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Pierre Senellart Télécom ParisTech, Paris, France

Edward K. Blum Department of Mathematics, University of Southern California,

Los Angeles, CA, USA

Todd A. Brun University of Southern California, Los Angeles, CA, USA

Fan Chung Graham University of California at San Diego, La Jolla, CA, USA

Michael R. Fellows School of Engineering and Information Technology,

Charles Darwin University, Casuarina, Australia

Serge Gaspers Institute of Information Systems, Vienna University

of Technology, Vienna, Austria

Rudolf Kruse Otto-von-Guericke University, Magdeburg, Germany

James M. Pepin Clemson University, South Carolina, USA

Wayne Raskind Arizona State University, Tempe, AZ, USA

Frances Rosamond School of Engineering and Information Technology,

Charles Darwin University, Casuarina, Australia

Shang-Hua Teng University of Southern California, Los Angeles, CA, USA

Christian Scheideler Department of Computer Science, University of Paderborn,

Paderborn, Germany

Kalman Graffi Department of Computer Science, University of Paderborn,

Paderborn, Germany

Walter Savitch University of California, San Diego, La Jolla, CA, USA

Christian Moewes Otto-von-Guericke University, Magdeburg, Germany

ix





Part I



Chapter 1

Introduction and Prologue

Edward K. Blum

It is said that the past is prologue. This saying is borne out by most of the history of

science, but it applies only loosely to computer science, since this “modern” science

does not have that much of a past compared to the traditional sciences like physics

and chemistry. In the latter, in any era the events of the past do presage the ongoing

and future development of these sciences. The development of computer science

proceeds at such a rapid and frenetic pace that the boundary between past events

and the current state of the subject is somewhat blurred. In this book, with its

advisedly provocative title referring to the heart of computer science, we take the

position that its prologue is indeed rather brief and somewhat diffuse. To recount how

the history of computer science interacts with its current state we adopt a simplifying

assumption about its early history, the reasonableness of which we shall defend,

to the effect that the early and defining history of computer science (the prologue)

can be encapsulated in the work of one man, the British mathematician Alan Turing.

Except for some very early and rather naı̈ve contributions by the outstanding

mathematicians Pascal and Leibniz and some later more substantial ones by the

polymath Babbage and the logician Godel, the subject which we now call computer
science sprang largely from the brilliant and original researches of Turing, as we shall

attempt to illustrate.

Turing was undoubtedly a genius in both the mathematics of computing as

embodied in his studies of what we now call software and in the engineering side

of computing which we usually refer to as hardware. As this book will argue, these
seemingly disparate sub-disciplines of computer science, software and hardware,
are intrinsically related, although in many school curricula there is an explicit

marked separation and the single subject is organized for pedagogical and research

purposes into two subjects: computer science and computer engineering.
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To stress this apparent dichotomy in the structure of computer science is not

only unnecessary but misleading. It was not the way Turing viewed his research

projects and it is counter to our view of the subject, which recognizes the intrinsic

interrelationships of many aspects of software and hardware. We regard computer

science as a Union (with a capital U) of its two major constit-uents, hardware and

software. Admittedly, this Union is diverse and rapidly evolving and defies precise

characterization. Nevertheless, in this book we endeavor to present a report on the state

of this Union as of the year 2011. It is not feasible to cover all facets of this state in a

relatively short book. So we shall cover a reasonably large number of its key elements

which in our opinion are not only having the greatest impact on the further develop-

ment of computer science itself but also a measurable impact on the surroundingworld

with which computer science is now so actively engaged.

We alert the reader to our style of presentation whereby we report on the state of

the Union on two coordinated levels of exposition:

1. An informal intuitive level which minimizes the mathematical and technical

details and aims to be readable and comprehensible, for the most part, by any

intelligent layperson reader and in its entirety by a layperson reader with say a

college education but one that need not include much science;

2. A concomitant technical/mathematical level that aims to provide a deeper

quantitative understanding for the scientific/engineering-trained reader.

Although these two expositions could be quite disparate, in this book they are

carefully coordinated so that they do not constitute two books but are united as one.

We are well aware of the difficulties and hazards in such a two-level exposition;

trying to produce both a “popular” book and a “technical” book between the same

covers. To smooth the reader’s progress we have used various literary devices, such

as separating the intuitive concrete ideas from the more abstract ones by packaging

the latter into appendices. The appendices are included in the main text at points

close to the intuitive discussions (see the Table of Contents) and we attempt to

use the same linguistic constructs for related intuitive and abstract ideas. The choice

of familiar colloquial non-quantitative language, ordinary words and phrases,

for unfamiliar quantitative concepts is quite common in traditional science. For

example, physicists speak and think freely of electromagnetic waves, interference
of such waves, inertial forces, conservation of energy, spins of particles, black
holes, time warp, curvature of high-dimension surfaces and spaces and many other

geometric entities. The ordinary meanings of these words and phrases carries over

to the abstract concepts they denote and creates an entry into the technical contexts

of these concepts. The overall exposition is constructed so that the reader can ignore

or scan quickly the appendices and ultra-technical contexts on a first reading,

obtaining an approximate intuitive understanding of the technical concepts and

then return later to read these passages at a more leisurely pace.

The chapters are ordered so as to facilitate this two-level discourse. They start

with some history and soon relate how abstract concepts (by Church and Turing)

were the starting points of many practical concrete ideas. Toward the middle of the

book, around Chap. 8, we begin to bring into our report of the state of the Computer
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Science Union the more recent technological advances such as computer networks

(the Internet and world-wide- web www), high performance computing (HPCC)

by clusters to achieve super-computer power by distributed computing, large

databases, secure computing (for modern banking) by means of public key crypto-

graphy, quantum-mechanics-based computing and fuzzy logic. The heart of the

Union is in Chap. 3, which introduces concepts like unsolvability and Church-

Turing computability and in Chap. 12 on complexity theory of solvable problems

and in Chap. 13 on the recent multi-variate complexity adjunct. In prior reports of

this type there were accounts of the numerical analysis progress with computation

algorithms. In this book, the numerical side of computer science is represented by

the single Chap. 15 on “numerical thinking”. The reader is forewarned that this

chapter is highly technical, treats several new topics and contains a minimum of

intuitive-level discussion. It takes the reader to the outer limits of computer science

and may perhaps be reserved for a second reading of the book. Similarly, at the

outer boundaries, a different perspective of the logic behind computer science is

presented in Chap. 4 on fuzzy logic. We end the book with some interesting real-life

statistics of the field.

The state of the Computer Science Union, a dauntingly diverse and dynamic

entity, cannot be assessed completely. As previous attempts to report on the Union,

we can cite first the long (900 pages) Computer Science and Engineering Research

Study (COSERS) – with the restricted theme “What can be automated” – published in

1980 by MIT Press and having engaged 80 contributors supported by the National

Science Foundation and second, the short 200-page book “Computer Science:

reflections on the field and from the field”, prepared by a committee convened by

the National Research Council and published in 2004.

These joint-effort reports are indeed the long and short of it in past decades.

Our book is likewise the product of a joint effort and the result of collaborations by

the co-authors listed prior to this Introduction in the Table of Contents. To provide

compatibility and continuity across Chapters on the variety of topics a rather light

editing process was administered by E.K. Blum and Al V. Aho. As a report on the

state of the computer science Union, this book’s objective differs from those of

the COSERS and Computer Science “reflections” books. Of course, as they did, we

strove herein to bring the report on the state of the Union up to date by covering

significant new and recent developments. Many of these were not covered in any

depth, if at all, in the two cited reports. But most importantly, we pursued the objective,

dictated by our thesis that hardware and software are two sides of the same Turing-

minted computer coin, of presenting Computer Science as a rational Union of its many

diverse elements. We tried to avoid a heterogeneous disconnected collection of essays.

We used Turing as a unifying figure.

Turing studied and worked primarily at Cambridge University in the 1930s

and 1940s. His biography, called “Alan Turing the Enigma”, (Simon and Schuster

Inc, 1983) is a prodigious work by Andrew Hodges. It gives us an intimate view of

Turing as a human being and as a scientist. As one works through multiple

re-readings of “Turing the Enigma” and Turing’s research papers (see Chap. 3) and

many other research papers, the following two synopses of items take shape and they
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will be mentioned and discussed in various chapters of this book. After much

consideration of these items, we came to think of computer science like Turing did,

as progressing along two parallel concurrent paths: Hardware (i.e. machines) and

Software (i.e. programming). This suggested a reasonable way to organize this book,

that is, as already remarked, the book traces the interlocked development of both

Hardware and Software as two faces of the same computer science “coin”. The reader

will find that the chapters touch on the following Hardware topics among others.

Hardware Synopsis

The book mentions, but skips details of the Babbage “engine” and quickly jumps to

the 1940–1950s. That is when our modern Computer Science story begins. Among

the hardware developments the book selectively mentions and discusses (some-

times very briefly) the following bits of history in the period 1940–2010:

1. Small relay-based “office” or “business” machines produced as standard

products by IBM for business data processing were adapted to numerical scien-

tific computation by being programmed by inserting math-level instructions on

stacks of punched cards. These were the CPC machines or Card Programmed

Calculators. They were awkward to use, slow and small-scale but they worked

better than the ubiquitous electromechanical desk calculators provided by

Marchant (and others).

2. Professor Aiken at Harvard built a large-scale relay machine called the Mark 1

which ran under control of programs on punched paper tape. Like all relay-

based machines, it was slow and not very successful (as was one attempted by

Turing who actually fabricated his own relays!).

3. To the rescue came the electrical engineers Eckert and Mauchly (U. Penn) who

with support from Sperry-Rand built the Univac out of hundreds of vacuum tubes.

It took up an entire room but was the first commercially successful “electronic”

computer. Sperry-Rand was an IBM competitor for business applications.

4. Not to be outdone, IBM produced a competitor electronic machine called the

701. Input/output was on large magnetic tape drives and still some punched

cards since IBM “owned” the Hollerith cardpunch machines, card readers and

sorters and other “business” machines and stacks of 80-column cards could be

easily stuffed into card-readers attached to the ALU (arithmetic-logical unit)

of a 701.The big-company battle was joined. The 701 was quickly followed

by the IBM704 , which competed with the impressive new Sperry 1101.

These were transistorized and fast machines, say running at kiloflop/s speeds

(flop ¼ floating point arithmetic operation) and required large air-conditioned

installation spaces for the racks of electronic circuits and tape drives.

5. In England, Manchester University engineer Williams built an electronic

machine (The engineers had taken the lead here.). Other European countries
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like France and Germany were effectively out of the running or else “occupied”

by I (for international) BM.

The preceding brief item 5 is somewhat inaccurate. Sir Maurice Wilkes in an

interview excerpted in CACM 09/2009 vol 52 No. 9 recalls that he was in

charge of developing the EDSAC electronic computer at Cambridge University

during 1945–1949. At about the same time, the group at Manchester University

led by Freddie Williams built a competitor computer. It seems that the main

focus of these two English groups was on the computer memory device. Wilkes

favored mercury delay lines with data stored as traveling acoustic pulses (non-

electronic!) and Williams promoted cathode ray tubes (CRT) with memory

consisting of continually refreshed electrostatic storage of charge patterns on

the CRTs. The so-called “Williams tubes” won out in follow-on machines built

by IBM and RCA until replaced by magnetic core memories invented at MIT.

The main point to be highlighted in the English Hardware development

exercises is that both machines used the von Neumann (v.N) architecture as

their basic overall system design. In the Wilkes interview, he states very clearly

that he had access to and had read the famous report by John v.Neumann

(mathematician), H.H. Goldstine (mathematician) and Arthur Burks (logician)

that laid out in great detail the “v.N architecture” for a new machine, the

ENIAC, to be built in the U.S. for the military. It is somewhat amusing to

read Wilkes disparage v. Neumann by claiming that “of course, he rather

despised engineers . . . although he got on with them.” This is part of what

Wilkes apparently views as a fundamental disagreement between

mathematicians with their absorption in Software and engineers with their

absorption in Hardware. Actually, v. Neumann, though a mathematician, was

a multi-faceted genius who knew the relevant Hardware physics, electronics

and engineering, including the important Boolean algebra application to elec-

tronic circuit design (initially considered a “daft idea” by engineers according

to Wilkes) as a tool for designing switching circuits. Here we see the early

interplay of Hardware and Software in many of the ideas on the Hardware side

of computer science (e.g. switching circuits) that sprang from the Software

side; e.g. from the mathematics of Boolean algebra as presented in Chap. 3

Appendix G. This is a fascinating theme in the state of the Union which our

book explores in depth.

6. The “big-machine” era climaxed in the 1960s with victory for IBM and its 709,

then 7090, then 360 fast reliable machines. Sperry gradually bowed out.

Burroughs Inc. competed briefly with its B5000. DEC (Digital Equipment

Corp) also competed with its medium-sized minicomputer PDP-8.
7. Honeywell-CDC made some important inroads with its Control Data machines

(CDC 6600). The other big company competition was the innovative Cray

company whose design genius Seymour Cray (having left CDC) introduced

radical new computer architecture designs with multi interacting ALU units.

The Cray’s were the first “super-computers”. They were capable of doing multi

megaflops/s
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8. The scene changes in the 1960s and thereafter. At the opposite end of the size

spectrum, enter the personal computer (PC) introduced by “big blue” IBM. The

PC’s novel architecture involved a mother board and other printed circuit

boards as components that could be easily assembled as independent “chips”.

(See Chap. 5 Appendix.) The PC became a practical and widely adopted

computer when Bill Gates founded Microsoft, which provided the practical

DOS operating system for PC’s. This key Software concomitant was not

attended to by IBM and Bill Gates (a Harvard dropout) became rich. Very

soon IBM also lost its Hardware lead to Intel which provided very fast printed

circuit boards as off-the-shelf chips to many companies that could produce PC’s

using DOS and undersell IBM. Intel remains a leading computer company today.

9. The Apple Computer, allegedly first built in a garage by two Stanford students

(Steve Jobs and Wozniak), added to the Silicon Valley Hardware explosion.

DEC and Apple developed a clever “windows” display system employing a

“mouse” as part of the user interface of PC’s (Chap. 5 Appendix 2) and this was

“taken over” by Microsoft for its new Windows operating systems using the

mouse and monitor displays. It has become the user physical interface of choice.

10. Clusters of PC’s operating in parallel in connected local networks of computers

became the new super-computers running at gigaflop and some at teraflop

(10^9) speeds. (See Chap. 8).

11. Proponents of new systems, called “cloud” computers (Chap. 8), envision

connecting large populations of PC’s in networks that can utilize thousands

of PC’s cooperating on large-scale computations. Another radically new idea

now being tested is the quantum computer based on quantum mechanics at the

atomic level (Chap. 14). This idea was one of many imaginative proposals by

the Nobel-prize-winning physicist Richard Feynman, who was an early pioneer

in computing at the Los Alamos atomic bomb project (along with von

Neumann).

Among the Software topics covered in the book are some which we now list in

another synopsis. Some readers will observe and hopefully excuse our failure to

cover many other Software history items worthy of mention.

Software Synopsis

The word software came into existence around 1950 as a counterpoint to the

engineering usage of the standard word “hardware”. While it usually refers to

programming languages and concepts, in this book we use “software” in a broader

sense to also include the mathematical theory underpinnings of computer science.

Restricted to a purely programming context, here is a list of software achievements

taken from the Patterson-Hennessy book (PH) listed below (and reflecting their

opinions).
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1. 1954 Fortran, John Backus, Fortran I, II, IV, 77, 90 for the IBM 704 computer

2. 1958 Lisp, John McCarthy

3. 1960 Algol-60

4. 1960 Cobol

5. 1968 Pascal, Nicholas Wirth

6. 1968 C language, Dennis Ritchie

7. 1967 Simula-67, O-J Dahl and K. Nygaard

8. 1970s, Smalltalk, Xerox PARC

9. 1970s, CLU

10. 1980s, C++

11. 1990s, Java

We shall limit our coverage of programming languages in Chap. 4 to software

items 1, 6, 10 and 11 in this list, since this will suffice to illustrate the major ideas in

computer programming. Some further discussion of item 7 will be found in Chap. 9.

Some General Remarks on the Nature of Computation

Theoretical computer science is a broad research area which we cover as part of our

software exposition. Our Chap. 3 recounts Turing’s research on computability by

Turing machines and includes an appendix on Church’s lambda calculus which has

had some impact on programming languages.

Chapter 3 introduces the Church-Turing thesis which postulates that Turing

machines and the equivalent Church lambda calculi define the essence and totality

of computation. This thesis has the somewhat disturbing consequence that certain

innocent-sounding problems in computation are unsolvable. The famous Godel unde-
cidability results which show that the standard applied predicate logics are incomplete
and therefore that the whole formalist program to mechanize mathematics is

unachievable is presented in Appendix G of Chap. 3. Speculations are presented that

other approaches to computation such as quantum computers (Chap. 14) may circum-

vent some unsolvability issues. However, these are just speculations which have yet to

bear fruit. The inherent complexity of problems in the Church-Turing universe is

expounded in Chap. 12. Chapters 3, 14 and 15 provide a framework for predicting the

progress and limitations of computer science as seen from its current state.

The book does not cover an area that was of interest to Turing and is pursued by

current researchers: artificial intelligence (AI), although the fuzzy logic chapter has
a few comments on AI. The book ends on a rather sober note with Chap. 17 on

statistics of the field. These could be the basis for some predictions but we resist the

temptation. In particular, except for some tantalizing remarks in Appendix G (Chap. 3),

the book takes no position on the future shape of the computer science Union. In

contrast, a recent article in Time magazine (Feb. 21, 2011) reports on forecasts of

amazing progress to be expected in AI as computers increase in speed. The article

reports on conjectures that computers will be able to outthink humans in about 2045.
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These conjectures fail to realize that the human brain is not a fast device. Neurons fire

voltage spikes at quite slow rates. So speed is likely not the issue in human intelligence.

Rather it is the size and complex structure of the brain, produced by thousands of years

of evolution resulting in billions of interconnected neurons that may underly human

consciousness and thinking. Furthermore, as the chapter on quantum computers

suggests, there may be physical limits to electromagnetic circuit speeds, such as the

limiting speed of light for signal transmission and quantum mechanical effects for

microscopic circuit elements. Whether quantum mechanics provides a possible alter-

native to electromagnetic circuits remains an open question. These are fascinating

issues in the state of the Computer Science Union which our readers will encounter and

we hope will enjoy contemplating.

Reference

Computer Organization and Design, The Hardware Software Interface by David Paterson & John

Hennessy, Morgan Kaufman 2005 Page 2.19-5ff A Brief History of Programming Languages
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Chapter 2

Computation: Brief History Prior to the 1900s

Edward K. Blum

Computation, as a human activity, has a long history extending back to such ancient

civilizations as Egypt, Sumeria (Babylon), Assyria, Greece, and Rome and the

later civilizations of medieval Europe. It was used in commerce, agriculture and

astronomy. However, it was not an activity of the common man in the street.

Egyptian mathematics is known partly from studies of the large Rhind papyrus,

which is possessed by the British museum (and a small piece of which is

in the Brooklyn museum according to Carl Boyer’s “A History of Mathematics”,

John Wiley 1968, which we refer to as a source for some of the history which we

summarize below). Despite their conjectured computational prowess in building

the quite perfectly shaped pyramids, Egyptian mathematicians subsequently dropped

behind their Sumerian colleagues in capabilities. This may have been due to the

awkward and inelegant hieroglyphic notation for Egyptian numerals.

Sumerians lived in the region known as Mesopotamia, the fertile valley between

the Tigris and Euphrates rivers which is now Iraq. Their principal city Babylon, of

biblical renown, gave its name, Babylonia, to their culture and civilization which

flourished from about 2000BCE to 600BCE. The Sumerians developed the earliest

form of written language. It comes down to our attention in the guise of thousands

of preserved clay tablets on which are carved symbols in cuneiform (wedge-shaped)

patterns. Some of these symbols are numerals denoting natural numbers (positive

integers) and were involved in practical computations for agriculture and business.

Many tablets studied by archeologists in records of the Hammurabi dynasties,

1800–1600BCE, exhibit number systems such as the common base 10 numerals

and an unusual one utilizing base 60 numerals in their astronomy. Base 10 numerals

were used in daily transactions. In fact, the present-day positional notation for

decimal numerals, where position of a digit is determined by a power of 10, was

in use by the Babylonians. Its facilitation of numerical computations like addition

E.K. Blum (*)

Department of Mathematics, University of Southern California, Los Angeles, CA, USA

e-mail: blum@usc.edu

E.K. Blum and A.V. Aho (eds.), Computer Science: The Hardware,
Software and Heart of It, DOI 10.1007/978-1-4614-1168-0_2,
# Springer Science+Business Media, LLC 2011

11

mailto:blum@usc.edu


is familiar to us. An important symbol in positional notation, the zero, was not

initially available but was eventually invented by the Babylonians. Their more

complex computations beyond addition included special tables for multiplication.

Given this fairly sophisticated state of numerical computation in ancient Babylonia

it is surprising that later civilizations did not develop more complex concepts for

computations.

As the center of ancient civilization slowly moved toward the Grecian cities and

lands on the Mediterranean sea, Babylonian mathematics moved with it. It was

taken up by two Greek groups, one led by Thales and the other by Pythagoras. The

Pythagoreans practiced various nonconformist cult-like philosophies. Although

they developed new mathematics for geometry, they did not do much to advance

computation methods. They coined the words “philosophy” to describe “love of

wisdom” and “mathematics” to describe “that which is learned”. As this indicates,

they regarded mathematics as a much broader intellectual activity which emphasizes

love of wisdom rather than practical computational goals. Nevertheless, the Pythag-

orean motto is said to have been “All is number.”, which may reflect the influence of

the Babylonians who attached numerical measures to compute almost everything,

from the motions of heavenly bodies to the values of their slaves.

As opposed to the Pythagoreans, the growing society of ordinary Greek citizens

was a society of shrewd traders and business men and their needs were satisfied by a

fairly low level of computation. They used two numeral notations for the integers, the

more primitive one resembling the later Roman system with a special symbol for

the number 5. We know the Roman numeral notation is less suitable for computation

than the positional decimal notation. Both Greek numeral systems were weak in the

way they represented fractions. Decimal positional notation for fractions was rarely

used by the Greeks or other societies until the Renaissance.

Around 600–400BCE deductive methods were introduced into mathematics and

adopted later by Euclid in his Elements books on geometry. This was the age of

Plato and Aristotle. Deductive computations were highly prized by the Platonic

school. In his book The Republic, Plato states that arithmetic theory, by which he

meant deductive proofs, is superior to computation (called logistic) as an intel-

lectual pursuit. The Platonic school grappled with numbers like √2 which they

proved to be irrational (not a ratio of 2 integers m/n.) (Remember how? Hint: use

contradiction after supposing √2 ¼ m/n. Then mm ¼ 2 nn. Then mm has an even

number of two factors, whereas 2 nn has an odd number, which is a contradiction).

The Greek empire was split into several pieces when Alexander the Great died.

In about 300BCE, the Egyptian part was under control of Ptolemy I. He established

an outstanding school in Alexandria with a great library, world-class scholars and

teachers. Among the latter was the mathematician Euclid who is the author of the

famous textbook the Elements. The first 13 books, or chapters, of the Elements are

devoted to plane geometry and the next three to number theory. As taught in

secondary schools today the true statements in the geometry books of the Elements,

called theorems, are proved by deduction from a few postulates, or axioms. We

shall see that the deductive steps make these proofs a kind of non-numerical

computation and further, this served as an example of the logical proofs advocated
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in the 1900s as a means to derive all of mathematics (see Chap. 3 Appendix G).

The Elements were translated into Arabic, then into Latin in the twelfth century and

finally in the sixteenth century into various European languages. It has appeared in a

large number of editions, a number perhaps only exceeded by the Bible.

Ancient India and China both had number systems for computation. Chinese

numerals were mainly decimal, the individual digits d from 1 to 9 being denoted by

a multiplicity of d strokes, or “rods”. A positional notation for the rods allowed the

invention of counting boards as primitive computers. The word abacus for these
devices may originate from the Semitic word abq, referring to the sand tray used as
a counting board for the rods in other lands as well as China. In Arabia, the abacus

had ten balls per position wire. The Chinese had five balls on upper and lower wires

separated by a bar. The Chinese were also familiar with computations on fractions

and negative numbers. By about 300BCE, the Indian notation of individual ciphers

for the digits 1–9 had evolved to the Hindu numerals which we use today and it was

recognized that they can be used in all decimal positions.

In about 800AD, a 100 years after the founding of the Muslim empire by

Mohammed, there was an awakening in Arab countries to science and mathematics.

A university comparable to the one in Alexandria was established in Baghdad.

Around 850AD, a mathematician on its faculty named Mohammed ibn-Musa

al-Khowarizmi became so well- known for his published works employing Hindu

numerals that we now refer to them as being Hindu-Arabic in origin. As a corrup-

tion of his name, his rules for operating on these numerals became known as

algorithms, a word now applied to any computation method specified by a system-

atic sequence of well-defined rules. Also from his work called Al-jabra wa’l

muqabalah came the modern word algebra and knowledge of that subject as of

that era was made available in Europe. In Persia, around 1050–1123AD a book on

algebra was published by the mathematician Omar Khayyam, better known in the

west as a poet. This book treated computation of solutions of quadratic equations

and gave geometric solutions of cubic equations, which we now know can be

generally solved by purely algebraic formulas.

Europe in the middle ages did not experience great progress in mathematics or

computation but relied on classical ancient Greek knowledge. In the Renaissance

period, 1400–1600, the main mathematical trend was in algebra. The Italian

mathematician Geronimo Cardano, known to us as Cardan, published works on

the solution of the cubic and quartic equations actually discovered by others

(Tartaglia and Ferrari). In the modern period which followed, Galileo Galilei

(1564–1621) and B. Cavalieri (1598–1647) and Johann Kepler (1571–1630) devel-

oped mathematics and computation applied to the physical world. Francois Vieta

(1540–1603) worked in algebra. John Napier (1550–1617) of Scotland and Henry

Briggs (1561–1631) of England created logarithms as a means of computation of

multiplication more easily.

The center of new mathematical discovery moved from Italy to France, where it

was dominated by Rene Descartes (1596–1650), Pierre Fermat (1601–1665)

and Blaise Pascal (1623–1662). Descartes’s algebraic notation for his published

mathematics created a modern expository style wherein letters at the beginning of
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the alphabet denote parameters, letters near the end denote unknown quantities,

superscript exponents denote powers and + and � the usual positive and negative

quantities.

At this juncture in our brief tour of the history of computation, when we consider

Pascal, we come upon an actual computer device (We ignore the abacus as too

primitive). Pascal had wide-ranging interests in mathematics and at the age of 18 he

planned a computer device which he actually built and of which he sold about 50.

It was mechanical in its usage of gears. Again, when we consider the work of the

mathematician Leibniz, who is credited along with Newton with the creation of

the Calculus, we learn that Leibniz invented a mechanical computer device, called

the stepped reckoner which was based on a stepped drum mechanism and an

intricate gear-work mechanism. Leibniz built a wooden model which he brought

to London in 1676. In principle it could perform all four arithmetic operations on

integers, whereas Pascal’s machine could only add and subtract. According to a

Wikipedia encyclopedia article, its design was beyond the mechanical fabrication

technology of that time and there were design flaws in the positional carry mecha-

nism (always a challenge in computing machines). These factors made its operation

unreliable. However, the stepped wheel device, called a Leibniz wheel, was

employed in many computer devices for 200 years, even in the 1970s in the

Curta hand-held calculator. Mechanics was the chief mode of fabrication of com-

puting machines in the ages before electronic devices. Leibniz, a polymath, lived

before the advent of electric motors and therefore his was a brave hand-operated

attempt to mechanize computation. According to Wikipedia, there is a 16 digit

prototype which survives in Hannover. It is about 67 cm (26 in.) long and consists

of two parallel parts, an accumulator which can hold 16 digit results and an eight

digit input section having eight dials and a hand crank which is turned to cause

operations to be performed.

Leibniz, like mathematicians of his era, was also a physicist. As such he developed

a theory of kinetic energy (mass times velocity squared) discovered by his mentor

Huygens. Leibniz believed kinetic energy was a more fundamental physical quantity

than momentum (mass times velocity), which Descartes and English scientists

regarded as the fundamental quantity. Leibniz proposed a conservation of (total)

energy law but it was based on metaphysical grounds rather than engineering facts.

Among Leibniz’s other discoveries was the principle of separation of variables for

solving certain partial differential equations. Further, he used determinants long

before Cramer did. Despite his accomplishments in theory, he was also an advocate

of applied science and invented many devices such as wind-driven propellers and

water pumps, mining machines, hydraulic presses, lamps, and clocks. His stepped

wheel computer was only one of his mechanical inventions.

These historical examples of computing machines were the only notable ones

until the year 1822 when the Cambridge mathematics professor Charles Babbage,

a polymath like Leibniz, invented a mechanical computer, called the Difference

Engine. This was a special-purpose computer for computing polynomial values by

finite differences, polynomials being good approximations to the functions needed

to calculate astronomical tables, the main objective. Babbage had difficulty
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obtaining funding to build a Difference Engine. A few difference engines were built

by one Per Scheutz in about 1855. The second Difference Engine built had 8,000

parts, was 11 ft long and weighed 5 t.

Understandably, a general-purpose computer called the analytical engine was

later designed by Babbage in 1837 and he worked on its development until his

death in 1871. It was never built, for political and funding reasons. But many of its

design features were implemented in modern computers. Its data and programs were

input by punched cards in the manner already employed in controlling Jacquard

looms. Output of intermediate results was also on punched cards and final output was

to be by printer. Ordinary base-10 arithmetic was used internally. There was a

memory of capacity of 1,000 50-digit numbers. Analogous to the central processing
unit (CPU) in a modern computer, the mill (arithmetic unit) had its own internal built-
in operations, microcoded by pegs inserted in a drum. The programming language

was similar to a modern assembly language. It provided for loops and conditional
branching (see Chap. 4 on Software). An Italian mathematician whom Babbage had

met while traveling in Italy wrote a description of the programming language in 1842

and it was translated into an English version in 1843.This was read by Ada King,

Countess of Lovelace, Byron’s daughter, who was herself a gifted mathematician.

She added to the English version and actually wrote specific programs. For this

reason she has been called the first programmer and a recent language was named

ADA in her honor. Babbage died in 1871, unable to get funding to build his analytical

engine. In 1910, his son reported that a part of the engine (the mill and printer) had

been built and used successfully and he proposed to build a demonstration version

with a small memory having 20 columns with 15 wheels in each. Closely related

electromechanical (relay) machines were later worked on by George Stibitz at Bell

Laboratories and Howard Aiken (the MARK I) at Harvard. Aiken attributed much of

the MARK I design to Babbage’s Analytical Engine design (see Chap. 5 on the

Hardware side of Computer Science for the modern history of computing machines).

It is of some interest to remark that many of the key players in the history of

Computer Hardware, Pascal, Leibniz, Babbage, Turing and von Neumann were

equally adept at theory and were in fact polymaths of genius stature. They

contributed to many other disciplines.

Babbage was the Lucasian Professor of Mathematics at Cambridge (the Chair

once held by Newton), was a founder of the Royal Astronomy Society, worked in

cryptography (like Turing) where he broke what is known as Vignere’s autokey

cipher to aid the British military, invented the “cowcatcher” device to clear the

track in front of railway locomotives, invented a medical ophthalmoscope which

was later re-discovered by Helmholtz, and, again like Turing, exhibited several

eccentricities. For example, having read the poet Tennyson’s lines “Every moment

dies a man, Every moment one is born”, Babbage contacted the poet to point out

“if this were true the population of the world would be at a standstill. . . in truth the

rate of birth is slightly greater than death. . . so your lines should read “Every

moment dies a man, Every moment 1 1/16 is born.” which is sufficiently accurate

for poetry.” Babbage is commemorated in several ways: the crater on the moon

called the Babbage Crater, the Charles Babbage Institute at the University of
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Minnesota, the Babbage lecture hall at Cambridge, and a railway locomotive named

after him by British Rail. His programming colleague was Ada Augusta Byron, the

only legitimate child of the great poet George Gordon, Lord Byron. Her mother

took her away as a child from Byron and raised her to study math and science. She

married William King who became Earl of Lovelace and she became Countess

Lovelace. They had three children. As noted above, she translated into English the

French version of the article on the Analytical Engine written by the Italian

engineer Manabrea (who later became a prime minister of Italy). She added many

of her own notes and wrote a program for the engine to compute Bernoulli numbers.

She died in 1852 and is buried next to Lord Byron.

From the preceding brief account of the early history of computation, we learn

that, except for a few explicit examples such as the invention of logarithms by

Napier and Briggs and the rather primitive computers invented by Babbage, Leibniz

and Pascal, in modern civilizations the ideas involved in computation were not

developed much beyond their ancient forms. By contrast with its rather sparse

history prior to 1936, the almost all-pervasive presence of computation in today’s

world is a consequence of the recent and rapid growth in only the last 75 years of the

hardware and software sides of the modern subject known as Computer Science. If
modern man wishes to understand and cope with the world he lives in, he should

have some working knowledge of Computer Science. This book is intended to

impart such knowledge. To keep this knowledge accessible and within reasonable

and readable bounds, the book does not attempt to give a complete account of the

development of Computer Science nor an encyclopedic coverage of it. Rather it

presents the main ideas of Computer Science in a hopefully comprehensive and

coherent fashion. It does this at several levels, one given in expository sections at a

rather intuitive and easily understood level not requiring prior advanced education

and other levels in sections, usually Appendices, requiring some advanced prior

education, say at a college level. The reader is advised to journey through the

various chapters at a leisurely pace and choose to skip over the advanced sections

and Appendices at first and perhaps return to them in a second more strenuous

reading. Our authors wish you Bon Reading Voyage.
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Chapter 3

The Heart of Computer Science

Edward K. Blum

The active beginnings of modern Computer Science are somewhat diffuse and even

controversial but, as we shall show, it is reasonable to consider the major active

beginnings of Computer Science as being rooted in the works of one man, Alan M.

Turing, starting with his epoch-making 1936 paper, On Computable Numbers with

an Application to the Entscheidungsproblem. Proceeedings of London Mathemati-

cal Society, ser.2, vol. 42. 1936, corrections ibid. vol.43, 1937. This paper has been

re-published by Dover Pub. Co. in the 2004 anthology The Undecidable, edited by

Martin Davis. Some may not completely accept our opinion that Turing was the

single fountainhead of the main ideas of computer science. However, one cannot

fail to be impressed by the prescient quality of his wide-ranging research

as displayed in his published papers and reports. At the very least, he was a leading

thinker of the new discipline of computer science and contributed to both its

hardware and software content.

Turing was an English mathematician, and still a student at Cambridge Univer-

sity when he wrote the above paper. Unlike the early historic interest in computa-

tion (see Chap. 2) on the part of many scientists focusing on the practical aspects of

ordinary numerical computation, Turing’s main interest in computation arose quite

differently from a theoretical aspect embedded in an abstract profound mathemati-

cal problem called the Decision Problem. This problem was designated by its

German mathematician originator, David Hilbert, as the Entscheidungsproblem

(Decision Problem), as in the title of Turing’s paper. Although this may be

premature for some readers, we shall now give a background discussion of the

Decision Problem, since this will set the stage for Turing’s role as the principal

founder of Computer Science and prepare us for some of the controversies that have

plagued the subject. To be comprehensible at an intuitive level, the explanation of

the Decision Problem in this early chapter will necessarily be an oversimplification
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of what is an abstruse profound problem. Its complete character will be amplified

in Appendix 1 below. In section “The Decision Problem of Formalist Mathematics”

of this chapter which follows we give a summary description of it with omission of

certain distracting technical details.

The Decision Problem of Formalist Mathematics

In the early twentieth century, there was an ambitious research effort by mathemat-

ical logicians, like Russell and Whitehead, to develop all of mathematics as a

formal system based on mathematical logic. This was also a dream of Leibniz

which he could only speculate on, since in his era the appropriate formal system did

not yet exist. According to this logicistic view and the mathematician Hilbert’s

formalist view of mathematics, all the true statements in mathematics, called

theorems, were to be shown to be derivable or provable by purely formal proofs,
a formal proof being a sequence of well-established deductive steps starting from

axioms in a formal system of logic. For example, the reader may recall that this kind

of formal proof procedure is applied in the Elements book of Euclid to elementary

Euclidean geometry to derive theorems about congruent triangles. The deductive

steps in a formal proof are little more than applications of logical symbol-

manipulating rules. There can be no appeal to the meanings or interpretations of
the formulas to be manipulated. For example, in a formal proof of a theorem about

congruent triangles in Euclidean geometry there are no statements about the

meanings of symbols and formulas for angles and sides of triangles as geometric

objects. Of course, an understanding of such meanings obtained through

interpretations of their symbols as denoting intuitive real geometric objects is

possible and, in fact, can be very helpful in devising a formal proof.

So, formal proofs are essentially computations which manipulate symbols and

formulas according to simple and well-defined rules. This is the kind of computa-

tion that interested Turing. In the formalist view, it is reasonable to assume that a

formula expressing a mathematical theorem can be proven by computations

performed on symbols in a mechanized manner that makes no reference to the

meanings (interpretations) of the symbols. In this view, mathematical theorem

proving, a major mathematical activity, becomes a game in which symbols are

manipulated in a purely mechanical manner. Many mathematicians rejected this

formalist view and insisted that human intuition and insight is important and often

necessary in proofs of theorems. Carried through to its ultimate conclusion (now

seen as naive), in his formalist view of mathematics Hilbert preached the dogma

that for any theorem there is a formal proof. In 1931, the young mathematician

Godel demolished this dogma, that is, he showed it to be false (See Appendix 1 on

Godel’s Incompletenes Theorem below). He did so by adjoining axioms for

the arithmetic of natural numbers (i.e. the non-negative integers) to the usual
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logical axioms (see Appendix 1) to obtain a formal system, F(N), in which the

formulas can be interpreted as statements in ordinary intuitive number theory,

N. Such a formal number theory F(N) is an important initial formal construct in

the logician’s attempt to formalize all of mathematics. Godel cleverly exhibited a

true statement, U say, about natural numbers such that the formalization F(U) of U

as a formula in F(N) is not formally provable by the deductive rules of F(N), nor is

its formalized negation F(Not-U) (In Appendix 1, we shall give the formulation of F

(U)). This showed, counter to Hilbert’s dogma, that the formal system F(N) of

number theory must be considered to be logically incomplete, since if the logical

system F(N) were strong enough, as Hilbert believed it was, it is expected by the

usual rules of logic that one of the formalizations, either F(U) of statement U or F

(Not-U), should be provable, that is, derivable from the axioms of F(N). One of

these formalized statements must be interpreted as a true statement under the

natural interpretation in N of F(N). provided that the system F(N) is consistent,
that is, does not contain contradictory formulas. It is generally believed that N is

consistent since no number-theoretic contradictions have ever been discovered, so

that F(N), which formalizes N, should also be consistent. An inconsistency in F(N)

would be interpretable as an inconsistency in N. In fact, as the Godel Theorem

appendix shows, U is easily seen to be true by intuitive reasoning using the obvious

interpretation in N of the formalization F(U) of Godel’s statement U. So, according

to Hilbert’s dogma, F(U) should be formally provable. Godel showed that F(U) is

not formally provable, establishing the falsity of Hilbert’s dogma. In fact, since F

(Not-U) was also shown to be not formally provable, F(U) is called an undecidable
formula. So the formal system F(N) is incomplete in the sense that it does not have

sufficient proving power. The deficiency cannot be remedied by adjoining more

axioms to F(N). Doing so only generates other undecidable formulas. Therefore,

Hilbert’s formalistic main goal of obtaining formal proofs of all of mathematics is

not achievable. Godel’s result destroyed much of the formalist motivation for

mechanizing mathematics. It also changed the centrality of the role of formal

computation in proving theorems. In hindsight, we might say that the Godel

formula F(U) should perhaps not have come as a surprise, since logicians had

previously encountered paradoxical statements which could neither be proved nor

disproved; i.e. were undecidable. A famous example is the liar paradox contained in

the statement, “I am now lying.” Of course, Godel’s formula U, although undecid-

able, is nevertheless true (See Appendix 1 which follows).

However, despite the incompleteness of F(N), Hilbert still hoped that there was a

Decision (Entscheidungs) Procedure which can decide if any correctly-formed

formula, F(S) say, which is interpretable in N as an intuitive mathematical state-

ment S, is formally provable and if not whether its negation NotF(S) is provable.

Such a Decision Procedure would be useful in the formalist approach to mathemat-

ics by telling a mathematician whether F(S) is formally provable or not and

therefore whether one should attempt to find a formal proof or a disproof (i.e. a

proof of NotF(S)). Of course, in consequence of Godel’s result, if F(S) is
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undecidable, then the Decision Procedure would have to indicate that neither F(S)

nor NotF(S) is provable. But the established incompleteness of F(N) did not

preclude the existence of a Decision Procedure, which would still lend significance

to the formalist view. At this juncture, enter A.M. Turing and A. Church both of

whom proved that there is no such general Decision Procedure, another weakening

of the formalist doctrine. We now say that the Decision Problem is unsolvable,
another devastating blow to Hilbert’s attempted formalization of mathematics. As a

side remark, we might say that these proofs of Turing and Church were incidentally

victories for those mathematicians who all along had questioned Hilbert’s dogma

and insisted on the primary importance of intuitive mathematics.

To rigorously prove the unsolvability of the Decision Problem, Turing and

Church had to propose precisely what decision procedures would be encompassed

(allowed) in their proofs of unsolvability. Turing’s proposal for a procedure was the

Turing machine, which was readily accepted by the formalists and then turned out

to have much wider implications for computation in general. Church’s proposal was

the lambda calculus, a system for defining effective procedures, which are equiva-

lent to Turing machines, as Turing showed in his 1936 paper.

For the reader’s amusement and to provide a concrete example of a formal

proof we consider the famous Pythagorean Theorem that states for a right triangle

with sides a and b and hypotenuse c the mathematical formula c2 ¼ a2 + b2.

We give a geometrically oriented (but still formal) quick proof here. This well-

known proof consists of a diagram in which there is a square S1 of side a + b

(The existence of S1 can be proved from Euclid’s axioms). On each side of

the square, mark the distance a by a point Pa. Join the four points Pa by four lines

L1, . . .L4. These lines form a second square S2 of side c inside the first square

together with four right triangles. They form the hypotenuses of length c of four

right triangles with sides a and b. Prove all this formally by proving that the lines Li

meet at right angles, which follows from the geometry of the figure, since the

acute angles of each right triangle add up to 90�. Then compute the area of S1 as

(a + b)2 ¼ a2 + 2ab + b2. The area of each right triangle is ab/2, their area sum

being 2ab. The area of square S2 must then be a2 + b2. But its area is also c2 (QED

as Euclid would say,).

We include a sketch of the diagram of the two squares below.
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The Turing Machine

In 1936, there was no precise definition of an executable procedure that should be

allowed in formal proofs to carry out the rules of inference of a formal system. So

the concept of a Decision Procedure in Hilbert’s Decision Problem was not a

precisely defined concept. Yet, most mathematicians and logicians regarded

Hilbert’s Decision Problem as well-defined, perhaps influenced by Hilbert’s pre-

eminence as a world-renowned mathematician.

Still, for a researcher to attack the Decision Problem rigorously it was necessary

that he/she have a precise definition of a procedure that would be acceptable to the

formalist school. First, it should be evident that the individual basic steps of the

proposed procedure can actually be carried out by a human computer or perhaps a

simple machine. Furthermore, the class of procedures encompassed by the defini-

tion should include any that would likely be used to reach decisions. This latter

criterion would need to be certified by the formalists, a somewhat risky

requirement.

The situation remained problematic until 1936 when there came a breakthrough

by the American logician Alonzo Church (Princeton University).

Church formulated a definition of what he called an effectively calculable
function or an effective procedure utilizing three simple rules in a system called

the lambda calculus (See Appendix 2 below). He argued persuasively that the

lambda calculus procedures encompassed all procedures that would be admissible

for the Decision Problem. He then proved that the Decision Problem is unsolvable,

that is, there is no effective procedure which can decide if an arbitrary mathematical

formula is formally provable.

Somewhat later in 1936, working independently and without knowledge of

Church’s result, A.M. Turing at Cambridge University defined a more machine-

like concept of a procedure, now called a Turing Machine, that would be general

enough to be applied to the Decision Problem. He confirmed Church’s result that

The Decision Problem is unsolvable, this time by Turing Machines.

Turing also established that Turing machines and lambda calculus procedures

are equivalent, that is, the existence of one for any purpose implies the existence of

the other. This led to the Church-Turing thesis: all computations can be defined by

either of these equivalent types of procedures.

The subsequent widespread adoption of this thesis in effect specified the subject

matter of computer science: the universe of Turing machine computations. We

prefer the Turing machine approach as being more intuitive than that of the lambda

calculus since it combines hardware (machines) and software (machine programs)

ideas. It supports our earlier contention that Hardware and Software are two

connected sides of the computer science “coin”.

We accept the Church-Turing thesis that all computations can be performed by

Turing machines, or by lambda calculus effective procedures. The lambda calculus

definition emphasizes the construction of effectively calculable functions, paying

careful attention to variables as arguments of the functions. It has influenced
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Software development of some programming languages such as LISP and the usage

of subroutines. However, the Turing machine viewpoint is more intuitive and its

consequences are more prevalent. We shall adopt the Turing viewpoint. Therefore,

although the details are somewhat tedious, we need to give a description of a Turing

machine to further explain its influence on Computer Science. We shall

intentionally skim over many of the details found in Turing’s 1936 first paper so

as to avoid, or at least reduce, the monotony of such a description. We recognize

that in the era of the creation and promulgation of the Turing machine concept by

Turing and others, 1936–1950 say, there were very few, if any, real Hardware

computers available to computer scientists, engineers and mathematicians.

Computers and similar technological instruments were unfamiliar in that early

computing milieu and concepts which are today quite familiar were then new and

therefore required detailed explanations.

The Turing Machine

Turing’s 1936 paper on Computable Numbers and his subsequent reports on real

computer design, such as the ACE computer project, are heavy with what we now

regard as obvious concept details. In the following exposition of Turing machines,

we shall omit these details on the assumption that they are indeed familiar to

modern readers who use laptops, cell phones and other such hardware devices in

their daily activities. This will shorten the exposition and do so without loss of

intuitive comprehension. We encourage the reader to draw confidently on his/her

intuitive knowledge. It will generally lead to a correct reading of our explanations.

Like many works of genius, the Turing machine concept is deceptively simple

but not simple-minded. Over the years after 1936 there have been many variations

of the description of a Turing machine but the description we now give has become

fairly common. The following description is for the version of the machine

propounded by Turing in his 1936 paper. This version, or model as it is sometimes

called, can be regarded as the original Turing machine. Since then there have been

other models (versions) which have equal computing power as the original but are

useful in formulating various computation problems. We mention two other models

which we shall define at the end of this chapter: the multi-tape Turing machine and

the nondeterministic Turing machine.

A Turing machine can be pictured as a device consisting of two parts, a linear
tape and a control unit, C say (An actual picture is given in Chap. 12). C can

activate the reading or writing of characters on the tape. One can visualize an

ordinary tape reader-writer device such as those known to Turing in his work on

cryptography. The characters scanned can be ordinary alphabetical letters A-Z, for

example, or numerical digits 0–9, or useful typographical symbols like *. The tape

is subdivided into squares along its length which is specified to be potentially
infinite, which means that the tape is finite in length but automatically extendible

without bound to provide more squares as needed (Think of splicing two tapes
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together when necessary to obtain more tape space. Of course, since there is only a

finite amount of tape in the universe, the potential infinity property is an idealization

but it poses no conceptual obstacles to the Turing machine concept. It is a needed

property, since real computations may produce arbitrarily long strings (sequences)
of characters).

C has control of a read-write head. For short we shall call this the head of C.

During a machine computation, which takes place in discrete time steps, C can

cause the head to read or write exactly one character per square. We shall include a

blank character B to represent an empty square. At any instant, the read-write head

of C is positioned over one square, the scanned square, and its contents, the scanned
character. The head of C can move left or right from there one square at a time.

Alternatively, a physical device might allow the tape to move through C in this

manner. How the head moves relative to the tape and how it reads or writes

characters is determined by the scanned character and by the current state of C,

which is an internal state (or machine configuration of C as Turing called it) at a

particular time in the course of its operation during a computation. Turing is rather

vague about the concept of machine configuration. This is understandable from our

earlier remarks about the 1936 milieu which did not provide many concrete

examples of computers or other physically active devices and provided only an

imprecise notion of the current state of a device. Today, we have many experiences

with electronic devices and can interpret the concept of current internal state as

consisting of the collection of current physical states of the active electronic

components in a device, such as the conducting or non-conducting states of a

transistor (See Chap. 5, Appendix). The main Turing hypothesis about machine

configurations that concerns us is that a particular C can have only a finite number

of possible states. Turing argued for this property and against an infinite number of

possible control states on physical grounds, even speculating about the finiteness of

the number of states of a brain. The result is that C is what is now called a finite-
state Control or automaton. Its finiteness obviously imposes a major constraint on

how a Turing machine might be built, that is, it is a digital device having a discrete
time dynamics of state changes rather than an analog device having a continuum

time dynamics and infinitely many states. It turns out that the finiteness of C does

not limit the generality of Turing computations. Although any particular C is finite,

there is no overall bound imposed on the number of states that can be possessed by

the control units in all Turing machines. This permits the existence of Turing

machines (and computation procedures) of arbitrary size and complexity (More

on complexity in Chaps. 12 and 13).

Turing gave enough examples of his machines to be convincing that his concept

was sufficiently powerful to include all known computations and all conceivable

ones. We shall restrict our exposition here to one illustrative example, a machine,

M, that computes the infinite binary sequence 101010.... Incidentally, we note that

Turing was among the first to realize that computers should work with the binary

notation of 0s and 1s, rather than with the decimal notation for numbers.

Now, to describe the operation of a machine like M, or any other, we shall

introduce the simple notion of a machine instruction, I. I consists of a quadruple of
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the form q x O q#, where q denotes the current state of C, x denotes the scanned

character (in this example 0 or 1 or the blank character B), O denotes an operation to

be executed (Write 0, Write 1, Write B, L for shift left one square or R shift right

one square) and finally q# denotes the new state of C after the operation O is

completed. M executes such instructions to carry out a computation as a sequence

of operations and state transitions. In the Hardware Chap. 5, we shall treat modern

computers and it will be evident that Turing’s model of machine execution applies

to them. As described above, Turing’s model embraces six key features as follows:

(1) it employs a finite-state Control; (2) a finite number of “internal” (Control)

states; (3) a data tape t as “memory” which combined with the control state q

constitutes the total machine state (q, t); and (4) a state-transition function which

depends on: (5) some data part of t in the current total state (i.e. here it is simply the

scanned character x) and on: (6) the current control state q to cause the execution of

the operation of the current step of the computation and the transition to the next

state q#. These six enumerated elements of machine execution are found in all

modern computers.

Furthermore, to describe how M executes its computation, it suffices to give a

table, or list, M(I), of all its machine instructions. M(I) is called a program for M.

Here is the specific program for the M in this example:

M Ið Þ : qð0ÞB Write 1 q 1ð Þ; q 1ð Þ 1 Rq 2ð Þ; q 2ð Þ B Write 0 q 3ð Þ; q 3ð Þ 0 Rqð0Þ:

M(I) is available to C, possibly on tape t as a stored program, in a format that can

be read by the Control C. It is assumed that M starts with a blank tape and C in an

initial state q(0) as current state. Thus, the initial scanned character is B. The

Control finds that the first instruction in M(I) applies and causes M to Write 1 in

the scanned square and transit to state q(1). The new scanned character is 1 and the

new current state is q(1), so that the second instruction applies. To execute it the

control C causes a right shift and transits to state q(2). In state q(2) with scanned

character B, the third instruction applies and C causes a 0 to be written and transits

to state q(3). The new scanned character is 0 and the fourth instruction applies

causing a right shift and a transit back to state q(0). The scanned character is again B

and the first instruction applies again. The loop of four instruction executions is

repeated an infinite number of times, generating the pair 10 each time.

In modern terms, the list M(I) of four instructions is a program for machine M.

Each instruction causes a step of the computation of M to be executed. From a

programming viewpoint, in each instruction, the first state serves as a label or address
of that instruction and the second state is the label or address of the next instruction to

be executed. This is a software interpretation of the control state concept. It could be
implemented in a Hardware version of control C by an instruction counter which
counts numerically modulo 4 from 0 to 4 (¼ 0 modulo 4). Other parts of a Hardware

version of C would include the read-write head and logical circuits (Chap. 5,

Appendix) to combine the scanned character representation with the instruction

counter and thereby generate control signals to shift the read-write head or write

characters as specified by the instructions.
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The Universal Turing Machine. A Stored-Program Computer

As a mathematician, Turing preferred to specify his machine examples as

programs, that is, as Software, rather than as Hardware. One important consequence

of this method was that Turing soon recognized that the programs could be

converted to numerical representations in binary code, with some special characters

for punctuation. He called these program codes standard descriptions. It was then a
natural, yet exciting, step to realize further that a standard description of a machine

M could be viewed as data to be written on the tape of another machine, U. He

realized that U could be programmed to decode the standard description of M back

into machine instructions which U could then execute itself. We would say today

that U could simulate the operation of M and carry out the computation which M

was designed to perform. Turing showed in some detail how this simulation was

to be done. The result was the creation of a universal Turing machine U. Perhaps

the reader can sketch the various pieces of a program for U, as Turing did and as

we shall do later. These pieces were programs involving variables. Executable

instantiations of them were invoked by statements substituting data for the

variables. Today these program fragments are called subroutines.
The universal Turing machine was in fact a stored-program computer, since any

Turing machine program, such as M(I) above, could be stored on the tape of U

along with any data needed by M and U could then execute the procedure defined

by M. As noted elsewhere in this book, the stored-program idea is the very

foundation of modern digital computing and the key to computer design. It is

what unifies the Hardware (physical computer) and Software (programming)

sides of Computer Science. Credit for the invention of the stored-program idea is

often accorded to von Neumann. However, von Neumann had read Turing’s 1936

paper and discussed it with him on several occasions. It is not hard to surmise that

the brilliant restless mind of von Neumann very likely absorbed the rather ingenious

workings of a universal Turing machine and transformed it into the design of a

stored-program computer. The now famous report by von Neumann, H.H.

Goldstine, and A. W. Burks disseminated the stored-program idea widely (See

Chap. 5 on Hardware).

A Program for a Universal Turing Machine

It is rather amazing to read in Turing’s 1936 paper a detailed design for a universal

machine U. He was mainly interested in the rather abstract and portentous Decision

Problem. Yet we find him doing laborious computer programming of a universal

machine U. Indeed, it is tedious and laborious to read his program for U, as it often

is to read someone else’s computer program. To simplify this task we shall not

duplicate Turing’s program. Instead we shall outline a program for a machine like U

but hopefully easier to read.
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Recall that a program for anyTuringmachineM is a listM(I) of instructions Iwhich

are quadruples of the form qxOq#. Turing probably tired of writing sublists of such

instructions inwhatwereclearly repetitivepatterns that differed fromeachother only in

certain scanned characters x or internal states q. He created the notion of a subroutine,
which is a subprogram, sayP(a,б, г, . . .), of instructions containingvariables a,б,г, . . .,
referring to tape characters or control states or operations like L, R, andWrite. P itself

may have a result or, as we say return a value, which is a character or a control state.
A subroutine like this specifies a family of programs, eachmember of the family being

obtained by substituting values of the correct type for the variables. A member of the

family can be caused to execute at some point in themain program for U by writing at

that point a subroutine call statement which names the subroutine and specifies values

for its variables. The execution returns a value that can be used in the main program.

This is basically the way modern subroutines work in current programming languages

(See Chap. 4). Here now is an example of a subroutine from Turing’s 1936 paper.

Let P(qx, qy, z) be a subroutine which has as its value a control state. Starting at

this control state, the Turing machine U will execute a procedure which finds

the character z which is farthest to the left on the written portion of U’s tape.

We assume that the left end tape square has been marked initially with a unique

character e. The right end of the tape has two or more successive blank squares

marked by B’s. Subroutine P(qx, qy, z) scans left to e and then right. If it finds a z

then it ends in state qx. If no z is found before the repeated blanks B, then it ends in

state qy. Here is a program for P(qx, qy, z). It calls two other subroutines P1 and P2

which have control states as their values. The abbreviation Not z refers to all

non-blank characters other than z.

Using such subroutines, we can write a program for a universal machine U.

The program is a main program having two parts, Subprogram 1(Sub 1) and

Subprogram 2 (Sub 2), The main program executes the computation specified by

a standard description M(I), a stored program, of a machine M. M(I) is written on

U’s tape as a list of basic quadruples I each I being separated from the next by a

semicolon or other suitable punctuation. M(I) is followed by an input data tape

t of M. Turing uses even-numbered squares for M(I) and t.
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Subroutines will cause U to scan its even tape squares to find the quadruples I inM

(I) and the data t. The odd squares are used by U to do its computation steps which

simulate those ofM.The first instruction I iswritten at the top (left end) of the listM(I).

Subprogram 1 (Sub1). This is essentially a program which sets up the tools for a

scan for instructions I of M(I) using an instruction counter register CI made up, say,

of odd squares of U marked off by special punctuation symbols. Counter CI is

initialized with the initial control state of M. Turing uses a coding scheme like

qss. . .s with n + 1 s characters to denote the control states q(n) of M. Similarly, the

code xss. . .s with n + 1 s characters denotes the characters x(n) in M’s tape t. These

codewords are stored in even squares of U’s tape. Using subroutines like P(qx, qy, z)

illustrated above, program Sub1 finds the leftmost q character and extracts the

codeword qs for the label of the initial instruction to be executed in M(I). It writes

qs in CI. Similarly, Sub1 extracts the codeword xss. . .s for the initial scanned

character on M’s tape t. It stores xss. . .s in a Scan Register SC consisting of marked

odd squares. It also stores in SC the number locating the scanned square of t (say by

counting from the left end of t). The pair [CI, SC] together constitute the current state
of M. Sub1 then transfers control of U to Subprogram2.

Subrpogram2 (Sub2). The instructions in Sub 2 compute successive current
states of M and apply the relevant instruction of M(I) to each new current state.

This procedure is done in two steps which form a loop of two steps (i.e. a cycle of
repeated executions) as follows:

Step 1: Scan the list of instructions I in M(I) in the even squares of U for those

having the label qss. . .s in the instruction counter register CI. Examine the

character part of each such I and compare it to xss. . .s in SC. Suppose instruction
I* “matches” SC in its character part. This is the instruction to be executed next.

Step 2: Let OP be the operation part of I*. This operation (R, L or Write y) is

performed on tape t in the even squares of U. R and L simply increment or

decrement the integer count in CI. Write y changes the scanned character in SC

to be y. Then the next control state, q# say, is extracted from I* and q# is stored

in CI. Finally, Step 2 transfers control of U back to Step 1.

Of course, the loop will end if and when no matching next instruction I* is found.

Other Models of Turing Machines

It is convenient to devise other versions of computers that can be considered to be

models of Turing machines. As announced earlier, there are two models that have

received special attention in the literature on computation: the multi-tape Turing
machine and the nondeterministic Turing Machine.

A multi-tape machine, as the name indicates, has a finite number, m, of different

tapes that can be used as its memory (See Chap. 12 for a picture). Each tape can be

manipulated by the control unit C just as a single tape is manipulated in the original

model. Instructions are provided with operation parts such as “Write x on tape k”
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where k is an integer � m. It is fairly obvious that any computation carried out on

an m-tape machine can be simulated by a machine having only one tape (For

example, just divide the single tape into squares modulo m by means of special

“labeling” squares with integers modulo m).

The second model, the non-deterministic machine, is a bit more sophisticated

but we shall present it in a rather elementary way. It uses instructions of the form

Q0 � Op Q1; . . . ;Qkf g
which specify that when in state Q0 and reading character x on its single tape the

machine performs the operation Op and then transits to any one of the k states Qi in

the specified subset {Q1, . . ., Qk}. The choice of Qi is an arbitrary process. Thus the

next state is not explicitly determined. There is nondeterminism in the sequence of

control states produced in a computation.This can be depicted by drawing a tree
graph to represent all of the state dynamics of a computation. The tree graph (see

Chap. 7, Appendix on graph theory) would have a root node containing Q0 say, as

part of the state, where Q0 is the initial control state as in the above instruction and

nodes as possible successor nodes labeled Q1, . . ., Qk. A computation stepwould be
represented by marking a designated edge connecting Q0 to one of the k successor

nodes The particular successor node choice, Qj say, is arbitrary. The next step

would proceed from node Qj by applying an instruction having Qj as its current

state, again making an arbitrary choice of next control state for the next level of the
tree. The resulting computation would be represented by a path of such arbitrarily

chosen connected marked edges.

In the Complexity Theory Chap. 12, such nondeterministic Turing machines are

used to solve a computational problem by exhibiting a path having a polynomial

number of steps, p(n) where n is the length of the “input” to the problem, and it may

not be known whether the problem is solvable by a deterministic machines in a

polynomial number of steps. This situation is made possible, and apparent in the

examples considered, by an algorithm which takes advantage of the multiple

choices available at each state node of the computation tree of a nondeterministic

machine, and the resulting multiple paths of possible computations among which

there is clearly one of polynomial length.

Note that a nondeterminstic machine’s computation tree, which can be infinite in

depth, can always be simulated by a standard model deterministic machine doing a

breadth-first scan of the tree. But this scanmay require an exponential number of steps.

Unsolvable Computational Problems;

The Church-Turing Thesis

The reader should read Appendix 1 before proceeding with this part of Chap. 3.

The Church-Turing thesis is the hypothesis that Turing machines (or equivalently,

lambda calculus effective procedures) provide a sufficiently general definition of
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computation procedures, that is, any conceivable procedure for a computation can be

programmed to be executed by a Turing machine. This seems to imply that Turing

machines can solve any computational problem. However, Turing realized that there

are problems that cannot be solved by his machines. Remember that his paper was

written in 1936, after Godel had already shown that there are undecidable well-formed

formulas (wff’s) that cannot be proved in first-order logic. A formal proof in first-order

logic of a wff F is a computation consisting of a sequence ofwff’s which are axioms or

obtained from previous wff’s by the rules of inference and ending with F (See

Appendix 1). It clearly can be done by a Turing machine. So if F is a Godel

undecidable formula, then no Turing machine that implements first-order inference

rules can prove F (See Appendix 1). So there are limits to what Turing machines (or

Church effective procedures) can do (Hence the term “thesis” connoting a hypothesis

that cannot be proven). Despite the simplicity of the Turing machine concept, it gives

rise to various degrees of complexity regarding solvable problems (See Chap. 12

on Complexity).

By analogy with well-known cardinality results about real numbers expounded

by Cantor, as for example the result that the real numbers in the interval [0, 1]

(represented as infinite binary sequences) are not enumerable, Turing considered

the problem of enumerating (i.e. listing in a sequence) all computable numbers, i.e.
enumerating all the computable infinite binary sequences representing real numbers

in the interval [0, 1]. A computable number in [0, 1] is an infinite sequence of 0s and
1s that is computed by a Turing machine M. By virtue of their cardinality, not all

real numbers are computable since all the Turing machine programs M(I) are

enumerable (See below). By enumerating all Turing machines it would seem that

all computable numbers are enumerable. All rational numbers (ratios of integers)

are clearly computable by carrying out the division in the ratio. Likewise, many

irrational real numbers are obviously computable by well-known algorithms. For

example, √2,□ and e are computable.

To study the possible enumerability of all computable numbers, Turing took the

table (program) M(I) of instructions that defines how a machine M computes and

encoded M(I) into a particular format called a standard description (SD). The format

of an SD for M was influenced by Godel’s technique of assigning simple strings

to represent subscripts. Thus, the m-configurations (i.e. states of the control) q(0),

q(1), . . .,q(n), . . . are coded by such simple strings as DC. . .C, where there are n + 1 C

characters for q(n). Similarly, he assigned strings AC. . .C to represent the characters x

(0), x(1), . . ., x(n),. . .that can be printed on M’s tape. The instructions in M(I) are

separated by semi-colons. The resulting string is an SD. He then assigned numerical

values to the letters D, A, C and the semi-colon, thereby assigning a natural number to

each SD, called the ND. From some computable enumeration (listing), done by a

machine P, of the ND’s of those machines which compute infinite sequences, there

would be obtained a computable enumeration of the corresponding computable

sequences. This would seem possible. However, Turing proved that the set of ND’s

of the computable sequences (i.e. computable numbers) is not enumerable. To prove

this, it might be thought that the classical Cantor diagonalization argument which

shows that the real numbers (infinite binary sequences) are not enumerable would also

3 The Heart of Computer Science 29



work here.Not quite.Here, onemust pay attention to the computability requirement for

the enumeration process.

To prove that the computable numbers are not enumerable Turing assumed the

contrary and obtained a contradiction as follows.

So suppose that all the ND’s of machines which compute computable numbers

(infinite sequences of 0s and 1s) can be enumerated, that is, printed in a list L by a

Turing machine P. For any integer n consider the nth ND in the list L. Decode it to

obtain SD(n). For the corresponding machine M(n) having the standard description

SD(n) let the corresponding infinite sequence x n which it computes have entries

xn (m), where m designates the mth digit in the sequence x n. Visualize that xn (m)

defines a two-dimensional infinite array with row index n and column index m.

Now define a new sequence S(n) by the formula

�ð Þ S nð Þ ¼ 1� xn nð Þ; n ¼ 0; 1; 2; . . . ;

using the diagonal entries xn (n) of the two-dimensional array xn (m), as Cantor did.

The sequence of numbers S(n) is clearly different from all the enumerated

sequences xn (m), being unequal for m ¼ n. To complete Cantor’s argument that

the list L is therefore not complete as claimed, we must here show that the sequence

S(n) as defined in (*) above is Turing-computable. Now, S(n) can indeed be

computed by a machine M(S) which first applies the hypothesized machine P to

obtain xn. For each n, M(S) uses P to generate the nth ND, which defines the

machine M(n) that computes sequence xn and then lets M(n) compute the element

xn (n). Finally, M uses formula (*) to compute S(n). In this way, the infinite

sequence S is computable by machine M(S) which uses the Turing machines

P and M(n). Hence, S must equal some sequence x K in the supposedly complete

list L, which, as we have seen, is impossible and hence a contradiction. This implies

that the supposed existence of P is false. In fact, this would imply by the above

definition of S(n), that 1 � xn (n) ¼ xK(n) for all n. In particular, for n ¼ K we

would have the contradiction 1� xK(K) ¼ xK(K), that is, 1 ¼ 2 xK(K), making the

number 1 even or 0. Therefore, the supposition that a Turing machine P exists to

enumerate all the sequences xn (m) is false.

So Turing machines compute all computable numbers (by definition) but fail to

enumerate all computable numbers, as might seem possible by naive reasoning.

In fact, Turing goes on to consider a related problem: Find a Turing machine P to

decide whether or not a DN is the DN of a machine which computes an infinite

binary sequence. Clearly, we can construct a machine which computes only a finite

binary sequence, say by arriving at an end (or halt) m-configuration q for which

there is no instruction with the label q, or by getting into a loop of instructions

which simply causes the read-write head to oscillate back and forth without printing

and never halt (the dreaded infinite loop in modern programs). Such simple

behaviors can be detected by examining short programs. But the DN may be that

of a long complicated program. Can we design a Turing machine P which can

decide if any DN defines what Turing called a circular machine, one that does not
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compute an infinite binary sequence (i.e. halts after a finite number of instruction

executions or else gets trapped in an infinite loop (or circle) of executions). A non-

circular machine he called circle-free. We already know that P cannot exist, since if

it did the ND’s of circle-free machines, which compute infinite sequences, would be

enumerable. In simpler terms of machine behavior, the question is: can a machine P

be designed to detect circular machines? P would be called a debugging diagnostic
program in modern computer programming. There can be no such Turing machine P,

despite the vast powers of the class of all Turing machines.

Appendix 1

Symbolic Logic, Computer Science and the Godel
Incompleteness Theorem

The logicians B. Russell and A. Whitehead (R&W) in their monumental 1910 book

Principia Mathematica attempted to derive all of mathematics within a formal
system of symbolic logic following an earlier similar attempt by the logician

G. Frege. In a related approach, the formalist school of mathematicians, led by

David Hilbert, also in the early 1900s, advocated a process for the mechanization,

by formalization within a formal system of logic, of all of mathematics. According

to this formalist process, all of mathematics, (i.e. the theorems), is to be organized

as one grand deductive logical system of formulas (called well-formed formulas or
wff’s for short) obeying precise syntactic structural rules and the true statements of

mathematics (the theorems) are to be represented symbolically by wff’s which are

provable (mechanically derivable) in the logical system by formal proofs from

appropriate axioms.
In a formal proof one proceeds step-by-step in an almost thought-free manner

solely by applying the purely formal rules of the deductive logic system, a process

which could seemingly be done by a computing machine if one existed. Indeed,

some modern computer programmers have explored this possibility of proving

some theorems by machine methods. The formalists’ doctrine, surprisingly pro-

posed by a prominent mathematician like Hilbert who had done many important

informalmathematical proofs in the usual intuitive natural language style, aimed to

reduce all mathematical theorem-proving to purely formal symbol-manipulation

computations with no intuitive understanding required of the interpreted meanings

of the statements in the various steps of a proof. This proposal may have been

suggested by the well-known quasi-formal proofs in abstract geometry presented in

Euclid’s Elements (See Chap. 2 and section “The Decision Problem of Formalist

Mathematics”). As remarked skeptically by other mathematicians, notably the

eminent pure mathematician G. H. Hardy, such a program, if successful, would

reduce all mathematical theorem-proving to a mechanical thought-free process of

symbol-manipulation, one that could in principle be carried out by some kind of
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computing machine. Indeed, as we have said, modern computer scientists have

tried to develop theorem-proving computer programs. Hopefully, by reading this

Appendix 1 they may learn their limitations. Of course, even in the formalist

program some human thought would be required to set up appropriate axioms for

each mathematical theory. This seemed quite possible since it had already been

done for the theory of natural numbers N by the mathematician Peano (See below).

Other theories using real numbers could presumably be based on N. So the formalist

program seemed reasonable and it began with N.

In this Appendix 1, we shall describe how the then (1931) young mathematician

Kurt Godel upset the formalist program by proving that its grandiose goal is not

achievable even for N. He did this by displaying a wff which clearly is interpreted

as a true mathematical statement about N (by an obvious interpretation in N) and

yet is demonstrably not formally provable in the formalists’ well-accepted logical

system. We wish to explain the essence of Godel’s result and its significance for

Computer Science without getting distracted by the syntactic details of the

encompassing logical system. Yet, we must describe the main features of that

system to explain Godel’s result. Hence, we shall present the main features

but omit many syntax details about the encompassing formal logical system, such

details being either obvious or well-known to those readers who are familiar with at

least one computer programming language, which in several ways can be viewed as

a formal logical system. For those who need more detailed explanations we refer

them to such standard references as D.Hilbert–W. Ackermann (H&A) Principles of

Mathematical Logic. Translated, Chelsea 1950. We shall refer to the formal system

in H&A as HA. Also see D. Hilbert and P. Bernays Foundations of Mathematics,

Springer, 1931. This appendix omits many of the details about the HA formal

system (e.g. the complete syntax of wff’s), but we shall at least explain the

motivation for how the formal logical system was constructed by H&A (following

R&W) and how its deduction (inference) rules were intended to be used by the

formalists as a “thought-free” machine-like proof mechanism.

Propositional Logic and Boolean Algebra

At the outset, it is important for us to recognize that although the wff’s in a symbolic-

logic system on the one hand are treated purely as formal symbolic expressions

having no meanings, on the other hand they are interpretable intuitively as mean-

ingful statements that occur in natural-language treatises involving concepts of

informal logic and mathematics. This is somewhat analogous to viewing a computer

programming language, on the one hand, as a medium in which to simply write

symbolic formulas (e.g. wff’s like assignment statements or Boolean expressions) as

prescribed by a precise syntax but not giving much thought to their possible

meanings while, on the other hand, interpreting these wff’s as natural-language

statements about computations in some external domain like N. Furthermore, these

32 E.K. Blum



interpreted statements, about N say, have an ordinary truth-value (True or False),

which, as we shall see, is transferred back to their symbolic wff’s by a computable

procedure.

The formal logic system HA has certain logic axioms, which are wff’s

formalizing statements which are intuitively true under any natural interpretation.

The axioms can be used as steps in formal proofs. As we have remarked elsewhere,

Euclidean geometry serves as a prototype example of such a formal deductive

system in which the meanings (i.e.in that case, geometric interpretations) of the

statements are not involved in the proofs. In fact, there are no syntactically precise

wff’s in Euclid’s Elements, However, the points and lines mentioned in quasi-

formal statements in proofs are to have no geometric meanings and are to be treated

as abstract objects having only such properties as are conferred on them by Euclid’s

axioms; e.g. any two points determine a line. Euclid’s proofs of theorems proceed

from the axioms by applying computational deductive rules of logic. For a major

example of a computational deductive rule used in a formal proof in any logical

system we refer to the well-known modus ponens rule below.
For our purpose here, we do not need to give the complete syntax of well-formed

formulas (wff’s) in the logic system. A few examples will convey the main features

of wff’s. The interested reader can refer to Hilbert& Ackerman for a full account.

Russell & Whitehead (R&W) and Hilbert & Ackerman (H&A) set up their formal

logic systems starting with formulas called propositions. They begin with proposi-
tional variables p, q and r etc. which are meant to denote arbitrary natural language

declarative sentences which are either true or false, for example “Socrates was a

man.” or in a modern computer context a statement like “switch 1 is closed.”

Syntactically, variables like p, q and r serve as atomic propositions, that is, they
are the basic building blocks of propositional wff’s. Analyzing how mathematicians

construct informal intuitive proofs, R&W and H&A postulate that they mainly use

the logical connectives AND (denoted by &), OR (denoted by v) and NOT (denoted

by ¬) to construct compound propositions represented by such wff’s as p&q, p v q

and¬p. They also use the wff p ! q to denote an implication which formalizes the

statement “p implies q” or equivalently “if p, then q.” More complicated wff’s are

constructed without limit by substituting wff’s for (all occurrences of) a proposi-

tional variable p, q, r etc. in previously formed compound wff’s or by repeated use

of the logical connectives, for example like (p ! q) ! r. To compute the truth-

value of a proposition when given truth values for the interpreted statements

assigned to the propositional variables in the wff it is only necessary to know

how the connectives determine truth-values. This is easily given by the natural

truth-tables for the connectives as follows (with truth ¼ T and falsity ¼ F):.
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Clearly, as shown, a conjunction formula p & q is true exactly when the variables

p and q are both interpreted as true. A disjunction formula p v q (denoting the

inclusiveOR) is true if either p or q is true or both are true. This agrees with the truth
values of natural language intuitive statements formed using these connectives.

In passing, we observe that p ! q and ¬ p v q have the same truth values.

Using these truth tables, for any propositional wff, f say, containing precisely the

n propositional variables p(1),. . ., p(n) we can compute the truth value of f from an

assignment of truth values to the variables p(1),. . ., p(n). Indeed, f defines a truth
function of these n truth values. In the computation of the function’s truth value

f(p(1),. . ., p(n)) we can regard the connectives as basic truth functions, or algebraic
operations defined by their truth tables. Thus, in propositional logic, the truth of a

wff under any interpretation of the atomic variables as natural language statements

can be computed solely from the truth values of these interpreted statements. We do

not need to consider the meanings of the statements. This situation arises in the

design of computer switching circuits where there are n components, like transistors

for example, which are either conducting (“on”) or non-conducting (“off”). We

choose n proposition variables x(j), j¼1,. . .,n to denote the statements “Component

j is on.” and assign truth value T if it is “on” and F if it is “off”. It is then required to

design a circuit which computes a prescribed truth function f(x(1),. . ., x(n)) which
denotes the statement “The circuit output is on.”, which is true when the output line

is “on” and false otherwise. The design of f can be done using algebraic methods

known as Boolean algebra and hardware for f can be built using well-known

circuits called gates for AND, OR and NOT.

In fact, about 50 years before R&W and H&A, in 1854, the English mathematician

George Boole published his book “An Investigation of the Laws of Thought”

(republished by Dover Pub. Co., N.Y. 1958) in which he proposed an abstract algebra

of propositions in which the connectives behave like algebraic operators.We now call

this Boolean algebra and it is used in Hardware design (see Chap. 5, Appendix) and

also is incorporated in modern programming languages along with the usual arithme-

tic operators + (addition), • (multiplication) and � (negation) (See below).

Boole also considered aspects of human logic reasoning dealing with subsets of

some given set, for example subsets of the set of integers N. In this type of

reasoning, the union of two subsets X and Y, denoted by X
S
Y and the intersection

X
T
Y arose in a natural way, as did the complement X0. The union X

S
Y arose for a

proposition p V q where p is true for X and q for Y. Then p V q is true for elements

in either X or Y or both, that is, in X
S
Y. Likewise, p&y is true for X

T
Y. Boole

used 1 for true and 0 for false. Thus p and q were assigned one of the Boolean values
0 or 1. p and q were Boolean variables representing propositions that were either

true or false in a proof in a propositional logic system. For a compound proposi-

tional wff W involving n proposition variables, W would have different truth values

for different truth values assigned to the n variables. An arbitrary wff W in

propositional logic defines a Boolean function when we restrict the values of the

propositional variables in W to be either T or F, as when we are only interested in

the truth values of W (rather than its meaning).
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Boolean Algebra and Circuits

Boole recognized that the computation of truth values of an arbitrary wff can be

done within an abstract algebraic setting involving two binary operations, + and •,

corresponding to the OR and AND logic connectives v and & respectively and a

unary operation 0 corresponding to NOT (We assume that p ! q has been replaced

by ¬ p v q). In modern mathematical terms, Boole’s algebraic setting is called a

Boolean algebra. It consists of an abstract set B with binary operations + and • and

a unary operation satisfying the following axioms:

1. For x and y in B, the elements x + y and x • y and x0 are in B;

2. There are elements 0 and 1 in B such that x + 0 ¼ x and x • 1 ¼ x;

3. x + y ¼ y + x and x • y ¼ y • x;

4. x • (y + z) ¼ x • y + x • z and x + y • z ¼ (x + y) • (x + z);

5. For any x in B there is an element x0 such that x + x0 ¼ 1 and x • x0 ¼ 0.

Axiom 1 is really not needed, since it follows from the definition of an operation
in an algebra.

An example of a Boolean algebra is the set B ¼ {0, 1} with the Boolean + and •

operations defined as the usual arithmetic operations except that 1 + 1 ¼ 1. Also,

00 ¼ 1 and 10 ¼ 0.

Another example is the set all subsets of a given set X. with the + operation

being union and the • being intersection and x0 being the complement of x. Here 1 is

X and 0 is the empty set.

We have already mentioned the application of Boolean algebra to computer

switching circuit design involving n “input” components x(1),. . ., x(n) which, like
transistors, (Chap. 5, Appendix) can be in either of two states “on” (¼ 1) or “off”

(¼ 0). The components are usually to be connected through OR and AND and NOT

gate elements so that there is a single circuit output f(x(1),. . .,x(n)) which is either

on (¼ 1) or off (¼ 0) as required for the specified circuit operation (See the

Hardware Chap. 5). Thus the circuit computes a specified Boolean function f.

In principle, the definition of f can be given by a table of its values for the 2n

possible Boolean vector values (x(1),. . .,x(n)). Each row of the table will list the

values of the x(j) variables (0 or 1) and an extra column for the specified value of f.

We consider only those rows in which f has the value 1. A Boolean formula for f can

be written as a disjunctive normal form consisting of sums (disjunctions) of

products (conjunctions) y(1) • y(2) . . . • y(n) of n input variables y(j), where y

(j) ¼ x(j) if x(j) ¼ 1 in that row and y(j) ¼ x(j)0 if x(j) ¼ 0. This conjunction will

have the value 1for the value of (x(1),. . .,x(n)) in that row. The sum of these

conjunctions will have the value 1 exactly for those vector inputs where it is

required and 0 otherwise. This combination of OR (sum), AND (product) and

NOT gates will compute f. However, it is probably not the minimal circuit to

compute f. Algebraic simplification according to the Boolean axioms may be

needed. Also it may be better to use other types of gates such as NAND gates

(See the Hardware Chap. 5).
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Propositonal Logic and First-Order Predicate Logic

To carry out formal logical proofs with formal symbolic expressions, called wff’s,

representing natural language statements, H&A first formulated the system called

propositional logic for the propositional wff’s described above. These wff’s are

interpretable as natural language statements which are either true or false. For doing

formal proofs with propositions, H&A chose certain wff’s as axioms to serve as

initial wff’s in a proof. The following four axioms were chosen:

Let U, V, W be wff’s which can be interpreted so as to have truth values.

For example U, V and W can be propositional variables. The axioms are:

1. W v W ! W;

2. W ! W v V;

3. W v V ! V v W;

4. (V ! W) ! (U v V) ! (U v W).

Certainly, the first and third formulas are intuitively true for any interpretation of

W and V as natural language statements. Therefore, they are said to be valid. Their
truth value, TRUE, for any assignment of truth values to V and W can be

established by truth tables as in the above section on Boolean algebra. The same

holds for axioms 2 and 4. As written here, the axioms are really axiom schemas
since U, V, W can be any wff’s.

A proof is a sequence of wff’s starting with an axiom. At each step in a proof

the next wff in the sequence (i.e. the next wff proved) is an axiom or is determined

by either of two rules of inference applied to wff’s already in the sequence.

The rules are

1. The substitution rule,which allows any wff to be proved by substituting a wff for
all occurrences of an atomic variable in a wff already proved

2. modus ponens, which allows a wff Q to be proved if a wff P and the wff P ! Q

have already been proved in the current or previous steps of a proof.

It is clear by induction on the length of a proof that the rules of inference at each

new proof step preserve the truth of earlier steps. The axioms are true and modus

ponens yields a true wff Q, since P and P ! Q are true by the induction hypothesis.

Therefore, starting a proof with a purely logical axiomwe can only prove wff’s which

are propositions that are true for all possible interpretations. This was not the formalist

program. They proposed to do formal proofs of wff’s which are interpreted as

mathematical statements, say about natural numbers for starters. To prove wff’s

which are interpreted as mathematical statements in a formal system, the formal

system must provide symbols and axioms of a mathematical type. In modern

computer programming terms, it is necessary to have variables and operators of type

“integer” if we wish to have formulas that refer to integers. In the formalist program,

it is reasonable to begin with the mathematics of the natural numbers, N, and

adjoin to the logic system symbols to denote numbers and wff’s to denote axioms

about N, thereby extending the logic system to a formal system F(N) for N.
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Before doing this, it is necessary to further extend the propositional logic system to

take into account general mathematical statements which contain variables that can

take on values in a mathematical domain like N. This leads to an immediate extension

of propositional logic called the first-order predicate logic.
By analyzing how logic is used in mathematical proofs, for example in Euclid-

ean geometry and number theory, R&W and H&A were able to extend the propo-

sitional logic system to a more general logic system which formalizes the intuitive
logic methods for mathematical domains like the non-negative integers N. As with

the propositional logic system defined above, the first step of this extension process

was the representation of mathematical language statements by abstract well-
formed formulas (wff’s) according to a precise syntax. In mathematics, typical

statements contain individual variables like x, y, z which range over the particular

domain being investigated, for example the integers N. Statement have a subject-

predicate structure like “x is P” where P is a predicate like “a prime number”; i.e. “x

is a prime number.” To formalize such statements H&A adjoin to the propositional

logic new symbols called predicate variables say P, Q, R etc. which denote abstract

predicates and they then define predicate formulas (wff’s) like P(x) to symbolize

the statement “x is P”. This functional notation indicates that P(x) denotes a

propositional function, that is, for each value, c, substituted for the individual

variable x the formula P(c) symbolizes the proposition “c is P”. Thus the interpre-

tation of a wff symbol like P(x) is an abstract unary relation (i.e. a subset) of some

domain like N. It has no truth value. More generally, a wff like P(x, y) denotes a

binary relation on some set like N, as for example is defined by the statement

“x ¼ y + 1” and so on for n-ary relations for each number n. These statements do

not have truth values. These are the atomic predicate wff’s. As with atomic

propositions, the atomic predicate formulas are building blocks which can be

combined by the logical connectives into abstract compound predicate wff’s.

Thus, P(x) & Q(y) and P(x) v Q(y) are compound predicate wff’s. In the formal

system F(N) for N we also have specific atomic predicate wff’s like “x ¼ y + 1”.

The individual variables x and y in such predicate wff’s are said to be free variables.
They can be assigned any value in a specified domain like N. Symbolically to

represent such an assignment of a value to a variable x it is permissible to substitute

a constant symbol, say c, for all occurrences of a free variable x in a wff, thereby

creating a predicate wff like P(c), which does have a truth value when interpreted in

F(N), as for example “c is a prime number.”.

Now let W(x) be a predicate wff containing the free variable x. Besides

substituting a constant c for the free variable x in W(x) so as to obtain a truth

value for the resulting wff W(c) it is also possible to obtain truth values by applying

quantifiers to bind x, as is done in ordinary mathematics exposition. A free

individual variable x in a predicate wff W(x) can be bound by being quantified by

prefixing the existential quantifier ∃x, denoting “there exists x” or the universal
quantifier 8x denoting “for all x”. Then if there are no other free variables in W(x)

the wff ∃xW(x) is a wff with no free variables and can be assigned a truth value. For

example, we could have ∃x (x � 2 ¼ 0). Such predicate wff’s with no free

variables obviously do have truth values. We repeat that if x is not bound in W
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(x), x is called a free variable and its occurrences can be replaced in the usual way

by substituting for them a value, that is, a symbol c denoting a constant in some

interpreted domain, for example a number in N. But the predicate variables P, Q, R

etc. cannot be quantified. This is the meaning of the adjective first-order. This
completes the syntax of predicate wff’s. The resulting symbolic logic system with

two more axioms given below is called the first-order predicate logic, in recogni-

tion of the property that predicate variables cannot be quantified.

For deductive proofs in first-order predicate logic H&A adjoin to the proposi-

tional axioms the following two predicate wff’s as axioms which specify how

quantifiers can be used in proofs.

Additional Axioms of First-Order Predicate Logic

Let W(x) be a predicate wff containing the free variable x and let t be a term which

denotes an element in some domain like N. Then the following are axioms:

8x W xð Þð Þ !W tð Þ;

W tð Þ ! 9xP xð Þ:

Note: By a term t is meant a constant c or some combination of constants and

operations (like 2 +3) which denotes an element in some domain like N. The first

axiom allows the universal quantifier to be eliminated in a proof. Thus if 8x(W(x))

has been established in a proof step, then applying this axiom and modus ponens

allows the derivation of W(t) in the proof. Similarly, if W(t) has been proven, then

the second axiom and modus ponens allows the derivation of ∃xP(x). These are

natural mathematical proof steps.

For predicate logic the four axioms of propositional logic still hold but with the

wff symbols U, V, W now denoting predicate wff’s which have truth values. Further

the rules of inference of propositional logic still hold but again for predicate wff’s as

well as propositional wff’s.

The same two rules of inference are adopted to derive (i.e. prove) other predicate

wff’s in a formal proof. These are

1. The substitution rule, which allows any predicate wff to be substituted for all

occurrences of an atomic variable

2. modus ponens, which allows a predicate wff V to be proved if predicate wff’s W

and W ! V have already been proved.

The resulting formal logic system is called the first-order predicate logic.
As with propositional wff’s it follows easily by truth table analysis using

Boolean algebra that any predicate wff provable by logical deduction from wff’s

which are intuitively true must likewise be true. We shall describe this behavior of
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truth by saying that truth is preserved by the logical proof system and call this

property of the system truth-preservation. This property of the logic system is

sometimes also called soundness. It is easy to show that the property holds for

modus ponens.. (If W is true, then W ! V can only be true if V is true. So modus

ponens yields only true V.) Since the axioms are valid (true for any interpretation),

so are all provable predicate wff’s. This is an important metalogical property of the

logical system that we certainly require if the system is to be of any value in proving

theorems. It partly justifies the Hilbert formalist program. To completely justify it

another metalogical property is required, a converse of truth-preservation, namely,

that any wff which is valid (true by any intuitive interpretation) must be provable.

If this property held, the logical system would be considered complete. Formal

proofs of valid wff’s would be a mechanical symbol-manipulating computation.

In his 1929 doctoral thesis, Godel showed that the first-order predicate logical

system is complete. However, valid wff’s were not the wff’s of interest in the

formalist program to mechanize mathematics. The program rather dealt with wff’s

which are interpretable as true in particular mathematical domains. The first such

domain to be formalized was the non-negative integers (natural numbers) N with its

usual arithmetic. This was done by adjoining wff’s to denote statements about N

and adjoining axioms for the natural numbers N to the logical axioms so as to

construct a formalized number system F(N). The formalist dogma was that every

wff in F(N) which is interpretable in N as a true statement about N is formally

provable in F(N). This would make N a domain similar to Euclidean geometry.

It would also make F(N) a complete formal system for N in that for every true

statement S about N there is a wff F(S) in F(N) which can be interpreted as S and

which can be formally proved in F(N). In fact, Godel proved that F(N) is not

complete, that is, it is incomplete, by displaying a wff S which is true in N but

its formalization F(S) is not provable in F(N). He further showed that its

incompleteness cannot be remedied, say by adjoining more axioms. As we shall

see, this result has implications for problems in computation.

In his earlier 1929 doctoral thesis, Godel established that the first-order predicate

logic system is complete. From the way that any logical system works, if W is a

provable formula, then ¬W is not provable, since W must be true by the truth-

preservation property and so¬Wmust be not true, hence not provable. This is also

called a form of system consistency. Godel’s incompleteness result assumes that F

(N) is consistent.

To actually formalize some branch of mathematics within a symbolic logic

system it is necessary to adjoin symbols which denote mathematical objects in

that branch, for example numbers in N, and to adjoin axioms which denote

properties of these objects. A similar process is used to design a programming

language for N. Once the purely logical axioms have been chosen for first-order

predicate logic as explained earlier, it is natural to adjoin axioms for the arithmetic

of natural numbers, N. One possible set of axioms for N are the well-known Peano

axioms which employ the constant 0, the successor function s, addition +, multipli-

cation • and equality ¼. These axioms are given by the following six purely

arithmetic formulas and a seventh formula involving logic:
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Peano’s Axioms

1. 8x¬(0 ¼ sx);

2. 8x 8y (sx ¼ sy) ! (x ¼ y);

3. 8x x + 0 ¼ x;

4. 8x 8y x + sy ¼ s(x + y);

5. 8 x 8y x • sy ¼ x • y + x;

6. 8x x • 0 ¼ 0.

7. Let W(x) be a wff interpretable in N and having a free variable x. Then

ðWð0Þ & 8x W xð Þ !W sxð Þð Þ ! 8x W xð Þ:

The intuitive interpretations in N of these axioms are quite obvious. For example,

axiom 1 can be interpreted as stating that 0 is not the successor of any natural

number. The Peano axioms have been found to be sufficient for deriving known

properties of N. Three additional axioms are adjoined to represent the usual

properties of equality. The result is a formal system for N. Let us continue to use

F(N) to denote this formal system within first-order predicate logic with the Peano

axioms adjoined.

Axiom 7 is the principle of mathematical induction to prove 8x W(x). As in the

axioms of predicate logic it is really an axiom schema since W(x) is an arbitrary

predicate wff. Strictly speaking, there is an implied universal quantification of W,

making this axiom look like a second-order wff. However, the universal quantifier

8W is not permissible and is not part of the formal syntax. It enters informally by

the interpretation of axiom 7. See the remarks below about the interpretation

process.

What Godel did to show the incompleteness of F(N) was to arithmetize the well-
formed formulas and the deductive proofs that take place in F(N) by using the

formal arithmetic provided by F(N) itself. In this process, the formal objects of F(N)

(i.e. the well-formed formulas and the proofs) are assigned numerical codings. His

paper gives methods for the effective calculations of all the numerical codings. We

shall sketch the key ideas. In the following, x, y and z are individual variables that

can be assigned numerical values.

The first idea in Godel’s methods is to assign formal numerical values (we shall

loosely say “Godel numbers”) to the formulas in F(N). Exactly how he does this we

shall not describe but it is easy to see that it is by a simple effective calculation

expressible in F(N), which first assigns numerical values to individual symbols.

Then for a well-formed formula, say the symbol string f, he combines the numerical

values for the symbols in f into a single number, G(f), called its Godel number. G is

a computable function, or as Godel does it, a recursive function, which is a concept
equivalent to Turing computability.

Second, he considers the set of all formulasY(Z) in F(N)which contain exactly one
free variable Z. For simplicity he uses the same variable Z. For each such formula he

defines its Godel number G(Y(Z)) within F(N) in a way that permits the arithmetic
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statement “y ¼ Godel number of Y(Z)” to be expressed by a formula in F(N).

This assigns G(Y(Z)) to the variable y. Next, he gives a formula expressing that “Y

(z) is the result of substituting z for the occurrences of the free variable in Y(Z)”.
The final idea is to compute a Godel number G(pfX) for any proof pfX in F(N).

A wff in F(N) is represented as a number computed from the sequence of the Godel

numbers given to the sequence of symbols in the wff. Similarly, a Godel number of

a proof pfX is computed from the sequence of numbers of the wff’s in the steps

of pfX. This is all done in such a way that the intuitive arithmetic assignment

statement “x ¼ G(pfX)” can be expressed by a formula in F(N). These numerical

values for the formal objects in F(N) arithmetize its formal aspects in a computable

way. Thereby, the formalism of F(N) becomes a branch of ordinary arithmetic.

Finally, Godel formulates a complex predicate expression in F(N),

Prf x; y; zð Þ;

involving three free variables x, y, z, which has the following three-part interpreta-

tion (meaning):

Part (1) y is equal to the Godel number of a formula Y(Z) with one free variable;

Part (2) Y(z) is the formula obtained by substituting z for Z in that formula Y(Z);
Part (3) x equals the Godel number of a proof pfX of Y(z) in F(N).

Part (1) might be a formula such as “y ¼ G(Y(Z))”, where G(Y(Z)) is a Godel
number that holds precisely for a wff which contains one free variable,Z.

Part (2) gives a Godel number for the syntactic result Y(z) of substituting z for Z
in the formula Y(Z) given by Part (1).

Part (3) obtains the Godel number for Y(z) from part (2), decodes it as wff Y(z)

and then computes a Godel number for a proof, pfX, of Y(z) and asserts

x ¼ G pfXð Þ:

Of course these high-level formulas and interpretations have recourse to various

predicates having lower-level interpretations based on F(N) syntax and inference

rules such as “pfX is a proof of Y(z)” which will usually involve definitions by

induction on the length of a well-formed proof sequence pfX ending with Y(z).

In effect, Godel arithmetizes the syntax of formulas in F(N) and the construction of

formal proofs in F(N) by defining suitable numerical predicates in F(N) and uses

these to formulate the predicate Prf(x, y, z). We assume, as has been checked by

others, that Godel’s paper defines these numerical predicates correctly. Hence, we

assume that Prf(x, y, z) is correctly and effectively constructed and the three-part

interpretation of Prf(x, y, z) is as specified above. The rest of Godel’s proof can

proceed directly as follows (But see the addendum at the end of this appendix).

It may be helpful to observe that Prf(x, y, z) as interpreted above sets up a two-

dimensional array of wff’s indexed by the integer-valued pairs (y, z) where the row

indices y are Godel numbers which designate one-variable predicate wff’s in F(N)

and the column indices z designates numerical values to be substituted for the
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variable in these wff’s. Since the particular free variable in a one-variable predicate

may be any variable, we can choose a convenient one to use in all. In a way, the rest

of Godel’s proof can be viewed as applying a version of the classical Cantor

diagonalization procedure to this array as follows.

Consider any value of row index y and obtain its designated one-variable

formula, say Y(Z), essentially by inverting the function G. Thus, y ¼ G(Y(Z)).
Now take the column index z to equal y, (thereby selecting the diagonal elements of

the array) and consider the wff Y(y) obtained by substitution of y for Z as given in

part 2 of the interpretation above. This yields the “diagonal” cases of the predicate

Prf(x, y, z) namely, the predicate formula Prf(x, y, y). These cases will be used to

generate an unprovable formula. Godel proves that one special instance of the

various wff’s Y(y) is not provable in F(N). He considers the special one-variable

predicate wff U(y) in F(N) defined as

U yð Þ : :9x Prf x; y; yð Þ

which is interpreted as meaning that there is no proof Godel number, x say, of any

wff Y(y) in which y equals the Godel number of Y(Z). Taking one final step, Godel
then computes the Godel number u of the predicate U(y), namely, u ¼ G(U(y)), and

constructs the specific formula U(u) given by

U uð Þ : :9x Prf x; u; uð Þ:

Formula U(u) has no free variables since u is a Godel number. The interpretation

of U(u) states, by carefully unwinding the steps in the above interpretations (1),(2),

(3) of Prf (x, u, u) that there is no proof Godel number x of U(u). So U(u),

interpreted, asserts its own unprovability! As Godel pointed out, this self-referential
property of U(u) is not new to logic. It was known in traditional logic as some

variation of the liar’s paradox statement “I am lying” (Dear Reader: Can you

decide if the liar is lying or telling the truth? Is his statement true or false? Either

decision will lead to a contradiction).

In fact, the interpretation of U(u) is a metatheorem about provability, or rather a

lack of it, in F(N). It is the essence of Godel’s incompleteness result. The truth of

the metatheorem is easy to establish mathematically by a standard, simple, informal

proof by contradiction, as Godel did, and as we now do.

Godel’s Incompleteness Theorem Let u be the Godel number of formula U(y)

above. The formula U(u) given by¬∃x Prf (x, u, u) is true by interpretation but not
provable in the formal system of number theory F(N). Likewise, the negation of U

(u) is not provable (i.e. U(u) is undecidable).

Proof Assume that the formula U(u) is provable in F(N). Then by truth-preservation

the interpretation of U(u) is true. But the interpretation of U(u) asserts its own

unprovability. Hence, U(u) is not provable. This is a contradiction i.e.

the assumption that U(u) is provable implies U(u) is not provable. Therefore,

by classical logic, U(u) is not provable. Furthermore, this unprovability is exactly
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the interpretation of ¬∃x Prf (x, u, u), so that this formula (i.e. U(u)) is true. So F

(N) is incomplete.

Finally, consider the negation ¬U(u). Since U(u) is true, ¬ U(u) is not true.

Therefore, ¬U(u) is not provable. #

Beyond Computation. Formal Syntax and Informal Interpretation

This theorem has raised questions about differences between the human brain and

machine intelligence, a subject which interested Turing. E. Nagel and J. Newman in

their book Godel’s Proof, N. Y. University Press, 1958, find in this theorem a

rejection of machine intelligence. The physicist Roger Penrose in his 1994 book

Shadows of the Mind conjectures that human consciousness is beyond computation

(as defined and limited by the Church-Turing thesis) and speculates that, by some as

yet unrecognized quantum mechanics processes the brain may be able to perform

non-discrete algorithmic tasks that exceed the capability of Turing machines, such

as establishing the truth of ¬∃x Prf (x, u, u). Ongoing research on quantum

computers (Chap. 14) may be trying inadvertently to exploit this possibility.

The Godel theorem on incompleteness of F(N) ended Hilbert’s formalist pro-

gram. It may be thought to cast some doubt on the adequacy of formal deductive

proofs as implemented and limited by the Church-Turing thesis type of compu-

tations. However, our presentation of the Godel theorem does not force us to such

drastic conclusions. As we presented it, the key to the theorem is in drawing a

careful distinction between the formal syntactic aspects of the logical system F(N),

which can be programmed into Turing machines, and the semantics of F(N), which
we have associated with its interpretation. The interpretation process is not subject
to the Church-Turing thesis. It can possibly be treated as a complicated mapping

from F(N) wff’s onto natural language statements and their subsequent truth

analysis using intuitive number theory N. This mapping has not been restricted to

Church-Turing computability. To completely define the interpretation mapping

would entail some computable constructions which characterize deductive proofs,

as Godel has done, and furthermore satisfy the principle of truth-preservation. But

more is involved. One of the elusive issues in defining the interpretation mapping is

that of specifying the semantics of truth, especially where natural language is

concerned. Natural language can be ambiguous, making truth analysis inexact.

This issue has been studied by linguists and by various schools of logic, especially

the intuitionist school of logic, led by L.E.J. Brouwer who raised questions about

classical logic in his paper The untrustworthines of the principles of logic, 1908,
Tijdschrift voor wijsbegeerte. For example, the intuitionists do not accept the

classical law of the excluded middle which posits that any meaningful statement

P is either true or false, which means that P OR ¬ P is always a true statement.

More precisely, for intuitionists P XOR ¬P is true, where XOR is the exclusive or
connective in which there is no middle true position (i.e. P XOR Q is not true if both

P and Q are true as in the inclusive P OR Q, which is true if both P and Q are true).
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In particular, they do not accept this law for a statement P concerning an infinite set,

which they regard, as Gauss did, as an incomplete entity. See S.C. Kleene, Introduc-

tion toMetamathematics, 1950, van Nostrand, for further discussion of intuitionism.

Although fascinating, we shall not consider these issues further. We shall accept

classical logic in our study of Computer Science and employ classical logic notions

of mathematical truth such as the P OR¬ P law.

Hilbert died in 1943. It is rather ironic and sad to read the inscription on Hilbert’s

tombstone, taken from an address that he delivered upon his retirement in 1930. He

insisted that there are no unsolvable problems in mathematics and science. He said:

Wir mussen wissen (We must know.)

Wir werden wussen (We will know.)

It was only days preceding his address, and unknown to him, that the young Kurt

Godel at a symposium on the foundations of mathematics announced the

Incompleteness Theorem described in this appendix. There are undecidable
statements of conditions which we can never “know” by proving them.

Addendum. Actually, the preceding explanation of Godel’s proof is lengthier than

Godel’s own explanation of his proof. The latter can be read in the English

translation of Godel’s paper by Elliott Mendelson in the book “The Undecidable”,

edited by Martin Davis, Dover Publishing Co, 2004.

Godel sketches the main ideas of his proof at the beginning of his paper before

plunging into the detailed constructions of the various wff’s involved. We quote

some of his original statements with our own added parenthesized remarks. Thus,

“For metamathematical considerations it makes no difference which objects one

takes as primitive symbols. . .we decide to use natural numbers. . .a formula is a

finite sequence of natural numbers . . . and a proof-figure is a finite sequence of

finite sequences of natural numbers. . . the concepts formula, proof-figure [lines of a
proof], provable formula are definable within the [formal] system. . .we obtain an

undecidable proposition A for which neither A nor not-A is provable.” A formula

with exactly one free variable and of the type of the natural numbers will be called a

class-expression, “[these are] ordered in a sequence. . . R(n). . .of class-expressions
and the ordering R can be defined in the formal system.” “let A be a class

expression. . . let {A:n} be the formula which arises by substitution of [the symbol

for] the number n for the free variable. The ternary relation x ¼ {y; z} is definable

in the formal system . . . [z being a variable of type integer, y a variable of type class
expression and x a variable of type wff] . . . Define a set K of natural numbers by

yð Þ n 2 K X :Bew R nð Þ : nf g

where Bew f means f is a provable [Beweissbar in German] formula. Since the

concepts occurring in the definiens [right side of ({)] are all definable in the system,

so also is K . . .i.e. there is a class expression S such that {S:n} intuitively

interpreted says that n belongs to K. . . .S is identical with some R(q) . . . there
is not the slightest difficulty in writing down the formula S.”
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“We now show that the formula {R(q): q} is undecidable. . .. for if it is assumed

to be provable then it would be true. . . [i.e. {S: q} would be true] so that q belongs

to K . . . by ({) ¬ Bew {R(q): q} would hold, contradicting our assumption [that

{R(q): q} is provable]. . . .If the negation ¬ {R(q): q} is provable [second assump-

tion], i.e. [¬ {S: q} is provable, hence true which means that q does not belong to

K], that is, Bew {R(q): q} would be provable [hence true].which is again impossible

[contradicting our second assumption].” “. . .there is a close relationship with the

Liar paradox.” “. . . {R(q):q} says that q belongs to K; i.e. by ({) {R(q):q} is not

provable. Thus, we have a proposition before us which asserts [by its interpretation]

its own unprovability. . .This method of proof can obviously be applied to every

formal system which first possesses sufficient means of expression. . .to define the

[system] concepts (especially the concept provable formula) and secondly in which
every provable formula is true. . . we shall replace the second assumption by a

purely formal and much weaker assumption.”

Appendix 2

The Lambda Calculus

In Chap. 3, we presented Turing’s theory of computation based on his machines

as first introduced in his 1936 paper on the Entscheidungs (Decision) problem.

As noted in several chapters, the Turing machine pioneered many ideas adopted in

modern digital computers and is probably more important for that achievement

rather than its original purpose of proving the unsolvability of the Decision prob-

lem. Recall that Turing’s paper was preceded by a few weeks by a paper by the

American logician Alonzo Church proving the same unsolvability result by a quite

different method called the lambda calculus. In this appendix, we give a short

summary of the lambda calculus. Besides its original purpose of defining an

effective procedure to be used in proving the unsolvability of the Decision problem,

it turns out that many ideas in the lambda calculus correspond to techniques

employed in modern programming languages, for example techniques for

substituting values for variables in procedure calls (See Chap. 4).

As described in Appendix 1, in the early years of the twentieth century there was

a very active development of formal logic. The propositional calculus was a formal

system developed to formalize informal mathematical proofs involving declarative

statements with no variables. The predicate calculus was a formal system developed

to formalize mathematical proofs involving statements containing predicate

expressions, that is, expressions formed with individual variables. These logical

calculi prescribed precisely formulas, called well-formed-formulas (wff’s) to repre-
sent informal mathematical statements used in proofs of theorems and furthermore,

specified precise rules for manipulating wff’s in formal proofs. The lambda calcu-
lus is a formal system devised by Alonzo Church and his Princeton graduate

students S.C.Kleene and J.B. Rosser in the 1930s and 1940s to representmathematical
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functions by wff’s called lambda expressions and to prescribe rules for manipulating

suchwff’s in a manner that corresponds to the various ways functions are manipulated

in calculations found in informal mathematical treatises. The lambda calculus was

supposed to include all effectively calculable functions, that is, all mathematical

functions that could actually be calculated by obviously executable means.

The concept of amathematical function had been in general use bymathematicians

for many years before the 1930s but, surprisingly, without a commonly accepted

notation for functions and without precise rules for manipulating functions in

calculations. Functions were often defined by algebraic formulas, for example by

polynomials in one variable such as x2 + 2x + 1. A typical phrasing could be as

follows: “let f be a function of the variable x defined by f(x) ¼ x2 + 2x + 1”. The

notation “f(x)” was of fairly recent origin. An alternate common phrasing, still in use,

could be: “let f be a function such that f: x ! x2 + 2x + 1”. This suggests that f is

conceived of as amapping from a domain set D into a range set R, stated as f: D ! R,

where x is in D and f(x) is in R. Some texts included heuristic two-dimensional

diagrams depicting areas D and R with arrows on directed paths drawn from D to R

to indicate the direction of the mapping. It was understood that there could only be at

most one directed path emanating from any point x in D and ending at a point y in R.

These informal notations are adequate for functions f of a single variable which has a

well-defined domain D and range R, for example subsets of the real numbers. We can

then think of “applying” f to a value d inD to obtain a value f(d) in R. The procedure of

function applicationwas themain abstract procedure performedwith functions. If f(x)

is defined by an algebraic expression, E say, involving the variable x, then application

is effectively executed by substituting d for x in the expression E and carrying out the

indicated algebraic operations in E. We shall denote this substitution calculation by E

(x ! d) and define the application by

f dð Þ ¼ Eðx! dÞ:

For functions f of two or more variables, the defining expressions are more

complicated and the process of applying f is more complicated. For example, let

f(x, y) ¼ x + y. We can apply f to an ordered pair (2, 3) to get the value f

(2,3) ¼ 2 + 3 ¼ 5, if it is agreed implicitly that the ordering (2, 3) corresponds

to (x, y). However, we can also apply f to (x, 3) to get f(x, 3) ¼ x + 3, which is

another function. So application of a function to arguments can yield other

functions as results. Furthermore, mathematicians of that era were already consid-

ering higher-type functions. For example, for any integrable function f(x) the

integral I(f) ¼ Ð
a
b f(x)dx defines a function I of f which has a real numerical

value I(f). Even more generally, in some mathematical contexts there arise

functions F, called transformations, which map a function f onto another function

g, so that F(f) ¼ g. A formal system which aims to provide a calculus for specifying

and manipulating arbitrary mathematical functions must take the higher-order

functions like F into account. This is the ultimate goal of the lambda calculus.

A concomitant goal of Church was to restrict the manipulations on function wff’s to

be “effective calculations” on symbol strings representing functions, where by
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“effective calculations” he meant such as would be acceptable to the Hilbert

formalist school as parts of a decision procedure. However, he had to be careful

that the restrictions would not limit the class of decision procedures by excluding

some that, although complicated, should be clearly admissible. With the examples

of the propositional and predicate calculus as a guide, Church devised the formal

system called the lambda calculus as a system to provide wff’s to represent

arbitrary mathematical functions and to provide rules for formally manipulating

these wff’s in a manner which corresponded to the way functions are manipulated

in informal procedural mathematics. If the wff’s and rules of the lambda calculus

were properly formulated, then Church hoped and hypothesized that an effectively
calculable function would be one expressible as a wff in the lambda calculus and an

effective procedure acceptable to the Hilbert formalists would be available in the

manipulations of such wff’s. When Turing proved in an appendix to his original

1936 paper that Turing machines and lambda calculus effective procedures are

equivalent in that they yield the same class of procedures this supported Church’s

hypothesis and it became the Church-Turing thesis that all computable functions

are given either by Turing machines or the lambda calculus.

Syntax and Rules of Derivation of the Lambda Calculus

The main ambiguities in traditional function notation were the designation of how

variables are used as symbolic arguments in function expressions E and the rules for

applying a function expression E to actual arguments so as to obtain a function

value. The preceding examples illustrate this ambiguity problem in the simple case

where E is an algebraic formula. It was the main problem addressed by the lambda

calculus. To explain Church’s solution, let us consider the syntax of lambda

calculus wff’s expressing functions. We denote the set of such function wff

expressions by . We define it recursively as follows:

We assume a starting set of symbols called variables, say x, y, z etc..

1. Certainly a variable x is in ^ (These are the simplest function wff’s).

2. To obtain more complex function expressions, say using more variables, we

suppose that E and F are in ^ . Then the application of E to F, denoted by the

concatenation (EF) is also in ^ (Parentheses can be omitted since application is

assumed to be left-associative, so that EFG means (EF)G. Thus, xyz is a wff

involving three variables).

3. Let E be in ^. Let x be a variable. Then the expression (lx.E) is in ^. The operator
l is called the abstraction operator (It serves to designate possible variables x

in E for which substitutions of “values” are to be made in evaluating E. It

makes explicit which variable enters into an application procedure as stated in

the beta-conversion procedure below. The scope of the abstraction operator is

defined to be maximal so that lx.EF means lx. (EF) and not (lx. E)F.

For multivariate functions we use lxlylz E abbreviated as lxyzE. lx.E binds
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the variable x in E. All other variables in E that are not bound by an abstraction are

free with regard to substitution. A variable is bound by its nearest abstraction

operator).

There are two symbol-manipulation rules of the lambda calculus.

Alpha-conversion: change a bound variable x in lx.E to any other variable y to

obtain ly.E as long as y is free, that is, not already bound, in E (This makes clear the

role of bound function variables as place holders).

Beta-conversion (or reduction): Let E and F be lambda expressions in ^. Suppose E

contains the variable x free and F does not. Then lxEF can be converted (reduced)
by substituting F for x in E to get E(x ! F) (This rule formalizes the application of

a function to a specified argument and the evaluation of the result. Its inverse

applied to E(x ! F) yields the abstraction).

As a simple but interesting example, consider lx. x. Which function does it

represent? Just apply it to any expression F and use beta-conversion to get (lx.x)
F ¼ (x ! F) ¼ F. So this represents the identity function.

Example: Suppose that the integers 2 and 7 have been encoded as lambda

expressions (See below). Let the product 2*n also be encoded as a lambda expres-

sion. Then

ln:2�n� �
7 ¼ 2�7 ¼ 14:

This illustrates how symbol manipulation occurs in the lambda calculus formal

system. Since every lambda expression denotes a function, in order to deal with

domains like the integers some lambda expressions must be used to represent

the integers n ¼ 0, 1, 2, . . .. Church suggested that an integer n be represented by

the n-fold composition fn of any function f with itself. Here f2(x) ¼ f(f(x)) and fn

(x) ¼ f(f(. . .f(x)). . .) with n factors f. Also f0 is defined to be the identity function.

Specifically he defined

0 ::¼ lfx:x; 1 ::¼ lfx:fx; 2 ::¼ lfx:f fxð ÞÞ; 3 ::¼ lfx:f f fxð Þð Þ; etc:

Applying these lambda expressions to an expression E which does not contain f

and using beta-conversion, we get 0E ¼ lf.lx.xE ¼ lf.(x ! E) ¼ lf.E ¼ E;

1E ¼ lf. fE ¼ fE ¼ f(E); 2E ¼ lf.f(fE)) ¼ f(fE) etc. as in ordinary composite

function notation. The exponential behavior of n in fn yields the definition of

addition, mPLUSn, namely, fm+n ¼ fm fn. Then multiplication MULT is defined

as repeated addition. Thus, mMULT n means add up n m times. A lambda

expression which abbreviates multiplication is
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To facilitate the use of the rather abstract symbolism in the lambda calculus it is

convenient to introduce other abbreviations. By convention, the following two

abbreviations (known as Church booleans) are used for the boolean values TRUE

and FALSE:

Then, with these two abbreviated l-expressions, we can define some basic logic

operators as follows:

To verify that these expressions yield the usual Boolean values, consider

the Church encoding for pairs, PAIR, which encapsulates the ordered pair (x,y)

and the abbreviations FIRST for the first member x and SECOND for the second

member y of a pair. By beta conversions it can be verified that FIRST returns the

first element of the pair, and SECOND returns the second.

By applying the abbreviated logical operator expressions for AND etc. to the

abbreviation for a (TRUE FALSE) pair the reader can verify that the logical

operators satisfy the usual truth tables. Thus, for example, by beta conversion,

For numerical functions, the following expression defines the predicate

ISZERO. Just apply it to any integer n as defined above to verify that ISZERO n

is TRUE for n ¼ 0 and FALSE for nonzero n.

By setting up such abbreviations for familiar mathematical and logical constructs,

one can become familiar with the use of the lambda calculus as a formal system for

manipulating the usual mathematical and logical functions and apply it to the decision

problemwhich dealswith proofs in predicate calculus. Rather than pursue this strategy

further to obtain Church’s unsolvability result, we shall now consider other concepts

of the lambda calculus which have been important for programming languages.
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A structure that is useful in computer programming is the linked list or

simply list. A list of elements (such as integers) can be defined as either NIL for

the empty list, or the PAIR of an element and a smaller list. The predicate

NULL tests for the value NIL.

Another computer programming structure is the procedure abstraction which

serves as a subroutine in procedural languages like Fortran, C and C++. As noted in

Chap. 4, Turing’s 1936 paper introduced subroutines as separate program sections P

outside the main program having identifying names, such as P(x, y), where x and y

are variables in statements in the defining body of P(x,y). The variables serve as

parameters to be replaced by expressions u and v designated in a call statement,

having the format P(u, v), at some point in the main program. The semantics of a

call can be defined in the lambda calculus in terms of abstract function application,

that is, as an application of P(x,y) to (u,v). We mentioned two possible useful cases

of u and v, namely, as data values in a call-by-value and as addresses in a call-by-
name. Other cases are possible. To define them formally, Church defines a predicate

which determines whether a given lambda expression has a normal form. A normal

form is an equivalent expression which cannot be reduced any further under the

rules imposed by the form. Then he assumes that this predicate is computable, and

can hence be expressed in lambda calculus. The term “redex” stands for an

expression reducible by alpha or beta conversion. The latter may involve different

orders of application. The lambda calculus considers various orders which have

analogs in programming language when considering procedure bodies and proce-

dure calls. For example, a procedure body P(x,y) can contain calls to other

procedures Q(x, y). What substitutions should be done in such a call to Q(x, y) to

execute a call P(u, v)? The lambda calculus offers several possible orders.

Applicative order

The leftmost, innermost redex is always reduced first. Intuitively this means

a function’s arguments are always reduced before the function itself. Applicative
order always attempts to apply functions to normal forms, even when this is

not possible.

Most programming languages (including Lisp and C and Java) are described as

“strict”, meaning that functions applied to non-normalising arguments are non-

normalising. This is done essentially using applicative order in a call-by-value

reduction (see below), usually called “eager evaluation”.

Normal order

The leftmost, outermost redex is always reduced first. That is, whenever possible

the arguments are substituted into the body of an abstraction before the arguments

are reduced.

Call by name

As in normal order, but no reductions are performed inside abstractions.

For example lx.(lx.x)x is in normal form according to this strategy, although

it contains the redex (lx.x)x.
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Call by value

Only the outermost redexes are reduced: a redex is reduced only when its right hand

side has reduced to a value (variable or lambda abstraction).

As pointed out by Peter Landin’s 1965 paper “ACorrespondence betweenALGOL

60 and Church’s Lambda-notation”, Commun. ACM 8, 89–101, 158–165, sequential
procedural programming languages can be defined in terms of the lambda calculus,

using the basic mechanisms for procedural abstraction and procedure (subprogram)

application as enumerated above.

Turing’s Proof of the Unsolvability of the Decision Problem

Since we have not presented Church’s lambda calculus proof of the unsolvability

of the decision problem for predicate calculus, we shall give a very brief outline

of Turing’s machine-oriented proof. Turing follows Godel in setting up numerical

codes for arbitrary Turing machine programs and their states and numerical

functions for state transitions. The code or description number for M is computed

from its program and is denoted by SD(M) (See Chap. 3). Conversely, given SD(M)

one can reconstruct the program for M. He then constructs a predicate calculus wff

U(SD(M)) for an arbitrary machine M that contains SD(M) as a subterm and which

can be interpreted as asserting informally that there exists a configuration state q of

M and a tape square n which contains the integer 0 when M is in state q. Formula U

is built from several predicate wff’s which formalize how the program for machine

M causes M to execute its computation steps. Thus, Turing arithmetizes his

machines M and their computations.

He uses a formula for the integer successor function, SUCC(n,m), (interpreted as

asserting that m ¼ n + 1) and the predicate formula INT(n) which is interpreted as

true whenever n is an integer. Then he defines SD(M) by Godel’s technique of

assigning integer values to the symbols in the program of instructions for machine

M. He constructs a predicate K(q, s) which asserts that q is the internal configura-

tion of M when the total state of M is s. This is a straightforward coding calculation

from s. The predicate I(s, k) is true if in state s the tape square k is scanned. This is

again obtained from the definition of state s. The formula F(s, t) is interpreted as

true if state t is a possible successor of state s according to the program for M.

Finally, the predicate R(s, k, x) is true if for state s the scanned square is number k

and contains the character x. Again this predicate can be constructed from the

definition of the state of M as explained in Chap. 2. The wff U is a rather long wff

which uses the above predicates and functions. We break it up into four lines as

follows:

(∃n)[INT(n) & D(m) (INT(m) ! ∃yF(m,y))

&DvDz(F(v,z) ! INT(v)&INT(z)&DmR(n, m, w)

&I(n,n)&K(q,n)&SD(M)]

!∃s∃m(INT(s)&INT(m)&R(s, m, 0).
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The fourth line carries the main interpretation of U. It states that there exists

a state numbered s of M in which the scanned square is numbered m and contains

the character 0. The first three lines assert that there is a number n (zero) which

is the number of the first state and the first scanned square and further for each

state m there is a successor state y.

Turing first proves (see Chap. 3) that there is no machine which can determine

whether any machine M is circle-free and consequently whether M ever prints 0.

He then establishes two Lemmas that U(SD(M)) is provable if and only if the

character 0 appears on the tape of M in some state s. Next he assumes the Decision

problem is solvable by some Decision machine TD. This means that TD can decide

whether any wff, in particular any wff like U(SD(M)) for any M, is provable. But by

the Lemmas, TD can then decide whether 0 appears on the tape of M. So TD can

decide whether any M ever prints 0. But he has already shown that there is no such

machine procedure. It follows that that there is no such machine TD. This

contradicts the assumed existence of TD. So the Decision problem is unsolvable.
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Chapter 4

The Software Side of Computer

Science – Computer Programming

Edward K. Blum and Walter Savitch

Still following Turing’s fundamental conception of Computation as having two

indissoluble complementary sides, namely, hardware and what we now call soft-
ware, as implied by the ideas in his groundbreaking 1936 paper and other papers, in

this Chap. 4 we give a description of the Software side of Computer Science. We

present the hardware side in the next chapter. We choose this ordering of presenting

the two sides because, as we shall explain in the next chapter, the conception and

design of a new computer begins mainly with considerations of its software as

defining its major functions and then continues with the hardware elements

providing the physical devices to implement these functions.

For the software side, we focus on computer programming, the subject that deals
with programming languages, the languages used to specify computations.

A comprehensive exposition of this subject could easily fill a lengthy book. Indeed

there are several books which cover the details of specific computer programming

languages. We shall discuss the example of the Fortran language below so that the

reader will have some familiarity with high-level programming. In this Chapter, we

do not attempt a complete coverage of Fortran or any programming language and

intentionally omit most of the syntactic aspects of such languages. Here, we shall

mainly discuss the semantics of programming languages, that is, the meanings of

the main language constructs that have been used traditionally in most program-

ming languages and in fact are in current use. However, for completeness, key

aspects of the syntax of programming languages are discussed briefly in the

Appendix to this chapter in connection with a syntax specification technique called

BNF notation.
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Strictly speaking, the Software side overlaps what is now called Theoretical
Computer Science, which we regard as the Heart of Computer Science, and which

we have already presented in Chap. 3 and Appendix G of Chap. 3 (e.g. Computability,

Undecidability and Unsolvability). These theory topics are fundamental to both the

Hardware and Software sides of Computer Science, and were shown to determine

the boundaries of what is possible on both sides. Logically, it was reasonable to treat

these computer science theory topics first so as to understand the limits of the twomain

sides. Other parts of Theoretical Computer Science (e.g. complexity theory, data base

theory, parallel-distributed computing, etc.), will be presented in later Chapters after

we have laid out the constituents of the Hardware and Software sides and thereby

obtained a perspective of these basic interrelated constituents which form the edifice

of the whole subject. On the Software side, clearly programming languages are a basic

constituent. Therefore, we now proceed to consider the computer programming

elements of the Software side.

As we have shown in Chap. 3, in his 1936 paper Turing devotes considerable

space to explaining the syntactic structure of his machines’ instructions. These

instructions are the basic statements in programs for Turing machines. Indeed, they

formally define the machines and specify how they compute, along with some

informal natural language specifications. However, many variants of the syntactic

details are clearly possible. What really matters is that the instructions are available

to a computer user to specify the semantics of Turing machines; i.e. how a machine

executes simple basic operations on the machine’s tape. (In a later paper, E. L. Post

simplified the basic operations further.) Turing also discusses the effect of

executing in sequence a finite list of instructions which are to implement a particu-

lar machine, for example an adding machine to add any two integers. Such a finite

list of instructions is an early example of what we now call a computer program.
Furthermore, to prove his paper’s main result (that Hilbert’s decision problem is

unsolvable) he invents a universal machine. A universal Turing machine is a major

original idea (in those early days of 1936) of a machine that can have access on

its tape to the programs which specify other machines, such as an adding machine.

By “reading” a particular machine’s program stored on its own tape, a universal

machine can execute that particular machine’s computation. Thus, a universal

Turing machine is the first general example of a stored-program computer.

Babbage’s analytic engine design also suggested that programs be stored in mem-

ory along with data, but did not exploit the idea. Execution of stored programs is the

most powerful capability of the real computers treated in Chap. 5 and of all modern

digital computers. (The meaning of the term digital will be made clear in the

hardware chapter. Essentially, it connotes that the data is in digital format

represented by discrete characters such as the digits 0,1,..,9, and letters A. . .Z.)
The stored-program concept is what makes Computer Science an inseparable union

of its Hardware and Software Sides.

Furthermore, in his software development, Turing attempts to simplify the

description of the subtle and complex program sections that make up his universal

machine U. Turing invents schematic programs which employ parameters

represented by variables. These program schemes perform certain useful functions
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on their variables and can be called on by statements in the main program for U, the

syntax of which allows subroutine calls as well as the simple basic quadruple

instruction statements. In effect, these program schemes were the first subroutines
in the Software history of Computer Science. Much effort has been expended on the

syntax and semantics of subroutines in later research on computer programming.

To describe this research, it is useful to do a short review of some of the major steps

in the evolution of programming as a computational activity. We shall skip the early

ideas of LadyAda in programming the Babbage analytic engine referred to in Chap. 2.

We jump to the 1940s and thereafter and summarize some well-known steps in the

later evolution of programming concepts and languages.

Relay calculators such as the CPC (Card Programmed Calculator) were

programmed in algebraic notation, allowing formulas such as A + B to be punched

on cards, which cards were read by a card reader machine so that the punched out

holes allowed electrical actuation of relays to cause execution of the + operation.

Similarly, formulas were used to program the earlier electromechanical desk

calculators (e.g. the Marchant calculators) which allowed (required) human users

to punch a key for +. Of course, the numerical data values of A and B had to be input

directly as calculator punched code or assigned previously on other cards in the

CPC. These data values were stored in registers suitably addressed for identification

of variables like A and B.

With the advent of electronic computers such as those to be described in Chap. 5,

employing electronic memories with many addressed cells to store data values of

variables like A and B, such variables came to be regarded as the addresses of the
memory cell locations. Various experiments with computer hardware instruction

formats investigated single-address, two-address and even three-address instruc-

tions. These formats were reflected in a low-level programming assembly language
of statements (such as C ¼ A + B for a three-address instruction) which could be

written by a programmer and input to and read directly by the hardware and

executed by the machine as explained in Chap. 5. However, it soon became evident

that there were many problems with such a low-level assembly programming
language for even simple computations. By forcing the human programmer to

stay close to the low machine-level operations on addresses, assembly language

programming was much too involved in machine-oriented details having to do with

memory organization that were far removed from the mathematical formulas which

originally defined the computation. Writing assembly language programs was a

painfully slow process and subject to many errors. What was needed by human

programmers was a higher–level language, that is, one closer to mathematical

language, on a level above the machine level, which could be written more easily

by the programmer familiar with the mathematical formulation of the computation.

These higher-level language statements could then be translated (or as we now say

compiled) by a computer into an assembly-like language for communication with

the hardware. This led to much research and development of the structure of

programming languages and such tools as compilers, the programs which compile
mathematical language programs into machine assembly language.
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For scientific computation problems, the Fortran language promoted by IBM

(with project leader John Backus) became the higher-level language of choice in the

1950–1960s. For business applications, the COBOL language became the language

of choice. Fortran went through several improved versions over the years. At about

the same time, the high-level Algol language was promoted by the international

programming community.

Just as Alan Turing can be regarded as the father of much of today’s Computer

Science, so can John Backus be regarded not just as the father of Fortran, which

indeed he was, but also as the father of many of today’s computer programming

features. Since the state of the Computer Science “Union” is as much about the

scientists who developed it as about the subject itself, it is appropriate and infor-

mative to give at this point a short biography of Backus. Much of the information

recorded here is drawn from the Backus obituaries which appeared in the IEEE

Spectrum issue, March 20, 2007 and in the N.Y. Times, March 19, 2007. However,

the author of this Chapter had the privilege of knowing Backus personally and

could not refrain from injecting some personal observations. The author met

Backus when both were students studying mathematics at Columbia University in

the early 1950s. As far as is known, neither had any overt interest in computers or

computation. Computers were then a new phenomenon, but IBM maintained a

computer lab not far off campus and legend has it that Backus, out of curiosity,

found his way to that lab and eventually to a position at IBM, where he remained all

his working life. Their paths crossed in later years on many happy occasions at

conferences while the author was Secretary of IFIP Working Group 2.2 (Formal

Description of Programming Concepts) and Backus was an active member.

John W. Backus was born in 1924 and died in 2007 at his home in Ashland, Ore.

He was 82. His daughter Karen Backus announced the death, saying the family did

not know the cause. Backus assembled and led the I.B.M. team that created Fortran,

the first widely used high-level programming language. It was released to the public

in 1957, which event many consider to be a giant step forward in the history of

computer software comparable to the giant step forward in hardware development

that occurred when the micro- processor chip was introduced. Fortran changed the

mode of communication between humans and computers, moving it up several

levels above machine level by providing a language that is more comprehensible by

humans and fairly free of machine-oriented language constructs. Fortran is consid-

ered the first successful high-level language. Backus and his team, then all in their

1920s and 1930s, devised the Fortran programming language as a combination of

English shorthand and algebraic expressions. Ken Thompson, who developed the

Unix operating system at Bell Labs in 1969, observed that “95% of the people

who programmed in the early years would never have done it without Fortran.”

He added: “It was a massive step forward.”

Backus realized that to be successful in practice Fortran programs had to be

efficient in execution, running as fast as assembly language programs hand-coded

by expert programmers who worked with machine-oriented assembly languages.

Adequate efficiency was achieved by the excellent design of Fortran compilers,
programs which translated Fortran programs into executable machine-compatible

assembly language programs.
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Backus grew up in an affluent family in Wilmington, Del., the son of a stock-

broker. In a series of interviews in 2000 and 2001 in San Francisco, where he lived

at the time, Backus recalled that his family had sent him to an exclusive private high

school, the Hill School in Pennsylvania. “The delight of that place was all the rules

you could break,” he recalled. After flunking out of the University of Virginia,

Backus was drafted in 1943. His scores on Army aptitude tests were so high that he

was assigned to training programs at three universities, for studies ranging from

engineering to medicine. After the war, Backus became a student at Columbia

University in mathematics, receiving his master’s degree in 1950. Shortly before he

graduated, Backus wandered by the I.B.M. office in New York, where one of its

electronic calculators was on display. When a tour guide inquired, Backus men-

tioned that he was a graduate student in math; he was taken upstairs and asked a

series of questions which he described as math “brain teasers.” He was hired on the

spot. ” “As what?” someone asked. “As a programmer,” Backus replied. “That was

the way it was done in those days.” The first written reference to “software” as

something distinct from hardware probably did not come until 1958.

In 1953, frustrated by his experience with low-level programming, described as

“hand-to-hand combat with the machine,” Backus decided that he would like to do

research to simplify programming. He wrote a brief note to his IBM superior,

asking to be allowed to head a research team with that goal. “I figured there had

to be a better way,” he said. Backus got approval and began hiring until the team

reached 10 individuals. It included a crystallographer, a cryptographer, a chess

wizard, an employee on loan from United Aircraft, a researcher from the

Massachusetts Institute of Technology and a young woman who joined the project

straight out of Vassar College. “They took anyone who seemed to have an aptitude

for problem-solving skills – bridge players, chess players, even women,” said Lois

Haibt, the Vassar graduate. Backus, colleagues said, managed the research team

with a light hand. The hours were long but informal. Snowball fights relieved

lengthy days of work in winter. I.B.M. had a system of rigid yearly performance

reviews, which Backus deemed ill-suited for his programmers, and so he ignored it.

“We were the hackers of those days,” Richard Goldberg, a member of the Fortran

team, recalled in an interview in 2000.

As part of his broader interest in programming languages, Backus developed,

with Peter Naur, a Danish computer scientist, a notation for describing the syntactic

structure of programming languages. It became known as Backus-Naur form or

BNF and was a standard tool for specifying the syntax of programming languages.

(See the Appendix on BNF below.)

Later, Backus worked in an area called functional programming. That effort,
Backus said, was to develop a system of programming that would focus even more

on describing the problem a person wanted the computer to solve and still less on

giving the computer step-by-step instructions. However, it would seem that some

elements of machine-like instructions are necessary for a practical programming

language. How did Backus’s team develop and improve Fortran? Innovation,

Backus said, was a constant process of trial and error. “You need the willingness

to fail all the time,” he said. “You have to generate many ideas and then you have to

work very hard only to discover that they don’t work. And you keep doing that over
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and over until you find one that does work.” Backus once said: “Much of my work

has come from being lazy. I didn’t like writing programs, and so, when I was

working on the IBM 701 writing programs for computing missile trajectories,

I started work on a programming system to make it easier to write programs.”

Backus and his colleagues, over several decades, updated Fortran on numerous

occasions. Improvements included the addition of support for processing of char-

acter-based data, array programming, module-based and object-based program-

ming, and object-oriented and generic programming. A recent edition of the

language, Fortran 2003, is a major revision that introduces many new features.

The legacy of Fortran is far reaching. Even today, half a century later, floating-point

benchmark programs to gauge the performance of new computer hardware are still

written in Fortran. This implies that the new computers had Fortran compilers.

Backus spent his entire career at IBM. In 1987, the company named him an IBM

Fellow. In addition to the prestigious McDowell Award, he was recognized by: the

National Science Foundation (on behalf of the U.S. Congress) with the Presidential

Medal of Science in 1975; the Association for Computing Machinery with the A.M.

Turing Award in 1977; and the National Academy of Engineering with the Charles

Stark Draper Prize in 1993.

Appendix: The BNF Notation, Syntax of Programming

Languages

As stated earlier in this Chapter, we wish to de-emphasize the discussion of the

syntax of programming languages. However, we cannot ignore it entirely. We now

discuss syntax by explaining the BNF notation. BNF is so widely used in specifying

the syntax of programming languages that we must at least devote this short

Appendix to it. Furthermore, it is close to the grammars used in formal language

theory to specify context-free languages. Formal language theory is a traditional

important part of Theoretical Computer Science and is not covered in this book, but

from the following brief account of BNF the reader can gain some insight into the

ideas and methods treated in that theory.

BNF is an acronym for “Backus Naur Form”. Backus and Peter Naur introduced

for the first time a formal notation to describe the syntax of a given language. This

was for the description of the ALGOL60 programming language. It seems that most

of BNF was introduced by Backus in a report presented at an earlier UNESCO

conference on ALGOL 58. Few read the report, but when Peter Naur read it he was

surprised at some of the differences he found between his and Backus’s interpreta-

tion of ALGOL 58. He decided that for the successor ALGOL 60, the syntax should

be given by a precise formal method so that all participants in future meetings on

ALGOL 60 would be aware of what changes they were agreeing to. He made a

few modifications and drew up on his own the BNF grammar for ALGOL 60.

So BNF was introduced by Backus in 1959 and by Naur in 1960. (For more details,

see the introduction to Backus’ Turing award article in Communications of the

ACM, Vol. 21, No. 8, August 1977.)
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Since 1960, almost all books on particular programming languages use BNF to

specify the syntax of the languages. We give an outline of BNF notation and some

examples of its use.

There are three mainmetasymbols used in statements in BNF as follows: ::¼ |<>

::¼means “is defined as” in the statement of a grammatical rule, called a production.
| means “or”

< > angle brackets are used to surround syntactic category names.

The angle brackets distinguish syntax class names (also called non-terminal
symbols) from terminal symbols which are written exactly as they are to be

represented in the language.

A grammar for a language consists of productions, also called rules, which
display the linear format of a syntactic class. For example, a BNF rule defining a

nonterminal has the following format:

<nonterminal> ::¼ sequence_of_alternatives, each alterna-

tive consisting of strings of terminals or nonterminals,

alternatives are separated by the meta-symbol |

As another example, the BNF production for a program in some example

mini-language is

This displays that in the mini-language, a program consists of

the terminal keyword “program” followed by a declaration

sequence, then the keyword “begin” and a statement sequence,

finally the keyword “end” and a semicolon.

This contrived example language program is not too far from real languages.

Optional items in BNF definitions are enclosed in square brackets meta symbols

[and], for example:

Thus the else clause in an if-then-else _statement is optional. The semantics of

this standard statement found in most programming languages is clear. It specifies

a branch point in the list of program statements. The Boolean _expression is

evaluated and if the value is True, then the first statement _sequence is executed.

If the value is False, then the first statement _sequence is skipped and the branch
given by the statement _sequence following the else is executed. The program then

4 The Software Side of Computer Science – Computer Programming 59



continues with statements after the if-then-else statement. Repetitive items (zero or

more times) are enclosed in metasymbols braces { and },for example:

This rule specifies that an identifier (usually used as a program variable) is a

letter followed by zero or more letters or digits; e.g. x, x1, y, xy, z21. This rule is

equivalent to the recursive rule

Terminals of only one character are surrounded by quotes (") to distinguish them

from meta-symbols, for example,

defining a sequence of statements as being separated by semi-colons.

In recent text books, terminal and non-terminal symbols are distinguished by

using bold faces for terminals and suppressing < and > around non-terminals.

This improves the readability. The preceding example then becomes:

One of themost important statements besides the conditional if-then-else statement

in Fortran and many other programming languages is the assignment statement which

assigns a new value to a variable. The variable is on the left side of an ¼ sign and can

be a simple identifier like X (see below) or have a more complex structure, say X(i, j),

denoting an array entry. The new value, written on the right side of the ¼ sign, is

defined by an expression (see below) specifying a numerical evaluation based on

previously computed values such as (A + B) or a Boolean evaluation like A OR B,

where A and B have been previously assigned values. Thus, in BNF,

Now as a last example here is the definition of a BNF grammar expressed in BNF:
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BNF is not only used to state syntax rules but it is commonly used (with variants)

by syntactic tools. See for example LEX and YACC, the standard UNIX parser
generators. If you have access to any Unix machine, you will find there a descrip-

tion of these tools. (Also see the Johnson reference below.)

Other Programming Languages

Many other programming languages were developed after the pioneering Fortran.

The International Federation of Information Processing (IFIP) organized various

working groups to investigate many software topics. (See the Appendix below for a

list of some well-known languages developed after Fortran.) For example, IFIP

Working Group 2.1 fostered research on the Algol language as a sequel to Fortran,

but IBM managed to keep Fortran at the forefront of popular usage until the C and

C++ languages were developed at Bell Labs. (See Appendix below.) With its well-

conceived combination of machine-like and mathematical statements, C and then

C++ became the language of choice. C introduced programming constructs like

pointers, which are variables which have memory location values that can be

manipulated to construct memory structures like the linked lists made popular in

the LISP language (project leader John McCarthy) which was employed by

researchers in artificial intelligence, which incidentally was a research topic of

interest to Turing, who raised the question “Can machines think?”. He wrote a

paper on it and formulated the Turing Test which a computer must pass to be judged

as a successful thinking mechanism. Other related research, on brain modeling, was

done at M.I. T. by the neurophysiologist Warren McCullough and his mathemati-

cian co-worker Walter Pitts. McCullough and Pitts used Boolean algebra in their

conceptual models of neurons and neural networks. This idea was actually

implemented in a machine called a Perceptron by Frank Rosenblatt, but with

limited success. The human brain still defies any computer-based modeling to

explain its complex behavior. Recall Chap. 3 and our remarks on the Church-

Turing thesis. Also see chap. 14 on quantum computing.

C++. This is a language which employs many of the basic Fortran statements

such as assignments, if-then-else statements etc. Like C, it also employs machine-

oriented constructs like pointers. However, C++ and the related JAVA language

take a radical departure in viewpoint called object-oriented programming (OOP).

OOP introduces the concept of a class. A class can be viewed, by using earlier

research concepts, as an abstract data type, that is, as an algebraic structure

consisting of abstract elements called objects and operations on objects. In

JAVA, the operations are called methods. (We shall not take the space to elaborate

on the classes on which OOP is founded. As a reference we cite the book “JAVAAn

Introduction to Computer Science & Programming- second edition” by Walter

Savitch, Prentice Hall 2001.)
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Parallel Computing Languages

As parallel computers came into use, especially by the military, a new set of

programming constructs was needed to specify parallel computations. In the

1970s the U.S. military sponsored the design and development of a new language

called Ada, which incorporated new constructs for specifying parallel computation.
However, Ada was never widely adopted outside the military. Instead, cluster
computing (on networked clusters of PC’s) became the paradigm for parallel

distributed computing and a new standard of programming constructs (called MPI

for Message Passing Interface) was specified by committee. See Chap. 7 on High

Performance Computing and Communications (HPCC).

Object oriented languages (e.g. C++ and Simula) and network languages

(JAVA) are more recent developments. There are several textbooks on C++, for

example the books “Problem Solving with C++ The Object of Programming” by

Walter Savitch, Addison-Wesley Pub. Co., Reading, Mass., 1996 and “C++ in Plain

English” by Brian Overland, Henry Holt Co., N.Y. 1996. As noted above, like

Fortran and other high-level languages, C and its successor C++ still provide the

basic assignment statement to assign values to variables. Thus, in BNF,

For example, X ¼ a + b; assigns the value of the sum a + b to X. The equal sign

does not mean “equal” as in mathematical equations. Rather X ¼ should be read as

“assign value to X”, (or “store value in X”) where X denotes a storage location in

computer memory declared by a previous declaration statement about the identifier

X. So one can legally write X ¼ X + 1 to cause the value in X to be incremented

by 1 and stored back in X. Most major steps in a computation are specified by

assignment statements. The steps are executed in a linear sequence path as given by

the order of the list of statements in a program, as in a Turing machine program.

A two-way branch in the sequential path is specified by the conditional if-then -else

statement mentioned earlier. This is a key statement in all modern programming

languages and presumes that the hardware Control unit can execute a two-way

branch in the sequential execution path. (See next Chapter.) Further control of
execution steps is afforded by iterative loop statements of the form

where the statement _sequence is executed repeatedly as long as the Boolean

condition is evaluated as True. This is a variation of Fortran’s iterative control

statement

where loop is a statement_sequence to be executed repeatedly as long as the

boolean formula is True. The daring Fortran pioneers also used GoTo statements
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that allowed arbitrary jumps to labeled statements almost anywhere in the program.

This was a source of many errors in sequence control specification and was

eventually abolished. A restricted but sufficient control method using if.-then-else

for branching and while statements for loops led to a style called structured
programming.

Subroutines

As in Fortran and in Turing machines, C++ uses subroutines to allow the programmer

to define functions that will be called (i.e. evaluated) at several places in the program
with different values of parameters as arguments simply by stating the name of the

subroutine with appropriate values for the subroutine parameters. Subroutine

parameters are of two kinds, call-by-value with the usual obvious meaning of

substituting a data value given in a call statement for the subroutine parameter and

call-by-reference which substitutes a variable given in the call statement for the

parameter, thus allowing the value of that variable to be changed by the subroutine

execution. Further, by defining a function using procedural abstraction a programmer

need only write comments outside the body of the function definition (called a

procedure) that specify the required types of the parameters prior to a call to

the procedure and specify the type of the value computed. These specifications are

placed in a procedure declaration called a prototype at the “front end” of a program.

The procedure definitions are usually placed at the back end of the program. The

philosophy of procedural abstraction is extended in C++ to allow the definition of

the aforementioned abstract data typeswhich can be thought of mathematically as an

algebra of objects and functions (i. operations) on the objects. An object is (represented
by) a variable used in the function definition. An abstract data type is called a class.
As noted above, programming with objects and classes is called object-oriented
programming and is a powerful technique.

A class is defined using a class declaration. As an example we use the DayofYear

class given in the Savitch book (page 292). It has one function called output which
has no arguments and simply outputs a month and day to the monitor screen. When

accessed by a call to its function output, this class produces a specified dialog

between the programmer and the monitor screen using the built-in C++ stream

functions cout to send out messages to the screen and cin to input values from

the screen as typed by the programmer. The C data structures (structs) declared as

the identifiers today and birthday (these structs declarations not shown here) are

used to store day and month values. A struct consists of one or more fields of data
separated by dots. The class function output, defined below, is then applied to the

structs today and birthday (using the dot notation) to print the month and day fields

of today and birthday to the screen. Note that the integer variables month and day
are the specified objects operated on by output.
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A Footnote

On the software side, there have been many interesting and notable programming

languages besides the main ones described above (Fortran, C, C++, and Java), but

space limits do not permit us to discuss them. Below we give an incomplete list of

notable languages and their main developers and approximate dates of usage, as

presented in the reference cited.

A List of Notable Programming Languages

1. Fortran John Backus, 1954

2. Lisp, John McCarthy, 1958

3. Algol 60, 1960

4. Cobol, 1960

5. Pascal, Ncholas Wirth, 1968

6. C Dennis Ritchie, 1968

7. Simula-67 O-J Dahl and K. Nygaard, 1967

8. Smalltalk, Xerox PARC, 1970’s
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9. CLU, 1970’s

10. C++, 1980’s

11. JAVA, 1990’s

Appendix: Java Applets, HTML and the Web

The Java programming language is similar to C++ but includes special features

which allow it to be used to write programs that can be run by accessing a document

that is a webpage on a website on the WorldWideWeb (the “web”). As explained

earlier, webpages are documents, treated as information resources, situated at

websites having addresses (URL’s) which locate them on the Internet. Websites

are accessible by using a program called a web browser, such as Microsoft’s

Internet Explorer or Apple’s Safari for example. These browsers use the HTTP

protocol.

A web page document is written in the HTML language. A Java program can be

embedded in an HTML web document and is called an applet. In this brief chapter,
we sketch the HTML language and give an example of an applet to illustrate how

webpages can provide a vast library of resources, both data and application

programs (applets), of different types that can be utilized by computers and cell

phones worldwide. Readers who have already used smart phones or laptop

computers to access the web have experienced directly how this kind of computer

networking activity has revolutionized human life on technical levels (e.g. applets)

as expected, but also on social levels (for example, the websites Facebook and

Twitter).

The following short account of web usage is based on Chap. 13 in the book

“Java, an Introduction to Computer Science and Programming-second edition”

by Walter Savitch, Prentice Hall 2001, where the reader can find further details.

We begin with a description of HTML.

HTML

The HT stands for “Hypertext”, which connotes a higher form of text that provides

codemarks which are used to edit or “markup” (the M) ordinary text, for example,

codemarks to specify headings, paragraph beginnings, etc. in ordinary text as would

be marked by a traditional copy editor of the webpage document. But there are also

some unusual special codemarks with associated text that cause connections or

links to be made to another webpage when activated by clicking on the associated

text with a mouse. (See below.) HTML statements are in the form of commands

having a well-defined syntax. A web browser can read an HTML command by
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parsing the syntactic structure. Most HTML commands have the following

structure:

For example, to make the text “My Home Page” a largest heading the HTML

command is as follows:

For a smaller heading the command name is H2 and so on. Some statements do

not require a closing name. For example,

denotes a break or new line for text and <P> text denotes a new paragraph. Note

that HTML is not case sensitive.

To form page layouts to be read and displayed by a browser there are commands

to the browser like <center> text </center> that cause the text to be centered on

the webpage when displayed. HTML can manipulate files created with any text

editor but the filename must end with. html. Explanatory comments can be inserted

in an HTML document by the notation <! - -Comment text-for-comment - ->.

The beginning of an HTML document is denoted by <HTML> and the end by

</HTML>.

The main part of a webpage document is called the body and is enclosed in two

markups <BODY> and </BODY>. A second optional part is the email address

of the document “owner” (or maintainer) and is marked off by <ADDRESS> and

</ADDRESS>. These and other markup commands specify the content and the

format of the display of a webpage by a browser.

To insert a picture (e.g. a photo or other image) in an HTML document the

following command is used:

where file-with-picture is a path to the picture file. For example, suppose the picture

is in the file ~ picture.gif in the directory ~ images which is a subdirectory of the

directory where the HTML page is. The following command will insert the picture

in the page:

Now, the power of the web is based on the ease with which the web can be

browsed or “surfed”, that is, the ease with which different websites can be succes-

sively accessed. This facility is provided by the HTML link (or hyperlink) active
command mentioned above. Its syntax is as follows:
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For example, a link to Savitch’s home page would be given as

A link can be inserted anywhere in the document and the text -to-click-on part

will be underlined in the browser display. If the person browsing the page document

clicks on the underlined text, the browser will automatically access and display the

webpage given by the path- to- document part (the URL). In this example, a click on

the underlined text Walter Savitch in the browser display window will activate

access to and local display of Savitch’s remote home page at UCSD in La Jolla

California. This action is implemented by the program HTTP, which determines an

Internet network transmission path from the current website node to the website

node specified by the URL in the link and automatically (without further user

action) accesses the latter, displaying its webpage.

Applets

Applets are relatively small Java programs that can be embedded in an HTML

document for general use. To give even a simple example of an applet embedded

in an HTML document requires that the reader knows some details about the Java

language or about C++. In particular, the reader must understand the basic ideas of

the concept of classes in these languages. We refer to the above- named book by

Savitch for definitions of classes. Also see Chap. 4 above. Here we shall simplify and

just say that a class is what was formerly called a data type, that is, it consists of
elements called objects and operations (calledmethods) that can be performed on the

objects. For example, the built-in class int consists of the integers and includes the

familiar methods (operations) add and multiply. Classes can be defined by the

programmer in very general terms. Also, a class to be defined can refer to another

one that is already defined and be a descendant of it, availing itself of all the methods

already defined in the parent class, a powerful way to build up complex classes.

From the Savitch book we borrow the following example of an applet as a class

which defines an old-style adder machine which is used to add up a column of

numbers. The adder is programmed by a GUI program as a class to be displayed by

the web document in which it is embedded in the user-friendly shape of a box or

“panel” looking like an actual adder machine and consisting of (1) an inputoutput

“field” for inputting user numbers, (2) a small area shaped as a user “button” for

“add” to activate the additions of the succession of numbers entered in the

inputoutput field and (3) another “button” to “reset” the sum to zero. The GUI

panel is formed by the HTML document which is being viewed by the user. Most of

the Java applet consists of Java formatting statements to shape the GUI panel and

define its user buttons. (See the Savitch book.) We shall omit these Java statements

and give only the part of the applet which specifies the addition of the numbers,

which must be converted from strings to numbers and back.
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First, there is an applet class declaration statement such as public class

Adderapplet extends Japplet

This is followed by statements defining the GUI panel and then by the following

statements defining the main operations (methods) of the class:

We have made use of the built-in class operation get and the class dot notation

for applying class functions (the e in this example).

Now to place this applet in an HTML document we use the HTML command

A web user can access and use this adder applet by browsing to the web page in

which it is embedded. The user then inserts numbers in the input field and presses

the add button by clicking on it (like an ordinary physical adding machine).

Although elementary in concept, this example illustrates the power of web

resources.
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Chapter 5

The Hardware Side

Edward K. Blum

Chapter 2, which traced a brief history of computation, included a short survey of

early computer hardware devices invented by Leibniz, Pascal and Babbage. These

early brave attempts to expedite computation by means of machines were hampered

by their forced reliance on the only available technology of their eras, the mechan-

ics of gears and wheels. We shall regard the Pascal and Leibniz machines as

interesting museum pieces. Only Babbage’s nineteenth century computer, called

the analytical engine, had design features, such as programmability and punched

card input of data and programs, that influenced the design of modern computers.

It was not until the twentieth century that electric/electronic components, such

as electromagnetic relays and electronic vacuum tubes and transistors, were widely

used in the fabrication of computer hardware. We shall begin our exposition of the

Hardware Side of Computer Science with these electric/electronic–based devices.

Our point of view of Computer Hardware, as explained previously, is the viewpoint
apparently adopted by Turing which we characterize as viewing Hardware

and Software as two indissoluble related sides of the “computation coin”. He

emphasized the Software side in his initial studies as possessing the motivating

ideas for a theoretical computer design but was inevitably drawn into detailed

engineering studies on the Hardware side as a result of his involvement in the

ACE computer project.

The ACE acronym stands for Automatic Computing Engine, the word “engine”

used in deference to Babbage’s analytic engine perhaps and the word “automatic”

used as a fashionable term for new machines of that era to indicate that their

computations proceeded under “self-control” without constant external human

intervention or supervision as with desktop machines. The ACE project had as its

goal the design and fabrication of a practical hardware computer based on theoreti-

cal ideas conceived primarily by Turing. It was for several years a pet project of
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Turing’s, as recounted in some detail in the biography of Turing, “Alan Turing the

Enigma” by Andrew Hodges (1983, Simon and Schuster). Turing, a mathematician

we and many others (e.g. the originators of the Turing prize) have anointed as the

father of modern Computer Science, was gifted in many fields of mathematics

including the wartime-crucial one of cryptanalysis for which specialty he was early

employed in the British Code and Cypher School during World War 2. Besides his

mathematical theorizing, he was the inventor of a secret British hardware device

that helped to break the German Enigma coding scheme, thereby significantly

helping to defeat the German navy’s submarine assaults. Like other mathematicians

we have mentioned in our history of computation (e.g. Leibniz, Pascal, Babbage

and von Neumann) Turing was not a one-sided ivory-tower mathematician but

rather was conversant with many aspects of the practical Hardware side of compu-

tation. As a consequence of his experiences, direct and indirect, with cryptographic

decoding machines during the war, such as the Colossus with its 1,500 vacuum

tubes, he learned a significant amount of pertinent electronic engineering and

practical physics. His experiences were not merely theoretical but involved physi-

cal experiments in his home, which was often cluttered with experimental hardware

apparatus items.

After the war, around 1945, he was appointed to a position at the National

Physical Laboratory, which had a mathematics section involved in developing

large-scale computers for the British government. His position allowed him the

time and assigned him the objective to develop ideas for a practical computer.

Turing’s long-standing and governing idea for a practical computer was ambitious

but rather less practical than the ideas many computer engineers were then consid-

ering. Turing’s grand objective was to build a machine that would implement his

original concept, propounded in his 1936 paper, of a universal Turing machine, in

particular, its central idea of a stored-program computer (See Chap. 3). Turing

began a lengthy report on a proposed version of a universal machine which was

dubbed the ACE. Meanwhile, with the availability of the new electrical technology

of reliable relays and vacuum tubes, others had taken up the task of building real

computers, among them the German engineer K. Zuse working with relays, an

American engineer G. Stibitz at Bell Laboratories also working with relays, the

physicist H. Aiken at Harvard University also working initially with relays and

finally the so-called “wizard” von Neumann working as an adviser on the ENIAC

computer project at the University of Pennsylvania. The ENIAC was an electronic

computer designed by the electrical engineers J.P. Eckert and J. Mauchly. The

ENIAC (Electronic Numerical Integrator and Calculator) was funded by the mili-

tary as a special-purpose computer intended for calculating artillery range tables. Its

initial versions contained about 19,000 vacuum tubes and demonstrated that such a

large assembly of tubes could be designed so as to operate reliably despite many

unreliable components.

Now, to understand Turing’s approach to the design of the ACE, it is useful to

recall (Chap. 3) the two main principles and parts in the operation of a Turing

machine M: first, its tape as a “memory” for storing data (and also programs of

instructions considered as data in the case of a universal machine U) and second, the
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finite-state control C of M which determines the sequence of execution steps of M.

A program M(I), which is written as a list of instructions which define the

computations performed by machine M on various tape data inputs, can be stored

in a recognizable format on the tape of a universal machine U. The finite-state

control of U can then read the stored-program M(I) and cause U to execute the

sequence of execution steps of M as specified by the instructions in M(I). The result

is a sequence of steps, Seq(M), in which specified operations are performed on the

tape contents to effect the computation which M is designed to do. The sequence

Seq(M) is, in fact, the specified computation done by M and must be determined

from the program M(I) by having U simulate the machine M’s Control process.

As shown in Chap. 3, the simulation process which derives the sequence Seq(M)

from the program M(I) can be a quite lengthy computation process. How to build

a hardware machine U which can do this? This was the design problem which

Turing addressed.

Recall that for a Turing machine, the stored-program M(I) is a textual list of

quadruple instructions. For a machine of a more practical kind, a stored-programM

(I) is a list of statements such as the assignment statements and conditional

statements discussed in the preceding Software chapter. Turing’s programming
construct in his machines M for deriving a sequence of steps from a stored-program

M(I) utilizes the concept of an internal present state q of control C of M combined

with the scanned character x of M’s tape and a next state q#, all represented in a

simple instruction quadruple qxOPq#, where OP is an operation to be performed by

M. The programM(I) is a sequence (I(0), I(1), . . ., I(n)) represented as a list of such
instructions I(j), but Seq(M) does not necessarily follow the ordering in this list.

The interpretation of q as an instruction label or memory address (implemented by

a program counter say) of a stored instruction permits the present and next execu-
tion steps to be determined by any instruction in M(I). In fact, we see that Turing’s

programming construct qxOPq# allows an implementation or interpretation by

means of a stored software conditional statement stored at address q as follows

q: If x then OPq# else . . . .

which we described in the Software chapter. The If clause applies if the present

Control state is q and the scanned character is x and causes operation OP to be

executed and then a transfer to a statement having the address q#. The else clause

applies if the scanned character is not x, but another character, y say, and its action

is given by a quadruple in M(I) of the form qyOP1q##, which causes OP1 to be

executed and a state transition to q##. This is the alternate branch of the execution

path. Again, the state transition is interpreted as a transfer of control to a quadruple

stored at address q##. This implementation illustrates our contention that the

Software side often dictates the Hardware side of a computer. Turing’s stored-

program concept provides the means for U to perform the sequential control of M as

specified by the program M(I). It applies to machines with other programming

statement formats in a program M(I), as long as M(I) allows for the inclusion of a

conditional statement. Recall that the C++ and Fortran programming languages

provide conditional statements of the form if. . . then. . .else.. The Babbage analytic
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engine programs allowed such conditional statements. However, the Zuse, Aiken

and Stibitz machine programs did not, whereas a later general-purpose version of

the ENIAC called EDVAC (Electronic Discrete Variable Automatic Computer)

followed a von Neumann design which included conditional statements in

programs stored in a machine memory module. Statements for EDVAC could be

accessed, processed and executed like the quadruples in a universal Turing machine

as just described. i.e. EDVAC worked like a stored-program computer carrying out

an execution sequence determined by instructions stored at memory addresses.

Von Neumann then set up shop at the Institute for Advanced Study (IAS) in

Princeton in collaboration with the mathematician H.H. Goldstine and the logician

Arthur Burks, issuing their famous 1946 US Army Ordnance Department report,

“Preliminary Discussion of the Logical Design of an Electronic Computing Instru-

ment”. This report propounded most of the architectural (i.e. organizational and
functional) concepts found in modern computers of the 1940–1960s such as a single

main memory module, a central processing unit (CPU) that had priority access to

the memory, and input and output units (IO) and led to versions of an IAS computer

built by the engineer J. Bigelow which became known first as the MANIAC and

then the JOHNIAC in tribute to its wizard designer. The US Army report was freely

and widely circulated in the USA and Great Britain, including Cambridge where it

served as a guide to M. V.Wilkes in building the EDSAC (Electronic Delay Storage

Automatic Calculator) computer.

Although Turing and von Neumann were then on the same hardware design

page, namely, using the stored-program computer design concept in which both

data and programs were stored in a memory module of a (universal) machine, they

faced a major problem, namely the size and structure of the memory module which

had to allow access to a potentially large store of instructions at electronic speeds.

von Neumann’s design solution, with a centralized memory module for both data

and programs, referred to as the von Neumann architecture, set up a paradigm for

many modern computers but was criticized as causing a bottleneck that slowed

execution (See the Backus Turing Award lecture reference in Chap. 4. The memory

bottleneck was eventually alleviated by adding auxiliary quick-access memory

hardware components for the stored programs).

At this juncture, with the acceptance of the von Neumann architecture, the

Computer Hardware development task became a battle focused on an effort to

develop fast large memory. In Great Britain, this battle was fought rather fiercely

by two competing universities, Cambridge and Manchester. Essentially there were

then two competing technologies for constructing memories: one called circulating
pulse delay lines (a partly mechanical device in which data was stored as sound

pulses circulated in mercury delay lines) and the other in which data was stored as

continually refreshed electrostatic charges on cathode ray tubes (CRTs), a

completely electronic technique. Turing at first experimentedwith circulating pulses

in delay lines but then moved to a position at Manchester, where the CRT approach

was favored by the Manchester engineer F. Williams. The CRT memory was also

adopted in the USA by RCA and later by IBM. It was successful but its lifetime was

short, being displaced by the large magnetic core memory developed at MIT.
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Returning to the stored-program concept and the problem of specifying and

determining a computation’s sequence of steps that a stored-program machine M

can execute, Turing’s notion of a finite-state control C and the simple technique of

specifying operation steps by quadruples of the form qxOPq# leads in fact to a

practical general hardware scheme for deriving a computation sequence for any

modern computing machine M. Since many different programs can be stored in the

memory module of M and executed like the programs stored on the tape of a

universal Turing machine, we can regard M itself as an approximately universal

machine. Control of execution of any program stored inM’s memory can be done in a

manner similar to the Control of execution of a program stored on the tape of a

universal machine, using a device like Turing’s instruction addresses q(0), q(1), . . ..,
say implemented by an electronic program counter, as explained above.

The finite-state Control and the stored-program concept have been adopted as

the basis of execution control of a type of machine known as a MIPS machine,
which is described at length in the book “Computer Organization and Design” by D.

A. Patterson and J.L. Hennessy, 2005, Morgan Kaufmann Publishers. Actually,

MIPS was a real microprocessor built in 1984 as an integrated circuit (see Appen-
dix on logical circuitry below) on a silicon chip which was 1 cm square. It had a

Clock (see below) running at 20 MHZ. Many modern computers M are closely

related to those of the MIPS type in that programs written in high-level languages

like C++ and JAVA and assumed to be executable on M can be compiled into

machine-level MIPS programs consisting of basic MIPS assembly language com-

putation statements of the general forms as follows:

X ¼ A + B or X ¼ A*B etc. specifying operations on data in memory locations

A and B;

memory load statements like lw $t0 x which loads a data word from memory

location x into a special machine register $t0;
sw $t1 x which stores (i.e. writes) a word from register $t1 into memory location x.

These statements can be easily implemented by standard Boolean logic combina-

tional circuits on the MIPS chip. Thus MIPS serves as a prototype hardware com-

puter. Compiled MIPS programs look very much like simple assembly language

programs at a near-machine-level in many machines M (See Software Chap. 4).

As stated in the Software chapter, the implicit assumption that most Fortran, C++ or

JAVA programs will run on a contemplated machine M in effect imposes many

hardware design specifications on M before it is built. Hardware designers make this

implicit assumption, since otherwise their machine M would be ignored by potential

users. Thus, by this MIPS approach to hardware design, software (i.e. computation)

requirements usually precede the hardware design of a computer.

Let us therefore assume that compilation into MIPS assembly-level programs

can be done for a machine M’s various high-level programs. If, for example, C++ is

the programming language for M, then one assumes that M can execute all or

most C++ statements. It can actually do this if there is a compiler from C++ into

an assembly language consisting of the above MIPS format statements which

defines much of the hardware of M. Thus, hardware design becomes a matter of

compilation of high-level programs into some assembly language which defines M.

Now, rather than use an assembly language for M, we can use the above assembly
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language for MIPS if we further assume that M is a MIPS type machine, that is,

assume that the assembly language for MIPS can be translated into an assembly

language for M and conversely. In this sense, M is equivalent to a MIPS type

machine. Of course, in practice, we allow the designer of M to specify various

special properties of this translation from M to MIPS which hold only for this

particular M. Therefore, the hardware designer assumes that for any program P to

be run on M the compiler produces a MIPS style assembly program. Let us

designate this compiled MIPS program by MIPS(P). To design a hardware version

of M to execute all programs P it suffices to design a hardware version of M to

execute all MIPS(P) compilations. In this way, MIPS provides a general hardware

design vehicle for a large class of machines M. This general MIPS design method is

detailed in the Patterson-Hennessy (P-H) book cited earlier. We do not have space

to cover all the MIPS(P) programs as is done in P-H, but we can illustrate the

method by a few key examples. We keep in mind the theoretical objective that an

arbitrary Turing machine TM corresponds to a program TM(I) that must be

executed by the universal ACE Turing machine. Here, we have instead an arbitrary

program P, or rather a compiled assembly program MIPS(P), that must be executed

by a MIPS type (approximately) universal machine M to be designed.

We begin by setting up a finite-state Control C for machine M like that in a

Turing machine. The internal states q of C are replaced by memory addresses of the

MIPS statements in MIPS(P). We can simply use integers for the q’s, starting with

q ¼ 0 for the first statement in the list MIPS(P) and proceeding through the values

q ¼ 4, 8, . . .given by the start positions of the statements in the sequence MIPS(P),

assuming, as in P-H, that each basic MIPS statement occupies 4 bytes of memory

(A byte is a sequence of 8 bits which encodes integers, alphabetic letters and some

punctuation symbols. A bit or binary digit is a 0 or 1. A word in computer memory

often consists of 4 bytes that is, 32 bits). The value of q for the current statement to
be executed at any time tn is to be held in a MIPS register called the Program

Counter (PC). A register is a type of memory unit that can be fabricated, for

example, from standard electronic logic gates connected to form flip-flops (See

Chap. 3 Appendix G, Boolean algebra, and the Appendix on Logic Circuitry which

follows below). By straightforward memory addressing circuits, designed as Bool-

ean switching functions, a register’s data contents can be easily connected to and

written into any memory location x of M by the MIPS sw x operation, as stated

earlier, or data can be loaded from any memory location x into a register by the

MIPS lw x operation. The sequence of steps for a computation is determined by

proceeding in sequence through the list of stored compiled MIPS statements in

MIPS(P), executing them at successive times t(n), n ¼ 0, 1,. . .and incrementing PC

by 4 after each execution until a conditional statement is encountered.

MIPS programs contain such conditional statements just as we have seen that

the Turing quadruples do in their interpretation by the finite-state control.

A conditional statement, when the else clause applies, is implemented by resetting

the program counter PC to a value specified in the else branch. This implements the

sequencing of the steps in a computation of MIPS(P). Although straightforward, the

implementation of a conditional statement is what allows program execution

sequencing to be quite general and more than a trivial exercise in automatic text

sequencing. Thus we require that MIPS, and therefore M, possess the branching

ability afforded by a program counter.
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Now, a few moments thought will suggest that something is still missing from

the implementation of Control. If the above process of implementing the individual

steps in a computation sequence is to actually run as a physical process on computer

M, then after M completes the nth statement’s computation step at time t(n), there

must be an explicit Next signal to further activate M to fetch the next (n + 1)st

statement specified in MIPS(P) at time t(n + 1). Otherwise, M could simply rest

inactive and wait idly after completing step n. All along this activating Next signal

has been an implicit feature of Control, implicit in the fundamental dynamics of its

postulated discrete-time sequence of states q(0), q(1), . . .and execution steps. By

contrast, in a classical physical continuum-time dynamical system, for example a

vibrating spring, its state S depends on a time variable t which is a real number and

after the present state S(t) is set up at time t, there is no Next state since there is no
“next” time following t (Successor states at times beyond t are determined by

temporal dynamics structures such as differential equations and other continuum-

based mechanisms). For MIPS computers like M and Turing machines, we now

make the discreteness of time explicit by introducing a discrete Clock signal as part
of the hardware. This defines the Next-signal step concept. Every Turing machine

and MIPS computer M has a discrete-time Clock which emits a periodic two-level

Clock signal as a sequence of electric pulses, say at levels 0 and 1, at discrete times

t(n). The period interval is called a Clock cycle. These pulses govern the state

transitions and computation step sequencing. In a real hardware computer designed

along the lines of Turing’s finite-state discrete-time control as just outlined. Each

hardware subprocess (e.g. one of the three MIPS basic processes mentioned earlier)

used to execute the next (n + 1)st step at time t(n + 1) in the computation sequence

for MIPS(P) must be initiated by a Clock pulse so that the subprocess occurs only

after the current nth step is completed in the current nth Clock cycle. This not only

keeps the computation running (until explicitly halted), but it also eliminates

possible ambiguity as to the value in a memory cell or register in any Clock

cycle. The value in the (n + 1)st cycle step is that which exists after the nth cycle

step is completed. If reading and writing data values were not separated into

different Clock cycles there could be ambiguity as to the values read. Thus,

Clock pulses must be part of the input to the various combinational circuits

which define Turing machine operations and the operations specified by MIPS

statements (See the Appendix below on Logical Circuits). These circuits with clock

pulse inputs become sequential circuits i.e. their outputs at time t(n + 1) depend on

the state value at time t(n) and any new inputs at time t(n + 1).

In the P-H book, a Clock is introduced to generate cycles of control steps at discrete

times t(n). The situation is a bit more subtle in practice since the real physical circuit

switches and gates described in the Appendix below do in fact operate as circuits in

continuum time t. Therefore, there is a problem as to exactly when to input a clock

pulse to a logic element. The pulse has some width and can be input at any point in a

clock cycle. In the P-H main text, this problem is set aside in favor of an engineering

Clocking Methodology, called edge-triggered, which dictates that a value in a logic

element is triggered (updated) by a clock pulse only at the instant of the edge of a clock

pulse. This works as a practical engineering design methodology provided that we

further assume, as P-H does, that a clock cycle is long enough so that the values in

logic circuit elements have been stabilized when the next edge trigger is supposed to
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occur. The timing of stabilization of circuit waveforms is classical electric circuit

theory involving resistors, capacitors and inductances and is presented, for example, in

the book, “Foundations ofAnalog andDigital Electronic Circuits”, byA,Agarwal and

J. H. Lang, 2005, Morgan Kaufmann. The logical designer of the Boolean functions

which perform the operations in the successive Clock cycles in a machine M must

choose the Clock cycle width to be compatible with the time constants in the classical

circuit properties of the gates that make up the Boolean functions. We shall assume,

along with P-H, that this can be done by practical engineering techniques based on

known circuit time constants for standard circuit devices implemented on integrated
circuit chips (See Appendix below). A more detailed design would involve such time

constants as those in the charging and discharging of capacitive circuit components

(See, for example, the book Mathematics of Physics and Engineering by E.K. Blum

and S. Lototski. World Scientific Press 2006).

In P-H, a detailed prescription of the design of the control C is given for each basic

MIPS statement. Here, we shall illustrate the method with two examples. This will

indicate how the entire design can be done for aMIPS computer in terms of elementary

MIPS machine-level operations. Before proceeding with these examples, we shall

digress briefly to point out that there are now computer chips which are not single

MIPS computers but rather are composed of multiple MIPS processors which com-

municate with each other in concurrent computations in order to speed up the solution

of a problem. These multi-processor systems have multiple Controls and clocks. For

large multi-processor systems, one protocol for the design of such systems involves a

message-passing standard likeMPIwhich is discussed in Chap. 7 on high-performance

cluster computing.

As the first MIPS example, we consider a simple arithmetic assignment state-

ment in program P,

A ¼ Bþ C;

as produced by a compiler. In a MIPS machine, arithmetic operands must be in

special hardware locations called registers. This simplifies the machine design and

speeds up execution of arithmetic by having fast access registers. Likewise, data

paths are executed with registers. Assume that the contents of cell C has been

written into register $t1 and that of B into register $s1. Assume further that cell A

will be connected to register $t1. The above assignment statement is compiled

further into the following three MIPS statements:

lw $t0 , $t1 // the value in C is loaded into $t0

add $t0, $s1, $t0 // $t0 gets the value of B + C

sw $t0 $t1 // value B + C is written into $t1 for subsequent loading into A

To execute a MIPS statement like add $t1, $t2, $t3 in the above list, the Control

in P-H uses four steps (all within one clock cycle) as follows:

1. The instruction is fetched and the PC incremented as explained earlier.

2. The registers $t2 and $t3 are read and the Control sets control line values for

succeeding steps.

3. The arithmetic logic unit (ALU) of the machine performs the add indicated.
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4. The resulting sum is written into register $t1.

As a second example, we consider the MIPS instruction

lw $t1, offset($t2)

which operates on addresses of data to be written. In P-H, this is implemented in

five MIPS steps as follow:

1. The instruction is fetched from memory and the PC incremented.

2. Register $t2 is read.

3. The lower 16 bits of the instruction (the offset) is added to $t2 in the ALU.

4. The sum in the ALU is the address of the data memory.

5. The data from this memory is written into register $t1.

These examples illustrate howmachineM is designed as aMIPS type of machine

which uses registers and an arithmetic logic unit (ALU) to carry out machine-level

operations to execute any statement in a high-level language program like Fortran,

C++ or JAVA. Such statements must first be compiled intoMIPS assembly language

statements. For compound arithmetic expressions like (B + C)*D in a high-level

program statement the compiler might construct an evaluation stack of operations
and operands, such as + BC*D, which first causes the evaluation (B + C) and then is

followed by multiplication of the resulting sum by D. The writing of compilers is a

special art fraught with skills that we do not have space to cover.

Besides the compiler program which can be utilized by machine M when reading

a stored high-level program MIPS(P) to be executed there are other “services”

provided by an operating system (Chap. 6) in M. These include the loading H of

standard subroutines needed by MIPS(P) and linking them to MIPS(P).

Appendix 1

Logic Circuits

E. K. Blum

The general organization of a computer’s hardware system is called its architecture.

For example, we have mentioned the von Neumann architecture. The architecture

of the MIPS computer was outlined in Chap. 5 above, which designated the MIPS

major parts as memory, a Control unit and processor, and input–output units.

On a more detailed level, we further designated the existence of MIPS operations,

such as arithmetic operations, by invoking them in various program units in the

MIPS assembly language produced by a compiler. The full compiler results were

not specified, since this is a major job in itself. Rather it was assumed reasonably

that basic program units (such as primitive statements like C ¼ A + B) can be

extracted from the compiler’s assembly language results. Such primitive statements
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constitute a fairly high-level software specification of the MIPS low-level hardware

parts, as we illustrated in Chap. 5. As a physical machine, MIPS was originally

fabricated as an integrated circuit (IC), called a chip, in 1984 having the basic parts

designated by the primitive compiler statements (e.g. registers to load data to/from

memory, an arithmetic logic unit (ALU) capable of executing the designated

operations like +, •, etc.) The design and fabrication of the ALU is a separate task

that has been done in many computers in many ways. We take the ALU as a given

part of the MIPS hardware.

The MIPS chip was 1 cm square and had a clock running at 20 MHZ. It consisted

of logic circuits built on a silicon substrate. In this Appendix, we describe the main

constituents of these logic circuits. They are the physical MIPS hardware at its

lowest level. Similar chips are the real hardware of other computers such as “Intel-

inside” personal computers.

The physical hardware components of a computer architecture such as that of

MIPS are fabricated as Boolean combinational circuits (described mathematically

by Boolean algebra formulas as in Chap. 3 Appendix G) or as Boolean sequential

circuits with a clock input to actuate the execution Control process. These two types

of logic circuitry are built from electronic Boolean logic gates (e.g. AND, OR,

NOT, NAND, NOR etc.) and electronic switches. The gates and switches are

fabricated as parts of a connected integrated circuit (IC) and are assembled by

lithography and other processes on a silicon chip. The key silicon component

fabricated on a chip is the semiconductor called a transistor created from silicon

crystals by a process called doping, which adds impurities to the silicon. Other chip

circuit components are also created by doping, that is, by adding various other

elements to very small parts of a layer of silicon so that the small parts then function

either as lumped conductors or insulators in one connected integrated circuit.
In this Appendix the reader is introduced to various types of transistors and some

of the silicon-based circuits they operate in. The reader is advised to merely scan

these low-level hardware details just to get an appreciation of how much this

technology has evolved from “silicon valley”. The technology of IC manufacture

is a magnificent engineering achievement by several companies such as, for exam-

ple, Texas Instruments, Analog Devices, Intel, AMD, IBM, Samsung and many

others. The fabrication process that does the “doping” is rather intricate, involving a

photo-etching procedure that imprints patterns on a silicon surface and then

dissolves the parts not imprinted. Masks are used to shape the IC patterns and

fabrication may entail several layers of masks. Parts of the unmasked areas are later

filled in with conductors of copper or aluminum to form an electric circuit.

Further details of IC fabrication are beyond the scope of this book and furthermore

are often proprietary.

A transistor is an arrangement of semiconductor solid material having an electri-

cal conductivity, at room temperature, between that of a conductor and an insulator.

Hence the name. Materials most commonly used are silicon, gallium-arsenide, and

germanium, into which impurities have been introduced, as stated above, by a

process called doping. In n-type semiconductors the impurities or dopants result in
an excess of electrons (negative charges); in p-type semiconductors the dopants lead
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to a deficiency of electrons and therefore an excess of positive charge carriers called

“holes.”

Although there may be some question regarding priority, the invention of the

transistor is usually credited to physicists John Bardeen and Walter Brattain. at

ATT’s Bell Labs in 1947. They observed that the output voltage of a germanium

crystal in a circuit can be much greater than the input voltage. In 1954. at ATT’s

Bell Labs, Solid State Physics Group leader William Shockley saw the potential in

this physical behavior, and worked to develop it into the junction transistor. He is
viewed as the “father of the transistor”. The name ‘transistor’ is shorthand for

the term “transfer resistor”, which refers to the resistors used in a classical lumped
circuit engineering representation of the input–output equivalent circuits of a

transistor (See figures below).

Field Effect Transistor (FET)

An important type of transistor developed after the original junction transistor is the

field-effect transistor (FET). It draws virtually no power from an input signal,

overcoming a major disadvantage of the junction transistor. An n-channel FET
provides a conducting path or channelmainly of n-type silicon material that is built

as two separated n-type regions on a substrate of p-type silicon. This is called an n-

p-n configuration of the channel. The two n-type regions are separated by a p-type

region. Two conductor terminals attached to the two n-type regions of the channel

are called the source and the drain to indicate the direction of intended channel

current flow from one n-type region to the other across the p-type gap. To control

channel current flow, the p-type gap is overlayed with a thin insulating layer of

silicon dioxide on top of which is affixed a conducting polysilicon layer called a

gate, which serves as a third terminal. A voltage applied to the gate terminal creates

an opposing electric field in the gap directed so that zero or little current flows

across the gap formed by the n-p-n configuration. For this reason it is called a

reverse voltage. Variations of the magnitude of the reverse voltage cause variations

in the resistance of the total n-p-n channel, enabling the reverse voltage to control

the current through the channel that would be produced by a voltage applied across

the source and drain terminals. The channel current can be made to vary from near

zero to a full value, as with an off-on switch. A p-n-p configuration works the same

way but with all polarities reversed.

The first silicon transistor was produced by Texas Instruments in 1954. The

first MOSFET type of transistor (see below) actually built was at Bell Labs in

1960. The transistor is the key active component in practically all modern

electronics circuits and is considered to be one of the greatest inventions of the

twentieth century. Its importance derives from its many circuit functions and its

ease to be mass produced by an automated process that achieves very low

transistor costs. Although several companies each produce over a billion individ-

ually packaged (discrete) transistors every year, the majority of transistors now
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produced lie within integrated circuits (chips) along with diodes, resistors,
capacitors and other electrical circuit lumped componentshttp://en.wikipedia.

org/wiki/Electronic_ components, so as to produce complete electronic circuits.

A Boolean logic gate (AND, OR etc.) can consist of up to about 20 transistors

whereas an advanced microprocessor chip, as of 2009, can include as many as 2.3

billion transistors.

The Metal Oxide Semiconductor Field-Effect
Transistor (MOSFET)

The metal-oxide semiconductor field-effect transistor (MOSFET) is a variant of the

FET (with source, drain and gate terminals) in which the gate terminal is separated

from the main transistor n-p-n output channel by a layer of metal oxide, which acts

as an insulator, or dielectric. The electric field produced by a voltage applied to the

gate extends through the dielectric and controls the resistance of the channel

between source and drain ends. In this device, the input signal, which is applied to

the gate, can, depending on its polarity, increase the current through the channel or

decrease it. As cited above, the invention of the transistor is usually attributed to the

American physicists John Bardeen, Walter H. Brattain, and William Shockley, later

jointly awarded a Nobel Prize. It was announced by the Bell Telephone Laboratories

in 1948; it was also independently developed nearly simultaneously by Herbert

Mataré and Heinrich Welker, German physicists working at the Westinghouse

Laboratory in Paris. Since then, many types of transistors have been designed. At

one time, only discrete (single) devices existed; they were usually sealed in ceramic,

with a wire extending from each terminal (source, drain and gate) to the outside,

where it could be connected to an electric circuit. As remarked above, although

discrete transistors are still used, the majority of transistors are now built as parts of

an integrated circuit chip. Transistors are used in virtually all electronic devices.

The n-p-n junction transistor is similar to the FET. It consists of two n-type
semiconductors (called, as one might expect, the emitter E and collector C)
separated by a thin layer of p-type semiconductor (called the base B). The transistor
action is such that if the electric potentials on the segments E, B and C are properly

determined, a small (input) current between the base and emitter connections

results in a large (output) current between the emitter and collector connections,

thus producing current amplification. Other circuits are designed to use the transis-

tor as a switching device; current across the base-emitter junction creates a

low-resistance path between the collector and emitter resulting in a closed switch

connection. The p-n-p junction transistor, consisting of a thin layer of n-type
semiconductor lying between two p-type semiconductors, works in the same

manner, except that all polarities are reversed. Most transistors used today are of

the n-p-n configuration because this is the easiest type to make from silicon. Shown

here is a schematic circuit diagram downloaded from The Electronics Club web
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page. The diagram shows the two current paths through a transistor. This circuit can

be built with two standard 5 mm red LEDs (light-emitting diodes) and any general

purpose low power n-p-n transistor (BC108, BC182 or BC548 for example). When

the main circuit switch is closed a small current flows into the base (B) of the

transistor and controls the output current. It is just enough to make LED B glow

dimly. The transistor amplifies this small current to allow a larger current to flow

between its collector (C) and emitter (E). This collector current is large enough to

make LED C light brightly. When the circuit switch is opened no base current

flows, so the transistor switches off the collector current. Both LEDs are off. This

arrangement where the emitter (E) is in both the controlling circuit (base current)

and in the controlled circuit (collector current) is called common emitter mode. It is

the most widely used arrangement for transistors.

Functional Model of an NPN Transistor

The physics model of operation of a transistor is difficult to explain and understand

in terms of its internal atomic crystal structure. It is more helpful to use an electrical

functional model given in the Electronics Club web page as shown here:

• The base-emitter junction behaves like a diode.

• A base current IB flows only when the voltage VBE across the base-emitter

junction is 0.7 V or more.

• The small input base current IB controls the large output collector current Ic.

• Ic ¼ hFE � IB (unless the transistor is full on and saturated) hFE is the current
gain (strictly the DC current gain). A typical value for hFE is 100 The collector-

emitter resistance RCE is controlled by the base current IB:

○ IB ¼ 0 RCE ¼ infinity transistor off

○ IB small RCE reduced transistor partly on

○ IB increased RCE ¼ 0 transistor full on (‘saturated’)
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• A resistor is often needed in series with the base connection to limit the base

current IB and prevent the transistor being damaged.

• Transistors have a maximum collector current Ic rating.

• The current gain hFE can vary widely, even for transistors of the same type!

• A transistor that is full on (with RCE ¼ 0) is said to be ‘saturated’.

• When a transistor is saturated the collector-emitter voltage VCE is reduced to

almost 0 V.

• When a transistor is saturated the collector current Ic is determined by the supply

voltage and the external resistance in the collector circuit, not by the transistor’s

current gain. As a result the ratio Ic/IB for a saturated transistor is less than the

current gain hFE.

• The emitter current IE ¼ Ic + IB, but Ic is much larger than IB, so roughly

IE ¼ Ic.
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Darlington Pair Circuit

Aspreviously remarked, transistors can be used in amplifier circuits. The amplification

produced by a single transistor is not very high. To achieve high amplification we can

use a Darlington pair circuit as shown. The circles with three inside segments denote

transistors in which B is the base, C the collector and E the emitter. The pair behaves

like a single transistor with a very high current gain. It has three external green leads

(B, C and E) which are equivalent to the base, collector and emitter leads of a standard

individual transistor. To turn on there must be 0.7 V across both of the base-emitter

junctions which are connected in series inside the Darlington pair, therefore it requires

1.4 V to turn on.

A Darlington pair is sufficiently sensitive to respond to the small current passed

by human skin and it can be used to make a touch-switch as shown in the diagram.

For this circuit which just lights an LED the two transistors can be any general

purpose low power transistors. The 100 kO resistor protects the transistors if the

contacts are linked with a piece of wire.
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Using a Transistor as a Switch

When a transistor is used as a switch it must be either OFF or fully ON. In the

fully ON state the voltage VCE across the transistor is almost zero and the

transistor is said to be saturated because it cannot pass any more collector current

Ic. The output device switched by the transistor is usually called the ‘load’.

The power developed in a switching transistor is very small:

• In the OFF state: power ¼ Ic � VCE, but Ic ¼ 0, so the power is zero.

• In the full ON state: power ¼ Ic � VCE, but VCE ¼ 0 (almost), so the power is

again very small.

The tutorial procedure below is taken from an Electronics Club web page and

explains how to choose a suitable switching transistor.

1. The transistor’s maximum collector current Ic(max) must be greater than the

load current Ic.

load current Ic ¼ supply voltage Vs

load resistance RL

2. The transistor’s minimum current gain hFE(min) must be at least five times the

load current Ic divided by the maximum output current from the IC.

hFE minð Þ> 5� load current Ic

max: IC current

3. Choose a transistor which meets these requirements and make a note of its

properties: Ic(max) and hFE(min). There is a table showing technical data for

some popular transistors on the transistors page.

4. Calculate an approximate value for the base resistor:

RB ¼ Vc� hFE

5� Ic
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where Vc ¼ IC supply voltage (in a simple circuit with one supply this is Vs)

5. For a simple circuit where the IC and the load share the same power supply

(Vc ¼ Vs) you may prefer to use: RB ¼ 0:2� RL � hFE
6. Then choose the nearest standard value for the base resistor.

7. Finally, remember that if the load is a motor or relay coil a protection diode

is required.

NPN transistor switch (load is on when IC output is high)

Using units in calculations Remember to use V, A and Oor V, mA and kO. For more details

please see the Ohm’s Law page.

Example

The output from a 4,000 series CMOS IC is required to operate a relay with

a 100 O coil.

The supply voltage is 6 V for both the IC and load. The IC can supply a

maximum current of 5 mA.

1. Load current ¼ Vs=RL ¼ 6=100 ¼ 0:06A ¼ 60mA, so transistor must have

Ic maxð Þ>60mA:
2. The maximum current from the IC is 5 mA, so transistor must have

hFE minð Þ>60ð5� 60mA=5mAÞ:
3. Choose general purpose low power transistor BC182 with Ic maxð Þ ¼ 100mA

andhFE minð Þ ¼ 100:
4. RB ¼ 0:2� RL � hFE ¼ 0:2� 100� 100 ¼ 2000O. so choose RB ¼ 1k8 or 2k2

5. The relay coil requires a protection diode.

Choosing a Suitable PNP Transistor

The circuit diagram shows how to connect a PNP transistor, this will switch on the

load when the IC output is low (0 V). For the opposite action, with the load switched

on when the IC output is high see the circuit for an NPN transistor above.
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PNP transistor switch (load is on when IC output is low)

LED lights when the LDR is dark

LED lights when the LDR is bright
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The top circuit diagram shows an LDR (light sensor) connected so that the LED

lights when the LDR is in darkness. The variable resistor adjusts the brightness at

which the transistor switches on and off. Any general purpose low power transis-

tor can be used in this circuit.

The 10 kO fixed resistor protects the transistor from excessive base current

(which will destroy it) when the variable resistor is reduced to zero. To make this

circuit switch at a suitable brightness you may need to experiment with different

values for the fixed resistor, but it must not be less than 1 kO.
The switching action can be inverted, so the LED lights when the LDR is

brightly lit, by swapping the LDR and variable resistor. In this case the fixed resistor

can be omitted because the LDR resistance cannot be reduced to zero.

A Transistor Inverter (NOT Gate) Circuit

Inverters (NOT gates) are available on logic ICs but if you only require one inverter

it is usually better to use the CMOS circuit shown at the end of this section. Note

that a single NOT gate is abbreviated by a small circle called a bubble. The output
signal (voltage) is the inverse of the input signal:

• When the input is high (+Vs) the output is low (0 V).

• When the input is low (0 V) the output is high (+Vs).

Any general purpose low power NPN transistor can be used. For general use

RB ¼ 10kO and RC ¼ 1kO, then the inverter output can be connected to a device

with an input impedance (resistance) of at least 10 kO such as a logic IC or a 555

timer (trigger and reset inputs).

When connecting the inverter to a CMOS logic IC input (very high impedance)

one can increase RB to 100 kO and RC to 10 kO, this will reduce the current used by
the inverter.
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Simple circuit to show the labels of a bipolar transistor.

The two main types of transistors have slight differences in how they are used in

a circuit. A bipolar transistor again has terminals labeled base, collector, and

emitter. A small current at the base terminal (that is, flowing from the base to the

emitter) can control or switch a much larger current between the collector and

emitter terminals. For a field-effect transistor, the terminals are labeled gate,

source, and drain, and a voltage at the gate can control a current between source

and drain.

The images below represents a typical bipolar transistor in a circuit. Charge will

flow between emitter and collector terminals depending on the current in the base.

Since internally the base and emitter connections behave like a semiconductor

diode, a voltage drop develops between base and emitter while the base current

exists. The amount of this voltage depends on the material the transistor is made

from, and is referred to as VBE.

90 E.K. Blum



BJT and JFET symbols. Note directions of currents.

JFET and IGFET symbols

Transistors are categorized by

• Semiconductormaterial: germanium, silicon, galliumarsenide, silicon carbide, etc.

• Structure: BJT, JFET, IGFET (MOSFET), IGBT, “other types”

• Polarity: NPN, PNP (BJTs); N-channel, P-channel (FETs)

• Maximum power rating: low, medium, high

• Maximum operating frequency: low, medium, high, radio frequency (RF),

microwave.

(The maximum effective frequency of a transistor is denoted by the term fT, an
abbreviation for “frequency of transition”. The frequency of transition is the

frequency at which the transistor yields unity gain).

As proven in Boolean algebra, all types of Boolean logic gates (e.g. AND, OR,

NOT, XOR, NOR) can be created from a suitable network of NAND gates and

inverters (NOT gates). Rather than draw the symbols for NOT gates a small circle

(called a bubble) is attached to the output side of other gates as shown in the

diagram below. Similarly all gates can be created from a network of NOR gates.

Historically, NAND gates were easier to construct from MOS technology and thus

NAND gates served as the first choice in Boolean logic in electronic computation.

For an input of 2 variables, there are 16 possible Boolean algebraic functions

(For n variables, there are 2"n inputs. Each input can be assigned 2 possible outputs.
Hence there are 2"(2"n) different Boolean functions of n variables). These 16

functions are enumerated below, together with their outputs for each combination

of inputs variables.
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INPUT A 0 0 1 1

B 0 1 0 1

OUTPUT FALSE 0 0 0 0 Whatever A and B, the output is false. Contradiction

A AND B 0 0 0 1 Output is true if and only if (iff) both A and B are true

A ↛B 0 0 1 0 A doesn’t imply B. True iff A but not B

A 0 0 1 1 True whenever A is true

A ↚B 0 1 0 0 A is not implied by B. True iff not A but B

B 0 1 0 1 True whenever B is true

A XOR B 0 1 1 0 True iff A is not equal to B

A OR B 0 1 1 1 True iff A is true, or B is true, or both

A NOR B 1 0 0 0 True iff neither A nor B

A XNOR B 1 0 0 1 True iff A is equal to B

NOT B 1 0 1 0 True iff B is false

A  B 1 0 1 1 A is implied by B. False if not A but B, otherwise true

NOT A 1 1 0 0 True iff A is false

A ! B 1 1 0 1 A implies B. False if A but not B, otherwise true

A NAND B 1 1 1 0 A and B are not both true

TRUE 1 1 1 1 Whatever A and B, the output is true. Tautology

The four functions denoted by arrows are the logical implication functions.

These functions are generally less common, and are usually not implemented

directly as logic gates, but rather built out of gates like AND and OR.

Below is a CMOS circuit for NOT built from two CMOS transistors (with a

bubble in one). As explained below, CMOS logic requires more transistors but uses

less power and is the logic used on chips.
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CMOS inverter (NOT logic gate) Complementary metal-oxide-semiconductor

(CMOS) logic is a technique for constructing better-powered integrated circuits.

CMOS logic is used in microprocessors, microcontrollers, static RAM, and other

digital logic circuits. Frank Wanlass successfully patented CMOS in 1967

In the P-H book, all logic circuits are in integrated circuits and all semiconductors

are of the CMOS type. In the Agarwal & Lang book, all semiconductors in gates are

initially of the MOSFET type, since it is easy to build gates from them and

understand how the gate circuits work. For example, an A NAND B gate is easy to

construct with two n-channel MOSFET transistors functioning as switches S and T

connected in series to a load, S having input A and T input B. There will be an output

of 0 from this series NAND circuit exactly when both A ¼ 1, closing switch S, and

B ¼ 1, closing switch T, creating a short circuit from ground to load. To obtain an

AND gate from this NANDgate it suffices to place an inverter (bubble) on the output

terminal. The new output is then 1 when both A ¼ 1 and B ¼ 1. Similarly, a gate for

ANORB is constructed by connecting twoMOSFET transistors acting as switches S

and T in parallel to a load. The output is 1 exactly when both A ¼ 0 and B ¼ 0, so

that both S and T are open. This is the truth table for NOR (¼ NOT OR).

The load for a gate circuit using n-channel MOSFET transistors (NFETs) is

usually depicted as a resistor RL connected to the source supply voltage, VS. In

practice, load resistors like RL in an IC would take up too much space on the chip.

The resistor RL is replaced by a MOSFET with its gate connected to a second

supply voltage VA at least one threshold higher than VS. Thus, this load MOSFET

remains in the on state for any voltage between 0 and VS applied at its source so that

its MOSFET resistance RON replaces RL. This style of building logic gates is

called NMOS logic. Unfortunately, NMOS logic gates dissipate static power when

the circuit is idle. Therefore, they are replaced by yet another different style of gate

logic called CMOS (Complementary MOS) which has very low static power

dissipation. CMOS logic gates require an extra complementary p-channel MOSFET

(called a PFET). Which acts in a manner complementary to the basic NFET in the

gate. When the gate-source voltage VGS of the NFET is greater than a threshold

voltage, the NFET turns on and a resistance RONn appears between its drain and

source. In contrast, the PFET turns on when its VGS is less than a threshold and

then a resistance RONp appears between its drain and source. Provided that the gate

input voltage vin is at VS or 0, the NFET and PFET transistors are never on at the

same time under static behavior so that there is never a resistive path from the

power supply to ground. Hence, there is no static power dissipation. As an example,

the earlier diagram above is a CMOS logic gate for NOT (i.e. an inverter).

A common logic circuit is the RS (Reset-Set) flip flop (or latch) shown below.

It has two stable states and can therefore store a memory bit in either the 1 or 0 state

depending on the R and S inputs.
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RS (Reset-Set) Flip-Flop

An RS latch, constructed from a pair of cross-coupled NOR gates

RS (Reset-Set) flip-flop

Illustration of RS latch operation. Red and black mean logical ‘1’ and ‘0’,
respectively.

The fundamental latch is the simple RS flip-flop (also commonly known as SR
flip-flop), where R and S stand for reset and set, respectively. It can be constructed
from a pair of cross-coupled NAND or NOR logic gates. as shown here. The stored
bit is present on the output marked Q.

Normally, in storage mode, the R and S inputs are both low, and feedback
maintains the Q and �Q outputs in a constant state, with �Q the complement of Q
(Simply check the NOR truth table when Q ¼ 1). To store a bit on a new clock
cycle, if S is pulsed high (set) while R is held low, then the Q output is forced high,
and stays high by feedback even after S returns low; similarly, if R is pulsed high
(reset) while S is held low, then the Q output is forced low, and stays low even after
R returns low.

The next-state equation of the RS flip-flop is

Qnext ¼ Sþ �RQ

where Q is the current state. Qnext becomes Q (the new stored value) at clock edge.
This equation originates from C. Shannon’s 1937 master’s thesis, A Symbolic

Analysis of Relay and SwitchingCircuits
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Appendix 2

Hardware for the User Interface

The modern computer devices that most readers are familiar with are a personal

desktop computer (pc) or workstation, a laptop or a high-tech cell phone. These

devices, as usually assembled, have two main components:

1. a box, or compartment, in which are housed the hardware electronics (chips/

circuit boards, memory modules, individual transistors etc. as described in the

preceding Appendix) which execute the computation operations and control the

sequence of steps in a computation and

2. a second component consisting of the physical hardware parts which interact

with the user, usually a monitor, keyboard and mouse.

The Monitor as a Visual Output Display

Most of us are familiar with the monitor connected to a pc. Originally, it was a

cathode ray tube of the kind commonly used in laboratories in oscilloscopes to

provide images of x-y plots on a coated fluorescent screen illuminated by a moving

electron beam. The screen was calibrated as a rectangular grid of points. The

modern monitor is a similar device but uses a liquid crystal display (lcd) screen

as in many television screens. The lcd screen is fabricated as a discrete rectangular

array, for example 1,920 � 1,280, of individual liquid crystal picture elements

called pixels. A pixel crystal will not transmit a beam of light or electric charge

unless it is properly oriented. Its orientation relative to the beam is controlled by an

applied current passing through a tiny transistor at each pixel. Thus a monitor has an

associated data array of pixel currents. The values in this array of applied currents

may consist of one or more bits to control the brightness of a pixel, making it visible

to the user. Color is achieved by having three crystal elements (red, blue, and green)

at each pixel. This array of pixel data is called a bit map and is controlled by a

software program that provides a bit map matrix for the pixel data array and other

screen properties and is known as a graphical user interface (GUI). By careful

detailed programming of the bit map, a GUI can create moving complex images on

the monitor display, as output from a running application program.

To allow user interaction with the monitor display an engineer named Engelbart

invented the device we know as the mouse. The mouse controls a cursor (usually an
arrow symbol) on the screen. The cursor has a position (monitor coordinates) that

changes as the mouse is moved on a pad vertically and horizontally by the user. The

mouse also has one or more switches which are actuated by the user pressing

buttons on the mouse, such switch actions being called clicks. A click or sometimes

a double click sends a signal to the GUI which elicits a response from the GUI, such

5 The Hardware Side 95



response being programmed to give the user a specified action on the monitor

screen depending on the local part of the screen image pointed to by the mouse

cursor. For example, local parts may be icons representing various files or other

computer elements to be processed or they may be labels of a menu of alternative

actions which the user can select by pressing the mouse button. These conceptually

simple user-computer interactions provided by the active monitor display as output

and the mouse position and clicks as input have made possible a rich environment

of computer usage. More sophisticated user interactions are currently provided by

tactile hand motions on capacitor-sensitive monitor surfaces as, for example, in

“smart” phones like the Apple iphone and the RIM blackberry phone.
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Chapter 6

Operating Systems (OS)

Edward K. Blum

In Chap. 4 (Software), the user interface (interaction) with the computer hardware

(Chap. 5) is implicitly specified as being via a compiler program which translates

user-defined high-level language programs (e.g. C++ programs) into low-level

assembly language programs. The latter are parsed into a sequence of simple

machine-like operation-based statements (like X ¼ Y + Z) that can be executed

more-or-less directly by MIPS-type hardware computers configured with registers

and processors, as explained in Chap. 5. This application-software (e.g. C++)

interaction with the computer hardware, the user interface, is supported by little

more than a hardware device called a program counter in conjunction with

straightforward state-control logical circuits, following Turing’s basic ideas on

computation Control rather closely. However, in this early method of treatment

of the rather simple user interface, there is no account given of certain implicit and

important details, such as how the C++ user gains access to the compiler or to other

assumed supporting facilities such as library subroutines called in the high-level

user program or to data-file storage. For the early instances of software-hardware

interactions, this naive approach to the user interface was sufficient. However, by

the 1960s, hardware and application software programs had both become much

more sophisticated and the user interface more complicated.

As observed in Chap. 5, the invention of the transistor and integrated circuits

produced great increases in execution speeds, clock rates in logical circuits jumping

from megacycles (10^6 cycles)/s to gigacycles (10^9) cycles/s. Furthermore,

data storage devices such as magnetic discs had likewise become much improved in

capacity as well as speed of data access. Many user application programs began to

manipulate large files of data as one of their main activities (See Databases Chap. 10).

High-level languages (e.g. C++) provide data management operations for user

E.K. Blum (*)

Department of Mathematics, University of Southern California, Los Angeles, CA, USA

e-mail: blum@usc.edu

E.K. Blum and A.V. Aho (eds.), Computer Science: The Hardware,
Software and Heart of It, DOI 10.1007/978-1-4614-1168-0_6,
# Springer Science+Business Media, LLC 2011

97

mailto:blum@usc.edu


programs, such as file-manipulating operations (e.g. opening and closing sequential
files) which must be supported by a file system (A sequential file is a set of data

elements, such as bytes or words, arranged in a sequence so that a data element at

position n in the sequence can only be read/written by first reading/writing the

preceding n-1 elements, as on a magnetic tape or disc. By contrast, in a random access
file a data element can be accessed directly in a fixed time interval without going

through the other data elements, as in an internal electronic memory device).

A file system, as the word system suggests, embraces both software and hardware.

It includes software specification of file data formats (beyond mere bits and bytes)

and software specifications of file structures, say as individual records with their

own identifiers, these software specifications being supported by associated hard-

ware for storage and accessing of large data files on magnetic discs (hard drives)
(See Chap. 8, Databases). As computer usage grew and encompassed multi-user

large central computers, computation became a more complex and multi-faceted

activity with technological and operational problems having to do with modes of

computer usage rather than with the internal computations. Practical problems arose

in running application programs in situations not anticipated by the early pioneering

mathematicians and engineers. As the applications of computers expanded in num-

ber and variety, the early simple user interfaces evolved into a more complex

phenomenon as important as the basic application computations and placed practical

demands on computer systems for additional supporting facilities for the interfaces.

As noted, the use of the word system in the compound term file system entails

a combination of software and hardware support. The practical value of various

user interface support facilities providing services beyond those for explicit hard-

ware-software interactions was soon recognized. This led to the realization that many

other interface support provisions were needed for large fast computing applications,

especially on central shared computers, and the support should be integrated and

organized into a broad system entity known as an operating system (OS).

An OS is certainly needed for multi-user access to a central computer. Even on

single-user personal computers the user requires such services as control of printer

output, word-processing and management of files. The OS approach to computation

on electronic computers was soon widely accepted and implemented by

manufacturers like IBM and Honeywell. In fact, each computer is now organized

to be used through the intervention of an operating system. The OS is supplied

in the form of a systems program installed in the computer memory together with

special hardware devices so as to act as the interface between a user and the

computer. Three classes of OS systems currently are dominant:

1. various Unix (or Linux) systems on mainframe central computers;

2. Windows systems on most personal computers (pc’s);

3. MacOSX systems on Apple computers.

The Unix OS was initiated at ATT Bell Labs by Ken Thompson and developed

further, along with Dennis Ritchie, using the C language designed for that purpose.

They received a Turing award for their efforts. A popular version of Unix, called

BSD Unix, was developed at the Berkeley campus of the University of California.
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The OS called Windows is a product of Microsoft Inc. and is used on most pc’s

other than Apple Mac’s which use versions of the OS called MacOSX, which is

related to Unix in many features.

As remarked above, along with the development of large and fast data storage

devices as part of the hardware came the steady and rapid increase in speed of the

CPU and other electronic components in computer hardware. As a result, running a

single user application program on a computer often consigned the fast CPU to an

idle state as the computer arranged data for execution of the next program state-

ment. Likewise, increased speeds of data input and output (IO) in storage devices

gave rise to idle states in these devices as they waited for lengthy computations to

be completed. To improve the efficiency of utilization of a large computer a mode

of multi-user access to a single computer was adopted in which many user “jobs”,

as they are called, were allowed to run partly “concurrently” in a time-sharing (or

multi-tasking) mode whereby time is divided into time-slots and computer

resources are allotted to different jobs in each time-slot. As one of its support

functions, the operating system schedules the allocation of time-slots to each user,

say on the CPU or on file storage devices. The scheduler program in the OS tries to

optimize utilization of computer hardware resources by minimizing idle time while

not appreciably slowing down the execution of the sharing individual user jobs.

This scheduling problem arises in non-computer industrial “job shops” where

resources are time-shared and has been treated by operations research methods.

The OS scheduler program can avail itself of these methods, but the scheduling

problem may not be amenable to practical exact solutions under some conditions on

the flow of jobs submitted.

These additional user interface supports, and others, eventually made the OS

software a complicated system program. We shall illustrate this complication by

summarizing below how the OS program manages the file system, one of its

important functions. Before doing so, we must consider a fundamental question

for an OS, namely, just what is its user interface? Since the OS often manages user

access to a multi-user central computer, an explicit user interface must be provided.

The OS Kernel and the Shell

Since the OS program essentially supervises how user jobs (application programs)

are executed, it must interact directly with the hardware, for example in a MIPS

computer by supervising compiled assembly language statement execution by

moving data items into and out of registers and the CPU, as explained in Chap. 5.

To run smoothly and avoid errors this segment of the OS program must be shielded

from direct user interference. Likewise in a multi-user central facility certain parts

of the OS must be shielded/protected from user interaction. For a Unix style OS, to

accomplish this the OS program is organized so that an “insulated” or “shielded”

mode of execution of the hardware-interactive segment of the OS program takes

place in what is called its kernel. The kernel program interacts directly with the
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hardware (say manipulating internal registers) and contact with users is avoided

by various protective devices, possibly by having the kernel program stored in

hardware-protected memory locations which are not accessible to users.

However, it is necessary for a user to communicate with the OS to request

various services, such as compiling a user program or providing file system actions.

In effect, a user is a client and the OS is a server which responds to client messages

requesting services. In Unix systems, these messages are in the form of shell
commands issued by the user in a user-accessible part of the OS known as the

shell. As the name suggests, the shell is a program or process which acts as the

interface medium between users and the OS kernel. The shell commands allow

users to contact the kernel to request and receive OS services while maintaining the

shielded execution mode of the kernel.

The shell is made accessible to each user as part of the user initial login process.

As stated above, for modern computers a user must use the OS to access the

computer. The user begins by obtaining a user account with a user’s name from

the administrator. A user then logs in to the user’s account, possibly at a remote

console or workstation connected to the computer OS. If login is accepted by the OS,
the OS login process sends a shell prompt symbol back to the user console signaling

that the shell is ready to receive commands from the user as a client and respond to

them as a server. In Unix (and Linux) the shell commands have the format.

Command_name opt1 arg1 [opt2, arg2, . . .,]

where the opt’s are options which modify the command behavior and the arg’s are

arguments which provide data needed by each option.

In Unix, there are two commonly used shell processes: (1) the Bourne shell from

Bell Labs and (2) the C shell from Berkeley, designated as csh. In Linux, the default
shell is bash, designating the variation called the Bourne-again shell.

A shell is a part of the OS system program which receives and interprets user

commands and then interacts with the kernel as needed. It is able to penetrate the

protective shields of the kernel program. To further explain this rather sophisticated

OS behavior, we shall give examples of shell commands which deal with manage-

ment of the file system, which is a major part of the OS.

File Systems

In Unix and Linux, the file system is organized in a logical structure that can

be depicted as a rooted tree, TR say, which is mathematically a directed graph
(i.e. a graph with edges that have directions) shaped like a rooted tree wherein the

nodes can be files of data, or directories of files or subdirectories. A directory is an
index (or pointer) which locates a root of a subtree of TR. The index becomes part

of a file path name which can be used by the OS to navigate through the nodes of the

tree TR in a natural way to reach a designated file node. Directory nodes usually

have many outward edges leading to multiple file nodes. In the Windows OS,
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the directories are called folders, suggesting collections of related files. A file

node usually has one outward edge which determines the location and size of a

(sequential) file of data in the hardware.

In Unix, the root of the entire tree TR is a directory denoted by the slash /. This is

the start point of an overall search of TR for other nodes. Each user account

is assigned a home directory which has the same name as the user account and is

designated as /home/user_name. All files and directories created by the user are

stored in the user home directory unless otherwise explicitly indicated. To access

them the OS uses a filepath_name starting with /home/user_name/. As an example,

consider using the shell to create an empty file named empty.text. This can be done

by typing the shell touch command at the shell prompt symbol ([. . .]$) as follows:

[console1 user_name]$ touch empty.text

To list the file, type the shell ls (list) command as follows:

[console1 user_name]$ ls

The shell responds with

[console1 user_name]$ empty.text

Since no directory names were given as arguments in these commands, the shell

assumes that they refer to the user’s current working directory (wd). The shell takes
wd as the default when no directory name is given in a command. wd is assumed to

be the home directory unless explicitly changed by the cd command. For example,

[console1 user_name]$ cd /

changes the working directory to be the root directory /. The new prompt will be

[console1 /]$

To see that this has taken effect we can use the pwd (present working directory)

command to get the following display:

[console1 /]$ pwd

[console1 /]$

To return to the user home directory simply issue the cd command without

arguments. Some other file system commands are as follows.

To copy a file such as empty.text into a new file named backup.text use the shell

cp command as follows:

[console1 user_name]$ cp empty.text backup.text

To move a file from one directory to another use the shell mv command.

To delete a file use the shell rm command. To delete a directory use the shell

rmdir command. These and other Unix file-system commands are explained in the

book “Teach Yourself Red Hat Linux 8” by Aron Hsiao published by SAMS,

Indianapolis.
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They illustrate how a user interfaces with the Unix OS by issuing shell

commands at a console. The shell interprets the commands and translates them

into requests for services by the kernel and passes them to the kernel. For example,

the kernel will create a file on a hard drive when requested by a user touch

command and keep track of its location so that it can delete it when requested by

a user shell rm command. Of course, file IO operations can also be specified in the

application program itself and be done during execution of the job; e.g. in C or C++

there are file operations to open and close named files, which become nodes in the

tree TR. When a declared named file is opened, the application program can then

write into it using the fprintf operation. Likewise it can read a file that is opened by

using the fscanf operation. For computations which produce a large output data file

by iterations using fprintf, say into an array, the user may not wish to read the entire

array file during execution since this would slow down execution. After the job

ends, the user may then wish to examine the output data file produced by the OS.

The user can do this using shell ls commands to locate the file, say filename,

as described above. The shell command cat filename will display the contents

of filename at the console. There are also commands to request a printer service.

Thus, the command

[console1 user_name]$ lpr filename

creates a print job in the printer queue which will cause printing of the contents of

filename when the job reaches the front of the queue.

Note that the shell also provides a command to compile a source program file

Prog created by using an editor program such as Emacs. Prog is translated into an

object code file, say prog.obj, by the compiler. To run prog.obj it may also be

necessary to link prog.obj to other object code programs provided by the OS. After

compiling and linking is completed the shell places prog.obj in a directory /bin

containing executable files. A shell command which simply references prog.obj

then requests its execution by the kernel.

To allow its time-shared execution an executable file like prog.obj is restructured

as one or more processes (We have already referred to various OS processes

above). To convert an executable file into a process it is necessary to determine

which memory locations are needed as a local state of the computation. The data in

these locations must be saved in a block of memory associated with prog.obj so that

its execution can be resumed after being paused when its allocated time-slot

expires. See scheduling below.

File Permission

A file has one or more owners, various users who can specify permissions to apply

file operations to the file. The files in the home directory are owned by the user and

also possibly by a user group created by the system administrator. The group

includes the user who created the file. An entry in the file node specifies a list of
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permissible operations the user group can perform on the file. A typical entry

in /home might be d rwx xr r x. The letter d denotes a directory. w means permission

to write. r is permission to read. x means permission to execute. The command

chmod can change permissions.

Using the shell is a powerful way to make requests for OS services. To facilitate

it the OS provides for shell scripts, which are small programs consisting of shell

commands as basic statements. A script is created as a file by a text editor such as

emacs. On the first line the user types #1/bin/sh to indicate that a script follows.

Scripts can be written as named subroutines. Script statements can involve variables

in assignment statements. The values of variables are supplied in script calls as in

subroutine calls. A script can use an if. . .then. . .else statement to alter control of

execution of commands. The while statement is also allowed.

Useful commands permit redirecting output of other commands. The “>”

character redirects standard output to the monitor to a file. Thus, ls > dir.list

redirects output normally sent to the monitor to the file dir.list. To append rather

than overwrite output use “>>”. Output can also be directed to be the input to

another command by using the pipe character “|” as in ls|more which permits

display of a long list of files on one monitor screen.

Scheduling

We have already referred to the scheduling of jobs performed by the OS. In fact, an
OS program has many jobs of its own which perform services to users; e.g. the job

that implements the shell lpr command for printer activation. The scheduler must

give this job repeated execution time slots to provide timely responses to user

requests for printing files.

To facilitate the OS scheduling function it organizes jobs into (usually small)

segments called processes. A process consists of a file of a section of executable

statements of the job’s compiled program and blocks of data encoding the local state

of this section of the job’s computation. For example a section can consist of a short

sequence of a few compiled statements to be executed in a time-slot. The variables

originally used in these statements have been replaced by memory or register

locations. These locations constitute the “local state” of the computation. They

contain the information needed to resume the computation after the job is temporar-

ily paused by expiration of its time slot. Processes are queued for execution by the

OS scheduler and their saved local states are restored in an “active” data block for

execution by the kernel when the next time-slot is allocated to the job. Details of the

scheduler queueing discipline vary from one OS to another. For example, they may

involve job priorities assigned by the system administrator (system jobs like lpr

receiving high priority), lengths of job execution times as estimated by the users and

other job properties affecting overall access to the computer resources. These details

affect system “overhead”, the costs entailed by the swapping of job processes into

and out of the execution queue.
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Concluding Observations About OS’s

Operating systems are usually large and complex systems-type programs which

manipulate computer registers, files and other data structures. As stated above, the

Unix OS was written in the C language, which has useful machine-oriented

operations.

The preceding pages summarize the main role of an OS in managing multi-user

access to a central computer. The reader can obtain further details by consulting the

user manual usually provided by each computer facility. For the various Windows

systems for pc’s. The reader can consult user manuals published by Microsoft Inc.

or use the built-in HELP command on the pc to print detailed OS information on the

pc monitor screen. For Unix/Linux OS’s there are many published books. A few

references are listed below.
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Chapter 7

Computer Networks

Fan Chung Graham and Edward K. Blum

This chapter on Computer Networks covers one of the most influential developments

involving Computer Science in the past two decades, the amalgamation of two major

technological fields: Computation and Communication. As was to be expected from

its title, this book discusses various aspects of Computation in chapters dealing with

the processing of information at a particular locale by a single computer. Perhaps

surprisingly, this chapter on Computer Networks considers the transmission of infor-

mation across the globe and the processing of this information, perhaps in a multi-

faceted manner, at computers distributed over widespread locations. Another Chap. 9,

describes a different variety of distributed computing in a different context. Still

another Chap. 8, describes the distribution of computing over a cluster of thousands

of pc’s situated in a local network at essentially one location. It also briefly describes

cloud computing. Distributed computing has become a major phenomenon in

computer science.

Perhaps the content of this chapter is not really so surprising to those readers who

are aware of the widespread and burgeoning use of email and text messages sent by

computers over the Internet and World Wide Web and the proliferation of “smart”

cell phones that are really small computers that communicate. This kind of com-

puter activity, called computer networking, has become so common that the word

“google”, referring to searching for information on web pages by means of the

computer system known as the Google “search engine”, has become a verb in

everyday language. How did this per-vasive phenomenon of computer networking

arise? How did the two scientific disciplines of Computation and Communication

amalgamate to yield a new discipline, computer networking, which extends beyond
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scientific domains and penetrates social aspects of life? In what follows, we shall

address these questions to give the reader some background understanding of this

Internet phenomenon and then we shall give an overview of how the Internet works,

especially for computer networking.

In Chaps. 2 and 3, some of the history of Computation is presented. It is shown

that the modern aspects of Computation and Computer Science began in the 1940s

with research on software and the building of early versions of computer hardware.

By contrast, Communication technology is an older field, fairly well-established by

the 1940s. If we limit our attention to electromagnetic (EM) communication, we can

reasonably assert that this field started with the transmission of electrical signals

along copper cables in the 1850s. For the transatlantic cables of that era, this process

is governed by the partial differential equation known as the Kelvin Cable Equation

(e.g. see the book Mathematics of Physics and Engineering by Blum and Lototsky

(2006)). For the somewhat earlier cases of EM communication, the transmission of

telephone signals (Alexander Graham Bell) and telegraph signals (Samuel F.B.

Morse) across land areas, ordinary copper wires (strung on telephone poles) allowed

propagation of EM signals according to the telegraph equation (Again, for engineer-

ing/scientific details see Blum and Lototsky, pages 333–335.) Eventually, commu-

nication engineers (e.g. RCA radio engineers) learned to transmit signals without

wires by electromagnetic (EM) waves traveling in space, by means of a wireless
system of radio transmitters, receivers and antennas. The existence of EM waves in

space was unknown until remarkably postulated by Clerk Maxwell and actually

implied theoretically by Maxwell’s equations in 1864. (This is one of the

profoundest examples of the predictive power of mathematical models of physical

phenomena. See the Blum and Lototsky book for technical details.) To establish that

Maxwell’s prediction and theory of EM waves in space is physically realizable the

physicist Hertz actually generated such waves in a laboratory experiment some 20

years later. It was further postulated by Maxwell and verified by experiments that

EM waves can propagate in a vacuum at the speed of light, which itself consists of

EM waves of various frequencies. Nowadays, computer networks make widespread

use of wireless EMwave connections both for digital data transmission (of text) and

analog signal transmission (of voice and video signals).

In the early days of EM communication, networks of wires were built by

companies like ATT (American Telephone and Telegraph) to connect many tele-

phone users to each other. The technology of these telecommunications networks
was based on a system of central Exchanges to which user wires were connected

(along telephone poles), and in which were installed large switch mechanisms.

Individual users were connected to an Exchange switch mechanism and a system of

user numbers allowed the switches to connect one user caller to another user

respondent. The Exchanges also amplified signals which needed reinforcement

after decay due to transmission losses. Initially, switches were human-operated

(by “operators” manually connecting sockets in an Exchange by plugging in wires).

Later, switches were fabricated as electromechanical relays which were actuated

automatically by circuits acting on the incoming signals. Still later, relays were

replaced by transistor switches. (See the Appendix to Chap. 5 on logical circuitry.)
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The Internet

As the population of phone users grew in the first half of the twentieth century,

single Exchanges could not practically handle the volume of individual telephones

despite large assemblies of sophisticated switches. It became necessary to establish

networks of Exchanges at different geographical locations and to connect the

Exchanges by building higher-levels of super-networks. This was done simply at

first by dividing a city or other region into geographical areas each with their own

numerical area code, which codes became appended to the user numbers, as they

are today. Signals were routed from individual phones to a local area Exchange in a

core network and thence through a “long distance” network of connected area

Exchanges to a destination Exchange having an area code keyed in by the caller and

thence to the called phone number.

As telephone usage continued to grow, a topology of hierarchies of networks of

networks and routing protocols connecting various levels of networks evolved and

was carried over to the computer networks that came later and exist today. Companies

besides ATT (e.g. Verizon, Sprint, Time-Warner) now provide thousands of core
networks, inter-connected by “long-distance” networks often employing fiber optic

cables carrying light waves to achieve greater bandwidth (bits per second transmitted),

and to which “local carrier” networks can connect. Further, wireless connection

networks are now providing transmission of electromagnetic wave signals through

space between radio towers for cell phone communication. The use of wireless

networks proliferated as more devices activated EM radio wave signals. Meanwhile,

the network transmission of text data messages between computers began and quickly

increased in volume and was supplemented by the transmission of accompanying

voice and video images. Many manufacturing companies began producing hardware

for network communication, introducing their own engineering methods. A variety of

methods (protocols) for routing messages through a multitude of networks was

implemented. The result is a complex heterogeneous global network transmitting

digital data messages and analog signals. Gradually, under pressure of government

agencies and industry self-regulations, there evolved a standardized set of basic

protocols (formats of data and transmission procedures) for transmitting analog
(voice and video) signals and digital text data in core networks and between these

networks at distances involving hierarchies of what can be viewed as large switch

Exchanges as described above. Communication paths were extended by means of a

hierarchy of network interconnections to form the vast global network that is now

known as the Internet.

The Internet

The Internet is a global system of wire transmission lines and wireless EM

transmission towers that connects a computer or other device (such as a phone)

first directly to an individual core network (e.g. an ATT or Verizon or Sprint
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network of phone wires and wireless links or a Time-Warner cable network) and

then through a hierarchy of inter-network connections to destinations throughout

the world today. The companies that own and maintain the various communication

core networks and parts of their inter-network connections are known as Internet

Service Providers (ISP). Users gain access to the Internet by subscribing to a service

by an ISP through a phone line, cable line or wireless (antenna) connection, and

from the ISP’s network further access is provided to the global Internet through

network-level interconnections to networks located throughout the world.

There are now thousands of core networks distributed over the world and manifold

means (protocols) of connecting them to each other and to individual users. As in the

early telephone networks, connections are done by means of a system of network

addresses analogous to the early telephone numbers. However, the address system of

the Internet is necessarily more complicated. As we shall see, addresses consist of two

parts: (1) user identifiers (such as names of host computers or the NIC numbers in an

ethernet host described below) and (2) network identifiers analogous to the area codes

in telephone networks. Although there is no single geometry of network connections

many small networks are either in a star configuration (a central node with branches to

all other nodes) or in a ring shape (a closed path of nodes).

Within the physical Internet, a system of “websites”, with installed software

called “web pages”, located at various points in the Internet sprang up to offer

global information services in what is known as the “world wide web” (WWW or

simply “the web”). The web is the “brainchild” of a physicist, Tim Berners-Lee,

who was one of the first to see the information-disseminating/gathering potential of

websites. Besides information exchange, the impact of the web on our modern

lifestyle has been incalculable, notably in virtual social networks (e.g. Facebook
and Twitter) which have captured a vast clientele of active users.

Graphs of Networks

It is convenient to represent the geometric connectivity of a network by a mathe-

matical structure called a graph. A graph can be depicted as a set of points, called

nodes, (in computer-communication networks representing communication or

computer devices like phones, computers, Exchanges etc.) and a set of lines, called

edges, shown as joining certain pairs of nodes, each edge representing a physical

link (wire or wireless connection) joining the pair of nodes in the network. A path in
a graph joining two nodes A and B is a sequence of adjacent edges joining A to B in

the network. The combinatoric properties of graph paths can be quite complex,

reflecting the geometric complexity of communication paths in the network. There

can be many paths joining two device nodes A and B, say by different routes

through Exchange nodes. Algorithms for finding optimum paths (e.g. shortest or

least busy) are among the topics treated in the graph theory of networks. . A brief

survey of graph theory is given in an Appendix to this chapter. It amplifies the

following brief introduction.
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Graph Theory

Graph theory and computing are intertwined in numerous ways. Various special

graphs, such as spanning trees (tree shaped structures which touch all nodes) and

Hamiltonian cycles (closed paths which pass through all nodes once), and various

graph properties with natural names (max-cuts, flows, min-cuts, graph coloring,
graph packing etc.) are main topics in the study of computation and data structures.

Facing the challenge of dealing with problems arising in computer networks of

tremendous sizes and complexity, many areas in graph theory have been stimulated,

enriched and advanced. In particular, combinatorial probabilistic methods and

spectral methods have been playing an increasingly important role.

Efficient randomized algorithms rely on the use of randomness in graphs, that is, on

such probabilistic concepts as random walks along paths wherein successive edges of
a path are chosen probabilistically at nodes where there are several possible choices of

the next edge. Instead of focusing on random graphs with the same probability

distribution on each node and its edges as in classical random graph theory, a general

randomgraph theory has been developed for graphswith any given degree distribution
(of the number of edges at nodes). Instead of previous focusing on a diffusion flow to

generate paths on lattices or structured graphs, there is now a need to consider

percolation flows in any given host graph, such as the contact graphs in the study of

spreading diseases. In addition to random graph models, it is of interest to quantita-

tively analyze properties that a randomgraph satisfieswith high probability. There has

been extensive usage of expander graphs which can be mainly controlled by

eigenvalues (Hoory et al. 2006). Of particular interest is the study of random walks

(or Markov chains) on graphs. Random walks are closely related to statistical sam-

pling and sampling can be used for designing approximation algorithms (Jerrum and

Sinclair 1989). Thus randomwalks are a useful tool for designing robust and efficient

algorithms for searching for desired nodes as seen in many network applications such

as specified Web search, social networking, graph sparsification and network games

(Nisan et al. 2007). Many new research directions remain to be explored. The

Appendix covers some of these. Some immediate references for graph theory follow:

Chung (2010), Hoory et al. (2006), Jerrum and Sinclair (1989), Nisan et al. (2007)

The World Wide Web (The Web)

The web is, in a way, a software counterpart to the Internet hardware. It is a collection

of nodes, called websites, in the Internet containing associated data called web pages
which can be accessed by a computer program called a web browser. The web pages
are regarded as resources in a vast information library and each page is assigned a

unique library address called a UniformResource Locator (URL) that can be used by a

browser to access the page. The readers of this book may have used the well-known

browser for pc’s, Microsoft’s Internet Explorer. Another well-known browser, for
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Mac computers, is Apple’s Safari, available also on the iphone. Browsers employ

special programming devices provided in a special language called HyperText
Markup Language (HTML) together with associated computer implementations

known as Hypertext Transfer Protocols (HTTP). (See Savitch 2001, Chap. 13.)

HTML is a declarative type of programming language, as opposed to the usual

procedural languages like C++ and Fortran. The main HTML programming mecha-

nism for performing browsing of Internet webpages is the hyperlink statement. This is

an active statement in the sense that it can be displayed, usually partly underlined, on a

source computermonitor screen and then activated by amouse click on the underlined

statement text. The click causes a link connection to be executed, using HTTP, from

the source computer to the webpage specified by the URL in the statement text.

These links make requests for services from the webpage which are processed in a

client-server mode, the webpage as server and the source as client. (See below.)

Initially, browsing involved only text messages, but very soon graphic (pictorial)

information was involved, as for example in the transmission of video signals. This

required greater communication channel bandwidth as the connections between

network nodes were required to provide a service called video streaming, which is

real-time transmission of information (i.e. with no delays for storing data).

Protocols: The Technology of Network Transmission of Messages

In the initial stages of the Internet’s evolution, as explained earlier, the telecommu-

nication (voice and then video) protocols technology using hardware devices to

route messages through networks was developed by phone and network companies

and was dominant. But software protocols began to be used for transmission of

digital data between computers. With the rapid increase in volume of computer data

transmission (e.g. email, file transfers, www data), the protocols for these two types

of communication technology converged into a common standard protocol that was

primarily implemented in software but with some hardware assists. A protocol

called Internet Protocol (IP) became the common Protocol of choice for both types

of communication. IP was combined with a Transmission Control Protocol (TCP),

to form a suite of standards called TCP/IP which was widely adopted as a stack of
major protocols in response to recommendations of the Internet Society, a profes-

sional society of Internet experts, working through its Internet Engineering Task

Force. We shall give a summary overview of TCP/IP software protocols below

from the perspective of computer data communication. We shall only mention

briefly the use of these protocols for telecommunications, as we regard this as

more a part of communication engineering rather than computer science. Neverthe-

less, we shall keep in mind a broader view of the Internet as not one large

homogeneous data transmission network but rather as a system of thousands of

networks of various types, such as the core networks mentioned earlier and LANs

of computers, all interconnected in hierarchies of networks of networks. The initial

organizational principle of telephone networks with area Exchange nodes
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connected in super-networks has been carried over to the Internet in a modified and

extended form in which the old Exchanges are replaced by hardware devices called

routers. A router is located at a network node and has an address which allows it to

receive messages from other routers or from computer host nodes in the Internet.

A router is installed by a local network administrator with tables of addresses of

other nodes in the network to which messages can be forwarded to reach an ultimate

destination address.

In about 1977, to further standardize network protocols the International

Standards Organization (ISO) proposed an overall seven-layer model of network

message processing called the Open Systems Interconnection (OSI) model which

serves as a rough but not mandatory guide to the implementation of computer

networking, including TCP/IP. Before we present the OSI model it is useful to

retrace some of the early development steps in computer networking.

Implementation of Computer Networks – The Ethernet

Let us go back in time and retrace the development steps in the computer network-

ing phenomenon and ask how it came to pass. How did computers, (the desktops,

laptops and hand-held “smart phones”) come to supplement and even replace

ordinary telephones as a user device of communication? Computer engineers

early recognized that computers can be connected in local area networks (LAN’s)

to collaborate on large computations in a distributed manner or simply to transmit

data files to each other. The first widespread computer communication network

technology was the ethernet, a system which interconnects a LAN of computers by

high-quality cables. The ethernet was developed at several places in the 1970s but

one of the principal developments was at the Xerox Palo Alto Research Center

(PARC), where it was named “ethernet” in a report authored by Dr. Robert

Metcalfe. An alliance with Digital Equipment Corporation and Intel Corporation

then provided the hardware for standard 10 megabit/s (10 Mbs) local ethernet

networks in which data was transmitted at the 10 Mbs rate.

In an ethernet network, communication of digital data, say from a pc in a LAN to

other pc’s is done by a two-way (send–receive) connection of the pc to a cable. The

connection is made through terminals on a circuit card called a NIC (network
interconnection card) installed in a slot on the computermotherboard, the terminals

being connected to a high-quality ethernet cable. Each NIC is given a unique address

when it is manufactured. The NIC is under control of commands issued by the pc

central processor. The data in computer send/receive signals processed by the NIC

are coded as sequences of voltage pulses modulating a carrier signal and represent

digital messages originally coded as sequences of binary bits (00s or 10s). Since
several computer nodes in a LAN are usually connected to a single ethernet cable,

there can be a resource-sharing contention problem for the cable. The nodes compete

for connection to the cable. The NIC handles this contention by what is known as a

CSCD protocol in which the Carrier is first Sensed (CS) to determine if another NIC
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has begun sending a signal on the cable, in which case the NIC seeking to use the

cable waits for a specified time delay. If two NICs find the cable to be free they are

able to begin sending at about the same instant, but then there is a possibility of

collisions of traveling pulses from the two NICs. The NICs detect collisions (CD) by

measuring higher voltage levels of the pulses, in which case one of the NICs ceases

its transmission. A queueing protocol allows fair access of contending computers to

the cable, that is, every computer node gets a turn to connect.

This is one way computer-communication is handled at the hardware layer.

The ISO Open Systems Interconnection Model (OSI)

Data for messages is also handled at higher levels or “layers” in the computer before

transmission. To specify standard protocols for text message handling the Interna-

tional Standards Organization (ISO), in about 1977, proposed a seven-layer model

called the Open Systems Interconnection (OSI) model. We give a brief description

of the seven OSI layers.

Starting with the bottom layer, the layers are labeled suggestively as follows:

(1) Physical, (2) Data link, (3) Network, (4)Transport, (5) Session, (6) Presentation,

(7) Application . To simplify the explanation of networking, we shall loosely think

of a protocol as a computer process (program) residing in the kernel of an operating

system (see Chap. 6) which performs a “service” to a user client who wishes to send

a message from a host computer (the source) to another host (the destination) on the
Internet. The protocols are arranged in the seven layers approximately to form a

stack. A protocol interfaces with protocols in the layers above it during receipt of a

message in the destination node and interfaces with protocols in the layer below it

during sending a message from the source node. At each layer, information

pertaining to transmitting the message is adjoined to the message during the sending

process and stripped from it during receiving. (We shall elaborate later.) The

functionality of the various layers is as follows.

Layer 1 deals with the electrical and physical hardware of the communication

medium (e.g. the NIC and cables as in an ethernet network described above).

Layer 2 handles data formats of messages, for example as ethernet frames and

error-correcting codes. It also handles media access control (MAC) and logical link

control for the network flow of data in the transmission media as in ethernet cables,

for example. Layer 3 deals with the network flow path of message units called

packets, routing packets through a network from a source node to a destination
node. The particular layer 3 protocol mentioned earlier as IP manipulates Internet

addresses of source and destination nodes. Layer 4 has protocols for the transmis-

sion of data between nodes on a network flow path. The Internet Protocol (IP) in

layer 3 and the Transmission Control Protocol (TCP) in layer 4 together constitute

TCP/IP, the layer 4 protocol of choice. It is the main protocol for nearly all Internet

transmissions. Higher layer protocols are often ignored. TCP is implemented

as a very large C computer program installed on all nodes in the Internet.
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It has been implemented to run under Unix and Windows operating systems.

In the Unix version, there are about 15,000 lines of source code. (See Wright and

Stevens 1995)

How the OSI Layers Work

TCP, by virtue of its program size, is clearly too large to explain fully in the space

available here. However, we can give some general idea of how the layer protocols

are actuated by an application program’s interface (API) with the TCP protocol by

considering a typical user API for sending a message from a computer node.

This will also give some idea of how Internet addressing is organized. The API is

programmed by using a set of functions called the Sockets system. There are two

main Sockets systems, one running under Unix operating systems and the other

under Windows. The functions they provide are similar and are discussed below in

the section labeled Sockets. For now it suffices to know that there are functions for

the user to send and receive messages as sequences of bytes. Of course, there are

also functions to specify a source address and a destination address (such a pair of

addresses being called a socket).
To send a message from a source computer node to a destination node, the top

OSI layer 7 in the source node begins by providing the part of the interface for an

application program (API) which generates the raw data for a message. See later

discussion of Sockets for other parts of an API, in particular, such information as

the source address and the destination address. Layer 7 passes this message

information to layer 6, which may convert the raw data from one specified format

to another (e.g. compress it or decompress it). Then layer 5 opens and controls a

communication session between the two computers regarded as network nodes.

(The session will be closed when the message is received in the destination node.)

In response to a send function call, layer 4 provides the actual software for various

communication protocols. (There are two main layer 4 protocols, UDP and TCP.

We focus on TCP.)

In the layer 4 TCP protocol, it is assumed that each computer node in a network

has a unique IP address, the first part of which is a network name (assigned by the

Network Information Center agency) and the second part of which is a host name
(of a node) as assigned by a local network administrator. (Networks have these

administrative agents.) TCP also provides a port number to complete an IP address.

The port number can be thought of as designating a mailbox register (a memory

cell) within the source node which TCP/IP uses to send a message from the node.

In the destination address the port number designates a register to receive a

message. Each message to be transmitted includes the two IP addresses, source

and destination, as fields in its structure. For example, one address format, called

IPv4, has a 32-bit address field in a multi-part notation consisting of four bytes

(8 bits per byte) separated by dots as in 131.44.2.1, in a dotted-decimal byte value

format, denoting the bit string 000011001011000000001000000001.
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These four byte fields can be coded to represent a network address, a subnetwork

address, and a host address. (See below.) The IP protocol converts a name-form of

address to an IP numeric dotted-decimal address format as just illustrated.

The name-form is like a familiar email address, for example: “computer-name.

university-name.edu” where “edu” is a domain name.A TCP/IP “service” program,

the Domain Name System, maps name addresses to (numeric) addresses in the

dotted-decimal notation. TCP/IP assumes that there are four classes of networks,

A, B, C, D. The interpretation of the field for an IP numeric address depends on the

network class. As stated, an IP address has two parts: a network part and a host part.

In a Class A network, which are very large networks (only 127 of them), there can

be 17 million hosts. The first byte field in the dotted-decimal code is the network

part and the host part is in the remaining three fields. In a class B network, (about

16,384 of them), there can be 65,000 hosts. Accordingly, the network part of an IP

address uses fields 1 and 2 and the host part fields 3 and 4. In a Class C network,

(about 2 million in the Internet with addresses using fields 1,2,3), there can only be

254 hosts with addresses in field 4. Next, the data link layer obtains the source MAC

address, which is the hardware media address of the source NIC and the hardware

destination MAC address of the NIC in the API specified destination node computer

or router device to which the message is to be forwarded. The message is then sent

to a node determined by TCP/IP on the first hop of its network path.

To receive the message, TCP/IP works in the computer or the local router in the

node determined to be on the first hop. Working up the OSI layers, the first layer

hardware receives the message. Next, the data link layer tests if the message MAC

address matches the NIC address of the first layer. If not, the message is forwarded.

If so, but if the destination IP address network part does not match one of the

router’s accessible networks, again the message must be forwarded. The router

consults its routing table (installed by the network administrator) and finds the best

path to forward the message on the next hop. For each such hop the message passes

from one router to the next which repeats the upward layer protocols. Finally,

assuming no errors have occurred, a router is reached for which the destination

address is that of a computer on one of its own networks. The message is received

by being passed up the OSI layers in the destination node, with protocols working to

strip out the data part and deliver it to the designated port address.

We have so far omitted to mention that in the source node every message is

partitioned into smaller strings of bytes called packets. In the source node layer 4,

the IP protocol adds Internet routing information to the message and in the data link

layer various headings are appended to the packets of data to create the basic units of

data transmission called packets that are passed finally to layer 1 for transmission.

TCP/IP guarantees that a packet is received by the destination node by causing an

acknowledging message to be sent back to the source node. If a message is not

acknowledged within a certain time, then TCP/IP re-sends the message. The alterna-

tive layer 4 protocol, called UDP, does not guarantee receipt of packets, which may

still be an acceptable situation. Packets are the units of information transmitted by all

protocols. Besides data, packets contain header fields for the destination address and

possibly transmission control information. Also packets which are parts of the same
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message may be disassembled for independent transmission to the destination node

where they are reassembled in correct order.

How is a packet transmitted through the Internet? We have just stated that this

process involves determining a route (a path) and then actually forwarding the

packet along the route. Routing and forwarding of packets from a source node S can

sometimes be done simply by providing a routing table of addresses of possible next

hops (the nodes immediately connected to node S) that should be used to forward the

message to the destination node D. In certain simple cases, the construction of such a

table can be based on the destination node address and the graph-theoretic structure of

the network in a reasonably sized neighborhood N that contains S and D, provided

such a neighborhood exists. For long network distances between S and D there are

obvious problems. Aside from the unlikely existence of a reasonably sized network

neighborhood N, the growing number of core networks (in the millions) and hosts per

network (hundreds) soon exhausted the available IP address codes for networks.

According to the book “Network Processors” by Ran Giladi, Morgan Kaufmann,

2008, many engineering solutions to this problem were considered including,

obviously, enlarging the IP address to 128 bits (called IPv6). However, the major

engineering solution, called Classless Inter-Domain Routing (CIDR) , added a hierar-

chical structure of subnets to network addresses and a method of introducing supernet

aggregates aswell, with a simple address coding notationwhich could be handled both

by hardware protocols at nodes and by software protocols. This complicated the node

addressing schemes but resulted in smaller routing tables. One must keep in mind that

networks and network technology evolved dynamically and continue to do so in a

variety of modes by the many network companies engaged in the engineering of

networks; e.g. Bittorrent, Comcast Cable, T-Mobile USA, Time-Warner Cable,

VeriSign, Cisco Systems, Hurricane Electric, Netsumo Limited and organizations

like the American Registry for Internet Numbers (ARIN), to mention a few listed as

involved in the Internet ON 2010 Conference. As stated above earlier, the Internet has

a heterogeneous complex graph structure. It does notwork perfectly. TheOSImodel is

not perfect but it imposes some order on the protocols, as illustrated above and the

huge TCP/IP program helps to make the OSI model work reasonably well. The cited

Wright-Stevens book is a detailed account of TCP/IP and theHeld book explains some

general underlying concepts regarding the routing function. Routing and routers, with

their tables installed in kernels by local administrators, are clearly a critical part of

the TCP/IPmanagement ofmessage transmission. The tables at nodes in the kernels of

the operating systems can be installed by system programs known as daemons coded

by local administrators and can be updated to delete network paths which have

malfunctioned or to add new paths when new nodes are installed.

Besides its function as a general communication protocol, TCP/IP includes

various “well-known” service utilities (e.g. printing) at reserved or “well-known”

port numbers in the range 1–1,023. TCP/IP runs under Unix operating systems

using Unix system calls. As already noted, the C language code for the Unix TCP/IP

program has about 15,000 lines of code. TCP/IP also runs under Windows operating

systems. (See Quinn and Shute 1996) Both systems use the Sockets constructs as

explained next and in the following Appendix.
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Sockets

To understand how protocols work one must keep in mind that the protocols’ job is to

transmit messages created by application programs. So the application programmer

must be able to interface with the OSI layers, in particular, layer 4. An application

programming interface (API) between an application program and TCP/IP is provided

by a software system known as Sockets,which comprises system functions for setting

up communication links between programs running on computers in a network. In the

OSI model, this API lies between layers 5–7 and layer 4. It consists of functions for

programming network applications. (See the following example using JAVA.) There

are two main implementations of Sockets, one for Unix operating systems, called

Berkeley Sockets (See the book byWright and Stevens cited above.) and the other for

Windows operating systems, called Winsock (See Quinn and Shute cited above.)

The Sockets API is based on a client-server model of network communication.

Traditionally in systems software, a server is a process (program) that receives

requests to provide a service to another process as client, such as requests to print a
file. In a network, such requests are in the form of messages sent from a client node
to the server node according to a protocol in the TCP/IP suite of programs. The

server may send messages back to the client. Thus, the client-server model provides

two-way communication links (CL) between processes. For further details on

Sockets and the MPI message-passing protocol please see the following Appendix

to Computer Networks.

The Larger Contexts of Messages

The Sockets software system is based on a unit of transmitted digital information

called a message. A message is a sequence of data bytes together with headers

containing address information to be transmitted by the TCP/IP protocol. But the

larger context of a message is treated in the other OSI layers. For example, as noted

above, a message can be a single sequence of bytes called a packet or a sequence of
packets derived from a larger unit of communication such as a video signal, in which

case the correlations between successive packets must be maintained by a suitable

transmission algorithm. Routing of such inter-dependent packets from a source to a

destination node in a network can be a complicated transmission process in modern

networks which consist of connections which embody the convergence of the

technologies of data and traditional tele-communications (phone or video)

connections. The optimal transmission of inter-dependent packets over multiple

paths is still an open problem. In the following Appendix we consider only

the transmission of independent individual messages. Even in this basic case, the

choice of an optimum route from source to destination node in the network graph can

be a difficult problem for TCP/IP. Note that routing tables need not use optimum

routes to a destination.
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In some wired networks, the multi-packet transmission problem is somewhat

ameliorated by the existence of designated nodes having custom hardware such as

routers, switches, hubs or firewalls which perform the task of forwarding messages

in a pre-assigned manner. Likewise the problem is more manageable in managed
wireless networks which have special nodes called access points which are pre-set

to send messages to other nodes. In other unrestricted networks, called wireless ad
hoc networks, each node is able to forward messages to other nodes based on the

existing constraints of network connectivity; i.e. how busy is a path between two

nodes. This is a dynamic network infrastructure involving such communication

parameters as delay, jitter, and packet loss. The choice of an “optimum” route

requires solving a mathematical optimization problem which may involve multiple

multi-hop paths. Multi-path routing of video streams may improve bandwidth and

overall video quality, but the distribution of transmission bit rates over possible

paths must be determined by an appropriate optimization procedure. This is still an

open problem.

Telephone and Data Transmission

At the outset we alluded to analog telecommunications as opposed to digital data

transmission, citing the familiar analog example of telephone networks. Voice

communication is an important adjunct to computer networking. Indeed, a common

method of connecting a computer to the Internet utilizes ordinary telephone

connections by means of standard telephone-type twisted-pairs of insulated copper

wires. Initially, communication engineers assumed that the rather simple telephone

twisted-pair cable could only transmit signals at frequencies in the baseband of

300–3,400 Hz (1 Herz(Hz) ¼ 1 cycle per sec), which is adequate for voice service.

It was gradually recognized that twisted-pair cables can also transmit signals in the

broadband range 4KHz–4 MHz. This led to the development of the Digital Sub-

scriber Line (DSL) technology which allows simultaneous transmission of voice

and digital data signals on a twisted-pair cable by multiplexing them at different

frequencies.

A telephone company ISP (e.g. Verizon or ATT) can provide a DSL service

channel to a user that allows user baseband telephone voice communication

multiplexed with user broadband communication for computer data transmission

on the Internet. This requires a simple pluggable installation of a standard

router device connected to the user’s computer network card for router input and

the router output connected as input to to an ISP device called amodem (modulator-

demodulator) which is connected to the service provider’s phone jack. The modem

receives computer digital data from the router arranged in packets, as described

earlier, coded in binary bit patterns and converts the binary sequences into an EM

broadband carrier signal modulated at two voltage levels representing the 0 and 1

bits. This modulated carrier is transmitted, possibly together with a voice signal,
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from the user’s location over the ISP phone line to an ISP local station (Exchange)

whence it is forwarded to the ISP’s network connected to the Internet.

Another type of telephone communication that uses the Internet is the VOIP

(voice over the Internet) service provided by companies like Skype. In VOIP,

ordinary telephone voice signals are transmitted directly over the Internet, that is,

without passing through any telephone lines. This requires an analog-to-digital-

converter-and-adapter device that samples the analog voice signal coming from the

phone, converts the sample voltages to say 8-bit digital codes and arranges these as

packets suitably IP-addressed based on the dialed phone number and source phone

number. It forwards the packets by connecting to the Internet through an appropri-

ate computer node.

Appendix 1

Sockets

The Sockets API functions are based on the client-server model of interprocess

communication in a network. One process (e.g. a program on a network node) is

designated as a server, which receives a request for a “service” from another

process called a client. The request is in the form of a message sent from client to

server over the network according to a TCP/IP protocol. The server may send a

message back to the client as part of the protocol. Thus, the client-server model

provides for two-way communication of messages between processes in a network.

If the network is observing the MPI standard for message-passing (as in a cluster
network described in the HPCC chapter), then since MPI does not assume a client-

server model of message-passing, Sockets must impose a virtual client-server

model on the processes.

As we shall see, for two computer processes to communicate there must be

established a communication link (CL) between them. The CL is established by the

two processes working in clever collaboration, as we shall now explain. The CL has

a socket at each of its two ends. A socket is just a data structure in each process. The
CL consists of the two sockets, the network hardware (e.g. cables and/or EM

towers) forming the communication path and some parts of TCP/IP. We can

represent this scheme by the following diagram, where the arrows indicate two-

way message-passing:

client-node < - - - - - - - -CL- - - - - - - - - > server-node .

Assume the client node has the IP address cli-IP and the server node has the IP

address serv-IP, as explained earlier. The client socket is formed by assigning a

client port number, say cli-port, as part of a socket address in the client node. Then

the address of the client socket is assigned to a variable, say cli-sock-addr, so that

cli-sock-addr ¼ (cli-IP, cli-port ).
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Similarly, for the server node the socket address is assigned, so that

serv-sock-addr ¼ (serv-IP, serv-port) .

For programming purposes the sockets must have names, say cli-sock-id and

serv-sock-id. The pair of socket data structures can then be represented as

client_socket ¼ (cli-sock-id, cli-sock-addr, serv-sock-addr)

server_socket ¼ (serv-sock-id, serv-sock-addr, cli-sock-addr).

The Sockets API provides functions that the two processes can use to create

such data structures in their own nodes, as we shall show below. Once such a pair

has been created, the two processes are peers as far as message passing is concerned.

The virtual client-server relation used to create the structures can then be ignored.

Each process can receive/send messages from/to the other over the CL by referring

to its own socket name and the associated data structure. To see this we first describe

the main Socket operations for doing the send and receive message functions.

Socket Send/Receive Functions

In Unix Sockets a process can send a message by calling one of the functions write,

sendto, or sendmsg. Winsock provides the send function. We shall use the simpler

Winsock syntax send to explain the general idea of sending a message by means of

Sockets. Likewise, we shall use the Winsock syntax recv for receiving a message.

In Sockets, messages consist of bytes in a buffer array. Let bufc be such an array

in process X. (Recall that the context from which bufc is constructed is not part

of the Sockets system.) Suppose X wants to send bufc to process Y over a link

CL which has been created with X as the client and Y as the server. (See below.)

The socket for X in this CL is named cli-sock-id. The send function has the

following header:

int send(int cli-sock-id, char *bufc, int lngthbufc, int n) .

The parameter lngthbufc is the size of bufc in bytes. n indicates certain options

which we ignore for the moment and use 0 as the default for a normal send. Recall

that the * symbol in C++ denotes a pointer to an array. The function call statement

send(cli-sock-id, *bufc, lngthbufc, 0)

when executed in X causes TCP/IP to assemble an appropriate packet (or packets)
of bytes from bufc and pass it to protocol IP to be sent to serv-IP given in serv-sock-

addr in the socket data structure cli-sock-id above. serv-IP is the node where Y is

located. In X, the packets may be partly disassembled and then delivered to TCP at

serv-port where the message is extracted and placed in a temporary buffer buftemp.

To receive the message, Y must execute a recv call. The header for the recv

function is

int recv( int serv-sock-id, *bufs, int lngthbufs, int n ) .
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The call

recv( serv-sock-id, *bufs, lngthbufs, 0)

executed in Y interacts with TCP at serv-port. If a message has already been

delivered to serv-port, it will be transferred from buftemp to bufs and process

Y can proceed with its own execution. Otherwise, Y waits at the recv call until a

message is sent by X. After recv executes, TCP sends an acknowledge message to

cli-node at cli-port as obtained from serv-sock-id. TCP in cli-node interacts with

cli-port to obtain the acknowledgment and the send call is completed. Process X

can proceed with its own execution.

The send-receive relation between X and Y is symmetric. Clearly, Y can send a

message to X using the same pair of sockets. The client-server aspects are ignored.

The procedure outlined above works with “cli” and “serv” interchanged.

Blocking and Non-blocking Sockets

The sequential logic of the above send-receive procedure poses various questions

about the synchronization of the steps relative to the execution of X and Y.

For example, acknowledgment of receipt of a message could be done at the point

when the message is delivered to buftemp without waiting for a recv call by Y.

In that case, X need not be blocked at the send call waiting for Y to execute a recv.

Another possibility is to allow X to proceed with its execution as soon as its TCP

has transferred the message out of bufc, say to a temporary system buffer. This

would allow execution of X to partly overlap with the remaining communication

steps. Likewise, Y need not be blocked at its recv call waiting for X to do a send

call, but instead Y can be allowed to proceed after some error is returned to the recv

call. Blocking raises the possibility of deadlocks in process execution, as for

example if X sends to Y while Y sends to X with no intervening recv calls. In

this situation, both X and Y would be blocked and be deadlocked. One way to

eliminate deadlocks is to have an automatic timeout set by TCP which would limit

the time a blocked call waits. In Winsock, send has an automatic timeout set by

TCP. For recv the application programmer can set timeouts. Rather than use

timeouts, we consider the choice, provided in Sockets, of declaring a socket as

being blocking or non-blocking when it is created by a call to the function socket.

(See below.) By default, a socket is blocking when it is created. A socket in Unix

can be made non-blocking by a call to fcntl. In that case, the send and receive calls

return whether or not the message passing steps are completed and an error message

indicates either success or the current socket state. An implementation of MPI

(see below) can pass these error messages on to the programmer for error handling.
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Creating a Client-Server Socket Pair under MPI Implementations

Assume that the MPI standard has been implemented on a network of nodes.

This means that a library of MPI functions (see below) is available for the network

programmer. For simplicity of explanation, we assume that in an application

there is exactly one process per node. The application programmer organizes

the application into a set of quasi-independent processes which can execute

concurrently and independently until they reach points where messages must be

sent/received to-from each other. (See the HPCC chapter on clusters.) Under MPI,

to identify processes each process is assigned an integer rank. Its assigned rank can
be retrieved by a process by an MPI function call. There is also an application

configuration file provided by the programmer defining the desired interprocess

connection topology. Suppose an application program requires that the process of

rank i needs to communicate with the process of rank j. Suppose as a rule that i < j

is taken to mean that process i is the client and process j the server. (Other rules are

possible.) The following steps will set up a pair of socket structures on a link CL

connecting processes i and j for two-way message-passing.

Step 1. In the client and server nodes the respective processes make the following

respective calls to the system socket function

cli-sock-id ¼ socket (AF-INET, SOCK-STREAM, 0)

serv-sock-id ¼ socket(AF-INET, SOCK-STREAM, 0).

Here AF-INET is the internet address family which conforms to the TCP/IP

protocol for node addresses and port numbers, SOCK-STREAM is the TCP reliable

message-passing protocol and the 0 tells the process to use the TCP protocol.

As shown, these calls return a proper socket name for programming.

In the client-server model, a server can have many clients. Therefore, the steps

for creating a server socket are different from those for a client. The Sockets library

provides functions for these steps. We begin with the server.

Step 2a. The bind function and serv-sock-addr.

Having created the socket name serv-sock-id for the server socket in step 1, the

server process (rank j by our rule) calls the Sockets bind function to bind a socket

address serv-sock-addr to serv-sock-id. This involves somewhat complex

declarations using the predefined Sockets struct sockaddr_in which is given in

two files sys/sockets.h and sys/types.h which must be included in the MPI imple-

mentation. This C++ struct has the following format (with comments /*. . .*/):
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The address serv-sock-addr is calculated by the following C++ declarations and

assignments using this struct:

Here port(j,i) is the implementer’s function to compute a port number for

serv-sock-addr. htonl is a Sockets function that converts it to a compatible network

format. The constant INADDR_ANY is a wild card that allows Sockets to select an

IP address from a cluster system file. The call to bind is is then

bind(serv-sock-id , (struct serv-sock-addr* ), &serv-sock-addr, sizeof(serv-

sock-addr));

The bind returns 0 on success and SOCKET_ERROR on failure (as, for example,

when another process has already bound to this socket address).

Step 2b. The Server Listens and Accepts Calls.

In step2a, a server socket address serv-sock-addr is associated with serv-sock-id. A

server socket must be created for each client that needs to communicate with this

server. Each server socket has the same serv-sock-addr but a different cli-sock-addr.

Sockets provides two functions, listen and accept, to create multiple client links to

a server. Note that a node having multiple communication links to other nodes must

be set up with a server socket as follows.

The listen call causes the server to queue up to five client connect calls (see

below) in a certain time interval. A loop of accept calls then completes each connect

call in the queue by creating a new server socket for each client. All clients send

their connect calls to the same address serv-sock-addr. TCP delivers all connect

calls to the same server port. It also delivers the client port number so that the server

socket can be created. The header for the listen function is as follows:

int listen(int serv-sock-id, int quelength).

serv-sock-id is the is the socket id in the bind call in step2a above and quelength is

an integer between 1 and 5 establishing a queue of that length while the server

receives connect calls. The listen calls returns 0 on success and SOCKET_ERROR

on failure.

An accept call following the listen call blocks until a client connect call is made

to serv-sock-id. The accept function has the following header:

int accept (int serv-sock-id, struct sock-addr_in *client, int *addrlength).

where serv-sock-id is as above, and the other parameters are OUT parameters for a

client address and address length. A connect call (see below) to the server causes
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TCP to send a packet from a client node to the port address in serv-sock-addr in the

server node. The packet contains the client address cli-sock-addr. This is extracted

by an accept function call and placed in the socket data structure of a new server

socket for that client. cli-sock-addr is also stored in the struct pointed to by *client

for possible other server use.

Step 3. The Client Connect Call

In a client node, the client socket in a link to the server is created by a connect call.

The Sockets connect function has the following header:

int connect(int cli-sock-id, struct sock-addr_in *servaddr_in, int namelength).

Here cli-sock-id is created in the socket call in the client as above. *servaddr_in

is a pointer to a server address struct which must be initialized by the client using

the same calculations of sin_port and sin_addr as in the server above. A connect

call in a client node causes a client address (IP address of client node and a port

number) to be bound to cli-sock-id, creating the client socket in the client node.

Then a message containing the client address is sent to the server as a request for

action by an accept call. As explained above, the accept will extract the client

socket address and create the server socket data structure in the server. This

completes the connection link between the two processes. Connect calls can be

set to be nonblocking, in which case they return an error if not completed by an

accept. They can also be repeated in a loop until accepted.

MPI Collective Communication

Suppose there are p processes organized as a group in an application program.

(See Chap. 7 on HPCC clusters.) In many applications, a process must send its

partial results to all p processes or receive messages from all p processes in a group.

This is called collective communication under the MPI standard. To simplify

programming, MPI provides for various collective functions which carry out

such collective communications with a single call, which is then automatically

implemented by multiple send’s and recv’s by the p processes. A collective

function call must be made by all p processes involved. Here are some examples

provided in MPI implementations.

Broadcast. A source process sends the same message to the other p-1 processes,

Gather. A destination process receives a message from each of the other p-1

processes and concatenates the messages in a buffer in rank order.

AllGather. A multiple Gather in which all processes are treated as destinations and

each ends up with the same concatenated message.

The headers are as follows.

int Broadcast (char *buffer, int bufferlength, int source).
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Each process must issue the same call statement specifying the same source node

and buffer.

int AllGather( char *out_buffer, int out_buffer_length, int *in_buffer).

out_buffer is the address of the buffer in each process of the message sent by that

process to all processes. in_buffer is the address of the buffer in each process for

receiving and concatenating the messages sent by all processes. The length of in-

buffer must be at least px(out_bffer_length).

For other collective message functions see Snir et al. (1996) below.

Appendix 2

Graph theory

This Appendix r is based in part on the Noether Lecture given by Chung (2009)

In this chapter on Computer Networks we mentioned some applications

of mathematical methods to the construction of algorithms used in transmission

of information in computer networks. One of the main sources of such methods is

the subject called graph theory, which we now summarize. A graph, G(V, E),

(defined above in the Introduction to Computer Networks as a means to represent

and study networks) can be viewed literally as a set of points V called nodes or
vertices and a set of arcs E called edges connecting certain pairs of vertices. More

abstractly, a graph defines a binary relation on a set V. In a computer network, such

as the Internet or a part of it, a graph representing the network has vertices which

represent individual signal transmission devices such as computers and cell phones,

locations of such devices called web sites, and transmitter relay towers which

forward messages. The edges represent wired or wireless connections between

pairs of vertices. Transmission of messages between vertices can be analyzed in

terms of connections in a graph representing the network. Obviously, the vertices

representing transmission towers will connect to multiple edges (i.e. have high

degree as graph vertices) connecting to neighbor vertices which are devices

which originate messages. Likewise, webpage sites will be vertices of high degree
if they are popular resources, since other devices will access them by interlink

commands. These network operational factors impose some structure on their

graphs. To comprehend these structural features we can apply graph theory.

Graph theory deals with combinatorial and geometric problems that arise in

analyzing properties of a graph G(V, E), such as the existence of paths consisting of
chains of adjacent edges, connectivity of two vertices by paths, shortest paths

connecting two vertices, and other path properties. These combinatorial/geometric

problems are obviously relevant to computer networks represented as graphs. In the

past decade, graph theory has gone through a remarkable transformation. The

change is in large part due to the huge number of data sets that we are confronted

124 F.C. Graham and E.K. Blum



with in modern computer networks with their numerous webpages. A main way to

sort through numerous massive data sets is to build and examine an abstract

network formed by intrinsic interrelations between the data sets. For example,

Google’s successful WWW search algorithms are based on a WWW graph which

contains all Webpages as vertices and hyperlinks as edges. (See Introduction.) The

search for a particular piece of information is based on the relations between data

sets relevant to that piece of information. To appreciate the scope of the search

problem one must be aware of the diversity of data sets which exist at various

websites. There are now all sorts of information networks such as biological

networks built from biological databases and social networks formed by email

(e.g. Facebook), phone calls, instant messaging, etc., as well as various types of

physical networks which span the earth. Graph theory can be used to comprehend

and analyze the functioning of these networks.

Graph theory has 200 years of history studying the mathematical structures

G(V, E) called graphs. In the past, graph theory has been used in a wide range of

areas. However, never before have we been confronted by graphs of not only

tremendous sizes (number of vertices) but also extraordinary richness and com-

plexity (of edge configurations) both at a theoretical and a practical level. Numer-

ous challenging problems have attracted the attention and imagination of

researchers from physics, computer science, engineering, biology, social science

and mathematics. A new area of “network science” has emerged, calling for a sound

scientific foundation and rigorous analysis of networks for which graph theory is

ideally suited. These real-world networks and their associated graphs are massive

and complex but illustrate amazing coherence. Empirically, most “real-world”

graphs have the following properties:

• Sparsity – The number of edges is within a constant multiple of the number of

vertices.

• “Small world phenomenon” – Any two vertices are connected by a short path.

Two vertices having a common neighbor are more likely to be neighbors

(A neighbor of a vertex, v, is a vertex connected to v by an edge).

• Power law degree distribution – The degree of a vertex is the number of its

neighbors. The number of vertices with degree j is proportional to j�b for some

fixed positive constant b.

In dealing with graphs representing such networks, many basic questions arise:

What are basic structures of such large networks? How do they evolve from smaller

networks? (In the real world networks begin small and then grow as they are used;

e.g. more cell phones add new vertices). What are the underlying principles

that dictate their communication behavior? How are subgraphs related to a large

(and often incomplete) host graph? What are the main graph invariants that capture

the properties of such large graphs?

To answer some of these questions, we shall first delve into the wealth of knowl-

edge from the past although it is often not enough. In the past 30 years, there has been a

great deal of progress in combinatorial and probabilisticmethods as well as spectral
methods. However, traditional probabilistic methods mostly consider the same
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probability distributions for all vertices or edges while real graphs have non-uniform

and clustered distributions of edges. The classical algebraic and analytic methods are

efficient in dealing with highly symmetric structures while real-world graphs are quite

the opposite. Guided by examples of real-world graphs, we are compelled to impro-

vise, extend and create new theory and methods. Here we will discuss new results and

ideas in several topics in graph theory which are rapidly developing. The topics

include randomgraph theory for any given degree distribution, percolation in general
host graphs, PageRank for representing quantitative correlations among vertices and

the game theory aspects of graphs.

Some Basics of Graph Theory

Before proceeding with these topics, it may be convenient to the reader if we review

at this point some basic aspects of graph theory. Graphs G(V, E) are often depicted

by diagrams consisting of points denoting the vertices in V and arcs drawn between

certain pairs of points denoting the edges in E. An arc may have an arrowhead,

in which case the edge is directed, indicating an ordered pair of vertices. While

providing an intuitive visual geometric picture of a graph, such diagrams become

somewhat less visually apprehended when the graph size |V| (number of vertices in V)

is large. Therefore, we shall resort to other than visual representations by diagrams

and introduce certain matrix representations of graphs G(V, E) that arise naturally.

Let V have n vertices, i ¼ 1,. . .,n.
The incidence matrix I is an array of |V| rows and |E| columns where the entry

I(i, j) is 1 if vertex i is an endpoint of edge j and 0 otherwise;

The adjacency matrix A is an nXn matrix where entry A(i, j) ¼ 1 if there is an

edge from vertex i to vertex j and otherwise 0. (More generally A(i, j) ¼ q if there

are q edges joining vertex i to vertex j. e.g. a roadmap can have two cities connected

by q roads.)

The Laplacian (or admittance orKirchoff) matrix is the matrix D – A, where D

is a diagonal matrix having the degree of vertex i in element dii. The normalized

Laplacian is the matrix I – D1/2 AD1/2.

The distance matrix (d(i, j)) has d(i, j) equal to the length of the shortest path

connecting vertex i to vertex j., where length of a path is the number of edges

(hops). If there is no path, the distance is infinite. It is a simple exercise to prove that

d(i,j) can be derived from powers of A:

namely, d(i, j) ¼ min (m such that Am (i, j ) is nonzero).

Hint: the (i, ,j) element b(i,j) in A2 is given by b(i, j) ¼ ∑k A(i, k) A(k, j) which

is non zero if there is a path of length 2 from i to j passing through some vertex k.

Then use induction on m where Am ¼ A Am�1.
A different notion of distance applies to a graph labeled by numerical weights

assigned to the edges to represent various geometric properties such as actual

distances between vertices as in a roadmap or a computer network. Consider such
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a labeled graph G having non-negative weights. It is of interest to find the shortest

weighted path between vertices. E. Dijkstra in 1959 published an algorithm to find

such shortest paths. This algorithm finds the shortest path from a vertex v in G to

any other vertex in G. It is typical of purely computer science algorithms, involving

a clever search strategy.

Random Graph Theory for General Degree Distributions

The primary subject in the study of random graph theory is the classical random
graph G(n, p), introduced by Erdős and Rényi in 1959 (Erdős and Rényi 1959,

1960) (also independently by Gilbert (1959)). In G(n, p), each pair in a set of n

vertices is chosen at random to be an edge with probability p. So for p ¼ ½ say,

about half of the n(n – 1)/2 pairs of vertices are joined by edges chosen “at

random”. Thus in the graphs G(n, p) the set E of edges can be regarded as having

a random-looking geometric structure determined only by p, as opposed to a graph

G(V, E) in which E has a well-determined regular-looking structure, say making the

set V fully connected (e.g. complete) or decomposable into a few connected

components. In a series of papers, Erdős and Rényi gave an elegant and compre-

hensive analysis describing the formation of E (i.e. the evolution of G(n, p)) as p

increases. In real-world network graphs, the network evolves say by adding

edges as more network components come on line. It seems clear that a random

graph G(n, p) must have the same expected degree at every vertex. (e.g. Consider

how p ¼ ½ restricts the creation of edges and thus equalizes the average degree at

each vertex.) Therefore, G(n, p) does not capture some of the main behaviors of

real-world graphs which, as suggested above, usually have different degrees at

different vertices. In the WWW graph, at some vertices designating popular

websites the degree (number of neighbors) would be much higher than at unpopular

websites. Nevertheless, the approaches and methods in the classical random graph

theory of G(n, p) provide the foundation for the study of non-classical random

graphs with general degree distributions. We will present some classical random

graph theory.

Many random graph models have been proposed in the study of information

networks graphs but there are basically two different models. The “on-line” model

mimics the real-world growth or decay of a dynamically changing network and the

“off-line” model of random graphs consists of families of graphs with some

specified edge probability distributions.

One on-line model is based on the preferential attachment scheme which can be

described as “the rich get richer”. The preferential attachment scheme has been

receiving much attention in the recent study of complex networks (Barabási and

Albert 1999; Mitzenmacher 2004) but its history can be traced back to Vilfredo

Pareto in 1896, among others. At each tick of the clock (so to speak), a new edge is

added so that each of its endpoints is chosen with probability proportional to their

degrees. The higher the degrees, the more likely is an edge added. It can be proved
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(Bollabás and Riordan 2003; Chung and Lu 2006; Mitzenmacher 2004) that the

preferential attachment scheme leads to a power law degree distribution. There

are several other on-line models including the duplication model (which seems to

be more feasible for biological networks, see Chung et al. 2003c).

There are two main on-line graph models for graphs with general degree distribu-

tion – the configuration model and random graphs with expected degree sequences.

A random graph in the configuration model with degree sequence at the n vertices d1,

d2, . . . , dn is defined by choosing a random matching on∑di “pseudo nodes” where

the pseudo nodes are partitioned into parts of sizes di, for i ¼1, . . ., n. Each part is

associated with a vertex. By using results of Molloy and Reed (1995, 1998), it can be

shown (Aiello et al. 2000) that under somemild conditions, a randompower law graph

with exponentb almost surely has no giant component if b � b0 where b0 is a solution
to the equation involving the Riemann zeta function

z b� 2ð Þ � 2 z b� 1ð Þ ¼ 0:

The general random graph model G(w) with expected degree sequence w ¼ (w1,

w2, . . . ,wn) follows the spirit of the Erdős-Rényi model. The probability of having

an edge between the ith and jth vertices is defined to be wiwj/Vol (G) where Vol (G)

denotes∑wi. Furthermore, in G(w) each edge is chosen independently of the others

and therefore the analysis can be feasibly carried out. It was proved in Chung and

Lu (2002b), that if the expected average degree is strictly greater than 1 in a random

graph in G(w), then there is a giant component (i.e., a connected component of

volume a positive fraction of that of the whole graph). Furthermore, the giant

component almost surely has volume dVol (G) + O(√n log3.5 n). where d is the

unique nonzero root of the following equation (Chung and Lu 2006):

X
wie

�wid ¼ 1� dð Þ
X

wi: (7.1)

Because of the robustness of the G(w) model, many metric properties can be

derived. For example, a random graph in G(w) has average distance almost surely

equal to (1 + o(1)) logn/logw* where w* ¼ ∑ wi
2 /∑wi and the diameter is almost

surely Y(log n/ log w* ) provided some mild conditions on w are satisfied (Chung

and Lu 2002a). For the range 2 < b < 3 where the power law exponents b for

numerous real networks reside, the power law graph can be roughly depicted as

an “octopus” with a dense subgraph having small diameter O(log log n), as the core,

while the overall diameter is O(log n) and the average distance is O(log log n)

(see Chung and Lu 2006).

For the spectra of power law graphs, there are basically two competing approaches.

One is to prove analogues of Wigner’s semi-circle law (which is the case for G(n, p))

while the other predicts that the eigenvalues follow a power law distribution

(Faloutsos et al. 1999). Although the semi-circle law and the power law have very

different descriptions, both assertions are essentially correct if the appropriate matri-

ces associated with a graph are considered (Chung et al. 2003a, b). For b > 2.5, the
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largest eigenvalue of the adjacency matrix of a random power law graph is almost

surely (1 + o(1)) √ m where m is the maximum degree. Moreover, the k largest

eigenvalues have power law distributionwith exponent 2b�1 if the maximum degree

is sufficiently large and k is bounded above by a function depending on b, m and w.

When 2 < b < 2.5, the largest eigenvalue is heavily concentrated at cm3�b for some

constant c depending on b and the average degree. Furthermore, the eigenvalues of

the (normalized) Laplacian satisfy the semi-circle law under the condition that the

minimumexpected degree is relatively large (Chung et al. 2003b). The one-linemodel

is obviously much harder to analyze than the on-line model. One possible approach is

to couple the on-line model with the off-line model of random graphs with a similar

degree distribution. This means to find the appropriate conditions under which the on-

line model can be sandwiched by two off-line models within some error bounds.

In such cases, we can apply the techniques from the off-line model to predict the

behavior of the on-line model (see Chung and Lu 2004).

Random Subgraphs in a Given Host Graphs

Almost all information networks that we observe are subgraphs of some host graphs

that often have sizes prohibitively large or with incomplete information. A natural

question is to attempt to deduce the properties of a random subgraph from the host

graph and vice versa. It is of interest to understand the connections between a graph

and its subgraph. What invariants of the host graph can or cannot be translated to its

subgraph? Under what conditions, can we predict the behavior of all or any

subgraphs? Can a sparse subgraph have very different behavior from its host

graph? Here we discuss some of the work in this direction. Many information

networks or social networks have very small diameters (in the range of log n), as

dictated by the so-called “small world phenomenon”. However, in a recent paper by

Liben-Nowell and Kleinberg (2008) it was observed that the tree-like subgraphs

derived from some chain-letter data seem to have relatively large diameter. In the

study of the Erdős-Rényi graph model G(n, p), it was shown (Rényi and Szekeres

1967) that the diameter of a random spanning tree is of order √n, in contrast with the
fact that the diameter of the host graph Kn is 1. Aldous (1990) proved that in a

regular graph G with a certain spectral bound s, the expected diameter of a random

spanning tree T of G, denoted by diam(T) has expected value satisfying

c s
p
n=log n�E diam Tð Þð Þ� c0

p
n log n=

p
s

for some absolute constant c. In (Chung et al.), it was shown that for a general host

graph G, with high probability the diameter of a random spanning tree of G is

between c √n and c0√n log n, where c and c• depend on the spectral gap of G and the

ratio of the moments of the degree sequence.
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One way to treat random subgraphs of a given graph G is as a (bond) percolation

problem. For a positive value p � 1, we consider Gp which is formed by percola-

tion, retaining each edge independently with probability p, and discarding the edge

with probability 1 � p. A fundamental problem of interest is to determine the

critical probability p for which Gp contains a giant connected component. In the

applications of epidemics, we consider a general host graph being a contact graph,

consisting of edges formed by pairs of people with possible contact. The question of

determining the critical probability then corresponds to the problem of finding the

epidemic threshold for the spreading of the disease. Percolation problems have long

been studied (Grimmett 1989; Kesten 1982) in theoretical physics, especially with

the host graph being the lattice graph Zk . Percolation problems on lattices are

known to be notoriously difficult even for low dimensions and has only been

resolved very recently by bootstrap percolation (Balogh et al.; Balogh et al.).

In the past, percolation problems have been examined for a number of special host

graphs. Ajtai, Komlos and Szemerédi considered the percolation on hypercubes (Ajtai

et al. 1982). Their work was further extended to Cayley graphs (Borgs et al. 2005a, b;

Borgs et al. 2006; Malon and Pak 2002) and regular graphs (Frieze et al. 2004). For

expander graphs with degrees bounded by Alon et al. (2004) proved that the percola-

tion threshold is greater than or equal to 1/(2d). In the other direction, Bollobás et al.

showed that for dense graphs (where the degrees are of order Y(n)), the giant

component threshold is 1/r where r is the largest eigenvalue of the adjacency matrix.

The special case of having the complete graph Kn as the host graph concerns the

Erdős-Rényi graph G(n, p) which is known to have the critical probability at 1/n as

well as the “double jump” near the threshhold. For general host graphs, the answer

has been elusive. One way to address such questions is to search for appropriate

conditions on the host graph so that percolations can be controlled. Recently it has

been shown (Chung et al. 2009) that if a given host graph G satisfies some (mild)

conditions depending on its spectral gap and higher moments of its degree sequence,

for any e > 0, if p > (1 + e)/d* then asymptotically almost surely the percolated

subgraph Gp has a giant component. In the other direction, if p < (1 � e)/d*then
almost surely the percolated subgraph Gp contains no giant component. We note that

the second order average degree is d* ¼ ∑ dv
2 /∑dv where dv denotes the degree of v.

In general, subgraphs can have spectral gaps very different from that of the host

graph. However, if a graph G has all its nontrivial eigenvalues of the (normalized)

Laplacian lying in the range within s from the value 1, then it can be shown (Chung

and Horn 2007) that almost surely a random subgraph Gp has all its nontrivial

eigenvalues in the same range (up to a lower order term) if the degrees are not

too small.

PageRank and Local Partitioning

In graph theory there are many essentially geometrical notions, such as distances
(typically, the number of hops required to reach one vertex from another), cuts
(i.e., subsets of vertices/edges that separate a part of the graph from the rest),
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flows (i.e., combinations of paths for routing between given vertices), and so on.

However, real-world graphs exhibit the “small world phenomenon”, so any pair of

vertices are connected through a very short path. Therefore the usual notion of graph

distance is no longer very useful. Instead, we need a quantitative and precise formula-

tion to differentiate among nodes that are ‘local’ from ‘global’ and ‘akin’ from

‘dissimilar’. This is exactly what PageRank is meant to achieve. In 1998, Brin and

Page (1998) introduced the notion of PageRank for Google’s Web search algorithm.

Different from the usualmethods of patternmatching previously used in data retrieval,

the novelty of PageRank relies entirely on the underlying Webgraph to determine the

‘importance’ of a Webpage. Although PageRank is originally designed for the

Webgraph, the concept and definitions work well for any graph. Indeed, PageRank

has become a valuable tool for examining the correlations of pairs of vertices (or pairs

of subsets) in any given graph and hence leads to many applications in graph theory.

The starting point of the PageRank is a typical random walk on a graph G with

edge weights wuv for edges (u, v). The probability transition matrix P is defined by:

P (u, v) ¼ wuv/du where du ¼ ∑v wuv. For a preference (or seed) vector s, and a

jumping constant a > 0, the PageRank, denoted by pr(a, s) as a row vector, can be

expressed as a series of random walks as follows:

pr a; sð Þ ¼ a
X

k

1� að ÞksPk: (7.2)

Equivalently, pr(a, s) satisfies the following recurrence relation:

pr a; sð Þ ¼ asþ 1� að Þpr a; sð ÞP: (7.3)

In the original definition of Brin and Page (1998), s is taken to be the constant

function with value 1/n at every vertex, motivated by modeling the behavior of a

typical web surfer who moves to a random page with probability a and clicks a

linked page with probability 1 � a . Because of the close connection of PageRank

with random walks, there are very efficient and robust algorithms for computing

and approximating PageRank (Andersen et al.; Berkhin; Jeh and Widom 2003)

This leads to numerous applications including the basic problem of finding a ‘good’

cut in a graph. A quantitative measure for the ‘goodness’ of a cut that separates a

subset S of vertices is the Cheeger ratio:

hðSÞ ¼ E S; S�ð Þ =volðSÞjj

where E(S, S¯) denotes the set of edges leaving S and vol (S) ¼ dv. The Cheeger

constant hG of a graph is the minimum Cheeger ratio over all subsets S with vol

(S) � vol (G)/2. The traditional divide-and-conquer strategy in algorithmic design

relies on finding a cut with small Cheeger ratio. Since the problem of finding any cut

that achieves the Cheeger constant of G is NP-hard (Garey and Johnson 1979),

one of the most widely used approximation algorithms was a spectral partitioning
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algorithm. By using eigenvectors to line up the vertices, the spectral partitioning

algorithm reduces the number of cuts under consideration from an exponential

number of possibilities to a linear number of choices. Nevertheless, there is still a

performance guarantee provided by the Cheeger inequality:

2hG � l� hf
2=2� hG

2=2

where hf is the minimum Cheeger ratio among subsets which are initial segments

in the order determined by the eigenvector f associated with the spectral gap l.
For large graphs with billions of nodes, it is not feasible to compute eigenvectors.

In addition, it is of interest to have local cuts in the sense that for given seeds and the

specified size for the parts to be separated, it is desirable to find a cut near the seeds

separating a subset of the desired size. Furthermore, the cost/complexity of finding

such a cut should be proportional to the specified size of the separated part but

independent of the total size of the whole graph. Here, PageRank comes into play.

Earlier, Spielman and Teng (2004) introduced local partitioning algorithms by

using random walks with the performance analysis using a mixing result of Lovasz

and Simonovitz (1993) (also see Mihail 1989). As it turns out, improved by using

PageRank instead of random walks, there is an partitioning algorithm (Andersen

et al.) for which the performance is supported by a local Cheeger inequality for a

subset S of vertices in a graph G:

hS � lS� hg
2=8log vol Sð Þ� hS

2=8log vol Sð Þ

where lS is the Dirichlet eigenvalue of the induced subgraph on S, hS is the local

Cheeger constant of S defined by hS ¼ min {h(T): T � S} and hg is the minimum

Cheeger ratio over all PageRank g with the seed as vertices in S and a appropriately

chosen depending only on the volume of S. This approximation partition algorithm

can be further improved using the fact that the set of seeds for which the PageRank

leads to the Cheeger ratio satisfying the above local Cheeger inequality is quite

large (about half of the volume of S). We note that the local partitioning algorithm

can also be used as a subroutine for finding balanced cuts for the whole graph. Note

that PageRank is expressed as a geometric sum of random walks in (7.2). Instead we

can consider an exponential sum of random walks, called heat kernel pagerank,

which in turn satisfies the heat equation. The heat kernel pagerank leads to an

improved local Cheeger inequality (Chung 2007, 2009) by removing the logarith-

mic factor in the lower bound. Numerous problems in graph theory can possibly

take advantage of PageRank and its variations, and the full implications of these

ideas remain to be explored.
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Network Games

In morning traffic, every commuter chooses his/her most convenient way to get to

work without paying attention to the consequences of the decision to others.

The Internet network can be viewed as a similar macrocosm which functions

neither by the control of a central authority nor by coordinated rules. The basic

motivation for each individual can only be deduced by greed and selfishness. Every

player chooses the most convenient route and use strategies to maximize possible

payoff. In other words, we face a combination of game theory and graph theory for

dealing with large networks both in quantitative analysis and algorithm design.

Many questions arise. Instead of the existence of Nash equilibrium, how can we

compute and how fast does it converge to the equilibrium? There has been a great

deal of progress in the computational complexity of Nash equilibrium (Chen and

Deng 2006; Daskalakis et al.). The analysis of selfish routing comes naturally in

network management. How much does uncoordinated routing affect the perfor-

mance of the network, such as stability, congestion and delay? What are the

tradeoffs for some limited regulation? The so-called “price of anarchy” refers to

the worst case analysis to evaluate the loss of collective welfare from selfish

routing. There has been extensive research done on selfish routing (Roughgarden

and Tardos 2002). The reader is referred to several surveys (Feldmann et al. 2003;

Kontogiannis and Spirakis 2005) and some recent books on this topic

(Roughgarden 2006).

Many classical problems in graph theory can be re-examined from the perspec-

tive of game theory. One popular topic on graphs is chromatic graph theory. For a

given graph G, what is the minimum number of colors needed to color the vertices

of G so that adjacent vertices have different colors? In addition to theoretical

interests, the graph coloring problem has numerous applications in the setting of

conflict resolution. For example, each faculty member (as a vertex) wishes to

schedule classes in a limited number of classrooms (as colors). Two faculty

members who have classes with overlapping time are connected by an edge and

then the problem of classroom scheduling can be viewed as a graph coloring

problem. Instead of having a central agency to make assignments, we can imagine

a game-theoretic scenario that the faculty members coordinate among themselves

to decide a non-conflicting assignment. Suppose there is a payoff of 1 unit for each

player (vertex) if its color is different from all its neighbors. A proper coloring is

then a Nash equilibrium since no player has an incentive to change his/her stragegy.

Kearns et al. (2006) conducted an experimental study of several coloring games on

specified networks. Many examples were given to illustrate the difficulties in

analyzing the dynamics of large networks in which each node takes simple but

selfish steps. This calls for rigorous analysis, especially along the line of the

combinatorial probabilistic methods and generalized Martingale approaches that

have been developed in the past 10 years (Chaudhuri et al. 2008). Some work in this

direction has been done on a multiple round model of graph coloring games

(Chaudhuri et al. 2008) but more work is needed.
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Summary

It is clear that we are at the beginning of a new journey in graph theory, emerging as

a central part of the information revolution. It is a long way from the “seven bridges

of K¨onigsberg”, a problem asked by Leonhard Euler in 1736. In contrast with its

origin in recreational mathematics, graph theory today uses sophisticated combina-

torial, probabilistic and spectral methods with deep connections with a variety of

areas in mathematics and computer science. In this chapter appendix, some vibrant

new directions in graph theory have been selected and described to illustrate the

richness of the mathematics involved as well as the utilization through major

threads of current technology. The list of the sampled topics is by no means

complete since these areas of graph theory are still rapidly developing. Abundant

opportunities in research, theoretical and applied, remain to be explored.
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M. Ajtai, J. Komlós and E. Szemerédi, Largest random component of a k-cube, Combinatorica

2 (1982), 1–7.

D. Aldous, The random walk construction of uniform spanning trees, SIAM J. Discrete Math.

3 (1990), 450–465.

N. Alon, I. Benjamini, and A. Stacey, Percolation on finite graphs and isoperimetric inequalities,

Annals of Probability, 32, no. 3 (2004), 1727–1745.

R. Andersen, F. Chung and K. Lang, Detecting sharp drops in PageRank and a simplified local

partitioning algorithm, Theory and Applications of Models of Computation, Proceedings of

TAMC 2007, 1–12.

R. Andersen, F. Chung and K. Lang, Local graph partitioning using pagerank vectors, Proceedings

of the 47th Annual IEEE Symposium on Founation of Computer Science (FOCS’2006),

475–486.

J. Balogh, B. Bollobás and R. Morris, Bootstrap percolation in three dimensions, Annals of

Probability, to appear.

J. Balogh, B. Bollobás and R. Morris, The sharp threshhold for r-neighbour bootstrap percolation,

preprint.

Y. Bao, G. Feng, T.-Y. Liu, Z.-M. Ma, and Y. Wang, Describe importance of websites in

probabilistic view, Internet Math., to appear.

A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286 (1999),

509–512.

P. Berkhin, Bookmark-coloring approach to personalized pagerank computing, Internet Math.,

to appear.

E. K. Blum and S. V. Lototsky, World Scientific Pub. Co, 2006, pages 333–337.

B. Bollobás, C. Borgs, J. Chayes, O. Riordan, Percolation on dense graph sequences, preprint.

B. Bollobás, Y. Kohayakawa and T. •Luczak, The evolution of random subgraphs of the cube,

Random Structures and Algorithms 3(1), 55–90, (1992)

134 F.C. Graham and E.K. Blum



B. Bollabás and O. Riordan, Robustness and vulnerability of scale-free random graphs. Internet

Math. 1 (2003) no. 1, 1–35.

C. Borgs, J. Chayes, R. van der Hofstad, G. Slade and J. Spencer, Random Subgraphs of Finite

Graphs: I. The Scaling Window under the Triangle Condition, Random Structures &

Algorithms, 27, (2005), 137–184.

C. Borgs, J. Chayes, R. van der Hofstad, G. Slade and J. Spencer, Random subgraphs of finite

graphs: II. The lace expansion and the triangle condition, Annals of Probability, 33, (2005),

1886–1944.

C. Borgs, J. Chayes, R. van der Hofstad, G. Slade and J. Spencer, Random subgraphs of

finite graphs: III. The phase transition for the n-cube, Combinatorica, 26, (2006), 395–410.

S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine, Computer

Networks and ISDN Systems, 30 (1–7), (1998), 107–117.

K. Chaudhuri, F. Chung and M. S. Jamall, A network game, Proceedings of WINE 2008, Lecture

Notes in Computer Science, Volume 5385 (2008), 522–530.

J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis

(R. C. Gunning, ed.), Princeton Univ. Press (1970), 195–199.

X. Chen and X. Deng, Settling the complexity of 2-player Nash-equilibrium, The 47th Annual

IEEE Symposium on Foundations of Computer Science, FOCS 2006, 261–272.

F. Chung, The heat kernel as the pagerank of a graph, Proc. Nat. Acad. Sciences, 105 (50), (2007),

19735–19740.

Fan Chung at the AMS-MAA-SIAM Annual Meeting, January 2009, Washington D. C.

F. Chung, A local graph partitioning algorithm using heat kernel pagerank, WAW 2009, Lecture

Notes in Computer Science, vol. 5427, Springer, (2009), 62–75.

Fan Chung, Graph theory in the information age, Notices of AMS, 57, no. 6, July 2010, 726–732.

F. Chung, P. Horn and L. Lu, Diameter of random spanning trees in a given graph, preprint.

F. Chung and P. Horn, The spectral gap of a random subgraph of a graph, Special issue of

WAW2006, Internet Math,.2, (2007), 225–244.

F. Chung, P. Horn and L. Lu, The giant component in a random subgraph of a given graph,

Proceedings of WAW2009, Lecture Notes in Computer Science, vol. 5427, Springer, (2009),

38–49.

F. Chung and L. Lu, Connected components in random graphs with given expected degree

sequences, Annals of Combinatorics 6 (2002), 125–145.

F. Chung and L. Lu, The average distances in random graphs with given expected degrees,

Proceedings of National Academy of Sciences 99 (2002), 15879–15882.

F. Chung, L. Lu and V. Vu, Eigenvalues of random power law graphs, Annals of Combinatorics

7 (2003), 21–33.

F. Chung, L. Lu and V. Vu, The spectra of random graphs with given expected degrees,

Proceedings of National Academy of Sciences 100 no. 11 (2003), 6313–6318.

F. Chung, L. Lu, G. Dewey and D. J. Galas, Duplication models for biological networks,

J. Computational Biology 10 no. 5 (2003), 677–687.

F. Chung and L. Lu, Coupling online and offline analyses for random power law graphs, Internet

Math. 1 (2004), 409–461.

F. Chung and L. Lu, Complex Graphs and Networks, CBMS Lecture Series, No. 107, AMS

Publications, 2006, vii + 264 pp.

F. Chung and L. Lu, The volume of the giant component of a random graph with given expected

degrees, SIAM J. Discrete Math., 20 (2006), 395–411.

F. Chung and S.-T. Yau, Coverings, heat kernels and spanning trees, Electronic Journal of

Combinatorics 6 (1999), #R12.

Douglas E. Comer,"Internetworking with TCP/IP, Volume 1: Principles, Protocols, and Architec-

ture," Prentice Hall, 1995Also see G. Held, Ethernet Networks , 1994, John Wiley for earlier

ethernet-based versions.

C. Daskalakis, P. Goldberg and C. Papadimitriou, Computing a Nash equilibrium is PPAD-

complete, to appear in SIAM J. on Computing.

7 Computer Networks 135
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K¨ozl. 5 (1960), 17–61.

M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the Internet topology,

Proceedings of the ACM SIGCOM Conference, ACM Press, New York, 1999, 251–262.

R. Feldmann, M. Gairing, T. Lucking, B. Monien and M. Rode, Selfish routing in non-cooperative

networks: A survey, Lecture Notes in Computer Science, vol. 2746, (2003), pp. 21–45.

A. Frieze, M. Krivelevich, R. Martin, The emergence of a giant component of pseudo-random

graphs, Random Structures and Algorithms 24, (2004), 42–50.

M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP-

Completeness, W. H. Freeman and Co., San Francisco, 1979, x + 338 pp.

E. N. Gilbert, Random graphs, Annals of Mathematical Statistics 30 (1959), 1141–1144.

G. Grimmett, Percolation, Springer, New York, 1989.

S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bulletin of AMS,

43, no. 4, October 2006, 439—561.

J. Hopcroft and D. Sheldon, Manipulation-resistant reputations using hitting time, WAW 2007 ,

LNCS, vol. 4863, (2007), 68–81.

G. Jeh and J. Widom, Scaling personalized web search, Proceedings of the 12th World Wide Web

Conference WWW, (2003), 271–279.

M. Jerrum and A. Sinclair, Approximating the permanent. SIAM J. Comput. 18, (1989)

1149–1178.

M. Kearns, S. Suri and N. Montfort, An experimental study of the coloring problem on human

subject networks, Science, 322 no. 5788, (2006), 824–827.

H. Kesten, Percolation theory for mathematicians, volume 2 of Progress in Probability and

Statistics. Birkh¨auser Boston, Mass., (1982).

J. S. Kong, N. Sarshar and V. P. Roychowdhury, Experience versus talent shapes the structure of

the Web, PNAS, 105, no. 37 (2008), 13724–13729.

S. Kontogiannis and P. Spirakis, Atomic selfish routing in networks: a survey, Lecture Notes in

Computer Science, vol. 3828, (2005), 989–1002.

David Liben-Nowell and Jon Kleinberg, Tracing information flow on a global scale using Internet,

PNAS, 105, no. 12, (2008), 4633–4638.

L. Lovász and M. Simonovits, Random walks in a convex body and an improved volume

algorithm, Random Structures and Algorithms 4 (1993), 359–412.

L. Lovász, Random walks on Graphs, Combinatorics, Paul Erdős is Eighty, Vol. 2, Bolyai Society
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Chapter 8

High Performance Computing

and Communication (HPCC)

James M. Pepin

Introduction

As announced in the hardware Chap. 5, there is a relatively new paradigm of

computation in which a single very large application problem is partitioned into

subproblems which can be computed concurrently by being distributed over a

network of computers, called a cluster, usually a large-scale local area network

(LAN) in which nodes of the network can be connected directly through large

switches to build a message-passing system. The given application problem is

computationally intensive and would take too long to solve on an existing single

computer, however fast it may run. For certain problem structures it is possible to

partition the problem into components which can be run concurrently to achieve a

speed-up that makes the solution feasible. An example is the solution of a linear

system Ax ¼ b where A is a nxn matrix and b is an n-dimensional vector. The

Jacobi iterative method can be programmed to work on K groups of m components

of x concurrently where n ¼ Km. The K groups are computed on K nodes of the

cluster. The individual K computers installed as the nodes in the network, usually

pc’s, operate independently on their assigned subproblems for the most part, but at

various points in their computations they must communicate with each other by a

message-passing protocol which permits the cooperative exchange of intermediate

results needed in the various subproblems. This paradigm is designated as high

performance computing and communication (HPCC).

This chapter describes both the technical and managerial problems in HPCC. One

of the technical problems is how to program an application in a format suitable for

concurrent computation. In this chapter we give only one example of how this can be

done by a programmer making use of MPICH, a library of subroutines that provides

sophisticated procedures for message-passing between the nodes computing the
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subproblems. In Chap. 9, some general programming techniques are given for

distributed/parallel execution of large applications.

The class of HPCC computing paradigms described in this chapter are

characterized as being implemented by installing complex hardware switches

connecting a large local area network of pc’s and a related message-passing

software library such that these systems do not require or use the Internet protocols

described in Chap. 7 on Computer Networks.

HPCC at the University of Southern California designates both the paradigm and

the physical facility where it is practiced, the center for High Performance Com-

puting and Communication. We acknowledge the assistance of Maureen Dougherty

in providing data on the USC HPCC facility implemented on the campus at the

University of Southern California (USC). This facility exemplifies the many

versions of HPCC implemented at major universities and research labs.

At USC, the HPCC center was founded in 2000 as a resource dedicated to

supporting intensive research computing and the networking capabilities needed

to achieve it. HPCC was and is part of the campus information technology (IT)

organization. Before HPCC was created the campus IT functions were supported as

part of the academic computing mission of the campus IT organization. At USC

campus IT merged with the engineering school IT support group in the mid-1980s.

The combined function delivered IBM mainframe computing, departmental and

research group focused mini-computers and mini-supercomputing resources. As the

computing and networking landscape increased in complexity and scope USC

determined that a tightly focused HPCC center would provide a competitive

advantage to researchers engaged in large-scale computing.

USC had provided large-scale research computing with three large mini-super

computer systems (HP-SPP, IBM-SP2 and SGI-2000) at the end of the 1990s.

At that time there was a shift in the focus of large-scale computing away from

purpose-built super systems toward collections of commodity-based hardware

connected in local networks called clusters. Also USC was the ‘regional network’

service provider for higher-education sites in the region via the Los Nettos research

and education network. These services were different enough from ‘production IT’

services like mail, web and other day-to-day functions that the transition to a stand-

alone cluster was a logical step.

All of these services and components make up what the National Science

Foundation (NSF) is calling Cyber-Infrastructure (CI). CI is becoming a critical

piece of the national science infrastructure. Over the past 10 years computing, data

management and communications have become a larger part of the toolkit that

scholars are using to move science forward. The most recent report from NSF is

called CF21, Cyber-infrastructure Framework for the twentyfirst century. It

describes a CI eco-system which spans lab and departmental resources, campus-

wide resources such as HPCC and national resources like the Teragrid HPCC

environment. The emergence of “team science” projects like the Large Hadron

Collider and other national and international collaborations requires a new

approach to computation which leads many campuses to develop organizational

structures like HPCC.
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HPCC at USC, as mentioned earlier, evolved as a unit of the campus IT

structure. At some universities the evolution of research support for large-scale

computation may have not been part of the campus IT organization. Each university

has a different organizational culture. There are three common themes that have

evolved supporting CI. The first is the one used at USC, described below. The

second is one based on supporting research CI from an organization base in the Vice

Provost (or Vice President) office for research. This model allows focusing on

research needs on a campus where the IT group is built as a production-based IT

‘plumbing’ support group. Many of these campuses do not have a Chief Informa-

tion Officer (CIO) who has leverage across the entire campus community. The third

support model is one that totally distributes the research support back to the

individual research groups. This is commonly seen at very large research

universities with ‘star’ researcher(s). These three templates show up in institutions

focused on research, commonly known as the Research1s (R1s). The rest of the

academic community (comprehensive colleges, 2 year schools etc.) is diverse in

their CI support. In many cases they have minimal central funding of IT itself and

much of the leading edge work will depend on a single faculty member or

researcher to provide leadership and support.

The USC HPCC Center

The USC HPCC Center environment includes two computer clusters, disk storage

facilities, an Ethernet network, large-scale tape sub-systems for data backup,

Myricom switch high performance interconnect networks, software support and

computer room power and A/C infrastructure.

The Clusters

The two computer clusters are two generations of the same management model.

The individual computers (pc’s) in a cluster are called nodes. The first cluster was
built starting in 2001 and consisted of xeon and AMD nodes that were ‘two- flop/

clock’ computers, the standard ‘pc’ chip of the time. It has 1,044 nodes. The “two-

flop” designation means that a node is able to process two floating-point

instructions per process clock cycle. The second cluster employs four-flop/ clock

nodes (the current standard). When the flops/clock changed this started the build of

the second cluster. If one mixes nodes of different rates of processor flops in the

same cluster, then one has problems with developing software that runs in multiple

cores/node with different processing modalities. The second cluster has 1,732

nodes and an increased number of cores per processor as well as flops/clock. The

recent evolution of commodity-based chips has been toward an increase in the

number of cores per processor and flops/clock while not increasing the frequency of
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the chip. This avoids the increased heat that would need to be dissipated by chips as

the frequency is increased. The number of transistors will increase, allowing more

cores and more parallel execution but the raw execution speed of a chip will not

increase. This fundamental shift from the past evolution where clock speeds were

routinely increased has created the cluster systems of today as the ‘standard’ way of

doing HPCC research computing. The use of ‘commodity parts’, e.g. using PC

chips, because they are low cost has caused disruption in the monolithic advances in

performance based on faster single processors. It has also created a ‘programming’

or ‘algorithm’ crisis. Legacy codes and techniques, in many cases, do not map

directly onto systems with 1,000 s of loosely connected heterogeneous pc cores.

The advent of heterogeneous ‘pile of nodes’ clusters has created requirements for

many new and innovative management and design techniques. In the past, cluster

system designers and support staff would only have to procure, configure and support

one (or a few) systems. This meant there was only one operating system instance to

support and update. Today a large cluster can have thousands of nodes where each

node may be running its own operating system on a unique piece of hardware. All of

these nodes have to be managed; i.e. inter-connected, deployed among users and

debugged. USC uses Xcat to manage the nodes. Xcat is an open-source systems

software package developed by IBM. It allows the cluster system manager to deploy

operating systems in an automated way, and configure network addressing and other

routine tasks that would usually be done in a single operating system environment

and distribute them to the nodes. USC has also deployed console services on all the

nodes so that the system administrator can see and act on routine messages about

nodes. Xcat also can be used to start and stop the entire cluster or portions of the

cluster. To effectively use the cluster a node-access scheduling system is deployed.

At USC this is the system called PBS/Maui/Torque. Analogous to an OS scheduler

(Chap. 6), this software suite works at the node level and takes user requests for

cluster services and schedules access to nodes to user jobs based on number of nodes

requested, memory usage, time required and other usage parameters. There are many

different access-scheduling systems for clusters. PBS is the one USC selected in the

early days and maintains since changing scheduling systems would require signifi-

cant operational changes for the user community.

Cluster Network Switch Fabrics

The USC HPCC clusters have network switch fabrics to support message-passing

between nodes and access to file systems. An Ethernet network is used to connect

nodes to file servers. This uses the Ethernet network interface cards and cable

connections (NICS etc.) that are standard on a commodity PC (See Chap. 7).

The early nodes had 100 Mb/s Ethernet circuits on the system cards but more

recently this has been upgraded to 1 Gb/s Ethernet (See Ethernet discussion in the

Computer Networks Chap. 7).
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As stated at the outset, a cluster provides a paradigm and platform for large-scale

computing problems which run too slowly on a single computer for practical

results. The platform is usually a network of commodity computer nodes such as

PC’s. The paradigm requires the user to decompose a large problem into smaller

subproblems which can run independently on the nodes except at points at which

they must exchange intermediate data results before they can continue. The data

exchange is done by message-passing (MP) according to a standard known as MPI

(Message-Passing Interface). (See the Computer Networks Chap. 7). For internode

message-passing, the clusters at USC provide network connections by a switch
fabric which employs Myrinet switches connecting Myrinet links (full-duplex

Myrinet cables). (See the Guide to Myrinet-2000 Switches and Switch Networks,
Myricom Inc., revision 27 August 2001.) Switch fabrics are an art as well as a

technology and Myrinet switches enhance the art by permitting a variety of fabric

topologies. The first cluster was based on Myrinet switch fabrics providing 2 Gb/s

connections and the newer cluster is based on 10 Gb/s connections. Myrinet switch
fabrics are usually Clos-based networks, a multi-stage network topology

(introduced by Charles Clos, Bell System Technical Journal, March 1953) described

in an example below. An advantage of a Clos network such as Myrinet’s, is that it

reduces packet latency compared to Ethernet, at the cost of a more complex switch

fabric. Large-scale benchmark cluster programs using Clos networks in Myrinet-

2000 switch enclosures can be 30–40% more efficient in execution of message-

passing than ordinary switching networks. As explained in the citedMyricomGuide,

a Myrinet-2000 switch is built as a package (or enclosure) that has as basic building
blocks a 16-port crossbar switch, which is implemented on a single chip, the

XBar16. A crossbar switch is perhaps the simplest switch in switching circuit

design, consisting of so-called horizontal wires (or bars) conducting what can be

thought of as input signals and such horizontal lines being crossed by vertical lines
(or crossbars) for conducting output signals. The XBar16 chip has 16 horizontal

bars i ¼ 1 � 16 for inputs and 16 vertical bars for output lines, j ¼ 1 � 16. At each

possible junction (i, j) of a horizontal bar i and a vertical crossbar j, there is a switch

which can connect line i to line j, say a transistor switch (see Logic Circuits,

Appendix to Chap. 5) which is normally “open” (non-conducting). To connect

input line i to output line j the transistor switch at (i, j) is closed by applying a

control signal which makes the transistor conduct. In some Myrinet switch package

networks, only some of the 16 horizontal and/or vertical bars in an XBar16 are used,

as in the package described below. It should be recognized that in a crossbar switch

(or any other) the roles of “input” and “output” lines in a circuit are reversible in that

once a switch at (i, j) has been closed circuit signals can flow from vertical “output”

line j to horizontal “input” line i.

As an example of the application of a Myrinet enclosure, consider a cluster of

only 128 nodes for which it is required to be able to connect any cluster node to any

other. The following Myrinet multi-stage Clos network switch enclosure can be

used. (We give a verbal description since a diagram is rather intricate and not easy

to follow. In this case the proverbial picture may not be not worth a 1,000 words.

However, the reader is encouraged to draw a connection diagram according to the
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following verbal instructions.) As an initial Clos network stage, there are 16

XBar16 chips installed on 16 circuit cards, say cards i ¼ 1,. . .,16 with eight plugin
ports on each card providing a total of 8 � 16 ¼ 128 ports for connecting cables

making connections to the 128 cluster nodes. These cards are inserted into support

slots in a “lower stage” of the enclosure box. The “back” of the enclosure houses

another eight XBar16 chips. These back crossbar chips are arranged in a backplane
spine “upper stage”. Eight vertical bars of the chip on each of the 16 initial stage

cards are connected so as to fan-out in the ratio 1:8 so as to cross each of the eight

spine chips horizontal bars. (Draw a fan-shaped set of eight lines emanating up from

each initial card.) As seen from each upper stage card there is a total of 16 different

lines from the 16 initial cards fanning in to each upper stage spine chip. Finally,

the 16 vertical bars of each of the spine chips are connected back down in a 1:16

fan-out shape as input lines on each of the 16 initial cards. The resulting switch

fabric is called a spreader network in the Myrinet Guide, since (if you draw the

diagram of connecting lines) the lines look like two sets of spreading fans, one set of

fan lines going up from each of the 16 cards to the eight spine chips and the other set

of fan lines coming down from each of the spine chips to the 16 cards. This spreader

network of lines provides a conducting path from any node port to any other node

port when the appropriate switches are closed. There is obviously a unique shortest

switch path between two nodes connected to ports on the same card. There are also

eight possible minimal paths between any two nodes A and B connected to ports on

different cards i and k, respectively say. These minimal routes traverse three

XBar16 switches: first from the node A port through a switch on card i up to some

available (unused) spine chip, j say, and second through a spine switch on chip j back

down to the designated card k and third through the switch on k to the node B port.

There are eight possible minimal switch paths (one for each value of j) between any

two nodes A and B, so that the message handling capacity (i.e. concurrent message-

passing paths possible between all pairs of nodes) is as large as possible for the total

of 24 XBar16 switches in this Clos enclosure. Large-scale benchmark cluster jobs

using such Clos networks can be 30–40% more efficient in available concurrent

message-passing between nodes. Since most user applications use sub-clusters

smaller than the total cluster size this is acceptable. There are several other intercon-

nection technologies but USC has used Myricom switching for a long time and has

direct relationships with the Myricom founders, one of whom was from USC-ISI.

This has also allowed USC to directly collaborate with the developers of the MPICH

system (message-passing middle-ware; see below).

HPCC Disk Storage

On-line disk based storage is one of the most important components of a cluster and

one of the hardest to design and deploy. The range of I/O requirements in a modern

cluster environment creates severe design tradeoffs. Many applications are

legacy codes from desktop environments that are being scaled up to clusters.
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This causes application to I/O mismatch. If a job requires ten small files on a small

desktop but is going to run on 1,000 nodes, it will require 10 files � 1,000, that is

10,000 files active for that single job. Modern file systems (see Chap. 10) are not

efficient at handling millions of small files in a directory structure. Network based

file systems like NFS are not good at scaling to thousands of simultaneous accesses.

One can deploy local file access on each node but then moving data to and from the

active nodes is not simple. The first cluster used simple NFS based file access with

SAM/QFS file systems. USC also deployed PVFS (a parallel file system) and

experimented with many variations. There is an ongoing research effort in the

national centers that has created file systems like Lustre, but each of the efforts has

similar tradeoffs around small files with large directories. There is also an interest-

ing trend that is doubling disk space every year or 2. This trend has compounded the

problem. Backup of data has become a significant headache as well. USC uses

on-line tape libraries with tapes that can hold 1 TB (terabyte) of data each but the

upward trend in disk has created a capacity race between offline media (tape) and

disk. The cost curve still does not make disk ‘cheaper’ and spinning disk costs

power. Another issue with disk storage is the same that has been seen in processors.

Modern disk technology is driven by commodity usage. This means disks are

designed around desktop or laptop environments where failures are, to some extent,

tolerable. When disks were mainframe quality the failure rates were commensurate

with the use. Today there are 100 s or 1000 s of disks in a disk pool and the failure

rates on SATA disks are high. This means designing RAID environments that take

this into account, with the corresponding complexity and maintenance

requirements.

Heat and Air Conditioning

The current generations of clusters are creating a serious problem in data centers

due to the ‘heat density’ of the clusters. A rack of 40 nodes (what normally fits in a

data center rack based on two socket servers) will consume 15 KW of power at peak

load. This is at the edge of what traditional air-cooling, using raised floor

techniques, can achieve. Before USC HPCC moved to a new data center there

were serious problems with random hot spots because of low airflow. The new data

center that HPCC occupied in early 2007 employed air flow from the ceiling (60%)

and below floor A/C (40%). This was enabled by the high ceiling in the renovated

facility and a 24 in. high raised floor. Many data centers do not have this ability. The

new data center was built with 1.2 Mw of power potentially in two 5,000 sq ft

dedicated HPCC areas. Again this is a fairly unique environment. Many research

facilities are in the 1Mw range for all of their uses based on data centers

built 20–30 years ago. The increase in density of servers is also creating hardship

on many campuses that do not have central facilities to house their clusters. If one

puts 100–200 Kw systems in traditional academic buildings the power and air
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conditioning systems are not able to handle this without major upgrades.

Departmental systems are causing increased costs for building modification as

well as running A/C systems 24/7. To reduce the airflow requirements new rack

cooling techniques are becoming popular. IBM and other vendors are delivering

water-cooled-door based systems, including containment isles and other techniques

to reduce the requirement for larger Computer Room Air Conditioning (CRAC)

units. These doors circulate chilled water though coils that the air leaving the racks

pass through. This design can make a rack up to 30 KW of heat dissipation heat

neutral. Since the cooling is done at the rack the power savings achieved by not

having to circulate large volumes of cold air from CRAC units is significant.

Financing Clusters

USC pioneered a cluster business model called ‘condo clusters’. The business

model actually started at USC in the late 1980s with ‘minicomputers’ that a

department or research group would purchase and the university would match

resources to run the systems in the campus computer center. The advent of clusters

made this model even more logical to employ. Due to the significant facilities costs

to operate and house a cluster in an academic building the central IT group was able

to justify paying for the basic infrastructure of the cluster. This includes network

high-speed interconnection, racks and support costs like power, A/C and systems

support. The condo ‘owners’ buy the compute nodes or storage and install them in

the facilities which central IT procures. The HPCC acts as the purchasing

agent twice a year and the participating research groups buy nodes at this time.

The campus IT also purchases some nodes for use by non-sponsored groups and

students. The cluster owners and general community participate in a shared gover-

nance environment via a HPCC advisory group, plus allocated university procured

node usage via an allocation committee. The central IT budget also covers profes-

sional management of the clusters. This is a significant advantage. Research groups

do not have to sacrifice the careers of a graduate student or post-doc to be a systems

administrator.

OS and Applications Interface Software

A modern computational resource, as noted in Chap. 6, must have an Operating

System (OS). It also needs certain applications interface software. The USC cluster

nodes use Linux as the OS (see Chap. 6) and have a full suite of applications

interface software. One of the key pieces of software is MPICH, which is an

implementation by Argonne National Labs of the Message Passing Interface

(MPI) library. MPI provides a set of interfaces that are used to transmit data and

synchronize data transmission between processes on nodes in the cluster. Simple
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examples include broadcasting and point-to-point communication. (There is a

MPICH2 version that is in development as well.) MPI enables concurrent running

of thousands of cooperating processing threads of an application program across

the nodes of the cluster. It is aware of the capabilities of the high performance

network switching fabric and takes advantage of any ability to reduce message

communication latency and provide high performance data sharing between the

distributed elements of the application program. The USC cluster accommodates a

wide range of programming languages including C and Fortran. Applications

software linking BLAS, Matlab and other subroutines are installed. If a cluster

user requires special software packages, the systems staff will install and support

packages that groups require. Some of the applications are developed to work in a

distributed concurrent cluster mode with thousands of nodes but some still are

optimized for supercomputers of years ago with vector hardware. This is a serious

programming problem that the community is grappling with today.

HTC and HPC

There are two basic classes of computing that are done on the clusters; High

Throughput Computing (HTC) and High Performance Computing (HPC). HTC

jobs are typically one thread (core) or at most several per execution. They can

however use massive amounts of resources as they run for long periods of time or

are run many times with different parameters. HTC jobs do not require high

performance interconnects for message passing but could require lots of I/O.

HTC jobs also sometime create file system bottlenecks due to a large number of

files being created or processed at the same time. HPC jobs take advantage of the

parallel nature of the cluster. They may use a large number of cores (threads) to

execute a single job. HPC jobs require (in many cases) high performance intercon-

nect. To become HPC versus HTC new algorithms will be needed. This will speed

up the results from tasks that are run on single cores today. In the past this was done

by clock rate increase. Now it is done by parallelization of the computation.

The simple example of a numerical application suitable for HPC is the classical

Jacobi iterative method for solving a large linear system Ax ¼ b, where A is an nxn

matrix with large n. If x(m) is an iterate which is an approximation to x, then the next

Jacobi iterate is given in matrix–vector formulation by

xðmþ1Þ ¼ D�1 D� Að ÞxðmÞ þ D�1b; where D is the diagonal of A:

(e.g. see Numerical Analysis and Computation, by E.K. Blum, Addison-Wesley

1972 or Dover 2011). In a component formulation it is easily seen that each ith

component xi
mþ1ð Þ;; i ¼ 1; . . . ; n involves only the previously computed

components of iterate x.
(m) Hence all new ith components of x(m+1) can be

computed concurrently. For large n, say n ¼ Km, the iteration computation can
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be broken down into K sections each dealing with m components and the sections

allocated to K pc’s in a cluster. Each pc updates its designated m components

concurrently with the other pc’s. When its update computation is completed, each

pc will send its new updated components to all other pc’s for the next iteration.

This is done by calling the appropriate message-passing subroutines in the

MPICH library.

To address the changes in programming models required by large-scale clusters,

the academic community needs to develop programs to train the next generation of

scholars in the computational techniques that run in massively parallel cluster

environments. This means developing inter-disciplinary teams from mathematics,

computer science and the various disciplines using the resources. As we move to

Petascale (1,000 trillions operations per second) and then Exascale (1,000�
increase again) the current programming models may not scale to the millions of

cores that will populate a Peta or Exa scale system. The distribution of data between

diverse memory islands and the latency created by this distribution mean that

traditional applications developed for vector-based supercomputers 20 years ago

will break down. Those models were based on close affinity of memory to the

processing elements and data streams that were near clock speeds. New systems

will also be based using accelerators such as General Purpose Graphics Processing

Units (GPGPUs). The GPGPUs will be popular for the same reasons commodity PC

processors have dominated. The commodity eco-system for games and portable

devices require this kind of product.

Clouds

We have focused our attention on HPCC implemented by clusters organized as

LANs with sophisticated switching fabrics. We have not considered possible

Internet versions of HPCC. Cloud computing (see Appendix to this chapter) is an

evolving HPCC model using resources that are dispersed (like clouds) over many

large computing facilities and possibly accessed remotely, plus leveraging on a

massive scale by using various management techniques such as virtualization.
The USC HPCC center can be viewed as a form of a cloud limited to a single

facility that provides Infrastructure as a Service. (IaaS). (See Appendix.) There are
various definitions of a cloud, one of which requires an on-demand virtualization

presentation to the end users. Aside from the obvious networking problems

discussed in the chapter on Computer Networking, there are other serious technical

issues in cloud computing, such as the speed of light not being negotiable, that must

be taken into account in the design and use of a cloud model. Clouds can be

regarded as an evolution from the Grid model of computing that started in the

late 1990s and timesharing systems that existing since the 1960s. The grid model

was combining resources at disparate locations with scheduling software to move

batches of work around the various sites. Timesharing was the gold standard of

interactive use in the 1970s. There was a rich landscape of very sophisticated
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systems. They included operating systems like Multics, Tenex, Tops10, Tops20,

VAX/VMS and MVS/TSO to name a few. With the advent of the IBM 370

architecture virtual systems also become practical. In the 1980s it was common to

run multiple operating systems on one large mainframe with VM/370 and Logical

Partitions (LPARs). The hardware on the mainframe was optimized to support the

virtual instances, something that today’s microprocessors are just achieving. Cloud

computing resources, especially when they cross international borders, create

security and legal control questions. Who controls legal access, what are the

restrictions on use and other similar vexing questions are being worked out today.

The international governance aspect of the Internet and cloud computing are a

fertile field for lawyers and politicians to harvest. Today the security requirements

for applications like medical records create conflict with the cloud paradigm.

Transnational privacy differences also cause conflicts. Some countries require

access to all data for security reasons and others prohibit exactly the same

requirements.

Data storage technologies are also a driving factor in cloud computing.

The cloud provides both advantages and disadvantages. Using large distributed

data centers it is easy to replicate data across diverse geographic locations. Using

file system techniques a user will not have to explicitly worry about disaster

recovery at the physical layer. However, the cloud provider does have to be

aware of dependencies they create. A file system must be careful not to mirror

inconsistent data across sites; using traditional mirroring techniques are not effec-

tive across long distances; that pesky speed of light thing creates file latency

inconsistencies. The cloud operators must also design file systems that allow for

massive numbers of files. This is difficult and research needs to be done. The

problem is the same that HPCC centers are seeing when a user creates massive

numbers of small files. Perhaps the most important part of these massive file

systems is the chance of data corruption due to transmission of data across com-

puter networks and use of massive numbers of commodity disk drives. New

versions of RAID are required and TCP/IP as a transport protocol is known to be

vulnerable to bit errors when terabytes of data are moved and the underlying

network has potential undetected bit errors.

Finally to use a cloud environment data needs to be moved from the source

(campus) to the cloud centers. This will require new and improved optical wave

based paths. These paths are over distance (speed of light problem again) and

have significant cost when it leaves academic network environments. If one looks

at the power of computation available on a typical research campus 40 years ago

and compares that to the bandwidth of the connection to the campus then

extrapolates to today, the storage and computing capacity has gone up 107 and

the network connection bandwidth 105. Going forward, storage and processing

power is doubling every 18 months to 2 years while network bandwidth is doubling

maybe once every 10 years. There is a crisis in broadband capabilities in the United

States that we are not addressing. This only addresses the external network issues.

The explosive growth in capabilities of instruments to record data and of cheap disk

to store it has also created a massive local data problem. We have genetic
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sequencing equipment appearing around a campus that can create TBs of data in

hours and we don’t have a set of procedures in place to store, organize and protect

the data. This is just one example of new equipment enabled by advances in

technology that are out-stripping our ability to rationally manage.

The previous paragraphs may give one pause about Cloud Computing, but there

are many positive aspects. A cloud environment is very similar to the aggregation of

resources that HPCC provides inside USC. The use of professionally managed

resources in large-scale data centers is very compelling. These data centers can be

sited in locations where low cost and perhaps green energy is available. USC in Los

Angeles pays roughly 10 cents per KW/h of power. At Clemson University in rural

South Carolina power is 4.5 cents per KW/h. These differences can create a

compelling cost model for cloud computing or aggregated HPC. Power densities

of large-scale clusters are only increasing while the cost of the hardware is

decreasing (per computing unit). The consumer of cloud or remotely provisioned

HPCC needs to be aware of the complexities it can create.

Some Conclusions

The HPCC systems discussed above provide a useful model to describe the rela-

tionship between departmental, campus, regional and national CI. The evolution of

networks, and software and hardware capabilities have created a complex set of

interrelated systems. The CI eco-system has become the workspace for day-to-day

use of computing by researchers and scholars. There are systems that range from

wireless devices to High Performance Computing centers. To bridge between these

systems a campus must pay attention to evolving standards in networking, comput-

ing, data-storage and identity management. To not participate in the national and

international HPCC environments would mean a campus is at a competitive

disadvantage. Centers like HPCC at USC provide the middle-level glue that plugs

the gap between a research group and resources they need. HPCC helps users with

usage of large campus based resources, while providing a coherent path to national

and international resources when the campus level resources are not adequate.

This includes job scheduling, applications development and network provisioning.

Having a group that participates in the national scene means researchers can focus

on their work and allow HPCC staff to be their extension into the national centers.

HPCC centers can be an enabler for creation of Virtual Organizations (VOs).

VOs are a cyber instance of an affinity group. Examples of VOs abound in the

commercial sector (facebook, myspace etc.). In the academic space we have many

communities who have created environments in a similar vein. The Southern

California Earthquake Center (SCEC) is an example of a VO combined with a

physical organization. There are dozens of others around the world. The VO

revolution is a logical extension of the academic societies and organizations that

have existed for centuries. The VO can create instant feedback and community

building. Along with VOs, ‘portals’ are being developed to allow disciplinary
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access to complex HPCC based resources. A scholar will connect to a web portal or

use special laptop or remote device software to interact with complex software

systems. This mode of access allows the scholar to use software models that are

prepackaged to create results based on their input.

HPCC also enables leading edge network services and research at the university.

USC was one of the earliest participants in the ARPAnet in the early 1970s.

Participation in advanced networking research, deployment and development has

been ongoing since that time. USC was one of the first universities to deploy

campus wide networks and deployed one of the first regional networks, Los Nettos,

in the country via USC-ISI and campus IT staff. Los Nettos is still an active

research and education network, providing services for USC, Caltech, JPL and

other academic sites in Southern California. The ability to innovate new networking

capabilities is a mandatory complement to the computational and storage resources.

Scholarship and especially research has become a team sport. It is more common

for a physics researcher at USC to interact with some physicist in Europe than with

a chemist in the next building. These relationships are enabled by the next genera-

tion techniques such as wave division multiplex enabled connections to national

networks. The same drivers to innovate are present in the networking space as

computation. The requirement to reach out and embrace disruptive change in

networking is hard for a campus production IT organization. An organization like

HPCC provides the impetus for new solutions that a production shop would shy

away from. HPCC has been a leader in new services in the region and has partnered

on many international efforts via a joint project called Pacwave. Pacwave is a

distributed fiber based network consortium that reaches from Seattle to San Diego,

and enables specially provisioned wavelengths between researchers on the west

coast to the rest of the country and on to the rest of the world.

Appendix

Cloud Computing

E.K. Blum

In the preceding chapter a new computing paradigm, called cluster computing was

presented. It involves distributing a computational problem over a computer net-

work. The chapter also referred to a paradigm called cloud computing, which has

been promoted recently. Cluster computing under certain conditions of manage-

ment can be regarded as an example of cloud computing, since both paradigms

involve distributing computation over an assemblage of computational resources.

However, the term cloud computing is not well-defined if at all. The purpose of this
brief appendix is to clarify the current meaning of the term.
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A description has been formulated by the National Institute of Standards (NIST)

and we are inclined to agree with the NIST description coauthored by Peter Mell

and Tim Grance. We give a brief summary of their description, with our own

evaluations added. We note that there have been several articles on Cloud Comput-

ing published in the ACM Communications, for example in 04/2010, vol.53, No.4,

pp.50–58. However, these articles fail to give a precise definition and are, like the

following account, only a sketchy outline. This reflects the newness and rapidly

changing formations of clouds.

We agree with NIST that cloud computing is an “evolving paradigm” and we

further understand that it is at present (and possibly for the immediate future)

incompletely defined. At present, the cloud computing industry (those organizations

which claim to be engaged in cloud computing) works with many different models

and approaches. Indeed some vendors seem to confuse it with cluster computing,

which is discussed in our preceding chapter on high performance computing

(HPCC). Indeed, cluster computing may be regarded as a case of cloud computing

under certain conditions. This indicates that the “cloud” aspect, like clusters,

certainly involves a distribution of computing resources. How wide or organized

this distribution can be remains unspecified. Most models of cloud computing

assume a cloud service provider which provides a shared pool (a “cloud”) of

computing resources (servers, storage units, networked pc’s, application software

etc.) in a manner that can be rapidly accessed and released by a client with minimal

overall management or service provider action. An authorized client of a cloud

service can unilaterally request and acquire resources as needed, such as server time,

storage space etc. without approval of the request by the cloud service provider.

Presumably the quantity of resources available in the cloud permits this. The access

to networked components of the cloud is through standard networking techniques

that allow mixed client platforms of devices like mobile phones, laptops, pc’s and

PDA’s. The cloud service provider can serve multiple clients by providing resources

in a dynamic mode according to changing clients demands. Note that this dynamic

allocation of resources to clients is also a feature of large clusters. (See the preceding

chapter on HPCC.) The quantity of resources is usually so large as to seem virtually

unlimited to the client. Resource utilization can be monitored and reported to

the service and the client. NIST recognizes three explicit categories of cloud

service as follows.

Cloud Software as a Service (SaaS). This service allows a client to use

applications software already running on the cloud infrastructure. Various client

devices (e.g. pc’s or laptops) can access applications software as web pages through

a web browser. Cloud Infrastructure as a Service (IaaS). Infrastructure such as

storage networks or computer networks is provided to a client on which the client

can run arbitrary software of his own, including operating systems and applications.

The client does not control the infrastructure except for possible limited control of

some network components such as host firewalls. Cloud Platform as a Service
(PaaS). Client has control over deployed applications but cannot manage/control

cloud infrastructure. There are four models of cloud deployment: (1) Private:
infrastructure dedicated to a singe organization; (2) Community: infrastructure
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shared by several cooperating organizations; (3) Public: infrastructure available to
the general public and owned by a company selling cloud services; (4) Hybrid: a
mix of two or more of the first three but using a proprietary technology that permits

load balancing between the three. Despite its lack of precise definition cloud

computing is an active new mode of computation. For further examples see Chap. 9.
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Chapter 9

Programming for Distributed Computing:

From Physical to Logical Networks

Christian Scheideler and Kalman Graffi

The first programming languages predate computers and were mostly used as a

form of mathematical reasoning. With the advent of modern electronic computers,

programming languages became prominent as tools to specify and control the

behaviour of these machines. A programming language is an artificial language

that makes use of the functions that can be performed by a machine and allows one

to express algorithms precisely. Early languages (see Chap. 4) were Fortran (1957)

and Algol (1958), which were used for numerical computations. Cobol was issued

in 1962 and optimized for business applications. Many other influential languages

emerged from the late 1960s to the late 1970s, among them Simula (which

introduced object-oriented programming), C, Smalltalk, Prolog (the first logic

programming language) and ML (realizing a polymorphic type system on top of

Lisp). Each of these languages spawned an entire family of descendants, and most

modern languages count at least one of them in their ancestry.

The capabilities and characteristics of a programming language define the type

of computer processes that are contemplated. The von Neumann computer archi-

tecture (Chap. 5) established a basic model for sequential computation processes. It

postulates (Chap. 4) a computer organization based on a single separate central

processing unit (CPU) and a separate memory unit accessible to the CPU. Having

single or multiple CPUs or memory units introduces a classification of various types

of computers and related programming approaches. Due to trends in the design of

computer chips, nowadays, multiple CPUs and multi-threading (sequences of

computation steps) on one chip are de-facto-standards in computers. This trend

emerged in 1963 when the first time-sharing systems appeared.

Multi-processor machines introduced various challenges for the concurrent access

of programs to the shared CPUs and memory. With the advent of the Internet era and

the trend towards cluster computing (Chap. 8), the distribution of computing devices
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and the memory widened even further. A cluster of computers offers many

distributed computational and memory resources, more than an individual computer.

Operating systems were organized to provide services during the execution of a

program, such as links to various built-in system subroutines. This is called the

runtime environment. With a suitable computer language and runtime environment,

distributed resources can be harnessed and conveniently used on single applications.

For more details, see Chap. 8 on high performance computing.

In this chapter, we elaborate on general principles of distributed and parallel

programming and discuss specific solutions for distributed computing in physical

networks as well as in application-layer networks, which are also known as overlay
networks.

Distributed and Parallel Programming

A distributed or parallel computer system consists of a family or set of autonomous

computers organized to interact so as to cooperatively execute a computation, such

as a cluster (Chap. 8). The autonomous computers offer either single or multiple

computational resources. In the case of each autonomous computer having also a

private memory, we speak of a distributed system. In this case, the computers

interact through a network in which they exchange messages and synchronize their

actions. (See the HPCC Chap. 8). If the autonomous computers have access to a

shared memory, we use the term parallel computing. In this case, communication is

performed via the shared memory.

The motivation for the use of parallel or distributed systems is two-fold. First, an

application may impose distributed characteristics by creating and consuming data

in differing physical locations. Such a characteristic is, for example, found in the

various email applications or in typical (client-server) consumer-provider based

applications. The second reason for distributed/parallel computation is motivated

by the practical benefits in comparison to the use of a single computer. In compari-

son to a single computer, a cluster of computers may be extended in number and

thus extended in the resources available. There is no intrinsic scalability limit in the

clustering of the computers. Server farms of up to 100,000 computers exist.

Through scalable and redundant (software and hardware) architectures, the damage

effects of a single point of failure can be eliminated. However, in order to realize the

full potential of a distributed/parallel system, a programming language is needed

that has primitives for specifying the effective use of the available resources.

Levels of Parallelism

As discussed in Chaps. 3 and 4, a program is a list of instructions to be executed on

a computer aiming at performing a specific task. In its simplest execution mode, its
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instructions are run sequentially on a CPU, one after another, storing intermediate

and final results in a single memory. However, to use the power of a large number of

computers, the programmust be split up into smaller parts that are run concurrently,
or as we say, in parallel. Various levels of parallelism exist that define the granu-
larity by which a program may be split up. The highest level of granularity is on the

program level. On this level, various programs may be run independently on

multiple computers, but no tasks within a program may be shifted or run on other

computers. The next level of granularity supports parallelism in the execution of

procedures. In this case, instruction sets, encapsulated in procedures, may be

transferred (or called) to execute in parallel at remote computers. At this level,

coarse parts of programs may be placed so as to execute on more suitable

computers. At the instruction level, individual operations (e.g. arithmetic

operations) may be run in parallel to more efficiently use the available resources.

At a lowest level, the bit level, the internal execution of a single instruction is

performed in parallel, e.g. on a multi-core CPU or a GPU with many stream
processing units. With this grain of parallelism, individual atomic operations can

be speeded up.

While very fine-grained levels of parallelism in computer programs are best

performed in hardware, the parallelism of instructions and procedures is best

exploited in software by distributing the operational load of the execution of a

program over various cores or computers. To obtain full access to the distributed

resources, the procedures or instructions may be either dispatched or called manu-

ally by the programmer or may be run automatically by the runtime system

environment. Both of these approaches to parallelize applications have been

heavily investigated in the literature. The automated approach requires recompiling

programs with special parallel compilers in order to enable their parallel execution.

This is convenient for the programmers as existing programs do not need to be

adapted and no further work is needed. However, automated parallelization often

lacks efficiency, as it is very challenging for a compiler to optimally split the

program into parallelizable tasks. Using the second approach, the programmer

needs to learn how to deal with parallel programming patterns and explicitly

apply the parallelization instructions to exploit parallelism. While this approach

is more time-consuming in the creation of the programs, it usually results in a much

more efficient parallel execution of the code.

Tasks in Parallel Programming

For both approaches, the implicit and explicit parallelization paradigms, a set of

management tasks needs to be executed by the runtime environment in order to enable

theparallel executionof a program.According toKasimet al. (2008) the set of available

computers (workers) needs to be managed, the workload needs to be partitioned into

tasks, the tasksmapped to workers (computers) and the intermediary results need to be

synchronized. The first step comprises the management of the workers. It is needed to
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supervise and monitor the resource utilization of the workers as well as the

connectivity and contact details of the workers in the case where they are

distributed. On the other hand, the program must be split into sections of concur-

rently runnable processes and prepared for parallel execution. This is a non-trivial

programming design problem as the semantics of the program may change subtly

if certain processes are executed prior to others. This step is either done manually

by the programmer or automatically by the runtime environment. Given the

workers and the individual program processes, a mapping is needed. The mapping

from processes to workers must take the abilities of the workers into account as

well as the requirements of the processes. In the case of shared memory, the tasks

in the memory are accessible from all CPUs. In the case of a distributed system,

the processes are either pre-deployed and remotely accessed or need to be

distributed in advance to the corresponding workers. Finally, the results of the

calculations of the processes need to be synchronized and joined. For distributed

computing all the processes need to be suitably addressed. In the following, we

present how these tasks are addressed in physical networks. Specifically, we

present concepts for parallelism on computers and networks, give examples and

introduce selected programming languages that ease the distributed programming.

(See Chap. 8 for related discussions.)

Physical Computers and Networks

In this chapter, we distinguish between distributed systems based on actual physical

networks and virtual systems based on logical networks. In the first case, computers or

cores are locally close to each other and connected directly. This case also comprises

the hardware-based multi-core computers, in which the CPUs are also closely linked.

In this case, the CPUs and memory are close to each other, so the main questions are

related to how the access to the resources is managed. We discuss the main questions

related to distributed systems based on logical networks in the next section.

In order to utilize the resources several programming approaches are in use in

practice. One main classification criterion is the involvement of the programmer.

On the one hand, the programmer may explicitly decide which instructions should

be run in parallel. On the other hand, this decision may be handled implicitly under

the assumption that the entire code is parallelizable. Given that the assumption is

true, the runtime environment may optimize the code execution on its own using

various programming concepts outlined below.

Concepts of Parallel Programming

Next, we describe a selected set of concepts for parallel programming. In the early
days of parallel programming, single CPU devices supported subroutines called

co-routines. In order to use these, the programmer had to actively trigger a co-routine
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operation. Co-routines are subroutines that can be run in parallel and may be

paused. However, this approach is limited to single-core devices and cannot be

extended to multi-core computers.

The fork and join approach is another of the earliest parallel programming

concepts. The names are suggested by flowcharts. The fork operation in a program

marks the beginning of a parallel process, while the join operation synchronizes the
results. Applying the fork operation in a UNIX OS environment copies the process

that is forked and enables each process to identify its status through checking its

process identifier. Forked processes are run in parallel and combine their results in a

matching blocking join call.

The remote procedure call (RPC) is an approach to integrate remotely located

procedures. Procedure calls for remote and local code have the same syntax. RPCs

are resolved transparently for the programmer. The runtime environment of the

programming language offers client and server stubs as local code. These stubs are
in charge of managing the network connections, marshalling and de-marshalling

the messages and managing blocking operations.

While the previous concepts require the programmer to use parallelism explic-

itly, implicit parallelism denotes a different parallelism concept. This concept

assumes that every process can be run in parallel except for parts called critical
codes. Thus, the execution of a process may be interrupted and run on a different

core or computer. In order to protect critical code parts from being disrupted, the

programmer may set critical code in a synchronized block of code.

Examples of API’s for Parallel Programs

Most of these concepts have been implemented, deployed or discussed in the

literature. In the following, we introduce successful APIs that gained a lot of

attention in recent decades.

The software tool parallel virtual machine (PVM) is an API designed to allow a

(heterogeneous) network of computers to be used as a single distributed parallel

computer platform (as elaborated in Sunderam (1990)). Using PVM, program tasks
or independent threads of instructions may be run in parallel on the virtual machine

using explicit remote invocation. Through explicit message passing based on task

identifiers, the tasks may communicate with each other. The PVM author group

offers libraries of such parallelizing devices for the C, C++ and Fortran languages

and wide support for a large set of devices.

The Message Passing Interface (MPI) is explained in Pacheco (1996) and is a

de-facto standard for developing high performance computing applications on

parallel and distributed memory architectures. (See Chap. 8.) It specifies message

passing (MP) operations for point-to-point message passing between pairs of

processors and also for collective message-passing between groups of processors.

It provides libraries of MP subroutines for C, C++ and Fortran as well. MPI requires

the programmer to mark individual processes (tasks) in the program and map the
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processes to workers (computers). The user of the program may define how many

processes are assigned for the execution of a program. For common modes of

communication between processes, MPI supports point-to-point and collective

communication based on message passing. In addition, a barrier analogy is used to

synchronize the processes. The barrier operation requires all specified processes to

pass the barrier and thus to finish their tasks before the execution of the processes can

continue. Thus, programming entails some intricate planning of the paths of concur-

rent execution.

Several theoretical models for distributed programming concepts have been

presented in the literature. Lipton and Sandberg introduced an abstract machine

termed Parallel Random Access Machine (PRAM) in Lipton and Sandberg (1988)

which models the various types of concurrent read and write operations in a shared

memory system. It abstracts from synchronization and communication issues, but

gives a tool at hand to investigate the effects of various distributed programs.

Bulk Synchronous Programming (BSP) was introduced by Valiant as a model

taking the synchronization and communication overhead into account. BSP introduces

three stages to model parallel computing. In the first stage, a set of processors with

local memory is assumed. These processors perform local operations and do not

interact. In the second stage, communication between the processors takes place and

results are exchanged. Finally, in the third stage the processors are barrier

synchronized by waiting until all processors finish a particular communication. As

the two last stages are expensive, the idea is to perform as much local computation as

possible in the first stage so that the overhead generated by the other two stages is

insignificant. Obviously, too much overhead would incur delays that could cancel any

speed-up expected from concurrent execution. This is true of any parallelization

technique. The stages are continuously repeated until the program terminates. This

model has been intensively discussed and extended in the literature, and several

implementations exist, (see Bonorden et al. 2003). A few examples are the logP,

QSM and HMM models.

Another formalization of interactions in a concurrent system is given by Hoare,

and termed Communicating Sequential Processes (CSP), (see Hoare 1978). Such a

formalization helped to specify and verify the correctness of various concurrent

programs.

MapReducewas introduced by Google in Dean and Ghemawat (2008) to facilitate

the processing of large data sets on a set of distributed computers. Libraries of

the software framework have been developed for various programming languages.

In the map step, a problem is split into smaller sub-problems and assigned to a set of

workers, which themselves may split the assigned problems further, creating a sub-

problem tree structure of the problem. Each worker reports its results to its father,

which combines in the reduce step the individual results of its children workers to its
own result. With this approach, data-intensive and loosely coupled computational

problems can be solved very efficiently by a large set ofworkers. This scenario is often

the case in cloud environments like those in Google’s or Amazon’s server farms.

While these examples represent certain standards or models, another approach to

parallel programming is defined by the set of available concurrent (and parallel)
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programming languages. With a specific parallel/concurrent programming lan-

guage at hand, a programmer can exploit parallelism more efficiently. Several

such programming languages have been introduced in the last few decades. We

present some of the most influential ones below.

Concurrent Programming Languages

In the early days of software engineering, the discipline of programming was

mainly concerned about the increasing complexity of the programs. Early

structured programming languages like Pascal, Fortran and Cobol introduced

structured programming as a method to create reusable, dependable code. How-

ever, they were limited to numerical problem solving in their practical applicability.

Starting with 1962, the idea of information hiding and abstract data types shifted the

focus from numerical programs to object-oriented programming, which was first

used in the Simula language.

Concurrent programming languageswere first discussed with the new time-sharing

machines and later since 1975 with the advent of the personal computers and their

organization into networks. Some of the object-oriented programming languages

were extended to support the new trend of parallel programming, such as

Smalltalk (1972) or Ada (1973). Previous programming languages did not suffi-

ciently support the parallel execution of programs. Occam was introduced in

1983, following the strict formalization of Hoare’s CSP. Erlang was introduced

by Ericsson in 1986, supporting concurrent programming using an actor model,
which relies on message passing between processes rather than shared variables.

However, with the Internet era and the World Wide Web, Java started its success

story in 1996, when it was introduced and supported as the programming lan-

guage for the WWW. (See Chap. 4.) Due to its application field and usability,

Java had a large impact both in industry and academia. Several extensions for

secure distributed programming emerged, leading to new programming languages

such as E. The language E originates from Java and uses message-passing, event

loops and promises for managing the concurrency in the programs. Another

programming language that relates to Java is Clojure, which runs on the Java

Virtual Machine. However, Clojure is a functional programming language, com-

bining the benefits of LISP and Java. One of the youngest programming

languages is Go developed and announced in 2009 by Google. Go is similar to

C but with structures for concurrent programming. Go is inspired by Hoare’s

CSP. However, unlike Occam, Go does not support verifiable or safe concurrency.

In the history of concurrent programming languages, specific patterns recur.

Message passing is a de-facto standard, as the alternative shared memory, mutexes

or semaphores are technically infeasible or inefficient. As an example, we introduce

the programming language Erlang to show the main principles for concurrent

computing based on message passing. (See also Chap. 8.)
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A Brief Introduction to Erlang

Erlang was developed around 1986 by the Ericsson company as a programming

language that supports concurrent programming, focusing on highly available

programs in the area of telecommunications. Its main approach to increased avail-

ability is to strictly isolate the individual processes in a program, avoiding any

means of shared memory. The processes are, however, allowed to communicate

using message passing, both with processes on local cores but also with processes

on remote machines. An essential requirement for safe message passing is the usage

of pure protocols, which do not use any pointers or information which might be

bound to a specific machine. Fault tolerance is further reached by allowing

machines and processes to crash. Instead of trying to catch any possible exception

in a process and to react to it internally, an invalid process is left to crash. However,

the crash of any process is communicated and detected by a monitoring process,

which initiates actions upon the observation of such a failure. For that, the moni-

toring machine needs sufficient information to decide on the appropriate next steps.

In particular, it needs information on the cause of the crash. Thus, fault tolerance is

reached with replication and a safe-to-crash approach. This approach was consid-

ered inefficient back in the 1980s, especially due to the limited bandwidth and

duplication of program state information (instead of using a shared memory).

Nowadays, the main bottleneck in the execution of a program lies in missed

cache hits in the case that illegal pointers are used. The approach of duplicating

the program information for message passing fits the current trends of computer

system architectures.

An Erlang program typically consists of thousands of processes, divided into

worker and monitoring processes. Worker processes have links to monitoring

processes, which form a error-propagation channel in the case that the worker

process fails. This classification of process types is described in the Erlang Open

Telecom Platform system, which suggests monitoring trees that hold a protocol that

is initiated once a failure is detected. A failure of a working process is interpreted as

the inability to perform a desired computation. Thus, a new (easier) approach for

solving the problem is typically instantiated.

Erlang offers in its first implementation a Prolog-like programming syntax with

variables, atoms, tuples and lists. In order to support concurrent programming,

message passing is modelled by a “P ! M” command, meaning that the message M
is sent to the process with the process id P. Knowing the process ids is a must in

Erlang. The receive operation receive is called in a non-blocking way at the

addressed process. It matches the received message with a list of patterns and initiates

the corresponding action upon a match. In order to fork a process to run in parallel to

the calling process, the spawn command is to be used. It initiates a new process and

reports its process id, which can then be used as a communication address.

Error detection of remote or local processes is set up using a method called link
(PID). This call links the current process to monitoring the behaviour of the process

with process id PID. In order to receive these out of band messages, the monitoring
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process is flagged as a system process using the command process_ flag(trap_exit,
true). Upon an irregular termination of the monitored process, an error message is

created containing the keywordExit, the process id of the broken process and a reason,
(‘Exit’, PID, Reason). This message is passed to the monitoring processes and

evaluated there. This simple approach allows to create large and complex applications.

Message passing is used both between large components, but also within a large

component between the smaller components it consists of. Any component of an

application can be testedwhether it produces expected results. Components producing

unexpected or false results can be opened and tested recursively until the root of the

failure is found.

Erlang has been in use at Ericsson to operate ATM telecommunication switches

in a reliable and fault-tolerant manner. With the Open Telecom Platform, a set of

libraries has been created that provides all essentials of an application middleware

package, easing the use of Erlang for large and complex programs. Parallel to the

advent of Erlang, further trends of parallel and distributed computation in the

Internet have been observed. These trends were not influenced by programming

languages, but more by novel distributed architectures and principles. Logical
networks were formed, granting direct access to distributed resources, allowing

new approaches to parallel and distributed programming.

Logical Networks

For a long time, hardware (physical) networks, realized either on a chip or among a

set of hardware devices, were used for distributed programs. The main assumption

was that all of these devices were controlled by the same person or institute. (See

Chap. 7 on clusters.) Later, in the Internet (Chap. 7), a client-server (software)

architecture was put in use to support such popular applications of WWW as FTP

and email. This is a logical network overlaying the physical one. The main idea was

that many users access a centrally hosted server and exchange their information

over this central mediator. Local code and functional roles were more and more

shifted to servers in the Internet, leading to weak and simple clients on the user side.

This logic network approach allows the operation of specialized machines for

certain tasks to buy and sell computation services in the Internet and to increase

both efficiency and productivity.

The concept of service oriented architectures (SOA) was introduced in the late

1990s as an approach to organise software architectures i.e., logic networks. Its

main idea is to map business processes to workflows, which are decomposable into

smaller service units. Individual services may then be either programmed by the

user himself or bought in a (not yet existing) global marketplace for services.

Through the clear separation and specification of single services, a marketplace

may be born, leading to professional and well tested service components as well as

flexibility in the design of system architectures. A further extension of this idea

came about recently with the advent of cloud computing. (See Chap. 8, Appendix.)
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While SOA is limited to the hosting and execution of remote code, cloud computing

offers a wider set of services. As already remarked in Chap. 8, Appendix, cloud

computing can offer software as a service (SaaS), platform as a service (PaaS) and

infrastructure as a service (IaaS). We elaborate below.

At the end of this chapter, we summarize the research and industrial efforts in the

area of peer-to-peer (p2p) networking. p2p systems are distributed architectures

created through establishing a logical network between peers typically connected to

each other via the Internet. The peers are mostly autonomous computer installations

under control of individual users. Thus, it is challenging to provide the functionality

of a desired application with a desired quality. This is a developing field of

distributed programming.

Service-Oriented Architectures: A Survey

Service oriented architectures (SOA) extend the idea of open interfaces and RPCs in

such a way that the components or services to be used are offered in a world-wide

marketplace. Thus, productive and well-programmed services may be rented and

used to compose complex software architectures. SOA promises to make the

creation of software architectures more flexible and thus allow a fast adaptation of

these architectures to business needs. Business workflows are amain driver in SOAs.

These workflows define the steps in business procedures controlled by computers

and are partitioned into individual services, which are composed from the set of

available services in the service market place. Individual services may be exchanged

for cheaper or more productive service implementations. In order to dynamically do

this, a set of automated actions need to be performed. A service provider needs to

publish or register his service implementation at a service directory like UDDI

(Unified Description, Discovery and Integration). The service consumer (client)

needs to find a service (in the directory) that matches its needs. Match making is a

challenging task even though service descriptions use standardized web service

description languages (WSDL). These are not always explicit on defining the

semantics of a service. Once a suitable service is found, it is bound to the service

consumer. This is done by the service directory delivering a contact address for that

service to the service consumer. As a final step, the service is executed in a typical

RPCmanner by sending the input values in a well-formatted manner, typically using

the protocols SOAP (Simple Object Access Protocol) or REST (Representational

State Transfer).

While SOA does not introduce a new programming language for parallel or

distributed computing, it parallelizes the programming and service consumption

itself. Programs or program components do not have to be written by the same

person or loaded manually. Services are searched and bound automatically to the

runtime file of the program, picked and paid at an internal or global market place.

The service composition can be optimized according to various characteristics,

ranging from the costs to the service level agreement details. The quality of service
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provided by every service is specified, as well as the API and costs for using it.

While a SOA may be easy to implement on the scale of an organization, a global

market place is still to come. Many users and enterprises hesitate to release their

services to avoid showing internals of their business workflows. Also, enterprises

fear to use the services of other providers in order not to reveal internal workflow

information by transferring revealing input values in a service call. An extension of

the SOA idea from software services to platform and infrastructure services has

recently had a large impact under the term “the Cloud”. See Chap. 8 Appendix.

Cloud Computing-A Survey and Critique

Cloud computing (Chap. 8Appendix) emerged consequent to the trends of SOA, as a

method of on-demand and pay-per-use services with regard to a wide set of

resources. While SOA focuses only on software as a service, with the advent of

grid computing (large networks of existing distributed computer resources) and

utility computing platforms for application hosting or infrastructure resources them-

selves can be reserved and used nowadays over the Internet. A great driver for these

trends lies in the virtualization of hardware devices, allowing systems to host or port

several instances of software programs. Thus, with the demand and access patterns

for a specific software or hardware service, the corresponding hosting resources can

now be increased or decreased on the fly, without the interruption of the running

program.

The emergence of Web 2.0, an extension of the classical World Wide Web that

allows interaction with websites (Chap. 7) has accelerated the shift of personal user

data to the Internet, where it could be modified or hosted using various novel Web

2.0 applications. Software as a service (SaaS) as one aspect of the cloud provides

applications in the Internet, both to be used by users directly (e.g. Google Docs)

or over specified APIs (e.g. Open Social). Having the user data in the Internet (e.g.

Facebook) allows the direct manipulation and the central hosting of applications for

it (so-called social networking).
A further aspect of the cloud comprises the offering of platforms, or platform as

a service (PaaS). In this case, vendors offer a rich set of functionality to support the
life cycle of individual services to be hosted in the Internet. The life cycle support

ranges from application design and development, testing, deployment and hosting,

as well as background services like storage, monitoring and accounting. Platforms

offer Web service designers the freedom to offer their services and pay only for the

consumed resources, for which they also can charge their customers. This process

liberates the designers from predicting and reserving hardware resources that their

application might use in peak times. The elasticity of the cloud, i.e. adapting the

resource provision to the demanded level, is a key benefit for both the application

designers, operators and users. However, several limitations on program structures

were defined by the vendors. Computation State is considered harmful, as it cannot

be elastically ported on the virtualized computers.
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From a commercial point of view, most cloud providers offer very competitive

prices in comparison to self-operated server farms. This comes at the danger of

lock-in and being bound to a specific cloud vendor. It still remains challenging

and work demanding to change the programs hosted on one cloud to be runnable

on another cloud. Due to differing commercial interests, cloud vendors aim at

hindering the support of interoperability.

A third layer in cloud computing offers more freedom to its users. Infrastructure
as a service (Iaas) offers core computational and storage services on demand,

leaving the usage and management of these resources up to the service consumer.

Examples of the various layers of cloud computing are the Google App engine,

Amazon’s Elastic Compute Cloud (EC2) andMicrosoft’sWindows Azure Platform.

p2p Networks-a Survey and Critique

While a small set of cloud players were trying to build centralized server farms to

offer any kind of services a user needs, an orthogonal trend emerged with the advent

of Napster, BitTorrent and Skype. This trend of peer-to-peer (p2p) networks

provides services and applications through the creation of logical networks and

distributed mechanisms mainly or solely using the resources of the consumer

devices. In contrast to the previously mentioned approaches, p2p systems consist

mainly of user devices that are autonomous and out of reach of a provider. Thus, the

resources are freely available, as are the users, but are unreliable and of fluctuating

quality. In addition, due to the large number of autonomous nodes, networks

operating on p2p resources must be self-organising and consider the fluctuation

of node resources and presence. This paradigm has had a large impact in the area of

file sharing applications. In 1998 Napster offered a centralized index which acted as
a publish/subscribe platform to share and search for information files among the

users. The subsequent file transfer after a positive match was performed directly

from peer to peer. Due to the vulnerability of the centralized index, subsequent file

sharing applications used a logical network, an overlay, to interconnect the peers

and to implement the search for desired files or objects.

A set of overlays has been proposed both in academia and open source

communities. This set can be classified into structured and unstructured overlays.

Structured overlays, like Chord, CAN or Pastry, place the objects stored in the

overlay by a method based on their object IDs according to a predefined structure.

Thus, the insertion of objects requires some time, but the retrievability of these

objects is guaranteed and the lookup time is low. In an unstructured overlay, like

Gnutella 0.4 or GIA, objects remain at the peers, thus produce no additional

overhead for insertion, but the search for these objects is rather costly. In the

worst case, all peers in the network have to be contacted to find a desired object.

A further classification aspect of overlays is whether all the peers have the same

roles or whether there are some peers with special roles and more responsibilities.

Super-nodes are used typically in hybrid overlays like Gnutella 0.6 to maintain the
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state of normal nodes. Most overlays are flat, meaning that all peers are organized in

only one overlay. Hierarchical overlays which consist of various protocols for

various layers of the network, e.g. like in Omicron, are rare. Most popular overlays

nowadays implement a distributed hash table (DHT), which was first introduced in
the Chord paper by Stoica et al. (2001). The main idea is to split up a hash table and

distribute it over all peers. Maintaining the links to the neighbouring parts of the

hash table as well as shortcuts in the hash table to peers in exponentially increasing

distances allows traversing the hash table consistently and quickly to find the

desired entry. Dabek et al. (2003) a common API for structured p2p overlays

which extends the common lookup functionality of hash tables. Several overlays

follow that principle, like Chord, CAN, Pastry or Tapestry. With the distributed

nature of the overlay, the most critical challenge to be addressed is the quality

fluctuation of the peers, which requires mechanisms to repair the structure of the

overlay all the time.

p2p networks offer access to the wide set of resources that comes with the user

devices. In contrast to centrally hosted applications, even the cloud, which reaches

its limits with the increase of users, p2p systems benefit from an increase of the

number of users, as the pool of resources increases as well. p2p networks are mainly

used for file sharing applications, in Skype for free Internet telephony or in some

applications, like PPLive, for live and on-demand video streaming. However, a

broad service offer like in the cloud is not yet feasible in p2p networks due to the

limited control of the quality of these networks. The quality fluctuates with the

quality of the resources offered by the users. This is a characteristic that is

unsuitable for most productive applications. Although there is a vast amount of

resources to use and to harness, research has not yet devised the tools and

mechanisms to contend with the quality fluctuation and to provide reliable quality

based on the user resources contributed to the p2p networks.

Conclusions

Distributed programming emerged with the advent of multicore and networked

computers and reaches out to the trend of globally distributed software development.

Nowadays, with more and more computational resources distributed on a single

machine, at home locations, in widespread enterprises or even over the world, tools

and paradigms are needed to handle the desired programs and problems in a way that

harnesses the potential of these distributed resources. Distributed programming

languages give a tool at hand to create suitable programs that are parallelizable,

distributed runnable and still fault-tolerant and reliable. In this chapter we described

the characteristics and classifications of distributed programming and briefly intro-

duced the features of the programming language Erlang. In the future, however,

system architecture will play a larger role than it did in previous decades. With

globalization, software projects are globalizing. Software components are envisioned

to be bought and bound on a global market place, corresponding operational platform
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resources are rented on demand to run those services and distributed programming

emerges to become the art of distributed service composition. On a small scale,

however, the craftsmanship and art of distributed programming needs to be further

investigated and improved in order to create the building blocks of society’s key tool

for business prosperity: the IT industry.
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Chapter 10

Databases

Michael Benedikt and Pierre Senellart

Introduction: Two Views of Database Research

This chapter is about database research (or as we abbreviateDBR). To people outside
of computer science – and perhaps to many within – it will be unclear what this term

means. First of all, what is a “database”? Used generally, it could mean any collection

of information. It is obvious that there are deep scientific issues involved in managing

information. But information and data are very general notions. Doesn’t much of

computing deal with manipulating data or information? Isn’t everything data? Clearly

the databases that DBR deals with must be something more specific.

Database research takes as its subject something more specialized: database man-
agement software, a term which we will use interchangeably with database manage-
ment systems (DBMSs or “database managers”). This refers to a class of software

that has emerged to assist in large-scale manipulation of information in a domain-
independent way. By domain-independent, we mean to contrast it with, say, a software

package that calculates your taxes, or tools that help show your family tree – these are

definitely processing data, but are manipulating it in ways that are very specific to one

dataset (set of data). In contrast, there are many complex tasks that are associated with

storage, update, and querying in a “generic sense”. As early as 1962 software products
emerged that were dedicated to providing support for these tasks. A particular concern

was with performing them on large amounts of data. A current DBMS can filter (read

and select) gigabytes of data in seconds, and canmanage terabytes (1012 bytes) of data.

In the last few decades a vibrant industry has sprung up around DMBS tools and tool

suites. For example,personal computer userswouldknow theDBMSMicrosoftAccess;
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software developers would know the major commercial vendors, such as Oracle and

IBM, along with open-source database management systems such as MySQL.

The relationship of generic database management products to end-to-end

applications has varied over the years. Many companies advertise software that

provides simply “generic database management”. In other cases DBMS software is

bundled either in application suites, or with e-commerce suites that also handle issues

that have little to do with data. Similarly at runtime the relationship of a DBMS to the

rest of the application could take many forms; there could be a dedicated database

management process communicating with other software processes via a well-defined

protocol. Alternatively, DBMS functionality could be available as libraries. Regard-

less of these “packaging” issues, database management software can be considered a

separate “functional entity” within an application. A systems programmer requires

special training to create it, wherever it sits. Someone (an application programmer or

an end-user) must interface with it, and often in doing so must understand how it is

engineered and how to tune it.

So there is a special kind of software called database management software. In a
narrow sense, DBR refers to the scientific study of this software. But why should

there be a field of database research? You may grant that database software is

important. But there is no theory of tractors or knapsacks, despite their utility and

fairly well-defined scope. In the software domain there is no field of “spreadsheet

theory”, or “word processor research”, at least not one of comparable significance.

Why does a DBMS warrant a separate research area?

We give two answers to this question. First of all, the design of a DBMS is

complex and the approaches to creating a DBMS are stable enough and specific

enough to the setting to be amenable to scientific study. Software of major database

vendors runs to hundreds of thousands of lines of source code, and has evolved over a

period of decades. Spreadsheets are also complex, but the tools and design principles

used are either not stable enough, or not unique enough to the spreadsheet setting to

sustain a separate discipline. Thus we can refine the definition of DBR as the study of

the stable architectural and component construction of database management

systems – the fundamental languages, algorithms and data structures used in these

systems. Database theory, a subset of DBR, would then be the formalization and

analysis of these languages and algorithms, e.g., semantics of the languages, upper

and lower bounds on the time or space used in the algorithms. The emphasis on

stable components explains why many features in a DBMS are not the subject of

much research – there are comparatively few research papers about report

generators, administrative interfaces, or format conversion for their lack of stability.

The complexity and uniqueness of software dedicated to data management

gives one justification for DBR. However, a deeper motivation is that database

management techniques and algorithms have become pervasive within computer

science. Many of the features of modern database systems that we shall discuss

in this chapter – indexing, cost-based optimization, transaction management –
that were first developed in the context of database management systems have

become essential components in related areas as well. The study of logic-based

languages, which received its impetus from the success of relational databases,
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has had impact on understanding the relationship between declarative specification

and computation throughout computer science. Thus much of DBR is concerned

with the application and expansion of “large-scale data management techniques”

wherever they are or could be relevant in computer science. This “migration”

accounts for a fact which will be fairly obvious to the reader of the proceedings

of database conferences: much of current DBR is not closely connected to current
DBMS product lines at all. Much of DBR involves languages that do not exist

within current DBMSs, or features that go radically beyond what current systems

offer. They may deal with proposed extensions of real languages, or modeling

languages that are put forth as theoretical tools but which are unrealistic for

practical use.

This phenomenon is not unique to DBR. A significant portion of programming

language research investigates ideas for novel languages or language features, and

security research often looks at the possible ways in which security might be

achieved, regardless of their practicality. Similarly, DBR examines the ways in

which computers could manage large quantities of information, rather than how

they do manage it. Thus, much of DBR deals with “managing information” in a

very wide sense. It concerns itself with broad questions: How can new information

sets be defined from old ones? How could one describe relationships between

datasets, and how could we specify the information that a user or program might

want from a collection of structured information? What kinds of structure can one

find in information? What does it mean for two sets of information to be the same?

In DBR, these questions are dealt with from a computer science perspective: precise

description languages are sought and algorithmic problems related to these descrip-

tion formalisms are investigated.

We see that DBR has a manifold structure; much of it revolves around existing

database management systems, while another aspect revolves around techniques for

data management in the wider sense: for use as a component within other software

tools (e.g. Web search), for insight into other areas of computer science, and

to explore the possibilities for managing information. The structure of this chapter

will reflect this.

By way of a short introduction, we start by giving a bit of history of database

management systems, leading up to the creation of relational database management

systems, which are the most important class of DBMSs currently. We go on to

describe the input languages and structure of a “traditional” (relational) DBMS. We

then give a sample of DBR that is oriented towards improving the processing

pipelines of existing DBMSs. In a subsequent section, we turn towards research

on expanding the functionality of data management systems, covering several

significant extensions, sometimes quite radical, that have been explored. In the

process we will try to give some idea of how research on these new systems has

been integrated into the standard feature set of commercial database systems, and

the extent to which it has had influence in other parts of computer science.

Owing to page length limits, for many systems we shall only sketch their

main features, giving references for details. We shall devote more space to the

informal level and leave technical-level details to references cited. Furthermore, we
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shall assume that the reader has some familiarity with such basic matters as

formatting data on punched cards and magnetic tapes and with common database

processes such as report generators (just what they sounds like), sorting (e.g.,

sequencing data, say alphabetically, according to some key fields in a table of data)

and traditional business applications such as payroll files. These topics are intui-

tively comprehensible without explicit introductory exposition.

The Relational Model

The Path to Relational Databases

The growth of database management software is a story of the growth of abstraction

in computing systems. As in many other areas of computing, in the beginning there

were low-level concrete tasks that were carried out first by special-purpose hard-

ware, then by special-purpose programs – for example, reading data from punched

cards, performing a hard-coded calculation on the data and then generating results

or reports in a custom format. Starting from the 1950s there were programs

dedicated to processing payroll data, purchase orders, and other pieces of structured
data. The software was tailored not only to the application at hand, but to the

hardware and the input formats. Even the data records themselves, starting with

punch cards and later magnetic tape, were often created on a per-task basis, with no

sharing of data between applications.

At the end of the 1950s software emerged that abstracted some general func-

tionality used in many data processing activities. Report generation and sorting

were two areas of particular interest. This abstract software evolved into the file
management systems of the 1960s. Although software was still often bundled with

hardware, independent software vendors such as Informatics began to offer file-

processing software in competition with mainframe vendors like IBM. This

decoupling spurred interest in making data processing software independent from

hardware, just as later on it would spur independence from the operating system.

File managers regarded structured files – plain text files that made use of some set of

delimiters – as the basic input abstraction. Here is a description of one system

(quoted from Postley 1998).

This program has been developed in response to a large number and wide variety of

requests for reports consisting of selected information from magnetic tape files. These

requests usually require the preparation of a new program or modification of an existing

program. This program provides a more general solution to the problems of information

retrieval and report generation. It combines four generalized capabilities. It can

1. Utilize any of a wide variety of tape formats

2. Make selections on the basis of complex criteria
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3. Produce reports in a wide variety of list-type formats

4. Produce several reports on a single pass of a magnetic tape file. This can be done with no

appreciable increase in retrieval time

By providing such a system, it is expected that a reduction in programming and machine

time will be realized. These savings, will, of course, be magnified for those retrieval/report

generations of short production life and for those reports requiring frequent alterations in

selection criteria or report format.

The emphasis even in these “generalized” systems was on batch processing, i.e.,

on entire files. With the move from magnetic tape to disk storage in the early 1960s,

the possibility of querying on-demand emerged. At the same time, the notion that

centrally managed data would be a way of radically increasing business productiv-

ity became popular within corporate management circles (Haigh 2006). The vision

was that managers would have a global integrated view of their business, being able

to answer questions “instantly” that would have previously taken hours or even

weeks of manual work. The development of advanced decision support and busi-

ness analysis tools that would realize this vision came much later in the evolution of

database systems. But the possibility of such systems inspired corporations to invest

more heavily in data processing technology, and gave added impetus to the devel-

opment of a flexible query language.

Throughout the 1960s systems were developed that had many of the features of

modern DBMSs, including some ability to perform querying of shared data and to

concurrently process updates sent from multiple processes. IBM’s IMS (Patrick

2009) andGeneral Electric’s IDS, the latter created by TuringAwardwinner Charles

Bachman, introduced more general procedures for defining data, the precursors of

modern data definition languages. While prior systems had left much of the respon-

sibility for management of concurrent updates to application programmers, systems

such as IMS managed them transparently. Still, the emphasis was on batch mode or

on a fixed set of queries. The view of data provided by IMS upon its initial product

release in the late 1960s is described as follows (McGee 2009):

The data model provided by the initial release of IMS was Data Language/1 (DL/1). In this

model, databases consisted of records, records were hierarchic structures of segments, and

segments were sets of fields stored in consecutive bytes. One field in a record root segment

could be designated the record key. The program’s interface to IMS provided calls to access

records sequentially or by key; to navigate to segments within the record; and to insert,

replace, and delete records.

Although in retrospect the convergence towards the current notion of data
management functionality is clear, as the 1960s ended, alternative visions of the

future were available. On the one hand, overlapping functionality in database

systems was incorporated in general-purpose programming languages such as

RPG and COBOL. These included querying and data definition as key elements,

while still focusing heavily on report generation features that are secondary in a

modern DBMS. On the other hand, research projects with far greater scope,

incorporating artificial intelligence and natural language interfaces, held out the

possibility that data management systems would be subsumed by software with

much broader capabilities in the near future.
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The current consensus on the functionality of a DBMS arose both from industry

trends (e.g., increasing specialization in the independent software industry) and

standardization efforts. The Conference on Data Systems Language (CODASYL)

was a consortium originally formed to develop a “business language”, but which

later worked on a variety of computing standards issues, including the development

of the business programming language COBOL. In 1965, CODASYL formed a

committee later known as the Data Base Task Group (DBTG), which published the

first standards for database management systems (Olle 1978). CODASYL arrived at

a fairly general definition of the role of data description and data manipulation

languages, while proposing concrete interfaces. In general outlines, it resembles

that of modern systems.

The deployment of an actual interoperable standard was still quite far off in the

marketplace. The functionality proposed by CODASYL was beyond that offered by

most database products. Furthermore the underlying model of CODASYL was not

that of today’s systems. Instead they were based on the network database model, an
extension of the hierarchic database model used in IBM’s popular IMS software.

In a network (graph) database, the possible relationships between data entities

are fixed as part of the schema – for example, an automobile equipment database

might consist of a mathematical graph (see Chap. 7, Appendix) of equipment types,

having graph connections (edges) or relationships pointing (for instance) from

cars to engines, from engines to cylinders, possibly cycling back to cars. Data

is described by graphs (networks) giving the basic kinds of information items

and their connections. The basic mode of querying was by navigating these

relationships. A query on a database of automobile parts might start by navigating

to a particular kind of engine, then moving to an engine component, and then down

to a subcomponent. This does represent some abstraction – the description of the

data does not deal with particular data formats, or the way that data is represented

on disk. But the navigational paradigm behind the network model forced the data

designer to anticipate all possible relationships in advance. Although the model

does not specify how to choose these relationships, many of them would be based

on performance considerations – in which direction a querier would be most likely

to navigate. Thus the distinction between a data description and an implementation

or index was muddied. Furthermore the navigational query language forced the

query-writer to think somewhat procedurally.

In the late 1960s the relational model evolved as a proposed mathematical basis

for database management systems. It began with articles advocating the use of

mathematical set theory as the core of database query languages. Although there

were many forerunners, such as the proposals of David Childs (1968), the model

was crystallized in the works of Edgar F. Codd. In his seminal paper overviewing

the relational model (Codd 1970), Codd summarized the state of existing

approaches to modeling data as follows:

The provision of data description tables in recently developed information systems

represents a major advance toward the goal of data independence. Such tables facilitate

changing certain characteristics of the data representation stored in a data bank. However,

the variety of data representation characteristics which can be changed without logically
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impairing some application programs is still quite limited. Further, the model of data with

which users interact is still cluttered with representational properties, particularly in regard

to the representation of collections of data (as opposed to individual items).

Codd defined a simple and elegant underlying model – a definition of what

a database is in mathematical terms. He went on to propose that a query language

should be employed that allowed users to define any logical relationship or

access path.

The universality of the data sublanguage lies in its descriptive ability (not its computing

ability). In a large data bank each subset of the data has a very large number of possible (and

sensible) descriptions, even when we assume (as we do) that there is only a finite set of

function subroutines to which the system has access for use in qualifying data for retrieval.

Thus, the class of qualification expressions which can be used in a set specification must

have the descriptive power of the class of well-formed formulas of an applied predicate

calculus.

Codd proposed two “pure mathematical” query languages – the relational
algebra and the relational calculus – proving that they had the same expressive-

ness, and arguing that they could be used as a benchmark by which to judge more

realistic query languages. We discuss these languages in the next section.

Codd’s work had an enormous impact on database research. It focused attention

on the analysis of the behavior of logical formulas on finite structures: evaluation,

equivalence, and simplification of logical formulas became a fundamental part of

database research. The impact on the database industry was just as large but not as

immediate. The presentations of the relational model were written in a highly

mathematical style. They were considered unrealistic by database vendors. Thus

while the relational model was proposed in the late 1960s, relational databases

evolved only gradually throughout the 1970s within the research community.

A major breakthrough was System R (Chamberlin et al. 1981), developed at IBM

research in San Jose. The project was initiated in 1974 and continued throughout the

1970s, with the first customer installation in 1977. The basic features of the

relational paradigm – which we describe next – were present in System R, including

transaction support, join optimization algorithms, and B-tree indexes. The major

database systems of the 1980s, from IBM DB2 to Oracle, descend directly from

System R. In the process of creating System R, Donald Chamberlin and Raymond

Boyce proposed the SEQUEL language (Chamberlin and Boyce 1974). This

evolved into the standard relational query language SQL, the first version of

which was standardized by ANSI in 1986.

As the computer industry moved from mainframes and dumb terminals to

networks of personal computers, database management systems migrated to the

use of a client–server model. In the 1990s with the rise of the Web (see Chap. 7),

database systems became an integral part of e-commerce solutions. A database

server would typically sit behind a Web server; remote client requests coming via

HTTP to the Web server would invoke SQL requests to the DBMS, with results sent

back to the client in HTML. By 1999, the relational database market (including OO

extensions), was estimated to have revenues of 11.1 billion dollars (an estimate of

the market research firm IDC, quoted from Leavitt 2000).
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We will now review the basic features of the relational paradigm – our name for

the features of a “traditional relational database”, representing both the core of most

commercial systems and the view of databases given in most database textbooks.

A Tour of the Relational Paradigm

The relational paradigm is based on several key principles:

• Data abstraction and data definition languages

• Declarative queries

• Indexed data structures

• Algebras as compilation targets

• Cost-based optimization

• Transactions

We will go through the principles individually, using the sample of a university

enrollment database given in Fig. 10.1 below.

Abstraction

Abstraction is a key principle in every area of computer science – shielding people

or programs that make use of a particular software artifact from knowing details

that are “internal”. In the database context, this means that users of database

systems should be shielded from the internals of database management – what

data structures or algorithms are utilized to make access more efficient. Thus a user

should be able to define only the structure of the data, without any information

about concrete physical storage. The interface which describes the structure is a

data definition language. Access to the data should only refer to the structure given
in the definition.

While standard programming languages provide a rich variety of data structures

that can be defined by a user, relational languages require the user to describe data in

terms of a very simple table data structure: a collection of attributes, each having

values in some scalar datatype. The attributes of a table are unordered, allowing the

data to be returned with any ordering of columns in addition to any ordering of rows.

Fig. 10.1 Example database for the university enrollment setting
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In the university example, the database creator would declare that there is a table for

students, listing their names, their student identifier, and their number of credits.

Such a Students table with example data is given in Fig. 10.1, along with other tables

in the university enrollment database.

The relational database standard language SQL (abbreviating “Structured Query

Language”, although it contains sublanguages for almost every database task)

provides a data definition language in the form of a repertoire of CREATE TABLE

commands, which allows the user to describe a table, its attributes, their datatypes,

along with additional internal information. For example, to create the Students table,
one could use the following SQL command:

CREATE TABLE Students (

id INT PRIMARY KEY, first TEXT, last TEXT, credits INT)

Relational data definition languages allow database designers to describe in a

declarative format important aspects of the semantics of the data in a way that

can be exploited by a DBMS. In particular, they can include integrity constraints,
which give properties the data needs to satisfy in order to be considered “sane”. The

PRIMARY KEY declaration above states that the Students table cannot contain two

rows with the same id field and is an example of an integrity constraint.

Relational query languages allow the user to extract information according to the

structure that has been defined. One could issue a query asking for all students who

have taken at least 50 credits of courses. In accordance with the data abstraction

principle, queries cannot be issued based on the internals of data storage; a user

could not ask for all data on a particular disk, or all data located near a particular

item within storage or accessible within a particular data structure.

Declarative, Computationally Limited, Languages

The fact that data is to be retrieved via an abstract descriptive interface leaves open

the question of what kind of programming infrastructure could be used to actually

access it. One approach would be to use “data-item-at-a-time” programming

interfaces, which allow a programmer to navigate through the database in the

same way they navigate through any data structure in a general-purpose program-

ming language (Chap. 4): issue a command to get to the entry point of the structure,

say an array, and then iterate through it. If we wanted to get the students who have

taken at least 50 credits of courses, such an API requires a program (in the host

programming language, e.g., C, Java, C++) that issues an API command to connect

to the student table, another command to access the first (in arbitrary order) row

(or tuple) in the table and put it into a host-language variable, and then a loop in

the host programming language that performs the following action: checking that

the current tuple satisfies the criterion (at least 50 credits) and if so, adding it to the

output, then proceeding to the next tuple via calling an API command.
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Such an iterative interface is simple for a programmer to use, since it requires

only the knowledge of a few basic commands – e.g., a command to get the next

tuple and store the result in a local variable. It allows the programmer to exploit all

the features of the host language.

There are two main drawbacks to a data-item-at-a-time approach. First of all, it

does not give a way for non-programmers to access the data. Anyone who wants to

get the students with at least 50 credits has to know how to program. Secondly, and

perhaps more importantly, performance will suffer in this approach. The program

will have to access every student record in order to access the ones of interest.

Further, records will be fetched one at a time, even though the architecture of any

computer would allow hundreds if not thousands of records to be transferred

between disk and main memory in a single-command.

The alternative pursued in relational database systems is the use of query
languages; access to the database is by issuing statements that define properties

of the set of tuples to be retrieved, giving no indication how they should be

obtained. In the example above, a user would state that they would like all student

ids for students with number of credit attributes above 50. The SQL representation

of this is basically a formal structured version of the natural language phrasing,

given in the query Q0 below:

SELECT s.id FROM Students s WHERE s.credits > 50

SELECT describes a subset of the tuples satisfying the WHERE (“such that”) clause.

The above is a very simple example, but query languages can express fairly

complex subset requests. For example, a query asking for the names of students

with number of credit attributes above 50 who are enrolled in databases would be

the following query Q1:

SELECT s.last FROM Students s

WHERE s.credits > 50 AND s.id IN (

SELECT e.id FROM Enrollment e WHERE e.course¼0databases0)

Here IN specifies the set membership relation.

The declarative style of set-theoretic subset interfaces allows additional abstrac-

tion: the database manager is now free to choose a procedural implementation of the

set theory operations that fits the current storage structure of the data. The second

approach has become the ideal for database access and also for database update and

transformation – programs or users describe the collection of data items that they

would like to see or to change, and the details of how to do this are left to the

database manager.

There are many possible declarative languages. Prolog, for example is a

paradigmatic declarative language, with no explicit control structures. It neverthe-

less allows one to express any possible computation, including arithmetic and

recursive definitions. Relational database systems, in contrast, looked for languages

with limited expressiveness – ones that can only express computations that can be

performed reasonably efficiently. The motivation is to prevent users from writing
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queries that cannot be executed, or queries whose execution will degrade the

performance of the database manager unacceptably.

What exactly does limited expressiveness mean? At a minimum, it means that

queries cannot be expressed in the language if they require time exponential, or

more generally super-polynomial, in the database cardinality. In practice, one

desires performance much better than this – for large datasets one generally

wants implementations that run in time less than C1jDj2 þ C2 on a database D,
where the coefficients C1;C2 are not enormous. One coarse benchmark for a query

language is given by polynomial-time data complexity: for every query Q there

should be a polynomial P such that the execution of Q on a database D can be

performed in time at most PðjDjÞ. (As usual, jDj is the cardinality of D.)
The standard query language that emerged as part of the SQL standard fulfilled

the polynomial time requirement. In fact, a large fragment of the language could

be translated into a much more restricted language, a variant of first-order logic.
(See Chap. 2, Appendix G.) This fragment is the one formed from nesting the basic

subsetting SELECT. . .FROM. . . WHERE clauses of SQL, connecting multiple clauses

via the quantifiers EXISTS and NOT EXISTS, or (equivalently) with the set mem-

bership constructs IN and NOT IN. We refer to this fragment as first-order SQL in

the remainder of this chapter. For example, the following first-order SQL query Q2

retrieves the names of students who did not take databases:

SELECT s.last FROM Students

WHERE s.id NOT IN (

SELECT e.id FROM Enrollment e WHERE e.course¼0databases0)

First-order SQL translates to a simple syntactic variant of first-order logic known

as relational calculus. Every relational calculus query can be performed in poly-

nomial time on a Turing machine, and in constant time on a parallel machine.

The translation to a predicate logic is not used for compilation of the language.

(As we shall see, queries are compiled into algebraic formalisms instead.) But

predicate logics are often useful for reasoning about the properties of a query

language, since logics are well-understood and well-studied formalisms. There

are translations in the other direction as well: for example, SQL can express all

Boolean queries that can be defined in first-order logic over the relation symbols.

While the polynomial time requirement represents a limit on the expressiveness of

query languages, the requirement of expressing all queries in a logic gives a lower

bound on expressiveness, often referred to as relational completeness. The ideal

would be to have a query language that corresponds in expressiveness exactly to a

predicate logic – preferably one with a well-established set of proof rules. Then the

optimization rules of the query language could be justified by the soundness of the

proof system for the logic. Relational languages do not meet this ideal – SQL is

much more powerful than first-order logic, and does not correspond exactly to any

well-studied logic – but they approximate it.

Just because database query languages are limited in expressiveness does not

mean that users are restricted in performing certain tasks. For example, a user can
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still filter data based on some complex arithmetic comparison or recursive function.

The idea is not that query languages would replace general-purpose programming

languages. They would only be used to express requests for information that

requires searching and combining data from a large dataset. Finer filtering of

information would be performed within a general-purpose language.

An example of the runtime flow for our first query Q0 might be:

Q0  SELECT s.id FROM Students s WHERE s.credits > 50;

D0  newDatabaseConnection();

results D0.execute(Q0 );

while not end of results do

studentRecord  results.next();

if good(studentRecord.credits) then print(studentRecord );

endw

The “execute” operation evaluates the query Q0 on the stored data. The result

of execution may be the transferring of all of the data into memory, or just the

determination of the initial record satisfying the query, with the remaining records

pulled in on demand. The “next” operator iterates through all of the records

satisfying the query. The filter “good” is a function on tuples written in the host

language, and could use any features available in that language. A database

management system thus divides up work between the host programming language

and a special-purpose language.

Indexed Data Architecture

Relational database managers were designed for datasets that would be too large to

fit into a computer’s main-memory. At any point in time, a portion of the data would

be in memory (in a buffer cache) and this portion could be accessed and navigated

quickly. The remainder would be on secondary storage (e.g., disk drives). The disk-

resident data can be divided up into blocks, a unit that can be transferred to main-

memory in one atomic operation. Query processing would involve locating relevant

blocks of data on disk, transferring block by block to the buffer, and then locating

the required data items by navigating a block.

The main tool relational database managers use to speed query processing is the

maintenance of auxiliary data structures that allow retrieval with fewer accesses.

The principal example of this are tree indexes, such as B-trees and B+-trees. In

the student example, we might create an index on id. If the ids range among 8-digit

numbers, the first level of the tree divides these numbers into some number

of intervals, and similarly each of these intervals is split into subintervals in the

next node.

To find the student with id 12345678, we follow a path down the tree by locating

12345678 within the collection of intervals under the root, then within the collec-

tion of subintervals, until finally arriving at the leaf node containing the block
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where the student record resides. Since the internal nodes of a tree index contain

only a subset of the values for one attribute (hence only a subset of the ids), they

will generally be dramatically smaller than the dataset. Still for a large dataset, the

bulk of the tree would reside on disk.

The trees used are balanced, like many tree structures used in computing: the

maximum number of levels below any given node is thus fixed, and this guarantees

that the access time for an id value will not vary from id to id. As data is modified

the tree indexes must be updated, but standard tree update algorithms can be applied

to make the update time a constant factor (between 1 and 2) in the number

of updates.

The key thing that distinguishes tree indexes from other tree data structures is

their branching. Instead of using binary branching, as search trees elsewhere in

computing do, the branching in B-trees is chosen so that one internal node can be

stored in a single block of memory, and thus a single navigation step in a tree

requires at most one data transfer step from disk to memory. Depending on the

block size of the machine and the size of a data item, there might be hundreds or

even thousands of entries at a given level.

Algebraic Query Plans

One of the key advantages of declarative languages is that the optimizer can choose

the best implementation, using a more global view of the query than the compiler

for a data-item-at-a-time language would possess.

A way to capture this extra dimension of flexibility between queries and evalua-

tion mechanisms is via the notion of a query plan. A plan is a description of high-

level steps that implement the query. Many plans can correspond to the query, and

have different performance characteristics.

Consider again the query Q1 above. A naı̈ve query plan would correspond to the

following step: getting all ids of students taking the course “databases”, using an

index I on the table, reading the blocks of this result one at a time; finding all the

student records that correspond to these ids; scanning through them to check the

number of credits, returning only those above the credit threshold; scanning through

the list of student records that survive the filtering process and returning all the

name fields. This plan might be represented internally within a database manager by

the following expression:

plastðs scan
credits>50ðStudents ffl pidðs I

course¼00databases00 ðEnrollmentÞÞÞÞ:

Here, s I
course¼00databases00 refers to a selection operator, which uses index I to

retrieve all records on a particular course; ⋈ is a join operator, which takes two

tables and merges all matching records – in this case, a table of ids and a table of

student records; sscancredits>50 is an operator that selects students within a student table

above 50 credits, via just iterating through the table block by block; finally, plast and
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pid refer to projection operators, which remove all columns from a table except,

respectively, the columns last and id, eliminating duplicate rows.

Of course, many details are omitted from this plan; in particular, there are many

ways of implementing the join operator ⋈. This plan follows the structure of the

query, and thus represents a fairly naı̈ve implementation. The key point is that there

are many other plans that implement the same query, some of which will not follow

the structure of the original query closely. For example, another plan is as follows:

use the index on the Enrollment table to get the list of records for “database”, then

use another index J on the Students table to get all student records for students

having at least 50 credits; then join the two tables; finally, remove all but the last
field, eliminating duplicates. This plan might be represented as follows:

plastðs J
credits>50ðStudentsÞ ffl s I

course¼00databases00 ðEnrollmentÞÞ:

The plan expressions that we are displaying are in a language called the relational
algebra. The relational algebra is still declarative. It has the same advantage over

formalisms such as the relational calculus as compilation formalisms for general-

purpose programming languages have over the corresponding source languages:

they are easier to optimize because there are fewer syntactic operators. In particular,

the language is variable-free – there are no explicit variables in the syntax – and thus
the conditions under which a new query can be formed from composing a new

operator are simpler.

The process of getting from a query to an efficient plan expression consists of a

translation to algebra and then transforming via applying equivalences – analogous

to the application of algebraic rules such as commutativity and associativity in

algebra. The standard example of such a rule is pushing selections inside

projections or joins: a query plan

scourse¼00databases00 ðscredits>50ðStudentsÞ ffl EnrollmentÞ

would be converted to

scredits>50ðStudentsÞ ffl scourse¼00databases00 ðEnrollmentÞ:

In searching through plans by applying transformations, we are exploring the space

of possible implementations of the query.

Cost Estimation and Search

The translation to algebra and the use of transformation rules allows one to explore

the implementation space. But two issues remain: how does one determine how

efficient an implementation is? And given that the search space is large – indeed,
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the collection of equivalent expressions is infinite – how does one search through it

in a way that makes it likely to find the best plan?

Relational database managers approach the first question by defining heuristic

cost estimates on a per-operator basis. Of course the real cost of basic operations,

such as retrieving all elements that satisfy a given selection criterion, depends on

the data – one cannot know it exactly without executing the query. Statistical

information about the data, refreshed periodically, can provide a substitute for

exact information. For example, if one stores a histogram telling what percentage

of the students have credit totals in any interval of length 5 between 0 and 150, then

one can get a very accurate estimate of the number of students having above

50 credits. This will allow one to estimate the cost of the selection on I in both

plans above. Cost estimation of basic operations on relations is highly tied to the

index structures and physical storage – it takes into account index structures, when

they are present, cached data, and locality of data on disk. Thus much of the

implementation of relational structures is encapsulated within a cost function,

which serves as an interface to the query optimizer.

In terms of the second question, relational database managers have no universal

solution for searching the space of query plans. They apply some standard search

techniques, but customized to the database setting. In particular, they rely heavily

on divide-and-conquer, breaking up the algebraic expression into subparts and

optimizing them separately; the variable-free nature of relational algebra

expressions makes it easy to analyze components of queries in the same framework

as queries, which assists in defining algorithms via recursion on query structure.

ACID Transactions

Above we have focused on querying databases, but databases are also being

updated concurrently with query accesses. The concurrency of updates and queries

introduces many issues. Consider two users of our university database. User A is

doing an update that is removing a student S from the Students table along with all

of the student’s records in the Enrollment table. Concurrently user B is querying for

the average number of courses for any student, a query that involves both the

number of total courses in the Enrollment table and the number of students. The

high-level query of B translates to a number of access operations on the database,

while the update performed by A translates to changing records in two distinct

tables. If the low-level operations are interleaved in an arbitrary order at the

database, then the users may see anomalous results: the average seen by B might

reflect a student table that includes student S, but an Enrollment table that lacks the
records of S, or vice versa. Indeed, the average seen by B might reflect a table

including only a portion of the enrollment records of S.

The issue is related to the level of abstraction provided to users by a database

system; a complex data-intensive activity like querying for an average is provided

as a single primitive to user B, who will consider it to be atomic – something that

cannot properly overlap with other database activities. At the very least, the
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database should support this. Furthermore, user A would like an even higher-level

of abstraction: A would like the two updates together to be considered as a single

primitive, which should not properly overlap with other database activities.

A DBMS provides additional language support that allows A to do this – to state

that the delete of student S and the elimination of S’s enrollment records represents

a transaction, which should have the properties of a single indivisible action.

Above we have spoken of an action or sequence of actions being treated as

“atomic” or “indivisible”. But what does this mean in practice? Relational

databases have formalized this by the requirement that transactions satisfy the

following properties:

Atomicity

No transaction should be “implemented in part”. If there is a failure in the process

of performing one of the updates in the transaction (e.g., due to hardware failure or

integrity constraint failure), then any other updates that have been applied should be

rolled back, and their effects should not be seen by other database users.

Consistency

Transactions should leave the database in a consistent state: one in which all

integrity constraints hold.

Isolation

Until a transaction has completed, no concurrent user should see results that are

impacted by the updates in the transaction.

Durability

Conversely, once a transaction has completed, its results should not be rolled back

regardless of hardware or software failures. We say that the transaction should be

durable.

Support for transactions that satisfy the properties above – abbreviated as

ACID transactions – is one of the main goals of relational systems. ACIDity

can certainly be achieved by running each transaction serially: assigning each one

a timestamp, and running the transactions in timestamp order (queuing those with

lower timestamp), rolling back the transactions that do not complete. Logging

mechanisms can be used to track the impact of the transaction to enable rollback.

The problem is that this can lead to unacceptable delays in running updates and

queries. The goal is then not just to enforce the ACID properties, but to enforce

them while allowing updates and queries to proceed without blocking whenever

this would not destroy ACIDity – that is, to allow as much concurrency as

possible.

Locking mechanisms are the most popular technique for managing concurrent

use of the data; transactions are only allowed to modify data items that are not

locked by another transaction, and when they act on an item they receive a lock

on it, which generally remains in place until the transaction completes or aborts.

When a transaction queries data it receives a weaker lock on the data, one which
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allows other transactions to query the same data but not to update it. Lock-based

concurrency control has many variants, particularly concerning the granularity at

which data is locked.

The Evaluation Pipeline of the Relational Paradigm

The relational paradigm gives a flow of processing for queries that is closely-

modeled on the flow of processing of programs in a general-purpose programming

language (GPPL), such as C or Java. Figure 10.2 shows a comparison of the

processing flow at query/program evaluation time for a general-purpose program

and for a database query or transform. In both cases, source language expressions

are parsed, and eventually arise at a form more suitable for optimization.

The algebraic expressions are run through a logical optimizer which has an

abstract interface to information about program executions. The optimized expres-

sion is either translated directly into an executable plan, or is run with the help of a

runtime system. In the case of a DBMS, the runtime system would include indexes

and other auxiliary data structures.

Several differences stand out between the two scenarios:

• Database languages are much smaller and syntactically less complex than

GPPLs, and hence the parsing stage is fairly uninteresting. Similarly, the seman-

tic analysis phase is often much simpler than for a GPPL.

Fig.10.2 Processes for database programs and general-purpose programming languages
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• Database queries are often issued interactively, or sent from across a network.

Thus optimization as a rule must usually be quite a small phase – in seconds if

not milliseconds. In the case of GPPLs, the common case is that the program text

is available for some time before execution, making a more robust optimization

phase possible.

• GPPLs often make use of interesting runtime data-structures – byte-code

interpreters, or garbage-collectors. But not all GPPLs do, and one generally

cannot say that a particular program requires auxiliary runtime structures. In

most applications database queries could not be executed at all without the help of

large and complex runtime structures. These structures, in turn, need to be

maintained after program execution (see bottom left in the figure), which may

be as complex and as time-consuming as execution itself. Designing and

maintaining these structures thus plays a central role in DBR.

Related to the above, DBMS systems are often tuned for many runs of a query or

set of queries, not just for an individual execution. The initial population and

period maintenance of runtime structures may thus represent an independent

process, taking place far prior to execution or at intervals between executions.

• A DBMS makes use of not only a program text, but information about the

semantics of the data – the schema. There is no corresponding standard input

description for GPPLs.

• A distinction that is not exhibited in the figure, but has an even greater impact, is

that, typically, database programs run in a heavily concurrent environment, with

hundreds, even tens of thousands of concurrent queries and updates sharing the

same data. Hence the handling of concurrency is paramount.

• Both GPPLs and DBMSs can be used in a distributed setting where resources

(data, computing power, etc.) are distributed over a computer network. How-

ever, for reasons that we will explain further on, even when there is no inherent

distribution in these resources, it is common for a DBMS to manage its data in a

distributed manner.

Let us return to the question of the manifold nature of database research

mentioned in the introduction. We said that part of database research is driven by

improving the performance of existing database management products, while other

DBR is geared towards exploring the possibilities for managing data and extending

the use of database management techniques.

If we consider the first kind of research, parallels with programming languages

suggest that its structure could be broken down along the same lines as for PL

research – there is research on optimization, research on improving runtime data

structures, concurrency, etc. Of course, as the figure shows, DBR in no sense

reduces to PL research, and indeed the research on DB performance has not been

closely-tied to work in PL. Still in rough analogy with programming language

work, one would expect the structure of DBR to follow the lines of the flow on the

left-hand side of Fig. 10.2. And indeed much of the first kind of database research

naturally works in exactly this way. We will refer to this as core database research,
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and we will give an idea of some aspects of it in the next section, following the

processing flow on the left of Fig. 10.2 in our tour.

For research extending the functionality of DBMSs, and considering ways in

which data could be managed, there is a dichotomy: some of the work tries to

preserve the flow of processing in the relational paradigm, but with some new

functionality at the query language level. Some of this work takes as a given the

relational perspective of database query languages as a logical formalism, and looks

at to what extent other logics could be evaluated in the same way as first-order

predicate logic on relations. A second line in the more speculative kind of DBR looks

at more radical changes in the processing pipeline, which have no analog in program-

ming languages. We will overview both of these extensions further in this chapter.

Core Database Research Sampler

In this section, we provide a sampler of what research in the database field has

focused on and accomplished over the years concerning the processing pipeline of

relational database management systems, as was presented in the previous section.

Following Fig. 10.2, we start at the query level, then move to logical optimizations,

physical optimizations, down to the execution of the query on actual hardware.

Each research area is represented by a selection of significant research results, with

no intention of exhaustiveness or objectivity in the choice. We also indicate the

impact research has had on the design of modern DBMSs, discussing whether

models, algorithms, and data structures from the scientific literature have been

implemented in widely used systems.

Query Languages

We previously explained how first-order SQL has nice logical and algebraic

interpretations in terms of relational calculus and relational algebra. However, even

the very first version of the SQL query language (Chamberlin and Boyce 1974) went

beyond that fragment and included aggregate functions and grouping. Over the years,
the standard and implementations of the SQL query language evolved towards more

and more expressive power. We present in this section the additions that have been

made to SQL to overcome some of its limitations, both in the standard and in actual

implementations, that do not always follow it strictly.

Aggregation

One of the most common functions of database management systems is to compute

summaries of existing data by aggregating the numerical values that appear in these
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tables. Going back to the example database of Fig. 10.1, one can for instance ask the

following questions:

• What is the average number of credits obtained by students?

• How many students have more than 50 credits?

• What is the maximum number of credits earned by a student enrolled in the

databases course?

• For each course, what is the average number of credits of students enrolled in

this course?

All these queries make use of an aggregation function to compute the average,

count, or maximum of a collection of values. The last query also uses a grouping
operator, where the aggregation is performed for each group of results to a sub-

query that have the same value for a given attribute. As already mentioned, both

aggregate functions and grouping are basic features of SQL. They correspond to

forming families of sets.The last query can for instance be expressed as:

SELECT e.course, AVG(s.credits)

FROM Students s, Enrollment e

WHERE s.id ¼ e.id

GROUP BY e.course

It is also possible to define extensions of the relational algebra for queries that

involve aggregation and grouping (Klug 1982; Libkin 2003). Using a similar

notation as in Libkin (2004), a relational algebra expression for the query above is:

Groupcourse½lS:AvgðSÞ�ðpcourse;creditsðStudents ffl EnrollmentÞÞ:

As in the non-aggregate case, database management systems use such algebraic

expressions to represent and manipulate query plans.

In essence, the queries definable in the early versions of SQL (Chamberlin and

Boyce 1974; ISO 1987) are the ones of this aggregation and grouping algebra.

Queries with aggregation and grouping, with their standard syntax and semantics,

are supported by all relational database management systems. In the following, we

will refer to this language as vanilla SQL to distinguish it from more recent and less

well-supported additions.

Recursion

A natural question is that of the expressive power of vanilla SQL. Can all

“reasonably simple” queries that one may want to ask over a relational database

be expressed in SQL? Again, consider the university enrollment example. The table

Dependencies lists the courses that a student must have followed in the past in order

to get enrolled in a given course. Suppose that a new student aims at taking the Web

course. Then he needs to query the database to retrieve all courses this one depends
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on, so as to plan his curriculum. This is a simple enough request: if the table

Dependencies is seen as the relation defining a directed graph, the problem becomes

determining all nodes in the graph reachable from the “web” node. This can be

solved in time linear in the size of the relation by simple depth-first or breadth-first

graph search algorithms (in other words, by computing the transitive closure of the

relation); because of the inherent recursion in these algorithms, such a query is

called recursive. We have isolated earlier in the chapter polynomial-time data

complexity as an indicator of the limits of expressiveness for database query

language. The course dependency query and other similar recursive queries fit

this criterion. Are they expressible in vanilla SQL?

It is well established that recursion cannot be expressed in first-order logic (and

thus, in the relational calculus). This can be proved using a locality (Libkin 2004)

argument: a relational algebra expression is unable to distinguish between two

nodes in a graph whose neighborhood of a certain radius are isomorphic, while

computing the transitive closure is essentially a non-local operation. It turns out that

the same result holds for vanilla SQL (Libkin 2003), with aggregation and group-

ing, when datatypes are unordered (the problem is more complex and still open for

ordered datatypes).

The (apparent) inability to write simple recursive queries in SQL has led the

designers of the SQL3 standard (ISO 1999) to add to the language the WITH

RECURSIVE feature that enables recursion. As an example, the course dependency

query can be written as:

WITH RECURSIVE Closure(course) AS (

VALUES(0web0)

UNION

SELECT d.dependson FROM Dependencies d, Closure c

WHERE d.course ¼ c.course

) SELECT ∗ FROM Closure

Support for this kind of query in DBMSs varies. In Oracle, for instance, it is not

possible to use WITH RECURSIVE queries at the time of this writing. A similar

feature, however, has been available in Oracle since the early 1980s (Stocker et al.

1984) with the proprietary CONNECT BY operator, which demonstrates the early

interest in such a functionality. IBM DB2, Microsoft SQL Server, and PostgreSQL

all support WITH RECURSIVE, while other less feature-rich DBMSs such as

MySQL do not allow any form of recursive queries, short of stored procedures.

Stored Procedures

The components of the SQL query languagementioned so far (the relational algebra,

aggregation and grouping, recursion) all have in common a polynomial-time

data complexity. As already discussed, this is a design choice, to avoid queries

that would be too costly to evaluate. The philosophy was that more complex
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processing of the data would be done outside the database management systems, in

applications written in traditional programming languages. This may mean, how-

ever, redundant implementation of data-related functionalities (e.g., data

validation) in all applications (possibly written in different programming languages)

that interact with a given database. For this reason, users have felt the need to move

larger parts of the application logic, in the form of arbitrary code that manipulates

data, into the database management system. Database vendors have thus offered the

possibility to implement stored procedures and user-defined functions directly in the
DBMS, using extensions of the SQL language with control flow statements (variable

assignment, tests, loops, etc.). These procedures are stored in the database itself,

along with the data. This has led in turn to the addition of stored procedures to

the SQL standard, under the name SQL/PSM (ISO 1996) (for persistent stored
modules). Though few vendors follow this standard to the letter and there

are many variations in the actual stored procedure languages used in DBMSs,

all major systems provide this functionality. Oracle’s stored procedure language,

PL/SQL, introduced in 1992, has been especially influential.

Using stored procedures, it is possible to implement arbitrary processing of the

data inside the database management system (in other terms, the addition of stored

procedures make the SQL language Turing-complete). As a consequence, queries

making use of stored procedures do not have any guarantee of polynomial-time data

complexity and most query optimization techniques are not applicable any more.

The database management system focuses on optimizing subparts of the stored

procedures that do not make use of control flow statements.

The relational algebra, aggregation and grouping, recursive queries stored

procedures and user-defined functions are the tools thatmodern databasemanagement

systems provide to query relational databases. Other commonly available features

of the query language either add syntactic sugar on top of these basic functionalities,

or allow the querying of other kinds of data structures, such as XML documents (see

further), geospatial coordinates, or plain text queried through keyword search.

Logical Optimizations

Let us move to the realm of query optimization. The goal here is to find an efficient

way of evaluating a user’s query. As already mentioned, database management

systems do this in two ways: by first rewriting the query into a form that is easier to

evaluate, independently of the data it runs on, and then by generating a set of

possible evaluation plans for the query and using statistical information to choose

an efficient one for this particular database. We are looking now at the former type

of techniques, that we call logical optimizations. Plan generation and statistics-

based cost estimation are described further. Logical optimizations can either be

local (the query is rewritten parts by parts) or global (an optimal rewriting of

the query as a whole is sought for). Since optimizations considered here are
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independent of the actual data they are particularly useful when the same query is

run multiple times over different database instances.

Local Optimizations

For reasons that we shall attempt to explain further on, though research has

considered and proposed both local and global logical optimization strategies,

DBMSs mostly use local optimizations. To go beyond what is presented in this

section, a good starting point is Chaudhuri (1998).

Equivalence Rules

The first idea used for query rewriting has already been mentioned: exploiting

equivalence rules of relational algebra expressions (especially, commutativity or

distributivity of operators). Thus, it is often more efficient to push selections inside

joins, i.e., evaluate the selection operator in each relations before joining two

relations, or to distribute projection over union, i.e. to transform pAðR1 [ R2Þ into
pAðR1Þ [ pAðR2Þ. It is not always clear, however, when applying a given equivalence
rule makes the rewritten query more efficient. Therefore equivalence rules are also

used extensively for generating the space of query plans a cost-based estimator

chooses from. Equivalence rules of relational algebra expressions involving classical

operators are folklore, but each time a new operator has been considered, new

equivalence rules have been investigated. This is the case, for instance, in Rosenthal

and Galindo-Legaria (1990) with the outer join operator that retains every tuple of

one of the two tables being joined, even if no matching tuple exists in the other table.

Equivalence rules are an important component of the query optimizer of all DBMSs.

Unnesting Complex Queries

Another form of logical optimization at a local level deals with nested SQL queries.

SQL offers the possibility of expressing complex queries that use nested sub-

queries, especially in the WHERE clause:

SELECT s.first, s.last

FROM Students s

WHERE s.id IN (

SELECT e.id FROM Enrollment e WHERE e.course¼0databases0)

A naı̈ve evaluation of this query, which asks for names of students enrolled in the

“databases” course, would enumerate all tuples of the Students table, and, for each
of them, would evaluate the sub-query and return the tuple if the sub-query returns

the identifier of the student. Obviously, in this particular example, such complex

processing is not required, since the query and its sub-query are uncorrelated:
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the sub-query does not refer to the current tuple of the main query. This means the

sub-query can be evaluated once and its results used for matching identifiers from

the Students table.
There are more complex examples of nested queries, for which such a simple

strategy cannot work. Consider for instance the following query, that retrieves

names of students enrolled in a course that would allow them to graduate (assuming

they need 150 credits to graduate, counting those they were already awarded):

SELECT s.first, s.last

FROM Students s

WHERE s.credits < 150 AND s.id IN (

SELECT e.id FROM Enrollment e

WHERE e.credits > 150 � s.credits)

Here, the main query and its sub-query are correlated: the sub-query has a condition
on the value of the current tuple of the Students table.

Research has investigated the conditions under which nested queries could be

unnested and rewritten as simple one-block queries. The seminal work (Kim 1982)

proposes an algorithm to simplify nested queries, which depends of the kind of

correlations existing between a query and its sub-query. In this example, a simplifi-

cation is possible, and yields:

SELECT s.last

FROM Students s, Enrollment e

WHERE s.id ¼ e.id AND s.credits < 150

AND e.credits > 150 � s.credits

This rewritten query can be shown to be equivalent to the original one. This

decorrelation procedure is actually very simple when the two tables are joined by

the IN operator and when the correlation between the two tables does not involve any

aggregate function: just put all conditions of the sub-query in the main WHERE clause,

and replace the IN operator with an equality join. Other works, such as Dayal (1987),

have extended the decorrelation procedure of Kim (1982) to support, for instance,

grouping, and other forms of correlation between a query and its sub-query.

Obviously, whenever such simplifications are possible (which is not always the

case!) they can be applied repeatedly to complex sub-queries to reduce the number of

nested blocks, possibly reducing them to a simple SELECT-FROM-WHERE query. The

reduced query is typicallymore efficient to directly evaluate, leads to a search space of

query plans of reduced size, and is also more easily subject to other forms of logical

optimizations, such as static analysis. For these reasons, modern-day query optimizers

perform such unnesting, at least in simple cases (Lorentz 2010).

Global Optimizations: Static Analysis

We discuss here a global approach to query optimization, based on static analysis:
independently of actual data, determine important characteristics of a query as a
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whole that can be used, in particular, to determine whether the query can actually

return any result, what is the optimal evaluation order, or how to rewrite it into a

simpler one.

We limit ourselves in this section to the well-understood case of conjunctive
queries, the fragment of the relational calculus without disjunction, negation, or

universal quantifiers. A conjunctive query is thus a conjunction of relational facts

(also called subgoals) involving either output variables, or existentially quantified

variables, or constants, for instance the query Q1, previously introduced:

Q1ðlastÞ:¼9i9f9c:Studentsði; f ; last; cÞ ^ c>50 ^ Enrollmentði;00databases00Þ:

Equivalently, this can be seen as a fragment or the relational algebra with the

selection, projection, join, and cross product operators, or also as simple SQL

queries involving only the SELECT, FROM, and WHERE keywords.

The most basic static analysis problem is that of satisfiability: does there exist a
database for which the query returns a non-empty result? In the case of conjunc-

tive queries, and without any restrictions on the data, it is easy to see the answer is

always yes, because of the monotonicity of the query language. For the full

relational calculus, satisfiability is undecidable. The undecidability of the exis-

tence of arbitrary models of a first-order logic formula is a consequence of

G€odel’s incompleteness theorem (see Chap. 2, Appendix G); however, the proof

of the undecidability of relational calculus satisfiability (Di Paola 1969) relies on

the undecidability of the existence of finitemodels of a first-order logic formula, a

result known as Trakhtenbrot’s theorem (Trakhtenbrot 1963).

Query Evaluation and Query Containment

Another fundamental problem in static analysis is query containment: query Q1 is

said to be contained in query Q2 (Q1 � Q2) if, for all databases D, the set of results
of Q1 over D, Q1ðDÞ, is a subset of Q2ðDÞ. For conjunctive queries, a fundamental

result known as the homomorphism theorem (Chandra and Merlin 1977) relates

query containment and query evaluation through the canonical database DQ of

a conjunctive query, constructed as follows: each subgoal occurring in the query

forms one tuple of its canonical database, and each constant occurring in the

query or output variable of the query is the sole tuple of a new unary relation.

A homomorphism between two relational databases is a mapping h from one to the

other such that if Rðc1 . . . cnÞ is a tuple of the first database, then Rðhðc1Þ . . . hðcnÞÞ
is a tuple of the second. The homomorphism theorem states that the following three

statements are equivalent:

1. Q1 � Q2;

2. The output variables of Q1 are in Q2ðDQ
1 Þ;

3. There is a homomorphism from DQ
2 to DQ

1 .

In other words, testing containment amounts to evaluating a query, and, con-

versely, evaluating a query Q over D amounts to testing containment of a query for
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which D is the canonical model in Q. An efficient algorithm for query containment

would thus give us an efficient query evaluation strategy. It is easy to see, however,

that conjunctive query containment is an NP-complete problem (Chandra

and Merlin 1977), and (thus) that in terms of combined complexity (Vardi 1985)

(i.e., the complexity when both the data and the query are part of the input), query

evaluation is NP-complete. In fact, satisfiability of propositional formulas in con-

junctive normal form (Chap. 2, Appendix 1), the most well-known NP-complete

problem, (see Chap. 13), is a special case of query evaluation over a database where

the domain of each relation has only two elements.

Acyclic Queries

Given this intractability of conjunctive query evaluation in the query size, research

on query optimization has investigated subclasses of conjunctive queries for which

(a) containment is in polynomial time and evaluation is therefore in polynomial

time in combined complexity and (b) the recognition problem – determining

whether a query belongs to the subclass – is tractable. In particular, the class of

acyclic queries (Chekuri and Rajaraman 2000) has been widely studied.

To define acyclicity, first consider a simple case when all relations used in a

conjunctive query have arity 1 or 2. We define the graph of such a query. Nodes of

the graph are constants or variables occurring in the query, and there is an edge

between two nodes if there is an atom that involves both these nodes. A query is

acyclic if its graph is acyclic. For example, the query 9x9y9zRðx; yÞ ^ Rðy; zÞ is
acyclic, while 9x9y9zRðx; yÞ ^ Rðy; zÞ ^ Rðz; xÞ is cyclic. For general conjunctive
queries with no restriction on the arity of the relation, the definition of acyclicity

involves the hypergraph of the query, and essentially means that there exists a tree-

like decomposition of the hypergraph; the precise definition is a bit technical and

can be found in Beeri et al. (1981), along with equivalent characterizations.

Acyclic queries are of particular interest because query evaluation can be

performed in polynomial-time combined complexity (Chekuri and Rajaraman

2000). Intuitively, for a query with no output variables, it is possible to use the

tree decomposition of the query as a query plan where join operators can be

replaced with semijoins (the semijoin of two relations is the tuples of the first

relation for which a matching tuple exists in the second one). One can easily see that

testing acyclicity is also tractable. Numerous queries encountered in practice are

indeed acyclic; this is the case of most queries related to the university enrollment

example encountered so far. But some simple queries are cyclic. Consider for

instance the following one, that checks if there is any student enrolled at the same

time in a course and one of its prerequisites:

Q3 :¼ 9i9c19c2:Enrollmentði; c1Þ ^ Enrollmentði; c2Þ ^ Dependenciesðc1; c2Þ:

This query is obviously cyclic. In order to extend tractable query containment to

simple yet cyclic queries, the notion of treewidth (Chekuri and Rajaraman 2000)
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and the more general hypertree-width (Gottlob et al. 2002b) have been introduced

to characterize the “degree of cyclicity” of a query; intuitively, the tree decomposi-

tion of a query is allowed to have more than one subgoal, and the maximum number

of these subgoals in the tree gives the width. We omit the precise definition of these

concepts, but treewidth and hypertree-width have in common that acyclic queries

have width of 1, a “cycle” query such as Q3 has width of 2, and, more generally,

the more complex the sharing patterns of variables across subgoals, the larger the

width. Though computing the treewidth or hypertree-width is NP-hard, there are

polynomial-time algorithms that check whether a query has width less than or equal

to a given constant k. Furthermore, if a query has treewidth or hypertree-width at

most k for any fixed k, query containment can be tested in polynomial time, and thus

query evaluation is polynomial-time in the size of the query and data. The advan-

tage of hypertree-width over treewidth is that for some queries, the hypertree-width

can be arbitrarily smaller than the treewidth.

Query Minimization

A query optimization problem orthogonal to finding an efficient evaluation strategy

is minimization: does the query have a minimum number of subgoals among all

equivalent queries, and if not, how can we rewrite it into an equivalent, minimal,

query? As a rule of thumb, the shorter a conjunctive query is, the faster it can be

processed. The problem of query minimization is especially significant when the

query is not hand-written but automatically generated, e.g., by a content manage-

ment system or in data integration contexts. Such automatically generated queries

are commonly much longer than minimal equivalent queries, involving many join

computations that could be avoided.

A consequence of the homomorphism theorem is that every conjunctive query

has a unique minimal equivalent query (up to the renaming of variables). Further-

more this minimal query is a homomorphic image of the original query. A strategy

for query minimization (Abiteboul et al. 1995) is thus to repeatedly try reducing the

overall number of subgoals of the query by mapping variables to constants or other

existing variables, testing at each step whether the reduced query is still equivalent

to the original query. When no further reduction in the number of subgoals is

possible, we have obtained the minimal query. Consider for instance the Boolean

query 9x9y9z:Rðx; yÞ ^ Rðz; 5Þ. By mapping x to z and y to 5 we obtain the reduced
query 9z:Rðz; 5Þ which can be checked to be equivalent to the original query.

Further minimization is obviously impossible, so this is the minimized query.

Note that the homomorphic image of an acyclic query is also acyclic. This means

that this minimization procedure can be run in polynomial time over acyclic

conjunctive queries. A query optimizer can thus start by checking whether a

given query is acyclic, and if so, minimize it, to reduce the cost of its evaluation,

and also evaluate it in polynomial time. Once again, this approach can be

generalized to queries of bounded treewidth or hypertree-width.
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Use of Static Analysis in DBMSs

Basic static analysis is used in relational database management systems, e.g., to test

if a query is acyclic in order to replace joins with semijoins (Lorentz 2010). More

advanced treewidth-based query evaluation and query minimization, to the best of

our knowledge, are not used in any major database management systems, despite

the potential usefulness of such techniques in practical applications (Kunen and

Suciu 2002). The reason may be that queries are often already minimal and in an

easily evaluable form when hand-written; more and more scenarios call for auto-

matically generated queries of arbitrary structure, however. Another reason is the

generally good performance of classical cost-based optimizers.

Between Logical and Physical Optimizations: Views

Before moving down the query processing pipeline to plan generation and cost-

based query optimization, let us remain at the logical level to discuss views: a view
is a named query that can be used in other queries as if it were a base table in the

database. Views can be defined in SQL like this:

CREATE VIEW PredictedCredits AS

SELECT s.id, s.credits + SUM(e.credits) AS credits

FROM Students s, Enrollment e

WHERE s.id ¼ e.id

GROUP BY e.id

This statement creates a view PredictedCredits that contains the number of credits

for each active student at the end of the term, provided they pass all courses they

enrolled in. This view can now be referred to in subsequent queries (e.g., SELECT

AVG(credits) FROM PredictedCredits).
Views can either be virtual ormaterialized. Virtual views are just aliases for sub-

queries; when they are used inside a query, they are substituted with their definition.

The full expansion of queries that use views can become relatively complicated,

and the unnesting procedures discussed in the previous section can be helpful to

optimize them. In materialized views, the situation is different: the query defining

the view is evaluated to produce the result table, and this result table is stored and

can be directly used as a table in query evaluation.

Virtual views can be used as an extra abstraction layer on top of the original data:

one sometimes consider views as belonging to an external layer that users access,
on top of the logical layer of relational tables that organize the data, on top of the

physical layer of indexes and data storage structures. Separating views from data

allows them to be used for confidentiality purposes: the view PredictedCredits
can be published and used for statistics purposes, without the identity of the
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students being unveiled. Virtual views are also crucial in data integration contexts,

when a source does not provide access to all its data, but just to a view over its data.

Materialized views are generally used for optimization purposes: if a compli-

cated query or sub-query is often used, a materialized view defined by this query

avoids repeating the same computation again and again, functioning as a cache over

the data. This can be done in two ways: either the user needs to refer to the

materialized view in the query for it to be used, or the materialized view is

automatically used whenever useful, the database engine rewriting the query to

make use of this cached data, typically using query containment tests to check for

the usability of the view.

All relational DBMSs support virtual views. Materialized views are not part of

the SQL standard (there is the possibility of defining tables by a query, but such

tables are not maintained as we discuss further) but major systems offer the

possibility of creating them, with a proprietary syntax. At creation, it is generally

possible to specify whether the materialized view should be used for optimization

purposes when finding a rewriting of a query (e.g., the ENABLE QUERY OPTIMI-

ZATION clause of DB2’s materialized query tables).

Updates in Relational Databases

Most research about views in relational databases relates to their interaction with

database updates. Until now, we have mostly had a static view of databases: the

content of tables is fixed, and we interact with them through queries. Obviously, in

most applications, tables change over time, as new data appears, data gets modified,

and old data is removed from the database. These three basic operations can be

carried out in SQL as follows:

INSERT INTO Students VALUES(5, 0Alice0, 0Liddell0, 0)

UPDATE Students SET credits ¼ credits + 10 WHERE id ¼ 3

DELETE FROM Students WHERE credits < 50

These three update operations respectively insert a new student in the database,

increase the credits of a given student, and delete a student from the Students table.
Note that the location of the tuple to update or delete is given in the WHERE clause

similarly as it would be expressed in a query: the idea of using locator queries to

express updates is a very general one.

Two fundamental problems arise when views are defined over dynamic data.

First, materialized views need to be updated whenever the result of their defining

query changes because of updates in the database; this is known as view mainte-
nance. Second, since views can be used as an external layer that users can

query without knowledge of the logical organization of the data, they should also

be able to update the data through views, and this update should be propagated

to the original data: this is the view update problem. We now elaborate on these

two problems.
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View Maintenance

The view maintenance problem is to determine how to efficiently maintain an

up-to-date materialized view when its base tables are updated. Consider again the

view PredictedCredits that we assume has been materialized. It is clear that each

time a student is removed from the Students table, or the current credits of a student
are updated, or a new tuple is inserted into the Enrollment table, the relevant portion
of the view needs to be updated as well.

In order to avoid unneeded computations, the system needs to detect whether a

view can be affected by a given update, i.e., whether the update is relevant to
the query. For instance, no update in theDependencies table, and no modification of

the name of a student, can have an impact on the PredictedCredits view. Static

analysis approaches can be used to determine the potential impact of an update on a

view, independently of the current data. Once an update is found relevant to the

view, the query defining the view can be evaluated again and the view

reconstructed.

In most cases, it is possible to do better, with an incremental maintenance
approach, that aims at avoiding this recalculation step together, and just incremen-

tally maintaining the view by adding or removing individual tuples. Let us see a

practical example, with the simple yet elegant counting algorithm (Gupta et al.

1993) for incremental view maintenance. Consider the following (materialized)

view, that lists all courses at least one student is enrolled in:

CREATE VIEW Courses AS

SELECT DISTINCT e.course FROM Enrollment e

The main idea of the algorithm is to store in the view, in addition to the tuples, an

extra counter that indicates how many derivations of this tuple can be found in the

database. For example, the “databases” course appears twice in the table Enroll-
ment so there are two different derivations of the tuple (“databases”) in the view

Courses. Consider now an update on the table Enrollment. For simplicity, we

assume it is either an insertion or deletion, modifications being dealt with as a

sequence of a deletion and an insertion (it is possible to extend the algorithm to deal

with modifications in a direct manner). We describe how the view is maintained. If

we deal with an insertion, let c be the projection of the new tuple on the attribute

course. The value c is searched in the materialized view Courses. If it occurs, the
corresponding count is incremented by 1; otherwise, it is inserted, with a count of 1.

For a deletion, we proceed similarly: we decrease the counter associated with the

course deleted, and if it reaches 0, we delete the tuple from the view. Such a simple

procedure can be defined for a large class of queries, with support for aggregation or

negation. For a broader outlook on view maintenance approaches, see Gupta and

Mumick (1995).

DBMSs that support materialized views, such as Oracle or DB2, allow

specifying at view creation time whether a view should be maintained auto-

matically, and, if so, whether the view should be entirely recomputed after each

update operation or incrementally maintained (when possible) (Lorentz 2010).
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View Update

The view update problem is the converse of the view maintenance problem. Instead

of determining the consequences on a view of an update on the database, we now

look at how to translate on the databases an update on a view. Imagine a secretary

with access to the sole view Courses needs to change the name of the “automata”

course to “formal languages”. Does this make sense? In other words, is there any

reasonable translation of this update operation on the table Enrollment? In this case,
it seems there is: just replace every occurrence of “automata” with “formal

languages” in the table Enrollment. What if someone with access to the

PredictedCredits view wants to change the credits of a given student? Now, there

does not seem to be any reasonable way to translate this into a database update

operation, since the credits attribute of the view has been computed as an aggregate

of several values, and it is unclear which value should be changed.

The view update problem consists in determining in which cases updating a

database through a view makes sense, and when it does, what the most reasonable

translation of the view update is. In Keller (1985), algorithms are proposed for view

update translation when views are defined using simple conjunctive queries with all

join variables exported in the view. In addition to these algorithms, this work is of

particular interest because it identifies a number of criteria that a view update

translation should verify to be “reasonable”:

1. The translation should not have any effect on the tuples not exported in the view.

2. The translation should affect at most once a database tuple.

3. The translation should be minimal, i.e., there should not be unnecessary

operations.

The SQL standard supports updatable views only when the view is defined using

a single table, and no aggregation or grouping is used. Implementations may go

beyond that and sometimes allow updating simple multiple-table views. The stan-

dard WITH CHECK OPTION clause that can be used in view definitions states that

updates that would cause changes to tuples not visible in the view should be

disallowed.

Plan Generation

Looking back at Fig. 10.2, we arrive at the step where query plans are generated and

the physical plan that will be run on the actual data is chosen. In order to decide on a

query evaluation strategy, query optimizers are built out of three components:

• Logical rewriting rules and index access strategies that are used to generate,

given a query, its possible execution plans
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• A cost model for estimating the cost of a plan, typically based on the expected

number of disk accesses and CPU use of every atomic operation; for the estimate

to be precise, it needs to be based on statistical information about the data

• A search strategy that guides the optimizer in exploring the space of possible

evaluation plans

The design of the query optimizer, and in particular, the heuristics for estimating

plan costs, are an important component of database management systems, that is

kept as a secret in commercial DBMSs. We now present in more detail research

about using histograms for storing statistical information, and how these statistics

can be used to estimate the cost of a query, before presenting the architecture of a

typical query optimizer. For further reading on query optimization, we refer the

reader to (Chaudhuri 1998).

Cost Estimation and Histograms

Consider the query Q>50 ¼ scredits>50ðStudentsÞ. Such a simple query has usually at

most two possible evaluation plans: either the table Students is linearly scanned, and all
tuples with more than 50 credits are returned, or an ordered indexed on the attribute

credits is browsed to retrieve all relevant tuples. TheStudents table is probably stored in
the order of its primary key, id, however; this means the index of credits is a secondary
index that stores, for each possible value, a list of pointers to all corresponding tuples

in the database (a primary index on id could avoid this extra indirection).
Let us try to build a cost estimate of these two query plans, based on a simple

cost model that only looks at the number of disk pages accessed. A page is the

elementary unit of storage used by the DBMS; retrieving the whole content of a

page is considered as an atomic operation, while accessing another page requires a

costly random-access seek. Assuming a typical page size of 4 kilobytes and that

64 bytes are required to store each tuple of the Students table, the whole table uses
N/64 pages where N is the number of students. Consequently, a linear scan of the

table has a cost of N � 64/4096 ¼ N/64. The cost of using the index can be

decomposed as follows: first, looking up 50 in the index; second, accessing all

index entries for value equal or greater than 50; third, accessing all tuples pointed to

by these index entries. Let C be the number of different credit values. Assuming

storing a credit value requires 2 bytes, index lookup using a B+ tree structure has a

cost of log512C (512 is half the number of entries one could store in a leaf node, see

Silberschatz et al. 2010). The number of pages in the index entries accessed is

roughly N>50=1024 if 4 bytes are used for storing a pointer. Here N>50 is the number

of entries having value above 50. Finally, the number of pages accessed while

retrieving tuples can be as large as N>50 since two successive tuples are typically

not contiguous (it would be possible to refine a little bit this estimate by considering

the probability that a tuple is in the same page as a previously accessed tuple,

provided that this page was cached). Summing up, using the index is cheaper if:

N

64
� log512Cþ N>50 1þ 1

1024

� �
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In most practical situations, the first and last terms of the right-hand side are

negligible, and the question becomes whether N>50 is less than or equal to N=64.
To decide, we need statistical information about the credit values, usually stored in

a histogram.
A histogram is a summary of the distribution of the values of a relation attribute,

formed of a fixed number K of buckets, chosen small enough so that this summary

can be stored in main memory and used by the query optimizer without incurring

the cost of a disk seek. For each 1� i�K, bucket i contains statistical information

about tuples for which the attribute value is between vi and viþ1. Thus, v1 is the

minimum attribute value and vnþ1 the maximum value. The information stored is

typically the number of distinct values in the interval ½vi; vi þ 1Þ, the number of

tuples containing a value in this interval, and possibly other statistics of interest,

such as the mean or median value in each bucket. A histogram can be used to

estimate the number of results to a range query such as Q>50: add up the number of

tuples in buckets whose range intersects the range of the query, possibly refining the

estimate for buckets that are at the boundary.

There are different ways to organize attribute values into histograms. Equi-width
histograms partition the set of values ½v1; vnþ1� into K intervals of the same size.

This scheme is well adapted when the data distribution is close to a uniform one, but

fails when the distribution is too biased. Going back to our example, assume that the

minimum and maximum number of credits are respectively 0 and 1,000, but most

students have credits less than 150. If we construct an equi-width histogram with

5 buckets, most of the data values are represented by the bucket ½0; 200Þ, and the

histogram is not very helpful to estimate N>50. To avoid this issue, it is possible to

use equi-height histograms, where the buckets are constructed such that the number

of tuples per bucket is more or less uniform. In our example, this means that several

buckets cover the interval ½0; 150�. An estimate of N>50 adds up the total number of

tuples in all buckets whose lower bound is greater than 50, plus a fraction of the

number of tuples of the bucket where 50 is contained, which yields a more precise

approximation. An equi-height histogram, however, is more difficult to maintain in

the presence of update operations than an equi-width histogram.

Research on histograms has aimed at proposing new ways of splitting the

data values into buckets (e.g., v-optimal histograms (Ioannidis and Poosala 1995)

whose frequency estimates are provably optimal for a large class of queries), at

maintaining histograms when the data is updated (analogous to the problem of view

maintenance), at efficiently computing histograms from the base data (mostly with

the help of sampling techniques), or at building join summaries for the distribution

of several attribute values, to deal with queries with multiple selection criteria.

We refer to Poosala et al. (1996) for more details. DBMSs typically use both

equi-width and equi-height histograms (Breitling 2005) and allow choosing between

the two when tuning a database.
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The Cascades Optimizer

We now explain briefly how a real query optimizer might generate a number of

possible query plans, using logical optimization rules and available data access

methods, evaluate their cost and decide on the plan to run. One of the main

problems is to avoid a combinatorial explosion that would result in trying to

apply all possible transformations. We take the example of the Cascades query

optimization framework (Graefe 1995) that was intended as the basis of the query

optimizer of Microsoft SQL Server. All logical optimization rules (transformation
rules) and data access methods (implementation rules) are described as algebraic

rewritings of a query plan. Each query plan is associated with its cost, which can be

computed from the costs of the sub-plans. Cascades optimizes a query in a top-

down manner using memoization to remember the optimization decisions for each

encountered sub-query plan. When optimizing an expression, the system first

considers if this expression (or one that is “similar enough”) has not already been

optimized, and, if so, directly uses the result. Otherwise, transformation rules and

implementation rules applicable at the top-level are applied, using the guidance of

the predicted cost of the resulting query plan, They also use heuristics that bias the

exploration strategy, and promises for each rule that can be used to condition its

application depending on previous and subsequent rule applications, in a goal-

driven manner. Sub-expressions of the query are then optimized one by one,

following the top-down process.

Data Indexing and Storage

Once a query plan has been selected by the optimizer (see Fig. 10.2), it is executed,

using the indexes and data storage structures referred to in the plan (remember that

the different methods of accessing the data have been considered and their cost

estimated when optimizing the query). Most DBMSs index and store the data in a

similar way: ordered datatypes are indexed using B-trees or B+-trees (Bayer and

McCreight 1972; Comer 1979), unordered datatypes with hash tables (sometimes

dynamically maintained (Fagin et al. 1979; Litwin 1980)), and whole tuples are

stored either in the nodes of the B-tree or B+-tree index for their primary key, or

sequentially sorted along their primary key, aligned with disk pages. A large body

of research was dedicated to improve and build variants of these classical data

structures, widely used for generic database applications. We present now research

on alternative indexing and storing strategies that have been widely used for

specific kinds of data: multidimensional indexes to efficiently retrieve objects

based on their locations in Euclidean spaces, column stores that organize the data

column-by-column instead of the traditional row-by-row storage strategy, and

stream databases where data is not stored at all but queries are processed continu-

ously as data arrive.
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Multidimensional Indexes

B-trees and their variants are used for indexing linearly ordered data (integers,

character strings, etc.) and efficient processing of point or range queries over the

indexed attribute, i.e., selections like scredits¼50 and scredits>50. Imagine now that

the Students table contains two additional columns, lat and long that respectively

contain the latitude and longitude of their home address, and that we want to

retrieve the list of students who live less than 10 km away from campus. We

could index these two attributes with a B-tree, but B-trees are not well adapted to

this kind of query, and the best we could do would be something like computing the

minimum and maximum latitudes covered by the 10 km radius, retrieving all

students with latitude in this range, and then checking for each of them whether

their combined latitude and longitude fall in the 10 km radius. Indexing structures

have been proposed to better deal with such queries, such as quadtrees or R-trees.

Let us start with quadtrees (Finkel and Bentley,1974). Assume that latitudes and

longitudes of student home addresses form a multiset of two-dimensional points.

A quadtree divides a bounded region of 2D space (say, a square containing all

points) into subregions in the following way. The square is divided into four squares

of equal size, and each subsquare is divided again, recursively. A square is not

divided further when it contains less than K points, for a fixed threshold K. This
division of the 2D space naturally defines a tree of arity 4: the root of the tree is the

whole region, the children of a node are the four subsquares of this node, and leaves

point to the �K points contained in the corresponding region. The construction and

maintenance of such a structure is relatively easy. To answer the 10 km radius

query, we retrieve, by a top-down browsing of the quadtrees all leaves that intersect

the 10 km disc. Points in leaf regions entirely contained in the disc are returned

immediately, while points in leaf regions that only partially intersect the disc are

filtered one-by-one.

Quadtrees usually provide an efficient way of answering a geographical query,

but they have one weakness: if the distribution of points is too biased (e.g., if many

students live on campus accommodation, very close to each other), the tree may

become quite unbalanced. Furthermore, in contrast to B-trees, the arity and depth of

the tree are not optimized with respect to the number of disk pages accessed while

searching the trees. R-trees (Guttman 1984) provide a solution to both of these

problems. Again, the space is divided into a number of rectangular regions that are

organized in a tree, but now the regions may overlap, are of arbitrary size and shape

(though the region corresponding to the parent of a node is still a proper superset of

the region of this node), and the tree is organized like a B-tree, with a large arity that

is computed so that each tree node fits into a single disk page. Algorithms for

searching and updating the R-tree are move involved than for quadtrees and directly

inspired by their counterparts in B-trees. Again, answering the 10 km radius query

means retrieving all leaves that intersect the 10 km disc, and subsequent filtering of

the points contained in the leaves. R-trees generalize more easily to arbitrary

dimensions than quadtrees, for which the arity is necessarily an exponent of the

dimension.
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Quadtrees and R-trees are widely used in geospatial extensions of DBMSs

(Kanth et al. 2002), to index multidimensional data. They illustrate how the

database community has proposed efficient data structures when new datatypes

and applications of database technology appeared.

Column Stores

The main idea of column stores (Stonebraker et al. 2005) is simple: instead of

storing tables row-by-row, with a whole tuple stored contiguously, they store tables

columns-by-columns. Assuming again a page size of 4 kilobytes and 64 bytes for

storing a tuple of the table Students, a traditional DBMS stores 64 tuples per page.

Assuming 2 bytes for the credits attribute, a column store puts 2,048 values of this

attribute in a single page. The interest of column stores is immediate in this numeric

example: computing an aggregate of the credits attribute across all students, such as
its average or sum, requires 32 times less disk page accesses than with a row store.

Not all operations benefit of this data storage organization, however: any operation

that needs access to all tuple values, such as computing a full join between two

tables, or inserting individual tuples, typically requires more random seeks in a

column store than in a row store. Generally speaking, applications that heavily

use aggregates, statistics computation, or more generally individual attribute values

rather than whole tuples, usually benefit from column stores. These applications are

sometimes called online analytical processing (OLAP), in contrast with online
transaction processing (OLTP) that cover more traditional database applications,

such as order processing or banking. Another advantage of column stores is their

ability to use more effective compression mechanisms to reduce the size of the data

store, since data of a single type are stored contiguously.

Commercial (e.g., Sybase IQ, Vertica, KDB) and open-source (e.g., MonetDB)

column-oriented databases coexist with traditional DBMSs. For a long time, all

database-related tasks had been handled by traditional engines; the emergence of

column stores might be an illustration that there is room for technologies that

depend on the applications (Stonebraker 2008).

Stream Databases

Following up on the idea that classical DBMSs may not be adapted to all database

management problems, we now consider the case when data is produced in such a

large volume or at such a high rate that it cannot even be stored. A typical example

is network data (see Chap. 7.): IP packets that go through a router of the Internet

core are too numerous to be stored on disk. If one needs to query these packets

(selection, aggregation, grouping), e.g., to detect potential attacks or trends in the

use of the network, one needs to reverse the model: instead of evaluating various

queries over a somewhat fixed collection of data, we want to evaluate a fixed set of
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queries over continuously streaming data. This is the model of stream database

systems, such as Gigascope (Cranor et al. 2003).

For flexibility, one would like to use a general-purpose query language like SQL

to query the stream of data. Note, however, that since it is impossible to store the

entirety of the stream, some queries cannot be evaluated, such as those involving

arbitrary joins with past or future data. For this reason, Gigascope defines a

restriction of SQL where queries need to be evaluable in a sliding window of

fixed size. All relevant packets in this sliding window are typically stored in

memory. Query optimization has very different constraints than in classical settings

to avoid missing some of the packets, it is critical to reduce the amount of data kept

in memory by pushing the operations with the highest selectivity as early as

possible, sometimes even implementing them in the code of the network interface

controller. Higher-level operations (joins, grouping, etc.) can be applied later on the

buffered data. It is also possible to increase performance by partitioning the stream

and have each substream handled by a different computer; this partitioning, how-

ever, must not put in two different groups packets that need to be used together to

answer a given query, which implies basing the partitioning operation on the query

(Johnson et al. 2008).

A number of prototypes and commercial systems for database stream manage-

ment have appeared. Even more so than for column stores, their applicability is

restricted to very particular scenarios: network traffic, real-time auction market

analysis, etc.

Hardware and Why it Matters

We are now at the bottom of the query processing system, where the query is

executed on actual hardware. Perhaps even more so than for other software, the

performance of database management systems has been strongly tied to the evolu-

tion of hardware architectures. The design of cost models, index structures, storage

engines in traditional DBMSs has been based on a number of assumptions on how

hardware functions:

1. High cost of disk accesses, and, especially, random seeks

2. Limited amount of available main-memory

3. Mostly serial CPU instruction processing model

4. Relatively low network bandwidth

However, as elaborated in Chap. 5, hardware and network infrastructure have

evolved to the point where the validity of all these assumptions can be questioned:

1. The recent advent of flash memory and solid-state disks radically change the

performance of disk accesses (see below)
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2. The amount of main memory available in even low-end PCs makes it possible to

store database indexes and sometimes even the data itself in main memory

(Garcia-Molina and Salem 1992)

3. Parallel architectures are more and more frequent, to the point where standard

modern graphics processor units are able to process hundreds of parallel execu-

tion flows, which makes them suitable for some database management tasks

(Govindaraju et al. 2006)

4. The network bandwidth in a local cluster can be higher than disk transfer speeds,

which has the ability of making main-memory distributed DBMSs more efficient

than centralized disk-based ones (Apers et al. 1992) (see the next section for a

discussion of distributed databases)

These examples explain why the evolution of hardware architectures does

matter for database management systems, and why research on understanding and

exploiting new capabilities of hardware is an active component of database

research. We illustrate with the example of solid-state drive for database storage.

SSDs vs Magnetic Hard Drives

Secondary (i.e., non main-memory) storage of data in DBMSs has mostly relied on

magnetic hard disk drives. These disks are made of one or several rotating platters

where information is encoded by the orientation of the magnetic field generated by

localized regions, organized in concentric cylinders and radial sectors. Information

is read and written with magnetic heads that hover over the platter. Reading or

writing to an arbitrary region of the disk requires a random seek: the head of the

appropriate platter needs to be positioned over the correct cylinder and then wait for

the moving disk to reach the correct sector. A sequential read that retrieves

contiguous portions of data, on the other hand, is much faster since the head can

remain fixed and the data is read as the disk rotates. The order of magnitude of the

seek time and read sequential data transfer rate are, for a modern disk, respectively

10 ms and 50 megabytes per second.

Since the mid-1990s, a new form of permanent data storage has appeared: flash
memory, using floating-gate transistors, transistors wired on chips so as to store an

amount of charge for extended periods of time. Recently, the technological

advances in building flash memories have led to the commercialization of solid-

state drives (SSDs for short), which are drop-in replacements for hard disk drives

formed of an array of flash memory units. The absence of any mechanical parts in

such drives leads to negligible seek times. Modern SSDs have read data transfer

rates comparable to that of magnetic drives, whereas sequential write transfers are

somewhat slower (but random writes are typically faster).

The near-absence of seek times makes SSDs particularly suitable for

database applications, where it is common to read small data blocks scattered

across the storage area. Recent studies (Lee and Moon 2007) show that, indeed,

read performance of DBMSs can be dramatically improved by using SSDs.
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However, using a traditional DBMS on a solid-state drive causes other forms of

problems, related to an inconvenience of flash memories: it is impossible to update

a data item in place without first erasing the corresponding block of flash memory.

This means that actual writing speeds are considerably slower than expected. To

avoid this issue, Lee and Moon (2007) proposes to implement updates by logging

all update operations in a fragment of each memory block kept free for this purpose.

Reading the current state of the data consists thus in reading the base data, and

updating it in memory with the extra logged updates. When the logging area is full,

the whole block is erased and rewritten. This approach, which heavily relies on the

behavior of flash memory, in the same way as traditional indexing approaches

heavily rely on the fact that disk seeks are costly, allows obtaining improved

performance over a regular DBMS on magnetic drive, even when considering

update operations.

Another important aspect of building database systems with SSD storage is to

understand the precise behavior of SSDs. A number of SSDs are thus benchmarked

in Bouganim et al. (2009), exhibiting some counterintuitive results. For instance,

despite the lack of mechanical parts, some seek latency appears, mostly because of

the overhead introduced by controlling software. Another observation is that SSDs

often do not exploit the possibility of parallelizing reads and writes operations over

the flash memory arrays. Some of these characteristics are likely to be transitory

behavior of SSD controllers, while some others will be important in designing

future database management systems.

Distributed Databases

Before concluding this section on core database research, we want to mention the

important aspect of distribution in database management systems that pervades

the entire query processing pipeline. We say that a database system is distributed
when the data itself is spread over a number of computers (also called peers, or

hosts) connected over a network (See Chaps. 7, 8, 9.) The role of a distributed
DBMS is then to manage this distributed database and to “make the distribution

transparent to the users” (Özsu and Valduriez 2011). There are several reasons why

we might want to distribute data:

• Data may be distributed to begin with, because of organizational reasons. Think,

for instance, of the human resource and sales data of a company, which might

reside in different departments, possibly in different physical locations, but

sometimes needs to be seen as parts of a single database, e.g., for business

intelligence purposes. At the extreme, the World Wide Web may be seen as a

gigantic database consisting of data distributed all over the planet, seen as a

whole by applications such as search engines.

• Data may simply not fit on the disk(s) of a single computer, however large they

may be. A database that records stock market transactions, or meteorological
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data, for instance, may get to enormous sizes: several hundred of terabytes for

the database maintained by the Max-Planck-Institute for Meteorology

(WinterCorp 2005).

• Non-distributed databases provide a single-point of failure: should the computer

hosting the database fail, or should the number of data access exceeds what the

database management system is capable of handling access to the entire database

would be lost. Conversely, if the data is distributed, the load is divided between

all peers, and a failure of a single host only affects part of the data. Availability

can even be guaranteed to some extent if data is replicated over several peers of
the network.

• It is possible in some cases to distribute data to improve the efficiency of query

evaluation. We have already mentioned that a distributed database with data in

main memory may be more efficient than a traditional local database with data

on disk. Even when data is stored on disk, distribution allows parallel processing

of a query. Recall that queries of first-order SQL can be evaluated in constant

time on a parallel machine, which means that first-order SQL query evaluation

can be very efficiently run in a parallel manner.

How data is distributed over the network depends on the reason data is

distributed. When distribution is inherent in the organization of the database,

there is no choice and it is often the case that data is stored in a heterogeneous

manner and needs to be integrated, as we explain further in this chapter. When data

is distributed for size, reliability, or optimization reasons, different data distribution

strategies can be selected. Most commonly, relations are either horizontally or

vertically fragmented (Özsu and Valduriez 2011). In horizontal fragmentation, a

table is partitioned along its tuples, and groups of tuples are stored in different peers

of the network. In vertical fragmentation, the partition is made according to the

attributes of tuples, and each peer stores a subset of the attributes of each tuple, as

well as its primary key. This storage choice is reminiscent of the distinction

between row stores and column stores, and similar tradeoffs arise. Another point

of interest is the network architecture used, which can range from centralized

settings where a master host, connected to a number of slave hosts, acts as an

entry point to the database, to distributed tree structures or fully distributed models

such as distributed hash tables over peer-to-peer networks (Abiteboul et al. 2011).

A number of traditional database problems, such as query optimization or

transaction management raise radically different challenges in a distributed envi-

ronment. In some cases, this has led to relaxing some of the constraints traditionally

imposed by relational DBMSs. This trend, sometimes dubbed the NoSQL move-

ment, has resulted into distributed data and computation systems that do not support

ACID transactions and have limited expressive power, but very high efficiency on

extremely large collection of data, such as the MapReduce framework (Dean and

Ghemawat 2008), extensively used by companies such as Google to process

petabytes of data a day.

For an in-depth discussion of distributed database systems, we refer to the

textbook (Özsu and Valduriez 2011).
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Research on core database technology covers a large spectrum of areas, from

logics to systems and optimization issues, even up to the benchmarking of modern

hardware. We now move to a different vein of research, to extend the main

approaches that have made the success of relational databases (abstraction, algebraic

representations, etc.) to cover other applications and functionalities.

Extending Database Functionality

We have stressed that the relational model is a natural evolution point as data

management systems increase in their abstraction – hiding from the programmer or

end-user details of the physical layout of data and the implementation of queries.

But in some ways the relational model is low-level: the data model (at least, as

visible to the data definition language) imposes quite a few restrictions, including

allowing only a fixed set of simple data types as attributes of a tuple, requiring the

data developer to spend time “breaking down” information into small components.

Indeed, this is a basic part of the philosophy of the relational paradigm towards data

design. In addition, the set of features in a relational schema – particularly with

regard to integrity constraints – are very limited compared to the kinds of semantic

restrictions that one may want to express about real-world data.

Much of the research in the database community has revolved around extending

the mathematical foundation of database systems to be less “low-level” (in data

model). Another direction has been to look at richer data definition languages, even

within relational databases. A closely-connected topic is the ways of building

up larger datasets from components – data integration. Some of these extensions

have been pursued while trying to preserve the relational approach in its entirety.

For example, in the case of query languages for XML documents, database research

still takes a declarative approach, compiles into an algebra, and applies rule-based

optimization. In other cases essential features of the relational paradigm are

jettisoned completely. We will take a quick look at each of these general lines of

research within this section.

Data Design

The relational database model is built on a very simple data structure, a table

where each cell contains a simple type. Nevertheless, it was seen that one can

represent the information in many applications using relations, by breaking down

more complex structures into tables. But exactly how should complex data be

translated into tables?

The major challenge is that there are many ways of representing the same

information. In the university example, we had a Students table including id, first,
last, and credits (the student’s current credits), and an Enrollment table that
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included id, course, and credits (the course credit value for this student). But one

could also have one large table StudEnroll that had all of the previous attributes.

The second possibility seems odder, but can we say that it is worse?

The subject of data design originated very early in database research; its goals

included:

• Capturing a notion of two schemas representing the “same information”

• Formalizing the notion that one schema is better than another

• Providing algorithmic techniques for getting to a good schema

These goals could be seen from the same two-pronged perspective that defines

database research as a whole. On the one hand, in attempting to define the notion of

“information equivalence”, database research was exploring the “theory of infor-

mation” in a very grand sense. Certainly an insight into what constitutes the same

information content within data would be significant even if it was not accompanied

by effective methods. On the other hand, data design research had a pragmatic goal

of offering advice to database designers on how to create and maintain database

schemas.

It should be clear that such a project must limit its scope in some way. First of all,

there are many human factors in determining what a good schema is – database

research cannot say if one column name is better than another, or whether it is better

to store the yearly salary or the monthly salary of employees (since clearly one can

derive one from another). Thus the best we can hope for is that computer science

research could identify certain designs as being inferior or superior to others:

we cannot hope to identify a unique “best design”. Second, such a process must

take as input some information about the semantics of the database, not just that

which is captured in standard table meta-data. For example, if we only know that we

have a table named StudEnroll, including columns id, first, last, course,
creditsObtained, and creditsCourse, but with nothing about its meaning, we cannot

identify that there is any shortcoming. Data design thus starts with a description of

the “semantics of information to be stored” in some richer data model (these may

include nested tables, lists, sequences, or other higher-level structures), and then

gives a method for translating to a relational database schema. Entity-relationship
diagrams represent one such formalism for high-level data description; there is a

simple algorithm for generating a relational schema from an entity-relationship

diagram. More powerful modeling languages, such as UML, can also serve as a

starting point.

The most well-developed theory of “better design” has looked at simpler

languages for describing the semantics of information. Most of the algorithmic

results work in a simple modification of relational data definition languages, in

which information is described using a set of tables plus integrity constraints. These

include SQL key and foreign key constraints, as well as more powerful constraints.

The paradigmatic example uses functional dependencies as the constraint language.
A functional dependency states that a subset of the columns determine other

attributes of the table. In the StudEnroll example, we have that the value of id
determines the values of first and last.
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The standard theory contributes a notion of “better schema”, formalizations of

“information equivalence”, and a method for going from bad schema to a better one.

The problem with the schema above can be identified formally by the presence

of a functional dependency (id implies last) that does not follow from a key

constraint (id is not a key, it is repeated in multiple rows): such a dependency

implies that information in some columns in the row is redundant, and hence will be

repeated many times. If physical storage reflects the repetition in the table structure,

then this will clearly lead to performance issues, as well as extra infrastructure

needed to maintain consistency during updates. The difficulty is summarized as:

a piece of information should only be represented in one place, and to change it

one should only need to modify in one place. A schema that includes funct-

ional dependencies is said to be in Boyce–Codd Normal Form (BCNF) if all

functional dependencies follow from key dependencies.

What does it mean for two schemas to have the “same information”? One well-

studied definition is that a schema B is a lossless-join decomposition of schema A if

tables inA can be obtained by joining projections of tables inB. The schema consisting

of tables Students and Enrollment, with the obvious key dependencies, is a lossless-

join decomposition of the StudEnroll table; the lossless-join property states that

StudEnroll can be exactly recaptured using the join Students⋈Enrollment.
Algorithms exist (Codd 1975) for automatically finding a lossless decomposition

of an arbitrary schema into a BCNF schema. Normalization can be seen as a design

methodology; start with an initial design – for example, one reflecting the user

interfaces that end-users would like to see. Then continue to decompose until a

normal form schema is obtained. The original tables can be re-captured either as ad-

hoc queries, or as materialized or virtual views. If the un-normalized tables are

materialized, many of the space benefits of normalization are lost. But even then the

benefits for software infrastructure will remain; updates will need to be specified

only on one table, and any update of redundantly-stored information will be done

automatically.

From a theoretical point of view BCNF decomposition is the most basic example

of normalization theory. Normalization has been considered for richer schema

languages, including a number of other kinds of integrity constraints, such as

multi-valued dependencies (Fagin 1977) and join dependencies (Fagin 1979).

Stronger notions of information preservation have also been considered, such as

being able to enforce all of the original integrity constraints on the decomposed

schema using simple key constraints. In each case, the theory investigates whether

or not equivalent schemas can be found for any schema in the data model.

For example, a basic positive result in the theory is that for any schemas consisting

of rich collections of integrity constraints (functional dependencies and multi-

valued dependencies), one can find a lossless decomposition that requires only

key constraints (Fagin 1977): the corresponding decomposition is said to be in

Fourth Normal Form – a stronger normal form than BCNF. A sample negative

result in the theory states that there is a schema S consisting of very simple integrity

constraints, such that there is no lossless decomposition of S into schema S0 in
which key constraints on S0 suffice to enforce all integrity constraints in the original
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schema. This result motivates enforcing weaker criteria on the decomposed schema

(such as Third Normal Form (Zaniolo 1982)).

Normalization theory is an extreme example of the dual role of database

research. On the one hand, a basic understanding of the virtues of normalized tables

is considered essential for data designers and database consultants. On the other

hand it represents a broad investigation into the meaning of information.

Advanced Data Definition

From Stored Data to Virtual Data

Data definition languages represent an important component of the relational

model, playing a role analogous to type systems in general-purpose programming

languages. The basic DDLs describe the attributes and attributes types in a set of

tables and give integrity constraints that encode restrictions on the possible

instances of the tables, along with relationships that must hold between tables.

One kind of “relationship” is a foreign key constraint, mentioned already. Another

extreme example of a relationship between tables is when one table is completely

determined by another. This is exactly the case of view definitions, previously
discussed.

Tables with foreign key constraints between them can still be updated indepen-

dently, and a collection of such tables generally have the same “status” as a

representation of the real-life facts to be stored. In contrast, the use of view

definitions – whether materialized or virtual – requires a distinction in the kinds

of tables that a database manager knows about, into those that are “basic” and those

that represent derived data. Hierarchies of derived data can then be defined with

views defined over views.

A particular use of virtual views is in data integration. Suppose we have several
different database schemas S1 . . . Sn aiming at storing similar information. We wish

to create a single unified interface to the data. Our first step is to come up with a

single global schema S that can represent all information in any Si. After that, we
can give a logical definition of the global object in terms of the data Ii for each Si
stored on each local source. The single integrated database is a prime example of a

virtual database – it can be given a precise definition, in terms of existing data, but

it need not exist on any source.

How can we unambiguously define the integrated database? The simplest way is

to create a query Q that takes instances ~I ¼ I1 . . . In over S1 . . . Sn and outputs a

global view instance I over the global schema. The global instance I need not ever

be materialized explicitly; instead the backend of the integrated interface generates

queries to the appropriate Si in response to queries over S.
The approach outlined above, often referred to as global-as-view (GAV), is

conceptually straightforward, though performing the query-generation at runtime

can be problematic. But the simplicity is misleading: when n is large a query Q
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describing S in terms of the Si may be difficult to write, and possibly impossible to

evaluate. Furthermore, maintaining Q as the sources are modified is difficult, since

its rewriting in terms of the source schemas may not even be human-readable.

More Complex Virtual Databases

An alternative is implicit specification of the global instance, as a data source I over
the global schema S that satisfies various constraints with respect to the local

sources ~I. The most common approach to doing this, known as local-as-view
(LAV) (Lenzerini 2002) describes I by giving constraints of the form Ii � QiðIÞ.

Given instances Ii:i� n for the input schema, constraints of this form do not

determine a unique database I, but rather a collection SolVð~IÞ of instances satisfying
the constraints.

Although we cannot talk about “the integrated view”, we can still make sense of

querying an integrated view: the result of a queryQ on the view is taken to mean the

intersection of all QðDÞ for D in the collection SolVð~IÞ. This set of results, often
called the certain answers of Q, is equivalently seen as the set of facts of the form

t 2 QðIÞ that are logical consequences of the input data ~I and the view definitions

relating ~I to an arbitrary solution I.
As an example, consider a data integration system that defines a virtual relation

Enrollment with attributes id and course. One local source may have a

stored relation StudentIds which has a single attribute id, while another might

have a relation Courses with attribute course. The global view is related to

the local sources by the mappings: StudentIds ¼ pidðEnrollmentÞ and

Courses ¼ pcourseðEnrollmentÞ. This defines the collection of enrollment tables

that project onto the sources in the expected ways.

The advantage of the LAV approach in specification is fairly evident:

specifications can now be much smaller, since they relate only two instances at a

time. There is an enormous gain in modularity, since when a new source is added

one must only write a new set of constraints involving only I and that source, and

changes to the schema of a source Ii require only modifications to constraints

involving I and Ii.
The disadvantage is also obvious: since the collection of instances satisfying the

constraints is generally infinite, it is not clear how to calculate the tuples that lie inT
D2SolVð~IÞ QðDÞ at all, much less how to calculate them efficiently. A fundamental

result is that for LAV views the certain answers for positive queries (an extension of

the conjunctive queries) can be calculated efficiently in the size of the data (Levy

et al. 1996). In fact, one can create a single view instance I that is “universal”, in the
sense that performing a conjunctive query on I gives the certain answers of Q with

respect to the source instances ~I and the view definitions. One forms the universal

instance I by simpling throwing in “dummy witnesses” that are implied by the view

definitions.
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For example, the view definition may state that for the integrated view I with
attributes a; b; c, we have the requirement that Ii � pa;bðIÞ where Ii is a given

source. Then for any tuple ða0; b0Þ in Ii, a solution I must have some value

ða0; b0; cÞ in it. The universal solution is formed by choosing a distinct c for each

such ða0; b0Þ.
The ability to form universal instances gives an algorithm for determining the

certain answers that is polynomial in the size of the data sources ~I. This shows that
implicit ways of defining virtual databases can still be efficiently implemented.

Integration vs. Extraction in Commercial Systems

The notion of data integration above is to create a virtual interface to data in

different formats that may be accessed by external sources as if it were a centralized

database. An alternative is to extract the data from the diverse sources and materi-

alize the data.

One form of integration system, federated databases, has a fair amount of

commercial support. For example, there is support in IBM DB2 and Microsoft

SQLServer for creating views that refer to external databases. Federated database

managers are not limited to relational databases (or to views defined via queries) but

can encapsulate access to pre-relational or proprietary data, via hand-coded stored

procedures.

Extraction-based approaches, in which explicit or implicit derived databases are

materialized, are also supported by many commercial systems. IBM’s DataStage

product includes support for extraction based on implicit view definitions; most of

the commercial usage of such systems, however, is done via manual coding of

transformations.

More General Implicitly Specified Databases

There aremanyother formalisms that have been devised for defining virtual databases.

Many extend the general contours of the LAV approach: the virtual database I is
defined by a set of constraints that hold between it and stored data instances Ii. Source-
to-target dependencies are one example of such constraints (Fagin et al. 2005). Care

must be taken in both the constraints and the queries one is allowed to pose against the

virtual database. Calculating the certain answers requires solving a satisfiability

problem, and satisfiability is known to be undecidable for many query languages,

including the relational calculus.

Another example of an implicit database formalism is that of deductive

databases; in this case, a virtual database is defined by giving facts that it contains

as well as axioms on the database itself, rather than on its relationship to other

databases. Answering a query against the virtual database is again defined in terms

of deduction: a fact is in the query result if the axioms and facts of the virtual

database imply it. These axioms must be of restricted form in order for deduction to
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be decidable. For example, Horn clauses, of the form 8~x:Rð~xÞ ! Sð~xÞ, are one

popular formalism for deductive databases.

Ontologies and Databases

Our last example of an implicitly specified database comes from ontologies.
An ontology consists of a collection of facts coupled with axioms written in a

restricted fragment of logic. The collection of facts is not taken to include all true

statements about the real-world relation, but only a subset. The axioms are

interpreted to hold not over the database of facts, but over the entire universe.

In the university example, we may have facts listing certain entities as being

math professors, certain entities as being students, and some facts about which

students are advised by which professors. For example, we may have a fact that

student Bob Jones is advised by Rob Smith: Advises(Bob.Jones, Rob.Smith). We

have an additional axiom stating that every math student is advised by a math

professor. In the notation of description logics, this would be written:

MathStudent� 9AdvisesMathProf . This axiom is not treated as an integrity con-

straint on the set of facts: if it had been, then it would fail if Rob.Smith is not listed

as a physics professor. Instead it is used to derive new facts. A query asking for all

mathematics professors will then return Rob.Smith, since the axiom coupled with

the fact base implies that Smith is a math professor.

As in the case of LAV integration, an ontology gives an incomplete description

of a collection of data. Answering a query against an ontology is defined again in

terms of certain answers: for a query Q, we return all the tuples t such that the

database of facts and axioms derives that t is an answer to Q.
The exact formalism used for the axioms is restricted so that the derivation of

facts can be effectively decided. A standard has emerged over a set of ontology

languages, based on description logics (Baader et al. 2003) – a limited logical

language in which all input relations must have at most two attributes. The queries

must also be restricted, usually to be positive SQL queries without aggregation.

Even with these restrictions, the complexity of the decision procedures is high: even

for the simplest language, consistency of a fact is PSpace-hard (Schmidt-Schaubß

and Smolka 1991) in the ontology. Nevertheless, the complexity for a fixed set of

axioms, varying only the set of facts, is often manageable. Indeed, for many

ontology languages, the certain answers can be determined using database methods:

for any fixed query Q and ontology O based on axioms within the family, we can

generate a first-order SQL query Q0 that returns the derivable answers when

evaluated on the facts. This is true of the commonly used DL-lite family (Calvanese

et al. 2007), and also of more recent extensions (Calı̀ et al. 2010) that subsume

ontology languages and LAV-like data-exchange formalisms.

Ontology languages have been standardized by the World Wide Web consortium.

The resulting family of languages, OWL (Horrocks et al. 2003) have a number of

prototype implementations, in addition to limited commercial support. The approach

via rewriting to a database language has been implemented in several research
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systems, particular QuoOnto (Acciarri et al. 2005). Themain issue in these approaches

is that ontologiesmay have thousands of axioms, and even an efficient translationmay

yield a query of size larger than current database managers can handle.

New Models: Complex Objects

Programming languages have available a rich collection of data types – they can

form lists, associative arrays, vectors, and object classes that contain fields that may

themselves be complex structures.The type system of relational databases in com-

parison is quite impoverished. Relational DBMSs manipulate “tables” or

“relations” – from the theoretical point of view, a relation is a set of tuples, with

each tuple being a function taking a column within a predefined set of column

names to a datatype that is associated with the column. When we compare this to

arbitrary programming language datatypes, we can see several dimensions in which

they are limited: Relational tables are homogeneous – the data type within a table

cannot vary row-by-row. They are also flat: although the columns of a relational

database can have arbitrary built-in scalar datatypes, they cannot have any internal

structure – or at least, no internal structure that can be referred to in the query

language. Finally, they have no order and no duplication.

Of course, some of the use of complex data structures in programming languages

is related to their more general mission – arrays and lists play a role in many

fundamental algorithms, which are not intended to be implemented within a

database manager. Still, much application data does have a rich internal structure,

and relational databases often force users to use a structure that does not reflect their

natural level of abstraction. This “impedance mismatch” has caused considerable

concern in the database community, particularly since the move to relational

database managers was prompted by a desire for greater abstraction.

We list these as limitations of the relational model, as espoused in papers and

textbooks. Commercial database systems have worked from the beginning in a

model that does not abide by these limits. They allow some limited heterogeneity

by allowing certain cells of a row to be optional. The SQL query language supports

this via primitives that can test for the presence or absence of a value for a given

column. Although they generally require stored tables to be duplicate-free, they

allow query results to contain duplicates, and SQL allows a query both to filter

based on the position of a row in a result and to specify the ordering of the results.

Nesting is supported as part of aggregate functions.

Still, the SQL extensions to support these are ad-hoc; the operators that support

them cannot be freely composed, and some of them are available only at top-level.

Researchers have tried to fill the gap between the theoretical model of pure tables

and the SQL data model in practice, by developing a formal model that incorporates

richer data types. The general goal is to follow the paradigm of the relational model:

define a query language that (a) corresponds to a “natural” logic; (b) defines only
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polynomial-time queries; (c) can be translated into an algebra – defined loosely as a

variable-free formalism.

Nested Structures

In the relational model, the basic object is a set of tuples. In the complex-value data
model we can iterate tuple formation and relation formation, generalizing schemas

to types that can combine aspects of both relations and tuples. Data types are build

up from a given set of scalar types via tuple formation and table formation:

if t1 . . . tn are types, and a1 . . . an are names, then there is a new type

f a1:t1 . . . an:tng whose instances are tuples, where a tuple consists of functions

taking each ai to an element of ti;
if t is a type, then there is a new type SetðtÞ whose elements are finite sets of objects

of type t.

A database schema will then consist of a collection of objects of distinct types.

Normal tables can be thought of as very special cases, of the type

Setðf a1:t1 . . . an:tngÞ, where ti are scalar types.
Some special cases of the data model restrict the ways in which tuple formation

and table formation can alternate – when these type-formers are required to

alternate strictly (thus disallowing, e.g., a tuple whose attributes are tuples), the

objects in this model are referred to as nested relations. At the query language level,
the most well-studied proposal is nested relational algebra (NRA), defined initially
for the nested relation model. NRA contains new operators for both navigating a

complex-valued structure and building new structures. It includes the identity

mapping on schemas as a basic query, and also the relational algebra operators

product, renaming, and projection, extended to the nested case in the obvious way:

for example, pa1...am is a query on objects of type f a1:t1 . . . an:tng returning objects

of type f a1:t1 . . . am:tmg. Selection can be extended to nested relations by allowing
selection conditions to include not only equalities of two top-level attributes but

also identifications of scalar attributes nested within them.

The main new language feature is for nesting and un-nesting, The nesting

operator is closely related to the GROUP BY construct of SQL. It is parameterized

by a datatype t of the form Setðf z1:t1 . . . zn:tngÞ where z1 . . . zn are attributes, and a
subset of the attributes z1 . . . zk. Given a set of tuples, it returns a set of nested tuples,
where there is one nested tuple for every set of tuples that share the same values for

z1 . . . zk, with each nested tuple having attributes containing the attributes z1 . . . zk
with their common values along with a new attribute containing the set of values for

zkþ1 . . . zn obtained for this group. Un-nesting acts as an inverse of the above

operation, taking a set valued attribute and pairing it with all distinct values of

the projection of an additional collection of attributes.

A related language with the same expressiveness is based not on nesting and un-

nesting but on adding a mapping operation, which “applies a query pointwise”. One

formalization of this is using an operator that takes as input a query QðxÞ taking
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objects of type t to objects of type t0, along with a queryQ0 creating an object of type
SetðtÞ; the result is a “set comprehension” fQðxÞjx 2 Q0g that applies Q to all

elements of Q0, producing a set of t0 objects. A variant of this combines application

with “flattening”: the query Q being applied in this case produces Setðt0Þ objects,
and the operator applies it to each element produced by Q0, unioning the results to

form an object of type Setðt0Þ. Such a family of languages was defined in this way in

Tannen et al. (1992), parameterized by a signature of basic operations, under the

namemonad algebra. In addition to the “flat mapping” operator, monad algebra has

the basic operations of the l-calculus (see Chap. 2, Appendix 2) along with

operations for pairing and projection, union, and singleton-formation. Tannen

et al. (1992) shows that when either a difference or an equality operator is taken

as a primitive, the resulting language captures NRA.

How do the languages above fare in meeting the desiderata of query languages?

There is strong evidence that the language is not “too expressive”: queries are

polynomial-time, and the Boolean queries expressed by the language are exactly

those expressed in relational algebra – this is the conservativity theorem (Paredaens

and Van Gucht 1992). An extension (Wong 1996) shows that it is never necessary

to build up sets whose nesting depth is bigger than the combined depth of the input

and output.

Is the language expressive enough? Evidence in the affirmative is that there are a

number of languages that have equivalent expressiveness to it. In addition, if we

look at natural representations of nested relations as flat relations, we find that not

every relational query on representations is expressible in NRA.

Adding Support for Duplication

What about adding support for tables with duplicate rows, or sequences? In the

absence of nesting, it is easy to simply re-interpret the relational algebra on bags;

for example, the difference operator can be interpreted to subtract multiplicities of

occurrences of tuples. It is more challenging to arrive at a query language handling

nested bags, as is needed to model aggregate operators in SQL. The approach of the

monad algebra can be easily modified to deal with a data model where the set type-

former is replaced by a multiset or list type-former. The pointwise application

operator is adapted to bags or list in the obvious way – a query is applied pointwise,

preserving multiplicities in the bag case. For bags an extension of this type was

formalized by Libkin and Wong (1997) and given the name Bag Query Language

(BQL). Related languages are given in Grumbach and Milo (1993). BQL certainly

satisfies some of the desiderata of the relational paradigm: queries are given

algebraically (basically, by definition), and queries are in polynomial-time, in fact

in LOGSpace (Grumbach et al. 1996)

What is the relationship of the BQL language to logic? One major difficulty

encountered is in selection. In analogy with selection in relational algebra, we

would like to be able to check if two bag- or list-valued attributes are the same.

Set equality can be expressed as bi-containment, which requires checking
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membership of every element in one set in the other. For any fixed nesting, this

check runs bottoms up with a check of membership on values, and hence can be

expressed using a fixed alternation of the quantifiers 9 and 8 in first-order logic. In

the case of bags, equality requires that the multiplicities of each element are the

same, which requires some form of counting. In fact, in any of the basic bag query

language, one can express basic cardinality constraints on flat structures – e.g., that

the in-degree of a binary relation is the same as its out-degree – by using bag

creation followed by a bag equality test.

So counting is somehow inherent to a bag query language. The expressiveness of

BQL over flat bags can be characterized using an extension of relational algebra

with arithmetic (Libkin and Wong 1993). Although this is arguably not a standard-

enough logical language to say that BQL is “canonical”, the characterization is

useful for showing that certain queries cannot be expressed in BQL.

More Powerful Languages

The complex-value models above are analogs of the relational algebra and calculus,

which capture restricted classes of the polynomial-time queries. But what are the

analogs of relational languages with recursion? For example, in the relational

setting, the language of least fixed-point logic captures exactly the polynomial-

time queries, assuming the existence of an order. Abiteboul and Beeri (1995)

defines an extension of the nested relational algebra with a powerset operator,

and shows that it is sufficient to define recursive operators. Gyssens and Gucht

(1992) and Suciu (1997) define more limited recursive extensions of nested rela-

tional algebra; Suciu shows that they have a conservativity property with respect to

fixpoint logic over relations, while Gyssens et al. (2001) shows that the two

languages have equivalent expressiveness.

We motivated the complex-value model via the impedance mismatch problem

between databases and programming languages. But nested structures are only one

feature of modern programming language type systems. One additional feature is

that of pointer or reference types. Relational database attributes can model pointers,

but not the ability to create new objects (or new references) dynamically in

fixpoints. Abiteboul and Kanellakis (1998) takes the natural step of considering

nested languages with both recursion and object creation. The resulting language is

shown to be able to define arbitrarily complex database transformations. Seen from

the limitative philosophy of the relational paradigm, this shows that recursion and

pointer creation is simply too powerful a combination.

Data Design for Nested Structures

DBR has also been concerned with extending relational data design to complex

objects. At the level of theoretical analysis, there has been considerable work on

defining dependencies on nested structures and studying their interaction
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(Hartmann et al. 2006). Normal forms have been defined, which represent schemas

for nested objects with “less redundancy” (Ozsoyoglu and Yuan 1987; Mok et al.

1996; Tari et al. 1997; for a comparison, see Mok 2002).

Industrial Support and DBR for Complex Objects

In the 1990s, support for richer programming language types was seen as the natural

evolution point for commercial database systems. It seemed clear that both the

relational model and relational DBMSs would be supplanted by object-oriented

counterparts. Vendors made two practical cases for objected-oriented systems. The

first emphasized the software productivity increase obtained by diminishing the

“impedance mismatch” between program objects and storage. The second was

based on performance: by retrieving data object-at-a-time, rather than relation at

a time, an object DBMS could improve performance in a way similar to the benefits

of set-at-a-time over tuple-at-a-time.

But while object-oriented features are found in most database managers today,

there is no convergence on an object-oriented paradigm for data management that

replaces relational databases. DBMS software vendors have taken several distinct

approaches to merging objects and databases.

• Some products add persistent storage to an object-oriented language,

emphasizing integration with the type system of the language rather than

faithfulness to the features of data management software. VOSS, for example,

adds persistence and transaction support to the object-oriented language

SmallTalk.

• Other products build a standalone object database management solution with

several programming language interfaces, supporting both navigational access

(following pointers) as well as an object query language. The language OQL

(Cattell 1997) was proposed as a standard object query language for object

databases (ODBMSs), corresponding to an extension of nested relational algebra

with powerset of (Abiteboul and Beeri 1995) and introduced with the O2

ODBMS (Deux 1990). The ODBMS Versant supports a variant of OQL, as

well as a proprietary query language VQL.

• Object-relational database systems (ORDBMSs) build standalone database

products on a more evolutionary approach, adding on object features to rela-

tional systems. A key for ORDBMS products is extensibility: they give the

developer the ability to define new types and functions; some of them (notably

PostgreSQL) give ways of extending the optimizer. The SQL-99 standard

incorporates many features of object-relational systems.

• Object-relational mapping tools, such as Hibernate, provide support for storing

programming language objects in relational tables. These tools work on top of a

third-party relational database, providing languages for programmers to define

mappings between objects and relations, and runtime APIs that implement
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transformations on objects by translating them to calls to the DBMS. Some of

these tools support their own object query languages.

Object-relational mapping tools are in widespread use, particularly for Web

development; however, they do not replace relational DBMSs, but only supplement

them. ORDBMs have had broader commercial success than ODBMSs: Postgres and

its successor PostgresSQL are heavily-used open-source database products that

embody many ORDBMs features. All major commercial vendors claim some

support for ORDBMS features, but with wide variations: none of them support

the full SQL-99 standard. Since the least common denominator capability over all

of these systems consists of relational database management, it is difficult to say

that the era of object systems has come.

The connection between the languages proposed by ORDBMS products and

those proposed in DBR is radically weaker than for relational systems. The

ORDBMS standard query language SQL-99 has little resemblance to the algebras

proposed for complex objects. When we turn to object-oriented database design, we

find that the gap between DBR and practice is even wider: not only are the normal

forms for object-oriented databases not applied in designing ODBMS and

ORDBMS schemas, the normal forms are barely known outside of the research

community.

XML and Tree-Structured Data

XML data management arose as an application several years after query languages

for complex values and objects appeared. In querying XML documents, one notices

several features that were related to complex-value models. And it is in XML that

the goal of extending the relational paradigm en masse to a richer set of datatypes

has had the most commercial and theoretical success.

An XML document has many of the properties of a list-oriented model, an

ordered variant of the bag models discussed earlier. In fact, documents could be

coded as nested lists. Ignoring attributes for a moment, a document consisting of a

root node with tag A and children C1 . . .Cn could be represented as a nested list

whose first element is a singleton set representing A (e.g., using a one-attribute

schema) and whose next n elements are representations of each Ci.

The close connection between documents and complex values gives a motiva-

tion for a query language built on an extension of the application operator (the

“functional approach”) mentioned above for complex objects. Consider queries Q
that take as input a variable binding – a mapping of free variables of a query to a

node in a document – and which output a nodeset sequence of nodes in some

document obtained by enlarging the input document. Given Q and nodeset O, we
iterate Q on O by applying it to all members of O in sequence, concatenating the

resulting nodelists to get a new nodelist. This operator is the basis for the main
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operator of the XML query language XQuery. A FLWR expression in the XML

language XQuery iterates a query Q over a list created by another expression E. For
example, the XQuery query:

For $x In $root/descendant::Prof
Return {Prof / @lastname}

returns the lastname attribute of every professor element in a document.

A major distinction between XML and list- and bag-oriented data models is that

the latter have schemas that fix the nesting-depth of the data. Since queries in these

former models have inputs that are typed to satisfy a given schema, this implies that

any given query must only deal with structures of some fixed nesting depth.

In contrast, an XML query should be able to deal with documents of arbitrary

depth. The navigation or selection component of a query language must therefore

have some mechanism for searching arbitrarily far down within a document.

XML query languages borrow a mechanism from modal logic, the use of path
expressions for navigation. A path expression consists of a command to move in a

certain direction within a structure. In the case of XML documents, these directions

are referred to as axes, and they are given relative to a node in a document. The

descendant axis, for example, refers to navigation to any descendant of a node,

while the following-sibling axis refers to navigation to a right-sibling. Path

expressions are built by composing steps, which consist of axis plus tag-filters; an

expression $x/descendant::A selects all descendants of the node (or nodes)

associates with variable $x that are labeled with A.

The use of path expressions to navigate XML documents was pioneered by

James Clark, who developed the language XPath, later standardized by the World

Wide Web consortium (W3C 1999). XPath was not intended as a query language,

but as a sublanguage for selecting nodes within an XML document; it was used

within a variety of other XML languages, such as the transformation language

XSLT. The original language was variable-free, consisting of compositions of

navigation steps and filters, where filters could be built up from existence tests

using built-in functions and operators. For example, descendant::Prof [not
(child::Advisee)] is an XPath query that selects all professor element nodes that

are descendants of a given node, where the nodemust not have any advisee-elements

as children. Later versions of the language added variable bindings (W3C 2007a).

We have already mentioned the query language XQuery. XQuery was developed

for “database-style” transformations on XML documents – data-intensive

transformations that do not require a recursion procedure. XQuery combines the

node selection facilities of XPath with the FLWR iteration facility – roughly

speaking, modal logic combined with function application. Consider a document

which contains professors (Prof elements) and their advisees (Advisee children of

Prof elements), and which also redundantly contains students (Student elements).
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The following XQuery query returns a list of professors who do not advise anyone,

listing as children all the students without an advisor:

for $x in $root/descendant::Prof[not(child::Advisee)]

return

<Prof>{Prof/@lastname }</Prof>
<CouldAdvise>

for $y in $root/descendant::Student[not(child::Advisor)]
return $y

</CouldAdvise>

The outer for loop iterates the variable $x over the path expression returning the

collection of Prof nodes without advisees; the inner for loop iterates variable $y

over another path expression returning potential student advisees. The query also

makes use of element constructors (such as <Prof>. . .</Prof>) that generate new

nodes – these play a role roughly analogous to nesting in complex-valued models.

What can we say about XQuery in regard to the desired characteristics of query

languages from the relational paradigm? The core of XQuery defines only queries

with polynomial-time data complexity (Koch 2006). The variable-free language

XPath itself satisfies even better bounds, having complexity polynomial in both

the query and the document (Gottlob et al. 2002a); indeed, for a large fragment the

combined complexity of evaluation is linear (Gottlob and Koch 2004). In terms of

limitation on its expressiveness and relationship to logic, a conservativity theorem

similar to that of bag query languages holds: the Boolean queries that are express-

ible in the XQuery core are exactly those expressible in first-order logic with an

additional counting quantifier (Benedikt and Koch 2009). Furthermore, the frag-

ment of XQuery Boolean queries that corresponds to first-order logic has been

identified (“atomic XQuery” of (Benedikt and Koch 2009)).

At the level of industrial acceptance, XQuery has been quite successful, albeit

not yet at the level of SQL. While languages for nested relations have been mainly

confined to academia, XQuery has been standardized by the World Wide Web

Consortium (W3C 2007b) as a Web standard. It is is supported both in commercial

data management systems and by XML document storage products.

Conclusions

The history of database research is strongly tied with that of database management

systems: in particular, Codd’s work on the relational algebra has been hugely

influential in the development of systems. The history of database management

systems, in turn, is filled with success stories. Oracle Corporation, historically and

primarily concerned with database systems, is a company with 100,000 employees,

and one of the 50 largest market capitalizations (Financial Times 2010). Most Web

sites critically rely on database software for managing their content, user data, and
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transaction information, using either major commercial systems such as Oracle,

DB2, or SQLServer, or open-source software such as PostgreSQL and the compar-

atively lightweight MySQL (now owned by Oracle), very popular for simple Web

sites and which has captured one third of the market since its initial release in 1995

(Creative System Design 2010).

Through advances in query optimization, indexing structures, but obviously also

in hardware, the performance of database management systems has greatly

improved over the years: the number of transactions per second in an update-

oriented benchmark has thus grown thousandfold over the period 1985–2005

(Gray 2005). On the query side, results of the TPC-H benchmark show that in the

past 8 years, the query throughput has been multiplied by 50. It is obviously difficult

to determine the parts of performance increase coming from software and hardware

advances, but an indication that algorithmic and data structure improvements have

had important roles is that the observed price/performance reduction in DBMSs

beats Moore’s law (Gray 2005).

We have insisted throughout this chapter on two facets of database research: on

one hand, models, algorithms, and data structures for the efficiency and effective-

ness of existing database systems, and on the other hand, broadly-scoped, often

theoretical, sometimes even highly-speculative, research about how data can be

modeled, queried, and, more generally, managed. In some cases these lines of work

show no evidence of convergence. We have seen earlier in this chapter the example

of static-analysis–based query optimization. Decades of work in this area have

yielded sophisticated characterizations of query hardness and algorithms for query

decomposition and minimization, but they have not been applied in practice.

Another example is in spatial databases – although database research in general

has had impact in this area, many of the more heavily-researched theories for

data models and query algebras (Paredaens et al. 1994) have not influenced

practitioners.

The timeframe for acceptance of relational database systems was several years,

but perhaps we should be willing to wait many decades to judge subsequent work.

The past has shown numerous cases of database research that was considered

disconnected from applications for long periods, which has ended up being of use

in systems. One of the leading figures in database theory, Moshe Vardi, mentions

the example of integrity constraints (Winslett 2006):

The work on integrity constraints in the late 1970s and early 1980s also received scathing

criticism as not being at all relevant to the practice of database systems, only to reemerge

later as being of central importance. When you do an exciting piece of research, it is very

hard to know whether it will be relevant to the field in the long term. This is true both for

theory and for experimental work. The vast majority of theory research results will likely be

forgotten, as will be the vast majority of experimental work.

There are certainly missed opportunities in both directions: theoretical results not

applied in systems, and practical issues not theoretically modeled and analyzed as

they should be.

But of course, DBR has to be measured also by the influence on other areas of

computer science. Work on indexing has strong connections with research on data
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structures and algorithms (compare, for instance, binary search trees and B+-trees).

Since the work of Codd, database theory has focused on the complexity of evaluating

logics and the expressiveness of logical formalisms: results in this area interact

strongly with research in finite model theory, descriptive complexity, and computa-

tional complexity (Chap. 15.) Work on the foundations of XML has led to a better

understanding of tree automata and tree transducers, a basic subject of study in formal

languages. The capacity ofDBMSs in handling large quantities of data encouraged the

development of techniques to extract patterns and discover knowledge from large

databases, a field closely related to DBR known as data mining. There are many other

examples: The applications of database technology to the management of Web data

led to research at the border of databases, information retrieval, and machine learning;

database design has links with software engineering, while distributed databases raise

numerous questions within networking research.

As for further reading, we have already pointed to a number of references on

specific research topics. We now refer to more general works that can be of use to

pursue the study of database systems and database research in more depth.

A large number of textbooks cover the design of relational database management

systems and review core database research. We mention (Ullman 1988, 1989;

Ramakrishnan and Gehrke 2002; Garcia-Molina et al. 2008; Silberschatz et al.

2010), but there are many other excellent examples.

With the notable exception of Ullman (1989), these textbooks deal with database

systems rather than with database theory. The main reference in database theory is

Abiteboul et al. (1995), which covers foundational aspects of database query

languages and data models. An earlier survey, giving a snapshot of theoretically-

oriented research at the time, is Kanellakis (1990). Database theory is strongly tied

to finite-model theory (Libkin 2004), and the connection between the two is

highlighted in Vianu (1996).
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Luc Bouganim, Bj€orn Þór Jónsson, and Philippe Bonnet. uFLIP: Understanding Flash IO patterns.

In Proc. CIDR, 2009.
Wolfgang Breitling. Histograms – myths and facts. In Proc. Hotsos Symposium on Oracle System

Performance, 2005.
Andrea Calı̀, Georg Gottlob, and Andreas Pieris. Advanced processing for ontological queries.

PVLDB, 3(1):554–565, 2010.
Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo

Rosati. Tractable reasoning and efficient query answering in description logics: The L-Lite

family. J. Autom. Reasoning, 39(3):385–429, 2007.

R. G. G. Cattell, editor. The Object Database Standard: ODMG 2.0. Morgan Kaufmann, 1997.

Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A structured english query language.

In Proc. SIGFIDET/SIGMOD Workshop, volume 1, 1974.

Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen, James N. Gray, W. Frank King,

Bruce G. Lindsay, Raymond Lorie, James W. Mehl, Thomas G. Price, Franco Putzolu, Patricia

Griffiths Selinger, Mario Schkolnick, Donald R. Slutz, Irving L. Traiger, Bradford W. Wade,

and Robert A. Yost. A history and evaluation of System R. Commun. ACM, 24

(10):632–646,1981.

Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries

in relational data bases. In Proc. STOC, 1977.
Surajit Chaudhuri. An overview of query optimization in relational systems. In Proc. PODS, 1998.
Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. Theor.

Comput. Sci., 239(2):211–229, 2000.
David L. Childs. Description of a set-theoretic data structure. In Proc. AFIPS, 1968.
E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):

377–387, 1970.

E. F. Codd. Recent investigations in relational data base systems. In Proc. ACM Pacific, 1975
Douglas Comer. The ubiquitous B-tree. ACM Comput. Surv., 11(2):121–137, 1979.
Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, and Vladislav Shkapenyuk. Gigascope:

A stream database for network applications. In Proc. SIGMOD, 2003.
Creative System Design. Databases. http://online.creativesystemdesigns.com/projects/databases.

asp, 2010.

Umeshwar Dayal. Of nests and trees: A unified approach to processing queries that contain nested

subqueries, aggregates, and quantifiers. In Proc. VLDB, 1987.
Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters.

Commun. ACM, 51(1):107–113, 2008.

O. Deux. The story of O2. IEEE Trans. on Knowl. and Data Eng., 2(1):91–108, 1990.
Robert A. Di Paola. The recursive unsolvability of the decision problem for the class of definite

formulas. J. ACM, 16(2), 1969.

Ronald Fagin. Multivalued dependencies and a new normal form for relational databases.

ACM Trans. Database Syst., 2(3):262–278, 1977.
Ronald Fagin. Normal forms and relational database operators. In Proc. SIGMOD, 1979.

226 M. Benedikt and P. Senellart

http://online.creativesystemdesigns.com/projects/databases.asp
http://online.creativesystemdesigns.com/projects/databases.asp


Ronald Fagin, J€urg Nievergelt, Nicholas Pippenger, and H. Raymond Strong. Extendible hashing –

a fast access method for dynamic files. ACM Trans. Database Syst., 4(3):315–344, 1979.
Ronald Fagin, Phokion G. Kolaitis, Renée Miller, and Lucian Popa. Data exchange: semantics and

query answering. Theor. Comput. Sci., 336(1):89–124, 2005.
Financial Times. The world’s largest companies. Technical Report ft500, Financial Times, 2010.

Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for retrieval on composite

keys. Acta Inf., 4:1–9, 1974.
Hector Garcia-Molina and Kenneth Salem. Main memory database systems: An overview. IEEE

Trans. Knowl. Data Eng., 4(6):509–516, 1992.
Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The Complete

Book. Prentice Hall Press, second edition, 2008.

Georg Gottlob and Christoph Koch. Monadic Datalog and the Expressive Power of Web Informa-

tion Extraction Languages. J. ACM, 51(1):74–113, 2004.

Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient Algorithms for Processing XPath

Queries. In Proc. VLDB, 2002a.
Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and tractable

queries. J. Comput. Syst. Sci., 64(3):579–627, 2002b.
Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. GPUTeraSort: high

performance graphics co-processor sorting for large database management. In Proc. SIGMOD,
2006.

Goetz Graefe. The Cascades framework for query optimization. IEEE Data Eng. Bull., 18(3):
19–29, 1995.

Jim Gray. A “Measure of transaction processing” 20 years later. IEEE Data Eng. Bull., 28(2):
3–4, 2005.
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Chapter 11

Computer Security and Public Key

Cryptography

Wayne Raskind and Edward K. Blum

The problem of computer security arises in several contexts in this modern age

where most computers are connected to the Internet. Being connected is of course

valuable but it also means that the computer is liable to invasion by unfriendly

external agents (sometimes called hackers) which inject viruses, which are insidi-

ous programs that can insert themselves into a computer’s operating system and

cause serious damage in its executable functions and also possibly access confiden-

tial files. This raises problems in computer security. The problem of virus protection

is treated by several software companies who sell their products to the computer

owner. In this chapter, we are interested in another aspect of computer security

which the computer owner can deal with directly. This is the problem of confiden-

tial (or secret) encrypted email. We have already mentioned that Turing worked on

cryptography in World War 2.

Secure (Secret) Email

The computer owner usually has access to an email system that operates on a computer

network which allows communicationwith a widespread group of computer users. On

most email systems, email messages can be intercepted by unfriendly recipients.

Suppose that the owner wishes to communicate with another email user in the system

in a manner which excludes all other users, that is, email between these two users

should allow secretmessages between them. The use of electronicmail (email) to send
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messages is widespread. If two email users, usually called A (for Alice) and B (for

Bob), wish to exchange messages which cannot be understood by other email users,

they can resort to an encryption system which encodes (encrypts) messages in some

secret format. A widely used type of encryption system is the public-key cryptosystem
(PKC). A PKC provides two computational algorithms to Alice and Bob:

1. A public encryption algorithm E for transforming a message M into an

enciphered format E(M) which A sends to recipient B (or B sends to A) and

which conceals the meaning of M from other email users. For various purposes,

E is made available to all users, say by storing its key (see below) in a public file
2. A private deciphering algorithm D with its own key such that Bob (r Alice), the

recipient, can easily compute D(EM) to recover M. Stated mathematically,

D E Mð Þð Þ ¼ M (11.1)

Algorithm D is private in that its key is known only to A and B, so that M can be

regarded as a secure (or secret) message.

Of course, there are many other scenarios which utilize a PKC. Certainly, we can

conceive of a situation involving a group of users who need only to send secret

messages to a single supervisory user who has the decryption key.

Amuch used public-key cryptosystemwas invented byDiffie andHellman in 1976.

In this type of PKC, the encryption algorithm E is available to all email users; i.e. it is

placed in a “public” system file. So any email user can encrypt a message. Further-

more, we shall show that a user who possesses the decyphering algorithmD can verify

a sender’s signature by means of the two keys, as explained below. This allows

reliable electronic funds transfers.

In the simple two-person communication scenario, the decryption algorithm D is

kept secret from all users other than A and B. E should be a one-to-one onto

mapping of the integers (i.e. a permutation) that is easy to compute and satisfies

the basic “inverting” equation (11.1) above, where D is the inverse permutation of

E. The encryption algorithm E computes a public encryption code of M using the

encryption key as we shall show. However, the decryption algorithm D has a secret

key available only to A and B and D is hard to compute without access to the

decryption key. For practical purposes, hackers cannot decrypt the cyphertext E(M)

in an acceptable time interval. The message M is deemed “secure”.

Consider a cyphertext C ¼ E(M). Since E is publically known, any hacker
recipient of the mailed cyphertext C can try a brute force method to retrieve M,

that is, the hacker can test all possible text messages TM and compute E(TM) until

the hacker finds a TM such that E(TM) ¼ C. Since E is 1:1, this implies that

TM ¼ M. Since D is designed to be hard to compute, this brute force method

requires so large a number of tests as to be impractical. These properties are

possessed by the PKC’s invented by Rivest, Shamir and Adleman, as reported in

(1978). They are known as RSA cryptosystems. They make use of some elementary

number theory which can be found in standard textbooks such as Dickson (1929),

for example.
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RSA Cryptosystems

An RSA system involves three integers, e, d and n. Say that A wishes to send a

message (as a string of characters) to B. Using any of several standard techniques,

the text message is first encoded as an integer M between 0 and n � 1. Thus, M is

represented as a string of decimal numerals, digits 0–9 or as a string of 0s and 1s if

binary codes are used. For a long message it may be necessary to break the character

string of the message text into a sequence of short blocks and encode each block as

an integer M. Of course, given the integer M, it is a simple computation to

reconstruct the character string of the message. So an RSA system, like most others,

operates by encrypting and decrypting numbers M.

Consider the integer M < n. In an RSA algorithm, sender A computes the

ciphertext C ¼ E(M) by raising M to the (public) power e modulo n, that is, C is

the remainder when Me is divided by n. In number theory notation {Dickson},

E Mð Þ � Me mod nð Þ (11.2)

Thus, the public encryption key is (e, n). To decrypt C, recipient B raises C to the

secret power d modulo n. Thus,

D E Mð Þð Þ � E Mð Þð Þd mod nð Þ (11.3)

The result in (11.3) is the original message (number code) M. (11.2) and (11.3)

are easily computed. How to determine e, d and n so that (11.1) holds? RSA

proceeds as follows.

First, compute n as the product of two very large “random” prime numbers p and

q. Thus, n ¼ pq. Although n is made public, the factors p and q are made known

only to A and B. For very large n, it is generally extremely difficult and time-

consuming to find its factors p and q. For example, a brute force trial-and-error

procedure would simply divide n by each prime number p where p � √ n. Suppose

n ¼ 1030 so that √ n ¼ 1015. Even assuming a gigabyte/s processing speed, it

would take 106 s (about 10 days) to try all candidates p as factors of n. This is not

practical. There is no known algorithm to find the factors of n within a practical

time. How does RSA allow A and B to devise an encryption and decryption

algorithm defined by (11.2) and (11.3) and satisfying (11.1)?

First, they find a large random integer d which is relatively prime to (p� 1)(q� 1).

For example, d can be chosen so that

gcd d; p� 1ð Þ q� 1ð Þð Þ ¼ 1; (11.4)

where gcd(x, y) is the greatest common divisor of two numbers x and y. Then the

integer e is chosen to be the “multiplicative inverse” of d modulo (p � 1)(q � 1),

that is, we can choose e to satisfy

e � d � 1 mod p� 1ð Þ q� 1ð Þð Þ: (11.5)
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As we shall see. this implies that E and D are inverse permutations of each other,

that is,

D E Mð Þð Þ ¼ M and E D Mð Þð Þ ¼ M for all integers M: (11.6)

To prove that (11.6) holds for any number M when e, d, and n are chosen as

above, RSA use some classical basic number theory as set forth in Dickson (1929)

for example.

Let Ф(n) be the classical Euler totient function whose value is the number of

positive integers less than n which are relatively prime to n (i.e. have no common

divisors with n). For n ¼ p a prime, obviouslyФ(p) ¼ p � 1. For n ¼ pq, as in our

case, we see easily that

F nð Þ ¼ F pð ÞF qð Þ ¼ p� 1ð Þ q� 1ð Þ ¼ n� pþ qð Þ þ 1:

The choice of d as relatively prime to (p � 1)(q � 1), implies that d has a

multiplicative inverse e in the ring of integers modulo Ф(n) (This is a bit of

elementary algebra). This means we can find e such that

e � d � 1 mod F nð Þ; that is; e � d ¼ k F nð Þ þ 1 for some integer k: (11.7)

By the Euler-Fermat theorem Dickson (1929), for any integer M that is relatively

prime to n we have

MF nð Þ � 1 mod nð Þ: (11.8)

For the above choices (11.4) and (11.5) for d and e and the definitions (11.2) and

(11.3) for E and D, it follows that

D E Mð Þð Þ � E Mð Þð Þd � Með Þd mod nð Þ ¼ Me�d mod nð Þ

E D Mð Þð Þ � D Mð Þð Þe � Md
� �e

mod nð Þ ¼ Me�d mod nð Þ:

By (11.7),

Me�d � MkF nð Þþ1 mod nð Þ:

By the Euler-Fermat formula (11.8), replacing n by p, it follows that for any M

such that p does not divide M,

Mp�1 � 1 mod pð Þ: (11.9)

But M(p � 1)(q � 1) + 1 ¼ M Ф(n) M. Therefore, for any k, (11.8) implies

MkF nð Þþ1 � M mod pð Þ: (11.10)
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But (11.10) obviously holds also if M � 0 (mod p); i.e. if M divisible by p. So it

holds for all M.

A similar proof applies to q. Therefore,

MkF nð Þþ1 � M mod qð Þ: (11.11)

The two equations (11.10) and (11.11) together with (11.7) imply

Me�d � MkF nð Þþ1 � M mod nð Þ:

But this is precisely the number-theoretic equation for (11.6) based on (11.2)

and (11.3).

It shows that E and D are inverse permutations of the integers.

RSA procedures for Encryption and Decryption

A RSA system provides numerical algorithms (11.2) and (11.3) for encryption and

decryption. In fact, in their paper (Rivest et al. 1978), RSA give some details of

procedures for efficient computation of the powers in (11.2) and (11.3).

Computing the cyphertext E(M) � Me (modn) requires at most 2log2e multi-

plications and 2log2 e divisions to encryptM. The following program scheme does this

Step 1. Obtain the binary representation e ¼ ekek�1. . .e1e0, where the ei ¼ 0 or1.

Step 2. Set C ¼ 1 (initialize C).

For i ¼ k, k�1, . . .,0 do the following steps 3 and 4 on C:

Step 3. Set C ¼ remainder of C2/n; i.e. C � C2 (modn)

Step 4. If ei ¼ 1, set C ¼ remainder of CM/n; i.e. C � CM (modn)

Step 5. Halt with C � Me (modn).

A similar program computes the deciphering D(E(M)) ¼ M.

Finding Large Prime Numbers p and q

This is an essential part of a practical RSA system. Among some practical

suggestions, RSA recommended in their original paper using 100-digit random

primes for p and q, which was appropriate for that time, but larger primes are

required now to achieve desired security. So n will have 200 digits. One way to do

this is to have the computer generate and test 100-digit odd numbers at random until

a prime is found. By the prime number theorem [3] this can take (ln10100)/2 ¼
115 tests. To test a random number b for primality, RSA suggest a probabilistic

algorithm due to Solovay and Strassen [4]. This algorithm chooses a random number

a from a uniform distribution on the set {1, 2, . . ., b�1} and tests whether both
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gcd a; bð Þ ¼ 1 and J a; bð Þ ¼ a b�1ð Þ=2 mod bð Þ; (11.12)

where J is the number theoretic Jacobi function (Dickson 1929). If (11.12) holds for

100 random values of a, then b is prime with a high probability. In fact, if b is

actually prime, then (11.12) holds for all a. To see this note that for b odd and a � b

and gcd(a,b) ¼1, J(a,b) has its value in {�1, 1} and can be computed by the

following RSA-suggested program:

RSA also suggest that to guard against smart factoring algorithms p and q should

differ in length by a few digits and both p�1 and q�1 should have large prime

factors. For p�1 to have a large prime factor they generate a large random prime u

and take p to be the first prime in the sequence iu +1 for i ¼ 2,4, 6. . ..

Signatures

At the outset, we mentioned the important application for including user electronic

signatures along with email messages. In certain applications, (e.g. in banking by

email), user Bob may need to identify himself by a coded signature, S say, where S

is a number that uniquely identifies Bob. Suppose Bob wishes to send Alice a

message M which he “signs” so that she knows M is really from Bob. One scenario

for this is for Alice and Bob to have their own encryption and decryption

algorithms, say (EB, DB) for Bob and (EA, DA) for Alice. Then Bob can compute

his signature S for message M by decrypting as

S ¼ DB Mð Þ:

Bob then encrypts S using Alice’s algorithm to compute EA (S) and sends this in

secret to Alice. This is possible since EA is public. Alice then decrypts this message

to obtain S by computing DA (EA (S)) ¼ S. She knows this is Bob’s signature.

She then computes EB (S) ¼ EB(DB (M)) ¼ M, again making use of the public

nature of EB. Alice now has the pair (M,S) which is a message-signature pair with

the properties of a signed document. Bob cannot later deny signing the document

since only he could create S ¼ DB (M). Furthermore, Alice can prove that EB

(S) ¼ M i.e. that Bob signed the document M. For other security “games” that can

play out on the Internet, the reader can consult (Rivest et al. 1978) and the large

literature on computer security.
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The Diffie-Hellman Protocol

Many public key cryptographic systems use the Diffie-Hellman protocol reported in

(Diffie and Hellman 1976) based on a mathematical setting of a finite abelian group

G, written additively (Recall from elementary group theory that G has an associa-

tive and commutative binary operation +, and an identity element 0 and for every

element a an “inverse” element –a such that a + (�a) ¼ 0. For example, take G to

be the integers 0, 1,. . .,p�1 with + being addition modulo a prime p). Indeed,

suppose the order (number of elements) of G is a large prime number p. It follows

easily from elementary group theory that G is a cyclic group of order p, that is, there

is an element q in G such that all elements are powers of q. Let q be such a

generator; i.e. in additive notation every element in G is a multiple of q. In a

communication scenario such as the above with Alice and Bob, Alice picks an

integer r between 1 and p. She keeps r secret, computes rq and makes this result a

public key. Similarly, Bob picks a secret integer s, computes sq and makes the result

his public key. Then both Alice and Bob can compute rsq using the public nature of

rq and sq, and their respective secrets r and s since

r sqð Þ ¼ rsq ¼ s rqð Þ:

They then use rsq as the private key of their PKC systems. Notice that there is no

need to communicate the key rsq. This eliminates one of the undesirable features of

older cryptosystems: no courier is needed to set up the system. Furthermore, an

eavesdropper may find rq and sq, these being public, but for large p would find it

hard to figure out rsq without knowing r or s. The discrete log problem is to compute r

or s from the knowledge of rq or sq. The Diffie-Hellman problem is to compute rsq

given rq and sq. The difficulty of such computations depends very much on the nature

of the abelian group G. If G is the additive group Z/pZ, they are easy, using the

Euclidean algorithm. For if n is the integer rq, we can efficiently divide n by p and

determine the remainder, r. If G is a subgroup of order p of the multiplicative group of

a finite field F, then the computations can be done in some cases in sub-exponential

time using index calculus. The basic idea of the index calculus method is to gather

many relations among discrete logs of integers whose factors are prime numbers that

are much smaller than the cardinality of F, and use linear algebra to solve for r or

s above. There are other finite abelian groups in which the Diffie-Hellman problem is

interesting and well-suited to cryptography. Note that we are particularly interested in

finite abelian groups because they lend themselves very well to computation.

The El Gamal Public Key Cryptosystem System

One of the simplest public key cryptosystems based on the Diffie-Hellman protocol is

El Gamal encryption. With notation as above, suppose Bob has a message, m, that is

represented as an element of a cyclic group of prime order p with chosen generator q.
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Alice chooses an integer r between 0 and p�2 that she keeps secret and broadcasts rq.
Bob picks an “ephemeral” integer s in the same range that is used one and only one

time to send this message. He then broadcasts the elements c ¼ sq and d ¼ m + rsq.

Alice can then decrypt the message by computing d�rc ¼ m + rsq�rsq ¼ m.

An eavesdropper would have to compute r, s or rsq in order to recover m from

knowledge of c and d.

Elliptic Curve Cryptography (ECC)

In order to use the Diffie-Hellman protocol to make public key cryptosystems, it is

important to work with in an abelian group where specific calculations can be done

efficiently, but for which it is difficult to solve the discrete log and Diffie-Hellman

problems. An algebraic group is a group where the operations may be done by

computing with polynomials. Well-known examples of finite algebraic groups

include Z/nZ and the multiplicative group of a finite field. But there are other

types of algebraic groups that do not immediately come to mind and were discov-

ered as a by-product of other research. In the late eighteenth and early nineteenth

century, mathematicians such as Legendre and Abel worked with certain “elliptic”

integrals that were impossible to compute in closed form. Examples of these arise if

you try to compute the arc length of an ellipse, hence the name. They discovered

that these integrals exhibit an abelian group-like structure, and this was one of the

themes that spurred the development of group theory in the nineteenth century.

Around the same time, mathematicians such as Gauss had made great progress in

understanding the solution and classification of quadratic equations in 2 and 3

variables. After this, the next simplest equation is one of the form

y2 ¼ x3 þ axþ b;

where a and b are fixed elements of a field F that we will take to be a finite field

later. This is called aWeierstrass equation. One can reduce finding the roots of any
cubic polynomial to one of the form on the right hand side of this equation by a

linear change of variables to eliminate the quadratic term. The cubic has a double

root if and only if 4a3 þ 27b2 ¼ 0. In that case, it is not very difficult to study

solutions to the equation above, so we assume from now on that the roots of the

right hand side are distinct. The set of solutions to such an equation cannot be

parameterized in a similar way as can be done for quadratics, and mathematicians

struggled with this for several years before realizing that there were great

similarities with the difficulties they faced for elliptic integrals. These two research

themes then came together in a particularly fortuitous way. A surprising fact is that

the set of solutions to the equation above may be made into an abelian group by a

chord and tangent method. Briefly, this goes as follows. Since the right hand side is

a cubic, a general line will intersect the set of solutions in three points, say A, B and
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C (if the line is tangent, then we count the intersection points with multiplicities).

Then the abelian group operation + may characterized by the equation

Aþ B ¼ �C:

Thus, A + B + C ¼ O, so that three solutions to the equation “add” to the

identity element O of the group if and only if they lie on a line. The identity

elementO is the “point at infinity,” where we think of both x and y as being infinite.

It is easy to see that this group operation may be performed with polynomials in x

and y, and so the set of solutions of this equation in F together with O forms an

algebraic group called an elliptic curve. If we denote the equation by E then we will

denote this algebraic group by E(F). If F is the field of complex numbers, then E(F)

looks like a torus, or equivalently, the Cartesian product of two circle groups.

Upon first sight, elliptic curvesmay seem abstruse, but they are actually quite easy

to calculate with. For reasons that are still not entirely clear from a theoretical point of

view, when F is a finite field, E(F) is very well suited to making cryptographic

systems that appear to be very secure and yet can be performed efficiently on low

power devices such as smartphones or tablets. This is called elliptic curve crypto-
graphy (ECC). From now on, assume that F is a finite field such as Z/pZ, the group of

integers modulo a prime number p. Any finite field F is a finite extension field of some

Z/pZ and thus its cardinality Q is a power of p. Let E be an elliptic curve defined by an

equation in x and y with coefficients in F as above. Then E(F) is finite, since there are

only finitelymany possibilities for x and y in the solutions of theWeierstrass equation

above. The Riemann hypothesis for elliptic curves over finite fields gives a range for

the size N of E(F) in terms of the cardinality Q of the field F. We have

Qþ 1� Nj j � 2
ffiffiffiffi
Q

p

This is a very powerful inequality that has many consequences, the main one

being that E(F) cannot be too big or too small. Another consequence is that any

large prime number P that divides N is approximately the same bit size as Q. A good

cryptographic situation is when there is such a large prime P, for then the Diffie-

Hellman problem is expected to be difficult.

ECC is believed to be much more secure than RSA or the cryptographic systems

based on the Diffie-Hellman problem for the multiplicative group of a finite field.

In fact, it is believed that ECC can provide the same security as RSA using

cryptographic primes of about one tenth the bit size. This is important for parties

exchanging messages on low power devices. That is why in 2003, NSA signed a

licensing agreement with the Canadian company, Certicom,1 to use ECC as one of

its primary methods of encryption.

1 see http://www.certicom.com/index.php/news/6-press-rreleases/314-certicom-sells-licensing-

rights-to-nsa, http://www.certicom.com/index.php/2005-press-releases/35-2005-press-releases/267-

certicoms-ecc-based-solutions-enable-government-contractors-to-add-security-that-meets-nsa-

guidelines-
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Certain elliptic curves should be avoided when doing ECC. For example, if E has

Q or Q + 1 points (trace 1 resp. trace 0), then there are efficient attacks on ECC using

liftings to a local field (as in Smart 1999) and the logarithm resp. pairings to reduce to

the Diffie-Hellman problem for the multiplicative group of a finite field (as in

Menezes et al. 1993). These reductions can reduce the running time of attack

algorithms quite significantly in some cases. For the moment, one can avoid these

cases and easily find elliptic curves that are “safe.” However, it remains unclear how

secure ECC really is and this is the subject of much ongoing research. Index calculus

methods do not work well for ECC because (it seems) it is much harder to find

relations among discrete logs than in the multiplicative group case. In the latter case,

the success of index calculus relies on the fact that the group of nonzero rational

numbers under multiplication whose denominators are only divisible by a given

finite set of prime numbers S is a finitely generated group whose rank is equal to

the number of elements of S. Doing this for elliptic curves seems to involve finding

large groups of rational points of elliptic curves over number fields, which is both

theoretically and computationally difficult. In general, attempts to attack ECC using

index calculus type methods have not yet proven effective. Some believe that the

height pairing on elliptic curves provides a sort of “golden shield” (see Koblitz 2000)

that protects ECC from such attacks. This may well be the case, but it is not at

all clear.
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Chapter 12

Complexity Theory

Alfred V. Aho

Introduction

Complexity theory is the area of the theory of computation that deals with the study

and classification of the amount of computational resources required to solve

problems. The subject is intellectually exciting and central to the field of computer

science as well as to understanding how complex systems outside of computer science

behave and compute. Complexity theory is an active area of research, still having

some of the deepest unsolved problems in mathematics and computer science.

In this chapter we consider the following quintessential questions of complexity

theory:

1. How do we measure the performance of an algorithm?

2. Are some problems harder to solve than others?

3. Why are some problems impossible to solve?

4. Is verifying a solution to a problem easier than finding a solution?

5. Is finding an approximate answer easier than finding an exact one?

6. Can randomization speed up computation?

As a simple example of the second question, we can ask whether it is easier given

two one-thousand-digit numbers to multiply them together than given one two-

thousand-digit number to find its factors? A lot of contemporary computer security

technology assumes factoring is a computationally difficult problem (See Chap. 11).

Surprisingly, we will discover that definitive answers to many of these fundamental

questions are not yet known.

Our discussion will focus on fundamental results and their significance rather

than on details of proofs or complete coverage of the field. The reader is encouraged

to consult the excellent textbooks and papers cited in the references to find detailed
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proofs and discussions of other exciting areas of complexity theory such as quantum

computing (see Chap. 13) that we didn’t have the space to cover in this chapter.

For the reader’s convenience, we shall briefly review some of the material on Turing

machines covered in Chaps. 2 and 3.

Languages and Decision Problems

We start by introducing decision problems, yes-no questions that can be formulated

as language membership problems. We can always encode instances of problems as

finite-length strings of symbols drawn from some finite alphabet. The alphabet

consisting of the two symbols 0 and 1 is sufficient, but is often not notationally

clear. There is no loss of generality in assuming a problem is encoded as a text string.

A set of finite-length strings with a common characteristic is called a language.
Languages may have a finite or infinite number of strings but we always assume that

there are a countably infinite number of problem instances.

For example, we can formulate the problem of primality testing as a language

membership problem by defining the set PRIMES to be the language consisting of

the strings of digits that represent prime numbers. To determine whether a number

w is prime we ask whether w is a member of the language PRIMES.

As another example, suppose we want to determine, given a directed graph and a

pair of nodes, whether there is a path in the graph from the first node to the second.

We can encode each instance of this problem as a string w with three components,

(G, x, y), where G represents the graph and x and y represent the nodes. We can then

define the language PATH to consist of the set of strings (G, x, y) where G contains

a path from x to y. To find out whether there is a path in a given graph G from node

x to node y, we ask whether or not the string (G, x, y) is in the language PATH.

We are interested in the computational complexity of algorithms for solving

language membership problems. We will be primarily interested in the amount of

time and the amount of memory required to solve a problem using some model of

computation, measured as a function of the length of the input. For example, if w is a

string of n digits and we want to investigate the time complexity of primality testing,

we can ask how many primitive algorithmic steps are taken as a function of n to

determine whether or not w is a string in the language PRIMES. The number of

primitive algorithmic steps would be indicative of the number of instructions that

would need to be executed, and hence the amount of time, a computer would take to

solve the problem.

Models of Computation

Models of computation are at the heart of complexity theory. A modern digital

computer is very complex, so detailed mathematical proofs about the behavior of

digital computers are unwieldy and difficult to read and write. In complexity theory,
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therefore, we use simple mathematical abstractions of computing systems called

models of computation in order to make proofs simpler and easier to comprehend.

The most important model of computation in computer science is the Turing

machine, first proposed by Alan Turing in 1936 (See Chap. 2). We use various

kinds of Turing machines and other abstractions as models of computation with

which to determine the computational complexity of problems. Although Turing

machines are not practical devices, the answers we get using Turing machines serve

as indicators of the amount of time or memory programs running on real computers

will use to solve problems. The reason for this is that a real computer can be

simulated by a Turing machine using roughly the same amount of time or space.

We will explain what we mean by “roughly” shortly.

As discussed in Chap. 2, we can think of a deterministic single-tape Turing

machine as a finite-state control attached to a tape head that can read and write

symbols on the cells of a semi-infinite tape. The tape corresponds to the memory of

a computer. Since computer memories are very large, we allow the tape on the

Turing machine to be arbitrarily long. Initially, a finite input string of length n is in
the leftmost n cells of the tape, an infinite sequence of blanks follows the input

string, the tape head is reading the symbol in the leftmost cell, and the finite-state

control is in a predefined initial state, as shown in Fig. 12.1.

The Turing machine then makes a sequence of moves. In a move it reads

the symbol on the tape under the tape head and consults a transition table in the

finite-state control which specifies a symbol to be overprinted on the cell under the

tape head, a direction the tape head is to move (one cell to the left or right), and

a state to enter next. The tape head never moves past the left end of the input tape.

We can think of the transition table as a hardwired program that the Turing machine

executes. We will often use the term step as a synonym for move. A move of a

Turing machine is analogous to the execution of an instruction of a computer.

Certain states are designated as accepting states. If after a finite sequence of

moves the Turing machine enters an accepting halting state (one with no next

move), it is said to accept or recognize the input string that was initially on its input
tape. If it enters a non-accepting (rejecting) halting state or if it never halts, it does

not accept the input string. The language defined by the Turing machine is the set of

strings it accepts.

Mathematically, a Turing machine consists of seven components: a finite set of

states; a finite input alphabet (not containing the blank); a finite tape alphabet

(which includes the input alphabet and the blank); a transition function that maps

Finite-state control 

q 

...a b c B B B Input tape 

Fig. 12.1 Initial configuration of a single-tape Turing machine
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a state and a tape symbol into a state, tape symbol, and direction (left or right);

a start state; an accept state from which there are no further moves; and a reject state

from which there are no further moves.

We can characterize the configuration of a Turing machine at a given moment in

time by three quantities:

1. The state of the finite-state control,

2. The string of nonblank symbols on the tape, and

3. The location of the input head on the tape.

We shall use the word configuration as synonymous with current state, contents

of input tape, and location of tape head on tape. A computation of a Turing machine

on an input w is a sequence of configurations the machine can go through starting

from the initial configuration with w on the tape and terminating (if the computation

terminates) in a halting configuration. We say a language is Turing recognizable if
there is some Turing machine that given any string in the language always halts in

the accepting state and given any string not in the language either halts in the

nonaccepting state or never halts. The term recursively enumerable is often used as
a synonym for Turing recognizable.

A language defined by a Turing machine that halts on all inputs is said to be

Turing decidable. Often the term recursive is used as a synonym for Turing

decidable. We will use the terms decider and algorithm as synonyms for a deter-

ministic Turing machine that halts on all inputs.

The fundamental results of computability theory show that there are languages

that are not even Turing recognizable and that there are Turing-recognizable

languages that are not Turing decidable. Some of these results are proven using

the notion of a universal Turing machine (Chaps. 2 and 3) – a Turing machine that

can simulate the behavior of any given Turing machine on any given input. The

universal Turing machine will have on its input tape the specification of the Turing

machine to be simulated followed by the given input string. We can think of a

universal Turing machine as an ordinary computer that takes a program and data

string as input, and then executes the program on that data string.

Computability theory shows that there is a whole host of problems that cannot be

solved algorithmically. For example (Chap. 3), we can formally prove that there is

no algorithm to determine whether an arbitrary Turing machine will halt on a given

input. These results can be used to show that there are an infinite number of

problems that cannot be solved by any real computer. A typical undecidability

result is that it is impossible to construct a “universal debugger” – a program that

will take as input computer programs and determine whether they are free of bugs.

There are many variants of Turing machines including nondeterministic Turing

machines and multitape Turing machines. A nondeterministic Turing machine may

have a choice of next move from a configuration. Acceptance is defined if and only

if there exists a finite sequence of moves that causes the machine to go from an

initial configuration to a halting accepting configuration.

The moves of a nondeterministic Turing machine can be represented by a

computation tree in which each node is a machine configuration and the children
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of a node are the possible next configurations. If there is at least one path in the tree

that leads from the initial configuration to a leaf representing an accepting final

configuration as shown in Fig. 12.2, then the machine accepts its input. If all paths

in the tree from any initial configuration always lead to halting configurations, we

call the nondeterministic Turing machine a decider.
A nondeterministic Turing machine is a purely mathematical abstraction but as

we shall see it is a very powerful tool for classifying the computational difficulty of

problems. We should not confuse nondeterminism with randomness. All nonde-

terminism says is that acceptance of an input occurs if there exists at least one finite

sequence of moves that leads from the initial configuration to an accepting config-

uration. There may be many paths that do not lead to accepting configurations, and

there may be infinite paths, but as long as there is one path that terminates in an

accepting configuration, the input is accepted. We will discuss models of computa-

tion with randomness a little later.

A multitape Turing machine is one that has one input tape and a fixed number of

semi-infinite working tapes. The working tapes are initially all blank. Each tape has

a tape head and a finite-state control dictates the moves of the machine. Some or all

of the tape heads may read or write symbols and move simultaneously during a

computational step. A multitape Turing machine may be deterministic or nondeter-

ministic. Acceptance is defined as for a single-tape Turing machine; that is, an input

is accepted if there is a sequence of moves on that input that eventually halts in an

accepting state.

Nondeterministic and multitape Turing machines do not have any more compu-

tational power than single-tape deterministic Turing machines. They can only define

the Turing-recognizable languages but theymay be able to do computations faster or

initial 
configuration 

accepting 
configuration 

Fig. 12.2 Computation tree showing a path from the initial configuration to an accepting

configuration
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with fewer tape cells. Unless otherwise qualified, throughout this chapter the term

Turing machine will refer to a deterministic single-tape Turing machine.

There are many other models of computation that are equivalent to Turing

machines in the sense that they can compute the exact same set of languages.

Examples of such models are lambda calculus (Chap. 3 appendix), most program-

ming languages, cellular automata, production systems, and Boolean circuits

(Chap. 5). Since much of the theory of computation has been developed using

Turing machines, we will use various variants of Turing machines as our primary

models of computation throughout this chapter.

Measures of Time Complexity

We focus on the complexity of language membership problems. More specifically,

we assume we are given a language L and an input string w. Our problem is to

determine whether w is a member of L. We will use two fundamental complexity

measures to determine the difficulty of this problem, namely, the time and space

needed. The complexity measure depends on the computational model being used

to determine whether w is in L.

Time Complexity of Turing Machines

The time complexity of a Turing machine is a function f (n) that gives the maximum

number of moves the machine could make in processing any input of length n.
In complexity theory we are usually interested in the asymptotic running time of an

algorithm as it is run on larger and larger inputs. For this reason, we use big-O
notation for describing time complexity. If f and g are two functions mapping

integers to reals, we say f (n) is O(g(n)) if there are positive integers c and m such

that f (n) � cg(n) for every integer n � m.
Big-O notation allows us to ignore constant factors and low-order terms so we

can focus on the asymptotic growth rate of an algorithm. For example, if f (n) ¼
10n2 + 50n + 1000, we can say f (n) is O(n2). With big-O notation we can also

ignore the base of logarithms: if f (n) ¼ log2 n, we can say f (n) is O(log n).
Given a language L, we say L has time complexity t(n) if L can be recognized by

a Turing machine of time complexity t(n). We define the time-complexity class

TIME(t(n)) to be the set of all languages that are decidable by O(t(n))-time Turing

machines. The term running time is often used as a synonym for time complexity.

Note that our definition of time complexity is a worst-case measure. We have

defined the running time of a Turing machine to be maximum number of moves the

machine can make on any input of length n. We might also be interested in the

expected running time when we can define a probability distribution on all inputs of

length n and then take the weighted average of the running times of these inputs to
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be the expected time complexity. Since determining the expected time complexity

of an algorithm can be much more difficult than determining its worst-case time

complexity, much of the literature is concerned with worst-case time complexity.

Simulating a Multitape Turing Machine
with a Single-tape Turing Machine

We might ask how much faster can we compute using a multitape Turing machine

rather than a single-tape Turingmachine? The answer is that we can always simulate

an O( f (n))-time deterministic multitape Turing machine with an O( f2(n))-time

deterministic single-tape Turing as follows. The single-tape machine uses its only

tape to represent the contents of all of the tapes of the multitape machine by storing

the multiple tapes one after each other with an indication of the location of the tape

head on each tape and an indication of where each tape ends.

To simulate one move of the multitape machine, the single-tape machine scans

its entire tape to determine the symbols under the multiple tape heads. It then makes

another pass over its only tape to update the contents of the tapes and the locations

of the tape heads. The single-tape machine may need to shift the entire contents of

its tape to the right if one of the heads of the multitape machine moves right to

scan a blank symbol. Thus each move of the multitape machine can be simulated in

O( f (n)) steps on the single-tape machine. The entire simulation of the O( f (n))-
time multitape machine therefore takes O( f2(n)) steps on the single-tape machine.

Time Complexity of Nondeterministic Turing Machines

The model of computation can affect the time or space complexity of a language.

The time complexity of a nondeterministic single-tape Turing machine that is a

decider is a function f (n) that gives the maximum number of moves the machine

can make on any path in the computation tree processing any input of length n.
We define the time complexity class NTIME(t(n)) to be the set of all languages that
are decidable by O(t(n))-time nondeterministic single-tape Turing machines

There may be an exponential gap between the time complexity of nondetermin-

istic Turing machines and deterministic Turing machines, but no greater. More

precisely, every nondeterministic single-tape Turing machine of time complexity

t(n) has an equivalent 2O(t(n))-time deterministic single-tape Turing machine. This

result can be shown by a two-stage simulation. We first construct a deterministic

multitape Turing machine to systematically trace out all the paths in the computa-

tion tree of the nondeterministic machine on an input string of length n in a breadth-
first fashion.
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Since the nondeterministic Turing machine is a decider, each path in the

computation tree from the root to a leaf is of length at most t(n). If c is the maximum

number of choices the nondeterministic machine has for any next move, the

maximum number of leaves in the computation tree is at most ct(n). Tracing out

the entire computation tree can therefore be done in O(t(n)ct(n)) ¼ 2O(t(n)) time on

the multitape machine.

In the second stage, we can convert the deterministic multitape Turing machine

to a single-tape deterministic Turing using the technique we outlined in the previ-

ous subsection.

Putting the two stages together, we see that we can first simulate a t(n)-time

nondeterministic single-tape Turing machine with a 2O(t(n))-time deterministic

multitape Turing machine. We can then simulate this multitape machine with a sin-

gle-tape machine that takes quadratically more time. But since 2O(2t(n)) is also 2O(t(n)),

we see that every nondeterministic Turing machine can be simulated with a determin-

istic Turing machine with at most an exponential increase in time complexity.

The Complexity Classes P and NP

This section presents the complexity classes P and NP that are at the heart of the

complexity hierarchy, and introduces the key concept of NP-completeness. One can

argue that P, the class of problems that can be solved in polynomial time, became

the touchstone for efficient computation in the mid 1960s with the publication of

Alan Cobham’s paper “The intrinsic computational difficulty of functions” and

Jack Edmond’s paper “Paths, trees, and flowers” in which they argued that polyno-

mial time was the appropriate measure of efficient computation. It was also around

this time that computational complexity became a field of serious study with the

early work of Juris Hartmanis, Fred Hennie, and Richard Stearns on complexity-

class hierarchies.

The Complexity Class P

The complexity class P is the set of languages that are decidable in polynomial time

on a deterministic single-tape Turing machine. P is a good approximation to

the class of problems than can be solved on computers in polynomial time because

we can simulate virtually every known physical computer that takes t(n) time to

solve a problem with a Turing machine that takes f (n) time where f (n) is some

polynomial function of t(n). Quantum computers may be an exception.

In complexity theory, we make the assumption that if a problem can be solved in

polynomial time, the problem is tractable. The reason for this is that algorithms

whose growth rates are O(n), O(n log n), or O(n2) can easily be run on real

computers even on relatively large inputs; algorithms whose growth rates are
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exponential can only be run on small inputs. It is infeasible to run an algorithm

whose time complexity is 2n on an input whose length is 100.

However, we should note that even though polynomial functions grow less

rapidly than exponential functions, it is questionable whether a polynomial-time

algorithm such as an n100-time algorithm can be run on a von Neumann computer

on inputs whose length is 100. Nevertheless, complexity theory makes a sharp

distinction between polynomial and exponential and the class P is at the heart of the

time-complexity hierarchy.

Examples of Problems in P

Many common computing problems are in P. Here are three examples, two of

which we have already seen.

Recognition of regular sets: Given a regular expression R and a string s, does
Rmatch s? This problem can be solved using the McNaughton-Yamada-Thompson

(MYT) algorithm in time O(|R|�|s|), where |R| denotes the length (number of

symbols) ofR and |s| the length of s. To formulate this task as a languagemembership

problem, we can define the language REMATCH to be the set of pairs of strings of

the form (R, s) where R matches s. We can use the MYT algorithm to determine

whether a pair (R, s) is a member of the language REMATCH in time O(|R|�|s|).
PATH: Given a directed graph G and two nodes x and y in G, is there a path in

G from x to y? The problem can be solved in O(n) time using a simple breadth-first

search marking algorithm, where n is the number of nodes and edges in G.

PRIMES: Given a string w of digits, is w a prime number? In 2002, Manindra

Agrawal, Neeraj Kayal, and Nitin Saxena devised a polynomial-time algorithm for

testing whether a number is prime. In 2006, they were honored with the G€odel Prize
and the Fulkerson award for this fundamental discovery.

The Complexity Class NP

The complexity class NP is the set of languages that are decidable in polynomial

time on a nondeterministic single-tape Turing machine. Interestingly, there is

another equivalent way of defining NP using algorithms called verifiers.

A verifier for a language L is an algorithm (deterministic Turing machine that

halts on all inputs) that takes as input pairs of strings w and c, and accepts w if and

only if w is in L and c is a certificate that proves w is in L. The certificate is

sometimes called a witness. A polynomial-time verifier is one that runs in polyno-

mial time in the length of w. L is polynomially verifiable if it has a polynomial-time

verifier. Note that if L is polynomially verifiable, then for every w there must exist a

certificate c whose length is a polynomial function of the length of w.
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NP can also be defined as the class of languages that have polynomial-time

verifiers. It is easy to show that this definition is equivalent to the original one

above.

Given a polynomial-time nondeterministic Turing machine N for a language, we

can construct a polynomial-time verifier from N as follows. The verifier takes as

input pairs of strings w and c. The verifier simulates N on input w looking at the

symbols of c as the determiners of the nondeterministic choices N should make at

each move during its computation. If c causes N to accept w, the verifier accepts w.
Otherwise, the verifier rejects w.

Given a polynomial-time verifier V that runs in time nk for a language, we can

construct a polynomial-time nondeterministic. Turingmachine for that language from

V as follows. On an input string w of length n, the Turing machine nondetermi-

nistically creates a certificate string c of length at most nk and simulates the verifier

on the pair (w, c). If V accepts, the Turing machine accepts. Otherwise, it rejects.

Examples of Problems in NP

Here are some important examples of languages in NP:

Satisfiability (abbreviated as SAT): SAT is the set of satisfiable Boolean

formulas. That is, SAT contains those Boolean formulas for which there is some

assignment of truth values to the variables in the Boolean formula that causes the

formula to evaluate to TRUE. For example, the Boolean formula

w ¼ ðx _ y _ zÞ ^ ðx _ y _ zÞ

is satisfiable because the assignment c which assigns x the value TRUE, y the value
FALSE, and z the value TRUE causes the formula w to evaluate to TRUE.

It is easy to construct a polynomial-time verifier for SAT. If a Boolean formula

w is satisfiable, then it has some satisfying assignment c. We can thus present the

verifier with the input (w, c) and all the verifier has to do is evaluate w with the

assignment c. This evaluation can be easily done in time polynomial in the length of

w. The verifier accepts w if and only if c is a satisfying assignment.

This example brings out a nice distinction between P and NP. P is the set of

languages for which the membership problem can be decided in polynomial time.

NP is the set of languages for which membership can be verified in polynomial time.

3SAT is the set of satisfiable conjunctive normal form (CNF) Boolean formulas

with exactly three literals per clause. The Boolean formula w above is a CNF

formula with three literals per clause. 3SAT is in NP for the same reason SAT is in

NP – each 3SAT formula has a short, easy-to-verify, satisfying certificate.

HAMPATH: A Hamiltonian path in a directed graph is a path that goes through

each node of the graph exactly once. We can define the language HAMPATH that

consists of triples of the form (G, x, y) such that G is a directed graph with a
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Hamiltonian path from x to y. HAMPATH is in NP because we can construct a

polynomial-time verifier that takes as inputs pairs of the form ((G, x, y), c) where the
certificate c represents a Hamiltonian path from x to y. It is easy to verify in

polynomial time whether c represents a Hamiltonian path in G.

k-CLIQUE: A k-clique in an undirected graph G is a subgraph H of G with k nodes
such that every pair of distinct nodes in H is connected by an edge. The k-CLIQUE
language is the set of undirected graphs having a k-clique. A verifier can verify in

polynomial time whether a pair (G, k, H) represents an undirected graph G with a k-
clique H.

For each of these problems verification is easy. On the other hand, we don’t

know whether any non-exponential-time algorithms exist for constructing a

satisfying assignment, or a Hamiltonian path, or a k-clique. All of the known

deterministic algorithms we currently have for constructing satisfying assignments,

Hamiltonian paths, and k-cliques all run in exponential time in the worst case.

NP-Completeness

In the early 1970s Stephen Cook and Leonid Levin, independently, made an

important discovery that profoundly impacted complexity theory. They showed

that certain problems in NP are as hard as any problem in NP. These problems

became known as the NP-complete problems. The implication of a problem being

NP-complete is that if a polynomial-time algorithm were discovered for that

problem, then every problem in NP could be solved in polynomial time.

The four problems we mentioned above, SAT, 3SAT, HAMPATH, and

k-CLIQUE, are all NP-complete. We just need a few definitions to make this

discussion precise.

A function f (w) that maps strings to strings is polynomial-time computable if

there is a polynomial-time deterministic single-tape Turing machine that started

with w on its input tape makes a sequence of moves and always halts with just f (w)
on its tape.

A languageL is polynomial-time reducible to a languageM if there is a polynomial-

time computable function f such that for every input string w, w is in L if and only if

f (w) is inM. The function f is often called a polynomial-time reduction of L toM.

A language is NP-hard if every language in NP is polynomial-time reducible to

it. A language is NP-complete if it is NP-hard and in NP.

In the early 1970s Cook and Levin independently showed that SAT is

NP-complete. As we indicated above, it is easy to see that SAT is in NP. A verifier

can determine in polynomial time if an assignment of truth values satisfies a

Boolean formula. The hard part of the proof is to show that every language in NP

is polynomial-time reducible to SAT. Suppose we have a nondeterministic Turing

machine N that accepts an input string w of length n in time nk. The essence of the
proof is to construct from N and w a Boolean formula whose length is polynomial in

n and which corresponds to a computation, and have the formula be satisfiable if
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and only if N accepts w. Conceptually the proof is straightforward but the details are
involved and will not be further discussed here.

Once we have shown one problem like SAT to be NP-complete, we can prove

another problem p is NP-complete by showing that p is in NP and that SAT is

polynomial-time reducible to p. 3SAT is also NP-complete and virtually every

textbook on complexity theory shows that there is a polynomial-time reduction of

SAT to 3SAT.

Thousands of commonly occurring optimization problems have been proven

NP-complete. Shortly after the announcement of Cook’s result, Richard Karp

published an influential paper showing that many important practical optimization

problems were NP-complete. Somewhat later, Michael Garey and David Johnson

published a comprehensive book cataloguing hundreds of NP-complete problems.

This book has become the quintessential collection of NP-complete problems.

Reducibility

In general, a reduction is a way of transforming a problem A into another problem B
such that a solution to B can be used to solve A. Reducibility is the tool we use to

classify the computational complexity of problems. When A is reducible to B,
solving A cannot be harder than solving B. The notion of reducibility we use

throughout this article is called many-one reducibility or occasionally mapping

reducibility or Karp reducibility. It is sometimes very difficult to find a polynomial-

time reduction from a known NP-complete problem to a suspected NP-complete

problem and a number of specialized techniques for performing polynomial-time

reductions have been devised to help make such reductions.

Turing reducibility is a more general notion of reducibility that is defined using

oracles. An oracle for a language L is a mathematical abstraction that will answer

whether a string w is a member of L in a single query. The language L does not even

have to be Turing recognizable.

An oracle Turing machine is a Turing machine with an attached oracle that can be

repeatedly queried by the Turing machine at any step of a computation. We say that a

languageA is Turing reducible to languageB if the languagemembership problem for

A can be solved by a Turing machine with an oracle for B. The oracle Turing machine

may query the oracle for B any number of times during a computation. Turing

reducibility is a generalization of many-one reducibility, because if A is many-one

reducible to B, then A is clearly Turing reducible to B – we just call the oracle for

B once. A polynomial-time Turing reduction is sometimes called a Cook reduction.
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The P Versus NP Question

After many decades of trying, the research community has not been able to prove

that there is even one language in NP that is not in P. The problem of whether

P ¼ NP has become the most celebrated open problem in theoretical computer

science. The Clay Mathematics Institute lists it as one of the seven Millenium Prize

Problems – problems that the Institute considers as among the most difficult

problems in mathematics and for each it offers a one-million dollar award for its

solution.

The P versus NP problem even fascinates the mainstream media. For example,

within the space of a year John Markoff of the New York Times published two

articles on the problem, “Prizes Aside, the P-NP Puzzler has Consequences”

(October 7, 2009) and “Step 1: Post Elusive Proof. Step 2: Watch Fireworks”

(August 16, 2010). The second article reported on a purported proof that P 6¼ NP

that was initially circulated on the Internet. For a few days the purported proof drew

a firestorm of attention from the computer science theory community until

difficulties were discovered in the proof.

It is possible that P ¼ NP, but many researchers think this is unlikely. If P were,

in fact, equal to NP, this would mean that problems like SAT or HAMPATH could

be solved by polynomial-time algorithms where today the only known solutions to

these problems are exponential techniques. For example, the naive way of deter-

mining whether a Boolean formula with n variables is satisfiable is to evaluate the

formula on all 2n truth assignments to its variables, so solving SAT by the obvious

brute-force method would take exponential time.

There are some languages in NP that are not known to be NP-complete but for

which we know of no polynomial-time algorithm. Perhaps the most famous of these

is the graph isomorphism problem. Two undirected graphs G and H are isomorphic

if the nodes of H can be renamed so H becomes identical to G. The language ISO
consisting of pairs of isomorphic graphs is clearly in NP since it is easy to verify

that G and H are isomorphic with an appropriate renaming certificate. However, no

one as yet has been able either to prove ISO is NP-complete or to show that there is

a polynomial-time algorithm for solving its language membership problem. We

don’t even know how to prove the complementary language NONISO, consisting of

pairs of graphs that are not isomorphic, is in NP.

It is tempting to assume that if P 6¼ NP, then every problem in NP is either

NP-complete or in P. However, such is not the case. Richard Ladner proved that

there exist languages in NP that are neither NP-complete nor in P. His result implies

that there are infinitely many intermediate classes of languages between P and NP

in each of which the languages are polynomial-time reducible to one another.

The graph isomorphism problem might be a candidate for a language that is neither

NP-complete nor in P.
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Space Complexity

Another popular measure of the complexity of a computational problem is the

amount of space it requires for a solution. We use the total number of tape cells used

by a Turing machine during a computation as the metric of space. This is a rough

approximation to the amount of computer memory it would take to solve a problem.

Space Complexity of Turing Machines

If D is a deterministic Turing machine that halts on all inputs, the space complexity
of D is a function f (n) that gives the maximum number of tape cells the machine

uses in processing any input of length n.
If N is a nondeterministic Turing machine whose computation tree is finite on all

inputs, the space complexity of N is a function f (n) that gives the maximum number

of tape cells the machine uses on any path from the root to a leaf of the computation

tree in processing any input of length n.
Analogous to the time complexity classes, we can define SPACE( f (n)) to be the

set of languages that can be decided byO( f (n))-space deterministic Turingmachines,

and NSPACE( f (n)) to be the languages that can be decided by O( f (n))-space
nondeterministic Turing machines.

With time complexity we observed that it may take exponentially more time for

a deterministic decider to recognize a language than a nondeterministic decider.

One of the fundamental results in space complexity is Savitch’s theorem which

states that NSPACE( f (n)) is contained in SPACE( f 2(n)), for any function

f (n) � n. This result can be proved using a recursive algorithm that uses O( f 2(n))
space to determine whether a nondeterministic Turing machine can go from one

configuration to another in 2O( f (n)) moves.

Sublinear Space Complexity Classes

We can define space complexity classes that are sublinear, e.g.,O(log n), if we use a
two-tape Turing machine that has a read-only input tape and another read-write

work tape. We measure the space complexity by the number of cells used only

on the work tape. For example, the language {0n1n | n � 1} can be decided by an

O(log n)-space Turing machine of this nature by counting the number of 0’s and 1’s

separately in binary on the work tape. Only O(log n) space is needed to store the

counters on the work tape.

Two well-studied sublinear space complexity classes are L, the class of

languages decidable in logarithmic space on a deterministic two-tape Turing

machine, and NL, the class of languages decidable in logarithmic space on a
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nondeterministic two-tape Turing machine. As with P and NP, we don’t know

whether NL has more languages than L. Using another type of reducibility, called

log-space reducibility, we can define a notion of NL-completeness. We say a

language is NL-complete if it is in NL and every other language is NL is log-

space reducible to it. We can show the problem PATH is NL-complete.

With NP and NL, we can define the complementary complexity classes coNP

and coNL that contain the languages that are the complements of the languages in

NP and NL, respectively. We don’t know whether NP is different from coNP, but

surprisingly we can show that NL and coNL are the same.

The Class PSPACE

There are space analogs for the classes P andNP.We define PSPACE to be the class of

languages that are decidable in polynomial space on a deterministic Turing machine

and NPSPACE to the class of languages decidable in polynomial space on a nonde-

terministic Turing machine. Note that by Savitch’s theorem, PSPACE ¼ NPSPACE.

The space complexity of a Turing machine limits its time complexity. The time

complexity class EXPTIME is the set of all languages decidable by deterministic

O(2p(n))-time Turing machines, where p(n) is a polynomial function of n. Since a

Turing machine computation that halts cannot repeat a configuration, we know that

an f (n)-space Turing machine must run in f (n)2O( f (n)) time; thus PSPACE ¼
NPSPACE � EXPTIME.

We say a language L is PSPACE-complete if L is in PSPACE and every

language in PSPACE is polynomial-time reducible to L.
The PSPACE-complete languages are the most difficult to recognize languages

in PSPACE. Quantified Boolean formulas are Boolean formulas containing the

quantifiers 8 for “for all” and 9 for “there exists.” For example, the quantified

Boolean formula 8x’ means that for all values of x the statement ’ is true.

A Boolean formula in which each variable appears within the scope of some

quantifier is said to be fully quantified. We can define the language TQBF to be the

set of true fully quantified Boolean formulas. We can use a technique similar to that

used to prove Savitch’s theorem to show that TQBF is a PSPACE-complete

language.

Other problems known to be PSPACE-complete are determining whether a

regular expression generates all strings and finding solutions to some games like

generalized geography. EXPTIME is interesting in that board games such as

generalized chess, checkers, and go are EXPTIME-complete. (A language is

EXPTIME-complete if it is in EXPTIME and every language in EXPTIME is

polynomial-time reducible to it).
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The Class EXPSPACE

The class EXPSPACE is the set of languages that are decidable in exponential

space. A language L is EXPSPACE-complete if L is in EXPSPACE and every

language in EXPSPACE is polynomial-time reducible to L.
Let us define a class of generalized regular expressions, called regular

expressions with exponentiation. If R is a regular expression, define R^k to be R
concatenated with itself k times. Let EQREXP be the language consisting of pairs

(E, F ) of equivalent regular expressions with exponentiation. (Two regular

expressions are equivalent if they denote the same set of strings.) We can show

that EQREXP is EXPSPACE-complete.

One of the interesting properties of EQREXP is that it is a language that we can

prove to be truly intractable; that is, we can prove there is no polynomial-time

algorithm to decide it.

NP-Optimization Problems

Let us now turn our attention to optimization problems for which we want to find a

best solution in a space of solutions. Here are some examples:

Travelling salesman problem (TSP): Given a list of cities and their pairwise

distances, find a cheapest tour (cycle of cities) that goes through each city

exactly once.

Minimum vertex cover (MIN-VC): A vertex cover of an undirected graph is a

subset of its nodes such that every edge of the graph touches at least one node in

the subset. The minimum vertex cover problem is to find a smallest vertex cover

for a given undirected graph.

Maximum clique problem (MAX-CLIQUE): Find a largest clique in an undirected

graph.

Maximum independent set (MIS): An independent set of an undirected graph is

a set of nodes such that no two nodes in the set are connected by an edge.

A maximum independent set is a largest independent set.

The first two optimization problems are minimization problems and last two

maximization problems.

For each optimization problem, there is a corresponding decision problem. For

example, for the travelling salesman problem, we might ask is there a tour that has a

cost less than or equal to k?
We will call an optimization problem in which the corresponding decision prob-

lem is NP-hard an NP-optimization problem. Since the corresponding decision

problems for each of the four optimization problems above are NP-complete,

these four optimization problems are NP-optimization problems. The question we

address in this section is how we might go about trying to find good solutions to NP-

optimization problems.
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Brute-Force Algorithms

If the problem size is small, we might consider evaluating all possible solutions.

This approach only works for small problem sizes. For example, consider the

travelling salesman problem with n cities. Suppose we try evaluating all n! tours
and picking a cheapest one. Since n! grows exponentially (with n ¼ 10, there are

3,628,800 tours; with n ¼ 20, there are over 2 quintillion (1015) tours), this

approach only works for very small problem sizes.

Heuristic Algorithms

A heuristic is an algorithm that is intended to find quickly a reasonable, but not

necessarily optimal solution, to an optimization problem. For example, a heuristic

for the travelling salesman problem might start off from a start node and go to a

closest node x. It could then go to an unvisited node closest to x, and so on, until it

has visited all nodes. This greedy heuristic will produce a Hamiltonian cycle but

there is no guarantee that the resulting tour is good let alone optimal. But its

advantage is that it runs in linear time.

The travelling salesman problem is one of the most studied optimization

problems in computer science and operations research, and dozens of heuristic

algorithms for it have been proposed, especially for the Euclidean version of the

problem. Practical instances of the problem can be solved by sophisticated

heuristics, such as the Lin-Kernighan heuristic, for reasonably large problems but

a polynomial-time algorithm that works for all instances of the travelling salesman

problem has not been found.

Approximation Algorithms

For some optimization problems we can find algorithms that deliver provably good

solutions in a reasonable amount of time. Let us define an approximation algorithm

as an efficient algorithm that finds good solutions with a provably good worst-case

ratio between the value of the solution found by the algorithm and the true

optimum. We say an algorithm is r-approximate for a minimization (maximization)

problem if on every input the algorithm finds a solution whose cost is at most r (1/r)
times the optimum; r is called the performance ratio of the algorithm.

For example, consider the following simple approximation algorithm for the

minimum vertex cover problem. Given an undirected graph in which all edges are

initially uncovered, pick an uncovered edge and add its endpoint nodes to the vertex

cover. Repeat this step until all edges touch the vertex cover. It is easy to show that

this algorithm runs in polynomial time and always produces a vertex cover that is no
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more than twice the size of a smallest vertex cover. This is an example of a constant
factor approximation algorithm with a performance ratio of two.

Approximation algorithms for optimization problems are an ongoing research

area in computational complexity. It turns out that the difficulty of approximating

solutions to NP-optimization problems varies greatly. We have just seen that some

optimization problems such as vertex cover have constant factor approximation

algorithms. At the other extreme, we can show that some optimization problems

such as maximal clique have no approximation algorithms that produce solutions

within a constant factor of the optimal unless P ¼ NP.

A subject of considerable interest in the design of approximation algorithms is

inapproximability. We would like to identify those NP-optimization problems for

which the design of an r-approximate algorithm for small r is impossible, unless

P ¼ NP. As we shall see, the PCP theorem provides a very powerful tool for

proving inapproximability results.

Probabilistic Algorithms

Randomness appears to be inherent in nature. A significant open question in

complexity theory is whether randomness can be used to speed up computation.

We can define a probabilistic algorithm using a special type of nondeterministic

Turing machine called a probabilistic Turing machine (PTM). A PTM is a nonde-

terministic Turing machine with two transition functions. At each nondeterministic

step of a computation it flips a coin to determine which of the two transition

functions to apply.

For a computation on an input w, we assign a probability to each path in the

computation tree from the root to a leaf. If the path has k coin-flip steps, the

probability of that path is 2�k. The probability that the machine accepts the input

w is the sum of the probabilities of each of the accepting paths. The probability that

the machine rejects w is one minus the probability that it accepts w.
For 0 � e < ½, a probabilistic Turing machine M recognizes language L with

error probability e if

1. w is in L implies Pr[M accepts w] � 1 � e, and
2. w is not in L implies Pr[M rejects w] � 1 � e.

All this says is that the probability that we get the wrong answer by simulating

the machine is at most e.
The time and space complexities of a probabilistic Turing machine are defined in

the same way as those for a nondeterministic Turing machine.

Many different polynomial-time randomized complexity classes can be defined

using different notions of acceptance. One of the most common is the complexity

class BPP, which is the set of languages that are recognizable by probabilistic

polynomial-time Turing machines with an error probability of 1/3. BPP stands for

bounded-error probabilistic polynomial time.
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Amplification

We defined BPP with an error probability of 1/3. In fact, we can change the error

probability to any constant strictly between 0 and ½ using a technique called

amplification. With amplification we can make the error probability exponentially

small. Let p(n) be a polynomial. If M is a polynomial-time PTM that operates with

error probability e, we can construct an equivalent polynomial-time PTM M’ that
operates with error probability 2�p(n) as follows. We have M’ run M a polynomial

number of times and return the most frequently occurring result. The probability of

error decreases exponentially with the number of times M is run. This observation

follows from well-known tail bounds on sums of independent random variables

from probability theory.

Does Randomness Help?

A major open question is whether BPP ¼ P. In other words, can deterministic

Turing machines efficiently simulate all probabilistic Turing machines with at most

a polynomial-time slowdown? Or conversely, does randomness increase computa-

tional power? Is there a language that can be recognized in polynomial time by a

probabilistic Turing machine but not by a polynomial-time deterministic Turing

machine.

Research in complexity theory has uncovered unexpected and fascinating

connections between the question of whether BPP ¼ P and the hardness of determin-

istically computing certain functions. If there are very hard functions, then the

behavior of such functions appears “random”, that is unpredictable, to any determin-

istic polynomial-time observer. Such functions can be used to generate random bits

that are “good enough” for any polynomial-time computation. By “good enough” we

mean the bits are indistinguishable from truly random bits.

Randomness is a central feature in interactive proof systems and cryptography.

Interactive Proof Systems

Interactive proof systems have profoundly impacted complexity theory since their

definition in 1985 by Shafi Goldwasser, Silvio Micali, and Charles Rackoff.

They are widely used in studying cryptography and approximation algorithms

and they give us a way of defining a probabilistic analog of the class NP.

We have seen that the languages in NP are those that have short, and easily

checkable, proofs of membership. An interactive proof system is a model of

computation consisting of two parties, a prover and a verifier, that interact with

each other by exchanging messages. The prover is all powerful and can spend an
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unlimited amount of time constructing proofs of membership. The verifier is a

polynomial-time probabilistic Turing machine that checks the proofs given to it by

the prover.

We assume the verifier is reliable but the prover can make mistakes. Messages

are exchanged between the prover and the verifier until the verifier is convinced the

proof is correct. The prover and verifier compute their next message from the

message history exchanged to the current point in time.

The objective of the verifier in an interactive proof system is to determine

whether an input string w is a member of a given language using the information

provided to it by the prover. Instead of having the verifier make probabilistic moves

during its computation, we can equivalently give the verifier a random input string

r to simulate the effect of the probabilistic decisions. Formally, the verifier’s output

at each point in time can be modeled by a function V(w, r, m) where

1. w is the input string whose membership in a given language is to be determined,

2. r is the random input given to the verifier, and

3. m is a string consisting of the sequence of messages exchanged between the

verifier and prover to the current point in time.

The value of V(w, r, m) is the next message to be sent to the prover, or an

indication of whether to accept or reject w.
The prover’s behavior can be treated as a function P(w, m) that gives the next

message to be sent to the verifier.

The interaction between the prover and the verifier on w and r results in

acceptance if there exists a sequence m of alternating messages exchanged between

the prover and verifier in which the final message in m is accept.

We assume the length of the verifier’s random input and the lengths of the

exchanged messages are polynomial functions of n, the length of w. We also

assume the number of messages exchanged is also polynomial in n. We define

the probability that the interactive proof system accepts w to be the probability of an

accepting interaction on a random string r of length polynomial in n.

The Class IP

We can define the complexity class IP as the set of languages L for which there is a

polynomial-time verifier function V and an arbitrary prover function P such that for

every function P’ and string w

1. w is in L implies the probability that an interactive proof system using V and

P accepts w with probability � 2/3, and

2. w is not in L implies the probability that an interactive proof system using V and

P’ accepts w with probability � 1/3.

We can use the amplification technique we described earlier to make the error

probability of an interactive proof system exponentially small.
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It is easy to see that IP contains both the classes NP and BPP. What is surprising,

and far less obvious, is that IP ¼ PSPACE. What this implies is that for any

language L in PSPACE, a prover can convince a probabilistic polynomial-time

verifier that an input string w is in L even though a deterministic Turing machine

may spend an exponentially long time proving w is in L.
An example might help to understand better the power of interactive proof

systems. Earlier, we mentioned that the language ISO, consisting of pairs of isomor-

phic graphs, is in NP because for each a pair of isomorphic graphsG andH, there is a
short certificate that allows a verifier to determine how the nodes of G can be

reordered to make G identical to H.
Now consider the complementary language, NONISO, consisting of pairs of

graphs that are not isomorphic. We don’t know whether NONISO is in NP since we

don’t know how to create a short certificate to prove two graphs are not isomorphic.

However, an interactive proof system can recognize NONISO executing the fol-

lowing message exchange some number of times.

Consider an input string consisting of two graphsG andH. The verifier randomly

selects one of these graphs, randomly reorders its nodes, and sends the reordered

graph to the prover. The all-powerful prover then tells the verifier which of G or H
was the source of the reordered graph.

If G and H are not isomorphic, the prover would always return the correct

answer. However, if G and H are isomorphic, the prover would have to randomly

pick G or H and thus answer correctly only half the time. If the prover answers

correctly consistently, the verifier becomes more convinced after each iteration that

the graphs are not isomorphic. Note that the job of the prover is to convince the

verifier after a polynomial number of message exchanges that the two graphs are

not isomorphic with high probability.

Probabilistically Checkable Proofs

This section highlights the probabilistically checkable proofs (PCP) theorem, one of

the most remarkable results in all of complexity theory. The theorem was discov-

ered in 1992 through the work of a collection of researchers who were investigating

why solutions to certain NP-hard optimization problems such as the travelling

salesman problem or the independent set problem were hard to approximate. The

theorem is remarkable in several ways. It shows that it is possible to transform

certain mathematical proofs into a form such that they become checkable by

needing to look at only a few probabilistically chosen symbols in the proof. It

also shows that computing an approximate solution for some NP-complete optimi-

zation problems is as hard as computing the exact solution. Finally, it provides a

new characterization for the class NP.

The original proof of the theorem was very complex. Some universities had

semester-long courses covering the proof. In 2007 Irit Dinur published a simpler
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proof, although it too is not that simple. This section explains the theorem but the

reader is encouraged to read Dinur’s paper for the details of the proof.

Locally Testable Proofs

Suppose we have a certificate for an instance of SAT; that is, we have a proof that

shows a Boolean formula is satisfiable. The PCP theorem shows that this proof can

be rewritten in such a way that a person can verify the formula by probabilistically

selecting a few bits of the proof so that (1) a correct proof will never fail to convince

the person that this formula is satisfiable and (2) if the formula is not satisfiable,

then the person will reject every purported proof with high probability.

Since SAT is NP-complete, these observations apply to every language in NP.

These observations also have implications for checking certain kinds of proofs in

mathematics.

PCP Verifiers

A PCP verifier is a generalization of the verifier used in interactive proof systems.

A PCP verifier for a language takes as input a string w and a proof p which is just a

string of bits. The verifier uses randomness and oracle access to the proof string to

decide whether w is a member of the language. Each bit of the proof string can be

independently queried by the verifier using a special address tape. If the verifier

wants p[i], the ith bit of the proof, it writes i on the address tape and then receives

p[i] as the answer. Note that since the address size is logarithmic in the length of the

proof, the PCP verifier can check exponentially long proofs in polynomial time.

We can formalize the definition of the class of languages accepted by PCP

verifiers as follows. We use Vp(w) to denote the output of a PCP verifier V on

input w and proof p.
The class PCP[r, q] is defined to contain all languages L for which there is a

polynomial-time PCP verifier V that uses O(r) random bits, reads O(q) bits from the

proof, and guarantees the following:

1. If w is in L, then there is a proof p such that Pr[V p(w) accepts] ¼ 1.

2. If w is not in L, then for any proof p, Pr[V p(w) accepts] � ½.

The PCP theorem states that NP ¼ PCP[log n, 1]. In other words, every NP-

optimization problem has a probabilistically checkable proof of logarithmic ran-

dom complexity and constant query complexity.
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Constraint Satisfaction Problems

Satisfiability is an example of a constraint satisfaction problem. In general, a

constraint satisfaction problem has three components: a set of variables, a domain

of values, and a set of constraints. Constraints are pairs (t, R), where t is an n-tuple
of variables and R is a set of n-tuples of values. An evaluation is a mapping v of

variables to values, and an evaluation satisfies a constraint ((x1, x2, . . ., xn,), R) if the
tuple (v(x1), v(x2), . . ., v(xn)) is in R. A solution to a constraint satisfaction problem

is an evaluation that satisfies all constraints.

Another way to view the PCP theorem is that it is NP-hard to approximate the

maximum fraction of satisfiable constraints of certain constraint satisfaction

problems to within some constant factor. For example, the PCP theorem implies

that SAT and MIS cannot be approximated efficiently unless P ¼ NP.

For a more specific example, let’s consider the problem MAX-3SAT which

generalizes SAT. The MAX-3SAT problem is given a Boolean formula in 3CNF to

find an assignment of truth values to variables that satisfies the largest number of

clauses. Christos Papadimitriou and Mihalis Yannakakis showed that MAX-3SAT

is a complete problem for MAXSNP, a class of optimization problems that can be

approximated to within a fixed ratio.

It is easy to approximate MAX-3SAT to within a factor of 2 just by considering

either the assignment that maps all variables to TRUE or the assignment that maps

all variables to FALSE and choosing the assignment that satisfies the most clauses.

Since every clause is satisfied by one or the other of the two assignments, one

solution will satisfy at least half the clauses.

But how well can we really approximate MAX-3SAT? Johan Håstad showed

that for every e > 0, if there is a polynomial-time (7/8 + e)-approximation algo-

rithm for MAX-3SAT, then P ¼ NP. Since there are 7/8-approximation algorithms

for MAX-3SAT, the implication of this result is that these approximation

algorithms are the best that can be obtained (unless P ¼ NP).

In 2001 the Godel Prize was awarded to Sanjeev Arora, Uriel Feige, Shafi

Goldwasser, Carsten Lund, Laszlo Lovasz, Rajeev Motwani, Shmuel Safra,

Madhu Sudan, and Mario Szegedy for their work on the PCP theorem and its

connection to the hardness of approximation.

Relationships Among Complexity Classes

No discussion of complexity theory would be complete without mentioning the

known and open containment relationships among the complexity classes. Intuition

tells us that if we are given more time or more memory, we should be able to solve

larger classes of problems. Complexity theory has time- and space-hierarchy

theorems that confirm this intuition subject to certain conditions.
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We say a function t(n) is time constructible if some O(t(n))-time Turing machine

exists that always halts with the binary representation of t(n) on its tape when

started with an input consisting of n 1’s. Most common functions that are at least

n log n are time constructible. For example, n log n, n2, and 2n are each time

constructible. Functions with fractional values such as n log2 n are rounded down to
the next lower integer.

Likewise, we say a function s(n) is space constructible if some O(s(n))-space
Turing machine exists that always halts with the binary representation of s(n) on its
tape when started with an input consisting of n 1’s. To show a function is space

constructible, we use a Turing machine with a work tape and a separate read-only

input tape.

To discuss the time and space hierarchy theorems, we need to define small-o
notation for specifying that one function is less than another. If f and g are two

functions mapping integers to reals, we say f (n) is o(g(n)) if for all c > 0 there is

a positive number m such that f (n) < cg(n) for every n � m. What this says is that

if f (n) is o(g(n)), then the limit of f (n)/g(n) approaches zero as n approaches

infinity.

Time-Hierarchy Theorem

The time-hierarchy theorem states that for any time-constructible function t(n) there
exists a language L that is decidable in O(t(n)) time but not in o(t(n))/log t(n) time.

The 1/log t(n) factor comes from the fact that we are using a single-tape Turing

machine to measure time complexity. The proof is an existence argument, using a

diagonalization technique to show that L is not decidable in o(t(n))/log t(n) time.

Using the time-hierarchy theorem, we can show various containments among

time-complexity classes are proper. In particular, we can use the time-hierarchy

theorem to show that P is contained in EXPTIME and that there are languages in

EXPTIME that are not in P.

Space-Hierarchy Theorem

The space-hierarchy theorem states that for any space-constructible function s(n)
there exists a language L that is decidable in O(s(n)) space but not in o(s(n)) space.
We have avoided a 1/log s(n) factor in the theorem by defining a space-construct-

ible function using a Turing machine with a read-only input tape and one additional

work tape.

There are many important applications of the space-hierarchy theorem. It allows

us to show that there is a fine hierarchy of space-complexity classes within

PSPACE: given two real numbers c and d, such that 0 � c < d, we can show
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that the complexity class SPACE(nc) is properly contained within the complexity

class SPACE(nd).
We can also use the space-hierarchy theorem to separate PSPACE from

EXPSPACE. We know that PSPACE is contained in EXPSPACE and using the

space-hierarchy theorem we can prove that there are languages in EXPSPACE that

cannot be decided in PSPACE. In particular, the EXPSPACE-complete language

EQREXP that we discussed earlier is thus provably intractable.

The Complexity Zoo

We have already encountered a large number of complexity classes. A lot of effort

in complexity theory has been expended in trying to determine the exact contain-

ment relationships among these classes.

We know that P � NP � PSPACE ¼ NPSPACE ¼ IP � EXPTIME as

depicted in Fig. 12.3. We also know that P 6¼ EXPTIME because the EXPTIME-

complete language EQREXP is provably intractable. (We also know this result

from the time-hierarchy theorem.) This implies that at least one of the other

containments is proper but at present we don’t know which ones.

The fact of the matter is that hundreds of complexity classes have been defined

and studied. The website http://qwiki.stanford.edu/index.php/Complexity_Zoo cur-

rently lists more than 400 complexity classes, along with some of the most

important languages included in them and the known containments among them.

Scott Aaronson was the original zoo keeper. But determining which of the many

containments among these classes are proper is among the most important open

questions in computer science.

PSPACE
NPSPACE

IP
P

EXPTIMENP
PCP [ log n, 1]

Fig. 12.3 Containment relationships among the fundamental complexity classes
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Chapter 13

Multivariate Complexity Theory

Michael R. Fellows, Serge Gaspers, and Frances Rosamond

Introduction

Multivariate complexity analysis and algorithm design techniques have developed

over many decades, starting from a number of early research themes in Computer

Science. The basic insight is that in many situations, one or more secondary

measurements of problem instances or computational objectives, beyond the over-

all input size, govern a problem’s computational complexity.

Specific parts of the input or aspects of the problem definition are singled out as

the parameter, and the question is whether or not the problem admits an algorithm

that is efficient in all but the parameter. Thus, there are positive and negative toolkits

– one of techniques for designing efficient parameterized algorithms, and the other to

analyze complexity and recognize parameterized intractability. The big advantage is

that a single problem can be studied from various points of view, using a variety of

possible parameters and their combinations in a multivariate point of view. The

intractability shown for a problem with respect to a particular parameter does not

mean that parameterized complexity was unsuccessful for the problem, but instead,

that more work should be done to reveal more suitable parameters for the problem.

This article attempts to outline some of the key features of the field, with ample

references for the interested reader. There are several textbooks and collections of

surveys that comprehensively present the field. There were many pioneering

investigations of what are now called parameterized algorithms starting in the

1980s. There was concern among the computer science community not only with
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whether or not running time was polynomial, but also with whether the exponent

could be made constant for every fixed k. There were many papers formulating the

concept of bounded treewidth, followed by Courcelle’s metatheorem showing how

to use bounded treewidth for a wide variety of problems, culminating in some sense

in efficient algorithms for graphs of bounded treewidth. See Fellows and Langston

(1989a), Arnborg et al. (1990), Courcelle (1990), Bodlaender (1993) and others. The

corner-stone for parameterized complexity was laid in the foundational monograph

by Downey and Fellows in 1998, based on a series of papers in the 1990s, although a

completeness program for parameterized intractability was first proposed by

Fellows and Langston in 1987, and first attempted in (Abrahamson et al. 1989).

Significant impetus for the investigation of parameterized algorithms was lent by

developments in the Graph Minors project of Robertson and Seymour (see their

Graph Minors series starting about 1983).

These have been followed by books on the subject by Niedermeier (2006) and

by Flum and Grohe (2006). A double-special issue of The Computer Journal (2008)
provides 15 surveys of various aspects of the field. Additional material can be found

in proceedings from the two annual international conferences, the “International

Symposium of Parameterized and Exact Computation” (IPEC), and the annual

workshop WORKER which focuses on kernelization, and in the “Parameterized

Complexity Newsletter” edited by F. Rosamond, and archived on the community

wiki located at www.fpt.wikidot.com.

A beautiful and useful mathematical theory of multivariate complexity has

developed that has become important to applied areas such as bioinformatics,

computational social choice, computational reasoning and artificial intelligence –

wherever there are NP-hard or otherwise computationally hard problems. We begin

our discussion with an example from bioinformatics.

A Concrete Illustration

Most of the problems important to Biologists are NP-complete, however problems

related to sequence analysis often involve several variables. Some of these may

be useful parameter(s) which can be used to provide a systematic way of specifying

restrictions that may lead to efficient algorithms. We begin the discussion on

the importance of parameters with the multiple sequence alignment problem (see

Fig. 13.1). A multiple sequence alignment displays the similarities of sequences,

including gaps where in the process of evolution some parts of the sequence might

Fig. 13.1 A partial sample of

a multiple alignment among

five DNA sequences
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have been deleted. Sequence alignment has many important uses in Biology – to

find relatives of a gene in databases of known genes, to help predict the structure

of molecules, to help in the prediction of phylogeny and provide insights into

molecular evolution.

There is an efficient polynomial time algorithm to score the quality of a proposed

alignment (It might be a function depending on the number of pairwise similarities in

the columns of the alignment and the number of gaps inserted to obtain the alignment.

However, here we are not concerned about the details of the scoring function).

The decision form of this computational problem is defined as follows.

MULTIPLE SEQUENCE ALIGNMENT

Input: Some number of sequences xi; i ¼ 1; � � � ;N; over an alphabet S, and a target score S.

Question: Is there a multiple sequence alignment for the xi that achieves a score of at leastS?

This important computational problem is NP-hard. It is in NP, and so it can be

solved in time O 2n
c� �
; that is, 2 to the exponent a fixed polynomial in n, where n is

the number of bits of the input. But this is highly impractical. And, we know that a

polynomial-time algorithm is likely not possible. This is bad news.

Let us take a closer look at the problem. For typical inputs that Biologists are

concerned with, n, the total number of bits in the input description is often quite large
– because the sequences can be very long (for example, there are roughly two billion

nucleotides in human chromosomes on each of the two strands forming the double-

helical DNA molecule). However, there are other relevant measurements which may

be small, and thus suitable as possible parameters for a parameterized algorithm.

• The number N of sequences being aligned (the number of species we are

comparing) is often a small number, perhaps less than 10.

• The size of the alphabet S is small (for DNA sequences, jSj ¼ 4).

• The maximum distance D between any two of the sequences may be relatively

small (i.e., aligning any two of the sequences gives a high score).

• Wemight also be willing to settle for an alignment that is not optimal, for example,

we might be happy with an approximately optimal alignment, say, one whose

score is within a multiplicative factor of 1þ eð Þ of the best possible score. If

we could settle for being within 5% of optimal, then 1=e would be bounded by 20.

In the multivariate approach to complexity analysis and algorithm design, we try

to find an algorithm with running time that is polynomial in the input size n,
except for an additional charge due entirely to a parameter (which in practice is

usually small). If we call our parameter k, we seek an algorithm with a running time

of the form nc þ f ðkÞð Þ , where f is some computable function of these secondary

numbers and measurements. In our sequence alignment example, the running

time we seek would be separated into those two parts and be of the form

O nc þ f N; jSj;D; 1 e=ð Þð Þ. If the function f were not too bad, for example,

f N; jSj;D; 1 e=ð Þ ¼ 2N þ 2jSj þ 2D þ 21=e;

then we would have a very useful algorithm, and the Biologists would leave our

“Algorithms and Complexity Shop” quite happy.
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The purpose of this example is to point to one of the advantages of the

parameterized framework – its ability to examine different aspects of the data,

and enlist one or more secondary measurements in the design of an efficient

algorithm. For an example of a problem that has been well-considered in the

parameterized framework, the NP-complete CLOSEST SUBSTRING problem is impor-

tant in drug design. On an input of k strings, the problem seeks a length l substring
in each of the given strings (a goal string) that differs from all the strings by less

than some distance d. This problem has been parameterized by d alone, by k alone,
by d and k together, and for l, d and k combined. See the survey “Parameterized

Complexity and Biopolymer Sequence Comparison” by Cai, Huang, Liu,

Rosamond and Song in The Computer Journal (2008) for some of the abundant

applications of parameterized algorithms in computational biology.

Parameterized Complexity: A Two-Dimensional Theory

This section describes how parameterized complexity may be viewed as a two-
dimensional complexity theory, and it uses the well-studied problems VERTEX

COVER and DOMINATING SET. The VERTEX COVER problem is one of the six classic

NP-complete problems discussed by Garey and Johnson in their famous work on

intractability, and because its structure is so simple and elegant, it has played an

important role in the development of parameterized algorithms. First we notice that

classical complexity theory is based only one measurement, the total number of bits

n of the input description (see chapter by Aho in this book). This is essentially a

“one-dimensional” framework. Parameterized complexity, which explicitly takes

further measurements, can be considered a “two-dimensional” framework.

The definition of a parameterized decision problem requires us to specify three

things: (1) what is a valid input (2) what is considered the parameter, and (3) what is

the question. To illustrate, we define the following two basic parameterized deci-

sion problems about graphs. They are illustrated in Fig. 13.2.

VERTEX COVER

Input: A graph G ¼ V;Eð Þ and a positive integer k.

Parameter: k.

Question: Does G have a vertex cover of size at mostk? (A vertex cover is a set of vertices V0 � V
such that for every edge uv 2 E, u 2 V0 or v 2 V0.)

DOMINATING SET

Input: A graph G ¼ ðV;E and a positive integer k.

Parameter: k.

Question: Does G have a dominating set of size at most k? (A dominating set is a set of vertices
V0 � V such that every vertex in V V0= has a neighbor in V0.)

Considered classically (that is, just ignoring the parameter specification), both

problems are NP-complete, and thus unlikely to admit polynomial-time algorithms.
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In parameterized complexity theory, the parameter in a parameterized problem can

be anything that seems relevant. Also, a single classical decision problem can be

parameterized in an unlimited number of ways. As a parameter, we have here

chosen the value that is optimized in the corresponding optimization problem. We

refer to such a parameter as the “standard” parameter.

Both of the parameterized problems VERTEX COVER and DOMINATING SET can be

solved in polynomial time for every fixed value of k, simply by the brute force

algorithm of trying all k-subsets of vertices and checking if any of them is a vertex

cover, or a dominating set, respectively. This brute force algorithm runs in time

O nkþ1
� �

. But they have very different parameterized complexity. There is a simple

O 2k � n� �
algorithm for VERTEX COVER discovered in the early 1980s by Burkhard

Monien (See Mehlhorn 1984).

There has been an impressive series of ever-faster parameterized algorithms to

solve k-Vertex Cover, leading to the current-best algorithm (Chen et al. 2006) that

can decide whether a graph G has a vertex cover of size k in O 1:2738k þ knð Þ time

and polynomial space.

The best currently known algorithm for DOMINATING SET is only slightly better

than the simple brute-force algorithm of trying all k-subsets. What these two

examples show is that while both problems are NP-complete and polynomial-

time equivalent, the complexity behavior of their standard parameterization is

quite different. The following table shows quantitatively how far apart these

behaviors are, in numerical terms that would be quite significant in engineering

applications of computing with real datasets (Table 13.1).

Historically, the effort to formalize the difference between the parameterized

complexity of VERTEX COVER and DOMINATING SET resulted in the following basic

definitions.

Fig. 13.2 Two vertex set problems with very different complexities. Both problems are

NP-complete, but Vertex Cover is FPT parameterized by the size of the solution, while

Dominating Set is W-hard

Table 13.1 The ratio
nkþ1

2k � n for various values of n and k

n ¼ 50 n ¼ 100 n ¼ 150

k ¼ 2 625 2,500 5,625

k ¼ 3 15,625 125,000 421,875

k ¼ 5 390,625 6,250,000 31,640,625

k ¼ 10 1.9 � 1012 9.8 � 1014 3.7 � 1016

k ¼ 20 1.8 � 1026 9.5 � 1031 2.1 � 1035
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Definition: Parameterized Language

A parameterized language L is a subset L � S � � S � . If L is a parameterized

language and x; kð Þ 2 L, then we will refer to k as the parameter and write n for the
total input size, i.e., n ¼ j x; kð Þj.

It makes no difference to the theory, and it is occasionally more convenient

to consider that k is an integer, or equivalently to define a parameterized language to

be a subset of S � � . In particular, the parameter may be non-numerical and there

are many natural examples for this. A parameter can also be an aggregate of various

kinds of information, as in the example of MULTIPLE SEQUENCE ALIGNMENT.

The central notion of parameterized complexity theory is fixed-parameter
tractability FPTð Þ.

Definition: FPT

A parameterized language L belongs to the complexity class FPT if there is a

function f such that the membership of x; kð Þ in L can be determined by an

algorithm running in time f ðkÞ þ nc, where c is a constant and n ¼ j x; kð Þj is the
total input size. The definition of the parameterized complexity class FPT is

unchanged if the additive definition f ðkÞ þ nc is changed to the multiplicative

f ðkÞ � nc. Although the definition of the class FPT does not require any formal

restriction on the function f , except that it only depends on k and is independent of

n, we tacitly assume that for practical FPT algorithms, f is computable and does not

grow too fast.

The following definition provides us with a place to put all those problems that “can

be solved in polynomial time for every fixed parameter value k” without making our

central distinction about whether this “fixed k” ends up in the exponent of the running
time or not.

Definition: XP

A parameterized language L belongs to the class XP if there are functions f and

g such that the membership of x; kð Þ in L can be determined by an algorithm

running in time f ðkÞngðkÞ ; where n ¼ j x; kð Þ j is the total input size. The fundamental

difference between the FPT and XP algorithmic running times laid the corner-stone

of parameterized complexity. It has been shown that FPT is a proper subset of XP
(Downey and Fellows 1995a).

Figure 13.3 shows the basic intuition about the definition of FPT, and how it

generalizes the classical notion of polynomial time computation. The goal is to

confine the combinatorial explosion to a function of a small parameter rather than

an explosive function of the total input size.
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The subject unfolds in two basic complementary projects and associated

mathematical toolkits: (1) How to design (and improve) FPT algorithms, for

parameterized problems that admit them, and (2) How to gather evidence that a

parameterized problem probably does not admit an FPT algorithm. The next

section offers some examples of where parameters may be found in practical

problems.

How to Parameterize?

There are many ways that parameters naturally arise in computing. In this section,

we give a quite long list of possibilities (some readers may wish to skip ahead to the

discussion about complexity workflow at the end of the section), and many more

can be found in the references. In parameterized complexity the focus is not on

whether a problem is intrinsically computationally difficult – the theory starts from

the assumption that many interesting and important problems are intractable when

considered classically – the focus is on the question: What makes the problem
computationally difficult? The parameter can be the size of the solution, or some

structural aspect of the natural input distribution – and many other things, as

illustrated by the following examples.

• The nesting depth of a logical expression. ML is a logic-based programming

language for which relatively efficient compilers exist. One of the problems the

compiler must solve is checking the compatibility of type declarations. This

problem is known to be complete for the complexity class EXP (deterministic

exponential time) (Henglein and Mairson 1991), so the situation appears

discouraging from the standpoint of classical complexity theory. However, the

implementations work well in practice because the ML TYPE CHECKING problem

is FPT with a running time of O 2k � n� �
, where n is the size of the program and k

is the maximum nesting depth of the type declarations (Lichtenstein and Pneuli

1985). Since normally k � 5, the algorithm is clearly practical. For many

computational problems in diverse areas of applied logic, formula size may be

an appropriate parameter.

Fig. 13.3 The illustration on the left shows a “controlled explosion”, the inevitable combinatorial

explosion of an NP-hard problem is confined to the parameter “k”, which may be small. On the

right, the explosion encompasses the total input “n”
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• The size of a database query. Normally the size of a database is huge, but

frequently queries are small. If n is the size of a relational database, and k is

the size of a query (which of course bounds the number of variables in the

query), then determining whether there are objects described in the database that

have the relationship described by the query can be solved trivially in time

O nk
� �

. This problem is unlikely to be FPT when parameterized this way

(Downey et al. 1997; Papadimitriou and Yannakakis 1997). However, it is

FPT when parameterized by the size of the query and the treewidth of the

database (Grohe 2002).

• The number of voters. The number of voters in an election may be large, but the

number of candidates and the “distance” or “average distance” between votes

may be small. Voting systems such as Kemeny, Dodgson, Young, k-approval
and others have been shown to be FPT with these parameters (Betzler et al.

2009). Parameters are increasingly being used in algorithms for the field of

computational social choice. For example, (Shrot et al. 2009) obtained FPT
algorithms for several parameterizations of classically intractable coalition

problems.

• The number of moves in a game. The usual computational problem here is to

determine if a player has a winning strategy. While most of these kinds of

problems are PSPACE-complete classically, it is known that some are FPT
and others are likely not to be FPT, when parameterized by the number of

moves of a winning strategy. The size n of the input game description usually

governs the number of possible moves at any step, so there is a trivial O nk
� �

algorithm that just examines the k-step game trees exhaustively. This is poten-

tially a very fruitful area, since games are used mathematically to model many

different kinds of situations. These ideas are described in (Scott 2010; Demaine

2001; Fernau et al. 2003).

• The distance from a guaranteed solution. Mahajan and Raman (1999) pointed

out that for several problems, a solution whose size is a fraction of n may

be guaranteed and easy to find. The standard parameterizations of these

problems are then trivially FPT. A much more reasonable approach is then

to parameterize by the size of a solution above or below the guaranteed value.

For a simple (and open) example, by the Four Color Theorem and the Pigeon

Hole Principle it is always possible to find a four-coloring of a planar graph G ¼
V;Eð Þ where at least one of the colors is used at least jVj 4= times. Is it FPT to

determine if a planar graph admits a four-coloring where one of the colors is

used at least Vj j 4= þ k times (the parameter is k)?
• The Hamming weight of a cryptographic key. Some implementations of public

key cryptosystems have considered limiting the size or Hamming weight of keys

in order to obtain faster processing times. A cautionary note has been sounded by

a result of Fellows and Koblitz (1993) that for every fixed k, with high probabil-
ity it can be determined in time f ðkÞn3 whether an n-bit positive integer has a

prime divisor less than nk. If a similar result holds for the DISCRETE LOGARITHM

problem for exponents of bounded Hamming weight, then the security of some
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cryptographic implementations will be compromised. Both problems are trivi-

ally solvable in time O nkþc
� �

, where c is a small constant.

• The size or structure of variable domains. Constraint propagation is one of the

main tools to solve Constraint Satisfaction Problems. Bessiere et al. (2008)

investigate several parameterizations in the propagation of global constraints.

Examples are the size of the domains of variables, the number of “holes” in their

domains (see also (Gaspers and Szeider 2011)), and the number of symmetry

values (see also Walsh 2010). Samer and Szeider (2010) determine the

parameterized complexity of the classical Constraint Satisfaction Problem

parameterized by the treewidth of several graph representations of CSP

instances, combined with several more basic parameters. The SAT problem

has been investigated in terms of distance from b-acyclicity by Ordyniak

et al. (2010). See (Gottlob and Szeider 2008) for a survey on parameterized

complexity in artificial intelligence, constraint satisfaction, and databases.

• The distance from a given solution. Another example can be found in local

search problems. In the k-LOCAL SEARCH problem for Traveling Salesperson

(Marx 2008b), we are given a graph G with positive weights on its edges and

a Hamiltonian cycle C in G and the question is whether there is a Hamiltonian

cycle which uses at most k edges not used by C with a total edge weight that

is smaller than the weight of C. A similar parameterization is used in the

CONSERVATIVE COLORING problem where we are given a graph G ¼ V;Eð Þ, a
vertex v 2 V, and a proper k-coloring1 of G� v, and the question is whether

G has a proper k-coloring which differs from the original one on at most c places.
Both k and c are natural parameters and all parameterizations – by c, by k, and
by the combined parameter c; kð Þ – have been investigated (Hartung and

Niedermeier 2010).

• The number of vertex covers. Consider the problem of partitioning a graph into

parts that are as close in size as possible, that is, their sizes differ by at most one.

Such partitions are called “equitable”. In problems studied by Suchy (2011),

the partitions must satisfy two natural conditions, either every partition is

required to induce a connected subgraph, or to induce an independent set. The

problems are intractable with respect to the number of partition classes, and so

Suchy examines them with respect to various structural measures. The problems

remain intractable with respect to the treewidth, the pathwidth and the feedback

vertex set number, while becoming tractable with respect to the vertex cover

number and the max leaf number.

These are just a few examples to stimulate thinking. The practical world is full of

interesting concrete problems governed by parameters of all kinds that are bounded

in some small or moderate range. If we can design algorithms with running times

1A proper k-coloring of a graph is an assignment of at most k colors to its vertices such that

vertices of the same color form an independent set.
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like O 2kn
� �

or O 2k þ n
� �

for these problems, then we may have something really

useful. There are now many examples where we can do this for important problems

that are NP-complete or worse. For the VERTEX COVER problem, for example,

instances with k ¼ 200 have become completely reasonable practical instances,

and algorithms for this problem are used in many real-world problems. Michael

Langston at the University of Tennessee and Oak Ridge National Laboratory is

using VERTEX COVER in clustering for problems as varied as the health of the North

Seas fisheries, and mouse phenotype analysis; see http://web.eecs.utk.edu/

langston/. Michael Langston and Frank Dehne have developed a portal for

biologists to use in sequence analysis based on VERTEX COVER: http://clustalxp.

cgmlab.org/. Associated papers are (Cheetham et al. 2003; Langston et al. 2003;

Langston et al. 2004).

Identifying parameters relevant to real-world datasets is something of an art

(Niedermeier 2010) and essential to the useful deployment of the multivariate

outlook on NP-hard problems. In some sense, the search for relevant parameters

brings this part of theoretical computer science to the fields of Heuristics and

Algorithms Engineering and Artificial Intelligence. In its own terms, this branch

of theoretical computer science has developed a distinctive workflow.

The Multivariate Complexity Workflow

Because an NP-hard problem can be parameterized in many different ways, the

multivariate perspective advances the following two principles that can help in our

efforts to discover the source of a problem’s hardness, and to design useful

algorithms.

• Principle 1.When parameterized problems are fixed-parameter tractable, enrich

the model by adding more realistic structure.

• Principle 2.Hardness proofs should always be “deconstructed”, in the search for

relevant tractable parameterizations.

An Example of Principle 1: Enriching the Model

Principle 1, asking us to enrich the model for a tractable problem by adding more

structure, can be illustrated by the problem of GRAPH COLORING – for an input graphG,
find the minimum k such that there is a proper coloring of G with k colors. This

problem is FPTwhen parameterized by the input graph treewidth (Bodlaender 1988).

The problem models the important problem of scheduling, where the nodes of the

graphmodel themeetings to be scheduled, the colors represent the time blocks, and the

edges of the graph represent scheduling conflicts. For example, perhaps For example,
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perhaps hour-long final exams are being scheduled for courses. If some student is

enrolled in both courses, then the exams for these courses should be scheduled in

different time blocks.

In reality, there are other sources of scheduling conflicts. There may be some

timeblocks where the instructor for a course may be unavailable. A more realistic

model of the scheduling problem is MINIMUM LIST COLORING, where the input is a

graph G, and for each node of the graph, a set of allowable colors that might be

assigned to that node (a “list” of acceptable final examination time-blocks that

might be assigned for that course). This enriched problem model clearly has greater

traction with real world applications. Is this “applications enriched” problem still

FPT when parameterized by input graph treewidth? The answer is “No,” (Fellows

et al. 2011) – but the proof that MINIMUM LIST COLORING is likely parameterized

intractable (by being hard forW[1] – see the next section) is entirely open to review

according to Principle 2.

An Example of Principle 2: Deconstructing Hardness

Principle 2 – the deconstruction of hardness proofs, for both NP-hardness and

W[1]-hardness – threatens to make the details of hardness proofs systematically

interesting. The key question to ask, that is productive in the multivariate perspec-

tive on algorithms and complexity, is:

Why is the hardness proof unreasonable? Why will I never see the images of the transfor-

mation that is the basis of the hardness proof in real-world problem instances?

The reader who has been exposed to the theory of NP-hardness (as might be

encountered in an undergraduate education in Information Technology, Computer

Science or Operations Research), might wish to persist with this discussion; others

might well decide to skip ahead.

The problem REALISTIC ARBITRAGE arguably models one of the most fundamental

problems inMathematical Finance. The problem askswhether there is an opportunity

to make money from no work, simply by trading currencies. The realism in

the problem model is that the trades on offer are at specified exchange rates, subject

to minimum amounts exchanged at the specified rate. The problem is NP-hard.
The only known proof of this involves a polynomial-time problem transformation

from the VERTEX COVER problem where the image instance (for the REALISTIC ARBI-

TRAGE problem) of a graph on n vertices, has a number of distinct currencies that is a

polynomial function of n. In the real world consideration of arbitrage opportunities,

the number of currencies in play is a realistically small parameter, and when the

REALISTIC ARBITRAGE problem is parameterized by the number of currencies, it is

fixed-parameter tractable (Cai and Deng 2003). For more on deconstruction of

hardness proofs, see also (Komusiewicz et al. 2009) and Suchy (2011).
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A Parameterized Analog of the Cook/Levin Theorem

In the 1970s Stephen Cook and Leonid Levin, independently of each-other,

famously discovered that many problems in NP were linked together. They discov-

ered that it is possible to transform in polynomial time all problems in NP to one

particular NP-problem, SAT. Furthermore, they discovered that SAT reduces to

other problems in NP. This section describes a parallel situation for parameterized

complexity, where the CLIQUE problem takes the role of SAT. Here, we describe

parameterized transformations, and also describe the link to the parameterized

analogue of the NDTM HALTING PROBLEM, which is trivially NP-complete.

It is always possible to parameterize a problem in various ways that are fixed-

parameter tractable (for example, any decidable problem is fixed parameter tractable

FPTð Þ parameterized by input length), yet it is not surprising that for many

parameterizations of classically hard problems, the resulting parameterized problems

apparently are not in FPT. This leads to a completeness program based on classes of

parameterized problems reasonably presumed to be parameterized intractable, and an

appropriate notion of parameterized problem transformation.

Definition: Parametric Transformation

A parametric transformation from a parameterized language L to a parameterized

language L0 is an algorithm that computes from an input consisting of a pair x; kð Þ,
a pair x0; k0ð Þ such that:

1. x; kð Þ 2 L if and only if x0; k0ð Þ 2 L0,
2. k0 ¼ gðkÞ is a function only of k, and
3. There is a function f and a constant c such that the computation is accomplished

in time f ðkÞnc, where n ¼ j x; kð Þj
In first examining the notion of a parametric transformation it can be helpful

to see how they differ from ordinary polynomial-time reductions. Consider the

CLIQUE problem.

CLIQUE

Input: A graph G ¼ V;Eð Þ and a positive integer k.

Parameter: k.

Question: Does G have a clique of size at least k? (A clique is a set of vertices V0 � V such that for

every two distinct vertices u and v of V0, uv 2 E.)

Notice that for a graph G ¼ V;Eð Þ, a set of vertices V0 � V is a clique inG if and

only ifV n V0 is a vertex cover in the complementary graphG0 where two vertices are
adjacent if and only if they are not adjacent inG. This gives an easy polynomial-time

reduction of the CLIQUE problem to the VERTEX COVER problem, transforming an
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instance G ¼ V;Eð Þ; kð Þ of CLIQUE into an instance G0; k0ð Þ of VERTEX COVER, where

k0 ¼ Vj j � k. But this is not a parametric transformation, since k0 is not purely a

function of k. The evidence is that there is no parametric transformation in this

direction between these two problems (although there is a parametric transformation

in the reverse direction, either trivially, since VERTEX COVER is in FPT, or

nontrivially by the construction described by Downey and Fellows (1998)).

Downey and Fellows (1995a) have shown a fairly elaborate parametric transfor-

mation from the CLIQUE problem to the DOMINATING SET problem, mapping G; kð Þ to
G0; k0ð Þ where k0 ¼ 2k. The evidence is that there is no parametric transformation in

the other direction.

The essential property of parametric transformations is that if L transforms to L0

and L0 2 FPT, then L 2 FPT. On the other hand, if there is evidence that L =2 FPT,
the same evidence applies to the statement that L0 =2 FPT.

The parameterized complexity classes W t½ �, t ¼ 1; 2; . . . , form the W-hierarchy.

A parameterized problem L is inW t½ � if every instance x; kð Þ can be transformed by

a parametric transformation to a Boolean decision (having one output) circuit, with

AND, OR, and NOT gates, of constant depth such that on each path from an input to

the output, all but t gates have a constant number of inputs, and x; kð Þ 2 L if and

only if the Boolean decision circuit has a satisfying assignment in which at most k
inputs are set to 1; see (Downey and Fellows 1995a, 1995b, 1998). We have the

following hierarchy of the parameterized complexity classes.

FPT � W 1½ � � W 2½ � � . . . � XP:

Under parametric transformations, the following naturally parameterized

problems are complete (i.e., they are in the class and hard for the class) for the

lowest levels of this hierarchy:

• VERTEX COVER is complete for FPT,

• CLIQUE is complete for W[1], and

• DOMINATING SET is complete for W[2].

Evidence that W-hard problems are probably not fixed-parameter tractable is

strengthened by analyzing a parameterization of the HALTING PROBLEM. (Chap. 3)

Investigations of computability and efficient computability can be classified

according to basic forms of the HALTING PROBLEM that anchor the discussions.

The following form of the HALTING PROBLEM is NP-complete and essentially sets

up the P versus NP discussion:

P-TIME NDTM HALTING PROBLEM

Input: A nondeterministic Turing machine M.

Question: Is it possible for M to reach a halting state in n steps, where n is the length of the

description of M?

We generally consider the P-TIME NDTM HALTING PROBLEM to be so unstruc-

tured, with nondeterministic computational possibilities, that most computer

scientists find the following conjecture compelling. It is widely considered the

most important unsolved problem in mathematics and computer science.
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Conjecture 1. There is no polynomial-time algorithm to solve the P-TIME NDTM
HALTING PROBLEM (In other words, P 6¼ NP).

But, we can solve the P-TIME NDTM HALTING PROBLEM in exponential time

O npðnÞ
� �

, where p is a polynomial in n, by exploring all possible computational

paths of length n, and checking if any of them lead to a halting state. In this sense,

the problem is a generic computational embodiment of exponential search. The

issue is whether we can get the polynomial pðnÞ out of the exponent and solve

the problem in polynomial time. For this seemingly structureless problem, most

people conjecture that this is not possible.

The following fundamental flavor of the HALTING PROBLEM establishes the

parameterized complexity analog of P versus NP, that is, FPT versus W 1½ �.
k-STEP NDTM HALTING PROBLEM

Input: A nondeterministic Turing machine M and a positive integer k.

Parameter: k.

Question: Is it possible for M to reach a halting state in at most k steps when started on an empty

input tape?

This problem can be trivially solved in time O nk
� �

by exploring the depth k,
n-branching tree of possible computation paths exhaustively.

Conjecture 2. There is no FPT algorithm to solve the k-STEP NDTM HALTING

PROBLEM.
Our intuitive evidence for this conjecture is essentially the same as for Conjec-

ture 1. We do not expect to be able to get the parameter k out of the exponent. We do

not expect to be able to solve this problem in time f ðkÞ þ nc like VERTEX COVER.

In fact, it seems quite difficult to imagine solving the 10-step NDTM HALTING

PROBLEM in time O n9ð Þ. One could reasonably maintain that our intuitions about

Conjecture 1 are exposed in Conjecture 2 with even more compelling directness,

although technically Conjecture 2 is stronger (Conjecture 2 implies P 6¼ NP, but the
reverse implication is not known to hold).

The k-STEP NDTM HALTING PROBLEM is complete for the parameterized com-

plexity classW 1½ � (Downey et al.1994; Cai et al. 1997). Thus, Conjecture 2 implies

FPT 1½ � and W 1½ � is therefore a strong analog of NP. In particular, CLIQUE and

DOMINATING SET are not in FPT unless Conjecture 2 fails.

We may view the groundbreaking importance of the Cook/Levin Theorem that

3SAT is NP-complete to be in connecting (ultimately) thousands of natural

problems (that are NP-hard) with the central generic problem concerning

nondeterministic Turing machines, thereby providing powerful intuitive evidence

that these problems cannot be solved in deterministic polynomial time.

In the same spirit, intuition suggests that the k-STEP NDTM HALTING PROBLEM is

the most fundamental of the W 1½ �-complete problems, and that it is not fixed

parameter tractable. It is natural to regard W 1½ � as the parameterized analog of NP,
and hardness for W 1½ � as the basic measure for likely parametric intractability.

The parameterized complexity analog of the Cook/Levin Theorem is that the
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k-STEP NDTMHALTING PROBLEM is fixed parameter tractable if and only if CLIQUE is

fixed parameter tractable. The two problems are equivalent with respect to FPT
reductions. The proof is intricate (Downey and Fellows 1998). Thus, in

parameterized complexity theory, the CLIQUE problem plays a role analogous to

3SAT in classical complexity, and is a computationally useful starting point for

demonstrations of likely parametric intractability, much as does 3SAT for

demonstrations that problems are unlikely to be in P.

Negative Toolkit – INDUCED BICLIQUE Is Hard for W 1½ �

W-hardness results have the “look-and-feel” of NP-hardness results. This section is
designed for the reader who may be interested in seeing an example of a

parameterized hardness proof. Our example is a reduction from CLIQUE to show

that INDUCED BICLIQUE is hard for W½1�. We do this in two steps, by first reducing

CLIQUE to INDEPENDENT SET, and then INDEPENDENT SET to INDUCED BICLIQUE.

INDEPENDENT SET

Input: A graph G ¼ V;Eð Þ and a positive integer k.

Parameter: k.

Question: DoesG have an independent set of size at least k? (An independent set is a set of vertices
V0 � V such for every two distinct vertices u and v of V0, uv =2 E.)

INDUCED BICLIQUE

Input: A graph G ¼ V;Eð Þ and a positive integer k.

Parameter: k.

Question: Does G have an induced k; kð Þ-biclique? (A biclique is a set of vertices V0 � V such that

V0 can be partitioned into two independent sets A ] B such that uv 2 E for every u 2 A and

v 2 B.)

Our method is very similar to proving NP-hardness in that given an instance

G; kð Þ for CLIQUE, we begin by constructing an instance G0; k0ð Þ for INDEPENDENT SET
as follows. The graph G0 is the complement of G and k0 :¼ k. It is easy to see that

G; kð Þ is a yes instance for CLIQUE if and only if G0; k0ð Þ is a yes instance for

INDEPENDENT SET, as any edge of G is a non-edge in G0 and vice-versa. Moreover,

this is a parametric transformation, as k0 depends on k only. Thus, we have the

following theorem.

Theorem. INDEPENDENT SET is hard for W 1½ �:
As in NP-completeness proofs, we design “gadgets”, and must verify “yes iff yes”.

Now, given an instance G ¼ V;Eð Þ; kð Þ for INDEPENDENT SET, let us construct an

instance G0 ¼ V0;E0ð Þ; k0ð Þ for INDUCED BICLIQUE as follows. The vertex set V 0 of G0

is a disjoint union of V and I, where I is a set of k new vertices. The edge set E0 ofG0

is obtained from E by adding all pairs uv, where u 2 V and v 2 I. In other words,

we have added an independent set of size k to G and added an edge from every

vertex of this independent set to every vertex of G. We set k0 :¼ k.
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It remains to show that (1) G; kð Þ is a yes instance for INDEPENDENT SET if and

only if (2) G0; k0ð Þ is a yes instance for INDUCED BICLIQUE.

ð1Þ ) ð2Þ. Let I0 be an independent set of G of size k. Then, I[ I0 is a k0; k0ð Þ-
biclique of G0 by the construction of G0:
ð2Þ ) ð1Þ. Let V0 be a k0; k0ð Þ-biclique of G0and let V0 be partitioned into two

independent sets A ] B of size k0 ¼ k each. We consider two cases. If A � V, then A
is an independent set of size k in G, certifying that G; kð Þ is a yes instance for

INDEPENDENT SET. Otherwise, A\ I 6¼ ;. As every vertex of I is adjacent to every

vertex of V inG0, A contains no vertex from V. Thus, A ¼ I. As B is disjoint from A,
we obtain that B � V. Thus, B is an independent set of size k in G, certifying that

G; kð Þ is a yes instance for INDEPENDENT SET. We have the following theorem.

Theorem. INDUCED BICLIQUE is hard for W 1½ �.
The parameterized complexity of the BICLIQUE problem, which is similar to the

INDUCED BICLIQUE problem except that it does not require the sets A and B to be

independent, remains open. Despite all the concrete advances that have been

accomplished so far, including new techniques, such as reductions from MULTICOL-

ORED CLIQUE (see for example, Fellows et al. 2009a) or breakthrough results such as

that the standard parameterization of the DIRECTED FEEDBACK VERTEX SET problem is

FPT (Chen et al. 2008), there is an abundance of still unresolved natural concrete

parameterized problems. The next section describes two of the basic techniques for

showing tractability.

Positive Toolkit: FPT Techniques

The FPT technology toolkit generally serves two goals: (1) determine quickly if a

problem is FPT, and (2) design faster and hopefully practical algorithms. There are

a multitude of FPT techniques (see “Positive Toolkit” in the next section on Further

Reading). In this section we describe in detail two of the most simple and important

techniques. These are the methods of search trees and kernelization. The method of

kernelization is so important that there now is an annual workshop devoted to the

area. We will illustrate both techniques using the VERTEX COVER problem.

Bounded Search Trees

The method of bounded search trees is based on the following strategy. Many

combinatorial problems can be solved by recursive algorithms that, for a given

instance, compute two or more smaller instances, solve them recursively, and

combine the solutions for the smaller instances into a solution for the given

instance. The recursive calls of an execution of such an algorithm can be modeled

by a tree. Very often, the time that the algorithm spends at each node of the search

tree is polynomial. To obtain an FPT algorithm, it is then sufficient to bound the

size of the search tree by a function of the parameter k.
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We demonstrate the bounded search tree method with an algorithm for VERTEX

COVER and show that it can be solved in time O 2kjVðGÞj� �
. For an instance

G ¼ V;Eð Þ; kð Þ, the algorithm works as follows. If G has no edge, answer yes.

Else, if k ¼ 0, answer no. Else, choose an edge uv 2 E.
Any vertex cover V0 of G must have u 2 V0 or v 2 V0, otherwise the edge uv is

not covered. If we select a vertex x to be in the vertex cover, all edges incident to x
are covered, and it remains to find a vertex cover of size at most k � 1 in the graph

G� x (the graph obtained from G by removing x and all its incident edges). Thus,

the algorithm returns yes if and only if at least one of the recursive calls on

G� u; k � 1ð Þ and G� v; k � 1ð Þ returned yes. As k decreases by one in each

recursive call, and the algorithm reaches a leaf of the search tree when k ¼ 0, the

height of the search tree is at most k. As a binary tree of height at most k has at most

2k leaves, the size of the search tree is O 2k
� �

, and the running time bound follows.

For many search tree algorithms, the branches are less symmetric (in the above

example, k decreases by one in both branches of the search tree). Consider the

following algorithm for VERTEX COVER on an instance G ¼ V;Eð Þ; kð Þ. If G has

maximum degree at most 2 or k � 0, solve the problem in polynomial time, and

return the answer (a graph of maximum degree at most 2 consists only of paths and

cycles, for which an optimal vertex cover can be computed in polynomial time).

Otherwise, select a vertex u of degree at least 3. In the first branch, select u to be in
the vertex cover and recurse on G� u; k � 1ð Þ. The second branch considers the

choice where u is not in the vertex cover, in which case, all its neighbors need to be
in the vertex cover in order to cover the edges incident to u. The algorithm recurses

on G� N u½ �; k � dðuÞð Þ, where dðuÞ denotes the degree of u and N½u� denotes the
set of vertices containing u and its neighbors. As dðuÞ 	 3, the number of leaves

TðkÞ of the search tree can be bounded by the recurrence

TðkÞ � T k � 1ð Þ þ T k � 3ð Þ:

Setting Tð0Þ ¼ 1, this recurrence can be solved by standard mathematical

methods and the asymptotic solution is obtained by determining the unique positive

root of its characteristic polynomial x3 � x2 � 1, which is 1:4655::. This shows that
VERTEX COVER can be solved in time O 1:466kjGj� �

. More involved analyses

consider several cases, leading to a system of recurrences, and measure the size

of an instance using a potential function bounded by k. They have led to the

currently fastest algorithm with running time O 1:2738k þ kn
� �

(Chen et al. 2006)

that we already mentioned earlier.

Kernelization: Reduction to a Problem Kernel

Kernelization is a natural formalization of the notion of polynomial time

preprocessing in terms of parameterized complexity. It is known by many names

such as “data reduction” or “reduction to a problem kernel”. Of course, efficient
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preprocessing is used in all algorithmic areas, but parameterized complexity gives a

natural framework to study how effective the preprocessing is.

The resulting kernelization algorithms can be used prior to almost any approach

for solving the problem, such as heuristics or approximation algorithms. The

following lemma is trivial.

Lemma. FPT is equivalent to P-time Kernelization
A parameterized problem P is in FPT if and only if there is a function g and a

polynomial-time (in the input size j x; kð Þj) transformation that takes x; kð Þ to x0; k0ð Þ
such that:

1. x; kð Þ is a yes instance of P if and only if x0; k0ð Þ is a yes instance of P,

2. k0 � k, and
3. x0j j � gðkÞ.

We say that we kernelize to instances of size at most gðkÞ, and we say that the

kernel has size gðkÞ. We are interested in finding polynomial-time preprocessing, or
kernelization algorithms where gðkÞ is as small as possible.

A kernelization algorithm often consists of a set of (data) reduction rules that
reduce the size of an instance in different situations. We call a reduction rule sound
if the new instance after an application of the rule is a yes-instance if and only if the

original instance is a yes-instance. An instance is reduced with respect to a

reduction rule if applying the reduction rule to the instance does not change the

instance. On real-world problem instances, reduction rules often cascade, and they

can be interleaved with bounded search tree branching and pruning techniques, and

other methods, in the design of practical algorithms.

Again, using VERTEX COVER as an example, we begin with three reduction rules

for an instance G ¼ V;Eð Þ; kð Þ. They are applied in the order of their appearance.

1. Isolated Vertex Rule. If G has a vertex v of degree 0, then remove it and recurse

on G� v; kð Þ.
As v cannot cover any edge, this reduction rule is sound.

2. High Degree Rule. If there is a vertex v such that the degree of v (denoted d(v))
is greater than k, then add v to the vertex cover and recurse on G� v; k � 1ð Þ.

Any vertex cover that does not contain v, must contain all its neighbors,

because the edges incident to v need to be covered. But adding all the neighbors

of v to the vertex cover blows the budget, as dðvÞ>k.
3. Too Many Vertices Rule. If Rules 1 and 2 cannot be applied, and if

Vj j > k � k þ 1ð Þ, then return a trivial no instance (for example, a graph

consisting of one edge and parameter 0).

This rule is sound as 1 � dðvÞ � k for every vertex v; and every vertex that is
not in the vertex cover is the neighbor of at least one vertex of the cover.

We have achieved a kernel with at most k k þ 1ð Þ vertices. There are other

kernelization rules. For example, the “Degree One Rule” (If there is a vertex v
with dðvÞ ¼ 1, then put its neighbor u into the solution and recurse on

G� u; vf g; k � 1ð Þ) is sound because for any vertex cover V0 containing v, the set
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V00 :¼ V0 n vf gð Þ [ uf g is a vertex cover and V00j j � jV 0j. The Degree One Rule has
inspired the more general and powerful Crown Reduction Rule (Nemhauser and

Trotter 1975; Fellows 2003; Chor et al. 2004), which achieves a kernel on 2k
vertices.

Usually reduction rules are also used in search tree algorithms in-between

branching. This is sometimes called “interleaving” (of the kernelization and the

search tree). This usually improves the performance both practically and theoreti-

cally. Quite typically an FPT-algorithm is formed by a set of rules, some of them

being reduction rules (hopefully yielding a kernelization) and some of them being

branching rules. Experiments have been conducted to determine how changing

the order of reduction rules or of interleaving the rules with the search tree

branching can increase efficiency (see the paragraph on Algorithms Engineering

in the next section).

Further Reading

Multivariate Complexity Theory is a very active field of research and rapidly

growing. As mentioned earlier, the primary references are three books (Downey

and Fellows 1998; Niedermeier 2006; Flum and Grohe 2006). The Parameterized
Complexity Newsletter reports on the latest advances and also contains the Table

of Races of the fastest known FPT algorithms and the smallest kernels for the

most important parameterized problems. The parameterized complexity commu-

nity wiki at www.FPT.wikidot.com has many pointers to useful resources. In

addition to the annual international symposium IPEC with proceedings published

by Springer, and WORKER (workshop on kernelization), there is an (almost) annual

Dagstuhl seminar (to which one can refer for open problems). There are many

journal special issues devoted to various aspects of parameterized complexity

(Discrete Optimization 2011; The Computer Journal 2008 volumes 51 and 53,

and Journal of Computer and System Sciences 2003, for examples) and numerous

dissertations. This section groups some of the key areas of the field, with references

for further reading.

The Positive Toolkit. There are many FPT techniques in addition to bounded

search trees and kernelization. A partial list includes Color-coding, Courcelle’s

Theorem, Dynamic programming, the Extremal Method, Graph minors, Greedy

localization, Iterative compression, Integer linear programming, Modeled crown

reductions, Matroid theory, Separators, Tree and branch decompositions, and

Well-quasi-ordering (graph minors). Useful are flexible, highly expressive

problems, that enable us to solve other problems by reduction to these problems;

such as Courcelle’s Theorem, the matroid result, 2-SAT Deletion, and constraint

satisfaction problems.

The “Ecology of Parameters” explores how one parameter affects the

complexity of a different parameterized (or unparameterized problem (Fellows

and Rosamond 2007). Many on the above list are demonstrated in an excellent
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set of slides by Dániel Marx available on his website and at www-sop.inria.fr/

mascotte/seminaires/AGAPE. See (Guo et al. 2009) for a summary of results

using iterative compression. See an overview of FPT techniques in (Guo and

Niedermeier 2007) and in (Sloper and Telle 2008).

The Limits of Kernelization. We have seen that the VERTEX COVER problem has a

kernel on 2k vertices. This kernel immediately gives a 2-approximation algorithm

for VERTEX COVER as well: construct an approximate solution containing all the

vertices of the kernel and the vertices forced into the vertex cover by the reduction

rules. Running this algorithm for increasing values of k, the first solution for which
the kernel is not a trivial no-instance is a 2-approximate solution. This approach

works for many problems with linear kernels. Thus, any lower bound on the

approximation ratio gives a lower bound on the smallest possible kernel size

as well. For VERTEX COVER, the inapproximability result of Khot and Regev

(2008) implies that it has no kernel with at most ck vertices for any c < 2, unless

the Unique Games Conjecture fails. This argument rules out linear kernels with

certain constant factors.

The kernelization lower bound machinery has been significantly enhanced by

frameworks that operate under the complexity assumption that coNP 6� NP=poly.
Under this assumption, it has been proved, for instance, that LONGEST PATH has no

polynomial kernel (Bodlaender et al. 2009) and that VERTEX COVER has no kernel

with O k2�eð Þ edges, for any e > 0 (Dell and van Melkebeek 2010). See (Misra et al.

2011) for a survey.

FPT Optimality. The f ðkÞ race aims at slower and slower growing functions f in the
worst-case running time to solve an FPT problem. But how slow can we expect f to
grow? Cai and Juedes (2003) show that there is no 2oðkÞnOð1Þ-time algorithm for

VERTEX COVER and other parameterized problems unless the Exponential Time

Hypothesis (ETH) fails. Cai and Juedes show that PLANAR VERTEX COVER and

other problems cannot be solved in time 2o
ffiffi
k
pð ÞnOð1Þ assuming the ETH. See (Flum

and Grohe 2006) for an in-depth treatment of this subject.

XP Optimality. Similarly, one might wonder, for problems that can be solved in

time ngðkÞ, whether one can do much better. What is a limit for the best possible XP
algorithm? In this line of research, it has been shown that

• There is no jVjoðkÞ-time algorithm for INDEPENDENT SET unless ETH fails (which

would imply that FPT ¼ M 1½ �) (Chen et al. 2005), and that

• There is no Vj joðkÞ-time algorithm for DOMINATING SET unless FPT ¼ M 2½ �
(Chen et al. 2005).

We refer to (Chen and Meng 2008) for a survey on XP Optimality.

Parameterized Complexity and Approximation. As in our introductory

example on the MULTIPLE SEQUENCE ALIGNMENT problem, one may want to parame-

terize by 1 e= when the goal is to find a 1þ eð Þ-approximation for a problem. If an
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algorithm shows that our problem, parameterized by 1 e= , is in XP, one speaks of a
PTAS, a polynomial time approximation scheme. As the degree of the polynomial

depends on 1 e= , such an algorithm becomes rapidly impractical for reasonably

small approximation factors. An EPTAS (Efficient PTAS) is an FPT algorithm for

the 1 e= -parameterization of our problem, and may exhibit nicer computational

properties, even for small approximation ratios. However, we may not expect

an EPTAS for any problem whose standard parameterization is W 1½ �-hard,
since running the EPTAS with e ¼ 1 k þ 1ð Þ= would solve the problem exactly in

FPT time.

An FPT approximation algorithm is an algorithm with FPT running time and

an approximation ratio which may depend on the parameter. For example, the

CLIQUEWIDTH problem, parameterized by the cliquewidth k of the graph, has an

FPT approximation algorithm with approximation ratio 23kþ2 � 1
� �

k= (Oum

2005), whereas the standard parameterization of INDEPENDENT DOMINATING SET

has no FPT approximation algorithm with performance ratio RðkÞ for any com-

putable function R, unless FPT ¼ W 2½ � (Downey et al. 2006). See Marx (2008a) for

a survey.

Algorithms Engineering. Experiments, implementations, and studies of perfor-

mance in practice of parameterized algorithms, all help shed more light on aspects

of algorithm design such as useful problem structure or the trade-offs between

cost/benefits of which reduction rules to apply and in which order. It is not likely

that implementation in other fields will take an algorithm “whole-cloth”, but

instead will pick and choose the reduction rules or branching strategies employed

in FPT algorithms (Fellows 2002). There has been Dagstuhl Seminar 05301 (2005)

on Parameterized Algorithms Engineering. Falk H€uffner has been a leader in

parameterized algorithms engineering, especially applied to bioinformatics. See

for example, (H€uffner 2009) and (Helwig et al. 2010). Pablo Moscato has been

analyzing cancer datasets using parameterized with memetic algorithmic

techniques (Rizzi et al. 2010). See also (Tazari and M€uller-Hannemann 2009) for

sophisticated algorithms engineering of FPT algorithms, and see (Fellows et al.

2009b) and (Fomin et al. 2010) for applications to local search.

Parameterized Complexity in Theory Formation. The fine-grained analysis

available in the parameterized framework allows analysis that is relevant to

fields of science concerned with various natural forms of computation. For exam-

ple, Iris van Rooij and Todd Wareham have surveyed uses of parameterized

complexity analysis in modeling issues relevant to theory-formation in Cognitive

Science (van Rooij and Wareham 2008). In the same Computer Journal special
issue, the survey by Demaine and Hajiaghayi explores some of the multivariate

theme (Demaine and Hajiaghayi 2008), and further discussion on the multivariate

framework can be found in Fellows (2009), Niedermeier (2010) and Suchy (2011).
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Conclusions

Multivariate complexity is in some sense a very old subject in computer science.

Practitioners, and even theorists, have paid attention to natural problem parameters,

and designed efficient algorithms that take them into account, “since the begin-

ning”. It can happen that one offers a practical computing scientist an FPT
algorithm for an NP-hard problem having a natural small parameter and be told:

“That’s what I already do!” Thus, the field provides a firm theoretical foundation to

support existing heuristics and practical computing.

Parameterized complexity has been the opening chapter of a broader explora-

tion, that of multivariate complexity analysis. Tools and methodology in the

positive and negative toolkits, kernelization rules that serve particular as well as

classes of problems, and lower/upper bound techniques are increasingly being

imported and used by other fields. The powerful technology that has been devel-

oped allows for a fine-grained exploration of problem structure in the search for

effective complexity assessment and algorithm design. Perhaps even more impor-

tant is the fresh view that the deconstruction of proofs of either NP-hardness or

W-hardness offers a starting point for obtaining new insights into the combinatorial

structure of problems.
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Chapter 14

Quantum Computing

Todd A. Brun

Introduction to Quantum Computing

One of the newest paradigms for a computing machine is the idea of a quantum
computer: a computer that functions according to the laws of quantum mechanics

that apply to the fundamental particles and forces of the world. Traditional

computers are described by classical physics, which holds at ordinary human scales.

Quantum effects are masked for such macroscopic systems. Indeed, so completely

are these quantum effects hidden that their existence was not even suspected until

the beginning of the twentieth century. And even at present, quantum mechanical

behavior has only been produced reliably in very microscopic systems: single

particles, atoms, and molecules.

To build a quantum computer requires an unprecedented ability to establish the

state of a system, to isolate it from the environment, and precisely control its

evolution. Only now is experimental physics approaching the level of precision

needed. A quantum computer will require many quantum systems to be prepared and

controlled jointly. The difficulty of this task raises the question: why shouldwemake

the effort?What advantage does a quantum computer have over an ordinary classical

computer?

The answer is both surprising and exciting. Quantum computers can run funda-

mentally new kinds of algorithms—algorithms that draw on essentially quantum

effects, such as superposition, entanglement, and interference. And it has been

shown that certain problems have quantum algorithms that run faster than the

best known classical algorithms—in some cases, provably faster than any classical
algorithm. This promise has spurred a huge enterprise to both understand the theory

of quantum computation, and to build experimental systems that are capable of

carrying out quantum computations in practice.
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History of QM: Puzzles in the Classical World

Quantum Mechanics is now over 100 years old, and is one of the most successful

scientific theories ever created. We believe it to be the underpinning of all physical

laws. But at ordinary human scales, its effects are almost totally masked. Only by

looking at phenomena at very short length and time scales can we see quantum

behavior.

By the 1890s, classical physics—Newtonian mechanics plus Maxwell’s electro-

magnetic theory and Boltzmann’s statistical mechanics—seemed capable of

explaining virtually all physical phenomena. But a number of seeminglyminor puzzles

proved to be gaps that would completely overthrow the classical structure of physics.

The first of these puzzles was the attempt by Max Planck to derive the proper

distribution of thermal energy for an electromagnetic field. The model he used was

a closed box heated at temperature T, empty except for whatever electromagnetic

thermal radiation it contained. A standard classical derivation suggested that this

“black-body” radiation should contain infinite energy. To get around this physical

impossibility, in 1900, Planck came up with a derivation for a finite energy result.

He assumed that the energy in each electromagnetic wave mode came in discrete

chunks E proportional to the wave frequency f, that is, E ¼ hf, with a constant of

proportionality h (now called Planck’s constant). This gave him a formula that

exactly matched experiment. The constant of proportionality is the incredibly tiny

h ¼ 6:6261� 10�34kgm2=s; it is essentially because h is so small that quantum

effects had never been seen.

Soon this constant began cropping up in many other physics puzzles: the photo-

electric effect, explained by Albert Einstein in 1905 (and for which he later received

the Nobel prize); the stability of atoms; and the discrete spectrum of atomic emissions,

first roughly explained by Niels Bohr; the interference of “matter particles” that

showed them sometimes to behave like waves. The solutions to all of these problems

were found at first in an ad hoc manner, making changes to classical mechanics one at

a time. Eventually the work of Schr€odinger, Heisenberg, Dirac, von Neumann, Pauli,

and others in the 1920s and 1930s swept classical physics away entirely for atomic and

subatomic phenomena, replacing it with a new theory known as quantum mechanics.
This is essentially the theory that we have today. We summarize it below.

Properties of Quantum Mechanics

What are the revolutionary properties of quantummechanics? Any quantum theorist

can make his or her own list of distinctive quantum properties. Here is mine:

indeterminism, interference, uncertainty and complementarity, discrete spectra for
bound systems, superposition (linearity), and entanglement (For comparison the

reader may read about quantum mechanics in the book Mathematics of Physics and

Engineering by Blum and Lototsky 2006). We will touch on several of these

properties in this chapter, and come to understand a little bit of their technical

meaning. But let us first get a more qualitative picture.
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Indeterminism

The most fundamental distinction between classical and quantum mechanics is that

classical mechanics is a deterministic theory: given perfect knowledge of the

current state of a system, its properties at all past and future times is, in principle,

determined precisely. In classical mechanics, probabilities only describe situations

where one’s knowledge is incomplete.

By contrast, quantum mechanics makes statements only about probabilities of

properties. If the same measurement is performed on several identically prepared

systems, one cannot in general expect the same outcome. This is not because we lack

complete information about the systems described; rather, it is because the exact

outcome of the measurement is inherently unpredictable (section “Interference”).

Probabilities in quantum mechanics are not calculated directly, but from probability
amplitudes,1 which are complex numbers associated with state functions. The proba-

bility of a state is the square of the probability amplitude. Their relationship is similar

to that between the amplitude of a wave and its intensity (which is the square).

1 The probability interpretation of QMwas first suggested byMax Born. It was in a footnote to this

pioneering paper, added in proof, that he realized that probabilities were not equal to amplitudes,

but to their squares
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Interference

For example, in the two-slit experiment diagrammed here, the probability amplitude

for a particle to hit a particular point on the screen is the sum of the amplitude to go

through slit A and hit the point, and the amplitude to go through slit B and hit the

point. However, the probability to hit the point is then p ¼ jaA þ aBj2. Because the
amplitudes can either add or cancel each other out, this system exhibits interference
fringes. Some parts of the screen will not be hit by particles, even though from each

slit there is a nonzero amplitude to reach that part of the screen. Other parts will be hit

at a higher rate.

Uncertainty

For a classical particle, complete information is given by the position x of the

particle and its velocity (or momentum) p. For a quantum particle, this is not the

case. As famously realized by Heisenberg, a measurement of a particle’s position

disturbs its momentum, with the size of the disturbance proportional to the preci-

sion of the measurement. Similarly, a measurement of the momentum disturbs the

particle’s position. This constraint on the precision with which position and

momentum can be measured simultaneously is quantified by the inequality

ðDxÞ2ðDpÞ2 � h2

4
; �h ¼ h=2p:

This constraint could be seen as just a practical limitation on the precision of

measurements; we might imagine that particles really do have precise positions and

momenta, which we are unable to exactly determine. However, in quantum

mechanics an even more radical explanation holds: in fact, the two quantities are
not even simultaneously well-defined.

Complementarity

This idea—that different ways of describing a system may be mutually exclusive—

is called complementarity. For position and momentum, this means that we can

write down amplitudes for every possible position of a particle, OR for every

possible momentum; but not both, because those quantities cannot be simulta-

neously measured. If C(x) is the wavefunction giving the probability amplitude to

be at every point x, we can also write down ~CðpÞ(the Fourier transform) which

gives the amplitude for every p. But there is no similar function C(x, p). For
variables other than position and momentum, similar statements hold. In particular,

for the kind of discrete variables used in quantum information theory, different

kinds of uncertainty and complementarity apply.

298 T.A. Brun



Discrete Spectrum

For the Bohr atom, only certain discrete orbits are allowed, with discrete values of

the energy. These values are called energy levels. This pattern of discrete spectra is
common to bound systems in quantum mechanics.

This discreteness is useful in quantum information theory, because it matches

the discreteness assumed in quantifying classical information. For instance, the

simplest quantum system would be one with only two distinct levels. This is

analogous to a classical bit, which can take one of two possible values. In quantum

information theory, most of the systems we will deal with have only a finite number

of discrete levels. However, while the number of energy levels may be finite, the

possible states are continuous. This is because of another property of quantum

mechanics: linearity.

Superposition

Suppose that C and f are two valid “states” of a quantum system (that is, two

possible wavefunctions.) Then aC þ bf, where a and b are complex numbers,

is also a valid state of the system. This is an example of a superposition.
The reason such superpositions are possible is because quantum mechanics is

a linear theory: the set of all states forms a complex vector space (or, more

precisely, a Hilbert space). The evolution equation for states, the Schr€odinger
equation, is a linear differential equation. The various physical operations on

quantum mechanical systems can be represented by linear operators (matrices) on

the Hilbert space. Various physical interpretations can be given to superposition.

One famously paradoxical situation has to do with a cat’s state. It is linearity that

makes possible the famous Schr€odinger’s Cat paradox, in which a cat can be

both alive (C) and dead (f). Strictly speaking, the cat is in a superposition of

alive and dead.

Entanglement

This last property of quantum mechanics is one of the most difficult to explain; but

it plays a crucial role in quantum computation and quantum information. If a

quantum system consists of multiple subsystems—for instance, of several distinct

particles—it is possible for the joint system to have a definite stateC, while none of
the subsystems has a well-defined state. In this situation, the subsystems are said to

be entangled. We can have for two subsystems x and y,

C x; yð Þ 6¼ CðxÞCðyÞ:
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While this may sound like an unusual and exotic situation, in fact it is not.

Almost all states of multiple subsystems are entangled. But the effects of entangle-

ment are masked at larger scales. At the quantum level, entanglement behaves very

much like classical correlation: the outcomes of measurements on different

subsystems are correlated. But these correlations can be stronger than any possible

classical correlation. This result was proven by John Bell in the 1960s, and

experimentally demonstrated by Clauser and by Aspect in the 1970s and 1980s.

Much has been made of entanglement, including various assertions that quantum

mechanics is nonlocal: that once in contact, quantum systems continue to influence

each other even when far apart. These assertions are a bit overstated. But it is true

that entanglement is qualitatively different from any phenomenon that occurs in

classical physics.

Quantum Information and Computation—A Prehistory

As microelectronic components get smaller and smaller, computer chips are

steadily approaching the point where quantum effects must be taken into account

(see Chap. 5 appendix). However, by the 1980s, some people were already starting

to ask if quantum mechanics could actually be exploited to make new information

processing techniques possible.

The first to propose an intrinsically quantum mechanical computer was

P. Benioff in 1980. Y. Manin and R. Feynman both proposed that a quantum

computer might be able to efficiently simulate quantum systems—something that

ordinary classical computers find very difficult (Feynman 1982; Benioff 1982;

Manin 1980). This idea of quantum simulation remains one of the most important

potential applications of a quantum computer.

But is a quantum computer even possible? As we shall see, such a computer must

operate reversibly; that is, it cannot dissipate energy. Ordinary computers are highly

dissipative, as anyonewho has ever felt the heat they give off has noticed (seeChap. 8).

In the 1970s, Charles Bennett of IBM showed that any computation can, in

principle, be done reversibly, building on work from the 1960s by Rolf Landauer.

That is, in principle, there is no requirement that a computer consume power to

operate (though it may take energy to start a computation). This paved the way for

the possibility of reversible quantum computers.

In 1985, David Deutsch presented a new idea. Because of superposition, one can

imagine a quantum computer in a superposition of different computations. For
instance, a computer could simultaneously calculate the value of a function f (x)
for every possible input x in a single run. Deutsch called this possibility quantum
parallelism, and speculated that, just like ordinary parallelism, it would increase the

computing power.

Naive applications of quantum parallelism add nothing to the power of the

computer. But in 1988, Deutsch found a clever algorithm that indirectly exploited

quantum parallelism to solve a problem more efficiently than any possible classical
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computer. This problem was rather artificial, but it was the first example where a

quantum computer could be shown to be more powerful than a classical computer

(Deutsch 1985; 1989).

Meanwhile, in 1984, Charles Bennett and Gilles Brassard found another way in

which quantum properties could be exploited for information processing. They

exploited the uncertainty principle as a way to distribute a cryptographic key with

perfect security (see Chap. 11). Single quanta are used to send the bits of the key, in

one of two possible complementary variables. If an eavesdropper tries to intercept

the bits and measure them, it disturbs them in such a way that it can always be

detected. This and similar schemes are called quantum cryptography, and it is the

first quantum information protocol that has been translated into a real technology

(Bennett and Brassard 1984).

Artur Ekert, in 1991, proposed another scheme for quantum cryptography,

this one based on entanglement rather than uncertainty. Bennett and collaborators

found other uses for entanglement: quantum teleportation in which separated

experimenters sharing two halves of an entangled system can make use of the

entanglement to transfer a quantum state from one to the other using only classical

communication; and superdense coding, in which sending a single quantum bit

allows the transmission of two bits of classical information.

Richard Josza and David Deutsch extended Deutsch’s original algorithm to a

more general, but still artificial version of the same problem; and D.R. Simon found

another problem, albeit still rather specialized, in which quantum computers

outperformed classical computers. The stage was being set for the real breakthrough.

In 1994, Peter Shor of AT&T published a paper showing that a quantum computer

could decompose a large number into its prime factors in a time of polynomial order in

the length of the number. The difficulty of factoring by classical computers accounts

for success of the RSA public-key encryption algorithms, which are the basis formany

secure transactions on theworldwideweb (seeChap. 11). Suddenly, it was known that

quantum computers could in principle solve a problem of importance in the real world

(Shor 1994). This was followed in 1996 by Grover’s unstructured search algorithm,

which gave the first provably better result by a quantum computer over a classical

computer (Grover 1996).

Rather than being an obscure interest for a handful of physicists and computer

scientists, quantum information processing was suddenly of interest to researchers

in many fields. In the years since the factoring algorithm was discovered, the field of

quantum information theory has exploded, and so have the experimental efforts to

realize quantum computation in practice.

The Mathematical Structure of Quantum Theory

The Stern-Gerlach Experiment and Spin

The most fundamentally useful system in quantum computing, and its physical and

mathematical properties, are most easily illustrated by the simplest quantum system
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ever discovered: the spin-1/2 particle. Experiments in the early 1920s discovered a

new aspect of nature, and at the same time found the simplest quantum system in

existence. In the Stern-Gerlach experiment, a beam of hot atoms is passed through a

nonuniform magnetic field. This field exerts a force on the magnetic dipole moment

of the atom, if any, and deflects it.

This experiment discovered two surprising things. First, the atoms do have a

magnetic dipole moment. (Actually, the experiment saw the magnetic dipole

moment of the electron.) In effect, in addition to being charged, electrons act like

tiny bar magnets. They also, as it developed, have a tiny intrinsic amount of angular

momentum, equal to �h=2. This quantity is called spin, and all known elementary

particles have nonzero spin. Electrons are spin-1/2 particles.

The second surprising thing was how much the path of the electrons was

deflected. If electrons were classical bar magnets, they could be oriented in any

direction. The component which was oriented the same way as the magnetic field

gradient (say the Z direction) would determine the force on the electron, and hence

how much they would be deflected. If electrons were like ordinary magnets with

random orientations, they would show a continuous distribution of paths. The

photographic plate in the Stern-Gerlach experiment would have shown a continu-

ous distribution of impact positions.

What was observed was quite different. The electrons were deflected either up or

down by a constant amount, in roughly equal numbers. Apparently, the Z compo-

nent of the electron’s spin is quantized: it can take only one of two discrete values.

We say that the spin is either up or down in the Z direction. This is an embodiment

of a two-level system or quantum bit, commonly called a qubit.

Sequential Measurements

Suppose an electron is passed through a Stern-Gerlach device, and is found to

have spin up in the Z direction. If we pass it through a second Stern-Gerlach device,
it will always be found to still have spin up in the Z direction. So this seems like

an actual property of the spin, which we are measuring with the Stern-Gerlach

device.

In a similar way, we can tilt the Stern-Gerlach apparatus 90� on its side and

measure the component of spin in the X direction. Here again, that component of the

spin is discrete: it is either up or down in the X direction. In fact, we can rotate it by

any angle y that we like, and measure the component of the spin in any direction;
and it will always be found to have a discrete value, up or down, in that direction.

Suppose that we have determined the spin to be up in the Z direction, and we pass

the spin through a second device to measure the X component of the spin. In this

case, we get spin up or down in the X direction with equal probabilities. If we start
with Z down, the same thing happens. Suppose now that we measure Z up and then

X up. What happens if we measure Z again?
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In this case, we get Z up or down with equal probability! Measuring X has erased

our original value of Z. Similarly, if we started with a definite state of X and

measure Z, we erase the original value of X.
By a slightly more complicated arrangement, we can also measure the compo-

nent of spin in the direction Y. If we do this, we find that measuring Y erases the

original value of either X or Z; measuring X erases either Y or Z; and measuring Z
erases either X or Y.

Complementarity and Randomness

The X, Y, and Z components of the electron spin are all complementary variables.
Knowing one of the three precludes knowing the other two. They are not all

simultaneously well-defined. If a given variable is not well-defined for a given

state of the system, when we measure it the outcome is random.

Suppose that a spin is up in the Z direction. If we measure the component of spin

along an axis at angle y to the Z axis, we find the spin up along that axis with

probability pup ¼ cos2ðy=2Þ, and spin down along that axis with probability

pdown ¼ sin2ðy=2Þ. (This result is not special to the Z direction. If a spin is up

(or down) along any axis, measuring along another axis at an angle y has outcomes

with probabilities sin2ðy=2Þ and cos2ðy=2Þ.) We want to find a mathematical

framework to encompass all these results.

The Mathematical Description of Spin

To describe the state of a spin-1/2, we first choose a particular measurement to serve

as a reference. By convention, this is usually the component of spin in the Z
direction. Starting from this, there are two special states: spin definitely up or

definitely down in the Z direction. We will write these states as j "i and j #i.
(This notation, in which the state is written in angled brackets, was introduced by

Paul Dirac, and is commonly used in the field of quantum information and

computation.)

Most states, however, do not give a definite outcome for a Z measurement.

Instead, if we measure a spin in a general state, we will find it up or down in the Z
direction with some probability. It turns out that we can represent these general

states by a linear combination of our two special states:

jCi ¼ aj "i þ bj #i:

In other words, a general state (orwavefunction)C is a linear combination of these

special states, which serve as a basis for the space of all states. This set of all states
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forms a vector space. The values a and b are the probability amplitudes in the up and
down directions; and if we measure the Z component of spin, we get up or down with

probabilities equal to the squares of the amplitudes, jaj2 and jbj2. Therefore, as
probabilities, we require that jaj2 þ jbj2 ¼ 1, or in other words, that the state be

normalized.
Of course, there is nothing fundamental about our choice of measurement. We

could, for example, have chosen to measure the component of spin in the X
direction. In that case, there would again be two special states j"Xi and j#Xi that
when measured always give the result up or down along the X direction. These

states also form a basis for the space of all states. What doj"Xi and j#Xi look like in
terms of our original basis states (representing the spin component in the Z
direction)? It turns out that if the spin is up or down in the X direction, at an

angle y ¼ p/2 to the Z axis, we can write the states as

j"Xi ¼ ðj "i þ j #iÞ=
ffiffiffi
2
p

;

j#Xi ¼ ðj "i � j #iÞ=
ffiffiffi
2
p

;

That works fine for the X direction. But what about the Y direction? That is also

at an angle p/2 to the Z axis. But j"Yi and j#Yi can’t be the same as j"Xi and j#Xi.
In this case, we solve the problem by letting the amplitudes be complex numbers.
So, with the imaginary unit i,

j"Yi ¼ ðj "i þ ij #iÞ=
ffiffiffi
2
p

;

j#Yi ¼ ðj "i � ij #iÞ=
ffiffiffi
2
p

;

We can see that these states produce the probabilities seen in the Stern-Gerlach

experiment. If we think of j "i and j #i as being basis vectors for a two-dimensional

complex vector space, then in terms of this basis, we can write any state as a column

vector:

jCi ¼ a
b

� �
:

We will make the assumption that j "i and j #i are orthogonal vectors of unit

length. By making this assumption, the basis we have chosen is orthonormal, and a

state is normalized if it forms a unit vector under the usual complex inner product.

The Effect of Measurement

As we saw above, if we measure a spin in the state jCi ¼ aj "i þ bj #i, we get result
“up” with probability jaj2 and “down” with probability jbj2. But the state does not

remain the same after such a measurement. Rather, if the result is “up” then the state of
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the spin aftermeasurement is j "i and if the result is “down” the state is j #i. Thismeans

that if we repeat the same measurement immediately, we will get the same result.

This also means that the act of measurement disturbs the state. Suppose you are

given a spin that has been prepared in an unknown (to you) state jCi. If you

measure that spin in the Z direction, you will get either “up” or “down.” But that

will not be sufficient to tell you what the state jCi was before the measurement,

and no further measurements will reveal any more information. Measurement

causes an irreversible change in the state.

This also means that a spin can have a well-defined component in a single

direction, but it cannot have a well-defined component in more than one direction

at a time. Measuring spin in a new direction disrupts its value in the old direction.

This is the phenomenon of complementarity discussed above, and is related to the

well-known uncertainty principle of Heisenberg.

Global Phase

Suppose that we multiply the state jCi by a pure phase exp(if),

a! eifa; b! eifb:

This doesn’t change the probabilities for a measurement along the Z axis. Nor

does it change the probabilities for a measurement along any other axis.
This means that multiplying by a pure phase has no observable physical

consequences. We say that the global phase of a state is arbitrary. (If we multiplied

a and b by different phases that would have observable consequences. It still

wouldn’t change the probabilities for a Z measurement, but it would change the

probabilities for other measurements.)

If we fix the normalization jaj2 þ jbj2 ¼ 1 and the global phase (so, for instance,

a is real), then there are only two independent parameters for the state of a spin. One

useful choice of parameters is

jCi ¼ cosðy=2Þj "i þ eif sinðy=2Þj #i;

where 0� y� p and � p�f� p. These are the coordinates of points on the

surface of a sphere. This is called the Bloch Sphere Representation. Each point

on the sphere corresponds to a state; states corresponding to opposite points are

orthogonal. j "i and j #i are the north and south poles at y ¼ 0, p.

Evolution of the State

A nonuniform magnetic field produces a net force on a particle with spin. This is the

basis of the Stern-Gerlach apparatus. A uniform magnetic field does not produce a

net force. But it does cause the direction of the spin to rotate, or precess.
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We describe this effect mathematically using a set of 2 � 2 matrices called the

Pauli matrices:

X̂ ¼ 0 1

1 0

� �
; Ŷ ¼ 0 �i

i 0

� �
; Ẑ ¼ 1 0

0 �1
� �

:

These matrices act on the two-dimensional vector space that is the set of spin-1/2

states.

The time-evolution of the state is given by the Schr€odinger equation

ih
djCi
dt
¼ ĤjCi;

where Ĥ ¼ Ĥy is an Hermitian operator known as the Hamiltonian, and which

describes the energy of the system. For a spin-1/2 in a uniform magnetic field in the

direction ~n ¼ ðnx; ny; nzÞ (where ~n is a unit vector in space), the Hamiltonian is

Ĥ ¼ EðnxX̂ þ nyŶ þ nzẐÞ;

where E is an energy proportional to the strength of the magnetic field. If the spin

is initially in the state jCðt1Þi at time t1, and evolves until time t2>t1, then the state
is transformed by a unitary transformation Û t2; t1ð Þ. A unitary matrix satisfies

Û
y
Û ¼ ÛÛ

y ¼ Î, where Ûy is the Hermitian conjugate of Û—that is, the complex

conjugate of the transpose.

This is easiest to see if Ĥ is a fixed operator (i.e., constant in time). In that case,

a solution to Schr€odinger’s equation is

C t2ð Þj i ¼ expð�iĤðt2 � t1Þ �h= Þ C t1ð Þj i:

The operator �Ĥ t2 � t1ð Þ �h= is Hermitian, so the operator

Ûðt2; t1Þ ¼ expð�iĤðt2 � t1Þ=�hÞ

is unitary.

Suppose there is a uniform magnetic field in the Z direction. Then states with

spin up and down along the Z axis have different energies. This is represented by a

Hamiltonian

Ĥ ¼ E0 0

0 �E0

� �
� E0Ẑ;

where E0 is proportional to the strength of the magnetic field. If jCi ¼ aj"Zi þ
bj#Zi at t ¼ 0, then

jCðtÞi ¼ ae�iE0t=�hj"Zi þ beiE0t=�hj#Zi:
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This type of evolution is equivalent to a steady rotation about the Z axis, called

precession. If jCi is an eigenstate of Ĥ; j"Zi or j#Zi, the only effect is a change in

the global phase of the state, which has no physical consequences. Because of this,

we call these stationary states.
Similarly, we could have a uniform field in the X direction or the Y direction.

In these cases, the Hamiltonians would be E0X̂ or E0Ŷ, and the stationary states

would be the X̂ or Ŷeigenstates.
If the Hamiltonian is not constant, Ĥ¼ĤðtÞ, then the situation is more compli-

cated; but the time evolution in every case is still given by a unitary transformation.

A common situation in quantum information is when we have some control over the

Hamiltonian of the system. For instance, we could turn on a uniform magnetic field

in the Z direction, leave it on for a time t, and then turn it off. In that case, the state

will have evolved by

Cj i ! expðiyẐÞ Cj i � Û Cj i;

where y ¼ �E0t=�h. In this case, we say we have “performed a unitary transforma-

tion Û on the system.” The Hamiltonian has the time dependence ĤðtÞ ¼ f ðtÞE0Ẑ
where

f ðtÞ ¼
0; if t<0;

1; if 0� t� t;

0 if t>t:

8
><

>:

One final point. Suppose that we included in our Hamiltonian a term propor-

tional to the identity matrix: E0 Î. What effect would this have on the evolution of

the state? In fact, its only effect would be to multiply the state by a global phase,

which as we have seen above has no physical meaning. Because of this, we will

always allow ourselves the freedom to add or subtract such a term from any

Hamiltonian if we like.

Systems of More than One Spin

The spin-1/2 is the simplest quantum system in existence, which is its virtue. But at

the same time, it is inadequate to describe more complicated systems. Similarly, a

computer with only a single bit of memory is not capable of very much computa-

tion. So let us now see how to describe systems consisting of multiple spins.
For a single spin, we first chose a canonicalmeasurement (theZ component of spin)

and identified two special states j "i and j #i that each gave the result up and down,

respectively, with probability 1. These two states then served as a basis for general

states.Wewill follow the same procedure with n spins. Our canonical measurement is

to measure the Z component of each spin individually; there are therefore 2n possible

results, which give us our basis states: j " � � � ""i; j " � � � "#i; :::; j # � � � ##i, and the
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most general state is a linear combination of all of these. In the simplest case, a state for

two spin-1/2 systems has four components:

jCi ¼ a""j ""i þ a"#j "#i þ a#"j #"i þ a##j ##i:

It is possible that each of the two spins has its own quantum state

a1;2j "i þ b1;2j #i, in which case their joint state will be a product of these two

states:

a"" ¼ a1a2; a"# ¼ a1b2; a#" ¼ b1a2; a## ¼ b1b2:

We have used a simple juxtaposition notation in the Dirac bracket to denote

“product” states. The strictly rigorous mathematical structure of a product state is

given by the tensor product of the factors. (See the Blum and Lototsky book.) Here

we use the informal Dirac notation which has a natural interpretation as a product

state. But generally, most states jCi of a composite system are not product states.
For an example with two spin-1/2 systems,

Cj i ¼ 1
ffiffiffi
2
p "#j i � 1

ffiffiffi
2
p #"j i

is not a product state. For this joint state, we cannot assign well-defined states to the

subsystems. Such a joint state is called entangled. One consequence of entangle-

ment is that measurements on the subsystems will generally be correlated.
For the purposes of this chapter we need to understand two other properties of

multi-spin states. If we measure all n spins in the canonical measurement, the

probability of a particular outcome (say "���") is the absolute value of the probabil-
ity amplitude squared (in this case, a"���"

�� ��2). After this measurement, the system

will be left in the corresponding basis state.

But what if, instead of measuring all the spins, we measure only a single spin?

Without loss of generality, let us suppose that we measure the first spin. In that case,

we collect together all the terms where that spin is up, and all the terms where that

spin is down, and write the whole state in this form:

jCi ¼ aj "ijC"i þ bj #ijC#i;

where jC"i and jC#i are normalized states for the remaining n�1 spins. In this

case, the probability of getting spin up or down for the first spin is jaj2 or jbj2,
respectively, and the system is left either in the state j "ijC"i or the state j #ijC#i.

Next, how do states of n spins evolve with time? In the case of a single spin-1/2,

we saw that time evolution was described by a 2 � 2 unitary matrix, which arises

from the Schr€odinger equationwith a particular choice of Hamiltonian.With n spins,
the states are 2n-dimensional, and the most general time evolution is described by a

2n � 2n unitary matrix.
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Of course, in practice we are limited in the kinds of time evolution we can

produce by the nature of the physical systems we use. So instead let us consider the

special case where the evolution affects only one or two spins at a time. A simple

example would be to apply a magnetic field to one spin, but not the others. We treat

this in the same way that we treated a measurement of a single spin. We again write

jCi ¼ aj "ijC"i þ bj #ijC#i, and then apply our 2 � 2 unitary matrix just to the

first spin. If the 2 � 2 unitary matrix Û is

Û ¼ a b
c d

� �
;

then after the transformation the state becomes j "iðaajC"i þ bbjC#iÞ þ j #i
ðcajC"i þ dbjC#iÞ. In a similar way, one can apply a 4 � 4 unitary matrix to

two of the spins, while leaving the others unchanged. We will see later that it is

possible to build up any unitary matrix by using only single-spin and two-spin

unitaries in succession.

Other Two-Level Systems

While the spin-1/2 is extremely simple, we can find other physical systems which

behave in the same way. The most obvious example is the polarization of a photon.
If light shines on a polarizing beam splitter (PBS), light with opposite polarizations

(say H and V) exits from the two ports. If a single photon arrives at a PBS, it exits

from one of the two ports with some probability. So a polarizing beam splitter for a

photon acts just like a Stern-Gerlach apparatus for spin-1/2!

In fact, the mathematical description of spin-1/2 maps directly onto the case of

photon polarization. The states |"i and |#i become the linear polarization states jHi
and jVi: j"Xi and j#Xi become the linear polarizations at 45� to H and V. And j"yi
and j#yi become the circular polarizations ðjHi 	 ijViÞ= ffiffiffi

2
p

.

Note that having split the two components H and V, we can rejoin them to

reconstruct the original state. (In principle, we can do this with the Stern-Gerlach

apparatus as well; this is called matter interferometry.) So we see that

“measurements” are not necessarily final until the actual read-out process is

complete. Bohr called this final step an “irreversible classical amplification.”

14 Quantum Computing 309



Just like Stern-Gerlach devices, we can construct PBSs to measure any

polarization. The probabilities for different outcomes obey exactly the same math-

ematics as the probabilities for spin-1/2. Other systems can act like spin-1/2 as well:

the two energy levels of the hyperfine splitting, the presence or absence of a photon

in a cavity, etc. In these cases, we are really picking out a two-dimensional subspace
of a larger space. All such two-dimensional systems are examples of quantum bits,
or qubits. We can consider them to be fundamental building blocks of quantum

information, just as we can consider ordinary bits to be fundamental building blocks

of classical information.

Because of this universal mathematical structure, from here on we will no longer

assume a particular physical embodiment of our qubits or of our quantum computer.

Instead of spins up or down along a particular direction, we will choose a particular

basis corresponding to some canonical single-qubit measurement. We label the

basis states |0i and |1i, where we make contact with the description of the spin-1/2

system by identifying

0j i � "j i; 1j i � #j i:

We call this basis “the computational basis” or “the standard basis” or (by

analogy to the spin-1/2 case) “the Z basis.” For most the rest of this chapter, we

will work in terms of this description. The only exception is near the end, when we

will briefly discuss the current experimental state of the art in implementing

quantum computation, and the physical systems used.

Quantum Information Processing

From this mathematical description we see what elements we can use to build

information processing protocols.

1. We can prepare quantum systems in particular states.

2. We can perform a series of unitary transformations and measurements on the

systems, where later operations can be conditioned on the results of earlier

measurements.

3. The output of the process must be the result of some final measurement or

measurements.

We will see in the remainder of this chapter how, from these building blocks, we

can construct information processing protocols more powerful than any that can be

run on a classical computer.

For a concise exposition on the mathematics of quantum mechanics and quan-

tum computing, see Blum and Lototsky (2006). For a longer, more comprehensive

treatment, the best reference remains Nielsen and Chuang (2000). The latter also

includes an extensive list of references.
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General Unitary Transformations

One-Bit Unitaries and Bloch Sphere Rotation

The most general spin-1/2 (2 � 2) Hamiltonian is:

Ĥ ¼ bX̂ þ cŶ þ dẐ � E0~n �~s;

for E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2 þ d2
p

, where ~n ¼ ðnx; ny; nzÞ ¼ ðb=E0; c=E0; d=E0Þ, with n2xþ
n2y þ n2z ¼ 1 and~s¼ ðX̂;Ŷ;ẐÞ.

This produces a unitary operator

exp �iĤt=�h
� � ¼ cos E0t=�hð ÞÎ � isin E0t=�hð Þ~n �~s:

In the Bloch sphere picture, this evolution corresponds to a rotation around the axis

~n at a rate E0=�h.
Now suppose that we can turn the Hamiltonian on and off. By turning a

Hamiltonian on for a particular length of time, we can “rotate” the state by a

particular angle. For a spin-1/2, this means we perform the unitary transformation

ÛðyÞ ¼ cosðy=2ÞÎ � isinðy=2Þ~n �~s:

Building up Unitaries

The important thing to remember is that any product of unitary operators is also
unitary:

ÛyÛ ¼ V̂
y
V̂ ¼ Î:

ðÛV̂ÞyðÛV̂Þ ¼ V̂
y
ÛyÛV̂ ¼ Î:

Suppose there are two different Hamiltonians we can turn on: Ĥ1 and Ĥ2. Then

we can perform the unitaries

Û1 tð Þ ¼ exp �iĤ1t=�h
� �

;

Û2 tð Þ ¼ exp �iĤ2t=�h
� �

:

But we can also do the unitaries Û2ðt2ÞÛ1ðt1Þ and Û2ðt3ÞÛ1ðt2ÞÛ2ðt1Þ and
Û2 tnð ÞÛ1 tn�1ð Þ � � � Û2 t2ð ÞÛ1 t1ð Þ. Let’s see how this works for the spin-1/2.

Suppose we can turn on Hamiltonians

Ĥ1 ¼ ExX̂; Ĥ2 ¼ EyŶ:
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These produce unitaries Û1 yð Þ and Û2 yð Þ, which correspond, in the Bloch sphere
representation, to rotations by y about the X and Y axes, respectively. There is a

theorem in geometry that a rotation by any angle y around any axis~n can be done by
doing three rotations in a row:

R~nðyÞ ¼ RXðf3ÞRYðf2ÞRXðf1Þ

for some f1;f2;f3. Since every 2 � 2 unitary is equivalent to a Bloch sphere

rotation about some axis ~n, any 2 � 2 unitary equals

Û1ðt3ÞÛ2ðt2ÞÛ1ðt1Þ

for some t1; t2; t3 (up to an overall phase).

Two-Qubit unitaries

Unitaries that act on two qubits at a time represent some kind of interaction
between them. Here is an example for two spin-1/2s:

Ĥint ¼ EintẐ1Ẑ2;

where Ẑ1 acts on the first spin and Ẑ2 on the second spin. After a time t this gives
rise to a unitary transformation

ÛðyÞ ¼ cosðy=2ÞÎ � isinðy=2ÞẐ1Ẑ2:

where y ¼ 2Et=�h. Suppose we have an initial product state

jCi ¼ a1b1j ""i þ a1b2j "#i þ a2b1j #"i þ a2b2j ##i:

When we transform this it becomes

ÛðyÞjCi ¼ eiy=2a1b1j ""i þ e�iy=2a1b2j "#i
þ e�iy=2a2b1j #"i þ eiy=2a2b2j ##i;

which is no longer a product state for y 6¼ mp=2. The interaction has produced

entanglement.

Quantum Gates and Circuits

We have seen that it is possible to build up new unitary operators by multiplying

together some set of standard ones. This is analogous to the situation in classical
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logic, where any Boolean function can be built up from a set of standard functions

of one or two bits, called logic gates: AND, OR, NOT, XOR, and so forth

(see Chap. 2 appendix G and Chap. 5 appendix). We can similarly try to build

up unitary transformations from a set of standard unitaries. We will call these

quantum gates.
The simplest gate, affecting only a single qubit, is the NOT gate: j0i $ j1i. We

see that this is also a familiar operator: the Pauli matrix X̂. NOT is the only one-bit

classical gate. But in quantum mechanics, there are far more possibilities.

One important example with no classical analogue is the Hadamard gate:

ÛH ¼ 1
ffiffiffi
2
p 1 1

1 �1
� �

:

We write these unitaries in circuit diagrams with a convention similar to that of

classical logic gates, as we will see in the next section.

We can also define two-qubit quantum gates. One example is the controlled-not
(CNOT):

UCNOT 00j i ¼ 00j i;
UCNOT 01j i ¼ 01j i;
UCNOT 10j i ¼ 11j i;
UCNOT 11j i ¼ 10j i;

There are, of course, an infinite number of possible two-qubit gates; but in practice,

such unitaries are difficult to build. Fortunately, it turns out the CNOT, together

with one-bit gates, can be used to build up any unitary.
When we combine standard unitary gates, we call the resulting unitary a

quantum circuit. This is the most common way of representing a quantum compu-

tation, and is called the circuit model of a quantum computer. A quantum algorithm
gives the construction of a quantum circuit to solve a particular problem.

Quantum Algorithms

The Circuit Model

Boolean Circuits

It is very common to represent Boolean functions graphically as logic circuits.
In this case, the logical values passed are indicated by wires, and the basic functions
by gates. The figure gives an example of a Boolean circuit diagram.
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In a computing context, the wires can be thought of as memory and each gate as

an assignment. Note that the input variables were each used twice; we call this kind

of duplication fanout. We also allow wires to cross each other, switching the

relative positions of two variables. We call this a crossover or swap.

We can define several important quantifiers for a circuit. Define the size of a

circuit to be the total number of assignments (or gates). The depth of a circuit is the
maximum number of gates along any path from the input to the output. The circuit
shown for f x1; x2ð Þ had size 5 and depth 3. Depth expresses how parallelizable a

computation is. There is often a trade-off between depth and size.

Another sometimes-useful quantity is the width: the maximum number of wires

leading to the output at any given time, not including the input variables. This gives

a measure of the space used by a calculation. However, there is a strong trade-off

between width and size; remarkably, any Boolean function can be calculated by a

circuit with bounded width (though this has a large cost in size).

Complexity Theory and Circuits

Computational complexity theory (Chap. 12) is usually framed in terms of Turing

Machines (TMs); but we would like to model computation in terms of Boolean

circuits, which generalize more easily to the quantum case.

A TM can be given for a problem that will solve input instances of any size n.
A given circuit, by contrast, will usually only solve instances of a single size n (or at
best of size � n). We can make a connection to complexity theory by defining a

uniform family of circuits for each problem. For every value of n, we define a circuit
of size polynomial in n which solves all instances of the problem of size n.
Moreover, there must be a TM which, given n as the input, outputs a description

of the circuit in a time polynomial in n. It turns out that the problems for which there

is a uniform family of circuits is equivalent to the complexity class P.

The requirement that the circuits can be generated by a TM is important. If we

remove that assumption, we get a new class (called P/poly) of nonuniform circuit

families, which includes P, but also problems not in P. Indeed, by some definitions
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this class includes noncomputable functions! Of course, for practical purposes,

we would have no idea how to construct the successive members of a nonuniform

circuit family.

There is no logical reason why naturally-occurring phenomena (e.g. quantum

circuits) might not solve some noncomputable functions for us. Indeed, it has been

speculated that some outcomes of the laws of physics may be noncomputable.

No demonstration of this, however, is known.

Quantum Circuits

The notation for quantum circuits is quite analogous to the notation for classical

Boolean circuits. A quantum circuit is a graphical representation of a unitary

transformation for a quantum computer; the “wires” represent qubits, and the

“gates” represent standard unitary transformations that act nontrivially on only

one or two qubits at a time. Unlike an ordinary Boolean circuit, however, every

quantum gate is reversible: the number of quantum bits in must equal the number of

quantum bits out, and it is physically and logically possible to imagine running any

gate backwards. (There can be exceptions if we allow destructive measurements as

part of a circuit, but in principle we can always postpone these until the final readout

of the computation.)

Also unlike the classical case, the qubits which enter a quantum circuit cannot be

assumed to have individual states; in general, all of the bits may be in a joint,

entangled state. Consider the circuit shown. This unitary takes computational basis

states to computational basis states. If the input state is jiijjijki the output state is

jiiji
 jiji
 j
 ki. If the input qubits are in a general state, we use linearity: write

the state in terms of the computational basis and apply the circuit term by term. E.g.,

1
ffiffiffi
2
p 0j i þ 1j ið Þ 00j i ! 1

ffiffiffi
2
p 000j i þ 111j ið Þ:

Note that a product state has become entangled; this is the Greenberger-

Horne-Zeilinger (GHZ) state.
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This procedure is more complicated if we include gates which do not preserve the

computational basis. For example, consider this circuit above involving a Hadamard

gate and a CNOT. The Hadamard gate is applied only to the first qubit, while the

CNOT affects both qubits. We can see how the basis states are transformed:

00j i ! 1
ffiffiffi
2
p 0j i þ 1j ið Þ 0j i ! 1

ffiffiffi
2
p 00j i þ 11j ið Þ;

01j i ! 1
ffiffiffi
2
p 0j i þ 1j ið Þ 1j i ! 1

ffiffiffi
2
p 01j i þ 10j ið Þ;

10j i ! 1
ffiffiffi
2
p 0j i � 1j ið Þ 0j i ! 1

ffiffiffi
2
p 00j i � 11j ið Þ;

11j i ! 1
ffiffiffi
2
p 0j i � 1j ið Þ 1j i ! 1

ffiffiffi
2
p 01j i � 10j ið Þ:

This circuit takes computational basis states to entangled states—in fact, this set

of entangled states has a name, the Bell states, and forms an orthonormal basis for

the space of two qubits. However, if we apply this circuit to a general state, we must

be careful to collect terms properly.

For instance,

1
ffiffiffi
2
p 0j i þ 1j ið Þ 0j i ¼ 1

ffiffiffi
2
p 00j i þ 10j ið Þ

! 1

2
00j i þ 11j i þ 00j i � 11j ið Þ ¼ 00j i:

In this case, a product state is taken to a product state, in spite of the fact that this

circuit can produce entanglement when applied to a basis state.

It is important to be able to translate a quantum circuit into the proper sequence

of unitary transformations. The unitary appropriate to the gate is applied to the

affected qubits, while all the other qubits are left unchanged.

We have so far seen the CNOT and the Hadamard gate. What are some other

quantum gates? There is no standard list, but here are some common ones:
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The Pauli gates X, Y, Z we know; the other two are

Ŝ ¼ 1 0

0 i

� �
; T̂ ¼ 1 0

0 eip=4

� �
:

Note that T̂ is the square-root of Ŝ; Ŝ ¼ T̂2, and Ŝ is the square-root of

Ẑ; Ẑ ¼ Ŝ2 ¼ T̂4.

There are also common two-qubit and three-qubit gates. We have already seen

the controlled-NOT gate; there is also the SWAP gate, which exchanges two bits

(often indicated simply by crossing the wires in the diagram). Among three-qubit

gates, a well-known example is the Toffoli gate, which is universal for classical

reversible computation; quantum mechanically it exchanges j110i $ j111i.
Another gate one sometimes encounters is the Fredkin gate, or controlled-SWAP:

it exchanges j110i $ j101i.
We will also often see the controlled-U gate: an (n + 1)-qubit gate that applies

the unitary operator Û on n bits if another control bit is in state |1i, and not

otherwise. This is typically a shorthand notation to represent a large sub-circuit.

Other such sub-circuits are indicated by a block in which n qubits enter and exit,

having undergone some unitary transformation Û.

Calculating Functions

A common component of many classical and quantum algorithms is calculating a

function. In this case, we consider the n bits of input to represent an n-qubit integer x
in binary notation xn�1 � � � x1x0. We will often use a short-hand notation in which |xi
represents a state of n qubits: xj i ¼ xn�1 � � � x1x0j i. Such an n-bit composite system

is called a quantum register. The output is the value of the function f (x), which we

assume to be an m-bit integer in binary notation.

If f (x) is an invertible function, then m ¼ n and the function must be a permuta-

tion of the numbers 0; . . . ; 2n � 1. In this case there is a unitary transformation Ûf

such that Ûf xj i ¼ f ðxÞj i.
If f is not invertible (which is usually the case), there is no such Ûf , because such

a transformation would not be unitary. (Remember, all unitary transformations are

invertible.) What do we do then? Instead of using a single register to hold both the

input and the output, we have two separate registers, and define a unitary

transformation

Ûf xj i yj ið Þ � xj i y
 f ðxÞj i;

in which 
 is bitwise-XOR. This transformation is clearly invertible. We now

apply Ûf to the input statejxij0i and get jxij f ðxÞi as the output. Most quantum

algorithms contain a unitary transformation like this. Of course, to carry it out we
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actually need to construct a circuit to perform Ûf . If the function f (x) has a classical
circuit, we can make this reversible and translate it directly into a quantum circuit.

Scratch Bits and Ancillas

Just as in classical circuits, in some cases a circuit can be made more efficient by the

use of extra bits, called “scratch bits,” which are reset to zero at the end of the

calculation. For instance, calculating a function f (x) may be more conveniently

done by first calculating some function p(x), and then a function g(p): f (x) ¼ g(p(x)).
We call p(x) a partial result. We now have three registers: input, output, and scratch,

and define two unitary transformations Ûg and Ûp:

Ûp xj i yj i zj ið Þ ¼ xj i yj i z
 pðxÞj i;

Ûg xj i yj i zj ið Þ ¼ xj i y
 gðzÞj i zj i:

We see ÛgÛp xj i 0j i 0j ið Þ ¼ xj i f ðxÞj i pðxÞj i. The scratch space can be re-used by

invertingÛp: Û
�1
p ÛgÛp xj i 0j i 0j ið Þ ¼ xj i f ðxÞj i 0j i.

How dowe do Û
y
p ? If a unitary is produced by a sequence of gates Û ¼ ĜN � � � Ĝ1,

then obviously Û
y ¼ Ĝ

y
1 � � � ĜyN. Many common gates are their own inverses; for

instance, the Hadamard, X, Y, Z, CNOT, SWAP, Toffoli and Fredkin gates. A circuit

with only these gates can be inverted by it running backwards. If it involves other gates

(such as the phase or p/8 gates), one must explicitly include their inverses. (E.g.,

Ŝ
y ¼ Ŝ3.)
In the case of Û

y
p , the case is even simpler. Since a second bitwise XOR undoes

the first, in fact Ûp is its own inverse. In this case, our sequence can be ÛpÛgÛp.

In addition to scratch bits, some extra ancilla bits may be necessary to make the

overall circuit reversible. These ancillas are discarded at the end of the

computation.

Oracles

Just as in classical computation, the idea of an oracle is useful in quantum

computation. In the classical case, an oracle was a “black box” which input an

n-bit number x and output a function f (x). (We can make oracles reversible,

just like any other classical circuit; for instance, it could input x and y and output

x and y
 x:)
In the quantum case, an oracle is a black box which takes n qubits as input

and performs a unitary transformation Û on them. For instance, it could input

two quantum registers, and perform the transformation xj i yi ! xj i y
 f ðxÞj ij .
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However, there are other possibilities as well; for instance, it could do a

transformation

jxi ! ð�1Þ f ðxÞjxi;

performing a phase shift conditioned on the value of the function f (x).
Computations involving oracles usually center on determining some property of

the function f (x), or finding a value of x which has some particular value f (x).
In some cases, the fact that f (x) is determined by a black box is important: if the

function f (x) were known, the problem would be solved. In other cases, however,

this property is sufficiently nonobvious that knowledge of f (x) makes no difference.

In these cases, the difference between an oracle problem and an ordinary computa-

tion is somewhat blurred.

Just as in the classical case, we call each invocation of an oracle a query, and the
number of queries needed to complete the circuit the query complexity.

Quantum Parallelism

So far, things don’t look very different between classical and quantum circuits.

What can we do with quantum bits that we can’t with classical? Consider the circuit

shown in the figure. The first n bits undergo Hadamard gates:

j0in ! ½ðj0i þ j1iÞ=
ffiffiffi
2
p
�n ¼ 1

ffiffiffiffiffi
2n
p

X2n�1

x¼0
jxi:

This produces an equally-weighted superposition of all jxi.
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We then see what happens in the whole circuit. The input register is put in a

superposition of all inputs, and together with the output register is passed to the oracle.

j0inj0im ! 1
ffiffiffiffiffi
2n
p

X2n�1

x¼0
jxi

 !

j0im ! 1
ffiffiffiffiffi
2n
p

X2n�1

x¼0
jxijf(xÞi

By a single call to the oracle, we have computed f (x) for every possible input x!
There is no classical analogue of this process, which Deutsch called quantum
parallelism. It would seem that this capability should make quantum computers

far more powerful than classical computers. But are they? By nHadamard gates and

a single oracle query, we have calculated f (x) for every possible value of x; they are
all contained in this massive superposition. But does it do us any good? What

happens if we try to read the values out?

We do this by measuring the output register in the computational basis. If we do

this, we get the result f (x) ¼ y with probability

py ¼
X

x; f ðxÞ¼y
1=2n:

We could do equally well by choosing a single x at random and calculating f (x).
This reflects a general principle: we cannot get more information out of measuring

m qubits than m classical bits.

Let us see why this is so. The Shannon entropy bounds how much we can learn

from a measurement:

S ¼ �
X

j

pjlog2pj;

where j labels the outcomes. For a measurement of a D-dimensional system, there

are at most D distinct outcomes, for which the maximum value of S is log2D. In the
case of m qubits, D ¼ 2m, so one can gain at most m bits of information. To learn

f (x) for all values of x would require m2n bits of information. Clearly this is out of

the question.

So it might seem that, rather than being extraordinarily powerful, quantum

parallelism buys you exactly nothing. But that, too, would be incorrect. One can

acquire at most m + n bits of information by measuring the input and output

registers; but by being more subtle, one can do much better than just getting a

random value of x and f (x). One could instead, learn something about the function

f (x) as a whole. One could acquire up to n + m bits of information giving some

property of f, which might be difficult to acquire classically without making many

queries to the oracle. Can we find an example of such a property?
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Deutsch’s Problem

The simplest Boolean function f (x) is a function of a single bit. There are exactly

four such functions. Here they are:

We see that f0 and f3 return the same thing regardless of the input x. We call these

functions constant. By contrast, f1 and f2 return an equal number of 0’s and 1’s.

We call these functions balanced. Suppose we have a classical oracle which inputs

x and returns f (x). How many queries are needed to determine if f is constant or
balanced? (Answer: two queries.)

Consider the following circuit:

where the oracle does the transformation

jxi ! ð�1Þf ðxÞjxi:

We put the input qubit into state 0j i þ 1j ið Þ ffiffiffi
2
p�

and send it to the oracle. If f is
constant, the state acquires an overall phase, and is returned to the state j0i by the

second Hadamard. If f is balanced, the two terms acquire a relative phase of �1,
and the qubit goes to j1i. So a single query is sufficient to solve Deutsch’s problem.

What if the oracle isn’t the type that flips the phase of the state, but actually

returns the value of f (x):

jxijyi ! jxijy
 f ðxÞi:

We can still solve Deutsch’s problemwith only a single query. Consider this circuit:

Before the oracle query, the bits are in state ðj0i þ j1iÞðj0i � j1iÞ=2. It is easy to
check that applying the oracle gives

Cj i ¼ �1ð Þ f ð0Þ 0j i þ �1ð Þf ð1Þ 1j i
	 


0j i � 1j ið Þ 2= :

Function f (0) f (1)
f0 0 0

f1 0 1

f2 1 0

f3 1 1
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So we again solve the problem by measuring the first bit even though the value of
f(x) was “put” in the second bit. In QM the direction of information flow is basis

dependent!

This was the first algorithm ever presented where a quantum computer

outperformed a classical computer. This performance may not seem impressive—

one query versus two—and the problem may be artificial. But the structure of the

algorithm is worth noting:

1. The input and output registers start in computational basis states. (j0i and j1i
in this case.)

2. By Hadamard gates, the input register is put in a superposition of all input

values.

3. A unitary to evaluate f (x) is done on both registers.

4. The input register is transformed again, and measured in the computational

basis.

Quantum Fourier Transform

We now concentrate on a particular unitary transformation: the quantum Fourier
transform. This is a discrete Fourier transform, not upon the data stored in the

system state, but upon the state itself.

Let’s look at the definition to make this a bit clearer. The discrete Fourier

transform (DFT) of a discrete function f1; . . . ; fN is given by

~fk � 1
ffiffiffiffi
N
p

XN�1

j¼0
e2pijk=Nfj:

(See the book by Blum and Lototsky for a discussion of DFT.) The inverse

transform is

fj � 1
ffiffiffiffi
N
p

XN�1

k¼0
e�2pijk=N ~fk:

In the quantum Fourier transform, we do a DFT on the amplitudes of a quantum
state:

X

j

ajjji !
X

k

~akjki;

where
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~ak � 1
ffiffiffiffi
N
p

XN�1

j¼0
e2pijk=Naj:

The question is: can we actually carry out this transform physically? This would

be possible if there were a unitary operator F̂which transformed a state into its DFT:

j ~Ci ¼ F̂jCi; F̂yF̂ ¼ Î:

First, we observe that the amplitudes ~ak are linear in the original aj. So there is a
linear operator F̂ which implements the transform. We can write it in outer product

notation:

F̂ ¼
XN�1

j;k¼0

e2pijk=N
ffiffiffiffi
N
p jkihjj:

It is easy to check that this does indeed produce the correct transformation

jCi!j ~Ci, and that F̂ is unitary: F̂F̂y ¼ Î. The Fourier transform lets us define a

new basis: j~xi¼F̂jxi, where fjxig is the usual computational basis. This basis has a

number of interesting properties.

Every vector j~xi is an equally weighted superposition of all the computational

basis states:

jh~xjyij2 ¼ hyj~xih~xjyi ¼ hyjF̂jxihxjF̂yjyi ¼ e2ipxy=N
ffiffiffiffi
N
p e�2ipxy=N

ffiffiffiffi
N
p ¼ 1

N
:

So if we think of the states jxi as being in a sense the most “classical,” then the

states j~xi are in a sense as “unclassical” as possible.

Recall that the Hadamard transform could also turn computational basis states

into equally weighted superpositions of all states. But it left all amplitudes real,

while the amplitudes of j~xi are complex. And it was its own inverse, while F̂ 6¼ F̂y.
From the point of view of physics, the relationship of this basis to the computational

basis is analogous to that between the momentum and position representations of a

particle’s wavefunction.

Circuits for the Fourier Transform

At this point we will specialize to the case of n qubits, so the dimension is N ¼ 2n.

We have seen that the quantum Fourier transform is a unitary operator. Therefore,

by our earlier argument, there is a quantum circuit which implements it. However,

there is no guarantee that this circuit will be efficient; a general unitary requires a

circuit with a number of quantum gates exponential in the number of bits.
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Very fortunately, in this case an efficient circuit does exist. (Fortunate, because

the Fourier transform is at the heart of the most impressive quantum algorithms!)

The key insight into designing a circuit for the Fourier transform is to notice that the

states j ~j i can be written in a product form.

Let the binary expression for j be j1j2:::jn, where j ¼ j12
n�1 þ j22

n�2 þ � � � þ jn.
We also write binary fractions 0:j1 j2:::jn ¼ j1=2þ j2=4þ � � � þ jn=2

n ¼ j=2n.
Then

~j
�� � ¼ 2�n=2 0j i þ e2ip0:jn 1j i� �

0j i þ e2ip0:jn�1jn 1j i� � � � � 0j i þ e2ip0:j1���jn�1jn 1j i� �
:

The unitary 0j i ! 0j i 	 exp iyð Þ 1j ið Þ is a Hadamard followed by a rotation of

y/2 around the Z axis. In the expression above, the rotation depends on the values

of the other bits. So we can build the Fourier transform out of Hadamards and

controlled phase rotation gates.

Define the rotation

R̂k ¼ 1 0

0 e2ip=2
k

� �
:

A controlled-R̂k gate does this if and only if a control qubit is j1i rather than j0i.
Putting these together with the Hadamards gives the following circuit:

This circuit performs the Fourier transform with the bits of the transformed state

in reverse order. This circuit uses n2=2 controlled-R gates, each of which can be

produced with two CNOTs and two Z rotations. So the circuit as a whole uses n2

CNOTS—definitely polynomial.

Periodic States

Suppose we are in N dimensions, and given a state of the form

jfi ¼
XN=r

n¼0
cj‘þ nri;

where jcj ¼ ffiffiffiffiffiffiffiffi
r=N

p
. We call this a periodic state with period r and offset ‘.
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What happens when we transform such a periodic state jfi ! j~fi? The new

state will have the form

j~fi ¼
Xr�1

m¼0
amjmN=ri;

where jamj ¼
ffiffiffiffiffiffiffi
1=r

p
for all m.

This state is also periodic, in the following sense: the am can have nontrivial

phases, but they are all of equal weight; and the offset is zero.

Period Finding

We can exploit this fact to produce a quantum algorithm for period finding. Suppose
f (x) is a function from n-bit numbers to m-bit numbers. We have two quantum

registers, an n-bit input register and anm-bit output register, and we prepare them in

the state

jC0i ¼ 1
ffiffiffiffi
N
p

X2n�1

x¼0
jxij0i

using n Hadamard gates. (In general, there may be scratch bits as well, but we’ll

ignore that for now.)

We then apply a circuit that performs the unitary ~Uf :

~Uf jC0i ¼ 1
ffiffiffiffi
N
p

X2n�1

x¼0
jxij f ðxÞi:

Suppose now that we measure the output register only, and get a particular value
a. Then the input will be left in an evenly-weighted superposition of all x such that

f ðxÞ ¼ a: If f ðxÞ is a periodic function with period r, then this state will look like

this:

1
ffiffiffiffiffiffiffiffi
N=r

p
XN=r�1

n¼0
jx0 þ nrijai;

where x0 is the smallest value of x for which f ðx0Þ ¼ a. The input register is in a

periodic state.

Let us Fourier transform the input register. Then we’ll get a state of the form

Xr�1

m¼0
amjmN=rijai;
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wherejamj ¼
ffiffiffiffiffiffiffi
1=r

p
and the particular phases of the am will depend upon the

measured value of a.
What would happen if we now measured the input register? We will get one

value mN=r for some m between 0 and r � 1. This by itself is not enough to tell

us what N=r (and hence r) is. But let us run the algorithm d times. We will get a

sequence of integers m1N=r; . . . ;mdN=r; which are all multiples of N/r. For a

number of runs d which grows only moderately in N, we can be confident that

with high probability, N/r is the only common factor of all the numbers.

Please note that we have implicitly assumed that f (x) ¼ f (y) only if x ¼ y +

nr—that is, except for the periodicity, this function has no repeated values. The

reality can be more complicated, producing states which are superpositions of

different periods with different weights. Fortunately, the functions we need for

our algorithms have the simpler structure.

Greatest Common Divisor

Since the time of the ancient Greeks, an efficient algorithm has been known for

finding the greatest common divisor (GCD) of two numbers: Euclid’s algorithm.

Suppose a and b are both multiples of some common divisor n, with a > b. Then
if I divide a by b, the remainder a mod b will also be a multiple of n, and smaller

than either a or b.
We repeat this procedure, this time with b and amod b, and so on, until we reach

the point where one of our numbers divides the other exactly. This number is the

GCD of a and b. Since the numbers get smaller each time, we obviously must

eventually find the answer; and more detailed analysis shows that it is computa-

tionally efficient.

If we take our numbers m1N=r; . . . ;mdN=r; and pairwise perform GCD on

them, with high probability we will find the greatest common divisor of all of

them to be N/r. This obviously gives us the value of r; and we have found the period
of f (x) by an efficient quantum algorithm (assuming that ~Uf can be done

efficiently).

In fact, going back over the algorithm, we find that the measurement of the

output register is not really necessary: because different values of f (x) are orthogo-
nal, the associated periodic states of the input register cannot interfere with each

other. Surprisingly enough, once we have calculated f (x) by applying Ûf , we have

no further use for the output register; if we like, we can throw it away!

Order-Finding

For integers x and N with no common factor, the order of x modulo N is the least

positive integer r such that

x r ¼ 1 mod N:
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Obviously, r � N. (If not, the sequence of numbers xn ¼ mod N for n ¼ 1,. . .,r
must all be distinct modulo N, which is impossible, since there are only N equiva-

lence classes.)

Our problem is, given x and N, to find the order r of xmodulo N. The description
of the problem just requires the statement of x and N; we parametrize the size of the

problem by L ¼ log2N, the number of bits needed to state N. No classical algorithm
for order-finding is known which is polynomial in L.

Building a Quantum Algorithm

The first thing to notice is that we can define a function fxðnÞ ¼ xn mod N. Since the
order r means that xr ¼ 1 mod N, this means that fx nþ rð Þ ¼ xnþr mod N ¼ xnxr

mod N ¼ xn mod N ¼ fxðnÞ. So the function is periodic with period r. Moreover,

the f (n) must all be distinct for 0 � n < r.

We can therefore build a circuit for order-finding based on our circuit for period-

finding. We have divided the problem into two sub-circuits. The first performs the

unitary Ûfx nj i yj ið Þ ¼ nj i y
 fxðnÞj i. The second performs the inverse Fourier trans-

form on the input register. Both the input and the output registers start in the state j0i,
and the input register is put into a superposition of all jni by Hadamard gates.

In fact, for this problem, it is better to have the second register start in the state

y ¼ 1, and create the unitary Û0fx nj i yj ið Þ ¼ nj i y � fxðnÞmod Nj i. Note that this

multiplication is invertible as long as x and N have no common factors; we would

just multiply yxn mod N by xr�n where r is the order of x. (Of course, we don’t know
what r is, but that doesn’t change the fact that the multiplication is invertible in

principle.) We call this unitary operator the circuit for modular exponentiation.
We can build modular exponentiation out of repeated applications of modular

multiplication. Define a unitary operator Ûx such that

Ûxjyi ¼ jxymod Ni:
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Let n be the argument of the modular exponential function, with L-bit binary
representation nL�1nL�2 � � � n0 ¼ nL�12L�1 þ � � � þ n0.� � �Then

xny mod N ¼ xnL�12
L�1

xnL�22
L�2 � � � xn0y mod N:

That is, we successivelymultiply y by x2
j
if nj ¼ 1, and by 1 otherwise.We can turn

this into a quantum circuit involving a sequence of controlled unitary operations.

We build these subcircuits out of two other circuits: modular multiplication and

modular squaring. These work as follows:

Ûm xj ið Þ ¼ xj i xymod Nj i; Û2 xj i ¼ x2 mod N
�� �

Again, these are invertible as long as x has no common factors with N. (We don’t

care what they do in other cases, so it is possible to construct unitaries that do what

we want.)

We also need a scratch register, which we start in the state |1i. Let us write this
first, so our full state is |1i|yi. The first thing we do is apply Ûx to the scratch register:

j1ijyi ! jxijyi:
We now apply Û2 j times to perform Û2j

x :

jxiyi ! x2 mod N
�jyi ! jx4 mod N

�jyi ! � � � ! jx2j mod Nijyi:

We then do modular multiplication Ûm:

jx2j mod Nijyi ! jx2j mod Nijx2j ymod Ni:

Finally, we want to re-use the scratch space, so we “uncompute” x2
j
mod N by

applying Û
y
2j
times and then Û

y
x , making the whole transformation

j1ijyi ! j1ijx2j ymod Ni:
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The circuit for controlled-Û2j

x looks like this:

(It would be more efficient to keep our partial results for Û2j�1 for use with each

successive nj, but that does not alter the principle.) We can build modular squaring

out of modular multiplication; and modular multiplication can be built out of

modular addition and modular multiplication by two. Simple reversible circuits

exist for both of these procedures.

We can now summarize the order-finding algorithm:

1. Prepare the input and output registers in states j0i and j1i.
2. With Hadamard gates, put the input register in a superposition of all values jni.
3. Calculate the modular exponential function.

4. Do the inverse Fourier transform on the input register.

5. Measure the input register.

6. Find the order r using the GCD algorithm.

Our circuit uses OðL3Þgates. The input register requires t ¼ 2L + 1 +

log (1 + 1/2e) bits to succeed with probability p > 1�e.

Order-Finding and Factoring

While order-finding may seem of limited interest by itself, the problem of factoring

large numbers reduces to order-finding for its most difficult cases. To state the

problem concretely: given a (large) composite number N, we want to find one of its
prime factors.

The algorithm proceeds in several steps, mostly eliminating special cases for

which order-finding fails, but alternative efficient algorithms exist.

1. Check if N is even. If it is, obviously 2 is a factor.

2. Check if N is a power ab for integers a and b. An efficient algorithm for this

exists.

3. Choose a random integer x, 1 < x < N�1. Calculate GCD(x,N) using Euclid’s

algorithm. If it is not 1, congratulations!

4. Use the order-finding algorithm to find the order r of x modulo N.

At this point, we use some number theory. If r is even, we calculate xr=2 mod N.
If this is not N�1 � �1 mod N then we calculateGCD xr=2 	 1;N

� �
. If one of these

gives a nontrivial factor, that is our answer. Otherwise the algorithm fails.
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This may seem like a lot of conditions. But in fact, r has at least a 50%

probability of being even and not having xr=2 ¼ �1 mod N. If the algorithm fails,

we just pick a new value of x and try again. The probability is overwhelming that we

will succeed after only a few repetitions. This algorithm is OðL3Þ (from modular

exponentiation and GCD). The best classical algorithm has a complexity OðeL1=3Þ,
which is superpolynomial.

Searching an Unordered Database

In searching for a needle in a haystack, one might hope that it pays to be systematic.

Unfortunately, it does not.

Let f (x) be a function whose argument is an integer 0 � x � N�1, and which

returns 1 for exactly one value x1; for all other values of x, it returns zero. We can

think of this function as being a database query, with the numbers x labeling record
numbers or memory locations; we are searching for a particular record, and the

function f tells us if we have found it.

From the point of view of computation, we consider f to be an oracle which can be
repeatedly queried. How many queries are necessary before the value x1 is found?

It is easy to see that an average of N/2 queries will be needed to find the

“marked” record; and that there is no better algorithm than to just try one value

of x after another until the desired location is found.

Because the problem has so little structure, every instance of the problem with

the same value of N is equally difficult; and the order in which the queries are made

is irrelevant. After a query, there is a probability of 1/N of finding the correct record;

and if not, one is left with the same problem, with size N�1.

The Grover Algorithm

Can we do better with quantum mechanics? Let us assume that the oracle is a

unitary transformation that takes xj i ! �1ð Þ f ðxÞ xj i, i.e., it flips the sign of jxi if and
only if f (x) ¼ 1. Let us further assume, for the moment, that exactly one value

x1has f ðx1Þ ¼ 1, and all others make f (x) ¼ 0. (Later we will relax this

assumption.)

We have seen that an oracle which takes xj i yj i ! xj i y
 f ðxÞj i can be effec-

tively “converted” to a phase oracle by preparing |yi in the state 0j i � 1j ið Þ ffiffiffi
2
p�

. So

we will assume this phase form throughout.

Suppose that N ¼ 2n, so our system is n qubits, and we start in an evenly

weighted superposition of all values x. (This can be prepared by n Hadamard

gates.) The state is then

jCi ¼ 1
ffiffiffiffiffi
2n
p

X2n�1

x¼0
jxi:
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If we apply the oracle, the size of the amplitudes will remain unchanged, but the

amplitude of the marked record will change sign.

The state at this point is

jC0i ¼ 1
ffiffiffiffiffi
2n
p

X2n�1

x¼0
ð�1Þf ðxÞjxi:

Applying the oracle again will just undo the previous application. Instead, we

perform a unitary called “inversion about the mean.”

Cj i ¼
P

x
ax xj i !

P

x
ð2�a� aÞxi; �a ¼ 1

N

P

x
ax:

It is easy to check that this is indeed unitary.

Û ¼
2=N� 1 2=N . . . 2=N
2=N 2=N� 1 � � � 2=N

..

. . .
. ..

.

2=N 2=N � � � 2=N� 1

0

BBB@

1

CCCA
; Û

y
Û ¼ Î :

If we now calculate the amplitudes of the new state, we see that the probability of

the marked record has grown relative to the other peaks! By applying the oracle

again, followed by “inversion about the mean,” we can make the peak grow still

further; but we cannot make the peak grow without limit. After a certain number of

iterations, it will reach its maximum, and then start to shrink again.

Number of Iterations

We iterate the procedure until the marked record reaches its maximum, and then

measure x; with high probability, we will find the correct value. How many

iterations are needed to reach this maximum?

To answer this, we need to see that the algorithm corresponds to a rotation in a

two-dimensional subspace. The initial state, |Ci, is an even superposition of all

basis states. The state we are aiming for is jx1i, which is one particular basis state.

Both of these states lie in the subspace spanned by the two vectors jx1i and

xj i ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

X

x;f ðxÞ¼0
xj i:

These two vectors are orthogonal, and the initial state is Cj i ¼
ffiffiffiffiffiffiffiffiffi
1=N

p
x1j iþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1ð Þ N=
p

xj i. The important thing to notice is that the iterations of the Grover
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algorithm do not move you out of this space. For a state ajx1i þ bjxi, the oracle

moves you to � ajx1i þ bjxi, which is a reflection about the state jxi.
We can re-write the “inversion about the mean” unitary as

Û ¼ 2jCihCj�Î;

where once again jCi is our evenly-weighted initial state. Since jCi lies in the

subspace, it is obvious that Û also leaves states in this subspace. In fact, Û is also a

reflection, this one about the state jCi. The product of two reflections is a rotation.

Since the rotation must be independent of the state, clearly each rotation is by a

constant amount. We want to rotate the state until it is as close as possible to jx1i.
Let us define the angle 0 < y < p/2 such that

cos y=2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1ð Þ N=

p
;

so that our initial state can be written

jCi ¼ sinðy=2Þjx1i þ cosðy=2Þjxi:

After doing one iteration of the algorithm, the state is

sinð3 y=2Þjx1i þ cosð3 y=2Þjxi;

and after k iterations it is

sin
2kþ 1

2
y

� �
jx1i þ cos

2kþ 1

2
y

� �
jxi:

Each iteration rotates the state by y; so we want to iterate until (2k + 1)y � p.
Since y is small, sin y=2ð Þ ¼ ffiffiffiffiffiffiffiffiffi

1=N
p � y=2. Finding the marked record requires a

number of steps

k � ðp=4Þ
ffiffiffiffiffi
N:
p

By contrast with classical search, which takes O(N) queries, the quantum

algorithm requires a number of oracle queries of O
ffiffiffiffi
N
p� �

.

This is not an exponential gain in speed, so in one way it is less impressive than

the factoring algorithm. On the other hand, this algorithm is provably better than the
best classical algorithm; in the case of factoring, there is no proof that the best

known classical algorithm is really optimal.
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Building the Circuit

One part of the circuit is applying the oracle, which we already know how to do.

What about this strange “inversion about the mean” unitary?

Notice that if we apply Hadamards to all n bits, the state transforms to

1
ffiffiffi
2
p n

X

x

axjxi !
X

x;y

ð�1Þx�yaxjyi;

where the Boolean dot product is

x � y ¼ ðx0&y0Þ 
 ðx1&y1Þ 
 � � � 
 ðxn�1&yn�1Þ:

The important thing to note is that for y ¼ 0, the new amplitude is

a00 ¼
1
ffiffiffiffiffi
2n
p

X

x

ax ¼ a:

This means that “inversion about the mean” is equivalent to the following

procedure:

1. Apply Hadamards to all bits.

2. Flip the sign of the |0i state relative to all other basis states.

3. Apply Hadamards to all bits.

How do we carry out step 2? This is a controlledn�1-Z gate, which can be built

using O(n) gates.

Applications

In principle, the Grover algorithm could be used to search a database. The database

could be classical, but it would have to have a quantum interface.

A much more likely application would be to speed the solution of NP-complete

problems. One method of solving decision problems (such as SAT) is to try each

possible solution and check if it satisfies the decision criterion. Classically, this

is like searching an unordered database, and requires a time of O 2nð Þ for problems

of size n.
By using Grover’s algorithm, the time could be reduced toO 2n=2

� �
, instead. This

is, unfortunately, still exponential. But in practice, it could be enormously faster.

More generally, we might use quantum searching to speed any program that checks

many cases.
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Decoherence and Error Correction

Decoherence

The description of quantum computers up to this point has been based on a major

assumption: that the quantum computer behaves as an ideal quantum system.

Unfortunately, real physical systems are imperfect. This leads to two effects that

can derail a quantum computation.

The first, and easiest to understand, is imprecision in the control operations. In

classical digital logic, the states are discrete, and the transformations between them

(logic gates) are similarly discrete. By contrast, quantum states form a continuum.

Suppose we wish to apply a quantum gate that rotates a state by y. If the initial state
is j0i, we might get a state of the form cosðyÞj0i þ sinðyÞj1i. But how can we be

sure that we don’t instead get the state cosðy0Þj0i þ sinðy0Þj1i, where y0 is close, but
not equal, to y. Such small errors can accumulate as we apply multiple gates, to the

point where the state we end up with is completely wrong.

The second effect is more subtle, but equally if not more important. This is

environmental decoherence. In using the Schr€odinger equation we are implicitly

assuming that the system we described is isolated—that it does not interact with

anything else in the world. In reality, however, this is never more than an approxi-

mation. Every quantum system interacts with its environment—nearby physical

systems, which can include background electromagnetic fields, stray gas molecules

and other impurities, vibrational modes of nearby solids, random incoming photons,

and other systems that it is impossible to completely exclude.

Let us look at a toy model of decoherence, affecting a single qubit. Suppose this

qubit is initially in some superposition state jCi ¼ aj0i þ bj1i. However, it is not
completely isolated; rather, it interacts with some environmental system. Suppose

the initial state of the environment to be jEi. The initial state of the complete system

is then jCijEi ¼ ðaj0i þ bj1iÞjEi.
As the two systems interact, however, the state of the environment will change in

a way that depends on the state of the system. After some time, the joint state will no

longer be jCijEi, but will have become

a 0j i E0j iþb 1j i E1j i:

The system and the environment have become entangled, and the system no

longer has a well-defined state of its own. This kind of decoherence is called

dephasing.
Why is this important? Because this type of correlation destroys interference

between the two components of jCi. Since quantum algorithms depend on interfer-

ence, this kind of decoherence destroys their ability to function successfully.

Here is a second decoherence model, which looks more similar to a kind of

classical error. Suppose again that the system and environment are in an initial state

jCijEi ¼ ðaj0i þ bj1iÞjEi. But now we will suppose that the interaction between
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the state of the system and environment tends to alter the state of the system, so that

after some time the state becomes
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

a 0j i þ b 1j ið Þ Eþj i þ
ffiffi
e
p

a 1j iþð
b 0j iÞ E�j i. In other words, the interaction between the system and environment

tends to flip the value of the bit 0$ 1. In a typical system, both of these

decoherence effects can be present, and probably a variety of other (less familiar)

ones as well.

The mathematical description of decoherence is beyond the scope of this chap-

ter, but hopefully these examples give some intuition about how both decoherence

and imprecision in control operations are a problem for quantum computers.

Indeed, while these two sources of noise seem conceptually different, they have a

unified mathematical description, and generally both are lumped together under the

heading of decoherence or quantum noise.

To make matters worse, in a computer with many qubits the effects of

decoherence on all the qubits accumulate. This derails a large computation more

quickly than a small one. And the effect is compounded by the fact that large

computations typically take longer than small ones as well, which gives

decoherence longer to act. This problem could lead one to believe that beyond a

certain rather small size, quantum computation would be impossible. Indeed, in

the early 1990s when quantum computation first began to be seriously studied,

many knowledgeable observers were confident that decoherence doomed any

possibility of large-scale quantum computation.

Quantum Error Correction

Of course, classical computers are also subject to errors. At one time, it was thought

that these errors might prevent large scale classical computation. But it was shown

by John von Neumann and others that in fact this is not true: it is possible to do

reliable computations using imperfect computers by making use of error-correcting
codes. The simplest version of this idea is widely known. Instead of storing each bit

once, one keeps redundant copies. So, for example, 0 and 1 are represented as 000

and 111. So long as errors are unlikely, they can be detected (if all three bits are not

the same) and corrected (by majority vote). Much more sophisticated versions of

this idea have led to the modern theory of error-correcting codes. An obvious

thought, then is to try to protect quantum computers in the same way, with some

form of quantum error-correcting code. In the early and mid-1990s, however, many

people believed that quantum error correction was impossible.

This pessimism was based on two ideas. First, there is the point mentioned in the

previous subsection, that quantum states form a continuum. This is different from

classical bits, which are discrete. It is therefore possible for small, continuous errors

to occur and accumulate. This is the effect that undermines large-scale analog

computation.

Second, classical error-correcting codes are commonly understood to work by

keeping redundant copies of the information that they protect. But by the famous
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no-cloning theorem of quantummechanics, it is impossible to copy a quantum state.

That is, there is no unitary transformation Û that, given an arbitrary quantum state

jCi and another system in some standard state j0i will produce two copies of the

arbitrary state, jCijCi. The proof is quite elementary. So redundant storage of

quantum information seems like a non-starter. Fortunately, both of these seemingly

insurmountable problems turn out to be misconceptions, and quantum error-

correcting codes are indeed possible. We will just sketch the main ideas here.

It is certainly true that quantum states form a continuum. But this is rather

different than the continuous quantities used in analog computing. Consider two

states j0i and ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

0j i þ ffiffi
e
p

1j i. One can continuously transform from one to the

other. But an actual measurement of this qubit will not reliably distinguish them. If

we measure the second state, with a high probability we will get the result 0—and

then the system will be left in the state j0i. With a small probability, we will get the

result 1, and the state will be j1i. This measurement has turned a continuous error

into a discrete error. We can exploit this effect in error correction. A measurement

will turn a continuous error in the state into a small probability of a discrete error.

This property is called discretization of errors.
Of course, the problem is that a measurement will destroy the state just as much

as an error would. Somehow we need to protect the information so that

measurements can reveal the presence or absence of errors without disrupting the

quantum state. The key to this comes from taking another look at classical error-

correcting codes, but seeing them in a different way. Rather than keeping redundant

copies of information, we can think of them as instead storing the information

nonlocally, as a correlation over several bits. In this way, the codewords 000 and

111 can be thought of as storing a bit value as a correlation among the bits, rather

than as multiple copies.

We can translate this directly into a quantum error-correcting code. Suppose we

want to encode a single qubit aj0i þ bj1i; and suppose we know that the only kind of

decoherence that occurs is bit flipping noise. We carry out the following encoding:

ðaj0i þ bj1iÞj00i ! aj000iþbj111i:

This encoding can be done by the simple quantum circuit shown.

Suppose a bit flip occurs on the first qubit. The state becomes aj100i þ bj011i.
If we measured the three qubits, we could detect this error, but we would also

destroy the superposition. So instead, we measure not the qubit values themselves,

but the parity between qubits one and two, and between qubits two and three.

The circuit below shows how this can be done.
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These parity values reveal the presence and location of an error without

destroying the superposition state. Moreover, once we know where the error is,

we can undo it by applying a unitary X̂ gate to the affected qubit.

Even better, we can handle continuous errors the same way. Suppose that the

state aj000i þ bj111i evolves continuously to a state
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

a 000j i þ b 111j ið Þ þffiffi
e
p

a 100j iþð b 011j iÞ. After measuring the parities, we will detect either no error,

with probability 1�e, or a single bit flip on qubit one with probability e, which we

can then correct. This is how discretization of errors can be exploited.

Of course, the assumption that only bit-flip errors can occur is quite unrealistic.

This code would be useless against dephasing errors, or combinations of dephasing

and bit flips. But remarkably, it turns out that quantum error-correcting codes exist

that can protect against general errors, so long as they affect only a limited number

of qubits at a time. Such codes were first discovered by Peter Shor, and indepen-

dently by Andrew Steane, in 1996. The study of quantum error-correcting codes has

rapidly advanced since then, and we now have a considerable understanding of the

power and limitations of quantum error correction.

Fault-Tolerance and Threshold Theorems

This understanding has led to a series of theorems proving that fault-tolerant
quantum computation is possible. While these theorems vary greatly in their details

and assumptions, they all take a similar form: If a quantum computation could be
done with an ideal circuit of size N, then it can be done with probability
approaching 1 by a quantum circuit of size N�polylog(N) that is subject to noise,
provided that the error probability per gate is below a threshold eth. Because of this
form, these theorems are known as threshold theorems (See, e.g., Aharonov and

Ben-Or 1998; Gottesman 1998; Preskill 1998, 1999).

How big can eth be? This is a difficult question to answer, and is highly

dependent on the assumptions made about the quantum computer and the noise.

Early estimates put lower bounds on eth of 10
�6 or 10�5, which is dauntingly low.
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Steady theoretical progress has improved this, to the point where some quantum

computers have been projected to have thresholds of 10�3 or even 10�2, a much

more feasible-sounding error rate of 1%. In fact, we don’t know how good

thresholds could be in practice. The threshold theorems all make somewhat

idealized assumptions; but at the same time, they often use antagonistic error

models that are probably overly pessimistic. It is significant that no real nontrivial

upper bounds on the threshold are known.

Typical assumptions in the threshold theorems are: independent errors between

different qubits; the ability to do parallel operations; and the ability to perform gates

between non-neighboring qubits. All of these assumptions can be relaxed to a

certain degree, often at the cost of lowering the error threshold estimate. But

analyzing a realistic quantum computer is sufficiently complicated, and the noise

models are poorly enough known, that at present we really don’t know what kind of

threshold is achievable. Experimental progress over recent years has given some

cause for optimism, however, as we discuss briefly in the next section.

Physical Implementations of Quantum Computers

Physical Requirements for Quantum Computation

The theoretical ideas that led to quantum computation were largely inspired by the

rapid experimental progress of the 1970s and 1980s. Quantum optical systems,

together with atom traps and ion traps, showed that individual quantum systems

could be stored, addressed, and manipulated, while exactly obeying the predictions of

quantum mechanics. But since the development of quantum information processing

in the 1990s, it is fair to say that theory has vastly outstripped experiment in its

progress. Many algorithms have been discovered; the entire field of quantum error

correction has been invented; a vast, quantum extension to classical Shannon theory

has been developed, drawing on quantum as well as classical resources. In the

meanwhile, experimenters have struggled to control and measure more than a handful

of quantum bits at a time.

This comparison tends to mask the tremendous progress that experimenters have

made, especially in the last 10 years. Several different experimental systems now

look promising enough that they may be scaled up, over the next few years, into

quantum computers containing dozens or even hundreds of qubits, and capable of

doing thousands of quantum gates.

To begin, then, we might ask: what properties make a physical system suitable to

implement quantum computation? These requirements were presented in a very

influential paper by David DiVincenzo, and are widely used to determine if a

particular physical system could potentially be used to build a scaleable quantum

computer (DiVincenzo 2000).
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1. Existence of qubits (i.e., product structure). This is the essential requirement for

scalability.

2. Controllable one- and two-qubit unitary gates. Given these, any unitary trans-

formation can be built up, and all known quantum algorithms can be done

efficiently. For fault tolerance, we would like to be able to perform quantum

gates in parallel on different qubits.

3. Initializable in a known starting state. Without this, we cannot know what

computation we are doing.

4. Ability to measure qubits in standard basis. This is obviously necessary to read

out the results at the end; but it is also very useful in performing quantum error

correction, as described in the previous section.

5. Very low intrinsic decoherence. Necessary to satisfy the threshold theorems for

fault-tolerant quantum computation.

We will now briefly examine a couple of current experimental approaches to see

how well they meet this list of requirements.

Ion Traps

One of the most powerful experimental developments of the last few decades was

the development and improvement of two techniques: laser cooling and electro-
magnetic traps. By means of these, it is possible to cool small numbers of ions or

atoms to nearly absolute zero and confine them at a precise location in a vacuum

chamber, where they can be repeatedly probed by properly-tuned lasers. This is the

closest we have come to being able to achieve the type of quantum measurements

envisioned by von Neumann in the 1930s: projective measurements that probe

the state of the system without destroying it. Using these techniques, it may be

possible to achieve all of the DiVincenzo criteria. Initially proposed in Cirac and

Zoller 1995, a scalable architecture was proposed in Kielpinski et al. 2002.

Qubits

An atom (or ion) consists of a positively charged nucleus with some number of

negatively charged electrons which are bound to the nucleus by the Coulomb force.

In an ion, these charges do not cancel, so the ion has a net charge; either some

electrons have been stripped away or added.

Since the electrons are attracted to the nucleus, they “try” to be as close to it as

possible; however, they repel each other. Also, no two electrons can be in exactly

the same state due to the Pauli Exclusion Principle. The arrangement of electrons

which minimizes the energy subject to these constraints is the ground state jgi. If
the atom or ion acquires extra energy, an electron may be “kicked” into a higher

orbit, making the atom excited. The lowest-lying excited state will be labeled jei.
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Quantum Gates

One way of exciting an ion is by resonant driving. The principle is the same as

pumping up a swing: the electrons have natural resonant frequencies. Because the

electrons are charged, a periodic electric field will exert a periodic force on the

electron; if the period matches the resonance frequency, the atom will be excited; it

will make a transition from the initial state to a higher energy state.

This kind of periodic electric field can be provided by a laser tuned to the

appropriate frequency. The proper laser frequency is determined as follows: the

energy of a single photon is �ho, where o is the light frequency. This energy must

equal the difference between the two atomic energy levels.

The atom absorbs a single photon and becomes excited. (If the laser is left on, the

atom will actually make a transition back to the starting state, re-emitting the

absorbed photon. This is called stimulated emission.)
If the laser is tuned away from a resonance frequency the rate of transition

rapidly diminishes. Because the level spacing of most atoms and ions is not very even,

this means we can drive particular transitions with great specificity. For instance, it is

possible to drive a transition that will happen if the atom is in state jei but not in jgi.
Also, certain transitions may be forbidden by other conservation laws (such as parity

and angular momentum).

We can now see how to build a qubit out of a trapped ion. We identify the two

states j0i � jgi and j1i � jei as our basis vectors, and carry out one bit gates by

driving transitions with appropriately-tuned lasers.

Note that because jgi and jei do not have the same energy, there will be a

constantly-accumulating relative phase between them:

aj0i þ bj1i ! aj0iþeiDEt=�hbj1i:

Wemust keep trackof this phaseasweperformourquantumgates. Inourdescription

we will just automatically undo this phase with extra Z rotations. A description like

this is called a rotating frame.
To produce two-bit quantum gates, we make use of an additional degree of

freedom to couple the internal states of the ions: themotion of the ions. To understand
how this works, we need to make a brief digression to talk about the simple harmonic

oscillator. The Hamiltonian of a harmonic oscillator is

Ĥ ¼ p̂2

2m
þ mo2x̂2

2
; where ½ p̂; x̂� ¼ �i�h:

This system is solved by finding the energy eigenstates jni. These have evenly-
spaced eigenvalues Ĥ nj i ¼ �ho nþ 1=2ð Þ nj i � En nj i.

A single ion in a trap acts like a harmonic oscillator to a good approximation.

What about multiple ions? The motion of the ions can be decomposed into normal
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modes. For N ions, there are N normal modes; each of these acts like a separate

harmonic oscillator with its own characteristic frequency.

By laser cooling, the ions in the trap are reduced to their motional ground-state:
each of the normal modes is in the state j0i. It is possible to excite transitions of one of
the normal modes to an excited state by driving the ions at the resonance frequency o.

However, there is a much more interesting possibility. It is possible to excite a

normal mode conditional on the electronic state of one of the ions. We can use this

as a building block to construct two-bit gates, using the vibrational normal mode as

a kind of “communication bus.” We thus see that we can do both one-qubit and two-

qubit quantum gates.

Measurement

This would all be pointless if we were unable to measure the state of our qubits. We

can do this by resonant driving as well. The key is to drive a transition from one of

the basis states to an unstable excited state. This state will rapidly decay, emitting a

photon in a random direction. This transition can be driven repeatedly, scattering

many photons in a short time. These scattered photons can be detected by an

ordinary CCD camera. If the ion is in state j1i it will glow visibly when illuminated

by a properly-tuned laser. If in state j0i it will remain dark. This is a near-perfect

projective measurement.

The availability of high-quality projective measurements is one of the most

attractive features of the ion-trap quantum computer. For many implementations,

measurement is a challenging technological problem.

Decoherence

These are the main intrinsic sources of decoherence for the linear ion trap:

1. Spontaneous emission. Since the jei ! jgi transition is forbidden, the jei state
has a long lifetime; however, by more complicated processes it can still decay.

More significant is the possibility of decay from an excited state in the perfor-

mance of a gate; by detuning and using metastable states, this can be kept under

control.

2. Leakage. To act like a qubit, the ion must remain in the subspace spanned by jgi
and jei. There is always a possibility of an accidental transition to states outside

this space. This is mainly controlled by tuning the lasers very precisely, and

choosing ions whose transition frequencies are not too close together.

3. Heating. Until recently, this was the dominant source of decoherence. Because

the ions are charged, they are very sensitive to the presence of stray electric and

magnetic fields. These can lead the normal modes “heating up,” which interferes

with two-bit gates. Recently, a great deal of progress has been made, by carefully

designing the equipment and actively cooling the ions using sympathetic cooling
of extra ions in the trap.
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4. In addition there are the usual problems of precision. To work as described, the

lasers must be very precisely tuned, and the intensity and duration of pulses

tightly controlled. There are also difficulties if the lasers are not tightly enough

focused on individual ions (though careful design can get around this).

Recent Developments

The scheme of packing all the ions into a single trap is inherently limited. Because

only a single normal mode (or at most a few) can be used at a time, it is impossible

to do many two-bit gates in parallel. Cooling must be turned off while gates are

performed, which makes error rates grow. It is difficult to focus a laser down onto a

single ion without accidentally affecting its neighbors. With a single trap, scalable

quantum computing is impossible.

To avoid this problem, recent experiments have used a new architecture. Instead

of one trap, there are multiple trapping regions, each holding a few ions. When a

two-bit gate is performed, the ions holding the two qubits are physically moved into

the same trapping region; their normal mode is cooled into the ground state, and the

gate is performed. They can then be moved back into storage.

These traps are also being dramatically shrunk down in size. Instead of the three-

dimensional arrangement of electrodes used in earlier experiments, all of the

electrodes in these new experiments are laid out on a flat surface, using photolitho-

graphic techniques. This allows many trapping regions to be established close to

each other, so that ions can be transferred between them without their electronic

states begin disturbed.

Another important breakthrough was the use of “sympathetic cooling.” In

addition to the ions used to store qubits, additional ions of a different atomic species

are included. These ions do not store qubits, but because they have different

resonance frequencies, they can be laser-cooled continuously without interfering

with the other ions.

Performance

Experiments at present can handle 4–8 ions in a trap quite well—for certain special

purposes, as many as 12 ions have been manipulated, though this is definitely not

general-purpose. They can do hundreds of one- and two-bit gates before losing

coherence. Progress is also being made in designs which permit parallel operations

on many qubits at once, which would make concatenated codes and fault-tolerant

design possible. The gates at present are done with a fidelity of 95–99%. Ion traps

are widely considered the mostly likely to succeed in building a medium-scale

quantum computer in the not-too-distant future (if all goes well, within the next

5–10 years). At present, ion traps are the leading contenders for scalable quantum

computing.
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Superconducting Qubits

LC Circuits

A type of circuit that is well-known from classical circuit theory is the LC
circuit, in which an inductor and a capacitor cause oscillations in the flux of a

circuit loop. The energy function for this circuit can be written

H ¼ Q2

2C
þ F2

2L
; o ¼ 1

ffiffiffiffiffiffi
LC
p :

Here, Q is the charge on the capacitor, F is the magnetic flux in the inductor, and

C and L are the capacitance and inductance.

We can make circuits smaller and smaller, so that Q and F become

noncommuting quantum observables, like position and momentum:

½F̂; Q̂� ¼ F̂Q̂� Q̂F̂ ¼ i�h:

But any quantum effects are masked by resistance, which causes decoherence.

We can get rid of this decoherence by going to very low temperatures where our

circuit is superconducting. The electrons become bound into Cooper pairs, and all

resistance vanishes. The phase is well-defined and the system is a quantum har-

monic oscillator.

Josephson Junctions and Superconducting Qubits

A superconducting LC circuit would not work as a qubit, because (like any

harmonic oscillator) it has infinitely many evenly-spaced energy levels; resonant

driving does not let us single out two levels to use as j0i and j1i, nor perform gates

on this subspace alone.

We can fix this problem by adding a Josephson junction to the circuit. This is a

thin insulating barrier between two ends of superconductor. Classically this would

act as either an open circuit, or at best a capacitor; but in the quantum regime,
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Cooper pairs can tunnel across the gap, so a current can flow. The effect of

including a Josephson junction is to add a nonlinear term to the harmonic oscillator

potential.

The potential with the added Josephson junction takes this form:

UðFÞ ¼ EJ 1� cos 2 p
Fex � F

F0

� �� 
þ F2

2L0
;

where F0¼h=2e is the quantum of flux, Fex is the external bias flux, and EJ is the

Josephson energy, which is proportional to the critical current through the junction.

The behavior of the circuit is determined by the applied bias flux Fex and the

ratio EJ=EC where EC is the capacitor charging energy EC ¼ e2=2C. This leads to
three different designs for superconducting qubits. The three qubit types are the

charge qubit, the flux qubit, and the phase qubit.

• Charge qubit (Cooper-pair box): omits the inductance L and uses the two lowest

levels of the cosine potential for j0i and j1i. These represent the absence and

presence of a single extra Cooper pair on the “island” of superconducting metal.

• Flux or persistent-current qubit: uses a double-well potential representing cur-

rent circling clockwise or counterclockwise.

• Phase qubit: uses bias to produce unequal wells. The lowest two levels of the

higher well are j0i and j1i; the lower well is used to make measurements.

Quantum Gates

The level separations in superconducting qubits are typically in the range 5–10 GHz

(microwaves). Single-bit quantum gates can be done using resonant driving, just as
for the ion trap, but at much lower frequencies.

A one-qubit gate is performed by applying a pulse of RF, tuned to the precise

resonance frequency between (e.g.) j0i and j1i. This can produce an X or Y gate.

A Z gate can be done by using the energy splitting between j0i and j1i to produce a
relative phase. The pulse can be produced by an external signal generator, and

carried to the qubit by wires. RF engineering can be done with great precision; these

pulses have very exact timing and frequency control.

As for two-qubit quantum gates, superconducting qubits are (relatively) macro-

scopic objects—a typical qubit is mms or 10s of mms in size. Therefore it is straight-

forward to couple nearby qubits either capacitively or inductively. A disadvantage of

this scheme, however, is that only neighboring qubits can be coupled, and the coupling

is always turned on. (This is not necessarily a fatal problem, however.)

A more flexible scheme uses a tuneable coupler. This is an inductance that can

be controlled by externally applied fields. It can also couple qubits that are not

directly adjacent. This has been demonstrated experimentally for phase qubits.

It is also possible to couple two qubits indirectly, by coupling each of them to the

same transmission line resonator. This acts like a bus, similar to the vibrational
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mode in an ion trap quantum computer. By resonant driving, one can conditionally

excite a microwave photon in the resonator from one qubit, absorb and re-emit it

from another, and reabsorb it at the first, to produce an effective gate for two qubits.

One can also couple two qubits by tuning them close to resonance, but far enough

that no actual photon is emitted or absorbed. This is slower than the first scheme, but

less sensitive to photon loss. Transmission line resonators can couple qubits that are

physically far apart—it has been demonstrated at distances of millimeters.

Measurement

Measurement of superconducting qubits is one of the most difficult problems,

because it is difficult to do without allowing in outside noise, causing decoherence.

• Charge qubits can be measured by charge detectors.

• Flux qubits have been measured in different ways, but generally by inductive

coupling to a nearby microscopic device, such as a SQuID.

• Phase qubits can be measured destructively by lowering the energy barrier to

induce tunneling into the deeper well. This produces a detectable current, but

destroys the state. Nondemolition measurement has been demonstrated more

recently by coupling to a transmission line resonator to produce a state-dependent

phase shift.

Decoherence

Because superconducting qubits are macroscopic objects, they are subject to many

sources of noise. Early qubits had very short decoherence times—on the order of

1 ns. Improved design and fabrication have greatly improved this, bringing

lifetimes up to ~1 ms.
The exact sources of decoherence are not completely known. Experimentalists

believe that the qubits couple to microscopic degrees of freedom that arise from

defects in the bulk substrate, in the insulating layer, and in imperfections in the

circuit construction.

Measurement can also open up new sources of noise—for instance, thermal

noise from an external amplifier can leak down the transmission line.

State of the Art

Superconducting qubits have made the most impressive progress in the last few

years, raising their decoherence times by orders of magnitude and demonstrating

entanglement between two and three qubits. It is also possible to couple qubits that

are physically far apart. Experimenters are currently planning to scale up their

systems to include 5–10 qubits and multiple transmission line couplers (See, e.g.,

Martinis et al. 2002; Niskanen et al. 2007; Lupascu et al. 2007 and many others).
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On a different scale, and pursuing a different methodology, a private company,

D-Wave, has built a chip with 128 qubits. This is not a general-purpose quantum

computer, however, but rather an adiabatic quantum computer.

Other Systems

Many other systems are being actively pursued for quantum computation. Here are

a few of the most promising.

• Liquid-state NMR. The most impressive experiments so far have been done

using liquid-state NMR at room temperature, including a demonstration of

Shor’s algorithm using six quantum bits. However, this system does not really

satisfy the DiVincenzo criteria, and thus is unlikely to lead to true scalable

quantum computing.

• Solid-state NMR. There are various schemes, using the spins of nuclei in

crystals; or using the nuclei of phosphorus atoms embedded in silicon, coupled

via electron spins.

• Quantum dots. These are tiny devices that serve as “wells” to hold electrons. The
spin of an electron can serve as the qubit, or the location of the charge in one of

two dots. Like superconducting qubits, this work draws on the large amount of

technological expertise at building ever-smaller solid-state devices.

• Linear optical QC. It is possible for photons to serve as qubits (as we saw in

looking at quantum cryptography), and they have very low rates of decoherence,

but it is hard to make them interact; this makes it difficult to build two-bit gates.

It is possible to build probabilistic two-bit gates, however, by passing photons

through interferometers and measuring some of the outputs.

It is still too early to know which technology may eventually win out (For a

recent review of different experimental implementations and their current state of

the art, see Ladd et al. 2010).

Further Topics

This chapter has only scratched the surface of quantum computing. Many other

algorithms have been discovered since the pioneering work of Deutsch, Shor, and

Grover. Moreover, the practical issues of building a quantum computer have been

the subject of intensive research. A new theory of quantum error correction has

been developed, proving that it is possible (in principle) to construct quantum

computers that can scale up to problems of any size, provided that the intrinsic

noise levels per operation are sufficiently low. Experimental efforts have

concentrated on developing hardware capable of achieving those low noise levels,
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and combining these elements into larger systems. This work is in many ways still

in its infancy, but the improvement is already very impressive.

Other research has tried to place quantum computers into the hierarchy of

computational complexity classes. Whole new classes have been developed for

quantum computers, and computer scientists have looked for problems that separate

the performance of quantum and classical algorithms. This work, too, is only at the

beginning.

Finally, the use of quantum systems for communications has also become a

vibrant field of its own. Shannon’s information theory has been supplemented by

the use of new, essentially quantum resources: quantum channels, shared entangled

states, and others. This has led to a new, rich topic of quantum information theory,

including puzzling protocols such as quantum teleportation, quantum key distribu-

tion, and quantum superdense coding. The field of quantum information processing

continues to grow and flourish in a remarkable way; it is a very exciting time.
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Chapter 15

Numerical Thinking in Algorithm

Design and Analysis

Shang-Hua Teng

Numerical Thinking

To me, numerical analysis is one of the most fascinating fields in computing. It is at

the intersection of computer science and mathematics; it concerns subjects that can

be either continuous or discrete; it involves algorithm design as well as software

implementation; and it has success throughout engineering, business, medicine,

social sciences, natural sciences, and digital animation fields. Its community has

both theorists and practitioners, who often respect and admire each other’s work –

in fact, in this area there are many practitioners who are also great theoreticians. Its

objectives to solve larger and larger problems have pushed the envelope of com-

puter science, particularly in the advancement of computer architectures, compiler

technologies, programming languages, and software tools. Its collaborative culture

and genuine need to share data and information among scientists and engineers

have led a physicist to make a connection between the hypertext idea and the

Internet protocols to create the world wide web. Many pioneers in computing

including John von Neumann, Alan Turing, Claude Shannon, Richard Hamming,

James Wilkinson, Velvel Kahan, and Gene Golub contributed to this field, not to

mention the foot prints left by many great minds before them, e.g., Newton’s

method, Lagrange interpolation, Gaussian elimination, Euler’s method, Jacobi

iteration, and Chebyshev polynomials.

Inspite of its glamorous history, many computer science students may have

completed their undergraduate degrees or even Ph.D. degrees without taking any

class in Numerical Analysis after taking the linear algebra class during their

sophomore year. I hope this will change because during the last two decades, we

have seen several striking successes in the use of numerical methods & concepts
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ranging from web search (PageRank) & data mining (Latent Semantic Indexing),

to digital animation (Photoreal Digital Actor) & image processing (Wavelets).

“Numerical thinking” is the process of discovering useful connections between

numerical analysis and other fields in computing. In this article, I would like to

share with you two examples in which numerical thinking has significantly

impacted the research of my collaborators and myself in algorithm design and

analysis. The first example is smoothed analysis, an algorithm analysis framework

towards explaining the good practical behaviors of algorithms and heuristics. The

second example is the Laplacian paradigm, an emerging algorithmic framework for

designing nearly-linear time network analysis algorithms that process massive

graphs. I hope these two examples will encourage more researchers to use numeri-

cal thinking in their work. I also hope that more and more of our students and

scholars will be exposed to the principle of numerical analysis.

Smoothed Analysis of Algorithms

Applying stability analysis to algorithms, smoothed analysis (Spielman and

Teng 2004) provides a framework aiming to rigorously explain the practical

success of several algorithms and heuristics that have poor worst-case complexity.

The rapid progress in this area has underscored the promise and importance of

perturbation in algorithm analysis. Perturbation has also been instrumental in

several recent breakthroughs in algorithm design and complexity theory. It is

used in the solution of problems ranging from mesh generation to mathematical

optimization to algorithmic game theory.

In section “Algorithm Design and Analysis with Perturbations”, I survey some

of these advances. I will focus on the role of perturbations in both algorithm design

and algorithm analysis.

The Laplacian Paradigm

In section “The Laplacian Paradigm: Emerging Algorithms for Massive Graphs”,

I discuss an emerging paradigm for designing efficient graph algorithms. This

paradigm, which we will refer to as the Laplacian Paradigm, is built on a recent

suite of nearly-linear time primitives in spectral graph theory developed by

Spielman and Teng (2008a,b,c), especially their solver for linear systems Ax¼ b,

where A is the Laplacian matrix of a weighted, undirected n-vertex graph and b is an

n-place vector.
In the Laplacian Paradigm for solving a problem (on a massive graph), we

reduce an optimization or computational problem to one or multiple linear alge-

braic problems that can be solved efficiently by applying the nearly-linear time

Laplacian solver. So far, the Laplacian paradigm has already had some successes.
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It has been applied to obtain nearly-linear-time algorithms for applications in

semi-supervised learning, image processing, web-spam detection, eigenvalue

approximation, and for solving elliptic finite element systems. It has also been

used to design faster algorithms for generalized lossy flow computation and for

random sampling of spanning trees. We hope that the Laplacian Paradigm will

become a useful tool in the development of faster algorithms for solving funda-

mental problems in combinatorial optimization (e.g., the computation of matchings,

flows and cuts), in scientific computing (e.g., spectral approximation), in machine

learning and data analysis (such as for web-spam detection and social network

analysis), and in other applications that involve massive graphs.

Acknowledgements

This article combines and refines my two earlier presentations:

• “Algorithm Design and Analysis with Perturbations,” at the Fourth Interna-
tional Congress of Chinese Mathematicians (2007).

• “The Laplacian Paradigm: Emerging Algorithms for Massive Graphs,” at the 7th
Annual Conference of Theory and Applications of Models of Computation
(2010).

The first presentation, using smoothed analysis as the main example, focused

more on applying numerical principles to algorithm design & analysis. The latter,

centered at the Laplacian Paradigm, is more about the mutual impact of graph

algorithms and numerical algorithms. I hope the materials from these two

presentations together will help to highlight the usefulness of numerical thinking

in algorithm design and analysis.

Both smoothed analysis and the Laplacian paradigm have been a joint work with

Dan Spielman of Yale University.

This research is in part supported by NSF grants CCF 0964481 (AF: Medium:

Smoothed Analysis in Multi-Objective Optimization, Machine Learning, and Algo-

rithmic Game Theory) and CCF 1111270 (AF: Large: Algebraic Graph Algorithms:

The Laplacian and Beyond).

I would like to thank Ed Blum for inviting me to write a chapter for his book

Computer Science: The Hardware, Software and Heart of It. I thank Kanak

Agrawal, Fei Sha, and Ed for their valuable editorial help.

Algorithm Design and Analysis with Perturbations

Perburbation has been part of algorithm design and analysis from the very beginning.

In numerical computing, perturbation is central to stability analysis of numerical

algorithms. In geometric applications, perturbation is one of the main tools for
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handling degeneracy and for designing high-quality finite-precision algorithms. Data

perturbation has also been successfully used in machine learning, data security,

optimization, and designing approximation algorithms.
In the examples to be discussed in this section, perturbation is the key to

smoothed analysis, where it is used to model the imprecision that is often inherent

in practical inputs. Smoothed analysis has been applied to understand the perfor-

mance of several algorithms and heuristics for applications ranging from mathe-

matical programming (Spielman and Teng 2004), clustering (Arthur and

Vassilvitskii 2006), scheduling (Sch€afer et al. 2003), machine learning (Blum and

Dunagan 2002; Kalai et al. 2009), linear system solving (Sankar et al. 2005),

motion planing (Damerow et al. 2003), and local search (Englert et al. 2007). The

rapid progress in smoothed analysis has demonstrated the promise and importance

of perturbations in algorithm analysis.
In this section, I would like to illustrate the usefulness of perturbations in both

algorithm analysis and algorithm design. In addition to smoothed analysis, I will

discuss the role of perturbations in several recent algorithmic breakthroughs. Some

of these algorithmic results were inspired by the success of smoothed analysis,

while others were obtained independently. Their approaches are similar. They often

use the following property of the underlying problems:

An input instance can be transformed so that the transformed instance admits some

perturbations whose solutions can be found efficiently. Moreover, the solutions of the

perturbed instances are useful for solving the original instance.

I will discuss three examples. The first example, from Cheng et al. (2000), uses

perturbations to solve a long-term open question in three-dimensional mesh gener-

ation. It uses the following geometric fact: If the Delaunay triangulation of a set of

three-dimensional periodic points has a bounded radius-edge ratio, then there is a

perturbation of the weights of these points so that their weighted Delaunay triangu-

lation has a bounded aspect-ratio (See section “Well-Shaped Mesh Generation” for

the definitions of radius-edge ratio, aspect ratio, and weighted Delaunay triangula-

tion). The second example, from Kelner and Spielman (2006), gives a perturbation-

based simplex algorithm. This algorithm is the first provable polynomial-time

simplex-like algorithm for linear programming. It uses the following geometric

property: If the righthand of the inequalities of a bounded polytope is perturbed,

then the projection of the perturbed polytope onto a randomly chosen two-dimen-

sional subspace has polynomial shadow size, with high probability. The third

example, from Sankar et al. (2005), provides a robust Gaussian elimination algo-

rithm for solving linear systems. It uses the observation that the smallest singular

value of a perturbed matrix is not likely to be too close to 0.
Finally, I will review a recent result of Chen et al. (2009a) on the approximation

and smoothed complexity of the two-player Nash equilibrium. In this example, the

attempt to prove that the smoothed complexity of the classic Lamke–Howson

algorithm for two-player Nash equilibria is polynomial, has eventually led to the

discovery of a fundamental result about the approximation complexity of Nash

equilibria. This result can also be extended to characterize the smoothed and

approximation complexity of market equilibria.
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Smoothed Analysis

In “Challenges for Theory of Computing: Report for an NSF-Sponsored Workshop

on Research in Theoretical Computer Science” (1999), its authors Condon,

Edelsbrunner, Emerson, Fortnow, Haber, Karp, Leivant, Lipton, Lynch, Parberry,

Papadimitriou, Rabin, Rosenberg, Royer, Savage, Selman, Smith, Tardos, and

Vitter wrote:

While theoretical work on models of computation and methods for analyzing algorithms

has had enormous payoff, we are not done. In many situations, simple algorithms do well.

Take for example the Simplex algorithm for linear programming, or the success of

simulated annealing of contain supposedly intractable problems. We don’t understand

why! It is apparent that worst-case analysis does not provide useful insights on the

performance of algorithms and heuristics and our models of computation need to be further

developed and refined. Theoreticians are investing increasingly in careful experimental

work leading to identification of important new questions in algorithms area. Developing

means for predicting the performance of algorithms and heuristics on real data and on real

computers is a grand challenge in algorithms.

Smoothed analysis is largely motivated by this grand challenge concerning the

fundamental discrepancy between the traditional theoretical analyses and the prac-

tical performance of algorithms.

The simplex method has been effectively used since the 1950s to solve optimi-

zation problems in numerous industrial applications. It solves a mathematical

program given by

maximize cTx

subjectto Ax � b; (15.1)

where A is an m by n matrix, b is an m-place vector, and c is an n-place vector.
The solution space {Ax� b}, if feasible, defines a convex polytope. A linear

programming problem may have three types of answers. If {Ax� b} is empty, then

the program does not have a solution; if {Ax� b} is not empty but unbounded in

the direction of c, then the solution is unbounded, otherwise, it has a finite solution

at an extreme vertex of the polytope {Ax� b}.

The simplex method usually has two phases. In Phase I, it determines the type of

the answer. If the program is feasible with a bounded solution in the direction of c,

Phase I also produces an initial extreme vertex v0 on the polytope {Ax� b}. In

Phase II, it iterates starting from v0, where in the i-th iteration (i� 1), if vi� 1 has a

neighboring vertex vi whose objective value cTvi is better than cTvi� 1, then enter

iteration i+ 1, or else, terminate with vi� 1 as the final result.

Despite its excellent practical behavior, it is well known that there are linear

programming instances that force the simplex method to take exponential time to

complete its iterative search.
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How to Model Real Data and How to Measure Practical Performance?

Although intuitively simple, data modeling for practical computing is in fact

extremely challenging, and often nearly impossible. Part of the difficulty comes

from the fact that most algorithms are designed to handle a large range of data

instances rather than just a particular instance. Yet, most of the time, users of an

algorithm care more about the performance of the algorithm on instances they

encounter, while the subsets or the distributions of instances encountered usually

vary from user to user.

For example, when a financial analyst needs to apply an optimization algorithm

A to design a portfolio for financial data x, she is mostly interested in the perfor-

mance of A on data x. However, as the financial data changes from customer to

customer, she may need to gain more understanding of the performance of A on the

various instances that she receives. Furthermore, if there are ten optimization

algorithms A1, . . . A10 for portfolio design, how should she decide which one

to buy?

Let O denote the set of all possible financial data instances. Let fA(x) denote the
instance-based measure of the performance of an algorithm A on x∈O. The
complete measure of the performance of A is given by its performance landscape

½ fAðxÞ jx 2 O �:

Note that if O is finite, the performance landscape can be viewed as a jOj
dimensional vector.

Now, suppose the financial analyst receives the performance landscapes

½ fA1
ðxÞ jx 2 O � ::: ½ fA10

ðxÞ jx 2 O �;

of all ten optimization algorithms, how should she decide which one is better?

• Should she use the performances of these algorithms on the instance of her most

valued customer?

• Should she use the best performances of these algorithms over a set of bench-

mark instances or all possible instances?

• Should she use the worst performances of these algorithms over a set of

benchmark instances or all possible instances?

• Should she use the average performances of these algorithms over a set of the

benchmark instances or all possible instances?

• Should she assume that her data arises from certain distribution?

• Should she assume that her data possesses certain property?

• How should she choose her benchmark data? Should she not include any data

that rarely occurs in practice?

Using the worst performance of an algorithm over the domain of all possible

data as measurement, the traditional worst-case analysis can be conducted even
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when we have little information about the real data. Such analysis gives an absolute

performance guarantee regardless of the instances that may emerge in practice, since

the worst-case guarantee is completely independent of any particular instance. For the

sake of illustration, imagine a tourist comes to LA and seeks advice on the amount of

elevation he should be prepared to go up to while climbing the Hollywood hill,

we answer, “no more than 29,035 ft” (because we know that the height of the peak

of Mount Everest, the tallest peak on the earth is 29,035 ft). If he then asks, “How

about Mt Hood? I plan to go there too.”We can still answer “no more than 29,035 ft!”

The worst-case analysis is particularly useful for those algorithm analyses where

one can show that the algorithm under consideration has a desirable worst-case

behavior. However, when the worst-case performance of an algorithm is far from

being desirable and the worst-case instance rarely occurs in practice, then we could

be overly pessimistic about the algorithm.

Thus, to better measure the performance of an algorithm on real data, we need

better understanding and a more refined model of input data. Average-case analysis
was an important step in theoretical computer science to model the input. In an

average-case analysis, one assumes there is a distribution p over the input O,
and measures the performance of an algorithm A by its expected performance

Ex∈ p(O)[fA(x)]. The major challenge in conducting meaningful average-case

analyses, however, is to choose a meaningful distribution p that simultaneously

lends to rigorous mathematical analysis and is close to the practical distribution of

inputs (Spielman and Teng 2009).

To overcome the difficulty of average-case and worst-case analyses, theoreticians

sometimes conduct property-based performance analysis (Lipton et al. 1979; Miller

et al. 1997, 1998; Spielman and Teng 1996; Mitzenmacher and Vadhan 2008; Balcan

et al. 2009) by assuming that inputs have certain property. For example, in social

network analysis, one may assume that the input graph satisfies some powerlaw

degree distribution, while in the finite-element analysis, one may assume that the

input graph is a well-shaped mesh. By assuming input instances satisfy certain

property, better performance guarantees are usually possible. For instance, in our

earlier example, if we know that the tourist is only considering mountain climbing in

the US, we could give him a better answer, “no more than 20,320 ft (the height of

Mount McKinley in Alaska).”

Smoothed analysis takes a step forward in combining property-based analysis

with worst-case & average-case analyses in its attempt to model real data. It focuses

on the imprecision property of real data.

To illustrate the basic imprecision property, let us consider the following

example: If one asks, “What is IBM’s current stock value?”, one may check its

current market value and return with $168.28. But an hour later, it may become

$164.75 and another hour later, $170.62.

So, how should we model IBM’s stock value? Well, this value varies from

measurement to measurement. But if someone were to say that IBM’s stock value

is $50 or $800, then most likely you would say that it can’t be true. On the other

hand, if someone said that IBM’s stock value is $140 or $200, you may think it

more believable.
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One way to express this simultaneous uncertainty and certainty in our view of a

stock price is to write it as the sum of two numbers:

sIBM ¼ �sIBM þ rIBM

where �sIBM is determined by the intrinsic business value of IBM, and rIBM is a

random number that models the imprecisions introduced by the trading market. In

this case, �sIBM could be equal to $165, while rIBM is a random variable from certain

distribution.

Suppose the input data for portfolio design consists of the stock values of

n companies, in smoothed analysis, we assume the value of each stock can be

expressed as the sum of two numbers, where the first number is given by the

company itself, while the second number models the random imprecision from a

stochastic distribution when the market makes its assessment.

In other words, in the smoothed model, an input is neither completely random nor

completely arbitrary – inputs are generated from a two-step process: In this first step,

an instance is generated and in the second step, the instance from the first step is

slightly perturbed. The perturbed instance is the “real data”, and is the input to the

algorithm. In the section below, we define a measure of performance under the

smoothed model.

I would like to emphasize that smoothed analysis is only a step in our attempt to

model real data in explaining the behavior of algorithms in practice. Modeling real

data and measuring practical performance continue to remain grand challenges

in computing.

Smoothed Complexity

Let setDn denote the set of all input instances whose input size is n. SupposeQ(x) is
a measure on input x. For algorithmic studies,Q(x) may be the time complexity, the

space complexity, the parallel complexity, or the cache complexity of an algorithm

when x is its input. For non-algorithmic studies such as in matrix theory, x could be

a matrix and Q(x) could be its condition number. In our example from the last

section, x could be a mountain and Q(x) could be the height of its peak.

The traditional worst-case measure is then given by:

W Qn½ � ¼ max
x2Dn

QðxÞ:

To define the traditional average-case measure, one first determines a distribu-

tion of the inputs and then computes the expected measure assuming inputs are

drawn from this distribution. Supposing S is a distribution over Dn, the average-

case measure according to S is

AVGS Qn½ � ¼ Ex2SDn
QðxÞ½ �;
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where we use x2SDn to denote that x is randomly chosen from Dn according to

distribution S.
To define smoothed complexity, we first need to determine a perturbation model

that best captures the randomness and imprecision in the formation of inputs. We

then assume that inputs are subject to random perturbations according to this

perturbation model.

For problems arising in numerical computing, optimization, and computational

geometry, we can often assume Dn ¼ Rn. The popular perturbation models include

Gaussian and uniform perturbations. Let �x 2 Rn. As-Gaussian perturbation of �x is a
random vector x ¼ �xþ g, where g is a Gaussian random vector of variance s2. A s-
uniform perturbation of �x is a random vector x chosen uniformly from the ball of

radius s centered at �x. For combinatorial problems, a commonly used model is the

Boolean perturbation. Let �x ¼ ð�x1; ::: ; �xnÞ 2 0; 1f gn or� 1, 1n A s-Boolean pertur-
bation of �x is a random string x ¼ ðx1; ::: ; xnÞ 2 0; 1f gn or� 1, 1n, where xi ¼ �xi
with probability 1�s.

Definition 1 (Smoothed Measure). LetR ¼ [n;sRn;s be a family of perturbations
over D¼ [nDn, where Rn,s defines for each �x 2 Dn a perturbation distribution of
�xwith magnitudes. Suppose Q(x) is a measure of input x. The smoothed Qn measure
is then

max
�x2Dn

ðEx Rn;sð�xÞ QðxÞ½ �Þ; (15.2)

where x Rn;sð�xÞ means x is chosen according to distribution Rn;sð�xÞ.
When time complexity is the main concern, the central question in smoothed

analysis naturally is whether an algorithm has polynomial smoothed complexity.

Definition 2 (Polynomial Smoothed Complexity). Given a problem P with input
domain D¼ [nDn. Let R ¼ [n;sRn;s be a family of perturbations where Rn,s with
magnitudes. Let A be an algorithm for solving P and TA(x) be the time complexity for
solving an instance x∈D. Then algorithm A has polynomial smoothed complexity
if there exist constants n0, s0, c, k1 and k2 such that for all n� n0 and 0�s�s0,

max
�x2Dn

ðEx Rn;sð�xÞ TAðxÞ½ �Þ � c � s�k2 � nk1 : (15.3)

The problem P is in smoothed polynomial time with perturbation model R if it
has an algorithm with polynomial smoothed complexity.

The smoothed complexity of an algorithm is measured in terms of input size as

well as magnitude of the perturbations. As the perturbation magnitude increases

continuously starting from 0, the smoothed complexity interpolates between the

worst-case and average-case complexity (Spielman and Teng 2004).
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Smoothed Analysis of the Simplex Algorithm

Spielman and Teng (2004) introduced smoothed analysis to resolve the discrepancy

between the poor worst-case complexity and the impressive practical performance

of simplex algorithms. They analyzed the stability of the complexity landscape of

simplex algorithm with shadow-vertex pivoting rule, assuming input instances are

subject to slight random perturbations.

In (Spielman and Teng 2004), the following smoothed model is used, For any
�A; �b;�c, the perturbations of the linear program defined by ð�A; �b;�cÞ is

max cTx subject to Ax � b;

where A, b, and c, respectively, are obtained from �A; �b;�c by a Gaussian perturba-

tion of variance ðjj�A; �b;�cjjF � sÞ2; where j j (A, b, c) j j F is the square root of the sum
of squares of the entries in A,b, and c.

A Key Perturbation Lemma

Let A be a s-Gaussian perturbation of an m �n matrix �A with jj�AjjF � 1 and 1 be

the m-vector all of whose entries are equal to 1. Then the polytope {x :Ax� 1} is

always feasible with 0 as a feasible point. For any two n-vectors c and t, the

projection of the polytope {x :Ax� 1} on the two-dimensional plane spanned by

c and t is a polygon and is called the shadow of the polytope onto the plane spanned

by c and t. We denote this shadow by Shadowt cA. This shadow is a random

polygon.

The analysis of Spielman and Teng hinges on the following perturbation prop-

erty that the expected size of the projection of a perturbed polytope onto a two-

dimensional subspace is polynomial in number of constraints, dimension, and the

inverse of the magnitude of the perturbation.

Lemma 1 (Smoothed Shadow Size). For any m � n matrix �A with jj�AjjF � 1, let
A be a s-Gaussian perturbation of �A. For any two n-place vectors c and t

EA Shadowt;c Að Þ�� ��� � ¼ Oððmn3Þðmin ðs2; 1=ðn logmÞÞ�3Þ:

Smoothed Complexity of the Shadow-Vertex Method

By proving that the smoothed complexity of the simplex algorithm is polynomial in

the size of the linear program and the inverse of the magnitude of perturbations,

Spielman and Teng showed that the imprecision of the practical inputs alone would

guarantee the good performance of the simplex algorithm.
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Theorem 1 (Smoothed Complexity of a Simplex Algorithm). For any
�A 2 Rm�n; �b 2 Rm;�c 2 Rn with jj�A; �b;�cjj2 � 1, let A,b,c be Gaussian
perturbations of �A; �b;�c, respectively, of variance s2. Then there exists a two-
phase simplex algorithm to solve the linear program defined by A,b,c, in expected
time polynomial in m,n and 1/s.

While the formal analysis of this theorem and Lemma 1 requires some mathemat-

ical subtlety, the intuition behind the analysis is in fact simple. In Lemma 1, when

feasible, the projection Shadowt, c(A) of the polytope x :Ax� 1 on the two-dimen-

sional plane spanned by c and t is a polygon. To prove that EA(Shadowt, c(A)) is

polynomial in m, n and 1 /s, we show that due to the noise in A, the probability that

this random polygon has a short edge is small. Moreover, we prove that it is unlikely

that two adjacent edges in this random polygon meet at an angle too close to p.
We then apply Lemma 1 to bound the complexity of each phase in the simplex

algorithm, where each phase defines a shadow polygon. In the proof, we need

to carefully handle the probability dependency between these two phases. In

(Vershynin2006),Vershyninobtained an improved resultwith amuch simplifiedproof.

Other Examples of Smoothed Analysis

Smoothed analysis has been applied to analyze the performance of several practical

algorithms. The following are a few examples:

• In machine learning, Blum and Dunagan (2002) proved that the perceptron

algorithm usually has polynomial-time smoothed complexity. As another appli-

cation of smoothed analysis in machine learning, Kalai et al. (2009) proved that

all decision trees are PAC-learnable from most product distributions.

• In clustering, Arthur et al. (2009) recently settled an early conjecture of Arthur

and Vassilvitskii (2006) by showing that Llyods k-means algorithm has polyno-

mial smoothed complexity.

• In local search, Englert et al. (2007) showed that the smoothed complexity of the

2-Opt local search algorithm for TSP is polynomial.

• In stochastic optimization, Nikolova et al. (2006) proved that the smoothed

complexity of the parametric shortest-path problem is polynomial.

• In combinatorial optimization, R€oglin and V€ocking (2007) demonstrated that

various integer programming problems for packing and covering with fixed

number of constraints are in smoothed polynomial time.

• In linear programming, Vershynin (2006) greatly improved the analysis of

Spielman andTeng and showed that the smoothed complexity of the shadow-vertex

method depends only logarithmically in the number of variables.

• In mathematical programming, Kelner and Nikolova (2007) showed that the

general fixed-dimensional quasi-concave minimization problem is in smoothed

polynomial time.

• In multiobjective optimization with a constant number of objective functions,

R€oglin and Teng (2009) showed that the number of Pareto points in polynomial.
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In these results, various structural properties of perturbed instances have been

discovered and used. In recent years, motivated by smoothed analysis, there have

been several substantial advances in analyzing the condition number of perturbed

matrices. For real matrices, Sankar et al. (2005) established the following smoothed

bound on the condition number:

Theorem 2 (Sankar-Spielman-Teng). Let �A be an arbitrary square matrix
in Rn�n, and let A be a s-Gaussian perturbation of �A. Then

PrA jjA�1jj2 � x
� � � 2:35n1=2ðxsÞ�1:

Drawing from this continuous theorem and an earlier result of Edelman on

random matrices, Spielman and Teng asked the following conjecture:

Conjecture 1 (Spielman-Teng). Let A be an n by n matrix of independently and

uniformly chosen� 1 entries. Then

PrA jjA�1jj2 � x
� � � n1=2x�1 þ an:

Moreover, for any n by nmatrix �A of� 1
0
s. LetA be a s-Boolean perturbation of

�A. Then

PrA jjA�1jj2 � x
� � � Oðn1=2ðxsÞ�1Þ:

Recently, Vu and Tao (2007) and Rudelson and Vershynin (2006) proved this

conjecture.

Perturbation-Based Algorithm Design

In this section, we present three examples in which perturbation has played a

critical role in algorithm design. All these algorithms use the following design

paradigm:

Perturbation-Based Algorithm Design

1. Determine a form of instances and a set of input conditions for which efficient

algorithm exists.

2. Transform the given input instance to the desired form.

3. Perturb the transformed instance so that the conditions above are satisfied.

4. Solve the perturbed instance.

5. If the solution to the perturbed instance is too far from being a solution to the

transformed instance, iteratively apply the transformation/perturbation steps to

close this gap.
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Well-Shaped Mesh Generation

Our first example deals with three-dimensional mesh generation. To state the

problem, we first introduce a few notations. Suppose S0∈ [0, 1)3 is a finite set of

points. Let Z3 be the three-dimensional integer grid. Then, S ¼ S0 þ Z3 is called the

periodic point set generated by S0. The consideration of periodic point sets suppress
the distraction of boundary effect (Cheng et al. 2000).

The radius-edge ratio of a tetrahedron is the ratio of the radius of its

circumsphere to the length of its shortest edge (Miller et al. 1995). The aspect-
ratio of a tetrahedron is the ratio of the radius of its smallest containing sphere to the

radius of the largest sphere contained in the tetrahedron (Cheng et al. 2000). For a

constant r> 1, a periodic point set S satisfies the Ratio Property [r], if the radius-
edge ratio of every tetrahedron of the Delaunay triangulation of S is at most r.

Problem Statement

• Input: a periodic point set S 2 R3 satisfying Ratio Property [r] and a shape

parameter t.
• Output: a triangulation T of S such that the aspect-ratio of every tetrahedron in

T is at least t.

We refer to the triangulation T as a t-well-shaped mesh of S.

A Key Perturbation Lemma of Weighted Points

A weighted 3D point p̂ ¼ ðp;PÞ 2 R3 � R1 is the sphere of radius P centered at p.

Traditional points can be viewed as weighted points with 0 weight. The weighted
distance between weighted points p̂ and q̂ ¼ ðq;QÞ is defined as

jjp̂� q̂jj ¼ ðjjp� qjj2 � P2 � Q2Þ1=2:

The weighted points p̂ and q̂ are orthogonal if their weighted distance is 0.

The statement that “every four points in 3D have a circumsphere” can be

extended to “every four weighted points in 3D have a common orthogonal sphere.”

This sphere is called their orthosphere. With this extension, we can easily general-

ize the concept of Voronoi Diagram and Delaunay triangulation of points in 3D to

weighted Voronoi Diagram and weighted Delaunay triangulation of weighted 3D

points. In other words, a triangulation T of a set Ŝ of weighted points is a weighted

Delaunay triangulation of Ŝ if the orthosphere of every tetrahedron has a non-

negative distance to each of the weighted points in Ŝ.
In the context of mesh generation, Cheng et al. (2000) viewed the input point set

S as a set of weighted points (with weight 0). They proved the following statement:

There exists a perturbation to the weights to make the weighted Delaunay
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triangulation well-shaped. In particular, they proved the following key perturbation

lemma about weighted Delaunay triangulation:

Lemma 2 (Cheng-Dey-Edelsbrunner-Facello-Teng). For any r> 0, there exists
a constant t > 0 depending only on r such that for every periodic point set S
satisfying the Ratio Property [ r ], there exists a perturbation Ŝ to the weights
associated with points with centers S, such that the weighted Delaunay triangula-
tion of Ŝ is t-well-shaped.

We refer to the Ŝ as a sliver-free perturbation of S.

Perturbation-Based Algorithms and Extensions

The perturbation Lemma 2 can be utilized for efficient mesh generation.

Algorithm SliverExudation(S)

1. Compute a sliver-free perturbation of the weights of S and let Ŝ denote the

resulting weighted points.

2. Return the weighted Delaunay triangulation of Ŝ.

With some additional perturbation techniques, Cheng et al. (2000) presented two

weight assignment algorithms for Step 1 above. The first one is sequential and the

second one is parallel. Both of these algorithms are asymptotically optimal.

SliverExudation can then be used to design an efficient mesh generation

algorithm for the following more general input.

• Input: a periodic point set S ¼ S0 þ Z3 and a shape parameter t,
• Output: a small point set S

0
0 and a triangulation T of S \(S00 + Z3) such that T is

t-well-shaped.

Algorithm WellShaped3DMeshingOfPeriodPoints(S)

1. Let S
0
0¼ IterativeDelaunayRefinement(S).

2. Return SliverExudation(S [(S 00 + Z3))
IterativeDelaunayRefinement(S) starts with the Delaunay triangulation

of S. Initially, S
0
0¼∅. Suppose the current Delaunay triangulation is Tc. If there is a

tetrahedron in Tc with radius-edge ratio more than 2, then add the circumcenter of

that tetrahedron to S
0
0 and let Tc be the Delaunay triangulation of S [(S 00 + Z3). This

refinement step is repeated until all tetrahedra have radius-edge ratios of at most 2.

Shewchuck (1998) proved that IterativeDelaunayRefinement(S) always
terminates with a point set S

0
0 such that (1) S [(S 00 + Z3) satisfies Ratio Property [r]

with r¼ 2 and (2) j S 00 j is within a constant factor needed in the best possible

solution. Therefore, one can show that:

Theorem 3. WellShaped3DMeshingOfPeriodPoints(S), on any periodic
point set S, returns a well-shaped mesh T whose size is within a constant factor
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needed in the best possible solution. Moreover, this algorithm can be implemented
to run in O(jTjlog jTj) time.

Combining the steps of IterativeDelaunayRefinement and SliverEx-

udation, Li and Teng (2001) developed a perturbation scheme: Instead of

inserting the circumcenter of the tetrahedron with radius-edge ratio more than

2 as in IterativeDelaunayRefinement, they find a perturbation of that

circum-center to ensure that the resulting tetrahedron satisfies some additional

properties. They proved the following theorem.

Theorem 4 (Li-Teng). There is a meshing algorithm that for any periodic point
set S, computes a set S

0
0 such that the Delaunay triangulation of S [ (S

0
0 þ Z3) is

well-shaped. Moreover, jS00j is within a constant factor needed in the best possible
solution and the algorithm can be implemented to run in O(jTjlog jTj) time.

This perturbation-based meshing refinement method leads to an algorithm for

handling arbitrary geometry boundaries (Li and Teng 2001), solving a long stand-

ing open question in 3D mesh generation. Another perturbation-based algorithm for

sliver removal is given in Edelsbrunner et al. (2000).

Polynomial-Time Simplex Algorithm

Our second example is about linear programming. We will give a high-level review

of the randomized simplex algorithm of Kelner and Spielman (2006).

Problem Statement

• Input: an m �n matrix A, an m-place vector b, and an n-place vector c.
• Output: if Ax� b is infeasible, then return “infeasible”; if Ax� b is

unbounded in the direction of c, then return “unbounded”, otherwise, return a

vector x satisfying Ax� b that maximizes cTx.

A Key Perturbation Lemma of Polytopes

Let B(0, t) be the ball of radius t centered at the origin. A convex set is k-round if it
contains B(0, 1) and is contained in B(0, k), where B(0, t) is the ball of radius

t centered at the origin.

Lemma 3 (Kelner-Spielman). Let V be the span of two uniformly random unit
vectors. Let P ¼{x j aiTx � 1, for i ∈ [1 : m]} be a k-round n-dimensional polytope
defined by m inequalities. Let Q ¼ fx j aTi x � 1þ ri; for i 2 ½1 : m�g be a random
perturbation of P, where ri is an independent exponentially distributed random
variable with expectation l. Then, the expected shadow size defined by the projec-
tion of Q onto V is at most Oðkmaxð1; l ln nÞm1=2nl�1Þ.
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This lemma can be strengthened to allow one of the unit vectors defining V to be

a slight perturbation of a given vector. Moreover, the assumption that P is k-round
can be removed if one measures the shadow size of Q\B(0, k) instead of the

shadow size of Q onto V.

Perturbation-Based Simplex Algorithm

The basic idea of Kelner and Spielman (2006) is to reduce a linear programming

problem in form (15.1) to the problem of deciding whether a linear program of form

Bw � h; (15.4)

is bounded. This reduction can be performed in polynomial time.

The key observation is that the boundedness of program (15.4) is independent of

the choice of the righthand vector h. For example, one can simply choose h¼ 1.

To use Lemma 3 and its extension for determining the boundedness of (15.4),

Kelner and Spielman choose h to be an exponential perturbation of 1. They then

attempt to solve the boundedness problem by running the shadow-vertex simplex

method: They choose a random objective function c and a properly perturbed

starting direction to define the two-dimensional plane V for the shadow projection.

If the initial program defines a polynomially-round polytope, then the applica-

tion of the shadow-vertex method would yield a randomized polynomial time

algorithm. It returns a pair of vertices that optimize c and� c, from which the

boundedness can be certified. Kelner and Spielman cleverly use the information

when the shadow-vertex method fails to determine the boundedness: They proceed

as if the starting polytope is polynomially round. If the perturbation based shadow-

vertex method did not find an optimal solution to c in polynomial steps, with high

probability, it discovers a point of large norm inside the polytope. This point can be

used to improve the quality of shadow-vertex search: It is well-known that for every

polytope, there exists an affine transformation that makes the polytope

polynomially round. Finding such a transformation is nontrivial. However, a

point in the polytope with large norm can be used to produce a transformation

that improves the roundness of the polytope. Kelner and Spielman use this trans-

formation to compute a better distribution for restarting the shadow-vertex search.

By carefully putting these pieces together, they give the first randomized weakly

polynomial time simplex-like algorithm for linear programming.

Theorem 5 (Kelner-Spielman). If each entry ofA, b, c of a linear program in form
(15.1) is specified with L bits, then the perturbation-based simplex algorithm outlined
above can solve it in O(n3Llog d�1) iterations, with probability at least 1 � d.

Note that one can use standard boosting techniques to further improve the

probability for finding a solution.
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Robust Gaussian Elimination

Our third example is about the design of a robust algorithm for solving linear systems.

Finding the solution to a linear system Ax¼ b is the most fundamental problem in

scientific computing (Strang 1980; Golub and Van Loan 1989; Demmel 1997).

Although the classic Gaussian elimination algorithm takes O(n3) operations to solve

a linear systemwith n variables and n equations, the precision needed can vary greatly
from system to system.

Using standard stability analysis, one can show that at least

maxðb; log2n; log2kðAÞÞ

bits of accuracy are needed to obtain a solution that is accurate to b bits, where

k(A) is the condition number of A. Note that kðAÞ ¼ jjAjj2jjA�1jj2, where

jjAjj2 ¼ max xjjAxjj2=jjxjj2, and j jA� 1 j j 2 is also known as the smallest singular

value of A. Wilkinson (1961) constructed a family of counterexamples showing

that in the worst-case one must use at least O(n) bits to accurately solve every linear
system with the Gaussian elimination algorithm that uses the partial pivoting rule.

Problem Statement

• Input: a linear system Ax¼ b and an integer b.
• Output: a solution to the system that is accurate to b bits.

• Objective: design an algorithm that uses precision linearly in b, log2n, and
log2k(A).

A Perturbation Lemma

Gaussian elimination systematically reduces the input system to ones that have

smaller number of variables: At each step, it chooses one of the equations and one

of the variables, and uses the chosen equation to eliminate the variable from other

equations. Eventually, it either concludes that the system has no solution, multiple

solutions, or exactly one solution. In the last case, the elimination process obtains a

single linear system with only one variable. It then solves that system, and uses

backward substitution to find the solution values of other variables that have been

eliminated. It solves the linear system in the second case similarly.

The choice of the equation and the variable is determined by a pivoting rule.

The simplest pivoting rule is to use the i-th equation to eliminate the i-th variable.

But the pivoting rule commonly used in practice is partial pivoting. In the

i-th step, it chooses the equation in which the i-th variable has the largest

coefficient of absolute value, and uses that equation to eliminate the i-th variable.
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Gaussian elimination with partial pivoting defines a row-permutation matrix P and

factors PA into

PA ¼ LU:

Because of the partial pivoting, all entries in L have absolute value of at most 1.

In his seminal work (Wilkinson 1961), Wilkinson considered the number of bits

needed to obtain a solution with a given accuracy. He proved that it suffices to carry

out Gaussian elimination with

bþ log2ð5nkðAÞjjLjj1jjUjj1=jjAjj1 þ 3Þ

bits of accuracy to obtain a solution that is accurate to b bits. In the formula,jjAjj1 is

the maximum absolute row sum. The quantityjjLjj1jjUjj1jjAjj1 is called the

growth factor of the elimination. It depends on the pivoting rule.

In (Sankar et al. 2005), Sankar et al. established the following smoothed bound:

Lemma 4 (Sankar-Spielman-Teng). For n > e4, let �A be an n-by-n matrix for
which jj�Ajj2 � 1, and let A be a s-Gaussian perturbation of �A, for s � 1/2. Then,

E log rGEWPðAÞ½ � � 3 log2nþ 2:5 log2s
�1 þ 0:5 log 2 log2nþ 1:81;

where rGEWP (A) is the growth factor of Gaussian elimination without pivoting.

A Robust Algorithm for Linear System

AsWilkinson pointed out, in the worst case, one needs logk(A) digits of precision to
solve a linear system, as large errors occur if one uses any fewer bits to store A or b.

Sankar, Spielman and Teng observed that their perturbation lemma above leads to an

algorithm for solving linear systems whose precision only depends upon k(A). The
algorithm is the following: perturb A by a Gaussian of norm at most

Oððn1=2kðAÞÞ�1Þ, then solve the system by Gaussian elimination without pivoting.

It is easy to demonstrate that the solution to this perturbed system is an approxima-

tion of the solution of the original. Moreover, Lemma 4 implies that the elimination

can be performed with low precision, with high probability.

Theorem 6 (Sankar-Spielman-Teng). Let A be an n-by-n matrix and let b be a
vector. If we perturb A by adding a Gaussian random matrix of standard deviation

dð2bþ3n1=2kðAÞÞ�1 and solve the perturbed system using Gaussian elimination
without pivoting and

4bþ 10 logðnÞ þ 3 logðkðAÞÞ þ 5 logð1=dÞ þ 7

bits of precision, then with probability at least 1 � d the solution we obtain is a
solution for the original system that is accurate to b bits.
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Note that one can use standard boosting techniques to further improve the

chance of getting a correct solution in the above theorem without increasing

the required precision. To do so, we apply our robust solver multiple times and

return the most accurate solution. For example, by running our robust solver twice,

we can improve the probability of success from 1� d to 1� d2.
We also note that this bound is only slightly off from the lower bound of log

(k(A)) + b that trivially holds for every algorithm. Although it remains open theo-

retically, in practice, we can apply Gaussian elimination with partial pivoting to

achieve better precision.

Other Algorithmic Applications of Smoothed Analysis

In a recent work, Dughmi and Roughgarden (Dughmi and Roughgarden 2010) gave

a black-box reduction in algorithmic mechanism design for the class of packing

problems. They proved that if packing problem has a fully polynomial time

approximation scheme, then it also admits a truthful-in-expectation randomized

mechanism that is also a fully polynomial time approximation scheme. Their

reduction uses perturbation as a tool to achieve truthfulness. In their proof, they

applied the R€oglin and Teng (2009) characterization of the polynomial smoothed

complexity for binary packing problems.

Smoothed Complexity Versus Approximation Complexity

Perturbations have been used to design approximation algorithms. For example, the

Euclidean TSP approximation algorithms of Arora (1998) and Mitchell (1999) first

perturb each input point to its closest grid point of a chosen scale, and then use the

optimal tour for the perturbed points as the approximation solution.

The connection between the smoothed complexity and approximation complex-

ity can be exploited in the complexity study of both measures. Below, I use the two-

player Nash equilibrium as our example.

A two-player game (Nash 1951; Lemke 1965; Lemke and Howson 1964) can be

specified by a pair of m �n payoff matrices (A,B). Without loss of generality, we

can assume that all payoff entries are between 0 and 1.

Let Pn denote the set of all probability vectors in Rn, i.e., non-negative, n-place
vectors whose entries sum to 1. Then, two column vectors ðx	 2 Pm; y	 2 RnÞ is a
Nash equilibrium of (A,B) if for all x 2 Rm and y 2 Rn:

ðx	ÞTAy	 � xTAy	 and ðx	ÞTBy	 � ðx	ÞTBy:
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For a positive parameter e, an e-approximate Nash equilibrium of a two-player

game (A,B) is a pair ðx	 2 Rm; y	 2 RnÞ such that for all x 2 Rm and y 2 Rn:

ðx	ÞTAy	 � xTAy	 � E and ðx	ÞTBy	 � ðx	ÞTBy� E:

In the smoothed analysis of the two-player game, we consider perturbed games

in which each entry of the payoff matrices is subject to a small and independent

random perturbation. For simplicity, we consider the uniform perturbation model.

Suppose A ¼ ðai;jÞ and B ¼ ðbi;jÞ are two matrices of the same size. For a magni-

tude parameter s, a perturbed instance (A,B) is obtained from the two-player game

ðA;BÞ by replacing the payoff entries ai;j and bi;j, by a value chosen uniformly at

random from ½�ai;j � s; �ai;j þ s� and from ½�bi;j � s; �bi;j þ s�, respectively.
The following lemma connects the smoothed complexity of two-player Nash

equilibrium with its approximation complexity.

Lemma 5 (Smoothed Nash vs Approximate Nash). If there is an algorithm with
polynomial smoothed complexity for finding a two-player Nash equilibrium, then for
all e > 0, there exists a randomized algorithm for computing an e-approximate Nash
equilibrium in a two-player game with expected running time O polyðm; n; 1=eÞð Þ.

In (Chen et al. 2009a), Chen et al. proved the following theorem:

Theorem 7 (Chen-Deng-Teng). If there is an algorithm that computes an e-
approximate Nash equilibrium of a two-player game in time O polyðm; n; 1=eÞð Þ,
then every problem in the complexity class PPAD is solvable in polynomial time.

Consequently, using the connection between the smoothed complexity and

approximation complexity of Lemma 5, one can show:

Theorem 8 (Smoothed Nash). The problem of finding a Nash equilibrium of a two-
player game is not in smoothed polynomial time unless PPAD is contained in RP.

The smoothed complexity and the approximation results above have also been

extended to the computation of Arrow-Debreu equilibrium prices in exchange

markets (Huang and Teng 2007; Chen et al. 2009b).

The Laplacian Paradigm: Emerging Algorithms

for Massive Graphs

In this section, we present our second example of numerical thinking. In this example,

graph algorithms are designed for solving a numerical problem. In the process,

numerical consideration has led to the introduction of several new graph-theoretic

concepts. The resulting numerical algorithms have become the basis of a new

algorithmic framework.
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Nearly-Linear Time Laplacian Primitive

A matrix L¼ (li, j) is a Laplacian matrix if (1) it is symmetric, i.e., li, j¼ lj, i for all
i, j, (2) li, j� 0 for all i6¼j, and (3) li;i ¼ �

P

j 6¼i
li;j for all i. We can view an n �n

Laplacian matrix as a weighted undirected graph over n vertices.

Let G¼ (V,E) be a graph with n vertices V¼ { 1, . . . , n}. The adjacency matrix,
A(G), of a graph G¼ (V,E) is the n �n matrix whose (i, j)-th entry is 1 if (i, j)∈E
and 0 otherwise, and the diagonal entries are defined to be 0. Let D be the n �n
diagonal matrix with entries Di, i¼ di, where di is the degree of the ith vertex of G.
The Laplacian, L(G), of the graph G is defined to be LðGÞ ¼ D� A.

In general, suppose G¼ (V,E,w) is a weighted undirected n-vertex graph where

each edge in e∈E has a weight w(e)> 0 and for each e =2E, w(e)¼ 0. Sometime we

say w defines the affinity between each pair of vertices. We can extend the notion of

adjacency matrix A(G), diagonal matrix D(G) and Laplacian matrix L(G) to

weighted graphs as following: Ai, j(G)¼w(i, j) and Di, i(G)¼ ∑j 6¼iw(i, j) and

LðGÞ ¼ DðGÞ � AðGÞ.

The Laplacian Primitive and its Solver

A fundamental problem in numerical analysis is to find a solution to a linear system.

Mathematically, we are given an n �n matrix A and an n-place vector b (in the

column span ofA), and are asked to find a vector x such that Ax¼ b. In practice, we

are often allowed to have a small degree of imprecision. For example,

given a precision parameter e, we are asked to produce an ~x such that

k~x� Aybk2 � EkAybk2, where A { denotes the Moore-Penrose pseudo-inverse of

A – that is the matrix with the same nullspace asA that acts as the inverse ofA on its

image.

We will call the computational problem of solving a linear system defined by a

Laplacian matrix the Laplacian Primitive.

Definition 3 (Laplacian Primitive). This primitive concerns linear systems
defined by Laplacian matrices:

Input: a Laplacian matrix L of dimension n, an n-place vector b ¼ (b1,...,
bn)T such that ∑ibi¼ 0, and a precision parameter « > 0.

Output: an n-place vector ~x such that k~x� LybkL � EkLybkL;where for an
n-place vector z, its L norm is defined as zTLz.

The starting point of the Laplacian Paradigm to be discussed in the next section

is the following algorithmic result for solving Laplacian linear systems (Spielman

and Teng 2008b).

Theorem 9 (Spielman-Teng). There is a randomized algorithm for the Laplacian
primitive that runs in expected time mlogO(1)nlog (1/e), where n is the dimension of
the Laplacian matrix, m is the number of non-zero entries in the Laplacian matrix,
and e is the precision parameter.
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Note that this result makes no assumption on the structure of the non-zero

entries. In fact, the solver of Spielman-Teng applies to every linear system Ax¼ b

where A is a symmetric, weakly diagonally dominant matrix. A matrix is weakly
diagonally dominant if the diagonal entry of each row is at least the 1-norm of the

off-diagonal entries of that row.

The Laplacian solver applies the combinatorial preconditioning technique

introduced in the pioneering work of Vaidya (1991). It also uses insights and results

in the work of Joshi, Reif, Gremban, Miller, Boman, Hendrickson, Maggs, Parekh,

Ravi,Woo,Bern,Gilbert,Chen,Nguyen,Toledo (BomanandHendrickson2003;Bern

et al. 2006; Joshi 1997; Rief 1998; Gremban 1996; Maggs et al. 2005).

A Suite of Nearly-Linear-Time Spectral Algorithms

In the process of developing the nearly linear-time algorithm for the Laplacian

primitive, Spielman and Teng and their collaborators designed a suite of nearly

linear-time graph algorithms. Most of these algorithms concern the spectral prop-

erty of graphs. We include these nearly linear-time spectral algorithms as part of the

algorithmic primitives in the Laplacian Paradigm.

Clustering and Partitioning

The first family of their spectral algorithms is for clustering and partitioning. A

cluster of G¼ (V,E,w) is a subset of V that is richly intra-connected but sparsely

connected with the rest of the graph. The quality of a cluster can be measured by its

conductance, the ratio of the number of its external connections to the number of its

total connections.

We let d(i)¼Di, i(G) denote the weighted degree of vertex i. For S
V, we define
m(S)¼ ∑i∈ Sd(i). So, m(V)¼ 2 jE j if the weights of all edges are equal to 1. Let E
(S,V� S) be the set of edges connecting a vertex in S with a vertex in V� S. We

define the conductance of a set of vertices S, written F(S), and the conductance of
G, respectively by

F Sð Þ def¼
EðS;V � SÞj j

minðm Sð Þ; m V � Sð ÞÞ ; and FG
def

¼ min
S�V

F Sð Þ:

We also refer to a subset S of V as a cut of G and refer to (S,V� S) as a partition
of G. The balance of a cut S or a partition (S,V� S) is then equal to bal Sð Þ ¼
minðm Sð Þ; m V � Sð ÞÞ=m Vð Þ: We call S a sparsest cut of G if F(S)¼FG and

m Sð Þ=m Vð Þ � 1=2.
The clustering problem has centered around the following combinatorial opti-

mization problem: Given an undirected graph G and a conductance parameter, find

a cluster C such that F(C)�f, or determine no such cluster exists. The problem is
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NP-complete (Leighton and Rao 1999). But, approximation algorithms exist.

Leighton and Rao (1999) used linear programming to obtain O(logn)-
approximations of the sparsest cut. Arora et al. (2004) improved this to

Oð ffiffiffiffiffiffiffiffiffiffiffi
log n
p Þ through semi-definite programming. Subsequently, faster algorithms

obtaining similar guarantees have been constructed (Arora et al. 2004; Khandekar

et al. 2006; Arora and Kale 2007; Orecchia et al. 2008).

The algorithmic kernel of the Laplacian solver of Spielman and Teng is a local-

clustering algorithm, called Nibble, for weighted graphs, based on random walk

distributions (Spielman and Teng 2008a). The running time of this algorithm is

almost linear in the size of the cluster it produces, and is almost independent of the

size of the original graph. Although the algorithm may not find a local cluster for

some input vertices, it is usually successful:

Theorem 10 (Local Clustering). There exists a constant a > 0 such that for any
target conductance f and any cluster C0 of conductance at most a � f2/log3n, when
given a random vertex v sampled according to degree inside C0, Nibble will
return a cluster C mostly inside C0 and with conductance at most f, with probabil-
ity at least 1/2.

Using Nibble as a subroutine, Spielman and Teng (2008a) developed an

algorithm called Partition and prove the following statement.

Theorem 11 (Nearly Linear-Time Partitioning). There exists a constant a >
0 such that for any graph G ¼ (V,E) that has a cut S of sparsity a � y2/log3n and
balance b � 1/2, with high probability, Partition finds a cut D with FV(D) � y
and bal(D) � b/2.

Spectral Graph Sparsification

One of the major conceptual developments in the work of Spielman and

Teng (2003, 2008c) is a new notion of graph sparsification based on the spectral

similarity of graph Laplacians. Let L be an n �n Laplacian matrix. An n-dimen-

sional vector x¼ (x1, . . . , xn)
T is an eigenvector of L if there is a scalar l such that

Lx¼ lx. l is the eigenvalue of L corresponding to the eigenvector x. Because L is a

symmetric matrix, all of its n eigenvalues are real. Notice that the all-1
0
s vector is an

eigenvector of any Laplacian matrix and its associated eigenvalue is 0. Because

Laplacian matrices are positive semidefinite, all the other eigenvalues must be non-

negative. An important property of weighted Laplacian is: for all x 2 RjVj

xTLx ¼
X

i;j

li;jðxi � xjÞ2:

Graph sparsification is the task of approximating a graph by a sparse graph, and

is often useful in the design of efficient approximation algorithms. Several notions

of graph sparsification have been proposed. For example, Chew (1986) was
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motivated by proximity problems in computational geometry to introduce graph

spanners. Spanners are defined in terms of the distance similarity of two graphs:

A spanner is a sparse graph where the shortest-path distance between every pair of

vertices is approximately the same in the original graph as in the sparsifier.

Motivated by cut problems, Benczur and Karger, introduced a notion of

sparsification that requires that for every set of vertices, the weight of the edges

leaving that set should be approximately the same in the original graph as in the

sparsifier.

Motivated by constructing preconditioners, Spielman and Teng introduce a new

notion of sparsification called spectral sparsification (Spielman and Teng 2008c).

A spectral sparsifier is a subgraph of the original whose Laplacian quadratic form is

approximately the same as that of the original graph on all real vector inputs.

We say that eG is a s-spectral approximation of G if for all x 2 RV

1

s
xTLð eGÞx � xTLðGÞx � sxTLð eGÞx: (15.5)

This notion of sparsification captures the spectral similarity between a graph and
its sparsifiers. It is a stronger notion than the cut sparsification of Benczur and

Karger: the cut-sparsifiers constructed by Benczur and Karger are only required to

satisfy these inequalities for all x∈ 0, 1V.

In (Spielman and Teng 2008c), Spielman and Teng proved the following theo-

rem about spectral sparsification with a nearly-linear-time algorithm:

Theorem 12 (Spectral Sparsification). GivenE 2 ð1=n; 1=3Þ, p ∈ (0,1/2) and a
weighted graph G and with n vertices, in expected time mlog (1/p)logO(1)n, one can
produce a weighted graph eG that satisfies the following properties:

(a) The edges of eG are a subset of the edges of G; and
(b) With probability at least 1� p, (b.1) eG is a (1 + e)-spectral approximation of G,

and (b.2) eG has at most E�2n logOð1Þðn=pÞ edges.

Low Stretch Spanning Trees

An important discrete mathematical concept in building preconditioners is the low-

stretch spanning tree introduced by Alon et al. (1995): Suppose T is a spanning tree

of G¼ (V,E,w). For any edge e∈E, let e1, . . . ,ek∈F be the edges on the unique

path in T connecting the endpoints of e. The stretch of e w.r.t T is given by

stTðeÞ ¼ wðeÞðP
k

i¼1
1

wðeiÞÞ. The average stretch of the graph G with respect to T is

defined by stTðGÞ ¼
P

e2E
stTðeÞ=jEj: Alon et al. proved that every weighted graph

has a spanning tree with average stretch O(no(1)). Elkin et al. (2008), improved the

average stretch to O(log2nloglogn) with a nearly linear-time construction.
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The Laplacian Paradigm for Massive Graphs

As an algorithmic primitive, the nearly-linear time Laplacian solver and its

supporting algorithms provide a set of new tools for algorithm design. To motivate

the Laplacian paradigm, we first discuss the need for nearly linear time algorithms

for solving problems that involve massive graphs and data.

Massive Data and Efficient Algorithm Design

In light of the explosive growth in the amount of data and the diversity of

computing applications, efficient algorithms are now needed more than ever. We

may need to deal with equations and mathematical programming that involve

hundreds of millions of variables (Sharma et al. 2002). We may need to analyze

data and graphs such as web logs, social networks, and web graphs that are massive

(e.g., of hundreds billions of nodes Gulli and Signorini 2005), complex, and

dynamic. As a result of this rapid growth in problem sizes, what used to be

considered an efficient algorithm, such as an O(n1. 5)-time algorithm, may no longer

be adequate for solving problems of these scales. Space complexity poses an even

greater problem. Thus, the need to design algorithms whose running time is linear

or nearly linear in the input size has become increasingly critical.

Over the last half century, several algorithmic paradigms have been developed

and applied to various problems and applications. Some of these paradigms such as

divide-and-conquer, dynamic programming, greedy and local search, linear and

convex programming, randomization, and branch-and-bound are commonly cov-

ered in textbooks on algorithm design and analysis (Cormen et al.) while some less

theoretically-covered paradigms such as the multilevel method, simulated

annealing, and the genetic algorithm, are also widely used in practice.

Algorithms produced by paradigms such as dynamic programming, linear/

convex programming, and branch-and-bound have running time that is typically

quadratic, cubic, or of even higher order in the input size. But the algorithmic

paradigms such as greedy and divide-and-conquer, when they can be successfully

applied, usually lead to linear- or nearly-linear-time algorithms. In graph theory,

several previously-known divide-and-conquer algorithms, run in nearly linear time

or use only linear space (Frieze et al. 1992; Lipton et al. 1979). Their success

critically uses the fact that the underlying graphs have a balanced separator that can

be found in linear time. Thus, these algorithms can only be applied to special

families of graphs, for example planar graphs (Lipton et al. 1979) and nearest

neighborhood graphs (Miller et al. 1997). However, most graphs such as web

graphs and social network graphs simply do not have balanced separators of the

required quality.

While paradigms such as the multilevel method usually lead to nearly linear-

time algorithms in practice, their theoretical behaviors remain widely open and are

subjects for excellent research projects.
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Many basic graph-theoretic problems such as connectivity and topological sorting

can be solved in linear or nearly-linear time. The efficient algorithms for these

problems are built on traditional linear-time primitives such as breadth-first-search

(BFS) and depth-first-search (DFS). Minimum Spanning Trees (MST), Shortest-Path

Trees, and sorting. However, many graph problems can not be directly reduced to

these primitives in linear or nearly linear time.

The Laplacian Paradigm

The thesis behind the Laplacian Paradigm is that the Laplacian primitive, which

was not available for previous algorithmic paradigms for graphs, could be a very

powerful primitive for combinatorial optimization and numerical analysis. Unlike

the separator-based divide-and-conquer paradigm, this primitive makes no assump-

tion about the structure of the graph. Its complexity depends only (nearly) linearly

on the number of vertices and edges in the underlying graph. Moreover, its

complexity is logarithmic in the reciprocal of the desired precision.

We anticipate that more graph-theoretical problems can be solved in nearly-

linear time using this primitive.

Schematically, to apply the Laplacian Paradigm to solve a problem defined on a

graph G¼ (V,E,w) or a matrix A, we reduce the computational and optimization

problem to one or more linear algebraic or spectral graph-theoretic problems whose

matrices are Laplacian or Laplacian-like. The nearly-linear-time Laplacian primi-

tive or its supporting primitives discussed in section “A Suite of Nearly-Linear-

Time Spectral Algorithms” is then used to solve these algebraic and spectral

problems.

Similar to other algorithmic paradigms, the details of the reduction and resulting

algorithms depend on the structure of the problems that we need to solve. We now

give three examples of Laplacian Paradigm.

Example I: Spectral Approximation

Our first example is to approximate the Fiedler value of a weighted graph. Recall

that the Fielder value of a weighted graph G¼ (V,E,w) is the second smallest

eigenvalue of L(G).

Definition 4 (Approximate Fiedler Vector and Fiedler Value). For a Laplacian
matrix L, v is an e-approximate Fiedler vector if v is orthogonal to the all-1

0
s vector

and

l2ðLÞ � lðvÞ ¼ vTLv

vTv
� ð1þ EÞl2ðLÞ;

where l2(L) is the Fiedler value of the graph of L.
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To compute an approximate Fiedler vector, we use the classic inverse power

method. Assume the eigenvalues of L, from the smallest to the largest, are l1¼ 0,

l2, . . . ,ln. Let vi be the eigenvector of li. Note v1 is the all-1
0
s vector.

We choose a unit random vector r such that v1
Tr¼ 0. We can write r as

r ¼Pn
i¼2 civi. Note that Lyr ¼Pn

i¼2 cil
�1
i vi. In general, for positive integer

t� 1, ðLyÞtr ¼Pn
i¼2 cil

�t
i vi. Therefore, if c2 is not too small, by choosing

t ¼ Yðlogðn=EÞ=EÞ, assuming we can compute L {r efficiently, we can compute

an e-approximate Fiedler vector using the inverse power method.

We can use the nearly-linear-time Laplacian primitive to approximate L {
r to a

desired precision. With some standard techniques from numerical analysis, one can

bound the approximation factor of (L { )tr.

Theorem 13 (Spielman-Teng). For any e > 0 and Laplacian matrix L, an e-
approximate Fiedler vector of L can be computed by a randomized algorithm in
time m logOð1Þn logð1=EÞ=E.

It follows from Mihail (Spielman and Teng 1996) that if a graph G(V,E) has a
constant maximum degree, then one can obtain a cut of conductance O((l2(G))

1 / 2)

from any approximate Fiedler vector, as guaranteed to exist by Cheeger’s

isoperimetric inequality (Cheeger 1970).

Corollary 1 (Cheeger Cut). If G is a constant-degree graph of n vertices with
Fiedler value l2, then in nearly linear-time, we can compute a cut of conductance
O(l2

1/2).

Example II: Learning from Labeled Data on a Directed Graph

Our next example is from Zhou et al. (2005). The problem is to learn from labeled

and unlabeled data on a graph: The input of the problem is a strongly connected

(aperiodic) directed graph G¼ (V,E) and a labeling function y. The function y
assigns a label from a label set Y ¼ f1;�1g to each vertex of a subset S�V and it

assignes 0 to vertices in V� S. LetHðVÞ be the set of functions of form V ! R for

labeling vertices in the graph. The mathematical goal of this learning problem is to

find a function f 2 HðVÞ that optimizes the following objective function

minimize Oð f Þ þ mjj f � yjj2; (15.6)

where m is a constant parameter, and

Oðf Þ ¼ 0:5
X

ðu;vÞ2E
pðuÞpðu; uÞð f ðuÞpðuÞ�1=2 � f ðuÞpðuÞ�1=2Þ; (15.7)

and p() is the stationary distribution of the random walk on the graph with the

transition probability function p : V � V ! Rþ defined by the following formula:
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for each pair u, u∈V, if (u, u) =2E, then p(u, u)¼ 0; otherwise pðu; uÞ ¼ 1=dþðuÞ
where d+ (u) is the out-degree of u.

Zhou, Huang, and Sch€olkopf proved that the optimal solution f∗ to the mathe-

matical programming defined by (15.6) is the solution to the following linear

system.

ðð2þ 2mÞP� ðPPþ PTPÞÞðP�1=2f 	Þ ¼ 2mP1=2y; (15.8)

where P the diagonal matrix with P(u, u)¼ p(u) and P is the transition probability

matrix defined by p(). Using the property that the matrix

A ¼ ðð2þ 2mÞP� ðPPþ PTPÞÞ

is symmetric and diagonally dominant, Zhou, Huang, and Sch€olkopf applied the

nearly-linear-time Laplacian primitive to obtain the following result.

Theorem 14 (Zhou-Huang-Sch€olkopf). There exists a randomized algorithm that
can solve the graph learning problem given by the mathematical programming
defined by (15.6) in nearly linear time.

Example III: Faster Maximum Flow Approximation

One of the exciting developments in Laplacian Paradigm is the recent work by

Christiano et al. on maximum flow approximation. In this work, the nearly linear-

time Laplacian solver is instrumental to the new flow algorithm that improves the

bound achieved by the classic flow algorithm of Even and Tarjan (1975).

Recall that in the maximum flow problem, we are given a graph G¼ (V,E, c, s, t)
where s∈V (the source) and t∈V (the sink) are two special vertices in G, and c :
E! R [ f0g assigns a capacity to each edge. A feasible s-t flow of value F from

s to t is a map f : E! R that satisfies

• For all e∈E, f(e)∈ [� c(e), c(e)],
• For each vertex u∈V / {s, t}, the sum of the flows of the edges incident to u is 0,

and

• The sum of the flows of the edges incident to s is F and the sum of the flows of

the edges incident to t is�F.

The goal of the maximum flow problem is to compute a feasible s-t flow with the

maximum flow value.

Even and Tarjan’s algorithm works on an undirected graph where every edge has

capacity 1. They showed if m¼O(n), then the running time of their algorithm is O
(n3 / 2). Even and Tarjan’s result was extended by Goldberg and Rao (1998) who

showed that the maximum flow problem for every directed, capacitated graph with

m edges and n vertices can be computed in O(m3 / 2) time. Using sparsification,
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Banczúr and Karger reduced the complexity to Oðmn1=2E�1Þ to produce a flow

whose value is within (1� e) factor of the value of the maximum flow.

Conceptually, the algorithm of Christiano et al. (CKMST algorithm) is quite

simple. They reduced the maximum flow problem to the computation of many

electrical flows. Suppose each edge e is a resistor of resistance r(e). It is well known
that the electrical flow is a potential flow, that is, each node u in the network has a

potential value fu such that fs¼ 1 and ft ¼ �1, and for each edge (u, u) with
resistence ru, u, the electrical flow f(u, u) along the edge (u, u) satisfies

f ðu; uÞ ¼ ðfu � fuÞ=ru;u.
It is also well known that the vector representing these potentials is a solution to

a linear system,

L � f ¼ ws;t;

where L is the n by n Laplacian matrix defined by {1 / re : e∈E} and ws,t is the
vector where the entries for s and t are 1 and� 1, respectively, and all other entries

are 0. Therefore, the electrical flow can be computed in nearly linear time using the

Laplacian solver.

The CKMST flow algorithm views each edge of the input graph as a resistor with

a proper initial resistance. It repeatedly computes the electrical flow from s to t. The
electrical flow obeys the flow conservation constraints, but may not respect the

capacities of the edges. To remedy this, the algorithm modifies the resistance of

each edge in proportion to the amount of current flowing through it – thereby

penalizing edges that violate their capacities – and computes the electrical flow with

these new resistances.

Christiano et al. showed that after repeating about Oðn1=3 � polyð1=EÞÞ times, the

CKMST algorithm obtains a (1� e)-approximately maximum s-t flow by taking a

certain average of the electrical flows that the iterative process has computed. Thus,

this new algorithm has running time nearly Oðmn1=3 � polyð1=EÞÞ, breaking the O
(n3 / 2) complexity barrier for maximum flows since the 1975 work of Even and

Tarjan (1975).

Other Applications of the Laplacian Paradigm

In addition to the three examples given above, the Laplacian paradigm has already

been used in several problems in combinatorial optimization and scientific

computing.

Boman et al. showed that the Laplacian primitive can be used to solve elliptic

finite-element systems in nearly linear time. Shklarski and Toledo (2008) and

Daitch and Spielman extended the solver to systems involving rigidity. Koutis

et al. (2009) presented several applications of the Laplacian Paradigm in vision

and image processing. Using the Laplacian primitive. Spielman and Srivastava

(2008) developed a beautiful nearly linear time algorithm to compute the effective
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resistances in a weighted graph. Using the nearly linear-time Laplacian primitive,

Madry and Kelner (2009) greatly improved the algorithm for the generation of

random spanning trees; Daitch and Spielman (2008) gave the fastest known algo-

rithm for computing generalized lossy flows; and Ding et al. (2011) gave a nearly

linear time algorithm for approximating the cover times in a graph.

Next Generation Algorithms for Massive Graphs

Algorithm design is like building a software library. Once we can solve a new

problem in linear or nearly linear time, we can add them to our library of efficient

algorithms and use them as a subroutine in designing the next wave of algorithms.

Due to the appealing property of the Laplacian primitive, as well as our algorithms

for clustering, partitioning, and sparsification, we are very excited about the new

possibilities of progress in algorithm design.

To support our thesis that the Laplacian Paradigm may lead to breakthrough in

graph algorithms, we would like to review the previous linear solvers and their

complexity. The straightforward implementation of Gaussian elimination takes

O(n3) time. When m is large relative to n and the matrix is arbitrary, the fastest

algorithms for solving linear equations are those based on fast matrix multiplication,

which take approximately O(n2. 376) time. The fastest algorithm for solving general

sparse positive semi-definite linear systems is the Conjugate Gradient. Used as a

direct solver, it runs in time O(mn) (see Trefethen and Bau 1997, Theorem 28.3).

When the linear system is symmetric and sparse, it is standard to represent the

non-zero structure of a matrix A by an unweighted graph GA that has an edge

between vertices i6¼j if and only if Ai, j is non-zero. If this graph has a special

structure, there may be elimination orderings that accelerate direct solvers. For

example, if A is tri-diagonal, in which case GA is a path graph, then a linear system

in A can be solved in time O(n). Similarly, when GA is a tree, a linear system in A
can be solved in timeO(n). If the graph of non-zero entriesGA is planar, one can use

Generalized Nested Dissection (George 1973; Lipton et al. 1979; Gilbert and

Tarjan 1987) to find an elimination ordering under which Cholesky factorization

can be performed in time O(n1. 5) and to produce factors with at mostO(nlogn) non-
zero entries.

For linear equations that arise when solving elliptic partial differential equations,

other techniques supply fast algorithms. For example, Multigrid methods could be

effective when applied to some of these linear systems (Briggs et al. 2001), and

Hierarchical Matrices run in nearly-linear time when the discretization is well-

shaped (Bebendorf and Hackbusch 2003).

However, before the work of the nearly-linear-time Laplacian primitive, no

linear solver with complexity better than O(m1. 5) is known for arbitrary sparse

linear systems. So, the Laplacian primitive could open a new page for algorithm

design including for fundamental problems such as matching, s-t flows,

multicommodity flows, and linear programming. The key step in our attempt to
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improve the algorithms for these problems is to encode them cleverly by the

Laplacian primitive.

Although the Laplacian solver and Laplacian Paradigm are theoretical

developments, we are hopeful that they will have considerable practical impact.

In fact, each of our algorithms in the suite of the Laplacian Paradigm has been

improved since we developed them.

• Using the star-decomposition developed in Elkin et al. (2008), Abraham

et al. (2008) further improved the average stretch to a quantity smaller than

Oðlog nOðlog log nðlog log log nÞ3ÞÞ:

• The parameters of local clustering algorithm have subsequently been improved

by Andersen et al. (2006) and Andersen and Peres (2009). The former uses

personalized Rage-Rank and the latter uses evolving sets to guide the local

clustering processing.

• In the original construction of spectral sparsifiers, the O(1) in the exponent of

logO(1)(n / p) is quite large (13 for the running time and 29 for the number of

edges). Spielman and Srivastava (2008) reduced the 29 in the exponent of the

number of edges in the spectral sparsifier to 1. The running time of their

algorithm, using the Laplacian primitive for computing effective resistances, is

nearly linear. Recently, Batson et al. (2008) gave a beautiful construction to

produce a linearly-sized spectral sparsifier. However, even with polynomial-

time complexity, the running time of their algorithm is still far away from being

linear.

• In the most exciting advances, Koutis et al. recently improved the running time

of the Laplacian solver to Õ(mlognlog(1 / e)), where Õ only hides the ratio of the

average stretch of the Abraham-Bartal-Neiman spanning tree to O(logn), which
is O((loglogn)2). The recent progress has also greatly enhanced our hope to

develop a practical Laplacian solver.

Not Just Numerical Analysis

I would like to conclude by remarking that numerical thinking is not just numerical

analysis. It is about the connection between numerical analysis and other fields in

computing, as well as about drawing on the fundamental principles & concepts

in numerical analysis, and applying them to discover better models for phenomena in

computing, and to find faster solutions to problems that have been challenges to us.

Numerical thinking is a creative process of discovering useful connections that

may not be apparent. In the 1970s, mathematicians such as Fiedler (1973) and

Donath and Hoffman (1972), were able to make a connection between graphs

and matrices, which set the stage for spectral graph theory, a field that has made

significant strides over the representational connection between graphs and matrices.
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Our field has benefitted greatly from the connection between graph properties (such as

conductance, mixing time, and connectivity) and algebraic properties (such as the

spectral bounds of matrices). Today, computer scientists of our generation have made

even broader connections between numerical concepts and network & information

concepts (Kleinberg 1999; Brin and Page 1998), between numerical representations

and digital representations (Debevec et al. 2000; Daubechies 1992), and between

numerical methods and methods for machine learning & data analysis (Deerwester

et al. 1990; Donoho 2006).

In our examples, the Laplacian paradigm has not only used numerical concepts

such as preconditioning to model graph approximation & graph sparsification, but

also used the advancements in graph algorithms to build a new solver for linear

systems. Similarly, smoothed analysis has not only extended the studies of stability

from numerical analysis to algorithm analysis, but also inspired renewed studies

and understanding of the condition number of perturbed matrices (Sankar

et al. 2005; Vu and Tao 2007; Rudelson and Vershynin 2006).

Perhaps, the most valuable understanding I have gained from numerical thinking

is the interdisciplinary view of the world of computing, as well as the view of our

responsibility to both theory and practice. The process of numerical thinking

continues to transform my research. I hope this article will encourage more

researchers to apply it in their work.
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Chapter 16

Fuzzy Logic in Computer Science

Radim Belohlavek, Rudolf Kruse, and Christian Moewes

What Is Fuzzy Logic?

Motivation

To understand fuzzy logic, it is essential to recall the basic motivation that led to its

emergence. This motivation, articulated in various forms in the early papers on fuzzy

logic by Zadeh (1965, 1973), can briefly be described as follows. Classical logic is

appropriate for a formalization of reasoning that involves bivalent propositions such

as “5 is a prime number”, “age of Jan is 9”, or “if x is a positive integer and y ¼ xþ 1

then y is a positive integer”, i.e., propositions which may in principle be true or false.

In a similar way, classical sets are appropriate for representing collections (of objects)

that have sharp, clear-cut boundaries, such as “the collection of all prime numbers

less than 100” or “the collection of all U.S. Senators as of September 1, 2010”. For

any such collection, an arbitrary given object either is or is not a member of it.

Most propositions which people use to communicate information about the outer

world are not bivalent. Such propositions are true to a certain degree, rather than

being true or false only. As an example, “it is hot outside” is a proposition whose

truth depends on the outside temperature. According to our intuition, the higher the

temperature, the truer the proposition. To require that the proposition be bivalent
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means to require the existence of a particular value, t, such that the proposition is

true if the actual temperature is larger than or equal to t and false if the actual

temperature is smaller than t. This means that if the actual temperature is, say,

t� 0. 01, we consider the proposition false, while if it is t+ 0. 01, we consider the

proposition true. Therefore, if the proposition “it is hot” is regarded as bivalent, an

arbitrarily small change in the outside temperature can change its truth value from

false to true and vice versa. Needless to say, this contradicts our intuition and the

way we use propositions such as “it is hot outside”.

Likewise, most collections of objects to which people refer when communicat-

ing information do not have sharp, clear-cut boundaries. The membership of objects

in such collections is a matter of degree, rather than being a member or not being a

member only. The point is well illustrated by a quote from Zadeh’s seminal

paper (Zadeh 1965):

More often than not, the classes of objects encountered in the real physical world do not

have precisely defined criteria of membership. For example, the class of animals clearly

includes dogs, horses, birds, etc. as its members, and clearly excludes objects as rocks,

fluids, plants, etc. However, such objects as starfish, bacteria, etc. have an ambiguous status

with respect to the class of animals. The same kind of ambiguity arises in the case of a

number such as 10 in relation to the “class” of all real numbers which are much greater

than 1.

Clearly, the “class of all real numbers that are much greater than 1,” or “the class of

beautiful women,” or “the class of tall men” do not constitute classes or sets in the usual

mathematical sense of these terms. Yet, the fact remains that such imprecisely defined

“classes” play an important role in human thinking . . .
The purpose of this note is to explore in a preliminary way some of the basic properties

and implications of a concept which may be of use in dealing with “classes” of the type

cited above. The concept in question is that of a fuzzy set, that is a “class” with a continuum

of grades of membership.

Since most propositions about the outer world are not bivalent, classical logic is

inadequate to formalize reasoning that involves such propositions. Likewise, since

most collections referred to in human communication do not have sharp boundaries,

classical sets are inadequate to represent such collections. The main aim of fuzzy

logic is to overcome the above-described inadequacies of classical logic and

classical sets.

Graded Approach

The principal idea employed by fuzzy logic is to allow for a partially ordered scale

of truth values, called also truth degrees, which contains the values representing

false and true but possibly also other, intermediary truth degrees. That is, the two-

element set {0, 1} of truth values of classical logic, where 0 and 1 represent false

and true, respectively, is replaced in fuzzy logic by a partially ordered scale of

truth degrees with the smallest degree being 0 and the largest one being 1. This

is known as the graded approach. An important example of such scale is the
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interval [0, 1] of real numbers. A degree from a given scale (e.g., the number 0.9

from [0, 1]) that is assigned to a proposition is interpreted as the degree to which the

proposition is considered true. For the proposition “it is hot outside”, the higher the

outside temperature, the higher the truth degree assigned to this proposition. If 0.9 is

assigned to this proposition, it indicates that we consider it being almost hot outside

but not completely hot. On the other hand, assigning 0.3 to the same proposition

indicates that we consider it being somewhat warm outside but not much. In a

similar spirit, scales of truth degrees are used in fuzzy sets to represent degrees to

which a given object is a member of a collection with non-sharp boundary. For

example, if 0.8 and 0.9 represent degrees to which John and Paul are members of

the collection of tall men, respectively, it indicates that both are considered almost

tall and that Paul is a little bit taller than John.

Controversies

It is clear from the discussion above that fuzzy logic departs from two important

traditions of science – the principle of bivalence and the principle that all scientifi-

cally relevant concepts are precise and clear-cut. This departure brought up several

fundamental issues at stake, which have been, and continue to be, an object of

controversy. Two such issues are briefly described in this section. Another one is

discussed in section “Fuzzy Logic and Probability”.

The basic idea of fuzzy logic, i.e., that propositions may have intermediary truth

degrees, represents a radical departure from one of the basic principles of classical

logic and exact sciences – the principle of bivalence, according to which every

proposition is either true or false. Various ramifications of admitting intermediary

truth degrees have been examined in a number of papers, see Smith (2009) for

numerous references. Some of the papers pose interesting problems and challenges

for fuzzy logic. Quite often, however, the authors of the critical papers are not familiar

enoughwith the principles of fuzzy logic and their analyzes are based on various types

of misunderstanding and misconception. Among the critiques of fuzzy logic is a

number of attempts to prove that fuzzy logic leads to counterintuitive results and

even to contradictions. The best known such critique are Elkan’s papers

(Elkan 1993, 1994), the second of which appeared in a special issue of IEEE Expert
along with responses to it. The central claim of Elkan’s critique was that “as a formal

system, a standard version of fuzzy logic collapses mathematically to two-valued

logic.” This claim is the content of two theorems presented in Elkan (1993, 1994).

In both cases, proofs of the theorems are quite long. Since it is common to take the

length of a proof as a measure of profundity of the proven theorem, Elkan’s theorems

may look on the surface as quite profound. However, a close examination of the

theorems demonstrates the contrary. Namely, Belohlavek and Klir (2007) present

short proofs of both theorems and by using these proofs they show that axioms upon

which Elkan’s theorems are based define formal systems that are strange to fuzzy logic

and are not capable of dealing with fuzziness.

16 Fuzzy Logic in Computer Science 387



The second controversy relates to a long-standing tradition in science according

to which all scientifically relevant concepts are precise and clear-cut. Contrary to

this tradition, fuzzy logic claims to provide us with a mathematical tools to model

and process concepts that are not clear-cut. Namely, fuzzy logic uses scales of truth

values to capture the meaning of propositions and collections which involve non-

clear-cut concepts such as “hot”, “tall”, and the like. To capture the meaning of such

terms, referred to as vague terms, in an appropriate way is quite an intricate issue.

This brings up an important question whether the approach of fuzzy logic, based on

scales of truth degrees, is appropriate. Such question is very complex and has many

facets, ranging from philosophy and mathematics to psychology and cognitive

science. Thus far, this question has not been decisively answered and is currently

a subject of discussion (van Deemter 2010; Smith 2009). Nevertheless, the use of

fuzzy logic is supported by at least the following three arguments. First, fuzzy logic

is rooted in the intuitively appealing idea that the truth of propositions used by

humans is a matter of degree. An important consequence is that the basic principles

and concepts of fuzzy logic are easily understood. Second, fuzzy logic has led to

many successful applications, including many commercial products, in which the

crucial part relies on representing and dealing with statements in natural language

that involve vague terms. Third, fuzzy logic is a proper generalization of classical

logic and, follows an agenda similar to that of classical logic, and has already been

highly developed. An important consequence is that fuzzy logic extends the rich

realm of applications of classical logic by applications in which the bivalent

character of classical logic is a limiting factor.

Fuzzy Logic and Probability

Ever since the publication of (Zadeh 1965), the relationship between fuzzy logic

and probability theory has been an object of another controversy. The various facets

of this relationship have been discussed in many papers, including those contained

in the special issues of Computational Intelligence (Vol. 4, No. 2, 1988), IEEE
Transactions on Fuzzy Systems (Vol. 2, No. 1, 1994), and Technometrics (Vol. 37,
No. 3, 1995). An extensive discussion on this topic comes as no surprise because

both fuzzy logic and probability address the phenomenon of uncertainty and both

use the real unit interval [0, 1]. The central questions of the debate include:

How does fuzzy logic relate to probability theory?

Is uncertainty the same as randomness?

Does the notion of probability exhaust all our notions of uncertainty?

The earliest paper discussing the relationship between fuzzy logic and probability

is (Loginov 1966) in which the author suggests that membership degrees of fuzzy

sets may be interpreted as conditional probabilities. This or a similar view has later

been adopted by many people. Several leading researchers, including

Cheeseman (1988a,b) and Lindley (1987), were repeatedly criticizing fuzzy logic
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on the ground that probability methods alone, and Bayesian methods in particular,

are sufficient for representation and management of any type of uncertainty. As an

illustration, the following is a quote from (Lindley 1987):

The only satisfactory description of uncertainty is probability. By this I mean that every

uncertainty statement must be in the form of a probability; that several uncertainties must

be combined using the rules of probability; and that the calculus of probabilities is adequate

to handle all situations involving uncertainty. . . . We speak of “the inevitability of

probability.”

In Sect. 16, Lindley concludes:

. . . probability is the only sensible description of uncertainty and is adequate for all

problems involving uncertainty. All other methods are inadequate. . . . My challenge that

anything that can be done with fuzzy logic, . . . , or any other alternative to probability, can
better be done with probability, remains.

On the other hand, it has been pointed out many times, see e.g., (Klir 1989) and

(Kosko 1990), that fuzzy logic studies a type of uncertainty that is fundamentally

different from that studied by probability theory. As an example, take the proposi-

tion “Peter is a tall man.” As explained above, fuzzy logicians consider this as a

many-valued (fuzzy) proposition, i.e., a proposition whose truth degree may be any

degree from [0, 1] (or from another appropriate scale of truth degrees). The higher

the degree, the truer the proposition. The graded nature of such propositions reflects

the graded nature of human concepts such as the concept of a tall man. Note that the

graded nature of human concepts was confirmed by many experiments in the

psychology of concepts (Belohlavek and Klir 2011). Considering the proposition

“Peter is a tall man.” as a bivalent proposition (yes-or-no proposition) is inadequate.

For example, the question “Is the proposition true, but answer ‘yes’ or ‘no’ only?”,

is inappropriate because it distorts the meaning of the concept of a tall man, namely

it distorts its fuzziness. When probability theorists suggest that truth degrees of

propositions are (conditional) probabilities, they assume that the propositions

themselves are bivalent and that the truth degree measures a person’s (subjective)

uncertainty of whether the proposition is true, i.e., whether the truth degree of the

proposition is 1. Clearly, this view is very different from the view of fuzzy

logicians. Because fuzzy propositions are considered bivalent in this view, the

view is considered fundamentally inadequate by fuzzy logicians.

The above considerations point to the fact that fuzzy logic and probability study

different types of uncertainty, that these types are complementary and are both

important in human action. Hence, fuzzy logic and probability theory should be

looked at as complementary rather than competitive theories. This situation was

recognized in an early paper by Zadeh (1968). In order to extend the applicability of

probability theory to account for fuzzy events such as “high inflation rate”, Zadeh

proposed to generalize the concept of a probability space by allowing events to be

fuzzy sets rather than ordinary sets of elementary events. The need for extensions of

probability theory that take into account fuzziness of natural language expressions,

which is particularly emphasized by the demand for natural language interfaces in

web search, has recently been pointed out in several papers by Zadeh (2002, 2006).
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In (Zadeh 2002) the following examples of simple problems are presented for

which probability theory does not provide solutions:

Most Swedes are tall. Most Swedes are blond. What is the probability that a Swede

picked at random is tall and blond?

Usually Robert returns from work at about 6 p.m. What is the probability that he is

home at 6:30 p.m.?

A box contains about 20 balls of various sizes. A few are small and several are

large. What is the probability that a ball drawn at random is neither large nor

small?

In view of these examples, it becomes apparent that to base probability theory on

bivalent logic results in a fundamental limitation and that, naturally, probability

theory should be based on fuzzy logic. Such a conclusion presents a serious

challenge for research in the foundations of probability theory.

Various Meanings of “Fuzzy Logic”

The term “fuzzy logic”, coined by Goguen (1968), is used in several meanings.

In its common-sense meaning, the term refers to formal and informal principles and

methods of reasoning that involve vaguely defined concepts (concepts without

clear-cut boundaries) that are based on the graded approach.

Two other meanings are frequently used, fuzzy logic in the narrow sense and

fuzzy logic in the broad sense. Fuzzy logic in the narrow sense, called also

mathematical fuzzy logic (Hájek 2006), develops deductive systems of logic very

much in the style of classical mathematical logic. When the term fuzzy logic is used

in the broad sense, it refers to an attempt to emulate human reasoning in natural

language and includes aspects that are beyond the usual scope of mathematical

logic. Fuzzy logic in the narrow and broader sense are discussed in more detail in

section “Fuzzy Logic as Logic”.

Basic Concepts of Fuzzy Logic

Truth Degrees and Truth Functions of Logical Connectives

As mentioned above, fuzzy logic uses a scale, denoted here by L, of truth degrees.

A common choice for L is [0, 1] (real unit interval) and unless stated otherwise, we

assume L¼ [0, 1] throughout this section. In general, L is usually assumed to be a

complete lattice bounded by 0 and 1. As in classical logic (where L¼ { 0, 1}), the

scale needs to be equipped with (truth functions of) logical connectives such as

conjunction, implication, etc. Unlike classical logic, where there truth functions are
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simply derived from the use of connectives in language and are unique (form

example, “’ and c” is true if and only if both ’ and c are true), fuzzy logic does

not have unique truth functions of logical connectives. Namely, if there is no

obvious way to define the truth degree of proposition “’ and c” given that the

truth degree of ’ and c are 0.7 and 0.8, respectively. Therefore, rather than defining

a particular truth function of conjunction (“the right function”), fuzzy logic accepts

as appropriate any truth function which satisfies certain conditions that come from

intuitive requirements as well as from particular application contexts. For example,

a truth function� of conjunction is a binary function� : L �L! L which needs to

satisfy at least the following conditions:

a1 � a2 and b1 � b2 implies a1 � b1 � a2 � b2; (monotonicity)

a� b ¼ b� a; (commutativity)

a� ðb� cÞ ¼ ða� bÞ � c; (associativity)

a� 1 ¼ 1� a ¼ a; a� 0 ¼ 0� a ¼ 0; (boundary conditions)

which are certainly intuitively appealing properties of conjunction. A function� on

L¼ [0, 1] satisfying these conditions is called a t-norm (Klement et al. 2000). The

t-norms used in fuzzy logic are usually continuous (or at least left-continuous). The

basic continuous t-norms are G€odel (maximum), Goguen (product), and

Łukasiewicz t-norm, which are defined as follows:

G€odel: a� b ¼ minða; bÞ; (16.1)

Goguen: a� b ¼ a � b; (16.2)

Łukasiewicz: a� b ¼ maxðaþ b� 1; 0Þ: (16.3)

Namely, any continuous t-norm can be obtained from the basic ones by so-called

ordinal sum (Hájek 1998; Klement et al. 2000). t-norms have been extensively

studied in the literature and various classes of t-norms, including classes of

parameterized t-norms such as a �l b ¼ 1�minf1; ½ð1� aÞl þ ð1� bÞl�lg for

l∈ [0,1) are described, e.g., in Gottwald (2001), Klement et al. (2000) and Klir

and Yuan (1995).

In general, a truth function of an n-ary logical connective is a function c : Ln! L.
As in classical logic, further connectives such as disjunction, implication, or nega-

tion, are used in fuzzy logic. Due to limited scope we do not discuss the truth

functions of these connectives here and refer the reader e.g., to Gottwald (2001)

and Klir and Yuan (1995). An important question of a relationship between the truth

functions of logical functions, such as the relationship between conjunction and

implication, is discussed in section “Fuzzy Logic as Logic”.

In addition to the connectives mentioned so far, fuzzy logic used various other

connectives. For illustration, we mention linguistic modifiers and averaging
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functions. Modifiers are unary functions m : [0, 1]! [0, 1] which are thought of as

the truth functions of unary connectives, called linguistic hedges Zadeh (1973, 1975),

such as “very”, “highly”, “more or less”, “somewhat”, etc. Linguistic hedges

are employed in linguistic rules such as “If temperature is very high, then . . . ”.
A simple class of modifiers is given by

mlðaÞ ¼ al

for a∈ [0, 1]. For a∈ (0, 1), the modifier is an increasing function and corresponds

to linguistic hedges such as “more or less” or “somewhat”. For a∈ (1,1), the

modifier is a decreasing function and corresponds to intensifying linguistic hedges

such as “very” or “highly”. Averaging functions are defined as n-ary functions

c : [0, 1]n! [0, 1] that are non-decreasing, idempotent, and usually continuous and

symmetric. Because they satisfy

minða1; . . . ; anÞ � cða1; . . . ; anÞ � maxða1; . . . ; anÞ

and because min and max are “the largest (truth function of) conjunction” and “the

least (truth function of) disjunction”, averaging functions are thought of as filling a

gap between conjunctions and disjunctions. As simple example is the arithmetical

average cða; bÞ ¼ aþb
2
. According to common sense, a person’s financial wealth

depends on whether his assets have good liquidity and his investments are good.

Naturally, the degree W(x) to which a person x is financially wealthy is obtained

from the degrees L(x) (good liquidity) and I(x) (good investment) by means of an

averaging function (e.g., WðxÞ ¼ LðxÞþIðxÞ
2

) rather than a conjunction (e.g., W(x)¼
min{L(x), I(x)}) or disjunction (e.g., W(x)¼max{L(x), I(x)}). Note that neither the
modifiers nor the averaging functions have a counterpart in classical logic

(modifiers are degenerate in classical logic, the only one is the identity function

mapping 0 to 0 and 1 to 1; classical truth degrees cannot be averaged).

Fuzzy Sets and Fuzzy Relations

The concept of a fuzzy set generalizes the concept of a (characteristic function of a)

classical set. A fuzzy set A in a universe U is defined as a mapping A :U! L, i.e., A
assigns to every element u from U a degree A(u) from a scale L of truth degrees,

called the degree of membership of u to A. If L¼ [0, 1], one usually speaks of

standard fuzzy sets. Clearly, if L¼ {0, 1}, we get the notion of a characteristic

notion of an ordinary set.

The notions and operations related to fuzzy sets include both the counterparts of

those from classical sets as well as new ones. An important example of the latter is

the concept of an a-cut, which is defined for a∈ L and a fuzzy set A as the ordinary

subset aA of U defined by aA¼ {u∈U jA(u)� a}. A fuzzy set A is uniquely
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represented by the collection {aA j a∈ L} of all of its a-cuts and this representation

connects fuzzy sets with ordinary sets. The top part of Fig. 16.1 shows a fuzzy set

representing the concept “normal” (temperature) versus a classical set representing

the same concept. The bottom part shows three fuzzy sets, representing “cold”,

“normal”, and “hot”, and illustrates the concepts of an a-cut and support of a fuzzy
set defined as supp(A)¼ {u∈U jA(u)> 0}.

Every logical n-ary connective c on L induces a corresponding n-ary operation,

defined component-wise. For example, if c is the truth function min of G€odel
conjunction, the corresponding operation, called the standard intersection of

fuzzy sets and denoted by\ , is defined by

ðA \ BÞðxÞ ¼ minðAðxÞ;BðxÞÞ:

Relations on fuzzy sets can be both ordinary relations, such as the inclusion	 of

fuzzy sets defined by A	B if and only if A(u)�B(u) for each u∈U. However, one
may in general consider fuzzy versions of these relations, such as a degree of

inclusion of fuzzy sets, which play an important role in fuzzy set theory.

Fuzzy relations are defined as fuzzy sets in Cartesian products. For example, a

binary relation between sets U and V is a mapping R :U� V! L with R(u, v) being
interpreted as a degree to which u is related to v. Among the several types of fuzzy

Fig. 16.1 Concept of fuzzy set
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relations used in applications, fuzzy equivalences (called also similarity relations)

are perhaps the most important. A fuzzy relation E :U �U! L is called a fuzzy

equivalence if the following conditions generalizing the ordinary reflexivity, sym-

metry, and transitivity hold true:

Eðu; uÞ ¼ 1;

Eðu; vÞ ¼ Eðv; uÞ;
Eðu; vÞ � Eðv;wÞ � Eðu;wÞ;

where� is a truth function of conjunction.

Various particular types of fuzzy sets and fuzzy relations are used in applications

of fuzzy logic and were studied in the literature. Due to lack of space we omit

details and refer the reader to numerous books on fuzzy sets and their applications,

e.g., to Belohlavek (2002), Gottwald (2001), Klir and Yuan (1995) and Kruse

et al. (1994).

Fuzzy Logic as Logic

Is there any logic in “fuzzy logic”, i.e., is it possible to develop a deductive system

for reasoning which involves degrees of truth?What are the corresponding concepts

of consequence, provability, completeness and what properties do they have? As

was mentioned in section “What Is Fuzzy Logic?”, these question are addressed by

fuzzy logic in the narrow sense. This section provides an introduction to the basic

concepts involved.

Fuzzy Logic as Many-Valued Logic

Logics with more than two truth values, so-called many-valued logics, were studied

in the field of mathematical logic since 1930s, see e.g., Gottwald (2001). Fuzzy

logic can be considered a particular many-valued logic whose agenda is driven by

the interpretation of truth values as truth degrees. Fuzzy logic uses many-valued

counterparts of logical connectives of classical logic, as was discussed in sec-

tion “Truth Degrees and Truth Functions of Logical Connectives”. In addition,

fuzzy logic is truth functional. That is, if k’k and kck denote the truth degrees of

formulas ’ and c, the truth degree k’&ck of the conjunction of ’ and c is

determined by

k’&ck ¼ k’k � kck (16.4)

where� is a truth function of conjunction; and the same for other connectives.
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Since in fuzzy logic, there are many possible choices of the truth functions of

logical connectives (section “Truth Degrees and Truth Functions of Logical

Connectives”), it is important to ask which combinations of truth functions are

appropriate. An important argument regarding the choice of the truth functions of

conjunction and implication comes from Goguen (1968) who showed that this

question is connected to the rule of modus ponens. In particular, if one wants to

have a good rule of modus ponens (yielding as much as possible but still sound), the

truth functions� of conjunction and! of implication need to satisfy

a� b � c if and only if a � b! c; (16.5)

called the adjointness condition. For example, if� is a continuous (or even a left-

continuous) t-norm, the unique! satisfying (16.5), called the residuum of� , is

given by

a! b ¼ supfz j a� z � bg:

In particular, the residua of G€odel, Goguen, and Łukasiewicz t-norms,

see (16.1)–(16.3), are given by

G€odel : a! b ¼
1 if a � b;

b otherwise,

(

Goguen : a! b ¼ 1 if a � b;
b
a otherwise,

�

Łukasiewicz: a! b ¼ minð1� aþ b; 1Þ:

Ordinary-Style Calculi

Two basic types of fuzzy logical calculi can be distinguished. The first one are called

ordinary-style calculi. Except for the fact that they allow more than two truth

degrees, their its agenda is practically the same as that of classical logic. For

example, formulas are defined as usual (starting from atomic formulas and applying

logical connectives), a theory is a set of formulas, a proof from a theory T is a

sequence of formulas which are either from T or result by application of a deduction

rule to preceding formulas, etc. Due to truth functionality, the truth degree of a

formula is defined as usual, cf. (16.4), given that particular structure L of truth

degrees is chosen, i.e., a set L of truth degrees and truth functions of logical

connectives from the language of the particular logical calculus. A tautology w.r.t.

a class ℒ of structures of truth degrees if for every structure L∈ℒ, ’ has truth

degree 1 for every evaluation using truth degrees and logical connectives from L.

To illustrate ordinary-style completeness, consider the completeness theorem of

propositional BL-logic Hájek (1998) that was proved in Cignoli et al. (2000).

Given the axioms of BL-logic, the following conditions are equivalent for

any formula ’:
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1. ’ is provable.

2. ’ is a tautology w.r.t. the class of algebras which consist of [0, 1], a continuous

t-norm, and its residuum.

3. ’ is a tautology w.r.t. the class of BL-algebras (particular lattices equipped with

operations� and! , the algebraic counterparts of BL-logic).

For more information we refer to Gottwald (2001) and Hájek (1998).

Graded-Style (Pavelka-Style) Calculi

Graded-style calculi were introduced in a seminal paper by Pavelka (1979). Unlike

ordinary-style calculi, the graded-style calculi works with formulas to which truth

degrees are “attached”. A pair 〈’, a〉 carries a syntactical information that formula

’ be true to degree at least a. For example, a theory is a set consisting of such pairs

〈’, a〉 which specify that ’ is assumed to be true to degree at least a. A deductive

rule has two components, one working on formulas, the other working on truth

degrees. For example, the rule of modus ponens applied to 〈’)c, a〉 and 〈’, b〉
yields a pair 〈c, a� b〉 and reads as follows: If ’)c and ’ are true to degree at

least a and b, respectively, c is true to degree at least a� b. One then introduces the
concept of a degree |’ | T to which formula ’ is provable from theory T (supremum

of as over all 〈’, a〉 which can be obtained from the axioms and T using deduction

rules) and the concept of a degree k’kT to which ’ is (semantically) entailed by T
(infimum of truth degrees of ’ in all models of T). A completeness theorem then

says

j’jT ¼ k’kT ;

i.e., degree of probability equals degree of entailment. For further information

including various particular graded-style calculi we refer to Belohlavek and

Vychodil (2005, 2006), Gerla (2001) and Hájek (1998).

Fuzzy Logic in a Broad Sense

Note that from a general viewpoint of logic as a discipline studying human reasoning,

fuzzy logic in the broad sense also fits the picture of fuzzy logic as logic. Asmentioned

in section “What Is Fuzzy Logic?”, fuzzy logic in the broad sense attempts to emulate

human reasoning. Conceptually, fuzzy logic in the broad sense is being developed in

numerous papers by Zadeh (1973, 1975, 1979, 2006, 2008). Parts of fuzzy logic in

the broad sense are highly developed and have numerous applications, for example

the rule-based systems employed in fuzzy control, discussed in sections “Fuzzy

Logic and Control” and “Success of Mamdani Control in Automobile Industry”.
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Note however, that traditional logical aspects of logic are as a rule of little concern in

those developments, but see Hájek’s chapter on logical analysis of the compositional

rule of inference in (Hájek 1998) and also (Novák et al. 1999). From this point of view,

fuzzy logic in the broad sense is at an early stage of development.

Fuzzy Logic and Control

The biggest success of fuzzy logic in the field of industrial and commercial

applications has been achieved with fuzzy controllers. Fuzzy control is a way of

defining a nonlinear table-based controller whereas its nonlinear transition function

can be defined without specifying every single entry of the table individually. Fuzzy

control does not result from classical control engineering approaches. In fact, its

roots can be found in the area of rule-based systems. Fuzzy controllers simply

comprise a set of vague rules that can be used for knowledge-based interpolation of

a vaguely defined function.

Suppose we consider a technical system. For this system, we dictate a desired

behavior. Generally a time-dependent output variable must reach a desired set

value. The output is influenced by a control variable which we can manipulate.

Finally, there exists a time-dependent disturbance variable that influences the

output as well. The current control value is usually determined based on the current

measurement values of the output variable x, the variation of the output Dx ¼ dx
dt

and further variables.

Hereafter we will refer to input variables x1∈X1, . . . , xn∈Xn and one control

variable �∈Y. The solution of a control problem is a suitable control function ’ :X1

�. . .�Xn! Y that determines an appropriate control value y¼’(x) for every input
tuple x¼ (x(1), x(2), . . . , x(n))∈X1 �. . . �Xn. In classical control engineering, ’ is

commonly determined by solving a set of differential equations. It is very often out

of the question to specify an exact set of differential equations. Note that human

beings, however, are greatly able to control certain processes without knowing

about higher mathematics.

Simulating the behavior of a human “controller” can be done by questioning the

individual directly. An alternative would be extract essential information by

observing the controlled process. The result of such knowledge-based analysis is
a set of linguistic rules that control the process. Linguistic rules comprise a premise

and a conclusion. The former relates to a fuzzy description of the crisp measured

input, where the latter defines a suitable fuzzy output. Thus we need to formalize

mathematical descriptions of the linguistic expressions used in the rules. Further-

more initialized rules need to be accumulated to result in one fuzzy output

value. Finally, a crisp output value must be computed from the fuzzy one.

The whole architecture for that knowledge-based model of a fuzzy controller is

shown in Fig. 16.2.

The fuzzification interface operates on the current input value x0. If needed, x0 is
mapped into a suitable domain, e.g., normalization to the unit interval. It also
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transforms x0 into a linguistic term or fuzzy set. The knowledge base comprises the

data base, i.e., all pieces of information about variable ranges, domain

transformations, and the fuzzy sets with their corresponding linguistic terms.

Moreover, it also contains a rule base storing the linguistic rules for controlling.

The decision logic determines the output value of the corresponding measured input

using the knowledge base. The defuzzification interface produces the crisp output

value given the fuzzy output.

There exist two fundamentally different approaches to fuzzy control. Both of

them are motivated intuitively (see the next two sections). We will see in sec-

tion “Approximate Reasoning” that a fuzzy controller based on logical implications

results in completely different methods of computation.

Mamdani-Assilian Controller

In 1975, the first model of a fuzzy controller was created by Ebrahim “Abe”

Mamdani and his student Sedrak Assilian (Mamdani and Assilian 1975). Mamdani

and Assilian developed their idea application-driven to control a steam engine

based on human expert knowledge.

Here, the knowledge of an expert must be expressed by linguistic rules. First, for

the set X1, p1 fuzzy sets mð1Þ1 ; . . . ; mð1Þp1 2 FðX1Þ must be defined. Accordingly, each

fuzzy set is named with a suitable linguistic term. Second, X1 is partitioned by its

fuzzy sets. To be able to interpret each fuzzy set as fuzzy value or fuzzy interval,

it is favorable to only use unimodal membership functions. Also, fuzzy sets of one

partition should be disjoint, i.e., they satisfy

controlled
system

measured
values

controller
output

not
fuzzy

not
fuzzy

fuzzificatio
interface fuzzy

decision
logic fuzzy

defuzzificatio
interface

knowledge
base

Fig. 16.2 Architecture of a fuzzy controller
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i 6¼ j ) sup
x2X1

min mð1Þi ðxÞ; mð1Þj ðxÞ
n on o

� 0:5:

Having divided X1 into p1 fuzzy sets mð1Þ1 ; . . . ; mð1Þp1 , we partition the remaining sets

X2, . . . ,Xn and Y in the same manner. Finally, these fuzzy partitions and the

linguistic terms associated with the fuzzy sets correspond to the data base in our

knowledge base.

The rule base is specified by rules of the form

if x1 is A
ð1Þ and . . . and xn is AðnÞ then � is B (16.6)

whereas A(1), . . . ,A(n) and B represent linguistic terms corresponding to fuzzy sets

m(1), . . . , m(n) and m, respectively, according to fuzzy partitions of X1�. . .�Xn and Y.
Hence the rule base comprises k control rules

Rr : if x1 is A
ð1Þ
i1;r

and . . . and xn is A
ðnÞ
in;r

then � is Bir ; r ¼ 1; . . . ; k:

Remark that these rules are not regarded as logical implications. They rather define

�¼’(x1, . . . , xn) piecewise where

� 

Bi1 if x1 
 A

ð1Þ
i1;1

and . . . and xn 
 A
ðnÞ
in;1
;

..

. ..
.

Bik if x1 
 A
ð1Þ
i1;k

and . . . and xn 
 A
ðnÞ
in;k
:

8
>>><

>>>:

Since the rules are treated as disjunctive, we can say that the control function ’ is

obtained by knowledge-based interpolation.

Observing a measurement x∈X1�. . . �Xn the decision logic applies each Rr

separately. It computes the degree to which x fulfills the premise of Rr, i.e., the

degree of applicability

ar
def¼ min mð1Þi1;r

ðxð1ÞÞ; . . . ; mðnÞin;r
ðxðnÞÞ

n o
: (16.7)

“Cutting off” the output fuzzy set mir of rule Rr at ar leads to the rule’s output fuzzy
set:

moðRrÞ
x ðyÞ ¼ min ar; mirðyÞ

� �
: (16.8)

Having computed all ar for r¼ 1, . . . , k, the decision logic combines all moðRrÞ
x

applying the t-conorm maximum in order to get the overall output fuzzy set

moxðyÞ¼ max
r¼1; ... ;k

min ar; mir ðyÞ
� �� �

: (16.9)

In control engineering, a crisp control value is needed. Therefore mox is forwarded
to the defuzzification interface. Here, it depends on the kind of method that is
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implemented to defuzzify mox. The most well-known approaches are the max

criterion method, the mean of maxima (MOM) method and the center of gravity

(COG) method. Using the first approach, simply an arbitrary value y∈ Y is chosen

for which moxð yÞ reaches a maximum membership degree. Picking a random value

leads to a nondeterministic control behavior which is usually undesired. The MOM

method choses the mean value of the set of elements y∈ Y resulting in maximal

membership degrees. The defuzzified control value � might not even be in the set

which can lead to unexpected control actions. The COG method defines the value

located under the center of gravity of the area mox as control value �, i.e.,

� ¼
Z

y2Y
moxðyÞ � y dyÞ=

Z

y2Y
moxðyÞ dyÞ:

� 

(16.10)

In most control applications, this method shows smooth control behaviors. How-

ever, it might even lead to counterintuitive results as well. For a more profound

discussion about defuzzification, see e.g., Kruse et al. (1994).

Let us conclude this type of controller by analyzing the form of linguistic rules

again. Regarding (16.8), it is clear that the minimum is used as fuzzy implication.

Obviously this does not coincide with its crisp counterpart. Just consider p! q
knowing that p is false. Then p! q is true regardless of the truth value of q in

classical propositional logic. However, min{0, q} is always 0. One way to justify

the heuristic of Mamdani and Assilian is to replace the concept of implication by

the one of association (Cordón et al. 1999). We say that for a rule Rr an output fuzzy

set Bir is associated with n input fuzzy sets A
ðjÞ
ij;r

for j¼ 1, . . ., n. This association is

modeled by a fuzzy conjunction, e.g., the t-norm min.

We retrieve Mamdani’s heuristics by extensionality assumptions (Klawonn

et al. 1995; Klawonn and Kruse 1993). If the fuzzy relation R relating the x(j) and y
satisfies some extensionality properties, then Mamdani’s approach is derived in the

sameway. LetE andE0 be two similarity relations defined on the domainsX and Y of x
and y, respectively. The extensionality of R on X � Y thus means

8x 2 X : 8y; y0 2 Y : Rðx; yÞ � E0ðy; y0Þ � Rðx; y0Þ;
8x; x0 2 X : 8y 2 Y : Rðx; yÞ � Eðx; x0Þ � Rðx0; yÞ: (16.11)

So, if (x, y)∈R, then xwill be related to the neighborhood y. The same shall hold

for y in relation to x. Then Ar
(j)(x)¼E(x, ar

(j)) and Br(x)¼E0(y, br) can be seen as

fuzzy sets of values that are close to ar
(j) and br, respectively. Naturally,

8r ¼ 1; . . . ; k : R a
ð1Þ
r ; . . . ; a

ðpÞ
r Þ; br

� �
¼ 1. The user thus only needs to define rea-

sonable similarity relations Ej and E
0 for each input xj and the output �, respectively.

Then, using the extensionality properties of R, one gets

Rðxð1Þ; . . . ; xðpÞ; yÞ � max
r¼1; ...; k

� Að1Þr ðxð1ÞÞ; . . . ;AðpÞr ðxðpÞÞ;ArðyÞ
� �

:
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If we use the t-norm� ¼min, then Mamdani’s approach to compute the fuzzy

output is obtained. In (Boixader and Jacas 1998; Klawonn and Castro 1995)

indistinguishability or similarity is expressed as link between the extensionality

property and fuzzy equivalence relations. Fuzzy interpolation can be also seen as

logical inference given fuzzy information coming from an vaguely known func-

tion (Klawonn and Novák 1996). Likewise, in Sudkamp (1993) fuzzy rules are

obtained from set of pairs (ai, bi) and similarity relations on X and Y.

Takagi-Sugeno Controller

Takagi-Sugeno controllers (Takagi and Sugeno 1985) can be seen as modification

of Mamdani-Assilian controllers. For both controllers, we need to specify fuzzy

partitions of the input domains. However, no fuzzy partition of the output domain is

needed since the rules Rr for r¼ 1, . . . , k are given as

Rr : if x1is A
ð1Þ
i1;r

and . . . and xn is A
ðnÞ
in;r

then � ¼ f rðx1; . . . ; xnÞ:

Usually the functions fr are linear, i.e., f rðxÞ ¼ a
ð0Þ
r þ

Pn
i¼1 a

ðiÞ
r xðiÞ.

Again, the decision logic determines the degree of applicability ar of each premise

using (16.7). These degrees are directly used to determine a crisp control value

� ¼
Pk

r¼1 ar � f rðxÞPk
r¼1 ar

which is a weighted sum over all rules’ outputs. Hence, the defuzzification is

omitted for that type of controller.

Approximate Reasoning

So far, we have treated the linguistic rules as associations of an n-dimensional fuzzy

input point with one fuzzy output. This makes sense for control applications where

each rule defines an operating point of the system to be controlled. Another way to

interpret a fuzzy controller is to fuzzy constrain the control function by the fuzzy

rules. This can be done by interpreting the inference process as approximate

reasoning. In classical reasoning, tautologies/inference rules are used for deductive

inferences of crisp conclusions from crisp propositions. Approximate reasoning can

be seen as generalization of classical reasoning applied to fuzzy propositions.

In (Zadeh 1973), first approaches have been developed to generalize approximate

reasoning to fuzzy sets. In (Zadeh 1979, 1983), this methodology is explained in
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more detail. Using possibility distributions to represent incomplete knowledge

helps to understand the mention techniques.

Whereas fuzzy set theory is closely associated with vague concepts, the applica-

tion of possibility theory (Dubois and Prade 1988) relates to the imperfect descrip-

tion of an existing element x0 in a set A	X. Possibility theory can be seen as

counterpart to probability theory. In order to describe a possibility distribution

P : 2X! [0, 1], the following axioms are used:

PðØÞ ¼ 0;

PðAÞ � PðBÞ if A 	 B and

PðA [ BÞ ¼ maxfPðAÞ;PðBÞg for all A;B � X:

P(A)¼ 1 means that x0∈A is unconditional possible. If P(A)¼ 0 then it is

impossible that x0∈A. In Zadeh (1978), uncertainty about x0 is modeled by the

possibility measure P : 2O! [0, 1],P(A)¼ sup{m(x) j x∈A} when a fuzzy set

m : x! [0, 1] is given as only description of x0. For this special case the possibility
measure is given by the possibility degrees of the singletons, i.e., P({x})¼ m(x).

For simplicity consider one-dimensional input and output spaces, respectively.

Here, the choice of an appropriate two-dimensional possibility distribution is

crucial. The rule

R : if x is A then � is B

that associates the input fuzzy set mA with the output fuzzy set mB is modeled by a

possibility distribution

pX;Yðx; yÞ ¼ IðmAðxÞ; mBðyÞÞ

whereas I is an implication of a multivalued logic. Hence mB¼ mA∘pX, Ywhere pX, Y
is a fuzzy relation on X� Y. The composition of a fuzzy set mwith a fuzzy relation p
is defined by

m � p : Y ! ½0; 1�; y 7! sup
x2X

minfmðxÞ; pðx; yÞgf g:

This is clearly a fuzzification of the composition ∘ of two crisp sets M	X and

R	X �Y, i.e.,

M � R def¼ y 2 Y j 9x 2 X : ðx 2 M ^ ðx; yÞ 2 RÞf g 	 Y:

The task in fuzzy control based on such relational equations is to find a fuzzy

relation p that fulfills all equations mBr
¼ mAr

�p for every rule Rrwith r¼ 1, . . . , k. If
multiple inputs X1, . . . ,Xn are used, then mA is defined on the product space X¼X1
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�. . . � Xn as in (16.7). For each of the k relational equations, the G€odel relation is

determined by

ðx; yÞ 2 pGX;Y()ðx 2 mA ! y 2 mBÞ

where the implication! is evaluated by the G€odel implication (see section “Fuzzy

Logic as Many-Valued Logic”). Thus a linguistic rule can be seen as gradual rule

‘The more mA, the more mB’ which constrains p by the inequality

minðmAðxÞ; pðx; yÞÞ � mBðyÞ

for all (x, y)∈X � Y. Theoretically, different fuzzy implications could be used to

describe p. However, several reasons can be found in favor for IG, e.g., Dubois and
Prade (1985, 1992).

If the system of relational equations mBr
¼ mAr

� p for r¼ 1, . . ., k is solvable, then

pG ¼
\k

r¼1
pGr ðmAr

ðxÞ; mBr
ðyÞÞ

is a solution with\ being the minimum t-norm. At the same time this is the greatest

solution. We can say that the relation
Y
fðx; yÞgð Þ def¼pðx; yÞ gives an estimate

whether it is possible that input tuple x is assigned to output value y. So, the set of
conjunctive rules imposes soft constraints on the control function ’. In practice,

these constraints may lead to contradictions if narrow output fuzzy sets with

overlapping input fuzzy sets are used. Thus the controller would output the empty

fuzzy set, i.e., no solution. It is therefore reasonable to define rather narrow fuzzy

sets for the input variables and rather broader fuzzy sets for the output.

Success of Mamdani Control in Automobile Industry

In the 1990s many real-world control applications have been greatly solved using

Mamdani’s approach. Among them are many control problems in the industrial

automobile field. The number of publications, however, is really low. Two control

applications at Volkswagen AG successfully use Mamdani’s approach, i.e., the

engine idle speed control and the shift-point determination of an automatic trans-

mission (Schr€oder et al. 1997). The idle speed controller is based on similarity

relations (see section “Mamdani-Assilian Controller”). This helps to view the

control function as interpolation of a point-wise known function. The shift-point

determination continuously adapts the gearshift schedule between two extremes,

i.e., economic and sporting. A sport factor is computed to individually adapt the

gearshift movements of a driver.
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Engine Idle Speed Control

The task is to control the idle speed of a spark ignition engine. One way is a

volumetric control where an auxiliary air regulator alters the cross-section of a

bypass to the throttle. This is depicted in Fig. 16.3.

The pulse width of the auxiliary air regulator is changed by the controller. If

there is a drop in the number of revolutions, then the controller forces the auxiliary

air regulator to increase the bypass cross-section. The air flow sensor measures the

increased air flow rate and thus notifies the controller. The new quantity for the fuel

injection must be computed. Due to a higher air flow rate, the engine yields more

torque. This again results in a higher number of revolutions which could be reduced

analogously by decreasing the bypass cross-section.

Both fuel consumption and pollutant emissions should be ultimately reduced.

This can be reached by slowing down the idle speed. However, a switching on of

certain automobile facilities, e.g., air-conditioning system, forces the number of

revolutions to drop. Hence the controller must be very flexible. More problems

involved in this control application can be found in Schr€oder et al. (1997).
Due to this motivating problem, a Mamdani fuzzy controller was developed

based on similarity relations. The resulting fuzzy controller was easier to design and

showed an improved control behavior compared to classical control approaches.

Similarity relations to represent indistinguishability or similarity of points within a

certain vicinity seems to be a natural modeling way for engineers.

In fact, indistinguishability is not produced by measurement errors or deviations.

It just expresses that arbitrary precision is not necessary to control a system. A control

expert must thus specify a set of k input-output tuples ((xr
(1), . . . , xr

(p)), yr).
For each r¼ 1, . . . , k, the output value yr seems appropriate for the input (xr

(1), . . . ,
xr
(p)). So, the human expert defines the partial control function ’0.

Fig. 16.3 Principle of the engine idle speed control
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In the 1990s the question to be answered was to compute a suitable output value

for an arbitrary input given specified similarity relations and ’0 (Schr€oder
et al. 1997). Using the extensionality properties defined in (16.11), one obtains

Mamdani’s fuzzy output directly by computing the extensional hull of ’0 given the

similarity relations. The partial control function ’0 can thus be reinterpreted as k
control rules of the form:

Rr : if x1 is approximately xð1Þr and . . . and xp is approximately xðpÞr

then � is approximately yr:

A more profound theoretical analysis of this approach can be found in Klawonn

et al. (1995).

To control the engine idle speed controller, two input variables are needed:

1. The deviation dREV [rpm] of the number of revolutions to the set value, and

2. The gradient gREV [rpm] of the number of revolutions between two ignitions.

The only output variable is the change of current dAARCUR for the auxiliary air

regulator. The controller is shown in Fig. 16.4.

The knowledge to control the engine idle speed controller was extracted by

measurement data obtained from idle speed experiments. The partial control

mapping ’0 :X (dREV) � X(gREV)! Y(dAARCUR) has been specified as in Table 16.1

(left-hand side).

Using a similarity relation and ’0, the fuzzy controller was defined. Its induced

control surface is shown in Fig. 16.5 as a grid of supporting points. The center of

area (COA) method has been used for defuzzification. To obtain the corresponding

Mamdani fuzzy controller, each point of ’0 was associated with a linguistic term,

e.g., negative big (nb), negative medium (nm), negative small (ns), approximately

zero (az), and so on. The obtained fuzzy partitions of all three variables are shown

in Figs. 16.6–16.8, respectively. The partial mapping ’0 was translated into linguis-

tic rules of the form

if dREV is A and gREV is B then dAARCUR is C:

Fig. 16.4 Structure of the fuzzy controller
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Fig. 16.5 Performance characteristics
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Fig. 16.6 Deviation dREV of

the number of revolutions

Table 1.1 The partial control mapping∏ 0 (left-hand side) and its corresponding fuzzy

rule base (right-hand side).
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Fig. 16.7 Gradient gREV of the number of revolutions
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The complete set of rules is given on the right-hand side of Table 16.1.

In (Klawonn et al. 1995; Schr€oder et al. 1997) the Mamdani fuzzy controller

shows a very smooth control behavior compared to its serial counterpart. Further-

more the fuzzy controller reaches the desired set point precisely and fast. Its

behavior is robust even with slowly increasing load. Thus the number of revolutions

does not lead to any vibration even after extreme changes of load occur.

Flowing Shift-Point Determination

Conventional automatic transmissions select gears based on so-called gearshift

diagrams. Here, the gearshift simply depends on the accelerator position and the

velocity. A lagging between up and down shift avoids oscillating gearshift when the

velocity varies slightly, e.g., during stop-and-go traffic. For a standardized behavior,

a fixed diagram works well. Until 1994, the Volkswagen gear box had two different

types of gearshift diagrams, i.e., economic “ECO” and sporting “SPORT”.

An economic gearshift diagram switches gears at a low number of revolutions to

reduce the fuel consumption. A sporting one leads to gearshifts at a higher number of

revolutions. Since 1991 it was a research issue at Volkswagen AG to develop an

individual adaption of shift-points. No additional sensors should be used to observe

the driver.

The idea was that the car “observes” the driver (Schr€oder et al. 1997) and

classifies him or her into calm, normal, sportive (assigning a sport factor∈ [0, 1]),

or nervous (to calm down the driver). A test car from Volkswagen was operated by

many different drivers. These people were classified by a human expert (passenger).

Simultaneously, 14 attributes were continuously measured during test drives.

Among them were variables like the velocity of the car, the position of the

acceleration pedal, the speed of the acceleration pedal, the kick down, or the

steering wheel angle.

The final Mamdani controller was based on four input variables and one output.

The basic structure of the controller is shown in Fig. 16.9. In total, 7 rules could be
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Fig. 16.8 Change of current dAARCUR for the auxiliary air regulator
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identified at which the antecedent consists of up to 4 clauses. The program was highly

optimized: It used 24 Byte RAMand 702 Byte ROM, i.e., less than 1KB. The runtime

was 80mswhichmeans that 12 times per second a new sport factor was assigned. The

controller is in series since January 1995. It shows an excellent performance.

Fuzzy Logic and Knowledge Discovery in Databases

Knowledge discovery in databases (KDD) tries to inspect, clean, transform and

model data in large databases in order to find useful information or support decision

making. Ultimately, one tries to formulate knowledge based on pieces of informa-

tion that have been discovered in databases. A single datum may describe the

condition of a certain object. It carries only information if there are at least two

different states of the condition. A datum might be seen as the realization of a

certain variable of a universe. There are different representations of a datum as it

has been measured, i.e., nominal, ordinal, interval or ratio (Stevens 1946).

The KDD process is usually performed in four stages. At the first stage, the data

are valuated and examined w.r.t. simple and essential characteristics, e.g., analysis

of frequency, reliability test, runaway, credibility. The second stage comprises

pattern matching or the grouping of observations. Usually transformations are

performed with the goal to find structures within data. At that stage, exploratory

data analysis is performed to examine the data without a previously chosen mathe-

matical model. At the third level, data are analyzed w.r.t. one or more mathematical

models. These models can be either qualitative or quantitative. The former one is

the formation relating to additional characteristics expressed by quality, e.g.,

introduction of the term of similarity for cluster analysis. The latter type of models

tries to recognize functional relations, e.g., an approximation of regression analysis.

Fig. 16.9 Flowing shift-point determination with fuzzy logic

408 R. Belohlavek et al.



At the fourth level, conclusions from the whole process are drawn and evaluated.

Also, future or missing values might be predicted. Sources of data may be com-

bined by, e.g., data fusion. In general, the learned models are revised at that stage.

If data are vague, imprecise or inconsistent, the application of fuzzy logic to

KDD might improve results. Usually common data are analyzed by fuzzy methods

whereas some researchers also analyze fuzzy data. The most prominent approach to

fuzzy data analysis is fuzzy clustering that is introduced in section “Fuzzy Cluster-

ing”. Its successfulness in KDD might come from the fact that human beings do not

group objects based on crisp labels. We rather use some kind of fuzzy terms to

cluster things, e.g., into the group of tall people. Many everyday decisions are fuzzy

and human beings are able to handle that. Therefore an appropriate answer to the

following question is naturally important: How can a computer learn fuzzy rules

from data to explain or support decisions like people do? We describe some general

approaches to generate fuzzy rules from data in section “Fuzzy Rule Generation”.

Fuzzy Clustering

Clustering is an unsupervised learning task that tries to divide data s.t.

• Objects belonging to the same cluster are as similar as possible, and

• Objects belonging to different clusters are as dissimilar as possible.

Similarity is normally measured in terms of a distance function. The smaller the

distance, the more similar two data tuples. Here, we assume that every data tuple is

an element of the n-dimensional Euclidean space IRn.

Definition 1 (Distance function). The mapping d : IRn�IRn! [0,1) is a distance
function if it satisfies the following conditions for all x,y,z ∈ IR n:

Henceforth we only focus on partitioning algorithms, i.e., given a number

c∈ IN, find the best partition of data into c groups. This is fundamentally different

from hierarchical clustering techniques where data are organized in a nested

sequence of groups (e.g., dendrograms). Usually the true number of clusters is

unknown which makes it hard to use partitioning methods. To further specify, we

concentrate on prototype-based clustering algorithms where clusters are

represented by prototypes Ci, i¼ 1, . . . , c. The prototypes shall capture the struc-

ture/distribution of data in each cluster. They are constructed by clustering

algorithms. For simplicity, consider cluster prototypes Ci which are solely

1. dðx; yÞ ¼ 0, x ¼ y (identity),

2. d(x, y)¼ d(y, x) (symmetry),

3. d(x, z)� d(x, y) + d(y, z) (triangle inequality).
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represented by the cluster centers ci. Furthermore, the distance measure d is based

on the inner product, e.g., the Euclidean distance

dðx; yÞ ¼ kx� yk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1
xðiÞ � yðiÞð Þ2

s

:

Every prototype-based clustering algorithm is based on an objective function J that
quantifies the goodness of the cluster model. Jmust be minimized to obtain optimal

clusters. The algorithms determine the best decomposition by minimizing J.
The simplest algorithm is called hard c-means or k-means clustering. Here, each

data point xj in dataset X ¼ fx1; . . . ; xmg;X 	 IRn is assigned to exactly one

cluster Gi � X . The set of clusters G¼ {G1, . . . ,Gc} must be an exhaustive partition

of X into c non-empty and pairwise disjoint subsets Gi, 1< i< c. The data partition
is optimal when the sum of squared distances between cluster centers and data

points assigned to them is minimal. The clusters should be as homogeneous as

possible. The objective function of hard c-means is thus

JhðX;Uh;CÞ ¼
Xc

i¼1

Xm

j¼1
uijd

2
ij (16.12)

whereas dij is the distance between ci and xj, U¼ uij∈ {0, 1}c�m is called partition
matrix with

uij ¼
1 if xj 2 Gi;

0 otherwise.

(

Equation 16.12 is minimized subject to the following two constraints: Each data

point is assigned exactly to one cluster, i.e.,

Xc

i¼1
uij ¼ 1; 8j 2 f1; . . . ;mg: (16.13)

Every cluster must contain at least one data point, i.e.,

Xm

j¼1
uij > 0; 8i 2 f1; . . . ; cg: (16.14)

Jh depends on both c and the assignment U of data points to the clusters. Finding

the parameters that minimize Jh is NP-hard. Therefore Jh is minimized by

alternating optimization (AO). The parameters to optimize are split into two

groups. One group is optimized holding the other group fixed (and vice versa).

An iterative update scheme is repeated until the algorithm converges. It cannot be
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guaranteed that a global optimum will be reached. Hence, the algorithm may get

stuck in a local minimum. The AO scheme for hard c-means first choses c initial ci,
e.g., by randomly picking c data points from X . Then, C is fixed and U is

determined that minimizes Jh. This is done by assigning each data point to its

closest cluster center, i.e.,

uij ¼
1 if i ¼ argminck¼1dkj;
0 otherwise.

(

After that U is fixed and ci are updated as the mean of all xj assigned to them. The

mean minimizes the sum of square distances in Jh, i.e.,

ci ¼
Pm

j¼1 uijxjPm
j¼1 uij

:

Finally, both steps are repeated until no change in C or U can be observed.

The hard c-means algorithm tends to get stuck in local minimum. It is therefore

necessary to conduct several runs with different initializations (Duda and

Hart 1973). The best result of many clusterings can be chosen based on the value

of Jh. The crisp memberships uij∈ { 0, 1} prohibit ambiguous assignments. When

clusters are badly delineated or overlapping, relaxing this requirement is needed.

This can be achieved using fuzzy clustering.

Fuzzy clustering algorithms allow gradual memberships of data points to a

cluster in [0, 1]. A data point can thus belong to more than one cluster. Conse-

quently, the membership degrees offer finer degrees of detail and express how

ambiguously xj should belong to Gi. The clusters Gi have been classical subsets so

far. Now, they are represented by fuzzy sets mGi
of X . Instantly, the cluster

assignment uij is the membership degree of xj to Gi s.t. uij ¼ mGi
ðxjÞ 2 ½0; 1�.

Thence, a fuzzy label vector u¼ (u1j , . . . , ucj)
T is linked to each xj. The matrix U ¼

ðuijÞ ¼ ðu1; . . . ; umÞ is then called fuzzy partition matrix. Two types of fuzzy cluster
partitions are known, i.e., probabilistic and possibilistic. The differ in the

constraints they place on the membership degrees. For a probabilistic cluster
partition, the constraints expressed by (16.13) and (16.14) must hold. So, no cluster

can contain the full membership of all data points. Also, the membership degrees

for a given datum resemble the probabilities of being member of a corresponding

cluster. A possibilistic cluster partition only needs to fulfill the constraint (16.13).

Here, we only focus on the former type of cluster partition. Algorithms based on the

latter one can be found in H€oppner et al. (1999).
In order to handle fuzzy membership assignments, we must minimize the

objective function

Jf ðX;Uh;CÞ ¼
Xc

i¼1

Xm

j¼1
uwij d

2
ij
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subject to (16.13) and (16.14). The parameter w∈ IR with w> 1 is called fuzzifier.
The value of w determines the “fuzziness” of the grouping. For w¼ 1 (i.e., Jh¼ Jf),
the assignments remain hard. Only fuzzifiers w> 1 lead to fuzzy

memberships (Bezdek 1973). Thus the clusters become softer/harder with higher/

lower w. Usually w is set to 2 in most applications. The function Jf is alternately
optimized, i.e., first optimizing U for fixed cluster parameters Ut ¼ jUðCt�1Þ, then
optimizingC for fixedmembership degreesCt¼ jC(Ut). The update formulas can be

determined by setting the derivative of Jf w.r.t. U and C to zero. The resulting

equations form the fuzzy c-means (FCM) algorithm. The membership degrees are

chosen according to Bezdek (1981)

uij ¼ 1

Pc
k¼1

d2ij
d2kj

� 	 1
w�1
¼ d

2
1�w
ij

Pc
k¼1d

2
1�w
kj

which is independent of the chosen distance measure. For the basic FCM model

With the second step of the AO scheme, the derivations of Jf w.r.t. the centers

yield (Bezdek 1981)

ci ¼
Pm

j¼1 u
m
ij xjPm

j¼1 u
m
ij

:

Like hard c-means, FCM can be initialized with randomly placed cluster centers.

Updating in the AO scheme can be stopped if the number of iterations t exceeds

some predefined tmax or if changes in the prototypes are smaller than some termina-

tion accuracy. FCM is stable and robust. Compared to hard c-means, it is quite

insensitive to the initialization and not likely to get stuck in a local minimum. FCM

converges in a saddle point or minimum (but not in a maximum) Bezdek (1981).

Further fuzzy clustering algorithms, distance functions variants and applications can

be found in Bezdek et al. (1999) and H€oppner et al. (1999).

Fuzzy Rule Generation

The automatic generation of linguistic rules plays an important role in many

applications, e.g., classification (Kuncheva 2000; Nauck and Kruse 1997), regres-

sion (Dickerson and Kosko 1996; Nauck and Kruse 1999; Wang and Mendel 1992),

control engineering (Klawonn et al. 1995; Klawonn and Kruse 1993, 1995, 1997),

image processing (Bezdek et al. 1999; H€oppner et al. 1999). In fuzzy data analysis, we
are interested in learning fuzzy rules from observations using fuzzy methods, e.g.,

FCM.

Before we talk about the generation of linguistic rules from fuzzy clustering, let us

briefly mention the some other methods based on fuzzy logic. Grid-based approaches
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define fixed fuzzy partitions for every variable. Every cell in that multidimensional

grid may correspond to one rule (Wang and Mendel 1992). Most well-known are

hybrid methods to induce fuzzy rules. Therefore a fuzzy system is combined with

computational intelligence techniques. For instance, evolutionary algorithms are used
for guided searching the space of possible rule bases (Cordón et al. 2004).Neuro-fuzzy
systems use learning methods of artificial neural network (e.g., backpropagation)

to tune parameters of a network that can be directly understood as a fuzzy sys-

tem (Nauck et al. 1997). Standard rule generation methods have been fuzzified as

well (e.g., separate-and-conquer rule learning (H€uhn and H€ullermeier 2009), decision

trees (Olaru and Wehenkel 2003), support vector machines (Moewes and

Kruse 2008).

Here, we will restrict ourselves to FCM for fuzzy rule generation. Consider again

the input space X� IRn and the output space Y� IR. We observe m patterns

(xj, yj)∈ S	X � Y where j¼ 1, . . . ,m. Running FCM on that dataset S leads to c
cluster prototypes ci¼ (ci

(1), . . . , ci
(n), ci

(y)) with i¼ 1, . . . , c that can be seen as

concatenation of both the input values ci
(j), j¼ 1, . . ., n and the output value ci

(y).

Thus every prototype represents one linguistic rule

Ri : if x is close to c
ð1Þ
i ; . . . ; c

ðnÞ
i

� �
then y is close to c

ðyÞ
i :

Using the membership degrees U, we can rewrite these rules as

Ri : if uxi ðxÞ then uyi ðyÞ: (16.15)

The only problem is that FCM returns the membership degrees ui(x, y) of the

product space X �Y. To obtain rules like (16.15), we must project ui onto ui
x and

ui
y. If x and y are restricted to [xmin, xmax] and [ymin, ymax], respectively, the

projections are given by

uxi ðxÞ ¼ sup
y2½ymin;ymax�

uiðx; yÞ;

uyi ðyÞ ¼ sup
x2½xmin;ymax�

uiðx; yÞ:

We can also project ui onto each single input variable X1, . . .,Xn by

uikðxðkÞÞ¼ sup
xð:kÞ2½xð:kÞ

min
;x
ð:kÞ
max �

uxi ðxÞ

for k¼ 1, . . ., n where as xð:kÞ def¼ ðxð1Þ; . . . ; xðk�1Þ; xðkþ1Þ; . . . ; xðnÞÞ. We may thus

write (16.15) in form of a Mamdani-Assilian rule (16.6) as

Ri : if ^n
k¼1

uikðxðkÞÞ then uyi ðyÞ: (16.16)
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For one rule, the output value of an unseen input x∈ IRnwill be equivalent to (16.7)

if the minimum t-norm is used as conjunction∧ . The overall output of the complete

rule base is given by a disjunction∨ of all rule outputs (cf. (16.9) if∨ is the t-
conorm maximum).

A crisp output can then again be computed by defuzzification, e.g., using the

COG method (16.10). Since this computation is rather costly, the output member-

ship functions ui
y are commonly be replaced by singletons, i.e.,

uyi ðyÞ ¼
1 if y ¼ c

ðyÞ
i ;

0 otherwise.

(

Since each rule consequent comprise the component ci
(y) of the cluster prototype,

we can rewrite (16.16) as Sugeno-Yasukawa rule (Sugeno and Yasukawa 1993)

Ri : if ^n
k¼1

uikðxðkÞÞ then y ¼ c
ðyÞ
i :

These rules strongly resemble the neurons of an RBF network. This will become

clear if every membership function is Gaussian, i.e.,

uxi ðxÞ ¼ exp
x� mi
si

� 	2

;

and if there are normalized, i.e.,
Pc

i¼1 u
x
i ðxÞ ¼ 1 for all x∈ IRn. This link is used in

neuro-fuzzy systems for both training fuzzy rules with backpropagation and

initializing RBF networks with fuzzy rules (Nauck and Kruse 1997).

Transfer Passenger Analysis Based on FCM

The German Aerospace Center (DLR) developed a macroscopic passenger flow

model for simulating passenger movements on airport’s land side. For the passen-

ger movements in terminal areas, probabilistic distribution functions are used

today. In (Keller and Kruse 2002), the goal was to build a fuzzy rule base describing

the transfer passenger amount between aircrafts. These rules could be used to

improve the macroscopic simulation. The key idea was to find the rules based on

FCM. The following attributes of passengers were used to for analysis:

• The maximal amount of passengers in a certain aircraft (depending on the type

of the aircraft)

• The distance between the airport of departure and the airport of destination (in

three categories: short-, medium-, and long-haul)

• The time of departure

• The percentage of transfer passengers in the aircraft
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The number of clusters were determined by validity measures (H€oppner
et al. 1999; Kruse et al. 2007) evaluating the whole partition of all data. The

clustering was run for a varying number of clusters. The validity of the resulting

partitions was compared based on the used measures.

An example of resulting fuzzy clusters are shown in Fig. 16.10. Every fuzzy

cluster corresponds to one fuzzy rule. The color intensity indicates the firing

strength of a specific rule. The vague areas are the fuzzy clusters whereas the

color intensity indicates the membership degree. The tips of the fuzzy partitions are

obtained in every domain by projections of the multidimensional cluster centers (as

explained before in section “Fuzzy Rule Generation”).

The fuzzy rules obtained by FCM were simplified through several steps. First,

similar fuzzy sets were combined to one fuzzy set. Fuzzy sets similar to the universal

fuzzy set were removed. Fuzzy rules with the same input clauses were either

combined if they also shared the same output clauses or else they were removed

from the rule base. Finally, around five rules could be obtained from FCM. Among

them were the two following rules: If an aircraft with a relatively small amount of

maximal passengers (80–200) has a short- or medium-haul destination departing late

at night, then usually this flight has a high amount of transfer passengers (80–90%).

If a flight with amedium-haul destination and a small aircraft (about 150 passengers)

starts about noon, then it carries a relatively high amount of transfer passengers

(ca. 70%).We refer to Keller and Kruse (2002) for more details about this real-world

application.

Fig. 16.10 Fuzzy rules and induced vague areas
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Chapter 17

Statistics of the Field*

Frances Rosamond

In attempting to collect statistics on computer science, we are confronted (as were

the authors of the COSERS book) with three problems. First, as remarked in that

Introduction (Chap. 1), we face the lack of a precise definition of the field; today,

due to the pervasiveness of computer-based research, computer science has become

intertwined with other disciplines (e.g., an academic with a Ph.D. in computer

science can be found in departments of education or biology). Second, due to the

breadth of job scope, computer science data sometimes is grouped within Science

and Engineering, and in other cases within Physical Sciences, or Mathematical

Sciences. Third, specialization within the profession in terms of theory, software, as

well as hardware development, results in rapidly changing statistics on computer

science trends – government agencies, professional societies, corporations, books,

blogs and wikipedias are prolific with a wealth of such information. Sorting through

the multitude of data is the reverse problem of the sparse statistics that COSERS

faced in the 1970s.

The primary computing associations include the Association for the Advancement

of Artificial Intelligence (AAAI), Association for Computing Machinery (ACM), the

Computing Research Association (CRA), the Institute of Electrical and Electronics

Engineers-Computer Society (IEEE-CS), Society for Industrial and Applied Mathe-

matics (SIAM), and Advanced Computing Systems Professional and Technical

Association (USENIX). Each of these associations has an extensive website with

focused information about their computing community throughout the world.
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The U.S. National Science Foundation and the Department of Education both

collect a wide variety of science-related educational data, analyze trends (e.g.,

computer use, Ph.D. production), and contribute indicators to government and insti-

tutional policy. Pointers to their reports are available at the Integrated Sciences and

Engineering Resources Data System (WebCASPAR) (https://webcaspar.nsf.gov/).

Data on educational trends in science and research is also provided by the U.S.

National Research Association and National Academies of Science (NRA/NAS), the

Department of Labor (DoL), and the Bureau of the Census.

Under the National Science Foundation, the Division of Science Resources

Statistics (SRS) provides a central clearinghouse for the collection and analysis of

data on scientific and engineering resources, and provides information for policy

formation by other Federal agencies. Several surveys are partially funded by other

agencies including the National Center for Education Statistics, the Department of

Energy, NASA, and the Bureau of the Census. SRS works collaboratively with

international organizations such as OECD and UNESCO.

The NSF Division SRS produces the Sciences and Engineering Indicators (SEI)
on the scope, quality and vitality of U.S. and international science and engineering

activity. The SEI is policy neutral, does not model projections and avoids strong

claims. Care is taken to present indicators in clear language using readily

understandable analysis in order that the data are accessible to users with different

needs and backgrounds. Indicators are subject to extensive review by outside

experts, interested federal agencies, National Science Board members, and NSF

internal reviewers for accuracy, coverage, and balance. The data are freely avail-

able online, together with tables, figures, links, and reference lists. Data from the

Science and Engineering Indicators 2010 have been used in this chapter (http://

www.nsf.gov/statistics/).

The NSF Division SRS is also responsible for the Survey of Earned Doctorates

(SED), which since 1957 has annually asked all individuals receiving U.S. research

doctorates their field, institution, sex, and much more. In 2008, about 92% of the

48,802 new research doctorates completed the survey. The data have been collected

annually since 1957 by six federal agencies: the National Science Foundation

(NSF), National Institutes of Health (NIH), U.S. Department of Education (ED),

U.S. Department of Agriculture (USDA), National Endowment for the Humanities

(NEH), and National Aeronautics and Space Administration (NASA).

Under the U.S. Department of Education, the National Center for Education

Statistics (NCES) is responsible for the Integrated Postsecondary Education Study

Data System Survey (IPEDS), which provides a variety of data on the almost

10,000 public and private US postsecondary institutions. The NCES also conducts

complementing studies of postsecondary faculty, degree recipients, financial aid,

and transcript data, for example (http://nces.ed.gov/).

Since 1974, the Computing Research Association has conducted the annual

Taulbee Survey to document trends in student enrollment, degree production,

employment of graduates, and faculty salaries. The survey is sent to 264

PhD-granting departments in computer science (CS), computer engineering, and

information technology in the United States and Canada (the Forsythe list).
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The survey is named after Orrin E. Taulbee, who conducted these surveys from

1974 to 1984 for the Computer Science Board (the predecessor to the CRA). CRA’s

primary mission is to influence policy that impacts on computing research and

development – information technology, cybersecurity, IT workforce, defense, and

impediments to research. Reports are archived on CRA’s website. An annual

Computing Leadership Summit is conducted by CRA, and further evaluates the

influence and recognition of computer science compared to other sciences.

Workforce information, such as computing people employed in other industries,

can be found at www.acinet.org. The Information Technology & Innovation Foun-

dation at www.itif.org also has a number of reports and articles that are of interest.

This chapter is divided into four main sections with the headings: – Education,

Publishing, Funding and Employment. Data from the above and other sources

identified in the references have informed this chapter, and these sources provide

annual updates. A final fifth section on Associations provides a brief description of

CS societies and agencies.

Statistics Part 1: Education

Production of Ph.D. Degrees in Computer Science

In 2008, the number of doctorate recipients claiming their major field of study as

computer and information sciences reached a high of 1786, which is 3.7% of the total

PhDs in all fields of study. The NSF data below shows that in 1978 there were 121

doctorate recipients, which was 0.4% of the total of PhDs (Fig. 17.1). There have

been a total of about 22,000 computer science PhDs produced in the past 30 years.

The annual production of PhDs appears to roughly follow the US economic

progress. According to the NCES, there were 248 PhDs in computer and informa-

tion sciences awarded in 1984–1985. Over the following 10 years, doctorates

increased to 887 in 1994. For the 8 years from 1994–1995 to 2001–2002, there

was a steady decrease to 752. After 2002, numbers increased again, to 1698 in

2007–2008 (This is a difference of about 100 doctorates from the NSF data).

The graph below, Fig. 17.2, was constructed using NCES values, and the numbers

differ slightly from NSF or CRA data.

The 2008 Ph.D. production may have been a peak. The 2008–2009 CRA

Taulbee Survey report that the numbers of “Computer Science” Ph.D.s have

declined 7.8% from 2008. There were 147 out of 188 CS departments from the

US and 41 out of 81 from Canada who responded to that Survey, about 71 percent.

The decline was predicted based on declining numbers of new students in doctoral

programs beginning in 2002–2003, which has been attributed to the “dot com” bust,

increased immigration requirements on foreign students following September 11,

and publicity on offshoring of computer jobs. Visa processing has since been

streamlined. The number of new students entering CS doctoral programs in 2009
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is about the same as in 2008, although a larger percentage are from outside North

America (see the section on foreign students below). The production of Master’s

degrees declined 6.7% in 2008–2009; however, new enrollments held steady.

According to the U.S. Department of Education data cited above, Bachelor’s

degrees in computer and information science reached a high of 42,337 in

1985–1986, and declined for the next 10 years to 24,506 in 1995–1996. The

downturn ended and there began an increase to more than double (59,488) in

2003–2004. The 2010 UNESCO Report on the Sciences confirms that the number

Computer and information sciences as the majorfield of study of doctorate recipients.
Selected years, 1978–2008 

3.717862008
2003 867 2.1

2.29271998
2.28801993
1.55151988
.92861983
.4 1211978

Number Percent of all fields of study

Fig. 17.1 Major field of study of doctoral recipients

Source: National science foundation, division of science resources statistics. 2009. Doctorate
recipients from U.S. universities: summary report 2007–2008. Table 5. Special report NSF

10–309. Arlington, VA. Available at http://www.nsf.gov/statistics/nsf10309/

Computer Science and 
Information Technology PhD 
production 1970—2008 

22,869Total

47092005-2008

43642000-2005

41641995-2000

39501990-1995

23241985-1990

1980-1985 1264

11321975-1980

9621970-1975

Fig. 17.2 PhDs in computer science and information technology 1980–2008

Source: U.S. Department of education, national center for education statistics, higher education

general information survey (HEGIS), “degrees and other formal awards conferred” surveys,

1970–1971 through 1985–1986; and 1986–1987 through 2007–2008 integrated postsecondary

education data system, “completions survey” (IPEDS-C:87–99), and Fall 2000 through Fall

2008 (This table was prepared July 2009)
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of CS Bachelor’s degrees increased more sharply from 1998 to 2004 than any other

science and engineering field except social science. However, this was followed by

another 5-year downturn to 38,476 in 2007–2008. And, according to the 2008–2009

CRA Taulbee Survey, Bachelor’s degree production in 2009 declined 12% from

2008. This will impact on lower numbers of future PhDs. However, the downturn

may end in about 2012–2013. The 2008–2009 Taulbee Survey reports that numbers

of new computer science majors has increased, up 5.5% from 2007 to 2008.

Women Earning Degrees in Computer Science

The share of doctorates earned by female U.S. citizens in 1985, 1995 and 2005 grew

steadily and doubled in the physical sciences (from 16.5% to 30.6%) and engineer-

ing (from 9.6% to 19.8%), but U.S. women’s share of doctorates in mathematics

and computer sciences in 1985 (16.6%) remained at 16.6% in 1995, and then rose

by only a third to 23.6% by 2005, echoing a similar rise in women’s doctorates in

behavioral (44.7–60.3%) and life sciences (34.8–52.8%).

(Source: National Science Board (2008) Science and Engineering Indicators http://

www.unesco.org/science/psd/publications/usr10_usa.pdf Figure 9)

Between 2002 and 2008 the percentage of doctorates awarded to women in CS

hovered at a little over 20%. In 2008–2009, women received slightly over 22% of

Master’s degrees in computer science, according to the 2008–2009 Taulbee Survey.

However, that same survey showed women received only 11% of CS bachelor’s

degrees, and form only 18.4% of new PhD enrollment, indicating that more men

may transition from undergraduate CS studies to jobs/other majors, while women

may transition to jobs after earning Master’s degrees.

The National Center for Women & Information Technology (NCWIT) produces

an annual one-page “By the Numbers” report on women in technology which shows

the contrast with 1985, when 37% of CS bachelor’s recipients were women.

According to NCWIT, there has been a 79% decline in the number of incoming

undergraduate women interested in majoring in computer science between 2000

and 2008.

(Source: Women in Information Technology. By the Numbers 2008. (http://ncwit.

org/pdf/BytheNumbers09.pdf))

Minorities Earning Degrees in Computer Science

The numbers of CS doctorates awarded to Blacks, Hispanics and American Indians

and other minorities has been extremely small, each receiving less than 5% of

degrees. None of these minorities exceeded 2% of North American PhD program

enrollment in 2008 except for African-Americans (7.9%).
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(Source: 2007–2008 Taulbee Survey, Table 8, “PhD Program Total Enrollment by
Ethnicity,” Computing Research News, Vol. 21/May 2009.)

State-by-state NCES data on a wide variety of educational issues, including

employment and productivity is available on the website. Often, computer science

is grouped into Science and Engineering (S&E), which includes physical, com-

puter, agricultural, biological, earth, atmospheric, ocean, and social sciences; psy-

chology; mathematics; and engineering. Taken as a group (see Fig. 17.3), about

24% achieve advanced S&E degrees (master’s and doctorate) when compared to all

S&E degrees (advanced plus bachelor’s), although this varies by state.

According to the 2008 SED the median number of 7 years to receive a doctorate

in the physical sciences (which includes mathematics and computer and informa-

tion sciences) since starting graduate school, has remained constant since 1983,

varying slightly between types of institutions. At research institutions with very

high research activity, the median number of years was less than at other

universities (possibly indicating that students at less prestigious universities need

outside jobs while studying). The majority of doctorate recipients in S&E fields

earn their degrees while in their early 30s; this may be a factor of gender roles

allowing men to focus on their careers. Doctoral recipients’ average age is nearly

35 years in humanities and 42 years in education, recalling that women (who

comprise most minority students in these fields) may return to universities after

raising families and experiencing relevant social issues.

(Source: Table 18 Field of study and time to degree. Selected years 1983–2008.

Table 20 Age at doctorate. NSF/NIH/USED/USDA/NEH/NASA, 2008 Survey of

Earned Doctorates (SED). http://www.nsf.gov/statistics/nsf10309/content.cfm?

pub_id¼3996&id¼5)

In 2007–2008, the average total price (tuition and fees, books and materials, and

living expenses) for 1 year of full-time graduate education was $37,300 for a

master’s degree program and $42,800 for a doctoral program (in 2008–2009 dollars),

Advanced S&E degrees All S&E degrees
1997 2002 2007 1997 2002 2007

US 119,428 122,569 150,127 503,939 533,788 626,200

Note: "All S&E degrees" includes bachelor's, master's, and doctorate;
"advanced S&E degrees" includes only master's and doctorate. S&E
degrees include physical, computer, agricultural, biological, earth,
atmospheric, ocean, and social sciences; psychology; mathematics;
and engineering.

Fig. 17.3 Advanced S&E degrees as share of S&E degrees conferred 1997, 2002, and 2007

Source: portion of Table 8.20 from national center for education statistics, integrated postsecond-

ary education data system (various years). Science and engineering indicators 2010
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differing by type of institution (public or private). About 50% of full time college

students ages 16–24 were employed, with about 10% working 35 or more hours per

week. About 80% of part-time college students were employed. Only 26% of

master’s degree students were enrolled full time in 2007–2008, compared to 53%

of doctoral degree students. About 85% of full-time students at the master’s level

and 93% at the doctoral level received some type of aid. (Grants and assistantships

are usually not related to financial need. Financial need must be demonstrated by

students in order to obtain Perkins or subsidized Stafford awards.)

(Source: U.S. Department of Education, National Center for Education Statistics,

2007–2008 Integrated Postsecondary Education Data System, IPEDS, Spring 2009.

Section 5 – Contexts of Postsecondary Education, p. 137.)

President Obama is bringing attention to the fact that the U.S has fallen from 1st

to 12th place in college graduation rates in a single generation, per the August 2010

U.S. College Board “College Completion Agenda” (http://completionagenda.

collegeboard.org); he wants to raise U.S. college graduation rates to 60% in just

10 years, adding at eight million college graduates. In 2007, 40.4% of U.S. 25- to

34-year-olds held degrees, far short of 55 + % for Canada, Korea and Russia.

Foreign Students Earning Degrees in Computer Science

Non-U.S. students are much more likely to enroll in computer science and engi-

neering at all levels than U.S. students, and this has caused some concern.

According to the 2006 SED, non-U.S. citizens accounted for 65% of doctorates in

computer science, and the increase in S&E doctoral awards to non-U.S. citizens

was three times larger than to U.S. citizens. As indicated in Fig. 17.4, since 1994,

over half of all doctorates earned in mathematics and engineering and close to half

of those in computer science have been foreign students.

The NSF table (Fig. 17.5) shows that by 2008, numbers of temporary visa

holders almost equal those of U.S. citizen doctorate recipients in the physical

sciences, which includes computer science, and has exceeded U.S. citizens in

engineering. As mentioned above, the 2008–2009 Taulbee Survey reports that the

number of new computer science and information technology doctoral students

from outside North America rose from 54% in 2008 to 59% in 2009.

Students from five countries make up the majority of all foreign doctoral

students: the People’s Republic of China (PRC), South Korea, Taiwan, India, and

Canada. Between 1985 and 2005, students from China, India and the Republic of

Korea earned half or more of all doctorates in S&T fields of computer sciences,

mathematics, physics and engineering awarded in the USA to students from foreign

countries (Fig. 17.6). Students from these and other countries come very well

trained in both science and study skills, and provide strong competition with U.S.

students, and after graduation in the job market. Foreign doctorate recipients
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include permanent and temporary residents who have tended to remain in the

United States to work, resulting in significant numbers of foreign university faculty

in the scientific disciplines (see Fig. 17.7) and foreign doctorates employed by

industry.

Countries such as China, India and South Korea that traditionally have sent

students to the US to study, are building their own new universities (sometimes as

1993198719831978
Physical sciencesb

4,148
U.S. citizen&permanent resident 3,421
Temporary visa holder 3,670
Engineering

2,423
U.S. citizen&permanent resident 1,588
Temporary visa holder 1,191

200820031998

All doctorate recipients 8,1295,830 6,6706,4285,2504,375
4,0273,3664,2113,880 3,4423,330

653 919 1,487 2,355 2,165 2,234

All doctorate recipients 7,8625,281 5,9225,6984,1862,781
2,9482,177 3,0472,6982,1471,484
4,4862,9152,5812,7911,730 781

bIncludes mathematics and computer and information sciences

Fig. 17.5 Citizenship statusofdoctorate recipients,bybroadfieldofstudy: selectedyears, 1978–2008

Source: Portion of Table 11 from NSF/NIH/USED/USDA/NEH/NASA, 2008 survey of earned

doctorates. (http://www.nsf.gov/statistics/nsf10309/content.cfm?pub_id¼3996&id¼8#tab5)
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Fig. 17.4 CS doctoral degrees: US citizens and non-citizens

Source: National science foundation, division of science resources statistics. 2009. Doctorate
recipients from U.S. Universities: summary report 2007–2008. Special report NSF 10–309.

Arlington, VA. (http://www.nsf.gov/statistics/nsf10309/)
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big as small cities) and competing for the best students. As these countries

increasingly become technology leaders, foreign students who previously would

have wanted to remain in US after graduation, may more likely return home to

work in a local university or research lab. This has led to concerns that the

U.S. may face a lack of computer science researchers and IT professionals in

the future.

On the other hand, according to a Brookings Institute Report by Ben Wildavsky

(Academic Globalization Should Be Welcomed, Not Feared, in the New York

Academy of Sciences Magazine, October 22, 2010. http://www.brookings.edu/

articles/2010/), Tsinghua and Peking universities together recently surpassed

Berkeley as the top sources of students who come to American to earn PhDs.

As previously stated, foreign students dominate doctoral programs, constituting

over 65% of Ph.D.s in computer science.

Public impression seems to be that large numbers of foreign students choose

to remain in the US after graduation, and become employed in US universities.

The CRA Taulbee Survey provides data on numbers of non-resident aliens

employed at all academic levels, as well as numbers of other ethnicity groups,

and positions filled and unfilled by department rank and by academic rank.

The US encourages international collaboration in many ways. For example, the

third U.S.-China Computer Science Leadership Summit, jointly sponsored by the

National Natural Science Foundation of China (NSFC) and the U.S. NSF was held

50,2202,166China

21,3541,791India

18,523959Taiwan

20,549849South Korea

All S&EComputer Science

Fig. 17.6 Foreign recipients of US doctorates: 1987–2007

Source: Portion of Table 2.5: foreign recipients of US S&E doctorates, by country/economy of

origin: 1987–2007 and Table 2.6: foreign recipients of US CS doctorates, by country/economy of

origin: 1987–2007 from national science foundation, division of science resources statistics,

survey of earned doctorates, special tabulations (2009)

Faculty with Non-resident Alien Status
2005-2006 2008-2009
N % N %

Full 3 0.2 6 0.3
Associate 19 1.6 35 2.6
Assistant 178 15.7 147 16.6
Teaching 10 1.5 16 2.5
Research 44 11.4 77 16.3
Post-Docs 83 31.8 165 37.5
TotaL 337 6.3 446 8

Fig. 17.7 Foreign academics

in US universities

Source: Portion of Table 22:

ethnicity of current faculty,

non-resident Alien. CRA

2005–2006 Taulbee survey

(www.cra.org)
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in Peking University during June, 2010. Altogether, 18 deans of the schools of

computer sciences from among the top 30 U.S. universities in the field of computer

sciences, 39 deans of the schools of computer sciences from among China’s top 30

universities and institutes in the same field, as well as some senior researchers

attended the summit.

Curriculum

Computer science research inter- and across disciplines has grown so significantly

and diversely that the National Academy of Science (NAS) and the National

Academies Board on Higher Education and Workforce convened a Committee on

Taxonomy to review the classification of CS fields found in the Doctorate Records

File (DRF), which is maintained by the NSF (as lead agency for a consortium that

includes the NIH, USDA, NEH, and ED). Computer Sciences is a category listed

under the Physical Sciences and Mathematics.

1. Physical Sciences and Mathematics

(a) Computer Sciences
• Artificial Intelligence/Robotics

• Computer and Systems Architecture

• Databases/Information Systems

• Graphics/Human Computer Interfaces

• Numerical Analysis/Scientific Computing

• Programming Languages/Compilers

• OS/Networks

• Software Engineering

• Theory/Algorithms

The Taxonomy also includes a category of Emerging Fields (not quite enough

graduates or doctoral curricula to be considered a ¨field¨) which include Computa-

tional Engineering and Information Science, Bioinformatics and Biotechnology,

and Computational Linguistics.

(Source: National Academy of Sciences Board on Higher Education and Work-

force. All rights reserved. 500 Fifth St. N.W., Washington, D.C. 20001. http://sites.

nationalacademies.org/PGA/Resdoc/PGA_044522, Revised 7/31/06)

The broad sweep of computer science courses within a university was well

described by Jeannette Wing, then Head of the Computer Science Department

at Carnegie Mellon, in a 2005 presentation to the National Center for Women

and Information Technology (NCWIT). Wing reports that the CS Department

at Carnegie Mellon is the home for traditional areas of computer science, but also

home for conjunction with other disciplines, such as:
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– Robotics: CS + Mechanical Engineering + Electrical Engineering

– Language Technologies: CS + Linguistics

– Human-Computer Interaction: CS + Design + Psychology

– Automated Learning and Discovery: CS + Statistics

– Software: CS + Public Policy + Management

– Entertainment: CS + Drama

Multidisciplinary degrees featuring computer science range from the MIT

Leaders for Global Operations program, which is joint between the School of

Engineering and the Sloan School of Management; the Harvard Center for

Research on Computation and Society, which includes neuroscience; and Cornell’s

Computational Synthesis Lab which explores biological concepts in engineering

design. Programs featuring computer science flourish outside of CS departments as

well; for example, the Cornell Institute for Computer Policy and Law

(EDUCAUSE), and the New Medium Consortium (NMC).

So what is computer science? Since the 1960s, ACM and the Computer Science

Teacher Association (CSTA) along with other leading professional and scientific

computing societies, have provided curriculum standards. In 2001, a five-volume

series of Curriculum Guidelines on Computer Engineering, Computer Science,

Information Systems, Information Technology and Software Engineering together

with an Overview volume for undergraduate and graduate degree programs was

published. In 2010, a second edition of Model Curriculum for K-12 Computer

Science was provided. The Computer Science curriculum was updated in 2008

(from the CS2001 Body of Knowledge). The review has 108 pages, with course

descriptions included in order to help departments implement the recommendations.

Extensive industry involvement was solicited in an attempt to respond to the crises

of low enrollments (a plummet of as much as 60–70% from the peak of 2001).

Key recommendations for curriculum in 2008 included an updating of all topics

from 2001, emphasizing concurrency, net-centric computing, human computer

interaction, software engineering, management information systems, systems issues

and professional practice. A second key recommendation was to address issues of

security systematically, both in programming, as well as in operating systems and

networking. Trends in student theses showed these topics to have become increas-

ingly relevant. In section “Statistics Part 2: Publishing” of this chapter, we also see

the relevancy of these new CS curriculum additions reflected in new CS job

specialties; the Taulbee Survey on PhD Employment by Specialty has added secu-

rity, networks, robotics/vision, bioinformatics, information science and systems,

and social informatics as CS job specialties since 2007.

CS curriculum updating has led to increasing discussions about what constitutes

computational thinking, and a number of perspectives are presented in Report of a

Workshop on the Scope and Nature of Computational Thinking, published by the

National Academy of Sciences, 2010.

Increasingly sophisticated measures are being used to assess the quality and

effectiveness of doctoral programs. For example, for the 2005–2006 academic year,

the NRC/National Academies Press reviewed more than 5,000 doctoral programs at
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212 universities with data covering faculty publications, grants, and awards,

program size, and many other characteristics, as well as ranges of rankings for

research activity and other dimensions of program quality. The massive dataset:

Data-Based Assessment of Research-Doctorate Programs in the United States, is
available from the National Academies Press (2007) (http://www.nap.edu/rdp/). The

program rankings reported by US News and World Reports receive a lot of attention.

The internet has provided an alternate access to CS education through the large

number of distance learning university programs. Three of the top ten institutions

awarding degrees in computer science in 2007 were online, with the University of

Phoenix Online Campus offering about 2000 computer science bachelor’s degrees,

more than double that of any other university.

The internet also provides many free online video lectures and coursework at

projects like the Massachusetts Institute of Technology OpenCourseWare,

AcademicEarth.org, and iTunes-U.

Additional initiatives are being made to accelerate the development and use of

online learning tools. In 2010, The Bill and Melinda Gates Foundation, the William

and Flora Hewlett Foundation, and four nonprofit education organizations

(Educause, the Council of Chief State School Officers, League for Innovation in

the Community College and International Association for K-12 Online Learning)

are creating an initiative featuring online learning with the goal of increasing

educational opportunities, especially for low-income young adults.

(Source: The New York Times, Business Day Technology online, In Higher

Education, a Focus on Technology by Steve Lohr, Published: October 10, 2010.)

Science, Technology, Engineering, and Mathematics (STEM)

Maintaining technological superiority in the U.S. depends on enlarging the pipeline

of future CS PhD recipients, part of what is labeled as “STEM” production.

According to international comparisons compiled by NSF, the U.S. has one of the

lowest rates of STEM to non-STEM degree production in the world. In 2002, STEM

degrees accounted for only 16.8% of all first university degrees awarded in the

United States, while the international average was 26.4%. Students in the U.S. prefer

to study business and psychology, rather than mathematics.

(Sources: National Science Foundation, Science and Engineering Indicators, 2006,

Volume 1, Arlington, VA, NSB 06–01, January 2006, Table 2.37. Also, interna-

tional data on academic postsecondary programs (ISCED levels 5A and 6) in 2004

corresponding to bachelor’s, master’s, first-professional, and doctoral degrees in the

US, collected through the Organization for Economic Cooperation and Develop-

ment (OECD), (http://nces.ed.gov/programs/coe/2007/section5/indicator43.asp))

According to the US Department of Education, our students lack interest and

ability in mathematics and science. The US ranks 25th of 30 OECD countries in

432 F. Rosamond

http://www.nap.edu/rdp/
http://nces.ed.gov/programs/coe/2007/section5/indicator43.asp


math literacy. One quarter of U.S. fifteen-year-olds do not reach the baseline level

of science or mathematics competence.

(Source: Steve Robinson, U.S. Department of Education, White House Domestic

Policy Council February 22, 2010.)

Low levels of U.S. student interest and scores in math and science are of great

national concern, and there have been many efforts to improve the ways US

students learn science, mathematics, technology and engineering (e.g., the National

Innovative Initiative, C-PATH by NSF; Building Engineering & Science Talent

[BEST]; The Merck Institute for Science Education; Project Kaleidoscope; and

many others). A long list of initiative reports can be found on the STEM Coalition

website (http://nstacommunities.org/stemedcoalition/reports/).

Attention to STEM is promoted by a wide variety of associations and agencies.

For example, the STEM Education Coalition is composed of advocates from over

1,000 diverse groups representing all sectors of the technological – for example,

computer science – workforce: knowledge workers, educators, scientists, engineers,

and technicians. The Coalition is co-chaired by the American Chemical Society and

the National Science Teachers Association, and works aggressively to raise aware-

ness in Congress, the Administration, and other organizations about the critical role

that STEM education plays in enabling the U.S. to remain competitive in the

twenty-first century. Widely dispersed efforts can be a difficulty, according to

CRA, since organizations and government agencies (such as the NSF, NIST,

NASA, the Census Department, and the National Labs) all compete for government

funding for STEM projects.

In 2005, the National Academy of Sciences published “Gathering Storm”, a

study calling for investment in science, technology and education. Their top three

recommendations were to:

1. Increase America’s talent pool by improving K-12 science and mathematics

education;

2. Strengthen teachers’ skills through additional training in science, math and

technology; and

3. Increase the pool of students prepared to enter college and graduate with STEM

degrees.

In 2010, an updated version: “Rising Above the Gathering Storm, Revisited:

Rapidly Approaching Category Five”, reported on the severely compromised status

of U.S. student achievement in science, in spite of government and private sector

efforts; “The outlook for America to compete for quality jobs has further

deteriorated over the past five years”. Among reinforcement initiatives, the NAS

proposed the creation of 5,000 new fellowships each year, with an annual stipend of

$30,000–$50,000 for doctoral degrees, to be administered by the NSF.

The NSF has numerous programs in STEM education, from primary through

graduate school. In early 2009, the economic downturn caused universities and

companies to severely curtail their hiring of new PhDs in computing fields. When it

became clear that many new PhDs were in danger of falling out of research and
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education careers, the NSF supported the Computing Innovation Fellows

(CIFellows) Program (through the CCC of CRA), to create opportunities for at

least some new PhDs to start careers at top research and education organizations,

thereby saving the large investments that have been made in their training and

education.

The Graduate Research Fellowships is the largest of the NSF STEM education

programs, and represents one of the longest-running federal STEM programs

(enacted in 1952). The program provides three years of support to approximately

1,000 graduate students annually in STEM disciplines who are pursuing research-

based master’s and doctoral degrees, with additional focus on women in engineering

and computer and information sciences. In 2006, there were 907 awards given to

graduate students studying in nine major fields at 150 institutions. The Research

Experiences for Undergraduates (REU) program is the largest of the NSF STEM

education programs that supports active research participation by undergraduate

students, and in 2010 focused on funding centers for cyberinformatics Bachelor’s

degree studies at Louisiana and Oregon State Universities.

The NSF Broadening Participation in Computing (BPC) program funds eleven

alliances involving a diverse set of institutions – large research universities, histori-

cally black colleges, states, middle and high schools, and various non-profit

organizations. The goal is to leverage their faculty and financial resources to

encourage more students to pursue computer science degrees, with special empha-

sis on underrepresented minorities. First distributed in 2005, funding grants are for

three years, with the potential for an additional two-year extension. An evaluation

report by the AAAS: Telling the Stories of the BPC Alliances: How One NSF

Program Is Changing the Face of Computing, (Nov 2010) states that while the

number of students pursuing computer science degrees has declined nationally,

great success has been seen in institutions participating in the BPC.

In the State of the Union Address in 2006, President George W. Bush announced

the American Competitiveness Initiative (ACI), called the “America Competes

Act”. Bush proposed the initiative to address shortfalls in federal government

support of educational development and progress at all academic levels in the

STEM fields. The initiative called for significant increases in federal funding for

advanced R&D programs, including a doubling of federal funding support

for advanced research in the physical sciences through the U.S. Department of

Energy. While political divisions temporarily halted ACI refunding, in October

2010 President Obama re-energized the initiative to gain STEM students and

graduates by calling for the recruitment of 10,000 new STEM K-16 teachers

(outcome 2) to train at federally funded R&D centers.

The National Aeronautics and Space Administration (NASA) funding is not

included in ACI, but has programs and curricula to advance STEM education at all

levels. For example, in the NASA Means Business competition, sponsored by the

Texas Space Grant Consortium, college students compete to develop promotional

plans to encourage students in middle and high school to study STEM subjects, and

to inspire professors in STEM fields to involve their students in outreach activities

that support STEM education.
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The Science and Mathematics Access to Retain Talent (SMART) Grants provide

up to $4,000 for each of the third and fourth years of undergraduate study and are in

addition to the student’s Pell Grant award (http://www.fas.org/sgp/crs/misc/

RL33434.pdf).

Other programs to encourage student interest include contests, such as the

American Computer Science League and Computer Olympiad contests for second-

ary students, and SAT contests and SONY Robot for university students. There are

summer schools and mentoring programs by ACM, IEEE, and others. There are

various awards for computing expertise, such as the million dollar prize awarded by

NetFlix in 2009 for improvements to their movie recommendation process, www.

DuPont.com/Science_Awards, Economist’s Innovation Awards, ideashappen.msn.

com, www.imagencup.com, and many others. Perhaps the most well-known prize

for professional theorists is the million dollar Clay Award for solving P versus NP.

Statistics Part 2: Publishing

The quality and number of refereed publications in prestigious journals continues to

be a defining measure for individual academic researchers. However, the internet

has changed the way we share, conduct and archive research. New ways of working

together electronically, such as Polymath, allow for easy collaboration at a distance

and on-line journals allow for dynamic updating of surveys. The most recent papers

and slides are available on conference and personal websites. Traditional refereed

journals often use electronic dissemination to cut costs and speed delivery of

scientific and scholarly knowledge. The arXiv site allows researchers to maintain

authorship and post results prior to publication. Publications are indexed and

archived in huge digital libraries maintained by universities, government, profes-

sional organizations, publishers and search engines. There are numerous freely

available blogs and online journals, such as the Electronic Journal of Combinatorics,

Theory of Computing, and Chicago Journal of Theoretical Computer Science.

Productivity

In the U.S., the bulk of academic research and publications come from just 127

research universities that each obtain more than $15 M annually in federal grants.

In 2010, America still leads the world in S&E publications, yet its share has slipped

slightly from 2002 (31%). In 2008, the US produced about 168,000 scientific

articles in S&E, almost 30% of the world total, but less than its 35% share in

1995. China produced about 60,000 articles (7.5% of total) but up 17% from 1995.

(Source: The Economist, Global science section, “Climbing Mount Publishable;

The old scientific powers are starting to lose their grip” (Nov 11, 2010))
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The US has roughly 38% of the world citations. The U.S., U.K., EU and Japan

exceeded/averaged 10 citations per S&T article published between 1998–2009,

while China trailed South Korea in averaging five or less citations (Source: NBS

and MOST (2010) China Statistical Yearbook on Science and Technology 2009;

OECD (2009) Main Science and Technology Indicators, Volume 2009/1).

US production has remained roughly constant at about half-an-article annually

per S&E doctorate holder in academia (indicating that the ratio of S&E doctorate

holders in China is rapidly increasing by comparison). State-by-state S&E article

output is reported in the NSF Science and Engineering Indicators.

The EU produced about 37% of world S&E articles in 2008, and had about 33%

of world citations. In 2010, the EU’s collective share has also fallen from 35% in

1995, whereas China’s has reached 10%. In 2008, China produced about 60,000

articles (7.5% of total), triple its share from 1995. South Korea and Brazil’s shares

grew to 2.7% of the world’s S&E publications, up by 60% from 1.7% in 2002, and

less than 1% in 1995.

Fig. 17.8 Worldwide S&E journal article production. EU European union. Asia-8 includes India,

Indonesia, Malaysia, Philippines, Singapore, South Korea, Taiwan, and Thailand. Asia-10

includes Asia-8 plus China and Japan. Internationally coauthored articles credited fractionally

to authors’ countries/locations. Counts for 2008 are incomplete

Source: Fig. O-13. Powerpoint Slides for S&E: Journal articles produced by selected regions/

countries: 1988–2008. NSF Science and Engineering Indicators 2008
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The data for the preceding paragraphs comes from article counts taken from

Thomson Reuters, SCI and SSCI, http://thomsonreuters.com/products_services/

science/; The Patent BoardTM; and National Science Foundation, Division of

Science Resources Statistics. Appendix Table 5.25 and Table 8.42. Science and

Engineering Indicators 2010.

Coauthorship

Scientists find it easier to work together across national borders, thanks to the

internet. More than 35% of articles in leading S&E journals in 2010 are the result

of international collaboration, up from 25% in 1995.

(Source: UNESCO Science Report 2010, quoting Chair, Royal Society)

In 2008, US S&E authors were most likely to coauthor with colleagues in UK,

Germany, Canada or China, with those countries holding roughly 14, 13, 12, and

11% of respective shares of US international coauthored articles.

Computer science articles generally have far fewer co-authors than other fields.

Computer science had about 1.9 co-authors in 1988, 2.6 in 2003, and 3 in 2008.

The number of co-authors in all S&E fields increased from about 3 in 1988 to 4.7 in

2008, with the largest in medical science (5.6 in 2008).

(Source: Thomson Reuters, Science Citation Index and Sciences Citation Index,

http://thomsonreuters.com/products_services/science/; The Patent BoardTM; and

National Science Foundation, Division of Science Resources Statistics, special

tabulations. Appendix Table 5.19, Table 5.16 and Table 5.22. Science and Engi-

neering Indicators 2010)

The cost of scientific articles has been calculated by the NSF Division of Science

Resources Statistics, Academic Research and Development Expenditures. They

reported US$51,784 M million dollars in research and development expenditures

in S&E for 2008, which resulted in about 3.24 articles per million dollars (down

from 5.36 articles/million dollars in 1998), or about $180,000 per article. It is not

clear how these dollars relate explicitly to computer science research, however,

since S&E includes many disciplines including physics, and development may also

include resources such as equipment or floor space.

(Source: Table 4.3 Science and Engineering Indictors 2010.)

The size of Asia’s population leads UNESCO to conclude that it will become the

“dominant scientific continent in the coming years”. China is on the verge of

overtaking both America and the EU in the quantity of its scientists. Each had

roughly 1.5 m researchers out of a global total of 7.2 m in 2007. Nevertheless, in

2007 the number of scientists per million people remains relatively low (1,0181/m)
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in China versus 4,662/m in the U.S. and 4,181/m in the U.K. China has increased its

global share of CS publications from 4.54% (1999–2003) to 10.66% by 2008,

(Source: Adams et al. (2009) Global Research Report China: Research and Collab-

oration in the new Geography of Science and also planned in 2008 to double its

2008 IT funding budget, from $9.2B to $20.5B, an indication of its S&T priorities.

India, already the world’s leading exporter of information-technology services, and

second only to China in the size of its population, has only a tenth as many

researchers. This will change as both China and India improve educational access

for their citizens, along with additional investment in IT infrastructure and CS

curriculae.)

Peer Review

The cost of journal articles does not include a cost for the peer review process,

which generally requires three reviewers to examine each article submitted to a

conference or journal, and then final selection by a program committee or editor.

The reviewers mostly are volunteers familiar with the subfield specialty topic.

Electronic systems such as EasyChair help streamline the process, however it is

still quite a burden on reviewers.

Over 25,000 CS articles annually are published or disseminated online since

1998, compared to 2,700 in 1975. There are over 132 major CS journals, and over

1,800 academic journals covering CS research in 2010, as compared with 28 in 1980.

The J ofACMHypertextBibliographyProject atMITnotes that the JACMComputing

Reviews, begun in 1964, originally covered publications in 8 categories and 172 topics,

a system (1964–1981) updated (1982 and 1991) to an 11-category, 4-level topic

tree system now used. In 1998, the ACM Chief Editor, Dr. J. Halpern of Cornell

University, also established the non-reviewed online Computing Research Repository

(CoRR) to augment rapid dissemination of CS research papers, including conference

proceedings and theses/dissertations, in 33 categories; foreign language authors

are invited to participate in order to enable global use. In 1975, ACM reviewers

covered no foreign-language articles, and few theses or conferences.

Impact Factor and H Factor

In addition to the type of articles written, the number of articles written, and how

often each article is cited, academic evaluation includes the ranking of the journals

in which the article is published. Journals are ranked in various ways by different

countries or universities. In addition, the journal impact factor is used as a measure

of the prestige of journals in which individuals have been published. The Thomson

Reuters Impact Factor annual JCR impact factor is a ratio between citations and

recent citable items published; e.g., the impact factor of a journal is calculated by
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dividing the number of current year citations to the source items published in that

journal during the previous two years. For example:

A ¼ total cites in 2012

B ¼ 2012 cites to articles published in 2010–2011 (this is a subset of A)

C ¼ number of articles published in 2010–2011

D ¼ B/C ¼ 2012 impact factor

Thomson Reuters began to publish Journal Citation Reports® (JCR®) in 1975 as

part of the SCI and the Social Sciences Citation Index® (SSCI®). The JCR

summarizes citations from more than 10,000 journals and proceedings in the

sciences and social sciences indexed in the Web of Science database. Nearly

8,000 journals appear in the 2007 JCR, with detailed reports of their citation

performance, their citation network, and the count and type of materials published.

In addition to the JCR Impact Factor, the JCR® includes the Eigenfactor™
Metrics, which use citing journal data from the entire JCR file to reflect the prestige

and citation influence of journals by considering scholarly literature as a network of

journal-to-journal relationships.

(Source: http://thomsonreuters.com/products_services/science/free/essays/impact_factor/)

The Thomson Reuters Impact Factor by Dr. Eugene Garfield. Founder and

Chairman Emeritus, ISI. Essay was originally published in the Current Contents

print editions June 20, 1994, when Thomson Reuters was known as The Institute

for Scientific Information® (ISI®).

Another index used to measure the productivity and impact of an individual

scientist is the H-factor (after physicist Jorge E. Hirsch). The index is based on

the set of the scientist’s most cited papers and the number of citations that they have

received in other people’s publications. A scholar with an index of h has published

h papers each of which has been cited by others at least h times. Individuals can

compute their h-index manually using citation databases. Google Scholar or sub-

scription-based databases such as Scopus and the Web of Knowledge provide

automated calculators. Each database is likely to produce a different h for the

same scholar, because of different journal coverage. The h-factor varies by disci-

pline. In computer science, conference preprints are often excluded from the index.

Conferences are important in computer science, but in most other fields are

accorded less weight in evaluating academic productivity.

Conference citation gaps are not the only problem with the current CS confer-

ence situation. According to the Peer Review Panel at the 2010 CRA Snowbird

Conference, CS subfields feel their research is not well represented and have

splintered off into specialty conferences, possibly indicated by decreased atten-

dance at STOC 2010 (350 participants compared to 500 in 1987). Authors are often

the only attendees at conferences, since presentation of a paper generally is the only

way to obtain travel funding. There is the possibility of missing big ideas and losing

relevance, and becoming locked in a cycle of “deadline-driven” research.
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Since even journals are limiting in terms of article time to publication and reach

subscribers, the CS community has turned to free and subscription, reviewed and

non-reviewed online blogs, archives, libraries, and bibliographies, to quickly cap-

ture all the latest and greatest CS ideas.

Blogs

Life in the computer science field is exhibited in online blogs. There are over 50

computer science blogs, from blogs for beginners to complex theoretical blogs that

can challenge the best minds of the field (http://www.mastersincomputerscience.

net/top-50-computer-science-blogs.html, Published by Madison on Wed May 5,

2010, accessed on 4 October 2010). According to mastersincomputerscience.net,

there are 23 blogs on Computer Science, 20 on Computational Complexity and

Theory, and seven on the juncture of Physics and Computer Science.

Digital Archives, Libraries, and Bibiliographies

Possibly one of the most significant of the electronic events is the arXiv.

Researchers have had to be somewhat circumspect about publically discussing

their results before the results are published – and publication traditionally has

been a very long process, sometimes years.

The arXiv has changed all this by (almost) guaranteeing author ownership

during the sometimes long gap between finishing the research and journal publica-

tion. Scientists upload their papers to arXiv.org for worldwide access. Results are

disseminated in the fastest possible way. The arXiv was started in 1991 by Paul

Ginsparg originally as a repository for preprints in physics and later expanded to

computer science and other areas. It was originally hosted at the Los Alamos

National Laboratory (hence its former address at xxx.lanl.gov) and is now

funded by Cornell University and NSF, with mirrors around the world. The name

and address was changed to arXiv.org in 1999 for greater flexibility. ArXiv

versus snarXiv is a popular game of guessing which title refers to a genuine

scientific article.

One of the quickest ways to find the publication record of an individual

researcher is to use the Computer Science Digital Bibliography (DBLP) maintained

by Michael Ley (Univ Trier http://dblp.uni-trier.de/), a tremendous index of biblio-

graphic information on more than one million articles and containing more than

10,000 links to home pages of computer scientists. Access is free.

Archiving and electronic access to computer science material is provided by

government, professional organizations, universities, companies, and national labs.

Search engines such as Google Scholar locate millions of articles on webpages,

while thousands of individuals build and update Wikipedia.
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The National Science Digital Library (http://nsdl.org/) is the Nation’s online

library for education and research in Science, Technology, Engineering, and Math-

ematics. The NSDL hosts the Computer Science and Information Technology

Gateways and Resources collection. The collection is comprised of web portals,

sites, and individual digital resources devoted to research in computer science and

information technology, as well as materials for the general public, and include

resources in many areas such as algorithms and data structures, operating systems

and programming languages, software engineering, artificial intelligence, informa-

tion science, digital-library technologies, and others.

The National Labs offer access to their technical publications, such as at NASA

Technical Reports Server (http://ntrs.nasa.gov/search.jsp). Companies also offer

access. For example, CyberDigest: IBM Research Reports, offers the scientific com-

munity access to technical reportswrittenbymembersof the IBMResearchcommunity

(online at http://domino.research.ibm.com/comm/research.nsf/pages/d.compsci.html).

Two large digital libraries are maintained by the ACM and by the IEEE. The

ACM Digital Library is a collection of citations and the full text of every article

ever published by ACM, including journals, magazines, transactions, special inter-

est group (SIG) newsletters, proceedings, and publications by affiliated

organizations. ACM Computing Reviews (ISSN 1530–6586) is an academic jour-

nal that has reviewed computer science literature since 1964, and was an important

resource for the original COSERS overview of CS Publication.

The ACM Computing Classification System (CCS) serves as one of the most

generally used systems for the classification and indexing of the published literature

of computing, and is the basis for classifying documents in the ACM Guide to
Computing Literature. The Encyclopedia of Computer Science has a closely related
taxonomy. The IEEE Computer Society Digital Library provides access to almost

310,000 articles and papers from 26 IEEE Computer Society periodicals and 3300+

conference publications. The IEEE Xplore is a subscription research database that

mainly covers material from IEEE and IET, and contains over two million records.

CiteseerX (previously Citeseer) is a scientific literature digital library and search

engine that focuses primarily on the literature in computer and information science.

Since its inception, the original CiteSeer grew to index over 750,000 documents and

served over 1.5 million requests daily, pushing the limits of the system’s

capabilities. Access is by subscription.

Google Scholar is a freely accessible web search engine that indexes the full text of

scholarly literature and indexes most peer-reviewed online journals of Europe and

America. It is similar in function to the subscription-based tools: Elsevier’s Scopus

and Thomson Reuter’s ISIWeb of Science, CiteSeerX, and getCITED. Springer-Link

covers Springer publications. Another search engine, Microsoft Academic Search

(http://academic.research.microsoft.com/) indexes almost ten million publication and

six million authors. Journals are also indexed in Academic OneFile, Computer

Abstracts International Database, Computer Science Index, Digital Mathematics

Registry, Journal Citation Reports/Science Edition, Mathematical Reviews, Science

Citation Index Expanded (SciSearch), SCOPUS, VINITI - Russian Academy of

Science, Zentralblatt Math.
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Guides to computer science materials and literature can be found on Wikipedia.

For example, AcademicInfo is an online reference for researchers, and provides an

extensive list of computer science digital libraries at (http://www.academicinfo.net/

compscilibrary.html) including the Directory of Computing Science Journals.

Hypatia (http://www.hypatia-trust.org.uk/library.html) is a directory of researchers

in computer science and mathematics, and a library of their papers.

The collection of computer science bibliographies prepared by Alf-Christian

Achilles and Paul Ortyl contains more than three million of references (mostly to

journal articles, conference papers and technical reports), clustered in about 1,500

bibliographies, and consists of more than 2.3 GB (530 MB gzipped) of BibTeX

entries. More than a million references contain URLs to an online version of the

paper. (http://liinwww.ira.uka.de/bibliography/index.html).

A unique resource is the Charles Babbage Institute, Founded by Erwin and

Adelle Tomash in 1978 and moved to the University of Minnesota in 1979. CBI

archivists collect, preserve, and make available for research primary source

materials relating to the history of information technology. The archival collection

consists of corporate records, manuscript materials, records of professional

associations, oral history interviews, trade publications, periodicals, obsolete

manuals and product literature, photographs, films, videos, and reference materials.

In an Oral History interview, for example, Bruce H. Barnes describes his duties as a

program director at the NSF, with examples of NSF’s support of research in

theoretical computer science, computer architecture, numericalmethods, and software

engineering, and the development of networking. He describes NSF’s support for the

development of computing facilities through the Coordinated Experimental Research

Program.

Dictionaries, Encyclopedias and Tutorials

Other CS-related online publications include dictionaries, encyclopedias and

tutorials, some of which have been mentioned in the section on Education.

Among the online publications are numerous free searchable dictionaries for

computer and Internet technology definitions, and abbreviations, such as:

• Free On-Line Dictionary of Computing (FOLDOC) jargon, programming

languages, and theories related to computing. It contains over 13,000 entries

which are cross-referenced to each other and to related resources elsewhere on

the web.

• Dictionary of Algorithms and Data Structures covering algorithmic techniques,

data structures, archetypical problems, and definitions related to computer

science.

• BABEL, a glossary of computer-related acronyms and abbreviations.

• Chip Directory providing numerically and functionally ordered chip lists, chip

pinouts, and lists of manufacturers.
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Encyclopedias include:

• TechWeb Encyclopedia, a free, online encyclopedia of over 20,000 IT terms.

• Symantec’s Virus Encyclopedia, providing synopses of the latest virus-related

threats including technical details about how each functions, and instructions for

removal. Several universities and other agents produce online tutorials and

courses, such as the prestigious MIT and UCLA lectures. Others include:

• W3 Schools Online Web Tutorials introducing web design and development

through HTML, XML, browser scripting, server scripting, and multimedia.

• UMBC AgentWeb introducing software agent-related concepts and

technologies.

Statistics Part 3: Funding

Funding for computer science research primarily comes from the Federal government

through the NSF (see Computer & Information Science and Engineering: CISE

at http://www.nsf.gov/dir/index.jsp?org¼CISE), the Department of Energy, Depart-

ment of Defense, or through Pell or other grants that provide student loans. The

NSF accounts for approximately 20% of federal support to academic institutions

for basic research. Corporate giving and private philanthropy help build and support

computer science programs and institutes. UNESCO is also interested in supporting

computer science and informatics. Professional organizations such as CRA work to

influence government opinion towards increased support of computer science (see

Computing Research Policy Blog at http://www.cra.org/govaffairs/blog/).

Federal and State Funding

In November 2010, Director of Government Affairs for the CRA Peter Harsha

reported on a draft review of the federal government’s 14 agency, $4 billion a year,

Networking and Information Technology Research and Development (NITRD)

program, which calls for significant new investment in federal IT research support,

the establishment of a standing committee of networking and IT specialists to

oversee the federal effort, and the establishment of a new, publicly-accessible,

detailed database on federal IT research spending. The report calls for new research

in high performance computing, privacy and confidentiality, human-computer

interactions, large scale data analytics, and cyber physical systems. The review

found that NITRD was successful, but also found several issues with the program.

For example, while several agencies (such as the Department of Defense) clearly

understand the importance of fundamental computing research to their agency

missions, many others still don’t. Some of this can be seen in the way agencies
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report their IT research spending levels, mistaking investments in IT infrastructure

as investments in IT research. A review by the subcommittee of the funding levels for

“IT research” reported by the National Institutes of Health ($1.2 billion in FY 10),

for example, showed that true IT research accounted for only 2–11% of the total. And

NIH isn’t alone. Co-chair of the report committee and chair of CCC Ed Lazowska,

says that the NITRD significantly overstates the total federal investment. Also, while

NITRD coordinates efforts well, there is little vision and leadership.

The NSF/Division of Science Resources Statistics, Survey of Federal Funds for

Research and Development has extensive tables showing annual federal obligations

for research in mathematics and computer sciences, by agency and field. Federal

obligations for research in computer science and mathematics across all agencies

listed for 2007 was almost three billion dollars, with computer science receiving a

little over two billion and mathematics a little less than one billion. Several of the

agencies had no listing for computer science research (Smithsonian, Social Secu-

rity, US Census, Housing and Urban Development).

In 2007, the Department of Defense received the largest share of computer

science research dollars (about $700 million) with about half going to the Defense

Advanced Research Projects Agency, and lesser amounts to the Army, Air Force,

and Navy (respectively). The second largest expenditure (about $670 million)

went to the Department of Energy, mostly to the National Nuclear Security

Administration, and about $53 million of that to the Office of Science. The third

largest expenditure went to the NSF (about $600 million). The Department

of Commerce received about $63 million for the National Institute of Standards

and Technology and $2 million for the National Oceanic and Atmospheric

Administration.

Other agencies received lesser amounts (in millions, approximately): NASA

(16.5), US Geological Survey (12), Department of Transportation (9), Homeland

Security Science and Technology Directorate (8), Environmental Protection (6),

and Forest Service (1), and Federal Communications Commission (0.4). Health and

Human Services mostly received about 8.5 for the Agency for Healthcare Research

and Quality and about 0.5 for Centers for Disease Control and Prevention.

The same NSF survey has tables showing federal obligations for research and

development and R&D plants, as well as amounts for research and basic research.

A portion of Table 2 showing Federal obligations for R&D and Research Prelimi-

nary data for 2009 is presented in Fig. 17.9, with amounts for environmental

sciences, life sciences and physical sciences included to show contrast.

The Federal obligations for basic research in computer science, as compiled by

the NSF, increased from $438 M in 1999 to $730.5 M in 2003 (Fig. 17.10). There

was a decrease in 2005 to $658 M, followed by an increase in 2007 to $708 M. Data

for 2009 has not yet been made available.

In 2007–2008, public institutions spent $261 billion ($27,176 per student in

2008–2009 dollars). About 28% of this amount, $7,703 per student, was spent on

instruction. About 10% of the remaining funds were used for research (not specifi-

cally computer science research), about $2700/FTE student. Private not-for-profit
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institutions spent $134 billion ($44,592 per student), and 11% of total expenses

went towards research ($4835/FTE student).

(Source: Indicator 49, Table A-49-2, Postsecondary Revenues and Expenses, in

Contexts of Postsecondary Education Section 5. U.S. Department of Education,

National Center for Education Statistics, 2007–2008 Integrated Postsecondary

Education Data System (IPEDS), Spring 2009)

The Taulbee Survey also collects information about external funding for CS

research. A decrease in external funding from 2003 to 2006 is reported in Fig. 17.11,

however, the number of departments responding to the CRA survey also decreased.

The expenditure of external funding for research in CS varies by rank of

department, as shown in Fig. 17.12, part of Table 24.1 created by CRA.

Summary of federal obligations for R&D and Research with Preliminary data for 2009
(dollars in millions)

Basic ResearchR&D

28,536.154,801.0114,453.9

Performer

Intramurala 4,6998.11,948.426,142.5

2,009.46,024.246,328.6Industry

Industry FFRDCsb 353.33,892.6

University and college FFRDCsb

1,001.01,305.72,107.5NonproftiFFRDCs

232.8430.1602.5Foreign

Field of science

1,929.83,352.3

15,951.329,298.9Life sciences

4007.05,593.2Physical sciences

Environmental sciences

1,569.13,333.1Mathematics and computer sciences

106.0284.5331.8State and local governments

Other nonprofit institutions 2,919.15,366.95,821.8

2,181.32,429.73,502.8

Universities and colleges 25,723.8 15,033.424,640.5

2,371.1

Research

Fig. 17.9 Summary of federal obligations for research with preliminary data for 1999

Source: Table 25: federal obligations for research in mathematics and computer sciences and in

social sciences, by agency and detailed field: FY 2007 national science foundation/division of

science resources statistics, survey of federal funds for research and development: FY 2007, 2008,

and 2009. (http://www.nsf.gov/statistics/nsf10305/content.cfm?pub_id¼3966&id¼2)
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Fig. 17.10 Federal obligations for research 1999–2009

Source: Table 2: federal obligations for research in mathematics and computer sciences and in

social sciences, by agency and detailed field 1999–2009. FY 2007 national science foundation/

division of science resources statistics, survey of federal funds for research and development: FY

2007, 2008, and 2009. (http://www.nsf.gov/statistics/nsf10305/content.cfm?pub_id¼3966&id¼2)

Fig. 17.11 CRA comparison of CS external funding 2000–2006

Source: Portion of Table 44a. Computing research association 2005–2006 Taulbee survey (www.

cra.org)
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UNESCO Science Report 2010

In 2010, UNESCO published, “The Current Status of Science Around the World”.

The following international comparisons with U.S. R&D funding, as well as U.S.

federal/corporate funding comparisons, and patent information come from that report.

The U.S. consistently invests more money in R&D than the rest of the G8

countries combined. Its share of G7 (excluding Russia, since its budget was not

revealed) expenditure on R&D has exceeded 50% since 1997. In 2006, the U.S.

share of the G8 total was 53%.

The National Science Foundation has compared (1990–2006) the gross GERD

expenditures of U.S. federal and corporate R&D (in constant year 2000 US$M).

While federal funding has been flat (from $75B to $82B), total corporate R&D

funding has doubled from $102B to $204B. In 2007, R&D federal funding was

$93B, and industry funding had grown to $245B. The funding provided by

corporations is usually linked to the type of corporate output, and is seldom “pure

research”. Thus, there is some concern among computer scientists, as well as other

Total Expenditure from External Sources for CS/CE Research by
Department Rank and Type

Rank Minimum Mean Median Maximum
US CS 1-12 $3,200,000 $19,961,143 $11,042,484 $84,967,163
US CS 13-24 $4,486,612 $10,772,192 $10,082,630 $26,154,500
US CS 25-36 $1,288,031 $6,155,334 $5,794,512 $15,406,490
US CS Other $20,572 $2,617,977 $1,705,995 $31,500,000
Canadian $93,402 $3,099,463 $2,317,456 $10,887,598
US CE $91,789 $2,352,773 $2,689,560 $5,199,187

Fig. 17.12 CRA comparison of CS research funding by department rank

Source: Table 24.1. Total expenditure from external sources for CS/CE research by department

rank and type. CRA 2005–2006 Taulbee survey (www.cra.org). In tables that group departments by

rank, the groupings are based on the 1993 National Research Council ranking of research-doctorate

programs in the United States, released in 1995 (http://cra.org/statistics/nrcstudy2/)

(USD in millions) All R&D Federal R&D
2003 2005 2007 2003 2005 2007

All industries 200,724 226,159 269,267 17,798 21,909 26,585
Non-manufacturing industries 79,866 67,969 81,790 4,665 6,274 8,415
Computers and electronic products 39,001 48,296 58,599 6,506 8,522* 8,838
Software * 16,926 * * 33 *
Professional/S&T services, incl R&D 27,967 32,021 40,533 4,237 5,839 7,608
*Data have been suppressed by the source to prevent disclosure of confidential information. 

Fig. 17.13 Funding of industrial R&D in the USA by major industry, 2003, 2005 and 2007

Source: National science foundation, division of science resources statistics. 2010. Federal funds
for research and development: fiscal years 2007–2009. Detailed statistical tables NSF 10–305.

Portion of Table 125. Arlington, VA. (http://www.nsf.gov/statistics/nsf10305/)
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scientists and journal publishers about compromises in research integrity due to

potential conflicts of interest between scientific researchers and corporate funders.

The prospects for increased R&D investment by business also look bright in

many of the emerging scientific nations. Between 2002 and 2007, business invest-

ment as a proportion of GDP rose rapidly in China, India, Singapore and South

Korea (although India’s increase was from a low base); investment has risen rapidly

in Japan as well.

The UNESCO Institute for Statistics ranks the annual R&D funding among the

top 25 global corporations. In 2003, the ranking included three infotech companies:

Microsoft (7th, $6.2B), Intel (13th, $4.4B), and Hewlett-Packard (25th, $3.7B).

While U.S.federal funding has gradually declined, corporate R&D funding has

increased dramatically: in 2006, Microsoft, for example, invested US$7.8B in

R&D, the highest of any multinational corporation. Others headquartered in the

US with significant expenditure were IBM ($5.7B), and Intel ($4.8B).

However, the ratio of gross expenditures for research and development (GERD)

to gross domestic product (GDP) has never reached 3% in the US. This ratio peaked

at 2.9% in 1962. Other countries have exceeded the 3% ratio: Republic of Korea

(3.4%) 2008; Japan (3.7%) and Finland (3.5%) in 2007; Israel (4.7%) and Sweden

(3.6%) in 2005. Approximately US$ 18.0B (4.9%) of total US GERD was not

generated in 2006 by either industry or federal source; this was generated mainly by

colleges and universities from their own state funds (US$ 9.9 billion) and other non-

profit organizations (US$ 8.1 billion). As the U.S. economy has recently declined,

the percentages of funding by states have also suffered declines.

The U.S. still has the largest basic research budget in the world, and an

impressive trade surplus in intellectual property, the basis for the innovation needed

in business. How do basic research and publications translate into patents? In patent

offices, America dominated, with almost 42% of the world’s patents in 2006, a

share that has fallen only slightly over the previous four years. Japan had about

30%, the EU 26%, South Korea 2% and China 0.5%.

Between 1995 and 2002 in the U.S., the number of university-held patents

increased substantially, as did the royalties derived from leasing those patents to

industry. Median net royalties grew from $600,000 in 2002 to $900,000 in 2005,

although annual patent numbers peaked at 3,300 in 2004, showing that licensing is

an important factor in the continued growth of industry-university partnerships

begun in the 1970s. As the strongest trend in industry in 2010 is the outsourcing

and off-shoring of “open innovation” R&D, the improving universities in China and

the former Soviet Union will pull industry investment from the U.S. and the EU, but

U.S. intellectual properties are expected to keep their value to industry.

Private Funding for Computer Science

Many universities have institutes for various aspects of computing, but there is no

separate entity as in other fields. In 2010 the Simons Foundation announced that it
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will provide up to $6 M/year funding for a new Institute for the Theory of

Computing. The funding recognizes the deep importance of the study of computa-

tion to society, and the need for a critical mass of researchers from around the world

to accelerate fundamental research on computation and to further develop its

interactions with other areas of science ranging from mathematics and statistics

to biology, physics and engineering.

The Bill & Melinda Gates Foundation is one of the world’s largest philanthropic

organizations, and has donated enormous sums to promote literacy in every area

(in addition to health and overcoming poverty). For example; the University

Scholars Program established at Duke University in 1998 provides scholarships

to students in the Graduate School pursuing doctoral degrees in any discipline. The

Cornell University Faculty of Computing and Information Science received $25

million for a new Information Science building, expected to be finished by 2014.

The Carnegie Mellon School of Computer Science received $20 million for a new

Computer Science building, which opened 2009.

The U.S. has a tradition of philanthropic funding excelled nowhere else in the

world. Many corporations and foundations give funding to universities and

institutions, while others directly support individuals. In addition to many

companies and organizations small and large, some of the generous givers include

the Alfred P. Sloan Foundation, the Ford Foundation, The John D. and Catherine

T. MacArthur Foundation, AT&T, 3 M, Exxon, the Carnegie Foundation, NEC

Foundation of America, Sigma Xi, The Scientific Research Society, the Alexander

von Humboldt Foundation, the Google Anita Borg Memorial Scholarship, and the

L’Oreal USA Fellowships for Women In Science (www.lorealusa.com).

The U.S. has been and continues to be the world leader in education, publishing

and patents, employment and funding of computer science. Computer science

theory, software and hardware are used in almost every field. The professional

agencies, private organizations and government recognize the essential relevance of

the study of computation to society, and are working together to ensure that our

leadership in innovation and computer science production remain stellar.

Statistics Part 4: Employment

The U.S. Bureau of Labor Statistics (BLS) started developing long-term employment

projections nearly 60 years ago, soon after World War II ended. The 2008–2018

projection was released in November 2009 (see Fig. 17.14). The projections are based

on a macroeconomic model of the US economy that solves a system of 543 equations.

The data baseline was in 2008, which had 7.2% unemployment (and deeper unem-

ployment occurred in 2009 and 2010). The model makes projections under the

assumption that the economy will return to full employment and a long-run growth

path with yearly average 2.4% GDP by 2018 (and no further interruptions to the

economy). Because of the baseline and assumptions, some of the projections may

reflect stronger growth than one might expect. The projected job openings are a
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measure of the total number of workers who will be needed to meet demand, and

include new jobs created from economic growth, plus jobs created by retirement or

other replacement. The expectation is that replacement needs will account for more

than twice as many 2018 job openings as economic growth.

During the coming 8 years, the 55-and-older groupwill be a larger share of the U.S.

population. As a result, computing occupations related to healthcare services are

expected to increase rapidly. As a group, computer and mathematical occupations

are projected to grow more than twice as fast as the average for all occupations in the

economy and are expected to add a total of 1,440,500 jobs – including 785,700 new

jobs – from 2008 to 2018. Computer specialists will account for the vast majority of

this job growth, increasing by 762,700 new jobs for a total of 1,383,600 new and

replacement CS job openings. Computer software applications engineers will

increase by roughly 175,000 new jobs – more than the projected increase for any

other type of computer specialists. Network systems and data communications

analysts are projected to see an increase of 155,800 new jobs, while other computer

systems analysts will be needed in almost 110,000 new jobs, as well as about 167,000

replacement analyst jobs. New computer specialist jobs will arise in almost every

Fig. 17.14 Current and projected employment in computer science occupations

Source: Occupational employment projections to 2018 by T. Alan Lacey and Benjamin Wright,

Monthly Labor Review, November 2009

450 F. Rosamond



industry, but roughly half will be located in the computer systems design industry,

which is expected to employ more than one in four computer specialists in 2018.

According to the U.S. Department of Labor (DoL), computer and information

researchers held about 28,900 jobs in 2008. About 23% of these were in computer

systems design and related services. They were also employed by software publish-

ing firms, scientific research and development organizations and in education.

Researchers categorized by the DoL Standard Occupational Code (SOC) 15–1011

are generally expected to hold the Ph.D. The Occupational Information Network

(O*NET) provides information on occupational characteristics. See http://www.

bls.gov/ooh/ocos304.htm

Using theDepartment of Education IPEDSdatamentioned earlier, the total number

of computer science doctorates produced in the past almost 30 years (1980–2009) is

about 22,000. Thirty years is approximately the length of a normal working career, so

we can assume that 22,000 is an upper bound on the numbers of Ph.D. computer

scientists today. Not every doctorate from the past 30 years will beworking in research

today, so the gap of almost 10,000 jobs notable when comparing the IPEDS data with

the 28,900 researchers reported by the DoL for 2008, suggests that many who hold

Master’s or Bachelor’s degrees hold an occupation title of “researcher”.

Employment by Specialty

Employment of new Ph.D.s by specialty in the U.S. and Canada is tracked by

the CRA Taulbee Surveys, and this information is summarized the tables in

Fig. 17.17. In 2007, AI/robotics took over from OS/networks as the area with the

largest number of graduates. The numbers vary only slightly, and so it is difficult to

notice trends. In 2007, the choice of areas that the departments could use to classify

Ph.D. recipients was refined, and additional categories of interest were added.

The Fig. 17.16 shows the employment of new CS/CE Ph.D.s in industry,

government or self-employed versus academia and also those who have gone

outside North America. There have been dramatic reversals as in 2001–2003

Fig. 17.15 Average annual growth rate for employment of S&E doctorate holders in academia

reporting research as a primary or secondary work activity
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when doctorates going into academia jumped to 64% from 44%, with those in

industry dropping to 32%. By 2006, there was another reverse with industry

claiming almost 60% of doctorates. Another reverse may be happening. Only

about 47% of 2008–2009 graduates joined industry.

This may be due to the economy. According to outplacement company Chal-

lenger, Gray and Christmas, degrees in engineering and computer science, which

used to be considered surefire paths to employment, each received just 10% of

recruiter votes for offering the best chance of job-search success. The technology

sector announced almost 175,000 planned job cuts in 2009, which is 12% higher

than the cuts of 2008. The list of those announcing cuts include Google, Microsoft,

IBM, Adobe, Yahoo, AOL, AT&T, Sprint, Cisco Systems, Nokia, Seagate and Sun.

However, these cuts include sales,marketing and recruiting forces, and not necessarily

research. According to CRA, the unemployment rate for new PhDs is less than 1%.

(Source: Joseph Tucci of EMC-Technology Section-Business Management US.

www.busmanagement.com GDS Publishing Ltd. 2010)

A similar number of graduates took tenure-track jobs in 2008–2009 as did in

2007–2008. However, more graduates went into academic positions as researchers

and post-docs in 2008–2009. The new NSF Computing Innovation Fellows

Fig. 17.16 Employment of new PhDs in industry, government, academia, offshore

Source: 2008–2009 CRA Taulbee survey
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Fig. 17.17 Employment of new Ph.D. Recipients by specialty

Source: Table 4 from Taulbee surveys. CRA archives
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program had a lot to do with supporting this shift. (See http://www.cra.org/uploads/

documents/resources/taulbee/0809.pdf). The CRA Taulbee Survey annually reports

on numbers of academic open positions and hires, by ranked departments.

Foreign-Born S&E Academics

Foreign-born S&E doctorate holders with U.S. doctorates are more heavily

concentrated in computer sciences, mathematics, and engineering than in other

fields. These foreign-born doctorate holders account for more than half of all

academic researchers and of full-time faculty researchers in computer sciences

and for 39–48% of all academic researchers and full-time faculty researchers in

mathematics and engineering. In contrast, they represent 27% or less of all aca-

demic researchers and 21% or less of full-time faculty researchers in the life

sciences, the physical sciences, psychology, and the social sciences.

(Source: Chap. 5. Academic Research and Development. Doctoral Scientists and

Engineers in Academia, NSF Science and Engineering Indicators 2010. (http://
www.nsf.gov/statistics/seind10/c5/c5s3.htm)).

Computing in Industry

The U.S. Bureau of Labor Statistics, Occupational Employment andWage Estimates,

shows that the occupation “Computer Specialist” represents about 2% of the total US

workforce (see Fig. 17.18). The data are reported state-by-state based on DoL

statistics and state unemployment data.

Employment in high-technology establishments as share of total employment

has remained about 11.5% during 2003, 2004, and 2006.

Fig. 17.18 Computer specialists as share of workforce

Source: Table 8.32. Computer specialists as share of workforce, by state: 2004, 2006, and 2008.

Bureau of Labor Statistics, Occupational employment and wage estimates; and local area unem-

ployment statistics. Science and engineering indicators 2010
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(Source: Table 8.48: Employment in high-technology establishments as share of

total employment, by state: 2003, 2004, and 2006. Census Bureau, 1989–2006

Business Information Tracking Series, special tabulations. Science and Engineering

Indicators 2010)

About 80% of workers with S&E doctorates in 2006 work in jobs that are closely or

somewhat closely related to their degrees, as compared with about 75% of those

holding Master’s, or 60% of those with Bachelor’s degrees.

(Source: Table 3.4. Individuals with highest degree in S&E employed in S&E-

related and non-S&E occupations, by highest degree and relationship of highest

degree to job: 2006. NSF, Division of Science Resources Statistics, Scientists and

Engineers Statistical Data System (SESTAT)(2006), http://sestat.nsf.gov. Science

and Engineering Indicators 2010.)

Basic research in computer science algorithms and theory is part of the research and

development of companies such as Google, Yahoo, Bell Labs, FedEx, IBM, Intel,

Microsoft, AT&T, and other corporations. Their private research labs support

student interns, post-docs, sponsor academic conferences and workshops, and

they help advocate for government policy in support of computer science. The

amount of basic research is difficult to separate out from development, since

activity is motivated by potential products as well as by the academic research

community.

For example, Bell Labs, the research arm of Alcatel-Lucent, includes the Comput-

ing and Software Principles Research Department, part of the Enabling Computing

Technologies domain. The department performs fundamental research in both

systems and theoretical areas, driven by real-world problems needing answers found

in algorithms, database systems, formal methods, and telecom and web services

(Source: Bell Labs website).

The Computer Science website at IBM Research - Almaden lists 24 areas of CS

research, and proposes to lead the next generation of research in database manage-

ment, intelligent information systems, user productivity, healthcare IT and the

theoretical foundations of computer science.

Microsoft Research has almost a thousand researchers, including computer

scientists, sociologists, psychologists, mathematicians, physicists, and engineers,

working across more than 60 disciplines. In addition to the areas above, Microsoft

adds Gaming, Information Retrieval, Machine Learning, and Social Science and

Computation as CS research focal areas.

Google and Yahoo have a similar list of research areas, and also add cryptography,

hypertext and the Web, economics, video processing and virtual reality.

FedEx has seven IT centers across the U.S., including FedEx Labs and the FedEx

Institute of Technology at the University of Memphis. FedEx has over 7,000 IT

professionals with more than 275,000 employees worldwide. FedEx research has

allowed it to track over ten million packages on a single day, while posting to

databases approximately 3,000 transactions per second on shipment movement,
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while simultaneously responding to a thousand inbound inquiries on package status

information.

(Source: FedEx think-tanks-Perfect Package, by Leslie Knudson, Deputy Editor

Issue 9 Business Management e-magazine June 2007. http://www.busmanagement.

com/article/Perfect-package/ viewed October 2010.)

The estimated share of computer-related services in company-funded R&D and

domestic net sales of R&D-performing companies: 1987–2007 has climbed from

about 3.8% in 1987 to about 14% in 2007.

(Source: Table 4.6 of NSF, Division of Science Resources Statistics, Survey of

Industrial Research and Development (annual series), http://www.nsf.gov/statistics/

srvyindustry, Viewed 6 May 2009. Science and Engineering Indicators 2010)

Prestige of the Occupation of “Scientist”

The Harris Poll has rated the prestige of various occupations. The occupation of

“scientist” ranked 66 (high prestige) in 1977, decreased to 51 in 2002, and increased

to 56 in 2008. These rankings are higher than most any other occupation (about the

same as Firefighter and Doctor).

NOTES: Responses to the interviewer saying, “I am going to read off a number of

different occupations. For each, would you tell me if you feel it is an occupation of

very great prestige, considerable prestige, some prestige, or hardly any prestige at all?”

(Source: Prestige Paradox: High Pay Doesn’t Necessarily Equal High Prestige:

Teachers’ Prestige Increases the Most Over 30 Years, Harris Poll, Harris Interactive

(5 August 2008), http://www.harrisinteractive.com/harris_poll/index.asp?PID¼939,
accessed 22 September 2009. Science and Engineering Indicators 2010.)

Computer Science Research areas undertaken by IBM 

1. Algorithms & Theory
2. Artificial Intelligence
3. Communications & Networking
4. Computational Biology & Medical 

Informatics
5. Computer Architecture
6. Data Management
7. Distributed & Fault-Tolerant Computing
8. Graphics & Visualization
9. Human Computer Interaction

10. Knowledge Discovery & Data Mining
11. Medical Informatics
12. Mobile Computing

13. Multimedia
14. Natural Language Processing
15. Operating Systems
16. Performance Modeling & Analysis
17. Programming Languages &

Software Engineering
18. Security and Privacy
19. Service Science
20. Services Computing
21. Storage Systems
22. Supercomputing
23. User Interface Technologies
24. Web

Fig. 17.19 Computer Science Research undertaken by IBM

Source: IBM website at: //researcher.ibm.com/researcher/ (Sighted 07/10/11)
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The outlook for having enough CS scientists in the U.S. is mixed. There are

warnings that the U.S. is facing a severe shortage of skilled IT workers. There are

several arguments for this view. There is publicity in the popular press on

offshoring of computer work. There is some belief that IT firms mainly hire workers

(from India) on H-1B visas because they can be paid less. Popular opinion is that U.

S. students, despite or perhaps because of their constant use of electronics, are not

interested in computer science, or mathematics studies, and certainly not interested

in competing for low wages.

Computer Science Job Prospects in 2010

Engineering, computer science and accounting may no longer be the fastest path to

employment, but they are among the most lucrative. A recent survey by the

National Association of Colleges and Employers found that eight of the top ten

best-paid majors are in engineering, with the highest-paid petroleum engineering

graduates starting at $86,220. Computer science ranked fourth in the NACE survey,

with graduates earning average starting salaries of $61,205. A high starting salary is

no guarantee of job-search success, however. NACE found that only 42% of

engineering graduates found jobs in 2009, compared to 70% in 2007.

(Source: Matt Krumrie, Report: 2010 College Graduate Jobs Outlook May 11th,

2010 5:46 pm CT. Minneapolis Workplace Examiner. http://www.examiner.com/

workplace-in-minneapolis/report-2010-college-graduate-jobs-outlook)

The figure (Fig. 17.20) shows results from a 2010 survey conducted by PayScale.

com, an employment placement agency. All data is limited to those with a

Bachelor’s degree and no higher degrees who work full-time in the United States.

Jobs are listed in order of relative popularity amongst graduates with a Bachelor’s

degree in the given major from any college. Median salary for each job title is for

individuals with any major who have a typical amount of experience at that job.

Salary is the sum of compensation from base salary, bonuses, profit sharing,

commissions, and overtime, if applicable. Salary does not include equity (stock)

compensation.

The sudden economic near-depression in the U.S. has created an unusual depres-

sion among 2009 U.S. college graduates: 80% moved back home with their parents

after graduation, according to a report by CollegeGrad.com, up from 67% in 2006.

A study by Challenger found that many newly-minted graduates were accepting

lower-paying service sector positions or forsaking income entirely by volunteering

or accepting unpaid internships. Others may abandon the job search, opting to

further their education or travel. As IT-focused companies grow in emerging

markets around the world, more CS graduates opt to find work in other countries.
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(Source: College Grads Enter Tough Job Market. Press Release from Challenger,

Gray and Christmas, Inc., Chicago, April 14, 2010. James K. Pedderson, Director of

Public Relations.)

Off-Shoring

From the Technology Sector of the online NY Times (September 2010), job

growth in fields like computer systems design and Internet publishing has been

slow in the last year. Employment in areas like data processing and software

publishing has actually fallen. Computer scientists, systems analysts and computer

programmers all had unemployment rates of around 6% in the second quarter of

this year.

“There’s been this assumption that there’s a global hierarchy of work, that all

the high-end service work, knowledge work, R.&D. work would stay in U.S.,

and that all the lower-end work would be transferred to emerging markets,” said

Hal Salzman, a public policy professor at Rutgers and a senior faculty fellow

at Heldrich Center for Workforce Development. “That hierarchy has been upset,

to say the least,” he said. “More and more of the innovation is coming out of the

emerging markets, as part of this bottom-up push.” This change is indicated in

Fig. 17.21, which reflects the change in trade balance in high-technology goods.

In a study involving over 3,000 human resources managers and 6,000 US

workers (How Offshoring Affects IT Workers, Communications of the ACM,

October 2010) Prasanna Tambe and Lorin Hitt report that IT workers experience

offshoring-related displacement at a rate of 8%, more than double that of workers in

other occupations. Computer programmers, software engineers, systems analysts

and customer service jobs are listed as commonly offshored type of work, primarily

for cost reasons.

Fig. 17.20 Most popular CS jobs for workers with bachelor degree only

Source: http://www.payscale.com/best-colleges/computer-science-degree.asp. Viewed 5 October

2010)
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The U.S. National Laboratories as Employers of CS Researchers

The United States Department of Energy National Laboratories and Technology

Centers are a system of facilities and laboratories overseen by the United States

Department of Energy (DOE) for the purpose of advancing science and helping

promote the economic and defensive national interests of the United States of

America. The national laboratory system, administered first by the Atomic Energy

Commission, then the Energy Research and Development Administration, and

currently the Department of Energy, is one of the largest (if not the largest)

scientific research systems in the world. The DOE provides more than 40% of the

total national funding for physics, chemistry, materials science, and other areas of

the physical sciences. Many are locally managed by private companies, while other

are managed by academic universities, and as a system they form one of the

overarching and far-reaching components in what is known as the “iron triangle”

of military, academia, and industry.

Fig. 17.21 Trade balance in high-technology goods for selected regions/countries: 1995–2008.

EU European union.

Notes: Asia-9 includes India, Indonesia, Malaysia, Philippines, South Korea, Singapore, Taiwan,

Thailand, and Vietnam. China includes Hong Kong. EU excludes Cyprus, Estonia, Latvia,

Lithuania, Luxembourg, Malta, and Slovenia

Source: Catherine Ratherine. Once a dynamo, the tech sector is slow to hire. September 6, 2010,

(Online at http://www.nytimes.com/2010/09/07/business/economy/07jobs.html?_r¼1)
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The United States Department of Energy operates 16 national laboratories:

• Lawrence Berkeley National Laboratory, Berkeley, California (1931)

• Los Alamos National Laboratory, Los Alamos, New Mexico (1943)

• Oak Ridge National Laboratory, Oak Ridge, Tennessee (1943)

• Argonne National Laboratory, DuPage County, Illinois (1946)

• Ames Laboratory, Ames, Iowa (1947)

• Brookhaven National Laboratory, Upton, New York (1947)

• Sandia National Laboratories, Albuquerque, New Mexico and Livermore,

California (1948)

• Idaho National Laboratory, between Arco and Idaho Falls, Idaho (1949)

• Princeton Plasma Physics Laboratory, Princeton, New Jersey (1951)

• Lawrence Livermore National Laboratory, Livermore, California (1952)

• Savannah River National Laboratory, Aiken, South Carolina (1952)

• National Renewable Energy Laboratory, Golden, Colorado (1956)

• SLAC National Accelerator Laboratory, Menlo Park, California (1962)

• Pacific Northwest National Laboratory, Richland, Washington (1965)

• Fermi National Accelerator Laboratory, Batavia, Illinois (1967)

• Thomas Jefferson National Accelerator Facility, Newport News, Virginia (1984)

The U.S. Office of Naval Research (ONR) within the United States Department

of the Navy coordinates, executes, and promotes the science and technology

programs of the U.S. Navy and Marine Corps through schools, universities, gov-

ernment laboratories, and nonprofit and for-profit organizations. Authorized by an

Act of Congress, and approved by President Truman in 1946, ONR executes its

mission by funding (through grants and contracts) world-class scientists who

perform basic research, technology development, and advanced technology

demonstrations. More than 50 researchers have won a Nobel Prize for their ONR-

funded work. ONR’s S&T Portfolio is balanced to meet the broad spectrum of

warfare requirements with 40% allocated to Discovery & Invention (Basic and

Applied Science).

Naval Research Laboratory (NRL) is the corporate research laboratory for the

Navy and Marine Corps and conducts a broad program of scientific research,

technology and advanced development. NRL was founded in 1923, and employs

roughly 1,500 scientists and engineers.

In June 2006, Los Alamos National Laboratory (approximately $2 billion in

annual R&D expenditures in recent years) became industry administered; previ-

ously, UC administered. This shift is one reason for change in trends apparent in

R&D expenditure figures between 2006 and 2007.

The U. S. Department of Defense, through many agencies and labs in the Army,

Navy, Air Force, Marines, Coast Guard, National Guard, Customs and Homeland

Security, and other organizations, supports research in computer science. Advanced

computing is the backbone of the Department of Defense and of critical strategic

importance to our nation’s defense. All DoD sensors, platforms and missions

depend heavily on computer systems. For example, the Maui High Performance
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Computing Center (MHPCC) is an Air Force Research Laboratory Center managed

by the University of Hawai’i.

The Defense Advanced Research Projects Agency (DARPA) is the research and

development office for the U. S. Department of Defense (DOD). Started in 1958 as

a response to the Soviet Sputnik, DARPA funds unique and innovative research

through the private sector, academic and other non-profit organizations as well as

government labs in order to “prevent and create strategic surprise”. DARPA has

seven technology offices, including the Transformational Convergence Technology

Office (TCTO) which seeks to advance innovation in “new crosscutting capabilities

derived from a broad range of emerging technological and social trends, particu-

larly in areas related to computing and computing-reliant subareas of the life

sciences, social sciences, manufacturing, and commerce.” DARPA initiated the

Ubiquitous High Performance Computing (UHPC) program to create a new gener-

ation of computing systems, and is developing the ExtremeScale Supercomputer

System. Prototype UHPC systems are expected to be complete by 2018, developed

by Intel, NVIDIA, MIT CS and AI Laboratory, and Boston and Sandia National

Laboratory. Georgia Institute of Technology, Atlanta, was selected to lead a team

for evaluating the UHPC systems under development. Core computing research

areas of interest for DARPA are:

• Computer systems and architectures

• Networked systems science

• Cybersecurity

• Software systems (systems and languages)

• AI (including robotics and vision).

The National Aeronautics and Space Administration (NASA) was established by

President Eisenhower in 1958 with the mission of pioneering non-military space

research and exploration. In addition to six Test facilities, six Construction and

Launch facilities, and four Deep Space Network facilities, NASA runs six research

centers: Ames Research Center at Moffett Federal Airfield in Mountain View,

California, the Jet Propulsion Laboratory at California Institute of Technology in

Pasadena, California, the Goddard Institute for Space Studies in New York City, the

Goddard Space Flight Center in Maryland, the John H. Glenn Research Center at

Lewis Field, Ohio, and Langley Research Center in Virginia. In addition to

providing employment to research scientists, NASA supports education from

K-university. For example, Motivating Undergraduates in Science and Technology

program, or MUST, provides summer JPL internships.

National Science Foundation (NSF) founded by congressional act in 1950

provides grants to researchers and research facilities to support all non-medical

fields of basic research, and also science, engineering and mathematics education

from pre-K through graduate school. One of the NSF seven directorates is Com-

puter and Information Science and Engineering (fundamental computer science,

computer and networking systems, and artificial intelligence). The NSF has

numerous programs in STEM education at all levels: summer programs for
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undergraduates (REU), Integrative Graduate Education Research Traineeships

(IGERT) for graduate students. Alliance for Graduate Education and the Professo-

riate (AGEP) programs, Graduate Research Fellowships, and an early career-

development program (CAREER). The hope is that these programs and many

others will provide the necessary computer scientists to maintain the U.S. position

as world technology leader.

Statistics Part 5: Professional Associations

The professional associations have profoundly influenced the promotion and

growth of computer science research in many ways. Each association, the CRA

especially, seeks to inform and influence government policies and funding. As

mentioned in the section on publishing, the associations support workshops,

conferences, special interest groups and other means for scientific collaboration

and the dissemination of research findings, well as being publishers and archivists

of proceedings, journals and bibliographies. The professional associations support

students and early professionals with mentoring, scholarships, and employment

fairs. Further, the associations provide prizes, awards and other recognition for

scholarly accomplishment and service. Below are listed a few of the key profes-

sional associations supporting research in computer science.

The Association for Computing Machinery (ACM) was founded in 1947 by

leaders in electronic and digital computing machinery. As of 2006, there are 62,000

professional members and 20,000 student members. ACM sets curriculum

guidelines and standards. It hosts a Digital Library with leading-edge publications,

online books and courses, conferences, student chapters and career resources. One

of the most prestigious technical computer science awards is the ACM Turing

Award, accompanied by a prize of $100,000. The ACM-W provides the Athena

Lecturer Award and works to encourage women in computing.

The ACM has 33 special interest groups (SIGs), each holding specialized

conferences, usually with proceedings.

SIGACCESS – Accessible Computing

SIGAda – Ada Programming Language

SIGAPP – Applied Computing

SIGARCH – Computer Architecture

SIGART – Artificial Intelligence

SIGBED – Embedded Systems

SIGCAS – Computers and Society

SIGCHI – Computer-Human Interaction

SIGCOMM – Data Communication

SIGCSE – Computer Science Education
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SIGDA – Design Automation

SIGDOC – Design of Communication

SIGecom – Electronic Commerce

EVO – Genetic and Evolutionary Computation

SIGGRAPH – Computer Graphics and Interactive Techniques

SIGIR – Information Retrieval

SIGITE – Information Technology Education

SIGKDD – Knowledge Discovery in Data

SIGMETRICS – Measurement and Evaluation

SIGMICRO – Microarchitecture

SIGMIS – Management Information Systems

SIGMM – Multimedia

SIGMOBILE – Mobility of Systems, Users, Data and Computing

SIGMOD – Management of Data

SIGOPS – Operating Systems

SIGPLAN – Programming Languages

SIGSAC – Security, Audit and Control

SIGSAM – Symbolic and Algebraic Manipulation

SIGSIM – Simulation and Modeling

SIGSOFT – Software Engineering

SIGSPATIAL – SIGSPATIAL

SIGUCCS – University and College Computing Services

SIGWEB – Hypertext, Hypermedia and Web

The Association for the Advancement of Artificial Intelligence (AAAI) was

founded in 1979, and now has a digital library of more than 10,000 AI technical

papers.

The Computing Research Association (CRA) is an association of more than 200

North American academic departments of computer science, computer engineering,

and related fields; laboratories and centers in industry, government, and academia

engaging in basic computing research; and affiliated professional societies. A large

part of CRA’s mission is to influence government policy. CRA hosts an annual

Computing Leadership Summit with senior leaders of its six affiliate societies:

AAAI, ACM, CACS/AIC, IEEE-CS, SIAM and USENIX and the NRC’s Computer

Science and Telecommunications Board. CRA gathers extensive data about the

field and publishes it through the Taulbee Report. CRA maintains information on

the Forsythe List, a list of colleges and universities in US and Canada that offer

degrees in computer science and computer engineering. The CRA Career

Mentoring Workshop aids graduate students and junior faculty as they choose or

begin careers. CRA-W supports women in computing research with mentoring,

Anita Borg awards, and the Grace Hopper Celebration of Women in Computing

conference. The Anita Borg Institute for Women and Technology promotes CS

with scholarships for women, the Grace Hopper Celebration, and Systers – an email

mentoring program.
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The Computing Community Consortium (CCC) is a consortium of computing

experts who act to provide scientific leadership and vision on issues related to

computing research and future large-scale computing research projects. The

National Science Foundation announced in 2006 an agreement with CRA to

establish CCC to help identify major research opportunities and establish “grand

challenges” for the field.

The Institute of Electrical and Electronics Engineers–Computer Society (IEEE-

CS) was founded in 1946 and with nearly 85,000 members and many student

chapters is the largest of the 38 societies of IEEE. The Computer Society offers

technical journals, magazines, conferences, books, conference publications, and

online courses. The IEEE-CS offers curriculum standards, a Certified Software

Development Professional (CSDP) program for mid-career professionals and

Certified Software Development Associate (CSDA) credential for recent college

graduates, and the CS Digital Library (CSDL) containing more than 250,000

articles from 1,600 conference proceedings and 26 CS periodicals going back

to 1988.

The National Academies are comprised of four organizations: the National

Academy of Sciences (NAS), the National Academy of Engineering (NAE), The

Institute of Medicine (IOM) and the National Research Council (NRC), and the

Transportation Research Board is a major unit. The NAS was created in 1863 by a

congressional charter approved by President Abraham Lincoln. Under this charter,

the NRC was established in 1916, the NAE in 1964, and the IOM in 1970. These

private, nonprofit organizations share in the responsibility for advising the federal

government, upon request and without fee, on questions of science, technology, and

health policy. The NAS, NAE, and IOM are honorific organizations; new members

are elected annually, and membership is considered a high honor. The National

Academy of Sciences publishes a scholarly journal: Proceedings of the National
Academy of Sciences.

While neither the National Sciences Board (NSB) nor the National Science

Foundation is a professional association, they both are significant to research. The

NSB was created by congressional act in 1950 to advise the government on

scientific policy, and establish the policies of the NSF. The 24 members plus

Director all appointed by the President and confirmed by the Senate, approve the

budget and work of the NSF. The NSB sponsors national honorary awards such as

the Vannevar Bush Award which is awarded to senior scientists for public service in

science and technology.

The Society for Industrial and Applied Mathematics (SIAM) was incorporated in

1952 as a nonprofit organization to convey useful mathematical knowledge to

computing and other professionals to solve practical, real-world problems. SIAM

has over 13,000 members, and publishes 15 peer-reviewed journals – all electronic,

and about 25 books each year. SIAM sponsors an annual MP3 high school contest

with over $80,000 in scholarship prizes, funded by the Moody’s Foundation.

Advanced Computing Systems Professional and Technical Association

(USENIX) was created in 1975 by engineers, system administrators, scientists,

and technicians to foster innovation, and exploration of the cutting edge of the
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computing world. USENIX hosts technical and system administration conferences,

Informal, specific-topic conferences such as security, internet technology, and

mobile computing, a tutorial program, a Special Interest Group for system

administrators (SAGE), an online library, student programs, and participates in

various standards efforts.

The Task Force on American Innovation is comprised of organizations from

industry, professional groups, and academia. It advocates increased federal support

for research in the physical sciences and engineering. Formed in 2004, the Task

Force urges strong, sustained increases for research budgets at the NSF, DOE,

Office of Science NIST, NASA, DOD. In 2010, corporate members include

Agilent Technologies, Applied Materials, Google, IBM, Infineon, Intel, Microsoft,

Northrop Grumman, P&G, Texas Instruments.

The Internet Society (ISOC) is a nonprofit organization founded in 1992 to

address issues that confront the future of the Internet, and is the organizational

home for the groups responsible for Internet infrastructure standards, including the

Internet Engineering Task Force (IETF) and the Internet Architecture Board (IAB).

With offices in Washington D.C., and Geneva, Switzerland, it is dedicated to

ensuring the open development, evolution and use of the Internet for the benefit

of people throughout the world.

Conclusion

The past 30 years has seen the production of over 20,000 Ph.D.s in computer

science, and many master and bachelor degrees, and corporate certificates. The

computing infrastructure created by these talented professionals has been of such

high and lasting quality, that there have been predictions that fewer computer

scientists will be needed in the future. On the other hand, the ability to gather and

analyze huge data sets is changing the nature of scientific investigation. The

traditional scientific method began with a hypothesis. The “modern scientific

method” begins with data mining and a search for patterns. Computing has become

part of ever more areas of human endeavor – from computational biology to

computational vision. We have seen the number of computer science specialties

grow from 9 in 2001, to 19 in 2008.

The United States has a depth of intellectual visionary and monitoring resource –

world-class universities, the National Academies, 16 national laboratories, govern-

ment and professional associations, and numerous military and corporate research

units. In addition, it is one of the most philanthropic nations in the world, with

individuals, foundations and companies gifting the promotion of computer science

and mathematics.

Competition for students and jobs is serious. Asian countries are building

vibrant, glamorous universities, but the best students still attend US institutions.

The fastest trains in the world are not built in the US. Neither are the tallest

buildings or the biggest companies. But, despite offshoring, foreign graduates
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still desire US residency and citizenship. The United States is known for bold

imagination, and for empowering technological vitality, to which every one of the

chapters in this book attests. Using Moore’s Law as a metaphor, in theory and

practice, the hardware and the software of computer science will continue to grow,

and to explore the most imaginative and substantive of ideas.
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Epilogue

The last Chap. 17, is a valuable catalog of real statistics of the “field”, but it would

be somewhat unsatisfactory and unfulfilling as an ending of what we hope is a

stimulating report on the state of the Computer Science field. As editors, we believe

it is appropriate, indeed incumbent on us, to end this book with some stimulating

philosophical closing remarks addressed to our readers for their pleasure and

edification. This brief epilogue may serve this purpose.

We have tried to present Computer Science as a Union of its hardware and

software sides glued together by a theory at its heart. From the outset, as stated in

the Introduction (Chap. 1), it was not our intent to provide complete coverage of the

State of the Computer Science Union, and we did not do so. Computer Science, as

you have hopefully learned from reading this book, is a multi-faceted dynamically

evolving discipline. We have chosen to organize our report on its state by focusing

on two of its main facets or sides: software and hardware (Chaps. 4 and 5). As we

declared in the Introduction, we regard these two sides, as Turing did, not as

independent entities but rather as two sides glued into a single interrelated whole,

part of the glue being in a third constituent which we regard as the heart or essence

of Computer Science. The heart (Chap. 3) includes such intrinsic properties as

Church-Turing computability, Unsolvability and Undecidability (Turing’s initial

interest), which are properties inherent in the classical symbolic logic practiced by

the brilliant mathematician Hilbert and the equally brilliant logicians Whitehead

and Russell . (Read it in Appendix G of Chap. 3). It also includes the amazing

complexity of solvable problems (Chaps. 12 and 13). The complexity of Turing

computability has raised complexity issues about the world outside computation.

How can a simple device like a Turing machine engender such complex behaviors?

Are the world phenomena which machines model or simulate so complex? Or is the

Church-Turing thesis itself at fault? Would some other thesis about computation

yield less complex models? Do any of the book chapters provide hints at answers?

What about quantum computers (Chap. 14) or fuzzy logic (Chap. 16)? These

chapters will bear re-reading and investigation of their references.

Have we covered enough of the main infrastructure of Computer Science? We

have covered many important subdisciplines that are active parts of Computer

E.K. Blum and A.V. Aho (eds.), Computer Science: The Hardware,
Software and Heart of It, DOI 10.1007/978-1-4614-1168-0,
# Springer Science+Business Media, LLC 2011
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Science, such as Computer Networks (Chap. 7), Databases (Chap. 10) and

Distributed Computing (Chaps. 8 and 9), although we may not have given sufficient

attention to cloud computing in Chaps. 8 and 9. We have not explained the still

unique Google search algorithm. The mathematics of graph theory (Chap. 7

Appendix) suggests that PageRank is the clue, but a reading of the original

Brin-Page article which we did not cover will indicate how extensive is the Google

computer search platform. We have also omitted coverage of the important subject

known as artificial intelligence, since it is in many ways an independent discipline.

Somewhat perversely, we did cover the related topic of fuzzy logic, since we

wish to dispel many misconstrued views of fuzzy logic as it impacts computer

science. Another omission is our failure to cover the relatively new topic of

computer games. On the other hand, we do cover the relatively new development

of quantum computing (Chap. 14), which impacts many traditional issues in

computer science, even possibly the properties which lie within its heart. Here, as

did our author, we are careful to not make unfounded inferences. Were we too

careful perhaps? Time will tell.

As for our style of presentation, we have tried diligently to fulfill our promise to

cover topics equally on two levels, one intuitive and the other technical. A balanced

exposition was not always possible. So, for example, the reader may have found

that Chap. 15 on Numerical Thinking is heavily technical and mathematical,

although it conveys an important intuitive message that penetrates the technical

veil and readers will observe that it covers new aspects of traditional numerical

analysis such as the fundamental problem of solving Ax ¼ b, for large matrices A.

This chapter will bear much re-reading.

In quite a different approach, the last Chap. 17, provides many useful statistics

that shed light on the state of the Computer Science Union. These statistics could be

a basis for predictions about the future of various practical aspects of Computer

Science. Again, as we stated in the Introduction, we have resisted the temptation to

be prophetic. The reader can perhaps infer the future condition of some parts of the

state of the Union by extrapolating the statistics presented.

We trust that most readers have gained a better understanding of many of the

recent developments in Computer Science. We also hope they have gained an

appreciation of the exciting new impact of these developments on the daily lives

of the world’s citizens. In fact, one prediction we can safely make is that the impact

of Computer Science on the lives of ordinary citizens of the planet earth will

continue to widen and deepen in the coming decades.
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