

Guide to Teaching Computer Science

Orit Hazzan  ●  Tami Lapidot  ●  Noa Ragonis

Guide to Teaching
Computer Science
An Activity-Based Approach

Dr. Orit Hazzan
Associate Professor
Technion - Israel Institute of Technology
Dept. Education in Technology & Science
Technion City, Haifa
Israel
oritha@techunix.technion.ac.il

Dr. Tami Lapidot
Technion - Israel Institute of Technology
Dept. Education in Technology & Science
Technion City, Haifa
Israel
lapidot@tx.technion.ac.il

Dr. Noa Ragonis
Beit Berl College
Computer Science Studies,
School of Education
Doar Beit Berl
Israel
noarag@beitberl.ac.il

ISBN 978-0-85729-442-5 e-ISBN 978-0-85729-443-2
DOI 10.1007/978-0-85729-443-2
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011926690

 Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To our families, students and colleagues

This Guide to Teaching Computer Science can serve all computer science educators, both
in high school and in academia, i.e., computer science university instructors, high school
computer science teachers, and instructors of computer science teacher preparation pro-
grams. Specifically, the Guide can be used as the textbook of the Methods of Teaching
Computer Science (MTCS) course, offered to prospective and in-service computer science
teachers . In all cases, the Guide is organized in a way that enables an immediate applica-
tion of its main ideas. This goal is achieved by presenting the rationale for addressing a
variety of computer science education topics, as well as their detailed actual teaching pro-
cess (including activities, worksheets, topics for discussions, and more).

The Guide encompasses the authors’ teaching and research experience in computer
science education gained during the past three decades. Specifically, we have taught
courses on computer science and on computer science education to high school computer
science pupils, undergraduate computer science students, and pre-service and in-service
computer science teachers. In parallel, we have conducted research on a variety of com-
puter science education topics, such as, teaching methods, learning processes, teacher
preparation, and social issues of computer science education.

We would like to thank all who contributed to our understanding of the nature of com-
puter science education and fostered the approach presented in this Guide: our students in
the MTCS courses, high school classes, and in-service high school teacher professional
development programs, as well as colleagues, researchers and instructors who collabo-
rated with us in a variety of research and development projects. They all, during the past
three decades, shared with us their knowledge, professional experience, thoughts and atti-
tudes with respect to computer science education.

December 2010	 Orit Hazzan
Tami Lapidot
Noa Ragonis

Prologue

vii

1  Introduction – What Is This Guide About?.. 	 1
1.1	 Introduction.. 	 1
1.2	 Motivation for Writing This Guide... 	 2
1.3	 The Methods of Teaching Computer Science (MTCS) Course.................... 	 3

1.3.1	 MTCS Course Overview.. 	 3
1.3.2	 Course Population... 	 4
1.3.3	 Course Objectives... 	 4
1.3.4	 Recommended Teaching Methods Used in the MTCS Course........ 	 5

1.4	 The Structure of the Guide to Teaching Computer Science......................... 	 5
1.4.1	 Guide Structure and Organization.. 	 5
1.4.2	 The Content of the Guide Chapters.. 	 6

1.5	 How to Use the Guide?... 	 9
1.5.1  Instructors of the MTCS Course... 	 10
1.5.2	 The Prospective Computer Science Teachers Enrolled

in the MTCS Course... 	 11
1.5.3	 Computer Science Instructors in the University............................... 	 11
1.5.4	 Instructors of In-Service Teachers’ Professional

Development Programs.. 	 11
1.5.5	 High School Computer Science Teachers... 	 11

References.. 	 12

2  Active Learning and the Active-Learning-Based Teaching Model................. 	 13
2.1	 Introduction.. 	 13
2.2	 Active Learning.. 	 14
2.3	 Why Active Learning Is Suitable for Implementation

in the MTCS Course?... 	 14
2.4	 Active-Learning-Based Teaching Model.. 	 16
2.5	 The Role of the Instructor in the Active-Learning-Based

Teaching Model.. 	 18
References.. 	 19

Contents

ix

Contents

3  Overview of the Discipline of Computer Science.. 	 21
3.1	 Introduction.. 	 21
3.2	 What Is Computer Science?... 	 22

Activity 1: The Nature of Computer Science... 	 23
Activity 2: Computer Science and Other Sciences...................................... 	 25

3.3	 The History of Computer Science.. 	 26
Activity 3: Plan a Lesson About the History of Computer Science............. 	 26
Activity 4: History of Computational Machines.. 	 28

3.4	 Computer Scientists.. 	 28
Activity 5: Preparation of a Presentation on a Computer Scientist.............. 	 29

3.5	 Social Issues of Computer Science... 	 29
3.5.1	 Ethics in Computer Science Education.. 	 30
Activity 6: Analysis of Ethical Dilemmas.. 	 31
3.5.2	 Diversity... 	 32
Activity 7: Diverse Class Demography.. 	 32
Activity 8: Test Evaluation... 	 32
Activity 9: Gender Diversity.. 	 33

3.6	 Programming Paradigms.. 	 33
Activity 10: Programming Paradigms – Exploration

of Learners’ Knowledge.. 	 35
Activity 11: Abstract-Oriented Examination

of Programming Paradigms... 	 36
Activity 12: Activity Design for a Given Programming Paradigm.............. 	 37

3.7	 Computer Science Soft Ideas.. 	 38
3.7.1.	 What Are Computer Science Soft Ideas?... 	 38
3.7.2	 Computer Science Soft Ideas in the MTCS Course......................... 	 39
Activities 13–14: Introduction to Soft Ideas.. 	 41
Activity 13: Types of Concepts, Class Discussion....................................... 	 41
Activity 14: Computer Science Concept Classification, Teamwork............ 	 42
Activity 15: Construction of Tasks and Questions About Soft Ideas........... 	 42
Activities 16–19: Computer Science Heuristics:

The Case of Abstraction.. 	 43
References.. 	 45

4  Research in Computer Science Education... 	 47
4.1	 Introduction.. 	 47
4.2	 Research in Computer Science Education: What Is It and Why

and How Is It Useful?.. 	 48
4.2.1	 Computer Science Education Research Categories.......................... 	 48
4.2.2	 Computer Science Education Research on Learning and Teaching

Processes... 	 50
4.2.3	 Resources for Computer Science Education Research..................... 	 52

4.3	 MTCS Course Activities.. 	 52
Activity 20: Exploration of a Computer Science Education Research

Work on Learners’ Understanding of Basic Computer
Science Topics... 	 53

x

Contents

Activity 21: The Computer Science Education Research World................. 	 53
Activity 22: Looking into a Research Work on

Novices’ Difficulties... 	 54
Activity 23: The Teacher as a Researcher.. 	 55
Activity 24: Reflection on Reading a Computer Science

Education Paper.. 	 59
References.. 	 60

5  Problem-Solving Strategies... 	 63
5.1	 Introduction.. 	 63
5.2	 Problem-Solving Processes.. 	 64

Activity 25: Problem-Solving Techniques
in Computer Science... 	 65

5.3	 Problem Understanding.. 	 66
Activity 26: Examination of Representative Inputs and Outputs................. 	 66

5.4	 Solution Design.. 	 67
5.4.1	 Defining the Problem Variables.. 	 67
Activity 27: Choosing the Problem Variables.. 	 67
Activities 28–29: Roles of Variables.. 	 68
5.4.2	 Stepwise Refinement.. 	 70
Activity 30: Practicing Stepwise Refinement – Break Down Problem

Solutions into Subtasks... 	 71
Activity 31: Practicing Stepwise Refinement – Analyze

a List of Problems... 	 71
5.4.3	 Algorithmic Patterns... 	 71
Activities 32–34: Practicing Algorithmic Patterns....................................... 	 72

5.5	 Solution Examination... 	 73
Activity 35: Examination of the Debugging Process................................... 	 73
Activity 36: Development of a Lab Activity about Debugging................... 	 73

5.6	 Reflection.. 	 74
Activity 37: Reflective Activity in Computer

Science Education... 	 75
References.. 	 77

6  Learners’ Alternative Conceptions.. 	 79
6.1	 Introduction.. 	 79
6.2	 Pedagogical Tools for Dealing with Alternative Conceptions..................... 	 81
6.3	 Activities to Be Facilitated in the MTCS Course... 	 82

Activity 38: Exploration of a Computer Science Education
Research Work on Learners’ Understanding of Basic
Computer Science Topics.. 	 82

Activity 39: Evaluation of a Pupil’s Answer in a Written Exam................. 	 84
Activity 40: A Clinical Conversation with a Pupil as a Means to Reveal

Alternative Conceptions.. 	 86
References.. 	 89

xi

Contents

7  Teaching Methods in Computer Science Education... 	 91
7.1	 Introduction.. 	 91
7.2	 Pedagogical Tools... 	 92

7.2.1	 Pedagogical Games... 	 92
Activity 41: Pedagogical Examination of Games... 	 93
7.2.2	 The CS-Unplugged Approach.. 	 96
Activity 42: Pedagogical Examination of the CS-Unplugged Approach..... 	 96
7.2.3	 Rich Tasks... 	 97
Activity 43: Pedagogical Examination of Rich Tasks.................................. 	 98
7.2.4	 Concept Maps... 	 103
Activity 44: Pedagogical Examination of Concept Maps............................. 	 105
7.2.5	 Classification of Objects and Phenomena from Life........................ 	 106
Activity 45: Pedagogical Examination of Classification.............................. 	 107
7.2.6	 Metaphors... 	 109
Activity 46: Metaphors – Preparing a Poster, Variable Exhibition............... 	 110
Activity 47: Metaphors – Advantages and Disadvantages

of Metaphors.. 	 110
7.3	 Different Forms of Class Organization... 	 111

Activity 48: Different Forms of Class Organizations................................... 	 112
7.4	 Mentoring Software Project Development... 	 113

Activity 49: Analysis of Mentoring Software Project
Development Situations... 	 114

Activity 50: Scheduling the Mentoring Process of Software Project
Development.. 	 116

References.. 	 117

8  Lab-Based Teaching... 	 119
8.1	 Introduction.. 	 119
8.2	 What Is a Computer Lab?... 	 120

Activity 51: Analyzing a Computer Science Lesson
in the Computer Lab.. 	 122

Activity 52: A “Dry” Lab... 	 123
8.3	 Lab-First Approach.. 	 124

Activity 53: Pedagogical Exploration of the Lab-First
Teaching Approach.. 	 125

8.4	 Visualization and Animation.. 	 130
Activity 54: Algorithm Visualization... 	 133
Activity 55: Musical Debugging.. 	 135
Activity 56: Software Visualization and Animation.................................. 	 135
Activity 57: Visualization- and Animation-Based IDEs............................ 	 136
Activity 58: Media Computation... 	 137
Activity 59: Summary Work.. 	 138

8.5	 Using the Internet in the Teaching of Computer Science........................... 	 138
Activity 60: The Internet as an Information Resource............................... 	 139

xii

Contents

Activity 61: Exploring the Internet Through
the Computer Science Lens... 	 139

Activity 62: Distance Learning.. 	 139
References.. 	 140

  9  Types of Questions in Computer Science Education...................................... 	 143
9.1	 Introduction.. 	 143
9.2	 Types of Questions... 	 145

  9.2.1  Type1. Development of a Solution... 	 146
  9.2.2  Type2. Development a Solution That Uses a Given Module....... 	 146
  9.2.3  Type3. Tracing a Given Solution... 	 147
  9.2.4  Type4. Analysis of Code Execution... 	 147
  9.2.5  Type5. Finding the Purpose of a Given Solution......................... 	 148
  9.2.6  Type6. Examination of the Correctness of a Given Solution....... 	 148
  9.2.7  Type7. Completion a Given Solution... 	 149
  9.2.8  Type8. Instruction Manipulations.. 	 150
  9.2.9  Type9. Efficiency Estimation... 	 151
9.2.10  Type10. Question Design... 	 152
9.2.11  Type11. Programming Style Questions.. 	 152
9.2.12  Type12. Transformation of a Solution... 	 153
9.2.13  Combining Several Types of Questions....................................... 	 154
Activity 63: Question Classification.. 	 155
Activity 64: Classification of Non-simple Questions................................. 	 156

9.3	 Kinds of Questions... 	 156
  9.3.1  Story Questions.. 	 156
  9.3.2  Closed Questions.. 	 158
Activity 65: Question Formulation.. 	 159
  9.3.3  Unsolvable Questions... 	 159

9.4	 Assimilation of the Types of Questions to Different
Computer Science Contents... 	 160

9.5	 Question Preparation.. 	 161
Activity 66: Question Design... 	 162
Activity 67: Test Design... 	 162

References.. 	 163

10  Evaluation... 	 165
10.1  Introduction... 	 165
10.2  Tests.. 	 166

Activity 68: Test Construction.. 	 167
Activity 69: Construction of a Course-Summary Exam.......................... 	 170

10.3  Project Evaluation... 	 170
10.3.1  Individual Projects.. 	 171
10.3.2  Team Projects.. 	 171
Activity 70: Getting Familiarity with an Evaluation Rubric

for Software Projects... 	 173

xiii

Contents

Activity 71: Construction of an Evaluation Rubric
for Software Projects.. 	 173

Activity 72: Analysis of a Grading Policy of the Group Project.............. 	 175
10.4	 Portfolio.. 	 175

Activity 73: The Portfolio in Computer Science Education..................... 	 177
10.5	 The Evaluation of the Students in the MTCS Course.............................. 	 178
References.. 	 179

11  Teaching Planning.. 	 181
11.1	 Introduction.. 	 181
11.2	 Top-Down Approach for Teaching Planning.. 	 182

11.2.1  Broad Perspective: Planning the Entire Curriculum................... 	 182
11.2.2 � Intermediate Level Perspective: Planning the Teaching
	 of a Study Unit.. 	 183

11.2.3  Local Level Perspective: Planning a Lesson............................... 	 183
11.3	 Illustration: Teaching One-Dimensional Array.. 	 184

11.3.1 � Planning the Teaching of a Study Unit About
	 One-Dimensional Array.. 	 184

11.3.2 � Planning the Teaching of the First Lesson About
	 One-Dimensional Array.. 	 186

11.3.3  Illustration Summary... 	 189
11.4	 Activities to be Facilitated in the MTCS Course...................................... 	 189

Activity 74: Dividing a Computer Science Topic into Components........ 	 190
Activity 75: Time Allocation.. 	 190
Activity 76: Plan a First Lesson About a Topic/Subtopic........................ 	 190
Activity 77: A Comprehensive Teaching Planning of a Study Unit........ 	 191

References.. 	 192

12  Integrated View at the MTCS Course Organization:  
The Case of Recursion... 	 193

12.1	 Introduction.. 	 193
12.2	 Classification of Everyday Objects and Phenomena:

The Case of Recursion... 	 195
Activity 78: Classification Activity in the Context of Recursion............. 	 195

12.3	 Leap of Faith... 	 197
Activity 79: Mastering the Leap of Faith Approach................................ 	 198

12.4	 Models of the Recursive Process.. 	 200
12.4.1  The Little People Model... 	 200
Activity 80: Pedagogical Examination of the Little

People Model... 	 201
12.4.2  The “Top-Down Frames” Model.. 	 203

12.5	 Research on Learning and Teaching Recursion.. 	 205
Activity 81: Investigating Research on Learning and Teaching

Recursion... 	 205
Activity 82: Recursive Models... 	 206

xiv

Contents

12.6	 How Does Recursion Sound?... 	 207
Activity 83: Using Colors and Music for the Examination

of Recursive Structures... 	 207
12.7	 Evaluation... 	 208

Activity 84: Analysis of Recursive Phenomena....................................... 	 208
Activity 85: Construction of a Written Test on Recursion....................... 	 209

12.8	 Additional Activities... 	 210
Activity 86: History of Recursive Functions.. 	 210
Activity 87: Comparison of Recursive Algorithms

in Different Paradigms.. 	 210
Activity 88: Recursive Patterns.. 	 210
Activity 89: Recursion Animation... 	 211
Activity 90: Design of Questions About Recursion................................. 	 211
Activity 91: Planning the Teaching of Recursion..................................... 	 211

References.. 	 211

13  Getting Experience in Computer Science Education..................................... 	 213
13.1	 Introduction.. 	 213
13.2	 The Practicum in the High School.. 	 214

13.2.1 � General Description.. 	 214
13.2.2 � The Practicum as a Bridge Between Theory
	 and Its Application.. 	 215

13.2.3	 Activities to be Facilitated in the MTCS Course.......................... 	 218
Activity 92: Bridging Gaps Related to the Content Aspect

of Computer Science Education.. 	 218
Activity 93: Bridging Gaps Related to the Pedagogical Aspect

of Computer Science Education.. 	 220
Activity 94: Prospective Teacher’s Conception About

the First Lesson... 	 222
13.3	 A Tutoring Model for Guiding Problems

Solving Processes... 	 222
13.3.1 � The Implementation of the Tutoring Model............................... 	 223
13.3.2 � The Contribution of the Mentoring Model
	 to Prospective Computer Science Teachers

Teaching Experience... 	 225
13.4	 Practicum Versus Tutoring.. 	 226
References.. 	 226

14  �Design of a Methods of Teaching Computer  
Science Course.. 	 229
14.1	 Perspectives on the MTCS Course... 	 229
14.2	 Suggestions for MTCS Course Syllabi... 	 230

14.2.1 � Course Structure... 	 231
14.2.2 � Course Syllabus.. 	 231
Activity 95: First Lesson of the MTCS Course.. 	 231

References.. 	 234

xv

Contents

15  High School Computer Science Teacher Preparation Programs.................. 	 235
15.1	 A Model for High School Computer Science Education......................... 	 235

15.1.1 � Background... 	 235
15.1.2 � The Model Components and Their Amalgamation.................... 	 236
15.1.3 � Questions About the Model.. 	 241

15.2	 Construction of a Computer Science Teacher Preparation
Program – the ECSTPP Workshop... 	 242
15.2.1 � Rationale.. 	 242
15.2.2 � Population.. 	 242
15.2.3 � Objectives... 	 243
15.2.4 � Structure and Contents... 	 243
15.2.5 � ECSTPP Workshop – Summary.. 	 245

References.. 	 245

16  Epilogue.. 	 247

Index.. 	 249

xvi

Index of Activities

The activity page numbers appear in the Table of Contents

Chapter 3  Overview of the Discipline of Computer Science
Section

1 The Nature of Computer Science
A.  Explain what computer science is, work in pairs
B.  Class discussion
C.  Internet exploration of computer science definitions
D.  Summary and class discussion
E. � Review of the Computing Curricula 2001, homework

3.2

2 Computer Science and Other Sciences
A. � Connections between computer science and other

sciences, individual/team work
B.  Presentations
C.  Class discussion

3.2

3 Plan a Lesson About the History of Computer Science
A.  Introductory questions
B.  Plan a lesson, work in pairs
C.  Presentations
D.  Class discussion

3.3

4 History of computational machines 3.3
5 Preparation of a presentation on a computer scientist,

homework
3.4

6 Analysis of ethical dilemmas
A.  Case analysis, group work
B.  Presentations and discussion

3.5.1

7 Diverse class demography, group work 3.5.2
8 Test evaluation, work in pairs 3.5.2
9 Gender diversity, open conversation 3.5.2

xvii

Index of Activities

Section

10 Programming paradigms – Exploration of learners’
knowledge
A.  Worksheet, individual work
B.  Class discussion

3.6

11 Abstract-oriented examination of programming
paradigms
A.  Problem solving in different programming para-

digms, work in pairs
B.  Class discussion

3.6

12 Activity design for a given programming paradigm
A.  tasks and paradigms, group work
B.  Reviewing the groups’ work
C.  Class discussion

3.6

13 Introduction to soft ideas – Types of concepts, class
discussion

3.7.2

14 Computer science concept classification, teamwork 3.7.2
15 Construction of tasks and questions about soft ideas

Option 1: Construction of an activity that demonstrates a
soft idea, work in pairs

Option 2: Construction of a question to be included in a
test that checks learners’ understanding of one soft
idea, team work

3.7.2

16 Computer science heuristics: The case of abstraction –
Definition

3.7.2

17 Computer science heuristics: The case of abstraction –
Teaching planning

3.7.2

18 Computer science heuristics: The case of abstraction –
Teaching pedagogy

3.7.2

19 Computer science heuristics: The case of abstraction –
Teaching programming heuristics

3.7.2

Chapter 4  Research in Computer Science Education
Section

20 Exploration of a Computer Science Education Research
Work on learners’ understanding of basic computer
science topics

4.3

21 The Computer Science Education Research World
A. � Intuitive thinking on computer science education

research, class discussion
B. � Planning a research in computer science education,

group work
C.  Class discussion

4.3

xviii

Index of Activities

Section

22 Looking into a research Work on novices’ difficulties,
homework

4.3

23 The teacher as a researcher
A.  Solving a problem, individual work
B.  Evaluating different solutions, individual work
C.  Discussion on Stage B answers, work in pairs
D.  The meaning of learners’ mistakes, class discussion
E.   Taking the researcher’s perspective, work in pairs
F.   Reflection, individual work

4.3

24 Reflection on reading a computer science education
paper, homework

4.3

Chapter 5  Problem-Solving Strategies
Section

25 Problem-solving techniques in computer science 5.2
26 Examination of representative inputs and outputs

A.  Problem development, work in pairs
B.  Presentations and discussion

5.3

27 Choosing the problem variables
A.  Problem analysis, work in pairs
B.  Discussion between pairs
C.  Presentations and discussion in the course plenum

5.4.1

28 Roles of variables – Discovery learning and reflection
A.  Learning, work in pairs
B.  Reflection on Stage A, individual work

5.4.1

29 Roles of variables – Examination of the roles of
variables through the research lens

5.4.1

30 Practicing stepwise refinement – Break down problem
solutions into Subtasks

5.4.2

31 Practicing stepwise refinement – Analyze a list of
problems

5.4.2

32 Practicing algorithmic patterns – Question design for
given patterns

5.4.3

33 Practicing algorithmic patterns – Pattern composition
for using specific abstract data types

5.4.3

34 Practicing algorithmic patterns – Worksheet design for
guiding learners using patterns

5.4.3

35 Examination of the debugging process 5.5
36 Development of a lab activity about debugging,

teamwork
5.5

xix

Index of Activities

Section

37 Reflective activity in computer science education
A.  Teacher’s reflection on test failure
B. � Design of a reflective activity for a class after a test

failure
C. � Reflection on the reflective activity designed by a

teacher after the test failure
D. � Analysis of the entire reflective activity designed

by the teacher after the test failure

5.6

Chapter 6  Learners’ Alternative Conceptions
Section

38 Exploration of a Computer science education research
work on learners’ understanding of basic computer
science topics
A.  Alternative conceptions about variables, individual

or teamwork
B.  Class discussion

6.3

39 Evaluation of a pupil’s answer in a written exam
A.  Checking a pupil’s written answer, work in small

teams
B.  Class discussion

6.3

40 A clinical conversation with a pupil as a means to
reveal alternative conceptions
A.  A clinical conversation with a pupil, work in small

teams
B.  Class discussion

6.3

Chapter 7  Teaching Methods in Computer Science Education
Section

41 Pedagogical examination of games
A.  Playing a game
B.  Class discussion
C.  Game design
D.  Presentation and class discussion
E.   Design and construct a game
F.   Playing the games
G.  Summary

7.2.1

42 Pedagogical examination of the CS-Unplugged approach
A.  Experience a CS-Unplugged activity
B.  Exploration of the CS-Unplugged approach
C.  Design of a CS-Unplugged activity, work in pairs
D. � The CS-Unplugged approach and other computer

science teaching methods, homework

7.2.2

xx

Index of Activities

43 Pedagogical examination of rich tasks
A.  Solving a rich task, individual work
B.  Presentation of learners’ solutions
C.  Class discussion
D.  Construction of a rich task, homework

7.2.3

44 Pedagogical examination of concept maps
A.  Concept map construction, group work
B.  Concept map evaluation, group work
C.  Class discussion

7.2.4

45 Pedagogical examination of classification
A.  Classification activity, group work
B.  Class discussion
C.  Construction of a classification activity, homework

7.2.5

46 Metaphors – Preparing a poster, variable exhibition 7.2.6
47 Metaphors – Advantages and disadvantages of metaphors 7.2.6
48 Different forms of class organizations 7.3
49 Analysis of mentoring software project development

situations
A.  Watch a video clip
B.  Class discussion
C. � Worksheet on project based learning situations in

computer science education, group work
D.  Class discussion
E.  Summary

7.4

50 Scheduling the mentoring process of software project
development
A.  Setting the framework
B.  Group work
C.  Class discussion
D.  Read a paper, homework

7.4

Chapter 8  Lab-Based Teaching
Section

51 Analyzing a computer science lesson in the computer lab 8.2
52 A “dry” lab 8.2
53 Pedagogical exploration of the lab-first teaching

approach
A. � First experience with the lab-first teaching

approach, work in pairs on the computer
B.  Class discussion
C. � Development and analysis of a lab-first worksheet,

homework

8.3

xxi

Index of Activities

Section

54 Algorithm Visualization
A.  Increasing students’ attention to visualization
B.  Design a visualization-based worksheet, group work
C. � Introducing Nap’s (extended) Engagement

Taxonomy, class discussion
D. � Examination of questions’ potential contribution to

learners’ learning, group work
E.  Summary
F.   Homework
Option 1: Develop a worksheet and formulate

guidelines for the development of a worksheet
Option 2: Explore The Algorithm Visualization Portal

8.4

55 Musical debugging
A. � Debugging a song melody, work in pairs with the

computer
B.  Class discussion
C. � Prepare a debugging activity or read articles that

address debugging, homework

8.4

56 Software visualization and animation
A. � Exploration of object-oriented program visualiza-

tion and animation, work in pairs
B.  Class discussion
C.  Read a paper, homework

8.4

57 Visualization- and animation-based IDEs
A. � Solving a problem in one of the visualization/

animation-based IDEs, work in pairs
B. � Analysis of the visualization- /animation- based

IDEs, class discussion

8.4

58 Media Computation 8.4
59 Summary work 8.4
60 The Internet as an information resource 8.5
61 Exploring the Internet through the computer

science lens
A.  Analysis of Web applications, group work
B.  Presentation of the group works

8.5

62 Distance learning
A. � Learning a new computer science topic,

individual work
B.  Class discussion
C. � Integration of distance learning elements into the

computer science curriculum, homework

8.5

xxii

Index of Activities

Chapter 9  Types of Questions in Computer Science Education
Section

63 Question classification 9.2.13
64 Classification of non-simple questions, group work 9.2.13
65 Question formulation, work in pairs 9.3.2
66 Question design, individual work or group work 9.5
67 Test design, group work 9.5

Chapter 10  Evaluation
Section

68 Test construction
A.  First experience in test construction, individual work
B. � Topics to be considered in the process of test

construction, class discussion
C.  Test construction, group work
D.  Test analysis, class discussion or teamwork
E.  Test solving, individual work
F.  Design of an evaluation rubric, group work
G.  Presentation of the evaluation rubrics
H.  Conclusion

10.2

69 Construction of a course-summary exam 10.2
70 Getting familiarity with an evaluation rubric for

software projects
10.3.2

71 Construction of an evaluation rubric for software
projects
A.  Setting the teaching scene
B.  Construction of an evaluation rubric, group work
C.  Conclusion

10.3.2

72 Analysis of a grading policy of the group project 10.3.2
73 The portfolio in computer science education

A.  Portfolio design, team work
B.  Group presentations of their portfolio
C.  Class discussion and summary

10.4

Chapter 11  Teaching Planning
Section

74 Dividing a computer science topic into components 11.4
75 Time allocation, team work 11.4
76 Plan a first lesson about a topic/subtopic 11.4
77 A comprehensive teaching planning of a study unit 11.4

xxiii

Index of Activities

Chapter 12  Integrated View at the MTCS Course Organization: The Case of Recursion
Section

78 Classification activity in the context of recursion
A.  Classification activity, work in small teams
B.  Class discussion
C. � Build a classification page, homework, and class

discussion
D.  Summary: read a paper, homework

12.2

79 Mastering the Leap of Faith approach
A.  Toward the leap of faith approach, team work
B.  Class discussion
C. � Summary (read a paper, write a program),

homework

12.3

80 Pedagogical examination of the Little People model
A.  Demonstration of the little people model
B.  Class discussion

12.4.1

81 Investigating research on learning and teaching
recursion, homework

12.5

82 Recursive models, homework and presentation in the
course

12.5

83 Using colors and music for the examination of
recursive structures
A.  Musical demonstration
B.  Lab work
C.  Class discussion

12.6

84 Analysis of recursive phenomena
A.  Choosing and analysis of recursive phenomena,

homework
B.  Class presentation and discussion

12.7

85 Construction of a written test on recursion 12.7
86 History of recursive functions 12.8
87 Comparison of recursive algorithms in different

paradigms
12.8

88 Recursive patterns 12.8
89 Recursion animation 12.8
90 Design of questions about recursion 12.8
91 Planning the teaching of recursion 12.8

Chapter 13  Getting Experience in Computer Science Education
Section

92 Bridging gaps related to the content aspect of
computer science education

A.  Scenario description
B.  Scenario analysis, work in pairs and a discussion

13.2.3

xxiv

Index of Activities

93 Bridging gaps related to the pedagogical aspect of
computer science education

A.  Scenario description
B.  Scenario analysis, class discussion and summary

13.2.3

94 Prospective teacher’s conception about the first
lesson

13.2.3

Chapter 14  Design of a Methods of Teaching Computer Science Course
Section

95 First lesson of the MTCS course 14.2.2

xxv

� 1O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_1, © Springer-Verlag London Limited 2011

Introduction – What Is This Guide About?

Abstract  The Introduction presents the motivation for writing this Guide, the Methods of
Teaching Computer Science (MTCS) course for which the Guide can serve as a textbook,
the structure of the Guide, and how it can be used in different frameworks of computer
science education.

1.1 
�Introduction

This Guide is about computer science teaching. Specifically, it focuses on the Methods
of teaching Computer Science (MTCS) course, in which high school computer science
teachers get their pedagogical education related to computer science teaching. Though the
guide is organized as a textbook for the MTCS course, most of its ideas can be easily
adapted to the teaching of any computer science topic in any framework and any level, from
middle school through high school to the university level. Further, the computer science
teaching aspects presented in this Guide are not restricted to any specific curriculum and can
be applied in the teaching of any subject, including AP contents. However, in order to
provide a common base for the entire Guide readership, most of the illustrations presented
in this Guide are based on fundamental computer science concepts; nevertheless, they can
be easily adjusted to any other computer science topic. Section 1.5 specifies how this
Guide can be used by different populations of computer science educators: instructors of
the MTCS course, computer science instructors in the university, instructors of in-service
teacher professional development programs, and high school computer science teachers.
This variety of readership is also addressed by using the following terminology through-

out this Guide:

•	 Learners: Computer science learners in any framework, either in the university or in the
middle and high school.
•	 Students: The prospective high school computer science teachers, that is, the students
enrolled in the MTCS course. When it is important to indicate that the students are

1

2 1  Introduction – What Is This Guide About?

1
learning toward their high school teaching certificate in computer science, we call them
prospective high school computer science teachers.
•	 Pupils: High school computer science learners.

In the Introduction we also present the motivation for writing the Guide (Sect. 1.2), the
MTCS course for which the Guide can serve as a textbook (Sect. 1.3), the structure of the
Guide (Sect. 1.4), and how it can be used in different frameworks of computer science
education (Sect. 1.5).

1.2 
�Motivation for Writing This Guide1

The dynamic evolution of the computer science field poses also educational and pedagogi-
cal challenges, including computer science teacher-related issues, such as recruitment, pre-
service teacher preparation, support for teachers’ ongoing professional development, and
pedagogical and instructional design of teaching and learning material (Stephenson 2005).
In this context, The ACM K-12 Education Task Force Report draws attention to the need

for appropriate computer science teacher training programs and notes that “teachers must
acquire both a mastery of the subject matter and the pedagogical skills that will allow them
to present the material to students at appropriate levels.” (Tucker et al. 2007, p. 18). However,
according to a recently published report, “Despite the existence of National Council for the
Accreditation of Teacher Education accreditation requirements for computer science, very
few pre-service teacher preparation programs have the current capacity or coursework
developed to prepare computer science teachers.” (Wilson et al. 2010, p. 12).
Nevertheless, in many places, a computer science teaching certificate is not required in

order to teach computer science. In the USA, for example, a survey conducted in 2007
reports that approximately 53% of the respondents replied that their state does not require
a computer science teaching certification (CSTA 2007). Deek and Kimmel (1999) note that
secondary computer science courses are usually taught by faculty certified to teach math-
ematics. Further, even programs that deal specifically with the training of computer sci-
ence teachers do not necessarily include explicit reference to the teaching of computer
science. Rather, in many cases, the training refers to teaching in general and, at the best, to
principles of science teaching. This might result from the fact that a well-defined interna-
tional standard for computer science school curricula and for computer science teacher
preparation does not exist (Ragonis 2009).
To meet the challenge of preparing future computer science teachers, this Guide can be

used either as a teaching guide or as a textbook (or both) for the MTCS course. Specifically,
the Guide presents a conceptual framework, together with detailed implementation guide-
lines, for general computer science teaching situations as well as for the MTCS course.

1 Based on Ragonis N, Hazzan O (2008) Disciplinary-pedagogical teacher preparation for
pre-service Computer Science teachers: Rationale and implementation, Informatics in Secondary
Schools – Evolution and Perspective – ISSEP 2008, Lecture Notes in Computer Science,
Vol. 5090/2008: 253-264. Included with permission here.

31.3  The Methods of Teaching Computer Science (MTCS) Course

Practically, its writing style enables immediate implementation of its ideas in the MTCS
course as well as in other computer science teaching education frameworks.
From a personal perspective, our own motivation for writing this Guide is based on

three decades of teaching experience, management, and involvement in teacher prepara-
tion programs. Anecdotally, we mention that when we started building the MTCS course
in our relative institutions around 30 years ago, it was almost impossible to find any model
for high school computer science teacher preparation program around the world. Thus, in
fact, this Guide enables us to share with the professional community of computer science
educators the accumulated professional knowledge we have gained over these years.

1.3 
The Methods of Teaching Computer Science (MTCS) Course

This section presents the Methods of Teaching Computer Science course – the MTCS
course as it is referred to in this Guide. We present a general overview of the knowledge
structure required from pre-service computer science teachers, the course population,
the course rationale, including detailed objectives, and recommended teaching methods
to be used in the course. Chapter 14 further describes how to design a MTCS course and
suggests two possible syllabi for the course.

1.3.1
�MTCS Course Overview

Teacher preparation programs are usually based on general pedagogical knowledge, sub-
ject matter knowledge, pedagogical content knowledge (PCK), and practicum in real
classes. PCK is one category of Shulman’s Teacher Knowledge Base Model (Shulman
1986) and it refers to what a teacher is required to know in order to teach a certain subject
matter: how to make it understandable, learners’ preconceptions and misconceptions, and
strategies for coping with learners’ misconceptions (Shulman 1986, 1990).
From this perspective, the MTCS course aims at broadening the students’ PCK and sets

the basis for the in-school training that takes place after it. In other words, based on the
working assumption that the computer science prospective teachers learn the discipline of
computer science and general pedagogy topics in other courses, the MTCS course focuses
on the uniqueness of teaching computer science. In this context, Gal-Ezer and Harel (1998)
claim that “beyond the mastery of core computer science material, good computer science
educators should also be familiar with a significant body of material that will expand their
perspectives on the field, and consequently, enhance the quality of their teaching.” (p. 77).
Among the issues they mention are the question What is computer science?, a bird’s-eye
view of the discipline, and familiarity with teaching tools and methods.
Lapidot and Hazzan, in a series of papers, address these issues practically and discuss

different topics related to computer science teacher preparation in general and to the
MTCS course in particular (Hazzan and Lapidot 2004a, b, 2006; Lapidot and Hazzan
2003, 2005). They refer to different topics that should be included in such a course, like
pedagogical approaches for teaching different subjects, tools for assessing pupils’

4 1  Introduction – What Is This Guide About?

1
performance, and teaching of social issues such as ethics. They also emphasize the need
to use active learning when teaching the MTCS course. Hazzan, Gal-Ezer and Blum
(2008) add that computer science teacher preparation programs should include some
research elements, such as reading assignments of papers that deal with computer science
education research and mini-research projects to be carried out by the prospective com-
puter science teachers themselves.
This Guide elaborates on all the above mentioned topics as well as on a variety of addi-

tional topics.

1.3.2
�Course Population

Course participants are either prospective or in-service computer science teachers who
wish to broaden their education related to computer science education in the high school.
In addition, some students study the course even though they do not intend to become
computer science teachers. These students can apply the pedagogical skills they acquire in
the course in their future professional work either in the academia or the industry.
The course’s academic prerequisites are relevant computer science courses and part of

the general education and teaching studies.

1.3.3
�Course Objectives

The MTCS course is one of the first stages in the professional development of the prospec-
tive computer science teachers, which naturally continues in many ways also after the course
ends (e.g., in their participation in conferences, in-service teachers training programs, work-
ing groups of computer science teachers, design of new curricula, and more). Accordingly,
the main objective of the MTCS course is to prepare the students to their future fieldwork as
computer science teachers. The specific objectives derived from this main objective, are:

1.	 To enhance students’ professional identity as computer science teachers
	2.	 To heighten students’ awareness to the uniqueness of computer science education
	3.	 To expose students to difficulties encountered by learners when learning differ-
ent topics from the computer science curriculum

	4.	 To enable students to master pedagogical skills for teaching computer science,
considering different kinds of learners.

	5.	 To enable students to master pedagogical tools for teaching computer science,
including the creation of a supportive and cooperative inquiry-based learning
environment

	6.	 To expose the students to a variety of computer science teaching methods
7.	 To expose students to the research conducted on computer science education and to its
application in the teaching process

These objectives are achieved by the facilitation of many activities, discussions, reflective
thinking processes, and additional kinds of tasks, as is elaborated in the next section and is
widely illustrated in this Guide.

51.4  The Structure of the Guide to Teaching Computer Science

1.3.4 
�Recommended Teaching Methods Used in the MTCS Course

The teaching methods implemented in the MTCS course are varied and their implementa-
tion in itself constitutes an essential tier of learning the course. The course does not only
“talk about” but rather it “shows how” to actively apply the teaching principles in the
teaching of the discipline of computer science. Thus, the MTCS course is essentially a
workshop that includes lectures, workshops for developing different teaching materials
and skills, hands-on experience with various software programs, practice teaching, and
many discussions and reflections. Course tasks and assignments are varied and develop
simultaneously with the learning process. Task types include, for example, preparing
learning activities, preparing lesson plans, analyzing learners’ mistakes, reading articles
and preparing reports, exploring different ways for class management in general and how
to use the computer lab in particular, preparing a teaching plan for an entire teaching unit,
and exploring the uniqueness of the discipline of computer science. These kinds of activities,
as well as many others, are presented in the Guide with respect to different (pedagogical)
computer science topics.
Furthermore, the teaching-learning processes in the course are cooperative in nature.

This idea is applied by letting the students present different products to their peers and
learn from one another and from feedback they receive from their peers and course instruc-
tor. Feedback can be given both orally and in writing. The products of the course partici-
pants can be shared for future use either in the course or in the school work.
It is recommended to accompany the course with a website that includes available

resources throughout the school year. These resources include links to repositories of
learning materials and to sites that offer enrichment on topics such as the history of com-
puter science, dictionaries of programming languages, information on computer scientists,
and so on. In addition, all contents presented during the course lessons both by the instruc-
tor and by the students can become available on the Web.
Chapter 2 further elaborates on the teaching methods employed in the course.

1.4 
�The Structure of the Guide to Teaching Computer Science

This section describes the structure of the Guide and briefly presents each of its chapters.

1.4.1 
�Guide Structure and Organization

As mentioned, this Guide can be used as a textbook for the MTCS course as well as a guide
for computer science teaching in a variety of frameworks, organizations, and levels of
computer science education. To achieve this purpose, each chapter presents:

A pedagogical computer science aspect and includes its meaning and importance in the •	
context of computer science education, its basic pedagogical principles, and how it can

6 1  Introduction – What Is This Guide About?

1
be applied in computer science education in general and in the MTCS course in
particular.
Examples of activities that address the pedagogical aspect the chapter deals with. The •	
learning activities are presented in detail, in gray boxes, including pedagogical guide-
lines, to enable their immediate application. In order to make the material applicable to
all levels of computer science education, we do not indicate explicitly the length of each
activity; each teacher/instructor, we suggest, allocate the time framework for each activity
according to the characteristics of his or her learners. We also include an Index of
Activities at the beginning of the Guide.

We highlight that:

The Guide does •	 not teach computer science; rather, it focuses on computer science
teaching.
The Guide is •	 not limited to the teaching of a specific computer science curriculum, nei-
ther is it limited to the teaching of a specific programming language nor to a specific
programming paradigm.
The pedagogical topics that the Guide deals with should not necessarily be addressed •	
by their presentation order in the Guide.
The programming language we use in the Guide is Java, since currently it is one of the •	
most common languages. The Java code can be translated, of course, to any other pro-
gramming language.
The Guide contains much more material than a single MTCS course can contain. •	
Therefore, each instructor should select the topics and activities that fit the context in
which the MTCS course is taught or, in other computer science teaching frameworks,
the specific purpose for which the Guide is used.
When the Guide is used as the textbook of the MTCS course, it should be remembered •	
that the course should be based on active learning (see Chap. 2); that is, computer
science teaching cannot be learned by reading this Guide.
Chapter 14 presents two optional syllabi for the MTCS course. However, many options •	
exist for the teaching of the MTCS course and, accordingly, the material presented in
this Guide can be organized and implemented in additional ways (see, e.g., Chap. 12
which presents a course organization around one central idea – recursion).
Each lesson of the MTCS course can be organized in many ways. Activity 95 (Sect. •	
14.2.2) illustrates several options as to how to start the first lesson of the MTCS course.

1.4.2 
�The Content of the Guide Chapters

In what follows, we briefly describe the content of each chapter of the Guide.

Chapter 2 – Active Learning and the Active-Learning-Based Teaching Model.  This chapter
presents an active learning-based teaching model for implementation in the MTCS course.
This model is applied in the various chapters of this Guide in most of the offered
activities.

71.4  The Structure of the Guide to Teaching Computer Science

Chapter 3 – Overview of the Discipline of Computer Science.  This chapter addresses
topics associated with the nature of the discipline of computer science and with cross-
curriculum topics. The importance of these topics is explained by the fact that even today
no consensus has been reached with respect to one agreed upon definition for computer
science, and different scholars view it differently. Specifically, the following topics are
included in this chapter: what is computer science? the history of computer science, com-
puter scientists, social issues of computer science, programming paradigms, and computer
science soft ideas.

Chapter 4 – Research in Computer Science Education.  This chapter focuses on research
in computer science education. The importance of including this topic in the MTCS course
stems from the fact that computer science education research can enrich the prospective
computer science teachers’ holistic perspective with respect to the discipline of computer
science, the computer science teacher’s role, and students’ difficulties, misconceptions,
and cognitive abilities. In practice, this knowledge may foster their professional develop-
ment and enhance their future teaching with several respects, such as, lesson preparation,
activities developed for their pupils, teacher’s behavior in the class, and testing and grading
learners’ projects and tests.

Chapter 5 – Problem Solving Strategies.  The importance of including this topic in the
MTCS course stems from the centrality of problem-solving processes in computer science
and the fact that computer science learners often experience difficulties in the problem
analysis and solution construction processes. This chapter deals with pedagogical tools
needed to be acquired by computer science teachers to help their pupils acquire different
problem-solving skills such as, successive refinement, the use of algorithmic patterns and
reflective processes.

Chapter 6 – Learners’ Alternative Conceptions.  Since alternative conceptions are not easily
detected by conventional testing and evaluation methods, a teacher cannot effectively deal
with alternative conceptions without being aware of their existence. More specifically,
teachers must be aware of their learners’ ways of thinking and mental processes, must gain
skills for uncovering alternative conceptions, and must recognize and use pedagogical tools
to deal with these conceptions. In order to prepare the prospective computer science teachers
master these skills, one of the messages delivered in this chapter is that a learning oppor-
tunity exists in every pupil’s mistake (or misunderstanding); in order to exhaust pupil’s
learning abilities, however, it is necessary first, to understand the pupil’s (alternative)
conceptions and then, to use suitable pedagogical tools to assist him or her.

Chapter 7 – Teaching Methods in Computer Science Education.  This chapter includes
active-learning-based teaching methods that computer science teachers can employ in
their classroom. The purpose of this chapter is first, to let the students in the MTCS course
experience a variety of teaching methods before becoming computer science teachers;
second, to discuss, together with the students, the advantages and disadvantages of these
teaching methods; and third, to demonstrate high school teaching situations in which it is
appropriate to employ these teaching methods. The teaching methods presented in this
chapter are pedagogical tools, different forms of class organization, and mentoring soft-
ware project development.

8 1  Introduction – What Is This Guide About?

1
Chapter 8 – Lab-Based Teaching.  This chapter focuses on computer science teaching
methods that fit especially to be employed in the computer lab. The importance of the
computer lab as a learning environment for computer science is explained by the fact that
the lab enables learners to practice and explore problem-solving strategies, to express their
solutions to a given problem and to get the computer immediate feedback, and to deepen
their understanding of algorithms they develop. One of the aims of this chapter is to let the
prospective computer science teachers realize that the learning of computer science in the
computer lab is not limited to programming tasks; rather, they, as future computer science
teachers, can use the computer lab in additional ways that further enhance learners’ under-
standing of computer science. Specifically, this chapter includes the following topics: what
is a computer lab?, the lab-first teaching approach, visualization and animation, and using
the Internet in the teaching of computer science.

Chapter 9 – Types of Questions in Computer Science Education.  This chapter explores
and discusses the variety of question types that a computer science teacher can use in dif-
ferent teaching situations and processes: in the classroom, in the computer lab, as home-
work, and in tests. The integration of different types of questions has several pedagogical
advantages. We mention four: first, different types of questions enable to illuminate differ-
ent aspects of the learned content; second, different types of questions require the students
to use different cognitive skills; third, different types of questions enable the teacher to
vary his or her teaching tools; and fourth, the integration of different types of questions
throughout the teaching process keeps the students’ interest, attention, and curiosity. It is
important to address this theme is the MTCS course to increase the prospective computer
science teachers’ awareness to the fact that the use of different types of problems in their
teaching processes can enrich their pupils’ variety of thinking processes and expand the
spectrum of their cognitive skills.

Chapter 10 – Evaluation.  Evaluation is one of the most common tasks teachers perform
from the early stages of their professional development. This chapter highlights the unique-
ness of learners’ evaluation in the case of computer science education, emphasizing that
evaluation is not a target by itself, but rather, a pedagogical means by which, on the one
hand, a teacher improves his or her understanding of the current knowledge of his or her
pupils, and on the other hand, learners get feedback related to their own understanding of
the learned topic. The topics on which this chapter focuses are test construction and evalu-
ation , project evaluation, and the use of a portfolio in computer science education.

Chapter 11 – Teaching Planning.  Planning a teaching sequence is one of the basic stages
of any teaching process. This chapter illustrates a top-down approach for teaching plan-
ning. It starts with a broad perspective that relates to the planning of an entire curriculum
(e.g., an introductory computer science course), continues with the planning of one topic
from the curriculum (e.g., teaching one-dimension array), and finally addresses the plan-
ning of a specific lesson (e.g., the first lesson about arrays). In all these stages, the multi-
faceted considerations that a teacher should be aware of while planning the teaching
process are addressed.

Chapter 12 – Integrated View at the MTCS Course Organization:  The Case of Recursion.
This chapter reviews the Guide’s chapters systematically through the lens of recursion – one

91.5  How to Use the Guide?

of the central computer science concepts. The main message of the chapter is to demonstrate
that the entire course can be organized around one computer science core idea. The ideas
presented in this chapter can be used by instructors of the MTCS course as well as by other
computer science educators. We mention, though, that recursion is only one candidate for
such course organization and other computer science concepts, such as abstraction, control
structures, and abstract data types, can be used for this purpose.

Chapter 13 – Getting Experience in Computer Science Education.  This chapter deals
with the first field teaching experiences that the students enrolled in the MTCS course
gain before becoming computer science teachers. The importance of these first teaching
experiences stems from the recognition that one significant way to acquire pedagogical-
disciplinary knowledge involves activities performed in teaching situations that provide
opportunities for teacher’s reflective processes. This chapter describes two frameworks
in which the prospective computer science teachers gain this first teaching experience:
The practicum, which takes place in high school, after one or two semesters of learning
the MTCS course, and a tutoring framework that can be integrated in the MTCS
course.

Chapter 14 – Design of a Methods of Teaching Computer Science Course.  This chapter
describes how to design a MTCS course within an academic computer science teacher
preparation program, and suggests two possible syllabi for this course. It is emphasized,
however, that different approaches and frameworks can be applied when one designs the
MTCS course. In the first part of this chapter, we propose four possible perspectives on the
MTCS course: the NCATE standards, merger of computer science with pedagogy, Shulman’s
model of teachers’ knowledge, and research findings. The second part of the chapter describes
two full course syllabi for the MTCS course.

Chapter 15 – High School Computer Science Teacher Preparation Programs.  This chapter
broadens the perspective on high school computer science teacher preparation programs.
First, it describes a model for high school computer science education that one of its
components is computer science teacher preparation programs. The model consists of
five key elements – a well-defined curriculum, a requirement of a mandatory formal com-
puter science teaching license, teacher preparation programs, national center for computer
science teachers, and research in computer science education – as well as interconnec-
tions between these elements. Then, the focus is placed on the teacher preparation pro-
grams component of the model, describing a workshop targeted at computer scientists
and computer science curriculum developers who wish to launch computer science
teacher preparation programs at their universities but lack knowledge about the actual
construction of such programs.

1.5 
�How to Use the Guide?

As mentioned, this Guide can be used by several populations involved in computer science
education. We now present these different usages.

10 1  Introduction – What Is This Guide About?

1

1.5.1
�Instructors of the MTCS Course

When this Guide is used as a textbook for the MTCS course, it serves, in fact, as a teaching guide.
In this case, the instructor of the MTCS course can use a two-dimensional table, such as Table 1.1,
in order to organize the course structure and contents. The columns of the table represent the
main contents and ideas of the high school curriculum on which the MTCS course focuses; the
table rows present the pedagogical contents and ideas that the instructor wishes to address in the
course. Thus, the different chapters of this Guide represent, in fact, the table rows.
During the actual teaching of the MTCS course, the instructor decides what pedagogical

ideas to address with respect to what computer science topic(s). He or she can choose, for
example, to discuss the computer science topic of variables with respect to the pedagogical
aspects of evaluation and lab-based teaching; the computer science topic of control
structures – with respect to the pedagogical topics of learners’ difficulties and conceptions
and teaching methods in computer science education; etc. In this way, each activity in the
course is associated with both a computer science topic and a pedagogical aspect. It also
implies that none of the lessons of the MTCS course focuses solely on a computer science
idea (without a pedagogical context) or on a pedagogical idea (without connecting it to the
teaching of some computer science topic). In this spirit, though the pedagogical aspects
presented in this Guide are presented in most cases in the context of a specific computer
science topic, they can be easily adapted for the teaching of other computer science topics.
Section 10.5 addresses the evaluation of the students in the MTCS course and outlines
possible elements for students’ evaluation in the course.
By the end of the course, such a table should not be full; it reflects, however, whether

all the computer science topics included in the curriculum have been discussed in the
MTCS course and if all the pedagogical ideas the instructor wished to highlight were
indeed addressed. Nevertheless, it is recommended to address all computer science topics
and all the pedagogical aspects; the specific topic selection and their presentation order in
the course is left to the course instructor according to his or her pedagogical preferences.

Table 1.1  Organization of the contents of the MTCS course

Computer science
contents Variables

Control
structures Recursion ...

 � And so forth – additional
computer science topics

Pedagogical aspects
Learners’ difficulties
and conceptions

+ +

Teaching methods in
computer science
education

+

Lab-based teaching +
Evaluation
...

+

And so forth – other
pedagogical aspects

111.5  How to Use the Guide?

1.5.2
�The Prospective Computer Science Teachers Enrolled in the MTCS Course

The students enrolled in the MTCS course can use the Guide as they use any other text-
book. The instructor can refer them to the general introduction presented for each topic
(presented in most cases at the beginning of any chapter/section) or to specific assign-
ments, according to the course plan. Interested students can, of course, read additional
material and further broaden their knowledge by reading the references presented at the
end of each chapter.

1.5.3
�Computer Science Instructors in the University

Computer science instructors can use the Guide in several ways.
First, they can expand their knowledge related to computer science education and

improve their awareness to pedagogical aspects while teaching computer science courses.
Second, the Guide may increase their awareness to alternative conceptions and possible

difficulties that learners in their classes may face with respect to different computer science
topics.
Third, they can facilitate with their classes activities presented in the Guide, even if

their students do not intend to become computer science teachers. Naturally, in such cases,
the computer science context should be emphasized.
Finally, computer science instructors can use this Guide to vary their teaching methods

in order to promote learners’ interest and motivation. This can be done, for example, by
integrating active-learning-based activities in the lessons they teach.

1.5.4
�Instructors of In-Service Teachers’ Professional Development Programs

Most of the topics and activities presented in the Guide are also suitable for facilitation
with in-service computer science teachers in different frameworks, such as professional
development training and workshops in conferences.

1.5.5
�High School Computer Science Teachers

Similar to instructors of computer science courses in the university, the Guide can be used
by high school computer science teachers in several ways. They can expand their know
ledge related to computer science education, improve their computer science teaching,
vary the teaching methods they employ in their classes, and increase their awareness to
possible difficulties their pupils may face with respect to different computer science topics.
They can also facilitate with their high school pupils activities presented in this Guide.

12 1  Introduction – What Is This Guide About?

1 References

CSTA (2007) Compute Science State Certification Requirements - CSTA Certification Committee
Report http://www.csta.acm.org/ComputerScienceTeacherCertification/sub/TeachCertRept07�
New.pdf. Accessed 14 July 2010

Deek F, Kimmel H (1999) Status of computer science education in secondary schools. Comput.
Sci. Educ. 9(2): 89–113

Gal-Ezer J, Harel D (1998) What (else) should CS educators know?. Communic. of the ACM
41(9): 77–84

Hazzan O, Gal-Ezer J, Blum L (2008) A model for high school Computer Science Education: The
four key elements that make it!, 39th Tech. Symp. on Comput. Sci. Educ., SIGCSE Bull. 40(1):
281–285

Hazzan O, Lapidot T (2004a) Construction of a professional perception in the “Methods of
Teaching Computer Science” course. Inroads - SIGCSE Bull. 36(2): 57–61

Hazzan O, Lapidot T (2004b) The practicum in computer science education: Bridging gaps
between theoretical knowledge and actual performance. Inroads - SIGCSE Bull. 36(4): 47–51

Hazzan O, Lapidot T (2006) Social issues of Computer Science in the “Methods of Teaching
Computer Science in the High School” course. Inroads - SIGCSE Bull. 38(2): 72–75

Lapidot T, Hazzan O (2003) Methods of Teaching Computer Science course for prospective teach-
ers. Inroads - SIGCSE Bull. 35(4): 29–34

Lapidot T, Hazzan O (2005) Song debugging: Merging content and pedagogy in Computer Science
education. Inroads - SIGCSE Bull. 37(4): 79–83

Ragonis N (2009) Computing pre-university: Secondary level computing curricula. Wiley Encycl.
of Comput. Sci. and Eng.

Ragonis N, Hazzan O (2008) Disciplinary-pedagogical teacher preparation for pre-service
Computer Science teachers: Rational and implementation, ISSEP 2008, Lect. Notes in Comput.
Sci. 5090/2008: 253–264

Shulman L S (1986) Those who understand: knowledge growth in teaching. Educ. Teach. 15(2):
4–14

Shulman L S (1990) Reconnecting foundations to the substance of teacher education. Teach. Coll.
Rec. 91(3): 300–310

Stephenson C, Gal-Ezer J, Haberman B, Verno A (2005) The new educational imperative:
Improving high school computer science education. Final report of the CSTA Curriculum
Improvement Task Force February 2005, Comput. Sci. Teach. Assoc., Assoc. for Comput. Mach.
http://www.csta.acm.org/Communications/sub/DocsPresentationFiles/White_Paper07_06.pdf.
Accessed 14 July 2010

Tucker A, Deek F, Jones J, McCowan D, Stephenson C, Verno A (2007) A Model Curriculum for
K-12 Computer Science. Report of the ACM K-12 Educ. Task Force Comput. Sci. Curric.
Comm. – Draft http://www.csta.acm.org/Curriculum/sub/CurrFiles/K-12ModelCurr2ndEd.pdf.
Accessed July 14 2010

Wilson C, Sudol L, Stephenson C, Stehlik M (2010) Running on empty: The failure to teach K–12
computer science in the digital age. Report of The Assoc. for Comput. Mach. And The Comput. Sci.
Teach. Assoc. http://www.acm.org/runningonempty/fullreport.pdf. Accessed October 8 2010

http://www.csta.acm.org/ComputerScienceTeacherCertification/sub/TeachCertRept07New.pdf
http://www.csta.acm.org/ComputerScienceTeacherCertification/sub/TeachCertRept07New.pdf
http://www.csta.acm.org/Communications/sub/DocsPresentationFiles/White_Paper07_06.pdf
http://www.csta.acm.org/Curriculum/sub/CurrFiles/K-12ModelCurr2ndEd.pdf
http://www.acm.org/runningonempty/fullreport.pdf

� 13O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_2, © Springer-Verlag London Limited 2011

Abstract  This chapter* presents an active-learning-based teaching model for implementation
in the MTCS course, which is based on the constructivist approach. This model is used in
this Guide in most of the offered activities. The chapter starts with the motivation and the
rationale for using active learning in the MTCS course; then, the active-learning-based
teaching model is introduced and explained, including a description of the role of the
instructor of the MTCS course in the model implementation.

2.1 
�Introduction

As mentioned in the Introduction, the main purpose of the MTCS course is to prepare
prospective computer science teachers (the students of the course) toward their future
career as computer science teachers.
In general, courses about science teaching in the secondary school emphasize curricu-

lum-related issues, addressing topics such as, learning theories and pedagogical methods,
principles for the development of scientific curricula, laboratory instruction and other
investigative learning approaches, professional ethics in science instruction, and the place
of science learning in the pupils’ general education. All these topics are also relevant and
important in the case of computer science teaching to promote the prospective teachers’
professional perception.
The recommended teaching methods for the MTCS course, as are described in Chap. 1,

indicate that the MTCS course should be built as a teaching model. Accordingly, the course
should be designed in a way that (a) promotes students’ positive learning experience in a
supportive teaching environment, and (b) enables the students to imitate this way in their
future computer science classes. To achieve this goal, the MTCS course should be based
on constructivist teaching methods and implement active learning. This approach is impor-
tant not only because we want the prospective computer science teachers to enjoy their
learning processes and improve their understanding of computer science concepts, science
teaching, and computer science education (by experiencing a variety of learning/teaching
methods), but also because we want to inspire their future way of teaching in the high
school.

2Active Learning and the Active-Learning-
Based Teaching Model

* © Hazzan and Lapidot 2004 ACM, Inc. Included here by permission.

14 2  Active Learning and the Active-Learning-Based Teaching Model

2
This chapter presents an active-learning-based teaching model for implementation in the

MTCS course. This model is used in this Guide in most of the offered activities.

2.2 
�Active Learning

Confucius (551 BC – 479 BC) once said:

I hear and I forget,
I see and I remember,

I do and I understand.

Active learning is widely accepted nowadays as a quality form of education. Among the
many descriptions of active learning, we highlight Silberman’s assertion (1996) according
to it “Above all, students need to ‘do it’ – figure things out by themselves, come up with
examples, try out skills, and do assignments that depend on the knowledge they already
have or must acquire.”
According to constructivist educators (Kilpatrick 1987; Davis et al. 1990; Confrey

1995), learning is an active acquisition of ideas and knowledge construction, rather than a
passive process. In other words, learning requires the individual to be active and to be
engaged in the construction of one’s own mental models. As follows from the above quote
by the famous Chinese philosopher, the more active learners are, the more meaningful is
their understanding of what they learn. Therefore, in the design of the MTCS course, we
propose educators to encourage “learners to be active in their relationship with the material
to be learned” (Newman et al. 2003).
There are numerous ways to implement active learning in computer science education (see,

e.g., Whittington 2004; Ludi 2005; McConnell 2005; Anderson et al. 2007; Gehringer and
Miller 2009). McConnell (1996), for example, suggests several techniques, such as modified
lectures, algorithm tracing, and software demonstration. In this spirit, this Guide is based on the
implementation of the active-learning-based teaching approach by offering a wide collection of
activities to be implemented in the MTCS course in the context of computer science education.

2.3 
�Why Active Learning Is Suitable for Implementation in the MTCS Course?

In addition to the general argumentation about the suitability of the active-learning-based
teaching approach to the MTCS course, we suggest that active learning may also promote
the professional development and perception of the prospective computer science teachers,
as the following justifications propose.

•	 Constructivism: Constructivism is a cognitive theory that examines the nature of learning
processes. According to this approach, learners construct new knowledge by rearranging

152.3  Why Active Learning Is Suitable for Implementation in the MTCS Course?

and refining their existing knowledge (cf. Davis et al. 1990; Smith et al. 1993; Ben Ari
2001). More specifically, the constructivism approach suggests that new knowledge is
constructed gradually, based on the learner’s existing mental structures and on the
feedback that the learner receives from the learning environments. In this process, men-
tal structures are developed in steps, each elaborating on the preceding ones, although
there may, of course, also be regressions and blind alleys. This process is closely related
to the Piagetian mechanisms of assimilation and accommodation (Piaget 1977). One
way to support such gradual mental constructions is by providing learners with a suit-
able learning environment in which they can be active. The working assumption is that
the feedback, provided by learning environment in which learners learn a complex
concept in an active way, may support mental constructions of the learned concepts. In
our case, in order to support the construction of the computer science teachers’ profes-
sional perception, the prospective teachers participating in the MTCS course must have
a learning environment that supports this complex mental construction. It is suggested,
therefore, that active learning is naturally suited for use in such situations.
•	 Wearing different hats: In order to support the construction of the prospective computer
science teachers’ professional perception in the MTCS course, it is important that dur-
ing the course, the students experience wearing different hats (see Fig. 2.1). At times,
the prospective computer science teachers wear the hat of a high school pupil and are
asked to perform “pupil assignments”; at other times, they wear the hat of the computer
science (future) teacher; and yet at other times they wear the student’s or the research-
er’s hats. As it turns out, active learning enables the switching between such situations
in a very natural manner.
It is also important to mention that as future computer science teachers they will

have to wear different hats in their daily work (role-model, tutor, evaluator, leader,
counselor, and decision maker are just a few examples) and the experience they gain in
the MTCS course could help them in performing these roles.
•	 Wearing the student hat: Since the computer science material itself is usually still
fresh in the student’s mind, in addition to learning the content of the MTCS course

Fig. 2.1  Wearing four hats in the construction process of the prospective computer science teachers’
professional perception

16 2  Active Learning and the Active-Learning-Based Teaching Model

2
itself and the construction of the professional perception as computer science
teachers, the prospective computer science teachers continue, in parallel, with their
mental construction of the computer science body of knowledge. From a construc-
tivist perspective, in such situations, active learning is preferred over lecture-based
teaching.
•	 Reflection: The prospective computer science teachers can improve the construction of
their professional perception also by incorporating reflective processes into the con-
struction process (Ragonis and Hazzan 2010). That is, by becoming reflective practitio-
ners (Schön 1983, 1987), their comprehension of the profession of computer science
education may be improved. Reflective practitioners are professionals who continu-
ously improve their professional skills based on their on-going reflection with respect
to their professional performance. Active leaning is compatible with the reflective prac-
tice perspective since it provides learners with an opportunity to reflect on the activities
they perform as part of their active learning.
•	 Teaching methods: Active learning enables the illustration of different teaching meth-
ods. Consequently, it enables to expose the prospective computer science teachers to
different teaching methods and class arrangements. Based on the constructivist
approach, the prospective computer science teachers’ experience of different teaching
methods in an active learning fashion, promotes their understanding of the methods’
advantages and disadvantages.
•	 Bridging gaps: Active learning can bridge gaps in the teaching experience and com-
puter science background that exist among the students participating in the MTCS
course. Some of them may have stronger backgrounds in computer science; others may
have more teaching experience. Since active learning enables each student to continue
with the construction of his or her professional perception from his or her current pro-
fessional stage, active learning can help instructors of MTCS courses overcome these
variations that exist among the students.
•	 High-order thinking tasks: Last, but not least, active learning enables to offer the
prospective computer science teachers tasks that enhance higher-order thinking, such
as analysis, synthesis, and evaluation tasks.

2.4 
�Active-Learning-Based Teaching Model

So far, we have explained the rationale for the implementation of an active-learning-based
teaching approach in the MTCS course. We now propose a model for active-learning-
based teaching to be employed when teaching MTCS courses. This model is used in most
of the activities presented in this Guide.
The Active Learning Based Teaching Model consists of four stages – trigger, activity,

discussion, and summary – focusing on a particular topic addressed in the MTCS course.
The model is illustrated in Fig. 2.2 and is described in what follows. Needless to say that,
when appropriate, (a) this model can be implemented in additional computer science teaching
situations, and (b) variations in the model implementation can be made.

172.4  Active-Learning-Based Teaching Model

First stage: Trigger.  Following the constructivist perspective, the objective of this stage
is to introduce a topic with a worthwhile assignment in a nontraditional fashion (Brooks
and Brooks 1999). For this purpose, the prospective computer science teachers are pre-
sented by a challenging active-learning-based trigger, an open-end activity of a kind with
which they are not familiar. Specifically, a trigger should enhance and foster meaningful
learning and should have the potential to raise a wide array of questions, dilemmas, atti-
tudes, and perceptions. Following Newman et al. (2003), it is proposed that a trigger should
be realistically complex and relevant for the learners. Depending on the trigger’s main
objective, the activity can be worked on individually, in pairs or in small groups.
In the MTCS course, a trigger can be based on different kinds of activities, such as

analyzing a class situation, debugging a given computer program, composing a test on a
specific computer science topic, designing an exhibition poster about a particular computer
science concept, following a visualization or animation display for a given computer pro-
gram, and so on.
One of the main objectives of introducing a new topic using a trigger is to train the pro-

spective computer science teachers how to face and deal with open-ended and unfamiliar
situations. Such situations, which are so predominant in teaching in general, and in computer
science education in particular, require teachers to consider multiple reaction options. In
order to achieve this objective, it must be possible to approach a trigger in more than one
way. Furthermore, a well-designed trigger exposes the students, while working on the trigger
itself, to a rich and varied mix of computer science and pedagogical aspects. Throughout the
model stages, this vast collection of ideas is discussed, elaborated, refined and organized.

Second stage: Activity.  In this stage, the students work on the trigger presented to them.
This stage may be short, or it may be longer and take up the majority of the lesson. The
specific period of time dedicated to this stage naturally depends on the kind of trigger used
and on its educational objectives.

Third stage: Discussion.  After the required period of time, during which the students work
on the trigger either individually, in pairs, or in small groups, the entire class is gathered.

Fig. 2.2  Active-learning-
based teaching model

18 2  Active Learning and the Active-Learning-Based Teaching Model

2
At this stage, products, topics and thoughts that originated during the activity stage are
presented to the entire class and are discussed. At this stage, the students refine their under-
standing of concepts, attitudes, and ideas, as part of the construction process of their pro-
fessional perception.
The instructor highlights important ideas presented by the students and emphasizes

principles derived from these ideas. In order to convey the notion that no unique solution
exists for most teaching situations in general, and for the specific activity presented by the
trigger in particular, the instructor does not judge students’ positions and opinions. At the
same time, however, classmates are encouraged to react and express their opinions and
their constructive criticism with respect to the different ideas or materials presented.

Fourth stage: Summary.  This stage of the model puts the topic into the context of the
course and emphasizes the concepts that were discussed. It is managed differently than the
three previous stages. First, it is significantly shorter. Second, while in the first three stages
the students are the main actors, in the Summary stage, the MTCS course instructor takes
front stage. The instructor wraps up, summarizes and highlights central concepts, teaching
ideas, conceptual frameworks, and other related topics that were raised and discussed during
the previous three stages.
The summary can be expressed in different forms, such as a framework formulation,

listing connections between the said topic and other topics, concept map, and so on.

2.5 
�The Role of the Instructor in the Active-Learning-Based Teaching Model

The term “instructor” refers to the lecturer teaching the MTCS course. In what follows, we
explain the significant role of the instructor during each stage of the proposed teaching model.
In general, the instructor has to create a supportive intellectual and emotional environ-

ment that encourages students to be fully active.
In the first stage (Trigger), the instructor constructs and presents the trigger. As men-

tioned earlier, a trigger must be designed very carefully as it constitutes the basis for the
entire model.
In the second stage (Activity), the instructor circulates between the different groups

working on the trigger, listens to their opinions, is sensitive to what they say, and encour-
ages them to deepen their thinking. When needed, the instructor guides the students in their
discussion. Though the guidance should encourage alternative thinking approaches, the
instructor is advised not to dictate any position.
In the third stage (Discussion), the instructor must act as a good listener and be sensitive

to crucial points suggested by the students. Specifically, the instructor should encourage the
students to explain why and how they developed their suggestions, suggest exploring differ-
ent options, foster reflection processes, all without passing judgment on the students’ opin-
ions. Since well-designed triggers lead to rich discussions and debates, instructors may, at
this stage, find themselves navigating through various disagreements. When needed, the
instructor highlights the important facets of each opinion and presents possible connections
between different ideas.

19References

In the fourth stage (Summary), the instructor sums up the ideas presented during the
previous stages. This summary is organized logically so as to highlight the main messages
that were raised and discussed during the lesson. When needed, the instructor adds ideas
and clarifications that were not suggested by the students themselves.
As mentioned before, the Active Learning Based Teaching Model is used throughout

this Guide in many opportunities to support the construction process of the prospective
computer science teachers’ professional conception as computer science teachers.

References

Anderson R, Anderson R., Davis K M et al (2007) Supporting active learning and example based
instruction with classroom technology. SIGCSE’07, Covington, Kentucky, USA: 69–73

Ben Ari M (2001) Constructivism in computer science education. J. of Comput. in Math. and Sci.
Teach. 20(1): 45–73

Brooks M G, Brooks J (1999) The courage to be constructivist. Educ. Leadership 57(3): 18–24
Confrey J (1995) A theory of intellectual development. For the Learn. of Math. 15(2): 36–45
Davis R B, Maher C A, Noddings N (1990, eds.) Constructivist views on the teaching and learning
of mathematics. J. Res. in Math. Educ. Monograph 4, The National Council of Teachers of
Mathematics, Inc

Gehringer E F, Miller C S (2009) Student-generated active-learning exercises. SIGCSE’09, March
3–7, 2009, Chattanooga, Tennessee, USA. pp. 81–85

Hazzan O, Lapidot T (2004) Construction of a professional perception in the “Methods of Teaching
Computer Science” course. inroads – SIGCSE Bull. 36(2): 57–61

Kilpatrick J (1987) What constructivism might be in mathematics education. In Bergeron J C,
Herscovics N, Kieran C (eds.). Proc. 11th Int. Conf. Psychol. Math. Educ. (PME11) I: 3–27

Ludi S (2005) Active-learning activities that introduce students to software engineering fundamentals.
ITiCSE’05, Monte de Caparica, Portugal: 128–132

McConnel J J (1996) Active learning and its use in computer science. SIGCSE Bull. 28: 52–54
McConnell J J (2005) Active and cooperative learning: Tips and tricks (Part I). inroads – SIGCSE
Bull. 37(2): 27–30

Newman I, Daniels M, Faulkner X (2003) Open ended group projects a ‘Tool’ for more effective
teaching. Proc. Australasian Comput. Educ. Conf. (ACE2003), Australian Computer Society,
Inc, Adelaide, Australia

Piaget J (1977) Problems of equilibration. In Appel M H, Goldberg, L S (eds.)., Topics in Cognitive
Development, Volume 1: Equilibration: Theory, Research and Application, Plenum Press, NY:
3–13

Ragonis N, Hazzan O (2010) A Reflective Practitioner’s Perspective on Computer Science Teacher
Preparation. ISSEP2010, Zurich, Switzerland: 89–105. http://www.issep2010.org/proceedings_
of_short_communications.pdf. Accessed 3 September 2010

Schön D A (1983) The Reflective Practitioner. BasicBooks, New York, NY
Schön D A (1987) Educating the Reflective Practitioner: Towards a New Design for Teaching and
Learning in the Profession. Jossey-Bass, San Francisco

Silberman M (1996) Active Learning: 101 Strategies to Teach Any Subject. Pearson Higher
Education

Smith J P, diSessa A A, Roschelle J (1993) Misconceptions reconceived: A constructivist analysis
of knowledge in transition. J. of the Learn. Sci. 3: 115–163

Whittington K J (2004) Infusing active learning into introductory programming courses. JCSC
19(5): 249–259

http://www.issep2010.org/proceedings_of_short_communications.pdf
http://www.issep2010.org/proceedings_of_short_communications.pdf

21O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_3, © Springer-Verlag London Limited 2011

Overview of the Discipline
of Computer Science 3

Abstract  This chapter proposes how to address in the MTCS course topics associated
with the nature of the discipline of computer science and with cross-curriculum topics.
The importance of these topics is explained by the fact that even today no consensus has
been reached with respect to one agreed-upon definition for computer science, and dif-
ferent scholars view it differently. Specifically, the following topics are discussed in this
chapter: what is computer science, the history of computer science, computer scientists,
social issues of computer science, programming paradigms, and computer science soft
ideas. For each topic, its meaning and its importance and relevance in the context of
computer science education are explained, and then, several activities which deal with the
said topic are presented.

3.1 
�Introduction

This chapter deals with the nature of the discipline of computer science. The importance
of this topic is attributed to the fact that even today no consensus has been reached with
respect to one agreed upon definition for computer science, and different scholars view it
differently (see Sect. 3.2). In addition to the mere definition of the discipline, this chapter
deals with additional aspects of computer science that each computer science educator
should be aware of, such as the history of computer science, the scientists who shaped the
field, and its social aspects.

This chapter deals also with two additional subjects: programming paradigms and com-
puter science soft ideas. These topics fit into this chapter, whose aim is to provide an
overview of the discipline of computer science, for several reasons. First, they are cross-
curriculum topics which may foster one’s attempts to acquire wider understanding of the
discipline; second, these two ideas shaped major parts of the history of computer science;
and third, these concepts provide cognitive tools to think with, and are considered as part
of computer science.

22 3  Overview of the Discipline of Computer Science

3
The chapter further elaborates on how the following topics can be addressed in the

MTCS course:

What is computer science? (•	 Sect. 3.2)
The history of computer science (•	 Sect. 3.3)
Computer scientists (•	 Sect. 3.4)
Social issues of computer science (•	 Sect. 3.5)
Programming paradigms (•	 Sect. 3.6)
Computer science soft ideas (•	 Sect. 3.7)

For each topic, we first explain its meaning and its importance and relevance in the context
of computer science education, and then, suggest several activities which deal with the
said topic that can be facilitated in the MTCS course.

The different topics and activities that the chapter deals with should not necessarily be
addressed in sequential lessons and can be spread over the MTCS course. We recommend
that each instructor incorporate these topics in the course when he or she feels that it is
important to highlight a topic that provides a broad perspective of the discipline of com-
puter science. Such a decision may be based on different considerations. First, the instruc-
tor may notice that students’ image of the discipline is too narrow (e.g., they are either not
aware of the history of computer science or overemphasize programming-oriented aspects);
second, when a specific computer science topic is addressed in the MTCS course and it is
relevant to associate it with one of the above topics (e.g., when the teaching of Turing
machine or Dijkstra algorithm are discussed, it is relevant to mention the history of the
discipline, in general, and the pioneers who shaped it, whose names appear in these con-
cepts, in particular); and finally, when the instructor feels that he or she should diversify
the course content by addressing topics related to the nature of the discipline rather than its
core scientific topics.

3.2 
What Is Computer Science?

The question “what is computer science?” does not have a single answer; different scholars
emphasize different aspects of the field. Nevertheless, there is an agreement that computer
science is a multifaceted field that encompasses scientific and engineering aspects, which
are manifested in algorithmic problem-solving processes, for which computational think-
ing skills (Wing 2006), and sometimes also artistic and creative thinking, are required. It
is also widely agreed that computer science is about conceptual ideas, whereas the com-
puter serve as a means or a tool for solving computer science problems. See also, for
example, Denning (2005) for different perspectives of computer science.

One important resource for the discussion about the nature of computer science is the
1989 Computing As A Discipline report of the ACM Task Force (Denning et al. 1989). The
task force declares that “the three major paradigms, or cultural styles, by which we approach
our work, provide a context for our definition of the discipline of computing.” (p. 10).

233.2  What Is Computer Science?

Specifically, they present the following three paradigms on which computer science is
based: theory, rooted in mathematics; abstraction (modeling), rooted in the experimental
scientific method; and design, rooted in engineering.

A related interesting point to address is the name of the discipline. First, as we just
noted, computer science is not a pure science. Further, some computer scientists claim that
it is not a science at all. For example, Abelson et al. (1996) say that “Computer science is
not a science, and its ultimate significance has little to do with computers.”1 Second, the
word computer, which appears in the name of the discipline, is misleading. In this context,
it is relevant to quote Edsger Dijkstra, one of the pioneers of the filed who said that
“Computer science is no more about computers than astronomy is about telescopes.”

From a pedagogical perspective, according to Ragonis (2009), an examination of the high
school computer science curricula, implemented in different countries throughout the world,
shows a lack of uniformity in the interpretation various bodies and countries give to curricula
in computer science. The different approaches even appear in the different names of the cur-
ricula, such as information technology, information and communication technology, informa-
tion systems, computer science, informatics, computer engineering, and software engineering.
Sometimes, the differences between the approaches imply significant differences in the high
school curricula.

Clearly, each teacher should be familiar both with the contents of the filed he or she is
teaching and with the nature of the field. It is suggested, that this claim is amplified in the
context of computer science education due to the fact that accepted definition for the field
does not exist and that different computer scientists conceive it differently. Activities 1 and
2 aim at increasing the prospective computer science teachers’ awareness to these issues.

�Activity 1: The Nature of Computer Science

This activity is based on five stages in which the students explore the nature of the
discipline of computer science.

›  Stage A: Explain what computer science is, work in pairs
The students are asked to explain what computer science is to someone who is

neither a computer scientist nor a computer science student. It can be requested to
limit the explanation to one to two sentences. From a pedagogical perspective, since
the need to formulate such a brief definition for a concept like computer science
requires one’s deep understanding of the said topic, it is assumed that such a task
foster students’ thinking about the essence of computer science.

›  Stage B: Class discussion
The explanations proposed by the students are presented in the class. For each

description, it is discussed what aspects of the field it highlights. Another option is

(continued)

1 See also Hal Abelson’s 10-min talk on What is “Computer Science”? at http://www.youtube.
com/watch?v=zQLUPjefuWA

http://www.youtube.com/watch?v=zQLUPjefuWA
http://www.youtube.com/watch?v=zQLUPjefuWA

24 3  Overview of the Discipline of Computer Science

3 Activity 1  (continued)

to gather the definitions and to ask the students to categorize them according to some
criterion. See Chap. 7 for additional information about classification tasks.

›  Stage C: Internet exploration of computer science definitions
If the lesson takes place in a computer lab, the students are asked to explore (by

the Internet) different definitions for computer science as well as disagreements
related to the nature of the field.

› � Stage D: Summary and class discussion (can be carried out whether Stage C takes
place or not)

The instructor, together with the students, summarizes the different perspectives
of computer science, presented so far in the lesson. In this summary, it is important
to emphasize that:

Computer science deals with what is computable and with the characterization of •	
these computations.
Computer science is a multifaceted field and is inspired by mathematics, science, •	
and engineering.
Computer science has many subfields and has interconnections to other disci-•	
plines, such as biology, economic, medicine, and entertainment.
The name of the discipline is misleading and sometimes there is a tendency to •	
confuse it with computer applications.

The above characteristics of the field of computer science set special challenges for
computer science educators. With this respect, several questions can be asked and
discussed in the MTCS course:

Should the teaching of computer science be different from the teaching of math, •	
science, engineering, and art? If yes – how; if not – why?
Taking into consideration the above characteristics of computer science:•	

Is it important at all to teach computer science in the high school?––
How should the first lesson in a high school computer science class be ––
planned?

›  Stage E: Review of the Computing Curricula 2001, homework
Review the computer science volume of the series, developed by The Joint Task

Force on Computing Curricula of the IEEE Computer Society and the Association
for Computing Machinery.2

What does the report tell us about connections between the nature of computer
science and its teaching?

2 See http://www.acm.org/education/curric_vols/cc2001.pdf

http://www.acm.org/education/curric_vols/cc2001.pdf

253.2  What Is Computer Science?

�Activity 2: Computer Science and Other Sciences

This activity is related to the comment stated above with respect to interconnections of
computer science with other disciplines, such as biology, economic, medicine, and
entertainment.

› � Stage A: Connections between computer science and other sciences, individual/team
work

The students are asked to identify a science which is interconnected somehow to
computer science and to define the connection between the two sciences. This
work can be based on Internet resources and journals.

One recommended resource for this task is the Microsoft Corporation’s report
Towards 2020 Science, published in 2006 (Microsoft Research 2006).3 According to
that Web site the report “sets out the challenges and opportunities arising from the
increasing synthesis of computing and the sciences.”

›  Stage B: Presentations
The students present, in front of the class, the science they focused on as well as

its interrelationships to computer science. It is recommended to upload the students’
products to the course Web site.

›  Stage C: Class discussion
The discussion that follows these presentations has the potential to deepen stu-

dents’ understanding with respect to what computer science is on the one hand, and
on the other hand, to highlight how computer science is used by and connected to
other sciences.

For illustration, we examine the case of computer science – biology interrelation.
According to the Towards 2020 Science report (2006), “computer science is poised to
become as fundamental to biology as mathematics has become to physics.” (p. 8)
Specifically, “one of the first glimpses of the potential of computer science concepts
and tools, augmented with computing, has already been demonstrated in the Human
Genome Project, and by the success of structural biology to routinely decipher the
three-dimensional structure of proteins. In this and in related sequencing projects, sci-
entists use computers and computerised DNA sequence databases to share, compare,
criticise and correct scientific knowledge, thus converging on a consensus sequence
quickly and efficiently.” (p. 24). Further, the report states that “there is a growing
awareness among biologists that to understand cells and cellular systems requires
viewing them as information processing systems, as evidenced by the fundamental
similarity between molecular machines of the living cell and computational automata,
and by the natural fit between computer process algebras and biological signalling and
between computational logical circuits and regulatory systems in the cell.” (p. 8).

3 The report is available online at http://research.microsoft.com/towards2020science/background_
overview.htm

http://research.microsoft.com/towards2020science/background_overview.htm
http://research.microsoft.com/towards2020science/background_overview.htm

26 3  Overview of the Discipline of Computer Science

3 3.3 
�The History of Computer Science4

By dealing with the history of computer science in the MTCS course, four main objec-
tives may be achieved. First, the lesson may elevate the students’ awareness to the very
existence of the history of computer science and to its main milestones. Second, such a
discussion may contribute to the professional perception of the prospective computer
science teachers (Hazzan and Lapidot 2004). Third, the lesson may increase students’
awareness to the fact that computer science is beyond programming. And finally, the
discussion about the history of computer science provides the students with ideas for
beyond-the-curriculum activities to be facilitated with their future pupils, such as per-
sonal projects, class presentations, and whole-class project, in which the pupils construct
the timeline of computer science when each pupil contributes one milestone on this
timeline. It is important to note that such a project not only contributes to pupils’ knowledge
about computer science, but also enhances their creativity, curiosity, and collaboration with
their peers.

Activities 3 and 4 focus on the history of computer science.

�Activity 3: Plan a Lesson About the History of Computer Science

This activity describes a lesson of the MTCS course that focuses on the history of
computer science.

›  Stage A: Introductory questions
The lesson starts by asking the students what they know about the history of com-

puter science. Usually, the proposed answers can be summarized in a single sen-
tence: “It is short; about 50 years.”

The next question to be presented is: “Why is it important that computer science
teachers know the history of computer science?” Typical answers suggested at this
stage are: “To exhibit their knowledge to their pupils,” “To have a wide perspective
about what they teach,” “To understand the curriculum” and “To become familiar
with people who influenced the development of the field.”

›  Stage B: Plan a lesson, work in pairs
At this stage, when the students are conceived that as computer science teachers they

should know more about the history of computer science, they are presented with the
following task: Plan a lesson about any computer science topic that includes a 10-min
presentation about the history of computer science.

(continued)

4 Based on Hazzan and Lapidot (2006).

273.3  The History of Computer Science

5 See http://www.cra.org/uploads/documents/resources/workforce_history_reports/using.history_.pdf

Activity 3  (continued)

Many online resources are available on this topic. One of them is the Computing
Research Association’s report on Using History To Teach Computer Science and
Related Disciplines.5

›  Stage C: Presentations
The prospective computer science teachers present in front of the class their

10-min presentation about the history of computer science.
For illustration, we present two examples of topics chosen by students in an

MTCS course we taught and how they contributed to the students’ perspective at the
discipline.

•	 The history of object-oriented software development: Specifically, different pro-
gramming languages that marked the development of this paradigm (e.g., Simula,
C++, Java) were mentioned. Furthermore, the students’ realization that the con-
cept of object-oriented development was first introduced in 1962, highlighted the
fact that it sometimes takes time for new ideas to be accepted by a community of
professionals. This presentation formed a basis for a discussion about questions,
such as: Why was a new paradigm needed? Why were several programming lan-
guages developed for the implementation of the object-oriented paradigm?

•	 The history of computers: The fact that the first computing machines were devel-
oped about 200 years ago (and even earlier) led to a sequence of discussions. One
of them addressed the question: “When did such machines start being comput-
ers?” That discussion was followed by a discussion about the definition of the
term computer. This presentation formed a basis for a discussion about topics
related to the teaching of computational models (e.g., Turing Machine) that have
not been actually constructed, and about connections between the conceptual and
technological developments of computer science.

›  Stage D: Class discussion
After the prospective computer science teachers present their presentations, the

question that opened the lesson – What do you know about the history of computer
science? – is re-examined. Naturally, by this time, the one-line answer given at the
beginning of the lesson (“It is short; about 50 years”) is greatly enriched. The lesson
ends with a discussion of whether the history of computer science is really that short.

This lesson can be continued in different ways, including a task that delves deeper
into some of the topics discussed in the lesson, a lesson about computer scientists
(see Sect. 3.4), or another lesson that explores how to integrate the history of computer
science into the high school computer science curriculum.

http://www.cra.org/uploads/documents/resources/workforce_history_reports/using.history_.pdf

28 3  Overview of the Discipline of Computer Science

3

3.4 
�Computer Scientists

The topic of computer scientists is a central part of the history of computer science that
computer science teachers should be familiar with. Their familiarity with the topic may
enable them first, to present to their future pupils some computer science topics more
vividly by connecting them to people stories, and second, to improve their own under-
standing of the development of computer science.

We suggest two options how to teach this topic. Some educators prefer to present com-
puter scientists with relation to a specific computer science topic; others prefer to dedicate
a lesson to the people who shaped the discipline in order to highlight the human aspect of
the field. In any case, it is recommended to let the students be aware of the fact that they
are familiar with several computer scientists from their computer science studies so far.
For example, they probably have heard about Edsger Dijkstra (from their studies of graph
algorithms) and about Alan Turing (when learning the concept of Turing Machine in the
Computability course or the Turing test as part of the Artificial Inelegance course).

In order to increase the students’ awareness to this aspect of the history of computer
science, it is recommended first, to discuss in the MTCS course the two alternatives for
teaching this topic and second, to dedicate one lesson of the MTCS course for students’
short presentations (15 min each) on one computer scientist.

One source to look for a computer scientist is the list of the Turing Award recipients.
The award is named after Alan Turing, who has already been mentioned several times in
this chapter. He was a British mathematician and one of the computer science pioneers.
The A. M. Turing Award is given annually by the Association for Computing Machinery
to “an individual selected for contributions of a technical nature made to the computing
community. The contributions should be of lasting and major technical importance to the
computer field.”6 Needless to say that this list does not exhaust the list of computer scien-
tists, and other computer scientists contributed significantly to the field.

�Activity 4: History of Computational Machines

This activity focuses on the first computers. The students are asked first to work in teams
and to look for old computation machines. Then, after the results of this searching pro-
cess is briefly summarized in the class, each group explores one model/machine, address-
ing how it worked, how it fitted into the specific historical point of the development of
computer science, and the computer scientist(s) that was/were involved it its develop-
ment. This task can be connected naturally to the topic of computer scientists (presented
next). In addition, it can lead to a discussion about the parallel, yet intertwined, develop-
ments of the technological facet of computer science and its conceptual facet, when each
time one facet precedes the other one and pushes the development of both facets.

6 Source: http://awards.acm.org/homepage.cfm?srt=all&awd=140

http://awards.acm.org/homepage.cfm?srt=all&awd=140

293.5  Social Issues of Computer Science

The homework presented in Activity 5 guides the students how to prepare these
presentations.

�Activity 5: Preparation of a Presentation on a Computer Scientist, Homework

Select a computer scientist and prepare a short presentation (15 min) about this scien-
tist. In your presentation:

1.	 Sketch briefly the scientist’s biography.
2.	 Describe his or her major contributions to the field of computer science.
3.	 Focus on one problem that the scientist worked on and explain its impact on the field

of computer science.

3.5 
�Social Issues of Computer Science7

This section illustrates the actual teaching in the MTCS course of ethics and diversity –
two social issues of computer science which deal with the community of computer science
professionals.

The need to tackle such topics in the framework of computer science teacher prepara-
tion programs emerges from the growing recognition that such topics are indeed part of the
discipline of computer science. This fact is well reflected, for example, in the Computer
Science volume of the Computing Curricula 2001.8 According to this volume, one body of
knowledge of computer science is SP – Social and Professional Issues – which is com-
posed of 16 core hours, within which the following core topics are included:

SP1. History of computing (1 h)•	
SP2. Social context of computing (3 h)•	
SP3. Methods and tools of analysis (2 h)•	
SP4. Professional and ethical responsibilities (3 h)•	
SP5. Risks and liabilities of computer-based systems (2 h)•	
SP6. Intellectual property (3 h)•	
SP7. Privacy and civil liberties (2 h)•	
We would add that the attention given to social issues is highlighted also in the context

of other educational domains. For example, this perspective is integrated in the Science,
Technology, and Society (STS) movement that studies the relationships between these

7 Based on Hazzan and Lapidot (2006).
8 See http://www.acm.org/education/curric_vols/cc2001.pdf

http://www.acm.org/education/curric_vols/cc2001.pdf

30 3  Overview of the Discipline of Computer Science

3
three elements and combines a cross-disciplinary approach of engineering, humanities,
natural sciences, and social sciences.

There are additional social issues related to computer science, such as teamwork,
program comprehension, software requirements, business issues, software project man-
agement, and more (cf. Tomayko and Hazzan 2004). In what follows, as mentioned, we
illustrate the teaching of social issues of computer science in the MTCS course by focusing
on ethics and diversity.

3.5.1 
�Ethics in Computer Science Education

Ethics is part of the discipline of philosophy. The New Shorter Oxford English Dictionary
defines ethics as “the science (or set) of moral principles; the branch of knowledge that
deals with the principles of human duty or the logic of moral discourse.” The Webster’s
Collegiate Dictionary adds that ethics is “the discipline dealing with what is good and bad
and with moral duty and obligation.”

Some communities of practice have a well-defined code of ethics (e.g., The Code of
Medical Ethics). The role of such codes of ethics is to guide professionals how to behave
in vague situations where it is not clear what is right and what is wrong. The need for a
code of ethics arises from the fact that any profession generates situations that can neither
be predicted nor answered uniformly by all members of the relevant professional commu-
nity. In practice, ethics is most often needed when a conflict arises, between two (or more)
possible legal actions. Since all of the alternatives are legal, ethics may help solve conflict
of interests, at least in part.

A relevant question to be asked at this stage is: Does the community of computer sci-
ence educators need a code of ethics? If yes, what situations should be addressed by such
a code of ethics? What should be its principles? Clearly, it is not our intention in this lesson
of the MTCS course to formulate a code of ethics for the community of computer science
educators. However, since there are cases in which the ethical dilemmas faced by com-
puter science educators are similar to those faced by computer scientists, and since, in
addition, there are situations unique to computer science teachers, the ethics of computer
science educators may be derived both from educational ethical norms as well as from the
ethical norms of the community of computer scientists. In other words, in practice, com-
puter science educators should base their ethical norms on one of the many available edu-
cational codes of ethics and on the Software Engineering Code of Ethics and Professional
Practice,9 formulated by a IEEE-CS/ACM Joint Task Force, which outlines how software
developers should adhere to ethical behavior.

This perspective highlights the ethical complexity that computer science educators
must deal with as well as the importance of dealing with the concept of ethics within the
framework of computer science teacher preparation.

Activity 6 aims at increasing the students’ attention to situations that their profession –
that is, computer science teaching – might bring them face with, and at delivering the
message that their behavior should be based on ethical norms.

9 See http://www.acm.org/constitution/code.html

http://www.acm.org/constitution/code.html

313.5  Social Issues of Computer Science

�Activity 6: Analysis of Ethical Dilemmas

›  Stage A: Case analysis, group work
The following two cases are presented to the students. They present a hypothetical

situation that raises an ethical dilemma: the first relates directly to a school situation;
the second – indirectly. Each group discusses whether or not there is an ethical dilemma
in the described situation, and, if so, the students are asked to identify and describe it.

›  Case 1
One of your pupils downloads a software tool from the Web that helps your

students in their understanding of one of the complicated topics studied in the high
school computer science curriculum. The rules state that the software should be paid
for after 30 days of trial usage. As it turns out, your school does not have the required
budget to pay for it. It is, however, possible to reinstall the software in 30-day cycles
and avoid payment.

How can the ethical dilemma (if exists) be solved?•	
How would you behave in such a situation?•	
Formulate (one or more) ethical principles that will help you make a decision in •	
similar cases.

›  Case 2 (based on Tomayko and Hazzan 2004)
Your friend works for a software house that specializes in the development of

computer games. Recently, several publications have indicated that these games
influence some children negatively. These games, however, are the main product
of your friend’s company and without them the company may not be able to sur-
vive. The company’s management is aware of these publications and gathers all the
employees to discuss the future of the company. You are invited to the meeting as
a representative of the educational system.

Suggest different opinions that might be expressed in the meeting. What (if at all) •	
ethical consideration does each of them represent?
What (if at all) conflicts of interest are presented in this case?•	
What is your opinion with respect to this case?•	
How would you behave in such a case?•	
Formulate (one or more) ethical principles that might help make a decision in •	
similar cases.

›  Stage B: Presentations and discussion
After the students work on the task, the different groups present their works and

express their opinions with respect to the different questions. Specifically, after the
source of ethical dilemma is observed in each case, the focus is placed on specific
solutions that might solve it. This discussion delivers the message that ethical con-
siderations should be part of the profession of computer science teaching and that
different solutions can be found that eliminate the ethical dilemmas (at least
partially).

32 3  Overview of the Discipline of Computer Science

3
3.5.2 
�Diversity

Diversity is expressed in different ways in any community, and, in particular in any com-
puter science class that the prospective computer science teachers may teach in their future
professional life. Diversity can be exhibited, for instance, in terms of students’ fields of
interest, ways of thinking and perspectives, background, gender, nationality, and more.
Accordingly, prospective computer science teachers should be familiar with the concept of
diversity in general and, in particular, with its importance in the context of computer science
education and with how to take advantage of diversity in their teaching processes.

Activities 7, 8, and 9 address diversity. Activity 7 deals with diversity in general,
Activity 8 – with different approaches toward students’ performance, and Activity 9 – with
gender diversity – a well-recognized topic in computer science education (cf. the June
2002 Special Issue of Inroads – The SIGCSE Bulletin).

We note in passing that, in fact, the underlying idea of presenting triggers in itself rep-
resents diversity, since triggers should be designed in a way that encourages different per-
spectives and ways of thinking. Furthermore, the pedagogical viewpoint of constructivist
teachers, which legitimizes and respects the differences between students, is based on
diversity.

�Activity 7: Diverse Class Demography, Group Work

The students are asked to describe a class demography that is diverse as much as pos-
sible. This trigger is presented to the students before the concept of diversity is intro-
duced. After the students work on the trigger, each group presents its suggested
hypothetical class in the course milieu. The collection of class structures presented at
this stage by the students indicates their level of awareness to diversity, increases their
awareness to diversity, and leads to discussions on how to deal with diversity.

�Activity 8: Test Evaluation, Work in Pairs

The students are asked to evaluate several pupil answers to a question given on a test,
administrated at a high school class. After working on the trigger, each group suggests
its philosophy with respect to the evaluation of the answers. The different perspectives
exhibited at this stage highlight that there are different perspectives regarding student
errors, that this is another way by which diversity is expressed, and that different con-
siderations plays in such teaching situations.

For additional information about the theme of evaluation in the MTCS course see
Chap. 10 and Lapidot and Hazzan (2003).

333.6  Programming Paradigms

3.6 
�Programming Paradigms10

A paradigm is a way of doing and seeing things, a framework of thought in which one’s
world or reality is interpreted. The concept paradigm became popular in the scientific
world mainly following Kuhn’s book The Structure of Scientific Revolution (Kuhn 1962),
in which he used this term with respect to a conceptual world view that consists of formal
theories, classic experiments, and trusted methods.

The topic of programming paradigms is a multifaceted notion and includes aspects of
mental processes; problem-solving strategies; interrelations between paradigms, program-
ming languages, programming style, and more. We note that while a programming

10 Based on Stolin and Hazzan (2007).

Activity 9: Gender Diversity, Open Conversation

Table 3.1 is presented (empty) to the students and they are asked to suggest factors that
encourage each gender (or both genders) to study computer science or discourage each
gender (or both) from studying computer science.

Table 3.1  Factors that encourage/discourage males/females in
the choice of computer science

Boys Girls Both genders

Encourage [2]
Discourage [1]

While the students suggest their ideas, the table is filled accordingly. When the stu-
dents’ suggestions are presented, their opinions should not be judged and the instructor
should simply write what is said in the table in the appropriate cell. Our experience tells
us that in most cases, the following picture is clearly observed at the end of this process:
Cell [1], which includes factors that discourage girls from studying computer science,
and Cell [2], which includes factors that encourage boys to study computer science, are
full, while the other cells remain almost empty.

The class discussion that follows this trigger leads the students to rethink their per-
spective regarding gender diversity in computer science classes. Particularly, the stu-
dents begin observing their bias very clearly. This increased awareness is used in order
to further discuss with them how to encourage diversity in their future classes.

Following this discussion, data about gender diversity (such as, statistics from different
countries) are presented to the students and the importance of diversity is emphasized.

34 3  Overview of the Discipline of Computer Science

3
paradigm is a heuristic for solving algorithmic problems, a programming language is a
means of expression for a programming paradigm.

The concept of programming paradigm is defined in different ways (see, e.g., Abelson
et al. 1996; Ambler et al. 1992; Floyd 1979; Sethi 1996; Tucker and Noonan 2002; Van
Roy and Haridi 2004; Watt 1990), each emphasizing different aspects of the concept. The
following definition, for example, which is composed on several of the resources men-
tioned above, summarizes the major points:

Programming paradigms are heuristics used for solving algorithmic problem. A program-
ming paradigm analyzes a problem through specific lens, and based on this analysis, for-
mulates a solution for the given problem by breaking the solution down to specific building
blocks and defining the relationship among them.

We mention several major programming paradigms: procedural (imperative), object-
oriented, functional, logical, and concurrent.

Many researchers emphasize the importance of both teaching the subject of program-
ming paradigms to students and of exposing students to a number of programming para-
digms (Carey and Shepherd 1988; Floyd 1979; Haberman and Ragonis 2010; Van Roy et al.
2003). We mention three reasons that explain the importance of learning several program-
ming paradigms: the development of cognitive tools, the ability to explore the same concept
in different paradigms improves learners’ understating of the said concept, and increasing
learners’ flexibility in problem-solving processes of different kinds of problems.

At the same time, however, there are programming languages courses that emphasize
the programming language aspect, while less attention is paid to the programming para-
digm aspect. This can be explained by the fact that the concept of a programming paradigm
is considered to be a soft idea (see Sect. 3.7 of this chapter), as opposed to rigid content,
such as programming language syntax (Corder 1990; Turkle 1984); therefore, its teaching
is not simple. For these reasons, we dedicate special attention in this Guide to the teaching
of programming paradigms.

A discussion about the concept of programming paradigm in the MTCS course has
several additional advantages. First, it enables the instructor of the MTCS course to dis-
cuss with the students the meaning of the levels of abstraction (a central computer science
concept) within a relatively familiar context, that is, the relations between programming
paradigms and programming languages. Second, since in most cases, high school com-
puter science curricula are partially based on programming, the students’ familiarity with
the concept of programming paradigm, including the differences and connections between
this concept and the concept of programming language, may increase their awareness in
their future teaching to the difference between technical aspects of programming languages
and conceptual computer science ideas. Such understanding may help the prospective
computer science teachers teach computer science on a higher level of abstraction. Third,
it may improve students’ understanding of the essence and history of the discipline of
computer science. Finally, it is reasonable to assume that not all students have learned a
course that focuses on the notion of programming paradigm; the MTCS course can be,
therefore, an appropriate opportunity to partially close this gap.

Activities 10, 11, and 12 that explore the notion of programming paradigm are rela-
tively advanced; therefore, they should be facilitated in the MTCS course only with students
who have the needed background in computer science. Specifically, before the activities

353.6  Programming Paradigms

�Activity 10: Programming Paradigms – Exploration of Learners’ Knowledge

The aim of this activity is to let the instructor of the MTCS course observe students’
level of familiarity with the concept of programming paradigm. It should be facilitated,
as mentioned above, only after the instructor verifies that the students are familiar with
at least two programming paradigms, or at least with two programming languages
which represent two different programming paradigms.

›  Stage A: Worksheet, individual work
The students are asked to work individually on the worksheet presented in

Table 3.2.

›  Stage B: Class discussion
After the students work on this worksheet individually, the instructor collects their

answers and discusses them with the class; when needed, clarifications are added by
the instructor. At the end of this discussion, the instructor summarizes the activity by:

Presenting a definition for the concept of programming paradigm•	
Presenting the differences between several programming paradigms (according to •	
students’ knowledge)
Highlighting the difference between a programming paradigm and a program-•	
ming language with several examples
Explaining that since programming languages implement programming para-•	
digms, different programming languages may implement the same programming
paradigm; nevertheless, if one is familiar with one programming language which

are facilitated, it is important to verify that the students are familiar with at least two
programming paradigms; if they are not familiar with at least two programming paradigms,
the instructor of the MTCS course may consider dedicating 1–2 lessons to the teaching of
a programming paradigm with which the students are not familiar. Such lessons will pro-
vide the instructor with an additional opportunity to discuss with the students differences
between programming paradigms and to reemphasize the fact that programming languages
are, in fact, an expressive mechanism for programming paradigms.

Table 3.2  Worksheet on programming paradigms

Worksheet – programming paradigms

Answer the following questions:
1.	 What is a programming language?
2.	 What is a programming paradigm?
3.	 Give examples of three programming paradigms. For each paradigm, explain

why it is a programming paradigm.
4.	 Compare the two concepts: a programming paradigm and a programming

language.

(continued)

36 3  Overview of the Discipline of Computer Science

3

�Activity 11: Abstract-Oriented Examination of Programming Paradigms

›  Stage A: Problem solving in different programming paradigms, work in pairs
The students are asked to work in pairs on the worksheet presented in Table 3.3.

Clearly, another problem can be presented in the worksheet, for example, one of the
sort algorithms.

Table 3.3  Problem solving in two programming paradigms

Worksheet – problem solving in different programming paradigms

Part A
Solve the following task in at least two programming paradigms. Do not implement the

solution.
Given an arrangement of domino stones, determine whether or not it is a legal arrangement

and return True or False accordingly.
For example, this is an illegal arrangement of Domino stones:

and this is a legal arrangement of Domino stones:

Part B
After solving the task, reflect

−	 What stages you went through while working on the solution in each programming
paradigm? Were the stages similar? Were they different?

−	 For each programming paradigm, describe which of its characteristics are expressed in
your solution.

−	 If you had to choose a programming paradigm to solve the problem, what would be
your preferable paradigm? Explain your choice.

represents a specific programming paradigm, it is reasonable to assume that he or
she will be able to switch to another programming language that represents the
same programming paradigm
Highlighting the fact that the differences between programming paradigms are •	
fundamental and therefore, unlike switching between programming languages
that represent the same programming paradigm, the switching between program-
ming paradigms is not a trivial cognitive task.

As mentioned, this activity allows the instructor of the MTCS course to identify stu-
dents’ current knowledge with respect to the notion of programming paradigms.
Based on this observation, the instructor can move on and continue the lesson with
either Activity 11 or Activity 12 or both.

Activity 10  (continued)

(continued)

373.6  Programming Paradigms

Part A requires students to think on the level of abstraction represented by the pro-
gramming paradigms; that is, to think on a relatively higher level of abstraction. Part B,
in which they are asked to reflect on the strategies they employed in Part A, further
increases the abstraction level of students’ thinking since they are asked to discuss
similarities and differences between programming paradigms.

›  Stage B: Class discussion
The class discussion that summarizes the activity should highlight the fact that pro-

gramming paradigms provide a context in which a discussion on different levels of
abstraction can take place. This idea is reflected in several ways. First, the difference
between a programming paradigm and a programming language can be addressed;
second, it can be discussed how each paradigm and each programming language
exhibits abstraction; finally, mechanisms that programming paradigms and program-
ming languages provide us to express and create abstraction can be analyzed.

�Activity 12: Activity Design for a Given Programming Paradigm

Based on the above activities, in this activity the students practice the construction of
tasks that are suitable to be solved by a specific programming paradigm. The impor-
tance of this activity derives from the fact that the curriculum the prospective computer
science teachers will teach in the future is probably based on a specific programming
paradigm. Therefore, they should be aware of the fitness of the tasks that they will
develop for their future pupils to the programming paradigm used by the curriculum.

›  Stage A: Tasks and paradigms, group work
The students are asked to work in groups, to choose two programming paradigms

with which they are familiar, and for each paradigm:

Bring an example for a task that is suitable to be solved by the said paradigm.•	
Explain why the task is suitable to be solved by the said paradigm.•	
Solve the task with the said programming paradigm.•	

›  Stage B: Reviewing the groups’ work
Each group presents its tasks and explains its considerations in the design process

of the tasks for each paradigm. For each presented task, the other class members are
asked to express their opinion whether or not the task fulfills the requirements, that
is, whether the task fits to be solved by the proposed paradigm.

For selected tasks, the instructor asks whether it can be naturally solved by another
programming paradigm than the one proposed by the team which presented it. If it
is, the students can be asked to explain why and to solve it in the other paradigm; if
it is not – the instructor can ask what changes should be made in the question for-
mulation to make it naturally solvable also by additional paradigm. The changes

(continued)

Activity 11  (continued)

38 3  Overview of the Discipline of Computer Science

3

suggested by the students can then be analyzed and conclusions with respect to the
kind of changes can be derived.

›  Stage C: Class discussion
The summary should address the different considerations addressed by the groups

while designing questions for different programming paradigms. It is relevant to raise
the question whether similar considerations were used for all paradigms. Such a dis-
cussion, once again, enables to highlight first, the different perspectives that different
programming paradigms exhibit in problem solving situations and second, the variety
of the levels of abstraction on which the topic of programming paradigms can be
thought of.

11 Based on Hazzan (2008).

3.7 
�Computer Science Soft Ideas

In this section we first explain the essence of computer science soft ideas (Sect. 3.7.1) and
then address its position in the MTCS course (Sect. 3.7.2).

3.7.1 
�What Are Computer Science Soft Ideas?11

This section focuses on the teaching of computer science soft ideas. According to
Hazzan (2008), a soft idea is a concept that can be neither rigidly nor formally defined, nor
is it possible to guide students as to its precise application. Indeed, how can stepwise
refinement be presented formally? How can one outline a list of “how to” actions for seek-
ing a good algorithm? How can the move between different levels of abstraction be for-
mally described? And how the decision of a specific data structure that fits for the solution
of a given problem can be instructed? To grasp the essence of soft ideas and the way in
which they differ from rigid concepts, it is sufficient to compare the answers to the above
questions with answers to questions such as the following: Is it possible to formulate the
syntax of a programming language? What is the formal definition of a heap? In most cases,
syntax rules are considered as rigid facets while semantics rules – as soft facets.

Having said this, it should be noted that computer science concepts are neither soft nor
rigid; rather, each computer science concept has some soft aspects and some rigid aspects.
Table 3.4 reflects this idea with respect to the concept of variable. Nevertheless, some
computer science concepts, such as the one mentioned above, lend themselves to be softer
than other.

Activity 12  (continued)

393.7  Computer Science Soft Ideas

In fact, soft ideas are part of any profession, including all fields of science and engineer-
ing. In computer science, however, soft and rigid concepts are tightly connected. This
connection is required mainly due to the frequent need to implement a problem solution in
some programming language and due to the high cognitive complexity involved in the
field. This cognitive complexity can be partially explained by the fact that in many cases
the objects of thoughts are implemented by an intangible entity – that is, software. In this
spirit, Dijkstra’s (1986) indicates that a computer scientist should move through many
levels of abstraction, starting at the level represented by the machine and ending at the
level of abstraction represented by the human thinking.

Due to the special role of soft ideas in computer science, computer science professionals
include the discussion of soft ideas as part of the discipline; consequently, their teaching
should not be neglected.

3.7.2 
�Computer Science Soft Ideas in the MTCS Course

Though the centrality of soft concepts within the computer science community is highly
acknowledged, due to the nature of computer science soft ideas, it is not a trivial matter to
teach such concepts.

First, it is not easy to explain the essence of soft ideas, nor is it easy to explain how and
when they should be approached or utilized. Unlike rigid ideas, such as some aspects of
complexity and programming, soft concepts cannot be expressed formally, and addition-
ally, it is not sufficient to present students with only the definition of the said concept. In
other words, soft ideas cannot be carried out simply by applying rigid rules; in order to
understand and apply a soft idea, one must sense it.

Second, in some cases, soft ideas are not connected exclusively to a specific topic;
rather, they are expressed throughout the curriculum and, therefore, can be illustrated and
applied in the context of different topics.

Third, since soft ideas are never applied out of context, their application requires aware-
ness. More specifically, since soft ideas are usually expressed when some other topic is at
the focus of the discussion, soft ideas are actually accompanying, yet important, notions

Table 3.4  Rigid and soft facets of the concept of variable

Hard facets Soft facets

Variable name Syntax rules The need for a name
What a meaningful name is and why it

is important
Variable value Type rules

Memory allocation
A variable has a single value at any

point but it can change over time
Assignment Syntax rules The need for assignment

The importance of an initial assignment
to variables

40 3  Overview of the Discipline of Computer Science

3
that serve and support the thinking that is dedicated to the other concept. Thus, when trying
to illustrate a soft idea, another topic must be taught at the same time, there must be aware-
ness of the way in which the soft idea is thought about, and its use must be demonstrated
in situations in which it can be helpful. Clearly, this is not a simple pedagogical task.

Accordingly, the motivation to include the discussion of teaching computer science soft
ideas in the MTCS course results from the awareness to these difficulties together with the
acknowledgment that computer science soft ideas should be addressed, at least on a basic
level, in high school computer science classes.

It is appropriate to dedicate a lesson about the teaching of computer science soft ideas
toward the end of the first semester of the MTCS course (either when the course extends
for one or two semesters). At this stage of the course, it is reasonable to assume that the
students have already heard the notion of soft ideas (as is explained below) and have
enough knowledge, related to the teaching of computer science, based on which they will
be able to discuss meaningfully the teaching of computer science soft ideas.

Having said that, it is recommended to highlight the notion of computer science soft
ideas and the importance of introducing it to high school computer science pupils from the
very first lessons of the MTCS course, and then, as mentioned above, to dedicate a full
lesson to the teaching of computer science soft ideas toward the end of the first semester of
the course. For example, in the MTCS lesson about evaluation, it makes sense that the
notion of soft ideas comes up, for example, with respect to how to evaluate students’
understanding of soft ideas. In such cases, it would be appropriate to mention to the students
the notion of computer science soft ideas, and to specifically indicate that one of the future
lessons of the course will be dedicated to their teaching. Thus, when the lesson on computer
science soft ideas is taught, the prospective computer science teachers will have a basis on
which to go on constructing their knowledge related to the teaching of computer science
soft ideas.

From this perspective, similar to other topics, such as students’ difficulties and reflection,
soft ideas can be viewed as a meta-idea that is intertwined in the MTCS course with respect
to different topics.

Activities 13–19, to be facilitated in the MTCS course, are dedicated to computer sci-
ence soft ideas. Activities 13, 14, and 15 address the notion of soft ideas in general;
Activities 16–19 focus on abstraction as an example for a computer science soft idea.

As these activities illustrate, the teaching of computer science soft ideas, either in the
MTCS course, in the high school, or in the university, should be done in an open, interactive
and collaborative learning environment. The activities should be open and stimulate and
support learners’ understanding of computer science concepts in general and computer
science soft ideas in particular.

After the students work on these activities, a summary discussion can focus on addi-
tional topics, such as:

The prospective teachers’ own understanding of computer science soft ideas: What did •	
they learn during the work on the two activities? Did they improve their understanding
of computer science soft ideas in general and of a specific computer science soft idea in
particular? If yes – how? Do they have questions about soft ideas? If yes – what kind of
questions? What is the source of these questions?

413.7  Computer Science Soft Ideas

The teaching of soft ideas in the high school: What is unique in teaching soft ideas? Is •	
the teaching of soft ideas different or similar to the teaching of rigid computer science
concepts? What challenges does the teaching of computer science soft ideas raise? How
would they incorporate the teaching of soft ideas in their future teaching in the high
school? Should a lesson be dedicated to soft ideas or should soft ideas be mentioned only
when other topics are learned? At what stage is it appropriate to teach soft ideas to high
school computer science pupils? This discussion can also address possible difficulties
that the students anticipate and the difficulties that their high school computer science
pupils will face with respect to the understanding of computer science soft ideas.

�Activities 13–14: Introduction to Soft Ideas

These two activities are triggers that can be served as an introductory task for computer
science soft ideas. Since they are similar in some sense, there is no need to facilitate
both of them.

(continued)

�Activity 13: Types of Concepts, Class Discussion

The students are asked what computer science concepts they are familiar with. While the
students suggest these concepts, the instructor writes them on the board in two sets: One
set consists of concepts whose soft aspects are more dominant; the other set includes
concepts whose rigid aspects are more apparent. One way to determine to which set a
specific concept belongs, is by checking how difficult it is either to define it formally or
to present for it an algorithm to apply. For example, according to this criterion, a loop, a
tree, and function complexity would be classified as rigid concepts (a fact that does not
imply, though, that they do not have soft aspects), while the concepts of algorithm,
abstraction and generalization would be classified as a soft idea. When the specific clas-
sification is not evident at a glance, for example with respect to concepts such as data
structure or class inheritance, a third set can be created. The students should not be told
how the concepts they suggest are grouped into the two (or three) sets.

When a sufficient number of concepts are presented on the board, the students are
asked to suggest criterions according to which, in their opinion, the concepts were cat-
egorized. Their answers should not be judged and they should be encouraged to suggest
different ideas for the categorization criterion.

Then, the students are asked to give titles to each set that are presented at this stage
on the board and to explain why they suggest the said title. Their suggestions for titles
should be listed as well. It is reasonable to assume that at some stage the distinction
between soft and rigid ideas will come up, even if these specific terms will not be men-
tioned explicitly.

When no additional suggestions for titles are offered, the instructor reviews the dif-
ferent titles/categorizations suggested by the students with some pedagogical comment.

42 3  Overview of the Discipline of Computer Science

3
Then, it is declared that the lesson is dedicated to the teaching of soft ideas and the
rationale for dealing with this topic is explained (as previously described: computer
science soft ideas are part of the discipline of computer science and it is not a trivial
matter to teach them).

�Activity 14: Computer Science Concept Classification, Teamwork12

The students are asked to work in teams on the worksheet presented in Table 3.5.

After the students work on this worksheet, a discussion takes place with the whole
class that aims to elicit the notion of soft ideas and its role in computer science and in
computer science education.

Additional classification activities are presented in this Guide with respect to control
structures (in Chap. 7) and with respect to recursion (in Chap. 12).

Table 3.5  Worksheet – Computer science concept classification

Worksheet

The following list of computer science concepts is given (in an alphabetical order):
A formal language, Abstraction, Algorithm, Assignment, Branching statements, Class,

Control structures, Correctness, Data representation, Debugging, Efficiency,
Generalization, Input-Output instructions, Modularity, Object, Parameter, Procedure,
Recursion, Sorting, Stepwise refinement, System state, Tracing, Tree, Variable

−	 Sort the above concepts into sets.
−	 Give a title to each set.
−	 To each set, add at least one concept that does not appear in the set.

Activity 13  (continued)

12 ©Migvan – Research and Development in Computer Science Education, The Department of
Education in Science and Technology, Technion Israel Institute of Technology.

�Activity 15: Construction of Tasks and Questions About Soft Ideas

The students are asked to construct an activity that deals with soft ideas. Two options
are suggested: the first asks to construct a question that demonstrates one soft idea to
computer science learners; the second asks to construct a question to be included in a
test that checks students’ understanding of one soft idea. In most cases, it is sufficient
to facilitate one of these options.

(continued)

433.7  Computer Science Soft Ideas

Option 1:  Construction of an activity that demonstrates a soft idea, work in pairs
The following task is presented to the students:

Select one of the soft ideas presented on the board (if the first trigger was facilitated) •	
or in the worksheet presented in Table 3.5 (if the second trigger was facilitated).
Develop a task/question to be presented to high school computer science pupils that •	
illustrates this soft idea.
Explain why you selected this soft idea and what guidelines you followed when •	
constructing the task/question.

Option 2:  Construction of a question to be included in a test that checks learners’
understanding of one soft idea, team work

The following task is presented to the students:

Select one of the soft ideas presented on the board (if the first trigger was facilitated) •	
or in the worksheet presented in Table 3.5 (if the second trigger was facilitated).
Develop a question to be included in a test that checks students’ understanding of •	
the said soft idea.
Describe the guidelines you followed when developing the question and formulate •	
instructions how to check students’ answer. Explain the guidelines you followed
while formulating these instructions.

To further highlight the nature of computer science soft ideas, it is important to discuss
the students’ suggestions for these questions (see also Chap. 9 about types of questions).
Further, it is important to discuss whether it is possible at all to test learners’ under-
standing of soft ideas. Indeed, it is difficult to develop a test question that checks
students’ understanding of soft ideas. Therefore, for such purposes, other evaluation
methods should be included in computer science education (see Chap. 10).

Activity 15  (continued)

Activities 16–19: Computer Science Heuristics: The Case of Abstraction13

These activities address computer science heuristics, such as top-down development
and successive refinement, focusing on the concept of abstraction. A similar discussion,
however, can be conducted with respect to other methodologies and topics, such as
operating systems or data abstraction. In addition, as with respect to other computer
science soft ideas, it is important to note that ideas such as abstraction should not be

(continued)

13 Based on Lapidot and Hazzan (2003).

44 3  Overview of the Discipline of Computer Science

3 Activities 16–19  (continued)

addressed as isolated topics; rather, they should be addressed, referred to, and high-
lighted at any appropriate opportunity. Still, since such topics are complex in nature and
are usually addressed in relation to other (sometimes complex) topics, the special atten-
tion they receive in the MTCS course can highlight their importance.

We present several tasks that can be facilitated with respect to abstraction. Clearly,
there is no need to facilitate all of them; each instructor should choose the activities that
fit his or her class and his or her pedagogical considerations.

Activity 16: Abstraction - Definition

Based on their familiarity with the concept of abstraction from their computer science
courses, students are asked to define the term “abstraction.” After the definitions are
collected and discussed, a short lecture is given that summarizes the students’ contribu-
tions and adds concluding remarks from the computer science literature.

This activity can serve also as a good opportunity to discuss with the students the
role of definitions in learning processes. For example, one teaching dilemma in this
context would address the best timing to introduce a full and formal definition.

Activity 17: Abstraction - Teaching Planning

Students are asked to design activities for the teaching of abstraction. The working
assumption behind this task is that when one teaches a certain concept, especially a
complex concept such as a development heuristics for computer programs, one deepens
one’s own understanding of that concept.

After working in teams on this task, the students present the activities to their class-
mates. Indeed, as is intended, when students present the activities they have designed,
many issues related to the concept of abstraction are clarified, elaborated on, and refined.

Activity 18: Abstraction - Teaching Pedagogy

Students are requested to explain why methodologies such as abstraction are difficult to
teach. In order to illustrate the pedagogical potential of this activity, we present some of
the explanations presented in our classes by prospective computer science teachers:

In order to teach abstraction we need concrete examples, and thus we lose the ––
generality inherent in the topic.

(continued)

45References

Activity 18  (continued)

Effective discussion and demonstration of the power of abstraction […] can be car-––
ried out only when based on complex problems. These complex problems may
distract our attention from the topic and we should share our mental resources
between the problem itself and thinking about the methodology (such as
abstraction).
There is a gap between programming, which is a real action, and learning problem ––
solving methodologies, which is about thinking.
Since abstraction […] [is] an individual process, there is no unique way “to do” it, ––
so how can one teach these heuristics?

These utterances reveal that by asking the prospective teachers to analyze the teaching
of a particular topic, they are indirectly induced to examine the concept itself and analyze
its properties. In the above quotes, we can see how the prospective teachers refer to
topics such as relationships between thinking-with-examples and abstract thinking,
limitations of the human mind, thinking processes, and the fact that there is no unique
way to implement ideas such as abstraction. It seems reasonable that such analysis
improve the students’ understanding of the discussed topic.

Activity 19: Abstraction - Teaching Programming Heuristics

This activity consists of a class discussion on the question: Is it possible to teach pro-
gramming heuristics in the same way as other computer science ideas are taught? This
discussion addresses the multifaceted nature of topics such as abstraction, and serves as
an excellent opportunity to discuss the teaching of other soft ideas versus the teaching
of rigid computer science concepts.

References

Abelson H, Sussman G, Sussman J (1996) Structure and interpretation of computer programs, 2nd
edn. The MIT Press, Cambridge, MA

Ambler A L, Burnett M M, Zimmerman B A (1992) Operational versus definitional: A perspective
on programming paradigms. Comput. 25(9): pp. 28–43

Carey T, Shepherd M (1988) Towards empirical studies of programming in new paradigms. Proc.
of the ACM 16th Ann. Conf. on Comput. Sci. (Atlanta, Georgia, United States), CSC ‘88.
ACM Press, New York: 72–78

Corder C(1990) Teaching hard teaching soft: A structured approach to planning and running effec-
tive training courses. Gower.

Denning P J, Comer D E, Gries D, Mulder M C, Tucker A., Turner A J, Young P R(1989)
Computing as a discipline. Commun. of the ACM 32(I): 9–23

Denning P J (2005) Is computer science science? Commun. of the ACM 48(4): 27–31
Dijkstra E W (1986) On a cultural gap. The Math. Intell. 8(1): 48–52

46 3  Overview of the Discipline of Computer Science

3
Floyd R W (1979) The paradigms of programming. Commun. of the ACM 22(8): 445–460
Haberman B, Ragonis N (2010) So different though so similar? – Or vice versa? Exploration of

logic programming and of object oriented programming. Issues in Informing Sci. and Inf.
Technol. 7: 393–402

Hazzan O, Lapidot T (2004) Construction of a professional perception in the “Methods of Teaching
Computer Science” course. Inroads – the SIGCSE Bull. 36(2): 57–61

Hazzan O, Lapidot T (2006) Social issues of Computer Science in the “Methods of Teaching
Computer Science in the High School” course. Inroads – the SIGCSE Bull. 38(2): 72–75

Hazzan O (2008) Reflections on teaching abstraction and other soft ideas. Inroads – the SIGCSE
Bull. 40(2): 40–43

Kuhn T S (1962) The structure of scientific revolution. University of Chicago
Lapidot T, Hazzan O (2003) Methods of Teaching Computer Science course for prospective teachers.

Inroads – the SIGCSE Bull. 35(4): 29–34
Sethi R (1996) Programming languages concepts & constructs, 2nd edn. Addison-Wesley
Stolin Y, Hazzan O (2007) Students’ understanding of Computer Science soft ideas: The case of

programming paradigm. Inroads – the SIGCSE Bull. 39(2): 65–69
Tomayko J, Hazzan O (2004) Human aspects of software engineering. Charles River Media.
Tucker A, Noonan R (2002) Programming languages – principles and paradigms. McGraw Hill.
Turkle S (1984) The second self: Computer and human spirits. Simon and Shuster.
Van Roy P, Haridi S (2004) Concepts, techniques, and models of computer programming/MIT

Press.
Van Roy P, Armstrong J, Flatt M, Magnusson B (2003) The role of language paradigms in teaching

programming. Proc. of the 34th tech. symp.on Comput. Sci. Educ.: 269–270
Watt D A (1990) Programming language concepts and paradigms. Prentice Hall.
Wing J (2006) Computational thinking. Commun. of the ACM 49(3): 33–35
Microsoft Research (2006) Towards 2020 Science. Retrieved March 16, 2007, http://research.

microsoft.com/towards2020science/background_overview.htm. Accessed July 14 2010
Ragonis N (2009) Computing pre-university: secondary level computing curricula. In: Wah B (ed)

Wiley Encycl. of Comput. Sci. and Eng. 5(1): pp. 632–648, John Wiley & Sons, Inc., Hoboken,
NJ, USA.

http://research.microsoft.com/towards2020science/background_overview.htm
http://research.microsoft.com/towards2020science/background_overview.htm

47O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_4, © Springer-Verlag London Limited 2011

Research in Computer Science Education 4

Abstract  This chapter focuses on research in computer science education. The impor-
tance of including this topic in the MTCS course stems from the fact that computer science
education research can enrich the prospective computer science teachers’ perspective with
respect to the discipline of computer science, the computer science teacher’s role, and stu-
dents’ difficulties, misconceptions, and cognitive abilities. Consequently, this knowledge
may enhance the future work of the prospective computer science teachers in several
ways, such as lesson preparation, kind of activities developed for learners, awareness to
learners’ difficulties, ways to improve concept understanding, and testing and grading
learners’ projects and tests. We first explain the importance of exposing the students to
the knowledge gained by the computer science education research community. Then, we
demonstrate different issues addressed in such research works and suggest activities to
facilitate with respect to this topic.

4.1 
�Introduction

Acquaintance and awareness of ongoing research in computer science education are
important factors in the professional development of both prospective and in-service
teachers. The MTCS course provides a suitable opportunity to deliver to the prospective
computer science teachers the message that their familiarity with research in computer
science education may improve their learning and teaching processes, understanding of
their future pupils’ perspective, and their understanding of computer science as well as
additional topics relevant for computer science teaching. Such familiarity will allow them
to make better pedagogical decisions and, in more general terms, to foster their profes-
sional development. In this spirit, when reading and discussing computer science educa-
tion research works in the MTCS course, focus should be placed both on the research itself
(i.e., the research field, subject, questions, methods, and results) as well as on the research
conclusions and recommendations. The discussions should highlight the fact that the
prospective teachers can use these conclusions in their future work in the school.
In the continuation of the chapter, we first present a brief background of computer sci-

ence education research, together with its applications in computer science learning and

48 4  Research in Computer Science Education

4 teaching processes. Second, we present several activities to be facilitated in the MTCS
course, which introduce to the prospective computer science teachers the research in com-
puter science education as well as its relevance for computer science teaching. In Chap. 6,
we further expand the discussion on one central research topic in computer science educa-
tion, i.e., learners’ conceptions of computer science concepts, which deserves special
attention due to its importance for computer science teaching and learning processes in
general and in the high school in particular.

4.2 
�Research in Computer Science Education: What Is It and Why and How Is It Useful?

This section delves into the details of research on computer science education, address
ing the following topics: categories of computer science education research, computer
science education research on learning and teaching processes, and resources for computer
science education research.

4.2.1 
�Computer Science Education Research Categories

Research in computer science education includes a variety of topics which reflects a wide
spectrum of interest. The focus of these topics has been changed over the years due to
changes introduced in the discipline, the curriculum, programming languages, program-
ming paradigms, computerized teaching tools, etc. The following are several topics
included in computer science education research and illustrative research works associated
with these topics:

•	 Novice knowledge. For example, Garner et al. (2005) investigate problems encountered
by novice programmers; de Raadt (2007) reviews several recent studies which explored
difficulties encountered by novices while learning programming and problem solving.
•	 Concept understanding, e.g., variables, recursion, inheritance. For example, Samurçay
(1989) relates to cognitive difficulties which novice programmers confront while
learning the concept of variable; Kaczmarczyk et al. (2010) investigate learners’ mis-
conceptions of core basic computer science topics, e.g., memory models and assign-
ment; Chaffin et al. (2009) suggest using a novel game that provides computer science
learners the opportunity to write code, and base on visualization-based interaction to
learn recursion by depth-first search of a binary tree; Denier and Sahraoui (2009) sug-
gest visualizing inheritance in object-oriented programs to support learners’ compre-
hension of this concept.
•	 Learning skills, e.g., problem solving, debugging, abstraction. For example, Armoni
(2009) analyzes computer science learners’ abilities to reduce solutions of algorithmic
problems; de Raadt et al. (2004) suggest a framework for instruction and assessment of
problem-solving strategies; Edwards (2003) presents a vision for computer science
education driven by the use of test-driven development; Murphy et al. (2008) present a

494.2  Research in Computer Science Education: What Is It and Why and How Is It Useful?

qualitative analysis of debugging strategies of novice Java programmers; McCauleya
et al. (2008) review the literature related to the learning and teaching of debugging
computer programs.
•	 Learning and teaching programming paradigms, e.g., functional, logical, procedural,

object oriented. For example, Van Roy et al. (2003) discuss the role of programming
paradigms in teaching programming; Stolin and Hazzan (2007) investigate students’
understanding of programming paradigm; Ragonis (2010) suggests a pedagogical
approach for discussing fundamental object-oriented programming principles by using
the ADT SET; Haberman and Ragonis (2010) explore teaching implication with respect
to logic programming and object-oriented programming.
•	 Learning and teaching programming languages within a particular paradigm, e.g.,

with respect to object oriented programming: Smalltalk, Java, C#, Python. For exam-
ple, Fleck (2007) discusses Prolog as the first programming language; Moritz and Blank
(2005) explore a design-first curriculum for teaching Java in a CS1 course; Miller
(2007) explores Python as a learning and teaching language.
•	 Different teaching methods, e.g., laboratory work, projects-based learning, patterns.
For example, Hanks (2008) explores the advantages of pair programming while
learning computer science; Soh et al. (2005) report on their framework for designing,
implementing, and maintaining closed laboratories in CS1; Hauer and Daniels (2008)
address open-ended group projects from a learning theory perspective; Forišek and
Steinová (2010) suggest a set of didactic games and activities that can be used to illus-
trate and teach Information Theory concepts.
•	 Pedagogical usages of different computerized tools, e.g., Alice, BlueJ, Jeliot, Karel,

Scratch. For example, Kölling et al. (2003) elaborate on BlueJ and its pedagogy; Ben-
Bassat Levy et al. (2003) describe the usage of Jeliot animation environments to help
novices understand basic concepts of algorithms and programming; Rodger et al. (2010)
present pedagogical materials that expose students to computing by using Alice to
develop projects, stories, games, and quizzes; Resnick et al. (2009) discuss the Scratch
environment that enables simple creation of animations, games, and interactive art.
•	 Social issues in computer science teaching, e.g., diversity and ethics. For example,
Voyles et al. (2007) explore teachers’ responses to gender differences and teachers’
affect on achieving gender balance in their computer science classes; Dark and Winstead
(2005) address potential changes in learners’ conception when teaching ethics in com-
puting related fields; Baloian et al. (2002) describes common aspects and differences in
the process of modeling the real world for applications involving tests and evaluations
of cognitive tasks.
•	 Computer science teachers. For example, Blum and Cortina (2007) describe a summer
workshop for high school computer science teachers in which compelling material, that
teachers can use in their classes to emphasize computational thinking, is provided; Ni
(2009) explores factors that influence computer science teachers’ adoption of a new
computer science curriculum; Mittermeir et al. (2010) reports on a project that intro-
duces both pupils and teachers to some principles of informatics, and specifically, shows
teachers that concepts of informatics are not too difficult to teach; Brandes et al. (2010)
describe a course for leading computer science teachers, and the results of the course and
of the regional pedagogical workshops that these teachers facilitated for their peers.

50 4  Research in Computer Science Education

4 4.2.2 
�Computer Science Education Research on Learning and Teaching Processes

In this section, we focus on computer science education research on learning and teaching
processes, which is especially relevant for high school computer science teaching.

4.2.2.1 
�Computer Science Education Research from the Learner’s Perspective

Computer science education research works that focus on learners, address computer
science learners at different learning levels, e.g., junior high school, high school, and
undergraduate level, and aim to deepen the understanding of how they conceive computer
science concepts as well as their learning processes.
The inclusion of this research topic in the MTCS course aims to increase the prospec-

tive computer science teachers’ awareness to learners’ difficulties, to help them match
teaching methods and tools for different learners’ needs, and to guide them in designing
the teaching process of different computer science concepts in a way that supports learn-
ers’ learning processes (see also Chap. 11).
Two different aspects of learning processes seem to be interchangeable: mistakes and

misconceptions (see also Chap. 6). A learner’s answer, as well as learner’s knowledge and
understanding, can be either correct or incorrect. Though a mistake indicates, in most
cases, lack of understanding, it should not necessarily be conceived negatively. Rather, an
alternative point of view suggests that mistakes actually provide learners with the oppor-
tunity to correct their knowledge and improve their current understanding of the said
concept, and therefore, further explanations and practicing is needed. From this perspec-
tive, the mere occurrences of learners’ mistakes should encourage teachers to use different
learning materials, methods, or tools in order to improve different cognitive skills. At the
same time however, a correct answer does not necessarily reflect understanding (see, for
example, Erlwanger 1973). Therefore, teachers should use a variety of learning assign-
ments in order to reveal learners’ misconceptions.
From the early research works in mathematics education and computer science educa-

tion (e.g., Erlwanger 1973; Perkins and Martin 1986; Smith et al. 1993) we learn that in
most cases, misconceptions are consistent and systematic, thought they could appear in
multiple contexts; misconceptions are stable against attempts to change them; and miscon-
ceptions can sometimes block learning processes. Therefore, we should not use the term
“mistake correction,” which indicates that if we just correct the mistake we prevent the
misconception and improve learner’s understanding. Rather, we should look for miscon-
ceptions and help learners correct them by looking for and addressing their source. This
alternative approach leads to an improved concept understanding as well as correct answers
in the future. In other words, teaching processes which are sensitive to misconceptions
support learning process since they guide learners in constructing their knowledge by
themselves and with accordance to their own knowledge structures (see also the construc-
tivist approach in Chap. 2). Clearly, this perspective should be delivered and discussed
with the prospective computer science teachers in the MTCS course. It will be further
elaborated in Chap. 6, where learners’ alternative conceptions are explored in depth.

514.2  Research in Computer Science Education: What Is It and Why and How Is It Useful?

4.2.2.2 
�Computer Science Education Research from the Teacher’s Perspective

There are many teaching situations in which a professional teacher should think and act as
a researcher. In this spirit, one of the targets of the MTCS course is to educate the prospective
computer science teachers to become attentive to their pupils, to reveal their pupils’ con-
ceptions, and to check and track pupils’ understandings during the entire learning process,
and not just at its end by a final exam. In this spirit, one of the messages delivered in the
MTCS course is that the “teacher as researcher” perspective plays a significant role in
becoming a professional computer science teacher. From a boarder perspective, research
works that examine topics related to computer science teachers intend to deepen the
knowledge and understanding of the computer science teachers’ work. This research
addresses teachers’ disciplinary knowledge, teachers’ pedagogical knowledge, teachers’
pedagogical-content knowledge (PCK), teachers’ coping with curricular changes, and
teachers’ use of different teaching tools.
Computer science education research may contribute to computer science teachers’

knowledge and professional development in general and to the prospective computer
science teachers in the MTCS course in particular, in several ways, as is outlined in what
follows.

•	 Becoming a member of the computer science education community. The familiarity
with computer science education research is one component of becoming a member of
the computer science education community. This component includes, among other
things, acquaintance with the collective wisdom gained by the researchers of the com-
munity and with its common and accepted terminology.
•	 Increases teachers’ awareness of learning processes. Teachers’ familiarity with
research in computer science education increases their awareness to different learners’
conceptions, difficulties, and experiences with computer science concepts. This type of
knowledge belongs to one of the central categories of Shulman’s (1986) teacher knowl-
edge base model – i.e., knowledge of learners – which can assist teachers, for example,
in the preparation process of different teaching units (see, for example, Chap. 11).
Further, by exposing teachers to the research in computer science education, teachers
can learn from other teachers’ experiences, and may be encouraged by the fact that
learners in other classes exhibit similar difficulties to those manifested by their pupils,
and that they cope with similar challenges to those faced by other teachers.
•	 Construction teachers’ pedagogical-content knowledge (PCK). Learning from com-
puter science education research is valuable also for teachers’ construction of their
PCK, another central category of Shulman’s teacher knowledge base model Shulman
(1986). This knowledge includes answers to questions such as: What examples, analo-
gies and demonstrations are suitable for the explanation of specific computer science
topics? What is an appropriate way to organize the teaching sequence of a specific
topic? What is the source for specific learners’ difficulties? Which learning/teaching
strategies are shown (by research findings) to work better in a specific teaching situa-
tion? In addition to finding answers to these questions in the research literature on
computer science education, computer science teachers can find in this literature
recommendations for diagnosis exercises, teaching methods, teaching tools, etc.

52 4  Research in Computer Science Education

4 •	 Adopting a researcher’s point of view. Teachers’ exposure to research in computer
science education expands their acquaintance with various research tools. This acquain-
tance may, in turn, enrich their pedagogical toolbox and let them be more attentive to
specific characteristics of their pupils. Specifically, such knowledge may enable them
to be sensitive to their pupils’ needs, conceptions, difficulties, and cognitive skills, and
accordingly, to enrich their pedagogical toolbox and improve their pedagogical skills.

4.2.3 
�Resources for Computer Science Education Research

Many resources exist for computer science education research. It is important to expose
the prospective computer science teachers to these resources, and maybe, even further, to
explore with them a potential contribution to one of these resources. We list here several
such resources.

The ACM (Association for Computing Machinery) digital library•	 1

The SIGCSE (Special Interest Group on Computer Science Education) conference pro-•	
ceedings.2 The papers are published also in the ACM digital library.
The ITiCSE (Innovation and Technology in Computer Science) conference proceed-•	
ings.3 The papers are published also in the ACM digital library.
The ISSEP (Informatics in Secondary Schools: Evolution and Perspective) conference •	
proceedings.4
Inroads – ACM SIGCSE Bulletin•	 5

The ACM Inroads magazine, launched in 2010•	 6

The Computer Science Education journal•	 7

The ACM Transactions on Computing Education (TOCE)•	 8

4.3 
�MTCS Course Activities

Activities 20–24, to be facilitated with the prospective computer science teachers in the
MTCS course, explore the research in computer science education from a pedagogical
perspective. The instructor of the MTCS course can decide what activities fit his or her
class as well as on the order of the activities.

1 See http://portal.acm.org/dl.cfm
2 The 2010 conference website is http://www.sigcse.org/sigcse2010/
3 The 2010 conference website is: http://iticse2010.bilkent.edu.tr/
4 The 2010 conference website is: http://www.issep2010.org/
5 See http://portal.acm.org/toc.cfm?id=J688
6See http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J1268&coll=portal&dl
=ACM&CFID=77578246&CFTOKEN=38064848
7 See http://www.tandf.co.uk/journals/titles/08993408.asp
8 See http://portal.acm.org/browse_dl.cfm?linked=1&part=transaction&idx=J1193&coll=portal&
dl=ACM

http://portal.acm.org/dl.cfm
http://www.sigcse.org/sigcse2010/
http://iticse2010.bilkent.edu.tr/
http://www.issep2010.org/
http://portal.acm.org/toc.cfm?id=J688
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J1268&coll=portal&dl=ACM&CFID=77578246&CFTOKEN=38064848
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J1268&coll=portal&dl=ACM&CFID=77578246&CFTOKEN=38064848
http://www.tandf.co.uk/journals/titles/08993408.asp
http://portal.acm.org/browse_dl.cfm?linked=1&part=transaction&idx=J1193&coll=portal&dl=ACM
http://portal.acm.org/browse_dl.cfm?linked=1&part=transaction&idx=J1193&coll=portal&dl=ACM

534.3  MTCS Course Activities

 Activity 20: Exploration of a Computer Science Education Research Work on
Learners’ Understanding of Basic Computer Science Topics

The general target of this activity is to present to the students an example of a research
work that deals with learners’ understanding of variables – one of the basic computer
science concepts, and specifically, to focus on alternative conceptions, mistakes, and
misconceptions related to variables.
The details of this activity are presented in Activity 38 (Sect. 6.3) which explores

learners’ alternative conceptions. When this activity is facilitated in the MTCS course,
it is recommended to highlight the direct contribution of research in computer science
education to teachers’ knowledge on learners’ conceptions and the consecutive actions
that they can take based on this understanding.

�Activity 21: The Computer Science Education Research World

The purpose of the activity is to practice with the prospective computer science teach-
ers the reading of research papers in computer science education. It is suitable espe-
cially for prospective computer science teachers who have not read research papers
before and are not familiar with computer science education research. The activity is
based on three stages.

›  Stage A: Intuitive thinking on computer science education research, class discussion
The students are asked to answer the following questions presented to them by the

instructor. Their answers are written on the board.

In your opinion, what do researchers in computer science education do?•	
In your opinion, what questions/issues/topics are researchers in computer science •	
education interested in?

›  Stage B: Planning a research in computer science education, group work
The students are asked to choose one of the questions/issues/topics listed on the

board and to suggest a research plan for its exploration. They can be guided by sug-
gesting them to relate to questions such as: What would a researcher do in order to
find answers for the said research questions? Which research tools can be used?
What would a researcher do in order to improve his or her understanding of the said
topic?

›  Stage C: Class discussion
Each group presents its suggestion. If time allows, it is recommended to discuss

these suggestion and illuminate core research aspects. In this discussion, however, it
is important to remember that (in most cases) the students do not have a previous
research experience in computer science education.

54

4

�Activity 22: Looking into a Research Work on Novices’ Difficulties, Homework

The target of this homework activity is to expose the prospective computer science teachers
to different aspects of novice computer science learners’ mental processes, as they arise
from the research papers published in the field. For this purpose, in this activity, the students
read for the first time a research paper in computer science education.
The topic of novice learners is chosen for this activity because it is important that

teachers become familiar with novice difficulties and understanding and since it is rea-
sonable to assume that the prospective computer science teachers will teach such learn-
ers in the future. Further, we should remember that, in fact, each learner is a novice
learner when learning a new topic; from this perspective, the prospective computer sci-
ence teachers should be aware to the fact that even a trivial assignment (for experts)
may raise substantial difficulties for novices and therefore, an in-depth investigation of
learners’ conceptions should not be neglected.
Specifically, in this homework, each student is required to read one research paper

from a given list of papers on novice computer science learners, and to submit a report
based on a given list of guiding questions (see Table 4.1 below). It is recommended

Table 4.1  Homework on research in computer science education

Homework on Computer Science Education Research

The following list presents research papers on difficulties encountered by computer science
novice learners (*):
•  Fluery A.N. (1993). Student beliefs about Pascal programming. Journal of Educational

Computing Research 9(3): 355–371.
•  Joni, S.A. and Soloway, E. (1986). But my program runs! Discourse rules for novice
programmers. Journal of Educational Computing Research 2(1): 95–128.
•  Pea, R.D. (1986). Language-independent conceptual “bugs” in novice programming.

Journal of. Educational Computing Research 2(1): 25–36.
•  Perkins, D.N., Martin, F. (1986). Fragile knowledge and neglected strategies in novice
programmers. In Soloway E. and Iyengar S. (Eds.). Empirical Studies of Programmers.
Norwood: Ablex Pub., 213–229.
•  SamurÇay, R. (1985). Learning programming: An analysis of looping strategies used by
beginning students. For the Learning of Mathematics 5(1): 37–43.
•  Spohrer, J.C. and Soloway, E. (1986). Analyzing the high frequency bugs in novice
programs. In Soloway E. and Iyengar S. (Eds.). Empirical Studies of Programmers.
Norwood: Ablex Pub., 230–251.

Choose one paper and address the following tasks:
•  List the three main points that the paper stresses.
•  List three ideas that came into your mind while reading the paper. You can relate to what
you found most interesting, what increased your curiosity, or issues you would like to
read more about.
•  Optional: Find in the literature on computer science education another research paper
that is somehow connected to the paper you chose. Indicate the paper title, authors, and
abstract and explain in what sense the two papers are related.

Mini-research (optional): Choose one of the papers and reconstruct the research described
in the paper.

(*) The list of papers was collected by Haberman, Levy and Lapidot as part of a survey on
novice programmers’ difficulties, published in Hebetim - Journal of the Israeli National Center
for Computer Science Teachers, June 2002, pp. 8–38 (In Hebrew).

(continued)

55

�Activity 23: The Teacher as a Researcher

The target of this activity is to give the prospective computer science teachers an oppor-
tunity to identify learners’ misconceptions. This activity, which gives the prospective
teachers a simple context to investigate and examine the source of learners’ mistakes,
can be viewed as a first experience in adapting a researcher’s point of view. Such an
experience may enable them in the future to help their students repair their own concep-
tions and improve their understanding.
The students receive a set of solutions for a given problem that addresses a basic use

of one-dimensional arrays. First, they are asked to solve the question by themselves.
Second, they should identify correct and incorrect solutions from a given collection
of solutions. Third, for each of the incorrect solutions they should suggest a  
possible source for the incorrect answer, i.e., to speculate what the learner who

(continued)

that the instructor verifies that all the papers in the list are selected. It is also recom-
mended to publish the students’ reports, for example, in the course website.

Comments

The list of papers presented in the worksheet is just an example. Each instructor can •	
construct a new list either on novice learners or any other topic discussed by the
research community on computer science education.
The homework includes two optional tasks.•	
The first optional task aims to encourage the students to look for additional ––
research paper recourses in order to first, increase their familiarity with these
research resources and second, to practice how to find a paper that relates to a
specific topic.
The second optional task (mini-research) should be facilitated only with pro-––
spective computer science teachers who have some background in educational
research.

Activity 22  (continued)

Activity 23 which deals with learners’ misconceptions naturally fits for the MTCS
course. A similar activity, however, can be facilitated in any computer science class since
it is expected that any computer scientist be familiar with common mistakes. In both cases,
the computer science subject on which the activity is based can be changed according to
the context in which the activity is facilitated.
Further, the analysis of correct and incorrect solutions can promote the understanding

of any computer science concept. Such an analysis can be carried out in two stages:
(a) classification of given (both correct and incorrect) solutions for a given problem;
(b) discussion of the correct and the incorrect solutions: with respect to correct solutions,
to find their uniqueness; with respect to incorrect solutions, to discuss what is wrong and
to correct them.

56 4  Research in Computer Science Education

4 Activity 23  (continued)

presented the said solution does not understand or (even better) does not understand
well. Later, they are asked to suggest additional examples for incorrect solutions for
problems that result from misconceptions they assume learners may have. Finally, sev-
eral reflective activities take place.
Overall, the activity includes six parts and is based on individual work, work in pairs

and class discussion. As can be observed, it addresses several pedagogical aspects and
topics, such as, alternative conceptions (see Chap. 6), reflection (see Chap. 5), constructiv-
ism (see Chap. 2), and different types of questions (see Chap. 9).

›  Stage A: Solving a problem, individual work
Each student is given a worksheet with the problem (see Table 4.2) and is asked to

solve it and to keep all the drafts. In addition, the students are asked to present a list of
computer science concepts that in their opinion are manifested in this question.
Since a solution development to a given problem enables problem solvers

capture the problem domain more meaningfully and differently than checking a
solution (see Stage B), the students are asked to solve the problem by them-
selves. It is recommended to collect their solutions for the later stages of the
activity (C and E).

›  Stage B: Evaluating different solutions, individual work
Usually, teachers design questions to check their pupils’ overall understanding; at

the same time, researchers’ questions are more refined, as they intend to identify
learners’ conceptions, including unexpected ones. This stage intends to let the stu-
dents adopt the researcher’s point of view. Accordingly, in this stage of the activity,
the students first experience a task that a computer science teacher performs on a
daily basis – determine whether a solution is correct or incorrect, and second, prac-
tice the researcher’s work – looking for the source of the mistake, i.e., identifying
learners’ misconception(s)/alternative conception(s).
The students are given six solutions to the above problem and are asked first, to

classify them into correct and incorrect solutions and second, for each incorrect solu-
tion, to speculate what might be the source of the mistake; i.e., with respect to the
(wrong) solutions, to hypothesize what might be the pupils’ misconception(s). See
Table 4.3.

(continued)

Table 4.2  Worksheet with an introductory problem

A problem

Write an algorithm that receives an array A of size N (the array indexes are 1-N), and
returns true if all array members are identical and false if they are not identical.

–  Solve the problem.
–  Keep the drafts you wrote during the process of solution development.
–  When you are finished, put your solutions aside and ask for the next task.

574.3  MTCS Course Activities

›  Stage C: Discussion on Stage B answers, work in pairs
In this stage, the students work in pairs, reflect on their previous work, compare

their solutions, discuss and argue, and try to convince each other. It is hoped that

(continued)

Table 4.3  Worksheet on uncovering alternative conceptions

Worksheet – uncovering alternative conceptions

High school students were asked to solve the same problem you just solved:
Write an algorithm that receives an array A of size N (the array indexes are 1-N), and
returns true if all array members are identical and false if they are not identical.

1. In what follows, six students’ solutions are presented. For each solution:
  –  Determine whether it is correct or incorrect.

  If it is incorrect:

  –  Describe the mistake.
  –  Hypothesize the source of the mistake and write it down.
  –  Suggest how you would help a student understand the mistake.
2. Present additional incorrect solutions based on a misconception you assume that novice
learners may have.

Solution 1
are-equals (A, N)
ok ← true
for i from 1 to N do
  if (A[i] ¹ A [i + 1]) then
    ok ← false
return ok

Solution 2
are-equals (A, N)
ok ← true
for i from 1 to N-1 do
  if (A[i] ¹ A[i + 1]) then
    ok ← false
  else
    ok ← true
return ok

Solution 3
are-equals (A, N)
ok ← true
for i from 1 to N-1 by 2 do
  if (A[i] ¹ A[i + 1]) then
    ok ← false
return ok

Solution 4
are-equals (A, N)
ok ← true
for i from 1 to N-1 by 2 do
  if (A[i] ¹ A[i + 1]) then
    ok ← false
for i from 2 to N-1 by 2 do
  if (A[i] ¹ A[i + 1]) then
    ok ← false
return ok

Solution 5
are-equals (A, N)
ok ← true
for i from 1 to N-1 do
  if (A[i] ¹ A[i + 1]) then
    ok ← false
return ok

Solution 6
are-equals (A, N)
count ← 0
for i from 2 to n do
  if (A[i] = A[i + 1]) then
    count ← count + 1
if (count = N) then
  return true
else
  return false

Activity 23  (continued)

58 4  Research in Computer Science Education

4 Activity 23  (continued)

during this experience, they construct a partial mental image of what researchers in
computer science education do.
Specifically, the students are asked to discuss and reflect in pairs on their classifi-

cations of the answers presented in Stage B (Table 4.3). In addition, they are asked
to exchange their own solutions from Stage A and check each other’s solution. The
specific instructions are presented below:

1. 	Discuss your conclusions from the previous stage. Compare your answers and, if
needed, elaborate/change/correct them.

2. 	Exchange with your partner your own solution to the problem. Check your
partner’s solution.
If it is correct: How can you develop your future students’ capabilities in ––
problem-solving processes?
If it is incorrect: Is it similar to one of the incorrect solutions presented in the ––
worksheet you worked on (Stage B/Table 4.3)?

›  Stage D: The meaning of learners’ mistakes, class discussion
After the students finish working in pairs, it is recommended to facilitate a class

discussion to help them assimilate the process they went through. The discussion can
address the following issues:

Mistakes that have been discovered by the students, focusing on possible miscon-•	
ceptions that could lead to these mistakes.
Differences between tasks that ask to “find an incorrect solution” and tasks that •	
ask to “explore why a mistake occurred”.
The importance of this kind of investigation for (prospective) computer science •	
teachers. For example, such an investigation can help teachers in lesson prepara-
tion and can direct them to change the teaching order of different topics, to use
different teaching materials, and to use animation or other demonstration tools.

›  Stage E: Taking the researcher’s perspective, work in pairs
This stage is optional and can be facilitated by instructors of the MTCS course

who choose to deepen the discussion on research tools.
The prospective computer science teachers are asked to use the drafts of their

own solution developed in Stage A, and by adopting a researcher’s perspective, to
discuss in pairs what, in their opinion, can be learnt from this examination. For
example, the collection of intermediate drafts of a solution can help a researcher in
investigating learners’ mental processes, examining different directions a learner
chose, guessing what caused a learner to change directions during the development
process, etc.

(continued)

594.3  MTCS Course Activities

›  Stage F: Reflection, individual work
The students are asked to reflect on the activity. The reflection can be either an

open and spontaneous reflection or a guided reflection as presented in Table 4.4.
The selection of the kind of the reflection partially depends on students’ previous
awareness to reflection (see Section 5.6). Additional reflection questions can address
the kind of activity itself, e.g., how were you contributed from the discussion in
pairs? What was the most difficult stage in this activity and why, etc.

Activity Summary

As mentioned before, the target of this activity is to expose the prospective computer
science teachers to a new perspective – the researcher’s point of view – by offering
them to consider different approaches when learners’ mistakes are examined. This
exposure is expected to broaden their considerations as computer science teachers,
mainly when they design teaching materials. Specifically, they are expected to take the
learners’ perspective, to consider what they understand, what might mislead their
understanding, and which learning tools can help novice learners acquire new
knowledge.
In addition to the pedagogical contribution of this activity, it also contributes to the

prospective computer science teachers’ PCK since they are exposed to different mis-
takes computer science learners may encounter in the context of arrays and logical
conditions.

Table 4.4  Reflective task on the researcher’s point of view

Reflection on the “teacher as a researcher” activity

–  What did you learn from the “teacher as a researcher” activity?
–  How were you contributed from this activity with respect to your future work as a
computer science teacher?

–  In your opinion, can you use any part of the activity with your future learners?

(continued)

�Activity 24: Reflection on Reading a Computer Science Education Paper,
Homework

The target of this homework activity is to expose the prospective computer science
teachers to a comprehensive paper that deals with the uniqueness of computer science
teaching (Gal-Ezer and Harel 1998). It is suggested that the work on this paper may
develop the professional identity of the prospective computer science teachers. See
Table 4.5.

Activity 23  (continued)

60 4  Research in Computer Science Education

4

The paper explores different types of knowledge that a computer science teacher
should master, and is actually related to the essence of the PCK with respect to com-
puter science teaching (Shulman 1986, 1990). Since the paper relates to a bird’s eye
view of the field, it is recommended to give this activity to the students as a summary
task of the subject of research in computer science education (i.e., after at least one of
the previous activities has been facilitated). It is recommended also to follow the stu-
dents’ individual work with a class discussion, including the instructor’s contribution.

Table 4.5  Reading and reflection on a fundamental computer science education paper

Worksheet

Read the paper: Gal-Ezer, J., Harel, D. (1998): What (else) should CS educators know?
Communications of the ACM 41(9): 77–84.
•  Choose two of the subjects explored in the paper that in your opinion are the most
significant for a computer science teacher. Explain your selection.
•  In your opinion, does the “teacher as a researcher” activity fit any of the categories that
the paper proposes? If it does, indicate the specific category and explain your choice.
If in your opinion the “teacher as a researcher” activity does not belong to any of the
categories mentioned in the paper, suggest a new category to which it belongs, explain
its uniqueness, and define it.

References

Armoni M (2009). Reduction in computer science: A (mostly) quantitative analysis of reductive
solutions to algorithmic problems. JERIC 8(4): 1–30

Baloian N, Luther W, Sánchez J (2002) Modeling educational software for people with disabilities:
theory and practice. Proc. 5th Int. ACM Conf. Assistive Technol.: 111–118

Ben-Bassat Levy R, Ben-Ari M, Uronen PA (2003) The jeliot 2000 program animation system.
Comput. & Educ. 40(1): 1–15

Blum L, Cortina T J (2007) CS4HS: An outreach program for high school CS teachers. ACM
SIGCSE Bull. 39(1): 19–23

Brandes O, Vilner T, Zur E (2010) Software design course for leading CS in-service teachers.  
Proc. of ISSEP, Lect. Notes in Comput. Sci., Vol. 5941, 49–60

Chaffin A, Doran K, Hicks D et al (2009) Experimental evaluation of teaching recursion in a video
game. Proc . ACM SIGGRAPH Symp. on Video: 79–86

Dark M J, Winstead J (2005) Using educational theory and moral psychology to inform the teaching
of ethics in computing. Proc. InfoSecCD: 27–31

Denier S, Sahraoui H (2009) Understanding the use of inheritance with visual patterns. Proc.
3rd Int. Symp. Emp. Softw. Eng. and Meas.: 79–88

de Raadt M (2007) A review of Australasian investigations into problem solving and the novice
programmer. Comput. Sci. Educ. 17(3): 201–213

de Raadt M, Toleman M, Watson R (2004) Training strategic problem solvers. ACM SIGCSE
Bull. 36(2): 48–51

Activity 24  (continued)

61References

Edwards S H (2003) Rethinking computer science education from a test-first perspective. 18th
Ann. ACM SIGPLAN OOPSLA Conf.: 148–155

Erlwanger S H (1973) Benny’s conception of rules and answers in IPI mathematics. JCMB 1(2):
7–26

Fleck A (2007) Prolog as the first programming language. ACM SIGCSE Bull. 39(4): 61–64
Forišek M, Steinová M (2010) Didactic games for teaching information theory. In:  
Vahrenhold J (ed) Lec. Notes Comput. Sci. 5941. Springer-Verlag, Berlin, Heidelberg: 86–99

Gal-Ezer J, Harel D (1998) What (else) should CS educators know?. Communic. ACM  
|41(9): 77–84

Garner S, Haden P, Robins A (2005) My program is correct but it doesn’t run: A preliminary
investigation of novice programmers’ problems. Proc. 7th Australasian Conf. on Comput.
Educ. 42. Young A, Tolhurst D (eds): 173–180

Haberman B, Ragonis N (2010) So different though so similar? – Or vice versa? Exploration of the
logic programming and the object-oriented programming paradigms. Iss. Informing Sci. and
Inf. Technol. 7(2010): 393–402

Hanks B (2008) Problems encountered by novice pair programmers. JERIC 7(4): 1–13
Hauer A, Daniels M (2008) A learning theory perspective on running open ended group projects
(OEGPs). Proc. 10th Conf. on Australasian Comput. Educ. – Vol. 78. Australian Compu. Soc.,
Darlinghurst, Australia: 85–91

Kaczmarczyk L C, Petrick E R, East J P et al (2010) Identifying student misconceptions of
programming. Proc. 41st ACM Technic. Symp. on Compu. Sci. Educ.: 107–111

Kölling M, Quig B, Patterson A et al (2003) The BlueJ system and its pedagogy. Comput. Sci.
Educ. 13(4): 249–268

McCauleya R, Fitzgeraldb S, Lewandowskic G et al (2008) Debugging: A review of the literature
from an educational perspective. Comput. Sci. Educ.18(2): 67–92

Miller B (2007) Exploring Python as a learning and teaching language. J. Comput. in Small Coll.
22(3): 262–263

Mittermeir R T, Bischof E, Hodnigg, K (2010) Showing core-concepts of Informatics to kids and
their teachers. In: Vahrenhold J (ed) Lecture notes in Comput. Sci., vol. 5941. Springer-Verlag,
Berlin, Heidelberg: 143–154

Moritz S H, Blank G D (2005) A design-first curriculum for teaching Java in a CS1 course. ACM
SIGCSE Bull. 37(2): 89–93

Murphy L, Lewandowski G, McCauley R et al (2008) Debugging: the good, the bad, and the
quirky: A qualitative analysis of novices’ strategies. Proc. 39th SIGCSE Technic. Symp.
Comput. Sci. Educ.: 163–167

Ni L (2009) What makes CS teachers change?: Factors influencing CS teachers’ adoption of
curriculum innovations. Proc. 40th ACM Technic. Symp.Comput. Sci. Educ.: 544–548

Perkins D N, Martin F (1986) Fragile knowledge and neglected strategies in novice programmers.
In: Soloway E, Iyengar S (eds.) Empirical studies of programmers. Norwood: Ablex Pub.:
213–229

Ragonis N (2010) A pedagogical approach to discussing fundamental object-oriented program-
ming principles using the ADT SET. ACM Inroads, 1(2), 42–52

Resnick M, Maloney J, Monroy-Hernández A et al (2009) Scratch: programming for all. Commun.
of the ACM 52(11): 60–67

Rodger S H, Bashford M, Dyck L et al (2010) Enhancing K-12 education with Alice programming
adventures. Proc. ITiCSE: 234–238

Samurçay R (1989) The concept of variable in programming: its meaning and use in problem-
solving by novice programmers. In: Soloway E, Spohrer JC. (eds) Studying the novice
programmer, Lawrence Erlbaum Associates, New Jersey, 161–178

Shulman L S (1986) Those who understand: knowledge growth in teaching. J. Educ. Teach. 15(2):
4–14

62 4  Research in Computer Science Education

4 Shulman L S (1990) Reconnecting foundations to the substance of teacher education. Teach. Coll.
Record 91(3): 300–310

Smith J P III, diSessa A A, Roschelle J (1993) Misconceptions reconceived: A constructivist
analysis of knowledge in transition. J. Learning Sci. 3(2): 115–163

Soh L, Samal A, Nugent G (2005) A framework for CS1 closed laboratories. JERIC 5(4): 2
Stolin Y, Hazzan O (2007) Students’ understanding of computer science soft ideas: the case of
programming paradigm. ACM SIGCSE Bull. 39(2): 65–69

Van Roy P, Armstrong J, Flatt M et al (2003) The role of language paradigms in teaching program-
ming. Proc. 34th SIGCSE Tech. Symp. Comput. Sci. Educ.: 269–270

Voyles M M, Haller S M, Fossum T V (2007) Teacher responses to student gender differences.
Proc. 12th Ann. SIGCSE Conf. on Innovation & Technol. in Comput. Sci. Educ.: 226–230

63O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_5, © Springer-Verlag London Limited 2011

Problem-Solving Strategies 5

Abstract  Problem solving is one of the central activities performed by computer  
scientists as well as computer science learners. However, computer science learners often
face difficulties in problem analysis and solution construction. Therefore, it is important
that computer science educators be aware of these difficulties and acquire appropriate
pedagogical tools to help their learners gain experience in these skills. This chapter is
dedicated to these pedagogical tools. It presents several problem-solving strategies to
address in the MTCS course together with appropriate activities to mediate them to the
prospective computer science teachers.

5.1 
�Introduction

Since programming is a problem-solving process, problem-solving skills must be a core
idea of any introductory computer science course. However, whereas the teaching of
programming languages is usually well-structured within a curriculum, the development
of learners’ problem-solving skills is largely implicit and less structured. Therefore, we
find it relevant to include this topic in this Guide.
Problem solving is a complex mental process. This observation can be easily observed

by looking, for example, at the problem-solving techniques listed at Wikipedia: abstraction,
analogy, brainstorming, divide and conquer, hypothesis testing, lateral thinking, means–
ends analysis, method of focal objects, morphological analysis, reduction, research, root
cause analysis and trial-and-error.
Problem-solving processes are common to many disciplines. In the mathematics educa-

tion research community, for example, an intensive discussion takes place about problem-
solving processes and techniques, as well as on learners’ difficulties and ways of teaching
problem-solving strategies. See, for example, Polya (1957) and Schoenfeld (1983).
In some cases, learners develop problem-solving strategies by their own. For example,

children invent simple addition and subtraction strategies long before they learn arithmetic
at school. But, without some formal instruction of effective strategies, even the most
inventive learner may resort to unproductive trial-and-error problem-solving processes.
Hence, it is important to teach problem-solving strategies and to guide teachers how to
teach their pupils this cognitive tool. Due to the centrality of problem-solving processes in

64 5  Problem-Solving Strategies

5 the discipline of computer science, this assertion is especially relevant for computer
science education. Specifically, it is important that computer science educators be aware of
problem-solving strategies and acquire pedagogical tools to help their learners acquire this
kind of skills. This chapter is dedicated to these pedagogical tools. It presents several
problem-solving strategies to address in the MTCS course and mediate them by appropriate
activities.
This chapter, however, presents just several illustrative problem-solving strategies. In

addition, our discussion focuses mainly on algorithmic problems,1 since most of the
prospective computer science teachers will probably teach this kind of problems in their
high school teaching.
As with respect to most of the ideas presented in this Guide, it is important to deliver

to the students enrolled in the MTCS course that all the strategies explored in the context
of this chapter can be implemented in any programming paradigm and/or programming
language. Further, it is important to highlight that problem-solving strategies are not
restricted to programming tasks.

5.2 
�Problem-Solving Processes

A basic problem-solving process, in any discipline, starts with outlining the problem
requirements, and terminates with outlining a solution that, in some cases, is expressed by
a sequence of steps (an algorithm) that solves the problem. In computer science, in many
cases, the algorithm is coded into a programming language and is tested by the code
execution. The difficult stages, however, lie in between: how to move from the require-
ment understanding to the problem solution. These intermediate stages can be viewed as
a discovery process; therefore, problem-solving processes are sometimes treated as a
creative process, as an art.
Common recognized stages of problem-solving processes are listed below. Needless

to say that in most cases, problem-solving processes are not linear and intertwine the
different stages described below.

1. 	Problem analysis. Understand and identify the problem, understand what the problem
is about. If one does not understand the problem, one cannot proceed and solve it (see
Sect. 5.3).

2. 	Alternative consideration. Think about alternative ways to solve the problem.
3. 	Choosing an approach. Choose an appropriate approach to solve the problem.
4. 	Problem decomposition. Decompose the problem into subtasks.

1 An algorithmic problem is defined by what is given – the initial conditions of the problem, and
its goals – the desired state, what should be accomplished. An algorithm problem can be solved
with a series of actions formulated formally either by pseudo code or a programming language.

655.2  Problem-Solving Processes 	

5. 	Algorithm development. Develop the algorithm in stages according to the recognized
subtasks (see Sect. 5.4).

6. 	Algorithm correctness. Check the algorithm correctness (see Sect. 5.5).
7. 	Algorithm efficiency. Calculate the algorithm efficiency.
8. 	Reflection. Reflect on and analyze the process you went through, conclude what can be
improved in future problem-solving processes (see Sect. 5.6).

Though defined rules how to perform these stages do not exist, we can scaffold
computer science learners by several methods/strategies that may help them cope with this
process. From this perspective, problem-solving processes can be classified as soft ideas
(see Chap. 3). Activity 25 addresses several problem-solving techniques in computer
science.

Activity 25: Problem-Solving Techniques in Computer Science

The target of this activity is to increase students’ familiarity with different problem-
solving techniques within the computer science discipline. This activity can be the first
one in the discussion about problem solving, but can also be facilitated as a summary
activity for this subject.2
Students are asked to work in small groups (of 2–4 students) and to look at a list of

problem-solving techniques given either in Wikipedia (as mentioned at the beginning
of Sect. 5.1) or in other resources (e.g., Vasconcelos 2007).
Each group selects five problem-solving techniques which are commonly used in

computer science problem-solving processes, and for each one of them describes at
least two computer science class situations in which it can be addressed.
For example, the Analogy technique can be addressed when a new problem is

introduced. In such cases, it is worthwhile to examine first similar pre-solved prob-
lems, and based on the analogy between the two (or more) problems, to derive the
solution for the new problem.
The discussion facilitated in the MTCS course based on this activity can relate to the

fitness of different problem-solving techniques to the discipline of computer science. It
is also worth discussing connections between different problem-solving techniques in
computer science, e.g., connections between stepwise refinement (Sect. 5.4.2) and
algorithmic patterns (Sect. 5.4.3).

2 In advanced computer science classes, it is relevant to mention that in computer science, in addi-
tion to the development of problem solving strategies, special emphasis is placed also on non-
solvable problems (see Chap. 9).

66 5  Problem-Solving Strategies

5 5.3 
�Problem Understanding

Problem understanding is the first stage of problem-solving processes that leads to the
identification of the problem characteristics. It can be based on analogies to similar prob-
lems and sometimes it yields some generalizations.
In the case of algorithmic problems, this stage can start by recognizing the input

categories of the problem and the selection of the required output category for each input
category, respectively. The identification of the input categories actually indicates that
the problem is understood. Each input category is usually treated in a different subtask,
or at least addressed when the algorithm correctness is checked. Extreme cases should
be analyzed as well: sometimes they are included in a specific category; in other cases,
they are treated separately. Activity 26 focuses on this aspect of problem-solving
processes.

�Activity 26: Examination of Representative Inputs and Outputs

The target of this activity is (a) to increase students’ awareness of a problem-analysis
process guided by the examination of representative inputs and outputs and (b) to
acquire pedagogical tools to deliver the importance of this stage to their future pupils.

›  Stage A: Problem development, work in pairs
The students are asked to develop two problems that illustrate the importance of

examining representative inputs and outputs. One problem should be about basic
conditions and loops; it should be relatively simple and fit learners at their early
stages of computer science learning. The second problem should address more
advanced computer science topics, such as, a two-dimensional array, a list, a stack,
or a queue. It is important to emphasize that even in advanced stages of computer
science learning, and maybe even especially in these stages, it is important to allo-
cate the needed time for this first stage of solving algorithmic problems.

›  Stage B: Presentations and discussion
Each pair presents to the course plenum one of the problems it developed. For

each problem, the pair should explain why it is important to start its solving process
with the examination of inputs and outputs.
If possible, the course instructor should choose the problems that the pairs pres-

ent in a way that enables discussion on different aspects and topics.
It is recommended to publish all the developed questions in the course web site

for future usages either in the MTCS course (see Activity 27 below, for example) or
in the students’ high school teaching.

675.4  Solution Design 	

5.4 
�Solution Design

Some of the major difficulties novice learners face, when engaged in problem-solving
processes, are concerned with the early stages of the solution design (Soloway 1986;
Reed 1999; Robins et al. 2003). In what follows we present three strategies that may be
employed in this stage of the solution design, i.e., defining the problem variables, step-
wise refinements and algorithmic patterns, together with relevant activities that examine
these strategies from a pedagogical perspective. Needless to say that the order by which
the strategies are presented here is not necessarily the order by which they should be
taught. Alternatively, the order by which they are taught and used, as well as the level of
depth on which each of them is discussed, depend on the learning stage and the kind of
problem in hand. For example, in simple cases, it is reasonable to start with choosing the
needed variables; in more complex cases, it is worth start developing the problem solu-
tion by stepwise refinements.

5.4.1
�Defining the Problem Variables

The examination of a given problem’s inputs and their correspondent outputs, clarifies the
problem to the problem solver. The next stage is to define the variables needed in order to
solve the problem. Activities 27–29 examine solution design from a pedagogical perspective.

Activity 27: Choosing the Problem Variables

This activity aims to deliver the message that a deep consideration of the variables
needed for solving a given problem is a crucial stage in the problem-solving process
since it directs the solution implementation.

›  Stage A: Problem analysis, work in pairs
Students are asked to further analyze the problems they developed in Activity 26,

and to set the variables needed to solve them. It is recommended that each pair will
work both on the problems it developed and on problems developed by at least one
more pair. In this way, each student examines four problems. The problem exchange
between the pairs also contributes to the discussion that takes place in Stage B.

›  Stage B: Discussion between pairs
Each two pairs that exchanged their problems discuss together each of the four

problems. In this discussion, they are asked to

(continued)

68 5  Problem-Solving Strategies

5 Activity 27  (continued)

(a) 	Compare their solutions
(b) 	List guidelines for a teacher who evaluates learners’ investigation of the variables
needed for solving a given problem

›  Stage C: Presentations and discussion in the course plenum
If time allows, a discussion can be facilitated in the course plenum in which the

teacher guidelines, formulated by all groups, are examined.

3 The roles of variables home page (http://www.cs.joensuu.fi/~saja/var_roles/) is very rich and
contains different kinds of educational resources.

�Activities 28–29: Roles of Variables

These activities focus on roles of variables, which is a recently introduced approach
that can be utilized in teaching programming to novice learners.
The role of a variable is defined according to the dynamic character of the variable,

embodied by the succession of values that variable gets, and how the new values
assigned to the variable relate to other variables. For example, in the role of a stepper,
a variable is assigned a succession of values known in advance as soon as the succes-
sion starts. The role concept, however, is not concerned with how a variable is used in
the program; a stepper is a stepper whether it is used to index elements in an array or to
count the number of input values (Ben-Ari and Sajaniemi 2003; Sajaniemi 2005).
The concept of roles of variables is concerned with the deep structure of the pro-

gram. The name of the variable, its place within an expression, relations between
expressions and assignments, and the control statements, are important factors in role
assignment; the surface structure of the program, primarily its syntactic structure, is
less relevant for the role concept.
Activities 28 and 29 focus on the roles of variables. They can be facilitated in the

MTCS course, either in the class or as homework assignments.

(continued)

�Activity 28: Roles of Variables – Discovery Learning and Reflection

The students are directed to the Web site of roles of variables,3 to learn the relevant
concepts and practice them by themselves. Then, the students are asked to reflect on
their experience.

http://www.cs.joensuu.fi/~saja/var_roles/

695.4  Solution Design 	

4 See http://www.cs.joensuu.fi/~saja/var_roles/role_intro.html
5 See http://www.cs.joensuu.fi/~saja/var_roles/try.html
6 See http://cs.joensuu.fi/~pgerdt/RAE/
7 See http://www.cs.joensuu.fi/~saja/var_roles/why_roles.html

Activity 28  (continued)

›  Stage A: Learning, work in pairs

1. 	Learn the “roles of variables” concept by reading the “Introduction to the Roles
of Variables.”4

2. 	Perform the activity “Try to Classify Variables Yourself.”5
3. 	Try to use “The Role Advisor.”6

›  Stage B: Reflection on Stage A, individual work
In this stage, the students are directed to reflect on what they learnt from two

perspectives: as learners of a new concept and as future computer science teachers (see
Chap. 2). Since it is a reflection activity (see Sect. 5.6), it is recommended to carry it out
individually. Specifically, the students’ tasks are:

1. 	What new kinds of knowledge did you gain from this exploration?
2. 	Do you agree with the interpretation of the “roles of variables” concept? Do you
agree with the categorization of the variable roles?

3. 	Did you enjoy this kind of learning? Did you enjoy doing the “check yourself”
activity?

4. 	Address advantages and disadvantages of this kind of learning.
5. 	As a future high school computer science teacher, reflect on using this kind of
discovery learning in high school classes: Do you think that this interpretation for
variable roles should be integrated to scaffold learners’ problem-solving skills?
Do you think that pupils can learn it in the same way as you did?

(continued)

�Activity 29: Roles of Variables – Examination of the Roles
of Variables Through the Research Lens

The target of this activity is to expose the students to current computer science educa-
tional research on roles of variables (see also Chap. 4). They look at relevant research
developments and investigate resources that can serve them in their future teaching in
the high school. This work may also enhance their curiosity as future researchers.
The students’ tasks are:

1. 	Explore the following resources in the Roles of Variables home page:
Why Roles–– 7

http://www.cs.joensuu.fi/~saja/var_roles/role_intro.html
http://www.cs.joensuu.fi/~saja/var_roles/try.html
http://cs.joensuu.fi/~pgerdt/RAE/
http://www.cs.joensuu.fi/~saja/var_roles/why_roles.html

70 5  Problem-Solving Strategies

5

5.4.2
�Stepwise Refinement

The main purpose of the stepwise refinement design methodology is to obtain first an
overview of the structure of the problem and of the relationships among its parts, and then
to address specific and complex issues related to the implementations of the various sub-
parts (Wirth 1971; Dijkstra 1976). Stepwise refinement is a top-down methodology since
it progresses from the general to the specific. An alternative approach is the bottom-up
methodology that progresses from the specific to the general. These two approaches can
be considered as complementing each other. In both cases, the problem is divided into
sub-problems; the main difference lies in the direction of the mental process that guides the
solution construction. Here we focus on the top-down approach.
Solutions produced by stepwise refinements possess a natural modular structure,

which (a) is easier to develop and to check, (b) increases the solution readability, and
(c) enables to use the solution of sub-problems of the full solution for solving other
problems as well.
The stepwise refinement approach can be applied in any software development process.

Throughout this process, an initial representation of some solution, on a high level of
abstraction, is gradually refined through a sequence of intermediate representations that
eventually yield a final program in some programming language (Batory et al. 2004).
While the initial representation employs notations and abstractions that are appropriate for
the addressed problem, the development proceeds in a sequence of small steps that each of
them refines some aspect of the representation produced in previous steps.
The approach is usually associated with Niklaus Wirth, who formulated the main prin-

ciples of stepwise refinements:

In each step, one or several instructions of the given program are decomposed into •	
more detailed instructions; a step can involve a simultaneous refinement of both data
structures and operations.
Every refinement step implies some design decisions. It is important that these decisions •	
be explicit, and that the programmer be aware of the underlying criteria and of the
existence of alternative solutions.

Activity 29  (continued)

Using Roles of Variables in Programming Education–– 8

Literature on the Roles of Variables–– 9

2. 	What are your impressions with respect to the research work that examines the role
of variables concept?

3. 	Write 5–10 ideas that, while reading, you found interesting, curious, and innovative.
Explain your choice of each of these ideas.

8 See http://www.cs.joensuu.fi/~saja/var_roles/teaching.html
9 See http://www.cs.joensuu.fi/~saja/var_roles/literature.html

http://www.cs.joensuu.fi/~saja/var_roles/teaching.html
http://www.cs.joensuu.fi/~saja/var_roles/literature.html

715.4  Solution Design 	

The importance of the stepwise refinements process increases as the problem complex-
ity elevates. But, as it turns out, it is useful also for solving basis problems such as finding
the maximum of three numbers, as is discussed, for example, in Reynolds et al. (1992).
Activities 30 and 31 focus on stepwise refinement.

Activity 30: Practicing Stepwise Refinement – Break Down Problem Solutions
into Subtasks

The students continue working on the problems they developed in Activity 26, and are
asked to break down the problem solutions into subtasks.

Activity 31: Practicing Stepwise Refinement – Analyze a List of Problems

The students get a list of problems and are asked to analyze them comprehensively,
considering inputs–outputs categories, variable selection, and the implementation of
stepwise refinements.

5.4.3
�Algorithmic Patterns

Algorithmic patterns are entities that combine design elements and mathematical aspects
(Ginat 2004). Within its context, a pattern denotes an expert solution to a recurring design
or a programming problem (East et al. 1996; Soloway 1986; Wallingford 1996; Astrachan
et al. 1998; Reed 1999; Proulx 2000; Muller et al. 2004). Similar to other patterns, algo-
rithmic patterns represent examples of elegant and efficient solutions of recurring algorith-
mic problems. Thus, in fact, an algorithmic pattern is an abstract model of an algorithmic
process that solves a specific problem and can be matched or modified and then, integrated
into the solution of different problems.
Muller et al. (2007) argue that when facing an unfamiliar problem, learners often do not

know how to start solving it, and experience difficulties in (a) recognizing similarities between
problems and in transferring ideas from previously solved problems to new ones; and (b)
observing the essence of a problem and in identifying its components and the relationships
among them. Therefore, in such cases, they tend to reinvent the wheel and develop a solution
from scratch. These difficulties, however, do not usually result from some misunderstanding,
but rather may be a consequence of a poor organization of algorithmic knowledge.
The use of algorithmic patterns, which is based on the problem analysis, can assist

learners in this process of solution development for algorithmic problems. This process
starts with the recognition of the solution components and of similar problems whose solu-
tion is already known. Then, pattern(s) should be modified for the solution of the current
problem and be integrated into the full solution. In most cases, there is need to combine
different patterns to develop the needed solution. In general, however, the target of dealing
with patterns in the learning of computer science is to strengthen learners’ problem-solving
abilities which go beyond programming. Activities 32–34 examine algorithmic patterns
from several perspectives.

72 5  Problem-Solving Strategies

5 Activities 32–34: Practicing Algorithmic Patterns

We suggest three activities that focus on algorithmic patterns. In addition, see Activity
88 in Sect. 12.8 about patterns of recursive list processing. It is recommended to ask the
students to work on these activities in pairs.
Prior to the facilitation of these activities, instructors of the MTCS course should

verify that the students are familiar with algorithmic patterns either by a self-learning
process or by employing a variety of teaching methods as is presented in this Guide.
Here are several resources that can be used for this purpose: Clancy and Linn (1999);
Reed (1999); Muller et al. (2005); Muller et al. (2007); Ginat (2009). The instructor
of the MTCS should select from these resources a set of patterns to be used in
Activity 32.

Activity 32: Practicing Algorithmic Patterns – Question Design
for Given Patterns

A list of patterns is presented. Each pair of students chooses two different patterns and

1. 	For each pattern
Develops an algorithm problem such that its solution uses this pattern––
Develops “a story problem” (see Chap. 9) such that its solution uses this pattern––
Develops a problem such that its solution requires to slightly change the pattern––

2. 	Develops two problems such that their solution requires the combination of the two
patterns.

Activity 33: Practicing Algorithmic Patterns – Pattern Composition for Using
Specific Abstract Data Types

The students are asked to develop three algorithmic patterns that use specific abstract
data types, such as, a linked list, a queue, a stack, or a tree.

Activity 34: Practicing Algorithmic Patterns – Worksheet Design for Guiding
Learners Using Patterns

The students are asked to develop a worksheet that guides novice computer science
learners how to use patterns. The targets of the worksheet are (a) to introduce the idea
of patterns; (b) to direct learners in what cases it is appropriate to consider using
patterns; and (c) to guide learners to reflect on their use of patterns.
The students should also articulate the guidelines they followed in the design

process of this worksheet.

735.5  Solution Examination 	

5.5 
�Solution Examination

After a solution has been designed and constructed, its correctness should be examined.
Similar to many computer science concepts, checking the correctness of a solution has
both theoretical and technical aspects. In high school classes, it is sufficient, in most cases,
to examine the solution correctness technically with representative inputs; in more
advanced computer science teaching situations, this discussion should be expanded and
includes also theoretical aspects.
One of the related activities to solution examination is debugging, on which we focus

here due to its relevance to high school teaching in the contexts of solution examination. It
is also highly relevant, of course, in more advanced computer science teaching situations,
as well as for software practitioners during the development of software projects.
It is accepted that the debugging processes (either with a debugger or without it) may

promote learners’ understanding of computer science. This assertion is based on the fact
that while students consider how their program should be tested and debugged if neces-
sary, they actually reflect on how they implemented computer science concepts and rethink
their programming process and the decision they made during the program development
(Laakso et al. 2008). Instructors of the MTCS course, who find it interesting and relevant
to discuss with their students this cognitive process, may allocate for this topic the needed
time framework.
Activities 35 and 36 about debugging processes, to be facilitated in the MTCS course,

highlight pedagogical merits of debugging processes. See also the musical debugging
(Activity 55) in Chap. 8.

�Activity 35: Examination of the Debugging Process

Students are asked to write a program that solves a specific problem and to document
both their programming process and their debugging process. Such an experience not
only increases learners’ awareness to their debugging strategies, but also fosters their
reflective skills.

�Activity 36: Development of a Lab Activity about Debugging, Teamwork

The students are asked to work in small groups (of 2–3 students) and to develop a lab
activity that aims to scaffold learners’ debugging skills.
This kind of activity is challenging since it requires dealing with skills rather than

with concepts. Since it is a very open task, it is reasonable to assume that a large, varied,
and colorful collection of artifacts will be created. This collection can be used for dis-
cussions in the MTCS course as well as for the students’ future work as high school
computer science teachers.

74 5  Problem-Solving Strategies

5 5.6 
�Reflection

Reflective thinking refers to rethinking and analysis methods of previous mental processes
or actual behaviors. Reflection is an important tool in learning processes in general and in
high-order cognitive processes, such as problem-solving processes, in particular. This
assertion is based on the recognition that reflection provides learners with an opportunity
to step back and think about their own thinking and by doing so to improve their problem-
solving skills. Reflective thinking is a learned process that requires time and ongoing
practice. See also Chaps. 2 and 13.

During problem-solving processes, reflection can take place at different times:

•	 Before starting solving the problem: After reading the problem, while planning the
solving approach, it is worth reflecting on similar previously solved problems in order
to identify relevant algorithmic approaches, patterns, etc.

•	 While solving the problem: During the solution development, reflection refers to inspec-
tion, control, and supervision. For example, when a difficulty arises or when a mistake
is identified, it is worth reflecting on their sources. Schön (1983) calls this process
reflection in-action.

•	 After solving the problem: When the solution is completed, reflection assesses and
examines the process performance. Such reflection enables to draw conclusions from
the problem-solving process, and to learn about the strategic decisions made during its
implementation. Schön (1983) calls this process reflection on-action.

In what follows we present a list of representative questions that can guide before-and-
after reflective processes; some of them relate to cognitive aspects and other – to affective
aspects. Even though the questions are organized according to the types of reflection, most
of them can serve (with slight changes) in each of the three reflective stages.

Questions before starting the problem-solving process

How can I estimate the question difficulty? Is the question difficult/easy? Why do I •	
think so?
Do I face any difficulty in understanding any part of the problem? What part is unclear?•	
Did I previously solve similar problems? What are these problems? What are the •	
similarities?

Questions after completing the problem-solving process

Is the solution complete?•	
Why did I choose this direction to solve the problem? Did I make reasonable decisions? •	
What should I change in future similar situations?
Was solving this problem easy or difficult for me? Why?•	
Could I solve the problem differently? How?•	

755.6  Reflection 	

The integration of reflective processes in teaching processes is a creative task. Activity 37
illustrates how reflective activities can become a learning process both from the learners’
and the teachers’ perspective. Specifically, teachers can reflect on the teaching process of
critical concepts that were difficult for learners to grasp and on his or her usage of different
teaching tools. In addition, an ongoing reflection may increase teachers’ awareness to
pupils’ perspective.

�Activity 37: Reflective Activity in Computer Science Education

The activity is based on the following case study that should be presented first to the
students.

After a computer science high school class had written a test on relatively advanced
computer science topics (like linked lists or pushdown automaton), its teacher realized
that the pupils’ achievements in the test were low and that their solutions did not indi-
cate the expected understanding of these concepts.

The following four stages are based on this case study. It is recommended to summarize
each stage with a reflective discussion and to publish students’ products in the course Web site.

›  Stage A: Teacher’s reflection on test failure
The students are divided into small groups and are asked to

1. 	Write down a list of reasons that can explain the pupils’ relatively low achievements.
2. 	Classify the list of reasons into two groups: Teacher-oriented reasons and learner-
oriented reasons. Reflect on the classification process. Was the classification pro-
cess evident? In what cases did you hesitate? Why did you hesitate?

3. 	Suggest at least five questions that can guide a teacher’s reflective process on his
or her class’ failure.

›  Stage B: Design of a reflective activity for a class after a test failure
The students are divided into small groups and are asked to suggest how they, as

computer science teachers, can use reflective processes to support their pupils’ learn-
ing with respect to two aspects: (1) pupils’ learning processes and (2) pupils’ under-
standing of the learned concepts.
Specifically, the students’ task is to design a reflective activity for a high school

class that aims at leading the pupils to reflect on their own strengthens and weak-
nesses, while taking into the consideration the two above-mentioned aspects.

›  Stage C: Reflection on the reflective activity designed by a teacher after the test failure
The continuation of the case study is presented to the students:

The teacher of the said class decided to use a reflective process to scaffold
pupils’ learning processes, to improve their understanding of the said computer

(continued)

76 5  Problem-Solving Strategies

5 Activity 37  (continued)

science concepts, and to improve the test achievements. For this purpose, the
teacher asked the pupils to answer the following questions: What problems did
you solve while learning towards the test? How did you solve them? What were
your difficulties while writing the test? Did you face these difficulties only dur-
ing the test or did you face them also while learning toward the test? If you faced
these difficulties while learning toward the test, what did prevent you to deepen
your understanding? If you faced the difficulties only during the test, try to
speculate why you did not face them before.

The students are asked to work in small groups and to

1. 	Classify the reflective questions into two groups: questions that relate to pupils’
learning processes and questions that relate to pupils’ understanding of the learned
concepts.

2. 	Design at least two additional reflective questions for each class of reflective
questions.

3. 	In your opinion, how can such reflective questions contribute to learners’ future
learning processes in general and problem-solving processes in particular?

›  Stage D: Analysis of the entire reflective activity designed by the teacher after the
test failure

This stage is based on the analysis of the next episode of the case study.

After the pupils had written their own reflection based on the previous reflective ques-
tions (see Stage C), they were asked to further accomplish the next two phases:

1. 	To design by themselves a test on the same contents of the test they took with
the same structure. The teacher rationale for this task was that the development
of meaningful questions requires deep understanding of the subject matter. To
accomplish this task, the pupils were asked also to solve the questions they
composed.

2. 	To reflect on their current knowledge by considering the following leading ques-
tions provided by the teacher: Did you overcome your previous difficulties? How
did you overcome these difficulties? Do you feel ready to take a repeated test?
With respect to what concepts you still feel unconfident? What do you think about
the computer science concepts you learned – interest vs. boring; important vs.
unnecessary; difficult vs. simple?

The students’ task is to analyze advantages and disadvantages of this kind of teach-
ing–learning process.
For example, we mention the following advantages: pupils are active, take respon-

sibility on their learning processes and understanding, think and focus on what

(continued)

77References	

References

Astrachan O, Berry G, Cox L, Mitchener G (1998) Design patterns: An essential component of  
CS curricula. Proc. SIGCSE: 153–160

Batory D, Sarvela J N, Rauschmayer A (2004) Scaling stepwise refinement. IEEE Trans.  
Softw. Eng. 30(6): 355–371

Ben-Ari M, Sajaniemi J (2003) Roles of variables from the perspective of computer science
educators. Univ. Joensuu, Depart. Comput. Sci., Technic. Report, Series A-2003–6

Clancy M J, Linn M C (1999) Patterns and pedagogy. Proc. of SIGCSE’99: 37–42
Dijkstra E W (1976) A discipline of programming. Prentice-Hall
East J P, Thomas S R, Wallingford E, Beck W, Drake J (1996) Pattern-based programming instruc-
tion. Proc. ASEE Ann. Conf. and Exposition, Washington DC

Ginat D (2004) Algorithmic patterns and the case of the sliding delta. SIGCSE Bull. 36(2):29–33
Ginat D (2009) Interleaved pattern composition and scaffolded learning. Proc. 14th Ann. ACM
SIGCSE Conf. on Innov. and Technolog. in Comput. Sci. Edu. - ITiCSE ‘09, Paris, France:
109–113

Laakso M J, Malmi L, Korhonen A, Rajala T, Kaila E, Salakoski T (2008) Using roles of variables
to enhance novice’s debugging work. Iss. in Informing Sci. and Inf. Technol. 5: 281–295

Muller O (2005) Pattern oriented instruction and the enhancement of analogical reasoning.  
Proc. First Int. Workshop on Comput. Educ. Res. ICER ‘05, Seattle, WA, USA: 57–67

Muller O, Ginat D, Haberman B (2007) Pattern-oriented instruction and its influence on problem
decomposition and solution construction. ACM SIGCSE Bull. 39(3): 151–155

Muller O, Haberman B, Averbuch H (2004) (An almost) pedagogical pattern for pattern-based
problem solving instruction. Proc. 9th Ann. SIGCSE Conf. on Inn. Technolog. in Comput.  
Sci. Edu.: 102–106

Polya G (1957) How to solve it. Garden City, NY: Doubleday and Co., Inc
Proulx V K (2000) Programming patterns and design patterns in the introductory computer science
course. Proc. SIGCSE: 80–84

Reed D (1999) Incorporating problem-solving patterns in CS1. J. Comput. Sci. Edu.13(1): 6–13
Reynolds R G, Maletic J I, Porvin S E (1992) Stepwise refinement and problem solving. IEEE
Softw. 9(5): 79–88

Robins A, Rountree J, Rountree N (2003) Learning and teaching programming: Areview and dis-
cussion. Comput. Sci. Edu. 13(2):137–172

Activity 37  (continued)

concepts they did not understand, take the teacher’s perspective, and reflect on dif-
ferent affective issues, such as their interests, priorities, concerns, and confidence.
Nevertheless, it should be remembered that such an activity sets several pedagogical
challenges, such as it demands pupils’ cooperation, requires time resources, and it
requires creativity which may difficult for some learners.
Beyond the examination of this activity from the pupils’ perspective, it is impor-

tant to discuss this activity also from the teacher’s perspective. In addition, it is
important to highlight the fact that this kind of activity promotes nontraditional inter-
actions between the teacher and the pupils and has the potential to promote the class-
learning climate and future teaching–learning processes.

78 5  Problem-Solving Strategies

5 Sajaniemi J (2005) Roles of variables and learning to program. Proc. 3 rd Panhellenic Conf.
Didactics of Informatics, Jimoyiannis A (ed) University of Peloponnese, Korinthos, Greece
http://cs.joensuu.fi/~saja/var_roles/abstracts/didinf05.pdf Accessed 3 July 2010

Schön D A (1983) The reflective practitioner. BasicBooks
Schoenfeld A H (1983) Episodes and executive decisions in mathematical problem-solving. In
Lesh and Landaue (eds) Acquisition of mathematics conceptsand processes. Academic
Press Inc.

Soloway E (1986) Learning to program = learning to construct mechanisms and explanations.
CACM 29(1): 850–858

Vasconcelos J (2007) Basic strategy for algorithmic problem solving. http://www.cs.jhu.
edu/~jorgev/cs106/ProblemSolving.html Accessed: 2 June 2010

Wallingford E (1996) Toward a first course based on object-oriented patterns. Proc. SIGCSE:
27–31

Wirth N (1971) Program development by stepwise refinement. CACM 14(4): 221–227 http://sunnyd
ay.mit.edu/16.355/wirth-refinement.html Accessed 13 November 2010

http://cs.joensuu.fi/~saja/var_roles/abstracts/didinf05.pdf
http://www.cs.jhu.edu/~jorgev/cs106/ProblemSolving.html
http://www.cs.jhu.edu/~jorgev/cs106/ProblemSolving.html
http://sunnyd
http://sunnyd

� 79O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_6, © Springer-Verlag London Limited 2011

Abstract  This chapter focuses on learners’ alternative conceptions. Since prospective
teachers in general, and prospective computer science teachers in particular, face diffi-
culties in gaining the notion of alternative conceptions, it is important to address this issue
in the MTCS course and to deliver the message that a learning opportunity exists in each
pupils’ mistake (or misunderstanding). Several pedagogical tools for exposing learners’
alternative conceptions are presented as well as three activities to be facilitated in the
MTCS course.

6.1 
�Introduction

This chapter focuses on learners’ alternative conceptions. “Alternative conceptions” is the
customary term used nowadays for what was frequently called misconceptions in the past.
The term alternative conceptions is used in this Guide to highlight the legitimacy of these
learners’ conceptions, especially in the early learning stages.
Chapter 4 elaborates on mistakes and misconceptions. It emphasizes that mistakes

should not necessarily be conceived negatively since they provide learners with the oppor-
tunity to correct their current knowledge and update their mental representation of the said
topic or concept.
From a pedagogical perspective, since in many cases, misconceptions are consistent,

systematic, are based on some modification of correct knowledge, and are stable in attempts
to change them, teachers should look for misconceptions and help learners correct them by
addressing their source. Further, the occurrences of learners’ mistakes encourage teachers
to use different tools to help learners improve their understanding.
In practice, a teacher cannot effectively deal with alternative conceptions without being

aware of their mere existence, since alternative conceptions are not easily detected by
conventional tests and other traditional evaluation methods (see Chap. 10). More specifi-
cally, educators must be aware of their learners’ ways of thinking and mental processes,
must gain skills for uncovering alternative conceptions, and must recognize and use

6Learners’ Alternative Conceptions

80 6  Learners’ Alternative Conceptions

6
pedagogical tools to deal with these conceptions. In this spirit, knowledge of learners and
their characteristics is one of Shulman’s (1986) seven categories of the teacher knowledge
base model.
Novice computer science educators, however, face difficulties in gaining the notion of

alternative conceptions. Specifically, they face difficulties in

1. 	Understanding how people do not understand topics which they conceive as trivial
ones;

	2. 	Lowering their level of understanding to that of a novice learner since their understand-
ing of the subject area is usually more advanced;

3.	 “Getting into the head” of someone else (not just a pupil) because they have not gained
yet the experience needed for performing such tasks.

These difficulties can be explained by Fuller’s (1973) model, which distinguishes between
three developmental stages of teacher experience: the self stage, the task stage, and the
impact stage. While experienced teachers are usually at the third stage, and are concerned
with issues related to their pupils, concentrating on what their pupils think, feel, and under-
stand, novice teachers are mainly in the first (self) stage, dealing mainly with survival
issues such as, how to keep their classes silent, how to complete teaching the curriculum
on time, and how to make sure that they will be able to answer correctly their pupils’ ques-
tions. Fuller found that the transition from the personal-centered stage to the pupil-centered
stage is a function of experience; the more experienced a teacher is, a better chance exists
for him or her to release themselves from survival issues and to concentrate on his or her
pupils’ thinking and behavior. Bents and Bents (1990) also recognize the transition from
being a novice teacher to an expert teacher by replacing the attention given to teacher-
centered issues to pupil-centered issues.
In order to prepare prospective computer science teachers toward the transition to the

third stage, it is important to focus on learners’ conceptions in the MTCS course. Within
this context, one of the main messages that should be delivered to the students is that a
learning opportunity exists in every pupil’s mistake (or misunderstanding). However, in
order to exhaust the pupil’s learning abilities, it is necessary first, to understand the pupil’s
alternative conception and its source, and then, to use appropriate pedagogical tools to
assist him or her improving their understanding.
It is important to remember, though, that it is impossible to prepare prospective com-

puter science teachers for all the situations they will face in the future. Therefore, with
respect to dealing with learners’ alternative conceptions, the practical goals of the MTCS
course are to increase the students’ awareness with respect to

1. 	The existence of a cognitive diversity in general and alternative conceptions in
particular;

	2. 	The potential contribution of positive attitude toward the phenomenon of alternative
conceptions;

	3. 	The stage in which they, as teachers, will transit from the self stage to the pupil-
centered (impact) stage;

816.2  Pedagogical Tools for Dealing with Alternative Conceptions

	4. 	Availability of different pedagogical tools for identifying and dealing with alternative
conceptions;

5. 	Common alternative conceptions described in the computer science education research
literature (see Chap. 4).

6.2 
�Pedagogical Tools for Dealing with Alternative
Conceptions

In what follows, we present several tools and strategies that can be used to expose and deal
with alternative conceptions that prospective computer science teachers should be familiar
with. We also explain how they can be addressed in the MTCS course.

Pupil–teacher interaction:  A common assumption held by novice computer science
teachers is that pupils’ questions should be answered immediately and their problem
should be solved right away. Therefore, many teachers tend to fix an error or a mistake in
pupils’ solutions or pupils’ ways of thinking as soon as they recognize it. Teachers, how-
ever, should resist this tendency and listen to their pupils very carefully before they start
seeking for the corrective teaching action. This approach is similar to the expected behavior
from a doctor, i.e., not to suggest a medicine to a patient before he or she examines and
understands the patient’s problem and completes the diagnosis. In practice, as it turns out,
in many cases, when a pupil asks a question, it is worthwhile just repeating the pupil’s
question, allowing the pupil to answer it first.1
In the MTCS course, it is recommended to discuss this approach with the students and

to encourage them to start listening to their pupils from their first teaching experiences,
e.g., in the practicum (see Chap. 13).

Diagnostic exercises:  A teacher can ask pupils a series of questions whose purpose is to
reveal the pupils’ alternative conceptions. Metaphorically, the teacher can develop a series
of tests to expose pupils’ cognitive bug. It is important to recognize the bug both from the
pupil’s and the teacher’s perspectives; specifically, the pupil must recognize the bug in
order to start debugging and modifying his or her cognitive model; the teacher should
expose the pupil’s bug in order to implement some pedagogical intervention.
An example of such a diagnostic exercise is included in Activity 38, presented below

(Sect. 6.3). If time allows in the MTCS course, it is recommended to ask the students to
prepare a similar set of exercises for other computer science topics. A related idea is
addressed in Activity 23 (see Sect. 4.3).

Errors and mistakes as opportunities for learning and improving understanding:  The
mere existence of mistakes should be acknowledged both in the computer science class

1 An illustrative metaphor compares the repetition of the question to bouncing a ball back to the
pupil, letting the pupil be “in charge” of the ball (in our case, question).

82 6  Learners’ Alternative Conceptions

6
and in the MTCS course. This can be done by showing learners’ common errors and
discussing them, talking about errors that learners exhibited in written tests, and most
important, encouraging learners to conceive errors as unavoidable positive phenomena that
comprise an opportunity to learn new ideas and improve current understanding. In some
cases, it is recommended to present a common error (known from the computer science
education research literature), even if none of the learners in the specific class did not
suggest it, and to discuss it with the learners.

6.3 
�Activities to Be Facilitated in the MTCS Course

In many cases, teachers are exposed to learners’ alternative conceptions through learners’
wrong answers in written tests. In such cases, obviously, pupils describe neither their
(alternative) conception as part of their wrong answer nor the way of thinking that led them
to present the wrong answer. Therefore, the teacher should “get into” the pupil’s head,
recognize the concept or topic that the learner does not understand, try to imagine the
pupil’s conception of the said concept, and guess the pupil’s intention in the (wrong)
answer.
Activities 38, 39, and 40, to be facilitated in the MTCS course, practice this skill.

Activity 38 is based on computer science education research (see also Chap. 4). Activities
39 and 40 focus on genuine answers given by pupils in a test and the alternative concep-
tions they expose: Activity 39 is based on the actual data taken from a written exam;
Activity 40 examines a short interview conducted with a pupil who exhibited an alterna-
tive conception.

�Activity 38: Exploration of a Computer Science Education Research �
Work on Learners’ Understanding of Basic Computer Science Topics

As mentioned in Chap. 4, knowledge gained from computer science education research
can enrich teachers’ perspective with respect to pupils’ difficulties, misconceptions,
alternative conceptions, and different cognitive abilities and skills.
The general target of this activity is to present to the students an example of a

research work that deals with learners’ understanding of variables – one of the basic
computer science concepts – including input, output, and assignments, and specifically,
to focus on alternative conceptions, mistakes, and misconceptions related to variables.
The expected outcome of this activity is that in later stages, in the various assignments

that the students will work on, they will exhibit a wide perspective at learners’ mistakes.
In other words, it is expected that in future activities, whether it is a lesson planning, a
design of a specific learning activity or a tutoring activity, and so on, the students will

(continued)

836.3  Activities to Be Facilitated in the MTCS Course

focus on a variety of topics, such as learners’ understanding, factors that may mislead
learners, learning activities that can meet different learners’ needs, and so on.
The activity is based on two stages: an individual or teamwork and a class

discussion.
›  Stage A: Alternative conceptions about variables, individual or teamwork
The worksheet for the individual work or teamwork is presented in Table 6.1.

›  Stage B: Class discussion
The presentation of the above research provides the instructor of the MTCS

course with the opportunity to clarify to the students the difference between a mis-
take and a misconception. It also fosters a discussion about why a teacher should not
be satisfied just by finding a learner’s mistake and correcting it. The instructor of the
MTCS encourages first, to initiate an in-depth discussion and investigate together
with the students the reasons that caused the mistakes, and second, to recognize,
once again, together with the students, ways that may guide learners confront their
misconceptions and improve their understanding of the said concepts.
It is also important to connect this activity to the research in computer science

education (Chap. 4) and emphasize how the familiarity with such research works
can increase teachers’ awareness to different learners’ conceptions, difficulties, and
experiences with computer science concepts.

Table 6.1  Worksheet about alternative conceptions related to variables

Worksheet

The following assignment is based on a questionnaire presented to novice Pascal learners
as part of a research study (Haberman and Ben-David Kollikant 2001).

Learners were asked to write the output of each of the following programs.
(In Pascal: The input instruction is Read, the output instruction is Write, the assignment
symbol is :=)

Program1 Program2 Program3 Program4

Read (A,B);�
Read (B);
Write (A,B,B);

Read (A,B);�
B:=4;
Write (A,B,B);

Read (A,B);�
B:=4;
Write (A,B);
Write (A);

Read (A,B);�
Read (B);
Write (A,B);

Answer the following questions:

–  For each of the 4 programs, write its output.
–  For each of the 4 programs, write one incorrect solution that you predict may be
presented by a novice learner. Describe the learner’s alternative conception that
could lead him or her to present the incorrect answer.

–  In your opinion, is it possible that a student, who has an alternative conception
related to the said concepts, will present a correct answer for these programs? If
yes, present a different program that, in your opinion, will expose the alternative
conception.

Activity 38  (continued)

84 6  Learners’ Alternative Conceptions

6 �Activity 39: Evaluation of a Pupil’s Answer in a Written Exam2

The target of this activity is to let the prospective computer science teachers experi-
ence the evaluation process. For this purpose, the activity combines computer
science topics, such as the role of arrays, and pedagogical ideas such as, how to
evaluate an answer given by a pupil in an exam. Specifically, in the activity, the
students analyze and evaluate a genuine answer that was given by a high school
pupil in an authentic written exam.

›  Stage A: Checking a pupil’s written answer, work in small teams
The students are presented with a question from a real test, alongside a pupil’s

authentic answer to that question. Working in small teams, the students are asked to
read the answer, understand the pupil’s intentions, explain the alternative concep-
tion that may lead the pupil to give this answer, and grade the answer. They are also
asked to describe what they would ask the pupil if they had a chance to talk to this
pupil. This issue is important to address since in school life teachers have many
opportunities to talk to their pupils. The task is presented in Table 6.2.

2 Based on Lapidot and Hazzan (2003).

Table 6.2  Worksheet about the evaluation of a pupil’s answer in a test

Worksheet: Evaluation of an answer to a test

This worksheet presents a question that was given to high school pupils in a written exam
after they had learned arrays, and a genuine answer given by one of the pupils.

Work on the following tasks in teams.

1.  Read the question and answer it.
2. � Read the pupil’s answer, try to understand the pupil’s intentions, and explain why the
pupil wrote that answer or, in other words, what could lead him or her to write this
answer.

3. � If you had a chance to talk to this pupil, how would you confront the pupil with the
written answer?

4.  Mark all the mistakes and problems you find in the answer.
5. � Take a clean copy of the answer and regard it as if it was the pupil’s exam notebook.
Determine what to write to the pupil and how to present your comments.

6.  Decide on the grade, out of 30 points, that indicates this answer’s score.

The question
Write a program that receives as input a natural (positive integer) number n, following by
n grades, each of them in the range of 0–100. The program should calculate and print:

1.  The average of all grades.
2.  The number of grades which are higher than 55.
3.  The lowest grade.
4.  The number of grades that are higher than the average (found in Task 1).

(continued)

856.3  Activities to Be Facilitated in the MTCS Course

›  Stage B: Class discussion
During the class discussion, it is recommended to follow the six tasks presented

in the worksheet by the same order.
It is important to emphasize that the wrong answer (by itself) is not the most

important issue in this activity and that it only serves as a trigger to discuss a variety
of important pedagogical issues, such as, the understanding of pupil’s intentions
(Task 2) and talking to the pupil (Task 3).
With respect to Task 2, it is relevant to highlight the fact that though the revealing

of the source of wrong answers is not an easy pedagogical activity, it is crucial if a
teacher wishes to understand the mental model that lead pupils to present incorrect
answers. It is, therefore, relevant to explore different strategies for recognizing
pupil’s intentions in written exams.
Task 3 focuses on the assistance that a teacher may give to pupils. The students

should realize that statements such as, “your answer is wrong” or “you don’t under-
stand what we learned in class,” are simply irrelevant since they do not help the pupil

(continued)

Activity 39  (continued)

The pupil’s answer (indentations and comments were copied from the pupil’s notebook)

86 6  Learners’ Alternative Conceptions

6

realize his or her wrong cognitive model and further, can decrease learners’ motiva-
tion. Therefore, teachers should adopt a more clinical approach which confronts
pupils with their answers and lead them to understand their mistakes. Activity 40
(see below) presents such a conversation, in which a teacher uses concrete examples
in order to lead the pupil to understand his wrong mental model.
The discussion of Tasks 4, 5, and 6 should lead to a variety of evaluation-related

conclusions (see Chap. 10). One of them highlights the fact that there is no single or
unique way to evaluate pupils’ answers in exams and that different approaches can be
applied in the process of exam evaluation. These approaches, however, should make
sense and be based on thoughtful pedagogical considerations, and when appropri-
ate, should be explained to the pupils who take the exam. Another conclusion
should increase students’ awareness of the fact that sometimes they can, uninten-
tionally, convey different messages (either explicit or implicit) to pupils through
their comments written on pupils’ exam papers.
Additional evaluation-related issues that can be addressed in this context are:

Should teachers award points for the correct parts of a pupil’s wrong answer?
Alternatively, when a mistake is observed, should teachers subtract points from the
total points allocated for a specific question? What is the weight of each mistake?
Should a teacher distinguish between logical mistakes, syntax mistakes, and program-
ming style issues? Chapter 10 further elaborates on these questions.

Activity 39  (continued)

(continued)

�Activity 40: A Clinical Conversation with a Pupil as a Means �
to Reveal Alternative Conceptions

›  Stage A: A clinical conversation with a pupil, work in small teams
The students in the MTCS course are given a transcription of a conversation

between a researcher and a pupil, David. At several points they are asked to stop
reading and answer several questions. The activity is presented in Table 6.3.

Teachers conduct clinical conversations with their pupils on a daily basis. In these talks,
teachers improve their understanding of their pupils’ difficulties and use this improved
understanding to determine what pedagogical approach or a teaching action to apply. In
many cases, these talks take place after a pupil claims a general statement that indicates
some difficulty, such as “I don’t understand,” and the teacher’s intention is to uncover the
source of the pupil’s difficulty.
Activity 40 highlights a different situation, in which a pupil is not aware at all about his

wrong perception. In this case, the interview serves as a means to expose the pupil’s under-
standing and as a teaching intervention that guides the pupil to find the correct answer.
Based on this activity, the students in the MTCS course should increase their awareness of
the fact that sometimes, instead of telling pupils that their answer is wrong, a series of
questions can lead pupils not only to derive this conclusion by themselves, but also to cor-
rect their answers.

876.3  Activities to Be Facilitated in the MTCS Course

Table 6.3  A worksheet on a clinical conversation with a pupil

Worksheet: A “clinical conversation” with a pupil

David is a high school pupil who just finished writing an exam. The interview with him took
place just after the exam. He was very happy and had a good feeling about his answers.
He was asked to present his solution to one of the questions.

In what follows, the question is presented. Then, the interview transcription is laid out.
Please read the transcription and answer the questions presented after each part of the
interview.

The exam question: Write a program that gets any 35 numbers and prints the positive numbers.
1.  Read the question and answer it.

Interview – Part 1
(R – represents the researcher, D – represents David)
D:  The test was great, I did it very well.
R:  How did you solve question 9?
D:  I wrote [David writes his answer on a paper:]

2.  Before going on reading the interview, try to understand David’s intention in his answer.
3.  As a teacher, what would you like to ask David now?

Interview – Part 2
R: � Please explain why you wrote here Math.random() * 36? [the researcher points at the
assignment]

D: � I did 36 because you need 35 numbers and it [the computer] doesn’t give the last one,
so you need another one [number].

R:  How many numbers do you think there are now in variable a?
D: � 35 numbers, like I did here [points at the assignment] and here I print them one after
the other [points at the assignment before the if statement].

4.  Explain David’s conceptions. To what concepts are these conceptions related?
5.  As a teacher, what would you like to ask David now?

Interview – Part 3
R: Let’s try to run the program together. Please tell me which numbers you think will be in a.
D: Ah … for example 1 7 9 3 [the researcher writes the numbers on a paper, one below the
other]

R: Is −3 possible?
D: Yes, Oh, I didn’t do it well. I have a mistake with −3.

Activity 40  (continued)

(continued)

88 6  Learners’ Alternative Conceptions

6 Activity 40  (continued)

›  Stage B: Class discussion
After the students finish their work, it is recommended to facilitate a class discus-

sion which concentrates on the last two parts of the worksheet: David’s conceptions
and planning an optional series of questions for David. It is also optional to split the
discussion into several parts, i.e., a short discussion after each part of the worksheet.
It is important to deliver the message that the researcher could ask another question

in this conversation which might lead to either similar or different pupil’s conclusions.
Specifically, while the researcher’s questions related to the fact that David assumes
that the variable a contains many values, other problems in David’s answer could
be addressed, such as the fact that he used random numbers instead of reading the
input, and the fact that he did not use any repetitive (loop) instruction. The discussion
may focus on specific questions that may lead David to realize his difficulties with
respect to these issues.

R: Never mind, let’s continue. Is 100 possible?
D: Yes
R: �Let’s put aside for just a moment what you wrote. Please look at the following
instructions:

  a = 3;
  a = 7;
  System.out.println (a);
  What do you think will be printed?
D: [answers immediately] 10
R: Why 10?
D: �Oh, I was wrong. It will print only 7. I have to add in my solution another [instruction
of] System.out.println(a) [adds it in the original program before the if instruction, �
see below]

[At this stage the interview stopped due to interruptions from other pupils in the room].

6.  Did the interview improve your understanding about David’s conceptions?
7.  Would you ask David different questions than the researcher did? Please prepare a series
of questions to ask David.

89References

References

Bents M, Bents R (1990) Perceptions of good teaching among novice, advanced beginner and
expert teachers. American Educ. Res. Assoc., Boston, MA

Fuller F F (1973) Teacher education and the psychology of behavior change: A conceptualization
of the process of affective change of preservice teachers. Annu. Meet. American Psychol.
Assoc., Montreal, Canada

Haberman B, Ben-David Kollikant Y (2001) Activating “black boxes” instead of opening
“zippers” – A method of teaching novices basic CS concepts. SIGCSE Bull. 33(3): 41–44

Lapidot T, Hazzan O (2003) Methods of Teaching Computer Science course for prospective teachers.
Inroads - SIGCSE Bull. 35(4): 29-34

Shulman L S (1986) Those who understand: Knowledge growth in teaching. Educ. Res. 15(2):
4–14

91O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_7, © Springer-Verlag London Limited 2011

Teaching Methods in Computer Science
Education 7

Abstract  This chapter presents active-learning-based teaching methods that computer
science educators can employ in the classroom. The purpose of this chapter is first, to let
the students in the MTCS course experience a variety of teaching methods before becom-
ing computer science teachers; second, to discuss, together with the students, the advan-
tages and disadvantages of these teaching methods; and third, to demonstrate high school
teaching situations in which it is appropriate to employ these teaching methods. Within
this chapter we discuss (a) pedagogical tools: games, the CS-Unplugged approach, rich
tasks, concept maps, classification, and metaphors; (b) different forms of class organiza-
tion; and (c) mentoring software project development.

7.1 
�Introduction

This chapter presents active-learning-based teaching methods that computer science edu-
cators can employ in their classroom (see Chap. 2). We focus on nontraditional methods
in order to encourage computer science educators to employ these methods in their
classes.

In the context of the MTCS course, the purpose of this chapter is first, to let the students
experience a variety of teaching methods before becoming computer science teachers;
second, to discuss advantages and disadvantages of these teaching methods; third, to dem-
onstrate high school teaching situations in which it is appropriate to employ these teaching
methods; and finally, to vary the teaching methods employed in the course. Since, in most
cases, the activities carried out in the MTCS course focus on a specific computer science
topic, they also provide the prospective computer science teachers with additional oppor-
tunity to improve their own understanding of computer science concepts.

The teaching methods presented in this chapter are pedagogical tool (Sect. 7.2), differ-
ent forms of class organization (Sect. 7.3), and mentoring software project development
(Sect. 7.4).

92 7  Teaching Methods in Computer Science Education

7
For each teaching method, we first outline its meaning, target, and importance in

computer science education. Then, we present active-learning-based activities to be facili-
tated in the MTCS course. The actual facilitation of these activities in the MTCS course is
important since the students should sense how their future high school pupils will feel
when they, as computer science teachers, will employ these teaching methods in their high
school classes.

We note that several of the teaching methods presented in this chapter are illustrated
also in other chapters of this Guide when the focus is placed on another pedagogical
topic.

7.2 
�Pedagogical Tools

In this section, we review the following pedagogical tools:

Pedagogical games (•	 Sect. 7.2.1)
The CS-Unplugged approach (•	 Sect. 7.2.2)
Rich tasks (•	 Sect. 7.2.3)
Concept maps (•	 Sect. 7.2.4)
Classification (•	 Sect. 7.2.5)
Metaphors (•	 Sect. 7.2.6)

7.2.1 
�Pedagogical Games

Games have a great pedagogical potential. A well-planned game enables to learn new
concepts in an alternative class atmosphere, involves social interaction, introduces a
change in the teaching method, and is a kind of activity that all students are good at.
Games, as other pedagogical tools, may also have disadvantages, such as the chaos that a
game may cause in the class, dominant students’ takeover of the game process, learners’
disagreement to participate in an activity they conceive childish, and teacher’s inability to
control the class as they do in traditional teaching settings. Table 7.1 summarizes some
advantages and disadvantages of games from pedagogical, social, and emotional
perspectives.

We note that we do not discuss here computer games, but rather, social games that
aim at teaching computer science ideas; the games we refer to can be played with or
without computers. We note also that the use of games as a pedagogical tool is men-
tioned also in the next section, which focuses on the CS-Unplugged approach, which is
a computer science teaching method that is largely based on noncomputerized games
and activities.

Activity 41 presents a lesson (or two – pending on the available time) of the MTCS
course that focuses on how to use games in computer science education.

937.2  Pedagogical Tools 	

Table 7.1  Advantages and disadvantages of games from pedagogical, social, and emotional perspectives

Pedagogical Social Emotional

Advantages Based on active
learning

–   ��Enables all students to
participate

–   �Enhances interactivity
(if played with more than
one player)

–   �Most games are
competitive and can
increase motivation

Breaks the
routine

Disadvantages – � �May distract
learners’ attention
from the intended
computer science
content

– � �Teachers’
conception that
time is wasted and
that no meaningful
learning takes
place while playing

–   �Dominant students may
control the game process

–   �May cause chaos in the
class

–   �Learners’ disagreement to
participate in an activity
they conceive childish

–   �Most games are competi-
tive and may distract some
learners

If a player loses a
game, it may
influence his
or her feeling
regarding
computer
science
learning

Activity 41: Pedagogical Examination of Games

›  Stage A: Playing a game
In the spirit of the active-learning-based teaching model (see Chap. 2), the lesson

starts with playing a pedagogical game. The Conditional-Statement-Bingo (Hebetim
1995), presented in Table 7.2, is one optional game. Such experience may help the
students sense the potential use of games in computer science education and may
expand their creative ideas for additional games that they will be asked to design in
a later stage.

›  Stage B: Class discussion
After the students had felt the pedagogical potential of games in the context of

computer science learning (Stage A), they are presented with several questions (see
Table 7.3) in order to initiate a discussion about the topic. The questions can be
presented orally or as a worksheet on which the students work as a preparation
toward the class discussion. In the discussion, the instructor can choose on what
questions to focus according to the lesson’s flow.

›  Stage C: Game design
Based on the discussion that took place in Stage B, the instructor, together with

the students, selects one kind of game (e.g., an outdoor game) and the students are
asked to work in teams and to design such a game. It is recommended to ask all the
teams to design a game on the same computer science topic. They should also be
asked to explain the pedagogical guidelines they followed.

(continued)

94 7  Teaching Methods in Computer Science Education

7 Activity 41  (continued)

›  Stage D: Presentation and class discussion
Each team presents the game it designed, together with the pedagogical guide-

lines it followed. With respect to each game, it is important to first address its tar-
gets, and second – its potential contribution to the learning of the specific computer
science topic.

›  Stage E: Design and construct a game
The students are asked to design and construct at home another game, of a different

kind than the one designed in class, on any computer science topic, according to
their choice. In this case, they are asked also to construct the game, that is, to submit
a self-contained work that allows computer science learners start playing the game.

Table 7.2  The Conditional-Statement-Bingo game

The Conditional-Statement-Bingo game

In the regular Bingo game, each player holds a board with numbers. The game coordina-
tor raffles a number and announces it to all players. Players who have this number
on their boards, mark the cells with the raffled number. The winner is the first player
who successfully marks all the cells on his or her board

The Conditional-Statement-Bingo game is based on the same idea. It can be played
with the whole class or in small groups. The coordinator can be one of the learners

The Game – Overview
Each board has nine cells and each cell includes a valid conditional statement (see

Fig. 7.1). In each such statement the instruction System.out.println (“Bingo”)
appears in one of the statement branches. That is, for each if statement, the word
Bingo is printed at one of its branches, according to the variables’ values. For
example, if c’s value is bigger than 80, Bingo is printed in the following case: if
(c > 80) System.out.println (“Bingo”); and the cell is marked

Each player’s target is to mark all the cells on his or her board, according to the
following rules

The Game – Rules
The game coordinator shuffles the cards and puts them in a deck with their face down.

The coordinator takes one card and reads its content. The cards include assignments
to variables a, b or c, for example, a = −7, b = 2 × (10 + 15).

After the coordinator reads the assignment statement, the players check each one in his
or her board, what cells should be marked; that is, a cell can be marked, if the
System.out.println (“Bingo”); statement is executed according to the announced
values.

The game is over when the card deck is empty or when one of the players marked all
the cells in his or her board.

Note: The game can be prepared in different levels of conditional statements difficulty,
according to the class’ level.
©Hebetim - Journal of the Israeli National Center for Computer Science Teachers (1995)

(continued)

957.2  Pedagogical Tools 	

Again, they should also explain the target and the pedagogical guidelines they
followed in the design and construction process of the game.

›  Stage F: Playing the games
In the lesson, in which the students submit the games they designed and con-

structed at home, it is recommended to let each of them present his or her game
shortly and then, to select one or two games and let the students play it. After they
play the game, it is important to reflect on their experience while playing, addressing
cognitive, social, and emotional aspects.

if (c == 50)

System.out.println (“Bingo”)

else

System.out.println (“Hello”)

if (b > −2)

System.out.println (“Hello”)

else

System.out.println (“Bingo”)

if (a < 5)

System.out.println (“Bingo”)

if (c > 0)

System.out.println (“Big")

else

System.out.println (“Bingo”)

if (b < 34)

System.out.println (“Bingo”)

if (a > −10)

System.out.println (“Hello”)

else

System.out.println (“Bingo”)

if (c > 80)

System.out.println (“Bingo”)

if (b == 120)

System.out.println (“Bingo”) System.out.println (“Bingo”)

System.out.println (“No”)
else else

System.out.println (“Error”)

if (a == 10)

Fig. 7.1  An example for a board of the Conditional-Statement-Bingo game

Table 7.3  Questions about games as a pedagogical tool is computer science education

Questions about games as a pedagogical tool in computer science education

– � What kinds of games are you familiar with? (e.g., indoor/outdoor games; games
with a different number of players, etc.)

– � In what cases does it make sense to use games as a pedagogical tool in
computer science education?

– � How can games enhance computer science learning?
– � Do games fit a specific population of computer science learners? Explain your

opinion
–  What topics are specifically suitable to be learned by games?
–  What disadvantages does the teaching with games have?
–  Can a teacher evaluate learning processes during game playing?
–  In what frequency should a teacher use a game as a pedagogical tool?
–  What is the teacher’s role during the game?

(continued)

Activity 41  (continued)

96 7  Teaching Methods in Computer Science Education

7

7.2.2 
�The CS-Unplugged Approach

The CS-Unplugged approach delivers the message that “Computer Science isn’t really
about computers at all!” In this spirit, different groups around the world developed series
of learning activities that aim at teaching a variety of computer science concepts, such as,
binary numbers, sorting algorithms, data structures and data compression, without con-
necting them directly either to computers or programming. One of the main resources for
such activities is the extensive free collection developed by the Computer Science
Unplugged team.1 Additional groups around the world adapted this approach for different
populations. In all cases, the computer science concepts are presented through engaging
activities and puzzles by using cards, crayons, and active playing.

The purpose of the Activity 42, that focuses on the CS-Unplugged approach, is to
increase students’ awareness to several facts related to the use of computers in computer
science teaching, such as, differences between teaching computer science with and without
computers, the variety of computer science teaching methods, strategies for the selection
of a suitable teaching method for the teaching of a specific computer science topic to a
specific population, and the option to teach computer science concepts independent of
technology. These topics should be shortly discussed in the MTCS course in between the
stages of the activity.

Activity 41  (continued)

›  Stage G: Summary
In summary, it is important to address the advantages and disadvantages of incor-

porating games in computer science education and to highlight these advantages and
disadvantages from pedagogical, social, and emotional aspects. Table 7.1 above can
guide the presentation of such a summary. Needless to say, the working assumption
is that the games we refer to are well designed and a pedagogical thought has been
invested in their development. One of the important conclusions of this lesson should
deliver the message that though games are effective teaching tool, they should be
used thoughtfully based on careful examination of their suitability to each class.

Activity 42: Pedagogical Examination of the CS-Unplugged Approach

›  Stage A: Experience a CS-Unplugged activity
The instructor selects one of the CS-Unplugged activities and invites the students

to experience it before addressing it from a pedagogical perspective.

(continued)

1 See http://www.csunplugged.org/

http://www.csunplugged.org/

977.2  Pedagogical Tools 	

7.2.3 
�Rich Tasks2

Rich tasks (Lapidot and Levy 1993; Levy and Lapidot 1997) are programming exercises
that (a) can be solved in a variety of ways, when each solution elicits and promotes a dis-
cussion about one or more major computer science ideas; and (b) can be solved within the
duration of one lesson based on learners’ current knowledge. It is important to note that
rich tasks can focus on any computer science subject.

The importance of rich tasks stems from the fact that in the learning/teaching processes
of programming, it is sometimes easier to focus on technical aspects. Since this temptation
is especially relevant for novice computer science teachers, and since rich tasks illustrate
how even the teaching of basic computer science concepts can be designed in a way that
highlights computer science big ideas, it is important to address this pedagogical tool in the
MTCS course.

The potential contribution of rich tasks to the learning of computer science is evident;
specifically, since rich tasks highlight computer science concepts within a programming
context, learners acquire also more abstract knowledge, in addition to computing-oriented
knowledge. Clearly, the concept of a rich task can be applied also to non-programming

Activity 42  (continued)

›  Stage B: Exploration of the CS-Unplugged approach
The students are asked to look at the CS-Unplugged website, to select two topics

from this website and analyze, from a pedagogical perspective, the suggested activities
for the teaching of these topics.

›  Stage C: Design of a CS-Unplugged activity, work in pairs
The students work in pairs, and for one topic on which they worked in Stage B

they are asked to design another activity that teaches it without computers.
After the students design their activities, they present their activities in front of the

class, along with the pedagogical guidelines they followed in the design process.
Then, a summary should be presented that organizes the main issues that came up

during students’ work. In this summary, it is important to highlight the fact that both
teaching approaches (with and without computers) have advantages and disadvan-
tages, and that each approach can be used in different teaching situations.

› � Stage D: The CS-Unplugged approach and other computer science teaching meth-
ods, homework

First, the students are asked to design an activity that teaches the topic they
selected in Stage C with a computer. Second, they are asked to analyze similarities
and differences between the two activities they designed: the one that uses computers
and the one that does not use computers, and to address advantages and disadvan-
tages of the teaching approach that each activity represents.

2 ©Hebetim - Journal of the Israeli National Center for Computer Science Teachers.

98 7  Teaching Methods in Computer Science Education

7
tasks; however, we highlight the notion of a rich task in the context of programming to
increase the prospective computer science teachers’ attention to the potential contribution
of programming tasks also to learners’ conceptual knowledge (in addition to technical
knowledge, on which, as mentioned, there is a tendency to focus in such cases).

We highlight several pedagogical aspects related to rich tasks:

A rich task is a well-selected programming task that has advantages from both cogni-•	
tive and pedagogical perspectives. For example, from a cognitive perspective, it elicits
learners’ thinking on a higher level of abstraction; from a pedagogical perspective, a
rich task demonstrates an active learning teaching approach which encourages all learn-
ers to express their creativity and promotes social interaction.
The main purpose of rich tasks is to highlight computer science ideas (see, e.g., the list •	
presented at Stage A of the Activity 43); the solutions themselves and the technical
details should get less attention.
The different solutions of rich tasks can be presented in the class in different orders. In •	
general, the presentation order should be determined based on the pedagogical targets
of the computer science educator, as well as on the learners’ background.
When a lesson is planed around a rich task, it is important to take into consideration that •	
learners tend to focus on technical aspects, rather than on conceptual notions, and to be
satisfied when they get a working solution. Therefore, conceptual computer science
ideas should be addressed only after the teacher verifies that all the pupils in the class
solved the task (that is, wrote a running program), and only based on this realization, to
move on to the more conceptual discussion. In fact, as hinted, it is important to realize
that also for teachers/instructors it is sometimes easier to focus on technical issues.
However, as has been mentioned previously in this Guide, the softer computer science
concepts should not be neglected in computer science education (see Chap. 3).

In the MTCS course, in addition to the introduction of this pedagogical tool to the stu-
dents, it is recommended to let the students experience working on rich tasks to examine
this teaching approach from a pedagogical perspective, and to construct a rich task. Activity
43 illustrates how this multifaceted perspective can be achieved by one specific rich task.

Activity 43: Pedagogical Examination of Rich Tasks

This task is intended for novice learners. The same principles, however, can be applied
for advanced computer science concepts and learners. We chose to discuss this particu-
lar rich task in the MTCS course to demonstrate that many different solutions exist even
for a relatively simple task when each solution highlights a different important com-
puter science concept(s).
›  Stage A: Solving a rich task, individual work

The students are asked to work on the task, presented in Table 7.4.

(continued)

997.2  Pedagogical Tools 	

Activity 43  (continued)

While the learners are working (with or without computers) on this task, the edu-
cator walks around in the class in order to collect different solutions. He or she can
also talk to the learners, encourage them to develop more than one solution, and
locate misconceptions and other powerful computer science and pedagogical ideas
to be addressed later in the lesson.

In the next stage, we see that this task has the potential to raise discussions about
a wide variety of computer science topics, such as:

Abstraction•	
Programming style•	
Conditional statement, different brunching strategies, linearity versus nesting•	
Imperative vs. functional approach•	
Efficiency•	
Readability•	
Procedures/methods, functions•	
Meaningful names•	
Boolean expressions and functions, the flag metaphor•	
Data types•	
Parameters•	
Sophisticated (tricky) solutions.•	
As can be easily observed, these concepts are varied and highlight both rigid and

soft aspects of computer science; therefore, such tasks, though look like relatively
simple programming tasks, are called rich tasks.

›  Stage B: Presentation of learners’ solutions
After the learners worked on the task, the solutions are presented by the instruc-

tor and discussed with the whole class. The instructor, however, does not set the
order of presentation randomly or according to the learners’ desire to present their
solution; alternatively, in order to exhaust the potential pedagogical contribution of
this task, the instructor selects very carefully the order of presentations (and even
prepares it a priori). The solutions can be presented by for example, their readability
level, their algorithm complexity, their sophistication level, or the level of the com-
puter science ideas they demonstrate. For each solution, it is recommended to high-
light the computer science ideas it illustrates.

Table 7.5 presents possible solutions for this task. If time permits, it is suggested
to let the learners capture the essence of each solution by giving it a title.

Table 7.4  A rich task

Task

Write a method that checks whether a given date is valid.
The method gets as inputs three integers (a day, a month, a year) and checks whether

they represent a valid date in the twenty-first century.
Assume that each month has 30 days.

(continued)

7

Activity 43  (continued)

(continued)

Table 7.5  Possible solutions of the rich task

Possible solutions of the rich task

Activity 43  (continued)

Table 7.5  (continued)

(continued)

102

7

›  Stage C: Class discussion
In the discussion, it is important to highlight the messages we emphasize in the intro-

duction of the concept of rich task.

Activity 43  (continued)

Table 7.5  (continued)

(continued)

1037.2  Pedagogical Tools 	

›  Stage D: Construction of a rich task, homework
As homework, the learners are asked to construct another rich task and to explain

the guidelines they followed. It is important to note that it is not a simple task to con-
struct a rich task. In fact, the construction of a rich task is a kind of a rich task by itself
since it requires the consideration of different options and the exploration of the com-
puter science ideas that can be expressed by the possible solutions of the task.

We mention one additional example of a rich task: Write a function that gets as input
four numbers and returns the biggest number (maximum of) among the four numbers.

7.2.4 
�Concept Maps

According to Novak and Cañas (2008), “concept maps are graphical tools for organizing
and representing knowledge. They include concepts, usually enclosed in circles or boxes
of some type, and relationships between concepts indicated by a connecting line linking
two concepts. Words on the line, referred to as linking words or linking phrases, specify
the relationship between the two concepts.”

For illustration, we present a concept map that partially represents the MTCS course
and the connections between some of the topics it addresses (see Fig. 7.2).3, 4 It shows, for
example, that the MTCS course addresses research in computer science education that
examines teaching methods and that teaching methods may apply active-based learning; it
also reflects the fact that the theme of evaluation is addressed in the course with respect to
the assessment of learners’ conception. In this spirit, throughout this Guide, we try to
reflect these connections by mentioning cross-references to different chapters.

Since, as is illustrated, for example, in Fig. 7.2, concept complexity is reflected in its
concept map, in most cases, a concept map is constructed gradually: first, core concepts
related to the said topic are identified and located in the map, and then, relations between
these concepts are identified, named, and located. Following the creation of the first ver-
sion of the concept map, learners can update/change the map, either by reshaping its form
or by adding/removing specific concepts and/or relationships.

When examined from a constructivist perspective (see Chap. 2), the potential contribu-
tion of the construction process of concept maps to learners’ understanding of the concept
for which the map is constructed is clear. While building a concept map, learners work
with concepts and relationships between them, manipulating them both mentally (in their
mind) and physically (in the map); thus, in parallel to the gradual actual construction

3 Due to space limitations, only part of the topics addressed in the MTCS course are included in the
map.
4 Sometimes, different kinds of shapes and arrows are used to indicate different kinds of concepts and
different types of relations among them. For the sake of simplicity, we decided to use the same shape
(rectangle) for all concepts and the same kind of arrow for all types of relationships between them.

Activity 43  (continued)

104 7  Teaching Methods in Computer Science Education

7

Recursion

relates to

Programming
paradigms

is a

is a

Learners'
conceptions

difficulties
with

Design a
school lesson

Evaluation

taught
in

Practicum

The MTCS
course

Research in
CS education

Teaching
methods

Lab–based
teaching

Active-based
learning

assesses

applies

addresses

addresses

addresses kind of

examines

addresses

addresses

addresses

examines

is a

addresses

assesses

CS concept

Fig. 7.2  Representation of the MTCS course by a concept map

1057.2  Pedagogical Tools 	

process of the map, they construct their mental image of the topic represented by the map.
For additional details about the theory underlying concept maps and how to construct and
use them, see Novak and Cañas (2008).

Concept maps can be used for different pedagogical purposes, such as a summary of a
topic after its main concepts were taught, identification of learners’ alternative conceptions
(see Chap. 6), and evaluation of learners’ understanding of the said topic (see Chap. 10).
In practice, in the classroom, learners can be asked to build a concept map from scratch; in
other cases, an empty map can be given to the learners when they are asked to locate in it
concepts and relations presented in a given list.

The fact that concept maps can be used for different pedagogical purposes, together
with the nature of computer science, its many facets representing different abstraction
levels and the interconnections among them, makes concept maps relevant for computer
science teaching and learning processes in general and for the MTCS course in particular.

Accordingly, Activity 44 that focuses on concept maps can be facilitated in the MTCS
course after the idea of concept map is briefly introduced. This short introduction can be
accompanied with a relatively simple example, not necessarily taken from computer sci-
ence (see the Web for plenty of examples of concept maps), and should include the main
guidelines of how to construct concept maps, without delving yet into their pedagogical
usages.

Activity 44: Pedagogical Examination of Concept Maps

›  Stage A: Concept map construction, group work
In order to discuss meaningfully the use of concept maps in computer science edu-

cation, the students should experience first the construction process of a concept map.
For this purpose, the students are asked to work in groups and to construct a concept
map for a given computer science topic. To exploit the benefits of concept maps, it is
recommended to select a topic in which both its rigid and soft aspects are dominant, for
example, variables or complexity. In addition, each group should select one of its
members to document the group’s work during the construction process. This docu-
mentation is used later (in Stage C) in the class discussion that focuses on how to use
concepts maps in computer science classrooms.

›  Stage B: Concept map evaluation, group work
This stage focuses on the evaluation of concepts maps.
First, the class discusses evaluation rules for concept maps. The instructor should

navigate this discussion in a way that, at its end, an evaluation scheme for concept
maps that reflects learners’ understanding of the said topic is formulated.

Then, the groups rotate the concept maps they constructed in Stage A, and each
group evaluates the concept map it received according to the evaluation scheme that
has just been defined by the class.

(continued)

106 7  Teaching Methods in Computer Science Education

7 Activity 44  (continued)

›  Stage C: Class discussion
In this class discussion, the two first stages are summarized. This discussion

should address both cognitive aspects (expressed mainly in Stage A) and pedagogi-
cal aspects (expressed mainly in Stage B) of concept maps.

With respect to the cognitive aspect, it is important to highlight the role and con-
tribution of active learning to a meaningful mental construction of the learned topic
and the fact that the construction process of a concept map is a dynamic process, in
which students reshape and reorganize both the concept map as well as their mental
image of the said topic. The team members who documented the group work in
Stage A can present their summaries at this stage.

With respect to the pedagogical aspect, it is important to highlight the fact that the
evaluation of concept maps should reflect the essence of concept maps, and there-
fore, guidelines, such as the following ones should be included in any evaluation
policy:

The main concepts related to the said topic should be included in the map;•	
The relationships between the concepts should be well defined.•	
In this class discussion, it is important also to review the other pedagogical usages

of concept maps, as mentioned in the introduction of this section.

If times allows (or as a homework assignment), it is recommended to let the students
construct a concept map for another computer science topic; this time, when they are
aware of cognitive and pedagogical aspects of concept maps.

Another option is to use concept map for a mid-term task or an end of the semester sum-
mary work in which the students are asked to construct a concept map which represents what
they have learned so far in the course. Not only does such a task foster students’ reflection
about what they have learned so far in the course, it also encourages them to organize what
they have learned so far in one framework that binds computer science topics with peda-
gogical and cognitive aspects of computer science education.

7.2.5 
�Classification of Objects and Phenomena from Life

In Sect. 3.7.2, we presented a classification task in the context of computer science soft ideas
(see Activity 14). In this section, we expand the discussion about classification tasks in gen-
eral, and about the use of classification tasks in the MTCS course in particular. Specifically,
we introduce classification as a teaching method in computer science education. We concen-
trate here on the classification of objects and phenomena from real life to support and guide
learners’ mental construction of the concepts under the discussion. The working assumption

http://Sect.�3.7.2

1077.2  Pedagogical Tools 	

is that the work with familiar objects and phenomena enables to concretize computer science
concepts which, in later stages, as is illustrated below, are conceptualized on a higher level of
abstraction. This kind of task relies heavily on the constructivist approach (see Chap. 2),
according to which learners construct their knowledge through a meaningful engagement
while being active in a learning environment designed for this purpose.

In the MTCS course, this kind of tasks form a basis for a discussion about the impor-
tance of allowing novices to work with different representations of concepts in order to
support their gradual mental construction.

Activity 45 is a classification activity which illustrates this notion with respect to
control structures.

�Activity 45: Pedagogical Examination of Classification

›  Stage A: Classification activity, group work
The activity begins by presenting the students with different objects and phenomena

taken from various sources: music, literature, transportation, newspapers, and so on
(see Fig. 7.3). As can be seen, all the examples are taken from everyday life and
experiences, and none of them is taken from the computing world. The students are
not informed what the topic of the page is.

The students are asked to work in groups and to classify these instances accord-
ing to different criteria according to their own choice. Clearly, there is no correct
classification. The students are also asked (a) to expand their classified sets by add-
ing new instances to each set, (b) to give a title to each set, and (c) to suggest a title
for the whole page. The specific instructions are presented in Table 7.6.

›  Stage B: Class discussion
After the groups have worked on their classification, each group shares its cate-

gorization with the rest of the class. This sharing process can be performed in differ-
ent forms. Here are several suggested forms: (1) A group presents the instances of a
specific set and the whole class should guess its classification criterion. (2) A group
presents its additional new instance for a specific group and the class should guess
which of the presented instances in the worksheet belong to this set. (3) A group
presents its title for one of the sets and the whole class should guess which instances
belong to that set.

During the discussion, the instructor should encourage a dynamic discourse and
introduce generalizations and formal terminology with respect to control structures.
Learners in general, and the prospective computer science teachers in the MTCS
course in particular, are often exposed in this discussion to new concepts and to dif-
ferent ideas and perspectives offered by other groups. This exposure, in turn, encour-
ages them to reconsider their previous perspective at the topic (control structures, in
this case) and to modify it, if needed.

The discussion can end with a summary of the main concepts related to control
structures that have been introduced in this activity.

(continued)

108 7  Teaching Methods in Computer Science Education

7

5 Resources of the items included in the control structure classification worksheet (Fig 7.3):
Item #3 http://homes.bio.psu.edu/people/faculty/bshapiro/research.html
Item #4 http://www.chicago-l.org/operations/lines/loop.html
Item #5 http://www.quiltdesignnw.com/Q132-SimplySunny-Easy-Kaleidoscope-Flower-quilt-pattern.
htm
Item #8 http://www.junewatts.com/wwwcd.htm
Item #9 http://vanelsas.wordpress.com/2009/04/03/questions/
Items #10 and #12 Lyrics from Mother Goose
Item #13 Article 11 of the Universal Declaration of Human Rights of the General Assembly of the
United Nations, formulated on December 10, 1948: http://www.un.org/en/documents/udhr/
Item #14 http://www.redbubble.com/people/taniadonald/t-shirts/1340952-3-if-you-are-close-enough-
to-read-this-you-can-blow-me
Item #15 http://www.allbusinessrecords.com/projects.html

Activity 45  (continued)

Fig. 7.3  Classification worksheet for control structures5 (© Migvan – Research and Development
in Computer Science Education, Department of Education in Science and Technology, Technion –
Israel Institute of Technology)

http://homes.bio.psu.edu/people/faculty/bshapiro/research.html
http://www.chicago-l.org/operations/lines/loop.html
http://www.quiltdesignnw.com/Q132-SimplySunny-Easy-Kaleidoscope-Flower-quilt-pattern.htm
http://www.quiltdesignnw.com/Q132-SimplySunny-Easy-Kaleidoscope-Flower-quilt-pattern.htm
http://www.junewatts.com/wwwcd.htm
http://vanelsas.wordpress.com/2009/04/03/questions/
http://www.un.org/en/documents/udhr/
http://www.redbubble.com/people/taniadonald/t-shirts/1340952-3-if-you-are-close-enough-to-read-this-you-can-blow-me
http://www.redbubble.com/people/taniadonald/t-shirts/1340952-3-if-you-are-close-enough-to-read-this-you-can-blow-me
http://www.allbusinessrecords.com/projects.html

1097.2  Pedagogical Tools 	

7.2.6 
�Metaphors

Metaphors are used in order to understand and experience one specific thing by using an
analogy to another thing, usually a familiar concept (Lakoff and Johnson 1980). Many
metaphors are used in the field of computer science on a regular basis; just think about
pointers, a menu, windows, a mouse, a tree, and the computer memory. Therefore, and
since the use of metaphors is also a powerful pedagogical tool, computer science teachers

Activity 45  (continued)

›  Stage C: Construction of a classification activity, homework
After the activity is facilitated with respect to control structures, it is recom-

mended to ask the students to construct a similar activity with respect to another
computer science concept (as a course activity or as homework). As a preparation
for this activity, it is important to discuss with the students the essence of the con-
cepts for which such an activity fits and to define criteria for the selected items. We
mention here that recursion (see Chap. 12 for a similar activity), abstraction, and
data structures are appropriate candidates for this purpose, and that the items selected
to be included in the worksheet should clearly (and not in a hidden and sophisticated
manner) reflect the illustrated concept. While preparing such an activity, it should be
remembered that such classification worksheets are constructed for novice learners
who are not familiar yet with the concept on which the worksheet concentrates, and
therefore, the visualization or text should direct them clearly and safely in the iden-
tification process of the properties of the said concept.

Table 7.6  Classification task

Worksheet: classification (work in groups)

In the attached page, 15 items are presented.
1. � Choose your own criteria and categorize/classify these items into sets. An item can

belong to several sets. For example, item 1 can belong to set A because it satisfies
the ‘A criterion’ and to be included in set B because it also satisfies the ‘B criterion’.
In your categorization, focus on the contents or essence of the items and try to avoid
“trivial” criteria (e.g., the fact that people appear in items 8, 14, and 15).

2.  Add a new item (not from the given page) to each set.
3.  Give a title to each set.
4.  Give a title to the whole page.

We end this section by noting that although the classification activity is usually
designed as an opening trigger in the learning process of a new concept, it is also pos-
sible to use it as a summary activity. In this case, all the stages and instructions will be
the same; learners’ behavior, however, would be different since they are already famil-
iar with the main concepts of the said topic.

110 7  Teaching Methods in Computer Science Education

7
should recognize common metaphors used in the field, be aware of their importance, and
learn how to use them in learning and teaching processes.

Due to the explanatory power of analogy, when learners face difficulties in understand-
ing a new concept (or an idea), a metaphor may offer a new perspective of looking at the
concept and may cognitively support its understanding. Yet, although metaphors may help
bridge between the new and unfamiliar knowledge (e.g., a variable) and a known knowl-
edge (e.g., a box), metaphors should be used carefully; after all, communication which is
based on the metaphor’s world of concepts refers not only to instances in which the two
concepts correspond to each another, but also to cases in which they do not fit each other.
For example, in the case of a variable, the use of a box is helpful to explain the storage
property of a variable; at the same time, however, pupils may think that a variable may
contain several values (similar to a box that can contain several items). Teachers must be
aware of these difficulties and learn how to cope with them (see also Chap. 6).

Activities 46 and 47, to be facilitated in the MTCS course, address metaphors in the
context of computer science education.

Activity 46: Metaphors – Preparing a Poster, Variable Exhibition

The students are asked to prepare a poster for an exhibition about the concept of vari-
able. The poster can be prepared with any computational environment that enables to
combine text with graphical objects, such as PowerPoint. After the posters are pre-
pared, the students present them in front of the class as an exhibition, and the class
discusses pedagogical advantages and pitfalls of each poster. Figure 7.4 presents three
illustrative posters which were prepared by prospective computer science teachers.

�Activity 47: Metaphors – Advantages and Disadvantages of Metaphors

Students are given the worksheet presented in Table 7.7. After they had finished their
work, a whole class discussion is facilitated about advantages and disadvantages of
metaphors in general and of the specific metaphors they suggested in the worksheet, in
particular.

(continued)

Fig. 7.4  Examples of posters about metaphors for the concept of variable

changing
weather

variables are used
to represent

changing values
Variables are used for storage

My name is Teddy
I am a cute type bear
My value is 50$

Am I a variable?

1117.3  Different Forms of Class Organization 	

7.3 
�Different Forms of Class Organization

Computer science can be taught by lecturing. However, one of the main messages of this
Guide, derived from the constructivist approach, is that this is not the preferable way to
enhance learning processes; alternatively, it is argued that in order to learn meaningfully,
learners should be active and engaged in the learning process.

In what follows, we first describe several alternative class organizations (to the tradi-
tional frontal teaching approach), in which active learning aims to enhance computer science
learning. Then, we suggest an activity to be facilitated in the MTCS course to let the students
experience these forms of class organization.

Individual work: The first, and maybe the simplest, class organization for active learning is
when each student works individually on a given task. This class organization is suitable for
cases in which a computer science teacher wants to verify that all students are able to cope
successfully with a given task or have acquired a specific skill, such as, working in a given
Integrated Development Environment (IDE) or tracing successfully a given algorithm.

Working in pairs: A class can be organized in pairs, working on either programming tasks
or non-programming tasks.

In the case of programming tasks, we mention the concept of pair programming (Williams
and Kessler 2002), which is one known technique of pair learning in the context of computer
science education. In pair programming, a pair of students works on a specific programming
task, when one student is the driver, working with the keyboard and the mouse, and the sec-
ond student is the navigator, who examines the development process from the side, and
analyzes, together with the driver, the development process they are going through. The two
programmers switch roles frequently; this switch further enhances the learning process of
both mates, since in most cases, pair programming guides a problem-solving process that is
carried out on two levels of abstraction: the code level and the strategic level.

When this approach is applied to non-programming tasks, some advantages of pair
programming are not applicable anymore, mainly the code-related aspects. Nevertheless,
advantages of pair working can be achieved also when the pair works on a non-program-
ming task. For example, it is reasonable to assume that in a pair work, the two learners are
involved in the problem-solving process, unlike in larger groups, when some students may

Activity 47  (continued)

Table 7.7  Worksheet about metaphors

Worksheet: Metaphors

For each of the following concepts – a variable, a class, a function:

–  Give at least one metaphor and explain why it is a metaphor.
–  Explain the metaphor limitations.
–  Indicate pedagogical advantages and disadvantages of your metaphors.

112 7  Teaching Methods in Computer Science Education

7

Activity 48: Different Forms of Class Organizations

Based on students’ on-going experience of different class organizations in the MTCS
course, an integrative class discussion can address questions such as:

1.	 What are the differences between the different class organizations?
2.	 For what purposes each class organization is suitable?
3.	 What computer science topics are especially suitable to be taught by each class

organization?
4.	 What class organization(s), if at all, is/are especially suitable for computer

science learning?

be more dominant, control the group work, and suppress the involvement and contribution
of other group members.

Working in groups: Another form of class organization is working in groups with more
than two members. This is a preferable class organization when (a) a computer science
teacher observes that a given task requires more than two learners in order to be accom-
plished, (b) the teacher wishes to exploit team diversity, (c) the class is relatively big and
the teacher wants to monitor the groups’ work more easily, and finally (d) the class is rela-
tively big, and the teacher wishes to allow all students to be involved and represented in
the group presentations by one of their team members.

Jigsaw is one technique for class organization in groups, which, according to the Jigsaw
Classroom website,6 carried out as follows. First, the students in the class are divided into
groups of five or six students each and their task is to learn a specific topic. Each of the
students in each team is responsible for learning a specific part of the topic and to teach this
specific part to the whole group. Second, to increase the chances that each report will be
accurate, the students doing the research do not immediately take it back to their jigsaw
group, but rather, they meet first with students from the other groups who have the identi-
cal assignment (one student from each jigsaw group). In the third stage, the jigsaw groups
reconvene in their initial heterogeneous configuration and each student of the jigsaw group
teaches the other group members the topic he or she has learned which is now considered
as her or his specialty. Finally, the teacher can decide whether each group submits a written
work, a poster, another group product, or nothing at all. As can be seen from this short
description, the jigsaw classroom organization has many advantages, both cognitive and
social, since it enhances learning, listening, cooperation, and knowledge sharing.

The target of the Activity 48 is to increase the students’ awareness to the different class
organizations. It is important to mention that the issue of class organization should not be
discussed only in this contexts; rather, it is important to let the students experience differ-
ent forms of class organizations throughout the course and to relate to these organizations
when appropriate. For example, when Stage A of Activity 45 is facilitated (Sect. 7.2.5), it
is relevant to address the power of the group in performing this task.

6 See http://www.jigsaw.org/

http://www.jigsaw.org/

1137.4  Mentoring Software Project Development	

7.4 
�Mentoring Software Project Development7

In what follows, we first address the contribution of project-based learning to learners in
general and in the context of computer science education in particular. Then, we describe
several activities to be facilitated in the MTCS course with respect to the mentoring pro-
cess of software project development in high school computer science classes.

In Project Based Learning (PBL) situation learners work individually or cooperatively in
groups, while the teacher mentors the process of project development. PBL aims to make
the learned subject matter relevant for learners and to enable active learning (Blumenfeld
et al. 1991). In PBL, learners ask questions, examine their assumptions, design the investi-
gation process, collect and analyze data, use technology and exchange ideas (Krajcik et al.
1999), all while interacting in and with the learning environment in a constructivist fashion
(Thomas 2000), and dealing with experiences and deliberations on significant problems
(Ernest 1995). Barak et al. (2000) and Waks (1997) assert that PBL makes the learning
authentic since it involves learners in activities that are based on daily situations. Further,
learners’ ownership over the learning process develops their responsibility for their actions,
and their cooperative learning with peers involves also social interaction.

Research works indicate that PBL develops thinking practices, independent learner abil-
ities, motivation, self confidence, classmate cooperation, and an integrative understanding
of the content as well as of the process (Krajcik et al. 1999; Barak et al. 2000; Green 1998;
Shepherd 1998). These results are hardly surprising, since PBL enables teachers to adapt
the variety of tasks possible in PBL environments to each learner’s learning style (Krajcik
et al. 1999). At the same time, however, PBL poses some difficulties that learners must face,
such as difficulties in coping with the complex and open environment and difficulties with
information processes (Krajcik et al. 1998).

In order to help learners deal with a variety of problems, the teacher is required to create
an investigation-oriented environment that encourages learners’ responsibility and empha-
sizes an intensive learning process of the project components (Blumenfeld et al. 1991). In
general, Waks (1997) asserts that the focus of the teacher’s role must be modified in PBL
environments from “teaching” activities to “learning” activities, by establishing conditions
that enhance learners’ curiosity and motivation.

One example of PBL in computer science education is examined in Kay et al.’s (2000)
research, which explored different teaching approaches for the Introduction to Computer
Science course taught according to the object-oriented approach. PBL was found to be the
most suitable approach, since it provides learners with the opportunity to deal with real
problem-solving situations and to acquire problem-solving skills and practices. In the same
spirit, Johnson (1997) claims that since instructors must teach in a way that develops learn-
ers’ problem-solving experiences for the benefit of their future work environment, their
teaching must guide learners to develop conceptual thinking, criticism, and creativity.

7 Based on (Meerbaum–Salant and Hazzan 2008). Copyright 2008 by the Association for the
Advancement of Computing in Education (AACE). [http://www.aace.org] Included here by
permission.

http://www.aace.org

114 7  Teaching Methods in Computer Science Education

7
Software development projects conducted within high school computer science classes

offer a prime example of a PBL environment. Similar to other PBL situations, the role of
the computer science teacher in the development process of a software project is different
than his or her role when teaching in the class. In addition to the teaching of the intended
programming paradigm, programming language and related computer science concepts,
computer science teachers are required to mentor the project development process from
the early stages of subject selection to the final stages of testing and verification, to evalu-
ate the learners’ learning process and, at the end, to evaluate the developed projects.
Fincher and Petre (1998) claim that such a process is a long and complex problem-solving
process since it requires computer science teachers to deal with multiple problems simul-
taneously and to exhibit supervision, management skills of projects of different scales,
flexibility, and creative thinking.

This complexity of the teacher’s role in mentoring PBL in general and in the context of
computer science education in particular, stresses the importance of addressing the men-
toring process of software projects in the high school in the MTCS course. Activities 49
and 50 introduce to the students in the MTCS course the potential, as well as the chal-
lenges, of mentoring software project development in the high school, and elevate their
thinking about how to manage this process in their future classes. Additional activities
related to project evaluation are presented in Chap. 10.

Since the mentoring process of software project is not a simple pedagogical task, it is
recommended to address this topic in a relatively advanced stage of the MTCS course, after
the students have already gained some sense of what computer science teaching means.

Activity 49: Analysis of Mentoring Software Project Development Situations

›  Stage A: Watch a video clip
The following trigger aims to let the students experience, as much as possible,

situations they may encounter when guiding pupils in the development process of
software projects.

In this trigger, the students watch a well-selected video clip of a class working on
the development of a software project. While the students are watching the video,
they are asked to focus on the teacher’s behavior, to write down positive and nega-
tive characteristics of his or her behavior and to imagine how they would act in similar
situations. The video can be paused from time to time for short discussions.

It is important to select the video very carefully so that it indeed presents different
kinds of situations and different teacher approaches. If it is selected properly, such a
trigger and the stages that follow it let the students experience some of the complex-
ity involved in guiding pupils in the development of software projects.

If such a video is not available, as mentioned in Sect. 8.2, it is possible to visit
a real high school computer science class whose pupils develop software projects;
alternatively, if this is not an applicable option, the instructor of the MTCS course
can start from Stage C of this activity.

(continued)

1157.4  Mentoring Software Project Development	

Activity 49  (continued)

›  Stage B: Class discussion
After the video is watched, a class discussion takes place, in which the behavior

of the computer science teacher is analyzed. Here are several questions that the dis-
cussion can concentrate on:

1.	 What should a computer science teacher know for mentoring software project
development?

2.	 What challenges does a computer science teacher face in this process?
3.	 What are the pedagogical advantages of software project development by com-

puter science learners? What are the disadvantages of such situations?

› � Stage C: Worksheet on project based learning situations in computer science educa-
tion, group work

The students work in groups on the worksheet presented in Table 7.8, whose
purpose is to concentrate the students’ attention on the details of class management
situations in a computer lab in which learners develop software projects.

(continued)

Table 7.8  Worksheet on PBL situations in computer science

Worksheet

The following statements were said by high school pupils while working on their
software projects in the computer lab.

Assume that you are the computer science teacher of this class.
Select five statements and for each of them:
–  Describe your reaction to the pupil’s statement.
–  Explain why you decided to answer the pupil in this particular way.
–  �Speculate the pupil’s reaction to your response and the continuation of the dialogue

between you and the pupil.
Pupils’ statements
–  I do not know how to start.
–  Why did I choose this project? I am so stupid.
–  I cannot do it.
–  How does the function XXX work?
–  I need a function that does…
–  I am so satisfied with my progress.
–  The program does not do what I wanted it to do.
–  The computer did not save the last version. I quit!
–  I am raising my hand for half an hour and you do not approach me.
–  How can I start working on it?
–  I do not want to present my project in front of the class.
–  I do not understand the computer’s response. Why did it print this message?
–  It does not work.
–  How can I get 100 in the project?
–  What should I do now?

116 7  Teaching Methods in Computer Science Education

7 Activity 49  (continued)

›  Stage D: Class discussion
The dialogues developed by the students in Stage C are presented and discussed.

It is reasonable to assume that different kind of responses will be suggested for each
statement. In all cases, however, it is appropriate to analyze what aspect the students
addressed in their scenarios: Did they focus on computer science concepts? Was the
help given by the computer science teacher technical? Did the teacher’s response
address pupil’s emotions and other motivational factors?

›  Stage E: Summary
The summary of this activity should address the following issues:

The mentoring of software project development in the high school is a complex •	
task both from the technical perspective and the emotional perspective.
The mentoring of software projects requires the computer science teacher to •	
respond simultaneously to many pupils.
When a computer science teacher responds to pupil’s question, the teacher should •	
not solve the problem for the pupil, but rather guide the pupil in a way that enables
the pupil to move on.

Activity 50: Scheduling the Mentoring Process of Software Project Development

›  Stage A: Setting the framework
The instructor, together with the students, sketches a pedagogical environment in

which a computer science teacher mentors a class of 20 pupils in the development
process of a software project. This sketch includes: the development environment,
the programming paradigm and programming language, the project scope, the length
of the development period, and the grading policy.

›  Stage B: Group work
The students are asked to build a schedule for the mentoring process of the class

they just sketched. For each period of time of the entire development process, they
are asked to indicate the main activities that the computer science teacher and the
pupils accomplish with respect to the project development. They should also explain
each of their pedagogical considerations. This process can be repeated with respect
to different periods of time, for example, one school year, 3 months, etc.

›  Stage C: Class discussion
Following the group work, the different options proposed by the groups are pre-

sented, together with their pedagogical considerations. In this discussion, it is impor-
tant to address several questions, such as:

(continued)

117References	

Activity 50  (continued)

Should a computer science teacher teach first all the relevant material and only •	
then start guiding his or her pupils in the development process? Or, alternatively,
should the computer science teacher integrate the project development process
with the actual teaching of the computer science material? What advantages and
disadvantages does each approach have?
In what ways are the different-in-length schedules that the students suggested •	
similar? In what ways are they different? On what factors are these schedules
dependent: the development environment? The programming paradigm? The pro-
gramming language? Other factors? In what way?
What aspects, beyond the actual teaching of computer science content, should a •	
computer science teacher pay attention to when mentoring software project
development?

›  Stage D: Read a paper, homework
If the instructor of the MTCS course wishes to further deepen the students’ atten-

tion to managerial aspects of mentoring software projects in high school computer
science classes, the students can be asked to work on the homework presented in
Table 7.9.

Table 7.9  Homework about mentoring methodology for software projects

Homework - Mentoring methodology for software projects

The following paper presents a mentoring methodology for high school computer
science pupils who develop a software project.

Meerbaum–Salant, O. and Hazzan, O. (2010). An agile constructionist mentoring
methodology for software projects in the high school, ACM Transactions on
Computing Education – TOCE 9(4).

Read the paper and analyze the mentoring methodology it presents. Address the
following questions: What are the advantages of the mentoring methodology?
What are its disadvantages? Can you suggest improvements to the mentoring
methodology presented in the paper?

References

Barak M, Waks S, Doppelt Y (2000) Majoring in technology studies at high school and fostering
learning. Learn. Environ. Res.: An Int. J. 3: 135–158

Blumenfeld P C, Soloway E, Marx R et al (1991) Motivating project-based learning: Sustaining
the doing, supporting the learning. Educ. Psychol. 26: 369–398

Ernest P (1995) The one and the many. In Steffe L P, Gale, J (Eds.) Constructivism in education:
pp. 459–486. Hillsdale, NJ: Lawrence Erlbaum Associates

Fincher S, Petre M (1998) Project-based learning practices in computer science education. Proc. of
the Front. in Educ. Conf., Tempe Arizona: 453–494

118 7  Teaching Methods in Computer Science Education

7
Green A M (1998) Project-based learning: Moving students through the GED with meaningful

learning. ERIC Database, ED422466
Hebetim (1995) Educational game – the Conditional-Statement-Bingo, Hebetim – Journal of the

Israeli National Center for Computer Science Teachers, June: 31–32
Johnson D S (1997) Learning technological concepts and developing intellectual skills. Int. J. of

Technol. and Des. Educ.: 161–180
Kay J, Barg M, Fekete A et al (2000) Problem-based learning for foundation Computer Science

courses. Comput. Sci. Educ. 10: 109–128
Krajcik J S, Blumenfeld P C, Marx R W et al (1998) Inquiry in project-based science classrooms:

Initial attempts by middle school students. The J. of the Learn. Sci. 7: 313–350
Krajcik J S, Czerniak C, Berger C (1999) Teaching science: A project- based approach. McGraw-

Hill College, New York
Lakoff G, Johnson M (1980) Metaphors we live by. The University of Chicago Press
Lapidot T, Levy D (1993) From programming to computer science: Opportunities and pitfalls. In

Kynigos C. (ed) Proc. of the 4th Eur. Logo conf. Athens
Levy D, Lapidot T (1997) Rich task: Opportunities for learning computer science ideas. Hebetim –

Journal of the Israeli National Center for Computer Science Teachers, 9: 34–26
Meerbaum–Salant O, Hazzan O (2008) Challenges in mentoring software development projects in

the high school: Analysis according to Shulman’s teacher knowledge base model. J. of Comput.
in Math. and Sci. Teach. 28(1): 23–43

Novak J D, Cañas A J (2008) The theory underlying concept maps and how to construct them,
Technical Report IHMC CmapTools 2006-01 Rev 01-2008, Florida Inst. for Hum. and Mach.
Cogn. http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf.
Accessed 14 July 2010

Shepherd H G (1998) The Probe Method: A Project-Based-Learning Model’s effect on critical
thinking skills. Diss. Abstr. Int., Section A 59(3A): 779

Thomas J W (2000) A review of research on project-based learning. http://www.autodesk.com/
foundation.

Waks S (1997) Education and technology-dimensions and implications. Position paper on pros-
pects of interrelationship between the academia and the educational system in Israel, the Van
Leer Jerusalem Institute, The Forum for High. Educ., the Ministry of Education, Culture and
Sports, Israel

Williams L, Kessler R (2002) Pair programming illuminated. Addison Wesley

http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf
http://www.autodesk.com/foundation
http://www.autodesk.com/foundation

119

Lab-Based Teaching 8

Abstract  This chapter focuses on computer science teaching methods that fit especially
to be employed in the computer lab. The uniqueness of the computer lab as a learning
environment for computer science is explained by the fact that it enables learners to explore
their problem solving strategies, to express their solutions to a given problem, to get feed-
back regarding to the correctness of their solution and to reflect on it, to develop large
projects, to explore new topics, and to deepen their understanding of the nature of the
algorithms they develop. The aim of the lessons in the MTCS course that are dedicated
to this topic is to expose the students to usages of the computer lab as a learning environ-
ment and to let them realize how it may improve their future pupils’ understanding of
computer science ideas. One of the main messages of this chapter is that the learning
of computer science in the computer lab is not limited to programming tasks; rather, the
computer lab can be used in additional pedagogical ways that further enhance learners’
understanding of computer science. Specifically, the following topics are addressed in
this chapter: what is a computer lab?, the lab-first teaching approach, visualization and
animation, and using the Internet in the teaching of computer science.

8.1 
�Introduction

Clearly, the learning of computer science should take place, at least partially, in the
computer lab. This learning environment enables learners to explore their problem-solving
strategies, to express their solutions to a given problem, and to deepen their understanding
of the nature of algorithms they program. Further, the learning of computer science in the
lab has the potential to increase learners’ understanding of the essence of computer science –
what can be done with computers, that is, what is computable, as well as the influence of
the field of computer science on the world.
This chapter focuses on computer science teaching methods that are suitable, especially,

to be employed in the computer lab, and specifically, on the lessons in the MTCS course
that aim to expose the students to pedagogical usages of the computer lab that target to
improve their future pupils’ understanding of computer science ideas.

O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_8, © Springer-Verlag London Limited 2011

120 8  Lab-Based Teaching

8
One of the main aims of this chapter is to let the students realize that the learning of

computer science in the computer lab is not limited to programming tasks. Rather, they, as
future computer science teachers, can use the computer lab in additional ways that further
enhance learners’ understanding of computer science. We mention, though, that the usage
of the computer lab for programming tasks is meaningful in order to provide learners with
opportunities to gain some programming experience. In this spirit, the lessons in the MTCS
course which are dedicated to lab-based learning highlight the added value of the computer
lab for learners’ understanding of computer science concepts, beyond the advancement of
their programming skill. This added value includes benefits of project-based learning
(Sect. 7.4) and the conception of the computer lab as a learning environment in which
learners do experiments and check hypothesis. This assertion is based on the constructivist
approach presented in Chap. 2.
This chapter first elaborates on the computer lab as a learning environment and then

presents several lessons that can be facilitated in the MTCS course which examine, from
different perspectives, the role of the computer lab in computer science teaching and
learning processes. Specifically, the following topics are addressed:

What is a computer lab? (•	 Sect. 8.2)
The lab-first teaching approach (•	 Sect. 8.3)
Visualization and animation (•	 Sect. 8.4)
Using the Internet in the teaching of computer science (•	 Sect. 8.5)

Clearly, this is not an exhausting list and additional pedagogical ways exist that fit to be
applied in the computer lab for computer science teaching; they do, however, represent a
variety of usages, from which each instructor of the MTCS course can choose to address
the ones that fit him or her own pedagogical approach.

8.2 
�What Is a Computer Lab?

A laboratory (lab) is a common concept in any science. For example, according to the
Fourth Edition of The American Heritage® Dictionary of the English Language,1  
a laboratory is

1.  a.  A room or building equipped for scientific experimentation or research
b. An academic period devoted to work or study in such a place

2.  A place for practice, observation, or testing

Another definition for a lab (similar in some senses to the first one) is “A place equipped
for experimental study in a science or for testing and analysis.” (Merriam-Webster’s
Medical Dictionary, © 2002 Merriam-Webster).

1 Copyright © 2000 by Houghton Mifflin Company, Published by Houghton Mifflin Company.

1218.2  What Is a Computer Lab? 	

As can be seen, these definitions emphasize the experimental aspect of the lab, when
experiment is defined by Fourth Edition of The American Heritage® Dictionary of the
English Language, as

A test under controlled conditions that is made to demonstrate a known truth, examine
the validity of a hypothesis, or determine the efficacy of something previously untried.

and the corresponding verb – experiment – is defined as follows:

1.  To conduct an experiment
2.  To try something new, especially in order to gain experience: experiment with new

methods of teaching

The importance attributed to the lab is not limited to scientific research and is expressed
also in the context of science teaching. The educational literature is full with praises on the
advantages and contributions of laboratory work to the learning process. For example,
Nersessian (1991) claims that “hands-on experience is at the heart of science learning”.
According to Ma and Nickerson (2006), “there is no doubt that lab-based courses play an
important role in scientific education” (p. 2).
Specifically, in sciences, such as Biology, Chemistry, and Physics, experiments that

learners perform in the lab aim, in many cases, to let the learners be active, rather than
passive observers of the scientific world. This pedagogical target is achieved by the design
of experiments that demonstrate and illustrate to the learners what is taught theoretically in
the class (either before or after the lab experience), guide the learners to check hypothesis,
train them how to perform experiments, let them practice data collection and analysis
methods, teach them research skills, and foster their critical thinking.
In the context of computer science education, the lab concept is captured similarly but with

several slight differences. First, the physical structure of the lab in the two cases – the lab in
science teaching, such as Biology and Chemistry, and the lab in the case of computer science
teaching – is different. Specifically, these two labs are different in terms of their equipment
and its usage; while in the above sciences the equipment includes test tubes, materials, and
other physical instruments that learners use to perform experiments, the image of the lab in the
context of computer science education is a computer lab – a room with computers in which
the learners work, mostly – program. As is illustrated in this chapter, this difference, however,
should not change the value of the lab-based learning in the context of computer science
education. For example, in Sect. 8.3, about the lab-first approach, we demonstrate how the
computer lab serves as a place for carrying out experiments and checking hypotheses.
This perspective at the computer lab as a place, in which experiments are carried out,

further highlights the scientific aspect of computer science (see Chap. 3). Indeed, as a sci-
ence, computer science has its own scientific exploratory methods which include, as in
other sciences, the experimental path that starts with hypothesis, continues with experiment
and data gathering, and ends with the data analysis and conclusion formulation. We suggest
that it is important to deliver this message to the prospective computer science teachers.
The lab in the context of computer science teaching and learning has several additional

advantages:

Learners are familiar with how to work with the equipment in this lab, that is, how to •	
work with computers, so there is no need to teach them how to use this equipment.

122 8  Lab-Based Teaching

8
The work in the computer lab does not require the preparation of any physical material, •	
so a computer science teacher can be flexible, and when observing that it is a suitable
time to explore a specific topic with the computers, he or she can just ask learners to use
the computers (if the lesson takes place in the lab).
Since no physical material is required in the computer lab, budget constrains should not •	
limit or block the use of the lab for computer science learning purposes.
In the computer lab, an experiment can be run many times, one after the other, with an •	
immediate feedback provided to learners by the computer.

While not claiming that all computer science courses should be lab-based, most courses
can benefit from the use of some well-designed laboratory components (Knox et al. 1996).
In these lessons, the teacher’s role is very important and required considerable preparation.
The teacher can demonstrate an experiment to the pupils, or alternatively, guide them, in
an active learning manner, to explore a new topic. As has been asserted before in this
Guide, the more learners are active, their learning is more meaningful and in the context of
lab learning, the benefits of the lab as a learning environment are exploited more effi-
ciently. It should be remembered, though, that the exact doze of lab-based teaching should
be seriously considered in each case in order to vary the teaching methods employed in the
said teaching situation. This important role of the teacher in lab-based teaching situations
explains the importance of including this topic in the MTCS course.
Activities 51 and 52 illuminate the computer lab as a learning environment. During

their facilitation, central themes of the computer lab, mentioned above, can be
integrated.

�Activity 51: Analyzing a Computer Science Lesson in the Computer Lab

The students are presented with a video clip that takes place in the computer lab. After
the clip is presented, the instructor of the MTCS course and the students analyze it,
addressing questions such as: What is unique in this situation? In what ways does it
differ from the traditional way of teaching computer science? What is the teacher’s role
in this situation? The role of this discussion is to identify the advantages and challenges
of learning and teaching computer science in the computer lab (as described above).
The advantages and the challenges involved in this learning environment are addressed
also in the continuation of this chapter, with respect to the different usages of the
computer lab in computer science education.
If such a clip is not available, a similar activity can be facilitated based on students’

observation of a real lesson that takes place in a high school computer lab. Prior to the
actual observation, the students should be guided by questions such as: How does the
teacher behave in the lesson? How are the lessons managed? How do pupils behave?
How do the pupils behave when they face difficulties? How are tasks presented to the
pupils? Do pupils work individually, in pairs, in groups? If they work in groups, how is
the work divided among the pupils in the group?

1238.2  What Is a Computer Lab? 	

�Activity 52: A “Dry” Lab

This activity is inspired by The Little LISPer (Friedman and Felleisen 1986) book
which demonstrates a pedagogical approach which is closely related to the construc-
tivist approach present in Chap. 2. According to this approach learners can gain better
understanding of the concepts they learn by forming their own definitions based on a
guided exploration, than by being presented with well-defined terminology of the
learned concepts by the teacher.
The students get the worksheet presented in Table 8.1, in which they are asked to

reveal the meaning of the instructions of a programming language called DL (dry lab).
The worksheet is worked on without computers. In computer science classes, the
worksheet can be worked on with respect to general programming languages.

After the worksheet is worked on by the students, it is important to facilitate a reflective
session in which, in addition to the students’ exploration strategies, the question whether

Table 8.1  “Dry” lab worksheet

Worksheet: The DL language

The following is a list of instructions in the DL programming language
together with their output
The instruction The output
DL.write [2008] 2008
DL.write [# laboratory #] laboratory
DL.write [# the rules of # ! # DL are # ! # easy #] the rules of DL are easy
DL.write [5*10 ! # shalom #] 50 shalom
DL.write [% x = 13% ! # x = # ! x] x = 13
DL.write [% x = 13% ! # x = 54 #] x = 54
DL.write [% x = 9% ! x ! % x = x+1% ! x*2] 9 20
DL.write [# x = # ! x] x = what?
DL.write [y] what?
DL.write [# x = 9 # ! x ! # print end #] x = 9 what?
Complete the following:
a.  The output of an instruction of the pattern DL.write [number] is

b.  The output of an instruction of the pattern DL.write [# string #] is

c.  The output of an instruction of the pattern DL.write [arithmetic expres-
sion] is _______________

d.  The role of % is ___________
e.  The role of ! is ___________
 f.  The message what? is written when ________________________
g.  To get the output “DL.write is what?”, the following instruction(s) should
be executed: ______________

h.  To get the output: “what? = what?” , the following instruction(s) should be
executed: ______________

(continued)

124 8  Lab-Based Teaching

8 Activity 52  (continued)

this activity is a lab activity is examined. Another question that can be asked is what
characterizes a good lab-based lesson.
In what follows we present a collection of statements, offered by a group of in-service

high school computer science teachers after they had worked on the above worksheet,
which reflects their associations with what a lab-based teaching is in the context of com-
puter science. As can be observed from these statements, this activity can be considered
as a trigger for the discussion about lab-based teaching.

Is the above activity a lab activity?•	
Yes, it is a lab because it involves query, experience, activity, learning, knowl-––
edge construction.
It is not a lab because we did not use computers; learners do not work with any ––
mediator and therefore it is impossible to really check [hypothesis].
It is a lab since a lab is everything that is based on active learning and not on ––
teacher presentation, and it also includes a teacher–student discourse.
A lab is a place to check hypothesis and something should be provided to the ––
learners to check whether they understood correctly; therefore, this worksheet is
not a lab-based activity.

What is a good lab?•	
A good lab integrates colors, shapes, sounds, and motion.––
In the positive implementation of a lab, the teacher is unemployed.––
Students succeed learning computer science ideas.––
Pupils teach pupils.––
Pupils enjoy, are busy, concentrated, and have high spirits.––
When a pupil says “now I got it”.––
When a weak pupil has bright eyes.––
Advanced pupils are well challenged.––
Pupils invent solutions.––

As can be observed, even though this activity focuses on a “dry” lab, it increases the
teachers’ awareness to key terms of lab-based learning, such as, inquiry, experiment,
checking hypothesis, learning, and knowledge construction.

8.3 
�Lab-First Approach

As mentioned, the computer lab can be viewed as a place in which experiments are carried
out, hypothesis are checked, and conclusions are derived following an experimental
process. In this context, activities, such as checking program correctness and program
behavior with different inputs, are carried out in the computer lab on a regular basis.

1258.3  Lab-First Approach 	

In this section, we further pursue this perspective and examine the lab-first pedagogical
approach which implements the constructivist approach and demonstrates an active-based
learning teaching strategy (see Chap. 2). According to the lab-first approach, learners
explore first a computer science topic in the computer lab, and after they gain some
experience with the said topic, and based on this experience, they are introduced to the
said concept in the class. As can be seen, the lab-first approach reverses the traditional
teaching order, by which a theoretical material is presented first, following by its practicing
and experimenting in the computer lab.
The lab-first approach has both advantages and disadvantages. On the one hand, in the

spirit of constructivism, its main advantage is expressed by the active experience learners
get in the computer lab, which in turn, establishes foundations based on which learners
construct their mental image of the said topic; on the other hand, the lab-first teaching
approach involves some insecurity feelings expressed both by the computer science teacher
and the learners.
One way to deliver this complex message to the students in the MTCS course is by letting

them experience the lab-first approach. Activity 53 was designed for this purpose by guiding
the students to explore the lab-first teaching approach both from the learners’ and the
computer science teacher’s perspectives. The worksheet presented in this activity is only
one option by which the lab-first approach can be implemented in general and by which the
conditional statement if can be introduced to novice learners, in particular. For example, the
worksheet can include more open tasks, such as the following one: After Task 3, an interme-
diate summary of the general structure of the if statement is presented. An open assignment
would ask learners to explore the extent of instruction for execution by themselves. In this
spirit, the worksheet would present the following instruction: So far, the only instruction
used inside the if-statement was System.out.println. Replace the System.out.println with
different java instructions and check which instructions can be nested in the if-statement.
If the instructor of the MTCS course wishes to let the students feel the learning experi-

ence similar to their future high school pupils, it is recommended to use the lab-first
approach with one of the IDEs presented in Activity 57 (see Sect. 8.4).

�Activity 53: Pedagogical Exploration of the Lab-First Teaching Approach

›  Stage A: First experience with the lab-first teaching approach, work in pairs on the
computer
The students are given the worksheet presented in Table 8.2 (Paz 2006). They

are told that high school computer science pupils had worked on this worksheet
before they learned the topic of conditional statements. The students in the MTCS
course are asked to:

1.	 Work on the activities presented in the worksheet.
2.	 Analyze the worksheet from a pedagogical perspective: What pedagogical advan-
tages does it have for the introduction of a new topic? What is the purpose of each

(continued)

126 8  Lab-Based Teaching

8 Activity 53  (continued)

	 task presented in the worksheet? How does each task support learners’ understand-
ing of conditional statements?

We note that in order to let the students in the MTCS course taste this teaching
method, it is sufficient to let them work only on the beginning of the worksheet.

Table 8.2  Lab-first worksheet (This worksheet was developed by Dr. Tamar Paz and is included
here with her permission. See Paz (2006), pp. 33–36)

Worksheet

The Conditional Statement If
Conditional statements enable to write computer programs that act in one way if a given
condition is fulfilled, and to act differently if the condition is not fulfilled.

import java.util.Scanner;
public class Condition {
  public static Scanner input = new Scanner(System.in);
  public static void main(String[] args) {
    double num;
    System.out.println (“enter number”);
    num = input.nextDouble();
    System.out.println (“good number”);
    System.out.println (“end”);
  }
}

Task 1, Part A
Open a new class and type the
class presented on the left.

Save it, run it, check its output
and write it down.

import java.util.Scanner;
public class Condition {
  public static Scanner input = new Scanner(System.in);
  public static void main(String[] args) {
    double num;
    System.out.println (“enter number”);
    num = input.nextDouble();
    if (num > 0)
      System.out.println (“good number”);
    System.out.println (“end”);
  }
}

Task 1, Part B
We now change the class so that
the message “good number”
is printed only if the variable
num is positive.

Change the class according to the
code on the left.

Save it and run it.
When the program waits for an
input, type a positive number.

The output is: ________________________
Run it again. This time, when the
program waits for an input,
type a negative number.

The output is: ________________________
Complete the following sentence:

The meaning of the statement
      if (num > 0)
          System.out.println (“good number”);

is: if ______________________________________
    then ___________________________________

The general structure of the conditional statement if is:
      if (a condition to be checked)
          a statement for execution;

(continued)

127
Activity 53  (continued)

Table 8.2  (continued)

Task 2, Part A
Write a program that gets a grade as an input. If the grade is higher than 80, the program
outputs “Good”.

Save it and run it several times. Each time type a different grade and verify that the
message is printed only when the grade is higher than 80. Try also the number 80.

Task 2, Part B
Add to your program a conditional statement so that if the grade is lower than 55, the
program outputs the message “Try Again”.

Save and run it several times. Each time type a different grade and check that the correct
message is printed.

import java.util.Scanner;
public class License {
  public static Scanner input = new Scanner(System.in);
  public static void main(String[] args) {
    double age;
    System.out.println (“enter age”);
    age = input.nextDouble();
    if (age>=17)
      System.out.println (“license”);
  }
}

Task 3, Part A
The class on the left includes an
operation that gets as input an
age, and declares whether a
driver license can be obtained
at the given age.

Type the class.
Save it and run it three times. Each
time, type a different input and
fill in the following table:

The typed number
Is “license” written?

import java.util.Scanner;
public class License {
  public static Scanner input = new Scanner(System.in);
  public static void main(String[] args) {
    double age;
    System.out.println (“enter age”);
    age = input.nextDouble();
    if (age>=17)
      System.out.println (“license”);
    else
      System.out.println (“no license”);
  }
}

Task 3, Part B
We now expand the conditional
statement so that if the age is
not bigger or equal 17, “no
license” is printed.

Change it and save it.
Run it three times. Each time,
type a different input and fill
in the following table:

The typed number
The printed
message

Intermediate summary:

The statement

  if (age> = 17)
    System.out.println (“license”);
  else
    System.out.println (“no license”);

is an extended conditional statement.

Its general structure is:

  if (a condition)
    an instruction for execution;
  else
    an instruction for execution;

(continued)

128

8

Activity 53  (continued)

Table 8.2  (continued)

Task 4
Write a program that gets two numbers and prints the bigger number.
Type it, save it, and check that you get the expected output.

import java.util.Scanner;
public class Check5 {
  public static Scanner input = new Scanner(System.in);
  public static void main(String[] args) {
    double x ,y;
    System.out.println (“enter two numbers”);
    x = input.nextDouble();
    y = input.nextDouble();
    if (x < y)
      System.out.println (“hello”);
  }
}

Task 5
Type the given class.
The left column of the table
below includes different
conditions.

Run the class 6 times. Each time,
change the condition (x < y)
with one of the conditions
presented in the table, and fill
in the table.

The condition The sign Its meaning
x < y < Smaller than
x <= y <=
x > y >
x >= y >= Bigger or equal
x ! = y !=
x == y == (Note: There are two

equal signs)
Task 6, Part A
Write a program that gets a number and prints whether the number is even or odd.
Hint: Use the operation % .
Type, save, and run the program. Check that its works properly.
Task 6, Part B
Write a program that gets two numbers and writes whether the first number is divided by
the second number without a reminder.

Type, save, and run the program. Check that its works properly.
Task 7
Write a program that gets a year and prints whether February has 28 or 29 days in the
given year.

If a year number is divided by 4 (e.g., 2008), February has 28 days; otherwise, February
has 29 days.

Type, save, and run the program. Check that its works properly.
Task 8
According to the rules of the Youth Movement, in the summer camp, each coach should
supervise 10 members. Accordingly, if the number of members is 10 or less, 1 coach is
sufficient; if the number of the members is 11–20, two coaches should be allocated, etc.

Write a program that gets the number of members who enrolled to the summer camp, and
prints the number of coaches that should be assigned to supervise them.

Hint: Use the operations / and %.
Type, save, and run the program. Check that its works properly.

(continued)

129
Activity 53  (continued)

The continuation of this worksheet on conditional statements teaches the following
topics: blocks, logical connectors, the Boolean data type, and the conditional statement
switch.

›  Stage B: Class discussion
After the students worked on the worksheet presented in Table 8.2, a class

discussion takes place in which their pedagogical comments are addressed. In this
discussion, it is important to address guidelines that computer science teachers
can follow when they design worksheets based on the lab-first teaching approach.
Here are several such guidelines:

The topic on which the lab-first activity focuses was not taught yet in the class.•	
Active learning should be fostered.•	
The topic should be divided into subtopics.•	
The concepts addressed in the lab should be identified and listed, as well as con-•	
nections between them.
Each task should have a well-defined purpose and should concentrate on one •	
specific idea.
Intermediate conclusions that summarize what has been learned so far, should be •	
included in a lab-first worksheet. These conclusions should not necessarily
include formal definitions; however, they should be intuitive enough to allow
learners go on working on the worksheet. The exact formal terminology can be
presented in the lesson that takes place in the class after the lab.
Since the worksheet guides learners to formulate their conclusions based on what •	
they just observed, each time only one specific conclusion should be addressed.
The worksheet should include enough space to enable learners write their •	
answers on the worksheet. Learners are distracted when asked to read instruc-
tions from a worksheet and to write their answers in their notebook.
After a concept is introduced in the worksheet, learners should work on several tasks •	
that employ this concept in order to let them practice what they have just learned.
Since learners have different learning rhythms, it is important to provide advanced •	
learners with advanced tasks to work on when other learners still study the basic
material. This can be done by including at the end of the worksheet challenging
tasks that not all the learners should solve.
Checking crossroads should be included in a lab-first worksheet. A checking •	
crossroad is an assignment that checks learners’ understanding of a specific con-
cept/topic(s) before they move on studying the next one.

Another topic that can be discussed in the MTCS at this stage is the kinds of
questions that fit to be presented to learners in the lab-first teaching approach. Here
are several kinds of such tasks: analysis of the behavior of a given program, filling
in specific parts in a given program, or writing a computer program that fulfills
specific requirements. See also Chap. 9 for additional types of questions.
If time allows, additional questions can be addressed and discussed with the

students in the MTCS course: Is it always possible to apply the lab-first teaching

(continued)

130 8  Lab-Based Teaching

8 Activity 53  (continued)

approach? Does this approach fit all learners, all teachers, specific types of learners,
specific types of teachers? What class organizations fit for the lab-first approach (see
Sect. 7.3)?

›  Stage C: Development and analysis of a lab-first worksheet, homework
The students are asked to select a computer science topic and to develop a work-

sheet that teaches the selected topic in the lab-first teaching approach. For each
question/task presented in the worksheet, the students should explain its purpose
and the pedagogical principles that guided the task formulation.

We summarize several attributes of the lab-first teaching approach:

The lab-first is the first step in learners’ learning of a new topic. After the lab, a lesson •	
should take place in the class, in which the computer science teacher, together with the
learners, summarizes what was learned in the lab.
Although the lab-first teaching approach has many pedagogical and cognitive advan-•	
tages, some teachers avoid using it from different reasons, mainly because it changes
the traditional teaching approach and the design of such worksheets requires the expres-
sion of creative thinking.
When the lab-first teaching approach is applied in the first time, it is new and unfamiliar •	
both to the computer science teacher and to the pupils. This fact should be taken into
the considerations and immediate conclusions about its usefulness should be avoided.
After it is experienced several times, however, both the computer science teacher and
the pupils may start realizing its advantages and the challenges it introduces.

8.4 
�Visualization and Animation

According to Wikipedia,2 “the objectives of software visualizations are to support the
understanding of software systems (i.e., its structure) and algorithms (e.g., by animating the
behavior of sorting algorithms) as well as the analysis of software systems and their anoma-
lies (e.g., by showing classes with high coupling).” Price et al. 1998) distinguish between
program and algorithm visualization. Based on Price et al. (1998), Urquiza-Fuentes and
Velázquez-Iturbide (2009) give the following definitions for these terms:

Algorithm visualizations:  The static or dynamic visualization of higher-level abstractions
which describe the software.

Program visualizations:  The visualization of actual program code or data structures –
low-level abstraction – in either static or dynamic form.

2 Source: http://en.wikipedia.org/wiki/Software visualization.

http://en.wikipedia.org/wiki/Software%20visualization

1318.4  Visualization and Animation 	

Naps et al. (2003) claim that “the impetus for visualization in computing comes from
the inherent abstractness of the basic building blocks of the field. Intuition suggests that,
by making these building blocks more concrete, graphical representations would help one
to better understand how they work.” However, based on Naps et al. (2003), Rössling and
Velázquez-Iturbide (2009) claim that though “intuitively, most educators agree about the
great potential of software visualization for computer science education, adoption of soft-
ware visualization is lower than developers of program or algorithm visualization systems
would expect.” They summarize a survey, conducted among educators by the ITiCSE 2002
Working Group on “Improving the Educational Impact of Algorithm Visualization” (Naps
et al. 2003), which determined the most frequently cited factors that made educators reluc-
tant or unable to use software visualizations. Among these factors they mentioned:

Lack of time for different tasks (e.g., to learn a new tool or to develop a visualization).•	
Technical issues of software visualization tools (e.g., lack of effective development •	
tools or lack of reliable software).
Integration into the courses or the classroom (e.g., time to adapt visualizations to a •	
course or visualizations may hide important details or concepts).
Other factors (including lack of evidence of educational effectiveness).•	

Ben-Bassat Levy and Ben-Ari (2007) attribute two primary causes to teachers’ negative
experience with animation systems: “First, a pedagogical software tool cannot stand on its
own; rather, it must be integrated into the curriculum through other learning materials such
as the textbook. […] Second, to the extent that a software tool is intended for independent
use by students as opposed to demonstrations during frontal instruction by the teacher, the
issue of the centrality of the teacher must be taken into account. Centrality appears to be
an issue both for experienced and highly confident teachers, and for those with little expe-
rience and low self confidence.” (p. 250). They conclude that their research highlights “the
extreme importance of issues relating to control. It is not enough to develop a beautiful and
pedagogical useful tool; issues such as easy installation, training courses, and tutorials are
of equal importance because they will increase an educator’s feeling of control. Similarly,
training courses should not ignore operational or pedagogical difficulties that can arise
from the use of a software tool. They should address the changing role of the educator
when using the tool, emphasizing that they remain in control and do not relinquish their
central position.” (Ben-Bassat Levy and Ben-Ari 2008, p. 172).
Shaffer et al. (2010) present findings regarding the state of the field of algorithm visual-

ization based on analysis of a collection of over 500 algorithm visualizations. They state that
many algorithm visualizations are of low quality, and coverage is skewed toward a few easier
topics and suggest that this can make it hard for instructors to locate what they need.
In order to deepen the understanding of how learners can be involved in an educational

environment that includes visualization, Naps et al. (2003) define an Engagement
Taxonomy. This taxonomy is based on six different forms of learner engagement with
visualization technology, as is described very briefly in what follows:

•	 No viewing: No visualization technology is used at all.
•	 Viewing: Viewing by itself is the most passive form of engagement, but at the same time
is the core form of engagement, since all other forms of engagement with visualization
entail some kind of viewing.

132 8  Lab-Based Teaching

8
•	 Responding: The key activity in this category is answering questions concerning the
visualization presented by the system.

•	 Changing: The key activity in this category allows learners to change the input of the
algorithm under study in order to explore the algorithm’s behavior in different cases.

•	 Constructing: Learners construct their own visualizations of the topic under study.
•	 Presenting: A visualization is presented to an audience for feedback and discussion.
The visualizations to be presented may or may not have been created by the learners
themselves.

Myller et al. (2009) extend Naps et al.’s Engagement Taxonomy by adding the follow-
ing categories (p. 7: 8, the added categories are presented in bold in the following list):

No viewing.•	
Viewing.•	

•	 Controlled viewing: The visualization is viewed and the students control the visualiza-
tion, for example, by selecting objects to inspect or by changing the speed of the
animation.

•	 Entering input: The student enters input to a program or parameters to a method
before or during their execution.
Responding.•	
Changing.•	

•	 Modifying: Modification of the visualization is carried out before it is viewed, for
example, by changing source code or an input set.
Constructing.•	
Presenting.•	

•	 Reviewing: Visualizations are viewed for the purpose of providing comments, sugges-
tions and feedback on the visualization itself or on the program or algorithm.

We note, though we do not concentrate in this Guide on system-level computer archi-
tecture, that simulations for system-level computer architecture that uses visualization
and animation are also used in computer science education (Yehezkel et al. 2007; Taghavi
et al. 2009). Yehezkel (2002), for example, describes taxonomy for visualization of com-
puter architecture and introduce the EasyCPU environment3 in the context of this
taxonomy.
The purpose of Activities 54–59 is to let the students explore different ways by which

it is possible to use animation and visualization in their future computer science classes.
Activity 54 focuses on algorithm visualization; Activity 55 examines music as a kind
of visualization; Activity 56 focuses on software visualization and animation; Activity
57 explores visualization-based IDEs (integrated development environments); Activity 58
explores the Media Computation teaching approach; and Activity 59 summarizes what the
students have worked on in Activities 54–58.

3See http://csta.villanova.edu/CITIDEL/handle/10117/216

http://csta.villanova.edu/CITIDEL/handle/10117/216

1338.4  Visualization and Animation 	

Since most of Activities 54–59 are based on the exploration of environments that use
animation or visualization in some way, more than one lesson of the MTCS course should
be dedicated to this topic. If time constrains do not allow it, some of the exploration work
should be done by the students at home as a preparation toward the lesson.

Activity 54: Algorithm Visualization

›  Stage A: Increasing students’ attention to visualization
The instructor presents to the students a text that describes an algorithm with

which (it is reasonable to assume) they are familiar, for example, one of the sort,
search or traverse algorithms. Then, the instructor presents the following tasks:

Represent the given algorithm differently. (One option that will be probably sug-•	
gested by the students is to represent it visually).
Suggest different visualization ways to present the algorithm.•	

After the students’ suggestions are discussed, they are asked to work on the follow-
ing task:

Find an animation of this algorithm on the Internet and explore differences •	
between the given text description of the algorithm and its animation. Explore
these differences also from a pedagogical perspective.

›  Stage B: Design a visualization-based worksheet, group work
The students are asked to design a worksheet that teaches the said algorithm to

novice computer science learners and uses the algorithm animation they found on
the Web. The students can choose to develop a worksheet which is either based on
the lab-first approach (see Sect. 8.3 above) or used after the learners were intro-
duced to the algorithm in the class. The students should be asked also to explain
each of their considerations in the design process of the worksheet.

›  Stage C: Introducing Nap’s (extended) Engagement Taxonomy, class discussion
The instructor of the MTCS course:

Presents Nap’s Engagement Taxonomy (see above) to the students (alternatively, •	
the extended taxonomy can be presented).
Completes Table •	 8.3 together with the students with respect to general algorithm
animation.

›  Stage D: Examination of questions’ potential contribution to learners’ learning,
group work

(continued)

134 8  Lab-Based Teaching

8 Activity 54  (continued)

Each group categorizes the questions it included in the worksheet designed in
Stage B according to Nap’s Engagement Taxonomy and examines each question’s
potential contribution to learners’ learning of the said computer science topic. If
needed, the students are asked to update or modify the questions based on this
examination.

›  Stage E: Summary
In the summary of this activity, it is important to highlight that visualization and

animation have the potential to promote computer science learning from several
reasons. First, visualization and animation support very naturally active learning;
second, they enable learners to concretize abstract concepts; and finally, learners
may conceive visualization and animation as a kind of a game (see Chap. 7), and
therefore their use may increase the learners’ interest in computer science.

›  Stage F: Homework

•	 Option 1: The students work at home on the following activities, which offer
them an additional opportunity to rethink the different usages of visualization and
animation in the context of computer science education.

Develop the second kind of worksheet than the one you developed in the class ––
– the worksheet is given to learners either before or after they learn the said
computer science topic (see Stage B).
Formulate guidelines for the development of a worksheet that is based on ––
learners’ engagement with algorithm/program animation/visualization.
Reflect: What considerations guided you in the formulation of these
guidelines?

•	 Option 2: Explore The Algorithm Visualization Portal.4 Suggest at least five
usages of this website in high school computer science teaching.

Table 8.3  Questions for each level of Nap’s Engagement Taxonomy

Stage

Kinds of questions that are
suitable to be asked in each
level of engagement

How do the questions improve
the understanding of the learned
topic?

No viewing
Viewing
Responding
Changing
Constructing
Presenting

4 See http://algoviz.org/

http://algoviz.org/

1358.4  Visualization and Animation 	

Activity 55: Musical Debugging

Music is one aspect of visualization and can be used in computer science education in
several ways. For example, this musical debugging activity (Lapidot and Hazzan 2005)
increases learners’ awareness to their debugging processes, the importance of debug-
ging, and its relationship to learning processes. It also illustrates a different and non-
conventional use of the computer lab.

›  Stage A: Debugging a song melody, work in pairs with the computer
The students are given a familiar song, a nonworking computer program of its

melody, the program listing, and the melody. They are asked to debug the program and
to document their actions and the strategies they used during the debugging process.
While working on these tasks, the students debug the program, trying to make it

a working program, that is, a program that plays the correct melody. Usually, they
start with syntax errors, which are easier to detect and obtain a program devoid of
syntax errors. At this stage, they realize that the program does not play properly the
correct melody and start debugging the semantic (or logical) errors of the program.

›  Stage B: Class discussion
The discussion that follows the activity can be viewed on two levels.
On the first level, content is addressed. The students present the errors they found

in the program and describe their debugging strategies. This discussion offers an
opportunity to address programming errors and their classification in different ways
(e.g., syntax errors are the easiest to find vs logical errors are the most difficult to
locate). When learners are asked to generalize their own strategies, the discussion
focuses on general debugging strategies.
The second level of the discussion focuses on topics such as the following ones:

the importance of debugging in computer science and in computer science educa-
tion, the teaching of debugging, and the place of debugging in the computer science
curriculum. In this context, debugging can be addressed from the perspective of soft
ideas (see Sect. 3.7).

›  Stage C: Prepare a debugging activity or read articles that address debugging,
homework
The students are asked to prepare another debugging activity or to read articles

that address debugging (e.g., Spohrer and Soloway 1986; Perkins and Martin 1986)
and to comment on them from a pedagogical point of view.

Activity 56: Software Visualization and Animation

There are computational environments, designed especially for pedagogical purposes
that use visualization and animation to demonstrate how programs work. In order to
discuss this issue meaningfully with the students, it is important to let them experience
first at least two such environments, as is laid out in what follows.

(continued)

136 8  Lab-Based Teaching

8 Activity 56  (continued)

›  Stage A: Exploration of object-oriented program visualization and animation, work
in pairs
The students are asked to explore applications which are based on visualization

and animation. Two such applications are Jeliot5 and BlueJ.6
The students are asked to explore these environments with one of the tutorials

available on the Web. Specifically, the students can be asked to analyze these envi-
ronments from a pedagogical perspective (that is, when and how these environ-
ments can be used for teaching purposes) and to think about advantages and
disadvantages of these environments for learning purposes.

›  Stage B: Class discussion
The class discussion that follows this exploration should address topics such as

the following: advantages and disadvantages of program visualization, the fitness of
such environments to divers/all learners, concepts that their learning is supported by
these environments, and misconception that such environments may create.

›  Stage C: Read a paper, homework
The students are asked to find, read, and submit a critical report on one of the

research papers that deals with novice learning of the object-oriented paradigm with
one of these environments. See Chap. 4 for additional details about assignments that
deal with research on computer science education.

5Source: http://cs.joensuu.fi/jeliot/
6 Source: http://www.bluej.org/download/download.html
7 Source: http://www.alice.org/
8 Source: http://www.greenfoot.org/
9 See: http://csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html
10 See http://www.microworlds.com/
11 See: http://scratch.mit.edu/
12 See: http://www.squeak.org/
13 See http://education.mit.edu/starlogo/
14 See also TOCE special issue on Initial Learning Environments (November 2010, vol. 10(4)).

Activity 57: Visualization- and Animation-Based IDEs

Visualization- and animation-based IDEs use visualization/animation to support learn-
ers’ first programming steps, by allowing learners to work with more concrete objects
in their first learning steps of computer science. Here are several examples of such IDEs
(listed here alphabetically): Alice,7 Greenfoot,8 Karel J. Robot,9 MicroWorlds,10
Scratch,11 Squeak,12 Starlogo.13,14 It is notable, though, that many of them are inspired
by Papert’s Mindstorms philosophy (Papert 1980).

(continued)

http://cs.joensuu.fi/jeliot/
http://www.bluej.org/download/download.html
http://www.alice.org/
http://www.greenfoot.org/
http://csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html
http://www.microworlds.com/
http://scratch.mit.edu/
http://www.squeak.org/
http://education.mit.edu/starlogo/

1378.4  Visualization and Animation 	

Activity 57  (continued)

The students are asked to explore these IDEs in two stages, as is described in what follows.

›  Stage A: Solving a problem in one of the visualization/animation-based IDEs, work
in pairs
The students are asked to solve a problem in each (or in selected ones) visualization-

or animation-based IDE that illustrates the IDE’s pedagogical approach. It is recom-
mended that the instructor of the MTCS course gives the students specific task(s) to
work on. The above websites suggest a variety of tasks that can fit for this purpose.

›  Stage B: Analysis of the visualization- /animation-based IDEs, class discussion

What are the differences between the IDEs?•	
What are the advantages and disadvantages of each IDE?•	
What are the differences between these IDEs and algorithm animation?•	

Activity 58: Media Computation

“Media Computation (nicknamed “MediaComp”) is a contextualized approach to intro-
ducing computing using a ubiquitous theme of manipulating media. The critical char-
acteristic of MediaComp is that students create expressive media by manipulating
computational materials (like arrays and linked lists) at a lower-level of abstraction.
Students manipulate images by changing pixels, create sounds by iterating over sam-
ples, render linked lists into music, and create artifacts like collages, music, and digital
video special effects. In so doing, the students learn computation.”15
The MediaComp approach utilizes the advantages of visualization and animation in

a different way than IDEs, such as the ones described in the previous section. That is,
instead of creating a new visualization- and animation-based development environ-
ment, it uses visual elements of programming languages such as Python or Java, to
teach computer science concepts.
This approach can be addressed in the MTCS course by asking the students to pre-

pare a teaching unit (see Chap. 11) about an introductory computer science topic (e.g.,
loops or two-dimensional arrays) that uses the media computation approach. While
preparing the teaching unit, the students should be asked to keep reflecting and analyz-
ing their pedagogical considerations as well as differences between the Computational
Media approach and the traditional approach of computer science teaching.
The students can be referred to several textbooks that apply the Media Computation

approach and to The Media Computation Teachers Website,16 which lists these text-
books as well as additional resources.

15 Source: http://coweb.cc.gatech.edu/mediaComp-teach
16 See http://coweb.cc.gatech.edu/mediaComp-teach

http://coweb.cc.gatech.edu/mediaComp-teach
http://coweb.cc.gatech.edu/mediaComp-teach

138 8  Lab-Based Teaching

8 Activity 59: Summary Work

As a summary of the topic of visualization and animation, the students can be asked
to work on the following summarizing activity which integrates several aspects of
the previous activities. Specifically, the students are asked to summarize all the
usages of visualization and animation with which they have became familiar so far:
software visualization, algorithm animation, visualization-based IDEs and the
Media Computation approach. They can be offered to address the following topics.
It is recommended to guide them to base their work on the research available on
visualizations and animation in the context of computer science education (see
Chap. 4).

Differences and similarities between the different kinds of visualization and •	
animation.
The pedagogical purpose(s) for which each kind of visualization and animation •	
fits.
Kind of tasks that can be given with each kind of visualization and animation tool.•	
Connections between the lab-first approach and each of these applications of visu-•	
alization and animation.
Reflective essay of their future use of each application in their computer science •	
teaching in the high school.

8.5 
�Using the Internet in the Teaching of Computer Science

The Internet is an inseparable learning environment in the teaching of any subject. In addi-
tion to the general arguments for integrating the Internet in learning and teaching pro-
cesses, in computer science education it gets special attention since the Web by itself is
largely based on computer science ideas, such as data compression, encoding, and search
algorithms. Therefore, the students, as future computer science teachers, should be famil-
iar with this environment as a learning environment in general, and with some computer
science ideas that are implemented by the Web, in particular.
The Internet enables a constructivist-based learning environment in which learners are

active. In this chapter, we have seen so far one use of the Internet for the learning of com-
puter science in the context of algorithm animations. Activities 60–62 focus on the follow-
ing ways which use the Internet for the learning of computer science:

Information gathering•	
Exploration of the Internet through the computer science lens•	
Distance learning•	

1398.5  Using the Internet in the Teaching of Computer Science 	

Activity 60: The Internet as an Information Resource

The students are asked to design a lesson, which is based on the Internet as an information
resource, on some computer science topic that is learned in the high school, for example,
the history of computer science or different kinds of sorting algorithms.
After the students designed this lesson and their suggestions are presented and dis-

cussed in class, a discussion takes place that focuses on what computer science topics
fit to be learned by this teaching approach.

Activity 61: Exploring the Internet Through the Computer Science Lens

›  Stage A: Analysis of Web applications, group work
The students are asked to explore different Web applications from the perspec-

tive of computer science. In other words, the students explore what computer sci-
ence ideas are implemented and used in different web-based applications with which
they are familiar. They can be directed to focus on either the software design (e.g.,
the design of a profile in one of the online social networks) and/or on an algorithm
used by an online application (e.g., search in one of the search engine).

›  Stage B: Presentation of the group works
While the students present their products in front of the class, it is recommended

to check whether the computer science topics selected for exploration can be inte-
grated into the high school curriculum that the students will teach as high school
computer science teachers. It is reasonable to assume that even if not all topics can
be merged as a whole into the high school curriculum, some of them can be inte-
grated partially. It is important to remember, though, that even just mentioning in
high school computer science classes the applications of computer science ideas in
some real Web applications, with which the pupils are familiar, can increase the
pupils’ motivation to study computer science.

Activity 62: Distance Learning

Distance learning is a vast topic that is still explored. Many questions about how to
apply distance learning effectively are still open. However, similar to face-to-face
teaching situations, with respect to which it is clear that active learning promotes learn-
ers’ understanding (see Chap. 2), it is clear that in online learning environments in
general and distance learning environments in particular, learners should be active.
This assertion is based on the fact that in distance learning situations, the face-to-face

(continued)

140 8  Lab-Based Teaching

8 Activity 62  (continued)

social interaction offered to learners in traditional teaching processes should be substi-
tuted with another mechanism that enhances learners’ engagement.
We note that the activities presented in this Guide are based on face-to-face learning

and teaching situations and can be adjusted for distance learning situations, by keeping
the Active-Learning-Based Teaching Model (Chap. 2) and facilitating the different
stages of the model using an online platform.

›  Stage A: Learning a new computer science topic, individual work
The instructor of the MTCS course selects an online lesson about a computer

science topic with which the students are probably not familiar. The instructor asks
the students to learn the lesson and in parallel to reflect on their learning process.

›  Stage B: Class discussion
Students’ reflections are shared in front of the class. It is important to highlight

different aspects of the students’ reflection, such as: cognitive, affective, and social
ones.

›  Stage C: Integration of distance learning elements into the computer science
curriculum, homework
The students are asked to review the high school computer science curriculum

they are going to teach in the future and to suggest specific places in which they will
be able to integrate some distance learning elements. Each decision should be
explained and its contribution to learners’ learning of computer science should be
outlined.

References

Ben-Bassat Levy R, Ben-Ari M (2007) We work so hard and they don’t use it: Acceptance of
software tools by teachers. Proc. of the 12th Annu. SIGCSE Conf. on Innov. and Technol. in
Comput. Sci. Educ., Dundee, Scotland, UK; 246–250

Ben-Bassat Levy R, Ben-Ari M (2008) Perceived behavior control and its influence on the adop-
tion of software tools. Proc. of the 13th Annu. SIGCSE Conf. on Innov. and Technol. in Comput.
Sci. Educ., Madrid, Spain: 169–173

Friedman D P, Felleisen M (1986) The little LISPer. Science Research Associates, Inc
Knox D, Wolz U, Joyce D et al (1996) Use of laboratories in computer science education: guide-
lines for good practice. Rep. of the Work. Group on Comput. Laboratories. Integrating Tech.
into C.S.E. 6/96 Barcelona, Spain

Lapidot T, Hazzan O (2005) Song debugging: Merging content and pedagogy in Computer Science
education. Inroads – the SIGCSE Bull. 37(4): 79–83

Ma J, Nickerson J V (2006) Hands-on, simulated, and remote laboratories: A comparative litera-
ture review. ACM Comput. Surv. 38(3), Article 7

Myller N, Bednarik R, Sutinen E et al (2009) Extending the engagement taxonomy: Software
visualization and collaborative learning. Trans. Comput. Educ 1(9): 1–27

141References	

Naps T, Rößling G, Almstrum V et al (2003) Exploring the role of visualization and engagement
in computer science education. SIGCSE Bull. 35(2): 131–152

Nersessian N J (1991) Conceptual change in science and in science education. In Matthews M R
(ed.). History, philosophy, and science teaching. OISE Press, Toronto, Canada, 133–148

Papert S (1980) Mindstorms: Children, computers and powerful ideas. Basic Books Inc
Paz T (2006). Introduction to computer science in Java, worksheet collection (Hebrew)
Perkins D N, Martin F (1986) Fragile knowledge and neglected strategies in novice programmers.
In Soloway E, Iyengar S. (eds.). Empir. Stud. of Program. Norwood, NJ: Ablex Publishing Co.:
213–229

Price B, Baecker R, Small I (1998) An introduction to software visualization. In Stasko J, Domingue J,
Brown, M, Price B (eds). Softw. Vis.: 3–27, Cambridge, MA: MIT Press

Rössling G J, Velázquez-Iturbide J Á (2009) Editorial: Program and algorithm visualization in
education. ACM Trans. on Comput. Edu. (TOCE) 9(2)

Shaffer C A, Cooper M L, Alon A J D et al (2010) Algorithm visualization: The state of the field,
ACM Trans. on Comput. Educ. 9:2–9:22

Spohrer J G, Soloway E (1986) Analyzing the high frequency bugs in novice programs. In Soloway E,
Iyengar S (eds.) Empir. Stud. of Program., Norwood, NJ: Ablex: 230–251

Taghavi T, Thompson M, Pimentel A D (2009) Visualization of computer architecture simulation
data for system-level design space exploration. embedded computer systems: Architectures,
modeling, and simulation. Lect. Notes in Comput. Sci., Vol. 5657/2009: 149–160

Urquiza-Fuentes J, Velázquez-Iturbide J Á (2009) A survey of successful evaluations of program
visualization and algorithm animation systems. ACM Trans. on Comput. Edu. (TOCE) 9(2)

Yehezkel C, Ben-Ari M, Dreyfus T (2007) The contribution of visualization to learning computer
architecture. Comput. Sci. Educ 2(17):17–27

Yehezkel C (2002) A taxonomy: Visualization of computer architecture. SIGCSE Bull
34(3):101–105

143O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_9, © Springer-Verlag London Limited 2011

Types of Questions in Computer Science
Education 9

Abstract  As in the teaching of any discipline, computer science teachers are expected
to vary their teaching methods, and therefore this pedagogical issue should be included
in the MTCS course. This chapter focuses on how to achieve this pedagogical target by
using different types of questions. It explores and discusses different types of questions
that computer science educators (middle and high school teachers as well as university
instructors) can use in different teaching situations and processes: in the classroom, in
the computer lab, as homework, or in tests. The chapter lays out also the advantages of
using a variety of question types both for learners and teachers, and focuses on the design
process of different question types. Though the types of questions presented are mainly
related to programming assignments, most of them are suitable also for other computer
science contents.

9.1 
�Introduction

The main target of this chapter is to enrich computer science educators’ toolbox with
respect to the design of different types of questions and to illuminate the important role of
computer science educators in exposing their pupils/students to different types of ques-
tions throughout the learning-teaching processes. Learners’ work and exploration of dif-
ferent types of questions and their variations deepen their understanding of the learned
computer science concepts, refine their understanding of complex concepts, and let them
acquire different cognitive skills. Such an experience also provides learners with the
opportunity to express their knowledge in different forms. Further, the use of a variety of
question types sometimes provides intellectual challenges and maintains learners’ concen-
tration, interest, and motivation.

This teacher’s role should be delivered to the prospective computer science teachers,
and therefore, it is recommended that the variety of different types of questions throughout
the MTCS course in different opportunities and contexts be mentioned. Clearly, instructors
of the MTCS course should also apply the same pedagogical principles and vary the types
of tasks and questions they use while discussing the teaching of computer science with the
prospective computer science teachers.

144 9  Types of Questions in Computer Science Education

9 One of the common problem-solving scenarios in computer science education starts
with the presentation of an open problem that describes some story, continues with the
problem analysis and planning of its solution, and ends with the presentation of the solu-
tion as an algorithm either in pseudocode or a specific programming language. It is impor-
tant, however, that computer science teachers be aware of the fact that additional types of
questions exist.

Several pedagogical targets can be achieved by the integration of different types of
questions in the teaching of computer science, as is laid out in what follows:

1.	 Different types of questions enable to illuminate different aspects of the learned
content.

2.	 The integration of different types of questions throughout the teaching process helps
maintain the students’ interest, attention, and curiosity.

3.	 Different types of questions enable teachers to vary their teaching tools.
4.	 Different types of questions require the students to use different cognitive skills –

mental abilities we use while thinking, learning, and studying. This target is important
to enable each learner express his or her unique individual cognitive skills, to articulate
his or her knowledge in his or her unique way, and to develop and enrich one’s cogni-
tive skills.

Cognition is the process of thought and it can be analyzed from different perspectives. For
example, in psychology or philosophy, the concept of cognition is closely related to
abstract concepts such as mind, reasoning, perception, intelligence, and learning, all of
which describe the mind capabilities. The field of cognition studies specific mental pro-
cesses, such as comprehension, inference, decision making, planning, and learning. With
respect to computer science, we are all familiar with the advanced cognitive skills of
abstraction, generalization, concretization, and meta-reasoning.

Research works in computer science education deal with different types of questions
from the cognitive perspective. For example, Thompson et al. (2008) reviewed the work
that has been done throughout the last 10 years with respect to the application of Bloom’s
taxonomy (Bloom et al. 1956) to computer science course design, evaluation, and assess-
ments, and provided an interpretation of the taxonomy that can be applied to introductory
programming exams. Their interpretation focuses on the cognitive skill involved in
addressing several types of questions. Jones et al. (2009) focus on written examinations.
They determine the difficulty level of each question by keyword/s found in the question,
and present cross-analysis that addresses student performance, cognitive skills, and learn-
ing outcomes. Other kind of works that combine computer science questions and cognition
relates to automata systems of question-answering processes (see, for example, Pomerantz
2002 and Yang et al. 2008).

We first focus on question patterns and present 12 types of questions that computer sci-
ence educators can use (Sect. 9.2). For each type of question we also lay out several varia-
tions. Clearly, additional types of questions, as well as the combination of different types
of questions, exist and can be developed and used by computer science teachers. Then,
Sect. 9.3 presents three general kinds of questions (story questions, closed questions, and

1459.2  Types of Questions

unsolvable questions). Sect. 9.4 describes how the different types of questions can be
assimilated to different computer science contents and demonstrates these assimilations in
the context of Automata Theory. In Sect. 9.5, we present guidelines on how to develop
questions to be used in a computer science class. We also suggest several course activities
to be facilitated in the MTCS course in order to expose the prospective computer science
teachers to this topic.

9.2 
�Types of Questions

This section presents 12 types of questions and suggests how they can be used in computer
science teaching processes. Emphasis is placed on the pedagogical approaches they repre-
sent and on cognition considerations.

Each type of question is presented according to the following pattern: classification of
the type of question reflected by its title; short description of the specific type of question;
a concrete example or an example of a general pattern that demonstrates the said type of
question; different variations of the discussed type of question; and a short pedagogical
and cognitive discussion about the said type of question. Since our purpose here is to pres-
ent the variety of questions in the context of computer science education, most of the
examples are quite simple. Clearly, for each type of question, it is possible to develop a
range of questions on different complexity levels both from the algorithmic and the cogni-
tive points of view. In addition, with respect to each type of question, it is possible to pres-
ent additional variations that require different cognitive skills.

We add several remarks about the actual use of this collection of questions in the actual
teaching of computer science situations:

The order of the presentation of the 12 types of questions in this chapter is arbitrary; no •	
specific rule is applied for their ordering.
No specific rules or guidelines can be formulated with respect to the order by which it •	
is recommended to preset the different types of questions in the class; each computer
science educator should select the appropriate type of question and its complexity level
according to the specific learners’ characteristics and the specific teaching situation.
The suggested types of questions are sometimes overlapping each other; this point is •	
addressed when it is relevant.
A question can contain several types of questions in its different subtasks; this point •	
is illustrated by a particular example in the Combining several types of questions
section.
In general, questions can be divided into two types: Pure algorithmic tasks and story-•	
based algorithmic tasks; this perspective is discussed explicitly in the Story questions
section.
The types of questions presented in this section are mainly programming assignments; •	
most of them, however, can be easily assimilated for other computer science contents.

146 9  Types of Questions in Computer Science Education

9 9.2.1 
�Type1. Development of a Solution

Description: A development question presents an open problem in which learners are
required to develop their solution to a given problem. The solution can be expressed by a
descriptive algorithm, pseudocode or a program in a specific programming language.

Example: Write a method that gets as input an integer n and returns the number of (integer)
divisors of n.

Variations: A development question can ask for, for example: (a) a single method (as the
presented example); (b) a sequence of tasks to be performed; (c) a complete program; or
(d) a method with a specific efficiency (in the example presented it can be O(n)).

Discussion: This type of questions can be solved in different ways. In some cases, the dif-
ferences are not meaningful; in other cases, the different solutions represent different algo-
rithmic approaches.

Variation (d) is not a fully open question since learners are asked to address a specific
constraint – specific efficiency, and cannot develop any solution for the problem; therefore,
this variation requires wider range of considerations than the other ones and is considered
a harder question than the other variations.

9.2.2 
�Type2. Development a Solution That Uses a Given Module

Description: In this case, the development question relates to a pre-prepared module and
asks learners to present a solution to a given problem while considering and using a given
module. A documentation of the module is included in the question and the student must
use it in their solution.

Example: Write a method that gets as input an integer n and returns an integer number
between 1 − n that has the largest number of divisors. Use the method numberOfDividers(n),
that gets as input an integer value n, and returns the number of its divisors.

Variations: A development question that relates to a given module can be presented, among
other ways, in one of the following forms: (a) write an instruction that invokes a given
method; (b) write a method that uses a given method (as in the given example); (c)
write a method that uses a given module a specified number of times; (d) write a
method that uses several different given methods; (e) questions in which the given
module is not a method, but rather it is, for example, a specified data structure or a
specified class.

Discussion: The fact that students should relate to a given module influences the deve
lopment process of the solution. For example, in the case of a given method, as in the
above example, the learner has to suit the developed method to a specific subtask that the
given method implements. This type of questions is considered harder than Type1 ques-
tions because in this case learners need to meet a constraint – the use of the given
subtask.

1479.2  Types of Questions

9.2.3 
�Type3. Tracing a Given Solution

Description: A given code is presented and the learners are asked to track the code
execution.

Example of a general pattern: Present a tracing table that follows the execution of a given
method. The table should include a column for each variable and for the code output.

Variations: A tracing question can ask to follow, for example: (a) a complete program; (b)
a single method; (c) a recursive method; (d) object creation. In addition, the following
instructions can be used in each of the above variations: (1) follow the code execution
according to a given input; (2) follow the code execution when learners choose the input;
(3) follow the code execution according to several different specified inputs which are
selected in a way that guides the learners to find what the given code performs; (4) find
different sets of inputs so that each set represents a different flow by which the code is
executed; (5) find a set of inputs that yields a specific output.

Discussion: Variations (1)–(3) can be considered as closed questions. The learner is
required to trace a given code with a specified (given or chosen) input, and there is only
one correct solution. Variations (4) or (5) require learners to apply deeper considerations
and to examine the presented code from a higher level of abstraction. In these cases, it is
not sufficient to understand different instructions; rather, they require code analysis – what
the purpose of the code is and how it is achieved. Clearly, more advanced cognitive skills
are needed in order to address meaningfully these variations.

9.2.4 
�Type4. Analysis of Code Execution

Description: A given code is presented and learners are asked to analyze specific aspects
of the code execution.

Example of a general pattern: Look at the given code that includes a loop and answer the
following questions:

1.	 For what values of x and y the loop is not executed at all?
2.	 For what values of x and y the loop is executed exactly one time?
3.	 For what values of x and y the loop will never terminate?

Variations: Variations (4) and (5) of Type3 questions – Tracing a given solution – can be
viewed also as variations of this type of questions.

Discussion: In this type of question, the learner is required to analyze the code execution
and to understand it as a whole. Specifically, in order to solve such questions, learners
should exhibit mainly two cognitive skills: understanding programming structures and
understanding the logic of a given code. Therefore, a higher level of thinking is needed to
solve such questions than that needed for solving a tracing question; accordingly, this type
of question is considered harder than the “tracing a given code” type of question.

148 9  Types of Questions in Computer Science Education

9 9.2.5 
�Type5. Finding the Purpose of a Given Solution

Description: A given solution to an unknown problem is presented and the learners are
asked to state the purpose of the solution, that is, to determine what problem it
solves.

Example of a general pattern: Look at the given method and write the method target, that
is, what is the problem that the method solves?

Variations: A “finding the purpose of a given solution” question can relate to either: (a) a
sequence of instructions; (b) a single method (like in the presented example of a general
pattern); (c) a full program; (d) a class.

Discussion: This type of questions is considered harder than tasks that ask to develop a
solution for a given problem. For solving this type of questions, a set of cognitive skills is
required. Specifically, in addition to the understanding of the code execution and the abil-
ity to trace it, one should comprehend someone else’s way of thinking.

To help students solve this type of questions, a question can contain scaffolding sub-
questions. For example, a question can include several tracing sub-questions (Type3 ques-
tions), which aim to guide the students to discover the purpose of the code.

9.2.6 
�Type6. Examination of the Correctness of a Given Solution

Description: A given problem and its solution are presented. The student is asked to deter-
mine whether the given solution solves the given problem correctly.

Example: The following method was written by a student as a solution for the following
problem: Write a method that gets as input an array of integers and returns true if all the
array’s values are equals; otherwise, it returns false. Is the method correct?

Variations: This type of question can be presented in different forms: (a) determine whether
a given solution to a given problem is correct (as in the example presented); (b) check if a
given solution to a given problem is correct and explain your answer; (c) if the given solu-
tion is incorrect, give an example of an input that shows it; (d) if the given solution is
incorrect, give an example of an input that presents a correct output and, therefore, may
mislead one to conclude that the given solution is correct; (e) if the given solution is

1499.2  Types of Questions

incorrect, correct the solution by introducing the minimal required changes (without this
restriction, students may present a totally different solution); (f) the presented solution can
contain more than one mistake, and the question can state it explicitly or not.

Additional variations of this type of questions may address syntactic mistakes. It is suit-
able to present such variations while introducing new instructions or data structures. It is
not recommended, however, to use these variations in more advanced stages since they do
not indicate learners’ understanding of the algorithmic problem, and, further, they do not
contribute meaningfully to learners’ understanding since, in fact, the compiler directs how
to debug such mistakes.

Discussion: In order to solve this type of questions, students should apply algorithmic thinking
and logical skills. Here, as in Type5 questions, students should analyze a solution that may
not fit their own way of thinking had they been asked to develop a solution. However, since
the purpose of the solution is given, these tasks are considered easier than Type5 questions.

In the example presented, the two minimal required corrections are: (1) change the
increment of variable i to 1 (instead of 2); (2) change the range of variable i to be i < arr.
length-1. Correction (1) is based on a logical consideration, while correction (2) addresses
the array index, which is a more technical consideration.

9.2.7 
�Type7. Completion a Given Solution

Description: A given problem and an incomplete solution of the given problem, in which
some of the instructions are missing, are presented to the learners. The learners are asked
to complete the missing instructions, so that the solution will solve the problem correctly.

Example: The following method was written by a student as a solution for the following
problem: Write a method that gets as input an array of integers and returns the number of
array elements that are bigger than their two neighbors (the previous element and the sub-
sequent element in the array).

Variations: “A completion a given solution” question can be varied by changing the num-
ber of the missing instructions. This number should be determined by taking into the con-
sideration that it may affect the difficulty and complexity of the question.

In general, the missing instructions can relate to one or more aspects of the algorithm
and the teacher should consider whether to focus on one or more aspects. For example, if
the teacher’s target is to focus on the use of a boolean flag, the missing instructions should

150 9  Types of Questions in Computer Science Education

9 be only those that relate to this flag; if the target is to focus on the loop limits, the limits
should be the missing parts and, sometimes, also the increment of the loop control variable.

In the example presented, the missing instructions are related to three aspects: the counter
control (initialization, increment, and return); the range of the loop (the first and the last
array elements should not be accessed in the loop because they do not have two neigh-
bors); and the specific condition to be checked.

Discussion: This type of question, as well, requires students to understand the logic of the
given solution, when the actual question difficulty is determined according to students’ level
and stage of learning. Still, with respect to each computer science subject, relatively simple
“completion of a given solution” questions exist, where the understanding of the logic of the
solution is straightforward. At the same time, however, there are more challenging questions
and the teacher should be aware of this complexity. For example, asking to complete instruc-
tions in a given bubble sort algorithm, in which meaningful instructions are missing, without
introducing the rational of this sorting approach, is considered a difficult question.

9.2.8 
�Type8. Instruction Manipulations

Description: A problem and its solution are given. Students are asked to address different
manipulations performed on the solution.

Example: The following method executes a variation of the selection sort.

Answer the following questions and explain your answers:

1.	 Will the algorithm correctness be effected if the instruction marked by (2) is removed
and the instruction marked by (3) is replaced with the following instruction:

(3) 	 for (int j=i; j<arr.length; j++) {

1519.2  Types of Questions

2.	 Will the algorithm correctness be affected if the instruction marked by (4) is removed
and the contents of the two array elements are swapped anyway?

3.	 Will the algorithm correctness be affected if all the body of the loop marked by (3) is
replaced with the following instructions?

Variations: An “instruction manipulations” question can be implemented by the (a) addi-
tion of instructions; (b) removal of instructions; (c) changing instructions; (d) replacement
of instructions. The question itself can address the target of a specific code or the tracing
of the changed code and the examination of differences between outputs.

Discussion: Questions that manipulate a given solution enable to concentrate on meaning-
ful aspects of the algorithm. In the teaching process, a discussion on such manipulations
can clarify the essence of a given solution as well as other computer science topics. We
illustrate this idea by the concept of generalization. Students can be instructed to change a
given method slightly, in a way that generalizes the original method and solves a broader
task. For example, a method that sorts an array can be slightly changed in order to sort a
section of the array between two given indices. After the change, the method can sort dif-
ferent sections of an array, as well as the entire array (with the indices 0 and the array
length – 1).

9.2.9 
�Type9. Efficiency Estimation

Description: Students are asked to estimate the efficiency of a given solution.

Example of a general pattern: Estimate the efficiency of the presented method in terms of
big O. Explain your estimation.

Variations: This type of questions can represent different levels of cognitive complexity, as
is described in what follows. (a) A general pattern that enables to discuss efficiency in
early stages of computer science learning: Focus on the loop in the given method: How
many times is the loop executed?; (b) Estimate the efficiency of a specific method (as in
the example of a general pattern); (c) Estimate the efficiency of a method that invokes
another method, when the efficiency of the invoked method is taken into the consideration;
(d) Compare the efficiency of different methods that solves the same task; (e) Estimate the
efficiency of a recursive method; (f) Develop of a solution to a given problem with a spe-
cific efficiency.

152 9  Types of Questions in Computer Science Education

9 Discussion: Instructors should not wait till they teach complicated algorithms in order to
teach the concept of efficiency; alternatively, questions that deal with efficiency can be
integrated from early stages of teaching and learning computer science. For example,
questions, such as the one presented in variation (a), hints at the seeds of the concept of
efficiency that, in general, is considered to be abstract and difficult for understanding.

Note that variation (f) is actually a “development of a solution” (Type1 question) with
a restriction about its efficiency, which requires learners not to be satisfied when finding an
algorithmic idea that solves the given problem; rather, they should estimate its efficiency
and if it does not fit the restriction mentioned in the question, they should look for another
solution or improve the solution they found.

9.2.10 
�Type10. Question Design

Description: Students are asked to design a question.

Example1: Design a question that checks learners’ understanding of the sort-merge
algorithm.

Learners’ answer to this question can be based, for example, on tracing regular and/or
extreme cases of the input to this algorithm.

Example2: Design a question in such a way that its solution uses a method that finds the
most frequent value in an array.

An example for such a question is: Write a method for each of the 10th classes in a
school that gets as inputs the pupils’ grades in a computer science test, and prints the most
frequent grade in each class.

Variations: A design question can relate, among other options, also to the design of (a)
additional tasks in a given question that clarify extreme cases; (b) a question that its solu-
tion should use a given method (as Example2 is); (c) a question that intends to check the
understanding of a specific concept or algorithmic idea (as Example1 is); (d) a whole test
or worksheet that examines a specific computer science concept/topic.

Discussion: This type of questions invites learners to adopt a different point of view. In
addition to the experience learners gain by examining a question from the educator’s
point of view, this kind of questions encourages them to scrutinize the learned concepts,
to reflect on what they learned, and, by doing so, also to evaluate their own understand-
ing. In addition, the design of the questions is a kind of active learning that encourages
creativity.

9.2.11 
�Type11. Programming Style Questions

Description: Learners are asked to examine the programming style of different solutions
presented for the same task.

1539.2  Types of Questions

Example of a general pattern:   Look at the given collection of correct solutions for a
given problem. Examine the solutions and state which of them, in your opinion, is the best
solution. Explain your choice.

Variations: The different solutions for the given problem can differ in one or more aspect(s),
according to the teacher decision, such as (a) different kind of loops; (b) the need to use an
array for the solution; (c) different algorithmic approaches (for example, given two correct
solutions to a given problem, the learners should decide which one is a better solution and
explain why). If the teacher decides to integrate in the question several aspects, the differ-
ent aspects can be presented explicitly in the question when learners are asked to analyze
the solutions according to each aspect.

Discussion: This type of question enables to foster a discussion about different aspects of
programming style, which in turn increases learners’ awareness to these aspects.

9.2.12 
�Type12. Transformation of a Solution

Description: A problem and its solution are presented to the learners in a specific program-
ming approach, programming language, or programming paradigm. The learners’ task is
to transform the solution into a different programming approach, a different programming
language, or a different programming paradigm.

Example of a general pattern1: The presented loop is implemented by a while loop.
Implement it by a for loop.

Example of a general pattern2: The method presented is implemented by a while loop.
Implement it by a recursive method that achieves the same target.

Example of a general pattern3: The following method sorts an array of integers in the
imperative programming paradigm. Implement it in the functional programming
paradigm.

Variations: The different transformations presented in this kind of questions can be (a)
between programming paradigms (as in Example of a general pattern3). This variation
can be carried out only after the two said programming paradigms were learned; (b)
within the same programming paradigm but between programming languages; (c)
within the same programming language but between structures (as in the example of
general pattern1 or, for example, from a nested if statement to switch-case statement);
(d) within the same programming language but between different algorithmic
approaches (as in the example of general pattern2); (e) between different representa-
tions, for example, from pseudocode to any formal language. This variation, however,
does not foster problem solving skills and does not involve meaningful computer sci-
ence concepts. It can serve, however, for practicing different kinds of algorithm
representations.

Discussion: The focus in this type of questions should be placed on conceptual aspects,
rather than on syntactic aspects. By conceptual aspects we refer, for example, to prob-

154 9  Types of Questions in Computer Science Education

9 lem analysis according to two different programming paradigms or the transformation
of a sequential solution into a recursive solution in the same programming language.

In a similar way to the “programming style questions” (Type11), “transformation of a
solution” questions enable to concentrate on core computer science concepts. In addition,
such questions lead students to explore different problem-solving approaches. It should be
remembered, though, that since this type of questions demands skills of high level of
abstraction, it does not necessary fit all learners.

9.2.13 
�Combining Several Types of Questions

Though the above types of questions attempt to classify computer science questions, in
most cases, questions either combine several types of questions (as the following example
illustrates) or cannot be classified at all (see Activity 64).

Example: The target of the following two methods is to determine whether an integer num-
ber n is a prime number or not.

Here is a list of questions of different types that can be asked with respect to these
methods separately or in any combination according to the teacher’s pedagogical
purposes.

1559.2  Types of Questions

1.	 Type3. Tracing a given solution: Trace each method when n is 19.
2.	 Type4. Analysis of code execution:

For each method, determine how many times the loop is executed for –– n = 19.
Find a value of n, for which the loop in Method B is executed ten times. Is there ––
only one answer?

3.	 Type5. Finding the purpose of a given solution: What is the purpose of each method?
(can be asked if the problem is not indicated).

4.	 Type6. Examination of the correctness of a given solution: Check the correctness of the
two solutions. Do they solve the problem correctly?

5.	 Type9. Efficiency estimation: What is the efficiency of each method?
6.	 Type6. Correctness; Type8. Instruction manipulations; Type9. Efficiency:

If you change the upper loop limit in Method B to be –– n/2 (instead of n), is the solu-
tion still correct? If it is, what is the method efficiency after the change?
If you change the loop limit in Method B to be –– n (instead of n), is the solution
still correct? If it is, what is the method efficiency after the change?

Activities 63 and 64 focus on the above collection of question types. The activities can
be facilitated in different opportunities throughout the MTCS course, not necessarily only
when the topic types of questions is at the focus of the discussion. The important thing is to
keep mentioning that a variety of questions exists in computer science education and keep
emphasizing the importance of its use. For example, when students are asked to prepare
questions and activities for computer science learners on a specific computer science topic,
this variety of questions should be reminded and the students should be asked to use it.

Activity 63: Question Classification

This activity is based on three stages: individual work, group work, and a class discussion.
A collection of questions is given to the students together with a list of types of ques-

tions. The students are asked to classify the questions according to their types. Another
option is to ask the students to classify the questions according to their criteria (and not
to distribute the list of types of questions).

They can be asked first to work on the classification individually, and then to discuss
their classification in small groups, trying to reach an agreement on one classification.
Obviously, a question can be classified into two or more types of questions, but such
cases, in fact, just sharpen the students’ thinking about the nature of computer science
questions. After the group work, a discussion in the course plenum takes place in which
the classifications are presented and their rationales are articulated.

We note that at the end of each chapter of most computer science textbooks, a set of
questions is usually presented and the questions to be sorted can be taken from there. In
this case, it is relevant to increase the students’ awareness to the fact that they should
examine also these sets of questions while choosing a text book to be used in their
future filed work.

156 9  Types of Questions in Computer Science Education

9

9.3 
�Kinds of Questions

In this section we present three kinds of questions, which represent a more global question
classification. The first two kinds – story questions and closed questions – can be applied
with respect to most of the 12 types of questions presented in Sect. 9.2. The third kind of
question addresses unsolved problems.

9.3.1 
�Story Questions

Story questions presented to computer science learners can be divided literally into two
main kinds: pure-algorithmic tasks and narrative-algorithmic tasks. Pure-algorithmic tasks
are problems that directly and explicitly address the program structures and variables, and

Activity 64: Classification of Non-simple Questions, Group Work

The students get a worksheet with patterns of questions, and are asked to work in
groups and for each pattern, either to indicate its type (by using the list of types) or state
that no type of questions fits it. In the second case, students are asked to formulate a
new type of question and to indicate its pedagogical targets.

Table 9.1 presents a worksheet about the classification of question patterns.

Table 9.1  Worksheet about the classification of non-simple questions

Worksheet – question classification

In what follows, a list of questions patterns is presented
For each question pattern determine its type; if you cannot find a suitable type, formulate a

new type that captures its essence and indicate the pedagogical purposes of this type of
questions

1.  A trace table is given. Write a sequence of instructions that produces this trace table
2. � In the computer lab: A given program contains a new built-in function called doSome-

thing. Investigate the purpose of this function and formulate it. Document your
investigation process

3. � In what follows, several runtime errors are presented. For each of them, write a
program that during its running, the error is received

4. � A narrative-algorithmic question is presented. Choose the most appropriate data
structure needed to solve the question, and explain your choice

5. � In the computer lab: Play a given game and speculate what classes/data structures/
functions used for its programming.

1579.3  Kinds of Questions

present the task by using this terminology. Narrative-algorithmic tasks are problems that
neither relate to program structures nor to its variables; rather, in this kind of questions, the
problem to be solved is embedded in a story and in order to solve the problem, learners
should recognize both what is given and what the target of the problem is. Specifically,
learners should decide which elements included in the question formulation are relevant
and which ones are irrelevant, and based on this decision, to solve the task. Most of the
examples presented in the list of Types of Questions (Sect. 9.2) are pure-algorithmic tasks
where the problem target is presented explicitly.

Table 9.2 presents three story tasks in two ways: as pure-algorithmic tasks and as nar-
rative-algorithmic tasks.

It is important to address these two kinds of story questions in the MTCS course, not
only because they are different, but also because they require different problem-solving

Table 9.2  Tasks as pure-algorithmic tasks and as narrative-algorithmic tasks

The task
Pure-algorithmic
formulation Narrative-algorithmic formulation

Find the maximum
of a list of
numbers.

Write a method that gets
as input a list of
integers and returns
the maximum value
in the list.

In a sport competition, 5 classes of 30
pupils each participates in two jumping
competitions. Write a program that gets
as input, for each class the two results
of each student, and for each class
displays the best result in each of the
two jumping competitions.

Checks whether a
given array is
sorted.

Write a method that gets
an array as a
parameter and returns
true if the array is
sorted; otherwise,
it returns false.

A teacher wishes to encourage his or her
pupils, and to give them a written
recognition if their grades are improved
in each test. Write a method that helps
the teacher performing this task. The
method gets as input the list of grades
of a specific student and determines
whether the said pupil deserves the
recognition.

Change characters to
their successive
characters
according to the
Unicode table.

Write a method that gets
as input an array of
characters, and
changes the array in
a way that replaces
each character with
its successive
character according
to the Unicode table.

A message that should be sent between
financial partners should be encoded.
The message includes words, spaces,
and dots. Write a method that gets as a
parameter a String which represents the
message, and returns a coded message
in which each letter is replaced by its
successive letter in the alphabetical
order. The letter “Z” will be replaced
with the letter “A”. Spaces and dots
should not be changed.

158 9  Types of Questions in Computer Science Education

9 skills. A pure-algorithmic question indicates specifically the task to be solved; in narrative-
algorithmic tasks, students should discover the task to be solved. Since in the real world,
most problems are based on narratives, the ability to solve of narrative-algorithmic tasks is
an important skill that computer science learners should acquire. It should be remembered,
though, that these questions are more complicated.

Accordingly, when teaching a new computer science content, story questions should
be addressed in several stages: (1) present a general story that embeds the new learned
topic, so that the class gains the essence and target of the new topic; (2) focus for a while
on pure-algorithmic questions, to allow a gradual knowledge construction process of the
new tool or structure; (3) integrate narrative questions in the continuation of the teaching
process.

9.3.2 
�Closed Questions

The common interpretation of a closed question is a question that is presented together
with a list of possible answers and the learners’ task is to choose the correct answer from
this list. The frequent types of closed questions are multiple-choice questions or true/false
questions. It should be remembered, though, that in fact, the answers are closed but not the
questions.

The 12 question types presented in Sect. 9.2 could be further discussed as questions that
can be presented as story questions and/or as closed questions. In what follows, we classify
them according to this criterion.

Types of questions that can be presented as closed questions

Type3 – Tracing a given solution.•	
Type4 – Analysis of code execution.•	
Type5 – Finding the purpose of a given solution.•	
Type6 – Examination of the correctness of a given solution.•	
Type9 – Efficiency estimation.•	

Example: A closed question of Type6 can present a list of methods that potentially solve a
given task, and ask learners to mark the methods that solve the task correctly.

Types of questions that cannot be presented as closed questions

Type1 – Development of a solution.•	
Type2 – Development of a solution that uses a given module.•	
Type10 – Question design.•	
Type12 – Transformation of a solution.•	
Since the target of these types of questions is to require learners to develop a solution

that meets specific requirements, if they become closed questions, this target will not be
achieved.

1599.3  Kinds of Questions

Types of questions that cannot naturally be presented as closed questions

Type7 – Completion of a given solution.•	
Type8 – Instruction manipulations.•	
Type11 – Programming style questions.•	

Example: A closed question of Type7 can present a list of optional instructions to be added
to a given code in a specific place in order to solve a given task, and learners are asked to
mark which of them fits for this purpose.

The target of Activity 65 is to train the prospective computer science teachers in ques-
tion formulation. This training is especially important in the context of story questions
which usually include more words.

Activity 65: Question Formulation, Work in Pairs

First, the students work in pairs and each mate of the pair is asked to develop an open
question on one specific topic from the curriculum. Then, they are asked to exchange
the questions they write, solve the question that their mate develope, and give a con-
structive feedback about the question to their mate. It is important that both mates will
develop a question on the same computer science topic, since during the question
development they deepen their understanding and consideration with respect to the
specific topic, and consequently, their feedback to their mate is more valuable.

9.3.3 
�Unsolvable Questions

The rational for this specific short discussion stems from the fact that computer science
learners should be aware of the fact that not every problem is solvable (see also Chap. 5).
There are incomputable problems – problems that have no solution, meaning, there is no
algorithm that solves them, and further, a proof exists that shows that such algorithm does
not exist. In addition, there are problems that have an algorithmic solution, but they cannot
be computed in practice due to their time complexity.

It is important that a computer science educator be aware to the fact that sometimes
there is no hint at whether a problem is solvable or not. Further, from a high school com-
puter science teacher’s point of view, the message that should be delivered is that any
question design should be done very carefully. Sometimes questions may look simple, but
their solution may be very complicated or even does not exist.

Hazzan (2001) addresses this kind of question by focusing on their presentation to
computer science learners. The idea is to formulate a problem in a way that would not give
any hint of whether the problem is solvable or not, or of the conditions under which it is
solvable. Such a formulation has two main merits. First, learners get the idea that there are
unsolvable problems, and second, learners acquire skills for determining whether a prob-
lem is solvable or not, and if a problem is solvable under certain conditions, to find out
these conditions. This idea is illustrated in Hazzan (2001) with respect to different prob-
lems, for example, the Halting Problem, the Tiling Problem, and Map Coloring Problem.

160 9  Types of Questions in Computer Science Education

9 9.4 
�Assimilation of the Types of Questions to Different Computer Science Contents

As we stated in the beginning of the chapter, the presented types of questions are mainly
programming related questions. Still, most of them can be used in a variety of computer
science contexts. Table 9.3 presents specific variations of several question types in the
context of Automata Theory.

The construction of such a table can be facilitated as an activity in the MTCS course for
one of the topics included in the high school curriculum that the MTCS focuses on.

Table 9.3  Illustration of the types of questions in the context of Automata Theory

Type of question An example pattern

Type1: Development of a
solution

Design a finite automaton that recognizes a regular language L.

Type2: Development
of a solution that
uses a given module

Given the A1 finite automaton that recognizes the language L1 and
A2 finite automaton that recognizes the language L2, design a
finite automaton that recognizes the language L1 ∪ L2.

Type3: Tracing a given
solution

Given a push down automaton P, and a word w, show the
sequence of states that P goes through while processing w.

Type4: Analysis of code
execution

Given a finite automaton A, present:
– A word that the automaton accepts;
– A word that the automaton rejects;
– A word that its processing is terminated in the trap state.

Type5: Finding the purpose
of a given solution

Given a Turing Machine T, determine what language it accepts.

Type6: Examination of the
correctness of a given
solution

Does the given Turing Machine T recognize the language L?

Type7: Completion a given
solution

Complete the Push Down Automaton P, so it will recognize the
language L.

Type8: Instruction
manipulations

Given a Turing Machine T, if the transition from state q1 to q2
is replaced by the next transition [to be described], what
language will the machine recognize?

Type9: “Efficiency”
estimation

Given a finite automaton A that recognizes the language L, can
you present a different finite automaton that recognizes the
same language with fewer states?

Type10: Question design Design a question that requires the presentation of a BNF
grammar for an irregular language.

Type11: “Programming”
style questions

Given three different Push Down Automata that recognize a
language L, examine the automata and state which of them,
in your opinion, is the best. Explain your answer.

Type12: Transformation
of a solution

Given a Turing machine T, present a BNF grammar that
expands the same language.

1619.5  Question Preparation

9.5 
�Question Preparation

The preparation of questions to be used in a computer science class is not a simple task.
Many considerations should be thought about, some of them are local to the specific lesson
and class and others are more global and refer to the teaching unit, or even, further, to the
entire curriculum. Those considerations are important and therefore, the process of ques-
tion preparation should be included in computer science teacher preparation programs.
Though an entire course can be dedicated to aspects related to question preparation in
different stages of the teaching processes, we present here only the main stages of the
preparation process of a question to be used in a computer science class.

1.	 Planning: We lay out questions that computer science teachers should ask and answer
in the process of question planning:

What is the target of the question?––
What does the question intend to examine?––
What knowledge and skills are students supposed to possess in order to solve the ––
question?
Does the previous learning process enable students to acquire those skills?––
Does the previous learning process include the needed knowledge?––
What is the level of abstraction needed to solve the problem?––
Is the question varied from other questions presented so far in the class?––

2.	 Solving: Teachers must solve any question before presenting it to the learners. It is
important for any question, but especially necessary in the process of test preparation
(see Chap. 10). Indeed, there are questions that look simple, but turn out to be difficult.
Until a complete solution is presented, one cannot be sure that the question fits its
purpose as well as the other aspects presented in the planning stage. If possible, it is
recommended to ask a colleague to read at least the question formulation and verify
that the question is understandable, clear, and not ambiguous. When the answer is
based on code writing, it is necessary to run it on the computer and check that it works
properly.

3.	 Estimation of the needed time to solve the question: Time is a crucial resource in
teaching processes. Therefore, teacher should estimate the time required by learners to
solve any particular question, which is usually longer than the time required by the
teacher to solve it. The time estimation in this context relies on different factors, such
as the effort involved in reading, planning, and writing the answer to the question. If a
specific question turns out to be time consuming, it is important to remember that, in
most cases, a different type of question, that requires less effort and meets the same
pedagogical targets, can be developed.

The target of Activities 66 and 67 is to train the students in question design of
different types.

162 9  Types of Questions in Computer Science Education

9 Activity 66: Question Design, Individual Work or Group Work

All students/groups are directed to focus on one specific computer science subject, such
as, the loop or differences between indices and values of array cells. In addition, for
each student/group, one type of question is assigned. Then, each student/group com-
poses a question of that specific type related to the specified computer science subject.
The students can exchange the questions to get feedback, and based on it to improve the
questions formulation.

In the next stage, all questions are merged into one document. Such a document
highlights very clearly how a specific subject can be addressed by a variety of types of
questions.

Further, the course instructor can facilitate a discussion about how to evaluate question
difficulty, by posing questions such as: Can we definitely decide whether a question is
simpler or more difficult than another question? What elements do determine question
difficulty? Can we sort questions according to their difficulty level? Is question difficulty
level connected directly to its type?

This discussion can follow by an activity in which for several of the presented ques-
tions, the students are asked to formulate two similar questions – one that is simpler and
one that is harder. An interesting question that the students can be asked to reflect on is
whether different levels of question difficulty require also different question types.

Activity 67: Test Design, Group Work

This activity can be facilitated in the context of any topic discussed in the course. The
activity is presented in Table 9.4.

The students are divided into groups and are asked to compose a test on a specified
computer science subject taken from the high school curriculum that the MTCS course
focuses on. Each question in the test should represent a different question type. While
working on this activity, the student should relate to the different stages of question com-
position, to the variety of question types, and to the computer science contents as well.

Additional activities about evaluation in general and about test preparation in
particular are presented in Chap. 10.

Table 9.4  Worksheet on test design

Worksheet – test design, group work

Compose a test on (conditions/loops/arrays/…..) according to the following stages:
1.	 Determine which concepts should be tested.
2.	 Decide what types of questions to include in the test. Associate the concepts to be

checked to each type of question and roughly estimate the time required for a high
school pupil to solve it.

3.	 Distribute the work among the team members, so that each team member will compose
one question.

163References

References

Bloom B S, Engelhart M D, Furst E J et al (1956) Taxonomy of educational objectives Handbook
1: Cognitive domain. London, Longman Group Ltd

Jones K O, Harland J, Reid J M et al (2009) Relationship between examination questions and
Bloom’s taxonomy. In Proc. of the 39th IEEE Int. Conf. on Front. in Educ. Conf.. San Antonio,
Texas, USA

Hazzan O (2001) On the presentation of Computer Science problems. inroads – the SIGCSE Bull.
33(4): 55–58

Pomerantz J (2002) Question types in digital reference: an evaluation of question taxonomies. In
Proc. of the 2nd ACM/IEEE-CS Jt Conf. on Digit. Libr. Portland, Oregon, USA

Thompson E, Luxton-R A, Whalley J et al (2008) Bloom’s Taxonomy for CS assessment. In
Simon, Hamilton, M (Eds) Proc. 10th Australas. Comput. Educ. Conf. (ACE 2008), Wollongong,
NSW, Australia. CRPIT 78:155–162

Yang A., Wu J, Wang L (2008) Research and design of test question database management system
based on the three-tier structure. WTOS 7(12):1473–1483

Activity 67  (continued)

4.	 When all team members finish composing their questions, organize them into one test.
5.	 Re-estimate the time required for a high school pupil to solve each question and check

if the total time estimations fits the time framework of the test
6.	 Each team member solves the test and writes down his or her comments on each

question.
7.	 In your groups, discuss your comments and perform the needed changes in the test.
8.	 Submit the test to the course web site.

Table 9.4  continued

165O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_10, © Springer-Verlag London Limited 2011

Evaluation 10

Abstract  Evaluation is one of the most common tasks teachers perform from the
early stages of their professional development. This chapter highlights the unique-
ness of learners’ evaluation in the case of computer science education, emphasizing
that evaluation is not a target by itself, but rather, a pedagogical means by which
(a) teachers improve their understanding of the current knowledge of their pupils,
and (b) learners get feedback related to their own understanding of the learned
subjects. The chapter also delivers the message that the theme of evaluation can
be discussed in the MTCS course in different opportunities, for example, learners’
alternative conception, project-based learning, and types of questions. The topics
on which this chapter focuses are tests, project evaluation and the use of portfolio
in computer science education. We end this chapter by addressing the evaluation of
the students enrolled in the MTCS course.

10.1 
�Introduction

Evaluation is one of the most common tasks teachers perform from the early stages of their
professional development. Therefore, and in order to highlight the uniqueness of learners’
evaluation in the case of computer science education, the topic should be included and
addressed in the MTCS course.

It is important, however, to realize that evaluation is not a target by itself; but rather, it
is a pedagogical means by which: (a) teachers improve their understanding of the current
knowledge of their pupils, and (b) learners get feedback related to their own understanding
of the learned topic. Accordingly, the main target of evaluation should not be grading;
alternatively, evaluation should serve as a kind of reflection both for teachers and learners
with respect to the teaching and learning processes and with respect to pupils’ knowledge
and perception.

Similar to the use of other pedagogical tools, the evaluation methods employed in any
pedagogical setting should be varied. In this spirit, we deliver the message that learners’
evaluation should not be necessarily addressed in isolation in the MTCS course and

166 10  Evaluation

10
recommend to integrate activities and discussions about evaluation along the MTCS course
in different opportunities when other topics are at the focus of the discussion, for example,
research in computer science education (Chap. 4), learners’ alternative conceptions
(Chap. 6), lab-based teaching (Chap. 8), types of questions (Chap. 9), and teaching plan-
ning (Chap. 11).

For example, Activity 39 presented in Sect. 6.3 is about learners’ alterative conceptions
as well as about the evaluation of a pupil’s answer in a written exam; in Chap. 7, we dis-
cuss project-based learning and mentoring process of software project development. Once
again, the theme of evaluation can be discussed with respect to different approaches toward
project evaluation. This topic will also be addressed in the continuation of this chapter.
Finally, we mention Chap. 9 about the types of questions, which may also elevate relevant
themes related to learners’ evaluation.

In the continuation of this chapter we address the following topics: tests, project evalua-
tion, and portfolio in computer science education. We end by addressing the evaluation of the
students enrolled in the MTCS course. While addressing these topics, we wish to deliver the
following principles related to evaluation in the context of computer science education:

A single and unique way to evaluate computer science learners does not exist and dif-•	
ferent evaluation approaches are appropriate to be applied in different pedagogical
situations;
The different evaluation approaches should make sense, and when appropriate, should •	
be explained to the pupils (who take the exam, develop the project, etc.);
Different aspects of learner’s knowledge and cognitive skills should be evaluated;•	
Teachers’ feedback to pupils’ exercises/exams/projects may convey different messages •	
(sometimes hidden); therefore, careful attention should be given to written feedbacks;
Evaluation tasks should be varied in order (a) to relate to different aspects of the learned •	
topic and different cognitive skills, and (b) to motivate learners and keep their curiosity;
Evaluation should be conceived as an ongoing reflective process.•	

10.2 
�Tests

Tests can be administrated in different forms and settings. For example, tests can take
place in the computer lab. In this section, however, we focus on written tests which
take place in the classroom. This process of test handling is based on several steps:

1.	 The teacher constructs the test and the test evaluation rubric.
2.	 Students take the exam.
3.	 The teacher evaluates the test.
4.	 The teacher returns the tests to the pupils.

Since steps 2 and 4 are more general and basically, are similar to those performed in
other subject matters, Activities 68 and 69, focus on steps 1 and 3.

16710.2  Tests 	

Activity 68: Test Construction

It is recommended to facilitate this activity after different types of questions in
computer science education (Chap. 9) have been discussed. The instructor of the MTCS
course can choose any computer science topic to focus on in this activity according to
his or her pedagogical preferences, the topics addressed so far in the MTCS course, and
the relevant high school curriculum.

›  Stage A: First experience in test construction, individual work
In this trigger, the students are asked to construct a test about a computer science

topic that the instructor decided about. The instructor can specify also the stage in
which the test takes place (that is, during the learning process of the said topic, at the
end of this learning process, etc.) or to leave it open for the students to decide. The
idea is to let the students start sensing the variety of topics that a teacher should
consider while building a test. Therefore, the students should not necessarily finish
the task and the instructor can proceed to the next stage when he or she recognizes
that the students have gained enough experience that will enable them to discuss
meaningfully the process of test construction.

›  Stage B: Topics to be considered in the process of test construction, class discussion
Based on the experience the students have gained in Stage A, a class discussion

takes place about the topics that a teacher should address when he or she constructs a
test. The instructor should make sure that the following topics are mentioned in this
discussion: the target of the test, the structure of the test, learners level, types of ques-
tions, questions of different complexity levels, organization of the questions in the
test, and the grading policy. This discussion aims to increase the prospective teachers’
awareness to the fact that the process of test construction is not a trivial task and that
special attention should be devoted to a variety of pedagogical considerations.

›  Stage C: Test construction, group work
At this stage, after the students have realized the variety of topics that should be

addressed while a test is constructed, they are asked to work in groups and to con-
struct a test on the topic they worked on in Stage A.

First, the students are asked to sketch the structure of a test. They should be guided to
decide about the questions’ scope (in terms of their relative grade in the test) and type,
and to document their pedagogical considerations and decision-making processes.

For example, with respect to question scope, the test can include either many short
and focused questions, questions of different scopes, or a small number of wide scope
questions. With respect to question type, the students should decide whether the
questions be open or closed, programming tasks, etc. It should be emphasized that
the decided framework can be changed in later stages when the details of the test are
examined; however, it should be highlighted that such an initial sketch of the test
structure helps teachers clarify to themselves their pedagogical purposes and what
kind of knowledge they actually wish to evaluate.

(continued)

168 10  Evaluation

10

Second, the students are asked to develop the questions of the test according to
the structure of the test they decided about. During this process, if they decide to
change that structure, they should explain why.

The process of question construction encourages the students to consider topics
such as, factors which determine the complexity level of a particular question, dif-
ferent solutions that pupils may propose for a given question, learners’ mental pro-
cesses, and the need to match questions to a specific group of learners.

›  Stage D: Test analysis, class discussion or teamwork
One way to facilitate this stage is to let each group present its test together with

its pedagogical considerations.
Another way to facilitate this stage, especially when the class is big and the avail-

able time does not allow all the groups to present their tests, is to let each group
analyze the test of another group (e.g., the test of the group on its right), comment
about it and returns it to the group that designed it. Thus, in parallel, all groups ana-
lyze a test that was constructed by another group, and immediately after that, receive
another group’s feedback on the test they constructed. This teamwork can proceed
by short presentations in which each group presents the test it analyzed.

Then, one test is selected on which all groups will work in the next stages. It is
recommended to let the students select the test on which they will work. However,
if the students do not reach a conclusion, the instructor of the MTCS course can
choose one test, explaining his or her considerations. For example, the selection can
be based on the variety of questions, reasonable amount of material covered by the
test, and so on. Alternatively, the test on which the students will work can be formed
by integrating questions taken from tests presented by different groups.

›  Stage E: Test solving, individual work
The students are asked to work individually and to solve the selected test. This

process of test solving aims at increasing the students’ awareness to a variety of
topics (such as, the relevance of the questions to what was learned in class, the solu-
tion complexity, the scope of the solution, pupils’ potential mistakes, and more) that
they will have to consider in the next stage in which they construct an evaluation
rubric for the test.

›  Stage F: Design of an evaluation rubric, group work
An evaluation rubric is a set of guidelines that a teacher uses in the grading pro-

cess of a specific test. The actual preparation of evaluation rubrics encourages teach-
ers (a) to realize what the test actually checks and if it matches their pedagogical
intentions; (b) to verify that there is a match between the grades the pupils will get
and their actual knowledge; and (c) to ensure (as much as it is possible) that all
learners’ exams are checked uniformly by the same criteria.

(continued)

Activity 68  (continued)

16910.2  Tests 	

In addition, teachers can share the evaluation rubric with their pupils, when they
wish to deliver what they consider important with respect to the test content or when
they wish to explain to their pupils how their grades were calculated. When the
evaluation rubric is shared with the pupils, it is not necessary to indicate all its
details; rather, each teacher should select the level of detail he or she shares with his
or her pupils according to the class characteristics and his or her personal pedagogi-
cal considerations. In any case, it should be delivered to the students that it is impor-
tant that their future pupils will be familiar with their evaluation principles.

When an evaluation rubric is designed, a teacher should consider several aspects:

Point accumulation: Should points be gathered (that is, a pupil starts with zero •	
points and collects points according to his or her answers) or should points be
reduced (that is, a pupil starts with 100 points, and mistakes reduce his or her
grade)? Each approach is appropriate as long as it is based on relevant pedagogi-
cal considerations.
What is considered a mistake: For example, if a pupil wrote a correct computer •	
program but did not use meaningful names for methods, should points be reduced
(if the approach is to subtract points)? If a student found a solution to a given
problem, described it correctly, but did not implement it correctly in the program-
ming language, should points be added (if the approach is to add points)?
Evaluation of different solutions: If a question can be solved in several ways, is •	
one answer preferable over the others? Are all the solutions accepted?

After these considerations are discussed with the students, they are asked to work
in groups and to construct an evaluation rubric for the test selected in Stage D which
they solved in Stage E. They are asked also to choose one team member to docu-
ment their considerations and decision-making processes.

›  Stage G: Presentation of the evaluation rubrics
The groups present their evaluation rubrics in front of the class, explaining their

considerations with respect to each question. In order to highlight the fact that the
same question can be evaluated in different ways, it is recommended to ask all
groups to present their evaluation rubrics for the first question, then for the second
question, etc. If there are time constraints, the instructor can choose one or two
questions and to focus on their evaluation rubrics.

As in Stage D, another option is to let each group analyze the evaluation rubric
of another group and to present its conclusions in front of the class.

›  Stage H: Conclusion
The instructor of the MTCS course summarizes the main issues addressed in the

different stages of this activity.

Activity 68  (continued)

170 10  Evaluation

10

10.3 
�Project Evaluation

One of the topics discussed in Chap. 7, which deals with lab-based teaching, is the integra-
tion of software projects in computer science education. We explain the rationale for proj-
ect-based learning and concentrate on the actual mentoring process of software projects
developed by high school computer science pupils. Project evaluation is an additional
important issue that should be addressed in this context. Specifically, questions such as the
following ones should be considered: How should pupils’ projects be evaluated? What
should be the nature of the evaluation? When should the evaluation take place? How
should software projects developed by teamwork be evaluated? How can project evalua-
tion enhance learners’ understanding of computer science? Indeed, project evaluation is
not a simple task and therefore, should be addressed in the MTCS course.

Activity 69: Construction of a Course-Summary Exam

In this activity, a course-summary exam (e.g., the AP exam) is constructed. In some
sense, this activity is similar to the previous activity (Activity 68); it is, however, car-
ried out with respect to a different scope of computer science content and learner popu-
lation. From the content perspective, a course-summary exam evaluates learners’
knowledge with respect to all the subjects included in the course; from the learner
population perspective, a course-summary exam is not intended to be solved by one (or
small number of) specific class, but rather by the entire course population. Definitely,
these larger scales set a challenge.

In addition to the importance of letting the prospective computer science teachers
experience test design and construction processes, we highlight two additional peda-
gogical advantages of the facilitation of this task in the MTCS course. First, in order to
develop a course-summary exam, the prospective computer science teachers should
review the entire course curriculum, and as a result, it is reasonable to assume that they
deepen their familiarity with this curriculum. Second, while building the exam ques-
tions, they should consider the notion of diversity (see Chap. 3) in order to adopt the
exam to a wider learner population that will take it.

Specifically, in this activity, the students work in pairs and construct a course-
summary exam together with its evaluation rubric. Then, the following stages can take
place:

1.	 Each pair exchanges its test with another pair and each student solves individually
the test that the pair received.

2.	 Each pair checks the exams of the two students with which they switched the exams
according to the valuation rubric it prepared.

3.	 Based on the exam evaluation, if needed, each pair updates the exam and its evalu-
ation rubric.

17110.3  Project Evaluation 	

We mention that the focus is placed here on the evaluation of software projects. Clearly,
non-software projects can also support learning processes of computer science. See, for
example, Activity 84 in Sect. 12.7 for a discussion about the evaluation of non-software
projects.

In what follows, we first present several approaches for project evaluation. Then, we
suggest several activities about project evaluation to be facilitated in the MTCS course.

We address the evaluation of two kinds of projects: software projects developed by
individuals and software projects developed by teams.

10.3.1 
�Individual Projects

Meerbaum–Salant and Hazzan (2010) suggest three resources for the evaluation of
software project developed by pupils individually: the teacher, peers (that is, other pupils
in the class), and the pupil who develops the project. We elaborate on each of them.

•	 Teacher evaluation can be performed in two ways:

–– Formative assessment: This assessment is carried out by the teacher during the entire
process of project development with respect to (almost) each activity that the student
performs. The purpose of formative assessment is to guide the pupils in the develop-
ment process in order to support their development process and improve their under-
standing of the relevant computer science contents.

–– Summative assessment: The teacher performs summative assessment several times
during the development process, usually at the end of specific stages, to monitor the
students’ and class’ progress.

•	 Peer assessment can be carried out, for example, in the following way: The pupils are
divided into groups. Each pupil presents his or her project to the other group members
and receives their feedback.

•	 Individual feedback/evaluation can be encouraged by asking each pupil to reflect on his or
her work and on the way he or she plans to meet the schedule that the teacher set for the
entire class. See Chap. 5 for a broader discussion about reflection and reflective processes.

10.3.2 
�Team Projects

Software projects developed by teams are more common in undergraduate computer sci-
ence education, and specifically, in capstone courses that the students study in their senior
year. In these courses, undergraduate computer science students develop a software proj-
ect, in most cases in teams, that encapsulates what the students have studied during their
undergraduate studies.

Studies that address student software projects usually deal with issues such as the
assignment of students to groups (Redmond 2001), the coordination of teamwork

172 10  Evaluation

10
(Moses et al. 2000), the grading of such projects (Chamillard and Merkle 2002), and ways
by which instructors can gain information about the contribution of individual students to
the team project (Lawhead and Wilkins 2000).

In this spirit, the following discussion about the evaluation of projects developed by
teams is especially relevant for software projects developed by undergraduate students, but
nevertheless can be applied also in the high school setting.

According to Hazzan (2003), the evaluation of software projects developed by teams is
analogous to reward allocation to software teams in the industry. The topic of reward allo-
cation with respect to the profession of software engineering is important for several rea-
sons. We mention three reasons which are also relevant for the evaluation of software
projects developed in educational frameworks:

Teamwork is essential for software development. As a result, conflicts between the •	
contribution to the teamwork and the way by which rewards are shared may intensify.
Software developers are usually highly motivated. This can cause conflicts between •	
personal targets and team goals.
Team-based rewards may cause social problems, such as the free-rider phenomenon.•	

Accordingly, a relevant question addressed by the literature is whether to distribute
incentives among team members equally or not.

Dubinsky and Hazzan (2005) suggest a grading policy for software projects developed
by teams of undergraduate computer science students which aims at motivating both team-
work and collaboration as well as the personal contribution of each team member to the
project success (see Table 10.1). The grading policy is composed of two main components.
The first one is a group component (65%) whose main criterion is the meeting of the cus-
tomer stories as well as the time estimations given by the students at each of the three itera-
tions in which the projects were developed throughout the semester. The second ingredient
of the grading policy is an individual component (35%), whose main criterion is the per-
sonal performance of the student with respect to his or her development tasks as well as
with respect to his or her personal role in the project.

Activities 70–72 address project evaluation and aim to further increase students’ aware-
ness to the challenges involved in this process.

Table 10.1  A grading policy for software projects developed by teams (Dubinsky and Hazzan
2005)

Group component (65%) Individual component (35%)

60% – Answer the customer stories and meeting the
schedule according to the team time estimations:

(10%) for iteration 1
(25%) for iteration 2
(25%) for iteration 3
25% – Project documentation
15% – Group evaluation of the academic coach

50% – Weekly reflection
Pair programming experience
Test-Driven-Development exercise
Weekly presence
25% – Performance of a personal role:
Actual implementation
Further development and enhancement
25% – Personal evaluation of the coach

17310.3  Project Evaluation 	

Activity 70: Getting Familiarity with an Evaluation Rubric for Software Projects

The students in the MTCS course are presented with the main categories of an evalua-
tion rubric for software projects which was developed by two high school computer
science teachers (see Table 10.2). The two teachers teach two 11th grade classes in
parallel, and since each teacher examines the other teacher’s class, he or she is not
familiar with the actual details of the projects he or she evaluates.

The projects for which this evaluation rubric was constructed are developed by the
pupils individually, for about half a school year, when each week the pupils dedicate
about 3 h for the project process. The material needed for the development process is
learned prior to the development process.

The grade is determined based on an examination of the project file (which includes
the project documentation, its code, and its scope) and an oral exam. The oral exam
takes place in the computer lab, in which, in order to observe the pupil’s familiarity
with the code and its functionality, the teacher asks the pupils specific questions about
the project, as well as to modify the project in specific ways and to add code with
specific functionality.

The students in the MTCS course are asked to work in pairs and:

1.	 To identify the pedagogical purposes of the teachers who developed this rubric.
2.	 To specify subcategories of the main categories of the evaluation rubric.
3.	 To suggest how they would change the evaluation rubric, if at all, to fit it to their

pedagogical approach.

Table 10.2  Example of an evaluation rubric for software projects developed by high school
pupils individually

Topic Max points Actual grade Comments

Project documentation and organization   10
Project code   10
Project scope   30
Knowledge about the project and

its domain
  30

Extension and changes during the
lab exam

  20

Total grade 100

Activity 71: Construction of an Evaluation Rubric for Software Projects

›  Stage A: Setting the teaching scene
The instructor of the MTCS course selects a project theme and scope to be devel-

oped by high school pupils and describes it to the students of the MTCS course.

(continued)

174 10  Evaluation

10

One such setting is presented in Activity 70. Here are two additional examples of
such descriptions:

Example 1: 11th grade pupils develop a software project in the object-oriented
development paradigm approach during the entire school year. They already learned
the basic computer science concepts in the 10th grade. If the project requires addi-
tional knowledge, the pupils learn it by themselves with their teacher’ aid. Each
week they should dedicate 6 h to the project development.

Example 2: 10th grade pupils develop a software project in pairs for 2 month in the
Alice development environment (see Chap. 8). They learn the computer science
material in parallel to the project development. Each week they should allocate 4 h
to the project development.

After such a description is presented to the students, the instructor asks the
students what aspects of the project, in their opinion, should be evaluated. Their
suggestions are listed on the board.

›  Stage B: Construction of an evaluation rubric, group work
The students are asked to work in groups and to construct an evaluation rubric for

the project described in Stage A. They are also asked to document their pedagogical
considerations for each decision they took in that construction process.

After the students have developed the evaluation rubrics, each group presents its
rubric alongside its pedagogical considerations.

›  Stage C: Conclusion
In this conclusion, the instructor should highlight the following messages related

to evaluation processes in general and emphasize their application and relevance for
the evaluation of software projects:

The purpose of evaluation is to enhance learners’ learning processes and •	
understanding.
Learners should get the message that evaluation is a means rather than a target by •	
itself.
An evaluation policy should match the educational messages that a teacher deliv-•	
ers to his or her pupils.
The pupils should be familiar with their evaluation process from the very begin-•	
ning of the evaluation process.
Evaluation policies should address both the learning process and its final product.•	
Different aspects of the learning process should be assessed.•	

Activity 71  (continued)

17510.4  Portfolio 	

10.4 
�Portfolio

A portfolio is a collection of learners’ works which reflects learners’ progress and achieve-
ments in a specific domain along the learning process. Since a portfolio is prepared by
the learners along a period of time, it can be viewed as a formative assessment tool
(see Sect. 10.3) and it is important to consider its position and role when a teaching
process is planned (see Chap. 11).

In more detail, a portfolio is a purposeful collection of student’s works that tells the
story about learner’s efforts, progress, achievement, and self-reflection on his or her learn-
ing process and progress, in one or more knowledge areas. The portfolio content should be
selected and decided upon together with the learner and, as with respect to other evaluation
tools, its evaluation criteria should be clear to the learners from the early stages of the
portfolio construction process (Arter and Spandel 1992).

This description implies that the portfolio items should not be selected randomly, but
rather, that they should be carefully chosen together by the teacher and the pupil in a way
that indicates that learning occurred, represents the learner’s achievements and progress,
and reflects the learner’s knowledge and skills with respect to specific domains. In addition
to learners’ products and other teachers’ evaluation tools of the learner’s learning process,
a portfolio can include teachers’ observation during the learning process, peer reviews, and
the learners’ suggestions for how to continue their learning process of the said topic.

These characteristics of the portfolio make it a pedagogical tool that:

Integrates learning with assessment.•	
Creates a continuous communication and collaboration channel between teachers and •	
learners.

Activity 72: Analysis of a Grading Policy of the Group Project

The grading policy presented in Table 10.1 for grading software projects developed by
teams is presented to the students in the MTCS course. They are asked to work in small
teams and:

To analyze its advantages and disadvantages.•	
To describe how it may influence team members’ behavior and collaboration.•	
To explain how it enables to achieve both group and personal interests.•	

Such a discussion raises the prospective computer science teachers’ awareness to
the multifaceted nature of the development process of software projects by teams, and
to the different considerations they should address in the evaluation process of such
projects.

176 10  Evaluation

10
Provides a comprehensive view of learners’ achievements with respect to a variety of •	
concepts.
Enables learners to identify both their weaknesses and their strengths.•	
Encourages learners to take responsibility on their learning process, and•	
Enhances learners’ reflective skills.•	

With respect to portfolio assessment, Hayes (1998) claims that it is a complex process
that requires considerable planning and decision-making process, and offers seven tips to
keep in mind in the process of portfolio assessment (see Table 10.3). It is worth noticing
Tip #7, which specifically indicates teachers’ need to develop new assessment and instruc-
tion skills, such as methods for developing students’ reflective skills, or strategies for
assessing affective learning outcomes. We suggest that the MTCS course is one venue in
which such professional development and training of computer science teachers can start,
and suggest that one way to evaluate the students enrolled in the MTCS can be based on a
portfolio which the students construct during the course of learning (see Sect. 10.5 below).

In the case of computer science education, it is relevant to create an online portfolio,
which is called ePortfolio: “In general, an ePortfolio is a purposeful collection of informa-
tion and digital artifacts that demonstrates development or evidences learning outcomes,
skills or competencies. The process of producing an ePortfolio (writing, typing, recording
etc.) usually requires the synthesis of ideas, reflection on achievements, self-awareness
and forward planning with the potential for educational, developmental or other benefits.
Specific types of ePortfolios can be defined in part by their purpose (such as presentation,
application, reflection, assessment, and personal development planning), pedagogic design,
level of structure (intrinsic or extrinsic), duration (episodic or lifelong) and other factors.”1
We mention that LMSs (Learning Management Systems, such as, moodle) can serve as a
platform in which the ePortfolio items are stored and evaluated.

In the case of computer science education, a portfolio can include learners’ individual
and group projects, intermediate versions of these projects, a description of the process in
which these projects were developed, peer reviews (see Sect. 10.3), learners’ presentation
of their work, learners’ reflective assessment of their learning process, teacher observations
of learners’ learning process, and tests. This discussion can be guided by Activity 73.

Table 10.3  Professional tips – planning and using portfolio assessment (Hayes 1998)

Tip #1:  Develop a portfolio assessment process specific to your own situation
Tip #2: � Use a collaborative planning approach that involves the teachers and learners who

will use the portfolio process
Tip #3: � Define the purposes and audiences for portfolio assessment PRIOR to developing the

portfolio materials
Tip #4:  Implement the process gradually, allowing time for experimentation and improvement
Tip #5:  Recognize the importance of students as partners in the assessment process
Tip #6: � Plan additional time for students to construct portfolios, student-teacher conferences,

and teacher review of portfolios
Tip #7: � Plan outgoing opportunities for staff development to address new skills required for

portfolio assessment

1 Source: http://www.eportfolios.ac.uk/definition

http://www.eportfolios.ac.uk/definition

17710.4  Portfolio 	

Activity 73: The Portfolio in Computer Science Education

›  Stage A: Portfolio design, team work
The students are asked to work in teams and to design a portfolio for a high

school computer science class. Specifically, they are asked to address the following
topics and to explain each of the pedagogical decisions:

The purpose of the portfolio.•	
The scope of the portfolio, that is, will it focus on a specific computer science •	
topic? the learning process during the entire school year? a specific shorter period
of time?, etc..
The specific period of time during which the pupils will organize their portfolios.•	
A list of items to be included in a pupil’s portfolio that enable to achieve the •	
purpose of the portfolio determined above (the rational for the inclusion of any
item should be explained).
The portfolio organization (online, off-line, blogs, discussion groups, etc.).•	
An assessment framework (a kind of an evaluation rubric) for the portfolio that •	
includes the assessment time line, the teacher-learner discourse mechanism
(online, off-line, face-to-face, etc.), and the actual grading policy of the portfolio.

›  Stage B: Group presentations of their portfolio
At the end of the group work, each team presents its portfolio description (scope,

elements, periodical schedule, and assessment framework) together with the peda-
gogical considerations that guided its work.

›  Stage C: Class discussion and summary
After all groups presented their portfolio, a discussion takes place in which the

different portfolios suggested by the different groups are discussed and compared:
Do they achieve their pedagogical purposes? If yes – how? If not – how should they
be changed to meet their purposes? Do the different portfolios reflect the same peda-
gogical approach or different pedagogical approaches? What are the differences
between their pedagogical approaches? What are the advantages and disadvantages
of each portfolio? etc.

This discussion about the different portfolios sets the basis for a discussion about
the uniqueness of the portfolio as an evaluation tool in computer science education.
This discussion should address (a) the importance of allowing a gradual develop-
ment process of software projects; (b) the use of online resources in computer sci-
ence education; and (c) the role and use of computational environments for the
portfolio organization and management.

The discussion about the use of computational environments for the portfolio
organization can take advantage of the fact that the students in the MTCS course are
prospective computer science teachers with a relatively advanced knowledge both
in computer science education and computerized tools.

The lesson ends with the instructor’s summary of the main ideas related to the portfo-
lio as an evaluation tool in general and in the context of computer science in particular.

178 10  Evaluation

10 10.5 
�The Evaluation of the Students in the MTCS Course

As is indicated in the introduction to this Guide, it is recommended not only to talk about
computer science education, but rather to implement its pedagogical guidelines in the
MTCS course, to let the prospective computer science teachers experience the teaching
methods presented in the course before becoming high school computer science teachers.
The same idea is implied for students’ evaluation; that is, the evaluation policy applied in
the MTCS course should reflect general evaluation principles of high school computer sci-
ence education (as they are discussed, e.g., so far in this chapter). In other words, student
evaluation in the MTCS course should not be based only on one kind of pedagogical
knowledge, but rather a spectrum of pedagogical skills, activities, and reflection, as well as
computer science knowledge, all of which reflect different aspects of student achievements
in the MTCS course, should be taken into the considerations in student evaluation. In this
spirit, a portfolio, for example, can be a suitable evaluation tool for the MTCS course.

Since different computer science teacher preparation programs may emphasize differ-
ent aspects of computer science education, we do not specify one specific evaluation
scheme for the MTCS course. Rather, in what follows, we suggest a list of components that
can be assessed as part of the students’ evaluation. Other components, as well as different
weights assigned to each component, and different evaluation mechanisms (by the stu-
dents themselves, by their peers in the course and by the course instructor) are optional for
the courses evaluation. In each specific case, however, it is recommended to explain to the
students the pedagogical rationale of the determined course grading policy and to publish
it in advance.

Possible elements of student evaluation in the MTCS course:

Active participation in the course: This component delivers the importance of practic-•	
ing different teaching methods as learners, before applying them in high school compu-
ter science pedagogical situations.
Portfolio of pedagogical tasks the students developed during the course: This portfolio •	
can include a matriculation or a course-summary exam, the plan of teaching a unit
about a specific computer science topic, lab-based worksheet, etc..
Portfolio of non-pedagogical tasks: mini-research, literature review (e.g., of computer sci-•	
ence education research papers,), problem solving in computer science (including program-
ming tasks), a poster/presentation about an advanced computer science topic, and more.
A presentation of an advanced computer science topic. Such an experience may help •	
them in the future if they need to teach a computer science topic that they did not learn
as computer science students.
Reflective diary written throughout the semester: This diary should reflect students’ •	
conception of computer science education in general and of high school computer
science teaching in particular.
Peer teaching in the MTCS itself.•	
Mentoring activity or practicum in the high school (if needed to be integrated in the •	
course, see Chap. 13).

179References	

References

Arter J, Spandel V (1992) Using portfolios of student work in instruction and assessment:
A NCME instructional module. Educ. Meas.: Issues and Pract. I 1: 36–44

Chamillard A T, Merkle L D (2002) Management challenges in a large introductory computer
science course. Proc. 33rd SIGCSE Tech. Symp.on Comput. Sci. Educ.: 252–256

Dubinsky Y, Hazzan O (2005) A framework for teaching software development methods. Comput.
Sci. Educ.:15(4): 275–296

Hazzan O (2003) Computer Science students’ conception of the relationship between reward
(grade) and cooperation. Proc. 8th Ann. Conf. on Innov. and Technolog. in Comput. Scie. Educ.
(ITiCSE 2003), Thessaloniki, Greece.: 178–182

Hayes E (1998) Professional tips for adult and continuing educators - Planning and using portfolio
assessment, NC Literacy Resource Center, Raleigh, NC., http://muse.widener.edu/~aad0002/
portfoliotips.htm. Accessed 14 July 2010

Lawhead P B, Wilkins D E (2000) Evaluating individuals in team projects. Proc. 31st SIGCSE
Tech. Symp. on Comput. Sci. Educ.: 172–175

Meerbaum–Salant O, Hazzan O (2010) An agile constructionist mentoring methodology for
software projects in the high school. ACM Trans. on Comput. Educ. - TOCE 9(4)

Moses L, Fincher S, Caristi J (2000) Teams work – Panel presentation. Proc. 31st SIGCSE Tech.
Symp. on Comput. Sci. Educ.: 421–422

Redmond M A (2001) A computer program to aid assignment of student project groups. Proc. 32nd
SIGCSE Tech. Symp. on Comput. Sci. Educ.: 134–138

http://muse.widener.edu/~aad0002/portfoliotips.htm
http://muse.widener.edu/~aad0002/portfoliotips.htm

181O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_11, © Springer-Verlag London Limited 2011

Teaching Planning 11

Abstract  This chapter deals with teaching planning, which is one of the main
pedagogical activities teachers perform. In fact, all the tools, ideas, and perspectives
presented in the Guide can be used and applied in the process of teaching planning,
which is, to some extent, independent of the taught discipline. Specifically, in this chapter,
we offer and demonstrate a top-down approach for teaching planning which takes into
account a wide range of considerations, and present several activities to be facilitated in
the MTCS course. The principles of teaching planning presented in this chapter, however,
can serve any computer science educator in any teaching framework.

11.1 
�Introduction

Planning the teaching process is one of the basic practices any teacher performs, and there-
fore, prospective teachers should acquire the skills needed to accomplish this multilayered
task. We assume that the students, that is, the prospective computer science teachers, have
already learned the basic principles of how to plan a lesson, that is, to prepare a detailed
lesson layout in one of the general didactics courses. In this chapter, we illustrate how to
guide the students to apply this general knowledge in the context of computer science
education and further, to take into the consideration the various aspects, teaching tools, and
teaching methods presented in the previous chapters of this Guide. Specifically, we suggest
a top-down approach for teaching planning (Sect. 11.2), illustrate it with respect to the
teaching planning of one-dimensional array (Sect. 11.3), and present several activities to
be facilitated with the prospective computer science teachers in the MTCS course (see
Sect. 11.4).

182 11  Teaching Planning

11 11.2 
�Top-Down Approach for Teaching Planning

The top-down approach for teaching planning starts with a broad perspective related to the
planning of an entire curriculum (e.g., CS1; see Sect. 11.2.1), continues with the planning
of one topic from the curriculum (Sect. 11.2.2), and finally addresses the planning of a
specific lesson (Sect. 11.2.3). In all these stages, we refer to a multifaceted consideration
that a teacher should be aware of during the teaching planning.

11.2.1 
�Broad Perspective: Planning the Entire Curriculum

A high school teacher is supposed to teach each specific year specific curricula to specific
classes. In order to achieve this goal and to teach properly all the curriculum contents,
teachers must plan their teaching. The first step of this process is the breakdown of the
entire curriculum to a list of contents, and to allocate an approximate number of teaching
hours for each content.

This yearly time allocation should take into the consideration different aspects of the
learning-teaching process, both external-to-the-class factors and internal-to-the-class
factors, combined with pedagogical factors.

The external-to-the-class considerations relate to the school organizational framework,
and include factors such as, the weekly lesson schedule, the computer laboratory avail-
ability and the time allocated to lab experience (see Chap. 8), the number of tests that
should be administrated according to the school policy, and other school constraints
(e.g., trips and special events).

The internal-to-the-class considerations relate to the characteristics of each specific
class, and include factors such as, the number of pupils in the class and its general level,
pupils’ abilities and whether these abilities are homogenous or not, pupils’ temperament,
and more. Needless to say that the class characteristics are among the most important
factors determining the teaching plan in general and, in particular, the teaching strategy a
teacher chooses to apply.

While the role of class characteristics in the teaching plan is clear, we demonstrate the
potential influence of external-to-the-class factors on the teaching plan. For example, differ-
ent teaching plans should be set if out of the 3 weekly teaching hours, 1 h takes place in the
computer lab or all lessons take place in the lab. The number of times that a teacher meets
the class each week is also a meaningful factor. Teacher can meet the pupils for two lessons
of 1 h in different days or for two successive hours; this different schedule influences the
length of wasted time (entering the class, relating to homework, etc.) and the homework
extent. In addition, educators should consider their pedagogical objectives and find the best
way to integrate them into the teaching planning together with the different constraints.

The above external- and internal-to-the-class considerations influence the teaching of any
topic, and in most cases do not change significantly over the school year. Some of them should
be observed by the teacher during the first lessons in which she or he gets to know the class.

18311.2  Top-Down Approach for Teaching Planning 	

From this perspective, this time planning serves as the basis for the actual teaching
process of the curriculum. Without such overall time planning, the teaching-learning pro-
cess may be significantly affected and disrupted by local events in the class and/or in the
school. For example, a teacher can teach the if-statement for too many hours from different
reasons (e.g., several pupils face difficulties to understand it), and then, should teach
quickly other important subjects, or even worse, may not be able to complete teaching the
entire curriculum.

We note, though, that the yearly teaching planning should be flexible and subject to
changes if needed. In practice, after teaching each specific topic in the class, a teacher
should reflect on his or her original teaching plan and correct and update it accordingly.
Clearly, this assertion is correct for teaching processes in other framework as well (e.g., the
university).

11.2.2 
�Intermediate Level Perspective: Planning the Teaching of a Study Unit

A study unit is a sequence of lessons that aims to teach a (relatively) wide (computer
science) topic. When a teacher plans the teaching of a study unit, he or she must relate to
two issues that mutually influence each other: first, the content-knowledge and skills that
learners are supposed to acquire, and second, the period of time, that is, number of lessons
allocated for the teaching-learning process. The main target of this planning is to divide the
teaching of a study unit into a sequence of lessons, including class activities and the assess-
ment approach. Based on the realization of these two issues, a valuable planning process
can be carried out.

A recommended process for a study unit planning includes the following activities:

1.	 List the concepts included in the said topic.
2.	 Review the experience of the computer science education community and its research

literature about students’ difficulties and misconceptions that may occur while learning
of the said topic (see Chap. 4).

3.	 Locate the concepts listed in Stage 1 along a time line, taking into the considerations the
difficulties recognized in Stage 2.

4.	 Divide the list of concepts into a sequence of lessons, considering the total time allo-
cated for the teaching of the said topic.

In the next steps, each lesson should be planned in detail, as is described next.

11.2.3 
�Local Level Perspective: Planning a Lesson

A lesson plan can be described in different levels of depth. Novice computer science teachers
usually need to plan their lessons in detail; after gaining some experience and building
confidence in the fieldwork, lesson plans become less detailed.

184 11  Teaching Planning

11
A lesson plan should address the following aspects:

1.	 The lesson’s main objective: What is the lesson about? What is its main message and
its main content?

2.	 The explicit content to be covered in the lesson: Which subtopics are included within
the lesson content?

3.	 The lesson operational targets: What students should learn in the lesson? What skills
should student develop? What concepts should students understand? What are the
operational performances students are expected to gain?

4.	 The lesson activities: What kind of activities will be included in the class? (e.g., a trigger,
explanations, set of exercises, a game, a group activity, peer assessment, an inquiry
work in the computer lab, etc.)

5.	 The learning assessment: How will students’ understanding will be checked during the
lesson?

6.	 Pupils’ homework: What homework should a student get to accomplish the lesson
targets?

In addition, since the teacher knows his or her pupils’ learning abilities, as well as the
teaching route they passed together so far, the teacher should also consider the character-
istics of the specific class that is going to learn the specific content. In other words, in
addition to the difficulties and misconception mentioned in the literature with respect to
the said topic, the teacher should be aware of the specific difficulties that his or her own
learners face, and what may help them overcome these difficulties and improve their
understanding. It implies that when a teacher considers how to vary the teaching methods
and class activities employed during the year, he or she should be aware to what works and
what does not work for each specific class.

11.3 
�Illustration: Teaching One-Dimensional Array

We now demonstrate the teaching planning of a study unit by focusing on the topic of
one-dimensional arrays (Sect. 11.3.1), and the teaching planning of one specific lesson –
the first lesson about arrays (Sect. 11.3.2). Needless to say, other possible planning
processes exist and the presented planning is just one option among many.

11.3.1 
�Planning the Teaching of a Study Unit About One-Dimensional Array

The teaching planning of the study unit about one-dimensional array is carried out in what
follows according to the stages presented in Sect. 11.2.2.

18511.3  Illustration: Teaching One-Dimensional Array 	

1.	 List the concepts included in the said topic:  This list contains different aspects and
different scopes of one-dimensional array. The following list, formulated informally on
purpose, reflects this approach:

The need for the array structure.––
When is it necessary to use arrays and when it is not?––
The structure of basic array: an ordered collection of cells with one shared name ––
and a unique index for each element.
The distinction between an array-cell index and an array-cell content.––
Understanding that each array-cell functions as any other variable.––
Array boundaries.––
Basic array scans (for insert, retrieve values, etc.).––
The array representation in a specific programming language: array declaration, ––
syntax, memory structure (e.g., in Java, an array is an object and the array length is
an attribute of the object).
Different tasks on arrays that implement different algorithmic approaches with ––
different logic complexity (e.g., find the max value, average value, number of elements
that are larger than the average, frequency of a given value, the most frequent value,
changing values according to different rules, find sub-sequences, and more).
Subtasks of using arrays (parameter passing is different programming languages ––
and arrays as a returned value of a function).
Tasks that involve array building (building a sub-array of a given array according to ––
a specified condition, array union, array intersection, array subtraction).
Array of counters.––
Array of accumulators.––
Array of objects (in the relevant programming languages).––
Search in arrays (linear or binary).––
Sort of array (insertion sort, selection sort, bubble sort, recursive sort like ––
quick-sort).
Merge of arrays (e.g., sort-merge).––
The efficiency of different array algorithms.––

2.	 Review the experience of the computer science education community and its research
literature about students’ difficulties and misconceptions that may occur while learning
of the said topic: We present two lists related to learners’ difficulties and misconcep-
tions while learning arrays: the first one presents experiences of practitioners in com-
puter science education using a casual terminology; the second list presents a list which
is based on the computer science education research literature.

Experiences of computer science educators

Confusion between the index and the content of an array-cell.––
Misconception: when an array is used, all its cells should be scanned.––
When an array of objects is used, difficulties in understanding the need to construct ––
each object (even after the array of objects itself has already been constructed).

186 11  Teaching Planning

11
Difficulty to understand the algorithmic role of an array cell (e.g., a regular value, ––
a counter, an accumulator).
A frequent mistake: exceeding the array index beyond the array size.––
A frequent mistake: loss of a value of an array-cell due to overwriting (e.g., in the ––
process of array sorting).
A frequent mistake: when building a new array, leave empty cells instead of writing ––
values successively (e.g., in intersection).

Examples from the computer science education literature.

Table 11.1 presents six examples, taken from the computer science education litera-
ture, that discuss students’ difficulties and misconceptions with respect to learning and
teaching the concept of array. For each reference, we suggest a possible implementation
for the teaching planning of the study unit of arrays.

3.	 Locate the concepts listed in Stage 1 along a time line, taking into the considerations
the difficulties recognized in Stage 2, and

4.	 Divide the list of concepts into a sequence of lessons, considering the total time
allocated for the teaching of the said topic.

These stages, the actual allocation of each topic on a time line and its division into suc-
cessive lessons, should be carried out according to learners’ age and abilities, the total time
allocated for the study unit, the number of lab lessons, etc. In addition, it is important to
include evaluation points along this time line and to decide what kind of evaluation is
appropriate for this case (e.g., tests, formative evaluation, portfolio; see Chap. 10).

11.3.2 
�Planning the Teaching of the First Lesson About One-Dimensional Array

The process of lesson planning is illustrated by the first lesson in the study unit of one-
dimensional array, and is carried out according to the consideration of the aspects pre-
sented in Sect. 11.2.3. We assume that (a) the learners are high school pupils, (b) the time
allocated for this lesson is one and a half hour, and (c) the lesson takes place in the
computer lab.

1.	 The lesson’s main objective is to let the pupils realize the basic need for arrays and to
facilitate basic manipulations of arrays.

2.	 The subtopics to be addressed in this lesson are the basic structure of array, a cell index,
cell content, and basic scans of array.

3.	 The lesson operational targets are:

Learners become aware of simple kinds of tasks for which arrays are needed.––
Learners know how to access an array cell.––
Learners understand that each array cell functions like a variable.––

18711.3  Illustration: Teaching One-Dimensional Array 	

Learners distinguish between the expressions a1 – a single variable, a[1] – the value ––
of the array cell whose index is 1, and a[i] – the value of an array cell whose index
is i – the value of a variable i.
Learners distinguish between the expression i as an index and a[i] as a cell ––
content.
Learners know how to scan an array.––

Table 11.1  Examples from the computer science education literature and their possible implemen-
tations for the teaching planning of a study unit of arrays

Examples of computer science education
research works that discuss learning and
teaching array

Possible implementation for teaching
planning

A game that teaches loops and arrays in an
interactive and visual way (Eagle and
Barnes 2008)

Use the suggested game, or, alternatively,
apply the game rational and ideas for the
development of another game

Array algorithms are defined as functional
algorithms where each step of the
algorithm results in a function being
applied on an array, producing an array as
a result. The rationale for teaching array
algorithms is given together with an
example, which shows that array
algorithms sometimes lead to surprising
results (Howland 2005)

Learn this kind of algorithms, and see what
can be adapted from the rational of its
teaching and from the example

Examination whether the shift to the object-
oriented programming and the application
of the objects-first or objects-early
approach to CS1 requires to reevaluate the
following pedagogical question: What
should the first data structure students are
exposed to be? Is it an array or another
kind of collection, for example, a map?
(Ventura et al. 2004)

A critical thinking is encouraged with respect
to the first data structure to teach

Examination whether the shift to object-
oriented programming techniques calls for
a significant shift in the approach of
teaching recursion. Should simple
recursive structures, such as linked lists
and methods that process them, be
introduced before procedural examples?
(Bruce et al. 2005)

A critical thinking is fostered with respect to
data structures from the recursion point of
view (see also Chap. 12): What data
structures should be taught earlier? Can
the chosen data structure be manipulated
by recursion procedures?

Examination which algorithm of array sorting
is better to introduce first, and what
difficulties learners may face (Nieminen
2006, 2008)

Thinking about the order of teaching
different array sorting algorithms and
being aware of possible obstacles

A blog resource about the history of sorting
algorithms (Abhiram 2009)

This resource can form a basis for a web-based
activity (see Chap. 8). This is an example
(among many others that can be found on
the web) of using an online resource

188 11  Teaching Planning

11
4.	 The following activities to be facilitated in the lesson were designed according to the

following guidelines:
The lesson addresses arrays from two perspectives: conceptual and practical. It is ––
important to illuminate these two perspectives to the pupils.
The lesson involves different kinds of activities: a trigger, work in pairs, a class ––
discussion, and a lab activity.
The lesson plan takes into the consideration the expected difficulties mentioned in ––
Sect. 11.3.1 and attempts to reduce the level of abstraction (when needed) to help
learners overcome these difficulties.

The lesson activities are presented in what follows along the lesson time line together
with their main idea. In some cases, we also specify the assignment.

–– Presentation of a trigger to the class plenum: The learners are asked to solve a
problem whose solution requests an array and then, in pairs, to check the pair’s solution.
Since at this stage, they are not familiar with the concept of array, they cannot solve
the problem and therefore, it is expected that they will feel some inconvenience.

An example of such a trigger is: Write a program that gets the grades in computer
science of 34 high school pupils and prints the number of pupils whose grade is big-
ger than the class average.

One solution that pupils may suggest is to read the grades twice: first, in order to
calculate the average, and second, in order to count the number of grades which are
bigger than the average. In this case, a common computer science convention should
be added to the question formulation: In computerized systems, it is common to
enter data only once. The learners will be given additional time to deal with the new
constraint, and to realize that it is not possible to solve the problem with this
restriction.

Another solution that can be suggested by the pupils is to define 34 different
variables, one for each grade, namely, a1, a2, …, a34,. In this case, the learners
should be directed to observe what this solution includes 34 input statements, 34
addition statements and 34 condition statements. In this case, additional common
computer science convention can be added: Computerized systems should be
able to generalize the problem; in this case, what will we do if there are 100 learn-
ers? After all, we wish the computer to work for us and not us to work for the
computer. As in the previous case, the learners will get extra time to deal with the
new constraint, and again, to realize that it is not possible to solve the problem with
this restriction.

–– Class discussion: A discussion is facilitated about the need to have a data structure
that enables to process any amount of data, but at the same time enables simple
manipulation.

–– Work in pairs: Pairs of pupils solve together a worksheet. The worksheet contains
about ten different problems. For each problem, the learners should determine
whether its solution requires an array or not. The discussion about the worksheet is
summarized in the class plenum.

18911.4  Activities to be Facilitated in the MTCS Course 	

–– Presenting the basic structure of an array: Array name, array-cell index, the
indexes range, array-cell content (the use of a[3] versus the use of a[i] or a[i*2]).

–– Practicing in the computer lab: Pupils are asked to work on a worksheet that guides
them watching how arrays can be used within one of the animation environments
(see Sect. 8.4). This activity aims at enhancing learners’ understanding of the new
structure and how it can be used and scanned. This aim is achieved by presenting
the data structure memory organization in these environments in such a way that
reduces the level of abstraction.

5.	 Learners’ understanding can be assessed during the lesson in several opportunities, for
example, the discussions about the trigger and about the worksheet, the work on the lab
activity, and the questions included in the worksheet, and, finally, homework.

6.	 The pupils’ homework is a worksheet with different types of questions (see Chap. 9).
The questions should address the different ideas taught in the lesson, both conceptually
(e.g., problem analysis) and practically (e.g., code execution in one of the animation
environment).

11.3.3 
�Illustration Summary

This demonstration of teaching planning reflects the complex and multifaceted mission of
teachers in general and of computer science teachers in particular. The detailed teaching
planning illustrates also how different topics addressed in the different chapters of this
Guide are merged in practice: problem solving (Chap. 5), learners’ difficulties and miscon-
ceptions (Chap. 6), computer science education research (Chap. 4), different class activi-
ties and class organizations (Chaps. 2 and 7), lab activities (Chap. 8), and types of questions
(Chap. 9).

11.4 
�Activities to be Facilitated in the MTCS Course

Each student in the MTCS course, when becoming a computer science teacher, will teach
topics that are included in his or her state/country specific curriculum. Several of the main
targets of the MTCS course (e.g., students’ exposure to a variety of teaching tools and
increasing their familiarity with a set of considerations that will guide them in the planning
process of their teaching and in the actual teaching process) are aiming at preparing them
for this task. These targets are achieved, for example, by asking the students to develop
activities for learners by using a variety of teaching methods (see Chap. 7). This work, in
turn, enables students to acquire and improve their understanding both with respect to the
teaching methods and the taught concept itself.

190 11  Teaching Planning

11
In this spirit, the Activities 74–77, to be facilitated in the MTCS course, aim to explore

the issues addressed in this chapter. In addition, the different considerations presented in
this chapter should be integrated in other course activities when appropriate.

Activity 74: Dividing a Computer Science Topic into Components

In this activity, the students work on one specific computer science topic, for example,
the if statement, loops, or lists. The work is carried out first individually, then in groups,
and finally, in the course plenum.

Specifically, the students are asked to:

1.	 List the subtopics of the said topic.
2.	 Order the subtopics on a teaching time line and to explain what, in their opinion,

should be taught first, what subtopic/s should be taught after that, the teaching of
what topic can be postponed, etc.

3.	 Specify difficulties learners are expected to face. If needed, the students should
change the ordered list of subtopics presented in stage (2) in a way that helps learn-
ers overcome these difficulties.

�Activity 75: Time Allocation, Team Work

This activity can be facilitated either following Activity 74 or independently. A list of
subtopics of some topic that should be taught to a specific class is presented. The stu-
dents are asked to determine the time needed to teach each subtopic. The term teaching
should include the actual teaching of each subtopic, learners’ practicing of each sub-
topic, and the assessment of learners’ understanding.

After the students work on the activity in groups, the different suggestions of each
group are presented together with the group’s considerations. It is important to high-
light differences between the groups and the reasons that led them to determine differ-
ent time allocations.

�Activity 76: Plan a First Lesson About a Topic/Subtopic

The students are asked to plan the first lesson of a topic which is new to a specific class
of learners. It is optional to facilitate this activity with respect to a specific teaching
method discussed in the course. For example, when different usages of the Internet in
computer science education are addressed in the MTCS course (see Chap. 8), students
can be asked to plan the first lesson about array sorting based on learners’ exploration
of Internet simulations.

19111.4  Activities to be Facilitated in the MTCS Course 	

(continued)

Activity 77: A Comprehensive Teaching Planning of a Study Unit

The objective of this activity is to let each student in the MTCS course delve into the
details of the actual construction of a teaching plan for a full study unit. Specifically,
each student chooses a topic from the high school curriculum, analyzes it, and plans a
study unit for it. As can be seen, in addition to practicing teaching planning, it enables
the students in the MTCS course to express knowledge related to different topics stud-
ied in the course as well as in other courses. Since it is a comprehensive activity, it can
be served as a full-semester/term summary work that should be carried out during a
long period of time (Ragonis and Hazzan 2008).

It is recommended that the course instructor leads the students to choose different
computer science topics for this work and to publish these works in the course website
so that all the students could benefit from their colleagues’ work. It is also important
that the course instructor guide the students during their work since they may face
dilemmas and take decisions. The instructor’s feedback, based on his or her own expe-
rience and knowledge, can support the students in this work preparation process as well
as in their general professional development.

The final work that the students submit should include the following sections:

1.	 Concepts and contents to be taught.
2.	 Difficulties expected to be encountered by learners when learning the selected

topic. This part should be based on at least one research paper that addresses the
topic.

3.	 A high-level division of the topic into lessons, specifying the recommended teach-
ing sequence.

4.	 Designing a full lesson plan for two consecutive lessons, specifying the pedagogical
principles that should guide the teaching process. The two detailed lesson plans
should include the following components:

Full lesson plan, presenting the lesson’s objectives and the lesson opening, ––
development, and ending.
Description of the activities/questions/tasks/exercises, etc. included in the ––
lesson.
Description of the teaching methods to be used in the lesson, e.g., frontal ––
teaching, working in small groups, individual learning, investigative and
discovery activity, games, class discussions, etc.
Description of the teaching aids to be used in the lesson, for example, ––
overhead projector, posters, models, computer, simulations, animations,
and the computerized learning environment.
Suggestions for learners’ evaluation after the two lessons, solutions ––
of the evaluation tasks, and an evaluating rubric for the task evaluation
(see Chap. 10).

5.	 Written reflection on the entire development process.

192 11  Teaching Planning

11

References

Abhiram (2009) History of sorting algorithms. Blog spot. http://abhiramn.blogspot.com/2009/07/
history-of-sorting-algorithms.html. Accessed 10 May 2010

Bruce K B, Danyluk, A, Murtagh T (2005) Why structural recursion should be taught before arrays
in CS 1. ACM SIGCSE Bull. 37(1): 246–250

Eagle M, Barnes T (2008) Wu’s castle: Teaching arrays and loops in a game. ACM SIGCSE Bull.
40(3): 245–249

Howland J E (2005) Array algorithms. J. Comput. in Small Coll. 20(4): 229–235
Nieminen J (2006) Bubble sort as the first sorting algorithm. http://warp.povusers.org/grrr/

bubblesort_eng.html. Accessed 15 May 2010
Nieminen J (2008) Bubble sort misconceptions. http://warp.povusers.org/grrr/bubblesort_

misconceptions.Html. Accessed 15 May 2010
Ragonis N, Hazzan O (2008) Disciplinary-pedagogical teacher preparation for pre-service

computer science teachers: Rationale and implementation. In Mittermeir R T, Syslo MM (Eds.)
Inf. Educ.- Supporting Comput. Thinking, Lect. Notes Comput. Sci. 5090, ISSEP 2008,
Germany, Berlin/Heidelberg: Springer: 253–264

Ventura P, Egert C, Decker A (2004) Ancestor worship in CS1: On the primacy of arrays. 19th
Ann. ACM SIGPLAN OOPSLA Conf.: 8–72

It is recommended to summarize this activity in one or two lessons of the MTCS course,
in which each student presents his or her work for 20–30 min. The presentations can
include two parts: (1) a summary of the individual work, (2) introduction of a short
excerpt from the planned lessons, which can be taught by each student to his or her
peers, together with a description of the considerations that guided the development of
this segment of the lesson. It is also suggested that the course instructor encourages the
students to reflect on the process they went throughout the fulfillment of this activity.

Activity 77  (continued)

http://abhiramn.blogspot.com/2009/07/history-of-sorting-algorithms.html
http://abhiramn.blogspot.com/2009/07/history-of-sorting-algorithms.html
http://warp.povusers.org/grrr/bubblesort_eng.html
http://warp.povusers.org/grrr/bubblesort_eng.html
http://warp.povusers.org/grrr/bubblesort_misconceptions.Html
http://warp.povusers.org/grrr/bubblesort_misconceptions.Html

193O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_12, © Springer-Verlag London Limited 2011

Integrated View at the MTCS Course
Organization: The Case of Recursion 12

Abstract  This chapter presents an optional organization theme for the MTCS course
around the concept of recursion. Based on the active learning-based teaching model, a
series of themes is suggested, each one highlights a different pedagogical perspective.
The themes are: classification of recursive phenomena (a non-programming task), the
“leap of faith” approach, models of the recursive process, research on learning/teach-
ing recursion, how does recursion sound? (the case of trees and fractals), evaluation
(a non-programming project and a test construction), and a list of additional activities
that illustrates that recursion can, indeed, be the focus of almost any topic discussed in
the MTCS course. Each theme is accompanied with activities devoted to recursion to be
facilitated in the MTCS course.

12.1 
�Introduction

In the Introduction to this Guide, we mentioned that the MTCS course should not
necessarily follow the order of the chapters as they are presented in this Guide. In this
spirit, this chapter offers an alternative approach according to which the organization of
the MTCS course is based around one (or more) central computer science concept(s).
By doing so, this chapter illustrates an optional organization theme for the topics pre-
sented in Chaps. 2–11 of this Guide. Section 14.2 suggests two possible syllabi for an
MTCS course.

Specifically, this chapter reviews the Guide’s chapters through the lens of recursion1 –
one of the central computer science concepts. Though the ideas presented in this chapter
can be used by all computer science educators, our focus is placed on the MTCS course.

Recursion is chosen for this purpose for four main reasons. First, recursion is one of the
central computer science concepts included in almost all introductory computer science
courses. Second, recursion is linked to many other computer science topics and fields, and
therefore, discussions about this concept that take place in the MTCS course may provide

1 Recursion is only one candidate for such course organization. Other central computer science
concepts, such as abstract data types, may also be used for the same purpose.

194 12  Integrated View at the MTCS Course Organization

12 opportunities to highlight other computer science topics from a different, and sometimes
less familiar, angle. Third, recursion has interdisciplinary relations to other areas in our life
(including science and art); this fact highlights its advantages from a pedagogical perspec-
tive, and from a cognitive perspective, plays a significant role with respect to the learning
of recursive processes (see, e.g., Hofstadter 1979). Last, but not least, recursion is an inter-
esting and exciting concept to learn and explore.

Recursion is a central computer science idea mainly because it enables to describe
complex algorithms and data structures in a simple and elegant manner by applying the
idea of self-reference to programming (Harvey and Wright 1999). It is usually defined as a
programming tool or a programming techniques; recursion, however, is also relevant for
the examination of objects structure.

The idea of recursion is also applied for definitions. In a recursive definition, the defined
concept is part of the definition itself (Gersting 1996). Specifically, a typical recursive defi-
nition has two parts: One part describes the simplest base case (or cases); a second part
describes how to reduce complex cases into a simpler, yet similar, case(s), by a set of rules
which reduce all cases to the base case(s). Accordingly, one part of a recursive algorithm
describes actions to be executed in the simplest case, and another part describes the recur-
sive call (in which, the algorithm activates itself). In the case of data structures, one part of
the recursive definition describes the simplest structure and another part describes how the
entire structure includes a simpler version of itself.

This chapter is based on the Active Learning-Based Teaching Model, introduced in
Chap. 2. In this chapter, we suggest a series of themes, together with associated activities
all devoted to recursion when each theme highlights a different pedagogical perspective,
as is described in what follows.

1.	 Classification (Sect. 12.2).  This theme focuses on recursion as a soft idea (see Sect. 3.7)
and suggests a teaching method which is based on classification tasks (see Sect. 7.2.5).

2.	 Leap of faith (Sect. 12.3).  This theme introduces a teaching method that can help
learners develop their formulation skills of recursive descriptions (without necessarily
understanding how the recursive descriptions actually work). The activities presented
with respect to this theme relate to learners’ difficulties (see Chap. 6) and teaching
planning-related issues (see Chap. 11).

3.	 Models of the recursive process (Sect. 12.4).  In this section the focus is placed on
models that can support learners’ understanding of the recursive process. The activities
presented in this section relate to teaching methods (see Chap. 7) and to learners’ con-
ceptions (see Chap. 6).

4.	 Research on learning/teaching recursion (Sect. 12.5).  This theme examines research
findings related to the learning and teaching of recursion. The activities presented in
this section relate to research in computer science education (Chap. 4) and learners’
conceptions (Chap. 6).

5.	 How does recursion sound? (Sect. 12.6).  This theme focuses on lab-based teaching
(see Chap. 8) with respect to recursion, and suggests a music-based activity for
enhancing learners’ understanding of trees and fractals.

6.	 Evaluation (Sect. 12.7).  The focus of this theme is on evaluation aspects (see Chap.
10) with respect to learning recursion. Two activities are suggested: the first activity

19512.2  Classification of Everyday Objects and Phenomena: The Case of Recursion 	

examines a non-programming project as an evaluation tool for learners’ understanding
of recursion; the second activity deals with test construction.

7.	 Additional activities (Sect. 12.8).  The last theme includes additional activities to be
facilitated in the MTCS course, all of them relate to recursion learning and teaching.

12.2 
�Classification of Everyday Objects and Phenomena: The Case of Recursion

In Sect. 7.2.5, classification is introduced as a teaching method in computer science educa-
tion. Activity 78 illustrates this teaching method with respect to recursion. The first two
stages aim at strengthening the students’ own understanding of the concept of recursion;
the last two stages discuss this kind of activities from a pedagogical perspective.

2 This observation is not surprising since the phenomena were chosen very carefully so that they
represent recursive structures and entities.

�Activity 78: Classification Activity in the Context of Recursion

›  Stage A: Classification activity, work in small teams
The activity is based on the analysis of recursive phenomena taken from various

fields such as, art, music, literature, and mathematics (see Levy and Lapidot 2000).
The students are not informed about the nature of these phenomena and their analy-
sis should be based on their daily life experience. Specifically, the students are asked
to work in small teams and to classify these instances according to their own criteria.
Clearly, there is no correct classification; these criteria, however, are often found to
be important constructs in learners’ mental construction process of the concept of
recursion2 (Levy and Lapidot 2000).

The students are also asked (a) to expand their classified sets by adding new
instances to each set, (b) to give a title to each set, and (c) suggest a title for the whole
page. The specific instructions are presented in Table 12.1.

Table 12.1  Classification task

Worksheet: Classification task

1.	 Levy and Lapidot (2000) present a page with 15 phenomena (see appendix A of the
article). Choose your own criteria and categorize/classify these images into sets. An
image can belong to several sets. For example, image X can be included in set A
because it satisfies the ‘a criterion’ and to be included in set B because it also satisfies
the ‘b criterion’.

2.	 Add a new instance (not from the given page) to each set.
3.	 Give a title to each set.
4.	 Give a title to the whole page.

(continued)

196 12  Integrated View at the MTCS Course Organization

12 Activity 78  (continued)

›  Stage B: Class discussion
After the teams worked on their classification, each team shares its categorization

with the rest of the class. This sharing process can be performed in different forms.
Here are several options: (1) a group presents the instances of a specific set and the
whole class should guess their classification criterion, (2) a group presents its addi-
tional new instance to one of the sets and the class should guess which of the other
instances presented in the worksheet belong to this set, (3) a group presents their title
for one of the sets and the whole class should guess which instances belong to that
set, (4) a group presents 3–5 instances that cannot belong to one of its sets and the
class should guess what the criterion was according to which items were included in
that set (i.e., what was the classification criterion).

During the discussion, the instructor should encourage a reflective discourse,
offer generalizations, and present the formal terminology with respect to recursion
related to the mentioned constructs. Learners, in general, and the prospective com-
puter science teachers in the MTCS course, in particular, are often exposed in this
discussion to new concepts and to different ideas and perspectives offered by other
groups. This exposure, in turn, encourages their reconsideration of their previous
perspective at recursion.

The instructor summarizes the main concepts related to recursion that have been
introduced in this discussion, and encapsulates them under the umbrella of one
concept – recursion. As a preparation for the next stages of this activity, in which
classification tasks are examined from a pedagogical perspective, the students are
told that this page aims at introducing the concept of recursion to computer science
learners who are not familiar with this concept.

›  Stage C: Build a classification page, homework, and class discussion
Before homework is presented, it is recommended to discuss with the students

what other computer science concepts can be introduced to computer science learn-
ers by classification tasks and what characterizes these concepts.

As their homework assignment, the students are asked to build another classifica-
tion page for a different computer science concept. As mentioned in Chap. 7, good
candidates for such concepts are data structures, control structures, and abstraction.

If time permits, it is recommended to dedicate an additional lesson in which the
students present their classification pages. In their presentation, they should be
encouraged to address how they chose the concept for which the page was constructed
and how they selected the instances included in their page. These presentations
should be followed by a class discussion which emphasizes the teacher’s perspec-
tive. This discussion can focus on advantages and disadvantages of classification
tasks as a pedagogical method for introducing new concepts to computer science
learners. The instructor can explicitly direct the students to reflect on what they
learned during their work on the classification page about recursion. It is worthwhile
addressing in this discussion concepts such as classification, generalization,

(continued)

19712.3  Leap of Faith 	

12.3 
�Leap of Faith

Once learners are familiar with the concept of recursion, for example, by working on the
classification task, programming aspects of recursion can be addressed. This transfer,
however, should be done very carefully since there is an agreement that understanding
recursion sets cognitive challenges for novice computer science learners (George 2000).

At least three factors contribute to these difficulties: (1) the gap between the recursive
(simple) algorithm and the recursive (complex) execution process: In order to understand
recursion, one must distinguish between the program (or method) listing and its recursive
process (algorithm execution) and further, these two instances require different kinds of
understanding, based on different cognitive models and abilities, (2) learners’ faulty men-
tal models of the recursive execution process, (3) pedagogy of teaching recursion. Learners’
difficulties of learning recursion are elaborated in Sect. 12.5.

According to Leron (1988), in the first stages of teaching recursion, it is preferable to
concentrate on the relations between the algorithm and its product or output (the result of
the algorithm execution), rather than on the relations between the algorithm and the pro-
cess it invokes. This pedagogical suggestion is based on the recognition that learners
should understand first how recursive phenomena can be described recursively and only
then, to cope with the complex recursive execution process. Harvey (1997) and Harvey
and Wright (1999) call this teaching approach a leap of faith.

In general, a leap of faith refers to one’s belief in the existence of a phenomenon that
cannot be touched or proved and for which no evidence exists. In our case, the leap of faith
method is associated with the assumption that an algorithm one writes works. It implies
that the leap of faith method guides pupils to write recursive descriptions even if they do
not fully understand (yet) why and how this “magic” works. It is recommended to start
implementing this approach with respect to recursive shapes (e.g., fractals or trees) or
other recursive phenomena; then, once pupils are able to write recursive descriptions for

abstraction, mental construction, constructivism, active learning, group work, alter-
native ways to introduce recursion (or other computer science concepts), and
visualization (see also Chap. 7).

›  Stage D: Summary: read a paper, homework
This topic can be summarized by the following homework:
Read the paper: Levy, D. (2001). Insights and conflicts in discussing recur-

sion: A case study, Computer Science Education 11(4): 305–322.

Choose at least one aspect of the classification activity that was not discussed in •	
the class and explain its importance from a pedagogical perspective.
Among the research findings presented in Section 5 of the paper, choose one find-•	
ing that surprised you and explain why it surprised you.

Activity 78  (continued)

198 12  Integrated View at the MTCS Course Organization

12 these instances, they can use this approach for writing recursive functions as well (again,
prior to their fully understanding of the function execution process).

Teaching the leap of faith method to learners is not a trivial matter and requires some
practice. Activity 79 aims at preparing the prospective computer science teachers mastering
this approach (Lapidot et al. 2000).

Activity 79: Mastering the Leap of Faith Approach

›  Stage A: Toward the leap of faith approach, team work
The students in the MTCS course are given the worksheet presented in Table 12.2

to work on.

Table 12.2  Leap of faith worksheet

Worksheet: Toward the leap of faith approach

In this worksheet, you are asked to work on four short tasks and then to design similar tasks.
Worksheet, Part A: Tasks
1.	 A recursive description of a visual figure (binary tree) is given. Draw the described

figure for level 3.
–	 The basic binary tree is of level 1, and it looks like a V-shape.
–	 A binary tree of level N is a V-shape with a smaller binary tree at each edge of the

V-shape.
2.	 A recursive description of a valid expression is given. Write as many valid expressions

as you can.
–	 The basic valid expression is the letter C.
–	 A valid expression begins with the letter A, proceeds with a shorter valid expres-

sion, and ends with the letter B.
3.	 Represent the following sand clocks by a recursive description, similar to the two

descriptions presented above.

4.	 A series of numbers is given. Write two formulas for the nth element of the series: one
formula should be recursive; the other formula – not recursive.
2, 5, 8, 11, 14, 17, 20 ….
A1=
An=

Worksheet, Part B: Design similar tasks
1.	 What is the structure of a recursive description?
2.	 Design at least one additional task for each kind of the four tasks presented in part A.

– 	 The first task: translating a recursive description into a visual figure;

(continued)

19912.3  Leap of Faith 	

Activity 79  (continued)

Table 12.2  (continued)

›  Stage B:  Class discussion
Once the students finish working on the two parts of the worksheet, it is recom-

mended to facilitate a whole class discussion, which clarifies the purposes of the
tasks presented in part A, that is, getting familiarity with the structure of a recur-
sive description and practice the creation of recursive descriptions. It is also
important to emphasize the structure of a recursive description (that is, naming
the recursive phenomena, a base case, and a recursive call). At this point, the
meaning of the leap of faith approach can be explained.

If time permits, it is also recommended to start discussing with the students the
planning of teaching recursion. Though there are several relevant topics with which
the students are not familiar with yet (e.g., research on recursion learning), a pre-
liminary discussion, which emphasizes the important role of non-programming
activities in learning recursion (as the ones presented above) can start at this point.
The role of such activities should be associated with the complexity involved in
learning the concept of recursion.

›  Stage C: Summary (read a paper, write a program), homework
The students are given the following tasks:

1.	 Read one of the following papers. Then, choose at least one aspect of learning and
teaching recursion that the paper addresses and that was not discussed in the class
and explain its importance.

Leron, U (–– 1988). What makes recursion hard?, Proceedings of the Sixth
International Congress of Mathematics Education (ICME6), Budapest,
Hungary, 1988.
Levy, D and Lapidot, T (–– 2000). Recursively speaking: Analyzing students’
discourse of recursive phenomena, Proceedings of the thirty-first SIGCSE
technical symposium on Computer science education, Austin, Texas,
315–319.

2.	 Write a Java program for the Fibonacci series by following the “leap of faith”
method. Explain the stages you followed (that is, how you used the “leap of faith”
approach while building your program).

Worksheet: Toward the leap of faith approach

–	 The second task: translating a recursive description into a textual (non visual)
expression;

–	 The third task: translating a visual figure into a recursive description;
–	 The forth task: representing a series of numbers by a recursive formula and by a

non-recursive formula.
3.	 Design a new kind of tasks that deal with recursive descriptions and are different from

those presented in part A.

200 12  Integrated View at the MTCS Course Organization

12 12.4 
�Models of the Recursive Process

In this section, we focus on models of the recursive process. We assume that at this stage
learners got some experience with respect to the formulation of recursive descriptions
(Sect. 12.3) and therefore, they can proceed to the learning of the recursive process (that
is, the execution of an algorithm).

Due to the complexity gap between the relatively simple recursive algorithm3 and the
complex recursive execution process, the recursive process is considered to be one of the
most difficult issues for understanding with respect to recursion.

All learners build mental models and use them as part of their learning processes. In the
case of recursion, research reveals that many learners hold a faulty model of the recursion
process (see, e.g., Kahney 1989; Wu et al. 1998). Sometimes, even viable models, such as
the copies mental model, do not help learners to execute recursive algorithms correctly
(Scholtz and Sanders 2010).

Therefore, suitable tracing models are needed to help learners capture the essence of the
recursive process. Two models are presented here: the Little People model and the Top-
down Frames model. Both models are demonstrated by the following mystery method.

public static void mystery (int n) {
if (n < 1)

System.out.println (“finished”);
else {

System.out.println (n);
mystery (n-1);
System.out.println (n);

}
}

This example is chosen for several reasons. First, in order to ease the tracing of the
process, all the instructions included in this method are based on printings. Second, the exam-
ple is a procedure (and not a function), because it is more difficult to explain the return
process included in a recursive function (like factorial). Third, one of the difficulties
learners face with respect to understanding recursion is the computer’s behavior when a
recursive execution ends; therefore, it is recommended to start with a full recursion (not a
tail recursion) since its flow is easier to understand.

12.4.1 
�The Little People Model

The little people model is a powerful model that helps learners actually see the execu-
tion of a recursive process. This model not only provides a tool that simulates the

3 This simplicity refers to the fact that a recursive algorithm is usually short with only few instructions.
This fact stands in contrast to the complex process invoked by a recursive algorithm.

20112.4  Models of the Recursive Process 	

recursive process but is also based on learners’ active participation in the creation of
the recursive process, and at each step enables them to predict the next step(s). In his
Computer Science Logo Style book, Harvey (1997) explains the model in detail and
illustrates it with detailed examples. In what follows, it is described briefly.

The model assumes that a large community of little people4 exists inside the computer,
where (a) each person is an expert in the execution of a specific method/program, and (b)
more than one little person can have the same expertise. Thus, for our example, there are
mystery specialists. When a method is invoked, one little person, who is an expert in its
execution, goes to execute it wearing a vest with pockets; the number of pockets equals
the number of the inputs of the program/method that the little person is an expert of its
execution. In our case, any mystery expert has one pocket. Each pocket can contain a
value of one variable. In addition, each pocket has a tag name that presents the name of
the parameter, attached to its inner side.5 We also assume that all the little people are
familiar with the basic Java instructions.6

Activity 80, to be facilitated in the MTCS course, illustrates the Little People Model
and further, enables to address it from a pedagogical perspective.

Activity 80: Pedagogical Examination of the Little People Model

›  Stage A: Demonstration of the Little People model
The stage is based on an active role play of executing mystery (3) by the students.

Each step is presented in a new bullet.

The Chief person (the MTCS course instructor or a student who is the Manager) •	
calls one student – Anna, for example, one of the mystery experts, to perform
mystery (3), puts 3 in her pocket (n) and gives her a chalk.7

Now, Anna should check the •	 if statement: She looks at the value of n in her pocket
and checks whether 3 < 1. Since the condition is not satisfied, Anna continues to
the else-clause.
Since Anna knows the basic instructions of Java, she knows how to perform •	
System.out.println. She looks again in her pocket, sees that the value of n is 3 and
prints 3 (on the blackboard, for example).
At this stage, Anna should perform mystery (•	 n − 1); since this is not a basic Java
instruction, she needs help from another little person and she asks Burt.
In the class, at this point, the students are encouraged to suggest Anna what to •	
do and a short discussion can take place about the fact that Anna cannot perform
mystery (2) since she is still busy with her execution of mystery (3).

4 Harvey calls these little people elfs or specialized doctors.
5 The name tags are attached to the inside side of the pocket to emphasize the fact that the names
of an expert’s variables are not exposed to other little people (indeed, they should not know these
names); they should know only the number of pockets and the kind of thing (types of variables)
that can be put inside them.
6 In the full implementation of the little people model there are experts also for the System.out.
println command and the if statement; this assumption is not necessary for our discussion.
7 The chalk holder represents the active actor at each stage of the role play.

(continued)

202

12

Activity 80  (continued)

Anna hands the chalk to Burt, looks at her pocket for •	 n’s value, calculate n − 1,
puts 2 in Burt’s pocket, and goes standing at the side of the classroom waiting for
Burt to finish his job.
Burt should check if •	 n < 1. So he looks for n’s value in his pocket (n) and then checks if
2 < 1. Since the condition is not satisfied, Burt turns to the else-clause. He knows how
to perform System.out.println, so he prints 2 on the blackboard. Then, in a similar man-
ner to Anna’s, he should perform mystery (n − 1) and calls Carl to perform this job.
Burt gives Carl the chalk, puts 1 in his pocket, and waits at the side of the classroom
next to Anna.
At this point it is recommended to pay students’ attention to how the stack is •	
being built, where Anna is waiting first and Burt is waiting next to her.
Carl checks the value in his pocket (•	 n) and checks if 1 < 1. Since this check yields
false, Carl continues to the else-clause. He knows how to perform System.out.
println, and he prints 1 on the blackboard. Then, Carl should perform mystery (n
− 1) and he calls Danna to perform this task. Carl gives Danna the chalk, puts 0 in
her pocket, and goes standing at the side of the classroom, next to Anna and
Burt.
Danna looks for the •	 n’s value in her pocket and checks if 0 < 1. Since the condition
is satisfied, Danna turns to the then-clause. Since she knows how to perform
System.out.println, she prints “finished” on the blackboard. At this point, Danna
finishes her task, turns to Carl (the little person who asked her to perform her job),
returns him the chalk and, after she is thanked by Carl, she returns to her seat.
In the class, it is recommended to pause the process at this point and ask the stu-•	
dents how, in their opinion, the role play should continue. It is also important to
emphasize that at this point the 3 little people – Anna, Burt, Carl – are still waiting
to continue their jobs from the point they stopped it, but each of them has a differ-
ent value of n in his or her pockets.
After Carl thanks Danna for her help, he continues to the last instruction he should •	
perform. He checks n’s value in his pocket (sees that it is 1) and prints 1 on the
blackboard. Carl turns to Burt (who hired him) and gives him the chalk.
Burt thanks Carl for his help and continues to the last instruction he should per-•	
form. He prints 2 (n’s value in his pocket) on the blackboard, turns to Anna and
gives her the chalk.
Anna thanks Burt for his help, prints 3 (•	 n’s value in her pocket) on the blackboard,
turns to the Chief person and returns him the chalk.

This ends the role play and a whole class discussion about the process starts.

›  Stage B: Class discussion
During the discussion, the students are encouraged to reflect on the process they

just saw, addressing its advantages and disadvantages. For example, since the model
is based on a metaphor (see Sect. 7.2.6), it is another opportunity to discuss meta-
phors as a pedagogical tool.

If time permits, it is recommended to give the students a “reversed” task; that is,
the students are given a textual description of the little people role play of another
recursive method and they are asked to reconstruct the original method in Java.

20312.4  Models of the Recursive Process 	

12.4.2 
�The “Top-Down Frames” Model

The little people metaphor is an excellent pedagogical tool for illustrating the execution of
recursive methods; individual learners, however, cannot carry it out in their notebook by their
own. The following model – the top-down frames model – overcomes this limitation of the
little people model by enabling each learner to trace the recursive process by her or his own.

This model guides learners, on each level of the recursion, to write all the instructions
that should be executed (one after another), where for each recursive call a new box is
opened, until all the boxes are embedded in the initial method invocation (see Fig. 12.1).

mystery (3)

System.out.println (3);
mystery (3 –1);

System.out.println (3);

mystery (3)

System.out.println (3);

mystery (3 – 1);

System.out.println (3);

mystery (2)

System.out.println (2);
mystery (2 –1);

System.out.println (2);

mystery (3)

System.out.println (3);

mystery (3 – 1);

System.out.println (3);

mystery (2)

System.out.println (2);

mystery (2 – 1);

System.out.println (2);

mystery (1)

System.out.println (1);
mystery (1 – 1);

System.out.println (1);

mystery (3)

System.out.println (3);

mystery (3 – 1);

System.out.println (3);

mystery (2)

System.out.println (2);

mystery (2 – 1);

System.out.println (2);

mystery (1)

System.out.println (1);

mystery (1 – 1);

System.out.println (1);

mystery (0)

if n < 1

System.out.println (‘finished’);

Fig. 12.1  Illustration of the top-down frames model

204 12  Integrated View at the MTCS Course Organization

12

Once all the boxes are embedded with all the details, the (printing) instructions can be
executed (see Fig. 12.2).

It is important to note that unlike the little people model, the top-down frames model
does not emphasize all the issues of the recursive process (the returning process, for exam-
ple, is not strongly demonstrated here); it is, however, helpful to use this model as a tracing
tool in learners’ notebooks. It is also important to supply the learners with different models
to support their learning of the recursive process.

In the MTCS course, after the instructor explains the top-down frames model, the
students are asked to trace by their own another recursive method/program, for example,
the following recursive_magic (1, 3) method.

public static void recursive_magic (int a, b) {
if (a==b)

System.out.println (“finished”);
else {

System.out.println (a);
recursive_magic (a + 1, b);
System.out.println (a);

}
}

It is recommended to discuss with the students the differences between recursive meth-
ods, which do not return a value (i.e., in Java, they return void), and recursive functions
(i.e., methods that return a value). The recursive examples presented here are methods that
do not return a value. It is recommended to demonstrate the two models on a recursive
function (e.g., Fibonacci), emphasizing what a little person does with the returned values
when he or she finishes his or her job.

mystery (3)

System.out.println (3);

mystery (3 –1);

System.out.println (3);

mystery (2)

System.out.println (2);

mystery (2 –1);

System.out.println (2);

mystery (1)

System.out.println (1);

mystery (1 –1);

System.out.println (1);

mystery (0)

if n < 1
System.out.println (‘finished’);

3

3

2

2

1

finished

1

Fig. 12.2  Printing instructions of the top-down frames model illustration

20512.5  Research on Learning and Teaching Recursion 	

Clearly, additional tracing models are presented in the literature. The students can be
asked to find additional tracing models by using the web (looking, for example, for tracing
demonstrations in YouTube). It is important to emphasize criteria of good models; in the
case of tracing recursion, for example, one such criterion is that tracing models should
relate to the process invocation, the parameter values, the values of local variables (if exist),
and the returning process.

12.5 
�Research on Learning and Teaching Recursion

This section addresses computer science education research on learning and teaching
recursion. As mentioned in Chap. 4, computer science education research may contribute
significantly to teachers’ knowledge and professional development in at least four ways:
(1) becoming members of the computer science education community, (2) increasing
teachers’ awareness to learners’ conceptions and difficulties (strengthen Shulman’s (1986)
model category of knowledge of learners), (3) strengthening teachers’ Pedagogical Content
Knowledge (Shulman 1986), and (4) broadening teachers’ teaching toolbox.

Since recursion is a central computer science concept, as explained at the beginning of this
chapter, computer science teachers’ familiarity with research on learning and teaching
recursion may also contribute to their professional development in each of the above four
ways. Specifically, since recursion plays a central role in almost all introductory computer
science courses, teachers should be familiar with this educational research area if they wish to
become members of the computer science education community; they must be aware of
learners’ conceptions of recursion and difficulties learners encounter when learning recursion;
their Pedagogical Content Knowledge should include examples of recursion and teaching strat-
egies for recursion; and, finally, computer science teachers should broaden their teaching toolbox
with respect to recursion. Clearly, these arguments are also applicable for prospective computer
science teachers, and therefore, we suggest addressing this research area in the MTCS course.
Activities 81 and 82 can be facilitated in the MTCS course to achieve these purposes.

Activity 81:  Investigating Research on Learning and Teaching Recursion,
Homework

Table 12.3 presents the homework assignment.

Table 12.3  Homework about computer science education research on learning and teaching
recursion

Worksheet – Research on learning and teaching recursion

1.	 Look at the list of research papers on learning and teaching recursion that appears at the
bottom of this worksheet.

Choose one paper from the list, read it, and work on the following tasks:
–	 In your opinion, what are the three main messages of the paper?

(continued)

206 12  Integrated View at the MTCS Course Organization

12

Worksheet – Research on learning and teaching recursion

–	 Indicate three main issues you thought about while reading the paper. You can relate to
what you found most interesting, to what increased your curiosity, to issues you would
like to read more about, or any other idea you thought about.

2.	 Mini-research (optional): Choose one of the papers and reconstruct the research
described in the paper.

Paper list
Ford, G. (1982). A framework for teaching recursion. SIGCSE Bulletin 14(2), 32–39.
Haberman, B. and Averbuch, H. (2002). The case of base cases: Why are they so difficult

to recognize? Student difficulties with recursion, ITiCSE 2002, 84–88.
Haynes, S.M. (1995). Explaining recursion to the unsophisticated, SIGCSE Bulletin

27(3), 3–6.
Kahney, H. (1989). What do novice programmers know about recursion? In Soloway, E.

and Sphorer, J.C. (eds). Studying the novice programmer, LEA publishers, 209–228.
Scholtz, T. and Sanders, I. (2010). Mental models of recursion: Investigating students’

understanding of recursion, ITiCSE 2010, Ankara, Turkey.
Wu, C., Dale, N.B. and Bethel, L.J. (1998). Conceptual models and cognitive styles in

teaching recursion, SIGCSE 30, Atlanta GA, USA, 292–296.

Activity 81  (continued)

Table 12.3  (continued)

�Activity 82: Recursive Models, Homework and Presentation in the Course

In order to broaden students’ teaching toolbox, in this activity they are asked to find in
the computer science education literature models for recursion and to present them in
the class (see Table 12.4 for the homework assignment). Another option is to organize
a poster session in which each student presents his or her model on a poster.

Table 12.4  Homework about recursion models

Worksheet – Models for recursion

1.  Find in the literature at least one model that explains recursion to learners and was not
presented in the course (i.e., not the little people metaphor or the top-down frames
model). Indicate the paper title, authors, and abstract.

2.  Write a short description of the model and illustrate it on at least one specific recursive
program/method.

3.  Discuss the advantages and disadvantages of the model.
4.  Prepare a short (10–15 min) presentation of the model to be presented in the course

(or, alternatively: prepare a poster to be presented in the course).

20712.6 How Does Recursion Sound? 	

12.6 
�How Does Recursion Sound?8

In Sect. 8.4 we present the musical debugging activity (Activity 55) that aims at increasing
learners’ awareness to their debugging processes, the importance of debugging, and its
relationship to learning processes. It also illustrates the use of the computer lab in computer
science education.

In this section, we illustrate how the use of the computer lab can enhance learners’
understanding of recursion. For this purpose, we use colors and music for the examination
of trees and fractals which are two well-known recursive structures. We suggest that the
examination of these recursive structures may foster also learners’ general understanding
of the concept of recursion.

This approach that fosters the use of colors and sounds relies on the common agreement that,
similar to the convention that one picture is worth a thousand words, one musical note is worth
at least 100 words. Just like visualization, music is a powerful way to activate people’s senses,
change people’s mental moods, convey messages quickly (e.g.,in horror movies), and provide
information that sometimes is very difficult, or even impossible, to convey by other means. In
this spirit, Vickers (1999) claims that “Although sound is not visible we are still able to construct
mental images when presented with particular sounds or pieces of music.” (p. 15).

Activity 83 that focuses on fractals and trees is based on three stages. In addition, if the
musical debugging activity (see Activity 55 in Sect. 8.4) has not been facilitated yet in the
MTCS course, it is recommended to ask students to read the paper on song debugging
(Lapidot and Hazzan 2005).

8 Based on Lapidot and Hazzan (2005) © 2005 ACM, Inc. Included here by permission.

Activity 83: Using Colors and Music for the Examination of Recursive
Structures

›  Stage A: Musical demonstration
The instructor of the MTCS course executes a program that draws a binary tree.

The program plays also a unique tone for each level (e.g., C (Do) for level 1, D (Re)
for level 2, and so on). During the first illustration, the students are asked just to
watch the program execution. During the second illustration, they are asked to close
their eyes, listen to the music, and imagine the drawing of the tree according to the
music. The same process can be carried out for a fractal drawing.

›  Stage B: Lab work
The students work on the activity presented in Table 12.5.

Table 12.5  Student worksheet on recursion in colors

Worksheet – Recursion with colors and music

1.  Write a Java program that draws a binary tree.
2.  Color each level of the tree with a different color.

(continued)

208 12  Integrated View at the MTCS Course Organization

12

›  Stage C: Class discussion
After the students complete their lab work, it is recommended to facilitate a class

discussion that addresses the following issues:

What recursive aspects/ideas/perspectives can be learnt based on the tree activity?•	
How can colors and music enhance learners’ understanding of recursion, if at all?•	
Why do musical differences between trees and fractals exist? What do these dif-•	
ferences tell us about their recursive structure and about recursion in general?

12.7 
�Evaluation

This section includes two activities (84 and 85) related to evaluation in the context of
recursion to be facilitated in the MTCS course: evaluation of a non-programming task
and a test construction.

Worksheet – Recursion with colors and music

3.  Add music to each level.
4.  Optional: Draw a fruit or a flower at the end of each branch of the tree.

The following figure is a colored binary tree of level 5.

Table 12.5  (continued)

(continued)

Activity 84: Analysis of Recursive Phenomena

In Chap. 10, we mentioned that a computer science teacher should use a variety of
evaluation methods. In this spirit, we recommend on a non-programming project for
the evaluation of learners’ understanding of recursion, as is illustrated below.

Activity 83  (continued)

20912.7  Evaluation 	

Activity 84 (continued)

›  Stage A: Choosing and analysis of recursive phenomena, homework
The students work on the worksheet presented in Table 12.6 as a homework

assignment.

›  Stage B: Class presentation and discussion

After the students complete their homework, it is recommended to allocate time
for the presentation of their work in the class. It is also important to discuss the task
both from a cognitive perspective and from a pedagogical perspective. The discus-
sion can be based on the examination of several specific student works and their
evaluation. Such a discussion enables to concentrate on the evaluation theme on
three levels: (a) the evaluation of this specific task about recursion, (b) the evaluation
of a non-programming task, and finally (c) general ideas related to evaluation (see
also Chap. 10).

Table 12.6  Worksheet on recursion in a non-programming context

Worksheet – Recursion in life

Choose 2 topics which you find interesting; for example, biology, mathematics, politics,
transportation, communication, history.

For each topic, choose two phenomena that represent different types of recursion. For
example, look at the following table:

Linear recursion Two-dimensional recursion
Topic 1: food Phenomenon 1 Phenomenon 2
Topic 2: music Phenomenon 3 Phenomenon 4

According to the example, phenomena 1 and 2 should have a different recursive nature; the
same implies for phenomena 3 and 4.

Address the four phenomena: Analyze their recursive types, compare them, and discuss
connections among them.

Your homework will be graded as follows: Each phenomenon receives 5% for its
description, and 15% for its recursive analysis. In addition, 20% is given for the
analysis of the four phenomena, connections among them, and their comparison.

Activity 85: Construction of a Written Test on Recursion

Activity 68 in Sect. 10.2 focuses on test construction. Within the context of the current
chapter, it is possible to follow all its stages with respect to recursion as the topic of the
test. If time does not permit to facilitate all the stages, it is recommended to focus on
the test construction stage and to ask the students to construct questions about recursion
of different types and difficulty levels (see Chap. 9).

210 12  Integrated View at the MTCS Course Organization

12

Activity 88: Recursive Patterns

Section 5.4.3 relates to algorithmic patterns. An optional activity for recursion would
analyze recursive patterns for list processing, such as map, filter, and reduce (see
Table 12.7).

Table 12.7  Recursive patterns for list processing

Recursive patterns for list processing – map, filter, reduce

Map is a function that gets a list L1 and an unary function F and returns a list L2 where F
was activated on each of L’s elements.

Filter is a function that gets a list L1 and a Boolean function F and returns a list L2 that
includes only the elements from L1 that satisfy the F condition.

Reduce is a function that receives a list L1 and a binary function F and returns the overall
activation of F on all the elements of L1.

Activity 87: Comparison of Recursive Algorithms in Different Paradigms

Section 3.6 focuses on programming paradigms. In the context of recursion, an optional
activity would ask students to compare the same recursive algorithm in different para-
digms (e.g., logic, functional, procedural) or compare iterative and recursive solutions
to the same problem.

Activity 86: History of Recursive Functions

Section 3.3 focuses on the history of computer science. An optional activity about
recursion in the historical context would ask students to read (e.g., using Internet
resources,) about the history of recursive functions (such as, Gödel’s computable func-
tions and Turing’s machine) and to present their findings in the course.

12.8 
�Additional Activities

In this section we present additional activities related to learning and teaching recursion to
be facilitated in the MTCS course. The purpose of this list is to illustrate again that, indeed,
recursion can be the focus of almost any topic discussed in the MTCS course. For the
readership convenience, the activities are organized by the order of the chapters in this
Guide to which they are related.

(continued)

211References	

Activity 89: Recursion Animation

Chapter 8 focuses on lab-based teaching. In addition to the tree activity presented in
this chapter (see Sect. 12.6), it is recommended to use animations (such as Jeliot) and
demonstrate the tracing of Fibonacci or a tree drawing.

Activity 90: Design of Questions About Recursion

In the spirit of Chap. 9, an optional activity would ask students to build different types
of questions for recursion.

Activity 91: Planning the Teaching of Recursion

Chapter 11 examines, among other topics, lesson planning. In the context of recursion,
an optional activity would ask students to prepare a lesson, for example, about types of
recursion (tail-recursion, double recursion, mutual recursion) or about recursive manip-
ulations of strings.

Recursive patterns for list processing – map, filter, reduce

Examples for recursive patterns
Recursive pattern Input list L1 Input function F Output
Map 10, 7, -2, 25 Double 20, 14, -4, 50 (list)
Filter 10, 7, -2, 25 Positive? 10, 7, 25 (list)
Reduce 10, 7, -2, 25 Add 40 (the sum of L1

elements)

Activity 88  (continued)

Table 12.7  (continued)

References

George C E (2000) ERSOI – Visualising recursion and discovering new errors. Proc. 31st SIGCSE
Tech. Symp. Comp. Sci. Educ., Austin, Texas: 305–309

Gersting J L (1996) Mathematical structures for computer science (third edition). NY: W. H.
Freeman and Company

Harvey B (1997) Computer science Logo style - volume 1: Symbolic computing 2/e. The MIT press

212 12  Integrated View at the MTCS Course Organization

12 Harvey B, Wright M (1999) Simply scheme: Introducing computer science 2/e. The MIT press
Hofstadter, D (1979) Godel, Escher, Bach – An eternal golden braid. Vintage books, NY
Kahney H (1989) What do novice programmers know about recursion? In: Soloway E,

Spohrer J (eds) Studying the novice programmer: 209–228. Lawrence Erlbaum Associates,
Hillsdale, New Jersey

Lapidot T, Levy D, Paz T (2000) Functional programming for high school students. (in Hebrew).
Migvan – R&D in Computer Science Teaching, Technion, Haifa, Israel

Lapidot T, Hazzan O (2005) Song debugging: Merging content and pedagogy in computer science
education. Inroads –SIGCSE Bull 37(4): 79–83

Leron U (1988) What makes recursion hard?, Proc. 6th Int. Cong. Math. Educ. (ICME6), Budapest,
Hungary

Levy D, Lapidot T (2000) Recursively speaking: Analyzing students’ discourse of recursive
phenomena. Proc. 31st SIGCSE Tech. Symp. Comput. Sci. Educ., Austin, Texas: 315–319

Scholtz T, Sanders I (2010) Mental models of recursion: Investigating students’ understanding of
recursion. ITiCSE 2010, Ankara, Turkey

Shulman L S (1986) Those who understand: knowledge growth in teaching. J. Educ. Teach. 15(2):
4–14

Vickers P (1999) CAITLIN: Implementation of a musical program auralization system to study the
effects on debugging tasks as performed by novice Pascal programmers. A doctoral thesis
submitted to Loughborough University. Available at http://computing.unn.ac.uk/staff/cgpv1/
caitlin/index.htm Accessed 22 September 2010

Wu C, Dale N B, Bethel L J (1998) Conceptual models and cognitive styles in teaching recursion.
Proc. 30th SIGCSE Tech. Symp. Comput. Sci. Educ, Atlanta GA, USA: 292–296

http://computing.unn.ac.uk/staff/cgpv1/caitlin/index.htm
http://computing.unn.ac.uk/staff/cgpv1/caitlin/index.htm

213O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_13, © Springer-Verlag London Limited 2011

Getting Experience in Computer Science
Education 13

Abstract  This chapter deals with the first teaching experiences that the students enrolled
in the MTCS course gain before becoming computer science teachers. It presents two
frameworks in which the prospective computer science teachers gain this first teaching
experience: The practicum, which takes place in high school, after one or two semesters of
learning the MTCS course, and a tutoring framework that can be integrated in the MTCS
course. We also present activities that can be facilitated in the MTCS course, in which
the students deal with and analyze teaching scenarios taken from the practicum of other
prospective computer science teachers.

13.1 
�Introduction

This chapter deals with the first teaching experiences that the students gain before becom-
ing computer science teachers, in which they implement what they have learned in the
MTCS course. The importance of these first teaching experiences stems from the recogni-
tion that one significant way to acquire pedagogical-disciplinary knowledge involves
activities performed in actual teaching situations that provide opportunities and guide the
teacher toward reflective processes that address learners’ thinking (Wilson and Berne
1999; Putnam and Borko 2000).

We present two frameworks in which the students gain this first teaching experience:
The practicum, which takes place in high school, after one or two semesters of learning the
MTCS course, and a tutoring framework that can be integrated in the MTCS course. In
addition, we present activities that can be facilitated in the MTCS course, in which the
students deal with and analyze teaching scenarios taken from the practicum of other pro-
spective computer science teachers.

Since the more teaching experience the students gain, their confidence as computer sci-
ence teachers increases as well as their awareness to students’ learning processes elevates,
some institutions offer the students also special laboratory teaching or micro-teaching
courses. In these courses, prospective teachers practice a variety of teaching situations in a
friendly environment (to a small group of pupils or peers) with a close guidance of an

214 13  Getting Experience in Computer Science Education

13 instructor. If such courses are not available, and the MTCS remains the only opportunity
in which the prospective computer science teachers can gain any teaching experience, then
the instructor of the MTCS course should try to find additional opportunities to let the
students experience and reflect on computer science teaching situations before practicing real
teaching situations. For example, and as has already illustrated in this Guide, short presenta-
tions can be integrated in the MTCS course, in which the students teach their peers a com-
puter science topic or present to their peers the product of an activity they worked on.

13.2 
�The Practicum in the High School1

13.2.1 
�General Description

This section focuses on one of the central components of computer science teacher prepa-
ration programs – the practicum – the stage in which the prospective computer science
teachers practice real computer science teaching situations in high schools. In general, the
objective of the in-school teaching practicum is to bring prospective teachers closer to
the field work of teachers while actually teaching the knowledge domain (Eick et al. 2004).
With respect to high school computer science teaching, the importance attributed to the
practicum is expressed, for example, in the Model Curriculum for K-12 Computer Science,
prepared by the ACM K-12 Task Force Curriculum Committee (Tucker et al. 2004), which
outlines standards that refer to the preparation of computer science teachers (see also
Stephenson et al. 2005).

The practicum is carried out in different ways. Some programs require a full year’s
participation in school activities; others require that the practicum be performed for a spe-
cific, shorter period of time. In all these cases, however, as has been mentioned above, the
main objective of the practicum is to let the prospective teachers experience what real
teaching is before becoming computer science teachers.

To achieve this goal, the practicum is usually performed with the guidance of two
computer science educators: an in-school mentor, a computer science high school teacher
who trains the student and guides him or her during the practicum; and a university mentor who
is a faculty member in charge of the academic aspects of the practicum. During the period
in which the students are in the school, they accompany their in-school mentor, observe
lessons taught by him or her, assist in various activities, and, of course, at a certain stage,
begin teaching themselves (in the broader sense, including lesson preparation, teaching in
the class or the computer lab, preparing and grading exams, etc.).

The involvement of the university mentor is usually expressed by periodic visits to the
schools in order to observe lessons taught by the prospective computer science teacher.
Reflection and feedback meetings take place after each such lesson. Thus, the university

1 Based on Hazzan and Lapidot (2004), © 2004 ACM, Inc. Included here by permission.

21513.2  The Practicum in the High School	

mentor continues the guidance started in the MTCS course. In this sense, the practicum can
be viewed as one of the teaching methods employed in the MTCS course.

Usually, the students are asked to submit a report (a kind of reflection) about their
experience in the school. Sometimes, they are asked to carry out additional activities such
as, conducting some research, attending a workshop at the university in parallel to the
practicum, or participating in school faculty meetings.

13.2.2 
�The Practicum as a Bridge Between Theory and Its Application

Hazzan and Lapidot (2004) examine the practicum through three lenses: the prospective
computer science teacher’s standpoint, the MTCS course viewpoint, and the university
mentor’s perspective. For each perspective they highlight the importance of the practicum
by explaining how it helps bridge a specific gap related to the theory of computer science
teaching (see Fig. 13.1): a gap between theory and practice (the prospective computer
science teacher’s perspective), a gap between theory and reality (the MTCS course perspective),
and a gap between theory and the field (the university mentor’s perspective). These three
perspectives are explained in what follows.

13.2.2.1 
�Prospective Computer Science Teachers’ Perspective: Bridging the Gap Between Theory and Practice

This perspective refers to the following questions: Why can not we let the students start
teaching their own classes immediately after they finish studying the MTCS course?
Why are the different activities carried out in the MTCS course, such as the discussion of

Prospective Teacher’s Perspective

Field

Reality

Practice

Theory

Of

Computer

Science

Teaching

MTCS Course Perspective

University Mentor’s Perspective

Bridging Gaps

Fig. 13.1  Theory – practice/reality/field gaps

216 13  Getting Experience in Computer Science Education

13 different teaching approaches and micro-teaching, insufficient? The answer to these ques-
tions is derived from several reasons.

First, teaching is an apprenticeship profession, such as Medicine. This implies that part
of the students’ professional preparation should include experience in the real environ-
ment in which they will teach in the future, that is, high school computer science classes.
In other words, an appropriate preparation toward computer science teaching in the high
school should include practice in the high school with a close guidance of an expert; this
approach is clearly different than letting the students start teaching autonomously in real
high school computer science classes just after the MTCS course, before gaining a proper
practice.

Second, the answers to the above questions are also based on the active-learning teach-
ing approach (see Chap. 2); that is, the practicum provides the prospective computer sci-
ence teachers with significant experience in real high school classes that none of the
situations integrated either in micro-teaching courses or in the MTCS course, afford. For
example, during the practicum, the students may feel the need to use different teaching
methods, to which they were exposed in the MTCS course (see Chap. 7), for the teaching
of different computer science topics. That is, though many different teaching methods are
discussed in the MTCS course, only their actual implementation in real teaching situa-
tions, together with a reflection process that follows it, can improve the students’ under-
standing with respect to their essence.

Third, the practicum is yet another opportunity in which the students have an opportunity
to improve their understanding of computer science concepts. This improvement happens
while they prepare the lesson to be taught in the high school, while they are teaching the
lesson, and finally, in the reflection session that takes place, either with the in-school men-
tor or university mentor, after each lesson a student teaches in the school. This improved
understanding is clearly important to be gained prior to becoming a computer science
teacher. Activity 92 below, to be facilitated in the MTCS course, illustrates this knowledge
construction related to computer science.

Finally, from an organizational perspective, entering the school environment, as an
organization, is not a simple task. One has to become familiar with the school culture,
procedures, roles, behavior styles, professional language, and more. The practicum
provides the prospective computer science teachers an opportunity to be exposed to
the organizational aspect of the school prior to becoming a member of the community
(either of the school he or she does the practicum in or of another school); this
preliminary familiarity may ease their entrance to the school as computer science
teachers.

Accordingly, the above reasoning delivers the message that the practicum constitutes a
significant stage in the construction process of the prospective computer science teachers’
professional perception which also reduces gaps between theory and practice. In other
words, the practicum can help the students close gaps between the theory they learn in the
MTCS course and in other pedagogical courses and the actual practice of computer sci-
ence teaching. Furthermore, it is important to increase the students’ awareness to these
gaps as well as the different ways to bridge them.

21713.2  The Practicum in the High School	

13.2.2.2 
�MTCS Course’s Perspective: Bridging the Gap Between Theory and Reality

The MTCS course and the practicum are both important components of computer science
teacher preparation. While each one alone is not sufficient for the computer science teach-
ers’ training, they do mutually contribute to each other. Accordingly, from the MTCS
course’s perspective, the practicum bridges a gap between theory and reality.

As we can see in Activities 92–94, the presentations of scenarios that took place dur-
ing the practicum in the MTCS course may help bridge the gap between the theory that is
taught in the MTCS course and reality – what actually goes on in schools. For example,
based on a real lesson taught by a prospective computer science teacher during the practi-
cum, a detailed description of the lesson can be presented to the students participating in
the MTCS course. The students are asked to analyze the lesson, to point out good teach-
ing behavior, to suggest alternative actions for specific teaching behaviors, to analyze
pupils’ answers, etc. The fact that the description is based on an actual lesson taught by a
prospective computer science teacher, who has similar teaching experience to that of the
students in the MTCS course, is important since it may serve the students as a kind of self-
examination of their own actions.2 Such real case studies can be collected by the university
mentor or taken from research done by other scholars in the field (see Chap. 4).

From a broader perspective, the MTCS course should not be based solely on theory.
Had the MTCS course been based only on theory and hypothetical case studies, the gap
described in the previous section from the students’ prospective would have been further
widened and, consequently, their entry into the practicum would have been even a more
mysterious and difficult process.

13.2.2.3 
�University Mentor’s Perspective: Bridging the Gap Between Theory and the Field

This section discusses the gap that exists between the university environment (in which the
university mentor is active) and the high school environment (in which computer science
is taught), that when examined from the university mentor’s perspective, may be bridged
by the practicum. By discussing the bridging of this gap, we actually also explain why it is
important that a university mentor be part of the practicum.

First, since in some cases the university mentor teaches the MTCS course, his or
her involvement in the practicum can create continuity between the MTCS course and
the practicum. Specifically, ideas that are presented and discussed in the MTCS course can
be referred to first, in the ongoing guidance that the university mentor gives the prospec-
tive teachers during the practicum, and second, in the reflection meetings that take place

2 We note that the analysis of teaching situations taken from lessons taught by experienced teachers
is important for other purposes.

218 13  Getting Experience in Computer Science Education

13 after lessons observed by the university mentor. We highlight that one of the main aims of
the reflective meetings is to educate the students to become a reflective practitioner (Schön
1983, 1987; see also Chap. 5). Further, by eliciting reflective processes in these meetings,
the university mentor can actually help the prospective computer science teachers bridge
the gap between theory and practice (discussed above).

Second, university mentors do not usually teach in a school, yet they prepare their
students to become computer science teachers. Thus, their involvement in the practicum
provides them with an opportunity to be involved in the field that is the subject of the
MTCS course and to avoid the well-known gap between the academia and the high school
system. Thus, the gap between the academia and the school is bridged.

Third, each visit in a high school is also a rich source for new material to be addressed
in the MTCS course. Therefore, the university mentor should increase his or her awareness
to events, scenarios, interaction styles, and typical behaviors that can be brought back to
the MTCS course, and by doing so closes also the gap between theory and reality
mentioned above.

Finally, for the success of the practicum process, it is important that the in-school men-
tor and the university mentor have direct communication channel and good relationship.
The university mentor’s visits in the school can support building such relationships.

13.2.3 
�Activities to be Facilitated in the MTCS Course

Activities 92–94 should be facilitated in the MTCS course just before the students start
their practicum. They are based on the analysis of real scenario descriptions, taken from
the practicum of prospective computer science teachers in the high school.

It is recommended, however, that the instructor of the MTCS course brings authentic
examples from lessons he or she observed as a university mentor while mentoring prospec-
tive computer science teachers in their practicum.

Activity 92: Bridging Gaps Related to the Content Aspect of Computer Science
Education

›  Stage A: Scenario description3

The students are presented with the following scenario, in which Anna, a pro-
spective computer science teacher, was asked by her in-school mentor to prepare a
2 hours lesson about procedures to a 11th grade students, who learned computer

(continued)

3 Based on Lapidot (2005).

21913.2  The Practicum in the High School	

science in the procedural programming paradigm. In a meeting with her university
mentor that took place prior to the lesson Anna said:

Maya (Anna’s in-school mentor) asked me to prepare a lesson about procedures. It will be
the first time that this class learns procedures. I thought about it a lot at home and it seems
to me that I don’t have what to do on this topfic to fill two hours. It is a simple topic and it
is sufficient to give them [the pupils] the syntax of how to write procedures. Even if I present
many examples, I will not have what to do for the entire period of time. So, I thought that
during the second hour I would start to teach them about types of parameters.

Anna was encouraged by the university mentor to explain what it means “to
know (or to understand) procedures,” that is, what procedures literacy is.

In the MTCS, it is recommended that the instructor stops and asks the students
how they define “procedures literacy.”
Anna listed the following issues:

A procedure is a sub program.•	
A procedure helps us think simpler, because each procedure is a small task, •	
a sub-task, and if the task is complicated, it is divided into sub-tasks.
We should understand the syntax of procedures, how they are called and where in •	
the program they are written.
A procedure within a procedure: Indeed, it is not always necessary, but such an •	
option exists.
Oh! There are too many questions that I haven’t thought about before.•	
There is also recursion.•	
After that conversation, Anna taught the lesson. During the lesson she addressed

the topic of procedures from different perspectives. After the lesson, in the reflec-
tion meeting, Anna said:

At the end, I had about 15 min left and I still had to talk about what a procedure gives us
in general – hierarchy. But I did not prepare myself for this and I had no idea how to do it.
It is not a simple task to explain why we need hierarchy and even now I do not know how
to find an example for this topic. In general, it is funny that at the beginning I thought that
there is nothing to do with procedures, I thought that a quarter of an hour would be suffi-
cient [to teach procedures] and that we would then continue with types of parameters.

›  Stage B: Scenario analysis, work in pairs and a discussion
After the scenario is presented to the students (either orally or in writing), they

are asked to work in pairs on the following questions.

1.	 What is the source of Anna’s initial conception that the notion of procedure can
be taught in about 15 min?

2.	 Can you imagine a scenario that took place during the lesson that Anna taught
which gave her a hint that more time is needed for the teaching of the notion of
procedure?

(continued)

Activity 92  (continued)

220

13 3.	 What questions, in your opinion, were raised by the high school pupils in that
lesson? For each question, describe what would be your answer as a teacher.

4.	 Which additional aspects of the procedure concept, in your opinion, should be
addressed while teaching this topic?

5.	 Suggest an example that illustrates the notion of hierarchy, for which it was dif-
ficult for Anna to find an appropriate example in the lesson.

After the students work on these questions, a discussion takes place in which
their suggestions are discussed. In this discussion it is important to address both
pedagogical aspects (mainly, teaching methods and class management issues) and
cognitive topics (mainly, students’ understandings and (mis)conceptions).
Question 3, for example, in which the students are asked to envision what actually
happened in the lesson, highlights these two perspectives and at the same time
increases the students’ awareness to learners’ perceptions (see Chap. 6).

After these questions are discussed, this case can be summarized by highlighting
the following two topics which are clearly illustrated by Anna’s case:

Technical teaching (which emphasizes technical aspects of computer science) •	
versus conceptual teaching (which encompasses also non-technical computer
science issues):

As could be seen, the need to teach procedures led Anna, guided by the university ––
mentor’s help, to add conceptual topics to the technical picture she drew first, such
as the contribution of procedures to problem-solving situations.
It is highly relevant to discuss with the students what pupils learn from each ––
mode of teaching and what kind of tasks (see Chap. 9) are appropriate for
conceptual teaching (vs. technical teaching).

Challenges involved in teaching computer science soft ideas (such as, a proce-•	
dure) to high school computer science pupils (see Sect. 3.7).

We note that a gap was also reduced from the university mentor’s perspective.
Specifically, it is reasonable to assume that Anna’s case increased the university
mentor’s awareness to the fact that what is taught in the MTCS course is not trans-
ferred automatically to in-school situations and that the issue of technical versus
conceptual teaching should be further emphasized in the MTCS course.

Activity 92  (continued)

Activity 93: Bridging Gaps Related to the Pedagogical Aspect of Computer
Science Education

›  Stage A: Scenario description
The students are presented with the following scenario, in which Jim taught

the topic of Bubble Sort to 10thgrade pupils, managing the lesson very successfully.

(continued)

22113.2  The Practicum in the High School	

Yet, Jim did not encourage any pupil–pupil dialogue and the entire class interaction
was based on teacher–pupil discourse. More specifically, Jim did not ask the pupils,
even once, to answer a question asked by another pupil or to respond to an answer
presented by other pupils. He was the only one who addressed any particular idea
suggested by the pupils.

When this issue was presented to him in the reflection meeting that took place
after the lesson, he could easily reflect on his class management style. As it turns
out, Jim was aware of interaction-related issues. He explained, however, that he
had based the lesson on his own interaction with the pupils because he wanted to
follow his lesson plan. As it turned out, he even did not consider the option of
achieving the lesson objectives by incorporating in the lesson also pupils–pupil
interactions.

›  Stage B: Scenario analysis, class discussion and summary
This class discussion focuses on the characteristics of Jim’s behavior. It is recom-

mended to take the opportunity and to deliver the importance of the practicum as an
arena in which the students can gain and improve also pedagogical skills, and in
particular, increase their awareness to the option of using pupil–pupil interaction to
improve teaching processes.

Specifically, during the discussion and at its summary, it is important to highlight
the following behaviors which are typical to new teachers and to discuss with the
students ways to cope with these tendencies:

The need to follow their lesson plan.•	
Avoidance of pupil–pupil interaction. Several reasons may explain this avoidance:•	

The wish to follow lesson plans.––
Lack of confidence required to manage the complex situation of guiding a full ––
class interaction.
Inability to recognize the added value they can gain by following up on ––
pupils’ assertions.

If appropriate, this discussion can address also feelings associated with teach-
ing in general, and computer science teaching, especially in the first years, in
particular.

We end by mentioning that similar to the scenario described in Activity 92, Jim’s
case can increase the university mentor’s awareness to the fact that what is taught in the
MTCS course is not transferred automatically to in-school situations. Consequently,
when the university mentor guides prospective computer science teachers, he or she
should increase their awareness to the importance of using different interaction modes
(e.g., teacher–pupils, pupil–pupil).

Activity 93  (continued)

222 13  Getting Experience in Computer Science Education

13

13.3 
�A Tutoring Model for Guiding Problems Solving Processes4

In this section we present a tutoring model whose objective is to develop and establish the
pedagogical-disciplinary knowledge of prospective computer science teachers with respect
to guiding learners in problem-solving processes.

The tutoring model focuses on the tutor, who is a prospective computer science teacher
(i.e., a student) enrolled in the MTCS course, and is based on hands-on teaching experience.

Activity 94: Prospective Teacher’s Conception About the First Lesson

This activity focuses on the first lesson a novice teacher teaches.
The students are presented with the following scenario about Gila, who is a prospec-

tive computer science teacher who conducted her practicum in an 11th grade computer
science class. After the first lesson she taught, Gila confessed:

Yesterday, at home, I talked to myself maybe 100 times what I should cover [in the
lesson]. In the morning, it was no longer important for me what I will say. On the bus
[on the way to the school] I started talking to myself again in my head. I realized that
I know every single word and I was afraid that I will use other words. So, I stopped
talking to myself, but still remembered the lesson like a song.

When the university mentor asked her:

What exactly did you say in your head?

Gila answered:

I had no idea what they [the pupils] will say so I couldn’t think about them. Not all
learners face the same difficulties and I was familiar only with the difficulties I faced
[as a learner] so I could concentrate only on them. Therefore, I could think only about
what I will say in the class.

Then, Gila stated:

On the very first lesson someone teaches, it’s not important what he [or she] will say.
The only important issue is that the teacher will not be afraid and just talk about some-
thing,. […] The first lesson a new teacher teaches does not contribute much to his
pupils’ learning; it is more important that s/he himself [the teacher] will learn.

As in Activities 92 and 93, following the scenario presentation, a discussion can take
place in which the following topics, as well as others, are addressed:

1.	 Gila’s last statement: Do the students in the MTCS course agree with it? Disagree?
2.	 The preparation of the first lesson that a novice teacher teaches.
3.	 Novice teachers’ feeling before and after the first lesson they teach.

4 Based on Ragonis and Hazzan (2009A). Copyright 2009 by the Association for the Advancement
of Computing in Education (AACE). [http://www.aace.org] Included here by permission

http://www.aace.org

22313.3  A Tutoring Model for Guiding Problems Solving Processes	

It comprises individual tutoring whereby the students, whose computer science knowledge
is more established, tutor novice computer science students enrolled in an introductory
computer science course. In other words, during the tutoring process, tutor–students, the
prospective computer science teachers learning the MTCS course, who have already
acquired computer science knowledge, support the learning processes of novice computer
science learners. Since the mentoring model is integrated in the MTCS course, it is actually
based on an active application of pedagogical-disciplinary knowledge acquired in the
MTCS course in actual teaching situations.

In what follows we focus on the actual implementation of the tutoring model. Additional
details can be found in Ragonis and Hazzan (2008, 2009A, B).

13.3.1 
�The Implementation of the Tutoring Model

Tutoring takes place in one or two series, each of which includes five sessions with a single
tutee – a student (or high school pupil) who is taking an introductory computer science
course. Focus is placed on problem-solving processes and the activity is accompanied by
guided reflective processes. These teaching situations enable the tutors to cope with learn-
ers’ difficulties in understanding different computer science concepts and in problem-solv-
ing processes. The model, thus, implements principles of constructivist teaching in the
context of computer science education (see Ben-Ari 2001 and Chap. 2) as well as princi-
ples of situated learning (Lave and Wenger 1991; Stein 1998).

Specifically, during the sessions, the tutee raises problems and the tutor guides the tutee
through the problem-solving process. Tutoring is based on the identification of learner dif-
ficulties and the subsequent application of different teaching strategies to overcome such
difficulties. The serial nature of the sessions enables the tutor to receive feedback on the
knowledge the tutee acquired in previous sessions, and thus, in fact, to receive feedback on
his or her own teaching process. Reflective processes are integrated into the process; at the
end of each session, the tutor is required to complete a feedback sheet that guides him or
her to rethink the session and focus on the teaching objectives and on the teaching methods
applied.

The mentoring process is accompanied by a tutoring coordinator, who coordinates the
process and provides the students with ongoing support throughout the entire tutoring
period in the form of a coaching process. The coordination and guidance of the tutoring
model can be considered to be meta-tutoring, since the coordinator guides the tutors in
order is to advance them while learning teaching skills; in other words, the tutor–student
are the coordinator’s tutees. At the same time, the tutor–students tutor their tutees and, here
too, their objective is to promote the tutees’ learning. Similar to the role of the university
mentor in the practicum, it is preferable that the coordinator of the mentoring process
would be the instructor of the MTCS course.

In addition to the coordinator of the mentoring process, the support mechanism of the
tutoring model includes (a) an introductory meeting at the beginning of the MTCS course
in which the tutoring model is explained, and (b) online support forums for discussing
tutoring sessions and posing questions on disciplinary-related topics.

224 13  Getting Experience in Computer Science Education

13 In more detail, the tutor requirements are:

To identify a tutee from among students enrolled in an introductory computer science •	
course.
To hold five tutoring sessions, each lasting about 2 h.•	
To complete a feedback sheet for each tutoring session (see Table •	 13.1) and to submit it
to the tutoring coordinator.
To hold two individual meetings with the tutoring coordinator: one, following the first •	
tutoring session and the second, after completing the series of tutoring sessions.
To present the MTCS course plenum with one episode from the tutoring process.•	
To complete a final summarizing feedback questionnaire.•	
The mentoring model has several essential guidelines for its implementation:

It is important that the five tutoring sessions of each tutor are held with the same tutee. •	
Such a relationship enables continuity of activity, reference to previous sessions, and
development along with the learning material. Continuity enables the tutor to see the
impact of the sessions on the tutee and to examine, for instance, what still has not been
properly understood and which thinking strategies the tutee has adopted.
A 10-h tutoring framework (5 sessions of 2 h each) seems reasonable in terms of the •	
tasks required of a student in the MTCS course. It is recommended holding face-to-
face meetings, which can be combined with electronic communications according
to the tutee’s needs.
Since the prospective computer science teachers will teach, in the future, in high •	
schools, tutoring a high school pupil would seem to have been more appropriate in

Table 13.1  Tutoring session feedback worksheet

Tutoring session feedback worksheet

A. General
1.	 Describe the topic of the session:
2.	 Describe the problem discussed:
3.	 Describe the course of the session:
B. Tutor feedback
1.	 What concept/s do you think constituted a difficulty for the tutee?
2.	 Describe the tutee’s difficulty/misunderstanding/misconception/…
3.	 What teaching tools did you use to help the tutee overcome the difficulty/

misunderstanding/misconception/… ?
4.	 Did you use knowledge that you acquired in the Methods of Teaching Computer Science

course or in another course? Specify what knowledge you used.
5.	 What more would have helped you give the necessary assistance? (additional disciplinary

knowledge, additional teaching knowledge, what knowledge, which tools? …)
6.	 If you could repeat this tutoring session, what would you do differently?
7.	 What is your personal feedback at this stage of the tutoring? (what is the nature of the

communication between you and your tutee? the quality of support? do you feel you
are advancing the tutee student? are you benefiting from the tutoring? are there
difficulties? … etc.)

22513.3  A Tutoring Model for Guiding Problems Solving Processes	

terms of experiencing the true target audience. Nevertheless, the need to find a high
school pupil might constitute a problematic constraint for the students, since their living
and learning environment is the campus, in which both they and tutee are present. If a
student has access to a tutee who is a high school pupil, it can be approved. In some
cases, a group of up to three tutees can be tutored together.
Completing a feedback questionnaire after each tutoring session is essential to the •	
tutors’ learning process. Focused and reflective examination of their actions during the
session enables tutors to evaluate their performance and formulate guidelines for them-
selves for the remaining sessions.

13.3.2 
�The Contribution of the Mentoring Model to Prospective Computer Science Teachers
Teaching Experience

The mentoring model has the potential to foster the skills of the prospective computer
science teachers on three levels:

1.	 Promoting the pedagogical-disciplinary professional skills by means of identifying
learners’ difficulties in real-life situations, assisting and facilitating learners in
overcoming their difficulties, adopting a teacher–researcher perspective, and developing
a relationship between tutors through a process of creating copartnership in a learning
community.

2.	 Promoting the pedagogical professional skills by encouraging the students to reflect
on their teaching, fostering a teaching approach that develops the learners’ thinking,
and developing guidance tools that include the formation of interpersonal relation-
ships with learners combined with the implementation of teaching methods that suit
the learners.

3.	 Promoting the disciplinary knowledge as a by-product of the guidance process. Coping
with others’ difficulties enhances nuances in the understanding of disciplinary concepts
perhaps not encountered by the prospective computer science teachers as learners, in
the spirit of the well-known slogan “Teaching is the best way to learn”.

A research conducted on one specific application of the mentoring model (Ragonis and
Hazzan 2009A) found that during the mentoring process the students:

Became aware of the importance of identifying learners’ difficulties.•	
Emphasized problem-solving processes.•	
Became aware of the need to adapt the teaching process to different learners.•	
Adopted reflective thinking processes and encouraged these processes among their •	
tutees as well (see also Ragonis and Hazzan 2010).
Reinforced their own self-confidence regarding their ability and place in the disciplinary •	
teaching process, and
Realized the contribution of the tutoring model to their training as future computer •	
science teachers.

226 13  Getting Experience in Computer Science Education

13 13.4 
�Practicum Versus Tutoring

Though the purposes of the practicum in schools and the mentoring experience are similar,
that is, to provide the students with an opportunity to gain some teaching experience before
becoming high school computer science teachers, these two teaching experiences are
different. We mention three differences between the two teaching experiences.

First, the responsibility of the teaching process is different in the two cases. While in the
mentoring process, the prospective computer science teachers are the responsible figures
on the entire teaching process, the practicum in the school is limited to a small number of
lessons taught by the students, and in most cases they are treated as guests, even in cases
in which more profound models of co-teaching (Eick et al. 2004) or of professional devel-
opment school (Darling-Hammond 2001; Furlong 2000; Teitel 2003) take place. In these
frameworks, the main responsibility of teaching the discipline does not lie with the
prospective teacher, but with the regular class teacher.

Second, when teaching a class, the prospective teachers usually have concerns about
the degree of cooperation they will receive from the learners as well as other problems
involving class management and discipline. These concerns do not usually enable the stu-
dents to experience two essential pedagogical concepts: one, follow-up on each learner’s
learning processes of the knowledge domain and, two, the impact of their teaching methods
on each learner. Needless to say that sensitive prospective teachers may pay attention to
each learner’s progress, and further, effective guidance of the in-school mentor and the
university mentor should address pupils’ learning processes and problem-solving pro-
cesses. These learning processes, however, are more transparent in a one-on-one mentor-
ing process.

Finally, one clear difference between the practicum and the mentoring model is the
easiness of their facilitation. That is, the mentoring model can be facilitated in the univer-
sity, without the need to coordinate it with the high school administration and with a high
school teacher. Therefore, when practicum in the high school is not an available frame-
work, it is recommended to let the students enrolled in the MTCS course gain some teach-
ing experience in the framework of a mentoring process.

References

Ben-Ari M (2001) Constructivism in Computer Science education. J. of Comput. in Mat. & Sci.
Teach. 20(1): 45–74

Darling-Hammond L (2001) When conceptions collide: constructing a community of inquiry for
teacher education in British Columbia. J. Educ. for Teach. 27(1): 7–21

Eick C J, Ware F N, Jones M T (2004) Coteaching in a secondary science methods course: learning
through a coteaching model that supports early teacher practice. J. of Sci. Teacher Educ. 15(3):
197–209

Furlong J (2000) School mentors and university tutors: Lessons from the English experiment. J. of
Theory into Pract. 39(1): 12–19

227References	

Hazzan O, Lapidot T (2004) The practicum in computer science education: Bridging gaps between
theoretical knowledge and actual performance. ACM SIGCSE Bull. 35(4): 29–34.

Lapidot T (2005) Computer Science teachers’ learning during their everyday work. Unpublished
Ph.D. Thesis, The Department of Education in Technology and Science, Technion - Israel
Institute of Technology

Lave J, Wenger E (1991) Situated learning: Legitimate peripheral participation. Cambridge.
Cambridge University Press

Putnam R T, Borko H (2000) What do new views of knowledge and thinking have to say about
research on teacher learning? Educ. Res. 29(1): 4–15

Ragonis N, Hazzan O (2008) Tutoring model for promoting teaching skills of Computer Science
prospective teachers. 13th Ann. Conf. on Innov. and Technol. in Comput. Sci. Educ. – ITiCSE,
Madrid, Spain: 276–280

Ragonis N, Hazzan O (2009A) Integrating a tutoring model into the training of prospective computer
science teachers, J. of Comput. in Math. and Sci. Teach. (JCMST) 28(3): 309–339

Ragonis N, Hazzan O (2009B) A tutoring model for promoting the pedagogical-disciplinary skills
of prospective teachers, Mentor. & Tutoring: Partnersh. in Learn. 17(1): 67–82

Ragonis N, Hazzan O (2010) A reflective practitioner’s perspective on computer science teacher
preparation. Proc. 4th ISSEP, Zürich, Switzerland: 90–106

Schön D A (1983) The reflective practitioner. BasicBooks, New York, NY
Schön D A (1987) Educating the reflective practitioner: Towards a new design for teaching and

learning in the profession. Jossey-Bass, San Francisco
Stein D (1998) Situated learning in adult education. ERIC Digest #195. http://ericacve.org/docs/

situated195.htm. Accessed 30 January 2007
Stephenson C, Gal-Ezer J, Haberman B, Verno A (2005) The new educational imperative:

Improving high school computer science education, Final report of the CSTA, Curriculum
Improvement Task Force, http://csta.acm.org/Communications/sub/DocsPresentationFiles/
White_Paper07_06.pdf. Accessed 14 July 2010

Teitel L (2003) The professional development schools handbook: Starting, sustaining and partner-
ships that improve student learning. Corwin Press, Inc., Thousand Oaks, CA

Tucker A, Deek F, Jones J, McCowan D, Stephenson C, Verno A (2004) A model curriculum for
K-12 Computer Science: Report of the ACM K-12 Education Task Force Computer Science
Curriculum Committee, Assoc. for Comput. Mach., New-York, NY

Wilson S M, Berne J (1999) Teacher learning and the acquisition of professional knowledge. Rev.
of Res. in Educ. 24: 173–209

http://ericacve.org/docs/situated195.htm
http://ericacve.org/docs/situated195.htm
http://csta.acm.org/Communications/sub/DocsPresentationFiles/White_Paper07_06.pdf
http://csta.acm.org/Communications/sub/DocsPresentationFiles/White_Paper07_06.pdf

229O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_14, © Springer-Verlag London Limited 2011

Design of a Methods of Teaching
Computer Science Course 14

1 Based on Lapidot and Hazzan (2003).

Abstract  This chapter describes how to design a Methods of Teaching Computer Science
(MTCS) course within an academic computer science teacher preparation program, and
suggests two possible syllabi for such a course. It is emphasized, however, that differ-
ent approaches and frameworks can be applied when one designs the course. In the first
section of this chapter, we propose four possible perspectives on the MTCS course: the
NCATE standards, merging computer science with pedagogy, Shulman’s model of teach-
ers’ knowledge, and research findings. The second section of the chapter describes two
MTCS course syllabi. We mention that though the focus in this section is placed on the
MTCS course, the course models, as well as parts of them, can be used also for other
purposes related to computer science teaching, such as curriculum design and professional
development of computer science teachers.

14.1 
�Perspectives on the MTCS Course1

As could be observed so far in this Guide, the education and training of prospective com-
puter science teachers, in general, and the MTCS course, in particular, should address a
broad spectrum of topics. Accordingly, when designing the MTCS course, one can use
different approaches for course organization.

In this section, we propose four possible perspectives on the MTCS course that can inspire
the course design according to the instructor’s preferences: (1) the NCATE standards,
(2) merging computer science with pedagogy, (3) Shulman’s model of teachers’ knowledge,
and (4) research findings. In the following description of the four perspectives, the readers
can observe that many of the presented topics have already been addressed in this Guide.

1.	 The NCATE standards (Tucker et al. 2003): Among these 13 standards, teachers are
expected to learn how to plan lessons/modules related to programming process and
concepts, to be able to develop assessment strategies appropriate to lesson goals
(Standard 3), and address student population characteristics (Standard 4). From this
perspective, the MTCS course can be organized by addressing the different standards.

230 14  Design of a Methods of Teaching Computer Science Course

14 2.	 Merging computer science concepts with pedagogy: This perspective on the MTCS
course is based on the special amalgam of the two disciplines: computer science and
pedagogy. Although pedagogical principles and teaching methods are learnt in other
general pedagogical courses of teacher preparation programs, the MTCS course should
focus on their implications and adoption into the context of computer science education.
Accordingly, this perspective highlights topics such as the introduction and summary of
a specific topic, learning in groups, learning by inquiry, and planning constructivist
activities, all in the context of computer science education. It also addresses the unique-
ness of the following topics in relation to computer science topics: creative and noncon-
ventional use of the computer laboratory; analysis of teaching difficulties and possible
obstacles; adjustment of learning materials for learners with different needs; definitions
and their role in learning processes; and the use of metaphors, multimedia, and games in
computer science education.

3.	 Shulman’s model of teachers’ knowledge: This perspective on the MTCS course is
inspired by Shulman’s model of teacher knowledge base (Shulman 1987), which con-
sists of seven categories: content knowledge, general pedagogical knowledge, curricu-
lum knowledge, pedagogical content knowledge, knowledge of learners and their
characteristics, knowledge of educational context, and knowledge of educational tar-
gets. Though it is relevant to include all these categories in the MTCS course, following
Shulman’s recommendation (1987, p. 20), we propose that the pedagogical content
knowledge (PCK) category is the most important one. From this perspective, we men-
tion a few core concepts that may be included in the MTCS course with respect to their
PCK: programming and algorithm design, data representation and information organi-
zation, debugging, and soft ideas. Instructors of the MTCS course should address such
topics in the course, with full attention to a variety of aspects, such as: analogies, illus-
trations, examples, explanations, types of questions, and learners’ difficulties.

4.	 Research findings: This perspective is based on research findings. The extensive
research in computer science education conducted especially in the last two decades
can highlight known misconceptions or difficulties and recommended teaching strate-
gies. Variables is an example for such a topic. Variables play an essential role in most
programming languages and, as indicated by computer science education researchers,
learners often face difficulties in understanding the various aspects of the subject.

14.2 
�Suggestions for MTCS Course Syllabi2

This section describes two syllabi for the MTCS course and partially illustrates an imple-
mentation of the above perspectives on the MTCS course.

2 Based on Ragonis and Hazzan (2008) Disciplinary-pedagogical teacher preparation for pre-
service Computer Science teachers: Rationale and implementation, Informatics in Secondary
Schools – Evolution and Perspective – ISSEP 2008, Lecture Notes in Computer Science, Vol.
5090/2008: 253–264. Included with permission here.

23114.2  Suggestions for MTCS Course Syllabi	

We reemphasize that the proposed course structures and lessons are only two options
that the instructor of the MTCS course can apply and that, in fact, the course can be
designed in many different ways. In practice, one should integrate activities into the MTCS
course to meet the needs of the prospective teachers and the local computer science cur-
riculum. For this purpose, it is recommended to use a table (such as Table 1.1) in the design
process of the course.

Thought the focus in this section is placed on the MTCS course, the course models,
as well as parts of them, can also be used for other purposes by all those engaged in
computer science teaching: curriculum developers, lecturers in teacher training pro-
grams, computer science instructors, and lecturers involved in the professional develop-
ment of computer science teachers.

14.2.1 
�Course Structure

The course presented here consists of 112 h of classes and training, divided into two
semesters. Each week there are two 2-h-long lessons. Each of the two semesters is devoted
to different high school curriculum parts. Specifically, in the illustrative course, the first
semester focuses on the teaching of foundations of computer science, whereas the second
semester focuses on the teaching of more advanced topics, such as abstract data types and
computational models. The course lessons, however, can be adapted for the teaching of
any high school computer science curriculum.

14.2.2 
�Course Syllabus

In what follows, we present in detail two syllabi of the course taught at the first semester
and give only a brief description of the course taught at the second semester. We note that
this Guide includes more contents needed for one specific MTCS course, and instructors
of the MTCS course who design the course should take this fact into consideration. Activity
95 suggests several options how to start the first lesson of the MTCS.

�Activity 95: First Lesson of the MTCS Course

This activity outlines several options on how to start the first lesson of the MTCS.

Ask the students to suggest the main topics that should be included in a high school ––
computer science curriculum.
If a state curriculum exists, let the students become familiar with it.––
Ask the students what a computer science teacher should know.––

(continued)

232 14  Design of a Methods of Teaching Computer Science Course

14

14.2.2.1 
�First Semester – Fundamentals of Computer Science – Option 1

Lesson 1: Introduction to the high school computer science curriculum•	
Lesson 2: What is computer science?•	
Lesson 3: Research in science education•	
Lesson 4: Reflection and its application as a teaching and learning tool•	
Lesson 5: Programming paradigms•	
Lesson 6: The fundamentals of teaching object-oriented programming•	
Lesson 7: Demonstration of different Java development environments•	
Lesson 8: Teaching planning of a computer science topic – The case of variables•	
Lesson 9: Types of questions•	
Lesson 10: Teaching conditional expressions and statements•	
Lesson 11: Integrating the Internet into computer science teaching•	
Lesson 12: Teaching loops statements•	
Lesson 13: Participating in the National Conference for Computer Science Teachers•	
Lesson 14: Integrating the computer lab into the teaching process•	
Lesson 15: Development and analysis of algorithms•	
Lesson 16: Issues of teaching memory organization•	
Lesson 17: The object-first approach for teaching introduction to computer science•	
Lesson 18: Diversity in computer science education•	
Lesson 19: The history of computer science•	
Lesson 20: How to write an exam?•	
Lesson 21–22: How to evaluate an exam?•	
Lessons 23–24: Guiding software projects development•	
Lessons 25–28: The final semester work and peer teaching•	

–– The final semester work: See Activity 77 in Chap. 11.
–– Peer teaching: The last semester lessons are dedicated to individual, 30-min pre-

sentations of the final semester work given by each of the students. Presentations
include four parts:

Present the question: In what sense does the teaching of computer science differ ––
from the teaching of other disciplines?
Ask the students to share one learning episode they experienced in their learning of ––
computer science.
Ask the students to design the first lesson in their future high school computer ––
science class.
Delve into one of the topics presented in this Guide. For example, facilitate the ––
students with the activity on the lab-first approach presented in Sect. 8.3. Such an
experience enables the students to experience the active learning model and taste,
in the first lesson of the course, different topics that will be elaborated later in the
course.

Activity 95  (continued)

23314.2  Suggestions for MTCS Course Syllabi	

A summary of the research paper dealing with the study unit.––
Introduction of a short excerpt from the planned lesson.––
Teaching the excerpt to the classmates.––
Description of the considerations involved in the development of this segment ––
of the lesson.

14.2.2.2 
�First Semester – Fundamentals of Computer Science – Option 2

Lesson 1–2: Introduction to computer science education: Karel the robot, the lab first •	
approach, visualization- and animation-based IDEs
Lesson 3: Introduction to the high school computer science curriculum•	
Lesson 4: Variables – metaphors, preparing an exhibition poster, concept map construction•	
Lesson 5: Variables – how to start the teaching of variables; planning the teaching of •	
variables
Lesson 6: Variables – prepare a lab on variables•	
Lesson 7: Variables – Computer science education research on variables•	
Lesson 8: Learners’ alternative conceptions•	
Lesson 9–10: Types of questions and test construction•	
Lesson 11: Control structures – Pedagogical examination of a classification activity•	
Lesson 12: Control structures – Pedagogical examination of games•	
Lesson 13: Pedagogical examination of rich tasks•	
Lesson 14–15: Mid-semester summary: Overview of teaching methods and class •	
organization methods
Lesson 16–17: Song debugging, using music in computer science teaching, teaching •	
soft ideas, reflection and its application as a teaching and learning tool
Lesson 18: Teaching arrays•	
Lesson 19: Development and analysis of algorithms, algorithmic patterns•	
Lesson 20: Teaching the object-oriented programming paradigm•	
Lesson 21–22: Programming paradigms•	
Lesson 23: Guiding software projects development•	
Lesson 24: Pedagogical examination of the CS-Unplugged approach•	
Lesson 25: Integrating the Internet into computer science teaching•	
Lesson 26–27: Getting experience in computer science education•	
Lesson 28: The nature of computer science•	

14.2.2.3 
�Second Semester – Teaching Advanced Topics in Computer Science: Abstract Data types
and Computational models

The second semester deals with the teaching of advanced computer science contents.
Lessons held during this semester are related to the following subjects:

The teaching of abstract data types (list, stack, queue, and binary tree);––

234 14  Design of a Methods of Teaching Computer Science Course

14 The teaching of computational models (deterministic finite automata, push-down ––
automata, Turing machine, languages);
The teaching of advanced disciplinary concepts such as recursion, complexity, and ––
abstraction;
Integration of social aspects, e.g., ethics, in the teaching process.––

References

Lapidot T, Hazzan O (2003) Methods of Teaching Computer Science course for prospective teachers.
Inroads the SIGCSE Bull 35(4): 29–34

Ragonis N, Hazzan O (2008) Disciplinary-pedagogical teacher preparation for pre-service
Computer Science teachers: rational and implementation. Proc of ISSEP, Lecturer Notes in
Computer Science, Vol. 5090/2008: 253–264

Shulman L S (1987) Knowledge and teaching: Foundations of the new reform. Harvard Educ. Rev.
57(1): 1–22

Tucker A, Deek F, Jones J, McCowan D, Stephenson C, Verno A (2003) A model curriculum for
K-12 Computer Science. Final Report of the ACM K-12 Activity Force Curriculum Committee.
http://csta.acm.org/Curriculum/sub/K-12ModelCurr2ndEd.pdf. Accessed 20 February 2007

http://csta.acm.org/Curriculum/sub/K-12ModelCurr2ndEd.pdf

235O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_15, © Springer-Verlag London Limited 2011

High School Computer Science
Teacher Preparation Programs 15

Abstract  This chapter puts the MTCS course in the wider context of computer science
teacher preparation programs. It first describes a model for high school computer science
education that one of its components is computer science teacher preparation programs.
The model consists of five key elements – a well-defined curriculum, a requirement of
a mandatory formal computer science teaching license, teacher preparation programs,
national center for computer science teachers, and research in computer science educa-
tion – as well as interconnections between these elements. Then, the focus is placed on the
teacher preparation programs component of the model, describing a workshop targeted at
computer scientists and computer science curriculum developers who wish to launch com-
puter science teacher preparation programs at their universities but lack knowledge about
the actual construction of such programs.

15.1 
�A Model for High School Computer Science Education1

This section presents a model for high school computer science education. It is based on
an analysis of the structure of the Israeli system of high school computer science education.
The model consists of five key elements as well as interconnections between these
elements.

15.1.1 
�Background

In the Final Report of the ACM K–12 Task Force Curriculum Committee (Tucker et al.
2003), the Israeli high school computer science curriculum has been mentioned to illus-
trate the fact that “the development of K–12 computer science is making more headway
internationally than in the United States.” The report continues: “In Israel, a secondary

1 Based on Hazzan et al. (2008) © 2008 ACM, Inc. Included here by permission.

236 15  High School Computer Science Teacher Preparation Programs

15 school computer science curriculum (Gal-Ezer and Harel 1999) was approved by the
Ministry of Higher Education and implemented in 1998. It blends conceptual and applied
topics, and is offered in grades 10, 11, and 12.” (p. 6). In 2010, the curriculum has been
updated in light of the new developments in the field of computer science. The curriculum
comes in two versions: a basic version and an extended one.

It is proposed, however, that the Israeli high school computer science curriculum is not
the only contributor to the Israeli system of computer science education in the high school.
Based on an analysis of this system, a model for high school computer science education
is sketched (Hazzan et al. 2008). Here, we describe an updated version of this model.

The model consists of interrelationships among five key components:

A well-defined curriculum (including written course text books and teaching guides).•	
A requirement of a mandatory formal computer science teaching license.•	
Teacher preparation programs (including at least a Bachelors degree in computer sci-•	
ence and a computer science teaching certificate study program).
National center for computer science teachers.•	
Research in computer science education.•	
It is proposed that each of these components, as well as the relationships among them,

establishes the solid infrastructure of the Israeli high school computer science program,
strengthens it, and makes it, as is indicated by the ACM K–12 Task Force Curriculum
Committee report, one of the leading computer science high school curricula in the
world.

The next section presents the details of the model. The description is partially based on
Hazzan et al. (2008).

15.1.2 
�The Model Components and Their Amalgamation

Figure 15.1 presents the model which reflects the structure of the Israeli system of high
school computer science education.

In what follows we first elaborate on the five components of the model. Then connec-
tions among these components are described.

National high school computer science curriculum: Here are several of the key principles
that guided the curriculum development (Gal-Ezer et al. 1995):

Computer science is a full-fledged scientific subject. It should be taught in high school •	
on par with other scientific subjects.
The program concentrates on the key concepts and foundations of the field.•	
Each of the two versions of the curriculum has mandatory units and electives.•	
Conceptual and experimental issues are interwoven throughout the curriculum.•	
A well-equipped and well-maintained computer laboratory is mandatory.•	
New course text books and teaching guides must be written for all parts of the •	
program.

23715.1  A Model for High School Computer Science Education	

Teachers certified to teach the subject must have adequate formal computer science •	
education. An undergraduate degree in computer science is a mandatory requirement,
as is a formal teachers’ certificate program of studies.

In addition, the national curriculum describes the rationale of high school computer
science education and lays out the topics taught in each unit of the program. Text books
and teaching guides are provided for each unit. The teaching guides specify pedagogical
aspects of the given topics, such as guidelines for designers of teaching and learning mate-
rial, recommended lesson plans, solutions for selected exercises presented in the pupils’
text books, additional problems to offer to the pupils, plausible learners’ difficulties, and
additional clarifications related to the learning material.

Mandatory computer science teachers’ license: In Israel, in order to teach computer sci-
ence in high school, a teacher should have both a Bachelors degree in computer science
and a teaching license in computer science, or, alternatively, a B.Ed. in computer science
education. Only then will he/she be authorized by the Ministry of Education to teach

CS curriculum and
syllabus

National Center
for CS Teachers

Research in CS
education

CS teacher
preparation
programs

Mandatory CS
teaching license

Fig. 15.1  A model for high school computer science education

238 15  High School Computer Science Teacher Preparation Programs

15 computer science in high schools.2 The computer science teaching diploma can be achieved
in two different frameworks:

(a)	 Programs such as the ones described in the “Teacher preparation programs and in-
service training” component of the proposed model (see below).

(b)	 Specific training programs, offered to computer science graduates without a teaching
license and to teachers of another scientific topic who wish to switch to computer sci-
ence education. These programs are usually offered after school hours, or in school
vacations.

Teacher preparation programs and in-service training: In most cases, teacher preparation
programs are taught in universities or colleges. The prospective computer science teachers
study for a Bachelors degree in computer science while at the same time take teacher
preparation program courses (which are equivalent to one academic year) during the 4 years
of study. The contents of these programs correlate with the statement that “beyond the
mastery of core computer science material, good computer science educators should also
be familiar with a significant body of material that will expand their perspectives on the
field, and consequently, enhance the quality of their teaching.” (Gal-Ezer and Harel
1998).

A typical teacher preparation program includes general pedagogical courses (such as,
psychology and educational philosophy), basic teaching skills, and specific courses about
computer science teaching.

The two main courses which deal specifically with the teaching of computer science are
the Methods of Teaching Computer Science (MTCS) in the High School Course (that this
Guide is dedicated for its teaching) and practicum in high school computer science classes
(see Chap. 13).

We mention that the computer science teacher preparation programs serve also in-service
computer science teachers by offering them ongoing training about the curriculum, teach-
ing methods and developments in the field of computer science. Indeed, it is reasonable to
assume that it is easier to organize and facilitate trainings for in-service computer science
teachers within the existing infrastructure of the computer science teacher preparation
programs.

National center for computer science teachers3: In 2000, the Israeli Ministry of Education
established a National Center for Computer Science Teachers. This center is considered as

2 In fact, a Masters degree is required for teaching any subject in the Israeli high school system.
It is, however, difficult to meet these requirements and in most cases high school teachers only
have a Bachelors degree. Unfortunately, and as it happens in other countries, some teachers, mainly
those who joined the system many years ago, do not have even a Bachelors degree in computer
science. They usually have a Bachelors degree in another scientific subject and switched to teach-
ing of computer science for different, administrative as well as personal, reasons.
3 Based on Israeli National Center for Computer Science Teachers (2002). © 2002 ACM, Inc.
Included here by permission.

23915.1  A Model for High School Computer Science Education	

the professional home for all Israeli computer science teachers. It serves as a bridge
between the computer science teachers and the academic disciplinary knowledge and
research. These bridges are constructed via conferences, workshops, seminars and courses,
a website,4 and a computer science education journal.

The center activities are organized around five major themes:

Helping create a professional community of computer science teachers.•	
Fostering the professional leadership of computer science teachers.•	
Supporting, assisting, and consulting academic computer science education groups and •	
computer science teacher educators and researchers.
Collecting and distributing computer science education knowledge and experience.•	
Researching and evaluating computer science teachers’ needs and the center’s activities.•	
The importance of this center stems from several reasons, among them we mention two.
First, many of the computer science teachers in Israel are veteran teachers with many

years of teaching experience (and as mentioned, not all of them have formal academic
computer science education). Therefore, they should be offered with a framework that
enables them to be updated in an on-going manner with respect to the frequent curricula
development and changes, which especially characterize the discipline of computer sci-
ence. In addition, we should remember that computer science teachers usually work in
schools alone or in small teams and therefore, the teacher center helps them be connected
to the larger community of computer science teachers.

Second, the national center for computer science teacher promotes teachers’ involve-
ment in and influence on curricular developments. For example, a group of leading com-
puter science in-service teachers (a) takes an active role in committees which determine
updates in the high school computer science curriculum, and (b) helps assimilate new cur-
ricula changes on the national level.

Research in computer science education: Intensive research in computer science education
is carried out by Israeli researchers who are usually involved in the development of the text
books and the teaching guides of the nationwide curriculum. In many cases, this research
is carried out during the development process of the material. The purpose of this research
is to guide the development process of the text books so that the final product fits high
school computer science pupils’ level and it will be possible to teach it during the given
period of time.

A typical research project that accompanies the development of new material usually
involves both the development team and a group of teachers who agree to be the first to try
the new material and to participate in research activities conducted with respect to that
material. The research activities mainly include reflective talks about the teaching process,
discussions about pupils’ conception of the learned topics, interviews with pupils, and
observations within the pioneer classes.

Such a research process is iterative; at each step, lessons are learnt and are imple-
mented in the next edition of the developed material. Also, during the first stages of the

4 See http://cse.proj.ac.il

http://cse.proj.ac.il

240 15  High School Computer Science Teacher Preparation Programs

15 development process, the research focuses on small number of teachers and classes; as the
development of the material proceeds, additional teachers join the group of teachers who
teach the new developed material. Along such a cyclic process, the teacher and pupil popu-
lations who use the developed material gradually increase, and the text books and teaching
guides are shaped and converged toward its final form.

As a bonus, this process boosts the computer science education research in Israel
beyond just research directly connected to the evaluation of the course text books and
teaching guides. This additional research addresses, for example, undergraduate students’
understanding of computer science concepts (cf. Aharoni 2000; Armoni et al. 2006;
Dubinsky and Hazzan 2005). It is plausible to assume that the infrastructure needed for
this additional research (expertise in education research as well as in computer science
itself) has been established and shaped by the need to evaluate the high school material
during its development process.

15.1.2.1 
�Connections Among the Model Components

Connections exist among the five elements of the proposed model for high school com-
puter science education. We outline most of them.

Mandatory computer science teaching license & Teacher preparation programs: Clearly,
a mandatory computer science teacher license requires teacher preparation programs to be
established to grant these certificates; on the other hand, when teacher preparation pro-
grams exist, it is just natural to establish and demand a computer science teaching license
to exploit the experience and knowledge shared by these programs.

Teacher preparation programs & The national center for computer science teachers: The
national center for computer science teachers serves both in-service and prospective com-
puter science teachers. For both in-service and prospective computer science teachers, the
center’s website and the journal it publishes twice a year are rich resources of pedagogical
material. Specifically, for in-service teachers, the center provides a life long learning
environment that supports their professional development.

Teacher preparation programs & Research in computer science education: Teacher prepa-
ration programs should include some research elements, such as reading assignments of
papers which deal with computer science education research, and mini-research projects,
carried out by the students themselves. Thus, instructors of computer science teacher prep-
aration programs should be familiar with research in computer science education, and
hence the community of practitioners who are interested in computer science education
research enlarges. On the other hand, when the community of computer science education
researchers is well established, it naturally wishes to deliver its achievements to target
audience. One appropriate framework for this purpose is teacher preparation programs.
In addition, research work are carried out on topics related to teacher preparation programs
and to in-service teachers training (e.g., Brandes et al. 2010), which further tighten the
interconnections between these two components of the model.

24115.1  A Model for High School Computer Science Education	

Research in computer science education & High school computer science curriculum and
syllabus: The existence of a computer science education research community, with its
accumulative experience, eases and guides the development process of the text books and
the teaching guides that accompany the curriculum. Further, from an organizational nation-
wide perspective, the mere existence of a research infrastructure enables decision makers
to promote the development of the curriculum and to allocate the needed resources for this
purpose. This, naturally, boosts the curriculum development. On the other hand, as
described above, it is critical to accompany the development of a high school computer
science curriculum and syllabus with research that assesses the implementation of the cur-
riculum and evaluates the developed material. A few examples of such research works are
presented in Armoni and Gal-Ezer (2003), Gal-Ezer and Zeldes (2000), Gal-Ezer and Zur
(2004) and Levy (2000).

High school computer science curriculum and syllabus & The national center for com-
puter science teachers: In addition to the center’s activities which foster teachers’ active
engagement in introducing curricular changes, the center also supports the development
and publication of new learning materials (such as repositories of laboratory activities
and questions of different kinds). Further, the center promotes direct dialogue between
computer science teachers and designer of the curriculum and policy makers in the
Ministry of Education. It is reasonable to assume that such a dialogue contributes not only
to the computer science teachers as individuals but also to the curriculum assimilation.

The national center for computer science teachers & Research in computer science education:
Some of the center’s activities serve as a research field for computer science education
researchers (see, for example, Brandes et al. 2010; Haberman et al. 2003; Kolikant Ben-
David and Pollack 2004; Lapidot and Aharoni 2008; Ragonis and Haberman 2003). The
center also introduces the computer science teachers with themes in computer science edu-
cation research. Specifically, several literature reviews were prepared for teachers on topics
such as novice difficulties, recursion learning and teaching, and pedagogical patterns.

15.1.3 
�Questions About the Model

The above model is based on the Israeli experience with respect to the establishment of a
nationwide high school computer science curriculum. Naturally, it will be interesting to
ascertain the model’s applicability to other places on the globe. In this spirit, the following
questions are presented:

What can be learned from the Israeli experience? What components of the model can •	
be applied to other countries? Is the model relevant at all for other countries?
The model consists of five components which are interrelated to each other. It is not •	
always clear, however, which component is the chicken and which is the egg. If a coun-
try wishes to apply the Israeli model, how should it proceed?

242 15  High School Computer Science Teacher Preparation Programs

15 One possible answer for the second question is that the model implementation can be
initiated by the establishment of computer science teacher preparation programs. The next
section describes a way to foster the creation of such programs.

15.2 
�Construction of a Computer Science Teacher Preparation
Program – the ECSTPP Workshop5

In this section we present the rationale, structure, and contents of a proposed workshop on
the Establishment of a Computer Science Teacher Preparation Program (ECSTPP), tar-
geted at computer scientists and computer science curriculum developers who wish to
launch computer science teacher preparation programs at their universities but lack knowl-
edge about the actual construction of such programs.

15.2.1 
�Rationale

The rationale of the ECSTPP workshop is based on the Israeli model for high school com-
puter science education, presented in Sect. 15.1 Based on the central position of computer
science teacher preparation programs in this model, it is suggested that countries/states
that wish to adopt the Israeli model may consider starting its application with the facilita-
tion of the proposed ECSTPP workshop, which eventually will foster the establishment of
computer science teacher preparation programs.

15.2.2 
�Population

The ECSTPP workshop is designed for the following groups of computer science
practitioners:

Computer scientists who wish to establish a computer science teacher preparation pro-•	
gram in their universities, but are not familiar with the practice of teaching computer
science in the high school and with the research in computer science education.
Designers of high school computer science curricula who lack the background in •	
computer science education research. It is important that these practitioners partici-
pate in the workshop since any university that wishes to establish a computer science
teacher preparation program is likely to recruit them to teach some of the courses in
the program.

5 Based on Hazzan et al. (2010).

24315.2  Construction of a Computer Science Teacher Preparation Program– the ECSTPP Workshop	

15.2.3 
�Objectives

The workshop’s objectives are derived from the specific populations for which it is
designed. Specifically, the workshop participants

Become familiar with the typical structure of computer science teacher preparation •	
programs.
Become familiar with the research in computer science education.•	
Become reflective practitioners as educators of high school computer science teachers.•	

15.2.4 
�Structure and Contents

The proposed ECSTPP workshop comprises three consecutive stages: the Common Ground
stage, a 3-day seminar, and the Action stage. The Common Ground stage and the Action
stage take place at the participants’ institutions before and after the seminar, respectively.

15.2.4.1 
�Stage 1: Common Ground

The Common Ground stage has two main purposes: first, to prepare the ECSTPP work-
shop participants for the seminar by increasing their awareness to meaningful themes in
high school computer science education, from both the pupil’s and the teacher’s perspec-
tives; second, to create a common knowledge basis for the workshop participants on high
school computer science education, which will serve as the basis for the seminar.

To achieve these purposes, the ECSTPP workshop participants are asked to complete
the following assignments prior to their arrival at the seminar:

Become familiar with their national high school computer science curriculum (if such •	
exists) or with another high school computer science curriculum on which they intend
to base their computer science teacher preparation program.
Spend at least 6 h in high school computer science classes (specifically, at least 3 con-•	
secutive hours in two classes) and summarize their observations and insights.
Write a reflective essay about their own acquisition of computer science concepts dur-•	
ing their entire professional development.

15.2.4.2 
�Stage 2: Three-Day Seminar

The seminar consists of twelve 1.5-h sessions. It is suggested to schedule it for three con-
secutive days (e.g., first day – 4 sessions; second day – 5 sessions; third day – 3 sessions).
Other scheduling options are also possible of course.

244 15  High School Computer Science Teacher Preparation Programs

15 The seminar contents are organized in four layers:

•	 Layer 1 – Introduction: This layer addresses the rationale and structure of computer
science teacher preparation programs.

•	 Layer 2 – The Methods of Teaching Computer Science (MTCS) course: The MTCS
course is one of the central components of any computer science teacher preparation
program. As has been explained several times in this Guide, in the MTCS course, the
prospective computer science teachers become familiar with the pedagogical context
knowledge (PCK; Shulman 1986) of computer science teaching.

•	 Layer 3 – High school practicum: The practicum is also a vital component of any com-
puter science teacher preparation program (see Chap. 13). During the practicum, pro-
spective computer science teachers get their first experience in high school teaching.

•	 Layer 4 – Computer science education (CSE) research: This layer includes an overview
of the research in computer science education, discussions of specific computer science
education research works, familiarity with common computer science education research
methods, and a preliminary experience in computer science education research.

Table 15.1 presents the topic of each session, as well as the layers to which it belongs. As
can be seen, the layers are intertwined throughout the seminar in order to highlight ther inter-
relations. For additional details about the contents of each session see Hazzan et al. (2010).

15.2.4.3 
�Stage 3: Action

The last session of the seminar (Session #12) is dedicated to the launching of the Action
stage which begins right after the seminar ends. The purpose of this stage is to support and

Table 15.1  The schedule of the ECSTPP seminar

Topic Layer

1 Gathering, introduction and creating a community of learners Introduction
2 Structure of a computer science teacher preparation

program
Introduction

3 The MTCS course – Part 1 MTCS course
4 Introduction to research in computer science education CSE Research
5 The MTCS course – Part 2 MTCS course
6 The MTCS course – Part 3 MTCS course
7 Research methods in computer science education CSE Research
8 The practicum – Part 1 Practicum
9 A reflective practitioner’s perspective of computer science

education
CSE Research

10 The practicum – Part 2 Practicum
11 Action research CSE Research
12 Launching the Action stage of the workshop Integration of the four layers

245References	

guide the participants of the ECSTPP workshop in the actual establishment of computer
science teacher preparation programs in their respective universities.

For this purpose, the participants of the ECSTPP workshop are offered the following
two activities:

Conduct two kinds of research:•	
Mini-research in high school computer science classes in order to improve their ––
understanding of high school computer science teaching.
Action research (Lewin –– 1948) about their own process of constructing a computer
science teacher preparation program.

Participate in an online forum with other ECSTPP workshop participants to maintain •	
the spirit of the learning community created during the seminar itself. The forum
enables participants to share their experience, to learn from each other’s experience,
and to discuss problems they encounter during the establishment of the computer
science teacher preparation program in their own universities.

15.2.5 
�ECSTPP Workshop – Summary

The ECSTPP Workshop focuses on the construction of computer science teacher prepara-
tion programs. The purpose of the workshop is to enable its participants to return to their
respective institutions with the basic knowledge needed to start this construction process.
It is suggested that such a workshop has the potential to help initiate the construction of
computer science teacher preparation programs that, in turn, according to the Israeli model,
may foster the creation of the needed infrastructure for high school computer science edu-
cation on a national level.

References

Aharoni D (2000) Cogito, ergo sum! Cognitive processes of students dealing with data structures.
In: Haller S (ed) Proc. of the 31st SIGCSE Tech. Symp. on Comput. Sci. Educ.: 26–30

Armoni M, Gal-Ezer J (2003) Non-determinism in computer science high-school curricula.
FIE2003, http://fie.engrng.pitt.edu/fie2003/index.htm.

Armoni M, Gal-Ezer J, Hazzan O (2006) Reductive thinking in computer science. Comput. Sci.
Educ. 16(4): 281–301

Brandes O, Vilner T, Zur E (2010) Software design course for leading CS in-service teachers. Proc.
of ISSEP, Lect. Notes in Comput. Sci., Vol. 5941, 49–60

Dubinsky Y, Hazzan O (2005) A framework for teaching software development methods. Comput.
Sci. Educ. 15(4): 275–296

Gal-Ezer J, Beeri C, Harel D, Yehudai A (1995) A high-school program in Computer Science.
Comput. 28(10): pp. 73–80

http://fie.engrng.pitt.edu/fie2003/index.htm

246 15  High School Computer Science Teacher Preparation Programs

15 Gal-Ezer J, Harel D (1998) What (else) should computer science educators know? Commun. of the
ACM 41(9): 77–84

Gal-Ezer J, Harel D (1999) Curriculum for a high school computer science curriculum. Comput.
Sci. Edu. 9(2): 114–147

Gal-Ezer J, Zeldes A (2000) Teaching software designing skills. Comput. Sci. Educ. 10(1): 25–38
Gal-Ezer J, Zur E (2004). The efficiency of algorithms misconceptions, Comput. and Educ. 42 (3):

215–226
Haberman B, Lev E, Langly D (2003) Action research as a tool for promoting teacher awareness

of students’ conceptual understanding. ITiCSE 2003: 144–148
Hazzan O, Gal-Ezer J, Blum L (2008) A model for high school Computer Science Education: The

four key elements that make it!. Proce. 39th Tech. Symp. Comput. Sci. Educ., Portland, Oregon,
USA: 281–285

Hazzan O, Gal-Ezer J, Ragonis N (2010) How to establish a Computer Science teacher preparation
program at your university? – The ECSTPP Workshop. ACM Inroads: 35–39

Israeli National Center for Computer Science Teachers (2002) “Machshava” – The Israeli National
Center for High School Computer Science Teachers. Proc. 7th SIGCSE Ann. Conf. on Innov.
and Technol. in Comput. Sci. Educa., Aarhus, Denmark: 234

Kolikant Ben-David Y, Pollack S (2004) Community-oriented pedagogy for in-service CS teacher
training. ITiCSE 2004: 191–195

Lapidot T, Aharoni D (2008) On the frontier of computer science: Israeli summer seminars. Inroads
the SIGCSE Bull. 40(4): 72–74

Levy D (2000) Classification and discussion of recursive phenomena by computer science teach-
ers. In: Robson R (ed) Proc. of the Int. Conf. on M/SET, San Diego, California

Lewin K (1948, ed.) Resolving social conflicts: Selected papers on group dynamics. New York:
Harper & Row

Ragonis N, Haberman B (2003) A multi-level distance learning-based course for high-school com-
puter science leading-teachers. ITiCSE: 224

Shulman L S (1986) Those who understand: Knowledge growth in teaching. Educ. Teacher: 15(2):
4–14

Tucker A, Deek F, Jones J, McCowan D, Stephenson C, Verno A (2003) A Model Curriculum for
K-12 Computer Science. Final Report of the ACM K-12 Task Force Curriculum Committee.
http://csta.acm.org/Curriculum/sub/K-12ModelCurr2ndEd.pdf. Accessed 20 Feb 2007

http://csta.acm.org/Curriculum/sub/K-12ModelCurr2ndEd.pdf

247O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2_16, © Springer-Verlag London Limited 2011

Epilogue 16

This Guide presents a comprehensive framework for the teaching of the MTCS course as
well as the teaching of additional other computer science and computer science education
courses. As has been mentioned in this Guide, not all issues related to the teaching of these
topics can be addressed in one Guide. Indeed, we view this book as a Guide that enables
each computer science educator to further develop and adopt the material the Guide
presents for his or her individual needs. For example, the teaching of advanced computer
science topics can be based on applying the principles presented in this Guide, such as
active learning, lab-based teaching, and the variations in teaching methods, types of
questions, and tasks presented to the learners.

We do hope, however, that this Guide does inspire the message that computer science
learning and teaching processes can be fun, interactive, thought-provoking and stimulat-
ing, and by delivering this message, learners’ interest in computer science learning on all
levels will be increased.

249

Index

A
Abelson, H., 23, 34
Abhiram, 191
Abstract data types, 9, 237
Abstraction, 9, 23, 42, 43, 48, 65, 102,

125, 148
levels of, 34

Academia, vii
ACM Inroads magazine, 52
ACM K–12 Education Task Force, 2
ACM K–12 Task Force Curriculum

Committee, 218, 239
ACM Task Force, 22
ACM Transactions

on Computing Education, 52
Action research, 248
Active learning, 4, 6, 13, 251

in the MTCS course, 14
Active-learning-based teaching methods, 95
Active-learning-based teaching model,

13, 14, 16
Active-learning teaching approach, 220
Activity, open-end, 17
Aharoni, D., 244, 245
Alan Turing, 28
Algorithm, 8, 42

correctness, 67, 154
development, 67
efficiently, 67
visualization, 137

Algorithmic patterns, 74, 214, 237
Algorithmic problems, 48
Alice, 49, 140
Almstrum, V., 135, 136
Alon, A.J.D., 135
Alternative conceptions, 7, 11, 57, 83, 170

learners, 83, 109
Alternative consideration, 66
Ambler, A.L., 34
Analogies, 65, 113, 234
Anderson, R., 14

Animation, 8, 17, 129
Animation-based IDEs, 237
AP, 1, 174
Armoni, M., 48, 244, 245
Armstrong, J., 34, 49
Array, 153, 161, 237

of accumulators, 189
boundaries, 189
cell content, 189
cell index, 189
of counters, 189
merge, 189
of objects, 189
one-dimensional, 188–193
scans, 189
search, 189
sort, 189

Art, 199
Arter, J., 183
Artificial inelegance, 28
Assessment

formative, 175
peer, 175
portfolio, 180
summative, 175

Assignment, 42
Association for Computing Machinery

(ACM), 28, 52
Astrachan, O., 73
Automata

push-down, 238
theory, 164

Automaton
finite, 164
push down, 164

Averbuch, H., 73, 74, 210

B
Baecker, R., 134
Baloian, N., 49
Barak, M., 117

O. Hazzan et al., Guide to Teaching Computer Science: An Activity-Based Approach,
DOI 10.1007/978-0-85729-443-2, © Springer-Verlag London Limited 2011

250 Index

Barg, M., 117
Barnes, T., 191
Bashford, M., 49
Batory, D., 72
Beck, W., 73
Bednarik, R., 136
Beeri, C., 240
Ben-Ari, M., 15, 49, 70, 135, 227
Ben-Bassat Levy, R., 49, 135
Ben-David Kollikant, Y., 87
Bents, M., 84
Bents, R., 84
Berger, C., 117
Berne, J., 217
Berry, G., 73
Bethel, L.J., 210
Binary tree, 211, 237
Biology, 125
Bischof, E., 49
Blank, G.D., 49
Blog, 191
Bloom, B.S., 167
BlueJ, 49
Blue, J., 140
Blumenfeld, P.C., 117
Blum, L., 4, 49, 239, 240
BNF grammar, 164
Boolean

expressions, 103
functions, 103

Borko, H., 217
Bottom-up methodology, 72
Brainstorming, 65
Branching, 42
Brandes, O., 49, 244
Bridging gaps, 16
Brooks, J., 17
Brooks, M.G., 17
Bruce, K.B., 191
Brunching strategies, 103
Bubble sort, 189, 224
Burnett, M.M., 34
Business issues, 30

C
C++, 27
Cañas, A.J., 107
Carey, T., 34
Caristi, J., 183
Chaffin, A., 48
Chamillard, A.T., 183
Chemistry, 125
Choosing an approach, 66
Clancy, M.J., 74

Class, 42
demography, 32

Classification, 96, 198
activity, 42, 199–201, 237
page, 200–201
question, 159
of recursive phenomena, 197
task, 110

Classmate cooperation, 117
Class organization, 7, 95, 134

methods, 237
Clinical conversation, 90
Closed questions, 162
Cognition, 148
Cognitive diversity, 84
Cognitive skills, 8, 148
Cognitive tool, 65
Colors, 211
Comer, D.E., 22
Complexity, 238
Comprehension, 148
Computability, 28
Computational machines,

history of, 28
Computational models, 27, 237

deterministic, 238
finite, 238

Computer, 23
architecture, 136
the history of, 27
lab/laboratory, 5, 8, 124, 186, 236

Computerised DNA
sequence databases, 25

Computerized tools, 49
Computer science

curriculum, 4, 6, 9
discipline of, 7
heuristics, 43
high school curricula, 23
history of, 5, 7, 21, 22, 26, 214
name of, 23
nature of, 23, 238
and other sciences, 25
social issues of, 7, 21, 22, 29
soft ideas, 7, 21, 38
what is, 3, 7, 22, 236

Computer science education
community, 51, 187
content aspect, 222
ethics in, 30
journal, 52
pedagogical aspect, 224
research conducted on, 4
research in, 47–60

251Index	

social issues, vii
teaching methods in, 7

Computer science education research,
86, 248

categories of, 48–49
the learner’s perspective, 50
resources for, 48, 52
the teacher’s perspective, 51–52
world of, 53

Computer science instructors,
in the university, 11

Computer science lens, 143
Computer science teacher preparation

program, 246
construction of, 246
structure of, 247, 248

Computer science teachers, 49
high school, vii, 1, 2, 11
in-service, vii, 4, 11
leading, 49
preparation programs, 9
professional conception, 19
professional identity, 4
prospective, vii, 13, 16

Computer science teaching, 1, 2, 4,
5, 8, 11

certificate, 2
license, 9, 239, 241, 244
social issues in, 49

Computer scientists, 5, 7, 9, 22, 28
Computing as a Discipline report, 22
Computing Curricula 2001, 24, 29
The Computing Research Association, 27
Concept map, 18, 96, 107, 110, 237

construction, 109
evaluation, 110

Conceptual teaching, 224
Concept understanding, 48
Conclusions, intermediate, 133
Concretization, 148
Concurrent paradigm, 34
Conditional expressions, 236
Conditional statement, 103, 129
Conditional-statement-bingo game, 98
Confrey, J., 14
Confucius, 14
Considerations

external-to-the-class, 186
internal-to-the-class, 186

Constructivism, 14
Constructivist approach, 13, 111, 124
Constructivist educators, 14
Constructivist perspective, 107
Constructivist teachers, 32

Constructivist teaching methods, 13
Control structures, 9, 10, 42,

112, 237
Cooper, M.L., 135
Corder, C., 34
Correctness, 42
Cortina, T.J., 49
Course-summary exam, 174
Cox, L., 73
CSTA, 2, 12
CS-unplugged, 95, 237
Curriculum, 7–10, 13, 239
Customer stories, 176
Czerniak, C., 117

D
Dale, N.B., 210
Daniels, M., 14, 17, 49
Danyluk, A., 191
Dark, M.J., 49
Darling-Hammond, L., 230
Data representation, 42
Data structures, 100
Data types, 103
Davis, K.M., 14
Davis, R.B., 14, 15
Debugging, 17, 42, 48, 75
Decision making, 148
Decker, A., 191
Deek, F., 2, 218, 233, 239
Defined curriculum, 240
Denier, S., 48
Denning, P.J., 22
de Raadt, M., 48
Design, 23
Diagnostic exercises, 85
Dijkstra, E.W., 23, 28, 39, 72
Disciplinary knowledge, 229
The discipline of computer science, 21
Discovery learning, 70
diSessa, A.A., 15, 50
Distance learning, 143
Diversity, 32, 49, 236

cognitive, 84
Divide and conquer, 65
Divisors, 150
Doppelt, Y., 117
Doran, K., 48
Double recursion, 215
Drake, J., 73
Dreyfus, T., 136
Dry lab, 127
Dubinsky, Y., 183, 244
Dyck, L., 49

252 Index

E
Eagle, M., 191
East, J.P., 48, 73
Edsger Dijkstra, 28
Educators, computer science, vii
Edwards, S.H., 48
Efficiency, 42, 103, 155, 189
Egert, C., 191
Eick, C.J., 218, 230
Engagement taxonomy, 135

changing, 136
constructing, 136
controlled viewing, 136
entering input, 136
modifying, 136
no viewing, 135
presenting, 136
responding, 136
reviewing, 136
viewing, 135

Engelhart, M.D., 167
Engineering, 23
ePortfolio, 180
Erlwanger, S.H., 50
Ernest, P., 117
Ethical dilemmas, analysis of, 31
Ethics, 4, 13, 49, 238

code of, 30
Evaluation, 8, 10, 43, 86, 109, 169, 197, 198,

212–213
project, 169, 174
rubric, 170, 172
of the students enrolled in the MTCS

course, 170
the students in the MTCS course, 182
teacher, 175

Evaluation rubric,
software projects, 177

Exam
course-summary, 174
how to evaluate, 236
how to write, 236

Examples, 234
Experience in computer science education,

217, 237
Experimental process, 128
Experimental scientific method, 23
Experiments, 124

F
Faulkner, X., 14, 17
Fekete, A., 117
Felleisen, M., 127

Fibonacci, 203, 208
Filter, 214
Fincher, S., 118, 183
Finite automaton, 164
The first lesson, teacher’s

conception about, 226
Fitzgeraldb, S., 49
Flag metaphor, 103
Flatt, M., 34, 49
Fleck, A., 49
Floyd, R.W., 34
Fluery, A.N., 54
Ford, G., 210
Forisek, M., 49
For loop, 157
Formal language, 42
Formative assessment, 175, 179
Formative evaluation, 190
Fossum, T.V., 49
Fractals, 198, 201, 211, 212
Friedman, D.P., 127
Fuller, F.F., 84
Functional approach, 103
Functional paradigm, 34
Functions, 103
Furlong, J., 230
Furst, E.J., 167

G
Gal-Ezer, J., 3, 4, 59, 60, 218, 240,

242, 245
Games, 96, 191, 237

advantages and
disadvantages, 96

Garner, S., 48
Gehringer, E.F., 14
Gender, diversity, 33
Generalization, 42, 148
George, C.E., 201
Gersting, J.L., 198
Ginat, D., 73, 74
Grading policy, 176, 179
Graph algorithms, 28
Green, A.M., 117
Greenfoot, 140
Gries, D., 22
Guide

chapter description, 6
how to use, 9
motivation for writing, 2
structure and organization, 5

Guiding software projects development,
236, 237

253Index	

H
Haberman, B., 2, 34, 49, 54, 73, 74, 87, 210,

218, 245
Haden, P., 48
Haller, S.M., 49
Halting problem, 163
Hands-on experience, 125
Hanks, B., 49
Harel, D., 3, 59, 60, 240, 242
Haridi, S., 34
Harland, J., 167
Harvey, B., 201, 205
Hauer, A., 49
Hayes, E., 183
Haynes, S.M., 210
Hazzan, O., 2, 4, 13, 16, 26, 29–33, 38, 43, 49,

88, 117, 139, 167, 183, 195, 211, 218,
219, 226, 227, 229, 233, 234, 240, 244,
246, 248

Heap, 38
Hebetim - Journal of the Israeli National

Center for Computer Science Teachers,
54, 94, 97

Hicks, D., 48
High school, vii, 1, 3, 4, 7, 9–12

practicum, 248
High school computer science curricula,

designers of, 246
High school computer science curriculum,

235, 236, 244
High school computer science teacher

preparation programs, 239
History

of computational machines, 28
of computer science, 22, 26,

214, 236
of computing, 29
of object-oriented software

development, 27
Hodnigg, K., 49
Hofstadter, D., 198
Howland, J.E., 191
Human Genome Project, 25
Hypothesis testing, 65

I
IDEs, visualization- and

animation-based, 140
IEEE-CS/ACM Joint Task Force, 30
Illustrations, 234
Imperative approach, 103
Individual work, 103
Inference, 148

Informatics in Secondary Schools: Evolution
and Perspective (ISSEP), 52

Information resource, 143
Inheritance, 48
Innovation and Technology in Computer

Science (ITiCSE), 52
Input-output, 42
Inroads - ACM SIGCSE Bulletin, 52
Inroads - The SIGCSE Bulletin, 32
In-school mentor, 218
In-service training, 248
The instructor, role of, 18
Integrative understanding, 117
Intellectual property, 29
Interactivity, 97
Intermediate conclusions, 131
Internet, 8, 123, 194, 236, 237

exploration, 24
Interview, 91
Introduction to computer

science course, 117
Israeli high-school computer science

curriculum, 239
Israeli National Center for Computer Science

Teachers, 54, 94, 97, 238, 246

J
Java, 6, 27, 49, 203, 211

development
environments, 236

Jeliot, 49, 140
Jigsaw, 116
Johnson, D.S., 114
Johnson, M., 113
The Joint Task Force on Computing

Curricula of the IEEE Computer
Society and the Association for
Computing Machinery, 24

Jones, J., 2, 218, 233, 239
Jones, K.O., 167
Jones, M.T., 218, 230
Joni, S.A., 54
Joyce, D., 126

K
Kaczmarczyk, L.C., 48
Kahney, H., 204, 210
Kaila, E., 75
Karel, 49
Karel J. Robot, 140
Karel the robot, 237
Kay, J., 117
Kessler, R., 115

254 Index

Kilpatrick, J., 14
Kimmel, H., 2
Kinds of questions, 138, 160
Kinds of task, 133
Knowledge

construction, 14
pedagogical/pedagogical content, 3
subject matter, 3

Knox, D., 126
Kolikant Ben-David, Y., 245
Kölling, M., 49
Korhonen, A., 75
Krajcik, J.S., 117
Kuhn, T.S., 33

L
Laakso, M. J., 75
Lab

dry, 127
experience, 186

Lab-based teaching, 8, 10, 123, 170, 215,
237, 251

Lab-first activity, 127
Lab-first approach, 236, 237
Lab-first teaching approach, 8

advantages and
disadvantages, 129

Laboratory, 124
instruction, 13
work, 49

Lakoff, G., 113
Langly, D., 245
Languages, 238
Lapidot, T., 3, 13, 26, 29, 32, 43, 54, 88,

101, 139, 199, 202, 203, 211, 218,
222, 233, 245

Lateral thinking, 65
Lave, J., 227
Lawhead, P.B., 183
Leap of faith, 197, 198, 201–203
Learner(s)

alternative conception, 169
alternative conceptions, 7, 83
cognitive abilities, 47
conceptions, 48, 209
difficulties, 47, 229, 234
difficulties and conceptions, 10
misconceptions, 50
mistakes, 5, 58
project grading, 47
understanding, 53
ways of thinking, 7

Learning processes, vii
Learning rhythm, 133

Learning skills, 48
Learning style, 117
Learning/teaching recursion, research on,

209–210
Learning theories, 13
Leron, U., 201, 203
Lesson planning, 215
Lesson preparation, 47
Lev, E., 245
Levy, D., 54, 101, 199, 201,

203, 245
Lewandowskic, G., 48, 49
Lewin, K., 249
Linearity, 103
Linn, M.C., 74
List, 237
Literature, 111, 199
Little People model, 204–206
Logical paradigm, 34
Logo, 205
Loop, 151, 236

for, 157
while, 157

Ludi, S., 14
Luther, W., 49
Luxton, R.A., 167

M
Magnusson, B., 34
Maher, C.A., 14, 15
Ma, J., 125
Maletic, J.I., 73
Malmi, L., 75
Maloney, J., 49
Map, 214
Map coloring problem, 163
Martin, F., 50, 54, 139
Marx, R.W., 117
Mathematics, 23, 199
Mathematics education research, 65
Maximum, 107, 161
McCauleya, R., 48, 49
McConnell, J.J., 14
McCowan, D., 2, 218, 233, 239
Meaningful names, 103
Means-ends analysis, 65
MediaComp, 141
Media computation, 141
Meerbaum-Salant, O., 117, 183
Memory organization, 236
Mental image, 109
Mental process, 65
Mentoring software project development,

7, 95

255Index	

Mentor/Mentoring, 182
in-school, 218
scheduling the, 120
university, 218

Merkle, L.D., 183
Metaphors, 237

advantages and disadvantages of, 114
flag, 103

Meta-reasoning, 148
Methods, 103
Methods of teaching computer science

(MTCS), 1, 3, 9, 12, 13, 83, 248
course, vii, 248
design of, 233

Microsoft Research, 46
MicroWorlds, 140
Middle school, 1
Migvan, 42, 108, 212
Miller, B., 49
Miller, C.S., 14
Mindstorms, 140
Misconceptions, 50, 83
Mistakes, 83
Mitchener, G., 73
Mittermeir, R.T., 49
Model

for high school computer science
education, 9, 239, 241

Little People, 204–206
top-down frames, 204, 207–209

Model Curriculum for K–12 Computer, 218
Modeling, 23
Modularity, 42
Monroy-Hernández, A., 49
Moritz, S.H., 49
Morphological analysis, 65
Moses, L., 183
Motivation, 117
MTCS course, 13, 22

integrated view, 8
objectives, 4
organization, 197–215
representation by a concept map, 108
structure, 235
syllabus, 3, 6, 9, 233, 234

Mulder, M.C., 22
Muller, O., 73, 74
Murphy, L., 48
Murtagh, T., 191
Music, 97, 139, 199, 211

in computer science teaching, 237
Musical debugging, 139, 211
Mutual recursion, 215
Myller, N., 136

N
Naps, T., 135, 136
Narrative-algorithmic tasks, 161
National Center for Computer Science

Teachers, 9, 239, 240, 242
National Conference for Computer Science

Teachers, 236
National Council for the Accreditation of

Teacher Education, 2
National High School Computer Science

Curriculum, 240
Nation-wide perspective, 245
NCATE standards, 9, 233
Nersessian, N.J., 125
Nesting, 103
Newman, I., 14, 17
Newspapers, 111
Nickerson, J.V., 125
Nieminen, J., 191
Ni, L., 49
Noddings, N., 14, 15
Non-programming task, 213
Noonan, R., 34
Novak, J.D., 107
Novice

difficulties, 54
knowledge, 48

Nugent, G., 49

O
Object, 42
Object-first approach, 236
Object-oriented paradigm, 34
Object-oriented programming,

49, 236, 237
Object-oriented software development,

the history of, 27
One-dimensional array, study unit about,

188–190
Open problem, 148

P
Pair programming, 176
Papert, S., 140
Paradigms

functional, 49
logical, 49
object oriented, 49
procedural, 49

Parameters, 42, 103
Patterns, 49, 73

algorithmic, 237
question, 148

Patterson, A., 49

256 Index

Paz, T., 129, 202
Pea, R.D., 54
Pedagogical content knowledge (PCK),

3, 51, 234
Pedagogical-disciplinary

professional skills, 229
Pedagogical methods, 13
Pedagogical objectives, 186
Pedagogical professional skills, 229
Pedagogical skills, 182
Pedagogical toolbox, 52
Pedagogical tools, 66, 85, 95
Peer assessment, 175
Peer teaching, 182, 236
Perkins, D.N., 50, 54, 139
Personal projects, 26
Petre, M., 118
Petrick, E.R., 48
Physics, 125
Piaget, J., 15
Pimentel, A.D., 136
Planning

the entire curriculum, 186–187
a lesson, 187–188
of one topic from the curriculum, 186
of a specific lesson, 186
of a study unit, 187, 195–196

Pollack, S., 245
Polya, G., 65
Pomerantz, J., 167
Portfolio, 8, 169, 170, 179, 182, 190

assessment, 180
design, 181

Porvin, S.E., 73
Poster, preparation, 114
Practicum, 3, 9, 12, 182

bridge between theory
and its application, 219

bridging the gap between the academia
and the school, 222

bridging the gap between theory
and practice, 219

bridging the gap between theory
and reality, 221

bridging the gap between theory
and the field, 221

Practicum in the high school, 218
Presentation of the solution, 148
Price, B., 134
Prime number, 158
Privacy and civil liberties, 29
Problem analysis, 66, 148
Problem decomposition, 66

Problem solving, 48, 66, 227, 229
assessment of strategies, 48–49
strategies, 7, 65, 123
techniques, 67

Problem understanding, 68
Problem variables

choosing the, 69
defining the, 69

Procedural paradigm, 34
Procedures, 42, 103, 222
Procedures literacy, 223
Professional and

ethical responsibilities, 29
Professional community, 243
Professional development, 1, 2, 4, 7, 8, 11, 47,

198, 233
programs, 1

Professional perception, 13, 15, 16, 18
Professional skills, 16
Program comprehension, 30
Programming, 65

assignments, 147
style, 33, 103
tasks, 8, 103

Programming heuristics, teaching, 45
Programming languages, 6, 33, 117, 157

learning and teaching, 49
syntax, 34

Programming paradigms, 7, 21, 33, 118, 214,
236, 237

abstract-oriented examination of, 36
imperative, 157
learning and teaching, 49

Program visualizations, 134
Project

documentation, 176, 177
evaluation, 8, 169, 170, 174
individual, 175
non-software, 175
team, 175
whole-class, 26

Project-based learning (PBL), 49, 117,
124, 169

Prospective computer science teachers, 13
Proteins, 25
Proulx, V.K., 73
Pupil

mistake, 7
performance assessment, 3–4
thinking processes, 8

Pupil’s answer
evaluation of, 88

Pupil-teacher interaction, 85

257Index	

Pure-algorithmic tasks, 161
Push down automaton, 164
Putnam, R.T., 217
Python, 49

Q
Question

classification, 159
closed, 162
design, 166
formulation, 163
patterns, 148
preparation, 165
story, 161
unsolvable, 163

Queue, 237
Quick-sort, 189
Quig, B., 49

R
Ragonis, N., 2, 16, 23, 34, 49, 195, 226, 227,

229, 234, 245
Rajala, T., 75
Rauschmayer, A., 72
Readability, 104
Recursion, 6, 8, 10, 42, 48, 108, 197–215, 238

animation, 215
classification, 199–201
double, 215
in life, 213
mutual, 215
research on learning/teaching, 197, 198
and sound, 197, 198, 211–212
tail, 215

Recursive algorithm, 214
Recursive patterns, 214–215
Recursive phenomena, analysis of, 212–213
Recursive process, 201

models of, 197, 198, 204–209
Recursive structures, 211
Redmond M.A., 183
Reduce, 214
Reduction, 65
Reed, D., 69, 73
Reflection, 16, 59, 76, 175, 195–196,

236, 237
Reflective activity, 77
Reflective diary, 182
Reflective discourse, 200
Reflective essay, 142
Reflective practitioners, 16

perspective, 248
Reflective process, 175, 217

Reflective skills, 180
Reflective thinking, 4, 229
Regular language, 164
Reid, J.M., 167
Representative inputs and outputs,

representative, 68
Research, 123

in computer science education, 7, 9,
47–60, 170, 233, 234, 239, 240,
243–245, 248

on learning/teaching recursion, 197,
209–210

root cause analysis, 65
in science education, 236

Researcher’s point of view, 52
Resnick, M., 49
Resources for computer science education

research, 48, 52
Reward allocation, 176
Reynolds, R.G., 73
Rich tasks, 95, 237
Risks and liabilities of computer-based

systems, 29
Robins, A., 48, 69
Rodger, S.H., 49
Roschelle, J., 15, 50
Rößing, G., 135
Rössling, G.J., 135
Rountree, J., 69
Rountree, N., 69

S
Sahraoui, H., 48
Sajaniemi, J., 70
Salakoski, T., 75
Samal, A., 49
Samurçay, R., 48, 54
Sánchez, J., 49
Sanders, I., 204, 210
Sarvela, J.N., 72
Schoenfeld, A.H., 65
Scholtz, T., 204, 210
Schön, D.A., 16, 76, 222
School culture, 220
Science, technology, and society (STS), 29
Scientific curricula, 13
Scientific experimentation, 124
Scratch, 49, 140
Self confidence, 117
Sethi, R., 34
Shaffer, C.A., 135
Shepherd, H.G., 117
Shepherd, M., 34

258 Index

Shulman, L.S., 3, 51, 60, 84, 209, 233,
234, 248

Shulman’s model of teachers’ knowledge,
9, 233, 234

SIGCSE, 52
Silberman, M., 14
Simula, 27
Skills, pedagogical, 2, 4
Small, I., 134
Smalltalk, 49
Smith, J.P., III, 15, 50
Social and Professional Issues, 29
Social aspects, 237
Social context of computing, 29
Soft ideas, 21, 22, 38, 110, 237

introduction to, 41
in the MTCS course, 39

Software engineering code of ethics and
professional practice, 30

Software project, 174
developed by individuals, 175
developed by teams, 175
management, 30

Software project development, 236, 237
mentoring, 7, 117

Software requirements, 30
Software visualization and animation, 139
Soh, L., 49
Soloway, E., 54, 69, 117, 139, 210
Solution

construction, 69
design, 69
examination, 70
presentation, 148

Song debugging, 237
Sorting, 42
Sort-merge algorithm, 156
Sort method of an array, 157
Sort, selection sort, 189
Spandel, V., 183
Special Interest Group on Computer Science

Education, 52
Spohrer, J.C., 54, 210
Spohrer, J.G., 139
Squeak, 140
Stack, 237
Starlogo, 140
Stein, D., 227
Steinová, M., 49
Stephenson, C., 2, 218, 233, 239
Stepwise refinement, 42, 73
Stolin, Y., 33, 49
Story questions, 161
The Structure of Scientific Revolution, 33

Students’
cognitive abilities, 7
difficulties, 7
misconceptions, 7

Summative assessment, 175
Sussman, G., 23
Sussman, J., 23
Sutinen, E., 136
System-level computer architecture, 136
System state, 42

T
Taghavi, T., 136
Tail-recursion, 215
Task

narrative-algorithmic, 161
non-programming, 213
pure-algorithmic, 161

The task stage, 84
Teacher

evaluation, 175
license, 241–242
as a researcher, 55–56
role in computer lab, 126

Teacher experience
impact stage, 84
self stage, 84
task stage, 84
variables, 84
written exam, 88

Teacher Knowledge Base Model, 3
Teacher preparation, vii

pre-service, 2
programs, 9, 239, 240, 242, 244

Teachers’ awareness of learning
processes, 51

Teaching
conceptual, 226
the first lesson about one-dimensional

array, 190–193
license, 239, 240
materials, 5
process, 179
strategies, 234
technical, 224

Teaching approach, lab-first, 8
Teaching methods, vii, 3, 5, 7, 10, 11, 16, 49,

220, 234, 237, 251
active-learning based, 7, 95
in computer science education, 10

Teaching planning, 8, 44, 185–196, 236
comprehensive, 195–196
top-down approach for, 185
yearly, 187

259Index	

Team project, 175
Teamwork, 30, 176
Technical teaching, 224
Teitel, L., 230
Test-driven-development, 176
Testing, 47
Tests, 7, 8, 17, 47, 169, 170, 186

analysis, 172
construction, 8, 171, 197, 237
design, 166
evaluation, 8, 32
failure, 77
on recursion, 213
solving, 172

Theory, 23
Thinking practices, 117
Thomas, J.W., 117
Thomas, S.R., 73
Thompson, E., 167
Thompson, M., 136
Tiling problem, 163
Time allocation, 194
Time line, 187
Time planning, 187
TOCE, 52, 135
Toleman, M., 48
Tomayko, J., 30, 31
Tools, pedagogical, 4, 7
Top-down frames model, 204, 207–209
Top-down methodology, 72
Towards 2020 Science, 25
Tracing, 42
Transportation, 111
Trees, 42, 197

binary, 237
Trial-and-error, 65
Trigger, 16, 18
Tucker, A., 2, 22, 34, 218, 233, 239
Turing Award, 28
Turing Machine, 27, 28
Turing machine, 164, 238
Turing test, 28
Turkle, S., 34
Turner, A.J., 22
Tutoring, 217, 226

framework, 9
problem-solving process, 227
session feedback worksheet, 228

Tutoring coordinator, 227
Tutoring model, implementation, 227
Types of questions, 8, 133, 147, 149, 169, 170,

215, 236, 237, 251
analysis of code execution, 151
combining several, 158

completion a given solution, 153
development a solution that uses a given

module, 150
development of a solution, 150
efficiency estimation, 155
examination of the correctness of a given

solution, 152
finding the purpose of a given

solution, 152
instruction manipulations, 154
programming style questions, 156
question design, 156
tracing a given solution, 151
transformation of a solution, 157

Types of tasks, 135

U
Unicode, 161
United States, 2
University level, 1
University mentor, 218
Unsolvable questions, 163
Uronen, P.A., 49
Urquiza-Fuentes, J., 134
Using History To Teach Computer Science

and Related Disciplines, 27

V
Van Roy, P., 34, 49
Variables, 10, 38, 42, 48, 84, 114, 237

roles of, 70
Variety of question types,

advantages of using, 147
Vasconcelos, J., 67
Velázquez-Iturbide, J.A., 134
Ventura, P., 191
Verno, A., 2, 218, 233, 239
Vickers, P., 211
Vilner, T., 49, 244
Visualization, 8, 17, 123, 201,

211, 237
and animation, 138
tools, 123

Voyles, M.M., 49

W
Waks, S., 117
Wallingford, E., 73
Wang, L., 167
Ware, F.N., 218, 230
Watson, R., 48
Watt, D.A., 34
Web applications, 143
Wenger, E., 227

260 Index

Whalley, J., 167
While loop, 157
Whittington, K.J., 14
Wilkins, D.E., 183
Williams, L., 115
Wilson, S.M., 217
Wing, J., 22
Winstead, J., 49
Wirth, N., 72
Wolz, U., 126
Working in groups, 116
Wright, M., 198, 201
Written exam, 88

Wu, C., 204, 210
Wu, J., 167

Y
Yang, A., 167
Yehezkel, C., 136
Yehudai, A., 240
Young, P.R., 22

Z
Zeldes, A., 245
Zimmerman, B.A., 34
Zur, E., 49, 245

	Guide to Teaching Computer Science
	Prologue
	Contents
	Index of Activities
	1: Introduction – What Is This Guide About?
	2: Active Learning and the Active-Learning-Based Teaching Model
	3: Overview of the Discipline of Computer Science
	4: Research in Computer Science Education
	5: Problem-Solving Strategies
	6: Learners’ Alternative Conceptions
	7: Teaching Methods in Computer Science Education
	 8: Lab-Based Teaching
	 9: Types of Questions in Computer Science Education
	10: Evaluation
	11: Teaching Planning
	12: Integrated View at the MTCS Course Organization: The Case of Recursion
	13: Getting Experience in Computer Science Education
	14: Design of a Methods of Teaching Computer Science Course
	15: High School Computer Science Teacher Preparation Programs
	16: Epilogue
	Index

