a) = (m′, a′), where m′ is m with some free a′ removed from the

free list, with m′(a′) = (0, a) if b is false, and m′(a′) = (1, a) if b is true;
– hd(m, a) = (m, π1(m(a))) if a �= 0; and tl(m, a) = (m, π2(m(a))) if a �= 0;
– delete(m, a) = m′, where m′ is m with all addresses from the a-sequence

in m added to the free list.

Here, the free list at the 0-sequence is treated as a pool of memory for allocation
and deallocation. In all cases not covered, the memory operations are undefined.
We call this model of lists the pointer model.

Another model of lists is the algebra B with the same boolean component as A,
but with B[μ] = {∗} a singleton set and B[list] the set of all finite sequences of
booleans. Then all the list operations work just as regular list operations, except
that they additionally return ∗ as the new memory. In particular, delete(m, l) =
m for all lists l. This model of lists is called the algebraic model.

3 Behavioural Equivalence

We now define a notion of behavioural equivalence for values in memory algebras.
We do this by conceiving a memory algebra as a machine which contains a
memory and a finite number of variables. The variables may keep data which is
directly observable (of an abstract sort), or data that may only be interpreted
using the memory (of a memory sort). The machine computes by applying a
memory operation to the existing memory and data, thereby obtaining a new
memory and new data. Two states of a machine should be considered equivalent
if no sequence of steps of the machine leads to any difference in observable data.

Formally, a state of a memory algebra is a pair (m, γ), where m is a memory and
γ = (γ1 : s1, . . . , γn : sn) is a tuple of objects valid in m. Then n is the length of
the state, and (s1, . . . , sn) is the type of the state. If F : {1, . . . , N} → {1, . . . , n}
is any function, with n being the length of a state (m, γ) and N arbitrary, then
the composition (m, F (γ)) defined by F (γ)i = γF (i) for 1 ≤ i ≤ N is a state
as well. This is simply a rearrangement of the state (m, γ), possibly reordering,
removing and duplicating objects. For any state (m, γ) and memory m′, let γ|m′

Datatypes in Memory 115

be the tuple obtained by removing from γ any objects not valid in m′. Of course,
(m′, γ|m′) is a state. Finally, let “+” denote concatenation of tuples.

Definition 3. The behavioural equivalence ∼ in a memory algebra A is the
greatest relation on states of equal type such that if (m1, γ1) ∼ (m2, γ2) then:

1. if v1, v2 are abstract values in corresponding positions in γ1, γ2, then v1 = v2.
2. if v is abstract, then (m1, γ1 + (v)) ∼ (m2, γ2 + (v)).
3. if γ1 and γ2 have length n and F : {1, . . . , N} → {1, . . . , n} is any function,

then (m1, F (γ1)) ∼ (m2, F (γ2)).
4. if γ1 = η1 + δ1 and γ2 = η2 + δ2, η1 and η2 have the same length and f

is an appropriately typed memory operation, then A[f](m1, η1) is defined iff
A[f](m2, η2) is. In this case, let A[f](m1, η1) = (m′

1, η
′
1) and A[f](m2, η2) =

(m′
2, η

′
2); it is required that for all indices i, (γ1)i is valid in m′

1 iff (γ2)i is
valid in m′

2 and (m′
1, η

′
1 + γ1|m′

1
) ∼ (m′

2, η
′
2 + γ2|m′

2
).

The above relation is well-defined and is an equivalence. Intuitively:

1. abstract sorts are observable.
2. one may at any moment add arbitrary variables of abstract sort.
3. one may rearrange the variables.
4. one may apply memory operations to valid objects, but any objects invali-

dated in doing so are removed from the state; both undefinedness and de-
struction of data are observable.

Because invalid variables are removed from the state in clause 4, we forbid a
computation that holds a “dangling” pointer which later becomes valid again.
This doesn’t imply that some form of on-the-fly garbage collection is involved;
it just means that programs cannot assume anything about invalidated objects,
and specifications cannot express such assumptions.

In the algebraic model of lists there cannot be any interaction between two
lists; we have (m1, γ1) ∼ (m2, γ2) iff (m1, (γ1)i) ∼ (m2, (γ2)i) for all 1 ≤ i ≤ n,
where n is the length of γ1 and γ2. In this case ∼ is simply the identity relation,
because any pair of non-equal lists is differentiated by an appropriate number
of tl operations and then a hd or isnil operation. This is true for any “non-
destructive” model, even if non-equal but equivalent lists exist in it.

Things are different in the pointer model, where we have a destructive oper-
ation and there can be overlaps between lists. Consider the two memories:

a2

m

b

b

m1 2

2

Memory Memory

11a

F

F 0

0T

T

F

F T F 0

Here (m1, (a1, b1)) ∼ (m2, (a2, b2)) doesn’t hold, although (m1, (a1)) ∼ (m2, (a2))
and (m1, (b1)) ∼ (m2, (b2)) both hold. This is because the lists in m2 interfere in
a way that can be observed by performing a delete operation.

For any state ζ = (m, (a1 : list, . . . , an : list)) in the pointer model, let Φζ

take any pair 1 ≤ i, j ≤ n to the list of booleans which is kept in the maximal

116 D. Aspinall and P. Hoffman

common part of ai and aj in m (in particular, Φζ(i, i) is the list of booleans
corresponding to the list ai in m). Then ∼ is the kernel of Φ, that is, for any
tuples ζ1 and ζ2 of length n of lists we have ζ1 ∼ ζ2 iff Φζ1 = Φζ2 .

4 A Specification of Boolean Lists

We can specify memory algebras in two parts: a specification of the abstract
part, and a specification of the memory part. We suppose that the abstract part
(i.e., the booleans) is already specified, and concentrate on the memory part.

We use axioms of a very simple form, similar to conditional equational logic.
Of course, this does not mean that more complex logics cannot be used in our
approach. Formulae are given by the following grammar:

φ ::= (m, α) ∼ (m, α) | f(m, α) = ⊥ | f(m, α) �= ⊥ |
x ∈ m | ∀m · φ | ∀x · φ | φ ∧ φ |
x ∈ m =⇒ φ | f(m, α) → (m, α) =⇒ φ

Here m ranges over variables binding memories, x over other variables, and
α over tuples of variables. Variable typing is assumed but left implicit. The
variables x may be bound either to objects of a single sort or to finite tuples
of objects; such variables will usually be named γ, δ, etc. So the quantification
∀γ · γ ∈ m =⇒ φ says that for all tuples γ of objects, if all these objects are
valid in m, then φ holds; we abbreviate this by writing ∀γ ∈ m · φ. The formula
f(m, x1, . . . , xn) → (m′, y1, . . . , yk) =⇒ φ is true if whenever f(m, x1, . . . , xn)
is defined, then after binding the result to m′ and y1, . . . , yk, the formula φ holds.
If a variable yi is not used in φ, we may write instead of yi.

As syntactic sugar we use equality, x = y, if x and y are of an abstract sort.
This can be expressed using the relation ∼ as ∀m · (m, x) ∼ (m, y). For memory
sorts, our axioms make more use of the behavioural equivalence: we write m � m′

as a shorthand for the non-destructiveness assertion ∀γ ∈ m · (m, γ) ∼ (m′, γ),
which says that all objects of m are preserved (observationally) in m′. To specify
additionally that some object a in m behaves equivalently to a′ in m′ we write
(m, a) � (m′, a′) as a shorthand for ∀γ ∈ m · (m, a, γ) ∼ (m′, a′, γ)). This
generalises in the obvious way to a tuple of objects.

The specification of boolean lists begins with the following three axioms:

∀m · nil(m) �= ⊥ ∧ (nil(m) → (m′,) =⇒ m � m′) (1)

∀m∀l ∈ m · isnil(m, l) �= ⊥ ∧ (isnil(m, l) → (m′,) =⇒ m � m′) (2)

∀m∀b∀l ∈ m · cons(m, b, l) �= ⊥ ∧ (cons(m, b, l) → (m′,) =⇒ m � m′) (3)

These say that nil, isnil and cons are always defined on valid arguments,
and that they are non-destructive. This does not mean that preexisting objects
can’t be changed at all: that can happen, so long as the result is behaviourally
equivalent to the original. Next we specify the behaviour of isnil, hd and tl:

∀m · nil(m) → (m′, l) =⇒ isnil(m′, l) → (, b) =⇒ b = t (4)

Datatypes in Memory 117

∀m∀b∀l ∈ m · cons(m, b, l) → (m′, l′) =⇒ isnil(m′, l′) → (, b) =⇒ b = f
(5)

∀m∀b∀l ∈ m · cons(m, b, l) → (m′, l′) =⇒ hd(m′, l′) �= ⊥ ∧
(hd(m′, l′) → (m′′, b′) =⇒ (m′, b) � (m′′, b′)) (6)

∀m∀b∀l ∈ m · cons(m, b, l) → (m′, l′) =⇒ tl(m′, l′) �= ⊥ ∧
(tl(m′, l′) → (m′′, l′′) =⇒ (m′, l) � (m′′, l′′)) (7)

Note that axiom (6) says not only that the correct boolean value is returned, but
also that hd is non-destructive. Axiom (7) is even stronger: tl is non-destructive
and the produced tail must fully share with the original tail.

We can give alternative axioms for hd and tl that specify different amounts
of destructiveness. If instead of axiom (6) we wrote:

∀m∀b∀l ∈ m · cons(m, b, l) → (m′, l′) =⇒ hd(m′, l′) �= ⊥ ∧
(hd(m′, l′) → (m′′, b′) =⇒ (m, b) � (m′′, b′))

then we would obtain lists in which hd is allowed (though not forced) to destroy
or modify the head of the list. Similarly, we could allow tl to destroy or modify
the head of the list when computing the tail. Yet more possibilities exist, e.g., one
could allow tl to fully destroy the old list. This would need an axiom somewhat
similar to the (forthcoming) axioms for delete, plus an axiom of the form:

∀m∀b∀l ∈ m · cons(m, b, l) → (m′, l′) =⇒ tl(m′, l′) → (m′′, l′′) =⇒
(m, l) ∼ (m′′, l′′)

As for delete, the task would be easy with a disjointness predicate o1⊥mo2
stating that two given objects are disjoint in a memory m (with respect to a
set of operations, see next section). Separation here means that manipulating o1
cannot have an effect on o2 and vice versa. Using this we could write:

∀m∀l ∈ m · delete(m, l) �= ⊥

∀m0 · nil(m0) → (m, l) =⇒ ∀γ ∈ m0 · γ⊥ml

The second formula states that a nil list and any further manipulation of it (e.g.
by cons and then delete), cannot have any effect on preexisting objects. The
separation predicate is introduced in the next section. However, without it we
can specify delete by the two axioms:

∀m0 · nil(m0) → (m, l) =⇒ delete(m, l) �= ⊥ ∧
(delete(m, l) → m′ =⇒ m0 � m′) (8)

∀m∀b∀l ∈ m · cons(m, b, l) → (m′, l′) =⇒ delete(m, l) → m′′
0 =⇒

delete(m′, l′) �= ⊥ ∧ (delete(m′, l′) → m′′ =⇒ m′′
0 � m′′) (9)

Axiom (8) says that deleting the nil list does not destroy preexisting objects.
Axiom (9) says that if we add an element and then delete the list, then objects

118 D. Aspinall and P. Hoffman

that wouldn’t have been destroyed if we deleted the list without adding the
element will be left intact. Thus, axiom (9) allows us to show that deleting a
longer list is like deleting a nil list, and axiom (8) shows that deleting a nil list
does not destruct unrelated objects. Together, they guarantee that preexisting
objects will be retained. Clearly these axioms do not force the model to be
a destructive one; delete may be a dummy operation, as in the algebraic list
model. But this would change if we introduced methods for counting the amount
of used memory, for example; then we could specify that delete decreases the
amount of memory used.

Our axiomatization of lists of booleans can be easily extended to an axioma-
tization of lists in which both booleans and other lists may be stored. In effect,
this would be an axiomatization of directed acyclic graphs (dags) — a datatype
in which sharing is really essential.

One could argue that our axioms are apparently rather complex for such
a simple datatype as lists. However, many of these axioms have a regular form
(e.g., idioms for non-destructiveness) and we could use further shorthands. More
importantly, we would claim that there is a range of non-equivalent specifications
of lists-in-memory, usefully describing different degrees of destructiveness, so the
axioms need to be complex enough to capture these differences.

5 Specifying Disjointness

A notion of disjointness is useful in specifying memory operations. The previous
section demonstrated this for the delete operation. Another example is a copy
operation, which should produce a new and disjoint copy of a given list. Using
our predicate for disjointness, this is captured by:

∀m∀l ∈ m · copy(m, l) �= ⊥ ∧ (copy(m, l) → (m′,) =⇒ m � m′)
∀m∀l ∈ m · copy(m, l) → (m′, l′) =⇒ (m, l) ∼ (m′, l′) ∧ ∀γ ∈ m · l′⊥m′γ

In a concrete model such as the pointer model, disjointness has a clear mean-
ing. Pleasingly, it turns out that disjointness may be defined in an abstract, be-
havioural manner for any memory algebra. This abstract notion, when applied
to pointer models of datatypes, yields the expected form of separation, and when
applied to other, e.g., functional models, also gives very natural results.

The disjointness predicate has the form γ⊥mδ, where γ and δ are tuples of of
objects valid in m. Formally, we add the following new formula:

φ ::= ... | α ⊥m α

We define the interpretation of disjointness coinductively using non-interference:
two objects may be treated as disjoint if manipulations on one of them cannot
affect the other, and vice versa. In particular, the disjointness of two objects is
relative to the operations one may use on them.

Definition 4. Let F be a set of memory operations from a memory signature.
Disjointness with respect to F is the greatest memory-indexed family of sym-
metric relations on valid tuples of objects and such that if γ⊥mδ, then:

Datatypes in Memory 119

– if v is an object of abstract sort, then γ + (v)⊥mδ,
– if γ is of length n, F : {1, . . . , N} → {1, . . . , n} is any function and f ∈ F

is of the appropriate type, and if A[f](m, F (γ)) = (m′, γ′), then:
(i) δ is valid in m′, (ii) (m′, δ) ∼ (m, δ), and (iii) (γ|m′ + γ′)⊥m′δ.

Definition 4 imposes the frame condition that manipulation of objects cannot
affect other objects which are disjoint in the same memory. However, because
the disjointness notion is relativised to a particular memory, it is possible for an
operation to destructively combine two objects from one memory, and, in the
new memory, for those objects to be no longer disjoint, or to become invalid. An
example of the second case is the familiar destructive append, which invalidates
the first object; an example of the first case is smash tails(l1, l2) which coalesces
two disjoint objects l1 and l2 so that they share the longest possible suffix.

Disjointness is anti-monotone with respect to the set of operations F , and
for F = ∅ all valid tuples are disjoint in all memories. When it is left implicit,
we take all memory operations to be in F . In the pointer model of lists, dis-
jointness w.r.t. all the operations is just real disjointness of two lists in memory.
In particular, any list is disjoint with the nil list 0. In the algebraic model of
lists, meanwhile, the disjointness relation is the total relation — we even have
l⊥ml for any list l. All this is not surprising. But if, in the pointer model, we
consider disjointness w.r.t. operations other than delete, then we also get the
total relation. This is true even when the “real” lists overlap in memory — the
overlap cannot have consequence and so is ignored. One could claim that a model
deserves the name “functional” just in case its disjointness relation is total.

At the other end of the spectrum, suppose we add zero memory : μ → μ to our
signature, and implement it in the pointer model as a constant function which
takes any memory m to a memory in which all addresses are on the free list.
If we consider disjointness w.r.t. the set F = {zero memory}, then only pairs
of sequences of nil lists and booleans are disjoint. We don’t have 0⊥ml, where
0 is the empty list and l is non-empty, since zeroing memory on the left side
invalidates l. If we now set F to contain all of the operations, then even ()⊥m()
no longer holds, since it is possible to first produce a non-empty list and then
invalidate it, as suggested above.

6 A Specification of Pointers

Now we specify a datatype of pointers. This is a purely “imperative” datatype,
with no functional aspects. In the next section we show how to use it to imple-
ment datatypes such as lists. The signature has a sort pointer and operations:
0 : μ → μ × pointer is0 : μ × pointer → μ × bool
new : μ → μ × pointer dispose : μ × pointer → μ
set1, set2 : μ × pointer× pointer → μ
setbool1, setbool2 : μ × pointer× bool → μ
val1, val2 : μ × pointer → μ × pointer
valbool1, valbool2 : μ × pointer → μ × bool

120 D. Aspinall and P. Hoffman

The operation 0 returns a special, constant pointer, and is0 tests identity of
this pointer. In any pointer two values may be stored and retrieved, each being
either another pointer or a boolean. Pointers may be created and disposed of.

The axioms specifying pointers are as follows:

∀m · new(m) �= ⊥ ∧ (new(m) → (m′,) =⇒ m � m′) (10)

∀m∀p ∈ m · vali(m, p) �= ⊥ ∧ (vali(m, p) → (m′,) =⇒ m � m′) (11)

∀m0 · 0(m0) → (m, p) =⇒ is0(m, p) → (, b) =⇒ b = t (12)

∀m0 · new(m0) → (m, p) =⇒ is0(m, p) → (, b) =⇒ b = f (13)

These are similar to ones given earlier for list operations. An axiom analogous
to (10) is required for 0 and ones analogous to (11) for is0 and for valbool.

∀m0 · new(m0) → (m, p) =⇒ ∀q ∈ m · seti(m, p, q) �= ⊥ ∧
(seti(m, p, q) → m′ =⇒ m0 � m′) (14)

∀m0 · new(m0) → (m, p) =⇒ dispose(m, p) �= ⊥ ∧
(dispose(m, p) → m′ =⇒ m0 � m′) (15)

∀m1 · new(m1) → (m2, p) =⇒ ∀q ∈ m2 · seti(m2, p, q) → m3 =⇒
vali(m3, p) → (m4, q

′) =⇒ (m3, q) � (m4, q
′) (16)

Axiom (14) says that storing in a pointer does not modify objects that existed
before the pointer was created; a similar axiom is needed for setbool. Axiom
(15) says that disposing a pointer does not affect objects that existed before
its creation. Axiom (16) and a similar axiom for the boolean case guarantee
that storing an object and then loading it gives the same (or a behaviourally
equivalent) object back. Behavioural equivalence for pointers is crucial: it means
that an implementation may keep internal information (e.g., needed for garbage
collection) in pointers, as long as the outside world cannot access it.

We can define a model for pointers by altering the model of lists as follows:

– memories must keep both addresses 0 and 1 on the free list (they are used to
denote booleans), and to keep 2 off the free list, initialised to (0, 0) (it will
be used as the 0 pointer),

– the set of valid pointers in m is the greatest set of addresses not on the free
list and such that if a is valid and m(a) = (a1, a2), then ai = 0, ai = 1 or ai

is valid in m (for i = 1, 2),
– 0 returns the address 2; is0 returns true called on 2, false otherwise,
– new allocates a new pointer and sets its fields to 0,
– vali and seti just return and set the appropriate fields under the given

address; the boolean versions do the same, with 0 as false and 1 as true,
– dispose adds the given address to the free list.

One could also imagine a “lazy” model, in which dispose would defer its work,
adding addresses to the free list later on when other operations are called.

Datatypes in Memory 121

7 Implementations

So far we haven’t said how memory specifications may be implemented, that is,
how one can define memory algebras. We now show how this can be done, and
show how the correctness of implementations may be proved. We do not consider
how to construct implementations “ex nihilo”, but rather how to implement one
datatype making use of other datatypes. This approach is reasonable, because
one may assume that simple datatypes are given as built-in.

Let Δ be a memory signature containing the abstract sort bool. Programs
over Δ are expressions Pλ of the following form:

Pλ ::= λ(α) · P
P ::= P ; P | x → x | f(α) → (α) | if e then P | return(α) | self(α)

Here, α denotes tuples of variables, implicitly typed by sorts from Δ, e denotes
boolean expressions built using abstract operations and variables of abstract
sorts, and f denotes memory operations from Δ. No variable is allowed to appear
on the right hand side of the binding “→” more than once. The instruction
“self(α)” recursively calls the program being run, while “return(α)” terminates
the computation (all recursive calls). It is required that the last instruction in
any program is either a self, or a return. Type-soundness is also enforced, i.e., if a
memory operation f is invoked with arguments being variables of sorts s1, . . . , sn

and results being variables of sorts t1, . . . , tk, then we have f : μ×(s1×· · ·×sn) →
μ × (t1 × · · · × tk) in Δ. A program has type s1 × · · · × sn → t1 × · · · × tk if
it binds, under the λ, variables of sorts s1, . . . , sn, if it passes variables of such
types via self, and if it invokes return with variables of type t1, . . . , tk.

An implementation of a memory signature Σ by Δ is a map I taking any
memory sort in Σ to a memory sort in Δ, and any memory operation f : μ ×
(s1 × · · · × sn) → μ × (t1 × · · · × tk) to a program over the signature Δ of type
I(s1) × · · · × I(sn) → I(t1) × · · · × I(tk).

For example, suppose we want to implement lists, as defined in Sect. 3, using
pointers, as defined in the previous section. We can define this by:

list := pointer
nil := λ() · 0 → p; return(p)
isnil := λ(p) · is0(p) → b; return(b)
cons := λ(b, p) · new → p1;

setbool1(p1, b) → ();
set2(p1, p) → ();
return(p1)

hd := λ(p) · valbool1(p) → b; return(b)
tl := λ(p) · val2(p) → p′; return(p′)
delete := λ(p) · is0(p) → b;

if b then return();
val2(p) → p′;
dispose(p) → ();
self(p′)

We define the semantics of programs in the obvious way, with infinitely looping
programs causing non-definedeness, ⊥. The semantics of programs induces a
semantics of implementations: for any implementation I : Σ → Δ and any
memory algebra B over Δ, the semantics of Δ-programs gives us a memory
algebra B|I over Σ.

Proving that implementations are correct. An implementation of lists by pointers
is correct, if assuming that the pointer axioms of Sect. 5 hold, then so do the

122 D. Aspinall and P. Hoffman

list axioms of Sect. 3. This will guarantee that if B satisfies the pointer axioms,
then B|I satisfies the list axioms.

For any implementation I : Σ → Δ one can define a set Sen(I) of formulas
over an extended signature Δ∪Σ which define the operations in Σ. For example,
the definition of nil leads to the two formulae:

∀m · nil(m) → (m′, p) =⇒ 0(m) �= ⊥ ∧
(0(m) → (m′′, p′) =⇒ (m′, p) � (m′′, p′))

∀m · 0(m) → (m′, p) =⇒ nil(m) �= ⊥ ∧
(nil(m) → (m′′, p′) =⇒ (m′, p) � (m′′, p′))

In a similar manner, definitions of other operations may be generated. Armed
with these formulas and the axioms defining pointers, we may now attempt to
prove the axioms defining lists. Consider, for example, axiom (6). Thanks to the
definition of cons and hd in Sen(I), this is equivalent to:

∀m∀b∀p ∈ m · new(m) → (m1, p
′) =⇒ setbool1(m1, p

′, b) → m2 =⇒
set2(m2, p

′, p) → m′ =⇒ valbool1(m′, p′) �= ⊥ ∧
(valbool1(m′, p′) → (m′′, b′) =⇒ (m′, b) � (m′′, b′)

This is indeed a consequence of the pointer axioms. Next consider axiom (8).
It is equivalent to the following two formulas, corresponding to two branches of
the if in delete’s definition:

∀m0 · 0(m0) → (m, p) =⇒ is0(m, p) �= ⊥ ∧ (is0(m, p) → (m′, b) =⇒
b = t =⇒ m0 � m′) (17)

∀m0 · 0(m0) → (m, p) =⇒ is0(m, p) �= ⊥ ∧ (is0(m, p) → (m1, b) =⇒
b = f =⇒ val2(m1, p) → (m2, p

′) =⇒ dispose(m2, p) → m3 =⇒
delete(m3, p

′) → m′ =⇒ m0 � m′) (18)

In this simple case, because the second branch of the if always holds, we can prove
the second formula even without again using the definition of delete, which
may be found in Sen(I). But in general, we may repeatedly use the definitions
in Sen(I) — this is, for example, necessary when proving that axiom (9) holds.

It can be shown that the method presented above is indeed sound. The no-
tation Φ |=Σ ϕ below means that any Σ-algebra satisfying all the formulas
from the set Φ satisfies ϕ as well. The notation Φ|I |=Σ ϕ, where I : Σ → Δ
is an implementation, Φ is a set of Δ-formulas and ϕ is a Σ-formula means
that for any Δ-algebra B satisfying all the formulas from Φ, the Σ-algebra
B|I satisfies the formula ϕ. We say that I is an identity on a subsignature
Σ0 of Σ if it is an identity on sorts and if, for any symbol f in Σ0, we have
I(f) = λ(α) · f(α) → (β); return(β).

Theorem 1. If I : Σ → Δ is an implementation which is an identity on Σ ∩Δ,
Φ is a set of Δ-formulas and ϕ is a Σ-formula, and if Φ ∪ Sen(I) |=Σ∪Δ ϕ then
Φ|I |=Σ ϕ.

Datatypes in Memory 123

Proof (sketch). Assume B satisfies B |=Δ Φ. Let B′ be the union (amalgamation)
of B and B|I , i.e., an algebra over Σ∪Δ. This union may be formed, since B and
B|I coincide on Σ∩Δ. All observations in B′ are also observations in B, because
operations in B|I are defined in terms of operations of B. Therefore B and B′

satisfy the same Δ-formulas; in particular, B′ |=Σ∪Δ Φ. By construction of
Sen(I) we also have B′ |=Σ∪Δ Sen(I). By assumption we then have B′ |=Σ∪Δ ϕ.
It can be shown by induction on ϕ that this implies B′ |=Σ ϕ, since there are
no more observations over Σ than over Σ ∪ Δ. ��

This theorem provides a sound method of proving implementations correct. In
general, this method is not complete. This is because the relations ∼ and ⊥m

over the signature Σ are coarser than the same relations over Σ ∪ Δ, where
more operations exist. Consider, e.g., sets implemented by lists, with repetitions
allowed in the representations. Then two lists differing only in the number of
repetitions will be considered equivalent over Σ (i.e., with respect to the set
operations). But over Σ ∪ Δ (i.e., with respect to the list operations) they are
not equivalent any more.

A second source of incompleteness is non-termination: the defining sentences
in Sen(I) don’t force non-terminating memory operations to actually return
⊥. To circumvent this problem, we consider, for a set of Δ-formulas Φ, only
implementations I : Σ → Δ that are total w.r.t. Φ, that is, implementations
such that in B|I memory operations are total for any algebra B s.t. B |=Δ Φ.

Save for the above phenomena, the presented proof method is complete. In
other words, for total implementations, completeness is guaranteed if all obser-
vations in Σ ∪ Δ may be conducted in Δ as well:

Theorem 2. If I : Σ → Δ is an implementation, Σ contains Δ and I is an
identity on Δ, then for any set Φ of Δ-formulas such that I is total w.r.t. Φ,
and for any Σ-formula ϕ we have Φ ∪ Sen(I) |=Σ ϕ iff Φ|I |=Σ ϕ.

Proof. By the previous theorem and since I is an identity on Σ ∩ Δ = Δ, only
the “if” direction needs to be shown. Assume B |=Σ Φ ∪ Sen(I) and let B0 be
the restriction of B to Δ. Then B0|I |=Σ Φ, because B0|I and B coincide on Δ
and all operations in Σ are defined by I in terms of operations from Δ, so no
new observations exist in B0|I . Thus B0|I |=Σ ϕ. We also have B0 |=Δ Φ, since
B |=Σ Φ and B0 is a restriction of B. Since I is total w.r.t. Φ, this implies that
in B0|I all operations are total. At the same time, B and B0|I coincide on Δ
and B |=Σ Sen(I). But there can be only one total algebra which coincides on Δ
with B and satisfies Sen(I), and so B = B0|I . Hence, B |=Σ ϕ, as required. ��

Another way to ensure completeness is to allow various versions of the relations
∼ and ⊥m to appear in axioms. If we tag these relations by the appropriate
legal sets of observations (in the form of programs), and if by I(ϕ) we denote
the formula with appropriate tagging, then we would get the equivalenceΦ ∪
Sen(I) |=Σ∪Δ I(ϕ) iff Φ|I |=Σ ϕ. The obvious downside of using I(ϕ) is that
we have to deal with a more complex logic. But consider a logic obtained by
allowing the relations ∼ and ⊥m to appear as premises in implications in the

124 D. Aspinall and P. Hoffman

formulas: in this case the proposed proof method ceases to be sound, because the
new observations work both ways, harming both completeness and soundness.
If we use the translation I(ϕ), soundness and completeness are preserved.

8 Conclusions

We introduced an algebraic scheme for specifying and proving correct pointer
programs using their observable behaviour. The mechanism is based on first-
order and behavioural principles, and so could be adopted within existing al-
gebraic specification frameworks. Further investigations are warranted, includ-
ing the study of a suitable proof system and extensions of the language. One
extension would be the aforementioned generalised equivalence and separation
relations; another would be a more expressive logic where coinductive predicates
such as disjointness are definable directly.

While we aimed at being more abstract than existing work based on con-
crete memory models, it is clear that we could be more abstract still. Recasting
our work in a higher-order setting would allow us to make comparisons with re-
lated work in programming language semantics based on monads and coalgebras
(e.g. [7,8]), as would studying model-theoretic foundations. It is natural to want
to specify parts of our models to be generated inductively and require an ini-
tial subalgebra interpretation, while the observational relations have coinductive
characterisations related to final coalgebras.

Finally, we would like to revisit our starting point of specifying interaction
between resources and their consumption in general. Although our focus was
on models of memory in this paper, there is nothing special about “memories”
in our approach that forces them to have this interpretation. Getting closer
to real machines, we might add stack operations to our memory signature. To
describe space usage and consider limited memories, we can add a size function
on memories together with an out-of-memory exception. Imagining a different
interpretation entirely, we could conceive of the sort μ to denote a database of
statistical data in tables; computations on this data may interfere when data
sources are combined but not independent.

Related work. As mentioned at the start, there is much current activity in study-
ing pointer programs, their logics and correctness proofs, as well as more abstract
notions of resource. Space precludes a survey; we mention only a few connections.
First, program logics designed for managing aliasing (e.g., Reynolds’ Separation
Logic [1], Honda et al’s process algebra inspired approach [2]) aim to simplify
proofs of pointer manipulating programs, particularly for better modularity. Our
notion of machine generalises the concrete model considered by Separation Logic,
but our low-level language of assertions differs, in particular making the global
heap explicit. Nonetheless our equivalence notion allows both strong assertions
like m � m′ which amount to global frame conditions, as well as local equiva-
lences such as (m, a) ∼ (m, a′) which, conceptually, are restricted to reachable
heap portions.

Datatypes in Memory 125

Elsewhere, other authors have found equivalence relations like ours useful.
For example, Calcagno and O’Hearn [9] pointed out a need for an observational
approach in Separation Logic in the presence of garbage collection, because oth-
erwise assertions in the logic can distinguish programs which ought to be consid-
ered identical. Benton [10,5] studies correctness proofs for program analyses and
transformations using a relational Hoare logic, noting that in general desirable
program equivalences are context-sensitive.

In the algebraic domain, perhaps surprisingly, nobody seems to have begun
from the same simple definitions as we gave in Sect. 2. But there are certainly a
number of rich mechanisms for treating state in dynamic systems, for example,
Hidden Algebra [11] and SB-CASL [12], as well as work on notions of behavioural
equivalence between algebras and proof mechanisms (see e.g., [13]). We hope
that one of our contributions in this work is to open a way to bring together this
strand of work in algebraic specification with the recent work in program logics.

Acknowledgements. This work was supported by the British Council; DA was
also supported by the EC project Mobius (IST-15905), PH by the EC project
Sensoria (IST-16004). We’re grateful for feedback from referees and colleagues.

References

1. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: LICS
2002, pp. 55–74 (2002)

2. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic
for imperative higher-order frame rules. LICS’05, pp. 270–279 (2005)

3. Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.W., Momigliano, A.: A program
logic for resources. Theoretical Computer Science (Accepted) (2007)

4. Petersen, L., Harper, R., Crary, K., Pfenning, F.: A type theory for memory allo-
cation and data layout. POPL’03, pp. 172–184 (2003)

5. Benton, N., Kennedy, A., Hofmann, M., Beringer, L.: Reading, writing and rela-
tions. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 114–130. Springer,
Heidelberg (2006)

6. Pym, D., O’Hearn, P., Yang, H.: Possible worlds and resources: The semantics of
BI. Theoretical Computer Science 315(1), 257–305 (2004)

7. Jacobs, B., Poll, E.: Coalgebras and monads in the semantics of Java. TCS 291(3),
329–349 (2003)

8. Schröder, L., Mossakowski, T.: Monad-independent dynamic logic in HasCasl. J.
Log. Comput. 14(4), 571–619 (2004)

9. Calcagno, C., O’Hearn, P., Bornat, R.: Program logic and equivalence in the pres-
ence of garbage collection. TCS 298(3), 557–581 (2003)

10. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. POPL’04, pp. 14–25 (2004)

11. Goguen, J., Malcolm, G.: A hidden agenda. TCS 245(1), 55–101 (2000)
12. Baumeister, H., Zamulin, A.: State-based extension of CASL. In: Grieskamp, W.,

Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 3–24. Springer,
Heidelberg (2000)

13. Hennicker, R., Bidoit, M.: Observational logic. In: Haeberer, A.M. (ed.) AMAST
1998. LNCS, vol. 1548, pp. 263–277. Springer, Heidelberg (1999)

Bisimilarity and Behaviour-Preserving

Reconfigurations of Open Petri Nets�

Paolo Baldan1, Andrea Corradini2, Hartmut Ehrig3,
Reiko Heckel4, and Barbara König5

1 Dipartimento di Matematica Pura e Applicata, Università di Padova, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Institut für Softwaretechnik und Theoretische Informatik,
Technische Universität Berlin, Germany

4 Department of Computer Science, University of Leicester, UK
5 Abteilung für Informatik und Angewandte Kognitionswissenschaft,

Universität Duisburg-Essen, Germany

Abstract. We propose a framework for the specification of behaviour-
preserving reconfigurations of systems modelled as Petri nets. The frame-
work is based on open nets, a mild generalisation of ordinary Place/
Transition nets suited to model open systems which might interact with
the surrounding environment and endowed with a colimit-based com-
position operation. We show that natural notions of (strong and weak)
bisimilarity over open nets are congruences with respect to the com-
position operation. We also provide an up-to technique for facilitating
bisimilarity proofs. The theory is used to identify suitable classes of re-
configuration rules (in the double-pushout approach to rewriting) whose
application preserves the observational semantics of the net.

1 Introduction

Petri nets are a well-known model of concurrent and distributed systems, widely
used both in theoretical and applicative areas [19]. In classical approaches,
nets are intended to represent closed, completely specified systems evolving au-
tonomously through the firing of transitions. Therefore, ordinary Petri nets do
not support directly certain features that are needed to model open systems,
namely systems which can interact with the surrounding environment or, in a
different view, systems which are only partially specified.

Firstly, a large (possibly still open) system is typically built out of smaller
open components. Syntactically, an open system is equipped with suitable inter-
faces, over which the interaction with the external environment can take place.
Semantically, openness can be represented by defining the behaviour of a com-
ponent as if it were embedded in general environments, determining any possible
interaction over the interfaces.
� Research partially supported by the EU IST-2004-16004 SEnSOria, the MIUR

Project ART, the DFG project SANDS and CRUI/DAAD Vigoni “Models based
on Graph Transformation Systems: Analysis and Verification”.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 126–142, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets 127

Secondly, often the building components of an open system are not statically
determined, but they can change during the evolution of the system, according
to predefined reconfiguration rules triggered by internal or external solicitations.

In this paper we present a framework where open systems can be modelled
as Petri nets. Observational semantics based on (weak) bisimulation are shown
to be congruences with respect to the composition operation defined over Petri
nets. Building on this, suitable reconfigurations of such systems can be specified
as net rewritings, which preserve the behaviour of the system.

The framework is based on so-called open nets, a mild generalisation of ordi-
nary Petri nets introduced in [2,3] to answer the first of the requirements above,
i.e., the possibility of interacting with the environment and of composing a larger
net out of smaller open components. An open net is an ordinary net with a dis-
tinguished set of places, designated as open, through which the net can interact
with the surrounding environment. As a consequence of such interaction, tokens
can be freely generated and removed in open places. In the mentioned papers
open nets are endowed with a composition operation, characterised as a pushout
in the corresponding category, suitable to model both interaction through open
places and synchronisation of transitions.

In the first part of the paper, after having extended the existing theory for
open nets to deal with marked nets, we introduce bisimulation-based observa-
tional equivalences for open nets. Following the intuition about reactive systems
discussed in [12], such equivalences are based on the observation of the interac-
tions between the given net and the surrounding environment. The framework
treats uniformly strong bisimilarity, where every transition firing is observed, and
weak bisimilarity, where a subset of unobservable transition labels is fixed and
the firings of transitions carrying such labels are considered invisible. Bisimilar-
ity is shown to be a congruence with respect to the composition operation over
open nets. Interestingly enough, this holds also when the set of non-observable
labels is not empty, i.e., for weak bisimilarity: some natural questions regarding
the relation with weak bisimilarity in CCS are also addressed. In addition, we
also define an up-to technique for facilitating bisimulation proofs.

Exploiting the results in the first part of the paper we introduce a framework
for open net reconfigurations. The fact that open net components are combined
by means of categorical colimits, suggests a setting for specifying net reconfig-
urations, based on double-pushout (DPO) rewriting [9]. Using the congruence
result for bisimilarity we identify classes of transformation rules which ensure
that reconfigurations of the system do not affect its observational behaviour.

A concluding section discusses some related work. A full version of the paper,
with proofs and additional results, is available as [4].

2 Marked Open Nets

An open net, as introduced in [2,3], is an ordinary P/T Petri net with a dis-
tinguished set of open places, which represent the interface through which the
environment can interact with the net. An open place can be an input place,

128 P. Baldan et al.

meaning that the environment can put tokens into it, or an output place, from
which the environment can remove tokens, or both. In this section we introduce
the basic notions for open nets as presented in [3], generalising them to nets with
initial marking: this will be needed in the treatment of bisimilarity in Section 4.

Given a set X we write 2X for the powerset of X and X⊕ for the free com-
mutative monoid over X . Moreover, given a function h : X → Y we denote by
the same symbol h : 2X → 2Y its extension to sets, and by h⊕ : X⊕ → Y ⊕ its
monoidal extension. Given a multiset u ∈ X⊕, with u =

⊕
x∈X ux · x, for x ∈ X

we will write u(x) to denote the coefficient ux. The symbol 0 denotes the empty
multiset.

Definition 1 (multiset projection). Given a function f : X → Y and a
multiset u ∈ Y ⊕ we denote by (u ↓ f) the projection of u along f , which is the
multiset over X defined as (u↓f) =

⊕
x∈X uf(x) · x.

For instance, given f : {s0, s1, s2} → {s′1, s
′
2, s

′
3} such that f(s0) = f(s1) = s′1

and f(s2) = s′2, we have (2s′1 ⊕ s′2 ⊕ s′3 ↓ f) = 2s0 ⊕ 2s1 ⊕ s2. We will mainly
work with injective functions, for which the projection operation satisfies some
expected properties, such as f⊕((u↓f)) ≤ u and (f⊕((u↓f))↓f) = (u↓f).

We consider nets where transitions are labelled over a fixed set of labels Λ.

Definition 2 (P/T Petri net). A P/T Petri net is a tuple N = (S, T, σ, τ, λ)
where S is the set of places, T is the set of transitions, σ, τ : T → S⊕ are
functions mapping each transition to its pre- and post-set and λ : T → Λ is a
labelling function for transitions.

In the sequel we will denote by •(·) and (·)• the monoidal extensions of the
functions σ and τ to functions from T⊕ to S⊕. Moreover, given s ∈ S, the pre-
and post-set of s are defined by •s = {t ∈ T : s ∈ t•} and s• = {t ∈ T : s ∈ •t}.

Definition 3 (Petri net category). Let N0 and N1 be Petri nets. A Petri
net morphism f : N0 → N1 is a pair of total functions f = 〈fT , fS〉 with
fT : T0 → T1 and fS : S0 → S1, such that for all t0 ∈ T0, •fT (t0) = f⊕

S (•t0),
fT (t0)• = f⊕

S (t0•) and λ1(fT (t0)) = λ0(t0). The category of P/T Petri nets and
Petri net morphisms is denoted by Net.

We next introduce the notion of open net. As anticipated above, differently
from [2,3], we work here with marked nets.

Definition 4 (open net). An open net is a pair Z = (NZ , OZ), where NZ =
(SZ , TZ, σZ , τZ , λZ) is a P/T Petri net and OZ = (O+

Z , O−
Z) ∈ 2SZ × 2SZ are

the sets of input and output open places of the net. A marked open net is a pair
(Z, û) where Z is an open net and û ∈ S⊕

Z is the initial marking.

Hereafter, unless stated otherwise, all open nets will be implicitly assumed to
be marked. An open net will be denoted simply by Z and the corresponding
initial marking by û. Subscripts carry over to the net components. The graphical
representation for open nets is similar to that for standard nets. In addition, the

Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets 129

fact that a place is input or output open is represented by an ingoing or outgoing
dangling arc, respectively. For instance, in net Z1 of Fig. 1, place s is both input
and output open, while s′ is only output open.

The notion of enabledness for transitions is the usual one, but, besides the
changes produced by the firing of the transitions of the net, we consider also the
interaction with the environment which is modelled by events, denoted by +s

and −s, which produce or consume a token in an open place s.

Definition 5 (set of extended events). Let Z be an open net. The set of
extended events of Z, denoted by T̄Z and ranged over by ε is defined as

T̄Z = TZ ∪ {+s : s ∈ O+
Z } ∪ {−s : s ∈ O−

Z }.

Defining •+s = 0 and +s
• = s, and symmetrically, •−s = s and −s

• = 0, the
notion of pre- and post-set extends to multisets of extended events.

Given a marking u ∈ O+
Z

⊕
, we denote by +u the multiset

⊕
s∈S u(s) · +s.

Similarly, −u =
⊕

s∈S u(s) · −s for u ∈ O−
Z

⊕
.

Definition 6 (firings and steps). Let Z be an open net. A step in Z consists
of the execution of a multiset of (extended) events A ∈ T̄⊕

Z , i.e., u⊕ •A [A〉 u⊕
A•. A step is called a firing when it consists of a single event, i.e., A = ε ∈ T̄Z .

A firing can be (i) the execution of a transition u ⊕ •t [t〉 u ⊕ t•, with u ∈ S⊕
Z ,

t ∈ TZ ; (ii) the creation of a token by the environment u [+s〉 u⊕s, with s ∈ O+
Z ,

u ∈ S⊕
Z ; (iii) the deletion of a token by the environment u⊕s [−s〉 u, with u ∈ S⊕

Z ,
s ∈ O−

Z . A step is the firing of a multiset of transitions and interactions with the
environment, of the kind A ⊕ −w ⊕ +v for A ∈ T⊕

Z , w ∈ O−
Z

⊕
and v ∈ O+

Z

⊕
.

Definition 7 (open net category). An open net morphism f : Z1 → Z2 is
a Petri net morphism f : NZ1 → NZ2 such that, if we define in(f) = {s ∈ S1 :
•fS(s) − fT (•s)
= ∅} and out(f) = {s ∈ S1 : fS(s)• − fT (s•)
= ∅}, then

1. (i) f−1
S (O+

2) ∪ in(f) ⊆ O+
1 and (ii) f−1

S (O−
2) ∪ out(f) ⊆ O−

1 .
2. û1 = (û2 ↓fS) (reflection of initial marking).

The morphism f is called an open net embedding if both fT and fS are injective.
We will denote by ONet the category of open nets and open net morphisms.

Intuitively, an embedding f : Z1 → Z2 “inserts” net Z1 into a larger net Z2,
which might constrain the behaviour of Z1. Conditions 1.(i) and 1.(ii) first require
that open places are reflected and hence that places which are “internal” in Z1
cannot be promoted to open places in Z2. Furthermore, they ensure that the
context in which Z1 is inserted can interact with Z1 only through the open
places. In fact, if s is a place of Z1 and its image fS(s) is in the post-set of
a transition of Z2 which is not in the image of Z1, from the perspective of
Z1 the environment can generate tokens in s; in this case s ∈ in(f), and thus
Condition 1.(i) requires s to be an input place. Condition 1.(ii) is analogous

130 P. Baldan et al.

for output places. Finally, condition 2 requires that the marking of Z1 is the
projection of the marking of Z2: any place s1 ∈ S1 must carry the same number
of tokens as its image f(s1) ∈ S2, i.e., û1(s1) = û2(f(s1)) for any s1 ∈ S1. All
morphisms f1, f2, α1 and α2 in Fig. 1 are examples of open net embeddings
(the mappings on places and transitions are those suggested by the shape and
labelling of the nets).

It is worth observing that most of the constructions in the paper will be defined
for open net embeddings, hence readers can limit their attention to embeddings
if this helps the intuition. Still, on the formal side, working in a larger host
category with more general morphisms is essential to obtain a characterisation
of the composition operation in terms of pushouts. Specifically, non-injective
open net morphisms are needed as mediating morphisms (recall, for example,
that the category of sets with injective functions does not have all pushouts).

In the sequel, given an open net morphism f = 〈fS , fT 〉 : Z1 → Z2, to lighten
the notation we will omit the subscripts “S” and “T ” in its place and transition
components, writing f(s) for fS(s) and f(t) for fT (t). Moreover we will write
f⊕ : T̄⊕

Z1
→ T̄⊕

Z2
to denote the monoidal function defined on the generators by

f⊕(t) = f(t) for t ∈ TZ1 and, for x ∈ {+, −}, f⊕(xs) = xf(s), if f(s) ∈ Ox
2 and

f⊕(xs) undefined, otherwise. Note that f⊕ can be partial since open places can
be mapped to closed places.

Unlike most of the morphisms considered over Petri nets in the literature,
open net morphisms are not simulations. Instead, since open net embeddings are
designed to capture the idea of inserting a net into a larger one, they are expected
to reflect the behaviour, in the sense that given an embedding f : Z0 → Z1, the
behaviour of Z1 can be projected along f to the behaviour of Z0.

To formalise reflection of the behaviour along open nets embeddings, we define
the projection operation also over steps.

Definition 8 (projecting extended events). Given an open net embedding
f : Z → Z ′ and an extended event ε′ ∈ T̄Z′ we define the projection of ε′ along
f as follows:

– if ε′ = t′ ∈ TZ′ is a transition then

(t′⇓f) =
{

t if t ∈ TZ and f(t) = t′

−(•t′↓f) ⊕ +(t′•↓f) if t′
∈ f(TZ)
– if ε′ = xs′ , with x ∈ {+, −}, then (xs′ ⇓f) = x(s′↓f).

The projection operation over multisets of extended events (⇓ f) : T̄⊕
Z′ → T̄⊕

Z ,
is defined as the monoidal extension of the projection of firings.

In words, if we think of the embedding as an inclusion, given a transition t′, the
projection (t′⇓f) is the transition itself if t′ is in Z. Otherwise, if t′ is not in Z
but it consumes or produces tokens in places of Z, the projection of t′ contains
the corresponding extended events, expressing the interactions over open places.

Lemma 1 (reflection of behaviour). Let f : Z → Z ′ be an open net embed-
ding. For every step u′ [A′〉 v′ in Z ′ there is a step (u′ ↓ f) [(A′⇓f)〉 (v′ ↓ f) in
Z, called the projection of the step u′ [A′〉 v′ over Z.

Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets 131

3 Composing Open Nets

We introduce next a basic mechanism for composing open nets which is char-
acterised as a pushout construction in the category of open nets. The case of
unmarked nets was already discussed in [3]. Here we extend the theory to deal
with marked open nets. Intuitively, two open nets Z1 and Z2 are composed by
specifying a common subnet Z0, and then by joining the two nets along Z0.

Let us start with a technical definition which will be useful below.

Proposition 1 (composition of multisets). Consider a pushout diagram in
the category of sets as below, where all morphisms are injective.
Given u1 ∈ S⊕

1 and u2 ∈ S⊕
2 such that (u1 ↓f1) =

(u2 ↓f2) = u0, there is a (unique) multiset u3 ∈ S⊕
3

such that (u3 ↓ αi) = ui, for i ∈ {1, 2}. Such a
multiset u3 will be denoted by u3 = u1 �u0 u2.

S0f1 f2

S1
α1

S2
α2S3

As in [2,3], two embeddings f1 : Z0 → Z1 and f2 : Z0 → Z2 are called composable
if the places which are used as interface by f1, i.e., the places in(f1) and out(f1),
are mapped by f2 to input and output open places of Z2, respectively, and also
the symmetric condition holds.

Definition 9 (composability). Let f1 : Z0 → Z1, f2 : Z0 → Z2 be embeddings
in ONet. We say that f1 and f2 are composable if 1. f2(in(f1)) ⊆ O+

Z2
and

f2(out(f1)) ⊆ O−
Z2

; and 2. f1(in(f2)) ⊆ O+
Z1

and f1(out(f2)) ⊆ O−
Z1

.

Composability is necessary and sufficient to ensure that the pushout of f1 and
f2 can be computed in Net and then lifted to ONet.

Proposition 2 (pushouts in ONet). Let f1 : Z0 → Z1, f2 : Z0 → Z2 be
embeddings in ONet (see Fig. 2(a)). Compute the pushout of the corresponding
diagram in category Net (componentwise on places and transitions) obtaining
net NZ3 and morphisms α1 and α2, and then take as open places, for x ∈ {+, −},

Ox
Z3

= {s3 ∈ S3 : α−1
1 (s3) ⊆ Ox

Z1
∧ α−1

2 (s3) ⊆ Ox
Z2

}
and as marking û3 = û1�û0 û2, defined according to Proposition 1. Then (α1, Z3,
α2) is the pushout in ONet of f1 and f2 if and only if f1 and f2 are composable.
In this case we write Z3 = Z1 +f1,f2 Z2.

As an example, the open net embeddings f1 and f2 in Fig. 1 are composable
and Z3 is the resulting pushout object.

We next analyse the behaviour of an open net Z3 arising as the composition
of two nets Z1 and Z2 along an interface Z0. More specifically, we show that
steps of the component nets Z1 and Z2 can be “composed” to give a step of Z3
when they agree on the interface and satisfy suitable compatibility conditions.

Lemma 2 (composing steps). Let f1 : Z0 → Z1 and f2 : Z0 → Z2 be
composable embeddings in ONet and let Z3 = Z1 +f1,f2 Z2 (see Fig. 2(a)).
Let u1 [A1〉 v1 and u2 [A2〉 v2 be steps in Z1 and Z2, respectively, such that
(u1 ↓f1) = (u2 ↓f2) = u0 and A2 = f⊕

2 ((A1 ⇓f1)).
Then, (v1 ↓f1) = v0 = (v2 ↓f2) and, if we define A3 = α⊕

1 (A1),

132 P. Baldan et al.

Fig. 1. An example of a pushout in ONet

u1 �u0 u2 [A3〉 v1 �v0 v2.

The above result can be used to get a compositionality result for steps, showing
that the steps of Z3 can be obtained by “composing” steps of the components Z1
and Z2 satisfying suitable compatibility requirements. However, this is outside
the main focus of the paper and can be found in the full version [4].

4 Bisimilarity of Open Nets

We next study (strong and weak) bisimilarity for open nets, proving that it is a
congruence with respect to the colimit-based composition of open nets.

First, we define the labelled transition system associated to an open net. Net
transitions carry a label which is observed when they fire. Additionally, in the
labelled transition system we also observe what happens at the open places. As
discussed in the conclusions, this resembles the labelled transition system arising
from the view of Petri nets as reactive systems in [14,20]. More precisely, given
an open net Z, the corresponding labelled transition system has the markings
of the net as states. Transitions are generated by the firings of Z and labelled
over the set ΛZ = Λ ∪ {+s : s ∈ O+

Z } ∪ {−s : s ∈ O−
Z }.

For notational convenience we extend the labelling function λZ to the set of
extended events T̄Z , by defining λZ(x) = x for x ∈ T̄Z − TZ (i.e., for x = +s or
x = −s with s ∈ SZ).

Definition 10 (lts for an open net). The labelled transition system associ-
ated to an open net Z, denoted by lts(Z), is the pair 〈S⊕

Z , →Z〉, where states are
markings uZ ∈ S⊕

Z and the transition relation →Z ⊆ S⊕
Z × ΛZ × S⊕

Z includes all

transitions uZ
λZ(x)−→ Z u′

Z such that there is a firing uZ [x〉 u′
Z in Z.

When observing the behaviour of a system, usually only a subset of events is
considered observable. Here this is formalised by selecting a subset of labels
representing internal firings, playing a role similar to τ -actions in process calculi,

Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets 133

and then considering a corresponding notion of weak bisimilarity. Let Λτ ⊆ Λ be
a subset of unobservable labels, fixed for the rest of the paper. Given a Λ-labelled
open net Z, for markings v, v′ ∈ S⊕

Z we write v
τ
�Z v′ if v

�−→Z v′ with � ∈ Λτ ,

and v
�
�Z v′ if v

�−→Z v′ with � ∈ ΛZ − Λτ . Then we define

– v
τ=⇒Z v′ when v

τ
�

∗
Z v′.

– v
�=⇒Z v′ when v

τ
�

∗
Z

�
�Z

τ
�

∗
Z v′ �
= τ .

Weak bisimilarity is now defined in a standard way (but note that when the set
of unobservable labels is empty, this actually corresponds to strong bisimilarity).
Only, we need to specify for each open place of one net which is the corresponding
open place in the other net. Given two open nets Z1 and Z2 a correspondence
η : O1 ↔ O2 between Z1 and Z2 is a bijection η : O+

1 ∪ O−
1 → O+

2 ∪ O−
2 such

that for s1 ∈ O1, x ∈ {+, −} we have s1 ∈ Ox
1 iff η(s1) ∈ Ox

2 .

Definition 11 ((weak) bisimilarity). Let Z1, Z2 be open nets and η : O1 ↔
O2 be a correspondence between Z1 and Z2. A (weak) η-bisimulation over Z1
and Z2 is a relation over markings R ⊆ S⊕

1 × S⊕
2 such that if (u1, u2) ∈ R then

– if u1
�

�Z1 u′
1, there exists u′

2 such that u2
η(�)
=⇒Z2 u′

2 and (u′
1, u

′
2) ∈ R;

– the symmetric condition holds;

where η(+s) = +η(s), η(−s) = −η(s), and η(�) = � for any � ∈ Λ ∪ {τ}.
Two open nets Z1 and Z2 are (weakly) η-bisimilar, denoted Z1 ≈η Z2, if

η : O1 ↔ O2 is a correspondence and there exists a (weak) η-bisimulation R

over Z1 and Z2 such that (û1, û2) ∈ R. We will say that Z1 and Z2 are (weakly)
bisimilar, written Z1 ≈ Z2, if Z1 ≈η Z2 for some correspondence η.

According to the following lemma, which is a corollary of Lemma 2, given com-
posable embeddings f1 : Z0 → Z1 and f2 : Z0 → Z2, the firing of a transition in
Z2, projected along f2 to Z0 can then be simulated in Z1.

Lemma 3. Let Z0, Z1, Z2 be open nets and let fi : Z0 → Zi (i ∈ {1, 2}) be
composable embeddings, as in Fig. 2(a). Furthermore, let Z3 = Z1 +f1,f2 Z2.

Assume that u2
�−→Z2 u′

2 where � ∈ Λ, let t ∈ T2 such that λ2(t) = � and
u2 [t〉 u′

2, let u0 [A0〉 u′
0 be its projection over Z0 (hence A0 = (t ⇓ f2)), and

let u0
�1−→Z0 . . .

�n−→Z0 u′
0 be any sequence of transitions in lts(Z0) arising as a

linearisation of such step in Z0. Then for any u1 ∈ S⊕
1 such that (u1 ↓f1) = u0

we have that u1
�1−→Z1 . . .

�n−→Z1 u′
1 and u1 �u0 u2

�−→Z3 u′
1 �u′

0
u′

2.

Note that above, if transition t is in the image of Z0, then the sequences of
transitions in lts(Z0) and lts(Z1) are actually single firings. Otherwise, they are
sequences of interactions over open places, possibly of length greater than one.

By exploiting this lemma we can prove that bisimilarity is a congruence with
respect to the composition operation on open nets.

134 P. Baldan et al.

Z0 f2f1

Z1

α1

Z2

α2Z3

(a)

Z0 g2f1

Z1

β1

W2

β2W3

(b)

Fig. 2. Pushouts in ONet

Theorem 1 (bisimilarity is a congruence). Let Z0, Z1, Z2, W2 be open
nets. Let Z2 ≈η W2, for some η. Consider the nets Z3 = Z1 +f1,f2 Z2 and
W3 = Z1 +f1,g2 W2, as in Fig. 2 where f1, f2 and g2 are embeddings, f1 and f2
are composable, and f1 and g2 are composable as well.

If g2|O0 = η ◦ (f2|O0) (i.e., f2 and g2 are consistent with η on open places)
then Z3 ≈η′ W3, where η′ is defined as follows: for all s ∈ OZ3 , η′(s) = β1(s′) if
s = α1(s′), and η′(s) = β2(η(s′)) if s = α2(s′).

We next provide a kind of up-to technique for open net bisimilarity. Given an
open net Z, let us define the out-degree of a place s ∈ S as the maximum number
of tokens that the firing of an extended event can remove from s, formally:

deg(s) = max
(
{(•t)(s) : t ∈ TZ} ∪ {1 : s ∈ O−

Z }
)

The idea, formalised in the notion of up-to bisimulation, is to allow tokens
to be removed from open input places, when they exceed the out-degree of the
place. More precisely, given a net Z and a marking u ∈ S⊕, let us say that a
marking v ∈ O+

Z

⊕
is subtractable from u if ∀s ∈ O+

Z . deg(s) ≤ u(s) − v(s). Note
that this implies that all transitions enabled in u are also enabled in u � v.

Definition 12 (up-to bisimulation). Let Z1 and Z2 be open nets, and let
η : O1 ↔ O2 be a correspondence between Z1 and Z2. A relation R ⊆ S⊕

1 × S⊕
2

between markings is called an up-to η-bisimulation if whenever (u1, u2) ∈ R then

– if u1
�
�Z1 u′

1, then there exist markings u′
2 such that u2

η(�)
=⇒Z2 u′

2, and
v1 ∈ O+

1
⊕

subtractable from u1, with (u′
1 � v1, u

′
2 � η⊕(v1)) ∈ R;

– the symmetric condition holds.

Proposition 3. Let Z1 and Z2 be open nets, and let η : O1 ↔ O2 be a corre-
spondence between Z1 and Z2. Let R be an up-to η-bisimulation. Then for any
(u1, u2) ∈ R we have that (Z1, u1) ≈η (Z2, u2).

As it often happens with up-to techniques, the above result might allow to show
that two nets are bisimilar by exhibiting finite relations (while bisimulations are
typically infinite). E.g., consider the open nets on the right, where label a is
observable. Then a bisimulation would in-
clude at least the pairs {(k · s, k · s) : k ∈ N},
where s is the only place. Instead, accord-
ing to the definition above {(0, 0), (s, s)} is
an up-to bisimulation.

Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets 135

Fig. 3. Two pushouts of open nets for the comparison to CCS

Comparison to CCS. We now give some hints as to why weak bisimilarity is
a congruence in the case of open nets, but not in CCS [16]. Remember that
a classical counterexample for CCS is as follows: p1 = τ.a.0 ≈ a.0 = p2, but
q1 = τ.a.0 + b.0
≈ a.0 + b.0 = q2. The reason for the latter inequality is that q1
can do a τ and become a.0, while q2 cannot mimic this step.

Fig. 3 shows a similar situation of nondeterministic choice for open nets,
where τ is the only unobservable label. However, note that here the two nets Z1
(corresponding to τ.a.0) and Z ′

1 (corresponding to a.0) are not weakly bisimilar.
Whenever the τ -transition is fired in Z1, resulting in the marking m1, this can
not be mimicked in Z ′

1 by staying idle, since then in Z ′
1 a transition with label

−s′
1

is possible, while a transition labelled −s1 is not possible for the net Z1 with
marking m1. Also note that the places s1 respectively s′1 must be output open
in order to allow composition with the net Z2.

Roughly, this means that for open nets we are always able to observe the first
invisible action in an open component, which is reminiscent of the definition of
observation congruence (denoted by ≈c) in CCS: two processes p, q are called
observation congruent if they are weakly bisimilar, with the additional constraint
that whenever the first step of p is a τ -action, then it has to be answered by
at least one τ -action of q (and vice versa). In both settings it is only the first
τ -action that can be observed but not the subsequent ones.

5 Reconfigurations of Open Nets

The results in the previous sections are used here to design a framework where a
system specified as a (possibly open) Petri net can be reconfigured dynamically
by transformation rules, triggered by the state/shape of the system. The con-
gruence result allows to characterise classes of reconfigurations which preserve
the observational behaviour of the system.

The fact that the composition operation over open nets is defined in terms of
a pushout construction suggests naturally a way of reconfiguring open nets by
using the double-pushout approach to rewriting [9].

A rewriting rule over open nets consists of a pair of morphisms in ONet:

p = Lp
lp← Kp

rp→ Rp

136 P. Baldan et al.

where Lp, Kp, Rp are open nets, called left-hand side, interface and right-hand
side of the rule p, and lp, rp are open net embeddings. Furthermore, it is required
that (rp ◦ l−1

p)|OLp
is a correspondence between Lp and Rp, which we denote by

ηp : Lp ↔ Rp. Intuitively, the rule specifies that, given a net Z, if the left-hand
side Lp matches a subnet of Z then this can be reconfigured into Z ′ by replacing
the occurrence of Lp with the right-hand side Rp, preserving the subnet Kp.
Note that by requiring the existence of the correspondence ηp, we guarantee
that the interface of the transformed net, consisting of the open places, is left
untouched by the reconfiguration (a more general treatment can be found in [4]).
A rewriting rule p is called behaviour preserving if its left- and right-hand sides
are bisimilar: more precisely, if Lp ≈ηp Rp.

Definition 13 (open net transformation). Let p be a rewriting rule over
open nets, let Z be an open net and let m : Lp → Z be a match, i.e., an
open net embedding. We say that Z rewrites to Z ′ using p at match m, writing
Z ⇒p,m Z ′ or simply Z ⇒p Z ′, if the diagram of Fig. 4(a) can be constructed
in ONet, where both squares are pushouts, and morphism n is composable with
both lp and rp.

We stress that we are interested in transformations where the two pushout
squares are built from composable arrows (technically, this ensures that the
transformation can be performed in Net and then “lifted” to ONet).

The next result is now an easy consequence of Theorem 1.

Theorem 2 (behaviour-preserving reconfigurations). Let p be a behaviour-
preserving open net rule. Given an open net Z and a match m : Lp → Z, if
Z ⇒p,m Z ′ then Z ≈ Z ′.

For instance, consider the double-pushout diagram in Fig. 4(b). It can be easily
seen that the left- and right-hand sides of the applied rule are strongly bisimilar.
Hence we can conclude that also Z and Z ′ are strongly bisimilar.

5.1 Applying Rules to Open Nets

As it is common in the categorical approaches to (graph) rewriting, the notion
of open net transformation proposed in Definition 13 is rather “declarative”
in style, because it requires the existence of two pushouts in category ONet,
without stating how they can be constructed, and under which conditions. A
more explicit description of the conditions under which a rule can be applied
to an open net and of the way the resulting net can be constructed, is clearly
necessary for practical purposes. Looking at Fig. 4(a), given a rule p and a match
m : Lp → Z, in order to build the open net transformation:

– The pushout complement of lp and m must exist. The resulting arrows n
and d must be such that lp and n are composable. Additionally, there can
be several pushout complements and in this case a canonical choice should
be considered.

Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets 137

Lp

m

Kp

n

lp rp
Rp

h

Z D
d b

Z′

(a) (b)

Fig. 4. Transforming open nets through DPO rewriting

– The resulting arrow n must be composable with rp: then we know how to
build Z ′ by Proposition 2.

Unfortunately, although a general theory of DPO rewriting has been devel-
oped recently in the framework of adhesive categories [11], we cannot exploit
it here since the category of open nets falls outside the scope of the theory.
Sufficient hypotheses under which the above conditions are satisfied are made
explicit in the following lemma (more general conditions are considered in [4]).

Lemma 4 (existence of transformations in ONet). Let p be an open net
rewriting rule, let Z be an open net and let m : Lp → Z be a match such that:

1. for all s ∈ Lp − lp(Kp) we have •m(s) ∪ m(s)• ⊆ m(Lp − Kp);
2. for all s ∈ Kp, if s ∈ in(rp) − in(lp) then m(lp(s)) ∈ O+

Z ;
3. for all s ∈ Kp, if s ∈ in(lp) then lp(s) ∈ O+

L implies m(lp(s)) ∈ O+
Z ;

and the dual of the last two conditions, obtained by replacing in() by out() and
+ by −, hold. Then, there exists a transformation Z ⇒p,m Z ′.

The intuition underlying the conditions above is the following. Condition 1 is
a typical dangling condition: it asserts that a place can be deleted only if all
the transitions connected to this place are removed as well, otherwise the flow
arcs of this transition would remain dangling. Technically, this condition ensures
that the pushout complement exists and is unique in the underlying category
Net. By condition 2, if s ∈ in(rp)− in(lp), i.e., the rule p creates a new (ingoing)
transition connected to place s, without replacing any old one, then the image
of s in Z must be (input) open. Finally, condition 3 says that if s ∈ in(lp), i.e.,
if some (ingoing) transitions are deleted from s then the image of s in Z must
be (input) open if so is its image in Lp.

138 P. Baldan et al.

Fig. 5. Rules

Technically, conditions 2 and 3 (and their dual) ensure the existence of a
minimal pushout complement D, i.e., a pushout complement which embeds into
any other, which is the one that we choose to define the transformation; the
conditions also guarantee the composability of n with both lp and rp. The net
underlying the minimal pushout complement is D = Z − m(Lp − lp(Kp)) (with
set difference componentwise on places and transitions), and the open places of
D are given by Ox

D = d−1(Ox
Z) for x ∈ {+, −}. The initial marking ûD is defined

as ûD(s) = ûZ(d(s)) for any place s ∈ SD.
As an example, consider again the DPO diagram in Fig. 4(b). It is not difficult

to see that the rule and the match satisfy the conditions of Lemma 4. Hence
we can complete the double-pushout construction transforming Z into Z ′, as
depicted in the same figure.

5.2 Modeling Dynamic Reconfigurations of Services

Open nets allow us to specify a system as built out of smaller components. Then,
its behaviour is captured by the firing behaviour of the open net. However, for
highly dynamic systems, as mentioned in the introduction, it can be useful to
have the possibility of specifying that, under suitable conditions, some struc-
tural changes or reconfigurations of the system can take place. For instance the
invocation of a service could trigger a rule which provides an implementation of
the required service.

The theory of open net reconfigurations can do the job. As an example, con-
sider net N0 in Fig. 6 which models the view of a traveller on the journey planning
and ticket purchase services offered through a travel agency portal.

We distinguish abstract transitions representing services that should be pro-
vided elsewhere and concrete transitions representing local services and control

Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets 139

Fig. 6. Transformation of open nets representing a travel agent’s portal

flow actions. The invocation of an external service can be seen at different levels
of abstraction. From the point of view of the client process it is just the firing an
abstract transition. At a lower level of abstraction, it is captured by a rule such
as the one at the top of Fig. 5. An application of this rule, replacing the abstract
transition by a new open net, models the discovery and binding of the concrete
services required. The left- and right-hand sides of the rule are weakly bisimilar
if we observe only the interactions at the open (interface) places, i.e., if we take
Λτ = Λ. This can be seen as a proof of the fact that the bound service meets
the requirements: both in the abstract transition and in its concrete counterpart
any inquiry will produce a corresponding itinerary.

The rule in the bottom of Fig. 5 represents a case where a simple pattern
is replaced by a richer one. On the left we say that, given an itinerary, we can
either purchase the required tickets or cancel the processes. On the right the
transaction is refined, adding a prior reservation phase, while keeping the option
to cancel. As above, the rule has weakly bisimilar left- and right-hand sides,
ensuring that the visible effect of the abstract and concrete transitions at the
interfaces is the same.

A possible sequence of transformations is shown in Fig. 6. By the above con-
siderations, we are sure that the transformations do not change the observable
behaviour of the system, a fact that can be interpreted as a proof of conformance
of the provided service with respect to the abstract specification.

6 Conclusion and Related Work

Open nets, introduced in [2,3], are a reactive extension of standard Petri nets
which allows to model systems interacting with an unspecified environment. Sev-
eral other approaches to Petri net composition and reactivity have been proposed

140 P. Baldan et al.

in the literature (see, e.g., [6,17,10], to mention a few) and a detailed comparison
with the open net model can be found in [3].

In this paper, firstly we have generalised the theory of open nets, including
the characterisation of net composition using pushouts, to the case of marked
nets. Next we have introduced the notions of strong and weak bisimilarity over
open nets. Weak bisimilarity (and, as a particular case, also strong bisimilarity)
is shown to be a congruence with respect to the colimit-based composition op-
eration over open nets. To the best of our knowledge, this is the first time that
a compositionality result is given for weak bisimilarity over Petri nets. Weak
bisimilarity for Petri nets with a composition operation is studied for instance
in [17], but it is not congruence, though a context closure allows one to get a
congruence which is then characterised by means of a universal context. Our re-
sult about strong bisimilarity can be seen as a generalisation of those in [15,20],
which essentially are developed for a special kind of open nets, arising by viewing
them as bigraphical reactive systems or as reactive systems over a cospan cat-
egory. In the resulting reactive Petri net model there is no distinction between
open input and output places. Furthermore the composition operation used in
these papers does not allow synchronisation of transitions. Similarities exist also
with the problem studied in [7], where a reactive Petri net model which ad-
mits a compositional behavioural equivalence is exploited, in the framework of
web-services, to provide a theoretical basis to service composition and discovery.

In the second part of the paper we have proposed a rewriting-based framework
for Petri nets with reconfigurations. We have shown how our congruence results
for the observational semantics can be used to identify classes of reconfigurations
which do not alter the observational behaviour of the system. This is applied to
a small case study of a workflow-like model of a travel agency.

The idea of using rewriting techniques for providing a reconfiguration mech-
anism for Petri nets has been already explored in the literature (see, e.g., re-
configurable nets of [1,13] and high-level replacement systems applied to Petri
nets in [18]). In future work, besides analysing the relationships between these
approaches and ours, we will continue to study the notion of reconfigurable open
nets and describe in more detail how reconfigurations can be triggered by the net
itself, for example by reaching certain markings or by firing certain transitions,
following an intuition similar to that of dynamic nets [8].

Finally, it would be worth studying whether a formal duality can be estab-
lished between our morphisms and standard simulation morphisms for Petri nets.
Viewing our morphisms as inverses of (partial) simulation morphisms would al-
low to get a precise correspondence between our pushout-based composition and
pullback-based synchronisation of Petri nets. Surely by simply taking Winskel’s
morphisms [22] this does not work (technically because when they are undefined
on a transition they must be undefined on the corresponding pre- and post-
set). However a duality result could be possibly obtained by considering suitable
extensions of Winkel’s morphisms, like those in [21,5].

Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets 141

References

1. Badouel, E., Llorens, M., Oliver, J.: Modeling concurrent systems: Reconfigurable
nets. In: Proc. of PDPTA’03, vol. 4, pp. 1568–1574. CSREA Press (2003)

2. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional modeling of reactive
systems using open nets. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 502–518. Springer, Heidelberg (2001)

3. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open
Petri nets based on deterministic processes. Mathematical Structures in Computer
Science 15(1), 1–35 (2004)

4. Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and
behaviour-preserving reconfigurations of open Petri nets. Technical Report CS-
2006-9, Computer Science Department, University Ca’ Foscari of Venice (2006)

5. Bednarczyk, A.M., Borzyszkowski, M.A.: General morphisms of Petri nets. In: Wie-
dermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644,
pp. 190–199. Springer, Heidelberg (1999)

6. Best, E., Devillers, R., Hall, J.G.: The Petri box calculus: a new causal algebra
with multi-label communication. In: Rozenberg, G. (ed.) Advances in Petri Nets
1992. LNCS, vol. 609, pp. 21–69. Springer, Heidelberg (1992)

7. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A behavioural congruence for web
services. In: Proc. of FSEN’07. LNCS, Springer, Heidelberg (2007) (to appear)

8. Buscemi, M.G., Sassone, V.: High-level Petri nets as type theories in the join
calculus. In: Honsell, F., Miculan, M. (eds.) ETAPS 2001 and FOSSACS 2001.
LNCS, vol. 2030, Springer, Heidelberg (2001)

9. Ehrig, H.: Tutorial introduction to the algebraic approach of graph-grammars.
In: Ehrig, H., Nagl, M., Rosenfeld, A., Rozenberg, G. (eds.) Graph-Grammars
and Their Application to Computer Science. LNCS, vol. 291, pp. 3–14. Springer,
Heidelberg (1987)

10. Kindler, E.: A compositional partial order semantics for Petri net components. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 235–252. Springer,
Heidelberg (1997)

11. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO – Theo-
retical Informatics and Applications 39(3) (2005)

12. Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer,
Heidelberg (2000)

13. Llorens, M., Oliver, J.: Introducing structural dynamic changes in Petri nets:
Marked-controlled reconfigurable nets. In: Wang, F. (ed.) ATVA 2004. LNCS,
vol. 3299, pp. 310–323. Springer, Heidelberg (2004)

14. Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CON-
CUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)

15. Milner, R.: Bigraphs for Petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.)
Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 686–701. Springer,
Heidelberg (2004)

16. Milner, R.: In: Milner, R. (ed.) A Calculus of Communication Systems. LNCS,
vol. 92, Springer, Heidelberg (1980)

17. Nielsen, M., Priese, L., Sassone, V.: Characterizing Behavioural Congruences for
Petri Nets. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp.
175–189. Springer, Heidelberg (1995)

142 P. Baldan et al.

18. Padberg, J., Ehrig, H., Ribeiro, L.: High level replacement systems applied to alge-
braic high level net transformation systems. Mathematical Structures in Computer
Science 5(2), 217–256 (1995)

19. Reisig, W.: Petri Nets: An Introduction. In: EATCS Monographs, Springer, Hei-
delberg (1985)

20. Sassone, V., Sobociński, P.: A congruence for Petri nets. In: Alternating Sequential-
Parallel Processing. Electronic Notes in Computer Science, vol. 127(2), pp. 107–
120. Elsevier, Amsterdam (1982)

21. Vogler, W.: Executions: A new partial-order semantics of Petri nets. Theoretical
Computer Science 91(2), 205–238 (1991)

22. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Advances in Petri Nets 1986. Proceedings of an Advanced Course, Bad Honnef.
LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

Free Modal Algebras: A Coalgebraic Perspective

N. Bezhanishvili� and A. Kurz��

Department of Computer Science, University of Leicester, United Kingdom

Abstract. In this paper we discuss a uniform method for constructing free modal
and distributive modal algebras. This method draws on works by (Abramsky
2005) and (Ghilardi 1995). We revisit the theory of normal forms for modal logic
and derive a normal form representation for positive modal logic. We also show
that every finitely generated free modal and distributive modal algebra axioma-
tised by equations of rank 1 is a reduct of a temporal algebra.

1 Introduction

Modal logics play an important role in many areas of computer science. In recent years,
the connection of modal logic and coalgebra received a lot of attention, see eg [30].
In particular, it has been recognised that modal logic is to coalgebras what equational
logic is to algebras. The precise relationship between the logics and the coalgebras can
be formulated using Stone duality [9]. From this perspective, algebras are the logical
forms of coalgebras [1]; and the algebras that appear in this way give rise to modal
logics.

In this paper we take the opposite view and ask how coalgebraic and categorical
methods can elucidate traditional topics in modal logic. Algebraic methods and tech-
niques proved to be very useful in investigations of modal logics, see eg [8,30]. Here
we apply a mix of algebraic and coalgebraic (and categorical) techniques to shed some
light on the construction of canonical models of modal logics. In principle, almost all
properties of a given modal logic are enshrined in its free modal algebras or, dually and
equivalently, in its canonical models [8]. Therefore, an understanding of the structure
of the canonical model of a given modal logic can be the key for understanding the
properties of this logic.

The general idea that we will discuss in this paper has appeared before in differ-
ent contexts. Fine [16] used his canonical formulas for describing canonical models of
modal logics and for deriving completeness results for these logics. Moss [25] revisited
Fine’s formulas to give a filtration type finite-model property proofs for various modal
logics. Abramsky [2] constructed the canonical model of closed formulas of the basic
modal logic as the final coalgebra for the Vietoris functor and Ghilardi [18,17] gave
a similar description of canonical models of modal and intuitionistic logics to derive a
normal form representation for these logics. For positive modal logic similar techniques
were developed by Davey and Goldberg [13].

� Supported by the EPSRC grant EP/C014014/1 and by the Georgian National Science Founda-
tion grant GNSF/ST06/3-003.

�� Partially supported by EPSRC EP/C014014/1.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 143–157, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

144 N. Bezhanishvili and A. Kurz

The aim of this paper is to unify all these approaches and present a coherent method
for constructing free modal and distributive modal algebras. Modal algebras are alge-
braic models of (classical) modal logic and distributive modal algebras are algebraic
models of positive (negation-free) modal logic. We will show how to construct free al-
gebras for a variety V equipped with an operator f . In case of modal algebras V is the
variety of Boolean algebras and in case of distributive modal algebras V is the variety
of distributive lattices. The main idea of the construction is the following: We start with
the free V-algebra and step by step add freely to it the operator f . As a result we obtain
a countable sequence of algebras whose direct limit is the desired free algebra.

We apply this general method to modal and distributive modal algebras. For dis-
tributive modal algebras these results appear to be new. In case of modal algebras this
approach gives simple and coherent proofs of known results. We use the Stone dual-
ity for Boolean algebras and the Priestley duality for distributive lattices to describe
the dual spaces of the finite approximants of the free algebras. The key for dualising
these constructions lies in the coalgebraic representation of modal spaces as coalgebras
for the Vietoris functor [22] and in the coalgebraic representation of modal Priestley
spaces as coalgebras for the convex set functor [20,27]. This allows us to represent the
canonical models of modal and positive modal logic as a limit of finite sets and posets,
respectively. We also observe that the underlying Stone space of the canonical model
of the basic modal logic is homeomorphic to the so-called Pelczynski space. This space
appears to be one of the nine fixed points of the Vietoris functor on compact Hausdorff
spaces with a countable basis [28,26].

As we will see below, this method directly applies to modal and positive modal
logics that are axiomatised by the formulas of rank 1. We also indicate how to adjust
our techniques to modal logics that are not axiomatised by formulas of rank 1. As an
example we consider the ‘reflexive’ modal logic, that is, the modal logic axiomatised
by the additional reflexivity axiom ϕ → ♦ϕ, which is not of rank 1. This example
also highlights how the Sahlqvist correspondence—an important technique of modal
logic—can be applied to our method in order to describe canonical models of modal
logics that are not axiomatised by formulas of rank 1.

In the end of the paper we revisit Fine’s normal forms for modal logic in a manner
similar to Abramsky [2] and Ghilardi [18] and derive normal forms for positive modal
logic. We also generalise Ghilardi’s result that every free modal algebra is a reduct of a
temporal algebra to all varieties of modal and distributive modal algebras axiomatised
by formulas of rank 1.

Other Related Work. Canonical models of modal logics have been investigated quite
thoroughly. However, these investigations mostly concentrated on transitive modal log-
ics; that is, modal logics with transitive Kripke frames. For an overview of these results
we refer to [12, Section 8.6 and 8.7] (see also [7, Chapter 3] for similar results in the
case of intuitionistic logic). The method of constructing canonical models for transitive
modal logics is based on building the canonical model of a given logic layer by layer,
that is, inductively on the depth of the canonical model. Although very useful, this
method does not go through for non-transitive modal logics. For building free algebras
for non-transitive modal logics one needs to use a different approach.

Free Modal Algebras: A Coalgebraic Perspective 145

2 Dualities for Boolean Algebras and Distributive Lattices

In this section we briefly recall the Stone duality for Boolean algebras and the Priestley
duality for distributive lattices.

2.1 Stone Duality for Boolean Algebras

A Stone space is a 0-dimensional (a topological space with a basis of clopens) compact
Hausdorff space. For every Stone space X let Clp(X) denote the set of clopens (closed
and open subsets) of X . We also let P(X) denote the powerset of X . The next theorem
states the celebrated Stone representation theorem.

Theorem 2.1 (eg [19, 4.4], [14, 11.4]). For every Boolean algebra B there is a Stone
space XB such that B is isomorphic to (Clp(XB), ∪, ∩, −, ∅). If B is finite then XB is
finite and Clp(XB) = P(XB).

Proof. (Sketch) Let B be a Boolean algebra. Let XB := the set of all maximal filters
of B. For a ∈ B let â = {x ∈ XB : a ∈ x}. We declare {â : a ∈ B} to be a basis for a
topology on XB . Then XB becomes a Stone space and B is isomorphic to Clp(XB).

Let BA denote the category of Boolean algebras and Boolean homomorphisms. Let
also Stone denote the category of Stone spaces and continuous maps. The Stone rep-
resentation theorem can be extended to corresponding categories.

Theorem 2.2 (see eg [19, 4.4]). BA � Stoneop.

Proof. (Sketch) By Theorem 2.1 one only needs to deal with morphisms. Let f : X →
Y be a continuous map. Then f−1 : Clp(Y) → Clp(X) is a Boolean homomorphism.
Conversely, if h : A → B is a Boolean homomorphism, then the map h−1 : XB → XA

is continuous. It is also easy to check that this correspondence is one to one.

Next we will discuss the duality between join preserving maps between Boolean alge-
bras and special relations on corresponding Stone spaces. Let X and Y be Stone spaces.
A relation R ⊆ X × Y is called point closed if R[x] = {y ∈ Y : xRy} is a closed set
for every x ∈ X . We say that R is a clopen relation if for every clopen U ⊆ Y the set
〈R〉U = {x ∈ X : R[x] ∩ U �= ∅} is a clopen subset of X .

Theorem 2.3 (see e.g., [8]). There is a one-to-one correspondence between join pre-
serving maps between Boolean algebras and point-closed and clopen relations on their
dual Stone spaces. Moreover, on finite Stone spaces all relations are point-closed and
clopen.

Proof. (Sketch) (1) Let h : A → B be a join preserving map, that is, for all a, b ∈ A
we have h(0) = 0 and h(a ∨ b) = h(a) ∨ h(b). Let XA and XB be the Stone spaces
dual to A and B, respectively. We define Rh ⊆ XB × XA by

xRhy iff y ⊆ h−1(x)

146 N. Bezhanishvili and A. Kurz

or, equivalently, xRhy iff (a ∈ y implies ha ∈ x).1 Conversely, if R ⊆ XB × XA is
a point-closed and clopen relation, then 〈R〉 is the desired map Clp(XA) → Clp(XB).

Vietoris spaces and their duals, defined below, are central to our investigations.

Definition 2.4 (Functor V). Let B be a Boolean algebra. Let V (B) be the free Boolean
algebra over the set {♦a : a ∈ B} modulo the equations, for all a, b ∈ B,

(1) ♦0 = 0 (2) ♦(a ∨ b) = ♦a ∨ ♦b

Thus, V is a functor on Boolean algebras. Now we define the dual to V on Stone spaces.

Definition 2.5 (Functor K). For every Stone space X we let K(X) be the set of all
closed subsets of X equipped with a topology a subbasis of which is given by the sets

��(U) = {F ∈ K(X) : F ⊆ U} ♦♦(U) = {F ∈ K(X) : F ∩ U �= ∅}

where U ranges over clopen subsets of X .

The next theorem shows that the two definitions are dual to each other.

Theorem 2.6 ([19, Proposition 4.6]). Let B a Boolean algebra and X its dual Stone
space. Then the algebra V (B) is dual to K(X). If B is finite, V (B) is dual to P(X).

It follows from the definition of V (B) that a map ♦ : B → V (B) mapping each
element a ∈ B to ♦a is join-preserving. The next proposition characterises the relation
on X × K(X) which is dual to ♦. We just need to observe that R♦ defined as in the
proof of Theorem 2.3 is ∈.

Proposition 2.7. Let R♦ ⊆ K(XA) × XA be the relation corresponding to the join-
preserving map ♦ : B → V (B). Then for every U ∈ K(X) and x ∈ XA we have
UR♦x iff x ∈ U .

2.2 Priestley Duality for Distributive Lattices

We briefly review the duality between distributive lattices and Priestley spaces (Stone
spaces with special partial orders). Recall that a subset U of an ordered set (X, R) is
called an upset if for every x, y ∈ X we have x ∈ U and xRy imply y ∈ U . The
complement of an upset is called a downset. A relation R on a Stone space X is said to
satisfy the Priestley separation axiom if

¬(xRy) implies there exists a clopen upset U such that x ∈ U and y /∈ U .

Definition 2.8. A pair X = (X, R) is called a Priestley space if X is a Stone space
and R a partial order satisfying the Priestley separation axiom.

For every Priestley space X = (X, R) we let ClpUp(X) denote the set of all clopen
upsets of X. We also denote by Up(X) the set of all upsets of X.

1 Reading c ∈ z as z satisfies c, we see that h acts here as a modal ♦.

Free Modal Algebras: A Coalgebraic Perspective 147

Theorem 2.9 (see, e.g, [14, 11.23]). For every distributive lattice D there is a Priestley
space XD such that D is isomorphic to (ClpUp(XD), ∪, ∩, ∅). If D is finite, then XD is
finite and ClpUp(XD) = Up(XD).

Let DL be the category of distributive lattices and lattice homomorphisms. Let also
Priest denote the category of Priestley spaces and continuous order-preserving maps.
We have the following analogue of Theorem 2.2.

Theorem 2.10 (see, e.g, [14, 11.30]). DL � Priestop.

Next we will briefly discuss the connection of meet and join preserving maps with
Priestley relations. For a relation R ⊆ X × Y and U ⊆ Y we let [R]U = {x ∈ X :
R[x] ⊆ U}. Let X = (X, R) and Y = (Y, S) be Priestley spaces. A relation Q ⊆ X×Y
is called clopen increasing (resp. clopen decreasing) if for every x ∈ X the set Q[x] is
a closed upset of Y (resp. a closed downset of Y) and for every clopen upset U of Y the
set [Q]U is a clopen upset of X (resp. 〈Q〉U is a clopen upset of X).

Theorem 2.11 (eg [11]). There is a one-to-one correspondence between join preserv-
ing (resp. meet preserving) maps between distributive lattices and clopen increasing
(resp. clopen decreasing) relations on their dual Priestley spaces. Moreover, on finite
Priestley spaces a relation Q is clopen increasing (clopen decreasing) iff Q[x] is an
upset (resp. a downset) and [Q] (resp. 〈Q〉) maps upsets to upsets.

Vietoris construction for Priestley spaces and distributive lattices

Definition 2.12. For every distributive lattice D let V (D) denote the free distributive
lattice over the set {♦a : a ∈ D} ∪ {�a : a ∈ D} modulo the equations

1. ♦0 = 0, �1 = 1,
2. ♦(a ∨ b) = ♦a ∨ ♦b, �(a ∧ b) = �a ∧ �b,
3. �(a ∨ b) ≤ �a ∨ ♦b, �a ∧ ♦b ≤ ♦(a ∧ b).

Next we describe the dual construction of the Vietoris space for Priestley spaces [27].
Let X = (X, R) be a Priestley space. A set F ⊆ X is called convex if for every
x, y, z ∈ X if x, y ∈ F and xRz and zRy, then z ∈ F . For every Priestley space
X = (X, R) let Conv(X) denote the set of all closed convex subsets of X. We define a
topology on Conv(X) a basis of which is given by the Boolean closure of the sets

��(U) = {F ∈ Conv(X) : F ⊆ U} ♦♦(U) = {F ∈ Conv(X) : F ∩ U �= ∅}

where U ranges over clopen upsets of X.2 Moreover, for every Y, Z ∈ Conv(X) we
define the so-called Egli-Milner order REM by

Y REMZ iff Y ⊆ 〈R〉Z and Z ⊆ 〈Ř〉Y .

2 We note that this definition of topology on the set of closed and convex subsets of a Priestley
space together with Theorem 2.13 below solves the problem raised in [27, Section 7.1] on how
to define an analogue of the Vietoris topology on the set of closed and convex subsets of a
Priestley space.

148 N. Bezhanishvili and A. Kurz

where Ř is the converse of R. Then (Conv(X), REM) is a Priestley space. The next
theorem, which is the Priestley space version of a theorem of Johnstone [20] (see also
Palmigiano [27]), shows that the convex set construction on Priestley spaces is the dual
to V .

Theorem 2.13. Let D be a distributive lattice and X = (X, R) be its dual Priestley
space. Then (Conv(X), REM) is the Priestley space dual to V (D).

As in the case of modal algebras, we have join-preserving and meet-preserving maps ♦
and � from D to V (D), mapping every element a ∈ D to ♦a and �a, respectively.

Proposition 2.14. Let R♦, R� ⊆ Conv(XA) × XA be the relations corresponding to
♦ : D → V (D) and � : D → V (D), respectively. Then R♦ = R� and for every
U ∈ Conv(X) and x ∈ X we have UR♦x iff x ∈ U .

3 Modal Algebras and Distributive Modal Algebras

In this section we recall the definitions of modal and distributive modal algebras. We
also look at the dual order-topological spaces of these algebras.

Modal algebras. A modal algebra (see e.g.[8, 5.2]) is a pair (B, ♦B) such that B is
a Boolean algebra and ♦B : B → B is a unary operator called a modal operator
satisfying the equations of Definition 2.4. We also use a shorthand �Ba = −♦B − a,
for every a ∈ B. Next we recall the representation theorem for modal algebras.

Definition 3.1 (see e.g., [8, Definition 5.65 and Proposition 5.83]). A pair (X, R) is
called a modal space if X is a Stone space and R ⊆ X × X is a point-closed and
clopen relation. 3

Therefore, for every modal space, the algebra (Clp(X), 〈R〉) is a modal algebra. More-
over, every modal algebra can be represented in this way.

Theorem 3.2 (see, e.g., [8, Theorem 5.43]). For every modal algebra (B, ♦B) there
exists a modal space (X, R) such that (B, ♦B) is isomorphic to (Clp(X), 〈R〉).

The modal space (X, R) is called the dual of (B, ♦B). Modal spaces can also be seen
as coalgebras for the Vietoris functor K . In particular, every modal space can be rep-
resented as a Stone space X together with a continuous map R : X → K(X). The
fact that R is well defined corresponds to R[x] being closed, and R being continuous is
equivalent to R being a clopen relation. For the details we refer to [22].

Distributive modal algebras. Lacking complements, one needs to represent both ♦
and �. A distributive modal algebra (see e.g., [11]) is a triple (D, ♦D, �D) such that
♦D : D → D and �D : D → D are unary operations satisfying for every a, b ∈ D the
equations of Definition 2.12.

Definition 3.3. A triple (X, R, Q) is called a modal Priestley space if X = (X, R) is a
Priestley space and Q ⊆ X × X is a relation such that

3 Some authors also call modal spaces descriptive frames; see e.g., [8].

Free Modal Algebras: A Coalgebraic Perspective 149

1. Q[x] is closed and convex for every x ∈ X; i.e., Q[x] ∈ Conv(X).
2. 〈Q〉U ∈ ClpUp(X) and [Q]U ∈ ClpUp(X) for every U ∈ ClpUp(X).

Theorem 3.4. (see [11]) For every distributive modal algebra (D, ♦, �) there exists
a modal Priestley space (X, R, Q) such that (D, ♦, �) is isomorphic to (ClpUp(X),
〈R〉, [R]).

We mention here that the modal Priestley spaces can be seen as coalgebras for a functor
Conv on Priestley spaces. In particular, every modal Priestley space can be represented
as a Priestley space X together with an order-preserving and continuous map Q : X →
Conv(X). That Q[x] is closed and convex guarantees that Q is well defined. Q being
order-preserving and continuous is equivalent to 〈R〉 and [R] being well-defined maps
on ClpUp(X). For the details we refer to [27].

We close this section by mentioning the connection between modal algebras and
modal logic: a (positive) modal formula ϕ is a theorem of the basic modal logic K iff ϕ
is valid in every (distributive) modal algebra.

4 Main Construction

As observed by Abramsky [2] and Ghilardi [18] the category of modal algebras is iso-
morphic to the category Alg(V) of algebras for the functor V and, therefore, the free
modal algebras can be obtained by a standard construction in category theory, the initial
algebra sequence. Indeed, under fairly general circumstances [4], for a functor L on a
category C, the L-algebra Lω free over C ∈ C is the colimit of the sequence (Ln)n<ω

L0
e0 �� L1

e1 �� L2 . . . Lω (1)

where L0 = 0 is the initial object of C and Ln+1 = (C + L)(Ln) and en+1 = (C +
L)(en). Due to Lω being a colimit, there is a canonical morphism (C +L)(Lω) → Lω,
the components of which provide the insertion of generators C → Lω and the L-algebra
structure L(Lω) → L. The same result can also be obtained from a slightly different
sequence, the one used by [18], which is more convenient for our purposes

L0 = C, Ln+1 = (C + L)(Ln), e0 : C → C + L(C), en+1 = (C + L)(en) (2)

In this paper we are interested in the case where C is a variety4 V and L encodes
a signature that extends the signature ΣV of V by additional operations Σ′ and the
equations EV of V by additional equations E′. The terms in E′ may use the operations
built from the combined signature Σ + Σ′. We say that an equation in E′ is of rank
1 if every variable is under the scope of exactly one occurrence of an operation in Σ′.
For example,♦p → �p is of rank 1, but p → ♦p and ♦♦p → ♦p are not. The precise
relationship between L-algebras and algebras for an extended signature is studied in
[23]. Roughly speaking, there is a one-to-one correspondence between functors L :
V → V and extensions of V by operations Σ′ and equations of rank 1 E′; under this

4 For us, a variety is given by operations of finite arity and equations.

150 N. Bezhanishvili and A. Kurz

correspondence, Alg(L) is isomorphic to the variety defined by operations ΣV + Σ′

and equations EV + E′. In other words, a variety is isomorphic to Alg(L) iff it is
axiomatized by equations of rank 1.

The basic construction we will describe is a variation of the sequence (2) which is
both more special and more general. More special, because we take C to be a variety
V, more general because we consider sequences whose step-wise construction is not
necessarily given by a functor as in (2), ie, for the time being, additional equations not
of rank 1 are allowed.

Let V be a variety of algebras, let Vf be a variety obtained from V by expanding
the signature of V by an operator f and let AX be a set of axioms involving terms built
from the operations of V and f . In other words, the algebras in Vf are the pairs (A, f),
where A ∈ V and f : A → A is a map satisfying the axioms in AX.5 Further, we let
Eq(V) and Eq(Vf) be the equational theories of V and Vf , respectively. For every
n ∈ ω we will construct the n-generated free Vf -algebra as a colimit of n-generated
V-algebras A0 i0 �� A1 i1 �� A0 is the n-generated free V-algebra, and each
Ak+1 is obtained from Ak by freely adjoining to it the operator f . In other words, for
each k ∈ ω the algebra Ak will be the algebra of all the non-Eq(Vf)-equivalent terms
of degree ≤ k. Moreover, for each k ∈ ω, there are two maps ik and fk between Ak

and Ak+1. Since Ak is the algebra of all terms of degree ≤ k and Ak+1 is the algebra
of all terms of degree ≤ k + 1, there is an embedding of Ak into Ak+1. The map ik
will be this embedding. Each term of degree m, for m ≤ k can be turned into a term
of degree m + 1 ≤ k + 1, by adjoining to it the operator f . The map fk is exactly the
map that adjoins f to each element of Ak. The operator fω : Aω → Aω is obtained by
lifting the maps fk : Ak → Ak+1 to Aω.

The technical details are as follows. We fix a set P = {p1, . . . , pn} of variables (or
atomic propositions) in the language of V. All the terms that we consider are build from
P using the operations of V and f . For each k ∈ ω, let Sk be the set of all terms in the
language of Vf of degree ≤ k, that is, of all terms that do not contain nestings of ‘f ’
deeper than k. We say that an equation s = t, where s and t are terms, is deduced in V
(resp. Vf) from Γ and write Γ �V s = t (resp. Γ �Vf

s = t) if s = t is deduced from
Γ in the equational theory of V (resp. Vf). Let ≡Vf

be the relation on Sk defined by
s ≡Vf

t iff �Vf
s = t. Using the notation above we make the following

Definition 4.1. The sequence (Tk)k<ω is the sequence (Lk)k<ω , see (2), where C is the
free V-algebra over P and L : V → V maps A to the free algebra over {fa | a ∈ A}.
The sequence (Ak)k<ω is the quotient of (Tk)k<ω by ≡Vf

.

The algebra Ak is the algebra of (equivalence classes of) terms of degree ≤ k, Ak+1 is
the algebra of terms of degree ≤ k + 1 and the ik : Ak → Ak+1 obtained from quoti-
enting the ek of (2) are the obvious embeddings. Moreover, we define fk : Ak → Ak+1
to be the quotients of the maps Tk → L(Tk) → T0 + L(Tk) (insertion of generators
followed by injection into a coproduct). Because of ik+1 ◦ fk = fk+1 ◦ ik, the fk give
rise, in the underlying category of sets, to a cocone over (Ak)k<ω, equipping Aω with

5 It is straightforward to replace f by a set of operations of finite arity. Here we consider only
one unary operator to keep notation simple.

Free Modal Algebras: A Coalgebraic Perspective 151

a Vf -algebra structure fω : Aω → Aω . More concretely, fk maps a term t of degree k
to the term f(t) of degree k + 1; and, since each a ∈ Aω comes from some Ak, we can
write fω(a) = fk(a) for some k.

Theorem 4.2. The colimit of (Ak)k<ω is the free n-generated Vf -algebra.

Note that if V is locally finite (ie the finitely generated algebras are finite), then each
Ak is finite. Thus, if V is locally finite we can approximate every finitely generated free
Vf algebra by finite n-generated V algebras. This is the case in our examples, where V
is either the variety BA of Boolean algebras or the variety DL of distributive lattices.

The role of rank 1 axioms. The equational reasoning needed to determine whether
two terms are identified in Ak may involve terms of degree larger than k. We therefore
define s ≡k

AX t if, in the equational logic for the signature of Vf , the equation s = t has
a proof from the axioms AX that only uses terms of degree ≤ k.

Definition 4.3. The sequence (A′
k)k<ω is the quotient of (Tk)k<ω by (≡k

AX)k<ω .

Theorem 4.4. The colimit of (A′
k)k<ω is the free n-generated Vf -algebra.

Note that the Ak are determined by the equational theory Eq(Vf) whereas the (A′
k) de-

pend on the particular axiomatisation AX. Moreover, in contrast to the ik : Ak → Ak+1,
the i′k : A′

k → A′
k+1 need not be injective. But if they are, one often can deduce desir-

able properties like decidability, normal forms, and others as shown by Ghilardi [18].
The following gives a sufficient condition. For a detailed definition of L below see [21,
Section 4.1.3].

Theorem 4.5. Let L be the functor on V where L(A) is the free V-algebra generated
by {fa|a ∈ A} modulo the axioms AX. If AX is of rank 1, the sequences (Ak)k<ω ,
(A′

k)k<ω and (Lk)k<ω (see (2)) coincide.

In particular, we will exploit that for rank 1 axioms, the morphisms i′k : A′
k → A′

k+1
are injective.

5 Free Modal and Distributive Modal Algebras

We now combine Sections 2 - 4. For modal (distributive) algebras, the axioms AX of
Section 4 are of rank 1 (see Definitions 2.4 and 2.12) and Theorem 4.5 applies.

Free modal algebras. Let B0 be the n-generated free Boolean algebra, that is, B0 is
isomorphic to the powerset of a 2n-element set (eg [19, 4.9]). Let X0 be the dual of B0.
According to the construction discussed in the previous section we let L = B0 + V in
(1), that is,

Bk+1 = B0 + V (Bk).

The maps ik, ♦k : Bk → Bk+1 are as in Section 4. From Theorem 4.2 we obtain

Corollary 5.1. The algebra (Bω, ♦ω) obtained from the colimit of (Bk)k<ω is the free
modal algebra over B0.

152 N. Bezhanishvili and A. Kurz

Now we will look at the dual of (Bω, ♦ω). Let X0 be a 2n element set (the dual of B0)
and (because of the duality of P and V (Theorem 2.6) and of × and +)

Xk+1 = X0 × P(Xk).

Theorem 5.2. The sequence (Xk)k<ω with maps πk : X0 × P(Xk) → Xk defined by

πk(x, A) = (x, πk−1[A])

is dual to the sequence (Bk)k<ω with maps ik : Bk → Bk+1. In particular, the πk are
surjective. Moreover, the relation Rk ⊆ (X0 × P(Xk)) × Xk defined by

(x, A)Rky iff y ∈ A

is dual to ♦k : Bk → Bk+1 (see Theorem 2.3).

Remark 5.3. An element x = (l, S) ∈ Xk+1 can be understood as a tree with the root
labelled by an element l ∈ X0 and the children being the elements of S ∈ P(Xk).
These trees have a rich history and have been studied, for example, by [3,2,6,18,5,31].

Corollary 5.4. The modal space (Xω, Rω), where Xω is the limit in Stone of the family
{Xk}k∈ω with the maps πk+1 : Xk+1 → Xk, and Rω is defined by (xi)i∈ωRω(yi)i∈ω

if xk+1Rkyk for each k ∈ ω is (isomorphic to) to the dual of (Bω , ♦ω).

Remark 5.5. Note that (Xω, Rω) is isomorphic to the canonical model of the basic
modal logic K; see [8, Section 5]. Therefore, a formula of modal logic is a theorem of
K iff it is satisfiable in (Xω, Rω). Moreover, (Xω, Rω) is also the K-coalgebra cofree
over X0.

Free distributive modal algebras. Let D0 be the free n-generated distributive lattice
and X0 be its dual poset, that is, X = (P(n), ⊆), where n = {0, . . . , n − 1} is an
n-element set (eg [19, 4.8]). According to the construction discussed in the previous
section we let Dk+1 = D0 + V (Dk). where V is the Vietoris functor for distributive
lattices. The maps ik, ♦k : Dk → Dk+1 are as in Section 4. From Theorem 4.2 we
obtain

Corollary 5.6. The algebra (Dω, ♦ω) obtained from the colimit of (Dk)k<ω is the free
modal distributive algebra over D0.

For the dual of (Dω, ♦ω), Theorem 2.13 leads us to define Xk+1 = X0 × Conv(Xk).

Theorem 5.7. The sequence (Xk)k<ω with πk : X0 × Conv(Xk) → Xk defined by
πk(x, A) = (x, πk−1[A]) is dual to the sequence (Dk)k<ω with maps ik : Dk → Dk+1.
In particular, the πk are surjective. Moreover, the relation Qk ⊆ (X0×Conv(Xk))×Xk .
defined by (x, U)Qky iff y ∈ U is dual to ♦k : Dk → Dk+1 (see Theorem 2.11).

Corollary 5.8. The modal Priestley space (Xω, Qω), where Xω is the inverse limit in
Priest of the family {Xk}k∈ω with the maps πk+1 : Xk+1 → Xk and Qω is defined
by (xi)i∈ωQω(yi)i∈ω if xk+1Qkyk for each k ∈ ω is (isomorphic to) to the dual of
(Dω, ♦ω).

Free Modal Algebras: A Coalgebraic Perspective 153

Similar to the modal case the space (Xω, Qω) is isomorphic to the canonical model of
the basic positive modal logic and it is the final coalgebra for the functor X0 × Conv on
Priestley spaces.

6 Applications

Our first three applications are based on approximating the free algebras (and their du-
als) by the initial sequence of an appropriate functor as in (2). The last section, indicates
how to go beyond rank 1 in a systematic way using Sahlqvist theory, but the details have
to be left for future work.

6.1 Normal Forms

In this section we discuss normal forms for the elements of finitely generated free modal
and distributive modal algebras. In logical terms this is equivalent to a normal form
representation for the formulas of the corresponding language.

Definition 6.1. Let V be a variety and A(n) an n-generated free algebra of V. We say
that V admits a normal form representation if for every a ∈ A(n) there exists a term
t(a), effectively computable from a, such that for every a, b ∈ A(n) we have �V a = b
iff t(a) = t(b).

We write At(−) for the set of atoms of a Boolean algebra and, for T ⊆ B0 and S ⊆
At(Bk), let

αS,T :=
∧

p∈T

p ∧
∧

p/∈T

¬p ∧
∧

ϕ∈S

♦ϕ ∧ �
∨

ϕ∈S

ϕ

Lemma 6.2. a ∈ Bk+1 is an atom iff a = αS,T for some T ⊆ Bk and S ⊆ At(Bk).

Similarly, for sets T ⊆ D0 and S ⊆ J(Dk), where J(Dk) is the set of all join-
irreducible elements of Dk we let

βS,T :=
∧

p∈T

p ∧
∧

ϕ∈S

♦ϕ ∧ �
∨

ϕ∈S

ϕ

Lemma 6.3. a ∈ Dk+1 is join-irreducible iff a = βS,T for some T ⊆ Dk and S ⊆
J(Dk).

Corollary 6.4. Basic modal logic and basic positive modal logic admit normal form
representations.

Proof. The result follows from above lemmas and the fact that every formula ϕ in n-
variables can be seen as an element of the n-generated free algebra of the corresponding
variety. As we showed above, for every element of the n-generated free modal or distrib-
utive modal algebra, there exists k ∈ ω such that ϕ belongs to Bk or Dk, respectively.
Every element of a finite Boolean algebra (resp. finite distributive lattice) is a join of
atoms (join-irreducible elements) that are below this element. Therefore, we obtain that
ϕ =

∨
αS,T (resp. ϕ =

∨
βS,T).

Remark 6.5. The formulas αS,T are the so-called Fine’s canonical formulas [16,25].
Abramsky [2] and Ghilardi [18] derive these formulas in a way similar to ours.

154 N. Bezhanishvili and A. Kurz

6.2 Free Modal Algebras as Temporal Algebras

In this section we will give another corollary of our representations of free modal and
distributive modal algebras. We will show that these algebras are reducts of temporal
algebras. In case of modal logics this was first observed by Ghilardi [18].

Definition 6.6. A modal algebra (B, ♦) is a reduct of a temporal algebra if there exist
�P : B → B such that for every a, b ∈ B we have ♦a ≤ b iff a ≤ �P b.

A distributive modal algebra (D, �, ♦) is a reduct of a temporal algebra if there
exist �P , ♦P : D → D such that for every a, b ∈ B we have ♦a ≤ b iff a ≤ �P b and
♦P a ≤ b iff a ≤ �b.

Theorem 6.7. Let V be a variety of modal or distributive modal algebras axiomatised
by the formulas of rank 1. Then every finitely generated free V-algebra is a reduct of a
temporal algebra.

Proof. (Sketch) We only look at the modal case. Let (Bω , ♦ω) be the free V-algebra.
Then since each Bk is finite, the map ♦k : Bk → Bk+1 has a right adjoint �k

P :
Bk+1 → Bk, for every k ∈ ω. Therefore, all we need to show is that the maps �k

P can
be extended to the whole of Bω. For this it is sufficient to prove that ik−1�k−1

P = �k
P ik.

This equation holds if and only if for every x ∈ Xk, the equation π−1
k−1Rk−1[x] =

Rkπ−1
k [x] holds. Checking that the latter equation is satisfied is easy and is based on

the fact that for every k ∈ ω the maps πk are surjective. We skip the details.

6.3 Pelczynski Compactification

In this section we characterise the space Xω. We show that Xω is homeomorphic to the
so-called Pelczynski space.

Definition 6.8. (see [28] and [26]) A space P is called the Pelczynski space if P =
Xiso ∪ Xlim, where Xiso is a countable set of isolated points of P, Xlim is the set
of limit points of P, the space Xlim is homeomorphic to the Cantor space C and
Xiso = P.

Theorem 6.9. The underlying Stone space Xω of the canonical model (Xw, Rw) is
homeomorphic to the Pelczynski space P.

Proof. (Sketch) The proof uses a result of Barr [6] that the set Xiso of isolated points
of Xω is dense in Xω. We proceed by observing that the set Xiso is countable and that
the set Xlim of the limit points of Xω is uncountable and contains no isolated points
in the topology induced from Xω. Thus [15, 6.2.A.(c)], Xlim is homeomorphic to the
Cantor space C and therefore Xω is homeomorphic to the Pelczynski space P.

Remark 6.10. In fact it is not a coincidence that the final coalgebra for the Vietoris
functor is based on the Pelczynski space. We can prove that for every polynomial func-
tor T on Stone spaces, the final coalgebra for T is finite or is homeomorphic to the
Cantor space C, the Alexandroff compactification of a countable discrete space or to
the Pelczynski space P.

Free Modal Algebras: A Coalgebraic Perspective 155

6.4 Modal Logics Not Axiomatised by Rank 1 Axioms

In this section we indicate that our method can be extended to logics that are not ax-
iomatised by axioms of rank 1. As a simple example we consider the logic T obtained
from the basic modal logic K by adding to it the reflexivity axiom p → ♦p (see also
Ghilardi [18, Section 5]). The Kripke frames for this logic are characterised by their
accessibility relation being reflexive. Let VT be the variety of modal algebras corre-
sponding to T. Since the reflexivity axiom is not of rank 1, in order to construct finitely
generated free VT-algebra, we need to take quotients of the algebras Bk (Section 5).
For every k ∈ ω we will quotient Bk by the relation ≡k

AX, AX = {p → ♦p}, as in
Definition 4.3. In other words, we define the sequence (B′

k)k<ω by letting B′
0 = B0

and B′
k+1 = B′

0 + V (B′
k) modulo ika → ♦ka, for a ∈ B′

k.
In dual terms, for every k ∈ ω we select a subset Yk of Xk such that for every

U ⊆ Yk, we have π−1
k (U) ⊆ 〈Rk〉U . This is equivalent to π−1

k (y) ⊆ 〈R〉{y} for every
y ∈ Yk. (The fact that we can move from sets to singletons is not a coincidence, it is
a consequence of a more general fact that ϕ → ♦ϕ is a Sahlqvist formula [8, Section
3.6]). The latter condition is equivalent to πk(x, A) ∈ A, for every (x, A) ∈ Yk+1 and
k ∈ ω. Therefore, Y0 = X0 and for every k ∈ ω, Yk+1 = {(x, A) : x ∈ Y0, A ⊆
Yk, πk(x, A) ∈ A}. By induction on k we can also show that the restriction of πk to Yk

is a surjection for every k ∈ ω, which means that the quotients of ik’s are embeddings.
Let Sk = Rk � Yk and ξk = πk � Yk, for each k ∈ ω. We arrive at the following
theorem.

Theorem 6.11. The modal space (Yω, Sω), where Yω is the inverse limit in Stone
of the family {Yk}k<ω with the maps ξk+1 : Yk+1 → Yk and Sω is defined by
(xi)i<ωSω(yi)i<ω if xk+1Skyk for each k < ω is (isomorphic to) to the canonical
model for the modal logic T.

This example suggests that a similar technique can be applied to other logics axioma-
tised by Sahlqvist formulas. Studying these questions in detail is one of the directions
of future work.

7 Conclusions and Future Work

In this paper we presented a uniform method for constructing free algebras for algebras
with operators axiomatised by equations of rank 1. We applied this general method to
construct free modal algebras and free distributive modal algebras. We also recalled
normal forms for modal logic and derived normal forms for positive modal logic. We
list directions of further research.

One is to apply this construction to other non-classical logics for example intuition-
istic logic, many-valued logics etc. More generally, one might be able to obtain results
for varieties, in particular for locally-finite ones, that do arise from logic.

In the context of modal logic most of the important systems can not be axiomatised
by the formulas of rank 1. Therefore, for describing free algebras for those systems, we
need to adjust this method as indicated in Section 6.4. As adding axioms means to take
quotients of the algebras Ak, it corresponds to taking subsets of the Xk on the dual side.
To do this in a uniform way, one should look at Sahlqvist formulas.

156 N. Bezhanishvili and A. Kurz

Another interesting direction for further research is to spell out in detail the con-
nection of this approach with the one of Moss [25]. It seems that Moss’ filtration type
technique has a direct representation in our construction. For various modal logics Moss
constructs canonical models of formulas of finite modal degree. These models can be
obtained from the models Xk by lifting in an appropriate way relations Rk between
Xk+1 and Xk to Xk+1.

The procedure to obtain normal forms should generalise to all logics of rank 1 (as
long as the axioms are effectively given). This should be related to recent work of
Schröder and Pattinson [29] on the complexity of rank 1 logics. Marx and Mikulás [24]
also obtain complexity bounds for bi-modal logics by looking into algebras of terms of
degree ≤ k. Obtaining normal forms for logics that are not axiomatised by formulas of
rank 1 is another interesting question.

We showed that the canonical model of the basic modal logic is based on the Pel-
czynski space. For other logics, however, such a characterisation does not exists. So a
natural question is what are the underlying Stone spaces of canonical models of other
modal logics. As we saw above the canonical model of the basic modal logic is a fi-
nal coalgebra for the Vietoris functor. So an interesting question is whether the final
coalgebra for every finite-set preserving functor is also based on the Pelczynski space.

All these questions hold also for positive modal logic and their variations considered
in domain theory. But moreover, the recent work of Bruun and Gehrke [10], which
connects ontologies with free distributive algebras with operators, adds another smack
to this investigations: The axioms that [10] consider in their paper are of rank one.

Acknowledgements. We would like to thank Dimitri Pataraia, David Gabelaia, Ma-
muka Jibladze, Leo Esakia, Mai Gehrke and Hilary Priestley for many interesting dis-
cussions. We are also very grateful to the anonymous referees for valuable suggestions.

References

1. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51, 1–77 (1991)
2. Abramsky, S.: A Cook’s tour of the finitary non-well-founded sets. In We Will Show Them:

Essays in Honour of Dov Gabbay. College Publications, 2005. Presented at BCTCS (1988)
3. Aczel, P.: Non-Well-Founded Sets. CSLI, Stanford (1988)
4. Adámek, J., Trnková, V.: Automata and Algebras in Categories. Kluwer Academic Publish-

ers, Dordrecht (1990)
5. Baltag, A.: STS: A Structural Theory of Sets. PhD thesis, Indiana University (1998)
6. Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114, 299–

315 (1993)
7. Bezhanishvili, N.: Lattices of Intermediate and Cylindric Modal Logics. PhD thesis, ILLC,

University of Amsterdam (2006)
8. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. CUP (2001)
9. Bonsangue, M., Kurz, A.: Duality for logics of transition systems. In: Sassone, V. (ed.) FOS-

SACS 2005. LNCS, vol. 3441, Springer, Heidelberg (2005)
10. Bruun, H., Gehrke, M.: Distributive lattice-structured ontologies, Draft (2006)
11. Celani, S., Jansana, R.: Priestley duality, a Sahlqvist theorem and a Goldblatt-Thomason

theorem for positive modal logic. J. of the IGPL 7, 683–715 (1999)
12. Chagrov, A., Zakharyaschev, M.: Modal Logic. OUP (1997)

Free Modal Algebras: A Coalgebraic Perspective 157

13. Davey, B., Goldberg, M.: The free p-algebra generated by a distributive lattice. Algebra Uni-
versalis 11, 90–100 (1980)

14. Davey, B., Priestley, H.: Introduction to Lattices and Order. CUP (1990)
15. Engelking, R.: General Topology. Heldermann Verlag (1989)
16. Fine, K.: Normal forms in modal logic. Notre Dame J. Formal Logic 16, 229–237 (1975)
17. Ghilardi, S.: Free Heyting algebras as bi-Heyting algebras. Math. Rep. Acad. Sci. Canada

XVI 6, 240–244 (1992)
18. Ghilardi, S.: An algebraic theory of normal forms. Ann. Pure Appl. Logic 71, 189–245

(1995)
19. Johnstone, P.: Stone Spaces. CUP (1982)
20. Johnstone, P.: Vietoris locales and localic semilattices. In: Continuous lattices and their ap-

plications. Lecture Notes in Pure and Appl. Math. pp. 155–180. New York (1985)
21. Kupke, C.: Finitary Coalgebraic Logics. PhD thesis, ILLC, Amsterdam (2006)
22. Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoret. Comput. Sci. 327, 109–134

(2004)
23. Kurz, A., Rosický, J.: Strongly complete logics for coalgebras. Submitted, electronically

available
24. Marx, M., Mikulás, S.: An elementary construction for a non-elementary procedure. Studia

Logica 72, 253–263 (2002)
25. Moss, L.: Finite models constructed from canonical formulas. Journal of Philosophical Logic

(2007) (to appear)
26. Oka, S.: The topological types of hyperspaces of 0-dimensional compacta. Topology and its

Applications 149, 227–237 (2005)
27. Palmigiano, A.: A coalgebraic view on positive modal logic. Theoret. Comput. Sci. 327,

175–195 (2004)
28. Pelczynski, A.: A remark on spaces 2X for zero-dimensional X. Bull. Pol. Acad. Sci. 13,

85–89 (1965)
29. Schröder, L., Pattinson, D.: PSPACE bounds for rank 1 modal logics. In: LICS’06 (2006)
30. Venema, Y.: Algebras and coalgebras. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.)

Handbook of Modal Logic, pp. 331–426. Elsevier, Amsterdam (2007)
31. Worrell, J.: On the final sequence of an finitary set functor. Theoret. Comput. Sci. 338, 184–

199 (2005)

Coalgebraic Epistemic Update

Without Change of Model�

Corina Cı̂rstea and Mehrnoosh Sadrzadeh

School of Electronics and Computer Science, University of Southampton
cc2,ms6@ecs.soton.ac.uk

Abstract. We present a coalgebraic semantics for reasoning about in-
formation update in multi-agent systems. The novelty is that we have one
structure for both states and actions and thus our models do not involve
the ”change-of-model” phenomena that arise when using Kripke models.
However, we prove that the usual models can be constructed from ours
by categorical adjunction. The generality and abstraction of our coal-
gebraic model turns out to be extremely useful in proving preservation
properties of update. In particular, we prove that positive knowledge is
preserved and acquired as a result of epistemic update. We also prove
common and nested knowledge properties of epistemic updates induced
by specific epistemic actions such as public and private announcements,
lying, and in particular unsafe actions of security protocols. Our model
directly gives rise to a coalgebraic logic with both dynamic and epis-
temic modalities. We prove a soundness and completeness result for this
logic, and illustrate the applicability of the logic by deriving knowledge
properties of a simple security protocol.

1 Introduction

Modelling interactive multi-agent systems has a wide range of applications, e.g.
in Artificial Intelligence, computer security and e-commerce. In such systems
agents communicate and as a result their knowledge gets updated, and there-
fore one has to model the epistemics and dynamics of the system. The Kripke
and algebraic models of these settings have been presented in [9,10,3,2,14]. The
Kripke models have the advantage of being intuitive and concrete, while the
algebraic setting benefits from high level features that result from mathematical
abstraction.

In this paper we develop a coalgebraic semantics for dynamic epistemic sys-
tems, which combines the advantages of both the Kripke and the algebraic
setting. Our model reasons about such systems in a uniform way, by treating
both actions and agents as state transformers. Thus, we have only one struc-
ture that captures both dynamics and epistemics. This is contrary to the models
of e.g. [10,3,1] that require subsequent ”changes” to the epistemic structure to

� Research supported by EPSRC grant EP/D000033/1.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 158–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Coalgebraic Epistemic Update Without Change of Model 159

model the dynamics. By ”change” we mean either the update product between
an epistemic Kripke structure and an action Kripke structure [3], or the up-
date functor on the category of epistemic coalgebras [10,1]. In either case the
epistemic structure is taken to be primitive and the dynamics is captured by
operations on it. This brings us to the other novelty of our approach: we start
our modelling task by fixing the epistemic actions, and then define the epistemic
states based on these actions and on the agents participating in them. Again,
this is contrary to the models of [10,3,1], which involve first fixing the epistemic
states and then defining all possible epistemic actions on these states. Although
at first sight our approach seems very different from the approach of [10,3,1],
the two are strongly connected. In the main theorem of our paper we show how
to construct from our models the models of [1] and vice versa, and prove that
these constructions form a categorical adjunction1.

Our approach has all the advantages of the approach in [3,1], for instance it
benefits from a general updating schema and it reflects the epistemic structure
of actions. Moreover, our approach does not have the usual weaknesses, for ex-
ample operations on actions are a natural part of our models, e.g. sequential
composition is simply unfolding the coalgebra maps twice and does not need to
be defined separately. The generality and abstraction of our coalgebraic models
turns out to be extremely useful in proving preservation properties of update.
In particular, we prove that positive knowledge is preserved and acquired as a
result of epistemic update. We also prove common and nested knowledge prop-
erties of epistemic updates induced by specific epistemic actions such as public
and private announcements, lying, and in particular unsafe actions of security
protocols. Finally, our model directly gives rise to a coalgebraic logic with both
epistemic and dynamic modalities. This, for instance, cannot be done for the
models of [10,1]. We prove a soundness and completeness result for the resulting
logic. As an example of application, we derive the authentication properties of
a security protocol.

An extended version of this paper is available electronically [8]. There we
illustrate the applicability of our models to general scenarios involving both
positive and negative knowledge, by presenting a new coalgebraic proof of the
muddy children puzzle and a version of it with cheating children. Our proofs are
based on restrictive recursion rather than the usual induction.

2 Coalgebraic Semantics for Actions and Agents

We consider coalgebras of the following signature functor T : Set → Set

TX = Pκ(X)Ag × (1 + X)Ac × P(At)

where κ is a regular cardinal. A coalgebra map for the above functor is thus a
triple γ = 〈ap, up, val〉 : S → Pκ(S)Ag×(1+S)Ac×P(At). The valuation map val

1 As noted by one of our referees, our model might share ideas with the recent epistemic
temporal models of [4].

160 C. Ĉırstea and M. Sadrzadeh

assigns to each state the facts that are true in that state. The (nondeterministic)
appearance of states in S to agents in Ag is modelled by the function ap : S →
P(S)Ag, whereas the (deterministic) effect of actions in Ac on states in S is
modelled by a function up : S → (1 + S)Ac. Thus, up(s)(a) stands for the effect
of the action a on the state s, or the update of s by a. If this effect is the unique
element ∗ of 1, that is, if up(s)(a) = ∗ 2, we say that action a does not apply in
state s; this should be the case, for instance, when a is the announcement of a
fact that does not belong to val(s). The choice of functor T automatically yields
notions of T -bisimulation and T -bisimilarity for T -coalgebras (see e.g. [16]).

2.1 Restrictions to the Coalgebras

We are interested in using T -coalgebras to model the effect of communication
actions on the information state or knowledge of agents. Examples of such actions
are public or secret announcements, and message passing actions in a multi-
agent system. We want to model the effect of updates with such actions on the
appearances of states to the agents and on the valuations of states. In order to
limit the behaviour of our systems to the effect of these actions, we require that
the coalgebra maps satisfy some additional conditions, detailed in the following.

The communication actions that we model are epistemic, that is, they only
affect the information states of agents, while leaving the facts of the world un-
changed. Our first restriction, called preservation of facts, reflects this point:

val(up(s)(a)) = val(s) whenever up(s)(a) �= ∗

It says that, if applicable to a state, an action does not change the valuation
of that state. So the valuation of the effect of the action is the same as the
valuation of the state before the action. We need this restriction to prove the
preservation results in Section 2.2. In a more general approach, one can divide
the set of actions into two subsets, namely information-changing actions and
fact-changing actions, and only require this restriction for actions of the first
type.

Our second restriction concerns the appearance of an update to each agent
involved in the corresponding action. For applicable updates up(s)(a) �= ∗, this
will be related to the update of each of the agent’s appearances t ∈ ap(s)(A)
with a finite subset of actions Aca,A ⊆ Ac, as follows

ap(up(s)(a))(A) =
{
up(t)(a′) | t ∈ ap(s)(A), a′ ∈ Aca,A, up(t)(a′) �= ∗

}

where the actions Aca,A depend both on the action a and on agent A’s involve-
ment in it, and are intended to capture agent A’s appearance of the action a.
This relation says that if an action a applies to a state s, then the appearance
of its effect to an agent A is the same as the effect of one of the actions in Aca,A

2 Here and in what follows, we assume that 1 ∩ S = ∅. Under this assumption, and
to simplify the notation, we regard elements of the set 1 + S as being either ∗ or
elements of S; that is, we make implicit the isomorphism between 1 + S and 1 ∪ S.

Coalgebraic Epistemic Update Without Change of Model 161

on one of the appearances to A of the original state s. The case when Aca,A is a
singleton {a′} corresponds to a deterministic view of A about the real action a
(with A thinking that a′ is happening when in fact a is happening), whereas any
non-singleton set Aca,A captures A’s uncertainty about the action taking place.
We refer to the collection of all instances of this restriction (one for each action
in Ac) as rationality.

The content of an epistemic action, as its name suggests, describes the infor-
mation that is being transmitted as a result of the action taking place. We use
the following syntax to denote specific contents3:

μ := p | �A μ | tt | ¬μ |
∧

i∈I

μi

with p ∈ At and I an arbitrary set. That is, the content of an action can be
a fact, the knowledge or belief of some other content by an agent4, the true
proposition, the negation of a content, or a potentially infinite conjunction of
contents5. In particular, the content can involve nested knowledge, as in �A�Bp.
We do not allow contents to refer to (the effect of) actions, as in [q]−; this
avoids a circularity between requiring each action to have a content and allowing
contents to depend on actions. Contents whose only occurrences of the negation
operator immediately precede a fact are called positive contents, otherwise they
are referred to as negative contents.

From now on, we assume that each action a ∈ A has a content μa associated
to it. Then, a should be applicable precisely to those states where its content μa

is satisfied. This is encoded as a further restriction on T -coalgebras, referred to
as the content restriction:

up(s)(a) �= ∗ iff s |= μa

where the relation |= between states and contents of actions is defined by struc-
tural induction on contents:

– s |= p iff p ∈ val(s)
– s |= �Aμ iff t |= μ for all t ∈ ap(s)(A)

and the usual clauses for the true proposition, negation and conjunction.

Definition 1. An appearance-update coalgebra is a T -coalgebra additionally
satisfying the preservation of facts, content, and rationality restrictions. We de-
note the set of all of these restrictions by R.

3 We emphasise that this is just a syntax for expressing our second restriction on the
content s of actions. The logic will be presented in section 5.

4 Similarly to [3] and as a result of accommodating misinformation actions, our knowl-
edge �A is not necessarily truthful. Indeed, one can also think of �A as belief in
contexts where no wrong knowledge is allowed.

5 The infinite contents are just a technicality that is needed later in order to establish
a connection to the model of [1].

162 C. Ĉırstea and M. Sadrzadeh

2.2 Preservation and Acquisition of Knowledge

An important consequence of the restrictions in R is the so-called preservation
of positive contents by updates, made formal in the next result.

Proposition 1. Let (S, 〈ap, up, val〉) be an appearance-update coalgebra. Then
for all positive contents μ, all states s ∈ S, and all actions a ∈ Ac such that
up(s)(a) �= ∗, we have

s |= μ =⇒ up(s)(a) |= μ

Proof. The statement is proved by induction on μ. If μ is a fact or the negation
of a fact, the conclusion follows directly from the preservation of facts. Now
suppose that s |= μ′ implies up(s)(a) |= μ′ for all states s ∈ S and applicable
actions a ∈ Ac. Also, let s ∈ S and A ∈ Ag be such that s |= �Aμ′. To show that
up(s)(a) |= �Aμ′ for any applicable action a, we use the rationality restriction to
reduce ap(up(s)(a))(A) to {up(t)(a′) | t ∈ ap(s)(A), a′ ∈ Aca,A, up(t)(a′) �= ∗}.
Thus, we must show that up(t)(a′) |= μ′ whenever t ∈ ap(s)(A) and a′ ∈ Aca,A

are such that up(t)(a′) �= ∗. But this follows from the induction hypothesis and
the assumption that s |= �Aμ′. The cases when μ is the true proposition or a
conjunction of contents are trivial.

The above result does not hold for negative contents. That is, there exists an
appearance-update coalgebra (S, 〈ap, up, val〉), a state s ∈ S with an applicable
action a ∈ Ac and a negative content μ such that s |= μ but up(s)(a) |= ¬μ.
For an example of such a situation, which gives rise to the epistemic puzzle
of muddy children, see [8]. It is also not possible to generalise the above result
to an exclusive one for positive contents. In particular, any appearance-update
coalgebra that contains in its set of actions a neutral action τ with μτ = tt and
Acτ,A = {τ} for all A ∈ Ag is such an example. To see why, we refer the reader
to the next section where we prove that such an action preserves all contents.

Another consequence of the restrictions in R is the following acquisition of
knowledge after updates:
Proposition 2. Let (S, 〈ap, up, val〉) be an appearance-update coalgebra. Then
for all agents A ∈ Ag, all states s ∈ S, and all applicable actions a ∈ Ac with
positive contents μa′ for all a′ ∈ Aca,A, we have

up(s)(a) |= �A

∨

a′∈Aca,A

μa′

Proof. Let s ∈ S and a ∈ Ac be such that up(s)(a) �= ∗. We must show that for
A ∈ Ag we have s′ |=

∨
a′∈Aca,A

μa′ for all s′ ∈ ap(up(s)(a))(A). By the rational-
ity restriction on ap(up(s)(a))(A), we must show that up(t)(a′) |=

∨
a′∈Aca,A

μa′

whenever t ∈ ap(s)(A) and a′ ∈ Aca,A are such that up(t)(a′) �= ∗. By the
content restriction, the positivity of μa′ and the preservation result we obtain
up(t)(a′) |= μa′ , which implies up(t)(a′) |=

∨
a′∈Aca,A

μa′ .

The known preservation results in the literature are special cases of our general
results. For instance, it has been shown in [3] that contents that do not contain
the epistemic modality are preserved under any update.

Coalgebraic Epistemic Update Without Change of Model 163

3 Epistemic Actions

In this section, we present epistemic actions, describe their contents and appear-
ances, and prove their knowledge acquisition effects on agents6.

Skip. This is the action τ in which nothing happens. We have μτ = tt and
Acτ,A = {τ} for all A ∈ Ag. This particular choice of μτ and Acτ,A is sufficient
to guarantee that, in any appearance-update coalgebra, the skip action does not
affect the epistemic content of states; that is, no knowledge is lost or acquired
as a result of this action. This is formalised in the next two results, where we
write F : Set → Set for the functor defined by F (S) = Pκ(S)Ag × P(At).

Proposition 3. In any appearance-update coalgebra (S, 〈ap, up, val〉) where the
set Ac of actions includes the τ action, up(s)(τ) ∼F s for any state s ∈ S, where
∼F ⊆ S ×S denotes the F -bisimilarity relation on the F -coalgebra (S, 〈ap, val〉).

Proof. The statement follows by coinduction, namely by showing that the re-
lation R ⊆ S × S given by { (s, up(s)(τ)) | s ∈ S } is an F -bisimulation. The
preservation of facts ensures that R only relates states with the same valuations,
whereas the rationality restriction guarantees closure of R under appearances.

Since F -bisimilar states satisfy the same content formulas, a stronger preserva-
tion of knowledge result can now be formulated for the τ action.

Corollary 1. Let (S, 〈ap, up, val〉) be an appearance-update coalgebra. Then for
all contents μ and all states s ∈ S, we have

s |= μ ⇐⇒ up(s)(τ) |= μ

Public Announcements. The public announcement of a content μ is denoted μ!,
and has Acμ!,A = {μ!} for all A ∈ Ag. We define truthful common knowledge of
a content μ among a group β of agents as follows

CKβ μ :=
∧

〈A0,A1,...,An〉∈β∗

�A0�A1 . . . �Anμ

where β∗ = ∪i∈N βi is the set of all finite sequences of agents in β, including the
empty sequence. Excluding the empty sequence provides us with the notion of
not necessarily truthful common knowledge, denoted �∗

βμ.
We now show that the public announcement of a positive content results in

truthful common knowledge of that content.

6 To be in line with the existing literature, we consider contents rather than pre-
conditions of actions. The difference between the two is best seen in an exam-
ple: the content of a public announcement is simply the announced proposition μ,
whereas its precondition is the conjunction of μ with the knowledge of the announcer
about μ.

164 C. Ĉırstea and M. Sadrzadeh

Proposition 4. For a state s of an appearance-update coalgebra in which the pub-
lic announcement μ! with positive μ is possible, we have up(s)(μ!) |= CKAg μ.

Proof. We must show that for any state s and any state s′ connected to the
applicable update up(s)(μ!) �= ∗ via any sequence of appearance maps we have
s′ |= μ. Thus, we have a sequence of states up(s)(μ!) = s0, s1, . . . , sm = s′ such
that for 0 ≤ j < m and some agent Aj ∈ Ag we have sj+1 ∈ ap(sj)(Aj). For
m = 0, s0 |= μ follows from the applicability of update up(s)(μ!) �= ∗, the content
restriction, and the preservation result. For m > 0, we have that sm is in the
following set of nested appearances

ap(. . . (ap(ap(up(s)(μ!))(A0))(A1)) . . .)(Am−1)

which, by applying the rationality restriction m times, is equal to

{ up(tm)(μ!) | tm ∈ ap(tm−1)(Am−1), . . . , t2 ∈ ap(t1)(A1), t1 ∈ ap(s)(A0),
and up(t1)(μ!) �= ∗, up(t2)(μ!) �= ∗, . . . , up(tm)(μ!) �= ∗ }

By the content restriction up(tm)(μ!) �= ∗ is equivalent to tm |= μ, and from this
by the preservation result it follows that up(tm)(μ!) |= μ.

The closest special case to this proposition is that of [3], where the authors show
that common knowledge of a fact implies preservation of any content under the
public announcement of that fact.

Private Announcements. A private announcement μ!β is the action of announc-
ing the content μ to a subgroup of agents β ⊆ Ag with Acμ!β ,B = {μ!β} for
B ∈ β and Acμ!β ,A = {τ} for A /∈ β.

As expected, one can prove that the private announcement of a positive con-
tent to a subgroup of agents results in truthful common knowledge of that con-
tent among the subgroup, and has no visible effect outside the subgroup.

Proposition 5. For β ⊆ Ag and a state s of an appearance-update coalge-
bra in which the private announcement μ!β with positive μ is possible, we have
up(s)(μ!β) |= CKβ μ and ap(up(s)(μ!β))(A) ∼P ap(s)(A) for A /∈ β7.

Lying. We write μ†A for the action with content ¬μ in which an agent A lies
that μ to the rest of the agents. We have Acμ†A ,A = {μ†A} and Acμ†A,B = {μ!}
for any B �= A.

Proposition 6. For any agent A ∈ Ag, β = Ag \ {A}, and any state s of an
appearance-update coalgebra in which the lying action μ†A with a positive μ is
possible, we have up(s)(μ†A) |= �∗

β μ and up(s)(μ†A) |= �A�∗
β μ.

Proof. In order to show that up(s)(μ†A) |= �∗
β μ, we must show that for any

state s and any state s′ connected to the applicable update up(s)(μ†A) �= ∗
7 Here ∼P denotes the lifting of the bisimilarity relation on S to P(S), see e.g. [12].

Coalgebraic Epistemic Update Without Change of Model 165

via any sequence of length more than 1 of appearance maps of agents in β, we
have s′ |= μ. Consider a sequence of states up(s)(μ†A) = s0, s1, . . . , sm = s′

with 1 ≤ m, such that for 0 ≤ j < m and some agent Bj ∈ Ag \ {A} we have
sj+1 ∈ ap(sj)(Bj). It follows that sm is in the following set of nested appearances

ap(. . . (ap(ap(up(s)(μ†A))(B0))(B1)) . . .)(Bm−1)

which, by applying the rationality restriction m times (once for the lying action
μ†A and B0 and m − 1 times for the public announcement μ! and B1 to Bm−1),
is equal to

{ up(tm)(μ!) | tm ∈ ap(tm−1)(Bm−1), . . . , t2 ∈ ap(t1)(B1), t1 ∈ ap(s)(B0),
and up(t1)(μ!) �= ∗, up(t2)(μ!) �= ∗, . . . , up(tm)(μ!) �= ∗ }

By the content restriction up(tm)(μ!) �= ∗ is equivalent to tm |= μ, and from this
by the preservation result it follows that up(tm)(μ!) |= μ.

Now to show that up(s)(μ†A) |= �A�∗
β μ, we must show that t |= �∗

β μ for all
t ∈ ap(up(s)(μ†A))(A). By the rationality restriction we have

ap(up(s)(μ†A))(A) = { up(w)(μ†A) | w ∈ ap(s)(A), up(w)(μ†A) �= ∗ }

Since up(w)(μ†A) �= ∗ and μ is positive, it follows from up(s)(μ†A) |= �∗
β μ that

up(w)(μ†A) |= �∗
β μ.

Security Actions. A security action μ � μ′
{A},β,γ is a private announcement in

an unsafe communication channel, where the intruders in γ change the origi-
nal content μ, sent by A to the agents in β, to a fake one μ′. In this case we
have Acμ�μ′

{A},β,γ
,A = {μ!β∪{A}}, Acμ�μ′

{A},β,γ
,B = {μ′!β∪{A}} for agents B ∈ β,

Acμ�μ′
{A},β,γ

,C = {μ � μ′
{A},β,γ} for the intruders C ∈ γ, while Acμ�μ′

{A},β,γ
,D =

{τ} for any other agent D ∈ Ag \ ({A} ∪ β ∪ γ).

Proposition 7. For any agents B ∈ β, C ∈ γ, and any state s of an appearance-
update coalgebra in which the security action μ�μ′

{A},β,γ with positive μ and μ′ is
possible, we have up(s)(μ�μ′

{A},β,γ) |= �ACKβ μ, up(s)(μ�μ′
{A},β,γ) |= �∗

β�A μ′

and up(s)(μ � μ′
{A},β,γ) |= CKγ(�ACKβ μ ∧ �∗

β�A μ′).

4 Comparison with Baltag’s Coalgebraic Model

We now compare our coalgebraic semantics with that of [1]. In loc. cit., both
epistemic states and epistemic actions are defined via final coalgebras. Two dif-
ferent functors of a similar shape are used to achieve this. However, none of
these functors accounts for epistemic updates, which are instead modelled using
a partial product between coalgebras of states and coalgebras of actions.

The functor used in [1] to model epistemic states is

F : Set → Set, F (S) = Pκ(S)Ag × P(At)

166 C. Ĉırstea and M. Sadrzadeh

Appearances of states to agents are encoded as elements of Pκ(S)Ag, while their
valuations are encoded using sets of atomic propositions. Epistemic states are
then defined as elements of the final F -coalgebra Ψ . Similarly, epistemic actions
are defined as elements of the final coalgebra of the functor

G : Set → Set, G(Σ) = Pκ(Σ)Ag × P(Ψ)

with Pκ(Σ)Ag encoding the appearances of actions to agents, and P(Ψ) encod-
ing the contents of actions (as sets of epistemic states where the actions are
applicable). Finally, epistemic updates are modelled using a functor

− ⊗ − : Coalg(F) × Coalg(G) → Coalg(F)

which takes a pair consisting of an F -coalgebra (S, 〈apS , valS〉) and a G-coalgebra
(Σ, 〈apΣ, contΣ〉) to another F -coalgebra whose elements correspond to updates
of states in S with actions in Σ. Writing !S : S → Ψ for the unique F -coalgebra
morphism arising from the finality of Ψ , the coalgebra for the updated states has
carrier

S ⊗ Σ = {(s, σ) ∈ S × Σ | !S(s) ∈ contΣ(σ)}
That is, updated states are pairs consisting of a state s ∈ S and an action σ ∈ Σ,
with the additional property that the content of the action σ makes it applicable
to the state s8. The coalgebra map 〈apS⊗Σ , valS⊗Σ〉 : S ⊗ Σ → F (S ⊗ Σ) is
given by

apS⊗Σ(s, σ)(A) = {(s′, σ′) ∈ S ⊗ Σ | s′ ∈ apS(s)(A), σ′ ∈ apΣ(σ)(A)}
valS⊗Σ(s, σ) = valS(s)

That is, the appearances of updated states to agents are computed using both the
appearances of the original states and the appearances of the actions producing
the updates.

In contrast to the above, our approach uses only one functor, which incorpo-
rates both the epistemic and the dynamic aspect of states. This internal mod-
elling of updates is made possible by the fact that we apriorily fix a universe
Ac of actions, together with its epistemic structure. The set Ac should be taken
to contain those epistemic actions (elements of the final G-coalgebra) which are
of interest to the modelling of a particular multi-agent scenario. In this setting,
our choice to specify for each action a ∈ Ac and agent A ∈ Ag, a set Aca,A of
actions that are perceived by A, together with for each action a a content μa,
gives rise to a coalgebra (Ac, 〈apAc, μAc〉) of the following functor

H : Set → Set, H(Σ) = Pκ(Σ)Ag × C

where the set C consists of equivalence classes of content formulas. Here, two
content formulas are said to be (semantically) equivalent if they are satisfied by
8 Here it is assumed that the applicability of an action is invariant under bisimulation,

and therefore an action is applicable to a state precisely when it is applicable to its
image under the unique coalgebra morphism into the final F -coalgebra.

Coalgebraic Epistemic Update Without Change of Model 167

the same states of any F -coalgebra. The map apAc of the previously mentioned
H-coalgebra is given by apAc(a)(A) = Aca,A for a ∈ Ac and A ∈ Ag, whereas
the map μAc takes actions a ∈ Ac to the equivalence class of their content [μa].
In this way, we do not distinguish between actions that have both the same
epistemic structure and semantically equivalent contents.

In order to make precise the relationship between appearance-update T -
coalgebras and the models of [1], we make the dependency of T on the set
Ac of actions explicit, and write TAc : Set → Set for the functor given by

TAcX = (PκX)Ag × (1 + X)Ac × P(At)

Next, we let AppUpCoalg denote the category whose objects are pairs (Ac, S),
with Ac = (Ac, 〈apAc, μAc〉) an H-coalgebra and S = (S, 〈apS , upS, valS〉) an
appearance-update TAc-coalgebra. The H-coalgebra Ac encodes the structure on
the set Ac of actions required to formulate the content and rationality restrictions
of Section 2, whereas the TAc-coalgebra S specifies a set of states carrying both an
epistemic structure and a dynamic structure w.r.t. the actions in Ac. To define
the arrows of the category AppUpCoalg, we first note that any H-coalgebra
morphism f : Ac → Ac′ induces a functor

Uf : Coalg(TAc′) → Coalg(TAc)

which takes a TAc′-coalgebra (S, 〈apS , upS , valS〉) to the TAc-coalgebra with
the same carrier set and appearance and valuation maps, but with an update
map w.r.t. the set Ac instead. This update is derived from the curried version
ev(upS) : S × Ac′ → (1 + S) of the update map upS of the TAc′-coalgebra, as
shown below

S × Ac
idS×f

�� S × Ac′
ev(upS)

�� 1 + S

The curried version of this composition is the update map of the TAc-coalgebra

ev(ev(upS) ◦ (idS × f)) : S → (1 + S)Ac

So we have Uf (S, 〈apS , upS , valS〉) = (S, 〈apS , ev(ev(upS) ◦ (idS × f)), valS〉).
Now the arrows from (Ac, S) to (Ac′, S′) in the category AppUpCoalg are pairs
of maps (f, g) with f : Ac → Ac′ an H-coalgebra morphism and g : S → UfS′

a TAc-coalgebra morphism. The former encodes the actions in Ac as actions in
Ac′, whereas the latter translates the states of the TAc-coalgebra S to states of
the TAc′-coalgebra S′.

The last piece of notation we require before relating our models to those of [1]
concerns characteristic formulas for states of F -coalgebras. These are infinitary
formulas of the form used in Section 2 to specify the contents of epistemic actions,
and have the additional property that they characterise individual states of F -
coalgebras up to bisimulation. Their existence is guaranteed by the κ-accessibility
of F . In particular, for any state ψ of the final F -coalgebra Ψ , there exists a
characteristic formula φψ with the property that, given any state s of an F -
coalgebra S, we have s |= φψ if and only if !S(s) = ψ.

168 C. Ĉırstea and M. Sadrzadeh

We are now ready to describe the relationship between the models of [1] and
our appearance-update coalgebras. This is given by an adjunction

Coalg(F) × Coalg(G)
L ��
⊥ AppUpCoalg
R

��

Definition 2 (Left adjoint). We let L : Coalg(F)×Coalg(G) → AppUpCoalg
be defined by L(S, Σ) = ((Σ, 〈apΣ , μΣ〉), (S′, 〈apS′ , upS′ , valS′〉)), where

– μΣ(σ) =
∨

ψ∈contΣ(σ) φψ, where for ψ ∈ Ψ , φψ is the characteristic formula
of ψ.

– S′ = (S′, 〈apS′ , upS′ , valS′〉) is a TΣ-coalgebra obtained by
1. first letting S′ = (S′, 〈apS′ , valS′〉) = ∪i∈ω(Si, 〈apSi , valSi〉) where

S0 = S, Si+1 = Si ⊗ Σ for i ∈ ω

(Note that, by definition, each of the sets Si comes equipped with an
F -coalgebra structure, and S′ inherits this structure.)

2. subsequently endowing the set S′ with an update map upS′ : S′ → (1 +
S′)Σ, by letting

upS′(si)(σ) =

{
(si, σ) if(si, σ) ∈ Si+1

∗ otherwise
, for i ∈ ω

In informal terms, the functor L constructs an H-coalgebra Σ and a TΣ-
coalgebra S′ from a pair consisting of an F -coalgebra S and a G-coalgebra Σ.
The H-structure of Σ is determined by the G-structure of Σ in a trivial way:
appearances of actions to agents are already defined by the H-structure, whereas
the content map μΣ : Σ → C acts on an action σ ∈ Σ by logically joining all
the characteristic formulas of states in the content of σ. The TΣ-coalgebra S′ is
obtained by performing consecutive update products with the actions in Σ, first
on S, and then on the result of the preceding update product:

S �−→ S ⊗ Σ �−→ (S ⊗ Σ) ⊗ Σ �−→ . . .

and subsequently taking the union of the resulting F -coalgebras and endowing
it with an update map.

Proposition 8. The TΣ-coalgebra S′ is an appearance-update coalgebra.

Proof. We have to show that S′ satisfies all the restrictions in R. The preserva-
tion of facts follows directly from the definitions of Si and S′: for i ∈ ω, whenever
upS′(si)(σ) ∈ S′, that is, whenever (si, σ) ∈ Si+1, we have

valS′(upS′(si)(σ)) = valSi+1(si, σ) = valSi(si) = valS′(si)

For the rationality restriction, assuming upS′(si)(σ) ∈ S′, that is, (si, σ) ∈ Si+1,
we have

Coalgebraic Epistemic Update Without Change of Model 169

apS′(upS′(si)(σ))(A) = apSi+1(si, σ)(A)
= {(s′, σ′) ∈ Si ⊗ Σ | s′ ∈ apSi(si)(A), σ′ ∈ apΣ(σ)(A)}

and

{upS′(t)(σ′) | t ∈ apS′(si)(A), σ′ ∈ apΣ(σ)(A), upS′(t)(σ′) �= ∗} =
{(t, σ′) | t ∈ apSi(si)(A), σ′ ∈ apΣ(σ)(A), (t, σ′) ∈ Si+1} =

{(t, σ′) ∈ Si ⊗ Σ | t ∈ apSi(si)(A), σ′ ∈ apΣ(σ)(A)}

for each i ∈ ω, and therefore

apS′(upS′(s′)(σ))(A) =
{upS′(t)(σ′) | t ∈ apS′(s′)(A), σ′ ∈ apΣ(σ)(A), upS′(t)(σ′) �= ∗}

Finally, for the content restriction, we have, for each i ∈ ω

upS′(si)(σ) ∈ S′ iff (si, σ) ∈ Si+1 = Si ⊗ Σ iff
!Si(si) ∈ contΣ(σ) iff !Si(si) |= μΣ(σ) iff

!S′(si) |= μΣ(σ) iff si |= μΣ(σ)

and hence upS′(si)(σ) ∈ S′ iff si |= μΣ(σ).

Definition 3 (Right adjoint). We define R : AppUpCoalg → Coalg(F) ×
Coalg(G) by R(Ac, S) = ((S, 〈apS , valS〉), (Ac, 〈apAc, contAc〉), where the map
contAc : Ac → P(Ψ) takes an action a ∈ Ac to the set of states in the final
F -coalgebra which satisfy the formula μAc(a).

Informally speaking, the functor R takes a pair consisting of an H-coalgebra Ac
and an appearance-update TAc-coalgebra S, and produces an F -coalgebra and a
G-coalgebra. The F -coalgebra is obtained from S by forgetting its update map
and keeping everything else intact. The G-coalgebra has the same carrier set and
epistemic structure as Ac, and a content map obtained essentially by replacing
content formulas with their denotations in the final F -coalgebra.

Theorem 1. L is left adjoint to R.

Proof. We begin by examining the unit and counit of this adjunction. Since the
categories Coalg(H) and Coalg(G) are naturally isomorphic, it is the move from
TAc-coalgebras to F -coalgebras and back that makes the adjunction non-trivial.

For the unit of the adjunction, the inclusions ηS,Σ : S → S ∪ (S ⊗ Σ) ∪ ((S ⊗
Σ) ⊗ Σ) ∪ . . . together with the natural isomorphism between Coalg(H) and
Coalg(G) give rise to a natural transformation η : IdCoalg(F)×Coalg(G) ⇒ R ◦ L.

For the counit, the maps εAc,S : S ∪ (S ⊗ Ac) ∪ ((S ⊗ Ac) ⊗ Ac) ∪ . . . → S
defined inductively by

εAc,S(s) = s, εAc,S(si, a) = upS(εAc,S(s))(a) for i ∈ ω and si ∈ Si

together with the natural isomorphism between Coalg(H) and Coalg(G), yield
a natural transformation ε : L ◦ R ⇒ IdAppUpCoalg .

170 C. Ĉırstea and M. Sadrzadeh

We show that η and ε indeed constitute the unit and counit of an adjunction
L � R. To this end, we fix (S, Σ) ∈ Coalg(F) × Coalg(G) and (Ac, S′) ∈
AppUpCoalg. For (f, g) : (S, Σ) → R(Ac, S′), the map f# : S ∪ (S ⊗ Σ) ∪ ((S ⊗
Σ) ⊗ Σ) ∪ . . . → S′ defined inductively by

f#(s) = f(s), f#(si, σ) = upS′(f#(si))(g(σ)) for i ∈ ω

is a TAc-coalgebra morphism that satisfies R(g, f#) ◦ η(S,Σ) = (f, g). Further-
more, any TAc-coalgebra morphism with the above property is defined in this
way. For (h, k) : L(S, Σ) → (Ac, S′), the map k� : S → S′ given by k�S defines
an F -coalgebra morphism that satisfies ε(Ac,S′) ◦ L(k�, h) = (h, k). Furthermore,
this last requirement uniquely determines the definition of k�.

5 Coalgebraic Dynamic Epistemic Logic

Coalgebras give rise to modal logics in different ways, for example the coalge-
braic logic of Moss [13], the temporal logic of Jacobs [11], and the modular logic
of Cı̂rstea and Pattinson [5,6]. In previous work [15], we showed how one ob-
tains an algebraic logic from our functor by predicate lifting, and investigated
the connection between this logic and the algebraic dynamic epistemic logic
of [2,14]. Cı̂rstea and Pattinson have shown how complete and expressive coalge-
braic logics can be derived in a modular fashion for an inductively-defined class
of endofunctors on Set. By applying this method to our setting, we obtain a
logic with a multi-sorted syntax, which is expressive – that is, two states are
bisimilar if and only if they satisfy the same formulas –, and admits a sound
and complete proof system. Because of the particular shape of the functor T
and of the axioms in the associated proof system, the multi-sorted syntax of
this logic can be simplified to the following single-sorted syntax, with no loss in
expressiveness

φ ::= tt | p | ¬φ | φ ∧ φ | �Aφ | [a]φ

The standard knowledge and dynamic modalities, that is, �A (to be read as ’A
knows φ’) and [a] (to be read as ’after a, φ’), are recovered by letting �Aφ ::=
[π1][A]�φ and [a]φ ::= [π2][a][κ2]φ 9. In particular, the statement ’action a does
not go through’ is captured by the formula [a]ff. Using the simplified syntax, the
original proof system is equivalent to the following set of axioms and rules

� © tt � ©φ ∧ ©ψ → © (φ ∧ ψ)
� φ → ψ

� ©φ → ©ψ

for © ∈ {�A, [a]}, and

� [a](φ ∨ ψ) → [a]φ ∨ [a]ψ

on top of propositional logic10. As a consequence of the results in [6], this proof
system is sound and complete w.r.t. T -coalgebras. However, in order to formulate
9 See [6] for details of the multi-sorted syntax.

10 As in [6], we include all instances of propositional tautologies and the modus ponens
rule into our set of axioms and rules.

Coalgebraic Epistemic Update Without Change of Model 171

a soundness and completeness result w.r.t. appearance-update coalgebras, the
restrictions defining appearance-update coalgebras must also be axiomatised. To
this end, we add the following axioms to the previous proof system:

� [a] p ↔ (¬[a]ff → p) � [a]�A φ ↔ (¬[a]ff →
∧

a′∈Aca,A

�A [a′] φ)

φa ↔ ¬[a]ff

where for an action a ∈ Ac, its content is denoted by φa. There is one such axiom
for each epistemic action a and each (type of) agent A.

Example of Derivation. Consider a simple Man in the Middle Attack: agent A
sends a message with factual content p to agent B, but on the way the intruder C
changes p to another fact p′ and thus B receives p′ instead. If we assume that A
does not suspect the interception, after sending p he believes that B believes in
p. Similarly, upon receipt, B believes that A believes in p′. In security terms and
since A and B do not suspect the interception, they will wrongly authenticate
with each other. We use the encoding of the security action in Section 2 to prove
that � [p � p′A,B,C]�A�Bp. The proof steps are sketched below:

� tt

(propositional logic) � ¬[p � p′
A,B,C]ff → tt

(modular logic) � ¬[p � p′
A,B,C]ff → �Att

(propositional logic) � ¬[p � p′
A,B,C]ff → �A(¬[p!B]ff → tt)

(modular logic) � ¬[p � p′
A,B,C]ff → �A(¬[p!B]ff → �Btt)

(propositional logic) � ¬[p � p′
A,B,C]ff → �A(¬[p!B]ff → �B(p → p))

(content axiom) � ¬[p � p′
A,B,C]ff → �A(¬[p!B]ff → �B(¬[p!B]ff → p))

(preservation of facts axiom) � ¬[p � p′
A,B,C]ff → �A(¬[p!B]ff → �B [p!B]p)

(rationality for B wrt p!B) � ¬[p � p′
A,B,C]ff → �A[p!B]�Bp

(rationality for A wrt p � p′
A,B,C) � [p � p′

A,B,C]�A�Bp

With the additional axioms, we obtain the following result:

Theorem 2 (Soundness and Completeness). A formula holds in all
appearance-update coalgebras if and only if it is derivable in the appearance-
update logic.

Proof. The proof of both soundness and completeness is detailed in [8]. Here
we only sketch the completeness proof. This follows the same line as the com-
pleteness result for dynamic epistemic logic [3], and is based on a translation
between our appearance-update logic (with appearance-update coalgebras as
models) and ordinary epistemic logic (with F -coalgebras as models). As in [3],
this translation has the property that a formula φ is semantically equivalent to
its translation φt. Moreover, the axioms and rules of appearance-update logic
ensure that � φ ↔ φt. These properties, together with our result in [8] that the

172 C. Ĉırstea and M. Sadrzadeh

final F -coalgebra can be extended to an appearance-update coalgebra, allow us
to make use of the completeness result of [6] for F -coalgebras in order to prove
completeness of appearance-update logic w.r.t. appearance-update coalgebras.

Acknowledgement. We would like to thank the anonymous referees for valu-
able suggestions on improving the paper.

References

1. Baltag, A.: A coalgebraic semantics for epistemic programs. In: Proceedings of
Coalgebraic Methods in Computer Science. Electronic Notes in Theoretical Com-
puter Science, vol. 82 (2003)

2. Baltag, A., Coecke, B., Sadrzadeh, M.: Epistemic actions as resources. Journal of
Logic and Computation, forthcoming

3. Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139 (2004)
4. van Benthem, J., Pacuit, E.: The tree of knowledge in action: towards a common

perspective. In: Proceedings of Advances in Modal Logic (2006)
5. Ĉırstea, C.: A compositional approach to defining logics for coalgebras. Theoretical

Computer Science 327(1), 45–69 (2004)
6. Ĉırstea, C., Pattinson, D.: Modular construction of modal logics. In: Gardner,

P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 258–275. Springer,
Heidelberg (2004)

7. Ĉırstea, C.: On expressivity and compositionality in logics for coalgebras. In: Pro-
ceedings of Coalgebraic Methods in Computer Science, Electronic Notes in Theo-
retical Computer Science 82 (2003)

8. Ĉırstea, C., Sadrzadeh, M.: Coalgebraic epistemic update without change of model
http://ecs.soton.ac.uk/∼ms6/TechRep.pdf

9. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

10. Gerbrandy, J.: Bisimulations on Planet Kripke. Ph. D. Thesis, University of Ams-
terdam (1999)

11. Jacobs, B.: The temporal logic of coalgebras via Galois algebras. Mathematical
Structures in Computer Science 12, 875–903 (2002)

12. Jacobs, B.: Many-sorted coalgebraic modal logic: a model-theoretic study. Theo-
retical Informatics and Applications 35, 31–59 (2001)

13. Moss, L.S.: Coalgebraic logic. Annals of Pure and Applied Logic 96, 241–259 (1999)
14. Sadrzadeh, M.: Actions and Resources in Epistemic Logic. Ph.D. Thesis, University

of Quebec at Montreal (2005), http://www.ecs.soton.ac.uk/∼ms6/all.pdf
15. Sadrzadeh, M., Ĉırstea, C.: Relating algebraic and coalgebraic logics of knowledge

and update. In: Proceedings of the 7th conference on Logic and the Foundations
of Game and Decision Theory, pp. 199–208, Liverpool (July 2006)

16. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer
Science 249, 3–80 (2000)

http://ecs.soton.ac.uk/~ms6/TechRep.pdf
http://www.ecs.soton.ac.uk/~ms6/all.pdf

The Maude Formal Tool Environment

Manuel Clavel1, Francisco Durán2, Joe Hendrix3, Salvador Lucas4, José Meseguer3,
and Peter Ölveczky5

1 Universidad Complutense de Madrid, Spain
2 Universidad de Málaga, Spain

3 University of Illinois at Urbana-Champaign, IL, USA
4 Universidad Politécnica de Valencia, Spain

5 University of Oslo, Norway

Abstract. This paper describes the main features of several tools concerned with
the analysis of either Maude specifications, or of extensions of such specifi-
cations: the ITP, MTT, CRC, ChC, and SCC tools, and Real-Time Maude for
real-time systems. These tools, together with Maude itself and its searching and
model-checking capabilities, constitute Maude’s formal environment.

1 Introduction

Maude is a language and a system based on rewriting logic [1,2]. Maude modules are
rewrite theories, while computation with such modules corresponds to efficient deduc-
tion by rewriting. Because of its logical basis and its initial model semantics, a Maude
module defines a precise mathematical model. This means that Maude and its formal
tool environment can be used in three, mutually reinforcing ways: as a declarative pro-
gramming language, as an executable formal specification language, and as a formal
verification system. The Maude system, its documentation, and related papers and ap-
plications are available from the Maude website http://maude.cs.uiuc.edu .

Besides the built-in support for verifying invariants and LTL formulas, the follow-
ing tools are also available as part of the Maude formal environment: the Inductive
Theorem Prover (ITP) can be used to verify inductive properties of functional mod-
ules (§2); the Maude Termination Tool (MTT) can be used to prove termination of
functional modules (§3); the Church-Rosser Checker (CRC) can be used to check the
Church-Rosser property of functional modules (§4); the Coherence Checker (ChC) can
be used to check the coherence (or ground coherence) of unconditional system mod-
ules (§5); and the Sufficient Completeness Checker (SCC) can be used to check that
defined functions have been fully defined in terms of constructors (§6). Furthermore, if
we are dealing with rewriting logic specifications of real-time systems, we can use the
Real-Time Maude tool (§7) to both simulate such specifications and to perform search
and model-checking analysis of their LTL properties. Full Maude [2,9], an extension
of Maude, written in Maude itself, has played a key role in the construction of some
of these tools. Full Maude has become a common infrastructure on top of which tools
like these can be built, but also environments for other languages, such as, e.g., the
Real-Time Maude tool.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 173–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://maude.cs.uiuc.edu

174 M. Clavel et al.

In the following sections we summarize the main features of these tools. For further
details on them, including user manuals, examples, and restrictions, please check the
given references or visit the indicated web sites.

2 The ITP: An Inductive Theorem Prover

The Maude Inductive Theorem Prover tool (ITP) [4] is a theorem-proving assistant.
It can be used to interactively verify inductive properties of membership equational
specifications. An important feature of the ITP is that it supports proofs by structural
induction and complete induction. Operations do not have to be completely specified
before inductive properties about them can be verified mechanically.

The ITP is a Maude program. It comprises over 8000 lines of Maude code that make
extensive use of the reflective capabilities of the system. In fact, rewriting-based proof
simplification steps are directly executed by the underlying Maude rewriting engine.
The ITP tool is currently available as a web-based application that includes a module
editor, a formula editor, and a command editor. These editors allow users to create and
modify specifications, to formalize properties about them, and to guide the proofs by
filling in and submitting web forms. The web application also offers a goal viewer, a
script viewer, and a log viewer. They generate web pages that allow the user to check,
print, and save the current state of a proof, the commands that have guided it, and the
logs generated in the process by the Maude system. The ITP web-based application can
be accessed at http://maude.sip.ucm.es:8080/webitp/.

The ITP is still an experimental tool, but the results obtained so far are encouraging.
It is the only theorem prover at present that supports reasoning about membership equa-
tional logic specifications. The integration of term rewriting with a decision procedure
for linear arithmetic with uninterpreted function symbols [5] has been implemented in
ITP by exploiting the reflective capabilities of Maude. The ease with which this inte-
gration has been accomplished encourages us to add other decision procedures to our
tool in the near future. Another interesting extension of the tool is the implementation
of the cover set induction method [22], a feature already available in RRL [15].

3 The Maude Termination Tool

Maude, as other equational and rule-based programming languages, has expressive fea-
tures: advanced typing constructs such as sorts, subsorts, kinds, and memberships;
matching modulo axioms; evaluation strategies; and very general conditional rules.
Proving termination of programs having such features is nontrivial; furthermore, some
of these features are not supported by standard termination methods and tools. Yet,
the use of such features may be essential to ensure termination. The Maude Termi-
nation Tool (MTT) uses several theory transformations [7,8] to bridge the gap be-
tween expressive equational programs and conventional termination tools for (variants
of) term rewriting systems, which are used as back-ends. Currently, MU-TERM [16]
and AProVE [10] provide the most accurate termination proofs for MTT and they can
be used as back-ends. Tools which implement less specific (but still valid) proofs like
CiME [6] can be used as well. The transformed termination problems are given to the

http://maude.sip.ucm.es:8080/webitp/

The Maude Formal Tool Environment 175

back-end tools in TPDB syntax [17]. This makes MTT extensible, so that new tools
supporting such syntax can be added as back-ends.

The tool implementation distinguishes two parts: a reflective Maude specification
implements the theory transformations described in [7,8], and a Java application con-
nects Maude to the back-end termination tools and provides a graphical user interface.
The Java application is in charge of sending the user-provided specification to Maude
to perform the transformations. The resulting unsorted unconditional (context-sensitive)
rewriting system obtained from such transformations is proved terminating by using the
above-mentioned tools. To alleviate the installation requirements on external tools, the
application includes support for connecting to the external tools remotely via different
alternatives, including sockets and web services.

MTT is available from http://www.lcc.uma.es/∼duran/MTT.

4 The Church-Rosser Checker

For order-sorted specifications, being Church-Rosser and terminating means not only
confluence, but also a sort decreasingness property: each normal form has the least pos-
sible sort among those of all other equivalent terms. The Church-Rosser Checker (CRC)
[3] is a tool that helps checking whether a Maude order-sorted conditional equational
specification satisfies this Church-Rosser property.

A specification with an initial algebra semantics can often be ground Church-Rosser
even though some of its critical pairs may not be joinable. That is, the specification can
often be ground Church-Rosser without being Church-Rosser for terms with variables.
The CRC can be used to check specifications with an initial algebra semantics that have
already been proved terminating and now need to be checked to be ground Church-
Rosser. If the specification cannot be shown to be ground Church-Rosser by the tool,
proof obligations consisting of a set of critical pairs and a set of membership assertions
that must be shown, respectively, ground-joinable, and ground-rewritable to a term with
the required sort are generated and are given back to the user as a useful guide in the
attempt to establish the ground Church-Rosser property. Since this property is in fact
inductive, in some cases the ITP (§2) can be enlisted to prove some of these proof
obligations. In other cases, the user may in fact have to modify the original specification
by carefully considering the information conveyed by the proof obligations.

The tool is written in Maude, and is in fact an executable specification of the formal
inference system that it implements. A complete execution environment for the tool has
been integrated within Full Maude.

The tool, together with its documentation and some examples, is available from
http://www.lcc.uma.es/∼duran/CRC.

5 The Maude Coherence Checker

Coherence is a key executability requirement for rewrite theories. It allows reducing the,
in general undecidable, problem of computing rewrites of the form [t]E∪A −→ [t ′]E∪A,
with A a set of equational attributes (associativity, commutativity, identity) for which

http://www.lcc.uma.es/~duran/MTT
http://www.lcc.uma.es/~duran/CRC

176 M. Clavel et al.

matching algorithms exist and E a set of equations, to the much simpler and decidable
problem of computing rewrites of the form [t]A −→ [t ′]A.

The Maude Coherence Checker (ChC), which is written in Maude using a reflective
design as an extension of Full Maude, provides a coherence decision procedure for
order-sorted system modules whose equations and rules are unconditional. The tool
generates a set of critical pairs, whose coherence guarantees that of the entire system
module. It then checks whether each of these pairs is coherent. The equational part of
the system module given as input to the tool is always assumed to be ground Church-
Rosser and terminating. The CRC (§4) and the MTT (§3) can be used to try to prove
such properties.

For Maude system modules, which have an initial model semantics, the weaker re-
quirement of ground coherence, that is, coherence for ground terms, is enough. When
the ChC tool cannot prove coherence—either because this fails, or because the input
specification falls outside the class of decidable theories—it outputs a set of proof oblig-
ations associated with the critical pairs that it could not prove coherent. The user can
then interact with the ChC tool to try to prove ground coherence by a constructor-based
process of reasoning by cases. In the end, either: (1) all proof obligations are discharged
and the module is shown to be ground coherent; or (2) proving ground coherence can
be reduced to proving that the inductive validity of a set of equations follows from
the equational part of the input system module, for which the ITP can be used (§2);
or (3) it is not possible to reduce some of the proof obligations to inductively proving
some equations. Case (3) may be a clear indication that the specification is not ground
coherent, so that a new specification should be developed.

The ChC tool, together with its documentation and some examples, is available from
http://www.lcc.uma.es/∼duran/ChC.

6 The Sufficient Completeness Checker

The Maude Sufficient Completeness Checker (SCC) [12] is a tool for checking that each
operation in an equational Maude specification is defined on all valid inputs. The SCC
verifies that the constructor operator declarations are annotated with the ctor attribute,
and that enough equations have been given so that the remaining operations reduce to
constructor terms. Specifications may import any of the built-in Maude modules. The
tool uses the characterization of sufficient completeness given in [13] which allows
for operations to be intentionally partial by declaring these operations at the kind level
rather than at the sort level.

The tool is designed for unparameterized, order-sorted, left-linear, and unconditional
Maude specifications that are ground terminating and Church-Rosser. It is a decision
procedure for this class when every associative symbol is commutative, but for associa-
tive symbols that are not commutative it uses an algorithm from [14] based on machine
learning techniques that works well in practice. If the specification is not sufficiently
complete, the SCC returns a counterexample to aid the user in identifying errors. The
tool is not complete for specifications with non-linear or conditional axioms, but never-
theless has proven useful in identifying errors in such specifications.

http://www.lcc.uma.es/~duran/ChC

The Maude Formal Tool Environment 177

The SCC accepts interactive commands to check the sufficient completeness of a
Maude module, and internally constructs a propositional tree automaton [14] whose
language is empty iff the Maude module is sufficiently complete. The emptiness check
is performed by a C++ tree automata library named CETA. Recently, the tool has been
extended to check several important completeness problems of context-sensitive speci-
fications [11].

SCC is available from its website at http://maude.cs.uiuc.edu/tools/scc.

7 The Real-Time Maude Tool

The Real-Time Maude tool [19] extends Maude to support the formal specification and
analysis of real-time systems. The system’s state space and its instantaneous transi-
tions are defined, as in Maude, by, respectively, a membership equational logic theory
and a set of rewrite rules. Time elapse is modeled by tick rewrite rules of the form
{t} => {t ′} in time u if cond, where {_} is an operator that encloses the state.

Real-Time Maude extends Maude’s efficient rewriting, search, and LTL model-
checking capabilities to the timed setting by: (i) analyzing behaviors up to a given time
duration; and (ii) by having a time sampling treatment of dense time, in which only
some moments in time are visited. Real-Time Maude is implemented in Maude, and
achieves high performance by simultaneously transforming a real-time module and a
query into a semantically equivalent Maude rewrite theory and a Maude query.

Real-Time Maude has proved useful to model real-time systems in an object-oriented
way. In particular, the ease and flexibility with which an appropriate form of commu-
nication can be defined has been exploited in state-of-the-art applications including: (i)
The AER/NCA protocol suite for multicast in active networks [20], where Real-Time
Maude analysis was able to find all known bugs in AER/NCA, as well as some previ-
ously unknown bugs not discovered by traditional testing and simulation; and (ii) the
OGDC wireless sensor network algorithm [21], where Real-Time Maude simulations
provide more reliable estimates of the performance of OGDC than the simulation tool
used by the OGDC developers.

At the theoretical level, we have given simple and easily checkable conditions for
object-oriented specifications that ensure that Real-Time Maude analyses are sound and
complete also for dense time [18].

The Real-Time Maude tool is available, together with its documentation and several
case studies, from http://www.ifi.uio.no/RealTimeMaude .

Acknowledgements. The authors would like to thank Narciso Martı́-Oliet for suggest-
ing us to write this paper, and for his insightful comments and very constructive sug-
gestions. F. Durán has been supported by Spanish Research Project TIN2005-09405-
C02-01. J. Hendrix was supported by ONR Grant N00014-02-1-0715. S. Lucas was
supported by the EU (FEDER) and the Spanish MEC, under grants TIN 2004-7943-
C04-02 and HA 2006-0007, and by the Generalitat Valenciana under grant GV06/285.
P. Ölveczky was supported by the Research Council of Norway.

http://maude.cs.uiuc.edu/tools/scc
http://www.ifi.uio.no/RealTimeMaude

178 M. Clavel et al.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Quesada, J.: Maude:
specification and programming in rewriting logic. Th. Comp. Sci. 285(2), 187–243 (2002)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.L.: All
About Maude, A High-Performance Logical Framework, vol. 4350 of LNCS (to appear)

3. Clavel, M., Durán, F., Eker, S., Meseguer, J.: Building equational proving tools by reflection
in rewriting logic. In: CAFE: An Industrial-Strength Alg. Formal Method, Elsevier, Amster-
dam (2000)

4. Clavel, M., Palomino, M., Riesco, A.: Introducing the ITP tool: a tutorial. J. of Universal
Computer Science 12(11), 1618–1650 (2007)

5. Clavel, M., Palomino, M., Santa-Cruz, J.: Integrating decision procedures in reflective
rewriting-based theorem provers. In: Antoy, S., Toyama, Y. (eds.) Procs. WRS’04.

6. Contejean, E., Marché, C., Monate, B., Urbain, X.: Proving termination of rewriting with
CiME. In: Rubio, A. (ed.) Procs. of WST’03, pp. 71–73 (2003)

7. Durán, F., Lucas, S., Meseguer, J., Marché, C., Urbain, X.: Proving termination of member-
ship equational programs. In: Sestoft, P., Heintze, N. (eds.) Procs. PEPM’04.

8. Durán, F., Lucas, S., Meseguer, J., Marché, C., Urbain, X.: Proving operational termination
of membership equational programs. Higher-Order and Symb. Comp. (to appear)

9. Durán, F., Meseguer, J.: Maude’s Module Algebra. Science of Computer Programming 66(2),
125–153 (2007)

10. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs
in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

11. Hendrix, J., Meseguer, J.: On the completeness of context-sensitive order-sorted specifica-
tions. Tech. Report UIUCDCS-R-2007-2812, U. of Illinois (2007)

12. Hendrix, J., Meseguer, J., Ohsaki, H.: A sufficient completeness checker for linear order-
sorted specifications modulo axioms. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 151–155. Springer, Heidelberg (2006)

13. Hendrix, J., Ohsaki, H., Meseguer, J.: Sufficient completeness checking with propositional
tree automata. Tech. Report UIUCDCS-R-2005-2635, U. of Illinois (2005)

14. Hendrix, J., Ohsaki, H., Viswanathan, M.: Propositional tree automata. In: Pfenning, F. (ed.)
RTA 2006. LNCS, vol. 4098, pp. 50–65. Springer, Heidelberg (2006)

15. Kapur, D., Zhang, H.: An overview of rewrite rule laboratory (RRL). J. Computer and Math-
ematics with Applications 29(2), 91–114 (1995)

16. Lucas, S.: MU-TERM: A tool for proving termination of context-sensitive rewriting. In: van
Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 200–209. Springer, Heidelberg (2004)

17. Marché, C., Rubio, A., Zantema, H.: The Termination Problems Data Base: format of input
files (March 2005) Available at http://www.lri.fr/∼marche/tpdb/

18. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude. In: Procs.
WRLA’06 (2006)

19. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. Higher-Order
and Symb. Comp. 20(1/2), 161–196 (2007)

20. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the AER/NCA ac-
tive network protocol suite in Real-Time Maude. Formal Methods in System Design 29,
253–293 (2006)

21. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling and analysis of the OGDC wireless sensor
network algorithm in Real-Time Maude. In: FMOOD’07 (to appear)

22. Zhang, H., Kapur, D., Krishnamoorthy, M.S.: A mechanizable induction principle for equa-
tional specifications. In: Lusk, E., Overbeek, R. (eds.) 9th International Conference on Au-
tomated Deduction. LNCS, vol. 310, pp. 162–181. Springer, Heidelberg (1988)

http://www.lri.fr/~marche/tpdb/

Bifinite Chu Spaces

Manfred Droste1 and Guo-Qiang Zhang2,�

1 Institute of Computer Science
Leipzig University, 04158 Leipzig, Germany

2 Department of Electrical Engineering and Computer Science
Case Western Reserve University
Cleveland, Ohio 44106, U.S.A.

gq@case.edu

Abstract. This paper studies colimits of sequences of finite Chu spaces
and their ramifications. We consider three base categories of Chu spaces:
the generic Chu spaces (C), the extensional Chu spaces (E), and the biex-
tensional Chu spaces (B). The main results are: (1) a characterization of
monics in each of the three categories; (2) existence (or the lack thereof)
of colimits and a characterization of finite objects in each of the cor-
responding categories using monomorphisms/injections (denoted as iC,
iE, and iB, respectively); (3) a formulation of bifinite Chu spaces with
respect to iC; (4) the existence of universal, homogeneous Chu spaces
in this category. Unanticipated results driving this development include
the fact that: (a) in C, a morphism (f, g) is monic iff f is injective and
g is surjective while for E and B, (f, g) is monic iff f is injective (but
g is not necessarily surjective); (b) while colimits always exist in iE, it
is not the case for iC and iB; (c) not all finite Chu spaces (considered
set-theoretically) are finite objects in their categories. This study opens
up opportunities for further investigations into recursively defined Chu
spaces, as well as constructive models of linear logic.

1 Introduction

Within semantic frameworks for programming languages, a basic approach to
the study of infinite objects is through their finite approximations. This is true
both within an individual domain, as well as with domains collectively. A salient
example of the latter is Plotkin’s approach to SFP [13], where a class of domains
is constructed systematically by taking colimits of sequences of finite partial
orders. An important component of this framework is the notion of embedding-
projection pair, capturing when one partial order is an approximation of another.
An interesting outcome of this process is that completeness of an individual
domain, the property that makes a cpo complete, becomes a natural by-product
obtained by taking colimits of finite structures. In domain theory, the SFP- (or
bifinite) domains now form an important cartesian closed category of domains,
see [1].

� Corresponding author.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 179–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

180 M. Droste and G.-Q. Zhang

In this paper we study colimits of sequences of finite Chu spaces. This entails
the use of monic morphisms (or monomorphisms) as a way to formulate the
substructure relationship. Such an innocuous attempt led to striking differenti-
ations of the notion dictated by the extensionality properties of the underlying
spaces. We consider three base categories of Chu spaces: the generic Chu spaces
(C), the extensional Chu spaces (E), and the biextensional Chu spaces (B).
The main results are: (1) a characterization of monics in each of the three cat-
egories; (2) existence (or the lack thereof) of colimits of countable sequences
and a characterization of finite objects in each of the corresponding categories
using monomorphisms/injections (denoted as iC, iE, and iB, respectively); (3)
a formulation of bifinite Chu spaces with respect to iC; (4) the existence of uni-
versal, homogeneous Chu spaces in this category. Unanticipated results driving
this development include the fact that: (a) in C, a morphism (f, g) is monic
iff f is injective and g is surjective while for E and B, (f, g) is monic iff f is
injective (but g is not necessarily surjective); (b) while colimits always exist in
iE, it is not the case for iC and iB; (c) not all finite Chu spaces (considered
set-theoretically) are finite objects in their categories.

Bifinite Chu spaces can be viewed, in an intuitive category-theoretic sense,
as “countable” objects which are approximable by the finite objects of the cate-
gory. The class of bifinite Chu spaces is very rich (up to isomorphism, there are
uncountably many such spaces). However, we show that there is a single bifinite
Chu space U which contains any other bifinite Chu space as a subspace. More-
over, U can be chosen to be homogeneous, i.e. to bear maximal possible degree
of symmetry, and with this additional property U is unique up to isomorphism.

Our interest in Chu spaces stems from a number of recent developments.
Chu spaces provide a suitable model of linear logic, originating from a gen-
eral categorical construction introduced by Barr and his student [2,3]. The rich
mathematical content of Chu spaces has been extensively illustrated by Pratt
and his collaborators in a variety of settings, ranging from concurrency to logic
and category theory [16,17,18,19,21,22]. In particular, Pratt shows that all small
categories can be embedded in Chu(Set, 2) [20].

Chu spaces are closely related to the topic of Formal Concept Analysis (FCA
[8,25]). Both areas use the same objects but the morphisms considered in FCA
are different. Chu spaces are also related to domains [25]. In [11], a class called
casuistries was introduced as a “continuous” version of Chu spaces, and yet main-
taining the constructions desired as a model of linear logic. On the other hand,
if instead of Chu transformations, Chu spaces are equipped with what are called
approximable mappings [9,24], one obtains a cartesian closed category equivalent
to the category of algebraic lattices and Scott continuous functions [10]. For this
to work properly, a modified notion of formal concept, called approximable con-
cept, needs to be used [26]. This way, an infinite concept can be approximated
by finite ones.

Universal objects have played an important role in the development of domain
theory. For example, the early work of Scott [23] and Plotkin [14] showed that
with universal objects, domain equations can be treated by a calculus of retracts.

Bifinite Chu Spaces 181

By studying Chu spaces that are colimits of sequences of finite objects, we
hope to understand these spaces from a constructive angle, formulate a notion
of completeness, and study the existence of universal, homogeneous objects.
Recursively defined Chu spaces as well as models of linear logic within bifinite
Chu spaces are some topics worth revisiting in light of this paper.

The rest of the paper is organized as follows. Section 2 recalls basic termi-
nologies and gives a characterization of monic morphisms in the categories C,
E, and B. Section 3 studies colimits in the categories iC, iE, and iB. Section 4
characterizes finite objects in iC, iE, and iB. Section 5 introduces bifinite Chu
spaces and shows the existence of universal, homogeneous bifinite Chu spaces
using finite amalgamation. Lengthier proofs will appear in the full paper.

2 Chu Spaces and Monic Morphisms

We recall some basic definitions to fix notation, following [4]. Readers inter-
ested in more details should consult [17]. In [17], the morphisms are called Chu
transformations.

Definition 1. A Chu space over a set Σ is a triple (A, r, X) where A is a set
whose elements can be considered as objects and X is a set whose elements can
be regarded as attributes. The satisfaction relation r is a function A × X → Σ.
A morphism from a Chu space (A, r, X) to a Chu space (B, s, Y) is a pair of
functions (f, g), with f : A → B and g : Y → X such that for any a ∈ A and
y ∈ Y , s(f(a), y) = r(a, g(y)). To alleviate the notational burden, we refer to a
morphism by ϕ = (f, g), and refer to the forward component by ϕ+ = f and the
backward component by ϕ− = g.

For all the examples we consider in this paper, Σ = {0, 1}. If Σ is left unspecified,
then it is assumed to contain at least two elements, denoted as 0 and 1. A
Chu space (A, r, X) has two equivalence relations built-in. One is on the rows,
where the a-th row corresponds to a function r(a, −) : A → Σ. Two rows
a, b are equivalent if r(a, −) = r(b, −). Similarly, an equivalence relation exists
on columns, defined by equality r(−, x) = r(−, y) for x, y ∈ X . A Chu space
(A, r, X) is called extensional if r(−, x) = r(−, y) implies x = y, i.e., r does not
contain repeated columns. Similarly, a Chu space (A, r, X) is separable if it does
not contain repeated rows. In topological analogy, if we think of objects in A as
points and attributes in X as open sets, then separable Chu spaces are those
for which distinct points can be differentiated by the open sets containing them
(such spaces are called T0). A Chu space is biextensional if it is both separable
and extensional.

We denote by C the category of Chu spaces and morphisms defined above,
and E and B the full subcategories of extensional and biextensional Chu spaces,
respectively. Composition of morphisms reduces to functional compositions of
the components: ϕ1 ◦ ϕ2 = (ϕ+

1 ◦ ϕ+
2 , ϕ2

− ◦ ϕ1
−), noting that the second com-

ponent goes backwards. For abbreviation, objects are denoted as Ci for short,
where Ci := (Ai, ri, Xi). We refer to Ai the object set, and Xi the attribute set of

182 M. Droste and G.-Q. Zhang

Ci, respectively. As a refinement of an observation in [11], we have the following
result which will be useful for subsequent developments of the paper.

Proposition 1. Suppose ϕ1, ϕ2 : C → C′ are morphisms in C. Then

1. if C is extensional, then ϕ+
1 = ϕ+

2 implies ϕ−
1 = ϕ−

2 ;
2. if C′ is separable, then ϕ−

1 = ϕ−
2 implies ϕ+

1 = ϕ+
2 ;

3. if C and C′ are biextensional, then ϕ−
1 = ϕ−

2 iff ϕ+
1 = ϕ+

2 .

Thus, the forward and backward components in a morphism determine each
other uniquely in the category of biextensional Chu spaces.

Proof. Let us write C = (A, r, X) and C′ = (A′, r′, X ′). First we show (1).
Suppose C is extensional and ϕ+

1 = ϕ+
2 . Then for all x′ ∈ X ′ and a ∈ A we have

r(a, ϕ−
1 (x′)) = r′(ϕ+

1 (a), x′) = r′(ϕ+
2 (a), x′) = r(a, ϕ−

2 (x′))

Hence ϕ−
1 (x′) = ϕ−

2 (x′) by extensionality of C. Now (2) follows from (1) by
duality, and (1) and (2) imply (3).

As a first order of business, we consider monic morphisms, which capture the
notion of a “substructure”. In categorical terms, a morphism ϕ : C1 → C2 is
monic (or mono) if for any other morphisms ϕi : C∗ → C1 (i = 1, 2) such that
ϕ ◦ ϕ1 = ϕ ◦ ϕ2, we have ϕ1 = ϕ2.

Remark. To make a distinction in our reference to morphisms at different levels,
we reserve the term monic, mono, epi, etc for Chu spaces, and use one-to-one,
onto, injective, surjective for the functions on the underlying sets. When prop-
erties on the underlying functions carry over to Chu spaces, we occasionally mix
the terms.

Proposition 2. We have

1. A morphism ϕ : C → C′ in C is monic iff ϕ+ is injective and ϕ− is surjective.
2. A morphism ϕ : C → C′ in E is monic iff ϕ+ is injective.
3. A morphism ϕ : C → C′ in B is monic iff ϕ+ is injective.
4. Suppose ϕ : (A, r, X) → (B, s, Y) is a morphism in C and (B, s, Y) is ex-

tensional. If ϕ+ is surjective, then ϕ− is injective.

The second and third items above would not be so surprising if the injectivity
of ϕ+ implied the surjectivity of ϕ− in B and E. But this is not the case.

Example 1. Consider C := ({a}, r, {x1, x2}), with r(a, x1) = 0 and r(a, x2) =
1; C′ := ({b}, r′, {y}), with r′(b, y) = 0. Then the constraints f(a) = b and
g(y) = x1 satisfy the property that r′(f(a), y) = 0 = r(a, g(y)) and the pair
(f, g) gives rise to a morphism. Clearly C, C′ ∈ B and f is injective, but g is
not surjective. With respect to item (2) in the proposition, this means that the
backward component of a monic morphism in E and B need not be surjective.

Remark. Using a similar proof, we can show that a morphism ϕ : C → C′ is
monic if and only if ϕ− is surjective, in the category of separable Chu spaces.
We omitted this statement in Prop. 2 because we do not consider the category
of separable Chu spaces in the rest of the paper.

Bifinite Chu Spaces 183

3 Colimits

We are interested in the subcategories of C, E, and B with monic morphisms,
denoted as iC, iE, and iB, respectively. Let us begin with an unexpected obser-
vation that colimits do not exist in iC in general. For this purpose, we recall the
definition of colimits, here formulated in iC, but it can easily be seen as an in-
stantiation of a general notion [12] – we will only consider colimits of ω-sequences
here. We then show that colimits do exist in iE and iB.

Definition 2. An ω-sequence in iC is a family (Ci, ϕi)i≥1

C1
ϕ1 �� C2

ϕ2 �� C3
ϕ3 �� · · ·Ci−1

ϕi−1 �� Ci
ϕi �� Ci+1 · · ·

Definition 3. A cone from an ω-sequence (Ci, ϕi)i≥1 to a Chu space C :=

(A, r, X) is a family of mappings Ci
ψi �� C such that ψi+1 ◦ ϕi = ψi, for all

i ≥ 1, i.e., the diagram

C1
ϕ1 ��

ψ1

��
��

��
�

����
����

�

C2

ψ2

��
��

�

���
��

��

ϕ2 �� C3
ϕ3 ��

ψ3

��

· · · ϕi �� Ci+1 · · ·

ψi+1
��

�����

����������

C

commutes.

A cone (Ci
ψi �� C)i≥1 is universal if for any other cone (Ci

ψ′
i �� C′)i≥1

such that ψ
′

i+1 ◦ ϕi = ψ
′

i for all i ≥ 1, there exists a unique C
ψ �� C′ such that

ψ ◦ ψi = ψ
′

i for all i ≥ 1. Such a universal cone, if exists, is called the colimit of
the family (Ci, ϕi)i≥1, while ψ is called the mediating map. In this case we write
C = colim

i
(Ci, ϕi).

Theorem 1. Colimits do not always exist in iC.

Proof. Consider Chu spaces Ci := ({1, . . . , i}, ri, {1, . . . , i}), such that ri(a, x) =
1 if a ≤ x, and ri(a, x) = 0 otherwise. Define ϕi : Ci → Ci+1 such that ϕ+

i (a) = a
for a = 1, . . . , i, and ϕ−

i (i + 1) = i, but ϕ−
i (x) = x otherwise. Observe that Ci is

biextensional. It is straightforward to verify that ϕis are indeed morphisms: for
all 1 ≤ a ≤ i and 1 ≤ x ≤ i + 1, ri+1(ϕ+

i (a), x) = 1 iff ri+1(a, x) = 1 iff a ≤ x iff
ri(a, ϕ−

i (x)) = 1. Hence ϕi is monic.
Consider C := (N, r, N), with r(a, x) = 1 iff a ≤ x, and r(a, x) = 0 otherwise.

Define ψi : Ci → C by letting ψi
+ be inclusions and ψi

−(x) = x if x ≤ i and
ψi

−(x) = i for x > i. One readily checks that (ψi : Ci → C)i≥1 is a cone.
Consider another cone defined by C′ := (N, r′, N ∪ {t}), where r′ extends r with
r′(a, t) = 1 for all a ∈ N. Define ψ′

i : Ci → C′ by ψ′
i
+ = ψi

+ and letting ψ′
i
−

extend ψ−
i with ψ′

i
−(t) = i. Clearly, (ψ′

i : Ci → C′)i≥1 is also a cone.

184 M. Droste and G.-Q. Zhang

Now we can infer that the colimit does not exist. More specifically, suppose
(ψ∗

i : Ci → C∗)i≥1 with C∗ = (A∗, r∗, X∗) were a colimit. First consider a
mediating map ψ′ : C∗ → C′. We have ψ′−(t) = x∗ for some x∗ ∈ X∗. Then for
each a∗ ∈ A∗ we obtain r∗(a∗, x∗) = r∗(a∗, ψ′−(t)) = r′(ψ′+(a∗), t) = 1, thus
r∗(−, x∗) = 1. Next consider a mediating map ψ : C∗ → C. Since ψ− : N → X∗

must be onto, ψ−(n) = x∗ for some n ∈ N. We obtain 0 = r(n+1, n) = rn+1(n+
1, n) = rn+1(n + 1, ψ∗

n+1
−(x∗)) = r∗(ψ∗

n+1
+(n + 1), x∗) = 1, a contradiction.

Subsequently we will show that particular ω-sequences of Chu spaces do have
colimits. For this we provide a generic construction. It is the standard construc-
tion in the category of sets, assimilated into the context of Chu spaces. We phrase
it explicitely since we will often refer to it.

Construction 1. Let (Ci, ϕi)i≥1 be an ω-sequence of Chu spaces where Ci =
(Ai, ri, Xi) and ϕ+

i : Ai → Ai+1 is the inclusion mapping, for each i ≥ 1.
Consider C := (A, r, X) where

A :=
⋃

i≥1 Ai,

X := {(xj)j≥1 | ∀j ≥ 1, xj ∈ Xj & ϕ−
j (xj+1) = xj},

r(a, (xj)j≥1) := ri(a, xi) if a ∈ Ai (i ≥ 1).

Subsequently, we will denote a sequence (xj)j≥1 ∈ X often by x̃.

For each i ≥ 1, define Ci
ψi �� C by ψ+

i (a) := a and ψ−
i (x̃) := xi for all a ∈ Ai

and x̃ ∈ X .

In Construction 1, observe that possibly X = ∅. Note that the relation r is
well-defined since if i ≥ 1 and a ∈ Ai, then xi = ϕ−

i (xi+1) so ri+1(a, xi+1) =
ri(a, xi); inductively we obtain rj(a, xj) = ri(a, xi) for each j > i.

Clearly, ψi is a morphism. Then we have, for each x̃ ∈ X ,

(ϕ−
i ◦ ψ−

i+1)(x̃) = ϕ−
i (xi+1) = xi = ψ−

i (x̃)

and for any a ∈ A,
(ψ+

i+1 ◦ ϕ+
i)(a) = a = ψ+

i (a)

Therefore, ψi+1 ◦ ϕi = ψi, and (Ci
ψi �� C)i≥1 is indeed a cone. We note:

Proposition 3. If an ω-sequence (Ci, ϕi)i≥1 in iC has a colimit, then this colimit

is provided, up to isomorphism, by the cone (Ci
ψi �� C)i≥1 of Construction 1.

Proof. Let (Ci, ϕi)i≥1 have a colimit (Ci

ψ′
i �� C′)i≥1 in iC where C′=(A′, r′, X ′).

By Proposition 2(1), the mappings ϕ+
i are injective and the mappings ϕ−

i are sur-
jective, and we may assume the ϕ+

i s to be inclusions. Now construct C = (A, r, X)
and ψi : Ci → C (i ≥ 1). as in Construction 1. We claim that each ψi (i ≥ 1) is a
morphism in iC. By Proposition 2(1), it remains to show that ψ−

i is onto. Using
that the ϕ−

j s are onto, for any xi ∈ Xi we can easily find x̃ ∈ X with xi = ϕ−
i (x̃).

Bifinite Chu Spaces 185

Since C′ is the colimit, there is a unique ψ : C′ → C in iC such that ψ◦ψ′
i = ψi

for all i ≥ a. Then ψ+ : A′ → A is injective. If a ∈ Ai (i ≥ 1), then a = ψ+
i (a) =

ψ+ ◦ ψ+
i

′
(a) and ψ′

i(a) ∈ A′, so ψ+ is onto. Further, ψ− : X → X ′ is onto, and
we claim that ψ− is injective. Let x̃, ỹ ∈ X with ψ−(x̃) = ψ−(ỹ). For each i ≥ 1,
then xi = ψ−

i (x̃) = ψ′
i
− ◦ ψ−(x̃) = ψ′

i
− ◦ ψ−(ỹ) = ψ−

i (ỹ) = yi, showing x̃ = ỹ.
Hence ψ is an isomorphism.

In contrast to Theorem 1, we have the following.

Theorem 2. Colimits exist in iE, as given by Construction 1.

Proof. Let (Ci, ϕi)i≥1 be an ω-sequence in iE where Ci = (Ai, ri, Xi) for each
i ≥ 1. By Proposition 2(2), the mappings ϕ+

i are injective, and we may assume
the ϕ+

i s to be inclusions. Now construct C = (A, r, X) and ψi : Ci → C (i ≥ 1) as
in Construction 1. We claim that C is extensional. Let x̃, ỹ ∈ X and assume that
r(−, x̃) = r(−, (̃y). We need to show that x̃ = ỹ. Indeed, let i ≥ 1 and choose
any a ∈ Ai. Then ri(a, xi) = r(a, x̃) = r(a, ỹ) = ri(a, yi). So ri(−, xi) = ri(−, yi)
and thus xi = yi as Ci is extensional. Hence x̃ = ỹ, and C is extensional.

For universality, let (Ci

ψ′
i �� C′)i≥1 be a cone, where C′ = (A′, r′, X ′). De-

fine ψ : C → C′ by letting ψ+ : A → A′ be such that ψ+(a) := ψ′+
i (a) if

a ∈ Ai, and letting ψ− : X ′ → X be given as ψ−(x′) := (ψ′−
m(x′))m≥1. Then

ψ+ is well-defined because for any 1 ≤ i < j, ψ′+
j (a) = ψ′+

i (a); also ψ− is
well-defined because for any j ≥ 1, ϕ−

j (ψ′−
j+1(x

′)) = ψ′−
j (x′), and hence the se-

quence (ψ′−
m(x′))m≥1 belongs to X . Further, ψ is a morphism. We have ψ ◦ψi =

ψ′
i for all i ≥ 1 because ψ+(ψ+

i (a)) = ψ+(a) = ψ′
i(a), and ψ−

i (ψ−(x′)) =
ψ−

i ((ψ′−
j (x′))j≥1) = ψ′−

i (x′) for all a ∈ Ai and x′ ∈ X ′, by definitions.
The mediating morphism ψ is a morphism in iE because ψ+ is injective, and

by Prop. 2(2), it is monic. The mediating morphism is unique because its values
are fixed by the commutativity requirements of the colimit diagram.

We now consider the biextensional case. In order to avoid potential confusion of
terminology, we call a Chu space C := (A, r, X) with finite A and X a finite Chu
structure. Finite objects in categorical terms will be studied in the next section,
as we will learn that finite objects and finite Chu structures do not always agree.

Theorem 3. Colimits exist in iB for sequences of finite Chu structures. They
do not exist in general in iB. If for an ω-sequence in iB there is a cone to some
Chu space in iB, then the sequence has a colimit in iB.

The proof of this result, contained in the full paper, involves a typical König’s
lemma–argument for finite Chu structures which we will encounter again later.

It is informative to think about the example given in the proof of Theorem 1.
By the Construction 1, C′ = (N, r′, N ∪ {t}) is the colimit both in iE and in iB.
There is indeed a monic morphism ψ from C′ to C = (N, r, N), where ψ+ is the
identity (injection), and ψ− is the inclusion (but not onto).

Also note that even though Theorem 2 confirms that colimit always exists for
extensional Chu spaces, the counterexample for Theorem 3 shows that colimits

186 M. Droste and G.-Q. Zhang

for infinite structures may have weird behaviors with unintended effects. This
invites us to look more into objects constructed as colimits of finite structures,
in the next sections.

4 Finite Objects

In studying patterns of approximation in Chu spaces, finite objects play an
important role since they serve as the basis of approximation. In most cases,
one expects finite objects to correspond to finite structures, objects whose con-
stituents are finite sets. In categorical terms, finite objects are captured using
colimits in a standard way, and the notion of “approximation” is captured by
monic morphisms. Therefore, we work with categories iC, iE, and iB. However,
since Prop. 2 indicates that what counts as monic morphisms depends on ex-
tensionality, the existence of colimits and the characterization of finite objects
are not straightforward set-theoretic generalizations obtained by treating each
component of Chu spaces separately.

We give a characterization of the finite objects of iC. Surprisingly, not all finite
structures in iC are finite objects; finite objects are characterized as extensional
structures with finite object set instead. The following definition is phrased in
iC; but as a general categorical concept it can be made explicit in iE and iB as
well, and we do not repeat this here.

Definition 4. An object F of iC is finite if for every ω-sequence (Ci, ϕi)i≥1
of Chu spaces having a colimit, for every morphism ϕ : F → colim

i
(Ci, ϕi) in iC

there exist i ≥ 1 and a morphism ψ : F → Ci such that the diagram

C1
ϕ1 ��

ψ1
���������������

���������������

C2
ϕ2 ��

ψ2

�����������

����
��

��
���

�

· · · ϕi−1 �� Ci
ϕi ��

ψi

��

· · ·
ϕj �� Cj+1 · · ·

ψj+1
�����������

		����������

F
ϕ ��

ψ

�
�

�
�

�
�

�
�

�
colim

i
(Ci, ϕi)

commutes, i.e., ψ : F → Ci is such that ϕ = ψi ◦ ψ.

If Σ is finite and F = (A, r, X) is a finite object in iC, one can show that both A
and X are finite sets, i.e. F is a finite Chu space. However, somewhat surprisingly
(at least to us), the converse does not hold, as already simple examples show,
see Example 2 below. The following result characterizes the finite objects of iC.

Theorem 4. An object F = (B, s, Y) is finite in iC iff B is finite and F is
extensional. In this case, |Y | ≤ |Σ||B|; in particular, if Σ is finite, so is Y .

A proof will be given in the full paper.
Next we give two examples to illustrate Theorem 4.

Bifinite Chu Spaces 187

Example 2. Let Σ = {0, 1} and F := ({�}, r, {1, 2}), a finite Chu space. If
r(�, 1) = r(�, 2) = 0, then F is not extensional and thus, by Theorem 4, not
a finite object of iC. To see this more explicitly, one can construct a sequence
(Ci, ϕi)i≥1 as in the proof of Theorem 4, with Y ′ = ∅.

Example 3. Only in this example, let Σ be an arbitrary (possibly infinite) set,
and let F = ({�}, r, Σ) with r(�, σ) = σ for each σ ∈ Σ. Then F is extensional,
and by Theorem 4, F is a finite object of iC. Trivially, if Σ is infinite, F is not a
finite Chu space.

Theorem 5. In the category iE, if F = (B, s, Y) is finite then B is finite.

An independent proof is needed even though we follow a similar path as the
proof of Theorem 4. Not only should we make sure that the Chu spaces involved
are all extensional, but also the monic morphisms are characterized differently.
These entail non-trivial modifications from the proof of Theorem 4.

Proof. Suppose F = (B, s, Y) is a finite object in iE. Suppose B is infinite. Then
we can write B = A1 ∪ {ai | i ≥ 1}, where A1 ∩ {ai | i ≥ 1} = ∅. Fix c ∈ Y . Let
Ci := (A1 ∪ {a1, . . . , ai}, ri, {Xi}), where Xi = {c} and ri is r restricted to the
product (A1 ∪{a1, . . . , ai})×{c}. Clearly, all Cis are extensional. For morphisms
ϕi : Ci → Ci+1, define ϕ+

i as inclusions, and ϕ−
i : Xi+1 → Xi the identity.

By Theorem 2, the colimit (Ci
ψi �� C)i≥1 with C = (A, r, X) of the sequence

(Ci, ϕi)i≥1 exists, and can be taken as the one given in Construction 1. Since
each Xi is a singleton, X is a singleton as well. Thus we may assume A = B.
With ϕ+ identity and ϕ− inclusion, we obtain a monic morphism ϕ from F to C.
Hence there is a monic morphism ψ from F to some Ci which makes the required
diagram commute. But then ϕ+(ai+1) = ψ+

i (ψ+(ai+1)) �= ai+1, a contradiction.

The converse of Theorem 5 is not true. To show this, we adapt the counterexam-
ple for the second part of Theorem 3 as follows. Let Ci := (N, ri, N ∪ {c}), with
ri(a, x) = 1 iff (x+i−1) mod a = 0 for a, x ∈ N, and ri(−, c) = 1. Intuitively, ri

is obtained by starting from the countable identity matrix r1 from the i-th col-
umn. The morphism ϕi : Ci → Ci+1 is defined by ϕ+

i := idN, and ϕ−
i (x) = x+1,

but we keep c constant. Then, the colimit of this sequence is C := (N, r, {c}),
with r(−, c) = 1. Now let B := ({1, 2}, s, {c}), with inclusion and identity paired
to form a morphism ϕ from B to C. There cannot be a morphism ψ from B to
any Ci, because ψ− : (N ∪ {c}) → {c} cannot be defined, simply because B’s
column contains two 1s, and each ri(2, i) = 0. Hence B is a finite extensional
Chu space and thus a finite object of iC but not of iE.

Definition 5. A Chu space (A, r, X) over Σ is called complete, if for any map-
ping f : A → Σ there is x ∈ X with f = r(−, x).

Theorem 6. In the category iE, F = (B, s, Y) is finite iff B is finite and F is
complete.

188 M. Droste and G.-Q. Zhang

A proof will be presented in the full paper. The following easy remark shows that
the structure of complete extensional Chu spaces C = (A, r, X) is very restricted:
it is completely determined, up to isomorphism, by the cardinality of the object
set A.

Remark 1. Let C = (A, r, X) and C′ = (A′, r′, X ′) be two complete extensional
Chu spaces with |A| = |A′|. Then C and C′ are isomorphic in iC.

Proof. Choose a bijection ϕ+ : A → A′. By the assumption on C, for each
x′ ∈ X ′ there is a uniquely determined x ∈ X with r(−, x) = r′(−, x′) ◦ϕ+. The
mapping ϕ− : X ′ → X with ϕ−(x′) = x yields a Chu morphism ϕ = (ϕ+, ϕ−),
and ϕ− is bijective by the assumption on C′.

Similar to Theorem 6, we have the following. However, an independent proof is
needed because the structures used in the proof for Theorem 6 are not biexten-
sional.

Theorem 7. In the category iB, F = (B, s, Y) is finite iff B is finite and F is
complete.

Corollary 1. Let C, C′ ∈ C be such that C is extensional. Let ϕ : C → C′ be a
monic in C, and assume that C′ is a finite object in C. Then C is also finite in
C. The analogous statements hold true, if C is replaced by E or B, respectively.

5 Bifinite Chu Spaces

In this section, we will investigate Chu spaces which are, intuitively and in
a category-theoretic sense, countable objects and approximable by the finite
objects in the category. That is, we will define bifinite Chu spaces as colimits of a
sequence of (strongly) finite Chu spaces. We will then show that this subcategory
of iC contains a universal homogeneous object.

Recall that the finite objects of iC may have an infinite attribute set, if Σ is
infinite (cf. Example 3). For technical reasons (cf. the proofs of Theorem 8 and
Proposition 5), we will need that the objects employed here have a finite and
non-empty set of attributes. We will call a space F in iC strongly finite, if F is
a finite object in iC and a finite Chu space with non-empty set of attributes.
Clearly, if Σ is finite, the finite and the strongly finite objects of iC with non-
empty sets of attributes coincide.

Definition 6. A Chu space in iC is called bifinite if it is isomorphic to the
colimit (with respect to iE) of a chain of stronly finite objects in iC. The corre-
sponding full subcategory of bifinite Chu spaces of C and iC are denoted as Cbif
and iCbif, respectively.

As an example, consider the sequence of strongly finite biextensional spaces
(Ci, ϕi)i≥1 described in the proof of Theorem 1. As shown there, this sequence
has no colimit in the category iC. But by Theorem 2, the sequence has a colimit

Bifinite Chu Spaces 189

with respect to the category iE. This colimit thus belongs to iCbif . Moreover,
we will see below in Theorem 8, that this space is also a colimit of the given
sequence with respect to the category iCbif .

Recall that any finite object of iC is extensional, hence any bifinite Chu space
is also extensional. It would not be interesting to formulate the concept of bifinite
spaces in iE or iB, i.e. as colimits of chains of finite objects of iE resp. iB: By
Theorems 6 and 7, these finite objects are complete. One can show that colimits
of chains of complete extensional objects are again complete and extensional.
Hence any two such ‘bifinite’ objects (in iE or iB) with countably infinite object
set are isomorphic by Remark 1. In contrast, we show that if iCbif is very large:

Proposition 4. iCbif contains at least continuously many non-isomorphic ob-
jects.

Proof. Consider a strictly increasing sequence of finite subsets A1 ⊂ A2 ⊂ . . . ⊂
N of N. We define a sequence (Ci, ϕi)i≥1 as follows. For each i ≥ 1, let Ci =
(Ai, ri, Xi) with Xi = {1, . . . , i} and ri(a, j) = 1 if a ∈ Aj and ri(a, j) = 0
otherwise, for any a ∈ Ai, j ∈ Xi. We let ϕ+

i be the inclusion mapping, ϕ−
i (j) = j

if 1 ≤ j ≤ i, and ϕ−
i (i + 1) = i. As colimit of this sequence of strongly finite

objects we obtain, up to isomorphism, (Ci
ψi �� C)i≥1 with C = (N, r, N∪{∞}),

r(a, j) = 1 if a ∈ Aj and r(a, j) = 0 otherwise, for any a, j ∈ N, further
r(−, ∞) = 1, and ψ+

i inclusion, ψ−
i (j) = j if 1 ≤ j ≤ i and ψ+

i (j) = i if
i < j ∈ N ∪ {∞}. Note that in C the set {a ∈ N | r(a, i) = 1} equals Ai if i ∈ N,
and N if i = ∞. Hence the bifinite space C constructed in this way determines
the sequence of subsets (Ai)i≥1 uniquely, and two different sequences give rise to
non-isomorphic bifinite spaces. Since there are continously many such sequences,
the result follows.

Remark 2. By cardinality arguments, one can show that up to isomorphism iCbif
has size |Σ|ω; this equals the continuum if Σ has size at most continuum.

With the restriction of objects to bifinite Chu spaces, colimits now exist, in
contrast to Theorem 1.

Theorem 8. Colimits exist in iCbif .

The technical content of the result is that iCbif is closed in iC and in iE with
respect to taking colimits of sequences in iCbif , and these colimits taken in iE
constitute the colimits of the given sequences with respect to iCbif .

To make the paper self-contained, we recall briefly a result of Droste and
Göbel [6] concerning the existence of a universal, homogeneous object in an
algebroidal category. Let G be a category in which all the morphisms are monic,
and G∗ a full subcategory of G. Individually, an object U of G is called

– G∗-universal if for any object A in G∗, there is a morphism f : A → U ;
– G∗-homogeneous if for any A in G∗ and any pair f, g : A → U , there is an

isomorphism h : U → U such that f = h ◦ g;

190 M. Droste and G.-Q. Zhang

Intuitively, G∗-homogeneity means that each isomorphism between two G∗-
substructures of U extends to an automorphism of U ; this means that U has
maximal possible degree of symmetry.

Collectively, the category G∗ is said to have the amalgamation property if for
any f1 : A → B1, f2 : A → B2 in G∗, there exist g1 : B1 → B, g2 : B2 → B in
G∗ such that g1 ◦ f1 = g2 ◦ f2.

Definition 7. Let G be a category in which all morphisms are monic. Then G
is called algebroidal, if G has the following properties:

1. G has a weakly initial object,
2. Every object of G is a colimit of an ω-chain of finite objects,
3. Every ω-sequence of finite objects has a colimit, and
4. The number of (up to isomorphism) finite objects of G is countable and

between any pair of finite objects there exist only countably many morphisms.

Theorem 9. (Droste and Göbel) Let G be an algebroidal category with all mor-
phisms monic. Let Gf be the full subcategory of finite objects of G. Then there
exists a G-universal, Gf -homogeneous object iff Gf has the amalgamation prop-
erty. Moreover, in this case the G-universal, Gf -homogeneous object is unique
up to isomorphism.

Proposition 5. The category iCbif contains an initial object. The strongly finite
objects of iC are precisely the finite objects of iCbif . If Σ is countable, there are
only countably many non-isomorphic finite objects in iCbif . Between any pair of
finite objects there are only finitely many injections. Moreover, the finite objects
of iCbif have the amalgamation property.

Proof. The space (∅, ∅, {x}) is the initial object of iCbif , since all spaces in iCbif
have non-empty attribute sets. Next, we show only the amalgamation property;
the rest is easy to see. Suppose C := (A, r, X), C1 := (A1, r1, X1), and C2 :=
(A2, r2, X2) are strongly finite objects in iC such that A = A1 ∩ A2, and let
ϕ1 : C → C1 and ϕ2 : C → C2 be morphisms in iC.

C1

C

ϕ1

��											

ϕ2 ��

C2

Construct C′ := (A′, r′, X ′) as:

A′ = A1 ∪ A2

X ′ = {(x1, x2) ∈ Xi × X2 | ϕ−
1 (x1) = ϕ−

2 (x2)}
r′(a, (x1, x2)) = r1(a, x1) if a ∈ A1
r′(a, (x1, x2)) = r2(a, x2) if a ∈ A2.

Bifinite Chu Spaces 191

Note that in case a ∈ A1 ∩ A2, we have

r1(a, x1) = r(a, ϕ−
1 (x1))

= r(a, ϕ−
2 (x2))

= r2(ϕ+
2 (a), x2)

= r2(a, x2).

To see that C′ is extensional, suppose (x1, x2), (y1, y2) ∈ X ′ are such that
r′(a, (x1, x2)) = r′(a, (y1, y2)) for all a ∈ A1 ∪ A2. By the definition of C′, then,
for each a ∈ A1, we have r1(a, x1) = r1(a, y1). By the extensionality of C1, we
have x1 = y1. Similarly, by the extensionality of C2, we have x2 = y2 and so
(x1, x2) = (y1, y2), as required.

C1
(id,pr1)

��

C

ϕ1

��											

ϕ2 ��

 C′

C2

(id,pr2)

��											

It is easy to check further that (id, pr1) : C1 → C′ and (id, pr2) : C2 → C′ are
morphisms in iC.

By Proposition 5, the following result immediately follows from Theorem 9.

Theorem 10. Let Σ be countable. Then iCbif is an algebroidal category con-
taining a universal homogeneous object U . Moreover, U is unique up to isomor-
phism.

Since iCbif contains spaces with an attribute set of size continuum, it follows that
the attribute set of U also has size continuum. However, we just note that since
the proof of Theorem 9 is constructive, we can construct a sequence (Ci, ϕi)i≥1
whose colimit is the universal homogeneous object U .

We remark that iCbif does not contain all countable extensional Chu spaces
(just as not all countable cpos are SFP). Let C = (N, r, N) be the biextensional
Chu space described in the proof of Theorem 3.3. We claim that C is not bifinite.

Indeed, choose the sequence (Ci, ϕi)i≥1, the space C′ = (N, r′, N ∪ {t}) and
the monics ψ′

i : Ci → C′ as in the proof of Theorem 3.3. By Construction 1,
(ψ′

i : Ci → C′)i≥1 is the colimit of the chain (Ci, ϕi)i≥1 in iE. By Theorem 5.4,
this is also the colimit of the sequence of finite spaces Ci in the category iCbif .
Consider the morphisms (ψi : Ci → C)i≥1 described in the proof of Theorem 3.3.
Now if C was bifinite, there would be a unique morphism ψ : C′ → C in iCbif
making the diagram commute. But then ψ+ = idN, and ψ−(n) = t for some
n ∈ N, yielding 0 = r(n + 1, n) = r′(n + 1, t) = 1, a contradiction.

6 Conclusion

Chu spaces are a general framework for studying the dualities of objects and
properties; points and open sets; terms and types, under rich mathematical

192 M. Droste and G.-Q. Zhang

contexts, with important connections to several sub-disciplines in computer
science and mathematics. Traditionally, the study on Chu spaces had a “non-
constructive” flavor. There was no framework in which to study constructions
on Chu spaces with respect to their behavior in permitting a transition from
finite to infinite in a continuous way and to study which constructs are contin-
uous functors in a corresponding algebroidal category. The work presented here
provides a basis for a constructive analysis of Chu spaces and opens the door to
a more systematic investigation of such an analysis in a variety of settings.

References

1. Amadio, R., Curien, P.-L.: Domains and Lambda-Calculi. Cambridge University
Press, Cambridge (1998)

2. Barr, M.: *-Autonomous categories, with an appendix by Po Hsiang Chu. Lecture
Notes in Mathematics, vol. 752. Springer, Heidelberg (1979)

3. Barr, M.: *-Autonomous categories and linear logic. Mathematical Structures in
Computer Science 1, 159–178 (1991)

4. Devarajan, H., Hughes, D., Plotkin, G., Pratt, V.: Full completeness of the mul-
tiplicative linear logic of Chu spaces. In: 14th Symposium on Logic in Computer
Science (Trento, 1999), pp. 234–243. IEEE Computer Society Press, Los Alamitos
(1999)

5. Erné, M.: General Stone duality. Topology and Its Applications 137, 125–158 (2004)

6. Droste, M., Göbel, R.: Universal domains and the amalgamation property. Math-
ematical Structures in Computer Science 3, 137–159 (1993)

7. Droste, M.: Universal homogeneous causal sets. Journal of Mathematical
Physics 46, 122503 1–10 (2005)

8. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)

9. Hitzler, P., Zhang, G.-Q.: A cartesian closed category of approximable concept
structures. In: Pfeiffer, Wolff (eds.) Proceedings of the International Conference on
Conceptual Structures, Huntsville, Alabama, USA, July, Lecture Notes in Artificial
Intelligence (to appear)

10. Hitzler, P., Krötzsch, M., Zhang, G.-Q.: A categorical view on algebraic lattices in
Formal Concept Analysis. Fundamenta Informaticae 74(2-3), 301–328 (2006)

11. Lamarche, F.: From Chu spaces to cpos. In: Theory and Formal Methods of Com-
puting 94, pp. 283–305. Imperial College Press (1994)

12. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg
(1971)

13. Plotkin, G.: A powerdomain construction. SIAM J. Comput. 5, 452–487 (1976)

14. Plotkin, G.: T ω as a universal domain. J. Comp. Sys. Sci. 17, 209–236 (1978)

15. Plotkin, G.: Notes on the Chu construction and recursion.(accessed January 2007),
http://boole.stanford.edu/pub/gdp.pdf

16. Pratt, V.: Chu spaces. School on Category Theory and Applications, Textos Mat.
SCr. B, vol. 21, pp. 39–100, Univ. Coimbra, Coimbra (1999)

17. Pratt, V.: Higher dimensional automata revisited. Math. Structures Comput.
Sci. 10, 525–548 (2000)

18. Pratt, V.: Chu spaces from the representational viewpoint. Ann. Pure Appl.
Logic 96, 319–333 (1999)

http://boole.stanford.edu/pub/gdp.pdf

Bifinite Chu Spaces 193

19. Pratt, V.: Towards full completeness of the linear logic of Chu spaces. Mathematical
foundations of programming semantics (Pittsburgh, PA, 1997), Electronic Notes
in Theoretical Computer Science, vol. 7, p. 18 (1997)

20. Pratt, V.: The Stone gamut: a coordinatization of mathematics. In: Proceedings of
10th Annual Symposium on Logic in Computer Science, pp. 444–454 (1995)

21. Pratt, V.: Chu spaces and their interpretation as concurrent objects. In: van
Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 392–405. Springer,
Heidelberg (1995)

22. Pratt, V.: Chu spaces as a semantic bridge between linear logic and mathematics.
Theoretical Computer Science 294, 439–471 (2003)

23. Scott, D.: Data types as lattices. SIAM J. Comput. 5, 522–586 (1976)
24. Scott, D.: Domains for denotational semantics. In: Nielsen, M., Schmidt, E.M.

(eds.) Automata, Languages, and Programming. LNCS, vol. 140, pp. 577–613.
Springer, Heidelberg (1982)

25. Zhang, G.-Q.: Chu spaces, concept lattices, and domains. In: Proceedings of the
19th Conference on the Mathematical Foundations of Programming Semantics,
Montreal, Canada, March 2003. Electronic Notes in Theoretical Computer Science,
vol. 83, p. 17 (2004)

26. Zhang, G.-Q., Shen, G.: Approximable concepts, Chu spaces, and information sys-
tems. In: De Paiva, V., Pratt, V. (eds.) Theory and Applications of Categories,
Special Volume on Chu Spaces: Theory and Applications, vol. 17(5), pp. 80–102
(2006)

1 Introduction

Software is becoming an integral part of a range of products and services performing
vital functions in all sectors of economic and social activity. In such software-
intensive systems, software applications are required to interact, in a seamless way,
with other software components, devices, sensors, even humans. The complexity
involved in building the software components that will be deployed in such systems in
not so much on the “size” of their code but on the number and intricacy on the inter-
actions in which they will be involved, what in [6] we have called social complexity.
From an algebraic point of view, social complexity raises new challenges with respect
to the more established physiological complexity, i.e. the fact that a complex whole
can be understood as a composition of its parts. The basic difference is that it does
not make sense to see software-intensive systems as being compositions, in an alge-
braic sense, of simpler components. There is not a notion of whole to which the parts
contribute but, rather, a number of autonomous entities that interact with each other
through external connectors.

This is why it is so important to put the notion of interaction at the centre of re-
search in software-intensive system modelling, and to support methods and languages
that separate interaction concerns from computational ones. In the past, we developed

 This work was partially supported through the IST-2005-16004 Integrated Project SENSORIA: Software

Engineering for Service-Oriented Overlay Computers.

Structured Co-spans:
An Algebra of Interaction Protocols*

José Luiz Fiadeiro and Vincent Schmitt

Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK
{jose,vs27}@mcs.le.ac.uk

Abstract. We extend the theory of (co-)spans as a means of providing an
algebraic approach to complex interactions as they arise in software-intensive
systems. In order to make interconnections independent of the nature of
components involved, interaction protocols are formalised not in terms of
morphisms (i.e. part-of relationships) but a generalised notion of (co-)span in
which the arms are structured morphisms – the head (the glue of the protocol)
and the hands (the interfaces of the protocol) belong to different categories, the
category of glues being coordinated over that of the interfaces. The proposed
generalization sheds some additional light into adjunctions in bicategories,
namely on the factorisation of left adjoint 2-sided enrichments.

*

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 194–208, 2007.
© Springer-Verlag Berlin Heidelberg 2007

a categorical framework supporting the separation between “computation” and “coor-
dination” as architectural dimensions in software development [9]. This framework is
based on what we have called “coordinated categories” [5] – concrete categories
(faithful functors) that externalise the interfaces used by components to interact with
other components. From an algebraic point of view, we propose to work with “struc-
tured morphisms”[1], i.e. pairs <f,S> where f:A→GS is a C-morphism, A:C, S:D, and
G:D→C. The motivation is that G “forgets” the computational part of the objects of
D and returns their interfaces; structured morphisms capture interactions that do not
depend on the computational processes involved in components.

Ultimately, the (autonomic) entities that we wish to interconnect need not be or-
ganised in a category. Typically, in a category of systems, morphisms capture a
“component-of” or “sub-system” relationship. As already motivated, in software-
intensive systems it does not make sense to talk about “component-of” relationships
in an algebraic way. Therefore, we decided to look for algebraic mechanisms of
interconnection that can capture peer-to-peer interactions among autonomous compo-
nents. That is why, in this paper, we report on the use of co-spans – pairs <fA,fB>
where fA:A→S and fB:B→S are morphisms of a category D. Co-spans (and their dual
– spans) have been deserving increasing attention in computer science, namely when
D is a category of graphs (or variants of graphs) as models of concurrent processes or
reactive systems [14] – generalised automata or transition systems in one sense or
another. For instance, spans can be used for defining composition operations along
interfaces, which capture the behaviour of communicating parallel processes [11].

Because we want the application of interaction protocols to be “agnostic” to the na-
ture of the computations that are performed by the peers, we want that the protocol be
based on the interfaces that components have available for interacting with each other,
not on the computations that they perform locally. This suggests that the interactions
should be established between objects of a category of interfaces, not between behav-
iours. That is, we should work with co-spans based on structured morphisms – triples
<fA,S,fB> where S is an object of D and fA:A→GS, fB:B→GS are structured morphisms
of a coordinated category G:D→C.

Our approach is also different to the traditional uses of (co-)spans in that we are in-
terested in a more declarative setting in which the objects of D are not operational
models of behaviour (automata, transition systems, and so on), but specifications or
designs of protocols. This is why we are interested in other categories than that of
graphs. In fact, we will work over coordinated categories in general, which include
graphs and other models of concurrency, but also logical and algebraic specifications
[5,10,13].

Our purpose in this paper is to generalise the theory of co-spans to support an alge-
braic approach to interactions in software-intensive systems as discussed above. In
Section 2, for further motivation, we present a case study that we have been develop-
ing for service-oriented modelling in the context of the SENSORIA project. In Sec-
tion 3, we discuss in more detail the notion of interaction protocol that we have in
mind and the role played by structured co-spans. Finally, in Section 4, we investigate
the properties of bicategories of structured co-spans, which leads to some interesting
new results in adjuncions of 2-sided enrichments.

 Structured Co-spans: An Algebra of Interaction Protocols 195

2 Modules for Software-Intensive Systems

The work that we present in this paper has been inspired by research that we have
been developing within the IST-FET Integrated Project SENSORIA – Software Engi-
neering for Service-Oriented Overlay Computers – on the emerging service-oriented
computing paradigm, generalising methods and techniques already proposed for web-
service and grid technologies. From the point of view of software-intensive systems,
services can be understood as autonomous, platform-independent computational enti-
ties that can be described, published, discovered, and dynamically assembled for
developing massively distributed, interoperable, evolvable systems. In this paper, we
do not address the publication and run-time discovery process that characterises the
service-oriented paradigm. This is because we concentrate on the static structure of
systems, not on the process through which they can be dynamically configured.

The modelling language that we have been defining in SENSORIA – SRML – of-
fers a notion of module through which composite services can be specified as assem-
blies of internal components and externally procured services [7]. In order illustrate
and motivate the notion of module, we use a typical procurement business process
involving a supplier SP, a warehouse WR, a local stock LS, a price look-up facility
CT, and a customer CR.

This module declares SP and LS as components. Components are the computa-
tional units that constitute the core of the module and are typed by what we call busi-
ness roles; in the example, SP plays the business role of Supplier and LS of Stock. A
business role specifies the activity performed by a component in terms of a collection
of transitions. As an example (see [7] for an explanation of the syntax), the business
role Stock models a behaviour pattern that is typical of a database view:

BUSINESS ROLE Stock is

 INTERACTIONS
 rpl get(product):nat

 prf set(product,nat)
 ORCHESTRATION

 local qoh:product→nat
 transition
 triggeredBy get(p)

 sends qoh(p)

196 J.L. Fiadeiro and V. Schmitt

 transition
 triggeredBy set(p,n)

 effects qoh(p)’=n

The model provided through a business role is independent of the language in
which the component is programmed and the platform in which it is deployed. The
“orchestration”, i.e. the specification of the pattern of behaviour exhibited by the
component, is independent of the specific parties that are actually interconnected with
it in any given run-time configuration; a component is totally independent in the sense
that it does not invoke services of any specific co-party – it just offers an interface of
two-way interactions in which it can participate. Interconnections with other entities
are established through what we call wires, as discussed below.

Modules can identify external parties that play a role in the business process – WR,
CT and CS. Making certain parties external reflects looser coupling and late binding.
For instance, making the warehouse WR an external party reflects the fact that the
choice of warehouse should probably be made at run-time, e.g. taking into account
properties of the customer like its location. Every external party is typed by what we
call a business protocol, which specifies a stateful interaction between a component
and the corresponding party. In SRML, this specification is given in a temporal logic
of interactions. As an example (once again, please see [7] for an explanation of the
syntax used in business protocols), consider the behaviour required of a warehouse:

BUSINESS PROTOCOL Warehouse is

 INTERACTIONS
 r&s check&lock
 snd confirm
 BEHAVIOUR
 initially check&lock?
 check&lock ⊃ (check&lock? ensures confirm!)

 check&lock? ⊃ (check&lock? exceptif confirm!)

Basically, we are stating that (1) in the initial state the warehouse is ready to re-
ceive a request for engaging in the interaction check&lock (which the wire SW con-
nects to BA – the booking agent), (2) the warehouse promises to issue confirm if a
commitment to the deal proposed by check&lock is received within an agreed delay,
and (3) the commitment can be revoked until the confirm is actually issued. The
difference with respect to business roles is that, instead of an orchestration, a business
protocol declares the set of properties that the co-party is required to adhere to. Oth-
erwise, both business roles and protocols share the same kind of declaration of the
interactions in which they can be involved, what we call their signatures.

Modules can offer an external interface for other modules to use its services – CR
in the case at hand. The corresponding business role specifies constraints on the in-
teractions that the module supports as a service provider such as the order in which
they expect invocations to be made or deadlines for the user to commit.

Finally, wires connect the components and external interfaces of a module. In the
case of PROCUREMENT these are CS, SS, SW and SC. Wires are labelled by connectors
that coordinate the interactions in which the parties are jointly involved. In SRML,
we model the interaction protocols involved in these connectors as separate, reusable
entities. Just like business roles and protocols, an interaction protocol is specified in

 Structured Co-spans: An Algebra of Interaction Protocols 197

terms of a number of interactions. Because interaction protocols establish a relation-
ship between two parties, the interactions in which they are involved are divided in
two subsets called roles – A and B. The “semantics” of the protocol is provided
through a collection of sentences – what we call interaction glue – that establish how
the interactions are coordinated. This may include routing events and transforming
sent data to the format expected by the receiver. As an example, consider the follow-
ing protocol used in the wire SS that connects Supplier and Stock:

INTERACTION PROTOCOL Custom1 is

 ROLE A
 ask S1(product,nat):bool
 tll S2(product,nat)

 tll S3(product,nat)
 ROLE B
 rpl R1(product):nat

 prf R2(product,nat)
 COORDINATION

 S1(p,n) = R1(p)≥n
 S2(p,n) ⊃ R2(p,R1(p)+n)
 R1(p)≥n ∧ S3(p,n) ⊃ R2(p,R1(p)–n)
 R1(p)<n ⊃ ¬S3(p,n)

The wire itself is specified in SRML in a tabular form as follows:

SP
Supplier SS LS

Stock
ask checkStock
tll incStock
tll decStock

S1

S2
S3

Custom1
R1

R2

rpl get
prf set

The name bindings instantiate the two roles of the interaction protocol with Sup-
plier and Stock, respectively, thus establishing that the interactions between the two
parties satisfy the following properties:

 checkStock(p,n)=(get(p)≥n)
 incStock(p,n) ⊃ set(p,get(p)+n)
 get(p)≥n ∧ decStock(p,n) ⊃ set(p,get(p)–n)
 get(p)<n ⊃ ¬decStock(p,n)

That is, the boolean value returned by checkStock(p,n) as invoked by the supplier is
computed by the local stock by checking if the value returned by get(p) is greater or
equal to n. The protocol also stipulates that to a request from the supplier for inc-
Stock(p,n) the local stock executes set(p,get(p)+n). Likewise, to a request from the
supplier for decStock(p,n) the local stock executes set(p,get(p)–n) only if get(p) re-
turns a value greater than or equal to n; otherwise, the request is not accepted.

The fact that business protocols are specifications over a logic of interactions is
important because it will allow us to compose modules by matching the properties
required by an external interface of one module with those provided by another. The
matching involves what we call an external wire m: this is a mapping from the inter-
actions of the “requires” external interface to the interactions of the “provides” exter-
nal interface that preserves the properties, i.e. m defines an interpretation between the
theories of the business protocols involved.

198 J.L. Fiadeiro and V. Schmitt

An external wire is based on an “empty” interaction protocol, i.e. it does not super-
pose any additional coordination effects to the (internal) wires W1 and W2, it just binds
the interactions declared in the external interfaces.

The composition of the two modules results from the composition of the two wires
W1 and W2 via the mapping m to provide a wire between the two components.

Notice that there is no composition law on components, just on connectors (which
extends to wires). Components correspond to software applications, possibly imple-
mented in different languages and running in different platforms; therefore, it does not
make sense to compose in the same way that, for instance, a compiler links a number
of modules to produce an executable program. This is where we see the difference
between social and physiological complexity as already mentioned, which motivates
the need for a different algebraic approach.

3 The Algebraic Structure of Connectors

An algebraic formalisation of this notion of module and module composition has been
given in [8] from the point of view of a notion of correctness defined based on the
theory of institutions [10]. In this paper, we will explore the algebraic structure of
connectors in more detail and in a more general setting that does not require the level
of detail that we used in [8].

As motivated in Section 2, interactions constitute the core and the unifying element
of the proposed approach to systems modelling: all the models that we work with –
business roles, business protocols and interaction protocols – are based on structures
of interactions. We assume that these structures are organised in a category SIGN (of
signatures) whose morphisms capture “part-of” relationships, i.e. a morphism
σ:S1→S2 formalises the way a signature (structure of interactions) S1 is part of S2 up to

 Structured Co-spans: An Algebra of Interaction Protocols 199

a possible renaming of the interactions and corresponding parameters. In order to
support composition, we further assume that SIGN is finitely co-complete.

The other structure that is important for interaction protocols is that of the glues;
we assume that glues can themselves be organised in a category IGLU and that a
functor sign:IGLU→SIGN returns, for every glue, the structure of interactions (sig-
nature) that are being coordinated by the protocol. As a consequence, a morphism
σ:G1→G2 of glues captures the way G1 is a sub-protocol of G2, again up to a possible
renaming of the interactions and corresponding parameters. That is, σ identifies the
glue that, within G2, captures the way G1 coordinates the interactions sign(G1) as a
part of sign(G2). In fact, because we need to be able to compose interaction protocols,
we assume that IGLU is also a finitely co-complete category.

In this formal setting, every interaction protocol P consists of an interaction glue G
together with two signature morphisms πA:roleA→sign(G) and πB:roleB→sign(G).
The fact that the roles of the protocol are signatures, and not glues, is important be-
cause, as motivated in Section 2, wires establish interconnections between entities
(components or external interfaces) purely through relationships between the interac-
tions in which the entities can be involved. These relationships are “syntactic” and
are established through the roles of the interaction protocol. If we were to include
properties in the roles, we would be involving the computational properties of the
entities to which the role is connected. More precisely, we remain agnostic as to the
nature of the entities that we wish to interconnect. The only assumption that we make
is that each such entity n has a defined signature sign(n):SIGN.

The need for separating the mechanisms available for coordinating interactions
from the computations that entities execute internally suggests that we work with
coordinated categories [5]; asking sign:IGLU→SIGN to be coordinated means that:

• sign is faithful, i.e. IGLU is concrete over SIGN in the sense of [1].
• sign lifts colimits, i.e. given any diagram dia:I→IGLU and colimit

(sign(Gi)→A)i:I of (dia;sign) there exists a colimit (Gi→G)i:I of dia such that
sign(Gi→G)=(sign(Gi)→A).

• sign has discrete structures in the sense of [1], i.e. every signature A has a ‘dis-
crete lift’ meaning that there exists iglu(A):IGLU such that, for every
f:A→sign(G), there is f’:iglu(A)→G such that sign(f’)=f.

These properties capture the notion of separation of ‘coordination’ from ‘computa-
tion’ in the following sense:

• Making sign faithful means that the computational aspects do not give rise to
other interactions than those captured through signatures.

• Lifting colimits means that glues can be composed if their signatures can, and
that the signature of the composed glue does not depend on the computations
performed by the components.

• The existence of discrete structures means that every signature A has a “reali-
sation” (a discrete lift) as a glue iglu(A) in the sense that , using A to interconnect

 a glue G, which is achieved through a morphism f:A→sign(G), is tantamount
 to using iglu (A) through any f ’: iglu (A)→G such that sign (f ’) =f. Notice

that, because sign is faithful, there is only one such f’, which means that f and

200 J.L. Fiadeiro and V. Schmitt

f’ are, essentially, the same. That is, sources of morphisms in diagrams in
IGLU are, essentially, signatures, which is why we decided to work with
structured morphisms in interaction protocols.

Coordinated categories have strong algebraic properties, almost as strong as those
of topological categories [1]: a coordinated category is topological iff sign lifts colim-
its uniquely. Examples include specifications as theories (or theory presentations) in
institutions [10], as well as models of concurrency [13] where signatures consist of
process alphabets.

Some of the properties that we will find useful are [5]:
• The functor sign admits a left adjoint iglu:SIGN→IGLU.
• The units of the adjunction are identities and the co-units are epis.
• The functor sign preserves colimits.

In order to understand the role played by interaction protocols, consider once again
the wire SS discussed in Section 2:

SP
Supplier SS LS

Stock
ask checkStock
tll incStock
tll decStock

S1

S2
S3

Custom1
R1

R2

rpl get
prf set

The wire establishes two signature morphisms: one from the ROLE_A of Custom1
to the signature of Supplier, and the other from ROLE_B to Stock. For instance, the
latter is given by the following fragment of the table:

ROLE_B µ Stock

R1

R2

→
→

get
set

We call a connector for a wire n↔m between entities n and m in a module, a struc-
ture <µn,πA,G,πB,µm> where <πA,G,πB> is an interaction protocol P and <µn,µm> are
the morphisms that connect the roles of P to the entities n and m. Such a connector
defines the following diagram in SIGN:

 The interaction protocol <πA,G,πB> corresponds to the shadowed part of the dia-
gram. Although this fragment is a co-span in SIGN, the protocol itself is not because
it involves the glue G. Indeed, without the computational aspects of the glue it would
not be possible to coordinate the interactions between n and m. That is, co-spans in
SIGN are not expressive enough to formalise interaction protocols.

The significance of the difference becomes apparent when we consider the compo-
sition of two interaction protocols <πA,G,πB> and <µB,H,µC>. We know how to
compose the corresponding co-spans in SIGN through a pushout of the shadowed
triangle, but the pushout does not deliver us a glue:

 Structured Co-spans: An Algebra of Interaction Protocols 201

On the other hand, we have already seen that working with co-spans in IGLU does
not make sense because, by allowing the roles to involve computational aspects, the
morphisms that connect the roles of the protocol to the entities would bring in compu-
tational aspects of the entities into their interconnection.

 This is the motivation for studying the properties of structures of the form
<πA,G,πB>, which we call structured co-spans. More precisely, our aim is to define
and study the properties of a bicategory whose objects are signatures and whose 1-
cells consist of interaction protocols.

4 Structured Co-spans

In this section we define and study the algebraic properties of structured co-spans.
We start by recalling some basic definitions and properties of bicategories but only as
a reminder – we refer the reader to either the original paper by Bénabou [2] or the
more accessible textbook [3]; notice that many other papers are available on this topic
but the terminology may change slightly from the one that we use ([3]).

We start by recalling that bicategories were introduced to consider generalisations
of categorical constructions to the case in which the identity and composition laws are
satisfied only “up to isomorphism”. A bicategory V consists of:

• A class |V| of objects (also called 0-cells)
• For each pair <A,B> of objects, a category V(A,B) whose objects are called ar-

rows (or 1-cells) and whose morphisms are called 2-cells
• For every triple <A,B,C> of objects, a composition law given by a (bi)functor

;A,B,C: V(A,B)×V(B,C)→V(A,C)
• For every object A an identity arrow 1A:A→A

The typical axioms of categories are replaced by the existence of a number of natu-
ral isomorphisms and coherence conditions. For simplicity, we omit these properties
and refer the reader to [3]. We have already mentioned that typical examples of bi-
categories in computer science are (co-)spans of graphs [11,14].

A similar generalisation applies to functors. Given bicategories V and W, a lax
functor F:V→W consists of:

• A map sending objects A of V to objects FA of W
• Functors FA,B:V(A,B)→W(FA,FB) for every pair <A,B> of objects of V, a
• 2-cells

!

Ff ,g
2 :Ff;Fg→F(f;g) for every composable <f,g> in V, natural in f and g

• 1-cells F
A

0:1FA →F1A for every object A of V
subject to coherence conditions [3]. A lax functor F is a pseudo-functor when all
the Ff ,g

2 and F
A

0 are invertible.

202 J.L. Fiadeiro and V. Schmitt

Definition 4.1 Given an adjunction F⊣ G:D→C, where D has pushouts, we define
 the bicategory co-span(G) of G-structured co-spans as follows:

• The objects are those of C
• The arrows (1-cells) are triples <fA:A→GS,S,fB:B→GS> where S is an object

of D and fA,fB are morphisms of C
• A 2-cell α:<fA,S,fB>→<gA,T,gB> is a D-morphism α:S→T that makes the fol-

lowing diagram commute

• Composition of < S > and < T >

is <fA;Gf’B,S+BT,gC;Gg’B> obtained through the following pushout in D where
f*B=FfB;εS and g*B=FgB;εT

• The identities are <idA;ηA,FA,idA;ηA>.

As could be expected:
Remark 4.2 For every category C with pushouts, co-span(1C) is the well-know
category of co-spans over C, which we denote by co-span(C).

The following property is easily proved:
Proposition 4.3 Let F:C→D be a functor between two categories with pushouts.

• F extends to a lax Ḟ:co-span(C)→co-span(D) by pointwise translation.
• Ḟ is normal, i.e. it sends identity 1-cells to identities.
• If F preserves pushouts, F is a pseudo-functor.

.

.

.

 Structured Co-spans: An Algebra of Interaction Protocols 203

We are now going to analyse the lifting of adjunctions. As established in [12], bi-
categories admit more general morphisms than lax functors – the so-called “2-sided
enrichments”, which together with the appropriate 2-cells and 3-cells form the so-
called tricategory Caten. The definition of adjoint one-cells makes sense in any bi-
category and, in particular, in Caten where they are characterised as follows:

Theorem 4.4 ([12] Proposition 2.7) A left adjoint 2-sided enrichment F:V→W is a
 pseudo-functor such that each functor FA,B: V(A,B)→W(FA,FB) has a right adjoint.

Consider now the case in which we are given an adjunction F⊣ G:D→C, where D
and C have pushouts:

• Because F preserves pushouts, Ḟ is a pseudo-functor
• Each functor ḞA,B: co-span(C)(A,B)→co-span(D)(ḞA,ḞB) has a right-adjoint

based on the isomorphisms between the two hom-sets:

Corollary 4.5 Given an adjunction F⊣ G :D→C where D and C have pushouts,
Ḟ:co-span(C)→co-span(D) is a left adjoint 2-sided enrichment.

Notice that nothing can be inferred from this result about the lax functor Ġ:co-
span(D)→co-span(C). We are now going to see that co-span(G) allows us to
strengthen the case.

Proposition 4.6 Given an adjunction F⊣ G:D→C where D and C have pushouts, we
 define a pseudo functor F*:co-span(C)→co-span(G) as follows:
• F* is the identity on objects
• Every 1-cell <fA,S,fB> is mapped to <fA;ηS,FS,fB;ηs>, and the 2-cells

α:<fA,S,fB>→<gA,T,gB> to Fα:<fA;ηS,FS,fB;ηS>→<gA;ηT,FT,gB;ηST>. No-
tice that, being a left adjoint, F preserves colimits, which justifies that we do
obtain

a

pseudo

functor

.

.

.

.

204 J.L. Fiadeiro and V. Schmitt

If we consider the hom-categories, it is easy to see that we have lifted the adjunc-
tion F⊣ G:D→C to an adjunction co-span(G)(A,B)→co-span(C)(A,B).

Proposition 4.7 F*:co-span(C)→co-span (G) is a left adjoint 2-sided enrichment.
Moreover, because F* is the identity on objects, we obtain a right adjoint that is a lax
functor *G:co-span(G)→co-span(C).

It is interesting to analyse the construction of the right-adjoint:
• *G is again the identity on objects
• Every 1-cell <fA,S,fB> is mapped to <fA,GS,fB>, and the 2-cells

α:<fA,S,fB>→<gA,T,gB> to Gα:<fA,GS,fB>→<gA,GT,gB>.
Recall that the identities for structured co-spans are of the form

<idA;ηA,FA,idA;ηA>. Hence, *GA=ηA. Moreover, G does not necessarily preserve
pushouts. This is why we cannot guarantee that *G is a pseudo-functor. However if
G defines a coordinated category, we know that it preserves colimits and the units of
the adjunction are identities.

Proposition 4.8 If F⊣ G:D→C is a coordinated category, we have an adjunction
F*⊣ *G:co-span(G)→co-span(C) of pseudo functors.

Consider now what happens on the side of co - span (D). We have an obvious
pseudo functor based on F and the functors co-span(G)(A,B)→co-span(D)(FA,FB)
that map structured co-spans <fA,S,fB> to the co-spans <f*A,S,f*B>:

These functors are isomorphisms, leading to a left adjoint 2-sided enrichment *F.
Mapping co-spans <fA,S,fB> over D to structured co-spans <GfA,S,GfB> seems

equally obvious, but the mapping of the composition deserves some attention. If we
consider <fA,S,fB>;<gB,T,gC>, the composition of the images is given by a pushout of:

Because FGfB;εS=εB;fB and FGgB;εT=εB;gB, we have in fact:

.

.

 Structured Co-spans: An Algebra of Interaction Protocols 205

The universal properties of the colimit return a morphism S+FGBT→S+BT. If we

work with a coordinated category, G is faithful, which implies that the co-units are
epis. In this case, it is easy to see that the morphisms S+FGBT→S+BT are in fact iso-
morphisms, which makes G* a pseudo functor.

We can now summarise our results.

Theorem 4.9 Let F:C→D be a functor between two categories with pushouts.
• F extends to a normal lax functor Ḟ:co-span(C)→co-span(D); if F preserves

pushouts, Ḟ is a pseudo-functor.
• If F has a right adjoint G:D→C:
• Ḟ is a left adjoint 2-sided enrichment.
• Ḟ factorises as co-span(C)

!

F*
" # " co-span(G)

!

*F
" # " co-span(D) where F*

has a lax right adjoint *G

Theorem 4.10 Let G:D→C be a coordinated category.
• The right adjoint *G is a pseudo functor
• *F has a pseudo right adjoint G*
• Ḟ⊣ Ġ:co-span(D)→co-span(C) is an adjunction of pseudo-functors

Our final result is a generalisation of the factorisation that we defined for Ḟ:co-
span(C)→co-span(D) to a general lax functor.

Definition 4.11 Given a lax functor F:V→W, we define the bicategory VF as follows:
• |VF|=|V|
• VF(A,B) = W(FA,FB)

Notice that, in the case of Ḟ:co-span(C)→co-span(D) what we obtain is a bicate-
gory whose hom-cats are of the form:

.

.

.

206 J.L. Fiadeiro and V. Schmitt

Theorem 4.12 Every lax functor F: V→W factorises as V

!

F*
" # " VF

!

*F
" # " W

where F* is an identity on objects and *F an identity on hom-cats. If F is a left ad-
joint 2-sided enrichment so is F* and its right adjoint is lax.

5 Concluding Remarks

In this paper, we have shown how the notion of interaction protocol that we are de-
veloping within the SENSORIA project used for modelling interconnections in serv-
ice-oriented systems can be given an algebraic semantics over an extension of the
theory of co-spans. The extension is motivated by the fact that, whereas we want the
interaction protocol to use a rich formalism to specify the coordination mechanisms
superposed by the glue, its interfaces should be purely “syntactic” so as to avoid any
assumption on the computations performed by the entities being interconnected.

More precisely, given a coordinated category sign:IGLU→SIGN, using co-
span(SIGN) for interconnections is too poor because it does not support the definition
of coordination mechanisms, and using co-span(IGLU) is too strong because the
interfaces involve computational aspects. This is why we proposed to work over an
algebraic structure co-span(sign) that is based instead on sign-structured morphisms.

We showed how co-span(sign) constitutes a bicategory. In fact, we investigated
the more general issue of how the co-span construction relates to functors. We
showed how a functor between the base categories induces a lax-functor between the
corresponding bicategories of co-spans, and how adjunctions give rise to adjoint 2-
sided enrichments. This allowed us to strengthen some results on adjunctions in the
tricategory Caten, namely by generalising the construction of co-span(sign) to a
canonical factorisation of lax functors. This is a line that we would like to pursue on
its own, although the “computational” inspiration that comes from (structured) co-
spans and coordinated categories is very welcome.

From the point of view of software-intensive system modelling, it is clear that
structured morphisms over coordinated categories have been proving to provide a
richer algebraic framework when it comes to formalising interconnection mecha-
nisms. This is another avenue that we want to keep exploring in SENSORIA.

.

which are isomorphic to co-span(G)(A,B) if F has a right adjoint G:D→C.

Our last result is a canonical factorisation of left adjoint 2-sided enrichments:

 Structured Co-spans: An Algebra of Interaction Protocols 207

particular, has been developed, and to thank our colleagues in SENSORIA, the IFIP
WG1.3 group members and observers, and the participants of the Workshop on Ap-
plied and Computational Category Theory (ACCAT) 2007 for valuable feedback.

References

1. Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. John Wiley &
Sons, New York Chichester Brisbane Toronto Singapore (1990)

2. Bénabou, J.: Introduction to bicategories. In: Complementary Definitions of Programming
Language Semantics. LNCS, vol. 42, pp. 1–77. Springer, Heidelberg (1967)

3. Borceux, F.: Handbook of Categorical Algebra 1. Cambridge University Press, Cambridge
(1994)

4. Ehrig, H., Orejas, F., Braatz, B., Klein, M., Piirainen, M.: A component framework for
system modeling based on high-level replacement systems. Software Systems Modeling 3,
114–135 (2004)

5. Fiadeiro, J.L.: Categories for Software Engineering. Springer, Heidelberg (2004)
6. Fiadeiro, J.L.: Designing for software’s social complexity. IEEE Computer 40(1), 34–39

(2007)
7. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A formal approach to service-oriented architecture.

In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 193–
213. Springer, Heidelberg (2006)

8. Fiadeiro, J.L., Lopes, A., Bocchi, L.: Algebraic semantics of service component modules.
In: Fiadeiro, J.L., Schobbens, P.Y. (eds.) Algebraic Development Techniques. LNCS,
vol. 4409, pp. 37–55. Springer, Heidelberg (2007)

9. Fiadeiro, J.L., Lopes, A., Wermelinger, M.: A mathematical semantics for architectural
connectors. In: Backhouse, R., Gibbons, J. (eds.) Generic Programming. LNCS, vol. 2793,
pp. 190–234. Springer, Heidelberg (2003)

10. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and
programming. Journal ACM 39(1), 95–146 (1992)

11. Katis, P., Sabadini, N., Walters, R.F.C.: Bicategories of processes. Journal of Pure and
Applied Algebra 115, 141–178 (1997)

12. Kelly, G.M., Labella, A., Schmitt, V., Street, R.: Categories enriched on two sides. Journal
of Pure and Applied Algebra 168, 53–98 (2002)

13. Sassone, V., Nielsen, M., Winskel, G.: A classification of models for concurrency. In:
Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 82–96. Springer, Heidelberg (1993)

14. Sassone, V., Sobocinski, P.: Reactive systems over cospans. In: LICS’05, pp. 311–320.
IEEE Computer Society, Los Alamitos (2005)

Acknowledgments

We would like to acknowledge the contribution of Antónia Lopes with whom much
of the work around coordinated categories in general and interaction protocols in

208 J.L. Fiadeiro and V. Schmitt

Graphical Encoding of a Spatial Logic

for the π-Calculus�

Fabio Gadducci and Alberto Lluch Lafuente

Dipartimento di Informatica, Università di Pisa
largo Bruno Pontecorvo 3c, I-56127 Pisa, Italia
gadducci@di.unipi.it, lafuente@di.unipi.it

Abstract. This paper extends our graph-based approach to the verifi-
cation of spatial properties of π-calculus specifications. The mechanism
is based on an encoding for mobile calculi where each process is mapped
into a graph (with interfaces) such that the denotation is fully abstract
with respect to the usual structural congruence, i.e., two processes are
equivalent exactly when the corresponding encodings yield isomorphic
graphs. Behavioral and structural properties of π-calculus processes ex-
pressed in a spatial logic can then be verified on the graphical encoding
of a process rather than on its textual representation. In this paper we
introduce a modal logic for graphs and define a translation of spatial
formulae such that a process verifies a spatial formula exactly when its
graphical representation verifies the translated modal graph formula.

1 Introduction

Spatial logics are formalisms for expressing behavioral and topological properties
of system specifications, given as processes of a calculus. Besides the temporal
modalities of the Hennessy-Milner tradition, these logics include ingredients for
reasoning about the structural properties of a system. The connective 0 repre-
sents e.g. the (processes structurally congruent to the) empty system, and the
formula φ1|φ2 is satisfied by processes that can be decomposed into two parallel
components, satisfying φ1 and φ2, respectively.

The origins of such logics can be tracked back to early work on logics for rea-
soning about networks of processes (e.g. the multiprocess network logic of [22]).
Recent approaches include logics for concurrent software system specifications
given in process calculi like the π-calculus [3,4] and the ambient calculus [7], or
for data structures such as graphs [5], heaps [23], and trees [6]. The approach
we proposed in [16] to the verification of (recursion-free) spatial formulae [3]
for π-calculus specifications is based on a graphical encoding for nominal cal-
culi [15]. Even if a few articles had been already proposed on the verification of
graphically described systems (see e.g [1,21,25]), to the best of our knowledge
our approach was the only one that exploited a graphical presentation for the
� Research partially supported by the EU FP6-IST IP 16004 SEnSOria (Software

Engineering for Service-Oriented Overlay Computers).

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 209–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

gadducci@di.unipi.it
lafuente@di.unipi.it

210 F. Gadducci and A. Lluch Lafuente

verification of behavioral and spatial properties of (finite) processes of a nominal
calculus. A closely related work is the spatial logic for bigraphs [19] introduced
in [8]. Since bigraphs are one of the foremost graphical languages for nominal cal-
culi, the resulting logic can express some structural properties of e.g. π-calculus
specifications. The resulting bigraphs logic is however quite different from our
proposal, which is instead of the tradition of Courcelle’s monadic second order
logic [12]. In particular, the approach presented in [19] is a static spatial logic
that does not consider temporal connectives. An extension to a dynamic bigraph
logic by the same authors is under development.

Our graph-based approach was introduced by describing first the encoding of
(possibly recursive) processes of the π-calculus [15] and then an algorithm for the
verification on such representations of spatial properties expressed by recursion-
free formulae [16]. The present paper proposes an encoding of (possibly recursive)
formulae in a spatial logic for processes into formulae in a modal graph logic.
Our encoding is sound and complete: a process verifies a spatial formula exactly
when its graphical representation verifies the translated formula.

The main novelty of this work is the modal graph logic we introduce. Indeed,
at first we tried to obtain an encoding of spatial formulae using an existing
graph logic. However, the approaches we are aware of turned out not to be
expressive enough. For instance, the logics reported in [1,12,21] do not properly
model notions like freshness, while the spatial logic for graphs in [5] is static and
does not consider the temporal dimension. We have thus devised a graph logic
equipped with a modal operator that captures the names of those items involved
in a graph transformation and that ensures that the new items are fresh, i.e.,
different from any item in the formula and in the transformed graph.

Our paper provides a mechanism for specifying spatial formulae on the graphi-
cal representation of processes. We believe that our approach offers novel insights
into the specification of graph formulae, thanks especially to the link with spa-
tial logics; moreover, it offers further evidence of the adequacy of graph-based
formalisms for system design and specification; finally, it suggests a rich and
flexible formalism for expressing properties of graph transformations.

The structure of the paper is as follows. Section 2 summarizes the π-calculus
and the spatial logic proposed in [3]. Sections 3 and 4 recall a few definitions
on graphs with interfaces [9] and their rewriting. Section 5 presents an encoding
of π-calculus processes into graphs with interfaces, streamlining the proposal
in [15]. Section 6 illustrates a set of graph rewriting rules for simulating process
reductions as well as for assisting the encoding. Section 7 defines our modal
graph logic, and Section 8 proposes our encoding for spatial formulae.

2 The π-Calculus and a Spatial Logic

This section recalls the basics of one of the foremost calculi for specifying dis-
tributed systems, namely the π-calculus [18], and of a logic [3] for expressing
spatial properties of a system specified as a process of that calculus.

Graphical Encoding of a Spatial Logic for the π-Calculus 211

Definition 1 (processes). Let N be a set of names; let X be a set of process
variables; and let Δ = {a(b), ab | a, b ∈ N} be the set of prefix operators. A
process P is a term generated by the syntax

P ::= 0 | (νa)P | P | P | δ.P | δ.x | recx.P

where a ∈ N , x ∈ X and δ ∈ Δ. We denote by P the set of closed processes, i.e.,
such that each process variable x occurs inside the scope of a recx.− operator.

The standard definition for the set of free names of a process P , denoted by
fn(P), is assumed. Similarly for α-convertibility, with respect to the restriction
operators (νa)P and the input operators b(a).P : in both cases, the name a is
bound in P , and it can be freely α-converted.

Using the definition above, the behavior of a process P is described as a rela-
tion over abstract processes, i.e., a relation closed under structural congruence.

Definition 2 (structural congruence). The structural congruence for
processes is the relation ≡⊆ P × P, closed under process construction and α-
conversion, inductively generated by the following set of axioms

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R P | 0 ≡ P recx.P ≡ P{recx.P /x}
(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P (νa)(P | Q) ≡ P | (νa)Q for a �∈ fn(P)

As usual, P{Q/x} denotes process P after the substitution of each free occurrence
of process variable x with process Q.

Definition 3 (reductions). The reduction relation for processes is the equiv-
alence relation →⊆ P ×P, closed under the structural congruence ≡, inductively
generated by the following set of axioms and inference rules

a(b).P | ac.Q → P{c/b} | Q

P → Q

(νa)P → (νa)Q
P → Q

P | R → Q | R

The first rule denotes process communication: process ac.Q is ready to commu-
nicate the (possibly global) name c along channel a; it then synchronizes with
process a(b).P , and the local name b is substituted by c on the residual process
P (avoiding the capture of name c). The latter rules state the closure of the
reduction relation with respect to restriction and parallel composition.

We now recall the spatial logic for the π-calculus presented in [3].

Definition 4 (spatial logic). Let VN be a set of name variables, and VSF a
set of propositional variables. A spatial formula is a term generated by the syntax

φ ::= tt | ¬φ | φ∨φ | 0 | φ|φ | η�φ | ∃x.φ | Ix.φ | η = η′ | �φ | Z | μZ.φ

where η, η′ ∈ VN 	 N , x ∈ VN and Z ∈ VSF . We denote by SF the set of well-
formed formulae, i.e., such that each propositional variable Z occurs inside the
scope of a μZ.− operator and an even number of negation operators and each
name variable x occurs inside the scope of a name quantifier ∃x.− or Ix.−.

212 F. Gadducci and A. Lluch Lafuente

Boolean connectives and fixpoints have the usual meaning; 0 characterizes
processes that are structurally congruent to the empty process; φ1|φ2 holds
for processes that are structurally congruent to the composition of two sub-
processes, satisfying φ1 and φ2; η�φ is true for those processes such that φ
holds after the revelation of name η; ∃x.φ characterizes processes such that φ
holds for some name in N ; Ix.φ holds for a process P if φ holds for some name
of N that is fresh with respect to P and φ; η = η′ requires η and η′ to be equal;
and �φ is satisfied by a process P if P can be reduced into Q and Q satisfies φ.

The semantics of a (well-formed) formula is given in terms of the domain PS of
Psets. A Pset is a family of processes that is closed under structural congruence
and name permutations, for all the names outside its support. Intuitively, the
support for a Pset is a set of names that are relevant for the property satisfied by
the family of processes, i.e., such that any permutation of those names outside
the support does not affect the property.

Definition 5 (Pset [4]). Let Y be a set of processes. Then Y forms a Pset if
it is closed under structural congruence and there exists a finite set of names
N ⊂ N such that P{a/b,

b /a} ∈ Y for all a, b �∈ N and P ∈ Y.

Every Pset Y has a least support [4, Prop. 4.13], denoted supp(Y). For instance,
the set P of all processes is a Pset with empty support.

Formulae with open propositional variables are interpreted under an envi-
ronment σ : VSF → PS . The semantics of Ix.φ requires x to be instanti-
ated with a name that is fresh with respect to φ and to any process in the
Psets to which the open propositional variables of φ are mapped, i.e., the name
must be different from any name in φ or in the least support of σ(Z) for
any open propositional variable Z in φ. Such a set of names is defined as
nσ(φ) = n(φ) ∪

⋃
Z∈fpv(φ) supp(σ(Z)), where fpv(φ) and n(φ) denote the set

of the free propositional variables of φ and the set of names of φ, respectively.

Definition 6 (spatial logic semantics). Let φ be a (well-formed) spatial for-
mula and let σ be a mapping for the free propositional variables of φ into Psets.
The denotation �φ�σ, mapping a formula φ into a Pset, is defined by structural
induction according to the following rules

�tt�σ = P �a�φ�σ = {P | ∃P ′.P ≡ (νa)P ′ and P ′ ∈ �φ�σ}
�¬φ�σ = P \ �φ�σ �∃x.φ�σ =

⋃
a∈N �φ{a/x}�σ

�φ1 ∨ φ2�σ = �φ1�σ ∪ �φ2�σ �Ix.φ�σ =
⋃

a�∈nσ(φ)(�φ{a/x}�σ \{P | a ∈fn(P)})
�0�σ = {P | P ≡ 0} �a = b�σ = P if a = b and ∅ otherwise
�Z�σ = σ(Z) �μZ.φ�σ =

⋂
{Y | Y ⊆ �φ�σ[Y /Z]}

�φ1|φ2�σ = {P | ∃P1, P2.P ≡ P1|P2 and P1 ∈ �φ1�σ and P2 ∈ �φ2�σ}
��φ�σ = {P | ∃Q.P → Q and Q ∈ �φ�σ}

The restriction on the use of negation actually guarantees each possible function
λY.�φ�σ[Y/Z] to be monotonic, so that fixed points are well defined.

Graphical Encoding of a Spatial Logic for the π-Calculus 213

3 Graphs and Their Extension with Interfaces

We recall a few definitions concerning (typed hyper-)graphs, and their extension
with interfaces, referring to [2,9] for a more detailed introduction.

Definition 7 (graphs). A (hyper-)graph is a four-tuple 〈V, E, s, t〉 where V is
the set of nodes, E is the set of edges and s, t : E → V ∗ are the source and target
functions. A (hyper-)graph morphism is a pair of functions 〈fV , fE〉 preserving
the source and target functions, i.e., fV ◦ s = s ◦ fE and fV ◦ t = t ◦ fE.

Henceforth, when not explicitly stated the components of a graph G are assumed
to be VG, EG, sG and tG. We shall consider typed graphs [10], i.e., graphs labeled
over a structure that is itself a graph.

Definition 8 (typed graphs). Let T be a graph. A typed graph G over T is
a graph |G|, together with a graph morphism τG : |G| → T . A morphism between
T -typed graphs f : G1 → G2 is a graph morphism f : |G1| → |G2| consistent
with the typing, i.e., such that τG1 = τG2 ◦ f .

In the following, a type graph T is chosen. Then, in order to inductively define
the encoding for processes, we need to provide operations over typed graphs. The
first step is to equip them with “handles” for interacting with an environment.

Definition 9 (graphs with interfaces). A T -typed graph with interfaces
(shortly, gwi) is a triple G = 〈iG, G, oG〉, for G a T -typed graph and iG : IG →
G, oG : OG → G the input and output T -typed graph morphisms.

An interface graph morphism f : G ⇒ H is a triple of graph morphisms
〈fI , f, fO〉, preserving the input and output morphisms.

The category of T -typed graphs with interfaces is denoted by I-T -Graph. We
let I

i−→ G
o← O denote a graph (of body G) with input interface I and output

interface O. With an abuse of notation, we sometimes refer to the image of the
input and output morphisms as inputs and outputs, respectively. An interface
graph morphism is interface preserving if it preserves node identity on interfaces.

In order to define our process encoding, we introduce two operators on graphs
with discrete interfaces (gwdis), i.e., such that their set of edges is empty.

Definition 10 (two operators). Let G = I
i−→ G

j← J and G
′ = J

j′

−→ G′ o← O

be gwdis. Then, their sequential composition is the gwdi G ◦ G
′ = I

i′
−→ G′′ o′

←
O, for G′′ the disjoint union G 	 G′, modulo the equivalence on nodes induced
by j(x) = j′(x) for all x ∈ NJ , and i′, o′ the uniquely induced arrows.

Let G = I
i−→ G

o← O and H = I ′ i′
−→ H

o′
← O′ be gwdis with compatible

interfaces.1 Then, their parallel composition is the gwdi G ⊗ H = (I ∪ I ′) i′′
−→

G′ o′′
← (O ∪ O′), for G′ the disjoint union G 	 H, modulo the equivalence on

nodes induced by o(y) = o′(y) for all y ∈ NO ∩ NO′ and i(y) = i′(y) for all
y ∈ NI ∩ NI′ , and i′′, o′′ the uniquely induced arrows.
1 That is, any node in NI ∩NI′ has the same type in I and I ′ (similarly for NO ∩NO′).

214 F. Gadducci and A. Lluch Lafuente

With an abuse of notation, the set-theoretic operators are defined component-
wise, and the typing morphism is extended accordingly. Intuitively, the sequential
composition G ◦ G

′ is obtained by taking the disjoint union of the bodies of G

and G
′, and gluing the outputs of G with the corresponding inputs of G

′. The
parallel composition G⊗H is obtained by taking the disjoint union of the bodies
of G and H, additionally gluing the inputs (outputs) of G with the correspond-
ing inputs (outputs) of H. The operations are concretely defined, modulo the
choice of canonical representatives for the set-theoretic operations: the result is
independent of such a choice, up-to isomorphism of the body graphs.

A graph expression is a term over the syntax containing all graphs with dis-
crete interfaces as constants, and parallel and sequential composition as binary
operators. An expression is well-formed if all occurrences of those operators are
defined for the interfaces of their arguments, according to Definition 10; its in-
terfaces are computed inductively from the interfaces of the graphs occurring in
it, and its value is the graph obtained by evaluating all operators in it.

4 Rewriting Graphs with Interfaces

This section recalls the basics of the double-pushout (dpo) approach to graph
transformation, as presented in [11,13]. More precisely, it directly introduces the
extension of the approach to gwis, which is needed for our modeling purposes.

Definition 11 (graph production). A graph production is a pair of arrows
〈l : K → L, r : K → R〉 in I-T -Graph such that l is monic and r is injective on
interfaces. A T -typed graph transformation system (gts) G is a tuple 〈T, P, π〉
where T is the type graph, P is a set of production names and π is a function
mapping each name to a T -typed production.

A production π(p) is often denoted by a span L
l←− K

r−→ R, and indicated just
by the name p. For l to be monic means that all its components are injective.

Definition 12 (derivation). Let p : L
l←− K

r−→ R be a T -typed production
and G a T -typed gwi. A match of p in G is a monic mL : L → G. A direct
derivation from G to H via production p at a match mL is a diagram as depicted
in Fig. 4, where (1) and (2) are actually pushout squares in I-T -Graph. We thus
write p/m : G =⇒ H, for m the morphism 〈mL, mK , mR〉, or simply G =⇒ H.

Lp :

mL

��

(1)

K
r ��l��

mK

��

(2)

R

mR

��

G D
r∗

��
l∗

�� H

Fig. 1. A direct derivation

Let p be a production, let p/m : G =⇒ H be a
direct derivation and let tr(p/m) be the partial
function r∗ ◦ (l∗)−1 : G → H. By construction,
tr(p/m) is injective on interfaces. The deriva-
tion p/m is interface preserving if tr(p/m) is so.
Given a sequence of derivations pi/mi : Gi =⇒
Hi+1, we call it unambiguous whenever Gi = Gj

implies i = j, i.e., if a graph never occurs twice
in a computation.

In the rest of the paper we implicitly restrict our attention to unambiguous
sequences of interface preserving derivations.

Graphical Encoding of a Spatial Logic for the π-Calculus 215

5 From Processes to Graphs

We now present an encoding of π-calculus processes into graphs with interfaces,
based on the encoding introduced in [15].

The type graph Tπ is defined in Fig. 2. Note that all edges have at most one
node in the source, connected by an incoming tentacle; the nodes in the target list
are instead always enumerated clock-wise, starting from the only incoming ten-
tacle, unless otherwise specified by an enumerating label. For example, the edge

op

1
��0

��
2

�� ◦

• ��

��

ν

		

Fig. 2. The graph Tπ (op ∈ {in, out})

ν has the node • as source, and the node
◦ as target. The edge op actually stands
as a concise representation for two edges,
namely in and out, with the same source
and target: they have the node • as source
and the node list 〈•, ◦, ◦〉 as target, further
specified by the enumerating labels 0, 1,
and 2.

The type graph is used to model processes syntactically, and our encoding
corresponds to the usual construction of the tree associated to a term of an
algebra: names are interpreted as variables, so that they are mapped to leaves
of the tree and can be safely shared. Intuitively, a tree with a node of type • as
root corresponds to a process, whilst each node of type ◦ basically represents a
name. Clearly, the operators in and out simulate the input and output prefixes,
respectively; and operator ν stands for restriction. Furthermore, note that there
is instead no explicit operator accounting for parallel composition.

A class of graphs is now needed, such that all processes can be encoded into
a graph expression. Let p �∈ N : our choice is depicted in Fig. 3, for all a, b ∈ N .

• p��

p �� • �� op

��

��

◦ a��

◦ b��

p �� • p��

a �� ◦ a��

p �� • �� ν �� ◦ a��

p �� •

a �� ◦

Fig. 3. Graphs opa,b (op ∈ {in, out}); idp, ida, and νa; 0p and 0a

Finally, let idΓ and 0Γ be a shorthand for
⊗

a∈Γ ida and
⊗

a∈Γ 0a, respec-
tively, for a finite set of names Γ ⊂ N . The encoding of finite processes into
gwdis, mapping each finite process into a graph expression, is presented below.

Definition 13 (encoding for finite processes). Let P be a finite process,
and let Γ be a set of names, such that fn(P) ⊆ Γ . The process encoding �P�Γ ,
mapping a process P into a gwdi, is defined by structural induction according
to the following rules (where {c} 	 Γ implies that c �∈ Γ)

216 F. Gadducci and A. Lluch Lafuente

�(νa)P�Γ =
{

�P�Γ if a �∈ fn(P)
(idp ⊗ νc ⊗ idΓ) ◦ �P{c/a}�{c}�Γ otherwise

�P | Q�Γ = �P�Γ ⊗ �Q�Γ �a(b).P�Γ = (ina,c ⊗ idΓ) ◦ �P{c/b}�{c}�Γ

�0�Γ = 0p ⊗ 0Γ �ab.P�Γ = (outa,b ⊗ idΓ) ◦ �P�Γ

Note the conditional rule for (νa).P : it is required for removing the occurrence
of useless restriction operators, i.e., those that bind a name not occurring in
the process. The mapping is well-defined, since the resulting graph expression is
well-formed, and the encoding �P�Γ is a graph with interfaces ({p} ∪ Γ, ∅).

The mapping �·� is not surjective: there are graphs with interfaces ({p}∪Γ, ∅)
that are not (isomorphic to) the image of any process. Nevertheless, our encoding
is sound and complete, as stated by the proposition below (adapted from [15]).

Proposition 1 (correct process encoding). Let P , Q be finite processes and
Γ a set of names such that fn(P)∪fn(Q) ⊆ Γ . Then, P ≡ Q iff �P�Γ

∼= �Q�Γ .

The notation G ∼= H indicates the existence of an interface preserving isomor-
phism between the gwdis. That notion is used to tackle recursive processes.

Definition 14 (colimits of ω-chain). Let ω = G = G0 → G1 → G2 . . . be a
chain of injective, interface preserving morphisms. Then, the colimit col(ω) is
a gwi H and a family fi : Gi → H of injective, interface preserving morphisms,
making the diagram commute.

Clearly, a colimit always exists, and it is uniquely defined, up-to ∼=. In the fol-
lowing, we postulate a choice for colimits. Hence, in order to encode recursive
processes as infinite graphs, a colimit construction is performed.

Definition 15 (recursive encoding). Let P [x] be an open process, such that
the single process variable x may occur free in P . Let ωP [x] = {�Pi�Γ | i ∈ IlN} be
the chain such that P0 = P [0/x] and Pi+1 = P [Pi/x], with the obvious interface
preserving morphisms. Then, �recx.P�Γ denotes the colimit col(ωP [x]).

In other terms, each open process P [x] defines a continuous functor on the
gwdis with interfaces ({p}∪Γ, ∅), for each set of names Γ such that fn(P) ⊆ Γ ,
and the colimit is thus calculated evaluating the chain in the standard way.

Two recursive processes may be mapped to isomorphic gwdis, even if they are
not structurally congruent. Nevertheless, the extended encoding is still sound.

6 Process Reductions vs. Graph Rewrites

This section introduces two rules for simulating the reduction relation as well
as a few rules that are useful for the encoding of the logic. These rules form the
gts Gφ over which encoded formulae are interpreted. Note that, since it suffices
for our purposes, all the spans involve only graphs with empty output interfaces.

So, let us start with rule pπ (depicted in Fig. 4) for simulating the reduction
relation over processes. Let us explain our notation. The nodes may be labeled.

Graphical Encoding of a Spatial Logic for the π-Calculus 217

If the label is an element in {p}∪N , that means that the node is actually in the
image of the input interface. Otherwise, the label is a natural number, and it is
used just for describing the actions performed by the rule, so that e.g. the ◦ nodes
identified by 2 and 3 are coalesced by the rule. These identifiers are of course
arbitrary: they correspond to the actual elements of the set of nodes/interfaces,
and they unambiguously characterise the (interface preserving) span of functions.

p• ��

��

in

2 ��

1

0 �� •

◦2

out ��

��

• ◦1

◦3

p• •

◦2

• ◦1

◦3

p•

◦2
3

◦1

Fig. 4. The rule pπ for synchronization

Another rule p′π is needed: it is the same as pπ, but with nodes 1 and 3
coalesced. It is noteworthy that two rules suffice to recast the reduction semantics
for the π-calculus. The structural rules are taken care of by the embedding of a
graph into a larger one, thus simulating the closure of reduction with respect to
contexts. Similarly, no instance of the rules is needed, since graph isomorphism
takes care of the closure with respect to structural congruence.

◦
a

◦
a

◦
a

◦
a

◦
a

Fig. 5. Rules for introducing (left), checking for (center) and removing a name (right)

p
•

�� ν �� ◦ ◦
a p

• ◦ ◦
a p

• ◦
a

Fig. 6. The rule for revealing a restricted name

We now introduce a set of “house-keeping” rules for performing specific tasks
requested by our encoding of the spatial logic. The rule pn for adding nodes to the
interface is depicted on the left of Fig. 5. Since the left-most and middle graphs
are empty, the rule can be applied to any graph resulting in the addition of a
node to the right-most graph. This rule is going to be used in conjunction with
rule pr: it reveals a restricted name (see Fig. 6), consuming a restriction-edge
and coalescing the attached node with the image of an interface node.

The identity rule p∃i , on the center of Fig. 5, tests the presence of a node
among the inputs. Finally, the garbage collection rule pgi , on the right of Fig. 5,
removes a name from the interface: note that the dpo formalism ensures that the
rule is applied to an isolated node only. Analogous rules pgb

and pgr are needed
for removing isolated nodes that represent names and are not in the image of
the input morphism and for removing useless restriction operators, respectively.

218 F. Gadducci and A. Lluch Lafuente

7 Modal Graph Logic

This section introduces our flavor of graph logic, inspired by [1,12,21] and result-
ing in a monadic second order μ-calculus with a first-order action modality. In
particular, our logic recalls [1], where a fragment of Courcelle’s monadic second
order logic [12], combined with the propositional μ-calculus, is considered.

Definition 16 (graph logic syntax). Let VZ be a set of propositional vari-
ables, Vn a set of node variables, Ve and VE sets of first and second order edge
variables, respectively, and finally 〈T, P, π〉 a gts. The set GF of modal graph
formulae over the gts 〈T, P, π〉 is the set of terms generated by

ψ ::= tt | θ | ¬ψ | ψ ∨ ψ | 〈p(x, x′)〉ψ | ∃x.ψ | ∃y.ψ | ∃Y.ψ | Z | μZ.ψ
θ ::= ε = ε | y = y | τ(y) = te | y ∈ Y ε ::= η | i(η) | s(y) | t[k](y)

for k ∈ {0, 1, 2}, x ∈ Vn, η ∈ Vn ∪ N , y ∈ Ve, x, x′ ∈ V ∗
n , Y ∈ VE , Z ∈ VZ ,

te ∈ ET , and p ∈ P .

For readability sake, in the above definition p indicates an interface preserving
rule, and x, x′ are vectors of node variables indexed over the nodes of the left-
hand side L and of the right-hand side R, respectively. The resulting modal
operator p(〈x1, . . . , xn〉, 〈x′

1, . . . , x
′
m〉).φ bounds the n + m variables in φ. In the

following we consider closed formulae only, i.e., formulae where each occurrence
of a node, edge, edge set or propositional variable is bound.

The logic includes booleans, a first-order node quantifier, first and second-
order edge quantifiers, a modal operator, fixpoints, and equalities of edge identi-
ties or nodes (possibly referred to by node variables), the source or k-th target of
an edge, or the images of an input, denoted by η, s(y), t[k](y), and i(η) respec-
tively. Note the lack of constraints on the number of tentacles departing from an
edge variable, so that a formula as t[i](e) = x might turn out to be always false.

We introduce now the concept of Gsets, sets of gwdis closed under graph
isomorphism and permutations of interface nodes outside its support.

Definition 17 (Gset). Let Y be a set of gwdis. Then Y forms a Gset if there
exists a finite set of nodes N occurring in the input interface of each graph in
Y and such that f(G) ∈ Y for all gwdis G ∈ Y and graph isomorphisms f
preserving the identity of the nodes in N .

Each Gset Y has a finite support, denoted by supp(Y); and (the union of) the
encoding of (the members of) a Pset turns out to be a Gset. We let nρ(ψ) de-
note the set of names of a formula ψ under a valuation ρ, defined as n(ψ) ∪⋃

Z∈fpv(ψ) supp(ρ(Z)), for fpv(ψ) and n(ψ) the set of the free propositional vari-
ables and the names of a formula ψ (constants and free name variables).

The formulae of the logic are intended to be interpreted over Gsets. We let S
denote the family of gwdis, and V and E the sets of all nodes and edge names
used in I-T -Graph, respectively, indexed by the gwdi they belong to.

Graphical Encoding of a Spatial Logic for the π-Calculus 219

Definition 18 (graph logic semantics). Let ψ be a (closed) modal graph for-
mula and let ρ be an environment, i.e., a tuple ρ = 〈ρx, ρy, ρY , ρZ〉 of mappings
ρx : Vx → V, ρy : Vy → E, ρY : VY → 2E and ρZ : VZ → 2S from node, edge,
edge set and propositional variables into nodes, edges, edge sets, and Gsets, re-
spectively. The denotation �ψ�ρ, mapping a formula ψ into a Gset, is defined by
structural induction according to the following rules

�tt�ρ = S �∃y.ψ�ρ = {G ∈ S | ∃e ∈ EG.G ∈ �ψ�ρ[e/y]}
�¬ψ�ρ = S \ �ψ�ρ �∃Y.ψ�ρ = {G ∈ S | ∃E ⊆ EG.G ∈ �ψ�ρ[E/Y]}
�Z�ρ = ρZ(Z) �μZ.ψ�ρ =

⋂
{Y | Y ⊆ �ψ�ρ[Y /Z]}

�θ�ρ = ‖ρ(θ)‖ �p(x, x′)ψ�ρ = {G | p/m : G → H and H ∈ �ψ�ρ′}
�ψ1 ∨ ψ2�ρ = �ψ1�ρ ∪ �ψ2�ρ �∃x.ψ�ρ =

⋃
a∈nρ(ψ)�ψ�ρ[a/x]

where ‖ρ(θ)‖ maps true and false to SM and ∅, respectively; and ρ′ = tr†(p/m)◦
(ρ ∪ {x �→ m(NL)}) ∪ {x′ �→ m(NR)}, for NL and NR the nodes of the left-hand
and the right-hand side of the rule p and tr†(p/m) the total extension of tr(p/m).

The total extension tr†(p/m) evaluates a node n to tr(p/m)(n) if n belongs to
the domain of tr(p/m), and to n otherwise. Intuitively, the variables in x are
assigned to the matched items2 of the left-hand side of the derivation, and the
resulting mapping is composed with the trace of the derivation to get rid of item
renaming (no renaming is needed instead for x′). In addition, we require the new
interface items in H to be different from those occurring in nρ(ψ): this ensures
the new items to be fresh with respect to the formula and its environment.

Boolean connectives and item comparisons have the expected meaning, and,
since the denotation is for closed formulae, the interpretation of the terms gen-
erated by θ is obvious. Note however that as in [1] we consider environments ρ
that might map variables into items that are indexed over the graph they belong.
Thus, a formula like x = y is satisfied by a graph in environment ρ if ρ(x) = ρ(y),
independently on whether or not ρ(x) or ρ(y) are nodes of the graph.

The main difference with the approach introduced in [1] is the semantics of
the modal operator. Indeed, in order for the formula p(x, x′)ψ to hold in an
environment ρ we require the existence of a direct derivation from G into a
graph H via rule p and match m, such that (1) new items are fresh with respect
to nρ(ψ); and (2) H fulfills ψ in an environment ρ′ that is obtained from ρ with
the application of the trace of the derivation p/m (to get rid of item renaming)
and with the addition of the mapping of the variables occurring in the vectors
x, x′ to the items of the left-hand and right-hand side of the match m of rule
p. In that way, one can express not only the possibility of applying a graph
transformation rule, but we can bind variables with the items involved in the
transformation which we can use in the residual formula.

8 From Spatial to Graph Logic

We can now finally turn our attention to the encoding [·] : SF → GF , mapping
spatial formulae into graph formulae over the gts Gφ defined in Section 6. Our
2 Abusing of notation we assume here that such items are ordered for each rule.

220 F. Gadducci and A. Lluch Lafuente

∃y ∈ Y.ψ ≡ ∃y.(y ∈ Y ∧ ψ)
in(x, y) ≡ s(y) = x ∨ t[0](y) = x ∨ t[1](y) = x ∨ t[2](y) = x

I(x) ≡ ¬∃y.in(x, y)
C(Y) ≡ ∀y.(y ∈ Y → i(p) = s(y) ∨ ∃y′ ∈ Y.s(y′) = t[0](y))

R(Y, Y ′) ≡ ∀y.(y ∈ Y ∧ τ (y) = ν → ¬∃y′ ∈ Y ′.in(t[0](y), y′))
P(Y, Y ′) ≡ ∀y.(y ∈ Y ↔ y �∈ Y ′)

〈〈p(x1, x′
1)〉〉ψ ≡ 〈p(x, x′)〉(x = x1 ∧ x′ = x′

1 ∧ ψ{x/x1 , x′
/x′

1
})

Fig. 7. Auxiliary graph formulae

goal is to define a complete and sound encoding such that for any process P we
have that P ∈ �φ� iff �P�fn(P) ∈ �[φ]�.

For the sake of readability, for each modal operator we consider only those
arguments that are relevant for the encoding. So, pπ(x1, x2) (resp. p′π(x)) binds
x1 and x2 (resp. x) with the items 1 and 2 of the left-hand side of the rule pπ

(resp. p′π) depicted in Fig. 4, i.e., the channel on which synchronization occurs
and the sent name (and the same occurs for p′). These nodes are relevant for
the encoding since they might become isolated and thus need to be garbage
collected. Similarly, pn(xa) binds xa with the item a of the right-hand side of
the rule pn (see Fig. 5, right), i.e., the new interface node; p∃i(xa) binds xa with
the item a of the rule p∃i (see Fig. 5, center), i.e., the checked for interface node
pr(xa) binds xa with the item a of the right-hand side of rule pr (see Fig. 5,
right), i.e., of the deleted interface node; and pg(xa) binds xa with the item a of
the right-hand side of rule pg (see Fig. 6), i.e., the revealed interface node.3

Fig. 7 summarizes some additional abbreviations that provide a more read-
able and concise presentation of the encoding. First, as a shorthand, ∃y ∈ Y.ψ
quantifies over the edges of an edge set Y , while in(x, y) is a shorthand for the
formula expressing the occurrence of the node x in either the source or the tar-
get of edge y. Since the type graph considers at most three targets, the formula
considers only up to the third target. Formula I(x) is used to identify useless
nodes. It states that x is not the source or target of any edge, thus characterizing
isolated nodes. Another property is that a set of edges (in an acyclic graph, as
those representing processes) is connected: In words, C(Y) requires each edge of
set Y to occur consecutively to another edge of Y unless it has the root of the
graph (the image of p) as source. Then R(Y, Y ′) states the confinement of the
target of a restriction operator, i.e., the target of each ν edge of Y cannot be
used in Y ′. We also use a formula P(Y, Y ′) to express that two sets of edges Y ,
Y ′ are disjoint and complementary, i.e., they partition the set of edges. Another
abbreviation is that we sometimes want to express the fact that a rule p can be
applied for a certain match, denoted by 〈〈p(x1, x′

1)〉〉φ.
Furthermore, {ψ}Y denotes the formula ψ relativized to the set of edges Y ,

i.e., {∃y.ψ}Y ≡ ∃y ∈ Y.{ψ}Y , {∃Y ′.ψ}Y ≡ ∃Y ′.(∀y.y ∈ Y ′ → y ∈ Y) ∧ {ψ}Y ,

3 Note that, except for the reduction rules pπ(x1, x2) and p′
π(x) and for the rules

pgb(x) and pgr (x1, x2) performing a sort of garbage collection, all the operators bind
interface nodes, since they are used for checking name properties.

Graphical Encoding of a Spatial Logic for the π-Calculus 221

{∃x.ψ}Y ≡ ∃x.∃y ∈ Y.in(i(x), y)∧ {ψ}Y and {〈p(x, x′)〉.ψ}Y ≡ 〈p(x, x′)〉(
∧

x∈x

∃y ∈ Y.(in(x, y) ∨ in(i(x), y)) ∧ {ψ}Y), just to define the most significant cases
for ψ (the rest are recursively defined in a straightforward way).

We finally present our encoding of spatial formulae into graph formulae.

Definition 19 (logics encoding). Let φ be a spatial formula. The logics en-
coding [φ], mapping a spatial formula φ into a graph formula, is defined by
structural induction according to the rules in Fig. 8.

The encoding of boolean connectives (b1) and fixpoints (μ1) is trivial.
Regarding the encoding of name equalities, it is worth noticing that the en-

coding works with interface nodes rather than with their images. Because the
input morphism is injective in any process encoding, we can safely encode name
comparison as the comparison of the corresponding interface nodes (n1).

[0] = ∀y.F (v1)
[T] = T [¬φ] = ¬[φ] [φ1 ∨ φ2] = [φ1] ∨ [φ2] (b1)

[η1 = η2] = (η1 = η2) (n1)
[Z] = Z [μZ.φ] = μZ.[φ] (μ1)

[Ix.φ] = 〈pn(x)〉[φ] (f1)
[∃x.φ] = [Ix.φ] (e1)

∨ 〈p∃i(x)〉[φ] (e2)
∨ ∃x.[φ] (e3)

[η�φ] = (〈〈p∃i(η)〉〉I(i(η)) ∧ 〈〈pr(η)〉〉[φ]) (r1)

∨ (¬〈〈p∃i(η)〉〉T ∧ 〈pn(x′)〉〈〈pr(x
′)〉〉[φ{x′

/η}]) (r2)
[�φ] = 〈pπ(x, x′)〉G(x, x′, [φ]) ∨ 〈p′

π(x)〉G(x, x, [φ]) (a1)
[φ1|φ2] = ∃Y.∃Y ′.P(Y, Y ′) (c1)

∧ C(Y) ∧ C(Y ′) (c2)
∧ R(Y, Y ′) ∧ R(Y ′, Y) (c3)

∧ {[φ1]}Y ∧ {[φ2]}Y ′
(c4)

Fig. 8. The encoding of spatial formulae into graph formulae

The encoding of an empty process is the graph 0p depicted in Fig. 3, i.e., it
is a graph with just one node and no edges. Moreover, no other gwdi modeling
a process has an empty set of edges. Thus, the encoding of 0 is a graph formula
that characterizes graphs without edges (v1).

The encoding of the freshness quantifier exploits Gabbay-Pitts property [14]:
it suffices to consider just one fresh name, neither occurring in φ nor previously
in the process. We obtain such a name via the freshness rule pn, which binds
the variable x as the fresh name it is introduced. The rule ensures that x will be
effectively fresh for the process and the formula (f1).

Also the encoding of ∃x.φ relies on Gabbay-Pitts property. Indeed, to check if
φ holds for some name x it suffices to consider (e1) a fresh name (thus relying on
the encoding of freshness quantification), (e2) all the free names of the process
(the nodes of its interface) and (e3) the nodes in nσ([φ]) (i.e., all the names of
φ plus the least support of σ(Z) for any open propositional variable Z in φ).

222 F. Gadducci and A. Lluch Lafuente

The encoding of η�φ distinguishes two cases: either (r1) the node η occurs
in the interface and its image is isolated or (r2) it is not in the interface. The
first turns out to be true when η has been introduced by the application of the
freshness rule pr. In other words, η�φ was nested in a freshness quantification on
η (which is a variable rather than a constant). In this case the encoding considers
the revelation of a restricted node as η using rule pr. If η does not occur in the
interface, then η is not a free name, hence, we introduce it in the interface via
rule pr and proceed as in the first case.

The action modality requires either the rules pπ or the rule p′π to be applica-
ble. The resulting graph must then satisfy φ, but we may need to garbage collect
those nodes involved in the synchronization, i.e., names and restrictions might
become useless. This is performed by the formula denoted by G: its presentation
is neglected, since it is both intuitive and lengthy, as it consists of two large
disjunctions where each disjunct corresponds to one different case depending
on whether the synchronization name is free/bound and whether the synchro-
nization and communicated names result used/useless/uselessly restricted. For
instance, if after the application of pπ the node x (the synchronization channel)
becomes isolated (i.e, useless), we have to apply either the rule pgi or the rule
pgb

(depending if x is an input) before evaluating the encoding φ: the resulting
formula is 〈〈pgi(x)〉〉[φ] ∨ 〈〈pgb

(x)〉〉[φ].
Finally, consider the encoding of composition. The encoding of the parallel

composition P of two processes is done via the parallel composition ⊗ of the
corresponding graphical encodings. The resulting graph �P� is a tree with the
image of p as root, from where several edges depart. Some of them represent
subprocesses and the rest correspond to name restrictions. Thus, the encoding
of φ1|φ2 is a graph formula that states whether there is a correct decomposition of
a graph into two components, one satisfying φ1 and the other satisfying φ2 (c4).
A correct decomposition requires (c1) to find two complementary and mutually
disjoint sets of edges; each set must form (c2) a connected graph including at
least an edge whose source is the image of p; and (c3) any restriction edge has
to belong to the right set.

The theorem below states that the proposed encoding is correct.

Theorem 1. Let P be a process and let φ be a closed spatial formula. Then,
P ∈ �φ� iff �P�fn(P) ∈ �[φ]�.

9 Conclusions and Future Work

We have extended our graph-based technique for the verification of spatial prop-
erties of π-calculus specifications. In previous works we proposed a graphical
representation of the π-calculus [15] and an algorithm for the verification of
(recursion-free) spatial properties of finite processes in such a graphical rep-
resentation [16]. In the present paper we tackled possibly recursive processes
and formulae. However, instead of providing a new algorithm, we defined an

Graphical Encoding of a Spatial Logic for the π-Calculus 223

encoding of spatial logic [3] into a modal graph logic. Our first intention was
to reuse existing logics and tools for the verification of graph transformation
systems, but the approaches we considered turned out not to be sufficiently
expressive.

This lack of tools gave rise to the need of a new modal graph logic. With
respect to other approaches [1,5,12,21], the main novelty of our logic is a modal
operator that binds variables with the items involved in a graph derivation and,
in addition, ensures the items created by the rule to be new with respect to the
environment in which the formula is interpreted. This operator generalizes node
quantification and this is the key to encode spatial ingredients like the revelation
of restricted nodes and the creation of fresh names.

Our approach enjoys indeed a few benefits. Besides being intuitively appealing,
the graphical presentation offers canonical representatives for abstract processes,
since two processes are structurally congruent exactly when they are mapped to
the same graph with interfaces (up to interface preserving isomorphism). The
encoding has a unique advantage with respect to most of the approaches to the
graphical implementation of calculi with name mobility (such as bigraphs [19]):
it allows for the reuse of standard graph transformation theory and tools for
simulating the reduction semantics of the calculus [15].

In addition, the proposed graph logic is very expressive and flexible, as it is
parametric with respect to the graph transformation system under considera-
tion. We believe that this can easily provide encodings for various spatial logics
and process calculi (in suitable graphical representation). Of course, the model
checking problem for our logic is undecidable in general, as the encoded problem
of model checking the spatial logic of [3] is decidable only for π-calculus speci-
fications with bounded processes. We shall, thus, identify interesting decidable
fragments of our logic and study implementation strategies for some verification
problems. The main difficulty relies in the representation of recursive processes
as infinite graphs, but we might use the alternative representation of recursion
by means of so-called process expression, since constant invocations can be en-
coded as graph derivations [15]. The path was not chosen here since it results in
a more cumbersome encodings of both the processes and the logic.

Nevertheless, setting aside any consideration on the efficiency and usability of
our approach, we believe that a main contribution of our paper is a further show-
case of the usefulness of graphical techniques as a unifying, intuitive, suitable
and flexible formalism for the design and validation of concurrent systems.

References

1. Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic
for verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-
Y. (eds.) Proceedings of WADT ’06 (Workshop on Algebraic Development Tech-
niques). LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007)

2. Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connections.
Theor. Comp. Sci. 286(2), 247–292 (2002)

224 F. Gadducci and A. Lluch Lafuente

3. Caires, L.: Behavioral and spatial observations in a logic for the π-calculus. In:
Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 72–87. Springer, Hei-
delberg (2004)

4. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Information and
Computation 186(2), 194–235 (2003)

5. Cardelli, L., Gardner, P., Ghelli, G.: A spatial logic for querying graphs. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 597–610. Springer, Heidelberg (2002)

6. Cardelli, L., Fiore, M., Winskel, G.: Manipulating trees with hidden labels. In:
Gordon, A.D. (ed.) ETAPS 2003 and FOSSACS 2003. LNCS, vol. 2620, pp. 216–
232. Springer, Heidelberg (2003)

7. Cardelli, L., Gordon, A.D.: Ambient logic. Forthcoming issue of Mathematical
Structures in Computer Science (2007)

8. Conforti, G., Macedonio, D., Sassone, V.: Spatial logics for bigraphs. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 766–778. Springer, Heidelberg (2005)

9. Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via gs-
monoidal categories. Applied Categorical Structures 7(4), 299–331 (1999)

10. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informati-
cae 26(3/4), 241–265 (1996)

11. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Alge-
braic approaches to graph transformation I: Basic concepts and double pushout
approach. In [24], pp. 163–245

12. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In [24], pp. 313–400

13. Drewes, F., Habel, A., Kreowski, H.-J.: Hyperedge replacement graph grammars.
In [24], pp. 95–162

14. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects of Computing 13(3-5), 341–363 (2002)

15. Gadducci, F.: Term graph rewriting and the π-calculus. In: Ohori, A. (ed.) APLAS
2003. LNCS, vol. 2895, pp. 37–54. Springer, Heidelberg (2003)

16. Gadducci, F., Lluch Lafuente, A.: Graphical verification of a spatial logic for the
π-calculus. In: Heckel, R., König, B., Rensink, A. (eds.) Graph Transformation for
Verification and Concurrency. El. Notes in Theor. Comp. Sci, Elsevier, Amsterdam
(2007)

17. Kozioura, V., König, B.: AUGUR: A tool for the analysis of graph transformation
systems. Bulletin of EATCS 87, 126–137 (2005)

18. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, Cambridge (1992)

19. Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CON-
CUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)

20. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

21. Rensink, A.: Towards model checking graph grammars. In: Leuschel, M., Gruner,
S., Lo Presti, S., (eds.) Automated Verification of Critical Systems, vol. DSSE–TR–
2003–2 of University of Southampton Technical Reports, pp. 150–160. University
of Southampton (2003)

22. Reif, J., Sistla, A.P.: A multiprocess network logic with temporal and spatial modal-
ities. Journal of Computer and System Sciences 30(1), 41–53 (1985)

Graphical Encoding of a Spatial Logic for the π-Calculus 225

23. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: Logic
in Computer Science, pp. 55–74. IEEE Computer Society Press, Los Alamitos
(2002)

24. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, vol. 1, World Scientific (1997)

25. Varró, D.: Automated formal verification of visual modeling languages by model
checking. Software and Systems Modeling 3(2), 85–113 (2004)

Higher Dimensional Trees, Algebraically

Neil Ghani1 and Alexander Kurz2,�

1 University of Nottingham
2 University of Leicester

Abstract. In formal language theory, James Rogers published a series of inno-
vative papers generalising strings and trees to higher dimensions. Motivated by
applications in linguistics, his goal was to smoothly extend the core theory of the
formal languages of strings and trees to higher dimensions.

Rogers’ definitions rely on a specific representation of higher dimensional
trees. This paper presents an alternative approach which focusses more on their
universal properties and is based upon category theory, algebras, coalgebras and
containers. Our approach reveals that Rogers’ trees are canonical constructions
which are also particularly beautiful. We also provide new theoretical results
concerning higher dimensional trees. Finally, we provide evidence for our de-
vout conviction that clean mathematical theories provide the basis for clean im-
plementations by indicating how our abstract presentation will make computing
with higher dimensional trees easier.

1 Introduction

Strings occur in the study of formal languages where they are used to define complexity
classes such as those of regular expressions, context free languages, context sensitive
languages etc. Trees also play a multitude of different roles and are often thought of
as 2-dimensional strings. For instance, there is a clear and well defined theory of tree
automata, of tree transducers and other analogues of string-theoretic notions. Indeed,
the recent interest in XML and its focus on 2-dimensional data has brought the formal
language theory of trees to a wider audience.

In a series of innovative papers (see [11] and references therein), James Rogers asked
how one can formalise, and hence extend, the idea that trees are two-dimensional strings
to higher dimensions. The desire to go up a dimension is very natural - for example a
parser will turn a string into a tree. Thus higher dimensional trees will certainly arise when
parsing 2-dimensional trees and, more generally, when trees are considered not as part of
themeta-theory of theformal languagesof strings,butasobjectsworthy of theirownstudy.
Rogers came from a background in both formal languages and natural languages and his
motivation to study higher dimensional trees was rooted in the use of the latter to study
the former. For example, his paper discusses applications to Tree Adjoining Grammars,
Government Binding Theory, and Generalised Phrase Structure Grammars.

Rogers’ work was highly imaginative and he certainly had great success in gener-
alising formal language theory from strings and trees to higher dimensions. However,
his approach to higher dimensional trees is very concrete. For example, Rogers defines

� Partially supported by EPSRC EP/C014014/1.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 226–241, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Higher Dimensional Trees, Algebraically 227

a tree as a tree domain, ie a set of paths satisfying the left-sibling and ancestor prop-
erties. Similarly, he defines higher dimensional trees to be sets of higher dimensional
paths satisfying higher dimensional versions of the ancestor and left-sibling properties.
These conditions are notationally quite cumbersome at the two dimensional level and
this complexity is magnified at higher dimensions. This has practical consequences as it
is our belief that clean mathematical foundations are required for clean implementations
of both higher dimensional trees as data structures and the algorithms which manipulate
them. In particular, implementing higher dimensional trees as higher dimensional tree
domains involves the (potential) requirement to regularly verify that algorithms pre-
serve the well-formedness condition of the set of higher dimensional paths in a higher
dimensional tree domain.

We provide a more abstract treatment of higher dimensional trees where the funda-
mental concept is not the path structure of tree domains but rather the notion of fixed
point and initial algebra. When viewed through this categorical prism, Rogers’ defini-
tions and constructions become very succinct and elegant. This is a tribute to both the
sophistication of category theory in capturing high level structure and also to Rogers’
insight in recognising these structures as being of fundamental mathematical and com-
putational interest. The overall contributions of this paper are thus as follows:

– We provide a categorical reformulation of the definition of Rogers higher dimen-
sional trees. Remarkably, the central construction in our reformulation is the hith-
erto unused quadrant of the space whose other members are the free monad, the
completely iterative monad, and the cofree comonad.

– To demonstrate that this research has both practical as well as theoretical insight,
we use this reformulation to show that classical results of Arbib and Manes on
‘Machines in a category’ apply to higher-dimensional automata. In particular, this
gives procedures of determinisation and minimisation.

– In a similar vein, we show that while clearly being comonadic, higher dimensional
trees are also monadic in nature. This is an example of the kind of result that is both
fundamental and would be missed without the abstract categorical formulation.

– We justify our belief that clean mathematical foundations leads to a clean compu-
tation structure by implementing higher dimensional trees in the Haskell program-
ming language.

Our intention with this research is to synthesise our abstract approach with the in-
tuitions and applications of Rogers. This paper is just the beginning, clarifying some
algebraic and categorical aspects, before turning to applications of higher dimensional
trees in language theory. We believe that this paper provides an interesting application of
category theory, especially of algebras and coalgebras, taming the apparent complexity
which Rogers’ definitions possess at first sight and allowing us to transfer known results
to higher dimensional automata.

The paper is structured as follows. Section 2 follows parts of Rogers [11] and presents
his notions of higher-dimensional trees and automata. Section 3 presents our reformu-
lation of Rogers’ notions using fixed-point equations and coalgebras. Section 4 shows
that Rogers’ higher dimensional trees are examples of containers which allows us to
deduce several useful meta-theoretic results needed later. Section 5 uses our abstract

228 N. Ghani and A. Kurz

reformulation to show that the classical theorems of determinisation and minimisation
from automata theory hold.

2 Rogers’s Higher Dimensional Trees

The most pervasive definition of (finitely branching) trees is via the notion of a tree
domain. A tree domain is an enumeration of the paths in a tree - since a path is a list of
natural numbers, a tree domain is a subset of lists of natural numbers. However, there
should be two conditions on sets of paths reflecting the fact that i) if a node has an
n+1’th child, then there should be an n’th child; and ii) all nodes apart from the root
have a parent. Thus tree domains are defined as follows

Definition 2.1 (Tree Domains). A tree domain T ⊆ N
∗ is a subset of lists of natural

numbers such that

– (LS): If w.(n+1) ∈ T , then w.n ∈ T
– (A): If w.n ∈ T , then w ∈ T

We use . for the concatenation of a list with an element. We call the first condition
the left-sibling property (LS) and we call the second condition the ancestor property
(A). Notice how tree domains, by focusing on paths, will inevitably lead to a process
of computation dominated by the creation and consumption of sets of paths satisfying
(LS) and (A). As we shall see later, tree domains and the paths in them can be treated
more abstractly, and in a cleaner fashion, by the shapes and positions of the container
reformulation of tree domains.

However, for now, we want to ask ourselves how the tree domains given above can
be generalised from being 2-dimensional structures to n-dimensional structures. In the
2-dimensional case we had a notion of path as a list of natural numbers and then a
tree domain consisted of a set of paths satisfying the properties (LS) and (A). Rogers
defines n-dimensional tree domains by first defining what an n-dimensional path is and
then defining an n-dimensional tree domain to be a set of n-dimensional paths satisfying
higher dimensional variants of (LS) and (A). So what is an n-dimensional path? Notice
that a natural number is a list of 1s and hence a list of natural numbers is a list of lists
of 1s. Thus

Definition 2.2 (Higher Dimensional Paths [11, Def 2.1]). The n-dimensional paths
form a N-indexed set P with P0 = 1 (the one element set) and with Pn+1 defined to be
the least set satisfying

– [] ∈ Pn+1
– If [x1, .., xm] ∈ Pn+1 and x ∈ Pn, then [x1, .., xm, x] ∈ Pn+1

A simpler definition would be that Pn = Listn1 but we wanted to give Roger’s def-
inition to highlight its concreteness. Having defined the n-dimensional paths we can
define the n-dimensional tree domains as follows

Definition 2.3 (Higher Dimensional Tree domains [11, Def 2.2]). Let T0 = {∅, 1}.
The set Tn+1 of n + 1-dimensional tree domains consists of those subsets T ⊆ Pn+1
such that

Higher Dimensional Trees, Algebraically 229

– (HDLS): If s ∈ Pn+1, then {w ∈ Pn|s.w ∈ T } ∈ Tn

– (HDA): If s.w ∈ T , then s ∈ T

The first condition is the higher dimensional left sibling property (HDLS). It is slightly
tricky as, in higher dimensions, there is no unique left sibling and so one cannot sim-
ply say that if a node has an n + 1’th child then the node has an n’th child. (HDLS)
solves this problem by saying the immediate children of a node in an n+1-dimensional
tree domain form an n-dimensional tree domain. In the two dimensional case, (HDLS)
is thus the requirement that the children of a node in a tree form a list. (HDA) is a
straightforward generalisation of the 2-dimensional ancestor property (A). The reader
may wish to check that a one dimensional tree domain is a set of lists over 1 closed
under prefixes, that is, T1 is bijective to List(1). There are two zero dimensional tree
domains which correspond to the empty tree and to the tree which just contains one
node and no children.

The notion of automata is central in formal language theory and generalises to higher
dimensions in a straightforward way. Firstly, we must extend tree domains so that higher
dimensional trees can actually store data - this is done by associating to each path in a
tree domain, a piece of data to be stored there.

Definition 2.4 (Labelled tree domains [11, Def 2.3]). A Σ-labelled tree domain is a
mapping T → Σ, where T is a tree domain and Σ a set (called the alphabet). We
denote the set of n-dimensional Σ-labelled tree domains by Tn(Σ).

Definition 2.5 (n-Automaton [11, Def 2.9]). An (n + 1)-dimensional automaton over
an alphabet Σ and a finite set of states Q is a finite set of triples (σ, q, T) where σ ∈ Σ,
q ∈ Q and T is a Q-labelled tree domain of dimension n.

Rogers goes on to define when an (n+1)-automaton licenses (or accepts) an n + 1-
dimensional tree as follows. A (Σ-labelled) local tree is an element of Σ × Tn(Σ). An
(n+1)-dimensional grammar over Σ is a finite subset of Σ × Tn(Σ), ie a finite set of
local trees. An element λ : T → Σ in Tn+1(Σ) is licensed by a grammar if for all
s ∈ T , the pair (λ(s), λ′ : T ′ → Σ) is in the grammar, where T ′ = {w|s.w ∈ T } and
λ′(w) = λ(s.w). In other words, a tree is licensed by a grammar if it is constructed from
the local trees of the grammar. Note that, forgetting the alphabet Σ, an automaton can
be seen as a grammar over Q. An element in Tn+1(Σ) is now licensed by an automaton
if it is an image of a Q-labelled tree licensed by the grammar in which the the label of
the root of each local tree has been replaced with a symbol in Σ associated with that
local tree in the automaton [11].

We will see in Section 5 that acceptance is more easily defined via the unique
morphism from the initial algebra of trees. For coalgebraists let us note here already
that automata are coalgebras. First, the notion of labelling means that n-dimensional
tree domains form a functor Tn : Set → Set. In particular T0(X) = 1 + X and
T1(X) = List(X). Now, an n+1-dimensional automata over Σ is just a finite set Q
and a function Q → P(Σ × Tn(Q)). Automata and their accepted languages will be
discussed in detail in Section 5, but let us look at two familiar examples already.

Example 2.6. A 1-automaton is essentially the standard notion of a non-deterministic
string automata — that is a function Q → P(Σ×(1+Q)) where each state can perform
a Σ-transition and either terminate or arrive at another state.

230 N. Ghani and A. Kurz

Example 2.7. A 2-automaton is a coalgebra δ : Q → P(Σ × T1(Q)), that is, a relation
δ ⊆ Q × (Σ × List(Q)) which can be understood as a non-deterministic tree automata
(see eg [6]): Given a state q and a tree σ(t1, . . . tn) the automaton tries to recognise
the tree by guessing a triple (q, σ, [q1, . . . qn]) ∈ δ and continuing this procedure in the
states qi with trees ti. Whereas this coalgebraic definition has a top-down flavour, the
accepted language is most easily defined in an algebraic (bottom-up) fashion as follows.
The relation δ gives rise to a set of Q-labelled terms (or bottom-up computations) C via

(q, σ, []) ∈ δ
qσ ∈ C

(q, σ, [q1, . . . qn]) ∈ δ, qiti ∈ C
qσ(t1, . . . tn) ∈ C

.

where qσ ∈ C means the automata recognises the σ-labelled tree starting from the state
q. One then defines, wrt a set of accepting states Q0, that the automaton accepts a tree t
iff qt ∈ C and q ∈ Q0.

3 Higher Dimensional Trees, Algebraically

Despite being a natural generalisation of a 2-dimensional tree domain to an n-
dimensional tree domain, Definition 2.3 is very concrete. For example, formalising the
notion of licensing (following Definition 2.5 above) is tedious. We will show that a
more abstract approach to the definition of tree domains is possible. In particular, the 1-
dimensional tree domains are just the usual lists while the non-empty two-dimensional
tree domains are known in the functional programming community as rose trees with a
simple syntax and semantics. That is, categorically one may define RoseX = μY.X ×
ListY and derive from this the equally simple Haskell implementation

data Rose a = Node a [Rose a]

What is really pleasant about this categorical/functional programming presentation
of tree domains is that initial algebra semantics provides powerful methods for writing
and reasoning about programs. In particular, it replaces fascination with the detailed
representation of the structure of paths and the (LS) and (A) properties with the more
abstract universal property of being an initial algebra. That is not to say paths are not
important, just that they ought to be (in our opinion) a derived concept. Indeed, we show
later in Theorem 4.6 how to derive the path algebra from the initial algebra semantics.

The natural question is whether we can give an initial algebra semantics for higher
dimensional trees. The answer is not just yes, but yes in a surprisingly beautiful and
elegant manner. As remarked earlier, the immediate children of a node in an (n + 1)-
dimensional tree should form an n-dimensional tree. This is formalised in

Definition 3.1. Define a family of functors by

R−1X = 0 TnX = 1 + RnX (n ≥ −1)
Rn+1X = μY.X × TnY

Note that we intend Rn+1X to be the set of non-empty n+1-dimensional X-labelled tree
domains while Tn+1X is intended to be the set of empty or non-empty n+1-dimensional

Higher Dimensional Trees, Algebraically 231

X-labelled tree domains. Thus Rn+1X should consist of an element of X to be stored
at the root of the tree and a potentially empty n-dimensional tree domain labelled with
further tree domains. While one could start indexing at 0 by defining R0X = X , there
is no harm in starting one step before with the definition of −1-dimensional trees. As
expected, calculations show that

n RnX TnX
−1 0 1
0 X 1 + X
1 List+(X) List(X)
2 Rose(X) 1 + Rose(X)

where List+(X) are the non-empty lists over X .
In fact, one can go further and not just define a sequence of functors Rn and Tn, but a

higher order functor which maps a functor F to the functor sending X to μY.X × FY .
We find this particularly interesting for both theoretical and practical reasons. At the
theoretical level, we note that this construction of a functor from a functor is the final
piece of the jigsaw remarked upon in [9] and summarised in

Monads Comonads

Initial Algebras μY. X + FY μY. X × FY

Final Coalgebras νY. X + FY νY. X × FY

In [9], the three other higher order functors were remarked upon as follows:

– The map sending a functor to F to the functor X �→ μY.X +FY is the free monad
construction

– The map sending a functor to F to the functor X �→ νY.X + FY is the free
completely iterative monad construction

– The map sending a functor to F to the functor X �→ νY.X × FY is the cofree
comonad construction

Higher dimensional tree functors provide—to our knowledge—the first naturally aris-
ing instance of the remaining quadrant of the table above. From [9], we have

Theorem 3.2. For any functor F , the map X �→ μY.X × FY is a comonad.

At a practical level, this higher order functor translates into the following simple defin-
ition of higher dimensional trees in Haskell, the canonical recursion combinator arising
from the initiality of higher dimensional trees and their comonadic structure. In the
following, Maybe is Haskell implementation of the monad sending X to 1 + X .

data Rose f a = Rose a (Maybe (f (Rose f a)))
type Tree f a = Maybe (Rose f a)

data Rose0 a = Rose0 a -- = \X -> X
type Rose1 = Rose Rose0 -- = \X -> Listˆ+(X)

232 N. Ghani and A. Kurz

type Rose2 = Rose Rose1 -- = \X -> Rose(X)
type Rose3 = Rose Rose2

cata :: Functor f => (a -> Maybe (f b) -> b) -> Rose f a -> b
cata g (Rose x xs) = g x (fmap (fmap (cata g)) xs)

instance Functor Rose0 where
fmap f (Rose0 a) = Rose0 (f a)

instance Functor f => Functor (Rose f)
where fmap f = cata act where act a t = Rose (f a) t

class Comonad f where
root :: f a -> a
comult :: f a -> f (f a)

instance Comonad Rose0 where
root (Rose0 x) = x
comult (Rose0 x) = Rose0 (Rose0 x)

instance Functor f => Comonad (Rose f) where
root (Rose x xs) = x
comult (Rose x xs) = Rose (Rose x xs) (fmap (fmap comult) xs)

As we have seen, higher dimensional trees are instances of canonical constructions
which always produce comonads. It is also well-known that List+ and List are monads.
Less well known is that Rose is a monad. Clearly R0 is also a monad. Indeed we have

Theorem 3.3. For all n ≥ 0, Rn is a monad.

Space prevents us from detailing the proof of this theorem. However, it is important
because it allows computation with higher dimensional trees to be further simplified
via the use of the monadic notation available in Haskell to structure common patters of
computation. For example, parsing and filtering become particularly simple.

To summarise, we depart from Rogers in not defining higher dimensional trees in
terms of paths, but via the more abstract categorical notion of initial algebras. As a
result, we take the functor Tn as primary as opposed to the set of tree domains which
one may then label. This cleaner mathematical foundation reveals higher dimensional
trees to be related to the fundamental constructions of the free monad, free completely
iterative monad and cofree comonad. It also leads to a simple implementation of higher
dimensional trees in Haskell.

4 Containers

Containers [8] are designed to represent those functors which are concrete data types
and those natural transformations which are polymorphic functions between such con-
crete data types. Such data types include lists, trees etc, but not solutions of mixed

Higher Dimensional Trees, Algebraically 233

variance recursive domain equations such as μX.(X → X) + N. Containers take as
primitive the idea that concrete data types consist of its general form or shapes and,
given such a shape, a set of positions where data can be stored. Since Rogers’ n-
dimensional trees certainly store data at the nodes of the n-dimensional tree, it is natural
to ask whether these trees are indeed containers. In this section, we see that the functors
Tn and Rn are indeed containers and point out the following theoretical and practical
consequences:

– Many properties of n-dimensional trees can be deduced from the fact that they
are containers. As just one example, our transformation of a non-deterministic au-
tomata into a deterministic one requires n-dimensional trees to preserve weak pull-
backs. This follows from the fact that n-dimensional trees are containers.

– While we choose not to take paths and tree domains as primitive in our treatment of
higher dimensional trees, paths are nevertheless important. We want a capability to
compute with them but do not want the burden of verifying the (HDLS) and (HDA)
properties. In particular, we want a purely inductive definition of tree domains and
paths and, remarkably, find that the shapes and positions of the container Tn provide
that.

Containers are semantically equivalent to normal functors and a special case of ana-
lytic functors. However, while containers talk about the different shapes a data structure
can assume, analytic functors talk about the number of structures of a given size and
hence there is no clear, simple and immediate connection between tree domains and
paths on the one hand and analytic functors on the other hand. Thus we use containers
rather than analytic functors to represent higher dimensional trees. In the rest of this
section, we introduce containers and recall some of the closure properties of containers.
This proves sufficient to then show that all Rogers’ trees are indeed containers. While
the theory of containers can be developed in any locally cartesian closed category with
W -types and disjoint coproducts, we restrict to the category of Set to keep things simple.

The simplest example of a data type which can be represented by a container is
that of lists. Indeed, any element of the type List(X) of lists of X can be uniquely
written as a natural number n given by the length of the list, together with a function
{0, . . . , n − 1} → X which labels each position within the list with an element from
X . Thus

List(X) =
∐

n∈N

{0 . . . n − 1} → X

More generally, we consider data types given by i) shapes which describe the form
of the data type; and ii) for each shape, s ∈ S, there is a set of positions P (s). Thus we
define

Definition 4.1 (Container). A container (S, P) consists of a set S and an S-indexed
family P of sets, ie a function P : S → Set.

As suggested above, lists can be presented as a container with shapes N and positions
defined by P (n) = {0, . . . , n−1}. Similarly, any binary tree can be uniquely described
by its underlying shape (which is obtained by deleting the data stored at the leaves) and
a function mapping the positions in this shape to the data thus:

234 N. Ghani and A. Kurz

•
• x3

x1 x2

∼=

•
•

x1
x2

x3
X

.

The extension of a container is an endofunctor defined as follows:

Definition 4.2 (Extension of a Container). Let (S, P) be a container. Its extension, is
the functor T(S,P) defined by

T(S,P)(X) =
∐

s∈S

P (s) → X

Thus, an element of T(S,P)(X) is a pair (s, f) where s ∈ S is a shape and f : P (s) →
X is a labelling of the positions of s with elements from X . The action of T(S,P) on
a morphism g : X → Y sends the element (s, f) to the element (s, g · f). If F is a
functor that is the extension of a container, then the shapes of that container can simply
be calculated as F1 — that is S = T(S,P)1. This corresponds to erasing the data in a
data structure to reveal the underlying shape. Containers have many good properties,
in particular, many constructions on functors specialise to containers. These closure
properties are summarised below.

Theorem 4.3 (Closure properties of Containers [8]). The following are true

– The identity functor is the extension of the container with one shape and one posi-
tion.

– The constantly A valued functor has shapes A and positions given by Pa = 0.
– Let (S1, P1) and (S2, P2) be containers. Then the functor T(S1,P1) +T(S2,P2) is the

extension T(S,P) of the container (S, P) defined by

S = S1 + S2 P (inl(s)) = P1s P (inr(s)) = P2s

– Let (S1, P1) and (S2, P2) be containers. Then the functor T(S1,P1) ×T(S2,P2) is the
extension TS,P of the container (S, P) defined by

S = S1 × S2 P (s1, s2) = P1s1 + P2s2

In order to show that containers are closed under fixed points, we need to introduce the
notion of a n-ary container to represent n-ary functors. For the purposes of our work,
we only need bifunctors and so we restrict ourselves to binary containers.

Definition 4.4 (Bi-Containers). A bi-container consists of two containers with the
same underlying shape. That is a set S and a pair of functions P1, P2 : S → Set.
The extension of a binary container is a bifunctor given by

T(S,P1,P2)(X, Y) =
∐

s∈S

(P1s → X) × (P2s → Y)

Given a bi-container (S, P1, P2), the functor X �→ μY.F (X, Y) is a container as
demonstrated by the following theorem.

Higher Dimensional Trees, Algebraically 235

Theorem 4.5 (Fixed Points of Containers [8]). Let (S, P1, P2) be a bi-container and
let F (X, Y) = T(S,P1,P2)(X, Y) be its extension. Then the functor μY.F (X, Y) is a
container with shapes given by

S = μY.T(S,P2)(Y)

and positions given by

P (s, f) = P1s +
∐

p∈P2s

P (fp)

To understand this theorem, think of an element of μY.F (X, Y) as a tree with a top
F -layer which stores elements from X at the X positions in this F -layer and further
elements of μY.F (X, Y) at the Y -positions of this F -layer. We know that the shapes
of the functor μY.F (X, Y) must be this functor at 1, ie μY.F (1, Y). More concretely,
a shape for μY.F (X, Y) must thus be an F -shape for the top layer of a tree and, for
each Y -position of that shape, we must have a shape of μY.F (X, Y) to represent the
tree recursively stored at that position. As for the positions for storing data of type X in
a tree with shape (s, f) where s ∈ S and f : P2s → μY.F1Y , these should be either
the positions for storing X-data in the top layer given by P1s or, for each position in
p ∈ P2s, a position in the subtree stored at that position. Since that subtree has shape
fp, we end up with the formula above.

Applying these closure properties, we derive the following

Theorem 4.6. Rogers’ n-dimensional non-empty tree functor Rn is the extension of a
container. That is, Rn = T(S+

n ,P+
n) where

S+
−1 = 0

S+
n+1 = μY.1 + RnY

P+
n+1(inl∗) = 1

P+
n+1(inr(s, f)) = 1 +

∐

p∈Pns

P+
n+1(fp)

As a corollary, Tn is also the extension of a container. That is Tn = T(Sn,Pn) where
Sn = 1 + S+

n , Pn(inl∗) = 0 and Pn(inrs) = P+
n s. What is particularly nice about the

container presentation of Tn is that the shapes Sn are in bijection with the tree domains
while the paths in any tree domain are in bijection with the positions of the equivalent
shape. Further, the paths are given by a purely inductive definition.

5 Automata, (Co)Algebraically

We show that the classical automata-theoretic results about determinisation and min-
imisation extend to the higher-dimensional automata of Rogers. Using our reformula-
tion of Rogers’ structures in Section 3 and the container-technology of Section 4, these
results become special cases of the classical results about automata as algebras for a

236 N. Ghani and A. Kurz

functor, a theory initiated by Arbib and Manes [2,3,4]. We also extend Rogers’ work by
appropriate notions of signature and deterministic automata.

We should like to point out that none of the constructions or proofs in this section
requires the explicit manipulation of trees or tree domains.

Before starting on the topic of the section, we review the situation for string and tree
automata. Ignoring initial and accepting states, the situation is depicted in

(strings) non-det det

top-down Q → P(A × Q) Q → QA

bottom-up A × Q → PQ A × Q → Q

(trees) non-det det

top-down Q → P(FQ) —

bottom-up FQ → PQ FQ → Q

For both string and tree automata, the relationship between non-deterministic top-
down automata (=coalgebras in the Kleisli-category of P) and non-deterministic bottom-
up automata (=algebras in the Kleisli-category of P) is straightforward: both Q →
P(FQ) and FQ → PQ are just two different ways of denoting a relation ⊆ Q × FQ.
The relationship between deterministic top-down automata (=coalgebras) and determin-
istic bottom-up automata (=algebras) is given in the string case by the adjunction A×−

(−)A (this situation is generalised and studied in [3]). In the tree case, F is an arbitrary
functor on Set and so has in general no right-adjoint.1 It is still possible to describe de-
terministic top-down tree automata but they are strictly less expressive [6, Chapter 1.6].

The familiar move from non-deterministic to deterministic string automata can be
summarised as follows. Any non-deterministic transition structure f : Q → P(A × Q)
can be lifted to a map f̄ : PQ → P(A × Q) given by f̄(S) =

⋃
q∈S f(q). Using

P(A × Q) ∼= (PQ)A, f̄ is a deterministic transition structure PQ → (PQ)A on PQ.
Determinisation for tree automata will be discussed below.

5.1 Signatures

Rogers’ automata of Definition 2.5 do not associate arities to the symbols in the alphabet
Σ. For example, in the tree automata of Example 2.6, one σ may appear in two triples
(q, σ, l1), (q, σ, l2) ∈ δ where l1 and l2 are lists of different lengths. Thus the same
‘function symbol’ σ may have different arities and the Σ-labelled trees are not exactly
elements of a term algebra.

To rectify this situation, we must ask ourselves what is the appropriate notion of arity
if operations take as input higher dimensional trees. In the two-dimensional case arities
are natural numbers: the arity of a function symbol σ is the number of its arguments.
But, in container terminology, N is just the the set of shapes of T1 = List. Thus, when
operations of a signature are consuming higher dimensional trees, their arities should
be the shapes of trees one dimension lower. This leads to

Definition 5.1 ((n + 1)-dimensional signature). An (n + 1)-dimensional signature is
a set Σ with a map Σ → Tn(1).

Example 5.2. 1. A 1-dimensional signature is a map r : Σ → {0, 1}, due to the
isomorphism T0(1) ∼= {0, 1}. We will see below (Example 5.4) that 0 specifies
nullary operations and 1 specifies unary operations.

1 In fact, if F : Set → Set has a right-adjoint, then F = A × − for A = F1.

Higher Dimensional Trees, Algebraically 237

2. A 2-dimensional signature is a signature in the usual sense, due to the isomorphism
T1(1) ∼= N that maps a list to its length.

The next step is to associate to each signature a functor in such a way that the initial
algebra for the functor contains the elements of the language accepted by an automaton.
The simplest and most elegant way to do this is to construct a container and use its
extension. Recalling that Pn : Sn → Set is the container whose extension is Tn and
that Sn = Tn(1), we can turn any signature r : Σ → Tn(1) into the container (Σ, Pr)
as follows

Pr : Σ
r−→ Sn

Pn−→ Set. (1)

Definition 5.3 (FΣ). The functor F(Σ,r), or briefly FΣ , associated to a signature r :
Σ → Tn(1) is the extension T(Σ,Pr) of the container (1), that is, FΣ(X) =

∐
σ∈Σ

Pn(r(σ)) → X .

Example 5.4. 1. A 1-dimensional signature r : Σ → {0, 1} gives rise to the functor
FΣ(X) = Σ0 + Σ1 × X where Σi = r−1(i).

2. A 2-dimensional signature r : Σ → N gives rise to the functor FΣ(X) =
∐

σ∈Σ

Xr(σ) usually associated with a signature.

The next two propositions, which one might skip as a pedantic technical interlude,
make the relation between an alphabet Σ′ and a signature Σ → Tn(1) precise. The
first proposition says that trees for the signature Σ → Tn(1) (ie elements of the initial
FΣ-algebra) are also trees over the alphabet Σ (ie elements of Tn+1(Σ)). The second
proposition says that trees over the alphabet Σ′ are the same as trees over the signature
Σ′ × Tn(1) → Tn(1).

Proposition 5.5. For each (n+1)-dimensional signature Σ → Tn(1), there is a canon-
ical FΣ-algebra structure on Tn+1(Σ). Moreover, the unique algebra morphism from
the initial FΣ-algebra to Tn+1(Σ) is injective.

Proof. The carrier of the initial FΣ-algebra is μY.FΣ(Y) and Rn+1(Σ) is μY.Σ ×
Tn(Y). The injective morphism in question arises from the injective map of type FΣ(Y)
→ Σ × Tn(Y), that is of type (

∐
σ∈Σ P (r(σ)) → Y) → Σ × (

∐
s∈Sn

P (s) → Y),
which maps pairs (σ, f) ∈ FΣ(Y) to (σ, (r(σ), f)).

Proposition 5.6. Let Σ′ be a set (called an alphabet) and Σ be the signature given by
the projection r : Σ′ × Tn(1) → Tn(1). Then Rn+1(Σ′) is isomorphic to the (carrier
of the) initial FΣ-algebra.

Proof. The carrier of the initial FΣ -algebra is μY.FΣ(Y) and Rn+1(Σ′) is μY.Σ′ ×
Tn(Y). But Σ′ × Tn(Y) = Σ′ × (

∐
s∈Sn

P (s) → Y) ∼=
∐

(σ,s)∈Σ′×Sn
P (s) → Y =∐

σ∈Σ P (r(σ)) → Y = FΣ(Y).

5.2 Higher Dimensional Automata

Before giving a coalgebraic formulation of Rogers’ automata (Definition 5.10), we in-
troduce the corresponding notion of deterministic automaton (Definition 5.7), which has
a particularly simple definition of accepted language and is used in the next subsection
on determinisation and minimisation. (Recall Definition 5.3 of FΣ .)

238 N. Ghani and A. Kurz

Definition 5.7. A deterministic (n + 1)-dimensional automaton for the signature Σ →
Tn(1) is a function

FΣQ → Q.

Example 5.8. 1. To obtain the usual string automata over an alphabet A we consider
a 1-dimensional signature Σ consisting of the elements of A as unary operation
symbols plus one additional nullary operation symbol (see Example 5.4.1). FΣ(Q)
is then 1 + A × Q.

2. A 2-dimensional automaton is the usual deterministic bottom-up tree automaton
[6].

Definition 5.9. A state q in a deterministic (n + 1)-dimensional automaton for the
signature Σ → Tn(1) accepts an (n + 1)-dimensional tree t if the unique morphism
from the initial FΣ-algebra maps t to q.

We adapt Rogers’ definition of automata given in Definition 2.5:

Definition 5.10. An (n + 1)-dimensional automaton for the signature Σ → Tn(1) is a
function

Q → P(FΣ(Q)).

Example 5.11. 1. In the case of string automata, FΣ(Q) is 1+A×Q and an automaton
becomes Q → P(1+A×Q) ∼= 2×(PQ)A. The map Q → 2 encodes the accepting
states and the map Q → (PQ)A gives the transition structure.

2. Comparing with the previous definition, a 2-dimensional automaton δ : Q →
P(FΣ(Q)) can still be considered as a set of triples δ ⊆ Q × (Σ × List(Q)),
but not all such triples are allowed: for (q, σ, 〈q1, . . . qn〉) ∈ δ it has to be the the
case that the arity of σ is n. This coincides with the notion of a non-deterministic
top-down tree automaton as in [6].

We have indicated how to define the accepted language of a (non-deterministic) automa-
ton in Example 2.7. In particular, we found it natural to give a bottom-up formulation.
We will now generalise this definition. The basic idea is as follows. We first observe that
we cannot use the final coalgebra for the functor PFΣ since this coalgebra would take
the branching given by P into account. Instead, the correct idea is to consider a non-
deterministic automaton as a FΣ -coalgebra in the category of relations. We first note
the following proposition which follows from FΣ being the extension of a container.

Proposition 5.12. FΣ preserves weak pullbacks.

Now let Rel denote the category of sets and relations.

Definition 5.13. Given a functor F on Set we define F̄ to map sets X to F̄X = FX
and to map relations X

π0← R
π1→ Y to F̄R = F (π0)◦; F (π1) where (−)◦ denotes

relational converse and ‘;’ relational composition .

Barr [5] showed that F̄ is a functor on Rel if and only if F preserves weak pullbacks. A
theorem of de Moor [7, Theorem 5] and Hasuo et al [10, Theorem 3.1] then guarantees
that the initial F -algebra i : FI → I in Set gives rise to the final F̄ -coalgebra i◦ :
I → F̄ I in Rel. This gives a ‘coinductive’ definition of the accepted language of a
non-deterministic automaton:

Higher Dimensional Trees, Algebraically 239

Definition 5.14. The language accepted by a state q of an (n + 1)-dimensional au-
tomaton Q → P(FΣ(Q)) is given by the unique arrow (in the category Rel) into the
final F̄Σ-coalgebra .

Note that this definition associates to q a subset of the carrier I of the initial FΣ-algebra.
It is clear from the constructions that every deterministic automaton can be consid-

ered as a non-deterministic automaton, and that the two notions of accepted language
agree. We make this precise with the following definition and proposition.

Definition 5.15. The non-deterministic automaton corresponding to the deterministic
automaton f : FΣQ → Q is given by f◦ : Q → PFΣQ (where f◦ is again the
converse relation of (the graph of) f).

Proposition 5.16. The deterministic automaton FΣQ → Q accepts t in q if and only
if the corresponding non-deterministic automaton Q → PFΣQ has t in the language
of q.

5.3 Determinisation and Minimisation

This section follows the work by Arbib and Manes [2,3,4] on automata as algebras for
a functor on a category.

Determinisation. First observe that the elementship relation �⊆ PX×X can be lifted
to F̄ (�) ⊆ FPX × FX , which can be written as

FPX
τX−→ PFX (2)

τX is well-known to be natural in X whenever F preserves weak pullbacks. Now, given
a non-deterministic automaton

Q → PFΣQ (3)

we first turn it from top-down to bottom-up by going to the converse relation

FΣQ → PQ (4)

and then lift it from FΣQ to PFΣQ and precompose with τ to obtain

FΣPQ → PFΣQ → PQ (5)

Remark 5.17. The step from (4) to (5) is a special case of [4, Lemma 7] (where P can
be an arbitrary monad on a base category).

Theorem 5.18. Given an (n+1)-dimensional automatonQ → PFΣQ (Definition 5.10)
with accepting statesQ0 ⊆ Q, the state Q0 in the corresponding deterministic automaton
(5) accepts the same language.

Minimisation. A deterministic automaton with a set of accepting states is a structure

FΣQ
δ−→ Q

α−→ 2 (6)

240 N. Ghani and A. Kurz

We denote by FΣI → I the initial FΣ-algebra and by ρ : I → Q the unique morphism
given by initiality. The map β = α◦ρ is called the behaviour of (6) because β(t) tells us
for any t ∈ I whether it belongs to the accepted language or not. Note that the automata
(6) form a category, denoted DAut, which has as morphism f : (δ, α) → (δ′, α′) those
algebra morphism f : δ → δ′ satisfying α′ ◦ f = α.

Definition 5.19 ([2, Section 4]). Let ι : FΣI → I be the initial FΣ-algebra. The
automaton (6) is reachable if the algebra morphism ι → δ is surjective and it is a
realisation of β : I → 2 iff there is a morphism (ι, β) → (δ, α) in DAut. Moreover,
(6) is a minimal realisation of β iff for all reachable realisations (δ′, α′) of β there is a
unique surjective DAut-morphism f : (δ′, α′) → (δ, α).

Different minimal realisation theorems can be found in Arbib and Manes [2,3,4] and
Adámek and Trnková [1]. The theorem below follows [1, V.1.3].

Theorem 5.20. Let Σ be an (n + 1)-dimensional signature, FΣ the corresponding
functor and FΣI → I the initial FΣ -algebra. Then every map β : I → 2 has a minimal
realisation.

Proof. Let ei : (ι, β) → (δi, αi) be the collection of all surjective DAut-morphisms
with domain (ι, β). Let fi be the multiple pushout of ei in Set and g = fi ◦ ei. The
universal property gives us α with α ◦ g = β. Being a container FΣ is finitary and,
therefore [1, V.1.5], preserves the multiple pushout. Hence there is δ with δ◦FΣg = g◦ι.
Since FΣ preserves, like any set-functor, surjective maps, δ is uniquely determined. We
have constructed an automaton (δ, α) that realises β. It is minimal because any other
reachable realisation appears as one of the ei.

6 Conclusion

This paper applies (co)algebraic and categorical techniques to Rogers’ recent work in
linguistics on higher dimensional trees. In particular, we have given an algebraic formu-
lation of Rogers’ higher dimensional trees and automata. Our analysis shows that, just
as ordinary trees, the higher dimensional trees organise themselves in an initial algebra
for a set-functor. This allowed us to use Arbib and Manes’ theory of automata as alge-
bras for a functor, yielding simple definitions of accepted language and straightforward
constructions of determinisation and minimisation.

More importantly, as we have only been able to hint at, our algebraic formulation
gives us the possibility to write programs manipulating the trees in functional program-
ming languages like Haskell that support polymorphic algebraic data types. Future work
will be needed to substantiate our claim that, in fact, our abstract categorical treatment
is very concrete in the sense that it will give rise to simple implementations of algo-
rithms manipulation higher dimensional trees. A good starting point could be Rogers’
characterisation of non-strict tree adjoining grammars as 3-dimensional automata [11,
Thm 5.2].

Acknowledgements. The 2nd author wishes to thank Ichiro Hasuo for helpful discus-
sions.We are also grateful to the referees for their numerous comments that helped us
to improve the presentation.

Higher Dimensional Trees, Algebraically 241

References

1. Adámek, J., Trnková, V.: Automata and Algebras in Categories. Kluwer Academic Publish-
ers, Dordrecht (1990)

2. Arbib, M.A., Manes, E.G.: Machines in a category: An expository introduction. SIAM Re-
view 16 (1974)

3. Arbib, M.A., Manes, E.G.: Adjoint machines, state-behaviour machines, and duality. Journ.
of Pure and Applied Algebra 6 (1975)

4. Arbib, M.A., Manes, E.G.: Fuzzy machines in a category. Bull. Austral. Math. Soc. 13 (1975)
5. Barr, M.: Relational algebras. LNM 137 (1970)
6. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:

Tree automata techniques and applications (1997) Available online.
7. de Moor, O.: Inductive data types for predicate transformers. Information Processing Let-

ters 43(3), 113–118 (1992)
8. Ghani, N., Abbott, M., Altenkirch, T.: Containers - constructing strictly positive types. The-

oretical Computer Science 341(1), 3–27 (2005)
9. Ghani, N., Lüth, C., de Marchi, F, Power, J.: Dualizing initial algebras. Mathematical Struc-

tures in Computer Science 13(1), 349–370 (2003)
10. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace theory. In: International Workshop on

Coalgebraic Methods in Computer Science (CMCS 2006). Elect. Notes in Theor. Comp. Sci.
vol. 164, pp. 47–65. Elsevier, Amsterdam (2006)

11. Rogers, J.: Syntactic structures as multi-dimensional trees. Research on Language and Com-
putation 1(3-4), 265–305 (2003)

A Semantic Characterization of

Unbounded-Nondeterministic
Abstract State Machines

Andreas Glausch and Wolfgang Reisig

Humboldt-Universität zu Berlin
Institut für Informatik

{glausch,reisig}@informatik.hu-berlin.de

Abstract. Universal algebra usually considers and examines algebras
as static entities. In the mid 80ies Gurevich proposed Abstract State
Machines (ASMs) as a computation model that regards algebras as dy-
namic: a state of an ASM is represented by a freely chosen algebra which
may change during a computation. In [8] Gurevich characterizes the
class of sequential ASMs in a purely semantic way by five amazingly
general and elegant axioms. In [9] this result is extended to bounded-
nondeterministic ASMs.

This paper considers the general case of unbounded-nondeterministic
ASMs: in each step, an unbounded-nondeterministic ASM may choose
among unboundedly many (sometimes infinitely many) alternatives. We
characterize the class of unbounded-nondeterministic ASMs by an exten-
sion of Gurevich’s original axioms for sequential ASMs. We apply this
result to prove the reversibility of unbounded-nondeterministic ASMs.

1 Introduction

Abstract State Machines (ASMs) havebeen introduced as a “computationalmodel
that is more powerful and more universal than the standard computational mod-
els” by Yuri Gurevich in 1985 [6]. This is achieved by a combination of two classic
notions of computer science and mathematics: transition systems and algebras.

Transition systems play a fundamental role in theoretical computer science.
Usually, the operational semantics of a discrete computational model is specified
in terms of a transition system, consisting of a set of states and a next-state
relation. Examples are the transition systems as generated by Turing machines,
λ-expressions, Petri nets, etc. The computational model of ASMs also fits into
this setting, but differs from classical computational models in its general notion
of states: each state of an ASM is an algebra.

As usual, an algebra A comprises a nonempty set UA (its universe) together
with finitely many functions defined over UA, each with a fixed arity. No ad-
ditional properties are required. In fact, every algebra may serve as a state of
an ASM. As a consequence, a state of an ASMs may naturally include any
mathematical data structure that can be described in terms of logic, e.g. sets,

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 242–256, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Semantic Characterization of Unbounded-Nondeterministic ASMs 243

real numbers, abstract geometrical objects, vector spaces, or even uncomputable
functions. In classical computational models, such concepts usually require a
particular encoding, if possible at all.

The seamless integration of arbitrary data structures make ASMs particularly
well suited for abstract and natural modeling of algorithms and systems in gen-
eral. Accordingly, ASMs have been extended to a full-fledged design and analysis
methodology [5,4]. By stepwise refinement and composition of ASMs, large-scale
real-world systems have been formally modeled and analyzed [10,12].

2 Scope and Contribution of This Paper

Classically, ASMs employ a pseudo-code like program syntax to describe the
updates to be applied to a state A. This syntax is based on Σ-terms defined over
the signature Σ of A and some additional elementary control structures. During
the last decade, special attention towards a syntax-independent characterization
of ASMs has been paid. Such characterizations are valuable in order to compare
the expressive power of different variants of ASMs with classical computation
models, and help to identify subtle properties of ASMs.

As stated above, ASMs fit into the general setting of transition systems. Cor-
respondingly, a class C of ASMs may be characterized by answering the following
question:

Which transition systems can be represented by the ASMs in C?

In [8] Gurevich answers this question for the class of sequential small-step ASMs
in a surprisingly elegant way: he defines a class of transition systems which he
calls sequential algorithms by three general and semantic axioms, and proves this
class to be equivalent to sequential ASMs (c.f. also [11]). Later, Blass and Gure-
vich identified similar characterizations for other variants of ASMs, including
bounded-nondeterministic, parallel, and interactive versions [9,1,2,3].

In this paper we contribute to this work by a corresponding result for the
general case of unbounded-nondeterministic small-step ASMs (nondeterministic
ASMs for short). Nondeterministic ASMs have been introduced in [7] as “ASMs
with qualified choose”. We define the class of nondeterministic algorithms by
purely semantic axioms, and prove that this class is equivalent to nondetermin-
istic ASMs. This result shows that nondeterministic ASMs capture a surprisingly
large class of transition systems.

We exemplify the profit of this result by proving the reversibility of nondeter-
ministic ASMs: for each nondeterministic ASM M there exists a nondeterministic
ASM M−1 executing M in reverse order.

The rest of this paper is organized as follows. In the next section we axiomatize
the class of nondeterministic algorithms. In Sect. 4 we exemplify and define
nondeterministic ASMs. Finally, we prove a theorem stating the equivalence
of both notions, and apply this theorem in order to show the reversibility of
nondeterministic ASMs.

244 A. Glausch and W. Reisig

3 Nondeterministic Algorithms

In [8] Gurevich defines the class of sequential algorithms by the following (slightly
rearranged) five axioms which are very general, nevertheless simple and intuitive:

1. A sequential algorithm consists of a set of states S, a set of initial states
I ⊆ S, and a next-state function τ : S → S.

2. Each state A ∈ S is an algebra.
3. τ preserves the universe of states.
4. S and I are closed under isomorphism, and τ preserves isomorphism.

The decisive fifth axiom of sequential algorithms is bounded exploration. Intu-
itively, the bounded exploration axiom reads:

5. A finite set of ground terms is sufficient to characterize τ .

Gurevich shows in [8] that each sequential algorithm can be represented syntac-
tically by a corresponding sequential ASM.

In this section we define the class of nondeterministic algorithms by five like-
wise simple axioms. The first four axioms are a canonical nondeterministic ex-
tension of Gurevich’s original axioms. This extension has been presented in [9]
already. The fifth axiom is entirely new: intuitively, it only requires a nondeter-
ministic algorithm to perform a bounded amount of work in each step. In the
following subsections, we present the axioms and justify their reasonability.

3.1 A Nondeterministic Algorithm Constitutes a Transition System

As indicated in the introduction already, the operational behaviour of a discrete
algorithm specified in a particular computation model is usually given by a tran-
sition system. Therefore, we assume that the behaviour of every nondeterministic
algorithm can naturally be represented by a nondeterministic transition system.

Axiom N1 (states and transitions). A nondeterministic algorithm N con-
sists of

– a set of states SN,
– a set of initial states IN ⊆ SN

– a next-state relation →N ⊆ SN × SN.

Each pair (A, A′) ∈ →N is a step of N. As usual, a run of N is a sequence
A0A1A2 . . . of states with A0 ∈ IN and Ai →N Ai+1 for all indices i.

3.2 A State of a Nondeterministic Algorithm Is an Algebra

The huge experience on algebraic specification confirms that algebras are general
enough to faithfully describe any static mathematical entity on any level of
abstraction. Consequently, it is legitimate to assume that every state of every
conceivable algorithm can be naturally described by an algebra. The second
axiom formalizes this idea.

A Semantic Characterization of Unbounded-Nondeterministic ASMs 245

As usual, a signature Σ is used to address the functions of an algebra: Σ
consists of finitely many function symbols f1, . . . , fk, each fi with its arity ni.
An algebra A is a Σ-algebra if A determines for each n-ary function symbol f a
unique n-ary function fA.

As an algorithm always has a finite syntactical representation, an algorithm
addresses only a finite set of functions. Hence, a single signature (with a finite
set of symbols) suffices for all states. This leads to the second axiom:

Axiom N2 (states are algebras). For a nondeterministic algorithm N, all
states in SN are algebras over the same signature ΣN.

Due to this axiom, we use the notions state and algebra interchangeably in this
paper. As a running example we consider the following algebra Q, with universe
UQ = {1, 2, 3}, consisting of two nullary functions aQ and bQ, and two unary
functions vQ and nextQ:

aQ = 1 bQ = 2
vQ(1) = 1
vQ(2) = 2
vQ(3) = 3

nextQ(1) = 2
nextQ(2) = 3
nextQ(3) = 1

Hence, the signature ΣQ of Q consists of the nullary function symbols a and b,
and the unary function symbols v and next.

3.3 Steps of a Nondeterministic Algorithm Preserve the Universe

The universe UA of an algebra A comprises all elementary semantic objects of A.
In addition, A defines relationships between these objects in terms of functions
over UA. In this sense, the elements of UA are atomic and foundational objects
that cannot be decomposed, destroyed, or created. Only the functions of A are
modified. As an example consider the Euclidian algorithm which computes the
greatest common divisor of two given integers. The states of the Euclidian algo-
rithm are built over the universe of all integers. A computation of the Euclidian
algorithm does neither add nor remove integers from this universe. It merely
computes new relationships such as “3 is the greatest common divisor of 12 and
27”. Consequently, the third axiom reads:

Axiom N3 (universe preservation). For a nondeterministic algorithm N the
following holds: for each step (A, A′) of N, A and A′ have the same universe.

3.4 Steps of a Nondeterministic Algorithm Preserve Isomorphisms

As usual, an isomorphism i between two Σ-algebras A and B is a bijective
mapping i : UA → UB that preserves the functions of A. Isomorphic algebras
only differ in their concrete representation of the universe, whereas the functions
of both algebras are essentially the same.

For an algorithm the concrete representation of the universe is inessential.
For example, the Euclidean algorithm computes the greatest common divisor
regardless whether the integers are represented by some transistors on a chip

246 A. Glausch and W. Reisig

or by ink on paper. In general, an algorithm does not distinguish isomorphic
states, but computes isomorphic next-states at isomorphic states. This insight
is formalized by the fourth axiom:

Axiom N4 (isomorphism preservation). For a nondeterministic algorithm
N the following holds:

(i) SN and IN are closed under isomorphism.
(ii) Let (A, A′) be a step of N and let B ∈ SN with an isomorphism i : A → B.

Then there is a step (B, B′) of N such that i : A′ → B′ is an isomorphism.

Alternatively, (ii) may be formulated based on the well-known notion of simu-
lation relation: each bijective mapping i induces a simulation relation � on the
states of N that is defined as A � B iff i is an isomorphism from A to B. Hence,
isomorphic states simulate each other.

3.5 Steps of a Nondeterministic Algorithm Perform Bounded Work

The axioms N1–N4 are merely Gurevich’s classical first four axioms to sequential
algorithms, adjusted to the nondeterministic case. The fifth axiom presented next
is new and requires some additional notions.

A real-world processor (e.g. a computer, an organization, or a human being)
executing an algorithm performs only a bounded amount of work in each step
(algorithms that allow for unbounded amount of work in each step are considered
in [1]). Therefore, it is quite natural to require an algorithm to limit the amount
of work to be done in each step. In the following we formalize this vague idea.

According to the previous axioms, a step of a nondeterministic algorithm
preserves the signature and the universe of a state. That is, for a step (A, A′),
A and A′ share the same function symbols and the same function arguments,
and differ only in their function values. In order to represent such differences
formally, it is useful not to consider A as a collection of functions, but as a set
of location-value-triples. A location of A consists of a n-ary function symbol f
and a n-ary argument tuple ā. For example (v, [1]) is a location of the state Q
(we enclose the argument tuple in square brackets for the sake of readability).
Each location (f, ā) of A defines a unique value v = fA(ā). The triple (f, ā, v)
represents a small component of A which we call a molecule of A. For example,
(v, [1], 1) is a molecule of the state Q. Intuitively, the molecule (v, [1], 1) states
that “the function denoted by v maps the argument tuple [1] to the value 1”.

A state A is completely described by its set of molecules. For example, the
above state Q is represented by the following set of molecules:

Q = { (a, [], 1), (b, [], 2),
(v, [1], 1), (v, [2], 2), (v, [3], 3),
(next, [1], 2), (next, [2], 3), (next, [3], 1) }.

Calling them “updates”, Gurevich employed molecules already in [7] to describe
differences between algebras.

A Semantic Characterization of Unbounded-Nondeterministic ASMs 247

As announced above we intend to formalize the idea of “performing bounded
work in each step”: only a bounded part of a state A should contribute to a step,
whereas the rest of A remains unaffected. The representation of A by a set of
molecules permits a simple formalization of “a part of A”: each subset M ⊆ A
is a substate of A. As an example, the set

MQ =def { (a, [], 1), (v, [2], 2) }.

is a substate of Q.
Substates are used to describe steps that involve only a bounded part of a

state: a substep changes a substate M by updating the values of the molecules
in M . For instance, with

M ′
Q =def { (a, [], 2), (v, [2], 3) }

the pair (MQ, M ′
Q) is a substep which changes the substate MQ to the substate

M ′
Q. In general, a substep is a pair of substates (M, M ′) such that the locations

of the molecules of M and M ′ coincide (i.e. M and M ′ differ only in the values
of their molecules).

We employ substeps to capture the “amount of work” performed by a step
of N: each step (A, A′) is decomposed into a substep (M, M ′) and a substate
E disjoint from M and M ′ such that (A, A′) = (M ∪ E, M ′ ∪ E). Intuitively,
the substep (M, M ′) describes the actual state change performed by the step
whereas E describes the part of the state that is unaffected by the step (we use
the letter “E” for “external”). In this case, we call the step (A, A′) a completion
of (M, M ′). The following figure shows a step (Q, Q′) which is a completion of
the substep (MQ, M ′

Q):

(,[],1)a (,[2],2)v

(,[],2)b

(,[1],1)
(,[3],3)
v

v

(,[1],2)
(,[2],3)
(,[3],1)

next

next

next

E

MQ
(,[],2)a (,[2],3)v

(,[],2)b

(,[1],1)
(,[3],3)
v

v

(,[1],2)
(,[2],3)
(,[3],1)

next

next

next

E

MQ

Q Q'

'

A “bounded amount of work” then is captured by a substep bounded in size:
For a natural number k, a substep (M, M ′) is k-bounded iff |M | ≤ k (which is
equivalent to |M ′| ≤ k). We are now able to formulate the final axiom stating
that the steps of a nondeterministic algorithm perform only bounded substeps:

Axiom N5 (bounded work). For a nondeterministic algorithm N there exists
a constant k ∈ N and a set W of k-bounded substeps such that for all states A, A′

of N the following holds: (A, A′) is a step of N iff (A, A′) is an completion of a
substep in W.

As W witnesses the fact that N performs only a bounded amount of work in
each step, we call W a bounded-work witness of N.

248 A. Glausch and W. Reisig

Though every substep in W is bounded, the set W itself may be infinite, even
uncountably infinite. For example, consider a function symbol r holding a real
number: W may contain uncountably many substeps that change the value of
r to a different real number. This points out a decisive difference to Gurevich’s
original bounded-exploration axiom: a finite set of ground terms is not sufficient
to characterize such rich behaviour.

We believe that the Axioms N1–N5 are intuitively convincing requirements to
discrete nondeterministic algorithms. However, we do not demand any further
requirements: we call any entity satisfying the Axioms N1–N5 a nondeterministic
algorithm.

4 Nondeterministic Abstract State Machines

In the previous section we introduced the class of nondeterministic algorithms in
a purely semantic and declarative way. This may appear strange, as algorithms
usually are represented in an explicit and syntactical form, e.g. by program code.
This raises the question whether a given nondeterministic algorithm can be rep-
resented in a syntactical way at all: is there a language expressive enough to de-
scribe any nondeterministic algorithm? In the following we answer this questions
positively by presenting the operational computation model of nondeterministic
ASMs, which has been introduced in [7] already.

We start by introducing the syntax and semantics of nondeterministic ASM
rules which divide into four rule types: assignment rules, conditional rules, par-
allel rules, and choice rules. The syntax of these rules is simple and intuitive,
and reminds of pseudo-code. However, in contrast to pseudo-code, nondetermin-
istic ASM rules have a formal semantics. Nondeterministic ASM rules form the
syntactical basis of nondeterministic ASMs introduced afterwards.

4.1 Assignment Rules

As usual, Σ-terms are constructed inductively from a signature Σ and a set of
variables V . Given a Σ-algebra A and a variable assignment α : V → UA, each
Σ-term t is evaluated to a unique value tA,α ∈ UA. We may skip the index α in
case t is ground (i.e. t contains no variables).

Terms are used to form assignment rules which update a single function
value of an algebra. An example built from signature ΣQ is the assignment
rule ExAssign:

v(a):=next(b).

Executing rule ExAssign at state Q assigns to the function symbol v at the
argument aQ = 1 the value next(b)Q = 3 (as all terms in ExAssign are
ground, a variable assignment α is not required). The result is a new state Q′

equal to Q except for the value at location (v, [1]).
The general form of an assignment rule Assign is

f(t1, . . . , tn):=t′

A Semantic Characterization of Unbounded-Nondeterministic ASMs 249

where t1, . . . , tn and t′ are Σ-terms, and f is a n-ary function symbol of Σ.
Applied at a state A and a variable assignment α, Assign updates the value
of the function symbol f at the argument ā =def (t1A,α, . . . , tnA,α) by the value
v =def t′A,α. This update is represented by an update molecule (f, ā, v).

In general, ASM rules may update more than a single location of A. Multiple
updates are represented by a set of update molecules, which is called an update
set. The update set of the assignment rule Assign at state A and variable
assignment α is defined as the singleton set

AssignA,α =def { (f, ā, v) }

with ā and v as defined above. Such an update set is applied to A by changing
the function values of A according to the update molecules in the update set.
The formal definition is straightforward and will be given in Sect. 4.3.

4.2 Conditional Rules

An assignment rule may be guarded by a condition, which is represented by a
conditional rule. For example, the conditional rule ExCond

if (a=b) then a:=next(a)

executes the assignment rule at a state A only if the condition a=b holds in A.
The condition may be an arbitrary Boolean formula. In technical terms, a

Boolean formula φ consists of several term equations of the form t1=t2 connected
by the usual Boolean operations ¬, ∧, and ∨. For a given state A and a variable
assignment α, the truth value of φ is computed in the obvious way.

The general form of a conditional rule Cond is

if φ then Assign

where φ is a Boolean formula and Assign is an assignment rule. Its semantics is
obvious: Assign is executed if the condition φ is satisfied by A and α. Otherwise
the state A is left unchanged. Hence, the update set of Cond at A and α is
defined as

CondA,α =def

{
AssignA,α , if φ is satisfied by A and α

∅ , otherwise.

For technical convenience, we assume every assignment rule as a special con-
ditional rule whose condition holds in every state.

4.3 Parallel Rules

Several conditional rules may be executed simultaneously, which is represented
by a parallel rule. A simple example is the parallel rule ExPar

par a:=b b:=a endpar.

250 A. Glausch and W. Reisig

ExPar simultaneously executes both assignment rules (which are special con-
ditional rules, as explained above). Executing ExPar at a state Q yields a new
state Q′ where the values of a and b are swapped.

The general form of a parallel rule Par is

par Cond1 . . .Condn endpar.

where Cond1, . . . ,Condn are conditional rules. Executing Par at a state A
and variable assignment α will result in a simultaneous execution of the updates
performed by Cond1, . . . ,Condn. Formally, the update set of Par is defined as

ParA,α =def Cond1A,α ∪ · · · ∪ CondnA,α.

An update set Δ (such as ParA,α) then is applied to a state A by changing the
function values according to the update molecules in Δ: for each update molecule
(f, ā, v) ∈ Δ, the value of f at argument ā is changed to v. The resulting state
is denoted by A ⊕ Δ. Hence, the functions of A ⊕ Δ are defined as

fA⊕Δ(ā) =

{
v , for (f, ā, v) ∈ Δ

fA(ā) , otherwise

for each n-ary function symbol f and each n-ary argument tuple ā.
Note that A ⊕ Δ is undefined in case Δ is inconsistent, i.e. Δ contains two

molecules (f, ā, v) and (f, ā, v′) with v �= v′. For example, executing the parallel
rule ExPar2

par f(x):=u f(y):=v endpar

at a state A with xA = yA and uA �= vA yields an inconsistent update set. In
that case ExPar2 yields no next-state.

For technical convenience, we assume every conditional rule Cond as a parallel
rule par Cond endpar.

4.4 Choice Rules

Choice rules allow nondeterministic choice of elements of the universe of a state.
An example of a choice rule built over the signature ΣQ is the rule ExChoice:

choose v do a:=v.

Executed at state Q, ExChoice chooses a value v from the universe of Q and
assigns it to a. Hence, ExChoice yields three different possible next-states, one
for each of the values 1, 2, and 3. At a state A with an infinite universe UA,
ExChoice yields an infinite number of next-states, one for each element of U .
Therefore, choice rules introduce unbounded nondeterminism.

A slightly advanced example of a choice rule is ExChoice2:

choose x, y with v(x) �= y do v(x):=y.

A Semantic Characterization of Unbounded-Nondeterministic ASMs 251

ExChoice2 assigns the nondeterministically chosen value y to the function sym-
bol v at the nondeterministically chosen argument x. The additional condition
v(x) �= v restricts the possible values for x and y. In this case, the condition
ensures that the newly assigned value differs from the old one.

In general terms, a choice rule introduces quantified variables as known from
first-order logic. The general form of a choice rule Choice is

choose x1, . . . , xn with φ do Par

where x1, . . . , xn are variables, φ is a Boolean formula, and Par is a parallel rule
such that φ and Par contain only variables from {x1, . . . , xn} (i.e. all variables
in Choice are bounded). For a given state A, Choice first nondeterministically
chooses a variable assignment α such that φ is satisfied by A and α. Then Par
is executed by use of the variable assignment α. Consequently, Choice has the
potential for infinitely many possible update sets at a state A. Formally, this set
of possible update sets is defined as

ChoiceA =def { ParA,α | ∃α : φ is satisfied by A and α }.

The semantics of a choice rule Choice built over a signature Σ is then de-
fined in terms of a next-state relation →Choice: for two Σ-algebras A, A′ holds
A →Choice A′ iff there is a consistent update set Δ ∈ ChoiceA such that
A′ = A ⊕ Δ.

4.5 Generalized Syntax and Semantics

The syntax of ASM rules presented above is rather restricted: a choice rule
merely contains a collection of simultaneously executed assignment rules. Such
a restriction definitely would hamper the practical application of ASM as a
specification language.

To cope with this problem, the syntax and semantics of ASM rules may be
extended to allow arbitrary nesting of conditional rules, parallel rules, and choice
rules. In fact, ASM rules classically are defined to allow such arbitrary nesting
[7,5]. An example of such a nested ASM rule over signature ΣQ is the following
ASM rule Nested:

par
if (a=v(a)) then par
choose x do a:=x
choose y do b:=y

endpar
if (¬a=v(a)) then b:=inc(b)

endpar.

In this paper we stick to the simple un-nested version of ASM rules in order
to keep the technical details as low as possible. Nevertheless, this restriction
is not critical. The expressive power of ASM rules as presented in this paper
does not increase by allowing arbitrary nesting: each nested ASM rule such as

252 A. Glausch and W. Reisig

Nested can be canonically transformed to an equivalent un-nested choice rule
by shifting choose-statements towards the beginning of the rule (we skip the
formal construction here). This corresponds to an analogy from first-order logic:
every first-order formula built from ∃, ∧ and ∨ can be transformed to its prenex
normal form containing only a single occurrence of ∃.

According to their syntax, ASM rules merely seem to be yet another pro-
gramming language. But in contrast to classical programs, an ASM rule Rule
built over a signature Σ may be executed on arbitrary Σ-algebras. Therefore,
as explained in the introduction, Rule may compute on arbitrary mathematical
objects such as vectors and real numbers.

4.6 Nondeterministic ASMs

A nondeterministic ASM resembles a nondeterministic algorithm except for the
next-state relation which is explicitly given by a choice rule. More precisely, a
nondeterministic ASM M consists of

– a signature ΣM ,
– a set of ΣM -algebras SM , closed under isomorphism (the states of M),
– a set IM ⊆ SM , closed under isomorphism (the initial states of M),
– a choice rule Choice built over the signature ΣM .

The next-state relation of M , denoted by →M , is the restriction of →Choice to
the states of M . Analogously to nondeterministic algorithms, a run of M is a
sequence A0A1A2 . . . of states of M with A0 ∈ IM and Ai →M Ai+1 for all
indices i.

5 The Equivalence Theorem

In this section we present the main result of this paper. The following theorem
states that the class of nondeterministic algorithms (as introduced in Section
3) and the class of nondeterministic ASMs (as introduced in Section 4) are
equivalent:

Theorem 1 (Equivalence Theorem). Nondeterministic algorithms and non-
deterministic ASMs describe the same set of transition systems.

We present the proof in the next section.
Theorem 1 confirms that the notion of nondeterministic ASMs and the no-

tion of nondeterministic algorithms may be used interchangeably. In particular,
interesting properties of nondeterministic ASMs can be identified by examining
nondeterministic algorithms. As an example, for each nondeterministic algorithm
N, reverting the next-state relation →N yields another nondeterministic algo-
rithm. Hence, nondeterministic algorithms are reversible. This fact is proven by
verifying the Axioms N1–N5 for the reverse of N. This task is quite simple, as
the Axioms N1–N5 are highly symmetric with respect to the next-state relation
→N.

According to the Theorem 1, the following corollary follows immediately:

A Semantic Characterization of Unbounded-Nondeterministic ASMs 253

Corollary 1 (Reversibility). For each nondeterministic ASM M there exists
a nondeterministic ASM M−1 such that →(M−1) = (→M)−1.

Alternatively, Corollary 1 can also be proven without Theorem 1 by construct-
ing for each ASM rule its reverse rule. For instance, the reverse of the rule
“a:=next(a)” is the rule “choose x with a=next(x) do a:=x”. However, the
proof based on Theorem 1 is considerably simpler, as there are no such syntacti-
cal constructions involved. This points out the profit of Theorem 1: the notion of
nondeterministic algorithms allows to examine nondeterministic ASMs without
any syntactic overhead.

6 Proof of the Equivalence Theorem

In this section we present the proof of Theorem 1. The proof divides into two
parts: firstly, we show that every nondeterministic ASM represents a nondeter-
ministic algorithm. Secondly, we show that every nondeterministic algorithm can
be represented by a nondeterministic ASM.

The first part is fairly simple. Let M be a nondeterministic ASM with Choice
its choice rule. One only needs to verify that M satisfies the axioms N1–N5:
Axioms N1 and N2 are satisfied by the definition of nondeterministic ASMs.
Axiom N3 and N4 are properties of the semantics of Choice that are easily
verified. Axiom N5 holds due to the fact that in each step (A, A′) of M, Choice
accesses and modifies only a bounded substate of A.

The second part of the proof requires considerably more effort. For the rest
of this section, let N be a nondeterministic algorithm, and let W be a bounded-
work witness for N (see axiom N5). In the following we show that there exists
a nondeterministic ASM M that represents N. Due to the significant difference
between Gurevich’s bounded exploration axiom and our bounded work axiom,
the proof employs a couple of new argumentations.

We start with a lemma presenting a close connection between completions of
substeps and the ⊕-operator:

Lemma 1. Let (M, M ′) ∈ W and let A, A′ ∈ SN. Then (A, A′) is a completion
of (M, M ′) iff M ⊆ A and A′ = A ⊕ M ′.

Proof. (⇒) Let E be a substate disjoint from M and M ′ such that (A, A′) =
(M ∪E, M ′ ∪E). Obviously M ⊆ A. Further show that A⊕M ′ = (A\M)∪M ′.
As A′ = E∪M ′ = (A\M)∪M ′, this implies A′ = A⊕M ′. (⇐) For E =def A\M ,
show that E and M ′ are disjoint and that (A, A′) = (M ∪ E, M ′ ∪ E). ��

The next lemma states that parallel rules preserve isomorphisms between states.
For a parallel rule Par, let τ(Par, A, α) =def A ⊕ ParA,α denote the next state
computed by Par at state A and variable assignment α.

Lemma 2. Let Par be a parallel rule over a signature Σ, let A, B be Σ-algebras
with an isomorphism i : A → B, and let α be a variable assignment with values
in UA. Then i : τ(Par, A, α) → τ(Par, B, i ◦ α) also is an isomorphism.

254 A. Glausch and W. Reisig

Proof. Follows by examining the semantics of Par. ��

The following Lemma presents the main part of the proof: for each step (A, A′)
of N, a choice rule Choice can be constructed such that (A, A′) is a step of
Choice, and all other steps of Choice are also steps of N.

Lemma 3. Let (A, A′) be a step of N. Then there is a choice rule Choice such
that A →Choice A′, and B →Choice B′ implies B →N B′ for all states B, B′ of N.

Proof. By Axiom N5, there exists a substep (M, M ′) ∈ W such that (A, A′) is a
completion of (M, M ′). We use (M, M ′) to construct Choice.

Let V ⊆ UA denote the elements of the universe of A occurring in M and M ′.
As the size of M and M ′ is bounded, V is finite. For each element v ∈ V , choose
a unique variable xv. Define the Boolean formulas φ and ψ by

φ =def

∧

v �=w∈V

xv �= xw , ψ =def

∧

(f,[u1,...,un],v)∈M

f(xu1 , . . . , xun) = xv.

Construct for each molecule (f, [u1, . . . , un], v) ∈ M ′ the assignment rule
f(xu1 , . . . , xun):=xv. Combine all of these assignment rules to a single parallel
rule Par. Let v1, . . . , vm be the elements in V . Define Choice as

choose xv1 , . . . , xvm with φ ∧ ψ do Par.

According to axiom N5, the size of M and M ′ is bounded by a constant k.
Consequently, the size of Choice also is bounded by a constant c.

We first show that A →Choice A′: let α be the variable assignment defined
by α(xv) = v for all v ∈ V . Then φ and ψ are satisfied by A and α. Further, by
construction of Par, we have ParA,α = M ′. Therefore, A →Choice A ⊕ M ′. By
Lemma 1, A ⊕ M ′ = A′.

Finally, let B, B′ be states of N such that B →Choice B′. We have to show
that B →N B′. As B →Choice B′, there is a variable assignment β such that φ
and ψ are satisfied at B and β, and B′ = τ(Par, B, β).

Construct from B a isomorphic state C by bijectively replacing, for each
v ∈ V , the element β(xv) by v, and by replacing every other element from UB

by a new element not contained in UB. This construction is well-defined as φ is
satisfied by B and β. Let i : B → C be the corresponding isomorphism. As ψ
is satisfied by B and β, one can show that M ⊆ C. By construction of Par, we
have ParC,i◦β = M ′.

Let C′ =def τ(Par, C, i ◦ β). By Lemma 2, i : B′ → C′ is an isomorphism.
As B, B′ are states of N, Axiom N4 implies that C, C′ also are states of N. As
ParC,i◦β = M ′ and by the definition of τ(Par, C, i◦β), we conclude C′ = C⊕M ′.
As M ⊆ C, Lemma 1 implies that (C, C′) is a completion of (M, M ′). By Axiom
N5, (C, C′) is a step of N. As i : B → C and i : B′ → C′ are isomorphisms,
Axiom N4 implies that (B, B′) also is a step of N. ��

The last lemma states that a finite set of choice rules can be united to a single
choice rule:

A Semantic Characterization of Unbounded-Nondeterministic ASMs 255

Lemma 4. Let Choice1, . . . ,Choicen be choice rules. Then there exists a sin-
gle choice rule Union such that →Choice = →Choice1 ∪ · · · ∪ →Choicen

. Choice
is the union of Choice1, . . . ,Choicen.

Proof. For the sake of simplicity, we present Choice in form of a nested nonde-
terministic ASM rule. However, as stated in Section 4, Choice may be trans-
formed to an equivalent un-nested choice rule. The desired rule Choice is

choose x0, . . . , xn

with
∨

1≤i≤n(x0 = xi ∧
∧

1≤j≤n,j �=i x0 �= xj) do par
if (x0 = x1) then Choice1
...
if (x0 = xn) then Choicen

endpar.

The choice condition ensures that the value of x0 is equal to the value of one and
only one xi, i = 1, . . . , n. Hence, each variable assignment satisfying the choice
condition satisfies exactly one of the guards (x0 = x1), . . . , (x0 = xn).

A technical remark: as the above choice condition cannot be satisfied at states
with singleton universes, the above construction works only for states whose
universe contains at least two elements. However, this issue can be resolved by
a rather technical extension of the above construction. Due to the lack of space
and due to the practical irrelevance of singleton universes we skip this extension
here. ��

The final proof combines the lemmata presented above:

Proof (of Theorem 1). For all steps (A, A′), derive a choice rule Choice(A,A′) by
applying Lemma 3. Let C be the set of all of these choice rules. By construction
(see proof of Lemma 3), the size of all choice rules in C is bounded by a constant
c. WLOG we may assume that the programs in C contain only finitely many
different variables. Hence, as C contains only symbol sequences of bounded length
over a finite alphabet, C is finite.

By Lemma 4, let Choice be the union of all choice rules in C. Then for all
states A, A′ of N, we have A →N A′ iff A →Choice A′: (⇒) Let A →N A′. By
Lemma 3, A →Choice(A,A′) A′. By Lemma 4, A →Choice A′. (⇐) Let A →Choice

A′. By Lemma 4, there is a step (B, B′) of N with A →Choice(B,B′) A′. By Lemma
3, A →N A′. ��

7 Conclusion

The theory of ASMs suggests a comprehensive and quite general approach to
the notion of “algorithm”. The basic idea is to represent each state of an al-
gorithm by an algebra. A number of variants of ASMs have been identified,
among them sequential, nondeterministic, parallel, and interactive versions. The
deeper understanding of all variants of ASMs requires their characterization in-
dependently of any concrete syntax. This has been achieved for many of them,
including sequential, parallel, and interactive versions.

256 A. Glausch and W. Reisig

In this paper we characterized the class of unbounded-nondeterministic ASMs.
To this end we axiomatized the class of nondeterministic algorithms and showed
that this class is equivalent to unbounded-nondeterministic ASMs. Surprisingly,
the definition of nondeterministic algorithms turns out to be considerably simpler
than the semantics of unbounded-nondeterministic ASMs. Due to this fact, we
were able to prove the reversibility of unbounded-nondeterministic ASMs with
nearly no effort. We intend to identify and to prove further interesting properties
(such as linear speedup [8]) in a similar way.

Acknowledgement. We are grateful to the anonymous referees for their helpful
comments.

References

1. Blass, A., Gurevich, Y.: Abstract State Machines Capture Parallel Algorithms.
ACM Trans. Comput. Logic 4(4), 578–651 (2003)

2. Blass, A., Gurevich, Y.: Ordinary Interactive Small-Step Algorithms, parts I, II,
III ACM Trans. Comput. Logic (to appear)

3. Blass, A., Gurevich, Y., Rosenzweig, D., Rossman, B.: General Interactive Small
Step Algorithms. Technical Report MSR-TR-2005-113, Microsoft Research (Au-
gust 2006)

4. Börger, E.: The Origins and the Development of the ASM Method for High Level
System Design and Analysis. Journal of Universal Computer Science 8(1), 2–74
(2002)

5. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

6. Gurevich, Y.: A New Thesis. Abstracts, American Mathematical Society p. 317
(1985)

7. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specifi-
cation and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

8. Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms.
ACM Transactions on Computational Logic 1(1), 77–111 (2000)

9. Gurevich, Y., Yavorskaya, T.: On Bounded Exploration and Bounded Nondeter-
minism. Technical Report MSR-TR-2006-07, Microsoft Research (January 2006)

10. ITU-T. SDL Formal Semantics Definition. ITU-T Recommendation Z.100 Annex
F, International Telecommunication Union (November 2000)

11. Reisig, W.: On Gurevich’s Theorem on Sequential Algorithms. Acta Informat-
ica 39(5), 273–305 (2003)

12. Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

Parametric (Co)Iteration vs. Primitive

Direcursion

Johan Glimming

Department of Numerical Analysis and Computer Science
Stockholm University, Sweden

glimming@kth.se

Abstract. Freyd showed that in certain CPO-categories, locally contin-
uous functors have minimal invariants, which possess a structure that he
termed dialgebra. This gives rise to a category of dialgebras and homo-
morphisms, where the minimal invariants are initial, inducing a powerful
recursion scheme (direcursion) on a cpo. In this paper, we identify a prob-
lem appearing when translating (co)iterative functions (on a fixed para-
meterised datatype) to direcursion (on the same datatype), and present
a solution to this problem as a recursion scheme (primitive direcursion),
generalising and symmetrising primitive (co)recursion for endofunctors.
To this end, we give a uniform technique for translating (co)iterative
maps into direcursive maps. This immediately gives a plethora of exam-
ples of direcursive functions, improving on the situation in the literature
where only a few examples have appeared. Moreover, a technical trick
proposed in a POPL paper is avoided for the translated maps. We con-
clude the paper by applying the results to a denotational semantics of
Abadi and Cardelli’s typed object calculus, and linking them to previous
work on higher-order coalgebra and to bisimulations.

1 Introduction

Solutions to recursive domain equations involving function spaces can be given
as initial Ĝ-algebras in suitable categories, where Ĝ is an endofunctor given by
symmetrising G. This was shown by Freyd [12,13] (based on work by Smyth and
Plotkin [30]) and later refined by Fiore [10] in a framework of enriched category
theory. Initial Ĝ-algebras (also called dialgebras) generalise usual algebras and
coalgebras. Moreover, a recursion principle arises for Ĝ-algebras. This principle
is hereafter called direcursion and it is the topic of this paper. It has previously
been investigated both in loc. cit. and as a tool for functional programming (with
associated proof principle) (see e.g. [21,36,8]). Some notable theoretical results
are: the reduction to inductive types as given by Freyd in his seminal paper
[12] and the relationship to dinaturality [13], the derivation of an associated
proof principle [23,24], programming examples dealing with higher-order abstract
syntax [36], lambda calculus interpreters [21], and circular datatypes [8]. But
direcursion remains relatively unexplored as regards termination properties and
its relationships to other recursion schemes (and programming examples have so
far been rather scarce). In this paper we begin to remedy this situation.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 257–278, 2007.
� Springer-Verlag Berlin Heidelberg 2007

258 J. Glimming

We will here investigate the relationships between (co)iteration and direcur-
sion for a fixed datatype. With (co)iteration we mean the unique homomorphisms
associated to the initial (final) Ĝ(μĜ,)-(co)algebras by Bekič’s Lemma, i.e.
(co)iterative maps on this particular parameterised datatype. Since the carrier
of this (co)algebra coincides with the solution O = μĜ, we ask how these schemes
compare to direcursion for same functor G. Our main result is to show that by
generalising direcursion (by precomposing with an injection map or postcom-
posing with a projection map), we can express all such (co)iterative maps as a
canonical direcursive map such that the same computation is carried out at every
stage. We call this generalisation primitive direcursion since it is primitive recur-
sion for symmetric functors Ĝ, i.e. it is simultaneously primitive recursion and
primitive corecursion for recursive types. The latter two principles have been
studied in previous work by Meertens [19] and Uustalu and Vene [33]. Primi-
tive direcursion simultaneously gives both schemes in the special case when the
bifunctor is constant in its contravariant argument, but also transports those
schemes to cover domain equations involving function spaces as well, i.e. to the
mixed variant case, for which it has not previously been considered.

The paper is structured as follows: the first few pages survey necessary back-
ground material. Next, we develop primitive direcursion from first principles. In
the same section, we give the translation of certain iterative/coiterative maps
into primitive direcursive maps, which is our main result. This result can be
viewed as an internalised version of Bekic̆’s Lemma. The fourth section exem-
plifies the results in the setting of program semantics, and the last section gives
our conclusions.

2 Mathematical Preliminaries

In this paper we are essentially considering the category CPPO⊥! of directed
complete pointed cpos and strict continuous maps (or subcategories with similar
properties, e.g. Scott domains and strict maps), as defined in e.g. [3,31]. Such a
category is used when solving domain equations, for instance in [30] based on
[29]. We will in this paper assume an ambient category C which abstracts from
CPPO⊥! exactly the properties that we require here. These are our assumptions
on C:

– C has products × and coproducts +.
– C is algebraically compact, so that each (suitably qualified) endofunctor has

an initial algebra and a final coalgebra, and these are canonically isomorphic
[13], i.e. the unique homomorphism from the inverse of the initial algebra to
the final coalgebra is an isomorphism. In particular, this family of endofunc-
tors is assumed to include the functors considered in this paper. It follows
also that C has a zero object 0 ∼= 1, also known as a biterminator.

– C has regular initial dialgebras [12], as will be detailed below. Having regular
free dialgebras is in fact a consequence of algebraic compactness [13]. In a
weaker axiomatisation where we require merely free dialgebras for a class

Parametric (Co)Iteration vs. Primitive Direcursion 259

of functors instead of algebraic compactness, this condition must however
remain explicit, see [12,14] for examples.

– C is symmetric monoidal closed with tensor ⊗ and unit 1. The right adjoint
to this tensor is written � (with the natural isomorphisms curry and uncurry,
and counit eval).

– C has a generator I, i.e. for all f, g ∈ C(A, B) we have f = g iff for all
i : I → A we have that f ◦ i = g ◦ i.

An example of such a category is CPPO⊥! itself, in which case the tensor
⊗ is smash product (with right adjoint strict function space, with curry etc).
The product ×, on the other hand, is the cartesian product of cpos (thus we
have merely weak exponentials in the sense of ⊗ being left adjoint to the func-
tion space rather than the product), and coproduct is coalesced sum (i.e. the
least elements are identified in contrast to e.g. separated sum where a new one
is adjoined). The generator for this category is given by the Sierpinski space
I = {⊥, �} (so it is in particular not well pointed since I 	∼= 1). In CPPO⊥! the
family of endofunctors considered above are the CPPO⊥!-enriched (i.e. locally
continuous) functors, i.e. functors F : C → C given by maps |C| → |C| on objects
(writing |C| for the class of objects), and arrow maps given on homsets by a
Scott-continuous mapping C(A, B)
→ C(FA, FB) for each A, B ∈ |C|, such that
composition and identities are preserved. Such functors are alternatively called
locally continuous. Note that for bifunctors this means that each section is lo-
cally continuous. In particular, for mixed variant functors F : Cop ×C → C we re-
quire that C(B, A)×C(A′, B′)
→ C(F (A, A′), F (B, B′)) has said property instead
(see [3]).

Definition 1 (Algebra, Coalgebra)
Given a covariant functor F : C → C we say that an arrow α : F (A) → A is an
F -algebra with carrier A. The dual notion is that of F -coalgebra, i.e. reversed
arrows α : A → F (A). The arrows between (co)algebras are F -homomorphisms,
i.e. arrows h such that the left or right diagram below commute (in the respective
case):

F (A)
F (h)� F (B) A

h � B

Alg(F) Coalg(F)

A

α

�

h
� B

β

�
F (A)

α

�

F (h)
� F (B)

β

�

We now recall some results concerning solutions to recursive domain equations
in CPPO⊥!. These results serve to motivate our axiomatised category C. Given
a locally continuous endofunctor F , we construct a diagram by iterating the
functor, beginning at the zero object 0. There are then unique morphisms 0 → F0
and F0 → 0 so we can construct systems giving both a limit and a colimit. The
limit and colimit coincide in this case, and is denoted μF . This motivates the
algebraic compactness requirement for C. Further details are given in e.g. [30],
[25], [3]. One particular result (not detailed here) is that μF carries an initial

260 J. Glimming

algebra and also a final coalgebra (arising from considering respectively cones
and cocones, see loc. cit.). This is an important consequence since it together
with the following lemma shows that in CPPO⊥! we can solve domain equations
(for locally continuous endofunctors) up to isomorphism:

Proposition 1 (Lambek’s Lemma). An initial algebra (OF , ιF) is an iso-
morphism OF

∼= F (OF). Dually for final coalgebra (OF , ι◦F)

The notation ιF and ι◦F is used for the initial algebra and final coalgebra re-
spectively (we drop suffixes when possible). Our next assumption for C is that
it has regular initial dialgebras. The fact that CPPO⊥! satisfies this condition
is due to Freyd [12] (but see also pioneering work by [30] in the more con-
crete setting of a subcategory of embedding-projection pairs). We survey Freyd’s
work here, in particular by recalling that, for a (mixed-variant) functor F , an
object X is called F -invariant if there is an isomorphism α : F (X) ∼= X . If
fix e. α◦F (e)◦α−1 ∈ A → A is the identity, X is called special F -invariant. If it
is the only idempotent map A → A for which e◦α = α◦F (e), it is called minimal
invariant [12]. Freyd [12] showed that in CPPO⊥! there exists an F -invariant ob-
ject for every locally continuous functor that is minimal in this sense. A corollary
of this result is the recursion principle that we call direcursion, which relies on
first generalising the notion of (co)algebra to mixed-variance functors:

Definition 2 (Dialgebra). A G-dialgebra for bifunctor G : Cop × C → C is a
quadruple (A, B, φ, ψ) of objects A, B and associated arrows φ : G(B, A) → A
and ψ : B → G(A, B).

Note that in the case when G is dummy in its contravariant argument, i.e. an
endofunctor F on C, this definition gives precisely that (A, φ) is an F -algebra
and, independently, that (B, ψ) is a F -coalgebra. Dialgebras for a bifunctor G
form a category Dialg(G) with the following morphisms:

Definition 3 (Dialgebra Map). Given G-dialgebras (A, B, φ, ψ) and (A′, B′,
φ′, ψ′), a G-homomorphism (or dialgebra map/dimap) is a pair of arrows (h :
A → A′, g : B′ → B) such that the following diagrams commute:

G(B, A)
φ � A B

ψ� G(A, B)

≡ ≡

G(B′, A′)

G(g,h)

�

φ′
� A′

h

�
B′

g

�

ψ′
� G(A′, B′)

G(h,g)

�

An initial dialgebra for a bifunctor G is a dialgebra (A, B, φ, ψ) such that for
any other G-dialgebra (A′, B′, φ′, ψ′) there is a unique dialgebra map (h : A →
A′, g : B′ → B). The existence of initial dialgebras in CPPO⊥! was established
by Freyd:

Parametric (Co)Iteration vs. Primitive Direcursion 261

Theorem 1 (Existence of Initial Dialgebras [12]). CPPO⊥! has initial di-
algebras for every locally continuous bifunctor G : CPPO⊥!

op × CPPO⊥! →
CPPO⊥!. In addition, initial dialgebras in CPPO⊥! are of the form (OG, OG,
ιG, ι◦G) where ιG ◦ ι◦G = id and ι◦G ◦ ιG = id.

Proof. See e.g. [24]. �

The second property in the theorem is what Freyd termed regular initial dialge-
bra. The existence of such dialgebras was one of the conditions we listed for C,
and it will be frequently used in this paper. Note also that usual initial algebras
and final coalgebras for endofunctors follows from Freyd’s condition since the
difunctor can be constant in its negative argument, e.g. G(Y, X) = 1 + X . (In
such cases the intertwined diagrams for direcursion instead become two inde-
pendent diagrams for iteration and coiteration, respectively.) Moreover, Freyd’s
condition has the following consequence, which is the recursion principle studied
in this paper:

Definition 4 (Direcursion [12])
Let (O, O, ιG, ι◦G) be the initial G-dialgebra and suppose (A, B, φ, ψ) is some other
G-dialgebra. Then there exists unique morphisms g : O � A and h : B � O
such that the following diagrams commute:

G(O, O)
ιG� O O ι◦

G� G(O, O)

≡ ≡

G(B, A)

G(h,g)
�

φ
� A

g

�
B

h

�

ψ
� G(A, B)

G(g,h)
�

(direc-Prop)

We introduce the notation ([φ, ψ])G
def
= g and [(φ, ψ)]G

def
= h whenever the condi-

tions for φ and ψ are satisfied.

There are a number of standard properties that can be easily established. We
survey them here:

Lemma 1 (Basic properties of direcursion [21]). Let (O, O, ιG, ι◦G) be the
initial G-dialgebra and suppose (A, B, φ, ψ) is some other G-dialgebra. Then the
following is true:

([φ, ψ]) ◦ ιG = φ ◦ G([(φ, ψ)], ([φ, ψ])) (direc-Self)
ι◦G ◦ [(φ, ψ)] = G(([φ, ψ]), [(φ, ψ)]) ◦ ψ

id = ([ιG, ι◦G]) (direc-Refl)
id = [(ιG, ι◦G)]

A = B and ψ ◦ φ = idG(A,A) implies [(φ, ψ)] ◦ ([φ, ψ]) = idO (direc-Retract)

Proof. The two first properties follow directly. The third one follows by pasting
the right square for direcursion below the left one, and vice versa. �

262 J. Glimming

Lemma 2 (Direcursion Fusion [21]). Let (O, O, ιG, ι◦G) be the initial G-
dialgebra. Suppose that (A, B, φ : G(B, A) → A, ψ : B → G(A, B)) and (A′, B′,
φ′ : G(B′, A′) → A′, ψ′ : B′ → G(A′, B′)) are both G-dialgebras. For every dimap
g : A → A′, h : B′ → B such that

g ◦ φ = φ′ ◦ G(h, g)

and
ψ ◦ h = G(g, h) ◦ ψ′

we have the following property

g ◦ ([φ, ψ]) = ([φ′, ψ′]) and [(φ, ψ)] ◦ h = [(φ′, ψ′)] (direc-Fusion)

2.1 Symmetric Functors, Bekic̆’s Lemma and Parameterised
(Co)Algebras

As noted by Freyd [12] (and further detailed in [9]), we can by introducing
symmetric endofunctors Cop × C → Cop × C, view a dialgebra as an algebra on
the product category. We have in particular the following result:

Lemma 3 ([12]). There is a bijective correspondence between functors F : Cop×
C → C and symmetric functors F̂ : Cop × C → Cop × C, where

F̂ (X, Y) = (F (Y, X), F (X, Y))
F̂ (f, g) = (F (g, f), F (f, g))

Proof. This is established e.g. using the notion of involutions (self-dual functors)
and a category Ĉ of involutory objects (due to John Power, see Fiore [9] for
details). �

In particular, this implies that direcursion can alternatively be formulated using
F̂ , in which case the maps f = ([φ, ψ]) and g = [(φ, ψ)] are equivalently and more
abstractly defined as follows in the category Cop × C (see [9]):

Ĝ(O, O)
(ιG,ι◦

G)
� (O, O)

≡

Ĝ(A, B)

Ĝ(f,g)

�

(φ,ψ)
� (A, B)

(f,g)

�

Given a bifunctor F : Cop ×C → C and an object X ∈ |C| we have an endofunctor
F (X,) : C → C. This means that we can consider two different equation systems
as follows (where we already have shown that the initial F -dialgebra gives a
solution for the left-hand side (lhs) system).

{
X ∼= F (Y, X) = π1(F̂ (X, Y))
Y ∼= F (X, Y) = π2(F̂ (X, Y))

{
X ∼= F (μF (X,), X)
Y ∼= μF (X,)

Parametric (Co)Iteration vs. Primitive Direcursion 263

The solution to the rhs system is said to be parameterised, and it is not im-
mediately clear if it has the same solutions as the lhs one. However, we have:

Lemma 4 (Bekic̆’s Lemma [4]). Let F : Cop × C → C be a locally continuous
endofunctor with initial dialgebra (O, O, ι, ι◦). Then we have that O ∼= μF (O,).

Proof. E.g. [3,9]. �

The endofunctors of the form F (A,) in this way have initial F (A,)-algebras
where A is the parameter.

2.2 Primitive (Co)Recursion and (Co)Iteration

A datatype within functional programming is typically modelled by an initial
algebra for suitable functor F , and this work has treated also the functor as a
parameter of programs. Since each functor F on C has an initial algebra O, there
is a unique homomorphism into O from any other object A for which there is
a structure φ : FA → A. We call these F -iterative maps, written ([φ])F for easy
reference. The dually constructed maps are called F -coiterative maps, and are
written [(ψ)]F . From these, Meertens [19] constructed F -primitive recursion:

Theorem 2 (F -primitive recursion). Suppose (μF, ιF) is the initialF -algebra.
For every morphism φ : F (μF × A) → A there exists a unique morphism h (called
F -primitive recursion) such that the following diagram commutes:

F (μF)
ιF � μF

≡

F (μF × A)

〈id,h〉

�

φ
� A

h

�

Proof. For existence define a map φ′ : F (μF × A) → μF × A by φ′ = 〈ι ◦
F (π1), φ〉. Hence there is a coiterative map ([φ′])F which satisfies the diagram
when post-composed with π2. For uniqueness suppose h = φ ◦ 〈id, h〉 ◦ ι◦F . But
then 〈π1 ◦ ([φ′])F , h〉 is a homomorphism into μF × A, and hence, by properties
of pairing in C together with initiality of (μF, ιF), we have h = π2 ◦ ([φ′])F . �

This result dualises into a scheme useful for coalgebraic datatypes, as was shown
by Uustalu et al [33,34]. The definition of such F -primitive corecursion is dual
to the above construction, and so is the associated proof.

3 Primitive Direcursion

We will in this section consider a symmetrised version of primitive (co)recursion,
and prove a number of basic result for this recursion principle, followed by our

264 J. Glimming

main result. We provide a quite detailed exposition here, and develop primitive
direcursion from first principles. Many proofs can alternatively be viewed as a
special case of primitive recursion with the ambient category Cop × C, i.e. F̂ -
primitive recursion, and are therefore omitted. Note that direcursion itself by a
similar argument is a special case of iteration, if one moves to the symmetrised
category Cop × C, as we mentioned in a previous section. However, we include
some such proofs to highlight which properties of C they rely on (including the
regularity assumption).

Theorem 3 (Primitive Direcursion). Let (O, O, ιG, ι◦G) be the initial G-
dialgebra. Let A and B be two objects and φ : G(O + B, O × A) → A and
ψ : B → G(O × A, O + B) two morphisms. Then there exist g : O � A and
h : B � O such that the following diagrams commute:

G(O, O)
ιG� O O ι◦

G � G(O, O)

≡ ≡

G(O + B, O × A)

G([id,h],〈id,g〉)
�

φ
� A

g

�
B

h

�

ψ
� G(O × A, O + B)

G(〈id,g〉,[id,h])
�

(prim-Prop)

Proof. Let φ and ψ be given as in the antecedent of the theorem. We instantiate
direcursion with A′ = O×A and B′ = O+B and define φ′ : G(O+B, O×A) →
O × A and ψ′ : O + B → G(O × A, O + B) by φ′ = 〈ι ◦ G(inl, π1), φ〉 and
ψ′ = [G(π1, inl) ◦ ι◦, ψ]. From these two maps, we define g = π2 ◦ ([φ′, ψ′]) and
h = [(φ′, ψ′)] ◦ inr. Finally, we verify that each square commutes (omitting the
reasoning for the right square as the following dualises):

g ◦ ι

= π2 ◦ ([φ′, ψ′]) ◦ ι by assumption

= π2 ◦ 〈ι ◦ G(inl, π1), φ〉 ◦ G([(φ′, ψ′)], ([φ′, ψ′])) by (direc-Self)

= φ ◦ G([(φ′, ψ′)], ([φ′, ψ′])) by (co)pairing

= φ ◦ G([[(φ′, ψ′)] ◦ inl, [(φ′, ψ′)] ◦ inr], 〈π1 ◦ ([φ′, ψ′]), π2 ◦ ([φ′, ψ′])〉) bysurjectivepairing

= φ ◦ G([[(ι, ι◦)], h], 〈([ι, ι◦]), g〉) by (direc-Fusion)

= φ ◦ G([id, h], 〈id, g〉) by (direc-Refl)

�

The previous theorem in fact defines a unique pair of morphism:

Theorem 4 (Primitive Direcursion Characterisation). Let (O, O, ιG, ι◦G)
be the initial G-dialgebra. Suppose

(a) φ′ = 〈ι ◦ G(inl, π1), φ〉, and
(b) ψ′ = [G(π1, inl) ◦ ι◦, ψ].

Parametric (Co)Iteration vs. Primitive Direcursion 265

Then the following two statements are equivalent:

(i) g ◦ ιG = φ ◦ G([id, h], 〈id, g〉)
ι◦G ◦ h = G(〈id, g〉, [id, h]) ◦ ψ, and

(ii) g = π2 ◦ ([φ′, ψ′]) and h = [(φ′, ψ′)] ◦ inr. (prim-Charn)

We introduce the notation 〈|φ, ψ|〉G
def
= g and |〉φ, ψ〈|G

def
= h for any given pair of

(well-typed) maps φ and ψ.

Proof. Straightforward. �

The following basic property follows directly:

Corollary 1. Let (O, O, ιG, ι◦G) be the initial G-dialgebra. Every function given
by G-primitive direcursion can also be given by G-direcursion up to a certain
pre/post-composed map:

〈|φ, ψ|〉 = π2 ◦ ([〈ι ◦ G(inl, π1), φ〉, [G(π1, inl) ◦ ι◦, ψ]])
|〉φ, ψ〈| = [(〈ι ◦ G(inl, π1), φ〉, [G(π1, inl) ◦ ι◦, ψ])] ◦ inr (prim-Direc)

Proof. Straightforward. �

Note here that primitive direcursive functions can generally not be defined by
purely direcursive functions, although the previous corollary establishes a close
relationship between the two notions.

Lemma 5. Let (O, O, ιG, ι◦G) be the initial G-dialgebra. Primitive direcursion
satisfies the following cancellation and reflection laws:

〈|φ, ψ|〉 ◦ ιG = φ ◦ G([id, |〉φ, ψ〈|], 〈id, 〈|φ, ψ|〉〉) (prim-Self)
ι◦G ◦ |〉φ, ψ〈| = G(〈id, 〈|φ, ψ|〉〉, [id, |〉φ, ψ〈|]) ◦ ψ

∀ψ id = 〈|ι ◦ G(inl, π1), ψ|〉 (prim-Refl)
∀φ id = |〉φ, G(π1, inl) ◦ ι◦〈|

Proof. The cancellation law follows immediately from (prim-Charn) by just
chasing the diagram given in (prim-Prop). We show the first reflection law (the
other is dual):

〈|ι ◦ G(inl, π1), ψ|〉
= 〈|ι ◦ G(inl, π1), ψ|〉 ◦ ι ◦ ι◦ by regularity
= ι ◦ G(inl, π1) ◦ G([id, |〉φ, ψ〈|], 〈id, 〈|φ, ψ|〉〉) ◦ ι◦ by (prim-Self)
= ι ◦ G([id, |〉φ, ψ〈|] ◦ inl, π1 ◦ 〈id, 〈|φ, ψ|〉〉) ◦ ι◦ by composition
= ι ◦ G(id, id) ◦ ι◦ by (co)pairing
= ι ◦ ι◦ by functor property
= id by regularity

�

266 J. Glimming

The previous lemma, albeit a direct consequence of the construction, is of im-
portance since it gives a more efficient implementation of primitive direcursion
in a lazy functional programming language. The final basic property, the fusion
law, takes a particular form for primitive direcursion:

Corollary 2 (Primitive Direcursion Fusion). Let (O, O, ιG, ι◦G) be the ini-
tial G-dialgebra. Suppose that (A, B, φ : G(O + B, O × A) → A, ψ : B → G(O ×
A, O+B)) and (A′, B′, φ′ : G(O+B′, O×A′) → A′, ψ′ : B′ → G(O×A′, O+B′))
are both G-dialgebras. For every dimap g : A → A′, h : B′ → B such that

g ◦ φ = φ′ ◦ G(id + h, id × g)

and
ψ ◦ h = G(id × g, id + h) ◦ ψ′

we have the following property

g ◦ 〈|φ, ψ|〉 = 〈|φ′, ψ′|〉 and |〉φ, ψ〈| ◦ h = |〉φ′, ψ′〈| (prim-Fusion)

We establish another relationship between direcursion and primitive direcur-
sion, showing that primitive direcursion generalises direcursion in the following
sense:

Lemma 6. Let (O,O,ι,ι◦) be the initial G-dialgebra. For any φ : G(B, A) → A
and ψ : B → G(A, B), the following equalities hold:

([φ, ψ]) = 〈|φ ◦ G(inr, π2), G(π2, inr) ◦ ψ|〉
[(φ, ψ)] = |〉φ ◦ G(inr, π2), G(π2, inr) ◦ ψ〈| (direc-Prim)

That is, every direcursive function is also a primitive direcursive function.

Proof. Straightforward using (direc-Fusion). �
The (prim-Self) law generalises into a statement that primitive direcursion is
universal in the sense of e.g. Proposition 4.3 in [6]:

Lemma 7. Let (O,O,ι,ι◦) be the initial G-dialgebra. Any morphism f : O → A
satisfies the following identity, for any ψ : B → G(O × A, O + B):

f = 〈|f ◦ ι ◦ G(inl, π1), ψ|〉

Furthermore, any morphism f ′ : B → O satisfies the following identity, for any
φ : G(O + B, A × O) → A:

f ′ = |〉φ, G(π1, inl) ◦ ι◦ ◦ f ′〈|

Proof. We first convince the reader that the equalities are well-typed:

G(O + B, O × A) � A B � G(O × A, O + B)

≡ ≡

G(O, O)

G(inl,π1)

�

ι
� O

f

�

O

f ′

�

ι◦
� G(O, O)

G(π1,inl)

�

Parametric (Co)Iteration vs. Primitive Direcursion 267

Let φ0 = f ◦ ι ◦ G(inl, π1). For the first equality we reason as follows:

〈|f ◦ ι ◦ G(inl, π1), ψ|〉
= ι ◦ ι◦ ◦ 〈|f ◦ ι ◦ G(inl, π1), ψ|〉 by regularity
= f ◦ ι ◦ G(inl, π1) ◦ G([id, |〉φ0, ψ〈|], 〈id, 〈|φ0, ψ|〉〉) ◦ ι◦ by (prim-Self)
= f ◦ ι ◦ G([id, |〉φ0, ψ〈|] ◦ inl, π1 ◦ 〈id, 〈|φ0, ψ|〉〉) ◦ ι◦ by composition
= f ◦ ι ◦ G(id, id) ◦ ι◦ by (co)pairing
= f by regularity

Let ψ0 = G(π1, inl) ◦ ι◦ ◦ f ′. For the second equality dually reason as follows:

|〉φ, f ◦ ι ◦ G(inl, π1)〈|
= |〉φ, f ◦ ι ◦ G(inl, π1)〈| ◦ ι ◦ ι◦ by regularity
= ι ◦ G(〈id, 〈|φ, ψ0|〉〉, [id, |〉φ, ψ0〈|]) ◦ G(π1, inl) ◦ ι◦ ◦ f ′ by (prim-Self)
= ι ◦ G(π1 ◦ 〈id, 〈|φ, ψ0|〉〉, [id, |〉φ, ψ0〈|] ◦ inl) ◦ ι◦ ◦ f ′ by composition
= ι ◦ G(id, id) ◦ ι◦ ◦ f ′ by (co)pairing
= f ′ by regularity

�

We now turn to our main result. Suppose g is an iterative map as follows:

G(O, O)
ι � O

≡

G(O, A)

G(id,g)

�

φ
� A

g

�

We ask: is g definable using direcursion (which here means that it belongs to
a class of functions defined inductively, closed under composition, and includ-
ing elementary functions such as (co)pairing, projections/injections, constants,
id, as well as any function defined by direcursion with parameters φ, ψ in this
class)? Can we, for example, choose A, B, φ′, ψ′ such that the following diagrams
commute with this given g as a solution?

G(O, O)
ιG � O O ι◦

G� G(O, O)

≡ ≡

G(B, A)

G(h,g)

�

φ′
� A

g

�
B

h

�

ψ′
� G(A, B)

G(g,h)

�

268 J. Glimming

To simulate iteration, we wish to force h = id in this definition. In other words,
we must specialise the above definition as follows:

G(O, O)
ιG � O O ι◦

G� G(O, O)

≡ ≡

G(O, A)

G(id,g)

�

φ′
� A

g

�
O

id

�

ψ′
� G(O, B)

G(g,id)

�

We conclude that for h = id we require the following condition:

G(g, id) ◦ ψ′ = ι◦

If g has a right inverse (g−1), then we can solve this equation:

ψ′ = G(g−1, id) ◦ G(g, id) ◦ ψ′ = G(g−1, id) ◦ ι◦

We have therefore arrived at a problem: a sufficient condition is that the
iterative map g has a right inverse g−1, but this does not hold in many cases, for
example not for all those iterative maps that fail to be surjective. For instance, if
A is a standard lazy list datatype (as a cpo) then we are forced to exclude maps
without e.g. the empty lists (or infinite lists etc) in their image. We therefore
would like to have a more generally applicable solution. Since we have merely
identified a sufficient condition, we are not in a hopeless situation. It turns out
that primitive direcursion provides a solution to this problem:

Theorem 5 (Iteration as direcursion). Let G be a locally continuous functor
Cop × C → C and suppose that O carries the initial G-dialgebra. Suppose that
h = ([φ])G(O,). Then h = π2 ◦ ([φ′, ψ′]) with φ′ : G(O, O × A) → O × A and
ψ′ : O → G(O × A, O) given by

φ′ = (ι × φ) ◦ 〈G(id, π1), G(id, π2)〉, and (1)
ψ′ = G(π1, id) ◦ ι◦. (2)

Proof. We begin by asking when the following diagrams will commute where we
force g = 〈id, h〉.

G(O, O)
ιG � O O ι◦

G � G(O, O)

≡ ≡

G(O, O × A)

G(id,〈id,h〉)

�

φ′
� O × A

〈id,h〉

�
O

id

�

ψ′
� G(O × A, O)

G(h,id)

�

For the right hand square we must find a canonical ψ′ satisfying the following
property:

G(〈id, h〉, id) ◦ ψ′ = ι◦

Parametric (Co)Iteration vs. Primitive Direcursion 269

But we can take ψ′ = G(π1, id) ◦ ι◦ and show that it satisfies this property:

G(〈id, h〉, id) ◦ G(π1, id) ◦ ι◦ = G(π1 ◦ 〈id, h〉, id) ◦ ι◦ = G(id, id) ◦ ι◦ = ι◦

It remains to show that we can always define also φ′ such that the left hand
square also commutes. To define φ′ we use that h is G(O,)-iterative, i.e.

h ◦ ι = φ ◦ G(id, h).

From this property we will then prove that 〈id, h〉 ◦ ι = φ′ ◦ G(id, 〈id, h〉), by
defining a canonical φ′ from φ as follows:

φ′ = (ι × φ) ◦ 〈G(id, π1), G(id, π2)〉

We can now establish the result for parametric iterative maps:

〈id, h〉 ◦ ι = (ι × φ′) ◦ 〈G(id, π1), G(id, π2)〉 ◦ G(id, 〈id, h〉)) (3)
= (ι × φ′) ◦ 〈G(id, π1) ◦ G(id, 〈id, h〉), G(id, π2)〉 ◦ G(id, 〈id, h〉)) (4)
= (ι × φ′) ◦ 〈G(id, id), G(id, h)〉 (5)
= (ι × φ′) ◦ 〈id, G(id, h)〉 (6)
= 〈ι, φ′ ◦ G(id, h)〉 (7)
= 〈ι, h ◦ ι〉 = 〈id, h〉 ◦ ι (8)

Note how we in (7) used that h is iterative. �

This result immediately dualises:

Theorem 6 (Coiteration as direcursion). Let G be a locally continuous
functor Cop × C → C and suppose that O carries the initial G-dialgebra. Sup-
pose that h = [(ψ)]G(O,). Then h = [(φ′, ψ′)] ◦ inr with φ′ : G(O + B, O) → O and
ψ′ : O + B → G(O, O + B) given by

φ′ = ι ◦ G(inl, id), and (9)
ψ′ = [G(id, inl), G(id, inr)] ◦ (ι◦ + ψ). (10)

We consider the first theorem again. Can we eliminate also the postcomposed
projection in the construction? For this we seek a dialgebra homomorphism
(π2, id) : (O × A, O, φ′

φ, ψ′
φ) → (A, O, φ′′, ψ′′) (in order to use fusion), i.e. we

require (for φ′ and ψ′ as in the theorem):

G(O, O × A)
φ′
� O × A O ψ′

� G(O × A, O)

≡ ≡

G(O, A)

G(id,π2)

�

φ′′
� A

π2

�
O

id

�

ψ′′
� G(A, O)

G(π2,id)

�

270 J. Glimming

That is, we wish to find another dialgebra (φ′′, ψ′′) such that the unique
homomorphism from the initial G-dialgebra into that dialgebra factors through
the maps given in this diagram. The right-hand diagram forces the following
property (using the definition of ψ′):

G(π2, id) ◦ ψ′′ = ψ′ = G(π1, id) ◦ ι◦G

For the left-hand side to commute we require:

φ′′ ◦ G(id, π2) = π2 ◦ φ′ = φ ◦ G(id, π2)

We conclude that in general it will not be possible to eliminate the postcom-
posed projection, and dually not the precomposed injection. However, a sufficient
condition is that the iterative map g is split epic with right inverse g−1 as ini-
tially remarked above. We close the section by summarising the development:

Corollary 3 (Main Result). Suppose G : Cop × C → C is a locally continuous
bifunctor and that (O, O, ι, ι◦) is the initial G-dialgebra. Then the following is
true for arbitrary maps φ : G(O, A) → A and ψ : B → G(O, B) and α, β:

([φ])G(O,) = 〈|φ ◦ G(id, π2), α|〉G, and (11)
[(ψ)]G(O,) = |〉β, G(id, inr) ◦ ψ〈|G. (12)

In particular, we can take α and β to be the unique maps that factors through
the zero object for a suitably chosen object, e.g. zero 0 ∼= 1 itself:

α = ⊥1,G(O×A,O) : 1 → G(O × A, O)
β = ⊥G(O+B,O),1 : G(O + B, O) → 1

4 Example: Application to Object Calculus Semantics

Direcursion arises naturally in self-application semantics [18] of typed object cal-
culus based on recursive types, which has recently been subject to some research
[26,28,17,16]. In this section, we will consider the interpretation in Glimming
et al [17], but for concreteness we work in CPPO⊥! rather than a category of
partial maps. For example, B⊥ is a flat cpo with underlying set {tt, ff, ⊥}, and
all maps are strict. We conclude the paper by giving some examples. Note that
all of these examples (and others) have been implemented in a lazy functional
programming language:

Example 1 (Object-Based Natural Numbers). Abadi and Cardelli [1] model
object-based“natural numbers” essentially by defining a type σ = Obj(X)[pred :
X, zero : Bool], and then giving suitable terms to represent numbers (see loc.
cit.). Under self-application semantics, this object type is modelled as a solution
to the domain equation O ∼= O � (O⊥×B⊥). Writing (O, O, ι, ι◦) for the initial
dialgebra arising from the induced mixed variant functor G, we can define a

Parametric (Co)Iteration vs. Primitive Direcursion 271

map sapp : O → (O⊥ × B⊥) by sapp = eval ◦ 〈ι◦, id〉. Now we have for example
ι(λx.(⊥, ⊥)), ι(λx.(x, ⊥)) ∈ O and also zero = �0� = ι(λx.(x, tt)) ∈ O. More-
over, define �n + 1� = ι(λx.(�n�, ff)) ∈ O for n ∈ N. Note that in general the
“methods” need not be constant functions, but can depend on the current “self”
in a non-trivial way. Now the extraction of a natural number in N⊥ (given by a
flat cpo) from an “object” in O can be defined as a G(O,)-iterative function as
follows:

G(O, O)
ι � O

≡

G(O, O × N⊥)

G(id,h)

�

φ
� O × N⊥

h

�

In the diagram, φ is the following algebra map for taking one step during the
extraction:

φ = f ◦ 〈π2, eval〉 ◦ 〈G(1, π1⊥ ◦ π1), ι ◦ G(1, 〈π1⊥ ◦ π1, π2〉)〉

where f : O × (N⊥)⊥ → O × N⊥ is defined as follows (for usual strict addition
+):

f(o, n) =

⎧
⎪⎨

⎪⎩

(o, 0), if π2 ◦ sapp(o) = tt

(π1 ◦ sapp(o), m + 1), if n = m⊥
(o, ⊥), otherwise

Note that the first case applies when the zero method evaluates to tt, and
that the second gives back the predecessor in the first component. It can now
be inferred that parametric iterative maps can be useful for defining functions
on objects, since more involved examples can be constructed similar to this
simplified one for “natural numbers”. We have shown in this paper that the map
h can equivalently be defined as h = π1 ◦ k where k = ([φ′, ψ′])G for a suitable
dialgebra (φ′, ψ′) as detailed in previous sections. The resulting definition is
shown in the following diagrams:

G(O, O)
ι � O O ι◦

� G(O, O)

≡ ≡

G(O, O × (O × N⊥))

G(id,k)

�

φ′
� O × (O × N⊥)

k

�
O

g=id

�

ψ′
� G(O × (O × N⊥), O)

G(k,id)

�

Note that we need two different O here, since we cannot invert sapp. Our main re-
sult states that we have φ′ = (ι×φ)◦〈G(id, π1), G(id, π2)〉 and ψ′ = G(π1, id)◦ι◦.
(We can alternatively and equivalently define h = 〈|φ ◦ G(id, π2), ⊥|〉G according
to Corollary 3.)

272 J. Glimming

Example 2 (Constructors). We next define a direcursive function δ which creates
an “object” when given a natural number, i.e. a “constructor”. In this case, we
consider the type σ′ = Obj(X)[pred : X, zero : Bool, succ : X], which allows a
method for computing the successor of the number stored in an object as well.
A domain O′ arises from the equation O′ ∼= O′ � (O′

⊥ ×B⊥ ×O′
⊥). We dub the

induced mixed variant functor H , and define δ first using full direcursion:

H(O′, O′)
ιH � O′ O′ ι◦

H� H(O′, O′)

≡ ≡

H(N, 1)

H(δ,γ)

�

⊥
� 1

γ

�
N

δ

�

δ−
� H(1, N)

H(γ,δ)

�

The unique solution arises by providing δ− as follows:

δ−(n) = λx.(n − 1, n ≡ 0, n + 1)

Note that the positive part of the diagram trivialises in this definition. In fact,
there is a more natural parametric coiterative definition:

O′ ιH � H(O′, O′)

≡

O′ × N⊥

δ′

�

δ′−
� H(O′, O′ × N⊥)

H(id,δ′)

�

Here, we require the following H(O,)-coalgebra:

δ′−(n) = λo.((o, n − 1), n ≡ 0, (o, n + 1))

Using Corollary 3 we have δ′ = |〉⊥, H(id, inr) ◦ δ′−〈|H . The general problem of
proving that two maps such as δ′ and δ compute the same “objects”, requires
suitable bisimulations (see example 5 and 6 below).

Example 3 (Subtyping). Using direcursion, we will define an embedding-
projection (ep-) pair (α, β) : O → O′. Here β serves as a coercion function
for subtyping, whereas α gives an approximation function from a type into the
given supertype. The pair (α, β) is the unique solution to the following diagrams:

G(O, O)
ι � O O ι◦

� G(O, O)

≡ ≡

G(O′, O′)

G(β,α)

�

α+
� O′

α

�
O′

β

�

β−
� G(O′, O′)

G(α,β)

�

Parametric (Co)Iteration vs. Primitive Direcursion 273

In these diagrams, we have chosen α+ and β− as follows:

α+ = ι ◦ 〈π1, π2, ⊥〉id

β− = 〈π1, π2〉id ◦ ι◦

Here ⊥ : O′
⊥ × B⊥ → O′

⊥ is the constantly undefined map. It is straightforward
to show that β−◦α+ = id and moreover that α+◦β− �O′ id. (Recall that �O′ is
the coordinatewise order inherited from the infinitary product which determines
O′.) It follows that (α, β) is an ep-pair since G is locally continuous. Note that
since subtyping uses full direcursion, we can use a constructor that works with
both O′ and O, since the (prim-Fusion) rule can be used, once both maps are
given in direcursive form using our main result.

Example 4 (Inheritance). We continue with the previous example by also con-
sidering the following function:

χ(o) = ι(λp.(π1 ◦ ι◦(o)(p), π2 ◦ ι◦(o)(p), ι(λq.(p, ff, ι◦(p)(q)))))

Note how χ serves to interpret the successor method from Abadi et al [1]. It takes
an element in O′ and equips it with the successor method. The definition involves
both using method updates to copy the previous predecessor and zero state, but
also the third component which adds “succ” such that it becomes constantly
defined in the recursive structure. Now consider χ together with (α, β):

G(O, O)
ι � O O ι◦

� G(O, O)

≡ ≡

G(O′, O′)

G(β,α)

�
α+

� O′

α

�
O′

β

�

β−
� G(O′, O′)

G(α,β)

�

(a) (b)

G(O′, O′)

G(ξ,χ)

�

α′+
� O′

χ

�
O′

ξ

�

β′−
� G(O′, O′)

G(χ,ξ)

�

To unveil inheritance as a direcursive map, all we need to do is to find a dialgebra
(α′+, β′−) and a map ξ making (χ, ξ) a dimap into this new G-dialgebra. Since
this is a “standard” update (i.e. of the form Abadi and Cardelli considers in
typed object calculi), it is constant in the recursive structure. This means that
the fusion law gives us a unique dimap (α′, β′) for inheritance with ξ = id and
β′− = β−:

G(O, O)
ι � O O ι◦

� G(O, O)

≡ ≡

G(O′, O′)

G(β′,α′)

�
α+

� O′ χ � O′

α′

�
O′

β′

�

β−
� G(O′, O′)

G(α′,β′)

�

274 J. Glimming

(This gives again an ep-pair.) We would like to use the parametric (co)iterative
operations from example 1 and 2 also after we have inherited some of O into the
new O′. To use the fusion rule we must first apply Corollary 3 to the parametric
coiterative map. We “rotate” the diagrams for the ep-pair and paste them to the
definition of extraction provided in example 2, after which the (prim-Fusion)
rule can readily be used once again, illustrating the usefulness of our results. How-
ever, if we attempt this for example 1 instead (without moving to H-dialgebras),
we arrive at these seemingly awkward diagrams:

G(O′, O′)
α+

� O′ O′ β−
� G(O′, O′)

≡ ≡

G(O, O)

G(α,β)

�
ι � O

β

�
O

α

�

ι◦
� G(O, O)

G(β,α)

�

≡ ≡

G(O, O × (O × N⊥))

G(id,k)

�

φ′
� O × (O × N⊥)

k

�
O

g

�

ψ′
� G(O × (O × N⊥), O)

G(k,id)

�

The diagrams that arise generalise a so-called “hylomorphism” (well-studied in
purely functional program algebra, see e.g. [22,20]), i.e. that of a coiterative map
followed by a iterative map. Here, both maps are instead direcursive, but the
diagrams are combined such that the negative part of direcursion is followed by
the positive part of another direcursive map. Ongoing work investigates if e.g. the
so-called shift law [20] generalises to this setting using dinatural transformations.

Example 5 (Generalised Bisimulations). Tews [32] in his PhD thesis based a no-
tion of higher-order bisimulation on a certain kind of morphism between what he
termed generalised coalgebras. These maps, together with an associated notion
of bisimulation, were in his thesis demonstrated as useful in a number of practi-
cal examples. However, Tews found that almost all important closure properties
failed to hold in the category of sets unless strong restrictions were imposed. Via
Corollary 3, we have now linked Tews’ work to Freyd’s direcursion principle. To
see this, let h be a generalised coalgebra map in Tews’ sense, i.e. let the following
diagram commute:

A
α� G(A, A)

G(A, B)

G(id
A ,h)�

B

h

�

β
� G(B, B)

G
(h

,id
B
)

�

Parametric (Co)Iteration vs. Primitive Direcursion 275

One readily identifies h as a parameterised G(A,)-coalgebra map from (A, α) to
(B, G(h, idB)◦β) so our results apply to these maps. Existence of final generalised
coalgebras appears to be an open problem [32]. As Tews’ remarks, a coiteration
scheme (as well as a proof principle) of potential practical utility [32] would
follow, if an affirmative answer is found. The results presented in this paper
do not close this problem but rather reopen it, and set the stage for further
investigations. Moreover, the ambient category that we have used circumvents
Tews’ counterexample.

Example 6 (Self-Applicative Bisimulations). Note that sapp can be made to
carry a G(O,)-coalgebra. This is achieved by defining O → G(O, O) by K ◦sapp
where K is the usual combinator (we abuse notation slightly and call this map
sapp as well). Hence there is a parametric coiterative function [(sapp)]G(O,) from
O into the final G(O,)-coalgebra. The kernel ∼sapp of this coalgebra map is a
bisimulation equivalence [27]. Thus O/ ∼sapp is a well-defined quotient (on the
underlying set). This bisimulation collapses object-based programs into class-
based programs. The results of the present paper allow us to view this map as a
dialgebra homomorphism 〈|sapp ◦ G(id, π2), ⊥|〉G (by Corollary 3), so that it can
be combined with the above examples (or more complex future ones). Note that
∼sapp, although giving the link to class-based languages, is not the most suitable
bisimulation for identifying object-based programs (and a type-indexed set of
similar domains Oσ do not give a fully abstract model of object calculus, since
Viswanathan’s counterexample [35] can readily be applied). For this we require
instead a finer notion, which we term OBP-bisimulation. It requires a structure
β : O → G(O × L+, O), which combines both mup and sapp behaviour, where
mup : O × L× O → O copies given method ∈ L from the first argument to the
third. Here β = sapp ◦ mup+ where mup+ is a generalisation of method update
which copies all the labels listed in L+ before the update. (L+ is a finite sequence
of labels to be updated.) Note that β is not a coalgebra map. We therefore regard
β as the negative part of a dialgebra map, i.e. require full direcursion. This out-
lines our current direction for future work. We emphasise that our main result
already shows how ∼sapp (and any other bisimulation arising in this way) can be
combined with Freyd’s direcursion so that a previous gap has been closed.

5 Conclusions and Further Work

In the 1990s, Freyd demonstrated in two well-known papers [12,13] a principle
for defining functions on recursive types. However, he did not discuss how para-
metric (co)iterative maps can be written using his scheme. We have shown here
that all such maps can in fact easily be defined, after we found and developed a
certain variation of Freyd’s principle that we termed primitive direcursion (gen-
eralising primitive recursion for endofunctors). Moreover, we have established
some elementary algebraic properties of primitive direcursion. Taken together,
our result can be viewed as a set of corollaries of Bekic̆’s Lemma, giving a link
between direcursion and parameterised datatypes via a recursion scheme.

276 J. Glimming

A consequence of our result is that we demonstrate that many direcursive
maps (previously known as difficult to exemplify [21]) arise by translating (more
common) (co)iterative maps into Freyd’s principle. As an additional consequence,
functions defined on the parameterised initial algebra (and dually final coal-
gebra) can be combined (as per the usual “fusion laws”) with more involved
functions (e.g. the interpreters from [21]) which require full direcursion. In such
situations, we can now use the reasoning principles of direcursion, even if the
(co)iterative function is not surjective (not injective), and we in such cases
avoid having to provide an “inverse-like” function which was previously iden-
tified as a problem [8]. We have given some examples from the semantics of
object calculi, which demonstrates a situation where “fusion laws” can be used,
showing that our results could be practically useful. Current work aims to take
this further and establish an algebra of object-based programs in the spirit of
Bird et al [5].

The author is presently developing bisimulations in the setting of denotational
models of object calculus, in the vein of the work of Abramsky [2], with a goal to
combine these with“fusion laws”. Indeed the developments of Fiore [10] show that
applicative bisimulations can be internalised into C. Notably, such bisimulations
use merely the parameterised final coalgebra since the contravariant argument
remains fixed.

Another topic for further investigation is the expressivity of (primitive) di-
recursion. One would like to know if it is possible to naturally capture known
classes of functions given by circular definitions (in the spirit of e.g. [6], but
see also [15,7]). The author is particularly interested in characterising the total
direcursive maps.

Finally, taking the two kinds of maps given in Corollary 3 together (with two
suitable instantiations), we have the following (as in one of our examples):

π2 ◦ 〈|φ, G(id, π2), α|〉 ◦ |〉β, G(id, inr) ◦ ψ〈| ◦ inl : A → B

For future work, we ask: when can direcursive maps be split into a pair of para-
metric (co)iterative maps of this form essentially computing results in two sep-
arate stages (like e.g. fix or quicksort)? Note that we can allow two different
(di)naturally related mixed-variant functors, and choose A, B as well as an in-
termediate O into which all partial results can be embedded. We hope that such
an analysis could further our understanding of direcursion.

Acknowledgements

I wish to express my gratitude in particular to John Power, Bernhard Reus, and
to Viggo Stoltenberg-Hansen, for encouragement and helpful discussions on the
research reported here, and to the anonymous referees for their comments on an
earlier version of this paper.

Parametric (Co)Iteration vs. Primitive Direcursion 277

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)
2. Abramsky, S.: The lazy lambda calculus. In: Turner, D.A. (ed.) Research Topics

in Functional Programming, pp. 65–116. Addison-Welsey, Reading, MA (1990)
3. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D., Maibaum,

T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Oxford
University Press, Oxford (1994)

4. Bekic̆, H.: Definable operation in general algebras, and the theory of automata
and flowcharts. In: Programming Languages and Their Definition - Hans Bekic
(1936-1982) pp. 30–55, London, UK, Springer, Heidelberg (1984)

5. Bird, R.S., de Moor, O.: Algebra of Programming. Prentice-Hall, Englewood Cliffs
(1997)

6. Cancila, D., Honsell, F., Lenisa, M.: Generalized coiteration schemata. Electronical
Notes in Computer Science, 82(1) (2003)

7. Danielsson, N.A., Hughes, J., Jansson, P., Gibbons, J.: Fast and loose reasoning
is morally correct. In: POPL ’06: Symposium on Principles of Programming Lan-
guages, pp. 206–217. ACM Press, New York (2006)

8. Fegaras, L., Sheard, T.: Revisiting catamorphisms over datatypes with embed-
ded functions (or, programs from outer space). In: Conf. Record 23rd ACM
SIGPLAN/SIGACT Symp. on Principles of Programming Languages, POPL’96,
St. Petersburg Beach, FL, USA, January 21-24, 1996, pp. 284–294. ACM Press,
New York (1996)

9. Fiore, M.P.: Axiomatic Domain Theory in Categories of Partial Maps. Distin-
guished Dissertations in Computer Science. Cambridge University Press, Cam-
bridge (1996)

10. Fiore, M.P.: A coinduction principle for recursive data types based on bisimulation.
Information and Computation 127(2), 186–198 (1996)

11. Fokkinga, M.M.: Law and order in algorithmics. Ph.D. thesis, Technical University
Twente, The Netherlands (1992)

12. Freyd, P.J.: Recursive types reduced to inductive types. In: Proceedings 5th IEEE
Annual Symp. on Logic in Computer Science, LICS’90, pp. 498–507. IEEE Com-
puter Society Press, Los Alamitos (1990)

13. Freyd, P.J.: Algebraically complete categories. In: Proceedings 1990 Como Cat-
egory Theory Conference. Lecture Notes in Mathematics, vol. 1488, pp. 95–104
(1991)

14. Freyd, P.J.: Remarks on algebraically compact categories. In: Fourman, Johnstone,
Pitts (eds.) Workshop on Applications of Categories in Computer Science, Pro-
ceedings of the London Mathematical Society Symposium. London Mathematical
Society Lecture Note Series, vol. 177, pp. 95–106. Cambridge University Press,
Cambridge (1992)

15. Gibbons, J., Hutton, G., Altenkirch, T.: When is a function a fold or an unfold? In:
Proceedings of the 4th International Workshop on Coalgebraic Methods in Com-
puter Science. Electronic Notes in Theoretical Computer Science, vol. 44 (2001)

16. Glimming, J.: Dialgebraic semantics of typed object calculi. Licentiate Thesis (May
2005) TRITA-NA-0511

17. Glimming, J., Ghani, N.: Difunctorial semantics of object calculus. In: Proceed-
ings of the Second Workshop on Object Oriented Developments (WOOD 2004).
Electronic Notes in Theoretical Computer Science, vol. 138, Elsevier, Amsterdam
(2004)

278 J. Glimming

18. Kamin, S.N.: Inheritance in Smalltalk-80: a denotational definition. In: Proceedings
of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 80–87. ACM Press, New York (1988)

19. Meertens, L.: Paramorphisms. Formal Aspects of Computing 4(5), 413–424 (1992)
20. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,

lenses, envelopes and barbed wire. In: Hughes, J. (ed.) Functional Programming
Languages and Computer Architecture. LNCS, vol. 523, pp. 124–144. Springer,
Heidelberg (1991)

21. Meijer, E., Hutton, G.: Bananas in space: extending fold and unfold to exponential
types. In: Peyton-Jones, S. (ed.) Functional Programming Languages and Com-
puter Architecture, pp. 324–333. Association for Computing Machinery (1995)

22. Paterson, R.: Operators. In: Lecture Notes for the International Summerschool
on Constructive Algorithmics, Ameland, Netherlands. CWI Amsterdam, Utrecht
University, University of Nijmegen (September 1990)

23. Pitts, A.M.: A co-induction principle for recursively defined domains. Theoretical
Computer Science 124, 195–219 (1994)

24. Pitts, A.M.: Relational properties of domains. Information and Computa-
tion 127(2), 66–90 (1996)

25. Plotkin, G.D.: Post-graduate lecture notes in advanced domain theory (incorpo-
rating the “Pisa Notes”). Dept. of Computer Science, Univ. of Edinburgh (1981)

26. Reus, B., Streicher, T.: Semantics and logic of object calculi. Theorertical Com-
puter Science 316(1), 191–213 (2004)

27. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer
Science 249(1), 3–80 (2000)

28. Schwinghammer, J.: Reasoning about Denotations of Recursive Objects. Ph.D.
thesis, University of Sussex (2005)

29. Scott, D.: Continuous lattices. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geom-
etry, and Logic. Lecture Notes in Mathematics, vol. 274, pp. 97–136. Springer,
Heidelberg (1972)

30. Smyth, M., Plotkin, G.: The category-theoretic solution of recursive domain equa-
tions. SIAM Journal of Computing 11(4), 761–783 (1982)

31. Stoltenberg-Hansen, V., Lindström, I., Griffor, E.R.: Mathematical Theory of Do-
mains. Cambridge University Press, Cambridge (1994)

32. Tews, H.: Coalgebraic Methods for Object-Oriented Specification. PhD thesis,
Technical University of Dresden (2002)

33. Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration,
categorically. Informatica 10(1), 5–26 (1999)

34. Vene, V.: Categorical programming with inductive and coinductive types. PhD
thesis, University of Tartu (2000)

35. Viswanathan, R.: Full abstraction for first-order objects with recursive types and
subtyping. In: Proceedings of the 13th Annual IEEE Symposium on Logic in Com-
puter Science (LICS 1998), IEEE Computer Society Press, Los Alamitos (1998)

36. Washburn, G., Weirich, S.: Boxes go bananas: Encoding higher-order abstract syn-
tax with parametric polymorphism. In: Proceedings of the 8th ACM SIGPLAN
International Conference on Functional Programming, pp. 249–262. ACM Press,
New York (2003)

Bisimulation for Neighbourhood Structures

Helle Hvid Hansen1,2,�, Clemens Kupke1,��, and Eric Pacuit3,� � �

1 Centrum voor Wiskunde en Informatica (CWI)
2 Vrije Universiteit Amsterdam (VUA)
3 Universiteit van Amsterdam (UvA)

Abstract. Neighbourhood structures are the standard semantic tool
used to reason about non-normal modal logics. In coalgebraic terms, a
neighbourhood frame is a coalgebra for the contravariant powerset func-
tor composed with itself, denoted by 22. In our paper, we investigate the
coalgebraic equivalence notions of 22-bisimulation, behavioural equiva-
lence and neighbourhood bisimulation (a notion based on pushouts), with
the aim of finding the logically correct notion of equivalence on neigh-
bourhood structures. Our results include relational characterisations for
22-bisimulation and neighbourhood bisimulation, and an analogue of Van
Benthem’s characterisation theorem for all three equivalence notions. We
also show that behavioural equivalence gives rise to aHennessy-Milner the-
orem, and that this is not the case for the other two equivalence notions.

Keywords: Neighbourhood semantics, non-normal modal logic, bisim-
ulation, behavioural equivalence, invariance.

1 Introduction

Neighbourhood semantics (cf. [7]) forms a generalisation of Kripke semantics,
and it has become the standard tool for reasoning about non-normal modal
logics in which (Kripke valid) principles such as �p ∧ �q → �(p ∧ q) and
�p → �(p ∨ q) (mon) are considered not to hold. In a neighbourhood model,
each state has associated with it a collection of subsets of the universe (called
neighbourhoods), and a modal formula �φ is true at states which have the truth
set of φ as a neighbourhood. The modal logic of all neighbourhood models is
called classical modal logic.

During the past 15-20 years, non-normal modal logics have emerged in the
areas of computer science and social choice theory, where system (or agent)
properties are formalised in terms of various notions of ability in strategic games
(e.g. [2, 19]). These logics have in common that they are monotonic, meaning
they contain the above formula (mon). The corresponding property of neighbour-
hood models is that neighbourhood collections are closed under supersets. Non-
monotonic modal logics occur in deontic logic (see e.g. [8]) where monotonicity

� Supported by NWO grant 612.000.316.
�� Supported by NWO under FOCUS/BRICKS grant 642.000.502.

� � � Supported by NSF grant OISE 0502312.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 279–293, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

280 H.H. Hansen, C. Kupke, and E. Pacuit

can lead to paradoxical obligations, and in the modelling of knowledge and re-
lated epistemic notions (cf. [23, 16]). Furthermore, the topological semantics of
modal logic can be seen as neighbourhood semantics (see [22] and references).

In the present paper we try to find the “logically correct” notion of semantic
equivalence in neighbourhood structures. For monotonic neighbourhood struc-
tures, this question has already been addressed (cf. [18, 11]), but as mentioned in
[18], it is not immediate how to generalise monotonic bisimulation to arbitrary
neighbourhood structures. This is where coalgebra comes in. Neighbourhood
frames are easily seen to be coalgebras for the contravariant powerset functor
composed with itself, denoted 22. Based on this observation the general theory
of coalgebra (cf. [21, 14]) provides us with a number of candidates: behavioural
equivalence, 22-bisimulation and a third notion (based on pushouts), which we
refer to as neighbourhood bisimulation. From the logic point of view, a good
equivalence notion E should have the following properties: (rel) E is characterised
by relational (back-and-forth) conditions which can be effectively checked for fi-
nite models; (hm) the class of finite neighbourhood models is a Hennessy-Milner
class with respect to E; and (chr) classical modal logic is the E-invariant frag-
ment of first-order logic interpreted over neighbourhood models, i.e., we would
like an analogue of Van Benthem’s characterisation theorem ([3]) to hold. These
logic-driven criteria form the main points of our investigation.

In section 2 we define basic notions and notation. In section 3 we investi-
gate the three equivalence notions, first for arbitrary set functors, and then for
22-coalgebras. We provide relational characterisations for 22-bisimulation and
neighbourhood bisimulation, and we show, by means of examples, that in gen-
eral neighbourhood bisimilarity is stronger than behavioural equivalence, and
weaker than 22-bisimilarity. However, when considered on a single model, the
three notions coincide. The above-mentioned examples also demonstrate that
22-bisimilarity and neighbourhood bisimilarity fail to satisfy (hm). Furthermore,
in much work on coalgebra (cf. [21]) it is often assumed that the functor pre-
serves weak pullbacks, however, it is not always clear whether this requirement
is really needed. In [9], weaker functor requirements for congruences are stud-
ied, and 22 provides an example of a functor which does not preserve weak
pullbacks in general, but only the ones consisting of kernel pairs. Finally, in sec-
tion 4 we prove the analogue of the Van Benthem characterisation theorem, for
all three equivalences. To this end, we introduce a notion of modal saturation
for neighbourhood models, and since we can show that in a class of modally
saturated models, modal equivalence implies behavioural equivalence, it follows
that behavioural equivalence has the property (hm). All omitted proof details
can be found in a forthcoming technical report ([12]). So although behavioural
equivalence fails at the property (rel), we still consider it the mathematically op-
timal equivalence notion. Taking computational aspects into consideration, we
find that neighbourhood bisimulations provide a good approximation of behav-
ioural equivalence, while still allowing a fairly simple relational characterisation.
22-bisimulations, however, must be considered too strict a notion.

Bisimulation for Neighbourhood Structures 281

2 Preliminaries and Notation

In this section, we settle on notation, define the necessary coalgebraic notions,
and introduce neighbourhood semantics for modal logic. For further reading on
coalgebra we refer to [21, 24]. Extended discussions on neighbourhood semantics
can be found in [7, 10].

Let X and Y be sets, and R ⊆ X × Y a relation. For U ⊆ X and V ⊆ Y ,
we denote the R-image of U by R[U] = {y ∈ Y | ∃x ∈ U : xRy}, and the
R-preimage of V by R−1[V] = {x ∈ X | ∃y ∈ V : xRy}. The domain of R
is dom(R) = R−1[Y], and the range of R is rng(R) = R[X]. Note that in the
special case that R is (the graph of) a function, then image, preimage, domain
and range amount to the usual definitions. Given a set X , we denote by P(X)
the powerset of X , and for a subset Y ⊆ X , we write Y c for the complement
X \ Y of Y in X .

Let At = {pj | j ∈ ω} be a fixed, countable set of atomic sentences. The basic
modal language L(At) is defined by the grammar: φ ::= pj | ¬φ | φ ∧ φ | �φ,
where j ∈ ω. To ease notation, we write L instead of L(At). Formulas of L are
interpreted in neighbourhood models.

Definition 1. A neighbourhood frame is a tuple 〈S, ν〉 where S is a nonempty
set and ν : S → P(P(S)) is a neighbourhood function which assigns to each
state s ∈ S a collection of neighbourhoods. A neighbourhood model based on
a neighbourhood frame 〈S, ν〉 is a tuple 〈S, ν, V 〉 where V : At → P(S) is a
valuation function.

Let M = 〈S, ν, V 〉 be a neighbourhood model and s ∈ S. Truth of the atomic
propositions is defined via the valuation: M, s |= pi iff s ∈ V (pi), and inductively
over the boolean connectives as usual. For the modal operator, we write M, s |=
�φ iff (φ)M ∈ ν(s), where (φ)M = {t ∈ S | M, t |= φ} denotes the truth set of
φ in M. Let also N be a neighbourhood model. Two states, s in M and t in N ,
are modally equivalent (notation: s ≡ t) if they satisfy the same modal formulas,
i.e., s ≡ t if and only if for all φ ∈ L: M, s |= φ iff N , t |= φ. A subset X ⊆ S
is modally coherent if for all s, t ∈ S: s ≡ t implies s ∈ X iff t ∈ X .

The maps between neighbourhood models which preserve the modal structure
are referred to as bounded morphisms.

Definition 2. If M1 = 〈S1, ν1, V1〉 and M2 = 〈S2, ν2, V2〉 are neighbourhood
models, and f : S1 → S2 is a function, then f is a (frame) bounded morphism
from 〈S1, ν1〉 to 〈S2, ν2〉 (notation: f : 〈S1, ν1〉 → 〈S2, ν2〉), if for all X ⊆ S2, we
have f−1[X] ∈ ν1(s) iff X ∈ ν2(f(s)); and f is a bounded morphism from M1
to M2 (notation: f : M1 → M2) if f : 〈S1, ν1〉 → 〈S2, ν2〉 and for all pj ∈ At,
and all s ∈ S1: s ∈ V1(pj) iff f(s) ∈ V2(pj).

As usual, bounded morphisms preserve truth of modal formulas. That is, if
f : M1 → M2, then for all L-formulas φ, and all states s in M1: M1, s |= φ iff
M2, f(s) |= φ. This can be proved by a straightforward induction on the formula
structure (left to the reader).

282 H.H. Hansen, C. Kupke, and E. Pacuit

We will work in the category Set of sets and functions. Let F : Set → Set
be a functor. Recall that an F-coalgebra is a pair 〈S, σ〉 where S is a set, and
σ : S → F(S) is a function, sometimes called the coalgebra map. Given two F-
coalgebras, 〈S1, σ1〉 and 〈S2, σ2〉, a function f : S1 → S2 is a coalgebra morphism
if F(f) ◦ σ1 = σ2 ◦ f .

The contravariant powerset functor 2 : Set → Set maps a set X to P(X), and
a function f : X → Y to the inverse image function f−1 : P(Y) → P(X). The
functor 22 is defined as the composition of 2 with itself. It should be clear that
neighbourhood frames are 22-coalgebras and vice versa, although we follow stan-
dard logic practice and exclude the empty coalgebra from being a neighbourhood
structure. Similarly, a neighbourhood model 〈S, ν, V 〉 corresponds with a coalge-
bra map 〈ν, V ′〉 : S → 22(S)×P(At) for the functor 22(−)×P(At) by viewing the
valuation V : At → P(S) as a map V ′ : S → P(At) where pi ∈ V ′(s) iff s ∈ V (pi).
Moreover, it is straightforward to show a function f : S1 → S2 is a bounded
morphism between the neighbourhood frames S1 = 〈S1, ν1〉 and S2 = 〈S2, ν2〉
iff f is a coalgebra morphism from S1 to S2. Similarly, 22(−) × P(At)-coalgebra
morphisms are simply the same as bounded morphisms between neighbourhood
models. In what follows we will switch freely between the coalgebraic setting and
the neighbourhood setting.

Finally, we will need a number of technical constructions. The disjoint union
of two sets S1 and S2 is denoted by S1 + S2. Disjoint unions of neighbourhood
frame/models are instances of the category theoretical notion of coproducts, and
they lift disjoint unions of sets to neighbourhood frames/models such that the
inclusion maps are bounded morphisms. This amounts to the following definition
for neighbourhood models; the definition for neighbourhood frames is obtained
by leaving out the part about the valuations.

Definition 3. Let M1 = 〈S1, ν1, V1〉 and M2 = 〈S2, ν2, V2〉 be two neighbour-
hood models. The disjoint union of M1 and M2 is the neighbourhood model
M1 + M2 = 〈S1 + S2, ν, V 〉 where for all pj ∈ At, V (pj) = V1(pj) ∪ V2(pj); and
for i = 1, 2, for all X ⊆ S1 + S2, and s ∈ Si, X ∈ ν(s) iff X ∩ Si ∈ νi(s).

In the sequel we will also use pullbacks and pushouts. We now remind the reader
of how these can be constructed in Set. For the general definition we refer to any
standard textbook on category theory (e.g. [1]).

First, given a relation R ⊆ S1 × S2, we can view R as a relation on S1 + S2.
We denote by R̂ the smallest equivalence relation on S1 + S2 that contains R,
and (S1 + S2)/R̂ is the set of R̂-equivalence classes.

Definition 4. Let f1 : S1 → Z and f2 : S2 → Z be functions. The canonical
pullback of f1 and f2 (in Set) is the triple (pb(f1, f2), π1, π2), where pb(f1, f2) :=
{(s1, s2) ∈ S1 × S2 | f1(s1) = f2(s2)}; and π1 : pb(f1, f2) → S1 and π2 :
pb(f1, f2) → S2 are the projections.

Let R ⊆ S1 × S2 be a relation with projections π1 : R → S1 and π2 : R →
S2. The canonical pushout of R (in Set) is the triple (po(π1, π2), p1, p2), where
po(π1, π2) :=

(
S1 + S2

)
/R̂, and p1 : S1 → po(π1, π2) and p2 : S2 → po(π1, π2)

are the obvious quotient maps.

Bisimulation for Neighbourhood Structures 283

3 Equivalence Notions

In this section we will study various notions of “observational equivalence” for
neighbourhood frames in detail. In the first part we list the three coalgebraic
equivalence notions that we are going to consider. In the second part we spell out
in detail what these three equivalence notions mean on neighbourhood frames.

3.1 Three Coalgebraic Notions of Equivalence

Remark 1. In this subsection we introduce behavioural and relational equiva-
lences. We want to stress that we use the word “equivalence” to indicate that a
relation relates only equivalent points. We do not require these equivalences to
be equivalence relations.

The main observation for defining equivalences between coalgebras is that coal-
gebra morphisms preserve the behaviour of coalgebra states. This basic idea
motivates the well-known coalgebraic definitions of bisimilarity and behavioural
equivalence. In the following F denotes an arbitrary Set functor.

Definition 5. Let S1 = 〈S1, ν1〉, S2 = 〈S2, ν2〉 be F-coalgebras. A relation R ⊆
S1 × S2 is an (F-)bisimulation between S1 and S2 if there exists a function
μ : R → F(R) such that for both i = 1, 2 the projection map πi : R → Si is a
coalgebra morphism from 〈R, μ〉 to Si. Two states s1 and s2 are (F-)bisimilar if
they are linked by some bisimulation (notation: s1 ↔ s2). We call R ⊆ S1 ×S2 a
behavioural equivalence between S1 and S2 if there are a F-coalgebra 〈Z, λ〉 and
F-coalgebra morphisms fi : 〈Si, νi〉 → 〈Z, λ〉 for i = 1, 2 such that R = pb(f1, f2).
Two states s1 and s2 that are related by some behavioural equivalence are called
behaviourally equivalent (notation: s1 ↔b s2).

It has been proven in [21] that two states are F-bisimilar iff they are behaviourally
equivalent under the assumption that the functor F is weak pullback preserving.
The same article, however, tells us that the functor 22 that we want to study
lacks this property. Therefore it makes sense to look at both 22-bisimulations and
behavioural equivalences on our quest for the right notion of equivalence. In fact,
we will also look at a third notion that, to the best of our knowledge, has not been
considered before, namely the notion of a relational equivalence. The motivation
for introducing relational equivalences is to remedy one obvious shortcoming of
behavioural equivalences: in general it is difficult to provide some criterion for
a relation R to be a behavioural equivalence. Bisimulations, in contrast, can
be nicely characterized using relation lifting (cf. e.g. [20]). For example when
considering Kripke frames (P-coalgebras) this characterization yields the well-
known forth and back conditions for Kripke bisimulations. We want to have a
similar characterization of behavioural equivalence - even if the functor does not
preserve weak pullbacks.

Definition 6. Let S1 = 〈S1, ν1〉 and S2 = 〈S2, ν2〉 be F-coalgebras. Furthermore
let R ⊆ S1 × S2 be a relation and let 〈Z, p1, p2〉 be the canonical pushout of R
(cf. Def. 4). Then R is called a relational equivalence between S1 and S2 if there

284 H.H. Hansen, C. Kupke, and E. Pacuit

exists a coalgebra map λ : Z → F(Z) such that the functions p1 and p2 become
coalgebra morphisms from S1 and S2 to 〈Z, λ〉 (see the diagram below). If two
states s1 and s2 are related by some relational equivalence we write s1 ↔r s2.

R
π1

�����������
π2

�����������

S1

ν1 ��

p1 �� Z
∃λ ���

� S2

ν2��

p2��

F(S1)
F(p1) �� F(Z) F(S2)

F(p2)��

We note that the definition of a relational equivalence is independent of the
concrete representation of the pushout. This follows easily from the fact that
pushouts are unique up-to isomorphism.

Remark 2. The main advantage of relational equivalences is that they can be
characterized by some form of relation lifting 1: Let 〈S1, ν1〉 and 〈S2, ν2〉 be F-
coalgebras, let R ⊆ S1 ×S2 with projections π1, π2 and let (po(π1, π2), p1, p2) the
canonical pushout of R. We define the F-lifting F̂ of R, by F̂(R) := pb(Fp1, Fp2) ⊆
F(S1) × F(S2). It is not difficult to see that R is a relational equivalence iff for all
(s1, s2) ∈ R we have (ν1(s1), ν2(s2)) ∈ F̂(R). If F preserves weak pullbacks one
can show that F̂ (R) = F (R) where F denotes the well-known lifting of F to the
category Rel of sets and relations (for the Definition of F consult e.g. [20]).

Definition 6 ensures that relational equivalences only relate behavioural equiv-
alent points. The following proposition provides a first comparison between the
three equivalence notions. We leave the easy, but instructive proof to the reader.

Proposition 1. Let S1 = 〈S1, ν1〉 and S2 = 〈S2, ν2〉 be F-coalgebras. We have
for all s1 ∈ S1 and s2 ∈ S2: s1 ↔ s2 implies s1 ↔r s2 implies s1 ↔b s2.

This proposition is clearly not enough to justify the introduction of relational
equivalences: our motivation was to give a characterization of behavioural equiv-
alence using a relation lifting. We will demonstrate, however, that behavioural
equivalences give us in general a strictly weaker notion of equivalence between
coalgebras than relational equivalences. Luckily both notions coincide if we re-
strict our attention to “full” relations. In particular, we obtain the result that
behavioural equivalence and relational equivalence amount to the same thing
when studied on a single coalgebra.

Lemma 1. If S1 = 〈S1, ν1〉 and S2 = 〈S2, ν2〉 are F-coalgebras and R ⊆ S1 ×S2
is a behavioural equivalence between S1 and S2 that is full, i.e. dom(R) = S1 and
rng(R) = S2, then R is a relational equivalence.

Proof. Let R be a behavioural equivalence with projection maps π1 : R → S1 and
π2 : R → S2. Then there are some F-coalgebra 〈Z, λ〉 and coalgebra morphisms

1 The definition of F̂ goes back to an idea by Kurz ([13]) for defining a relation lifting
of non weak pullback preserving functors.

Bisimulation for Neighbourhood Structures 285

fi : Si → Z for i = 1, 2 such that R = pb(f1, f2). Let 〈Z ′, p1, p2〉 be the canonical
pushout of R. We are going to define a function λ′ : Z ′ → F(Z ′) such that pi is
a coalgebra morphism from Si to 〈Z ′, λ′〉 for i = 1, 2.

By the universal property of the pushout there has to be a function j : Z ′ → Z
such that j ◦ pi = fi for i = 1, 2. We claim that this function is injective. First
it follows from the definition of the canonical pushout that both p1 and p2 are
surjective, because R is a full relation. Let now z1, z2 ∈ Z ′ and suppose that
j(z1) = j(z2). The surjectivity of the pi’s implies that there are s1 ∈ S1 and
s2 ∈ S2 such that p1(s1) = z1 and p2(s2) = z2. Hence j(p1(s1)) = j(p2(s2)) which
in turn yields f1(s1) = f2(s2). This implies (s1, s2) ∈ R and as a consequence
we get p1(s1) = p2(s2), i.e., z1 = z2. This demonstrates that j is injective and
thus there is some surjective map e : Z → Z ′ with e ◦ j = idZ′ . Now put
λ′ := F(e) ◦ λ ◦ j. It is straightforward to check that for i = 1, 2 the function pi

is a coalgebra morphism from Si to 〈Z ′, λ′〉 as required.

Theorem 1. Let S = 〈S, ν〉 be an F-coalgebra. Every behavioural equivalence
R ⊆ S × S on S is contained in a relational equivalence. Hence s ↔b s′ iff
s ↔r s′ for all s, s′ ∈ S.

Proof. The theorem is a consequence of Lemma 1 and the fact that every be-
havioural equivalence R on a coalgebra 〈S, ν〉 is contained in a full one: If
R = pb(f1, f2) for two coalgebra morphisms f1 and f2 we construct the co-
equalizer h of f1 and f2 in the category of F-coalgebras (cf. e.g. [21, Sec. 4.2]).
If we put f := h ◦ f1 we obtain R ⊆ R′ := pb(f, f), and R′ is obviously full.

3.2 Equivalences Between Neighbourhood Frames

In this subsection we instantiate the three coalgebraic equivalence notions for
22-coalgebras, i.e., for neighbourhood frames.

We first consider 22-bisimulations. Recall from Def. 5 that a relation R ⊆
S1 × S2 is a 22-bisimulation between two 22-coalgebras S1 = 〈S1, ν1〉 and S2 =
〈S2, ν2〉 if the projection maps π1 and π2 are bounded morphisms (22-coalgebra
morphisms) from some 22-coalgebra (R, μ) to S1 and S2 respectively. By Defin-
ition 2 of a bounded morphism this means that for (s1, s2) ∈ R and i = 1, 2:

U ∈ νi(si) iff π−1
i [U] ∈ μ(s1, s2) for U ⊆ Si.

This leads to two “minimal requirements” on the neighbourhood functions ν1
and ν2 for pairs (s1, s2) related by a 22-bisimulation. For all Ui, U

′
i ⊆ Si, i = 1, 2:

1. π−1
i [Ui] = π−1

i [U ′
i] implies Ui ∈ νi(si) iff U ′

i ∈ νi(si),
2. π−1

1 [U1] = π−1
2 [U2] implies U1 ∈ ν1(s1) iff U ′

1 ∈ ν2(s2).

The following definition will help us to state these requirements in a concise way.

Definition 7. Let R ⊆ S1 × S2 be a relation with projection maps πi : R → Si

for i = 1, 2. A set U ⊆ S1 is called R-unrelated if U ∩ dom(R) = ∅. Similarly we
call V ⊆ S2 R-unrelated if V ∩ rng(R) = ∅. Furthermore we say two sets U ⊆ S1
and V ⊆ S2 are R-coherent if π−1

1 [U] = π−1
2 [V].

286 H.H. Hansen, C. Kupke, and E. Pacuit

It is easy to check that for sets U, U ′ ⊆ Si we have π−1
i [U] = π−1

i [U ′] iff the
symmetric difference UΔU ′ of U and U ′ is R-unrelated, i.e., iff U and U ′ only
differ in points that do not occur in the relation R. The notion of R-coherency
can also be formulated in terms of the relation R: Let R ⊆ S1 × S2 be a relation
and let U ⊆ S1, V ⊆ S2. Then U and V are R-coherent iff R[U] ⊆ V and
R−1[V] ⊆ U .

Using the notions of R-coherency and R-unrelatedness we can reformulate the
previous requirements and prove that they in fact characterize 22-bisimulations.

Proposition 2. Let S1 = 〈S1, ν1〉 and S2 = 〈S2, ν2〉 be neighbourhood frames. A
relation R ⊆ S1 ×S2 is a 22-bisimulation between S1 and S2 iff for all (s1, s2) ∈
R, for all U1, U

′
1 ⊆ S1 and for all U2, U

′
2 ⊆ S2 the following two conditions are

satisfied:

1. UiΔU ′
i is R-unrelated implies Ui ∈ νi(si) iff U ′

i ∈ νi(si), for i = 1, 2.
2. U1 and U2 are R-coherent implies U1 ∈ ν1(s1) iff U2 ∈ ν2(s2).

We will now demonstrate with an example that 22-bisimulations are too restric-
tive, i.e., we give an example of two states that should be regarded as equivalent
but which are not 22-bisimilar.

Example 1. LetT := {t1, t2, t3} andS := {s}. Furthermoreputν1(t1) = ν1(t2) :=
{{t2}}, ν1(t3) := {∅} and ν2(s) := ∅ (cf. Fig. 1). We claim that there is no 22-
bisimulation between 〈T, ν1〉 and 〈S, ν2〉 which relates t1 and s.

We first note that t3 and s cannot be related by a 22-bisimulation. This follows
easily from the fact that ∅ ⊆ T and ∅ ⊆ S are R-coherent, and ∅ ∈ ν1(t3) and
∅ /∈ ν2(s). Suppose now R is a 22-bisimulation such that (t1, s) ∈ R. It must then
be the case that {t3} = {t3, t2}Δ{t2} is R-unrelated as we saw above. Therefore
it follows by condition 1 of Proposition 2 that {t3, t2} ∈ ν1(t1) - a contradiction.

t3 t1

t2

s1

s2

s3

t3 t2

t1

S1 Z S2

f1 f2

s

Example 1 Example 2

Fig. 1. Examples

But what justifies our claim that t1 and s should be bisimilar? The reason
is that t1 and s are modally equivalent: in order to see this one has first to
observe that the states t1 and t2 are obviously modally equivalent since they
have the same neighbourhoods. Therefore {t2}, the only neighbourhood set of
t1, is undefinable, i.e. every formula that is true at t2 will be also true at t1.

Bisimulation for Neighbourhood Structures 287

The semantics of the �-operator, however, only takes definable neighbourhoods
into account, i.e. those neighbourhoods which consist exactly of those states
that make a certain modal formula true. Hence it is possible to prove the modal
equivalence of t1 and s using an easy induction on the structure of a formula.

So let us have a look at our second candidate for an equivalence notion be-
tween 22-coalgebras, namely what we called relational equivalence. In the sequel
the relational equivalences between neighbourhood frames will be referred to as
neighbourhood bisimulations. The following proposition gives a characterization
of neighbourhood bisimulations in set-theoretic terms.

Proposition 3. Let Si = 〈Si, νi〉, i = 1, 2, be neighbourhood frames. A relation
R ⊆ S1 × S2 is a neighbourhood bisimulation iff for all (s1, s2) ∈ R and for all
R-coherent sets U1 ⊆ S1 and U2 ⊆ S2:

The good news about neighbourhood bisimuations is that they capture the fact
that the states t1 and s in Example 1 are equivalent: The reader is invited to
check that in this case R := {(t1, s), (t2, s)} is a neighbourhood bisimulation. The
next question is: how are neighbourhood bisimulations and behavioural equiva-
lences related? Unfortunately the following example shows that neighbourhood
bisimilarity is strictly stronger than behavioural equivalence.

Example 2. We are going to describe the situation that is depicted on the right
in Figure 1. Let S1 := {t1, t2, t3}, S2 := {s3} and define the neighbourhood
functions ν1 and ν2 as follows: ν1(t1) := {{t2}}, ν1(t2) = ν1(t3) := {∅} and
ν2(s3) := ∅. We claim that the relation R := {(t1, s3)} is a behavioural equiva-
lence. Let Z := {s1, s2}, λ(s1) := ∅ and λ(s2) := {∅}. Furthermore for i ∈ {1, 2}
we define functions fi : Si → Z by putting f1(t1) := s1, f1(t2) = f1(t3) := s2
and f2(s3) := s1. Then it is straightforward to check that f1 and f2 are in fact
bounded morphisms and that R = pb(f1, f2) as required.

At first this might look a bit surprising, because the neighbourhood frames
(S1, ν1) and (S2, ν2) look rather different. But again it is not difficult to see that
the states t1 and s3 should be considered equivalent because they are modally
equivalent. Like in Example 1 the modal equivalence of t1 and s3 follows from
the fact that the set {t2}, the only neighbourhood of t1, is not definable: all
formulas that are true at t2 are also true at t3.

However t1 and s3 are not neighbourhood bisimilar: suppose for a contradic-
tion that (t1, s3) ∈ R′ for some relational equivalence R′. Then it is easy to see
that also (t2, s3) ∈ R′ (otherwise we obtain a contradicition from the fact that
{t2} and ∅ are R-coherent). But ∅ ∈ ν1(t2) now would imply ∅ ∈ ν2(s3) because
∅ and ∅ are R′-coherent - a contradiction.

To sum it up: Example 1 showed that neighbourhood bisimulations are a clear
improvement when compared to 22-bisimulations. Example 2, however, demon-
strates that neighbourhood bisimulations are in general not able to capture
behavioural equivalence of neighbourhood frames. If we consider behavioural
equivalences on one neighbourhood frame all equivalence notions coincide.

288 H.H. Hansen, C. Kupke, and E. Pacuit

Proposition 4. Let S = (S, ν) be a neighbourhood frame and s1, s2 ∈ S. Then
s1 ↔ s2 iff s1 ↔r s2 iff s1 ↔b s2.

Proof. The second equivalence is an instance of the more general result in The-
orem 1. The first equivalence is a consequence of Prop. 2 and Prop. 3. Alter-
natively, the proposition can be proven using the result in [9] that congruence
relations are bisimulations in case the functor weakly preserves kernel pairs - a
property that the functor 22 has.

Remark 3. The results of this section can be easily extended from neighbourhood
frames to neighbourhood models: a relation R is a (neighbourhood) bisimulation/
behavioural equivalence between neighbourhoodmodels, if R is a (neighbourhood)
bisimulation/behavioural equivalence between the underlying neighbourhood
frames which relates only points that satisfy the same propositions.

4 The Classical Modal Fragment of First-Order Logic

We will now prove that the three equivalence notions described in section 3
all characterise the modal fragment of first-order logic over the class of neigh-
bourhood models (Theorem 2). This result is an analogue of Van Benthem’s
characterisation theorem for normal modal logic (cf. [3]): On the class of Kripke
models, modal logic is the (Kripke) bisimulation-invariant fragment of first-order
logic. The content of Van Benthem’s theorem is that the basic modal language
(with �) can be seen as a fragment of a first-order language which has a bi-
nary predicate R�, and a unary predicate P for each atomic proposition p in
the modal language. Formulas of this first-order language can be interpreted in
Kripke models in the obvious way. Van Benthem’s theorem tells us that a first-
order formula α(x) is invariant under Kripke bisimulation if and only if α(x) is
equivalent to a modal formula.

4.1 Translation into First-Order Logic

The first step towards a Van Benthem-style characterisation theorem for classi-
cal modal logic is to show that L can be viewed as a fragment of first-order logic.
It will be convenient to work with a two-sorted first-order language. Formally,
there are two sorts {s, n}. Terms of the first sort (s) are intended to represent
states, whereas terms of the second sort (n) are intended to represent neigh-
bourhoods. We assume there are countable sets of variables of each sort. To
simplify notation we use the following conventions: x, y, x′, y′, x1, y2, . . . denote
variables of sort s (state variables) and u, v, u′, v′, u1, v1, . . . denote variables of
sort n (neighbourhood variables). The language is built from a signature contain-
ing a unary predicate Pi (of sort s) for each i ∈ ω, a binary relation symbol N
relating elements of sort s to elements of sort n, and a binary relation symbol E
relating elements of sort n to elements of sort s. The intended interpretation of
xNu is “u is a neighbourhood of x”, and the intended interpretation of uEx is
“x is an element of u”. The language L1 is built from the following grammar:

φ ::= x = y | u = v | Pix | xNu | uEx | ¬φ | φ ∧ ψ | ∃xφ | ∃uφ

Bisimulation for Neighbourhood Structures 289

where i ∈ ω; x and y are state variables; and u and v are neighbourhood variables.
The usual abbreviations (eg. ∀ for ¬∃¬) apply.

Formulas ofL1 are interpreted in two-sortedfirst-order structuresM = 〈D, {Pi |
i ∈ ω}, N, E〉 where D = Ds ∪Dn (and Ds ∩Dn = ∅), each Pi ⊆ Ds, N ⊆ Ds ×Dn

and E ⊆ Dn × Ds. The usual definitions of free and bound variables apply. Truth
of sentences (formulas with no free variables) φ ∈ L1 in a structure M (denoted
M |= φ) is defined as expected. If x is a free state variable in φ (denoted φ(x)), then
we write M |= φ[s] to mean that φ is true in M when s ∈ Ds is assigned to x. Note
that M |= ∃xφ iff there is an element s ∈ Ds such that M |= φ[s]. If Ψ is a set of L1-
formulas, and M is an L1-model, then M |= Ψ means that for all ψ ∈ Ψ , M |= ψ.
Given a class K of L1-models, we denote the semantic consequence relation over K
by |=K. That is, for a set of L1-formulas Ψ ∪{φ}, we have Ψ |=K φ, if for all M ∈ K,
M |= Ψ implies M |= φ.

We can translate modal formulas of L and neighbourhood models to the first-
order setting in a natural way:

Definition 8. Let M = 〈S, ν, V 〉 be a neighbourhood model. The first-order
translation of M is the structure M◦ = 〈D, {Pi | i ∈ ω}, Rν, R�〉 where

– Ds = S, Dn = ν[S] =
⋃

s∈S ν(s)
– Pi = V (pi) for each i ∈ ω,
– Rν = {(s, U) |s ∈ Ds, U ∈ ν(s)},
– R� = {(U, s) |s ∈ Ds, s ∈ U}.

Definition 9. The standard translation of the basic modal language is a family
of functions stx : L → L1 defined as follows: stx(pi) = Pix, stx(¬φ) = ¬stx(φ),
stx(φ ∧ ψ) = stx(φ) ∧ stx(ψ), and

stx(�φ) = ∃u(xNu ∧ (∀y(uEy ↔ sty(φ))).

Standard translations preserve truth; the easy proof is left to the reader.

Lemma 2. Let M be a neighbourhood model and φ ∈ L. For each s ∈ S,
M, s |= φ iff M◦ |= stx(φ)[s].

In the Kripke case, every first-order model for the language with R� can
be seen as Kripke model. However, it is not the case that every L1-structure
is the translation of a neighbourhood model. Luckily, we can axiomatize the
subclass of neighbourhood models up to isomorphism. Let N = {M | M ∼=
M◦ for some neighbourhood model M}, and let NAX be the following axioms

(A1) ∃x(x = x)
(A2) ∀u∃x(xNu)
(A3) ∀u, v(¬(u = v) → ∃x((uEx ∧ ¬vEx) ∨ (¬uEx ∧ vEx)))

It is not hard to see that if M is a neighbourhood model, then M◦ |= NAX. The
next result states that, in fact, NAX completely characterizes the class N.

Proposition 5. Suppose M is an L1-model and M |= NAX. Then there is a
neighbourhood model M◦ such that M ∼= (M◦)◦.

290 H.H. Hansen, C. Kupke, and E. Pacuit

Thus, in a precise way, we can think of models in N as neighbourhood models.
In particular, if M and N are in N we will write M + N by which we (strictly
speaking) mean the L1-model (M◦ + N◦)◦ (which is also in N).

Furthermore,Proposition 5 implies thatwe canwork relative toNwhile still pre-
serving nice first-order properties such as compactness and the existence of count-
ably saturated models. These properties are essential in the proof of Theorem 2.

4.2 Characterisation Theorem

We are now able to formulate our characterisation theorem. Let ∼ be a relation
on model-state pairs. Over the class N, an L1-formula α(x) is invariant under
∼, if for all models M1 and M2 in N and all sort s-domain elements s1 and s2
of M1 and M2, respectively, we have M1, s1 ∼ M2, s2 implies M1 |= α[s1] iff
M2 |= α[s2]. Over the class N, an L1-formula α(x) is equivalent to the translation
of a modal formula if there is a modal formula φ ∈ L such that for all models
M in N, and all s-domain elements s in M, M |= α[s] iff M |= stx(φ)[s].

Theorem 2. Let α(x) be an L1-formula. Over the class N (of neighbourhood
models) the following are equivalent:

1. α(x) is equivalent to the translation of a modal formula,
2. α(x) is invariant under behavioural equivalence,
3. α(x) is invariant under neighbourhood bisimilarity,
4. α(x) is invariant under 22-bisimilarity.

Our proof of Theorem 2 uses essentially the same ingredients as the proof of Van
Benthem’s theorem (see e.g. [5]). In particular, we define a notion of modal sat-
uration which ensures that modal equivalence implies behavioural equivalence.
To this end, we need the following notion of satisfiability. Let Ψ be a set of L-
formulas, and let M = 〈S, ν, V 〉 be a neighbourhood model. We say that Ψ is
satisfiable in a subset X ⊆ S of M, if there is an s ∈ X such that for all ψ ∈ Ψ ,
M, s |= ψ. The set Ψ is finitely satisfiable in X ⊆ S, if any finite subset Ψ0 ⊆ Ψ
is satisfiable in X . Recall (from pg. 281) that X ⊆ S is modally coherent if for
all s, t ∈ S: s ≡ t implies s ∈ X iff t ∈ X .

Definition 10 (Modal saturation). A neighbourhood model M = 〈S, ν, V 〉 is
modally saturated, if for all modally coherent neighbourhoods X ∈ ν[S], and all
sets Ψ of modal L-formulas the following holds:
(i) If Ψ is finitely satisfiable in X, then Ψ is satisfiable in X, and
(ii) If Ψ is finitely satisfiable in Xc, then Ψ is satisfiable in Xc.

The reason we need modally saturated models is that they allow quotienting
with the modal equivalence relation. The property which ensures this modal
quotient is well-defined is that in a modally saturated model, a modally coherent
neighbourhood is definable by a modal formula. The consequence is that modally
equivalent states are identified in the modal quotient, and hence behaviourally
equivalent via the quotient map, and we have the following proposition.

Bisimulation for Neighbourhood Structures 291

Proposition 6. Let M = 〈S, ν, V 〉 be a modally saturated neighbourhood model.
We have for all s, t ∈ S: s ≡ t iff s ↔b t.

Since all three equivalence notions coincide on a single model (Proposition 4),
we obtain the following corollary.

Corollary 1. Let M = 〈S, ν, V 〉 be a modally saturated neighbourhood model.
We have for all s, t ∈ S: s ≡ t iff s ↔b t iff s ↔r t iff s ↔ t.

Furthermore, it can easily be shown that finite neighbourhood models are modally
saturated, hence the modal quotient of the disjoint union of two finite neighbour-
hood models is well-defined. This means that over the class of finite neighbourhood
models, we can always construct a behavioural equivalence containing any given
pair of modally equivalent states. In other words, finite neighbourhood models
form a Hennessy-Milner class with respect to behavioural equivalence. This, how-
ever, is not the case with respect to 22-bisimulation or neighbourhood bisimula-
tion, as Examples 1 and 2 in section 3 show. We sum up in the next proposition.

Proposition 7. Over the class of finite neighbourhood models, modal equiva-
lence implies behavioural equivalence, but not 22-bisimilarity nor neighbourhood
bisimilarity.

In the proof of the characterisation theorem, we will need to construct modally
saturated models from arbitrary neighbourhood models. The first step towards
this is to obtain countably saturated L1-models. This can be done in the form
of ultrapowers using standard first-order logic techniques: Every L1-model has
a countably saturated, elementary extension (see e.g. [6]). The second step is
to show that any countably saturated neighbourhood model (viewed as a L1-
model) is modally saturated. This can be proved with a standard argument. We
are now ready to prove Theorem 2.

Proof of Theorem 2. It is clear that 2 ⇒ 3 ⇒ 4 (cf. Proposition 1). To see
that 4 ⇒ 2, we only need to recall (cf. [21]) that graphs of bounded morphisms
are 22-bisimulations. Furthermore, as truth of modal formulas is preserved by
behavioural equivalence, 1 ⇒ 2 is clear. We complete the proof by showing that
2 ⇒ 1.

Let MOCN(α) = {stx(φ) | φ ∈ L, α(x) |=N stx(φ)} be the set of modal
consequences of α(x) over the class N. It suffices to show that MOCN(α) |=N

α(x), since then by compactness there is a finite subset Γ (x) ⊆ MOCN(α) such
that Γ (x) |=N α(x) and α(x) |=N

∧
Γ (x). It follows that α(x) is N-equivalent

to
∧

Γ (x), which is the translation of a modal formula. So suppose M is a model
in N and MOCN(α) is satisfied at some element s in M. We must show that
M |= α[s]. Consider the set T (x) = {stx(φ) | M◦, s |= φ} ∪ {α(x)}. Using a
standard compactness argument, we can show that T (x) is N-consistent, hence
T (x) is satisfied at an element t in some N ∈ N. By construction, s and t are
modally equivalent. Take now a countably saturated, elementary extension U of
M+N. Note that U ∈ N, since satisfiablity of NAX is preserved under elementary
extensions. Moreover, the images sU and tU in U of s and t, respectively, are

292 H.H. Hansen, C. Kupke, and E. Pacuit

also modally equivalent, since modal truth is transferred by elementary maps.
Now since U is modally saturated, it follows from Proposition 6 that sU and
tU are behaviourally equivalent. The construction is illustrated in the following
diagram; � indicates that the map is elementary.

MOCN(α)[s] =| M
i �� M + N

�
��

N |= α[t]
j��

U

Finally, we can transfer the truth of α(x) from N, t to M, s by using the in-
variance of α(x) under behavioural equivalences, elementary maps and bounded
morphisms (which are functional 22-bisimulations and hence also behavioural
equivalences). ��

5 Discussion and Related Work

The main result in our paper is the characterisation theorem (Theorem 2). Our
proof builds on ideas from the original proof of the Van Benthem characterisation
theorem ([3]). Using similar techniques we can easily prove Craig interpolation
for classical modal logic. In the future, we plan to investigate whether other
model-theoretic results from normal modal logic carry over to the neighbourhood
setting.

Closely related to our work are also the invariance results by Pauly ([18]) on
monotonic modal logic and by Ten Cate et al. ([22]) on topological modal logic.
Furthermore there seems to be a connection between our work and the results on
Chu spaces in [4] where Van Benthem characterises the Chu transform invariant
fragment of a two-sorted first-order logic. We also would want to explore the
possibility of proving our result using game-theoretic techniques similar to the
ones exploited by Otto ([15]).

We want to stress that the paper also contains observations that might be
useful in universal coalgebra. We saw that relational equivalences capture be-
havioural equivalence on F-coalgebras for an arbitrary Set functor F. (see Theo-
rem 1). One advantage of these relational equivalences lies in the fact that they
can be characterised by a kind of relation lifting (see Remark 2). Therefore we
believe the notion of a relational equivalence might be interesting in situations
where the functor under consideration does not preserve weak pullbacks. In par-
ticular, we want to explore the exact relationship of our results on relational
equivalences and the work by Gumm & Schröder ([9]).

Finally our work might be relevant for coalgebraic modal logic (see e.g. [17]).
Our idea can be sketched as follows: Given a collection of predicate liftings for a
functor F we can turn any F-coalgebra into some kind of neighbourhood frame.
We would like to combine this well-known connection with Theorem 2, in order
to prove that, under certain assumptions, coalgebraic modal logic can be viewed
as the bisimulation invariant fragment of some many-sorted first-order logic.

Bisimulation for Neighbourhood Structures 293

References

[1] Adámek, J.: Theory of Mathematical Structures. Reidel Publications (1983)
[2] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-

nal of the ACM 49(5), 672–713 (2002)
[3] van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.)

Handbook of Philosophical Logic, vol. II, pp. 167–247. Reidel, Doordrecht (1984)
[4] van Benthem, J.: Information transfer across Chu spaces. Logic Journal of the

IGPL 8(6), 719–731 (2000)
[5] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University

Press, Cambridge (2001)
[6] Chang, C., Keisler, H.: Model Theory. North-Holland, Amsterdam (1973)
[7] Chellas, B.F.: Modal Logic - An Introduction. Cambridge University Press, Cam-

bridge (1980)
[8] Goble, L.: Murder most gentle: The paradox deepens. Philosophical Studies 64(2),

217–227 (1991)
[9] Gumm, H.P., Schröder, T.: Types and coalgebraic structure. Algebra univer-

salis 53, 229–252 (2005)
[10] Hansen, H.H.: Monotonic modal logic (Master’s thesis). Research Report PP-

2003-24, ILLC, University of Amsterdam (2003)
[11] Hansen, H.H., Kupke, C.: A coalgebraic perspective on monotone modal logic.

In: Proceedings CMCS’04. ENTCS, vol. 106, pp. 121–143. Elsevier, Amsterdam
(2004)

[12] Hansen, H.H., Kupke, C., Pacuit, E.: Bisimulation for neighbourhood structures.
CWI technical report (to appear)

[13] Kurz, A.: Personal communication
[14] Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD the-

sis, Ludwig-Maximilians-Universität (2000)
[15] Otto, M.: Bisimulation invariance and finite models (Association for Symbolic

Logic). In: Logic Colloquium ’02. Lecture Notes in Logic, Association for Symbolic
Logic vol. 27 (2006)

[16] Padmanabhan, V., Governatori, G., Su, K.: Knowledge assesment: A modal logic
approach. In: Proceedings of the 3rd Int. Workshop on Knowledge and Reasoning
for Answering Questions (KRAQ) (2007)

[17] Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability
of local consequence. Theoretical Computer Science 309, 177–193 (2003)

[18] Pauly, M.: Bisimulation for general non-normal modal logic. Manuscript (1999)
[19] Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and

Computation 12(1), 149–166 (2002)
[20] Rutten, J.J.M.M.: Relators and metric bisimulations. In: Proccedings of

CMCS’98. ENTCS, vol. 11 (1998)
[21] Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer

Science 249, 3–80 (2000)
[22] ten Cate, B., Gabelaia, D., Sustretov, D.: Modal languages for topology: Expres-

sivity and definability (Under submission)
[23] Vardi, M.: On epistemic logic and logical omniscience. In: Halpern, J. (ed.) Pro-

ceedings TARK’86, pp. 293–305. Morgan Kaufmann, San Francisco (1986)
[24] Venema, Y.: Algebras and coalgebras. In: Handbook of Modal Logic, vol. 3, pp.

331–426. Elsevier, Amsterdam (2006)

Algebraic Models of Simultaneous

Multithreaded and Multi-core Processors

N.A. Harman

Department of Computer Science, University of Wales Swansea,
Swansea SA2 8PP, UK
n.a.harman@swan.ac.uk

Abstract. Much current work on modelling and verifying microproces-
sors can accommodate pipelined and superscalar processors. However,
superscalar and pipelined processors are no longer state-of-the-art: Si-
multaneous Multithreaded (SMT) and Multi-core, or Chip-Level Multi-
threaded (CMT) microprocessors enable a single microprocessor imple-
mentation to present itself to the programmer as multiple (virtual in
the case of SMT) processors with shared state. This paper builds on a
series which has developed a hierarchy of many-sorted algebraic models,
able to model a variety of processor types, at different levels of temporal
and data abstraction. These models address both the behavioural defi-
nition of microprocessors, and also the question: what does it mean for
a microprocessor implemenation to be correct? They also consider how
the process of formal verification can be simplified by indentifying some
easily-checked preconditions (the one-step theorems). We extend the ex-
isting algebraic tools for modeling microprocessors and their correctness
to SMT and CMT. We outline how the one-step theorems for simplifying
verification are modified for SMT and CMT processors. The particular
problems that are addressed are: how to map multiple (possibly inter-
acting) user-level SMT/CMT models to a single implementation? And
how to accommodate the (unavoidable) presence of implementation level
components in the user-level model?

Keywords: many-sorted algebra, microprocessors, correctness, verifica-
tion, threaded.

Formal approaches to the correctness of computer hardware are now well es-
tablished and enjoy a degree of industrial adoption, with a range of impressive
examples [1,7,17]. However, despite this success, there is little attention paid to
(a) how hardware systems should be modelled, and (b) what it formally means
for an implementation to be correct with respect to a specification. Modelling
techniques are wide-ranging and correctness concepts are - sometimes subtly and
sometimes wildly - different; often without a clear statement of what ‘correctness’
means in a particular instance. For example, some correctness models consider
only the passage of a single, isolated, instruction through an execution pipeline,
and do not consider interaction (or dependencies)between instructions. This pa-
per forms part of a series that attempts to address these issues: focussing specif-
ically on algebraic models of the behaviour and correctness of different classes

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 294–311, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Algebraic Models of Simultaneous Multithreaded and Multi-core Processors 295

of microprocessor implementation. Past work has addressed, within an algebraic
framework, microprogrammed [15]; pipelined [10]; and superscalar [9] processors.
The pipelined model has been used to verify the ARM6 microprocessor: the first
‘commercial’ processor to be verified not explicitly developed with verification in
mind [7,8]. Here, the model is extended to Simultaneous Multithreaded (SMT)1

and Chip-Level Multithreaded (CMT) (commonly called Multi-Core) processors.
Currently, the model described in this paper is the only developed approach to
modelling such processors, which include later Pentium IVs (SMT) and Core
Duo (CMT).

Microprocessor implementations are growing in complexity. The simplest and
most obvious case is an implementation G of a processor specification F in which
the execution of each machine instruction is completed before the next one starts:
now restricted to simple embedded processors. The timing relationship between
specification F and G in such a case is trivial: each clock cycle in F corresponds
uniquely with one or more cycles in G. More complex timing relationships increase
the complexity of the timing relationship between F and G.

– Pipelined implementations overlap the execution of machine instructions.
Consequently the relationship between clock cycles in F and G is no longer
unique. However, it is still always possible to identify a unique time in G
corresponding with the start/end of instructions in F .

– Superscalar implementations attempt to execute multiple instructions simul-
taneously, sometimes out of program order. In the (common) event of multiple
instructions ending simultaneously (or out of order) there may be no identifi-
able cycle of G’s clock S corresponding with a cycle of F ’s clock T .

– SMT and CMT implementations behave like multiple specification level
processors F . In the case of SMT these processors are virtual, and in the case
of CMT they are real. In both cases, some of the implementation processor
state is shared between specification level processors - more in the case of
SMT than CMT (where it is typically limited to cache). Furthermore, SMT
processors are by definition also superscalar; in principle, CMT processors
need not be, but currently-available examples are.

In this paper we extend a suite of existing algebraic models and correctness
definitions [6,9,10,15] to accommodate SMT and CMT processors. The structure
of the paper is as follows: first we briefly review the field; then we introduce the
basic concepts of the model: a structured hierarchy of algebras representing
processors; clocks dividing up time; retimings relating clocks at different levels
of abstraction and their extension to superscalar timing models; iterated map
models of microprocessors; correctness models and the one-step theorems that
simplify the verification process. Then we extend the existing iterated map model
and correctness model to accommodate SMT and CMT processors. Finally, we
consider a simple abstract example.

1 Called Hyperthreading by Intel.

296 N.A. Harman

1 Related Work

There is a substantial body of work devoted to microprocessor verification which
we briefly summarize (neglecting work on verifying processor fragments .). A
common characteristic of much of the work is the need to address a specific,
usually complex2 example.

Early work includes [11], which models and verifies a simple processor with
eight instructions. This particular example, and variations, was subsequently a
common case study [16,12]. A more substantial example was Viper which was
intended for commercial use [4] though note the rigour of its ‘verified’ status was
controversial (leading to unresolved legal action). This leads to the ‘obvious’
observation that even with rigorous verification is is difficult to ensure the a
verified design is actually manufactured correctly.

A landmark leading to much subsequent work is [2] which develops the con-
cept of flushing and the notion of verification based on comparisons of fragments
of execution traces with appropriate timing (and data) abstraction - though
some of these concepts appeared earlier in [22] and the pre-publication versions
of [15,16]. Such techniques can be classified (in the useful terminology of [20]
which describes a recent evolution of the technique) as simulation based corre-
spondence. Techniques derived from [2] have been successfully applied to a wide
range of examples (as have the techniques described in [7,8]). Key concepts like
the relationship between time at different levels of abstraction, and how it can
be addressed appear in [19]. Work on pipelined and superscalar models has par-
allels with our own model: substantial differences are that although the concept
of timing abstraction is present, formally the notion of time itself is often not.
The presence of explicit time in our model does entail proofs to establish that
proofs based on finite state traces do lead to valid correctness proofs. However,
these are only required once for each variation of the model: see Section 4.

Another interesting classifying question for pipelined and superscalar
processors is: are specification state components distributed in time in an imple-
mentation [23]; or (our position) are they functions of implementation state com-
ponents from the same time? Consider a three-stage pipeline in which instruc-
tions are fetched three cycles ahead of execution3. Is the the program counter
pc in the specification the value from the implementation three [specification]
cycles earlier, or the current value less three4? The latter view always enables
us to separate timing and data abstraction maps whereas the former tends to
result in a combined data and timing abstraction map.

A significant alternative to techniques derived from [2] (though still owing
much to it) are the completion functions of [17]. In this, the effect of each stage
of an execution pipeline on the programmer-visible state of a processor is consid-
ered separately (modeled by individual maps termed completion functions). This
provides an obvious and useful partition of the complete verification obligation,

2 At least with reference to the state-of-the-art in processor verification at the time.
3 Neglecting complications to do with branching and so on.
4 More likely, some multiple of three.

Algebraic Models of Simultaneous Multithreaded and Multi-core Processors 297

since each of these can be considered separately. Completion functions have also
been successfully applied in practice.

Recent work addresses progressively larger and more complex examples: the
VAMP project, [1], the ARM6 verification project at Cambridge[7,8], and Hunt’s
Group Austin,Texas[20].

2 Clocks and Basic Models of Computers

A clock T is a single-sorted algebra T = (N | 0, t + 1) denoting intervals of time
called clock cycles . Time is defined in terms of events and not vice versa: that is,
rather than events being distributed in some (probably inflexible) sequence of
time, typically clock cycles mark the beginning/end of ‘interesting’ events, and
need not be equal in length as measured in ‘real’ time.

Systems are modelled by a hierarchy of algebraic models.

– A single-sorted state algebra St = (A, T | F) where A is the state set and
F : T × A → A is an iterated map.

– State algebra St is implemented in terms of a many-sorted next-state algebra
Nst = (A, T | init, next) with F defined as follows

F (0, a) = init(a),
F (t + 1, a) = next(F (t, a))

where init : A → A and next : A → A are the initialization and next-state
functions.

– In turn, Nst is implemented in terms of a (most probably) many-sorted
machine algebra: finite bit sequences and operations on bit sequences (of,
generally, various different lengths) typical of those found in low-level hard-
ware. Here state set A of St is a Cartesian product constructed from simpler
state components.

In general, we expect machine algebra operations to be at most [simultane-
ous] primitive recursive functions. Hence F is usually a simultaneous primitive
recursive function. In practice, the majority of the effort in constructing a mi-
croprocessor representation is concentrated on the definition of next and init.

2.1 Algebraic Basis

In practice, simple many-sorted algebra is sufficient to define microprocessor
models within our algebraic hierarchy: particularly abstract descriptions of the
models and simple examples (as in this paper). Furthermore, we can in such
cases employ conventional mathematical notation, which is compact and read-
able. We also generally adhere to the initial model. However, although we have
no particular desire to complicate the theoretical foundations of our model, the
practicalities of dealing with large examples demand some machine-readable
form (to date we have usually chosen Maude [3] though other options are obvi-
ously possible). In such cases we find order sorting and membership algebra [18]
to be extremely convenient tools even though they are not formally necessary
for our purposes.

298 N.A. Harman

2.2 Initialization Functions in Iterated Map Models

The rôle of initialization functions is not to describe the initial behaviour of a
system. Rather it is to eliminate unwanted starting states in traces. For example,
consider an implementation with memory m, program counter pc and instruction
register ir: we may initially require ir = m(pc), and hence not wish to consider
starting states that do not have this property. In practice, initialization functions
are commonly not required for Programmer’s Model descriptions of processors as
often (though not always) all programmer-visible states are legal. In our simple
example, this is the case: also, and unusually, the implementation of the example
does not need an initialization function (Section 6).

The choice of initialization function will vary according to circumstances.
However, our usually-preferred initialization function init : A → A leaves initial
state a ∈ A unchanged provided a is already consistent with correct future state
traces of F . Typically, there will be a (possibly large) conjunction of (possibly
complex) relations (for example, ir = m(pc)) κ between the components of A
that must be true for correct future traces. We can regard κ as a consistency-
checking invariant that must hold, at certain times, for the correct state evolution
of F : in the case where F represents the implementation of a microprocessor,
those times will correspond to the start/end of machine instructions5. Invariant
κ may be checked by an initialization function h, on initial state a ∈ A: if κ
holds, then h(a) = a. Such initialization functions are an important part of the
verification process (Sections 3 and 4), and, together with duration functions,
are analogous to the pipeline invariants of [5] and others.

3 Correctness Models for Non-pipelined, Pipelined and
Superscalar Processors

Correctness models relate iterated maps F : T × A → A and G : S × B → B by
mapping some s ∈ S to some t ∈ T ; and some b ∈ B to some a ∈ A. If G is a
correct implementation of F , then we can construct a commutative diagram6:

T × A
F−→ A�⏐⏐⏐⏐α

�⏐⏐⏐⏐β

S × B
G−→ B.

(1)

In order to define correctness in a particular instance, we must construct maps
α and β. The majority of our effort is devoted to time: the relationship between
state sets A and B is a typically a simple projection ψ : B → A. However, timing
abstraction is complex.
5 Identifying start/end times of instructions may be problematic in superscalar exam-

ples: [6,9].
6 Note that generally the diagram will not commute for all s ∈ S, and usually not for

all b ∈ B.

Algebraic Models of Simultaneous Multithreaded and Multi-core Processors 299

We define a retiming λ : S → T to be a surjective (all specification times oc-
cur in the implementation) and monotonic (time does not go backwards) map.
The timing relationship between microprocessor models at different levels of
abstraction depends on the state of the processor. Hence, retimings are typi-
cally parameterized by the implementation state, and since microprocessors are
deterministic, λ is uniquely determined by the initial implementation state.

λ : B → [S → T]

In addition to retimings, we also need immersions λ : T → S:

λ(t) = least s | λ(s) ≥ t

and the start operator start : [S → T] → [S → S]

start(λ)(s) = λλ(s).

Figure 1 shows a retiming λ between two clocks, S and T , together with the
corresponding immersion and start function.

T

S

start()=

Fig. 1. A retiming from T to S with associated immersion and tools

Microprocessors can be modelled at different levels of abstraction. We are
concerned with the lowest level accessible by a programmer: the programmer’s
model PM (commonly called the architecture and the most abstract implemen-
tation level: the abstract circuit model AC.(variously called the organization,
microarchitecture or register transfer level.) Clock cycles in PM models are most
conveniently chosen to correspond with machine instructions: in AC models they
are [some multiple of] system clock cycles.

Definition 1. A non-pipelined microprocessor implementation G of AC is cor-
rect with respect to a specification F of PM if and only if the state of G under
data abstraction map ψ is identical to the state of F for all times s ∈ S corre-
sponding with the start/end of cycles of T . That is, for all s = start(λ)(s):

F (λ(b)(s), ψ(b)) = ψ(G(s, b)).

300 N.A. Harman

Alternatively, if the following diagram commutes:

T × A
F−→ A�⏐⏐⏐⏐(λ, ψ)

�⏐⏐⏐⏐ψ

S × B
G−→ B.

In a pipelined processor, instruction execution overlaps, and during instruc-
tion execution we cannot uniquely relate cycles of S with cycles of T . However,
instructions terminate at unique times: If instruction i terminates at time si,
then no other instruction will terminate at time si. Provided retiming λ relates
s to the time ti ∈ T corresponding with the end of instruction i and the start of
i + 1, our correctness model above still applies [10].

Superscalar processors attempt to execute multiple [pipelined] instructions
in parallel, and instructions are allowed to terminate simultaneously, or out of
program order. We cannot uniquely associate cycles of S corresponding with
the start/end of instructions with cycles of T . Our approach is based on the
following: in the event that instructions i and i + 1 terminate simultaneously or
out of order, it is not meaningful to ask ‘is G correct with respect to F after i
has terminated but before i + 1’ because there is no such time.

We introduce a new retirement clock R marking the completion of one or more
instructions, with retimings λ1 : T → R and λ2 : S → R. Retiming λ1 captures
the relationship between the sequential ‘one-at-a-time’ execution model of the
programmer and the actual order of instruction completion; λ2 marks instruction
completion times with respect to the system clock. The non-surjective adjunct
retiming ρ : S → T constructed by

ρ(s) = λ1λ2(s)

relates system clock times and the completion of machine instructions.
Our existing correctness model still applies if we replace retiming λ with

adjunct retiming ρ [6].
We can relate two hierarchies of state, next-state and machine algebras for

each of F and G with a correctness algebra Corr:

Corr = (A, B, T, S | F, G, λ, ψ).

In the case of a superscalar processor:

Corr = (A, B, T, S, R | F, G, λ1, λ2, ψ),

where adjunct retiming ρ is constructed λ1 and λ2.

4 One-Step Theorems

The obvious correctness proof for the models in section 3 is by induction over
clock S. However, we can eliminate induction by using the one-step theorems.
Given iterated map G : S ×B → B and state-dependent retiming λ : B → [S →
T], we require two conditions.

Algebraic Models of Simultaneous Multithreaded and Multi-core Processors 301

– Iterated map G is time-consistent. That is:

G(λ(b)(t) + λ(b)(t′), b) = G(λ(b)(t), G(λ(b)(t′), b))

for all s = start(λ)(s).
– Retiming λ is uniform. That is for all t ∈ T

λ(b)(t + 1) − λ(b)(t) = dur(G(λ(b)(t), b)),

where dur : B → N+ is a duration function.

Informally, microprocessors are functions only of their state (and possibly in-
puts) at any given time s ∈ S of some clock: not of the numerical value of s. The
conditions above establish the independence of AC model G from the numeri-
cal value of s. As well as being necessary conditions for the application of the
one-step theorems, time-consistency and uniformity are characteristics of real
hardware, so models that did not possess them would be flawed.

Recall (Section 2.2) that not all elements of an implementation state set B will
be consistent with correct execution of G. Time-consistency requires a carefully
constructed initialization function init which leaves all ‘legal’ states unchanged:
otherwise, for some state b ∈ B, init(b) �= b and hence time-consistency would
not hold. In practice, implementations are so complex that identifying legal states
can be difficult, and consequently defining init is often difficult. A systematic
mechanism is introduced in [10] that can be used whenever the contents of a
pipeline are uniquely determined at time s by its contents at time s. This is
not always the case - consider an example with two integer execution units, in
which the unit chosen for a particular instructions is determined by which has
the shortest queue: the contents of the queues may be a function of instructions
that have already left the pipeline.

To establish that retiming λ is uniform, it is sufficient to define its immersion
in terms of a duration function:

λ(b)(0) = 0,

λ(b)(t + 1) = λ(b)(t) + dur(G(λ(b)(t), b)).

Because a typical implementation G is extremely complex, defining dur in-
dependently of G is usually prohibitively difficult. The usual definition is non-
constructive of the form:

dur(b) = least s | end(G(s, b)),

where end : B → B is some function that identifies when one (or more in
superscalar processors) instructions have completed. In the case that G forms
part of the definition of dur and λ, our correctness model makes no statement
about how long each instruction will take to execute.

Initially, it seems that establishing time-consistency requires induction. How-
ever, the first one-step theorem addresses this.

302 N.A. Harman

Theorem 1. Given iterated map G : S×B → B, and retiming λ : S → [S → T]
then to establish

G(λ(b)(t) + λ(b)(t′), b) = G(λ(b)(t), G(λ(b)(t′), b))

for all s = start(λ)(s), it is sufficient to show that:

G(0, b) = initG(G(0, b)), and

G(λ(b)(1), b) = init(G(λ(b)(1), b)).

The proof [6] is omitted.
The second one-step theorem can be used to establish correctness.

Theorem 2. Given time-consistent iterated maps F : S × A → A and G :
S × B → B, and uniform retiming λ : S → [S → T] then to establish

F (λ(b)(s), ψ(b)) = ψ(G(s, b))

for all s = start(λ)(s), it is sufficient to show that:

F (0, ψ(b)) = ψ(G(0, b)), and

F (1, ψ(b)) = ψ(G(λ(b)(1), b)).

The proof [6] is omitted.
We omit discussion of the cases when F and G are related by an adjunct

retiming ρ, and when F and G also depend on input-output streams , other than
to say that the one step theorems still hold [6,10] .

5 VTM Model Definition

In this section, we consider how we can extend our existing microprocessor model
to accommodate SMT and CMT. From the perspective of an operating system ker-
nel programmer, an SMT/CMTprocessor appears as multiple PM -level proces-
sors in which some state is shared . These processors will be implemented, col-
lectively, by a single AC-level model We will use the term Virtual Thread Model
(V TM) to distinguish these specification-level processors from the conventional
PM level. In practice, we typically first define a (simple) PM -level model and
then extend it to become a V TM model in a relatively mechanical way.

The temporal relationship with other V TM processors is exposed via the
shared state. This relationship is defined by state information that is not present
in the V TM state, but is in the implementation (ITM) state. For example, one
implementation may choose to prioritize one thread at the expense of others
as a function of state elements not visible at the V TM level, while another
implementation of the same V TM level model may not. Consequently, V TM
models must be defined over not only a PM state set, but also by at least part
of the corresponding ITM state. In this paper we choose to use the complete
ITM state. However, there is a case for introducing a new, intermediate, level of

Algebraic Models of Simultaneous Multithreaded and Multi-core Processors 303

abstraction [13]. Consequently, we will subsequently use the term Intermediate
Thread Processor (ITM) for the AC-level implementation of a group of V TM -
level processors, to preserve this possible distinction.

Consider a SMT/CMT processor that is able to execute n threads - that is,
it appears to be n (virtual) processors. Each processor F i

VTM, i ∈ {1,. . . , n},
will operate over its own clock Ti; the state of F i

VTM will be composed of some
parts that are local to F i

VTM and some parts that are shared with F 1
VTM,. . . ,

F i−1
VTM, F i+1

VTM,. . . , Fn
VTM. We assume, without loss of generality, that the private

state elements priv ∈ Σpriv
VTM precede the shared state elements share ∈ Σshare

VTM
in the state vector:

ΣVTM = Σpriv
VTM × Σshare

VTM

The state trace of each V TM processor will be a function of its own local and
shared state, and the shared state of all other V TM processors. There is only one
shared state in the ITM level implementation. However each individual V TM
model has its own copy of the shared state, from its own perspective: a conceit
we wish to maintain. Consequently we need to merge the shared states of each
V TM level processor.

Each V TM processor operates with its own clock: to correctly merge shared
states from different V TM processors, we must match states at the appropriate
times. We can relate times on different V TM processors using the [adjunct]
retimings and corresponding immersions between V TM and ITM level clocks:
ρi(b)ρj(b)(tj) is the time on clock Ti corresponding to time tj ∈ Tj given starting
(implementation) state b ∈ B.

Definition 2. Given clocks Ti, i ∈ {1,. . . , n}; ITM state set ΣITM; V TM state
set ΣVTM; adjunct retimings ρi : ΣITM → [S → Ti]; private state projection
functions πi

priv : ΣVTM → Σpriv
VTM; merge operators τi : (ΣVTM)n → Σshare

VTM, for
i ∈ {1,. . . ,n}; initialization function init : ΣVTM → ΣVTM; data abstraction
maps ψi : ΣITM → ΣVTM and next-state function next : ΣVTM → ΣVTM, we
model an individual V TM level processor F i

VTM as follows.

F i
VTM : ΣITM → [Ti × ΣVTM → ΣVTM]

F i
VTM(σAC)(0, σVTM) = init(σVTM)

F i
VTM(σAC)(t + 1, σVTM) = next[(πi

priv(F i
VTM(σAC)(t, σVTM))),

τi(F i
VTM(σAC)(t, σVTM),

F 1
VTM(σAC)(ρi(σAC)ρ1(σAC)(t), ψ1(σAC)),
...

F i−1
VTM(σAC)(ρi(σAC)ρi−1(σAC)(t), ψi−1(σAC)),

F i+1
VTM(σAC)(ρi(σAC)ρi+1(σAC)(t), ψi+1(σAC)),
...

Fn
VTM(σAC)(ρi(σAC)ρn(σAC)(t), ψn(σAC)))].

304 N.A. Harman

Note that as well as being parameterized by the ITM -level state ΣITM, our
V TM -level definition contains the state dependent adjunct retimings ρi. Re-
call that it is usual to define ρi in terms of some ITM -level implementation
(Section 4). Consequently, the ITM implementation is deeply embedded in the
definition of a V TM level model. We return to this issue in Section 7.

A significant issue in our V TM level model is that next-state and initialization
functions are from a [probably existing] PM level model. Since the definitions
of next and init are by far the most complex part of model definition, it is
important to be able to reuse them which is the case here.

Observe that ρi(σAC)ρi(σAC)(t) = t and σVTM = ψi(σAC) (for appropriately
chosen σVTM and σAC). Hence we can slightly simplify definition 2:

Definition 3. Given Ti, i ∈ {1,. . . , n}; ΣITM; ΣVTM; ρi : ΣITM → [S →
Ti]; πi

priv : ΣVTM → Σpriv
VTM;τi : (ΣVTM)n → Σshare

VTM, for i ∈ {1,. . . ,n}; init :
ΣVTM → ΣVTM; ψi : ΣITM → ΣVTM and next : ΣVTM → ΣVTM as in definition
2, we model an individual V TM level processor F i

VTM as follows.

F i
VTM : ΣITM → [Ti × ΣVTM → ΣVTM]

F i
VTM(σAC)(0, σVTM) = init(σVTM)

F i
VTM(σAC)(t + 1, σVTM) = next[(πi

priv(F i
VTM(σAC)(t, σVTM))),

τi(F 1
VTM(σAC)(ρi(σAC)ρ1(σAC)(t), ψ1(σAC)),
...

Fn
VTM(σAC)(ρi(σAC)ρn(σAC)(t), ψn(σAC)))].

The definitions above represent the most general case: in some circumstances
they can be simplified, depending on the requirements of the merge operators τi

that unify the various shared state components of the n V TM processors. The
definitions of τi will depend on the precise nature of the shared state Σshare

VTM;
and the behaviour of the processor implementation - for example, if two V TM
processors attempt to update the same state unit simultaneously. Commonly, the
shared state will consist of the processor’s main memory. In some circumstances,
the definitions of τi will not be functions of the private state; and in others all
the merge operators τi are identical: see [13].

5.1 Correctness of the VTM Model

We now consider what it means for a V TM level model to be correctly im-
plemented by an ITM level model. Note that because there are n V TM level
processors corresponding to each ITM level processor, there are n separate cor-
rectness statements.

Definition 4. ITM model G : S × ΣITM → ΣITM is said to be a correct imple-
mentation of V TM model F i

VTM : ΣITM → [Ti×ΣVTM → ΣVTM], i ∈ {1, . . . , n}
if, given adjunct retimings ρi ∈ Ret(ΣITM, S, Ti) and surjective data abstraction
map ψ : ΣITM → ΣVTM, then for each clock Ti, for all s = start(ρi(σAC))(s)

Algebraic Models of Simultaneous Multithreaded and Multi-core Processors 305

and σAC ∈ ΣITM, the following diagrams commute for i ∈ {1, . . . , n}
Ti × ΣVTM

F i
VTM(ΣITM)−→ ΣVTM�⏐⏐⏐⏐(ρi, ψi)

�⏐⏐⏐⏐ψi

S × ΣITM
FITM−→ ΣITM.

Alternatively:

FITM(ρi(σAC)(s), ψ(σAC)) = ψ(F i
VTM(σAC)(s, σAC)).

5.2 Extending the One-Step Theorems to the VTM Model

In considering how we can apply the one-step theorems to our VTM model,
recall that the ITM -level processor G : S ×B → B is essentially identical to any
conventional AC processor model: that is, it represents the implementation of a
more abstract specification. We are interested in it correctness with respect to
some uniform adjunct retiming ρ at times s such that s = start(ρ)(s). Hence the
existing one-step theorems show how to establish that G is time-consistent. We
can establish the uniformity of retiming ρi by construction in terms of a duration
function (section 4). However, we must establish that the time-consistency of
the collection of V TM level processors Fi, i ∈ {1 . . . n} can be determined by a
variation of the first one-step theorem (theorem 1).

Theorem 3. Let Fi : ΣITM → [Ti × ΣVTM → ΣVTM] be the ith component of a
V TM level processor. Let G : S×ΣITM → ΣITM be a time-consistent (candidate)
ITM -level implementation of Fi, i ∈ {1,. . . ,n}, and let λ ∈ ΣITM → [S → Ti]
be a uniform retiming. For all t ∈ Ti and i ∈ {1,. . . ,n}:

Fi(G(0, σAC)(t + t′, σVTM) = Fi(G(ρi(σAC)(t′))(t, Fi(G(0, σAC))(t′, σAC))

if and only if

Fi(σAC)(0, σVTM) = hi(Fi(σAC)(0, σVTM)), and
Fi(σAC)(1, σVTM) = hi(Fi(σAC)(1, σVTM))

Note that we do not require that G is a correct implementation of F (which
would result in a circular argument); only that it is time-consistent.

Proof. Given that λ is a uniform retiming and G is a time-consistent iterated
map, the state trace of Fi(G(0, σAC))(t + t′, σVTM) is as follows:

Fi(G(0, σAC)(0, σVTM),

Fi(G(0, σAC)(1, σVTM) =Fi(G(λi(σAC)(1), σVTM))(0, σVTM),
.

Fi(G(0, σAC)(t′, σVTM) =Fi(G(λi(σAC)(t′), σVTM))(0, σVTM),

Fi(G(0, σAC)(t′ + 1, σVTM) =Fi(G(λi(σAC)(t′), σVTM))(1, σVTM),
.

Fi(G(0, σAC)(t + t′, σVTM) =Fi(G(λi(σAC)(t′), σVTM))(t, σVTM).

306 N.A. Harman

(Note that at this point the correctness of the state trace is not important: only its
time consistency.) Observe that the state trace passes through Fi(G(λi(σAC)(t′),
σVTM))(0, σVTM), and hence we can stop execution after t′ cycles, reset the clock
to zero and and restart execution for a further t cycles, ending in the same final
state provided:

Fi(σAC)(t, σVTM) = init(Fi(σAC)(t, σVTM)).

By induction over t:

Fi(σAC)(t + 1, σVTM) =next[(πi
priv(Fi(σAC)(t, σVTM))),

τi(F1(σAC)(ρi(σAC)ρ1(σAC)(t), ψ1(σAC)),
...

Fn(σAC)(ρi(σAC)ρn(σAC)(t), ψn(σAC)))],

=Fi(σAC)(1, init((πi
priv(Fi(σAC)(t, σVTM))),

τi(F1(σAC)(ρi(σAC)ρ1(σAC)(t), ψ1(σAC)),
...

Fn(σAC)(ρi(σAC)ρn(σAC)(t), ψn(σAC))))),

=Fi(σAC)(1, (πi
priv(Fi(σAC)(t, σVTM))),

τi(F1(σAC)(ρi(σAC)ρ1(σAC)(t), ψ1(σAC)),
...

Fn(σAC)(ρi(σAC)ρn(σAC)(t), ψn(σAC)))),

=init(Fi(σAC)(1, (πi
priv(Fi(σAC)(t, σVTM))),

τi(F1(σAC)(ρi(σAC)ρ1(σAC)(t), ψ1(σAC)),
...

Fn(σAC)(ρi(σAC)ρn(σAC)(t), ψn(σAC))))),

=init(next[(πi
priv(Fi(σAC)(t, σVTM))),

τi(F1(σAC)(ρi(σAC)ρ1(σAC)(t), ψ1(σAC)),
...

Fn(σAC)(ρi(σAC)ρn(σAC)(t), ψn(σAC)))]),
=init(Fi(σAC)(t + 1, σVTM)).

6 A Simple Example

We now consider a simple example of SMT/CMT. In practice, SMT/CMT
processors are extremely complex: they are usually by their nature superscalar,
and even simple superscalar examples are complex [6]. A CMT microprocessor

Algebraic Models of Simultaneous Multithreaded and Multi-core Processors 307

example appears in [14], and an SMT microprocessor example is in development,
both based on extensions of the pipelined and superscalar examples in [6,9]. How-
ever, in this paper, we restrict ourselves to a simple example, that captures the
key features of SMT/CMT: an implementation that can implement multiple (vir-
tual) specifications, that are in turn able to interact via shared memory. We first
define the conventional PM level model TR; then we define an ITM level im-
plementation TRH which implements two virtual TR processors, with a shared
state element; and finally we use the next-state and initialization functions from
TR to define a V TM level model TRV .

TR : T × ΣTR → ΣTR consists of a memory m ∈ [N → N] and a memory
address register mr ∈ N computing over a clock T .

ΣTR = [N → N] × N.

On each cycle of clock T , TR will compute the function nextTR : ΣTR → ΣTR

nextTR(m, mr) = m[mr/m[mr] + m[mr − 1]], mr + 1.

(We use the notation m[j] to represent the jth element of m, and m[i/j] to
represent the replacement of the ith element of m by j.) Because all states of
TR are legal, an initialization function is not required. We define TR as follows

TR(0, m, mr) = m, mr,

TR(t + 1, m, mr) = nextTR(TR(t, m, mr)).

The implementation TRH : S × ΣTRH → ΣTRH implements two virtual TR
processors as before, with memory m shared and mr private. Hence the state of
TRH is:

ΣTRH = [N → N] × N2

We define TRH as follows

TRH(0, m, mr1, mr2) = (m, mr1, mr2),
TRH(s + 1, m, mr1, mr2) = nextTRH(TRH(s, m, mr1, mr2)),

where nextTRH : ΣTRH → ΣTRH is defined as

nextTRH(m, mr1, mr2) =
m[mr2/m[mr2] + m[mr2 − 1]][mr1/m[mr1] + m[mr1 − 1]].

Again, an initialization function is not required. Observe that we perform the
mr2 write first, so in the event that both writes are to the same memory word,
the mr1 result will replace the mr2 result.

The V TM level model TRV consists of TRV1 and TRV2:

TRV1 : ΣTRH → [T1 × ΣTR → ΣTR]
TRV2 : ΣTRH → [T2 × ΣTR → ΣTR]

308 N.A. Harman

TRVi, i ∈ {1, 2} will be defined in terms of the PM level next-state function
nextTR, projection functions πTRV,i

priv : ΣTRH → N, i ∈ {1, 2}, data abstraction
maps ψi : ΣTRH → ΣTR, merge operators τTRV

i : ([N → N] × N)2 → [N →
N] × N, i ∈ {1, 2}; and retimings λi : ΣTRH → [S → Ti], i ∈ {1, 2} defined as
follows.

πTRV,1
priv (m, mr1, mr2) = mr1,

πTRV,2
priv (m, mr1, mr2) = mr2,

ψ1(m, mr1, mr2) = (m, mr1),
ψ2(m, mr1, mr2) = (m, mr2),

with merge operators

τTRV
1 (m1, mr1, m2, mr2) =

m2[mr1/m1[mr1]

and

τTRV
2 (m2, mr2, m1, mr1) =

{
m1, if mr1 = mr2
m1[mr2/m2[mr2]], otherwise,

The first merge operator τTRV
1 copies the changes made by TRV 1 regardless of

the value of mr1; however τTRV
2 only copies changes made by TRV if they will

not overwrite the immediately proceeding change made by TRV 1.
The retimings λi and corresponding immersions are simply:

λi(m, b, mr1, mr2)(s) = s, i = {1, 2},

and
λ(m, b, mr1, mr2)(t) = t.

We can define TRV1 and TRV2 (expanding the trivial definitions of the pro-
jection operators and retimings) as follows:

TRV1(m,mr1,mr2)(0, m, mr1) = (m,mr1),

TRV1(m,mr1,mr2)(t + 1, m, mr1) = nextTR(τTRV
1 (TRV1(m,mr1,mr2)(t, m,mr1),

TRV2(m,mr1,mr2)(t, (m,mr2)),mr1),
TRV2(m,mr1,mr2)(0, m, mr1) = (m,mr2),

TRV1(m,mr1,mr2)(t + 1, m, mr2) = nextTR(τTRV
2 (TRV2(m,mr1,mr2)(t, m,mr2),

TRV1(m,mr1,mr2)(t, (m,mr1)),mr2).

Algebraic Models of Simultaneous Multithreaded and Multi-core Processors 309

6.1 Correctness of the Example

To establish the correctness of the example above we must:

– establish the time consistency of the VTM and ITM models; and
– establish the correctness of the ITM model with respect to the VTM models

using theorem 2.

Time Consistency of the VTM and ITM Models

While we can apply theorem 3 to establish the time consistency of the VTM
models TRV1 and TRV2 it is simpler in this case to observe that all iterated
maps without initialization functions are time-consistent [6].

Correctness of the ITM Model

To establish the correctness of the ITM model TRH , we must show that

TRV1(0, m, mr1, mr2) = ψ1(TRH(0, m, mr1, mr2); (2)
TRV1(1, m, mr1, mr2) = ψ1(TRH(1, m, mr1, mr2);
TRV1(0, m, mr1, mr2) = ψ2(TRH(0, m, mr1, mr2); and
TRV1(1, m, mr1, mr2) = ψ2(TRH(1, m, mr1, mr2).

We omit the (identity) retiming immersions. The correctness of the equations in
2 follows trivially from the definitions.

7 Concluding Remarks

We have extended our existing algebraic models of microprocessors and their
correctness to superscalar SMT and CMT processor implementations, which rep-
resent the state-of-the-art in current commercial implementation. The algebraic
model developed here is the first to address such processors. However, although
we can successfully model such processors, and define what it means for them
to be correct, practical verification of realistic examples would be a formidable
undertaking. (This is generally the case: practical verifications of complete non-
trivial processors are currently limited to non-superscalar pipelined processors.)
There are some practical steps that can be taken to reduce complexity: we omit
discussion here, but see [13]. Although helpful, these simplifications are unlikely
to make realistic examples practical at the current time. Nonetheless, we feel
that a considered approach to modeling processors and their correctness that
runs ahead of actual application is useful: the modeling approaches to pipelined
processors that were ultimately used to verify ARM6 [7,8] were developed some
years in advance of their practical use.

A point worthy of comment is the presence of the definition of the ITM level
implementation in the definition of the V TM level model. This should not be
surprising: in practice, the implementation of an SMT or CMT processor does
impact the behaviour seen by programmers; and the timing behaviour of all

310 N.A. Harman

processors is a function of their implementation. This last fact is generally ac-
knowledged in our model by the definition of retimings in terms of the ITM -level
model. There has been a general weakening of the long-established separation of
processor architecture and implementation: good compilers for modern proces-
sors need to be aware of implementation details (e.g. how many functional units
are there, and of what type) in order to generate high-quality code, particularly
in the case of modern superscalar processors.

Finally, observe that a situation similar to SMT occurs with operating system
kernels: a single physical processor presents as multiple virtual processors. The
situation is somewhat different (in a kernel a privileged virtual processor at
the higher level of abstraction, rather than the lower) but we believe the work
here can be adapted to accommodate operating system kernels. Together with
[21] on modelling high- and low-level languages and their relationships, this
would produce a chain of fundamentally identical algebraic models from high-
level languages to abstract hardware.

References

1. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.: Instantiating uninter-
preted functional unit and memory system: Functional verification of VAMP. In:
Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 51–65. Springer,
Heidelberg (2003)

2. Burch, J., Dill, D.: Automatic verification of pipelined microprocessor control. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg (1994)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)

4. Cohn, A.: A proof of correctness of the VIPER microprocessor: the first levels.
In: Birtwistle, G., Subrahmanyam, P.A. (eds.) VLSI Specification, Verification and
Synthesis, pp. 27–72. Kluwer Academic Publishers, Dordrecht (1987)

5. Cyrluk, D., Rushby, J., Srivas, M.: Systematic formal verification of interpreters.
In: IEE international conference on formal engineering methods ICFEM’97, pp.
140–149 (1997)

6. Fox, A.C.J.: Algebraic Representation of Advanced Microprocessors. PhD thesis,
Department of Computer Science, University of Wales Swansea (1998)

7. Fox, A.C.J: Formal specification and verification of ARM6. In: Basin, D., Wolff,
B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 25–40. Springer, Heidelberg (2003)

8. Fox, A.C.J.: An algebraic framework for verifying the correctness of hardware with
input and output: a formalization in HOL. In: Fiadeiro, J.L., Harman, N., Roggen-
bach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 157–174. Springer,
Heidelberg (2005)

9. Fox, A.C.J., Harman, N.A.: Algebraic models of superscalar microprocessor imple-
mentations: A case study. In: Möller, B., Tucker, J.V. (eds.) Prospects for Hardware
Foundations. LNCS, vol. 1546, pp. 138–183. Springer, Heidelberg (1998)

10. Fox, A.C.J., Harman, N.A.: Algebraic models of correctness for abstract pipelines.
The Journal of Algebraic and Logic Programming 57, 71–107 (2003)

11. Gordon, M.: Proving a computer correct with the LCF-LSM hardware verification
system. Technical report, Technical Report No. 42, Computer Laboratory, Univer-
sity of Cambridge (1983)

Algebraic Models of Simultaneous Multithreaded and Multi-core Processors 311

12. Graham, B., Birtwistle, G.: Formalising the design of an SECD chip. In: Leeser, M.,
Brown, G. (eds.) Hardware Specification, Verification and Synthesis: Mathematical
Aspects. LNCS, vol. 408, pp. 40–66. Springer, Heidelberg (1990)

13. Harman, N.A: Algebraic models of simultaneous multi-threaded and chip-level
multi-threaded microprocessors. Submitted to the Journal of Algebraic and Logic
Programming (2007)

14. Harman, N.A: Modelling SMT and CMT processors: A simple case study. Technical
Report CSR7-2007, University of Wales Swansea, Computer Science Department
(2007), http://cs.swan.ac.uk/reports/yr2007/CSR7-2007.pdf

15. Harman, N.A., Tucker, J.V.: Algebraic models of microprocessors: Architecture
and organisation. Acta Informatica 33, 421–456 (1996)

16. Harman, N.A., Tucker, J.V.: Algebraic models of microprocessors: the verification
of a simple computer. In: Stavridou, V. (ed.) Proceedings of the 2nd IMA Confer-
ence on Mathematics for Dependable Systems, pp. 135–170 (1997)

17. Hosabettu, R., Gopalakrishnan, G., Srivas, M.: Formal verification of a complex
pipelined processor. Formal Methods in System Design 23(2), 171–213 (2003)

18. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1997)

19. Miller, S., Srivas, M.: Formal verification of the AAMP5 microprocessor: a case
study in the industrial use of formal methods. In: Proceedings of WIFT 95, Boca
Raton (1995)

20. Ray, S., Hunt, W.A.: Deductive verification of pipelined machines using first-order
quantification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
31–43. Springer, Heidelberg (2004)

21. Stephenson, K.: Algebraic specification of the Java virtual machine. In: Möller, B.,
Tucker, J.V. (eds.) Prospects for Hardware Foundations. LNCS, vol. 1546, Springer,
Heidelberg (1998)

22. Windley, P.: A theory of generic intepreters. In: Milne, G.J., Pierre, L. (eds.)
CHARME 1993. LNCS, vol. 683, pp. 122–134. Springer, Heidelberg (1993)

23. Windley, P., Burch, J.: Mechanically checking a lemma used in an automatic ver-
ification tool. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166,
pp. 362–376. Springer, Heidelberg (1996)

http://cs.swan.ac.uk/reports/yr2007/CSR7-2007.pdf

Quasitoposes, Quasiadhesive Categories and

Artin Glueing

Peter T. Johnstone1, Stephen Lack2, and Pawe�l Sobociński3,�

1 dpmms, University of Cambridge, United Kingdom
2 School of Computing and Mathematics, University of Western Sydney, Australia

3 ecs, University of Southampton, United Kingdom

Abstract. Adhesive categories are a class of categories in which pushouts
along monos are well-behaved with respect to pullbacks. Recently it has
been shown that any topos is adhesive. Many examples of interest to com-
puter scientists are not adhesive, a fact which motivated the introduc-
tion of quasiadhesive categories. We show that several of these examples
arise via a glueing construction which yields quasitoposes. We show that,
surprisingly, not all such quasitoposes are quasiadhesive and characterise
precisely those which are by giving a succinct necessary and sufficient con-
dition on the lattice of subobjects.

1 Introduction

Adhesive categories, introduced in [8], are a class of categories where pushouts
along monos exist and are well-behaved with respect to pullbacks. They cap-
ture several examples of interest to computer scientists, in particular presheaf
toposes. Amongst other applications, they have allowed the generalisation of sev-
eral aspects of the theory of graph transformations. Several results which before
were proved concretely at the level of the category of graphs and graph homo-
morphisms Graph have been generalised and shown to hold in any adhesive
category. Because adhesive categories also enjoy useful closure properties, such
theory is widely applicable.

Recently it has been shown by the second and the third authors that toposes
are adhesive categories [10]. This result, while perhaps not surprising, is useful
because topos theory is a well-established branch of mathematics with wide rele-
vance to diverse fields such as logic, geometry and topology. Adhesive categories
have less structure than toposes, meaning for example that they enjoy more clo-
sure properties (for instance, adhesive categories are closed under coslice). In
particular, there are adhesive categories which are not toposes.

Early in the development of the theory of adhesive categories it became clear
that the class of adhesive categories was too restrictive for several important ex-
amples, notably many arising from the theory of algebraic specifications. In such
categories the class of regular monos (the monos which arise as equalisers) differs
from the class of all monos. Since it is easy to show that all monos in an adhe-
sive category are regular, it is immediate that the examples are not instances of
� Research partially supported by EPSRC grant EP/D066565/1. The second author

gratefully acknowledges the support of the Australian Research Council.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 312–326, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Quasitoposes, Quasiadhesive Categories and Artin Glueing 313

adhesive categories. However, it was also clear that pushouts along regular monos
enjoyed many of the properties which pushouts along monos enjoy in adhesive
categories – for instance such pushouts are also pullbacks and regular monos
are stable under pushout. The examples motivated the theory of quasiadhesive
categories in which pushouts along regular monos are well-behaved with respect
to pullbacks. An example of interest to computer scientists is the category of ter-
mgraphs [3]. There have been several other attempts at generalising the original
definition of adhesivity, notably adhesive HLR categories [5] and weak adhesive
HLR categories [6].

Here we return to some of the examples which first motivated the introduction
of quasiadhesive categories and show that they all arise as instances of a glueing
construction. As a consequence of this, we show that the categories are quasito-
poses. Roughly, quasitoposes are to toposes as quasiadhesive categories are to
adhesive categories, in the sense that much of the structure is assumed only of
regular monos (in a topos, as in an adhesive category, all monos are regular). In
fact, the nomenclature of topos theory motivated the name ‘quasiadhesive’.

The central result of the paper can be considered surprising: quasitoposes
are a generalisation of toposes roughly as quasiadhesive categories are a gener-
alisation of adhesive categories and since as mentioned previously, toposes are
adhesive, one could expect also that quasitoposes are quasiadhesive. As we shall
show, this is not the case. In fact, we shall characterise which quasitoposes are
quasiadhesive: precisely those where unions of regular subobjects are regular in
the subobject lattice. The proof of the main result is interesting in part because
it constructs a direct counterexample in any quasitopos in which the condition
fails. An example of a quasitopos which is not quasiadhesive is the category of
binary relations BRel, also known as the category of simple graphs.

Returning to our examples, we take advantage of the fact that they arise uni-
formly and exhibit a sufficient and necessary condition on the functor along which
gluing occurs for the resulting category to be quasiadhesive. This characterisation
allows us immediately to derive which of the categories are quasiadhesive. For in-
stance, the category of injective functions, Inj is a quasiadhesive quasitopos while
the quasitopos Spec of algebraic specifications is not quasiadhesive.

Structure of the paper. In §2 we recall the definitions of adhesive and quasiad-
hesive categories. In §3 we introduce our main motivating examples. We show
that these examples arise uniformly as a certain full subcategory of a category
obtained by Artin glueing in §4 and prove that such categories are quasitoposes.
We prove that a quasitopos is quasiadhesive if and only if unions of regular sub-
objects are regular in §5. Using this result, we show a necessary and sufficient
condition on the glueing functor which allows us to immediately show which of
the examples are quasiadhesive. We conclude in §6.

2 Preliminaries

Here we shall briefly recall the notions of adhesive and quasiadhesive categories
together with a few of their properties. Adhesive and quasiadhesive categories

314 P.T. Johnstone, S. Lack, and P. Sobociński

rely on the notion of a van Kampen (VK) square. Van Kampen squares are
pushouts which satisfy a certain axiomatic condition.

Definition 1. A van Kampen square is a pushout which satisfies the following:
for any commutative cube in which it is the bottom face
and which has the left and rear faces pullbacks, the front
and right faces are pullbacks if and only if the top face
is a pushout. Another way of stating the “only if” part
of the above condition is that such a pushout is required
to be stable under pullback.

C′
����

�

��

�� B′
����

�

��
A′

��

�� D′

��
C

���
��

�� B
���

��

A �� D

A category C is adhesive when it has pullbacks, pushouts along monos and such
pushouts are VK squares. All monos are regular in an adhesive category.

Lemma 2. Monos and regular monos coincide in any adhesive category.

Proof. See [9, Lemma 4.9]. ��

A category C is quasiadhesive when it has pullbacks, pushouts along regular
monos and such pushouts are VK squares. An adhesive category is a quasiadhe-
sive category where all the monos are regular, in this sense adhesive categories
can be regarded as “degenerate” quasiadhesive categories.

3 Motivating Examples

In this section we introduce several examples which fail to be adhesive. As we
shall see in Section 4, all of them can be seen as instances of a particular con-
struction and as a consequence all are quasitoposes.

Example 3 (Injective Functions). Let Inj be the category with
objects the injective functions m : X → Y in Set and arrows
commutative diagrams as illustrated to the right.

X
m

��

f �� X ′

m
��

Y g
�� Y ′

An object of Inj can be thought of as a set together with a chosen subset,
equivalently a set equipped with a unary predicate. The morphisms are those
functions which preserve the subset/predicate in the obvious way. The monos
are precisely those where g is an injective function. The regular monos are those
monos which reflect the predicate; this condition is easily seen to be equivalent
to requiring that the resulting diagram of monos in Set is a pullback.

Example 4 (Binary relations). The category of bi-
nary relations, BRel has as objects triples 〈V, E, m〉
with m : E → V × V an injective function. Arrows
are the obvious commutative diagrams:

E

m
��

fE �� E′

m′
��

V × V
fV ×fV

�� V ′ × V ′.

Quasitoposes, Quasiadhesive Categories and Artin Glueing 315

It follows easily that BRel is equivalent to the category of graphs with at most
one edge from one vertex to another (ie { 〈V, E〉 | E ⊆ V × V }), and arrows
ordinary graph morphisms. Some authors refer to such objects as simple graphs.
As with Inj, the monos in BRel are easily seen to be the diagrams arising from
fV being injective. Again, the regular monos are those which reflect edges, or
equivalently pullback diagrams with all maps being monos.

The following example appeared in [4]. Fix an arbitrary nonempty set P of
predicates with an arity function ar : P → N. Given a set of atoms X , a predicate
P ∈ P , and x1, . . . , xarP ∈ X , the formal expression P (x1, . . . , xarP) is called
an atomic formula over X . Let AFP (X) denote the set of atomic formulas.

Example 5 (Structures). Let StrP be the category where the objects are struc-
tures – pairs 〈X, Y 〉 where X is a set and Y ⊆ AFP(X). A structure mor-
phism 〈f, g〉 where f : X → X ′ and g : Y → Y ′ such that g(P (x1, . . . , xarP)) ≡
P (fx1, . . . , fxarP) – that is, atomic formulas are preserved.

The monos are clearly those homomorphisms where the map on the underlying
sets is injective. The regular monos are those where also predicates are reflected,
in the obvious way.

Example 6 (Algebraic specifications). A signature is a quadruple Σ = 〈S, P, s, t〉
where S is a set of sorts, P is a set of operators, s : P → S∗ (where S∗ denotes the
free monoid over S) is a function giving the sorts of the domain of an operator and
and t : P → S is the function giving the sort of the codomain of an operator. We
write p : s1 × . . . × sk → s if s(p) = s1 . . . sk and t(p) = s. A signature morphism
f : Σ → Σ′ is a pair f = 〈fS, fP 〉 where fS : S → S′, fP : P → P ′ such that if
p : s1 × . . . × sk → s then fP (p) : fS(s1) × . . . × fS(sk) → fS(s). The category
Sig of signatures and signature morphisms is a presheaf topos – indeed, it is
isomorphic to the category of hypergraphs1 with edges restricted to having a
single target node (but an arbitrary finite number of source nodes).

A term σ(x1 : s1, . . . , xn : sn) : s over a signature Σ is the obvious formal
construction built up from the basic operators of Σ and composition which may
contain instances of variables xi : si. To avoid extra complexity, we shall assume
that variables appear at most once within a term. Each term has a unique sort
s determined by the codomain sort of the root operator in the syntax tree of
the term. An equation over a signature Σ is a formal expression of the form
σ1(x1 : s1, . . . , xn : sn) : s ≡ σ2(x1 : s1, . . . , xn : sn) : s.

An algebraic specification is a pair S = 〈Σ, E〉 where Σ is a signature and E
is a set of equations over Σ. An algebraic specification morphism f : S → S′ is
a pair f = 〈〈fS , fP 〉 , fE〉 where 〈fS , fP 〉 : Σ → Σ′ is a signature morphism and
fE : E → E′ is a function satisfying

fE (σ1(x1 : s1, . . . , xn : sn) : s ≡ σ2(x1 : s1, . . . , xn : sn) : s) =
fP (σ1)(x′1 : fS(s1), . . . , x′n : fS(sn)) : fS(s) ≡

fP (σ2)(x′1 : fS(s1), . . . , x′n : fS(sn)) : fS(s)

1 Some authors use the term ‘multigraphs’.

316 P.T. Johnstone, S. Lack, and P. Sobociński

for some injective renaming of variables xi
→ x′i. The category of algebraic
specifications and algebraic specification morphisms is denoted Spec.

A mono is an algebraic specification morphism with an underlying signature
morphism that is injective (on both sorts and operators). A regular mono also
reflects equations, in the obvious way.

Example 7 (Safely marked Petri nets). A Petri net is a tuple N = 〈P, T, s, t〉
where P is a set of places, T is a set of transitions and s, t : T → P ∗ are,
respectively, the sources and targets of a transition. In other words, we think of
a net as a multi-graph. A net morphism f : N → N ′ is a pair f = 〈fP , fT 〉 where
fP : P → P ′, fT : T → T ′ such that s′fT = f∗

P s and t′fT = f∗
P t (sources and

targets of transitions are preserved). Such a choice of morphism can be useful
when deriving compositional labelled equivalences for nets, see for instance [13].
The category of Petri nets and morphisms is denoted PNet. It is easily seen
to be a presheaf topos. A marked place-transition net N is a pair 〈N, K, k〉
where N ∈ PNet, K is a set of tokens, and k : K → P is a mapping of tokens
to places. A place-transition net morphism f : N → N ′ is a pair f = 〈fN , fK〉
where fN : N → N ′ is a map of Petri nets and fK : K → K ′ is a function between
the sets of tokens satisfying k′fK = fP k (places of tokens are preserved). Let
PTNet be the category of marked place-transition nets and morphisms. A safely
marked place-transition net is a place-transition net where there is at most one
token on each place, that is, the function k : K → P is injective. Let SPTNet
be the full subcategory of PTNet consisting of safely marked nets.

A mono in SPTNet is a morphism of marked-nets which is injective on the
underlying net. A regular mono has the additional property that the marking is
reflected.

Lemma 8. The categories Inj (Example 3), BRel (Example 4), Str (Exam-
ple 5), Spec (Example 6), and SPTNet (Example 7) are not adhesive.

Proof. Immediate since the classes of monos and regular monos do not coincide
in any of these categories (cf Lemma 2). ��

4 Glueing

In this section we shall demonstrate that the examples discussed in §3 are formed
using a particular variant of a general construction known as Artin glueing [2].

More explicitly, we shall see that the examples given in §3 are actually certain
full subcategories of categories obtained by glueing. Using a well-known result,
categories obtained by Artin glueing are quasitoposes. Using the fact that also
the aforementioned full subcategories of quasitoposes are themselves quasito-
poses (Theorem 16) we know that the examples are quasitoposes.

We begin by recalling the definition of a quasitopos.

Definition 9. A category C is said to be a quasitopos when it satisfies all of
the following conditions:

Quasitoposes, Quasiadhesive Categories and Artin Glueing 317

(i) it has finite limits and colimits;
(ii) it is locally cartesian closed;
(iii) it has a regular-subobject-classifier.

Quasitoposes and quasiadhesive categories share several basic properties, as we
outline below.

Proposition 10. The following hold in any quasitopos E and in any quasiad-
hesive category C:

(i) pushouts along regular monos are also pullbacks;
(ii) regular monos are stable under pushout;
(iii) unions of regular subobjects are effective2;

Proof. Quasitoposes: (i) and (ii) see [7, A2.6.2] and (iii) see [7, A1.4.3]. Quasiad-
hesive categories: (i) and (ii) see [9, Lemma 6.1]. Part (iii) is a straightforward
generalisation of [9, Theorem 5.1]. ��

In addition, quasitoposes admit a number of factorisation systems.

Proposition 11. In any quasitopos, every arrow can be factorised into an epi
followed by a regular mono or by a regular epi followed by a mono.

Proof. For the regular epi - mono factorisation see [7, Scholium 1.3.5]. For the
mono - regular epi factorisation one can use the dual of [7, Scholium 1.3.5] since
regular monos are stable under pushout. ��

Given categories C, D and a functor T : D → C, we write
C/T for the category with objects arrows f : C → TD for
C ∈ C, D ∈ D. An arrow in C/T is a pair 〈g, h〉 : f → f ′

consisting of an arrow g : C → C′ in C and h : D → D′ in D
such that (Th)f = f ′g.

C

f
��

g �� C′

f ′
��

TD
Th

�� TD′

Definition 12 (Artin glueing). A category Z is said to be obtained by Artin
glueing if it is the slice category C/T for some functor T : D → C where C and
D are quasitoposes.

We shall usually perform Artin glueing along a pullback-preserving functor
T : C → D. It is a well-known “folk” theorem3 that when C has finite lim-
its (and this will always be the case for us, since C will be a quasitopos) then
T also preserves all finite limits. The category obtained by glueing along such a
functor will in fact be a quasitopos; the following theorem is actually a special
case of a more general result of Carboni and Johnstone [2, Theorem 3.3]. We will
rely on the ‘if’ direction which was first shown by Rosebrugh and Wood [11].

2 Unions of subobjects are said to be effective when the union of two subobjects is
obtained by pushing out along their intersection.

3 See [2, Lemma 1.1] for a proof.

318 P.T. Johnstone, S. Lack, and P. Sobociński

Theorem 13. If C, D are quasitoposes then C/T is a quasitopos iff T preserves
pullbacks. ��

We shall denote by C�T the full subcategory of C/T with objects the monos
m : C → TD in C.4 The following lemma lists some properties of regular monos
in C/T and C�T .

Lemma 14. Suppose that C, D are quasitoposes and T : D → C preserves
pullbacks. Then:

(i) A map 〈g, h〉 in C/T is a regular mono iff g is a regular mono in C and h
is a regular mono in D.

(ii) A map 〈g, h〉 in C�T is a regular mono iff g is a regular mono in C, h is
a regular mono in D and the resulting square in C is a pullback diagram.

Proof. (⇒) Since T preserves pullbacks and C is finitely complete, T preserves
equalisers. In particular, this means that equalisers are constructed component-
wise in C/T . It is easy to check that the full subcategory C�T is closed with
respect to equalisers and the resulting square is a pullback.
(⇐) Suppose that g is a regular mono in C and that h is a regular mono in D.
Let α, β be the cokernel pair of g (obtained by pushing out g along itself in C)
and ϕ, ψ be a pair in D of which h is the equaliser. Since pushouts along regular
monos are also pullbacks in C (cf Proposition 10, (i)), it follows that g is the
equaliser of α and β. Using the fact that α and β are the cokernel pair, let f2 be
the unique map such that f2α = Tϕ.f1 and f2β = Tψ.f1 (see the first diagram
below). It follows that 〈g, h〉 is the equaliser of 〈α, ϕ〉 and 〈β, ψ〉 in C/T .

C

f
��

g �� C1

f1��

α ��

β
��C2

f2��
TD

Th
�� TD1

Tϕ ��

Tψ
�� TD2

C

f
��

g �� C1

f1��

Tϕ.f1 ��

Tψ.f1

�� TD2

��
TD

Th
�� TD1

Tϕ ��

Tψ
�� TD2

For C�T , let ϕ and ψ be a pair in D of which h is the equaliser. We shall
show that g is the equaliser of Tϕ.f1 and Tψ.f1. Indeed, suppose there is a map
x : X → C1 such that Tϕ.f1x = Tψ.f1x. Since T preserves equalisers, there is a
unique map y : X → TD such that Th.y = f1x. Using the fact that the square
is a pullback, there is a unique map z : X → C such that fz = y and gz = x.
It follows that 〈g, h〉 is the equaliser of 〈Tϕ.f1, ϕ〉 and 〈Tψ.f1, ψ〉 in C�T , as
illustrated in the second diagram above. ��

In Theorem 16 we shall show that if T is a pullback-preserving functor between
quasitoposes then also C�T is a quasitopos. Note that when C and D are toposes
4 One could also define C�T to be the full subcategory of C/T with objects the

regular monos. In that case, the conclusion of Theorem 16 would still hold and can
be proved using a modified version of Lemma 15. For the purposes of this paper the
precise definition used is a moot point since in all of our examples both C and D
are actually toposes.

Quasitoposes, Quasiadhesive Categories and Artin Glueing 319

then C/T is also a topos; on the other hand, as will be demonstrated by the ex-
amples, C�T will usually be only a quasitopos. We first prove a technical lemma.

Lemma 15. In the following we assume that T : D → C preserves finite limits.

(i) If C and D are cartesian closed then also C�T is cartesian closed;
(ii) If C and D are locally cartesian closed then also C�T is locally cartesian

closed;
(iii) If C and D have finite colimits and C has regular epi - mono factorisations

then C�T has finite colimits;
(iv) If D is a quasitopos then C�T has a regular-subobject-classifier.

Proof. (i) It is well-known (see [2]) that with these assumptions C/T is cartesian
closed. The internal hom of C1 → TD1 and C2 → TD2 is the pullback P →
T [D1, D2] of [C1, C2] → [C1, TD2] along T [D1, D2] → [TD1, TD2] → [C1, TD2],
as illustrated below.

P ��

��

[C1, C2]

��
T [D1, D2] �� [TD1, TD2] �� [C1, TD2]

Clearly if C2 → TD2 is mono then so is [C1, C2] → [C1, TD2] and therefore also
P → T [D1, D2]. Since C�T is a full subcategory of the cartesian-closed category
C/T and is closed under exponentiation, it itself is cartesian-closed.
(ii) Suppose that C → TD is an object of C�T . Then (C�T)/(C → TD) =
(C/C)�T ′, where T ′ : D/D → C/C is given by first applying T to get D/D →
C/TD, and then pulling back along C → TD as in C/TD → C/C. Now C/C
and D/D are cartesian closed by assumption, and T ′ clearly preserves finite
limits, so (C/C)�T ′ is cartesian closed by (i), and so C�T is locally cartesian
closed.
(iii) It is well-known that in this case also C/T has finite colimits. The presence
of the regular epi - mono factorisation system in C ensures that C�T is a
reflective subcategory of C/T and so it too has finite colimits.
(iv) A regular subobject in C�T is a pullback square, as illus-
trated, in which the horizontal maps are regular mono. If D has
a regular-subobject-classifier W , then it is straightforward to
verify that TW → TW is a regular-subobject-classifier in C�T .

C′

��

�� C

��
TD′ �� TD

��

Theorem 16. If C, D are quasitoposes and T : D → C preserves pullbacks then
C�T is a quasitopos.

Proof. The proof follows using the results of Lemma 15 and applying the usual
reduction in the style of [2]. Indeed, if C, D are quasitoposes and T : D → C
preserves pullbacks then T1 : D → C/T 1 preserves finite limits (since it preserves
pullbacks and the terminal object) and so (C/T 1)�T1 is a quasitopos. But this
is just C�T . ��

320 P.T. Johnstone, S. Lack, and P. Sobociński

We have given a direct proof of Theorem 16. A shorter proof would use the
fact that the objects of C�T are the separated objects for the closure operator
corresponding to the fact that D is an open sub-quasitopos of C/T .

We shall now demonstrate that the examples of §3 are of the form D�T for spe-
cific choices of C, D and pullback-preservingT : D → C. Theorem 16 ensures that
suchcategories arequasitoposes, thus eliminating theneed for tediousdirectproofs.

Proposition 17. The categories Inj, BRel, Str, Spec and SPTNet are of
the form C�T for T : D → C a pullback-preserving functor between toposes.

Proof. Inj (cf Example 3): Let C,D = Set and let T be the identity functor. It
is immediate that Inj ∼= Set�T .
BRel (cf Example 4): Let C,D = Set and let TX = X × X . It is immediate
that BRel ∼= Set�T ; also, T preserves limits since it is representable – indeed,
TX ∼= Set(2, X).
Str (cf Example 5): Let T : Set → Set be defined TX =

∑
P∈P Xar(P) ∼=∑

P∈P Set(ar(P), X). Pullback preservation is immediate. Notice that there is
a bijection TX ∼= AFP(X), so to give a subset of atomic formulas is essentially
to give a mono with codomain TX ; hence it is easy to show that StrP � Set�T .

Spec (cf Example 6): Let T : Sig → Set be the free term
functor: a signature Σ = 〈S, P, s, t〉 is taken to the set TΣ of
all terms. The action on signature morphisms is canonical.

UΣ
q1 ��

q2 �� TΣ
p��

TΣ p
�� S∗ × S

Let S∗×S denote the set of nonempty words over S and p : TΣ → S∗×S be the
evident map which takes a term to its “type”. Define UΣ to be the illustrated
pullback diagram in Set. It follows that U : Sig → Set is a functor. Intuitively,
UΣ is the set of “well-typed” equations (consisting of two terms of the same
result sort and taking an equal number of variables, with each corresponding pair
agreeing on the sorts) between terms over Σ. It follows that Spec � Set�U , we
omit the proof of the fact that U preserves pullbacks;
SPTNet (cf Example 7): Let U : PNet → Set be the forgetful functor which
takes a Petri net to its set of places. It follows that SPTNet � Set�U . Using
the fact that limits are computed pointwise in PNet, U preserves them. ��

Corollary 18. The categories Inj, BRel, Str, Spec and SPTNet are qua-
sitoposes.

Proof. Immediate by Proposition 17 and Theorem 16. ��

5 Quasitoposes and Quasiadhesive Categories

In this section we shall characterise precisely which quasitoposes are quasiadhe-
sive. We begin by proving an important property of quasiadhesive categories –
regular monos are closed under union. This result forms one direction of a char-
acterisation of quasiadhesive quasitoposes, which appears as Theorem 21. The
proof itself is a step-by-step construction of a counterexample at an abstract
level and is followed by a concrete example in Corollary 20.

Quasitoposes, Quasiadhesive Categories and Artin Glueing 321

Theorem 19. In quasiadhesive categories, binary unions of regular subobjects
are regular

Proof. Suppose that Z ∈ C and that U and V are two regular subobjects of
Z such that U ∪ V is not a regular subobject. We shall show that C cannot
be quasiadhesive by constructing an explicit counterexample cube. Let W and
X denote respectively U ∩ V and U ∪ V . Let X denote the smallest regular
subobject of Z which contains X , ie the join of U and V in the lattice of regular
subobjects of Z. This object can be obtained by factorising the map X → Z
into an epi followed by a regular mono. Some work is required to show that
this factorisation can be obtained in any quasiadhesive category, we omit the
details and only give a sketch: one first shows that X → Z admits a cokernel
pair; secondly, one can construct the equaliser X → Z of the cokernel pair by
pulling back, giving the regular mono part of the factorisation. Finally one uses
a standard argument to show that the map x : X → X given by the universal
property of equalisers is epi.

We obtain objects A and A by constructing the pushouts in the left dia-
gram below, where v = xv. Clearly v is regular mono by the usual cancellation
properties.

W

(†)π1

��

π2 �� V

v

��

v �� X

j2

��

q

��
U u

�� X

x
��

p
�� A

a
��

X j1
�� A

W

(‡)

π1 ��

π1

��

U
u ��

i2
��

X

q

��
id

��

U
i1

�� B

h
��

b
�� A

r
��

U
u

�� X

Note that (†) is a pushout by Proposition 10, (iii). All three pushouts are also
pullbacks by part (i) of the proposition, since all the horizontal morphisms in the
diagram are regular mono. The fact that the lower square is a pullback together
with the fact that x is not an isomorphism implies that a is not an isomorphism.

Now consider the second diagram above in which (‡) is a pushout and u = xu.
Using the fact that uπ1 = vπ2 the pushout of X and U along W is A and we obtain
a map b : B → A such that the upper right square commutes and bi1 = pu. By
the pasting properties of pushouts, this square is also a pushout. Let h : B → U
be the codiagonal (the unique map such that hi1 = hi2 = idU) and let r be the
unique map which satisfies rq = idX and rb = uh. The outer rectangle is clearly
a pushout and thus the lower square is also a pushout, by cancellation.

Consider the first diagram below, it shows that the pullback of A → Z and
U → Z is the pushout B of U together with itself along W . To see this, let B′

denote this pullback and note that the pullback of U → Z along X → Z is just
U and similarly the pullback of U and V is W . Hence all the vertical faces of the
diagram are pullbacks and since pushouts along regular monos are stable under
pullback, the upper face of the cube must be a pushout diagram; hence B ∼= B′.

322 P.T. Johnstone, S. Lack, and P. Sobociński

In particular, we can erase all the primes from the diagram.

U
u��

i′
1

����������

W
π2 �� π1

����������

π1
��������������������
X ��

j1

��������
B′

b
′

��

h′
�� U

u′
��

V
�����

v
��������������

v ����������� U
u��

i′
2

��������������������
A �� Z

X

j2

��������������������

B

(�)h
����

b �� A

s
����

U

��

u
�� X

��
U

u′
�� Z

In the second diagram above, let s be the codiagonal. As we have established,
the outer region is a pullback and it is immediate that the lower square is a
pullback also – thus the upper square () must be a pullback by cancellation.
We claim that also that () is a pushout.

To see this, assume that there are maps f : A → C and g : U → C such that
fb = gh. Since h and s are epi (being codiagonals), it is enough to show that
there exists a map α : X → C such that αs = f . Note that by the construction
of A a morphism f : A → C corresponds to a pair of morphisms f1 = fj1 =
faq : X → C and f2 = fj2 : X → C. We shall show that we can take α to be f1;
to show f1s = f , it is enough to show that the two maps agree when precomposed
with j1 and j2; thus we need to show that f1 = f2. Clearly f1 and f2 agree when
restricted to V � X. Also f1u = fj1u = fbi2 = fabi2 = faqu = fj2u = f2u.
Thus they must agree on the union x : X � X of these subobjects. And x is epi
by construction, so f1 = f2.
Now consider the illustrated cube; the top and bottom faces
are both pushouts, the diagonal edges are regular mono and
three of the four vertical faces are pullbacks. But the front
face is not a pullback, because as we have observed previ-
ously, a : A → A is not an isomorphism.

B

b
		

��

h �� U u

��
A

a

��

r �� X

��
B

b
		

h �� U

A s
�� X

��

Note that, although we presented the proof of Theorem 19 above as a proof
by contradiction, the argument is in fact constructive: it shows that if C is
quasiadhesive then the mono a : A → A must be an isomorphism, and hence so
is x : X → X.

Corollary 20. The construction in the proof of Theorem 19 allows us to con-
clude that the category of binary relations BRel is not quasiadhesive. Indeed,
considering the objects of BRel as simple graphs, it is immediate that the two
vertices of a → b are regular subobjects but their union is not regular. The coun-
terexample constructed starting from these two subobjects is shown in Fig 1.

The following theorem is the main result of this section. It gives a sufficient and
necessary condition for a quasitopos to be quasiadhesive. The condition is easy
to state and usually straightforward to check – a quasitopos is quasiadhesive if
and only if regular subobjects are closed under binary unions.

Quasitoposes, Quasiadhesive Categories and Artin Glueing 323

aa a′

a

b

a

b

aa a′

a a′

b

a a′

b

Fig. 1. A counterexample demonstrating that BRel is not quasiadhesive

Theorem 21. Let C be a quasitopos. Then the following are equivalent:

(i) C is quasiadhesive.
(ii) the class of regular subobjects of any object is closed under binary union.

Proof. (i) ⇒ (ii): Is immediate by the conclusion of Theorem 19 and Proposi-
tion 11.

(ii)⇒ (i): We give a brief sketch of a “direct” argument. A shorter but slightly
more technical proof relies on connections between quasiadhesivity and Artin
glueing in quasitoposes.
Consider the illustrated cube: since we can factorise
maps into a regular epi followed by a mono and van
Kampen squares are closed under pasting, it suffices to
consider the situation where f is a mono or f is a regular
epi. The case where f is a mono is straightforward; the
reasoning for the case where f is a regular epi is similar
to the proof of [10, Theorem 25].

C′

m′
����

�

��

f ′
�� B′

n′

����
�

��
A′

��

g′
�� D′

��
C

m ���
��
f �� B

n ���
��

A g
�� D

��

When are the hypotheses of Theorem 21 satisfied? Clearly, they hold if C is a
topos; in particular, the fact that toposes are adhesive is a consequence, since all
monos are regular and by the conclusion of Theorem 21 they are quasiadhesive. In
this sense, the above result is a generalisation of the main result of [10]. They also
hold if C is a Heyting algebra, where the only regular monos are isomorphisms.

Proposition 22. Heyting algebras are quasiadhesive. ��

Clearly, in other quasitoposes, it suffices to check the condition that unions of
regular subobjects are regular. We have seen that BRel does not satisfy the
condition and thus is not quasiadhesive. As our examples are of the form C�T ,
it is useful to understand how unions are computed in such categories.

Lemma 23. Unions of subobjects in in C/T and C�T are computed pointwise.
That is, the union of subobjects 〈C1 � C, D1 � D〉 and 〈C2 � C, D2 � D〉 of

324 P.T. Johnstone, S. Lack, and P. Sobociński

f : C � TD is 〈C1 ∪ C2 � C, D1 ∪ D2 � D〉, where the unions are formed in
C and D, respectively.

Proof. C/T is a quasitopos by Theorem 13; C�T is a quasitopos by Theo-
rem 16 and thus unions are effective in both the categories (Proposition 10, (iii)).
But all colimits in C/T are computed pointwise and
pullbacks are computed pointwise because T preserves
them. Because C�T is reflective in C/T , it suffices
to check that the map C1 ∪ C2 → T (D1 ∪ D2) is a
mono, but this follows easily since in the commutative
diagram below, C1 ∪C2 → C and C → TD are mono.

C1 ∪ C2

��

�� C

��
T (D1 ∪ D2) �� TD

��

Recall that in Theorem 16 we showed that for a pullback-preserving functors
T : D → C between quasitoposes, C�T is a quasitopos. The following result
characterises precisely those T for which C�T is also quasiadhesive.

Theorem 24. Suppose C, D are quasiadhesive quasitoposes and T : D → C is
pullback-preserving. Then C�T is quasiadhesive iff T preserves unions of regular
subobjects5.

Proof. (⇐). By Theorem 16, C�T is a quasitopos. Suppose that T preserves
unions of regular subobjects. For i ∈ {1, 2} suppose that we have regular subob-
jects of C → TD in C�T , as illustrated in the first diagram below. Their union is
calculated pointwise (Lemma 23), is illustrated in the second diagram. Because C
and D are quasiadhesive, the horizontal maps in the second diagram are regular.
Using part (ii) of Lemma 14, it suffices to show that the square is a pullback. We
show this directly, suppose there are α : X → C and β : X → T (D1 ∪ D2) such
that mα = Td.β. Using the assumption we can take T (D1 ∪ D2) = TD1 ∪ TD2
and pull back β to obtain a pushout diagram which decomposes X , as illustrated.

Ci

mi
��

ci �� C
m

��
TDi

Tdi

�� TD

C1 ∪ C2

m3 ��

c �� C
m

��
T (D1 ∪ D2)

Td
�� TD

X3

��������

��

�� X2 x2

��������

β2��
X1

β1��

x1 �� X

β

��
TD1 ∪ TD2

������
�� TD2

������

TD1 �� TD1 ∪ TD2

Using the fact that the subobject diagrams are pullbacks, we obtain hi : Xi → Ci

such that mihi = βi and cihi = αxi. Using the decomposition of X , we obtain a
unique map h : X → C such that hxi = jihi where ji : Ci → C1 ∪ C2. A routine
calculation confirms that ch = α and m3h = β.

5 That is, for D1 → D, D2 → D regular subobjects, T (D1 ∪ D1) = TD1 ∪ TD2 as
subobjects of TD.

Quasitoposes, Quasiadhesive Categories and Artin Glueing 325

(⇒) Assume that the quasitopos C�T is quasiadhesive, then
unions of regular subobjects are regular by Theorem 21. Let
D1 → D and D2 → D be regular monos. They lead to corre-
sponding regular monos in C�T as illustrated in the diagram
for i = 1, 2.

TDi

(†)
��

�� TD

��
TDi

�� TD

The union results in the second diagram above, since
unions are computed pointwise (cf Lemma 23). Since the
union is a regular subobject, the square is a pullback and
thus T (D1 ∪ D2) = TD1 ∪ TD2.

TD1 ∪ TD2

��

�� TD

��
T (D1 ∪ D2) �� TD

��

Lemma 25. The category Inj of injective functions (cf Example 3) and the
category SPTNet of safely-marked nets(cf Example 7) are quasiadhesive. The
categories StrP where P has predicates of arity > 1 (cf Example 5) and Spec
(cf Example 6) are not quasiadhesive.

Proof. Using Theorem 24 and the fact that all of the examples are of the
form C�T (cf Proposition 17), it suffices to check whether T in each case pre-
serves unions of regular subobjects. For Inj, T = id and the condition is ob-
viously satisfied. Similarly, the condition clearly holds for the forgetful functor
U : PNet → Set since unions in the presheaf topos PNet are calculated “point-
wise”. Any polynomial functor T : Set → Set which contains powers ≥ 2 does
not preserve the union of the two injections of 1 → 2, thus StrP is not quasiad-
hesive when P has predicates of arity ≥ 2. Similarly, the functor U : Sig → Set
does not preserve unions, consider the signature 2 with a single sort and two
unary predicates and the signature 1 with a single sort and a single unary pred-
icate. There are two monos 1 → 2 but their union is not preserved by U . ��

In Theorem 24 we exhibited a necessary and sufficient condition on T for C�T
to be quasiadhesive. The following result shows that the category C/T obtained
by glueing is quasiadhesive if additionally T is cartesian and both C and D are
quasiadhesive.

Lemma 26. Let C and D be quasitoposes, and T : D → C a cartesian functor.
Then the quasitopos C/T is quasiadhesive iff both C and D are.

Proof. As observed in Lemma 14, a mono 〈m, n〉 : (A′, B′, f ′) → (A, B, f) in
C/T is regular iff both m and n are regular monos. Since unions of subobjects
are also constructed ‘component-wise’, it is easy to see that C/T inherits the
condition on unions of regular subobjects if both C and D satisfy it. Conversely,
if we have a counterexample to the condition in either C or D, we can obtain
one in C/T by applying the appropriate direct image functor to it, since both
these functors preserve regular monos. ��

6 Conclusions and Future Work

We have shown that several examples of interest to computer scientists are qua-
sitoposes obtained by using a variant of the Artin glueing construction. We

326 P.T. Johnstone, S. Lack, and P. Sobociński

characterised the quasitoposes which are quasiadhesive in terms of a condition
on the lattice of subobjects. We have refined this condition to the categories
which arise from of the aforementioned construction.

There are two clear directions for future work. Firstly, the fact that not all our
examples are quasiadhesive raises the question whether one can find a natural
class of categories with less structure and more liberal closure conditions than
quasitoposes while at the same time covering the basic properties satisfied by
adhesive and quasiadhesive categories; useful for applications of rewriting and
other related fields, for examples of such properties see for instance [9, 1, 12].
Secondly, as all of the examples in the present paper are quasitoposes, one could
directly evaluate the suitability of rewriting directly on objects in an arbitrary
quasitopos and study the resulting theories of parallelism and concurrency.

References

1. Baldan, P., Corradini, A., Heindel, T., König, B., Sobociński, P.: Processes for
adhesive rewriting systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006
and ETAPS 2006. LNCS, vol. 3921, pp. 202–216. Springer, Heidelberg (2006)

2. Carboni, A., Johnstone, P.T.: Connected limits, familial representability and Artin
glueing. Mathematical Structures in Computer Science 5, 441–449 (1995)

3. Corradini, A., Gadducci, F.: On term graphs as an adhesive category. ENCS 127(5),
43–56 (2005)

4. Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and concur-
rency in high-level replacement systems. Mathematical Structures in Computer
Science 1 (1991)

5. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement
categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, Springer, Heidelberg (2004)

6. Ehrig, H., Prange, U.: Weak adhesive high-level replacement categories and sys-
tems: a unifying framework for graph and Petri net transformations. In: Futatsugi,
K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation.
LNCS, vol. 4060, pp. 235–251. Springer, Heidelberg (2006)

7. Johnstone, P.T.: Sketches of an Elephant: A topos theory compendium, vol. 1.
Clarendon Press (2002)

8. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS
2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)

9. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoretical Infor-
matics and Applications 39(3), 511–546 (2005)

10. Lack, S., Sobociński, P.: Toposes are adhesive. In: Corradini, A., Ehrig, H., Mon-
tanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp.
184–198. Springer, Heidelberg (2006)

11. Rosebrugh, R.D., Wood, R.J.: Pullback preserving functors. Journal of Pure and
Applied Algebra 73, 73–90 (1991)

12. Sassone, V., Sobociński, P.: Reactive systems over cospans. In: LiCS ’05, pp. 311–
320. IEEE Computer Society Press, Los Alamitos (2005)

13. Sobociński, P., Sassone, V.: A congruence for Petri nets. In: PNGT ’06. ENTCS,
vol. 127 (2), pp. 107–120. Elsevier, Amsterdam (2004)

Applications of Metric Coinduction

Dexter Kozen1 and Nicholas Ruozzi2

1 Computer Science, Cornell University, Ithaca, NY 14853-7501, USA
kozen@cs.cornell.edu

2 Computer Science, Yale University, New Haven, CT 06520-8285, USA
Nicholas.Ruozzi@yale.edu

Abstract. Metric coinduction is a form of coinduction that can be used
to establish properties of objects constructed as a limit of finite approxi-
mations. One can prove a coinduction step showing that some property is
preserved by one step of the approximation process, then automatically
infer by the coinduction principle that the property holds of the limit
object. This can often be used to avoid complicated analytic arguments
involving limits and convergence, replacing them with simpler algebraic
arguments. This paper examines the application of this principle in a
variety of areas, including infinite streams, Markov chains, Markov de-
cision processes, and non-well-founded sets. These results point to the
usefulness of coinduction as a general proof technique.

1 Introduction

Mathematical induction is firmly entrenched as a fundamental and ubiquitous
proof principle for proving properties of inductively defined objects. Mathematics
and computer science abound with such objects, and mathematical induction is
certainly one of the most important tools, if not the most important, at our
disposal.

Perhaps less well entrenched is the notion of coinduction. Despite recent in-
terest, coinduction is still not fully established in our collective mathematical
consciousness. A contributing factor is that coinduction is often presented in
a relatively restricted form. Coinduction is often considered synonymous with
bisimulation and is used to establish equality or other relations on infinite data
objects such as streams [1] or recursive types [2].

In reality, coinduction is far more general. For example, it has been recently
been observed [3] that coinductive reasoning can be used to avoid complicated
ε-δ arguments involving the limiting behavior of a stochastic process, replacing
them with simpler algebraic arguments that establish a coinduction hypothesis
as an invariant of the process, then automatically deriving the property in the
limit by application of a coinduction principle. The notion of bisimulation is
a special case of this: establishing that a certain relation is a bisimulation is
tantamount to showing that a certain coinduction hypothesis is an invariant of
some process.

Coinduction, as a proof principle, can handle properties other than equality
and inequality and extends to other domains. The goal of this paper is to explore

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 327–341, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

328 D. Kozen and N. Ruozzi

some of these applications. We focus on four areas: infinite streams, Markov
chains, Markov decision processes, and non-well-founded sets. In Section 2, we
present the metric coinduction principle. In Section 3, we illustrate the use of
the principle in the context of infinite streams as an alternative to traditional
methods involving bisimulation. In Sections 4 and 5, we rederive some basic
results of the theories of Markov chains and Markov decision processes, showing
how metric coinduction can simplify arguments. Finally, in Section 6, we use
metric coinduction to derive a new characterization of the hereditarily finite
non-well-founded sets.

2 Coinduction in Complete Metric Spaces

2.1 Contractive Maps and Fixpoints

Let (V, d) be a complete metric space. A function H : V → V is contractive if
there exists 0 ≤ c < 1 such that for all u, v ∈ V , d(H(u), H(v)) ≤ c ·d(u, v). The
value c is called the constant of contraction. A continuous function H is said to
be eventually contractive if Hn is contractive for some n ≥ 1. Contractive maps
are uniformly continuous, and by the Banach fixpoint theorem, any such map
has a unique fixpoint in V .

The fixpoint of a contractive map H can be constructed explicitly as the
limit of a Cauchy sequence u, H(u), H2(u), . . . starting at any point u ∈ V . The
sequence is Cauchy; one can show by elementary arguments that

d(Hn+m(u), Hn(u)) ≤ cn(1 − cm)(1 − c)−1 · d(H(u), u).

Since V is complete, the sequence has a limit u∗, which by continuity must be
a fixpoint of H . Moreover, u∗ is unique: if H(u) = u and H(v) = v, then

d(u, v) = d(H(u), H(v)) ≤ c · d(u, v) ⇒ d(u, v) = 0,

therefore u = v.
Eventually contractive maps also have unique fixpoints. If Hn is contractive,

let u∗ be the unique fixpoint of Hn. Then H(u∗) is also a fixpoint of Hn. But
then d(u∗, H(u∗)) = d(Hn(u∗), Hn+1(u∗)) ≤ c · d(u∗, H(u∗)), which implies
that u∗ is also a fixpoint of H .

2.2 The Coinduction Rule

In the applications we will consider, the coinduction rule takes the following
simple form: If ϕ is a closed nonempty subset of a complete metric space V , and
if H is an eventually contractive map on V that preserves ϕ, then the unique
fixpoint u∗ of H is in ϕ. Expressed as a proof rule, this says for ϕ a closed
property,

∃u ϕ(u) ∀u ϕ(u) ⇒ ϕ(H(u))
ϕ(u∗)

(1)

In [3], the rule was used in the special form in which V was a Banach space (normed
linear space) and H was an eventually contractive linear affine map on V .

Applications of Metric Coinduction 329

2.3 Why Is This Coinduction?

We have called (1) a coinduction rule. To justify this terminology, we must
exhibit a category of coalgebras and show that the rule (1) is equivalent to the
assertion that a certain coalgebra is final in the category. This construction was
given in [3], but we repeat it here for completeness.

Say we have a contractive map H on a metric space V and a nonempty
closed subset ϕ ⊆ V preserved by H . Define H(ϕ) = {H(s) | s ∈ ϕ}. Consider
the category C whose objects are the nonempty closed subsets of V and whose
arrows are the reverse set inclusions; thus there is a unique arrow ϕ1 → ϕ2 iff
ϕ1 ⊇ ϕ2. The map H̄ defined by H̄(ϕ) = cl(H(ϕ)), where cl denotes closure in
the metric topology, is an endofunctor on C, since H̄(ϕ) is a nonempty closed
set, and ϕ1 ⊇ ϕ2 implies H̄(ϕ1) ⊇ H̄(ϕ2). An H̄-coalgebra is then a nonempty
closed set ϕ such that ϕ ⊇ H̄(ϕ); equivalently, such that ϕ ⊇ H(ϕ). The final
coalgebra is {u∗}, where u∗ is the unique fixpoint of H . The coinduction rule
(1) says that ϕ ⊇ H(ϕ) ⇒ ϕ ⊇ {u∗}, which is equivalent to the statement that
{u∗} is final in the category of H̄-coalgebras.

3 Streams

Infinite streams have been a very successful source of application of coinductive
techniques. The space SΣ = (Σω, head, tail) of infinite streams over Σ is the final
coalgebra in the category of simple transition systems over Σ, whose objects are
(X, obs, cont), where X is a set, obs : X → Σ gives an observation at each state,
and cont : X → X gives a continuation (next state) for each state. The unique
morphism (X, obs, cont) → (Σω, head, tail) maps a state s ∈ X to the stream
obs(s), obs(cont(s)), obs(cont2(s)), . . . ∈ Σω.

We begin by illustrating the use of the metric coinduction principle in this
context as an alternative to traditional methods involving bisimulation. It is
well known that SΣ forms a complete metric space under the distance function
d(σ, τ) def= 2−n, where n is the first position at which σ and τ differ. The metric
d satisfies the property

d(x :: σ, y :: τ) =

{
1
2d(σ, τ) x = y

1 x �= y.

One can also form the product space S2
Σ with metric

d((σ1, σ2), (τ1, τ2))
def= max d(σ1, τ1), d(σ2, τ2).

Since distances are bounded, the spaces of continuous operators S2
Σ → SΣ and

SΣ → S2
Σ are also complete metric spaces under the sup metric

d(E, F) def= sup
x

d(E(x), F (x)).

330 D. Kozen and N. Ruozzi

Consider the operators merge : S2
Σ → SΣ and split : SΣ → S2

Σ defined
informally by

merge (a0a1a2 · · · , b0b1b2 · · ·) = a0b0a1b1a2b2 · · ·
split (a0a1a2 · · ·) = (a0a2a4 · · · , a1a3a5 · · ·).

Thus merge forms a single stream from two streams by taking elements alter-
nately, and split separates a single stream into two streams consisting of the even
and odd elements, respectively.

Formally, one would define merge and split coinductively as follows:

merge (x :: σ, τ) def= x :: merge (τ, σ)

split (x :: y :: σ) def= (x :: split (σ)1, y :: split (σ)2)

These functions exist and are unique, since they are the unique fixpoints of the
eventually contractive maps

α : (S2
Σ → SΣ) → (S2

Σ → SΣ) β : (SΣ → S2
Σ) → (SΣ → S2

Σ)

defined by

α(M)(x :: σ, τ) def= x :: M(τ, σ)

β(S)(x :: y :: σ) def= (x :: S(σ)1, y :: S(σ)2).

We would like to show that merge and split are inverses. Traditionally, one
would do this by exhibiting a bisimulation between merge (split (σ)) and σ,
thus concluding that merge (split (σ)) = σ, and another bisimulation between
split (merge (σ, τ)) and (σ, τ), thus concluding that split (merge (σ, τ)) = (σ, τ).

Here is how we would prove this result using the metric coinduction rule (1).
Let M : S2

Σ → SΣ and S : SΣ → S2
Σ . If M is a left inverse of S, then α2(M) is

a left inverse of β(S):

α2(M)(β(S)(x :: y :: σ)) = α(α(M))(x :: S(σ)1, y :: S(σ)2)
= x :: α(M)(y :: S(σ)2, S(σ)1)
= x :: y :: M(S(σ)1, S(σ)2)
= x :: y :: M(S(σ))
= x :: y :: σ.

Similarly, if M is a right inverse of S, then α2(M) is a right inverse of β(S):

β(S)(α2(M)(x :: σ, y :: τ)) = β(S)(α(α(M))(x :: σ, y :: τ))
= β(S)(x :: α(M)(y :: τ, σ))
= β(S)(x :: y :: M(σ, τ))
= (x :: S(M(σ, τ))1, y :: S(M(σ, τ))2)
= (x :: (σ, τ)1, y :: (σ, τ)2)
= (x :: σ, y :: τ).

Applications of Metric Coinduction 331

We conclude that if M and S are inverses, then so are α2(M) and β(S).
The property

ϕ(M, S) def⇐⇒ M and S are inverses (2)

is a nonempty closed property of (S2
Σ → SΣ) × (SΣ → S2

Σ) which, as we have
just shown, is preserved by the contractive map (M, S) �→ (α2(M), β(S)). By
(1), ϕ holds of the unique fixpoint (merge, split).

That ϕ is nonempty and closed requires an argument, but these conditions
typically follow from general topological considerations. For example, (2) is non-
empty because the spaces SΣ and S2

Σ are both homeomorphic to the topological
product of countably many copies of the discrete space Σ.

4 Markov Chains

A finite Markov chain is a finite state space, say {1, . . . , n}, together with a
stochastic matrix P ∈ R

n×n of transition probabilities, with Pst representing
the probability of a transition from state s to state t in one step. The value Pm

st

is the probability that the system is in state t after m steps, starting in state s.
A fundamental result in the theory of Markov chains is that if P is irreducible

and aperiodic (definitions given below), then Pm
st tends to 1/μt as m → ∞,

where μt is the mean first recurrence time of state t, the expected time of first
reentry into state t after leaving state t. Intuitively, if we expect to be in state t
about every μt steps, then in the long run we expect to be in state t about 1/μt

of the time.
The proof of this result as given in Feller [4] is rather lengthy, involving a com-

plicated argument to establish the uniform convergence of a certain countable
sequence of countable sequences. The complete proof runs to several pages. In-
troductory texts devote entire chapters to it (e.g. [5]) or omit the proof entirely
(e.g. [6]). In this section we show that, assuming some basic spectral proper-
ties of stochastic matrices, the coinduction rule can be used to give a simpler
alternative proof.

4.1 Spectral Properties

Recall that P is irreducible if its underlying support graph is strongly connected.
The support graph has vertices {1, . . . , n} and directed edges {(s, t) | Pst > 0}.
A directed graph is strongly connected if there is a directed path from any vertex
to any other vertex. The matrix P is aperiodic if in addition, the gcd of the set
{m | Pm

ss > 0} is 1 for all states s. By the Perron–Frobenius theorem (see [7,8]),
if P is irreducible and aperiodic, then P has eigenvalue 1 with multiplicity 1 and
all other eigenvalues have norm strictly less than 1.

The matrix P is itself not contractive, since 1 is an eigenvalue. However,
consider the matrix

P − 1
n
11T,

332 D. Kozen and N. Ruozzi

where 1 is the column vector of all 1’s and T denotes matrix transpose. The
matrix 1

n11T is the n × n matrix all of whose entries are 1/n.
The spectra of P and P − 1

n11T are closely related, as shown in the following
lemma.

Lemma 1. Let P ∈ R
n×n be a stochastic matrix. Any (left) eigenvector xT of

P − 1
n11T that lies in the hyperplane xT1 = 0 is also an eigenvector of P with

the same eigenvalue, and vice-versa. The only other eigenvalue of P is 1 and the
only other eigenvalue of P − 1

n11T is 0.

Proof. For any eigenvalue λ of P and corresponding eigenvector xT,

λxT1 = xTP1 = xT1

since P1 = 1, so either λ = 1 or xT1 = 0. Similarly, for any eigenvalue λ of
P − 1

n11T and corresponding eigenvector xT,

λxT1 = xT(P − 1
n
11T)1 = xT1 − xT1 = 0,

so either λ = 0 or xT1 = 0. But if xT1 = 0, then

xT(P − 1
n
11T) = xTP − 1

n
xT11T = xTP,

so in this case xT is an eigenvector of P iff it is an eigenvector of P − 1
n11T with

the same eigenvalue.

4.2 Coinduction and the Convergence of P m

If P is irreducible and aperiodic, then P − 1
n11T is eventually contractive, since

infn
n

√
‖(P − 1

n11T)n‖ is equal to the spectral radius or norm of the largest

eigenvalue of P − 1
n11T (see [9]), which by Lemma 1 is less than 1. Thus the

map

xT �→ xT(P − 1
n
11T) +

1
n
1T (3)

is of the proper form to be used with the metric coinduction rule (1) to establish
the convergence of Pm.

Since P − 1
n11T is eventually contractive, the map (3) has a unique fixpoint

uT. The set of stochastic vectors

S = {xT | xT ≥ 0, xT1 = 1}
is closed and preserved by the map (3), since

xT1 = 1 ⇒ xT(P − 1
n
11T) +

1
n
1T = xTP,

and S is preserved by P . By the metric coinduction rule (1), the unique fixpoint
uT is contained in S. By Lemma 1, it is also an eigenvector of 1, and yTPm

tends to uT for any yT ∈ S. Applying this to the rows of any stochastic matrix
E, we have that EPm converges to the matrix 1uT.

Applications of Metric Coinduction 333

4.3 Recurrence Statistics

Once we have established the convergence of Pm, we can give a much shorter
argument than those of [4,5] that the actual limit of Pm

st is 1/μt. We follow the
notation of [4].

Fix a state t, and let μ = μt. Let fm be the probability that after leaving state
t, the system first returns to state t at time m. Let um = Pm

tt be the probability
that the system is in state t at time m after starting in state t. By irreducibility,∑∞

m=1 fm = 1 and μ =
∑∞

m=1 mfm < ∞. Let ρm
def=

∑∞
k=m+1 fk, and consider

the generating functions

f(x) def=
∞∑

m=1

fmxm u(x) def=
∞∑

m=0

umxm

ρ(x) def=
∞∑

m=0

ρmxm σ(x) def= u0 +
∞∑

m=0

(um+1 − um)xm+1.

The probabilities un obey the recurrence

u0 = 1 un =
n−1∑

m=0

umfn−m,

which implies that f(x)u(x) = u(x) − 1. Elementary algebraic reasoning gives

σ(x)ρ(x) = 1. (4)

Now we claim that both σ(1) and ρ(1) converge. The sequence ρ(1) converges
to μ > 0, since

ρ(1) =
∞∑

m=1

ρm =
∞∑

m=1

mfm = μ, (5)

and the latter sequence in (5) converges absolutely. For σ(1), we have

σ(1) = u0 +
∞∑

m=0

(um+1 − um),

which converges by the results of Section 4.2. By (4), σ(1)ρ(1) = 1, therefore
σ(1) = 1/μ. But the mth partial sum of σ(1) is just u0+

∑m−1
k=0 (uk+1−uk) = um,

so the sequence um converges to 1/μ.

5 Markov Decision Processes

In this section, we rederive some fundamental results on Markov decision
processes using the metric coinduction principle. A fairly general treatment of
this theory is given in [10], and we follow the notation of that paper. However,
the strategic use of metric coinduction allows a more streamlined presentation.

334 D. Kozen and N. Ruozzi

5.1 Existence of Optimal Strategies

Let V be the space of bounded real-valued functions on a set of states Ω with
the sup norm ‖v‖ def= supx∈Ω |v(x)|. The space V is complete metric space with
metric ‖v − u‖.

For each state x ∈ Ω, say we have a set Δx of actions. A deterministic strategy
is an element of Δ

def=
∏

x∈Ω Δx, thus a selection of actions, one for each state
x ∈ Ω. More generally, if Δx is a measurable space, let M(Δx) denote the
space of probability measures on Δx. A probabilistic strategy is an element of∏

x∈Ω M(Δx), thus a selection of probability measures, one for each x ∈ Ω. A
deterministic strategy can be viewed as a probabilistic strategy in which all the
measures are point masses.

Now suppose we have a utility function h :
∏

x∈Ω(Δx → V → R) with the
three properties listed below. The function h induces a function H such that
Hδ(u)(x) = h(x, δx, u) ∈ R, where x ∈ Ω, δ ∈ Δ, and u ∈ V .

(i) The function H is uniformly bounded as a function of δ and x. That is,
Hδ : V → V , and for any fixed u ∈ V , supδ∈Δ ‖Hδ(u)‖ is finite.

(ii) The functions Hδ are uniformly contractive with constant of contraction
c < 1. That is, for all δ ∈ Δ and u, v ∈ V , ‖Hδ(v) − Hδ(u)‖ ≤ c · ‖v − u‖.
Thus Hδ has a unique fixpoint, which we denote by vδ.

(iii) Every Hδ is monotone: if u ≤ v, then Hδ(u) ≤ Hδ(v). The order ≤ on V is
the pointwise order.

Lemma 2. Define A : V → V by A(u)(x) def= supd∈Δx
h(x, d, u). The supremum

exists since the Hδ are uniformly bounded. Then A is contractive with constant
of contraction c.

Proof. Let ε > 0. For x ∈ Ω, assuming without loss of generality that A(v)(x) ≥
A(u)(x),

|A(v)(x) − A(u)(x)|
= sup

d∈Δx

h(x, d, v) − sup
e∈Δx

h(x, e, u)

≤ ε + h(x, d, v) − sup
e∈Δx

h(x, e, u) for suitably chosen d ∈ Δx

≤ ε + h(x, d, v) − h(x, d, u)
≤ ε + c · ‖v − u‖.

Since ε was arbitrary, |A(v)(x) − A(u)(x)| ≤ c · ‖v − u‖, thus

‖A(v) − A(u)‖ ≤ sup
x

|A(v)(x) − A(u)(x)| ≤ c · ‖v − u‖.

Since A is contractive, it has a unique fixpoint v∗.

Lemma 3. For any δ, vδ ≤ v∗.

Applications of Metric Coinduction 335

Proof. By the coinduction principle, it suffices to show that u ≤ v implies
Hδ(u) ≤ A(v). Here the metric space is V 2, the closed property ϕ is u ≤ v,
and the contractive map is (Hδ, A). But if u ≤ v, then by monotonicity,

Hδ(u)(x) ≤ Hδ(v)(x) = h(x, δx, v) ≤ sup
d∈Δx

h(x, d, v) = A(v).

Lemma 4. v∗ can be approximated arbitrarily closely by vδ for deterministic
strategies δ.

Proof. Let ε > 0. Let δ be such that for all x,

sup
d∈Δx

h(x, d, v∗) − h(x, δx, v∗) < (1 − c)ε.

We will show that ‖v∗ − vδ‖ ≤ ε. By the coinduction rule (1), it suffices to show
that ‖v∗ − u‖ ≤ ε implies ‖v∗ − Hδ(u)‖ ≤ ε. Here the metric space is V , the
closed property ϕ(u) is ‖v∗ − u‖ ≤ ε, and the contractive map is Hδ. But if
‖v∗ − u‖ ≤ ε,

‖v∗ − Hδ(u)‖ = sup
x

|v∗(x) − Hδ(u)(x)| = sup
x

|A(v∗)(x) − Hδ(u)(x)|

= sup
x

| sup
d∈Δx

h(x, d, v∗) − h(x, δx, u)|

≤ sup
x

(| sup
d∈Δx

h(x, d, v∗) − h(x, δx, v∗)| + |h(x, δx, v∗) − h(x, δx, u)|)

≤ (1 − c)ε + c · ‖v∗ − u‖ ≤ (1 − c)ε + cε = ε.

5.2 Probabilistic Strategies

We use the metric coinduction rule (1) to prove the well-known result that for
Markov decision processes, probabilistic strategies are no better than determin-
istic strategies. If supd∈Δx

h(x, d, v∗) is attainable for all x, then the determinis-

tic strategy δx
def= argmaxd∈Δx

h(x, d, v∗) is optimal, even allowing probabilistic
strategies. However, if supd∈Δx

h(x, d, v∗) is not attainable, then it is not so
obvious what to do.

For this argument, we assume that Δx is a measurable space and that for all
fixed x and u, h(x, d, u) is an integrable function of d ∈ Δx. Given a probabilistic
strategy μ :

∏
x∈Ω M(Δx), the one-step utility function is Hμ : V → V defined

by the Lebesgue integral

Hμ(u)(x) def=
∫

d∈Δx

h(x, d, u) · μx(�d).

This integral accumulates the various individual payoffs over all choices of d
weighted by the measure μx.

The map Hμ(u) is uniformly bounded in μ, since

‖Hμ(u)‖ = sup
x

∣∣∣∣
∫

d∈Δx

h(x, d, u) · μx(�d)
∣∣∣∣ ≤ sup

x

∫

d∈Δx

|h(x, d, u)| · μx(�d)

≤ sup
x

sup
d

|h(x, d, u)| ·
∫

d∈Δx

μx(�d) = sup
x,d

|h(x, d, u)|.

336 D. Kozen and N. Ruozzi

It is also a contractive map with constant of contraction c, since

‖Hμ(v) − Hμ(u)‖ = sup
x

|Hμ(v)(x) − Hμ(u)(x)|

= sup
x

∣∣∣∣
∫

d∈Δx

h(x, d, v) · μx(�d) −
∫

d∈Δx

h(x, d, u) · μx(�d)
∣∣∣∣

= sup
x

∣∣∣∣
∫

d∈Δx

(h(x, d, v) − h(x, d, u)) · μx(�d)
∣∣∣∣

≤ sup
x

∫

d∈Δx

|h(x, d, v) − h(x, d, u)| · μx(�d)

≤ sup
x

∫

d∈Δx

c · ‖v − u‖ · μx(�d)

= c · ‖v − u‖ · sup
x

∫

d∈Δx

μx(�d)

= c · ‖v − u‖.

Since it is a contractive map, it has a unique fixpoint vμ.
Now take any deterministic strategy δ such that h(x, δx, vμ) ≥ vμ(x) for all

x. This is always possible, since if h(x, d, vμ) < vμ(x) for all d ∈ Δx, then

vμ(x) = Hμ(vμ)(x) =
∫

d∈Δx

h(x, d, vμ) · μx(�d) < vμ(x),

a contradiction. The following lemma says that the deterministic strategy δ is
no worse than the probabilistic strategy μ.

Lemma 5. vδ ≥ vμ.

Proof. Assuming vμ ≤ v, we have

vμ(x) ≤ h(x, δx, vμ) ≤ h(x, δx, v) = Hδ(v)(x),

the second inequality by monotonicity. As x was arbitrary, vμ ≤ Hδ(v). The
result follows from the coinduction principle on the metric space V with ϕ(v)
the closed property vμ ≤ v and contractive map Hδ.

6 Non-well-Founded Sets1

In classical Zermelo–Fraenkel set theory with choice (ZFC), the “element of”
relation ∈ is well-founded, as guaranteed by the axiom of foundation. Aczel
[11] developed the theory of non-well-founded sets, in which sets with infinitely
descending ∈-chains are permitted in addition to the well-founded sets. These
are precisely the sets that are explicitly ruled out of existence by the axiom of
foundation.
1 Proofs have been omitted from this section due to page limitations. A longer version

with all omitted proofs is available from the authors.

Applications of Metric Coinduction 337

In the theory of non-well-founded sets, the sets are represented by accessible
pointed graphs (APGs). An APG is a directed graph with a distinguished node
such that every node is reachable by a directed path from the distinguished
node. Two APGs represent the same set iff they are bisimilar. The APGs of
well-founded sets may be infinite, but may contain no infinite paths or cycles,
whereas the APGs of non-well-founded sets may contain infinite paths and cy-
cles. Equality as bisimulation is the natural analog of extensionality in ZFC;
essentially, two APGs are declared equal as sets if there is no witness among
their descendants that forces them not to be. The class V is the class of sets
defined in this way.

Aczel [11] and Barwise and Moss [12] note the strong role that coinduction
plays in this theory. Since equality between APGs is defined in terms of bisimula-
tion, coinduction becomes a primary proof technique for establishing the equiv-
alence of different APGs representing the same set.

In attempting to define a metric on non-well-founded sets, the classical Haus-
dorff distance suggests itself as a promising candidate. There are two complica-
tions. One is that we must apply the definition coinductively. Another is that
ordinarily, the Hausdorff metric is only defined on compact sets, since otherwise
a Hausdorff distance of zero may not imply equality, and that is the case here.
However, the definition still makes sense even for non-compact sets and leads to
further insights into the structure of non-well-founded sets.

In this section, we define a distance function d : V 2 → R based on a coinduc-
tive application of the Hausdorff distance function and derive some properties
of d. We show that (V, d) forms a compact pseudometric space. Being a pseudo-
metric instead of a metric means that there are sets s �= t with d(s, t) = 0.
Nevertheless, we identify a maximal family of sets that includes all the heredi-
tarily finite sets on which d acts as a metric.

The following are our results. Define s ≈ t if d(s, t) = 0. Call a set s singular
if the only t such that s ≈ t is s itself.

– A set is singular if and only if it is hereditarily finite.
– All singular sets are closed in the pseudometric topology. In particular, all

hereditarily finite sets are hereditarily closed (but not vice-versa).
– A set is hereditarily closed if and only if it is closed and all elements are

singular.
– All hereditarily closed sets are canonical (but not vice-versa), where a set

is canonical if it is a member of a certain coinductively-defined class of
canonical representatives of the ≈-classes.

– The map d is a metric on the canonical sets; moreover, the canonical sets
are a maximal class for which this is true.

6.1 Coinductive Definition of Functions

Just as classical ZFC allows the definition of functions by induction over ordinary
well-founded sets, there is a corresponding principle for non-well-founded sets.
For any function H : V → V , the equation

338 D. Kozen and N. Ruozzi

G(s) def= {G(u) | u ∈ H(s)} (6)

determines G : V → V uniquely. This is because if G and G′ both satisfy (6),
then the relation

u R v
def⇐⇒ ∃s u = G(s) ∧ v = G′(s)

is a bisimulation, therefore G(s) = G′(s) for all s. In coalgebraic terms, the map
G is the unique morphism from the coalgebra (V, {(s, t) | s ∈ H(t)}) to the final
coalgebra (V, ∈); see [11, Chp. 7].

6.2 Definition of d

Let B be the Banach space of bounded real-valued functions g : APG2 → R

with norm

‖g‖ def= sup
s,t

|g(s, t)|.

Define the map τ : B → B by

τ(g)(s, t) def=

⎧
⎪⎪⎨

⎪⎪⎩

0 if s, t = ∅

1 if s = ∅ ⇔ t �= ∅

1
2 max

{
supu∈s infv∈t g(u, v)
supv∈t infu∈s g(u, v) if s, t �= ∅.

It can be shown that ‖τ(g)− τ(g′)‖ ≤ 1
2‖g − g′‖, thus τ is contractive on B with

constant of contraction 1/2 and has a unique fixpoint d ∈ B. One can therefore
use the metric coinduction rule (1) to prove properties of d.

We can show that the non-well-founded sets V form a compact (thus com-
plete) pseudometric space under the distance function d. At the outset, it is not
immediately clear that d is well-defined on V . We must argue that d is invariant
on bisimulation classes; that is, for any bisimulation R, if s R s′ and t R t′, then
d(s, t) = d(s′, t′). We can use the metric coinduction rule (1) to prove this.

6.3 Canonical Sets

The map d is only a pseudometric and not a metric, since it is possible that
d(s, t) = 0 even though s �= t. For example, define 0̄ = ∅, ¯n + 1 = {n̄}. Let Ω
be the unique non-well-founded set such that Ω = {Ω}. The sets {n̄ | n ≥ 0}
and {n̄ | n ≥ 0} ∪ Ω are distinct, but distance 0 apart (Fig. 1). Nevertheless, it
is possible to relate this map to the coalgebraic structure of V .

The map d defines a pseudometric topology with basic open neighborhoods
{t | d(s, t) < ε} for each set s and ε > 0, but because d is only a pseudometric,
the topology does not have nice separation properties. However, if we define
s ≈ t

def⇐⇒ d(s, t) = 0, then d is well-defined on ≈-equivalence classes and is a
metric on the quotient space.

Applications of Metric Coinduction 339

�������

����
�

�
�

�

����

������

����������� � � � � � �

� � � � � �

� � � � �

� � � �

� � �

� �

�

�

��

��· · ·

. . .
{n̄ | n ≥ 0} ∪ Ω

�������

����
�

�
�

�

����

������� � � � � � �

� � � � � �

� � � � �

� � � �

� � �

� �

�

· · ·

. . .
{n̄ | n ≥ 0}

Fig. 1. Distinct sets of distance 0

More interestingly, we can identify a natural class of canonical elements, one in
each ≈-class, such that d, restricted to canonical elements, is a metric; moreover,
the canonical elements are a maximal class for which this is true. Thus the
quotient space is isometric to the subspace of canonical elements. The canonical
elements include all the hereditarily finite sets.

The canonical elements are defined as the images of the function F : V → V ,
defined coinductively as follows:

F (s) def= {F (u) | u ∈ cl(s)}, (7)

where cl denotes closure in the pseudometric topology. The equation (7) deter-
mines F uniquely, as with (6). A set s is called canonical if s = F (t) for some t;
equivalently, by Corollary 1(ii) below, if s is a fixpoint of F .

Lemma 6. d(s, t) = 0 iff cl(s) = cl(t).

Theorem 1

(i) If d(s, t) = 0, then F (s) = F (t).
(ii) For all s, d(s, F (s)) = 0; that is, s ≈ F (s).

Corollary 1

(i) d(s, t) = 0 iff F (s) = F (t).
(ii) For all s, F (F (s)) = F (s).
(iii) Every ≈-equivalence class contains exactly one canonical set, and d re-

stricted to canonical sets is a metric. Moreover, the canonical sets are a
maximal class for which this is true.

6.4 Hereditarily Finite Sets Are Canonical

Let ϕ be a property of sets. We define a set to be hereditarily ϕ (Hϕ) if it
has an APG representation in which every node represents a set satisfying ϕ.
Equivalently, Hϕ is the largest solution of

Hϕ(s) def⇐⇒ ϕ(s) ∧ ∀u ∈ s Hϕ(u).

340 D. Kozen and N. Ruozzi

�

�

�

�
��

�
��

�
��

�
��

�
��

�
��

0̄

1̄

2̄ · · ·
Fig. 2. f(0)

The hereditarily finite (HF) sets are those pos-
sessing an APG representation in which every node
has finite out-degree (not necessarily bounded).
Note that this differs from Aczel’s definition [11,
p. 7]. Aczel defines a set to be hereditarily finite if
it has a finite APG, which is a much stronger con-
dition. Aczel’s definition and ours coincide for well-
founded sets by König’s lemma, but not for non-
well-founded sets in general. For example, the set
f(0), where f is defined coinductively by f(n) = {n̄, f(n+1)} (Fig. 2), is hered-
itarily finite in our sense but not Aczel’s. We would prefer the term regular or
rational for sets that are hereditarily finite in Aczel’s sense, since they are exactly
the sets that have a regular or rational tree representation [13].

A set is hereditarily closed (HC) if it has an APG representation in which
every node represents a closed set in the pseudometric topology. Recall that a
set is singular if it forms a singleton ≈-class.

Theorem 2. A set is hereditarily closed if and only if it is closed and all its
elements are singular.

Theorem 3. A set is singular if and only if it is hereditarily finite.

Theorem 4. Every hereditarily finite set is heretarily closed, and every heredi-
tarily closed set is canonical. Both implications are strict.

7 Conclusions and Future Work

We have illustrated the use of the metric coinduction principle in four areas: in-
finite streams, Markov chains, Markov decision processes, and non-well-founded
sets. In all these areas, metric coinduction can be used to simplify proofs or
derive new insights.

Other areas are likely to be amenable to such techniques. In particular, iter-
ated function systems seem to be a promising candidate.

Acknowledgements

Thanks to Lars Backstrom and Prakash Panangaden for valuable comments.
This work was supported by NSF grant CCF-0635028. Any views and conclu-
sions expressed herein are those of the authors and should not be interpreted as
representing the official policies or endorsements of the National Science Foun-
dation or the United States government.

References

1. Rutten, J.: Universal coalgebra: A theory of systems. Theor. Comput. Sci. 249,
3–80 (2000)

2. Fiore, M.P.: A coinduction principle for recursive data types based on bisimulation.
In: Proc. 8th Conf. Logic in Computer Science (LICS’93), pp. 110–119 (1993)

Applications of Metric Coinduction 341

3. Kozen, D.: Coinductive proof principles for stochastic processes. In: Alur, R. (ed.)
Proc. 21st Symp. Logic in Computer Science (LICS’06), pp. 359–366. IEEE Com-
puter Society Press, Los Alamitos (2006)

4. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1.
Wiley, Chichester (1950)

5. Häggström, O.: Finite Markov Chains and Algorithmic Applications. Cambridge
University Press, Cambridge (2002)

6. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

7. Brémaud, P.: Markov Chains, Gibbs Fields, Monte Carlo Simulation and Queues.
Texts in Applied Mathematics. Springer, Heidelberg (1999)

8. Minc, H.: Nonnegative Matrices. John Wiley, Chichester (1988)
9. Dunford, N., Schwartz, J.T.: Linear Operators: Part I: General Theory. John Wiley,

Chichester (1957)
10. Denardo, E.V.: Contraction mappings in the theory underlying dynamic program-

ming. SIAM Review 9(2), 165–177 (1967)
11. Aczel, P.: Non-Well-Founded Sets. CSLI Lecture Notes, vol. 14. Stanford University

(1988)
12. Barwise, J., Moss, L.: Vicious Circles: On the Mathematics of Non-Wellfounded

Phenomena. CSLI Lecture Notes, vol. 60. Center for the Study of Language and
Information (CSLI), Stanford University (1996)

13. Courcelle, B.: Fundamental properties of infinite trees. Theor. Comput. Sci. 25,
95–169 (1983)

14. Isaacson, D., Madsen, R.: Markov Chains: Theory and Applications. John Wiley
and Sons, Chichester (1976)

The Goldblatt-Thomason Theorem for

Coalgebras

Alexander Kurz1,� and Jǐŕı Rosický2,��

1 University of Leicester, UK
2 Masaryk University, Brno, Czech Republic

Abstract. Goldblatt and Thomason’s theorem on modally definable
classes of Kripke frames and Venema’s theorem on modally definable
classes of Kripke models are generalised to coalgebras.

1 Introduction

The Goldblatt-Thomason theorem [11] states that a class of Kripke frames closed
under ultrafilter extensions is modally definable if and only if it reflects ultrafilter
extensions and is closed under generated subframes, homomorphic images and
disjoint unions. The proof is based on the duality between Boolean algebras and
sets

BA
Σ

�� Setop
Π��

(1)

where Π is powerset and Σ assigns to a BA the set of ultrafilters. Σ is left-adjoint
to Π but, of course, this adjunction does not form a dual equivalence. The price
we have to pay for this is that going from Set to BA and back leaves us with
ΣΠX : If X is the carrier of a Kripke frame, then its ultrafilter extension has
carrier ΣΠX , which explains why ultrafilter extensions appear in the theorem.

Our generalisation from Kripke frames to T -coalgebras works as follows. Set
and BA are completions (with filtered colimits) of the categories Setω of finite
sets and BAω of finite Boolean algebras, respectively. BAω and Setω are dually
equivalent. Now, given a functor T on Set that preserves finite sets, we can
restrict T to Setω. Via the dual equivalence BAω � Setopω , this gives us a functor
on BAω, which we can then lift to a functor L : BA → BA.

BAL

��

Σ

�� Setop
Π

��
T

��

BAω

��

�� Setopω

��

��

(2)

� Partially supported by EPSRC EP/C014014/1.
�� Supported by the Ministry of Education of the Czech Republic under the project

1M0545.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 342–355, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Goldblatt-Thomason Theorem for Coalgebras 343

[17] showed the following: (i) L has a presentation and therefore determines
a logic for T -coalgebras, (ii) Π extends to a functor Coalg(T) → Alg(L), (iii)
if T weakly preserves cofiltered limits, then Σ extends to a map on objects
Alg(L) → Coalg(T). This note shows that the classical Goldblatt-Thomason
theorem generalises to those T -coalgebras where Σ : BA → Set can be extended
to a functor Alg(L) → Coalg(T).

Alg(L)
Σ

		 Coalg(T)op
Π

�� (3)

The same argument also generalises a similar definability result for Kripke mod-
els due to Venema [22].

Related Work. An algebraic semantics for logics for coalgebras and its inves-
tigation via the adjunction between BA and Set has been given in Jacobs [13].
The idea that a logic for T -coalgebras is a functor L on BA appears in [5,15] and
can be traced back to Abramsky [1,2] and Ghilardi [10]. It has been further de-
veloped in [6,16]. The general picture underlying diagram (2) has been discussed
in Lawvere [19] where it is attributed to Isbell. The implications of this Isbell-
conjugacy for logics for coalgebras are explained in [17]. For topological spaces,
which can be seen as particular coalgebras, the Goldblatt-Thomason theorem is
due to Gabelaia [9] and ten Cate et al [7].

2 Coalgebras and Their Logics

Definition 2.1. The category Coalg(T) of coalgebras for a functor T on a cat-
egory X has as objects arrows ξ : X → TX in X and morphisms f : (X, ξ) →
(X ′, ξ′) are arrows f : X → X ′ such that Tf ◦ ξ = ξ′ ◦ f .

Examples of functors of interest to us in this paper are described by

Definition 2.2 (gKPF). A generalised Kripke polynomial functor (gKPF)
T : Set → Set is built according to

T ::= Id | KC | T + T | T × T | T ◦ T | P | H

where Id is the identity functor, KC is the constant functor that maps all sets
to a finite set C, P is covariant powerset and H is 22−

.

Remark 2.3. The term ‘Kripke polynomial functor’ was coined in Rößiger [20].
We add the functor H. H-coalgebras are known as neighbourhood frames in
modal logic and are investigated, from a coalgebraic point of view, in Hansen
and Kupke [12].

We describe logics for coalgebras by functors L on the category BA of Boolean
algebras. Although this approach differs conceptually from Jacobs’s [13], the
equations appearing in the example below are the same as his.

344 A. Kurz and J. Rosický

Example 2.4. We describe functors L : BA → BA or L : BA × BA → BA by
generators and relations as follows.

1. LKC (A) is the free BA given by generators c ∈ C and satisfying c1 ∧ c2 = ⊥
for all c1 �= c2 and

∨
c∈C c = 	.

2. L+(A1, A2) is generated by [κ1]a1, [κ2]a2, ai ∈ Ai where the [κi] preserve
finite joins and binary meets and satisfy [κ1]a1 ∧ [κ2]a2 = ⊥, [κ1]	∨ [κ2]	 =
	, ¬[κ1]a1 = [κ2]	 ∨ [κ1]¬a1, ¬[κ2]a2 = [κ1]	 ∨ [κ2]¬a2.

3. L×(A1, A2) is generated by [π1]a1, [π2]a2, ai ∈ Ai where [πi] preserve Boolean
operations.

4. LP(A) is generated by �a, a ∈ A, and � preserves finite meets.
5. LH(A) is generated by �a, a ∈ A (no equations).

Informally, the equations in the 2nd item are justified as follows. Take A1, A2
to be the collections of subsets of two sets X1, X2, take [κi]ai to be the direct
image of the injection κi : Xi → X1 +X2 and describe how the [κi] interact with
the Boolean operations, interpreting ∧ as ∩, etc.

More formally, we recall that sets and Boolean algebras are related by two
functors

BA
Σ

�� Setop
Π��

(4)

where Π maps a set to its powerset and Σ a Boolean algebra to the set of its
ultrafilters. On arrows, both functors are given by inverse image.

The justification for the presentations is now given, in essence, by the fol-
lowing isomorphisms. For Boolean algebras A, A1, A2, we have LKC (A) ∼= ΠC;
L+(A1, A2) ∼= A1 × A2; L×(A1, A2) ∼= A1 + A2. For finite sets X , we have
LP(ΠX) ∼= ΠPX ; LH(ΠX) ∼= ΠHX . We will make this more precise in Defi-
nition 2.6 and Proposition 2.8.

Definition 2.5 (LT). For each gKPF (see Definition 2.2) T : Set → Set we
define LT by the corresponding constructions of Example 2.4.

Example 2.4 illustrates how (a presentation of) a functor on BA describes the
syntax and proof system of a modal logic. The semantics is given by a natural
transformation

LΠX
δX

 ΠTX, (5)

since this is exactly what is needed to define the extension [[−]] of formulas via the
unique morphism from the initial L-algebra LI → I. In detail, given a coalgebra
(X, ξ) we let [[−]] be as in

I

[[−]]
��

LI��

L[[−]]
��

ΠX ΠTX
Πξ

�� LΠX
δX

��

(6)

In our examples, for gKPFs T , we define δT : LT Π → ΠT as follows.

The Goldblatt-Thomason Theorem for Coalgebras 345

Definition 2.6 (δT). We define Boolean algebra morphisms

1. LKC ΠX → ΠC by c → {c},
2. L+(ΠX1, ΠX2) → Π(X1 + X2) by [κi]ai → ai,
3. L×(ΠX, ΠY) → Π(X1 × X2) by [π1]a1 → a1 × X2, [π2]a2 → X1 × a2,
4. LPΠX → ΠPX by �a → {b ⊆ X | b ⊆ a},
5. LHΠX → ΠHX by �a → {s ∈ HX | a ∈ s}.

and extend them inductively to δT : LT Π → ΠT for all gKPF T .

The definition exploits that BA-morphisms are determined by their action on
the generators.

Example 2.7. Together with (6), item 4 and 5 of Definition 2.6 give rise to the
Kripke and neighbourhood semantics of modal logic:

– For ξ : X → PX and �ϕ in the initial LP-algebra, we have [[�ϕ]] = {x ∈
X | ξ(x) ⊆ [[ϕ]]};

– For ξ : X → HX and �ϕ in the initial LH-algebra, we have [[�ϕ]] = {x ∈
X | [[ϕ]] ∈ ξ(x)}.

The justification for the definition of LT and δT is now given by the following
proposition. It says that (L, δ) completely captures the action of T on finite X ;
and more can hardly be expected from a finitary logic of T .

Proposition 2.8. Let T be a gKPF. Then (δT)X : LT ΠX → ΠTX is an
isomorphism for all finite sets X.

Proof. For finite X , (δT)X : LT ΠX → ΠTX is an isomorphism in all of the 5
cases of Definition 2.6. The result then follows by induction, using that all the
functors involved restrict to finite sets and finite BAs. ��

The property of Proposition 2.8, namely

LΠX ∼= ΠTX for all finite sets X, (7)

or, equivalently, LA ∼= ΠTΣA for finite A, is of central importance as it sets up
the relationship between the logic (=functors L given by a presentation) and the
semantics (=functor T). (7) can be read in two different ways: If the logic (ie L
and LΠ → ΠT) is given, then (7) is a requirement; on the other hand, given
T , we can take (7) also as a definition of L (up to isomorphism) and look for a
presentation of L, which then gives us a syntax and proof system of a logic for
T -coalgebras.1

To summarise, we might say the whole point of the paper is to show that,
once we presented a functor L satisfying (7), everything else flows from this:
syntax and proof system are determined by the presentation and the semantics
is determined by (7). This also means that the approach presented in the next
section is not restricted to gKPFs.
1 For a general definition of ‘presentation of a functor’ and how presentations give rise

to logics see [6]. Further investigations can be found in [17] showing, for example,
that an endofunctor on BA has a finitary presentation iff it preserves filtered colimits.

346 A. Kurz and J. Rosický

3 The Goldblatt-Thomason Theorem for Coalgebras

To clarify the relationship between L-algebras and T -coalgebras in diagram (2),
we review the categorical analysis given in [17], before returning the special case
of Boolean algebras and sets.

3.1 Algebras and Coalgebras on Ind- and Pro-completions

The general picture2 underlying the situation discussed in the introduction is

IndC
Σ

		 (IndCop)op
Π

��

C

ˆ(−)

��

�� Cop

¯(−)

��

��

(8)

where C is a finitely complete and cocomplete category, IndC is the full subcat-
egory of SetC

op
of finite limit preserving functors, ˆ(−) and ¯(−) are the Yoneda

embeddings. It is well-known that, under these assumptions, IndC is the comple-
tion of C with filtered colimits, see eg [14, Chapter VI]. Dually,

ProC def= (IndCop)op

is the completion of C with cofiltered limits. Furthermore, we let Σ be the left
Kan-extension of ¯(−) along ˆ(−), and Π the right Kan-extension of ˆ(−) along
¯(−) (in particular, ΣĈ ∼= C̄, ΠC̄ ∼= Ĉ). Σ is left adjoint to Π .

Example 3.1. 1. C = BAω (finiteBoolean algebras=finitely presentableBoolean
algebras), IndC = BA, ProC = Setop. ΣA is the set of ultrafilters over A and Π
is (contravariant) powerset.

2. C = DLω (finite distributive lattices = finitely presentable distributive lat-
tices), IndC = DL, ProC = Posetop. ΣA is the set of prime filters over A and
Π gives the set of upsets.

3. In fact, (8) can be instantiated with any locally finite variety for IndC. (A
variety is locally finite if finitely generated free algebras are finite.)

We are interested in coalgebras over (IndCop), ie, algebras over ProC =
(IndCop)op. Consider

IndCL

��

Σ

�� ProC
Π

��
T

(9)

where we assume that L and T agree on C, that is,

LΠC̄ ∼= LĈ ∼= ΠTC̄ ΣLĈ ∼= T C̄ ∼= TΣĈ (10)
2 Actually, the general picture is even more general, see Lawvere [19, Section 7], an

interesting special case of which is investigated in [18,21].

The Goldblatt-Thomason Theorem for Coalgebras 347

Example 3.2. For IndC = BA and ProC = Setop, the gKPF T and the L = LT

satisfy (10) by Proposition 2.8.

Remark 3.3. We will usually denote by the same symbol a functor and its dual,
writing eg T : K → K and T : Kop → Kop.

In order to lift Π and Σ to algebras, we extend the natural isomorphisms (10)
from C to IndC and ProC, respectively. As a result of the procedure below, the
lifted LΠ → ΠT and TΣ → ΣL will in general not be isomorphisms, the second
may even fail to be natural.

The natural transformation δ : LΠ → ΠT . ΠX is a filtered colimit
Ĉi → ΠX . If L preserves filtered colimits we therefore obtain LΠ → ΠT as in

ΠX LΠX
δX

 ΠTX

Ĉi

ci

��

LĈi

Lci

��

=

 ΠTΣĈi

ΠTc�
i

�� (11)

where c�
i : ΣĈi → X is the transpose of ci : Ĉi → ΠX . δ allows us to lift Π to

a functor

Alg(L) Coalg(T)op
Π̃

�� (12)

mapping a T -algebra (X, ξ) to the L-algebra (ΠX, ξ ◦ δX).

Example 3.4. For IndC = BA, ProC = Setop, and T being one of P or H, δ has
been given explicitly in Definition 2.6.

The transformation h : TΣ → ΣL. We will need that there exists h such
that the following diagram commutes in ProC (where the dk are the filtered
colimit approximating A).

A TΣA
hA

 ΣLA

Âk

dk

��

TΣÂk

��

=

 ΣLÂk

�� (13)

Remark 3.5. A sufficient condition for the existence of h is that T weakly pre-
serves filtered colimits in ProC, or, equivalently, weakly preserves cofiltered limits
in (ProC)op. If T preserves these limits (non weakly) then h is natural.

Example 3.6. For gKPFs excluding H, the maps h have been described by Ja-
cobs [13, Definition 5.1]. We detail the definitions of the following to cases.

1. hA : ΣLPA → PΣA maps v ∈ ΣLPA to {u ∈ ΣA | �a ∈ v ⇒ a ∈ u}.
2. hA : ΣLHA → HΣA maps v ∈ ΣLHA to {â ∈ 2ΣA | �a ∈ v}.

348 A. Kurz and J. Rosický

Remark 3.7. There is a systematic way of calculating h from δ. For A ∈ C,
denoting the unit and counit of the adjunction Σ � Π by η and ε, hA is given
in (ProC)op (thinking of Set) by

ΣLA
(ΣLηA)◦

−→ ΣLΠΣA
(ΣδΣA)◦

−→ ΣΠTΣA
(εT ΣA)◦

−→ TΣA (14)

Here we use that the arrows above are isos and we can take their inverse, denoted
by ◦. The calculations showing that Example 3.6 derives directly from (14) are
detailed3 in the appendix.

In general, hA is not uniquely determined by (13) and we cannot assume it to
be natural. Nevertheless, in the cases we are aware of h is natural.

Proposition 3.8. For gKPFs T , the map

h : ΣLT → TΣ

in Set is natural.

Proof. The type constructors KC , +, × preserve cofiltered limits, hence the cor-
responding map h defined by (13) is uniquely determined and therefore natural.
In the other two cases, T = P and T = H, we take Example 3.6 as the definition
of h and verify that it is natural and satisfies (13). We detail this for T = H.
Note first that hA : ΣLA → HΣA is νΣA ◦ in−1

A where inA is the insertion of
generators A → LA, a → �a, and νX : X → HX maps x to {a ⊆ X | x ∈ a}.
Now both the commutativity of (13) and the naturality of h follow from natu-
rality of in and ν. ��

To finish the category theoretic part of our development, we note that h allows
us to lift Σ to

Alg(L)
Σ̃

		 Coalg(T)op (15)

via (LA → A) → (ΣA → ΣLA → TΣA). If h is natural, then this map is a
functor.

3.2 The Goldblatt-Thomason Theorem for Coalgebras

We used the general categorical framework to clarify the relationship between
the functors T and L. We will now return to the special case discussed in the
introduction. In particular, IndC = BA and IndCop = Set; Π : Set → BA maps
X to 2X and Σ : BA → Set maps a Boolean algebra A to the set of ultrafilters
over A.

We say that a functor T : Set → Set preserves finite sets if T maps finite sets
to finite sets.
3 We hope these calculations show that isomorphisms do work. This balances Conor

McBride’s view, from a programming perspective, that isomorphisms cost.

The Goldblatt-Thomason Theorem for Coalgebras 349

Definition 3.9 (modal logic of a functor). The modal logic of a functor
T : Set → Set is the pair (L, δ : LΠ → ΠT) where L = ΠTΣ on finite Boolean
algebras and L is continuously extended to all of BA. δ is then given as in (11).

Remark 3.10. 1. The definition of L does not require T to preserve finite sets.
This condition, which implies the right-hand side of (10), is needed for h in
(13).

2. For gKPFs T , the modal logic corresponding to (L, δ) has been described
explicitly in Example 2.4. But we know from [17] that any L : BA → BA
arising from Definition 3.9 has such a presentation by modal operators and
axioms.

The notion of a modal theory now arises from the initial, or free, L-algebra, see
diagram (6).

Definition 3.11 (modal theory). Consider a functor T : Set → Set with its
associated modal logic (L, δ) and a T -coalgebra (X, ξ).

1. Let I be the initial L-algebra and [[−]] : I → Π(X, ξ) be the unique morphism.
Then the variable-free modal theory of (X, ξ) is {ϕ ∈ I | [[ϕ]] = X}.

2. Let IP be the free L-algebra over the free Boolean algebra generated by a
countable set P of propositional variables. Let [[−]]v : IP → Π(X, ξ) be the
unique morphism extending a valuation v : P → ΠX of the propositional
variables. Then the modal theory of (X, ξ) is {ϕ ∈ IP | [[ϕ]]v = X for all v :
P → ΠX}.

Thenext propositionprovides the firstmain ingredient to theGoldblatt-Thomason
theorem, namely that modally definable classes ‘reflect’ ultrafilter extensions. In
case of variable-free theories, definable classes are also closed under ultrafilter ex-
tensions.

Proposition 3.12. Let T : Set → Set preserve finite sets and assume that h as
in (13) exists. Then

1. (X, ξ) and ΣΠ(X, ξ) have the same variable-free modal theory,
2. (X, ξ) satisfies the modal theory of ΣΠ(X, ξ).

Proof. (1): By construction of the logic from L, a formula ϕ is an element of the
initial L-algebra and (X, ξ) |= ϕ iff the unique morphism [[−]] from the initial
L-algebra to Π(X, ξ) maps ϕ to X ∈ Π(X, ξ) = 2X . Therefore4, to show that
(X, ξ) |= ϕ ⇔ Π(X, ξ) |= ϕ, it suffices to establish that the map ι : Π(X, ξ) →
ΠΣΠ(Xξ) is an injective algebra morphism. This follows from (the proof of)
Theorem 5.3 in [17] and Stone’s representation theorem for Boolean algebras.
(2): Suppose there is a valuation v showing that ϕ does not hold in (X, ξ), that
is, [[ϕ]]v �= X . Then ι ◦ [[−]]v(ϕ) �= ΣΠX , that is, there is a valuation showing
that ϕ does not hold in ΣΠ(X, ξ). ��
4 Note that the top-element X of the BA Π(X, ξ) is preserved by algebra morphisms.

350 A. Kurz and J. Rosický

The second main ingredient (of the algebraic proof) of the Goldblatt-
Thomason theorem is Birkhoff’s variety theorem stating that a class of alge-
bras is definable by equations iff it is closed under homomorphic images (H),
subalgebras (S), and products (P). A set of equations is called ground if it does
not contain any variables. This corresponds to the absence of propositional vari-
ables in a modal theory, or, in other words, to treating Kripke models instead
of Kripke frames. The lesser expressivity of ground equations is reflected alge-
braically by also closing under embeddings (E). Closure under H , S, P (and E)
is equivalent to closure under HSP (EHSP).

Theorem 3.13 (Birkhoff’s variety theorem). A class of algebras is defin-
able by a set of

1. ground equations iff it is closed under EHSP ,
2. equations iff it is closed under HSP .

Proof. We sketch the proof of the less well-known 1st statement. It is routine to
check that a definable class of algebras enjoys the required closure properties.
Conversely, let K be a class of algebras closed under EHSP and let Φ be the
ground theory of K. Consider an algebra A with A |= Φ. We have to show that
A ∈ K. Since K is closed under SP , the quotient Q = I/Φ of the initial algebra I
by Φ is in K. A |= Φ then means that there is a morphism Q → A, hence A ∈ K
by closure under EH .

The dual of closure under S and E is closure under quotients and domains of
quotients. This is equivalent to closure under ‘co-spans’ (X, ξ) � • � (X ′, ξ′),
or bisimilarity:

Definition 3.14 (bisimilarity). Two coalgebras (X, ξ), (X ′, ξ′) are bisimilar
if there are surjective coalgebra morphisms (X, ξ) � • � (X ′, ξ′).

We can now generalise to coalgebras the Goldblatt-Thomason theorem [11] for
Kripke frames and Venema’s corresponding result for Kripke models [22]. For
a textbook account of the former see [3,4]. [4, Theorem 5.54] gives an excellent
account of the algebraic proof that we generalise, [4, Theorem 3.19] presents
an alternative model theoretic proof, and [4, Theorem 2.75] gives a version for
pointed Kripke models.

We say that a class K of coalgebras is closed under ultrafilter extensions if
(X, ξ) ∈ K ⇒ ΣΠ(X, ξ) ∈ K and that it reflects ultrafilter extensions if
ΣΠ(X, ξ) ∈ K ⇒ (X, ξ) ∈ K.

The first part of the theorem below is the definability result for coalgebras
as generalisations of Kripke models, the second part treats definability for coal-
gebras as generalisations of Kripke frames. The difference in the formulation,
apart from replacing closure under bisimilarity by closure under quotients, is
due to the fact that all modally definable classes of Kripke models but not all
modally definable classes of Kripke frames are closed under ultrafilter extensions
(compare the two items of Proposition 3.12).

The Goldblatt-Thomason Theorem for Coalgebras 351

Theorem 3.15. Let T : Set → Set preserve finite sets and assume there is a
natural transformation h satisfying (13).

1. A class K ⊆ Coalg(T) is definable by a variable-free modal theory iff K is
closed under subcoalgebras, bisimilarity, coproducts and ultrafilter extensions
and K reflects ultrafilter extensions.

2. A class K ⊆ Coalg(T) closed under ultrafilter extensions is definable by a
modal theory iff K is closed under subcoalgebras, quotients and coproducts
and K reflects ultrafilter extensions.

Proof. (1): For ‘if’ let X be a coalgebra that is a model of the theory of K,
that is, by Theorem 3.13.1, ΠX ∈ EHSP (ΠK) where ΠK = {ΠY | Y ∈ K}.
We have to show X ∈ K. ΠX embeds a quotient of a subalgebra of a product∏

i Π(Xi), Xi ∈ K. Since Π is right adjoint, we obtain
∏

i Π(Xi) ∼= Π(
∐

i Xi).
Since Σ maps injective maps to surjective maps and vice versa, we have

ΣΠX � • ↪→ • � ΣΠ(
∐

Xi).

The stipulated closure properties now imply X ∈ K. For ‘only if’, using that
ground equationally definable classes of algebras are closed under EHSP , it is
enough to observe (i) that Π maps surjective maps to injective maps and vice
versa, (ii) that Π maps coproducts to products, (iii) Proposition 3.12.1.
(2): The proof is a straightforward variation of the previous one. For ‘if’ let X
be a coalgebra that is a model of the theory of K, that is, by Theorem 3.13.2,
ΠX ∈ HSP (ΠK) where ΠK = {ΠY | Y ∈ K}. We have to show X ∈ K. ΠX
is a quotient of a subalgebra of a product

∏
i Π(Xi), Xi ∈ K. We have

ΣΠX ↪→ • � ΣΠ(
∐

Xi).

The stipulated closure properties now imply X ∈ K. For ‘only if’, we use (i) and
(ii) as in part 1 and (iii) Proposition 3.12.2. ��

Before deriving our main result as a corollary, let us analyse the hypotheses
needed for Theorem 3.15 in terms of the general setting discussed in Section 3.1.

Remark 3.16. The following ingredients are used in the proof of Theorem 3.15.

1. C in diagram (8) has all finite limits and finite colimits. This is a strong
requirement. But it holds if IndC is a locally finite variety and C is the
subcategory of finitely presentable algebras. This includes BA and DL.

2. A → ΣΠA is injective. This is unlikely to hold in the generality of dia-
gram (8) but it seems to be a rather mild requirement: For example, it holds
for (subvarieties of) BA and DL.

3. T preserves finite sets (or, more generally, T restricts to Cop). This is needed
in diagram 13. It excludes polynomial functors with infinite constants and the
probability distribution functor. For a further discussion and the connection
with strong completeness see [17].

352 A. Kurz and J. Rosický

4. h exists and is natural. The status of this requirement remains somewhat
unclear. As emphasised by the corollary, it is satisfied in important examples.
Let us note here that h is certainly natural if T preserves cofiltered limits.
This is the case for all polynomial functors. The example we are aware of
where the existence of h fails, is if T is the finite powerset functor (the
ultrafilter extension of a Kripke frame is not finitely branching).

The main result of the paper is the following corollary. The second part gen-
eralises the Goldblatt-Thomason theorem from Kripke frames to all gKPF-
coalgebras and the first part generalises Venema’s definability theorem for Kripke
models to all gKPF-coalgebras.

Corollary 3.17. Let T be a gKPF.
1. A class K ⊆ Coalg(T) is definable by a variable-free modal theory iff K is

closed under subcoalgebras, bisimilarity, coproducts and ultrafilter extensions
and K reflects ultrafilter extensions.

2. A class K ⊆ Coalg(T) closed under ultrafilter extensions is definable by a
modal theory iff K is closed under subcoalgebras, quotients and coproducts
and K reflects ultrafilter extensions.

Remark 3.18. 1. As far as we know, the special case of H-coalgebras (neigh-
bourhood frames) is a new result.

2. In the statement of the theorem, we can replace “Coalg(T)” by a modally
definable full subcategory of Coalg(T). For example, the theorem holds for
monotone neighbourhood frames or topological neighbourhood frames. For
topological spaces, the result is due to Gabelaia [9, Theorem 2.3.4], but see
also ten Cate et al [7].

The original formulation of Venema’s theorem [22] has closure under surjective
bisimulations instead of closure under subcoalgebras and bisimilarity. The rela-
tionship between the two formulations is as follows. For functors T that preserve
weak pullbacks, one can use ‘spans’ (X, ξ) � • � (X ′, ξ′) in the definition of
bisimilarity instead of co-spans (X, ξ) � • � (X ′, ξ′) as above. Closure under
subcoalgebras (or generated submodels in the parlance of [22]) is incorporated
in the notion of surjective bisimulation by not forcing the left-hand projection
of the span to be surjective: A class K is closed under surjective bisimulations iff
for all (X, ξ) ∈ K and all (X, ξ) ← • � (X ′, ξ′) also (X ′, ξ′) ∈ K. Since H is the
only ingredient of a gKPF that does not preserve weak pullbacks, we obtain the
following generalisation of Venema’s definability theorem for Kripke models.

Corollary 3.19. Let T be a KPF (ie a gKPF built without using H). A class
K ⊆ Coalg(T) is definable by a variable-free modal theory iff K is closed under
coproducts and surjective bisimulations and K reflects ultrafilter extensions.

4 Conclusion

The basic idea underlying this (and previous) work is to consider the logics for
coalgebras as functors L on a category of propositional logics such as BA. Let
us summarise some features of this approach.

The Goldblatt-Thomason Theorem for Coalgebras 353

– The functor L packages up all the information about modal operators and
their axioms. In this way the functor L acts as an interface to the syntax,
which is given by a presentation of L.

– As long as we only use abstract properties of L, such as (7), we can prove
theorems about modal logics in a syntax free way, see Corollary 3.17 or the
Jónsson-Tarski theorem [17, Thm 5.3] for examples. This gives rise not only
to simpler proofs, but also to more general results.

– If we instantiate our abstract categories and functors with concrete presen-
tations, we not only get back all the riches of syntax, but find that the cat-
egorical constructions actually do work for us. For example, in diagram (8),
if we let C = BAω and Cop = Setω, then the fact that Π is contravari-
ant powerset and Σ is ultrafilters, follows from the end/coend formula for
right/left Kan extensions. Another example of this phenomenon is detailed
in the appendix.

Another point is that the generality of our approach suggests further work. Let
us mention the following:

– It is possible to replace Boolean algebras by distributive lattices. It could be
of interest to look at the details.

– It should be possible to alleviate the restriction to finite constants insofar as
infinite ‘input’ constants C as in T KC can be allowed. But the restriction to
finite ‘output’ sets is important, see Friggens and Goldblatt [8] for a detailed
discussion.

– Is it possible to generalise definability results for pointed models or frames
in the same framework?

– It should be of interest to instantiate IndC in diagram (8) with other locally
finite varieties.

– Diagram (8) can also be varied in many directions, for example, considering
other completions than Ind or going to an enriched setting (for example, for
posets (ie enrichment over 2) the Galois closed subsets of the adjunction
Σ � Π describe the elements of the MacNeille completion of C).

Finally, and from the point of view of logics for coalgebras, most importantly:
Can we find a similarly nice and abstract account for functors T that do not
preserve finite sets?

Acknowledgements. Our greatest debts are to David Gabelaia whose sharp
eye allowed us to correct a serious mistake in the statement of our main theorem.
He also suggested numerous other improvements and made us aware of Venema’s
paper on definability for Kripke models [22]. The first author would like to
thank Dmitry Sustretov for the discussions during ESSLLI 2006 in Malaga, which
prompted the writing of this paper; and Neil Ghani for relating Conor McBride’s
statement about isomorphisms, see footnote 3. We are also grateful to the referees
for their suggestions.

354 A. Kurz and J. Rosický

References

1. Abramsky, S.: Domain theory in logical form. Annals of Pure and Applied Logic 51
(1991)

2. Abramsky, S.: A Cook’s tour of the finitary non-well-founded sets. In: We Will Show
Them: Essays in Honour of Dov Gabbay. College Publications, 2005. Presented at
BCTCS (1988)

3. van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis (1983)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. CUP (2001)

5. Bonsangue, M., Kurz, A.: Duality for logics of transition systems. In: Sassone, V.
(ed.) FOSSACS 2005. LNCS, vol. 3441, Springer, Heidelberg (2005)

6. Bonsangue, M., Kurz, A.: Presenting functors by operations and equations. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS,
vol. 3921, Springer, Heidelberg (2006)

7. ten Cate, B., Gabelaia, D., Sustretov, D.: Modal languages for topology: expres-
sivity and definability. arXiv 0610357 (2006)

8. Friggens, D., Goldblatt, R.: A modal proof theory for final polynomial coalgebras.
Theoret. Comput. Sci. 360 (2006)

9. Gabelaia, D.: Modal definability in topology. Master’s thesis, University of Ams-
terdam (2001)

10. Ghilardi, S.: An algebraic theory of normal forms. Ann. Pure Appl. Logic, 71 (1995)

11. Goldblatt, R.I., Thomason, S.K.: Axiomatic classes in propositional modal logic.
In: Algebra and Logic (1974)

12. Hansen, H., Kupke, C.: A coalgebraic perspective on monotone modal logic. In:
CMCS’04. ENTCS, vol. 106 (2004)

13. Jacobs, B.: Many-sorted coalgebraic modal logic: a model-theoretic study. Theor.
Inform. Appl. 35 (2001)

14. Johnstone, P.: Stone Spaces. Cambridge University Press, Cambridge (1982)

15. Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics. In:
CMCS’04. ENTCS, vol. 106 (2004)

16. Kupke, C., Kurz, A., Pattinson, D.: Ultrafilter extensions of coalgebras. In: Fi-
adeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS,
vol. 3629, Springer, Heidelberg (2005)

17. Kurz, A., Rosick ý, J.: Strongly complete logics for coalgebras (July 2006) Submit-
ted

18. Lawvere, F.: Metric spaces, generalized logic and closed categories. Rendiconti del
Seminario Matematico e Fisico di Milano, XLIII, Also appeared as TAC reprints
No. 1 (1973)

19. Lawvere, F.: Taking categories seriously. Revista Colombiana de Matemáticas XX
(1986) Also appeared as TAC reprints No. 8.

20. Rößiger, M.: Coalgebras and modal logic. In: CMCS’00. ENTCS, vol. 33 (2000)

21. Rutten, J.: Weighted colimits and formal balls in generalized metric spaces. Topol-
ogy and its Applications 89 (1998)

22. Venema, Y.: Model definability, purely modal. In: JFAK. Essays Dedicated to Jo-
han van Benthem on the Occasion of his 50th Birthday, Amsterdam University
Press (1999)

The Goldblatt-Thomason Theorem for Coalgebras 355

A Appendix

We show that the h in Example 3.6 are derived from (14). To this end we first
state a lemma on ultrafilters, which is a straightforward consequence of the
respective definitions.

Notation. η : Id → ΠΣ and ε : Id → ΣΠ are the (co)unit of the adjunction
Σ � Π (note that we wrote ε here as an arrow in Set and not in Setop). f◦

denotes the converse of a bijection f . For a ∈ A we abbreviate η(a) = {u ∈
ΠΣA | a ∈ u} by â. The complement X \ S of a subset S of X is written as
−S.

Lemma A.1. Let A be a finite BA, Y a finite set and L one of LP , LH.

1. Every ultrafilter u ∈ ΣA has a smallest element given by
∧

a∈u a.
2. (εY)◦ : ΣΠY → Y maps u to y, where {y} is the smallest element of u.
3. Every ultrafilter v ∈ ΣLA is determined by the set {�a | a ∈ A, �a ∈ v}.
4. The smallest element of v ∈ ΣLA is given by

∧
�a∈v �a ∧

∧
�a/∈v ¬�a.

Also note that for isos f we have that (Σf)◦ is the direct image map of f . We
obtain for L = LP :

(ΣLηA)◦ maps v to the ultrafilter determined by {�â | �a ∈ v},
(ΣδΣA)◦ maps {�â | �a ∈ v} to {{t ∈ PΣA | t ⊆ â} | �a ∈ v},
(εPΣA)◦ maps the ultrafilter determined by {{t ∈ PΣA | t ⊆ â} | �a ∈ v} to⋂

�a∈v{t ∈ PΣA | t ⊆ â} ∩
⋂

�a/∈v −{t ∈ PΣA | t ⊆ â}.

It is now a straightforward verification to check that this last set contains exactly
one t which is {u ∈ ΣA | �a ∈ v ⇒ a ∈ u}. Hence we obtained the h described
in Example 3.6.1.

For L = LH we have:

(ΣLηA)◦ maps v to the ultrafilter determined by {�â | �a ∈ v},
(ΣδΣA)◦ maps {�â | �a ∈ v} to {{t ∈ HΣA | â ∈ t} | �a ∈ v},
(εHΣA)◦ maps the ultrafilter determined by {{t ∈ HΣA | â ∈ t} | �a ∈ v} to⋂

�a∈v{t ∈ HΣA | â ∈ t} ∩
⋂

�a/∈v −{t ∈ HΣA | â ∈ t}.

It is now a straightforward verification that this last set contains exactly one
t which is {â ∈ 2ΣA | �a ∈ v}. Hence we obtained the h described in Exam-
ple 3.6.2.

Specification-Based Testing for CoCasl’s Modal

Specifications

Delphine Longuet and Marc Aiguier

IBISC CNRS FRE 2873 - University of Évry Val d’Essonne
523 place des terrasses de l’Agora, F-91000 Évry

{delphine.longuet,marc.aiguier}@ibisc.univ-evry.fr

Abstract. Specification-based testing is a particular case of black-box
testing, which consists in deriving test cases from an analysis of a for-
mal specification. We present in this paper an extension of the most
popular and most efficient selection method widely used in the algebraic
framework, called axiom unfolding, to coalgebraic specifications, using
the modal logic provided by the CoCasl specification language.

Keywords: Specification-based testing, axiom unfolding, coalgebraic spec-
ifications, modal logic, CoCasl.

Black-box testing refers to any method used to validate software systems in-
dependently of their implementation. Specification-based testing is a particular
case of black-box testing, which consists of the dynamic verification of a system
with respect to its specification [1,2,3]. The system under test is executed on a
finite subset of its possible input data to check its conformance with respect to
the specification requirements.

The testing process is classically divided into two principal phases:

1. The selection phase where some selection criteria are defined to split test
sets into subsets in order to manage their size.

2. The generation phase where some techniques and tools based on constraint
solving are defined in order to generate some test cases in each test set to be
submitted to the system under test.

In this paper, we are interested in the selection phase. More particularly, we
will extend to CoCasl specifications a very popular and very efficient selec-
tion method, called axiom unfolding, which has extensively been studied in the
framework of algebraic specifications [1,2,3,4,5,6,7,8,9].

CoCasl is a coalgebraic extension of the algebraic specification language
Casl that allows to specify processes as coalgebraic types dealing with data
defined as algebraic types [10]. CoCasl’s modal logic is syntactical sugar to
express properties on such processes, like safety and fairness properties. We then
propose in this paper a selection method for testing dynamic systems specified
with CoCasl’s modal logic.

The usual approach of black-box testing for dynamic systems is conformance
testing [11,12,13,14,15]. In conformance testing, specifications, systems and test

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 356–371, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Specification-Based Testing for CoCasl’s Modal Specifications 357

purposes are classically represented by input output transition systems. Test
cases are then execution traces selected in the specification by using classic tech-
niques from the automata theory such as synchronised product, symbolic eval-
uation, etc. Recently, some selection methods from test purposes expressed as
temporal properties has been investigated (e.g. see [16]). Taking advantage of the
fact that specifications are transition systems, model-checking techniques have
been used to select trace sets. Here, CoCasl specifications are logical theories.
Hence, our selection method, based on axiom unfolding, will be algorithmically
defined by defining a search proof strategy. This strategy will enable one to bound
the search space for proofs to a given class of trees having a specific structure
(see Section 3). However, the aim of the unfolding procedure will not be to find
the entire proof of a test purpose ϕ, but rather to stretch further the execution of
the unfolding procedure in order to make increasingly big proof whose remaining
lemmas will define a “partition” of ϕ. Hence, the procedure will be able to be
stopped at any time when the obtained partition will be fine enough according to
tester’s judgement or needs. Completeness of the unfolding procedure will then
be established by showing that derivability restricted to the unfolding strategy
coincides with the full derivability (i.e. without any specific proof strategy).

The paper is organised as follows. Section 1 briefly presents CoCasl spec-
ification language, especially cotype definition. Then CoCasl’s modal logic is
introduced, and is given a sequent calculus. To set the framework we work within,
Section 2 recalls the relevant definitions from [3] we will use in this paper, such
as exhaustive test set, and selection criteria and their associated properties. We
also prove in this section the important result of the existence of a reference
exhaustive test set, allowing to start the selection procedure with. After having
recalled in Section 3.1 the general notions of test set and constrained test set
from [17], Section 3.2 introduces the unfolding procedure from which is defined a
family of selection criteria for CoCasl’s modal specifications. Selection criteria
thus defined are proved to be sound and complete in Section 3.3.

1 CoCasl’s Modal Logic

CoCasl extends Casl specification language by enriching basic specifications
with dual forms of algebraic constructs used in Casl to define inductive data-
types. The basic dual form is the cotype construct which is used to specify
processes. A cotype declaration defines a coinductive process by declaring se-
lectors, also called observers, and constructors. Unlike in Casl specifications,
constructors here are optional. For example, the two following cotypes can be
declared in CoCasl:

spec Moore =
sorts In, Out
cotype State ::= (next : In → State;

observe : Out)
end

spec List =
sort Nat
cotype List ::= empty |

insert(head :? Nat;
tail :? List)

end

358 D. Longuet and M. Aiguier

The first declaration declares the two observers next : In × State → State and
observe : State → Out . The second similarly declares observers head and tail over
the cotype List, but also constructors empty : List and insert : Nat×List → List ,
where Nat is an imported sort from the local environment. The parts of the
declaration separated by vertical bars are called alternatives. For instance, in
the List specification, alternatives are defined by both constructors empty and
insert. Observers may be unary like observe, or may have additional parameters,
which have to come from the local environment, like next. Both observers and
constructors may be partial. Observers are partial as soon as the cotype is defined
by several alternatives. As cotypes are dual for types, cotype declarations can be
strengthened by declaring a cogenerated cotype to restrict the class of models
to fully abstract ones, or a cofree cotype to restrict models to the terminal one.
For a complete presentation of CoCasl language, the reader may refer to [10].

To express properties on processes declared in CoCasl, a multi-sorted modal
logic has been defined in [10], where modalities are defined from observers used
to describe system evolutions. All the sorts defined in the cotype are called non-
observable, while sorts from the local environment are called observable. The set
of non-observable sorts defines a multi-sorted state space, with observers either
directly producing an observable value, or making the system state evolve.

Actually, the modal logic presented here is both a restriction and an extension
of the one presented in [10]. This is a restriction because we only consider here
quantifier-free formulae. But the logic we present is also an extension because
atomic formulae are not restricted to equations but may involve any predicate.
The restriction to quantifier-free formulae is due to the fact that existentially
quantified formulae are impossible to deal with from a testing point of view. As a
matter of fact, testing a formula of the form ∃x ϕ(x) requires to exhibit a witness
value a such that ϕ(a) is evaluated as “true”by the system under test. Of course,
there is no general way to find out such a relevant value, but to simply prove
that the system satisfies the property. This led us to conclude that existential
properties are not testable [8].

Syntax. A CoCasl signature Σ = (S, F, P, V) consists of a set S of sorts with
a partition Sobs and T of observable and non-observable sorts respectively, a set
F of operation names, each one equipped with an arity in S∗ × S, a set P of
predicate names, each one equipped with an arity in S+ and an S-indexed set
V of variables. For all operations f : s1 × . . . × sn → s in F and all predicates
p : s1 × . . . × sn in P , there exists at most one i, 1 ≤ i ≤ n, such that si ∈ T .
We make a distinction between operations coming from the local environment,
i.e. operations f : s1 × . . . × sn → s with s1, . . . , sn, s ∈ Sobs on the one hand,
and constructors and observers, that are operations f : s1 × . . . × sn × s → s′

with s ∈ T on the other hand. Constructors have a non-observable result sort,
while observers may be with observable result sort s′ ∈ Sobs (they are also
called attributes) or with non-observable result sort s′ ∈ T (these are also called
methods). Constructors and methods are only distinguished from each other
thanks to the cotype declaration: the above List declaration declares empty
and insert as constructors, head as an observer with observable sort, and tail as

Specification-Based Testing for CoCasl’s Modal Specifications 359

an observer with non-observable sort. We call an observer f : s1 × . . . × sn ×
s → s′ observer of cotype s. The set F of operations names is then a partition
F = Fobs � FΩ � (Fs)s∈T where Fobs is the set of operations from the local
environment, FΩ is the set of constructors and for all s ∈ T , Fs is the set of
observers of cotype s. Since a cotype may be declared using several alternatives,
observers for a given cotype are actually defined for a given alternative of this
cotype. For a cotype s having m alternatives, we then have Fs =

∐
1≤j≤m Fs,j

where Fs,j is the set of observers for the jth alternative of cotype s. The set P of
predicates is also a partition Pobs � (Ps)s∈T where Pobs is the set of predicates
only involving observable sorts , and for each s ∈ T , Ps is the set of predicates
p : s1 × . . . × sn × s. The above List declaration gives the following CoCasl
signature.

Sobs = {Nat} T = {List}
FΩ = {empty : List , insert : Nat × List → List} PList = {def : List}
FList,1 = ∅
FList,2 = {head : List → Nat , tail : List → List}

where alternative 1 corresponds to the empty list, and alternative 2 to a list built
with constructor insert.

Given a signature Σ = (S, F, P, V), TΣ(V) is the S-set of terms with vari-
ables in V defined inductively from variables in V and operations of F : for each
operation f : s1 × . . . × sn → s ∈ Fobs ∪ FΩ , f(t1, . . . , tn) ∈ TΣ(V)s, where
each ti ∈ TΣ(V)si , 1 ≤ i ≤ n; for each observer f : s1 × . . . × sn × s → s′,
f(t1, . . . , tn) ∈ TΣ(V)s′ , where each ti ∈ TΣ(V)si , 1 ≤ i ≤ n. Notice that, for
observers, the sort s has been removed. This allows to consider states as implicit,
as usual with modal logic. The set of ground terms TΣ is defined as the set of
terms built over the empty set of variables TΣ(∅). A substitution is any mapping
σ : V → TΣ(V) that preserves sorts. Substitutions are naturally extended to
terms with variables and then to formulae.

Σ-atomic formulae are sentences of the form p(t1, . . . , tn) where p : s1 × . . . ×
sn ∈ Pobs or p : s1 × . . . × sn × s ∈ Ps, and ti ∈ TΣ(V)si for each i, 1 ≤ i ≤ n.
A term t with non-observable sort leads to modalities [t], 〈t〉, [t∗] and 〈t∗〉,
intuitively meaning“all next state”,“some next state”,“always”and“eventually”,
respectively. Modalities can be extended to finite sequences {t1, . . . , tn}, where
[{t1, . . . , tn}]ϕ and 〈{t1, . . . , tn}〉ϕ stand respectively for the conjunction and
the disjunction of the modal formulae obtained for the corresponding individual
modalities. Formulae are then built following the syntax:

ϕ, ψ ::= true | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ⇒ ψ | [t]ϕ | 〈t〉ϕ | [t∗]ϕ | 〈t∗〉ϕ
| [{t1, . . . , tn}]ϕ | 〈{t1, . . . , tn}〉ϕ | [{t1, . . . , tn}∗]ϕ | 〈{t1, . . . , tn}∗〉ϕ

The set of modalities is denoted by MΣ(V). For(Σ) is the set of all Σ-formulae.
A specification Sp = (Σ,Ax) consists of a signature Σ and a set Ax of formulae
often called axioms. The List declaration above generates, besides the signature
we gave, the following axioms, as well as the five axioms specifying that the
equality predicate is the existential equality:

360 D. Longuet and M. Aiguier

¬def (head(empty)) head(insert(n, l)) = n
¬def (tail(empty)) tail(insert(n, l)) = l
x = x t = t′ ⇒ t′ = t t = t′ ∧ t′ = t′′ ⇒ t = t′′

t1 = t′
1 ∧ · · · ∧ tn = t′

n ∧ def (f(t1, . . . , tn)) ⇒ f(t1, . . . , tn) = f(t′
1, . . . , t

′
n)

def (f(t1, . . . , tn)) ⇒ def (ti) (strictness) t = t′ ⇒ def (t) (definability)

Semantics. Given a signature Σ = (S, F, P, V), we denote by Σobs the “observ-
able subsignature” (S, Fobs � FΩ , Pobs , V) of Σ. A Σobs-model A is then a first-
order structure, that is an S-indexed set A, equipped for each operation name
f : s1 × . . . × sn → s ∈ Fobs � FΩ with a mapping fA : As1 × . . . × Asn → As,
and for each predicate name p : s1 × . . . × sn ∈ Pobs with an n-ary relation
pA ⊆ As1 × . . . × Asn .

Since several cotypes can be declared in CoCasl, the set of states E is said
multi-sorted and is defined as a product E =

∏
s∈T Es where for each s ∈ T ,

Es = As. Σ-models are then coalgebras (E, α : E → FE) of the functor F such
that FE =

∏
s∈T FEs and which, for each s ∈ T , associates to Es the set FEs

defined as follows:

FEs =
∐

1≤j≤m

(
∏

f :s1×...×sn×s→s′∈Fs,j

s′∈Sobs

A
As1×...×Asn

s′ ×
∏

f :s1×...×sn×s→s′∈Fs,j

s′∈T

E
As1×...×Asn

s′

)
×

∏

p:s1×...×sn×s∈Ps

2As1×...×Asn

where sort s is defined by m alternatives. 1 We denote by Mod(Σ) the category
whose objects are Σ-models, i.e. the category Coalg(F) of coalgebras over F .

Given a Σ-model (E, α) over a first-order structure A, we denote by A :
TΣobs → A the unique homomorphism that maps any Σobs ground term f(t1, . . . ,
tn) to its value fA(tA1 , . . . , tAn). A Σ-model is said reachable on data if A is
surjective.

Given a Σ-model (E, α), a Σ-interpretation in A is any mapping ν : V → A
preserving sorts. Given an interpretation of variables ν and a state e = (es)s∈T ∈
E, the interpretation of terms in TΣ(V) ν�

e : TΣ(V) → M is built in the usual way
for variables and operations in Fobs ∪FΩ , and in the following way for observers:
if f : s1 × . . .× sn × s → s′ ∈ Fs,j is an observer with observable result sort then
ν�

e(f(t1, . . . , tn)) = (πf ◦κj ◦πs ◦α)(e)(ν�
e(t1), . . . , ν�

e(tn)), where: πs : E → Es is
the canonical projection to the s-sorted part of a state; assuming that the sort
s is declared by j alternatives, κj is the canonical injection to alternative j; and
πf is the canonical projection from alternative j of Es to the interpretation of f ;
if f : s1 × . . .× sn × s → s′ ∈ Fs,j is an observer with non-observable result sort,
then ν�

e(f(t1, . . . , tn)) = e′ such that e′ = (e′s)s∈T ∈ E with e′s′′ = es′′ for all
s′′ �= s′, and es′ = (πf ◦ κj ◦ πs ◦ α)(e)(ν�

e(t1), . . . , ν
�
e(tn)). By abuse of notation,

the extension ν�
e of ν will be denoted by νe.

The satisfaction of a Σ-formula ϕ by (E, α) for an interpretation ν and a
state e, denoted by (E, α) |=ν,e ϕ, is inductively defined on the structure of
ϕ: (E, α) |=ν,e true always holds; (E, α) |=ν,e p(t1, . . . , tn) for p ∈ Pobs if and

1 If A and B are two sets, we denote by BA the set of all mappings from A to B.

Specification-Based Testing for CoCasl’s Modal Specifications 361

only if (νe(t1), . . . , νe(tn)) ∈ pA; (E, α) |=ν,e p(t1, . . . , tn) for p ∈ Ps if and
only if (νe(t1), . . . , νe(tn)) ∈ πp ◦ πs(e); (E, α) |=ν,e [t]ψ if and only if for all
e′ ∈ E such that νe(t) = e′, (E, α) |=ν,e′ ψ. The other modalities can be defined
as derived notions. Actually, we have the following elementary equivalences:2

〈t〉ϕ ≡ ¬[t]¬ϕ; [t∗]ϕ ≡ ϕ ∧ [t][t∗]ϕ; [{t1, . . . , tn}]ϕ ≡ [t1]ϕ ∧ . . . ∧ [tn]ϕ. Boolean
connectives are interpreted as usual. (E, α) validates a formula ϕ, denoted by
(E, α) |= ϕ, if and only if for every interpretation ν : V → A and every state
e ∈ E, (E, α) |=ν,e ϕ. Given Ψ ⊆ For (Σ) and two Σ-models (E, α) and (E′, α′),
(E, α) is Ψ -equivalent to (E′, α′), denoted by (E, α) ≡Ψ (E′, α′), if and only if we
have: ∀ϕ ∈ Ψ, (E, α) |= ϕ ⇔ (E′, α′) |= ϕ. Given a specification Sp = (Σ,Ax), a
Σ-model (E, α) is an Sp-model if for every ϕ ∈ Ax , (E, α) |= ϕ. Mod(Sp) is the
full subcategory of Mod(Σ), objects of which are all Sp-models. A Σ-formula ϕ
is a semantic consequence of a specification Sp = (Σ,Ax), denoted by Sp |= ϕ,
if and only if for every Sp-model (E, α), we have (E, α) |= ϕ. Sp• is the set of
all semantic consequences.

Calculus. A calculus for quantifier-free modal CoCasl specifications is defined
by the following inference rules, where Γ |∼ Δ is a sequent such that Γ and Δ
are two sets of Σ-formulae:

Γ,ϕ |∼ Δ,ϕ
Taut

Γ |∼ Δ ∈ Sp

Γ |∼ Δ
Ax

Γ |∼ Δ,ϕ

Γ,¬ϕ |∼ Δ
Left-¬ Γ,ϕ |∼ Δ

Γ |∼ Δ,¬ϕ
Right-¬

Γ,ϕ,ψ |∼ Δ

Γ,ϕ∧ψ |∼ Δ
Left-∧ Γ |∼ Δ,ϕ Γ |∼ Δ,ψ

Γ |∼ Δ,ϕ∧ψ
Right-∧ Γ |∼ Δ,ϕ Γ,ψ |∼ Δ

Γ,ϕ⇒ψ |∼ Δ
Left-⇒

Γ,ϕ |∼ Δ Γ,ψ |∼ Δ

Γ,ϕ∨ψ |∼ Δ
Left-∨ Γ |∼ Δ,ϕ,ψ

Γ |∼ Δ,ϕ∨ψ
Right-∨ Γ,ϕ |∼ Δ,ψ

Γ |∼ Δ,ϕ⇒ψ
Right-⇒

Γ |∼ ϕ

[t]Γ |∼ [t]ϕ
Nec

Γ |∼ Δ

σ(Γ) |∼ σ(Δ)
Subs

Γ |∼ Δ,ϕ Γ ′,ϕ |∼ Δ′

Γ,Γ ′ |∼ Δ,Δ′ Cut

where [t]Γ = {[t]γ | γ ∈ Γ}, 〈t〉Γ = {〈t〉γ | γ ∈ Γ} and σ(Γ) = {σ(γ) | γ ∈
Γ}. This calculus is the standard Gentzen sequent calculus for modal logic K
which underlies CoCasl’s logic, from which we removed the axiom scheme called
Kripke distribution axiom: [t](ϕ ⇒ ψ) ⇒ ([t]ϕ ⇒ [t]ψ), since it is of no interest
for our unfolding procedure. From rule Nec, we can derive the following rules,
which will be helpful later:

Γ |∼ ϕ

[t∗]Γ |∼ [t∗]ϕ Nec*
Γ |∼ ϕ

[{t1,...,tn}]Γ |∼ [{t1,...,tn}]ϕ Necn

Γ |∼ ϕ,Δ

[t]Γ |∼ [t]ϕ,〈t〉Δ
Γ,ϕ |∼ Δ

[t]Γ,〈t〉ϕ |∼ 〈t〉Δ
Γ |∼ Δ

[t]Γ |∼ 〈t〉Δ

In order to manipulate less complex formulae, we take advantage of the fact
that the inference rules associated to Boolean connectives define an automatic
process that allows to transform any sequent |∼ ϕ, where ϕ is a modal formula,
into a set of sequents Γ |∼ Δ where every formula in Γ and Δ is of the form

2 Two formulae ϕ and ψ are said elementarily equivalent, denoted by ϕ ≡ ψ, if and only
if for each Σ-model (E, α), for each interpretation ν and every state e, (E, α) |=ν,e

ϕ ⇔ (E, α) |=ν,e ψ.

362 D. Longuet and M. Aiguier

α1 . . . αnψ, where αi ∈ MΣ(V) for all i, 1 ≤ i ≤ n, and ψ ∈ For (Σ) is a formula
not beginning with a modality. Let us call such sequents normalised sequents.

More precisely, these normalised sequents are obtained by eliminating every
boolean connectives which is not in the scope of a modal operator with the help
of the above sequent calculus. Such a syntactic transformation can be done since
the inference rules associated to boolean connectives are reversible: given an in-

ference rule
ϕ1 . . . ϕn

ϕ
amongst {Left-@, Right-@} where @ ∈ {¬, ∧, ∨, ⇒}, we

have
∧

1≤i≤n ϕi ≡ ϕ. Then, applying reversed inference rules for boolean con-
nectives to any sequent leads to an equivalent set of normalised sequents, which
allows to only deal with normalised sequents. Therefore, in the following, we will
suppose that specification axioms are normalised sequents. These transforma-
tions enable us to remove the rules associated to boolean connectives from the
unfolding procedure.

Example 1 (Running Example)
To illustrate our approach, we continue here the specification of the List cotype.
We specify two additional observers odd : List → List and even : List → List
which give a list containing all the elements occurring in oddly numbered places
of the original list, in evenly numbered places respectively. We have the following
modal axioms:3

• head = n ⇔ 〈odd〉head = n
• [odd][tail]ϕ ⇔ [tail][tail][odd]ϕ
• [even]ϕ ⇔ [tail][odd]ϕ

We don’t specify the data part here, since we are only interested in specifying
the process part. Axioms are then transformed into normalised sequents, as
explained above. For example, the first axiom head = n ⇔ 〈odd〉head = n,
which is equivalent to the formula head = n ⇒ 〈odd〉head = n ∧ 〈odd〉head =
n ⇒ head = n, leads to the two sequents head = n |∼ 〈odd〉head = n and
〈odd〉head = n |∼ head = n.

1. head = n |∼ 〈odd〉head = n 4. [tail][tail][odd]ϕ |∼ [odd][tail]ϕ
2. 〈odd〉head = n |∼ head = n 5. [even]ϕ |∼ [tail][odd]ϕ
3. [odd][tail]ϕ |∼ [tail][tail][odd]ϕ 6. [tail][odd]ϕ |∼ [even]ϕ

Due to lack of space, we don’t give a more complex and larger example here,
but another example dealing with the CoCasl’s modal specification of a cash
machine may be found in the long version of this paper [18].

2 Testing from Logical Specifications

The work presented in Section 3 comes within the general framework of testing
from formal specifications defined in [3]. So that the paper is as self-contained
as possible, we succinctly introduce this framework and we instantiate it to the
CoCasl’s formalism presented in Section 1.
3 The second and third axioms actually are axiom schemes, i.e. they denote the sets

of all their instances with any formula substituted for ϕ.

Specification-Based Testing for CoCasl’s Modal Specifications 363

Following previous works [1,3,7,9,19], given a specification Sp = (Σ, Ax), the
basic assumption is that the system under test can be assimilated to a model
of the signature Σ. Test cases are then Σ-formulae which are semantic conse-
quences of the specification Sp (i.e. elements of Sp•). As these formulae are to be
submitted to the system, test case interpretation is defined in terms of formula
satisfaction. When a test case is submitted to a system, it has to yield a verdict
(success or failure). Hence, test cases have to be directly interpreted as “true”
or “false” by a computation of the system. Obviously, systems can’t deal with
formulae containing non-instantiated variables, so test cases have to be ground
formulae, that is formulae where all variables have been replaced with actual
values. These “executable” formulae are called observable. Then a test case is
any observable semantic consequence. If we denote by Obs ⊆ For(Σ) the set
of observable formulae, then a test set T is any subset of Sp• ∩ Obs . Since the
system under test is considered to be a Σ-model P , T is said to be successful for
P if and only if ∀ϕ ∈ T, P |= ϕ.

The interpretation of test cases submission as a success or failure is related to
the notion of system correctness. Following an observational approach [20], to be
qualified as correct with respect to a specification Sp, a system is required to be
observationally equivalent to a model of Mod(Sp) up to the observable formulae
of Obs , that is, they have to validate exactly the same observable formulae.

Definition 1 (Correctness). P is correct for Sp via Obs, denoted by
CorrectObs(P,Sp), if and only if there exists a model M in Mod(Sp) such that
M ≡Obs P .4

A test set allowing to establish the system correctness is said exhaustive. For-
mally, an exhaustive set is defined as follows:

Definition 2 (Exhaustive test set). Let K ⊆ Mod(Σ). A test set T is ex-
haustive for K with respect to Sp and Obs if and only if

∀P ∈ K, P |= T ⇐⇒ CorrectObs(P,Sp)

The existence of an exhaustive test set means that systems belonging to the
class K are testable with respect to Sp via Obs, since correctness can be as-
ymptotically approached by submitting a (possibly infinite) test set. Hence, an
exhaustive test set is appropriate to start the process of selecting test sets. How-
ever, such an exhaustive set does not necessarily exist, depending on the nature of
both specifications and systems (whence the usefulness of subclass K of systems
in Definition 2), and on the chosen set of observable formulae. For instance, we
will need here to assume that the system under test is reachable on data. Among
all the test sets, the biggest one is the set Sp• ∩Obs of observable semantic con-
sequences of the specification. Hence, to start the selection phase of the testing
process, we first have to show that Sp• ∩ Obs is exhaustive. This holds for every
system reachable on data as stated by Theorem 1.

4 Equivalence of Σ-models with respect to a set of formulae is defined in Section 1.

364 D. Longuet and M. Aiguier

Theorem 1. Let Sp = (Σ, Ax) be a specification. Then the test set Sp• ∩ Obs
is exhaustive for every model reachable on data.

Idea of the proof. Considering a system S reachable on data, we use classic re-
sults of the coalgebra theory [21] to build a final coalgebra elementary equivalent
to S with respect to Obs, and then show that a well-chosen subcoalgebra of it
(also elementary equivalent to S up to Obs) is a model of specification Sp.

The entire proof may be found in [18]. �

The challenge, when dealing with specifications defined as logical theories, con-
sists in managing the size of Sp• ∩ Obs, which is most of the time infinite. In
practice, experts apply some selection criteria in order to extract a set of test
cases of sufficiently reasonable size to be submitted to the system. The under-
lying idea is that all test cases satisfying a considered selection criterion reveal
the same class of incorrect systems, intuitively those corresponding to the fault
model captured by the criterion. For example, the criterion called uniformity
hypothesis states that test cases in a test set all have the same power to make
the system fail.

A classic way to select test data with a selection criterion C consists in splitting
a given starting test set T into a family of test subsets {Ti}i∈IC(T) such that T =
∪i∈IC(T) Ti holds. A test set satisfying such a selection criterion simply contains
at least one test case for each non-empty subset Ti. The selection criterion C is
then a coverage criterion according to the way C is splitting the initial test set
T into the family {Ti}i∈IC(T) . This is the method that we will use in this paper
to select test data, known under the term of partition testing.

Definition 3 (Selection criterion). A selection criterion C is a mapping
P(Sp•∩Obs) → P(P(Sp•∩Obs)).5 For a test set T , we note |C(T)| = ∪i∈IC(T) Ti

where C(T) = {Ti}i∈IC(T). T ′ satisfies C applied to T , noted by T ′ � C(T) if
and only if: ∀i ∈ IC(T), Ti �= ∅ ⇒ T ′ ∩ Ti �= ∅.

To be pertinent, a selection criterion should ensure some properties between the
starting test set and the resulting family of test sets:

Definition 4 (Properties). Let C be a selection criterion and T be a test set.
C is said sound for T if and only if |C(T)| ⊆ T . C is said complete for T if and
only if |C(T)| ⊇ T .

These properties are essential for an adequate selection criterion: soundness en-
sures that test cases will be selected within the starting test set (i.e. no test is
added) while completeness ensures that no test from the initial test set is lost. A
sound and complete selection criterion then preserves exactly all the test cases
of the initial test set, up to the notion of equivalent test cases.

5 For a given set X, P(X) denotes the powerset of X.

Specification-Based Testing for CoCasl’s Modal Specifications 365

3 Selection Criteria Based on Axiom Unfolding

In this section, we study the problem of test case selection for quantifier-free
modal CoCasl specifications, by adapting a selection criteria based on unfold-
ing of quantifier-free first-order formulae recently defined in the first-order spec-
ifications setting [17].

3.1 Test Sets for Modal CoCasl Formulae

We recall here general definitions of test sets from [17]. The selection method
that we are going to define takes inspiration from classic methods that split the
initial test set of any formula considered as a test purpose.

Succinctly, for a modal CoCasl formula ϕ, our method consists in splitting
the initial test set for ϕ into many test subsets, called constrained test sets for
ϕ, and choosing any input in each non-empty subset. First, let us define what
test set and constrained test set for a modal CoCasl formula are.

Definition 5 (Test set). Let ϕ be a modal formula, called test purpose. The
test set for ϕ, denoted by Tϕ, is the set defined as follows:

Tϕ = {ρ(ϕ) | ρ : V → TΣ, ρ(ϕ) ∈ Sp• ∩ Obs}

Note that ϕ may be any formula, not necessarily in Sp•. When ϕ /∈ Sp• then
Tϕ = ∅. Constrained test sets will be sets generated by our unfolding procedure.
They are defined as follows.

Definition 6 (Constrained test set). Let ϕ be a modal formula (the test
purpose), C be a set of modal formulae called Σ-constraints, and σ : V → TΣ(V)
be a substitution. A test set for ϕ with respect to C and σ, denoted by T(C,σ),ϕ,
is the set of ground formulae defined by:

T(C,σ),ϕ = {ρ(σ(ϕ)) | ρ : V → TΣ , ∀ψ ∈ C, ρ(ψ) ∈ Sp• ∩ Obs}
The couple 〈(C, σ), ϕ〉 is called a constrained test purpose.

Note that the test purpose ϕ of Definition 5 can be seen as the constrained test
purpose 〈({ϕ}, Id), ϕ〉.

3.2 Unfolding Procedure

Given a test purpose ϕ, the unfolding procedure will then replace the initial
constrained test purpose 〈({ϕ}, Id), ϕ〉 with a set of constrained test purposes
〈(C, σ), ϕ〉. This will be achieved by matching (up to unification), formulae in C
for any constrained test purpose 〈(C, σ), ϕ〉 with the specification axioms. Hence,
step by step, we will see that the unfolding procedure is building a proof tree of
conclusion ϕ having the following structure :

– no instance of cut occurs over instances of substitution and necessitation
– no instance of substitution occurs over instances of necessitation

366 D. Longuet and M. Aiguier

– there is no instance of cut with two instances of cut occurring over it.

Hence, the unfolding procedure will only involve cut, substitution and necessita-
tion rules. In order to allow many applications of the necessitation rule at each
step of the unfolding procedure, let us define the following relation R over tuples
of modality sequences.

Definition 7. Let p, q ∈ N. R ⊆ (MΣ(V)∗)p × (MΣ(V)∗)q is defined for all
(M1, . . . , Mp) ∈ (MΣ(V)∗)p and (N1, . . . , Nq) ∈ (MΣ(V)∗)q as follows:

(M1, . . . , Mp)R(N1, . . . , Nq) if and only if
1. there exists n ∈ N such that for all i, j, 1 ≤ i ≤ p, 1 ≤ j ≤ q, there exists

αi
1, . . . , αi

n and βi
1, . . . , βi

n such that Mi = αi
1 . . . αi

n and Nj = βj
1 . . . βj

n

2. for all l, 1 ≤ l ≤ n, α1
l , . . . , α

p
l and β1

l , . . . , βq
l are such that:

(a) there exists t ∈ TΣ(V) such that for all i, j, 1 ≤ i ≤ p, 1 ≤ j ≤ q, αi
l

and βj
l all equal to [t] or 〈t〉, or αi

l and βj
l all equal to [t∗] or 〈t∗〉

(b) for all i, j, 1 ≤ i ≤ p, 1 ≤ j ≤ q, αi
l = [t] and βj

l = 〈t〉 (resp. αi
l = [t∗]

and βj
l = 〈t∗〉), except perhaps either for one k, 1 ≤ k ≤ p, such that

αk
l = 〈t〉 (resp. αk

l = 〈t∗〉), or for one k, 1 ≤ k ≤ q, such that βk
l = [t]

(resp. βk
l = [t∗]).

This relation then ensures the following proposition.

Proposition 1. Let γ1, . . . , γp |∼ δ1, . . . , δq be any sequent. Let (M1, . . . , Mp) ∈
(MΣ(V)∗)p and (N1, . . . , Nq) ∈ (MΣ(V)∗)q such that (M1, . . . , Mp)R(N1, . . . ,
Nq). Then there exists a proof tree of conclusion M1γ1, . . . , Mpγp |∼ N1δ1, . . . ,
Nqδq composed only of instances of the necessitation rule.

We can now proceed with the presentation of the unfolding procedure. The
procedure inputs are:

– a modal CoCasl specification Sp = (Σ, Ax) where axioms of Ax have been
transformed into normalised sequents (see Section 1)

– a modal formula ϕ representing the test purpose 〈({ϕ}, Id), ϕ〉
– a family Ψ of couples (C, σ) where C is a set of Σ-constraints in the form of

normalised sequents, and σ is a substitution V → TΣ(V).

Test sets for ϕ with respect to couples (C, σ) are naturally extended to Ψ as fol-
lows: TΨ,ϕ =

⋃

(C,σ)∈Ψ

T(C,σ),ϕ. The first set Ψ0 only contains the couple composed

of the set of normalised sequents obtained from the modal formula ϕ under test
and the identity substitution.

The unfolding procedure is expressed by the two following rules:6

Reduce Ψ ∪ {(C ∪ {Γ |∼ Δ}, σ′)}
Ψ ∪ {(σ(C), σ ◦ σ′)} ∃γ ∈ Γ, ∃δ ∈ Δ s.t. σ(γ) = σ(δ), σ mgu

6 The most general unifier (or mgu) of two terms γ and δ is the most general substi-
tution σ such that σ(γ) = σ(δ).

Specification-Based Testing for CoCasl’s Modal Specifications 367

Unfold
Ψ ∪ {(C ∪ {φ}, σ′)}

Ψ ∪
⋃

(c,σ)∈Tr(φ)

{(σ(C) ∪ c, σ ◦ σ′)}

where Tr(φ) for φ = γ1, . . . , γm |∼ δ1, . . . , δn is the set of couples

{(c, σ) | Cond(c, σ)}

where, for each couple, c is the following set

{σ(γp+1), . . . , σ(γm), σ(N ′
iζi) |∼ σ(δq+1), . . . , σ(δn)}1≤i≤k⋃

{(σ(γp+1), . . . , σ(γm) |∼ σ(M ′
iξi), σ(δq+1), . . . , σ(δn)}1≤i≤l

and the condition on (c, σ) denoted by Cond(c, σ) is the following: there exists
an axiom ψ1, . . . , ψp, ξ1, . . . , ξl |∼ ζ1, . . . , ζk, ϕ1, . . . , ϕq ∈ Ax with k, l ∈ N, 1 ≤
p ≤ m and 1 ≤ q ≤ n, and there exists a unifier σ such that

– for all 1 ≤ i ≤ p, there exists Mi ∈ MΣ(V)∗ such that σ(Miψi) = σ(γi),
– for all 1 ≤ i ≤ q, there exists Ni ∈ MΣ(V)∗ such that σ(Niϕi) = σ(δi),
– for all 1 ≤ i ≤ l and for all 1 ≤ j ≤ k, M ′

i , N
′
j ∈ MΣ(V)∗ with (M1, . . . , Mp,

M ′
1, . . . , M

′
l)R(N1, . . . , Nq, N

′
1, . . . , N

′
k)

The Reduce rule eliminates tautologies from constraints sets (up to substitu-
tion), which are without interest for the unfolding procedure. The Unfold rule
is closely related to the one given in [17] although more complicated because of
modalities. Roughly speaking, this rule consists in replacing the formula φ with
the set c of constraints, φ being the conclusion of an instance of the Cut rule,
and the constraints in c being the premisses of this rule instance which do not
directly come from a substitution (up to some applications of the necessitation
rule) of an axiom of the specification. The relevance of the method is due to the
fact that testing σ(φ) comes to test the formulae of c, which will be proved in
the next subsection. The particular case where no formula has to be cut is taken
into account, since k and l may be equal to zero. Tr(φ) is then a couple (∅, σ),
and it is the last step of unfolding for this formula.

Each unification with an axiom leads to as much couples (c, σ) as there are
ways to instantiate M ′

1, . . . , M
′
l and N ′

1, . . . , N
′
k so that (M1, . . . , Mp, M

′
1, . . . , M

′
l)

and (N1, . . . , Nq, N
′
1, . . . , N

′
k) belong to R. So the initial formula φ is replaced

with, at least, as much sets of formulae as there are axioms to which it can
be unified. The definition of Tr(φ) being based on unification, this set is com-
putable if the specification Sp has a finite set of axioms. Therefore, given an
atomic formula ψ, we have the selection criterion Cψ that maps any T(C,σ′),ϕ to
(T(σ(C\{φ})∪c,σ◦σ′),ϕ)(c,σ)∈Tr(φ) if φ ∈ C, and to TC,ϕ otherwise.

We write 〈Ψ, ϕ〉 �U 〈Ψ ′, ϕ〉 to mean that Ψ ′ can be derived from Ψ by applying
Reduce or Unfold. An unfolding procedure is then any program, whose inputs
are a CoCasl’s modal specification Sp and a modal formula ϕ, and uses the
above inference rules to generate the sequence 〈Ψ0, ϕ〉 �U 〈Ψ1, ϕ〉 �U 〈Ψ2, ϕ〉 . . .

368 D. Longuet and M. Aiguier

Termination of the unfolding procedure is unlikely, since it is not checked,
during its execution, whether the formula ϕ is a semantic consequence of the
specification or not. Actually, this will be done during the generation phase, not
handled in this paper. As we already explained in the introduction, the aim of the
unfolding procedure is not to find the complete proof of formula ϕ, but to make
a partition of Tϕ increasingly fine. Hence the procedure can be stopped at any
moment, when the obtained partition is fine enough according to the judgement
or the needs of the tester. The idea is to stretch further the execution of the
procedure in order to make increasingly big proof trees whose remaining lemmas
are constraints. If ϕ is not a semantic consequence of Sp, then this means that,
among remaining lemmas, some of them are not true, and then the associated
test set is empty.

Example 2 (Lists). Let us suppose that we want to test the formula [even][tail]
head = a ⇒ [tail][tail][even]head = b. Then, to perform the first step of the
unfolding procedure on the initial family of couples:

Ψ0 = {({[even][tail]head = a |∼ [tail][tail][even]head = b}, Id)}

leads to the following family of couples:

Ψ1 = {({[even][tail]〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1)
({〈even〉[tail]〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1)
({[even]〈tail〉〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1)
({〈even〉〈tail〉〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1)
({[tail][odd][tail]head = n0 |∼ [tail][tail][even]head = m0}, σ1), (5)
({[even][tail]head = n0 |∼ [tail][tail][even]〈odd〉head = m0}, σ2), (2)
({[even][tail]head = n0 |∼ [tail][tail][tail][odd]head = m0}, σ2)} (6)

where σ1 : a �→ n0, b �→ m0, n �→ n0 and σ2 : a �→ n0, b �→ m0, n �→ m0. Each
couple of Ψ1 is labelled by the number of the axiom used for the unfolding of the
initial formula.

The first four couples of Ψ1 come from the unification of the initial for-
mula with axiom (1). Since σ1(M1ψ1) = σ1(γ1), where M1 = [even][tail], ψ1
is the formula head = n and γ1 is head = a, the resulting constraints are
the sequents σ1(N ′

1ζ1) |∼ σ1(δ1) where ζ1 is the formula 〈odd〉head = n, δ1 is
[tail][tail][even]head = b, and N ′

1 must be such that M1RN1. According to the
definition of R, several N1 suit, namely [even][tail], 〈even〉[tail], [even]〈tail 〉 and
〈even〉〈tail 〉, whence the four constraints generated by the unification with ax-
iom (1).

Notice that the formula under test is a consequence of the specification if and
only if a = b. The unfolding may then generate two kinds of constrained test sets:
those whose substitution σ is such that σ(a) = σ(b), which will lead to test cases
since they are consequences of the specification, and those where σ(a) �= σ(b),
which are not test cases. Here, when a constraint is unified with both sides of
axiom (1) or (2), the substitution collapses a and b and the resulting constrained
test set is a potential test case.

The unfolding procedure can not distinguish between these two kinds of con-
strained test sets, but this distinction will be done before submitting them to the

Specification-Based Testing for CoCasl’s Modal Specifications 369

system, by applying a ground substitution ρ to any formula in constrained test
purposes. Since, by definition, ρ(ψ) has to be a consequence of the specification,
constrained test sets where σ(a) �= σ(b) will not be submitted to the system.

The application of the procedure on another example may be found in [18].
Until now, the unfolding procedure has been defined in order to cover the

behaviours of one test purpose, represented by the formula ϕ. When we are
interested in covering more widely the exhaustive set Sp• ∩ Obs, a strategy
consists in ordering modal formulae with respect to their size, as follows:

Φ0 = { |∼ p(x1, . . . , xn) | p : s1 × . . . × sn ∈ P, ∀i, 1 ≤ i ≤ n, xi ∈ Vsi}

Φn+1 ={ |∼ ¬ψ, |∼ [m]ψ, |∼ ψ1@ψ2 | m ∈ MΣ(V),@ ∈ {∧, ∨, ⇒},ψ, ψ1, ψ2 ∈ Φn}

Then, to manage the size (often infinite) of Sp• ∩ Obs , we start by choosing
k ∈ N, and then we apply for every i, 1 ≤ i ≤ k, the above unfolding procedure
to each formula belonging to Φi. Of course, this requires that signatures are finite
so that each set Φi is finite too.

3.3 Soundness and Completeness

Here, we prove the two properties that make the unfolding procedure relevant
for the selection of appropriate test cases, i.e. that the selection criterion defined
by the procedure is sound and complete for the initial test set we defined.

Theorem 2. If 〈Ψ, ϕ〉 �U 〈Ψ ′, ϕ〉, then TΨ,ϕ = TΨ ′,ϕ.

Idea of the proof. To prove the soundness of the procedure comes to prove that
the initial formula ϕ can be derived from the constraints replacing it in the
procedure. Thus we prove that the test set obtained by the application of the
procedure does not add new test cases. Then, to prove the completeness of the
procedure, we prove that there necessarily exists a proof tree of conclusion ϕ
having a certain structure, and then that the procedure generates all possible
constraints for testing ϕ. We thus prove that no test cases are lost. As explained
just before, we can observe that our unfolding procedure defines a proof search
strategy that enables to limit the search space to the class of proof trees having
the following structure:

– no instance of cut occurs over instances of substitution and necessitation
– no instance of substitution occurs over instances of necessitation
– there is no instance of cut with two instances of cut occurring over it.

We then have to prove that the derivability defined by our unfolding strat-
egy coincides with the full derivability. We then define basic transformations
to rewrite proof trees into ones having the above structure, and show that the
induced global proof tree transformation is weakly normalising.

The entire proof may be found in [18]. �

370 D. Longuet and M. Aiguier

4 Conclusion

In this paper, we have extended the method for selecting test cases known as
axiom unfolding to coalgebraic specifications of dynamic systems. As in the al-
gebraic specifications setting, our unfolding procedure consists in dividing the
initial test set for a formula into subsets. The generation of a test set for this
formula then arises from the selection of one test case in each resulting subset.
We have proved this procedure to be sound and complete, so that test cases
are preserved at each step. We have also proved the exhaustiveness of the set
of observable consequences of the specification for every reachable system, and
proposed a strategy to cover this exhaustive test set.

Ongoing research concerns several aspects. First, we have to specialize our
unfolding procedure by handling (strong and existential) equality in a more effi-
cient way. We lose here the strong equality, and the advantage of equality being
a congruence. Then we have to extend this work to the very recent extension
of CoCasl logic [22]. This logic deals with modalities at a more abstract level
than the one presented here, using Pattinson’s predicate liftings. This extension
of CoCasl allows to specify in several modal logics that were not handled with
basic CoCasl, such as probabilistic modal logic. Defining testing for such an
extension of CoCasl would allow us to handle a larger variety of modal for-
malisms in our framework. Another important future work will be to include
structuration, such as provided by Casl and CoCasl languages, in our frame-
work, both on its first-order side, by extending our work developed in [17], and
on its coalgebraic side, by extending the present work. This work will surely take
inspiration from [6,23].

References

1. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifica-
tions: a theory and a tool. Software Engineering Journal 6(6), 387–405 (1991)

2. Gaudel, M.C.: Testing can be formal, too. In: Mosses, P.D., Schwartzbach, M.I.,
Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915,
pp. 82–96. Springer, Heidelberg (1995)

3. Le Gall, P., Arnould, A.: Formal specification and test: correctness and oracle. In:
Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Recent Trends in Data Type Specifi-
cation. LNCS, vol. 1130, pp. 342–358. Springer, Heidelberg (1996)

4. Marre, B.: LOFT: a tool for assisting selection of test data sets from algebraic spec-
ifications. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995,
FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 799–800. Springer, Heidel-
berg (1995)

5. Aiguier, M., Arnould, A., Boin, C., Le Gall, P., Marre, B.: Testing from alge-
braic specifications: test data set selection by unfolding axioms. In: Grieskamp,
W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 203–217. Springer, Heidel-
berg (2006)

6. Machado, P., Sannella, D.: Unit testing for Casl architectural specifications. In:
Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 506–518. Springer,
Heidelberg (2002)

Specification-Based Testing for CoCasl’s Modal Specifications 371

7. Arnould, A., Le Gall, P., Marre, B.: Dynamic testing from bounded data type
specifications. In: Hlawiczka, A., Simoncini, L., Silva, J.G.S. (eds.) Dependable
Computing - EDCC-2. LNCS, vol. 1150, pp. 285–302. Springer, Heidelberg (1996)

8. Aiguier, M., Arnould, A., Le Gall, P.: Exhaustive test sets for algebraic specification
correctness. Technical report, IBISC - Université d’Évry-Val d’Essonne (2006)

9. Arnould, A., Le Gall, P.: Test de conformité: une approche algébrique. Technique
et Science Informatiques, Test de logiciel 21, 1219–1242 (2002)

10. Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-coalgebraic
specification in CoCasl. Journal of Logic and Algebraic Programming 67(1-2),
146–197 (2006)

11. Yannakakis, M., Lee, D.: Testing finite state machines. In: Symposium on Theory
of Computing (STOC’91), pp. 476–485. ACM Press, New York (1991)

12. Tretmans, J.: Testing labelled transition systems with inputs and outputs. In: In-
ternational Workshop on Protocols Test Systems (IWPTS’95) (1995)

13. Rusu, V., du Bousquet, L., Jéron, T.: An approach to symbolic test generation. In:
Integrated Formal Methods (IFM ’00), pp. 338–357. Springer, Heidelberg (2000)

14. Frantzen, L., Tretmans, J., Willemse, T.: Test generation based on symbolic spec-
ifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
1–15. Springer, Heidelberg (2005)

15. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for
test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom
2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006)

16. Ammann, P., Ding, W., Xu, D.: Using a model checker to test safety proper-
ties. In: International Conference on Engineering of Complex Computer Systems
(ICECCS’01), pp. 212–221 (2001)

17. Aiguier, M., Arnould, A., Le Gall, P., Longuet, D.: Test selection criteria for
quantifier-free first-order specifications. In: Fundamentals of Software Engineering
(FSEN’07). Lecture Notes in Computer Science (to appear)

18. Longuet, D., Aiguier, M.: Specification-based testing for CoCasl’s modal specifica-
tions. Technical report, IBISC - Université d’Évry-Val d’Essonne (2007) Available
at http://www.ibisc.fr/~dlonguet/publications_gb.html

19. Bernot, G.: Testing against formal specifications: a theoretical view. In: Abramsky,
S. (ed.) TAPSOFT 1991, CCPSD 1991, and ADC-Talks 1991. LNCS, vol. 494, pp.
99–119. Springer, Heidelberg (1991)

20. Hennicker, R., Wirsing, M., Bidoit, M.: Proof systems for structured specifications
with observability operators. Theoretical Computer Science 173(2), 393–443 (1997)

21. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Sci-
ence 249, 3–80 (2000)

22. Schröder, L., Mossakowski, T.: Coalgebraic modal logic in CoCasl. In: Recent
Trends in Algebraic Specification Techniques (WADT’06). LNCS, vol. 4409, pp.
128–142 (2007)

23. Machado, P.: Testing from structured algebraic specifications. In: Rus, T. (ed.)
AMAST 2000. LNCS, vol. 1816, pp. 529–544. Springer, Heidelberg (2000)

http://www.ibisc.fr/~dlonguet/publications_gb.html

CIRC: A Circular Coinductive Prover�

Dorel Lucanu1 and Grigore Roşu2

1 Faculty of Computer Science
Alexandru Ioan Cuza University, Iaşi, Romania

dlucanu@info.uaic.ro
2 Department of Computer Science

University of Illinois at Urbana-Champaign, USA
grosu@cs.uiuc.edu

Abstract. CIRC is an automated circular coinductive prover imple-
mented as an extension of Maude. The circular coinductive technique
that forms the core of CIRC is discussed, together with a high-level im-
plementation using metalevel capabilities of rewriting logic. To reflect
the strength of CIRC in automatically proving behavioral properties, an
example defining and proving properties about infinite streams of infinite
binary trees is shown. CIRC also provides limited support for automated
inductive proving, which can be used in combination with coinduction.

1 Introduction

Behavioral abstraction in algebraic specification appears under various names in
the literature such as hidden algebra [5], observational logic [8], swinging types
[11], coherent hidden algebra [2], hidden logic [12], and so on. Most of these
approaches appeared as a need to extend algebraic specifications to ease the
process of specifying and verifying designs of systems and also for various other
reasons, such as, to naturally handle infinite types1, to give semantics to the
object paradigm, to specify finitely otherwise infinitely axiomatizable abstract
data types, etc. The main characteristic of these approaches is that sorts are split
into visible (or observational) for data and hidden for states, and the equality is
behavioral, in the sense that two states are behaviorally equivalent if and only if
they appear to be the same under any visible experiment.

Coalgebraic bisimulation [9] and context induction [7] are sound proof tech-
niques for behavioral equivalence. Unfortunately, both need human interven-
tion: coinduction to pick a “good” bisimulation relation, and context induction
to invent and prove lemmas. Circular coinduction [3,12] is an automatic proof
technique for behavioral equivalence. By circular coinduction one can prove, for
example, the equality zip(zeros, ones) = blink on streams as follows (zeros is the
stream 0ω, ones is 1ω, blink is (01)ω, zip merges two streams):

� This work is partially supported by the CNCSIS project 1162/2007, by grants NSF
CCF-0448501 and NSF CNS-0509321, and by Microsoft Research gifts.

1 I.e., types whose values are infinite structures.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 372–378, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

CIRC: A Circular Coinductive Prover 373

1. check that the two streams have the same head, 0;
2. take the tail of the two streams and generate the new goal zip(ones, zeros) =

1:blink; this becomes the next task;
3. check that the two new streams have the same head, 1;
4. take the tail of the two new streams; after simplification one gets the new

goal zip(zeros, ones) = blink, which is nothing but the original proof task;
5. conclude that zip(zeros, ones) = blink holds.

The intuition for the above “proof” is that the two streams have been exhaus-
tively tried to be distinguished by iteratively checking their heads and taking
their tails. Ending up in circles (we obtained the same new proof task as the
original one) means that the two streams are indistinguishable, so equal.

Circular coinduction can be explained and proved correct by reducing it to
either bisimulation or context induction: it iteratively constructs a bisimulation,
but it also discovers all lemmas needed by a context induction proof. Since the
behavioral equivalence problem is Π0

2 -complete even for streams [13], there is no
algorithm complete for behavioral equality in general, as well as no algorithm
complete for inequality of streams. Therefore, the best we can do is to focus our
efforts on exploring heuristics or deduction rules to prove or disprove equalities
of streams that work well on examples of interest rather than in general.

BOBJ [3,12] was the first system supporting circular coinduction. Hausmann,
Mossakowski, and Schröder [6] also developed circular coinductive techniques
and tactics in the context of CoCASL. In this paper we propose CIRC, an au-
tomated circular coinductive prover implemented in Full Maude as a behavioral
extension of the Maude system [1], making heavy use of meta-level and reflection
capabilities of rewriting logic. Maude is by now a very mature system, with many
uses, a high-performance rewrite engine, and a broad spectrum of analysis tools.
Maude’s current meta-level capabilities were not available when the BOBJ sys-
tem was developed; consequently, BOBJ was a heavy system, with rather poor
parsing and performance. By allowing the entire Maude system visible to the
user, CIRC inherits all Maude’s uses, performance and analysis tools.

CIRC implements the circularity principle, which generalizes circular coinduc-
tive deduction [4] and can be informally described as follows (a formalization
of this principle, together with the related technical details will be discussed
elsewhere). Assume that each equation of interest (to be proved) e admits a
frozen form fr(e), which is an equation associated to e defined possibly over an
extended signature, and a set Der(e) of equations, also defined possibly over an
extended signature, called its derivatives. The circularity principle requires that
the following rule be valid: if from the hypotheses H together with fr(e) we can
deduce Der(e), then e is a consequence of H. When fr (e) freezes the equation at
the top as in [4], the circularity principle becomes circular coinduction. Interest-
ingly, when the equation is frozen at the bottom on a variable, then it becomes a
structural induction (on that variable) derivation rule. This way, CIRC supports
both coinduction and induction as projections of a more general principle. In
this paper, we concentrate only on CIRC’s coinductive capabilities.

374 D. Lucanu and G. Roşu

2 Behavioral Algebraic Specifications

We assume the reader familiar with algebraic specification and Maude [1]. Here
we intuitively present behavioral algebraic specification using an example. Infi-
nite binary trees can be specified using three behavioral operations (observers):
node(T) returning the information from the root of T , left(T) and right(T)
returning the left child and the right child of T , respectively. Examples of
experiments for the sort BTree of infinite binary trees are node(*:BTree),
node(left(*:BTree)), node(right(*:BTree)), and so on. The sort BTree is
called hidden, and the sort Elt (i.e., the result sort of node) is called visible
w.r.t. BTree. The result sort of the experiments is always visible. We next define
a “mirror” operation over infinite binary trees. We further consider streams
of infinite binary trees. A stream is specified by two behavioral operations:
hd(S) returning the first element of stream S (in our case an infinite binary
tree), and tl(S) returning the stream obtained by removing the first element of
S. Examples of stream experiments are hd(*:TStream), hd(tl(*:TStream)),
hd(tl(tl(*:TStream))), and so on. Note that BTree is visible w.r.t. TStream.
We define the following stream operations: a constructor cons(T, S) inserting
the tree T in front of S, blink(T1, T2) defining the stream (T1, T2, T1, T2, . . .), and
const(T) defining the constant stream (T, T, T, . . .). These infinite data struc-
tures can be defined in Full Maude as follows:

(th TSTREAM is
sorts Elt BTree TStream .
var S : TStream . var E : Elt .
vars T T1 T2 : BTree .
ops left right : BTree -> BTree .
op node : BTree -> Elt .
op mirror : BTree -> BTree .
eq left(mirror(T)) =

mirror(right(T)) .
eq right(mirror(T)) =

mirror(left(T)) .
eq node(mirror(T)) = node(T) .
op hd : TStream -> BTree .

op tl : TStream -> TStream .
op cons : BTree TStream -> TStream .
eq hd(cons(T, S)) = T .
eq tl(cons(T, S)) = S .
op blink : BTree BTree -> TStream .
eq hd(blink(T1, T2)) = T1 .
eq tl(blink(T1, T2)) =

cons(T2, blink(T1,T2)) .
op const : BTree -> TStream .
eq hd(const(T)) = T .
eq tl(const(T)) = const(T) .

endth)

Trees T1, T2 are behaviorally equivalent iff node(T1)= node(T2), node(left(T1))
= node(left(T2)), node(right(T1))= node(right(T2)), and so on. Similarly,
streams S1 and S2 are behaviorally equivalent iff hd(S1) = hd(S2), hd(tl(S1))
= hd(tl(S2)), hd(tl(tl(S1))) = hd(tl(tl(S2))), and so on. For instance,
mirror(mirror(T)) and T are behaviorally equivalent. We write TSTREAM |≡
mirror(mirror(T)) = T . Also, TSTREAM |≡ blink(S, S) = S.

Hence, a behavioral specification is an algebraic specification together with
a specified subset of behavioral operators, which are used to define the crucial
notion of behavioral equivalence as “indistinguishability under experiments.”

CIRC: A Circular Coinductive Prover 375

3 CIRC

We here describe the underlying proving technique of CIRC and show how one
can use the system. The CIRC prover can be downloaded from its website at [10].

As already mentioned, CIRC implements what we call “the principle of cir-
cularity,” which generalizes both structural induction and circular coinduction,
and which will be discussed in more detail elsewhere. We here only focus on its
coinductive instance. Circular coinduction [3,12,4] is a sound proof calculus for
|≡, which can be defined as an instance of the principle of circularity as follows:

– for any sort s, let us extend the signature with a new operation fr : s → new,
where new is a new sort;

– for each equation e of the form “(∀X) t = t′ if c,” let
• fr(e) be the equation “(∀X)fr(t) = fr(t′) if c,” which we call the

“frozen” form of e; and
• Der(e) be the set of equations {(∀X) fr (δ[t/∗:h]) = fr(δ[t′/∗:h]) if c |

δ behavioral for h = sort(t)}, which we call the “derivatives” of e.

We say that fr(e) “freezes e at the top” in the context of coinduction; this freezing
operation ensures the sound use of the coinduction hypotheses in the procedure
below, because it prevents the application of congruence inference steps [12,4].
We take the liberty to also call fr(e) visible when e is visible.

Any automatic proving procedure based on circular coinduction is parametric
in a procedure for equational deduction. In CIRC we use the standard rewriting-
based semi-decision procedure to derive equations “(∀X) t = t′ if c”: add the
variables X as constants, then add the conditions in c to the set of equations,
and then reduce t, t′ to their normal forms nf(t) and nf(t′), respectively, orienting
all the equations into rewrite rules. In what follows we let E � e denote the fact
that e can be deduced from E using this standard approach (E is any set of
equations). By E �� e we mean “knowingly incapable of proving it,” that is, that
the rewrite engine reduced the two terms to normal forms, but those were not
equal. Obviously, this does not necessarily mean that the equation is not true.

Suppose that B is a behavioral specification whose equations form a set E
and that e is an equation to prove. CIRC takes B and e as input and aims at
proving B |≡ e. CIRC maintains and iteratively reduces a pair of sets of equa-
tions of the form (E , G), where E is the set of equations that are assumed to
hold and G is the set of “goals,” that is, the set of equations that still need
to be proved. Therefore, CIRC aims at reducing the pair (E, fr(e)) to a pair
of the form (E ′, ∅), i.e., one whose set of goals is empty. If successful, then
B |≡ e; moreover, (the unfrozen variants of) all the equations in E ′ are be-
havioral consequences of B. While trying to perform its task, CIRC’s proce-
dure can also fail, in which case we conclude that it could not prove B |≡ e, or
it can run forever. Here are the reduction rules currently supported by CIRC:

376 D. Lucanu and G. Roşu

[Equational Reduction] :
(E , G ∪ {fr(e)}) ⇒ (E , G) if E � fr(e)

[Coinduction Failure] :
(E , G ∪ {fr(e)}) ⇒ fail if E �� fr(e) and e is visible

[Circular Coinduction] :
(E , G ∪ {fr(e)}) ⇒ (E ∪ {nf(fr(e))}, G ∪ Der(e)) if E �� fr(e) and e is hidden.

nf(e) denotes the equation e whose left-hand and right-hand sides are reduced to
normal forms. [Equational Reduction] removes a goal if it can be proved using
ordinary equational reduction. [Coinduction Failure] says that the procedure
fails whenever it finds a visible goal which cannot be proved using ordinary
equational reduction. Finally, [Circular Coinduction] implements the circularity
principle: when a hidden equation cannot be proved using ordinary equational
reduction, its frozen form (its normal form is an equivalent variant) is added to
the specification and its derivatives are added to the set of goals.

The termination of the CIRC procedure above, i.e., reaching of a configuration
of the form (E ′, ∅), is not guaranteed. Since the behavioral entailment problem
is Π0

2 [12,13], we know that there can be no procedure to decide behavioral
equalities or inequalities in general.

The remainder of this section shows, by means of our example with streams
of infinite trees, how CIRC can be used in practice. Since a behavioral speci-
fication includes more information than a usual Full Maude specification, we
designed an interface allowing the user to introduce behavioral operations, case
sentences, goals, and CIRC commands. A typical scenario of using CIRC is as
follows. The objects whose behavioral properties are investigated are described
using Full Maude specifications, like the module TSTREAM given above. Note that
a Full Maude specification does not explicitly say which are the behavioral oper-
ations. Therefore we consider a new type of module, delimited by the keywords
cmod and endcm, used to describe the behavioral specifications. Such a module
includes importing commands (for object specifications), behavioral operation
(derivatives) declarations, and case sentences (not discussed here):

(cmod B-TSTREAM is
importing TSTREAM .
derivative left(*:BTree) right(*:BTree) node(*:BTree) .
derivative hd(*:TStream) derivative tl(*:TStream) .

endcm)

To prove blink(mirror(mirror(T)), T) = const(T), we introduce it as a new goal:

Maude>(add goal blink(mirror(mirror(T:BTree)),T:BTree)=const(T:BTree) .)
Goal blink(mirror(mirror(T:BTree)),T:BTree) = const(T:BTree) added.

Then we can specify the tactic we want CIRC to use; for example:

Maude> (coinduction .)
Maude> rewrites: ... (ommited for space reasons)
Proof succeeded.

CIRC: A Circular Coinductive Prover 377

This command triggers the iterative execution of the three reduction rules. This
property requires two coinduction proofs: one for streams and the other one
for infinite trees. Note that the technique in [6] fails to automatically prove
the above property because the user must explicitly tell the system where the
second coinduction proof starts. Since the termination is not guaranteed, the
“coinduction” tactic can also be given a depth (no depth needed here).

Several other examples have been experimented with in CIRC and can be
found and run on CIRC’s webpage at [10], including the following: proving behav-
ioral equalities, i.e., language equivalence of regular expressions extended with
complement; proving a series of known properties of infinite streams and opera-
tions on them; proving properties of powerlists; proving equivalent definitions of
Fibonacci numbers equivalent; proving non-trivial properties about the Morse
sequence; proving inductive and coinductive properties about finite or infinite
trees. In all these examples, the important property to prove has been captured
as an equation to be entailed by a specification extended with derivatives.

4 Conclusion

We presented CIRC, an automated prover supporting the principle of circularity
and in particular circular coinduction. CIRC is implemented as an extension
of Maude using its metalevel programming capabilities. An example was also
discussed, reflecting the strength of CIRC in automatically proving behavioral
properties. The technical details and proofs will be discussed elsewhere.

Acknowledgment. We warmly thank Andrei Popescu for help with the imple-
mentation of the first version of CIRC and for ideas on combining induction and
coinduction via the principle of circularity, and to the anonymous referees for
insightful comments.

References

1. Clavel, M., Durán, F.J., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and Programming in Rewriting Logic. Theoretical
Computer Science 285, 187–243 (2002), Also extended Maude manual available at
http://maude.csl.sri.com, http://maude.cs.uiuc.edu

2. Diaconescu, R., Futatsugi, K.: Behavioral coherence in object-oriented algebraic
specification. JUCS 6(1), 74–96 (2000)

3. Goguen, J., Lin, K., Roşu, G.: Circular coinductive rewriting. In: Proceedings
of Automated Software Engineering 2000, pp. 123–131. IEEE Computer Society
Press, Los Alamitos (2000)

4. Goguen, J., Lin, K., Roşu, G.: Conditional circular coinductive rewriting with
case analysis. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) Recent Trends
in Algebraic Development Techniques. LNCS, vol. 2755, pp. 216–232. Springer,
Heidelberg (2003)

5. Goguen, J., Malcolm, G.: A hidden agenda. J. of TCS 245(1), 55–101 (2000)

http://maude.csl.sri.com
http://maude.cs.uiuc.edu

378 D. Lucanu and G. Roşu

6. Hausmann, D., Mossakowski, T., Schröder, L.: Iterative circular coinduction for
CoCASL in Isabelle/HOL. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp.
341–356. Springer, Heidelberg (2005)

7. Hennicker, R.: Context induction: a proof principle for behavioral abstractions.
Formal Aspects of Computing 3(4), 326–345 (1991)

8. Hennicker, R., Bidoit, M.: Observational logic. In: Haeberer, A.M. (ed.) AMAST
1998. LNCS, vol. 1548, pp. 263–277. Springer, Heidelberg (1998)

9. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bulletin of
the European Association for Theoretical Computer Science 62, 222–259 (1997)

10. Lucanu, D., Roşu, G.: CIRC prover http://fsl.cs.uiuc.edu/index.php/Circ
11. Padawitz, P.: Swinging data types: Syntax, semantics, and theory. In: Haveraaen,

M., Dahl, O.-J., Owe, O. (eds.) Recent Trends in Data Type Specification. LNCS,
vol. 1130, pp. 409–435. Springer, Heidelberg (1996)

12. Roşu, G.: Hidden Logic. PhD thesis, University of California at San Diego (2000)
13. Roşu, G.: Equality of streams is a Π0

2 -complete problem. In: the 11th ACM SIG-
PLAN Int. Conf. on Functional Programming (ICFP’06), ACM Press, New York
(2006)

http://fsl.cs.uiuc.edu/index.php/Circ

Observing Distributed Computation.

A Dynamic-Epistemic Approach

Radu Mardare

Microsoft Research - University of Trento
Centre for Computational and Systems Biology, Trento, Italy

mardare@cosbi.eu

Abstract. We propose a new logic designed for modelling and reasoning
about information flow and information exchange between spatially lo-
cated interconnected agents witnessing a distributed computation. The
intention is to trace the process of knowledge acquisition and its dy-
namics in the context of distributed systems. Underpinning on the dual
algebraical-coalgebraical characteristics of process calculi, we design a
decidable and completely axiomatized logic that combines the process-
algebraical/equational and the modal/coequational features and is de-
veloped for process-algebraical semantics.

1 Introduction

Observation is fast becoming an important topic in computer science. In which
manner can observation (in the broad sense of the word) be used for computing?
In which way can the partial information available to an external observer of a
computational system be used in deriving knowledge about the overall complete
system? We will approach these problems by developing a logic designed to
handle (partial) information flow and information exchange between external
observers (agents) of a distributed system.

In the context of (parallel) distributed computation, a concurrent computa-
tional system can be thought of as being composed of a number of modules, i.e.
spatially localized and independently observable units of behavior and compu-
tation (e.g. programs or processors running in parallel), organized in networks
of subsystems and being able to interact, collaborate, communicate and inter-
rupt each other. In this context we shall consider agents - external observers of
the modules. As an external observer, an agent witnesses the computation of
its module and interacts with the whole system only by means of it. Thus it
derives its knowledge about the overall system from the observed behavior of
its subsystem and from epistemic reasoning on the knowledge (and reactions) of
the other agents witnessing (different) parts of the same computational process.

In this context we are interested in specifying when agents can receive, com-
municate or protect truthful information, when they improve their knowledge,
when they are aware of the knowledge of the others and how they can con-
struct strategies for influencing the others knowledge. Hence, the problem is

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 379–393, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

380 R. Mardare

related to issues of privacy, trust, secured communications, authentication, etc.
covering many different areas, with potential applications: in Secure Communi-
cation (checking privacy and authentication for given communication protocols
by studying the knowledge acquisition strategies that an intruder might take),
in Debugging and Performance analysis (checking for the cause of errors or of
high computational costs in systems where only some modules are accessible),
in Artificial Intelligence (endowing artificial agents with good and flexible tools
to reason about their changing environment and about each other), in designing
and improving strategies for knowledge acquisition over complex networks (such
as the Internet), etc.

In approaching this problem we have chosen the process-algebraical represen-
tation of (mobile) distributed systems and we developed a logic of information
flow for process-algebraical semantics. Taking process calculi as semantics is the-
oretically challenging due to their dual algebraical/coalgebraical nature. While
the algebraical features of processes are naturally approached in equational fash-
ion (that reflects, on logical level, the program constructors), the coalgebraical
features (intrinsically related to transition systems via the denotational and the
operational semantics of process calculi) ask for a modal/coequational treatment.
The modal approach is also needed for the epistemic reasoning.

Consequently, our paper combines two logical paradigms to information flow
in distributed systems: dynamic-epistemic (and doxastic) logics [14,9,12], seman-
tically based on epistemic-doxastic Kripke models; and the spatial logics for con-
currency [6], for which the semantics is usually given in terms of process algebra.

Epistemic/doxastic logics [14,9] are multimodal logics that formalize the epis-
temic notions of knowledge, or belief, possessed by an agent, or a group of agents,
using modalities indexed by agents. We have modalities like KAφ (“A knows that
φ”) or �Aφ (“A justifiably believes that φ”) for any agent A. The models asso-
ciate to each basic modality a binary relation interpreted as “indistinguishability”
relation A−→ for each agent A. It expresses the agent’s uncertainty about the
current state of the system. The states s′ such that s

A−→ s′ are the epistemic
alternatives of s to agent A, i.e. if the current state is s, A thinks that any of
the alternatives s′ may be the current state.

Dynamic logics [12] are closer to process calculi as they have names for “pro-
grams”, or “actions”, and ways to combine them. In this case we have modalities
indexed on a signature A (the set of programs). A dynamic modality [π]φ cap-
tures the weakest precondition of such a program w.r.t. a given post-specification
φ, and the accessibility relations are interpreted as transitions induced by pro-
grams. These logics already combine the coalgebraical features (modalities) with
algebraical ones (the modalities have algebraic structures: programs are built us-
ing basic program constructors such as sequential composition or iteration).

Dynamic Epistemic Logics [1,2,11,3,8] are a class of logics that combine the
dynamic and epistemic formalisms for specifying properties of evolving knowl-
edge and beliefs in dynamic systems. The high level of expressivity reaches here
a low complexity (decidability and complete axiomatizations).

Observing Distributed Computation. A Dynamic-Epistemic Approach 381

Spatial Logics. Process semantics for modal logics can be considered as a special
case of Kripke semantics, since, via transition systems, we can structure a class
of processes as a Kripke model, by endowing it with accessibility relations in-
duced by action transitions. Further we can use the standard clauses of Kripke
semantics (e.g. Hennessy-Milner logic [13]). In addition, temporal, mobile and
concurrent features have been added [22,7,20]. Spatial Logics [6] are the most
expressive logics in this class containing equational operators to express spatial
properties, such as the parallel operator φ|ψ and the guarantee operator φ � ψ
(the adjoint of parallel), or operators for expressing the “fresh name features”
inspired by the Gabbay-Pitts quantifier [10], etc.

The intention of this paper is to develop and study a logic that combines these
two paradigms proposing a unified one. The new logic combines well with the
process algebraical modelling of information flow and can directly express agent-
dependent partial information features and their dynamics. We give a spatial in-
terpretation of epistemic modalities in CCS. The intuition is to associate to each
“agent” A the process P that describes the behavior of the module observed by
A. The agent observing a process (possibly running in parallel with many other
processes) “knows” only the activity and actions of its own process. “Knowledge”
is thus defined as “information (about the overall, global process) that is locally
available (to an agent)”. In effect, this organizes any class M of processes (thought
of as “states”) as an epistemic Kripke model, with indistinguishability relations

A−→ for each agent A. Thus, if A observes the subprocess P then P |P ′ A−→ P |P ′′

for any P ′, P ′′. Since these are equivalence relations, we obtain a notion of “(truth-
ful) knowledge”. The resulting Kripke modality, KAφ, read “agent A knows φ”,
holds at a given state (process) R iff the process P is active (as a subprocess) at
R and property φ holds in any context in which P is active.

The resulting logic is completely axiomatizable and decidable. The Hilbert-
style axiomatics we propose for it presents this logic as an authentic dynamic-
epistemic logic. The classical axioms of knowledge will be present in our system
together with spatial-like axioms.

1.1 Case Study: A Security Attack

For illustrating the problem we approach in this paper, we propose a toy example:
a simplified “Man-in-the-Middle” type of cryptographic attack. Alice wants to
communicate to Bob a secret over some communication channel. More concrete,
she wants to inform Bob that a certain event p happened. Before receiving the
message from Alice, Bob considers both alternatives, p and ¬p equally possible.
For communicating, Alice uses a key k to encrypt her messages while Bob (and
only Bob) knows how to decrypt them (k)1. But the communication channel is
not secure: an evil outsider, Eve, has also access and her purpose is to make

1 In a public-key cryptographic implementation, one could think of k as being Bob’s
public key, while k is Bob’s private key (for decryption). In a different context, k
might be Alice’s password for communicating with Bob, which can only be authen-
ticated by Bob using k.

382 R. Mardare

Bob believe ¬p. Suppose that Eve is also in possession of k (either because k
was Bob’s public key, or because Eve has somehow succeeded to steal Alice’s
password). Hence, she can present herself as Alice and is trying to convince Bob
that ¬p. The communication of the secret event fails if Bob believes that the
received message was from Alice and consequently ¬p happened. In fact Eve
manipulated Bob.

We are not concerned here primarily with the cryptographic details of the
encryption method, but with the informational, “epistemic” features of this pro-
tocol. The main goal of it is to understand the epistemic status of the agents
involved. What does Alice know? What does Bob know? What does Alice think
that Bob knows? Does Alice know that her communication was unsuccessful?
Does Eve know that her attack was successful? In which way the evolution of
the system (of the processes involved) influences the information state of the
agents? For proving the success or the failure of the protocol one has to show
how Bob’s knowledge can be influenced by Eve’s actions and what can be done
in order to avoid this.

One can use process algebras to describe such a scenario and logics for processes
to specify properties of this protocol. But for answering to the previous questions,
a way of arguing directly on the epistemic status of the agents is needed. We will
prove further that despite of the apparent complexity of the epistemic reasoning
on such frameworks there is a general approach that can formalize in a decidable
manner the agents’ reasoning in the above situation.

2 On Processes

In this section we introduce a fragment of CCS [19] calculus, that is “the core” of
process calculi and will be used for defining the process-algebraical semantics for
the logic. For the proofs of the results presented in this section and for additional
results on this subject, the reader is referred to [16,18].

2.1 CCS Processes

Definition 1. Let A be a denumerable signature. The syntax of the calculus is
given by a grammar with one non-terminal symbol P and the productions P :=
0 | α.P | P |P , where α ∈ A. We denote by P the language generated by this gram-
mar. We call the elements of A (basic) actions and the objects in P processes.

Definition 2. Let ≡⊆ P × P be the smallest equivalence relation on P s.t.
• (P, |, 0) is a commutative monoid with respect to ≡;
• if P ′ ≡ P ′′ then α.P ′ ≡ α.P ′′ and P ′|P ≡ P ′′|P , for any α ∈ A and P ∈ P.
We call ≡ structural congruence.

Definition 3. We call a process P guarded if P ≡ α.Q for some α ∈ A. We
denote P 0 def= 0 and P k def= P |...|P︸ ︷︷ ︸

k

.

Observing Distributed Computation. A Dynamic-Epistemic Approach 383

Definition 4. We consider, on P, the labelled transition system defined by the

rules in Table 1. We denote P −→ Q if P
α−→ Q or P

(α,α)−→ Q for some α ∈ A.

Table 1. The transition system

α.P
α−→ P

P ≡ Q P
α−→ P ′

Q
α−→ P ′

P
α−→ P ′

P |Q α−→ P ′|Q
P

α−→ P ′ Q
α−→ Q′

P |Q (α,α)−→ P ′|Q

We write P
Q:α−→ P ′ whenever P ≡ Q|R, P ′ ≡ Q′|R and Q

α−→ Q′. We write

P |Q P :α,Q:α−→ P ′|Q′ to denote the case when P
P :α−→ P ′ and Q

Q:α−→ Q′. We call
(Q : α) and (P : α, Q : α) composed actions.

Definition 5. We define for any process P , its set of actions Act(P) ⊂ A:

1.Act(0)
def
= ∅ 2.Act(α.P)

def
= {α} ∪ Act(P) 3.Act(P |Q)

def
= Act(P) ∪ Act(Q)

For M ⊂ P we define Act(M)
def
=

⋃
P∈M Act(P).

Definition 6. We call action substitution any mapping σ : A −→ A. We extend
it, syntactically, to processes, σ : P −→ P, by

1. σ(0)
def
= 0 2. σ(P |Q)

def
= σ(P)|σ(Q) 3. σ(α.P)

def
= σ(α).σ(P)

Let act(σ)
def
= {α, β ∈ A | α 	= β, σ(α) = β} and for M ⊂ P, σ(M)

def
=

{σ(P) | P ∈ M}.

We will also use Mσ, P σ for denoting σ(M) and σ(P).

2.2 Size of a Process

Definition 7. The size �P � = (h, w) of a process P ∈ P is given by:

1. �0�
def
= (0, 0)

2. �P �
def
= (h, w) iff P ≡ (α1.Q1)k1 |...|(αj .Qj)kj with αi.Qi 	≡ αj .Qj for i 	= j,

where h = 1 + max(h1, .., hk), w = max(k1, .., kj , w1, .., wj) for �Qi� = (hi, wi).
We write (h1, w1) ≤ (h2, w2) for h1 ≤ h2 and w1 ≤ w2 and (h1, w1) < (h2, w2)
for h1 < h2 and w1 < w2.

The intuition is that the size (h, w) of a process is given by the depth of its
syntactic tree (height h) and by the maximum number of bisimilar processes
that can be found in a node of the syntactic tree (width w). By construction,
the size of a process is unique up to structural congruence.

Definition 8. For a set M ⊂ P we define2
�M�

def
= max{�P � | P ∈ M}.

2 The size of a set of processes is not always well-defined. An infinite set, for example,
might not have the maximum required. However we will use this definition only
where it is well-defined.

384 R. Mardare

2.3 Structural Bisimulation

We introduce the structural bisimulation, a relation on processes that is an ap-
proximation of the structural congruence defined on size. It analyzes the behavior
of a process focusing on a boundary of its syntactic tree. This relation is similar
with the pruning relation proposed in [4].

Definition 9. Let P, Q ∈ P. We define P ≈w
h Q inductivelly by:

P ≈w
0 Q always

P ≈w
h+1 Q iff ∀i ∈ 1..w and ∀α ∈ A we have

• if P ≡ α.P1|...|α.Pi|P ′ then Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w
h Qj, j = 1..i

• if Q ≡ α.Q1|...|α.Qi|Q′ then P ≡ α.P1|...|α.Pi|P ′ with Qj ≈w
h Pj, j = 1..i

We call ≈w
h structural bisimulation on dimension (h, w).

Proposition 1. ≈w
h is a congruence relation on processes having the properties:

1.(Antimonotonicity) if P ≈w
h Q and (h′, w′) ≤ (h, w) then P ≈w′

h′ Q.
2.(Inversion) if P ′|P ′′ ≈w1+w2

h Q then Q ≡ Q′|Q′′ and P ′ ≈w1
h Q′, P ′′ ≈w2

h Q′′.

Proposition 2. 1. If �P � ≤ (h, w) and �P ′
� ≤ (h, w) then P ≈w

h P ′ iff P ≡ P ′.
2. If P ≈w

h Q and �P � < (h, w) then P ≡ Q.

Hence, for a well-chosen size which depends on the processes involved, the struc-
tural bisimulation guarantees the structural congruence. Reverse, the structural
congruence implies the structural bisimulation.

Proposition 3 (Behavioral simulation). Let P ≈w
h Q.

1. If P
α−→ P ′ then there exists a transition Q

α−→ Q′ s.t. P ′ ≈w−1
h−1 Q′.

2. If �R� < (h, w) and P
R:α−→ P ′ then Q

R:α−→ Q′ and P ′ ≈w−1
h−1 Q′.

This states that the structural bisimulation is preserved by transitions with the
price of decreasing the size.

2.4 Bound Pruning Processes

In this subsection we prove that for a given process P and a given size (h, w)
we can always find a process Q, having the size at most equal with (h, w), such
that P ≈w

h Q. We will present a method for constructing Q from P , by pruning
the syntactic tree of P to the given size.

Theorem 1 (Bound pruning theorem). For any process P ∈ P and any size
(h, w) there exists a process Q ∈ P with P ≈w

h Q and �Q� ≤ (h, w).

Proof. We construct 3 Q inductively on h.
Case h = 0: we take Q ≡ 0, as P ≈w

0 Q and �0� = (0, 0).
Case h + 1: suppose P ≡ α1.P1|...|αn.Pn.

Let P ′
i be the result of pruning Pi by (h, w) (the inductive step of construction)

3 This construction is not necessarily unique.

Observing Distributed Computation. A Dynamic-Epistemic Approach 385

and P ′ ≡ α1.P
′
1|...|αn.P ′

n. As for any i = 1..n we have Pi ≈w
h P ′

i (by the induc-
tive hypothesis), we obtain, using Proposition 1, that αi.Pi ≈w

h+1 αi.P
′
i , hence

P ≈w
h+1 P ′. Consider now P ′ ≡ (β1.Q1)k1 |...|(βm.Qm)km . Let li = min(ki, w) for

i = 1..m. Further we define Q ≡ (β1.Q1)l1 |...|(βm.Qm)lm . Obviously Q ≈w
h+1 P ′

and as P ≈w
h+1 P ′, we obtain P ≈w

h+1 Q. By construction, �Q� ≤ (h + 1, w).

Definition 10. For a process P and a tuple (h, w) we denote by P(h,w) the
process obtained by pruning P to the size (h, w) by the method described in the
proof of Theorem 1.

3 Sets of processes

In this section we study the closed sets of processes that will play an essential role
in proving the finite model property for the logic we will introduce. Intuitively,
a closed set of processes is a set that whenever contains a process contains also
any future “state” of that process and any “observable” subpart of it (what an
observer might see from it). Syntactically this means that whenever we have a
process in a closed set, we will also have all the processes that can be obtained
by arbitrarily pruning the syntactic tree of our process. For the proofs of the
results presented in this section the reader is referred to [18].

Definition 11. For M, N ⊂ P and α ∈ A we define:
α.M

def
= {α.P | P ∈ M} M |N def

= {P |Q | P ∈ M, Q ∈ N}.

Definition 12. For P ∈ P we define π(P) ⊂ P inductively by:

1. π(0)
def
= {0} 2. π(α.P)

def
= {0} ∪ α.π(P) 3. π(P |Q)

def
= π(P)|π(Q)

We extend the definition of π to sets of processes M ⊂ P by π(M)
def
=

⋃
P∈M π(P).

Thus, we associate to each process P the set π(P) of all processes obtained by
arbitrarily pruning the syntactic tree of P .

Definition 13. A set of processes M ⊆ P is closed if it satisfies the conditions
1. if P ∈ M and P −→ P ′ then P ′ ∈ M 2. if P ∈ M then π(P) ⊂ M.
We say that M is the closure of M ⊂ P if M is the smallest closed set of
processes that contains M . We write M = M.
For any closed set M and any (h, w) we define M(h,w)

def
= {P(h,w) | P ∈ M}.

For A ⊂ A we define MA
(h,w)

def
= {M ⊂ P | Act(M) ⊆ A, �M� ≤ (h, w)}.

Lemma 1. If A ⊂ A is a finite set of actions, then the following hold:
1. If M ∈ MA

(h,w) then M is a finite closed set of processes.
2. MA

(h,w) is finite.

The previous result shows that the set of closed sets of processes with actions
from a given finite signature A and dimension not bigger than (h, w) is finite.

386 R. Mardare

Definition 14. Let M, N ⊂ P be closed sets. We write M ≈w
h N iff

1. for any P ∈ M there exists Q ∈ N with P ≈w
h Q

2. for any Q ∈ N there exists P ∈ M with P ≈w
h Q

We write (M, P) ≈w
h (N , Q) when P ∈ M, Q ∈ N , P ≈w

h Q and M ≈w
h N .

Further we state that having a closed set M with actions from A and a dimension
(h, w) we can always find, in the finite set MA

(h,w), a closed set N structural
bisimilar with M at the dimension (h, w).

Proposition 4. For any closed set of processes M, and any size (h, w) we have
M(h,w) ≈h

w M.

Theorem 2 (Bound pruning theorem). Let M be a closed set of processes.
Then for any (h, w) there is a closed set N ∈ M

Act(M)
(h,w) such that M ≈w

h N .

4 The Logic LA
A

In this section we introduce the logic LA
A

with multimodal operators indexed
by “epistemic agents” from a signature A and by “transition actions” from a
signature A. The proofs of the results presented further can be consulted in [18].

4.1 Syntax of LA
A

Definition 15. Consider a set A and its extension A+ generated, for arbitrary
α ∈ A and e ∈ A, by E := e | α.E | E|E. In addition, on A+ it is defined the
smallest congruence relation ≡ for which | is commutative and associative. We
call the ≡-equivalence classes of A+ epistemic agents and we call atomic agents
the classes corresponding to elements of A. For E ∈ A+ we denote by E its
≡-equivalence class.
A society of agents is a set A of epistemic agents satisfying the conditions

1. if E1|E2 ∈ A then E1, E2 ∈ A 2. if α.E ∈ A then E ∈ A
Hereafter we denote by A, A′, A1, ... arbitrary epistemic agents and we consider
the canonical extension of the operators | and α. from A+ to the epistemic agents.

Definition 16. Let A be a society of epistemic agents defined for the set A of
actions. We define the language FA

A
of LA

A
, for A, A′ ∈ A and α ∈ A by:

φ := 0 | | ¬φ | φ ∧ φ | φ|φ | 〈a〉φ | KAφ, where
〈a〉 := 〈α〉 | 〈α, α〉 | 〈A : α〉 | 〈A, A′ : α〉.

4.2 Process Semantics

A formula of FA
A

will be evaluated to processes in a given closed set of processes,
by using the satisfaction relation M, P |= φ.

Observing Distributed Computation. A Dynamic-Epistemic Approach 387

Definition 17. A model of LA
A

is a pair (M, I) where M is a closed set of
processes and I : (A, |, α.) −→ (M, |, α.) a homomorphism4 of structures such
that I(A) = 0 iff A = e for some e ∈ A.

We denote P
I(A):α−→ Q by P

A:α−→ Q and P
(I(A):α,I(B):α)−→ Q by P

A,B:α−→ Q. Let
A

A = A∪{(α, α) | α ∈ A}∪{(A : α), (A, A′ : α) | α ∈ A, A, A′ ∈ A} and a ∈ A
A

an arbitrary element. For P ∈ M and φ ∈ FA
A

we define M, P |= φ by:
M, P |= always.
M, P |= 0 iff P ≡ 0.
M, P |= ¬φ iff M, P � φ.
M, P |= φ ∧ ψ iff M, P |= φ and M, P |= ψ.
M, P |= φ|ψ iff P ≡ Q|R and M, Q |= φ, M, R |= ψ.
M, P |= 〈a〉φ iff there exists a transition P

a−→ P ′ such that M, P ′ |= φ.
M, P |= KAφ iff P ≡ I(A)|R and for all I(A)|R′ ∈ M we have M, I(A)|R′ |= φ.

Definition 18 (Derived operators). In addition to the classical boolean op-
erators, we introduce other derived operators:

1
def
= ¬((¬0) | (¬0)) α.ψ

def
= (〈α〉ψ) ∧ 1

[a]φ
def
= ¬(〈a〉(¬φ))

∼
KAφ

def
= ¬KA¬φ.

We use the precedence order ¬, KA, 〈a〉, |, ∧ , ∨ , → for the operators, where ¬
has precedence over all.

The semantics of the derived operators will be:
M, P |= [a]φ iff for any transition P

a−→ P ′ (if any) we have M, P ′ |= φ
M, P |= 1 iff P ≡ 0 or P ≡ α.Q
M, P |= α.φ iff P ≡ α.Q and M, Q |= φ

M, P |=
∼
KAφ iff either P 	≡ I(A)|R for any R, or ∃I(A)|S ∈ M such that

M, I(A)|S |= φ

Remark the interesting semantics of the operators KA and
∼
KA for A ∈ I−1(0):

M, P |= KAφ iff ∀Q ∈ M we have M, Q |= φ

M, P |=
∼
KAφ iff ∃Q ∈ M such that M, Q |= φ

Hence KAφ and
∼
KAφ for an atomic agent A encode, in syntax, the validity and

the satisfiability with respect to a given model.

4.3 Bounded Finite Model Property

Definition 19. The sizes of a formula (height and width) �φ� = (h, w) w.r.t.
the homomorphism I is given inductively in Table 2.

Lemma 2. If �φ� = (h, w), M, P |= φ and (M, P) ≈w
h (N , Q) then N , Q |= φ.

Hence φ is “sensitive” via satisfaction only up to size �φ�. In other words, the
relation M, P |= φ is conserved by substituting the pair (M, P) with any other
4 The function I associates to each agent the process it observes. An atomic agent

sees always the process 0.

388 R. Mardare

Table 2. Sizes of formulas

Suppose �φ� = (h, w), �ψ� = (h′, w′), �I(A)� = (hA, wA) and �I(A,)� = (hA′ , wA′),
then
1.�0� = ���

def
= (0, 0) 2.�¬φ�

def
= �φ� 3.�φ ∧ ψ�

def
= (max(h, h′), max(w,w′))

4.�φ|ψ�
def
= (max(h, h′), w + w′) 5.�〈α〉φ� = �〈α, α〉φ�

def
= (1 + h, 1 + w)

6.�〈A : α〉φ�
def
= (1 + max(h, hA), 1 + max(w,wA))

7.�KAφ�
def
= (1 + max(h, hA), 1 + max(w,wA))

8.�〈A, A′ : α〉φ�
def
= (1 + max(h, hA, hA′), 1 + max(w,wA, wA′))

pair (N, P) structurally bisimilar to it at the size �φ�. Using this result, we con-
clude that if a process satisfies φ w.r.t. a given closed set of processes, then
by pruning the process and the closed set on the size �φ�, we preserve the sat-
isfiability for φ. Indeed the theorems 1 and 4 prove that if �φ� = (h, w) then
(M, P) ≈h

w (M�φ�, P�φ�). Hence M, P |= φ implies M�φ�, P�φ� |= φ.

Definition 20. The set of actions of a formula φ is defined in Table 3.

Table 3. The set of actions of a formula

1. act(0) = act(�)
def
= ∅ 5. act(φ ∧ ψ) = act(φ|ψ)

def
= act(φ) ∪ act(ψ)

2. act(〈α〉φ)
def
= {α} ∪ act(φ) 6. act(〈A : α〉φ) = act(KAφ)

def
= Act(I(A)) ∪ act(φ)

3. act(¬φ) = act(φ) 7. act(〈A, A′ : α〉φ)
def
= Act(I(A)) ∪ Act(I(A′)) ∪ act(φ)

4. act(〈α, α〉φ)
def
= {α, α} ∪ act(φ)

The next result states that a formula φ does not reflect properties that involve
more then the actions in its syntax. Thus if M, P |= φ then any substitution σ
having the elements of act(φ) as fix points preserves the satisfaction relation.

Lemma 3. If M, P |= φ and σ a substitution with act(σ)
⋂

act(φ) = ∅ then
Mσ, P σ |= φ.

Consider a lexicographical order � on A. For a finite set B ⊂ A there exists a
unique maximal element. We denote by B+ the set obtained by adding to B the
successor, w.r.t. �, of its maximal element.

Lemma 4 (Finite model property). If M, P |= φ then ∃N ∈ M
act(φ)+
�φ� and

Q ∈ N such that N , Q |= φ.

Because act(φ) is finite, Theorem 1 states that M
act(φ)+
�φ� is finite and any closed

set M ∈ M
act(φ)+
�φ� is finite as well. Thus we obtain the finite model property

for our logic. A consequence of theorem 4 is the decidability for satisfiability,
validity and model checking against the process semantics.

Observing Distributed Computation. A Dynamic-Epistemic Approach 389

Theorem 3 (Decidability). For LA
A

validity, satisfiability and model checking
are decidable against process semantics.

4.4 Characteristic Formulas

In this subsection we use the peculiarities of the dynamic and epistemic operators
to define characteristic formulas for processes and for finite closed sets of processes.

Definition 21. Consider the class of logical formulas indexed by (≡-equivalence
classes of) processes FP = {(fP) | P ∈ P} defined as follows5:

1. f0
def
= 0 2. fP |Q

def
= fP |fQ 3. fα.P

def
= α.fP

Proposition 5. fP is a characteristic formula for P , i.e. M, P |= fQ iff P ≡ Q.

Definition 22. Consider the class of logical formulas indexed by epistemic agents
FA defined as follows6: Similarly we introduce a class of logical formulas (fA)A∈A,
on epistemic agents

1. fA
def
= 0 if A is atomic agent 2. fA1|A2

def
= fA1 |fA2 3. fα.A

def
= α.fA

Proposition 6. M, P |= fA iff P ≡ I(A).

Definition 23. Let Φ ⊂ FA be a finite set of formulas and A ∈ A an atomic

agent. Let ΔΦ
def
= KA(

∨
φ∈Φ φ) ∧ (

∧
φ∈Φ

∼
KAφ).

Observe that M, P |= ΔΦ iff for any Q ∈ M there exists φ ∈ Φ such that
M, Q |= φ and for any φ ∈ Φ there exists Q ∈ M such that M, Q |= φ. Observe
also that it is irrelevant which atomic agent A we choose to define Δ, as the
epistemic operators of any atomic agent can encode validity and satisfiability.

Further we exploit the semantics of this operator for defining characteristic
formulas for finite closed sets of processes.

Definition 24. For a finite closed set of processes M let fM = Δ{fP | P ∈ M}.

Proposition 7. If M, N are finite closed sets of processes and P ∈ M then
M, P |= fN iff N = M.

4.5 Axiomatic System

Consider the subset of logical formulas given by f := α.0 | α.f | f |f for α ∈ A.
We denote the class of these formulas by F7. Hereafter we use f, g, h for denoting
arbitrary formulas from F , while φ, ψ, ρ will be used for formulas in FA

A
.

Proposition 8. F ∪ {0} = FP.

In table 4 is proposed a Hilbert-style axiomatic system for LA
A
. We assume the ax-

ioms and the rules of propositional logic. In addition we have a set of spatial axioms

390 R. Mardare

Table 4. The axiomatic system LA
A

Spatial axioms
S1:
 �|⊥ → ⊥
S2:
 (φ|ψ)|ρ → φ|(ψ|ρ)
S3:
 φ|0 ↔ φ

S4:
 φ|(ψ ∨ ρ) → (φ|ψ) ∨ (φ|ρ)
S5:
 φ|ψ → ψ|φ
S6:
 (f ∧ φ|ψ) →

∨
f↔g|h(g ∧ φ)|(h ∧ ψ)

Spatial rules
SR1: If
 φ → ψ then
 φ|ρ → ψ|ρ
Dynamic axioms
D1:
 〈a〉φ|ψ → 〈a〉(φ|ψ)
D2:
 [a](φ → ψ) → ([a]φ → [a]ψ)

D3:
 0 ∨ 〈!α〉� → [β]⊥, for α �= β
D4:
 〈!α〉φ → [α]φ

Dynamic rules

DR1: If
 φ then
 [a]φ
DR2: If
 φ1 → [a]φ′

1 and
 φ2 → [a]φ′
2

then
 φ1|φ2 → [a](φ′
1|φ2 ∨ φ1|φ′

2)
Epistemic axioms
E1:
 KAφ ∧ KA(φ → ψ) → KAψ
E2:
 KAφ → φ
E3:
 KAφ → KAKAφ

E4:
 KA� → (¬KAφ → KA¬KAφ)
E5:
 KA� ↔ fA|�

Axioms involving atomic agents A0 ∈ A
E6:
 KAφ ↔ (KA� ∧ KA0(KA� → φ))
E7:
 KA0φ ∧ ψ|ρ → (KA0φ ∧ ψ)|(KA0φ ∧ ρ)

E8:
 KA0φ → [a]KA0φ
E9:
 KA0φ → (KA� → KAKA0φ)

Epistemic rules
ER1: If
 φ then
 KA� → KAφ
Mixed axioms
M1:
 〈A : α〉� → KA�
M2:
 fA → (〈α〉φ ↔ 〈A : α〉φ)

M3:
 〈A : α〉φ ∧ 〈A|A′ : α〉� → 〈A|A′ : α〉φ
M4:
 〈A : α〉φ|〈A′ : α〉ψ → 〈A, A′ : α〉(φ|ψ)

Mixed rules
MR1: If
 (

∨
M∈M

act(φ)+
�φ�

fM) → φ then
 φ

and rules, of dynamic axioms and rules and of epistemic axioms and rules. We will
also have a class of mixed axioms and rules that combine different operators.

Observe that the disjunctions in axiom S6 and in the rule MR1 are finitary.

Definition 25. We say that a formula φ ∈ FA is provable in LA
A

if φ can be
derived, as a theorem, using the axioms and the rules of LA

A
. We denote this by

� φ. We say that a formula φ ∈ FA
A

is consistent in LA
A

if ¬φ is not LA
A
-provable.

We call a formula φ ∈ FA
A

satisfiable if there exists a context M and a process
P ∈ M such that M, P |= φ. We call a formula φ ∈ FA

A
validity if for any

context M and any process P ∈ M we have M, P |= φ. In such a situation we
write |= φ.

Theorem 4 (Soundness). The system LA
A

is sound w.r.t. process semantics,
i.e. if � φ then |= φ.

Theorem 5 (Completeness). The axiomatic system of LA
A

is complete w.r.t.
process semantics, i.e. if |= φ then � φ.
5 Note that FP ⊂ FA

A .
6 Note that FA ⊂ FA

A .
7 By construction, F ⊂ FA

A .

Observing Distributed Computation. A Dynamic-Epistemic Approach 391

The proof of this theorem uses the characteristic formulas for processes and
finite closed sets and consists in proving the equivalence equivalence between
M, P |= φ and � fM ∧ fP → φ.

5 Formalizing the Security Scenario

We return to the security scenario proposed in subsection 1.1 and we will use
CCS to encode the process and the logic to analyze it. The entire process can
be represented as the process P ≡ k.α.A | k.(α.P ′|β.P ′′) | k.β.E, where P ′ is
interpreted as “event p happened” while P ′′ as “event ¬p happened”. k.α.A is
the process of Alice, k(α.P ′|β.P ′′) is Bob’s and k.β.E is the process of Eve. We
associate to Alice three epistemic agents, A1, A2, A3 that represent the three
successive states of Alice in our scenario. Similarly E1, E2, E3 are the agents
representing different instances of Eve, while B1, B2, B3, B4 represent instances
of Bob. The model is given by M = {P} and the interpretation I in Table 5.

Table 5. The interpretation of epistemic agents

Alice Bob Eve

I(A1) = k.α.A I(B1) = k.(α.P ′|β.P ′′).β.E I(E1) = k.β.E

I(A2) = α.A I(B2) = α.P ′|β.P ′′ I(E2) = β.E

I(A3) = A I(B3) = P ′|β.P ′′ I(E3) = E
I(B4) = α.P ′|P ′′

Now we can express that Alice and Bob can recognize each other and that
Alice can inform Bob about p by M, P |= 〈A1, B1 : k〉〈A2, B2 : α〉(P ′|).

But Bob can also communicate with Eve, as Eve has the encryption key:
M, P |= 〈A1, E1 : k〉〈A2, E2 : α〉(P ′′|).

Alice knows that she can communicate with Bob, using the key k, and as a
result Bob will be informed about the event p: M, P |= KA1〈k〉〈α〉(P ′|). But
if Alice is aware of the possibility of an attack she cannot be sure that, after
she sent the messages to Bob, Bob does know that p happened; it might be the
case that Bob did not receive Alice’s message and that he communicated instead
with the impersonator:
M, P |= ¬[k][α]KA3(P ′|) or M, P |= 〈k〉〈α〉¬KA3KB3(P ′|).

Alice knows that Bob knows that p happened only if Bob did the two com-
munications with her: M, P |= KA1〈A1, B1 : k〉〈A2, B2 : α〉KB3(P ′|).

Before communication Bob knows only that whatever Alice will say it will be
true: M, P |= KB1 [A1, B1 : k][A2, B2 : α].

Eve knows that she can present herself as Alice (i.e. can send k) but she can
be sure that will communicate with Bob:
M, P |= KE1〈E1 : k〉 and M, P |= ¬KE1〈E1, B1〉

In the same way we can express many complex properties. Further we can use
model checking or theorem proving to play with such properties.

392 R. Mardare

6 Concluding Remarks and Future Works

In this paper we introduced a new dynamic-epistemic logic, LA
A
, with a process-

algebraical semantics that combines well with process algebraical modelling of in-
formation flow, but that can also directly express agent-dependent partial infor-
mation features and their dynamics. This logic is meant to be used for expressing
properties of multiagent distributed systems. In this respect the society of agents
A came with an algebraical structure that depicts the distribution of the mod-
ules which are observed by the agents. In expressing this we used operators from
spatial logics together with operators characteristic for dynamic-epistemic logics.

The logic is presented with a complete and decidable axiomatic system con-
taining similar axioms with the logics it combines.

With respect to dynamic-epistemic logics, the novelty of our logic consists in
assuming an algebraical structure on the class of agents. Thus, we can speak
about the knowledge of agents A′, A′′ but also about the knowledge of the agent
A′|A′′ which subsumes the knowledge of A′, of A′′, and the knowledge derived
from the fact that what A′ and A′′ see are modules running in parallel as parts
of the same system.

With respect to logics for processes (spatial logics), our logic focuses on agents
and their knowledge proposing a direct way of encoding epistemic properties that
are relevant for many applications and which, using the logics of processes only
can be encoded in a difficult or unnatural way. Thus we can trace the evolution of
the agent’s knowledge and we can express properties concerning their dynamics.
Such properties are important e.g. in analyzing communication protocols where
the success of a protocol depends on the knowledge of the agents involved.

References

1. Baltag, A., Moss, L.S.: Logics for Epistemic Programs. Synthese 139(2) (2004)
2. Baltag, A., Moss, L.S., Solecki, S.: The Logic of Public Announcements. Common

Knowledge and Private Suspicions, CWI Tech. Rep. SEN-R9922 (1999)
3. van Benthem, J.F.A.K.: Logic for information update. In: Proc. of TARK’01 (2001)
4. Calcagno, C., Cardelli, L., Gordon, A.D.: Deciding validity in a spatial logic for

trees. Journal of Functional Programming 15 (2005)
5. Caires, L., Lozes, E.: Elimination of Quantifiers and Decidability in Spatial Log-

ics for Concurrency. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS,
vol. 3170, Springer, Heidelberg (2004)

6. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part I). Information and
Computation 186(2) (2003)

7. Dam, M.: Model checking mobile processes. Information and Computation 129(1)
(1996)

8. van Ditmarsch, H.: Knowledge games. Bull. of Economic Research 53(4) (2001)
9. Fagin, R., et al.: Reasoning about Knowledge. MIT Press, Cambridge (1995)

10. Gabbay, M., Pitts, A.: A New Approach to Abstract Syntax Involving Binders.
Formal Aspects of Computing 13(3-5), 341–363 (2002)

11. Gerbrandy, J., Groeneveld, W.: Reasoning about information change. Journal of
Logic, Language and Information 6 (1997)

Observing Distributed Computation. A Dynamic-Epistemic Approach 393

12. Harel, D., et al.: Dynamic Logic. MIT Press, Cambridge (2000)
13. Hennessy, M., Milner, R.: Algebraic laws for Nondeterminism and Concurrency.

Journal of JACM 32(1) (1985)
14. Hintikka, J.: Knowledge and Belief, Ithaca, N.Y.: Cornell University Press (1962)
15. Mardare, R.: Logical analysis of Complex Systems. Dynamic Epistemic Spatial

Logics, Ph.D. thesis, DIT, University of Trento (2006)
16. Mardare, R., Priami, C.: Decidable extensions of Hennessy-Milner Logic. In: Najm,

E., Pradat-Peyre, J.F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229,
Springer, Heidelberg (2006)

17. Mardare, R., Priami, C.: Dynamic Epistemic Spatial Logics, Technical Report, 03/,
Microsoft Research Center for Computational and Systems Biology, Trento, Italy
(2006) available from http://www.cosbi.eu

18. Mardare, R.: Dynamic-Epistemic reasoning on distributed systems, Technical Re-
port 2007, Microsoft Research Center for Computational and Systems Biology,
Trento, Italy (2006) available from http://www.cosbi.eu

19. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag, New York,
Inc. (1982)

20. Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. TCS 114
(1993)

21. Sangiorgi, D.: Extensionality and Intensionality of the Ambient Logics. In: Proc.
of the 28th ACM Annual Symposium on Principles of Programming Languages
(2001)

22. Stirling, C.: Modal and temporal properties of processes. Springer-Verlag, New
York, Inc. (2001)

http://www.cosbi.eu
http://www.cosbi.eu

Nabla Algebras and Chu Spaces

Alessandra Palmigiano and Yde Venema�

Universiteit van Amsterdam, ILLC
Plantage Muidergracht 24

1018 TV Amsterdam, Netherlands

Abstract. This paper is a study into some properties and applications
of Moss’ coalgebraic or ‘cover’ modality ∇.

First we present two axiomatizations of this operator, and we prove
these axiomatizations to be sound and complete with respect to basic
modal and positive modal logic, respectively. More precisely, we intro-
duce the notions of a modal ∇-algebra and of a positive modal ∇-algebra.
We establish a categorical isomorphism between the category of modal
∇-algebra and that of modal algebras, and similarly for positive modal
∇-algebras and positive modal algebras.

We then turn to a presentation, in terms of relation lifting, of the Vi-
etoris hyperspace in topology. The key ingredient is an F-lifting construc-
tion, for an arbitrary set functor F, on the category Chu of two-valued
Chu spaces and Chu transforms, based on relation lifting.

As a case study, we show how to realize the Vietoris construction
on Stone spaces as a special instance of this Chu construction for the
(finite) power set functor. Finally, we establish a tight connection with
the axiomatization of the modal ∇-algebras.

Keywords: coalgebra, relation lifting, modal algebra, Vietoris hyper-
space, Chu space.

1 Introduction

This paper is a study into the algebraic properties of the coalgebraic modal
operator ∇, and some of its applications. The connective ∇ takes a finite1 set Φ
of formulas and returns a single formula ∇Φ. Using the standard modal language,
∇ can be seen as a defined operator:

∇Φ = �(
∨

Φ) ∧
∧

�Φ, (1)

where �Φ denotes the set {�ϕ | ϕ ∈ Φ}.
Readers familiar with classical first-order logic will recognize the quantifica-

tion pattern in (1) from the theory of Ehrenfeucht-Fräıssé games, Scott sen-
tences, and the like, see [9] for an overview. In modal logic, related ideas made
� The research of both authors has been made possible by VICI grant 639.073.501 of

the Netherlands Organization for Scientific Research(NWO).
1 In this paper we restrict to the finitary version of the operator.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 394–408, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Nabla Algebras and Chu Spaces 395

an early appearance in Fine’s work on normal forms [8]. As far as we know,
however, the first explicit occurrences of the nabla connective appeared roughly
at the same time, in the work of Barwise & Moss on circularity [4], and that
of Janin & Walukiewicz on automata-theoretic approaches towards the modal
μ-calculus [10].

The semantics of the nabla modality can be explicitly formulated as follows,
for an arbitrary Kripke structure S with accessibility relation R:

S, s � ∇Φ if for all ϕ ∈ Φ there is a t ∈ R[s] with S, t � ϕ, and
for all t ∈ R[s] there is a ϕ ∈ Φ with S, t � ϕ.

(2)

In other words, the semantics of ∇ can be expressed in terms of the relation
lifting of the satisfaction relation between states and formulas:

S, s � ∇Φ iff (R[s], Φ) ∈ P(�). (3)

This insight, which is nothing less than a coalgebraic reformulation of modal
logic, led Moss [14] to the introduction of coalgebraic logic, in which (3) is general-
ized to an (almost) arbitrary set functor F by introducing a coalgebraic operator
∇F, and interpreting it using the relation lifting F(�) of the forcing relation.

In this paper we want to look at ∇ as an algebraic operator in its own right.
Our motivation for undertaking such a study, besides a natural intellectual cu-
riosity, was twofold: firstly, we hope that such a study might be a first step in the
direction of a ‘coalgebraic proof theory’ (we’ll come back to this towards the end
of this paper). And second, we belief that a thorough algebraic understanding
of the nabla operator might shed light on power lifting constructions, such as
the Vietoris hyperspace construction in topology. Let us address these issues in
some more detail, and on the way explain what we believe to be the contribution
of this paper.

Concerning the algebraic properties, the main issue that we address concerns
axiomatizations. We were interested in axiomatizing the properties of the nabla
operator in terms that only refer to ∇ itself and its interaction with the Boolean
connectives, but which does not involve the non-coalgebraic modalities � and
�. As we will see in the next section, such an ‘intrinsic’ axiomatization is indeed
possible. A remarkable feature of our axiomatization is that it is largely inde-
pendent of the Boolean negation, so that its natural algebraic setting is that of
positive modal algebras [7]. On the other hand, the nabla operator for the power
set functor interacts reasonably well with the complementation operator, so that
in fact we obtain two sound and complete axiomatizations for ∇, one in the set-
ting of positive modal logic, and one in the setting of classical (i.e., Boolean)
modal logic. Both of these results are formulated in terms of an isomorphism
between categories of algebras.

The connection between the nabla operator and powering constructions in
topology [13] is less obvious — we confine our attention to the Vietoris hy-
perspace. Formulations of the Vietoris hyperspace construction involving modal
logic are well-known [11,18], and the importance of the Vietoris construction
on the interface of coalgebra and modal logic has already been the object of a

396 A. Palmigiano and Y. Venema

number of studies [1,12,15,6]. Indeed, one may argue that the coalgebras of the
Vietoris endofunctor on Stone spaces provide an adequate semantics for all modal
logics since there is an isomorphism between the category of these coalgebras,
and the category of the descriptive general frames known in modal logic [12].
Here, however, we take a slightly different angle. Our goal was to somehow define
the Vietoris hyperspace construction in a way that would be relevant and use-
ful for coalgebraic applications and that would only refer to category-theoretic
properties of the power set functor. Analogous to Moss’ coalgebraic approach
to modal logic, this might enable one to generalize the Vietoris construction to
arbitrary set functors. The key idea in our approach is to formulate the Vietoris
construction in terms of the relation lifting ∈ := P(∈) of the membership relation
between points and (open/closed/clopen) sets.

As it turned out, Chu spaces provide a natural setting for this. A Chu space
is a triple S = 〈X, S, A〉 consisting of two sets X and A, together with a binary
relation2 S ⊆ X × A. In itself, the connection with Chu spaces should not come
as a big surprise: as we will show in more detail further on, we may read (3)
as saying that the semantics of ∇ itself can be seen as a Chu transform, that
is, an arrow in the category Chu. In section 3, we give F-lifting constructions on
Chu spaces for arbitrary endofunctors F on Set. The main desiderata of these
constructions are functoriality and preservation of the full subcategory of normal
Chu spaces (see Definition 8 below). Since the latter is not met in general, we also
introduce a normalization functor on Chu spaces. We show that if F preserves
weak pullbacks, then its associated lifting construction, and also the finite version
of it, are functorial on Chu spaces. Then, as a case study in section 4, we show
how to realize the Vietoris construction on Stone spaces as a special instance of
this Chu construction for the (finite) power set functor (Theorem 4).

Finally, the two parts of the paper come together in Theorem 5, which estab-
lishes a tight connection between the Vietoris construction and the axiomatiza-
tion of the modal ∇-algebras.

2 An Axiomatization of ∇

In the introduction we mentioned that the nabla operator enables a coalgebraic
reformulation of standard modal logic. The aim of this section is to substantiate
this claim.

First of all, while we introduced the nabla operator as an abbreviation in the
language of standard modal logic, for a proper use of the word ‘reformulation’,
we need of course interdefinability of the nabla operator on the one hand, and
the standard modal operators on the other. It is in fact an easy exercise to prove
that with the semantics of ∇ as given by (2), we have the following semantic
equivalences:

2 We restrict attention to two-valued Chu spaces in this paper. In fact, these structures
are known from the literature under various names, including topological systems [18]
and classifications [5].

Nabla Algebras and Chu Spaces 397

�ϕ ≡ ∇{ϕ, 	}
�ϕ ≡ ∇∅ ∨ ∇{ϕ} (4)

In other words, the standard modalities � and � can be defined in terms of the
nabla operator (together with ∨ and).

Taken together, (1) and (4) show that on the semantic level of Kripke struc-
tures, the language with the nabla operator is indeed a reformulation of standard
modal logic. This naturally raises the question whether this equivalence can also
be expressed axiomatically. That is, we are interested in the question whether
we may impose natural conditions which characterize those nablas that behave
like the ‘real’ ones defined using (1). From the semantic interdefinability of ∇
with respect to � and �, it follows that a ‘roundabout’ axiomatization of the
nabla operation is possible. However, it is of course much more interesting to
try and find a more ‘direct’ axiomatization, in terms of the intrinsic properties
of the nabla operator, and its interaction with the Boolean connectives.

A good starting point for this would be to look for validities, i.e., ∇-formulas
that are true in every state of every Kripke structure, or, equivalently, for pairs of
equivalent formulas. As an example of such an equivalence, we give an interesting
distributive law; for a concise formulation we need the notion of relation lifting.

Definition 1. Given a relation Z ⊆ A × A′, define its power lifting relation
PZ ⊆ PA × PA′ as follows:

PZ := {(X, X ′) | for all x ∈ X there is an x′ ∈ X ′ with (x, x′) ∈ Z
& for all x′ ∈ X ′ there is an x ∈ X with (x, x′) ∈ Z}.

We say that Z ⊆ A× A′ is full on A and A′, notation: Z ∈ A �� A′, if (A, A′) ∈
PZ. Observe that as a special case, ∅ �� A = ∅ if A �= ∅, while ∅ �� ∅ = {∅}
(i.e., the empty relation is full on ∅ and ∅).

The distributive law that we mentioned concerns the following equivalence, which
holds for arbitrary sets of formulas Φ, Φ′:

∇Φ ∧ ∇Φ′ ≡
∨

Z∈Φ��Φ′

∇{ϕ ∧ ϕ′ | (ϕ, ϕ′) ∈ Z}. (5)

For a proof of (5), first suppose that S, s � ∇Φ∧∇Φ′. Let Zs ⊆ Φ×Φ′ consist
of those pairs (ϕ, ϕ′) such that the conjunction ϕ ∧ ϕ′ is true at some successor
t ∈ R[s]. It is then straightforward to derive from (2) that Zs is full on Φ and Φ′,
and that S, s � ∇{ϕ ∧ ϕ′ | (ϕ, ϕ′) ∈ Zs}. The converse direction follows fairly
directly from the definitions.

We have now arrived at one of the key definitions of the paper, namely that of
nabla algebras. Here we provide the desired direct axiomatization of the nabla
operator.

Definition 2. A structure A = 〈A, ∧, ∨, 	, ⊥, ∇〉 is a positive modal ∇-algebra
if its lattice reduct A� := 〈A, ∧, ∨, 	, ⊥〉 is a distributive3 lattice and ∇ : Pω(A)→
A satisfies the laws ∇1 – ∇6 below. Here Greek lower case letters refer to finite
subsets of A.
3 In this paper with a ‘lattice’ we shall always mean a bounded lattice.

398 A. Palmigiano and Y. Venema

∇1. If αP(≤)β, then ∇α ≤ ∇β,
∇2. If ⊥ ∈ α, then ∇α = ⊥,
∇3. ∇α ∧ ∇β ≤

∨
{∇{a ∧ b | (a, b) ∈ Z} | Z ∈ α �� β},

∇4. If 	 ∈ α ∩ β, then ∇{a ∨ b | a ∈ α, b ∈ β} ≤ ∇α ∨ ∇β,
∇5. ∇∅ ∨ ∇{	} = 	,
∇6. ∇α ∪ {a ∨ b} ≤ ∇(α ∪ {a}) ∨ ∇(α ∪ {b}) ∨ ∇(α ∪ {a, b}).

A structure A = 〈A, ∧, ∨, 	, ⊥, ¬, ∇〉 is a modal ∇-algebra if 〈A, ∧, ∨, 	, ⊥, ¬〉
is a Boolean algebra and the structure satisfies, in addition to the axioms ∇1 –
∇6 above, the following

∇7. ¬∇α = ∇{
∧

α, 	} ∨ ∇∅ ∨
∨

{∇{a} | a ∈ α}.

The category of (positive) modal ∇-algebras with homomorphisms is denoted as
(P)MA∇.

Remark 1. It is not hard to see that the following formulas can be derived from
the axioms ∇1 – ∇6:

∇3′. If α �= ∅, then ∇∅ ∧ ∇α = ⊥,
∇3n.

∧n
i=1 ∇αi ≤

∨
{∇Z∧ | Z ∈

⊙
i αi},

where, for a finite collection αi of finite subsets of A,
⊙

i αi := {Z ⊆ Πiαi |
πi[Z] = αi for every i}, and, for Z ∈

⊙
i αi, Z∧ := {

∧
i ai : (ai)i∈I ∈ Z},

∇6′. ∇α = ∇α ∪ {
∨

α},

For instance, ∇3′ follows by instantiating β with the empty set in ∇3, and ∇3n

is just the n-ary version of ∇3 and can be shown by induction on n. Recall from
Definition 1 that ∅ �� α = ∅ in this case, and

∨
∅ = ⊥.

Definition 3. A structure A = 〈A, ∧, ∨, 	, ⊥, �, �〉 is a positive modal algebra
if the lattice reduct A� := 〈A, ∧, ∨, 	, ⊥〉 is a distributive lattice, and �, � are
unary operations on A that satisfy the following axioms:

�(a ∨ b) = �a ∨ �b �⊥ = ⊥
�(a ∧ b) = �a ∧ �b �	 = 	
�a ∧ �b ≤ �(a ∧ b)
�(a ∨ b) ≤ �a ∨ �b
A modal algebra is an algebra A = 〈A, ∧, ∨, 	, ⊥, ¬, �, �〉 such that A� :=

〈A, ∧, ∨, 	, ⊥, ¬〉 is a Boolean algebra and the operations � and � satisfy, in
addition to the axioms above:

¬�a = �¬a.
We let MA and PMA denote the categories of modal algebras (positive modal

algebras, respectively) as objects, and algebraic homomorphisms as arrows.

Definition 4. Let A be a positive modal algebra (modal algebra, respectively).
Then we let A∇ denote the structure 〈A�, ∇)〉, where ∇ is defined using (1).

Conversely, if B is a positive modal ∇-algebra (modal ∇-algebra, respectively),
we let B� denote the structure 〈B�, �, �〉, where � and � are defined using (4).

We let both (·)∇ and (·)� operate as the identity on maps, i.e., f∇ := f and
f� := f whenever applicable.

Nabla Algebras and Chu Spaces 399

Theorem 1. The functors (·)∇ and (·)� establish a categorical isomorphism
between the categories PMA and PMA∇, and between the categories MA and
MA∇.

Proof. We restrict ourselves to a proof of the following two claims, for an arbi-
trary positive modal ∇-algebra A:

1. A� is a positive modal algebra;
2. (A�)∇ ∼= A.

1. ∇2 implies that �⊥ = ⊥.
∇3 instantiated with α = {a} and β = {b} yields �a ∧ �b = �(a ∧ b).
∇4 instantiated with α = {a, 	} and β = {b, 	} yields �a ∨ �b = �(a ∨ b).
∇5 says that �	 = 	.
∇6 instantiated with α = ∅ yields that ∇{a∨b} ≤ ∇{a}∨∇{b}∨∇{a, b}. Since

{b}P(≤){b, 	} and {a, b}P(≤){b, 	}, then by ∇1, ∇{b} ∨ ∇{a, b} ≤ ∇{b, 	}.
Hence ∇{a∨b} ≤ ∇{a}∨∇{b, 	}, from which we get �(a∨b) ≤ �a∨�b. In order
to show that �a∧�b ≤ �(a∧ b) we need to show that (∇{a}∨∇∅)∧∇{b, 	} ≤
∇{a ∧ b, 	}.

(∇{a} ∨ ∇∅) ∧ ∇{b, 	} = [∇{a} ∧ ∇{b, 	}] ∨ [∇∅ ∧ ∇{b, 	}]
= [∇{a} ∧ ∇{b, 	}] ∨ ⊥ (∇3′)
= ∇{a ∧ b, a ∧ 	} (∇3)
≤ ∇{a ∧ b, 	} (∇1)

The last inequality holds since {a∧b, a}P(≤){a∧b, 	}. This completes the proof
that A� is a positive modal algebra.

2. We need to show that ∇ coincides with the operator ∇̃ associated with the
∇-induced modal operators. For every finite subset α of A,

∇̃α = [∇{
∨

α} ∨ ∇∅] ∧
∧

{∇{a, 	} : a ∈ α}
=

∧
{[∇{

∨
α} ∨ ∇∅] ∧ ∇{a, 	} : a ∈ α}

=
∧

{[∇{
∨

α} ∧ ∇{a, 	}] ∨ [∇∅ ∧ ∇{a, 	}] : a ∈ α}
=

∧
{[∇{

∨
α} ∧ ∇{a, 	}] ∨ ⊥ : a ∈ α} (∇3′)

=
∧

{[∇{
∨

α, a}] : a ∈ α} (∇3)
=

∨
{∇Z∧ : Z ∈

⊙
a∈α{

∨
α, a}} (∇3n)

= ∇α ∪ {
∨

α} (∗)
= ∇α (∇6′)

Let us show the (∗)-marked equality: let α = {ai, i = 1 . . . , n} for every i, let
βi = {

∨
α, ai}. Then consider the following relation:

Z = {(bi)i ∈ Πiβi : for at most one i, bi �=
∨

α}.

Then Z∧ = {
∨

α, a1, . . . , an}, and moreover it is not difficult to see that for every
W ∈

⊙
i βi, the pair (W∧, Z

∧
) belongs to the relation P(≤), so the statement

follows by ∇1. ��

Remark 2. As an easy corollary of Theorem 1, we can obtain a completeness
result for modal logic formulated in terms of the nabla operator.

400 A. Palmigiano and Y. Venema

Finally, in section 4 we will need the construction which can be seen as a kind
of power set lifting of a Boolean algebra A. Following terminology and notation
of [18], in the definition below we present a Boolean algebra by generators and
relations.

Definition 5. Let A be a Boolean algebra. Then

BA〈 {∇α | α ∈ PωA} : ∇1 − ∇7 〉

presents a Boolean algebra that we shall denote as AP.

In words, AP is the Boolean algebra we obtain as follows: first freely generate a
Boolean algebra by taking the set {∇α | α ∈ PωA} as generators, and then take
a quotient of this algebra, by identify those elements that can be proven equal
on the basis of the relations (axioms) ∇1–∇7. In section 4 we will see a different
characterization of this algebra: Theorem 5 states that AP is in fact isomorphic
to the algebra of clopens of the Vietoris hyperspace of the Stone space which is
dual to A.

3 Chu Spaces and Their Liftings

Chu spaces [16] unify a wide range of mathematical structures, including rela-
tional, algebraic and topological ones. Surprisingly this degree of generality can
be achieved with a remarkably simple form of structure. As we mentioned al-
ready, in this paper we will only enter a small part of Chu territory since we
restrict attention to two-valued Chu spaces. These can be defined as follows.

Definition 6. A (two-valued) Chu space is a triple S = 〈X, S, A〉 consisting of
two sets X and A, together with a binary relation S ⊆ X × A. Elements of X
are called objects or points, and elements of A, attributes; the relation S is the
matrix of the space. Given two Chu spaces S′ = 〈X ′, S′, A′〉 and S = 〈X, S, A〉, a
Chu transform from S′ to S is a pair (f, f ′) of functions f : X ′ → X, f ′ : A → A′

that satisfy the (generalized) adjointness condition

f(x′)Sa ⇐⇒ xS′f ′(a). (6)

for all x′ ∈ X ′ and a ∈ A. We let Chu denote the category with Chu spaces as
objects and Chu transforms as arrows.

As a motivating example of a Chu transform, consider once more the semantics
of ∇. One may read (3) above as saying that the pair (R[·] : S → P(S), ∇ :
Pω(Fma) → Fma) is a Chu transform from the Chu space (S, �,Fma) to its
power set lifting (PS, P(�), Pω(Fma)). In a slogan: the semantics of ∇ is an
arrow in the category Chu of Chu spaces and Chu transforms.

Clearly, the generalized adjointness condition specializes to adjointness in the
right context, for example if partial orders 〈P, ≤, 〉 are represented as the Chu
spaces 〈P, ≤, P 〉, then the Chu transforms between two such structures are ex-
actly tuples of residuated maps.

Nabla Algebras and Chu Spaces 401

Definition 7. Any Chu space S = 〈X, S, A〉 gives rise to an order on X, the
specialization order �S, defined as follows: x �S y iff for every a ∈ A (xSa ⇒
ySa). The specialization order then induces the following equivalence relation
≡S on X: x ≡S y iff x �S y and y �S x, i.e. iff for every a ∈ A (xSa ⇔ ySa).

Normal Chu Spaces. A prominent role within Chu, from the point of view of
logic, is played by the so-called normal Chu spaces. Normal Chu spaces provide
a general and uniform setting for algebraic, set-based and topological semantics
of propositional logics.

Definition 8. A Chu space S = 〈X, S, A〉 is normal if A ⊆ P(X) and S is the
membership relation restricted to A, that is, xSa iff x ∈ a. NChu denotes the
full subcategory of Chu based on these normal spaces.

To mention an important example, any Stone space X = 〈X, τ〉 can be repre-
sented as SX = 〈X, ∈, C〉, C being the Boolean algebra of the clopen subsets in
τ . Then a map f between Stone spaces is continuous exactly when (f, f−1) is a
Chu transform between their associated Chu spaces. In fact, any Chu transform
from one normal Chu space to another is of the form (f, f−1).

Since not all our constructions on Chu spaces preserve normality, we shall
need a normalization operation on Chu spaces.

Definition 9. Given a Chu space S = 〈X, S, A〉 define the map ES : A → P(X)
by putting ES(a) := S−1[a], that is:

ES(a) := {x ∈ X | xSa}.

Then the normalization of S is given as the structure N(S) = 〈X, ∈, ES [A]〉.
Extending this definition to transforms, we define the normalization N(f, f ′) of
a Chu transform (f, f ′) : S′ → S as the pair (f, f−1).

Proposition 1. The normalization constructionN is a functor from Chu to NChu.

Proof. We confine ourselves to checking that the normalization of a Chu trans-
form is again a Chu transform. Suppose that (f, f ′) : S′ → S is a Chu transform
from S′ = 〈X ′, S′, A′〉 to S = 〈X, S, A〉. It is obvious that any elements x′ ∈ X ′

and Y ∈ ES [A] satisfy the adjointness condition (6) with respect to f and f−1.
The point is to prove that f−1 is a well-defined map from ES [A] to ES′ [A′]. For
this purpose, take an arbitrary element ES(a) = S−1[a] ∈ ES [A]. Then

f−1(S−1[a]) = {x′ ∈ X ′ | f(x′)Sa}
= {x′ ∈ X ′ | x′S′f ′(a)}
= (S′)−1[f ′(a)]
= ES′(a),

which shows that, indeed, f−1(S−1[a]) belongs to ES′ [A′]. ��

402 A. Palmigiano and Y. Venema

Strongly Normal Chu Spaces. In the next section we will be interested
in Chu spaces that satisfy a strong form of normality that we will describe
now. Normal Chu spaces are extensional in that every attribute is completely
determined by the set of objects that it is related to, but they do not necessarily
satisfy the dual property of separation.

Definition 10. A Chu space S = 〈X, S, A〉 is separated if for every distinct
pair of points x and y in X there is an attribute a ∈ A separating x from y, in
the sense that it is either related to x and not to y, or related to y and not to x.

The following, slightly technical definition will be of use in section 4, when we
will understand the Vietoris construction as a special power lifting construction:

Definition 11. Let S = 〈X, S, A〉 be a Chu space. A subset Y ⊆ X is called a
representative subset of X, if Y contains exactly one representant of every ≡S-
cell of S (where ≡S is as defined in Definition 7). For any such Y , the strong
normalization NY (S) of S based on Y is the Chu space 〈Y, ∈, EY

S [A]〉, where
EY

S : A → P(Y) is the map given by EY
S (a) := {y ∈ Y | ySa}.

It is not difficult to prove that for any representative subset Y of X the Chu
space NY (S) is strongly normal, and that the pair (ιY X , EY

S) (with ιXY the
inclusion) is a Chu transform from NY (S) to S.

Remark 3. One of the referees pointed out that Proposition 1 can be expanded
to state that NChu is a coreflective subcategory of Chu, and that separated Chu
spaces form a reflective subcategory of Chu, cf. [2].

Lifting Chu Spaces. Many category-theoretic operations can be defined on
Chu spaces, for instance orthogonality, tensor product, transposition (see [16] for
an overview). Here our focus will be on lifting constructions; our aim is to define,
for an arbitrary set functor F and for an arbitrary Chu space S = 〈X, ∈, A〉, a Chu
space F̃(S) which is based on the set F(X). Although we are mainly interested
in a lifting construction for normal Chu spaces, we take a little detour to first
define a functorial power lifting construction on the full category Chu. For that
purpose we need the notion of relation lifting for an arbitrary set functor. Recall
that in Definition 1 we gave the power set lifting of a binary relation.

For the definition of relation lifting with respect to a general set functor F,
consider a binary relation Z ⊆ S × S′, with associated projections π, π′:

S
π←− Z

π′
−→ S′

Applying F to this diagram we obtain

FS
Fπ←− FZ

Fπ′
−→ FS′

so that by the properties of the product FS × FS′, we may consider the product
map (Fπ, Fπ′) : FZ → FS × FS′. This map need not be an inclusion (or even an
injection), and FZ need not be a binary relation between FS and FS′. However,
we may consider the range F(Z) of the map (Fπ, Fπ′) which is of the right shape.

Nabla Algebras and Chu Spaces 403

Definition 12. Let F be a set functor. Given two sets S and S′, and a binary
relation Z between S×S′, we define the lifted relation F(Z) ⊆ FS×FS′ as follows:

F(Z) := {((Fπ)(ϕ), (Fπ′)(ϕ)) | ϕ ∈ FZ},

where π : Z → S and π′ : Z → S′ are the projection functions given by π(s, s′) =
s and π′(s, s′) = s′.

Definition 13. Let F be a set functor, and let S = 〈X, S, A〉 be a Chu space.
Then we define the F-lifting of S to be the Chu space

F̃S := 〈F(X), F(S), F(A)〉.

Given a Chu transform (f, f ′) from S′ = 〈X ′, S′, A′〉 to S = 〈X, S, A〉, we define
F̃(f, f ′) as the pair (Ff, Ff ′) of maps.

We need some of the properties of relation lifting. Given a function f : A → B,
we let Gr(f) denote the graph of f , i.e., Gr(f) := {(a, b) ∈ A × B | b = f(a)}.

Fact 2. Let F be a set functor. Then the relation lifting F satisfies the following
properties, for all functions f : S → S′, all relations R, Q ⊆ S × S′, and all
subsets T ⊆ S, T ′ ⊆ S′:
(1) F extends F: F(Gr(f)) = Gr (Ff);
(2) F preserves the diagonal: F(IdS) = IdFS ;
(3) F commutes with relation converse: F(R)̆ = (FR)̆ ;
(4) F is monotone: if R ⊆ Q then F(R) ⊆ F(Q);
(5) F distributes over composition: F(R ◦ Q) = F(R) ◦ F(Q), if F preserves weak
pullbacks.

For proofs we refer to [14,3], and references therein. The proof that Fact 2(5)
depends on the property of weak pullback preservation goes back to Trnková [17].

Theorem 3. If F preserves weak pullbacks, then F̃ is an endofunctor on Chu.

Proof. We restrict our proof to showing that F̃ turns Chu transforms into Chu
transforms. Let S′ = 〈X ′, S′, A′〉 and S = 〈X, S, A〉 be two Chu spaces, and let
f : X ′ → X and f ′ : A → A′ be two maps. It is easily verified that (f, f ′) is a
Chu transform iff

Gr(f) ◦ S′ = (Gr(f ′) ◦ S)̆ .

But then it follows from the properties of relation lifting for weak pullback
preserving functors that

Gr(Ff)) ◦ F(S′) = F(Gr (f) ◦ S′)
= F((Gr (f ′) ◦ S)̆)
= (Gr(Ff ′) ◦ F(S))̆ .

In other words, (Ff, Ff ′) is a Chu transform as well. ��

404 A. Palmigiano and Y. Venema

Unfortunately, normality of a Chu space is not preserved under taking liftings
of Chu spaces. But clearly, we can combine lifting with normalization.

Definition 14. Assume that F preserves weak pullbacks. Then F̂ denotes the
endofunctor on NChu defined by F̂ := N ◦ F̃.

Remark 4. It will be useful in the next section to have a more concrete definition
of the normalization operation for Chu spaces of the form F̃S, where S is normal.
Suppose that S = 〈X, ∈, A〉, then F̃S = 〈F(X), ∈, F(A)〉, where we write ∈ for
the lifted membership relation F(∈). Now the normalization map E∈ is given by

E∈[α] = {ϕ ∈ F(X) | ϕ∈α}.

4 Stone Spaces

As a case study, let us show how the Vietoris construction on Stone spaces
naturally arises in the framework that we have developed in the previous two
sections.

As we mentioned earlier, any Stone space 〈X, τ〉 can be represented as a Chu
space S = 〈X, ∈, A〉. The Boolean algebra A of the clopen subsets of X is a
base for the topology τ , so for instance, for every Y ⊆ X , the τ -closure of Y is
Y • =

⋂
{a ∈ A | Y ⊆ a}.

Definition 15. Given a Stone space S = 〈X, ∈, A〉, we let K(S) denote the col-
lection of closed sets of S. We define the operations 〈�〉, [�] : P(X) → P(K(S))
by

[�]a := {F ∈ K(S) | F ⊆ a} ,

〈�〉a := {F ∈ K(S) | F ∩ a �= ∅} .

We let V (A) denote the Boolean subalgebra of P(K(S)) generated by the set
{〈�〉a, [�]a | a ∈ A}. V (A) is the Boolean algebra of clopen subsets of the Vietoris
topology on K(S).

Modal logicians will recognize the above notation as indicating that [�] and
〈�〉 are the ‘box’ and the ‘diamond’ associated with the converse membership
relation � ⊆ K(S) × X .

It is well-known that the Vietoris hyperspace of a Stone space S = 〈X, ∈, A〉
is a Stone space, so V (A) is a base for the Vietoris topology. Then V (S) =
〈K(S), ∈, V (A)〉 is the Chu-representation of the Vietoris hyperspace of S.

For the remainder of this section fix a Stone space S = 〈X, ∈, A〉. Here is a
summary of our approach:

1. First, as a minor variation on Chu power set lifting, consider the Chu space
P̃ω(S) := 〈P(X), ∈, Pω(A)〉 where ∈ denotes the relation lifting P(∈), re-
stricted to P(X) × Pω(A). Thus the variation consists in taking the finite
power set Pω(A) rather than the full power set P(A).

Nabla Algebras and Chu Spaces 405

2. We then show that every equivalence class of the relation ≡∈ contains exactly
one closed element, so that we may take the collection K(S) as the ‘canonical
representants’ in order to define a strong normalization P̂ω := 〈K(S), ∈, Q〉
of 〈P(X), ∈, Pω(A)〉 (see Definition 11).

3. We then prove that the Boolean algebra generated by Q is identical to the
Vietoris algebra V (A).

4. Finally we prove that the Vietoris algebra is isomorphic to the algebra AP

(defined in section 2 as the Boolean algebra generated by the set {∇α | α ∈
Pω(A)} modulo the ∇ axioms).

Definition 16. Given a Stone space S = 〈X, ∈, A〉, let ∈ denote the relation
lifting P(∈), restricted to P(X) × Pω(A). Define the Chu space P̃ω(S) as the
structure 〈P(X), ∈, Pω(A)〉.
For the following proposition, recall that the closure of a set Y ⊆ X is denoted
by Y •, and that for any Chu space T = 〈P, T, B〉, the specialization order �T

on X induced by T is given by p �T q iff (pT b ⇒ qT b) for all b ∈ B.

Proposition 2. Let � and ≡ be the specialization order and the equivalence
relation associated with the Chu space P̃ω(S), respectively. Then, for every set
Y ∈ P(X), its closure Y • is the maximum element of the ≡-cell Y/≡. In partic-
ular, Y • is the unique closed set in Y/≡.

Proof. Clearly it suffices to prove that

Y � Z ⇒ Y • ⊆ Z• (7)

and
Y ≡ Y •. (8)

For (7), suppose that Y • �⊆ Z• =
⋂

{a ∈ A | Z ⊆ a}. Then, since every clopen
is closed and Y • is the smallest closed set that contains Y , there must be some
a ∈ A such that Z ⊆ a and Y �⊆ a. Let α = {¬a, X} ∈ Pω(A): it holds that Y ∈α
but Z �∈α, hence Y �� Z.

For (8), if α ∈ Pω(A) and Y ∈α, then a∩Y �= ∅ for every a ∈ α and Y ⊆
⋃

α.
Then, as Y ⊆ Y •, we get a ∩ Y • �= ∅ for every a ∈ α. Also, as

⋃
α ∈ A is in

particular closed, from Y ⊆
⋃

α we get Y • ⊆
⋃

α, which proves that Y •∈α.
This shows that Y � Y •. Conversely, if Y •∈α then Y ⊆ Y • ⊆

⋃
α. In addition,

for every a ∈ A, Y • ∩ a �= ∅ implies Y ∩ a �= ∅, for if not, then Y ⊆ ¬a ∈ K(S),
which would imply Y • ⊆ ¬a, contradiction. ��
The proposition above says that K(S) is a representative subset of P(X) (see
Definition 11). So we can consider the strong normalization of P̃ω(S):

Definition 17. Given a Stone space S = 〈X, ∈, A〉, define P̂ω(S) as the strong
normalization of P̃ω(S) w.r.t. K(S), i.e. P̂ω(S) is the normal and separated
Chu space

〈K(S), ∈, Q〉,
where Q = E[Pω(A)] and E : Pω(A) → P(K(S)) is the map given by E(α) :=
{F ∈ K(S) | F ∈ α}.

406 A. Palmigiano and Y. Venema

The following theorem states that the Vietoris construction of a Boolean space
can indeed be seen as an instance of power lifting.

Theorem 4. Let S = 〈X, ∈, A〉 be a Stone space. Then V (A) is the Boolean
algebra generated by the set Q ∈ P(K(S)), where Q is the set of attributes of
P̂ω(S).

Proof. For every F ∈ K(S) and every α ∈ Pω(A),

F ∈ E(α) iff F ∈ α iff F ∈ [�](
⋃

α) ∩
⋂

a∈α〈�〉a,

which means that E is the nabla operator defined from [�] and 〈�〉. Hence
Q ⊆ V (A), and moreover for every a ∈ A, [�]a = E({a}) ∪ E(∅) and 〈�〉a =
E({a, 	}), which makes Q a set of generators for V (A). ��
To see where does the material of the second section come in: The ∇-axioms are
an important ingredient for the following representation theorem for the lifted
Boolean algebra AP:

Theorem 5. Let S = 〈X, ∈, A〉 be a Stone space. Then V (A) is isomorphic to
the power lifting AP of A.

Proof. It is not difficult to see, given the axioms ∇1–∇7, that an arbitrary
element of AP can be represented as a finite join of generators. Now define the
map ρ : AP → P(K(S)) by putting

ρ(∇α1 ∨ . . . ∨ ∇αn) := E(α1) ∪ . . . ∪ E(αn),

where E is the strong normalization map of P̂ω(S), given by

E(α) = {F ∈ K(S) | F ∈ α}.

In order to establish the theorem, it suffices to prove our claim that

ρ is an isomorphism.

We omit the argument why ρ is a homomorphism and only sketch the proof
that it is an injection. Given a homomorphism between two Boolean algebras,
in order to prove injectivity, it suffices to show that the homomorphism maps
nonzero elements to nonzero elements. So let ∇α1 ∨ . . . ∨ ∇αn be an arbitrary
nonzero element of AP, then at least one of the ∇αi, say ∇α, is nonzero. Then
it follows from axiom ∇2 that ⊥ �∈ α.

Now consider the set Y =
⋃

α. Y is a finite union of clopens and hence,
certainly closed. Since ⊥ �∈ α, it is also straightforward to verify that Y ∈α. In
other words, we have found that Y ∈ E(α) = ρ(∇α) ⊆ ρ(∇α1 ∨ . . . ∨ ∇αn).
Hence we have proved indeed that ρ maps an arbitrary nonzero element of AP

to a nonempty set of closed elements, i.e., a nonzero element of the algebra
V (A). ��
The point of carrying out the Vietoris construction in terms of the nabla operator
rather than the standard modalities [�] and 〈�〉 is that the former is coalgebraic
in nature, and the latter are not. This will be advantageous when it comes to
generalizing the Vietoris construction to other functors (and other categories).

Nabla Algebras and Chu Spaces 407

5 Conclusions

We presented an algebraic study of the coalgebraic modal operator ∇, and we re-
lated this to a presentation of the Vietoris power construction on Stone spaces.
We believe the main contribution of the paper to be threefold. First, on the
algebraic side, we gave an axiomatization for ∇ that characterizes the class of
∇-algebras that is category-theoretically isomorphic (see Theorem 1) to the (pos-
itive) modal algebras. Second, using the concept of relation lifting, we showed
how an arbitrary set functor F naturally gives rise to various lifting constructions
on the category Chu of two-valued Chu spaces. These constructions are functor-
ial in case F preserves weak pullbacks (Theorem 3). And finally, we showed how
to realize the Vietoris construction on Stone spaces as a special instance of this
Chu construction for the (finite) power set functor (Theorem 4), and linked this
approach to the axiomatization of the modal ∇-algebras (Theorem 5).

In the future we hope to expand the work presented here in various directions.
Because of space limitations we have to be brief.

1. First of all, there is no strong reason to confine ourselves to a finitary setting.
The first natural generalization of this work is to move to a ‘localic’ setting
and study the case of logical languages with infinitary conjunctions and/or
disjunctions, and an infinitary version of the nabla operator.

2. In such a generalized setting, it would make sense to look at power con-
structions for other topologies than just Stone spaces, and to formalize these
constructions not in terms of clopens but in terms of closed or open sets.

3. We think it is very interesting to try and generalize the results in this paper
to other functors than P. This is the reason why we have taken care to
formulate all our results as generally as possible, see for instance our remark
following the proof of Theorem 5.

4. We already mentioned in the introduction that our first motivation was to
pave the way for a ‘coalgebraic proof theory’, by which we mean to try and
give an algebraic and syntactic account of nabla operators associated with
weak pullback-preserving endofunctors. As a first step in this direction, we
are currently working on a Gentzen-style derivation system for the modal
nabla operator.

References

1. Abramsky, S.: A Cooks Tour of the Finitary Non-Well-Founded Sets. Invited Lec-
ture at BCTCS (1988)

2. Barr, M.: The separated extensional Chu category. Theory and Applications of
Categories 4, 137–147 (1998)

3. Baltag, A.: A Logic for Coalgebraic Simulation. Electronic Notes in Theoretical
Computer Science 33, 41–60 (2000)

4. Barwise, J., Moss, L.: Vicious circles. CSLI Publications, Stanford (1997)
5. Barwise, J., Seligman, J.: Information Flow: the Logic of Distributed Systems.

Cambridge University Press, Cambridge (1997)

408 A. Palmigiano and Y. Venema

6. Bonsangue, M., Kurz, A.: Dualities for Logics of Transition Systems. In: Sassone,
V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 455–469. Springer, Heidelberg (2005)

7. Celani, S., Jansana, R.: Priestley duality, a Sahlqvist theorem and a Goldblatt-
Thomason theorem for positive modal logic. Logic Journal of the IGPL 7, 683–715
(1999)

8. Fine, K.: Normal forms in modal logic. Notre Dame Journal of Formal Logic 16,
229–234 (1975)

9. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
10. Janin, D., Walukiewicz, I.: Automata for the modal μ-calculus and related results.

In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562.
Springer, Heidelberg (1995)

11. Johnstone, P.: Stone Spaces. Cambridge University Press, Cambridge (1982)
12. Kupke, C., Kurz, A., Venema, Y.: Stone Coalgebras. Theoretical Computer Sci-

ence 327, 109–134 (2004)
13. Michael, E.: Topologies on spaces of subsets. Transactions of the American Math-

ematical Society 71, 152–182 (1951)
14. Moss, L.: Coalgebraic logic. Annals of Pure and Applied Logic 96, 277–317 (1999)

Erratum published APAL 99, 241–259 (1999)
15. Palmigiano, A.: A coalgebraic view on Positive Modal Logic. Theoretical Computer

Science 327, 175–195 (2004)
16. Pratt, V.R.: Chu Spaces, Notes for School on Category Theory and Applications.

University of Coimbra, Portugal (July 13-17, 1999)
17. Trnková, V.: Relational automata in a category and theory of languages. In:

Karpinski, M. (ed.) Fundamentals of Computation Theory. LNCS, vol. 56, pp.
340–355. Springer, Heidelberg (1977)

18. Vickers, S.: Topology Via Logic, vol. 5. Cambridge University Press, Cambridge
(1989)

An Institutional Version of Gödel’s

Completeness Theorem

Marius Petria

University of Edinburgh�

Abstract. Gödel’s famous result about the completeness of first order
deduction can be cast in the general framework of institutions. For this
we use Henkin’s method of proving completeness which is very generic
and has been exploited over time by producing similar proofs of complete-
ness for various logical systems. This paper sets out a general framework
with the purpose to incorporates many of these proofs as examples. As
a consequence of this abstraction, the completeness theorem becomes
available for many “first order” logical systems that appear in the area
of logic or computer science.

1 Summary

The goal of this paper is to express and prove Gödel’s completeness theorem in
the institutional framework and then apply the general results to a couple of
different institutions. The proof needs a small and natural set of assumptions.
There is however a condition that seems overly restrictive: that the signatures
do not allow void sorts. We plan to investigate further the elimination of this
condition such that the theorem can be applied to first order logics with void
sorts.

This approach has two main motivations. Firstly, it allows us to obtain in an
uniform way completeness results for many specific logics. Because of space re-
strictions we treat only the case of first order logic and that of partial algebras,
but in an extended version we want to include more cases.

Secondly, the set of conditions that are sufficient for a completeness result helps
in understanding abstractly what it means for a logic to be “first order”. Also, the
way the result is obtained by separating the deduction rules into two sets, rules
that deal with the specific syntax of the atomic sentences and generic rules that
deal with logical connectives and quantification, supports the view that “first or-
der logics” freely extend “atomic logics” in all regards: syntactically, semantically
and as proof systems, and completeness is preserved by this free extension. A way
to formalise this by means of institution morphisms is left for further investigation.

The paper is organised as follows. Section 2 introduces the abstract definitions
used to represent a logical system: institutions and entailment systems. Section 3

� On leave from the Institute of Mathematics of the Romanian Academy, Bucharest.

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 409–424, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

410 M. Petria

enumerates some general techniques enhancing the internal logic of an institu-
tion. Section 4 sets the framework and expresses more specifically what is the
goal of this paper. We aim to prove that there is a canonical way to obtain a
complete entailment system for a “first order” institution building upon a com-
plete entailment system for atomic sentences. The following sections solve this by
redoing Henkin’s proof [8] of completeness for first order logic in the institutional
framework. Section 5 shows that any consistent theory can be extended to a max-
imal Henkin theory, i.e. one that has a constant witness for every existentially
quantified sentence that it satisfies. The construction of a Henkin theory follows
a suggestion made by Henkin at the end of [9]. It is worth pointing that the
extension to a signature that is “big enough” can be done in only one step when
it is done for the concrete case of first order logic, but in the abstract framework
we prefer to do the construction in an iterative fashion. Section 5 deals with
satisfiability of Henkin theories. It is shown that every maximal Henkin theory
has a model. This section uses the property of basic coverage (Definition 13) as
a feature of first order logic that distinguishes it from second order logic. This
property is the only condition of the completeness theorem that second order
logic fails to satisfy. Section 7 just states the completeness theorem and lists all
the sufficient conditions for it to hold. Section 8 shows how the theorem can
be applied to produce particular completeness theorems for institutions of first
order logic and partial algebras.

2 Model Theory in Institutions

2.1 Categories

We assume the reader is familiar with basic notions and standard notations
from category theory; e.g., see [11] for an introduction to this subject. By way
of notation, |C| denotes the class of objects of a category C, C(A, B) the set of
arrows with domain A and codomain B, and composition is denoted by “;” and in
diagrammatic order. The category of sets (as objects) and functions (as arrows)
is denoted by Set, and CAT is the category of all categories.1 The opposite of a
category C (obtained by reversing the arrows of C) is denoted C

op.
Given a functor U :C′ → C, for any object A ∈ |C|, the comma category

A/U has arrows f :A → U(B) as objects (sometimes denoted as (f, B)) and
h ∈ C

′(B, B′) with f ; U(h) = f ′ as arrows (f, B) → (f ′, B′).
A J-(co)limit in a category C is a (co)limit of a functor J → C. When J

are directed partial orders, respectively total orders, the J-colimits are called
directed colimits, respectively inductive colimits.

A standard categorical approach to finiteness is provided by the concept of
finitely presented object. An object A in a category C is finitely presented [1] if
and only if the hom-functor C(A,) : C → Set preserves directed colimits. For
example a set is finitely presented (as an object of Set) if and only if it is finite.

1 Strictly speaking, this is only a hyper-category living in a higher set-theoretic uni-
verse.

An Institutional Version of Gödel’s Completeness Theorem 411

2.2 General Concepts

The theory of “institutions” [6] is a categorical abstract model theory which
formalises the intuitive notion of logical system, including syntax, semantics,
and the satisfaction between them.

The concept of institution arose within computing science (algebraic specifi-
cation) in response to the population explosion among logics in use there, with
the ambition of doing as much as possible at a level of abstraction independent of
commitment to any particular logic [6]. Besides its extensive use in specification
theory (it has become the most fundamental mathematical structure in algebraic
specification theory), there have been several substantial developments towards
an “institution-independent” (abstract)model theory [15,4,7,14]. A textbook ded-
icated to this topic is under preparation [3]. Apart from reformulation of standard
concepts and results in a very general setting, thus applicable to many logical sys-
tems, institution-independent model theory has already produced a number of
new significant results in classical model theory [4,7].

Definition 1. An institution I = (SignI , SenI , ModI , |=I) consists of

1. a category SignI, whose objects are called signatures,
2. a functor SenI : SignI → Set, giving for each signature a set whose elements

are called sentences over that signature,
3. a functor ModI : (SignI)op → CAT giving for each signature Σ a category

whose objects are called Σ-models, and whose arrows are called Σ-(model)
morphisms, and

4. a relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI |, called Σ-satis-

faction,

such that for each morphism ϕ : Σ → Σ′ in SignI, the satisfaction condition

M ′ |=I
Σ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=I

Σ ρ

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ). We denote the reduct functor
ModI(ϕ) by �ϕ and the sentence translation SenI(ϕ) by ϕ(). When M = M ′�ϕ

we say that M is a ϕ-reduct of M ′, and that M ′ is a ϕ-expansion of M .

Some of the proof theoretic aspects of a logic can be captured by the definition
of an entailment system.

Definition 2. A sentence system (Sign, Sen) consists of a category of signatures
and a sentence functor Sen : Sign → Set.

Definition 3. [12] An entailment system � for a sentence system (Sign,
Sen) is a family of relations {�Σ}Σ∈Sign between sets of sentences �Σ⊆ P
(Sen(Σ)) × P(Sen(Σ)) for all Σ ∈ Sign such that:

anti-monotonicity. E0 ⊆ E1 implies E1 � E0

transitivity. E0 � E1 and E1 � E2 implies E0 � E2.

412 M. Petria

unions. E0 � E1 and E0 � E2 implies E0 � E1 ∪ E2.
translation. E � E′ ⇒ φ(E) � φ(E′) for all φ : Σ → Σ′

Definition 4. An entailment system � is compact if whenever E � Γ for a
finite set of sentences Γ there exists a finite subset E0 of E such that E0 � Γ .

Example 1. Let FOL be the institution of many sorted first order logic with
equality. Its signatures (S, F, P) consist of a set of sort symbols S, a set F of
function symbols, and a set P of relation symbols. Each function or relation
symbol comes with a string of argument sorts, called its arity, and for functions
symbols, a result sort. We assume that each sort has at least one term (i.e. the
signatures are sensible [10]).

Simple signature morphisms map the three components in a compatible way.
In order to treat substitutions as signature morphisms we will work in this
paper with a more powerful version of signature morphisms. A generalised FOL-
morphism between (S, F, P) and (S′, F ′, P ′) is a simple signature morphism
between (S, F, P) and (S′, F ′ + TF ′ , P ′), i.e. constants can be mapped to terms.

Models M are first order structures interpreting each sort symbol s as a set
Ms, each function symbol σ as a total function Mσ from the product of the
interpretations of the argument sorts to the interpretation of the result sort, and
each relation symbol π as a subset Mπ of the product of the interpretations of
the argument sorts. A model morphism h : M → N is a family of functions
{hs : Ms → Ns}s∈S indexed by the sets of sorts of the signature such that:
hs(Mσ(m)) = Nσ(hw(m)) for each σ : w → s and each m ∈ Mw and hw(Mπ) ⊆
Nπ for each π : w.

Note that each sort interpretation Ms is non-empty since it contains the in-
terpretation of at least one term.

Sentences are the usual first order sentences built from equational and rela-
tional atoms by iterative application of logical connectives (conjunction, negation
and false), and existential quantifiers over a finite number of variables2.

Sentence translations rename the sort, function, and relation symbols. For
each signature morphism ϕ, the reduct M ′�ϕ of a model M ′ is defined by
(M ′�ϕ)x = M ′

ϕ(x) for each sort, function, or relation symbol x from the domain
signature of ϕ. The satisfaction of sentences by models is defined inductively on
the structure of the sentences.

Remark 1. Notice that when we refer to “atomic sentences” we mean “ground
atomic sentences”. This distinction is not necessary in an institutional presen-
tation as we do not have atomic sentences with free variables. Sentences with
variables are quantified and hence not atomic.

3 Institution Independent Techniques

The concept of institution tries to capture the essence of “being a logic” and rea-
soning at institutional level is an attempt to reason generically about properties
2 We will identify sentences modulo renaming of the variables. A more explicit de-

scription of the identifications required will be given in Example 3.2.

An Institutional Version of Gödel’s Completeness Theorem 413

of logics. Of course, there cannot be many results that are derivable only from the
definition of an institution, therefore, to obtain nontrivial theorems about a class
of logics we must define abstractly the properties of these logics. An enumera-
tion of these abstract properties used in this paper together with explanations
regarding their counterparts in concrete examples is given below.

The main result is obtained under the assumption that signatures do not have
“void sorts“. We express this requirement abstractly by the following definition:

Definition 5. A signature morphism φ : Σ → Σ′ is non-void if there exists
φ′ : Σ′ → Σ such that φ; φ′ = 1Σ.

Example 1 (continued). In FOL with generalised signature morphisms the non-
void quantification translates into accepting only signatures which are sensible
[10].

As implied by the choice of the signatures morphisms in the example we plan
to treat substitutions as morphisms in a comma category of signature morphisms.

Definition 6. Consider two signature morphisms φ0 : Σ → Σ0 and φ1 : Σ →
Σ1. A signature morphism φ : Σ0 → Σ1 such that φ0; φ = φ1 is called a substi-
tution morphism between φ0 and φ1.

3.1 Sentences

Definition 7. A set of sentence E ⊆ Sen(Σ) is called basic if there exists a
model ME ∈ Mod(Σ), called a basic model of E, such that for all M ∈ Mod(Σ):

M |= E ⇔ ∃h : ME → M

Example 1 (continued). In typical institutions, the simplest sentences are ba-
sic sentences, i.e. are preserved by model homomorphisms. They constitute the
bricks from which complex sentences are constructed using Boolean connectives
and quantification.

In FOL all sets of atomic sentences are basic. The basic model ME for a set E of
atomic sentences, is the initial model for E. This is constructed as the quotient of
the initial algebra by the congruence defined by the equational atoms from E, and
the interpretation of predicates contains only the congruence classes of the terms
appearing in the relational atoms of E.

Definition 8. In any institution a Σ-sentence ρ is finitary if and only if it can
be written as φ(ρf) where φ : Σf → Σ is a signature morphism such that Σf is
a finitely presented signature and ρf is a Σf sentence.

An institution has finitary sentences when all its sentences are finitary.

Example 1 (continued). This condition usually means in typical institutions that
the sentences contain only a finite number of symbols.

Proposition 1. Let Σω be the inductive colimit of a chain of signature mor-
phisms {φn,n+1 : Σn → Σn+1}n<ω. For each ρω ∈ Sen(Σω) there exists n and
ρn ∈ Sen(Σn) such that φn(ρn) = ρω.

414 M. Petria

3.2 Internal Logic

The logical connectives and quantification can be defined generically in any
institution.

Definition 9. A sentence ρ ∈ Sen(Σ) is called a semantic conjunction of two
sentences ρ0, ρ1 ∈ Sen(Σ) if M |= ρ iff M |= ρ0 and M |= ρ1. A sentence
ρ ∈ Sen(Σ) is called a semantic negation of a sentence ρ0 ∈ Sen(Σ) if M |= ρ iff
M � ρ0. A sentence ρ ∈ Sen(Σ) is called a semantic false if there is no model that
satisfies it. A sentence ρ ∈ Sen(Σ) is called a semantic existential quantification
of a sentence ρ′ ∈ Sen(Σ′) over the signature morphism χ : Σ → Σ′ if M |= ρ
iff there exists a χ-expansion M ′ of M , i.e. M ′�χ = M , that satisfies ρ′.

Definition 10. [13,5] A sentence system (Sign, Sen) is equipped with conjunc-
tions, negation and false if it has three natural transformations ∧ : Sen × Sen →
Sen, ¬ : Sen → Sen, ⊥: 1 → Sen.

A sentence system (Sign, Sen) is equipped with pre-quantifiers if there is
a wide subcategory of signature morphisms D and a functor Q : D → Setop,
that works the same as Sen on objects, such that for each pushout of signature
morphisms:

Σ
φ ��

χ

��

Σ0

χ0

��
Σ′

φ′
�� Σ′

0

with χ ∈ D the following square commutes and is a weak pullback:

Sen(Σ)
φ �� Sen(Σ0)

Sen(Σ′)
φ′

��

Q(χ)

��

Sen(Σ′
0)

Q(χ0)

��

An institution (Sign, Sen.Mod, |=) has explicit conjunctions, negations, false and
existential quantification if the underlying sentence system is equipped with the
enumerated constructors and the sentences produced by these have the semantical
meaning defined above. For example Q(χ)(ρ′) must be a semantic existential
quantification of ρ′ over χ for every χ : Σ → Σ′ from D and ρ′ ∈ Sen(Σ′). We
will write ∃χ.ρ′ for Q(χ)(ρ′) in an institution with explicit existential quantifiers.
We also denote by QuantΣ the set of existential quantified sentences in Sen(Σ),
i.e. ρ ∈ QuantΣ if there exists χ : Σ → Σ′ and ρ′ ∈ Sen(Σ′) such that ρ =
Q(χ)(ρ′).

Based on the available sentence constructors we can introduce also disjunction,
implication and universal quantification with the usual definitions.

Remark 2. Some conditions on D will be summarised below in order to assure
that quantification is done in a homogenous way. First of all we will require that

An Institutional Version of Gödel’s Completeness Theorem 415

colimits done with morphisms from D exist. Secondly, we want that the class
of quantifying morphisms is essentially the same when we change the signature;
this property will be stated in the form of pushout (co-)completeness. Finally,
notice that if two signatures morphisms from D are isomorphic in the comma
category i : χ0 → χ1 then Q(χ0)(ρ0) = Q(χ1)(i(ρ0)). We would also like the
converse of this property to hold, i.e. when we have two representations of the
same sentence then these should be isomorphic.

Definition 11. Let D be a wide subcategory of Sign. We say that D is a proper
quantification class of signature morphisms if it has the following properties:

– there exists a wide subcategory Sign of Sign, that includes D such that Sign
has colimits.

– D is pushout complete, i.e. for all χ : Σ → Σ0 in D and all φ : Σ → Σ′

in Sign there exists χ′ : Σ′ → Σ′
0 in D and φ0 : Σ0 → Σ′

0 such that the
following diagram is a pushout:

Σ
φ ��

χ

��

Σ′

χ′

��
Σ0

φ0

�� Σ′
0

– D is pushout co-complete, i.e. for all χ′ : Σ′ → Σ′
0 in D and all φ : Σ → Σ′

in Sign there exists χ : Σ → Σ0 in D and φ0 : Σ0 → Σ′
0 such that the

following diagram is a pushout:

Σ
φ ��

χ

��

Σ′

χ′

��
Σ0

φ0

�� Σ′
0

– if Q(χ0)(ρ0) = Q(χ1)(ρ1) then there exists an isomorphism i : Σ0 → Σ1
such that χ0; i = χ1 and i(ρ0) = ρ1

Example 1 (continued). Notice that FOL with generalised signature morphisms
does not have all colimits. Therefore, we take Sign to be the class of simple
signature morphisms; this class is closed under the construction of colimits.

The class D will contain the signature morphisms that add a finite number
of constants. In order to obtain all the properties for a proper class we will
consider that existential quantified sentences are identified modulo renaming of
variables thus enforcing the last condition from Definition 11. We also require
that ∃χ0; χ1.ρ1 = ∃χ0.∃χ1.ρ1 in order for Q, defined as Q(χ)(ρ′) = ∃χ.ρ′, to be
a functor.

Remark 3. Consider a sentence system with pre-quantifiers (Sign, Sen, D,
Q), such that D is a proper quantification class of signature morphisms. Then for
all φ : Σ → Σ0, ρ ∈ Sen(Σ) and ρ0 ∈ Sen(Σ0) such that φ(ρ) = ρ0 we have that
ρ ∈ QuantΣ iff ρ0 ∈ QuantΣ0

.

416 M. Petria

Proof: The ”only if” implication follows from completeness of D and from
the commutativity condition for Q while the ”if” implication follows from co-
completeness of D and the pullback condition for Q. �

Notice that the general method of talking about quantification introduced above
is powerful enough to express second order quantification. To restrict some of
this power, and to specialise the main result to “first order” logics it is necessary
to characterise abstractly the notion of “first order” quantification.

Definition 12. A signature morphism χ : Σ → Σ′ covers M ∈ Mod(Σ) if for
each M ′ ∈ Mod(Σ′) such that M ′�χ = M there exists a signature morphism
χ′ : Σ′ → Σ such that χ; χ′ = 1Σ and M�χ′ = M ′.

Definition 13. Consider a Sign-indexed family of sets of sentences, i.e.
Senbase(Σ) ⊆ Sen(Σ), such that any set of sentences E from Senbase(Σ) is
basic. We say that D has Senbase basic coverage if for all χ : Σ → Σ′ in D and
E ⊆ Senbase(Σ), χ covers the basic model ME.

Remark 4. This condition will be the only one in the list of assumptions for
the completeness theorem that fails for second order logic. It is useful to have a
closer look at its meaning.

Having in mind that basic models are typically reachable, i.e. each element
from the model is the denotation of a ground term, the basic coverage property
can be restated as: D-extensions of term models have a syntactical flavour, i.e.
correspond to signature morphisms.

This is true for extensions that interpret constants, as there is a generalised
signature morphism for each interpretation in a term model. However, for ex-
tensions that interpret predicates or function symbols this correspondence fails.

4 Generated Institutions and Entailment Systems

Definition 14. Let I = (Sign, Sen.Mod, |=, D, Q, ∧, ¬) an institution with ex-
plicit existential quantification, conjunctions, negations and false and Senbase a
Sign-indexed family of sets of sentences.

I is Senbase-generated if any sentence in Sen(Σ) can be obtained from sen-
tences in Senbase(Σ) by applying conjuction, negation, false and existential quan-
tification.

Definition 15. Let I = (Sign, Sen, Mod, |=, �) be a Senbase generated institu-
tion with entailment. We say that � is good w.r.t. Senbase if it obeys the following
conditions:

Rule 1 |=base ⊆ �
Rule 2 {ρ, ρ′} �� ρ ∧ ρ′

Rule 3 E ∪ {ρ} � ⊥ ⇒ E � ¬ρ
Rule 4 ⊥ � ρ for all ρ
Rule 5 ρ ∧ ¬ρ � ⊥ for all ρ

An Institutional Version of Gödel’s Completeness Theorem 417

Rule 6 ¬¬ρ � ρ for all ρ
Rule 7 χ(E) � ¬ρ′ ⇒ E � ¬∃χ.ρ′
Rule 8 E � ψ(ρ′) ⇒ E � ∃χ.ρ′ for all substitutions ψ : χ → 1Σ

Proposition 2. The following properties hold for a good entailment system �:

– χ(E) � ρ′ ⇒ E � ∀χ.ρ′
– E � ∀χ.ρ′ ⇒ E � ψ(ρ′) for all ψ : χ → 1Σ

– φ(E) �⊥⇒ E �⊥ for all non-void φ : Σ → Σ′
– ∀χ.(ρ′1 ∧ ρ′2) � ∀χ.ρ′1 ∧ ∀χ.ρ′2
– ∀χ.χ(ρ) � ρ for all non-void χ ∈ D
– ∅ � ∃χ.(χ(∃χ.ρ′) → ρ′) for all non-void χ ∈ D

The conditions enumerated above give a sufficient framework in which to prove
the inclusion |= ⊆ �, and this will be the subject of the next sections.

5 Henkin Theory

This section illustrates Henkin’s construction that takes any consistent theory
and extends it to a maximal theory in a language big enough to contain a witness
constant for every existential truth entailed by the original theory.

Let us fix the framework for this section:

Framework 1 I is a Senbase-generated institution with finitary sentences, �
is a compact entailment system that is good w.r.t. Senbase, and D is a proper
quantification class of non-void signature morphisms.

Definition 16. A set of sentences E is consistent if E �⊥. A set of sentences
E is maximal if E � ρ ⇔ E � ¬ρ.

A set of sentences E is a Henkin theory if for all χ : Σ → Σ′ and ρ′ ∈ Sen(Σ′)

E � ∃χ.ρ′ ⇔ there exists χ′ : Σ′ → Σ s.t. χ; χ′ = 1Σ and E � χ′(ρ′)

Remark 5. Note that the implication from right to left in the definition of a
Henkin theory is equivalent to Rule 8.

Definition 17. For each signature Σ we define the one-step extension signature
Σ◦ and the morphism φΣ : Σ → Σ◦ as follows:

Assume {〈χα, ρα〉}α<card(QuantΣ) is an ordered choice of representants for
the quantified sentences of QuantΣ and let Σ◦ be the colimit of the diagram
below:

Σα

cα

���
��

��
��

�

Σ

χα

����������

χβ ���
��

��
��

�
φΣ ��

...

...

Σ◦

Σβ

cβ

����������

We will denote by ΓΣ the set of Σ◦-sentences {cα(ρα) | ∅ � φΣ(∃χα.ρα)
and α < card(QuantΣ)}.

418 M. Petria

Remark 6. The colimit present in the above definition exists because we can
make colimits using morphisms of a proper class of quantification.

Lemma 1. The extension signature morphism φΣ : Σ → Σ◦ is non-void.

Lemma 2. φΣ(E) ∪ ΓΣ is consistent whenever E is consistent.

Proof: First of all let us point that because φΣ is non-void, using Proposition
2 we obtain that φΣ(E) is consistent.

Now, assume that φΣ(E)∪ΓΣ is inconsistent, i.e. φΣ(E)∪ΓΣ �⊥. Because the
entailment system is compact there exists a finite set E0 ⊆ φΣ(E)∪ΓΣ such that
E0 �⊥. If we consider Γ0 := E0∩ΓΣ we have that φΣ(E)∪Γ0 �⊥. Because φΣ(E)
is consistent we get that there exists β such that E′ := φΣ(E)∪{cα(ρα) | α < β}
, E′

�⊥ and E′ ∪ {cβ(ρβ)} �⊥.
Let 〈φβ , χ◦

β〉 be the pushout of 〈χβ , φΣ〉 such that χ◦
β ∈ DΣ◦ :

Σ
φΣ ��

χβ

��

Σ◦

χ◦
β

��
Σβ

φβ

�� Σ◦
β

And also remark that 〈φβ , {cα; χ◦
β|α �= β}〉 is a cocone for 〈χβ , {χα|α �= β}〉.

(Because χα; cα; χ◦
β = φΣ ; χ◦

β = χβ ; φβ for all α �= β)

Σβ

cβ

		�
��

��
��

�
φβ

����������������

Σ

χβ

����������

χα

			
		

		
		

	
... Σ◦ w �� Σ◦

β

Σα

cα

��

 cα;χ◦
β

�����������������

From the universality property of the colimit we get that there exists w : Σ◦ →
Σ◦

β such that cβ ; w = φβ and cα; w = cα; χ◦
β for α �= β.

Now remember that E′ ∪ {cβ(ρβ)} �⊥. Using rule 3 we can deduce that
E′ � ¬cβ(ρβ). Using the translation rule we obtain w(E′) � w(¬cβ(ρβ)). Because
E′ = φΣ(E) ∪ {cα(ρα) | α < β} we can easily see that w(E′) = χ◦

β(E′) (using
the fact that cα; w = cα; χ◦

β). This leads us to χ◦
β(E′) � ¬φβ(ρβ) which by the

use of rule 7 gives us E′ � ¬∃χ◦
β .φβ(ρβ). But φΣ(∃χβ .ρβ) = ∃χ◦

β .φβ(ρβ) and
we obtain E′ � ¬φΣ(∃χβ .ρβ) and hence a contradiction, because φΣ(∃χβ .ρβ) is
entailed by the empty set. �

Definition 18. Iterating this process we can define the full extension of Σ:

base Σ0 := Σ and Γ0 = ∅

An Institutional Version of Gödel’s Completeness Theorem 419

step we make the construction from Definition 17 for the signature Σn obtaining
φΣn : Σn → Σ◦

n and we define φn,n+1 := φΣn , Σn+1 := Σ◦
n, Γn+1 := ΓΣn .

The extension theory (Σω, Γω) will be the colimit of the chain {φn,n+1}n<ω.

Lemma 3. Consider a chain of consistent theories such that each morphism
φn,n+1 is non-void. Then its inductive colimit is consistent.

Proposition 3. φ(E) ∪ Γω is consistent whenever E is consistent.

Lemma 4. Let ρω ∈ QuantΣω
such that ∅ � ρω. Then for every pair 〈χ, ρ′ω〉 with

ρω = ∃χ.ρ′ω there exists χ′ : Σ′
ω → Σω such that χ; χ′ = 1Σω and χ′(ρ′ω) ∈ Γω.

Proof: First let us point that it is sufficient to prove the conclusion for one pair
because two signature morphisms that are used to obtain the same quantified
sentence must be isomorphic.

Assume ∅ � ρω. Because I has finitary sentences we get that there exists n
and ρn ∈ Sen(Σn) such that φn(ρn) = ρω.

From Remark 3 we can reason that ρn is a quantified sentence in Sen(Σn). Let
α be the index of ρn in the enumeration of QuantΣn

and 〈χα, ρ′α〉 be the chosen
representant pair for this sentence with χα : Σn → Σ′

n and ρ′α ∈ Sen(Σ′
n).

Consider the following pushout:

Σn
φn ��

χα

��

Σω

χ

��
Σ′

n
φ′

n

�� Σ′
ω

We will prove the conclusion for the pair 〈χ, ρ′ω〉 where ρ′ω = φ′
n(ρ′α).

From the universality property of the pushout we get that there exists χ′ :
Σ′

ω → Σω such that φ′
n; χ′ = cα; φn+1 and χ; χ′ = 1Σω :

Σn
φn ��

χα

��

Σω

χ

�� 1Σω

Σ′
n

φ′
n

��

cα;φn+1 ��

Σ′
ω

χ′

���
��

��
��

�

Σω

Because ∅ � ρω and ρω = φn(ρn) = φn(∃χα.ρ′α) we get that ∅ � φn(∃χα.ρ′α).
Furthermore using the fact that φn+1 is non-void we get that ∅ � φn,n+1(∃χα.ρ′α).
This means that cα(ρ′α) ∈ Γn+1 which using φ′

n; χ′ = cα; φn+1 leads us to
χ′(φ′

n(ρ′α)) ∈ Γω or equivalently χ′(ρ′ω) ∈ Γω. �

Proposition 4. Every extension E of Γω is a Henkin theory.

420 M. Petria

Proof: Assume Γω ⊆ E and E � ∃χ.ρ′.
Note that ∅ � ∃χ.(χ(∃χ.ρ′) → ρ′) (Proposition 2). Using lemma 4 we get that

there exists χ′ : Σ◦
0 → Σ◦ such that χ; χ′ = 1Σ and χ′(χ(∃χ.ρ′) → ρ′) ∈ ΓΣ .

This leads us to E � χ′(χ(∃χ.ρ′) → ρ′) and furthermore to E � (∃χ.ρ′) → χ′(ρ′).
In conclusion, E � χ′(ρ′). �

Proposition 5. Every consistent theory can be extended to a maximal consis-
tent theory.

Theorem 1. Every consistent theory can be extended to amaximal Henkin theory.

Proof. To obtain a maximal Henkin theory just consider the maximal theory
that contains φ(E) ∪ Γω. �

6 Every Henkin Theory Has a Model

Framework 2 I is a Senbase generated institution, all the sets of sentences in
Senbase(Σ) are basic. D is a class of signature morphisms that has Senbase-basic
coverage.

Theorem 2. Every maximal Henkin theory has a model.

Proof: Let E be a Henkin theory in Sen(Σ). We define the set EB := {ρ | E �
ρ, ρ ∈ Sen(Σ)} and let MEB be the basic model of EB . We show that:

MEB |= ρ ⇔ E � ρ

for every ρ ∈ Sen(Σ).
We will prove this using induction over the structure of sentences:
ρ is a base sentence.
“MEB |= ρ ⇒ E � ρ” Because ρ is basic and MEB |= ρ there exists a morphism

h : Mρ → MEB . For every M |= EB there exists a morphism hM : MEB → M .
In conclusion, the morphism h; hM assures us that M |= ρ whenever M |= EB .
Furthermore, EB |= ρ implies EB � ρ and finally E � ρ.

“E � ρ ⇒ MEB |= ρ”. E � ρ ⇒ ρ ∈ EB ⇒ MEB |= ρ
ρ is a negation ρ := ¬ρ0
“MEB |= ρ ⇔ E � ρ”. MEB |= ¬ρ0 ⇔ MEB � ρ0 ⇔ E � ρ0 ⇔ E � ¬ρ0
ρ is a conjuction, ρ := ρ1 ∧ ρ2.
“MEB |= ρ ⇔ E � ρ”. MEB |= ρ1 ∧ ρ2 ⇔ MEB |= ρ1 and MEB |= ρ2 ⇔ E �

ρ1 and E � ρ2 ⇔ E � ρ1 ∧ ρ2
ρ is an existential question ρ := ∃χ.ρ′. Let us first write the two equivalences

that will help us in this proof:

MEB |= ∃χ.ρ′ ⇔
(

there exists M ′ such that M ′�χ = M and M ′ |= ρ′
)

E � ∃χ.ρ′ ⇔
(

there exists χ′ such that χ; χ′ = 1Σ and E � χ′(ρ′)
)

“MEB |= ρ ⇒ E � ρ”. Let M ′�χ = MEB be such that M ′ |= ρ′. Because D
has Senbase-basic coverage we get that there exists a χ′ : Σ′ → Σ such that

An Institutional Version of Gödel’s Completeness Theorem 421

χ; χ′ = 1Σ and MEB�χ′ = M ′. From the satisfaction condition we get that
MEB |= χ′(ρ′) and finally using the induction hypothesis we can conclude that
E � χ′(ρ′).

“E � ρ ⇒ MEB |= ρ”. Let χ′ : Σ′ → Σ be a signature morphism such
that χ; χ′ = 1Σ and E � χ′(ρ′). Using the induction hypothesis we get that
MEB |= χ′(ρ′). We can define M ′ to be MEB�χ′ . From the satisfaction condition
we get that M ′ |= ρ′ but we can easily see that M ′ is a χ-expansion of M(i.e.
M ′�χ = M) therefore M |= ∃χ.ρ′. �

7 Completeness

For the main theorem’s hypothesis we will enumerate all the conditions from the
two frameworks defined above: Framework 1 and Framework 2:

Theorem 3. Let I = (Sign, Sen, Mod, |=, �) be a Senbase-generated institution
with entailment such that

– I has finitary sentences
– every set of sentences in Senbase(Σ) is basic
– � is compact and good w.r.t. Senbase

and D be a proper quantification class of non-void signature morphisms that has
Senbase-basic coverage. Then the entailment system � is complete.

Proof. Using Theorem 1 and Theorem 2 we get that every consistent theory is
satisfiable, and hence the completeness. �

8 Working Examples

Before starting to apply Theorem 3 to typical institutions it is necessary to
comment slightly on the nature of the result that has just been proved.

In the following examples we will describe some complete rules also for the
base sentences and will consider the minimal generated entailment systems that
include these rules and those enumerated in Definition 15. Because the definition
is inductive we assure ourselves that we are dealing with compact and effective
computable entailment relations.

The main points in checking the conditions of Theorem 3 are: choosing the
set of base sentences such that each subset is basic; enumerating the rules for
base sentences; choosing the quantification class of morphisms D; and checking
that D covers the basic models.

8.1 First Order Logic

In FOL we take Senbase(S, F, P) to be the set of atomic sentences. As explained
in section 3.1 every set of atomic sentences is basic. We take �base to be the
entailment system generated by the following rules:

422 M. Petria

Reflexivity �baset = t
Symmetry t = t′�baset′ = t
Transitivity {t = t′, t′ = t′′}�baset = t′′

Compatibility with F {ti = t′i | i = 1, n}�baseσ(t1, . . . , tn) = σ(t′1, . . . , t
′
n)

Compatibility with P {ti = t′i | i = 1, n} ∪ {π(t1, . . . , tn)}�baseπ(t′1, . . . , t
′
n)

and � to be the minimum good entailment system that includes �base. The
proper quantification class of signature morphisms will contain the signature
morphisms that add a finite number of constants.

The property of basic coverage is easy to establish cosidering that the basic
models are reachable. Consider an extension M ′ of a basic model ME. Each
constant added by the signature morphism from D is interpreted by a reachable
element; this map between constants and terms builds a generalised signature
morphism as needed.

8.2 Partial Algebras

Example 2. The institution PA of partial algebra [2] is defined as follows. A
partial algebraic signature (S, F) consists of a set S of sorts and a set F of
partial operations. We assume that there is a distinguished constant on each
sort ⊥s : s. Signature morphisms map the sorts and operations in a compatible
way, preserving ⊥s; we also allow that constants can be mapped to terms.

A partial algebra is just like an ordinary algebra but interpreting the oper-
ations of F as partial rather than total functions; ⊥s is always interpreted as
undefined. A partial algebra homomorphism h : A → B is a family of (total)
functions {hs : As → Bs}s∈S indexed by the set of sorts S of the signature such
that hs(Aσ(a)) = Bσ(hw(a)) for each operation σ : w → s and each string of
arguments a ∈ Aw for which Aσ(a) is defined.

We consider one kind of atoms: existence equality t
e= t′. The existence equality

t
e= t′ holds when both terms are defined and are equal3. Also, we identify all

atomic sentences that contain ⊥s with a special sentence ⊥(S,F) having the
semantic value of false.

The sentences are formed from these atoms by logical connectives and quan-
tification over variables.

We consider the base sentences in Senbase(S, F) to be the atomic existential
equalities that do not contain ⊥s; and D to be the class of signature morphisms
that add a finite number of constants.

Proposition 6. Every set of sentences from Senbase is basic.

Proof: For a set of atomic sentences E we define SE to be the set of subterms
appearing in E. We define TF (SE) to be the partial algebra that has the carrier
SE . The basic model ME will be the quotient of this algebra by the partial
congruence induced by the equalities from E. �
3 The definedness predicate and strong equality can be introduced as notations: def (t)

stands for t
e
= t and t

s
= t′ stands for (t

e
= t′) ∨ (¬def (t) ∧ ¬def (t ′)).

An Institutional Version of Gödel’s Completeness Theorem 423

Proposition 7. D has Senbase-basic coverage.

Proof: Let M ′�χ = ME. For any added constant x we must find a mapping
into terms. If M ′

x is defined then the value of its interpretation is an isomorphism
class (modulo the equations from E) of terms from SE . We can map x to any of
the terms from this isomorphism class. Otherwise, if M ′

x is undefined we map x
to ⊥s. �

Now we present a set of rules capable of enumerating all semantic entailments
between base sentences. We take �base to be the entailment system generated
by the following rules:

Reflexivity �baset
e= t

Symmetry t
e= t′�baset′ e= t

Transitivity {t
e= t′, t′ e= t′′}�baset

e= t′′

Congruence {ti
e= t′i|i ∈ 1 . . . n}∪{def (σ(t1, . . . , tn)), def (σ(t′1, . . . , t

′
n))} �base

σ(t1, . . . , tn) e= σ(t′1, . . . , t
′
n) for σ ∈ F

Subterm def (σ(t1, . . . , tn))�base{def (ti)|i ∈ 1 . . . n}

The minimal good entailment system w.r.t. �base will be compact and com-
plete by Theorem 3.

9 Conclusions and Future Work

The results that have been presented can be divided into two parts. The first
part, the construction of a Henkin theory in Section 5, is a very general proof,
done with few assumptions that don’t require the ”first order” flavour of a logic.
The second part, in Section 6, proves the existence of a model for a Henkin
theory using the property of basic coverage (Definition 13) which excludes the
application of the completeness theorem to second order logics. Future inves-
tigations should look for other meaningful examples that fit the intuition of
first-order quantification, like completeness w.r.t. Kripke semantics. The most
important restriction of this presentation is the assumption of sensible signa-
tures. This deficiency should be corrected in future work allowing the derivation
of a completeness theorem for first order logics with void sorts.

References

1. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London
Mathematical Society Lecture Notes, vol. 189. Cambridge University Press, Cam-
bridge (1994)

2. Burmeister, P.: A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag (1986)

3. Diaconescu, R.: Institution-independent Model Theory (to appear)
4. Diaconescu, R.: An institution-independent proof of Craig Interpolation Theorem.

Studia Logica 77(1), 59–79 (2004)
5. Diaconescu, R.: Institutions with proofs. Journal of Logic and Computation (2006)

424 M. Petria

6. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery 39(1), 95–146
(1992)

7. Găină, D., Popescu, A.: An institution-independent proof of Robinson consistency
theorem. Studia Logica (to appear)

8. Henkin, L.: The completeness of the first-order functional calculus. Journal of Sym-
bolic Logic 14(3), 159–166 (1949)

9. Henkin, L.: The discovery of my completeness proofs. Bulletin of Symbolic
Logic 2(2), 127–158 (1996)

10. Huet, G., Oppen, D.C.: Equations and rewrite rules: a survey. Formal Language
Theory: Perspectives and Open Problems, 349–405 (1980)

11. MacLane, S.: Categories for the Working Mathematician. Springer, New York
(1998)

12. Meseguer, J.: General logics. In: Logic Colloquium 87, pp. 275–329. North Holland,
Amsterdam (1989)

13. Mossakowski, T., Goguen, J., Diaconescu, R., Tarlecki, A.: What is a logic? Logica
Universalis (2005)

14. Petria, M., Diaconescu, R.: Abstract Beth definability in institutions. Journal of
Symbolic Logic 71(3), 1002–1028 (2006)

15. Tarlecki, A.: Bits and pieces of the theory of institutions. In: Poigné, A., Pitt, D.H.,
Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Program-
ming. LNCS, vol. 240, Springer, Heidelberg (1986)

Coalgebraic Foundations of Linear Systems

(An Exercise in Stream Calculus)

J.J.M.M. Rutten

CWI and Vrije Universiteit Amsterdam

Abstract. Viewing discrete-time causal linear systems as (Mealy) coal-
gebras, we describe their semantics, minimization and realisation as uni-
versal constructions, based on the final coalgebras of streams and causal
stream functions.

1 Introduction

Linear systems are a fundamental mathematical structure with applications in
control theory, signal processing, and telecommunications. In computer science,
they are given but little attention. However, linear systems provide a mathe-
matical model for various types of networks, including signal flow graphs and
linear sequential Boolean circuits (see, for instance, [Koh78, Lah98]). Such net-
works are highly relevant for the foundations of computing, being elementary
and beautiful examples of the combined occurrence of memory and feedback.

In this paper, we give a coalgebraic account of the semantics of the following
elementary type of linear system: a (state-based) discrete-time (strongly) causal
linear system consists of a vector space V of states; vector spaces I and O
of inputs and outputs; and linear maps F : V → V , describing the system’s
dynamics, and G : I → V and H : V → O, describing the system’s input and
output. We shall model such a system as a Mealy automaton (V, Φ), defined by

Φ : V → (O × V)I Φ(v)(i) = 〈H(v), F (v) + G(i)〉

Such Mealy automata, or (I, O)-systems as we shall call them here, are coal-
gebras of the functor F : Set → Set defined by F(S) = (O × S)I . The choice
to model linear systems as Mealy automata or, in other words, as coalgebras
of this particular choice of functor F , is motivated by the following observa-
tion: In [Rut06], it is shown that the final coalgebra of F , which is to serve as
our semantic universe, is (isomorphic to) the set Γ of all causal functions from
the set of input streams Iω to the set of output streams Oω . In system theory,
the input-output behavior of a linear discrete-time causal system is often de-
scribed in terms of precisely such a causal stream function (traditionally called
the transfer function of the system).

Note that we work in the category of sets and functions rather than vector
spaces and linear maps. Although the functor F can also be defined on vector
spaces, the function Φ defined above will in general not be linear, even if F ,
G, and H are. However, linearity of these maps does play a role in the various

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 425–446, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

426 J.J.M.M. Rutten

characterisations of the semantics of linear systems, as we shall see later. (And,
of course, vector addition in V is used in the definition of Φ.)

Once the functor (that is, the type of our systems) has been fixed and its
final coalgebra identified, a coalgebraic treatment of linear systems follows from
general insights of universal coalgebra: the behaviour (or semantics) of a system
is given by the unique homomorphism into the final coalgebra; the image of
this homomorphism constitutes the system’s minimisation; and systems can be
specified by elements of the final coalgebra and then realised (synthesised) by
the corresponding generated subsystems of the final coalgebra.

The exercise mentioned in the title then consists of working out the details of
all this. We view the formulation and the carrying out of this exercise as the main
contribution of the present paper. Technically, we had to extend our earlier work
[Rut03, Rut05] a bit in order to deal with streams of linear transformations, in
Section 3. After recalling the coalgebraic treatment of (I, O)-systems, in Section
4, the main technical contribution lies in Section 5. It will be based on the
elementary but crucial observation that the function Φ above factors through
three maps of the following type (see (21)):

Φ : V �� V × V �� O × V �� (O × V)I

This is the basis for Theorem 8, which presents the final behaviour of (V, Φ) as the
composition of three corresponding final homomorphisms. This final semantics
f assigns to each (initial) state v ∈ V a causal function f(v) : Iω → Oω (called
the transfer function in system theory). This leads then to characterisations
of system minimization and realisation, in Sections 6 and 7. Surprisingly, the
final semantics f turns out to be the composition of a (linear) final mapping
H × F̃ : V → Oω followed by a (non-linear) injection g : Oω → Γ . As a
consequence, minimization and realisation can be simply described in terms of
just output streams, ignoring the presence of input streams altogether.

From the perspective of the theory of coalgebra, the relevance of our contri-
bution consists of the following points. (i) It adds one more basic but important
example to the family of mathematical structures that can be treated naturally
and fairly completely by coalgebraic means. Other well-known examples are
streams, automata, formal power series, infinite data types etc. (ii) Technically,
the interaction between algebra and coalgebra is interesting. In general, (I, O)-
systems (Mealy automata) live in the category of sets. As we shall see, linear
(I, O)-systems are completely determined by their underlying linear O-systems
(in which input plays no role), and these do live in the category of vector spaces
and linear maps. As a consequence, the final behaviour of linear (I, O)-systems,
which itself is obtained in Set, can be pleasantly characterised in terms of the
basic operations (of sum and convolution product) of stream calculus. (iii) It
also follows that streams – which constitute the prototypical example of a final
coalgebra – are essentially all that is needed for the modelling of linear systems,
since O-systems can be completely described in terms of O-streams. (iv) The
final behaviour of finite dimensional linear (I, O)-systems will be characterised
in terms of rational streams, in essentially the same way as finite deterministic

Coalgebraic Foundations of Linear Systems 427

automata, which can be viewed as elementary non-linear (I, O)-systems, cor-
respond to rational (regular) languages. (v) More generally, the present model
shows that from a coalgebraic perspective, there is no essential difference be-
tween the treatment of linear and non-linear systems. This opens the way for
future applications of coalgebraic techniques to non-linear phenomena in system
theory.

Some of these points may also be of interest for system theory, where the
semantics of the linear systems that we are considering is since long well under-
stood (see, for instance, [Kai80]). In particular, our emphasis on the central role
of (the final coalgebra of) streams leads to a very elementary treatment of system
realisation, which – depending on taste and background – might be considered
as a simpler alternative to Kalman’s [Kal63, KFA69] classical construction using
Hankel matrices. See the appendix for a further discussion of this.

We mention a few directions for further research. Since the semantics of both
linear and non-linear systems is given by finality, it would be interesting to try
and fit instances of non-linear systems from system theory (cf. [Son79]) into the
coalgebraic framework. Also generalisations to continuous systems could be con-
sidered. Finally, one of the hallmarks of coalgebra is the notion of bisimulation,
or observational equivalence, which comes along with every (functor) type of
system. It should therefore be possible to study notions of equivalence for linear
systems, including recently introduced ones such as in [Pap03] and [vdS04], from
a coalgebraic perspective.

2 Preliminaries

We define the set of streams over a given set A by

Aω = {σ | σ : {0, 1, 2, . . .} → A}

We will denote elements σ ∈ Aω by σ = (σ(0), σ(1), σ(2), . . .). We define the
stream derivative of a stream σ by

σ′ = (σ(1), σ(2), σ(3), . . .)

and we call σ(0) the initial value of σ. For a ∈ A and σ ∈ Aω we use the following
notation:

a : σ = (a, σ(0), σ(1), σ(2), . . .)

For instance, σ = σ(0) : σ′, for any σ ∈ Aω. Any function f : A → B induces a
function

fω : Aω → Bω fω(σ) = (f(σ(0)), f(σ(1)), f(σ(2)), . . .) (1)

Any function f : A → A induces a function

f̃ : A → Aω f̃(a) = (a, f(a), f2(a), . . .) (2)

428 J.J.M.M. Rutten

where f0 = 1, the identity on A and fn+1 = f ◦ fn. If V is a set and W is a
vector space (over some field k) then the set WV of all functions

WV = {f | f : V → W}

is a vector space, with addition and scalar multiplication given, for v ∈ V and
c ∈ k, by

(f + g)(v) = f(v) + g(v) (c · f)(v) = c · f(v)

In particular, if V is a vector space over k then so is the set V ω of all streams over
V . Both the operations of initial value and derivative are linear transformations:
for all c, d ∈ k, σ, τ ∈ V ω,

(c · σ + d · τ)(0) = c · σ(0) + d · τ(0) (c · σ + d · τ)′ = c · σ′ + d · τ ′

For any set A and n ≥ 1, we denote the elements v ∈ An by v = (v1, . . . , vn). It
will sometimes be convenient to switch between streams of tuples and tuples of
streams. We define the transpose as follows:

(−)T : (An)ω → (Aω)n (σT)i(j) = (σ(j))i (3)

This function is an isomorphism and has an inverse which we denote again by

(−)T : (Aω)n → (An)ω

A semi-ring is a set R with a commutative operation of addition c + d; a
(generally non-commutative) operation of multiplication c · d with c · (d + e) =
(c · d) + (c · e) and (d + e) · c = (d · c) + (e · c); and with neutral elements 0 and 1
such that c + 0 = c, 1 · c = c · 1 = c and c · 0 = 0 · c = 0. If every c ∈ R moreover
has an additive inverse −c (with c + (−c) = 0) then R is a ring.

Any field is a ring. The following example of a ring will be used later. Let V
be a vector space (over some field k). The set V →L V of linear maps F : V → V
is a ring with addition and multiplication defined by

(F + G)(v) = F (v) + G(v) (F × G)(v) = F (G(v))

and with the everywhere zero map and the identity map as neutral elements 0
and 1.

3 Stream Calculus

Let R be a ring. We define the following operators on the set Rω of streams over
R, for all c ∈ R, σ, τ ∈ Rω, n ≥ 0:

[c] = (c, 0, 0, 0, . . .) (often simply denoted again by c)
X = (0, 1, 0, 0, 0, . . .)

(σ + τ)(n) = σ(n) + τ(n) [sum]

(σ × τ)(n) =
n∑

i=0

σ(i) · τ(n − i) [convolution product]

Coalgebraic Foundations of Linear Systems 429

(where · denotes multiplication in the ring R). A stream σ has a (unique)
multiplicative inverse σ−1 in Rω:

σ−1 × σ = [1]

whenever its initial value σ(0) has a multiplicative inverse σ(0)−1 in R. As
usual, we shall often write 1/σ for σ−1 and σ/τ for σ × τ−1. Since X2 =
(0, 0, 1, 0, 0, 0, . . .), X3 = (0, 0, 0, 1, 0, 0, 0, . . .) and so on, the following infinite
sum is well defined, for all σ ∈ Rω:

σ = σ(0) + (σ(1) × X) + (σ(2) × X2) + · · ·

(Note that we write σ(i) for [σ(i)]; similarly below.) It shows that σ can be
viewed as a formal power series in the indeterminate X (which here in fact is a
constant stream). What distinguishes our approach from formal power series is a
systematic use of the operation of stream derivative and the universal property
of finality it induces (see Section 4). This leads to a somewhat non-standard
algebraic calculus, which we call stream calculus. We mention a few identities
which are helpful for the computation of stream derivatives. (Computing stream
derivatives is crucial in our approach to system realisation, in Section 7).

Lemma 1 ([Rut03]). Let R be a ring. For all σ, τ ∈ Rω,

(σ + τ)′ = σ′ + τ ′

(σ × τ)′ = (σ′ × τ) + (σ(0) × τ ′)
(σ−1)′ = −σ(0)−1 × σ′ × σ−1

and (σ + τ)(0) = σ(0) + τ(0), (σ × τ)(0) = σ(0) · τ(0), and σ−1(0) = σ(0)−1 (if
the latter exists). Moreover, σ = σ(0) + (X × σ′) and X × σ = σ × X . �

We call a stream polynomial if it is of the form

c0 + (c1 × X) + (c2 × X2) + · · · + (ck × Xk)

A stream is rational if it is the quotient σ/τ = σ × τ−1 of two polynomial streams
σ and τ for which τ(0)−1 exists. We denote the set of all rational streams over R by

Rat(Rω) = {σ ∈ Rω | σ is rational}

A prototypical example of a rational stream in Rω, for c ∈ R, is

1
1 − (c × X)

= (1, c, c2, . . .)

If we consider the ring V →L V , for a vector space V , then streams φ ∈ (V →L

V)ω are infinite sequences φ = (φ(0), φ(1), φ(2), . . .) of linear transformations
φ(i) : V → V . For a linear transformation F ∈ (V →L V), the example above
becomes

1
1 − (F × X)

= (1, F, F 2, · · ·) (4)

430 J.J.M.M. Rutten

which, under the isomorphism (V → V)ω ∼= V → V ω, is equal to F̃ defined in
(2) above.

We shall also use the following type of convolution product. Let V and W be
vector spaces. For streams φ ∈ (V →L W)ω and σ ∈ V ω, we define φ ×σ ∈ Wω by

(φ × σ)(n) =
n∑

i=0

φ(i) × σ(n − i) (5)

where on the right we write φ(i) × σ(n − i) for φ(i)(σ(n − i)). For a linear map
H : V → W , we have as a special case

[H] × σ = (H, 0, 0, 0, . . .) × σ = (H(σ(0)), H(σ(1)), H(σ(2)), . . .)

which equals Hω(σ) defined in (1) above. Note that if W = V , the set of streams
(V →L V)ω has itself also an operation of convolution product, which interacts
nicely with the product defined in (5). For example, for φ, ψ ∈ (V →L V)ω and
σ ∈ V ω,

(φ × ψ) × σ = φ × (ψ × σ) (6)

Let k be a field. A linear transformation F : kn → km between finite dimen-
sional vector spaces corresponds to an m × n matrix MF with values Fij in k:

F : kn → km MF =

⎛

⎜⎜⎜⎝

F11 F12 · · · F1n

F21 F22 · · · F2n

...
...

. . .
...

Fm1 Fm2 · · · Fmn

⎞

⎟⎟⎟⎠

Here and in what follows, the matrix is with respect to the standard basis

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

of kn and km. Any stream φ = (φ(0), φ(1), φ(2), . . .) of linear transformations
φ(i) : kn → km corresponds to a stream of matrices

(Mφ(0), Mφ(1), Mφ(2), . . .) = Mφ(0) + (Mφ(1) × X) + (Mφ(2) × X2) + · · ·

If we consider Mφ(i)×X i as an m×n matrix obtained from Mφ(i) by multiplying
each of its entries by X i, then the infinite sum on the right can itself be viewed
as an m × n matrix Mφ with entries in kω:

(Mφ)ij = (Mφ(0))ij + ((Mφ(1))ij × X) + ((Mφ(2))ij × X2) + · · · (7)

For the special case of [H] = (H, 0, 0, 0, . . .), for a linear transformation H :
kn → km, we have

(M[H])ij = ((MH)ij , 0, 0, 0, . . .) (8)

We will let the context determine whether entries in k or kω are intended, and
we shall simply write

M[H] = MH (9)

Coalgebraic Foundations of Linear Systems 431

The correspondence between φ and Mφ is given by the following commutative
diagram:

(kn)ω
φ×(−)��

(−)T

��

(km)ω

(−)T

��
(kω)n

Mφ×(−)
�� (kω)m

(φ × σ)T = Mφ × σT (10)

(Recall the definition of (−)T from (3).) Here φ×(−) denotes convolution product
and Mφ × (−) denotes matrix multiplication. Note that M1 = 1, where 1 on the
left denotes the stream (1, 0, 0, 0, . . .) (consisting of the identity map followed by
zero maps), and 1 on the right denotes the identity matrix (having 1’s on the
diagonal and 0’s everywhere else). Also note that

Mφ×ψ = Mφ × Mψ (11)

We have the following proposition.

Proposition 2. Let ρ ∈ (kn →L kn)ω be a stream of linear transformations
ρ(i) : kn → kn. If ρ is rational then Mρ defined in (7) has entries in Rat(kω).

Proof: Consider two polynomial streams φ, ψ ∈ (kn →L kn)ω. The entries of
the matrices Mφ and Mψ are polynomial streams in kω. If ψ moreover has an
inverse ψ−1 then M1 = 1 and (11) imply Mψ−1 = (Mψ)−1, which has values in
Rat(kω). It follows that Mφ×ψ−1 = Mφ × (Mψ)−1 has values in Rat(kω). �

Example 3. Let k = IR and let F, G : IR2 → IR2 be linear transformations
defined by

MF =
(

1 1
0 0

)
MG =

(
0 −1
1 2

)

We compute the matrices of the rational streams F̃ = (1 − (F × X))−1 and
G̃ = (1 − (G × X))−1:

MF̃ = (M1−(F×X))−1 =
(

1 − X −X
0 1

)−1

=
(1

1−X
X

1−X

0 1

)

MG̃ = (M1−(G×X))−1 =
(

1 X
−X 1 − 2X

)−1

=
1

(1 − X)2
·
(

1 − 2X −X
X 1

)

�

4 Systems Coalgebraically

We recall the coalgebraic semantics of systems with input and output. States,
inputs and outputs will be represented by plain sets, and homomorphisms will

432 J.J.M.M. Rutten

be simply functions between sets. In Section 5, we will look at the coalgebraic
modelling of linear systems, involving vector spaces and linear maps.

A system (S, n) consists of a set S and a function n : S → S, assigning
to a state s ∈ S its next state n(s). We call the function n the dynamics of
the system (S, n). A system (S, 〈o, n〉) with output in a given set O (or simply
O-system) consists of a set S of states, a function n : S → S and an output
function o : S → O. (Categorically speaking, an O-system is a coalgebra of the
functor O × (−) : Set → Set.) A homomorphism of O-systems (S, 〈oS , nS〉) and
(T, 〈oT , nT 〉) is a function h : S → T such that nT ◦ h = h ◦ nS and oT ◦ h = oS ;
that is, such that the diagram below commutes:

S
h ��

〈oS,nS〉
��

T

〈oT ,nT 〉
��

O × S
1×h �� O × T

Here and throughout the paper, we use 1 to denote the identity function. The
set of all streams Oω is an O-system (Oω , 〈h, t〉) where

h : Oω → O, h(σ) = σ(0) and t : Oω → Oω , t(σ) = σ′

(Recall that σ′ = (σ(1), σ(2), σ(3), . . .).) Initial value and derivative are often
called head and tail , hence our choice of symbols. The O-system (Oω , 〈h, t〉) has
the following universal property, called finality: For every O-system (S, 〈o, n〉)
there exists a unique homomorphism f : (S, 〈o, n〉) → (Oω , 〈h, t〉), called the
final behaviour of (S, 〈o, n〉). It is given by

S

〈o,n〉
��

f ������� Oω

〈h,t〉
��

O × S
1×f ����� O × Oω

f(s) = (o(s), o ◦ n(s), o ◦ n2(s), . . .)

where n0(s) = s and nl+1(s) = n(nl(s)).
Any system (S, n) (without output) is an S-system (S, 〈1, n〉) with output

1 : S → S in S. We denote the corresponding final homomorphism by ñ:

S

〈1,n〉
��

ñ ������� Sω

〈h,t〉
��

S × S
1×ñ ����� S × Sω

ñ(s) = (s, n(s), n2(s), . . .) (12)

Coalgebraic Foundations of Linear Systems 433

We call ñ the fully observable behaviour of (S, n). The final behaviour f of an
O-system (S, 〈o, n〉) factors through its fully observable behaviour ñ as follows:

S

〈1,n〉
��

ñ
��

〈o,n〉

��

f

��
Sω

〈h,t〉
��

oω
�� Oω

〈h,t〉

��

S × S

o×1
��

1×ñ
�� S × Sω

o×1
��

O × S
1×ñ ��

1×f

��O × Sω 1×oω

�� O × Oω

f = oω ◦ ñ (13)

Next we consider systems with output and input. As before let O be a set
of outputs. In addition, let I be an arbitrary set, the elements of which we call
inputs . A system (S, φ) with input in I and output in O (or simply (I, O)-system)
consists of a set S of states together with a function φ : S → (O × S)I . The
function φ maps a state s ∈ S to a function φ(s) : I → O × S that sends an
input i to a pair φ(s)(i) ∈ O×S. We shall sometimes use the following notation:

s1
i|o �� s2 ⇐⇒ φ(s1)(i) = 〈o, s2〉

which can be read as: in state s1 and with input i the system changes to state
s2 while producing output o. Note that in general both the next state and the
output depends on both the starting state and the input. Systems with input in
I and output in O are also known in the literature as Mealy machines [Eil74].
Categorically, an (I, O)-system is a coalgebra of the functor F : Set → Set
defined by F(S) = (O × S)I .

Let (S, φS) and (T, φT) be two (I, O)-systems. For s1 ∈ S and i ∈ I let
φ(s1)(i) = 〈o, s2〉. A homomorphism of (I, O)-systems is a function h : S → T
such that φT (h(s))(i) = 〈o, h(s2)〉, for all s1 ∈ S and i ∈ I. Equivalently, h
should make the diagram below commute:

S
h ��

φS

��

T

φT

��
(O × S)I

(1×h)1 �� (O × T)I

A final (I, O)-system can be constructed as follows. We call a function g : Iω →
Oω causal (aka synchronous or letter-to-letter) if for any σ ∈ Iω the n-th element
of g(σ) depends on only the first n elements of the input σ; that is,

σ(0) = τ(0), . . . , σ(n) = τ(n) ⇒ g(σ)(n) = g(τ)(n)

for all σ, τ ∈ Iω and n ≥ 0. We denote the set of all causal functions by

Γ = { g : Iω → Oω | g is causal } (14)

434 J.J.M.M. Rutten

Let g : Iω → Oω be causal and let i ∈ I. We define the initial output of g on
input i by

g[i] = g(i : σ)(0) (15)

where σ ∈ Iω is arbitrary. Note that the value g[i] ∈ O does not depend on σ,
since g is causal. We define the stream function derivative of g on input i by

gi : Iω → Oω , gi(σ) = g(i : σ)′ (16)

We obtain an (I, O)-system (Γ, γ : Γ → (O × Γ)I) by defining:

γ(g) (i) = 〈g[i], gi〉

Proposition 4 ([Rut06, HCR06]). The (I, O)-system (Γ, γ) of causal func-
tions is final: for every (I, O)-system (S, φ) there exists a unique homomorphism

S
f ���������

φ

��

Γ

γ

��
(O × S)I

(1×f)1 ������ (O × Γ)I

final behaviour of (S, φ)

Proof: Let s0 ∈ S, σ ∈ Iω and n ≥ 0, and define

f(s0) (σ) (n) = on where s0
σ(0)|o0 �� s1

σ(1)|o1 �� · · · σ(n)|on �� sn+1

Then f(s0) is causal and f is the unique function making the diagram above
commute. �

5 Linear Systems Coalgebraically

We will now model linear systems coalgebraically, by simply applying the results
from Section 4, and taking into account the fact that linear systems are defined
in terms of vector spaces and linear maps. As before, we shall first treat systems
with only output. Next we deal with systems that have both input and output.

We call a system (V, F) linear if the state space V is a vector space (over a
given field k) and the dynamics F : V → V is a linear transformation. A system
(V, 〈H, F 〉) with output in O is linear if in addition O is a vector space (over
the same field k) and H : V → O is a linear transformation. A homomorphism
of linear O-systems (V, 〈HV , FV 〉) and (W, 〈HW , FW 〉) is a homomorphism of
O-systems which is linear:

V
h ��

〈HV ,FV 〉
��

W

〈HW ,FW 〉
��

O × V
1×h �� O × W

h is a linear transformation

Coalgebraic Foundations of Linear Systems 435

Recall from Section 4 that the O-system (Oω , 〈h, t〉) is final among all (not nec-
essarily linear) systems. We saw (in Section 2) that if O is a vector space then
Oω is also a vector space. Since initial value and derivative are linear transfor-
mations, (Oω , 〈h, t〉) is a linear O-system. The final behaviour f : V → Oω of an
O-system (V, 〈H, F 〉) is given, according to (13), by

V
F̃

��

f

��
V ω

Hω
�� Oω f(v) = Hω ◦ F̃ (v)

This is equivalent, for all v ∈ V , to

f(v) = Hω ◦ F̃ (v)
= (H(v), H ◦ F (v), H ◦ F 2(v), . . .)
= (H, 0, 0, 0, . . .) × (1, F, F 2, . . .) × (v, 0, 0, 0, . . .) [using (5) and (6)]
= (H, 0, 0, 0, . . .) × F̃ × (v, 0, 0, 0, . . .) [using (1, F, F 2, . . .) = F̃ , as in (4)]
= [H] × F̃ × [v]

Thus:

V
F̃×[−]

��

f

��
V ω

[H]×(−)
�� Oω f(v) = [H] × F̃ × [v]

It follows that f is a linear transformation and that (Oω , 〈h, t〉) is final in the
family of all linear O-systems and linear homomorphisms between them.

The final behaviour of finite dimensional linear O-systems can be further
characterised as follows. Let n, m ≥ 1 and consider a system (kn, 〈H, F 〉) with
linear transformations F : kn → kn and H : kn → km. By (10), the following
diagram commutes:

(kn)ω
F̃×(−) ��

(−)T

��

(kn)ω

(−)T

��

[H]×(−) �� (km)ω

(−)T

��
(kω)n

MF̃ ×(−)
�� (kω)n

MH×(−)
�� (kω)m

([H]×F̃×(−))T = MH×MF̃ ×(−)T

(17)
(where we use the convention (9) of writing M[H] = MH). It follows that the
final behaviour f satisfies

f(v)T = ([H] × F̃ × [v])T = MH × MF̃ × [v]T (18)

We saw in (4) that F̃ = (1 − (F × X))−1 is a rational stream. By Proposition 2,
the matrix MF̃ has values in Rat(kω). And so we have proved the following.

436 J.J.M.M. Rutten

Proposition 5. For a finite dimensional system (kn, 〈H, F 〉) with dynamics F :
kn → kn and output H : kn → km, the final behaviour f : kn → km satisfies, for
all v ∈ kn,

f(v)T = MH × MF̃ × [v]T

and thus is obtained from [v]T by multiplication with an m×n matrix with values
in Rat(kω). �

Example 6. Let k = IR and consider the linear system (IR2, 〈H, F 〉) with output
H : IR2 → IR and dynamics F : IR2 → IR2 given by

H =
(
1 1

)
F =

(
1 1
0 0

)

The matrix MF̃ corresponding to F̃ has been computed in Example 3:

MF̃ =
(1

1−X
X

1−X

0 1

)

The final behaviour f〈H,F 〉 : IR2 → IRω of this system is given, for any (a, b) ∈
IR2, by

f〈H,F 〉(a, b) =
(
1 1

)
×

(1
1−X

X
1−X

0 1

)
×

(
a
b

)

=
a + b

1 − X

(omitting square brackets around a and b as usual). Repeating the example with
a different output function H̄ and the same dynamics F :

H̄ =
(
1 2

)
F =

(
1 1
0 0

)

leads to the following final behaviour:

f〈H̄,F 〉(a, b) =
(1

1−X
2−X
1−X

)
×

(
a
b

)
=

a + 2b − bX

1 − X

�

Next we discuss linear systems with input and output. We shall model them as
(I, O)-systems, as defined in Section 4, and then study their final behaviour.

Let I, O and V be vector spaces over k, and let F : V → V , G : I → V and
H : V → O be linear transformations. We define the (I, O)-system (V, Φ〈H,F,G〉)
by

Φ〈H,F,G〉 : V → (O × V)I Φ〈H,F,G〉(v)(i) = 〈H(v), F (v) + G(i)〉 (19)

or equivalently, expressed in terms of transitions,

v
i |H(v) �� F (v) + G(i)

Coalgebraic Foundations of Linear Systems 437

We call (V, Φ〈H,F,G〉) a linear (I, O)-system because of the linearity of F , G,
and H . However, note that Φ itself is not linear and likewise, homomorphisms
of linear (I, O)-systems will generally not be linear. This is in contrast with the
family of linear O-systems, where everything is linear.

For a linear(I, O)-system (V, Φ〈H,F,G〉) we call (V, 〈H, F 〉) its underlying O-
system. The key to the coalgebraic understanding of a linear (I, O)-system is the
observation that its behaviour is in essence determined by that of its underlying
O-system.

The following lemma will be helpful. Consider the final O-system (Oω , 〈h, t〉)
and an arbitrary linear transformation ψ : I → Oω . This gives rise to a linear
(I, O)-system (Oω , Φ〈h,t,ψ〉), with Φ〈h,t,ψ〉 defined as in (19). The lemma below
describes its final behaviour g : Oω → Γ , introduced in Proposition 4.

Lemma 7. For all α ∈ Oω and σ ∈ Iω,

Oω
g ����������

Φ〈h,t,ψ〉

��

Γ

γ

��
(O × Oω)I

(1×g)1
������ (O × Γ)I

g(α)(σ) = α + (ψ × X × σ)

(On the right, we read ψ as a stream of linear transformations ψ ∈ (I →L O)ω ∼=
I →L Oω.)

Proof: By finality of (Γ, γ), it is sufficient to show that the function g defined
as above is a homomorphism of (I, O)-systems. By definition of γ, we have
γ(g(α))(i) = 〈 g(α)[i], g(α)i 〉, for all i ∈ I. Now

g(α)[i] = (g(α)(i : σ)) (0) = α(0)

and, for all σ ∈ Iω,

g(α)(i : σ) = g(α)(i + (X × σ)) [by Lemma 1, with i = (i, 0, 0, 0, . . .)]
= α + (X × ψ × (i + (X × σ)))
= α + (X × ψ × i) + (X × ψ × X × σ) (20)

This implies

g(α)i(σ) = (g(α)(i : σ))′ [definition stream function derivative (16)]
= (α′ + (ψ × i)) + (ψ × X × σ) [using (20) and Lemma 1]
= g(α′ + ψ(i))(σ) [using ψ × i = ψ(i)]

It follows that

γ(g(α))(i) = 〈α(0), g(α′ + ψ(i)) 〉
= (1 × g) (〈α(0), α′ + ψ(i) 〉)
=

(
(1 × g)1 ◦ Φ〈h,t,ψ〉 (α)

)
(i) [definition Φ〈h,t,ψ〉 (19)]

438 J.J.M.M. Rutten

This shows that the diagram above commutes. Thus g is a homomorphism. �

Next we observe that for a linear (I, O)-system (V, Φ〈H,F,G〉), with Φ〈H,F,G〉 as
in (19), the function Φ〈H,F,G〉 can be decomposed as follows:

V 〈1,F 〉
��

Φ〈H,F,G〉

��
V × V

H×1
�� O × V

G+

�� (O × V)I (21)

where the function G+ is defined, for all o ∈ O, v ∈ V , and i ∈ I, by

G+(〈o, v〉)(i) = 〈o, v + G(i)〉

Theorem 8.
The final behaviour1 f : V → Γ of a linear (I, O)-system (V, Φ〈H,F,G〉) (as
defined in (19)) satisfies, for all v ∈ V and σ ∈ Iω,

f(v)(σ) =
(

[H] × F̃ × [v]T
)

+
(

[H] × F̃ × [G] × X × σ
)

Proof: Let ψ : I → Oω be defined by ψ = [H] × F̃ × [G] and consider the
following diagram:

V

〈1,F 〉
��

F̃

��

Φ〈H,F,G〉

		

f

��
V ω

〈h,t〉
��

Hω
�� Oω

〈h,t〉

��

g
�� Γ

γ

��

V × V

H×1
��

1×F̃

�� V × V ω

H×1
��

O × V
1×F̃

��

G+
��

(∗)

O × V ω

1×Hω
�� O × Oω

ψ+
��

(O × V)I

(1×(Hω◦F̃))1
��

(1×f)1

(O × Oω)I
(1×g)1 �� (O × Γ)I

Recall that Hω = [H] × (−), using the convolution product introduced in (5)
and, consequently, Hω ◦ F̃ = [H]× F̃ . The function ψ has been defined precisely
such that the rectangle (∗) above commutes. (Note that a proof of (∗) will use
the linearity of [H] × F̃ .) The right hand pentagon commutes by Lemma 7.
Everything else commutes by finality. �

The final behaviour of finite dimensional linear (I, O)-systems can be further
characterised, similarly to the case of linear O-systems. First we define for any
causal function g : (kl)ω → (km)ω a function.
1 We observe that the final behaviour f(0) of the initial state 0 corresponds to what

is known in system theory as the transfer function of the system, where F̃ is often
expressed as (zI − F)−1.

Coalgebraic Foundations of Linear Systems 439

〈g〉 : (kω)l → (kω)m 〈g〉(σ) = g(σT)T

for all σ ∈ (kω)l, and denote the image of Γ under this operation by 〈Γ 〉. (Note
that Γ ∼= 〈Γ 〉.)

Proposition 9.
For a finite dimensional linear (I, O)-system (kn, Φ〈H,F,G〉) with dynamics F :
kn → kn, input G : kl → kn, and output H : kn → km, the final behaviour
〈f〉 : kn → 〈Γ 〉 satisfies, for all v ∈ kn and σ ∈ (kω)l,

〈f(v)〉(σ) =
(
MH × MF̃ × [v]T

)
+ (MH × MF̃ × MG × X × σ)

where all these matrices have values in Rat(kω).

Proof: By (10), all squares below commute:

(kω)l

(−)T

��

MG×(−) �� (kω)n
MF̃ ×(−) �� (kω)n

MH×(−) �� (kω)m

(kl)ω

G×(−)
�� (kn)ω

F̃×(−)
��

(−)T

��

(kn)ω

H×(−)
��

(−)T

��

(km)ω

(−)T

��

The proposition follows from this diagram and Theorem 8. As in Proposition 5,
all matrices have values in Rat(kω). �

Example 10. (This is Example 6, continued.) Let k = IR and consider the linear
system (I, O)-system (IR2, Φ〈H,F,G〉) with H : IR2 → IR, F : IR2 → IR2 and
G : IR2 → IR2 given by

H =
(
1 1

)
F =

(
1 1
0 0

)
G =

(
1 2
1 1

)

The final behaviour 〈f(a, b)〉 : (IRω)2 → IRω of a state (a, b) ∈ IR2 is given, for
all pairs of input streams (σ1, σ2) ∈ (IRω)2, by

〈f(a, b)〉(σ) =
(

MH × MF̃ ×
(

a
b

))
+

(
MH × MF̃ × MG × X ×

(
σ1
σ2

))

=
(
1 1

) (1
1−X

X
1−X

0 1

) (
a
b

)
+

(
1 1

) (1
1−X

X
1−X

0 1

) (
1 2
1 1

) (
X × σ1
X × σ2

)

=
a + (2X × σ1)

1 − X
+

b + (3X × σ2)
1 − X

�

440 J.J.M.M. Rutten

6 Minimization and Equivalence

Because O- and (I, O)-systems are coalgebras, the general definition of coalge-
braic equivalence applies. Here we spell out these definitions together with the
observation that the corresponding minimization of a system is given by the (im-
age under) the final behaviour mapping. For linear (I, O)-systems, we shall see
that minimization and equivalence are particularly simple, as they are entirely
determined by their underlying O-systems.

Equivalence of (not necessarily linear) O-systems is defined as follows. A re-
lation R ⊆ S × T is called an O-bisimulation between O-systems (S, 〈oS , nS〉)
and (T, 〈oT , nT 〉) if for all s ∈ S and t ∈ T :

〈s, t〉 ∈ R ⇒
{

oS(s) = oT (t) and
〈nS(s), nT (t)〉 ∈ R

We say that s and t are O-equivalent and write s ∼O t if there exists an O-
bisimulation R with 〈s, t〉 ∈ R. The final behaviour f : S → Oω of an O-system
(S, 〈o, n〉) identifies precisely all O-equivalent states: s1 ∼O s2 iff f(s1) = f(s2),
for all s1, s2 ∈ S. (For the elementary proof, see [Rut03].) As a consequence, the
minimization of an O-system with respect to O-equivalence is given by the image
of S under f , which is a subsystem f(S) ⊆ Oω because f is a homomorphism.
It follows that if the system is linear, then the greatest O-equivalence on S is
given by the kernel ker(f).

For (I, O)-systems there exists a corresponding notion of (I, O)-equivalence
and, again, the final behaviour identifies precisely all (I, O)-equivalent states:
see [Rut06] for details. For linear (I, O)-systems, things are much simpler since
their behaviour is determined by their underlying O-system.

Proposition 11. The minimization of a linear (I, O)-system (V, Φ〈H,F,G〉) is
isomorphic to the minimization of its underlying O-system (V, 〈H, F 〉).

Proof: By the proof of Theorem 8, the final behaviour f : V → Γ satisfies
f(v) = g(H × F̃ × v), for all v ∈ V . Here the function g : Oω → Γ is given,
according to Lemma 7, by g(α)(σ) = α + (H × F̃ × G × X × σ), for α ∈ Oω and
σ ∈ Iω. Taking σ = 0, we see that g is injective. Thus the image of (V, Φ〈H,F,G〉)
under the final behaviour map f is isomorphic to its image under H × F̃ . The
underlying O-system of this image is the minimization of (V, 〈H, F 〉). �

Example 12. Recall the (I, O)-system (IR2, Φ〈H,F,G〉) from Example 10. Com-
puting its image W under H × F̃ yields

W =
(

H × F̃
)

(IR2) = { a + b

1 − X
| (a, b) ∈ IR2} ⊆ IRω

Output and dynamics on W are induced by 〈h, t〉 : IRω → (IR × IRω). The input
map on W is given by (the corestriction of) ψ = H × F̃ × G : IR2 → IRω and
satisfies

Coalgebraic Foundations of Linear Systems 441

H × F̃ × G =
(
1 1

) (1
1−X

X
1−X

0 1

) (
1 2
1 1

)

=
(2

1−X
3

1−X

)

Choosing 1/1 − X as a basis for W , we find that the resulting minimization is
isomorphic to IR, with output and dynamics both given by 1 : IR → IR, and with
input (2 3) : IR2 → IR. �

7 Realisation

We discuss the realisation of linear and non-linear systems, first with only output
and then with input and output.

A state s ∈ S in a (not necessarily linear) O-system (S, 〈o, n〉) realises a
stream σ ∈ Oω if the final behaviour of s satisfies f(s) = σ. If O is a set (and
not necessarily a vector space), a minimal realisation for a stream σ ∈ Oω is
obtained by taking as state space the set

Sσ = {σ(0), σ(1), σ(2), . . .} (22)

with σ(0) = σ and σ(n+1) = t(σ(n)) = (σ(n))′. As output function and dynamics,
one simply takes the restrictions of h : Oω → O and t : Oω → Oω to Sσ. The set
inclusion Sσ ⊆ Oω is a homomorphism of O-systems. By finality of (Oω , 〈h, t〉),
this homomorphism is unique. It follows that f(σ) = σ and hence that (Sσ, 〈h, t〉)
with initial state σ is a minimal realisation of σ.

If O is a vector space then Oω is also a vector space and we will be interested in
realisations that themselves are vector spaces again. Thus a minimal realisation
for a stream σ ∈ Oω will consist of the smallest subspace of Oω that contains
σ and is closed under the linear transformation t : Oω → Oω . This (so-called
t-cyclic) vector space Zσ ⊆ Oω is the subspace of Oω that is spanned by the set
Sσ of vectors in (22).

Of special interest are those σ ∈ Oω such that, for some n ≥ 1, all of σ = σ(0)

through σ(n−1) are linearly independent and

σ(n) +
(

cn−1 × σ(n−1)
)

+ · · · +
(

c1 × σ(1)
)

+
(

c0 × σ(0)
)

= 0

for some coefficients c0, . . . , cn−1 in the base field k of O and Oω . Then Zσ is a
vector space of dimension n. The linear transformation F : Zσ → Zσ induced
by t : Oω → Oω is given, with respect to the (ordered) basis σ(0), . . . , σ(n−1), by
the n × n matrix

MF =

⎛

⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1

⎞

⎟⎟⎟⎟⎟⎠

(This matrix is in fact (a variation of) the companion matrix of the so-called
t-order polynomial of σ; cf. [BM77, Thm.15, p.339].) The linear transformation

442 J.J.M.M. Rutten

H : Zσ → O induced by h : Oω → O is given, again with respect to the basis
σ(0), . . . , σ(n−1), by the matrix (of size dim(O) × n)

MH =
(
σ(0)(0) σ(1)(0) σ(2)(0) · · · σ(n−1)(0)

)

Thus we have obtained a linear O-system (Zσ, 〈H, F 〉) of dimension n. As before,
the inclusion Zσ ⊆ Oω is a homomorphism. Thus f(τ) = τ , for all τ ∈ Zσ and
(Zσ, 〈H, F 〉) with σ as initial state is a minimal realisation of σ.

Example 13. Let O = IR and consider the stream σ = 1/(1 − X)2 ∈ Oω . Com-
puting the successive stream derivatives of σ = σ(0), using Lemma 1, gives

σ(1) =
2 − X

(1 − X)2
σ(2) =

3 − 2X

(1 − X)2
= −σ(0) + (2 × σ(1))

Thus σ(0) and σ(1) form a basis for Zσ. Because σ(0)(0) = 1 and σ(1)(0) = 2, we
have

MH =
(
1 2

)
MF =

(
0 −1
1 2

)

Now σ is realised by (Zσ, 〈H, F 〉), with σ as the initial state. Clearly, IR2 ∼=
Zσ. Note that the isomorphism can also be obtained by computing the final
behaviour f : IR2 → IRω of the O-system (IR2, 〈H, F 〉), using Proposition 5.
This gives, for all (a, b) ∈ IR2,

f(a, b) = MH × MF̃ × (a, b)

=
(
1 2

)
×

(
1−2X

(1−X)2
−X

(1−X)2
X

(1−X)2
1

(1−X)2

)
×

(
a
b

)

which satisfies, as expected, f(1, 0) = σ and f(0, 1) = σ(1). �

Example 14. Let O = IR2 and consider the pair (τ, σ) ∈ (IRω)2 ∼= (IR2)ω , with
τ = 1/(1 − 2X) and σ = 1/(1 − X)2. Computing (pairs of) stream derivatives

(τ, σ)(1) =
(

2
1 − 2X

,
2 − X

(1 − X)2

)
(τ, σ)(2) =

(
22

1 − 2X
,

3 − 2X

(1 − X)2

)

(τ, σ)(3) =
(

23

1 − 2X
,

4 − 3X

(1 − X)2

)
= 2 × (τ, σ)(0) − 5 × (τ, σ)(1) + 4 × (τ, σ)(2)

we see that Z(τ,σ) has dimension 3 with H : Z(τ,σ) → IR2 and F : Z(τ,σ) → Z(τ,σ)
given by

MH =
(

1 2 4
1 2 3

)
MF =

⎛

⎝
0 0 2
1 0 −5
0 1 4

⎞

⎠

�

Coalgebraic Foundations of Linear Systems 443

Proposition 15. Let k be a field and let O = km. A vector of streams σ ∈
(kω)m ∼= (km)ω is realisable by a linear km-system of finite dimension iff σ ∈
(Rat(kω))m.

Proof : From left to right, this is Proposition 5. For the converse, it is sufficient
to observe that the examples above generalise to arbitrary vectors of rational
streams. This is immediate from the fact that for a rational stream σ = ρ/τ , the
dimension of Zσ in the construction above is bounded by the maximum of the
degrees of ρ and τ . �

Next we turn to systems with input and output . Let I and O be sets. A state s
in a (not necessarily linear) (I, O)-system (S, φ) realises a causal stream func-
tion g : Iω → Oω if the final behaviour of s satisfies f(s) = g. For a given g,
a (minimal) realisation is obtained by taking the smallest subsystem S of the fi-
nal (I, O)-system (Γ, γ) containing g. The system S can be constructed by adding
to the singleton set {g} all successive stream function derivatives gi, (gi)j , etc. (for
i, j, . . . ∈ I), and taking the restriction of γ to S. The inclusion S ⊆ Γ is a homo-
morphism of (I, O)-systems and by finality we have f(g) = g. In [Rut06, HCR06],
this approach is systematically applied to the realisation (synthesis) of various
(non-linear) causal functions on bitstreams (with I = O = {0, 1}).

For infinite I and O, this construction will in general not be finitely com-
putable. However, if both I and O are finite dimensional vector spaces then
the realisation of linear causal stream functions can simply be reduced to the
realisation problem of streams, which we have already solved above.

Proposition 16. Let k be a field and let I = kl and O = km. Let g : (kω)l →
(kω)m be given by g(τ) = M ×X × τ , for an m× l matrix M ∈ (kω)m×l. Then g
is realisable by a linear (I, O)-system of finite dimension iff M ∈ (Rat(kω))m×l.

Proof: From left to right, this is Proposition 9. For the converse, we first consider
the case that l = 1. So assume that M ∈ (Rat(kω))m. By Proposition 15, there
exists a finite dimensional system (V, 〈H, F 〉) and v ∈ V realising M ; that is,
f(v) = MH × MF̃ × v = M . If we define G : k → V by the matrix MG = v then
(V, Φ〈H,F,G〉) with 0 ∈ V as initial state realises g since, for all τ ∈ kω,

f(0)(τ) = MH × MF̃ × MG × X × τ [Proposition 9]
= MH × MF̃ × v × X × τ

= M × X × τ

= g(τ)

For l > 1 we write M as a direct sum (product) M = M1 ⊕ · · · ⊕ Ml, with
Mi ∈ (Rat(kω))m, for i = 1, . . . , l. Then we construct realisations for each of
gi = Mi × X . Their direct sum is a realisation for g. �

444 J.J.M.M. Rutten

Acknowledgments. Discussions with Albert Benveniste – on [Rut05, Ben06]
– were very instructive and are gratefully acknowledged. Thanks are also due
to Jiri Adamek, H.Peter Gumm, Jan Komenda, Prakash Panangaden, Hans-E.
Porst, and Jan van Schuppen, for discussions and pointers to the literature. I am
also very grateful to the constructive comments of the three anonymous referees.
Amongst others, their suggestions for improvements of the notation were very
useful.

References

[AM74] Arbib, M.A., Manes, E.G.: Foundations of system theory: decomposable
systems. Automatica 10, 285–302 (1974)

[AM75] Arbib, M.A., Manes, E.G.: Adjoint machines, state-behaviour machines, and
duality. Journal of Pure and Applied Algebra 6, 313–344 (1975)

[Ben06] Benveniste, A.: A brief on realisation theory for linear systems (unpublished
note)

[BM77] Birkhoff, G., MacLane, S.: A survey of modern algebra, 4th edn. MacMillan
Publishing Co., Inc. (1977)

[Eil74] Eilenberg, S.: Automata, languages and machines. In: Pure and applied
mathematics, vol. A, Academic Press, London (1974)

[Fuh96] Fuhrmann, P.A.: A polynomial approach to linear algebra. Springer, Berlin
(1996)

[HCR06] Hansen, H., Costa, D., Rutten, J.J.M.M.: Synthesis of Mealy machines using
derivatives. In: Proceedings of CMCS 2006. ENTCS, vol. 164(1), pp. 27–45.
Elsevier, Amsterdam (2006)

[Kai80] Kailath, T.: Linear systems. Prentice-Hall, Englewood Cliffs (1980)

[Kal63] Kalman, R.E.: Mathematical description of linear dynamical systems. SIAM
J. Control 1, 152–192 (1963)

[KFA69] Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in mathematical system the-
ory. McGraw-Hill, New York (1969)

[Koh78] Kohavi, Z.: Switching and finite automata theory. McGraw-Hill, New York
(1978)

[Lah98] Lahti, B.P.: Signal Processing & Linear Systems. Oxford University Press,
Oxford (1998)

[Pap03] Pappas, G.J.: Bisimilar linear systems. Automatica 39, 2035–2047 (2003)

[Rut03] Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus
of streams, automata, and power series (Fundamental Study). Theoretical
Computer Science 308(1), 1–53 (2003)

[Rut05] Rutten, J.J.M.M.: A tutorial on coinductive stream calculus and signal flow
graphs. Theoretical Computer Science 343(3), 443–481 (2005)

[Rut06] Rutten, J.J.M.M.: Algebraic specification and coalgebraic synthesis of Mealy
automata. In: Proceedings of FACS 2005. ENTCS, vol. 160, pp. 305–319.
Elsevier Science Publishers, Amsterdam (2006)

[Son79] Sontag, E.D.: Polynomial response maps. Lecture Notes in Control and In-
formation Sciences, vol. 13. Springer, Heidelberg (1979)

[vdS04] van der Schaft, A.J.: Equivalence of dynamical systems by bisimulation.
IEEE Transactions on Automatic Control 49, 2160–2172 (2004)

Coalgebraic Foundations of Linear Systems 445

Appendix: A Comparison with Algebraic System Theory

In the wide area of (linear) system theory, our coalgebraic treatment of linear
systems is probably closest related to what sometimes is called algebraic system
theory. Below we give a brief overview of the approach of Kalman, who was
one of the early contributors, and compare it to the present model. Classical
references are [Kal63, KFA69], but see also [Kai80, Fuh96, Ben06]. Here we rely
on the more categorical account of Kalman’s model described in [AM74, AM75].

Let

I(ω) = {σ ∈ Iω | σ = (i0, i1, . . . , ik, 0, 0, 0, . . .) for some k ≥ 0, ij ∈ I }

and consider the following diagram of vector spaces and linear maps:

I

e

��

G

����
��

��
��

��
� O

I(ω)

X×(−)

��

r ������ V

F

��

o ������

H

����������
Oω

t

��

h

��

I(ω)
r

������ V o
������ Oω

(with e(i) = (i, 0, 0, 0, . . .).) The diagram can be viewed as a theorem stating that
every choice of linear transformations G and F induces a unique reachability map
r such that the left half of the diagram commutes, and similarly, every choice
of F and H induces a unique observability map o fitting in the right half of the
diagram. In this manner, every linear system (V, H, F, G) induces a unique map
(called the transfer function) o ◦ r : I(ω) → Oω . It satisfies (in our notation)

o ◦ r(σ) = H × F̃ × r(σ) (23)

where the state r(σ) reached on input σ = (i0, i1, . . . , ik, 0, 0, . . .) ∈ I(ω) is given
by

r(σ) =
(

F̃ × G × σ
)

(k)

= G(i0) + F ◦ G(i1) + F 2 ◦ G(i2) + · · · + F k ◦ G(ik)

(Note that the operational interpretation is that ik is the first input and i0 is the
last.) Comparing (23) with the final behaviour of V given in Theorem 8, we note
the following differences: (i) The final behaviour allows arbitrary input streams,
not only almost-everywhere-zero ones. (ii) The ordering of the inputs coincides
with the input order. (iii) In (23), the behaviour of V is described in two steps:
first r computes the state that is reached on finite input, then the (infinite)
output stream is computed; in contrast, Theorem 8 describes the behaviour of
an arbitrary initial state for all (infinite) streams of inputs.

446 J.J.M.M. Rutten

Further differences between the two approaches can be noted regarding the
way realisation is handled. In Kalman’s approach, a realisation of a linear map
g as in Proposition 16 is obtained by constructing its so-called (infinite) Hankel
matrix Hg, viewing Hg as a linear transformation from I(ω) to Oω , and the
observation that if Hg has finite rank then this linear transformation factors
through a finite dimensional vector space V as in the diagram above. In contrast,
Proposition 16 reduces realisation of linear maps to the realisation of streams,
and the latter are simply given by the corresponding (t-cyclic) subspaces of Oω .

Bootstrapping Types and Cotypes in HASCASL�

Lutz Schröder

DFKI-Lab Bremen and Department of Computer Science, University of Bremen

Abstract. We discuss the treatment of initial datatypes and final
process types in the wide-spectrum language HasCasl. In particular,
we present specifications that illustrate how datatypes and process types
arise as bootstrapped concepts using HasCasl’s type class mechanism,
and we decribe constructions of types of finite and infinite trees that
establish the conservativity of datatype and process type declarations
adhering to certain reasonable formats. The latter amounts to modify-
ing known constructions from HOL to avoid unique choice; in categori-
cal terminology, this means that we establish that quasitoposes with an
internal natural numbers object support initial algebras and final coal-
gebras for a range of polynomial functors, thereby partially generalizing
corresponding results from topos theory.

1 Introduction

The formally stringent development of software in a unified process calls for wide-
spectrum languages that support all stages of the development process, including
requirements, design, and implementation. In the Casl language familiy [3], this
role is played by the higher-order Casl extension HasCasl [19, 24]. Like in
first-order Casl, a key feature of HasCasl is support for inductive datatypes,
which appear in the specification of the functional correctness of software. In
the algebraic-coalgebraic language CoCasl [11], this concept is complemented
by coinductive types, which appear as state spaces of reactive processes. Many
issues revolving around types of either kind gain in complexity in the context of
the enriched language HasCasl; this is related both to the presence of additional
language features such as higher order types and type class polymorphism and
to the nature of the underlying logic of HasCasl, an intuitionistic higher order
logic of partial functions without unique choice which may, with a certain margin
of error, be thought of as the internal logic of quasitoposes.

Here, we discuss several aspects of HasCasl’s concept of inductive datatype,
as well as the perspective of adding coinductive types to HasCasl. To begin, we
present the syntax and semantics of inductive datatypes, which may be equipped
with reachability constraints or intiality constraints; both types of constraints
may be relatively involved due to the fact that constructor arguments may have
complex composite types. We then go on to show how initial datatypes may
be specified in terms of HasCasl’s type class mechanism. On the one hand,

� This work forms part of the DFG-project HasCasl (KR 1191/7-2).

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 447–461, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

448 L. Schröder

this shows that initial datatypes need not be regarded as a built-in language
feature, but may be considered as belonging into a ‘HasCasl prelude’. On the
other hand, the specifications in question give a good illustration of how far the
type class mechanism may be stretched. We then briefly discuss how a simple
dualization of these specifications describes final process types in the style of
CoCasl; thus, the introduction of such types into HasCasl would merely con-
stitute additional syntactic sugar (although concerning the relationship to Casl
and CoCasl, for both datatypes and process types certain caveats apply related
to HasCasl’s Henkin semantics).

Finally, we tackle the issue of the conservativity of datatype and process
type declarations. We follow the method employed in standard HOL [14, 2],
which consists in defining a universal type of trees and then carving out the
desired inductive or coinductive types. However, the constructions need to be
carefully adapted in order to cope with the lack of unique choice; in particular,
it turns out that the existence of final process types hinges on the presence
of an internal natural numbers object (NNO). Abstracting our results to the
categorical level, we prove, in partial generalization of corresponding results for
toposes [8], that any quasitopos with an internal NNO supports initial algebras
and final coalgebras for certain classes of polynomial functors.

2 HASCASL

The wide-spectrum language HasCasl [19] extends the standard algebraic spec-
ification language Casl by intuitionistic partial higher order logic, equipped
with a set-theoretic Henkin semantics, an extensive type class mechanism, and
HOLCF-style support for recursive programming. HasCasl moreover provides
support for functional-imperative specification and programming in the shape of
monad-based computational logics [20, 22, 21, 25]. Tool support for HasCasl
is provided in the framework of the Bremen heterogeneous tool set Hets [10].
We expect the reader to be familiar with the basic Casl syntax (whose use in
our examples is, at any rate, largely self-explanatory), referring to [3, 12] for a
detailed language description. Below, we briefly review the HasCasl language
features most relevant for the understanding of the present work, namely type
class polymorphism and certain details of HasCasl’s higher order logic; cf. [24]
for a full language definition.

The logic of HasCasl is based on the partial λ-calculus [9]. It is distinguished
from standard HOL by having intutionistic truth values and partial function
types t →? s (besides total function types t → s). The set-theoretic seman-
tics is given by intensional Henkin models, where function types are equipped
with application operators but are neither expected to contain all set-theoretic
functions nor indeed to consist of functions; in particular, different elements of
the function type may induce the same set-theoretic function. Such models are
essentially equivalent to models in (varying!) partial cartesian closed categories
(pccc’s) with equality [18]; these categories are slightly more general than qua-
sitoposes [1], which can be seen as finitely cocomplete pccc’s with equality.

Bootstrapping Types and Cotypes in HasCasl 449

The difference between the HasCasl logic and the more familiar topos
logic [7] is the absence of unique choice [18], where we say that a type a admits
unique choice if a supports unique description terms of the form (ιx : a. φ) : a
designating the unique element x of a satisfying the formula φ (which may of
course mention x), if such an element exists uniquely (this is like Isabelle/HOL’s
THE [13]). In HasCasl, the unique choice principle may be imposed if desired
by means of a polymorphic axiom. The lack of unique choice requires additional
effort in the construction of tree types establishing the conservativity of datatype
and process type declarations; this is the main theme of Sect. 6. The motivation
justifying this effort is twofold:

– Making do without unique choice essentially amounts to admitting models in
quasitoposes (in fact, pccc’s with equality) rather than just in toposes. Inter-
esting set-based quasitoposes include pseudotopological spaces and reflexive
relations; further typical examples are categories of extensional presheaves,
including e.g. the category of reflexive logical relations, and categories of as-
semblies, both appearing in the context of realizability models [15, 16]. Qua-
sitoposes also play a role in the semantics of parametric polymorphism [4].

– A discipline of avoiding unique choice leads to constructions which may be
easier to handle in machine proofs than ones containing unique description
operators (cf. e.g. the explicit warning in [13], Sec. 5.10).

HasCasl’s shallow polymorphism revolves around a notion of type class.
Type classes are syntactic subsets of kinds, where kinds are formed from classes,
including a base class Type of all types, and the type function arrow →. Classes
are declared by means of the keyword class; e.g.

class Functor < Type → Type

declares a class Functor of type constructors, i.e. operations taking types to
types. Types are declared with associated classes (or with default class Type)
by means of the keyword type; e.g. a type constructor F of class Functor is
declared by writing

type F : Functor

Such declarations may be generic; e.g. if Ord is a class, then we may write

var a, b : Ord
type a × b : Ord

thus imposing that the class Ord is closed under products; note how the keyword
var is used for both standard variables and type variables. Operations and ax-
ioms may be polymorphic over any class, i.e. types of operations and variables
may contain type variables with assigned classes.

In order to ensure the institutional satisfaction condition (invariance of satis-
faction under change of notation), polymorphism is equipped with an extension
semantics [23]; the only point to note for purposes of this work is that as a conse-
quence, a specification extension is, in Casl terminology, (model-theoretically)

450 L. Schröder

conservative (i.e. admits expansions of models) iff it introduces names for enti-
ties already expressible in the present signature. In the case of types, this means
that e.g. a datatype declaration is conservative iff it can be implemented as a
subtype of an existing type.

3 Datatypes in HASCASL

HasCasl supports recursive datatypes in the same style as in Casl. To begin,
an unconstrained datatype t is declared along with its constructors ci : ti1 →
. . . → tiki → t by means of the keyword type in the form

type t ::= c1 t11 . . . t1k1 | . . . | cn tn1 . . . tnkn

(mutually recursive types are admitted as well, but omitted from the presentation
for the sake of readability). Here, t is a pattern of the form C a1 . . . ar, r ≥ 0,
where C is the type constructor (or type if r = 0) being declared and the ai

are type variables. The tij are types whose formation may involve C and the ai.
Optionally, selectors sel ij : t →? tij may be declared by writing (sel ij :?tij)
in place of tij . All this is syntactic sugar for the corresponding declarations of
types and operations, and equations stating that selectors are left inverse to
constructors.

Data types may be qualified by a preceding free or generated. The gen-
erated constraint introduces an induction axiom; this corresponds roughly to
term generatedness (‘no junk’). The free constraint (‘no junk, no confusion’)
instead introduces an implicit fold operator, which implies both induction and
a primitive recursion principle. If one of these constraints is used, then recursive
occurrences (in the tij) of C are restricted to the pattern C a1 . . . ar appearing
on the left hand side; i.e. HasCasl does not support polymorphic recursion.
If a free constraint is used, then additionally recursive occurrences of C are
required to be strictly positive w.r.t. function arrows, i.e. occurrences in the ar-
gument type of a function type are forbidden. In more detail, the semantics of
the constraints is as follows.

3.1 Generated Types

If t as above has only t and types from the local environment as arguments of
constructors, then a generatedness constraint for t induces an induction axiom
for t as in Casl. Unlike in Casl, the induction axiom is however expressible in
HasCasl, i.e. generation constraints in HasCasl are just syntactic sugar. For
constructors with composite argument types, the induction axiom more generally
states that a predicate P on t holds universally if a family of extended induction
predicates Ps on composite types s is closed under the constructors, where the Ps

are subject to the following conditions. The base cases are Pt = P and Ps = �
if s is from the local environment or a type variable. The remaining clauses are

– Partial function spaces: Ps→?uf ⇐⇒ ∀x : s.(Psx ∧ def f(x)) ⇒ Puf(x).
– Total function spaces : Ps→u is the restriction of Ps→?u to s → u.

Bootstrapping Types and Cotypes in HasCasl 451

– Product types : Ps×u(x, y) ⇐⇒ Psx ∧ Puy.
– Applications D s1 . . . sq of a type constructor D from the local environment

to types s1, . . . , sq, where at least one sj contains a recursive occurrence
of t: PD s1...sq is required to be closed under all operations with result type
D s1 . . . sq (which are necessarily newly arising instances of polymorphic
operators). Note that PD s1...sq is not in general uniquely defined by this
requirement.

Remark 1. If a type constructor D from the local environment has a generation
constraint, then the closedness requirement on extended induction predicates
for applications of D already follows from closedness under the operators in the
constraint. However, the induction axiom also makes sense if D has no generation
constraint; it then states that t is generated from the reachable part of D.

Generally, every HasCasl specification, in particular every datatype declara-
tion, has a term model [18], which satisfies the above induction axiom. However,
we stress that the induction axiom does not imply that elements of a gener-
ated datatype whose constructors have functional arguments are reachable by
the constructors and λ-abstraction. In particular, induction axioms do not pre-
clude interpreting functional types by full function spaces, which cannot be term
generated for infinite types.

Finally, note that, due to Henkin semantics, generation constraints in Has-
Casl are weaker than in Casl, and in particular do not exclude non-standard
models. However, proof-theoretically, this difference disappears — at least if the
standard finitary induction rule is used. Only if stronger (e.g. infinitary) forms
of induction are used, the difference becomes relevant.

Example 2. The following datatype declaration might form part of a specifi-
cation of systems with unordered finite branching:

generated type Set a ::= empty | add a (Set a)
generated type Sys b ::= node b (Set (Sys b))

The induction axiom for Set is as in Casl; the induction axiom for Sys b is

(∀x : b; s : Set (Sys b) • Q s ⇒ P (node x s)) ∧
Q empty ∧
(∀s : Set (Sys b); t : Sys b • (Q s ∧ P t) ⇒ Q (add t s))

⎫
⎬

⎭ ⇒ ∀t : Sys b • P t.

As an example with functional constructors, consider a datatype of at most
countably branching trees,

generated type CTree a ::= leaf a | branch (Nat →? CTree a)

(with Nat previously declared), which for CTree gives rise to the induction axiom

(∀x : a • P (leaf x)) ∧
(∀f : Nat →? CTree •

(∀x : Nat • def f x ⇒ P (f x)) ⇒ P (branch f))

⎫
⎬

⎭ ⇒ ∀t : CTree • P x.

452 L. Schröder

3.2 Free Types

The semantics of free datatypes is determined by a fold operator, i.e. free
datatypes are explicitly axiomatized as initial algebras. As indicated above,
recursive occurrences of free types must be strictly positive, i.e. types like
L ::= abs (L → L) and L a ::= abs ((L → a) → a) are illegal, while

free type Tree a b ::= leaf b | branch (a → Tree a b)

is allowed. Free datatypes are seen as initial algebras for functors. In the standard
case, the functors in question are polynomial functors, with multiple arguments
of constructors represented as products and alternatives represented as sums.
E.g. the signature of the tree type above induces the functor Fab given by

Fabc = b + (a → c).

The general mechanism for extracting functors from datatype declaration is ex-
plained in more detail in Sect. 4. This mechanism relies on type classes to ensure
that user-defined type constructors appearing in constructor arguments are ac-
tually functors. The latter will in particular be the case if type constructors are
defined as free datatypes with functorial parameters; e.g. the above declaration
induces a functor taking b to Tree a b.

For now, we take for granted that a free datatype t as in the beginning of
this section can be regarded as an initial algebra α : F t → t for a functor F .
Initiality is expressed by means of a polymorphic fold operation

fold : (F b → b) → t → b

for b : Type, and an axiom stating that, for d : F b → b, fold d is the unique F -
algebra morphism from α to d, i.e. the unique map f satisfying d◦ (F f) = f ◦α.

Remark 3. Unlike in Casl, the meaning of free type does not coincide with
that of the corresponding structured free extension free { type . . . }, which
would require all newly arising function types to be also freely term generated.

Remark 4. The reason for using an explicit fold operation in place of a com-
bination of induction (‘no junk’) and term distinctness (‘no confusion’) is the
absence of a unique choice operator, without which the existence of folds fails
to be derivable from the no-junk-no-confusion principles. (E.g. in the quasitopos
of pseudotopological spaces, the no-junk-no-confusion axioms determine the un-
derlying set of an initial algebra but not its topological structure.) Conversely,
one easily sees that initiality implies induction and term distinctness.

From the fold operation, one obtains a primitive recursion principle in the
standard way (i.e. by means of a simultanuous recursive definition of the iden-
tity). From the latter, in turn, we obtain as a special case a case operator,
denoted in the form

case x of c y1 . . . yl → f y1 . . . yl | . . .

Bootstrapping Types and Cotypes in HasCasl 453

Example 5. Consider the following free datatype definitions.

free type List a ::= nil | cons (a; List a)
free type Tree a b ::= leaf a | branch (b → List (Tree a b))

The declaration of List a induces the standard fold operation for lists. Moreover,
the type class mechanism (cf. Sect. 4) recognizes automatically that the type
constructor List is a functor, and in particular generates the standard map
operation. For Tree, we obtain a polymorphic fold operation

fold : (a → c) → ((b → List c) → c) → Tree a b → c.

This operation is axiomatized as being uniquely determined by the equations

fold f g (leaf x) = f x and fold f g (branch s) = g (map (fold f g) ◦ s).

4 Initiality Via the Type Class Mechanism

The concept of free datatype described in the previous section may be regarded
as bootstrapped, i.e. as being a HasCasl library equipped with built-in syn-
tactic sugar rather than a basic language feature. The crucial point here is that
HasCasl’s type class mechanism allows talking about functorial signatures,
algebras for a functor, and, importantly, homomorphisms. The specifications
shown below are real HasCasl specifications, parsed and prettyprinted using
the Heterogeneous Tool Set (Hets) [10].

Figure 1 shows the constructor class of functors. Mutually recursive or para-
metrized datatypes require n-ary functors for n ∈ N, and in fact occasionally
type constructors which are functorial only in some of their arguments; since
HasCasl does not feature dependent classes, the corresponding classes need to
be specified one by one, as exemplified in Fig. 1 by a specification of bifunctors.
This is not a problem in practice, as typically only small values of n are needed;
the specification of bifunctors illustrates how n+1-ary functors can be specified
recursively in terms of n-ary functors.

Remark 6. One might envision a single specification of functors of arbitrary
finite arity by abuse of syntax, as follows: declare a class Typelist and type
constructors Nil : Typelist , Cons : Type → Typelist → Typelist , and define
Functor as a subclass of Typelist → Type. (Undesired semantic side effects may
be eliminated by specifying the types Nil , Cons a Nil etc. to be singletons.)
Similar tricks work in Haskell [6] but rely on multi-parameter type classes, which
are currently excluded from the HasCasl design.

For purposes of conservativity of datatype declarations, the class of polynomial
functors (bifunctors etc.), shown in Fig. 2, plays an important role. An n-ary
functor is polynomial if it can be generated from projection functors (the identity
functor if n = 1) and constant functors by taking finite sums and products. To
avoid circularity, the required type constructors in have been specified without

454 L. Schröder

spec Functor =
vars a, b, c : Type; x : a; f : a → b; g : b → c
ops comp : (b → c) × (a → b) → a → c;

id : a → a
• id x = x
• (g comp f) x = g (f x)
class Functor < Type → Type
{vars a, b, c : Type; F : Functor ; f : a → b; g : b → c
op map : (a → b) → F a → F b
• map id = id : F a → F a
• map (g comp f) : F a → F c = (map g) comp (map f)
}
class Bifunctor < Type → Functor
{vars a, b, c, d : Type; F : Bifunctor ; f : a → b; g : b → c
op parmap : (a → b) → F a d → F b d
• parmap id = id : F a d → F a d
• parmap (g comp f) : F a d → F c d = (parmap g) comp (parmap f);
• (parmap f) comp (map h) : F a c → F b d = (map h) comp (parmap f)
}

Fig. 1. HasCasl specification of functors

recourse to free type declarations. Recall that constructor/selector pairs such as
mkId/getId impose that the selector getId is left inverse to the constructor mkId .
Axioms stating surjectivity of constructors are omitted in the figure except in
the case of Prod (for Sum, joint surjectivity of inl and inr follows from the axiom
for sumcase). Similarly, the obvious definitions of the associated map operations
are omitted, except in the case of sums. Note that HasCasl does not provide
a way to exclude unwanted (‘junk’) further instance declarations for the class
PolyFunctor , i.e. to say that the class is generated by the given generic instances.

In Fig. 3, we present a specification of algebras for a functor. The set of algebra
structures for a functor F on a type a is given by the type constructor Alg, which
depends on both F and a and thus has the profile Functor → Type → Type; it
is given as a type synonym for the type F a → a. Similarly, the type constructor
AlgMor for algebra morphisms depends on F and types a, b forming the carriers
of the domain and the codomain, respectively. Algebra morphisms are treated
as triples consisting of two algebra structures and a map between the carriers.

Initial algebras are then specified by means of two operations: a type construc-
tor InitialCarrier that assigns to a functor the carrier set of its initial algebra,
and a polymorphic constant initialAlg which represents the structure map of an
initial algebra for F on this carrier. Initiality of this algebra is specified by means
of an explicit fold operation. As initial algebras will exist only for some func-
tors, the abovementioned operations are defined only on a subclass DTFunctor
(‘datatype functor’) of Functor . We declare the class PolyFunctor (Fig. 2) to be
a subclass of DTFunctor , thus stating that all polynomial functors have initial

Bootstrapping Types and Cotypes in HasCasl 455

spec PolyFunctors = Functor
then class PolyFunctor < Functor

vars F, G : PolyFunctor ; a, b : Type
types Const a, Id, Sum F G, Prod F G : PolyFunctor
type Const a b ::= mkConst (getConst : a)
type Id b ::= mkId (getId : b)
type Sum F G b ::= inl (F b) | inr (G b)
vars f : F b →? a; g : G b →? a; h : Sum F G b →? a
op sumcase : (F b →? a) → (G b →? a) → (Sum F G) b →? a
• h = sumcase f g ⇔

∀ x : F b; y : G b • h (inl x) = f x ∧ h (inr y) = g y
type Prod F G b ::= pair (outl : F b; outr : G b)
var k : a → b
• (map k : Sum F G a → Sum F G b) =

sumcase (inl comp (map k)) (inr comp (map k))
•. . .
• ∀ z : Prod F G b • z = pair (outl z, outr z);
•. . .
class PolyBifunctor < Type → PolyFunctor ; PolyBifunctor < Bifunctor
. . .

Fig. 2. HasCasl specification of polynomial functors

algebras as proved in Sect. 6; due to possible junk in the class PolyFunctor (see
above), this is consistent but non-conservative. Moreover, we state that initial
algebras depend functorially on parameters in the case of polynomial bifunctors
and that the arising functor again has an initial algebra (as nested recursion may
be coded by mutual recursion in the standard way [5]).

We conclude with a brief description of how the data above are generated by
the static analysis of actual HasCasl specifications. The functor F associated to
the declaration of a datatype t as in the beginning of Sect. 3 is a sum of n functors
Fi, one for each constructor ci; the functor Fi, in turn, is a product of ki functors
Fij , corresponding to the tij . The tij are, by the restrictions laid out in Sect. 3,
inductively generated from types in the local environment, t, and the ai by taking
products, exponentials s → t or s →? t, where s is a type formed from the ai and
the local environment, and applications D s1 . . . sl of type constructors from
the local environment, the latter subject to the restriction that if si contains a
recursive occurrence of t, then the dependence of D of its i-th argument must be
functorial. The latter property is tracked by means of the type class mechanism;
in particular, instances of Functor are generated automatically for parametrized
datatypes such as the type List a of Example 5. Given this format of the tij , it is
straightforward to associate a functor to each tij (using further generic instances
of Functor , in particular exponentials and closure under functor composition).
Finally, an instance F : DTFunctor is generated if not already induced by the
generic instances shown in Fig. 3, in which case consistency of the datatype
declaration becomes the responsibility of the user.

456 L. Schröder

spec Algebra = PolyFunctors
then vars F : Functor ; a, b : Type

type Alg F a :=F a → a
op :: → : Pred ((a → b) × (Alg F a) × (Alg F b))
vars f : a → b; alpha : Alg F a; beta : Alg F b
• (f :: alpha → beta) ⇔ (beta comp (map f)) = (f comp alpha)
type AlgMor F a b = {(f, alpha, beta) : (a → b) × Alg F a × Alg F b •

f :: alpha → beta }
classes DTFunctor < Functor ; PolyFunctor < DTFunctor
{vars F : DTFunctor ; a : Type
type InitialCarrier F
ops initialAlg : Alg F (InitialCarrier F);

ifold : Alg F a → InitialCarrier F → a
vars alpha : Alg F a; g : InitialCarrier F → a;
• (g :: initialAlg → alpha) ⇔ g = ifold alpha;
}
var G : PolyBifunctor
type ParamDT G a ::= mkPDT (getPDT : InitialCarrier (G a))
• ∀ l : ParamDT G a • mkPDT (getPDT l) = l
type ParamDT G : DTFunctor
vars l : ParamDT G a; b : Type; f : a → b
• map f l = mkPDT (ifold (initialAlg comp (parmap f)) (getPDT l))

Fig. 3. HasCasl specification of initial algebras

Using the sumcase operation of Fig. 2, one can now gather the constructors
into a structure map c : F t → t; the freeness constraint in the above datatype
declaration then translates into the declaration of a two-sided inverse g of ifold c.
The fold operation on t is obtained as fold α = (ifold α) ◦ g.

5 Process Types in HasCasl

Although process types in the style of CoCasl, so-called cotypes [11], are not
presently included in the HasCasl design, the results of the previous section
indicate that cotypes could be integrated seamlessly into HasCasl. A cotype
is a syntactic representation of a coalgebra for a signature functor. Cotypes are
declared in a similar style as types; the crucial difference is that, while selectors
are optional in a datatype, they are mandatory in a cotype, as they constitute the
actual structure map of the coalgebra, and constructors are optional. Moreover,
a cotype induces axioms guaranteeing that the domains of selectors in the same
alternative agree, and that the domains of all alternatives are disjoint and jointly
exhaustive. Thus, the intended models e.g. of the cotype

cotype Proc ::= (out :?a;next :?Proc) | (spawnl , spawnr :?Proc)

Bootstrapping Types and Cotypes in HasCasl 457

are coalgebras for the functor F given by FX = a×X+X×X . The extraction of
functors from cotype signatures is analogous to the case of types as explained in
Sect. 4. The semantics of cotypes, in particular cofree (i.e. final) cotypes, builds
on a dual of the specification of algebras (Fig. 3), where the type of algebras is
replaced by a type Coalg F a := a → F a, the definition of homomorphisms
is correspondingly modified, and initiality is replaced by finality, i.e. unique
existence of morphisms into the final coalgebra given by an unfold operation.
The domains of the selectors can in principle be arbitrary types; of course, this
will not in general guarantee existence of final coalgebras. We omit the discussion
of cogeneratedness of cotypes.

The only subtle point in the matching between cotype declarations in Has-
Casl and coalgebras is that, unlike in a set-based framework such as CoCasl,
the abovementioned conditions on domains of selectors of a cotype t with asso-
ciated functor F are insufficient to guarantee existence of a single structure map
t → F t, the point being, again, the absence of unique choice. We thus impose,
instead of just disjointness and joint exhaustiveness of the domains, that the
cotype is the coproduct of the domains, by introducing a polymorphic partial
case operation similar to the sumcase operation of Fig. 2. E.g. for the cotype
Proc above and f, g : Proc →? a, case f g = h : Proc → a is defined whenever
the domains of f and g equal the domains of out and spawnl , respectively, and
in this case h extends f and g. (Under unique choice, case is definable.)

6 Conservativity of Datatypes and Process Types

Free datatypes in HasCasl are not necessarily conservative extensions of the
local environment. Already the naturals may be non-conservative: as discussed in
Sect. 2, conservative extensions can only introduce names for entities already in
the present signature, and a given model might interpret all types as finite sets.
This problem arises already in standard HOL, where the construction of initial
datatypes [14, 2] is based on the naturals. The said construction makes heavy
use of unique choice, so that the question arises whether similar constructions
are possible in HasCasl.

It turns out that the construction of finitely branching datatypes can be mod-
ified to avoid unique choice, assuming, besides a type Nat of natural numbers
with associated primitive recursion principle, sum types (denoted by + in the in-
terest of readability, with injection functions inl and inr as usual and extraction
functions outl : a + b →? a, outr : a + b →? b) and an initial type, which shows
up in the form of on undefined partial constant bot :?a at every type a (under
unique choice, sum types and an initial type can be constructed). We describe the
construction for the simplified situation where we have a single unparametrized
datatype t with n constructors ci of arity ki, with arguments either of type t or
of some type a (extending this to mutually recursive types, complex argument
types — excluding function types —, and parameters is straightforward).

To begin, the type Path is defined as Nat →? Nat . We put nil =
λm • m res bot and cons m s = λk • case k of 0 → m | r + 1 → s r. The

458 L. Schröder

crucial point is now the definition of the universal type: while in the construction
of [14, 2], this is a type of sets of nodes, we put

DTree a = Path →? ((a + Nat) × Nat),

where for f : DTree a and p : Path, f p = (x, n) indicates that the subtree at
p has size n and is either a leaf labelled y, if x = inl y, or a node labelled by
the constructor ci, if x = inr i. We embed a into DTree a and define the con-
structors ci as operations on DTree a in the obvious way (with sizes determined
by counting 1 for each leaf or constructor), and then take t to be the smallest
subtype of DTree a closed under the ci. We put size z = snd (z nil) for z : t,
and for j : Nat , we define a generic j-th selector by sel j z = z ◦ (cons j). Note
that size z > 0 for all z : t.

It remains to be shown that we can construct the function fold d1 . . . dn, for
functions di representing an algebra on a type b. We define a primitive recursive
function f : Nat → ((DTree a) →? (a + b)) by

f 0 z = bot
f (n + 1) z = (case fst (z nil) of inl y → inl y

| inr i → inr (di (f n (sel1 z)) . . . (f n (selni z)))

(with extraction functions outl , outr on a+b appropriate for the argument types
of di left implicit), and put fold d1 . . . dn z = outr (f (size z) z).

In summary, the main changes w.r.t. standard HOL with unique choice con-
cern the universal type, which is a type of partial functions rather than relations
(reflecting the fact that functional relations need not be functions in the absence
of unique choice), and the construction of primitive recursive functions, which
can no longer rely on an inductive construction of their graphs. It is an open
problem whether our use of the size function for this purpose can be either gen-
eralized or avoided so as to cover also infinitely branching datatypes such as the
type Tree a b from Example 5.

Somewhat surprisingly, a quite similar construction works also for final coal-
gebras. For simplicity, assume a cotype declaration of the form

cotype t ::= (sel11 : t11; . . . ; sel1m1 : t1m1) | · · · | (seln1 : tn1; . . . ; selnmn : tnmn),

where for some 1 ≤ ki ≤ mi and some type a from the local environment (the
output type), tij = t if j ≤ ki, and otherwise tij = a. (The generalization to
mutually recursive cotypes, several output types, and types tij of the form b → s,
where b is an input type from the local environment, is straightforward.) Given
that initial datatypes have already been constructed, we may now take the type
Path to be the type List Nat of lists of natural numbers, with constructors nil ,
cons and the standard snoc operation. Our universal type is then

PTree a = Path →? (Nat + a)

(where it is crucial that we omit the additional Nat component present in
DTree a). For f : PTree and p : Path, the intended reading of f p = x is

Bootstrapping Types and Cotypes in HasCasl 459

that position p in the tree is a leaf labelled with output y if x = inr y, and a
branch according to the i-th alternative in the above declaration if x = inl i.
The carrier of the final cotype for the above declaration is then the subtype c of
PTree a consisting of those f such that

def (outl (f nil)) and
def (f (snoc p j)) ⇐⇒ (∃i : Nat . f p = inl i ∧ 1 ≤ j ≤ ki).

(Note that f p = inl i entails that f p is defined.) For 1 ≤ j ≤ mi, we can then
define sel ij f to be defined iff f nil = inl i, and in this case

sel ij f =

{
λp. f (cons j p) j ≤ ki

outr (f (cons j nil)) otherwise,

and these selectors can be gathered into a single coalgebra structure on c for
the appropriate functor using the information from outl f nil . Given a further
cotype d matching the above declaration, with selectors seldij gathered into a
coalgebra structure α, we may, using the case operator on d discussed in Sect. 5,
define a function alt giving, for x : d, the alternative i = alt x : Nat relevant
for x. We then define the morphism u = unfold α : d → c recursively by

u x nil = inl i and u x (cons j p) =

⎧
⎪⎨

⎪⎩

u (seldij x) p 0 ≤ j ≤ ki

inr seldij x ki < j ≤ mi, p = nil
bot otherwise.

Importantly, primitive recursion on lists is given by an operator (rather than
just by a unique existence axiom), so that the above definition can be expressed
as a term defining unfold α and indeed unfold as a function.

While the above seems rather entangled in the specificities of HasCasl, the
arguments are in fact general enough to work in any quasitopos, or indeed any
pccc with equality (cf. Sect. 2). We thus obtain results of independent interest
stating that a quasitopos supports certain datatypes and process types, thus
partially generalizing known results for W -types in toposes (e.g. [8]). It should
be noted that the definition of initial algebras given in Sect. 4 in fact relates
to internal initial algebras, where initiality is defined by an internal universal
quantifier and moreover embodied as an explicit fold operation; this requirement
is stronger than the external definition of initial algebras phrased in terms of
the existence of algebra morphisms in a category. An internal natural numbers
object (NNO) in this sense is not strictly needed in the construction of initial
datatypes given above, but ensures that the datatypes constructed are, in turn,
internal initial algebras. For the construction of final process types, however, the
requirement that the NNO is internal is crucial. We record explicitly

Theorem 7. Let C be a quasitopos.

(a) If C has a NNO, then C has initial algebras for functors T of the form
TX =

∑n
i=1 Ai × Xki (with ki ∈ N and constant parameter objects Ai).

460 L. Schröder

(b) If C has an internal NNO, then C has internal initial algebras for functors
T of the form TX =

∑n
i=1 Ai × Xki .

(c) If C has an internal NNO, then C has internal final coalgebras for functors
T of the form TX =

∑n
i=1(Bi → Ai × Xki).

Example 8. In every topological universe (i.e. well-fibred topological quasito-
pos over Set [1]) C, the set N equipped with the discrete structure is an internal
NNO: we have to show that the fold map A×(A → A)×N → A, (x, f, n) → fn(x)
is a C-morphism. As N is discrete, it suffices to show that the map (x, f) → fn(x)
is a morphism for every n, which holds in any cartesian closed category.

7 Conclusion

We have laid out how initial datatypes and final process types are incorporated
into HasCasl, and we have established the existence of such types for a broad
class of signature formats. The main contribution in the latter respect is the
avoidance of the unique choice principle, which means that, on a more abstract
level, our constructions work in any quasitopos.

It remains to be seen whether the datatype constructions can be adapted
to more general classes of signatures, in particular to datatype signatures with
infinite branching. Support for datatypes with polynomial signatures is already
implemented in Hets; support for more complex signatures, intertwined with
HasCasl’s type class mechanism, is forthcoming.

References

[1] Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley
Interscience, Chichester (1990)

[2] Berghofer, S., Wenzel, M.: Inductive datatypes in HOL - lessons learned in formal-
logic engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry,
L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999)

[3] Bidoit, M., Mosses, P.D. (eds.): CASL User Manual. LNCS, vol. 2900. Springer,
Heidelberg (2004)

[4] Birkedal, L., Møgelberg, R.E.: Categorical models for Abadi and Plotkin’s logic
for parametricity. Math. Struct. Comput. Sci. 15 (2005)

[5] Gunter, E.L.: A broader class of trees for recursive type definitions for HOL.
In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 141–154.
Springer, Heidelberg (1994)

[6] Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections.
In: Nilsson, H. (ed.) Haskell Workshop, pp. 96–107. ACM Press, New York (2004)

[7] Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic. Cam-
bridge (1986)

[8] Moerdijk, I., Palmgren, E.: Wellfounded trees in categories. Ann. Pure Appl.
Logic 104, 189–218 (2000)

[9] Moggi, E.: Categories of partial morphisms and the λp-calculus. In: Poigné, A.,
Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer
Programming. LNCS, vol. 240, pp. 242–251. Springer, Heidelberg (1986)

Bootstrapping Types and Cotypes in HasCasl 461

[10] Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In: Grum-
berg, O., Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)

[11] Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-co-
algebraic specification in CoCASL. J. Logic Algebraic Programming 67, 146–197
(2006)

[12] Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidel-
berg (2004)

[13] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

[14] Paulson, L.C.: Mechanizing coinduction and corecursion in higher-order logic. J.
Log. Comput. 7, 175–204 (1997)

[15] Phoa, W.: An introduction to fibrations, topos theory, the effective topos and
modest sets. Research report ECS-LFCS-92-208, Lab. for Foundations of Com-
puter Science, University of Edinburgh (1992)

[16] Rosolini, G., Streicher, T.: Comparing models of higher type computation. In: Re-
alizability Semantics and Applications. In: Birkdedal, L., van Oosten, J., Rosolini,
G., Scott, D.S. (eds.) ENTCS, vol. 23 (1999)

[17] Schröder, L.: The logic of the partial λ-calculus with equality. In: Marcinkowski, J.,
Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 385–399. Springer, Heidelberg
(2004)

[18] Schröder, L.: The HasCASL prologue - categorical syntax and semantics of the
partial λ-calculus. Theoret. Comput. Sci. 353, 1–25 (2006)

[19] Schröder, L., Mossakowski, T.: HasCASL: Towards integrated specification and
development of functional programs. In: Kirchner, H., Ringeissen, C. (eds.)
AMAST 2002. LNCS, vol. 2422, pp. 99–116. Springer, Heidelberg (2002)

[20] Schröder, L., Mossakowski, T.: Monad-independent Hoare logic in HasCASL. In:
Pezzè, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 261–277. Springer, Heidelberg
(2003)

[21] Schröder, L., Mossakowski, T.: Generic exception handling and the Java monad.
In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
pp. 443–459. Springer, Heidelberg (2004)

[22] Schröder, L., Mossakowski, T.: Monad-independent dynamic logic in HasCASL.
J. Logic Comput. 14, 571–619 (2004)

[23] Schröder, L., Mossakowski, T., Lüth, C.: Type class polymorphism in an institu-
tional framework. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004.
LNCS, vol. 3423, pp. 234–248. Springer, Heidelberg (2005)

[24] Schröder, L., Mossakowski, T., Maeder, C.: HasCASL – Integrated functional
specification and programming. Language summary. Available under
http://www.informatik.uni-bremen.de/agbkb/forschung/formal methods/CoFI/
HasCASL

[25] Walter, D., Schröder, L., Mossakowski, T.: Parametrized exceptions. In: Fi-
adeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS,
vol. 3629, pp. 424–438. Springer, Heidelberg (2005)

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/HasCASL
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/HasCASL

Author Index

Aceto, Luca 65, 80
Aiguier, Marc 356
Alexander, Scott 96
Aspinall, David 111

Baldan, Paolo 126
Bezhanishvili, Nick 143
Bloom, Stephen L. 1

Caires, Lúıs 16
Ĉırstea, Corina 158
Clavel, Manuel 173
Corradini, Andrea 126

Droste, Manfred 179
Durán, Francisco 173

Ehrig, Hartmut 126
Ésik, Zoltán 1

Fiadeiro, José Luiz 194
Fokkink, Wan 65

Gadducci, Fabio 209
Ghani, Neil 226
Glausch, Andreas 242
Glimming, Johan 257

Hansen, Helle Hvid 279
Harman, Neal A. 294
Heckel, Reiko 126
Hendrix, Joe 173
Hoffman, Piotr 111

Ingólfsdóttir, Anna 65, 80

Johnstone, Peter T. 312

König, Barbara 36, 126
Kozen, Dexter 327
Kupke, Clemens 279
Kurz, Alexander 143, 226, 342

Lack, Stephen 312
Lluch Lafuente, Alberto 209
Longuet, Delphine 356
Lucanu, Dorel 372
Lucas, Salvador 173

Mardare, Radu 379
Meseguer, José 173
Mousavi, MohammadReza 80

Ölveczky, Peter 173

Pacuit, Eric 279
Palmigiano, Alessandra 394
Petria, Marius 409

Reisig, Wolfgang 242
Rosický, Jǐŕı 342
Roşu, Grigore 372
Ruozzi, Nicholas 327
Rutten, J.J.M.M. 425

Sadrzadeh, Mehrnoosh 158
Schmitt, Vincent 194
Schröder, Lutz 447
Sobociński, Pawe�l 312

Venema, Yde 394

Winskel, Glynn 40

Zhang, Guo-Qiang 179

	Title Page
	Preface
	Organization
	Table of Contents
	Regular and Algebraic Words and Ordinals
	Introduction
	Continuous Categorical Algebras Defined
	Some Facts
	Examples

	Regularity and Algebraicity
	Application to Words
	More About Regular Words
	Ordinal Words
	Summary

	Logical Semantics of Types for Concurrency
	Introduction
	The Process Model
	Simple Types
	The Generic Type System T
	Type System
	Subtyping
	Sharing
	Additional Typing Rules

	Some Instances of Typing and Subtyping
	Simple Types
	I/O Types
	Behavioral and Session Types

	Concluding Remarks

	Deriving Bisimulation Congruences with Borrowed Contexts (Abstract)
	Symmetry and Concurrency (Extended Abstract)
	Introduction
	Event Structures
	Event Structures with Symmetry
	Maps Preserving Symmetry
	Functors and Pseudo Monads
	Operations
	Pseudo Monads

	Applications
	Spans
	Event Types
	Nondeterministic Dataflow and Affine-HOPLA
	Unfoldings

	Appendix: Equivalence Relations [10]
	Appendix: Stable Families

	Ready to Preorder: Get Your BCCSP Axiomatization for Free!
	Introduction
	Preliminaries
	Producing an Axiomatization
	Cover Equations
	Proof of Theorem 1
	Examples
	Simulation
	Failures

	Conclusions and Comparison with Related Work

	Impossibility Results for the Equational Theory of Timed CCS
	Introduction
	Preliminaries
	TCCS: Syntax and Semantics
	Equational Theory

	Single-Sorted TCCS
	Two-Sorted TCCS
	Gap Theorem
	Axiomatizability

	Two-Sorted TCCS with Left-Merge
	Conclusions

	Conceptual Data Modeling with Constraints in Maude
	Motivation
	Conceptual Data Modeling with Constraints
	Rewriting Logic and Maude
	Expressing a Conceptual Data Model in Maude
	Fact and Object Types and Instances, and Constraint Satisfaction
	Case Study: Expressing a CDM Diagram with Constraints in Maude

	Getting a Constraint-Enforcing Interpreter ``for free'' Using Maude's Rewriting Semantics
	Discussion and Related Work
	Conclusions and Further Work

	Datatypes in Memory
	Introduction
	Memory Signatures and Algebras
	Behavioural Equivalence
	A Specification of Boolean Lists
	Specifying Disjointness
	A Specification of Pointers
	Implementations
	Conclusions

	Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets
	Introduction
	Marked Open Nets
	Composing Open Nets
	Bisimilarity of Open Nets
	Reconfigurations of Open Nets
	Applying Rules to Open Nets
	Modeling Dynamic Reconfigurations of Services

	Conclusion and Related Work

	Free Modal Algebras: A Coalgebraic Perspective
	Introduction
	Dualities for Boolean Algebras and Distributive Lattices
	Stone Duality for Boolean Algebras
	Priestley Duality for Distributive Lattices

	Modal Algebras and Distributive Modal Algebras
	Main Construction
	Free Modal and Distributive Modal Algebras
	Applications
	Normal Forms
	Free Modal Algebras as Temporal Algebras
	Pelczynski Compactification
	Modal Logics Not Axiomatised by Rank 1 Axioms

	Conclusions and Future Work

	Coalgebraic Epistemic Update Without Change of Model
	Introduction
	Coalgebraic Semantics for Actions and Agents
	Restrictions to the Coalgebras
	Preservation and Acquisition of Knowledge

	Epistemic Actions
	Comparison with Baltag's Coalgebraic Model
	Coalgebraic Dynamic Epistemic Logic

	The Maude Formal Tool Environment
	Introduction
	The ITP: An Inductive Theorem Prover
	The Maude Termination Tool
	The Church-Rosser Checker
	The Maude Coherence Checker
	The Sufficient Completeness Checker
	The Real-Time Maude Tool

	Bifinite Chu Spaces
	Introduction
	Chu Spaces and Monic Morphisms
	Colimits
	Finite Objects
	Bifinite Chu Spaces
	Conclusion

	Structured Co-spans: An Algebra of Interaction Protocols
	Introduction
	Modules for Software-Intensive Systems
	The Algebraic Structure of Connectors
	Structured Co-spans
	Concluding Remarks
	References

	Graphical Encoding of a Spatial Logic for the π-Calculus�
	Introduction
	The pi -Calculus and a Spatial Logic
	Graphs and Their Extension with Interfaces
	Rewriting Graphs with Interfaces
	From Processes to Graphs
	Process Reductions vs. Graph Rewrites
	Modal Graph Logic
	From Spatial to Graph Logic
	Conclusions and Future Work

	Higher Dimensional Trees, Algebraically
	Introduction
	Rogers's Higher Dimensional Trees
	Higher Dimensional Trees, Algebraically
	Containers
	Automata, (Co)Algebraically
	Signatures
	Higher Dimensional Automata
	Determinisation and Minimisation

	Conclusion

	A Semantic Characterization of Unbounded-Nondeterministic Abstract State Machines
	Introduction
	Scope and Contribution of This Paper
	Nondeterministic Algorithms
	A Nondeterministic Algorithm Constitutes a Transition System
	A State of a Nondeterministic Algorithm Is an Algebra
	Steps of a Nondeterministic Algorithm Preserve the Universe
	Steps of a Nondeterministic Algorithm Preserve Isomorphisms
	Steps of a Nondeterministic Algorithm Perform Bounded Work

	Nondeterministic Abstract State Machines
	Assignment Rules
	Conditional Rules
	Parallel Rules
	Choice Rules
	Generalized Syntax and Semantics
	Nondeterministic ASMs

	The Equivalence Theorem
	Proof of the Equivalence Theorem
	Conclusion

	Parametric (Co) Iteration vs. Primitive Direcursion
	Introduction
	Mathematical Preliminaries
	Symmetric Functors, Beki's Lemma and Parameterised (Co)Algebras
	Primitive (Co)Recursion and (Co)Iteration

	Primitive Direcursion
	Example: Application to Object Calculus Semantics
	Conclusions and Further Work

	Bisimulation for Neighbourhood Structures
	Introduction
	Preliminaries and Notation
	Equivalence Notions
	Three Coalgebraic Notions of Equivalence
	Equivalences Between Neighbourhood Frames

	The Classical Modal Fragment of First-Order Logic
	Translation into First-Order Logic
	Characterisation Theorem

	Discussion and Related Work

	Algebraic Models of Simultaneous Multithreaded and Multi-core Processors
	Related Work
	Clocks and Basic Models of Computers
	Algebraic Basis
	Initialization Functions in Iterated Map Models

	Correctness Models for Non-pipelined, Pipelined and Superscalar Processors
	One-Step Theorems
	VTM Model Definition
	Correctness of the VTM Model
	Extending the One-Step Theorems to the VTM Model

	A Simple Example
	Correctness of the Example

	Concluding Remarks

	Quasitoposes, Quasiadhesive Categories and Artin Glueing
	Introduction
	Preliminaries
	Motivating Examples
	Glueing
	Quasitoposes and Quasiadhesive Categories
	Conclusions and Future Work

	Applications of Metric Coinduction
	Introduction
	Coinduction in Complete Metric Spaces
	Contractive Maps and Fixpoints
	The Coinduction Rule
	Why Is This Coinduction?

	Streams
	Markov Chains
	Spectral Properties
	Coinduction and the Convergence of P^m
	Recurrence Statistics

	Markov Decision Processes
	Existence of Optimal Strategies
	Probabilistic Strategies

	Non-well-Founded Sets^1
	Coinductive Definition of Functions
	Definition of d
	Canonical Sets
	Hereditarily Finite Sets Are Canonical

	Conclusions and Future Work

	The Goldblatt-Thomason Theorem for Coalgebras
	Introduction
	Coalgebras and Their Logics
	The Goldblatt-Thomason Theorem for Coalgebras
	Algebras and Coalgebras on Ind- and Pro-completions
	The Goldblatt-Thomason Theorem for Coalgebras

	Conclusion
	Appendix

	Specification-Based Testing for $CoCasl$’s Modal Specifications
	$CoCasl$'s Modal Logic
	Testing from Logical Specifications
	Selection Criteria Based on Axiom Unfolding
	Test Sets for Modal $CoCasl$ Formulae
	Unfolding Procedure
	Soundness and Completeness

	Conclusion

	CIRC: A Circular Coinductive Prover
	Introduction
	Behavioral Algebraic Specifications
	CIRC
	Conclusion

	Observing Distributed Computation. A Dynamic-Epistemic Approach
	Introduction
	Case Study: A Security Attack

	On Processes
	CCS Processes
	Size of a Process
	Structural Bisimulation
	Bound Pruning Processes

	Sets of processes
	The Logic $\mathcal{L}^\mathfrak{A}_\A$}
	Syntax of $\mathcal{L}^\mathfrak{A}_\A$
	Process Semantics
	Bounded Finite Model Property
	Characteristic Formulas
	Axiomatic System

	Formalizing the Security Scenario
	Concluding Remarks and Future Works

	Nabla Algebras and Chu Spaces
	Introduction
	An Axiomatization of $nabla$
	Chu Spaces and Their Liftings
	Stone Spaces
	Conclusions

	An Institutional Version of G¨odel’s Completeness Theorem
	Summary
	Model Theory in Institutions
	Categories
	General Concepts

	Institution Independent Techniques
	Sentences
	Internal Logic

	Generated Institutions and Entailment Systems
	Henkin Theory
	Every Henkin Theory Has a Model
	Completeness
	Working Examples
	First Order Logic
	Partial Algebras

	Conclusions and Future Work

	Coalgebraic Foundations of Linear Systems (An Exercise in Stream Calculus)
	Introduction
	Preliminaries
	Stream Calculus
	Systems Coalgebraically
	Linear Systems Coalgebraically
	Minimization and Equivalence
	Realisation

	Bootstrapping Types and Cotypes in HASCASL
	Introduction
	HASCASL
	Datatypes in HASCASL
	Generated Types
	Free Types

	Initiality Via the Type Class Mechanism
	Process Types in HasCasl
	Conservativity of Datatypes and Process Types
	Conclusion

	Author Index

