

ATLANTIS STUDIES IN COMPUTING

VOLUME 2

SERIES EDITORS: JAN A. BERGSTRA, MICHAEL W. MISLOVE

Atlantis Studies in Computing

Series Editors:

Jan A. Bergstra

Informatics Institute

University of Amsterdam

Amsterdam, The Netherlands

Michael W. Mislove

Department of Mathematics

Tulane University

New Orleans, USA

(ISSN: 2212-8565)

Aims and scope of the series

The series aims at publishing books in the areas of computer science, computer and network

technology, IT management, information technology and informatics from the technologi-

cal, managerial, theoretical/fundamental, social or historical perspective.

We welcome books in the following categories:

Technical monographs: these will be reviewed as to timeliness, usefulness, relevance, com-

pleteness and clarity of presentation.

Textbooks.

Books of a more speculative nature: these will be reviewed as to relevance and clarity of

presentation.

For more information on this series and our other book series, please visit our website at:

www.atlantis-press.com/publications/books

AMSTERDAM – PARIS – BEIJING

c© ATLANTIS PRESS

Instruction Sequences for
Computer Science

Jan A. Bergstra and Cornelis A. Middelburg
Institute of Informatics, Faculty of Science, University of Amsterdam

Amsterdam, the Netherlands

AMSTERDAM – PARIS – BEIJING

Atlantis Press
8, square des Bouleaux
75019 Paris, France

For information on all Atlantis Press publications, visit our website at: www.atlantis-press.com

Copyright
This book, or any parts thereof, may not be reproduced for commercial purposes in any form or by
any means, electronic or mechanical, including photocopying, recording or any information storage
and retrieval system known or to be invented, without prior permission from the Publisher.

Atlantis Studies in Computing

Volume 1: Code Generation with Templates - B.J. Arnoldus, M.G.J. Van den Brand, A. Serebrenik

ISBNs
Print: 978-94-91216-64-0
E-Book: 978-94-91216-65-7
ISSN: 2212-8565

c© 2012 ATLANTIS PRESS

Preface

The concept of an instruction sequence is a key concept in practice, but strangely enough

it has as yet not come prominently into the picture in theoretical circles. In much work

on computer architecture, instruction sequences are under discussion. In spite of this, the

notion of an instruction sequence has never been subjected to systematic and precise anal-

ysis. Moreover, in work on computer architecture, the viewpoint is usually taken that a

program is in essence an instruction sequence. By contrast, in the theory of computation,

different viewpoints on what is a program are usually taken. This state of affairs brought

us to define a general notion of an instruction sequence, to subject it to a systematic and

precise analysis, and to provide evidence for the hypothesis that the notion of an instruc-

tion sequence is relevant to diverse subjects from the theory of computation and the area

of computer architecture. Many results of the work in question are brought together in this

book with the aim to bring instruction sequences as a theme in computer science better into

the picture.

To put it otherwise, this book concerns instruction sequences, the behaviours produced

by instruction sequences under execution, the interaction between these behaviours and

components of the execution environment concerning the processing of instructions, the

expressiveness of instruction sequences, and various issues relating to well-known sub-

jects from computer science where we found that the notion of an instruction sequence

is relevant. Most of the issues in question are of a computation-theoretic or computer-

architectural kind. They relate to subjects such as the halting problem, non-uniform com-

putational complexity, instruction sequence performance and instruction set architecture.

Some of the issues considered are somehow related to process algebra, namely remote in-

struction processing and instruction sequence producible processes. Some variations on

instruction sequences of the usual kind, such as instruction sequences without a directional

bias and probabilistic instruction sequences, are also considered.

v

vi Instruction Sequences for Computer Science

This book is primarily intended for researchers in computer science interested in in-

struction sequences as a theme in computer science. It is also meant to be suitable as

supplementary reading in courses for graduate students and advanced undergraduate stu-

dents in computer science. Chapters 5 and 6 may as much appeal to those who are primarily

interested in the subjects from the theory of computation and the area of computer architec-

ture, respectively, that come up in these chapters. Chapter 7 may as much appeal to those

who are primarily interested in process algebra.

Throughout the book, some familiarity with equational logic, universal algebra, and

elementary set theory is assumed. In Sect. 5.2, some familiarity with non-uniform com-

putational complexity is assumed. In Sect. 5.1, Sect. 6.2 and Chap. 7, some familiarity

with computability, instruction set architectures and process algebra, respectively, would

be helpful. Chapter 2 is a prerequisite for Chap. 3, and both chapters are prerequisites for

all subsequent chapters.

Chapter 2 introduces an algebraic theory SPISA of single-pass instruction sequences

and an algebraic theory BTA of mathematical objects that represent in a direct way the

behaviours produced by instruction sequences under execution. The objects concerned are

called threads. It is made precise in the setting of the latter theory which behaviours are

produced by the instruction sequences considered in the former theory. The instruction se-

quences in question include both finite and infinite ones, but the theory provides a notation

by means of which all of them can be represented finitely. This chapter also introduces

alternative notations ISNR and ISNA by means of which all these instruction sequences

can be represented finitely as well, but which are closer to existing assembly languages.

Chapter 3 introduces so-called services, which represent the behaviours exhibited by

the components of an execution environment that are capable of processing particular in-

structions and doing so independently, and extends BTA with an operator meant for the

composition of families of named services and operators that have a direct bearing on the

processing of instructions by services from such service families. In addition, the con-

cept of a functional unit, which is an abstract model of a machine, is introduced. In the

frequently occurring case that the behaviours represented by services can be viewed as

the behaviours of a machine in its different states, the services concerned are completely

determined by a functional unit. Some extensions of ISNR and ISNA with additional in-

structions are explained with the help of some simple functional units.

Chapter 4 gives answers to basic expressiveness issues regarding SPISA. In this case,

expressiveness is basically about which behaviours can be produced by instruction se-

Preface vii

quences under execution, which instructions can be removed without reducing the class of

behaviours that can be produced by instruction sequences under execution, how to enlarge

the class of behaviours that can be produced by instruction sequences under execution, et

cetera. This chapter is also concerned with some issues that arise from the investigation

of expressiveness issues regarding SPISA. For example, it is shown that a finite-state exe-

cution mechanism for a set of instruction sequences that by itself can produce each finite-

state behaviour from an instruction sequence belonging to the set of instruction sequences

in question is unfeasible.

Chapter 5 concerns two subjects from the theory of computation, namely the halting

problem and non-uniform computational complexity. Positioning Turing’s result regarding

the undecidability of the halting problem as a result about programs rather than machines,

and taking single-pass instruction sequences as considered in SPISA as programs, the au-

tosolvability requirement that a program of a certain kind must solve the halting problem

for all programs of that kind is analysed. Thinking in terms of single-pass instruction

sequences as considered in SPISA, counterparts of the classical non-uniform complexity

classes P/poly and NP/poly are defined, a notion of completeness for the counterpart of

NP/poly is introduced, several complexity hypotheses are formulated, and it is shown that

a problem closely related to 3SAT is NP-complete as well as complete for the counterpart

of NP/poly.

Chapter 6 concerns two subjects from the area of computer architecture, namely in-

struction sequence performance and instruction set architectures. We study the effect of

eliminating indirect jump instructions from instruction sequences with direct and indirect

jump instructions on the interactive performance of instruction sequences. A strict version

of the concept of a load/store instruction set architecture is proposed for theoretical work

relevant to the design of instruction set architectures, and it is studied how the transfor-

mations on the states of the main memory of a strict load/store instruction set architecture

that can be achieved by executing instruction sequences on it depend on the parameters

involved.

Chapter 7 concerns two subjects related to process algebra, namely protocols to deal

with remote instruction processing and instruction sequence producible processes. If in-

struction processing takes place remotely, this means that a stream of instructions to be

processed arises at one place and the processing of that stream of instructions is handled

at another place. Process algebra is used to describe two protocols to deal with this phe-

nomenon. Because process algebra is considered relevant to computer science, there must

viii Instruction Sequences for Computer Science

be programmed systems whose behaviours are taken for processes as considered in process

algebra. It is shown that all finite-state processes can be produced by single-pass instruc-

tion sequences as considered in SPISA, provided that the cluster fair abstraction rule known

from the algebraic theory of processes called ACP is valid.

Chapter 8 introduces three variations of instruction sequences as considered in SPISA,

namely polyadic instruction sequences, instruction sequences without a directional bias,

and probabilistic instruction sequences. A polyadic instruction sequence is a possibly pa-

rameterized instruction sequence fragment that can produce a joint behaviour together with

other such fragments because the fragment being executed can switch over execution to

another. Instruction sequences without a directional bias require that for each instruction

whose effect involves that execution proceeds in the forward direction, there is a counter-

part whose effect involves that execution proceeds in the backward direction. Probabilistic

instruction sequences are instruction sequences that contain instructions that are themselves

probabilistic by nature.

There are also four appendices. In Appendix A, five challenges for the point of view

from which the approach to semantics followed in Chaps. 2 and 3 originates are sketched.

In Appendix B, some results about functional units for natural numbers are given, which are

except one computability results that are not directly related to existing results that we know

of. In Appendix C, the usefulness of the dynamically instantiated instructions introduced

in Chap. 3 is illustrated by means of an example. In Appendix D, a model of a hypothetical

execution environment for instruction sequences, designed for the purpose of explaining

how instruction sequences as considered in SPISA may be executed, is discussed.

A glossary of the notations introduced in this book and the general mathematical no-

tations used in this book can be found from page 221 onward. At this point, one further

remark about notation may be useful: bold-faced italic letters, with or without decorations,

will be used as syntactical variables in this book.

Acknowledgements

This book brings together and streamlines work done by a group of people which includes,

in addition to the authors, Inge Bethke, Marijke Loots, Alban Ponse and Mark van der

Zwaag. The work in question was partly carried out in the framework of projects funded

by the Netherlands Organisation for Scientific Research (NWO).

Amsterdam, April 2012 J. A. Bergstra and C. A. Middelburg

Contents

Preface v

List of Tables xv

1. Introduction 1

2. Instruction Sequences 5

2.1 Single Pass Instruction Sequence Algebra 5

2.1.1 Primitive instructions . 6

2.1.2 Constants, operators and equational axioms 7

2.1.3 The initial model . 9

2.1.4 Structural congruence . 10

2.2 Basic Thread Algebra . 12

2.2.1 Constants, operators and equational axioms 12

2.2.2 Recursion . 14

2.2.3 Regular threads . 16

2.2.4 The projective limit model . 18

2.2.5 Thread extraction for instruction sequences 21

2.2.6 Behavioural equivalence of instruction sequences 23

2.3 Instruction Sequence Notations . 25

2.3.1 The instruction sequence notation ISNR 26

2.3.2 The instruction sequence notation ISNA 28

2.3.3 Inter-translatability of ISNR and ISNA 30

2.3.4 Additional instruction sequence notations 30

ix

x Instruction Sequences for Computer Science

3. Instruction Processing 33

3.1 Basics of Instruction Processing . 34

3.1.1 Services and service families 34

3.1.2 Use, apply and reply . 38

3.1.3 Recursion . 42

3.1.4 Example . 44

3.1.5 Elimination . 45

3.1.6 Properties . 47

3.1.7 Relevant use conventions . 49

3.1.8 The extended projective limit model 50

3.1.9 Abstraction . 51

3.2 Functional Units and Services . 54

3.2.1 The concept of a functional unit 54

3.2.2 A Boolean register functional unit 58

3.2.3 A natural number register functional unit 59

3.2.4 A natural number stack functional unit 59

3.2.5 A natural number counter functional unit 60

3.3 Functional Unit Related Additional Instructions 61

3.3.1 Indirect absolute jump instructions 61

3.3.2 Indirect relative jump instructions 64

3.3.3 Double indirect jump instructions 66

3.3.4 Returning jump and return instructions 68

3.3.5 Dynamically instantiated instructions 72

4. Expressiveness of Instruction Sequences 75

4.1 Basic Expressiveness Results . 76

4.2 Jump-Free Instruction Sequences . 79

4.3 Gotos and a Bounded Number of Labels 82

4.3.1 Labels and gotos . 82

4.3.2 A bounded number of labels . 84

4.4 The Jump-Shift Instruction and Finiteness Issues 87

4.4.1 The jump-shift instruction . 87

4.4.2 An alternative thread extraction operator 90

Contents xi

4.4.3 On finite-state execution mechanisms 93

5. Computation-Theoretic Issues 97

5.1 Autosolvability of Halting Problem Instances 97

5.1.1 Functional units relating to Turing machine tapes 98

5.1.2 Interpreters . 101

5.1.3 Autosolvability of the halting problem 102

5.2 Non-uniform Computational Complexity 106

5.2.1 Instruction sequences acting on Boolean registers 107

5.2.2 The complexity class P∗ . 108

5.2.3 The non-uniform super-polynomial complexity hypothesis . . . 115

5.2.4 Splitting instruction sequences 118

5.2.5 The complexity class P∗∗ . 123

5.2.6 Super-polynomial feature elimination complexity hypotheses . . 129

6. Computer-Architectural Issues 131

6.1 Instruction Sequence Performance . 131

6.2 Load/Store Instruction Set Architectures 135

6.2.1 Maurer machines . 136

6.2.2 Strict load/store Maurer ISAs 139

6.2.3 Reducing the operating unit size 143

6.2.4 Thread powered function classes 147

7. Instruction Sequences and Process Algebra 151

7.1 Process Algebra . 151

7.1.1 Algebra of communicating processes 152

7.1.2 Process extraction for threads 157

7.2 Protocols for Remote Instruction Processing 159

7.2.1 A simple protocol . 160

7.2.2 A more complex protocol . 163

7.2.3 Adaptations of the protocol . 167

7.3 Instruction Sequence Producible Processes 168

7.3.1 SPISA with alternative choice instructions 168

xii Instruction Sequences for Computer Science

7.3.2 Producible processes . 170

8. Variations on a Theme 173

8.1 Polyadic Instruction Sequences . 174

8.1.1 Executing polyadic instruction sequences 175

8.1.2 Example . 179

8.1.3 Instruction register file functional unit 181

8.1.4 Instruction sequence synthesis 182

8.2 Backward Instructions . 186

8.2.1 C, a semigroup for code . 186

8.2.2 Thread extraction and code transformation 187

8.2.3 C programs and single-pass instruction sequences 189

8.3 Probabilistic Instructions . 190

8.3.1 On the scope of Sect. 8.3 . 191

8.3.2 Signed cancellation meadows 192

8.3.3 Probabilistic basic and test instructions 193

8.3.4 Probabilistic jump instructions 195

8.3.5 The probabilistic process algebra thesis 196

8.3.6 Related work . 197

Appendix A Five Challenges for Projectionism 199

Appendix B Natural Number Functional Units 203

B.1 The Unbounded Natural Number Counter 203

B.2 Universal Functional Units . 204

Appendix C Dynamically Instantiated Instructions 209

C.1 A Concrete Notation for Basic Proto-instructions 209

C.2 An Example . 210

Appendix D Analytic Execution Architectures 213

D.1 The Notion of an Analytic Execution Architecture 213

D.2 A Classification of Reactors . 215

Contents xiii

Bibliography 217

Glossary 221

Index 227

List of Tables

2.1 Axioms of SPISA . 8

2.2 Axioms for the structural congruence predicate 10

2.3 Axiom of BTA . 14

2.4 Axioms for guarded recursion . 15

2.5 AIP and axioms for the projection operators 15

2.6 Axioms for the thread extraction operator . 22

3.1 Axioms of SFA . 37

3.2 Axioms for the use operator . 40

3.3 Axioms for the apply operator . 41

3.4 Axioms for the reply operator . 41

3.5 Additional axioms for infinite threads . 43

3.6 Axioms for the abstracting use operator . 53

3.7 Axioms for the abstraction operator . 53

3.8 Additional axioms for infinite threads . 53

4.1 Axioms for the jump-shift instruction . 88

4.2 Additional axiom for the thread extraction operator 89

4.3 Axioms for the alternative thread extraction operator 91

5.1 Axioms for the cyclic interleaving operator 122

5.2 Axioms for the inaction at termination operator 122

5.3 Axioms for the parameter instantiation operator 123

7.1 Axioms of ACPτ . 154

7.2 Axioms for guarded recursion . 155

xv

xvi Instruction Sequences for Computer Science

7.3 AIP and axioms for the projection operators 155

7.4 Axioms for the process extraction operator . 158

7.5 Additional axiom for the process extraction operator 169

8.1 Axioms for the thread extraction operators of SPISAp 180

8.2 Axioms for the thread extraction operators of C 188

Chapter 1

Introduction

The concept of an instruction sequence is a very primitive concept in computing. It has

always been relevant to computing because of the fact that execution of instruction se-

quences underlies virtually all past and current generations of computers. It happens that,

given a precise definition of the concept of an instruction sequence, many issues in com-

puter science can be clearly explained in terms of instruction sequences, from issues of

a computer-architectural kind to issues of a computation-theoretic kind. A simple yet in-

teresting example is that a program can be defined as a text that denotes an instruction

sequence. Such a definition corresponds to an empirical perspective found among practi-

tioners.

In theoretical computer science, the meaning of programs usually plays a prominent

part in the explanation of many issues concerning programs. Moreover, what is taken for

the meaning of programs is mathematical by nature. On the other hand, it is customary that

practitioners do not fall back on the mathematical meaning of programs in case explanation

of issues concerning programs is needed. They phrase their explanations from an empirical

perspective. An empirical perspective that we consider appealing is the perspective that a

program is in essence an instruction sequence and an instruction sequence under execution

produces a behaviour that is controlled by its execution environment in the sense that each

step performed actuates the processing of an instruction by the execution environment and

a reply returned at completion of the processing determines how the behaviour proceeds.

The work brought together in this book started with an attempt to approach the se-

mantics of programming languages from the perspective mentioned above. The first pub-

lished paper on this approach is [Bergstra and Loots (2000)]. That paper is superseded

by [Bergstra and Loots (2002)] with regard to the groundwork for the approach: an alge-

braic theory of single-pass instruction sequences and an algebraic theory of mathematical

objects that represent in a direct way the behaviours produced by instruction sequences

1

2 Instruction Sequences for Computer Science

under execution. The main advantages of the approach is that it does not require a lot

of mathematical background and that it is more appealing to practitioners than the main

approaches to programming language semantics: the operational approach, the denota-

tional approach and the axiomatic approach. For an overview of these approaches, see

e.g. [Mosses (2006)].

As a continuation of the work on the above-mentioned approach to programming lan-

guage semantics, the notion of an instruction sequence was subjected to systematic and

precise analysis using the groundwork laid earlier. This led among other things to expres-

siveness results about the instruction sequences considered and variations of the instruction

sequences considered. Instruction sequences are under discussion for many years in diverse

work on computer architecture, as witnessed by e.g. [Lunde (1977); Patterson and Ditzel

(1980); Hennessy et al. (1982); Baker (1991); Xia and Torrellas (1996); Brock and Hunt

(1997); Nair and Hopkins (1997); Ofelt and Hennessy (2000); Tennenhouse and Wetherall

(2007)], but the notion of an instruction sequence has never been subjected to any precise

analysis before.

As another continuation of the work on the above-mentioned approach to programming

language semantics, selected issues relating to well-known subjects from the theory of

computation and the area of computer architecture were rigorously investigated thinking

in terms of instruction sequences. The subjects from the theory of computation, namely

the halting problem and non-uniform computational complexity, are usually investigated

thinking in terms of a common model of computation such as Turing machines and Boolean

circuits. The subjects from the area of computer architecture, namely instruction sequence

performance, instruction set architectures and remote instruction processing, are usually

not investigated in a rigorous way at all.

A lot of the above-mentioned work is brought together in this book with the aim to bring

instruction sequences as a theme in computer science better into the picture. In our opinion,

the book demonstrates that the concept of an instruction sequence offers a novel and useful

viewpoint on issues relating to diverse subjects. In view of the very primitive nature of

this concept, it is in fact rather surprising that instruction sequences have never been a

theme in computer science. Looking ahead, we expect that a theoretical understanding

of issues in terms of instruction sequences will become increasingly more important to

a growing number of developments in computer science. Among them are for instance

the developments with respect to techniques for high-performance program execution on

classical or non-classical computers and techniques for estimating execution times of hard

Introduction 3

real-time systems. For these and other such developments, the abstractions usually made

do not allow for all relevant details to be considered.

This book brings together and streamlines work presented before in peer-reviewed arti-

cles in journals or conference proceedings and preprints archived on the arXiv. The sources

of the different chapters are as follows:

• Chap. 2 originates mainly from [Bergstra and Loots (2002); Bergstra and Middelburg

(2010c, 2012a)];

• Chap. 3 originates mainly from [Bergstra and Middelburg (2007a, 2009b, 2012a)];

• Chap. 4 originates mainly from [Ponse and van der Zwaag (2006); Bergstra and Mid-

delburg (2008b, 2012b)];

• Chap. 5 originates mainly from [Bergstra and Middelburg (2010a, 2012a)];

• Chap. 6 originates mainly from [Bergstra and Middelburg (2010b, 2011a)];

• Chap. 7 originates mainly from [Bergstra and Middelburg (2011c)];

• Chap. 8 originates mainly from [Bergstra and Ponse (2009); Bergstra and Middelburg

(2009a, 2011d)];

• Appendix A originates mainly from [Bergstra and Middelburg (2009a)];

• Appendix B originates mainly from [Bergstra and Middelburg (2012a)];

• Appendix C originates mainly from [Bergstra and Middelburg (2009b)];

• Appendix D originates mainly from [Bergstra and Ponse (2007)].

Chapter 2

Instruction Sequences

This chapter concerns instruction sequences and the behaviours produced by instruction

sequences under execution. An instruction sequence under execution is considered to pro-

duce a behaviour that is controlled by its execution environment in the sense that each step

performed actuates the processing of an instruction by the execution environment and a

reply returned at completion of the processing determines how the behaviour proceeds.

We introduce an algebraic theory of single-pass instruction sequences and an algebraic

theory of mathematical objects that represent in a direct way the behaviours produced by

instruction sequences under execution. We make precise in the setting of the latter the-

ory which behaviours are produced by the instruction sequences considered in the former

theory. The instruction sequences in question include both finite and infinite ones, but

the theory provides a notation by means of which all of them can be represented finitely.

However, this notation is not intended for actual programming. We also devise several al-

ternative notations by means of which all these instruction sequences can be represented

finitely as well, but which are closer to existing assembly languages.

This chapter is not concerned with the interaction between instruction sequences under

execution and components of their execution environment concerning the processing of

instructions. Chapter 3 is devoted to this kind of interaction.

2.1 Single Pass Instruction Sequence Algebra

In this section, we present SPISA (Single Pass Instruction Sequence Algebra). As sug-

gested by the name, SPISA is an algebraic theory of single-pass instruction sequences. The

starting-point of this theory is the simple and appealing perception of a sequential pro-

gram as a single-pass instruction sequence, i.e. a finite or infinite sequence of instructions

of which each instruction is executed at most once and can be dropped after it has been

5

6 Instruction Sequences for Computer Science

executed or jumped over.

The concepts underlying the primitives of SPISA are common in programming, but the

particular form of the primitives is not common. The predominant concern in the design

of the theory has been to achieve simple syntax and semantics, while maintaining the ex-

pressive power of arbitrary finite control. The delivery of a Boolean value at termination

of the execution of an instruction sequence is supported to deal naturally with instruction

sequences that implement some test.

2.1.1 Primitive instructions

In SPISA, it is assumed that a fixed but arbitrary set A of basic instructions has been

given. The intuition is that the execution of a basic instruction modifies in many instances

a state and produces in all instances a reply at its completion. The possible replies are

t (standing for true) and f (standing for false), and the actual reply is in most instances

state-dependent. Therefore, successive executions of the same basic instruction may pro-

duce different replies. The set A is the basis for the set of instructions that may appear

in the instruction sequences considered in SPISA. These instructions are called primitive

instructions.

SPISA has the following primitive instructions:

• for each a ∈ A, a plain basic instruction a ;

• for each a ∈ A, a positive test instruction +a ;

• for each a ∈ A, a negative test instruction −a ;

• for each l ∈ N, a forward jump instruction #l;

• a plain termination instruction !;

• a positive termination instruction !t;

• a negative termination instruction !f.

We write I for the set of all primitive instructions of SPISA. On execution of an instruction

sequence, these primitive instructions have the following effects:

• the effect of a positive test instruction +a is that basic instruction a is executed and

execution proceeds with the next primitive instruction if t is produced and otherwise

the next primitive instruction is skipped and execution proceeds with the primitive

instruction following the skipped one — if there is no primitive instruction to proceed

with, inaction occurs;

• the effect of a negative test instruction−a is the same as the effect of +a , but with the

Instruction Sequences 7

role of the value produced reversed;

• the effect of a plain basic instruction a is the same as the effect of +a , but execution

always proceeds as if t is produced;

• the effect of a forward jump instruction #l is that execution proceeds with the lth next

primitive instruction of the instruction sequence concerned — if l equals 0 or there is

no primitive instruction to proceed with, inaction occurs;

• the effect of the plain termination instruction ! is that execution terminates without

delivery of a Boolean value;

• the effect of the positive termination instruction !t is that execution terminates with

delivery of the Boolean value t;

• the effect of the negative termination instruction !f is that execution terminates with

delivery of the Boolean value f.

2.1.2 Constants, operators and equational axioms

SPISA has one sort: the sort IS of instruction sequences. We make this sort explicit to

anticipate the need for many-sortedness in Sect. 2.2.5. To build terms of sort IS, SPISA

has the following constants and operators:

• for each u ∈ I, the instruction constant u :→ IS ;

• the binary concatenation operator _ ; _ : IS× IS→ IS ;

• the unary repetition operator _ω : IS→ IS .

We assume that there are infinitely many variables of sort IS, including X,Y, Z . SPISA

terms are built as usual. We use infix notation for concatenation and postfix notation for

repetition.

A closed SPISA term is considered to denote a non-empty, finite or eventually periodic

infinite sequence of primitive instructions.1 The instruction sequence denoted by a closed

term of the form t ; t ′ is the instruction sequence denoted by t concatenated with the

instruction sequence denoted by t ′. The instruction sequence denoted by a closed term of

the form tω is the instruction sequence denoted by t concatenated infinitely many times

with itself. Some simple examples of closed SPISA terms are

a ; b ; c , +a ; #2 ; #3 ; b ; !t , a ; (b ; c)ω .

1An eventually periodic infinite sequence is an infinite sequence with only finitely many distinct suffixes.

8 Instruction Sequences for Computer Science

Table 2.1 Axioms of SPISA

(X ; Y) ; Z = X ; (Y ; Z) SPISA1

(Xn)ω = Xω SPISA2

Xω ; Y = Xω SPISA3

(X ; Y)ω = X ; (Y ;X)ω SPISA4

On execution of the instruction sequence denoted by the first term, the basic instructions

a, b and c are executed in that order and after that inaction occurs. On execution of the

instruction sequence denoted by the second term, the basic instruction a is executed first,

if the execution of a produces the reply t, the basic instruction b is executed next and after

that execution terminates with delivery of the value t, and if the execution of a produces

the reply f, inaction occurs. On execution of the instruction sequence denoted by the third

term, the basic instruction a is executed first, and after that the basic instructions b and

c are executed in that order repeatedly forever. In Sect. 3.1.4, we will give examples of

instruction sequences for which the delivery of a Boolean value at termination of their

execution is natural.

Closed SPISA terms are considered equal if they represent the same instruction se-

quence. The axioms for instruction sequence equivalence are given in Table 2.1. In this

table, n stands for an arbitrary positive natural number. The term tn, where t is a SPISA

term, is defined by induction on n as follows: t1 = t and tn+1 = t ; tn.

The unfolding equation Xω = X ;Xω is derivable.

Lemma 2.1. The equationXω = X ;Xω is derivable from the axioms of SPISA.

Proof. This equation is derived as follows:

Xω = (X ;X)ω by SPISA2

= X ; (X ;X)ω by SPISA4

= X ;Xω by SPISA2 .
�

Definition 2.1. A closed SPISA term is in first canonical form if it is of the form t or t ;t ′ω,

where t and t ′ are closed SPISA terms in which the repetition operator does not occur.

Instruction Sequences 9

Each closed SPISA term is derivably equal to a closed SPISA term in first canonical

form.

Lemma 2.2. For all closed SPISA terms t , there exists a closed SPISA term t ′ in first

canonical form such that t = t ′ is derivable from the axioms of SPISA.

Proof. This is proved by induction on the structure of t . The case t ≡ u is trivial. In the

case t ≡ t1 ; t2, by the induction hypothesis, there exist closed SPISA terms t ′1 and t ′2 in

first canonical form such that t1 = t ′1 and t2 = t ′2 are derivable. That t ′1 ; t
′
2 is derivably

equal to a closed SPISA term in first canonical form is easily proved by case distinction on

the two possible forms of t ′1. In the case t ≡ t1
ω, by the induction hypothesis, there exists

a closed SPISA term t ′1 in first canonical form such that t1 = t ′1 is derivable. That t ′1
ω

is derivably equal to a closed SPISA term in first canonical form is easily proved by case

distinction on the two possible forms of t ′1, using Lemma 2.1. �

For example:

(a ; b)ω ; c ; ! = a ; (b ; a)ω ,

+a ; (#4 ; b ; (−c ; #5 ; !)ω)ω = +a ; #4 ; b ; (−c ; #5 ; !)ω .

Lemma 2.2 will be used several times in subsequent chapters.

2.1.3 The initial model

A typical model of SPISA is the model in which:

• the domain is the set of all finite and eventually periodic infinite sequences over the set

I of primitive instructions;

• the operation associated with ; is concatenation;

• the operation associated with ω is the operation ω defined as follows:

– if U is a finite sequence over I, then U ω is the unique eventually periodic infinite

sequence U ′ such that U concatenated n times with itself is a proper prefix of

U ′ for each n ∈ N;

– if U is an eventually periodic infinite sequence over I, then U ω is U .

The elements of the domain of this model are called SPISA instruction sequences.

The model of SPISA described above is an initial model of SPISA. If we speak about

the initial model of SPISA, we have this model in mind. However, if we speak about the

10 Instruction Sequences for Computer Science

Table 2.2 Axioms for the structural congruence predicate

#n+1 ; u1 ; . . . ; un ; #0 ∼=s #0 ; u1 ; . . . ; un ; #0 SC1

#n+1 ; u1 ; . . . ; un ; #l ∼=s #l+n+1 ; u1 ; . . . ; un ; #l SC2

(#l+n+1 ; u1 ; . . . ; un)
ω ∼=s (#l ; u1 ; . . . ; un)

ω SC3

#l+n+n′+2 ; u1 ; . . . ; un ; (v1 ; . . . ; vn′+1)
ω ∼=s

#l+n+1 ; u1 ; . . . ; un ; (v1 ; . . . ; vn′+1)
ω SC4

X = Y ⇒ X ∼=s Y SC5

X ∼=s X SC6

X ∼=s Y ⇒ Y ∼=s X SC7

X ∼=s Y ∧ Y ∼=s Z ⇒ X ∼=s Z SC8

X ∼=s Y ⇒ t [X /Z] ∼=s t [Y /Z] SC9

initial model of another algebraic theory, we have the quotient algebra of the closed term

algebra modulo derivable equality in mind.

2.1.4 Structural congruence

SPISA instruction sequences are considered structurally the same if they are the same after

changing all chained jumps into single jumps and making all jumps into the repeating part

as short as possible if they are eventually periodic infinite sequences.

We introduce the structural congruence predicate _ ∼=s _ : IS × IS. A formula of

the form t ∼=s t ′ is true if the instruction sequences denoted by t and t ′ are structurally

the same. The axioms for the structural congruence predicate are given in Table 2.2.2

In this table, u1, . . . ,un, v1, . . . , vn′+1 stand for arbitrary primitive instructions from I,

X ,Y ,Z stand for arbitrary variables, t stands for an arbitrary SPISA term, and n, n′, l

stand for arbitrary natural numbers.

We write SPISA+SC for SPISA extended with the predicate ∼=s and the axioms SC1–

SC9.

Each closed SPISA term is structurally congruent to one in first canonical form that

does not have chained jumps and has shortest possible jumps into the repeating part if it

has a repeating part.

2We write t [t′/X] for the result of substituting term t ′ for variable X in term t .

Instruction Sequences 11

Definition 2.2. A closed SPISA term t has chained jumps if there exists a closed SPISA

term t ′ such that t = t ′ and t ′ contains a subterm of the form #n+1 ; u1 ; . . . ;un ; #l. A

closed SPISA term t has a repeating part if it is of the form u1 ; . . . ;um ; (v1 ; . . . ; vk)
ω.

A closed SPISA term t of the form u1 ; . . . ; um ; (v1 ; . . . ; vk)
ω has shortest possible

jumps into the repeating part if: (i) for each i ∈ [1,m] for which u i is of the form #l,

l ≤ k +m− i; (ii) for each j ∈ [1, k] for which v j is of the form #l, l ≤ k − 1.

Definition 2.3. A closed SPISA term is in second canonical form if it is in first canonical

form, does not have chained jumps, and has shortest possible jumps into the repeating part

if it has a repeating part.

Each closed SPISA term is derivably structurally congruent to a term in second canon-

ical form.

Lemma 2.3. For all closed SPISA terms t , there exists a closed SPISA terms t ′ in second

canonical form such that t ∼=s t
′ is derivable from the axioms of SPISA+SC.

Proof. By Lemma 2.2, there exists a closed SPISA terms t ′′ in first canonical form such

that t ∼=s t ′′ is derivable from the axioms of SPISA. If t ′′ has chained jumps, it can

be transformed into a closed SPISA term that does not have chained jumps by repeated

applications of SC1–SC3, alternated with applications of SC9 and (X ;Y)ω ∼=s X ;(Y ;X)ω

(which follows immediately from SPISA4 and SC5). If t ′′ does not have shortest possible

jumps into the repeating part, it can be transformed into a closed SPISA term that has

shortest possible jumps into the repeating part by repeated applications of SC3 (for l > 0)

and SC4, alternated with applications of SC9. �

For example:

+a ; #10 ; b ; (−c ; #3)ω ∼=s +a ; #2 ; b ; (−c ; #1)ω ,

+a ; #2 ; (b ; #2 ; c ; #2)ω ∼=s +a ; #0 ; (b ; #0 ; c ; #0)ω .

Lemma 2.3 will be used several times in subsequent chapters.

In Sect. 2.2.5, we will make precise which behaviours are produced by SPISA instruc-

tion sequences. There, use is made of structural congruence to deal with the case where

there is an infinite chain of jumps. In Sect. 2.2.6, we will introduce behavioural congruence.

Structural congruence implies behavioural congruence.

12 Instruction Sequences for Computer Science

2.2 Basic Thread Algebra

In this section, we present BTA (Basic Thread Algebra). BTA is an algebraic theory of

mathematical objects which represent in a direct way the behaviours produced by instruc-

tion sequences under execution: upon each action performed by such an object, a reply

from an execution environment, which takes the action as an instruction to be processed,

determines how the object proceeds. The objects concerned are called threads. We also

introduce an operator meant for the extraction of the threads that represents the behaviours

produced by SPISA instruction sequences under execution from the SPISA instruction se-

quences, and discuss the behavioural equivalence on SPISA instruction sequences induced

by this operator.

In [Bergstra and Loots (2002)], BPPA (Basic Polarized Process Algebra) was intro-

duced as a setting for the description and analysis of the behaviours produced by instruction

sequences under execution. Later BPPA has been renamed to BTA. In this book, however,

the name BTA is used for BPPA extended with two constants for termination with delivery

of a Boolean value.

2.2.1 Constants, operators and equational axioms

In BTA, it is assumed that a fixed but arbitrary set A of basic actions, with tau /∈ A, has

been given. We write Atau forA ∪ {tau}. The members of Atau are referred to as actions.

A thread is a behaviour which consists of performing actions in a sequential fashion.

Upon each basic action performed, a reply from an execution environment determines how

the thread proceeds. The possible replies are the Boolean values t and f. Performing the

action tau will always lead to the reply t.

BTA has one sort: the sort T of threads. We make this sort explicit to anticipate the

need for many-sortedness in Sects. 2.2.5 and 3.1.2. To build terms of sort T, BTA has the

following constants and operators:

• the inaction constant D :→T;

• the plain termination constant S :→T;

• the positive termination constant S+ :→T;

• the negative termination constant S− :→T;

• for each a ∈ Atau, the binary postconditional composition operator _ �a � _ : T ×
T→ T.

We assume that there are infinitely many variables of sort T, including x, y. BTA terms are

Instruction Sequences 13

built as usual. We use infix notation for postconditional composition. We introduce action

prefixing as an abbreviation: a ◦ t , where a ∈ Atau and t is a term of sort T, abbreviates

t �a � t .

The thread denoted by a closed term of the form t �a � t ′ will first perform a , and

then proceed as the thread denoted by t if the reply from the execution environment is t and

proceed as the thread denoted by t ′ if the reply from the execution environment is f. The

thread denoted by D will become inactive, the thread denoted by S will terminate without

delivery of a Boolean value, and the threads denoted by S+ and S− will terminate with

delivery of the Boolean values t and f, respectively.

The action prefixing abbreviation is quite useful. For example, the abbreviated closed

BTA term

a ◦ b ◦ c ◦ D

abbreviates the closed BTA term

((D�c� D)�b� (D�c� D))�a� ((D�c� D)�b� (D�c� D)) .

This term denotes the thread that, irrespective of the replies from the execution environ-

ment, performs basic actions a, b and c in that order and next becomes inactive. Other

examples of abbreviated closed BTA terms are

a ◦ (S�b� D) , (b ◦ S)�a� D .

The first abbreviated term denotes the thread that first performs basic action a, next per-

forms basic action b, if the reply from the execution environment on performing b is t,

after that terminates without delivery of a Boolean value, and if the reply from the execu-

tion environment on performing b is f, after that becomes inactive. The second abbreviated

term denotes the thread that first performs basic action a, if the reply from the execution

environment on performing a is t, next performs the basic action b and after that terminates

without delivery of a Boolean value, and if the reply from the execution environment on

performing a is f, next becomes inactive.

We will also sometimes use the notation an ◦ t for n times repeated action prefixing.

The term an ◦ t is defined by induction on n as follows: a0 ◦ t = t and an+1 ◦ t =

a ◦ (an ◦ t). In the sequel, we identify expressions of the form a ◦ t and an ◦ t with the

BTA term they stand for.

BTA has only one axiom. This axiom is given in Table 2.3.

14 Instruction Sequences for Computer Science

Table 2.3 Axiom of BTA

x� tau� y = x� tau� x T1

2.2.2 Recursion

Each closed BTA term denotes a finite thread, i.e. a thread with a finite upper bound to the

number of actions that it can perform. Infinite threads, i.e. threads without a finite upper

bound to the number of actions that it can perform, can be described by guarded recursion.

Definition 2.4. A guarded recursive specification over BTA is a set of recursion equations

{x = tx | x ∈ V}, where V is a set of variables (of sort T) and each tx is a BTA term of

the form D, S, S+, S− or t �a � t ′ with t and t ′ that contain only variables from V .

We are only interested in models of BTA in which guarded recursive specifications have

unique solutions, such as the projective limit model that will be presented in Sect. 2.2.4.

A simple example of a guarded recursive specification is the one consisting of following

two equations:

x = x�a� y , y = y �b� S .

The x-component of the solution of this guarded recursive specification is the thread that

first performs basic action a repeatedly until the reply from the execution environment on

performing a is f, next performs basic action b repeatedly until the reply from the execution

environment on performing b is f, and after that terminates without delivery of a Boolean

value.

We write V(E), where E is a guarded recursive specification over BTA, for the set of

all variables that occur in E .

For each guarded recursive specification E over BTA and each x ∈ V(E), we intro-

duce a constant 〈x |E〉 of sort T standing for the x -component of the unique solution of

E . We write 〈t |E〉 for t with, for all y ∈ V(E), all occurrences of y in t replaced by

〈y |E〉. The axioms for the constants standing for the components of the unique solutions

of guarded recursive specifications over BTA are RDP (Recursive Definition Principle) and

RSP (Recursive Specification Principle), which are given in Table 2.4. In this table, x

stands for an arbitrary variable, tx stands for an arbitrary BTA term, and E stands for an

arbitrary guarded recursive specification over BTA. Side conditions are added to restrict

Instruction Sequences 15

Table 2.4 Axioms for guarded recursion

〈x |E〉 = 〈tx |E 〉 if x = tx ∈ E RDP

E ⇒ x = 〈x |E〉 if x ∈ V(E) RSP

Table 2.5 AIP and axioms for the projection operators

∧
n≥0 πn(x) = πn(y)⇒ x = y AIP

π0(x) = D P1

πn+1(S+) = S+ P2

πn+1(S−) = S− P3

πn+1(S) = S P4

πn+1(D) = D P5

πn+1(x�a � y) = πn(x) �a � πn(y) P6

what x , tx and E stand for.

RDP and RSP are means to prove closed terms that denote the same infinite thread

equal. We introduce AIP (Approximation Induction Principle) as an additional means to

prove closed terms that denote the same infinite thread equal. AIP is based on the view that

two threads are identical if their approximations up to any finite depth are identical. The

approximation up to depth n of a thread is obtained by cutting it off after it has performedn

actions. In AIP, the approximation up to depth n is phrased in terms of the unary projection

operator πn:T→ T. AIP and the axioms for the projection operators are given in Table 2.5.

In this table, a stands for an arbitrary basic action from Atau and n stands for an arbitrary

natural number.

The usefulness of AIP is mainly a result of the fact that the projections of solutions of

guarded recursive specifications over BTA are representable by closed BTA terms.

Lemma 2.4. Let E be a guarded recursive specification over BTA, and let x be a variable

occurring in E . Then, for all n ∈ N, there exists a closed BTA term t such that E ⇒
πn(x) = t is derivable from the axioms P1–P6.

16 Instruction Sequences for Computer Science

Proof. After replacing n times (n ≥ 0) all occurrences of each y ∈ V(E) in the right-

hand sides of the equations in E by the right-hand side of the equation for y in E , all

occurrences of variables in the right-hand sides of the equations are at least at depth n+ 1.

We write E (n) for the guarded recursive specification obtained in this way, and we write

t
(n)
x for the right-hand side of the equation for x in E (n). Because all occurrences of

variables in t
(n)
x are at least at depth n + 1, πn(t

(n)
x) equals a closed BTA term. Now

assume E and take an arbitrary n ≥ 0. Then E (n) and in particular x = t
(n)
x . From this,

it follows immediately that πn(x) = πn(t
(n)
x). Hence, E ⇒ πn(x) = πn(t

(n)
x). With this

the proof is done because πn(t
(n)
x) equals a closed BTA term. �

For example, let E be the guarded recursive specification consisting of the equation x =

x�a� S only. Then the projections of x are as follows:

π0(x) = D ,

π1(x) = D�a� S ,

π2(x) = (D�a� S)�a� S ,

π3(x) = ((D�a� S)�a� S)�a� S ,
...

As a corollary of the proof of Lemma 2.4, we have that RSP follows from axioms

P1–P6, RDP and AIP.

Corollary 2.1. Let E be a guarded recursive specification over BTA, and let x be a vari-

able occurring in E . Then E ⇒ x = 〈x |E〉 is derivable from the axioms P1–P6, RDP

and AIP.

We write BTA+REC for BTA extended with the constants 〈x |E〉 and the axioms RDP

and RSP, and we write BTA+REC+AIP for BTA+REC extended with the operators πn and

the axioms AIP and P1–P6.

2.2.3 Regular threads

This section is concerned with an important class of threads, namely the class of regular

threads. The threads from this class are threads that can only be in a finite number of states

(in the sense made precise below).

We assume that a model M of BTA in which all guarded recursive specifications have

unique solutions has been given.

To express definitions more concisely, the interpretations of the sorts, constants and

Instruction Sequences 17

operators of BTA or some extension thereof in models of the theory concerned will in

this book be denoted by the sorts, constants and operators themselves. The ambiguity

thus introduced could be obviated by decorating the symbols, with different decorations

for different models, when they are used to denote their interpretation in some model.

However, it will always be immediately clear from the context how the symbols are used.

Moreover, we believe that the decorations are more often than not distracting. Therefore,

we leave it to the reader to mentally decorate the symbols wherever appropriate.

Throughout this book, we use the term thread for the elements of the interpretation of

the sort T in a certain model of BTA or an extension thereof. Thus, we use the term thread

in this section for the elements of the interpretation of the sort T in M.

Definition 2.5. Let t be a thread. Then the set of states or residual threads of t, written

Res(t), is inductively defined as follows:

• t ∈ Res(t);

• if t′ �a � t′′ ∈ Res(t), then t′ ∈ Res(t) and t′′ ∈ Res(t).

Definition 2.6. Let t be a thread and let A′ ⊆ Atau. Then t is regular over A′ if the

following conditions are satisfied:

• Res(t) is finite;

• for all t′, t′′ ∈ Res(t) and a ∈ Atau, t′ �a � t′′ ∈ Res(t) implies a ∈ A′.

We say that t is regular if t is regular overAtau.

For example, the solution of the guarded recursive specification consisting of the fol-

lowing two equations:

x = a ◦ y , y = (c ◦ y)�b� (x�d� S)

has five states and is regular over anyA′ ⊆ Atau for which {a, b, c, d} ⊆ A′.

In the sequel, we will sometimes make use of the fact that being a regular thread co-

incides with being the solution of a finite guarded recursive specification in which the

right-hand sides of the recursion equations are of a restricted form.

Definition 2.7. A linear recursive specification over BTA is a guarded recursive specifica-

tion {x = tx | x ∈ V} over BTA, where each tx is a term of the form D, S, S+, S− or

y �a � z with y , z ∈ V .

18 Instruction Sequences for Computer Science

Proposition 2.1. Let t be a thread and let A′ ⊆ Atau. Then t is regular over A′ iff there

exists a finite linear recursive specification E over BTA in which only basic actions from

A′ occur such that t is a component of the solution of E .

Proof. The implication from left to right is proved as follows. Because t is regular,

Res(t) is finite. Hence, there are finitely many threads t1, . . . , tn, with t = t1, such that

Res(t) = {t1, . . . , tn}. Now t is the x1-component of the solution of the linear recursive

specification consisting of the following equations:

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S+ if ti = S+

S− if ti = S−
S if ti = S

D if ti = D

xj �a � xk if ti = tj �a � tk

for all i ∈ [1, n] .

Because t is regular overA′, only basic actions fromA′ occur in the linear recursive spec-

ification constructed in this way.

The implication from right to left is proved as follows. Thread t is a component of the

unique solution of a finite linear specification in which only basic actions from A′ occur.

This means that there are finitely many threads t1, . . . , tn, with t = t1, such that for every

i ∈ [1, n], ti = S+, ti = S−, ti = S, ti = D or ti = tj �a � tk for some j, k ∈ [1, n]

and a ∈ A′. Consequently, t′ ∈ Res(t) iff t′ = ti for some i ∈ [1, n] and moreover

t′ �a � t′′ ∈ Res(t) only if a ∈ A′. Hence, Res(t) is finite and t is regular overA′. �

2.2.4 The projective limit model

In this section, we construct a projective limit model for BTA. In this model, which covers

finite and infinite threads, threads are represented by infinite sequences of finite approxima-

tions. All guarded recursive specifications over BTA have unique solutions in this model.

Recall that we denote the interpretations of constants and operators in models of BTA by

the constants and operators themselves.

We will write I(BTA) for the initial model of BTA and T (BTA) for the domain of

I(BTA).3 T (BTA) consists of the equivalence classes of closed BTA terms with respect

to derivable equality. In other words, modulo derivable equality, T (BTA) is the set of all

closed BTA terms. Henceforth, we will identify closed BTA terms with their equivalence

class where elements of T (BTA) are concerned.
3In the single-sorted case, the interpretation of a sort in a certain model is also called the domain of that model.

Instruction Sequences 19

Each element of T (BTA) represents a finite thread, i.e. a thread with a finite upper

bound to the number of actions that it can perform. Below, we will construct a model that

covers infinite threads as well. In preparation for that, we define for all n a function that

cuts off threads from T (BTA) after n actions have been performed.

For all n ∈ N, we have the projection function πn :T (BTA) → T (BTA), inductively

defined by

π0(t) = D ,

πn+1(S+) = S+ ,

πn+1(S−) = S− ,

πn+1(S) = S ,

πn+1(D) = D ,

πn+1(t�a � t′) = πn(t)�a � πn(t
′) .

For t ∈ T (BTA), πn(t) is called the nth projection of t. It can be thought of as an

approximation of t. If πn(t) �= t, then πn+1(t) can be thought of as the closest better

approximation of t. If πn(t) = t, then πn+1(t) = t as well. For all n ∈ N, we will write

Tn(BTA) for {πn(t) | t ∈ T (BTA)}.
The semantic equations given above to define the projection functions have the same

shape as the axioms for the projection operators introduced in Sect. 2.2.2.

The property of the projection functions stated in the following lemma will be used

below.

Lemma 2.5. For all t ∈ T (BTA) and n,m ∈ N, we have that πn(πm(t)) = πmin{n,m}(t).

Proof. This is easily proved by induction on the structure of t. �

In the projective limit model, which covers both finite and infinite threads, threads

are represented by projective sequences, i.e. infinite sequences (tn)n∈N
of elements of

T (BTA) such that tn ∈ Tn(BTA) and tn = πn(tn+1) for all n ∈ N. In other words, a

projective sequence is a sequence of which successive components are successive projec-

tions of the same thread. The idea is that any infinite thread is fully characterized by the

infinite sequence of all its finite approximations. We will write T∞(BTA) for the set of all

projective sequences over T (BTA), i.e. the set{
(tn)n∈N

|
∧

n∈N
(tn ∈ Tn(BTA) ∧ tn = πn(tn+1))

}
.

A simple example of a projective sequence is the sequence

(D, a ◦ D, a ◦ a ◦ D, a ◦ a ◦ a ◦ D, . . .) .

20 Instruction Sequences for Computer Science

In the projective limit model of BTA described below, this projective sequence is the solu-

tion of the guarded recursive specification consisting of the single equation x = a ◦ x.

Definition 2.8. The projective limit model I∞(BTA) of BTA consists of the following:

• the set T∞(BTA), the domain of the projective limit model;

• an element of T∞(BTA) for each constant of BTA;

• an operation on T∞(BTA) for each operator of BTA;

where those elements of T∞(BTA) and operations on T∞(BTA) are defined as follows:

S+ = (πn(S+))n∈N
,

S− = (πn(S−))n∈N
,

S = (πn(S))n∈N
,

D = (πn(D))n∈N
,

(tn)n∈N
�a � (t′n)n∈N

= (πn(tn �a � t′n))n∈N
.

Using Lemma 2.5, we easily prove for (tn)n∈N
, (t′n)n∈N

∈ T∞(BTA):

πn(πn+1(S+)) = πn(S+) ,

πn(πn+1(S−)) = πn(S−) ,
πn(πn+1(S)) = πn(S) ,

πn(πn+1(D)) = πn(D) ,

πn(πn+1(tn+1 �a � t′n+1)) = πn(tn �a � t′n) .

From this, it follows immediately that the constants and operations defined above are well-

defined, i.e. the constants are elements of T∞(BTA) and the operations always yield ele-

ments of T∞(BTA).

It follows immediately from the construction of the projective limit model of BTA that

the axiom of BTA forms a complete axiomatization of this model for equations between

closed terms.

The following theorem concerns the uniqueness of solutions of guarded recursive spec-

ification.

Theorem 2.1. Every guarded recursive specification over BTA has a unique solution in

the projective limit model of BTA.

Proof. We give a very brief outline of the proof, because the details are outside the scope

of this book. In the same way as in [Bergstra and Middelburg (2010c)], we can make

T∞(BTA) into a complete metric space in which all operations of the projective limit

Instruction Sequences 21

model are non-expansive and the postconditional composition operations are contractive

and show that the right-hand sides of guarded recursive specifications represent contractive

operations in this complete metric space. From this we can establish along the same lines

as in [Kranakis (1987)], using Banach’s fixed point theorem, that every guarded recursive

specification has a unique solution in the projective limit model. �

Definition 2.9. The projective limit model I∞(BTA+REC) of BTA+REC is I∞(BTA)

expanded with the elements of T∞(BTA) defined by

〈x |E〉 = the x -component of the unique solution of E in I∞(BTA)

as interpretations of the additional constants of BTA+REC. The projective limit model

I∞(BTA+REC+AIP) of BTA+REC+AIP is I∞(BTA+REC) expanded with the opera-

tions on T∞(BTA) defined by

πk((tn)n∈N
) = (πn(tk))n∈N

as interpretations of the additional operators of BTA+REC+AIP.

The initial model I(BTA) can be embedded in a natural way in the projective limit

model I∞(BTA): each t ∈ T (BTA) corresponds to (πn(t))n∈N
∈ T∞(BTA). Projection

on T∞(BTA) is defined such that πk((tn)n∈N
) is tk embedded in T∞(BTA) as described

above.

Remark 2.1. The projective limit construction is known as the inverse limit construction

in domain theory, the theory underlying the approach of denotational semantics for pro-

gramming languages (see e.g. [Schmidt (1986)]). In process algebra, this construction has

been applied for the first time in [Bergstra and Klop (1984)].

2.2.5 Thread extraction for instruction sequences

In this section, we make precise in the setting of BTA which behaviours are produced by

SPISA instruction sequences under execution. For that purpose, we combine SPISA+SC

with BTA+REC+AIP and extend the combination with an operator meant for the extraction

of the threads that represent the behaviours produced by SPISA instruction sequences under

execution from the SPISA instruction sequences. In the resulting theory, it is assumed that

A = A.

The resulting theory has the sorts, constants, operators of both SPISA+SC and BTA+

REC+AIP, the predicate∼=s of SPISA+SC and in addition the following operator:

22 Instruction Sequences for Computer Science

Table 2.6 Axioms for the thread extraction operator

|a | = a ◦ D TE1

|a ;X | = a ◦ |X | TE2

|+a | = a ◦ D TE3

|+a ;X | = |X |�a � |#2 ;X | TE4

|−a | = a ◦ D TE5

|−a ;X | = |#2 ;X |�a � |X | TE6

|#l| = D TE7

|#0 ;X | = D TE8

|#1 ;X | = |X | TE9

|#l+2 ; u | = D TE10

|#l+2 ; u ;X | = |#l+1 ;X | TE11

|!| = S TE12

|! ;X | = S TE13

|!t| = S+ TE14

|!t ;X | = S+ TE15

|!f| = S− TE16

|!f ;X | = S− TE17

X ∼=s #0 ; Y ⇒ |X | = D TE18

• the thread extraction operator |_ | : IS→ T.

The axioms of the resulting theory are the axioms of both SPISA+SC and BTA+REC+

AIP and in addition the axioms for the thread extraction operator given in Table 2.6. In this

table, a stands for an arbitrary basic instruction from A, u stands for an arbitrary primitive

instruction from I, and l stands for an arbitrary natural number.

Axioms TE1–TE17 do not cover the case where there is an infinite chain of jumps.

Recall that SPISA instruction sequences are structurally the same if they are the same after

changing all chained jumps into single jumps and making all jumps into the repeating part

as short as possible if they have repeating parts. Because an infinite chain of forward jumps

corresponds to #0, axiom TE18 from Table 2.6 can be read as follows: if X starts with an

infinite chain of forward jumps, then |X | equals D.

Note that, in the theory put together above, no difference is made between a basic

instruction and the basic action that takes place when it is executed.

Let t and t ′ be closed terms of sort IS and sort T, respectively. Then we loosely say

that instruction sequence t produces thread t ′ if |t | = t ′.

For example,

a ; b ; c produces a ◦ b ◦ c ◦ D ,

+a ; #2 ; #3 ; b ; !t produces (b ◦ S+)�a� D ,

+a ;−b ; c ; ! produces (S�b� (c ◦ S))�a� (c ◦ S) ,
+a ; #2 ; (b ; #2 ; c ; #2)ω produces D�a� (b ◦ D) .

Instruction Sequences 23

In the case of instruction sequences that are not finite, the produced threads can be described

as the solution of a guarded recursive specification. For example, the infinite instruction

sequence

(a ; +b)ω

produces the x-component of the solution of the guarded recursive specification consisting

of following two equations:

x = a ◦ y , y = x�b� y

and the infinite instruction sequence

a ; (+b ; #2 ; #3 ; c ; #4 ;−d ; ! ; a)ω

produces the x-component of the solution of the guarded recursive specification consisting

of following two equations:

x = a ◦ y , y = (c ◦ y)�b� (x�d� S) .

2.2.6 Behavioural equivalence of instruction sequences

Instruction sequences are behaviourally equivalent if they produce the same behaviour.

Definition 2.10. Let t and t ′ be closed SPISA terms. Then t and t ′ are behaviourally

equivalent, written t ≡b t ′, if |t | = |t ′|.

Some examples of behavioural equivalence are

−a ; b ; c ; ! ≡b +a ; #2 ; b ; c ; ! ,

a ; b ; c ; ! ≡b +a ; #2 ; #1 ; b ; c ; ! ,

a ; #2 ; #0 ; b ; c ; ! ≡b a ; b ; c ; ! ,

+a ; #4 ; b ; (−c ; #2 ; !)ω ≡b +a ; ! ; b ; (−c ; #2 ; !)ω .

Behavioural equivalence is not a congruence. For example,

+a ≡b a , but +a ; b �≡b a ; b ,

#2 ; a ; c ; ! ≡b #2 ; b ; c ; ! , but #2 ; #2 ; a ; c ; ! �≡b #2 ; #2 ; b ; c ; ! .

Instruction sequences are behaviourally congruent if they produce the same behaviour

irrespective of the way they are entered and the way they are left.

Definition 2.11. Let t and t ′ be closed SPISA terms. Then t and t ′ are behaviourally

congruent, written t ∼=b t ′, if #l ; t ; !n ≡b #l ; t ′ ; !n for all l, n ∈ N.

24 Instruction Sequences for Computer Science

Behavioural congruence is the largest congruence contained in behavioural equiva-

lence. Structural congruence implies behavioural congruence.

Proposition 2.2. For all closed SPISA terms t and t ′, t ∼=s t
′ implies t ∼=b t ′.

Proof. Because ∼=s and ∼=b are congruences, it is sufficient to prove the counterparts of

axioms SC1–SC5 in which ∼=s is replaced by ∼=b.

SC1: We have to prove that, for all k, l, n ∈ N:

|#l ; #n+1 ; u1 ; . . . ; un ; #0 ; !k| = |#l ; #0 ; u1 ; . . . ; un ; #0 ; !k| .

This is proved by case distinction between l = 0, l = 1, and l > 1. The cases l = 0 and

l > 1 are trivial, and the case l = 1 is easily proved by induction on n.

SC2: This case proved in the same way as the previous one.

SC3: By axiom SPISA3, it is sufficient to prove that, for all l, l′, n ∈ N:

|#l ; (#l′+n+1 ; u1 ; . . . ; un)
ω | = |#l ; (#l′ ; u1 ; . . . ; un)

ω | .

This is proved by case distinction between l = 0, l = 1, 1 < l ≤ n + 1, and l > n + 1.

The case l = 0 is trivial. If we have proved the claim

|(#l′+n+1 ; u1 ; . . . ; un)
ω | = |(#l′ ; u1 ; . . . ; un)

ω| ,

then the case l = 1 becomes trivial and the case 1 < l ≤ n+1 is easily proved by induction

on n. The case l > n+ 1 can be reduced to one of the other three cases after applying the

unfolding equation l/(n + 1) times. To prove the claim, it is sufficient, by RSP, to prove

that |(#l′+n+1 ; u1 ; . . . ; un)
ω| and |(#l′ ; u1 ; . . . ; un)

ω| are solutions of the same

guarded recursive specification. This is easily proved by induction on l′, after applying the

unfolding equation l′/(n+ 1) times.

SC4: This case is proved in a similar way as the previous one.

SC5: This case is trivial. �

Conversely, behavioural congruence does not implies structural congruence. For example,

+a ; ! ; ! ∼=b −a ; ! ; ! , but +a ; ! ; ! �∼=s −a ; ! ; ! .

Each closed SPISA term is behaviourally equivalent to a term of the form tω, where t

is a closed SPISA term in which the repetition operator does not occur.

Lemma 2.6. For all closed SPISA terms t , there exists a closed SPISA term t ′ without

occurrences of the repetition operator such that t ≡b t ′ω is derivable from the axioms of

the theory put together in Sect. 2.2.5.

Instruction Sequences 25

Proof. It is easy to check the fact that, for all closed SPISA terms t , t ≡b t ; (#0)ω is

derivable. By Lemma 2.3, Proposition 2.2 and this fact, it follows that for all closed SPISA

terms t , there exists a closed SPISA term of the form t ′ ; t ′′ω in second canonical form

such that t ≡b t ′ ; t ′′ω is derivable. This means that it is sufficient to consider only closed

SPISA terms t of the form

u1 ; . . . ; um ; (v1 ; . . . ; vk)
ω

that do not have chained jumps, and have shortest possible jumps into the repeating part.

Let t ′ be

(u1 ; . . . ; um ; v ′
1 ; . . . ; v

′
k ; #m+2 ; #m+2)ω ,

where

v ′
i =

{
#l+m+2 if v i ≡ #l ∧ i+ l > k

v i if v i �≡ #l ∨ i+ l ≤ k .

Then it easy to check that t ≡b t ′ω is derivable. �

For example:

+a ; #4 ; b ; (−c ; #2 ; !)ω ≡b (+a ; #4 ; b ;−c ; #5 ; !)ω ,

+a ; #2 ; b ; (−c ; #1)ω ≡b (+a ; #2 ; b ;−c ; #5 ; #4)ω .

It will be shown in Sect. 4.1 that long jump are necessary. This can be formulated in

terms of behavioural equivalence as follows: for each n > 0, there exists a closed SPISA

term t for which there does not exist a closed SPISA term t ′ without occurrences of jump

instructions #l with l > n such that t ≡b t ′.

2.3 Instruction Sequence Notations

The SPISA instruction sequences include both finite and infinite ones, but all of them can

be represented finitely by closed SPISA terms. However, these terms are not intended for

actual programming. In this section, we present several alternative notations by means of

which all SPISA instruction sequences can be represented finitely as well. The ones that

are called ISNR and ISNA will be frequently used in the rest of the book. They are about

the closest things to existing assembly languages. The only difference between them is that

the former has relative jump instructions and the latter has absolute jump instructions. We

show that ISNR and ISNA can easily be translated into each other.

26 Instruction Sequences for Computer Science

2.3.1 The instruction sequence notation ISNR

In this section, we introduce the instruction sequence notation ISNR (Instruction Sequence

Notation with Relative jumps).

In ISNR, like in SPISA, it is assumed that a fixed but arbitrary setA of basic instructions

has been given.

ISNR has the primitive instructions of SPISA and in addition:

• for each l ∈ N, a backward jump instruction \#l.

ISNR instruction sequences are expressions of the form u1 ; . . . ;uk, where u1, . . . ,uk are

primitive instructions of ISNR.

On execution of an ISNR instruction sequence, the effects of the plain basic instruc-

tions, the positive test instructions, the negative test instructions, the forward jump instruc-

tions, and the termination instructions are as in SPISA. The effect of a backward jump

instruction \#l is that execution proceeds with the lth previous primitive instruction of the

instruction sequence concerned. If l equals 0 or there is no primitive instruction to proceed

with, inaction occurs.

We define the meaning of ISNR instruction sequences by means of a function

isnr2spisa from the set of all ISNR instruction sequences to the set of all closed SPISA

terms. This function is defined by

isnr2spisa(u1 ; . . . ; uk) = (ψ1(u1) ; . . . ; ψk(uk) ; #0 ; #0)ω ,

where the auxiliary functions ψj from the set of all primitive instructions of ISNR to the

set of all primitive instructions of SPISA are defined as follows (1 ≤ j ≤ k):

ψj(#l) = #l if j + l ≤ k ,

ψj(#l) = #0 if j + l > k ,

ψj(\#l) = #k+2−l if l < j ,

ψj(\#l) = #0 if l ≥ j ,

ψj(u) = u if u is not a jump instruction .

The idea is that each backward jump can be replaced by a forward jump if the entire

instruction sequence is repeated. To enforce that inaction occurs after execution of the last

instruction of the instruction sequence if the last instruction is a plain basic instruction, a

positive test instruction or a negative test instruction, #0 ;#0 is appended to ψ1(u1) ; . . . ;

ψk(uk).

Let p be an ISNR instruction sequence. Then isnr2spisa(p) represents the meaning

Instruction Sequences 27

of p as a SPISA instruction sequence. For example, the meaning of the ISNR instruction

sequence

+a ; #4 ; b ; c ; \#2

is represented by the closed SPISA term

(+a ; #0 ; b ; c ; #5 ; #0 ; #0)ω .

We use the phrase projection semantics to refer to the approach to semantics followed

above. Meaning functions like isnr2spisa are called projections. The main advantage of

projection semantics is that it does not require a lot of mathematical background. Found

challenges for the point of view from which projection semantics originates are sketched

in Appendix A.

The intended behaviour of an ISNR instruction sequence p under execution is the be-

haviour of the SPISA instruction sequence represented by isnr2spisa(p) under execu-

tion. That is, the behaviour of p under execution, written |p|ISNR, is |isnr2spisa(p)|.
We have that |u1 ; . . . ; uk|ISNR = |1,u1 ; . . . ; uk|, where |_ , _ | is defined by the

following equations:

|i,u1 ; . . . ; uk| = D if i = 0 ∨ i > k

|i,u1 ; . . . ; uk| = a ◦ |i+ 1,u1 ; . . . ; uk| if u i = a

|i,u1 ; . . . ; uk| = |i+ 1,u1 ; . . . ; uk|�a � |i+ 2,u1 ; . . . ; uk| if u i = +a

|i,u1 ; . . . ; uk| = |i+ 2,u1 ; . . . ; uk|�a � |i+ 1,u1 ; . . . ; uk| if u i = −a
|i,u1 ; . . . ; uk| = |i+ l,u1 ; . . . ; uk| if u i = #l

|i,u1 ; . . . ; uk| = |i .− l,u1 ; . . . ; uk| if u i = \#l
|i,u1 ; . . . ; uk| = S if u i = !

|i,u1 ; . . . ; uk| = S+ if u i = !t

|i,u1 ; . . . ; uk| = S− if u i = !f

and the rule that |i,u1 ; . . . ; uk| = D if u i is the beginning of an infinite jump chain (we

refrain from formalizing the condition of this rule).

If 1 ≤ i ≤ k, |i,u1 ; . . . ; uk| can be read as the behaviour produced by the ISNR

instruction sequence u1 ; . . . ; uk if execution starts at the ith primitive instruction. By

default, execution starts at the first primitive instruction.

For example, the ISNR instruction sequence

a ; +b ; #2 ; #3 ; c ; \#4 ; +d ; !t ; !f

28 Instruction Sequences for Computer Science

produces the x-component of the solution of the guarded recursive specification consisting

of the following two equations:

x = a ◦ y , y = (c ◦ y)�b� (S+ �d� S−) .

In this book, we will sometimes use a restricted version of ISNR, called ISNRs (ISNR

with strict Boolean termination). The primitive instructions of ISNRs are the primitive in-

structions of SPISA with the exception of the plain termination instruction. Thus, ISNRs

instruction sequences are ISNR instruction sequences in which the plain termination in-

struction does not occur.

Let ISN be either ISNR or ISNRs. Then we will write ;ni=1 pi, where p1, . . . ,pn are

ISN instruction sequences, for the ISN instruction sequence p1 ; . . . ; pn.

2.3.2 The instruction sequence notation ISNA

In this section, we introduce the instruction sequence notation ISNA (Instruction Sequence

Notation with Absolute jumps).

In ISNA, like in SPISA, it is assumed that a fixed but arbitrary set A of basic instructions

has been given.

ISNA has the primitive instructions of SPISA except the forward jump instructions and

in addition:

• for each l ∈ N, an absolute jump instruction ##l.

ISNA instruction sequences are expressions of the form u1 ; . . . ;uk, where u1, . . . ,uk are

primitive instructions of ISNA.

On execution of an ISNA instruction sequence, the effects of the plain basic instruc-

tions, the positive test instructions, the negative test instructions, and the termination in-

structions are as in SPISA. The effect of an absolute jump instruction ##l is that execution

proceeds with the lth primitive instruction of the instruction sequence concerned. If ##l is

itself the lth instruction or there is no primitive instruction to proceed with, inaction occurs.

We define the meaning of ISNA instruction sequences by means of a projection

isna2spisa from the set of all ISNA instruction sequences to the set of all closed SPISA

terms. This function is defined by

isna2spisa(u1 ; . . . ; uk) = (ϕ1(u1) ; . . . ; ϕk(uk) ; #0 ; #0)ω ,

where the auxiliary functions ϕj from the set of all primitive instructions of ISNA to the

Instruction Sequences 29

set of all primitive instructions of SPISA are defined as follows (1 ≤ j ≤ k):

ϕj(##l) = #l−j if j ≤ l ≤ k ,

ϕj(##l) = #k+2−(j−l) if 0 < l < j ,

ϕj(##l) = #0 if l = 0 ∨ l > k ,

ϕj(u) = u if u is not a jump instruction .

Let p be an ISNA instruction sequence. Then isna2spisa(p) represents the meaning

of p as a SPISA instruction sequence. For example, the meaning of the ISNA instruction

sequence

+a ; ##6 ; b ; c ; ##3

is represented by the closed SPISA term

(+a ; #0 ; b ; c ; #5 ; #0 ; #0)ω .

The intended behaviour of an ISNA instruction sequence p under execution is the be-

haviour of the SPISA instruction sequence represented by isna2spisa(p) under execu-

tion. That is, the behaviour of p under execution, written |p|ISNA, is |isna2spisa(p)|.
We have that |u1 ; . . . ; uk|ISNA = |1,u1 ; . . . ; uk|, where |_ , _ | is defined by the

following equations:

|i,u1 ; . . . ; uk| = D if i = 0 ∨ i > k

|i,u1 ; . . . ; uk| = a ◦ |i+ 1,u1 ; . . . ; uk| if u i = a

|i,u1 ; . . . ; uk| = |i+ 1,u1 ; . . . ; uk|�a � |i+ 2,u1 ; . . . ; uk| if u i = +a

|i,u1 ; . . . ; uk| = |i+ 2,u1 ; . . . ; uk|�a � |i+ 1,u1 ; . . . ; uk| if u i = −a
|i,u1 ; . . . ; uk| = |l,u1 ; . . . ; uk| if u i = ##l

|i,u1 ; . . . ; uk| = S if u i = !

|i,u1 ; . . . ; uk| = S+ if u i = !t

|i,u1 ; . . . ; uk| = S− if u i = !f

and the rule that |i,u1 ; . . . ; uk| = D if u i is the beginning of an infinite jump chain.

For example, the ISNA instruction sequence

a ; +b ; ##5 ; ##7 ; c ; ##2 ; +d ; !t ; !f

produces the x-component of the solution of the guarded recursive specification consisting

of the following two equations:

x = a ◦ y , y = (c ◦ y)�b� (S+ �d� S−) .

30 Instruction Sequences for Computer Science

2.3.3 Inter-translatability of ISNR and ISNA

ISNR instruction sequences and ISNA instruction sequences are translatable into each other

by the functions isnr2isna and isna2isnr, respectively. These functions are defined by

isnr2isna(u1 ; . . . ; uk) = ψ1(u1) ; . . . ; ψk(uk) ,

where the auxiliary functions ψj from the set of all primitive instructions of ISNR to the

set of all primitive instructions of ISNA are defined as follows (1 ≤ j ≤ k):

ψj(#l) = ##l+j ,

ψj(\#l) = ##j−l if l < j ,

ψj(\#l) = ##0 if l ≥ j ,

ψj(u) = u if u is not a jump instruction ,

and

isna2isnr(u1 ; . . . ; uk) = ϕ1(u1) ; . . . ; ϕk(uk) ,

where the auxiliary functions ϕj from the set of all primitive instructions of ISNA to the

set of all primitive instructions of ISNR are defined as follows (1 ≤ j ≤ k):

ϕj(##l) = #l−j if l ≥ j ,

ϕj(##l) = \#j−l if l < j ,

ϕj(u) = u if u is not a jump instruction .

A simple example of the inter-translatability is:

isnr2isna(+a ; #4 ; b ; c ; \#2) = +a ; ##6 ; b ; c ; ##3 ,

isna2isnr(+a ; ##6 ; b ; c ; ##3) = +a ; #4 ; b ; c ; \#2 .

We have that the composition of isnr2isna and isna2isnr in either order is an iden-

tity function up to behavioural equivalence.

Proposition 2.3.

(1) For all ISNR instruction sequences p , |isna2isnr(isnr2isna(p))|ISNR = |p|ISNR.

(2) For all ISNA instruction sequences p, |isnr2isna(isna2isnr(p))|ISNA = |p|ISNA.

Proof. The proof is trivial. �

2.3.4 Additional instruction sequence notations

ISNR and ISNA have the explicit termination instructions from SPISA. ISNRI and ISNAI,

which will be presented below, have the implicit termination convention commonly used

Instruction Sequences 31

in assembly languages instead. That is, if there is no primitive instruction to proceed with

then termination occurs. Thus, ISNRI and ISNAI are really the closest thing to existing

assembly languages. However, they are strictly weaker than SPISA: because the explicit

termination instructions from SPISA are not available, termination with a Boolean value is

not possible.

ISNRI and ISNAI have the primitive instructions of ISNR and ISNA, respectively, with

the exception of the plain, positive and negative termination instructions. ISNRI instruction

sequences and ISNAI instruction sequences are expressions of the form u1 ; . . . ;uk, where

u1, . . . ,uk are primitive instructions of ISNRI and ISNAI, respectively.

We define meaning of ISNRI instruction sequences and ISNAI instruction sequences

by means of projections isnri2isnr from ISNRI instruction sequences to ISNR instruc-

tion sequences and isnai2isna from ISNAI instruction sequences to ISNA instruction

sequences, respectively. These functions are defined by

isnri2isnr(u1 ; . . . ; uk) = ψ1(u1) ; . . . ; ψk(uk) ; ! ; ! ,

where the auxiliary functions ψj from the set of all primitive instructions of ISNRI to the

set of all primitive instructions of ISNR are defined as follows (1 ≤ j ≤ k):

ψj(#l) = ! if j + l > k ,

ψj(#l) = #l if j + l ≤ k ,

ψj(\#l) = ! if l ≥ j ,

ψj(\#l) = \#l if l < j ,

ψj(u) = u if u is not a jump instruction

and

isnai2isna(u1 ; . . . ; uk) = ϕ(u1) ; . . . ; ϕ(uk) ; ! ; ! ,

where the auxiliary function ϕ from the set of all primitive instructions of ISNAI to the set

of all primitive instructions of ISNA is defined as follows:

ϕ(##l) = ! if l = 0 ∨ l > k ,

ϕ(##l) = ##l if 0 < l ≤ k ,

ϕ(u) = u if u is not a jump instruction .

Let p be an ISNRI instruction sequence. Then isnri2isnr(p) is the meaning of p as

an ISNR instruction sequence. For example, the meaning of the ISNRI instruction sequence

+a ; #10 ; \#1 ;−b ; #2 ; +c

32 Instruction Sequences for Computer Science

is the ISNR instruction sequence

+a ; ! ; \#1 ;−b ; ! ; +c ; ! ; ! .

Notice that the ISNRI instruction sequence can be considered an ISNR instruction sequence

as well. However, execution as ISNR instruction sequence will lead to inaction in all cases

where execution as ISNRI instruction sequence will lead to termination. Similar remarks

apply to ISNAI instruction sequences.

In [Bergstra and Loots (2002)], a version of SPISA with a somewhat restricted set

of primitive instructions is presented. The primitive instructions of this version, which is

called PGA, are the primitive instructions of SPISA with the exception of the positive and

negative termination instructions. Thus, PGA instruction sequences are SPISA instruction

sequences in which the positive and negative termination instructions do not occur.

A hierarchy of instruction sequence notations rooted in PGA is presented in [Bergstra

and Loots (2002)] as well. The instruction sequence notation that is the highest in the

hierarchy, named PGLS, supports structured programming by offering a rendering of con-

ditional and loop constructs instead of (unstructured) jump instructions. For each of the

instruction sequence notations that appear in the hierarchy, except the lowest one, a func-

tion is given by means of which each instruction sequence from that instruction sequence

notation is translated into an instruction sequence from the first instruction sequence nota-

tion lower in the hierarchy that produces the same behaviour on execution. In the case of

the lowest one, each instruction sequence is translated into a closed PGA term. Clearly, this

way of giving semantics constitutes a further elaboration of projection semantics. ISNRI

and ISNAI occur in this hierarchy under the names PGLC and PGLD, respectively.

A PGA tool set is available from http://www.science.uva.nl/research/

prog/projects/pga/toolset. This tool set includes, for most instruction sequence

notations in the above-mentioned hierarchy, a translator to the first instruction sequence no-

tation lower in the hierarchy, a syntax checker, and a simulator of the behaviours produced

by instruction sequences under execution (see also [Diertens (2003)]).

Chapter 3

Instruction Processing

This chapter concerns the interaction between instruction sequences under execution and

components of their execution environment concerning the processing of instructions. The

idea is that an execution environment provides a family of named components of which

each is responsible for the processing of particular instructions. The attention is restricted

to the components that are capable of processing the instructions concerned independently.

With this, we mean that no interaction with external parties is needed by the components

to accomplish the processing. Components that are capable of processing instructions for

storing and fetching data of an auxiliary nature are typical examples of components that do

not need interaction with external parties, but components that are capable of processing

instructions for reading input data or showing output data need interaction with external

parties.

We introduce so-called services, which represent the behaviours exhibited by the com-

ponents of an execution environment that are capable of processing particular instructions

and doing so independently, and extend the algebraic theory of threads, which represent the

behaviours produced by instruction sequences under execution, with an operator meant for

the composition of families of named services and operators that have a direct bearing on

the processing of instructions by services from such service families.

We also introduce the concept of a functional unit. This concept is useful in the current

setting because a functional unit is an abstract model of a machine. In the frequently

occurring case where the behaviours exhibited by a component of an execution environment

that is capable of processing particular instructions and doing so independently can be

viewed as the behaviours of a machine in its different states, the services concerned are

completely determined by a functional unit. Some results about functional units for natural

numbers are given in Appendix B.

This chapter is also concerned with instruction sequence notations with programming

33

34 Instruction Sequences for Computer Science

features not found in ISNR or ISNA. We devise instruction sequence notations with indi-

rect jump instructions, returning jump instructions and an accompanying return instruction,

and dynamically instantiated instructions and explain these notations with the help of some

simple functional units. Dynamic instruction instantiation is a genuine and useful program-

ming feature which is not suggested by existing programming practice. An application of

dynamic instruction instantiation is given in Appendix C.

In Appendix D, an analytic execution architecture, i.e. a model of a hypothetical execu-

tion environment for instruction sequences, is given. This execution architecture has been

designed for the purpose of explaining how an instruction sequence may be executed, and

makes explicit the interaction of an instruction sequence under execution with the compo-

nents of its execution environment.

3.1 Basics of Instruction Processing

In this section, we extend BTA with an operator meant for the composition of families of

named services and operators that have a direct bearing on the processing of instructions

by services from such service families. The extension in question is based on assumptions

with respect to services which characterize them just sufficiently for the purpose of the

extension. As a consequence, services represent a rather abstract view on the behaviours

exhibited by the components of an execution environment that are capable of processing

particular instructions and doing so independently.

A more concrete view on these behaviours, namely as the behaviours of a machines

in its different states, is often more comprehensible. Section 3.2 is devoted to this more

concrete view.

3.1.1 Services and service families

Below, we introduce service families and a composition operator for service families. How-

ever, preceding that we will go into some details of services.

It is assumed that a fixed but arbitrary set M of methods has been given. A service is

able to process certain methods. The processing of a method may involve a change of the

service. At completion of the processing of a method, the service produces a reply value.

The possible replies are t, f and d (standing for divergent).

For example, a service may be able to process methods for pushing a natural number on

a stack (push:n), testing whether the top of the stack equals a natural number (topeq:n),

Instruction Processing 35

and popping the top element from the stack (pop). Processing of a pushing method or a

popping method changes the service, because it changes the stack with which it deals, and

produces the reply value t if no stack overflow or stack underflow occurs and f otherwise.

Processing of a testing method does not change the service, because it does not changes

the stack with which it deals, and produces the reply value t if the test succeeds and f

otherwise. Attempted processing of a method that the service is not able to process changes

the service into one that is not able to process any method and produces the reply d. A

precise description of services of this kind will be given in Sect. 3.2.4.

In SFA, the algebraic theory of service families introduced below, the following is

assumed with respect to services:

• a signature ΣS has been given that includes the following sorts:

– the sort S of services;

– the sort R of replies;

and the following constants and operators:

– the empty service constant δ :→ S;

– the reply constants t, f, d,m :→R;

– for each m ∈M, the derived service operator ∂
∂m : S→ S;

– for each m ∈M, the service reply operator �m : S→ R;

• a minimal ΣS-algebra S has been given in which t, f, d and m are mutually different,

and

–
∧

m∈M
∂

∂m (z) = z ∧ �m(z) = d⇒ z = δ holds;

– for each m ∈M, ∂
∂m (z) = δ ⇔ �m (z) = d holds;

– for each m ∈M, �m (z) �= m holds.

The intuition concerning ∂
∂m and �m is that on a request to service s to process method

m :

• if �m(s) �= d, s processes m , produces the reply �m (s), and then proceeds as ∂
∂m (s);

• if �m(s) = d, s is not able to process method m and proceeds as δ.

The empty service δ itself is unable to process any method.

In the sequel, we will restrict ourselves to the case where ΣS consists of the sorts,

constants and operators that are mentioned above and a constant of sort S for each element

of the interpretation of the sort S. In that case, any ΣS-algebra that can be taken as S is

fully determined by the following:

36 Instruction Sequences for Computer Science

• the interpretation of the sort S;

• the interpretation of each constant of sort S;

• for each m ∈M, the interpretation of the operators ∂
∂m and �m .

If we characterize a ΣS -algebra that can be taken as S in this way, we will refer to the

interpretation of the sort S as the set S of services.

It is also assumed that a fixed but arbitrary set F of foci has been given. An execution

environment is viewed as a set of named components where each name occurs only once.

Foci play the role of names of the components of an execution environment. The name of

a component of an execution environment is considered to be inherited by the behaviour

exhibited by the component. This way, the service family provided by an execution en-

vironment is a set of named services where each name occurs only once. Moreover, the

names of services in a service family are foci.

SFA has the sorts, constants and operators from ΣS and in addition the following sort:

• the sort SF of service families;

and the following constant and operators:

• the empty service family constant ∅ :→ SF;

• for each f ∈ F , the unary singleton service family operator f . _ : S→ SF;

• the binary service family composition operator _ ⊕ _ : SF× SF→ SF;

• for each F ⊆ F , the unary encapsulation operator ∂F : SF→ SF.

We assume that there are infinitely many variables of sort S, including z, and infinitely

many variables of sort SF, including u, v, w. Terms are built as usual in the many-sorted

case (see e.g. [Wirsing (1990); Sannella and Tarlecki (1999)]). We use prefix notation for

the singleton service family operators and infix notation for the service family composition

operator.

The service family denoted by ∅ is the empty service family. The service family denoted

by a closed term of the form f .t , where t is a closed term of sort S, consists of one named

service only, the service concerned is the service denoted by t , and the name of this service

is f . The service family denoted by a closed term of the form t ⊕ t ′, where t and t ′ are

closed terms of sort SF, consists of all named services that belong to either the service

family denoted by t or the service family denoted by t ′. In the case where a named service

from the service family denoted by t and a named service from the service family denoted

by t ′ have the same name, they collapse to an empty service with the name concerned. The

Instruction Processing 37

Table 3.1 Axioms of SFA

u⊕ ∅ = u SFC1

u⊕ v = v ⊕ u SFC2

(u⊕ v)⊕ w = u⊕ (v ⊕ w) SFC3

f .z ⊕ f .z′ = f .δ SFC4

∂F (∅) = ∅ SFE1

∂F (f .z) = ∅ if f ∈ F SFE2

∂F (f .z) = f .z if f /∈ F SFE3

∂F (u⊕ v) = ∂F (u)⊕ ∂F (v) SFE4

service family denoted by a closed term of the form ∂F (t), where t is a closed term of sort

SF, consists of all named services with a name not in F that belong to the service family

denoted by t .

Let f be a focus, t be a closed term of sort S and t ′ be a closed term of sort SF. Then

there are no services that collapse to an empty service in the service family composition

of the service families denoted by f .t and ∂{f }(t ′). In other words, it is certain that the

service denoted by t belongs to the service family denoted by f .t ⊕ ∂{f }(t ′). By contrast,

it is not certain that the service denoted by t belongs to the service family denoted by

f .t ⊕ t ′.

Using the singleton service family operators and the service family composition oper-

ator, any finite number of possibly identical services can be brought together in a service

family provided that the services concerned are given different names. In Sect. 3.1.4, we

will give an example of the use of the singleton service family operators and the service

family composition operator. The empty service family constant and the encapsulation

operators are primarily meant to axiomatize the operators that are introduced in Sect. 3.1.2.

Remark 3.1. The service family composition operator takes the place of the non-interfer-

ing combination operator from [Bergstra and Ponse (2002)]. As suggested by the name,

service family composition is composition of service families. Non-interfering combina-

tion is composition of services. The non-interfering combination of services can process all

methods that can be processed by only one of the services. This has the disadvantage that

its usefulness is rather limited without an additional renaming mechanism. For example,

a finite number of identical services cannot be brought together in a service by means of

non-interfering combination.

The axioms of SFA are given in Table 3.1. In this table, f stands for an arbitrary focus

from F and F stands for an arbitrary subset of F . The axioms of SFA simply formalize

38 Instruction Sequences for Computer Science

the informal explanation given above.

We can prove that each closed SFA term of sort SF can be reduced to one in which

encapsulation operators do not occur.

Lemma 3.1. For all closed SFA terms t of sort SF, there exists a closed SFA term t ′ of

sort SF in which encapsulation operators do not occur such that t = t ′ is derivable from

the axioms of SFA.

Proof. This is proved by induction on the structure of t . The cases t ≡ ∅ and t ≡ f .t1

are trivial, and the case t ≡ t1 ⊕ t2 follows immediately from the induction hypothesis.

The case t ≡ ∂F (t1) is somewhat more involved. By the induction hypothesis, there exists

a closed SFA term t ′1 of sort SF in which encapsulation operators do not occur such that

t1 = t ′1. This means that we are done with this case if we have proved the following claim:

Let t ′1 be a closed SFA term of sort SF in which encapsulation operators do not

occur. Then there exists a closed SFA term t ′ of sort SF in which encapsulation

operators do not occur such that ∂F (t ′1) = t ′ is derivable from the axioms of SFA.

This claim is easily proved by induction on the structure of t ′1. �

We will write⊕n
i=1 t i, where t1, . . . , tn are terms of sort SF, for the term t1⊕ . . .⊕

tn.

A typical model of SFA is the free SFA-extension of S. This model will be used in

Sect. 3.1.8 to construct a projective limit model for the extension of BTA combined with

SFA that will be introduced in Sect. 3.1.2.

3.1.2 Use, apply and reply

A thread may interact with the named services from the service family provided by an

execution environment. That is, a thread may perform a basic action for the purpose of

requesting a named service to process a method and to return a reply at completion of the

processing of the method. In this section, we combine BTA with SFA and extend this

combination with three operators that relate to this kind of interaction between threads

and services. The resulting algebraic theory is called BTA+TSI (BTA with Thread-Service

Interaction).

The operators in question are called the use operator, the apply operator, and the reply

operator. The difference between the use operator and the apply operator is a matter of

perspective: the use operator is concerned with the effects of service families on threads

Instruction Processing 39

and therefore produces threads, whereas the apply operator is concerned with the effects of

threads on service families and therefore produces service families. The reply operator is

concerned with the effects of service families on the Boolean values that threads possibly

deliver at their termination.

The reply operator produces special values in the case where no Boolean value is de-

livered at termination or no termination takes place. Thus, it is accomplished that all terms

with occurrences of the reply operator denote something. We prefer to use the reply oper-

ator only if it is known that termination with delivery of a Boolean value takes place (see

also Sect. 3.1.7).

In BTA, it is assumed that a fixed but arbitrary setA of basic actions has been given. In

BTA+TSI, the following additional assumptions relating to A are made:

• a fixed but arbitrary set F of foci has been given;

• a fixed but arbitrary setM of methods has been given;

• A = {f .m | f ∈ F ∧m ∈M}.

These additional assumptions are made to be able to deal with the kind of interaction be-

tween threads and services being considered in BTA+TSI. All three operators mentioned

above are concerned with the processing of methods by services from a service family in

pursuance of basic actions performed by a thread. Therefore, a method forms a part of each

basic action. The service involved in the processing of a method is the service whose name

is the focus that forms a part of the basic action in question.

BTA+TSI has the sorts, constants and operators of both BTA and SFA and in addition

the following constants and operators:

• the binary use operator _ / _ :T× SF→ T;

• the binary apply operator _ • _ :T× SF→ SF;

• the binary reply operator _ ! _ :T× SF→ R.

We use infix notation for the use, apply and reply operators.

The thread denoted by a closed term of the form t / t ′ and the service family denoted

by a closed term of the form t • t ′ are the thread and service family, respectively, that result

from processing the method of each basic action performed by the thread denoted by t

by the service in the service family denoted by t ′ with the focus of the basic action as its

name if such a service exists. When the method of a basic action performed by a thread is

processed by a service, the service changes in accordance with the method concerned, and

affects the thread as follows: the basic action turns into the internal action tau and the two

40 Instruction Sequences for Computer Science

Table 3.2 Axioms for the use operator

S+ / u = S+ U1

S− / u = S− U2

S / u = S U3

D / u = D U4

(tau ◦ x) / u = tau ◦ (x / u) U5

(x� f .m � y) / ∂{f }(u) = (x / ∂{f }(u))� f .m � (y / ∂{f }(u)) U6

(x� f .m � y) / (f .t ⊕ ∂{f }(u)) = tau ◦ (x / (f . ∂
∂m t ⊕ ∂{f }(u))) if �m(t) = t U7

(x� f .m � y) / (f .t ⊕ ∂{f }(u)) = tau ◦ (y / (f . ∂
∂m t ⊕ ∂{f }(u))) if �m(t) = f U8

(x� f .m � y) / (f .t ⊕ ∂{f }(u)) = D if �m(t) = d U9

ways to proceed reduce to one on the basis of the reply value produced by the service. The

value denoted by a closed term of the form t ! t ′ is the Boolean value that the thread denoted

by t / t ′ delivers at its termination if the thread terminates and delivers a Boolean value at

termination, the value m (standing for meaningless) if the thread terminates and does not

deliver a Boolean value at termination, and the value d if the thread does not terminate.1

A simple example of the application of the use operator, the apply operator and the

reply operator is

((nns.pop ◦ S+)�nns.topeq:0� S−) / nns.NNS(0σ) ,
((nns.pop ◦ S+)�nns.topeq:0� S−) • nns.NNS(0σ) ,
((nns.pop ◦ S+)�nns.topeq:0� S−) ! nns.NNS(0σ) ,

where NNS(σ) denotes a stack service as described in Sect. 3.1.1 dealing with a stack

whose content is represented by the sequence σ. A precise description of stack services

will be given in Sect. 3.2.4. The first term denotes the thread that performs tau twice and

then terminates with delivery of the Boolean value t. The second term denotes the stack

service dealing with a stack whose content is σ, i.e. the content of the stack at termination

of the thread denoted by the first term, and the third term denotes the reply value t, i.e. the

reply value delivered at termination of the thread denoted by the first term.

The axioms of BTA+TSI are the axioms of BTA, the axioms of SFA, and the axioms

given in Tables 3.2, 3.3 and 3.4. In these tables, f stands for an arbitrary focus from F , m
1A service never produces the value m. The value m was already introduced in Sect. 3.1.1 in order to circumvent

Instruction Processing 41

Table 3.3 Axioms for the apply operator

S+ • u = u A1

S− • u = u A2

S • u = u A3

D • u = ∅ A4

(tau ◦ x) • u = x • u A5

(x� f .m � y) • ∂{f }(u) = ∅ A6

(x� f .m � y) • (f .t ⊕ ∂{f }(u)) = x • (f . ∂
∂m t ⊕ ∂{f }(u)) if �m(t) = t A7

(x� f .m � y) • (f .t ⊕ ∂{f }(u)) = y • (f . ∂
∂m t ⊕ ∂{f }(u)) if �m(t) = f A8

(x� f .m � y) • (f .t ⊕ ∂{f }(u)) = ∅ if �m(t) = d A9

Table 3.4 Axioms for the reply operator

S+ ! u = t R1

S− ! u = f R2

S ! u = m R3

D ! u = d R4

(tau ◦ x) ! u = x ! u R5

(x� f .m � y) ! ∂{f }(u) = d R6

(x� f .m � y) ! (f .t ⊕ ∂{f }(u)) = x ! (f . ∂
∂m t ⊕ ∂{f }(u)) if �m (t) = t R7

(x� f .m � y) ! (f .t ⊕ ∂{f }(u)) = y ! (f . ∂
∂m t ⊕ ∂{f }(u)) if �m (t) = f R8

(x� f .m � y) ! (f .t ⊕ ∂{f }(u)) = d if �m (t) = d R9

stands for an arbitrary method from M, and t stands for an arbitrary term of sort S. The

axioms simply formalize the informal explanation given above and in addition stipulate

what is the result of use, apply and reply if inappropriate foci or methods are involved.

The following equations are examples of equations that are derivable in the case where

the introduction of two sorts of reply values.

42 Instruction Sequences for Computer Science

the size of σ is less than the maximal stack size:

(nns.push:n ◦ x) / nns.NNS(σ) = tau ◦ (x / nns.NNS(nσ)) ,
(x�nns.pop� S) / nns.NNS(ε) = tau ◦ S ,
(x�nns.pop� S) / nns.NNS(nσ) = tau ◦ (x / nns.NNS(σ)) ,
(nns.push:n ◦ x) • nns.NNS(σ) = x • nns.NNS(nσ) ,
(x�nns.pop� S) • nns.NNS(ε) = nns.NNS(ε) ,

(x�nns.pop� S) • nns.NNS(nσ) = x • nns.NNS(σ) ,
(S+�nns.topeq:n� S−) ! nns.NNS(ε) = f ,

(S+�nns.topeq:n� S−) ! nns.NNS(n′σ) = f if n �= n′ ,

(S+�nns.topeq:n� S−) ! nns.NNS(n′σ) = t if n = n′ .

Remark 3.2. The use operator and the apply operator introduced in this section are mainly

adaptations of the use operators introduced earlier in [Bergstra and Middelburg (2008b)]

and the apply operators introduced earlier in [Bergstra and Ponse (2002)] to service fami-

lies. The abstracting use operator that will be introduced in Sect. 3.1.9 is an adaptation of

the use operators introduced in [Bergstra and Ponse (2002)] to service families. The reply

operator has no counterpart in earlier work. The use operators introduced in [Bergstra and

Middelburg (2008b)], the apply operators introduced in [Bergstra and Ponse (2002)], and

similar counterparts of the reply operator can be introduced as abbreviations. For terms t

of sort T and terms t ′ of sort S:

t /f t
′ abbreviates t / f .t ′ ,

t •f t ′ abbreviates t • f .t ′ ,
t !f t

′ abbreviates t ! f .t ′ .

3.1.3 Recursion

To deal with infinite threads, we extend BTA+TSI roughly like BTA was extended in

Sect. 2.2.2. The notion of a guarded recursive specification is somewhat adapted, and there

are additional axioms for reasoning about infinite threads in the contexts of use, apply and

reply.

Definition 3.1. A guarded recursive specification over BTA+TSI is a set of recursion equa-

tions {x = tx | x ∈ V}, where V is a set of variables of sort T and each tx is a BTA+TSI

term of sort T that can be rewritten, using the axioms of BTA+TSI, to a BTA term of the

form D, S, S+, S− or t �a � t ′ with t and t ′ that contain only variables from V .

Instruction Processing 43

Table 3.5 Additional axioms for infinite threads

πn(x / u) = πn(x) / u U10∧
k≥n t1 [πk(x)/z] = t2 [πk(y)/z]⇒ t1 [x/z] = t2 [y/z] A10∧
k≥n t ′1 [πk(x)/z] = t ′2 [πk(y)/z]⇒ t ′1 [x/z] = t ′2 [y/z] R10

The additional axioms for reasoning about infinite threads in the contexts of use, apply

and reply are given in Table 3.5.2 In this table, x , y , z stand for arbitrary variables of sort

T, t1, t2 stand for arbitrary terms of sort SF, t ′1, t
′
2 stand for arbitrary terms of sort R,

and n stands for an arbitrary natural number.

Axioms U10, A10 and R10 allow for reasoning about infinite threads in the contexts of

use, apply and reply, respectively. The conditional equation

∧
k≥0 πk(x) / u = πk(y) / v ⇒ x / u = y / v

follows immediately from AIP and U10. The conditional equations∧
k≥n πk(x) • u = πk(y) • v ⇒ x • u = y • v ,∧
k≥n πk(x) ! u = πk(y) ! v ⇒ x ! u = y ! v

are instances of A10 and R10, respectively.

We write BTA+TSI+REC for BTA+TSI extended with the constants 〈x |E〉 and the

axioms RDP and RSP, and we write BTA+TSI+REC+AIP for BTA+TSI+REC extended

with the operators πn and the axioms AIP, P1–P6, U10, A10 and R10.

Because the use operator, apply operator and reply operator are primarily intended to be

used to describe and analyse instruction sequence processing, they are called instruction se-

quence processing operators. Using the combination of SPISA+SC with BTA+TSI+REC+

AIP extended with the thread extraction operator and axioms TE1–TE18, we can introduce

the instruction sequence processing operators in the settings of ISNR and ISNA. Let ISN

be either ISNR or ISNA. Then the use operator, apply operator and reply operator are

defined on ISN instruction sequences as follows:

p / t = |p|ISN / t ,

p • t = |p|ISN • t ,
p ! t = |p|ISN ! t

2We write t [t′/x] for the result of substituting term t ′ for variable x in term t .

44 Instruction Sequences for Computer Science

for all ISN instruction sequences p and all SFA terms t of sort SF.

3.1.4 Example

In this section, we use an implementation of a bounded counter by means of a number

of Boolean registers as an example to show that it is easy to bring a number of services

together in a service family by means of the service family composition operator. Ac-

complishing something resemblant with the non-interfering service combination operation

from [Bergstra and Ponse (2002)] is quite involved. We also show in this example that

there are cases in which the delivery of a Boolean value at termination of the execution of

an instruction sequence is quite natural.

First, we describe services that make up Boolean registers. The Boolean register ser-

vices are able to process the following methods:

• the set to true method set:t;

• the set to false method set:f;

• the get method get.

It is assumed that set:t, set:f, get ∈M.

The methods that Boolean register services are able to process can be explained as

follows:

• set:t : the contents of the Boolean register becomes t and the reply is t;

• set:f : the contents of the Boolean register becomes f and the reply is f;

• get : nothing changes and the reply is the contents of the Boolean register.

For the set S of services, we take the set {BRt,BRf , δ} of Boolean register services.

For each m ∈M, we take the functions ∂
∂m and �m such that:

∂
∂set:t (BRb) = BRt ,

∂
∂set:f (BRb) = BRf ,

�set:t(BRb) = t ,

�set:f(BRb) = f ,

∂
∂get(BRb) = BRb ,
∂

∂m (BRb) = δ if m /∈ {set:t, set:f, get} ,

�get(BRb) = b ,

�m(BRb) = d if m /∈ {set:t, set:f, get} .

Moreover, we take the names BRt and BRf used above to denote services from S for

constants of sort S.

We continue with the implementation of a bounded counter by means of a number of

Boolean registers. We consider a counter that can contain a natural number in the interval

Instruction Processing 45

[0, 2n − 1] for some n > 0. To implement the counter, we represent its content in binary

using a collection of n Boolean registers named br:0, . . . , br:n−1. We take t for 0 and f

for 1, and we take the bit represented by the content of the Boolean register named br:i for

a less significant bit than the bit represented by the content of the Boolean register named

br:j if i < j.

The following ISNR instruction sequences implement set to zero, increment by one,

decrement by one, and test on zero, respectively:

SETZERO = ;n−1
i=0 (br:i.set:t) ; !t ,

SUCC = ;n−1
i=0 (−br:i.get ; #3 ; br:i.set:f ; !t ; br:i.set:t) ; !f ,

PRED = ;n−1
i=0 (+br:i.get ; #3 ; br:i.set:t ; !t ; br:i.set:f) ; !f ,

ISZERO = ;n−1
i=0 (−br:i.get ; !f) ; !t .

Concerning the Boolean values delivered at termination of executions of these instruction

sequences, we have that:

SETZERO !
(⊕n−1

i=0 br:i.BRci

)
= t ,

SUCC !
(⊕n−1

i=0 br:i.BRci

)
=

{
t if

∨n−1
i=0 ci = t

f if
∧n−1

i=0 ci = f ,

PRED !
(⊕n−1

i=0 br:i.BRci

)
=

{
t if

∨n−1
i=0 ci = f

f if
∧n−1

i=0 ci = t ,

ISZERO !
(⊕n−1

i=0 br:i.BRci

)
=

{
t if

∧n−1
i=0 ci = t

f if
∨n−1

i=0 ci = f .

It is obvious that t is delivered at termination of an execution of SETZERO and that t or f

is delivered at termination of an execution of ISZERO depending on whether the content

of the counter is zero or not. Increment by one and decrement by one are both modulo

2n. For that reason, t or f is delivered at termination of an execution of SUCC or PRED

depending on whether the content of the counter is really incremented or decremented by

one or not.

3.1.5 Elimination

We can prove that in BTA+TSI each closed BTA+TSI term of sort T can be reduced to

a closed BTA term and each closed BTA+TSI term of sort SF or R can be reduced to a

closed SFA term.

46 Instruction Sequences for Computer Science

The following lemma will be used in the proof of this elimination result.

Lemma 3.2. Let f ∈ F . Then for all closed BTA+TSI terms t of sort SF, either t =

∂{f }(t) is derivable from the axioms of BTA+TSI or there exists a closed BTA+TSI term

t ′ of sort S such that t = f .t ′ ⊕ ∂{f }(t) is derivable from the axioms of BTA+TSI.

Proof. This is proved by induction on the structure of t . The cases t ≡ ∅ and t ≡ f .t1

are trivial, the case t ≡ t1 ⊕ t2 follows easily by case distinction on the possible forms of

the equations that are derivable for t1 and t2 according to the induction hypothesis, and the

case t ≡ ∂F (t1) follows easily by case distinction on the possible forms of the equation

that is derivable for t1 according to the induction hypothesis. The case t ≡ t1 • t2 follows

easily by induction on the structure of t1, making case distinctions on the possible forms

of the equation that is derivable for t2 according to the induction hypothesis. �

We continue with the elimination result.

Theorem 3.1.

(1) For all closed BTA+TSI terms t of sort T, there exists a closed BTA term t ′ of sort

T such that t = t ′ is derivable from the axioms of BTA+TSI.

(2) For all closed BTA+TSI terms t of sort SF, there exists a closed SFA term t ′ of sort

SF such that t = t ′ is derivable from the axioms of BTA+TSI.

(3) For all closed BTA+TSI terms t of sort R, there exists a closed SFA term t ′ of sort

R such that t = t ′ is derivable from the axioms of BTA+TSI.

Proof. Property 1 is proved by induction on the structure of t . The cases t ≡ S+,

t ≡ S−, t ≡ S and t ≡ D are trivial. The cases t ≡ tau ◦ t1 and t ≡ t1 � f .m � t2

follow immediately from the induction hypothesis. The case t ≡ t1 / t2 is more involved.

By the induction hypothesis, there exists a closed BTA term t ′1 such that t1 = t ′1. This

means that we are done with this case if we have proved the following claim:

Let t ′1 be a closed BTA term of sort T. Then, for all closed BTA+TSI terms t ′2
of sort SF, there exists a closed BTA term t ′ of sort T such that t ′1 / t

′
2 = t ′ is

derivable from the axioms of BTA+TSI.

This claim is easily proved by induction on the structure of t ′1 and in the case t ′1 ≡
t ′′1 � f .m � t ′′2 by case distinction on the possible forms of the equation that is derivable

for t ′2 according to Lemma 3.2.

Instruction Processing 47

Property 2 is proved by induction on the structure of t . The cases t ≡ ∅ and t ≡ f .t1

are trivial. The cases t ≡ t1 ⊕ t2 and t ≡ ∂F (t1) follow immediately from the induction

hypothesis. The case t ≡ t1 • t2 is more involved. By Property 1, there exists a closed

BTA term t ′1 of sort T such that t1 = t ′1. By the induction hypothesis, there exists a closed

SFA term t ′2 of sort SF such that t2 = t ′2. This means that we are done with this case if

we have proved the following claim:

Let t ′2 be a closed SFA term of sort SF. Then, for all closed BTA terms t ′1 of sort

T, there exists a closed SFA term t ′ of sort SF such that t ′1 • t ′2 = t ′ is derivable

from the axioms of BTA+TSI.

This claim is easily proved by induction on the structure of t ′1 and in the case t ′1 ≡
t ′′1 � f .m � t ′′2 by case distinction on the possible forms of the equation that is derivable

for t ′2 according to Lemma 3.2.

Property 3 is proved in the same way as Property 2. �

3.1.6 Properties

We assume that a minimal model M of BTA+TSI+REC+AIP has been given. Recall that

we denote the interpretations of sorts, constants and operators in M by the sorts, constants

and operators themselves. We write [[t]], where t is a closed term, for the interpretation of

t in M.

Below, we will formulate a proposition about the use, apply and reply operators using

the foci operation foci defined by the following equations (f ∈ F):

foci(∅) = ∅ ,
foci(f .s) = {f } ,
foci(S ⊕ S′) = foci(S) ∪ foci(S′) .

The operation foci gives, for each service family, the set of all foci that serve as names

of named services belonging to the service family. We will make use of the following

properties of foci in the proof of the proposition:

(1) foci(S) ∩ foci(S′) = ∅ iff f /∈ foci(S) or f /∈ foci(S′) for all f ∈ F ;

(2) f /∈ foci(S) iff ∂{f }(S) = S.

We will write foci(t), where t is a closed BTA+TSI+REC+AIP term of sort SF, for

foci([[t]]).

48 Instruction Sequences for Computer Science

Proposition 3.1. For all closed BTA+TSI+REC terms t of sort T and all closed BTA+

TSI terms t ′ and t ′′ of sort SF for which foci(t ′) ∩ foci(t ′′) = ∅, the following holds:

(1) t / (t ′ ⊕ t ′′) = (t / t ′) / t ′′;

(2) t ! (t ′ ⊕ t ′′) = (t / t ′) ! t ′′;

(3) ∂foci(t ′)(t • (t ′ ⊕ t ′′)) = (t / t ′) • t ′′.

Proof. By Lemma 2.4, axioms RSP, AIP, U10, A10 and R10, and Theorem 3.1, it is

sufficient to prove the proposition for all closed BTA terms t of sort T and all closed SFA

terms t ′ and t ′′ of sort SF for which foci(t ′) ∩ foci(t ′′) = ∅. This is straightforward by

induction on the structure of t , using the above-mentioned properties of foci. �

In the sequel, we will use relations indicating, for each thread and service family,

whether the thread converges on the service family, the thread converges on the service

family with a Boolean reply and the thread diverges on the service family.

Definition 3.2. The convergence relation ↓ ⊆ T × SF is inductively defined by the fol-

lowing clauses:

(1) S ↓ S;

(2) S+ ↓ S and S− ↓ S;

(3) if t ↓ S, then (tau ◦ t) ↓ S;

(4) if t ↓ (f . ∂
∂m s⊕ ∂{f }(S)) and �m(s) = t, then (t� f .m � t′) ↓ (f .s⊕ ∂{f }(S));

(5) if t ↓ (f . ∂
∂m s⊕ ∂{f }(S)) and �m(s) = f, then (t′ � f .m � t) ↓ (f .s⊕ ∂{f }(S));

(6) if πn(t) ↓ S, then t ↓ S.

The convergence with Boolean reply relation ↓B ⊆ T × SF is inductively defined by the

clauses 2, . . . , 6 for ↓ with everywhere ↓ replaced by ↓B. The divergence relation ↑ ⊆
T× SF is defined by t ↑ S iff not t ↓ S.

We will write t ↓ t ′, t ↓B t ′ and t ↑ t ′, where t is a closed BTA+TSI+REC+AIP

term of sort T and t ′ is a closed BTA+TSI+REC+AIP term of sort SF, for [[t]] ↓ [[t ′]],

[[t]] ↓B [[t ′]] and [[t]] ↑ [[t ′]], respectively.

The following two propositions concern the connection between convergence and the

reply operator.

Proposition 3.2. For all closed BTA+TSI terms t of sort T and closed BTA+TSI terms

t ′ of sort SF for which t ↓ t ′:

(1) if S+ occurs in t and neither S− nor S occurs in t , then t ! t ′ = t holds;

Instruction Processing 49

(2) if S− occurs in t and neither S+ nor S occurs in t , then t ! t ′ = f holds;

(3) if S occurs in t and neither S+ nor S− occurs in t , then t ! t ′ = m holds.

Proof. By Theorem 3.1, it is sufficient to prove the proposition for all closed BTA terms

t of sort T and closed SFA terms t ′ of sort SF for which t ↓ t ′. This is straightforward by

induction on the structure of t . �

Proposition 3.3. For all closed BTA+TSI+REC terms t of sort T and closed BTA+TSI

terms t ′ of sort SF, t ↓ t ′ iff t ! t ′ = t or t ! t ′ = f or t ! t ′ = m holds.

Proof. By Lemma 2.4, axioms RSP and R10, the last clause of the inductive definition of

↓ given above, the easy to prove fact that πn(t) ↓ t ′ implies πn+1(t) ↓ t ′, and Theorem 3.1,

it is sufficient to prove the proposition for all closed BTA terms t of sort T and closed SFA

terms t ′ of sort SF. This is straightforward by induction on the structure of t . �

We can introduce convergence in the settings of ISNR and ISNA as well. Let ISN

be either ISNR or ISNA. Then convergence is defined on ISN instruction sequences as

follows:

p ↓ t = |p|ISN ↓ t

for all ISN instruction sequences p and all SFA terms t of sort SF.

3.1.7 Relevant use conventions

In the setting of service families, sets of foci play the role of interfaces. The set of all foci

that serve as names of named services in a service family is regarded as the interface of

that service family. There are cases in which processing does not terminate or, even worse

(because it is statically detectable), interfaces of services families do not match. In the case

of non-termination, there is nothing that we intend to denote by a term of the form t • t ′ or

t ! t ′. In the case of non-matching interfaces, there is nothing that we intend to denote by

a term of the form t ′ ⊕ t ′′. Moreover, in the case of termination without a Boolean reply,

there is also nothing that we intend to denote by a term of the form t ! t ′.

We propose to comply with the following relevant use conventions:

• t • t ′ is only used if it is known that t ↓ t ′;
• t ! t ′ is only used if it is known that t ↓B t ′;

• t ′ ⊕ t ′′ is only used if it is known that foci(t ′) ∩ foci(t ′′) = ∅.

50 Instruction Sequences for Computer Science

The condition found in the first convention is justified by the fact that in the projective

limit model of BTA+TSI+REC+AIP presented in Sect. 3.1.8, t • t ′ = ∅ if t ↑ t ′. We do

not have t • t ′ = ∅ only if t ↑ t ′. For instance, S+ • ∅ = ∅ whereas S+ ↓ ∅. Similar

remarks apply to the condition found in the second convention.

The idea of relevant use conventions is taken from [Bergstra and Middelburg (2011b)],

where it plays a central role in an account of the way in which mathematicians usually

deal with division by zero in mathematical texts. According to [Bergstra and Middelburg

(2011b)], mathematicians deal with this issue by complying with the convention that p/q

is only used if it is known that q �= 0. This approach is justified by the fact that there is

nothing that mathematicians intend to denote by p/q if q = 0. It yields simpler mathemati-

cal texts than the popular approach in theoretical computer science, which is characterized

by complete formality in definitions, statements and proofs. In this computer science ap-

proach, division is considered a partial function and some logic of partial functions is used.

In [Bergstra and Tucker (2007)], deviating from this, division is considered a total function

whose value is zero in all cases of division by zero. It may be imagined that this notion of

division is the one with which mathematicians make themselves familiar before they start

to read and write mathematical texts professionally.

We think that the idea to comply with conventions that exclude the use of terms that are

not really intended to denote anything is not only of importance in mathematics, but also

in theoretical computer science. For example, the consequence of adapting Proposition 3.1

to comply with the relevant use conventions described above, by adding appropriate condi-

tions to the three properties, is that we do not have to consider in the proof of the proposition

the equality of terms by which we do not intend to denote anything.

In the sequel, we will comply with the relevant use conventions described above unless

convergence forms a part of the real matter that we are concerned with.

3.1.8 The extended projective limit model

Let I(SFA) be the free SFA-extension of S and I(BTA+TSI) be the free BTA+TSI-

extension of S. From the fact that the signatures of I∞(BTA) and I(SFA) are dis-

joint, it follows, by the amalgamation result about expansions presented as Theorem 6.1.1

in [Hodges (1993)] (adapted to the many-sorted case), that there exists a model of BTA

combined with SFA such that the restriction to the signature of BTA is I∞(BTA) and the

restriction to the signature of SFA is I(SFA).

Definition 3.3. Let I∞(BTA+SFA) be the model of BTA combined with SFA referred to

Instruction Processing 51

above. Then the projective limit model I∞(BTA+TSI) of BTA+TSI is I∞(BTA+SFA)

expanded with the operations defined by

(tn)n∈N
/ S = (πn(tn / S))n∈N

,

(tn)n∈N
• S = limk→∞(tk • S) ,

(tn)n∈N
! S = limk→∞(tk ! S)

as interpretations of the additional operators of BTA+TSI. On the right-hand side of these

equations, the symbols / , • and ! denote the interpretation of the operators / , • and ! in

I(BTA+TSI). In the last two equations, the limits are the limits with respect to the discrete

topology on the domains associated with the sorts SF and R, respectively.3

The projective limit model I∞(BTA+TSI) of BTA+TSI is expanded to projective limit

models I∞(BTA+TSI+REC) and I∞(BTA+TSI+REC+AIP) of BTA+TSI+REC and

BTA+TSI+REC+AIP, respectively, in exactly the same way as I∞(BTA) is expanded to

I∞(BTA+REC) and I∞(BTA+REC+AIP) in Sect. 2.2.4.

3.1.9 Abstraction

With the use operator introduced in Sect. 3.1.2, the action tau is left as a trace of a basic

action that has led to the processing of a method, like with the use operators on services

introduced in e.g. [Bergstra and Middelburg (2008b)]. However, with the use operators

on services introduced in [Bergstra and Ponse (2002)], nothing is left as a trace of a basic

action that has led to the processing of a method. Thus, these use operators abstract fully

from internal activity. In other words, they are abstracting use operators. In this section,

we introduce an abstracting variant of the use operator introduced in Sect. 3.1.2, as well as

a general operator for the abstraction from tau.

That is, we introduce the following additional operators:

• the binary abstracting use operator _ // _ :T× SF→ T;

• the unary abstraction operator τtau :T→ T.

We use infix notation for the abstracting use operator.

An example of a term in which the abstracting use operator occurs is

〈x|E〉 // nnc.NNC (0) ,

3In the many-sorted case, the interpretation of a sort in a certain model will also be called the domain associated
with the sort in that model.

52 Instruction Sequences for Computer Science

where E is the guarded recursive specification consisting of the following two equations:

x = (nnc.succ ◦ x)�a� (nnc.succ ◦ y) , y = (b ◦ y)�nnc.pred� S .

and NNC (σ) denotes an unbounded counter service dealing with a counter whose content

is σ. An unbounded counter service is able to process methods for setting the content

of a counter to zero (setzero), incrementing the content of the counter by one (succ),

decrementing the content of the counter by one (pred), and testing whether the content of a

counter is zero (iszero). Processing of an incrementing method always produces the reply

value t and processing of a decrementing method produces the reply value t if the content

of the counter is not zero and f otherwise. A precise description of unbounded counter

services will be given in Sect. 3.2.5. Using the axioms for the abstracting use operator

introduced below, we can prove that 〈x|E〉 // nnc.NNC (0) denotes the x0-component of

the solution of the guarded recursive specification consisting of the following equations:

xn = xn+1 �a� yn+1 for all n ∈ N ,

y0 = S ,

yn+1 = b ◦ yn for all n ∈ N .

This means that the thread denoted by 〈x|E〉 // nnc.NNC (0) can, for each n ∈ N, first

perform n+1 times a, next perform n+1 times b, and after that terminate. This behaviour

cannot be described by a finite linear recursive specification. So 〈x|E〉 // nnc.NNC (0)

does not denote a regular thread, whereas 〈x|E〉 denotes a regular thread.

The abstraction operator is an alternative to the abstracting use operator which looks

to be a better choice in the presence of an interleaving operator for multi-threading (see

e.g. [Bergstra and Middelburg (2007c)]).

The axioms for the abstracting use operator and the abstraction operator are given in

Tables 3.6 and 3.7, respectively. In these tables, f stands for an arbitrary focus from F , m

stands for an arbitrary method fromM, a stands for an arbitrary basic action fromA, and

t stands for an arbitrary term of sort S.

The additional axioms for reasoning about infinite threads in the contexts of abstracting

use and abstraction are given in Table 3.8. Notice that, due to the possible concealment of

actions by abstracting use, πn(x // u) = πn(x) // u is not a plausible axiom.

It should be mentioned that, for all closed terms t and t ′ of sort T, t // t ′ = τtau(t / t
′)

if t = τtau(t).

We write BTA+TSI+ABSTR and BTA+TSI+REC+ABSTR for BTA+TSI and BTA+

TSI+REC, respectively, extended with the operators // and τtau and the axioms AU1–

Instruction Processing 53

Table 3.6 Axioms for the abstracting use operator

S+ // u = S+ AU1

S− // u = S− AU2

S // u = S AU3

D // u = D AU4

(tau ◦ x) // u = tau ◦ (x // u) AU5

(x� f .m � y) // ∂{f }(u) = (x // ∂{f }(u))� f .m � (y // ∂{f }(u)) AU6

(x� f .m � y) // (f .t ⊕ ∂{f }(u)) = x // (f . ∂
∂m t ⊕ ∂{f }(u)) if �m(t) = t AU7

(x� f .m � y) // (f .t ⊕ ∂{f }(u)) = y // (f . ∂
∂m t ⊕ ∂{f }(u)) if �m(t) = f AU8

(x� f .m � y) // (f .t ⊕ ∂{f }(u)) = D if �m(t) = d AU9

Table 3.7 Axioms for the abstraction operator

τtau(S) = S TT1

τtau(D) = D TT2

τtau(tau ◦ x) = τtau(x) TT3

τtau(x�a � y) = τtau(x)�a � τtau(y) TT4

Table 3.8 Additional axioms for infinite threads

∧
n≥0 πn(x) // u = πn(y) // v ⇒ x // u = y // v AU10∧
n≥0 τtau(πn(x)) = τtau(πn(y))⇒ τtau(x) = τtau(y) TT5

AU9 and TT1–TT4. Moreover, we write BTA+TSI+REC+AIP+ABSTR for BTA+TSI+

REC+AIP extended with the operators // and τtau and the axioms AU1–AU10 and TT1–

TT5.

The projective limit model I∞(BTA+TSI) of BTA+TSI can be expanded with the

54 Instruction Sequences for Computer Science

operations defined by

(tn)n∈N
// S = (limk→∞ πn(tk // S))n∈N

,

τtau((tn)n∈N
) = (limk→∞ πn(τtau(tk)))n∈N

as interpretations of the abstracting use operator and abstraction operator. On the right-hand

side of these equations, the symbol // and τtau denote the interpretations of the operators

// and τtau in the free BTA+TSI+ABSTR-extension of S. The limits are the limits with

respect to the discrete topology on the domain associated with the sort T.

Perhaps contrary to expectations, the interpretations of the operators // and τtau are

not defined by the equations (tn)n∈N
// S = (πn(tn // S))n∈N

and τtau((tn)n∈N
) =

(πn(τtau(tn)))n∈N
, respectively. Because the depth of the approximations may decrease,

this would lead to operations that would not always yield projective sequences. It is easy to

see that the operations as defined above always yield projective sequences. The definitions

concerned are justified by the following lemma.

Lemma 3.3. The following holds in the free BTA+TSI+ABSTR-extension of S:

πn(t // S) = limk→∞ πn(πk(t) // S) ,

πn(τtau(t)) = limk→∞ πn(τtau(πk(t))) .

Proof. The proof is easy by induction on the structure of t. �

3.2 Functional Units and Services

This section is concerned with functional units. Services represent a rather abstract view on

the behaviours exhibited by the components of an execution environment that are capable

of processing particular instructions and doing so independently. A functional unit belongs

to a more concrete view on these behaviours, namely as the behaviours of a machine in its

different states. If this view is usable, the services concerned are completely determined

by a functional unit. We give a precise definition of the concept of a functional unit and

introduce four functional units that are used in the rest of the book, namely a Boolean

register functional unit, a natural number register functional unit, a natural number stack

functional unit and a natural number counter functional unit.

3.2.1 The concept of a functional unit

In this section, we introduce the concept of a functional unit and some related concepts.

Instruction Processing 55

It is assumed that a non-empty set Σ of states has been given. As before, it is assumed

that a set M of methods has been given. However, in the setting of functional units, meth-

ods serve as names of operations on a state space. For that reason, the members of M are

called method names in the setting of functional units.

Definition 3.4. A method operation on Σ is a total function from Σ to B × Σ. A partial

method operation on Σ is a partial function from Σ to B× Σ.

We write MO(Σ) for the set of all method operations on Σ. We write M r and M e,

where M ∈ MO(Σ), for the unique functions R : Σ → B and E : Σ → Σ, respectively,

such that M(σ) = (R(σ), E(σ)) for all σ ∈ Σ.

Definition 3.5. A functional unit for Σ is a finite subset U of M ×MO(Σ) such that

(m ,M) ∈ U and (m ,M ′) ∈ U implies M =M ′.

We write FU(Σ) for the set of all functional units for Σ. We write I(U), where U ∈
FU(Σ), for the set {m ∈ M | ∃M ∈ MO(Σ) • (m ,M) ∈ U}. We write mU , where

U ∈ FU(Σ) and m ∈ I(U), for the unique M ∈ MO(Σ) such that (m ,M) ∈ U .

We look upon the set I(U), where U ∈ FU(Σ), as the interface of U . It looks to

be convenient to have a notation for the restriction of a functional unit to a subset of its

interface. We write (I, U), where U ∈ FU(Σ) and I ⊆ I(U), for the functional unit

{(m ,M) ∈ U |m ∈ I}.

Definition 3.6. Let U ∈ FU(Σ). Then an extension of U is a U ′ ∈ FU(Σ) such that

U ⊆ U ′.

The following is a simple illustration of the use of functional units. An unbounded

counter can be modelled by a functional unit for N with method operations for set to zero,

increment by one, decrement by one, and test on zero.

According to the definition of a functional unit given above, ∅ ∈ FU(Σ). By that we

have a unique functional unit with an empty interface, which is not very interesting in itself.

However, when considering services that behave according to functional units, ∅ is exactly

the functional unit according to which the empty service δ (the service that is not able to

process any method) behaves.

The method names attached to method operations in functional units should not be

confused with the names used to denote specific method operations in describing functional

units. Therefore, we will comply with the convention to use names beginning with a lower-

56 Instruction Sequences for Computer Science

case letter in the former case and names beginning with an upper-case letter in the latter

case.

We will use ISNRs instruction sequences to derive partial method operations from the

method operations of a functional unit. We write L(f.I), where I ⊆ M, for the set of

all ISNRs instruction sequences, taking the set {f.m | m ∈ I} as the set A of basic

instructions.

The derivation of partial method operations from the method operations of a functional

unit involves services whose processing of methods amounts to replies and service changes

according to corresponding method operations of the functional unit concerned. These

services can be viewed as the behaviours of a machine, on which the processing in question

takes place, in its different states.

We take the setFU(Σ)×Σ as the set S of services. We write U(σ), whereU ∈ FU(Σ)
and σ ∈ Σ, for the service (U, σ). The operations ∂

∂m and �m are defined as follows:

∂
∂m (U(σ)) =

{
U(me

U (σ)) if m ∈ I(U)

∅(σ′) if m /∈ I(U) ,

�m(U(σ)) =

{
mr

U (σ) if m ∈ I(U)

d if m /∈ I(U) ,

where σ′ is a fixed but arbitrary state in Σ.4

In order to be able to make use of the axioms for the apply operator and the reply

operator from Sect. 3.1.2 hereafter, we want to use these operators for the services being

considered here when making the idea of deriving a partial method operation by means of

an instruction sequence precise. Therefore, we assume that there is a constant of sort S for

each U(σ) ∈ S.5 In this connection, we use the following notational convention: for each

U(σ) ∈ S, we write U(σ) for the constant of sort S whose interpretation is U(σ). Note

that the service ∅(σ′) is the interpretation of the empty service constant δ.

Definition 3.7. Let U ∈ FU(Σ), and let I ⊆ I(U). Then an instruction sequence p ∈
L(f.I) produces a partial method operation |p|U as follows:

|p|U (σ) = (|p|rU (σ), |p |eU (σ)) if |p|rU (σ) = t ∨ |p|rU (σ) = f ,

|p|U (σ) is undefined if |p|rU (σ) = d ,

4In contexts where functional units for several state spaces are involved, we would take the union of the corre-
sponding sets of services as the set S and σ′ would be a fixed but arbitrary state from the union of the state spaces
concerned.
5This may lead to an uncountable number of constants, which is unproblematic and quite normal in model

theory.

Instruction Processing 57

where

|p|rU (σ) = p ! f.U(σ) ,

|p|eU (σ) = the unique σ′ ∈ Σ such that p • f.U(σ) = f.U(σ′) .

If |p|U is total, then it is called a derived method operation of U .

Definition 3.8. The binary relation≤ onFU(Σ) is defined by U ≤ U ′ iff for all (m,M) ∈
U , M is a derived method operation of U ′. The binary relation ≡ on FU(Σ) is defined by

U ≡ U ′ iff U ≤ U ′ and U ′ ≤ U .

Theorem 3.2.

(1) ≤ is transitive;

(2) ≡ is an equivalence relation.

Proof. Property 1 is proved by showing that U ≤ U ′ and U ′ ≤ U ′′ implies U ≤ U ′′. It

is sufficient to show that we can obtain instruction sequences in L(f.I(U ′′)) that produce

the method operations of U from the instruction sequences in L(f.I(U ′)) that produce

the method operations of U and the instruction sequences in L(f.I(U ′′)) that produce the

method operations of U ′. Without loss of generality, we may assume that all instruction

sequences are of the form u1 ; . . . ; uk ; !t ; !f, where, for each i ∈ [1, k], u i is a positive

test instruction, a forward jump instruction or a backward jump instruction. Let m ∈
I(U), and let pm ∈ L(f.I(U ′)) be such that mU = |pm |U ′ . Suppose that I(U ′) =

{m ′
1, . . . ,m

′
n}. For each i ∈ [1, n], let pm′

i
= u i

1 ; . . . ;u
i
ki
; !t ; !f ∈ L(f.I(U ′′)) be such

that m ′
i U ′ = |pm ′

i
|U ′′ . Consider the p ′

m ∈ L(f.I(U ′′)) obtained from pm as follows: for

each i ∈ [1, n], (i) first increase the length of each jump over the leftmost occurrence of

+f.m ′
i in pm with ki + 1, and next replace this occurrence of +f.m ′

i by u i
1 ; . . . ; u

i
ki

;

(ii) repeat the previous step as long as there are occurrences of +f.m ′
i. It is easy to see that

mU = |p ′
m |U ′′ .

Property 2 follows quite simply. It follows immediately from the definition of ≡ that

≡ is symmetric and from the definition of ≤ that ≤ is reflexive. From these properties,

Property 1 and the definition of ≡, it follows immediately that ≡ is symmetric, reflexive

and transitive. �

Definition 3.9. The members of the quotient set FU(Σ)/≡ are called functional unit de-

grees. Let U ∈ FU(Σ) and D ∈ FU(Σ)/≡. Then D is a functional unit degree below U

if there exists an U ′ ∈ D such that U ′ ≤ U .

58 Instruction Sequences for Computer Science

Two functional units U and U ′ belong to the same functional unit degree if and only if

U and U ′ have the same derived method operations. A functional unit degree D is below

a functional unit U if and only if all derived method operations of some member of D are

derived method operations of U .

The binary relation≤ on FU(Σ) is reminiscent of the relative computability relation≤
on algebras introduced in [Lynch and Blum (1981)] because functional units can be looked

upon as algebras of a special kind. In the definition of this relative computability relation on

algebras, the role of instruction sequences is filled by flow charts. Another difference is that

the relation allows for algebras with different domains to be related. This corresponds to a

relation on functional units that allows for the states from one state space to be represented

by the states from another state space. To the best of our knowledge, the work presented

in [Lynch and Blum (1981)] and a few preceding papers of the same authors is the only

work on computability that is concerned with a relation comparable to the relation ≤ on

FU(Σ) defined above.

3.2.2 A Boolean register functional unit

In this section, we define a functional unit in FU(B) that is a register whose possible

contents are the Boolean values t and f. This functional unit will often be used in the rest

of this book.

The functional unit in question is defined as follows:

BR = {(set:b,Set :b) | b ∈ B} ∪ {(get,Get)} ,

where the method operations are defined as follows:

Set :b(σ) = (b, b) ,

Get(σ) = (σ, σ) .

The interface I(BR) of BR can be explained as follows:

• set:b : the content of the register becomes b and the reply is b;

• get : nothing changes and the reply is the content of the register.

For b ∈ B, the service BR(b) and the service BRb from Sect. 3.1.4 are the same.

Using Boolean registers, total and partial functions from B
n to B (n ∈ N) can be

computed by instruction sequences. In [Bergstra and Bethke (2012)], the following facts

are established about the class of all total functions from B
∗ to B whose restriction to B

n

Instruction Processing 59

can be computed by an ISNRs instruction sequence without occurrences of backward jump

instructions whose length is polynomial in n for each n ∈ N:

• this class coincides with the complexity class P/poly;

• this class is a proper subclass of the class of all total functions from B
∗ to B whose

restriction to B
n can be computed by an ISNRs instruction sequence whose length is

polynomial in n for each n ∈ N, provided that the well-known complexity-theoretic

conjecture NP �⊆ P/poly is right.

The latter fact indicates that there are problems for which the instruction sequences solving

them can be significantly shorter if backward jump instructions are used.

3.2.3 A natural number register functional unit

In this section, we define a functional unit in FU([0, nmax]) (nmax ∈ N) that is a register

whose possible contents are the natural numbers in the interval [0, nmax]. This functional

unit will among other things be used in Sections 3.3.1–3.3.3 to describe the behaviour of

instruction sequences under execution in variants of ISNR and ISNA with indirect jump

instructions.

The functional unit in question is defined as follows:

NNR = {(set:n, Set :n) | n ∈ [0, nmax]} ∪ {(eq:n,Eq :n) | n ∈ [0, nmax]} ,

where the method operations are defined as follows:

Set :n(σ) = (t, n) ,

Eq :n(σ) =

{
(t, σ) if n = σ

(f, σ) if n �= σ .

The interface I(NNR) of NNR can be explained as follows:

• set:n : the contents of the register becomes n and the reply is t;

• eq:n : if the contents of the register equals n, then nothing changes and the reply is t;

otherwise nothing changes and the reply is f.

3.2.4 A natural number stack functional unit

In this section, we define a functional unit in FU({σ ∈ [0, nmax]
∗ | len(σ) ≤ lmax})

(nmax, lmax ∈ N) that is a bounded stack whose elements can contain the natural numbers

60 Instruction Sequences for Computer Science

in the interval [0, nmax]. This functional unit will be used in Sect. 3.3.4 to describe the

behaviour of instruction sequences under execution in a variant of ISNA with returning

jump instructions and an accompanying return instruction.

The functional unit in question is defined as follows:

NNS = {(push:n,Push:n) | n ∈ [0, nmax]} ∪ {(pop,Pop)}
∪ {(topeq:n,Topeq :n) | n ∈ [0, nmax]} ,

where the method operations are defined as follows:

Push:n(σ) =

{
(t, nσ) if len(σ) < lmax

(f, σ) if len(σ) ≥ lmax ,

Pop(n′σ) = (t, σ) ,

Pop(ε) = (f, ε) ,

Topeq :n(n′σ) =

{
(t, n′σ) if n = n′

(f, n′σ) if n �= n′ ,

Topeq :n(ε) = (f, ε) .

The interface I(NNS) of NNS can be explained as follows:

• push:n : if the length of the stack is less than lmax, then the number n is put on top of

the stack and the reply is t; otherwise nothing changes and the reply is f;

• pop : if the stack is not empty, then the number on top of the stack is removed from the

stack and the reply is t; otherwise nothing changes and the reply is f;

• topeq:n : if the stack is not empty and the number on top of the stack is n, then nothing

changes and the reply is t; otherwise nothing changes and the reply is f.

3.2.5 A natural number counter functional unit

In this section, we define a functional unit in FU(N) that is an unbounded counter. This

functional unit will be used several times in the rest of this book.

The functional unit in question is defined as follows:

NNC = {(setzero, Setzero), (succ, Succ), (pred,Pred), (iszero, Iszero)} .

where the method operations are defined as follows:

Instruction Processing 61

Setzero(σ) = (t, 0) ,

Succ(σ) = (t, σ + 1) ,

Pred(σ) =

{
(t, σ − 1) if σ > 0 ,

(f, σ) if σ = 0 ,

Iszero(σ) =

{
(t, σ) if σ = 0 ,

(f, σ) if σ > 0 .

The interface I(NNC) of NNC can be explained as follows:

• setzero : the content of the counter is set to zero and the reply is t;

• succ : the content of the counter is incremented by one and the reply is t;

• pred : if the content of the counter is greater than zero, then the content of the counter

is decremented by one and the reply is t; otherwise, nothing changes and the reply is f;

• iszero : if the content of the counter equals zero, then nothing changes and the reply

is t; otherwise, nothing changes and the reply is f.

In Appendix B, some results concerning functional units for natural numbers are given.

The main results concern universal computable functional units for natural numbers.

3.3 Functional Unit Related Additional Instructions

In this section, we present instruction sequence notations with indirect jump instructions,

returning jump instructions and an accompanying return instruction, and dynamically in-

stantiated instructions. These notations are explained with the help of functional units

defined in Sect. 3.2. Unlike the instruction sequence notations introduced in Sect. 2.3, the

notations introduced here cannot be explained in terms of SPISA instruction sequences

only.

3.3.1 Indirect absolute jump instructions

In this section, we introduce a variant of ISNA with indirect jump instructions. This variant

is called ISNAij.

In ISNAij, it is assumed that a fixed but arbitrary number imax ∈ N
+ has been given,

which is considered the number of natural number registers available. It is also assumed

that a fixed but arbitrary number nmax ∈ N
+ has been given, which is considered the

greatest natural number that can be contained in a natural number register.

62 Instruction Sequences for Computer Science

In ISNA, it is assumed that a fixed but arbitrary set A of basic instructions has been

given. In ISNAij, the following additional assumptions relating to A are made:

• a fixed but arbitrary set F of foci with {nnr:i | i ∈ [1, imax]} ⊆ F has been given;

• a fixed but arbitrary setM of methods with I(NNR) ⊆M has been given;

• A = {f .m | f ∈ F \ {nnr:i | i ∈ [1, imax]} ∧m ∈M}.

ISNAij has the following primitive instructions in addition to the primitive instructions

of ISNA:

• for each i ∈ [1, imax] and n ∈ [0, nmax], a register set instruction set:i:n;

• for each i ∈ [1, imax], an indirect absolute jump instruction i##i.

ISNAij instruction sequences have the form u1 ; . . . ; uk, where u1, . . . ,uk are primitive

instructions of ISNAij.

On execution of an ISNAij instruction sequence, the effects of the plain basic instruc-

tions, the positive test instructions, the negative test instructions, the direct absolute jump

instructions, and the termination instructions are as in ISNA. The effect of a register set

instruction set:i:n is that the contents of register i is set to n and execution proceeds with

the next primitive instruction. If there is no primitive instruction to proceed with, inaction

occurs. Initially, the contents of all registers is 0. The effect of an indirect absolute jump

instruction i##i is the same as the effect of ##l, where l is the content of register i.

We define the meaning of ISNAij instruction sequences by means of a projection

isnaij2isna from the set of all ISNAij instruction sequences to the set of all ISNA in-

struction sequences. This function is defined by

isnaij2isna(u1 ; . . . ; uk) =

ψ(u1) ; . . . ; ψ(uk) ; ##0 ; ##0 ;

+nnr:1.eq:1 ; ##1 ; . . . ; +nnr:1.eq:n ; ##n ; ##0 ;
...

+nnr:imax.eq:1 ; ##1 ; . . . ; +nnr:imax.eq:n ; ##n ; ##0 ,

where n = min(k, nmax) and the auxiliary function ψ from the set of all primitive in-

structions of ISNAij to the set of all primitive instructions of ISNA is defined as follows:

Instruction Processing 63

ψ(set:i:n) = nnr:i.set:n ,

ψ(##l) = ##l if l ≤ k ,

ψ(##l) = ##0 if l > k ,

ψ(i##i) = ##li ,

ψ(u) = u if u is not a register set instruction or

jump instruction ,

and for each i ∈ [1, imax]:

li = k + 3 + (2 ·min(k, nmax) + 1) · (i− 1) .

The idea is that each indirect absolute jump can be replaced by a direct absolute jump

to the beginning of the instruction sequence

+nnr:i.eq:1 ; ##1 ; . . . ; +nnr:i.eq:n ; ##n ; ##0 ,

where i is the register concerned and n = min(k, nmax). The execution of this instruction

sequence leads to the intended jump after the content of the register concerned has been

found by a linear search. To enforce that inaction occurs after execution of the last instruc-

tion of the instruction sequence if the last instruction is a plain basic instruction, a positive

test instruction or a negative test instruction, ##0;##0 is appended to ψ(u1); . . .;ψ(uk).

Because the length of the translated instruction sequence is greater than k, care is taken that

there are no direct absolute jumps to instructions with a position greater than k. Obviously,

the linear search for the content of a register can be replaced by a binary search in this

projection and forthcoming ones.

Let p be an ISNAij instruction sequence. Then isnaij2isna(p) is the meaning of

p as an ISNA instruction sequence. The intended behaviour of p under execution is the

behaviour of isnaij2isna(p) under execution on interaction with a register file. That is,

the behaviour of p , written |p|ISNAij
, is |isnaij2isna(p)|ISNA//(⊕imax

i=1 nnr:i.NNR(0)).

For example, the behaviour of the ISNAij instruction sequence

a ; set:1:8 ; +b ; set:1:6 ; i##1 ; c ; ##2 ; +d ; !t ; !f

is the x-component of the solution of the guarded recursive specification consisting of the

following two equations:

x = a ◦ y , y = (c ◦ y)�b� (S+ �d� S−) .

Remark 3.3. More than one instruction is needed in ISNA to obtain the effect of a single

indirect absolute jump instruction. The projection isnaij2isna deals with that in such

64 Instruction Sequences for Computer Science

a way that there is no need for the unit instruction operator introduced in [Ponse (2002)]

or the distinction between first-level instructions and second-level instructions introduced

in [Bergstra and Bethke (2007)].

3.3.2 Indirect relative jump instructions

In this section, we introduce a variant of ISNR with indirect jump instructions. This variant

is called ISNRij.

In ISNRij, the same assumptions are made as in ISNAij.

ISNRij has the following primitive instructions in addition to the primitive instructions

of ISNR:

• for each i ∈ [1, imax] and n ∈ [0, nmax], a register set instruction set:i:n;

• for each i ∈ [1, imax], an indirect forward jump instruction i#i;

• for each i ∈ [1, imax], an indirect backward jump instruction i\#i.

ISNRij instruction sequences have the form u1 ; . . . ; uk, where u1, . . . ,uk are primitive

instructions of ISNRij.

On execution of an ISNRij instruction sequence, the effects of the plain basic instruc-

tions, the positive test instructions, the negative test instructions, the direct forward jump

instructions, the direct backward jump instructions, and the termination instructions are as

in ISNR. The effects of the register set instructions are as in ISNAij. The effect of an in-

direct forward jump instruction i#i is the same as the effect of #l, where l is the content

of register i. The effect of an indirect backward jump instruction i\#i is the same as the

effect of \#l, where l is the content of register i.

We define the meaning of ISNRij instruction sequences by means of a projection

isnrij2isnr from the set of all ISNRij instruction sequences to the set of all ISNR in-

struction sequences. This function is defined by

isnrij2isnr(u1 ; . . . ; uk) =

ψ1(u1) ; . . . ; ψk(uk) ; #0 ; #0 ;

+nnr:1.eq:0 ; \#l′1,1,0 ; . . . ; +nnr:1.eq:nmax ; \#l′1,1,nmax
;

...

+nnr:1.eq:0 ; \#l′1,k,0 ; . . . ; +nnr:1.eq:nmax ; \#l′1,k,nmax
;

...

Instruction Processing 65

+nnr:imax.eq:0 ; \#l′imax,1,0 ; . . . ; +nnr:imax.eq:nmax ; \#l′imax,1,nmax
;

...

+nnr:imax.eq:0 ; \#l′imax,k,0
; . . . ; +nnr:imax.eq:nmax ; \#l′imax,k,nmax

;

+nnr:1.eq:0 ; \#l′1,1,0 ; . . . ; +nnr:1.eq:nmax ; \#l′1,1,nmax
;

...

+nnr:1.eq:0 ; \#l′1,k,0 ; . . . ; +nnr:1.eq:nmax ; \#l′1,k,nmax
;

...

+nnr:imax.eq:0 ; \#l′imax,1,0 ; . . . ; +nnr:imax.eq:nmax ; \#l′imax,1,nmax
;

...

+nnr:imax.eq:0 ; \#l′imax,k,0 ; . . . ; +nnr:imax.eq:nmax ; \#l′imax,k,nmax
,

where the auxiliary functions ψj from the set of all primitive instructions of ISNRij to the

set of all primitive instructions of ISNR is defined as follows (1 ≤ j ≤ k):

ψj(set:i:n) = nnr:i.set:n ,

ψj(#l) = #l if j + l ≤ k ,

ψj(#l) = \#j if j + l > k ,

ψj(\#l) = \#l ,
ψj(i#i) = #li,j ,

ψj(i\#i) = #li,j ,

ψj(u) = u if u is not a register set instruction or

jump instruction ,

and for each i ∈ [1, imax], j ∈ [1, k], and h ∈ [0, nmax]:

li,j = k + 3 + 2 · (nmax + 1) · (k · (i− 1) + (j − 1)) ,

li,j = k + 3 + 2 · (nmax + 1) · (k · (imax + i− 1) + (j − 1)) ,

l′i,j,h = li,j + 2 · h+ 1− (j + h) if j + h ≤ k ,

l′i,j,h = k + 3 + 2 · (nmax + 1) · k · imax if j + h > k ,

l′i,j,h = li,j + 2 · h+ 1− (j − h) if j − h ≥ 0 ,

l′i,j,h = k + 3 + 4 · (nmax + 1) · k · imax if j − h < 0 .

Like in the case of indirect absolute jumps, the idea is that each indirect forward jump

and each indirect backward jump can be replaced by a direct forward jump to the beginning

of an instruction sequence whose execution leads to the intended jump after the content of

the register concerned has been found by a linear search. However, the direct backward

66 Instruction Sequences for Computer Science

jump instructions occurring in that instruction sequence now depend upon the position of

the indirect jump concerned in u1 ; . . . ;uk. To enforce that inaction occurs after execution

of the last instruction of the instruction sequence if the last instruction is a plain basic

instruction, a positive test instruction or a negative test instruction, #0 ; #0 is appended to

ψ1(u1) ; . . . ; ψk(uk). Because the length of the translated instruction sequence is greater

than k, care is taken that there are no direct forward jumps to instructions with a position

greater than k.

Let p be an ISNRij instruction sequence. Then isnrij2isnr(p) is the meaning of

p as an ISNR instruction sequence. The intended behaviour of p under execution is the

behaviour of isnrij2isnr(p) under execution on interaction with a register file. That is,

the behaviour of p , written |p|ISNRij
, is |isnrij2isnr(p)|ISNR//(⊕imax

i=1 nnr:i.NNR(0)).

For example, the behaviour of the ISNRij instruction sequence

a ; set:1:3 ; +b ; set:1:1 ; i#1 ; c ; \#5 ; +d ; !t ; !f

is the x-component of the solution of the guarded recursive specification consisting of the

following two equations:

x = a ◦ y , y = (c ◦ y)�b� (S+ �d� S−) .

The projection isnrij2isnr yields needlessly long ISNR instruction sequences be-

cause it does not take into account the fact that there is at most one indirect jump instruc-

tion at each position in an ISNRij instruction sequence being projected. Taking this fact

into account would lead to a projection with a much more complicated definition. What-

ever projection is taken, indirect jump instructions are eliminated. In Sect. 6.1, the effect

of indirect jump instruction elimination on the interactive performance of instruction se-

quences is studied.

3.3.3 Double indirect jump instructions

In this section, we introduce a variant of ISNAij with double indirect jump instructions.

This variant is called ISNAdij.

In ISNAdij, the same assumptions are made as in ISNAij.

ISNAdij has the following primitive instructions in addition to the primitive instructions

of ISNAij:

• for each i ∈ [1, imax], a double indirect absolute jump instruction ii##i.

ISNAdij instruction sequences have the form u1 ; . . . ; uk, where u1, . . . ,uk are primitive

Instruction Processing 67

instructions of ISNAdij.

On execution of an ISNAdij instruction sequence, the effects of the plain basic instruc-

tions, the positive test instructions, the negative test instructions, the direct absolute jump

instructions, the register set instructions, the indirect absolute jump instructions, and the

termination instructions are as in ISNAij. The effect of a double indirect absolute jump

instruction ii##i is the same as the effect of i##i′, where i′ is the content of register i.

Like before, we define the meaning of ISNAdij instruction sequences by means of a

projection isnadij2isnaij from the set of all ISNAdij instruction sequences to the set of

all ISNAij instruction sequences. This function is defined by

isnadij2isnaij(u1 ; . . . ; uk) =

ψ(u1) ; . . . ; ψ(uk) ; ##0 ; ##0 ;

max(k+2,nmax)−(k+2)︷ ︸︸ ︷
##0 ; . . . ; ##0 ;

+nnr:1.eq:1 ; i##1 ; . . . ; +nnr:1.eq:n ; i##n ; ##0 ;
...

+nnr:imax.eq:1 ; i##1 ; . . . ; +nnr:imax.eq:n ; i##n ; ##0 ,

where n = min(imax, nmax) and the auxiliary function ψ from the set of all primitive

instructions of ISNAdij to the set of all primitive instructions of ISNAij is defined as follows:

ψ(##l) = ##l if l ≤ k ,

ψ(##l) = ##0 if l > k ,

ψ(i##i) = i##i ,

ψ(ii##i) = ##li ,

ψ(u) = u if u is not a jump instruction ,

and for each i ∈ [1, imax]:

li = max(k + 2, nmax) + 1 + (2 ·min(imax, nmax) + 1) · (i− 1) .

The idea is that each double indirect absolute jump can be replaced by a direct absolute

jump to the beginning of the instruction sequence

+nnr:i.eq:1 ; i##1 ; . . . ; +nnr:i.eq:n ; i##n ; ##0 ,

where i is the register concerned and n = min(imax, nmax). The execution of this in-

struction sequence leads to the intended jump after the content of the register concerned

has been found by a linear search. To enforce that inaction occurs after execution of the

last instruction of the instruction sequence if the last instruction is a plain basic instruc-

tion, a positive test instruction or a negative test instruction, ##0 ; ##0 is appended to

ψ(u1) ; . . . ; ψ(uk). Because the length of the translated instruction sequence is greater

68 Instruction Sequences for Computer Science

than k, care is taken that there are no direct absolute jumps to instructions with a position

greater than k. To deal properly with indirect absolute jumps to instructions with a position

greater than k, the instruction ##0 is appended to ψ(u1) ; . . . ; ψ(uk) ; ##0 ; ##0 a

sufficient number of times.

Let p be an ISNAdij instruction sequence. Then isnadij2isnaij(p) is the meaning

of p as an ISNAij instruction sequence. The intended behaviour of p under execution is the

behaviour of the ISNAij instruction sequence isnadij2isnaij(p) under execution. That

is, the behaviour of p under execution, written |p|ISNAdij
, is |isnadij2isnaij(p)|ISNAij

.

For example, the behaviour of the ISNAdij instruction sequence

set:1:2 ; a ; set:2:9 ; +b ; set:2:7 ; ii##1 ; c ; ##3 ; +d ; !t ; !f

is the x-component of the solution of the guarded recursive specification consisting of the

following two equations:

x = a ◦ y , y = (c ◦ y)�b� (S+ �d� S−) .

The projection isnadij2isnaij uses indirect absolute jumps to obtain the effect of a

double indirect absolute jump in the same way as the projection isnaij2isna uses direct

absolute jumps to obtain the effect of an indirect absolute jump. Likewise, indirect relative

jumps can be used in that way to obtain the effect of a double indirect relative jump. More-

over, double indirect jumps can be used in that way to obtain the effect of a triple indirect

jump, and so on.

3.3.4 Returning jump and return instructions

In this section, we introduce a variant of ISNA with returning jump instructions and an

accompanying return instruction. This variant is called ISNArj.

In ISNArj, it is assumed that a fixed but arbitrary number lmax ∈ N
+ has been given,

which is considered the maximal length of a natural number stack. It is also assumed that

a fixed but arbitrary number nmax ∈ N
+ has been given, which is considered the greatest

natural number that can be contained in the elements of the natural number stack.

In ISNA, it is assumed that a fixed but arbitrary set A of basic instructions has been

given. In ISNArj, the following additional assumptions relating to A are made:

• a fixed but arbitrary set F of foci with nns ∈ F has been given;

• a fixed but arbitrary setM of methods with I(NNS) ⊆M has been given;

• A = {f .m | f ∈ F \ {nns} ∧m ∈ M}.

Instruction Processing 69

ISNArj has the following primitive instructions in addition to the primitive instructions

of ISNA:

• for each l ∈ N, a returning absolute jump instruction r##l;

• an absolute return instruction ##r.

ISNArj instruction sequences have the form u1 ; . . . ; uk, where u1, . . . ,uk are primitive

instructions of ISNArj.

On execution of an ISNArj instruction sequence, the effects of the plain basic instruc-

tions, the positive test instructions, the negative test instructions, the non-returning absolute

jump instructions, and the termination instructions are as in ISNA. The effect of a returning

absolute jump instruction r##l is that execution proceeds with the lth instruction of the

instruction sequence concerned, but execution returns to the next primitive instruction on

encountering a return instruction. If r##l is itself the lth instruction or there is no primitive

instruction to proceed with, inaction occurs. The effect of a return instruction ##r is that

execution proceeds with the primitive instruction immediately following the last executed

returning absolute jump instruction to which a return has not yet taken place. If there is no

primitive instruction following that returning absolute jump instruction, inaction occurs.

Most assembly languages provide variants of the returning jump and return instructions

of ISNArj as the means to make use of recursion in assembly language programming. An

example of the use of the returning jump and return instructions of ISNArj for that purpose

will be given below.

Like before, we define the meaning of ISNArj instruction sequences by means of a

projection isnarj2isna from the set of all ISNArj instruction sequences to the set of all

ISNA instruction sequences. This function is defined by

isnarj2isna(u1 ; . . . ; uk) =

ψ1(u1) ; . . . ; ψk(uk) ; ##0 ; ##0 ;

+nns.push:1 ; ##1 ; ##0 ; . . . ; +nns.push:1 ; ##k ; ##0 ;
...

+nns.push:n ; ##1 ; ##0 ; . . . ; +nns.push:n ; ##k ; ##0 ;

−nns.topeq:1 ; ##l′1 ; nns.pop ; ##1+1 ;
...

−nns.topeq:n ; ##l′n ; nns.pop ; ##n+1 ;

##0 ,

where n = min(k, nmax) and the auxiliary functions ψj from the set of all primitive in-

70 Instruction Sequences for Computer Science

structions of ISNArj to the set of all primitive instructions of ISNA is defined as follows

(1 ≤ j ≤ k):

ψj(##l) = ##l if l ≤ k ,

ψj(##l) = ##0 if l > k ,

ψj(r##l) = ##lj,l ,

ψj(##r) = ##l′ ,

ψj(u) = u if u is not a jump instruction ,

and for each j ∈ [1, k], l ∈ N, and h ∈ [1,min(k, nmax)]:

lj,l = k + 3 + 3 · k · (j − 1) + 3 · (l − 1) if l ≤ k ∧ j ≤ nmax ,

lj,l = 0 if l > k ∨ j > nmax ,

l′ = k + 3 + 3 · k ·min(k, nmax) ,

l′h = l′ + 4 · h .

The first idea is that each returning absolute jump can be replaced by an absolute jump to

the beginning of the instruction sequence

+nns.push:j ; ##l ; ##0 ,

where j is the position of the returning absolute jump instruction concerned and l is the

position of the instruction to jump to. The execution of this instruction sequence leads

to the intended jump after the return position has been put on the stack. In the case of

stack overflow, inaction occurs. The second idea is that each return can be replaced by an

absolute jump to the beginning of the instruction sequence

−nns.topeq:1 ; ##l′1 ; nns.pop ; ##1+1 ;
...

−nns.topeq:n ; ##l′n ; nns.pop ; ##n+1 ;

##0 ,

where n = min(k, nmax). The execution of this instruction sequence leads to the intended

jump after the position on the top of the stack has been found by a linear search and has

been removed from the stack. In the case of an empty stack, inaction occurs. To enforce

that inaction occurs after execution of the last instruction of the instruction sequence if

the last instruction is a plain basic instruction, a positive test instruction or a negative test

instruction, ##0 ; ##0 is appended to ψ1(u1) ; . . . ; ψk(uk). Because the length of

Instruction Processing 71

the translated instruction sequence is greater than k, care is taken that there are no non-

returning or returning absolute jumps to instructions with a position greater than k.

Let p be an ISNArj instruction sequence. Then isnarj2isna(p) is the meaning of

p as an ISNA instruction sequence. The intended behaviour of p under execution is the

behaviour of isnarj2isna(p) under execution on interaction with a stack. That is, the

behaviour of p , written |p|ISNArj
, is |isnarj2isna(p)|ISNA // nns.NNS(ε).

For example, the behaviour of the ISNArj instruction sequence

r##3 ; S ; +a ; r##3 ; b ; ##r

is the x0-component of the solution of the guarded recursive specification consisting of the

following equations:

xn = xn+1 �a� yn for all n ≤ lmax ,

xlmax+1 = D ,

y0 = S ,

yn+1 = b ◦ yn for all n < lmax .

This thread can, for each n < lmax, first perform n+1 times a, next perform n times b, and

then terminate; and it can first perform lmax + 1 times a and then become inactive. Recall

that lmax is the maximal length of the stack involved. The ISNArj instruction sequence

involved in this example can be viewed as follows: the first two primitive instructions

make up the main program and the last four instructions make up a subroutine. From this

viewpoint, the primitive instruction r##3 serves as a subroutine call, and the subroutine is

recursively called from itself until the execution of +a yields a negative reply. Because the

realization of recursion makes use of a bounded stack, the depth of the recursion is limited

to lmax.

According to the definition of the behaviour of ISNArj instruction sequences given

above, the execution of a returning jump instruction leads to inaction in the case where

its position cannot be pushed on the stack (as in the example given above) and the exe-

cution of a return instruction leads to inaction in the case where there is no position to be

popped from the stack. In the latter case, the return instruction is wrongly used. In the for-

mer case, however, the returning jump instruction is not wrongly used, but the finiteness of

the stack comes into play. This shows that the definition of the behaviour of ISNArj instruc-

tion sequences given here takes into account the finiteness of the execution environment of

instruction sequences.

72 Instruction Sequences for Computer Science

3.3.5 Dynamically instantiated instructions

In this section, we introduce a variant of ISNA with dynamically instantiated instructions.

This variant is called ISNAdii. In Appendix C, the usefulness of dynamic instruction in-

stantiation is illustrated by means of an example.

In ISNAdii, it is assumed that a fixed but arbitrary number imax ∈ N
+ has been given,

which is considered the number of natural number registers in a register file. It is also

assumed that a fixed but arbitrary number nmax ∈ N
+ has been given, which is considered

the greatest natural number that can be contained in the registers of the register file. The

functions from [1, imax] to [0, nmax] are taken for the states of the register file. For every

function g : [1, imax]→ [0, nmax], g is the state in which, for each i ∈ [1, imax], the content

of register i is g(i).

It is also assumed that a fixed but arbitrary set Aproto of basic proto-instructions and a

fixed but arbitrary dynamic instantiation function θ :Aproto× ([1, imax]→ [0, nmax])→ A

have been given. Aproto is a set whose members can be turned into basic instructions and

θ gives, for each e from Aproto and function g : [1, imax]→ [0, nmax], the basic instruction

into which e is turned when it is encountered during execution and the state of the register

file is g at that moment.

In ISNA, it is assumed that a fixed but arbitrary set A of basic instructions has been

given. In ISNAdii, the following additional assumptions relating to A are made:

• a fixed but arbitrary set F of foci with {nnr:i | i ∈ [1, imax]} ⊆ F has been given;

• a fixed but arbitrary setM of methods with I(NNR) ⊆M has been given;

• A = {f .m | f ∈ F \ {nnr:i | i ∈ [1, imax]} ∧m ∈M}.

ISNAdii has the following primitive instructions in addition to the primitive instructions

of ISNA:

• for each i ∈ [1, imax] and n ∈ [0, nmax], a register set instruction set:i:n;

• for each e ∈ Aproto, a plain basic proto-instruction e ;

• for each e ∈ Aproto, a positive test proto-instruction +e;

• for each e ∈ Aproto, a negative test proto-instruction −e .

ISNAdii instruction sequences have the form u1 ; . . . ; uk, where u1, . . . ,uk are primitive

instructions of ISNAdii.

On execution of an ISNAdii instruction sequence, the effects of the plain basic instruc-

tions, the positive test instructions, the negative test instructions, the absolute jump instruc-

Instruction Processing 73

tions, and the the termination instructions are as in ISNA. The effects of the register set

instructions are as in ISNAij. The effect of a plain basic proto-instruction e is the same

as the effect of the plain basic instruction θ(e , g), where g is the state of the register file

involved in the instantiation of proto-instructions. The effect of a positive or negative test

proto-instruction is similar.

We define the meaning of ISNAdii instruction sequences only for the case where imax =

1. The generalization of the definition to arbitrary imax is obvious, but leads to a definition

that is hard to read. The meaning of ISNAdii instruction sequences is given by a projection

isnadii2isna from the set of all ISNAdii instruction sequences to the set of all ISNA

instruction sequences. For the case where imax = 1, this function is defined by

isnadii2isna(u1 ; . . . ; uk) = ψ1(u1) ; . . . ; ψk(uk) ,

where the auxiliary functions ψj from the set of all primitive instructions of ISNAdii to the

set of all ISNA instruction sequences are defined as follows (1 ≤ j ≤ k):

ψj(set:1:n) = nnr:1.set:n ,

ψj(e) = +nnr:1.eq:0 ; ##l′′j,0 ;
...

+nnr:1.eq:nmax−1 ; ##l′′j,nmax−1 ;

##l′′j,nmax
;

θ(e, 0) ; ##l′j+1 ; ##l′j+2 ;
...

θ(e, nmax−1) ; ##l′j+1 ; ##l′j+2 ;

θ(e, nmax) ,

ψj(+e) = +nnr:1.eq:0 ; ##l′′j,0 ;
...

+nnr:1.eq:nmax−1 ; ##l′′j,nmax−1 ;

##l′′j,nmax
;

+θ(e , 0) ; ##l′j+1 ; ##l′j+2 ;
...

+θ(e , nmax−1) ; ##l′j+1 ; ##l′j+2 ;

+θ(e , nmax) ,

74 Instruction Sequences for Computer Science

ψj(−e) = +nnr:1.eq:0 ; ##l′′j,0 ;
...

+nnr:1.eq:nmax−1 ; ##l′′j,nmax−1 ;

##l′′j,nmax
;

−θ(e , 0) ; ##l′j+1 ; ##l′j+2 ;
...

−θ(e , nmax−1) ; ##l′j+1 ; ##l′j+2 ;

−θ(e , nmax) ,

ψj(##l) = ##l′j ,

ψj(u) = u if u is not a register set instruction, proto-

instruction or jump instruction ,

and for each j ∈ [1, k] and h ∈ [0, nmax]:

l′j = j + (5 · nmax + 2) · nj ,

l′′j,h = l′j + 2 · nmax + 3 · h+ 1 ,

and nj is the number of proto-instructions preceding position j.

The idea is that each proto-instruction can be replaced by an instruction sequence of

which the execution leads to the execution of the intended instruction after the content

of the register has been found by a linear search. Because the length of the replacing

instruction sequence is greater than 1, the direct absolute jump instructions are adjusted so

as to compensate for the introduction of additional instructions.

We will proceed as if isnadii2isna has been defined for arbitrary imax. Let p

be an ISNAdii instruction sequence. Then isnadii2isna(p) is the meaning of p as

an ISNA instruction sequence. The intended behaviour of p under execution is the be-

haviour of isnadii2isna(p) under execution on interaction with a register file. That

is, the behaviour of p under execution, written |p|ISNAdii
, is |isnadii2isna(p)|ISNA //

(⊕imax

i=1 nnr:i.NNR(0)).

Chapter 4

Expressiveness of Instruction Sequences

This chapter concerns the expressiveness of SPISA instruction sequences. In this case, ex-

pressiveness is basically about which behaviours can be produced by instruction sequences

under execution, which primitive instructions can be removed without reducing the class of

behaviours that can be produced by instruction sequences under execution, how to enlarge

the class of behaviours that can be produced by instruction sequences under execution, et

cetera.

We present answers to the basic expressiveness issues. Because the reach of jump in-

structions in SPISA is not bounded from above, the set of primitive instructions is infinite,

even if the set A of basic instructions is finite. One of the basic expressiveness results is

that the expressiveness would be reduced by making the reach of jump instructions bounded

from above. On the other hand, it is rather implausible that there exist execution mecha-

nisms that can deal with sequences of instructions from an infinite set. We demonstrate that

bounding the reach of jump instructions from above does not reduce the expressiveness if a

special primitive instruction is added. By interaction between instruction sequences under

execution and services, it is possible to enlarge the class of behaviours that can be produced.

We also demonstrate that the reduction of the expressiveness resulting from the complete

removal of jump instructions can be compensated for by means of interaction with Boolean

registers.

This chapter is also concerned with some issues that arise from the investigation of

expressiveness issues regarding SPISA. We show that, even in the case where the set of

primitive instructions concerned is finite, a finite-state execution mechanism for a set of

instruction sequences that by itself can produce each thread producible by a SPISA instruc-

tion sequence from an instruction sequence belonging to the set in question is unfeasible.

We also show that in a variation on SPISA in which jump instructions are replaced by labels

and goto instructions, but which is as expressive as SPISA, an upper bound on the number

75

76 Instruction Sequences for Computer Science

of labels reduces the expressiveness.

4.1 Basic Expressiveness Results

In this section, we provide the basic expressiveness results concerning SPISA. That is,

we provide results about which threads can be produced by SPISA instruction sequences

under execution, which primitive instructions of SPISA can be removed without reducing

the class of threads that can be produced, and which primitive instructions of SPISA cannot

be removed without reducing the class of threads that can be produced.

In this chapter, we assume that a model M of BTA+TSI+REC+AIP has been given.

Before we provide the basic expressiveness results concerning SPISA, we show that

ISNR instruction sequences and ISNA instruction sequences can produce the same threads

as SPISA instruction sequences.

Proposition 4.1.

(1) For each thread t, there exists a closed SPISA term t such that the interpretation of |t |
in M is t iff there exists an ISNR instruction sequence p such that the interpretation

of |p|ISNR in M is t.

(2) For each thread t, there exists a closed SPISA term t such that the interpretation of |t |
in M is t iff there exists an ISNA instruction sequence p such that the interpretation

of |p|ISNA in M is t.

Proof. For Property 1, by Lemma 2.2, it is sufficient to show that there exists a function

spisa2isnr from the set of all closed SPISA terms in first canonical form to the set of all

ISNR instruction sequences such that, for all closed SPISA terms t in first canonical form,

|isnr2spisa(spisa2isnr(t))| = |t |. It is easy to see that a witnessing function is the

one defined by

spisa2isnr(u1 ; . . . ; un) = u1 ; . . . ; un ,

spisa2isnr(u1 ; . . . ; uk ; (uk+1 ; . . . ; uk+n)
ω) = u1 ; . . . ; uk+n ; (\#n)m ,

where m is 2 if u1 ; . . . ; uk+n is jump-free and the maximum of 2 and the highest l such

that ui ≡ #l for some i ∈ [1, k + n] otherwise.

Property 2 follows immediately from Property 1 and Proposition 2.3. �

The following proposition puts the expressiveness of SPISA in terms of producible

threads.

Expressiveness of Instruction Sequences 77

Proposition 4.2. For each thread t, there exists a closed SPISA term t such that the inter-

pretation of |t | in M is t iff t is regular.

Proof. The implication from left to right follows immediately from the axioms for the

thread extraction operator (Table 2.6).

The implication from right to left is proved as follows. By Proposition 2.1, t is a

component of the solution of some finite linear recursive specification E over BTA. There

occur finitely many variables x 0, . . . , xn in E . Assume that t is the x 0-component of the

solution of E . Let p be the ISNA instruction sequence p0 ; . . . ;pn, where pi is defined as

follows (0 ≤ i ≤ n):

pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

!t ; !t ; !t if x i = S+ ∈ E

!f ; !f ; !f if x i = S− ∈ E

! ; ! ; ! if x i = S ∈ E

##3·i+1 ; ##3·i+1 ; ##3·i+1 if x i = D ∈ E

+a ; ##3·j+1 ; ##3·k+1 if x i = x j �a � xk ∈ E .

Then isna2spisa(p) is a closed SPISA term such that the interpretation of

|isna2spisa(p)| in M is t. �

The following proposition shows that the expressiveness of SPISA would not be re-

duced by removing plain basic instructions and negative test instructions.

Proposition 4.3. For each closed SPISA term t , there exists a closed SPISA term t ′

without occurrences of plain basic instructions and negative test instructions such that

|t | = |t ′|.

Proof. This follows immediately from the proof of Proposition 4.2: the witnessing closed

SPISA term is a term without occurrences of plain basic instructions and negative test

instructions. �

The following proposition shows that the expressiveness of SPISA would not be re-

duced by increasing the lower bound of the reach of forward jump instructions.

Proposition 4.4. For each n > 0, for each closed SPISA term t , there exists a closed

SPISA term t ′ without occurrences of jump instructions #l with l < n such that |t | = |t ′|.

Proof. By Lemma 2.6, it is sufficient to consider only closed SPISA terms t that are of

the form

(u1 ; . . . ; uk)
ω .

78 Instruction Sequences for Computer Science

Let i ∈ [1, k] be such that u i is of the form #l, and let t ′′ be t with u i replaced by #l+k.

Then it follows from SC3, together with SPISA1, SPISA4 and SC5, that t ∼=s t ′′. By

Proposition 2.2, t ∼=s t
′′ implies |t | = |t ′′|. Hence, for each j ∈ [1, k] for which uj is of

the form #l with l < n, uj can be replaced by #l′ with l′ ≥ n where l′ is obtained by

adding k sufficiently many times to l. �

The following proposition shows that the expressiveness of SPISA would be reduced

by making the reach of forward jump instructions bounded from above.

Proposition 4.5. Assume that card(A) > 0. Then, for each n > 0, there exists a closed

SPISA term t for which there does not exist a closed SPISA term t ′ without occurrences

of jump instructions #l with l > n such that |t | = |t ′|.

Proof. Take an n > 0 and a basic instruction a. Let t be the closed SPISA term

t1 ; . . . ; tn+1 ; ! ; (t
′
1 ; . . . ; t

′
n+1)

ω

with

t i = +a ; #li , t ′i = ai ; +a ; ! ; #l′i ,

where li and l′i are such that on execution of t the effect of #li and #l′i is that execution

proceeds with the first primitive instruction of t ′i. Then t produces the x1-component of

the solution of the guarded recursive specification consisting of the following equations:

xi = yi �a� xi+1 for all i ∈ [1, n+ 1] ,

xn+2 = S ,

yi = ai ◦ (S�a� yi) for all i ∈ [1, n+ 1] .

For every i ∈ [1, n+1], let ti be the yi-component of the solution of this guarded recursive

specification. Now suppose that there exists a closed SPISA term without occurrences of

jump instructions #l with l > n that produces the same thread as t . Then, by Lemma 2.6,

there exists such a term that is of the form

(u1 ; . . . ; uk)
ω .

Because Res(ti)∩Res(tj) = {S} for each i, j ∈ [1, n+1] with i �= j, it is easy to see that

each of the primitive instructions u1, . . . ,uk can contribute to at most one of the threads

t1, . . . , tn+1. By the upper bound on the reach of jump instructions we know that, for each

i ∈ [1, n+ 1], there are at most n− 1 other primitive instructions between two successive

primitive instructions contributing to ti. This means that, for each i ∈ [1, n+1], u1 ;. . .;uk

Expressiveness of Instruction Sequences 79

contains at least �k/n� primitive instructions contributing to ti.1 Hence, in total u1 ; . . . ;uk

contains at least (n+ 1) · �k/n� primitive instructions. Because (n+ 1) · �k/n� > k, this

contradicts the fact that u1 ; . . . ; uk contains k primitive instructions. �

Proposition 4.5 does not go through under the implicit assumption that card(A) ≥ 0:

in the case where card(A) = 0, each closed SPISA term is behaviourally congruent to a

closed SPISA term without occurrences of jump instructions.

4.2 Jump-Free Instruction Sequences

In this section, we show that each regular thread can be produced by some single-pass

instruction sequence without jump instructions through interaction with Boolean registers.

In the proof of the theorem presented below, we associate a closed SPISA term t in

which jump instructions do not occur with a finite linear recursive specification E of the

form

{x i = x l(i) �a i� x r(i) | i ∈ [1, n]}
∪ {xn+1 = S+, xn+2 = S−, xn+3 = S, xn+4 = D} .

In t , a number of Boolean registers is used for specific purposes. The purpose of each

individual Boolean register is reflected in the focus that serves as its name:

• for each i ∈ [1, n + 4], s:i serves as the name of a Boolean register that is used to

indicate whether the current state of 〈x 1|E〉 is 〈x i|E〉;
• rt serves as the name of a Boolean register that is used to indicate whether the reply

upon the action performed by 〈x 1|E〉 in its current state is t;

• rf serves as the name of a Boolean register that is used to indicate whether the reply

upon the action performed by 〈x 1|E〉 in its current state is f;

• e serves as the name of a Boolean register that is used to achieve that instructions not

related to the current state of 〈x 1|E〉 are passed correctly;

• o serves as the name of a Boolean register that is used to achieve with the instruction

+o.set:f that the following instruction is skipped.

Now we turn to the theorem announced above. It states rigorously that each component of

the solution of each finite linear recursive specification can be produced by a single-pass

instruction sequence without forward jump instructions through interaction with Boolean

registers.
1As usual, we write �q� for the smallest integer not less than q.

80 Instruction Sequences for Computer Science

Theorem 4.1. Let E be a finite linear recursive specification

{x i = x l(i) �a i� x r(i) | i ∈ [1, n]}
∪ {xn+1 = S+, xn+2 = S−, xn+3 = S, xn+4 = D} .

Then there exists a closed SPISA term t in which jump instructions do not occur such that

|t | //
((⊕n+4

i=1 s:i.BR(f)
)
⊕ rt.BR(f)⊕ rf.BR(f)⊕ e.BR(f)⊕ o.BR(f)

)
= 〈x 1|E 〉 .2

Proof. We associate a closed SPISA term t in which jump instructions do not occur with

E as follows:

t = s:1.set:t ; (t1 ; . . . ; tn+3)
ω ,

where, for each i ∈ [1, n]:

t i = +s:i.get ; e.set:t ;

+s:i.get ; s:i.set:f ;

+e.get ;−a i ; +o.set:f ; rt.set:t ;

+e.get ; +rt.get ; +o.set:f ; rf.set:t ;

+rt.get ; s:l(i).set:t ;

+rf.get ; s:r(i).set:t ;

rt.set:f ; rf.set:f ; e.set:f ,

and

tn+1 = +s:n+1.get ; !t ,

tn+2 = +s:n+2.get ; !f ,

tn+3 = +s:n+3.get ; ! .

We use the following abbreviations (for i ∈ [1, n+ 3] and j ∈ [1, n+ 4]):

t ′i for t i ; . . . ; tn+3 ; (t1 ; . . . ; tn+3)
ω;

|t ′i|brj for |t ′i| // ((⊕n+4
i=1 s:i.BR(bi)) ⊕ rt.BR(f) ⊕ rf.BR(f) ⊕ e.BR(f) ⊕ o.BR(f)),

where bj = t and, for each j′ ∈ [1, n+ 4] such that j′ �= j, bj′ = f.

From axioms TE2 and AU7, and the definition of the Boolean register functional unit BR,

it follows that

|t | //
((⊕n+4

i=1 s:i.BR(f)
)
⊕ rt.BR(f)⊕ rf.BR(f)⊕ e.BR(f)⊕ o.BR(f)

)
= |t ′1|br1 .

2The Boolean register functional unit BR has been defined in Sect. 3.2.2.

Expressiveness of Instruction Sequences 81

This leaves us to show that 〈x 1|E 〉 = |t ′1|br1 .

Using axioms P1, P5, TE2, TE4, TE6, TE13, TE15, TE17, AU1–AU4, AU7, AU8

and AU10, and the definition of the Boolean register functional unit, we easily prove the

following:

1. |t ′i|brj = |t ′i+1|brj if 1 ≤ i ≤ n+ 2 ∧ 1 ≤ j ≤ n+ 3 ∧ i �= j

2. |t ′i|brj = |t ′1|brj if i = n+ 3 ∧ 1 ≤ j ≤ n+ 3 ∧ i �= j

3. |t ′i|bri = |t ′i+1|brl(i) �a i� |t ′i+1|brr(i) if 1 ≤ i ≤ n

4. |t ′i|bri = S+ if i = n+ 1

5. |t ′i|bri = S− if i = n+ 2

6. |t ′i|bri = S if i = n+ 3

7. |t ′i|brj = D if 1 ≤ i ≤ n+ 3 ∧ j = n+ 4

From Properties 1 and 2, it follows that

|t ′i|brj = |t ′j |brj if 1 ≤ i ≤ n+ 3 ∧ 1 ≤ j ≤ n+ 3 ∧ i �= j .

From this and Property 3, it follows that

|t ′i|bri = |t ′l(i)|brl(i) �a i� |t ′r(i)|brr(i) if 1 ≤ i ≤ n .

From this and Properties 4–7, it follows that |t ′1|br1 is the x 1-component of a solution of

E . Because linear recursive specifications have unique solutions, it follows that 〈x 1|E〉 =
|t ′1|br1 . �

Theorem 4.1 goes through in the cases where E = {x1 = S+}, E = {x 1 = S−},
E = {x 1 = S} and E = {x 1 = D}. The first three cases are trivial. In the last case,

a witnessing SPISA term t is o.getω . It follows from the proof of Proposition 2.1 that,

for each regular thread t, either there exists a finite linear recursive specification E of the

form considered in Theorem 4.1 such that t is the x 1-component of the solution of E or t

is the x 1-component of the solution of {x1 = S+}, {x 1 = S−}, {x 1 = S} or {x 1 = D}.
Hence, we have the following corollary of Proposition 2.1 and Theorem 4.1:

Corollary 4.1. For each regular thread t, there exists a closed SPISA term t in which jump

instructions do not occur such that t is the thread denoted by

|t | //
((⊕n+4

i=1 s:i.BR(f)
)
⊕ rt.BR(f)⊕ rf.BR(f)⊕ e.BR(f)⊕ o.BR(f)

)
.

In other words, each regular thread can be produced by an instruction sequence without

jump instructions through interaction with Boolean registers.

82 Instruction Sequences for Computer Science

Remark 4.1. The construction of such instructions sequences given in the proof of Theo-

rem 4.1 is weakly reminiscent of the construction of structured programs from flow charts

found in [Cooper (1967)]. However, our construction is more extreme: it yields instruction

sequences that contain neither unstructured jumps nor a rendering of the conditional and

loop constructs used in structured programming.

4.3 Gotos and a Bounded Number of Labels

In this section, we introduce SPISAg, a variation on SPISA in which jump instructions are

replaced by labels and goto instructions, which does not reduce the expressiveness, and

show that an upper bound on the number of labels reduces the expressiveness.

4.3.1 Labels and gotos

In SPISAg, like in SPISA, it is assumed that a fixed but arbitrary set A of basic instructions

has been given. SPISAg has the primitive instructions of SPISA except the forward jump

instructions and in addition:

• for each l ∈ N, a label instruction [l];

• for each l ∈ N, a goto instruction #[l].

We write Ig for the set of all primitive instructions of SPISAg.

On execution of a SPISAg instruction sequence, the effects of the plain basic instruc-

tions, the positive test instructions, the negative test instructions, and the terminations in-

structions are as in SPISA. The effects of the label and goto instructions are as follows:

• the effect of a label instruction [l] is simply that execution proceeds with the next prim-

itive instruction — if there is no primitive instruction to proceed with, inaction occurs;

• the effect of a goto instruction#[l] is that execution proceeds with the occurrence of the

label instruction [l] next following — if there is no occurrence of the label instruction

[l] to proceed with, inaction occurs.

SPISAg has a constant u for each u ∈ Ig. SPISAg has the same operators as SPISA.

Likewise, SPISAg has the same axioms as SPISA.

Some simple examples of closed SPISAg terms are

+a ; #[0] ; #[1] ; [0] ; b ; ! , ([0] ;−a ; #[0] ; !)ω .

Expressiveness of Instruction Sequences 83

On execution of the instruction sequence denoted by the first term, the basic instruction a is

executed first, if the execution of a produces the reply t, the basic instruction b is executed

next and after that execution terminates, and if the execution of a produces the reply f,

inaction occurs. On execution of the instruction sequence denoted by the second term, the

basic instruction a is executed repeatedly until its execution produces the reply t and after

that execution terminates.

Just like in the case of SPISA, all closed SPISAg terms have first canonical forms. We

assume that a fixed but arbitrary function rewr has been given that assigns to each closed

SPISAg term one of its first canonical forms.

Just like in the case of SPISA, the behaviours produced by instruction sequences de-

noted by closed SPISAg terms are represented by threads. The behaviours produced by in-

struction sequences denoted by closed SPISAg terms are indirectly given by the behaviour

preserving function spisag2spisa from the set of all closed SPISAg terms to the set of

all closed SPISA terms defined by

spisag2spisa(t) = spisagfcf2spisa(rewr (t)) ,

where the function spisagfcf2spisa from the set of all closed SPISAg terms in first

canonical form to the set of all closed SPISA terms is defined by

spisagfcf2spisa(u1 ; . . . ; un) = spisagfcf2spisa(u1 ; . . . ; un ; (#[0])ω) ,

spisagfcf2spisa(u1 ; . . . ; un ; (un+1 ; . . . ; um)ω)

= ϕ1(u1) ; . . . ; ϕn(un) ; (ϕn+1(un+1) ; . . . ; ϕm(um))ω ,

and the auxiliary functions ϕj from the set of all primitive instructions of SPISAg to the set

of all primitive instructions of SPISA are defined as follows (1 ≤ j ≤ m):

ϕj([l]) = #1 ,

ϕj(#[l]) = #tgt j(l) ,

ϕj(u) = u if u is not a label or goto instruction ,

where

• tgt j(l) = i if the label instruction [l] occurs in the instruction sequence denoted by

u j ; . . . ; um ; un+1 ; . . . ; um and i is the position of the leftmost occurrence of [l];

• tgt j(l) = 0 if the label instruction [l] does not occur in the instruction sequence denoted

by uj ; . . . ; um ; un+1 ; . . . ; um.

84 Instruction Sequences for Computer Science

For example, the behaviour produced by the instruction sequence denoted by the closed

SPISAg term

(a ; [0] ; +b ; #[1] ; #[2] ; [1] ; c ; #[0] ; [2] ; d ; #[0])ω

is the same as the behaviour produced by the instruction sequence denoted by the closed

SPISA term

(a ; #1 ; +b ; #2 ; #4 ; #1 ; c ; #5 ; #1 ; d ; #2)ω

Let t be a closed SPISAg term. Then the behaviour of t under execution is

|spisag2spisa(t)|.
For example, the instruction sequence denoted by the closed SPISAg term displayed

above produces the x-component of the solution of the guarded recursive specification

consisting of the following two equations:

x = a ◦ y , y = (c ◦ y)�b� (d ◦ y) .

4.3.2 A bounded number of labels

In this section, we show that an upper bound on the number of labels restricts the expres-

siveness of SPISAg. Let k > 0. Then we will refer to SPISAg terms without occurrences

of label instructions [l] with l ≥ k as SPISAk
g terms, and to the primitive instructions from

which the SPISAk
g terms are generated as the primitive instructions of SPISAk

g .

We define an alternative projection for closed SPISAk
g terms, which takes into account

that these terms contain only label instructions [l] with l < k. The alternative projection

spisag2spisak from the set of all closed SPISAk
g terms to the set of all closed SPISA

terms is defined by

spisag2spisak(t) = spisagfcf2spisak(rewr (t)) ,

where the function spisagfcf2spisak from the set of all closed SPISAg terms in first

canonical form to the set of all closed SPISA terms is defined by

spisagfcf2spisak(u1 ; . . . ; un)

= spisagfcf2spisak(u1 ; . . . ; un ; (#[0])ω) ,

spisagfcf2spisak(u1 ; . . . ; un ; (un+1 ; . . . ; um)ω)

= ψ(u1,u2) ; . . . ; ψ(un,un+1) ;

(ψ(un+1,un+2) ; . . . ; ψ(um−1,um) ; ψ(um,un+1))
ω ,

Expressiveness of Instruction Sequences 85

where the auxiliary function ψ from the set of all pairs of primitive instructions of SPISAk
g

to the set of all closed SPISA terms is defined as follows:

ψ(u ′,u ′′) = ψ′(u ′) ; #k+2 ; #k+2 ; ψ′′(u ′′) ,

where the auxiliary function ψ′ from the set of all primitive instructions of SPISAk
g to the

set of all primitive instructions of SPISA is defined as follows:

ψ′([l]) = #1 ,

ψ′(#[l]) = #l+3 if l < k ,

ψ′(#[l]) = #0 if l ≥ k ,

ψ′(u) = u if u is not a label or goto instruction

and the auxiliary function ψ′′ from the set of all primitive instructions of SPISAk
g to the set

of all closed SPISA terms is defined as follows:

ψ′′([l]) = (#k+3)l ; #k−l ; (#k+3)k−l−1 ,

ψ′′(u) = (#k+3)k if u is not a label instruction .

In order to clarify the alternative projection, we explain how the intended effect of a

goto instruction is obtained. If u j is #[l], then ψ′(u j) is #l+3. The effect of #l+3

is a jump to the (l+1)st instruction in ψ′′(u j+1) if j < m and a jump to the (l+1)st

instruction in ψ′′(un+1) if j = m. If this instruction is #k−l, then its effect is a jump

to the occurrence of #1 that replaces [l]. However, if this instruction is #k+3, then its

effect is a jump to the (l+1)st instruction in ψ′′(u j+2) if j < m− 1, a jump to the (l+1)st

instruction in ψ′′(un+1) if j = m− 1, and a jump to the (l+1)st instruction in ψ′′(un+2)

if j = m.

In the proof of Theorem 4.2 below, chained jumps are changed into single jumps. The

following lemma justifies these removals.

Lemma 4.1. For each SPISA term t and variable X :

|t [#n+1 ; u1 ; . . . ; un ; #0/X] | = |t [#0 ; u1 ; . . . ; un ; #0/X] | ,
|t [#n+1 ; u1 ; . . . ; un ; #l/X] | = |t [#l+n+1 ; u1 ; . . . ; un ; #l/X] | .

Proof. This follows immediately from axioms SC1, SC2 and SC9, and Proposition 2.2.

�

The following theorem states that the projections spisag2spisa and spisag2spisak

give rise to instruction sequences with the same behaviour.

Theorem 4.2. For each k > 0, for each closed SPISAk
g term t , |spisag2spisa(t)| =

|spisag2spisak(t)|.

86 Instruction Sequences for Computer Science

Proof. By the definitions of spisag2spisa and spisag2spisak, it is sufficient to con-

sider only the case where t is of the form u1 ; . . . ; un ; (un+1 ; . . . ; um)ω.

We make use of the following auxiliary notation: we write

|i,u1 ; . . . ; un ; (un+1 ; . . . ; um)ω|
for |u i ; . . . ; um ; (un+1 ; . . . ; um)ω| if 1 ≤ i ≤ m ,

for D if i = 0 ∨ i > m .

Let t = u1 ; . . . ; un ; (un+1 ; . . . ; um)ω be a closed SPISAk
g term, let t ′ =

spisag2spisa(t), and let t ′′ = spisag2spisak(t). Moreover, let ρ:N→ N be such that

ρ(i) = (k + 3) · (i− 1) + 1. Then it follows easily from the definitions of spisag2spisa

and spisag2spisak, the axioms of SPISA, the axioms for the thread extraction operator,

and Lemma 4.1 that for 1 ≤ i ≤ m:

|i, t ′| = a ◦ |i+ 1, t ′| if u i = a ,

|i, t ′| = |i+ 1, t ′|�a � |i+ 2, t ′| if u i = +a ,

|i, t ′| = |i+ 2, t ′|�a � |i+ 1, t ′| if u i = −a ,

|i, t ′| = |i+ 1, t ′| if u i = [l] ,

|i, t ′| = |i+ n, t ′| if u i = #[l] ∧ tgt i(l) = n ,

|i, t ′| = S+ if u i = !t ,

|i, t ′| = S− if u i = !f ,

|i, t ′| = S if u i = !

and

|ρ(i), t ′′| = a ◦ |ρ(i+ 1), t ′′| if u i = a ,

|ρ(i), t ′′| = |ρ(i+ 1), t ′′|�a � |ρ(i+ 2), t ′′| if u i = +a ,

|ρ(i), t ′′| = |ρ(i+ 2), t ′′|�a � |ρ(i+ 1), t ′′| if u i = −a ,

|ρ(i), t ′′| = |ρ(i+ 1), t ′′| if u i = [l] ,

|ρ(i), t ′′| = |ρ(i+ n), t ′′| if u i = #[l] ∧ tgt i(l) = n ,

|ρ(i), t ′′| = S+ if u i = !t ,

|ρ(i), t ′′| = S− if u i = !f ,

|ρ(i), t ′′| = S if u i = ! ,

where tgti is defined as before in the definition of spisag2spisa. Because we have

that |spisag2spisa(t)| = |1, t ′| and |spisag2spisak(t)| = |ρ(1), t ′′|, this means that

|spisag2spisa(t)| and |spisag2spisak(t)| denote solutions of the same guarded re-

cursive specification over BTA. Because guarded recursive specifications over BTA have

unique solutions, it follows that |spisag2spisa(t)| = |spisag2spisak(t)|. �

Expressiveness of Instruction Sequences 87

The projection spisag2spisak(t) yields only closed SPISA terms that do not contain

jump instructions #l with l > k + 3. Hence, we have the following corollary of Theo-

rem 4.2:

Corollary 4.2. For each closed SPISAk
g term t , there exists a closed SPISA term t ′ not

containing jump instructions #l with l > k + 3 such that |spisag2spisa(t)| = |t ′|.

It follows from Corollary 4.2 that, if a regular thread cannot be denoted by a closed SPISA

term without occurrences of jump instructions #l with l > k + 3, it cannot be denoted by

a closed SPISAk
g term. Moreover, by Proposition 4.5, for each k ∈ N, there exists a closed

SPISA term for which there does not exist a closed SPISA term without occurrences of

jump instructions #l with l > k+3 that denotes the same thread. Hence, we also have the

following corollary:

Corollary 4.3. For each k > 0, there exists a closed SPISA term t for which there does

not exist a closed SPISAk
g term t ′ such that |t | = |spisag2spisa(t ′)|.

4.4 The Jump-Shift Instruction and Finiteness Issues

In this section, we introduce SPISAjs, the extension of SPISA with a jump-shift instruc-

tion, and show that the set of all closed SPISAjs terms that do not contain forward jump

instructions #l with l > 0 are as expressive as the set of all closed SPISA terms. We also

introduce an alternative thread extraction operator for this restricted set of closed SPISAjs

terms, that fits in better with the idea of single-pass execution of instruction sequences,

and show that the threads yielded by the alternative thread extraction become the threads

yielded by the original thread extraction through interaction with an unbounded counter.

To get perspective on this result, we introduce the notion of an execution mechanism and

show that there does not exist a finite-state execution mechanism that by itself, therefore

without interaction with an unbounded counter, can produce each regular thread from an

instruction sequence that is a finite or eventually periodic infinite sequence of instructions

from a finite set.

4.4.1 The jump-shift instruction

We extend SPISA with the jump-shift instruction, resulting in SPISAjs. The merit of the

jump-shift instruction is that the expressiveness of SPISAjs is not reduced if the reach of

jump instructions is bounded from above.

88 Instruction Sequences for Computer Science

Table 4.1 Axioms for the jump-shift instruction

#′ ; #l = #l+1 JSI1

#′ ; u = u JSI2

#′ω = (#0)ω JSI3

In SPISAjs, like in SPISA, it is assumed that a fixed but arbitrary set A of basic instruc-

tions has been given. SPISAjs has the primitive instructions of SPISA and in addition:

• a jump-shift instruction #′.

We write Ijs for the set of all primitive instructions of SPISAjs. Moreover, we write Ijmp

for the set of all forward jump instructions.

On execution of an instruction sequence, the effect of one or more jump-shift instruc-

tions preceding a jump instruction is that each of those jump-shift instructions increases the

position to jump to by one. One or more jump-shift instructions preceding an instruction

different from a jump instruction, do not have an effect.

SPISAjs has a constant u for each u ∈ Ijs. SPISAjs has the same operators as SPISA.

SPISAjs has the axioms of SPISA and in addition the axioms for the jump-shift instruction

given in Table 4.1. In this table, u stands for an arbitrary primitive instruction from I\Ijmp.

Some simple examples of closed SPISAjs terms are

#′ ; a ; b ; c , +a ; #′ ; #′ ; #0 ; #0 ; b ; ! , (−a ; #′ ; #′ ; #0 ; !)ω .

On execution of the instruction sequence denoted by the first term, the basic instructions

a, b and c are executed in that order and after that inaction occurs. On execution of the

instruction sequence denoted by the second term, the basic instruction a is executed first,

if the execution of a produces the reply t, the basic instruction b is executed next and after

that execution terminates, and if the execution of a produces the reply f, inaction occurs.

On execution of the instruction sequence denoted by the third term, the basic instruction

a is executed repeatedly until its execution produces the reply t and after that execution

terminates. The last two examples show that the jump-shift instruction could lead to some

confusion with regard to the effects of test instructions.

In the case of SPISAjs, the axioms for the structural congruence predicate are the ax-

ioms SC1–SC9 (Table 2.2), on the understanding that u1, . . . , un, v1, . . . , vn′+1 still

Expressiveness of Instruction Sequences 89

Table 4.2 Additional axiom for the thread extraction operator

|x| = |x ; #0| TE19

stand for arbitrary primitive instructions from I. We write SPISAjs+SC for SPISAjs ex-

tended with the predicate ∼=s, and the axioms SC1–SC9.

In the case of SPISAjs, the axioms for the thread extraction operator are the axioms

TE1–TE18 (Table 2.6), on the understanding that u still stands for an arbitrary primitive

instruction from I, and in addition the axiom given in Table 4.2.

The additional axiom |x| = |x ; #0| expresses that a missing termination instruction

leads to inaction. For all closed SPISA terms t , the equation |t | = |t ; #0| is derivable

from the axioms of SPISA and axioms TE1–TE18. For all closed SPISAjs terms t , the

equation |#l+2 ; #′ ; t | = |#l+2 ; t | is derivable from the axioms of SPISAjs and axioms

TE1–TE19.

Below, we consider closed SPISAjs terms that contain no other jump instruction than

#0. We will refer to SPISAjs terms without occurrences of jump instructions #l with l > 0

as SPISA0
js terms.

An interesting point of the set of all closed SPISA0
js terms is that the set of primitive

instructions from which it is generated is finite if the set A of basic instructions is finite.

The set of primitive instructions from which the set of all closed SPISA terms is generated

is infinite, even if the set A of basic instructions is finite. It happens that all threads that are

expressible by SPISA terms are also expressible by SPISA0
js terms.

Proposition 4.6. For each closed SPISA term t , there exists a closed SPISA0
js term t ′ such

that |t | = |t ′|.

Proof. Let t be a closed SPISA term, and let t ′ be t with, for all l > 0, all occurrences

of #l in t replaced by #′l ; #0. Clearly, t ′ is a closed SPISA0
js term. It is easily proved

by induction on l that, for each l > 0, the equation #l = #′l ; #0 is derivable from the

axioms of SPISAjs. From this it follows immediately that the equation t = t ′ is derivable

from the axioms of SPISAjs. Consequently, |t | = |t ′|. �

For example,

|+a ; #2 ; #3 ; b ; !t| = |+a ; #′ ; #′ ; #0 ; #′ ; #′ ; #′ ; #0 ; b ; !t|

90 Instruction Sequences for Computer Science

We have the following corollary of Propositions 4.2 and 4.6.

Corollary 4.4. For each regular thread t, there exists a closed SPISA0
js term t such that

the interpretation of |t | in M is t.

This means that each finite-state thread can be produced by a finite or eventually periodic

infinite sequence of instructions from a finite set if the set A of basic actions is finite.

Notice that, by the way the jump-shift instruction is handled, the thread extraction op-

erator for SPISAjs is not in accordance with the idea of single pass execution of instruction

sequences.

4.4.2 An alternative thread extraction operator

We introduce an alternative thread extraction operator for SPISA0
js, which is in accordance

with the idea of single pass execution of instruction sequences, and show that the threads

extracted in the alternative way become the threads extracted in the original way through

interaction with an unbounded counter.

In SPISAjs, it is assumed that a fixed but arbitrary set A of basic instructions has been

given. In the case of the alternative thread extraction operator, the following additional

assumptions relating to A are made:

• a fixed but arbitrary set F of foci with nnc ∈ F has been given;

• a fixed but arbitrary setM of methods with I(NNC) ⊆M has been given;

• A = {f .m | f ∈ F \ {nnc} ∧m ∈ M}.

Thereby no real restriction is imposed on the set A: in the case where the cardinality of

F equals 2, all basic instructions have the same focus and the set M of methods can be

looked upon as the set A of basic instructions.

The axioms for the alternative thread extraction operator |_ |′ are given in Table 4.3. In

this table, a stands for an arbitrary basic instruction from A and u stands for an arbitrary

primitive instruction from I \ Ijmp. The auxiliary operator |_ |′skp is used to deal with the

skipping induced by test and jump instructions.

In this case, the thread extracted from an instruction sequence is not the behaviour of

the instruction sequence under execution. That behaviour arises from interaction of the

extracted thread with an unbounded counter.

Expressiveness of Instruction Sequences 91

Table 4.3 Axioms for the alternative thread extraction operator

|X |′ = |X ; #0|′ ATE1

|a ;X |′ = nnc.setzero ◦ (a ◦ |X |′) ATE2

|+a ;X |′ = nnc.setzero ◦ (|X |′ �a � (nnc.succ2 ◦ |X |′skp)) ATE3

|−a ;X |′ = nnc.setzero ◦ ((nnc.succ2 ◦ |X |′skp)�a � |X |′) ATE4

|#′ ;X |′ = nnc.succ ◦ |X |′ ATE5

|#0 ;X |′ = D�nnc.iszero� |X |′skp ATE6

|!t ;X |′ = S+ ATE7

|!f ;X |′ = S− ATE8

|! ;X |′ = S ATE9

|#′ ;X |′skp = |X |′skp ATES1

|#0 ;X |′skp = nnc.pred ◦ (D�nnc.iszero� |X |′skp) ATES2

|u ;X |′skp = nnc.pred ◦ (|u ;X |′ �nnc.iszero� |X |′skp) ATES3

For example,

|+a ; #′ ; #′ ; #0 ; !f ; !t|′ =
nnc.setzero ◦

((
nnc.succ2 ◦ t

)
�a�

(
nnc.succ2 ◦ (nnc.pred ◦ t)

))
,

where t is the following closed BTA term:

D�nnc.iszero�
(nnc.pred ◦ (S−�nnc.iszero�

(nnc.pred ◦ (S+�nnc.iszero� 〈x|E〉)))) ,
where E is the guarded recursive specification consisting of the following equation:

x = nnc.pred ◦ (D�nnc.iszero� x) .

We have that

|+a ; #′ ; #′ ; #0 ; !f ; !t|′ // nnc.NNC (0) = S+ �a� S−

and also

|+a ; #′ ; #′ ; #0 ; !f ; !t| = S+�a� S− .3

3The counter functional unit NNC has been defined in Sect. 3.2.5.

92 Instruction Sequences for Computer Science

The following proposition states rigorously how the two ways of thread extraction are

related.

Proposition 4.7. For all closed SPISA0
js terms t , |t | = |t |′ // nnc.NNC (0).

Proof. Strictly speaking, we prove this theorem in the algebraic theory obtained by com-

bining SPISAjs+SC with BTA+TSI+REC+AIP+ABSTR, and extending the result with the

operators |_ |, |_ |′ and |_ |′skp and the axioms for these operators. We write IS for the set of

all closed terms of sort IS from the language of the resulting theory and T for the set of all

closed terms of sort T from the language of the resulting theory. Moreover, we write IS0

for the set of all closed terms from IS that contain no other jump instructions than #0.

Let

T = {|t | | t ∈ IS0} ,
T ′ = {|t |′ // nnc.NNC (i) | i ∈ N ∧ t ∈ IS0}
∪ {|t |′skp // nnc.NNC (i+ 1) | i ∈ N ∧ t ∈ IS0} ,

and let β : T ′ → T be the function defined by

β(|t |′ // nnc.NNC (0)) = |t | ,
β(|t |′ // nnc.NNC (i+ 1)) = |#′i+1

; t | ,
β(|t |′skp // nnc.NNC (i+ 1)) = |#′i+1 ; #0 ; t | .

For each t ∈ T , write β∗(t) for t with, for all t ′ ∈ T ′, all occurrences of t ′ in t replaced

by β(t ′). Then, it is straightforward to prove that there exists a set E consisting of one

derivable equation t ′ = t ′′ for each t ′ ∈ T ′ such that, for all equations t ′ = t ′′ in E :

• the equation β(t ′) = β∗(t ′′) is also derivable;

• if t ′′ ∈ T ′, then t ′′ can always be rewritten to a t ′′′ /∈ T ′ using the equations in E from

left to right.

Because β(|t |′ // nnc.NNC (0)) = |t | for all t ∈ IS0, this means that, for all t ∈ IS0,

|t |′ // nnc.NNC (0) and |t | are solutions of the same guarded recursive specification. Be-

cause guarded recursive specifications have unique solutions, it follows immediately that,

for all t ∈ IS0, |t |′ // nnc.NNC (0) = |t |. �

We have the following corollary of Corollary 4.4 and Proposition 4.7.

Corollary 4.5. For each regular thread t, there exists a closed SPISA0
js term t such that

the interpretation of |t |′ // nnc.NNC (0) in M is t.

Expressiveness of Instruction Sequences 93

4.4.3 On finite-state execution mechanisms

We investigate whether a finite-state execution mechanism can produce by itself, therefore

without interaction with an unbounded counter, each regular thread from an instruction

sequence that is a finite or eventually periodic infinite sequence of instructions from a finite

set.

Below, we will introduce a notion of an execution mechanism. The intuition is that,

for a function that assigns a finite-state behaviour to each member of some set of instruc-

tion sequences, an execution mechanism is a deterministic behaviour that can produce the

behaviour assigned to each of these instruction sequences from the instruction sequence

concerned by going through the instructions in the sequence one by one. In Appendix D,

the notion of an analytic execution architecture is discussed. An execution mechanism is

basically a realization of the component of an analytic execution architecture that contains

an instruction sequence.

We believe that there do not exist execution mechanisms that can deal with sequences

of instructions from an infinite set. Therefore, we restrict ourselves to finite instruction

sets.

It is assumed that a finite set I of instructions, a set IS of finite or eventually periodic

infinite sequences over I , and a function |_ | that assigns a regular thread to each member

of IS have been given. Moreover, it is assumed that isc ∈ F , that hdeq:u ∈ M for all

u ∈ I , that drop ∈ M, and that basic actions of the form isc.m do not occur in |U | for

all U ∈ IS .

We define a functional unit in FU(IS) that is a container whose possible contents are

the sequences of instructions from IS . The functional unit in question is defined as follows:

ISC = {(hdeq:u,Hdeq:u) | u ∈ I} ∪ {(drop,Drop)} ,

where the method operations are defined as follows:

Hdeq :u(vσ) =

{
(t, vσ) if u = v

(f, vσ) if u �= v .

Hdeq :u(ε) = (f, ε) ,

Drop(vσ) = (t, σ) ,

Drop(ε) = (f, ε) .

The interface I(ISC) of ISC can be explained as follows:

• hdeq:u : if there is an instruction sequence left and its first instruction is u, then nothing

changes and the reply is t; otherwise, nothing changes and the reply is f;

94 Instruction Sequences for Computer Science

• drop : if there is an instruction sequence left, then its first instruction is dropped and

the reply is t; otherwise, nothing changes and the reply is f.

In order to execute an instruction sequence U ∈ IS , an execution mechanism can interact

with a container, loaded with U , to go through the instructions in that sequence one by

one. Notice that an instruction sequence container does not have to hold an infinite object:

there exists an adequate finite representation for each finite or eventually periodic infinite

sequence of instructions.

Definition 4.1. An execution mechanism for |_ | is a thread t such that t // isc.ISC (U) =

|U | for all U ∈ IS . An execution mechanism is called a finite-state execution mechanism

if it is a regular thread.

It is easy to see that, in the case of SPISA0
js, there exists a finite-state execution mecha-

nism for the thread extraction operation |_ |′. From this and Corollary 4.5, it follows imme-

diately that there exists a finite-state execution mechanism that through interaction with an

unbounded counter can produce each regular thread from some instruction sequence that is

a finite or eventually periodic infinite sequence of instructions from a finite set.

We also have that there does not exist a finite-state execution mechanism that by itself

can produce each regular thread from an instruction sequence that is a finite or eventually

periodic infinite sequence of instructions from a finite set.

Theorem 4.3. Assume that card(A) > 1. Assume further that, for each regular thread t,

there exists a U ∈ IS such that |U | = t. Then there does not exist a finite-state execution

mechanism for |_ |.

Proof. Suppose that there exists a finite-state execution mechanism, say texec. Let n be

the number of states of texec. Consider the thread t that is the x0-component of the solution

of the guarded recursive specification consisting of the following equations:

xi = xi+1 �a� x′i+1,0 for i ∈ [0, n] ,

xn+1 = S ,

x′i+1,i′ = b ◦ x′i+1,i′+1 for i ∈ [0, n], i′ ∈ [0, i] ,

x′i+1,i+1 = a ◦ x′i+1,0 .

We write ti, where i ∈ [0, n], for the xi-component of the solution of this guarded recursive

specification, and t′i,i′ , where i ∈ [1, n] and i′ ∈ [0, i], for the x′i,i′ -component of the

solution of this guarded recursive specification. Let U be a member of IS from which texec
can produce t. Notice that t performs a at least once and at most n + 1 times after each

Expressiveness of Instruction Sequences 95

other. Suppose that t has performed a for the jth time when the reply f is returned, while

at that stage texec has gone through the first kj instructions of U . Moreover, write Uj for

what is left of U after its first kj instructions have been dropped. Then texec still has to

produce t′j,0 from Uj . For each j ∈ [1, n + 1], a kj as above can be found. Let j0 be the

unique j ∈ [1, n+ 1] such that kj′ ≤ kj for all j′ ∈ [1, n+ 1]. Regardless the number of

times t has performed a when the reply f is returned, texec must eventually have dropped

the first kj0 instructions of U . For each of the n+ 1 possible values of j, texec must be in a

different state when tj0 is left, because the thread that texec still has to produce is different.

However, this is impossible with n states. �

In the light of Theorem 4.3, Corollary 4.5 can be considered a positive result: a finite-state

execution mechanism that interacts with an unbounded counter is sufficient. However, this

result is reached at the expense of an extremely inefficient way of representing jumps.

We do not see how to improve on the linear representation of jumps. With a logarithmic

representation, for instance, we expect that an unbounded counter will not do.

It is an open problem whether Theorem 4.3 goes through under the assumption that

card(A) > 0.

Chapter 5

Computation-Theoretic Issues

This chapter concerns two subjects from the theory of computation, namely the halting

problem and non-uniform computational complexity. Some issues concerning these sub-

jects are investigated thinking in terms of instruction sequences.

Positioning Turing’s result regarding the undecidability of the halting problem as a

result about programs rather than machines, and taking single-pass instruction sequences

as considered in SPISA as programs, we analyse the autosolvability requirement that a

program of a certain kind must solve the halting problem for all programs of that kind. We

present positive and negative results concerning the autosolvability of the halting problem

for programs.

Thinking in terms of a single-pass instruction sequence as considered in SPISA, we

define counterparts of the classical non-uniform complexity classes P/poly and NP/poly,

introduce a notion of completeness for the counterpart of NP/poly using a non-uniform

reducibility relation, formulate several complexity hypotheses, including a counterpart of

the well-known complexity theoretic conjecture that NP �⊆ P/poly, and show that a prob-

lem closely related to 3SAT is NP-complete as well as complete for the counterpart of

NP/poly.

5.1 Autosolvability of Halting Problem Instances

Turing’s result regarding the undecidability of the halting problem is a result about Turing

machines. It says that there does not exist a single Turing machine that, given the descrip-

tion of an arbitrary Turing machine and input, will determine whether the computation of

that Turing machine applied to that input eventually halts (see e.g. [Turing (1937)]). Im-

plicit in this result is the autosolvability requirement that a machine of a certain kind must

solve the halting problem for all machines of that kind. The halting problem is frequently

97

98 Instruction Sequences for Computer Science

paraphrased as a result about programs as follows: the halting problem is the problem to

determine, given a program and an input to the program, whether execution of the pro-

gram on that input will eventually terminate. If we position Turing’s result regarding the

undecidability of the halting problem as a result about programs rather than machines, we

get the autosolvability requirement that a program of a certain kind must solve the halting

problem for all programs of that kind. In this section, we investigate this autosolvability

requirement in a setting in which programs take the form of instruction sequences.

5.1.1 Functional units relating to Turing machine tapes

First, we define some notions that have a bearing on the halting problem in the setting of

ISNRs and functional units. The notions in question are defined in terms of functional units

for the following state space:

T =
{
vˆw | v, w ∈ {0, 1, :}

∗}
.

The elements of T can be understood as the possible contents of the tape of a Turing

machine whose tape alphabet is {0, 1, :}, including the position of the tape head. Consider

an element vˆw ∈ T. Then v corresponds to the content of the tape to the left of the

position of the tape head and w corresponds to the content of the tape from the position of

the tape head to the right — the indefinite numbers of padding blanks at both ends are left

out. The colon serves as a separator of bit sequences. This is for instance useful if the input

of a program consists of another program and an input to the latter program, both encoded

as a bit sequence. We could have taken any other tape alphabet whose cardinality is greater

than one, but {0, 1, :} is extremely handy when dealing with issues relating to the halting

problem.

Below, we will use a computable injective functionα:T→ N to encode the members of

T as natural numbers. Because T is a countably infinite set, we assume that it is understood

what is a computable function from T to N. An obvious instance of a computable injective

function α : T → N is the one where α(a1 . . . an) is the natural number represented in

the quinary number-system by a1 . . . an if the symbols 0, 1, : and ˆ are taken as digits

representing the numbers 1, 2, 3 and 4, respectively.

Definition 5.1. A method operationM ∈MO(T) is computable if there exist computable

functions F,G : N → N such that M(v) = (β(F (α(v))), α−1(G(α(v)))) for all v ∈ T,

where α : T → N is a computable injective function and β : N → B is inductively defined

by β(0) = t and β(n + 1) = f. A functional unit U ∈ FU(T) is computable if, for each

Computation-Theoretic Issues 99

(m,M) ∈ U , M is computable.

Definition 5.2. A computable U ∈ FU(T) is universal if for each computable U ′ ∈
FU(T), we have U ′ ≤ U .

An example of a computable functional unit in FU(T) is the functional unit whose

method operations correspond to the basic steps that a Turing machine with tape alphabet

{0, 1, :} can perform on its tape. It turns out that this functional unit is universal, which can

be proved using simple programming in ISNRs.

The universal functional unit mentioned above corresponds to the common part of all

Turing machines with tape alphabet {0, 1, :}. The part that differs for different Turing ma-

chines is what is usually called their “transition function” or “program”. In the current

setting, the role of that part is filled by an instruction sequence whose instructions corre-

spond to the method operations of this universal functional unit. This means that different

instruction sequences are needed for different Turing machines with the tape alphabet con-

cerned, but the same universal functional unit suffices for all of them. In particular, the

same universal functional unit suffices for universal Turing machines and non-universal

Turing machines.

It is assumed that, for each U ∈ FU(T), a computable injective function from

L(f.I(U)) to {0, 1}∗ with a computable image has been given that yields, for each

p ∈ L(f.I(U)), an encoding of p as a bit sequence. If we consider the case where the

jump lengths in jump instructions are character strings representing the jump lengths in

decimal notation and method names are character strings, such an encoding function can

easily be obtained using the ASCII character-encoding scheme. We use the notation p to

denote the encoding of p as a bit sequence.

Definition 5.3. Let U ∈ FU(T), and let I ⊆ I(U). Then:

• p ∈ L(f.I(U)) produces a solution of the halting problem for L(f.I) with respect to

U if:

p ↓ f.U(v) for all v ∈ T ,

p ! f.U(ˆq :v) = t⇔ q ↓ f.U(ˆv) for all q ∈ L(f.I) and v ∈ {0, 1, :}
∗
;

• p ∈ L(f.I(U)) produces a reflexive solution of the halting problem for L(f.I) with

respect to U if p produces a solution of the halting problem for L(f.I) with respect to

U and p ∈ L(f.I);
• the halting problem for L(f.I) with respect to U is autosolvable if there exists a p ∈

100 Instruction Sequences for Computer Science

L(f.I(U)) such that p produces a reflexive solution of the halting problem for L(f.I)
with respect to U ;

• the halting problem for L(f.I) with respect to U is potentially autosolvable if there

exists an extension U ′ of U such that the halting problem for L(f.I(U ′)) with respect

to U ′ is autosolvable;

• the halting problem forL(f.I) with respect to U is potentially recursively autosolvable

if there exists an extension U ′ of U such that the halting problem for L(f.I(U ′)) with

respect to U ′ is autosolvable and U ′ is computable.

These definitions make clear that each combination of a U ∈ FU(T) and an I ⊆ I(U)

gives rise to a halting problem instance.

In Sect. 5.1.2 and 5.1.3, we will make use of a method operation Dup ∈ MO(T) for

duplicating bit sequences. This method operation is defined as follows:

Dup(vˆw) = Dup(ˆvw) ,

Dup(ˆv) = (t, ˆv:v) if v ∈ {0, 1}∗ ,
Dup(ˆv:w) = (t, ˆv:v:w) if v ∈ {0, 1}∗ .

Proposition 5.1. Let U ∈ FU(T) be such that (dup,Dup) ∈ U , let I ⊆ I(U) be such

that dup ∈ I , let p ∈ L(f.I), and let v ∈ {0, 1}∗ and w ∈ {0, 1, :}∗ be such that w = v

or w = v:w′ for some w′ ∈ {0, 1, :}∗. Then (f.dup ; p) ! f.U(ˆw) = p ! f.U(ˆv:w).

Proof. This follows immediately from the definition of Dup and the axioms for ! . �

The method operation Dup is a derived method operation of the above-mentioned func-

tional unit whose method operations correspond to the basic steps that a Turing machine

with tape alphabet {0, 1, :} can perform on its tape. This follows immediately from the

computability of Dup and the universality of this functional unit.

In Sects. 5.1.2 and 5.1.3, we will make use of two simple transformations of ISNRs

instruction sequences that affect only their termination behaviour on execution and the

Boolean value yielded at termination in the case of termination. Here, we introduce nota-

tions for those transformations.

Let p be a ISNRs instruction sequence. Then we write swap(p) for p with each oc-

currence of !t replaced by !f and each occurrence of !f replaced by !t, and we write f2d(p)

for p with each occurrence of !f replaced by #0. In the following proposition, the most

important properties relating to these transformations are stated.

Proposition 5.2. Let p be a ISNRs instruction sequence and t ′ be a closed SFA term of

sort SF. Then:

Computation-Theoretic Issues 101

(1) if p ! t ′ = t then swap(p) ! t ′ = f and f2d(p) ! t ′ = t;

(2) if p ! t ′ = f then swap(p) ! t ′ = t and f2d(p) ! t ′ = d.

Proof. Let t be a closed BTA term of sort T. Then we write swap′(t) for t with each

occurrence of S+ replaced by S− and each occurrence of S− replaced by S+, and we

write f2d ′(t) for t with each occurrence of S− replaced by D. It is easy to prove that

|i, swap(p)| = swap ′(|i,p|) and |i, f2d(p)| = f2d ′(|i,p|) for all i ∈ N. By this result,

Lemma 2.4, axioms RSP and R10, and Theorem 3.1, it is sufficient to prove the following

for each closed BTA term t of sort T:

if t ! t ′ = t then swap′(t) ! t ′ = f and f2d ′(t) ! t ′ = t;

if t ! t ′ = f then swap′(t) ! t ′ = t and f2d ′(t) ! t ′ = d.

This is easy by induction on the structure of t . �

By the use of more than one focus and non-singleton service families, we can deal with

cases that remind of multi-tape Turing machines, Turing machines that has random access

memory, etc. However, in the remainder of Sect. 5.1, we will only consider the case that

reminds of single-tape Turing machines. This means that we will use only one focus (f)

and only singleton service families.

In Proposition 5.2 above, we do not comply with the relevant use conventions proposed

in Sect. 3.1.7 because convergence forms a part of the real matter that we are concerned

with. For the same reason, we do not comply with the relevant use conventions in Defini-

tion 5.4 and the proof of Theorem 5.4 below.

5.1.2 Interpreters

It is often mentioned in textbooks on computability that an interpreter, which is a program

for simulating the execution of programs that it is given as input, cannot solve the halting

problem because the execution of the interpreter will not terminate if the execution of its

input program does not terminate. In this section, we have a look upon the termination

behaviour of interpreters in the setting of ISNRs and functional units.

Definition 5.4. Let U ∈ FU(T), let I ⊆ I(U), and let I ′ ⊆ I . Then p ∈ L(f.I) is an

interpreter for L(f.I ′) with respect to U if for all q ∈ L(f.I ′) and v ∈ {0, 1, :}∗:

q ↓ f.U(ˆv)⇒
p ↓ f.U(ˆq :v) ∧ p • f.U(ˆq :v) = q • f.U(ˆv) ∧ p ! f.U(ˆq :v) = q ! f.U(ˆv) .

102 Instruction Sequences for Computer Science

Moreover, p ∈ L(f.I) is a reflexive interpreter for L(f.I ′) with respect to U if p is an

interpreter for L(f.I ′) with respect to U and p ∈ L(f.I ′).

The following theorem states that a reflexive interpreter that always terminates is im-

possible in the presence of the method operation Dup.

Theorem 5.1. Let U ∈ FU(T) be such that (dup,Dup) ∈ U , let I ⊆ I(U) be such that

dup ∈ I , and let p ∈ L(f.I(U)) be a reflexive interpreter for L(f.I) with respect to U .

Then there exist a q ∈ L(f.I) and a v ∈ {0, 1, :}∗ such that p ↑ f.U(ˆq :v).

Proof. Assume the contrary. Take q = f.dup ; swap(p). By the assumption, p ↓
f.U(ˆq :q). By Propositions 3.3 and 5.2, it follows that swap(p) ↓ f.U(ˆq :q) and

swap(p) ! f.U(ˆq :q) �= p ! f.U(ˆq :q). By Propositions 3.3 and 5.1, it follows that

(f.dup ; swap(p)) ↓ f.U(ˆq) and (f.dup ; swap(p)) ! f.U(ˆq) �= p ! f.U(ˆq :q). Since

q = f.dup ; swap(p), we have q ↓ f.U(ˆq) and q ! f.U(ˆq) �= p ! f.U(ˆq :q).

Because p is a reflexive interpreter, this implies p ! f.U(ˆq :q) = q ! f.U(ˆq) and

q ! f.U(ˆq) �= p ! f.U(ˆq :q). This is a contradiction. �

It is easy to see that Theorem 5.1 goes through for all functional units for T of which Dup

is a derived method operation. Recall that the functional units concerned include the afore-

mentioned functional unit whose method operations correspond to the basic steps that a

Turing machine with tape alphabet {0, 1, :} can perform on its tape.

For each U ∈ FU(T), m ∈ I(U), and v ∈ T, we have (+f.m ; !t ; !f) ↓ f.U(v). This

leads us to the following corollary of Theorem 5.1.

Corollary 5.1. For all U ∈ FU(T) with (dup,Dup) ∈ U and I ⊆ I(U) with dup ∈ I ,

there does not exist an m ∈ I such that +f.m ; !t ; !f is a reflexive interpreter for L(f.I)
with respect to U .

To the best of our knowledge, there are no existing results in computability theory or

elsewhere directly related to Theorem 5.1. It looks as if the closest to this result are results

on termination of particular interpreters for particular logic and functional programming

languages.

5.1.3 Autosolvability of the halting problem

Because a reflexive interpreter that always terminates is impossible in the presence of the

method operation Dup, we must conclude that solving the halting problem by means of a

Computation-Theoretic Issues 103

reflexive interpreter is out of the question in the presence of the method operationDup. The

question arises whether the proviso “by means of a reflexive interpreter” can be dropped.

In this section, we answer this question in the affirmative. Before we present this negative

result concerning autosolvability of the halting problem, we present a positive result.

Let M ∈ MO(T). Then we say that M increases the number of colons if for some

v ∈ T the number of colons in M e(v) is greater than the number of colons in v.

Theorem 5.2. Let U ∈ FU(T) be such that no method operation of U increases the num-

ber of colons. Then there exist an extensionU ′ ofU , an I ′ ⊆ I(U ′), and a p ∈ L(f.I(U ′))

such that p produces a reflexive solution of the halting problem for L(f.I ′) with respect to

U ′.

Proof. Take halting ∈ M such that halting /∈ I(U). Moreover, let U ′ = U ∪
{(halting,Halting)}, where Halting ∈MO(T) is defined as follows:

Halting(vˆw) = Halting(ˆvw) ,

Halting(ˆv) = (f, ˆ) if v ∈ {0, 1}∗ ,
Halting(ˆv:w) = (f, ˆ) if v ∈ {0, 1}∗ ∧ ∀p ∈ L(f.I ′) • v �= p ,

Halting(ˆp:w) = (f, ˆ) if p ∈ L(f.I ′) ∧ p ↑ f.U ′(w) ,

Halting(ˆp:w) = (t, ˆ) if p ∈ L(f.I ′) ∧ p ↓ f.U ′(w) ,

and let I ′ = I(U ′). Then +f.halting ; !t ; !f produces a reflexive solution of the halting

problem for L(f.I ′) with respect to U ′. �

Theorem 5.2 tells us that there exist functional units U ∈ FU(T) with the property that

the halting problem is potentially autosolvable for L(f.I(U)) with respect to U . Thus,

we know that there exist functional units U ∈ FU(T) with the property that the halting

problem is autosolvable for L(f.I(U)) with respect to U .

There exists a U ∈ FU(T) for which Halting as defined in the proof of Theorem 5.2

is computable.

Theorem 5.3. Let U = ∅ and U ′ = U ∪ {(halting,Halting)}, where Halting is as

defined in the proof of Theorem 5.2. Then, Halting is computable.

Proof. It is sufficient to prove for an arbitrary p ∈ L(f.I(U ′)) that, for all v ∈ T,

p ↓ f.U ′(v) is decidable. We will prove this by induction on the number of colons in v.

The basis step. Because the number of colons in v equals 0, Halting(v) = (f, ˆ). It

follows that p ↓ f.U ′(v) ⇔ p ′ ↓ ∅, where p ′ is p with each occurrence of f.halting

104 Instruction Sequences for Computer Science

and −f.halting replaced by #1 and each occurrence of +f.halting replaced by #2.

Because p ′ is finite, p ′ ↓ ∅ is decidable. Hence, p ↓ f.U ′(v) is decidable.

The inductive step. Because the number of colons in v is greater than 0, either

Halting(v) = (t, ˆ) or Halting(v) = (f, ˆ). It follows that p ↓ f.U ′(v) ⇔ p ′ ↓ ∅,
where p ′ is p with:

• each occurrence of f.halting and +f.halting replaced by #1 if the occurrence

leads to the first application of Halting and Haltingr(v) = t, and by #2 otherwise;

• each occurrence of −f.halting replaced by #2 if the occurrence leads to the first

application of Halting and Halting r(v) = t, and by #1 otherwise.

An occurrence of f.halting, +f.halting or −f.halting in p leads to the first applica-

tion of Halting iff |1,p| = |i,p|, where i is the position of the occurrence in p . Because p

is finite, it is decidable whether an occurrence of f.halting, +f.halting or−f.halting
leads to the first processing of halting. Moreover, by the induction hypothesis, it is de-

cidable whether Halting r(v) = t. Because p ′ is finite, it follows that p ′ ↓ ∅ is decidable.

Hence, p ↓ f.U ′(v) is decidable. �

Theorems 5.2 and 5.3 together tell us that there exists a functional unit U ∈ FU(T), viz.

∅, with the property that the halting problem is potentially recursively autosolvable for

L(f.I(U)) with respect to U .

Let U ∈ FU(T) be such that all derived method operations of U are computable and

do not increase the number of colons. Then the halting problem is potentially autosolvable

for L(f.I(U)) with respect to U . However, the halting problem is not always potentially

recursively autosolvable for L(f.I(U)) with respect to U because otherwise the halting

problem would always be decidable.

The following theorem tells us essentially that potential autosolvability of the halting

problem is precluded in the presence of the method operation Dup.

Theorem 5.4. Let U ∈ FU(T) be such that (dup,Dup) ∈ U , and let I ⊆ I(U) be such

that dup ∈ I . Then there does not exist a p ∈ L(f.I(U)) such that p produces a reflexive

solution of the halting problem for L(f.I) with respect to U .

Proof. Assume the contrary. Let p ∈ L(f.I(U)) be such that p produces a reflex-

ive solution of the halting problem for L(f.I) with respect to U , and let q = f.dup ;

f2d(swap(p)). Then p ↓ f.U(ˆq :q). By Propositions 3.3 and 5.2, it follows that

swap(p) ↓ f.U(ˆq :q) and either swap(p) ! f.U(ˆq :q) = t or swap(p) ! f.U(ˆq :q) = f.

Computation-Theoretic Issues 105

In the case where swap(p) ! f.U(ˆq :q) = t, we have by Proposition 5.2 that

(i) f2d(swap(p)) ! f.U(ˆq :q) = t and (ii) p ! f.U(ˆq :q) = f. By Proposition 5.1, it fol-

lows from (i) that (f.dup;f2d(swap(p))) ! f.U(ˆq) = t. Since q = f.dup;f2d(swap(p)),

we have q !f.U(ˆq) = t. On the other hand, because p produces a reflexive solution, it fol-

lows from (ii) that q ↑ f.U(ˆq). By Proposition 3.3, this contradicts with q ! f.U(ˆq) = t.

In the case where swap(p) ! f.U(ˆq :q) = f, we have by Proposition 5.2 that

(i) f2d(swap(p)) ! f.U(ˆq :q) = d and (ii) p ! f.U(ˆq :q) = t. By Proposition 5.1, it fol-

lows from (i) that (f.dup;f2d(swap(p))) ! f.U(ˆq) = d. Since q = f.dup;f2d(swap(p)),

we have q !f.U(ˆq) = d. On the other hand, because p produces a reflexive solution, it fol-

lows from (ii) that q ↓ f.U(ˆq). By Proposition 3.3, this contradicts with q ! f.U(ˆq) = d.

�

It is easy to see that Theorem 5.4 goes through for all functional units for T of which Dup

is a derived method operation. Recall that the functional units concerned include the afore-

mentioned functional unit whose method operations correspond to the basic steps that a

Turing machine with tape alphabet {0, 1, :} can perform on its tape. Because of this, the

unsolvability of the halting problem for Turing machines can be understood as a corollary

of Theorem 5.4.

Below, we will give an alternative proof of Theorem 5.4. A case distinction is needed

in both proofs, but in the alternative proof it concerns a minor issue. The issue in question

is covered by the following lemma.

Lemma 5.1. Let U ∈ FU(T), let I ⊆ I(U), let p ∈ L(f.I(U)) be such that p produces

a reflexive solution of the halting problem for L(f.I) with respect to U , let q ∈ L(f.I),
and let v ∈ {0, 1, :}∗. Then q ↓ f.U(ˆv) implies q ! f.U(ˆv) = p ! f.U(ˆf2d(q):v).

Proof. By Proposition 3.3, it follows from q ↓ f.U(ˆv) that either q ! f.U(ˆv) = t or

q ! f.U(ˆv) = f.

In the case where q ! f.U(ˆv) = t, we have by Propositions 3.3 and 5.2 that f2d(q) ↓
f.U(ˆv) and so p ! f.U(ˆf2d(q):v) = t.

In the case where q ! f.U(ˆv) = f, we have by Propositions 3.3 and 5.2 that f2d(q) ↑
f.U(ˆv) and so p ! f.U(ˆf2d(q):v) = f. �

Proof. [Another proof of Theorem 5.4.] Assume the contrary. Let p ∈ L(f.I(U)) be

such that p produces a reflexive solution of the halting problem for L(f.I) with respect

to U , and let q = f2d(swap(f.dup ; p)). Then p ↓ f.U(ˆq :q). By Propositions 3.3,

5.1 and 5.2, it follows that swap(f.dup ; p) ↓ f.U(ˆq). By Lemma 5.1, it follows that

106 Instruction Sequences for Computer Science

swap(f.dup ; p) ! f.U(ˆq) = p ! f.U(ˆq :q). By Proposition 5.2, it follows that (f.dup ;

p) ! f.U(ˆq) �= p ! f.U(ˆq :q). On the other hand, by Proposition 5.1, we have that

(f.dup ; p) ! f.U(ˆq) = p ! f.U(ˆq :q). This contradicts with (f.dup ; p) ! f.U(ˆq) �=
p ! f.U(ˆq :q). �

Both proofs of Theorem 5.4 given above are diagonalization proofs in disguise.

Let U = {(dup,Dup)}. By Theorem 5.4, the halting problem for L(f.{dup}) with

respect to U is not (potentially) autosolvable. However, it is decidable.

Theorem 5.5. Let U = {(dup,Dup)}. Then the halting problem for L(f.{dup}) with

respect to U is decidable.

Proof. Let p ∈ L(f.{dup}), and let p ′ be p with each occurrence of f.dup and +f.dup

replaced by #1 and each occurrence of−f.dup replaced by #2. For all v ∈ T, Dupr(v) =

t. Therefore, p ↓ f.U(v)⇔ p ′ ↓ ∅ for all v ∈ T. Because p ′ is finite, p ′ ↓ ∅ is decidable.

�

It follows from Theorem 5.5 that there exists a computable method operation by means

of which a solution for the halting problem for L(f.{dup}) can be produced. This leads us

to the following corollary of Theorem 5.5.

Corollary 5.2. There exist a computable U ∈ FU(T) with (dup,Dup) ∈ U , an I ⊆ I(U)

with dup ∈ I , and a p ∈ L(f.I(U)) such that p produces a solution of the halting problem

for L(f.I) with respect to U .

To the best of our knowledge, there are no existing results in computability theory

directly related to Theorems 5.2–5.5. The closest to these results are probably the positive

results in the setting of Turing machines that have been obtained with restrictions on the

number of states, the minimum of the number of transitions where the tape head moves to

the left and the number of transitions where the tape head moves to the right, or the number

of different combinations of input symbol, direction of head move, and output symbol

occurring in the transitions (see e.g. [Pavlotskaya (1973); Margenstern (1997)]).

5.2 Non-uniform Computational Complexity

In this section, we develop theory concerning non-uniform computational complexity based

on the single-pass instruction sequences considered in SPISA.

Computation-Theoretic Issues 107

In the first place, we define a counterpart of the classical non-uniform complexity class

P/poly and formulate a counterpart of the well-known complexity theoretic conjecture that

NP �⊆ P/poly. Some evidence for this conjecture is the Karp-Lipton theorem [Karp and

Lipton (1980)], which says that the polynomial time hierarchy collapses to the second level

if NP ⊆ P/poly. If the conjecture is right, then the conjecture that P �= NP is right as

well.

Over and above that, we define a counterpart of the non-uniform complexity class

NP/poly, introduce a notion of completeness for this complexity class using a non-uniform

reducibility relation, and formulate three complexity hypotheses which concern restrictions

on the instruction sequences used for computation. These three hypotheses are called super-

polynomial feature elimination complexity hypotheses. The first of them is equivalent to

the hypothesis that NP/poly �⊆ P/poly and the second of them is equivalent to the hypoth-

esis that P/poly �⊆ L/poly. We do not know whether there is an equivalent hypothesis for

the third of them in well-known settings such as Turing machines with advice and Boolean

circuits.

We show among other things that P/poly and NP/poly coincide with their counter-

parts defined in this section and that a problem closely related to 3SAT is NP-complete as

well as complete for the counterpart of NP/poly.

5.2.1 Instruction sequences acting on Boolean registers

Our study of computational complexity is concerned with instruction sequences that act

on Boolean registers. Preceding the study, we introduce special foci that serve as names

of Boolean registers and describe the set of all closed SPISA terms that denote instruc-

tion sequences that matter to the counterpart of the classical non-uniform complexity class

P/poly defined in Sect. 5.2.2.

In the instruction sequences which concern us in the remainder of Sect. 5.2, a number

of Boolean registers is used as input registers, a number of Boolean registers is used as

auxiliary registers, and one Boolean register is used as output register.

It is assumed that in:1, in:2, . . . ∈ F , aux:1, aux:2, . . . ∈ F , and out ∈ F . These foci

play special roles:

• for each i ∈ N
+, in:i serves as the name of the Boolean register that is used as ith

input register in instruction sequences;

• for each i ∈ N
+, aux:i serves as the name of the Boolean register that is used as ith

auxiliary register in instruction sequences;

108 Instruction Sequences for Computer Science

• out serves as the name of the Boolean register that is used as output register in instruc-

tion sequences.

We will write Fin for {in:i | i ∈ N
+} and Faux for {aux:i | i ∈ N

+}.

Definition 5.5. ISP∗ is the set of all closed SPISA terms in which:

• plain basic instructions, positive test instructions and negative test instructions contain

only basic instructions from the set

{f .get | f ∈ Fin ∪ Faux} ∪ {f .set:b | f ∈ Faux ∪ {out} ∧ b ∈ B} ;

• positive termination instructions and negative termination instructions do not occur;

• the repetition operator does not occur.

ISna
P∗ is the set of all closed SPISA terms from ISP∗ in which:

• plain basic instructions, positive test instructions and negative test instructions contain

only basic instructions from the set

{f .get | f ∈ Fin} ∪ {out.set:b | b ∈ B} .

ISP∗ is the set of all closed SPISA terms denoting instruction sequences that matter

to the complexity class P∗ which will be introduced in Sect. 5.2.2. ISna
P∗ is the set of all

closed SPISA terms denoting instruction sequences that matter to this complexity class and

in which no auxiliary registers are used.

We write len(t), where t ∈ ISP∗ , for the length of the SPISA instruction sequence

denoted by t .

5.2.2 The complexity class P∗

In the field of computational complexity, it is quite common to study the complexity of

computing functions on finite strings over a binary alphabet. Since strings over an alphabet

of any fixed size can be efficiently encoded as strings over a binary alphabet, it is sufficient

to consider only a binary alphabet. We adopt the set B as preferred binary alphabet.

An important special case of functions on finite strings over a binary alphabet is the

case where the value of functions is restricted to strings of length 1. Such a function is

often identified with the set of strings of which it is the characteristic function. The set in

question is usually called a language or a decision problem. The identification mentioned

Computation-Theoretic Issues 109

above allows of looking at the problem of computing a function f :B∗ → B as the problem

of deciding membership of the set {w ∈ B
∗ | f(w) = t}.

With each function f : B∗ → B, we can associate an infinite sequence 〈fn〉n∈N
of

functions, with fn : Bn → B for every n ∈ N, such that fn is the restriction of f to B
n

for each n ∈ N. The complexity of computing such sequences of functions, which we call

Boolean function families, by instruction sequences is studied in the remainder of Sect. 5.2.

First, we introduce the class P∗ of all Boolean function families that can be computed by

polynomial-length instruction sequences from ISP∗ .

An n-ary Boolean function is a function f : Bn → B. Let ϕ be a Boolean formula

containing the variables v1, . . . , vn. Thenϕ induces an n-ary Boolean function f such that

f(b1, . . . , bn) = t iff ϕ is satisfied by the assignment σ to the variables v1, . . . , vn defined

by σ(v1) = b1, . . . , σ(vn) = bn. The Boolean function in question is called the Boolean

function induced by ϕ.

A Boolean function family is an infinite sequence 〈fn〉n∈N
of functions, where fn is

an n-ary Boolean function for each n ∈ N. A Boolean function family 〈fn〉n∈N
can be

identified with the unique function f :B∗ → B such that for each n ∈ N, for each w ∈ B
n,

f(w) = fn(w). We are concerned with non-uniform complexity. Considering sets of

Boolean function families as complexity classes looks to be most natural when studying

non-uniform complexity. We will make the identification mentioned above only where

connections with well-known complexity classes are made.

Definition 5.6. Let n ∈ N, let f : Bn → B, and let t ∈ ISP∗ . Then t computes f if there

exists an n′ ∈ N such that for all b1, . . . , bn ∈ B:

(|t | / ((⊕n
i=1 in:i.BR(bi))⊕ (⊕n′

j=1 aux:j.BR(f)))) • out.BR(f)

= out.BR(f(b1, . . . , bn)) .

Definition 5.7. P∗ is the class of all Boolean function families 〈fn〉n∈N
that satisfy:

there exists a polynomial function h :N→ N such that for all n ∈ N there exists a

t ∈ ISP∗ such that t computes fn and len(t) ≤ h(n).

The question arises whether all n-ary Boolean functions can be computed by an in-

struction sequence from ISP∗ . This question can answered in the affirmative. They can

even be computed, without using auxiliary Boolean registers, by an instruction sequence

that contains no other jump instructions than #2.

Theorem 5.6. For each n ∈ N, for each n-ary Boolean function f :Bn → B, there exists a

110 Instruction Sequences for Computer Science

t ∈ ISna
P∗ in which no other jump instruction than #2 occurs such that t computes f and

len(t) = O(2n).

Proof. Let inseqn be the function from the set of all n-ary Boolean function f :Bn → B

to ISna
P∗ defined by induction on n as follows:

inseq0(f) =

{
−out.set:t ; #2 ; ! if f() = t

+out.set:f ; #2 ; ! if f() = f ,

inseqn+1(f) = −in:n+1.get ; #2 ; inseqn(ft) ; inseqn(ff) ,

where for each f : Bn+1 → B and b ∈ B, fb : Bn → B is defined as follows:

fb(b1, . . . , bn) = f(b1, . . . , bn, b) .

It is easy to prove by induction on n that |#2 ; inseqn(ft) ; t | = |t |. Using this fact, it is

easy to prove by induction on n that inseqn(f) computes f . Moreover, it is easy to see that

len(inseqn(f)) = O(2n). �

In the proof of Theorem 5.6, the instruction sequences yielded by the function inseqn

contain the jump instruction #2. Each occurrence of #2 belongs to a jump chain ending in

the instruction sequence−out.set:t ;#2 ; ! or the instruction sequence +out.set:f ;#2 ; !.

Therefore, each occurrence of #2 can safely be replaced by the instruction +out.set:f,

which like #2 skips the next instruction. This point gives rise to the following interesting

corollary.

Corollary 5.3. For each n ∈ N, for each n-ary Boolean function f : Bn → B, there

exists a t ∈ ISna
P∗ in which jump instructions do not occur such that t computes f and

len(t) = O(2n).

We consider the proof of Theorem 5.6 once again. Because the content of the Boolean

register concerned is initially f, the question arises whether out.set:f can be dispensed

with in instruction sequences computing Boolean functions. This question can be answered

in the affirmative if we permit the use of auxiliary Boolean registers.

Theorem 5.7. Let n ∈ N, let f : Bn → B, and let t ∈ ISP∗ be such that t computes f .

Then there exists a t ′ ∈ ISP∗ in which the basic instruction out.set:f does not occur such

that t ′ computes f and len(t ′) is linear in len(t).

Proof. Let o ∈ N
+ be such that the basic instructions aux:o.set:t, aux:o.set:f, and

aux:o.get do not occur in t . Let t ′′ be obtained from t by replacing each occurrence of

Computation-Theoretic Issues 111

the focus out by aux:o. Suppose that t ′′ = u1 ;. . .;uk. Let t ′ be obtained from u1 ;. . . ;uk

as follows:

(1) stop if u1 ≡ !;

(2) stop if there exists no j ∈ [2, k] such that uj−1 �≡ out.set:t and uj ≡ !;

(3) find the least j ∈ [2, k] such that uj−1 �≡ out.set:t and u j ≡ !;

(4) replace uj by +aux:o.get ; out.set:t ; !,

(5) for each i ∈ [1, k], replace u i by #l+2 if u i ≡ #l and i < j < i+ l;

(6) repeat the preceding steps for the resulting instruction sequence.

It is easy to prove by induction on k that the Boolean function computed by t and the

Boolean function computed by t ′ are the same. Moreover, it is easy to see that len(t ′) <

3 · len(t). Hence, len(t ′) is linear in len(t). �

Below, we dwell on obtaining instruction sequences that compute the Boolean func-

tions induced by Boolean formulas from the Boolean formulas concerned. We will write

ϕ(b1, . . . , bn), where ϕ is a Boolean formula containing the variables v1, . . . , vn and

b1, . . . , bn ∈ B, to indicate thatϕ is satisfied by the assignmentσ to the variables v1, . . . , vn
defined by σ(v1) = b1, . . . , σ(vn) = bn.

The Boolean function induced by a CNF-formula can be computed, without using

auxiliary Boolean registers, by an instruction sequence from ISna
P∗ that contains no other

jump instructions than #2 and whose length is linear in the size of the CNF-formula.

Theorem 5.8. For each CNF-formula ϕ, there exists a t ∈ ISna
P∗ in which no other jump

instruction than #2 occurs such that t computes the Boolean function induced by ϕ and

len(t) is linear in the size of ϕ.

Proof. Let inseqcnf be the function from the set of all CNF-formulas containing the

variables v1, . . . , vn to ISna
P∗ as follows:

inseqcnf
(∧

i∈[1,m]

∨
j∈[1,ni]

ξij
)
=

inseq ′cnf(ξ11) ; . . . ; inseq
′
cnf(ξ1n1

) ; +out.set:f ; #2 ; !;
...

inseq ′cnf(ξm1) ; . . . ; inseq
′
cnf(ξmnm

) ; +out.set:f ; #2 ; ! ; +out.set:t ; ! ,

where

inseq ′cnf(vk) = +in:k.get ; #2 ,

inseq ′cnf(¬vk) = −in:k.get ; #2 .

112 Instruction Sequences for Computer Science

It is easy to see that no other jump instruction than #2 occurs in inseqcnf(ϕ). Recall that a

disjunction is satisfied if one of its disjuncts is satisfied and a conjunction is satisfied if each

of its conjuncts is satisfied. Using these facts, it is easy to prove by induction on the number

of clauses in a CNF-formula, and in the basis step by induction on the number of literals

in a clause, that inseqcnf(ϕ) computes the Boolean function induced by ϕ. Moreover, it is

easy to see that len(inseqcnf(ϕ)) is linear in the size of ϕ. �

In the proof of Theorem 5.8, it is shown that the Boolean function induced by a CNF-

formula can be computed, without using auxiliary Boolean registers, by an instruction se-

quence from ISna
P∗ that contains no other jump instructions than #2. However, the instruc-

tion sequence concerned contains multiple termination instructions and both out.set:t

and out.set:f. This raises the question whether further restrictions are possible. We have

a negative result.

Theorem 5.9. Let ϕ be the Boolean formula v1 ∧ v2 ∧ v3. Then there does not exist a

t ∈ ISna
P∗ in which jump instructions do not occur, multiple termination instructions do

not occur and the basic instruction out.set:f does not occur such that t computes the

Boolean function induced by ϕ.

Proof. Suppose that t = u1 ; . . . ; uk is an instruction sequence from ISna
P∗ satisfying

the restrictions and computing the Boolean function induced by ϕ. Consider the smallest

l ∈ [1, k] such that u l is either out.set:t, +out.set:t or −out.set:t (there must be such

an l). Because ϕ is not satisfied by all assignments to the variables v1, v2, v3, it cannot

be the case that l = 1. In the case where l > 1, for each i ∈ [1, l − 1], u i is either

in:j.get, +in:j.get or −in:j.get for some j ∈ {1, 2, 3}. This implies that, for each

i ∈ [0, l − 1], there exists a basic Boolean formula ψi over the variables v1, v2, v3 that

is unique up to logical equivalence such that, for each b1, b2, b3 ∈ B, if the initial states

of the Boolean registers named in:1, in:2 and in:3 are b1, b2 and b3, respectively, then

u i+1 will be executed iff ψi(b1, b2, b3). We have that ψ0 ⇔ t and, for each i ∈ [1, l − 1],

ψi ⇔ (ψi−1 ⇒ t) if u i ≡ in:j.get, ψi ⇔ (ψi−1 ⇒ vj) if u i ≡ +in:j.get, and

ψi ⇔ (ψi−1 ⇒ ¬vj) if u i ≡ −in:j.get. Hence, for each i ∈ [0, l− 1], ψi ⇒ ϕ implies

t ⇒ ϕ or vj ⇒ ϕ or ¬vj ⇒ ϕ for some j ∈ {1, 2, 3}. Because the latter three Boolean

formulas are no tautologies, ψi ⇒ ϕ is no tautology either. This means that, for each

i ∈ [1, l− 1], ψi ⇒ ϕ is not satisfied by all assignments to the variables v1, v2, v3. Hence,

t cannot exist. �

According to Theorem 5.8, the Boolean function induced by a CNF-formula can be

Computation-Theoretic Issues 113

computed, without using auxiliary Boolean registers, by an instruction sequence from

ISna
P∗ that contains no other jump instructions than #2 and whose length is linear in the

size of the formula. If we permit arbitrary jump instructions, this result generalizes from

CNF-formulas to arbitrary basic Boolean formulas, i.e. Boolean formulas in which no other

connectives than ¬, ∨ and ∧ occur.

Theorem 5.10. For each basic Boolean formula ϕ, there exists a t ∈ ISna
P∗ in which

the basic instruction out.set:f does not occur such that t computes the Boolean function

induced by ϕ and len(t) is linear in the size of ϕ.

Proof. Let inseqbf be the function from the set of all basic Boolean formulas containing

the variables v1, . . . , vn to ISna
P∗ as follows:

inseqbf(ϕ) = inseq ′bf(ϕ) ; +out.set:t ; ! ,

where

inseq ′bf(vk) = +in:k.get ,

inseq ′bf(¬ϕ) = inseq ′bf(ϕ) ; #2 ,

inseq ′bf(ϕ ∨ψ) = inseq ′bf(ϕ) ; #len(inseq ′bf(ψ))+1 ; inseq ′bf(ψ) ,

inseq ′bf(ϕ ∧ψ) = inseq ′bf(ϕ) ; #2 ; #len(inseq ′bf(ψ))+2 ; inseq ′bf(ψ) .

Using the same facts about disjunctions and conjunctions as in the proof of Theorem 5.8, it

is easy to prove by induction on the structure of ϕ that inseqbf(ϕ) computes the Boolean

function induced byϕ. Moreover, it is easy to see that len(inseqbf(ϕ)) is linear in the size

of ϕ. �

Because Boolean formulas can be looked upon as Boolean circuits in which all gates

have out-degree 1, the question arises whether Theorem 5.10 generalizes from Boolean

formulas to Boolean circuits. This question can be answered in the affirmative if we permit

the use of auxiliary Boolean registers.

Theorem 5.11. For each Boolean circuit C containing no other gates than ¬-gates, ∨-

gates and ∧-gates, there exists a t ∈ ISP∗ in which the basic instruction out.set:f does

not occur such that t computes the Boolean function induced by C and len(t) is linear in

the size of C.

Proof. Let inseqbc be the function from the set of all Boolean circuits with input nodes

in1, . . . , inn and gates g1, . . . , gm to ISna
P∗ as follows:

inseqbc(C) = inseq ′bc(g1) ; . . . ; inseq
′
bc(gm) ; +aux:m.get ; +out.set:t ; ! ,

114 Instruction Sequences for Computer Science

where

inseq ′bc(gk) =

inseq ′′bc(p) ; #2 ; +aux:k.set:t

if gk is a ¬-gate with direct preceding node p ,

inseq ′bc(gk) =

inseq ′′bc(p) ; #2 ; inseq ′′bc(p
′) ; +aux:k.set:t

if gk is a ∨-gate with direct preceding nodes p and p′ ,

inseq ′bc(gk) =

inseq ′′bc(p) ; #2 ; #3 ; inseq ′′bc(p′) ; +aux:k.set:t

if gk is a ∧-gate with direct preceding nodes p and p′ ,

and

inseq ′′bc(ink) = +in:k.get ,

inseq ′′bc(gk) = +aux:k.get .

Using the same facts about disjunctions and conjunctions as in the proofs of Theorems 5.8

and 5.10, it is easy to prove by induction on the depth of C that inseqbc(C) computes the

Boolean function induced by C if g1, . . . , gm is a topological sorting of the gates of C.

Moreover, it is easy to see that len(inseqbc(C)) is linear in the size of C. �

P∗ includes Boolean function families that correspond to uncomputable functions from

B
∗ to B. Take an undecidable setN ⊆ N and consider the Boolean function family 〈fn〉n∈N

with, for each n ∈ N, fn : Bn → B defined by

fn(b1, . . . , bn) = t if n ∈ N ,

fn(b1, . . . , bn) = f if n /∈ N .

For each n ∈ N , fn is computed by the instruction sequence out.set:t ; !. For each n /∈ N ,

fn is computed by the instruction sequence out.set:f ; !. The length of these instruction

sequences is constant in n. Hence, 〈fn〉n∈N
is in P∗. However, the corresponding func-

tion f : B∗ → B is clearly uncomputable. This reminds of the fact that P/poly includes

uncomputable functions from B
∗ to B.

It happens that P∗ and P/poly coincide, provided that we identify each Boolean func-

tion family 〈fn〉n∈N
with the unique function f : B∗ → B such that for each n ∈ N, for

each w ∈ B
n, f(w) = fn(w).

Theorem 5.12. P∗ = P/poly.

Computation-Theoretic Issues 115

Proof. We will prove the inclusion P/poly ⊆ P∗ using the definition of P/poly in terms

of Boolean circuits and we will prove the inclusion P∗ ⊆ P/poly using the definition of

P/poly in terms of Turing machines that take advice.

P/poly ⊆ P∗: Suppose that 〈fn〉n∈N
in P/poly. Then, for all n ∈ N, there exists a

Boolean circuit C such that C computes fn and the size of C is polynomial in n. For each

n ∈ N, let Cn be such a C. From Theorem 5.11 and the fact that linear in the size of Cn

implies polynomial in n, it follows that each Boolean function family in P/poly is also in

P∗.

P∗ ⊆ P/poly: Suppose that 〈fn〉n∈N
in P∗. Then, for all n ∈ N, there exists a

t ∈ ISP∗ such that t computes fn and len(t) is polynomial in n. For each n ∈ N, let

tn be such a t . Then f can be computed by a Turing machine that, on an input of size n,

takes a binary description of tn as advice and then just simulates the execution of tn. It is

easy to see that, under the assumption that instructions of the forms aux:i.m , +aux:i.m ,

−aux:i.m and #i with i > len(tn) do not occur in tn, the size of the description of tn
and the number of steps that it takes to simulate the execution of tn are both polynomial in

n. It is obvious that we can make the assumption without loss of generality. Hence, each

Boolean function family in P∗ is also in P/poly. �

We do not know whether there are restrictions on the number of auxiliary Boolean

registers in the definition of P∗ (Definition 5.7) that lead to a class different from P∗. In

particular, it is unknown to us whether the restriction to zero auxiliary Boolean registers

leads to a class different from P∗.

5.2.3 The non-uniform super-polynomial complexity hypothesis

In this section, we introduce a complexity hypothesis which is a counterpart of the classical

complexity theoretic conjecture that 3SAT /∈ P/poly in the current setting. By the NP-

completeness of 3SAT, 3SAT /∈ P/poly is equivalent to NP �⊆ P/poly. If the conjecture

that 3SAT /∈ P/poly is right, then the conjecture that NP �= P is right as well. We talk

here about a hypothesis instead of a conjecture because we are primarily interested in its

consequences.

To formulate the hypothesis, we need a Boolean function family
〈
3SAT′

n

〉
n∈N

that cor-

responds to 3SAT. We obtain this Boolean function family by encoding 3CNF-formulas

as sequences of Boolean values.

We writeH(k) for
(
2k
1

)
+
(
2k
2

)
+
(
2k
3

)
.1 H(k) is the number of combinations of at most

1As usual, we write
(k
l

)
for the number of l-element subsets of a k-element set.

116 Instruction Sequences for Computer Science

3 elements from a set with 2k elements. Notice that H(k) = (4k3 + 5k)/3.

It is assumed that a countably infinite set {v1, v2, . . .} of propositional variables has

been given. Moreover, it is assumed that a family of bijections

〈αk : [1, H(k)]→ {L ⊆ {v1,¬v1, . . . , vk,¬vk} | 1 ≤ card(L) ≤ 3}〉k∈N

has been given that satisfies the following two conditions:

∀i ∈ N • ∀j ∈ [1, H(i)] • αi
−1(αi+1(j)) = j ,

α is polynomial-time computable ,

where α : N+ → {L ⊆ {v1,¬v1, v2,¬v2, . . .} | 1 ≤ card(L) ≤ 3} is defined by

α(i) = αmin{j|i∈[1,H(j)]}(i) .

The function α is well-defined owing to the first condition on 〈αk〉k∈N
. The second condi-

tion is satisfiable, but it is not satisfied by all 〈αk〉k∈N
satisfying the first condition.

The basic idea underlying the encoding of 3CNF-formulas as sequences of Boolean

values is as follows:

• if n = H(k) for some k ∈ N, then the input of 3SAT′
n consists of one Boolean value

for each disjunction of at most three literals from the set {v1,¬v1, . . . , vk,¬vk};
• each Boolean value indicates whether the corresponding disjunction occurs in the en-

coded 3CNF-formula;

• if H(k) < n < H(k + 1) for some k ∈ N, then only the first H(k) Boolean values

form part of the encoding.

For each n ∈ N, 3SAT′
n : Bn → B is defined as follows:

• if n = H(k) for some k ∈ N:

3SAT′
n(b1, . . . , bn) = t iff

∧
i∈[1,n] s.t. bi=t

∨
αk(i) is satisfiable ,

where k is such that n = H(k);

• if H(k) < n < H(k + 1) for some k ∈ N:

3SAT′
n(b1, . . . , bn) = 3SAT′

H(k)(b1, . . . , bH(k)) ,

where k is such that H(k) < n < H(k + 1).

Because 〈αk〉k∈N
satisfies the condition that αi

−1(αi+1(j)) = j for all i ∈ N and

j ∈ [1, H(i)], we have for each n ∈ N, for all b1, . . . , bn ∈ B:

3SAT′
n(b1, . . . , bn) = 3SAT′

n+1(b1, . . . , bn, f) .

Computation-Theoretic Issues 117

In other words, for each n ∈ N, 3SAT′
n+1 can in essence handle all inputs that 3SAT′

n can

handle. This means that
〈
3SAT′

n

〉
n∈N

converges to the unique function 3SAT′ : B∗ → B

such that for each n ∈ N, for each w ∈ B
n, 3SAT′(w) = 3SAT′

n(w).

3SAT′ is meant to correspond to 3SAT. Therefore, the following theorem does not

come as a surprise. Notice that we identify in this theorem the Boolean function family

3SAT′ =
〈
3SAT′

n

〉
n∈N

with the unique function 3SAT′ : B∗ → B such that for each

n ∈ N, for each w ∈ B
n, 3SAT′(w) = 3SAT′

n(w).

Theorem 5.13. 3SAT′ is NP-complete.

Proof. 3SAT′ is NP-complete iff 3SAT′ is in NP and 3SAT′ is NP-hard. Because 3SAT

is NP-complete, it is sufficient to prove that 3SAT′ is polynomial-time Karp reducible to

3SAT and 3SAT is polynomial-time Karp reducible to 3SAT′, respectively. In the rest of

the proof, α is defined as above.

3SAT′ ≤P 3SAT: Take the function f from B
∗ to the set of all 3CNF-formulas

containing the variables v1, . . . , vk for some k ∈ N that is defined by f(b1, . . . , bn) =∧
i∈[1,max{H(k)|H(k)≤n}] s.t. bi=t

∨
α(i). Then we have that 3SAT′(b1, . . . , bn) =

3SAT(f(b1, . . . , bn)). It remains to show that f is polynomial-time computable. To com-

pute f(b1, . . . , bn), α has to be computed for a number of times that is not greater than n

and α is computable in time polynomial in n. Hence, f is polynomial-time computable.

3SAT ≤P 3SAT′: Take the unique function g from the set of all 3CNF-formulas

containing the variables v1, . . . , vk for some k ∈ N to B
∗ such that for all 3CNF-formulas

ϕ containing the variables v1, . . . , vk for some k ∈ N, f(g(ϕ)) = ϕ and there exists no

w ∈ B
∗ shorter than g(ϕ) such that f(w) = ϕ. We have that 3SAT(ϕ) = 3SAT′(g(ϕ)).

It remains to show that g is polynomial-time computable. Let l be the size ofϕ. To compute

g(ϕ), α has to be computed for each clause a number of times that is not greater thanH(l)

and α is computable in time polynomial in H(l). Moreover, ϕ contains at most l clauses.

Hence, g is polynomial-time computable. �

Before we turn to the non-uniform super-polynomial complexity hypothesis, we touch

lightly on the choice of the family of bijections in the definition of 3SAT′. It is easy

to see that the choice is not essential. Let 3SAT′′ be the same as 3SAT′, but based on

another family of bijections, say 〈α′
n〉n∈N

, and let, for each i ∈ N, for each j ∈ [1, H(i)],

b′j = bαi
−1(α′

i(j))
. Then:

118 Instruction Sequences for Computer Science

• if n = H(k) for some k ∈ N:

3SAT′
n(b1, . . . , bn) = 3SAT′′

n(b
′
1, . . . , b

′
n) ;

• if H(k) < n < H(k + 1) for some k ∈ N:

3SAT′
n(b1, . . . , bn) = 3SAT′′

n(b
′
1, . . . , b

′
H(k), bH(k)+1, . . . , bn) ,

where k is such that H(k) < n < H(k + 1).

This means that the only effect of another family of bijections is another order of the rele-

vant arguments.

The non-uniform super-polynomial complexity hypothesis is the following hypothesis:

Hypothesis 5.1. 3SAT′ /∈ P∗.

3SAT′ /∈ P∗ expresses in short that there does not exist a polynomial function h :N→
N such that for all n ∈ N there exists a t ∈ ISP∗ such that t computes 3SAT′

n and

len(t) ≤ h(n). This corresponds with the following informal formulation of the non-

uniform super-polynomial complexity hypothesis:

the lengths of the shortest instruction sequences that compute the Boolean func-

tions 3SAT′
n are not bounded by a polynomial in n.

The statement that Hypothesis 5.1 is a counterpart of the conjecture that 3SAT /∈
P/poly is made rigorous in the following theorem.

Theorem 5.14. 3SAT′ /∈ P∗ is equivalent to 3SAT /∈ P/poly.

Proof. This follows immediately from Theorems 5.12 and 5.13 and the fact that 3SAT

is NP-complete. �

5.2.4 Splitting instruction sequences

The instruction sequences considered in SPISA are sufficient to define a counterpart of

P/poly, but not to define a counterpart of NP/poly. For a counterpart of NP/poly, we

introduce in this section an extension of SPISA that allows for single-pass instruction se-

quences to split. We also introduce an extension of BTA with a behavioural counterpart of

instruction sequence splitting that is reminiscent of thread forking. First, we extend SPISA

with instruction sequence splitting.

Computation-Theoretic Issues 119

It is assumed that a fixed but arbitrary countably infinite set BP of Boolean parameters

has been given. Boolean parameters are used to set up a simple form of parameterization

for single-pass instruction sequences.

SPISAiss is SPISA with built-in basic instructions for instruction sequence splitting. In

SPISAiss, the following basic instructions belong to A:

• for each bp ∈ BP , a splitting instruction split(bp);

• for each bp ∈ BP , a direct replying instruction reply(bp).

On execution of the instruction sequence +split(bp) ; t , the primitive instruction

+split(bp) brings about concurrent execution of the instruction sequence t with the

Boolean parameter bp instantiated to t and the instruction sequence#2;t with the Boolean

parameter bp instantiated to f. The case where +split(bp) is replaced by −split(bp) and

the case where +split(bp) is replaced by split(bp) differ in the obvious ways.

On execution of the instruction sequence +reply(bp) ; t , the primitive instruction

+reply(bp) brings about execution of the instruction sequence t if the value taken by the

Boolean parameter bp is t and execution of the instruction sequence#2;t if the value taken

by the Boolean parameter bp is f. The case where +reply(bp) is replaced by −reply(bp)
and the case where +reply(bp) is replaced by reply(bp) differ in the obvious ways.

A simple example of a closed SPISAiss term is

split(par:1) ; a ; b ;−reply(par:1) ; #3 ; c ; #2 ; d ; e ; !

We will come back to this example at the end of the current section.

The axioms of SPISAiss are the same as the axioms of SPISA. The thread extraction op-

erator for SPISAiss instruction sequences is the same as for SPISA instruction sequences.

However, in the presence of the built-in basic instructions of SPISAiss, the intended be-

haviour of the instruction sequence denoted by a closed term t is not described by |t |. In

the notation of the extension of BTA introduced below, the intended behaviour is described

by ‖(〈|t |〉).

Definition 5.8. ISP∗∗ is the set of all closed SPISAiss terms in which:

• plain basic instructions, positive test instructions and negative test instructions contain

only basic instructions from the set

{f.get | f ∈ Fin} ∪ {out.set:t}
∪ {split(bp) | bp ∈ BP} ∪ {reply(bp) | bp ∈ BP} ;

• positive termination instructions and negative termination instructions do not occur;

120 Instruction Sequences for Computer Science

• the repetition operator does not occur.

Notice that no auxiliary registers are used in instruction sequences from ISP∗∗ and that

the basic instruction out.set:f does not occur in instruction sequences from ISP∗∗ .

As for t ∈ ISP∗ , we write len(t), where t ∈ ISP∗∗ , for the length of the SPISAiss

instruction sequence denoted by t .

We continue with introducing an extension of BTA with a mechanism for multi-thread-

ing that supports thread splitting, the behavioural counterpart of instruction sequence split-

ting. This extension, called BTA+MTTS (BTA with Multi-Threading and Thread Split-

ting), is entirely tailored to the behaviours of the instruction sequences that can be denoted

by closed SPISAiss terms.

It is assumed that the collection of threads to be interleaved takes the form of a sequence

of threads, called a thread vector.

The interleaving of threads is based on the simplest deterministic interleaving strategy

treated in [Bergstra and Middelburg (2007c)], namely cyclic interleaving, but any other

plausible deterministic interleaving strategy would be appropriate for our purpose.2 Cyclic

interleaving basically operates as follows: at each stage of the interleaving, the first thread

in the thread vector gets a turn to perform a basic action and then the thread vector under-

goes cyclic permutation. We mean by cyclic permutation of a thread vector that the first

thread in the thread vector becomes the last one and all others move one position to the left.

If one thread in the thread vector becomes inactive, the whole does not become inactive till

all others have terminated or become inactive.

We introduce the additional sort TV of thread vectors. To build terms of sort T, we

introduce the following additional operators:

• the unary cyclic interleaving operator ‖ :TV→ T;

• the unary inaction at termination operator SD :T→ T;

• for each bp ∈ BP and b ∈ B, the unary parameter instantiation operator Ibpb :T→ T;

• for each bp ∈ BP , the binary postconditional composition operators _� split(bp)�_ :

T×T→ T and _ � reply(bp)� _ :T×T→ T.

To build terms of sort TV, we introduce the following constants and operators:

• the empty thread vector constant 〈〉 :→TV;

2Fairness of the strategy is not an issue because the behaviours of the instruction sequences denoted by the
closed SPISAiss terms that belong to ISP∗∗ are finite threads. However, inaction of one thread in the thread
vector should not prevent others to proceed.

Computation-Theoretic Issues 121

• the singleton thread vector operator 〈_〉 :T→ TV;

• the thread vector concatenation operator _ � _ :TV ×TV→ TV.

We assume that there are infinitely many variables of sort TV, including α.

For an operational intuition, split(bp) can be considered a thread splitting action: when

the thread denoted by a closed term of the form t � split(bp)� t ′ gets a turn at some stage

of interleaving, this thread is split into two threads, namely the thread denoted by t with

the Boolean parameter bp instantiated to t and the thread denoted by t ′ with the Boolean

parameter bp instantiated to f. For an operational intuition, reply(bp) can be considered a

direct replying action: the thread denoted by a closed term of the form t � reply(bp)� t ′

proceeds, without any further processing of the action, as the thread denoted by t if the

value taken by the Boolean parameter bp is t and as the thread denoted by t ′ if the value

taken by the Boolean parameter bp is f.

The thread denoted by a closed term of the form ‖(t) is the thread that results from

cyclic interleaving of the threads in the thread vector denoted by t , covering the above-

mentioned splitting of a thread in the thread vector into two threads. This splitting involves

instantiation of Boolean parameters in threads. The thread denoted by a closed term of the

form Ibpb (t) is the thread that results from instantiating the Boolean parameter bp to b in the

thread denoted by t . In the event of inaction of one thread in the thread vector, the whole

becomes inactive only after all others have terminated or become inactive. The auxiliary

operator SD is introduced to describe this fully precise. The thread denoted by a closed

term of the form SD(t) is the thread that results from turning termination into inaction in

the thread denoted by t .

The axioms for cyclic interleaving with thread splitting, inaction at termination, and

parameter instantiation are given in Tables 5.1, 5.2 and 5.3. In these tables, a stands for

an arbitrary action fromA. With the exception of CSI11 and BPI8, the axioms simply for-

malize the informal explanations given above. Axiom CSI11 expresses that inaction occurs

when reply(bp) is encountered while threads are interleaved. Axiom BPI8 expresses that

inaction occurs when split(bp) is encountered while Boolean parameter bp is instantiated.

To be fully precise, we should give axioms concerning the constants and operators to

build terms of the sort TV as well. We refrain from doing so because the constants and

operators concerned are the usual ones for sequences.

To simplify matters, we will henceforth take the set {par:i | i ∈ N
+} for the set BP of

Boolean parameters.

Recall that the intended behaviour of the instruction sequence denoted by a closed

122 Instruction Sequences for Computer Science

Table 5.1 Axioms for the cyclic interleaving operator

‖(〈〉) = S CSI1

‖(〈S+〉) = S+ CSI2

‖(〈S+〉� 〈x〉� α) = ‖(〈x〉 � α) CSI3

‖(〈S−〉) = S− CSI4

‖(〈S−〉� 〈x〉� α) = ‖(〈x〉 � α) CSI5

‖(〈S〉� α) = ‖(α) CSI6

‖(〈D〉� α) = SD(‖(α)) CSI7

‖(〈tau ◦ x〉 � α) = tau ◦ ‖(α � 〈x〉) CSI8

‖(〈x�a � y〉� α) = ‖(α� 〈x〉) �a � ‖(α� 〈y〉) CSI9

‖(〈x� split(bp)� y〉� α) = tau ◦ ‖(α� 〈Ibpt (x)〉� 〈Ibpf (y)〉) CSI10

‖(〈x� reply(bp)� y〉� α) = SD(‖(α)) CSI11

Table 5.2 Axioms for the inaction at termination operator

SD(S+) = D S2D1

SD(S−) = D S2D1

SD(S) = D S2D3

SD(D) = D S2D4

SD(tau ◦ x) = tau ◦ SD(x) S2D5

SD(x�a � y) = SD(x)�a � SD(y) S2D6

SD(x� split(bp)� y) = SD(x)� split(bp)� SD(y) S2D7

SD(x� reply(bp)� y) = SD(x)� reply(bp)� SD(y) S2D8

SPISAiss term t is described by ‖(〈|t |〉). Concerning the intended behaviour of the instruc-

tion sequence denoted by the closed SPISAiss term

split(par:1) ; a ; b ;−reply(par:1) ; #3 ; c ; #2 ; d ; e ; ! ,

we can derive the following:

Computation-Theoretic Issues 123

Table 5.3 Axioms for the parameter instantiation operator

Ibpb (S+) = S+ BPI1

Ibpb (S−) = S− BPI2

Ibpb (S) = S BPI3

Ibpb (D) = D BPI4

Ibpb (tau ◦ x) = tau ◦ Ibpb (x) BPI5

Ibpb (x�a � y) = Ibpb (x) �a � Ibpb (y) BPI6

Ibpb (x� split(bp ′)� y) = Ibpb (x) � split(bp ′)� Ibpb (y) if bp �= bp ′ BPI7

Ibpb (x� split(bp)� y) = D BPI8

Ibpb (x� reply(bp ′)� y) = Ibpb (x) � reply(bp ′)� Ibpb (y) if bp �= bp ′ BPI9

Ibpt (x� reply(bp)� y) = tau ◦ Ibpt (x) BPI10

Ibpf (x� reply(bp)� y) = tau ◦ Ibpf (y) BPI11

‖(〈|split(par:1) ; a ; b ;−reply(par:1) ; #3 ; c ; #2 ; d ; e ; !|〉)
= ‖(〈split(par:1) ◦ a ◦ b ◦ ((c ◦ e ◦ S)� reply(par:1)� (d ◦ e ◦ S))〉)
= tau ◦ ‖(〈a ◦ b ◦ tau ◦ c ◦ e ◦ S〉� 〈a ◦ b ◦ tau ◦ d ◦ e ◦ S〉)
= tau ◦ a ◦ a ◦ b ◦ b ◦ tau ◦ tau ◦ c ◦ d ◦ e ◦ e ◦ S .

5.2.5 The complexity class P∗∗

In this section, we introduce the class P∗∗ of all Boolean function families that can be

computed by polynomial-length instruction sequences from ISP∗∗ .

Definition 5.9. Let n ∈ N, let f : Bn → B, and let t ∈ ISP∗∗ . Then t splitting computes

f if for all b1, . . . , bn ∈ B:

(‖(〈|t |〉) / (⊕n
i=1 in:i.BR(bi))) • out.BR(f) = out.BR(f(b1, . . . , bn)) .

Definition 5.10. P∗∗ is the class of all Boolean function families 〈fn〉n∈N
that satisfy:

there exists a polynomial function h :N→ N such that for all n ∈ N there exists a

t ∈ ISP∗∗ such that t splitting computes fn and len(t) ≤ h(n).

A question that arises is how P∗ and P∗∗ are related. It happens that P∗ is included in

P∗∗.

124 Instruction Sequences for Computer Science

Theorem 5.15. P∗ ⊆ P∗∗.

Proof. Suppose that 〈fn〉n∈N
in P∗. Let n ∈ N, and let t ∈ ISP∗ be such that t com-

putes fn and len(t) is polynomial in n. Assume that the basic instruction out.set:f does

not occur in t . By Theorem 5.7, this assumption can be made without loss of generality.

Then a t ′′ ∈ ISP∗∗ such that t ′′ splitting computes fn and len(t ′′) is polynomial in n can

be obtained from t as described below.

Suppose that t = u1 ; . . . ;uk. Let t ′ ∈ ISP∗ be obtained from u1 ; . . . ;uk as follows:

(1) stop if there exists no i ∈ [1, k] such that u i ≡ −aux:j.set:t or u i ≡ +aux:j.set:f

for some j ∈ N
+;

(2) find the least i ∈ [1, k] such that u i ≡ −aux:j.set:t or u i ≡ +aux:j.set:f for some

j ∈ N
+;

(3) if u i ≡ −aux:j.set:t for some j ∈ N
+, then replace u i by +aux:j.set:t ; #2;

(4) if u i ≡ +aux:j.set:f for some j ∈ N
+, then replace u i by −aux:j.set:f ; #2;

(5) for each i′ ∈ [1, k], replace u i′ by #l+1 if u i′ ≡ #l and i′ < i < i′ + l;

(6) repeat the preceding steps for the resulting instruction sequence.

Now, suppose that t ′ = u ′
1 ; . . . ; u

′
k′ . Let t ′′ ∈ ISP∗∗ be obtained from u ′

1 ; . . . ; u
′
k′ as

follows:

(1) stop if there exists no i ∈ [1, k′] such that u ′
i ≡ aux:j.set:b or u ′

i ≡ +aux:j.set:t or

u ′
i ≡ −aux:j.set:f for some j ∈ N

+ and b ∈ B;

(2) find the greatest i ∈ [1, k′] such that u ′
i ≡ aux:j.set:b or u ′

i ≡ +aux:j.set:t or

u ′
i ≡ −aux:j.set:f for some j ∈ N

+ and b ∈ B;

(3) find the unique j ∈ N
+ such that focus aux:j occurs in u ′

i;

(4) find the least j′ ∈ N
+ such that parameter par:j′ does not occur in u ′

i ; . . . ; u
′
k′ ;

(5) if u ′
i ≡ aux:j.set:t or u ′

i ≡ +aux:j.set:t, then replace u ′
i by −split(par:j′) ; !;

(6) if u ′
i ≡ aux:j.set:f or u ′

i ≡ −aux:j.set:f, then replace u ′
i by +split(par:j′) ; !;

(7) for each i′ ∈ [1, k′], replace u ′
i′ by #l+1 if u ′

i′ ≡ #l and i′ < i < i′ + l;

(8) for each i′ ∈ [i+ 1, k′]:

(a) if u ′
i′ ≡ aux:j.get, then replace u ′

i′ by reply(par:j′),

(b) if u ′
i′ ≡ +aux:j.get, then replace u ′

i′ by +reply(par:j′),

(c) if u ′
i′ ≡ −aux:j.get, then replace u ′

i′ by −reply(par:j′);

(9) repeat the preceding steps for the resulting instruction sequence.

Computation-Theoretic Issues 125

It is easy to prove by induction on k that the Boolean function computed by t and the

Boolean function computed by t ′ are the same, and it is easy to prove by induction on k′

that the Boolean function computed by t ′ and the Boolean function splitting computed by

t ′′ are the same. Moreover, it is easy to see that len(t ′′) ≤ 3 · len(t). Hence, len(t ′′) is

also polynomial in n. �

The chances are that P∗∗ �⊆ P∗. In Sect. 5.2.6, we will hypothesize this.

In Sect. 5.2.3, we have hypothesized that 3SAT′ /∈ P∗. The question arises whether

3SAT′ ∈ P∗∗. This question can be answered in the affirmative.

Theorem 5.16. 3SAT′ ∈ P∗∗.

Proof. Let n ∈ N, let k ∈ N be the unique k such that H(k) ≤ n < H(k + 1), and,

for each b1, . . . , bn ∈ B, let ϕb1,...,bn be the formula
∧

i∈[1,H(k)] s.t. bi=t

∨
αk(i). We have

that 3SAT′
n(b1, . . . , bn) = t iff ϕb1,...,bn is satisfiable. Letψ be the basic Boolean formula∧

i∈[1,n](¬vk+i ∨
∨
αk(i)). We have that ϕbk+1,...,bk+n

(b1, . . . , bk) iff ψ(b1, . . . , bk+n).

Let t ∈ ISna
P∗ be such that the basic instruction out.set:f does not occur in t , t computes

the Boolean function induced by ψ, and len(t) is polynomial in n. It follows from Theo-

rem 5.10 that such a t exists. Assume that instructions in:i.get, +in:i.get, and−in:i.get
with i > k do not occur in t . It is obvious that this assumption can be made without loss

of generality. Let t ′ ∈ ISP∗∗ be the instruction sequence obtained from t by replacing,

for each i ∈ [1, k], all occurrences of the primitive instructions in:i.get, +in:i.get, and

−in:i.get by the primitive instructions reply(par:i), +reply(par:i), and −reply(par:i), re-

spectively, and let t ′′ = split(par:1) ; . . . ; split(par:k) ; t ′. We have that t ′′ ∈ ISP∗∗ , t ′′

splitting computes 3SAT′
n, and len(t ′′) is polynomial in n. Hence, 3SAT′ ∈ P∗∗. �

Below we will define P∗∗-completeness. We would like to call P∗∗-completeness the

counterpart of NP/poly-completeness in the current setting, but the notion of NP/poly-

completeness looks to be absent in the literature on complexity theory. The closest to

NP/poly-completeness that we could find is p-completeness for pD, a notion introduced

in [Skyum and Valiant (1985)]. Like NP-completeness, P∗∗-completeness will be defined

in terms of a reducibility relation. Because 3SAT′ is closely related to 3SAT and 3SAT′ ∈
P∗∗, we expect 3SAT′ to be P∗∗-complete.

Definition 5.11. Let l,m, n ∈ N, and let f : Bn → B and g : Bm → B. Then f is length l

reducible to g, written f ≤l
P∗ g, if there exist h1, . . . , hm : Bn → B such that:

• there exist t1, . . . , tm ∈ ISP∗ such that t1, . . . , tm compute h1, . . . , hm and

126 Instruction Sequences for Computer Science

len(t1), . . . , len(tm) ≤ l;

• for all b1, . . . , bn ∈ B, f(b1, . . . , bn) = g(h1(b1, . . . , bn), . . . , hm(b1, . . . , bn)).

Let 〈fn〉n∈N
and 〈gn〉n∈N

be Boolean function families. Then 〈fn〉n∈N
is non-uniform

polynomial-length reducible to 〈gn〉n∈N
, written 〈fn〉n∈N

≤P∗ 〈gn〉n∈N
, if there exists a

polynomial function q : N→ N such that:

• for all n ∈ N, there exist l,m ∈ N with l,m ≤ q(n) such that fn ≤l
P∗ gm.

Definition 5.12. Let 〈fn〉n∈N
be a Boolean function family. Then 〈fn〉n∈N

is P∗∗-complete

if:

• 〈fn〉n∈N
∈ P∗∗;

• for all 〈gn〉n∈N
∈ P∗∗, 〈gn〉n∈N

≤P∗ 〈fn〉n∈N
.

The most important properties of non-uniform polynomial-length reducibility and P∗∗-

completeness as defined above are stated in the following two propositions.

Proposition 5.3.

(1) if 〈fn〉n∈N
≤P∗ 〈gn〉n∈N

and 〈gn〉n∈N
∈ P∗, then 〈fn〉n∈N

∈ P∗;

(2) ≤P∗ is reflexive and transitive.

Proof. Both properties follow immediately from the definition of ≤P∗ . �

Proposition 5.4.

(1) if 〈fn〉n∈N
is P∗∗-complete and 〈fn〉n∈N

∈ P∗, then P∗∗ = P∗;

(2) if 〈fn〉n∈N
is P∗∗-complete, 〈gn〉n∈N

∈ P∗∗ and 〈fn〉n∈N
≤P∗ 〈gn〉n∈N

, then 〈gn〉n∈N

is P∗∗-complete.

Proof. The first property follows immediately from the definition of P∗∗-completeness,

and the second property follows immediately from the definition of P∗∗-completeness and

the transitivity of ≤P∗ . �

The properties stated in Proposition 5.4 make P∗∗-completeness as defined above adequate

for our purposes. In the following proposition, non-uniform polynomial-length reducibility

is related to polynomial-time Karp reducibility (≤P).

Proposition 5.5. Let 〈fn〉n∈N
and 〈gn〉n∈N

be Boolean function families, and let f and

g be the unique functions f, g : B∗ → B such that for each n ∈ N, for each w ∈ B
n,

f(w) = fn(w) and g(w) = gn(w). Then f ≤P g only if 〈fn〉n∈N
≤P∗ 〈gn〉n∈N

.

Computation-Theoretic Issues 127

Proof. This property follows immediately from the definitions of ≤P and ≤P∗ , the well-

known fact that P ⊆ P/poly (see e.g. [Arora and Barak (2009)], Sect. 6.2) , and Theo-

rem 5.12. �

The property stated in Proposition 5.5 allows for results concerning polynomial-time Karp

reducibility to be reused in the current setting.

Now we turn to the anticipated P∗∗-completeness of 3SAT′.

Theorem 5.17. 3SAT′ is P∗∗-complete.

Proof. By Theorem 5.16, we have that 3SAT′ ∈ P∗∗. It remains to prove that for all

〈fn〉n∈N
∈ P∗∗, 〈fn〉n∈N

≤P∗ 3SAT′.

Suppose that 〈fn〉n∈N
∈ P∗∗. Let n ∈ N, and let t ∈ ISP∗∗ be such that t splitting

computes fn and len(t) is polynomial in n. Assume that out.set:t occurs only once in t .

This assumption can be made without loss of generality: multiple occurrences can always

be eliminated by replacement by jump instructions (on execution, instructions possibly

following those occurrences do not change the state of the Boolean register named out).

Suppose that t = u1 ; . . . ; uk, and let l ∈ [1, k] be such that u l is either out.set:t,

+out.set:t or −out.set:t.
We look for a transformation that gives, for each b1, . . . , bn ∈ B, a Boolean formula

ϕb1,...,bn such that fn(b1, . . . , bn) = t iff ϕb1,...,bn is satisfiable. Notice that, for fixed

initial states of the Boolean registers named in:1, . . . , in:n, it is possible that there exist

several execution paths through t because of the split instructions that may occur in t . We

have that fn(b1, . . . , bn) = t iff there exists an execution path through t that reaches u l if

the initial states of the Boolean registers named in:1, . . . , in:n are b1, . . . , bn, respectively.

The existence of such an execution path corresponds to the satisfiability of the Boolean

formula v1 ∧ vl ∧
∧

i∈[2,k](vi ⇔
∨

j∈B(i) vj), where, for each i ∈ [2, k], B(i) is the set

of all j ∈ [1, i] for which execution may proceed with u i after execution of u j if the

initial states of the Boolean registers named in:1, . . . , in:n are b1, . . . , bn, respectively.

Let ϕb1,...,bn be this Boolean formula. Then fn(b1, . . . , bn) = t iff ϕb1,...,bn is satisfiable.

For some m ∈ N, ϕb1,...,bn still has to be transformed into a wb1,...,bn ∈ B
m such that

ϕb1,...,bn is satisfiable iff 3SAT′
m(wb1,...,bn) = t. We look upon this transformation as a

composition of two transformations: first ϕb1,...,bn is transformed into a 3CNF-formula

ψb1,...,bn such that ϕb1,...,bn is satisfiable iff ψb1,...,bn is satisfiable, and next, for some

m ∈ N, ψb1,...,bn is transformed into a wb1,...,bn ∈ B
m such that ψb1,...,bn is satisfiable iff

3SAT′
m(wb1,...,bn) = t.

128 Instruction Sequences for Computer Science

It is easy to see that the size of ϕb1,...,bn is polynomial in n and that (b1, . . . , bn) can

be transformed into ϕb1,...,bn in time polynomial in n. It is well-known that each Boolean

formula ψ can be transformed in time polynomial in the size of ψ into a 3CNF-formula

ψ′, with size and number of variables linear in the size of ψ, such that ψ is satisfiable iff

ψ′ is satisfiable (see e.g. [Balcázar et al. (1988)], Theorem 3.7). Moreover, it is known

from the proof of Theorem 5.13 that each 3CNF-formula ϕ can be transformed in time

polynomial in the size of ϕ into a w ∈ B
H(k′), where k′ is the number of variables in ϕ,

such that 3SAT(ϕ) = 3SAT′(w). From these facts, and Proposition 5.5, it follows easily

that 〈fn〉n∈N
is non-uniform polynomial-length reducible to 3SAT′. �

It happens that P∗∗ and NP/poly coincide.

Theorem 5.18. P∗∗ = NP/poly.

Proof. It follows easily from the definitions concerned that f ∈ NP/poly iff there exist

a k ∈ N and a g ∈ P/poly such that, for all w ∈ B
∗:

f(w) = t⇔ ∃c ∈ B
∗ • (|c| ≤ |w|k ∧ g(w, c) = t) .

Below, we will refer to such a g as a checking function for f . We will first prove the

inclusion NP/poly ⊆ P∗∗ and then the inclusion P∗∗ ⊆ NP/poly.

NP/poly ⊆ P∗∗: Suppose that f ∈ NP/poly. Then there exists a checking function

for f . Let g be a checking function for f , and let 〈gn〉n∈N
be the Boolean function family

corresponding to g. Because g ∈ P/poly, we have by Theorem 5.12 that 〈gn〉n∈N
∈ P∗.

This implies that, for all n ∈ N, there exists a t ∈ ISP∗ such that t computes gn and

len(t) is polynomial in n. For each n ∈ N, let tn be such a t . Moreover, let 〈fn〉n∈N
be

the Boolean function family corresponding to f . For each n ∈ N, there exists an m ∈ N

such that a t ′ ∈ ISP∗∗ can be obtained from tm in the way followed in the proof of

Theorem 5.15 such that t ′ splitting computes fn and len(t ′) is polynomial in n. Hence,

each Boolean function family in NP/poly is also in P∗∗.

P∗∗ ⊆ NP/poly: Suppose that 〈fn〉n∈N
∈ P∗∗. Then, for all n ∈ N, there exists a

t ∈ ISP∗∗ such that t splitting computes fn and len(t) is polynomial in n. For each n ∈ N,

let tn be such a t . Moreover, let f : B∗ → B be the function corresponding to 〈fn〉n∈N
.

Then a checking function g for f can be computed by a Turing machine as follows: on

a proper input of size n, it takes a binary description of tn as advice and then simulates

the execution of tn treating the proper input as a description of the choices to make at each

split. It is easy to see that, under the assumption that instructions split(par:i), +split(par:i),

Computation-Theoretic Issues 129

−split(par:i), reply(par:i), +reply(par:i), −reply(par:i) and #i with i > len(tn) do not

occur in tn, the size of the description of tn and the number of steps that it takes to simulate

the execution of tn are both polynomial in n. It is obvious that we can make the assumption

without loss of generality. Hence, each Boolean function family in P∗∗ is also in NP/poly.

�

A known result about classical complexity classes turns out to be a corollary of Theo-

rems 5.12, 5.13, 5.17 and 5.18.

Corollary 5.4. NP �⊆ P/poly is equivalent to NP/poly �⊆ P/poly.

Notice that it is justified by Theorem 5.18 to regard the definition of P∗∗-completeness

given in this section (Definition 5.12) as a definition of NP/poly-completeness in the set-

ting of single-pass instruction sequences and consequently to read Theorem 5.17 as 3SAT′

is NP/poly-complete.

5.2.6 Super-polynomial feature elimination complexity hypotheses

In this section, we introduce three complexity hypotheses which concern restrictions on the

instruction sequences with which Boolean functions are computed.

By Theorem 5.15, we have that P∗ ⊆ P∗∗. We hypothesize that P∗∗ �⊆ P∗. We

can think of P∗ as roughly obtained from P∗∗ by restricting the computing instruction

sequences to non-splitting instruction sequences. This motivates the formulation of the

hypothesis that P∗∗ �⊆ P∗ as a feature elimination complexity hypothesis.

The first super-polynomial feature elimination complexity hypothesis is the following

hypothesis:

Hypothesis 5.2. Let ρ : ISP∗∗ → ISP∗ be such that, for each t ∈ ISP∗∗ , ρ(t) computes

the same Boolean function as t . Then len(ρ(t)) is not polynomially bounded in len(t).

We can also think of complexity classes obtained from P∗ by restricting the computing

instruction sequences further. They can, for instance, be restricted to instruction sequences

in which:

• primitive instructions of the forms f .m , +f .m and −f .m with f ∈ Faux do not

occur;

• for some fixed k ∈ N, primitive instructions of the form #l with l > k do not occur;

• primitive instructions out.set:f, +out.set:f and −out.set:f do not occur;

130 Instruction Sequences for Computer Science

• multiple termination instructions do not occur.

Below we introduce two hypotheses that concern the first two of these restrictions.

The second super-polynomial feature elimination complexity hypothesis is the follow-

ing hypothesis:

Hypothesis 5.3. Let ρ : ISP∗ → ISna
P∗ be such that, for each t ∈ ISP∗ , ρ(t) computes

the same Boolean function as t . Then len(ρ(t)) is not polynomially bounded in len(t).

The third super-polynomial feature elimination complexity hypothesis is the following hy-

pothesis:

Hypothesis 5.4. Let k ∈ N, and let ρ : ISna
P∗ → ISna

P∗ be such that, for each t ∈ ISna
P∗ ,

ρ(t) computes the same Boolean function as t and, for each jump instruction #l occurring

in ρ(t), l ≤ k. Then len(ρ(t)) is not polynomially bounded in len(t).

These hypotheses motivate the introduction of subclasses of P∗. For each k, l ∈ N, Pk
l

is the class of all Boolean function families 〈fn〉n∈N
that satisfy:

there exists a polynomial function h :N→ N such that for all n ∈ N there exists a

t ∈ ISP∗ such that:

• t computes fn and len(t) ≤ h(n);

• primitive instructions of the forms f .m , +f .m and −f .m with f = aux:i for

some i > k do not occur in t ;

• primitive instructions of the form #l′ with l′ > l do not occur in t .

Moreover, for each k, l ∈ N, Pk
∗ is the class

⋃
l∈N

Pk
l , and P∗

l is the class
⋃

k∈N
Pk
l .

The hypotheses formulated above, can also be expresses in terms of these subclasses of

P∗: Hypotheses 5.2, 5.3, and 5.4 are equivalent to P∗∗ �⊆ P∗, P∗ �⊆ P0
∗, and P0

∗ �⊆ P0
k for

all k ∈ N, respectively.

Remark 5.1. It is well-known that, for all f : B∗ → B, f ∈ L/poly iff f has polynomial-

size branching programs (see e.g. [Thierauf (2000)]). Moreover, the threads produced by

the instruction sequences from ISna
P∗ are in essence the polynomial-size branching pro-

grams. Hence, P0
∗ = L/poly. This means that Hypothesis 5.3 is also equivalent to

P/poly �⊆ L/poly.

Chapter 6

Computer-Architectural Issues

This chapter concerns two subjects from the area of computer architecture which have

to do with instruction sequences and instruction processing, namely instruction sequence

performance and instruction set architectures.

Although instruction sequences with direct and indirect jump instructions are as expres-

sive as instruction sequences with direct jump instructions only, indirect jump instructions

are widely used to implement features of contemporary high-level programming languages.

Therefore, we consider a further analysis of indirect jump instructions relevant. We study

the effect of eliminating indirect jump instructions from instruction sequences with direct

and indirect jump instructions on the interactive performance of instruction sequences.

We propose a strict version of the concept of a load/store instruction set architecture for

theoretical work relevant to the design of instruction set architectures. The idea underlying

this concept is that there is a main memory whose elements contain data, an operating

unit with a small internal memory by which data can be manipulated, and an interface

between the main memory and the operating unit for data transfer between them. We study

how the transformations on the states of the main memory of a strict load/store instruction

set architecture that can be achieved by executing instruction sequences on it depend on

parameters such as the size of its operating unit memory, the cardinality of its instruction

set, and the maximal number of states of the behaviours produced by instruction sequences

executed on it.

6.1 Instruction Sequence Performance

In this section, we introduce the maximal internal delay of an ISNRij instruction sequence

as a performance measure for such an instruction sequence and show that, in the case where

the number of instructions is not bounded, there exist instruction sequences with direct and

131

132 Instruction Sequences for Computer Science

indirect jump instructions from which elimination of indirect jump instructions is possible

without a super-linear increase of their maximal internal delay on execution only at the cost

of a super-linear increase of their length.

It is assumed that a fixed but arbitrary set X ⊂ A of auxiliary basic instructions has

been given. The view is that, in common with the effect of jump instructions, the effect of

auxiliary basic instructions is wholly unobservable externally, but contributes to the real-

ization of externally observable behaviour. Typical examples of auxiliary basic instructions

are basic instructions for storing and fetching data of a temporary nature. Typical exam-

ples of non-auxiliary basic instructions are basic instructions for reading input data from

a keyboard, showing output data on a screen and writing data of a permanent nature on a

disk.

The maximal internal delay of an ISNRij instruction sequence concerns the delays that

takes place between successive non-auxiliary basic instructions on execution of the in-

struction sequence. That is why it is considered a measure of interactive performance. An-

other conceivable performance measure is the largest possible sum of the delays that takes

place between successive non-auxiliary basic instructions on execution of the instruction

sequence. However, this measure looks to be less adequate to the interactive performance

of instruction sequences.

Before we define the maximal internal delay of an ISNRij instruction sequence, we

define the execution traces of an ISNRij instruction sequence. Recall that, in ISNRij, it is

assumed that fixed but arbitrary positive natural numbers imax and nmax have been given,

which are considered the number of natural number registers available and the greatest

natural number that can be contained in a natural number register, respectively.

Let ρ : [1, imax] → [0, nmax], j ∈ N, and let u1 ; . . . ; uk be an ISNRij instruction se-

quence. Then tr(ρ, j,u1 ; . . . ;uk) is the set of all finite sequences of primitive instructions

of ISNRij that may be encountered successively on execution of u1 ; . . . ; uk if execu-

tion starts with u j , with the registers used for indirect jumps set according to ρ. The set

tr(ρ, j,u1 ; . . . ; uk) is inductively defined by the following clauses:

(1) ε ∈ tr(ρ, j,u1 ; . . . ; uk);

(2) if uj ≡ a or uj ≡ +a or uj ≡ −a , and σ ∈ tr(ρ, j + 1,u1 ; . . . ; uk), then

u jσ ∈ tr(ρ, j,u1 ; . . . ; uk);

(3) if uj ≡ +a or uj ≡ −a , and σ ∈ tr(ρ, j + 2,u1 ; . . . ; uk), then ujσ ∈ tr(ρ, j,u1 ;

. . . ; uk);

(4) if uj ≡ #l and σ ∈ tr(ρ, j + l,u1 ; . . . ; uk), then ujσ ∈ tr(ρ, j,u1 ; . . . ; uk);

Computer-Architectural Issues 133

(5) if uj ≡ \#l and σ ∈ tr(ρ, j .− l,u1 ; . . . ; uk), then ujσ ∈ tr(ρ, j,u1 ; . . . ; uk);

(6) if uj ≡ set:i:n and σ ∈ tr(ρ⊕ [i �→ n], j + 1,u1 ; . . . ; uk), then ujσ ∈ tr(ρ, j,u1 ;

. . . ; uk);

(7) if uj ≡ i#i and σ ∈ tr(ρ, j + ρ(i),u1 ; . . . ; uk), then ujσ ∈ tr(ρ, j,u1 ; . . . ; uk);

(8) if uj ≡ i\#i and σ ∈ tr(ρ, j .− ρ(i),u1 ; . . . ; uk), then ujσ ∈ tr(ρ, j,u1 ; . . . ; uk);

(9) if uj ≡ !t or uj ≡ !f or u j ≡ !, then uj ∈ tr(ρ, j,u1 ; . . . ; uk).

For example,

tr(ρ0, 1,+a ; #3 ; set:1:3 ; #2 ; set:1:1 ; i#1 ; b ; #2 ; c ; !) ,

where ρ0 is defined by ρ0(i) = 0 for all i ∈ [1, imax], contains

+a #3 set:1:1 i#1 b #2 ! ,

+a set:1:3 #2 i#1 c ! ,

and all prefixes of these two sequences, including the empty sequence.

Definition 6.1. The set of execution traces of an ISNRij instruction sequence p, written

tr(p), is tr(ρ0, 1,p), where ρ0 is defined by ρ0(i) = 0 for all i ∈ [1, imax].

Definition 6.2. The maximal internal delay of an ISNRij instruction sequence p, written

MID(p), is the largest n ∈ N for which there exists an execution trace u1 . . .uk ∈ tr(p)

and i1, i2 ∈ [1, k] with i1 ≤ i2 such that ID(u j) �= 0 for all j ∈ [i1, i2] and ID(u i1) +

. . .+ ID(u i2) = n, where ID(u) is defined as follows:

ID(a) = 0 if a /∈ X ,

ID(a) = 1 if a ∈ X ,

ID(+a) = 0 if a /∈ X ,

ID(+a) = 1 if a ∈ X ,

ID(−a) = 0 if a /∈ X ,

ID(−a) = 1 if a ∈ X ,

ID(#l) = 1 ,

ID(\#l) = 1 ,

ID(set:i:n) = 1 ,

ID(i#i) = 2 ,

ID(i\#i) = 2 ,

ID(!t) = 0 ,

ID(!f) = 0 ,

ID(!) = 0 .

Suppose that in the example given above a, b and c are non-auxiliary basic instructions.

Then

MID(+a ; #3 ; set:1:3 ; #2 ; set:1:1 ; i#1 ; b ; #2 ; c ; !) = 4 .

This delay takes place between the execution of a and the execution of b or c.

Remark 6.1. In [Bergstra and van der Zwaag (2008)], an extension of BTA is proposed

which allows for internal delays to be described and analysed. We could formally describe

134 Instruction Sequences for Computer Science

the behaviours produced by ISNRij instruction sequences under execution, internal delays

included, using this extension of BTA. The notion of maximal internal delay of an ISNRij

instruction sequence has been defined above so as to be justifiable by such a formal de-

scription of the behaviours produced by ISNRij instruction sequences under execution.

The time that it takes to execute one basic instruction is taken for the time unit in the

definition of the maximal internal delay of an ISNRij instruction sequence given above. By

that MID(p) can be looked upon as the number of basic instruction that can be executed

during the maximal internal delay of p . It is customary to refer to the time that it takes to

execute one basic instruction as a step.

Below, we will show that indirect jump instructions are needed for instruction sequence

performance. It is assumed that br:1 ∈ F and I(BR) ⊆M.

For each k ∈ N, let pk be the following ISNRij program:

;2ki=1(−br:1.get ; #3 ; set:1:2·i−1 ; #(2k−i)·4+2) ; ! ;

;2ki=1(−br:1.get ; #3 ; set:2:2·i−1 ; #(2k−i)·4+2) ; ! ;

i#1 ; ;2ki=1(ai ; #(2k−i)·2+1) ; i#2 ; ;2ki=1(a
′
i ; !) .

First, pk repeatedly tests the Boolean register br:1. If t is not returned for 2k tests, pk

terminates. Otherwise, in case it takes i tests until t is returned, the content of register 1 is

set to 2·i−1. If pk has not yet terminated, it once again repeatedly tests the Boolean register

br:1. If t is not returned for 2k tests, pk terminates. Otherwise, in case it takes j tests until

t is returned, the content of register 2 is set to 2 · j − 1. If pk has not yet terminated, it

performs a i after an indirect jump and following this a ′
j after another indirect jump. After

that, pk terminates. The length of pk is 12 · 2k + 4 instructions and the maximal internal

delay of pk is 4 steps.

The ISNRij programs p1,p2, . . . defined above will be used in the proof of the result

concerning the elimination of indirect jump instructions stated below.

Like before, we will write len(p), where p is a ISNRij program, for the length of p.

Definition 6.3. A mapping proj from the set of all ISNRij programs to the set of all ISNR

programs has a linear upper bound on the increase in maximal internal delay if for some

c′, c′′ ∈ N, for all ISNRij programs p , MID(proj(p)) ≤ c′ ·MID(p) + c′′. A mapping

proj from a subset P of the set of all ISNRij programs to the set of all ISNR programs has

a quadratic lower bound on the increase in length if for some c′, c′′ ∈ N with c′ �= 0, for

all p ∈ P , len(proj(p)) ≥ c′ · len(p)2 + c′′.

Computer-Architectural Issues 135

Theorem 6.1. Suppose proj is a behaviour-preserving mapping from the set of all ISNRij

programs to the set of all ISNR programs with a linear upper bound on the increase in

maximal internal delay. Moreover, suppose that the number of basic instructions is not

bounded. Then there exists a set P of ISNRij programs such that the restriction of proj to

P has a quadratic lower bound on the increase in length.

Proof. For each k ∈ N, let pk be defined as above. We show that the restriction of proj

to {p1,p2, . . .} has a quadratic lower bound on its increase in length. Take an arbitrary

k ∈ N. Because proj has a linear upper bound on the increase in maximal internal delay,

we have MID(proj(pk)) ≤ c′ ·MID(pk) + c′′ = c′ · 4 + c′′ for some c′, c′′ ∈ N. Let

c = c′ · 4 + c′′. Suppose that k is much greater than c. This supposition requires that

the number of basic instructions is not bounded. If the use of auxiliary basic instructions

(such as basic instructions working on auxiliary Boolean registers) is allowed, then there

are at most 2c different basic instructions reachable in c steps. Let i ∈ [1, 2k]. Then, in

proj(pk), for each j ∈ [1, 2k], some occurrence of a ′
j is reachable from each occurrence

of a i without intermediate occurrences of a i and a ′
1, . . . ,a

′
2k . From one occurrence of a i,

at most 2c basic instructions are reachable, but there are 2k different instructions to reach.

Therefore, there must be at least 2k/2c = 2k−c different occurrences of a i in proj(pk).

Consequently, len(proj(pk)) ≥ 2k · 2k−c = 22·k−c. Moreover, len(pk) = 12 · 2k + 4.

Hence, the restriction of proj to {p1,p2, . . .} has a quadratic lower bound on its increase

in length. �

We conclude from Theorem 6.1 that we are faced with super-linear increases of max-

imal internal delays if we strive for acceptable increases of instruction sequence lengths

on elimination of indirect jump instructions. In other words, indirect jump instructions are

needed for instruction sequence performance. Semantically, we can eliminate indirect jump

instructions by means of a projection, but we meet here two challenges for the viewpoint

which has led to the approach of projection semantics: explosion of size and degradation of

performance. In Appendix A, these challenges and three other challenges for this viewpoint

are discussed.

6.2 Load/Store Instruction Set Architectures

In this section, we introduce a strict version of the concept of a load/store ISA (Instruction

Set Architecture) and study how the transformations on the states of the main memory of a

strict load/store ISA that can be achieved by executing instruction sequences on it depend

136 Instruction Sequences for Computer Science

on various parameters.

We describe the concept of a load/store ISA in the setting of Maurer machines. Maurer

machines are based on the view that a computer has a memory, the contents of all memory

elements make up the state of the computer, the computer processes instructions, and the

processing of an instruction amounts to performing an operation on the state of the com-

puter which results in changes of the contents of certain memory elements. The design of

ISAs must deal with these aspects of real computers. Turing machines and the other kinds

of machines known from theoretical computer science (see e.g. [Hopcroft et al. (2001)])

abstract from these aspects of real computers.

The idea underlying the concept of a load/store ISA is that there is a main memory

whose elements contain data, an operating unit with a small internal memory by which

data can be manipulated, and an interface between the main memory and the operating unit

for data transfer between them. This means that, in a load/store ISA, all data manipulation

takes place in the operating unit. This raises among other things the question whether,

if the operating unit size is reduced by one, it is possible with new instructions for data

manipulation to yield the same state changes on the data memory. We answer this question

in the affirmative.

For strict load/store ISAs with address width aw and word length wl , the number of

possible transformations on the states of the data memory is 2(2
(2aw ·wl+aw)·wl). We also show

how the possibility to achieve all these state transformation by executing an instruction

sequence on a strict load/store ISA with this address width and word length depends on

the size of the memory of its operating unit, the cardinality of its instruction set, and the

maximal number of states of the behaviours produced by instruction sequences executed

on it.

6.2.1 Maurer machines

We introduce the concept of a Maurer machine. This concept originates from a model

for computers proposed in [Maurer (1966)]. A Maurer machine induces a functional unit.

It represents a rather concrete view on a functional unit, which is intended for studying

higher-level issues from the area of computer architecture.

Because the apply operator from BTA+TSI will be used, the assumptions relating to A
made in BTA+TSI are made here as well.

Definition 6.4. A Maurer machine H consists of the following components:

Computer-Architectural Issues 137

• a set M with card(M) > 0;

• a set B with card(B) > 1;

• a set S of functions S :M → B;

• a set O of functionsO : S → S;

• a set I ⊆M;

• a function [[_]] : I → (O ×M);

and satisfies the following conditions:

• if S1, S2 ∈ S, M ′ ⊆ M , and S3 :M → B is such that S3(x) = S1(x) if x ∈ M ′ and

S3(x) = S2(x) if x /∈M ′, then S3 ∈ S;

• if S1, S2 ∈ S, then the set {x ∈M | S1(x) �= S2(x)} is finite;

• if S ∈ S, m ∈ I , and [[m]] = (O, r), then S(r) ∈ B.

Let H = (M,B,S,O, I, [[_]]) be a Maurer machine. Then M is called the memory of

H , B is called the base set ofH , the members of S are called the states ofH , the members

ofO are called the operations of H , the members of I are called the instructions ofH , and

[[_]] is called the instruction interpretation function of H .

We write MH , BH , SH , OH , IH and [[_]]H , where H = (M,B,S,O, I, [[_]]) is a

Maurer machine, for M , B, S, O, I and [[_]], respectively.

A Maurer machine has much in common with a real computer. The memory of a Mau-

rer machine consists of memory elements whose contents are elements from its base set.

The term memory must not be taken too strict. For example, register files and caches must

be regarded as parts of the memory. The contents of all memory elements together make

up a state of the Maurer machine. State changes are accomplished by performing its opera-

tions. Every state change amounts to changes of the contents of certain memory elements.

The instructions of a Maurer machine are the instructions that it is able to process. The

processing of an instruction amounts to performing the operation associated with the in-

struction by the instruction interpretation function. At completion of the processing, the

content of the memory element associated with the instruction by the instruction interpre-

tation function is the reply produced by the Maurer machine.

The first condition on the states of a Maurer machine is a structural condition and the

second one is a finite variability condition. We return to these conditions, which are met

by any real computer, after the introduction of the input region and output region of an

operation. The third condition on the states of a Maurer machine restricts the possible

replies at completion of the processing of an instruction to t and f.

138 Instruction Sequences for Computer Science

Remark 6.2. In [Maurer (1966)], Maurer proposed a model for computers. In [Bergstra

and Middelburg (2007b)], the term Maurer computer was introduced for what is a com-

puter according to Maurer’s definition. Leaving out the set of instructions and the instruc-

tion interpretation function from a Maurer machine yields a Maurer computer. The set of

instructions and the instruction interpretation function constitute the interface of a Maurer

machine with its environment, which effectuates state changes by issuing instructions.

The notions of input region of an operation and output region of an operation, which

originate from [Maurer (1966)], are used in the rest of Sect. 6.2.

Definition 6.5. Let H = (M,B,S,O, I, [[_]]) be a Maurer machine, and let O : S → S.

Then the input region of O, written IR(O), and the output region of O, written OR(O),

are the subsets of M defined as follows:

IR(O) = {x ∈M | ∃S1, S2 ∈ S • (∀z ∈M \ {x} • S1(z) = S2(z) ∧
∃y ∈ OR(O) •O(S1)(y) �= O(S2)(y))} ,

OR(O) = {x ∈M | ∃S ∈ S • S(x) �= O(S)(x)} .

OR(O) is the set of all memory elements that are possibly affected by O; and IR(O)

is the set of all memory elements that possibly affect elements of OR(O) under O. For

example, the input region and output region of an operation that adds the content of a given

main memory cell, say x, to the content of a given register, say y, are {x, y} and {y},
respectively.

Let H = (M,B,S,O, I, [[_]]) be a Maurer machine, let S1, S2 ∈ S, and let O ∈ O.

Then S1 � IR(O) = S2 � IR(O) implies O(S1) � OR(O) = O(S2) � OR(O). In other

words, every operation transforms states that coincide on the input region of the operation

to states that coincide on the output region of the operation. The second condition on the

states of a Maurer machine is necessary for this fundamental property to hold. The first

condition on the states of a Maurer machine could be relaxed somewhat.

Remark 6.3. In [Maurer (1966)], more results relating to input regions and output regions

are given. Recently, a revised and expanded version of [Maurer (1966)], which includes all

the proofs, has appeared in [Maurer (2006)].

Definition 6.6. Let H = (M,B,S,O, I, [[_]]) be a Maurer machine, and let (Om , rm) =

[[m]] for all m ∈ I . Then the functional unit UH ∈ FU(S) induced by H is defined by

UH = {(m ,Mm) |m ∈ I} ,

Computer-Architectural Issues 139

where the method operationsMm are defined as follows (m ∈ I):

Mm(S) = (Om (S)(rm), Om (S)) .1

The apply operator introduced in Sect. 3.1.2 allows for instruction sequences to ef-

fectuate state changes of a Maurer machine by means of its operations. Let H =

(M,B,S,O, I, [[_]]) be a Maurer machine, let S ∈ S, and let p ∈ L(f.I(UH)). If

p • f.UH(S) = f.UH(S′), then S′ is the state of the Maurer machine H that results

from processing the instruction m of each basic action f.m that the thread produced by p

performs by the Maurer machineH , starting from state S. The processing of an instruction

m byH amounts to a state change according to the operation associated with m by [[_]]. In

the resulting state, the reply produced byH is contained in the memory element associated

with m by [[_]].

6.2.2 Strict load/store Maurer ISAs

In this section, we introduce the concept of a strict load/store Maurer instruction set archi-

tecture. This concept takes its name from the following: it is described in the setting of

Maurer machines, it concerns only load/store architectures, and the load/store architectures

concerned are strict in some respects that will be explained after its formalization.

The concept of a strict load/store Maurer instruction set architecture, or shortly a strict

load/store Maurer ISA, is an approximation of the concept of a load/store instruction set

architecture (see e.g. [Hennessy and Patterson (2003)]). It is focussed on instructions for

data manipulation and data transfer. Transfer of program control is treated in a uniform way

over different strict load/store Maurer ISAs by working at the abstraction level of threads.

All that is left of transfer of program control at this level is postconditional composition.

The idea underlying the concept of a strict load/store Maurer ISA is that there is a main

memory whose elements contain data, an operating unit with a small internal memory

by which data can be manipulated, and an interface between the main memory and the

operating unit for data transfer between them. For the sake of simplicity, data is restricted

to the natural numbers between 0 and some upper bound. Other types of data that could be

supported can always be represented by the natural numbers provided. Moreover, the data

manipulation instructions offered by a strict load/store Maurer ISA are not restricted and

may include ones that are tailored to manipulation of representations of other types of data.

Therefore, we believe that nothing essential is lost by the restriction to natural numbers.
1Notice the double use of M here: M is the memory of the Maurer machine H , and Mm is the method operation

with name m .

140 Instruction Sequences for Computer Science

The concept of a strict load/store Maurer ISA is parametrized by:

• an address width aw ;

• a word length wl ;

• an operating unit size ous;

• a number nrpl of pairs of data and address registers for load instructions;

• a number nrps of pairs of data and address registers for store instructions;

• a set Idm of basic instructions for data manipulation;

where aw , ous ≥ 0, wl , nrpl , nrps > 0 and Idm ⊆M.

The address width aw can be regarded as the number of bits used for the binary rep-

resentation of addresses of data memory elements. The word length wl can be regarded

as the number of bits used to represent data in data memory elements. The operating unit

size ous can be regarded as the number of bits that the internal memory of the operating

unit contains. The operating unit size is measured in bits because this allows for estab-

lishing results in which no assumption about the internal structure of the operating unit are

involved.

It is assumed that, for each n ∈ N, a fixed but arbitrary countably infinite set Mn
data

and a fixed but arbitrary bijection mn
data : N → Mn

data have been given. The members of

Mn
data are called data memory elements. The contents of data memory elements are taken

as data. The data memory elements from Mn
data can contain natural numbers in the interval

[0, 2n − 1].

It is assumed that a fixed but arbitrary countably infinite set Mou and a fixed but arbitrary

bijection mou : N → Mou have been given. The members of Mou are called operating unit

memory elements. They can contain natural numbers in the set {0, 1}, i.e. bits. Usually,

a part of the operating unit memory is partitioned into groups to which data manipulation

instructions can refer.

It is assumed that, for each n ∈ N, fixed but arbitrary countably infinite sets Mn
ld,

Mn
la, M

n
sd and Mn

sa and fixed but arbitrary bijections mn
ld : N → Mn

ld, mn
la : N → Mn

la,

mn
sd : N → Mn

sd and mn
sa : N → Mn

sa have been given. The members of Mn
ld, Mn

la, M
n
sd

and Mn
sa are called load data registers, load address registers, store data registers and store

address registers, respectively. The contents of load data registers and store data registers

are taken as data, whereas the contents of load address registers and store address registers

are taken as addresses. The load data registers from Mn
ld, the load address registers from

Mn
la, the store data registers from Mn

sd and the store address registers from Mn
sa can contain

natural numbers in the interval [0, 2n− 1]. The load and store registers are special memory

Computer-Architectural Issues 141

elements designated for transferring data between the data memory and the operating unit

memory.

A single special memory element rr is taken for passing on the replies resulting from the

processing of basic instructions. This special memory element is called the reply register.

It is assumed that, for each n, n′ ∈ N, Mn
data, Mou, Mn

ld, Mn′
la , Mn

sd, Mn′
sa and {rr} are

pairwise disjoint sets.

If M ⊆ Mn
data and mn

data(i) ∈ M , then we write M [i] for mn
data(i). If M ⊆ Mn

ld and

mn
ld(i) ∈ M , then we write M [i] for mn

ld(i). If M ⊆ Mn
la and mn

la(i) ∈ M , then we write

M [i] for mn
la(i). IfM ⊆ Mn

sd and mn
sd(i) ∈M , then we writeM [i] for mn

sd(i). IfM ⊆ Mn
sa

and mn
sa(i) ∈M , then we write M [i] for mn

sa(i).

Definition 6.7. Let aw , ous ≥ 0, wl , nrpl , nrps > 0 and Idm ⊆ M. Then a strict

load/store Maurer instruction set architecture with parameters aw , wl , ous, nrpl , nrps

and Idm is a Maurer machine H = (M,B,S,O, I, [[_]]) with

M = Mdata ∪Mou ∪Mld ∪Mla ∪Msd ∪Msa ∪ {rr} ,
B = [0, 2wl − 1] ∪ [0, 2aw − 1] ∪ B ,

S = {S :M → B |
∀m ∈ Mdata ∪Mld ∪Msd • S(m) ∈ [0, 2wl − 1] ∧
∀m ∈ Mla ∪Msa • S(m) ∈ [0, 2aw − 1] ∧
∀m ∈ Mou • S(m) ∈ {0, 1} ∧ S(rr) ∈ B} ,

O = {Om |m ∈ I} ,
I = {load:n | n ∈ [0, nrpl − 1]} ∪ {store:n | n ∈ [0, nrps − 1]} ∪ Idm ,

[[m]] = (Om , rr) for all m ∈ I ,

where

Mdata = {mwl
data(i) | i ∈ [0, 2aw − 1]} ,

Mou = {mou(i) | i ∈ [0, ous − 1]} ,
Mld = {mwl

ld (i) | i ∈ [0, nrpl − 1]} ,
Mla = {maw

la (i) | i ∈ [0, nrpl − 1]} ,
Msd = {mwl

sd (i) | i ∈ [0, nrps − 1]} ,
Msa = {maw

sa (i) | i ∈ [0, nrps − 1]} ,

and, for all n ∈ [0, nrpl − 1], Oload:n is the unique function from S to S such that for all

142 Instruction Sequences for Computer Science

S ∈ S:

Oload:n(S) � (M \ {Mld [n], rr}) = S � (M \ {Mld [n], rr}) ,
Oload:n(S)(Mld [n]) = S(Mdata [S(Mla [n])]) ,

Oload:n(S)(rr) = t ,

and, for all n ∈ [0, nrps − 1], Ostore:n is the unique function from S to S such that for all

S ∈ S:

Ostore:n(S) � (M \ {Mdata [S(Msa [n])], rr}) =
S � (M \ {Mdata [S(Msa [n])], rr}) ,

Ostore:n(S)(Mdata [S(Msa [n])]) = S(Msd [n]) ,

Ostore:n(S)(rr) = t ,

and, for all m ∈ Idm , Om is a function from S to S such that:

IR(Om) ⊆ Mou ∪Mld ,

OR(Om) ⊆ Mou ∪Mla ∪Msd ∪Msa ∪ {rr} .

We will writeMISAsls(aw ,wl , ous, nrpl , nrps , Idm) for the set of all strict load/store

Maurer ISAs with parameters aw , wl , ous , nrpl , nrps and Idm .

In our opinion, load/store architectures give rise to a relatively simple interface between

the data memory and the operating unit.

A strict load/store Maurer ISA is strict in the following respects:

• with data transfer between the data memory and the operating unit, a strict separation

is made between data registers for loading, address registers for loading, data registers

for storing, and address registers for storing;

• from these registers, only the registers of the first kind are allowed in the input regions

of data manipulation operations, and only the registers of the other three kinds are

allowed in the output regions of data manipulation operations;

• a data memory whose size is less than the number of addresses determined by the

address width is not allowed.

The first two ways in which a strict load/store Maurer ISA is strict concern the interface

between the data memory and the operating unit. We believe that they yield the most

conveniently arranged interface for theoretical work relevant to the design of instruction

set architectures. The third way in which a strict load/store Maurer ISA is strict saves the

need to deal with addresses that do not address a memory element. Such addresses can be

dealt with in many different ways, each of which complicates the architecture considerably.

Computer-Architectural Issues 143

We consider their exclusion desirable in much theoretical work relevant to the design of

instruction set architectures.

Remark 6.4. A strict separation between data registers for loading, address registers for

loading, data registers for storing, and address registers for storing is also made in Cray and

Thornton’s design of the CDC 6600 computer, see [Thornton (1970)], which is arguably

the first implemented load/store architecture. However, in their design, data registers for

storing are also allowed in the input regions of data manipulation operations.

6.2.3 Reducing the operating unit size

In a strict load/store Maurer ISA, data manipulation takes place in the operating unit. This

raises questions concerning the consequences of changing the operating unit size. One of

the questions is whether, if the operating unit size is reduced by one, it is possible with

new instructions for data manipulation to yield the same state changes on the data memory.

This question can be answered in the affirmative.

Theorem 6.2. Let aw ≥ 0, wl , ous, nrpl , nrps > 0 and Idm ⊆ M, let H =

(M,B,S,O, I, [[_]]) ∈ MISAsls(aw ,wl , ous , nrpl , nrps , Idm), and let Mdata =

{mwl
data(i) | i ∈ [0, 2aw−1]} and bc = mou(ous−1). Then there exist an I ′dm ⊆M and an

H ′ = (M ′, B,S ′,O′, I ′, [[_]]′) ∈ MISAsls(aw ,wl , ous − 1, nrpl , nrps , I ′dm) such that

for all closed BTA+REC terms t denoting a regular thread over {f.m | m ∈ I} there

exist closed BTA+REC terms t ′0, t
′
1 denoting regular threads over {f.m | m ∈ I ′} such

that

{(S0 �Mdata , S �Mdata) | S0 ∈ S ∧ t • f.UH(S0) = f.UH(S) ∧ S0(bc) = 0}
= {(S′

0 �Mdata , S
′ �Mdata) | S′

0 ∈ S ′ ∧ t ′0 • f.UH(S′
0) = f.UH(S′)}

and

{(S0 �Mdata , S �Mdata) | S0 ∈ S ∧ t • f.UH(S0) = f.UH(S) ∧ S0(bc) = 1}
= {(S′

0 �Mdata , S
′ �Mdata) | S′

0 ∈ S ′ ∧ t ′1 • f.UH(S′
0) = f.UH(S′)} .

Notice that bc is the operating unit memory element ofH that is missing inH ′. In the proof

of Theorem 6.2 given below, we take I ′dm such that, for each instruction m in Idm , there

are four instructions m(0), m(1), m(0) and m(1) in I ′dm . Om(0) and Om(1) affect the

memory elements of H ′ like Om would affect them if the content of the missing operating

unit memory element would be 0 and 1, respectively. The effect that Om would have

on the missing operating unit memory element is made available by Om(0) and Om(1),

144 Instruction Sequences for Computer Science

respectively. They do nothing but replying f if the content of the missing operating unit

memory element would become 0 and t if the content of the missing operating unit memory

element would become 1.

Proof. [Proof of Theorem 6.2] Instead of the result to be proved, we prove that there

exist an I ′dm ⊆ M and an H ′ = (M ′, B,S ′,O′, I ′, [[_]]′) ∈ MISAsls(aw ,wl , ous −
1, nrpl , nrps , I ′dm) such that for all closed BTA+REC terms t denoting a regular thread

over {f.m | m ∈ I} there exist closed BTA+REC terms t ′0, t
′
1 denoting regular threads

over {f.m |m ∈ I ′} such that

{(S0 �M ′′, S �M ′′) | S0 ∈ S ∧ t • f.UH(S0) = f.UH(S) ∧ S0(bc) = 0}
= {(S′

0 �M ′′, S′ �M ′′) | S′
0 ∈ S ′ ∧ t ′0 • f.UH(S′

0) = f.UH(S′)}

and

{(S0 �M ′′, S �M ′′) | S0 ∈ S ∧ t • f.UH(S0) = f.UH(S) ∧ S0(bc) = 1}
= {(S′

0 �M ′′, S′ �M ′′) | S′
0 ∈ S ′ ∧ t ′1 • f.UH(S′

0) = f.UH(S′)} ,

where M ′′ =M ′ \ {rr}. This is sufficient because Mdata ⊆M ′ \ {rr}.
We take

I ′dm = {m(k) | m ∈ Idm ∧ k ∈ {0, 1}} ∪ {m(k) | m ∈ Idm ∧ k ∈ {0, 1}} ,

and we take H ′ = (M ′, B,S ′,O′, I ′, [[_]]′) such that, for each m ∈ Idm and k ∈ {0, 1},
Om(k) and Om(k) are the unique functions from S ′ to S ′ such that for all S′ ∈ S ′:

Om(k)(S
′) = Om (ρk(S

′)) �M ′ ,

Om(k)(S
′) � (M ′ \ {rr}) = S′ � (M ′ \ {rr}) ,

Om(k)(S
′)(rr) = γ(Om (ρk(S

′))(bc)) ,

where, for each k ∈ {0, 1}, ρk is the unique function from S ′ to S such that

ρk(S
′) �M ′ = S′ ,

ρk(S
′)(bc) = k

and γ : {0, 1} → B is defined by

γ(0) = f ,

γ(1) = t .

By Proposition 2.1, we can restrict ourselves to closed BTA+REC terms t that are con-

stants 〈x |E〉 where E is a finite linear recursive specification in which only basic actions

from {f.m |m ∈ I} occur.

Computer-Architectural Issues 145

We define transformation functionsϕk on such finite linear recursive specifications, for

k ∈ {0, 1}, as follows:

ϕk(〈x |E〉) = 〈x k|ϕ′
k(E)〉 ,

where ϕ′
k, for k ∈ {0, 1} is defined as follows:

ϕ′
k({x = y �f.m � z}) = {x k = x ′

k �f.m(k)� x ′′
k ,

x ′
k = y1 �f.m(k)� z 1,

x ′′
k = y0 �f.m(k)� z 0} if m ∈ Idm ,

ϕ′
k({x = y �f.m � z}) = {x k = yk �f.m � z k} if m /∈ Idm ,

ϕ′
k({x = S+}) = {xk = S+} ,
ϕ′
k({x = S−}) = {xk = S−} ,
ϕ′
k({x = S}) = {xk = S} ,
ϕ′
k({x = D}) = {xk = D} ,
ϕ′
k(E

′ ∪E ′′) = ϕ′
k(E

′) ∪ ϕ′
k(E

′′) .

Here, for each variable x , the new variables x 0, x ′
0, x ′′

0 , x 1, x ′
1 and x ′′

1 are taken such

that: (i) they are mutually different variables; (ii) for each variable y different from x ,

{x0, x
′
0, x

′′
0 , x 1, x

′
1, x

′′
1} and {y0, y

′
0, y

′′
0 , y1, y

′
1, y

′′
1} are disjoint sets.

Let t0 be a constant 〈x |E〉 where E is a finite linear recursive specification in which

only basic actions from {f.m | m ∈ I} occur, let S0 ∈ S and S′
0 ∈ S ′ be such that

S0 � M ′ = S′
0, and let t ′0 = ϕS0(bc)(t0). Assume that an equation of the form t0 •

f.UH(S0) = f.UH(S) is derivable, and let n ∈ N
+ be the number of times that axiom

A7 or axiom A8 has to be applied from left to right to derive an equation of the form

t0 • f.UH(S0) = t • f.UH(S) where t is either S+, S− or S. For each i ∈ [1, n], let

t0 • f.UH(S0) = t i • f.UH(Si) be the equation that has been derived after i applications

of axiom A7 or axiom A8 from left to right, and let m i be the method involved in the ith

application. For each i ∈ [1, n], let t ′0 • f.UH(S′
0) = t ′i • f.UH(S′

i) be the equation that

has been derived after i applications of axiom A7 or axiom A8 from left to right where the

method involved is not of the form m(k). Then, it is easy to prove by induction on i that if

i ∈ [0, n− 1] and m i+1 ∈ Idm :

Omi+1(Si)(bc) = γ−1(Omi+1(Si(bc))(S
′
i)(rr)) ,

Omi+1
(Si)(rr) = Omi+1(Si(bc))(Omi+1(Si(bc))(S

′
i))(rr) .

Now, using these two properties, it is easy to prove by induction on i that:

ϕSi(bc)(t i) = t ′i ,

Si � (M \ {rr}) = ρSi(bc)(S
′
i) � (M \ {rr}) .

146 Instruction Sequences for Computer Science

From this, the result follows immediately. �

Theorem 6.2 and its proof give us some upper bounds:

• for each thread that can be applied to the original ISA, the number of threads that

can together produce the same state changes on the data memory of the ISA with the

reduced operating unit does not have to be more than 2;

• the number of states of the new threads does not have to be more than 6 times the

number of states of the original thread;

• the number of steps that the new threads take to produce some state change does not

have to be more than 2 times the number of steps that the original thread takes to

produce that state change;

• the number of instructions of the ISA with the reduced operating unit does not have to

be more than 4 times the number of instructions of the original ISA.

Notice further that more efficient new threads are sometimes possible: equations of the

form x = y �f.m � z with m ∈ Idm can be treated as if m /∈ Idm in the case where the

operating unit memory element bc is not in IR(Om).

It follows from the proof of Theorem 6.2 that only one transformed thread is needed

if the input region of the operation associated with the first instruction performed by the

original thread does not include the operating unit memory element bc. It also follows from

the proof of Theorem 6.2 that the operating unit size can even be reduced to zero. However,

we have that, if the operating unit size is reduced from ous to zero, up to 2ous transformed

threads may be needed for an original thread.

Theorem 6.2 is phrased at the level of threads, i.e. the behaviours of instruction se-

quences under execution. By Propositions 4.1 and 4.2, it can also be phrased at the level of

instruction sequences.

Corollary 6.1. Let aw ≥ 0, wl , ous, nrpl , nrps > 0 and Idm ⊆ M, let H =

(M,B,S,O, I, [[_]]) ∈ MISAsls(aw ,wl , ous , nrpl , nrps , Idm), and let Mdata =

{mwl
data(i) | i ∈ [0, 2aw−1]} and bc = mou(ous−1). Then there exist an I ′dm ⊆M and an

H ′ = (M ′, B,S ′,O′, I ′, [[_]]′) ∈ MISAsls(aw ,wl , ous − 1, nrpl , nrps , I ′dm) such that

for all p ∈ L(f.I(UH)) there exist p ′
0,p

′
1 ∈ L(f.I(UH′)) such that

{(S0 �Mdata , S �Mdata) | S0 ∈ S ∧ p • f.UH(S0) = f.UH(S) ∧ S0(bc) = 0}
= {(S′

0 �Mdata , S
′ �Mdata) | S′

0 ∈ S ′ ∧ p ′
0 • f.UH(S′

0) = f.UH(S′)}

Computer-Architectural Issues 147

and

{(S0 �Mdata , S �Mdata) | S0 ∈ S ∧ p • f.UH(S0) = f.UH(S) ∧ S0(bc) = 1}
= {(S′

0 �Mdata , S
′ �Mdata) | S′

0 ∈ S ′ ∧ p ′
1 • f.UH(S′

0) = f.UH(S′)} .

6.2.4 Thread powered function classes

A simple calculation shows that, for a strict load/store Maurer ISA with address width

aw and word length wl , the number of possible transformations on the states of the data

memory is 2(2
(2aw ·wl+aw)·wl). This raises questions concerning the possibility to achieve

all these state transformation by executing an instruction sequence on a strict load/store

Maurer ISA with this address width and word length. One of the questions is how this

possibility depends on the operating unit size of the ISAs, the size of the instruction set

of the ISAs, and the maximal number of states of the threads produced by the instruction

sequences. This brings us to introduce the concept of a thread powered function class.

The concept of a thread powered function class is parametrized by:

• an address width aw ;

• a word length wl ;

• an operating unit size ous;

• an instruction set size iss ;

• a state space bound ssb;

• a working area flag waf ;

where aw , ous ≥ 0, wl , iss , ssb > 0 and waf ∈ B.

The instruction set size iss is the number of basic instructions, excluding load and store

instructions. To simplify the setting, we consider only the case where there is one load

instruction and one store instruction. The state space bound ssb is a bound on the number

of states of the thread that is applied. The working area flag waf indicates whether a part

of the data memory is taken as a working area. A part of the data memory is taken as a

working area if we are not interested in the state transformations with respect to that part.

To simplify the setting, we always set aside half of the data memory for working area if a

working area is in order.

Intuitively, the thread powered function class with parameters aw , wl , ous , iss , ssb

and waf are the transformations on the states of the data memory or the first half of the

data memory, depending on waf , that can be achieved by applying threads with not more

than ssb states to a strict load/store Maurer ISA of which the address width is aw , the

148 Instruction Sequences for Computer Science

word length is wl , the operating unit size is ous , the number of register pairs for load

instructions is 1, the number of register pairs for store instructions is 1, and the cardinality

of the set of instructions for data manipulation is iss . Henceforth, we will use the term

external memory for the data memory if waf = f and for the first half of the data memory

if waf = t. Moreover, if waf = t, we will use the term internal memory for the second

half of the data memory.

For aw ≥ 0 and wl > 0, we define Maw,wl
data , Saw ,wl

data and Taw ,wl
data as follows:

Maw ,wl
data = {mwl

data(i) | i ∈ [0, 2aw − 1]} ,
Saw ,wl
data = {S | S :Maw ,wl

data → [0, 2wl − 1]} ,
Taw ,wl
data = {T | T : Saw ,wl

data → Saw ,wl
data } .

Maw,wl
data is the data memory of a strict load/store Maurer ISA with address width aw and

word length wl , Saw,wl
data is the set of possible states of that data memory, and Taw,wl

data is the

set of possible transformations on those states.

Definition 6.8. Let aw , ous ≥ 0 and wl , iss , ssb > 0, and let waf ∈ B be such that

waf = f if aw = 0. Then the thread powered function class with parameters aw , wl , ous ,

iss , ssb and waf , written T PFC(aw ,wl , ous , iss , ssb,waf), is the subset of Taw,wl
data that

is defined as follows:

T ∈ T PFC(aw ,wl , ous, iss , ssb,waf)
⇔ ∃Idm ⊆M •

∃H ∈MISAsls(aw ,wl , ous , 1, 1, Idm) •

∃t ∈ Treg({f.m |m ∈ IH}) •(
card(Idm) = iss ∧ card(Res(t)) ≤ ssb ∧
∀S ∈ SH •

∃S′ ∈ SH •(
t • f.UH(S) = f.UH(S′) ∧(
waf = f ⇒ T (S �Maw ,wl

data) = S′ �Maw,wl
data

)
∧(

waf = t⇒ T (S �Maw ,wl
data) �Maw−1,wl

data = S′ �Maw−1,wl
data

)))
,

where Treg(A) is the set of all closed BTA+REC terms t denoting regular threads over A.

Definition 6.9. A thread powered function class T PFC(aw ,wl , ous , iss , ssb,waf) is

complete if T PFC(aw ,wl , ous , iss , ssb,waf) = Taw,wl
data .

The following theorem states that T PFC(aw ,wl , ous , iss , ssb,waf) is complete if

ous = 2aw ·wl + aw +1, iss = 5 and ssb = 8. Because 2aw ·wl is the data memory size,

Computer-Architectural Issues 149

i.e. the number of bits that the data memory contains, this means that completeness can be

obtained with 5 data manipulation instructions and threads whose number of states is less

than or equal to 8 by taking the operating unit size slightly greater than the data memory

size.

Theorem 6.3. Let aw ≥ 0, wl > 0 and waf ∈ B, and let dms = 2aw · wl . Then

T PFC(aw ,wl , dms + aw + 1, 5, 8,waf) is complete.

Proof. The full proof, which can be found in [Bergstra and Middelburg (2010b)], is

straightforward but tedious. Therefore, we give here a very brief overview of that proof and

the idea behind the construction of a strict load/store Maurer ISA which plays an important

role in the proof.

The proof amounts to constructing, for an arbitrary T ∈ Taw,wl
data , a strict load/store

Maurer ISAH and a closed BTA+REC term t witnessing T ∈ T PFC(aw ,wl , dms+aw+

1, 5, 8,waf). We can prove in the same inductive style as used in the proof of Theorem 6.2 a

number of properties regarding the constructedH and t from which it follows immediately

that they really witness T ∈ T PFC(aw ,wl , dms + aw + 1, 5, 8,waf).

The idea behind the construction of a suitable strict load/store Maurer ISA is that first

the content of the whole data memory is copied data memory element by data memory

element via the load data register to the operating unit, after that the intended state transfor-

mation is applied to the copy in the operating unit, and finally the result is copied back data

memory element by data memory element via the store data register to the data memory.

The data manipulation instructions used to accomplish this are an initialization instruction,

a pre-load instruction, a post-load instruction, a pre-store instruction, and a transformation

instruction. The pre-load instruction is used to update the load address register before a data

memory element is loaded, the post-load instruction is used to store the content of the load

data register in the operating unit after a data memory element has been loaded, and the

pre-store instruction is used to update the store address register and to load the content of

the store data register from the operating unit before a data memory element is stored. The

transformation instruction is used to apply the intended state transformation to the copy in

the operating unit. �

As a corollary of the proofs of Theorems 6.2 and 6.3, we have that completeness can

even be obtained if we take zero as the operating unit size.

Corollary 6.2. Let aw ≥ 0 and wl > 0, let waf ∈ B be such that waf = f if aw = 0,

and let dms = 2aw · wl . Then T PFC(aw ,wl , 0, 5 · 4dms+aw+1, 8 · 6dms+aw+1,waf) is

150 Instruction Sequences for Computer Science

complete.

From Corollary 6.2, we know that it is possible to achieve all transformations on the

states of the external memory of a strict load/store Maurer ISA with given address width

and word length even if the operating unit size is zero. However, this may require a very

large number of data manipulation instructions and threads with a very large number of

states. This raises the question whether the operating unit size of the ISAs, the size of

the instructions set of the ISAs and the maximal number of states of the threads can be

taken such that it is impossible to achieve all transformations on the states of the external

memory.

The following theorem states that T PFC(aw ,wl , ous , iss , ssb, t) is not complete if

the operating unit size is not greater than half the external memory size, the instruction set

size is not greater than 2wl − 4, and the maximal number of states of the threads is not

greater than 2aw−2. Notice that 2wl is the number of instructions that can be represented

in memory elements with word length wl and that 2aw−2 is half the number of memory

elements in the internal memory.

Theorem 6.4. Let aw ,wl > 1 and ous , iss , ssb > 0, and let ems = 2aw−1 · wl . Then

T PFC(aw ,wl , ous , iss , ssb, t) is not complete if ous ≤ ems/2 and iss ≤ 2wl − 4 and

ssb ≤ 2aw−2.

Proof. The proof is a simple counting argument, and can be found in [Bergstra and Mid-

delburg (2010b)]. �

Chapter 7

Instruction Sequences and Process Algebra

This chapter concerns two subjects related to process algebra, namely protocols to deal

with remote instruction processing and instruction sequence producible processes.

On execution of an instruction sequence, the processing of instructions increasingly

takes place remotely. This involves the generation of a stream of instructions to be pro-

cessed and a remote execution unit that handles the processing of this stream of instruc-

tions. We use process algebra to describe two protocols to deal with this phenomenon.

Process algebra is considered relevant to computer science, as is witnesses by the extent

of the work on algebraic theories of processes such as ACP, CCS and CSP in theoretical

computer science. This means that there must be programmed systems whose behaviours

are taken for processes as considered in process algebra. We show that, by apposite choice

of basic instructions, all finite-state processes can be produced by single-pass instruction

sequences as considered in SPISA, provided that the cluster fair abstraction rule known

from ACP is valid.

7.1 Process Algebra

In this section, we review the particular algebraic theory of processes that will be used in

this chapter, namely ACPτ (Algebra of Communicating Processes with abstraction). For a

comprehensive overview of ACPτ , the reader is referred to [Baeten and Weijland (1990);

Fokkink (2000)].

Threads as considered in BTA represent in a direct way behaviours produced by in-

struction sequences under execution. It is rather awkward to describe and analyse be-

haviours of this kind using algebraic theories of processes such as ACP [Bergstra and Klop

(1984); Baeten and Weijland (1990)], CCS [Hennessy and Milner (1985); Milner (1989)]

and CSP [Brookes et al. (1984); Hoare (1985)]. However, threads as considered in BTA

151

152 Instruction Sequences for Computer Science

can be viewed as representations of processes as considered in process algebra. We use

ACPτ , an extension of ACP which supports abstraction from internal actions, to make pre-

cise which processes are represented by threads. This allows among other things for the

protocols for remote processing of instructions to be described using ACPτ .

7.1.1 Algebra of communicating processes

In ACPτ , it is assumed that a fixed but arbitrary set A of atomic actions, with τ, δ /∈ A, has

been given. We write Aτ for A∪{τ} and Aδ for A∪{δ}. In ACPτ , it is also assumed that a

fixed but arbitrary commutative and associative function |:Aτ×Aτ → Aδ , with τ |a = δ for

all a ∈ Aτ , has been given. The function | is regarded to give the result of synchronously

performing any two atomic actions for which this is possible, and to give δ otherwise. In

ACPτ , τ is a special atomic action, called the silent step. The act of performing the silent

step is considered unobservable. Because it would otherwise be observable, the silent step

is considered an atomic action that cannot be performed synchronously with other atomic

actions.

ACPτ has one sort: the sort P of processes. To build terms of sort P, ACPτ has the

following constants and operators:

• for each a ∈ A, the atomic action constant a :→P ;

• the silent step constant τ :→P ;

• the inaction constant δ :→P ;

• the binary alternative composition operator _ + _ :P×P→ P ;

• the binary sequential composition operator _ · _ :P×P→ P ;

• the binary parallel composition operator _ ‖ _ :P×P→ P ;

• the binary left merge operator _ �� _ :P×P→ P ;

• the binary communication merge operator _ | _ :P×P→ P ;

• for each A ⊆ A, the unary encapsulation operator ∂A :P→ P ;

• for each A ⊆ A, the unary abstraction operator τA :P→ P .

We assume that there are infinitely many variables, including x, y, z. ACPτ terms are built

as usual. We use infix notation for the binary operators. The precedence conventions used

with respect to the operators of ACPτ are as follows: + binds weaker than all others, ·
binds stronger than all others, and the remaining operators bind equally strong.

Let t and t ′ be closed ACPτ terms, a ∈ A, and A ⊆ A. Intuitively, the constants and

operators to build ACPτ terms can be explained as follows:

Instruction Sequences and Process Algebra 153

• the process denoted by a first performs atomic action a and next terminates success-

fully;

• the process denoted by τ performs an unobservable atomic action and next terminates

successfully;

• the process denoted by δ can neither perform an atomic action nor terminate success-

fully;

• the process denoted by t + t ′ behaves either as the process denoted by t or as the

process denoted by t ′, but not both;

• the process denoted by t · t ′ first behaves as the process denoted by t and on successful

termination of that process it next behaves as the process denoted by t ′;

• the process denoted by t ‖ t ′ behaves as the process that proceeds with the processes

denoted by t and t ′ in parallel;

• the process denoted by t �� t ′ behaves the same as the process denoted by t ‖ t ′, except

that it starts with performing an atomic action of the process denoted by t ;

• the process denoted by t | t ′ behaves the same as the process denoted by t ‖ t ′, except

that it starts with performing an atomic action of the process denoted by t and an

atomic action of the process denoted by t ′ synchronously;

• the process denoted by ∂A(t) behaves the same as the process denoted by t , except

that atomic actions from A are blocked;

• the process denoted by τA(t) behaves the same as the process denoted by t , except

that atomic actions from A are turned into unobservable atomic actions.

The operators �� and | are of an auxiliary nature. They are needed to axiomatize ACPτ .

The axioms of ACPτ are given in Table 7.1. In this table, a , b and c stand for arbitrary

constants of ACPτ , and A stands for an arbitrary subset of A. ACPτ is extended with

guarded recursion like BTA.

Definition 7.1. A recursive specification over ACPτ is a set of recursion equations {x =

tx | x ∈ V}, where V is a set of variables and each tx is an ACPτ term containing only

variables from V . Let t be an ACPτ term without occurrences of abstraction operators

containing a variable x . Then an occurrence of x in t is guarded if t has a subterm of

the form a · t ′ where a ∈ A and t ′ is a term containing this occurrence of x . Let E be a

recursive specification over ACPτ . Then E is a guarded recursive specification if, in each

equation x = tx ∈ E : (i) abstraction operators do not occur in tx and (ii) all occurrences

of variables in tx are guarded or tx can be rewritten to such a term using the axioms of

ACPτ in either direction and/or the equations in E except the equation x = tx from left to

154 Instruction Sequences for Computer Science

Table 7.1 Axioms of ACPτ

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

x ‖ y = x �� y + y �� x+ x | y CM1

a �� x = a · x CM2

a · x �� y = a · (x ‖ y) CM3

(x+ y) �� z = x �� z + y �� z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

x · τ = x B1

x · (τ · (y + z) + y) = x · (y + z) B2

∂A(a) = a if a /∈ A D1

∂A(a) = δ if a ∈ A D2

∂A(x+ y) = ∂A(x) + ∂A(y) D3

∂A(x · y) = ∂A(x) · ∂A(y) D4

τA(a) = a if a /∈ A TI1

τA(a) = τ if a ∈ A TI2

τA(x+ y) = τA(x) + τA(y) TI3

τA(x · y) = τA(x) · τA(y) TI4

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

τ | a = δ C4

right.

We are only interested models of ACPτ in which guarded recursive specifications have

unique solutions, such as the models of ACPτ presented in [Baeten and Weijland (1990)].

We write V(E), where E is a recursive specification over ACPτ , for the set of all

variables that occur in E .

For each guarded recursive specification E and each x ∈ V(E), we introduce a con-

stant 〈x |E〉 standing for the x -component of the unique solution of E . We write 〈t |E 〉
for t with, for all y ∈ V(E), all occurrences of y in t replaced by 〈y |E〉. The axioms

for the constants standing for the components of the unique solutions of guarded recursive

specifications are RDP and RSP, which are given in Table 7.2. In this table, x stands for

an arbitrary variable, tx stands for an arbitrary ACPτ term, and E stands for an arbitrary

guarded recursive specification over ACPτ . Side conditions are added to restrict what x ,

Instruction Sequences and Process Algebra 155

Table 7.2 Axioms for guarded recursion

〈x |E〉 = 〈tx |E 〉 if x = tx ∈ E RDP

E ⇒ x = 〈x |E〉 if x ∈ V(E) RSP

Table 7.3 AIP and axioms for the projection operators

∧
n≥0 πn(x) = πn(y)⇒ x = y AIP

π0(a) = δ PR1

πn+1(a) = a PR2

π0(a · x) = δ PR3

πn+1(a · x) = a · πn(x) PR4

πn(x + y) = πn(x) + πn(y) PR5

πn(τ) = τ PR6

πn(τ · x) = τ · πn(x) PR7

tx and E stand for.

Closed terms of ACPτ extended with constants for the components of the unique so-

lutions of guarded recursive specifications that denote the same process cannot always be

proved equal by means of the axioms of ACPτ together with RDP and RSP. We introduce

AIP to remedy this. AIP is based on the view that two processes are identical if their ap-

proximations up to any finite depth are identical. The approximation up to depth n of a

process behaves the same as that process, except that it cannot perform any further atomic

action after n atomic actions have been performed. In AIP, approximation up to depth n is

phrased in terms of a unary projection operator πn : P → P. AIP and the axioms for the

projection operators are given in Table 7.3. In this table, a stands for arbitrary constants of

ACPτ different from τ and n stands for an arbitrary natural number.

We write ACPτ+REC for ACPτ extended with the constants 〈x |E〉 and the axioms

RDP and RSP, and we write ACPτ+REC+AIP for ACPτ+REC extended with the operators

πn and the axioms AIP and PR1–PR7.

156 Instruction Sequences for Computer Science

In the remainder of this chapter, we assume that a fixed but arbitrary model Mτ
ACP of

ACPτ+REC+AIP has been given. As in the case of models of BTA or some extension

thereof, we denote the interpretations of sorts, constants and operators in Mτ
ACP by the

sorts, constants and operators themselves.

From Sect. 7.3.2, we will sometimes assume that CFAR (Cluster Fair Abstraction Rule)

is valid in Mτ
ACP. CFAR says that a cluster of silent steps that has exits can be eliminated

if all exits are reachable from everywhere in the cluster. A precise formulation of CFAR

can be found in [Fokkink (2000)].

We use the term process for the elements of the interpretation of the sort P in Mτ
ACP.

Definition 7.2. Let p be a process. Then the set of states or subprocesses of p, written

Sub(p), is inductively defined as follows:

• p ∈ Sub(p);

• if a · p′ ∈ Sub(p), then p′ ∈ Sub(p);

• if a · p′ + p′′ ∈ Sub(p), then p′ ∈ Sub(p).

Definition 7.3. Let p be a process and let A ⊆ Aτ . Then p is regular over A if the

following conditions are satisfied:

• Sub(p) is finite;

• for all p′ ∈ Sub(p) and a ∈ Aτ , a · p′ ∈ Sub(p) implies a ∈ A;

• for all p′, p′′ ∈ Sub(p) and a ∈ Aτ , a · p′ + p′′ ∈ Sub(p) implies a ∈ A.

We say that p is regular if p is regular over Aτ .

We will make use of the fact that being a regular process over A coincides with being

the solution of a finite guarded recursive specification in which the right-hand sides of the

recursion equations are linear terms.

Definition 7.4. Linearity of ACPτ terms is inductively defined as follows:

• δ is linear;

• if a ∈ Aτ , then a is linear;

• if a ∈ Aτ and x is a variable, then a · x is linear;

• if t and t ′ are linear, then t + t ′ is linear.

A linear recursive specification over ACPτ is a guarded recursive specification {x = tx |
x ∈ V} over ACPτ where each tx is linear.

Instruction Sequences and Process Algebra 157

Proposition 7.1. Let p be a process and let A ⊆ A. Then p is regular over A iff there exists

a finite linear recursive specification E over ACPτ in which only atomic actions from A

occur such that p is a component of the solution of E .

Proof. The proof follows the same line as the proof of Proposition 2.1. �

Proposition 7.1 is concerned with processes that are regular over A. We can also prove that

being a regular process over Aτ coincides with being the solution of a finite linear recursive

specification over ACPτ if we assume that the cluster fair abstraction rule [Fokkink (2000)]

holds in the model Mτ
ACP. However, we do not need this more general result.

We will write
∑

i∈S t i, where S = {i1, . . . , in} and t i1 , . . . , t in are terms of sort P,

for t i1+. . .+t in . The convention is that
∑

i∈S t i stands for δ if S = ∅. We will sometimes

write x for 〈x |E〉 if E is clear from the context. It should be borne in mind that, in such

cases, we use x as a constant.

7.1.2 Process extraction for threads

In this section, we make precise in the setting of ACPτ which processes are represented

by threads whose basic actions are composed of a focus and a method. For that purpose,

we combine BTA+REC+AIP with ACPτ+REC+AIP and extend the combination with an

operator meant for the extraction of the processes that are represented by threads from the

threads, assuming that:

• a fixed but arbitrary set F of foci has been given;

• a fixed but arbitrary setM of methods has been given;

• A = {f .m | f ∈ F ∧m ∈M}.

A and | are taken such that the following conditions are satisfied:

A ⊇ {sf (d) | f ∈ F ∧ d ∈M∪ B} ∪ {rf (d) | f ∈ F ∧ d ∈ M∪ B}
∪ {stop(r) | r ∈ B ∪ {m}} ∪ {i}

and for all f ∈ F , d ∈ M∪ B, r ∈ B ∪ {m}, and e ∈ A:

sf (d) | rf (d) = i ,

sf (d) | e = δ if e �= rf (d) ,

e | rf (d) = δ if e �= sf (d) ,

stop(r) | e = δ ,

i | e = δ .

Actions of the forms sf (d) and rf (d) are send and receive actions, respectively, actions of

the form stop(r) are explicit termination actions, and i is a concrete internal action.

158 Instruction Sequences for Computer Science

Table 7.4 Axioms for the process extraction operator

|S+| = stop(t) PE1

|S−| = stop(f) PE2

|S| = stop(m) PE3

|D| = i · δ PE4

|x� tau� y| = i · i · |x| PE5

|x� f .m � y| = sf (m) · (rf (t) · |x|+ rf (f) · |y|) PE6

The resulting theory has the sorts, constants and operators of both BTA+REC+AIP and

ACPτ+REC+AIP, and in addition the following operator:

• the process extraction operator |_ | :T→ P.

The axioms of the resulting theory are the axioms of both BTA+REC+AIP and ACPτ+

REC+AIP, and in addition the axioms for the process extraction operator given in Table 7.4.

In this table, f stands for an arbitrary focus from F and m stands for an arbitrary method

fromM.

Let t , t ′ and t ′′ be closed terms of sort IS, sort T and sort P, respectively. Then we

loosely say that thread t ′ produces process t ′′ if τ · τA(|t ′|) = τ · t ′′ for some A ⊆ A,

and we loosely say that instruction sequence t produces process t ′′ if thread |t | produces

process t ′′.

Notice that two atomic actions are involved in performing a basic action of the form

f .m : one for sending a request to process command m to the service named f and another

for receiving a reply from that service upon completion of the processing. Notice also that,

for each closed term t of sort T, |t | is a process that in the event of termination performs a

special termination action just before termination.

The process extraction operator preserves the axioms of BTA+REC. Before we make

this fully precise, we have a closer look at the axioms of BTA+REC.

A proper axiom is an equation or a conditional equation. In Table 2.4, we do not find

proper axioms. Instead of proper axioms, we find axiom schemas (with side conditions to

restrict their instances). The axioms of BTA+REC are obtained by replacing each axiom

schema by all its instances.

In the following proposition, we identify t1 = t2 and ∅ ⇒ t1 = t2.

Instruction Sequences and Process Algebra 159

Proposition 7.2. Let E ⇒ t1 = t2 be a proper axiom of BTA+REC. Then {|t ′1| = |t ′2| |
t ′1 = t ′2 ∈ E} ⇒ |t1| = |t2| is derivable.

Proof. The proof is trivial. �

7.2 Protocols for Remote Instruction Processing

The behaviour produced by an instruction sequence under execution is a behaviour to be

controlled by some execution environment. It proceeds by performing steps in a sequential

fashion. Each step performed actuates the processing of an instruction by the execution en-

vironment. A reply returned by the execution environment at completion of the processing

of the instruction determines how the behaviour proceeds. Increasingly, the processing of

instructions takes place remotely. This means that, on execution of an instruction sequence,

a stream of instructions to be processed arises at one place and the processing of that stream

of instructions is handled at another place. The main objective of the current section is to

bring this phenomenon better into the picture. To achieve this objective, we describe two

protocols to deal with this phenomenon. We use the phrase protocols for instruction stream

processing to refer to such protocols.

The phenomenon sketched above is found if it is impracticable to load the instruction

sequence to be executed as a whole. For instance, the storage capacity of the execution

unit is too small or the execution unit is too far away. The phenomenon requires special

attention because the transmission time of the messages involved in remote processing

makes it hard to keep the execution unit busy without intermission. The more complex

protocol for instruction stream processing described below is directed towards keeping the

execution unit busy.

There is no reason to use the word “remote” in a narrow sense. It is convenient to

consider processing remote if it involves message passing with transmission times that are

not negligible. In that case, the more complex protocol provides a starting-point for studies

of basic techniques aimed at increasing processor performance, such as pre-fetching and

branch-prediction, at a more abstract level than usual. In particular, we think that the pro-

tocol can serve as a starting-point for the development of a model with which trade-offs

encountered in the design of processor architectures can be clarified. Therefore, we con-

sider protocols for instruction stream processing a subject relevant to the area of computer

architecture.

160 Instruction Sequences for Computer Science

7.2.1 A simple protocol

In this section and the next one, we consider protocols for instruction stream processing.

In BTA, it is assumed that a fixed but arbitrary set A of basic actions has been given.

Here, the following additional assumptions relating to A are made:

• a fixed but arbitrary finite set F of foci has been given;

• a fixed but arbitrary finite setM of methods has been given;

• A = {f .m | f ∈ F ∧m ∈M}.

The sets F andM are assumed to be finite because otherwise an extension of ACP with a

relatively involved variable-binding operator generalizing alternative composition to count-

ably infinite alternatives, like in μCRL [Groote and Ponse (1995, 1994)], would be needed.

In the remainder of Sect. 7.2, we assume that, in addition to the fixed but arbitrary

model Mτ
ACP of ACPτ+REC+AIP, a fixed but arbitrary model MBTA of BTA+REC+AIP

has been given.

Before the first protocol is described, a minor extension of ACPτ is introduced to sim-

plify the description of the protocols: the non-branching conditional operator :→ over B

from [Baeten and Bergstra (1992)]. The expression t :→ t ′ is to be read as if t then t ′

else δ. The axioms for the non-branching conditional operator are

t :→ x = x and f :→ x = δ .

The protocols concern systems whose main components are an instruction stream gen-

erator and an instruction stream execution unit. The instruction stream generator generates

different instruction streams for different threads. This is considered to be accomplished

by starting it in different states. The general idea of the protocols is that:

• the instruction stream generator generating an instruction stream for a thread t�a � t′

sends a to the instruction stream execution unit;

• on receipt of a , the instruction stream execution unit gets the execution of a done and

sends the reply produced to the instruction stream generator;

• on receipt of the reply, the instruction stream generator proceeds with generating an

instruction stream for t if the reply is t and for t′ otherwise.

In the case where the thread is S+, S−, S or D, the instruction stream generator sends a

special instruction (stopt, stopf , stopm or dead) and the instruction stream execution unit

does not send back a reply.

Instruction Sequences and Process Algebra 161

The first protocol for instruction stream processing that we consider is a very simple

protocol that makes no effort to keep the execution unit busy without intermission.

We write I for the set A ∪ {stopt, stopf , stopm, dead} and R for the set {t, f,m}.
Elements from I will loosely be called instructions. The restriction of the domain of MBTA

to the regular threads will be denoted byRT .

The functions act , thrt , and thrf defined below give, for each thread t different from

S+, S−, S and D, the basic action that t will perform first, the thread with which it will

proceed if the reply from the execution environment is t, and the thread with which it

will proceed if the reply from the execution environment is f, respectively. The functions

act :RT → I, thrt :RT → RT , and thrf :RT → RT are defined as follows:

act(S+) = stopt ,

act(S−) = stopf ,

act(S) = stopm ,

act(D) = dead ,

act(t�a � t′) = a ,

thrt(S+) = D ,

thrt(S−) = D ,

thrt(S) = D ,

thrt(D) = D ,

thrt(t�a � t′) = t ,

thrf (S+) = D ,

thrf (S−) = D ,

thrf (S) = D ,

thrf (D) = D ,

thrf (t�a � t′) = t′ .

The function nxt0 defined below is used by the instruction stream generator to distin-

guish when it starts with handling the instruction to be executed next between the different

instructions that it may be. The function nxt0 : I ×RT → B is defined as follows:

nxt0 (a , t) =

{
t if act(t) = a

f if act(t) �= a .

For the purpose of describing the simple protocol outlined above in ACPτ , A and | are

taken such that, in addition to the conditions mentioned at the beginning of Sect. 7.1.2, the

following conditions are satisfied:

A ⊇ {si(a) | i ∈ {1, 2} ∧ a ∈ I} ∪ {ri(a) | i ∈ {1, 2} ∧ a ∈ I}
∪ {si(r) | i ∈ {3, 4} ∧ r ∈ B} ∪ {ri(r) | i ∈ {3, 4} ∧ r ∈ B} ∪ {j}

and for all i ∈ {1, 2}, j ∈ {3, 4}, a ∈ I, r ∈ B, and e ∈ A:

si(a) | ri(a) = j ,

si(a) | e = δ if e �= ri(a) ,

e | ri(a) = δ if e �= si(a) ,

j | e = δ .

sj(r) | rj(r) = j ,

sj(r) | e = δ if e �= rj(r) ,

e | rj(r) = δ if e �= sj(r) ,

Let t ∈ RT . Then the process representing the simple protocol for instruction stream

162 Instruction Sequences for Computer Science

processing with regard to thread t is described by

∂H(ISG0
t ‖ IMTC 0 ‖ RTC 0 ‖ ISEU 0) ,

where the process ISG0
t is recursively specified by the following equations:

ISG0
t′ =

∑
f .m∈A

nxt0 (f .m , t′) :→
s1(f .m) · (r4(t) · ISG0

thrt(t′) + r4(f) · ISG0
thrf (t′))

+
∑
r∈R

nxt0 (stopr, t
′) :→ s1(stopr)

+ nxt0 (dead, t′) :→ s1(dead) ,

(for every t′ ∈ Res(t)) ,

the process IMTC 0 is recursively specified by the following equation:

IMTC 0 =
∑
a∈I

r1(a) · s2(a) · IMTC 0 ,

the process RTC 0 is recursively specified by the following equation:

RTC 0 =
∑
r∈B

r3(r) · s4(r) ·RTC 0 ,

the process ISEU 0 is recursively specified by the following equation:

ISEU 0 =
∑

f .m∈A
r2(f .m) · sf (m) · (rf (t) · s3(t) + rf (f) · s3(f)) · ISEU 0

+
∑
r∈R

r2(stopr) · stop(r) + r2(dead) · i · δ

and

H = {si(a) | i ∈ {1, 2} ∧ a ∈ I} ∪ {ri(a) | i ∈ {1, 2} ∧ a ∈ I}
∪ {si(r) | i ∈ {3, 4} ∧ r ∈ B} ∪ {ri(r) | i ∈ {3, 4} ∧ r ∈ B} .

ISG0
t is the instruction stream generator for thread t, IMTC 0 is the transmission channel

for messages containing instructions, RTC 0 is the transmission channel for replies, and

ISEU 0 is the instruction stream execution unit.

Let t be a closed BTA term denoting a regular thread, and let t be that thread. If we

abstract from all communications via the transmission channels, then the processes denoted

by ∂H(ISG0
t ‖ IMTC 0 ‖RTC 0 ‖ ISEU 0) and |t | are equal modulo an initial silent step.

Theorem 7.1. Let t be a closed BTA+REC term denoting a regular thread, and let t ∈ RT
be the thread denoted by t . Then we have that τ · τ{j}(∂H(ISG0

t ‖ IMTC 0 ‖ RTC 0 ‖
ISEU 0)) = τ · |t |.

Instruction Sequences and Process Algebra 163

Proof. By AIP, it is sufficient to prove that for all n ≥ 0:

πn(τ · τ{j}(∂H(ISG0
t ‖ IMTC 0 ‖ RTC 0 ‖ ISEU 0))) = πn(τ · |t |) .

This is straightforwardly proved by induction on n, in the inductive step by case distinction

on the structure of t , and in the case t ≡ t1� f .m � t2 by case distinction between n = 1

and n > 1, using the axioms of BTA+REC, the axioms of ACPτ+REC+AIP and the axioms

for the process extraction operator. �

7.2.2 A more complex protocol

In this section, we consider a more complex protocol for instruction stream processing that

makes an effort to keep the execution unit busy without intermission.

The specifics of the more complex protocol considered here are that:

• the instruction stream generator may run ahead of the instruction stream execution unit

by not waiting for the receipt of the replies resulting from the execution of instructions

that it has sent earlier;

• to ensure that the instruction stream execution unit can handle the run-ahead, each

instruction sent by the instruction stream generator is accompanied with the sequence

of replies after which the instruction must be executed;

• to correct for replies that have not yet reached the instruction stream generator, each

instruction sent is also accompanied with the number of replies received since the last

sending of an instruction.

We write B≤n, where n ∈ N, for the set {u ∈ B
∗ | len(u) ≤ n}.

It is assumed that a natural number � has been given. The number � is taken for the max-

imal number of steps that the instruction stream generator may run ahead of the instruction

stream execution unit.

The set IM of instruction messages is defined as follows:

IM = [0, �]× B
≤� × I .

In an instruction message (n, u,a) ∈ IM:

• n is the number of replies that are acknowledged by the message;

• u is the sequence of replies after which the instruction that is part of the message must

be executed;

• a is the instruction that is part of the message.

164 Instruction Sequences for Computer Science

The instruction stream generator sends instruction messages via an instruction message

transmission channel to the instruction stream execution unit. We refer to a succession of

transmitted instruction messages as an instruction stream. An instruction stream is dynamic

by nature, in contradistinction with an instruction sequence.

The set SISG of instruction stream generator states is defined as follows:

SISG = [0, �]× P(B≤�+1 ×RT) .

In an instruction stream generator state (n,R) ∈ SISG:

• n is the number of replies that has been received by the instruction stream generator

since the last acknowledgement of received replies;

• in each (u, t) ∈ R, u is the sequence of replies after which the thread t must be

performed.

The functions updpm and updcr defined below are used to model the updates of the instruc-

tion stream generator state on producing a message and consuming a reply, respectively.

The function updpm : (B≤� ×RT)× SISG → SISG is defined as follows:

updpm((u, t), (n,R)) ={
(0, (R \ {(u, t)}) ∪ {(ut, thrt(t)), (uf, thrf (t))}) if act(t) ∈ A
(0, (R \ {(u, t)})) if act(t) /∈ A .

The function updcr : B× SISG → SISG is defined as follows:

updcr (r, (n,R)) = (n+ 1, {(u, t) | (ru, t) ∈ R}) .

The function sel defined below is used to model the selection of the sequence of replies

and the instruction that will be part of the next message produced by the instruction stream

generator. The function sel : P(B≤� ×RT)→ P(B≤� ×RT) is defined as follows:

sel(R) = {(u, t) ∈ R | ∀(v, t′) ∈ R • len(u) ≤ len(v) ∧ len(u) ≤ �} .

Notice that (u, t) ∈ sel(R) and (v, t′) ∈ R only if len(u) ≤ len(v). By that depth-

first run-ahead is excluded. It happens that the performance of the protocol may change

considerably if the function sel is replaced by another function.

The set SISEU of instruction stream execution unit states is defined as follows:

SISEU = [0, �]× P(B≤� × I) .

In an instruction stream execution unit state (n, S) ∈ SISEU:

Instruction Sequences and Process Algebra 165

• n is the number of replies for which the instruction stream execution unit still has to

receive an acknowledgement;

• in each (u,a) ∈ S, u is the sequence of replies after which the instruction a must be

executed.

The functions updcm and updpr defined below are used to model the updates of the in-

struction stream execution unit state on consuming a message and producing a reply, re-

spectively. The function updcm : IM× SISEU → SISEU is defined as follows:

updcm((k, u,a), (n, S)) = (n .− k, S ∪ {(tln
.−k(u),a)}) .1

The function updpr : B× SISEU → SISEU is defined as follows:

updpr (r, (n, S)) = (n+ 1, {(u,a) | (ru,a) ∈ S}) .

The function nxt defined below is used by the instruction stream execution unit to distin-

guish when it starts with handling the instruction to be executed next between the different

instructions that it may be. The function nxt : I ×P(B≤� × I)→ B is defined as follows:

nxt(a , S) =

{
t if (ε,a) ∈ S
f if (ε,a) /∈ S .

The instruction stream execution unit sends replies via a reply transmission channel to

the instruction stream generator. We refer to a succession of transmitted replies as a reply

stream.

For the purpose of describing the transmission protocol in ACPτ , A and | are taken such

that, in addition to the conditions mentioned at the beginning of Sect. 7.1.2, the following

conditions are satisfied:

A ⊇ {si(d) | i ∈ {1, 2} ∧ d ∈ IM} ∪ {ri(d) | i ∈ {1, 2} ∧ d ∈ IM}
∪ {si(r) | i ∈ {3, 4} ∧ r ∈ B} ∪ {ri(r) | i ∈ {3, 4} ∧ r ∈ B} ∪ {j}

and for all i ∈ {1, 2}, j ∈ {3, 4}, d ∈ IM, r ∈ B, and e ∈ A:

si(d) | ri(d) = j ,

si(d) | e = δ if e �= ri(d) ,

e | ri(d) = δ if e �= si(d) ,

j | e = δ .

sj(r) | rj(r) = j ,

sj(r) | e = δ if e �= rj(r) ,

e | rj(r) = δ if e �= sj(r) ,

1tln(u) is defined by induction on n as usual: tl0(u) = u and tln+1(u) = tl(tln(u)).

166 Instruction Sequences for Computer Science

Let t ∈ RT . Then the process representing the more complex protocol for instruction

stream processing with regard to thread t is described by

∂H(ISGt ‖ IMTC ‖ RTC ‖ ISEU) ,

where the process ISGt is recursively specified by the following equations:

ISGt = ISG ′
(0,{(ε,t)}) ,

ISG ′
(n,R) =

∑
(u,t)∈sel(R)

s1((n, u, act(t))) · ISG ′
updpm((u,t),(n,R))

+
∑
r∈B

r4(r) · ISG ′
updcr(r,(n,R))

(for every (n,R) ∈ SISG with R �= ∅) ,

ISG ′
(n,∅) = j

(for every (n, ∅) ∈ SISG) ,

the process IMTC is recursively specified by the following equation:

IMTC =
∑

d∈IM
r1(d) · s2(d) · IMTC ,

the process RTC is recursively specified by the following equation:

RTC =
∑
r∈B

r3(r) · s4(r) · RTC ,

the process ISEU is recursively specified by the following equations:

ISEU = ISEU ′
(0,∅) ,

ISEU ′
(n,S) =

∑
d∈IM

r2(d) · ISEU ′
updcm(d,(n,S))

+
∑

f .m∈A
nxt(f .m , S) :→ sf (m) · ISEU ′′

(f ,(n,S))

+
∑
r∈R

nxt(stopr, S) :→ stop(r) + nxt(dead, S) :→ i · δ

(for every (n, S) ∈ SISEU) ,

ISEU ′′
(f ,(n,S)) =

∑
r∈B

rf (r) · s3(r) · ISEU ′
updpr(r,(n,S))

+
∑

d∈IM
r2(d) · ISEU ′′

(f ,updcm(d,(n,S)))

(for every (f , (n, S)) ∈ F × SISEU) ,

Instruction Sequences and Process Algebra 167

and

H = {si(d) | i ∈ {1, 2} ∧ d ∈ IM} ∪ {ri(d) | i ∈ {1, 2} ∧ d ∈ IM}
∪ {si(r) | i ∈ {3, 4} ∧ r ∈ B} ∪ {ri(r) | i ∈ {3, 4} ∧ r ∈ B} .

ISGt is the instruction stream generator for thread t, IMTC is the transmission channel

for instruction messages, RTC is the transmission channel for replies, and ISEU is the

instruction stream execution unit.

Like the simple protocol described in Sect. 7.2.1, the more complex protocol described

above has been designed such that, for each closed BTA+REC term t denoting a regular

thread, τ · τ{j}(∂H(ISGt ‖ IMTC ‖RTC ‖ ISEU)) = τ · |t |, where t ∈ RT is the thread

denoted by t . We refrain from presenting a proof of the claim that the protocol satisfies

this because the proof is straightforward but tedious.

The transmission channels IMTC and RTC can keep one instruction message and one

reply, respectively. The protocol has been designed in such a way that the protocol will also

work properly if these channels are replaced by channels with larger capacity and even by

channels with unbounded capacity.

7.2.3 Adaptations of the protocol

In this section, we discuss some conceivable adaptations of the protocol for instruction

stream processing described in Sect. 7.2.2.

Consider the case where, for each instruction, it is known what the probability is with

which its execution leads to the reply t. This might give reason to adapt the protocol de-

scribed in Sect. 7.2.2. Suppose that the instruction stream generator states do not only keep

the sequences of replies after which threads must be performed, but also the sequences of

instructions involved in producing those sequences of replies. Then the probability with

which the sequences of replies will happen can be calculated and several conceivable adap-

tations of the protocol to this probabilistic knowledge are possible by mere changes in the

selection of the sequence of replies and the instruction that will be part of the next in-

struction message produced by the instruction stream generator. Among those adaptations

are:

• restricting the instruction messages that are produced ahead to the ones where the se-

quence of replies after which the instruction must be executed will happen with a prob-

ability ≥ 0.50, but sticking to breadth-first run-ahead;

• restricting the instruction messages that are produced ahead to the ones where the se-

168 Instruction Sequences for Computer Science

quence of replies after which the instruction must be executed will happen with a prob-

ability ≥ 0.95, but not sticking to breadth-first run-ahead.

Regular threads can be represented in such a way that it is effectively decidable whether

the two threads with which a thread may proceed after performing its first action are iden-

tical. Consider the case where threads are represented in the instruction stream generator

states in such a way. Then the protocol can be adapted such that no duplication of instruc-

tion messages takes place in the cases where the two threads with which a thread possibly

proceeds after performing its first action are identical. This can be accomplished by using

sequences of elements from B ∪ {∗}, instead of sequences of elements from B, in instruc-

tion messages, instruction stream generator states, and instruction stream execution unit

states. The occurrence of ∗ at position i in a sequence indicates that the ith reply may be

either t or f. The impact of this change on the updates of instruction stream generator states

and instruction stream execution unit states is minor.

7.3 Instruction Sequence Producible Processes

Process algebra is considered relevant to computer science, as is witnessed by the extent

of the work on algebraic theories of processes in theoretical computer science. This means

that there must be programmed systems whose behaviours are taken for processes as con-

sidered in process algebra. In this section, we establish a result concerning the processes

as considered in ACP that can be produced by instruction sequences under execution: by

apposite choice of basic instructions, all finite-state processes can be produced by instruc-

tion sequences provided that the cluster fair abstraction rule (see e.g. [Fokkink (2000)],

Section 5.6) is valid.

7.3.1 SPISA with alternative choice instructions

For the purpose of producing processes as considered in ACP, we need a version of SPISA

with special basic instructions. Recall that, in SPISA, it is assumed that a fixed but arbitrary

set A of basic instructions has been given. Here, we will make use a version of SPISA in

which the following additional assumptions relating to A are made:

• a fixed but arbitrary set F of foci has been given;

• a fixed but arbitrary setM of methods has been given;

• a fixed but arbitrary set AA of atomic actions, with t /∈ AA, has been given;

Instruction Sequences and Process Algebra 169

Table 7.5 Additional axiom for the process extraction operator

|x� ac(e , e ′)� y| = e · |x|+ e ′ · |y|

• A = {f .m | f ∈ F ∧m ∈M} ∪ {ac(e1, e2) | e1, e2 ∈ AA ∪ {t}}.

On execution of a basic instruction ac(e1, e2), first a non-deterministic choice between

the atomic actions e1 and e2 is made and then the chosen atomic action is performed. The

reply t is produced if e1 is performed and the reply f is produced if e2 is performed. Basic

instructions of this kind are material to produce all regular processes by means of instruc-

tion sequences. A basic instruction of the form ac(e1, e2) is called an alternative choice

instruction. Henceforth, we will write SPISAac for the version of SPISA with alternative

choice instructions.

The intuition concerning alternative choice instructions given above will be made fully

precise below using ACPτ , i.e. by giving an additional axiom for the process extraction op-

erator. It will not be made fully precise using an extension of BTA because it is considered

a basic property of threads that they represent deterministic behaviours.

Because process extraction concerns extraction from threads, we are compelled to con-

sider a version of BTA with basic actions of the form ac(e1, e2). A basic action of the

form ac(e1, e2) is called an alternative choice action. We will write BTAac for the version

of BTA with alternative choice actions.

For the purpose of making precise what processes are produced by the threads denoted

by closed terms of BTAac+REC, A and | are taken such that, in addition to the conditions

mentioned at the beginning of Sect. 7.1.2, the following conditions are satisfied:

A ⊇ AA ∪ {t}

and for all e, e ′ ∈ A:

e ′ | e = δ if e ′ ∈ AA ∪ {t} .

The process extraction operator for BTAac has as axioms the axioms given in Table 7.4

and in addition the axiom given in Table 7.5. In this table, e and e ′ stand for arbitrary

atomic actions fromAA ∪ {t}.
Proposition 7.2 goes through for BTAac.

170 Instruction Sequences for Computer Science

7.3.2 Producible processes

It follows immediately from the axioms of the thread extraction and process extraction

operators that the instruction sequences considered in SPISAac produce regular processes.

The question is whether all regular processes are producible by these instruction sequences.

This question can be answered in the affirmative.

All regular processes overAA can be produced by the instruction sequences considered

in SPISAac.

Theorem 7.2. Assume that CFAR is valid in Mτ
ACP. Then, for each process p that is

regular over AA, there exists a closed SPISAac term t in which only basic instructions of

the form ac(e, t) occur such that the interpretation of τ · τ{t}(||t ||) in Mτ
ACP is τ · p.

Proof. By Propositions 2.1, 4.2 and 7.1, it is sufficient to show that, for each finite linear

recursive specification E over ACPτ in which only atomic actions from AA occur, there

exists a finite linear recursive specification E ′ over BTAac in which only basic actions of

the form ac(e , t) occur such that τ · 〈x |E 〉 = τ · τ{t}(|〈x |E ′〉|) for all x ∈ V(E).

Take the finite linear recursive specification E over ACPτ that consists of the recursion

equations

x i = ei1 · x i1 + . . .+ e iki · x iki + e ′
i1 + . . .+ e ′

ili
,

where e i1, . . . , eiki , e
′
i1, . . . , e

′
ili
∈ AA, for i ∈ {1, . . . n}. Then construct the finite linear

recursive specification E ′ over BTAac that consists of the recursion equations

x i = x i1 � ac(ei1, t)� (. . . (x iki� ac(eiki , t)�
(S� ac(e ′

i1, t)� (. . . (S� ac(e ′
ili
, t)� x i) . . .))) . . .)

for i ∈ {1, . . . n}; and the finite linear recursive specification E ′′ over ACPτ that consists

of the recursion equations

x i = ei1 · x i1 + t · y i2 ,

y i2 = ei2 · x i2 + t · y i3 ,
...

y iki
= eiki · x iki + t · z i1 ,

z i1 = e ′
i1 + t · z i2 ,

z i2 = e ′
i2 + t · z i3 ,

...

z ili = e ′
ili

+ t · x i ,

where y i2, . . . , y iki
, z i1, . . . , z ili are fresh variables, for i ∈ {1, . . . n}. It follows imme-

diately from the axioms for the process extraction operator that |〈x |E ′〉| = 〈x |E ′′〉 for all

x ∈ V(E). Moreover, it follows from CFAR that τ · 〈x |E〉 = τ · τ{t}(〈x |E ′′〉) for all

x ∈ V(E). Hence, τ · 〈x |E〉 = τ · τ{t}(|〈x |E ′〉|) for all x ∈ V(E). �

Instruction Sequences and Process Algebra 171

Theorem 7.2 with “the interpretation of τ · τ{t}(||t ||) in Mτ
ACP is τ · p” replaced by “the

interpretation of ||t || in Mτ
ACP is p” can be established if SPISA is extended with multiple-

reply test instructions, see [Bergstra and Middelburg (2008a)]. In that case, the assumption

that CFAR is valid is superfluous.

Chapter 8

Variations on a Theme

This chapter concerns three variations of instruction sequences as considered in SPISA,

namely polyadic instruction sequences, instruction sequences without a directional bias,

and probabilistic instruction sequences.

We study the phenomenon that instruction sequences are split into fragments which

somehow produce a joint behaviour. In order to bring this phenomenon better into the

picture, we formalize a simple mechanism by which several instruction sequence frag-

ments can produce a joint behaviour. The instruction sequences taken for fragments are

parameterized instruction sequences of which the parameters are filled in each time they

are made the one being executed. The instruction sequences in question are called polyadic

instruction sequences. We show that, even in the case of the simple mechanism that we for-

malize, it is a non-trivial matter to explain by means of a translation into a single instruction

sequence what takes place on execution of a collection of such instruction sequence frag-

ments.

We introduce an algebraic theory of instruction sequences in which, for each instruction

whose effect involves that execution proceeds in the forward direction, there is a counter-

part whose effect involves that execution proceeds in the backward direction. The direc-

tional bias found in existing instruction sequence notations and program notations — there

is always a left to right orientation — might admit an explanation in terms of complexity

of design, expression or execution. The algebraic theory introduced provides a context in

which this may be investigated.

We use the term probabilistic instruction sequence for an instruction sequence that con-

tains probabilistic instructions, i.e. instructions that are themselves probabilistic by nature.

We propose several kinds of probabilistic instructions, provide an informal operational

meaning for each of them, and discuss related work. On purpose, we refrain from provid-

ing an ad hoc formal meaning for the proposed kinds of instructions.

173

174 Instruction Sequences for Computer Science

8.1 Polyadic Instruction Sequences

This section concerns the phenomenon that instruction sequences are split into fragments

which somehow produce a joint behaviour. We formalize a simple mechanism by which

several instruction sequence fragments can produce a joint behaviour and show that, even

in the case of this simple mechanism, it is a non-trivial matter to explain by means of a

translation into a single instruction sequence what takes place on execution of a collection

of instruction sequence fragments.

The question is how a joint behaviour of the fragments in a collection of fragments is

achieved. The view of this matter is that there can only be a single fragment being executed

at any stage, but the fragment in question may make any fragment in the collection the one

being executed by means of a special instruction for switching over execution to another

fragment. This does not fit in very well with the conception that the collection of fragments

constitutes a sequential program. To our knowledge, a theoretical understanding of this

matter has not yet been developed. This has motivated us to take up this topic.

The principal reason for splitting instruction sequences into fragments is that the exe-

cution environment at hand sets bounds to the size of instruction sequences. In the past,

the phenomenon occurred explicitly in many software systems. At present, it often occurs

rather implicitly, e.g. on execution of programs written in contemporary object-oriented

programming languages, such as Java [Arnold and Gosling (1996)] and C# [Bishop and

Horspool (2004)], classes are loaded as they are needed. The mechanisms in question are

improvements upon the simple mechanism considered in this section, but they are also

much more complicated. We believe that it is useful to consider the simple mechanism

prior to the more complicated ones.

The instruction sequences taken for fragments are called polyadic instruction sequences.

We introduce polyadic instruction sequences in the setting of SPISA. The behaviours pro-

duced by instruction sequences under execution are represented by threads as considered in

BTA. We take the view that the possible joint behaviours produced by polyadic instruction

sequences under execution can be represented by threads as considered in BTA as well.

In a system that provides an execution environment for polyadic instruction sequences, a

polyadic instruction sequence must be loaded in order to become the one being executed.

Hence, making a polyadic instruction sequence the one being executed can be looked upon

as loading it for execution.

Variations on a Theme 175

8.1.1 Executing polyadic instruction sequences

In this section, we formalize a simple mechanism by which several instruction sequence

fragments can produce a joint behaviour.

It is assumed that fixed but arbitrary instruction sequence notations ISN 1, . . . , ISN n

and, for each i ∈ [1, n], a projection prj i from the set of all ISN i instruction sequences to

the set of all closed SPISA terms have been given.

ISN 1, . . . , ISN n may include some of the instruction sequence notations introduced

in Sect. 2.3. In [Bergstra and Loots (2002)], a version of SPISA without the positive and

negative termination instructions, called PGA, and a collection of instruction sequence no-

tations with projections to closed PGA terms are presented. ISN 1, . . . , ISN n may also

include some of these instruction sequence notations. The important point is that a col-

lection of well-defined instruction sequence notations rooted in an elementary instruction

sequence notation, viz. the set of closed SPISA terms, has been given.

Instruction sequence fragments that can somehow produce a joint behaviour are viewed

as instruction sequences that contain special instructions for switching over execution from

one fragment to another. The instruction sequences in question are called polyadic instruc-

tion sequences. It is assumed that a special version of one of the instruction sequence

notations ISN 1, . . . , ISN n, in which the special instructions for switching over execution

from one fragment to another are available, is used for each polyadic instruction sequence.

Moreover, it is assumed that a collection of polyadic instruction sequences between which

execution can be switched takes the form of a sequence, called a polyadic instruction se-

quence vector, in which each polyadic instruction sequence is coupled with the instruction

sequence notation used for it.

Our general view on the way of achieving a joint behaviour of the polyadic instruction

sequences in a polyadic instruction sequence vector is as follows:

• there can only be a single polyadic instruction sequence being executed at any stage;

• the polyadic instruction sequence in question may make any polyadic instruction se-

quence in the vector the one being executed;

• making another polyadic instruction sequence the one being executed is effected by

executing a special instruction for switching over execution;

• any polyadic instruction sequence can be taken for the one being executed initially.

In addition to special instructions for switching over execution, polyadic instruction

sequences may contain two other kinds of special instructions:

176 Instruction Sequences for Computer Science

• special instructions for putting instructions into instruction registers;

• special instructions of which the occurrences in a polyadic instruction sequence are

replaced by instructions contained in instruction registers on making the polyadic in-

struction sequence the one being executed.

The special instructions of the latter kind serve as instruction place-holders. Their presence

turns a polyadic instruction sequence into a parameterized instruction sequence of which

the parameters are filled in each time it is made the one being executed. This feature

accounts for the use of the prefix polyadic. Its merit is primarily that it allows for execution

to proceed in effect from different positions each time a polyadic instruction sequence is

loaded for execution. An example of this is given in Sect. 8.1.2.

We take the line that different instruction sequence notations can be used for different

polyadic instruction sequences in a polyadic instruction sequence vector. On making a

polyadic instruction sequence in the vector the one being executed, it is considered to be

translated into a closed SPISAp term.

SPISAp is a variant of SPISA in which the above-mentioned special instructions are

incorporated. In SPISAp, it is assumed that there is a fixed but arbitrary set Ac of core

basic instructions. In SPISAp, a basic instruction is either a core basic instruction or a

supplementary basic instruction.

SPISAp has the following core primitive instructions:

• for each a ∈ Ac, a plain basic instruction a ;

• for each a ∈ Ac, a positive test instruction +a ;

• for each a ∈ Ac, a negative test instruction −a ;

• for each l ∈ N, a forward jump instruction #l;

• a plain termination instruction !;

• a positive termination instruction !t;

• a negative termination instruction !f .

We write Ic for the set of all core primitive instructions. The core primitive instructions of

SPISAp are the counterparts of the primitive instructions of SPISA.

SPISAp has the following supplementary basic instructions:

• for each i ∈ N, a switch-over instruction ###i;

• for each i ∈ N and u ∈ Ic, a put instruction $put:i:u ;

• for each i ∈ N, a get instruction $get:i.

Variations on a Theme 177

We write As for the set of all supplementary basic instructions. In the presence of a polyadic

instruction sequence vector, a switch-over instruction ###i is the instruction for switch-

ing over execution to the ith polyadic instruction sequence in the vector. A put instruction

$put:i:u is the instruction for putting instruction u in the instruction register with num-

ber i. A get instruction $get:i is the instruction of which each occurrence in a polyadic

instruction sequence is replaced by the content of the instruction register with number i

on switching over execution to that polyadic instruction sequence. If a get instruction is

encountered in the polyadic instruction sequence being executed, inaction occurs.

The supplementary basic instructions of SPISAp can be viewed as built-in basic in-

structions. However, as laid down above, supplementary basic instructions do not occur in

positive or negative test instructions. Thus, the core primitive instructions and supplemen-

tary basic instructions make up the primitive instructions of SPISAp.

SPISAp has one sort, namely the sort IS of instruction sequences, and the following

constants and operators:

• for each u ∈ Ic ∪As, an instruction constant u :→ IS ;

• the binary concatenation operator _ ; _ : IS× IS→ IS ;

• the unary repetition operator _ω : IS→ IS .

The axioms of SPISAp are the same as the axioms of SPISA.

SPISAp can be viewed as the specialization of SPISA obtained by taking the set Ac∪As

for A and excluding terms in which basic instructions from As occur in positive or negative

test instructions. We will make use of this view to simplify the definitions of the different

instruction sequence notations that can be used for polyadic instruction sequences and also

to enable the use of the functions prj 1, . . . , prj n for translating instruction sequences in

those instruction sequence notations into closed SPISAp terms.

The different instruction sequence notations that can be used for polyadic instruction

sequences are ISN p1, . . . , ISN pn. The set of all ISN pi instruction sequences is the subset

of the set of all ISN i instruction sequences, taking the set Ac∪As for A, in which the basic

instructions from As do not occur in positive or negative test instructions. If the set Ac∪As

is taken for A, the function prj i translates each ISN pi instruction sequence into a closed

SPISAp term that produces the same behaviour on execution.

A polyadic instruction sequence is a ISN p1 instruction sequence or . . . or a ISN pn

instruction sequence.

Suppose that ISN 1, . . . , ISN n include ISNR and ISNA. Consider the ISNAp instruc-

tion sequence

178 Instruction Sequences for Computer Science

+a ; ##5 ; $put:1:#3 ; ###2 ; $put:1:#1 ; ###2

and the ISNRp instruction sequence

$get:1 ; b ; #2 ; c ; ###1 .

The idea is that, after abstraction from tau, the joint behaviour produced by these polyadic

instruction sequences on execution is the solution of the guarded recursive specification

consisting of the equation

x = (b ◦ x)�a� (c ◦ x)

if execution begins with the ISNAp instruction sequence.

A polyadic instruction sequence vector is a sequence of pairs consisting of a polyadic

instruction sequence and a member of the set [1, n] of instruction sequence notation indices.

Let π be the polyadic instruction sequence vector 〈(p1, c1)〉 � . . . � 〈(pk, ck)〉,1 where

p1, . . . ,pk and c1, . . . , ck are polyadic instruction sequences and instruction sequence no-

tation indices, respectively, and let i ∈ [1, k]. Then we write is(π, i) and isn(π, i) for pi

and ci, respectively. Moreover, we write ind(π) for the set [1, k].

Let π be a polyadic instruction sequence vector, and let i ∈ ind(π). Then instruction

sequence notation index isn(π, i) indicates which instruction sequence notation is used

for polyadic instruction sequence is(π, i): if isn(π, i) = j then ISN pj is used. The in-

struction sequence notation used is made explicit because it cannot always be determined

uniquely from the polyadic instruction sequence concerned, whereas the behaviour that this

polyadic instruction sequence produces on execution may be different for each of the in-

struction sequence notations in question. For example, every ISNRIp instruction sequence

is an ISNRp instruction sequence in which no termination instructions occur. If such an

instruction sequence leads to termination on execution as an ISNRIp instruction sequence,

it leads to inaction on execution as an ISNRp instruction sequence.

The set of instruction registers that contain an instruction and the contents of each of

those registers matter when a polyadic instruction sequence is made the one being executed.

This makes us introduce the notion of an instruction register file state and special notation

relating to this notion.

An instruction register file state is a function σ : I → Ic, where I is a finite subset of

N.
1For polyadic instruction sequence vectors, we use the sequence notation that is used for thread vectors in

Sect. 5.2.4 instead of the common sequence notation that is also used elsewhere in this book.

Variations on a Theme 179

Let t be a closed SPISAp term and σ be an instruction register file state. Then we write

t [σ] for t with, for all i ∈ dom(σ), all occurrences of $get:i in t replaced by σ(i).

Let π be a polyadic instruction sequence vector, let j ∈ ind(π), and let σ be an in-

struction register file state. Then we write valid(π, j, σ) to indicate that instructions of the

form $get:i do not occur in prj isn(π,j)(is(π, j))[σ].

An obvious choice of the thread extraction operator of SPISAp is the thread extraction

operator of SPISA, taking the set Ac ∪ As for A, restricted to the set of closed terms of

SPISAp. This thread extraction operator is considered not to be the proper one, because

it treats the supplementary basic instructions as arbitrary basic instructions and thus disre-

gards the fixed effects that they should produce on execution. For example, a switch-over

instruction ###i would not have the effect that execution is switched over.

As regards the proper thread extraction for SPISAp, the idea is that it yields, for each

closed SPISAp term t , a function that assigns to each polyadic instruction sequence vector

π the thread that represents the joint behaviour of t and the polyadic instruction sequences

in π in the case where t is the polyadic instruction sequence being executed initially. Be-

cause this behaviour depends upon the set of instruction registers that contain an instruction

and the contents of each of those registers, we need a thread extraction operator for each

instruction register file state.

For each instruction register file state σ, we introduce a thread extraction operator |_ |σ .

The axioms for these thread extraction operators are the equations given in Table 8.1 and

the rule that |#l ; x|σ(π) = D if #l is the beginning of an infinite jump chain. In this

table, a stands for an arbitrary core basic instruction from Ac, u stands for an arbitrary

core primitive instruction or supplementary basic instruction from Ic ∪As, v stands for an

arbitrary core primitive instruction from Ic, and l and i stand for arbitrary natural numbers.

We can couple nominal indices as labels with some of the polyadic instruction se-

quences in a polyadic instruction sequence vector. This would permit the use of alternative

switch-over instructions with nominal indices instead of ordinal indices, like with the goto

instructions from SPISAg. In the notational style of Sect. 4.3, the form of those alternative

switch-over instructions would be ###[i].

8.1.2 Example

To illustrate the mechanism formalized in Sect. 8.1.1, we consider in this section the split-

ting of an ISNA instruction sequence p of 10000 instructions into two fragments.

We write ν1(l) for the number of absolute jump instructions ##l′ with l′ > 5000 from

180 Instruction Sequences for Computer Science

Table 8.1 Axioms for the thread extraction operators of SPISAp

|a |σ(π) = a ◦ D
|a ; x|σ(π) = a ◦ |x|σ(π)
|+a |σ(π) = a ◦ D
|+a ; x|σ(π) = |x|σ(π)�a � |#2 ; x|σ(π)
|−a |σ(π) = a ◦ D
|−a ; x|σ(π) = |#2 ; x|σ(π)�a � |x|σ(π)

|#l|σ(π) = D

|#0 ; x|σ(π) = D

|#1 ; x|σ(π) = |x|σ(π)
|#l+2 ; u |σ(π) = D

|#l+2 ; u ; x|σ(π) = |#l+1 ; x|σ(π)
|!|σ(π) = S

|! ; x|σ(π) = S

|!t|σ(π) = S+

|!t ; x|σ(π) = S+

|!f|σ(π) = S−
|!f ; x|σ(π) = S−

|###i|σ(π) = tau ◦ |prj isn(π,i)(is(π, i))[σ]|σ(π) if i ∈ ind(π) ∧ valid(π, i, σ)

|###i|σ(π) = D if i ∈ ind(π) ∧ ¬valid(π, i, σ)
|###i|σ(π) = S if i /∈ ind(π)

|###i ; x|σ(π) = tau ◦ |prj isn(π,i)(is(π, i))[σ]|σ(π) if i ∈ ind(π) ∧ valid(π, i, σ)

|###i ; x|σ(π) = D if i ∈ ind(π) ∧ ¬valid(π, i, σ)
|###i ; x|σ(π) = S if i /∈ ind(π)

|$put:i:v |σ(π) = tau ◦ D
|$put:i:v ; x|σ(π) = tau ◦ |x|σ⊕[i�→v](π)

|$get:i|σ(π) = D

|$get:i ; x|σ(π) = D

position 1 up to position l and ν2(l) for the number of absolute jump instructions ##l′

with l′ ≤ 5000 from position 5001 up to position l.

Variations on a Theme 181

The polyadic instruction sequence p ′ corresponding to the first half of p is obtained

from the first half of p as follows:

• the instruction $get:1 is prefixed to it;

• each absolute jump instruction ##l with l ≤ 5000 is replaced by the absolute jump

instructions ##l′, where l′ = l + ν1(l) + 1;

• each absolute jump instruction ##l with l > 5000 is replaced by the instruction se-

quence $put:2:#l′ ; ###2, where l′ = (l − 5000) + ν2(l − 5000);

and the polyadic instruction sequence p ′′ corresponding to the second half of p is obtained

from the second half of p as follows:

• the instruction $get:2 is prefixed to it;

• each absolute jump instruction ##l with l > 5000 is replaced by the absolute jump

instructions ##l′, where l′ = (l − 5000) + ν2(l − 5000) + 1;

• each absolute jump instruction ##l with l ≤ 5000 is replaced by the instruction se-

quence $put:1:#l′ ; ###1, where l′ = l + ν1(l).

Notice that the positions occurring in jump instructions are adapted to the prefixing of a get

instruction to each half of p and the replacement of each jump instructions that gives rise

to a jump into the other half of p by two instructions.

Suppose that 2 is the instruction sequence notation index of ISNAp. Then, for any

instruction register file state σ, we have that |$put:1:#1 ; ###1|σ(〈(p ′, 2)〉� 〈(p ′′, 2)〉)
coincides with |p| after abstraction from the occurrences of the internal action tau in the

former behaviour.

In this section, we have illustrated by means of an example that splitting an instruction

sequence into fragments is relatively simple. In Sect. 8.1.4, we will show that synthesizing

an instruction sequence from a collection of fragments is fairly complicated.

8.1.3 Instruction register file functional unit

In this section, we define a functional unit that is a register file consisting of a finite number

of registers whose possible contents are the members of a finite set of core primitive in-

structions. This functional unit will be used in Sect. 8.1.4 to synthesize a single instruction

sequence from a collection of instruction sequence fragments.

It is assumed that a fixed but arbitrary finite set I ⊆ N such that I = [1, h] for some

h ∈ N and a fixed but arbitrary finite set U ⊆ Ic have been given. The set I is considered

182 Instruction Sequences for Computer Science

to consist of the positions of the registers in the instruction register file and the set U is

considered to consist of the instructions that can be put in those registers.

The instruction register file functional unit is a functional unit for the following state

space:

SIRF =
⋃

I′⊆I(I
′ → U) .

It is assumed that a fixed but arbitrary bijection θ : SIRF → [1, card(SIRF)] has been given.

The instruction register file functional unit is defined as follows:

IRF = {(put:i:u ,Put :i:u) | i ∈ I ∧ u ∈ U}
∪ {(eq:n,Eq:n) | n ∈ rng(θ)} ,

where the method operations are defined as follows:

Put :i:u(σ) = (t, σ ⊕ [i �→ u]) ,

Eq :n(σ) =

{
(t, σ) if n = θ(σ)

(f, σ) if n �= θ(σ) .

The interface I(IRF) of IRF can be explained as follows:

• put:i:u : the contents of register i becomes instruction u and the reply is t;

• eq:n : if the state of the instruction register file equals θ−1(n), then nothing changes

and the reply is t; otherwise nothing changes and the reply is f.

8.1.4 Instruction sequence synthesis

In order to establish a connection between collections of instruction sequence fragments

and instruction sequences, we show in this section that, for each possible joint behaviour

of a collection of instruction sequence fragments, a single instruction sequence can be

synthesized from the collection that produces on execution essentially the behaviour in

question through interaction with an instruction register file. More precisely, we show that,

for each closed SPISAp term t and polyadic instruction sequence vectorπ, a closed SPISA

term t ′ can be synthesized from t and π such that, for all relevant instruction register file

states σ, |t ′| // irf.IRF (σ) = τtau(|t |σ(π)).
Recall that, in SPISAp, it is assumed that a fixed but arbitrary set Ac of core basic

instructions has been given. Here, the following additional assumptions relating to Ac are

made:

• a fixed but arbitrary set F of foci with irf ∈ F has been given;

Variations on a Theme 183

• a fixed but arbitrary setM of methods with I(IRF) ⊆M has been given;

• Ac = {f .m | f ∈ F \ {irf} ∧m ∈M}.

Thereby no real restriction is imposed on the set Ac: in the case where the cardinality of F
equals 2, all core basic instructions have the same focus and the set M of methods can be

looked upon as the set Ac of core basic instructions.

Let t be a closed SPISAp term and π be a polyadic instruction sequence vector. The

general idea is that:

• each polyadic instruction sequence in π is translated into a closed SPISAp term and an

appropriate finite collection of instances of this closed SPISAp term in which occur-

rences of get instructions are replaced by core primitive instructions is generated;

• t and all the generated closed SPISAp terms are translated into ISNRp instruction se-

quences and these ISNRp instruction sequences are concatenated;

• the resulting ISNRp instruction sequence is translated into an ISNAp instruction se-

quence and this instruction sequence is translated into an ISNA instruction sequence

by replacing all occurrences of the supplementary instructions by core primitive in-

structions as follows:

– a switch-over instruction ###i is replaced by an absolute jump instruction whose

effect is a jump to the beginning of an appended instruction sequence whose execu-

tion leads, after the state of the instruction register file has been found by a linear

search, to a jump to the beginning of the right instance of the ISNAp instruction

sequence that corresponds to the ith polyadic instruction sequence in π;

– a put instruction $put:i:u is replaced by the plain basic instruction irf.put:i:u ;

– a get instruction $get:i is replaced by the absolute jump instruction whose effect is

a jump to the position of the instruction itself.

A collection of instances of the closed SPISAp term corresponding to a polyadic instruc-

tion sequence in π is considered appropriate if it includes all instances that may become

the one being executed. The closed SPISAp term t and all the generated closed SPISAp

terms are translated into ISNRp instruction sequences because ISNRp instruction sequences

are relocatable: they can be concatenated without disturbing the meaning of jump instruc-

tions. The ISNRp instruction sequence resulting from the concatenation is translated into

an ISNAp instruction sequence before the supplementary instructions are replaced because

the replacement of a switch-over instruction by an absolute jump instruction is simpler than

its replacement by a relative jump instruction.

184 Instruction Sequences for Computer Science

Following the general idea outlined above, we will define a function spisap2isna that

yields, for each closed SPISAp term t , a function that yields, for each polyadic instruction

sequence vector π, an ISNA instruction sequence p such that, for each relevant instruction

register file service state σ, |isna2spisa(p)| // irf.IRF (σ) = τtau(|t |σ(π)).
Below, we will make use of the translation spisa2isnr from closed SPISA terms to

ISNR instruction sequences that is the one defined in the proof of Proposition 4.1, but ex-

tended in the obvious way from closed SPISA terms in first canonical form to arbitrary

closed SPISA terms, and the translation isnr2isna from ISNR instruction sequences to

ISNA instruction sequences defined in Sect. 2.3.3. Taking Ac ∪ As for A, these transla-

tions can be used for translating closed SPISAp terms to ISNRp instruction sequences and

translating ISNRp instruction sequences to ISNAp instruction sequences, respectively.

The function spisap2isna from the set of all closed SPISAp terms to the set of all

functions from the set of all polyadic instruction sequence vectors to the set of all ISNA

instruction sequences is defined as follows:

spisap2isna(t)(π) =

translate(isnr2isna(expand (t)(π))) ;

+irf.eq:1 ; ##l1,1 ; . . . ; +irf.eq:n
′ ; ##l1,n′ ;

...

+irf.eq:1 ; ##ln,1 ; . . . ; +irf.eq:n
′ ; ##ln,n′ ,

where n = len(π), n′ = max(rng(θ)), the function expand from the set of all closed

SPISAp terms to the set of all functions from the set of all polyadic instruction sequence

vectors to the set of all ISNRp instruction sequences is defined as follows:

expand(t)(π) =

spisa2isnr(t) ;

spisa2isnr(gen(π, 1, θ−1(1))) ; . . . ; spisa2isnr(gen(π, 1, θ−1(n′))) ;
...

spisa2isnr(gen(π, n, θ−1(1))) ; . . . ; spisa2isnr(gen(π, n, θ−1(n′))) ,

where n = len(π), n′ = max(rng(θ)), and the function gen from the set of all

polyadic instruction sequence vectors, the set of all natural numbers and the set of all

instruction register file states to the set of all closed SPISAp terms is defined as follows:

gen(π, i, σ) = prj isn(π,i)(is(π, i))[σ] if i ∈ ind(π) ∧ valid (π, i, σ) ,

gen(π, i, σ) = #0 if i ∈ ind(π) ∧ ¬valid (π, i, σ) ,
gen(π, i, σ) = ! if i /∈ ind(π) ,

Variations on a Theme 185

the function translate from the set of all ISNAp instruction sequences to the set of all ISNA

instruction sequences is defined as follows:

translate(u1 ; . . . ; uk) = ψ1(u1) ; . . . ; ψ1(uk) ,

where the functions ψj from the set of all primitive instructions of ISNAp to the set of

all primitive instructions of ISNA are defined as follows (1 ≤ j ≤ k):

ψj(###i) = ##li if i ∈ ind(π) ,

ψj(###i) = ! if i /∈ ind(π) ,

ψj($put:i:u) = irf.put:i:u ,

ψj($get:i) = ##j ,

ψj(u) = u if u is a core primitive instruction ,

where for each i ∈ [1, len(π)]:

li = len(spisa2isnr(t))

+
∑

h∈[1,len(π)],h′∈rng(θ)

len(spisa2isnr(prj isn(π,h)(is(π, h))[θ
−1(h′)]))

+ 2 ·max(rng(θ)) · (i− 1) ,

and for each i ∈ [1, len(π)] and j ∈ rng(θ):

li,j = len(spisa2isnr(t))

+
∑

h∈[1,i−1],h′∈rng(θ)

len(spisa2isnr(prj isn(π,h)(is(π, h))[θ
−1(h′)]))

+
∑

h′∈[1,j−1]

len(spisa2isnr(prj isn(π,i)(is(π, i))[θ
−1(h′)])) .

The following proposition states rigorously that, for any closed SPISAp term t and

polyadic instruction sequence vector π, for all relevant instruction register file states σ,

|isna2spisa(spisap2isna(t)(π))| // irf.IRF (σ) = τtau(|t |σ(π)).

Proposition 8.1. Let t be a closed SPISAp term and π be a polyadic instruction sequence

vector, and let h be the highest number occurring in instructions of the form $put:i:u or

$get:i in t or π. Take the interval [1, h] for I and the set of all core primitive instructions

occurring in instructions of the form $put:i:u in t or π for U , and let σ ∈ SIRF. Then

τtau(|t |σ(π)) = |isna2spisa(spisap2isna(t)(π))| // irf.IRF (σ).

Proof. We refrain from presenting the proof of this proposition because it follows the

same line as the proof of Proposition 4.7 but is extremely tedious. The definition of the

function β needed here is much more complicated than the definition of the function β

needed in the proof of Proposition 4.7. �

186 Instruction Sequences for Computer Science

The synthesis of single instruction sequences from collections of instruction sequence

fragments is reminiscent of the service-based variant of projection semantics followed in

Sect. 3.3. The definition of spisap2isna shows that this synthesis is fairly complicated.

8.2 Backward Instructions

In this section, we introduce an algebraic theory of instruction sequences without a di-

rectional bias: for each instruction whose effect involves that execution proceeds in the

forward direction, there is a counterpart whose effect involves that execution proceeds in

the backward direction. An instruction whose effect involves that execution proceeds in the

forward direction is called a forward instruction and an instruction whose effect involves

that execution proceeds in the backward direction is called a backward instruction.

Instruction sequence notations, and more general program notations, invariably show

a directional bias: there is always a left to right orientation. This fact might admit an

explanation in terms of complexity of design, expression or execution, and the algebraic

theory introduced in this section provides a context in which this may be investigated.

8.2.1 C, a semigroup for code

C is a variant of SPISA that has both forward instructions and backward instructions. In C,

like in SPISA, it is assumed that there is a fixed but arbitrary set A of basic instructions.

C has the following C instructions:

• for each a ∈ A, a forward plain basic instruction /a;

• for each a ∈ A, a forward positive test instruction +/a ;

• for each a ∈ A, a forward negative test instruction −/a;

• for each l ∈ N
+, a forward jump instruction /#l;

• for each a ∈ A, a backward plain basic instruction \a ;

• for each a ∈ A, a backward positive test instruction +\a ;

• for each a ∈ A, a backward negative test instruction −\a ;

• for each l ∈ N
+, a backward jump instruction \#l;

• an abort instruction #;

• a plain termination instruction !;

• a positive termination instruction !t;

• a negative termination instruction !f .

Variations on a Theme 187

We write IC for the set of all C instructions.

On execution of a C instruction sequence, the C instructions have the following effects:

• the effects of forward instructions /a , +/a , −/a and /#l are the same as the effects

of a , +a , −a and #l, respectively, in SPISA;

• the effects of backward instructions \a , +\a ,−\a and \#l are the same as the effects

of a , +a ,−a and #l, respectively, in SPISA, but with the direction in which execution

proceeds reversed;

• the effect of the abort instruction # is the same as the effect of #0 in SPISA;

• the effects of the termination instructions !, !t and !f are the same as their effects in

SPISA.

C has one sort, namely the sort IS of instruction sequences, and the following constants

and operators:

• for each u ∈ IC, an instruction constant u :→ IS ;

• the binary concatenation operator _ ; _ : IS× IS→ IS .

C has only one axiom, namely the associativity axiom (X ; Y) ; Z = X ; (Y ; Z) for

concatenation.

Some simple examples of closed C terms are

+/a ; /#2 ; # ; /b ; !t , /a ; /b ; /c ; \#2 , /a ; +/b ; \c ; ! .

8.2.2 Thread extraction and code transformation

We combine C with BTA+REC+AIP and extend the combination with:

• for each i ∈ Z, the thread extraction operator |_ |i : IS→ T

and the axioms given in Table 8.2. In this table, a stands for an arbitrary basic instruction

from A, u stands for an arbitrary primitive instruction from IC, l and k stand for arbitrary

positive natural numbers, and i stands for an arbitrary integer.

The thread extraction operators are meant for the extraction of the threads that represent

the behaviours produced by C instruction sequences under execution from the C instruction

sequences. For C instruction sequences whose length is greater than or equal to i, |_ |i yields

the threads that represent the behaviours produced if execution starts at the ith instruction.

For example,

|/a ; +/b ; \c ; !|1

188 Instruction Sequences for Computer Science

Table 8.2 Axioms for the thread extraction operators of C

|u1 ; . . . ; uk|i = D if i = 0 ∨ i > k

|u1 ; . . . ; uk|i = a ◦ |u1 ; . . . ; uk|i+1 if u i = /a

|u1 ; . . . ; uk|i = |u1 ; . . . ; uk|i+1 �a � |u1 ; . . . ; uk|i+2 if u i = +/a

|u1 ; . . . ; uk|i = |u1 ; . . . ; uk|i+2 �a � |u1 ; . . . ; uk|i+1 if u i = −/a
|u1 ; . . . ; uk|i = |u1 ; . . . ; uk|i+l if u i = /#l

|u1 ; . . . ; uk|i = a ◦ |u1 ; . . . ; uk|i−1 if u i = \a
|u1 ; . . . ; uk|i = |u1 ; . . . ; uk|i−1 �a � |u1 ; . . . ; uk|i−2 if u i = +\a
|u1 ; . . . ; uk|i = |u1 ; . . . ; uk|i−2 �a � |u1 ; . . . ; uk|i−1 if u i = −\a
|u1 ; . . . ; uk|i = |u1 ; . . . ; uk|i−l if u i = \#l
|u1 ; . . . ; uk|i = D if u i = #

|u1 ; . . . ; uk|i = S if u i = !

|u1 ; . . . ; uk|i = S+ if u i = !t

|u1 ; . . . ; uk|i = S− if u i = !f

is the x-component of the solution of the guarded recursive specification consisting of the

following two equations:

x = a ◦ y , y = (c ◦ y)�b� S .

Henceforth, we will write |t |→, where t is a C term, for |t |1.

We define a function c2c from the set of all closed C terms to the set of all closed C

terms in which backward instructions other than backward jump instructions do not occur:

c2c(u1 ; . . . ; uk) = ϕ(u1) ; . . . ; ϕ(uk) ,

where the auxiliary function ϕ from the set of all primitive instructions of C to the set of

all closed C terms is defined as follows:

ϕ(/a) = /a ; /#2 ; # ,

ϕ(+/a) = +/a ; /#2 ; /#4 ,

ϕ(−/a) = −/a ; /#2 ; /#4 ,

ϕ(/#l) = /#3·l ; # ; # ,

Variations on a Theme 189

ϕ(\a) = /a ; \#4 ; # ,

ϕ(+\a) = +/a ; \#4 ; \#8 ,

ϕ(−\a) = −/a ; \#4 ; \#8 ,

ϕ(\#l) = \#3·l ; # ; # ,

ϕ(#) = # ; # ; # ,

ϕ(!) = ! ; # ; # ,

ϕ(!t) = !t ; # ; # ,

ϕ(!f) = !f ; # ; # .

The function c2c preserves thread extraction, i.e. for all closed C terms t :

|t |→ = |c2c(t)|→ .

This means that the expressiveness of C would not be reduced by excluding the backward

instructions other than backward jump instructions. The function c2c is a very simple

example of a program transformation. An example of this program transformation is

c2c(+/a ; \b ; !) = +/a ; /#2 ; /#4 ; /b ; \#4 ; # ; ! ; # ; # .

8.2.3 C programs and single-pass instruction sequences

A C program is a closed C term u1 ; . . . ; uk for which, for each i ∈ [1, k], all derivable

equations of the form |u1 ; . . . ; uk|i = t can be derived without using the first equation in

Table 8.2.

The intuition is that execution of C programs can only end by executing one of the

termination instructions or the abort instruction. For example,

+/a ; /#2 ; /#2 ; +\b ; !t

is a C program, but

+/a ; /#2 ; /#2 ; +/b ; !t and +/a ; /#2 ; /#3 ; +\b ; !t

are not C programs.

We define a function cp2spisa from the set of all C programs to the set of all closed

SPISA terms:

cp2spisa(t) = cp2spisa′(c2c(t)) ,

where the function cp2spisa′ from the set of all C programs in which backward instruc-

tions other than backward jump instructions do not occur to the set of all closed SPISA

190 Instruction Sequences for Computer Science

terms is defined as follows:

cp2spisa′(u1 ; . . . ; uk) = (ψ(u1) ; . . . ; ψ(uk))
ω ,

where the auxiliary function ψ from the set of all primitive instructions of C to the set of

all primitive instructions of SPISA is defined as follows:

ψ(/a) = a ,

ψ(+/a) = +a ,

ψ(−/a) = −a ,

ψ(/#l) = #l ,

ψ(\#l) = #k−l ,
ψ(#) = #0 ,

ψ(!) = ! ,

ψ(!t) = !t ,

ψ(!f) = !f .

An example of this translation from C programs to closed SPISA terms is

cp2spisa(+/a ; \b ; !) = (+a ; #2 ; #4 ; b ; #5 ; #0 ; ! ; #0 ; #0)ω .

The function cp2spisa is defined such that, for all C programs t :

|t |→ = |cp2spisa(t)| .

The translation spisa2isnr defined in the proof of Proposition 4.1, extended in the obvi-

ous way from closed SPISA terms in first canonical form to arbitrary closed SPISA terms,

maps each closed SPISA term to an ISNR instruction sequence producing the same thread.

The translation from ISNR instruction sequences to C programs that maps each ISNR in-

struction sequence to a C program producing the same thread is trivial. This means that

there also exists a function spisa2cp from the set of all closed SPISA terms to the set of

all C program such that all closed SPISA terms t :

|t | = |spisa2cp(t)|→ .

Hence, C programs and SPISA instruction sequences are equally expressive.

8.3 Probabilistic Instructions

In this section, we take the first step on a new direction of our work relating to instruction

sequences: the study of probabilistic instruction sequences.

Variations on a Theme 191

We use the term probabilistic instruction sequence for an instruction sequence that con-

tains probabilistic instructions, i.e. instructions that are themselves probabilistic by nature.

We will propose several kinds of probabilistic instructions, provide an informal operational

meaning for each of them, and discuss related work. We will refrain from a formal se-

mantic analysis of the proposed kinds of probabilistic instructions. Moreover, we will not

claim any form of completeness for the proposed kinds of probabilistic instructions. Other

convincing kinds might be found in the future.

Viewed from the perspective of machine-execution, execution of a probabilistic instruc-

tion sequence using an execution architecture without probabilistic features can only be a

metaphor. Execution of a deterministic instruction sequence using an execution architec-

ture with probabilistic features, i.e. an execution architecture that allows for probabilistic

services, is far more plausible. Thus, it looks to be that probabilistic instruction sequences

find their true meaning by translation into deterministic instruction sequences for execu-

tion architectures with probabilistic features. Indeed projection semantics, the approach to

define the meaning of instruction sequences which was introduced in Sect. 2.3, need not be

compromised when probabilistic instructions are taken into account.

8.3.1 On the scope of Sect. 8.3

We go into the scope of Sect. 8.3 to clarify and motivate its restrictions.

We will propose several kinds of probabilistic instructions, chosen because of their

superficial similarity with kinds of deterministic instructions known from SPISA and the

related instruction sequence notations presented in this book, and not because any compu-

tational intuition about them is known or assumed. For each of these kinds, we will provide

an informal operational meaning. Moreover, we will show that the proposed unbounded

probabilistic jump instructions can be simulated by means of bounded probabilistic test in-

structions and bounded deterministic jump instructions. We will also refer to related work

that introduces something similar to what we call a probabilistic instruction and connect

the proposed kinds of probabilistic instructions with similar features found in related work.

We will refrain from a formal semantic analysis of the proposed kinds of probabilistic

instructions. The reasons for doing so are as follows:

• In the non-probabilistic case, the subject reduces to the semantics of instruction se-

quences as considered in SPISA. Although it seems obvious at first sight, different

models, reflecting different levels of abstraction, can and have been distinguished.

Probabilities introduce a further ramification.

192 Instruction Sequences for Computer Science

• What we consider sensible is to analyse this double ramification fully. What we con-

sider less useful is to provide one specific collection of design decisions and working

out its details as a proof of concept.

• We notice that for process algebra the ramification of semantic options after the in-

corporation of probabilistic features is remarkable, and even frustrating (see e.g. [van

Glabbeek et al. (1995); Jonsson et al. (2001)]). There is no reason to expect that the

situation is much simpler here.

• Once that a semantic strategy is mainly judged on its preparedness for a setting with

multi-threading, the subject becomes intrinsically complex (like the preparedness for a

setting with arbitrary interleaving complicates the semantic modelling of deterministic

processes in process algebra).

• We believe that a choice for a catalogue of kinds of probabilistic instructions can be

made beforehand. Even if that choice will turn out to be wrong, because prolonged

forthcoming semantic analysis may give rise to new, more natural, kinds of probabilis-

tic instructions, it can at this stage best be driven by direct intuitions.

We will leave unanalysed the topic of probabilistic instruction sequence processing,

which includes all phenomena concerning services and execution environments for prob-

abilistic instruction sequences for which probabilistic analysis is necessary. At the same

time, we admit that probabilistic instruction sequence processing is a much more substan-

tial topic than probabilistic instruction sequences, because of its machine-oriented scope.

We take the line that a probabilistic instruction sequence finds its operational meaning by

translation into a deterministic instruction sequence and execution using an execution en-

vironment with probabilistic features.

In the remainder of Sect. 8.3, we will use the notation and terminology regarding in-

structions and instruction sequences from SPISA. The mathematical structure that we will

use for quantities is a signed cancellation meadow.

8.3.2 Signed cancellation meadows

The signature of signed cancellation meadows consists of the following constants and op-

erators:

• the constants 0 and 1;

• the binary addition operator _ + _;

• the binary multiplication operator _ · _;

Variations on a Theme 193

• the unary additive inverse operator−_;

• the unary multiplicative inverse operator _−1;

• the unary signum operator s.

Terms are build as usual. We use infix notation for the binary operators + and · , prefix

notation for the unary operator−, and postfix notation for the unary operator −1. We use the

usual precedence convention to reduce the need for parentheses. We introduce subtraction

and division as abbreviations: t1 − t2 abbreviates t1 + (−t2) and t1/t2 abbreviates t1 ·
(t−1

2). We use the notation n for numerals and the notation tn for exponentiation with

a natural number as exponent. The term n is inductively defined as follows: 0 = 0 and

n+ 1 = n+ 1. The term tn is inductively defined as follows: t0 = 1 and tn+1 = tn · t .

The constants and operators from the signature of signed cancellation meadows are

adopted from rational arithmetic, which gives an appropriate intuition about these constants

and operators. The equational theory of signed cancellation meadows is given in [Bergstra

and Ponse (2008)]. In signed cancellation meadows, the functions min and max have

simple definitions (see also [Bergstra and Ponse (2008)]).

A signed cancellation meadow is a cancellation meadow expanded with a signum op-

eration. The prime example of cancellation meadows is the field of rational numbers with

the multiplicative inverse operation made total by imposing that the multiplicative inverse

of zero is zero, see e.g. [Bergstra and Tucker (2007)].

In the remainder of Sect. 8.3, we assume that a fixed but arbitrary signed cancellation

meadow M has been given. As in the case of models of BTA or some extension thereof, we

denote the interpretations of constants and operators in M by the constants and operators

themselves.

8.3.3 Probabilistic basic and test instructions

In this section, we propose several kinds of probabilistic basic and test instructions.

We propose the following probabilistic basic instructions:

• %(), which produces t with probability 1/2 and f with probability 1/2;

• %(q), which produces t with probability max(0,min(1, q)) and f with probability 1−
max(0,min(1, q)), for q ∈M.

The probabilistic basic instructions have no side-effect on a state.

The basic instruction %() can be looked upon as a shorthand for %(1/2). We distin-

guish between %() and %(1/2) for reason of putting the emphasis on the fact that it is

194 Instruction Sequences for Computer Science

not necessary to bring in a notation for quantities ranging from 0 to 1 in order to design

probabilistic instructions.

Once that probabilistic basic instructions of the form %(q) are chosen, an unbounded

ramification of options for the notation of quantities is opened up. We will assume that

closed terms over the signature of signed cancellation meadows are used to denote quan-

tities. Instructions such as %(
√
1 + 1) are implicit in the form %(q), assuming that it

is known how to view √ as a notational extension of signed cancellation meadows (see

e.g. [Bergstra and Bethke (2009)]).

Like all basic instructions, each probabilistic basic instruction gives rise to three prob-

abilistic primitive instructions. Each probabilistic basic instruction of the form %(q) gives

rise to

• the probabilistic plain basic instruction %(q);

• the probabilistic test instructions +%(q) and −%(q);

and likewise the probabilistic basic instruction %().

Probabilistic test instructions of the form +%(q) and −%(q) can be considered proba-

bilistic branch instructions where q is the probability that the branch is not taken and taken,

respectively.

We find that, different from +%(q) and−%(q), the plain basic instruction %(q) can be

replaced by #1 without loss of (intuitive) meaning. Of course, in a resource-aware model,

#1 may be much cheaper than %(q), especially if q is hard to compute. Suppose that

%(q) is realized at a lower level by means of %(), which is possible, and suppose that q

is a computable real number. The question arises whether the expectation of the time to

execute %(q) is finite.

To exemplify the possibility that %(q) is realized by means of %() in the case where q

is a rational number, we look at the following probabilistic instruction sequences:

−%(2/3) ; #3 ; a ; ! ; b ; ! ,

(+%() ; #3 ; a ; ! ; +%() ; #3 ; b ; !)ω .

It is easy to see that these instruction sequences produce on execution the same behaviour:

with probability 2/3, first a is performed and then termination follows; and with probability

1/3, first b is performed and then termination follows. In the case of computable real

numbers other than rational numbers, use must be made of a service that does duty for a

Turing machine (see also Sect. 5.1.1).

Let q ∈ M, and let random(q) be a service with a method get whose reply

Variations on a Theme 195

is t with probability max(0,min(1, q)) and f with probability 1 − max(0,min(1, q)).

Then a reasonable view on the meaning of the probabilistic primitive instructions %(q),

+%(q) and −%(q) is that they are translated into the deterministic primitive instructions

random(q).get, +random(q).get and −random(q).get, respectively, and executed using

an execution environment that provides the probabilistic service random(q). Another op-

tion is possible here: instead of a different service random(q) for each q ∈M and a single

method get, we could have a single service random with a different method get(q) for

each q ∈ M. In the latter case, %(q), +%(q) and −%(q) would be translated into the de-

terministic primitive instructions random.get(q), +random.get(q) and−random.get(q).

8.3.4 Probabilistic jump instructions

In this section, we propose several kinds of probabilistic jump instructions. It is assumed

that the signed cancellation meadow M has been expanded with an operation N such that,

for all q ∈M, N(q) = 0 iff q = n for some n ∈ N. We write l̄, where l ∈ M is such that

N(l) = 0, for the unique n ∈ N such that l = n. Moreover, we write q̂, where q ∈M, for

max(0,min(1, q)).

We propose the following probabilistic jump instructions:

• #%H(k), having the same effect as #j with probability 1/k for j ∈ [1, k̄], for k ∈M

with N(k) = 0;

• #%G(q)(k), having the same effect as #j with probability q̂ ·(1− q̂)j−1 for j ∈ [1, k̄],

for q ∈M and k ∈M with N(k) = 0;

• #%G(q)l, having the same effect as #l̄·j with probability q̂ ·(1− q̂)j−1 for j ∈ [1,∞),

for q ∈M and l ∈M with N(l) = 0.

The letter H in #%H(k) indicates a homogeneous probability distribution, and the letter G

in #%G(q)(k) and #%G(q)l indicates a geometric probability distribution. Instructions of

the forms #%H(k) and #%G(q)(k) are bounded probabilistic jump instructions, whereas

instructions of the form #%G(q)l are unbounded probabilistic jump instructions.

Like in the case of the probabilistic basic instructions, we propose in addition the fol-

lowing probabilistic jump instructions:

• #%G()(k) as the special case of #%G(q)(k) where q = 1/2;

• #%G()l as the special case of #%G(q)l where q = 1/2.

We believe that all probabilistic jump instructions can be eliminated. In particular, we

196 Instruction Sequences for Computer Science

believe that unbounded probabilistic jump instructions can be eliminated. This believe can

be understood as the judgement that it is reasonable to expect from a semantic model of

probabilistic instruction sequences that the following identity and similar ones hold:

+a ; #%G()2 ; (+b ; ! ; c)ω =

+a ; +%() ; #8 ; #10 ;

(+b ; #5 ; #10 ; +%() ; #8 ; #10 ;

! ; #5 ; #10 ; +%() ; #8 ; #10 ;

c ; #5 ; #10 ; +%() ; #8 ; #10)ω .

Taking this identity and similar ones as our point of departure, the question arises what is

the most simple model that justifies them. A more general question is whether instruction

sequences with unbounded probabilistic jump instructions can be translated into ones with

only probabilistic test instructions provided it does not bother us that the instruction se-

quences may become much longer (e.g. expectation of the length bounded, but worst case

length unbounded).

8.3.5 The probabilistic process algebra thesis

In the preceding chapters, we have seen that, in the absence of probabilistic instructions,

threads as considered in BTA can be used to represent the behaviours produced by in-

struction sequences under execution. Processes as considered in general process algebras

such as ACP, CCS and CSP can be used as well, but they give rise to a more complicated

representation of the behaviours of instruction sequences under execution.

In the presence of probabilistic instructions, we would need a probabilistic thread al-

gebra, i.e. a variant of thread algebra that covers probabilistic behaviours. It appears that

any probabilistic thread algebra is inherently more complicated to such an extent that the

advantage of not using a general process algebra evaporates. Moreover, it appears that any

probabilistic thread algebra requires justification by means of an appropriate probabilistic

process algebra. This leads us to the following thesis:

Thesis 8.1. Modelling the behaviours produced by probabilistic instruction sequences un-

der execution is a matter of using directly processes as considered in some probabilistic

process algebra.

Notice that once we move from deterministic instructions to probabilistic instructions,

instruction sequence becomes an indispensable concept. Instruction sequences cannot be

replaced by threads or processes without taking potentially premature design decisions. It

Variations on a Theme 197

is reasonable to claim that, like for deterministic instruction sequence notations, all prob-

abilistic instruction sequence notations can be provided with a probabilistic semantics by

translation of the instruction sequences concerned into appropriate single-pass instruction

sequences. Thus, the approach of projection semantics works for probabilistic instruction

sequence notations as well.

A probabilistic thread algebra has to cover the interaction between instruction sequence

under execution and the named services from the service family provided by the execution

environment. It appears that the intricacy of a probabilistic thread algebra originates in

large part from this kind of interaction, in particular from the facet of it to which the use

operator is related.

8.3.6 Related work

In [Sharir et al. (1984)], a notation for probabilistic programs is introduced in which we

can write, for example, random(p · δ0 + q · δ1). In general, random(λ) produces a value

according to the probability distribution λ. In this case, δi is the probability distribution

that gives probability 1 to i and probability 0 to other values. Thus, for p + q = 1, p ·
δ0 + q · δ1 is the probability distribution that gives probability p to 0, probability q to 1,

and probability 0 to other values. Clearly, random(p · δ0 + q · δ1) corresponds to %(p).

Moreover, using this kind of notation, we could write #(1k · (δ1 + · · ·+ δk̄)) for #%H(k)

and #(q̂ · δ1 + q̂ · (1− q̂) · δ2 + · · ·+ q̂ · (1− q̂)k−1 · δk̄) for #%G(q)(k).

In much work on probabilistic programming, see e.g. [He Jifeng et al. (1997); McIver

and Morgan (2001); Morgan et al. (1996)], we find the binary probabilistic choice operator

p⊕. This operator chooses between its operands, taking its left operand with probability p.

Clearly, p p⊕ q can be taken as an abbreviation for +%(p) ; u(p ; #2) ; u(q), where u

is an operator which turns sequences of instructions into single instructions.2 This kind of

primitives dates back to [Kozen (1985)] at least.

Quite related, but from a different perspective, is the toss primitive introduced in

[Chadha et al. (2007)]. The intuition is that toss(bm , p) assigns to the Boolean mem-

ory cell bm the value t with probability p̂ and the value f with probability 1 − p̂. This

means that toss(bm, p) has a side-effect on a state, which we understand as making use of

a service. In other words, toss(bm , p) corresponds to a deterministic instruction intended

to be processed by a probabilistic service.

2In [Ponse (2002)], this operator is provided with a meaning by a translation from closed terms of PGA extended
with u into closed PGA terms.

198 Instruction Sequences for Computer Science

Common in probabilistic programming are assignments of values randomly chosen

from some interval of natural numbers to program variables (see e.g. [Schöning (2002)]).

Clearly, such random assignments correspond also to deterministic instructions intended

to be processed by probabilistic services. Suppose that x=i is a primitive instruction for

assigning value i to program variable x. Then we can write: #%H(k) ; u(x=1 ; #k) ;

u(x=2 ; #k−1) ; . . . ; u(x=k ; #1). This is a realistic representation of the assignment to

x of a value randomly chosen from {1, . . . , k}. However, it is clear that this way of rep-

resenting random assignments leads to an exponential blow up in the size of any concrete

instruction sequence representation, provided the concrete representation of k is its decimal

representation.

The refinement oriented theory of programs uses demonic choice, usually written $, as

a primitive (see e.g. [McIver and Morgan (2001); Meinicke and Solin (2008)]). A demonic

choice can be regarded as a probabilistic choice with unknown probabilities. Demonic

choice could be written +$ in a SPISA-like notation. However, a primitive instruction

corresponding to demonic choice is not reasonable: no mechanism for the execution of +$
is conceivable. Demonic choice exists in the world of specifications, but not in the world

of instruction sequences. This is definitely different with +%(p), because a mechanism for

its execution is conceivable.

It appears that quantum computing has something to offer that cannot be obtained

by conventional computing: it makes a stateless generator of random bits available (see

e.g. [Gay (2006); Perdrix and Jorrand (2006)]). By that quantum computing indeed pro-

vides a justification of +%(1/2) as a probabilistic instruction.

Appendix A

Five Challenges for Projectionism

In this appendix, we sketch five challenges for the semantic viewpoint that we call projec-

tionism.

Projectionism is the point of view that:

• any instruction sequence p , and more general even any program p, first and for all

represents a single-pass instruction sequence as considered in SPISA;

• this single-pass instruction sequence, found by a translation called a projection, rep-

resents in a natural and preferred way what is supposed to take place on execution of

p;

• SPISA provides the preferred notation for single-pass instruction sequences.

In a rigid form, as in Sect. 2.3, projectionism provides a definition of what constitutes a

program.

The fact that projectionism is feasible for some instruction sequence notation, does not

imply that it is uncomplicated. To give an idea of the complications that may arise, we will

sketch below five challenges for projectionism that we have encountered.

First, we introduce some notational conventions. ISN stands for an arbitrary instruction

sequence notation, p stands for an arbitrary ISN instruction sequence, and isn2spisa is

the projection that translates each ISN instruction sequence into the closed SPISA term

that denotes the single-pass instruction sequence producing the same behaviour.

We have encountered the following challenges for projectionism:

• Explosion of size. If isn2spisa(p) is much longer than p, then the requirement

that it represents in a natural way what is supposed to take place on execution of p is

challenged. For example, if the primitive instructions of ISN include instructions to

set and test up to n Boolean registers, then the projection to isn2spisa(p) may give

rise to a combinatorial explosion of size. In such cases, the usual compromise is to

199

200 Instruction Sequences for Computer Science

permit single-pass instruction sequences to make use of services, i.e. to interact with

registers, stacks or whatever is appropriate (see e.g. Sect. 3.3).

• Degradation of performance. If isn2spisa(p)’s natural execution is much slower

than p’s execution, supposing a clear operational understanding of p, then the require-

ment that it represents in a natural way what is supposed to take place on execution

of p is challenged. For example, if the primitive instructions of ISN include indirect

jump instructions, then the projection to isn2spisa(p) may give rise to a degradation

of performance (see e.g. Sect. 6.1).

• Incompatibility of services. If isn2spisa(p) has to make use of services that are not

deterministic, then the requirement that it represents in a natural way what is supposed

to take place on execution of p is challenged. For example, if the primitive instructions

of ISN include the instructions of the form +%(q) or −%(q) introduced in Sect. 8.3,

then p cannot be projected to a single-pass instruction sequence without the use of

probabilistic services. In this case, either probabilistic services must be permitted or

probabilistic instruction sequences must not be considered instruction sequences.

• Complexity of projection description. The description of isn2spisa may be so com-

plex that it defeats isn2spisa(p)’s purpose of being a natural explanation of what

is supposed to take place on execution of p . For example, the projection semantics

given for recursion in [Bergstra and Bethke (2007)] suffers from this kind of com-

plexity when compared with the conventional denotational semantics. In such cases,

projectionism may be maintained conceptually, but rejected pragmatically.

• Aesthetic degradation. In isn2spisa(p), something elegant may have been re-

placed by quite nasty details. For example, if ISN provides guarded commands, then

isn2spisa(p), which will be much more detailed, might be considered to exhibit

signs of aesthetic degradation. This challenge is probably the most serious one, pro-

vided we accept that such elegant features belong to instruction sequence notations. Of

course, it may be decided to ignore aesthetic criteria altogether. However, more often

than not, they have both conceptual and pragmatic importance.

One might be of the opinion that conceptual projectionism can accept explosion of size

and/or degradation of performance. We do not share this opinion: both challenges require a

more drastic response than a mere shift from a pragmatic to a conceptual understanding of

projectionism. This drastic response may include viewing certain mechanisms as intrinsi-

cally indispensable for either execution performance or instruction sequence compactness.

For example, it is reasonable to consider the probabilistic basic instructions of the form

Five Challenges for Projectionism 201

%(q), where q is a computable real number, indispensable if the expectations of the times

to execute their realizations by means of %() are not all finite.

Appendix B

Natural Number Functional Units

In this appendix, we investigate functional units for natural numbers. The main results con-

cern universal computable functional units for natural numbers. The main consequences of

considering the special case where the state space is N are the following: (i) N is infinite,

(ii) there is a notion of computability known which can be used without further prepara-

tions.

B.1 The Unbounded Natural Number Counter

A typical example of a functional unit in FU(N) is the unbounded natural number counter

NNC introduced in Sect. 3.2.5. The following proposition shows that there are infinitely

many functional units for natural numbers with mutually different sets of derived method

operations whose method operations are derived method operations of a major restriction

of the functional unit NNC .

Proposition B.1. We have that there exist infinitely many functional unit degrees below

({pred, iszero},NNC).

Proof. For each n ∈ N
+, we define a functional unit Un ∈ FU(N) such that Un ≤

({pred, iszero},NNC) as follows:

Un = {(pred:n,Pred :n), (iszero, Iszero)} ,

where

Pred :n(x) =

{
(t, x− n) if x ≥ n

(f, 0) if x < n .

It follows immediately that U1 ≡ ({pred, iszero},NNC). Let n,m ∈ N
+ be such that

n < m. Then Pred :n(m) = (t,m− n). However, there does not exist a p ∈ L(f.I(Um))

203

204 Instruction Sequences for Computer Science

such that |p|Um(m) = (t,m − n) because Pred :m(m) = (t, 0), Pred :m(0) = (f, 0),

Iszero(m) = (f, 0), and Iszero(0) = (t, 0). Hence, Un �≤ Um for all n,m ∈ N
+ with

n < m. �

B.2 Universal Functional Units

Below, we will show that there exists a universal functional unit among the computable

functional units in FU(N). First, we make precise which functional units are computable.

Definition B.1. A method operationM ∈MO(N) is computable if there exist computable

functionsF,G:N→ N such thatM(n) = (β(F (n)), G(n)) for all n ∈ N, where β :N→ B

is inductively defined by β(0) = t and β(n + 1) = f. A functional unit U ∈ FU(N) is

computable if, for each (m ,M) ∈ U , M is computable.

We have the following result concerning the connection between the relation ≤ on

FU(N) and the computability of functional units in FU(N).

Theorem B.1. Let U,U ′ ∈ FU(N) be such that U ≤ U ′. Then U is computable if U ′ is

computable.

Proof. We will show that all derived method operations of U ′ are computable.

Take an arbitrary p ∈ L(f.I(U ′)) such that |p|U ′ is a derived method operation of U ′.

It follows immediately from the axioms of the thread extraction operator that |p| denotes

a component of the solution of a finite linear recursive specification over BTA. Let E be

a finite linear recursive specification over BTA such that |p| denotes the x 1-component of

the solution of E . Because |p|U ′ is total, it may be assumed without loss of generality that

D does not occur as the right-hand side of an equation in E . Suppose that

E = {x i = x l(i) �f.m i� x r(i) | i ∈ [1, n]} ∪ {xn+1 = S+, xn+2 = S−} .

From this set of equations, using the relevant axioms and definitions, we obtain a set of

equations for which the F 1-component of its solution is |p|eU ′ :

{F i(s) = F l(i)(m i
e
U ′(s)) · sg(χi(s)) + F r(i)(m i

e
U ′(s)) · sg(χi(s)) | i ∈ [1, n]}

∪ {Fn+1(s) = s,Fn+2(s) = s} ,

where, for every i ∈ [1, n], the function χi : N→ N is such that for all s ∈ N:

χi(s) = 0 ⇔ m i
r
U ′(s) = t ,

Natural Number Functional Units 205

and the functions sg, sg : N→ N are defined as usual:

sg(0) = 0 ,

sg(n+ 1) = 1 ,

sg(0) = 1 ,

sg(n+ 1) = 0 .

It follows from the way in which this set of equations is obtained from E , the fact that m i
e
U ′

and χi are computable for each i ∈ [1, n], and the fact that sg and sg are computable, that

this set of equations is equivalent to a set of equations by which |p|eU ′ is defined recursively

in the sense of [Kleene (1936)]. This means that |p|eU ′ is general recursive, and hence

computable.

In a similar way, it is proved that |p|rU ′ is computable. �

Definition B.2. A computable U ∈ FU(N) is universal if for each computable U ′ ∈
FU(N), we have U ′ ≤ U .

There exists a universal computable functional unit for natural numbers.

Theorem B.2. There exists a computable U ∈ FU(N) that is universal.

Proof. We will show that there exists a computable U ∈ FU(N) with the property that

each computableM ∈MO(N) is a derived method operation of U .

As a corollary of Theorem 10.3 from [Shepherdson and Sturgis (1963)],1 we have that

each computableM ∈ MO(N) can be computed by means of a register machine with six

registers, say r0, r1, r2, r3, r4, and r5. The registers are used as follows: r0 as input

register; r1 as output register for the output in B; r2 as output register for the output in N;

r3, r4 and r5 as auxiliary registers. The content of r1 represents the Boolean output as fol-

lows: 0 represents t and all other natural numbers represent f. For each i ∈ [0, 5], register

ri can be incremented by one, decremented by one, and tested for zero by means of in-

structions ri.succ, ri.pred and ri.iszero, respectively. We write L(RM6) for the set of

all ISNRs instruction sequences, taking {ri.m | i ∈ [0, 5] ∧m ∈ {succ, pred, iszero}}
as the set A of basic instructions. Clearly, L(RM6) is adequate to represent all register

machine programs using six registers.

We define a computable functional unit Univ ∈ FU(N) whose method operations can

simulate the effects of the register machine instructions by encoding the register machine

states by natural numbers such that the contents of the registers can reconstructed by prime

1That theorem can be looked upon as a corollary of Theorem Ia from [Minsky (1961)].

206 Instruction Sequences for Computer Science

factorization. This functional unit is defined as follows:

Univ = {(ri:succ,Ri:succ) | i ∈ [0, 5]} ∪ {(ri:pred,Ri:pred) | i ∈ [0, 5]}
∪ {(ri:iszero,Ri:iszero) | i ∈ [0, 5]} ∪ {(exp2,Exp2), (fact5,Fact5)} ,

where the method operations are defined as follows:

Ri:succ(x) = (t, pi · x) ,

Ri:pred(x) =

{
(t, x/pi) if pi | x
(f, x) if ¬(pi | x) ,

Ri:iszero(x) =

{
(t, x) if ¬(pi | x)
(f, x) if pi | x , 2

for each i ∈ [0, 5], and

Exp2 (x) = (t, 2x) ,

Fact5 (x) = (t,max{y | ∃z • x = 5y · z}) ,

where pi is the (i+1)th prime number, i.e. p0 = 2, p1 = 3, p2 = 5,

We define a function rml2ful from L(RM6) to L(f.I(Univ)), which gives, for each

instruction sequence p in L(RM6), the instruction sequence in L(f.I(Univ)) by which

the effect produced by p on a register machine with six registers can be simulated by means

of the method operations of Univ . This function is defined as follows:

rml2ful(u1 ; . . . ; uk)

= f.exp2 ; ϕ(u1) ; . . . ; ϕ(uk) ;

−f.r1:iszero ; #3 ; f.fact5 ; !t ; f.fact5 ; !f ,

where

ϕ(a) = ψ(a) ,

ϕ(+a) = +ψ(a) ,

ϕ(−a) = −ψ(a) ,
ϕ(u) = u if u is a jump or termination instruction ,

where, for each i ∈ [0, 5]:

ψ(ri.succ) = f.ri:succ ,

ψ(ri.pred) = f.ri:pred ,

ψ(ri.iszero) = f.ri:iszero .

Take an arbitrary computableM ∈ MO(N). Then there exists an instruction sequence

in L(RM6) that computes M . Take an arbitrary p ∈ L(RM6) that computes M . Then

|rml2ful(p)|Univ =M . Hence, M is a derived method operation of Univ . �
2As usual, we write x | y for y is divisible by x.

Natural Number Functional Units 207

The universal computable functional unit Univ defined in the proof of Theorem B.2 has 20

method operations. However, three method operations suffice.

Theorem B.3. There exists a computable U ∈ FU(N) with only three method operations

that is universal.

Proof. We know from the proof of Theorem B.2 that there exists a universal computable

U ∈ FU(N) with 20 method operations, say M0, . . . , M19. We will show that there exists

a computable U ′ ∈ FU(N) with only three method operations such that U ≤ U ′.

We define a computable functional unit Univ ′ ∈ FU(N) with only three method oper-

ations such that Univ ≤ Univ ′ as follows:

Univ ′ = {(g1,G1), (g2,G2), (g3,G3)} ,

where the method operations are defined as follows:

G1(x) = (t, 2x) ,

G2(x) =

⎧⎪⎪⎨
⎪⎪⎩
(t, 3 · x) if ¬(319 | x) ∧ ∃y, z • x = 3y · 2z

(t, x/319) if 319 | x ∧ ¬(320 | x) ∧ ∃y, z • x = 3y · 2z

(f, 0) if 320 | x ∨ ¬∃y, z • x = 3y · 2z ,
G3(x) =Mfact3 (x)(fact2 (x)) ,

where

fact2 (x) = max{y | ∃z • x = 2y · z} ,
fact3 (x) = max{y | ∃z • x = 3y · z} .

We have that Mi(x) = G3(3i · 2x) for each i ∈ [0, 19]. Moreover, state 3i · 2x can be

obtained from state x by first applying G1 once and next applying G2 i times. Hence, for

each i ∈ [0, 19], |f.g1 ;f.g2 i ;+f.g3 ; !t ; !f|Univ ′ =Mi.3 Hence,M0, . . . , M19 are derived

method operations of Univ ′. �

The universal computable functional unit Univ ′ defined in the proof of Theorem B.3 has

three method operations. We can show that one method operation does not suffice.

Theorem B.4. There does not exist a computable U ∈ FU(N) with only one method

operation that is universal.

Proof. We will show that there does not exist a computableU ∈ FU(N) with one method

operation such that NNC ≤ U . Here, NNC is the functional unit introduced in Sect. 3.2.5.
3For each primitive instruction u , the instruction sequence un is defined by induction on n as follows: u0 =

#1, u1 = u and un+2 = u ; un+1.

208 Instruction Sequences for Computer Science

Assume that there exists a computable U ∈ FU(N) with one method operation such

that NNC ≤ U . Let U ′ ∈ FU(N) be such that U ′ has one method operation and NNC ≤
U ′, and let m be the unique method name such that I(U ′) = {m}. Take arbitraryp1,p2 ∈
L(f.I(U ′)) such that |p1|U ′ = Succ and |p2|U ′ = Pred . Then |p1|U ′(0) = (t, 1) and

|p2|U ′(1) = (t, 0). Instruction f.m is processed at least once if p1 is applied to U ′(0) or

p2 is applied to U ′(1). Let k0 be the number of times that instruction f.m is processed

on application of p1 to U ′(0) and let k1 be the number of times that instruction f.m is

processed on application of p2 to U ′(1) (irrespective of replies). Then, from state 0, state

0 is reached again after f.m is processed k0 + k1 times. Thus, by repeated application

of p1 to U ′(0) at most k0 + k1 different states can be reached. This contradicts with

|p1|U ′ = Succ. Hence, there does not exist a computable U ∈ FU(N) with one method

operation such that NNC ≤ U . �

It is an open problem whether two method operations suffice.

To the best of our knowledge, there are no existing results in computability theory

directly related to Theorems B.2, B.3 and B.4. We could not even say which existing

notion from computability theory corresponds to the universality of a functional unit for

natural numbers.

Appendix C

Dynamically Instantiated Instructions

In this appendix, we illustrate the usefulness of dynamically instantiated instructions (in-

troduced in Sect. 3.3.5) by means of an example. Before that, we introduce a concrete

notation for basic instructions and basic proto-instructions, for the case where each basic

instruction consists of a focus and a method. The resulting concrete notation will be used

in the example.

C.1 A Concrete Notation for Basic Proto-instructions

First of all, we distinguish neutral strings and active strings.

A neutral string is an empty string or a string of one or more characters of which the

first character is a letter or a colon and each of the remaining characters is a letter, a digit or

a colon. An active string is a string of two or more characters of which the first character

is an asterisk and each of the remaining characters is a digit.

A concrete basic instruction is a string of the form f.m, where f and m are neutral

strings of which the first character is a letter. A concrete basic proto-instruction is a string

of the form f.m, where f and m are non-empty strings of characters in which neutral

strings and active strings alternate, starting with a neutral string of which the first character

is a letter, and at least one active string occurs in the whole.

For example, passw.chk:110 is a concrete basic instruction, because both passw

and chk:110 are neutral strings of which the first character is a letter. On the other

hand, passw.chk:∗1:∗2:∗3 is a concrete basic proto-instruction, because both passw and

chk:∗1:∗2:∗3 are strings in which neutral strings and active strings alternate, starting with

a neutral string of which the first character is a letter, and there occur three active strings in

passw.chk:∗1:∗2:∗3.

The intention is that instantiation of a concrete basic proto-instruction amounts to si-

209

210 Instruction Sequences for Computer Science

multaneously replacing all active strings occurring in it by strings according to some as-

signment of strings to active strings. The assignment concerned must be such that concrete

basic proto-instructions are turned into concrete basic instructions.

To accomplish the assignment of strings to active strings straightforwardly, we stipulate

that all active strings of interest must be of the form ∗δ, where δ is the decimal represen-

tation of some i ∈ [1, imax].1 Moreover, an encoding of the assignable strings by numbers

in [0, nmax] must be given.1 Then each state of the register file being involved in ISNAdii

induces an assignment as follows: for each active string of interest, say ∗δ, the string as-

signed to it is the one that is encoded by the content of the register with the number of

which δ is the decimal representation.

The concrete notation for concrete basic proto-instructions introduced above is suffi-

ciently expressive for all applications that we have in mind. The assignable strings are

in many cases binary or decimal representations of numbers in the interval [0, nmax]. In

such cases, it is most natural to encode the representations simply by the numbers that they

represent.

C.2 An Example

Consider an instruction sequence that on execution reads digit by digit the binary represen-

tation of a password and then performs an action to have the password checked by some

service. The binary representation of a password is a character sequence of a fixed length,

say n, of which all characters are among the binary digits 0 and 1. The instruction sequence

reads in the binary digits which make up the binary representation of the password by per-

forming actions that are processed by some other service. Suppose that the service used

for reading in binary digits only accepts methods of the form getb and returns the reply f

if the next binary digit is 0 and t if the next binary digit is 1. Moreover, suppose that the

service used for checking passwords only accepts methods of the form chk:pw , where pw

is the binary representation of a password. The focus stdin is used below as a name of the

former service and the focus passw is used below as a name of the latter service.

In ISNAdii, where proto-instructions are available, the instruction sequence has to dis-

tinguish among only 2 · n cases. In ISNA, where no proto-instructions are available, the

instruction sequence has to distinguish among 2n cases.

Take imax = n and nmax = 1. Consider the case where n = 3. The initial part of the

1imax and nmax are the parameters of the register file being involved in ISNAdii (see Sect. 3.3.5).

Dynamically Instantiated Instructions 211

most obvious ISNAdii instruction sequence looks as follows:

+stdin.getb ; ##5 ; set:1:0 ; ##6 ; set:1:1 ;

+stdin.getb ; ##10 ; set:2:0 ; ##11 ; set:2:1 ;

+stdin.getb ; ##15 ; set:3:0 ; ##16 ; set:3:1 ;

+passw.chk:∗1:∗2:∗3 ; . . .

The initial part of the most obvious ISNA instruction sequence looks as follows:

+stdin.getb ; ##7 ; ##4 ;

+stdin.getb ; ##13 ; ##10 ; +stdin.getb ; ##19 ; ##16 ;

+stdin.getb ; ##25 ; ##22 ; +stdin.getb ; ##31 ; ##28 ;

+stdin.getb ; ##37 ; ##34 ; +stdin.getb ; ##43 ; ##40 ;

+passw.chk:000 ; ##44 ; ##45 ; +passw.chk:001 ; ##44 ; ##45 ;

+passw.chk:010 ; ##44 ; ##45 ; +passw.chk:011 ; ##44 ; ##45 ;

+passw.chk:100 ; ##44 ; ##45 ; +passw.chk:101 ; ##44 ; ##45 ;

+passw.chk:110 ; ##44 ; ##45 ; +passw.chk:111 ; . . .

The initial part of the ISNA instruction sequence that results from the translation of the

ISNAdii instruction sequence by means of isnadii2isna (see Sect. 3.3.5) looks as fol-

lows:

+stdin.getb ; ##5 ; nnr:1.set:0 ; ##6 ; nnr:1.set:1 ;

+stdin.getb ; ##10 ; nnr:2.set:0 ; ##11 ; nnr:2.set:1 ;

+stdin.getb ; ##15 ; nnr:3.set:0 ; ##16 ; nnr:3.set:1 ;

+nnr:1.eq:0 ; ##19 ; ##22 ;

+nnr:2.eq:0 ; ##25 ; ##28 ; +nnr:2.eq:0 ; ##31 ; ##34 ;

+nnr:3.eq:0 ; ##37 ; ##40 ; +nnr:3.eq:0 ; ##43 ; ##46 ;

+nnr:3.eq:0 ; ##49 ; ##52 ; +nnr:3.eq:0 ; ##55 ; ##58 ;

+passw.chk:000 ; ##59 ; ##60 ; +passw.chk:001 ; ##59 ; ##60 ;

+passw.chk:010 ; ##59 ; ##60 ; +passw.chk:011 ; ##59 ; ##60 ;

+passw.chk:100 ; ##59 ; ##60 ; +passw.chk:101 ; ##59 ; ##60 ;

+passw.chk:110 ; ##59 ; ##60 ; +passw.chk:111 ; . . .

These instruction sequences take 16, 43 and 58 instructions, respectively, up to and includ-

ing the password-check (proto-)instructions. In general, we have that:

• The most obvious ISNAdii instruction sequence takes 5 · n + 1 instructions up to and

including the password-check proto-instruction;

212 Instruction Sequences for Computer Science

• The most obvious ISNA instruction sequence takes 6 · (2n − 1) + 1 instructions up to

and including the last password-check instruction;

• The ISNA instruction sequence that results from the translation of the ISNAdii instruc-

tion sequence takes 5 · n + 6 · (2n − 1) + 1 instructions up to and including the last

password-check instruction.

It is clear, that the availability of proto-instructions is very convenient in this example.

Notice that the first ISNA instruction sequence can be looked upon as an optimization of

the second ISNA instruction sequence.

Appendix D

Analytic Execution Architectures

In this appendix, we discuss the notion of an analytic execution architecture in the setting

of SPISA.

D.1 The Notion of an Analytic Execution Architecture

An analytic execution architecture is a model of a hypothetical execution environment for

instruction sequences that is designed for the purpose of explaining how an instruction se-

quence may be executed. An analytic execution architecture makes explicit the interaction

of an instruction sequence under execution with the components of its execution environ-

ment.

We will discuss the notion of an analytic execution architecture in the setting of SPISA.

An analytic execution architecture for SPISA instruction sequences consists of a compo-

nent containing a SPISA instruction sequence and a number of components which are

called reactors.1 The component containing a SPISA instruction sequence is capable of

processing instructions one at a time, issuing appropriate requests to reactors and awaiting

replies from reactors. Each reactor is capable of processing particular requests from the

component containing a SPISA instruction sequence and issuing replies to it. This implies

that, for each reactor, there is a channel for communication between the component con-

taining a SPISA instruction sequence and that reactor. Foci are used as names of those

channels.

Recall that the threads that represent the behaviours of SPISA instruction sequences

under execution can be extracted from the SPISA instruction sequences with the thread

extraction operator |_ | introduced in Sect. 2.2.5. In Chap. 7, the behaviours represented by

1This term has been chosen because the components in question behave (exclusively or non-exclusively) in
response to requests issued by the component containing an instruction sequence.

213

214 Instruction Sequences for Computer Science

threads are taken for processes as considered in the algebraic theory of processes known

as ACPτ . The behaviours that are represented by threads can be extracted from the threads

with the process extraction operator |_ | introduced in Sect. 7.1.2. The behaviour of the

component containing the SPISA instruction sequence denoted by the closed SPISA term

t is the process represented by ||t ||. Thus, the obvious way to go is to describe analytic

execution architectures using ACPτ .

We need an extension of ACPτ with action renaming operators ρh, where h : Aτ →
Aτ such that h(τ) = τ . The axioms for action renaming are given in [Fokkink (2000)].

Intuitively, ρh(t) behaves as t with each atomic action replaced according to h. A and |
are taken such that, in addition to the conditions mentioned at the beginning of Sect. 7.1.2,

with the exception of the condition stop(r) | e = δ, the following conditions are satisfied:

A ⊇ {sserv(r) | r ∈ B} ∪ {rserv(m) |m ∈ M}
∪ {stopi+2(r) | i ∈ N ∧ r ∈ B ∪ {m}}

and for all e ∈ A, m ∈M, r ∈ B, r′ ∈ B ∪ {m}, and i, j ∈ N:

sserv(r) | e = δ ,

e | rserv(m) = δ ,

stop(r′) | stop(r′) = stop2(r
′) ,

stop(r′) | stopj+2(r
′) = stopj+3(r

′) ,

stopi+2(r
′) | stopj+2(r

′) = stopi+j+4(r
′) ,

stop(r′) | e = δ if e �= stop(r′) ∧
∧

j∈N
e �= stopj+2(r

′) ,

stopi+2(r
′) | e = δ if e �= stop(r′) ∧

∧
j∈N

e �= stopj+2(r
′) .

We also need to define a set Af ⊆ A and a function hf : Aτ → Aτ for each f ∈ F :

Af = {sf (d) | d ∈ M∪ B} ∪ {rf (d) | d ∈M∪ B} ;

for all e ∈ Aτ , m ∈M and r ∈ B:

hf (sserv(r)) = sf (r) ,

hf (rserv(m)) = rf (m) ,

hf (e) = e if
∧

r∈B
e �= sserv(r) ∧

∧
m∈M e �= rserv(m) ;

and a set Astop,n ⊆ A and a function hstop,n : Aτ → Aτ for each n > 1:

Astop,n = {stop(r) | r ∈ B ∪ {m}} ∪ {stopi(r) | 1 < i < n ∧ r ∈ B ∪ {m}} ;

Analytic Execution Architectures 215

for all e ∈ Aτ and r ∈ B ∪ {m}:

hstop,n(stopn(r)) = stop(r) ,

hstop,n(e) = e if
∧

r∈B∪{m} e �= stopn(r) .

The behaviours of reactors are also taken for processes as considered in ACPτ . We

assume that, for each reactor R, a closed ACP+REC term |R| representing the behaviour

of R has been given. We require that:

• the set of all atomic actions that can be performed by the process represented by |R|
includes at least one of the following sets:

{sserv(t)} ∪ {rserv(m) |m ∈M} ∪ {stop(r) | r ∈ B ∪ {m}} ,

{sserv(f)} ∪ {rserv(m) |m ∈M} ∪ {stop(r) | r ∈ B ∪ {m}} ;

• in all series of atomic actions that can be performed by the process represented by |R|:

– each occurrence of an atomic action of the form sserv(r) is preceded by an occur-

rence of an atomic action of the form rserv(m);

– as long as atomic actions of the form sserv(r) occur, they occur alternately with

atomic actions of the form rserv(m);

• in all states of the process represented by |R| in which an atomic action of the form

rserv(m) can be performed, all atomic actions of the forms rserv(m) and stop(r′)

can be performed.

The behaviour of an analytic execution architecture made up of a component containing

the SPISA instruction sequence denoted by the closed SPISA term t and reactors R1, . . . ,

Rn with channels named f 1, . . . , f n, respectively, is represented by

ρhstop,n+1(∂A′(||t || ‖ ρhf1
(|R1|) ‖ . . . ‖ ρhfn

(|Rn|))) ,

where

A′ = Af 1
∪ . . . ∪Af n

∪Astop,n+1 .

D.2 A Classification of Reactors

In this section, we provide a classification of reactors.

A distinction is made between target reactors and para-target reactors:

216 Instruction Sequences for Computer Science

• a reactorR is a para-target reactor if the set of all atomic actions that can be performed

by the process represented by |R| is included in the set

{sserv(r) | r ∈ B} ∪ {rserv(m) |m ∈ M} ∪ {stop(r) | r ∈ B ∪ {m}} ,

• a reactor R is a target reactor if it is not a para-target reactor.

A reactor is a para-target reactor if the result of the processing of commands by the

reactor is wholly unobservable externally. Storing auxiliary data in internal memory and

fetching auxiliary data from internal memory are typical examples of using a para-target

reactor.

A reactor is a target reactor if the result of the processing of commands by the reactor

is partly observable externally. Reading input data from a keyboard, showing output data

on a screen and storing permanent data in external memory are typical examples of using a

target reactor.

The overall intuition about instruction sequences under execution, para-target reactors

and target reactors is that:

• the behaviour produced by an instruction sequence under execution interacts with re-

actors provided by the execution environment of the instruction sequence;

• the intentions about the resulting behaviour pertain only to interaction with target re-

actors;

• interaction with para-target reactors takes place only in as far as it is needed to obtain

the intended behaviour in relation to target reactors.

One of the assumptions made in BTA+TSI, is that the behaviours of para-target reac-

tors are deterministic. The exclusion of non-deterministic behaviours is a simplification.

We believe however that this simplification is adequate in the cases that we address: para-

target reactors that keep data for an instruction sequence under execution. Of course, it is

inadequate in cases where reactors such as dice-playing reactors are taken into considera-

tion. In the setting of BTA+TSI, the behaviours of para-target reactors are called services.

Another assumption made in BTA+TSI is that the behaviours of target reactors are non-

deterministic. The reason for this assumption is that the dependence of target reactors

on external conditions make it appear to instruction sequences under execution that they

behave non-deterministically.

Bibliography

Arnold, K. and Gosling, J. (1996). The Java Programming Language (Addison-Wesley, Reading,
MA).

Arora, S. and Barak, B. (2009). Computational Complexity: A Modern Approach (Cambridge Uni-
versity Press, Cambridge).

Baeten, J. C. M. and Bergstra, J. A. (1992). Process algebra with signals and conditions, in M. Broy
(ed.), Programming and Mathematical Methods, NATO ASI Series, Vol. F88 (Springer-Verlag),
pp. 273–323.

Baeten, J. C. M. and Weijland, W. P. (1990). Process Algebra, Cambridge Tracts in Theoretical
Computer Science, Vol. 18 (Cambridge University Press, Cambridge).

Baker, H. G. (1991). Precise instruction scheduling without a precise machine model, SIGARCH
Computer Architecture News 19, 6, pp. 4–8.

Balcázar, J. L., Díaz, J. and Gabarró, J. (1988). Structural Complexity I, EATCS Monographs on
Theoretical Computer Science, Vol. 11 (Springer-Verlag, Berlin).

Bergstra, J. A. and Bethke, I. (2007). Predictable and reliable program code: Virtual machine based
projection semantics, in J. A. Bergstra and M. Burgess (eds.), Handbook of Network and Sys-
tems Administration (Elsevier, Amsterdam), pp. 653–685.

Bergstra, J. A. and Bethke, I. (2009). Square root meadows, arXiv:0901.4664v1 [cs.LO].
Bergstra, J. A. and Bethke, I. (2012). On the contribution of backward jumps to instruction sequence

expressiveness, Theory of Computing Systems 50, 4, pp. 706–720.
Bergstra, J. A. and Klop, J. W. (1984). Process algebra for synchronous communication, Information

and Control 60, 1–3, pp. 109–137.
Bergstra, J. A. and Loots, M. E. (2000). Program algebra for component code, Formal Aspects of

Computing 12, 1, pp. 1–17.
Bergstra, J. A. and Loots, M. E. (2002). Program algebra for sequential code, Journal of Logic and

Algebraic Programming 51, 2, pp. 125–156.
Bergstra, J. A. and Middelburg, C. A. (2007a). Instruction sequences with indirect jumps, Scientific

Annals of Computer Science 17, pp. 19–46.
Bergstra, J. A. and Middelburg, C. A. (2007b). Maurer computers with single-thread control, Funda-

menta Informaticae 80, 4, pp. 333–362.
Bergstra, J. A. and Middelburg, C. A. (2007c). Thread algebra for strategic interleaving, Formal

Aspects of Computing 19, 4, pp. 445–474.
Bergstra, J. A. and Middelburg, C. A. (2008a). Instruction sequences for the production of processes,

arXiv:0811.0436v2 [cs.PL].
Bergstra, J. A. and Middelburg, C. A. (2008b). Program algebra with a jump-shift instruction, Journal

of Applied Logic 6, 4, pp. 553–563.
Bergstra, J. A. and Middelburg, C. A. (2009a). Instruction sequence notations with probabilistic

217

218 Instruction Sequences for Computer Science

instructions, arXiv:0906.3083v1 [cs.PL].
Bergstra, J. A. and Middelburg, C. A. (2009b). Instruction sequences with dynamically instantiated

instructions, Fundamenta Informaticae 96, 1–2, pp. 27–48.
Bergstra, J. A. and Middelburg, C. A. (2010a). Instruction sequences and non-uniform complexity

theory, arXiv:0809.0352v3 [cs.CC].
Bergstra, J. A. and Middelburg, C. A. (2010b). On the operating unit size of load/store architectures,

Mathematical Structures in Computer Science 20, 3, pp. 395–417.
Bergstra, J. A. and Middelburg, C. A. (2010c). A thread calculus with molecular dynamics, Informa-

tion and Computation 208, 7, pp. 817–844.
Bergstra, J. A. and Middelburg, C. A. (2011a). Indirect jumps improve instruction sequence perfor-

mance, arXiv:0909.2089v2 [cs.PL].
Bergstra, J. A. and Middelburg, C. A. (2011b). Inversive meadows and divisive meadows, Journal of

Applied Logic 9, 3, pp. 203–220.
Bergstra, J. A. and Middelburg, C. A. (2011c). On the behaviours produced by instruction sequences

under execution, arXiv:1106.6196v1 [cs.PL].
Bergstra, J. A. and Middelburg, C. A. (2011d). Thread extraction for polyadic instruction sequences,

Scientific Annals of Computer Science 21, 2, pp. 283–310.
Bergstra, J. A. and Middelburg, C. A. (2012a). Instruction sequence processing operators, Acta In-

formatica 49, 3, pp. 139–172.
Bergstra, J. A. and Middelburg, C. A. (2012b). On the expressiveness of single-pass instruction se-

quences, Theory of Computing Systems 50, 2, pp. 313–328.
Bergstra, J. A. and Ponse, A. (2002). Combining programs and state machines, Journal of Logic and

Algebraic Programming 51, 2, pp. 175–192.
Bergstra, J. A. and Ponse, A. (2007). Execution architectures for program algebra, Journal of Applied

Logic 5, 1, pp. 170–192.
Bergstra, J. A. and Ponse, A. (2008). A generic basis theorem for cancellation meadows,

arXiv:0803.3969v2 [math.RA].
Bergstra, J. A. and Ponse, A. (2009). An instruction sequence semigroup with involutive anti-

automorphisms, Scientific Annals of Computer Science 19, pp. 57–92.
Bergstra, J. A. and Tucker, J. V. (2007). The rational numbers as an abstract data type, Journal of the

ACM 54, 2, p. Article 7.
Bergstra, J. A. and van der Zwaag, M. B. (2008). Mechanistic behavior of single-pass instruction

sequences, arXiv:0809.4635v1 [cs.PL].
Bishop, J. and Horspool, N. (2004). C# Concisely (Addison-Wesley, Reading, MA).
Brock, C. and Hunt, W. A. (1997). Formally specifying and mechanically verifying programs for the

Motorola complex arithmetic processor DSP, in ICCD ’97, pp. 31–36.
Brookes, S. D., Hoare, C. A. R. and Roscoe, A. W. (1984). A theory of communicating sequential

processes, Journal of the ACM 31, 3, pp. 560–599.
Chadha, R., Cruz-Filipe, L., Mateus, P. and Sernadas, A. (2007). Reasoning about probabilistic se-

quential programs, Theoretical Computer Science 379, 1–2, pp. 142–165.
Cooper, D. C. (1967). Böhm and Jacopini’s reduction of flow charts, Communications of the ACM

10, 8, pp. 463, 473.
Diertens, B. (2003). A toolset for PGA, Electronic Report PRG0302, Programming Research

Group, University of Amsterdam, available from http://www.science.uva.nl/
research/prog/publications.html.

Fokkink, W. J. (2000). Introduction to Process Algebra, Texts in Theoretical Computer Science, An
EATCS Series (Springer-Verlag, Berlin).

Gay, S. J. (2006). Quantum programming languages: Survey and bibliography, Mathematical Struc-
tures in Computer Science 16, 4, pp. 581–600.

Groote, J. F. and Ponse, A. (1994). Proof theory for μCRL: A language for processes with data, in

Bibliography 219

D. J. Andrews, J. F. Groote and C. A. Middelburg (eds.), Semantics of Specification Languages,
Workshops in Computing Series (Springer-Verlag), pp. 232–251.

Groote, J. F. and Ponse, A. (1995). The syntax and semantics of μCRL, in A. Ponse, C. Verhoef
and S. F. M. van Vlijmen (eds.), Algebra of Communicating Processes 1994, Workshops in
Computing Series (Springer-Verlag), pp. 26–62.

He Jifeng, Seidel, K. and McIver, A. K. (1997). Probabilistic models for the guarded command
language, Science of Computer Programming 28, 2–3, pp. 171–192.

Hennessy, J., Jouppi, N., Przybylski, S., Rowen, C., Gross, T., Baskett, F. and Gill, J. (1982). MIPS:
A microprocessor architecture, in MICRO ’82, pp. 17–22.

Hennessy, J. L. and Patterson, D. A. (2003). Computer Architecture: A Quantitative Approach, 3rd
edn. (Morgan Kaufmann, San Francisco).

Hennessy, M. and Milner, R. (1985). Algebraic laws for non-determinism and concurrency, Journal
of the ACM 32, 1, pp. 137–161.

Hoare, C. A. R. (1985). Communicating Sequential Processes (Prentice-Hall, Englewood Cliffs).
Hodges, W. A. (1993). Model Theory, Encyclopedia of Mathematics and Its Applications, Vol. 42

(Cambridge University Press, Cambridge).
Hopcroft, J. E., Motwani, R. and Ullman, J. D. (2001). Introduction to Automata Theory, Languages

and Computation, 2nd edn. (Addison-Wesley, Reading, MA).
Jonsson, B., Larsen, K. G. and Yi, W. (2001). Probabilistic extensions of process algebras, in J. A.

Bergstra, A. Ponse and S. A. Smolka (eds.), Handbook of Process Algebra (Elsevier, Amster-
dam), pp. 685–710.

Karp, R. M. and Lipton, R. J. (1980). Some connections between nonuniform and uniform complexity
classes, in STOC ’80 (ACM Press), pp. 302–309.

Kleene, S. C. (1936). General recursive functions of natural numbers, Mathematische Annalen 112,
pp. 727–742.

Kozen, D. (1985). A probabilistic PDL, Journal of Computer and System Sciences 30, 2, pp. 162–178.
Kranakis, E. (1987). Fixed point equations with parameters in the projective model, Information and

Computation 75, 3, pp. 264–288.
Lunde, A. (1977). Empirical evaluation of some features of instruction set processor architectures,

Communications of the ACM 20, 3, pp. 143–153.
Lynch, N. A. and Blum, E. K. (1981). Relative complexity of algebras, Mathematical Systems Theory

14, 1, pp. 193–214.
Margenstern, M. (1997). Decidability and undecidability of the halting problem on Turing machines,

a survey, in S. Adian and A. Nerode (eds.), LFCS’97, Lecture Notes in Computer Science, Vol.
1234 (Springer-Verlag), pp. 226–236.

Maurer, W. D. (1966). A theory of computer instructions, Journal of the ACM 13, 2, pp. 226–235.
Maurer, W. D. (2006). A theory of computer instructions, Science of Computer Programming 60, pp.

244–273.
McIver, A. K. and Morgan, C. C. (2001). Demonic, angelic and unbounded probabilistic choices in

sequential programs, Acta Informatica 37, 4–5, pp. 329–354.
Meinicke, L. and Solin, K. (2008). Refinement algebra for probabilistic programs, Electronic Notes

in Theoretical Computer Science 201, pp. 177–195.
Milner, R. (1989). Communication and Concurrency (Prentice-Hall, Englewood Cliffs).
Minsky, M. L. (1961). Recursive unsolvability of Post’s problem of “tag” and other topics in theory

of Turing machines, Annals of Mathematics 74, 3, pp. 437–455.
Morgan, C. C., McIver, A. K. and Seidel, K. (1996). Probabilistic predicate transformers, ACM Trans-

actions on Programming Languages and Systems 18, 3, pp. 325–353.
Mosses, P. D. (2006). Formal semantics of programming languages — an overview, Electronic Notes

in Theoretical Computer Science 148, pp. 41–73.
Nair, R. and Hopkins, M. E. (1997). Exploiting instruction level parallelism in processors by caching

220 Instruction Sequences for Computer Science

scheduled groups, SIGARCH Computer Architecture News 25, 2, pp. 13–25.
Ofelt, D. and Hennessy, J. L. (2000). Efficient performance prediction for modern microprocessors,

in SIGMETRICS ’00, pp. 229–239.
Patterson, D. A. and Ditzel, D. R. (1980). The case for the reduced instruction set computer,

SIGARCH Computer Architecture News 8, 6, pp. 25–33.
Pavlotskaya, L. M. (1973). Solvability of the halting problem for certain classes of Turing machines,

Mathematical Notes 13, 6, pp. 537–541.
Perdrix, S. and Jorrand, P. (2006). Classically controlled quantum computation, Mathematical Struc-

tures in Computer Science 16, 4, pp. 601–620.
Ponse, A. (2002). Program algebra with unit instruction operators, Journal of Logic and Algebraic

Programming 51, 2, pp. 157–174.
Ponse, A. and van der Zwaag, M. B. (2006). An introduction to program and thread algebra, in

A. Beckmann et al. (eds.), CiE 2006, Lecture Notes in Computer Science, Vol. 3988 (Springer-
Verlag), pp. 445–458.

Sannella, D. and Tarlecki, A. (1999). Algebraic preliminaries, in E. Astesiano, H.-J. Kreowski and
B. Krieg-Brückner (eds.), Algebraic Foundations of Systems Specification (Springer-Verlag,
Berlin), pp. 13–30.

Schmidt, D. A. (1986). Denotational Semantics: A Methodology for Language Development (Allyn
and Bacon, Boston).

Schöning, U. (2002). A probabilistic algorithm for k-SAT based on limited local search and restart,
Algorithmica 32, 4, pp. 615–623.

Sharir, M., Pnueli, A. and Hart, S. (1984). Verification of probabilistic programs, SIAM Journal of
Computing 13, 2, pp. 292–314.

Shepherdson, J. C. and Sturgis, H. E. (1963). Computability of recursive functions, Journal of the
ACM 10, 2, pp. 217–255.

Skyum, S. and Valiant, L. G. (1985). A complexity theory based on boolean algebra, Journal of the
ACM 32, 2, pp. 484–502.

Tennenhouse, D. L. and Wetherall, D. J. (2007). Towards an active network architecture, SIGCOMM
Computer Communication Review 37, 5, pp. 81–94.

Thierauf, T. (2000). The Computational Complexity of Equivalence and Isomorphism Problems, Lec-
ture Notes in Computer Science, Vol. 1852 (Springer-Verlag, Berlin).

Thornton, J. (1970). Design of a Computer – The Control Data 6600 (Scott, Foresman and Co.,
Glenview, IL).

Turing, A. M. (1937). On computable numbers, with an application to the Entscheidungs problem,
Proceedings of the London Mathematical Society, Series 2 42, pp. 230–265, correction: ibid,
43:544–546, 1937.

van Glabbeek, R. J., Smolka, S. A. and Steffen, B. (1995). Reactive, generative and stratified models
of probabilistic processes, Information and Computation 121, 1, pp. 59–80.

Wirsing, M. (1990). Algebraic specification, in J. van Leeuwen (ed.), Handbook of Theoretical Com-
puter Science, Vol. B (Elsevier, Amsterdam), pp. 675–788.

Xia, C. and Torrellas, J. (1996). Instruction prefetching of systems codes with layout optimized for
reduced cache misses, in ISCA ’96, pp. 271–282.

Glossary

Instruction Sequence Algebra

Symbol/Notation Meaning Sect.
SPISA single-pass instruction sequence algebra 2.1.2
SPISA+SC SPISA with structural congruence predicate 2.1.4
SPISAg SPISA with labels and gotos 4.3.1
SPISAjs SPISA with jump shift instruction 4.4.1
SPISAiss SPISA with instruction sequence splitting 5.2.4
SPISAp SPISA with polyadic instruction sequences 8.1.1
C SPISA variant with backward instructions 8.2.1

A the set of basic instructions 2.1.1
I the set of primitive instructions 2.1.1

IS instruction sequence 2.1.2
a plain basic instruction 2.1.2
+a positive test instruction 2.1.2
−a negative test instruction 2.1.2
#l forward jump instruction 2.1.2
! plain termination instruction 2.1.2
!t positive termination instruction 2.1.2
!f negative termination instruction 2.1.2
; concatenation 2.1.2
ω repetition 2.1.2

∼=s structural congruence 2.1.4

≡b behavioural equivalence 2.2.6
∼=b behavioural congruence 2.2.6

[l] label instruction 4.3.1
#[l] goto instruction 4.3.1

#′ jump-shift instruction 4.4.1

split(bp) splitting instruction 5.2.4
reply(bp) direct replying instruction 5.2.4

221

222 Instruction Sequences for Computer Science

###i switch-over instruction 8.1.1
$put:i:u put instruction 8.1.1
$get:i get instruction 8.1.1

/a forward plain basic instruction 8.2.1
+/a forward positive test instruction 8.2.1
−/a forward negative test instruction 8.2.1
/#l forward jump instruction 8.2.1
\a backward plain basic instruction 8.2.1
+\a backward positive test instruction 8.2.1
−\a backward negative test instruction 8.2.1
\#l backward jump instruction 8.2.1
abort instruction 8.2.1

Instruction Sequence Notations

Symbol/Notation Meaning Sect.
ISNR instruction sequence notation with relative jumps 2.3.1
ISNRs ISNR with strict Boolean termination 2.3.1
ISNRI ISNR with implicit termination convention 2.3.4
ISNRij ISNR with indirect jumps 3.3.2
ISNA instruction sequence notation with absolute jumps 2.3.2
ISNAI ISNA with implicit termination convention 2.3.4
ISNAij ISNA with indirect jumps 3.3.1
ISNAdij ISNA with double indirect jumps 3.3.3
ISNArj ISNA with returning jumps 3.3.4
ISNAdii ISNA with dynamic instruction instantiation 3.3.5

\#l backward jump instruction 2.3.1

##l absolute jump instruction 2.3.2

set:i:n register set instruction 3.3.2
i#i indirect forward jump instruction 3.3.2
i\#i indirect backward jump instruction 3.3.2

i##i indirect absolute jump instruction 3.3.1
ii##i double indirect absolute jump instruction 3.3.3
r##l returning absolute jump instruction 3.3.4
##r absolute return instruction 3.3.4

e plain basic proto-instruction 3.3.5
+e positive test proto-instruction 3.3.5
−e negative test proto-instruction 3.3.5

;ni=1 pi stands for p1 ; . . . ; pn 2.3.1

isnr2spisa projection from ISNR to SPISA 2.3.1
isna2spisa projection from ISNA to SPISA 2.3.2

Glossary 223

Thread Algebra

Symbol/Notation Meaning Sect.
BTA basic thread algebra 2.2.1
BTA+REC BTA with guarded recursion 2.2.2
BTA+REC+AIP BTA+REC with approximation induction 2.2.2
SFA service family algebra 3.1.1
BTA+TSI BTA with thread-service interaction 3.1.2
BTA+TSI+REC BTA+TSI with guarded recursion 3.1.3
BTA+TSI+REC+AIP BTA+TSI+REC with approximation induction 3.1.3
BTA+TSI+ABSTR BTA+TSI with abstraction 3.1.9
BTA+MTTS BTA with multi-threading and thread splitting 5.2.4

A the set of basic actions 2.2.1
T thread 2.2.1
D inaction 2.2.1
S plain termination 2.2.1
S+ positive termination 2.2.1
S− negative termination 2.2.1
�a� postconditional composition 2.2.1
a ◦ action prefixing 2.2.1

〈x |E 〉 solution of guarded recursive specification 2.2.2
πn nth projection 2.2.2

Res(t) the set of residual threads of thread t 2.2.3

I(BTA) the initial model of BTA 2.2.4
I∞(BTA) the projective limit model of BTA 2.2.4

|_ | thread extraction for instruction sequences 2.2.5

F the set of foci 3.1.1
M the set of methods 3.1.1
R reply 3.1.1
S service 3.1.1
SF service family 3.1.1
t true 3.1.1
f false 3.1.1
d divergent 3.1.1
m meaningless 3.1.1
δ empty service 3.1.1
∂

∂m derived service 3.1.1
�m service reply 3.1.1
∅ empty service family 3.1.1
f . singleton service family 3.1.1
⊕ service family composition 3.1.1
∂F service family encapsulation 3.1.1

⊕n
i=1 t i stands for t1 ⊕ . . .⊕ tn 3.1.1

224 Instruction Sequences for Computer Science

/ use 3.1.2
• apply 3.1.2
! reply 3.1.2

↓ convergence 3.1.6
↓B convergence with Boolean reply 3.1.6
↑ divergence 3.1.6

// abstracting use 3.1.9
τtau abstraction 3.1.9

TV thread vector 5.2.4
‖ cyclic interleaving 5.2.4
SD inaction at termination 5.2.4
Ibpb parameter instantiation 5.2.4
� split(bp)� splitting postconditional composition 5.2.4
� reply(bp)� direct replying postconditional composition 5.2.4

Functional Units
Symbol/Notation Meaning Sect.
MO(Σ) the set of method operations on state space Σ 3.2.1
M r reply of method operation M 3.2.1
Me effect of method operation M 3.2.1
FU(Σ) the set of functional units for state space Σ 3.2.1
I(U) interface of functional unit U 3.2.1
mU method operation named m in functional unit U 3.2.1
U(σ) functional unit U in state σ 3.2.1
≤ functional unit derivability 3.2.1
≡ functional unit bi-derivability 3.2.1
UH functional unit induced by Maurer machine H 6.2.1

Process Algebra

Symbol/Notation Meaning Sect.
ACPτ algebra of communicating processes with silent step 7.1.1

A the set of atomic actions 7.1.1
P process 7.1.1
a atomic action 7.1.1
τ silent step 7.1.1
δ inaction 7.1.1
+ alternative composition 7.1.1
· sequential composition 7.1.1
‖ parallel composition 7.1.1
�� left merge 7.1.1
| communication merge 7.1.1
∂A encapsulation 7.1.1
τA abstraction 7.1.1

Glossary 225

〈x |E 〉 solution of guarded recursive specification 7.1.1
πn nth projection 7.1.1
Sub(p) the set of subprocesses of process p 7.1.1

|_ | process extraction for threads 7.1.2

:→ non-branching conditional 7.2.1
ρh action renaming D.1

General Mathematical Notations

The precedence conventions used in logical formulas are as follows: operators bind stronger than
predicate symbols, and predicate symbols bind stronger than logical connectives and quantifiers; ¬
binds stronger than ∧ and ∨, and ∧ and ∨ bind stronger than ⇒ and ⇔; quantifiers are given the
smallest possible scope.

Symbol/Notation Meaning
¬ϕ not ϕ
ϕ ∧ ϕ′ ϕ and ϕ′

ϕ ∨ ϕ′ ϕ or ϕ′

ϕ ⇒ ϕ′ ϕ implies ϕ′

ϕ ⇔ ϕ′ ϕ if and only if ϕ′

∀x • ϕ for every object x, ϕ
∃x • ϕ for some object x, ϕ

a ∈ A a is an element of A
A ⊆ A′ A is a subset of A′

∅ the empty set
P(A) the set of all subsets of A
A ∪A′ the union of A and A′

A ∩A′ the intersection of A and A′

A \A′ the difference of A and A′

A×A′ the cartesian product of A and A′

{x | ϕ} the set containing those x for which ϕ holds
{a1, . . . , an} the set whose elements are a1, . . . , an

(a1, . . . , an) the ordered n-tuple whose ith element is ai (i ∈ [1, n])⋃
i∈I Ai the union of an indexed family of sets

A → A′ the set of all functions from A to A′

[a �→ a′] the unique function from {a} to {a′}
f ⊕ g the override of f by g
f � A the restriction of f to A
dom(f) the domain of f
rng(f) the range of f
f : A → A′ f is a function from A to A′

A∗ the set of all finite sequences over A
ε the empty sequence
a the sequence containing only a
σσ′ the concatenation of σ and σ′

tl(σ) the tail of σ
len(σ) the length of σ

226 Instruction Sequences for Computer Science

B the set of all boolean values
N the set of all natural numbers
N

+ the set of all positive natural numbers
Z the set of all integers
[i, i′] the set of all integers j for which i ≤ j ≤ i′

t [t ′/x] the result of substituting term t ′ for variable x in term t

Index

abort instruction, 186
abstracting use, 42, 51
abstraction

in ACPτ , 152, 153
in BTA+TSI, 51

ACPτ , 152, 157, 160, 169, 214
action, 12
action prefixing, 13
address width, 140, 147
alternative choice action, 169
alternative choice instruction, 169
alternative composition, 152
apply, 39, 43, 47, 139
atomic action, 152, 158, 168

backward instruction, 186
basic action, 12, 39, 51, 120, 158, 169
basic instruction, 6, 26, 28, 82, 88, 168, 176,

186
auxiliary, 132
plain, 6, 26, 28, 62, 64, 67, 69, 72, 77

basic proto-instruction, 72
plain, 72

basic thread algebra, see BTA
behavioural congruence, 23
behavioural equivalence, 23, 30
Boolean function, 109
Boolean function family, 109
Boolean parameter, 119
BTA, 12, 21, 38, 76, 118, 157, 169
BTA+TSI, 39

C, 186
C instruction, 186
C program, 189

canonical form
first, 8, 11, 83
second, 11

chained jumps, 11
communication merge, 152
complexity hypothesis

non-uniform super-polynomial, 118
super-polynomial feature elimination, 129

concatenation, 7
convergence, 48
core basic instruction, 176
core primitive instruction, 176
cyclic interleaving, 120

data memory element, 140
derived method operation, 57, 204, 205
derived service, 35
direct replying instruction, 119
divergence, 48
dynamic instantiation, 72

empty service, 35
empty service family, 36
encapsulation

in ACPτ , 152
in BTA+TSI, 36

execution mechanism, 94
execution trace, 133
expressiveness, 75
extension, 55
external memory, 148

focus, 36
forward instruction, 186
functional unit, 55, 58–61, 93, 98, 138, 181,

227

228 Instruction Sequences for Computer Science

203
computable

for N, 204
for T, 98

universal
for N, 205
for T, 99

functional unit degree, 57, 203

get instruction, 176
goto instruction, 82
guarded recursive specification

over ACPτ , 153, 156
over BTA, 14, 17, 20, 23
over BTA+TSI, 42

halting problem
autosolvable, 99
potentially autosolvable, 100
potentially recursively autosolvable, 100
reflexive solution of, 99
solution of, 99

halting problem instance, 100

inaction
in ACPτ , 152
in BTA, 12
in SPISA, 6

inaction at termination, 120
initial model, 10, 18
input region, 138, 142
instruction message, 163
instruction sequence, 7

SPISA, 9, 21, 25, 27, 29, 75, 190, 213
function computed by, 109
function splitting computed by, 123

instruction sequence notation
with absolute jumps, see ISNA
with relative jumps, see ISNR

instruction stream, 164
instruction stream execution unit, 160
instruction stream execution unit state, 164
instruction stream generator, 160
instruction stream generator state, 164
internal memory, 148
interpreter, 101

reflexive, 102
ISNA, 28, 30, 43, 49, 61, 68, 72, 76, 177
ISNR, 26, 30, 43, 49, 64, 76, 177

jump instruction
absolute, 28, 62, 67, 69, 72

double indirect, 66
indirect, 62, 67
returning, 69

backward, 26, 64
indirect, 64

forward, 6, 26, 64, 77–79, 109
indirect, 64

jump-shift instruction, 88

label instruction, 82
left merge, 152
linear recursive specification

over ACPτ , 156
over BTA, 17

load address register, 140
load data register, 140

Maurer machine, 136, 138, 141
base set of, 137
instruction interpretation of, 137
instruction of, 137
memory of, 137
operation of, 137
state of, 137

maximal internal delay, 133
method, 34
method name, 55
method operation, 55

computable
on N, 204
on T, 98

partial, 55

non-uniform polynomial-length reducibility,
126

operating unit memory element, 140
operating unit size, 140, 143, 147, 150
output region, 138, 142

P∗, 109, 114, 118, 123
P∗∗, 123, 125, 128
P∗∗-completeness, 126
parallel composition, 152
parameter instantiation, 120
polyadic instruction sequence, 177
postconditional composition, 12, 120

229

primitive instruction, 6, 9, 26, 28, 62, 64, 66,
69, 72, 82, 88

probabilistic basic instruction, 193
probabilistic jump instruction, 195
probabilistic test instruction, 194
process, 152, 157, 161, 166, 169, 215
process extraction, 158, 169
projection

in ACPτ , 155
in BTA, 15, 19

projection, 27
to ISNA, 31, 62, 67, 69, 73
to ISNR, 31, 64
to SPISA, 26, 28

projection semantics, 27, 191, 200
projectionism, 199
projective limit model

of BTA, 20
of BTA+TSI, 51, 53

projective sequence, 19, 54
protocol for instruction stream processing, 159
put instruction, 176

reactor, 213
para-target, 216
target, 216

register set instruction, 62, 64, 67, 73
regular process, 156, 170
regular thread, 17, 77, 81, 90, 94
relevant use convention, 49
repeating part, 11
repetition, 7, 24, 177
reply, 39, 43, 47
reply register, 141
reply stream, 165
residual thread, 17
return instruction, 69

sequential composition, 152
service, 35, 216
service family, 36
service family composition, 36
service reply, 35
SFA, 36, 38
shortest possible jump, 11
silent step, 152
single-pass instruction sequence algebra, see

SPISA
singleton service family, 36
SPISA, 7, 21, 76, 118, 169

splitting instruction, 119
state

of functional unit, 55
of process, 156
of thread, 17

step, 134
store address register, 140
store data register, 140
strict load/store Maurer instruction set

architecture, 141, 143, 147
structural congruence, 10, 24, 88
subprocess, 156
supplementary basic instruction, 176
switch-over instruction, 176

termination
in BTA, 12
in SPISA, 7

termination instruction, 26, 28, 62, 64, 67, 69,
73
negative, 6
plain, 6
positive, 6

test instruction, 26, 28, 62, 64, 67, 69, 72
negative, 6, 77
positive, 6

test proto-instruction
negative, 72
positive, 72

thread, 12, 17, 21, 76, 157, 169, 187
thread extraction, 22, 89, 90, 119, 179, 187
thread powered function class, 148

complete, 148
thread vector, 120

unfolding, 8
use, 39, 43, 47

word length, 140, 147

	Instruction Sequences for Computer Science
	Preface
	Contents
	List of Tables
	1 Introduction
	2 Instruction Sequences
	3 Instruction Processing
	4 Expressiveness of Instruction Sequences
	5 Computation-Theoretic Issues
	6 Computer-Architectural Issues
	7 Instruction Sequences and Process Algebra
	8 Variations on a Theme
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Bibliography
	Glossary
	Index

